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1 Introduction 

 

1.1 Obesity  

Obesity represents a steadily increasing health threat to our society and is a major 

cause of morbidity and mortality. Over the last 10 years, the percentage of overweight 

adults in the United States has increased from 45 to 58% (Fig. 1) (1). This increment in the 

prevalence of overweight and obesity, a trend found not only in adults but also in children, 

has been observed in many other countries of the world (2-4). According to latest 

projections of the World Health Organisation (WHO) 1.6 billion adults are overweight and 

at least 400 million are obese worldwide. These numbers will presumably rise to 2.3 

billion overweight and 700 million obese individuals until the year 2015 (5).  

The underlying cause of excessive weight gain is a continuous imbalance between 

energy intake on one hand, and energy expenditure on the other (6). Enhanced 

susceptibility to obesity is not only attributable to genetic variation but also to a number of 

other factors including a global shift in diet composition towards higher amounts of fat and 

carbohydrates and lower amounts of vitamins, minerals and other micronutrients (7). 

Furthermore, decreased physical activity and a shift towards a sedentary lifestyle 

contribute to the obesity epidemic (8, 9). 

 

 

 
Fig. 1: Prevalence of overweight in the United States from 1991-2001. 

Since 1991, the percentage of overweight adults has risen from 45 to 58%. Of those overweight in 2001, 56% 

were men and 44% were women. Mokdad et al, 2003 (1). 
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The most common measure for defining overweight and obesity is the body mass 

index (BMI) which is assessed by the ratio of body weight in kilogramm (W) and height in 

meters (H) multiplied by itself (W/H2) (10). Individuals with a BMI of 25 to 29.9 kg/m2 

are defined as overweight while obesity is characterized by a BMI of 30 kg/m2 or higher 

(5). Obesity predisposes to a variety of different diseases. It represents an independent risk 

factor for myocardial infarction, stroke, type 2 diabetes mellitus, and certain types of 

cancer (11-13). Adiposity, which is the fraction of total body mass comprised of neutral 

lipid stored in adipose tissue, is closely correlated with important physiological parameters 

such as blood pressure, systemic insulin sensitivity, serum triglyceride and leptin 

concentrations (14-16). Several obesity-related disorders including insulin resistance, 

glucose intolerance, dyslipidemia, hypertension, and coronary artery disease are positively 

correlated with adiposity (15, 17). It has been shown that visceral fat accumulation is more 

closely linked to obesity-associated pathologies than overall adiposity (18). Changes in 

adipose tissue mass are associated with changes in the endocrine and metabolic functions 

of adipose tissue that connect increased adiposity to alterations in systemic physiology. For 

example, the concentration of circulating leptin, the most prominent adipocyte-derived 

hormone, positively correlates with increased adipocyte volume and number (19). Leptin 

functions as an important regulator of energy intake and storage, insulin sensitivity, and 

metabolic rate (20-22). In contrast, adiposity is negatively correlated with plasma 

concentrations of adiponectin, an adipocyte-derived, insulin-sensitizing hormone that 

decreases hepatic gluconeogenesis and increases lipid oxidation in muscle (23-25). 

Visceral fat accumulation belongs to a group of risk factors including high blood 

pressure, high blood glucose, high levels of triglycerides and low levels of high density 

lipoproteins which are subsumed under the term metabolic syndrome (26). These 

conditions predispose for cardiovascular disease (CVD) and type 2 diabetes mellitus 

(T2DM) (27-29).  
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1.2 Diabetes Mellitus 

Since one of the major consequences of excessive weight gain is the development of 

insulin resistance, it is not surprising that an increase in number of overweight and obese 

individuals within a population (Fig. 1) is accompanied by a rise in the occurence of 

diabetes (Fig. 2). Diabetes mellitus is a chronic disease and the sixth leading cause of death 

in the United States. In 2007, a total of 23.6 million US citizens, representing 8% of the 

population, suffered from diabetes. Health care costs, whether assigned to diabetes directly 

or indirectly, were estimated at 174 billion USD for the year 2007 (30). According to the 

WHO 180 million people worldwide suffer from diabetes and these numbers are predicted 

to more than double by 2030. In 2005, 1.1 million people died from diabetes all over the 

world and an increase by more than 50% is projected for the next 10 years (31, 32).  

 

 

 
Fig. 2: Prevalence of diabetes in the United States from 1991-2001. 

The prevalence of people diagnosed with diabetes increased to 7.9% in 2001 from 4.9% in 1990, an increase 

of 61%. In 2001, 3.4% of US adults (2.9% men, 3.8% women) were both obese and had diabetes, an increase 

of 1.4% compared to 1991. Mokdad et al, 2003 (1). 

 

In principal, there are two idiopathic forms of diabetes known as type 1 and 2. Type 

1 diabetes mellitus (T1DM), also termed juvenile diabetes or insulin-dependent diabetes 

(IDDM), is characterized by the loss of insulin-producing β-cells in the Langerhans islets 

of the pancreas as a result of autoimmune reactions (33). T1DM can be treated and 

contained by an insulin replacement therapy and dietary management (34).  

Type 2 diabetes mellitus, formerly known as adult-onset diabetes, is the non-

insulin-dependent (NIDDM) form of diabetes and accounts for 90-95% of all diagnosed 

cases of diabetes (30). This disease develops when chronic overnutrition colludes with 

genetic susceptibility to cause insulin resistance and a relative insulin deficiency of non-
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autoimmune etiology (35, 36). When resistance to the metabolic effect of insulin occurs, 

the pancreas is able to compensate with expansion of β-cell mass and hypersecretion of the 

hormone (37). It is assumed that the ultimate stimulus is nutrient surplus in the blood, 

predominantly glucose and free fatty acids (FFA) (38-40). However, prolonged 

overproduction of insulin leads to progressive detoriation of β-cell function associated with 

apoptosis-driven loss of β-cell mass leading to subsequent progression to a type 2 diabetic 

state (41-43). T2DM is characterized by severe hyperglycemia and altered lipid 

homeostasis (44-46).  

Treatment strategies for T2DM include oral agents such as sulfonylureas, 

biguanides and thiazolidinediones (TZD) which increase insulin secretion, insulin action 

and augment overall insulin sensitivity, respectively (47-50). Interestingly, anti-

inflammatory drugs like salicylates can also improve insulin sensitivity (51, 52). In 

addition, lifestyle changes especially increased exercise and dietary adjustments including 

caloric restriction ameloriate T2DM morbidity (53, 54). In the long-term, diabetes is 

associated with complications such as atherosclerosis, retinopathy, nephropathy, 

neuropathy and impaired wound healing which all impose significant economical 

consequences (55-60). 

 

 

1.2.1 Systemic and Molecular Effects of Insulin Signaling 

Insulin has most potent anabolic effects and promotes the synthesis and storage of 

carbohydrates, lipids and proteins, while inhibiting their degradation and release into the 

circulation (44). It controls energy homeostasis by stimulating glucose uptake in peripheral 

tissues and suppressing the release of stored lipids from adipose tissue (61-64). 

Furthermore, it increases glycolysis and inhibits gluconeogenesis in the liver (65-67).  

The pleiotropic effects of insulin are mediated by binding of the hormone to its 

membrane-bound receptor (68). The insulin receptor (IR) belongs to the family of receptor 

tyrosine kinases and comprises four subunits of which two regulatory α-subunits inhibit the 

two catalytic β-subunits. Upon binding of insulin, the α-subunits undergo a conformational 

change that leads to derepression of the β-subunits which subsequently transphosphorylate 

(69). This facilitates interaction with the phosphotyrosine binding (PTB) domains of 

downstream signaling components (70-73) which localize to the plasma membrane by 
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interaction of their N-terminal Pleckstrin homology (PH) domain with lipid-bound inositol 

phosphates (74, 75).  

There are at least nine known intracellular substrates of the insulin receptor. Four of 

these belong to the insulin receptor substrate (IRS) family (76-78). Others include Grb2-

associated binding protein 1, p60dok, Casitas B-lineage lymphoma (Cbl), adapter protein 

with a pleckstrin homology and a Src homology 2 domain (APS) and isoforms of Shc (79-

81). These molecules serve as docking platforms for Src-homology (SH)-2 domain-

containing proteins such as the regulatory subunit of the phosphatidylinositol-3 kinase 

(PI3K) and the growth factor receptor binding protein (Grb)-2. Subsequent signal 

transduction results in the activation of the PI3K and the Ras/Raf Mitogen-activated 

protein (MAP)-kinase pathways (82-85). 

 

 

 
 

Fig. 3: Insulin signal transduction pathway.  

Binding of insulin to the insulin receptor results in receptor trans-phosphorylation and activation leading to 

the recruitment and subsequent phosphorylation of insulin receptor substrates. This enables the binding of 

SH-2 domain containing proteins, which ultimately leads to the activation of downstream signaling pathways 

such as the PI3K or the Ras/Raf MAPK signaling pathway. (Abbreviations: Akt: Proteinkinase B, APS: 
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adapter protein with a pleckstrin homology and an Src homology 2 domain, CAP: cbl-associated protein,  

ERK: extracellular signal-regulated kinase, FOXO: Forkhead transcription factor , Glut4: glucose transporter 

4, Grb2: growth factor receptor binding protein 2, Gsk3: glycogen synthase kinase 3, IR: insulin receptor, 

IRS: insulin receptor substrate, mTOR: mammalian target of rapamycin, p70S6K: p70 S6 kinase, PI3K: 

phosphatidylinositol-3 kinase, PIP: phosphatidylinositol phosphate, Pdk: phosphoinositide-dependent kinase, 

PKA: Proteinkinase A, PKC: Proteinkinase C, SOS: son of sevenless, Raf: v-raf-leukemia viral oncogene, 

Ras: rat sarcoma) 

 

Activation of the Ras/Raf MAP-kinase pathway leads to cellular proliferation and 

differentiation while no significant effect on the metabolic actions of insulin has been 

observed (86, 87). In contrast, insulin-induced PI3K activation mediates the vast majority 

of metabolic effects of the hormone including glycogen, protein and lipid synthesis, 

inhibition of apoptosis and stimulation of glucose transport. Most of these processes are 

mediated through activation of Protein kinase B/Akt (88-91). However, a PI3K-

independent pathway for the regulation of glucose transport has also been identified (92). 

In this pathway, the insulin receptor directly recruits the adaptor protein APS and the Cbl-

cbl associated protein (93) complex. Tyrosine-phosphorylated Cbl then recruits the CrkII-

C3G complex to lipid rafts, leading to downstream activation of TC10 and ultimately 

resulting in translocation of glucose transporter (GLUT) 4 to the plasma membrane (94-98) 

(Fig. 3).  

 

 

1.3 Obesity, Inflammation and Insulin Resistance 

The nutritional or metabolic state of an organism is closely linked to its immune 

system in a delicate balance. Malnutrition impairs immune processes thereby rendering an 

organism more susceptible to infectious diseases (99, 100). This arises from a reduced 

metabolic support under conditions of infection during which the immune system is highly 

dependent on the mobilization of nutrients and supply with energy to eliminate pathogens 

(101). In contrast, overnutrition i.e. obesity is associated with chronic, low-grade activation 

of the immune system and increased susceptibility to inflammatory diseases (102). This 

can lead to insulin resistance when inflammatory pathways interfere with insulin signaling 

cascades (103).  

The first evidence for the importance of inflammatory signaling in obesity-induced 

insulin resistance was the observation that the pro-inflammatory cytokine tumor necrosis 
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factor (TNF) α is elevated in adipose tissue of obese mice and humans and is capable of 

inducing insulin resistance in vitro (104-106). TNF-α acts via the TNF receptor and 

activates intracellular protein kinases e.g. the inhibitor of nuclear factor (NF) κB kinases 

(IKKs) and c-jun N-terminal kinases (JNKs) (107, 108). Subsequently, these kinases 

mediate inhibitory phosphorylation events on serine (S307) residues of IRS molecules 

(109, 110). S307 phosphorylation of IRS reduces both tyrosine phosphorylation of IRS in 

response to insulin and its ability to associate with the insulin receptor, thus inhibiting 

downstream signaling and insulin action (111, 112). Inhibition or inactivation of IKK or 

JNK in mice has been shown to protect from obesity-induced insulin resistance (51, 52, 

113-115). Aside from TNF-α, a variety of other inflammation-associated factors including 

interleukin (IL) 6, IL-1, IL-8, c-reactive protein (CRP), monocyte chemoattractant protein 

1 (MCP-1, also called CCL2), vascular cell adhesion molecules (VCAMs) and matrix 

metalloproteinases (MMPs) are upregulated in the adipose tissue and/or circulation of 

obese mice and humans and have been linked to obesity and insulin resistance (93, 116-

121).  

In addition to these factors, the obesity-associated increase in circulating free fatty 

acids (FFAs) has been shown to interfere with insulin signaling in target tissues via 

activation of IKK, JNK and protein kinase C (PKC) (122-127). This interference is 

mediated via at least two mechanisms. On one hand, FFAs induce inflammatory signaling 

cascades by activation of toll-like receptors (TLRs). TLRs belong to a family of pattern-

recognition receptors that play a crucial role in activating the pro-inflammatory response 

after contact with microbial pathogens (128). The best characterized member of this 

receptor family is TLR4 which recognizes lipopolysaccharides (LPS), components of the 

bacterial cell wall. Signal transduction after contact with LPS is mediated through 

intracellular binding of myeloid differentiation factor 88 (MyD88) to the Toll/IL-1 receptor 

(TIR) domain of the receptor and subsequent activation of the NFκB pathway. This leads 

to expression of pro-inflammatory cytokines and chemokines and other effectors of the 

innate immune response (129).  

Besides LPS, whose lipid component is sufficient to mediate TLR signaling, 

saturated fatty acids have the full potential to promote TLR4 activation in vitro (130, 131). 

Disruption of TLR4 in mice has been demonstrated to partially protect these animals from 

obesity-induced insulin resistance and substantially reduce the negative effect of systemic 

lipid infusion on glucose metabolism and muscle insulin action (132). In addition to TLR 

signaling, FFA activate inflammatory serine kinases by intermediates of their intracellular 



  Introduction 

-8-   

processing pathways such as β-oxidation in the mitochondria, storage to triglyceride depots 

and conversion into ceramides (133-136). 

Another important aspect of obesity-induced insulin resistance is the development of 

endoplasmatic reticulum (ER) stress. Under normal conditions, the ER is the site of protein 

folding and assembly by chaperones (137). However, obesity generates conditions of 

glucose or nutrient deprivation, inundation with fatty acids or increased expression of 

secretory proteins that elevate the demand on the ER leading to accumulation of unfolded 

or misfolded proteins.  

 

 

 
 

Fig. 4: Potential mechanisms for the inhibition of insulin signal transduction in obesity. 

Obesity increases circulating inflammatory cytokine and free fatty acid concentration. This leads to 

activation of cell surface receptors which then induce serine kinases like c-jun N-terminal kinase (JNK), 

inhibitor of NFkB kinase (IKK) komplex and protein kinase c (PKC) isoforms. These kinases then mediate 

inhibitory serine (S307) phosphorylation events on insulin receptor substrates (IRS) thereby blocking insulin 

action. Additionally, transcription factors nuclear factor kB (NFkB), activator protein (AP) 1 and signal 

transducer and activator of transcription (Stat) activate inflammatory gene expression thereby enhancing 

production and secretion of inflammatory markers and mediators. Furthermore, endoplasmatic reticulum 

(ER) stress and intermediates of fatty acid metabolism may activate stress kinases. (Abbreviations: CR: 
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cytokine receptor, FFA: free fatty acid, FA: fatty acid, IL1R: interleukin-1 receptor, IR: insulin receptor, IRS: 

insulin receptor substrate, LPS: lipopolysaccharide, TLR: toll-like receptor, TNF: tumor necrosis factor, 

TNFR: TNF receptor) 

 

This in turn triggers the unfolded protein response (UPR) which enhances the 

transcription of genes involved in assembly, folding, modification and degradation of 

proteins to normalize ER function (138). It has been suggested that failure of this adaptive 

response leads to activation of various cell death effectors such as Bax, Bak and caspases 

(139-141). Nevertheless, the UPR not only affects gene transcription and pro-apoptotic 

factors but also activates stress kinases like JNK and expression of pro-inflammatory 

cytokines via the IKK/NFκB axis which ultimately induces insulin resistance (142-144). A 

recent study demonstrated that the genetic disruption of x-box protein (XBP) 1, a 

transcription factor that mediates expression of ER chaperones, leads to increased ER 

stress, activation of JNK and induction of insulin resistance via serine-phosphorylation of 

IRS in diet-induced obese mice (138). Furthermore, treatment of diet-induced obese mice 

with orally active chemical chaperones reverses these effects on ER stress and JNK and 

improves tissue insulin sensitivity (145). These findings underline the importance of ER 

stress and inflammatory signals in the development of obesity-induced insulin resistance. 

 

 

1.4 Macrophages  

In general, macrophages belong to the mononuclear phagocyte system which also 

includes monocytes and their lineage-committed precursors (146). The first step of 

macrophage development takes place in the bone marrow where myeloid progenitors 

differentiate into monocytes. Monocytes in turn enter the circulation and give rise to 

tissue-resident macrophage populations throughout the body (147). Recruitment of 

monocytes to peripheral tissues and differentiation into macrophages is enhanced by pro-

inflammatory, metabolic and immune stimuli (148). Macrophages are classically defined 

to belong to the innate immune system and, due to their ubiquitous distribution, represent a 

first line of defense against invading pathogens (149). Their main functions are the 

maintenance of tissue homeostasis and initiation of the inflammatory response. 

Furthermore, macrophages harbor pronounced chemotactic and phagocytotic abilities and 

contribute to tissue remodeling and repair (150). Macrophage dysfunction is associated 
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with a variety of diabetes-associated diseases such as atherosclerosis, retinopathy, 

nephropathy, neuropathy and impaired wound healing (151, 152). 

 

 

1.4.1 The Role of Macrophages in Obesity-induced Insulin Resistance 

In obesity, the adipose tissue is an important initiator of the inflammatory response 

since it not only serves as a storage depot for excess calories, but is also capable of 

secreting fatty acids, hormones, cytokines and chemokines which then act in both 

endocrine and paracrine fashion (153). Although it mainly consists of adipocytes, the 

adipose tissue also contains preadipocytes, endothelial cells and immune cells which all 

reside in the stromal vascular fraction. During expansion of the adipose tissue in obesity, 

local hypoxia occurs due to hypoperfusion with blood vessels. This microhypoxia induces 

activation of JNK and NFκB signaling cascades and increases inflammatory gene 

expression, leading to secretion of chemokines and, ultimately, adipocyte death (154). 

Chemokines that are released into the circulation during these events attract macrophages 

which then surround dead adipocytes for removal of cell debris and tissue remodeling 

(155). In addition, these macrophages secrete pro-inflammatory cytokines and chemokines 

thereby inducing insulin resistance in adjacent adipocytes and recruiting more 

macrophages from the vascularity to the fat tissue (156).  

Accumulation of macrophages in adipose tissue is an important hallmark of 

adiposity, a condition in which these cells represent 40% of the total adipose cell content in 

contrast to only 10% in lean counterparts (157). Conditional disruption of pro-

inflammatory kinases JNK1 and IKKβ specifically in myeloid cells protected mice from 

diet-induced insulin resistance, decreased the inflammatory tone and blocked accumulation 

of macrophages in adipose tissue in different models of obesity (114, 158). Interestingly, 

although JNK1 and IKKβ remained intact in all organs despite immune cells, no effect on 

adiposity was observed in these studies. Furthermore, conventional disruption of MCP-1, 

which is an important chemoattractant for immune cells, or its receptor CCR2, prevented 

the accumulation of macrophages in adipose tissue of obese mice and improved overall 

insulin sensitivity (159, 160). These studies clearly indicate that systemic inflammation 

alone can affect insulin sensitivity and that the obesity-associated inflammatory state is 

mainly mediated through the myeloid compartment of the immune system and infiltration 

of immune cells into adipose tissue. 
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1.4.2 Adipose Tissue Macrophage Heterogeneity 

Macrophages can be divided into at least two subgroups, M1 and M2 (161). M1-

cells are defined as "classically activated" macrophages, which are induced by interferon 

(IFN) γ and LPS. These macrophages secrete pro-inflammatory cytokines (e.g. TNF-α, IL-

6, IL-12) and produce high levels of nitric oxide (NO) via inducible nitric oxide synthase 

(iNOS) expression (162). In addition, they show increased reactivity to fatty acids and 

LPS. M2-cells or "alternatively activated" macrophages are induced by IL-4 or IL-13 and 

display a more anti-inflammatory phenotype since they produce high levels of IL-10 and 

IL-1 decoy receptor and only secrete low levels of pro-inflammatory cytokines. M2 

macrophages are generally involved in tissue repair and remodeling (163).  

Recently, it has been demonstrated that macrophages invading the adipose tissue of 

obese animals exhibit a different polarization compared to the cells identified in the 

adipose tissue of lean animals. Freshly recruited macrophages are positive for surface 

markers F4/80, CD11b and CD11c and have a pronounced pro-inflammatory profile 

showing high reactivity to LPS and FFA allocating them to the M1 subgroup (164). In 

contrast, resident adipose tissue macrophages in lean animals also express F4/80 and 

CD11b surface markers, but lack CD11c expression almost completely. These cells exhibit 

an M2/anti-inflammatory profile showing reduced expression of IL-6, iNOS and CCR2 

(165). Notably, the obesity-induced switch in the adipose tissue macrophage activation 

state is not dependent on the conversion of resident M2 macrophages to an M1 phenotype 

but arises from a localized recruitment of inflammatory macrophage subtypes out of the 

circulation (166). An important mediator of M1 to M2 polarization of macrophages is the 

nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ which acts as a lipid 

sensor (167) and whose conditional disruption in myeloid cells has been shown to impair 

alternative activation of macrophages and predisposes for obesity-induced insulin 

resistance and glucose intolerance (168). Activation of PPARγ in macrophages e.g. by 

treatment with TZDs polarizes towards an M2 phenotype, thus also providing an 

explanation for the beneficial effect of these compounds on insulin sensitivity in humans 

(169). Recently, the importance of M1 vs. M2 macrophages in obesity-induced insulin 

resistance has been demonstrated by Patsouris and colleagues. In this study, ablation of 

CD11c-positive cells in obese, insulin resistant mice lead to a drastic decrease in 

inflammatory marker expression and normalized insulin sensitivity to that of lean controls 

(170). 
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According to these findings, it is clear that activated macrophages infiltrate the 

adipose tissue in obesity. However, another important question asks which signals lead to 

activation of macrophages in this context. Obesity provides an extracellular environment 

that is enriched with lipids, pro-inflammatory cytokines, chemokines and even gut-derived 

bacterial compounds which can activate macrophages (171). Among the receptors 

activated by these signals, TLRs are the most intensively investigated family. Disruption of 

TLR2 or TLR4 or both prevent the activation of inflammation in macrophages by FFA 

(172, 173). In addition to FFA, cytokines derived from expanding adipose tissue, ER stress 

and also microhypoxia, whose central mediator hypoxia inducible factor (HIF) was shown 

to be crucial for the regulation of macrophage function (174), can activate inflammatory 

pathways in these cell types. 

 

 

1.5 Macrophages and Insulin 

Until now, only few studies have been performed to investigate the effect of insulin 

itself on macrophage activation and function. Primary monocytes and macrophages 

express insulin receptors as they were used to study insulin binding affinities and receptor 

turnover in the 1970s (175-177). The functionality of the insulin receptor on monocytes 

was demonstrated first when insulin was shown to modulate Fc receptor expression on 

these cells (178). Furthermore, insulin augments the bacteriocidal properties of 

macrophages against Salmonella typhimurium and enhances their chemotactic activity 

towards pancreatic β-cell islets in vitro (179, 180). Approximately 10 years later, Costa-

Rosa and colleagues further investigated insulin's effect on macrophage key functions. 

They demonstrated that insulin does not affect cell migration, at least in response to 

thioglycolate and Bacille Calmette-Guérin (BCG), but significantly enhances 

phagocytosis, H2O2 production and glucose metabolism in macrophages (181).  

More recent studies demonstrated that insulin induces TNF-α mRNA and protein 

expression in an ERK-dependent manner and promotes survival in a human monocytic 

cell-line (182, 183). Moreover, the same cell-line, when exposed to LPS followed by 

insulin treatment, shows enhanced secretion of TNF-α and IL-1β compared to LPS alone 

(184). The role of insulin in cell survival was also demonstrated in primary murine 

macrophages. Treatment with insulin increased protein levels of anti-apoptotic B-cell 
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lymphoma (Bcl) 2 and induced XBP-1 and 78 kDa glucose response protein (GRP78), 

which are both involved in the UPR (185). 

The concept of insulin's role in macrophage survival was further supported when 

Han et al. demonstrated that in a mouse model of atherosclerosis, transplantation of bone 

marrow from insulin receptor-deficient animals into a low density lipoprotein (LDL) 

receptor-deficient background, leads to advanced lesion formation (186). This was 

ascribed to increased ER stress and apoptosis in IR-deficient macrophages due to elevated 

scavenger receptor A (SRA) expression and enhanced uptake of oxidized LDL. 

Interestingly, our lab demonstrated in a similar study that myeloid cell-autonomous IR-

deficiency decreases formation of atherosclerotic plaques in mice (187). Here, IR-deficient 

primary macrophages displayed unaltered uptake and efflux of cholesterol. Furthermore, 

IR-deficient macrophages exhibited decreased expression and secretion of IL-6 after 

stimulation with LPS indicating a reduced inflammatory response in these cells. 

Taken together, insulin exerts a variety of effects on macrophage function including 

survival, phagocytosis, migration and inflammatory gene expression. However, until 

today, the role of macrophage insulin receptor signaling in obesity-induced insulin 

resistance remains elusive. 

 

 

1.6 Objectives 

To study the role of insulin signal transduction in macrophages in obesity-induced 

insulin resistance, mice with a conditional disruption of the insulin receptor specifically in 

myeloid cells were generated. The aim of this study was to physiologically characterize 

these animals under normal chow and high fat diet. In addition, we sought to study glucose 

metabolism in insulin target tissues by euglycemic-hyperinsulinemic clamp analysis. Also, 

the impact of myeloid cell insulin receptor deficiency on obesity-associated inflammation, 

both locally and systemically, was to be investigated. Furthermore, we wanted to analyze 

the action of insulin in primary macrophages in a cell-autonomous fashion in relation to 

migration/chemotaxis, apoptosis and inflammation. 
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2 Materials and Methods 

2.1 Chemicals 

Size markers for agarose gel electrophoresis (Gene Ruler DNA Ladder Mix) and for 

SDS-PAGE (Prestained Protein Ladder Mix) were obtained from MBI Fermentas, St. 

Leon-Rot, Germany. RedTaq DNA Polymerase and 10 x RedTaq buffer were purchased 

from Sigma-Aldrich, Seelze, Germany. 

 

 

Chemical Supplier 

ε-aminocaproic acid Sigma-Aldrich, Seelze, Germany 

2-Deoxy-D-[1-14C]-Glucose Amersham, Freiburg, Germany 

Acetone KMF Laborchemie, Lohmar, Germany 

Acrylamide Roth, Karlsruhe, Germany 

Agarose (Ultra Pure) Invitrogen, Karlsruhe, Germany 

Amyloglucosidase Roche, Mannheim, Germany 

Aprotinin Sigma-Aldrich, Seelze, Germany 

Benzamidine Sigma-Aldrich, Seelze, Germany 

β-Mercaptoethanol (β-ME) AppliChem, Darmstadt, Germany 

Bovine serum albumin (BSA) Sigma-Aldrich, Seelze, Germany 

BSA essentially fatty acid free Sigma-Aldrich, Seelze, Germany 

Bradford reagent Bio-Rad, München, Germany 

Bromphenol blue Merck, Darmstadt, Germany 

Calcein Invitrogen, Karlsruhe, Germany 

Chloroform Merck, Darmstadt, Germany 

D-[3-3H]-Glucose Amersham, Freiburg, Germany 

Desoxy-Ribonucleotid-Triphosphates (dNTPs) Amersham, Freiburg, Germany 

Dextran sulfate AppliChem, Darmstadt, Germany 

Dimethylsulfoxide (DMSO) Merck, Darmstadt, Germany 

Dithiothreitol (DTT) Boehringer, Mannheim, Germany 

Enhanced Chemiluminscence (ECL) Kit Perbio Science, Bonn, Germany 

Ethanol, absolute AppliChem, Darmstadt, Germany 

Ethidium bromide Sigma-Aldrich, Seelze, Germany 

Ethylendiamine tetraacetate (EDTA) AppliChem, Darmstadt, Germany 
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Fetal Calf Serum (FCS) Gibco BRL, Eggenstein, Germany 

Gelatine Sigma-Aldrich, Seelze, Germany 

Glacial acetic acid Roth, Karlsruhe, Germany 

Glucose DeltaSelect, Pfullingen, Germany 

Glycerol Serva, Heidelberg, Germany 

Hydrochloric acid (37 %) KMF Laborchemie, Lohmar, Germany 

Insulin Novo Nordisk, Bagsværd, Denmark 

Isopropanol Roth, Karlsruhe, Germany 

LaddermanTM DNA Labeling Kit Cambrex Bio Science, Verviers, Belgium 

Leptin Sigma-Aldrich, Seelze, Germany 

Lipopolysaccharide (LPS) Sigma-Aldrich, Seelze, Germany 

MCP-1 Sigma-Aldrich, Seelze, Germany 

Methanol Roth, Karlsruhe, Germany 

Non-essential amino acids Gibco BRL, Eggenstein, Germany 

Palmitate Sigma-Aldrich, Seelze, Germany 

Penicillin/Streptomycin Solution Gibco BRL, Eggenstein, Germany 

Phenol-Chloroform-Isoamyl alcohol AppliChem, Darmstadt, Germany 

Phenylmethylsulfonylfluoride (PMSF) Sigma-Aldrich, Seelze, Germany 

Phosphate buffered saline (PBS) Gibco BRL, Eggenstein, Germany 

Potassium hydroxide Merck, Darmstadt, Germany 

Proteinase K Roche, Mannheim, Germany 

RPMI 1640  Gibco BRL, Eggenstein, Germany 

Salmon sperm DNA Sigma-Aldrich, Seelze, Germany 

Sodium acetate AppliChem, Darmstadt, Germany 

Sodium chloride AppliChem, Darmstadt, Germany 

Sodium dodecyl sulfate AppliChem, Darmstadt, Germany 

Sodium hydroxide AppliChem, Darmstadt, Germany 

Sodium fluoride Merck, Darmstadt, Germany 

Sodium orthovanadate Sigma-Aldrich, Seelze, Germany 

Sodium pyruvate Gibco BRL, Eggenstein, Germany 

Sucrose AppliChem, Darmstadt, Germany 

Tetramethylethylenediamine Sigma-Aldrich, Seelze, Germany 

Thioglycollate Sigma-Aldrich, Seelze, Germany 

Tramadolehydrochloride Grünenthal GmbH, Stolberg, Germany 

Avertin Sigma-Aldrich, Seelze, Germany 
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Trishydroxymethylaminomethane AppliChem, Darmstadt, Germany 

Triton X-100 Applichem, Darmstadt, Germany 

Tween 20 Applichem, Darmstadt, Germany 

Western Blocking Reagent Roche, Mannheim, Germany 
 

 Table 1: Chemicals 

 
 

2.2 Molecular Biology 

Standard methods of molecular biology were performed according to Sambrook and 

Russell (188), unless stated otherwise. 

 

 

2.2.1 Isolation of Genomic DNA 

Mouse tail biopsies were incubated 2-3 hours (h) in lysis buffer (100 mM Tris-HCl 

(pH 8.5), 5 mM EDTA, 0.2% (w/v) SDS, 0.2 M NaCl, 500 µg/ml proteinase K) in a 

thermomixer (Eppendorf, Hamburg, Germany) at 56°C. Peritoneal macrophages were 

incubated in lysis buffer at 56°C overnight. Precipitation was performed by addition of one 

equivalent of isopropanol. After centrifugation and a single washing step with 70% (v/v) 

ethanol, the DNA pellet was dried at room temperature (RT) for 30 minutes and 

resuspended in double distilled water (ddH2O).  

For Southern blot analysis, 100 mg of murine tissue were digested in lysis buffer 

containing 1 g/ml of proteinase K overnight in a thermomixer at 56°C. Samples were 

centrifuged to discard debris and an equal volume of phenol-chloroform-isoamyl alcohol 

mixture ((v/v/v) 25:24:1, saturated with 100 mM Tris (pH 8.0)) was added to the 

supernatant. Following centrifugation, the aqueous phase was transferred to a fresh vial 

and mixed with an equivalent of chloroform. After centrifugation, DNA was precipitated 

from the supernatant as described above and resuspended in TE buffer (10 mM Tris-HCl 

(pH 8), 1 mM EDTA) containing 50 µg/ml RNaseI. 
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2.2.2 Southern Blot Analysis 

10 µg of phenol-chloroform-extracted DNA were digested overnight at 37°C, with 

50 U of NcoI restriction enzyme (MBI Fermentas GmbH, St. Leon-Rot, Germany), and 

separated electrophoretically on a 0.8% (w/v) agarose gel at 60 V. The DNA was 

subsequently transferred to a HybondTM-N+ nylon membrane (Amersham, Braunschweig, 

Germany) by an alkaline capillary transfer (189) and crosslinked to the membrane by 

baking at 80°C for 20 min. A probe was PCR-amplified using customized primers (Table 

2) and labelled with [32P]-dCTP using the LaddermanTM DNA Labeling Kit (TaKaRa; 

Cambrex Bio Science, Verviers, Belgium). Membranes were equilibrated in 2 x SSC and 

then prehybridized at 65°C for 4 h in hybridization solution (1 M NaCl, 1% (w/v) SDS, 

10% (w/v) dextran sulfate, 50 mM Tris-HCl (pH 7.5), 250 µg/ml sonicated salmon sperm 

DNA). The radioactively labelled probe was then added to the prehybridization solution. 

Hybridization of the probe to its corresponding sequence on the nylon membrane was 

performed overnight at 68°C in a rotating cylinder. Unspecifically bound probe was 

removed by washing the membrane initially with 2 x SSC / 0.1 % (w/v) SDS, followed by 

1 x SSC / 0.1% (w/v) SDS, if necessary. All washes were performed at 68°C under gentle 

shaking for 10-20 min. After each wash, the membrane was monitored with a Geiger 

counter and the washes were stopped when radioactivity reached 50 to 200 cps. The 

membrane was then sealed in a plastic bag and exposed to X-ray film (Kodak XAR-5 or 

BioMAX MS; Eastman Kodak) at -80°C. Films were developed in an automatic developer 

(Agfa, Köln, Germany). 

 

 

Probe Primer Sequence (5’-3’) Orientation 

IR NcoI5’ CCATGGGTCCATAACCTATC sense 

IR NcoI3’ AGTGATGAGATGGCTCATTAG antisense 

 

Table 2: Oligonucleotides used to amplify the southern blot probe  

All primer sequences are displayed in 5’-3’ order. Primer orientation is designated “sense” when coinciding 

with transcriptional direction. All primers were purchased from Eurogentec, Cologne, Germany. 
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2.2.3 Quantification of Nucleic Acids 

Nucleic acid concentration was assessed by measuring the sample absorption at 260 

nm with a NanoDrop® ND-1000 UV-Vis Spectrophotometer (Peqlab, Erlangen, Germany). 

An optical density of 1 corresponds to approximately 50 µg/ml of double-stranded DNA, 

40 µg/ml of RNA and 33 µg/ml of ssDNA. The 260/280 nm absorbance ratio was used as 

a measure of purity for nucleic acid samples. A ratio of ~1,8 was accepted as pure DNA 

and a ratio of ~2,0 as pure RNA. 

 

 

2.2.4 Polymerase Chain Reaction (PCR) 

The PCR method (190, 191) was used to genotype mice for the presence of floxed 

alleles or transgenes with customized primers listed in Table 2. Reactions were performed 

in a Thermocycler iCycler PCR machine (Bio-Rad, München, Germany) or in a Peltier 

Thermal Cycler PTC-200 (MJ Research, Waltham, USA). All amplifications were 

performed in a total reaction volume of 25 µl, containing a minimum of 50 ng template 

DNA, 25 pmol of each primer, 25 µM dNTP Mix, 10 x RedTaq reaction buffer and 1 unit 

of RedTaq DNA Polymerase. Standard PCR programs started with 4 minutes (192) 

denaturation at 95°C, followed by 30 cycles consisting of denaturation at 95°C for 45 

seconds (sec), annealing at oligonucleotide-specific temperatures for 30 sec and elongation 

at 72°C for 30 sec and a final elongation step at 72°C for 7 min. PCR-amplified DNA 

fragments were applied to 1% - 2% (w/v) agarose gels (1 x TAE, 0.5 mg/ml ethidium 

bromide) and electrophoresed at 120 V. 

 

 

Primer Sequence (5’-3’) TAnnealing [°C] Orientation 

LysMCre5’ CTC TAG TCA GCC AGC AGC TG 59 sense 

LysMCre3’ ATG TTT AGC TGG CCC AAA TGT 59 antisense 

IR5’ GAT GTG CAC CCC ATG TCT G 58 sense 

IR3’ CTG AAT AGC TGA GAC CAC AG 58 antisense 

IR∆ GGG TAG GAA ACA GGA TGG 58 sense 

 

Table 3: Oligonucleotides used for genotyping  

All primer sequences are displayed in 5’-3’ order. Primer orientation is designated “sense” when coinciding 

with transcriptional direction. All primers were purchased from Eurogentec, Cologne, Germany. 
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2.2.5 RNA Extraction, RT-PCR and Quantitative Realtime PCR 

Total RNA from murine cells and tissues was extracted using the Qiagen RNeasy 

Kit (Qiagen, Hilden, Germany). 1 µg of each RNA sample was reversely transcribed using 

the Eurogentec RT Kit (Eurogentec, Cologne, Germany) according to manufacturer’s 

instructions. The cDNA was subsequently amplified using an ABI Prism 7900HT Fast 

Real-time PCR System (Applied Biosystems, Foster City, USA). 

 

 

Probe Catalogue N° 

Adiponectin Mm00456425_m1 

Bax Mm00432050_m1 

Bcl-2 Mm00477631_m1 

CCl2 Mm00441242_m1 

CCl3 Mm00441258_m1 

F4/80 Mm00802530_m1 

Gusb Mm00446953_m1 

Hprt1 Mm00446968_m1 

IL-6 Mm00446190_m1 

Insr Mm00439693_m1 

Leptin Mm00434759_m1 

Mac-2 Mm00802901_m1 

TNF-α Mm00443258_m1 
 

Table 4: Taqman Gene Expression Assays  

All assays were purchased from Applied Biosystems, Foster City, USA. 

 

Relative expression of Adiponectin, CCl-2, CCl-3, F4/80, Leptin, Mac-1, Mac-2 and TNF-

α mRNA was determined using standard curves based on white adipose tissue cDNA. 

Samples were adjusted for total cDNA content by Glucuronidase beta (Gusb) and 

hypoxanthine guanine phosphoribosyl transferase (Hprt-) 1 mRNA quantitative Realtime 

PCR. Calculations were performed by a comparative method (2-∆∆CT). In brief, the 

amplification plot is the plot of fluorescence versus PCR number. The threshold cycle 

value (Ct) is the fractional PCR cycle number at which the fluorescent signal reached the 
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detection threshold. Therefore, the input cDNA copy number and Ct are inversely related. 

Data were analyzed with the Sequence Detector System (SDS) software version 2.1 (ABI) 

and Ct value was automatically converted to fold change RQ value ((RQ) = 2− (∆∆CT)). The 

RQ values from each gene were then used to compare the gene expression across all 

groups. 

 
 

2.2.6 Protein Extraction 

Cell pellets or snap-frozen tissues were disrupted in lysis buffer (50 mM HEPES 

(pH 7.4), 1% (v/v) Triton X-100, 0.1 M sodium fluoride, 10 mM EDTA, 50 mM sodium 

chloride, 10 mM sodium orthovanadate, 0,1% (w/v) SDS, 10 µg/ml aprotinin, 2 mM 

benzamidine, 2 mM phenylmethylsulfonyl fluoride (PMSF)) by resuspension and gentle 

vortexing or by usage of a polytron homogenizer (IKA Werke, Staufen, Germany), 

respectively. Particulate matter was removed by centrifugation for 1 h at 4°C. The 

supernatant was transferred to a fresh vial and protein concentration was determined using 

a Bradford assay. Protein extracts were diluted to 5 mg/ml with lysis buffer and 4 x SDS 

sample buffer (125 mM Tris-HCl (pH 6.8), 5% (w/v) SDS, 43.5% (w/v) glycerol, 100 mM 

DTT, and 0.02% (v/v) bromophenol blue), incubated at 95°C over 5 min and stored at -

80°C. 

 

 

2.2.7 SAPK/JNK Kinase Assay 

A c-Jun fusion protein linked to agarose beads (SAPK/JNK Kinase assay #9810; 

Cell Signaling, Danvers, MA, USA) was used to pull down SAPK/JNK enzyme from liver 

and skeletal muscle protein extracts. Immunoprecipitation was performed by overnight 

incubation at 4°C. After two washes with lysis buffer and kinase buffer, 200 µM ATP was 

supplemented to the precipitate. The phosphorylation reaction was carried out at 30°C and 

stopped after 30 min by addition of 4 x SDS sample buffer. Detection of phospho-c-Jun by 

western blot analysis was used to measure SAPK activity. 
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2.2.8 Western Blot Analysis 

Frozen protein extracts were thawed at 95°C for 5 min, then separated on 10-15% 

(v/v) SDS polyacrylamide gels (193) and blotted onto PVDF membranes (Bio-Rad, 

München, Germany). Membranes were then incubated with 1% (v/v) blocking reagent 

(Roche, Mannheim, Germany) for 1 h at RT. Subsequently, primary antibodies (Table 5) 

diluted in 0.5% (v/v) blocking solution were applied overnight at 4°C. PVDF membranes 

were then washed four times for 5 min with 1 x TBS/0.01 (v/v) Tween. After 1 h 

incubation at RT with the respective secondary antibodies, membranes were washed 4 

times for 10 min with 1 x TBS/0.01 (v/v) Tween, rinsed in 1 x TBS, incubated for 1 min in 

Pierce ECL Western Blotting Substrate (Perbio Science, Bonn, Germany), sealed in a 

plastic bag and exposed to chemiluminescence film (Amersham, Braunschweig, 

Germany). Films were developed in an automatic developer. 

 

 

Antibody Catalogue N° Distributor Dilution 

Actin A5441 Sigma Aldrich, Seelze, Germany 1:10000 

Akt 9272 Cell Signaling, Danvers, MA, USA 1:1000 

p-Akt (Ser473) 9271 Cell Signaling, Danvers, MA, USA 1:1000 

p-c-jun (Ser63) 9810 (101) Cell Signaling, Danvers, MA, USA 1:1000 

IRβ (C-19) sc-711 Santa Cruz, Heidelberg, Germany 1:200 

SAPK/JNK 9252 Cell Signaling, Danvers, MA, USA 1:1000 

 

Table 5: Primary antibodies used for western blot analysis  

All respective secondary antibodies were purchased from Sigma Aldrich, Seelze, Germany, and used in a 

1:1000 dilution. 

 

 

2.2.9 Gelatin Zymography 

Cell culture supernatants were purified from lower molecular weight proteins (<50 

kDa) by centrifugation through Microcon® YM-50 Centrifugal Filter Units (# 42415, 

Millipore, Billerica, MA, USA) for 10 minutes at RT. After determination of the protein 

concentration by a Bradford assay, 10 µg total protein were diluted with 4xSDS sample 

buffer (100 mM Tris, 10% (v/v) glycerol, 0.5% (w/v) SDS, 0.05% (w/v) bromophenol 
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blue) and separated on a 10% (v/v) SDS polyacrylamide gel (containing 0.1 mg/ml (w/v) 

gelatine) at 20 mA with 1xSDS running buffer (3 g/l (w/v) Tris base, 14.4 g/l (w/v) 

glycine, 1 g/l (w/v) SDS, pH 8.3 . Subsequently, the gel was soaked in 2.5% (v/v) Triton 

X-100 for 1h at RT. After three fast washing steps with ddH2O, the gel was transferred to 

MMP activation buffer (50 mM Tris-HCl, 5 mM CaCl2, pH 8) and incubated at 37°C 

overnight in a humidified chamber to carry out the digestion reaction. Following three 5 

min washes with ddH2O, the gel was stained with 2.5 g/l (w/v) Coomassie brilliant-blue R-

250 for 1 h at RT. Levels of gelatinolytic activity were revealed by destaining with 40% 

(v/v) methanol until the bands appeared clearly, then the gel was wrapped in plastic foil 

and scanned on a Canon Canoscan 8800F. 

 

 

2.2.10  ELISA 

Mouse insulin (Mouse/Rat Insulin ELISA; Crystal Chem, Downers Grove, IL, 

USA), leptin (ACTIVE® Murine Leptin ELISA; Diagnostics Systems Laboratories, 

Webster, TX, USA), TNF-α (Quantikine Mouse TNF-alpha/TNFSF1A ELISA; R&D 

Systems, Wiesbaden, Germany), IL-6 (Quantikine Mouse IL-6 ELISA; R&D Systems, 

Wiesbaden, Germany), adiponectin (Quantikine Mouse Adiponectin/Acrp30 ELISA; R&D 

Systems, Wiesbaden, Germany) and MMP-9 (Quantikine Mouse MMP-9 (total) ELISA; 

R&D Systems, Wiesbaden, Germany) concentration in serum or cell culture supernatant 

was determined using mouse standards according to manufacturer’s guidelines and 

measured on a Precision Microplate Reader (Emax; Molecular Devices GmbH, München, 

Germany). 
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2.3 Cell Culture and Tissue Analysis 

 

2.3.1 Preparation of L-cell Conditioned Medium 

L929 fibroblasts were seeded on 175 cm² tissue culture flasks in 50 ml DMEM 

(supplemented with 10% (v/v) heat inactivated FCS, 1% (v/v) glutamine, 1% (v/v) 

penicillin-streptomycin). After confluency was reached, 50 ml fresh medium was added to 

the flasks and cells were incubated without further medium exchange for 14 days at 37°C 

and 5% CO2. At the end of the incubation period, medium from different flask was pooled, 

sterile-filtered through a 0.22 µm membrane and aliquoted to 50 ml Falcon tubes. L-cell 

conditioned medium (LCM) was stored at -80°C until use. 

 

 

2.3.2 Preparation of Palmitic Acid Media 

Preparation of 20% BSA: Essentially fatty acid free bovine serum albumin (20% 

(w/v) BSA, # A6003, Sigma-Aldrich, Seelze, Germany) was layered on top of PBS and 

allowed to percolate overnight at 4°C without stirring. After sterile filtering into aliquots, 

fatty acid free BSA was stored at 4°C until the experiment. 

Preparation of 20 mM palmitic acid: Palmitic acid solution was prepared freshly 

before each experiment. 15 ml NaOH (0,01 N) were warmed to 70°C. Subsequently, 84 

mg palmitic acid (# P5585, Sigma-Aldrich, Seelze, Germany) were added and incubated 

for 20-30 min at 70°C. During the incubation period, 50-100 µl aliquots of 1 N NaOH 

were added and the mixture was vortexed several times until the solution cleared. 

Preparation of palmitic acid medium: Complexing was performed immediately 

after palmitic acid was dissolved completely. 0.5 ml of 20 mM palmitic acid solution were 

added to 1.65 ml prewarmed (37°) 20% fatty acid free BSA by vortexing at lowest speed 

without introducing any bubbles. Complexes were added immediately to 17.85 ml of 

prewarmed (37°C) RPMI 1640 (supplemented 1% (v/v) glutamine and 1% (v/v) penicillin-

streptomycin). Palmitic acid medium (500 µM plamitic acid, 250 µM BSA) was then filter 

sterilized through a 0.22 µm membrane and stored at 4°C for up to one week.  
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2.3.3 Differentiation of Murine Bone Marrow to Macrophages 

Bone marrow cells were plated at a concentration of 1-2*106 cells/ml in RPMI 

1640 (Invitrogen GmbH, Karlsruhe, Germany; supplemented with 10% (v/v) heat 

inactivated FCS, 1% (v/v) glutamine, 1% (v/v) penicillin-streptomycin and 10% (v/v) 

LCM) on 15 cm bacterial petridishes. After 6-8 days, medium was renewed followed by 

further incubation until day 10. Adherent cells were removed from the plates with 

TrypLE™ Express (Gibco BRL, Eggenstein, Germany), counted and seeded for further 

experiments in RPMI 1640 with LCM. Preceding all the experiments, cells were washed 

two times with sterile PBS and, if stimulated with insulin, serum-starved for 16-20 h. 

 

 

2.3.4 Culture of Primary Murine Macrophages 

Cells were plated at a density of 1*106/ml on tissue culture dishes (Greiner Bio-One 

GmbH, Frickenhausen, Germany) in RPMI 1640 (supplemented with 10% (v/v) heat 

inactivated FCS, 1% (v/v) glutamine, 1% (v/v) penicillin-streptomycin) and were allowed 

to adhere overnight at 37°C, 5% CO2 and 95% humidity. On the next day, adherent cells 

were washed once with PBS followed by further incubation in RPMI 1640. Preceding all 

the experiments, cells were washed two times with sterile PBS and, if stimulated with 

insulin, serum-starved for 16-20 h. 

 

 

2.3.5 Detection of Apoptotic Cells by TUNEL Assay 

For assessment of apoptosis in primary macrophages, the DeadEnd™ Fluorometric 

TUNEL system (# G3250, Promega Corporation, Madison, WI, USA) was used. The 

protocol for adherent cells was carried out according to the manufacturer's instructions. 

Initially, cells were grown directly on glass cover slips in 6-well tissue culture dishes. 

After a 24 h stimulation period, cells were fixed by incubation in 4% (w/v) 

paraformaldehyde (PFA) for 20 min at 4°C. After two washing steps with PBS, cells were 

permeabilized with 0.2% (v/v) Triton X-100 in PBS for 5 min at RT. Following two 

additional washing steps with PBS, equilibration buffer was added to the slides and 

incubated for 10 min at RT. After removal of equilibration buffer, incorporation of 

fluorescein-12-dUTP by rTdT enzyme was carried out at 37°C in the dark for 60 min. The 
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reaction was stopped by addition of 2x SSC and after three washing steps with PBS, slides 

were mounted with Vectashield DAPI medium (# H-1200, Vector Laboratories Inc, 

Burlingame, CA, USA) and analyzed under a fluorescence microscope. Quantification of 

DAPI- and FITC-positive cells was performed using AxioVision 4.2 (Carl Zeiss 

MicroImaging GmbH, Oberkochen, Germany). 

 
 

2.3.6 Boyden Chamber Analysis 

General design: In a Boyden Chamber, two compartments are separated by a 

porous membrane through which cells can migrate (Fig. 5).  Chemotactic gradients can be 

set up by placing different concentrations of the putative chemoattractant in the upper and 

lower chambers.  The use of this chamber requires that the cells under test have to move in 

three dimensions and are able to squeeze through the pores (5-10 µm diameters) of the 

particular filter.  The Boyden chamber is reproducible and the chemokinetic, chemotactic 

response easy to quantify. 

 

 
Fig. 5: Experimental design of the Boyden Chamber Analysis. 

Two isolated compartments are seperated by a porous membrane (pore size dependent on cell type). The 

lower compartment contains medium substituted with a chemoattractant (e.g. MCP-1). The medium in the 

upper compartment is the same as in the lower compartment but lacks the chemoattractant. Motile cells are 

placed into the upper compartment and migrate against (arrow) the concentration gradient into the lower 

compartment. 

 

Experimental setup: A ChemoTx® Chemotaxis System ( Neuro Probe Inc., 

Gaithersburg, MD, USA) comprised of a 96-well inner plate coated with a partially 

hydrophobic polycarbon filter (pore size 5 µm; upper compartment) and a base plate 

(lower compartment). The cell suspension can be loaded directly onto the membrane. 
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Preparation of cells: The chemotaxis assay was carried out with bone marrow-

derived macrophages of control and IR∆myel mice. Macrophages were lifted from the 

culture dish by gentle scraping. After two washing steps with PBS, cells were icubated in 2 

ml of PBS (supplemented with 3µM Calcein, Molecular Probes/Invitrogen Corp., 

Karlsruhe, Germany) for 20 min at 37°C. Following two additional washing steps with 

PBS, cells were resuspended in incubation buffer (RPMI 1640 supplemented with 10% 

(v/v) heat inactivated FCS, 1% (v/v) glutamine) and cell number was adjusted to 5x106 

cells/ml. 

Assay procedure and analysis: The chemoattractant was dissolved in incubation 

buffer and added to the lower compartments in the desired concentration. Incubation buffer 

without chemoattractant was used as a negative control (random migration). 29 µl of the 

cell suspension were loaded onto the membrane and chemotaxis was carried out at 37°C in 

a humidified chamber. After a migration period of 120 min, the inner plate was removed 

and cells on the upper surface of the filter were detached with a rubber scraper. Green 

fluorescence of adherent cells on the lower surface was detected with a Cytofluor analyser 

(Filter: excitation 485 nm, emission 530 nm; Global Medical Instrumentation Inc., 

Ramsey, MN, USA). Data was collected in triplicates for three independent exeriments. 

 

 

2.3.7 Histological Analysis and Immunohistochemistry 

 White adipose tissue of diet-induced obese Control and IR∆myel mice was dissected, 

fixed overnight in 4% (w/v) PFA and then embedded for paraffin sections. Subsequently, 7 

µm thin sections were deparaffinized and stained with hematoxylin and eosin (H&E) for 

general histology or with Mac-2/Galectin-3 antibody (#CL8942AP; Cedarlane 

Laboratories Ltd, Burlington, ON, Canada) for detection of adipose tissue macrophages. 

Immunohistochemistry was performed as previously described (155). Quantification of 

adipocyte size and Mac-2-positive area was performed using AxioVision 4.2 (Carl Zeiss 

MicroImaging GmbH, Oberkochen, Germany). 
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2.4 Mouse Experiments 

 General animal handling was performed as described by Hogan (194) and Silver 

(195). 

 

 

2.4.1 Animals 

 Mice were housed in a virus-free facility at 22-24°C on a 12 h light/ 12 h dark cycle 

with the light on at 6 a.m. and were either fed a normal chow diet (NCD; Teklad Global 

Rodent 2018; Harlan Winkelmann GmbH, Borchen, Germany) containing 53.5% (w/v) 

carbohydrates, 18.5% (w/v) protein and 5.5% (w/v) fat or a high fat diet (HFD; C1057; 

Altromin GmbH, Lage, Germany) containing 32.7% (w/v) carbohydrates, 20% (w/v) 

protein, and 35.5% (w/v) fat (55.2% of calories from fat). All animals had access to water 

ad libitum. Food was only withdrawn if required for an experiment. At the end of the study 

period, animals were sacrificed by CO2 anesthesia or cervical dislocation. All animal 

procedures and euthanasia were reviewed by the animal care committee of the University 

of Cologne, approved by local government authorities (Bezirksregierung Köln) and were 

in accordance with National Institutes of Health guidelines. 

 

 

2.4.2 IR∆myel mice 

 To disrupt the insulin receptor allele specifically in myeloid cells, mice 

homozygous for the loxP-flanked insulin receptor allele (IRflox/flox) (196) were bred with 

mice homozygous for the LysMCre transgene (197). LysMCre+/-IRflox/wt mice were 

further crossed with IRflox/flox mice to achieve homozygosity for the loxP-flanked allele. 

Breeding colonies were maintained by mating IRflox/flox (30) mice and LysMCre +/- 

IRflox/flox mice (IR∆myel). All metabolic experiments were carried out with male mice 

backcrossed for at least 10 generations onto a C57BL/6 background. 
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2.4.3 Body Weight and Blood Glucose Levels 

 Body weight and blood glucose levels were monitored weekly and at 20 weeks of 

age, respectively. Blood glucose values were determined from whole venous blood using 

an automatic glucose monitor (GlucoMen® GlycÓ; A. Menarini Diagnostics, Neuss, 

Germany). 

 

 

2.4.4 Glucose and Insulin Tolerance Test 

 Glucose tolerance tests (GTT) were performed on animals that had been fasted 

overnight for 16 hours. Insulin tolerance tests (ITT) were performed on random fed mice. 

Animals were injected with either 2 g/kg body weight of glucose or 0.75 U/kg body weight 

of human regular insulin into the peritoneal cavity. Glucose levels were determined in 

blood collected from the tail tip immediately before and 15, 30 and 60 minutes after the 

injection, with an additional value determined after 120 minutes for the GTT. 

 

 

2.4.5 Isolation of Adipocytes and Stromal Vascular Fraction 

Animals were sacrificed and subcutaneous and epididymal fat pads were removed 

under sterile conditions. Adipocytes were isolated by collagenase (1 mg/ml) digestion for 

45 min at 37°C in DMEM/Ham’s F-12 1:1 (DMEM/F12) containing 0.1% (w/v) BSA. 

Digested tissues were filtered through sterile 150 µm nylon mesh and centrifuged at 250 x 

g for 5 min. The floating fraction consisting of pure isolated adipocytes was then removed 

and washed three more times before proceeding to experiments. The pellet, representing 

the stromal vascular fraction containing preadipocytes, macrophages and other cell types, 

was resuspended in erythrocyte lysis buffer consisting of 154 mM NH4Cl, 10 mM KHCO3, 

and 0.1 mM EDTA for 10 min. 
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2.4.6 Isolation of Primary Peritoneal Macrophages 

8-20 week old IR∆myel mice or control mice were injected intreaperitoneally with 2 

ml thioglycollate medium (4% in PBS (w/v)) to induce a sterile peritonitis. On day 4 post 

injection, the animals were sacrificed by CO2 anesthesia and cells were collected by 

peritoneal lavage with sterile PBS. Following centrifugation, cells were resuspended in 

erythrocyte lysis buffer for 3 min at RT. After one additional wash with PBS, cells were 

resuspended in RPMI 1640 (supplemented with 10% (v/v) heat inactivated FCS, 1% (v/v) 

glutamine, 1% (v/v) penicillin-streptomycin) and live cells were counted in 4% (w/v) 

trypan blue. Cell numbers were adjusted to 1*106/ml and stored on ice for further 

experiments. 

 

 

2.4.7 Isolation of Murine Bone Marrow  

8-20 week old mice were sacrificed by CO2 anesthesia, rinsed in 70% (v/v) ethanol 

and femurs and tibias were dissected. After removal of all muscle tissue, bones were cut at 

the ends and bone marrow was flushed with a 26 G needle in sterile, ice-cold PBS. After 

dispersion and resuspension with the same needle, cells were spinned down at 1.200 rpm 

for 5 min at 4°C. Cells were resuspended in erythrocyte lysis buffer and incubated for 3 

min at RT. After one additional wash with PBS, cells were resuspended in RPMI 1640 

(supplemented with 10% (v/v) heat inactivated FCS, 1% (v/v) glutamine, 1% (v/v) 

penicillin-streptomycin and 10% (v/v) LCM) and live cells were counted in 4% (w/v) 

trypan blue. Cell numbers were adjusted to 1*106/ml and stored on ice for further 

experiments. 

 

 

2.4.8 Glucose Transport 

For the determination of glucose transport, isolated adipocytes from the fat depots 

were stimulated with 0.1, 1, 10 and 100 nM insulin for 30 min then incubated for 30 min 

with 3 µM U-14C-glucose. Immediately after incubation, adipocytes were fixed with osmic 

acid, incubated for 48 hours at 37°C and radioactivity was quantified after the cells had 

been decolorized (198).  
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2.4.9 Hyperinsulinemic-euglycemic Clamp Studies 

 Catheter Implantation: At the age of 16-20 weeks, male mice were anesthetized by 

intraperitoneal injection of avertin and adequacy of the anesthesia was ensured by the loss 

of pedal reflexes. A Micro-Renathane catheter (MRE 025; Braintree Scientific Inc., MA, 

USA) was inserted into the right internal jugular vein, advanced to the level of the superior 

vena cava, and secured in its position in the proximal part of the vein with 4-0 silk; the 

distal part of the vein was occluded with 4-0 silk. After irrigation with physiological saline 

solution, the catheter was filled with heparin solution and sealed at its distal end. The 

catheter was subcutaneously tunneled, thereby forming a subcutaneous loop, and 

exteriorized at the back of the neck. Cutaneous incisions were closed with a 3-0 silk suture 

and the free end of the catheter was attached to the suture in the neck as to permit the 

retrieval of the catheter on the day of the experiment. Mice were intraperitoneally injected 

with 1 ml of saline containing 15µg/g body weight of tramadolhydrochloride and placed 

on a heating pad in order to facilitate recovery. 

Clamp Experiment: Only mice that had regained at least 90% of their preoperative 

body weight after 6 days of recovery were included in the experimental groups. After 

starvation for 15 hours, awake animals were placed in restrainers for the duration of the 

clamp experiment. After a D-[3-3H]Glucose (Amersham Biosciences, UK) tracer solution 

bolus infusion (5 µCi), the tracer was infused continuously (0.05 µCi/min) for the duration 

of the experiment. At the end of the 40-minute basal period, a blood sample (50 µl) was 

collected for determination of the basal parameters. To minimize blood loss, red blood 

cells were collected by centrifugation and reinfused after being resuspended in saline. 

Insulin (human regular insulin; NovoNordisc Pharmaceuticals, Inc., NJ, USA) solution 

containing 0.1% (w/v) BSA (Sigma-Aldrich, Germany) was infused at a fixed rate (4 

µU/g/min) following a bolus infusion (40 µU/g). Blood glucose levels were determined 

every 10 minutes (B-Glucose Analyzer; Hemocue AB, Sweden) and physiological blood 

glucose levels (between 120 and 150 mg/dl) were maintained by adjusting a 20% glucose 

infusion (DeltaSelect, Germany). Approximately 60 minutes before steady state was 

achieved, a bolus of 2-Deoxy-D-[1-14C]Glucose (10 µCi, Amersham) was infused. Steady 

state was ascertained when glucose measurements were constant for at least 30 min at a 

fixed glucose infusion rate and was achieved within 100 to 130 min. During the clamp 

experiment, blood samples (5 µl) were collected after the infusion of the 2-Deoxy-D-[1-
14C]Glucose at the time points 0, 5, 15, 25, 35 min etc. until reaching the steady state. 

During the steady state, blood samples (50 µl) for the measurement of steady state 
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parameters were collected. At the end of the experiment, mice were killed by cervical 

dislocation, and brain, liver, WAT and skeletal muscle tissue were dissected and stored at -

20°C.  

Assays: Plasma [3-3H]Glucose radioactivity of basal and steady state samples was 

determined directly after deproteinization with 0.3 M Ba(OH)2 and 0.3 M ZnSO4 and also 

after removal of 3H2O by evaporation, using a liquid scintillation counter (Beckmann, 

Germany). Plasma Deoxy-[1-14C] Glucose radioactivity was directly measured in the 

liquid scintillation counter. Tissue lysates were processed through Ion exchange 

chromatography columns (Poly-PrepR Prefilled Chromatography Columns, AGR1-X8 

formate resin, 200-400 mesh dry; Bio Rad Laboratories, CA, USA) to separate 2-Deoxy-

D-[1-14C]Glucose (2DG) from 2-Deoxy-D-[1-14C]Glucose-6-Phosphate (2DG6P).  

Calculations: Glucose turnover rate (mg×kg-1×min-1) was calculated as the rate of 

tracer infusion (dpm/min) divided by the plasma glucose-specific activity (dpm/mg) 

corrected for body weight. HGP (mg×kg-1×min-1) was calculated as the difference between 

the rate of glucose appearance and glucose infusion rate. In vivo glucose uptake for each 

tissue (nmol×g-1×min-1) was calculated based on the accumulation of 2DG6P in the 

respective tissue and the disappearance rate of 2DG from plasma as described previously 

(199). 
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2.5 Computer Analysis 

 

2.5.1 Densitometrical Analysis 

 Protein expression was assessed by western blot analysis and bands were measured 

in intensity per mm2 using the Quantity One Software (Bio-Rad, München, Germany). 

After background subtraction, each sample was normalized to an internal loading control. 

Average protein expression of control mice was set to 100% and compared to protein 

expression of knockout animals unless stated otherwise. 

 

 

2.5.2 Statistical Methods 

 Data sets were analyzed for statistical significance using a two-tailed unpaired 

student’s t test. All p values below 0.05 were considered significant. 
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3 Results 

 

3.1 Myeloid Cell-specific Disruption of the Insulin Receptor 

The lysozyme M gene is expressed specifically in cells of the myeloid lineage (200). 

Crossing mice carrying a loxP-flanked allele with mice containing a targeted insertion of 

the cre cDNA into the endogenous lysozyme M locus has been shown to promote efficient 

disruption of loxP-flanked alleles in these cell types (201). Clausen et al. reported a 

deletion-efficiency of 83-98% in mature macrophages and of 100% in granulocytes. 

To disrupt the insulin receptor allele specifically in myeloid cells (IR∆myel), mice 

homozygous for the loxP-flanked insulin receptor allele (IRflox/flox) and heterozygous for a 

Cre recombinase under the control of the lysozyme M promotor (LysMCre) were 

generated.  

To analyze recombination of the loxP-flanked fourth exon of the insulin receptor 

allele, bone marrow of control mice and IR∆myel mice was first isolated and differentiated 

in vitro into macrophages. Southern blot analysis was performed with genomic DNA from 

the resulting cell population. As shown in Fig. 6, transgenic expression of the Cre cDNA 

under the control of the lysozyme M promotor lead to a recombination efficiency of ~90% 

in these cells. 

 

 
Fig. 6: Southern blot analysis of the insulin receptor allele in macrophages. 

(a) Southern blot analysis of genomic DNA isolated from bone marrow-derived macrophages (BMDM) from 

control mice and IR∆myel mice (b) Densitometrical quantification of the deleted versus the floxed allele band 

in macrophages of IR∆myel mice. (flox = loxP-flanked allele band (2.5 kb), ∆ = deleted allele band (5 kb); All 

data are presented as mean ± SEM; *** p ≤ 0,001; n = 3 vs. 3) 
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Furthermore, bone marrow-derived macrophages were analyzed for expression of 

insulin receptor mRNA by realtime PCR. As depicted in Fig. 7, expression of the insulin 

receptor mRNA was reduced by ~80% in cells from IR∆myel mice compared to control 

mice. 

 

 
Fig. 7: Insulin receptor mRNA expression in macrophages. 

Insulin receptor mRNA expression was assessed by quantitative realtime PCR in bone marrow-derived 

macrophages from control and IR∆myel mice; Hprt1 was used as endogenous control; (All data are presented 

as mean ± SEM; *** p ≤ 0,001; n = 4 vs 4) 

 

To exclude the possibility that the residual mRNA expression detected by realtime 

PCR analysis might lead to significant amounts of insulin receptor protein expression, 

western blot analysis was performed. Analysis of peritoneally-elicitid macrophages 

demonstrated the complete absence of the insulin receptor protein on these cells (Fig. 8). 

However, as depicted in Fig. 9, protein expression of the insulin receptor was robust and 

unchanged in insulin target tissues of IR∆myel mice compared to control mice.  

 

 
Fig. 8: Insulin receptor protein expression in macrophages.  

Western blot analysis of insulin receptor β subunit (IR-β) and protein kinase B/Akt (loading control) 

expression in peritoneal macrophages of control mice and IR∆myel mice. 
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Fig. 9: Insulin receptor protein expression in insulin target tissues is unchanged in IR∆myel mice. 

Western blot analysis of insulin receptor β subunit (IR-β) and protein kinase B/Akt (loading control) 

expression. Proteins were extracted from brain, heart, liver, pancreas, white adipose tissue (WAT) and 

skeletal muscle (SM) of control mice and IR∆myel mice. 

 

In summary, conditional gene targeting using the lysozyme M promotor to drive Cre 

expression leads to efficient and specific depletion of the insulin receptor in peritoneal and 

bone marrow-derived macrophages without affecting metabolically relevant tissues, such 

as brain, liver and skeletal muscle. 

 

 

3.2 The Effect of Myeloid Cell-restricted Insulin Receptor 

Deficiency on Diet-induced Obesity 

To investigate the impact of myeloid cell-restricted insulin receptor deficiency on 

diet-induced obesity, control mice and IR∆myel mice were fed either a normal chow (NCD) 

or were exposed to a high fat diet (HFD) for 12 weeks. Under NCD both groups exhibited 

indistinguishable growth curves reaching approximately 30 g body weight after 16 weeks 

(Fig. 10a). When exposed to a HFD control mice and IR∆myel mice significantly gained 

weight over animals exposed to NCD. However, both animal groups gained weight to a 

similar extent with an average maximum of 45 g after 16 weeks of age (Fig. 10b). 
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Fig. 10: IR∆myel mice exhibit normal weight gain upon normal chow diet and high fat feeding.  

(a) Body weight curves of control mice and IR∆myel mice exposed to normal chow diet (NCD). Weight gain 

was monitored from the age of 4 to 16 weeks. (b) Body weight curves of control mice and IR∆myel mice 

exposed to HFD. Weight gain was monitored from the age of 4 to 16 weeks. From week 6 onwards, exposure 

to HFD led to a significantly higher average weight compared to NCD. (All data are presented as mean ± 

SEM; NCD n = 15 vs 14; HFD n = 30 vs 30) 

  

In accordance, epididymal fat pad mass was drastically increased upon high fat 

feeding, but unchanged between groups (Fig. 11a). An increase of circulating leptin is 

positively correlated with obesity thereby representing an important indicator for the 

degree of adiposity. Accordingly, serum leptin concentrations were significantly increased 
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after 12 weeks of HFD in control mice and IR∆myel mice compared to lean animals (Fig. 

11b) while no difference was observed between both genotypes. 

 

 
Fig. 11: IR∆myel mice show normal high fat diet-induced increase in epididymal fat pad mass and 

circulating leptin concentration.  

(a) Epididymal fat pad mass in control mice and IR∆myel mice. Animals were dissected after 16 weeks on 

either NCD or HFD and adipose tissue weight was measured. (b) Serum leptin concentrations in control mice 

and IR∆myel mice were determined by ELISA. Serum was isolated after 16 weeks of age on either NCD or 

HFD. (NCD n = 11 vs 10; HFD n = 10 vs 10; All data are presented as mean ± SEM)  

 
Taken together, these results indicate that myeloid cell-restricted insulin resistance 

does not affect the development of obesity upon high fat feeding. 

 

 

3.3 The Effect of Myeloid Cell-restricted Insulin Receptor 

Deficiency on Obesity-induced Insulin Resistance 

Severe obesity is strongly associated with hyperglycemia and hyperinsulinemia. 

These two parameters represent important indicators for reduced insulin sensitivity or even 

insulin resistance. To investigate the effect of myeloid cell-autonomous insulin signaling 

on obesity-induced insulin resistance, glucose metabolism of IR∆myel mice was analyzed. 

Fasted blood glucose levels and insulin levels were determined as a first measure of 

glucose homeostasis in these animals (Fig. 12a, b). On NCD, both genotypes displayed 

average fasted blood glucose concentration of ~60 mg/dl and average fasted serum insulin 

concentration of ~2 pg/ml after 16 weeks of age. Surprisingly, IR∆myel mice on HFD had 

significantly reduced fasted blood glucose compared to control mice although both groups 

clearly developed hyperglycemia. Consistently, fasted serum insulin levels were 
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significantly reduced in obese IR∆myel mice compared to control mice while no difference 

was observed under NCD. 

 

 
Fig. 12: Diet-induced obese IR∆myel mice exhibit significantly reduced fasted blood glucose and insulin 

levels. 

Fasted blood glucose concentration (a) and fasted insulin concentration (b) of 16 week old control mice and 

IR∆myel mice fed either NCD or HFD. (All data are presented as mean ± SEM; NCD n = 11 vs 10; HFD n = 

10 vs 10; **p ≤ 0.01) 

 

After 16 weeks on either NCD or HFD, control mice and IR∆myel mice were 

challenged in a glucose tolerance test (GTT, Fig. 13a). While lean mice (NCD) of both 

groups responded identically to an exogenous glucose challenge, IR∆myel mice fed a high 

fat diet performed significantly better than control mice. Also, during insulin tolerance 

testing (ITT, Fig. 13b), diet-induced obese IR∆myel mice displayed significantly higher 

insulin sensitivity than their littermate controls. 
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Fig. 13: Obese IR∆myel mice exhibit increased glucose tolerance and insulin sensitivity. 

(a) GTT analysis was performed with 16 week old control mice and IR∆myel mice fed either NCD or HFD for 

16 weeks. (NCD n = 6 vs 7; HFD n = 20 vs 20). (b) ITT analysis was performed with 16 week old control 

mice and IR∆myel mice fed either NCD or HFD. (All data are presented as mean ± SEM; NCD n = 6 vs 5; 

HFD n = 14 vs 13; *p ≤ 0.05; ***p ≤ 0.001 HFD conrol versus HFD IR∆myel) 

 

To further elucidate which insulin target tissues are responsible for the enhanced 

glucose metabolism in diet-induced obese IR∆myel mice, euglycemic-hyperinsulinemic 

clamp analyses were performed. Hepatic glucose production (HGP) was assessed in 

control mice and IR∆myel mice after 12 weeks on HFD. Although no difference was 
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observed in insulin's ability to suppress HGP, the basal i.e. non-suppressed glucose 

production was significantly reduced in livers of obese IR∆myel mice (Fig. 14). 

 

 
Fig. 14: Obese IR∆myel mice exhibit decreased hepatic glucose production. 

Hepatic glucose production (HGP) in 16 week old HFD-fed control mice and IR∆myel mice was determined 

before (basal) and during (steady-state) euglycemic-hyperinsulinemic clamp analysis. (All data are presented 

as mean ± SEM; n = 10 vs 13; *p ≤ 0.05) 

 

Since WAT, skeletal muscle and brain represent major target tissues for insulin-

stimulated carbohydrate uptake, glucose disposal rate was determined in these organs. As 

depicted in Fig. 15, glucose uptake during the clamp was drastically enhanced in skeletal 

muscle of obese IR∆myel mice compared to obese control mice. In contrast, uptake into the 

WAT and brain was, at least under clamp conditions, unaltered between the two 

genotypes. 
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Fig. 15: Obese IR∆myel mice show enhanced insulin-stimulated glucose disposal in skeletal muscle. 

Steady-state insulin-stimulated glucose uptake rate (202) was determined in euglycemic-hyperinsulinemic 

clamp analysis. GUR was measured in WAT, skeletal muscle (SM) and brain of obese control mice and 

IR∆myel mice after 16 weeks of HFD. (All data are presented as mean ± SEM; n = 10 vs 13; *p ≤ 0.05) 

 

Responsiveness of the adipose tissue to the metabolic effects of insulin is crucial for 

maintenance of energy homeostasis. Its role in the development of T2DM, especially in the 

context of immune cell/adipocyte crosstalk, is of central importance to the concept of 

obesity-induced insulin resistance. Therefore, it was mandatory to further investigate 

adipocyte-autonomous insulin signaling in IR∆myel mice. To this end, adipocytes of control 

mice and IR∆myel mice were isolated and stimulated with different doses of insulin in vitro. 

Although no difference in glucose uptake could be observed after stimulation with 1, 10 

and 100 nm insulin adipocytes of IR∆myel mice took up significantly more glucose 

compared to control mice when stimulated with a concentration of 0,1 nm insulin (Fig. 16). 

These data indicate that myeloid cell-restricted insulin receptor deficiency, despite 

enhancing glucose uptake in skeletal muscle, also improves insulin action in adipocytes by 

shifting the dose response curve without altering the maximal response.  
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Fig. 16: Low dose insulin-stimulated glucose uptake is enhanced in adipocytes of obese IR∆myel mice. 

Freshly isolated adipocytes of control mice and IR∆myel mice were stimulated with 0, 0.1, 1, 10 and 100 nm 

insulin in vitro and glucose uptake rate (202) was determined. (All data are presented as mean ± SEM; n = 5 

vs 5; *p ≤ 0.05) 

 

In conclusion, myeloid cell-specific disruption of the insulin receptor protects against 

obesity-induced insulin resistance by reducing basal hepatic glucose production and 

facilitating insulin-stimulated glucose disposal in skeletal muscle and adipose tissue. 
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3.4 The Effect of Myeloid Cell-restricted Insulin Receptor 

Deficiency on Obesity-induced Inflammation 

Obesity is associated with a local and systemic rise in inflammatory markers 

originating from activated immune cells infiltrating the white adipose tissue. This increase 

of cytokines activates pro-inflammatory pathways in insulin target tissues leading to the 

induction of JNK and NFκB signaling which can either directly or indirectly block insulin 

signaling components. To analyze the pro-inflammatory effect of high fat feeding in 

IR∆myel mice, serum cytokine concentrations were determined. As shown in Fig. 17, HFD 

induced an increase in the concentration of circulating TNF-α and reduced that of 

adiponectin in control mice. This response to high fat feeding could not be observed in 

IR∆myel mice. TNF-α concentration in blood serum of obese IR∆myel mice remained 

unchanged compared to lean animals. Similarly, adiponectin concentration was unaltered 

between IR∆myel mice on NCD compared to HFD. 

 

 
Fig. 17: The obesity-associated change of serum TNF-α and adiponectin concentration is abolished in 

IR∆myel mice. 

Serum concentration of TNF-α (a) and adiponectin (b) was measured by ELISA in control mice and IR∆myel 

mice fed either NCD or HFD for 16 weeks. (All data are presented as mean ± SEM; NCD n = 12 vs 13; HFD 

n = 20 vs 20; *p ≤ 0.05) 

 

As previously described, the chronic low-grade inflammatory state encountered in 

obese subjects leads to insulin resistance in insulin target tissues at least partially due to 

increased JNK activity. To directly measure the activation state of this signaling pathway, 

an in vitro assay for the determination of JNK activity was performed. Liver and skeletal 

muscle protein extracts from obese control mice and IR∆myel mice were analyzed and 

significantly lower JNK activity was detected in skeletal muscle of the latter (Fig. 18). This 
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indicates that despite unaltered obesity in IR∆myel mice, the systemic, obesity-associated 

proinflammatory tone is reduced. 

 

 
Fig. 18: Obese IR∆myel mice show reduced JNK activity in skeletal muscle. 

Protein extracts from skeletal muscle (SM) and liver of HFD-fed control mice and IR∆myel mice were 

analyzed for JNK activity. Western blots showing the in vitro phosphorylation of c-jun (a) were 

densitometrically quantified (b). Total JNK levels from the initial lysate (JNK input) were used as a loading 

control. (All data are presented as mean ± SEM; n = 6 vs 6; *p ≤ 0.05) 

 

Local increase of inflammatory cytokine and chemokine expression in adipose tissue 

is a hallmark of obesity. Therefore, mRNA levels of the pro-inflammatory cytokine TNF-

α, the chemokines CCL2 and CCL3 and adiponectin were determined in WAT samples of 

control mice and IR∆myel mice (Fig. 19). As expected, high fat feeding significantly 

increased inflammatory gene expression in WAT of control mice. In contrast, exposure to 

HFD failed to induce TNF-α and CCL3 gene expression in IR∆myel mice to the extent 

observed in the controls. Also, adiponectin mRNA expression was significantly elevated in 

obese IR∆myel mice compared to control mice. CCL2 mRNA levels were slightly decreased 

but the difference did not reach significance. 
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Fig. 19: Obesity-induced change of adipokine gene expression is blunted in IR∆myel mice. 

WAT samples of control mice and IR∆myel mice fed either NCD or HFD were analyzed by quantitative 

realtime PCR. Relative mRNA levels of TNF-α, CCL2, CCL3 and adiponectin were measured in 16 week 

old mice. Hprt1 mRNA was used as endogenous control. (All data are presented as mean ± SEM; n = 8 vs 8; 

*p ≤ 0.05) 

 

In conclusion, myeloid cell-autonomous insulin resistance diminishes the typical, 

obesity-associated rise in circulating inflammatory markers and activation of inflammatory 

protein kinase JNK in peripheral organs. Furthermore, a local and systemic increase in 

adiponectin mRNA and protein levels, respectively, was observed.  
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3.5 The Effect of Myeloid Cell-restricted Insulin Receptor 

Deficiency on Adipose Tissue Inflammation and 

Macrophage Accumulation 

Since macrophages have been shown to contribute significantly to the enhanced 

inflammatory profile of the expanding adipose tissue under obesity, gene expression of a 

macrophage-specific marker (F4/80) was determined in this tissue. As expected, obesity 

led to a substantial increase in F4/80 mRNA expression (Fig. 20a) in white adipose tissue 

of diet-induced obese control mice compared to lean animals. However, while lean mice 

from both genotypes showed the same expression level of F4/80 mRNA, the obesity-

induced increase of this marker was sigificantly blunted in HFD-fed IR∆myel mice. 

Nevertheless, the cell-autonomous expression of F4/80 was unchanged between bone 

marrow-derived macrophages of both genotypes, neither at the basal level nor after 

stimulation with palmitic acid (Fig. 20b). 

 

 

 
 

Fig. 20: Reduced macrophage surface marker expression in adipose tissue of obese IR∆myel mice. 

F4/80 mRNA expression was assessed by quantitative realtime PCR analysis in (a) WAT of NCD and HFD 

fed control mice and IR∆myel mice and (b) untreated (basal) or palmitic acid (P, 500 µM) stimulated bone 

marrow-derived macrophages from control mice and IR∆myel mice. Hprt1 mRNA was used as endogenous 

control (All data are presented as mean ± SEM; WAT n = 5 vs 5; BMDM n = 4 vs 4; *p ≤ 0.05) 

 

Moreover, white adipose tissue was analyzed microscopically for changes in 

morphology. As depicted in Fig. 21, when stained with hematoxylin and eosin (H&E) 
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adipose tissue morphology was indistinguishable between obese control mice and IR∆myel 

mice. 

 

 
 

Fig. 21: Adipose tissue morphology of IR∆myel mice and control mice exposed to HFD. 

H&E staining of paraffin sections from WAT of 16 week old obese control mice and IR∆myel mice. 

(Magnification: 100-fold) 

 

Additionally, adipocyte size was analyzed in white adipose tissue sections of HFD-

fed control mice and IR∆myel mice. As shown in Fig. 22a, the mean cell size reached 

approximately 10000 µm² in both genotypes. In addition, adipocyte size occurence curves 

displayed Gauss distribution without revealing any significant difference between the 

genotypes investigated (Fig. 22b). 

 

 
Fig. 22: Quantification of adipocyte size and size distribution. 

Mean adipocyte size (a) and cell size distribution (b) in WAT was quantified in adipose tissue sections from 

control mice and IR∆myel mice. (All data are presented as mean ± SEM; n = 9 vs 9) 
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Upon weight gain, macrophages infiltrate the expanding adipose tissue and form 

crown-like structures (CLS) arround dead adipocytes for removal of cell debris and tissue 

remodeling. Mac-2, a 30-35 kDa galactose-binding protein, is specifically expressed on the 

surface of macrophages upon activation (203). In order to detect activated macrophages in 

adipose tissue, immunohistochemical analysis with an antibody directed against Mac-2 

was performed. In line with the observed reduction of macrophage marker mRNA 

expression, microscopical analysis revealed a dramatically reduced number of CLS in 

adipose tissue sections of obese IR∆myel mice compared to control mice (Fig. 23, upper 

panel). Likewise, quantification of total CLS area per section revealed a significant 

reduction in IR∆myel mice (Fig. 23, lower panel). 

 

 
 

Fig. 23: Obese adipose tissue of IR∆myel mice shows decreased formation of crown-like structures. 

Paraffin sections from WAT of 16 week old obese control mice and IR∆myel mice were 

immunohistochemically stained with Mac-2 antibody (upper panel, magnification 100-fold) and the area of 

Mac-2 positive crown-like structures (CLS) was quantified (lower panel). Red arrows indicate CLS. (All data 

are presented as mean ± SEM; n = 9 vs 9; *p ≤ 0.05)  
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The adipose tissue consists of two main fractions, adipocytes and stromal vascular 

cells. To precisely attribute the previously observed reduction of TNF-α mRNA expression 

to one of these compartments, white adipose tissue of obese control mice and IR∆myel mice 

was separated into these two fractions. Quantitative realtime PCR analysis of leptin 

mRNA, which is exclusively expressed in adipocytes, was taken as a quality control for the 

separation process. Stromal vascular cells expressed approximately 90% less leptin mRNA 

compared to adipocytes (Fig. 24). Expression levels of macrophage surface markers F4/80, 

Mac-2 and CD11c mRNA were 2-fold to 4-fold increased in stromal vascular cells of 

control mice compared to adipocytes. Concomitant with reduced CLS formation (Fig. 23), 

expression of Mac-2 as well as F4/80 mRNA was significantly reduced in the stromal 

vascular fraction of IR∆myel mice compared to control mice. However, CD11c expression 

was unchanged between IR∆myel mice and control mice. Furthermore, TNF-α mRNA 

expression was 5-fold elevated in stromal vascular cells compared to adipocytes isolated 

from control mice. Nevertheless, the stromal vascular cells of IR∆myel mice expressed 

significantly lower TNF-α mRNA than those of control mice (Fig. 24).  

 

 
 

Fig. 24: Reduced TNF-α expression in adipose tissue-derived stromal vascular cells of IR∆myel mice.  

WAT of control mice and IR∆myel mice was seperated into adipocytes (Adi) and stromal vascular cells (167). 

Relative mRNA expression of F4/80, Mac-2, CD11c and TNF-α was determined by quantitative realtime 

PCR. To estimate fractionation efficiency, Leptin mRNA expression was determined in both fractions. Hprt1 

mRNA was used as endogenous control. (All data are presented as mean ± SEM; n = 6 vs 5; *p ≤ 0.05; **p ≤ 

0.01; ***p ≤ 0.001) 
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Taken together, these data demonstrate that myeloid cell-restricted insulin resistance 

reduces the inflammatory infiltration of adipose tissue by macrophages, which is generally 

associated with high fat feeding and obesity. This blunted macrophage accumulation in 

turn leads to reduced expression of TNF-α mRNA in the stromal vascular compartment of 

the obese adipose tissue of IR∆myel mice. 
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3.6 Cell-Autonomous Effects of Insulin Receptor Deficiency on 

Macrophages 

The reason for the observed reduction of adipose tissue macrophage content and 

inflammatory gene expression in obese IR∆myel mice could arise from (I) enhanced 

susceptibility to apoptosis, (II) impaired inflammatory response of insulin receptor-

deficient macrophages or (III) reduced invasive capacity of these cells.  

 

 

3.6.1 The Effect of Insulin on Macrophage Apoptosis 

To investigate the first hypothesis, bone marrow-derived macrophages from control 

and IR∆myel mice were stimulated with insulin, palmitic acid or both and the number of 

apoptotic cells was analyzed for DNA fragmentation by TUNEL assay. As depicted in Fig. 

25, approximately 10% of control and IR-/- macrophages showed DNA fragmentation 

under basal conditions. Strikingly, exposure to insulin significantly reduced the number of 

TUNEL positive cells in control but not in IR-deficient macrophages. Furthermore, 

stimulation with palmitic acid drastically enhanced apoptosis in control and IR-deficient 

macrophages to approximately 45%. Moreover, costimulation with insulin significantly 

reduced the number of apoptotic control macrophages by 10%. This anti-apoptotic effect 

of insulin could not be observed in IR-/- macrophages.  
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Fig. 25: Enhanced apoptosis in insulin receptor-deficient macrophages. 

Bone marrow-derived macrophages were stimulated with insulin (50 ng/ml), palmitic acid (P, 500 µM) or 

both for 24 h in serum-free medium and the number of TUNEL-positive (155) cells was determined. DAPI 

staining of nuclei (blue) was performed for total cell number. (Fluorescence microscopy: upper panel; 

quantification: lower panel; All data are presented as mean ± SEM; n = 4 vs 4; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 

0.001) 

 

To further investigate the enhanced palmitic acid-induced apoptosis in insulin 

receptor-deficient macrophages, quantitative realtime PCR analysis of pro- and anti-

apoptotic gene expression was performed. Stimulation with palmitic acid induced a 3-fold 

increase in mRNA expression of Bcl2-associated X protein (Bax) after 8 h compared to the 

basal level. However, stimulation with insulin did not alter Bax mRNA levels. Also, no 

difference could be observed between control and IR-deficient macrophages under any 

condition analyzed (Fig. 26a).  
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In contrast, Bcl-2 mRNA expression was strongly reduced after exposure of bone 

marrow-derived macrophages to palmititc acid compared to the basal level (Fig. 26b). The 

addition of insulin significantly increased the expression of Bcl-2 in control macrophages. 

However, this effect was not observed in IR-deficient macrophages. Under the influence of 

palmitic acid, insulin also induced an increase in Bcl-2 expression of control cells. 

Nevertheless, this induction was not significant after 8 h of stimulation.  

 

 
Fig. 26: Insulin enhances expression of Bcl-2 mRNA in bone marrow-derived macrophages. 

Bone marrow-derived macrophages from control (white columns) or IR∆myel mice (black columns) were 

stimulated with insulin (Ins, 50 ng/ml), palmitic acid (P, 500 µM) or both for 8 h in serum-free medium and 

expression of  (a) Bax, (b) Bcl-2, (c) XBP-1 and (d) Chop mRNA was analysed by quantitative realtime 

PCR. Hprt1 and Gusb mRNA were used as endogenous controls. (All data are presented as mean ± SEM; n = 

4 vs 4; *p ≤ 0.05; ***p ≤ 0.001) 

 

In addition, the expression of ER stress-induced genes was determined in control and 

IR-deficient macrophages. Stimulation with palmitic acid significantly induced the 

expression of XBP-1 and Chop mRNA while no difference could be observed between 
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genotypes (Fig. 26c, d). Although insulin displayed no significant effect on the expression 

of the two genes, macrophages of IR∆myel mice exhibited a tendency towards reduced XBP-

1 expression after exposure to palmitic acid and reduced Chop expression after combined 

insulin and palmitic acid stimulation, when compared to control cells. 

 

 

3.6.2 The Effect of Insulin on Pro-inflammatory Gene Expression 

To investigate the second hypothesis, namely that insulin regulates pro-

inflammatory gene expression, bone marrow-derived macrophages from control and 

IR∆myel mice were again stimulated with insulin, palmitic acid or both. Induction of pro-

inflammatory gene expression was analyzed by quantitative realtime PCR after a 

stimulation period of 8 h. While mRNA levels of TNF-α and IL-6 were unchanged in non-

stimulated cells, exposure to insulin increased the expression of both genes 2-fold in 

control macrophages. However, insulin failed to enhance TNF-α and IL-6 gene expression 

in macrophages derived from bone marrow of IR∆myel mice (Fig. 27a). After stimulation 

with palmitic acid, macrophages of both genotypes displayed a marked increase of TNF-α 

and IL-6 mRNA expression compared to untreated cells (Fig. 27b). Furthermore, a 

combination of palmitic acid and insulin slightly increased the expression of TNF-α in 

control macrophages. In contrast, palmitic acid-induced IL-6 mRNA expression was 

slightly reduced by insulin in these cells. However, neither the insulin-induced increase of 

TNF-alpha nor the decrease of IL-6 mRNA levels under lipid load could be observed in 

macrophages derived from IR∆myel mice. 
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Fig. 27: Insulin augments pro-inflammatory gene expression in macrophages. 

Bone marrow-derived macrophages from control mice (white columns) or IR∆myel mice (black columns) were 

stimulated with (a) insulin (Ins, 50 ng/ml), (b) palmitic acid (P, 500 µM) or both for 8 h and expression of 

TNF-α and IL-6 mRNA was analyzed by quantitative realtime PCR. Hprt1 and Gusb mRNA was used as 

endogenous control. (All data are presented as mean ± SEM; n = 4 vs 4; **p ≤ 0.01) 

 

To directly assess pro-inflammatory cytokine production in control and insulin 

receptor-deficient macrophages, TNF-α and IL-6 ELISA was performed with supernatants 

of these cells. As depicted in Fig. 28a, macrophages of control mice released significantly 

more TNF-α protein in response to insulin in the absence of other stimuli. Also, in 

macrophages of IR∆myel mice, stimulation with insulin tended to result in enhanced TNF-α 

production but this increase was not significant. Upon stimulation with palmitic acid, TNF-

α release was further increased compared to insulin. However, no difference was observed 

between genotypes or after costimulation with palmitic acid and insulin. The release of IL-

6 was not affected in macrophages of IR∆myel mice compared to controls under any 

condition analysed (Fig. 28b). 
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Fig. 28: Insulin enhances secretion of TNF-α in macrophages. 

Bone marrow-derived macrophages of control and IR∆myel mice were stimulated with insulin (Ins, 50 ng/ml), 

palmitic acid (P, 500 µM) or both for 24 h in serum-free medium and secretion of (a) TNF-α and (b) IL-6 

was determined by ELISA. (All data are presented as mean ± SEM; n = 4 vs 4; **p ≤ 0.01) 

 

 

3.6.3 The Effect of Insulin on Macrophage Migration 

An important factor for macrophage migration is their ability to express and secrete 

matrix metalloproteinases (MMPs) which then help to degrade extracellular matrix (ECM) 

proteins to allow trans-ECM migration. It has recently been demonstrated that insulin 

regulates the activity of MMP-9, a member of the type IV collagenase subgroup, in a 

human monocytic cell line. To investigate the effect of insulin on MMPs in our model, 

peritoneal macrophages from control and IR∆myel mice were analyzed for expression of 

MMP-9 mRNA after stimulation with palmitic acid in the presence of serum. As shown in 

Fig. 29a, MMP-9 mRNA levels were already significantly reduced in untreated 

macrophages of IR∆myel mice compared to controls. This difference was even more 

pronounced after stimulation with palmitic acid where MMP-9 mRNA was increased 2.5-

fold in control macrophages while insulin receptor-deficient macrophages could enhance 

MMP-9 expession only 0.5-fold. To directly test the effect of insulin on MMP-9 activity in 

primary murine macrophages, gelatinase zymography was performed. Stimulation of bone 

marrow-derived macrophages of control mice with insulin induced MMP-9 activity in the 

cell culture supernatant (Fig. 29). However, this insulin-mediated increase of MMP-9 

gelatinolytic activity could not be observed in supernatant of IR-deficient macrophages. 
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Fig. 29: Insulin receptor deficiency impairs matrix metalloproteinase 9 expression in macrophages. 

(a) Peritoneal macrophages of control (white columns) and IR∆ymel mice (black columns) were treated with 

palmitic acid or left untreated (basal) for 4 h and expression of MMP-9 mRNA was analysed by quantitative 

realtime PCR. Hprt1 was used as endogenous control. (b)  Cell culture supernatants from 24 h untreated 

(basal) or insulin-stimulated (50 µg/ml) bone marrow-derived macrophages of control and IR∆myel mice (IR-/-) 

were analyzed by gelatinase zymography. A representative zymogram of three independent experiments is 

shown (M = protein marker lane; pro-MMP-9 protein size = 105 kDa; All data are presented as mean ± SEM; 

**p ≤ 0.01) 

 

Boyden chamber analysis, where two compartments are separated by a porous 

membrane, provides a proper tool for accurate determination of chemotactic behaviour 

(204). Motile cells are placed into the upper compartment, while the test substance-

containing fluid is filled into the lower one. To directly address the migratory potential of 

insulin receptor-deficient macrophages, Boyden chamber experiments were employed. As 

depicted in Fig. 30, non-directed (basal) chemotaxis was indistinguishable between control 

and insulin receptor-deficient macrophages. However, when directed against 25 and 6 

ng/ml of the potent chemoattractant MCP-1, control cells showed increased migration 

towards the lower compartment. Chemotaxis was not induced with 1.5 ng/ml of MCP-1. 

Strikingly, insulin receptor-deficient macrophages did not increase their migration activity 

when exposed to MCP-1. 
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Fig. 30: Insulin receptor-deficient macrophages show impaired chemotactic abbilities. 

Bone marrow-derived macrophages of control and IR∆myel mice were tested for their chemotactic abilities. 

Chemotaxis against buffer (basal) and different concentrations of MCP-1 was determined. (All data are 

presented as mean ± SEM; n = 3 vs 3; ** p ≤ 0.01) 

 

These data indicate that insulin mediates potent effects on three macrophage key 

functions. Firstly, it was demonstrated that the hormone promotes macrophage survival 

under the cytotoxic influence of palmitic acid and enhances expression of Bcl-2. Secondly, 

insulin was able to increase basal transcription of TNF-α and IL-6 whereas a combination 

of insulin and palmitic acid augmented the expression of TNF-α while it reduced 

expression of IL-6. However, secretion of TNF-α and IL-6 by macrophages of IR∆ymel mice 

was not affected although insulin could significantly increase TNF-α release in control 

macrophages. Finally, insulin was able to enhance expression and secretion of active 

MMP-9 by control but not IR-deficient macrophages. Additionally, the chemotactic ability 

of insulin receptor-deficient macrophages towards MCP-1, as assessed by Boyden chamber 

analysis, was drastically impaired.Taken together, macrophage-autonomous insulin action 

provides an important signal in controlling metabolic disturbances associated with obesity. 
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4 Discussion 

Over the past several years the interplay between inflammatory pathways and insulin 

action has attracted increasing interest. Interference with certain cytokine-induced 

signaling pathways and a reduction in obesity-induced inflammation have been 

demonstrated to provide a potential avenue in the treatment of systemic insulin resistance 

and impaired glucose metabolism (113, 115). Although the relative contribution and the 

interaction of cytokine-stimulated JNK and NFκB activation has not been fully elucidated 

and may exhibit differential, tissue-specific effects, it is evident that inhibiting cytokine-

evoked NFκB activation in myeloid cells prevents obesity-associated insulin resistance 

(114, 115, 205). However, little attention has been given to the effects of insulin itself on 

macrophage function particularly in the context of the obesity-induced pro-inflammatory 

state. 

In this study, conditional disruption of the insulin receptor was employed to analyze 

the effect of myeloid cell-autonomous insulin resistance on the development of obesity-

induced insulin resistance.  

 

 

4.1 Recombination Efficiency of the LysMCre Transgene 

Inactivation of insulin receptor signaling has been achieved through use of the Cre-

loxP system. The site-specific DNA recombinase Cre (causes recombination) is a 38 kDa 

protein of the bacteriophage P1 that recognizes specific 34 bp palindromic sequences, 

termed loxP (locus of crossing (x) over in P1) sites (206). Depending on the orientation of 

the loxP sites the Cre recombinase mediates the inversion, excision or translocation of the 

DNA sequence that is flanked by the two loxP sequences (207). DNA sequences flanked 

by directly repeating loxP sites are excised as a circular molecule, leaving a single loxP 

sequence at the site of recombination (208). Cre-transgenic mouse strains are generated 

either by conventional random transgenics, targeted insertion into a gene (knock-in) or by 

generating bacterial artificial chromosome (BAC)-transgenic mice (209, 210). Regardless 

of the strategy, the promotor which drives Cre expression determines onset and cell type-

specificity of the Cre-mediated recombination. By crossing mice carrying a loxP-flanked 

mutation of the gene of interest with mice expressing the Cre recombinase restricted to 
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specific tissues, a conditional mouse mutant is generated that lacks the target gene only in 

cells in which Cre is expressed. 

Expression of the Cre recombinase under control of the lysozyme M promotor 

(LysMCre) has already successfully been used in numerous studies to conditionally delete 

loxP-flanked genome regions specifically in myeloid cells (114, 211). Hence, this 

approach was used in the current study to disrupt the insulin receptor allele in these cells. 

Ablation efficiency was verified in peritoneal and bone marrow-derived macrophages on 

genomic DNA, mRNA and protein level. The residual 10% of loxP-flanked alleles 

detected in bone marrow-derived macrophages of IR∆myel mice can be attributed to 

contamination with either immune cells of the lymphoid lineage or fibroblasts from the 

isolation process. Also, the mice generated in this study are heterozygous for the LysMCre 

allele which could reduce the full Cre-mediated recombination potential (201). 

Transcription of the insulin receptor mRNA in bone marrow-derived macrophages was 

also not completely abolished as demonstrated by quantitative realtime PCR. These cells 

still expressed 15% of insulin receptor mRNA detected in control macrophages. However, 

western blot analysis of protein lysates from peritoneal macrophages demonstated a 

complete absence of immunodetectable insulin receptor protein in cells derived from 

IR∆myel mice. The discrepancy observed in DNA/mRNA versus protein expression can 

attributed to two reasons. Firstly, southern blot analysis and quantitative realtime PCR 

provide more sensitive detection methods compared to western blot analysis. Secondly, in 

vitro differentiation of macrophages from bone marrow results in a homogenous 

population of resting macrophages whereas the thiogycolate-elicited peritoneal cell 

population is heterogenous, consisting mainly of inflammatory, activated macrophages. 

Since lysozyme is strongly induced in activated macrophages (212), it seems likely that 

lysozyme M promotor-driven Cre expression is also enhanced in these cells and thus 

deletion efficiency is increased. Given that obesity results in recruitment of activated 

macrophages to adipose tissue - although not directly addressed in the present study - it 

appears very likely that deletion efficiency in these cells is also high. The analysis of 

insulin receptor protein expression in various tissues of IR∆myel mice revealed no difference 

compared to control mice although resident macrophages can be found in almost all tissues 

throughout the body. Isolation and purification of these macrophage populations and 

subsequent analysis by southern blot or quantitative realtime PCR would provide a 

superior approach to further investigate the recombination efficiency in tissue resident 

macrophages. 
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However, here it has been shown that the LysMCre transgene provides an adequate 

tool to mediate specific and efficient disruption of the insulin receptor in resting and 

inflammatory macrophages. 

 

 

4.2 Myeloid Cell-specific Disruption of the Insulin Receptor 

protects against Obesity-induced Insulin Resistance 

In this study, the commonly employed model of high fat feeding was used to analyze 

the effect of myeloid cell-restricted insulin resistance on obesity-induced insulin resistance. 

In control animals, the exposure to a high fat diet (55.2% calories from fat) lead to severe 

obesity accompanied by a marked increase in circulating leptin, insulin and glucose 

concentrations compared to lean animals. Moreover, control mice exhibited a pronounced 

impairment of glucose metabolism and insulin action indicated by increased blood glucose 

levels and reduced responsiveness to insulin during glucose tolerance test and insulin 

tolerance test, respectively. Myeloid cell-restricted insulin receptor deficiency did not 

affect obesity. This was not entirely surprising since myeloid cell-specific disruption of 

genes that are fundamentally involved in the regulation of macrophage function e.g. IKKβ 

and JNK1, either by using the Cre-loxP system or bone marrow transplantation techniques, 

did not modulate adiposity (114, 158). Until now, changes in body weight after myeloid 

cell-specific gene deletion were reported only once (168). In this study, transplantion of 

PPARγ-deficient bone marrow cells into lethally irradiated wildtype mice lead to increased 

weight gain upon high fat feeding.  

However, although adiposity was unchanged, IR∆myel mice showed a striking 

protection from obesity-induced hyperglycemia and hyperinsulinemia, two parameters 

commonly used to define insulin resistance. Furthermore, these mice performed 

considerably better in glucose and insulin tolerance tests. As demonstrated by euglycemic-

hyperinsulinemic clamp analysis, this arises from enhanced insulin-stimulated glucose 

uptake into skeletal muscle and reduced basal hepatic glucose production. Although 

glucose uptake into adipose tissue was unaltered during clamp conditions, isolated 

adipocytes of obese IR∆myel animals displayed enhanced insulin-stimulated glucose uptake 

in vitro. These cells showed higher sensitivity to insulin, reflected by a shift of the dose 

response curve without altering the maximal response. Notably, glucose uptake into 

adipocytes of IR∆myel mice was markedly increased in response to low rather than high 
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doses insulin. These experiments explain why glucose uptake was unaltered in adipose 

tissue of IR∆myel mice during clamp conditions, an experimental setup in which high 

concentrations of insulin are applied. These data clearly demonstrate that myeloid cell-

autonomous insulin resistance protects against the deleterious effect of obesity on glucose 

metabolism in main insulin target tissues. This is consistent with previous observations that 

mice with hepatic inactivation of IKKβ retained insulin responsivness in the liver whereas 

myeloid cell-restricted disruption of IKKβ resulted in protection against obesity-induced 

insulin resistance in liver, skeletal muscle and adipose tissue (114). Together with the 

results of the current study, these findings underline the crucial role of myeloid cells in the 

control of systemic insulin action under obesity. 

 

 

4.3 Myeloid Cell-specific Disruption of the Insulin Receptor 

modulates the Obesity-associated Pro-inflammatory Tone 

Aside from improved glucose metabolism and insulin sensitivity, obese IR∆myel mice 

showed decreased concentration of TNF-α and increased concentration of adiponectin in 

the circulation when compared to control mice. Circulating TNF-α activates pro-

inflammatory kinases like JNK in insulin target tissues leading to S307 phosphorylation of 

IRS molecules thereby inhibiting insulin action (113). In contrast, adiponectin has been 

shown to improve glucose metabolism through activation of adenosine monophosphate-

activated kinase (AMPK) and inhibition of hepatic gluconeogenesis (213). The observed 

alteration in concentation of these two proteins may benefit and augment insulin sensitivity 

in IR∆myel mice upon obesity.  

In line with reduced circulating TNF-α, the analysis of JNK in skeletal muscle 

revealed a dramatic reduction of kinase activity in this tissue. This could potentially 

explain the enhanced glucose disposal i.e. insulin sensitivity of skeletal muscle, since 

increased local JNK activity was demonstrated to be positively correlated with muscle 

insulin resistance (214). However, the question remains why JNK activity in the liver of 

IR∆myel mice is only slightly decreased although hepatic glucose production is reduced in 

this tissue. A possible explanation could be that immune cells residing in the liver, 

maintain local pro-inflammatory signaling (169). Notably, hepatic glucose production is 

reduced only in the fasted state while remaining unaltered between control and IR∆myel 

animals after stimulation with insulin. Hence, one could speculate that increased inhibition 
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of hepatic glucose production i.e. gluconeogenesis in obese IR∆myel mice is a result of the 

action of adiponectin rather than enhanced hepatic insulin sensitivity. Assessment of 

AMPK activity, as well as expression of gluconeogenic genes and inflammatory mediators 

in liver of IR∆myel mice should help to further define the exact cause of decreased basal 

hepatic glucose production. Moreover, adiponectin has been shown to form higher-order 

complexes that are differentially distributed in lean, obese and insulin resistant subjects 

(215). Therefore, determining the abundancy of different adiponectin complexes in the 

circulation of obese IR∆myel mice would be of interest to analyze. 

 

 

4.4 Myeloid Cell-specific Disruption of the Insulin Receptor 

blunts the Inflammatory Infiltration of Adipose Tis sue by 

Macrophages 

In the past several years, the inflammatory infiltration of adipose tissue by 

macrophages and a subsequent increase of pro-inflammatory gene expression has become 

a central paradigm in obesity-induced insulin resistance (156, 157). Taking the augmented 

glucose metabolism of IR∆myel mice into consideration, analysis of adipose tissue 

inflammation and macrophages infiltration represented an interesting approach to further 

characterize these mice. Diet-induced obese IR∆myel mice showed a dramatic reduction of 

pro-inflammatory gene expression in adipose tissue indicated by reduced TNF-α mRNA 

levels. Increased TNF-alpha expression in adipose tissue has been demonstrated to be an 

important feature of obesity and insulin resistance in humans and rodents (104, 105). 

Furthermore, neutralization of TNF-alpha in rodents caused a significant increase in 

peripheral glucose metabolism and insulin action (104). This suggests that the reduction in 

TNF-α alone, both locally and systemically, reduces the systemic inflammatory tone, 

thereby exerting a beneficial effect on glucose metabolism and insulin sensitivity in IR∆myel 

mice.  

A considerable amount of TNF-α is expressed by adipocytes. In obesity, however, 

macrophages are the predominant source of this cytokine (156). Accordingly, we could 

show that the observed reduction of TNF-α mRNA expression in IR∆myel mice is 

attributable solely to a reduction in the stromal vascular compartment of the adipose tissue, 

which is the site of macrophage accumulation, while expression was unchanged in 

adipocytes. Along with diminished TNF-α expression we observed a striking reduction of 
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macrophage markers, both on mRNA (F4/80, Mac-2) and protein level (Mac-2). However, 

expression of CD11c, a surface marker which has recently been shown to be specific for 

pro-inflammatory M1 macrophages (165), was unchanged in stromal vascular cells of 

IR∆myel mice. Nonetheless, since CD11c is known to be expressed not only by 

macrophages but also by dendritic cells (216), the mRNA expression determined in our 

model could be derived predominantly from these cells, potentially masking any 

alterations specifically in macrophages.  

Chemokines are potent endogenous chemoattractants for macrophages and 

monocytes. Increased expression of CCL2 (protein: MCP-1) has been associated with 

obesity and insulin resistance and its production is enhanced during euglycemic 

hyperinsulinemia in insulin resistant patients (119, 217, 218). It has been postulated that 

adipose tissue derived MCP-1 contributes to increased macrophage infiltration in obesity 

(160). In this study, adipose tissue expression of CCL2 was increased by 300% upon high 

fat feeding. However, with an increase of 2500% in control animals, CCL3 (protein: MIP-

1α) was induced unequally stronger than CCL2. Furthermore, the increase of CCL3 but not 

of CCL2 gene expression was significantly abolished in white adipose tissue of obese 

IR∆myel mice. This indicates that in our model, local changes in CCL3 rather than CCL2 

expression are responsible for the reduced infiltration of adipose tissue by macrophages. 

So far, the increase of MCP-1 but not MIP-1α serum concentration has been associated 

with obesity (119). Interestingly, it has been shown that the adipose tissue does not 

contribute to this systemic increase and adipose tissue-derived MCP-1 only acts in a 

paracrine fashion (219). Additionally, obese subjects exhibit significantly elevated serum 

but not adipose tissue-interstitial MCP-1 concentrations, when compared to lean subjects 

(220). Taken this into account, an intriguing question left to address would be whether 

local and systemic MCP-1 and MIP-1α are differentially regulated in IR∆myel mice. 

Taken together, the protection from obesity-associated insulin resistance due to 

impaired insulin action in myeloid cells occurs on two levels. The obesity-induced 

inflammatory infiltration of macrophages into white adipose tissue is dramatically reduced 

in IR∆myel mice. This results in reduced local expression and presumably release of TNF-α 

into the bloodstream, subsequently blunting the obesity-associated rise in circulating 

inflammatory markers. As a result, the systemic and chronic low-grade inflammation 

typically found in obese individuals is abrogated (221), thereby preventing the occurrence 

of obesity-induced insulin resistance. 
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4.5 The Effect of Metabolic Stress on Macrophages 

In this study, we sought to expose primary murine macrophages to stimuli which are 

adequately comparable to the environment encountered in obesity. Special interest was 

given to hyperlipidemia, here represented by the long chain saturated fatty acid palmitate, 

as lipids have been demonstrated to exhibit strong modulatory effects on macrophage 

function (132, 158, 222, 223). The applied amount of palmitic acid (500 µM) is 

comparable to physiological concentrations of fatty acids observed in obese humans and 

rodents (224, 225). Also, the applied glucose concentration of 200 mg/dl simulates 

hyperglycemic conditions adequately (226). In the present study, we demonstrate that a 

cell-autonomous insulin receptor deficiency affects macrophages in terms of survival 

under metabolic stress conditions, inflammatory gene expression and chemotaxis. 

 

 

4.5.1 Insulin as a Survival Signal for Macrophages 

By subjecting primary murine macrophages to the various metabolic stimuli 

previously mentioned, it became evident that macrophage survival upon fatty acid load is 

highly dependent on insulin signaling. Insulin efficiently inhibited palmitic acid-induced 

apoptosis in control macrophages as assessed by DNA fragmentation (TUNEL) assay. 

Furthermore, basal apoptosis was significantly blocked after exposure to insulin. As 

expected, the beneficial effect of insulin on macrophage survival was abolished in 

macrophages from IR∆myel mice. In line with increasing DNA fragmentation, palmitic acid 

significantly reduced the expression of anti-apoptotic Bcl-2 and increased that of pro-

apoptotic Bax. Treatment with insulin significantly enhanced Bcl-2 expression in control 

macrophages under basal conditions while after palmitic acid load, only a tendency 

towards elevated expression of this gene was observed. Taken together, these data suggest 

that the pro-survival effect of insulin is dependent rather on enhanced anti-apoptotic than 

reduced pro-apoptotic gene expression.  

Additionally, a trend towards higher UPR-related gene expression, represented here 

by XBP-1 and Chop, was observed in control macrophages. These results are in line with 

previous observations that insulin, as an inducer of global protein synthesis, increases ER 

stress, thereby activating several members of the UPR (e.g. GRP78, XBP-1) ultimately 
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protecting against cell death (185). In the study by Misra et al., the observed anti-apoptotic 

effect of insulin was mediated by enhanced expression of Bcl-2 and 

phosphorylation/inhibition of forkhead transcription factor family member FOXO1. 

Recently, the relevance of these findings has been underlined further by Senokuchi et al. 

(227), who found that insulin receptor-deficient macrophages exhibited increased 

susceptibility to cholesterol-induced cell death. The cells could be rescued from apoptosis 

by either adenoviral introduction of a constitutively active Akt or genetic disruption of 

FOXO1, thereby restoring the insulin/PI3K-dependent signaling pathways. Notably, in 

contrast to the design of our study, all experiments were performed in the presence of 

serum, raising the question whether the effects observed are genuinely insulin-dependent 

or mediated by the interplay of insulin with other serum-derived factors. Thus, our study 

demonstrates for the first time that insulin alone can promote macrophage survival in a 

lipocytotoxic environment, which is potentially dependent on enhanced anti-apoptotic gene 

expression.  

However, the balance between pro- and anti-apoptotic Bcl-2 protein family 

members localized to the mitochondrial outer membrane plays a central role in the control 

of apoptosis. Pro-apoptotic proteins such as Bax and Bak, either directly or indirectly, 

induce the release of proteins from the space between the inner and outer mitochondrial 

membranes (228, 229). This process of mitochondrial outer membrane permeabilization 

(MOMP) is likely to be achieved by formation of membrane-spanning pores through 

which cytochrome c and other soluble proteins are released into the cytosol (230, 231). 

Anti-apoptotic proteins such as Bcl-2 and Bcl-xL prevent this release, presumably by 

blocking pore formation (232). Furthermore, metabolic processing of saturated fatty acids 

leads to generation of reactive intermediates i.e. reactive oxygen species (ROS). Apoptosis 

induced by these intermediates is characterized by activation of caspases and DNA-

laddering (233). Therefore, analysis of ROS accumulation, caspase activation and cellular 

localization of Bcl-2 family members would yield further insights into the exact 

mechanisms underlying insulin's anti-apoptotic effects in macrophages. 
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4.5.2 Pro-inflammatory Effects of Insulin in Macrophages 

In the current study, we demonstrate that insulin has potent effects on inflammatory 

gene expression in primary murine macrophages. We could show that stimulation with 

insulin enhances transcription of TNF-α and IL-6 in bone marrow macrophages derived 

from control mice while this effect was abolished in macrophages from IR∆myel mice. 

Furthermore, exposure to palmitic acid drastically exacerbated pro-inflammatory gene 

expression. Costimulation with palmitic acid and insulin slightly but significantly 

increased the expression of TNF-α in control macrophages compared to insulin receptor-

deficient cells. Conversely, under lipid load, insulin exerted inhibitory effects on IL-6 gene 

expression in control macrophages. In contrast to its transcriptional effect, insulin could 

not modulate the secretion of TNF-α and IL-6 under lipid load. However, in the absence of 

any other stimuli, exposure to insulin induced a significant increase of TNF-α but not IL-6 

production in control macrophages. These variable effects of insulin in combination with 

other pro-inflammatory stimuli on macrophages have been reported previously and seem to 

be transient. For example, pretreatment with LPS followed by exposure to insulin lead to 

increased release of TNF-α in a human macrophages cell line (234). On the contrary, when 

macrophages were primed with insulin followed by subsequent treatment with LPS, 

activation of NFκB signaling was significantly reduced (235).  However, it was previously 

described that insulin directly induces transcription and release of TNF-α in THP-1 

monocytes (182). In terms of mRNA expression, this could be confirmed in murine 

macrophages and further extended to conditions of hyperlipidemia by the present study. 

Unexpectedly, this pro-inflammatory effect was only partially conveyed to secretional 

level. Interestingly, it was recently demonstrated by Iwasaki et al. that insulin exerts short 

term anti-inflammatory but long term pro-inflammatory effects in hepatocytes (236). In 

this study, a combined TNF-α and insulin treatment resulted in reduced NFκB-dependent 

transcription after 6 h but lead to a drastic enhancement after 36-72 h. This long-term 

effect is in line with previous results obtained in our group, where insulin receptor-

deficient macrophages, when compared to control cells, secreted significantly less IL-6 

after a 72 h stimulation period with LPS (187). Furthermore, compared to a short-term 

response, prolongued exposure to insulin and pro-inflammatory stimuli far better matches 

the conditions encountered in obesity. 

A considerable number of inflammatory genes are expressed through activation of 

NFkB signaling pathways. It has been reported that phosphorylation and proteasomal 

degradation of inhibitors of NFkB (IκB) is dependent on the activity of Akt/protein kinase 
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B and that insulin receptor-deficient macrophages exhibit increased IκBε protein levels 

(227, 237). Although Akt is classically involved in processes like survival, proliferation, 

metabolism and glucose uptake especially in the context of insulin signaling, it may also 

contribute to inflammatory response pathways. Hence, it is plausible that insulin modulates 

pro-inflammatory signaling events throught the PI3K/Akt axis. Additionally, the 

expression of IL-6 in macrophages is mostly regulated through activation of 

CCAAT/enhancer binding protein (C/EBP) β also known as nuclear factor IL-6 (NF-IL6) 

(238). C/EBPβ is differentially regulated through several cellular kinases including PKC, 

PKA, Akt and GSK3β (239-241). Also, insulin has been demonstrated to directly activate 

C/EBPβ in a PI3K-dependent manner (242). Despite its function as an activator of pro-

inflammatory gene expression, C/EBPβ can also negatively interfere with NFκB-mediated 

transcription by blocking phosphorylation of p65 (243). Therefore, one could argue that 

the observed opposing trend of insulin-regulated IL-6 mRNA expression with or without 

palmitic acid arises from differential activity of C/EBPβ. Nevertheless, further analysis of 

inflammatory cascade activation either by insulin alone or in combination with classic pro-

inflammmatory mediators is required to shed light on these processes.  

 

 

4.5.3 The Effects of Insulin on Macrophage Migration 

The ability to migrate towards loci of inflammation is a central feature of 

macrophage behaviour. In obesity, chronic inflammation in fat induces the local release of 

chemokines thereby attracting monocytes from the circulation to enter the tissue which 

subsequently differentiate into macrophages (157, 166). Proteases like plasminogen (Plg) 

and matrix metalloproteinases (MMPs) regulate leukocyte recruitment in inflammation by 

promoting extracellular matrix (ECM) degradation (244, 245). It was recently reported that 

matrix metalloproteinase 9 (MMP-9) is necessary to provide macrophage trans-ECM 

migration in inflammation and development of inflammation-associated diseases (246). 

Interestingly, insulin is able to regulate MMP-9 gelatinolytic activity in a MAPKinase-

dependent manner and thereby promotes migration of THP-1 monocytes (247, 248). In the 

current study we could show that insulin enhances MMP-9 gelatinolytic activity also in 

primary murine macrophages. Furthermore, it was demonstrated that insulin receptor-

deficient macrophages exhibit reduced MMP-9 gene expression in the presence of serum 

as well as after stimulation with palmitic acid. This implicates a macrophage-autonomous 
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impairment in ECM-remodeling and migration. Also, after preincubation with insulin, 

chemotaxis of macrophages from IR∆myel mice towards MCP-1 was significantly blunted 

compared to controls. These experiments provide an explanation for the reduced 

macrophage accumulation observed in adipose tissue of diet-induced obese IR∆myel mice. 

However, in vivo evidence for reduced gelatinolytic activity in adipose tissue or reduced 

circulating matrix metalloproteinase levels in IR∆myel mice is necessary to underline this 

argument.  

Notably, siRNA-mediated knockdown of Cap, which is involved in PI3K-

independent insulin-stimulated glucose uptake, leads to impaired motility of RAW264.7 

cells in vitro. Furthermore, bone marrow-specific deletion of Cap results in reduced 

obesity-induced macrophage accumulation in adipose tissue of mice (249). In combination 

with the current study, this underlines the crucial role for insulin in the obesity-induced 

infiltration of adipose tissue by macrophages. Intriguingly, these results imply a pivotal 

role for insulin-mediated glucose uptake in macrophages. The dependency of macrophages 

on hexoses as an energy source in the pro-inflammatory and microhypoxic environment 

encountered in obesity has been proposed before (174, 250-252). Hypoxia inducible factor 

(HIF) 1, the central regulator of the hypoxic response, and insulin share common target 

genes (253). Regulation of these genes is crucial to shift ATP production from the 

respiratory chain to anaerobic glycolysis thereby maintaining energy supply (254). Thus, 

the observed phenotype may originate from a fundamental energy problem encountered in 

insulin receptor-deficient macrophages. Further analysis of hexose metabolism in response 

to insulin, especially under conditions of hypoxia, hyperlipidemia and hyperglycemia, 

would provide valuable insight into macrophage function under obesity-associated stress 

conditions.  
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4.6 Conclusions 

Here, we highlight the importance of macrophages as an initiating cell type in the 

HFD-induced, pro-inflammatory insulin resistance cascade. The findings of the present 

study reveal an unexpected and pivotal role for insulin signal transduction in the control of 

innate immune cell behaviour in obesity-induced insulin resistance. Our study 

demonstrates for the first time in vivo that insulin, despite its positive effects on glucose 

metabolism in target tissues such as liver, skeletal muscle and adipose tissue, can develop a 

deleterious role in cell types that are not classically involved in metabolic signaling 

processes. Simulation of the obesity-associated lipidemia by administration of saturated 

fatty acids to macrophages demonstrates that lipocytotoxicity can eradicate large numbers 

of these cells in vitro. According to our results, high insulin levels might promote the 

protective signal to maintain macrophage populations in a pro-apoptotic environment in 

vivo. Thereby these cells can perpetuate their devastating behaviour by initiating 

inflammatory response mechanisms that ultimately induce insulin resistance. In addition, 

the beneficial effect of hyperinsulinemia on macrophage functions such as pro-

inflammatory gene expression and tissue infiltration could further contribute to the harmful 

role of these cells in obesity-induced insulin resistance. An intriguing question for future 

experiments is, whether myeloid cells from type 2 diabetic patients are resistant to insulin 

action. Further exploration of the interaction between metabolic signals and macrophage 

function offers a promising target for novel interventions in obesity-associated insulin 

resistance and type 2 diabetes mellitus. Additionally, several other diabetes-associated and 

macrophage-related diseases such as retinopathy, nephropathy, neuropathy and impaired 

wound healing represent interesting subjects for further investigation. 
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5 Summary 

A major component of obesity-related insulin resistance is the establishment of a 

chronic inflammatory state with invasion of white adipose tissue by mononuclear cells. 

This results in release of pro-inflammatory cytokines, which in turn leads to insulin 

resistance in target tissues such as skeletal muscle and liver. To determine the role of 

insulin action in macrophages and monocytes in obesity-associated insulin resistance, we 

have conditionally inactivated the insulin receptor (IR) gene in myeloid cells of mice 

(IR∆myel mice). While these animals exhibit unaltered glucose metabolism on a normal diet, 

they are protected from the development of obesity-associated insulin resistance upon high 

fat feeding. Euglycemic-hyperinsulinemic clamp studies demonstrate that this results from 

decreased basal hepatic glucose production and from increased insulin-stimulated glucose 

disposal in skeletal muscle. Furthermore, IR∆myel mice exhibit decreased concentration of 

circulating tumor necrosis factor (TNF) α and reduced c-jun N-terminal kinase (JNK) 

activity in skeletal muscle, reflecting a drastic reduction of the chronic and systemic low-

grade inflammatory state associated with obesity. This arises from reduced inflammatory 

recruitment of macrophages to white adipose tissue. Cell-autonomously, insulin receptor-

deficient macrophages are prone to lipid-induced apoptosis and exhibit reduced pro-

inflammatory gene transcription. Additionally, these cells show a pronounced impairment 

of lipid-induced matrix metalloproteinase (MMP) 9 expression and decreased motility in 

response to macrophage chemoattractant protein (MCP) 1. These data indicate that insulin 

action in myeloid cells plays an unexpected, critical role in the regulation of macrophage 

invasion into white adipose tissue and the development of obesity-associated insulin 

resistance. 
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6 Zusammenfassung 

Ein wichtiges Merkmal der Adipositas-assoziierten Insulinresistenz ist die Etablierung 

einer niedriggradigen aber chronischen Entzündung im Körper. Dieser 

Entzündungsprozess wird von einer Infiltration des weissen Fettgewebes durch 

Makrophagen begleitet. Das Resultat dieser Infiltration ist die lokale Ausschüttung 

proinflammatorischer Zytokine, die dann in die Blutbahn gelangen und eine 

Insulinresistenz in wichtigen Zielorganen der Insulinwirkung, u.a. Skelettmuskulatur und 

Leber, verursachen. Um die Rolle der Insulinwirkung auf Makrophagen und Monozyten 

im Zusammenhang mit der Adipositas-assoziierten Insulinresistenz zu untersuchen, haben 

wir das Insulinrezeptor (IR) Gen in myeloiden Zellen von Mäusen konditional inaktiviert 

(IR∆myel). Während diese Tiere unter Einfluss von Normaldiät einen unveränderten 

Glukosemetabolismus aufweisen, sind sie vor den verheerenden Konsequenzen einer 

fettreichen Diät auf die Insulinsensitivität geschützt. Dies ist auf eine verminderte basale, 

hepatische Glukoseproduktion und eine erhöhte, insulinstimulierte Glukoseaufnahme der 

Skelettmuskulatur zurückzuführen, was durch euglykämische, hyperinsulinämische Clamp 

Analyse demonstriert wurde. Darüberhinaus zeigen adipöse IR∆myel Mäuse reduzierte 

Tumor Nekrose Faktor (TNF) α Konzentrationen im Blut und verminderte Aktivität der c-

jun N-terminalen Kinase (JNK) im Skelettmuskel, was eine drastische Reduktion der 

Adipositas-assoziierten, chronischen Entzünding reflektiert. Dies resultiert aus einer 

verminderten inflammatorischen Rekrutierung von Makrophagen in das weisse 

Fettgewebe. Auf zellautonomer Ebene bewirkt das Fehlen des Insulinrezeptors in 

Makrophagen eine erhöhte Anfälligkeit für lipidinduzierte Apoptose und eine reduzierte 

proinflammatorische Gentranskription. Zusätzlich zeigen diese Zellen eine deutliche 

Beeinträchtigung der lipidinduzierten Expression von Matrix Metalloproteinase (MMP) 9 

und eine verminderte Motilität in Reaktion auf Makrophagen Chemoattractant Protein 

(MCP) 1. Diese Daten belegen, dass Insulin eine entscheidende und kritische Rolle in der 

Regulation der Infiltration von Makrophagen in das weisse Fettgewebe und der 

Entwicklung einer Adipositas-assoziierten Insulinresistenz spielen. 
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