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α-P-Atom

35S 35S promoter of Cauliflower Mosaic viruc
B blue light
°C  degree Celsius
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µl micro litre
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bHLH basic helix-loop-helix
cDNA complementary DNA
CC coiled-coil structure
Col Columbia; ecotype of Arabidopsis thaliana
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D darkness
Da Dalton
DNA desoxyribonucleic acid
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FRc continuous FR
GUS β-Glucuronidase

h hour
HA Influenza hemagglutinin
kb kilo bp
kDA kilo Da
l litre
IR infrared
LD long day
Ler Landsberg errecta; ecotype of Arabidopsis thaliana
M molar; mol/l
mg milligram
mM millimolar
min minute
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mRNA messenger-ribonucleic-acid
NLS nuclear localization signal/sequence
nm nanometre
ORF open reading frame
PCR polymerase chain reaction
Pfr red light absorbing phytochrome conformation
Phy phytochrome
Pr red light absorbing phytochrome conformation
R red light
RLD ecotype of Arabidopsis thaliana
rRNA ribosomal ribonucleic-acid
RNA ribonucleic-acid
RT-PCR reverse-transcription-PCR
s second
SD short day
UTR untranslated region
U unit
UV ultraviolet
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WS-0 Wassilewskaja; ecotype of Arabidopsis thaliana
WT wild type
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Nomenclature:
SPA1 gene, locus, wild-type allele

spa1 mutant allele

SPA1 protein

Exception:          photoreceptors
PHY gene, locus, wild-type allele

phy mutant allele

PHY apoprotein (without chromophor)

phy holoprotein (with chromophor)
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Zusammenfassung
Viele Abschnitte im Lebenszyklus von Pflanzen, wie z.B. die Samenkeimung, die

frühe Keimlingsentwicklung (De-etiolierung) oder die Induktion der Blütenbildung,

werden maßgeblich durch das Sonnenlicht beeinflußt. Dabei spielt der Arabidopsis

COP1-SPA Proteinkomplex eine zentrale Rolle, denn er verhindert eine Lichtantwort

im Dunkeln. Der COP1-SPA-Komplex ist vor allem in Dunkelheit aktiv und

verantwortlich für die Ubiquitin-vermittelte Degradation von positiv wirkenden

Faktoren der Lichtsignaltransduktion, wie den Transkriptionsfaktoren HY5, der die

Keimlingsentwicklung steuert, oder CONSTANS, der die Blütenbildung fördert. Im

Licht wird die Funktion des COP1-SPA Komplexes gedrosselt, eine Aufgabe, die von

mehreren Photorezeptoren bewerkstelligt wird. Das COP1 Protein wird in

Arabidopsis von einem einzigen Locus kodiert, während die SPA Proteine von einer

Genfamilie bestehend aus vier Mitgliedern kodiert werden (SPA1-SPA4). SPA Gene

haben überlappende, jedoch auch distinkte Funktionen im Lebenszyklus von

Arabidopsis. SPA1 und SPA2 sind hauptverantwortlich für die Unterdrückung der

Photomorphogenese im Dunkeln. SPA2 hat keine Funktion bei der lichtgesteuerten

Keimlingsentwicklung, die hingegen hauptsächlich von SPA1 und in geringerem

Maße auch von SPA3 und SPA4 reguliert wird. SPA1 ist zudem ausreichend, um

eine verfrühte Blütenbildung im Kurztag zu verhindern.

Ziel dieser Arbeit war es, die molekularen Grundlagen der unterschiedlichen

Funktionen der SPA Gene zu verstehen. Unterschiedliche SPA Gen-Funktionen

lassen sich teilweise auf eine unterschiedliche SPA Genexpression zurückführen.

RNA-Blot-Experimente zeigen, dass die mRNA-Mengen von SPA1, SPA3 und SPA4,

nicht aber die von SPA2 , positiv durch Licht beeinflußt werden. Mehrere

Photorezeptoren wirken dabei zusammen, um die Expression der SPA Gene im Licht

unterschiedlicher Wellenlängen zu fördern. SPA-Promotor-Reportergen Analysen

zeigen zudem eine zum Teil differentielle Expression der SPA-Gene während der

Pflanzenentwicklung. Jedoch kann die unterschiedliche Expression der SPA-Gene

nicht alle distinkten Funktionen der SPA Proteine erklären. Promoter-Austausch-

Experimente mit den regulatorischen Elementen und cDNAs von SPA1, SPA2 und

SPA4 zeigen, dass alle SPA Proteine im Dunkeln wirken können. SPA1 und SPA4

Proteine können außerdem im Licht als Repressoren fungieren, hingegen kann das

SPA2-Protein nicht im Licht wirken, selbst wenn die SPA2-cDNA unter der Kontrolle
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des licht-induzierten SPA1 -Promotors steht. Diese Resultate zeigen, dass

Unterschiede in der SPA Proteinsequenz ebenfalls einen Einfluß auf deren

Funktionen haben.

Alle SPA Proteine zeigen eine ähnliche Domänen-Anordnung. Im stark konservierten

carboxy-terminalen Bereich der SPA Proteine befindet sich eine WD-40 Repeat-

Domäne, die ebenso wie die zentrale Coiled-Coil Domäne der SPA Proteine

Interaktionen mit anderen Poteinen vermittelt. Die amino-terminale Region (N-

Terminus) ist innerhalb der SPA Proteine weniger stark konserviert, zeigt aber in

jedem der SPA Proteine eine schwache Ähnlichkeit mit einem Ser/Thr-Kinase-motiv.

Um die Funktion dieser schwach konservierten Region näher zu untersuchen, wurde

eine SPA1-Struktur-Funktionsanalyse durchgeführt. Interessanterweise ist ein SPA1

Protein ohne N-Terminus in der Lage, seine Rolle in der Keimlingsentwicklung

vollständig auszufüllen. Hingegen ist es unfähig, die verfrühte Induktion der

Blütenbildung im Kurztag zu hemmen. Daher zeigen diese Ergebnisse, dass der N-

Terminus der SPA Proteine eine essentielle Rolle spielen kann.
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Abstract
Ambient light conditions affect development throughout the plant life cycle, including

seed germination, seedling development and the induction of flowering. In the model

plant Arabidopsis, the COP1-SPA ubiquitin ligase complex plays a central role in

suppressing light signaling in darkness. The COP1-SPA complex targets positively

acting factors like HY5, a protein necessary for normal seedling development in the

light, several photoreceptors and the flowering time regulator CONSTANS for

degradation via the 26S proteasome. Therefore, one of the major functions of the

light signal transduction pathways is the inactivation of the COP1-SPA complex.

While COP1 is a single copy gene, the SPA proteins are encoded by four different

loci (SPA1-SPA4). All SPA proteins have redundant, but also distinct functions in

regulating plant development. SPA1 and SPA2 are the key regulators that suppress

photomorphogenesis in dark-grown seedlings. Over-stimulation in light-grown

seedlings is primarily prevented by SPA1, and to a minor extent, also by SPA3 and

SPA4. SPA2, in contrast has only negligible function in the light. SPA1 is sufficient for

repressing flowering under non-inductive short-day conditions.

Here, I show that distinct functions of the SPA genes partially correlate with their

distinct gene expression patterns. RNA gel blot-analysis revealed that the expression

of SPA1, SPA3 and SPA4, but not that of SPA2, is positively influenced by light of

different wavelengths. All main photoreceptors contribute to the up-regulation of

these SPA transcripts, implying that photoreceptors initiate a negative feedback

regulation, which might protect plants from over-stimulation by light. GUS reporter

gene experiments show that SPA genes exhibit somewhat distinct tissue-specific

expression patterns, which might be important for tissue specific regulation of COP1-

SPA targets. However, differences in SPA gene expression cannot account for all

distinct SPA gene functions. Promoter-swap experiments with SPA1, SPA2 and

SPA4 show that all SPA proteins are potent repressors in dark-grown seedlings.

SPA1 and SPA4 also act as repressor in the light. SPA2, however, can never act as

a repressor in the light, not even when it is expressed from the strong light-induced

SPA1 promoter. These results show that SPA proteins themselves feature properties

that determine characteristic SPA protein functions.

All SPA proteins feature a characteristic domain structure with a C-terminal WD-

repeat, a central coiled-coil domain and a less well-conserved N-terminus that
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includes a kinase-like motif. The WD-repeat domain and the coiled-coil domain are

essential for formation of the COP1-SPA complex as well as interactions with various

ubiquitination targets. In contrast, the function of the N-terminal domain is unknown.

Aiming to determine the importance of the N-terminal domain of SPA1, I conducted a

structure-function analysis. While the N-terminal domain of SPA1 is dispensable for

SPA1 function in the seedling stage, this domain is required for SPA1-mediated

repression of flowering in non-inductive short-day conditions. These results indicate,

that the SPA1 N-terminal domain can full-fill an essential function.
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I. Introduction

I.1. Plant photoreceptors and light signal transduction

As sessile organisms, plants need to adopt their growth and development rapidly and

optimally to ambient environmental changes. Light is not only the primary source of

energy for plants, light is also an important environmental factor that influences many

different developmental switches such as seed germination, seedling de-etiolation,

shade avoidance, phototropism, stomata and chloroplast movement, circadian

rhythm and induction of flowering. Seedling de-etiolation is one of the most drastic

light responses. After germination, seedlings growing in the soil, i.e. in darkness,

undergo a process called skotomorphogenesis in order to reach the soil surface and

start photosynthesis. This is characterized by increased hypocotyl elongation, closed

cotyledons and the formation of an apical hook, which protects the shoot apical

meristem. On the soil surface seedlings are exposed to light and adopt their

morphology for growing in the light. This developmental switch is called

photomorphogenesis and is accompanied by inhibition of hypocotyl elongation,

expansion of cotyledons and the induction of chlorophyll synthesis. This de-etiolation

response in Arabidopsis thaliana seedlings has been used as a model system in

forward genetic screens in order to identify photoreceptors and other regulatory

factors important for light signaling.

In Arabidopsis, four main classes of photoreceptors are responsible for perceiving

light of different intensities, qualities and directions (Briggs and Olney, 2001). Three

different types of photoreceptors perceive blue light (B); three cryptochromes (cry1-

cry3), two phototropins (phot1-phot2) and members of the zeitlupe gene family (ztl,

lkp2, fkf1) (Ahmad and Cashmore, 1993; Lin et al., 1996; Huala et al., 1997; Christie

et al., 1998; Mazzella et al., 2001; Kleine et al., 2003). phot1 and phot2 are involved

in phototropic plant responses, chloroplast movement and stomatal opening (Briggs

and Olney, 2001; Briggs and Christie, 2002; Sakamoto and Briggs, 2002; Ohgishi et

al., 2004), whereas the ztl/lkp2/fkf1 photoreceptors regulate light input into the

circadian clock and flowering time (Schultz et al., 2001; Imaizumi et al., 2003;

Somers et al., 2004). cry1 is the primary photoreceptor that inhibits hypocotyl

elongation in response to high fluence rates of B (Ahmad and Cashmore, 1993; Lin

et al., 1996; Mazzella et al., 2001; Kleine et al., 2003). cry2 is important for seedling

development under low fluence rates of B and plays an important role in the
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photoperiodic induction of flowering (Guo et al., 1998; Lin et al., 1998; Mockler et al.,

2003).

The fourth class of photoreceptors, the phytochromes (PHYA-PHYE), monitor red

light (R) and far-red light (FR) (Sharrock and Quail, 1989; Clack et al., 1994). phyA is

the only photoreceptor that can sense FR, but in addition to that phyA can also

mediate responses to low fluence rates of R and B (Nagatani et al., 1993; Whitelam

et al., 1993). phyB and to a minor extent phyC, phyD and phyE play important roles

in R response (Quail, 1997). Phys are known to regulate many different

developmental steps such as seed germination, de-etiolation, shade avoidance and

regulation of flowering time (Figure 1) (Schepens et al., 2004).

Figure 1: Role of photoreceptors during the plant life cycle.

Specialized classes of photoreceptors monitor light of different wavelengths. Cryptochromes and
phototropins perceive B and UVA light. phyB mainly responds to R redundantly with phyA,C,D,E. phyA
is the only FR-sensing photoreceptor but can also sense B and R. Photoreceptors modulate adaptive
growth and development including seed germination, phototropism, de-etiolation, shade avoidance
and induction of flowering.
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Although Arabidopsis has evolved this sets of functionally distinct photoreceptors to

monitor light, there is also vivid cross-talk between the different photoreceptors and

their signaling pathways (Casal, 2000; Devlin and Kay, 2000; Mas et al., 2000;

Mazzella et al., 2001; Yanovsky et al., 2001; Sullivan and Deng, 2003; Usami et al.,

2004). In addition, the two major classes of photoreceptors, phys and crys, induce

related signaling events. Once activated by light, phyA and cry2 become less stable

and are degraded via the 26S proteasome pathway, while phyB and cry1 are stable

also in the light (Guo et al., 1999; Hisada et al., 2000). Photo-activated receptors are

mainly localized in the nucleus, the place where they initiate further downstream

signaling events (Cashmore et al., 1999; Kircher et al., 1999; Kleiner et al., 1999; Yu

et al., 2007). These signal cascades lead to a transcriptional reprogramming of the

cells, which is coordinated by different classes of transcription factors. But how are

these transcription factors regulated by the different photoreceptors? phys and crys

follow two distinct strategies that directly and indirectly affect the activity of

transcription factors involved in light signaling. First, photo-activated receptors can

bind directly to some transcription factors. Phys physically interact with a class of

bHLH transcription factors, so-called PHYTOCHROME-INTERACTING-FACTORS

(PIFs) and PIF-LIKES (PILs). PIFs and PILs mainly act as repressors of light

signaling and phytochromes can phosphorylate PIFs and PILs that are in turn

degraded (Al-Sady et al., 2006; Castillon et al., 2007; Al-Sady et al., 2008; Leivar et

al., 2008b; Leivar et al., 2008a; Shen et al., 2008). Similarly, photo-activated cry2

was recently shown to interact with the bHLH transcription factor CIB1 to regulate

flowering time (Liu et al., 2008).

Several transcription factors with important roles in light signaling do not directly bind

to photoreceptors. LONG HYPOCOTYL IN FAR-RED1 (HFR1), another bHLH

transcription factor, is a component of phyA and cry1 signaling pathways and does

not directly interact with phys (Fairchild et al., 2000; Duek and Fankhauser, 2003).

Also LONG AFTER FAR-RED LIGHT1 (LAF1), a MYB transcription factor, does not

directly bind phys but regulates gene expression in response to FR (Ballesteros et

al., 2001). HYPOCOTYL 5 (HY5) and HY5 HOMOLOG (HYH), two bZIP-transcription

factors, play a more widespread role in mediating light dependent transcriptional

activation in seedling development under FR, R, B or UV-B light (Oyama et al., 1997;

Chattopadhyay et al., 1998; Osterlund et al., 2000b; Osterlund et al., 2000a; Ulm et

al., 2004). Common to HY5, LAF1 and HFR1 is that their regulation involves light-
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dependent, post-translational control of protein stability: HY5, LAF1 and HFR1

proteins are low abundant in darkness and accumulate to high levels in the light

(Osterlund et al., 2000b; Osterlund et al., 2000a; Seo et al., 2003; Duek et al., 2004;

Jang et al., 2005; Yang et al., 2005b).

Figure 2: COP1 is a central regulator of light signal transduction.

A: Visual phenotypes of dark-grown wild-type and cop1 mutant seedlings (top): In darkness wild-type
seedling undergoes normal skotomorphogenesis showing long hypocotyl and closed cotyledons. cop1
mutant seedling undergoes constitutive photomorphogenesis and exhibits the features of a light-grown
seedling in darkness. Simplified illustration of molecular mechanism of skotomorphogenesis (bottom):
In darkness, photoreceptors are inactive and cannot suppress negative regulators like COP1. In
darkness, COP1 suppresses HY5 function, a transcriptional activator. Mutations in COP1 lead to
functional HY5 also in the darkness.
B: Visual phenotypes of light-grown wild-type and cop1 mutant seedlings (top): In light wild-type
seedlings exhibit reduced hypocotyls and de-etiolated (green) expanded cotyledons. cop1 mutants
show strong constitutive photomorphogenesis. Simplified illustration of molecular mechanism of
photomorphogenesis (bottom): In light several photoreceptors suppress COP1 activity. In turn, HY5
protein becomes active and can activate transcription of light-responsive genes.



Introduction

5

Photoreceptors promote the stability of these transcription factors indirectly by

interfering with the factors that promote their degradation. These factors can be

summarized in the group CONSTITUTIVE PHOTOMORPHOGENESIS (COP), DE-

ETIOLATED (DET) and FUSCA (FUS) proteins (Chory et al., 1989; Deng et al.,

1991). Seedlings with mutations in any of the COP/DET/FUS genes exhibit short

hypocotyls and open cotyledons in darkness (constitutive photomorphogenesis). The

reason for this is that cop/det/fus mutants exhibit strongly elevated HY5 and HFR1

protein levels also in darkness (Osterlund et al., 2000b; Osterlund et al., 2000a; Seo

et al., 2003; Duek et al., 2004; Jang et al., 2005; Yang et al., 2005b).

The most well characterized locus among the COP/DET/FUS genes is COP1 (Deng

et al., 1991). COP1 encodes a protein with a carboxy-terminal WD-repeat domain, a

coiled-coil domain and an amino-terminal RING motif, which is characteristic for one

subclass of E3 ubiquitin ligases (Deng et al., 1992). In fact, COP1 has E3 ubiquitin

ligase activity and targets the transcription factors HY5, HFR1 and LAF1 directly for

degradation via the 26S proteasome (Osterlund et al., 2000a; Saijo et al., 2003; Seo

et al., 2003). However, the molecular mechanism of photoreceptor-mediated

inhibition of COP1 activity is not well understood.

The photoreceptors phyA, phyB, cry1 and cry2 can directly bind to the WD-repeat

domain of COP1 and these interactions are thought to suppress COP1 activity

towards other factors such as HY5 (Wang et al., 2001; Yang et al., 2001; Seo et al.,

2004). Interestingly, COP1 seems in turn to be responsible for degradation of the

light unstable phyA and probably also cry2 (Shalitin et al., 2002; Seo et al., 2004).

COP1 becomes also inactivated by light-dependent exclusion from the nucleus, a

process, which is also initiated by photoreceptor signaling (Von Arnim and Deng,

1994; Von Arnim et al., 1997; Subramanian et al., 2004). However, light does not

completely suppress COP1 function, more likely trace amounts of biologically active

COP1 remain in the nucleus to prevent over-stimulation by light.

COP1 genetically and physically interacts with other members of the COP/DET/FUS

proteins (Schwechheimer and Deng, 2000). COP10, a ubiquitin activating E2 variant,

interacts with both COP1 and also components of the COP9 signalosome, a

multisubunit, nuclear protein complex involved in cullin-dependent

ubiquitin/proteasome pathways (Wei et al., 1994; Yanagawa et al., 2004). COP10

itself forms a stable protein complex (the CDD complex) with DET1 and DDB1 that is

thought to be important for COP1 activity (Yanagawa et al., 2004). Also, COP1 forms
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high molecular weight complexes and interacts with several other proteins that are

indispensable for COP1 function. One class of COP1-interacting proteins are the

SUPPRESSOR OF PHYTHOCHROME A-105 (SPA) proteins (Hoecker and Quail,

2001; Laubinger and Hoecker, 2003; Saijo et al., 2003; Laubinger et al., 2004; Saijo

et al., 2008; Zhu et al., 2008).

Figure 3: COP1 is an E3 ubiquitin ligase with structural similarities to SPA.

The ubiquitin-activating enzyme E1 binds and activates free ubiquitin (U) and transfers it to an
ubiquitin-activating enzyme E2. After binding, the E2 ubiquitin-conjugating enzyme associates with
COP1, an E3 ubiquitin ligase with a RING motif (typical for one class of E3 ubiquitin ligases). E3
ubiquitin ligases are responsible for substrate recognition. COP1 targets proteins by poly-ubiquitination
for degradation via the 26S proteasom. COP1 shows structural similarity to the carboxy-terminal
region of SPA including the WD-repeats. Transcription factors like HY5 can bind either the WD-repeat
domain of COP1 or SPA1. Both proteins can physically interact through their respective coiled-coil
domains (modified from Hoecker, 2005).

I.2. The SPA quartet: A family of COP1-interacting proteins with a

central role in suppressing photomorphogenesis

The founding member of the SPA gene family, SPA1, was identified in a mutant

screen for genes that suppress the phenotype of a weak phyA mutant allele (Hoecker

et al., 1998). spa1 mutants exhibit enhanced photomorphogenic responses in FR, R

and B light, but are indistinguishable from wild-type seedlings in complete darkness

(Hoecker et al., 1998; Baumgardt et al., 2002; Fittinghoff et al., 2006). The seedling

phenotype of spa1 mutants is only detectable in the presence of functional phyA,

which led to the conclusion that SPA1 is a repressor of a phyA-specific signaling

pathway (Hoecker et al., 1998). SPA1 mRNA levels are strongly upregulated in

response to R and FR, a process initiated not only by phyA, but also by phyB

(Hoecker et al., 1999). SPA1 encodes a constitutively nuclear-localized protein with

three characteristic domains: a carboxy-terminal WD-repeat domain, a central coiled-

coil domain and a N-terminal kinase-like domain (Hoecker et al., 1999). Within the
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WD-repeat domain, SPA1 exhibit high sequence similarity to the WD-repeat domain

of COP1 (Hoecker et al., 1999). The important relationship between COP1 and SPA1

function was corroborated by the observation that spa1  and cop1 mutations

genetically interact, and that SPA1 is physically associated with COP1 in planta

(Saijo et al., 2003). The interaction between SPA1 and COP1 is mediated by their

respective coiled-coil domains and SPA1-binding influences the COP1 E3 ubiquitin

ligase activity (Hoecker and Quail, 2001; Saijo et al., 2003; Seo et al., 2003; Saijo et

al., 2008). The function of the N-terminal kinase-like domain of SPA1 is unknown and

it remains to be elucidated whether the SPA1 protein exhibits kinase activity.

SPA1 is a part of a four-member gene family which includes three more members,

SPA1-related 2 (SPA2), SPA1-related 3 (SPA3 ), and SPA1-related 4 (SPA4;

(Laubinger and Hoecker, 2003). All SPAs exhibit a similar domain architecture

including a kinase-like motif, a coiled-coil domain and WD-repeats (Hoecker et al.,

1999; Laubinger and Hoecker, 2003; Laubinger et al., 2004). Highest sequence

similarity among all SPAs is found within their WD-repeat domains (Laubinger and

Hoecker, 2003). SPA´s amino-termini including are less well conserved (22-27%).

The SPA gene family can be divided into two subgroups. SPA2 is most closely

related to SPA1 (Laubinger et al., 2004). SPA1 and SPA2 exhibit almost equal size

and show conserved locations of all splice sites. The two members of the other SPA

subgroup, SPA3 and SPA4, are highly conserved showing 74% identical amino acids

(Laubinger and Hoecker, 2003).

Figure 4: SPAs encode a small protein family that interacts with COP1.

A: All SPA proteins exhibit a carboxy-terminal WD-repeat domain and an amino-terminal kinase -like
region. All SPAs feature at least one coiled-coil (CC) domain, which is known to mediate protein
interaction or oligomerization. For SPA1 and SPA2 one or two nuclear localization sequences (NLS)
are found.
B: All SPAs can form homo- and heterodimers with itself and other SPAs as well as COP1. COP1 can
also form homodimers.
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Reverse genetic approaches were conducted to uncover the role of SPA2, SPA3 and

SPA4 in light-regulated plant development. spa3 and spa4 single mutants exhibit, like

spa1, enhanced photomorphogenesis in FRc, Rc and Bc but are indistinguishable

from wild type in the dark (Laubinger and Hoecker, 2003). Enhanced

photomorphogenesis of spa4  mutants, like that of spa1, mainly depends on

functional phyA, whereas the spa3 mutant phenotype might also depend on other

phys (Laubinger and Hoecker, 2003). spa2 single mutants do not show any obvious

mutant phenotypes in the light when compared to the wild-type control (Laubinger et

al., 2004). Because SPA proteins represent a protein family, it is possible that SPA

protein have redundant functions that are partially masked when analyzing only spa

single mutants. Indeed, spa1 spa2 spa3 spa4 quadruple mutants undergo

constitutive photomorphogenesis in darkness similar to a cop1 mutant (Laubinger et

al., 2004). This result indicates that all SPAs act redundantly in suppression of

photomorphogenesis in the dark. These results are in agreement with the fact that all

SPA proteins directly interact with COP1 and that the spa2 mutant allele genetically

interacts with the very weak cop1eid6 mutant allele (Laubinger et al., 2004). Recently,

Zhu et al., 2008, showed that SPA proteins and COP1 form heterogeneous

complexes in planta, possibly consisting of two COP1 and two SPA proteins. SPA

proteins can form homo- as well as heterodimers depending on developmental stage

and light regime (Zhu et al., 2008). Furthermore, COP1 complex formation is

abolished in the absence of functional SPA proteins and vice versa, indicating that

formation of COP1-SPA complexes is an essential step for COP1 and SPA protein

function (Zhu et al., 2008).

I.3. Functional diversification among Arabidopsis SPA genes

Important results about the individual SPA gene functions were derived from a variety

of spa double and triple mutants (Laubinger et al., 2004; Fittinghoff et al., 2006).

SPA1 and SPA2 are both sufficient to prevent photomorphogenesis in darkness,

while SPA3 and SPA4 play a rather minor role in regulating skotomorphogenesis

(Laubinger et al., 2004; Fittinghoff et al., 2006). In light-grown seedlings, SPA1 is the

main player that suppresses photomorphogenesis (Laubinger et al., 2004; Fittinghoff

et al., 2006). SPA3 and SPA4 also contribute to suppression of photomorphogenesis

in the light, but the function of these two SPA genes is, when compared to SPA1,
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rather dispensable and becomes only obvious when analyzing spa3 spa4 double

mutants (Laubinger et al., 2004; Fittinghoff et al., 2006). Interestingly, spa3 spa4

double mutants show reduced adult plant size and the spa quadruple mutant shows

dwarfism very similar to cop1 mutants (Laubinger and Hoecker, 2003; Laubinger et

al., 2004). A single SPA3 or SPA4 gene is almost sufficient for a normal adult growth,

indicating that SPA3 and SPA4 play important roles in controlling adult plant size

(Laubinger et al., 2004).

Figure 5: SPAs have redundant and also distinct functions in plant development.

A: Visual phenotypes of wild-type, spa1, cop1 and spa1 spa2 spa3 spa4 mutant seedlings grown in
darkness (top) or under Rc (bottom). In darkness, wild-type plants exhibit long hypocotyls and closed
cotyledons (skotomorphogenesis), whereas in the light hypocotyl length is reduced and cotyledons are
open and green (photomorphogenesis). Mutations in SPA1 result in enhanced photomorphogenesis in
the light. cop1 mutants exhibit constitutive photomorphogenesis in light and darkness. spa1 spa2 spa3
spa4  mutant seedlings mimic the phenotype of the cop1  mutant and show constitutive
photomorphogenesis (pictures taken from Hoecker, 2005)
B: Visual phenotypes of a spa1 spa2 spa3 spa4 adult plant which is strongly reduced in size (picture
taken from Laubinger et al., 2004).
C: spa1 mutants flower earlier in SD than wild-type plants (picture taken from Laubinger et al., 2006).

Another important, light-regulated step in the plant life cycle is the induction of

flowering. Arabidopsis thaliana is a facultative long day (LD) plant that flowers early in

long days and late in short days (SD) (Coupland et al., 1998). One major regulator of

photoperiodic induction of flowering is CONSTANS (CO) (Putterill et al., 1995). co

mutants flower late in LD whereas over-expression of CO leads to an early-flowering

phenotype (Putterill et al., 1995; Onouchi et al., 2000). CO encodes a transcription
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factor, which activates expression of FLOWERING LOCUS T (FT) and its homolog

TWIN-SISTER OF FT (TSF) (Koornneef et al., 1991; Yamaguchi et al., 2005). FT

protein can move from the leaves to the shoot apical meristem where it interacts with

the transcription factor FD to regulate expression of floral genes (Corbesier et al.,

2007; Jaeger and Wigge, 2007; Lin et al., 2007a; Mathieu et al., 2007).

Mutations in SPA1 cause an early-flowering phenotype in SD but not in long days

(Ishikawa et al., 2006; Laubinger et al., 2006). Additional loss of SPA3 and SPA4

function further enhances the early-flowering phenotype of spa1 mutants (Laubinger

et al., 2006). On the other hand, mutants that carry only a functional SPA1 gene

flower like wild-type plants indicating that SPA1 alone is sufficient to repress

flowering under SD conditions (Ishikawa et al., 2006; Laubinger et al., 2006). spa1

mutants accumulate high levels of FT  mRNA while levels of CO  are largely

unaffected (Ishikawa et al., 2006; Laubinger et al., 2006). spa1 mutants flower only

vxx

Figure 6: COP1/SPA complexes suppress flowering in SD by destabilization of CO.

A: C O mRNA levels in wild-type plants grown in long days (LD) accumulate in the end of late
afternoon and coincide with light. Light stabilizes CO protein that activates FT mRNA transcription, an
important inducer of flowering. Possible inactivation of COP1/SPA function could be due to physically
interaction with photoreceptors like phys and crys.
B: In wild-type plants grown in short days (SD) the peak of CO mRNA levels occurs during night
(darkness). COP1/SPA complex destabilize CO protein levels by targeting CO for degradation via the
26S proteasom. Without CO activation, FT mRNA levels are low abundant and flowering is not
induced.
C: In spa1 mutant plants grown SD the peak of C O mRNA levels occurs during night (darkness).
However CO is stable and activates FT transcription, which results in the earlier flowering phenotype
of spa mutants in SDs.
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early in SD in the presence of functional CO (Ishikawa et al., 2006; Laubinger et al.,

2006). CO protein levels are strongly elevated in spa1 and spa1 spa2 spa3 triple

mutants (Laubinger et al., 2006; Jang et al., 2008).

In addition, SPA1 interacts with CO in vitro and in planta, raising the possibility that

CO is an ubiquitination target of the COP1-SPA complex (Ishikawa et al., 2006;

Laubinger et al., 2006). This is in agreement with the observation that also cop1

mutants flower early in SD, that CO protein accumulates in a cop1 mutant, that COP1

interacts with CO and that COP1 ubiquitinates CO in vitro (Laubinger et al., 2006;

Jang et al., 2008).

Taken together, the COP1-SPA complexes play important roles in many different

developmental stages. It seems that the contribution of the individual SPA genes

differs in each developmental stage. SPA1 can suppress photomorphogenesis in the

dark and the light and also regulates photoperiodic induction of flowering. SPA2

function is limited to dark-grown seedling and it has only very minor functions in later

developmental stages that are influenced by light. SPA3 and SPA4 only have minor

functions in dark- and light-grown seedlings, but they play important roles in

regulating adult plant size.

Figure 7: SPA proteins have redundant but also distinct functions in regulating plant
development.

SPA1 and SPA2 predominate in suppressing photomorphogenesis in darkness, whereas SPA3 and
SPA4 play only minor roles in this developmental stage. SPA1, and to minor extend SPA3 and SPA4,
repress photomorphogenesis in the light. SPA3  and SPA4  are the most important SPA genes
regulating adult plant size. SPA1 is sufficient for preventing early flowering in non-inductive short days
(SD).
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I.4. Aims of this PhD thesis

Previous genetic analyses have shown that the four SPA genes have partially distinct

functions in the control of seedling development in light/darkness, plant size and

photoperiodic flowering. This thesis, therefore, aims to identify underlying molecular

mechanisms for the functional diversification among SPA genes. Conceptually,

differential SPA gene function might be caused by differences in SPA expression

levels during development and/or differences among SPA protein sequences. These

hypotheses are tested by:

(i) determining SPA transcript levels during development and in light vs. darkness

(ii) analyzing tissue-specificity of SPA expression by examining SPA-promoter::GUS

transgenic plants

(ii) conducting promoter/cDNA swaps among SPA genes

The second aim of this thesis addresses a structure-function analysis of SPA1. While

spa1 mutant alleles have indicated a functional requirement for the C-terminal WD-

repeat domain, little was known about the N-terminal domains of SPA1. Therefore, N-

terminal deletion-derivatives of SPA1 are generated and tested for their ability to

complement the spa1 mutant phenotype. 
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II. Results

II.1. SPA1 structure-function analysis

Genetic analysis of diverse multiple spa-mutants showed that SPAs have overlapping

but also distinct functions in regulating plant development. Based on their function

and sequence similarity, SPA proteins can be divided into two classes. SPA1 and

SPA2 proteins are closely related and both important to inhibit photomorphogenesis

in dark-grown seedlings (Laubinger et al., 2004). SPA3 and SPA4 proteins share up

to 85% identical amino acids and both are mainly involved in regulating growth of

adult plants (Laubinger and Hoecker, 2003). All SPA proteins feature a similar protein

domain arrangement: High similarity among all SPA proteins is found in their C-

terminal regions that include WD-repeats, an important protein domain that is also

characteristic for central repressor of light signaling, COP1. For SPA1 and COP1 it

was shown that WD-repeats are essential for binding transcription factors like HY5 or

HFR1 (Hoecker and Quail, 2001; Saijo et al., 2003; Yang et al., 2005a). All SPAs

carry at least one or two predicted coiled-coil domains, which are known to mediate

homo- or heterodimerization. Indeed, the predicted coiled-coil regions of SPA

proteins are essential for binding COP1 as well as other SPAs (Hoecker and Quail,

2001; Laubinger and Hoecker, 2003; Saijo et al., 2003; Zhu et al., 2008).

While the role of the WD-repeat domain and the central coiled-coil domain of the SPA

proteins is well established, the function of the N-terminus is completely unknown.

Although all SPA proteins exhibit similarity with serin-/ threonin- kinases in their N-

terminus, it is the most unconserved region within the different SPA proteins. In

addition, the N-terminus of SPA1 and SPA2 is much longer than that of SPA3 or

SPA4 and carries two putative nuclear localization sequences (NLSs).

II.1.1. SPA1 N-terminus is not required for SPA1 function in dark- and
light-grown seedlings, whereas the coiled-coil domain is essential

To examine if redundant and non-redundant SPA functions are based on differences

in SPA protein structure, especially in the unconserved N-terminal region, it is

important to know which structure is relevant for SPA1 function. To test whether the

coiled-coil, the kinase-like domain or the whole N-terminus is important for SPA1

function in vivo, SPA1 deletion constructs were generated (Figure 8A): ΔN lacks most
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of the SPA1 N-terminus, ΔKIN lacks only a smaller part of the N-terminus, which

contains highest sequence homology among the four SPA proteins (Laubinger and

Hoecker, 2003). Another deletion-construct produces a SPA1 protein without the

predicted coiled-coil domain (Δcc; Hoecker et al., 1999). As a positive control, the

SPA1 cDNA coding for the full-length SPA1 protein was used (FL SPA1). The SPA1

deletion-derivates and the full-length cDNA were fused to a sequence encoding a

triple influenza hemagglutinin (3xHA). All described constructs (IV.3.3 and Figure 8

A) were placed under the control of SPA1 endogenous 5´ (-2241 base pairs

upstream of the SPA1 start codon) and 3´(1026 base pairs downstream of the stop

codon) regulatory sequences.

To test which domain is necessary for SPA1 function all deletion-derivates and the

full length SPA1 cDNA were transformed into spa1-3 mutant plants. Mutant spa1-3

seedlings show an enhanced de-etiolation in response to FRc with characteristic

short hypocotyls and fully opened cotyledons (Hoecker et al., 1998; Figure 8 A).

Therefore, transgenic spa1-3 seedlings were analyzed under fluence rate of FRc.

The vast majority of all investigated transgenic T2 lines carrying FL SPA1, ΔN or

ΔKIN deletion-derivates of SPA1 showed segregated seedlings with long hypocotyls

and partially closed cotyledons in low FRc, like WT seedlings (Figure 8 B). Thus,

expression of FL SPA1 or either its deletion-derivates ΔKIN or ΔN in spa1-3 mutants

fully restored the WT phenotype (Figure 8 B). Hence, deletion of SPA1 N-terminus

did not affect SPA1 protein function. Because SPA1 is also important for suppression

of photomorphogenesis in darkness, SPA1 N-terminal deletion constructs were also

transformed into spa1 spa2 spa3 triple mutants that show photomorphogenesis also

in complete darkness. SPA1 proteins that lack either the kinase domain or the whole

N-terminus fully rescued the phenotype of spa1 spa2 spa3 triple mutants indicating

that the N-terminus of SPA1 is dispensable for SPA1 function also in darkness.

To be able to statistically quantify photomorphogenesis in the transgenic lines,

complementing lines carrying single insertions were propagated to non-segregating

T3 plants that are homozygous for the transgene. Hypocotyl lengths of around 30

seedlings of each T3 line were measured to determine complementation efficiency.

Measurements of two independent transgenic T3 lines for each construct showed

that hypocotyls of FR-grown spa1 mutants carrying FL-SPA1, ΔKIN or ΔN deletion-

derivates were as tall as those of WT. This results show that the SPA1 C-terminus

including the predicted coiled-coil domain and the WD-repeats is sufficient to fully
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rescue the spa1-3 mutant phenotype (Figure 8 D). Moreover, these results indicate

that the putative NLS located in the SPA1 N-terminus, which is also deleted in ΔN

transgenic lines, is not necessary for SPA1 function. If nuclear localization is

necessary for SPA1 function these results suggest that the second NLS motif

(KKKKASK) is sufficient for SPA1 function.

Figure 8: The N-terminal domain of SPA1 is not required for SPA1 function, whereas

the coiled–coil domain is essential.

A:  Schematic representation of full-length SPA1 (FL SPA1) and three SPA1 deletion mutants tagged
with 3xHA. All constructs are under the control of endogenous SPA1 3´and 5´ regulatory elements.
B, D: Visual phenotypes (B) and hypocotyl lengths (D) of wild-type (WT), spa1-3 and transgenic spa1-
3 seedlings that were transformed with FL SPA1 or SPA1 deletion constructs shown in A. For each
construct two independent transgenic lines are shown. For complementing lines in spa1-3 mutant
background established non-segregating T3 generation are shown (L1 and L2). Non-complementing
lines are shown in segregating T2 generation and presented with numbers (Δcc No.4). Seedlings were
grown in 0.3 µmol m-2 s-1 FRc for 3 days. Error bars in D denote one standard error of the mean.
C: Visual phenotypes of dark-grown wild-type (WT), spa1 spa2 spa3 and transgenic spa1 spa2 spa3
seedlings containing FL SPA1, Δ N or Δ KIN deletion derivates, respectively.
E, F: Immunoblot analysis of transgenic spa1-3 seedlings transformed with Δ cc in T2 generation (E),
FL SPA1, Δ N or Δ KIN constructs in T3 generation (F). Seedlings were grown for 3 days in 0.3 µmol
m-2 s-1 FRc. For immunodetection the membranes were incubated with an α -HA antibody and
subsequently rehybridized with an α -tubulin antibody.

On the contrary, spa1-3 seedlings expressing a SPA1 protein lacking the coiled-coil

domain (Δcc) showed short hypocotyls and fully expanded cotyledons in FRc, like the

spa1 mutant progenitor (Figure 8 B). Out of 39 analyzed transgenic lines none
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showed any rescue of the spa1 mutant phenotype. To verify that those non-

complementing transgenic lines indeed expressed the Δcc SPA1 deletion-protein, six

randomly selected T2 lines were chosen for immunoblot analysis. Five lines showed

detectable amounts of expressed Δcc SPA1 protein. Therefore I conclude that the

central coiled-coil domain is essential for SPA1 function. Western-blot analysis of

complementing T3 lines expressing FL SPA1 showed that the amount of expressed

SPA1 differs between the two lines tested. Even weaker expression of FL SPA1

protein was sufficient to rescue the spa1-3 mutant phenotype. The SPA1 deletion-

proteins ΔKIN and ΔN were also detectable and in both analyzed T3 lines more

abundant than FL SPA1 (Figure 8 F).

These results show that the SPA1 N-terminus including the potential kinase-like

domain is not necessary for SPA1-dependent inhibition of photomorphogenesis in

dark- or light-grown seedlings. In contrast, the coiled-coil domain is essential for

SPA1 function.

II.1.2. SPA1 N-terminus is required to suppress flowering in short-days

Apart from suppression of photomorphogenesis in seedlings, SPA1 also plays an

important role in the regulation of flowering time. spa1 mutants flower earlier than WT

under SD conditions, but not under LD conditions (Laubinger et al. 2006; Ishikawa et

al., 2006). Recent studies show that SPA1 and COP1 suppress flowering in SD by

destabilizing CO, an important regulator of photoperiodic induction of flowering time

(Laubinger et al. 2006; Jang et al.2008).

To investigate whether the SPA1 N-terminal region is important to suppress flowering

in short days, 10 to 15 plants of two independent spa1-3 T3 lines each carrying of FL

SPA1, ΔN or ΔKIN were grown under SD conditions (eight hours light and 16 hours

darkness). To determine flowering time the rosette leaves were counted at the time

plants started bolting (Figure 9 A). Transgenic spa1-3 plants expressing FL SPA1

started to flower almost as late as the WT, indicating that FL SPA1 complemented

the spa1 phenotype. In contrast, expression of ΔN in spa1-3 mutants was not able to

rescue the spa1 mutant flowering time phenotype. These plants flowered as early as

spa1-3 mutants in short days. Plants carrying Δ KIN deletion-derivate flowered

slightly later than spa1-3 mutants, indicating that the ΔKIN deletion-protein has some

residual function.
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Figure 9: SPA1 N-terminus is necessary to inhibit photoperiodic induction of flowering in SD.

A: Flowering time in SD of two independent lines of genotypes shown in Figure 8 A.
B: Visual phenotypes of 78 days-old wild type (WT), spa1-3 mutants and spa1-3 mutants transformed
with FL SPA1, Δ N or Δ KIN grown in SD.
C: Semi-quantitative RT-PCR of SPA1-HA and UBQ10 transcript in 21 days-old plants grown in SD (8
hours light followed by 16 hours darkness) and harvested at Zeitgeber 2, 8, 14, 20.
D: Immunoblot analysis of 21 days-old wild-type (WT), spa1-3 plants transformed with FL SPA1 (FL),
Δ KIN or Δ N. For each construct two independent non-segregating T3 lines were analyzed. All plants
were grown in SD and harvested at same Zeitgeber described in C. For immunodetection the
membranes were incubated with an α -HA antibody and subsequently re-hybridized with an α -tubulin
antibody.

The circadian clock influences flowering time and various genes involved in

photoperiodic flowering are regulated in a diurnal or circadian fashion. Also for SPA1

a diurnal and circadian regulation was reported (Harmer et al., 2000; Ishikawa et al.,

2006; Laubinger et al., 2006). To investigate whether deletion-derivates show proper

diurnal regulation, transcript levels of FL SPA1 and its deletion-derivates ΔN and

ΔKIN  at were analyzed different time points of the day (Zeitgeber, ZT). On

transcriptional levels, no differences in diurnal regulation were observed between the

mRNA of FL SPA1 and the mRNA of the deletion-derivates ΔN and ΔKIN (Figure 9).
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All lines showed a slight increase of transcript abundance at ZT 2 and ZT 20 (Figure

9 C). On the protein level, FL SPA1 and the truncated SPA1 proteins showed highest

protein abundance at ZT 2 and ZT 20. ΔN SPA1 deletion-proteins accumulated to

higher levels than FL SPA1 but showed similar diurnal pattern (Figure 9 D).

Taken together, the N-terminus of SPA1 and the sequence including the kinase-like

motif are important for SPA1 function in the control of flowering time. RT-PCR and

immunoblot-analyses showed that SPA1 deletion-derivates do not exhibit an altered

diurnal expression pattern on either transcriptional or protein levels.

II.2. SPA transcript analyses

Results of SPA1 structure-function analysis suggest that only N-terminal sequence

diversity among the SPA proteins could not explain their partial distinct functions in

light and dark grown seedlings. To investigate whether distinct SPA function are due

to differential SPA expression SPA transcript levels were analyzed under various light

regimes and developmental stages. Parts of the SPA transcript analyses were

conducted during my diploma work and described in my diploma thesis, but are also

presented in this work for a complete understanding of SPA transcript regulation.

II.2.1. SPA1 mRNA accumulates in blue light

Previous studies showed that SPA1 transcript levels are increased in seedlings

transferred from darkness to Rc or FRc (Hoecker et al., 1999). Because spa1

mutants are hypersensitive to Bc, the effect of Bc on SPA1 transcript levels was

determined. To this end, RNA was isolated from dark-grown seedlings as well as

seedling transferred to Bc and determined SPA1 transcript levels by RNA blot

analysis.

After two hours of Bc treatment, SPA1 mRNA accumulated to levels 5- 10-fold higher

than in darkness and sustained at high levels after prolonged Bc irradiation (Figure

10 A). SPA1 transcript levels were not influenced within the first 30 minutes after Bc

treatment, but accumulated to high levels after 60 minutes. These results indicate

that Bc has a similar influence on SPA1 mRNA levels as Rc and FRc (Fittinghoff et

al., 2006).
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Figure 10: Blue light increases SPA1 mRNA abundance.

A, B: Total RNA gel blot analysis (top) and quantification (bottom) of SPA1 transcript levels in
seedlings that were transferred from darkness to 5 µmol m-2 s-1 Bc for 0-24h. Transcript levels were
normalized by re-hybridization with an 18SrRNA-specific probe.

Blue light is perceived by the photoreceptors phyA, cry1 and cry2. phot1 and phot2

are also involved in blue light perception but it was shown that they do not play an

important role in B regulation of transcripts (Briggs and Christie, 2002; Briggs and

Spudich, 2005). To analyze which photoreceptor is responsible for SPA1 mRNA

accumulation in Bc, SPA1 transcript levels were analyzed in WT, phyA, cry1 cry2

double and in phyA cry1 cry2 triple mutant seedlings exposed to low or high fluence

rates of Bc.

Figure 11: Accumulation of SPA1 mRNA in high B depends on phyA, cry1 and cry2.

RNA-gel-blot analysis (A, B, C) and quantification (D, E, F) of SPA1 transcript levels in phyA, cry1
cry2 and phyA cry1 cry2 mutant seedlings in comparison to wild-type seedlings (WT: Ler, RLD).
Seedlings were transferred from darkness to 5 µmol m-2 s-1 Bc for 0-24 h. Transcript levels were
normalized by re-hybridization with an 18SrRNA-specific probe.
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 SPA1 transcript levels in phyA mutant seedlings exposed to high fluence rates of Bc

light (5 µmol m-2 s-1 Bc) were similar to those of WT seedlings (Figure 11 A and D).

SPA1 mRNA accumulation in cry1 cry2 double mutant was somewhat different

(Figure 11 B and E). Early accumulation of SPA1 transcript in cry1 cry2 double

mutant was weaker than in WT, but still detectable, whereas after two hours of Bc

exposure the amount of SPA1 mRNA was strongly reduced when compared to WT

(Figure 11 B and E). Only in phyA cry1 cry2 mutant seedlings, Bc induced

accumulation of SPA1 mRNA was completely abolished (Figure 11 C and F).

phyA mutants irradiated with lower fluence rates of Bc (0.3 µmol m-2 s-1 Bc) showed

reduced amounts of SPA1 transcript whereas cry1 cry2 mutant seedlings did not

show any differences in SPA1 mRNA accumulation when compared to WT seedlings

(Figure 12). The relevance of cry1 and cry2 for SPA1 transcript accumulation under

low fluence rate of Bc became only obvious in the phyA cry1 cry2 mutant, in which

SPA1 transcript levels are not responsive to Bc anymore.

Taken together, Bc dependent accumulation of SPA1 transcript depends on

functional phyA, cry1 and cry2. More specifically, cry1 and cry2 play predominant

roles in high and phyA major functions in low fluence rates of Bc.

Figure 12:  phyA, cry1 and cry2 act redundantly in controlling SPA1 mRNA levels in low B.

Total RNA-gel-blot analysis (at the top) and quantification (at the bottom) of SPA1 mRNA from wild-
type (RLD/Ler), phyA (RLD), cry1 cry2 (Ler), phyA cry1 cry2 (Ler) mutant seedlings that were
transferred from darkness to 0.3 µmol m-2 s-1 Bc for 0-6 hours. Transcript levels were normalized by re-
hybridization with an 18SrRNA-specific probe.
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II.2.2. SPA3 and SPA4 but not SPA2 mRNA levels increase by light

For SPA1 transcript levels it was already shown that its transcript levels increase in

FRc, Rc and Bc (Hoecker et al., 1999, this study). To further analyze if the partial

distinct functions of SPAs in dark- and light-grown seedlings are based on different

light-regulated SPA transcript abundance, the transcript levels of SPA2, SPA3 and

SPA4 were analyzed under different light conditions. To this end, total RNA from

dark-grown seedlings as well as seedling transferred to FRc, Rc or Bc were analyzed

and SPA2, SPA3 and SPA4 transcript levels were determined by RNA blot analysis.

Similar to SPA1, the SPA3 and SPA4 transcript levels were strongly increased when

dark-grown seedlings were transferred to light. Seedlings exposed to either high

intensities of Rc, FRc or Bc, respectively, exhibited a 6- to 10-fold increased in SPA3

or SPA4 mRNA levels when compared to dark-grown seedlings (Figure 13). The

increase of SPA3 and SPA4 transcript levels was detectable after two hours of light

exposure and stayed at higher levels for all analyzed later time points. In contrast to

that, exposure to light did not alter SPA2 transcript abundance (Figure 13).

Taken together, SPA1, SPA3 and SPA4 transcript levels are increased by light,

nicely correlating with their function in regulating seedling development in the light.

SPA2 function is mainly restricted to seedling development in darkness, which is in

agreement with SPA2 mRNA levels not being influenced by light.

Figure 13: SPA3 and SPA4, but not SPA2, transcript levels increase in light.

A, B, C: Total RNA-gel-blot analysis (top) and quantification (bottom) of SPA2, SPA3 and SPA4
accumulation in 4-day-old dark-grown seedlings (wild type RLD) transferred from darkness to 3 µmol
m-2 s-1 FRc (A) 30 µmol m-2 s-1 FRc (B) or 5 µmol m-2 s-1 Bc (C) for 0-24 h. SPA2, SPA3 and SPA4
signals were normalized to 18SrRNA levels after phosphoimager quantification.



Results

22

To uncover which photoreceptors mediate light dependent accumulation of SPA3

and SPA4 transcript levels, SPA3 and SPA4 transcript levels were determined in WT

and in several photoreceptor mutants. After one hour exposure to low intensities of

FRc, SPA3 and SPA4 transcript levels were strongly induced in the WT. In phyA

mutants, the increase of SPA3 and SPA4 mRNA levels was undetectable (Figure

14). These results are consistent with our knowledge that phyA is the only

photoreceptor able to respond to FRc (Casal et al.1997).

Unlike FR, R light signaling depends on functional phyA, phyB, phyC, phyD and phyE

whereby phyB plays the predominant role (Reed et al., 1994; Aukerman et al., 1997;

Mathews and Sharrock, 1997). In Rc light, SPA3 and SPA4 mRNA levels showed an

early increase after one hour that was only slightly affected in phyA mutants, but

completely lost in phyA phyB double mutant (Figure 14 B and D).

Figure 14: Accumulation of SPA3 and SPA4 mRNA in FRc or Rc requires functional phyA or

phyB, respectively.

A, B Total RNA gel blot analysis and quantification of SPA3 (A) and SPA4 (B) mRNA levels from wild-
type (RLD) and phyA mutant seedlings transferred from darkness to 0.3 µmol m-2 s-1 FRc for 0-2 h.
C, D Quantification of SPA3 (C) and SPA4 (D) transcript accumulation in wild-type (RLD), phyA, phyB,
phyA phyB mutant seedlings that were transferred from darkness to 30 µmol m-2 s-1 Rc for 0-24 h. All
blots were reprobed by an 18S rRNA–specific probe. SPA3 and SPA4 signals were normalized to 18S
rRNA levels after phosphorimager quantification.
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In low Bc, the increase of SPA3 and SPA4 transcript levels was not detectable in

phyA and phyA cry1 cry2 triple mutant. cry1 cry2 mutants did not show altered

regulation of SPA3 and SPA4 transcript abundance, indicating that phyA is the

photoreceptor mediating increase of SPA3 and SPA4  transcript levels in low

intensities of Bc. In high fluence rates of Bc, lack of phyA had no effect on SPA3 and

SPA4  transcript levels. Only in phyA cry1 cry2 triple mutant seedlings B-light

dependent increase in SPA3 and SPA4 transcript levels disappeared.

Taken together, SPA3 and SPA4 transcript levels increase in all investigated light

qualities and show an expression pattern very similar to that of SPA1. phyA is

responsible for increase of SPA levels in FR and low B light, whereas, phyB is mainly

involved in the accumulation of SPA3 and SPA4 transcripts in Rc. cry1 and cry2 are

mainly responsible for increasing SPA3 and SPA4  mRNA levels in Bc of high

intensities.

II.2.3. SPA mRNA abundance partially correlates with its distinct functions
during plant development

SPA transcript analysis implies that differences in the regulation of SPA expression

might contribute to distinct SPA functions in dark- and light-grown seedlings. To test

whether absolute amounts of SPA transcripts correlates with distinct functions in

light-, dark-grown seedlings and adult plants, a comparison of SPA transcript

abundance were performed. While SPA1 and SPA2 play predominant roles in light

and dark-grown seedling, SPA3 and SPA4 mainly regulate vegetative adult plant

growth. Therefore, poly(A)+ RNA from seedlings grown for 4 days in darkness or FRc

as well as from adult rosettes leaves were isolated and SPA transcript levels were

subsequently determined by RNA blot analysis. In order to make band intensities of

the different SPA genes comparable, SPA signal were normalized with the respective

UBQ10 signals. This normalized ratio was further corrected for differences in SPA

probe sizes (see Materials and Methods for details).

In dark-grown seedlings, SPA1, SPA2, SPA3 and SPA4 transcripts were relatively

low abundant. However, SPA2 is the most abundant SPA transcript in dark-grown

seedlings (Figure 15). In light grown seedlings, SPA1, SPA3 and SPA4 transcripts

are more abundant than in dark-grown seedlings while SPA2 transcript levels do not

differ between light- and dark-grown seedlings. A direct comparison of SPA mRNA

levels revealed that SPA1 and SPA3 are the most abundant SPA transcripts in light
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grown seedlings (Figure 15 B). In adult plants, SPA3 and SPA4, but not SPA2 mRNA

levels are strongly increased compared to the seedling stage. Levels of SPA1 mRNA

in adult plants were almost unchanged when compared to the levels in light-grown

seedlings. SPA3 was the most abundant transcript in adult plants. Taken together,

comparison of SPA transcript levels showed that SPA2 mRNA levels are largely

unaffected among the different developmental stages analyzed. In contrast to that,

SPA1, SPA3 and SPA4 mRNA levels are very low in dark-grown seedlings, higher in

light-grown seedlings and reach the maximum in adult plants. These expression

patterns partially correlate with the known, distinct SPA functions in regulating plant

development.

Figure 15: Analysis of SPA1-SPA4 transcript levels during plant development

A: Comparative poly(A)+RNA gel blot analysis of SPA1, SPA2, SPA3 and SPA4 mRNA levels in
seedlings grown in darkness or Rc (30 µmol m-2 s-1) for 3 days or in 4 week-old adult plants. SPA
mRNAs were detected with SPA-specific probes (for detail see material and methods). For
normalization, blots were reprobed with an UBIQUITIN 10 (UBQ10) -specific probe.
B: Quantification of the SPA transcript levels shown in A.

II.3. SPA Promoter GUS analyses

II.3.1. SPA1 and SPA2 but not SPA4 promoters are strongly active in the
roots of young plants

While RNA-blot analysis gains important information about SPA mRNA abundance

under various light conditions and developmental stages, the weakness of this

approach is that especially spatial distribution of SPA transcripts within a tissue

cannot be resolved. However, this is of utmost importance because some targets of

the COP1-SPA complexes like CO are only localized in specialized cell types. To

uncover the spatial distribution of SPA expression, a promoter-reporter-gene analysis



Results

25

was conducted with the focus on SPA1, SPA2 and one member of the highly

redundant SPA3/SPA4 subgroup, SPA4. The reporter gene GUS was transformed

under the control of either SPA1-, SPA2- or SPA4- 5´regulatory sequences in wild-

type plants (Figure 16A). For each construct approximately 70 transgenic T1 plants

were analyzed after selection on kanamycin plates. The reason for this high number

of transgenic T1 plants is that not only the promoter but also the insertion site can

influence the GUS expression pattern. All following results were found in at least 50%

of all analyzed lines and therefore likely represent the native SPAX promoter activity.

For the analysis of SPA::GUS expression in seedlings, at least 20 to 30 independent

T2 lines were analyzed.

Figure 16: Promoter of SPA1 and SPA2 are active in roots of seedlings and young plants.

A: Schematic representation of used constructs. The reporter-gene GUS was expressed under
5`regulatory sequences of SPA1, SPA2 or SPA4.
B: Visual phenotypes of wild-type (WT) and transgenic T2 plants expressing GUS under the control of
SPA1, SPA2 or SPA4 promoters described in A.
C: Visual phenotypes of segregating transgenic dark-grown wild-type seedlings expressing GUS under
control of SPA1, SPA2, SPA4 promoters in T1 generation. Plants were grown for two weeks on
kanamycin plates.

In dark-grown seedlings, SPA1 and SPA2 promoters were predominant active in

cotyledons, whereas pSPA4::GUS expression was not detectable in dark-grown

seedlings (Figure 16). Young plants expressing GUS under the control of either
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SPA1 or SPA2 promoter exhibited GUS staining in roots, hypocotyls and in true

leaves (Figure 16). T1 plants carrying the pSPA4::GUS transgene had to be stained

two times longer than those carrying SPA1 or SPA2 promoter, which indicates that

the SPA4 promoter is less active than those of SPA1 and SPA2.

Figure 17: Promoter of SPA1 and SPA4 are active in vascular bundles of leaves.

Rosette leaves (first two columns), cauline leaves (third column) and inflorescence (fourth column) of 6
week-old transgenic plants expressing GUS under the control of SPA1-, SPA2- or SPA4- promoter. All
plants were selected on kanamycin plates, transferred to soil and grown in LD for three weeks. All
tissues were stained at 37°C for 8 hours.

Obvious difference in SPA promoter activity was found in the roots. pSPA1::GUS and

pSPA2::GUS reporter constructs were strongly expressed in roots indicated by

detectable GUS staining after only a view minutes, whereas GUS activity controlled

by SPA4 promoter was not or only barely detectable even after several hours of

staining (Figure 16). Analysis of older rosette leaves showed that promoters of SPA4

and SPA1 were strongly active in vascular bundles (Figure 17). In contrast, SPA2

promoter conferred strong activity in the leaves, but its expression is not restricted to

vascular tissues. SPA genes are also expressed in cauline leaves and stems (Figure

17). All analyzed SPA  promoters were active in reproductive tissues. GUS

expression was detectable in all flower organs as well as young siliques (Figure 17).

Taken together, the SPA-promoter::GUS analysis demonstrates that the selected

SPA1 and SPA2 5´regulatory regions confer to strong expression in roots of young

plants, whereas SPA4 promoter show no or only weak detectable activity in roots.
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Activity of SPA1 and SPA4 promoter is strong and spatially restricted to vascular

bundles of rosette leaves in adult plants, whereas SPA2 promoter activity is more

widespread in rosettes leaves.

II.4. Promoter-swap analysis

SPA transcript expression analysis and SPA promoter GUS experiments revealed

that SPA genes are differentially regulated depending on light regime, developmental

stage and cell type. To answer the question whether differential regulation of SPA

genes is responsible for their distinct functions, a SPA promoter-swap analysis with

the focus on SPA1, SPA2 and one member of the highly redundant SPA3/SPA4

subgroup, SPA4 was designed. Therefore, the cDNAs of SPA1, SPA2 and SPA4

were expressed either under the control of their endogenous 5’ and 3’ regulatory

sequences or that of SPA1. In addition, SPA1 cDNA was placed under the control of

either SPA2 or SPA4 5’ and 3’ regulatory elements. For simplification, I will name the

chosen 5’ and 3’ regulatory sequences of all SPAs promoters. In general, 2 kb

upstream of the start codon and approximately 800 bp downstream the stop codon

were aspired. Depending on adjacent genes at SPA loci and optimized primer

annealing for cloning strategy the chosen SPA promoters varies in size.

II.4.1. Expression of SPA1, SPA2 and SPA4 in spa triple and quadruple
mutants phenocopies appropriate mutant phenotypes in seedlings

First, I tested whether the chosen regulatory 5’ and 3’ elements are sufficient for

proper SPA gene expression. To this end, the cDNAs of SPA1, SPA2 and SPA4

were placed under the control of their endogenous promoters and subsequently

introduced into segregating spa1 spa2 spa3 spa4/SPA4 mutants (Figure 18 A). Thus,

the resulting T1 generation contains spa quadruple mutants as well as homozygous

spa1 spa2 spa3 and heterozygous spa1 spa2 spa3 spa4/SPA4 triple mutants. It was

expected that 1/4 of resulting transgenic T2 plants should be in a quadruple mutant

background. Various T2 plants were propagated and an unexpected low yield of spa

quadruple mutants was obtained (less than 1/10). This might be due to reduced

viability or transformability of the spa1 spa2 spa3 spa4 quadruple mutant embryo or

gametes. Because of the low yield of transgenic lines in quadruple background, spa1

spa2 spa3 triple mutants were also analyzed, because these mutants have similar

defects in suppressing photomorphogenesis in the dark and in the light.
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In the dark, the vast majority of the analyzed T2 progeny that carries a

pSPA1::cSPA1-HA or a pSPA2::cSPA2-HA construct exhibited, like wild-type

seedlings, long hypocotyls and closed cotyledons (Figure 18 B). Thus, these

transgenic quadruple mutants were indistinguishable from spa2 spa3 spa4 or spa1

spa3 spa4 triple mutants, respectively. These results demonstrate that the chosen

regulatory sequences for expression of SPA1 or SPA2, respectively, are sufficient for

normal SPA1 and SPA2 function.

Figure 18: HA tagged SPA1, SPA2 or SPA4 expressed in spa quadruple or spa1 spa2 spa3

triple mutant are fully functional in the dark.

A: Schematic illustration of SPA promoter/cDNA constructs. SPA1, SPA2 and SPA4 cDNA were
placed under the control of their respective 5’ and 3’ regulatory sequences.
B:  Analysis of T2 seedlings carrying SPA  promoter/cDNA constructs. pSPA1::cSPA1-HA ,
pSPA2::cSPA2-HA and pSPA4::cSPA4-HA constructs were transformed into spa1 spa2 spa3
spa4/SPA4 plants and resulting T2 seedlings were grown for 4 days in complete darkness. The
number of individual transgenic lines with long hypocotyls is given. The number of transgenic lines in a
spa quadruple mutant is presented separately. * Total means all investigated lines in spa1 spa2 spa3
or spa1 spa2 spa3 spa4 or spa1 spa2 spa4 spa4/SPA4 background. **Denote that pSPA4::cSPA4-HA
lines show hypocotyls lengths somewhat longer than spa1 spa2 spa3 triple or quadruple mutants, but
still shorter than WT.
C, D: Visual phenotype of dark-grown wild type (WT (Col)), spa multiple mutants and pSPA1::cSPA1-
HA, pSPA2::cSPA2-HA and pSPA4::cSPA4-HA transgenic lines in a spa quadruple (C) or in a spa1
spa2 spa3 triple (D) mutant background.

SPA4 alone is not able to completely suppress photomorphogenesis in the dark

(Laubinger et al., 2004). Consequently, dark-grown spa quadruple mutants
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expressing pSPA4::cSPA4-HA construct exhibited short hypocotyls and expanded

cotyledons. However, these seedlings showed hypocotyls longer than that of spa

quadruple mutants and were indistinguishable from spa1 spa2 spa3 triple mutants

(Figure 18). Hence, pSPA4::cSPA4-HA is fully functional and mimics endogenous

SPA4 function.

When pSPA4::cSPA4-HA was introduced in spa1 spa2 spa3 triple mutants, the

resulting seedlings exhibited longer hypocotyls than the spa1 spa2 spa3 triple

mutant. These results indicate that an additional copy of a functional SPA4 gene

partially complements the mutant phenotype of spa1 spa2 spa3 triple mutants.

Taken together, the results show that pSPA1::cSPA1-HA, pSPA2::cSPA2-HA and

pSPA4::cSPA4-HA function like their endogenous counter parts in dark-grown

seedling. Next, complementation of light-grown transgenic seedlings carrying

pSPA1::cSPA1-HA, pSPA2::cSPA2-HA and pSPA4::cSPA4-HA was analyzed.

Previous analysis of several multiple mutants revealed that SPA1, and to a lower

extend SPA4, are important for suppressing photomorphogenesis in FRc (Laubinger

et al., 2004; Fittinghoff et al., 2006). In contrast, SPA2 function is almost irrelevant for

inhibition of photomorphogenesis in the light (Laubinger et al., 2004).

Expression of pSPA1::cSPA1-HA either in spa quadruple mutants or in spa1 spa2

spa3 triple mutant completely rescued the mutant phenotypes in FRc indicating that

the transgenic SPA1 protein in also functional in the light (Figure 19 A, C and D).

Hypocotyls of these seedlings were even slightly longer than that of WT, implying that

the SPA1 rescue construct is slightly more active than the endogenous SPA1 gene.

spa1 spa2 spa3 triple or spa quadruple mutant seedlings expressing pSPA2::SPA2-

H A  did not show rescue of the mutant phenotypes and exhibited strong

photomorphogenesis with fully opened cotyledons and short hypocotyls in FRc

(Figure 19 B - D). This indicates that the transgenic SPA2 construct, as endogenous

SPA2, is not able to suppress photomorphogenesis in the light.

Expression of pSPA4::SPA4-HA in spa quadruple mutants mimicked the phenotype

of spa1 spa2 spa3 triple mutants (Figure 19 B - D). Again, an extra copy of SPA4 in

spa1 spa2 spa3 triple mutant seedlings resulted in seedlings with longer hypocotyls

than the triple mutant (Figure 19 C and D). This probably indicates that low SPA4

levels are a limiting step in suppressing photomorphogenesis in spa1 spa2 spa3

triple mutants.
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Taken together, expression of pSPA1::cSPA1-HA complement spa quadruple and

triple mutant phenotype in darkness and in FRc. As expected fusion of SPA2-HA

expressed under the control of its own SPA2 promoter also complement mutant

phenotype in darkness, but not in FRc. Transgenic spa quadruple mutants carrying

pSPA4::cSPA4-HA copied the phenotype of spa1 spa2 spa3 mutant in darkness and

FRc.

Figure 19: HA tagged SPA1, SPA2 or SPA4 expressed in spa quadruple or spa1 spa2 spa3 copy

its respective mutant phenotypes in light.

A: Schematic illustration of SPA promoter/cDNA constructs. SPA1, SPA2 and SPA4 cDNAs were
placed under the control of their respective 5’ and 3’ regulatory sequences.
B : Analysis of T2 seedlings carrying SPA  promoter/cDNA constructs. pSPA1::cSPA1-HA ,
pSPA2::cSPA2-HA and pSPA4::cSPA4-HA constructs were transformed in spa1, spa2, spa3,
spa4/SPA4 plants and resulting T2 seedlings were grown for one day in complete darkness and for
further three days in low FRc (0,3 µmol m-2 s-1). The number of individual transgenic lines with long
hypocotyls is given. The number of transgenic lines in a spa quadruple mutant is presented
separately. Total means all investigated lines including non-segregating spa quadruple, non-
segregating spa1 spa2 spa3 triple mutants and segregating spa1 spa2 spa3 spa4/SPA4. **Denote
that pSPA4::cSPA4-HA lines show hypocotyls lengths somewhat longer than spa1 spa2 spa3 triple
mutants, but are still shorter than WT.
C, D: Visual phenotype various FR-grown spa  multiple mutants and pSPA1::cSPA1-HA ,
pSPA2::cSPA2-HA and pSPA4::cSPA4-HA transgenic lines in a spa quadruple (C) or in a spa1 spa2
spa3 triple (D) mutant background.
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II.4.2. In darkness cSPA2 and cSPA4 expressed by the SPA1 promoter
complement mutant phenotype

Previous genetic studies revealed that either functional SPA1 or SPA2 are sufficient

to inhibit photomorphogenesis in darkness, thus spa triple mutants carrying either

functional SPA1 or SPA2 gene, respectively, exhibit long hypocotyls and closed

cotyledons like WT seedlings (Laubinger et al., 2004). Therefore, SPA1 and SPA2

have very similar functions in dark-grown seedlings. This idea is corroborated by the

finding that spa quadruple or triple mutants expressing cSPA2 under the control of

the SPA1 promoter showed normal skotomorphogenesis in darkness like WT (Figure

20).

Figure 20: Expression of various cSPA-HA fusions by the SPA1 promoter complement spa

mutants in darkness.

A: Schematic illustration of SPA promoter/cDNA constructs. SPA1, SPA2 and SPA4 cDNA were
placed under the control of SPA1 5’ and 3’ regulatory sequences.
B : Analysis of T2 seedlings carrying SPA  promoter/cDNA constructs. pSPA1::cSPA1-HA ,
pSPA1::cSPA2-HA and pSPA1::cSPA4-HA constructs were transformed in spa1, spa2, spa3,
spa4/SPA4 plants and resulting T2 seedlings were grown for 4 days in complete darkness. The
number of individual transgenic lines with long hypocotyls is given. The number of transgenic lines in a
spa quadruple mutant is presented separately.
C, D: Visual phenotype various dark-grown spa  multiple mutants and pSPA1::cSPA1-HA,
pSPA1::cSPA2-HA and pSPA1::cSPA4-HA transgenic lines in a spa quadruple (C) or in a spa1 spa2
spa3 triple (D) mutant background.
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SPA4, like SPA3, has only limited functions in suppressing photomorphogenesis in

darkness. Hence, in darkness spa triple mutant seedlings with either functional SPA3

or SPA4 exhibit constitutive photomorphogenesis with only slightly longer hypocotyls

than spa quadruple seedlings. Interestingly, expression of cSPA4-HA fusion under

the SPA1 promoter in a spa quadruple mutant was fully able to complement mutant

phenotype in darkness (Figure 20). From 46 investigated transgenic lines 44 showed

long hypocotyls and closed cotyledons in darkness similar to WT. In contrast, SPA4

driven by its own promoter, as it is the case in spa1 spa2 spa3 triple mutants, cannot

completely suppress photomorphogenesis in the dark (Figure 18 C and D).

Nevertheless, expression of cSPA4-HA under control of the SPA1 promoter

demonstrates that the SPA4 protein has the potential to completely suppress

photomorphogenesis in the dark

In conclusion, these results revealed that SPA gene regulation by SPA1 promoter is

sufficient to inhibit photomorphogenesis in darkness and more relevant than SPA

protein sequences.

II.4.3. SPA2 expressed under the control of SPA1 promoter is not able to
rescue mutant phenotypes in FR, whereas SPA4 does partially

As shown above, SPA2 expressed under the control of the SPA1 promoter is

sufficient to repress photomorphogenesis in the dark (Figure 21 C and D). These

results are not unexpected because both SPA1 and SPA2 play very similar roles in

dark-grown seedlings. However, SPA2 function is limited to dark-grown seedlings,

while SPA1 also plays important functions in the light. This might be due to the fact

that SPA1, but not SPA2, transcript levels are increased by light. Consequently, I

asked the question whether SPA2, when driven by the SPA1 promoter, is also able to

suppress photomorphogenesis in the light.

spa quadruple mutants like spa1 spa2 spa3 triple mutants expressing

pSPA1::cSPA2-HA were indistinguishable from spa quadruple or triple mutant

progenitors (Figure 21 B). These results indicate that the SPA2 cDNA, even when

controlled by the light-inducible SPA1 promoter, is not functional in the light. In

contrast to that, seedlings expressing SPA4 driven by the SPA1 promoter in spa1

spa2 spa3 triple or spa quadruple mutants exhibited longer hypocotyls than the

respective mutants (Figure 21 C and D).
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Figure 21: cSPA2 expressed by pSPA1 is not functional in the light, whereas pSPA1::SPA4-HA

is partially active.

A: Schematic illustration of SPA promoter/cDNA constructs. SPA1, SPA2 and SPA4 cDNA were
placed under the control of SPA1 5’ and 3’ regulatory sequences.
B:  Analysis of T2 seedlings carrying SPA  promoter/cDNA constructs. pSPA1::cSPA1-HA ,
pSPA1::cSPA2-HA and pSPA1::cSPA4-HA  constructs were transformed in spa1 spa2 spa3
spa4/SPA4 plants and resulting T2 seedlings were grown for one day in darkness an further three
days in FRc . The number of individual transgenic lines with long hypocotyls is given. The number of
transgenic lines in a spa quadruple mutant is presented separately.
C, D: Visual phenotypes of various FR-grown spa multiple mutants and pSPA1::cSPA1-HA,
pSPA1::cSPA2-HA and pSPA1::cSPA4-HA transgenic lines in a spa quadruple (C) or in a spa1 spa2
spa3 triple (D) mutant background grown in low fluence rates of FR (0.3 µmol m-2 s-1)

To further show that SPA4 expressed under SPA1 promoter is more active than

under its own promoter pSPA1::cSPA1-HA, pSPA4::cSPA4-HA, and pSPA1::cSPA4-

HA constructs were transformed into spa3 spa4 double mutants. spa3 spa4 double

mutants show enhanced photomorphogenesis in the light, but are indistinguishable

from WT in the dark (Laubinger and Hoecker, 2003). spa3 spa4 carrying the

pSPA1::cSPA4-HA transgene showed much longer hypocotyls than spa3 spa4

mutant and even longer hypocotyls than WT. In contrast, spa3 spa4 mutant seedlings

transformed with the pSPA4::cSPA4-HA construct exhibited hypocotyls lengths

similar to that of spa3 mutants (Figure 22).
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Figure 22: SPA4 expressed by the SPA1 promoter is more active than expressed under its own

regulatory sequences.

A: Schematic illustration of cSPA4-HA expressed either under its endogenous 5’ and 3’ regulatory
sequences or that of SPA1.
B: Visual phenotype of Rc- (top), FRc (middle) or dark-grown (bottom) spa3 spa4 double, spa3 single
mutants and pSPA4::cSPA4-HA or  pSPA1::cSPA4-HA transgenic lines in spa3 spa4 mutant
background.
C : Analysis of T2 seedlings carrying SPA  promoter/cDNA constructs. pSPA1::cSPA4-HA ,
pSPA4::cSPA4-HA constructs were transformed in spa3 spa4 double mutant plants and resulting T2
seedlings were grown for either 4 days in complete darkness or for one day in darkness and further 3
days in FRc or Rc. The number of individual transgenic lines with long hypocotyls is given.

Taken together, it is not sufficient to express the SPA2 gene under the control of the

SPA1 promoter to mimic the specific function of SPA1 in the light. These results

highlight the function of the SPA1 cDNA and, most likely, the resulting protein, as a

more potent repressor of light signaling when compared to SPA2. In contrast, SPA4,

which acts already as repressors in the light, is much more active under control of the

SPA1 promoter.
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II.4.4. SPA1 under control of SPA2 promoter rescue mutant phenotypes
in darkness and in FR

The results presented in this thesis imply that the SPA1 and SPA4 protein have some

intrinsic properties making them potent repressors in light-grown seedlings. In

contrast, the SPA2 protein is only functional in the dark, even when expressed from

the light-inducible SPA1 promoter. To test the hypothesis that SPA1 cDNA already

confers properties for a potent repressor in the light, the SPA1 cDNA was placed

under the control of the SPA2 promoter, the expression of which is not regulated by

light.

Figure 23: SPA1 under control of SPA2 promoter rescues spa mutant phenotypes in darkness.

A: Schematic illustration of SPA promoter/cDNA constructs. SPA1 cDNA was placed under the control
of SPA1, SPA2 or SPA4 5’ and 3’ regulatory sequences.
B:  Analysis of T2 seedlings carrying SPA  promoter/cDNA constructs. pSPA1::cSPA1-HA ,
pSPA2::cSPA1-HA and pSPA4::cSPA1-HA  constructs were transformed in spa1 spa2 spa3
spa4/SPA4 plants and resulting T2 seedlings were grown for 4 days in complete darkness. The
number of individual transgenic lines with long hypocotyls is given. The number of transgenic lines in a
spa quadruple mutant is presented separately. **Denote that pSPA4::cSPA1-HA lines are not
analyzable by phenotype.
C, D: Visual phenotype various dark-grown spa  multiple mutants and pSPA1::cSPA1-HA,
pSPA2::cSPA1-HA and pSPA4::cSPA1-HA transgenic lines in a spa quadruple (C) or in a spa1 spa2
spa3 triple (D) mutant background. For pSPA4::cSPA1-HA construct, segregating line 72 is presented
that exhibits a variety of hypocotyl length.
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Dark-grown spa quadruple and spa1 spa2 spa3 triple mutant seedlings expressing

cSPA1-HA driven by SPA2 promoter showed long hypocotyls and closed cotyledons

similar to WT (Figure 23 C and D). These results are not unexpected, because both

SPA1 and SPA2 are sufficient to repress photomorphogenesis in the dark. More

interestingly, under FRc conditions transgenic mutants carrying pSPA2::cSPA1-HA

also rescued the spa quadruple or triple mutant phenotype, respectively (Figure 24 C

and D). Transgenic seedlings expressing pSPA1::cSPA1-HA or pSPA2::cSPA1-HA in

spa quadruple or triple were indistinguishable from WT indicating that SPA1 can fulfil

its function in the light even when expressed under the non-light-inducible SPA2

promoter (Figure 19 C and D).

Figure 24: SPA1 under control of SPA2 promoter rescues spa mutant phenotypes in FR.

A: Schematic illustration of SPA promoter/cDNA constructs. SPA1 cDNA were placed under the
control of SPA1, SPA2 or SPA4 5’ and 3’ regulatory sequences.
B:  Analysis of T2 seedlings carrying SPA  promoter/cDNA constructs. pSPA1::cSPA1-HA ,
pSPA2::cSPA1-HA and pSPA4::cSPA1-HA constructs were transformed in spa1, spa2, spa3,
spa4/SPA4 plants and resulting T2 seedlings were grown for 4 days in complete darkness. The
number of individual transgenic lines with long hypocotyls is given. The number of transgenic lines in a
spa quadruple mutant is presented separately. ** Denote that pSPA4::cSPA1-HA lines are not
analyzable by phenotype
C, D: Visual phenotype various dark-grown spa  multiple mutants and pSPA1::cSPA1-HA,
pSPA2::cSPA1-HA and pSPA4::cSPA1-HA transgenic lines in a spa quadruple (C) or in a spa1 spa2
spa3 triple (D) mutant background
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Analysis of transgenic spa1 spa2 spa3 mutant seedlings carrying SPA1 cDNA

expressed under the control of the weak SPA4 promoter turned out to be very

difficult. Unfortunately, no single transgenic spa quadruple mutant line expressing

pSPA4::cSPA1-HA out of 86 investigated lines were recovered. Hence, analysis

focused on spa1 spa2 spa3 triple mutants expressing SPA1 under the control of the

SPA4 promoter. In the dark, none of the segregating T2 lines complemented to WT

phenotype. However, spa1 spa2 spa3 triple mutants expressing pSPA4::cSPA1-HA

had somewhat longer hypocotyls than the respective mutant. To verify this result, a

co-segregation analysis should clear if the seedlings with longer hypocotyls carrying

the transgene. Therefore co-segregation analysis was performed with three

independent T2 lines segregating 3:1 for the transgene insertion. All lines were

grown for four days in complete darkness. From each line, seedlings with the longest

or the shortest hypocotyls were selected and genomic DNA was isolated from each

single seedling. Afterwards genomic DNA of each seedling was used for PCR with

transgene-specific and control oligonucleotides (IV.1.4.).

Due to isolation of genomic DNA out of one single seedling was less efficient, co-

segregation results were partially ambiguous. But none of the short dark-grown

seedlings did carry the pSPA4::cSPA1-HA transgene, while eight out of twelve long

dark-grown seedlings were positively tested for the pSPA4::cSPA1-HA transgene.

However, these results indicate small evidences that expression of cSPA1 might

partially suppress photomorphogenesis in dark-grown seedling when expressed

under the control of SPA4 promoter. Because SPA1 alone can completely suppress

photomorphogenesis in the dark when expressed under SPA1 or SPA2 promoter,

these results suggest that SPA4 promoter is too weak to produce sufficient amounts

of SPA1.
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Figure 25: Co-segregation analysis of dark-grown transgenic spa1 spa2 spa3 seedlings
carrying pSPA4::cSPA1-HA.

A: Schematic illustration of cSPA1 placed under the control of SPA1 promoter.
B: Summarized illustration of co-segregation results based on PCR amplification.
C, D, E: Visual phenotypes of three independent spa1 spa2 spa3 triple mutant seedlings probably
expressing SPA4::cSPA1-HA grown for 4 days in complete darkness (line #19, line#42, line#72) and
negative images of PCR products either amplified the transgene (pS4cS1) or a region of WT (Col)
genomic DNA (MSA6).
F: Negative PCR images of negatives and positives controls for correct PCR amplification. As negative
controls for pS4cS1 PCR genomic DNA of spa1 spa2 spa3 spa4/SPA4 was used. For the positive
control 10 pg of plasmid DNA (pSPA4::cSPA4-HA pJHA212-hpt) was used instead of genomic DNA.
As negative control for MSA6 amplification water instead of genomic DNA was used. For positive
control of MSA6 PCR genomic DNA of WT (Col) was amplified.

II.4.5. Promoter-swap analyses in spa1 single mutants demonstrate that
cSPA1 expressed by SPA4 is partially functional

Because it is very difficult to analyze the function of SPA1 driven by the SPA4

promoter in light-grown spa1 spa2 spa3 seedlings, the pSPA4::cSPA1-HA transgene

was also introduced into spa1 single mutants.

spa1-100 exhibits enhanced de-etiolation response in low FR but is indistinguishable

from WT in complete darkness. This makes it easy to analyze the functional potential

of SPA1 in the light when driven by the SPA4 promoter. 25 from 26 transgenic

pSPA4::cSPA1-HA spa1-100 T2 lines showed partial complementation of the spa1
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mutant phenotype. The rescue was not complete, probably indicating again that the

SPA4 promoter is not strong enough to produce an adequate amount of SPA1

mRNA. This is again supported by the observation that SPA1 driven by the SPA2

promoter completely rescues the phenotype of a spa1 mutant.

pSPA1::cSPA1-HA, pSPA1::cSPA2-HA, pSPA4::cSPA4-HA constructs were also

introduced into spa1 mutants. Similar to the results observed in the spa quadruple

mutant, SPA4, but not SPA1, was able to mimic the function of SPA1 in the light. In

contrast, an additional copy of the SPA4 gene in the spa1 mutant background

(pSPA4::cSPA4-HA spa1) had no effect on the hypocotyl length.

Taken together, these results further indicate, that SPA4 has the potential to act as a

strong SPA repressor in the light, but only when placed under the control of the SPA1

promoter. In contrast to that, SPA2 can never act as a repressor in the light, even

when expressed under the SPA1 promoter.

Figure 26: Various SPA-promoter-swap constructs expressed in spa1-100.

A: Analysis of T2 seedlings carrying all SPA promoter/cDNA constructs. SPA1, SPA2 and SPA4 cDNA
were placed under the control of their respective 5’ and 3’ regulatory sequence. SPA2 and SPA4 were
placed under control of SPA1 5’ and 3’ regulatory sequences. SPA1 cDNA was placed under the
control of SPA2 or SPA4 promoter. All cDNAs were fused to a triplicate of an HA encoding sequence.
All constructs were transformed in spa1-100 mutant (Col) background. Resulting T2 seedlings were
grown for one day in darkness and for further three days in 0,3 µmol m-2 s-1 FRc.
The number of individual transgenic spa1-100 lines with long hypocotyls is given.
B: Visual phenotypes of dark- and FR- grown wild-type (WT (Col)), spa1-100 or transgenic spa1-100
mutants carrying promoter-swap constructs described in A. Seedlings either grown for four days
darkness or one day in darkness and for further three days in 0,3 µmol m-2 s-1  FR.
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II.4.6. GUS analyses verified expression of cGUS-cSPA2-HA under
control of SPA1 promoter

Above presented results of promoter-swap analysis revealed that the cDNA of SPA2

is able to rescue the spa mutant seedling phenotype in darkness but not in FRc. One

possibility why the SPA2 cDNA does not function in the light is that the SPA2 protein

is not expressed or extremely instable in the light. To revise this possibility, the

coding sequence of β-glucuronidase (GUS) was fused to respective SPA cDNAs.

The resulting constructs (pSPA1::GUS-cSPA1-HA, pSPA1::GUS-cSPA2-HA and

pSPA2::GUS-cSPA2-HA) were transformed into segregating spa1 spa2 spa3

spa4/SPA4 (Figure 27 A).

Figure 27: GUS fusion revealed GUS-SPA1-HA or GUS-SPA2-HA expression in transgenic lines.

All shown seedlings are in segregating T2 generation. Those seedlings were grown either for four
days in complete darkness or for one day in darkness and for further three days in FR (0.3 µmol).
After light or dark treatment seedling were harvested under green light and directly transferred in GUS
staining buffer. All following steps (vacuum infiltration and 37°C staining) are done in darkness. All
seedlings were stained for 8 hours.
A: Schematic illustration of GUS-SPA1-HA fusion expressed by SPA1 regulatory sequences or GUS-
SPA2-HA placed under the control of either SPA1 or SPA2 regulatory 3´and 5´ regulatory elements.
B: Visual phenotypes of GUS stained wild-type (WT(Col)), spa1 spa2 spa3 spa4 mutant, spa1 spa2
spa3 mutant or transgenic seedlings grown in darkness that expressing a fusion of GUS and either
SPA1-HAor SPA2-HA under the control of their endogenous promoter SPA1 and SPA2. For SPA2
cDNA a further fusion with GUS is expressed by 5´and3´ regulatory elements of SPA1.
C: Visual phenotype of four additional T2, GUS stained transgenic lines that express GUS-SPA2
under the control of the SPA1 regulatory elements.
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GUS-SPA2 expressed by either the SPA1 or SPA2 promoter, accumulated to similar

levels in the dark, but also in the light (Figure 27 B, C and D). These results show

that SPA2 protein produced by the light-inducible SPA1 promoter accumulates to

high levels in the light, but nevertheless cannot replace the function of the SPA1

protein driven by its endogenous regulatory elements. More detailed GUS expression

analysis revealed that SPA1-GUS and SPA2-GUS are also expressed more or less

in the same tissues (Supplemental Figure 38). Taken together, SPA2 protein is

expressed to high levels in the light, but it does not fulfil SPA1-like functions.
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III. Discussion
The four-member SPA gene family plays important roles in suppression of light

signaling. Each of the four SPA genes has distinct, but overlapping functions in

different light-influenced developmental switches in the plant life cycle. SPA1 and

SPA2 control seedling development in the dark, while SPA1 and, to less extent,

SPA3 and SPA4 repress photomorphogenesis in light-grown seedlings. In later

developmental stages, the functions of SPA3 and SPA4 ensure proper vegetative

growth and SPA1 plays an important role in repressing flowering under non-inductive

short days. However, the underlying molecular differences among the SPA genes

that cause their distinct functions are unknown.

III.1. SPA gene transcription is under the control of endogenous and

exogenous cues

The simplest explanation for the distinct SPA gene functions in dark- and light-grown

seedlings would be that the transcription of SPA genes is directly regulated by the

light regime. SPA1 transcript was previously shown to be more abundant in seedling

transferred to FR and R than in the dark (Hoecker et al., 1999). I could show that also

the expression levels of SPA3 and SPA4 are increased in seedlings that were

exposed to FR, R and B. In contrast to that, SPA2 mRNA levels were unaffected in

different light conditions when compared to darkness. Recently, it was also shown

that SPA proteins behave very similarly (Fittinghoff et al., 2006; Saijo et al., 2008;

Zhu et al., 2008). These results imply, that SPA1, SPA3 and SPA4 play important

functions in light-grown seedlings because their transcripts and proteins are up-

regulated in the light. SPA1 protein levels increase fast within one hour, whereas

SPA3 and SPA4 protein levels are up-regulated after six hours exposure to light. Like

SPA2 mRNA, its protein is among all SPAs the most abundant protein in darkness.

SPA2 mRNA abundance does not increase in light, but its protein levels exhibit a six

fold decrease in light, correlating with SPA2 functions in darkness and not in light.

The same situation was found in adult plants: SPA3 and SPA4 mRNAs accumulate

to high levels in leaves of adult plants, fitting perfectly with their role in regulating

adult plant size. However, that cannot explain all distinct SPA functions because

although SPA genes are differentially regulated during the plant life cycle, the total
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transcript abundance of the different SPA genes does not correlate always. For

instance, SPA4 transcript is high abundant in adult plants, but SPA1 is almost as

strongly expressed as SPA4 in this developmental stage. These results imply that

there must additional higher levels of SPA gene regulation that cannot be explained

by simple transcript analysis. Zhu et al. showed that SPA2 protein levels are

decrease in light-grown seedlings, indicating that there might be post-translational

control of SPA proteins as well. Also, SPA proteins accumulate in cop/det/fus

mutants, implying a possible feed-back-control among negatively acting factors such

as SPA and COP proteins (Zhu et al., 2008).

SPA promoter analysis suggests sophisticated spatial promoter activity. In young

plants SPA4 promoters are less active than those of SPA1 and SPA2 in cotyledons

and true leaves. A significant difference in spatial SPA promoter activity was

detectable in the roots. SPA2 and SPA1 are strong active in roots, whereas SPA4

promoter activity was only weak or not detectable. SPA protein data described in Zhu

et al., 2008, only partially correlates with SPA mRNA results. On protein levels SPA2

is most abundant in roots, but SPA4 and not SPA1 is also strongly expressed in roots

suggesting stabilizing posttranscriptional or posttranslational SPA4 modifications or

destabilizing mechanism for SPA1 protein. However, I cannot completely exclude the

possibility that the chosen SPA promoter region do not completely reflect the

endogenous SPA gene expression. Also differences in growth condition or plant age

might effect SPA mRNA and protein abundance and make it therefore difficult to

compare results from different labs.

SPA promoter analysis in plants after flowering revealed strong promoter activity of

SPA1 and SPA4 in vascular tissues of older leaves, whereas SPA2 show a more

widespread activity in the whole leaves. Protein data only reflected high SPA4 and

SPA1 and less SPA2 protein abundance in leaves (Zhu et al., 2008). Especially this

spatial SPA regulation might play important roles, as COP1-SPA complex targets like

the flowering-time regulator CO are only expressed in specialized cells (An et al.,

2004).

SPA transcript and SPA protein levels might also be regulated by environmental cues

or tissues not analyzed in this study or in Zhu et al., 2008. Large-scale microarray

profiling revealed that SPA1, SPA2 and SPA4 transcripts are expressed in all 78

tissues and developmental stages that were analyzed (Supplemental Figure 39,

SPA3 is not represented on standard gene expression arrays) (Schmid et al., 2005).
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Similar studies revealed, that SPA transcripts are not affected by either abiotic or

biotic stresses, while all types of light influence SPA1 and SPA4 transcript level

(Supplemental Figure 40-42) Interestingly, SPA1 and SPA2 transcript levels are

probably regulated by the plant hormone gibberellic acid (GA), which suggests that

some plant hormones might at least partially act through regulation of the SPA

repressor genes (Supplemental Figure 41).

Figure 28: SPA transcript and protein levels correlates partially with its distinct function.

Different endo-and exogenous signals influence SPA transcript levels. Also SPA protein levels differ
during plant development. Zhu et al., 2008 show that COP1 and parts of the CDD and CSN complex
are involved in SPA maintenances. COP1 function is repressed in darkness. Regulation of SPA
transcript and protein levels leads to certain complex formation, which specifically occurs at different
developmental stages.  

Taken together, my results and those published by Zhu et al., 2008, imply that there

are multiple levels of SPA activity regulation (Figure 28). First, SPA genes are

transcribed differentially depending on light regime, tissue or developmental stage.

But also, SPA protein abundance is regulated by the same environmental and
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endogenous cues, e.g. light might promote destabilization of SPA2 (Zhu et al., 2008).

Last, but not least, differential formation of distinct COP1-SPA complexes in different

developmental stages, tissues and growth conditions can be important for regulation

of ubiquitination targets.

III.2. SPA mRNA abundance is regulated by different photoreceptors

phyA is the only photoreceptor able to sense FR, but phyA is also responsible for R

and B signal transduction, especially under low fluence rates. spa1, spa3 and spa4

single mutants are hypersensitive to FR, R and B light, which mainly relies on

functional phyA (Hoecker et al., 1999; Laubinger and Hoecker, 2003). Accordingly,

SPA1, SPA3 and SPA4 transcripts are strongly up-regulated in FR, R and B, but

interestingly, this process requires the coordinated action of phyA, the R-sensing

phyB and the B-sensing photoreceptors cry1 and cry2. These results imply that all

photoreceptors initiate a negative feedback loop that aims to desensitizes light

signaling. This is in contrast to COP1: The overall levels of COP1 protein are not

affected by light, rather photoreceptors inactivate COP1 either by triggering its

nuclear exclusion or by direct physical interaction (Deng et al., 1992; Von Arnim and

Deng, 1994; Wang et al., 2001; Yang et al., 2001; Seo et al., 2004; Subramanian et

al., 2004). Hence, a contemporaneous activation of the SPA proteins, that are

integral components of a functional COP1 complex, might help to enhance the

activity of residual COP1 function in the light. In addition, neither the components of

the E2-conjugating CDD complex nor the subunits of the COP9 signalosom are

affected by light (Pepper et al., 1994; Suzuki et al., 2002; Yanagawa et al., 2004).

Hence, photoreceptor regulation of SPA transcript abundance might be an important

regulatory module for fine-tuning light signaling in young seedlings (Figure 29).

But why is hypersensitivity of spa single mutants depended on functional phyA? One

possible explanation is that phyA has a different relationship with the COP1/SPA

complex than the other photoreceptors. cry1 and phyB are light-stable

photoreceptors, while cry2, like phyA, becomes degraded in the light. However, it is

not known whether COP1 directly regulates cry2 stability via ubiquitination. In fact,

phyA is the only photoreceptor, which was shown to be an ubiquitination substrate of

the COP1. Moreover, phyA interacts with SPA1 and becomes rapidly degraded in the

light, a process that is delayed in spa triple and cop1 mutants (Seo et al., 2004; Saijo

et al., 2008). These results imply that mainly enhanced activity of the photoreceptor
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phyA causes hypersensitivity of spa mutants in young seedlings. In addition, phyA

specific signaling intermediates, like LAF1, FHY1, FHY3 or FAR1, might be targets of

SPA containing complexes (Wang and Deng, 2002; Shen et al., 2005; Lin et al.,

2007b; Saijo et al., 2008). However, analysis of a spa1 spa2 spa3 spa4 phyA

quintuple mutant is necessary to completely uncover the role of PHYA in SPA

regulated light signal transduction.

Figure 29: Negative feedback loop between photoreceptors and SPAs are responsible for de-
sensibilization in light signaling.

Light influences SPA1, SPA3 and SPA4 transcript levels by several photoreceptors. In light SPA1,
SPA3 and SPA4 form multiple complexes with COP1 and mediate degradation of phyA.

III.3. All SPA proteins act as repressors in darkness – and some also

in the light

In order to investigate whether distinct SPA gene functions are due to their different

regulatory promoter elements or to their different protein sequences. A promoter-

swap experiment with three SPA genes, SPA1, SPA2 and SPA4. was conducted.

These three genes cover all the potential SPA gene functions: SPA1 and SPA2, but

not SPA4, are sufficient for suppression of photomorphogenesis in dark-grown

seedlings. SPA1, and to weaker extent SPA4, inhibit photomorphogenesis in the

light. In contrast to that, SPA2 has almost no function in light-grown seedlings.

Furthermore, these three SPA genes show also show distinct expression patterns:
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The SPA1 and SPA4 promoter, but not the SPA2 promoter, are light responsive. On

the other hand, comparative transcript analysis and SPA promoter GUS experiments

strongly suggest that the promoters of SPA1 and SPA2 are stronger than that of

SPA4.

Expression of the SPA4 cDNA under the control of the SPA1 promoter is sufficient to

rescue the phenotype of a dark-grown spa quadruple mutant. In contrast, spa1 spa2

spa3 triple mutants that contain only a functional SPA4  gene driven by the

endogenous promoter, undergo photomorphogenesis in complete darkness. This

result indicates that the SPA4 protein can also completely suppress

photomorphogenesis in the dark when expressed under a stronger promoter, such as

the SPA1 promoter. Hence, all SPA proteins can efficiently act as repressors in the

dark as long as they are expressed at certain appropriate levels.

SPA4 also represses photomorphogenesis in light-grown seedlings, although to

much lower extent than SPA1 does. This might be due to the fact that the promoter of

SPA4, in contrast to that of SPA1, is not strong enough to produce sufficient amounts

SPA4 to completely suppress photomorphogenesis in the dark. This idea supported

by the finding that SPA4  driven by the SPA1  promoter is able to repress

photomorphogenesis. On the other hand, the SPA1 cDNA driven by the SPA4

promoter does not even produce sufficient amounts of SPA1 to avoid de-etiolation in

the dark. Again, these findings support the idea that SPA1 and SPA4 can act in the

same fashion, in both the dark and the light. Different functions of SPA1 and SPA4 in

wild-type plants are mainly due different promoter activities and strengths.

This model cannot to be transferred to SPA2. Endogenous SPA2 is functional in the

dark, but not in the light. Placing SPA2 under the control of the light-inducible SPA1

promoter does not convert SPA2 protein into a repressor that can also function in

light-grown seedlings. However, seedlings expressing SPA2 under the control of the

SPA1 promoter undergo normal skotomorphogenesis in the dark, indicating that

SPA2 is fully active. In addition, protein GUS fusion experiments rule out that the

SPA2 protein is degraded in the light, because the GUS-SPA2 protein accumulates

in dark- and light-grown seedlings.

Taken together, these results suggest that all SPA proteins can act as repressors in

the dark. In the light, however, the SPA2 protein is not functional. But why do SPA1

and SPA4 function in the light, but SPA2 does not? SPA1 and SPA2 exhibit almost

equal size and show conserved locations of all splice sites. Both genes arose from a
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duplication event in the Arabidopsis genome; and their proteins exhibit a long N-

terminal region. In contrast to that, SPA4 and SPA1 only share high sequence

similarity within the WD-repeats and SPA4 features only a very short N-terminal

domain.

One possible explanation is that SPA proteins require a post-translational

modification for activity in the light. The SPA2 protein might lack a crucial amino acid

necessary for such an activating modification (Figure 30 A). Alternatively, SPA2

might undergo post-translational processing events in the light that efficiently block its

activity. In such a scenario, one would claim that SPA1, SPA3 and SPA4 lack crucial

amino acids for such a repressive modification (Figure 30 B). No matter what the

SPA2 protein features, it might interfere with COP1/SPA complex formation in the

light. In the dark, SPA2 is associated with COP1 and the other SPA proteins. These

interactions are almost completely abolished in light-grown seedlings. Hence, post-

translational processing events might target SPA2 ability to interact with COP1 and

other SPA proteins. Alternatively, SPA2 containing COP1 complexes are more

repressible by light. In such a scenario, COP1-SPA2 complexes dissociate more

easily than other COP1-SPA complexes (Figure 30 C). In the future, random

mutagenesis approaches, as well as domain-swaps or domain-deletions-derivates of

SPA2 will help to identify crucial amino acids that can explain the different functions

of SPA proteins in the dark and the light.

Possible candidates for mediating post-translational modification might be the

photoreceptors themselves. Photo-activated phyA induces phosphorylation of its

interacting partners PIF1, PIF3 and PIF5 (Al-Sady et al., 2006; Castillon et al., 2007).

NPH3, a component of an E3 ubiquitin ligase complex, undergoes goes blue-light

dependent dephosphorylation mediated by phot1 (Motchoulski and Liscum, 1999;

Pedmale and Liscum, 2007). Apart from post-translational, light-induced

conformational changes in the crys are responsible for blocking COP1 activity in

response to B. Because SPA1 interacts with phyA and possibly also via its WD-

repeat domain with crys, future research might focus on SPA protein modifications

mediated by different photoreceptors.
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Figure 30: Possible light-depended SPA protein modifications might influence SPA function.

A: SPA1 and SPA4 but not SPA2 might be activated by protein modifications in light.
B: SPA2 but not SPA1 and SPA4 might be repressed by protein modifications in light
C: SPA2-containing complexes are easier repressible by light.
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III.4. The SPA N-terminus has an important function in suppression

of flowering

SPA proteins act in concert with the ubiquitin ligase COP1. Recent findings suggest

that a COP1 dimer forms heterogeneous complexes with two other SPA proteins

(Zhu et al., 2008). However, it is still an open question what function the SPA proteins

play in the COP1-SPA complex. SPA1 can affect COP1 ubiquitin ligase activity in

vitro, and SPA proteins might also affect COP1 sub-cellular localization (Saijo et al.,

2003; Seo et al., 2003). Meanwhile, it is well established that SPA proteins can

directly interact with diverse ubiquitination substrates. SPA1 binds to LAF1, HFR1,

HY5, CO and phyA in vivo and the protein levels of all these proteins are increased in

spa mutants (Saijo et al., 2003; Seo et al., 2003; Seo et al., 2004; Yang et al., 2005a;

Laubinger et al., 2006). These results indicate that SPA proteins are responsible for

substrate recognition. For efficient binding of HY5 and HFR1, SPA1 requires its WD-

repeat domain and its coiled-coil domain. The coiled coil domain also mediates

interactions with other SPA proteins and COP1 (Hoecker and Quail, 2001; Saijo et

al., 2003). However, the function of the N-terminal domain of SPA1, that includes a

kinase-like motif, is unknown. Therefore, I asked whether the N-terminal domain is

generally necessary for SPA1 function. Expression of a SPA1 protein lacking the

kinase-like domain or even the whole N-terminus can completely rescue the

phenotype of spa1 single or spa1 spa2 spa3 triple mutants. However, COP1-SPA

complexes can contain SPA heterodimers, suggesting that truncated SPA1 proteins

expressed in a spa1 spa2 spa3 triple mutant can form heterodimers with SPA4

(Figure 31). In addition, Zhu et al., 2008, recently showed that the spa2-1 mutant

allele produces detectable levels of a truncated SPA2 protein that still features its N-

terminal domain. Therefore, I cannot completely exclude that SPA1 also forms

heterodimers with the truncated SPA2 protein and that the resulting COP1-SPA

complex still harbors a functional SPA N-terminus. The same approach should be

repeated in a spa quadruple mutant, generated with true spa null alleles.

However, the SPA1 protein lacking the kinase-like domain or the whole N-terminus

cannot rescue the early flowering phenotype of spa1 in short days. These results

indicate that the SPA1 N-terminus has an essential role for proper SPA1 function

(Figure 31). SPA1 protein lacking the N-terminus accumulates to even higher levels

than the full-length protein, while their respective transcripts remain unchanged

(Yang and Wang, 2006). This observation rules out the possibility that truncated
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SPA1 proteins do not accumulate to endogenous full length SPA1 levels and also

strongly reinforces the idea, that SPA proteins are also regulated by post-

translational mechanisms. But why can the SPA1 protein without N-terminus

complement the spa1 phenotype in seedlings and not in adult plants?

SPA1 and COP1 repress flowering in short days by decreasing CO protein stability

(Jang et al., 2008). spa2 spa3 spa4 triple mutants flower like wild type, indicating that

SPA1 alone is sufficient for suppression of CO function (Laubinger et al., 2006).

Therefore, SPA1 might have a very high affinity to CO in vivo and, therefore, SPA1

N-terminus might contribute to substrate recognition.

It is also tempting to speculate that SPA proteins have special tissue-specific

functional requirements. CO promotes flowering only in specific cells, the phloem

companion cell of the vascular bundles. Probably, an unknown co-factor specifically

binds or modifies the SPA1 N-terminus that is expressed only in these cell types. It is

already known that specific factors act in the vascular bundles, such as CRY2 to

regulate flowering or PRR3 (Para et al., 2007) to regulate the circadian clock.

Figure 31: Possible models for the functions of SPA N-terminus in COP1-SPA complexes.

COP1-SPA complexes featuring two or at least one SPA N-terminus are functional. In contrast to that,

COP1-SPA complexes without any SPA N-terminus do not have regulatory activity.

Alternatively, SPA1 might be much more abundant than the other SPA proteins in

these cells. Thus, in these cells I would expect a predominant formation of COP1-

SPA1 complexes containing a COP1 homodimer and a SPA1 homodimer. In such a
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scenario, I would not expect the SPA1 protein without N-terminus rescue the spa1

mutant phenotype, when at least a single SPA1 N-terminus is essential for COP1-

SPA complex function.

An important unanswered question is whether SPA proteins exhibit kinase activity. If

so, one could also think that some substrates, like CO, are phosphorylated prior to

degradation. The transcription factor HFR1 was shown to be phosphorylated and that

the phosphorylated HFR1 becomes degraded very rapidly. However, it is not known

whether SPA proteins are responsible for HFR1 phosphorylation. In addition,

phosphorylation of HY5 has contrary effects and stabilizes the HY5 protein.

Nonetheless, the fact that SPA1 N-terminus is indispensable for SPA1-mediated

regulation of flowering time raises the question about the biochemical function and

the biological importance of the SPA N-terminus.
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IV. Materials and Methods

IV.1. Materials

IV.1.1. Chemicals and antibiotics

Chemicals and antibiotics were obtained from the companies with research grade

“p.a.” or the highest available purity:

Ambion (Austin, USA), Applichem (Darmstadt, Germany), Colgate-Palmolive

(Hamburg, Germany), Duchefa (Haarlem, Netherlands) Difco (Detroit, USA), Fluka

AG (Buchs, Switzerland), Gibco BRL (Eggenstein, Germany), Invitrogen (Karlsruhe,

Germany), MBI Fermentas (St. Leon-Rot, Germany), Merck (Darmstadt, Germany),

Roth (Karlsruhe, Germany) Riedel-de-Haen (Seelze), Serva (Heidelberg, Germany)

and Sigma-Aldrich (Deisenhofen, Germany).

IV.1.2. Radioactivity, enzymes kits and antibodies

α-[32P]-dATP was delivered from Amersham Pharmacia Biotech (Uppsala, Sweden).

Enzymes for molecular biology were obtained from following companies:

MBI Fermentas (St. Leon-Rot, Germany), Clontech (Palo Alto, USA), Invitrogen

(Karlsruhe, Germany), Roche (Mannheim, Germany) and New England Biolabs

(Ipswich, USA).

The following kits were used according to the manufactures’ protocols: Prep Plasmid

Midi (Qiagen GmbH, Hilden, Germany) QIAquick Gel Extraction Kit (Qiagen GmbH,

Hilden, Germany) RNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany).

In this study, α HA antibody from Roche (Mannheim, Germany) und α Tubulin from

Sigma-Adlrich (Deisenhofen, Germany) were used for immunodetection.

IV.1.3. Bacterial strains

For standard cloning, Escherichia coli strain DH5α was used. For gateway cloning of

destination vectors, the ccdB gene resistant Escherichia coli strain DB3.1 (Invitrogen)

was used. Agrobacterium tumefaciens strains GV3101 (pMP90RK) was used for all

plant transformations.
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IV.1.4. Oligonucleotides

All oligonucleotides were synthesized by Invitrogen Life Technologies (Karlsruhe,

Germany) or Metabion (Martinsried, Germany).

Table 1: Sequences of all oligonucleotides that were used in this thesis and

their purpose

Oligo-

nucleotides

Sequences (5´to 3`) Application

ApaI-cS1-F1 TGAGGGCCCATGCCTGTTATGGAAAGAGTA cloning of promoter swap

constructs

pSPA1::cSPA1-HA;

pSPA2::cSPA1-HA;

pSPA4::cSPA1-HA

ApaI-cS2-F2 TGAGGGCCCATGATGGATGAGGGATCAGTA cloning of promoter swap

constructs

pSPA1::cSPA2-HA;

pSPA2::cSPA2-HA

ApaI-cS4-F4 TGAGGGCCCATGAAGGGTTCTTCAGAATCT cloning of promoter swap

constructs

pSPA4::cSPA4-HA;

pSPA1::cSPA4-HA

cS1-NotI-R1 AGCTGCGGCCGCAACAAGTTTTAGCTT cloning of promoter swap

constructs pSPA1::cSPA1-

HA; pSPA2::cSPA1-HA;

pSPA4::cSPA1-HA

cS2-NotI-R2 AGCTGCGGCCGCCTGGTTGACATCTTGAAAACT cloning of promoter swap

constructs pSPA1::cSPA2-

HA; pSPA2::cSPA2-HA

cS4-NotI-R4 AGCTGCGGCCGCTACCATCTCCAAAATCTTGAT cloning of promoter swap

constructs pSPA4::cSPA4-

HA; pSPA1::cSPA4-HA

KpnI-S1Pro-

F

GTCAGGTACCCATGTTGCTGGTTAGGTTGA cloning of promoter swap

constructs pSPA1::cSPA1-

HA; pSPA1::cSPA2-HA;

pSPA1::cSPA4-HA

KpnI-S2-

Pro-F2

GTCAGGTACCATACTGCAAACGCAAATTGG cloning of promoter swap

constructs pSPA2::cSPA2-

HA; pSPA2::cSPA1-HA

KpnI-S4-

Pro-F4

GTCAGGTACCATGATCTTCTTGGACATGCA cloning of promoter swap

constructs pSPA4::cSPA4-

HA; pSPA4::cSPA1-HA

S1Pro-ApaI-

R

GACTGGGCCCCAACACTCATTGCATCAGCA cloning of promoter swap

constructs pSPA1::cSPA1-

HA; pSPA1::cSPA2-HA;

pSPA1::cSPA4-HA

S2-pro-

ApaI-R2

GACTGGGCCCTCTCTGTATCATAGGAAACATA cloning of promoter swap

constructs pSPA2::cSPA2-

HA; pSPA2::cSPA1-HA

KpnI

KpnI

KpnI

ApaI

NotI

ApaI

ApaI

ApaI

NotI

ApaI

NotI
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Oligo-

nucleotides

Sequences (5´to 3`) Application

S4-pro-

ApaI-R4

ACTGGGCCCTGATTACCAAACAAAACTAAAACTCCT cloning of promoter swap

constructs pSPA4::cSPA4-

HA; pSPA4::cSPA1-HA

3`UTR SPA1

kpnIsacI-R1
CTGAGCTCGGTACCCAATGTACCCATTACATGTTGGA cloning of promoter swap

constructs pSPA1::cSPA1-

HA; pSPA1::cSPA2-HA;

pSPA1::cSPA4-HA

3`UTR SPA2

kpnIsacI-R2
CTGAGCTCGGTACCACCTTACTATGTATACCCATCA cloning of promoter swap

constructs pSPA2::cSPA2-

HA; pSPA2::cSPA1-HA

3`UTR SPA4

kpnIsacI-R4
CTGAGCTCGGTACCTCAAGCAGCTTGGAGAGAATCT cloning of promoter swap

constructs pSPA4::cSPA4-

HA; pSPA4::cSPA1-HA

NotI-3`UTR

SPA1-F1
CCTAGCGGCCGCCAACTTGGCCTTTTCGCTACTACT cloning of: pSPA1::cSPA1-

HA; pSPA1::cSPA2-HA;

pSPA1::cSPA4-HA

NotI-3`UTR

SPA2-F2
CCTAGCGGCCGCAATAAATACATACATACAGAAGAAGC cloning of: pSPA2::cSPA2-

HA; pSPA2::cSPA1-HA

NotI-3`UTR

SPA4-F4
CCTAGCGGCCGCACCAATATAAAGTGGCTCAG cloning of: pSPA4::cSPA4-

HA; pSPA4::cSPA1-HA

ApaI-GUS-

F11

CTGAGGGCCCATGTTACGTCCTGTAGAAACCCCAACC Cloning GUS into ApaI site of

promoter–swap constructs

GUS-APAI-

R11

GAGGGCCCTTGTTTGCCTCCCTGCTG Cloning GUS into ApaI site of

promoter–swap constructs

3xHA-NotI-F CCTAGCGGCCGCTTACCCATATGACGTTCCAGAC Cloning of promoter-swap

and SPA1 deletion constructs

3xHA-NotI-

TGA-R
GGTAGCGGCCGCTCAAGCGTAGTCAGGTACGTCGTAAG Cloning of promoter-swap

and SPA1 deletion constructs

MfeI-SphI-F AATTGAAAGCACGAGTGGAGATGCATG Cloning of SPA1 deletion

construct ΔN

MfeI-SphI-R CATCTCCACTCGTGCTTTC Cloning of SPA1 deletion

construct ΔN

SPA1-F ACTGCAAACAGTGATTGTC Cloning of SPA1 deletion

construct progenitor and FL

SPA1

Δ KIN-R CCATGTGGACATAGACTG Cloning of SPA1 deletion

construct ΔKIN

Δ KIN-F CAGTCTATGTCCACATGGGATGATTCAGTTAAATCG Cloning of SPA1 deletion

construct ΔKIN

SPA1-R ACACCATCGTAGTCAGTCGACG Cloning of SPA1 deletion

construct progenitor and FL

SPA1

SPA1-F1-UH TGATTTAAACATGGTTGATGCACG Cloning of SPA1 deletion

construct progenitor and FL

SPA1

Δ cc-R TTTAGATGCTTTTTTCTTCTTC Cloning of SPA1 deletion

construct Δcc

Δ cc-F GAAGAAGAAAAAAGCATCTAAAATGCGATCACAAATCAACTTA Cloning of SPA1 deletion Δcc

KpnI

KpnI

KpnI

SacI

SacI

SacI

ApaI

NotI

NotI

StopNotI

NotI

ApaI

ApaI

NotI
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Oligo-

nucleotides

Sequences (5´to 3`) Application

HA-R CTTACGACGTACCTGACTAC RT-PCR

SPA1-F-KF TTGTCATGAGAAAGCGGTGA RT-PCR

pro-

S4+1040

GATCGTTTCTTCGGTGCCTCTTAGTC Co-segregation analysis

pSPA4::cSPA1-HA

SPA1-R16 ACAGAAAGCTTAGCTCCTGCGGCTTC Co-segregation analysis

pSPA4::cSPA1-HA

msa6-F CTGGGGTGTTCTCACAGGAT Co-segregation analysis

control

msa6-R TGAATTCGGTTCAAGATTGT Co-segregation analysis

control

UBQ10-F CTGTTATGCTTAAGAAGTTCAATGT RT-PCR; UBQ10 probe for

RNA blot

UBQ10-R GAAACATAGTAGAACACTTATTCATC RT-PCR ;UBQ10 probe for

RNA blot

pSPA1 F

(Aashish

Ranjan)

GGGGACAAGTTTGTACAAAAAAGCAGGCTAAAATAATACAACA

TGTTGCTGGT

Promoter SPA1::GUS

pSPA1 R

(Aashish

Ranjan)

GGGGACCACTTTGTACAAGAAAGCTGGGTTTAACAGGCATCA

ACACTCATT

Promoter SPA1::GUS

pSPA2 F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCCTTGCATTTGAA

TACTGCAAA

Promoter SPA2::GUS

pSPA2 R GGGGACCACTTTGTACAAGAAAGCTGGGTCCCCCATCCATCA

TTCTCTCTG

Promoter SPA2::GUS

pSPA4 F

(Aashish

Ranjan)

GGGGACAAGTTTGTACAAAAAAGCAGGCTAAATGATCTTCTTG

GACATGCATC

Promoter SPA4::GUS

pSPA4 R

(Aashish

Ranjan)

GGGGACCACTTTGTACAAGAAAGCTGGGTTTGATTACCAAACA

AACTCCTCT

Promoter SPA4::GUS

LB-3 TAGCATCTGAATTTCATAACCA genotypisierung spa4-1/WT

SPA4-R11 TGAAGCAATAGAAACGAATCTCG genotypisierung spa4-1/WT

SPA4-F11 TTAACGGTTGAGTTCGTTTTCC genotyping spa4-1/WT

4-R7 CCAAATGCTAAAGACCGACCCGTC distinguish cSPA4  from

gSPA4

4-F7 GTAACTTTGAAGGCGTGGTTCAAG distinguish cSPA4  from

gSPA4

Oligonucleotides used for verification of SPA constructs via sequencing or colony

PCR are listed in the Vector-NTI-database of the Hoecker lab.



Materials and Methods

57

IV.1.5. Cloning vectors

pBluescript KS (pBs; Stratagene, La Jolla, USA) was used for standard clonings.

Blunt-end cloning vector pJET (MBI-Fermentas, St. Leon-Rot, Germany) was used

for facilitate blunt-end sub-cloning of PCR fragments. Entry vector pDONR221 was

used for BP reactions for the SPA promoter analysis.

Binary vector pzp212 (spectinomycin resistance gene, kanamycin resistance gene)

and its modified successor pJHA 212 were used for Agrobacterium transformation. A

modified pJHA 212 (kanamycin resistance gene npt was replaced by the hygromycin

resistance gene hpt) was kindly provided by Ute Höcker. Binary destination vector

pGWB3 that includes the GUS reporter gene was used for SPA promoter analysis

(Nakagawe et al.,2007).

IV.1.6. Plant lines

The spa1-3 mutant allele was derived from an EMS mutagenesis (RLD background)

and carries a single base pair substitution that leads to a premature stop codon in the

first exon (Hoecker et al., 1999). The spa1-100 mutant was generated in the Col

background and likely represents a spa1 null allele (Yang et al., 2005). This mutant

carries a T-DNA insertion in the second Exon of SPA1 gene and was isolated from

The Syngenta Arabidopsis Insertion Library (SAIL) T-DNA insertion mutant

population (Session et al., 2002). spa3-1 carries a T-DNA insertion in its first Intron,

whereas two T-DNAs are inserted head-to head 3´to the codon for D640 of the SPA4

protein in spa4-1. spa3 spa4, spa1 spa2 spa3, and spa1 spa2 spa3 spa4 multiple

mutants are described elsewhere (Laubinger and Hoecker, 2003; Fittinghoff et al.,

2006). The phyA-101 allele is a phyA null allele in the RLD ecotype (Dehesh et al.,

1993). The phyB, phyA phyB, cry1 cry2, phyA cry1 cry2 mutants were described

previously (Hoecker et al., 1998; Mazzella et al., 2001).

IV.2. Methods

IV.2.1. Seed sterilization

For sterile growth of Arabidopsis on MS-plates, seeds were surface sterilized. For dry

seed sterilization, aliquots of seeds were incubated with chlorine gas. To produce

chlorine gas, 80 ml of sodium hypochloride was mixed with 2.5 ml of concentrated
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hydrochloric acid in an exsiccator. Aliquots of seeds were incubated for

approximately 4 hours.

Liquid sterilization was applied when seedling were used for hypocotyl length

measurements. Therefore, seeds were surface-sterilized with 20% Klorix (Colgate-

Palmolive, Hamburg, Germany) and 0.03% Tween-20 for ten minutes, washed five

times with sterile water, and plated on 1xMS medium without sucrose.

IV.2.2. Plant growth

Arabidopsis seeds were stratified in 4°C for three days in water supplemented with

0.1 % agarose. Seeds were normally sown in a substrate mixture containing three

parts soil and one part Vermiculit. In the greenhouse, plants were grown under long

day conditions with 16 hours light and 8 hours darkness and a relative humidity of

approximately 40%. The temperature was kept at 21°C during light period and was

reduced to 18°C during darkness. For seedling analysis seeds were sown on sterile

MS plates and stratified at 4°C for 4 days, followed by a 3-h white-light treatment at

21°C to induce germination. Plates were kept for 21 h in the dark at 21°C and were

then exposed to Rc, FRc, Bc, or darkness for 3 days. Light conditions were

generated using LED light sources (Quantum Devices, Barneveld, WI, USA).

To determine the flowering time, seeds were sown directly onto soil and plants were

grown in a randomized fashion in SD (8 hours light/16 hours darkness) at 21°C. The

light sources were fluorescent tubes (80 µmol m-2 s-1).

IV.2.3. Measurement of hypocotyl length

To determine hypocotyl length seedlings were pressed lengthwise in MS media

containing 1% agar and documented with a digital camera. Measurements of

hypocotyl length were conducted on digital images via NIH Image Software

(Bethesda, USA). Statistical analyses were performed via KaleidaGraph 3.6 (Synergy

Software) software program.

IV.2.4. Measurement of flowering time

Time of flowering under short days was determined by counting the numbers of true

leaves at that day first inflorescence was visible by eye. 10 to 15 plants were

analyzed for each genotype. Statistical analyses were made with software program

KaleidaGraph 3.6 (Synergy Software).
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IV.2.5. Plasmid DNA preparation of bacteria

Plasmid DNA from E.coli in Miniprep scale was isolated using the QIA-prep Spin

Miniprep Kit (Qiagen Hilden, Germany) following the manufacturer’s protocols.

IV.2.6. Genomic DNA preparation

For Co-segregation analysis, genomic DNA was isolated from single seedlings.

Whole seedling was ground to a fine powder under liquid nitrogen and resuspended

in 20 µl extraction buffer (50 mM Tris/HCL pH 7.2 and 10% sucrose). For PCR

amplification, 1 µl was used as template in a 25 µL PCR reaction.

For high-throughput DNA analysis (e.g. verifying of the transgene in transgenic

plants) approximately 15 seedlings of each line were transferred into 8 tube strips

(Tissue-lyser compatible, Qiagen Hilden, Germany). Then, 300 µl extraction buffer

and a 5 mm stainless steel bead were added. The strips were inserted into the

adapters of the tissue lyser and shaked at 30 Hz for 90 sec. 1 µL of the solution was

used as template for a 25 µL PCR reaction.

Genomic DNA for amplification cis-regulatory elements for cloning was harvested

from reproductive tissue (buds) and purified with DNeasy kit according to

manufacturer’s protocol (Qiagen Hilden, Germany).

IV.2.7. RNA isolation and Northern analysis

To analyze light regulation of SPA transcript levels, total RNA was isolated using the

RNeasy plant mini kit (Qiagen, Hilden, Germany) from 4-day-old dark-grown

seedlings that had been transferred to the indicated light conditions for 0-30 hours.

Five to 15 µg total RNA was separated by standard glyoxal gel electrophoresis and

blotted onto nylon membranes. Membranes were hybridized with SPA1-, SPA2-,

SPA3- or SPA4-specific, 32P-labelled probes comprising the complete respective

ORF. Prior dot blot hybridizations had confirmed that the probes are gene-specific.

After over night hybridization, the membranes were washed at 65°C once with 2x

SSC, 0.1% SDS, once with 0.5x SSC, 0.1% SDS, and once with 0.1x SSC, 0.1%

SDS. Exposition to phosphoimager plates was carried out for at least 4 days. Signals

of SPA1, SPA2, SPA3 or SPA4, respectively, were normalized to the signal of 18S

rRNA.

For comparative SPA transcript analysis (Figure 5), I used polyA+ RNA rather than

total RNA because the separation behaviour during electrophoresis varied among the

four SPA transcripts when rRNAs were present. First, total RNA was isolated from at
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least 5 g of tissue by standard phenol/chloroform extraction followed by lithium

chloride precipitation. This total RNA was subsequently used for polyA+ isolation with

the oligotex mRNA midi kit (Qiagen, Hilden, Germany). One µg of polyA+ RNA was

separated, blotted, and hybridized as described above. For normalization, an

UBIQUITIN10 (UBQ10) -specific probe was synthesized by PCR using the primers

UBQ10-F and UBQ-R. This probe was used to rehybridize the membranes. SPA

signals were normalized with the respective UBQ10 signals and the obtained ratio

was further divided by a factor that corrected for differences in probe size (SPA1:

3.09 kb, SPA2: 3.11 kb, SPA3: 2.54 kb, SPA4: 2.39 kb).  All experiments were

repeated at least twice.

IV.2.8. Semi-quantitative RT-PCR analysis

Total RNA was isolated from the green parts of soil-grown plants (three weeks old) at

different Zeitgebers (ZT 2, 8, 14, 20) using the RNA Plant Mini Kit (Qiagen, Hilden,

Germany) according to the manufacturer's instructions. One µg of RNA was treated

with RNase-free DNase I (MBI Fermentas, St Leon-Rot, Germany), according to the

manufacturer's instruction and subsequently reverse transcribed using an oligo-dT

primer and RevertAid H Minus M-MuLV Reverse Transcriptase (MBI Fermentas, St

Leon-Rot, Germany). For PCR 2 µl cDNA was used as template. SPA1-HA and

UBQ10 fragments were amplified using gene-specific primers. The UBQ10 fragment

was used as a control to normalize the amount of cDNA used. A SPA1-HA fragment

was amplified using SPA1-F and HA-R. For all cDNAs, the exponential range of

amplification was determined experimentally. Semi-quantitative RT-PCR products

were analyzed on agarose gels after 28 (SPA1-HA) and 23 (UBQ10) PCR cycles.

IV.2.9. Protein isolation and immunoblot analysis

Seedlings were ground in liquid nitrogen, resuspended in protein extraction buffer

(150 mM NaCl; 50 mM Tris, pH 7.5; 1 mM EDTA; 10 mM NaF; 25 mM ß-

glycerophosphate; 2 mM sodium orthovanadate; 0.1 % (v/v) Tween-20; 10 % (v/v)

glycerol, 1 mM DTT; 1 mM PMSF; 2x Complete Protease Inhibitor Cocktail, Roche)

and clarified by centrifugation. After determination of the protein concentration using

Bradford reagent (Biorad Protein Assay, Biorad), 20-30 µg of total protein was

separated by SDS-PAGE and blotted onto nitrocellose membranes. HA-tagged

proteins were detected with anti-HA monoclonal antibodies (Roche: Mannheim;

Germany). A tubulin-specific antibody (Sigma Aldrich: Deisenhofen, Germany) was
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used as a loading control. Chemiluminescence visualization was carried out with the

ECL plus Western Blot Detection kit (Amersham).

IV.2.10. Histochemistry

GUS activity was determined as described previously with some minor modifications

(Jefferson et al., 1987). For complete infiltration of the substrate (X-Gluc), plant

tissues were vacuum infiltrated in staining buffer (0.1% TritonX-100, 10 mM EDTA

(pH 7) 0.5 mM NaPO4 (pH 7.0), 0.5 mM potassium-ferrocyanide (K4Fe(CN)6+ H2O),

0.5 mM potassium ferricyanide (K3Fe(CN)6)) containing 1 mM 5-bromo-4-chloro-3-

indolyl-_-d-glucuronic acid (X-Gluc; Duchefa) two times for approximately 15

minutes. Tissues were incubated for two to 16 hours at 37°C. Reaction was stopped

by adding 70% ethanol. Chlorophyll was removed by several washing steps with 70%

ethanol.

IV.2.11. DNA manipulation

DNA cloning manipulation and cloning was performed by using standard protocols

(Sambrook and Russell, 2001). Correctness of PCR generated cloned fragments was

determined by sequencing (AGOWA, Berlin; GATC (Konstanz) and University of

Cologne (Department of Genetics). Constructs were designed by using Vector NTI-

suite software (Invitrogen).

IV.2.12. Gateway cloning

BP reaction and LR reaction were performed according to manufacture’s protocol

(Invitrogen).

IV.2.13. Plant transformation

Agrobacteria transformation was performed as described previously (Clough and

Bent, 1998).

IV.3.  Cloning strategies

IV.3.1. Promoter-swap constructs

For the generation of promoter-swap constructs, the same cloning strategy was

applied for all constructs. All performed amplifications for cloning were done with

recombinant Pfu polymerase (MBI-Fermentas; St Leon-Rot, Germany). Cloning steps

were controlled by blue-white selection, colony PCR, and restriction analysis.
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First 5´genomic regulatory sequences of SPA1, SPA2 and SPA4 were amplified from

genomic DNA (Col) with primers introducing a 5´ KpnI and a 3´ApaI restriction site

(SPA1: -2260 bp; SPA2: -1958 bp and SPA4: -1309 bp before ATG; Table 1). Those

PCR products were digested with KpnI and ApaI and ligated into pBluescript (pBS

KS; Stratagene). pBS plasmids carrying 5´regulatory sequences of SPA1, SPA2 or

SPA4 (SPA1, SPA2 or SPA4 promoters) were sequenced.

Second, 3´regulatory sequences of SPA1, SPA2 and SPA4 were amplified from

genomic DNA (Col) with forward primers carrying NotI recognition site and reverse

primers carrying a KpnI site followed by SacI restriction site (3´regulatory sequence

of SPA1+ 672 bp after Stop, SPA2 +812 bp after Stop, SPA4 +296 bp after stop

codon; Table 1). After PCR amplification, resulting amplicons were digested with NotI

and SacI and ligated into pBS carrying the 5’ region of SPA1, SPA2 and SPA4,

respectively. Resulting pBS vectors carrying S P A x  5’ and SPAx 3´regulatory

sequences were used for further cloning.

Complementary DNAs (cDNAs) of SPA1, SPA2 and SPA4 were amplified from

previous described constructs: cSPA1 derived from amplification with FL SPA1 used

as a template (Fittinghoff et al. 2006). cSPA2 was amplified from 35S::GUS-cSPA2

(Laubinger et al., 2004). SPA4 cDNA was derived from PCR amplification with

cSPA4-TOPO as a template (kindly provided by Ute Hoecker). SPA cDNAs were

amplified without their stop codons with forward primers introducing a 3´ ApaI

recognition site and a 5´ NotI restriction site. After PCR amplification resulting

amplicons were directly ligated into pJET vector (MBI-Fermentas) and sequenced.

After sequencing, SPA cDNAs without stop codons were digested with ApaI and NotI

and ligated into the ApaI and NotI site of pBs contain the SPA 5’ and 3’ regulatory

sequences resulting in following constructs pSPA1::cSPA1, pSPA2::cSPA2,

pSPA4::cSPA4, pSPA1::cSPA2, pSPA1::cSPA4, pSPA2:cSPA1 and pSPA4::cSPA1.

Those constructs were digested with NotI. With HA specific primers carrying both

NotI recognition sites a triplicate of HA was amplified with an artificial stop codon at

the end of its sequence. Amplification product was digested with NotI and ligated into

all mentioned Promoter-Swap plasmids. HA insertion was verified by restriction

analysis and sequencing.

All Promoter-Swap constructs in pBS were digested with KpnI and ligated into

pJHA212-hpt (Figure 32). Plasmid clones carry the promoter swap constructs in

same orientations as the Mas promoter were selected for Agrobacterium GV3101-
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mediated transformation of spa1-100, spa3 spa4, or spa1 spa2 spa3 spa4/SPA4

mutants plants by floral dip (Clough and Bent, 1998) Transgenic seeds were selected

by plating on 1 x MS medium containing 1% sucrose and 20 mg /L hygromycin

(Invitrogen). The presence of the transgene was further confirmed by PCR using

primers combination specific to the analyzed transgene. Presence of pSPA1::cSPA1-

HA, pSPA2::cSPA2-HA and pSPA4::cSPA4-HA transgenes was verified by PCR

amplification with HA-specific primer and SPA specific primers.

Figure 32: Maps of promoter-swap-constructs.

A: SPA1, SPA2 and SPA4 cDNAs under the regulation of its own endogenous 3´and5´regulatory
sequences.
B: cSPA2 and cSPA4 under the control of SPA1 regulatory elements.
C:cSPA1 under the control of SPA2 or SPA4 regulatory sequences.
5’ regulatory sequences are highlighted in green, 3’ regulatory sequences in blue and coding
sequences in orange.

The pJHA-212-hpt plasmid including pSPA1::cSPA1-HA, pSPA2::cSPA2-HA and

pSPA4::cSPA4-HA were used for GUS fusion. With forward and reverse GUS
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specific primers carrying both ApaI restriction sites GUS encoding sequence were

amplified from pGWB3 without its Stop codon. After digestion with ApaI, GUS

sequence without stop codon was ligated as a N-terminal SPA gene fusion (Figure

33).

Figure 33: Constructs of GUS-SPA1-HA or GUS-SPA2-HA fusions controlled by SPA1 or SPA2

promoters.

5’ regulatory sequences are highlighted in green, 3’ regulatory sequences in blue and coding
sequences in orange.

IV.3.2. SPA promoter::GUS constructs

SPA promoter::GUS constructs were generated by using gateway®  cloning

(Invitrogen). To create pSPA1::GUS, pSPA2:: GUS and pSPA4::GUS constructs

5`regulatory sequences of SPA1, SPA2 and SPA4 were amplified with primers

introducing att-L recombination sites. The 5´regulatory sequence of SPA1, SPA2 or

SPA4 was amplified with pSPA1-F and pSPA1-R, SPA2 pSPA2-F and pSPA2-R

pSPA4-F and pSPA4-R, respectively. PCR products of SPA1-, SPA2- and SPA4-

5`regulatory sequences with flanking att-L1 and att-L2 sites were recombined into

pDONR211 using BP clonase (Invitrogen). 5´regulatory sequences of SPA1, SPA2

and SPA4  were recombined from pDONR211 into pGWB3 with LR clonase

(Invitrogen). pGWB3 is a promoter-less binary gateway destination vector with a

gateway cassette before GUS coding sequence (Nakagawa et al., 2007). Plasmid

clone that carries the 5´regulatory sequences of SPA1, SPA2 or SPA4 were selected

for Agrobacterium GV3101-mediated transformation of wild-type plants (Clough and

Bent, 1998). Transgenic plants were selected on MS medium supplemented with 50

mg/l kanamycin.
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Figure 34: Promoter of SPA1, SPA2 and SPA4 in pDONR221.

5’ regulatory sequences are highlighted in green and coding sequences in orange.

Figure 35: Gateway destination-vector pGWB3.

GUS coding sequence is highlighted in orange

IV.3.3. Construction of SPA1::SPA1-HA and SPA1 deletion-constructs

To generate SPA1::SPA1-HA, a number of cloning steps were performed. First, a

SPA1 genomic fragment comprising 2241 bp of the 5´ sequence of SPA1 and the

SPA1 gene up to, but not including, the Stop codon was amplified from a cosmid

library (Rodriguez et al., 1998) using primers containing restriction recognition sites

(SalI-XmaI for the F-primer and NotI for the R-primer). The (partially) digested PCR

product was ligated into the SalI/NotI sites of pBS to generate SPA1-A-pBS.

Subsequently, 1026 bp of the putative 3´-UTR of SPA1 were PCR-amplified using

primers containing NotI or XmaI-SacI sites in the F- or R-primer, respectively. This

PCR product was digested and ligated into NotI/SacI sites of SPA1-A-pBS to

generate SPA1-B-pBS. Next, a sequence encoding the triple-HA-tag followed by a

stop codon was amplified from a plasmid (Sato and Wada, 1997) by PCR using

primers that both contain NotI sites, and the digested PCR product was subsequently
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cloned into the NotI site of SPA1-B-pBS to generate SPA1-C-pBS. The correct

sequence of this construct was confirmed by sequencing. At last, the insert of SPA1-

C-pBS was ligated into the XmaI site of pPZP211 (Hajdukiewicz et al., 1994) and a

plasmid clone that carries the SPA1 gene and the 35S-Kan gene in the same

orientations was selected for Agrobacterium GV3101-mediated transformation of

spa1-3 mutant plants (Clough and Bent, 1998). Transgenic plants were selected on

MS medium supplemented with 50 mg/l kanamycin. When generating FL-SPA1 as

the progenitor construct for the SPA1 structure/function analysis, the introns within

the SPA1 coding region were removed from SPA1-C-pBS in order to facilitate the

construction of deletions. For this purpose, an AvrII-BamHI fragment from SPA1-C-

pBS was replaced with a fragment from a SPA1 cDNA clone. Hence, the construct

FL-SPA1 carries the open-reading-frame (ORF) of SPA1 under the control of SPA1

5´- and 3´-controlling sequences including the intron in the 5`-UTR. To generate ∆N

(deletion of amino acid 24-478 of the wild-type SPA1 protein), the MfeI-SphI fragment

comprising bp 51 until bp 1433 of the SPA1 ORF was removed from FL-SPA1 by

digestion and replaced by a double stranded oligo with MfeI and SphI sticky ends

(MfeI-SphI-F and MfeI-SphI-R) To generate ∆KIN (deletion of amino acids 437-531 of

the wild-type SPA1 protein), two PCR fragments were amplified from FL-SPA1 using

the primer pairs SPA1-F and ∆KIN-R or ∆KIN-F and SPA1-R, respectively. Both PCR

products were subsequently combined and used as templates to reamplify the ∆KIN

deletion using the primers SPA1-F and SPA1-R. The thus obtained PCR product was

digested with AvrII and PpuMI to replace the wild-type SPA1 sequence in the AvrII-

PpuM1 double digested FL-SPA1 construct. To generate ∆cc (deletion of amino

acids 566-639 of the wild-type SPA1 protein), two PCR fragments were amplified

from FL-SPA1 using the primer pairs SPA1-F1 and ∆cc-R or ∆cc-F and SPA1-R,

respectively. Both PCR products were subsequently combined and used as

templates to reamplify the ∆cc deletion using the primers SPA1-F1 and SPA1-R. The

thus obtained PCR product was digested with SphI and PpuMI to replace the wild-

type SPA1 sequence in the SphI-PpuM1 double digested FL-SPA1 construct. For

Agrobacterium-mediated transformation of plants, the inserts in FL-SPA1, ∆N, ∆KIN

and ∆cc were subcloned into pPZP211 as described above for SPA1-C-pBS.
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Figure 36: Constructs for SPA1 structure-function analysis.

5`and 3´regulatory sequences are highlighted in blue and coding sequence of SPA1 and deletion-

derivates are shown in orange.
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V. Supplement

Figure 37: Bc-induced accumulation of SPA3 transcripts requires phyA, cry1 and cry2 in a

fluence dose dependent manner.

Total RNA gel blot analysis and quantification of SPA3 transcript levels from wild-type (RLD/Ler) and
phyA (RLD), cry1 cry2 (Ler), phyA cry1 cry2 (Ler) mutant seedlings that were transferred fromc-
induced accumulation of SPA3 transcripts requires phyA, cry1 and cry2 in a fluence dose dependent
manner Total RNA gel blot analysis and quantification of SPA3 transcript levels from wild-type
(RLD/Ler) and phyA (RLD), cry1 cry2 (Ler), phyA cry1 cry2 (Ler) mutant seedlings that were
transferred from darkness to 0.3 µ mol m-2 s-1 Bc (A) and to 5.0 µmol m-2 s-1 Bc (B) for 0-24 h.
SPA3 signals were normalized to 18S rRNA levels after phosphorimager quantification.
A+B Total RNA gel blot analysis (left) and quantification (right) of SPA3 (A) and SPA4 (B) transcript
levels in seedlings that were transferred from darkness to 5 µmol m-2 s-1 Bc for 0-24 h. Transcript
levels were normalized by rehybridization with an 18SrRNA-specific probe.
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Figure 38: GUS-SPA2-HA and GUS-SPA1-HA are similar expresses in light

All shown seedlings are in segregating T2 generation. Those seedlings were grown for one day in
darkness and for further three days in FR.  After light treatment seedling were harvested under green
light and directly transferred in GUS staining buffer. All following steps (vacuum infiltration and 37°C
staining) are done in darkness. All seedlings were stained for 8 hours.
A, B, C: Cotyledons and part of the hypocotyl (A) and the roots (B and C) of transgenic pPSA1::GUS-
cSPA1-HA seedlings in spa1 spa2 spa3 mutant background .
D, E, F: Whole seedling (D) and roots (E) of mutants carrying pSPA2::GUS-cSPA2-HA spa1 spa2
spa3 spa4 (D and E) or spa1 spa2 spa3 (F) mutant background.
G, J, K: Whole seedlings expressing pSPA1::GUS-cSPA2-HA in either spa1 spa2 spa3 triple mutant
(G left one and K) or in segregating spa1 spa2 spa3 spa4/SPA4 mutant background.
H, I: Roots of transgenic seedlings expressing pSPA1::GUS-cSPA2-HA in spa1 spa2 spa3 mutant
seedlings.
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Figure 39: SPA1, SPA2 and SPA4 expression across different tissues and developmental

stages.

Affymetrix microarray data from the AtGeneExpress are shown and extracted with the AtGeneExpress

Visualization Tool (AVT) (http://jsp.weigelworld.org/expviz/expviz.jsp).

Figure 40: SPA1, SPA2 and SPA4 expression during different light treatments.

Affymetrix microarray data from the AtGeneExpress are shown and extracted with the AtGeneExpress

Visualization Tool (AVT) (http://jsp.weigelworld.org/expviz/expviz.jsp).
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Figure 41: SPA1, SPA2 and SPA4 expression during different hormone treatments.

Affymetrix microarray data from the AtGeneExpress are shown and extracted with the AtGeneExpress

Visualization Tool (AVT) (http://jsp.weigelworld.org/expviz/expviz.jsp).

Figure 42: SPA1, SPA2 and SPA4 expression under abiotic stress conditions.

Affymetrix microarray data from the AtGeneExpress are shown and extracted with the AtGeneExpress

Visualization Tool (AVT) (http://jsp.weigelworld.org/expviz/expviz.jsp).
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Figure 43: SPA1, SPA2 and SPA4 expression under biotic stress conditions.

Affymetrix microarray data from the AtGeneExpress are shown and extracted with the AtGeneExpress

Visualization Tool (AVT) (http://jsp.weigelworld.org/expviz/expviz.jsp).
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