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Zusammenfassung

Während die Anzahl öffentlich verfügbarer genomischer Sequenzen stetig steigt, sind die meisten 
Gene  nicht  ausreichend  funktionell  charakterisiert.  Die  Bestimmung  der  Genfunktion  und  die 
Entdeckung funktionaler Beziehungen zwischen Genen wird die nächste große Herausforderung im 
post-genomischen Zeitalter.

In  diesem  Kontext  sind  einerseits  verbesserte  Pipelines  und  Programme  notwendig,  denn  die 
Durchführung von Experimenten würde zu viel  Zeit  in Anspruch nehmen. Andererseits  müssen 
automatische  Vorhersagen  manuell  überprüft  werden,  um  ihre  Glaubwürdigkeit  beurteilen  zu 
können und um ein umfassenderes Bild über die Funktion jedes einzelnen Gens zu bekommen.

Häufig  findet  die  automatische  funktionale  Annotation  von  Genen  durch  den  Transfer  von 
Funktionen  von  bereits  funktional  charakterisierten  Genen  statt,  wobei  Programme  wie  Blast 
benutzt werden. Allerdings hat dieser Ansatz viele Nachteile und macht systematische Fehler, da 
Speziations-  und  Duplikationsereignisse  nicht  mitberücksichtigt  werden.  Der  phylogenomische 
Ansatz allerdings ist in der Lage die Vorhersagegenauigkeit wesentlich zu verbessern, indem die 
evolutionäre Geschichte von Genen mit in Betracht gezogen wird.

In dieser Arbeit wird der manuelle Prozess von der Assemblierung der DNS bis zu der funktionalen 
Charakterisierung von Genen und der Identifikation und dem Vergleich von syntänischen Regionen 
am Beispiel  einer Region im Kartoffelchromosom V erklärt  und Probleme diskutiert.  Weiterhin 
werden Kandidatengene in der Region ermittelt, die bei der Pathogenresistenz eine Rolle spielen. 
Um  die  automatische  funktionale  Annotation  in  Genomprojekten  zu  verbessern,  wird  eine 
phylogenomische  Pipeline  vorgestellt,  welche  SIFTER,  eins  der  besten  phylogenomischen 
Programme,  beinhaltet.  Diese  Pipeline  wird  verbessert  und  an  den  Genomen  von  Medicago 
truncatula,  Sorghum  bicolor und  Solanum  lycopersicum  getestet.  Um  neue  Kandidatengene 
herauszufinden,  die  zur  Entwicklung  von  Medikamenten  und  Pflanzenschutzmitteln  verwendet 
werden könnten, werden nicht-pflanzenspezifische Gene, wie zum Beispiel die Transferrin Familie, 
die  bis  jetzt  in  Pflanzen  unbekannt  war,  aus  dem  Genom  von  M.  truncatula und  S.  bicolor 
herausgefiltert und näher untersucht.

Um die  Annotation  weiter  zu  verbessern,  wird  ein  neuer  phylogenomischer  Ansatz  entwickelt. 
Dieser benutzt annotierte Funktionsattribute wie zum Beispiel Interaktionspartner, Proteindomänen 
usw., um die Funktionsmutationsrate zwischen Genen und Gengruppen in einem phylogenetischen 
Baum zu ermitteln und um herauszufinden, ob die Funktion von einem Gen oder einer Gengruppe 
auf ein anderes oder eine andere übertragen werden kann. Dieser neue Ansatz wird in das SIFTER 
Programm integriert und wird an der Blue-light photoreceptor/Photolyase Familie und an einem 
Testdatensatz  von  manuell  kurierten  Arabidopsis  thaliana Genen  getestet.  Die 
Vorhersagegenauigkeit konnte für beide Datensätze signifikant verbessert werden.

Da  Genfunktionen  mit  bioinformatischen  Methoden  nie  mit  hundertprozentiger  Genauigkeit 
vorhergesagt werden können, wird das AFAWE System zur manuellen Annotation vorgestellt. In 
AFAWE  werden  verschiedene  Web  Services  zur  funktionalen  Annotation  gestartet  und  die 
Ergebnisse und Zwischenergebnisse so dargestellt, dass sie einfach zu vergleichen sind. AFAWE 
kann für jeden Organismus und jede Art von Gen verwendet werden. Aufgrund seiner flexiblen 
Struktur, können neue Web Services und Workflows leicht in AFAWE integriert werden. Zur Zeit ist 
neben  Blast-Suchen  in  verschiedene  Datenbanken  und  Programmen  zur  Suche  von 
Proteindomänen,  auch  die  phylogenomische  Pipeline  in  AFAWE  als  Analyse  verfügbar. 
Verschiedene  Filter  helfen  dem  Benutzer  glaubwürdige  Vorhersagen  von  unglaubwürdigen  zu 
unterscheiden.  Weiterhin  kann  eine  detaillierte  manuelle  Annotation  zu  jedem Gen  angegeben 
werden,  welche  dazu  benutzt  werden  soll,  die  automatische  Annotation  in  öffentlichen 
Sequenzdatenbanken wie MIPSPlantsDB zu ersetzen.



Abstract

While  the  number  of  genomic  sequences  becoming  available  is  increasing  exponentially, most 
genes are not functionally well characterized. Finding out more about the function of a gene and 
about functional relationships between genes will be the next big bottleneck in the post-genomic 
era.

On  the  one  hand  improved  pipelines  and  tools  are  needed  in  this  context,  because  running 
experiments  for  all  predicted  genes  is  not  feasible.  On the  other  hand  manual  curation  of  the 
automatic predictions is necessary to judge the reliability of the automatic annotation and to get a 
more comprehensive view on the function of each individual gene.

For the automatic functional annotation often a homology based function transfer from functionally 
characterized  genes  is  applied  using  methods  like  Blast.  However,  this  approach  has  many 
drawbacks and makes systematic errors by not taking care of speciation and duplication events. 
Phylogenomics has shown to improve the functional prediction accuracy by taking the evolutionary 
history of genes in a phylogenetic tree context into account. 

In  this  thesis  the  manual  process  from the  assembly  of  the  DNA sequence  to  the  functional 
characterization  of  genes  and  the  identification  and  comparison  of  shared  syntenic  regions, 
including the identification of candidate genes for pathogen resistance in potato chromosome V, is 
explained  and problems  discussed.  To improve  the  automatic  functional  annotation  in  genome 
projects, a  phylogenomic pipeline, which includes SIFTER one of the best phylogenomic tools in 
this  area,  is  introduced,  improved and tested in the  Medicago truncatula,  Sorghum bicolor and 
Solanum lycopersicum genome projects. To obtain new candidate genes for the development of new 
drugs and crop protection products, non-plant specific genes, like the transferrin family which is not 
known in plants  yet,  are  extracted from the  M. truncatula and  S. bicolor genomes and further 
investigated.

For  further  improvement  of  the  annotation,  a  new  phylogenomic  approach  is  developed.  This 
approach makes  use of  annotated functional  attributes  to  calculate  the functional  mutation rate 
between genes and groups of genes in a phylogenetic tree and to find out if the function of a gene 
can be transferred or not. The new approach is integrated into the SIFTER tool and tested on the 
blue-light  photoreceptor/photolyase  family  and  on  a  test  set  of  manually  curated  Arabidopsis  
thaliana genes. Using both test sets the prediction accuracy could be significantly improved and a 
more comprehensive view on the gene function could be obtained.

But because still no tool is able to annotate all functions of a gene with 100% accuracy, I introduce 
a system for manual functional annotation, called AFAWE. AFAWE runs different web services for 
the functional annotation and displays the results and intermediate results in a comprehensive web 
interface that facilitates comparison. It can be used for any organism and any kind of gene. The 
inputs  are  the  amino  acid  sequence  and  the  corresponding  organism.  Because  of  its  flexible 
structure, new web services and workflows can be easily integrated. Besides Blast searches against 
different databases and protein domain prediction tools, AFAWE also includes the phylogenomic 
pipeline.  Different filters help to identify trustworthy results  from each analysis.  Furthermore a 
detailed  manual  annotation  can  be assigned to  each  protein,  which  will  be  used  to  update  the 
functional annotation in public databases like MIPSPlantsDB.
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Anika Jöcker Chapter I

I. Introduction & Motivation

Since the first complete genomic sequence of an Eukaryote was published in 1996 [Goffeau et al. 
1996], more and more sequence data is becoming publicly available and this data will increase in 
the next years, because next-sequencing technologies enable a fast and cheap sequencing of whole 
genomes [Hall 2007].

However, deciphering the DNA is just the first step in understanding the molecular machinery of an 
organism. Next steps include the detection and definition of gene structures and regulatory elements 
and  their  functional  characterization.  This  information  can  afterwards  be  used  to  identify 
interactions between genes, to map genes to known regulatory and metabolic pathways or to search 
for candidate genes for further experiments.

The gene finding process in genome projects is done fully automatically by using bioinformatic 
algorithms which are trained for the considered organisms to increase the detection accuracy. In 
some projects the structural annotation is also checked and updated afterwards by a community to 
curate wrong predictions and to provide a useful dataset for further analyses [Thibaud-Nissen et al. 
2007]. However,  this  is  often not done in case of the functional characterization of genes.  The 
automatic  functional  characterization  of  predicted  genes  in  genome  projects  is  often  done  by 
annotation  transfer,  which  confers  functional  annotations  to  a  query  sequence  from a  putative 
homologous gene, which is already functionally characterized. Unfortunately this general method 
has many drawbacks and often leads to wrong functional assignments, which then are propagated 
through public databases [Galperin and Koonin 1998] [Gilks et al. 2002]. 

In  this  thesis  different  approaches  for  the  automatic  transfer  of  functions  between  genes  are 
introduced, tested and discussed. To improve the automatic function transfer in genome projects an 
existing  approach  is  extended,  tested  and  integrated  in  a  flexible  workflow.  The  workflow  is 
afterwards  integrated  into  a  system,  which  facilitates  a  fast  comparison  between  results  from 
different  automatic  functional  annotation  programs  and  enables  scientists  to  add  a  manual 
functional annotation to each gene. These manual annotations will be used in the future to update 
the automatic functional annotation in genome projects.

The thesis is divided into nine chapters. This Chapter (Chapter I) gives a general introduction to the 
topic, whereas Chapter II explains the goals of the thesis. Background information about the thesis 
topic and the current status and limitations of approaches for automatic function prediction are 
introduced in Chapter III.  Furthermore web services and web service workflows are explained, 
which enable the integration of additional functional information about genes. Web services are 
used  by  tools  described  in  the  thesis  to  increase  the  flexibility  and  scalability  of  tools  and 
workflows. The manual process from the determination of the DNA sequence to the functional 
characterization of genes and the identification and comparison of syntenic regions including the 
identification of candidate genes for  pathogen resistance in potato chromosome V is described in 
Chapter IV. Chapter V introduces an automatic pipeline used for the automatic functional annotation 
in the Medicago truncatula, Sorghum bicolor and Solanum lycopersium (tomato) genome projects, 
because  a  manual  functional  annotation  would  not  be  feasible  for  whole  genomes.  To  further 
improve the automatic function annotation in these and other genome projects a phylogenomic tool 
SIFTER-X is described and tested in chapter VI. However, to verify the automatically annotated 
functions (no tool is 100% accurate) and to provide a more comprehensive view of the function of 
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Anika Jöcker Chapter I

each gene in a genome, a flexible system called AFAWE is introduced in chapter VII. AFAWE 
incorporates  different  analysis  tools  and  enables  users  to  add  manual  annotations  to  genes  by 
providing  an  intuitive  web  interface  and  different  filters  to  highlight  trustworthy  results. 
Furthermore AFAWE is connected to the public sequence database MIPSPlantsDB. In Chapter VIII 
results from the different approaches are discussed and an outlook how the manual and automatic 
annotation could be further improved is given in Chapter IX.

2
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II. Aim of the thesis

One goal of the project is the improvement of functional annotation in genome projects. That is, 
sensitivity  should  be  increased  while  at  the  same  time  decreasing  the  false  discovery  rate. 
Increasing the sensitivity means that  more true functions are added to more genes. However, a low 
false discovery rate indicates that most assigned functions are true and only few are wrong.

Another goal of the project is to facilitate the manual functional annotation of unknown protein 
coding genes from arbitrary origins for every scientist. The user should be able to give as input an 
amino acid sequence and the corresponding organism name. Different analyses, which are selected 
by the user, are run and the results are shown in an intuitive and easily comparable way. 

In  the  beginning of  the  project  different  analysis  tools  have  been  tested in  collaborations  with 
biologists of the Max-Planck Institute for Plant Breeding Research to find the best of them and to 
detect problems. To enable a fast access and an easy ex-changeability and scalability of the different 
programs, web services and web service workflows have been implemented and tested afterwards in 
the Medicago truncatula, Sorghum bicolor and Solanum lycopersicum genome projects. Because it 
was found that additional functional information (e.g. interaction partners, domain information) can 
further improve the automatic function prediction [Xiao and Pan 2005] [Hsing et al. 2008] [Zhao et 
al.  2008]  [Mostafavi  et  al.  2008] one  tool  is  extended  by this  kind  of  information  and  tested 
afterwards on a manually checked test set.

To achieve the second goal, all tested tools and workflows have been integrated in a system, which 
facilitates a fast  comparison between the analysis  results.  The most  trustworthy results  of each 
analysis are highlighted by applying dynamic thresholds to the results, so that the user does not 
need  any  knowledge  about  the  output  score  from  the  analysis  and  can  concentrate  on  the 
comparison of the results. In this context a fast and easy integration of new tools or workflows into 
the system is required.  Because of that all analysis tools are run as web services,  because web 
services  improve the scalability, accessibility, maintainability, efficiency and simplify the process. 
Furthermore each user is able to add his/her own manual annotation to each gene. This manual 
annotation  will  be  used  afterwards  to  update  the  automatic  functional  annotation  in  genome 
projects. 

3
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III. Background

1) Automatic functional prediction
With the increasing amount of genomic data becoming available the need of tools for automatic 
function  prediction  and  data  integration  will  be  the  next  big  challenge  in  biological  science. 
Running experiments  to  find  the  function  for  a  few genes  takes  month  to  years  and therefore 
running experiments for all 20000 to 40000 genes of an organism is not feasible. In this case an 
automatic  pipeline  is  needed.  However  the  automatic  function  prediction  of  genes  is  not  easy, 
although a huge amount of genes and their functions are conserved in all organisms. The challenge 
is to find out which of the genes share the same functions and which do not and which functions can 
be transferred from genes with known functions to genes with unknown functions. A search for 
homologous  genes  in  sequence  databases  via  Blast  [Altschul  et  al.  1997]  can  lead  to  wrong 
predictions in cases such as duplication events, gene loss, domain shuffling or errors in databases 
[Gilks et al. 2002] [Galperin and Koonin1998]. If there is no high sequence identity between two 
genes, which share the same functions, the function prediction becomes very hard. In this case other 
functional information like expression patterns, interaction partners, structure prediction, search for 
protein domains or gene-neighborhood analysis can give clues to the true function of the gene. This 
information is also valuable for validation of orthologous1 relationships [Xiao and Pan 2005] [Hsing 
et al. 2008] [Zhao et al. 2008] [Mostafavi, et al. 2008]. If no sequence similarity to functionally 
characterized genes can be found other methods can be used instead like gene fusion (Rosetta stone 
method), phylogenetic profiling, amino acid composition or critical residues detection (for review 
see [Friedberg et al. 2007] and [Lee et al. 2007]). However, each of these approaches has limitations 
and  by  using  only  one  of  them  the  result  is  often  restricted  to  a  specific  class  of  proteins 
[Karimpour-Fard et al. 2008].

In the last few years many hybrid tools have become available, which predict gene functions by 
using many different data sources together (e.g. MAGIC [Troyanskaya et al. 2003], ProKnow [Pal 
and Eisenberg 2005], STRING [von Mering et al. 2007]). Unfortunately in most cases the user is 
not able to see intermediate results and it is not shown whether the underlying databases are up-to-
date.

A big bottleneck in the functional annotation is the missing standard for describing the function of a 
gene or protein.  In contrast  to sequence or structure information the functional  annotation of a 
protein  is  written  in  a  human  readable  fashion.  This  has  many drawbacks  like  problems  with 
synonyms  or  the  missing  relationships  between  descriptions.  Furthermore  the  human  readable 
description  gives  no  clues  how  this  function  was  assigned;  for  example,  whether  it  has  been 
experimentally verified or not or what kind of method was used to predict the function. Ontologies 
were introduced to solve this problem. However there is not one single comprehensive ontology for 
all gene classes, but many small and specific ontologies (for example the Enzyme Catalogue (EC) 
[Webb et al. 1992]) is only adapted for enzymes). To simplify the prediction, most tools deal with 
only one ontology. But it has been shown that by annotating different kinds of ontology terms to 
describe the function of a gene, it can be described in a more specific way [Thomas et al. 2007].

1 Genes are orthologous, if they were separated by a speciation event. In most cases they share the same 
function.
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In this chapter a short overview about common ontologies used for function is given. Afterwards 
different approaches for function prediction are explained. Finally web services and web services 
workflows are introduced, which are used in this thesis for the integration of different data sources 
and tools.

a) Function description with ontologies
Often the function of a gene or protein is written in a human readable way. However, because the 
vocabulary is often invented and reinvented in science,  many terms are synonymous [Friedberg 
2006]. This makes it hard for humans and machines to interpret it. To make functional annotation 
accessible to machines, a controlled and well-defined vocabulary is necessary. In the following I 
will give an introduction to the most frequently used ontologies for function assignment.

Enzyme  Commission  Classification  number  (EC):  [Webb  et  al.  1992]  This  hierarchically 
organized vocabulary was introduced in 1956 to classify enzymes by the chemical reactions they 
catalyze. Each enzyme is described by an EC number, which consists of four numbers, separated by 
dots. While the first three numbers describe the enzyme reaction, the fourth number is used for 
unique identification. In this process the first number denotes the functional class of the enzyme 
(Transferase, Hydrolase, etc.),   the second and third describe the group of donors  or acceptors,  
which are used by the enzyme.

Gene Ontology term (GO term): [Ashburner et  al.  2000] The gene ontology project  provides 
controlled vocabularies to describe genes and gene products in any organism. Three ontologies are 
publicly available to describe the function of a gene:  Molecular function,  Biological process and 
Cellular component. Gene Ontology terms are represented as a directed acyclic graph (DAG) and 
linked by the two relationships,  is_a and  part_of. These relationships enable an easier navigation 
through the ontology and a faster comparison between the terms. In addition it is possible to add 
evidence codes2 to  the GO terms,  which indicate  the method, by which this  function has been 
annotated.

KEGG  Ontology  term  (KO  term): [Kanehisa  et  al.  2004]  This  hierarchical  scheme  for 
orthologous  genes  was  introduced  by KEGG to  overcome problems  with  EC numbers  and  to 
provide  an  ontology  suited  to  map  genes  to  regulatory  and  metabolic pathways.  The  KEGG 
ontology  was  automatically  build  and  manually  curated  from   ortholog  clusters  of  the  SSDB 
database [Sato et al. 2001].

MapMan bin: [Thimm et al. 2004] MapMan bins were developed by the Max-Planck Institute for 
Plant Physiology to provide a hierarchical system especially suited for plant metabolism. Genes are 
both mapped automatically and manually by analyzing expression arrays and gas chromatography 
(GC)/MS metabolite profiles. In addition to that, text search in research papers is used.

FunCat term:  [Ruepp et al. 2004] This annotation scheme has a hierarchical, tree-like structure 
with up to six levels of increasing specificity and is suited for prokaryotes, unicellular eukaryotes, 
plants and animals. FunCat version 2.1 includes 1362 functional categories of which 28 belong to 
the  main  categories,  that  cover  general  fields  like  cellular  transport,  metabolism  and  cellular 
communication/signal transduction.

2 http://www.geneontology.org/GO.evidence.shtml
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b) Homology based transfer
Homology-based transfer by database search
This approach uses sequence conservation to transfer the function of a functionally annotated gene 
to an unknown gene. The most common tool in this field is Blast [Altschul et al.  1997], which 
searches  for  homologous  sequences  in  sequence  databases.  However  this  method  has  many 
drawbacks and makes systemic errors by not accounting for duplication events, evolutionary rate 
variation, and incorrect annotations. In spite of high sequence conservation the function of the genes 
can be different [Rost 2002] and gene loss and domain shuffling can lead to wrong annotations, 
because only part of the putative homologous gene matches to the query sequence very well, which 
resulted  in  a  high  score.  These wrong annotations  are  propagated afterwards  through sequence 
databases [Galperin and Koonin 1998] [Gilks et al. 2002]. Moreover sequence based tools are not in 
all  cases  sensitive  enough  to  discover  functionally  related  proteins  in  other  organisms.  If  the 
sequence identity drops, as in distantly related organisms, it becomes harder for these tools to detect 
homologous relationships. In this case and for validation of putative hits it is necessary to check 
sequences for functionally significant subregions like active sites in enzymes.

Detection of protein domains
Protein domains are conserved parts of a protein structure and sequence, which constitute units of 
evolution and function. Because most domains are conserved between protein families, they can 
give clues to the overall  function of the protein although no orthologous gene was found by a 
homology search.

Common methods for protein domain detection are [Durbin et al. 1998]:

Profile Hidden Markov Models (HMMs): Used by HMMER to search HMM databases like 
PFAM [Bateman et al. 2002]

Profile Specific Scoring Matrices (PSSMs): Included  in  the  Conserved  Domain  Database 
(CDD),  which  can  be  searched  by  RPSBlast 
[Marchler-Bauer et al. 2007]

Regular expressions: Used by PROSITE [de Castro et al. 2006] [Hulo 
et al. 2006] to search any sequence database

Methods like HMMs are very sensitive, because they allow insertions and deletions. But there is 
one HMM for each protein domain and each HMM has its own trusted cutoffs. A big bottleneck 
here is that the seed-alignment of sequences from which the HMM is constructed must be correct. 
Sequences which do not belong to this domain can decrease the sensitivity and increase the false 
discovery rate. One of the disadvantages of HMMs is that they are very slow and so this step can be 
very time-consuming.

In contrast searching with PSSMs is much faster, but not as sensitive as an HMM search. Still, this 
method is more sensitive than a Blast search.

Regular expressions are used to search domains in sequence databases. Their disadvantages are, that 
they do not score amino acid frequencies in ambiguous positions and there is no score assigned.

To avoid  problems  with  cutoffs  (like  in  case  of  HMMs)  one  can  also  use  so  called  umbrella 
databases and tools like InterPro and InterProScan [Mulder and Apweiler  2007], which include 
many  different  domain  databases  and  apply  tested  cutoffs  for  each  method.  Each  database  is 
searched independently by its own tool. Afterwards all trusted cutoffs are applied and equivalent 
domains are connected by a unique InterPro identifier. By applying only the trusted cutoffs they 
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achieve a low false discovery rate, but can miss true hits with a lower score. Furthermore some 
domains are not present in InterPro yet.

The Phylogenomic approach
Phylogenomics considers the evolutionary history of genes to predict functions of uncharacterized 
genes. A phylogenetic tree is generated from a set of homologous sequences and ontology terms for 
functional  description  (see  chapter  IIIa)  are  assigned  to  its  leaves  (genes).  The  terms  are  then 
transferred  within  the  tree  to  uncharacterized  nodes  (uncharacterized  genes)  by  considering 
speciation and duplication events and branch lengths [Eisen JA et al. 1998].

Because phylogenomics takes the evolutionary history of genes into account, a change of function 
in a group of paralogous genes can be detected and wrong annotations can be avoided. However, if 
the number of ontology terms assigned to genes inside the tree is too sparse or the tree is inaccurate, 
also the phylogenomics approach can lead to wrong annotations.

One of the best performing tools in this area is SIFTER [Engelhardt et al.  2005], which uses a 
statistical inference algorithm to propagate molecular function Gene Ontology (GO) terms within a 
phylogenetic tree. Two inputs are required by SIFTER. A reconciled phylogenetic tree and a so- 
called PLI file, a XML file which includes the gene annotations. SIFTER only uses the lowest level 
annotated GO terms as candidate functions and is therefore able to assign very specific GO terms to 
genes. In addition to speciation/duplication events and the branch length between nodes in the tree, 
SIFTER also considers evidence codes assigned to GO terms. The user  of SIFTER can decide 
which GO terms with which evidence codes should be considered.

For each gene in the tree an initial probability, which is based on the annotated evidence codes (see 
table 1), is added to each candidate GO term.

GO evidence code Description Initial probability

IEA Inferred from Electronic Annotation 0.2

IMP Inferred from Mutant Phenotype 0.8

IGI Inferred from Genetic Interaction 0.8

IPI Inferred from Physical Interaction 0.8

ISS Inferred from Sequence or Structural 
Similarity 

0.4

IDA Inferred from Direct Assay 0.9

IEP Inferred from Expression Pattern 0.4

TAS Traceable Author Statement 0.9

NAS Non-traceable Author Statement 0.3

RCA Inferred from Reviewed 
Computational Analysis 

0.4

ND No biological Data available 0.3

IC Inferred by Curator 0.4

Table 1: Initial probabilities given by SIFTER for the GO evidence codes.

The  initial  probability  is  then  changed  into  a  likelihood  (see  figure  1)  and  added  to  the 
corresponding node in the GO DAG. Afterwards the likelihood for each GO term is combined with 
a  prior  value and is  down-propagated  in  the  GO DAG to  the  candidate  terms.  At  the end the 
likelihood at the candidate GO terms is extracted from the GO DAG and assigned to the gene.
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In a second step SIFTER propagates the candidate GO terms to the root of the phylogenetic tree and 
afterwards back to the leaves of the tree by considering an internally calculated mutation rate. This 
mutation rate is based on the type of the node (speciation or duplication node) and on the branch 
length between nodes. The lower the mutation rate is, the more likely it is to transfer functions 
between nodes.  If  the node is  a  duplication node,  the mutation  rate  is  increased,  because it  is 
assumed that, after a duplication event occurs, the function of one or both genes is modified. The 
propagation step is based on the approach of Felsenstein et al. [Felsenstein 1981] and is described in 
[Engelhardt et al. 2006].

c) Chromosomal proximity
Mainly in Prokaryota, but also in other organisms, functionally related genes (e.g. genes working in 
the same complex [Teichmann and Veitia 2004] or in operons [Blumenthal 2004] [Salgado et al. 
2000]) are often placed at the same location on a chromosome. Additionally the gene order is often 
conserved between related  species  [Teichmann and Babu 2002].  By comparing  these  so called 
“syntenic regions” or shared synteny3 of related species or individuals, functionally related genes 
can be identified and functional coherences between genes like physical interactions or activity in 
the same pathway can be predicted [Poyatos and Hurst 2007] [Enault et al. 2005] [Kolesov et al. 
2001].

d) The Rosetta Stone method
The  Rosetta  stone  approach  relies  on  the  assumption  that  in  some organisms  genes  are  fused 
together which in other organism are separate (e.g. α and β subunits of the Trp synthetase in bacteria 
are fused in fungi [Burns et al. 1990]). By detecting fused genes co-regulation and interaction can 

3 Shared synteny is defined as the conserved co-localization of genes on chromosomes of related species 
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be predicted and functions can be transferred [Date 2008].

e) Phylogenetic profiles
The idea of that approach is that functionally related genes should be co-inherited, because if one 
gene is lost  during evolution the overall  function is different due to the lack of the interaction 
partner. Algorithms in this area cluster profiles of the presence or absence of an orthologous group 
in a set of species (for review see [Harrington et al. 2008] and [Lee et al. 2007]). However, because 
the detection of orthologous genes is a crucial step in this analysis and is non-trivial in Eukaryotes, 
methods in this area are more accurate for prokaryotic genes [Lee et al. 2007]. 

f) Structural information
In case of low sequence similarity to known genes structural information about the protein can give 
new insights to the function of the protein of interest, because structure is better conserved than 
sequence [Brenner et al. 1996] [Rost 1997]. On the one hand that can be done by looking for similar 
structures of already functionally characterized proteins available in databases like PDB [Kirchmair 
et  al.  2008]  and PDBj  [Standley et  al.  2008]  using  structure  alignment  programs (reviewed in 
[Friedberg et al. 2006]). On the other hand functional critical residues or functionally relevant 3D 
templates can be identified by looking at the protein stability [Capriotti et al. 2008], the location of 
the residue in the structure [Kinoshita et al. 2002] [Ng and Henikoff 2006] and the conservation of 
structural  motifs  between  known  proteins  [Pazos  and  Sternberg  2004].  Furthermore  structural 
binding sites can be predicted [Glaser et al. 2006] [Kinoshita et al. 2002] [Ivanisenko et al. 2004] 
[Golovin and Henrick 2008] [Wei et al. 2007]. For comparison to known binding sites and catalytic 
sites several public databases are available like the Catalytic Site Atlas (CSA) [Porter et al. 2004] 
and SCOPEC, a database for catalytic domains [George et al. 2004].

If the 3D structure of the protein is not known the prediction by ab initio programs (for a review and 
testing of the programs see [Jauch et al. 2007]) can be used as a substitute, or the 2D structure can 
be used instead.

g) Expression data
Microarray experiments enable the investigation of the expression behavior of many genes together 
in one experiment. The most common method to predict information about the function of genes 
from expression data is the clustering of genes based on their expression profile. Information about 
the function of a known gene in the cluster is then transferred to other genes in the cluster. The 
hypothesis behind this approach is that genes which are working in the same cellular pathway or 
interact in some way are required at the same time and are expressed in unison [Boutros and Okey 
2005]. Furthermore co-expressed genes can be regulated via one or a few common mechanisms 
[Boutros and Okey 2005] and by the identification and investigation of gene clusters, hypotheses 
can be generated about the underlying regulatory mechanism. Of course these hypotheses have to 
be proven in the lab e.g. by knockdown or knockout experiments. 

Many different clustering algorithms exist [Emmert-Streib and Dehmer 2008] [Khatri and Draghici 
2005] [Hand and Heard 2005] and all of them have their strengths and weaknesses [Kerr et al. 
2008].  To  choose  an  appropriate  tool  for  the  clustering  process  some  tools  need  background 
knowledge about the underlying data e.g. how many clusters are expected or what is the structure of 
the cluster [Hand and Heard 2005]. A bottleneck of all algorithms is also the decision on which 
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variables (features) the clustering should be done. If one does not take the right variables, wrong 
predictions can occur.  However,  with knowing the data  the decision which algorithm to use is 
biased and therefore the result may not be universally valid. Algorithms like k-means which require 
the pre-specification of a relatively small number of cluster deal poorly with genes that have no 
close neighbors in feature space and therefore should ideally form singleton clusters. In this case 
pattern discovery methods can help, which detect groups of genes which have similar profiles and 
do not consider the profile shapes of other genes [Hand and Heard 2005].

Besides these problems, there are many other sources of error by investigating expression data like 
non-complementary binding, varying values because of changed lab conditions, and missing values 
(e.g. Gene Ontology terms, expression data points). Furthermore, comparing expression data from 
different Microarrays can also lead to wrong assumptions [Jarvinen et al. 2004] if lab conditions 
[Irizarry et al. 2005] and the underlying technologies used (e.g. which chip and which normalization 
is used) are different and the circadian clock had not been considered etc.

Clustering algorithms and pattern discovery methods are mainly useful to predict  the biological 
process of the gene of interest, but should be used with precaution to predict the molecular function 
of genes. In all cases it is important to look manually at the results afterwards and verify them by 
running further experiments in the lab. 

2) Web services

a) Introduction data integration
Data integration is  the cross-association of diverse data organized and presented with a certain 
purpose.  In  the  current  time the  amount  of  biological  data  increases  rapidly and one  can  find 
information distributed in several databases. The number of resources that are made available over 
the web is growing. This creates a need for systems which are able to find the data and to process 
them in the way that they are not only available at one place, but also combined and collated. There 
is already a long history of data integration. One of the common examples is the so called data 
warehouse, in which one extracts data from several data sources and loads them into one database, 
which then can be queried. But there are some drawbacks about data warehouses, for instance, one 
needs the space and the compute power to host and integrate all collected data and has to ensure that 
the data warehouse is always up-to-date. 
Another  method to  face these  issues  are  web services.  Web services  are  software  systems  that 
enable the interoperability between two machines in a common network and offer the possibility to 
compute and/or  retrieve data  from a distant  computer  in  a  machine processable  way.  Institutes 
which already provide their data can offer web services to propagate them, so that one does not 
need  to  implement  a  data  warehouse.  This  also means,  that  it  is  most  important  to  encourage 
institutes to make their data publicly available via web services.

b) The BioMOBY project
In  2001  the  BioMoby  project  [The  BioMOBY  Consortium  2008]  was  initiated,  which  also 
addresses the issues of finding web services and shared data schemata. BioMoby offers a central 
repository,  at  which service providers  can register  their  web services and users can find those. 
Additionally standardized data schemata are offered, which define semantically the input and the 
output of a service. Normally, a biological web service, which defines a string as input does not give 
any hint on what kind of string is needed (it can be a protein sequence, a database identifier or a 
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publication abstract). In the BioMoby world a service would be defined for example, as a service 
which uses a database identifier as input and returns the protein sequence in FASTA format.

3) Web service workflows and reusement of workflows

a) The Taverna project
Taverna [Oinn et  al.  2004]  is  an open source software  tool  developed by the myGrid team in 
Manchester for designing and executing workflows. Workflows can be a line-up of web services 
(see  chapter  III2)  or  local  tools.  Because  each  component  in  the  workflow  is  independent, 
workflows are very flexible. 

The  common way to  execute  and  develop  workflows  in  Taverna  is  the  use  of  the  standalone 
application.  But  workflows can  also be executed  without  using  the  graphical  user  interface by 
interacting with the Taverna application programming interface (API).

b) MyExperiment
To provide an intuitive web interface to find, use and share Taverna workflows the MyExperiment 
website  [Goble  and  De  Roure 2007]  was  developed  by  the  MyGrid  team.  Besides  uploading, 
finding, updating and sharing workflows the user of MyExperiment is able to establish new groups 
and build new scientific communities. Furthermore workflows can be directly loaded, modified and 
executed in Taverna (reusement of workflows).
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IV. Manual annotation and comparison of shared syntenic regions in 
a hot spot for pathogen resistance in Solanum tuberosum, Solanum 
demissum and Arabidopsis thaliana to discover new QTLs.

1) Introduction and aims of the project
Solanum tuberosum (cultivated potato) is one of the most important crops of the Solanaceae family. 
In comparison to the hexaploid wild potato (Solanum demissum) the cultivated potato is tetraploid. 
Both species are non-inbred, annual plants with a genome size between 800 and 1000 megabases 
and twelve  chromosomes.  However,  cultivated  potato  genotypes  are  heterozygous  at  all  ploidy 
levels,  because  if  the  ploidy  level  is  reduced  from 4n  to  2n  the  plants  become  incompatible 
[Gebhardt et al. 2004]. The whole genome of potato plants is not sequenced yet, but sequencing of 
both potato and their closest relative tomato (Solanum lycopersium) is in progress (see chapter V3). 

Because  of  their  agronomic  relevance,  hot  spots  for  pathogen  resistance  were  identified  by 
comparing  RFLP  (restriction  fragment  length  polymorphism)  linkage  maps  of  the  twelve 
chromosomes [Bonierbale et al. 1988] [Gebhardt et al 1989] [Gebhardt and Valkonen 2001]. One of 
the identified hot  spots  is  located on potato chromosome V in the region between DNA-based 
markers  GP21  and  GP179  [Meksem  et  al.  2000].  In  this  region  resistance  genes  and  QRLs 
(quantitative resistance loci) are located for resistance to  Potato Virus X [De Jong et al.  1997], 
Phytophthera infestans [Leonards-Schippers et al. 1992], G. rostochiensis and G. pallida [Kreike et 
al. 1994]. However, only two of them, Rx2 for extreme resistance to Potato Virus X [Bendahmane 
et al. 2000] and R1 for resistance to Phytophthera infestans [Ballvora et al. 2002] are functionally 
characterized. These two genes belong to the superfamily of plant resistance genes, which contain a 
coiled coil (CC) domain, a nucleotide binding domain and a leucine rich repeat (LRR) domain. The 
overall sequence identity of genes in this family is not very high. R1 has been introgressed from the 
wild potato into the cultured potato germ plasm pool.

The aim of this project was to find genes in this hotspot, which can be further examined for function 
as quantitative trait loci (QTLs), first in silico by functional annotation and then experimentally. In 
doing  this  the  corresponding  region  in  both  haplotypes  (~200kbp  and  ~400kbp)  of  Solanum 
tuberosum genotype  P6/210  was  sequenced,  manually  annotated  and  genes  were  functionally 
characterized. Furthermore syntenic regions in the wild potato  Solanum demissum  [Kuang et al. 
2005] and in Arabidopsis thaliana were identified and compared.

2) Materials and Methods

a) Sequencing, assembly and gene prediction
BAC clones were sequenced by a company using the shotgun sequencing strategy. The assembly 
was done first in a company using PreGAP4 and GAP4 from the Staden software package [Krawetz 
et  al.  2003].  After  identifying  and  removing  the  remaining  vector  sequences  the  Megamerger 
program  from  the  EMBOSS  package  (Version:  6.0.1)  [Rice  et  al.  2000]  was  used  to  merge 
sequences of overlapping BAC insertions. The assembled contigs were afterwards submitted to the 
EMBL database [Kulikova et al. 2004] (EMBL accession numbers: R1: EF514212; r1: EF514213)
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Different gene prediction tools (GenMark.hmm [Lukashin et al. 1998], FgeneSH [Salamov et al. 
2000] and GenomeThreader [Gremme et al.  2005] were run by Remy Bruggmann at  the MIPS 
institute in Munich. Afterwards the APOLLO Genome Annotation Curation Tool (Version: 1.6.4) 
[Misra et al. 2006] was used to provide a manually annotation for all genes based on the automatic 
gene  prediction  of  the  different  tools.  Therefore  the  predicted  exons  and open  reading  frames 
(ORFs) from the gene prediction programs were combined with homologous genes and ESTs found 
in  public  databases.  The  trace  files,  provided  by  the  company,  were  manually  checked  for 
sequencing errors by using Consed [Gordon et al. 1998], if a putative pseudo gene was discovered. 

Further details about materials and methods used for the sequencing and the initial assembly can be 
retrieved from [Ballvora et al. 2007].

b) Manual functional annotation
Functional annotation was done manually combining homologous genes in the SwissProt database 
(Release 51) with protein domains and patterns found in the InterPro database (Release 13). For the 
homolog  detection  BlastP  (Version:  2.2.13)  [Altschul  et  al.  1997]  was  used.  To  discover 
evolutionary relationships inside the disease resistance superfamily a phylogenetic tree from all 
sequences was build using protpars from the Phylip package [Felsenstein 1993].

c) Shared micro-synteny with the Arabidopsis thaliana and the Solanum demissum 
genome
Dotter  (Version:3.1)  and  MUMer (Version:  3.18)  [Delcher  et  al.  2002]  were used to  align and 
compare the shared syntenic region from different haplotypes of S. tuberosum and S. demissum. The 
corresponding BACs in S. demissum had been taken from [Kuang et al. 2005]. For the identification 
of syntenic genes in  A. thaliana Inparanoid (Version: 1.35) [O'Brien et al. 2005] in combination 
with BlastX (Version: 2.2.13) [Altschul et al. 1997] against the TAIR6 database [Weems et al. 2004] 
were used. We defined shared syntenic blocks by the criterion, that at least three orthologous genes 
are identified within a roughly comparable physical distance on the chromosome. Because of their 
limited information value transposons and resistance genes were excluded from the comparison.

3) Results
The assembly of 743,152 kbp of genomic sequence from seven R1 and three r1 BAC insertions 
results two distinguished and unambiguous DNA contigs with a length of 417,445 kbp and 202,781 
kbp of R1 and r1.
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R1 and r1 share a high conserved region (see region B and E in figure 2), which is interrupted and 
extended  by  two  hyper  variable  regions,  which  were  non-alignable  (see  region  C,D  and F in 
figure2). All identified resistance genes in R1 (8 genes) and r1 (4 genes) are located in this hyper 
variable region. One of them in R1 (gene between 20 and 21 (see figure  3)) and one gene in r1 
(gene 49 (see figure 3)) seem to be incomplete (putative pseudo genes), because they were disrupted 
by transposons. The first gene of R1 (gene 1 in figure 3) could also not be well annotated, because 
there have not been more sequences available at this side of the R1 contig and the corresponding 
region (region A in figure 2) was not obtained from r1. Region B (see figure 2) shows a palindromic 
structure, which corresponds to an inverted repeat of two RNA-directed RNA polymerases, which 
were separated by hypothetical protein and a retro-transposon. In R1 four and in r1 one of these 
hypothetical  proteins could be identified,  but no expression data was available to confirm their 
transcription. However all hypothetical proteins seem to belong to the same protein family. Blast 
and  profile  searches  only returned hits  to  potato  proteins,  which  support  the  idea  that  it  is  an 
unknown potato specific protein family. We could also identify a genomic inversion in region  E 
(see figure 2), which is highly conserved (sequence identity: 99%) and contains 5 genes (gene 43–
38 in figure 3).
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Figure 2: Comparison of the haplotypes R1 with r1 of Solanum tuberosum. The figure was taken from Ballvora et al.  
2007.
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Figure 3: Comparison between R1 and r1 from S. tuberosum and haplotypes A, B and C from S. 
demissum. The figure was taken from Ballvora at al. 2007.
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We could manually annotate 55 genes on R1 and 22 genes on r1. 6 genes on R1 and r1 are putative 
transposon genes and 5 genes on R1 and one gene on r1 are putative pseudo genes. 14 genes on R1 
were annotated as F-Box genes, but none of these were found in r1. A complete list of all annotated 
genes is available in table 2. Except for the transposons most genes are conserved between R1 and 
r1 in sequence, order and orientation. Furthermore I had some difficulties to identify syntenic genes 
between R1 and r1 of the disease resistance family, because these genes seems to mutate very fast. 
A sequence  comparison  and  an  analysis  of  a  phylogenetic  tree  with  all  members  found in  S. 
tuberosum showed no result. I could identify R1 on contig R1 as gene 44 (see figure 3). Because the 
neighboring genes 43 and 42 are included in the inversion and gene 44 and his neighbor at the other 
side are conserved in order and orientation with gene 54 and 52 on r1, I assume, that the inversion 
also includes these two genes. The inversion ends after gene 45, because the next genes are not 
similar in order and orientation.

a) Shared micro-synteny with Solanum demissum
Comparison of the corresponding haplotypes A, B and C in S. demissum revealed similar features 
[Kuang et al. 2005]. We found, that the A contig in  S. demissum shows a high sequence identity 
(99%) with the R1 contig in  S. tuberosum. Contig B and C are more similar to contig r1 in  S.  
tuberosum except for the hyper variable region,  which is much larger on the B contig and not 
included on the C contig. Because [Kuang et al. 2005] did not sequence the region between gene 25 
and 35 on contig A, they were not able to detect the inversion, which is also present between contig 
A and contig B and C.

b) Shared micro-synteny with Arabidopsis thaliana
We identified five syntenic blocks in  A. thaliana (see table  1). The largest syntenic region found 
spans almost the complete R1 contig and 54 kbp on chromosome 1 in  A. thaliana and includes 
seven genes of S. tuberosum. Five of these genes are conserved in sequence, order and orientation 
and two of them (gene 38 and 43) show reverse order and orientation compared with  A. thalina. 
These genes are included in the inversion between R1 and r1, so gene 38 and 43 on r1 have the 
same  order  and  orientation  as  in  A.  thaliana.  This  is  the  same  case  for  AT1G14270.1  until 
AT1G14300.1, where AT1G14270.1 (gene 17 on R1) and AT1G14280.1 (gene 19 on R1) are in the 
same order and orientation as on R1 and AT1G14290.1 and AT1G14300.1 are in reverse order on 
contig R1, but included in the inversion. Non of the syntenic genes are disease resistant genes and 
all disease resistant genes in potato have the highest sequence similarity to RPP13. RPP13 confers 
resistance to Peronospora parasitica and is located on chromosome 3 outside any detected syntenic 
region.

Syntenic 
block

S. tuberosum 
ORF

A. thaliana ORF A. thaliana 
BAC

A. thaliana ORF 
position [Mbp]

A. thaliana 
block size

S. tuberosum 
block size

I ORF17 AT1G14270.1 F14L17 4875 7 kbp 215 kbp

ORF19 AT1G14280.1 F14L17 4878

ORF43 AT1G14290.1 F14L17 4880

ORF41 AT1G14300.1 F14L17 4882

II ORF4 AT1G26880.1 T2P11 9316 18 kbp 345 kbp

ORF5 AT1G26870.1 T2P11 9313
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Syntenic 
block

S. tuberosum 
ORF

A. thaliana ORF A. thaliana 
BAC

A. thaliana ORF 
position [Mbp]

A. thaliana 
block size

S. tuberosum 
block size

ORF18 AT1G26850.1 T2P11 9301

ORF42 AT1G26840.1 T2P11 9298

III ORF2 AT1G69600.1 F24J1 26168 54 kbp 405 kbp

ORF3 AT1G69610.1 T6C23 26190

ORF4 AT1G69620.1 T6C23 26193

ORF43 AT1G69640.1 T6C23 26197

ORF38 AT1G69690.1 T6C23 26221

ORF47 AT1G69700.1 T6C23 26224

ORF48 AT1G69710.1 T6C23 26226

IV ORF2 AT3G28920.1 MYI13 10941 106 kbp 25 kbp

ORF4 AT3G28900.1 K5K13 10904

ORF5 AT3G29035.1 K5K13 11035

V ORF2 AT5G39760.1 MKM21 15928 28 kbp 25 kbp

ORF3 AT5G39785.1 MKM21 15946

ORF5 AT5G39820.1 MKM21 15956

Table 1: Syntenic regions between S. tuberosum and A. thaliana. Table was taken from Ballvora et al. 2007.

4) Discussion
In  this  project  a  complete  sequencing  pipeline  was  run  manually  to  detect  problems  with  fast 
evolving genes and to improve the structural and functional annotation. In genome projects this 
approach is not feasible, because it is too time-consuming and so it has to be done automatically. 
However it can be further improved if parts like the gene annotation are manually verified. 

Syntenic regions in both S. demissum and A. thaliana could be identified, which give new insights 
to  the  evolutionary  history  of  S.  tuberosum strain  P6/210.  We  assume,  that  the  R1  contig  is 
introgressed from S. demissum into S. tuberosum, because the overall sequence identity is very high 
and all genes are conserved in sequence, order and orientation. The r1 contig seems to originate 
from either S. tuberosum or S. spegazzinii, based on the notation that the parental donor of the r1 
homolog was an interspecific hybrid between S. tuberosum or S. spegazzinii [Barone et al. 1990]. In 
A.  thaliana five  syntenic  blocks  were  identified,  which  include  genes  in  the  same  order  and 
orientation to R1 and in reverse order to R1. Genes in reverse order to R1 are in an inverted region 
of ca. 70 kbp, which could be identified by comparing R1 and r1 and are therefore in the same order 
and orientation compared to r1. We assume, that the inversion occurred in the R1 linkage after the 
divergence of Arabidopsis and the Solanum species. By comparing S. tuberosum and S. demissum 
also well  conserved regions  could  be  identified,  which  are  separated and extended by a  hyper 
variable region. No conservation in this hyper variable region between all potato haplotypes could 
be detected and no syntenic region could be identified in  A. thaliana.  Genes in this region are 
mostly disease resistance genes, transposons and F-Box genes, which show a fast mutation rate. 
This fast mutation and duplication rate is important for potato plants to adapt to pathogens. Because 
of the fast mutation rate, I was not able to identify subgroups in the disease resistance family or to 
find any hints to which pathogens the resistance gene is directed.
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As most likely candidates for QTLs I identified 14 F-Box genes.  F-box proteins are involved in 
various signaling pathways in Arabidopsis thaliana and a F-box domain was identified in the SGT1 
protein that was shown to play a role as co-chaperone in the stabilization of R-proteins [Shirasu and 
Schulze-Lefert  2000]  [Schulze-Lefert  2004].  To  confirm  this  QTL,  further  investigations  are 
needed.

Also the new potato specific protein family is interesting.  Here again the functional annotation 
could  not  give  any clues  to  the  function  of  these  genes,  because  they  are  not  similar  to  any 
functionally characterized gene.  This family could be a  new kind of transposon, which is  only 
present  in  potato  plants,  but  no  transposon  specific  domains  or  motifs  could  be  identified. 
Unfortunately  there  was  no  expression  data  available,  which  could  be  used  to  confirm  the 
transcription of these genes. The expression data would also be useful to confirm putative pseudo 
genes.
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V. Automatic annotation in genome projects

This chapter shows how to facilitate the functional characterization of genes for whole genomes. In 
this  case  an  automatic  pipeline  is  needed,  because  manual  functional  annotation  or  running 
experiments for all predicted genes is not feasible.  I  introduce a phylogenomic pipeline for the 
automatic functional annotation of molecular function Gene Ontology terms, which uses SIFTER , 
one of the best performing phylogenomic tools [Engelhardt et al. 2005]. This is tested in the on-
going  Medicago truncatula genome project. Based on these results the pipeline is improved and 
applied on the genome of  Sorghum bicolor  and on the first available part of the tomato genome.  
Furthermore  specific  gene  families,  which  are  unknown  in  plants  so  far,  are  extracted  and 
functionally characterized. Especially the Transferrin protein family is investigated further, because 
it is a putatively old gene family which is well known in animals, insects and algae, but not yet 
known in higher plants.

1) Introduction
The Medicago truncatula genome project

Medicago truncatula or barrel medic (see image at the left 
side) has a small diploid genome with eight chromosomes. It 
is self-fertile and has a rapid generation time and prolific seed 
production4.  Other  advantages  are  that  it  is  amenable  to 
genetic transformation and  large collections of mutants and 
ecotypes  are  available5.  Because  of  these  attributes,  M. 
truncatula has been chosen as the new model organism for 
legumes.
Most legumes (or Fabaceae) live in a symbiotic relationship 
with bacteria. These bacteria (or rhizobia) live in their roots 
within structures called root nodules and have the ability to 
take nitrogen gas out of the air and convert it to a form of 
nitrogen that is usable to the host plant. This process is called 
“nitrogen  fixation”  and  reduces  fertilizer  costs  for  farmers 
and gardeners, because they use legumes in a crop rotation to 
replenish  soil  that  has  been  depleted  of  nitrogen6.  M. 
truncatula lives in a symbiotic relationship with the rhizobia 

Sinorhizobium meliloti and arbuscular mycorrhizal fungi.  This makes M. truncatula an interesting 
object to study symbiotic relationships between plants, bacteria and fungi.

The sequencing of the M. truncatula genome started in 2003. Six chromosomes are sequenced in 
the USA and two chromosomes are sequenced in Europe. To provide a high quality automated gene 
prediction and annotation for all finished sequences generated by the Medicago genome sequencing 
project the International Medicago Genome Annotation Group (IMGAG) was initiated.

4 http://mips.gsf.de/proj/plant/jsf/medi/index.jsp
5 http://en.wikipedia.org/wiki/Medicago_truncatula
6 http://en.wikipedia.org/wiki/Fabaceae
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In  October  2006 about  60% of  the gene-rich  euchromatin was sequenced and a  first  sequence 
release was made (Mt1.0). The gene calling process was complete and 43616 genes were annotated. 
All  genes  had  a  human readable  description  assigned  by using  the  most  significant  hit  in  the 
InterPro  database  using  InterProScan and,  if  there  was no significant  hit  in  InterPro,  the  most 
significant Blast hit against the TIGR database [Lee and Quackenbush 2003] [Chan et al. 2007] was 
used.

Goal of this project was the assignment of molecular function Gene Ontology (GO) terms to as 
many  protein  coding  genes  of  M.  truncatula as  possible,  at  the  same  time  avoiding  wrong 
annotations.  In  this  process  the  assigned GO terms  should  be  as  specific  as  possible.  For  this 
approach SIFTER (see chapter III1b) was tested, which uses a statistical inference algorithm to 
propagate molecular function GO terms within a phylogenetic tree. Engelhardt et al. claimed in 
their paper that SIFTER achieved an accuracy of 96% using their test set and should be able to 
assign very specific terms. 

To apply SIFTER to all annotated Medicago genes a new pipeline had to be implemented. This 
pipeline provides a phylogenetic tree and a so called “PLI-file”, which includes all homologous 
genes in the tree and the assigned GO terms with the corresponding evidence codes available to 
each gene. No pipeline is provided in the SIFTER package, but several Perl scripts to build a tree 
from a PFAM alignment and to build the PLI file using the SwissProt database. However, if the 
genes in the tree are not included in the SwissProt database or the query protein has no domain 
present in the PFAM database, these scripts can not be used. 

To validate GO terms and increase the number of functionally annotated genes at the end of the 
analysis InterProScan in combination with InterPro2GO from the GOA project [European 
Bioinformatics Institute 2008] was also used to assign GO terms to all predicted Medicago genes. 
To run two programs in parallel has the advantage that the results can be compared at the end to 
find out which program performs better in the number of annotated genes and whether it useful to 
run both programs instead of one.
Another goal of the project was to find non-plant specific genes in the Medicago genome, which 
can be used as candidate genes for further experiments. Genes, which have homologous genes in 
animals, but not in plants were identified. One interesting protein family, the Transferrin family, was 
found and investigated further.

The Sorghum bicolor genome project
The diploid,  annual,  in some cultivars perennial  plant  Sorghum bicolor 
(see image at the left side) belongs to the monocotyledonous green plants 
in the family Gramineae (Poaceae) (Common name: Grasses). Sorghum 
has 10 chromosomes and a total genome size of approximately 770Mb. 

Sorghum was sequenced by the Sorghum Genome Project at the DoE Joint 
Genome Institute and will be published in 2009. The gene calling process 
is complete and 27458 genes were predicted and are publicly available7 
under the Fort Lauderdale genome data release policy. These sequence 
data were produced by the US Department of Energy Joint Genome 
Institute http://www.jgi.doe.gov/ in collaboration with the user 
community. For none of these genes, functional annotations are available 
(status: Beginning of 2008).

7 http://www.phytozome.net/Sorghum
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Thus the Sorghum bicolor genome project is suitable to test and improve the automatic functional 
annotation pipeline to provide an accurate functional annotation for the Sorghum genome. Goal was 
on the one hand to provide a flexible and accurate automatic functional annotation pipeline, which 
can be used by other genome projects. In this context the pipeline used in the Medicago genome 
project has been further improved and tested on the Sorghum genome. On the other hand functional 
annotation results should be compared with functional annotations of other genomes to find 
conspicuities in the Sorghum genome.

The Solanum lycopersicum (tomato) genome project
Solanum lycopersicum, better known as tomato, is a perennial, 
herbaceous  plant  and  belongs  to  the  Solanaceae  family 
(nightshade). Tomato as well as other members of the Solanaceae 
family have evolved from South America and were brought 1498 
by Christopher Kolumbus to Spain and Portugal8. Until then the 
plants  have  been  cultivated  mainly  in  Spain,  Portugal,  the 
Netherlands and Italy and tomato is now one of the most popular 
vegetables  in  Europe.  Members  of  the  Solanaceae  family like 
potato,  physalis,  tobacco and so on are closely related to each 
other and show a high sequence conservation.

Because of its small  genome size of about 950 Mb, tomato is 
used  as  a  new  model  organism  for  the  Solanaceae  family. 

Furthermore  there  is  strong  interest  in  improving  fruit  quality  by  extracting  genes,  which  are 
involved in disease resistance, plant architecture and the nutritional value, taste, flavor, fragrance 
and starch composition of the fruit9. The sequencing of the euchromatic part of the genome (~250 
Mb), which is done by eleven countries around the world, is underway. The annotation effort (gene 
finding and functional annotation) is done by the  International  Tomato  Annotation  Group (ITAG) 
using the pipeline in figure 5. All ab initio gene finders are trained with tomato data to provide the 
most accurate prediction. My part in the pipeline was the prediction of Gene Ontology terms by 
using the phylogenomic pipeline with SIFTER in combination with InterProScan and InterPro2GO.

To provide the annotation of the genes as soon as their corresponding sequence is sequenced by the 
sequencing centers and publicly available in databases like GenBank [Sayers et al. 2008] and SGN 
[Mueller et al. 2005], the ITAG annotation pipeline is run iteratively in batches of available tomato 
sequence data. The first batch (batch11) for which the complete pipeline was run was available in 
May 2008 and consists of 283 contigs. 9942 genes were predicted.

8 http://www.economy-point.org/t/tomato.html
9 http://www.eu-sol.net/science
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2) Material & Methods

a) Homolog detection
Homolog detection used in the Medicago pipeline
To enable  a  fast  search  for  homologous  proteins,  which  can  be  used  as  candidates  to  build  a 
phylogenetic  tree,  Blastp  was used.  To further  speed  up the  analysis  Blastp  was  run  against  a 
database  of  proteins,  which  have  an  experimentally  verified  or  reviewed  GO  term  assigned. 
Because there was no such database available, gene identifiers from 7 Eukaryota gene association 
files available at the Gene Ontology website [Gene Ontology 2008] and from the gene association 
file provided by the GOA project [Camon et al. 2004] were extracted, selecting only those which 
have an experimentally verified or reviewed GO term assignment (not IEA and ND) (see table 2). 

These identifiers were mapped to the corresponding amino acid sequences via FASTA files or web 
services  (see  table  2)  available  from  the  institutes,  which  uploaded  the  corresponding  gene 
association files to the Gene Ontology website. At the end all extracted amino acid sequences were 
merged  and  provided  as  a  Blast  database.  Additionally  all  sequences  with  their  corresponding 
identifiers and GO term annotations (including evidence codes) were stored in the AFAWE MySQL 
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Figure 5: ITAG pipeline. Sequence data coming from the different sequencing centers is used as input for different gene  
finders, Blast searches [Altschul et al. 1997] against diverse protein and nucleotide databases, GenomeThreader 
analysis [Gremme et al. 2005] against EST collections, RFAM [Gardner et al. 2009]and TMHMM [Krogh et al. 2001].  
All this information goes into EUGENE [Schiex et al. 2001] to predict the gene exon/intron structure. The translated 
amino acid sequence is then used as input in several functional prediction tools to perform an accurate functional 
annotation.



Anika Jöcker Chapter V

database (see figure 22) to increase the performance of the pipeline once more.

Equation  1:  Overlap  computation between  Blast  
query sequence and Blast hit sequence

To extract the candidate homologous genes from the Blast result an overlap cutoff of at least 70% 
and an e-value cutoff of smaller than 1 was applied to all Blast hits. The overlap was computed by 
equation 1.

Organism Annotation file Date Identifier 
used

Name of fasta file or web service 
used (Database)

Arabidopsis 
thaliana 

gene_association.tair 15/09/2006 AGI locus 
code

TAIR6 (TAIR)

Saccharomyces 
cerevisiae

gene_association.sgd 15/09/2006 SGI ID orf_trans.fasta (SGD)

Drosophila 
melanogaster

gene_association.fb 19/08/2006 FlyBase ID dmel-all-gene-r4.3.fasta (FlyBase)

Caenorhabditis  
elegans

gene_association.wb 26/08/2006 WormBase ID current.tar.gz (WormBase)

Oryza sativa gene_association.gramene 27/08/2006 UniProt 
identifier

DBFetch (UniProt)

Candida albicans gene_association.cgd 15/09/2006 CGD ID orf_trans_all_assembly_20.fasta

Dictyostelium 
discoideum

gene_association.dictyBase 15/09/2006 dictyBaseID dicty_curated_models_protein 
(DictyBase)

Different 
organisms

gene_association.goa_uniprot 15/09/2006 UniProt 
identifier

DBFetch (UniProt)

Table 2: Gene association files downloaded from Gene Ontology and files/web services used to build a database of  
proteins, which have an experimentally verified or reviewed GO term assignment.

Improved homolog detection
To  improve  the  prediction  accuracy  of  SIFTER  a  complete  and  accurate  phylogenetic  tree  is 
needed. This needs to include a comprehensive gene neighborhood for the query gene. However, 
because the pipeline should be suitable for large genome sets, it needs to be reasonably fast.

I improved the former homolog detection in two ways. Firstly the Blast database used in the former 
pipeline was replaced by a database, which only includes completely sequenced organisms from 
organisms, for which also GO term annotations were available. The complete genome of all these 
organisms (see table 3) was downloaded from the RefSeq download page10 (release 21 from 15-01-
2007), integrated in the AFAWE MySQL database (see figure 22) and provided as a protein Blast 
database by using formatdb [Altschul et al. 1997]. In addition all gene association files provided by 
the Gene Ontology consortium were downloaded (Download date: 14-08-2007) and included in the 
AFAWE MySQL database. To map genes from RefSeq to the corresponding GO terms provided in 
the gene association files, mapping files from different resources (see table 3) were downloaded and 
included in the AFAWE MySQL database. For  organisms for which no mapping between organism 
database identifier and RefSeq protein identifier was available a Blast search was used to find 100% 
identical and 100% overlapping sequences between the RefSeq and the model organism databases. 
Also these mappings were integrated in the AFAWE database to map as many genes as possible to 

10 ftp://ftp.ncbi.nih.gov/refseq/release/
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GO terms.

Organism Gene association file Mapping file or fasta file used 
(Database)

Identifier mapping used Download 
date

A. 
phagocytophilum

gene_association.tigr_A
phagocytophilum

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

A. thaliana gene_association.tair TAIR7_NCBI_mapping_prot 
(TAIR)

AGI locus code → 
RefSeq ID

25-04-2007

B. anthracis gene_association.tigr_B
anthracis

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

B. taurus gene_association.goa_co
w

Iproclass.tb (PIR) & 
ipi.BOVIN.xrefs.gz (IPI)

UniProt ID → RefSeq ID 14-08-2007

C. elegans gene_association.wb Wormpep179 (WormBase) WormBase ID → Blast 
against RefSeq

14-08-2007

C. jejuni gene_association.tigr_Cj
ejuni

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

C. albicans gene_association.cgd orf_trans_all_assembly_20.fast
a (CGD)

CGD ID → Blast against 
RefSeq

01-12-2006

C. burnetii gene_association.tigr_C
burnetti

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

D. rerio gene_association.zfin mapping_ZFIN_RefSeq.txt 
(ZFIN)

ZFIN ID → RefSeq ID 14-08-2007

D. ethenogenes gene_association.tigr_D
ethenogenes

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

D. melanogaster gene_association.fb Dmel-all-gene-r5.2.fasta 
(FlyBase)

FlyBase ID → Blast 
against RefSeq

17-08-2007

E. chaffeensis gene_association.tigr_E
chaffeensis

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

G. gallus gene_association.goa_ch
icken

Iproclass.tb & 
ipi.CHICK.xrefs.gz

UniProt ID → RefSeq ID 14-08-2007

G. sulfurreducens gene_association.tigr_G
sulfurreducens

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

H. sapiens gene_association.goa_h
uman

Iproclass.tb & 
ipi.HUMAN.xrefs.gz

UniProt ID → RefSeq ID 14-08-2007

L. monocytogenes gene_association.tigr_L
monocytogenes

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

M. capsulatus gene_association.tigr_M
capsulatus

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

M. musculus gene_association.mgi MRK_SwissProt_TrEMBL.rpt 
(MGI) & Iproclass.tb (PIR)

MGI ID → UniProt ID 
→ RefSeq ID

17-08-2007

N. sennetsu gene_association.tigr_N
sennetsu

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

O. sativa gene_association.grame
ne_oryza

Iproclass.tb (PIR) UniProt ID → RefSeq ID 14-08-2007
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Organism Gene association file Mapping file or fasta file used 
(Database)

Identifier mapping used Download 
date

P. aeruginosa gene_association.pseudo
cap

pseudomonas_aeruginosa_PA
O1_2007-06-19.fasta 

(PseudoCAP)

PseudoCAP ID → Blast 
against RefSeq

19-06-2007

P. syringae gene_association.tigr_Ps
yringae

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

R. norvegicus gene_association.rgd GENES_RAT (RGD) RGD ID → RefSeq ID 14-08-2007

S. cerevisiae gene_association.sgd orf_trans.fasta (SGD) SGD ID → Blast against 
RefSeq

14-08-2007

S. pompe gene_association.GeneD
B_Spompe

pompep (Sanger GeneDB) GeneDB_Spombe ID → 
Blast against RefSeq

14-08-2007

S. oneidensis gene_association.tigr_S
oneidensis

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

S. pomeroyi gene_association.tigr_S
pomeroyi

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

V. cholerae gene_association.tigr_V
cholerae

protein_tigr_annotation_20070
814.fasta (TIGR)

TIGR_CMR ID → Blast 
against RefSeq

14-08-2007

Table 3: Mapping between GO terms and RefSeq identifiers via database identifiers from the gene association files from 
Gene Ontology. The download date is the date when the mapping file respectively the protein fasta file have been  
downloaded.

Secondly an iterative Blast search (parameter: -e 1 -F F -m 8) against the RefSeq database is used 
and only putative orthologs and in-paralogs are extracted from the result instead of using a definite 
cutoff. Putative orthologs are defined as the first hit of each organism in the Blast result, if it has an 
overlap greater than 60% between query and hit. The score of this alignment is called “ortholog 
score”. Afterwards a Blast search is run with each candidate orthologous gene as query and all hits 
with a score greater or equal than the ortholog score are defined as further candidate orthologs and 
in-paralogs.  The  sequences  and  identifiers  of  these  proteins  are  then  stored  together  with  the 
original candidate orthologs from the first Blast search and the original query protein in a fasta file.

b) Pipeline implementations to assign Gene Ontology terms to genes
Pipeline used in the Medicago genome project
The pipeline used in the Medicago genome project to annotate GO terms to genes consists of two 
parts.  One  part  includes  a  workflow  which  first  searches  for  putative  homologous  genes  (see 
chapter  V2a),  aligns  their  amino acid  sequences  using  MUSCLE [Edgar  et  al.  2004],  builds  a 
phylogenetic tree using QUICKTREE [Howe et al. 2002], reconciles the phylogenetic tree with a 
species tree from the NCBI taxonomy database [Sayers et al. 2008] using FORESTER [Zmasek and 
Eddy 2001] and runs SIFTER (version 0.3) to propagate molecular function GO terms within the 
tree. To provide a PLI file as input for SIFTER, which includes genes and their corresponding GO 
terms,  GO terms  for  all  putative  homologous  genes  were  extracted  from the  AFAWE MySQL 
database (see figure 22). At the end of the workflow the predicted molecular function GO term with 
the highest score for the query gene are extracted from the SIFTER output and assigned to the query 
gene (this is the default setting in SIFTER). 
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The  other  part  of  the  pipeline  runs 
InterProScan to look for protein domains in 
the  query  sequence.  Afterwards 
InterPro2GO is applied to map GO terms. 
For this  approach InterProScan results  for 
all Medicago proteins computed at the JCVI 
institute (formally TIGR) were stored in the 
AFAWE MySQL database. In addition the 
InterPro2GO file was downloaded from the 
Gene Ontology website11 and GO terms for 
each found domain were stored in the same 
database. 

Results  from  both  SIFTER  and 
InterProScan were filtered by excluding GO 
terms  for  “molecular  function”  and 
“function  unknown”,  because  the 
information  content  of  these  terms  is  too 
low.  Afterwards  the  results  from  the 
SIFTER  pipeline  and  the  InterProScan 
approach  were  compared  to  find  out 
whether there is any overlap between them 
and  which  tool  performs  better  in 
specificity  and  number  of  annotated 
proteins. At the end the results were joined 
by  assigning  only  the  most  specific  GO 
terms returned from any of the two tools.

Improvement of the automatic functional annotation pipeline and implementation of a web 
service workflow
The SIFTER pipeline used in the Medicago genome project was improved in several ways to build 
a more comprehensive phylogenetic tree, which is used as input for SIFTER (see figure 7). On the 
one hand the homolog detection was improved (see chapter V2a) to get a most comprehensive gene 
neighborhood, on the other hand tools to build a multiple alignment between all homologs and to 
create a phylogenetic tree were replaced by more accurate tools.

Instead of MUSCLE, MAFFT [Katoh et  al.  2005] is  used in the new pipeline to build a more 
accurate and fast multiple sequence alignment from all discovered inparalogs and orthologs [Nuin 
et al. 2006] [Perrodou et al 2008]. By filtering out columns in the alignment with more than 60% 
gaps only conserved regions are extracted from the alignment. To speed up the phylogenetic tree 
building for big trees, but be as accurate as possible two different approaches are used to build the 
phylogenetic tree. If there are less than 20 proteins in the alignment PHYML [Guindon and Gascuel 
2003], a fast maximum likelihood approach is used. For more than 20 sequences BIONJ [Gascuel 
1997], a fast and accurate neighbor joining approach, is run. To reconcile the phylogenetic tree with 
a species tree and assign duplication and speciation nodes FORESTER [Zmasek, 2001] is used. 
SIFTER in version 0.3 is replaced by SIFTER version 1.2, which is  much faster  than the first 
version. Furthermore the SIFTER source code (version 1.2) was modified so that always the best 
three GO terms are returned for each gene in the tree instead of only one GO term.

11 http://www.geneontology.org/external2go/interpro2go
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truncatula genes.



Anika Jöcker Chapter V

To make the pipeline usable for other genome projects and make parts of it easily exchangeable, 
each step in the pipeline is implemented as a BioMOBY web service [The BioMOBY Consortium 
2008],  except  for  FORESTER  and  SIFTER,  which  are  combined  in  a  single  web  service. 
Furthermore  a  Taverna  workflow  (see  figure  8)  was  built  and  is  publicly  available  at  the 
MyExperiment website (http://www.myexperiment.org/tags/638). 
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Figure 7: New SIFTER pipeline. The goal was to improve the phylogenetic tree which is used as input for SIFTER. 

Figure 8: Taverna SIFTER workflow in MyExperiment.
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c) GO term annotation
Medicago genome project
The 20060904_imgag_protNONRED.fa fasta file, which includes protein sequences of all predicted 
Medicago genes in the first release of the Medicago genome (MT1.0), was downloaded from a 
secured website at the MIPS institute in Munich12. Each Medicago protein was extracted from the 
fasta file, stored in a separate fasta file and used as input for the Medicago SIFTER pipeline.

InterProScan was run at  the J. Craig Venture Institute in Washington DC. Because there was a 
problem with many false  positives  for  the PFAM family [Bateman et  al.  2002]  prediction,  the 
PFAM calculation was run again at the MIPS institute by Thomas Rattei. The former PFAM family 
analysis  was  updated  by  the  new  analysis  results.  InterPro  accessions  were  mapped  via  the 
InterPro2GO file to molecular function GO terms. The InterPro2GO mapping file was downloaded 
from the  Gene  Ontology website13 on  5  September  2006.  Mapped  GO terms  were  afterwards 
combined with predicted GO terms by the Medicago SIFTER pipeline.

Sorghum genome project
Protein sequences of the 27458 predicted Sorghum proteins were kindly provided as a fasta file by 
the MIPS institute in Munich, which is part of the Sorghum genome project. This file was split in 54 
different fasta files to run the SIFTER pipeline iteratively in parallel with each Sorghum protein as 
input. All results were stored in the AFAWE MySQL database to enable a fast evaluation of them.

InterProScan in combination with InterPro2GO was not used for the GO term annotation.

Tomato genome project
The amino acid sequence of the 9942 genes available in batch11 were downloaded on 27 May 2008 
from the SGN sFTP server at upload.sgn.cornell.edu. The improved phylogenomic pipeline with 
SIFTER (see chapter V2b) was run iteratively using the amino acid sequence of each gene as input.

InterProScan was run at the Imperial College in London and the results were uploaded to the SGN 
sFTP server. I downloaded the InterProScan results on 6. June 2008 from the SGN sFTP server and 
extracted all InterPro accessions predicted to the corresponding genes via a Perl script. Afterwards 
InterPro accessions were mapped via the InterPro2GO file, which was downloaded from the Gene 
Ontology website on 9. May 2008, to molecular function as well as biological process GO terms. 

Molecular  function  GO  terms  predicted  by  the  SIFTER  pipeline  and  by  InterProScan  in 
combination  with  InterPro2GO were  combined  by a  Perl  script,  written  to  a  separate  file  and 
uploaded again to the SGN sFTP server.

d) Comparison of the number of proteins annotated in the most general GO term 
categories
To get an overview of the number of proteins in the main Gene Ontology categories and to compare 
them with GO term annotated genomes from other species, a Perl script was implemented, which 
gets for each assigned GO term the second level GO term parent (GO categories below GO term 
“molecular function”) and counts the number of proteins for these categories. The same script was 
also used to count the number of proteins for each of the main “molecular function” GO categories 

12 http://mips.gsf.de/proj/medicago/secure/20060904_imgag_protNONRED.fa
13 http://www.geneontology.org/external2go/interpro2go
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in the  Arabidopsis thaliana, Oryza sativa, Rattus norvegicus, Homo sapiens  and  Mus musculus 
genome. GO term assignments for these species were extracted from annotation files provided from 
different institutes via the Gene Ontology website.

e) The accuracy of SIFTER
To determine the false discovery rate of the SIFTER workflow, the predictions of 100 Medicago 
proteins and 100 Sorghum proteins were manually checked. Stephan Schlößer, a practical student 
from the University of Cologne, helped with the manual annotation of the Sorghum proteins.

Blast searches against different databases (RefSeq [Pruitt et al. 2008] [Sayers et al. 2008], UniProt 
[UniProt 2007], nr [Sayers et al. 2008] and TAIR [Weems et al. 2004]) were run using an e-value 
cutoff  of  1.  Additionally  InterProScan  and  RPSBlast  against  the  Conserved  Domain  Database 
(CDD) [Marchler-Bauer  et  al.  2007]  were  run  to  search  for  conserved protein  domains  in  the 
Medicago proteins. GO terms, EC numbers and description lines from all Blast hits, InterProScan 
and RPSBlast results were compared with the predicted GO term by SIFTER. It is assumed that the 
predicted function of the corresponding Medicago protein is true, if the following criteria are true:

• The Medicago protein has a Blast hit in one of the databases with the following criteria

◦ overlap between query and hit > 80%

◦ functional description line of the hit protein is semantically the same as the predicted GO 
term or includes the predicted function and includes no “putative”, “like”, ”probable” or 
“similar to”

◦ predicted GO term is experimentally proven or reviewed for the hit protein

◦ query and hit protein have the same protein domains

◦ predicted function is shown to be true in the literature for the hit protein

• In InterProScan or RPSBlast results the Medicago protein has a protein domain, which has 
the same GO term as predicted by SIFTER or the predicted function is described in the 
functional description for one protein domain

• predicted function of the protein is published in the literature

Manually checked functions,  which  are  confirmed based  on these  criteria  are  annotated  to  the 
corresponding Medicago proteins.

f) Looking for genes, which are unknown in plants, but have been functionally 
characterized in animals
To find  genes  in  the  Medicago and the  Sorghum genome which  have  homologous  proteins  in 
animals but not in plants a Blastp search using all Medicago proteins and all Sorghum proteins as 
query against the UniProtKB database (release 9.0) was run. All Blast results were stored in the 
AFAWE MySQL (see  figure  22)  database  and  those  which  have  no  hits  to  model  plants  like 
Arabidopsis thaliana and Oryza sativa, but a significant hit (< e-5) to any other non-plant-organism 
were  automatically  extracted  by a  Perl  script.  These  candidate  genes  were  further  investigated 
manually by using the following criteria:

● query has no hit in plants in any other database (nucleotide database or protein database) 
using different Blast programs
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● found  domains  by  InterProScan  and  RPSBlast  in  the  query  are  also  included  in  the 
homologous genes in other organisms

● good sequence conservation between query and hit

Interesting  genes  were  classified  in  gene  families,  if  more  than  one  member  was  found. 
Additionally, for the Transferrin family, found in the Medicago genome, the evolutionary history 
was explored by investigation of a bootstrap phylogenetic tree for one conserved domain to increase 
the accuracy. All amino acid sequences were aligned using MAFFT [Katoh et al. 2005] (Parameters: 
--auto), transferred by a Perl script to the PHYLIP format and the alignment was used as input for 
seqboot from the PHYLIP package [Felsenstein 1993] to generate 100 bootstrap sequences. The 
bootstrapped  sequences  were  used  as  input  for  proml  [Felsenstein  1993]  to  build  maximum 
likelihood trees and these were combined using consense [Felsenstein 1993]. Homologous genes 
were extracted from published papers and from Blast results (The Blast search tool from the NCBI 
website [Johnson et al. 2008] was used) against the UniProt database [UniProt 2007] and against 
EST databases [Sayers 2008]. Domain positions were extracted by using InterProScan [Mulder and 
Apweiler 2007] and the amino acid sequence for the first domain was extracted by using extractseq 
from the EMBOSS package [Rice et al. 2000].

g) Verification of the gene prediction results in the tomato genome project
To verify the predicted gene structure on which the functional annotation relies and to explain 
functional prediction results, Blastp results of all tomato genes from batch11 against the TAIR7 
database [Weems et al. 2004], computed by members from the inter-disciplinary Centre for Plant 
Genomics in the department of Plant Molecular Biology at the University of Delhi, India, were 
downloaded from the SGN sFTP server. Tomato genes were counted, for which the overlap between 
query and best hit was below 50%, 60% and 70% using a self written Java program. The overlap 
was computed by using equation  1 (see chapter V2a). Some potentially wrongly annotated genes 
were manually inspected afterwards.
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3) Results

a) GO term annotation
GO term annotation in the Medicago genome project
13978 Medicago proteins could be assigned at least one GO term by using the Medicago SIFTER 
pipeline  and  InterProScan  in  combination  with  InterPro2GO.  4853  proteins  got  GO  term 
assignments only from InterProScan, 2183 proteins only from SIFTER and 6911 proteins from both 
tools (see figure 9).

A comparison of the number of annotated proteins in the main “molecular function” Gene Ontology 
categories from A. thaliana, O. sativa and M. truncatula revealed no significant conspicuities (see 
figure  10). Triplet codon amino acid adapter activity was only assigned by  A. thaliana, because 
tRNA genes were not included in the  M. truncatula and  O. sativa genome. There seem to be a 
difference between genes involved in binding processes between A. thaliana, M. truncatula and O. 
sativa.
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Figure 9: Comparison between InterProScan and SIFTER in number of annotated genes.
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By comparing the number of annotated genes in plant genomes with the number of annotated genes 
in  animal  genomes  I  found three  significant  differences.  One of  them is  the  number  of  genes 
annotated as signal transducer activity (see figure 10 and table 4). There are more genes in animals 
annotated with GO term signal  transducer  activity than in any plant  species.  In  Medicago 257 
proteins of the 512 annotated proteins in the category “signal transducer activity” got the GO term 
GO:0004888 (transmembrane receptor activity) assigned. 153 of the 257 have a coiled coil (CC), a 
nucleotide binding domain and a leucine rich repeat (LRR) domain and so are probably members of 
the family of disease resistance proteins. In 97 cases only the TIR domain was present. All genes 
show similarity to the Mal/TIRAP genes in human, which are not receptors. Mal/TIRAP genes are 
involved in the Toll-like receptor signaling pathway which is used in innate and adaptive immunity 
and are ubiquitously expressed in the cytoplasm [Brikos and O'Neill 2008] [Martin and Wesche 
2002] [Horng et al. 2001]. In Arabidopsis the number of disease resistance proteins and proteins 
which have only the TIR domain is 142. Another difference in the GO term analysis is the number 
of annotated genes with the GO term “nutrient reservoir  activity” (see table  4). The number of 
proteins annotated with that GO term seems to be increased in plants. The last difference concerns 
the GO category “enzyme regulator activity”. Here again the number of animal genes is slightly 
increased.

Because the annotation file from each organism is submitted from different institutes, the number of 
genes  with  experimentally  verified  or  reviewed  GO  terms  were  completely  different  for  each 
organism. The annotation files for the model organism A. thaliana and H. sapiens included the most 
experimentally verified or reviewed GO terms. By contrast the number of annotated genes in the R. 
norvegicus genome was very low (see table 4).
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Figure 10: Comparison between genomes of different species and the Medicago genome in number of annotated genes 
in the most general "molecular function" Gene Ontology categories. The number of genes (Y axis) is expressed as a  
percentage.
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GO term annotation in the Sorghum genome project
Using the new pipeline we were able to assign  15123  of the 27458 (~55%) predicted Sorghum 
protein coding genes up to three different GO terms. In contrast to the former pipeline, which took 
about three months for all 43616 Medicago genes to be finished, calculating all 27458 Sorghum 
genes, using the new pipeline, just took approximately two weeks by using 10 computenodes (dual 
processor) of the compute cluster.

The  comparison  between  the  number  of  genes  in  the  second  level  “molecular  function”  Gene 
Ontology categories in Sorghum, Arabidopsis, rice, mouse, rat and human revealed no conspicuities 
in  the Sorghum genome.  However,  it  is  remarkable  that  the number of  Sorghum genes  in  GO 
category “transcription regulator activity” is about two times higher than the number of genes in the 
Sorghum closest relative  Oryza sativa (see table  4). Also in the categories “molecular transducer 
activity” (new parent of “signal transducer activity” in the GO graph) and in “structural molecule 
activity” there are more Sorghum genes annotated with that category than in rice. In contrast the 
number of rice genes in category “nutrient reservoir activity” is approximately six times higher than 
in Sorghum. And also in  category “motor  activity” the number of rice  genes in higher  than in 
Sorghum.
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Figure 11: Comparison of the number of genes in the most general "molecular function" Gene Ontology categories 
between different organisms.
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GO category Medicago 
truncatula

Sorghum 
bicolor

Oryza 
sativa

Arabidopsis  
thaliana

Mus 
musculus

Humo 
sapiens

Rattus  
novegicus

Number of annotated 
genes 13947 15123 13330 17396 16187 29030 9931

catalytic activity 7708 6978 8102 8362 5703 10559 3184

binding 8759 7370 7741 6828 10734 19177 6077

transcription regulator 
activity 1072 1388 648 2314 1231 2127 923

transporter activity 1032 1244 1206 1511 1326 2494 1014

nutrient reservoir 
activity 96 11 60 37 0 0 0

structural molecule 
activity 466 702 470 539 780 1607 407

molecular transducer 
activity 512 390 230 299 3176 3597 2400

motor activity 75 37 66 109 157 301 76

antioxidant activity 104 175 231 142 56 76 43

auxiliary transport 
protein activity 4 7 1 1 13 33 51

chaperone regulator 
activity 1 1 0 0 1 6 4

chemoattractant 
activity 0 0 0 0 1 5 4

chemorepellant 
activity 0 0 0 0 4 0 3

energy transducer 
activity 0 0 0 0 0 0 0

protein tag 1 10 0 0 1 0 0

translation regulator 
activity 91 84 75 159 138 215 60

triplet codon amino 
acid adapter activity 0 0 0 688 28 0 2

metallochaperone 
activity 0 3 0 0 0 0 0

enzyme regulator 
activity 297 252 188 236 650 1182 443

Table 4: Number of genes in the most general "molecular function" GO categories of M. truncatula, S. bicolor, O.  
sativa, A. thaliana, M. musculus, H. sapiens and R. norvegicus

GO term annotation in the Tomato genome
1915 tomato genes (~19%) were annotated with up to three molecular function GO terms by using 
the  improved  SIFTER  pipeline.  In  comparison  to  that,  InterProScan  in  combination  with 
InterPro2GO annotated molecular function GO terms to 3050 proteins (~31%). By combining the 
results  from both  analyses  3478 genes  (~36%) could be functionally annotated with molecular 
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function GO terms. 2102 (~21%) tomato genes were annotated with at least one biological process 
GO term.

GO category molecular function Number of Tomato genes

Catalytic activity 1889

Binding 2401

Transcription regulator activity 240

Transporter activity 252

Nutrient reservoir activity 9

Structural molecule activity 80

Molecular transducer activity 78

Motor activity 20

Antioxidant activity 46

Auxiliary transport protein activity 2

Chaperone regulator activity 1

Protein tag 1

Translation regulator activity 8

Enzyme regulator activity 55

Table 5: Number of genes annotated in the most common molecular function Gene Ontology categories by the 
phylogenomic pipeline with SIFTER and InterProScan in combination with InterPro2GO.

The number of genes in the most general molecular function GO categories is shown in table 5 and 
the number of genes in the common biological process GO categories is shown in table 6.

In most biological process GO categories at least one gene is present, except for the categories “Cell 
killing”, “Growth”, “Pigmentation” and “Rhythmic process”.

GO category biological process Number of Tomato genes

Biological adhesion 1

Biological regulation 304

Cell killing 0

Cellular process 1521

Development process 51

Establishment of localization 297

Growth 0

Immune system process 7

Localization 300

Metabolic process 1626

Multi-organism process 13

Multicellular organismal process 6

Negative Regulation of biological process 2

Pigmentation 0

Positive Regulation of biological process 1
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GO category biological process Number of Tomato genes

Regulation of biological process 255

Reproduction 9

Reproductive process 9

Response to stimulus 139

Rhythmic process 0

Viral reproduction 6

Table 6: Number of genes annotated in the most common biological process Gene Ontology categories by 
InterProScan in combination with InterPro2GO.

The distribution of the number of genes in the most general molecular function GO categories is 
approximately the same as for other plant genomes (see figure 12).

To 6329 genes no GO term (molecular function as well as biological process) could be annotated.

b) SIFTER accuracy
Accuracy of SIFTER using the Medicago pipeline
I could identify three Medicago genes with wrong annotations made by SIFTER (see table 7).
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Figure 12: Comparison between the number of genes in the most general Gene Ontology categories from different  
plants.
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Gene identifier SIFTER annotation Manual annotation

AC144389_35.2 cytochrome-c oxidase activity Cytochrome b5

AC149803_8.2 flavonol synthase activity ACC oxidase

AC149131_5.2 retinal dehydrogenase activity NAD dependant epimerase

Table 7: Wrong annotations made by SIFTER.

AC144389_35.2 was assigned a wrong GO term, because a homologous protein from human has a 
wrong  GO  term  annotation  (cytochrome-c  oxidase  activity  instead  of  Cytochrome  b5)  with 
evidence code TAS (Traceable author statement). In case of AC149803_8.2 and AC149131_5.2 GO 
term “flavonol synthase activity” and GO term “animal retinal dehydrogenase” assigned to proteins 
inside the phylogenetic tree were experimentally verified or published in a paper and therefore got a 
higher probability than GO term “3-ketoacyl-(acyl-carrier-protein) reductase” (See figure  13) and 
GO term “oxidoreductase activity” which are only reviewed (evidence code ISS) and are annotated 
to the NAD dependant epimerase proteins. Furthermore the GO term “oxidoreductase activity” is 
the  parent  of  the  “animal  retinal  dehydrogenase”  GO term and  is  therefore  not  considered  as 
candidate function by SIFTER.

Another problem is, that SIFTER assigns only one GO term for each protein, so many proteins  lack 
GO  terms.  However,  SIFTER  was  in  25%  more  specific  than  the  assigned  human  readable 
description and achieved an accuracy of 97%, which was better than running a simple Blast search 
(94% accuracy). InterProScan assigned in all cases right GO terms, but these were very general.

Accuracy of SIFTER using the improved pipeline
By using the improved SIFTER pipeline for the GO term annotation of the 100 tested Medicago 
genes, the prediction accuracy could be increased to 100%.

However, by comparing the assigned manual annotation of 100 Sorghum protein coding genes with 
the predicated GO term by SIFTER, GO terms with the best probability of seven Sorghum genes 
were wrong (see table 8). Three of them are structure proteins and signaling proteins, which have 
many low complexity regions in their sequence and therefore many wrong homologs have been 
found in  the  first  step  of  the  pipeline.  Another  problem was,  that  a  homologous  gene  of  one 
Sorghum protein  has  a  wrong  annotation  assigned  by  traceable  author  statement.  This  wrong 
annotation led to a wrong annotation of the Sorghum protein. Further problems were missing GO 
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Figure 13: Wrong prediction made by SIFTER in case of Medicago gene AC149131_5.2.
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terms and the transfer of GO terms which were experimentally verified or reviewed by an author, to 
all leaves (proteins) in the whole phylogenetic tree. 

The GO terms of 18 Sorghum proteins with the lowest probability calculated by SIFTER were also 
wrong. But except in one case, the probability of the wrong assigned GO terms was lower than 0.4.

Sorghum identifier Predicted GO term Manual annotation

Sb01g032650 extracellular matrix constituent 
conferring elasticity

Copper transport protein ATOX1-related.

Sb04g020710 retinol dehydrogenase activity 11BETA-Hydroxysteroid dehydrogenase

Sb03g017580 NADH dehydrogenase activity Cytochrome b

Sb01g038400 citrate transporter activity Mitochondrial succinate-fumarate transporter

Sb10g029800 extracellular matrix constituent 
conferring elasticity

Unknown transcription factor with 
heterodimerization activity

Sb10g027460 GABA-A receptor activity Plastocyanin-like domain containing protein

Sb04g023830 protein homodimerization activity aldose 1-epimerase

Table 8: Sorghum genes, for which the best predicted GO term is wrong.

c) Non-plant specific genes
Non-plant specific genes in Medicago
I could identify four proteins in the Medicago genome with no significant hit to Arabidopsis and 
rice, but hits to animals like human, mouse and rat. One of them (AC174375_1.1) is a putative 
DNA topoisomerase. Because the best hits are to genes of Plasmodium, this protein could be a 
horizontal gene transfer from protozoa.

The other  three proteins  (AC126015_39.1,  AC153430_18.1 and AC153430_10.1)  belong to  the 
transferrin  protein family,  which is  not  known in higher plants  yet.  Members of the transferrin 
family  are  widely  distributed  in  all  kinds  of  organisms  (except  fungi).  They  are  glycosylated 
proteins that transport iron from plasma to cells or help regulate iron levels in biological fluids. 
Many different subfamilies are known [Lambert et al. 2005]. They all share the same iron binding 
transferrin domain, but most of them have two or three transferrin domains that resulted from a 
gene duplication event occurring around 850 Mya [Park et al. 1985]. Besides the well known serum 
transferrin  in  animals  members  of  that  family  are  also  found in  insects  [Huebers  et  al.  1988] 
[Kurama et al.1995] [Thompson et al. 2003], sea urchins (mayor yolk proteins (MyP)) [Brooks and 
Wessel 2002] and in Duniella algae [Fisher et al. 1997] [Fisher et al. 1998].

One  of  the  three  Medicago  transferrins  (AC153430_18.1)  was  excluded  from further  analysis, 
because almost the whole transferrin domain was not yet sequenced. The other two transferrin like 
genes have one complete, well conserved transferrin domain. By comparing their protein sequences 
it was found that these genes are 100% identical and so it is assumed that they are actually the same 
gene and are redundant in our input dataset. Both genes are located on two different BACs.

After running Blast searches against different EST databases (see chapter V2f) further members of 
the transferrin family in plants were detected in Citrus clementina, Picea glauca, Picea sitchensis, 
Amborella  trichopoda,  Adiantum capillus-veneris  and Pseudotsuga menziesi.  Transferrin  family 
members were also discovered in the cyanobacteria Anabaena variabilis and Nostoc sp..
Lambert et al. published a comprehensive phylogenetic tree with 71 transferrin family sequences 
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from 51 species [Lambert et al. 2005]. They assumed that the transferrin members in algae may 
represent a horizontal gene transfer event, because they clustered quite well with transferrin-like 
sequences from insects. To find out where in the phylogenetic tree the all plant transferrin proteins 
fit, all available sequences from Lamberts et al. were used together with the Medicago proteins to 
build the tree again. To increase the accuracy of the tree, only the first transferrin domain from each 
protein was used (for material and methods see chapter V2f). 

As shown in figure  14 all  plant  transferrins,  including the Medicago proteins (AC153430_1 & 
AC126015_3), are in the same subtree as the MyP proteins from sea urchins, proteins from insects, 
proteins from algae and cyanobacteria transferrins. Plant transferrins split into three subgroups. One 
subgroup includes  transferrins  of  all  Picea species  and  Pseudotsuga menziesii,  these  organisms 
belong to the Gymnosperms [Palmer et al. 2004] [Farjon et al. 1991]. The second subgroup contains 
transferrins from Citrus clementina  and  Medicago truncatula, which belong to the Angiosperms.  
The third subgroup includes only the transferrin protein from the fern  Adiantum capillus-veneris. 
The  fern  transferrin-like  genes  seem  to  be  the  evolutionary  oldest  genes  in  comparison  to 
Angiosperm and Gymnosperm transferrin-like genes, because they are in the phylogentic tree close 
to algal and cyanobacterial transferrins. Angiosperm transferrin genes are in comparison to fern and 
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Figure 14: Phylogenetic tree of the first transferrin domain of proteins from Lambert et al. and transferrin proteins  
found in plants and cyanobacteria. Please note that this is an unrooted tree and has no branch lengths.
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Gymnosperm transferrin-like genes the most evolved genes (see figure 14). This fits well with the 
plant tree of life described in [Palmer et al. 2004]. 

The whole plant, insect, sea urchin, insect, algae and cyanobacteria transferrin subfamily looks most 
related to Melanotransferrins, which are assumed to be the oldest vertebrate transferrins [Baldwin et 
al. 1993]. 

The  phylogenetic  tree  of  plant,  insects,  algae,  cyanobacteria  and  sea  urchins  reflects  the 
evolutionary history from primitive old organisms (e.g.  algae,  cyanobacteria or ferns) to higher 
evolved, younger organisms like Angiosperms and insects.

Non-plant specific genes in Sorghum
14 Sorghum genes were defined as “non-plant-specific”, because they show a high similarity with 
genes  in  non-plant  organisms (see  table  9).  Three  of  them  (Sb07g002440,  Sb06g031470  and 
Sb06g019820) could be horizontal gene transfers from bacteria, because besides hits to rice, moss 
(Physcomitrella patens) and the common grape vine (Vitis vinifera), the best Blast hits are from 
bacteria. Sorghum genes Sb03g04600 (possible F-Box protein), Sb08g005120 and Sb01g048230 
(calcium binding protein) had hits in plants, but not in Arabidopsis. In contrast genes Sb04g004130, 
Sb06g028290 and Sb05g006000 do not have any hits in plants, but share similarity with animal 
genes and Drosophila genes. One gene (Sb01g003920) could be a transposon and the other four 
genes seem to be annotation errors, because in an alignment with Arabidopsis, genes with the same 
assigned function aligned in some regions very well.

Sorghum 
identifier

Hits in plants Horizontal  
gene 

transfer?

Manual functional annotation Putative  
annotation 

error?

Sb07g002440 Yes, in Oryza 
sativa,Vitis  
vinifera and 

Physcomitrella  
patens 

yes ATP-DEPENDENT CLP PROTEASE no

Sb06g031470 Yes, in Oryza 
sativa, Vitis  
vinifera and 

Physcomitrella  
patens 

yes unknown protein Cupin 4 no

Sb06g019820 Yes, in Oryza 
sativa and Vitis  

vinifera

yes Beta-ketoacyl synthase no

Sb03g043600 Yes, but no hits to 
Arabidopsis genes

no Putative F-Box no

Sb08g005120 Yes, in Oryza 
sativa and Vitis  

vinifera

no Similarity to human Mature T-cell proliferation no

Sb01g048230 Yes in Vitis  
vinifera, Populus 

and Picea 
sitchensis

maybe Calcium binding protein with two EF-hands no

Sb01g003920 Yes, but low 
significance hits to 

Arabidopsis. 

no Putative transposon no
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Sorghum 
identifier

Hits in plants Horizontal  
gene 

transfer?

Manual functional annotation Putative  
annotation 

error?

Better hits to 
Oryza sativa, Vitis  

vinifera, 
Olimarabidopsis 

pumila and 
plasmodium

Sb04g004130 no no Shows low similarity to human receptor genes 
and InterProScan predicts a signal peptide 

no

Sb06g028290 no no low similarity to human Pre-mRNA-splicing 
factor 38B 

no

Sb05g006000 no no Similarity to drosophila Papilin precursor no

Sb01g026250 Yes no UBIQUITIN poly protein yes

Sb06g017200 Yes, but no hits to 
Arabidopsis genes

no DNA-DIRECTED RNA POLYMERASE yes

Sb06g021110 Yes, low 
significance hits to 

rice and 
Arabidopsis 

no Similarity to drosophila and "Skin secretory 
protein xP2 precursor protein" of Xenopus laevis 

yes

Sb08g013610 no no ADP ribosylation factor yes

Table 9: Non-plant specific genes found in the Sorghum genome

d) Validation of the gene prediction results in the Tomato genome project
To check if the reason for the low number of annotated Tomato genes by SIFTER is poor gene 
prediction, a Blast search against the Arabidopsis genome was evaluated (see Material & Methods 
section). By checking the overall overlap between query and hit approximately 30% of all tomato 
genes have an overlap smaller than 60% between the amino acid sequence of the tomato gene and 
the best Blast hit (see table  10). Furthermore 2785 tomato genes (28%) have an overlap between 
query and hit sequence below 60% at an identity greater than 30% and an expectation value below 
e-5. However, by comparing the frequency of alignments where the tomato gene has the greater 
overlap compared to the Arabidopsis hit, it can be assumed that many tomato genes are truncated.

Criterion Number of genes

Overlap between query and best Blast hit < 50% 2670 (~27%)

Overlap between query and best Blast hit < 60% 3005 (~30%)

Overlap between query and best Blast hit < 70% 3327 (~33%)

Table 10: Number of tomato genes with an overall overlap smaller than 50%, 60% and 70% to the best matching 
Arabidopsis gene.
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Criterion Number of genes

Query overlap < 50% 505 (~5%)

Query overlap < 60% 836 (~8%)

Query overlap < 70% 1284 (~13%)

Table 11: Overlap between aligned region and query is smaller than the threshold, i.e. the tomato sequence is longer.

Criterion Number of genes

Hit overlap < 50% 2580 (~26%)

Hit overlap < 60% 2908 (~29%)

Hit overlap < 70% 3213 (~32%)

Table 12: Overlap between aligned region and hit is smaller than the threshold, i.e. the tomato sequence is shorter.

4) Discussion
GO term annotation
I provided two automatic pipelines suitable for an accurate and fast automatic functional annotation 
in genome projects. Both pipelines were tested on the first release of the Medicago genome and the 
improved pipeline was further tested on the finished Sorghum genome and in the on-going tomato 
genome project. In comparison to the pipeline used in the Medicago genome project, the improved 
pipeline is reusable in other genome projects and can be easily modified.

Using the Medicago SIFTER pipeline in combination with InterProScan and InterPro2GO ~32% of 
the available Medicago proteins (~60% of the genome) could be annotated with GO terms. By using 
more than one functional analysis tool the number of annotated genes could be increased and the 
function of a protein could be further specified. The Medicago SIFTER pipeline was only able to 
annotate approximately 21% of all predicted Medicago genes. One possible reason for that could be 
the erroneous structural annotation of the Medicago genome and the not-finished assembly of the 
genomic sequence. A hint to that could be that many Medicago proteins (~17000) do not have a hit 
in any database with an overlap greater than 70% and the exon/intron boundaries and the open 
reading frame of many of them seem to be wrongly predicted by the gene finders. This problem 
could be solved by further training of the gene finders with manually curated gene models from M. 
truncatula. This manual curation effort could be done in a community approach [Thibaud-Nissen et 
al. 2007]. Another reason could also be that many genes are not detected in the genomic sequence 
of Sorghum (Underprediction). Maybe this result could be further improved by using more sensitive 
methods for the remote homolog detection like Hidden Markov Models (HMMs) [Durbin et al. 
1998]  (e.g.  FlowerPower  [Krishnamurthy  et  al.  2007])  or  a  profile  search  as  implemented  in 
PsiBlast [Altschul and Koonin 1998] and FastBlast [Price et al. 2008] using the query sequence as a 
template.  However,  this  may leads  (e.g.  in  case  of  HMMs) to  a  speed  reduction of  the  whole 
pipeline.

The improved SIFTER pipeline was much faster. One time-consuming step in both pipelines was 
the tree building process. To further speed up the pipeline, methods [Wapinski et al. 2007] which 
incorporate the query sequence in pre-built trees extracted from phylogenetic tree databases like 
PhyloFacts [Glanville et al. 2007] and TreeFam [Li et al. 2006] [Ruan et al. 2008] should be used. 
Unfortunately such databases are as yet rare for plants.

In batch11 of the tomato genome project I was able to annotate 3478 (~35%) of the predicted 9942 
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tomato genes with at least one molecular function GO term and 2102 tomato genes (~21%) with at 
least one biological process GO term. 
The improved SIFTER pipeline was able  to  annotate  only 1915 tomato genes.  InterProScan in 
comparison was able to annotate many more tomato genes (3050 (~31%)). This could have several 
reason. One explanation could be that the gene prediction is  poor.  A hint to that  could be that 
approximately 30% of all genes have an overlap of less than 60% with the best Blast hit. 28% of 
these have a sequence identity greater than 30% and an expectation value below e-5. The overlap 
was used in the pipeline to separate homologous genes from non-homologs and it seems that many 
homologous genes could not be detected. In this case InterProScan has the advantage that it is able 
to annotate also incomplete or over-predicted genes, because it just looks for protein domains or 
motifs in the sequence and does not consider the whole gene structure. Furthermore some tools (e.g. 
Hidden Markov Model search) integrated in InterProScan are more sensitive than Blast. I assume 
that many gene predictions are too short or split into two genes by the gene finder, because the 
alignment covers > 60% of the query, but below 60% of the hit. Also the tomato genes I checked 
manually confirmed that. One way to deal with this in the SIFTER pipeline could be to lower the 
cutoff.  However,  this  would  introduce  many  non-homologous  genes  and  would  lead  to  false 
annotations.

Another reason for the low number of annotated tomato genes could be that many tomato genes are 
shorter than the homologous Arabidopsis genes. However, there is no evidence that this could be 
true. But maybe many tomato genes are not included in the Arabidopsis genome and therefore the 
best Blast hit is not even a homologous gene. In this case also the overlap between the tomato 
sequence and the Arabidopsis sequence would in most cases be low and this is not the case in the 
evaluation of the Blast result and most tomato genes show a high sequence conservation to the best 
matching Arabidopsis gene.

SIFTER accuracy
By using  the  Medicago  SIFTER pipeline  the  false  discovery  rate  for  100  manually  annotated 
Medicago proteins was only 3% and SIFTER was in 25 cases more specific than the assigned 
human readable annotation. The false discovery rate can be further increased to 100% by using the 
improved  SIFTER  pipeline.  The  difference  between  the  results  can  be  explained  by  the  more 
comprehensive phylogenetic tree provided by the improved SIFTER pipeline. By looking only for 
putative homologs in a database with genes, which have an experimentally verified or reviewed GO 
term,  the  final  phylogenetic  tree  is  in  many cases  incomplete.  Several  in-paralogous  genes  in 
Medicago may also be missing, because the sequencing progress of Medicago is still in progress 
(status 2007). So forester assigned in several trees wrong duplication and speciation nodes, which 
can lead to wrong annotations. But these results indicate that SIFTER is able to assign specific GO 
terms to genes with a low false discovery rate.

But also using the improved SIFTER pipeline, 18 Sorghum proteins of the Sorghum test set got 
wrong GO term annotations. The number of wrong annotations can be decreased to seven by 
applying a posterior probability cutoff of 0.4. In addition wrong GO term annotations for three of 
the seven Sorghum proteins could have been avoided by using the low complexity filter of Blast 
(parameter: -F T) for the iterative Blast search. This parameter was integrated afterwards in the 
pipeline to improve further predictions.

However,  I  detected  several  problems  using  SIFTER.  SIFTER  was  very  slow  in  version  0.3 
especially  for  huge  gene  families.  If  there  were  only  few GO terms  with  low evidence  level 
available for proteins inside the phylogenetic tree SIFTER tends to wrong annotations. Another 
problem was, that SIFTER assigned only the GO term with the highest  probability.  This is the 
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default behavior in SIFTER, but can be changed by editing the source code. 

Comparison between the number of genes annotated in the most general molecular function 
GO categories
A comparison of the percent of genes from A. thaliana,  O. sativa,  and M. truncatula annotated in 
the  most  general  molecular  function  GO  categories revealed  no  significant  conspicuities. 
Differences  in  the  category “binding”  and  “catalytic  activity”  are  nothing  out  of  the  ordinary, 
because A. thaliana has a very small genome size (~125Mbp) compared with M. truncatula (~454 
to 526 Mbp) and  O. sativa (~430 Mbp). One of the reasons for that difference could be whole 
genome duplication events [Goff et al.  2002]. But the absolute number of genes annotated with 
“signal transducer activity” is increased in Medicago in comparison with Arabidopsis. Most of the 
genes annotated in this category could be identified as disease resistance genes or Mal/TIRAP like 
genes, which are involved in the innate and adaptive immunity.  This could indicate that  in the 
Medicago genome more disease resistance related genes are present as in Arabidopsis, but because 
at this time (October 2006) the assembly of the Medicago DNA sequences is not finished, some of 
the genes could be redundant in the initial genome set. 

In the Sorghum genome differences between Sorghum and its closest relative  O. sativa could be 
discovered.  However,  because  GO terms  from  O. sativa were  not  predicted  by SIFTER,  these 
differences might be caused by the difference in method. This could be corrected by running the 
pipeline with O. sativa as input and comparing the results to Sorghum.

In the case of the tomato genome project most GO categories are present in the batch11 set and 
therefore the distribution of the percentage of genes annotated to the general GO categories is quite 
representative for the whole tomato genome.  However  many genes  in  the GO categories “Cell 
killing”, “Growth”, “Pigmentation” and “Rhythmic process” are missing and the absolute number 
of genes in the categories is not comparable to other plants.

Significant differences were found by comparing the GO term annotations between animals and 
plant genomes. One difference is the number of genes annotated as signal transducer activity, which 
is increased in animals. But this must not necessarily mean that there is more signal transducer 
activity present  in  animals  than  in  plants,  because  genes  in  this  category are  well  explored  in 
animals (like neurotransmitter activity and receptor activity in brain), but not so well known in 
plants.  A further difference includes the category “nutrient reservoir  activity”.  I  assume that all 
animal genes annotated with this category are wrongly annotated, because all rat and human genes 
annotated  with  that  category  are  kinases  and  have  a  very  short  InterPro  domain  (InterPro 
ID:IPR000480)  annotated,  which  has  the  GO  term GO:0045735  (“nutrient  reservoir  activity”) 
assigned.  This GO term is  not experimentally verified in any animal protein.  Furthermore  Mus 
musculus proteins annotated with that GO term are phospholipases and the annotation was removed 
from the genes in future annotation files.

Non-plant specific genes
By looking for genes in the Medicago genome, which have homologous genes in any organism 
except plants, we could identify one topoisomerase, which seems to be a horizontal gene transfer, 
and three transferrin-like genes, which were not known in higher plants yet and are likely to belong 
to  the  same  transferrin  subfamily  as  insect  and  algal  transferrin-like  proteins.  Further  plant 
transferrins  could  be  found in  Citrus  clementina,  Picea  glauca,  Picea  sitchensis,  Pinus  taeda,  
Amborella  trichopoda,  Adiantum  capillus-veneris  and Pseudotsuga  menziesi.  Because  of  their 
similarity to insect and algal transferrin-like proteins, I propose that these proteins in higher plants 
could play a role in the innate immune response against bacteria and fungi. Iron deprivation, as a 
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result of iron binding proteins like transferrins, prevents the formation of a bacterial biofilm and 
makes bacteria nonresistant to innate immune defense or antibiotics [Ong et al.  2006]. In some 
insects it is shown that transferrin-like genes are up-regulated during infection [Valles and Pereira 
2005] [Thompson et al. 2003] and in Drosophila they have been shown to be primarily dependent 
on the Toll-pathway,  which is  an important  iron-withholding strategy [Boutros et  al.  2002].  To 
prove this assumption further investigation is needed.

The  phylogenetic  tree  of  plant,  insects,  algae,  cyanobacteria  and  sea  urchins  reflects  the 
evolutionary history from primitive old organisms (e.g.  algae,  cyanobacteria or ferns) to higher 
evolved, younger organisms like Angiosperms and insects. Therefore I suppose that transferrins are 
a very old gene family and the first transferrin protein came from a primitive, ancient organism 
living in the sea. Lambert et al. assumed that the ancient transferrin may have only one transferrin 
domain [Lambert et al. 2005]. All transferrin-like genes in higher plants have only one transferrin 
domain  and  so  this  domain  could  be  a  direct  descendant  of  the  ancient  transferrin  gene.  The 
duplication of that domain seems to be species family specific, because algae have three domains 
and insects and mammals have two transferrin domains. 

In all other publicly available plant genomes (including mitochondria and chloroplast) no hints to 
transferrins or transferrin pseudo genes could be found. This raises the question why transferrin-like 
proteins seem to be only included in some organisms. One explanation for that could be a selective 
advantage, but till now it is unclear what kind of advantage this could be. Also in this case further 
experiments could give answers to that question.

In Sorghum I identified 14 non-plant-specific genes, which had no best hit in any plant or had no 
good hits in the genome of the plant model organism A. thaliana. Three of them are very interesting, 
because they are putative horizontal gene transfers from bacteria or come from mitochondrium or 
chloroplast. Also a calcium binding protein, a putative F-Box protein and an unknown protein could 
be  identified,  which  are  also  found  in  rice,  Vitis  vinifera,  Populus  and  Picea  sitchensis.  The 
functions of these genes are also unknown in other plants and it would be interesting to find out 
how they have  evolved.  Another  three  proteins  did  not  have  hits  in  any plants,  but  show low 
similarity to human genes. For all of them no protein domain could be detected and they seem to be 
unknown proteins in plants. In this case it has to be proven if these genes are expressed in Sorghum.

However, four of the 14 identified non-plant-specific proteins in Sorghum seem to be annotation 
errors, which means that splice sites are wrong and/or genes are not complete. The reason for that 
could be that gene prediction tools used for the gene calling in Sorghum were not trained with 
Sorghum  genes  and  there  was  no  manual  verification  of  the  annotated  genes  afterwards.  If 
annotation errors are detected in the beginning these genes should be excluded from the function 
prediction, because they lead to errors.
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VI. An accurate phylogenomic tool for automatic function prediction

1) Introduction
Besides the introduction of automatic pipelines for the functional predictions of genes, an accurate 
functional prediction tool is needed. Accurate means on the the one hand that the sensitivity should 
be as high as possible, which denotes that the set of annotated functions is most comprehensive, 
while having on the other hand a very high specificity, which implies that most of the predicted 
functions are true.

I  have  shown  that  SIFTER  performs  very  well  in  the  prediction  of  molecular  function  Gene 
Ontology terms for M. truncatula and S. bicolor genes (see chapter V). With the introduction of a 
pipeline to build a most comprehensive phylogenetic tree, problems of SIFTER regarding the tree 
topology  could  be  solved  and  therefore  the  number  of  false  predictions  could  be  decreased. 
However, if only few genes in the phylogenetic tree have molecular function GO terms assigned, 
SIFTER is  not  able  to  distinguish  between functionally related  genes  and genes  with  different 
functions (see chapter V). Furthermore SIFTER only considers molecular function GO terms at the 
lowest level of the GO graph as candidate functions. Sister nodes of these terms are not considered. 
However, in comparison to animal genes, which have in many cases low-level GO terms annotated, 
GO terms annotated to plant genes are often more general [Kourmpetis et al. 2007]. This can result 
in wrong predictions if the plant GO term is a parent of the animal GO term, but the plant gene has 
actually not the same function as the animal gene. Furthermore the set of annotated functions is for 
many  genes  incomplete,  which  complicates  an  comprehensive  prediction  of  all  functions 
[Kourmpetis et al. 2007]. Another problem is that SIFTER is just able to predict molecular function 
GO terms. But because each ontology has its own strengths and weaknesses it would make sense to 
predict terms from more than one function ontology. Additionally it is important to consider more 
than one candidate function for one gene [Kourmpetis et al. 2007].

In the following chapter I will introduce an extended, more accurate version of SIFTER (SIFTER-
X), which uses additional functional attributes like domain information, interaction partners and 
different  ontology  terms  annotated  to  genes  in  the  phylogenetic  tree  to  calculate  a  functional 
mutation rate. This functional mutation rate is used to either slow down the SIFTER mutation (see 
chapter III1b) in case of same attributes and speed up the SIFTER mutation in case of different 
attributes. In addition to GO molecular function SIFTER-X is also able to predict GO biological 
process terms, EC numbers [Webb et al.  1992], MapMan bins [Thimm et al.  2004] and KEGG 
ontology terms [Kanehisa et al. 2008]. To compare SIFTER and SIFTER-X and to calculate the 
accuracy of SIFTER-X both tools were tested on the photolyase/blue-light photoreceptor family and 
on a curated test set of 232 A. thaliana genes.

Photolyases are involved in UV-damaged DNA repair and are present in many species. Blue-light 
photoreceptors, also known as cryptochromes, regulate growth and development in plants and the 
circadian clock in animals. They are related to photolyases but have no photoreactivation activity 
and they are not involved in DNA repair [Malhotra et al. 1995] [Sancar 2003] [Hsu et al. 1996]. It is 
shown for the Cryptochrome1 in A. thaliana (CRY1) that the photoreceptor activity requires a light-
induced homodimerisation of the N-terminal CNT1 domains of CRY1 [Sang et al. 2005]. Of all 
blue-light receptor genes in plants only the genes in Arabidopsis are functionally well characterized 
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with ontology terms. Because of that and because these genes show a high sequence similarity to 
photolyase genes, they are often wrongly annotated. Other plant cryptochromes were discovered, 
among others, in  Brassica napus (UniProt:Q1JU52_BRANA) [Chatterjee et al. 2006],  Nicotiana 
sylvestris (UniProt:Q309E8_NICSY)  [Yendrek  and  Metzger  2005],  Solanum  lycopersicum 
(Q9XHD8_SOLLC  & Q93VS0_SOLLC)  [Ninu  et  al.  1999]  [Perrotta  et  al.  2000]  and  Pisum 
sativum (Q6YBV9_PEA, Q6EAN1_PEA) [Platten et  al.  2005]. All  plant cryptochromes show a 
high sequence conservation to the cryptochrome genes from A. thaliana (>70% identity and >80% 
positives) and share the same domain composition.

A.  thaliana genes  were  chosen  as  the  second test  set,  because  A.  thaliana is  the  best  studied 
organism in plants and therefore most genetic and functional data is available for that organism. 
Currently most plant genes get functional annotations by comparison with A. thaliana genes. At the 
moment  (status  11/2008)  91934  of  the  112153  GO  terms  annotated  to  Arabidopsis  genes  are 
experimentally verified or curated [Gene Ontology 2008].

2) Materials & Methods

a) Collecting additional functional attributes available for genes in the phylogenetic tree
Additional functional attributes have been collected from different sources by using web services 
provided by different institutes. To integrate them into the so-called PLI file, an XML file which is 
used  as  input  for  SIFTER and  includes  all  genes  in  the  phylogenetic  tree  together  with  their 
functional annotations, the PLI file was extended by the XML elements described in table 13 and 
Java classes have been written to parse it within the SIFTER-X framework.

XML Element Children elements Former XML element Description

GONumberMF Term, Evidence GONumber Annotated molecular 
function GO term. Includes 

GO id and GO evidence 
code

GONumberBP Term, Evidence - Annotated biological 
process GO term. Includes 
GO id and GO evidence 

code

KONumber Term, Evidence - Annotated KO term. 
Includes KO term and KO 

evidence code

ECNumber Term, Evidence - Annotated EC number. 
Includes EC number and 

evidence code

MapManBin Term, Evidence - Annotated MapMan bin. 
Includes MapMan bin code 

and evidence code

Domain Accession - Accession number for the 
protein domain included in 
the gene (e.g. InterPro ID)

Interaction InteractionPartner - Physical interaction partner 
of the gene.

Table 13: New XML elements of the new PLI file used as input for SIFTER-X.
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To enable  a  fast  and  easy  PLI  file  generation,  a  program has  been  implemented  which  reads 
database accessions from the phylogenetic tree, runs different web services to get the additional 
information and includes this information in the PLI file. To get additional database accessions  for 
all genes and thereby enlarge the number of web services which can be used, the mapping service 
PICR from the European Bioinformatics Institute [Côté et al. 2007] is called in the beginning. 

Physical interaction partners and interacting molecules for each gene are retrieved from the IntAct 
web service [Hermjakob et al. 2004] and the BIND web service [Bader et al. 2003], whereas the 
DBFetch web service [Labarga et al. 2007] is run to get the UniProt entry [UniProt 2007] for each 
gene, from which InterPro identifiers [Hunter et al. 2008] and EC numbers are parsed. The KEGG 
web service bconv [Kanehisa et al. 2008] is used to get KEGG database identifiers for each gene 
which are used to call the get_ko_by_gene web service [Kanehisa et al. 2008] to get KO terms. 
MapMan  bins  are  fetched  via  the  BioMOBY web  services  getBinCodeByUniProtKB_id  and 
getBinCodeByAGI  provided  by  the  MapMan  consortium  [Thimm  et  al.  2004].  GO  terms  for 
molecular  function  and  biological  process  are  collected  from  the  BioMOBY 
getGOTermByDatabaseID web service provided at  the Max-Planck Institute  for Plant  Breeding 
Research. This web service provides GO terms for genes from annotation files provided at the Gene 
Ontology website14.

b) Extension of the SIFTER algorithm (SIFTER-X)
For  SIFTER-X only the  propagation  step  without  the  maximum likelihood  approach  has  been 
extended [Engelhardt et al. 2005], because running SIFTER with the maximum likelihood setting is 
not suitable for genome projects due to the long running time. The SIFTER algorithm was extended 
in three ways.  As the first  step we included the functional  mutation rate (FMR) to  change the 
mutation rate within the SIFTER framework, which in the former SIFTER version relies only on 
the branch length between nodes in the tree and the evolutionary event that occurred at this node (if 
it is a duplication or a speciation node) (see chapter III1b). The FMR is calculated separately for 
each function set (MapMan bin, EC number, GO molecular function, GO biological process, KO 
term, protein domains, physical interaction partners) and the overall functional mutation rate at each 
intermediate node in the tree is the average of all calculated FMRs. 

To calculate the FMR for one function set, each node in the tree is expressed as a vector in which 
each position indicates the frequency of a functional attribute in the descendant tree of this node or 
in case of a leaf the number of a functional attribute available for a certain gene. Each vector is 
normalized afterwards to length 1 by applying equation 2 to all vector elements xi. 

Equation 2: Function set vectors x are normalized to length 1.

The FMR at node M for a certain function set is calculated in case of ontology terms by using the 
euclidean distance between the vectors of the children nodes X and Y of M (see equation 3). To take 
care of parent-child relationships between ontology terms, vector elements which are 0 are replaced 

14 http://www.geneontology.org/GO.current.annotations.shtml
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by the frequency of the related term if there is a parent-child relationship between the corresponding 
ontology terms.

Equation  3:  Euclidean distance between vector x  
and vector y.

To compute the functional mutation rate for the protein domains the maximum distance is used (see 
equation 4) instead of the euclidean distance, because missing domains are often linked to change of 
function  [Kriventseva  et  al.  2003]  and  the  maximum distance  weights  differences  higher  than 
similarities. 

Equation  4:  Maximum distance  between  vector  x  
and vector y.

In case of the functional mutation rate of interaction partners it is just considered if at least one of 
the  interaction  partners  assigned  to  the  children  nodes  is  equal  for  both  children  nodes  or  all 
interaction partners are different. This approach is based on the assumption that some interaction 
partners are not discovered yet and the error rate is high [Grigoriev 2003]. Because each database, 
which  includes  physical  interaction  data,  returns  different  database  accessions  for  interacting 
proteins, all  interactions were first  classified in four classes according to the available database 
accessions:

• Small molecule names

• GI number

• Arabidopsis locus code identifier (AGI)

• UniProt ID

To enable  a fast  computation of the functional mutation rate  within the SIFTER-X framework, 
database  accessions  are  not  mapped  to  each  other  and  each  set  of  accessions  is  considered 
separately as one function set. If at least one interaction partner is equal for both children nodes, the 
functional mutation rate is 2, because I assume that these nodes have same or overlapping functions. 
If all interaction partners are different, the functional mutation rate is 0. Only interaction partners of 
the same organism are considered.

At the end, the FMR calculated by the euclidean or maximum distance is further normalized to a 
value in range 0 to 2 and the FMR for all function sets (average of all FMRs) is multiplied with the 
former mutation rate based on branch length and evolutionary event (duplication/speciation) (see 
chapter III1b). A value for the FMR in the range 0 to 2 is chosen, so that in case of completely equal 
functional attributes the FMR is 0 and the mutation rate between nodes becomes 0, which means 
that functions can be transferred between nodes and both branch length and the evolutionary event 
is not taken into account anymore. In the other case, if all functional attributes for each function set 
are different, the FMR is 2, which results in doubling the mutation rate and so it becomes more 
unlikely that the function is transferred between nodes.

As the second step classes to parse the KEGG ontology, the EC number hierarchy, the whole Gene 
Ontology graph and the MapMan bin hierarchy have been implemented and parts of SIFTER have 
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been rewritten to be more general, to be able to predict other ontology terms and to make use of the 
relationships between terms for calculating the FMR. In SIFTER-X the user has the possibility to 
decide which ontology should be taken for the prediction process.

As the last step the pruning of the GO graph was changed in the way that nodes are not removed if 
one of their sister nodes is annotated to a protein inside the phylogenetic tree. In addition to that all 
annotated  ontology  terms  are  considered  as  candidate  functions  for  all  genes  to  deal  with 
incomplete  ontologies  and  non-specific  ontology  terms  annotated  to  genes.  To  reduce  the 
complexity of the SIFTER-X output only the most probable ontology term is given as output for the 
corresponding gene if two ontology terms are in a parent-child relationship.

c) Building the first test set “The Blue-Light Photoreceptor/Photolyase family”
The A. thaliana blue-light receptor Cryptochrome1 (RefSeq ID: NP_567341.1) was used as input 
for the iterative Blast search described in chapter V2a to search for in-paralogous and orthologous 
genes. Because the former database does not include all organisms, a WU-Blast search (version: 
2.0MP-WashU [04-May-2006]) [Gish 1996-2004] was run against the UniProt database (release 
14.0)  [UniProt  2007]  and  the  ten  best  hits  were  extracted  and integrated  in  the  set  of  family 
members  to  increase  the  number  of  plant  blue  light  photoreceptor  genes  in  the  family.  After 
removing redundant genes, a multiple sequence alignment of all candidate family members (see 
appendix)  was  built  using  MAFFT  (Version:  6.24)  [Katoh  et  al.  2005]  and  a  bootstrapped 
parsimony tree was built using seqboot, protpars and consense from the PHYLIP package (Version: 
3.65) [Felsenstein 1993]. To find out if the tree topology has any influence on the overall SIFTER 
and SIFTER-X result, the tree was re-rooted manually afterwards to connect the true root of the tree 
with the middle of the branch between photolyase family and cryptochrome family.

I assume that all Medicago truncatula, Oryza sativa, Vitis vinifera and Brassica campestris genes in 
the tree, which share the same subtree with the known plant cryptochromes in A. thaliana, Brassica 
napa,  Nicotiana  sylvestris,  Solanum  lycopersicum  and  Pisum  sativum are  also  cryptochromes, 
because they have a high sequence similarity to the known plant cryptochromes (see figure 15) and 
share the same protein domains.

d) Building a curated data set of A. thaliana genes
To test SIFTER-X on a well curated gene dataset, we decided on a test set of 232 randomly chosen 
A. thaliana proteins which have at least one experimentally verified or curated molecular function 
GO term assigned (see appendix)  and for  which  the phylogenomic  pipeline with  SIFTER (see 
chapter V2b) was able to predict at least one molecular function GO term. Because on the one hand 
the predicted GO terms were more specific than the annotated terms and on the other hand the 
predicted  terms  do  not  even  occur  in  the  annotation,  all  predicted  functions  by  SIFTER  and 
SIFTER-X  were  manually  checked  afterwards  by  using  sequence  comparison  and  published 
literature. For this the same criteria were used as for the Medicago dataset. (described in chapter 
V2e).
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e) Applying SIFTER and SIFTER-X on the test datasets
To apply SIFTER and SIFTER-X on the test datasets the pipeline described in chapter V2b was 
modified by running SIFTER and SIFTER-X with the following arguments:

• SIFTER arguments to generate family, scale and alpha files:

--familyfile <FILE> --scale <FILE> --alpha <FILE> --with-ic –with-iep –with-igi –with-ipi 
–with-iss –with-rca –with-tas –with-nas –generate –reconciled <TREE FILE> --ontology 
<function.ontology FILE> --protein <PLI FILE> FAMILYNAME

• SIFTER arguments to predict GO terms (using generated family, scale and alpha files):

--familyfile <FAMILY FILE> --scale <SCALE FILE> --alpha <ALPHA FILE> --with-ic –
with-iep –with-igi –with-ipi –with-iss –with-rca –with-tas –with-nas –generate –reconciled 
<TREE FILE> --ontology <function.ontology FILE> --output <SIFTER OUTPUT FILE> --
protein <PLI FILE>  --truncation 2 FAMILYNAME

• SIFTER-X arguments

--use-curated  –reconciled  <TREE  FILE>  --ontology  <ONTOLOGY TO  USE>  --output 
<SIFTER OUTPUT FILE> --protein <PLI FILE> --truncation 2 FAMILYNAME

For the Arabidopsis test set all ontology term annotations to the query proteins were removed in the 
beginning. While for the blue-light photoreceptor/photolyase family the predicted GO terms for all 
genes in the tree were taking into account, for the curated Arabidopsis gene set only predicted GO 
terms of the query Arabidopsis gene were used. SIFTER was modified so that all predicted GO 
terms are printed into the output file.

f) Evaluation of the SIFTER and SIFTER-X results
Equation 5: The Sensitivity is the ratio of True Positives (TP) over the sum of TPs and  
False Negatives (FN).

Equation 6: The Specificity is the ratio of True Negatives (TN) over the sum of TNs and  
False Positives (FP).

To calculate the sensitivity (see equation  5) and the specificity (see equation  6) of SIFTER and 
SIFTER-X for each posterior probability cutoff a Java program was written which iterates through 
the list of all predicted ontology terms and their corresponding posterior probabilities and checks if 
the predicted ontology term is present in the set of true ontology terms available for each gene (see 
chapter  VI2d)  or  not.  The  following  criteria  were  used  to  separate  True  Positives  (TP),  True 
Negatives (TN), False Positives (FP) and False Negatives (FN) for any predicted function F by 
applying a  certain cutoff:

TP: Gene has function F (or any child term of F) and posterior probability >= cutoff

TN: Gene has not function F and posterior probability < cutoff

FP: Gene has not function F and posterior probability >= cutoff

FN: Gene has function F and posterior probability < cutoff or true function is not predicted by 
the analysis program
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g) Evaluation of the Blast results
Blast does not predict functions, but often the functional annotation of the best Blast hit or of all hits 
with an e-value higher than a certain cutoff  are transferred to the query gene.  To calculate the 
sensitivity (see equation 5) and the specificity (see equation 6) for both approaches a NCBI-Blast 
(Version: 2.2.13) was run against  the manually built  RefSeq database described in chapter V2a 
using all genes in the curated Arabidopsis test set as query (see chapter VI2d). A Java program 
parses the Blast result, gets for all hits the molecular function GO term and the minimum e-value 
and counts the number of True Positive (TP), True Negative (TN), False Positive (FP) and False 
Negative (FN) GO terms by applying a certain e-value cutoff. The following criteria were used to 
count TPs, TNs, FPs and FNs:

TP: Gene has function F (or any child term of F) and e-value <= e-value cutoff

TN: Gene has not function F and e-value > e-value cutoff

FP: Gene has not function F and e-value <= e-value cutoff

FN: Gene has function F and e-value > e-value cutoff or true function is not predicted by the 
analysis program

The sensitivity and specificity was calculated for two scenarios. In the first case molecular function 
GO terms of all hits better than a given e-value cutoff are considered. In the second case only the 
best  hit  is  taking  into  account,  which  has  a  molecular  function  GO annotation.  Self  hits  were 
ignored.

3) Results

a) Application I: The Blue-Light Photoreceptor/Photolyase family

We tested SIFTER and SIFTER-X using the same phylogenetic  tree as  input  on the blue-light 
photoreceptor/photolyase  family  [Kanai  et  al.  1997].  Blue-light  photoreceptor  genes  are  often 
wrongly annotated by other tools, because they share four of five protein domains with photolyase 
genes  and  three  of  them  (IPR002081,  IPR006050,IPR005101)  have  GO  term  GO:0003913 
(photolyase  activity)  and  GO  term  GO:0006281  (DNA  repair)  assigned  from  InterPro2GO. 
However known blue-light photoreceptor genes have no photolyase activity and are not involved in 
DNA repair [Malhotra et al. 1995] [Sancar 2003] [Hsu et al. 1996].
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Prediction of molecular function GO terms and comparison with SIFTER

SIFTER was not able to distinguish between the different families and assigned in 6 of 16 cases 
(37,5%)  GO:0003904  (deoxyribodipyrimidine  photo-lyase  activity)  with  the  best  posterior 
probability (see green colored predictions of SIFTER in table 15) and in four cases with the second 
best posterior probabilities (see light blue colored predictions of SIFTER in table 15) to the blue-
light photoreceptor genes (see yellow colored boxes in figure 15). 

Only for three proteins (see light red colored predictions of SIFTER in table  15 and figure  15) 
SIFTER was able to predict the right functions (GO:0042803 (protein homodimerization activity), 
GO:0009882 (blue light photoreceptor activity) and GO:0004672 (protein kinase activity)) with the 
best  posterior  probability.  However  only  in  one  case  (NP_567341.1  (CRY1  from  Arabidopsis  
thaliana)) there was a significant difference of more than 0.1 between one of the true GO terms and 
the wrong GO term GO:0003904 due to the fact that GO:0004672, GO:0009882 and GO:0042803 
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Figure 15: SIFTER molecular function Gene Ontology annotation for the photolyase/blue-light photoreceptor family.  
Yellow, red, green and purple rectangles indicate which GO terms have been predicted with the best (first position from 
left to right), second best, third best and fourth best posterior probability. A cutoff of >=0.1 was used. This figure was 
taken from Jöcker et al. 2009.
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were already annotated to this protein with the evidence codes IDA (Inferred from Direct Assay), 
IMP (Inferred from Mutant Phenotype) and  IPI (Inferred from Physical Interaction) respectively 
and so these GO terms get for this node a very high initial probability. In comparison to that all 
photolyase proteins received the right GO term GO:0003904 with a probability greater than 97%.

However, there is one protein domain (IPR014134) detected by InterProScan which is not found in 
the photolyase family.  Furthermore in the blue-light photoreceptor family all  Arabidopsis genes 
(NP_567341.1 (Cryptochrome 1) & NP_171935.1/NP_849588.1 (Cryptochrome 2)) have the same 
MapMan  bin  (30.11  (signalling.light))  assigned  and  share  the  same  interaction  partners 
(AT2G32950,  AT2G18790).  In the photolyase family all  members have a  KO term assignment 
(K01669)  and  some  also  have  the  EC  number  4.1.99.3  (deoxyribodipyrimidine  photo-lyase) 
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Figure 16: SIFTER-X molecular function Gene Ontology annotation for the photolyase/blue-light photoreceptor family.  
Yellow, red, green and purple rectangles indicate which GO terms have been predicted with the best (first position from 
left to right), second best, third best and forth best posterior probability. A cutoff of >=0.1 was applied. This figure was 
taken from Jöcker et al. 2009.
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assigned. Because of this additional information SIFTER-X was able to distinguish between the 
different families and assigned term GO:0003904 with a high posterior probability (0.99) to all 
photolyase genes and with the lowest posterior probability to all blue-light photoreceptor genes (see 
table  15 and figure  16). In 10 out of 14 cases of the blue-light photoreceptor genes (see yellow 
colored results in table 15 and figure 16) the predicted posterior probability for all true GO terms 
was  higher  than  0.1  and  for  the  wrong  GO terms  below  0.1.  However,  SIFTER-X  predicted 
GO:0009882 (blue light photoreceptor activity) for 10 proteins with a probability smaller than 0.2. 
The reason for that was that GO:0009882 was annotated to just two proteins (NP_171935.1 and 
NP_567341.1). For protein NP_171935.1 GO:0009882 was annotated with the evidence code ISS 
(Inferred from Sequence or Structural Similarity), which means that the function was reviewed, but 
not experimentally verified and therefore was initialized with a very low probability of 0.4 to be 
true. NP_567341.1 had GO:0009882 annotated with IMP (Inferred from Mutant Phenotype), which 
got an initial probability of 0.8. 

GO term GO term name Cryptochrome1 Cryptochrome2

0009638 Phototrophism X √

0009414 Response to water deprivation √ √

0010118 Stomatal movement √ √

0009637 Response to blue light √ √

0009909 Regulation of flower development X √

0009911 Positive regulation of flower development X √

0006338 Chromatin remodeling X √

0009785 Blue light signaling pathway √ X

0009640 Photomorphogenesis √ X

0046777 Protein amino acid autophosphorylation √ X

0006118 Transport √ X

007623 Circadian rhythm √ X

0046283 Antocyanin metabolic process √ X

Table 14: Annotated biological process GO terms for A. thaliana Cryptochrome1 and  Cryptochrome2. A cross  
indicates that this GO term was not annotated to that protein. This table was taken from Jöcker et al. 2009.

The SIFTER-X result for the blue-light photoreceptor proteins can be slightly improved (see table 
15)  by excluding  the  biological  process  GO terms for  the  functional  mutation  rate  calculation, 
because A. thaliana Cryptochrome1 and Cryptochrome2 share only 3 of 13 biological process GO 
terms (see table  14). After excluding the biological process GO terms for the functional mutation 
rate calculation the posterior probability predicted for all true GO terms was higher than 0.1 and for 
the wrong GO term GO:0003904 was in 12 cases smaller than 0.1.
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Protein name 
(database)

Predicted  
GO term 

by 
SIFTER

Predicted  
posterior 

probability  
by 

SIFTER

True? Predicted  
GO term 

by 
SIFTER-

X

Predicted  
posterior  

probability  
by 

SIFTER-
X

Predicted 
posterior 

probability by  
SIFTER-X 
(excluding 
biological  

process GO 
terms)

True?

Q309E8_NICSY 
(UniProt)

0003904
0004672
0009882
0042803

0.19
0.30
0.08
0.88

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.0004
0.40
0.08
0.95

0.05
0.36
0.11
0.93

No
Yes
Yes
Yes

Q9XHD8_SOLLC 
(UniProt)

0003904
0004672
0009882
0042803

0.18
0.28
0.07
0.80

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.0004
0.40
0.08
0.95

0.05
0.36
0.11
0.93

No
Yes
Yes
Yes

Q93VS0_SOLLC
(UniProt)

0003904
0004672
0009882
0042803

0.18
0.28
0.07
0.80

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.0007
0.41
0.11
0.91

0.08
0.39
0.16
0.89

No
Yes
Yes
Yes

Q6YBV9_PEA
(UniProt)

0003904
0004672
0009882
0042803

0.96
0.08
0.07
0.32

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.07
0.15
0.14
0.99

0.03
0.22
0.11
0.99

No
Yes
Yes
Yes

Q6EAN1_PEA
(UniProt)

0003904
0004672
0009882
0042803

0.99
0.02
0.01
0.26

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.07
0.15
0.14
0.99

0.03
0.22
0.11
0.99

No
Yes
Yes
Yes

AC174468_14.1
(IMGAG 1.0)

0003904
0004672
0009882
0042803

0.95
0.07
0.06
0.30

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.06
0.15
0.14
0.98

0.009
0.22
0.11
0.98

No
Yes
Yes
Yes

Q0GKU4_BRACM
(UniProt)

0003904
0004672
0009882
0042803

0.90
0.07
0.07
0.38

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.03
0.20
0.14
0.98

0.03
0.17
0.13
0.99

No
Yes
Yes
Yes

Q1JU52_BRANA
(UniProt)

0003904
0004672
0009882
0042803

0.90
0.07
0.06
0.38

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.03
0.20
0.14
0.98

0.03
0.17
0.13
0.99

No
Yes
Yes
Yes

NP_567341.1
(RefSeq protein)

0003904
0004672
0009882
0042803

0.08
0.33
0.19
0.56

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.0004
0.45
0.39
0.99

0.0004
0.40
0.34
0.99

No
Yes
Yes
Yes

A7NUYS_VITVI
(UniProt)

0003904
0004672

0.52
0.10

No
Yes

0003904
0004672

0.001
0.22

0.002
0.38

No
Yes
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Protein name 
(database)

Predicted  
GO term 

by 
SIFTER

Predicted  
posterior 

probability  
by 

SIFTER

True? Predicted  
GO term 

by 
SIFTER-

X

Predicted  
posterior  

probability  
by 

SIFTER-
X

Predicted 
posterior 

probability by  
SIFTER-X 
(excluding 
biological  

process GO 
terms)

True?

0009882
0042803

0.04
0.46

Yes
Yes

0009882
0042803

0.12
0.93

0.14
0.89

Yes
Yes

NP_001052950.1
(RefSeq protein)

0003904
0004672
0009882
0042803

0.10
0.48
0.12
0.77

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.17
0.45
0.25
0.78

0.12
0.44
0.20
0.85

No
Yes
Yes
Yes

NP_001047200.1
(RefSeq protein)

0003904
0004672
0009882
0042803

0.06
0.45
0.07
0.77

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.17
0.45
0.25
0.78

0.12
0.44
0.20
0.85

No
Yes
Yes
Yes

AC122161_5.2
(IMGAG 1.0)

0003904
0004672
0009882
0042803

0.25
0.12
0.15
0.90

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.12
0.25
0.26
0.84

0.11
0.42
0.21
0.74

No
Yes
Yes
Yes

AC122171_26.1
(IMGAG 1.0)

0003904
0004672
0009882
0042803

0.19
0.06
0.09
0.91

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.12
0.25
0.26
0.84

0.11
0.42
0.21
0.75

No
Yes
Yes
Yes

NP_171935.1
(RefSeq protein)

0003904
0004672
0009882
0042803

0.24
0.04
0.05
0.25

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.01
0.21
0.15
0.50

0.007
0.37
0.15
0.49

No
Yes
Yes
Yes

NP_849588.1
(RefSeq protein)

0003904
0004672
0009882
0042803

0.42
0.08
0.08
0.50

No
Yes
Yes
Yes

0003904
0004672
0009882
0042803

0.01
0.13
0.25
0.89

0.009
0.22
0.22
0.87

No
Yes
Yes
Yes

Table 15: Molecular function GO term predictions made by SIFTER and SIFTER-X for proteins of the blue-light  
photoreceptor family. Posterior probabilities are rounded. The green color indicates that SIFTER has predicted the 
wrong GO term with the highest posterior probability. Light blue denotes that the wrong GO term was predicted by 
SIFTER with the second best probability and light red shows predictions made by SIFTER for which the wrong GO 
term got the lowest probability. Yellow colored boxes indicate predictions for which all true GO terms got a probability  
> 0.1 and all wrong annotated GO terms got a probabiltiy < 0.1. This table was taken from Jöcker et al. 2009.
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Prediction of biological process GO terms

SIFTER-X was also tested on the prediction of biological process GO terms. As shown in figure 17 
SIFTER-X  was  able  to  differentiate  between  three  different  subgroups  in  the  tree.  The  first 
subgroup includes all photolyase genes (see upper part of figure 17) and all genes in this group were 
assigned the true GO term GO:0006281 (DNA repair) with a posterior probability higher than 0.98 
assigned. Only one protein NP_015031.1 received this GO term with a lower probability of 0.73. 
The  second  subgroup  incorporates  Cryptochrome1  (NP_567341.1)  of  A.  thaliana and  putative 
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Figure 17: SIFTER-X biological process Gene Ontology annotation for the photolyase/blue-light photoreceptor family.  
Colored rectangles indicate which GO terms have been predicted with the best (first position from left to right), second 
best, third best and so on best posterior probability. A cutoff of >=0.1 was applied. This figure was taken from Jöcker et  
al. 2009.
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orthologous  genes  from  different  organisms  (Q309E8_NICSY,  Q9XHD8_SOLLC, 
Q93VS0_SOLLC,  Q6YBV_PEA,  Q6EAN1_PEA,  AC174468_14.1,  Q0GKU4_BRACM, 
Q1JU52_BRANA, A7NUY5_VITVI, NP_001052950.1 and NP_001047200.1). When applying a 
posterior  probability  cutoff  of  0.1,  Q309E8_NICSY,  Q9XHD8_SOLLC,  Q93VS0_SOLLC  and 
A7NUY5_VITVI  were  assigned  the  GO  terms  GO:0046777  (Protein  amino  acid 
autophosphorylation), GO:0009785 (Blue light signaling pathway), GO:0009637 (Response to blue 
light),  GO:0009414  (Response  to  water  deprivation)  and  GO:0010118  (Stomatal  movement). 
However, the other genes in this group got three additional GO terms (GO:0006118 (Transport), 
GO:0009640 (Photomorphogenesis) and GO:0046283 (Antocyanin metabolic process)) annotated 
with a posterior probability higher than 0.1 (see table 17). The third subgroup in the tree consists of 
Cryptochome2  (NP_171935.1  & NP_849588.1)  from  A.  thaliana and  two putative  orthologous 
genes in M. truncatula (AC122161_5.2 & AC122171_26.2). All genes in the third subgroup were 
assigned the GO terms GO:0009909 (Regulation of flower development), GO:0009637 (Response 
to blue light), GO:0009414 (Response to water deprivation) and GO:0010118 (Stomatal movement) 
with  a  posterior  probability higher  than  0.1.  In  addition  to  that  Cryptochrome2 genes  from  A. 
thaliana were assigned GO term GO:0006338 (Chromatin remodeling) at a probability cutoff of 
0.1.

Except for the Arabidopsis proteins (Cryptochrome I and II) which already had these GO terms 
assigned,  the  posterior  probability  for  all  annotated  biological  process  GO  terms  to  blue-light 
photoreceptor proteins is very low (<0.3) (see table 17), but their probability is significantly higher 
than for the wrong GO term GO:0006281 (DNA repair).

Subgroup Protein name Predicted biological process GO terms Posterior 
probability

I YP_273281.1 0006281 (DNA repair) 0.99

I YP_234055.1 0006281 (DNA repair) 0.99

I NP_790955.1 0006281 (DNA repair) 0.99

I YP_793122.1 0006281 (DNA repair) 0.99

I NP_253349.1 0006281 (DNA repair) 0.99

I NP_015031.1 0006281 (DNA repair) 0.73

I NP_718938.1 0006281 (DNA repair) 1.0

I NP_232458.1 0006281 (DNA repair) 1.0

I NP_464116.1 0006281 (DNA repair) 1.0

I YP_013222.1 0006281 (DNA repair) 1.0

I YP_167152.1 0006281 (DNA repair) 0.99

I NP_820171.1 0006281 (DNA repair) 0.99

I NP_845490.1 0006281 (DNA repair) 1.0

I YP_019820.1 0006281 (DNA repair) 1.0

I YP_029213.1 0006281 (DNA repair) 0.98

Table 16: Biological process GO term predictions by SIFTER-X for photolyase proteins (subgroup I) at a posterior 
probability cutoff of 0.1. This table was taken from Jöcker et al. 2009.

59



Anika Jöcker Chapter VI

Subgroup Protein name Predicted biological process GO terms Posterior 
probability

II Q309E8_NICSY 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.006
0.34

0.0001
0.08
0.34
0.12
0.24
0.08

0.0002
0.00005

0.08
0.12

II Q9XHD8_SOLLC 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.006
0.34

0.0002
0.08
0.34
0.12
0.24
0.08

0.0002
0.00005

0.08
0.12

II Q93VS0_SOLLC 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.007
0.31

0.0002
0.08
0.31
0.12
0.23
0.08

0.0003
0.00006

0.08
0.12

II Q6YBV9_PEA 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.03
0.28
0.02
0.11
0.28
0.15
0.25
0.11
0.02
0.02
0.11
0.15

II Q6EAN1_PEA 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0.03
0.28
0.02
0.11
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Subgroup Protein name Predicted biological process GO terms Posterior 
probability

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.28
0.15
0.25
0.11
0.02
0.02
0.11
0.15

II AC174468_14.1 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.02
0.27
0.007
0.10
0.27
0.14
0.24
0.10
0.007
0.007
0.10
0.14

II Q0GKU4_BRACM 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.04
0.23
0.03
0.11
0.23
0.15
0.22
0.11
0.03
0.03
0.11
0.15

II Q1JU52_BRANA 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.04
0.23
0.03
0.11
0.23
0.15
0.22
0.11
0.03
0.03
0.11
0.15

II NP_567341.1 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0.02
0.35

0.00000001
0.19
0.35
0.24
0.33
0.19
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Subgroup Protein name Predicted biological process GO terms Posterior 
probability

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.00000002
0.000000002

0.19
0.24

II A7NUY5_VITVI 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.007
0.22

0.0002
0.07
0.22
0.10
0.18
0.07

0.0003
0.00006

0.07
0.10

II NP_001052950.1 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.07
0.26
0.07
0.12
0.26
0.14
0.21
0.12
0.08
0.07
0.12
0.14

II NP_001047200.1 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.07
0.26
0.07
0.12
0.26
0.14
0.21
0.12
0.08
0.07
0.12
0.14

III AC122161_5.2 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.6
0.09
0.08
0.06
0.09
0.12
0.16
0.06
0.29
0.08
0.06
0.12
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Subgroup Protein name Predicted biological process GO terms Posterior 
probability

III AC122171_26.2 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.06
0.09
0.08
0.06
0.09
0.12
0.16
0.06
0.29
0.08
0.06
0.12

III NP_171935.1 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.000000001
0.000000001
0.000000001
0.000000001
0.000000001

0.43
0.53

0.000000001
0.76
0.32

0.000000001
0.43

III NP_849588.1 0007623 (Circadian rhythm)
0046777 (Protein amino acid autophosphorylation)

0006281 (DNA repair)
0006118 (Transport)

0009785 (Blue light signaling pathway)
0009414 (Response to water deprivation)

0009637 (Response to blue light)
0009640 (Photomorphogenesis)

0009909 (Regulation of flower development)
0006338 (Chromatin remodeling)

0046283 (Antocyanin metabolic process)
0010118 (Stomatal movement)

0.000000002
0.000000002
0.000000002
0.000000002
0.000000002

0.43
0.53

0.000000002
0.76
0.32

0.000000002
0.43

Table 17: Biological process GO term predictions made by SIFTER-X for blue-light photoreceptor proteins. Subgroup 
II are Cryptochrome1 and orthologous genes, and subgroup III are Cryptochrome2 and orthologous genes. This table 
was taken from Jöcker et al. 2009.

b) Prediction accuracy comparison for molecular function GO terms between SIFTER 
& SIFTER-X
I tested SIFTER and SIFTER-X on a test  set of 232  A. thaliana genes and before running the 
applications (see chapter VI2e) I removed all ontology term annotations (GO terms, EC numbers, 
MapMan bins, KO terms) to the tested gene. SIFTER-X showed an increased sensitivity compared 
to SIFTER at all tested cutoffs. The specificity was increased at all cutoffs greater than 0.2 (see the 
table 15). At a cutoff of 0.5 the sensitivity of SIFTER-X was increased by 11% (from 44% to 55%) 
and the specificity by 5% (from 91% to 96%) compared to SIFTER (see table  18). Both SIFTER 
and SIFTER-X showed a better  specificity than transferring GO terms by a  Blast  search at  all 
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cutoffs (see ROC plot in figure 19). However, a very high sensitivity can be reached by transferring 
molecular function GO terms from Blast hits at the expense of a very low specificity (smaller than 
50%). 
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Figure 18: Sensitivity and Specificity of SIFTER, SIFTER-X, Blast hits and the best Blast hit for different cutoffs. While  
for SIFTER and SIFTER-X the posterior probability is used as cutoff, in case of Blast the e-value is taken. This figure 
was taken from Jöcker et al. 2009.
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Posterior probability 
cutoff

Sensitivity SIFTER Sensitivity SIFTER-X Specificity  
SIFTER

Specificity SIFTER-X

0.1 0.52 0.70 0.85 0.76

0.2 0.48 0.64 0.90 0.90

0.3 0.46 0.61 0.90 0.94

0.4 0.45 0.59 0.91 0.95

0.5 0.44 0.55 0.91 0.96

0.6 0.44 0.52 0.92 0.96

0.7 0.43 0.51 0.92 0.97

0.8 0.43 0.46 0.92 0.97

0.9 0.42 0.36 0.93 0.99

>=1.0 0,13 0.12 0.99 0.996

Table 18: Comparison between the sensitivity and specificity of SIFTER and SIFTER-X on a test set of 232 Arabidopsis 
genes. All values are rounded. This table was taken from Jöcker et al. 2009.

c) KEGG ontology, MapMan bin and EC term prediction accuracy
SIFTER-X was further tested on the prediction of KO terms, MapMan bins and EC numbers using 
the same test set. As shown in figure 19 SIFTER-X achieved a very high sensitivity and specificity 
at all tested posterior probability cutoffs for the prediction of MapMan bins, KO terms and EC 
numbers.

The average sensitivity of SIFTER-X when predicting MapMan bins and KO terms is about 80% 
with an average specificity of about 88%. This result can be further increased by using a cutoff of 
0.8  for  the  posterior  probability  (Sensitivity:  81%,  Specificity:  93,5%)  (see  table  19).  For  the 
prediction of EC numbers an average sensitivity of 78% could be achieved at an average specificity 
of 65%. The specificity is not as high as for MapMan bin and KO term prediction, but it can be 
significantly increased by choosing a posterior cutoff of 0.9. At this cutoff the sensitivity is about 
77% and the specificity is about 82% (see table  19). SIFTER-X can predict MapMan bins, KO 
terms and EC numbers at a better sensitivity than GO terms.

Sensitivity Specificity
Posterior 

probability 
cutoff

KO term 
prediction

MapMan bin 
prediction

EC number 
prediction

KO term 
prediction

MapMan bin 
prediction

EC number 
prediction

0.1 0.90 0.92 0.92 0.72 0.71 0.34

0.2 0.89 0.89 0.89 0.83 0.82 0.51

0.3 0.88 0.88 0.89 0.88 0.87 0.59

0.4 0.88 0.86 0.89 0.89 0.88 0.62

0.5 0.86 0.85 0.88 0.89 0.90 0.64

0.6 0.85 0.84 0.87 0.90 0.90 0.68

0.7 0.83 0.84 0.87 0.91 0.92 0.72

0.8 0.81 0.81 0.86 0.93 0.94 0.74
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Sensitivity Specificity
0.9 0.73 0.77 0.77 0.95 0.96 0.82

1.0 0.35 0.37 0.34 0.97 0.98 0.89

Table 19: The sensitivity and specificity of SIFTER-X in the prediction of KO terms, MapMan bins and EC numbers on 
a test set of 232 Arabidopsis genes. This table is taken from Jöcker et al. 2009.
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Figure 19: ROC plot for different functional ontologies. For comparison SIFTER and Blast predictions for  
molecular function (MF) GO terms are included. This figure is taken from Jöcker et al. 2009.
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4) Discussion
A new phylogenomics tool SIFTER-X for the automatic function prediction of different ontology 
terms has been introduced and tested on the blue-light photoreceptor/photolyase family and on a test 
set of 232 curated A. thaliana genes. SIFTER-X builds on the SIFTER algorithm [Engelhardt et al. 
2005]  and  uses  additional  functional  attributes  available  for  genes  in  the  phylogenetic  tree  to 
calculate a functional mutation rate which is used to either slow down mutation (in case of same 
attributes) or speed up mutation (in case of different attributes) within the SIFTER-X framework. 
Besides the prediction of molecular function GO terms SIFTER-X is able to predict GO biological 
process GO terms, MapMan bins, KO terms and EC numbers. 

I have shown that SIFTER-X is able to predict molecular function GO terms and biological process 
GO terms in case of the blue-light photoreceptor/photolyase family very accurately. SIFTER-X was 
able to differentiate between blue-light photoreceptor proteins and photolyase proteins and assigned 
the true molecular function GO term GO:0003904 (deoxyribodipyrimidine photo-lyase activity) and 
the true biological process GO term GO:0006281 (DNA repair) to all photolyase proteins with a 
very high posterior probability to all  photolyase proteins. Only one protein (NP_015031.1 from 
Saccharomyces cerevisiae) got a lower posterior probability of 0.73 for the true biological process 
GO term GO:0006281 (DNA repair). All putative blue-light photoreceptor proteins got the true GO 
terms  with  the  best  posterior  probabilities  annotated.  SIFTER  in  comparison  was  not  able  to 
differentiate  between the families and assigned the wrong GO term GO:0003904 with the best 
posterior probability to 6 of 16 putative blue light photoreceptors and with the second best posterior 
probability  to  four  putative  blue  light  photoreceptors.  This  result  might  be  due  to  the  sparse 
molecular function GO terms annotated to blue-light photoreceptor genes (Only Cryptochome1 and 
Cryptochome2  of  A.  thaliana are  functionally  characterized  with  ontology  terms)  and  maybe 
because all functions of only one of the cryptochomes are experimentally proven. 

SIFTER-X predicted for 10 proteins GO term GO:0009882 (blue light photoreceptor activity) with 
a probability smaller than 0.2. This could be a problem if a higher posterior probability cutoff is 
applied on all results, because then the GO term would be a false negative. The problem here could 
be that there are only two proteins annotated with this GO term and only one of them has the GO 
term annotated with an evidence code, which indicates that the function is experimentally verified. 
This  result  could  be  further  improved  by  excluding  the  biological  process  GO  terms  for  the 
functional mutation rate prediction,  because there are only few common biological process GO 
terms annotated to both functionally characterized blue-light photoreceptor genes (Cryptochome1 
and Cryptochome2 of A. thaliana). One reason for that could be that some biological process GO 
terms are not annotated for Cryptochome2 of A. thaliana yet. In addition to that Cryptochome1 and 
Cryptochome2 seem to have the same molecular function but are involved in overlapping but also 
different  biological  processes  (sub-functionalization)  [Ahmad et  al.  1998].  On the basis  of  this 
example it might be a good idea to use biological process GO terms only for the prediction of 
biological process GO terms and to exclude them from the calculation in other cases. However, this 
is only one example for which this method would increase the accuracy. Further test sets are needed 
to  find  out  if  that  is  often  the  case.  Another  idea  to  overcome this  problem is  to  change  the 
weighting of the biological process GO terms for the calculation of the functional mutation rate.

For  the  prediction  of  biological  process  GO terms  SIFTER-X was  further  able  to  differentiate 
between Cryptochrome1 and Cryptochrome2 subgroups of proteins and assigned GO terms which 
are annotated to Arabidopsis Cryptochrome1 and Cryptochrome2 to proteins in both subgroups and 
GO terms, which are just annotated to Cryptochrome1 or Cryptochome2 to only proteins in the 
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corresponding  subgroup.  However,  there  is  no  evidence  for  the  putative  orthologous  genes  of 
Cryptochrome2  in  Medicago  that  the  function  is  the  same  as  annotated  to  the  Arabidopsis 
Cryptochrome2. Based on the assumption that this is the case, SIFTER-X is in this example able to 
handle neo-functionalization and sub-functionalization, which often occur after gene duplication 
events [Hurles. 2004] [Presgraves 2005]. To proof this result further test sets are needed.

However  the  posterior  probability  of  GO terms  predicted  for  orthologs  of  Cryptochrome1 and 
Cryptochrome2, which are experimentally verified for Cryptochrome1 and Cryptochrome 2 genes 
of  A.  thaliana,  is  very  low.  This  could  lead  to  many  false  negatives  after  applying  a  higher 
probability cutoff. But the probability of the true GO terms is much higher than for the wrong GO 
terms, so it would make sense to use an adaptive partitioning process instead of using a fixed cutoff 
for the biological process output in the SIFTER-X framework. For example the partitioning could 
be  done  by  using  the  maximal  distance  between  two  probabilities  in  an  ordered  list  of  all 
probabilities and their corresponding GO terms. Only these GO terms are then printed out, which 
are higher than this “individualized” cutoff.

Tested on a manually and experimentally curated dataset of 232 A. thaliana genes SIFTER-X was 
able to predict molecular function GO terms with a sensitivity of 55% and a very high specificity of 
96%. This is an increase of 11% (from 44% to 55%) sensitivity and an increase of 5% (from 91% to 
96%) specificity in comparison with the SIFTER algorithm. This means that SIFTER-X is able to 
predict more molecular function GO terms and gives a more accurate representation of the function 
of the protein by having a lower false prediction rate.

Furthermore  both  SIFTER  and  SIFTER-X  achieved  a  better  accuracy  than  transferring  the 
molecular function GO terms of the best Blast hit. However by transferring the function of Blast 
hits a better sensitivity could be achieved, but at the cost of a specificity lower than 50%. At this 
specificity the annotated GO term can be true or wrong. The better sensitivity could be obtained, 
because no overlap cutoff was applied as it was done in the homologous search included in the 
phylogenomic pipeline (see chapter V2a). Maybe some functionally related genes are excluded by 
this approach. Using an alternative method like a Hidden-Markov Model search [Karplus et al. 
1998] using an alignment of Blast hits with a low overlap cutoff or a profile search using PSIBlast 
[Altschul and Koonin 1998] [Repsys et al. 2008] or RPSBlast [Marchler-Bauer et al. 2002] for the 
homolog detection may further increase the sensitivity, but these approaches would be more time-
consuming.

I have also shown that SIFTER-X is able to predict MapMan bins, KO terms and EC numbers with 
a very high accuracy. By applying a posterior probability cutoff of 0.8 for the MapMan bin and KO 
term predictions, the sensitivity of SIFTER-X is about 81% with a specificity between 93% and 
94%. For the prediction of EC numbers a sensitivity of 77% and a specificity of 82% could be 
achieved by using a higher cutoff of 0.9. The sensitivity for the prediction of MapMan bins, KO 
terms and EC numbers is better in comparison to GO term prediction, because in our test set only 
few terms are annotated to one gene. In case of GO often many different terms have to be annotated 
to  one gene to  describe the full  function of  the protein,  however  for many proteins the set  of 
annotated GO terms is still incomplete [Kourmpetis et al. 2007].

The SIFTER-X results may further be improved by integrating structure data. Unfortunately this 
kind of information is only available for few proteins and a fast structure comparison tool would be 
needed to compare the structure of different proteins. But instead of comparing 3D structures, 2D 
structure data could be used or critical residues could be identified from the alignment by using a 
structure of one protein as template [Ng and Henikoff 2006]. In addition to that interaction data, 
already being used to compute the functional mutation rate, interaction partners could be compared 
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between different species to identify “orthologous interactions”. For this approach a database which 
includes orthologous relationships between genes is required, because finding out if two interaction 
partners are orthologous or not would be too time-consuming.
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VII. Manual curation in genome projects

1) Introduction
After the automatic annotation process in genome projects is complete, a manual curation of the 
functional annotation is necessary, because functional annotation tools have limitations and at the 
moment  no  tool  performs  equally  well  for  all  kind of  genes  [Godzik  et  al.  2007].  By manual 
curation, wrong functional annotations can be corrected and the function of a gene can be further 
specified. The curation step can be done by a group of curators who manually compare the results 
from different function prediction programs and annotate the right function to the corresponding 
gene afterwards. This approach has the advantage that if no tool is able to return a significant result 
the comparison between results from different prediction programs or intermediate results from an 
analysis workflow can give clues to the function of a gene [Friedberg 2006]. However, this step is 
very time-consuming, because each tool has its own scores and trusted cutoffs and one has to switch 
between different  web pages  to compare different  analysis  results,  which are  often in  different 
formats. Furthermore for some programs no web page is available and the installation and execution 
of the program is often difficult. In the latter case web services (see chapter III2) can help, because 
they offer interoperability, they enable an easy data retrieval, they use standardized formats and they 
do not require to install anything on ones local computer or to have a huge amount of resources 
available [Neerincx and Leunissen 2005].

This  motivates  to  implement  an  automatic  functional  annotation  system  (called  AFAWE  – 
Automatic  Functional  Annotation  in  a  distributed  Web  service  Environment)  suitable  for  any 
organism and any kind of protein coding gene in an easily extensible client-server architecture with 
an intuitive web interface that facilitates a fast comparison between analysis results. All functional 
prediction tools are run as web services and web service workflows to enable the fast integration of 
new tools  and workflows. The results  are  displayed in a  graphically and tabularly manner  and 
trustworthy  results  of  each  analysis  are  highlighted  to  enable  an  easier  and  faster  comparison 
between the results and to address the problem of comparing different results at several webpages. 
Each user of AFAWE is able to add his/her own functional annotation to each gene by assigning 
ontology terms (like GO, KO, MapMan, ...), pathways, in which the gene is involved and/or add a 
human readable description line. AFAWE is used in the Medicago genome project as well as in the 
tomato  genome  project  to  encourage  biologists  and  other  scientists  to  add  manual  functional 
annotations to as many genes as possible. To update the former automatic functional annotation in 
both genome projects, AFAWE is connected to the sequence database MIPSPlantsDB [Spannagl et 
al. 2007] via an AFAWE web service, which provides all manual annotations available for each 
gene.

This chapter describes the development and application of the AFAWE system. I introduce and test 
different web services to find out if they are suitable for AFAWE and I will describe how these web 
services and additional programs have been wrapped as BioMOBY web services [The BioMOBY 
consortium, 2008] to register them at a central repository and to use standardized input and output 
datatypes. Additionally I explain how AFAWE was designed and implemented and how these web 
services and web service workflows have been integrated into the AFAWE system architecture. 
Furthermore the integration of functional information from AFAWE in MIPSPlantsDB is explained. 
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In the result section an example is given how a manual annotation can be done by using AFAWE.

2) Material & Methods

a) Finding suitable web services for the AFAWE system
For the automatic function prediction suitable web services and web services for functional data 
retrieval were searched in the literature and by asking people at different institutes.

Of all  web services found, analysis  and data  retrieval web services from the ToolBus software 
[Eckart  and  Sobral  2003]  provided  at  the  Virginia  Bioinformatics  Institute  (VBI),  from  the 
European Bioinformatics Institute (EBI) [Labarga et al. 2007] and from the National Center for 
Biotechnology Information (NCBI) [Sayers et al. 2008] were tested (see table 20).

To  implement  a  client  program,  which  is  able  to  call  each  web  service,  Java  classes  were 
automatically generated by using the WSDL file15 and the wsdl2Java program from the APACHE 
Axis1.2 library16. These Java classes were used in self-written Java web service client programs to 
set the inputs for the web services, run them and get the outputs.

Provider Web service Data/Analysis

VBI Phylip Phylogenetic tree construction via programs from the PHYLIP package 
[Felsenstein 1993]

VBI PDBj Data retrieval from the structure database PDBj [Standley et al. 2008]

EBI InterProScan Protein domain prediction via InterProScan [Mulder and Apweiler 2007]

EBI WU-Blast Searching for homologous sequences by using WU-Blast
[Gish 1996-2004]

EBI DBFetch Data retrieval from all databases hosted at the EBI (e.g. UniProt [The 
UniProt Consortium 2007], InterPro [Mulder and Apweiler 2007])

NCBI ESearch Searches and returns primary IDs (for use in EFetch and ESummary) and 
term translations for a given ID or keyword. 

NCBI EFetch Retrieves database records for a given primary ID or a list of primary IDs

NCBI EGQuery Returns number of database records for a specific keyword

NCBI ESummary Returns document summaries for a list of primary IDs

Table 20: Tested web services from the VBI, EBI and NCBI.

Afterwards the tested EBI web services (InterProScan, WU-Blast and DBFetch) were wrapped as 
BioMoby web services. To provide additional web services for the automatic functional analysis of 
genes,  the  RPS-Blast  search  (Version  2.2.13)  against  the  Conserved  Domain  Database  (CDD) 
[Marchler-Bauer et al. 2007] and a NCBI Blast search [Altschul et al. 1997] against the manually 
built RefSeq database from chapter V2a have been implemented as BioMoby web services too.

All  web  services  were  registered  at  the  main  BioMoby  repository  in  Canada 
(http://biomoby.org/mobycentral/) and their input and output datatypes were defined (see table 21). 
With the help of the BioMoby dashboard [The BioMoby consortium 2008] Java classes for the 
service implementation were automatically generated and were used as superclass for the Java class 
implementations of the web services. All EBI web services are run inside the BioMoby web service 

15 http://www.w3.org/TR/wsdl
16 http://ws.apache.org/axis/
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via system call of the corresponding client program provided by EBI to enable a faster replacement 
of the client program if the EBI web service is being updated. The RPS-Blast and the NCBI Blast 
program are also run as system call, but are executed by using the lsrun command from the LSF 
batch system17 to run them on a compute cluster. The web service implementations were deployed 
together with all BioMoby libraries on the JBoss application server [Fleury and Reverbel 2003] 
using the APACHE Axis 1.3 library18 to make them publicly accessible.

EBI web 
service / 
Program

Name of BioMoby 
web service

Input 
Datatype: Name

Additional attributes
Datatype: Name

Output
Datatype: Name

InterProScan EBI_InterproScan AminoAcidSequence
: sequence

MobyObject:email

String: apps (Applications to 
run)

String: outformat
(Output format)
String: seqtype

(Protein or DNA)

text-plain:
interproscan_result

WU-Blast EBI_WU_Blast AminoAcidSequence
: sequence

MobyObject:email

Float: e_threshold
(E-value threshold)

String: program
(Blast program to run)

String: database
(Database to use)
String: outformat
(Output format)
Integer: numal

(Number of alignments to show 
in result)

text-plain: 
Blast_result

RPS-Blast 
against CDD

RPSBlast AminoAcidSequence
: sequence

String: seqtype
(Protein or DNA)

String: low_complexity_filter
(Which filer should be used)

Float: e_threshold
(E-value threshold)

text-plain: 
rpsBlast_result

NCBI Blast 
against manual 

RefSeq 
database

Blast_Against_RefSeq
_Complete_Sequenced

_Organisms

AminoAcidSequence
: sequence

String:output
(output format)

Integer:
numberOfDescriptions

(Number of description lines to 
show in result)

Integer:
numberOfAlignments

(Number of alignments to show 
in result)

String: filterHits
(Which filer should be used)

Float: e_threshold
(E-value threshold)

text-plain: 
Blast_result

Table 21: EBI web services and other programs were wrapped as BioMoby web services. The additional parameters  
are settings for the underlying program and have default values.

17 http://www.platform.com/Products/platform-lsf
18 http://ws.apache.org/axis/index.html
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b) The AFAWE design
AFAWE is implemented in  a flexible  J2EE structure to make it  easily extensible  and platform 
independent (see figure 20 and 21). A MySQL database19 helps to avoid bottlenecks in data retrieval 
over the Internet, in case that former analysis results for a given protein sequence are available. 
Data Access Objects20 and Data Transfer Objects21 are used to get analysis results from the database 
and to store the results in the database. An intuitive web frontend is responsible for the interaction 
between  user  and  the  program.  The  AFAWE  core  application  forms  the  middleware  between 
database and web interface. It receives the user input, controls all web services and workflows, 
parses the results and uses the Data Access Objects and Data Transfer Objects to store the analysis 
results in the database.

After  starting  AFAWE  the  user  can  choose  between  retrieving  former  analysis  results  via  an 
AFAWE internal  protein ID,  search for  proteins  by any keyword and starting a  new automatic 
functional prediction.

If the user has selected the automatic functional annotation and has chosen the necessary analysis 
tools,  web  services  and  workflows  are  run  in  parallel.  Whereas  for  running  the  web  services 
BioMOBY web service clients are used, workflows are run by the Taverna workflow engine. If 
results are available, they are parsed, stored in the database and immediately displayed in the user 
web frontend.  Using a cache database gives the user the possibility to view the results  for the 
protein whenever he or she likes, without running the analyses again. The results are deleted, if 
newer results become available (for example if a database has been updated).

19 http://www.mysql.com/
20 http://en.wikipedia.org/wiki/Data_Access_Object
21 http://en.wikipedia.org/wiki/Data_Transfer_Object
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To enable a faster comparison of the results, trustworthy results of each analysis are highlighted by 
applying different filters on the result data (see the following sub-chapter d). Furthermore the user is 
able to add a manual annotation to each protein after logging into the AFAWE system. Besides 
different ontology terms like GO terms, FunCats and KEGG ontology terms, also a human readable 
description, name of pathways and references can be added. Each ontology term has to be verified 
by adding the corresponding evidence code to it. Besides adding new annotations, the user is also 
able to negate existing annotations (e.g. The user may say, that a former automatically assigned 
function has been proven to be wrong). 

The manual annotation is afterwards visible to every other user, even if the user is not logged in, 
and can be used to improve functional annotations in different genome projects.

c) Analyses
There are analyses available for homolog detection, protein domain search and function prediction 
by using phylogenomics. For the homolog detection the BioMoby wrapped EBI WU-Blast web 
service (see chapter VII2a) is run against both the UniProt database [The UniProt Consortium 2007] 
and its  manually verified part,  the SwissProt database.  If  detected homologous proteins are not 
already stored in the database, the EBI DBFetch web service [Labarga et al 2007] is called to get 
additional information about the protein like assigned GO terms, EC numbers, protein domains, 
synonyms and the sequence from the UniProt database. Additionally a NCBI protein Blast web 
service, hosted at the Max-Planck Institute for Plant Breeding Research, is called to run against the 
manually  built  RefSeq  database  introduced  in  chapter  V2a.  Proteins  from  this  database  with 
corresponding GO terms from the Gene Ontology website had already been stored in the AFAWE 
database (see chapter V2a).
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Protein  domains  are  discovered  by the  BioMoby wrapped  EBI  InterProScan  web  service  (see 
chapter VII2a) and by a web service, which runs a RPS-Blast search against the Conserved Domain 
Database (CDD) at  the NCBI (see chapter  VII2a).  To provide the user  also with an automatic 
annotation of GO terms the new phylogenomic workflow with SIFTER (see chapter V2b) is run by 
using the Taverna API.

d) AFAWE Filter
As  mentioned  before  we  implemented  dynamic  filters  to  highlight  trustworthy  hits  from  the 
different analysis results to enable a faster comparison of the results. In the following, filters for the 
different analyses, available in AFAWE, are described.

EBI WU-Blast Filter
To filter out putative homologous proteins from the Blast result of the EBI WU-Blast web service, 
we provide five filters. One applies an overlap cutoff to all Blast hits, so that only hits, which have 
more than 70% overlap between query and hit sequence are highlighted in the result table. The 
second filter considers protein domain composition. This filter highlights hits, which have the same 
domains as the query sequence. Protein domains for the hits are retrieved from the UniProt database 
[The UniProt Consortium 2007] by using the EBI DBFetch web service. Protein domains assigned 
to proteins in the UniProt database have been predicted by InterProScan and therefore the filter 
compares them with predicted protein domains of the query using the same tool. Domains that are 
not  listed  in  UniProt  are  ignored.  Furthermore  PROSITE  domains  are  excluded,  because  the 
PROSITE pattern search uses regular expressions to detect conserved domains and therefore does 
not assign any score, making it harder to detect false positives.

SIFTER filter
For SIFTER a simple threshold filter is used. All GO terms, which have got a probability assigned 
by SIFTER of 0.4 and higher are highlighted. The cutoff of 0.4 was chosen, because by evaluating 
100  genes  of  Sorghum for  wrong  assigned  GO terms  it  was  revealed,  that  GO terms  with  a 
probability greater than 0.4 were true in 97% of all cases (see chapter V).

e) Implementation of the AFAWE database
We implemented the AFAWE database as a MySQL database (MySQL 5.0.18), because MySQL is 
a free, fast and reliable relational database22.

Each  protein  in  the  database  is  well-defined  by  its  sequence  and  its  corresponding  organism. 
Information about the protein itself (e.g. ontology terms and protein domains obtained from diverse 
databases,  3D  and  2D  structure,  alternative  names  (synonyms  and  database  identifier)  and 
references) and analysis results for this protein are separated. Analyses results are divided into the 
categories  “Interaction”,  “Orthology”,  “Structure” and “Sifter”.  Each of  these analysis  database 
tables include a foreign key to the “Calculation” table, in which metadata for the analysis, like the 
date and time when the analysis was run and the tool used, are stored. Furthermore an additional 
database table provides the information whether for a protein an analysis was run before and if there 
are analysis results available (see figure 22). To enable the user to login into AFAWE and add his or 
her own functional annotation, also a “User” table is added, in which important information about 
the user, like name, affiliation and research interest, can be stored and which is connected to all 
protein information tables (see figure 22).

22 http://dev.mysql.com/doc/refman/5.0/en/index.html
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Figure 22: AFAWE database table schema. Primary keys are colored in yellow. Arrows between table columns indicate 
foreign keys. Each table column is specified by its data type and a Y or N, which denotes if NULL is allowed or not as  
entry.
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To  encourage  project  members  of  the  International  Medicago  Genome  Annotation  Group 
(IMGAG),  the  International  Tomato  Genome  Annotation  Group  ITAG  and  other  researcher  to 
improve the automatic functional annotation of the Medicago and tomato proteins, all  available 
proteins  from  Medicago  truncatula  and  9942  tomato  protein  sequences  (batch11  of  the  ITAG 
pipeline) with analysis results from SIFTER are included.

f) Data Access Objects and Transfer Objects
For storing and getting data from the AFAWE database Data Access Objects (DAOs) and Data 
Transfer Objects (TFs) are implemented in a first version by Martin Kocent during his practical 
student-ship  and  extended  by  myself  afterwards.  DAOs  include  SQL  statements,  which  are 
executed via the Java JDBC API (version 1.5)23. Transfer objects are used to store the results from 
database queries or to transfer data from the middleware into the database.

For each table one TF, which includes 'get' and 'set' methods for all table columns, and one DAO is 
provided.  Both,  TFs  and  DAOs  are  implemented  for  easy  extensibility,  which  means  further 
database tables and the corresponding TFs and DAOs can easily be added. All TFs and DAOs are 
stored in a separated Java archive file (jar file) to make them usable for web services and other 
projects.

g) Integration of the Taverna workflow engine
To run workflows in AFAWE the WorkflowLauncherWrapper, which is part of the Taverna API 
[Oinn  et  al.  2004]  is  used.  Because  the  WorkflowLauncherWrapper  uses  Raven24 to  define 
dependencies of Java libraries and update them regularly via the Internet, it was necessary to build a 
separate Java archive (RunWorkflows.jar) to avoid this update mechanism, which is not possible in 
the deployed AFAWE system. Besides the Taverna workflow execution, RunWorkflows.jar parses 
also the results of the SIFTER pipeline and stores them afterwards in the AFAWE database. 

This Java archive can also be used independently of the AFAWE web interface to run the SIFTER 
pipeline without using the AFAWE API (e.g. if SIFTER should be run for a batch of proteins)

h) Development of the AFAWE web interface
The AFAWE web interface was designed by myself and implemented by Fabian Hoffmann and 
Andreas  Jöcker.  The  DOJO  Java  Script  framework25 in  combination  with  the  Java  Servlet 
technology  was  used,  because  of  its  ability  to  build  web  interfaces  with  filtered  tables  and 
navigation  tabs  in  a  short  time.  In  addition  the  AJAX  technology  [Holdener  et  al  2008]  was 
included to increase the interactivity, speed, functionality and usability of the web page.

For each analysis there is one HTML page and one Java Servlet implemented. Whereas the HTML 
page includes the AJAX and DOJO elements and is used for displaying of data, the Java Servlets 
are used for adding dynamic content to the HTML pages.

i) Connection to the MIPSPlantsDB database
To provide a link between the MIPSPlantsDB and AFAWE and so to enable users of MIPSPlantsDB 

23 http://Java.sun.com/j2se/1.5.0/docs/api/
24 http://raven.rubyforge.org/
25 http://dojotoolkit.org/
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to add their manual annotation in AFAWE, primary protein identifiers (primary ID of the Protein 
table (see figure  22)) of all Medicago and tomato proteins, extracted from the AFAWE database, 
were integrated as a cross-reference in the MIPSPlantsDB by Manual Spannagl and a link was 
created on the element report website to go directly to the corresponding analysis results in AFAWE 
(see figure 23).

Furthermore to display manual annotations added by AFAWE users at the element report webpage 
of  MIPSPlantsDB,  several  BioMoby  web  services  [The  BioMoby  Consortium  2008]  were 
implemented to retrieve data from the AFAWE database and to start remotely AFAWE analysis 
tools  (see table 22). The getAutomaticAndManualAnnotationByAFAWE_ID web service should be 
called  interactively on the  MIPSPlantsDB element  report  website  to  get  the  up-to-date  manual 
annotation, as well as the automatically predicted functional annotation from the AFAWE database 
and to display this information on the site. If there is no AFAWE ID stored for the corresponding 
protein in MIPSPlantsDB, the getAFAWEProteinIDBySequenceAndOrganism web service can be 
called to retrieve the AFAWE ID from the AFAWE database.
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Figure 23: Element Report of the tomato gene C12.5_contig9_11.1 in MIPSPlantsDB with a cross-reference to the 
corresponding analysis results in AFAWE.
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Name of web service Description

getAFAWEProteinIDByGOTerm

Returns all AFAWE IDs, which have the 
given GO term or a child of this GO term 

annotated. By using the secondary parameters 
of the web service the organism can be chosen 

and if all AFAWE IDs should be returns or 
just AFAWE_IDs, which have the 

corresponding GO term experimentally 
verified or curated. Furthermore it can be set 

if only automatically derived GO terms 
should be considered, manually annotated GO 

terms or all terms.

getAFAWEProteinIDBySequenceAndOrganism Returns the AFAWE ID stored for the given 
amino acid sequence and organism.

getAutomaticAndManualAnnotationByAFAWE_ID
Returns manually added functional 

information and automatically predicted 
functions for a given AFAWE ID

runAFAWEAnalysesBySequenceAndOrganismAndGetAFAWE_URL

Starts all AFAWE analysis tools using the 
given amino acid sequence and the 

corresponding organism as input and returns 
an AFAWE URL to the AFAWE analysis 

results. As secondary parameter the user can 
set which analysis tools should be run.

Table 22: AFAWE web services to retrieve data from the AFAWE database and run remotely AFAWE analysis tools.

3) Results

a) Finding suitable web services for the AFAWE system
Web services provided at the European Bioinformatics institute (EBI) [Labarga et al.  2007], the 
National  Center  for  Biotechnology  Information  (NCBI)  [Sayers  et  al.  2008]  and  the  Virginia 
Bioinformatics  Institute  (VBI)  [Eckart  and Sobral  2003]  were found suitable  for  the  automatic 
functional annotation and for up-to-date protein data information retrieval. All these institutes offer 
client programs for download, which can be used to interact with the web service.

The VBI has supported its own client program ToolBus for calling its web services and visualizing 
the results. For some web services a license, a so called AAA ticket, is necessary, as for some of the 
provided web services a fee is charged or they are only free for the academical use. Due to the 
missing documentation of the web service and the strong connection between the web service client 
ToolBus and the  VBI web services,  using the  VBI web services  without  the ToolBus client  is 
difficult. Also, these web services are only available via the ports 6565 and 7575 and for using the 
web  services  these  ports  have  to  be  open,  which  is  normally  not  the  case.  Because  of  these 
difficulties, I decided not to integrate these services into the AFAWE system.

On the contrary the EBI provides separate clients for their web services and no specific port has to 
be open to use them. All clients are available in different programming languages (Perl, Java, C#) 
and with sufficient documentation how to use them. For resource reasons some web services (e.g. 
InterProScan and DBFetch) are restricted in the number of inputs. In case of InterProScan only one 
sequence is allowed as input and for DBFetch a maximal number of 200 database accessions can be 
given  as  input.  All  web  services  are  faster  than  using  the  EBI  web  frontend,  but  running 
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InterProScan  with  more  than  one  query  is  much  faster  than  running  InterProScan  with  each 
sequence  individually.  If  the  analysis  is  very  time-consuming,  the  asynchronous  mode  can  be 
chosen instead of waiting for the results in synchronous mode. In this mode the user gets back a job 
ID, which can be used later to fetch the results.  The results can be retrieved in different output 
formats. Unfortunately these output formats and the whole web service has changed a lot in the last 
two years (2006-2008) and so parsers to get specific fields from the entries have to be often re-
written. Additionally without the documentation it is very difficult for the user to find out what kind 
of input the web service supports and which of the inputs are mandatory.

The latter is also true for the NCBI web services, but the NCBI provides five coupled web services 
to access all kinds of data in their databases. In contrast to the DBFetch web service, which is 
provided from the EBI to get entries from EBI databases, NCBI supports the access to specific 
fields inside an entry (e.g. GO terms). This approach is very fast and no parser is needed to retrieve 
these specific fields. But this complex structure makes a comprehensive documentation extensive 
and  so  only  examples  are  shown in  the  documentation.  Unfortunately  are  these  examples  not 
sufficient. Another drawback is, that the NCBI offers only retrieval web services and no analysis 
web services. 

I decided to use for the AFAWE system web services from the EBI and the NCBI, because they 
provide a good support for their web services (e.g. provide a mailing list), their data seems to be 
always up to date and the web services are dependable.

To enable a fast and easy integration of web services in AFAWE, all web services, which were 
found suitable for the manual functional annotation, were standardized by semantically defining 
their inputs and outputs and by registering them at a central repository.  Therefore the EBI web 
services  InterProScan  and  WU-Blast  were  wrapped  as  BioMoby web  services  [The  BioMoby 
Consortium 2008]. The NCBI web service was too complex to wrap, so it is used together with the 
DBFetch web service inside the AFAWE application for getting database entries for genes/proteins, 
for which no functional or sequence information is available. 

Two  additional  programs  (RPS-Blast  against  the  CDD  database  and  NCBI  Blast  against  the 
manually build database introduced in chapter V2a) were implemented as BioMoby web services 
and  are  also  publicly  available  at  the  Max-Planck  Institute  for  Plant  Breeding  Research.  The 
underlying databases are regularly updated.
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b) How to do a manual annotation using AFAWE
To show how a manual functional annotation can be done using the AFAWE system, I will use the 
Medicago truncatula gene AC144389_35.2 as an example (The example was taken from Jöcker et 
al. 2008).

By searching gene AC144389_35.2 using the keyword search (see figure 24), four different analysis 
results  (Blast  against  UniProt  and  SwissProt,  InterProScan  and  SIFTER)  are  available.  Each 
analysis result is displayed in a different tab, available at the upper site of the browser window (see 
figure  25). The phylogenomic pipeline with SIFTER is the more reliable analysis in comparison 
with Blast, because it also takes duplication and speciation events in account. SIFTER has predicted 
three different GO terms (“electron transporter, transferring electrons within CoQH2-cytochrome c 
reductase  complex  activity”  (GO:0045153),  “stearoyl-CoA  9-desaturase”  (GO:0004768)  and 
“enzyme  activator  activity”  (GO:0008047)).  GO  term  GO:0045153,  which  has  an  assigned 
posterior probability of ~0.98, is highlighted and therefore the most reliable.

81

Figure 24: There are three ways to get analysis results from AFAWE: By giving an AFAWE ID, entering a 
keyword or starting a new functional analysis using the "Automatic Annotation" link.
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By using the “Display the Phylogenetic Tree” button the reconciled phylogenetic tree, which is used 
as input for SIFTER can be viewed and further investigated (see figure 26).
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Figure 25: SIFTER result for gene AC144389_35.2 from Medicago truncatula. The best results are highlighted in 
orange.
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By looking at experimentally verified or reviewed molecular function GO terms assigned to Blast 
hits  using  the  GO  term  filter  (see  chapter  VII2d),  only  two  proteins  (CYB5_YEAST  and 
CYB5_HUMAN) are  highlighted in  pink (see figure  27).  This means that at  least  one of their 
assigned molecular function GO terms is experimentally verified or reviewed. Both proteins have 
more than 70% overlap with the query and share the same domains with the query (both hits are 
highlighted in yellow, if the overlap and domain filter is switched on) and therefore seem to belong 
to the same protein family.
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Figure 26: Reconciled phylogenetic tree of gene AC144389_35.2 from Medicago truncatula and putative 
homologous genes, which is used as input for SIFTER. The tree is displayed by using the A Tree Viewer Tool  
(ATV) [Zmasek and Eddy 2001], which is integrated in AFAWE.
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GO  term  GO:009055  (“electron  carrier  activity”)  assigned  to  gene  CYB5_YEAST  from 
Saccharomyces cerevisiae is experimentally verified by direct assay (evidence code “IDA”) and is 
the  parent  of  GO:0045153,  which  is  predicted  by  the  SIFTER  pipeline.  However,  gene 
CYB5_HUMAN  from  human  has  GO  term  GO:0004129  (“cytochrome-c  oxidase  activity”) 
assigned by author statement (“TAS”) from Proteome Inc., but there is no parent-child relationship 
to the predicted GO term of SIFTER or the GO term assigned to the yeast gene. To find out which 
of the GO terms is true and which is wrong, the InterProScan results are investigated.

All protein domains predicted by InterProScan are included in Cytochrome b proteins (see figure 
28) and this functional description can also be found in the most description lines of the Blast hits. 
Cytochrome b  is  the  main  subunit  of  the  mitochondrial  Cytochrome bc1,  which  is  one of  the 
components of the respiratory chain [Iwata et al. 1998] and is part of the b6f complexes, which is 
the  electronic  connection  between  the  photosystem I  and  the  photosystem II  of  the  oxygenic 
photosynthesis  [Kurisu et  al.  2003].  In both complexes it  is  responsible for the transmembrane 
electron transfer.
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Figure 27: AFAWE analysis results of an EBI WU-Blast search against the SwissProt database and using the Molecular  
Function filter afterwards. Blast hits (genes), which have an experimentally verified or reviewed molecular function GO 
term are highlighted in pink.
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This fits well with GO:0045153, but no evidence could be found for cytochrome-c oxidase activity, 
which was assigned to the human gene by author statement. Therefore I assume, that this GO term 
is a wrong annotation and the other one is true.
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Figure 28: AFAWE InterProScan result for Medicago gene AC144389_35.2.
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To add this manual annotation to the Medicago gene it is necessary to register and login into the 
AFAWE  system.  Afterwards  a  “Add  a  manual  annotation”  link  is  shown  below  the  protein 
information on the left side of the browser window, which opens the manual annotation window 
(see figure 29). In this window we can now declare GO:0045153 (“electron transporter”) as true and 
GO:0004129  (“cytochrome-c  oxidase  activity”)  as  false.  The  added  information  is  afterwards 
displayed at the “All manual annotation” page.
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Figure 29: Manual annotation added to the Medicago gene AC144389_35.2.
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4) Discussion
We  have  implemented  an  easily  extensible  and  intuitive  tool  for  the  automatic  and  manual 
annotation of any kind of protein coding gene from any kind of organism. Comparison of different 
analysis results is simplified by using different filters that highlight trustworthy results. AFAWE 
[Jöcker et  al  2008] is  publicly available at  http://bioinfo.mpiz-koeln.mpg.de/afawe. Several  web 
services  have  been  implemented  to  retrieve  different  kind  of  functional  information  from  the 
AFAWE database,  or  to  run  AFAWE analyses  remotely over  the  internet. This  allows  an  easy 
integration of  AFAWE results  into protein report  websites of sequence databases.  Furthermore 
AFAWE analysis results are connected via a cross-reference link from MIPSPlantsDB [Spannagl et 
al 2007]. This will encourage scientists to add their manual annotation in AFAWE, which can be 
used afterwards to update the former automatically predicted functional annotations and therefore 
will help to avoid errors in public databases.

However, although some of the web services (RPSBlast and DBFetch) are really fast, the automatic 
annotation is quite slow, if proteins are not in the database and additional pieces of information have 
to  be  retrieved  via  the  EBI  DBFetch  web  service  from UniProt  or  InterPro.  To  improve  the 
performance, I restricted the number of Blast hits for the search against UniProt to 25 hits and for 
SwissProt to 20 and all analyses are run in parallel.

Another bottleneck in using web services is, that some of the web services (e.g. the EBI WUBlast 
and the DBFetch web service) changed their XML output format without announcing it beforehand. 
Luckily parsers in AFAWE are easily replaceable, but still they have to be updated, if there are any 
changes in the output format of the service. Furthermore at the moment there is no possibility to 
check for non-functionality of a web service, except if it returns an error message. Because of that 
alternative web services should be called, if an analysis web service is not responding at all or in a 
certain time frame.
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VIII. Summary and Discussion 

Up  to  now  the  functional  annotation  of  genes  was  done  by  using  homology  based  sequence 
similarity searches like Blast. I have shown for different genomes that by using a phylogenomic 
approach,  the  function  of  a  gene  can  be  annotated  more  accurately.  Furthermore  through  the 
integration  of  annotated  functional  information  like  domain  information,  interaction  data  and 
ontology  terms  the  accuracy  could  be  further  improved  and  the  function  is  described  more 
comprehensively. In addition to that, an intuitive webinterface is being provided which facilitates 
the  comparison  between  results  from different  functional  analysis  tools  and  enables  a  manual 
annotation.

Automatic function prediction in genome projects by function transfer:
I  have  implemented  and  tested  different  approaches  for  automatic  function  prediction  in  the 
Medicago truncatula,  Sorghum bicolor and  Solanum lycopersicum genome projects. Because the 
manual functional characterization of each gene is not possible in genome projects, an automatic 
pipeline has been implemented. It uses the phylogenomic tool SIFTER for the automatic transfer of 
molecular function Gene Ontology terms (GO terms) within a phylogenetic tree of homologous 
genes.  Tested on 100 manually verified Medicago proteins,  the SIFTER workflow achieved an 
accuracy of 97% and the assigned functional annotation term was in 25% of the cases more specific 
than the assigned human readable description line.

However,  I  also discovered wrong predictions  made by SIFTER because there were too sparse 
molecular function GO terms annotated to genes or the annotated GO term was wrong for one gene 
in the phylogenetic tree. Another bottleneck of SIFTER was the phylogenetic tree used as input. If 
this is incomplete, gene loss and duplication nodes can not be discovered.

To get a better alignment and a more comprehensive phylogenetic tree the phylogenomic pipeline 
was improved in several ways and tested on the  Sorghum bicolor genome and again on the 100 
manually annotated Medicago genes. Although I obtained an increased accuracy of the SIFTER 
workflow for the 100 manually annotated Medicago genes (100%), still three proteins out of 100 
manually annotated Sorghum proteins are  wrongly annotated (accuracy:  97%), because of false 
functional annotations, paralogous genes, which changed their function, and too sparse GO terms 
assigned  to  homologous  proteins  inside  the  phylogenetic  tree.  Furthermore  I  found  that  it  is 
important to use the low complexity filter integrated in Blast to mask repetitive regions and so 
lower the number of non-homologous genes and to use a cutoff of 0.4 for the posterior probability 
predicted by SIFTER to avoid wrong annotations.  However,  for 55% of all  predicted Sorghum 
genes a molecular function GO term could be assigned. The higher number of annotated genes in 
the  Sorghum genome  compared  to  Medicago  could  be  due  to  a  better  gene  prediction  of  the 
Sorghum genes leading to less truncated and incomplete  gene models,  because the sequencing, 
assembly and gene prediction process of the Medicago genome was still in progress at this date.

It might be possible to further increase the number of functionally annotated genes by integrating an 
additional step in the phylogenomic pipeline after the building of the alignment to get additional, 
more distant genes. The additional step could be a Hidden Markov Model or profile search using 
the alignment of the putative homologous genes discovered by the former iterative Blast search as a 
template to create the profile or the Hidden Markov Model. However, this step would slow down 
the whole pipeline significantly and so this pipeline would not be applicable on the whole genome 
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anymore.

To further  boost  the  prediction  result  of  the  SIFTER pipeline  and to  overcome problems with 
paralogous genes and missing GO terms annotated to genes in the phylogenetic tree, the SIFTER 
algorithm was modified to use additional functional information. Annotated terms from different 
ontologies, interaction partners and protein domain composition of genes are evaluated  to decrease 
the functional mutation rate between nodes in the tree if they share known functional attributes and 
increase it if known attributes differ. Furthermore the modified algorithm (called SIFTER-X) was 
extended  to  predict  besides  molecular  function  GO  terms  biological  process  GO  terms,  EC 
numbers, MapMan bins and KEGG Ontology terms (KO terms).

I tested the new pipeline using SIFTER-X on the blue-light photoreceptor/photolyase family, which 
is often wrongly predicted by tools like InterProScan and SIFTER, and on 232 manually verified 
Arabidopsis genes. SIFTER-X was able to differentiate between the blue-light photoreceptor family 
and the photolyase family and assigned members of both families the true molecular function and 
biological  process  GO  terms  with  a  better  posterior  probability  than  the  wrong  GO  terms. 
Furthermore tested on 232 Arabidopsis genes the sensitivity of SIFTER could be increased by 11% 
(from 44% to 55%) and specificity could be increased by 5% (from 90% to 95%) using SIFTER-X 
and applying a cutoff of 0.5 for the posterior probability. By predicting the MapMan bins and KO 
terms SIFTER-X achieved a very high sensitivity of 81% and a high specificity of 93% by using a 
posterior probability cutoff of 0.8. In case of EC number the cutoff should be increased to 0.9 to get 
a sensitivity of 77% and a specificity of 82%. This is due to the fact that in case of KO terms, EC 
numbers and MapMan bins often only one to three terms were annotated to the curated Arabidopsis 
data set, but in case of GO terms up to 10 terms were necessary to describe the complete function of 
a gene. However, the set of annotated GO terms is incomplete for many genes [Kourmpetis et al. 
2007].  SIFTER-X performed very well  on the the prediction of  MapMan bins.  This maybe an 
indication of either  good reference annotation or the suitability of  MapMan bins for automatic 
classification tasks. In all cases SIFTER-X performed better than transferring the function of genes 
found by Blast and applying a certain cutoff or transferring the function of the best Blast hit only.

However, in case of members of the blue-light photoreceptor family not all true GO terms got a 
posterior  probability  greater  than  0.4,  because  only  two  blue-light  photoreceptor  genes  were 
annotated with GO terms. This could lead to a high false negative rate by applying a cutoff of 0.4 to 
the SIFTER results.  The posterior  probability could  be increased a  bit  by excluding biological 
process GO terms for the prediction of molecular function GO terms, because often the molecular 
function of paralogous genes is equal, but the biological process is different [Duarte et al. 2006], but 
still then the probability is lower than 0.4 for many true terms. But the distance between the true GO 
terms with the lowest probability and the wrong GO with the highest probability is large. So this 
problem could be solved by applying a partitioning cutoff instead of a fixed cutoff on the SIFTER 
results, which discovers the greatest distance between two posterior probabilities and only outputs 
the GO terms with a higher posterior probability than this cutoff.

Manual functional annotation in genome projects
As I have shown, at the moment no tool is able to predict the full function of all kinds of genes from 
any organism with 100% accuracy. To avoid wrong annotations in public databases, which can be 
propagated through public databases, a manual curation of the automatic annotation is necessary. 
However this process is very time-consuming because the different analysis results from different 
tools have to be compared and combined and results are often in different formats. Furthermore 
each tool has its own cutoffs for trustworthy results and these should also be considered.
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To simplify the manual annotation process we have implemented AFAWE, which enables an easy 
comparison between results from different functional prediction tools by highlighting trustworthy 
results  from each  analysis  and  displaying  the  results  in  a  way that  facilitates  the  comparison 
between the results. All analyses in AFAWE are run by web services to ensure the interoperability 
and the easy extensibility of the system. Currently the newly developed SIFTER workflow together 
with  Blast  searches  against  different  databases  and  tools  for  protein  domain  predictions  are 
integrated in AFAWE. After logging in each user is able to add a detailed manual annotation to each 
protein. To distribute manual annotations to public databases and to build a connection between 
public databases and the AFAWE system, several web services for data retrieval from the AFAWE 
database  and for  starting  analyses  in  AFAWE have  been  implemented.  Furthermore  the  public 
database  MIPSPlantsDB  [Spannagl  et  al.  2007]  has  integrated  AFAWE  protein  IDs  from  the 
international  Medicago  genome  annotation  project  IMGAG  and  from the  international  tomato 
genome  annotation  project  ITAG  as  cross  reference,  to  give  the  user  of  MIPSPlantsDB  the 
possibility to go directly from the protein report in MIPSPlantsDB to the corresponding analysis 
results in AFAWE and add his or her own manual functional annotation. This manual annotation 
will then be displayed in the protein report of MIPSPlantsDB and will give other users additional 
information about the function of the protein.

However,  although  using  web  services  instead  of  local  tools  has  several  advantages  like 
interoperability, scalability,  changeability and easy extensibility, they also bring many problems. 
One problem is the change of the output format, which is returned by the web service. Each time 
the output format has changed, parsers have to be rewritten and although adapting the parser to a 
new format is not very time consuming, this requires a full time support, because often the change 
of the output format is not discovered directly. Mailing lists supported by the provider of the web 
service could help in this case by announcing the change of the format. Unfortunately these are 
often not provided or this information is not announced. 

Another issue, which causes problems, are dead web services. Especially in science people often 
change their working environment or the funding for a projects is over. Tools or web services are 
not supported anymore and this results in many non-functional web services. One way to handle 
that  is  by  using  alternative  web  services.  However,  often  there  is  no  alternative  web  service 
available or the input and output formats of the alternative web service are different, which makes a 
direct  integration  of  the  web service  impossible.  Another  way to  avoid  dead  web services  are 
initiatives  like  the  OMII-UK project  in  the  United  Kingdom26,  which  supports  software  if  the 
project runs out of money. Unfortunately OMII-UK supports only UK projects, so corresponding 
initiatives in others countries are necessary.

Furthermore there are many data retrieval web services currently available, but only few analysis 
web services.  One reason for  that  are  the missing resources  at  some institutes to  handle many 
different requests and the missing credit for providing a web service. However compute power is 
becoming  cheaper  and  projects  like  MyExperiment  enable  the  distribution  of  web  services 
workflows and the building of new communities and shared workflows. Some projects [Fisher et al. 
2007] have already shown that it is possible to get much credit for a community based web service 
workflow.

Newly discovered protein families
In the potato, Sorghum and Medicago genomes I was able to detect genes, which were not known in 
plants yet and are therefore potential candidates for further experiments.

26 http://www.omii.ac.uk/
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One gene family was only found in potato genomes and so seems to be a potato specific gene 
family. However, because of missing expression data I am not sure if genes of this family are really 
expressed. The expression of the genes should be checked before further experiments are done. 
Nevertheless it is interesting that all genes are located in a hot spot for pathogen resistance and 
therefore may play a role in this area. To confirm this, phenotype analyses would be necessary. It is 
also possible that this gene family is a new form of transposon.

Another gene family was first found in Medicago and later in EST data of other plants like citrus, 
spruce, pine, fir and ferns. The EST data from other plants is an indicator that this gene is likely to 
be also expressed in Medicago. Genes of this family seem to belong to the family of transferrins, 
which are well know in animals, insects and some green algae, but no member is known in higher 
plants  yet.  Transferrins  transfer  iron  in  fluids  like  human  blood.  The  phylogenetic  tree  of  the 
transferrin  family  reflects  the  evolutionary  history  from  primitive  old  organisms  (e.g.  algae, 
cyanobacteria  or  ferns)  to  higher  evolved,  younger  organisms  like  Angiosperms  and  insects. 
Therefore I assume that transferrins are a very old gene family, which is lost in some organisms. 
This  raises  the  question  why  only  some  organisms  have  transferrins  and  others  do  not.  One 
explanation  would  be  a  selective  advantage.  All  plant  transferrins  show  a  high  similarity  to 
transferrin-like genes  from algae and insects,  which seem to play a role  in the innate  immune 
response against bacteria and fungi [Valles et al. 2005] [Thompson et al. 2003]. Iron deprivation, as 
a result of iron binding proteins like transferrins, prevents the formation of a bacterial biofilm and 
makes bacteria susceptible to innate  immune defense or antibiotics [Ong et  al.  2006].  In some 
insects it is shown that transferrin-like genes are up-regulated during infection [Valles et al. 2005] 
[Thompson et al. 2003] and in Drosophila they have been shown to be primarily dependent on the 
Toll-pathway and represent an important iron-withholding strategy [Boutros et al. 2002]. To prove 
this assumption, further investigations in form of experiments are needed. However, no hints could 
be found why transferrins  are  present  only in  this  set  of  plants  and what  these plants  have in 
common. A broader view of all plants which include transferrin will be possible if more genomes 
will become available. However, if it could be shown that transferrins in higher plants are involved 
in the innate immune response against bacteria or fungi, these genes could be interesting candidates 
for improving agronomic traits or for the development of resistant varieties.

Also in the Sorghum genome three interesting candidate genes for further experiments could be 
identified. These genes seem to be a putative horizontal gene transfer from bacteria or come from 
mitochondrium or chloroplast.  Also a calcium binding protein,  a putative F-Box protein and an 
unknown protein could be identified, which are also found in rice, Vitis vinifera, populus and Picea 
sitchensis. No hint could be found of the function of these genes and they are also unknown in other 
plants.

Limitations of the automatic function prediction
I  have  shown  that  by  using  an  automatic  phylogenomic  pipeline  it  is  possible  to  predict  the 
functions of a protein very precisely. I was able to annotate approximately 55% of the Sorghum 
genome, 20% of the Medicago genome and 19% of the first sequenced part of the tomato genome. 
By combining this result with the result from InterProScan in combination with InterPro2GO I was 
further able to increase the number of annotated genes in the Medicago genome to 33% and in the 
tomato gene to 35%.

However, still for many genes no GO term could be annotated. One reason for that are errors in the 
assembly and the gene prediction. Especially in the on-going tomato genome project there are hints 
to a poor gene prediction, because approximately 30% of all genes show an overlap smaller than 
60% with related genes. Because the overlap between tomato sequence and Arabidopsis sequence is 
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quite good, but the overlap between Arabidopsis sequence and tomato sequence is in 30% of the 
cases below 60%, I  assume that  many genes are too short  or split  into  two or more genes.  In 
comparison  to  the  SIFTER  pipeline,  which  uses  an  overlap  cutoff  of  60%  to  get  candidate 
homologous genes and therefore was not able to functionally annotate many genes with wrong 
structural annotations, InterProScan was able to functionally annotate also some of these genes, 
because tools integrated in InterProScan search for protein domains and functional motifs, but do 
not consider the overall gene structure. Furthermore some InterProScan tools (e.g. a search with 
Hidden  Markov  Models)  are  more  sensitive  than  a  Blast  search  and  are  able  to  additionally 
recognize  incomplete  protein  domains  of  genes  whose  structural  annotations  are  incorrect. 
However,  a  functional  annotation  for  structurally  mis-annotated  genes  would  not  make  sense, 
because if genes are too short, then the functional annotation also becomes incomplete or erroneous. 
Therefore the structural annotation should be checked before the functional annotation is done. If 
there are hints to a wrong structural annotation the assigned functional annotation should give a 
notice of that.

Another reason for the low number of annotated genes are missing GO terms annotated to genes. 
Still for many genes no GO terms are available or the GO annotation is incomplete [Kourmpetis et 
al. 2007]. Many genes have a human readable description assigned to describe their function, but no 
GO  term  is  annotated.  Maybe  text-mining  algorithms  can  help  in  the  future  to  translate  this 
description line into GO annotations and therefore enlarge the number of GO annotated genes.

However,  the  functional  prediction  becomes  hard  if  homologs  of  the  gene  of  interest  are  not 
functionally characterized yet or no homologous sequence is present in public sequence databases. 
Also in case of fast evolving genes, like disease resistance genes in plants (see chapter IV), the 
determination of the function is complicated, because although all genes of this family show a high 
sequence similarity (~80%) they are often directed against different pathogens and by the transfer of 
function  only  the  information  that  this  is  a  disease  resistance  gene  can  be  retrieved,  but  no 
information about the pathogen, against which the gene is directed, can be obtained. In this case 
transferring the function from one gene to another is not possible and other methods should be used 
instead like e.g. looking for co-expressed genes, comparing the shared synteny and the structure and 
search for functionally known motifs (e.g. active sites). But in many cases also these results will 
give no hint to the function of the protein and further investigation in the laboratory is necessary. 
However, in genome projects running all kinds of analyses would be too time consuming and the 
transfer of function gives a first idea of the content of the genome.

Another bottleneck is the description of the function. For this case many ontologies are available, 
which avoid synonyms and make a description of the function of a gene machine readable. Probably 
the most common function vocabulary is Gene Ontology, which is also used in this thesis. However, 
although Gene Ontology is machine readable and enables the fast comparison between function 
terms, it also has limitations. One of them is that Gene Ontology is incomplete for many organisms 
and several  terms  are  missing  (e.g.  functions  of  plant  transcription  factors).  In  this  case  other 
vocabularies like MapMan [Thimm et al. 2004] could help to define the function of a protein more 
precisely.  Another  problem is  that  Gene  Ontology sometimes  provides  a  name of  a  term (e.g. 
muscle alpha-actinin binding), which is true for one organism group (animals), but not for another 
(plants also have actin, but no muscles). So by transferring a GO term from one gene to another it 
has to be considered if the corresponding term is applicable for this organism. Furthermore Gene 
Ontology is also work in progress and in each release terms become obsolete and new terms are 
created. It is also important to take care of that and to use only up-to-date data.
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IX. Outlook

In the post-genomic era the determination of the function of genes is the next big challenge. In this 
thesis I have developed tools and workflows for the automatic and manual annotation of proteins 
and these perform very well on the tested datasets. However these tools also have limitations and 
can be improved and extended.

One extension could be the integration of expression data and structure data in SIFTER-X. But 
expression data should be only used for the prediction of the biological process and not for the 
molecular function, because proteins can be differently expressed, but have the same molecular 
function. Structure data could be used on the other hand to find out, if changes in the amino acid 
sequence are important for the function of the protein or not. If these critical residues have changed 
between two nodes the function should not be transferred between nodes.

Another extension could be the integration of a profile search in the phylogenomic pipeline (as 
mentioned in the discussion part) to get additional homologous genes for the phylogenetic tree. Also 
instead of the manually built RefSeq database, which includes only fully sequenced genes, a more 
comprehensive  database  like  UniProt  should  be  used.  In  this  case  the  additional  functional 
information from not fully sequenced organisms can be obtained. However this  will  result  in a 
decrease  in  speed and in  a  decreased accuracy of  the  phylogenetic  tree because of  incomplete 
genomes.

With regard to manual annotation, I have provided with AFAWE the first prototype to facilitate a 
fast comparison between analysis results and to add a manual annotation. Although AFAWE is very 
intuitive, has already some users and some manual annotations have been made, it has to be further 
promoted to inform potential new users about its existence, show them how to use it and make it 
popular. To provide the user of AFAWE with a broad selection of analyses for comparison, other 
tools like the display of co-expressed genes or information about the structure of the protein should 
be integrated. Another idea is also to integrate the promoter sequence of the gene of interest in 
AFAWE and provide tools to automatically find motifs, which are conserved between promoters of 
homologous genes.  Additionally the comparison of the analysis  results  should be simplified by 
displaying summaries of Ontology terms of each analysis individually and a combination of all of 
them on a separate summary page.  To overcome problems with dead or temporarily unavailable 
web services, alternative web services could be called.
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X. Appendix

1) 100 manual inspected Medicago gene predictions made by SIFTER

IMGAG (1.0)  
Identifier

Predicted GO 
term by SIFTER

True 
Prediction?

Annotated 
description line

Is the SIFTER 
prediction more 
specific as the 

annotated  
description line?

Comments

IMGA|
AC139354_35.1

0005515
(protein binding) YES ChaC-like protein -

IMGA|
AC150703_2.1

0004623
(phospholipase 

A2 activity)
YES Phospholipase A2 -

IMGA|
CR931741_6.2

0045551
(cinnamyl-alcohol 

dehydrogenase 
activity)

YES

Alcohol 
dehydrogenase 

superfamily, zinc-
containing

YES

IMGA|
AC173834_25.1

0004872
(receptor activity) YES Bacteriophytochrome -

IMGA|
AC143341_25.2

0003677
(DNA binding) YES Homeodomain-like YES

IMGA|
AC146575_6.2

0005525
(GTP binding) YES

Ras small GTPase, 
Ras type; Small 

GTP-binding protein 
domain 

-

IMGA|
AC151709_22.2

0004046
(aminoacylase 

activity)
YES Peptidase 

dimerisation YES

IMGA|
AC144389_35.2

0004129
(cytochrome-c 

oxidase activity)
NO Cytochrome b5 -

IMGA|
AC126778_7.2

0009044
(xylan 1,4-beta-

xylosidase 
activity)

YES

Glycoside hydrolase, 
family 3, N-terminal; 
Glycoside hydrolase, 
family 3, C-terminal

YES

IMGA|
AC174370_24.1

0004055
(argininosuccinate 
synthase activity)

YES Argininosuccinate 
synthase -

IMGA|
AC148481_30.2

0047209
(coniferyl-alcohol 
glucosyltransferas

e activity)
YES

UDP-glucoronosyl 
and UDP-glucosyl 
transferase  family 

protein 

-
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IMGAG (1.0)  
Identifier

Predicted GO 
term by SIFTER

True 
Prediction?

Annotated 
description line

Is the SIFTER 
prediction more 
specific as the 

annotated  
description line?

Comments

IMGA|
AC136507_24.2

0008565
(protein 

transporter 
activity)

YES Longin-like NO

IMGA|
AC149803_8.2

0045431
(flavonol synthase 

activity)
NO 2OG-Fe(II) 

oxygenase -

IMGA|
CR954193_19.2

0005509
(calcium ion 

binding)
YES Calcium-binding EF-

hand -

IMGA|
AC141111_15.2

0008453
(alanine-

glyoxylate 
transaminase 

activity)

YES Aminotransferase, 
class V YES

IMGA|
AC158546_1.1

0003700
(transcription 

factor activity)
YES Zinc finger, Dof-type YES

IMGA|
AC124957_30.2

0005102
(receptor binding) YES

Quinonprotein 
alcohol 

dehydrogenase-like
YES Description is 

wrong

IMGA|
AC152177_43.1

0015297
(antiporter 
activity)

YES
Multi antimicrobial 
extrusion protein 

MatE 
-

IMGA|
AC140026_13.2

0005554
(unknown) YES Protein of unknown 

function DUF239 - Unknown protein

IMGA|
AC144766_8.2

0003700
(transcription 

factor activity)
YES Zinc finger, CCCH-

type YES

IMGA|
CR936327_2.2

0004218
(cathepsin S 

activity)
?

Peptidase C1A, 
papain; Peptidase 

M14, 
carboxypeptidase A 

- Not sure if true or 
wrong

IMGA|
AC174346_30.1

0047251
(thiohydroximate 

beta-D-
glucosyltransferas

e activity)

YES

UDP-glucoronosyl 
and UDP-glucosyl 
transferase  family 

protein 

-

IMGA|
CT863712_13.1

0003700
(transcription 

factor activity)
YES Transcription factor, 

MADS-box -

IMGA|
AC165276_13.1

0000036
(acyl carrier 

YES Acyl carrier protein 
(ACP)

-
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prediction more 
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annotated  
description line?

Comments

activity)

IMGA|
AC157646_18.1

0005427
(proton-dependent 

oligopeptide 
secondary active 
transmembrane 

transporter 
activity)

YES
TGF-beta receptor, 

type I/II extracellular 
region

-

IMGA|
AC149578_26.2

0045735
(nutrient reservoir 

activity)
YES Cupin region YES

IMGA|
AC133862_11.2

0051082
(unfolded protein 

binding)
YES Heat shock protein 

DnaJ NO

IMGA|
AC169177_28.1

0005515
(protein binding) YES Leucine-rich repeat -

IMGA|
CT573052_26.2

0015095
(magnesium ion 
transmembrane 

transporter 
activity)

YES Mg2+ transporter 
protein, CorA-like -

IMGA|
AC127429_17.2

0045735
(nutrient reservoir 

activity)
YES BURP -

IMGA|
AC174289_17.1

0030528
(transcription 

regulator activity)
YES Protein of unknown 

function DUF581 YES Description wrong

IMGA|
CT573028_11.2

0004805
(trehalose-

phosphatase 
activity)

YES Trehalose-
phosphatase -

IMGA|
AC155896_11.2

0046872
(metal ion 
binding)

YES WD40-like -

IMGA|
CT027660_11.1

0003841
(1-acylglycerol-3-

phosphate O-
acyltransferase 

activity) YES
1-acyl-sn-glycerol-3-

phosphate 
acyltransferase

-
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IMGA|
AC173964_29.1

0005529
(sugar binding) YES

Protein kinase; 
Curculin-like 

(mannose-binding) 
lectin

NO

IMGA|
AC124214_16.2

0030060
(L-malate 

dehydrogenase 
activity)

YES Lactate/malate 
dehydrogenase -

IMGA|
AC119413_42.2

0003723
(RNA binding) YES

RNA-binding region 
RNP-1 (RNA 

recognition motif)
-

IMGA|
AC153354_6.1

0005198
(structural 

molecule activity)
YES

Initiation factor eIF-4 
gamma, middle; 

Initiation factor eIF-4 
gamma, MA3

NO

IMGA|
CR954198_13.2

0005515
(protein binding) YES

FAR1; Zinc finger, 
SWIM-type; Cupin, 

RmlC-type
NO -

IMGA|
AC126782_49.2

0016887
(ATPase activity) YES AAA ATPase, central 

region; SMAD/FHA - -

IMGA|
AC151621_30.1

0003730
(mRNA 3'-UTR 

binding)
YES

RNA-binding region 
RNP-1 (RNA 

recognition motif)
- -

IMGA|
CT573052_7.2

0003729
(mRNA binding) YES Pentatricopeptide 

repeat YES -

IMGA|
AC133780_12.1

0004674
(protein 

serine/threonine 
kinase activity)

YES Protein kinase YES -

IMGA|
AC134049_54.2

0005524
(ATP binding) YES Disease resistance 

protein NO -

IMGA|
AC161033_18.2

0051087
(chaperone 

binding)
YES Heat shock protein 

DnaJ NO -

IMGA|
AC122164_6.2

0005524
(ATP binding) YES Protein kinase NO -

IMGA|
AC148487_4.2

0047652
(allantoate 
deiminase 
activity)

YES Peptidase M20 YES -

IMGA|
AC146557_11.1

0004815
(aspartate-tRNA 
ligase activity) YES

GAD; Aminoacyl-
transfer RNA 

synthetase, class II
- -
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IMGA|
AC147499_13.2 0005515

(protein binding) ? Thaumatin, 
pathogenesis-related NO Not sure

IMGA|
AC174315_5.1

0005516
(calmodulin 

binding)
YES IQ calmodulin-

binding region - -

IMGA|
AC124952_6.2

0019153
(protein-disulfide 

reductase 
(glutathione) 

activity)

YES Thioredoxin domain 
2 YES -

IMGA|
AC129090_32.2

0005554
(unknown 
function)

- HMG-I and HMG-Y, 
DNA-binding YES Description is 

wrong

IMGA|
AC139290_19.2

0004687
(myosin light 
chain kinase 

activity)

YES Protein kinase YES -

IMGA|
AC166038_4.1

0009000
(selenocysteine 
lyase activity)

YES MOSC; MOSC, N-
terminal beta barrel YES 1 GO term is 

missing

IMGA|
AC140032_7.1

0016165
(lipoxygenase 

activity)
YES Lipoxygenase - -

IMGA|
AC155880_17.2

0005515
(protein binding) YES

HAD-superfamily 
subfamily IB 

hydrolase, 
hypothetical

NO -

IMGA|
CT030192_7.1

0004842
(ubiquitin-protein 

ligase activity)
YES

Cyclin-like F-box; F-
box protein 

interaction domain; 
Galactose oxidase, 

central

YES -

IMGA|
AC149038_17.2

0005554
(unknown 
function)

- Protein of unknown 
function - Unknown protein

IMGA|
AC144539_41.2

0003700
(transcription 

factor activity)
YES GRAS transcription 

factor NO -

IMGA|
AC146720_15.2

0005554
(unknown 
function)

-

Leucine-rich repeat; 
Leucine-rich repeat, 
cysteine-containing 

type

NO -

IMGA|
AC167958_2.1

0005524
(ATP binding) YES EMB1135; ATP 

binding , putative - -
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IMGA|
AC144502_17.2 0008270

(zinc ion binding) YES Zinc finger, C2H2-
type - -

IMGA|
AC152552_56.1

0005524
(ATP binding) YES Protein kinase - 1 GO term is 

missing

IMGA|
AC148097_6.2

0016301
(kinase activity) YES Protein kinase - -

IMGA|
AC169089_8.1

0030515
(snoRNA binding) YES Fibrillarin NO -

IMGA|
AC141113_49.2

0003700
(transcription 

factor activity)
YES DNA-binding 

WRKY - -

IMGA|
AC122730_40.2

0004867
(serine-type 

endopeptidase 
inhibitor activity)

YES Kunitz inhibitor ST1-
like - 1 GO term is 

missing

IMGA|
AC157348_18.1

0003924
(GTPase activity) YES

Ras GTPase; 
Calcium-binding EF-

hand
- -

IMGA|
CT010481_7.2

0004367
(glycerol-3-
phosphate 

dehydrogenase 
(NAD+) activity)

YES

NAD-dependent 
glycerol-3-phosphate 
dehydrogenase, C-

terminal

- -

IMGA|
AC152552_10.1

0030508
(thiol-disulfide 

exchange 
intermediate 

activity)

YES  Thioredoxin domain 
2; Thioredoxin fold YES 1 GO term is 

missing

IMGA|
AC126012_2.2

0005515
(protein binding) YES Peptidase S59, 

nucleoporin NO -

IMGA|
AC157983_25.2

0016855
(racemase and 

epimerase 
activity, acting on 
amino acids and 

derivatives)

YES Asp/Glu racemase - -

IMGA|
AC149131_5.2

0001758
(retinal 

dehydrogenase 
activity)

NO
Short-chain 

dehydrogenase/reduc
tase SDR

- Description is 
unspecific

IMGA|
CU013514_6.1

0003700
(transcription 

factor activity)
YES

Zinc finger, CCHC-
type; Homeodomain-

related
YES -
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IMGA|
AC135797_6.2

0003743
(translation 

initiation factor 
activity)

YES
Proteasome 

component region 
PCI

YES Description is 
wrong

IMGA|
AC146748_15.2

0008134
(transcription 

factor binding)
YES

TGS; Small GTP-
binding protein 

domain
YES 1 GO term is 

missing

IMGA|
CU012059_15.1

0003735
(structural 

constituent of 
ribosome)

YES
Ribosomal protein 
S12, bacterial and 
chloroplast form

- -

IMGA|
AC126783_10.2

0004497
(monooxygenase 

activity)
YES

FAD-dependent 
pyridine nucleotide-

disulphide 
oxidoreductase

YES Description is 
wrong

IMGA|
AC146586_38.2

0005524
(ATP binding) YES Protein kinase - 1 GO term is 

missing

IMGA|
AC151526_7.2

0016787
(hydrolase 
activity)

YES

Histidine acid 
phosphatase; HAD-

superfamily 
hydrolase subfamily 

IA, variant 3

YES Description is 
wrong

IMGA|
AC163383_6.1

0051082
(unfolded protein 

binding)
YES

Heat shock protein 
DnaJ, N-terminal; 
Homeodomain-

related

NO -

IMGA|
AC146705_13.2

0005516
(calmodulin 

binding)
? Auxin responsive 

SAUR protein - -

IMGA|
CT954231_4.2

0003824
(catalytic activity) YES

Metal-dependent 
phosphohydrolase, 

HD region
NO -

IMGA|
AC143341_4.2

0005554
(unknown 
function)

- hypothetical protein - Unknown function

IMGA|
AC148918_38.2

0004523
(ribonuclease H 

activity)
YES

Polynucleotidyl 
transferase, 

Ribonuclease H fold
- -

IMGA|
AC174362_13.1

0003735
(structural 

constituent of 
ribosome)

YES Ribosomal protein 
S19/S15 - -

IMGA|
AC166897_16.1

0003824
(catalytic activity) YES

Protein of unknown 
function DUF676, 

hydrolase-like
- -
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IMGA|
CT010459_6.2

0046592
(polyamine 

oxidase activity) YES NAD-binding site YES -

IMGA|
AC149471_8.1

0008320
(protein 

transmembrane 
transporter 
activity)

YES Importin-beta, N-
terminal YES -

IMGA|
AC148236_12.1

0016829
(lyase activity) YES

Carboxypeptidase 
regulatory region; 

Rhamnogalacturonat
e lyase

NO -

IMGA|
AC166743_6.1

0004004
(ATP-dependent 

RNA helicase 
activity)

YES
Helicase, C-terminal; 
Zinc finger, CCHC-

type
YES -

IMGA|
AC129090_53.2

0019825
(oxygen binding) YES Globin; Globin-

related - -

IMGA|
AC141112_9.2

0015359
(amino acid 

transmembrane 
transporter 
activity)

YES
Amino 

acid/polyamine 
transporter II

- -

IMGA|
AC146307_20.1

0051082
(unfolded protein 

binding)
YES Heat shock protein 

Hsp20 - 1 GO term is 
missing

IMGA|
AC130803_6.1

0004553
(hydrolase 

activity, 
hydrolyzing O-

glycosyl 
compounds)

YES Glycoside hydrolase, 
family 5 - -

IMGA|
AC155100_12.1

0016168
(chlorophyll 

binding)
YES Chlorophyll A-B 

binding protein - -

IMGA|
AC165943_7.1 0005515

(protein binding) YES Reticulon NO -

IMGA|
AC174360_8.2

0008173
(RNA 

methyltransferase 
activity)

YES
tRNA/rRNA 

methyltransferase 
(SpoU)

- -

IMGA|
CR956402_6.1

0005524
(ATP binding) YES Disease resistance 

protein NO -
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IMGA|
CR931734_3.2

0005515
(protein binding) YES FAR1; Zinc finger, 

SWIM-type - -
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2) Alignment of the photolyase/blue-light photoreceptor family
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