Rijal, Ramesh ORCID: 0000-0003-0498-1064, Arhzaouy, Khalid, Strucksberg, Karl-Heinz, Cross, Megan ORCID: 0000-0001-7512-7223, Hofmann, Andreas ORCID: 0000-0003-4408-5467, Schroeder, Rolf, Clemen, Christoph S. and Eichinger, Ludwig ORCID: 0000-0003-1594-6117 (2016). Mutant p97 exhibits species-specific changes of its ATPase activity and compromises the UBXD9-mediated monomerisation of p97 hexamers. Eur. J. Cell Biol., 95 (6-7). S. 195 - 208. MUNICH: ELSEVIER GMBH. ISSN 1618-1298

Full text not available from this repository.

Abstract

p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed that the disease-causing human R93C, R155H, and R155C as well as Dictyostelium R154C, E219K, R154C/E219K p97 mutations constitute variations in surface-exposed locations. In-gel ATPase activity measurements of p97 monomers and hexamers revealed significant mutation- and species-specific differences. While all human p97 mutations led to an increase in ATPase activity, no changes could be detected for the Dictyostelium R154C mutant, which is orthologous to human R155C. The E219K mutation led to an almost complete loss of activity, which was partially recuperated in the R154C/E219K double-mutant indicating p97 inter-domain communication. By means of co-immunoprecipitation experiments we identified an UBX-domain containing Dictyostelium protein as a novel p97 interaction partner. We categorized all UBX-domain containing Dictyostelium proteins and named the interaction partner UBXD9. Pull-down assays and surface plasmon resonance analyses of Dictyostelium UBXD9 or the human orthologue TUG/ASPL/UBXD9 demonstrated direct interactions with p97 as well as species-, mutation- and ATP-dependent differences in the binding affinities. Sucrose density gradient assays revealed that both human and Dictyostelium UBXD9 proteins very efficiently disassembled wild-type, but to a lesser extent mutant p97 hexamers into monomers. Our results are consistent with a scenario in which p97 point mutations lead to differences in enzymatic activities and molecular interactions, which in the long-term result in a late-onset and progressive multisystem disease. (C) 2016 The Authors. Published by Elsevier GmbH.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Rijal, RameshUNSPECIFIEDorcid.org/0000-0003-0498-1064UNSPECIFIED
Arhzaouy, KhalidUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Strucksberg, Karl-HeinzUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Cross, MeganUNSPECIFIEDorcid.org/0000-0001-7512-7223UNSPECIFIED
Hofmann, AndreasUNSPECIFIEDorcid.org/0000-0003-4408-5467UNSPECIFIED
Schroeder, RolfUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Clemen, Christoph S.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Eichinger, LudwigUNSPECIFIEDorcid.org/0000-0003-1594-6117UNSPECIFIED
URN: urn:nbn:de:hbz:38-273452
DOI: 10.1016/j.ejcb.2016.03.004
Journal or Publication Title: Eur. J. Cell Biol.
Volume: 95
Number: 6-7
Page Range: S. 195 - 208
Date: 2016
Publisher: ELSEVIER GMBH
Place of Publication: MUNICH
ISSN: 1618-1298
Language: English
Faculty: Unspecified
Divisions: Unspecified
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
AAA-ATPASE; UBX DOMAIN; DICTYOSTELIUM-DISCOIDEUM; CONFORMATIONAL-CHANGES; P97/VCP ATPASE; VCP MUTATIONS; PAGET-DISEASE; N-DOMAIN; PROTEIN; D1Multiple languages
Cell BiologyMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/27345

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item