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Zusammenfassung 

 I 

Zusammenfassung: 
Die einwandfreie Entwicklung von Organismen basiert auf der präzisen Kontrolle der 

Genexpression: Die sowohl räumlich als auch zeitlich hoch spezifische Gen- bzw. 

Proteinexpression ist die Grundvoraussetzung für die korrekter Zelldifferenzierung. 

Transkriptionsfaktoren und microRNAs sind die Hauptkomponenten der 

transkriptionellen und translationalen Regulation der Genexpression. Von der 

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genfamilie aus 

Arabidopsis thaliana weiß man, dass sie an verschiedenen Entwicklungsvorgängen 

der Pflanzen, wie der Blütenentwicklung und dem für einjährige Pflanzen 

irreversiblen Phasenwechsel vom vegetativen zum reproduktiven Wachstum, beteiligt 

ist. Dieser Wechsel ist essenziell, um der Pflanze die erfolgreiche Reproduktion 

während günstiger Umweltbedingungen zu ermöglichen. Für den durch MIR156/157 

kontrollierten SBP-box Transkriptionsfaktor SPL3 wurde bereits eine wichtige Rolle 

während der Blütenentwicklung in Arabidopsis diskutiert, da seine konstitutive 

Überexpression in einer microRNA unempfindlichen From (SPL3OX) zu verfrühter 

Blüte führt. Dennoch bleiben diese Pflanzen photoperiodisch sensitiv. Darüber hinaus 

konnten in vitro Bindestudien zeigen, dass SPL3 an das Kernsequenzmotifv CGTAC 

bindet. 

Ziel der vorliegenden Doktorarbeit war, die Rolle von SPL3 während der 

Entwicklung vom vegetativen zum reproduktiven Wachstum durch Identifikation von 

Zielgenen zu ermitteln. Die Ergebnisse dieser Arbeit zeigen, dass das florale 

Meristemidentitätsgen FRUITFULL (FUL/AGL8) wahrscheinlich ein direktes Zielgen 

von SPL3 ist. Expressionsstudien zweier transgener Linien, die ein GUS-Reportergen 

trugen, zeigten, dass in einem SPL3OX Hintergrund FUL in Kotyledonen und Blättern 

verfrüht exprimiert wird und die Anwesenheit von Bindemotiven sowohl im Promotor 

als auch im ersten Intron von FUL von Bedeutung sind. Darüberhinaus konnte druch 

die Analyse der Gesamtgenexpression von SPL3 Überexprimierern ein Einfluss von 

SPL3 auf den Zuckermetabolismus, das „Red Light Signalling“ sowie die Circadiane 

Uhr festgestellt werden. Eine anschließende Analyse der diurnalen Expression der 

Gene, die in der Circadianen Uhr eine Rolle spielen, zeigte, dass die Periode der 

Biologische Uhr verkürzt ist, was zu einer verfrühten Aktivierung sog. "Abendgene" 

führt. 

 



Abstract 

II 

Abstract: 
Proper developmental processes require a tight control of spatial and temporal gene 

regulation, since specific gene and protein expression is a prerequisite of cell 

differentiation. Transcription factors as well as microRNAs are major components for 

transcriptional and translational control of gene expression. In Arabidopsis thaliana, 

one of the plant specific transcription factor families is the SQUAMOSA PROMOTER 

BINDING PROTEIN-LIKE (SPL) gene family, which comprises 17 members, that 

have been shown to play important roles in several developmental processes. 

A decisive step in plant development is the transition from vegetative to reproductive 

growth, as it has to happen during favorable conditions to ensure successful 

reproduction and is a "one-time decision", as this phase change is not reversible in the 

annual plant Arabidopsis. The MIR156/157-controlled SBP-box transcription factor 

SPL3 has been shown to play a role during flowering in Arabidopsis, since its 

constitutive overexpression in a microRNA insensitive form results in early flowering 

plants, that nevertheless remain photoperiodically sensitive. Moreover, it has been 

shown that SPL3 binds in vitro to the sequence core motif CGTAC. 

During this thesis the role of SPL3 during the development to reproductive growth 

should be elucidated through identification of target genes. The results of this work 

suggest the floral meristem identity gene FRUITFULL (FUL; AGL8) to be a direct 

target of SPL3. Expression studies of two transgenes carrying the reportergene GUS 

in combination with genomic FUL or the FUL promoter region revealed a precocious 

activation of FUL in cotyledons and leaves in an SPL3OX background. Moreover, 

these data indicate that both, the binding motifs in the promoter as well as in the FUL 

first intron, are required for proper activation of FUL. A global expression analysis 

revealed that sugar metabolism, red light signaling and the circadian clock are 

affected by overexpression of SPL3. Subsequent analysis of diurnal expression of 

clock genes as well as of leaf movement in SPL3 overexpressing plants revealed a 

shortened period of the circadian clock and a precocious activation of so called 

"evening genes". 
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Introduction 
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1 Introduction 
Proper development in plants, as in all living organisms, depends on the precise 

spatial and temporal regulation of gene expression. This is cardinally achieved on the 

level of transcription through sequence specific DNA binding proteins. These so 

called transcription factors (TFs) are able to specifically interact with target genes and 

either activate or repress their expression in a particular developmental context (Chen 

and Rajewsky 2007). Thus, detailed knowledge on the role of transcription factors 

will contribute to a generally better understanding of development. 

A well established model system for studying plant development is Arabidopsis 

thaliana. Its entire genome has been largely sequenced (The Arabidopsis Genome 

Initiative 2000) and approximately 6% of the total genome of Arabidopsis thaliana 

encode for transcription factors (Guo et al., 2005, Ratcliff and Riechmann 2002). The 

more than 1500 transcription factors identified in Arabidopsis can be classified into 

49 transcription factor families due to the type of DNA-binding domain encoded 

(Ratcliff et al., 2002; Guo et al. 2005, Riechmann et al., 2000). Many transcription 

factor families in Arabidopsis are large and incorporate more than 100 members. The 

largest transcription factor families are the AP2/ERF (APETALA2/ethylene 

responsive element), the bHLH (basic region helix-loop-helix) and the MYB-

(R1)R2R3 family. Furthermore, whereas 53% of the Arabidopsis transcription factors 

belong to families that appear in other eukaryotic organisms like animals and fungi, as 

well, ca. 45% are plant specific (Riechmann et al., 2000). However, despite their 

assumed regulatory roles, less than 10% of the Arabidopsis transcription factors are 

currently known for their contribution to plant developmental processes. 

 

1.1 The SBP-box gene family of transcription factors in Arabidopsis thaliana 

One plant specific family of transcription factors is the SBP-box gene family. The 

first SBP-box genes have been identified in Antirrhinum majus, as they encode 

proteins able to bind in vitro a defined sequence motif in the promoter region of the 

floral meristem identity gene SQUAMOSA (Huijser et al., 1992, Klein et al., 1996). 

Therefore, members of this family are called SQUAMOSA-PROMOTER BINDING 

PROTEINS (SBP-box proteins) and share the highly conserved SBP-domain, which 

is responsible for DNA-binding. 
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Members of the SBP-box gene family are known from unicellular algae like 

Chlamydomonas, the moss Physcomitrella up to mono- and dicots like rice and 

poplar. For example, the Chlamydomonas SBP-domain protein COPPER RESPONSE 

REGULATOR 1 (CRR1, Kropat et al., 2005), is involved in copper homeostasis, 

whereas the maize SBP-box genes LIGULELESS1 (LG1; Moreno et al., 1997) and 

TEOSINTE GLUME ARCHITECTURE 1 (TGA1; Wang et al., 1995) control leaf and 

glume organogenesis, respectively. 

A search for orthologs of the A. majus SBPs, SBP1 and SBP2, revealed that in the 

model species Arabidopsis thaliana the SBP-box family today comprises 17 

members, the SPL-genes (for SBP- LIKE; (Cardon et al., 1999, Cardon et al., 1997). 

Analysis of the SBP-domain of those proteins by heteronuclear NMR spectroscopy 

revealed the 76 amino acid residues spanning SBP-domain to contain two zinc-

binding sites with eight Cys or His residues in a Cys3HisCys2-HisCys or Cys6HisCys 

sequence manner. The first four and the last four residues, in a novel constellation, 

both coordinate one zinc ion (Yamasaki et al., 2004, 2006). Furthermore, the SBP-

domain harbors a conserved bipartite nuclear localization signal at its C-terminal end 

to target the transcription factor to the nucleus (Birkenbihl et al., 2005). 

It has been shown that SBP-domain proteins generally recognize the tetranucleotide 

core motif GTAC, although for the individual members of this family a more specific 

sequence for DNA-binding seems to be required, i.e. SPL14 prefers CCGTAC(A/G), 

PpSBP2 GTACT and SPL3 CGTAC (Birkenbihl et al., 2005; Liang et al., 2008; 

Nagae et al., 2008). 

SBP-box genes can be grouped according to their genomic structure and sequence 

similarities into three subfamilies or into 7 phylogenetical subfamilies (Riese et al., 

2007). The group encoding the largest SBP-domain proteins comprises the members 

SPL1, 7, 12, 14 and 16, which are characterized by relatively large genomic loci with 

10 or more exons. Downstream of the SBP-domain the protein products of this 

subfamily share ankyrin repeat-like sequences probably involved in protein-protein 

interaction and a transmembrane domain like feature at their C-termini. Moreover, 

they carry a possible AHA-like activation site upstream of the SBP-domain and an 

IRPGC motif of unknown function downstream the SBP-domain. Members of this 

subfamily are largely constitutively expresses during plant development according to 

the microarray database genevestigator (Zimmermann et al., 2004). Yet, a function 

has solely been described for SPL14, which is involved in the resistance against the 
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fungal toxin fumonosin B1 and in leaf development (Stone et al., 2005). Moreover, 

recently a role for SPL7, which has shown to be a central regulator for copper 

homeostasis (Yamasaki et al., 2009), has been described. 

 

The second subfamily comprises SPL2, SPL6, SPL8, SPL9, SPL10, SPL11, SPL13a, 

SPL13b and SPL15 and represents rather mid-sized genes with three to four exons. In 

contrast to the subfamily of large SPL genes, expression of these genes is more 

spatially and temporally regulated. In particular, an increase towards the end of the 

vegetative growth phase is often observed as well as a strong response to 

photoperiodic induction of flowering (Cardon et al., 1997; Schmid et al., 2003; 

AtGenExpress). These observations already suggest that these SBP-box genes are 

involved in the transition from vegetative to reproductive growth and flower 

development. In agreement, SPL9 and SPL15 have recently been shown to control the 

juvenile-to-adult phase transition (Schwarz et al., 2008). Furthermore, their mutants 

affect plastochron, inflorescence architecture and branching (Schwarz et al., 2008; 

Wang et al., 2008). Interestingly, all members of this subfamily except SPL8 are 

targets of the related microRNAs 156 and 157 (Gandikota et al., 2007; Rhoades et al., 

2002). The one exception, SPL8, plays an important role in anther and ovule 

development (Zhang et al., 2007; Unte et al., 2003). 

 

The remaining SBP-box genes in Arabidopsis, SPL3, -4 and -5 represent the smallest 

SPL genes in Arabidopsis. Like the mid-sized genes, they become upregulated during 

floral transition and at least SPL3 seems to play an important role in the transition 

apex. Additionally, they are also targets for the microRNAs 156 and 157. However, 

whereas the other miR156/157 regulated SPL genes carry the miRNA response 

element (MRE) in the coding region, transcripts of SPL3, -4 and -5 carry the MRE in 

their 3’UTR (Rhoades et al., 2002). In association with the RNA-induced silencing 

complex (RISC), microRNAs mediate translational inhibition and/or mRNA cleavage 

through hybridization to the complementary MRE (Chen 2008 and references 

therein). 

Reduced SPL3 transcript levels in the floral transition apex of plants overexpressing 

the MIR156b locus indicate a post-transcriptional regulation of SPL3 by miR156 

(Schwab et al., 2005). Recently Gandikota and co-workers could show that the MRE 

in the 3’UTR of SPL3 prevents detection of SPL3 protein before the presence of the 
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transition apex despite the presence of abundant mRNA as in SPL3 overexpressing 

transgenic plants (Gandikota et al., 2007). Cardon and coworkers showed that SPL3 is 

highly expressed in the transition and inflorescence apex, the floral meristem, as well 

as in primordia of leaf and floral organs. Constitutive overexpression of SPL3 in a 

miRNA insensitive form leads to early flowering, nevertheless the plants remain 

photoperiodically sensitive, i.e. they flower later under shortday (SD) than under 

longday (LD) conditions (Cardon et al., 1999; Wu and Poethig 2006). Schmid and co-

workers could show that SPL3, as well as its likely paralogs SPL4 and 5, dramatically 

respond to floral induction by LD treatment (Schmid et al., 2003). 

Although SPL3 is orthologous to SBP1 from A. majus, and APETALA1 (AP1, Mandel 

et al., 1992) the ortholog of SQUA, the assumption that constitutive overexpression of 

SPL3 caused early flowering by precociously activating AP1 turned out to be false. 

Despite the presence of putative SPL3 recognition sites in the AP1 promoter region, 

plants overexpressing SPL3 in the absence of functional AP1 remain early flowering 

(Cardon et al., 1997). 

Taken together, these results strongly suggest a role for SPL3 (as well as for SPL4 and 

5) in the phase change from vegetative to reproductive growth. Furthermore, post-

transcriptional inhibition of gene expression mediated by miRNAs seems to play an 

important role in plant development, especially the floral transition. 

 

1.2 Regulation of Flowering time in Arabidopsis  

In the annual plant Arabidopsis thaliana the phase transition from vegetative to 

reproductive growth means a "one-time decision", since the phase change is not 

reversible. To ensure optimal use of resources, Arabidopsis has to time this switch in 

accordance to the most favorable period of the season. Therefore, the phase transition 

from vegetative to reproductive growth, i.e. flower and seed production, is tightly 

controlled in response to environmental cues. 

For the facultative long-day plant Arabidopsis, flowering is accelerated by increasing 

day-length (Carré 2001). In addition to this photoperiod dependent pathway, at least 

three other signaling pathways that coordinally promote flowering are known: the 

autonomous, the vernalization and the gibberelin dependent pathways. Moreover 

ambient temperature is an important regulator for flowering (Lee et al., 2007). 

The autonomous pathway involves the FRIGIDA gene (FRI/FLA; Lee et al 1993), 

which is a positive regulator of the flowering time repressor FLOWERING LOCUS C 
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(FLC/FLF; Michaels and Amasino 1999; Sheldon et al. 2006; Sheldon et al. 1999). 

FLC encodes a MADS-box transcription factor and its expression is epigenetically 

silenced by cold treatment, e.g. winter, and by several other components of the 

autonomous pathway, such as FCA and LD. FLC acts thus as an integrator for the 

signals from both the autonomous pathway (Alexandre and Henning 2008) and the 

vernalization pathway. Several genes have been identified, that act as repressors for 

FLC through modification of its chromatin. For example, VERNALIZATION 2 

(VRN2; Chandler et al., 1996) encodes a protein with similarity to PcG-proteins 

known to be involved in long-term maintenance of gene repression and regulation of 

chromatin structure (Gendall et al., 2001), while PROTEIN ARGININE 

METHYLTRANSFERASE 5 (PRMT5; Sung et al., 2006; Schmitz et al., 2008) and 

TERMINAL FLOWER 2 (TFL2; Larsson et al., 1998; Mylne et al., 2006) have been 

shown to be required for epigenetic silencing of FLC. 

Flowering in Arabidopsis also seems to be dependent on gibberellic acid in particular 

under SD conditions as the GA biosynthesis mutant gibberellin insensitive1-3 (ga1-3) 

never flowers under these conditions (Wilson et al., 1992). Blazquez et al. (2000) 

found that ga1-3 mutants lost LEAFY (LFY, Schultz et al., 1991) activity in SD 

conditions, but when LFY is overexpressed in these mutants (Carré and Kim 2002) the 

plants were able to flower under SD conditions (Blazquez and Weigel 2000). So it is 

likely that the GA signal is a positive regulator of LFY expression, which is a floral 

meristem identity gene required for flower formation and may integrate both 

photoperiod and GA pathways (Blazquez and Weigel 2000). 

Probably the best studied flowering time controlling pathway involves photoperiodic 

induction in association with the circadian clock. GIGANTEA (GI; Park et al., 1999; 

Fowler et al., 1999) is a clock-controlled positive regulator of CONSTANS (CO; 

Putterill et al., 1995) and forms a complex with FLAVIN-BINDING, KELCH 

REPEAT, F-BOX1 (FKF1, Nelson et al., 2000) protein to degrade the repressor of 

CO, CDF1, acting at the CO promoter (Sawa et al., 2007). 

CO transcripts show daily oscillations with an accumulation in the afternoon or 

evening (Suárez-López et al., 2001). But CO transcript accumulation has to happen 

during the light phase, i.e. LD conditions, to upregulate the floral pathway integrator 

FLOWERING LOCUS T (FT, Araki et al., 1998) in the leaves, since the CO protein is 

stabilized by light (Valverde et al., 2004). This phenomenon is known as the external 

coincidence model and has been proposed by Erwin Brüning in 1936 because it 
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requires the coincidence of an external stimulus (light) with an internal rhythm of 

sensitivity to light (CO protein). Additionally, GI protein is post-transcriptionally 

regulated by light and dark (David et al. 2006). FT is a mobile signal, that moves 

through the phloem to the shoot apical meristem (SAM) to change the meristem from 

vegetative to reproductive phase (Corbesier et al., 2007). FT activates another floral 

pathway integrator, the MADS domain transcription factor SUPPRESSOR OF 

OVEREXPRESSION OF CONSTANS 1 (SOC1; Lee et al., 2000). The floral pathway 

integrators integrate signals from all four signaling pathways and activate floral 

meristem identity genes (Kobayashi et al., 1999; Samach et al., 2000), i.e. AP1, 

CAULIFLOWER (CAL, Kempin et al., 1995), FRUITFULL (FUL/AGL8, Gu et al. 

1998) and LFY, which promote floral meristem development and flower architecture. 

 

Additionally, flowering in Arabidopsis is known to be controlled by a few 

microRNAs. Of these,  miR156 and the highly similar miR157 repress flowering time 

and are highly expressed in the transition and inflorescence apex (Schwab et al. 

2005). Constitutive overexpression of MIR156b results in delayed flowering and 

faster initiation of rosette leaves. Furthermore, elevated levels of miR156 cause 

decreased apical dominance, so that the first flowers often arise from side shoots 

(Schwab et al., 2005). Upon floral transition miR156 becomes downregulated. 

Another microRNA, miR172, promotes flowering posttranscriptionally by repressing 

a set of APETALA2-Like genes, such as TARGET OF EAT (TOE1), TOE2 and TOE3 

(Aukerman and Sakai 2003). Overexpression of miR172 results in early flowering 

plants both under LD and SD, that is in a CO-independent way. The level of MiR172 

is regulated by daylength. This daylength effect is lost in ft and co mutants (Schmid et 

al., 2003). Furthermore, GI regulates miR172 abundance at the miRNA processing 

level (Jung et al., 2007). Targets of miR172 are SCHLAFMÜTZE (SMZ) and 

SCHNARCHZAPFEN (SNZ), which repress flowering and become downregulated 

upon floral initiation (Schmid et al., 2003). 

A third microRNA involved in flowering time control is miR159, which is 

upregulated by gibberellic acid and causes the repression of LFY, specifically under 

SD (Achard et al. 2004). MiR159 directs the cleavage of mRNA encoding GAMYB-

proteins, which are involved in the activation of LFY and the regulation of anther 

development. Therefore overexpression of miR159 results in a delay of flowering 

under SD conditions and disturbed anther development (Achard et al. 2004). 
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Taken together it can be assumed that for proper floral induction it is necessary to 

repress miR156 / 157 and miR159 while miR172 has to be upregulated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.1 
Overview of the flowering time pathways with some key components. 
The floral pathway integrators SOC1 and FT integrate the signals coming from the photoperiod, 
vernalization and autonomous pathways as well as from the GA signalling pathway and pass these 
signals on to the floral meristem identity genes AP1, CAL, FUL and LFY. 
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1.3 Circadian Biological Clock in A. thaliana 

Due to rotation of the earth around its axis, light and temperature oscillate with a 

period of 24h. It is advantageous for both sessile and motile organisms to synchronize 

their cellular activities to such an environmental cue in order to ensure successful 

growth, development and reproduction. Therefore, organisms have established an 

internal time-keeping mechanism, the biological clock, generating biological rhythms 

with a periodicity of about 24h, i.e. acting as a circadian clock (Bell-Pedersen et al. 

2005). The circadian biological clock is capable of translating environmental signals 

into temporal information in order to rhythmically coordinate metabolism and 

physiology (Wijnen and Young 2006). Circadian biological rhythms are repeated 

once a day and persist in absence of environmental cues. Furthermore, they are 

entrained to local time and maintain over a range of physiologically permissible 

temperatures (Más, 2008). The circadian biological clock (in the following simply 

referred to as circadian clock) therefore is an excellent mechanism to enable an 

organism to measure both day-length and seasonal change and thus to adapt to 

environmental changes in light and temperature by timing important developmental 

processes to a biologically beneficial time of the day or year (Más, 2008). Some 

examples of circadian clock controlled processes in plants are the movement of 

cotyledons and leaves, the growth of the hypocotyl, the opening and closing of 

flowers, as well as the subcellular localization of chloroplasts and stomatal aperture 

size. Moreover, endogenous oscillations in gene and protein expression, 

posttranslational modification of proteins as well as rhythmic changes in chromatin 

structure and protein stability receive signals from the circadian clock and may 

feedback on it. 

Molecular and genetic approaches have shown, that the genes involved in the 

circadian clock, so-called clock genes, are not conserved across kingdoms, but that 

the genetic components of the clock all contribute to positive or negative feedbacks in 

all organisms studied (Dunlap, 1996). The Arabidopsis core oscillator of the circadian 

clock involves the single MYB-like transcription factors CIRCADIAN CLOCK 

ASSOCIATED 1 (CCA1; Wang and Tobin 1998) and LATE ELONGATED 

HYPOCOTYL (LHY; Schaffer et al., 1998), which are partly redundant (Mizoguchi et 

al., 2002). It has been shown that constitutive overexpression of LHY leads to 

arrhythmia and the clock is unable to work (Wang and Tobin 1998), whereas in a 

loss-of-function mutant of CCA1 or LHY the rhythmicity remains, but the period of 
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the clock is shortened (Schaffer et al., 1998; Green and Tobin 1999). Another core 

component of the clock is TIMING OF CAB EXPRESSION 1 (TOC1, Strayer et al., 

2000; Makino et al., 2000), which encodes for a protein, that contains a receiver 

domain similar to that found in classical Arabidopsis response regulators (ARRs). 

Together with five other members, TOC1 belongs to the family of pseudo-response 

regulators (PRRs; TOC1, PRR3, PRR5, PRR7 and PRR9). But the receiver domain in 

those proteins is atypical, since it lacks the conserved Asp residue and has glutamic 

acid instead (Hanano and Davis, 2005) and therefore the genes are called pseudo-

response regulators (PRRs). Loss-of-function of TOC1 leads to a shortened period of 

clock controlled gene expression. Moreover, flowering of those plants becomes day-

length insensitive (Strayer et al., 2000). Similar to overexpression of CCA1 or LHY, 

overexpression of TOC1 results in an arrhythmicity of clock outputs (Makino et al., 

2000; Murakami et al., 2005). CCA1, LHY and TOC1 have been shown to be to be 

functionally connected, because CCA1 and LHY can bind to a so-called evening 

element motif in the promoter region of TOC1 leading to transcriptional repression of 

TOC1 (Harmer et al., 2000; Alabadí et al., 2001). On the other hand, increased TOC1 

expression leads to an activation of CCA1 and LHY transcription (Alabadí et al., 

2001). So a reciprocal feedback loop of gene expression leads to rhythmical 

oscillation of CCA1/LHY and TOC1, with CCA1 and LHY peaking at dawn, while 

TOC1 peaks at dusk. 

Since this single reciprocal regulation loop cannot explain all the rhythmicity in 

Arabidopsis alone, recent work has focused on the identification and characterization 

of new core components that in additional loops participate in the clock function. 

Additional members of the TOC1 family (PRR7 and PRR9) as well as the GARP-

MYB-domain transcription factor LUX ARRHYTHMO/PHYTOCLOCK1 (LUX/PCL1, 

Hazen et al., 2005), GIGANTEA (GI; Park et al., 1999; Fowler et al.,  1999) and 

EARLY FLOWERING 4 (ELF4; McWatters et al., 2007) have been found to be 

associated with the circadian clock. It still remains unclear how the biological clock 

generates a 24h rhythm, but mathematical and experimental research currently predict 

to a three loop network (see fig. 1.2). 

GI expression is repressed by CCA1 and LHY. CCA1 and LHY also are responsible for 

the activation of PRR7 and PRR9 (morning oscillator), since they are able to bind 

directly to CCA1-binding sites in the promoters of the latter genes (Farré et al., 2005). 

Since loss-of-function mutants of both genes (prr7;  prr9) leads to a delay in the 
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period of CCA1 and LHY expression, a negative feedback of PRR7 and PRR9 on 

CCA1 and LHY expression is likely. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.2 
Overview of the key components of the circadian clock in A. thaliana (after Mas 2008). Suns indicate 
an activation by light. A so far unknown component connects the evening oscillator with the morning 
oscillator through an activation of CCA1 and LHY by ELF4. 
 

 

1.6 Outline of the project 

The experiments described hereafter were performed with the intention to come to a 

better understanding of the function and importance of SBP-box genes for 

developmental processes in plants using Arabidopsis thaliana as a model species. 

Particularly, the role of SPL3 for the developmental phase transition from vegetative 

to reproductive growth should be elucidated. 

Before the beginning of this thesis, it was known that overexpression of SPL3 in a 

microRNA insensitive form leads to an early flowering phenotype. Furthermore, 

overexpression of the MIR156b locus results in a strong downregulation of SPL3 and 

the other SPL genes targeted by microRNAs 156 / 157. Additionally, Schmid and 

coworkers showed, that SPL3 and its close orthologs SPL4 and SPL5 strongly respond 

to photoperiodic induction. Taken together these observations strongly suggested a 
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role for SPL3 (and SPL4 and 5) in the phase change from vegetative to reproductive 

growth. However, it remained unclear how the transcription factor SPL3 affects 

flowering. 

In order to investigate how SPL3 is involved in the process of flowering, it would be 

very helpful if direct targets for transcriptional regulation could be identified. 

Firstly a candidate target gene approach, based on the knowledge that SPL3 is 

involved in the regulation of flowering and has been shown to bind to the core motif 

CGTAC, should be performed to identify putative target genes within the flowering 

time controlling pathways by means of transcript expression studies. 

Subsequently, the technique of Cross-linked Chromatin Immunoprecipitation (X-

ChIP) should be used to confirm identified candidates as direct targets for SPL3 in 

vivo. During this experiment, proteins are in vivo covalently linked to the DNA by 

infiltration of fresh plant material with formaldehyde. Then nuclei are extracted and 

the chromatin is sheared by sonication. The protein of interest then is 

immunoprecipitated along with the crosslinked DNA fragment(s) using a specific 

antibody. Specific enrichment of any DNA fragments can then be determined by 

quantitative real-time PCR. 

Thirdly, the importance of spatial distribution of binding motifs for SPL3 in its target 

genes should be investigated with respect to spatial and temporal expression patterns 

of the target gene during plant development. Therefore, fusions of target gene 

genomic sequences to a GUS reporter should be introduces into SPL3 overexpressing 

plants. 

Finally, the function of SPL3 should be integrated into the flowering time pathway, 

using a global transcript profiling of SPL3 overexpressing plants compared to wild-

type. On the one hand, further candidates for direct target genes for SPL3 could be 

expected from this approach, on the other hand more global effects of SPL3 

overexpression on metabolic pathways that are indirectly affected may become 

elucidated. The latter possibility may shed further light on the role of SPL3 during 

plant development. 
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2 Material and Methods 
2.1 Material 

2.1.1 Antibiotics 
 
Table 1: Antibiotics in this study were used in the following concentrations: 
Antibiotic solvent stock conc. [mg/ml] final conc. [mg/l] 

      E. coli A. tumefaciens 

Gentamycin H2O 10 10 25 

Kanamycin H2O 50 50 50 

Rifampicin MeOH 50 100 100 

Spectinomycin H2O 100 100 100 

Abbreviations used: conc.: concentration 
 

2.1.2 Antibody 

For X-ChIP the SPL3 specific antibody described in Gandikota et al., 2007 was used. 

 

2.1.3 Bacteria strains 

E.coli strain: 

DH5α (life technologies, USA) 

Agrobacterium tumefaciens strains: 

GV3101 (pMP90) Rifampicin and Gentamycin resistance 

 

2.1.4 Chemicals 

Chemicals and antibiotics used in this study were purchased from the following 

companies:  

BioRad (USA), Clontech (Germany), Difco Lab (USA), Duchefa (Netherlands), 

Invitrogen (USA), Fermentas (Germany), Merck (Germany), Pharmacia (USA), 

Promega (Germany), Roche (Germany), Roth (Germany) and SigmaAldrich 

(Germany), Pierce (USA).  

 

2.1.5 Enzymes 

All Restriction enzymes were obtained from New England Biolabs (USA), T4-ligase 

and RNase Inhibitor was purchased from Roche (Mannheim), Taq polymerase was 

purchased from Ampliqon (Denmark), Reverse transcriptase Superscript II was 
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purchased from Invitrogen (USA), ImmunoPure Immobilized Protein a sepharose 

beads were purchased by Pierce (USA). 

Enzymatic reactions were performed according to the manufacturers’ protocols if not 

explicitly stated otherwise in the methodological description. 

 

2.1.6 General buffers, solutions and stocks 

2.1.6.1 General Buffers 
 
TE (Tris/EDTA) 

 10 mM Tris/HCL (pH 8.0 or pH 7.5) 
 1 mM EDTA (pH 8.0) 
 
Tris/HCL (1M) 

Tris-Base 121g 
 H2O  in 1000 ml 
 
EDTA stock (0.5M, pH 8.0) 

EDTA  186.1g 
 H2O  in 1000 ml 
 
Sodium phosphate buffer (0.2M), pH 7.0 

 Solution I: 0.2M monobasic phosphate 
 NaH2PO4  27.6g / L 
 
 Solution II: 0.2M dibasic phosphate 
 Na2HPO4  53.65g /L 
To obtain 0.2M buffer solutions I and II were mixed to 100 ml for the desired pH and 

then diluted with water to 200 ml.  

Potassium phosphate buffer (0.1M) 

 Solution I: 0.2M KH2PO4 
 KH2PO4  27.2g / L 

Solution II: 0.2M K2HPO4 
 K2HPO4 34.8 g / L 
To obtain 0.2M buffer solution I and II were mixed to 100 ml for the desired pH and 

then diluted with water to 200 ml. 
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2.1.6.2 Solutions and stocks 

 

Ethidium Bromide stock (10 mg/ml) 
Ethidium bromide  0.2 g 
H2O    in 20 ml 

Stored at 4°C in the dark. 

 

DNA gel loading buffer (6x) 
Bromphenol blue  0.25% 
Xylen cyanol FF  0.25% 

 Glycerol   30% (v/v) 
 
GUS histochemical Buffer 

NaPO4  0.20 M 
K3Fe(CN)6  0.05 M 
K4Fe(CN)6  0.05 M 
EDTA  0.50 M 
Triton X-100  10% (v/v) 

 in H2O 
Stored at 4 °C. 

 

X-Gluc stock 

50 mg/ml in DMSO has to be prepared freshly. 

 

GUS staining Buffer (10 ml) 
X-Gluc stock (50 mg/ml)  0.12 ml 
GUS histochem. Buffer  8.00 ml 
Methanol    2.00 ml 

 
 
 

2.1.6.3 Buffers for genomic plant DNA extraction 

 

CTAB Buffer 
Tris/HCL, pH 8.0  100 mM 
NaCl    1.4     M 
EDTA      20 mM 
CTAB       2  % 
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Edwards Extraction Buffer 
Tris/HCl pH 7.5  200 mM 
NaCl    250 mM 
EDTA      25 mM 
SDS    0.5  % 

 

 

2.1.6.4 Buffers for bacteria DNA extraction 

 

TELT (DNA extraction buffer) 
Tris/HCL pH 7.5    50  mM 
EDTA    62.5 mM 
LiCl      2.5    M 
Triton X-100     0.4    % (autoclave) 

 
Lysozyme solution 

 Lysozyme 10 mg/ml 
 Tris/HCL pH 7.5 10 mM 
 EDTA 0.1 mM 
 

PBS (1 L) 

 NaCl   8 g 
 KCl   0.2 g 
 Na2HPO4  1.44 g 
 KH2PO4  0.24 g in 800 ml water 

 pH was adjusted with HCl to 7.4, water was added up to 1 L and buffer was 

 autoclaved. 

 

 

2.1.6.5 Buffers for X-ChIP 

 

Fixation buffer (500 ml) 

 0.1M Na-Phosphate buffer pH 7.4 

 101.25 ml 0.2M Na2HPO4 

 23.75 ml 0.2M NaH2PO4 

pH was adjusted to pH 7.4 with NaH2PO4; volume was adjusted to 250 ml with water. 

50 ml Paraformaldehyde (final conc. 0.1%) was added and volume adjusted to 500 

ml) 
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Washing buffer 

 0.1M Na-Phosphate buffer, pH 7.4 
 0.125 M Glycine 
 

Buffer A 

 10 mM Hepes/NaOH pH 7.9 
 10 mM KCl 
 1.5 mM MgCl2 
 0.5 mM DTT 
 0.1% NP-40 
 20% Glycerol 
 

 

Sonication buffer 

 10 mM Hepes/NaOH pH 7.9 
 1 mM EDTA pH 8.0 
 0.5 % SDS 
 

Dilution buffer 

 60 mM Hepes/NaOH pH 7.9 
 1 mM EDTA pH 8.0 
 175 mM NaCl 
 0.625% NP-40 
 0.18% NaDOC 
 156 mM Glycine 

Buffer was used for 1:4 dilution of sonified samples to obtain a final concentration of 

50 mM Hepes/NaOH pH 7.9; 1 mM EDTA pH 8.0; 140 mM NaCl; 0.5% NP-40; 

0.15% NaDOC; 125 mM Glycine and 0.1% SDS in a final volume of 2.5 ml. 16.5 µl 

proteinase inhibitor were added after diluting the sample. 

 

1X RIPA buffer 

 50 mM Hepes/NaOH pH 7.9 
 140 mM NaCl 
 1 mM EDTA pH 8.0 
 0.5 % NP-40 
 0.1% NaDOC 
 125 mM glycine 
 

Glycine elution buffer (pH 2.8) 

 0.1 M Glycine 0.5 M NaCl 0.05 % Tween 20 

pH was adjusted to pH 2.8 



Materials and Methods 

 17 

2.1.7 Media for bacteria 

All media were sterilized by autoclaving at 121 °C for 20 Min. 

YEB Medium 
 Beef extract  5g/l 
 Yeast extract  1g/l 
 Peptone  1g/l 
 Sucrose  5g/l, pH 7.5 
 MgSO4  2 ml/l (1M stock) after autoclaving 
For solid medium 15g/l Agar is added prior autoclaving. 

 

LB (Lauria Bertani)-Medium 
 Tryptone/peptone  1% 
 Yeast extract   0.5% 
 NaCl    0.5% 
1.5-2% Agar is added to the above medium for solid medium. Antibiotics are added 

after autoclaving and cooling down to 55°C. 

 

Infiltration Medium 

 1/2 MS salts (micro and macro) 2.205g/l 
 1/2 x B5 vitamins 50µl/l 
 Sucrose 50g/l 
 Surfactant SILWET L-77 0.005% 

pH 5.7 (KOH) 

 

2.1.8 Primers for PCR based amplification 

All primers and oligos used were obtained from Operon (Germany). The sequences 

and efficiencies for qRT-PCR amplification are listed in appendix A. 

 

2.1.9 Vectors 
pGJ2148  
Spectinomycin (75mg/l, bacteria) and Basta (0.1%, plant) as selection marker; source: 
Guido Jach, MPIZ 
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2.2 Methods 

2.2.1 Plant material and growth conditions 

For stratification seeds were kept either on moist paper or on soil at 4°C for at least 4 

days to break dormancy and synchronize germination. Plants were grown on soil 

containing a 3:1 mixture of substrate and vermiculite. They were cultured under 

controlled environmental conditions with 18°C (night) to 22°C (day) temperature, 

50% relative humidity and 99 to 229 µmol m-2s-1 light (fluorescent Sylvania F72T12 

cool-white [75%] and incandescent Sylvania 100-W lamps [25%]) either under long 

day (LD) conditions (16 hours of light, 8 hours of darkness) or 204 to 290 µmol m-2s-1 

under short day (SD) conditions (8 hours of light, 16 hours of light). 

In case of testing for BASTA resistance seedlings were sprayed with 0.1% BASTA 

every second or third day for 3 to 5 times depending on age and sowing conditions. 

Seedlings of any genotype were harvested at the age of 7 days for every experiment. 

For inflorescence material flowers of any age until anthesis were harvested. 

 

 

2.2.2 DNA manipulation 

2.2.2.1 Extraction of genomic plant DNA 

 

CTAB Method 

1 - 1.5g freshly harvested tissue is flash frozen in liquid nitrogen and ground. Ground 

material is resuspended in 10 ml of CTAB buffer and incubated at 60°C for 30 min. 

After adding the same volume of chloroform and vigorous shaking samples are 

centrifuged for 10 min, RT at 4000 rpm. Supernatant is transferred to a fresh tube and 

DNA is precipitated by adding 1/10 volume of 3M NaAc, pH 5.2 and 0.8 volume of 

isopropanol. After incubation for 5 min at RT DNA is pelleted by centrifugation for 

15 min, RT at 4000 rpm. Pellet is washed with 70% EtOH and resuspended in 1880 µl 

TE buffer and 3.8 µl RNase (stock conc. is 10 mg/ml). Sample is incubated for 30 

min at 37°C. Subsequently, 120µl of 5M NaCl is added and DNA is isolated using the 

QIAGEN TIP 20 column Kit according to the manufacturer’s protocol. 

DNA is resuspended in 50-100µl 1xTE buffer. DNA concentration is determined 

photometrically and sample is stored at a concentration of 1µg/µl at 4°C. 
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Edwards Method 

For quick isolation of genomic DNA, a method from Edwards et al. (1991) was 

adapted. Harvested tissue is ground in 400µl Edwards Extraction Buffer and sterile 

sand with a pistil. After centrifugation for 2 min, 4°C 13.000 rpm the supernatant is 

carefully mixed with the same volume of isopropanol and incubated for 5 min at RT 

to precipitate DNA. DNA is pelleted (5 min, RT, 13.000 rpm) and washed with 70% 

EtOH 3 times. Pellet is resuspended in 100µl 1xTE buffer. For PCR a dilution of 

1:100 is used. 

 

2.2.2.2 Extraction of bacterial DNA 

 

Plasmidminiprep with TELT-Method 

To do a plasmidminiprep with the TELT-method 1 ml of a well grown overnight 

culture of bacteria is centrifuged 2 min, RT at 13.000 rpm. 

Alternative: 1 ml of a well grown overnight bacteria culture was centrifuged 2min at 

RT at 13000rpm. 

The pellet is resuspended in 200µl TELT buffer and 20µl lysozyme solution. After 3 

min incubation at 95°C the sample is immediately put on ice for 5 min and 

subsequently centrifuged for 15 min, 4°C at 13.000 rpm. The pellet is removed with a 

toothpick and discarded. The supernatant is mixed with 100µl isopropanol and 

immediately centrifuged for 15 min, 4°C at 13.000 rpm. The formed pellet is washed 

with 70% EtOH, air-dried and resuspended in 50µl TE buffer (+RNase 10µg/ml). In 

case of a high copy number plasmid 2µl are used for digesting; in case of a low copy 

number 4 µl are used. 

Isolation of plasmid DNA from gels 

In order to isolate DNA fragments out of  an agarose gel the NucleoSpin® extraction 

Kit (Macherey-Nagel) was used according to the manufacturer’s protocol. 

 

2.2.2.3 Precipitation of DNA 

DNA was precipitated by adding 1/10 volume of 3M NaAc pH 2.8 and 2 volumes of 

70% EtOH and putting samples on ice for 1 hour or at -20°C overnight. Subsequent 
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centrifugation for 45Min at 4°C, twice washing with 70% EtOH. Pellet was air-dried 

and resuspended in 50-100µl of 1xTE buffer or 10mM Tris. 

 

 

2.2.2.4 PCR reactions 

 

Standard PCR reaction 

All standard PCR reactions were done on a Biometra T 3000 thermocycler. For 

standard PCR reactions Taq DNA polymerase from Amplicon (5 Unit/µl) with the 

10x standard buffer (15 mM MgCl2) was used. A standard PCR reaction was carried 

out in a total volume of 25µl, the reaction solution contained the following 

ingredients: 

dNTPs  (25µM) 0.5 µl 
Primer forw. (20µM) 0.5 µl 
Primer rev. (20µM) 0.5 µl 
10X buffer   2.5 µl 
Taq    0.3 µl 
DNA template   1.0 µl 
H2O            ad 25µl 

 

Annealing temperature: 55-65 °C, depending on Primers. 
Elongation time: 1 min / 1 kb 
Cycles: 28-35 cycles 
 

Quantitative RT-PCR (qRT-PCR; real-time PCR) 

qRT-PCR was carried out on iQ5 Multicolor Real-time PCR Detection System 

(BioRad) using the IQ SYBR Green Supermix (BioRad). Wellfactors were collected 

during the run. 

A standard qRT-PCR reaction was carried out in a total volume of 25µl, the reaction 

solution contained the following ingredients: 

 SYBR-Green Master Mix 12.5 µl 
 Primer forw. (2.5 mM) 1.25 µl  
 Primer rev.   (2.5 mM)  1.25 µl 
 cDNA    10 µl 
 
qRT-PCR program (3 step Amplification & Melting curve): 

Cycle 1: (1x) 

Step 1:  95.0°C   for 3:00 min 
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Cycle 2: (45x) 
Step 1:  95.0°C   for 00:30 min 

Step 2:  58°C   for 00:30 min 
Data collection enabled 

Step 3:  72°C   for 00:45 min 
Data collection and real-time analysis enabled. 

Cycle 3: (1x): 
Step 1:  95°C   for 1:00 min  

Cycle 4: (1x) 
Step 1:  55°C   for 1:00 min 

Cycle 5: (81x) 
Step 1:  55.0°C-95.0°C  for 00.10 min 

 

Data were analyzed using the BioRad software provided with the iQ5 thermocycler 

and program. 

 

2.2.3 RNA manipulation 

2.2.3.1 Extraction of total RNA from plant tissue 

In order to extract total RNA from plant tissue the Qiagen RNeasy Plant Mini Kit was 

used. Extraction was performed according to the manufacturer’s protocol, but on-

column DNA digestion was skipped. For DNA digestion 4µl DNase (Roche) and 4 µl 

10x buffer were used in a total volume of 40µl. The incubation was performed for 30 

- 60 min at 37°C, then 10 min at 65°C after elution of RNA from the columns and a 

subsequent centrifugation step (15-20 min, RT, 13.000rpm) to get rid of eventual 

column material. 

Success of the DNA digestion was assured by performing a PCR with 40 cycles on 

the RNA samples using Primers for intronic sequences (usually NB 4 and NB 2 for 

FUL 1st intron). The RNA concentration was performed photometrically in a dilution 

of 1:59 against water 

 

2.2.3.2 Precipitation of RNA 

RNA was precipitated by adding 1/10 volumes of 3 M NaAc pH 2.8 and 2 volumes of 

100% EtOH and putting it on ice for 1 hour or at -20°C overnight. 
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2.2.3.3 Reverse Transcription 

Reverse transcription of RNA was done by using Superscript II (Invitrogen) 

according to the manufacturer’s protocol. 

 

2.2.3.4 Hybridization of Affymetrix Arabidopsis ATH1 arrays 

Hybridization of Affymetrix Arabidopsis ATH1 arrays was performed at the 

University of Münster at the Institute of integrated and functional genomics, 

Röntgenstraße 21, 48149 Münster. 

 

 

2.2.4 Protein manipulation 

2.2.4.1 Crosslinked Chromatin immunoprecipitation (X-ChIP) (modified after 

Orlando 2000 and Lauri 2005) 

 

Fixation of plant material 

3 g of plant material were washed in 40 ml H2O and dried on paper. 40 ml of fixation 

buffer were added and samples were vacuum infiltrated for 20 min. Fixation was 

stopped by adding 2.5 ml of 2M glycine (final conc. 0.125M). Material was washed 

three times with washing buffer, dried on paper, flash frozen in liquid nitrogen and 

stored at -80°C. 

 

Sonication 

Fixed plant material was ground and powder was collected and homogenized in 30 ml 

ice cooled buffer A with 200 µl proteinase inhibitor added. Material was filtered 

through 300 - 75 - 20 - 10 µm membranes by centrifugation at 3000 rpm for 20 min at 

4°C. Flow-through was collected in 50 ml falcon tubes and nuclei were pelleted by 

centrifugation at 1700 rpm for 10 min at 4°C. The pellet was washed with 10 ml of 

washing buffer until it was light white and supernatant was clear. Then it was 

resuspended in 1 ml buffer A and transferred to a 1.5 ml tube. After centrifugation at 

13000 rpm for 10 min at 4°C in was resuspended in 500 µl freshly prepared 

sonication buffer and incubated for 30 min slightly shaking at 4°C. Nuclei were 

sonified with Dr. Hielscher UP50H sonicator for 12 x 10 sec with a cyclic control of 

0.5 and a amplitude between 50 - 60%. Under these conditions DNA was sheared to 

fragments between 350 and 650 bp, which can proven on a 1% agarose gel. A 10-
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20µl aliquot was transferred into a fresh 1.5 ml tube and used as the "input" for PCR 

later on to calculate the amount of precipitated chromatin. The rest of the supernatant 

was diluted 1:4 with dilution buffer to reduce the amount of SDS to under 0.1%, 

which might disturbed the subsequent immunoprecipitation. Water was added up to a 

final volume of 2.5 ml. 16.5µl of proteinase inhibitor were added as well. 

 

Immunoprecipitation 

2.5 ml of the supernatant were transferred in equal amounts of 833µl to fresh tubes. 

The SPL3-specific antibody was added in 1:200 fold dilution (i.e. 4 µl). Samples were 

incubated over night at 4°C with slight shaking.  

50 µl of protein A sepharose beads were washed 4 times with 1 X RIPA buffer 

(including proteinase inhibitor) and added to the samples to precipitate the chromatin-

protein complex with the immunoprecipitated antibody. After incubation of the 

samples for two hours at 4°C beads were centrifuged for one minute at 3800g at 4°C. 

Supernatant was kept and stored at -20°C .  

 

Elution 

Beads were washed three time with ice cooled 1X RIPA buffer. Elution of 

immunoprecipitated protein-DNA-complexes was performed by adding 100 µl 

glycine-elution buffer, vortexing for 15 sec and centrifugation at 13000 rpm for 1 

minute at RT. The supernatant was neutralized with 10 µl of 1M Tris pH 8.0. Elution 

was repeated twice, the fractions were pooled and centrifuged at 13000 rpm for two 

minutes at RT. 420µl of the supernatant were transferred to a fresh tube, 10.5 µl of 

10% SDS and 8 µl of proteinase K (40 mg/ml stock) were added and sample was 

incubated at 37°C overnight. 

 

De-crosslinking 

1µl of RNase (40 mg/ml stock) was added to the samples and incubated for one hour 

at 37°C. A subsequent incubation at 65°C for 6 hours or overnight removes the 

formaldehyde induced crosslinks. 

Afterwards DNA was extracted by phenol-chloroform extraction and precipitated 

using isopropanol and NaAc (see 2.2.2.3). 

Samples were resuspended in 20µl 10 mM Tris pH 8.0. 
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2.2.5 Determination of circadian rhythms with leaf movement measurement 

In order to investigate circadian rhythms the leaf movement of 7d old seedlings under 

free running conditions was measured following Edwards and Millar 2007. 

 

2.2.5.1 Preparation of seeds and growth conditions 

About 100 seeds were surface sterilized by soaking in 98% Ethanol for 4 min, 

followed by soaking in 10% hypochloride for 10 min at RT. Hypochloride was 

removed with a pipette and seeds were washed 3 times in aqua dest., before 

resuspending them in 1 ml 0.1% agar and stratifying at 4°C for 4 days. 

Seeds were plated on MS plates containing 2% agar and 3% sucrose. Plates were kept 

in 12h light/12h dark growing cabinets for 5 days. Seedlings were then transferred to 

fresh plates cut into 1 cm2 and transferred randomly into 25-well tissue culture plates 

(Bibby Sterilin Ltd, UK). After another 24 hours in the growing cabinets, plates were 

placed in front of cameras in a continuous light (CL) growing chamber. Pictures were 

taken every 30 min for 6 days. 

 

2.2.5.2 Data analysis of leaf movement measurement 

For data collection as well as measuring the leaf position the MetaMorph software 

package was used according to Edwards and Miller (2007) and the manufacturer's 

protocol. In order to analyze the leaf movement rhythms the MS Excel interface 

Biological Rhythm Analysis Software System (BRASS) package was used, which is 

available at www.amillar.org and which is used to perform a fast-Fourier transform-

nonlinear least squares analysis of the period, phase and amplitude of circadian 

rhythms (see Edwards and Miller 2007 for a detailed description). 

 

2.2.6 Remaining Techniques 

2.2.6.1 Cloning 

In order to investigate the binding site specificity of SPL3 protein to GTAC motifs in 

FUL promoter and / or FUL 1st intron, a FUL genomic fragment of a size of 2748 kb 

was amplified using a forward primer with an artificial XmaI site (SH 250) and a 

reverse primer with an artificial NcoI site (SH 246). Subsequently the fragment was 

cloned in the XmaI / NcoI site of the pGJ2148 vector. The construct was called pSH56 

and included the putative promoter of FUL with a size of 1616 bp (before ATG), FUL 

1st exon, FUL 1st intron and 42 bp of FUL 2nd exon.  
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In a second construct (pSH57) the same FUL fragment that was lacking the 1st intron 

was cloned into pGJ2148. Both constructs were further modified, so that the promoter 

motif CCGTACGCGTAC (5'-3' orientation) 461 bp upstream of the ATG was 

changed to CACTAGTGAAG (5'-3' orientation) and concurrently an artificial SpeI 

site was inserted. 

Therefore, from the respective constructs a fragment of 1178 bp was amplified using 

the forward primer SH 250 with the artificial XmaI site and the reverse primer NB 52, 

which inserted the artificial SpeI site. And a second fragment of 1010 bp was 

amplified using NB 51 as a forward primer that included the artificial SpeI site and 

NB 3 as a reverse primer. The second fragment was digested with BglII and then 

fused to the first fragment via the SpeI site. The resulting fragment was cloned into 

the XmaI / BglII site of pSH56 and pSH57. The constructs were transformed into Col-

0 plants by means of Agrobacterium mediated transfection. 

 

2.2.6.2 Sequencing 

All sequencing reactions were done by the ADIS core facility at the MPIZ in 

Cologne. 

 

2.2.6.3 Arabidopsis transformation 

For transformation of Arabidopsis plants competent agrobacteria were prepared. 

Therefore 5 ml YEB media was inoculated with 5 ml of agrobacteria stock and 

incubated at 28°C for two days. Subsequently the culture was transferred into 500 ml 

YEB media and incubated for four to six hours at 28°C and transferred on ice 

afterwards to cool down. After centrifugation at 4°C for 15 min at 4200 rpm the 

resulting pellet was resuspended in 100 ml ice cooled H2O. Cooling, centrifugation 

and resuspension was repeated three times, with resuspension in 50 ml ice cooled 

H2O, 5 ml ice cooled 10% glycerol and 800 ml ice cooled 10% glycerol respectively. 

Cells were snap-frozen in liquid nitrogen in aliquots and stored at -80°C until usage 

for electroporation. 

Arabidopsis plants were grown under SD conditions and used for transformation 

using the floral dip method after Clough and Bent 1998. Transgenic plants were 

selected by spraying seedlings three times with 0.1 % BASTA. 
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2.2.6.4 GUS staining 

For GUS staining tissue was harvested and submerged completely in freshly prepared 

GUS staining buffer. After vaccuum infiltration for 20 min material was incubated 

overnight at 37°C. Chlorophyll was removed by incubation in several changes of 70% 

ethanol until chlorophyll was bleached. Stained material was then analysed and 

recorded using a LEICA MZFL III stereomicroscope equipped with a digital camera. 

 

2.2.7 Data analysis of affymetrix arrays 

The normalized raw data from the hybridization of the affymetrix arrays were 

analyzed using GCOS, Cyber T and MS Excel. 

First of all, for all expression values PPDE values (p-values) were calculated using 

the online program Cyber T (http://cybert.microarray.ics.uci.edu/). From the whole 

data set only those genes were further analyzed, that had more than a 1.5 fold change 

in expression level in a mutant compared to wt and a confidence level of above 0.95. 

Genes, having an absence call according to GCOS in all of the samples were not 

further analysed. Subsequently those genes were ranked according to their p-values. 

From this list the genes were categorized according to their Gene Ontology (GO) 

annotations using a tool found on http://www.arabidopsis.org/tools/bulk/go/index.jsp , 

the Arabidopsis Information Resource (TAIR) web site. Afterwards a more detailed 

GO term analysis was performed with the web-based tool AmiGo 

(http://amigo.geneontology.org/cgi-bin/amigo/term_enrichment. 

 

 

 

Each not described method was performed according to Sambrook et al. 1989. 
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3. Results 
3.1 Identification of putative SPL3 target genes following a candidate gene approach 

To answer the question on how the SBP-box transcription factor SPL3 promotes the transition 

from vegetative to reproductive growth, a first attempt was to identify target genes following 

a candidate gene approach. Such a candidate target gene should fulfil several criteria. 

First of all, SPL3 has been shown to be negatively regulated by the microRNA miR156 

(Schwab et al., 2005; Wu and Poethig, 2006; Gandikota et al., 2007). If SPL3 acts as a 

transcriptional activator, its target genes are likely to be among the most downregulated genes 

in plants overexpressing MIR156b - particular at stages where normally SPL3 becomes 

upregulated, i.e. the transition apex (Schwab et al., 2005). 

Secondly, it has been shown that constitutive overexpression of SPL3 in a microRNA 

insensitive form results in early flowering (Cardon et al., 1999). Therefore it is reasonable to 

assume that target genes of SPL3 are also involved in the process of flowering. 

Thirdly, Birkenbihl et al. (2005) showed that SBP-domain proteins prefer GTAC in general 

and SPL3 CGTAC in particular, as core DNA recognition sequence. A direct target gene of 

SPL3 is thus expected to carry (C)GTAC motifs in its promoter region or close vicinity. 

Additional support for the assumptions above comes from the fact that SPL3 is the presumed 

ortholog of SBP1 from A. majus. SBP1 has been shown to bind in vitro to a regulatory 

sequence in the promoter region of the Antirrhinum floral meristem identity gene SQUA. 

Interestingly, the Arabidopsis ortholog of SQUA is AP1, but despite the conservation of the 

SPL3 recognition sequence in its promoter region, AP1 turned out not to be essential for the 

early flowering phenotype of the constitutive SPL3 overexpressing transgenic Arabidopsis 

plants (Cardon et al., 1997). However, AP1 and SQUA are closely related to several other 

members within the core eudicot AP1/FUL lineage of MADS-box transcription factors (Litt 

and Irish, 2003) and it is not unlikely that in Arabidopsis the AP1 paralog CAULIFLOWER 

(CAL; Kempin et al., 1995) or FRUITFULL (FUL; Gu et al., 1998) represent actual targets of 

SPL3. I finally came up with a list of six candidate genes fulfilling the criteria discussed 

above (fig. 3.1, AP1 is shown for comparison). 
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Figure 3.1 
A list of putative target genes for SPL3. Shown is the genomic locus of the respective genes based on annotated 
coding sequences (green) and mRNA (in white). Depicted are 2.5kb upstream and 1 kb downstream of the 
respective gene. Any intron-exon structure of any flanking loci, if present, were deleted. Yellow dots designate 
the binding motif GTAC on both strands, orange dots display SPL3’s preferred motif CGTAC. AP1 shown for 
comparison. 
 
With the exception of AP1, all of the listed genes are among the most differentially expressed 

genes of the global expression analysis of plants overexpressing MIR156b (Schwab et al., 

2005). Furthermore, the listed genes are all involved in flowering time and are key regulators 

of this pathway as the floral pathway integrators SOC1 and FT integrate the signals coming 

from the photoperiodic pathway, the vernalization pathway and the autonomous pathway. 

Moreover, the floral meristem identity genes FUL, CAL, LFY define the meristem identity. 

FPF1 is also involved in the floral transition and might act on the same level as it integrates 

the signal coming from the GA biosynthesis and signalling pathway. But since it displays 

only two of the SPL3 binding motifs, it was not further analysed. 

Birkenbihl et al. (2005) noticed an underrepresentation of both the CGTAC and GTAC motif 

in the Arabidopsis genome. The frequency with which these motifs appear is only half of 

what could be expected for a random DNA sequence with a GC content of about 40%. 

As illustrated by yellow dots in figure 3.1 all of the listed genes display an accumulation of 

the binding motif GTAC in either promoter or intronic regions. Furthermore, the SPL3-
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binding motif CGTAC is overrepresented in the FUL genomic sequence, especially in the first 

intron. Therefore the listed genes may well be putative target genes of SPL3. 

 

 

3.1.1 Expression analysis of floral pathway integrators and floral meristem identity     

genes early in SPL3OX and wild type development 

Precocious activation of any of the floral pathway integrators or the floral meristem identity 

genes, identified above as candidate SPL3 target genes, could help to explain the early 

flowering phenotype of SPL3 overexpressing (SPL3OX) plants. Therefore, I determined the 

relative transcript levels of these genes in 7-day-old seedlings grown in LD with the help of 

quantitative real-time PCR (qRT-PCR). From three independent SPL3OX lines, the two lines 

with the most different SPL3 expression levels, i.e. SPL3OX-2342 and SPL3OX-2350 (Fig. 

3.2A), were chosen for the analysis. The normalized expression levels of the candidate target 

genes were compared to wild-type expression levels. As expected, transcript levels of all 

tested genes are relatively low in wild-type seedlings (Fig. 3.2B), since they become only 

upregulated upon the floral transition. In comparison to wild type, however, transcript levels 

of the floral pathway integrator FT, which becomes induced by LD conditions, were clearly 

upregulated in SPL3OX seedlings. In contrast, the transcript levels of SOC1, which acts 

together with AGL24 (Liu et al., 2008) to promote flowering and the inflorescence 

architecture (Lee et al., 2008), were not differentially expressed between SPL3OX and wild-

type plants. Furthermore, whereas expression of the floral meristem identity genes seemed 

largely unaffected in the case of AP1 and CAL and only a slightly elevated for LFY, FUL 

transcript levels were strongly raised in the transgenics (Fig. 3.2C).  

Interestingly, in the context of the findings above, an early flowering phenotype has 

previously been described for plants constitutively overexpressing FT (Teper-Bamnolker and 

Samach, 2005). Furthermore, the phenotype of these plants mimics that of SPL3OX plants in 

other aspects too, e.g. relatively small with curled leaves. Teper-Bamnolker and Samach 

found an accumulation of FUL transcripts in response to FT overexpression in seedlings as 

well as of the MADS-box transcription factors AP1 and SEPALLATA3 (SEP3, Mandel and 

Yanovsky 1998). Therefore, I additionally determined the expression of SEP3 and found it 

slightly increased in SPL3OX compared to wild type (Fig. 3.2D). It should be noted, however, 

that the relative increase in expression levels of both FT and SEP3 in SPL3OX seedlings were 

found to be much lower in comparison to that of FUL. The big differences in FT expression 
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might be due to different sampling time points of the analyzed material, since FT shows a 

strong diurnal expression pattern. 

 

 
Figure 3.2 
Comparative qRT-PCR expression analysis of wt and SPL3OX transgenic seedlings. 
A) Normalized expression levels of SPL3 in 7-d-old seedlings in three independent lines of SPL3OX (lines 2342, 
2348 and 2350) compared to wild type. 
B) Normalized expression levels of the floral pathway integrators SOC1 and FT in 7-d-old seedlings of SPL3OX 
(lines 2342 and 2350) compared to wild type. 
C) Normalized expression levels of the floral meristem identity genes AP1, CAL, FUL and LFY in 7-d-old 
seedlings of SPL3OX (lines 2342 and 2350) compared to wild type. 
D) Normalized expression levels of FT and SEP3 in 7-d-old seedlings of SPL3OX (lines 2342 and 2350) 
compared to wild type. 
Arbitrarily the expression level of the respective genes in wild-type is set at one and was chosen for reference. 

 

3.1.2 Diurnal expression of FT and FUL in SPL3OX under LD conditions 

Previous studies showed that plants constitutively overexpressing the microRNA insensitive 

form of SPL3 remain photoperiod sensitive (Cardon et al., 1997; Gandikota et al., 2007). A 

key gene in photoperiodic induction of flowering in Arabidopsis is CONSTANS (CO; Putterill 

et al., 1995) a direct regulator of the floral pathway integrator FT (Samach et al., 2000). CO 

expression is closely associated with the circadian clock through GIGANTEA (GI; Fowler et 

al., 1999; Park et al., 1999), which is involved in the degradation of repressors of CO 

transcript (Sawa et al., 2007). Furthermore, CO protein is rapidly degraded in darkness but 

stabilized by light under LD conditions. As a result of the complex regulation of CO on both 
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transcriptional and post-translational level, FT expression shows a diurnal rhythm with a 

strong peak at the end of the light period in LD conditions (Mizoguchi et al., 2005). 

Therefore, the time of sampling may become decisive in uncovering altered transcriptional 

behaviour of genes with circadian-dependent expression. 

To investigate the possibility that a single sampling at a particular time of the day did not 

reveal the true extent of SPL3 overexpression on target gene transcript levels, seedlings grown 

under LD conditions were sampled after 7 days in 4-h intervals over a 24-hour period. FT as 

well as FUL transcript levels were determined by qRT-PCR. 

 

Figure 3.3 
Expression analysis over a 24-h period in seedlings of wt and SPL3OX transgenics (lines 2342 and 2350) grown 
for 7 days under LD conditions of FT (A) and FUL (B). 
Expression levels were normalized against PP2A. ZT 0 represents the beginning of the light period. Expression 
of FT (A) or FUL (B) in wt at ZT 6 (i.e. 6 h after the beginning of the light period) was chosen as a reference and 
set arbitrarily at one. 
 

Figure 3.3A shows the FT transcript-level variation over 24 h in SPL3OX seedlings in 

comparison to wild type with the wild-type sample at ZT 6 chosen as reference with value 

one. From dawn until 6 h (ZT 10) before the end of the light period, FT transcript levels 

remained relatively low in wild type as well as in the SPL3 overexpressors. Thereafter, FT 

transcript levels strongly raised in wild type and this could also be observed in the SPL3 

overexpressors resulting in levels being even, albeit moderately, higher than in wild type.  

As shown in figure 3.3B the FUL transcript levels in the same samples stayed low over the 

whole day in wild type, while they were significantly upregulated in the SPL3 overexpressors 

during the light and dark period. Interestingly, FUL seemed to behave like FT, i.e. becoming 

higher expressed towards the end of the light period in the SPL3 overexpressing lines. 

Therefore, it appeared reasonable to assume the possibility that SPL3 regulated FUL 

expression through FT. 
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3.1.3 Phenotypic characterization of ful SPL3OX and ft SPL3OX double mutants 

It has previously been shown that AP1 does not affect the earliness of flowering caused by a 

constitutively overexpressed SPL3 transgene (Cardon et al., 1997). Also, additional loss-of-

function of the AP1 paralogous and functionally redundant gene CAL (35S::SPL3 ap1-1 cal-

1) did not attenuate early flowering and the same holds true for the non-MADS-box floral 

meristem identity gene LFY (P. Huijser, personal communication). These observations are in 

agreement with the largely unaffected transcript levels of these genes in SPL3OX transgenics 

as reported above. In contrast, the candidate gene FUL, acting redundantly with AP1 and CAL 

to control floral meristem identity (Ferrándiz et al., 2000), was found to be strongly 

upregulated in these transgenics. The role of FUL in the SPL3OX transgenic phenotype, 

however, had not been studied before. Furthermore, FUL expression in LD grown SPL3OX 

transgenics positively correlated with the circadian rhythm in FT expression. This all led to 

the obvious question whether FUL and/or FT are involved in mediating the effect of SPL3 on 

flowering. Thereto, two independent SPL3 transgenic lines were crossed respectively to a ful-

2 and a ft-10 mutant, both in Col-0 background. For ful SPL3OX and ft SPL3 plants, 

homozygous double mutants were selected from an F2 population and analyzed for their 

flowering time by determining the average total leaf number (TLN, i.e. number of rosette and 

cauline leaves formed by the primary meristem). In addition, the time to bolting (shoot 0.5 cm 

over the rosette) and anthesis were recorded. For comparison, the same parameters were 

determined for parental mutant and transgenic lines, and for Col-0 wild type, all grown under 

the same conditions.  

As shown in Fig. 3.4A the phenotype of the ful SPL3OX double mutant resembled much more 

that of the parental ful-2 mutant line or wild type than that of the SPL3 overexpressing 

parents. For instance, rosette and cauline leaves of the double mutant did not curl, as is often 

observed in SPL3 overexpressing plants (Gandikota et al., 2007). Interestingly, the 

ful SPL3OX plants flowered later than SPL3OX parental lines (5.3 and 5.6 rosette leaves 

respectively) with about 9.6 and 8.5 rosette leaves respectively (table 3.1). The number of 

rosette leaves resembled much more the ful-2 flowering time (10.8 rosette leaves) than wild 

type (14.0 rosette leaves). Also the number of cauline leaves in ful SPL3OX plants (3.6 and 

3.3 respectively) resembled more the wild type (4.3) or ful-2 plants (4.5) than the SPL3OX 

(1.4 and 1.6 respectively). The number of days to bolting was reduced in SPL3OX plants (17.0 

and 18.1 days respectively)  compared to wild type (20.6 days) and resembled in ful SPL3OX 

plants (23.0 and 22.0 days respectively) more the ful-2 plants (23.4 days). Also the number of 

days from bolting until anthesis was somewhat longer in ful SPL3OX plants (5.1 and 6.0 days 
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respectively) compared to wild type (5.0 days) and resembled more the ful-2 parent (5.1 

days). SPL3OX parents though also took about 0.5 days more for anthesis than wild type. 

Therefore, concerning the total leaf number (TLN) ful SPL3OX plants flowered a little earlier 

than wild type under LD conditions, but concerning the days to bolting were as late as wild 

type. Interestingly, SPL3OX as well as ful SPL3OX plants seemed to take a little longer to 

open the first flower (table 3.1). 

 

   
Figure 3.4 
Phenotypes of, from left to right, wild-type, ful-2, SPL3OX-2342, SPL3OX-2350, ful SPL3OX-2342 and 
ful SPL3OX-2350 plants grown under LD conditions 
A) Phenoytpes of wild-type, ful-2 and SPL3OX-2342, SPL3OX-2350, ful SPL3OX-2342 and ful SPL3OX-2350 
plants at the same age of about 3.5 weeks after sowing grown under LD conditions. 
B) Phenotype of wild-type, ft-10, SPL3OX-2342 and ft SPL3OX-2342 plants at the same age of about 8 weeks 
after sowing grown under LD conditions. 
 

Finally, in contrast to the effect of ectopic SPL3 expression in ap1 and ap1 cal mutant 

backgrounds (personal communication P. Huijser), the ful-2 mutant flower phenotype with 

short siliques that fail to dehisce seemed not attenuated in the double mutant. 
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Under SD conditions wild type flowered, on average, with about 44.8 rosette leaves, while 

SPL3OX made between 18.7 and 20.3 leaves (Table 3.1). The ful-2 parent made 35.5 rosette 

leaves, while the ful SPL3OX double mutants made 26.3 and 27.0 rosette leaves. Interestingly, 

the number of cauline leaves was significantly increased in a ful-2 mutant background (ful-2 

plants 14.3; ful SPL3OX plants 13.8 and 12.6) in comparison to wild type (7.0) and SPL3OX 

(7.8). Also under SD conditions the days until bolting and the days from bolting to anthesis 

were increased in SPL3OX, ful-2 and ful SPL3OX plants compared to wild type. Nevertheless, 

SPL3OX as well as ful SPL3OX plants seemed to remain photoperiodically sensitive. Plants 

grown under SD conditions are shown in appendix B. 

 

 
Table 3.1 
Flowering behaviour in long day and short day conditions of wt, SPL3OX transgenics (lines 2342 and 2350), ful-
2 and ft-10 single and ful SPL3OX and ft SPL3OX (crossed to 2342) double mutant plants as determined by the 
average number of days to anthesis, bolting (shoot 0.5 cm above rosette) and number of rosette and cauline 
leaves formed. DAS, days after sowing; SD, standard deviation; TLN, total leaf number; n, number of plants. 

 

 
The ft SPL3 plants flowered significantly later than wild type (14.9 rosette leaves) or SPL3OX 

plants (5.6 rosette leaves) under LD conditions with 23.3 rosette leaves on average but yet 

earlier than the ft-10 parental line (36.8 rosette leaves). Differences in flowering time values 

for wild-type and SPL3OX-2342 under the two LD conditions listed in table 3.1 are due to 

two different light intensities (229 vs 99 µmol m-2s-1). Therefore, the values cannot be 

compared directly with the flowering time values of the ful SPL3 mutants, but the ft SPL3OX 

plants would presumably be later flowering than the ful SPL3 mutants when a difference in 

flowering time between the two LD conditions of 0.9 rosette leaves for wild-type are 

Genotype n

Long Day Col-0 14,0 ± 1,2 4,3 ± 0,9 18,3 ± 1,6 20,6 ± 1,0 25,6 ± 1,6 22 5,0

ful-2 10,8 ± 1,4 4,5 ± 0,8 15,3 ± 2,1 23,4 ± 2,7 28,4 ± 2,7 16 5,1

2342 5,3 ± 0,8 1,4 ± 0,6 6,7 ± 1,0 17,0 ± 0,9 22,0 ± 0,9 24 5,0

2348 5,3 ± 0,7 1,4 ± 0,6 6,6 ± 0,9 17,3 ± 1,2 22,8 ± 1,2 24 5,5

2350 5,6 ± 0,8 1,6 ± 0,6 7,2 ± 1,1 18,1 ± 1,5 23,6 ± 1,9 29 5,5

ful-2 2342 9,6 ± 1,5 3,6 ± 0,5 13,2 ± 1,6 23,0 ± 2,1 29,0 ± 1,6 5 6,0

ful-2 2350 8,5 ± 1,3 3,3 ± 0,7 11,9 ± 1,6 22,0 ± 1,6 27,0 ± 1,9 28 5,1

Short Day Col-0 44,8 ± 1,9 7,0 ± 1,3 51,9 ± 2,0 54,5 ± 3,9 62,6 ± 4,3 23 8,0

ful-2 35,5 ± 3,5 14,3 ± 2,2 49,8 ± 3,9 60,9 ± 5,0 70,8 ± 5,6 12 9,9

2342 18,7 ± 1,2 7,8 ± 0,9 26,4 ± 1,6 37,2 ± 1,6 46,7 ± 2,2 23 9,4

2348 20,9 ± 2,8 7,9 ± 1,3 28,7 ± 3,7 39,3 ± 2,4 49,2 ± 3,8 23 10,0

2350 20,3 ± 2,0 7,8 ± 0,8 28,0 ± 2,1 37,9 ± 1,9 48,2 ± 2,9 24 10,3

ful-2 2342 26,3 ± 3,0 13,8 ± 1,3 40,0 ± 3,6 75,0 ± 2,2 85,5 ± 2,5 12 10,5

ful-2 2350 27,0 ± 2,5 12,6 ± 3,6 39,6 ± 3,9 55,2 ± 5,8 67,4 ± 8,7 16 12,3

Long Day Col-0 14,9 ± 1,2 4,54 ± 1,1 19,5 ± 1,8 26,1 ± 1,5 32,3 ± 1,3 34 6,1

ft-10 36,8 ± 2,3 6,8 ± 1,0 43,7 ± 2,7 48,9 ± 2,8 56,4 ± 2,8 35 7,6

2342 5,6 ± 0,5 0,81 ± 0,5 6,4 ± 0,5 18,3 ± 0,8 24,7 ± 0,9 36 6,5

ft SPL3 23,3 ± 2,7 6,78 ± 1,9 30,1 ± 4,3 37,7 ± 4,0 46,9 ± 6,2 18 9,2

Anthesis 

(DAS) ± SD

Bolting to 

Anthesis

Rosette 

leaves ± SD

Cauline 

leaves ± SD

TLN ± SD Bolting 

(DAS) ± SD
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considered. Yet, it should be noted, that the days until bolting are increased by about 5.5 days 

under the weaker light intensities. 

The results from the flowering time experiments show that in both backgrounds, ful-2 and ft-

10 respectively, the effect of overexpression of SPL3 is decreased, but the double mutants 

nevertheless flower significantly earlier than their single mutant knock-out parent. Since FT 

as a floral pathway integrator acts upstream of FUL it cannot be excluded that the later 

flowering of the ft SPL3 double mutant is a consequence of a loss of activation of other FT-

dependent flowering time components rather than a loss of FUL activation. The results clearly 

indicate though, that there is a certain dependency on FT in an SPL3OX plant. But rather than 

being directly under the control of FT, the effect of SPL3 seems to be additive to FT since the 

ft SPL3OX mutant is still significantly earlier flowering. Therefore, it could be assumed that 

SPL3 may activate FUL in an FT independent manner. 

 
 
3.1.4 Circadian expression of FUL and flowering behaviour in the absence of FT  

From the double mutant analysis described above, it seemed reasonable to assume that 

earliness of SPL3OX transgenics is indeed largely mediated through FUL. Furthermore, 

constitutive overexpression of SPL3 in an ft-10 mutant background resulted in much earlier 

flowering in comparison to the ft-10 parental line. Therefore, the possibility that SPL3 

promotes FUL expression via FT  had become less likely. To further analyse the role of FT in 

mediating the effect of SPL3 overexpression on FUL, the FUL diurnal expression in SPL3OX 

and wild type seedlings was determined under SD conditions. Under these conditions, FT 

transcript levels were expected to stay low during the entire day. Additionally, flowering 

behavior of SPL3OX and ful SPL3OX plants under SD conditions was investigated. 

Indeed, as shown in Fig. 3.5A, FT mRNA was virtually undetectable in 7-d-old seedlings 

grown under SD conditions, i.e. qRT-PCR required cycle numbers as high as 50 to detect any 

signal (and caused large standard deviations). At the same time FUL transcripts remained at 

significantly higher levels in the SPL3 overexpressors compared to wild type. Furthermore, 

FUL expression peaked at the end of the day independently of the presence of light (Fig 

3.5B). Thus, remarkably, FUL transcript levels in SD grown SPL3OX seedlings showed the 

same diurnal rhythm as found before under LD conditions (compare Fig. 3.3B). 
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Figure 3.5 
Expression analysis over a 24-h period in seedlings of wt and SPL3OX transgenics (lines 2342 and 2350) grown 
for 7 days under SD conditions of FT (A) and FUL (B). Expression levels were normalized against PP2A. ZT 0 
represents the beginning of the light period. Expression of FT (A) or FUL (B) in wt at ZT 2 (i.e. 2h after the 
beginning of the light period) was chosen as a reference and set arbitrarily at one. 
 
 

Therefore, the temporal increase of FUL expression at the end of a day seemed to be 

independent of the light period and independent of FT. 

 

3.1.5 Expression profiling of other known factors capable of affecting FUL expression 

Furthermore, possible interaction partners of FUL were tested, i.e. the MADS-box genes 

AGL24 and SOC1. As depicted in Fig. 3.6A, the expression of AGL24 in SPL3OX as well as 

in SPL3OX ful plants grown under LD conditions did not differ much from wt. At ZT 2, 

expression levels seemed to be a little higher in the SPL3OX line 2350 and in the SPL3OX ful 

double mutant (line 2350 crossed to ful-2). However, since this elevation could not be not be 

detected in the other SPL3OX transgenic line (line 2342) it is unlikely that the observed 

change in expression was due to the overexperssion of SPL3. At ZT 18 in both SPL3OX lines 

the expression of AGL24 was not as high as in wt, but nevertheless, the difference in 

expression remained small. It is therefore unlikely that AGL24 expression is directly 

influenced by elevated SPL3 and/or FUL levels. 

Although the expression of SOC1 had already been tested in SPL3OX once at day time, its 

expression levels were monitored over a 24-h period in 7-d-old seedlings grown under LD 

conditions. Fig. 3.6B shows, that SOC1 expression was slightly upregulated in both SPL3OX 

lines as well as in the SPL3OX ful double mutant. The largest recorded difference, i.e. a 3.5-

fold increase, was found for line 2342 in comparison to wt. It is unlikely, that elevated 

expression of SPL3 and/or FUL is of much relevance to the expression of SOC1 in seedlings. 
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Figure 3.6 
Expression analysis over a 24-h period in seedlings of wt and SPL3OX transgenics (lines 2342 and 2350) grown 
for 7 days under LD conditions of AGL24 (a) and SOC1 (b). 
A) AGL24 expression over a 24-h period in 7-d-old seedlings of wt and SPL3OX (lines 2342 and 2350) grown 
under LD conditions 
B) SOC1 expression over a 24-h period in 7-d-old seedlings of wt and SPL3OX (lines 2342, 2348 and 2350) 
grown under LD conditions. 
Expression levels were normalized against PP2A. ZT0 represents the beginning of the light period. Expression of 
AGL24 (A) or SOC1 (B) in wt at ZT 2 (i.e. 2h after the beginning of the light period) was chosen as a reference 
and set arbitrarily at one. 
 

 

3.2 Characterization of the interaction of SPL3 with its putative target gene FUL 

3.2.1 Crosslinked Chromatin Immunoprecipitation 

In vitro DNA-binding assays showed that SBP-domain proteins require the nucleotide 

sequence GTAC as core motif for high affinity DNA binding (Birkenbihl et al., 2005; Liang 

et al., 2008). As mentioned before, SPL3 prefers the motif CGTAC for DNA binding 

(Birkenbihl et al., 2005). Additionally, functional studies in planta seem to indicate that 

multiple copies of the core motif are required as cis-element for target gene responsiveness 

(Quinn et al., 2003; Nagae et al., 2008; Yamasaki et al. 2009). In order to investigate if FUL 

could be a direct target of SPL3 and fulfil these requirements, a 30kb region around the FUL 

genomic locus was analyzed for the distribution of both GTAC and CGTAC motifs. The 

positional distribution was compared to the situation in the genomic regions surrounding AP1 

and CAL loci. As depicted in Fig. 3.1, both motifs were found in the genomic regions of FUL, 

CAL and AP1. However, whereas in and around AP1 and CAL both motifs seemed to be 

uniformily distributed, the FUL promoter and the first intronic region showed an enrichment. 

In particular, the CGTAC motif was found to be enriched in the first intron of FUL. 

In order to investigate if FUL is a direct target of the SPL3 protein, I performed a Crosslinked 

Chromatin Immunoprecipitation (X-ChIP) experiment using an SPL3 specific antibody. In 

brief, material from two independent SPL3OX lines as well as wild type, representing either 

7-d-old seedling or inflorescence tissues, was fixed with formaldehyde to induce protein-
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DNA and protein-protein crosslinking. Subsequently, nuclei were extracted and their 

chromatin sheared by sonication to yield fragments of about 200 bp. Before incubation with 

the SPL3 specific antibody, a 50µl aliquot was taken from each sample and saved as "input 

DNA" control. From the remaining of the sample, the SPL3 protein was immunoprecipitated 

along with any associated DNA, i.e. "output DNA" (for experimental protocol details, see 

Material and Methods). Finally, the purified DNA was analyzed by quantitative real-time 

PCR, using several primer pairs that covered the FUL genomic region enriched for the 

CGTAC motif. Primer pairs allowing to amplify FUL fragments that did not include any 

(C)GTAC motifs, served as negative controls, i.e. expected not to be enriched due to 

interaction with SPL3 protein.  

 

 

 
Fig 3.7 
The FUL-fragments obtained with the promoter primer pair as well as with the primer pairs for the 1st intron 
include several CGTAC motifs.  
Exons are depicted in blue, introns and non-translated regions in green. FUL genomic locus showing the 
positions of the GTAC (yellow circles) and CGTAC (red circles) motifs. The thin black arrows indicate the 
primer pairs used to amplify selected FUL fragments in the SPL3 X-ChIP assay. 
 

The housekeeping gene PP2A, a constitutively expressed protein phosphatase, assumed not to 

be targeted by SPL3 protein and indeed not affected in SPL3 overexpressing transgenics (P. 

Huijser and S. Höhmann, personal communication), was used for normalization of input and 

output DNA quantity. 

FUL promoter fragments were found to be relatively enriched in immunoprecipitated 

chromatin derived from inflorescences of both SPL3OX transgenics and wild type (Fig. 3.8A). 

Furthermore, the 3’ region of the first FUL intron also seemed to be enriched in comparison to 

both the first exon and the 5’ region of the first intron. The same results were obtained with 

chromatin isolated from SPL3OX transgenic seedlings (Fig. 3.8B). As in both SPL3 

transgenic seedlings and wild-type inflorescences FUL and SPL3 are known to be highly 
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expressed, this observation could have been an argument in support of a physical interaction 

between SPL3 and FUL. However, a contradictory observation was made, when 

immunoprecipitated chromatin of 7-d-old seedlings of wild-type plants was analyzed. In this 

material both the FUL promoter region and the 3’ region of the first intron showed an 

enrichment as well. The contradiction arises, because SPL3 protein cannot be detected by 

Western blot in 7-d-old seedlings of wild type plants (P. Huijser personal communication; 

Gandikota et al., 2007). Therefore, the X-ChIP results didn’t allow a final conclusion, but may 

lend support to the suggestion that FUL is a direct target of the SPL3 protein and that the first 

intron of FUL might play an important role in this interaction. A more thorough evaluation of 

this experiment follows in the discussion part of this thesis. 

 

 
Figure 3.8 
Enrichment of FUL fragments after chromatin immunoprecitpitation 
Immunoprecipitated FUL fragments in Col-0 wt inflorescences (A) and SPL3OX seedlings (B) obtained by 
using several primerpairs covering the promoter region, the first exon, the 5' part and 3'part of the first intron and 
a fragment behind the first intron, that did not display any binding motifs. 
 
 

 

3.2.2 Functional analysis of putative regulatory motifs in FUL genomic region 

In order to test if the CGTAC motifs in both the first intron of FUL and the FUL promoter 

region are of functional relevance for transcriptional regulation, a reporter gene approach was 

set up. In a first construct, 1616 bp of the putative FUL promoter upstream of the ATG start 

codon as well as the FUL genomic region until 42bp of the second exon were fused to a GUS 

reporter gene (E. coli beta-D-glucuronidase gene). In a second construct, the same promoter 

region of FUL and a FUL cDNA truncated after 42bp of the second exon were fused to the 

GUS reporter. In comparison to the first construct, the second construct lacked the first intron. 

Additionally, variants of both constructs were made in such a way, that the CGTAC motifs 

covering region 461bp upstream of the ATG were modified from CCGTACGGTAC to 
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CACTAGTGAAG on the forward strand. The final four resulting GUS reporter gene 

constructs are depicted in Fig. 3.9. 
 

A) pFUL::FUL::GUS (+ promoter, +intron) 

 

 
 
B) pFUL::ΔFUL::GUS (+promoter, - intron) 
 
 
 
 
C) ΔpFUL::FUL::GUS (- promoter, + intron) 
 

 

 

 

 
 
D) ΔpFUL::ΔFUL::GUS (-promoter, + intron) 
 

 

 

 

 

 

 

 
 
 

 
 

Figure 3.9 
A) pFUL::FUL::GUS (+ promoter, +intron) 
B) pFUL::ΔFUL::GUS (+promoter, - intron) 
C) ΔpFUL::FUL::GUS (- promoter, + intron) 
D) ΔpFUL::ΔFUL::GUS (-promoter, + intron) 
"+" indicates that the CGTAC motifs and / or the intron is present, "-" indicates that CGTAC motifs and / or the 
first intron are absent 
 

After sequencing confirmed that the GUS reporter was correctly fused in frame with the FUL 

coding sequence, wild-type plants were transformed with the constructs using agrobacterium-

mediated transfection. For each of the constructs, homozygous transgenics carrying a single 

cCGTACgGTACg 
cACTAGtGAAGg 

cCGTACgGTACg 
cACTAGtGAAGg 

Coding sequence 

mRNA 

GUS 
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insertion were isolated and analyzed for expression of the GUS reporter gene. Thereto, 

inflorescences as well as cauline leaves, in which FUL is known to reach its highest 

expression values (see appendix C) were harvested and stained for GUS activity. 

Unfortunately for none of the plants carrying one of the four constructs a GUS signal could be 

detected. 

A problem here could be that FUL expression is generally low in wild type as data from 

AtGenExpress, visualized with the eFP Browser (see appendix C), indicate. As mentioned 

before, Teper-Bamnolker and Samach (2005) observed an upregulation of FUL in a 35S::FT 

transgenic background. These authors used the ful-1 (agl8-1) mutant, which carries a GUS 

reporter inserted in the FUL 5' untranslated leader (Gu et al., 1998) and reported a visible, 

albeit weak, GUS signal in a this background (Teper-Bamnolker and Samach, 2005). 

Therefore, it was decided to analyse the response of this ful-1 allele to constitutive 

overexpression of SPL3. Since the ful-1 mutation is in a Landsberg erecta (Ler) background, 

homozygous ful-1 plants were crossed to two independent lines both homozygous for the 

SPL3OX transgene and of the Ler ecotype, i.e. lines L35S::SPL3-UTR∆2-4 and L35S::SPL3-

UTR∆2-10 (Gandikota et al., 2007). Seven-d-old seedlings, inflorescences, cauline leaves and 

siliques at different ripening states of plants hemizygous for the SPL3OX transgene and 

heterozygous for ful-1 were again analyzed for GUS expression. Furthermore, to exclude 

dosage effects when comparing signal strength, homozygous ful-1 plants were also crossed to 

Ler wt in order to obtain heterozygous F1 plants. 

For comparison the transgenic NASC line N8847, which carries a fusion construct of a 2.3kb 

fragment of the FUL promoter region fused to a GUS reporter, was ordered and also stained 

in this expression series. Although this line is in a NOSSEN background, it was assumed that 

it would be elucidating the importance of intragenic sequences, e.g. the first intron. Moreover, 

the promoter region of this line, fused to the GUS reporter, was about 684bp longer than the 

fusion constructs that I had made and therefore might cover regulatory elements of the 

promoter region, that I missed in my constructs. 
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   0.5mm 
 
Fig. 3.10 
GUS expression in cotyledons of hemizygous plants. Ler (A); ful-1 homozygous (B); N8847 (C); Ler x ful-1 
(D); ful-1 x L35S::SPL3-UTR∆2-4 (E); ful-1 x L35S::SPL3-UTR∆2-10 (F). 
 

In both, the parental GUS line as well as the F1 plants of the crosses a GUS signal was 

detectable (Fig. 3.10-13). In the cotyledons of the ful-1 mutant and the backcross of ful-1 to 

Ler wt the GUS signal is prominent at the distal tip and weakly detectable in the lateral parts. 

In particular the vasculature in these areas show a GUS signal (Fig 3.10B). In the F1 plants 

from the crosses of ful-1 to SPL3OX the GUS signal was much stronger than in the parental 

lines (Fig 3.10D to F) and is detectable ubiquitously in the cotyledon and particularly strong 

in the veines. Interestingly, GUS activity was limited to the laminar area, the petiole of the 

cotyledons remained unstained. Also, the cotyledons of SPL3OX seemed to be less roundish 

and the vasculature seemed to be a bit more advanced, which could indicate that the phase 
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transition is accelerated and leads to a more “adult” phenotype. Also, in the N8847 line, no 

GUS expression was detectable in cotyledons, which might be due to the lacking of the first 

intron (Fig. 3.10C). 

Furthermore, GUS expression in inflorescences, cauline leaves and siliques of the same 

crosses were analyzed. 
 

   1.0 mm 

 
Fig. 3.11 
GUS expression in the first true leaves of hemizygous plants. Ler (A); ful-1 homozygous (B); N8847 (C); Ler x 
ful-1 (D); ful-1 x L35S::SPL3-UTR∆2-4 (E); ful-1 x L35S::SPL3-UTR∆2-10 (F). 
 
 

The staining pattern of the first true leaves of the same plants resembled that of the 

cotyledons. GUS staining in the presence of the SPL3OX transgene (Fig 3.11 D to F) was 

again much stronger than in ful-1 homo- or hemizygous mutants and in particular in the 

central vein (Fig 3.11 B and C). Also the petioles of the true leaves remained unstained. But, 
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differently from the cotyledons, the distal tip of the true leaves displayed a less prominent 

GUS signal. Again, the staining of N8847 was less strong. 

 

 

   2.0 mm 
Fig. 3.12 
GUS expression in inflorescences of hemizygous plants in dark field. Ler (A); ful-1 (B); N8847 (C); Ler x ful-1 
(D); ful-1 x L35S::SPL3-UTR∆2-4 (E); ful-1 x L35S::SPL3-UTR∆2-10 (F). 
 

While the inflorescences of wild-type did not show a GUS activity (Fig. 3.12A) the 

inflorescences of the ful-1 mutant showed a staining in pistil tips, filaments of stamens and in 

the receptacle. To a lesser extend also a weak staining was detectable in petals. Interestingly, 

the N8847 line did not show GUS activity in the inflorescence (Fig. 3.12 C), while the 

hemizygous mutants (Fig. 3.12 D to F) did show GUS activity in the same organs as the 

parental ful-1 mutant with a stronger expression. 
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   2.0 mm 
Fig. 3.13 
GUS expression in cauline leaves. Ler (A); ful-1 homozygous(B); N8847 (C); Ler x ful-1 (D); ful-1 x 
L35S::SPL3-UTR∆2-4 (E); ful-1 x L35S::SPL3-UTR∆2-10 (F). 
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  2.0 mm 

 
Fig. 3.14 
GUS expression in siliques. Ler (A); ful-1 (B); Ler x ful-1 (C); ful-1 x L35S::SPL3-UTR∆2-4 (D); ful-1 x 
L35S::SPL3-UTR∆2-10 (E). 
 

The GUS expression in cauline leaves was again not detectable in wild-type, while in the ful-1 

mutant it was clearly visible (Fig. 3.13 A and B). The staining of the hemizygous mutants was 

weaker than in the ful-1 parent, but detectable throughout the leaf, although it seems that the 

GUS signal was not uniformily distributed (Fig. 3.13 D to F) and not visible in the vasculature 

as it was in the cotyledons. Interesting to mention is that the shape of cauline leaves differed 

much in an ful-1 background, for it was more roundish compared to the much more 

lanceolated shape of the L. er parent. The leaf shape of the hemizygous mutants seemed to be 

intermediate. 

GUS expression in siliques was detectable at the tips in both ful-1 mutants and the 

hemizygous mutants (Fig. 3.14 B-F) as well as around the floral organ abscission zone at its 

base. 

 

Taken together, the GUS expression patterns confirm that overexpression of SPL3 leads to 

higher FUL expression levels. Furthermore, these data indicate that SPL3 requires (an) 

additional factor(s) to upregulate FUL expression. Otherwise, the GUS expression should 

have followed the ubiquitous CaMV 35S promoter activity driving the SPL3 transgene. 

Nevertheless, the GUS expression only becomes ectopic in cotyledons, where it covers more 

of the leaf blade than in the ful-1 parent.  
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3.3 A global expression analysis using affymetrix ATH1 arrays 

It has been shown that many transcription factors not only regulate multiple genes but also 

have dual functions in activating or repressing these in a context depended manner. Therefore, 

it is well conceivable that also SPL3 positively or negatively regulates multiple target genes 

during plant development. To identify developmental processes possibly affected by SPL3, 

and also as an alternative to the candidate gene approach, a global expression analysis by 

means of microarray technology was performed. On the Arabidopsis ATH1 array 

(Affymetrix) that was used for the experiment, each gene is represented by a probe set of 

several oligomers, i.e. 25-mers. In this way, 22,810 such probe sets cover approximately 90% 

of all Arabidopsis genes. 

Candidates for possibly SPL3 regulated genes were first selected according to their degree of 

differential expression (above 0.95 confidence level) between SPL3OX with wild type. 

Furthermore, expression values were compared within the genotypes for the two different 

timepoints over the day and also between genotypes for the two timepoints. Comparison for 

the lines with themselves was performed to track the endogenous diurnal expression of genes 

in order to distinguish them from changes in diurnal gene expression caused by the 

overexpression of SPL3. The same comparisons were done for ful SPL3. The cut-off level 

was arbitrarily set at 1.5 fold. This resulted in a large number of up- and downregulated genes. 

In a second step, the identified genes were categorized according to their Gene Ontology 

(GO) annotations using a tool found on http://www.arabidopsis.org/tools/bulk/go/index.jsp , 

the Arabidopsis Information Resource (TAIR) web site. This tool sorts the genes according to 

their molecular function, biological processes involved and cellular distribution. 
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Figure 3.15 
GO annotation analysis of genes that are differentially expressed between SPL3OX line 2350 and wild type. 
Samples being taken at the mid of the light period (ZT6 = 12:00h) 
Percentile distribution of GO terms assigned to the differentially expressed genes at the middle of the light 
period, functionally categorized as cellular component (A), Molecular function (B) and biological process (C). 
Blue bars, percentile distribution for the whole genome; Green bars: percentile distribution for the upregulated 
genes; Red bars: percentile distribution for the downregulated genes 
 

From Fig. 3.15A it can be seen, that of the GO Cellular Component terms assigned to the 

upregulated genes at 12:00h, 11.4%  are related to 'plastid'. This is ca. four times as much as 

for the whole genome (i.e. 2.9%). Obviously, also the term 'chloroplast', a 'part_of' the GO 

term 'plastid', is found to be overrepresented in the upregulated genes The rest of the 
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overrepresented upregulated genes are primarily clustered under 'other cytoplasmic 

components' and 'other intracellular components'. For the downregulated genes the GO term 

'other membranes' is somewhat overrepresented. Concerning the GO terms related to 

Molecular Function (Fig. 3.15B), the upregulated genes at 12:00h seem to be somewhat 

overrepresented in 'protein binding' (14.1% vs. 8.6%) and 'transcription factor activity' (10.3% 

vs. 6.5%) while the downregulated genes cluster in 'transferase activity' and transporter 

activity'. Finally, GO terms related to Biological Processes and overrepresented in the 

upregulated genes in the 12:00h sample (Fig. 3.13C), refer predominantly to abiotic or biotic 

stress responses, while again the downregulated genes are related to 'transport'. 

Though this analysis of the affymetrix data was quite rough, it can be conducted that the most 

upregulated genes have functions in cell organization and biogenesis as well as play a role in 

developmental processes. However, after this coarse categorization it was not immediately 

obvious what processes were particularly affected due to constitutive overexpression of SPL3. 

Therefore, a more detailed GO term analysis was performed with the help of the web-based 

tool AmiGo (http://amigo.geneontology.org/cgi-bin/amigo/term_enrichment). Moreover, the 

available microarray data were analysed in a more comprehensive way. Thereto, samples 

representing both different time points of the day were first compared per genotype, e.g. 

SPL3OX at 12:00h compared to SPL3OX at 21:30h. Then, the results were compared between 

the genotypes. In fact, this comparison should not primarily detect quantitative differences in 

gene expression levels between the genotypes but rather qualitative differences in daily 

expression patterns, i.e. between 12:00h and 21:30h. Finally, genes that varied at least a factor 

of 1,5 between SPL3OX line 2350 and Col-0 wild type were subjected to GO term analysis. 

 
Table 3.3: Selected results from the AmiGO GO term analysis 

Further results from the AmiGo analysis could not be included in the appendix due to very large data sets 

 

A) Cellular component: 

 
 
 
 
 

GO Term  P-value  Sample 
freq.  

Background 
freq.  

Genes 

GO:0030076 
light-harvesting 

complex  

1.05e-14  11/436 
(2.5%)  

25/31842 
(0.1%)  

AT5G54270 AT2G05100 AT2G05070 AT1G29910 AT3G47470 AT3G27690 AT2G34430 
AT1G29930 AT3G54890 AT2G34420 AT1G29920 

GO:0009535 
chloroplast 
thylakoid 
membrane  

2.76e-05  22/436 
(5.0%)  

592/31842 
(1.9%)  

AT3G45140 AT1G15820 AT2G39730 ATCG00720 AT5G54270 AT2G05100 AT2G05070 
AT1G29910 AT3G47470 ATCG00470 AT3G27690 AT1G29395 AT2G34430 AT3G16000 
AT1G29930 AT4G20360 AT3G54890 ATCG00480 AT3G47860 AT3G01500 AT2G34420 

AT1G29920 
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Table 3.3 continued 
B) Molecular Function 

 
 
C) Biological process 

 
 

GO Term  P-value  Sample 
freq. 

Background 
freq. 

Genes 

GO:0016168 
chlorophyll 

binding  

2.79e-13  11/436 
(2.5%)  

32/31842 
(0.1%)  

AT1G15820 AT2G05100 AT2G05070 AT1G29910 AT3G47470 AT3G27690 AT2G34430 
AT1G29930 AT3G54890 AT2G34420 AT1G29920 

GO:0003700 
transcription 
factor activity  

5.36e-10  56/436 
(12.8%)  

1661/31842 
(5.2%)  

AT5G39660 AT4G16610 AT5G62020 AT1G80840 AT3G06160 AT4G37260 AT1G01060 
AT4G00050 AT4G17880 AT5G04340 AT4G23810 AT5G49330 AT1G69490 AT3G20810 
AT4G16780 AT1G32640 AT3G56400 AT3G54390 AT4G14560 AT3G15210 AT1G73830 
AT1G21910 AT1G01720 AT3G50060 AT5G61600 AT4G38620 AT5G48250 AT4G26150 
AT1G68840 AT5G24120 AT3G49530 AT2G26150 AT2G33810 AT1G71030 AT5G59780 
AT5G05410 AT1G22640 AT5G51190 AT3G16770 AT2G40750 AT2G40140 AT1G13260 
AT3G24500 AT2G40970 AT5G47220 AT2G25930 AT4G17500 AT5G59570 AT1G66390 
AT5G04240 AT3G47500 AT3G07650 AT3G46640 AT1G78600 AT5G54470 AT4G37180 

GO:0030246 
carbohydrate 

binding  

4.61e-04  7/436 
(1.6%)  

100/31842 
(0.3%)  

AT3G04720 AT1G65390 AT4G27300 AT1G63090 AT1G16900 AT1G12710 AT3G52180 

GO:0015144 
carbohydrate 

transmembrane 
transporter 

activity  

1.01e-03  7/436 
(1.6%)  

114/31842 
(0.4%)  

AT1G11260 AT1G19450 AT4G36670 AT3G47420 AT2G29650 AT3G54700 AT2G38940 

GO:0005975 
carbohydrate 

metabolic process  

9.59e-03  13/436 
(3.0%)  

449/31842 
(1.4%)  

AT4G26270 AT5G51820 AT1G10760 AT1G13700 AT2G32610 AT2G32530 AT4G17090 
AT5G26570 AT3G52180 AT3G51160 AT1G60590 AT2G32540 AT4G33440 

GO Term  P-value  Sample 
freq. 

Background 
freq. 

Genes 

GO:0050896 
response to 

stimulus  

2.54e-38  147/436 
(33.7%)  

3426/31842 
(10.8%)  

AT5G13930 AT4G38860 AT3G23120 AT5G52310 AT3G04720 AT1G66270 AT4G22880 
AT3G23110 AT3G45140 AT1G15820 AT5G54490 AT5G62020 AT2G42540 AT2G15080 
AT1G80840 AT1G29460 AT3G23560 AT4G24960 AT4G37260 AT1G01060 AT2G21220 
AT5G12020 AT2G39730 AT2G37030 AT3G57040 AT1G27330 AT4G30270 AT4G23810 
AT1G32920 AT1G29430 AT1G07400 AT5G66070 AT2G40000 AT1G17420 AT1G33970 
AT2G44080 AT5G14920 AT4G27320 AT2G22300 AT1G65390 AT3G55120 AT2G11810 
AT5G51820 AT1G13930 AT5G15960 AT1G10760 AT4G16780 AT1G32640 AT3G56400 
AT4G14560 AT2G41010 AT1G72940 AT2G19310 AT2G46240 AT3G15210 AT2G41100 
AT1G76650 AT4G23600 AT2G40080 AT1G29450 AT5G20230 AT3G17790 AT1G01720 
AT5G44420 AT3G50060 AT4G34150 AT1G20450 AT5G01220 AT3G44260 AT1G74310 
AT1G29395 AT1G77760 AT5G02810 AT2G04795 AT2G21200 AT2G28900 AT4G17090 
AT3G62550 AT4G38620 AT1G22770 AT2G42530 AT1G66160 AT4G26150 AT5G24120 
AT2G26020 AT3G22231 AT3G49530 AT2G26150 AT1G54050 AT4G32770 AT2G29650 
AT1G71030 AT5G59780 AT2G14560 AT1G29440 AT4G19030 ATCG00480 AT4G21830 
AT5G05410 AT1G80420 AT1G22640 AT2G29500 AT3G45640 AT5G51190 AT3G22370 
AT3G09870 AT1G21250 AT3G16770 AT2G40750 AT2G40140 AT1G13260 AT1G72520 
AT3G24500 AT5G54770 AT4G14400 AT5G47220 AT4G12400 AT1G73500 AT5G45340 
AT5G20410 AT2G25930 AT3G01500 AT4G17500 AT5G06320 AT4G16860 AT5G59320 
AT2G47730 AT5G20630 AT3G10020 AT5G04240 AT2G21660 AT2G46440 AT5G15970 
AT3G07650 AT5G54110 AT3G46970 AT5G59080 AT5G27780 AT1G78600 AT1G59860 
AT2G17840 AT3G61460 AT3G46620 AT3G23150 AT3G13790 AT3G12580 AT5G12030 

GO:0009416 
response to light 

stimulus  

1.77e-15  33/436 
(7.6%)  

430/31842 
(1.4%)  

AT5G13930 AT1G15820 AT2G42540 AT1G01060 AT2G39730 AT3G55120 AT5G15960 
AT4G16780 AT2G19310 AT2G46240 AT2G41100 AT2G40080 AT5G20230 AT1G74310 
AT1G77760 AT5G02810 AT4G38620 AT1G22770 AT5G24120 AT2G26150 AT1G54050 
AT4G32770 AT5G05410 AT2G29500 AT4G12400 AT5G45340 AT2G25930 AT5G04240 

AT3G07650 AT1G78600 AT2G17840 AT3G12580 AT5G12030 
GO:0010228 
vegetative to 
reproductive 

phase transition  

4.18e-06  8/436 
(1.8%)  

68/31842 
(0.2%)  

AT1G01060  AT2G46240 AT2G40080 AT1G22770  AT2G25930  AT5G04240 AT2G21660 
AT3G07650 

GO:0007623 
circadian rhythm  

5.92e-06  7/436 
(1.6%)  

51/31842 
(0.2%)  

AT3G57040 AT2G40080 AT5G02810 AT1G22770 AT2G25930 AT2G21660 AT3G46640 

GO:0009648 
photoperiodism  

1.65e-05  6/436 
(1.4%)  

40/31842 
(0.1%)  

AT1G01060 AT2G40080 AT1G22770 AT2G25930 AT5G04240 AT3G07650 

GO:0010017 red 
or far red light 

signaling 
pathway  

4.26e-05  5/436 
(1.1%)  

29/31842 
(0.1%)  

AT2G42540 AT5G15960 AT4G16780 AT2G40080 AT5G02810 

GO:0005982 
starch metabolic 

process  

8.14e-05  5/436 
(1.1%)  

33/31842 
(0.1%)  

AT5G51820 AT1G10760 AT4G17090 AT5G26570 AT3G52180 
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From the GO terms related to Cellular Component, 'light harvesting complex' and 'chloroplast 

thylakoid membrane' were significantly enriched (Table 3.3A). This fitted well with the 

previous determined association with the chloroplast. Also related to these findings could be 

the enrichment of the term 'chlorophyll binding' and terms related to carbohydrate metabolism 

and transport among the GO terms for Molecular Function (Table 3.3 B). Similarly, this could 

be linked to the enrichment of the Biological Process GO term 'starch metabolic process'. 

Furthermore, among the Biological Process GO terms enriched in the pool of selected genes 

were many related to 'response to stimulus'. These stimuli encompassed elements of abiotic 

and biotic stresses. Of particular interest were those associated to 'response to light stimulus' 

like 'phase transition', 'photoperiodism', 'circadian rhythm' and 'light signalling' (Table 3.3.C) 

as flowering time is well known to be influenced by the photoperiod and the circadian clock. 

Therefore, with a renewed focus on genes being involved in circadian rhythm, 

phototransduction and regulation of circadian rhythms, the expression data of SPL3, ful SPL3 

and wild-type were again compared at both specific time points of the day, i.e. at 12:00 h and 

21:30 h (see tables 3.4 and 3.5). 

The fold change values were sorted into two tables according to the roles of the genes in 

circadian rhythm and phototransduction processes (Table 3.4 and 3.5). For comparison of 

wtild-type gene expression also the wild-type data from both sampling timepoints were 

included. Positive values display a higher expression of the gene in the mutant, i.e. SPL3OX 

or ful SPL3 compared to wild-type. 
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Table 3.4 

Ratios for differential gene expression in 12:00 and 21:30h samples for genes involved in circadian rhythm. 
positive values: upregulated in numerator; negative values: downregulated in numerator. Only present called 
genes with PPDE(p)>0.950 and a fold change up/down>1.5 are listed. 
 
 

SPL3OX / 

WT ratio

fulSPL3 / 

WT ratio

fulSPL3 / 

SPL3OX 

ratio

WT evening / 

WT midday 

ratio 

WT evening / WT 

midday ratio

SPL3OX / 

WT ratio  

fulSPL3OX / 

WT ratio

fulSPL3OX / 

SPL3OX 

ratio 

12:00h 12:00h 12:00h
21:30h / 

12:00h
all values 21:30h 21:30h 21:30h

AT5G37260 RVE2/CIR1 40,1 40,1

AT5G60100 PRR3 11,8 11,8

AT2G21660 ATGRP7/CCR2 1,5 2,2 5,6 5,6

AT5G61380 TOC1/PRR1 1,7 5,4 5,4

AT5G15840 CO 5,1

AT5G59570        ;AT3G46640LUX/PCL1 7,9 7,6 4,7 4,7

AT2G25930 ELF3 1,9 2,5 4,5 4,5

AT5G23410        ;AT1G68050;AT5G42730FKF1 -1,5 3,3 3,3

AT2G18170 ATMPK7 1,6 1,6

AT3G22380 TIC 1,4

AT5G24470 PRR5/APPR5 1,9 2,9 1,2

AT5G51810 GA20OX2 1,2

AT3G04910 WNK1/ZIK4 1,2

AT1G09340 CRB 1,2

AT2G18790 PHYB/OOP1 1,1

AT3G22170 FHY3 -1,5 1,0

AT5G59560 SRR1 1,0

AT2G18915 LKP2/ADO2 -1,0

AT1G10470 ARR4/IBC7 -1,1 1,6

AT2G44680 CKB4 -1,1

AT5G52910 ATIM -1,1

AT5G57360 ZTL/LKP1/FKL2 -1,1

AT5G10140 FLC/FLF/AGL25 -5,5 -4,0 -1,1 -6,1 -4,6

AT1G59940 ARR3 -1,1

AT2G21070 FIO1 -1,1

AT4G18020 APRR2 -1,5 -1,3

AT3G60250 CKB3 -1,3

AT4G08920 CRY1/HY4 -1,7 -1,7

AT4G25100 FSD1 -3,5 -3,4 -1,8 -1,8 -3,3 -1,6 2,1

AT4G18290 KAT2 -2,2 -2,9 -1,9 -1,9

AT1G68830 STN7 -2,0 -2,0

AT1G09530 PIF3/PAP3 -1,8 -2,1 -2,0 -2,0

AT1G22770 GI 1,5 -2,9 -2,9 -2,3

AT5G15850 COL1 -1,9 -1,8 -4,2 -4,2

AT5G02810 PRR7/APRR7 -8,6 -8,6

AT1G01060 LHY1 -2,0 -2,7 -10,2 -10,2

AT2G46670        ;AT2G46790PRR9/APRR9/TL1 -1,3 -26,0 -26,0

AT2G46830 CCA1 -2,7 -2,6 -64,1 -64,1

circadian rhythm
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Table 3.5 
Ratios for differential gene expression in 12:00 and 21:30h samples for genes involved in phototransduction. 
positive values: upregulated in numerator; negative values: downregulated in numerator. Only present called 
genes with PPDE(p)>0.950 and a fold change up/down>1.5 are listed. 
 

SPL3OX / 

WT ratio

fulSPL3 / 

WT ratio

fulSPL3 / 

SPL3OX 

ratio

WT evening / WT 

midday ratio 

WT evening / WT 

midday ratio

SPL3OX / 

WT ratio  

fulSPL3OX / 

WT ratio

fulSPL3OX / 

SPL3OX 

ratio 

phototransduction
12:00h 12:00h 12:00h 21:30h/12:00h    all values 21:30h 21:30h 21:30h

AT2G40080 ELF4 25,1 25,1 -3,4 -4,3

AT2G42540 COR15A 2,4 4,3 1,8 8,3 8,3

AT5G15960     ;AT5G15970MUR1;KIN1 1,8 2,1 6,4 6,4

AT2G25930 ELF3 1,9 2,5 4,5 4,5

AT5G11260 HY5 2,6 2,6

AT4G16250 PHYD 1,3

AT5G35840 PHYC 1,3

AT4G15090 FAR1 1,2

AT2G18790 PHYB/OOP1 1,1

AT2G02950 PKS1 1,1

AT3G22170 FHY3 -1,5 1,0

AT5G59560 SRR1 1,0

AT3G62090 PIL2 -1,0

AT5G63310 NDPK2/NDPK1A -1,1

AT1G10470 ARR4/IBC7 -1,1 1,6

AT1G59940 ARR3 -1,1

AT5G20730 NPH4/MSG1/BIP -1,1

AT2G46370 JAR1 -1,5 -1,1

AT2G42810 PAPP5/PP5 -1,2

AT5G49230 HRB1 -1,2

AT2G26670 HY1 -1,2

AT5G63870 PP7 -1,2

AT2G24790 COL3 -1,3

AT4G02440 EID1 -1,3

AT2G37970 SOUL-1 -1,4 1,7

AT5G64330 NPH3/RPT3 -1,5 -1,5

AT2G46340 SPA1 -1,5 -1,8 -2,0 -1,6

AT4G08920 CRY1/HY4 -1,7 -1,7

AT1G09570 PHYA/FRE1/HY8 -1,8 -1,8

AT1G09530 PIF3/PAP3 -1,8 -2,1 -2,0 -2,0

AT4G25350 SHB1 -2,7

AT1G02340 HFR1 -2,5 -2,5 -2,7 -2,7

AT4G16780 ATHB-2/HAT4 1,7 -3,8

AT5G02810 PRR7/APRR7 -8,6 -8,6

AT2G43010 PIF4/SRL2 -1,6 -1,5 -8,7 -8,7

AT3G59060 PIL6 -12,4 -12,4 -3,1

 

When comparing the fold changes of SPL3OX and wild-type at sampling time point 12:00h to 

the wild-type changes at timepoints 12:00h and 21:00h it was obvious that in SPL3OX 

transgenics genes, that usually are upregulated towards the end of the day, were already 

higher expressed at 12:00h. Among those were genes known to be involved in circadian 

rhythm, e.g. CCR2 (1.5), LUX (7.9), ELF3 (1.9) and PRR5 (1.9). On the other hand there were 

also genes downregulated in SPL3OX in this comparison. Among those were FSD1 (-3.5), 

KAT2 (-2.2) and LHY1 (-2.0). When comparing the fold changes in the 21.30 samples of 

SPL3OX the differences were not as strong as in the 12.00 samples. Only FSD1 (-3.3) and 

ELF4 (-3.4) were strongly missregulated. Genes involved in phototransduction and found to 

be upregulated in this comparison are COR15A (2.4), KIN1 (1.8) and ELF3 (1.9), while 

downregulated genes are PIF3 (-1.8), PIF4 (- 1.6) and HRF1 (-2.5). 
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The same comparison was done for ful SPL3. Genes that were additionally (to the ones 

already identified in SPL3OX) upregulated at 12:00h in ful SPL3 compared to wild-type were 

TOC1 (1.7) and GI (1.5), while additionally downregulated were ZTL (-5.5), PRR2 (-1.5), 

FLC (-5.5), COL1 (-1.9) and CCA1 (2.7). Again, when this comparison was done for the 

21:30h sampling, there weren’t many differences in gene expression. Only ARR4 (1.5) and 

SOUL-1 (1.7) were differentially expressed (Table 3.5). Generally it seemed that gene 

missregulation was even stronger in the ful SPL3 mutant, because the fold change differences 

in comparison to wild-type was often even stronger for genes that were affected also in the 

SPL3OX in the ful SPL3 mutant. 

When comparing the fold changes in SPL3OX to ful SPL3 at 12:00h and 21:30h FHY3 (-1.5) 

was missregulated in the 12:00h sample. Other genes involved in circadian rhythms or 

phototransduction were not significantly missregulated. 

Taken together these data show, that in SPL3OX transgenics, genes at the core of the circadian 

clock are missregulated in the first half of the light period. So called 'evening genes', like 

LUX, seemed to be upregulated too early during the day and expression levels of 'morning 

genes' like LHY remained too low. Moreover, this effect seemed to be dependent on 

overexpression of SPL3, since in the comparison ful SPL3 / SPL3OX those genes did not 

occur anymore. Furthermore, a direct output signal of the circadian clock, GI, seemed to be 

missexpressed as well. Therefore, it was hypothesized that overexpression of SPL3 affects the 

circadian clock. Interestingly, the missregulation of FLC seemed to be dependent on FUL, 

since in the comparison of ful SPL3/ WT and ful SPL3 / SPL3OX the values of FLC differ, 

while in the comparison of SPL3OX / WT FLC was not missregulated. But since the 

expression levels of FLC, being a negative regulator of flowering time, these results seemed 

to be contradictory to the later flowering phenotype of the ful SPL3 mutant. 

 

 

3.4 Effects of SPL3OX on the circadian clock 

The circadian clock in Arabidopsis represents a major genetic trait for perception and 

interpretation of environmental conditions that affect the transition from vegetative to 

reproductive phase. Furthermore, the clock regulates a suite of developmental and metabolic 

processes to optimize plant behaviour in response to regular environmental changes. In fact, 

around 6% of the Arabidopsis genome is believed to be under clock control (Salomé and 

McClung 2004). The endogenous circadian clock is entrained by external cues, called 

Zeitgebers of which daylight is a major one. As such the circadian clock is known to be part 
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of the photoperiodic flowering pathway. Plants being defective in correct interpretation of 

day-night cycles often show flowering time phenotypes. 

One way to test if the circadian clock is affected is determining the periodicity of leaf 

movement under free-running conditions in plants that have been entrained by a distinct dark-

light rhythm before (Edwards and Miller, 2007). 

 

 

3.4.1 Circadian leaf movement of SPL3OX 

In order to investigate the possibility of SPL3 affecting the circadian clock, the vertical 

movement of cotyledons of seedlings of wild-type and two independent lines of SPL3 

overexpressors was recorded for 7 d under free-running conditions, i.e. continuous white light 

and a constant temperature of 22°C. Before, the plant were entrained to a 12h dark / 12h light 

rhythm. Additionally, the leaf movement of ful SPL3 seedlings was compared to wild-type. 

 

 
Fig. 3.16 
Scatterplots indicating the vertical movement of cotyledons of wild-type, the two independent SPL3OX lines 
2342 and 2350, ful-2 mutant and the ful SPL3 mutant. The period of movement was plotted against the relative 
amplitude error (RAE), which is a value indicating the robustness of the movement. The lower the RAE value is 
the more robust the system / movement was, i.e. values below 0.4 are considered as robust and indicate a 
rhythmic movement. 
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The scatter plots in Fig. 3.16A and B indicate that, on average, the periodicity of leaf 

movement in SPL3OX transgenics was shortened in comparison to wild type, i.e. from 25.54 

h for wt  to respectively 23.75 h and 23.81 h for both transgenics. Thus the circadian clock in 

SPL3OX seemed to run faster in comparison to wild type. Interestingly, the ful SPL3 seedlings 

had almost the same period as those of the SPL3OX transgenic lines (Fig. 3.16C and D; 2350: 

23.81h; ful SPL3: 23.00h). 

 

 

3.4.2 Expression of circadian clock genes in SPL3OX and ful SPL3 seedlings 

In order to investigate how SPL3 affects the circadian clock the diurnal expression of the core 

components of the circadian clock in Arabidopsis has been investigated. Thereto, 7d old 

seedling of two independent SPL3OX lines, ful SPL3 and wt were grown under LD and SD 

conditions and harvested every 4 hours over a period 24h. RNA was extracted and expression 

of circadian clock transcripts was tested by quantitative real-time PCR. Figure 3.17 shows the 

expression of the core components of the circadian clock under LD and SD conditions, that 

showed the most dramatic changes in expression. All other clock associated genes, that 

showed only a marginal change in expression are shown in appendix E. 

Figure 3.17A and B show the expression levels of GI over 24h under LD and SD conditions. 

In wt growing in LD, GI, being the output of the circadian clock, reached the highest 

expression level at ZT10 (LD) and ZT6 (SD) respectively. The expression values were 

significantly higher in both the SPL3OX and the ful SPL3 mutant. Especially under SD 

conditions the expression of GI seemed to decrease slower towards the end of the light period 

in the ful SPL3 mutant compared to wild-type. 

The TOC1 expression levels peaked at ZT18 in wild-type under LD conditions and SD 

conditions. In the SPL3OX lines the expression at ZT10 and ZT14 was already increased, 

which was also true for the ful SPL3 mutant with the strongest expression levels (Fig. 3.17C). 

Interestingly, the expression increased earlier during the light period (LD) but did not exceed 

the maximum expression of wild-type in the SPL3OX and probably also not (much) in the 

ful SPL3 mutant. Under SD conditions, the TOC1 expression also peaked at ZT18 in the 

SPL3OX lines and the ful SPL3 mutant. Nevertheless, while the expression stayed low in the 

SPL3OX during the day, it was earlier upregulated in the ful SPL3 mutant (ZT14; Fig. 3.17D). 

Figure 3.17 E and F show the expression of ELF4 over 24h under LD and SD conditions in 

wild-type, SPL3OXs and ful SPL3. In wild-type ELF4 expression peaked at ZT10 under LD 

conditions, while under SD the expression maximum was reached at ZT14 and then decreased 
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again. Interestingly, in both SPL3OX lines the levels of wild-type expressions were not 

reached. Under LD conditions the expression levels were about half of wild-type levels while 

under SD conditions about 2/3 of wild-type levels were reached. Interestingly, the expression 

of ELF4 in ful SPL3 seemed to follow the wild-time expression both under LD and SD 

conditions, although it seemed to decrease a little slower under SD conditions. 

The diurnal expression of PRR7 is shown in Fig. 3.17 G and H. Under LD conditions the 

maximum expression was reached at ZT10, while under SD it was reached a little earlier, at 

ZT6. 

Under LD conditions the expression levels also were highest at ZT10, but they significantly 

exceeded the wild-type levels. The same holds true for ful SPL3, which showed the highest 

expression levels (Fig. 3.17G). Under SD conditions, the expression levels were not as high as 

under LD conditions. Moreover, the relative increase of expression in the SPL3OXs was not 

as much as under LD conditions. In the ful SPL3 line, the highest levels were reached at 

ZT10, not as in wild-type at ZT6, and decreased slower than in wild-type (Fig. 3.17H). 

In the two SPL3 overexpressor lines as well as in ful SPL3, LHY expression levels at ZT2 

were increased (Fig. Appendix D, A) under LD conditions, but otherwise did not show 

significant differences to wild-type expression under LD conditions. The same holds true for 

the expression of CCA1 (Fig. C in Appendix D). Taken into account that the TOC1 expression 

was altered in these samples as well this is not surprising, since these genes are the core 

components of the clock and connected through a positive-negative feedback loop. Under SD 

conditions the expression of LHY and CCA1 did only show an increase in 2350 (Fig. B and D 

in Appendix D) at ZT22, while the expression was not altered any other time of the day. 

The diurnal expression of LUX and ELF3 was not changed in the SPL3OXs or ful SPL3 under 

both LD and SD conditions compared to wild-type (Fig. E to H in appendix D). 

Taken together the diurnal expression data of clock associated genes confirm the affymetrix 

data concerning the genes tested and indicate that overexpression of SPL3 might result in a 

changed expression of clock associated genes. 

 



Results 

 58 

 
Fig. 3.17 
Confirmation of diural expression of several clock associated genes in 7 d old seedlings under LD and SD 
conditions. Diurnal Expression of GI (A and B), TOC1 (C and D), ELF4 (E and F) and PRR7 (G and H) under 
LD and SD conditions. All genes were normalized against PP2A and ZT2 of WT was set arbitrarily set as one. 
blue = WT, red =SPL3OX line 2342, yellow = SPL3OX line 2350, green = SPL3OX line 2350 ful-2. ZT0 
represents the beginning of the light period. 



Discussion 

 59 

4. Discussion 
The SBP-box transcription factor SPL3 from Arabidopsis has been shown to be post-

transcriptionally regulated by miR156 (Gandikota et al., 2007, Schwab et al. 2005, Wu and 

Poethig 2006) and constitutive overexpression of a microRNA insensitive form results in 

early flowering (Cardon et al. 1999). Furthermore, upon photoperiodic induction of flowering, 

SPL3 is among the first and strongest responding genes (Schmid et al., 2003). Moreover, 

SPL3 is the presumed ortholog of SBP1 from A. majus. Both proteins are able to bind in vitro 

to a conserved sequence in the promoter region of the orthologous floral meristem identity 

genes SQUA from Antirrhinum and AP1 from Arabidopsis (Cardon et al., 1997, Klein et al., 

1996). AP1, however, has been shown not to be essential for the earliness of the SPL3 

overexpressing transgenics (Cardon et al., 1999). 

The different lines of experimental evidence suggest that SPL3 promotes flowering and the 

data collected in this study may shed light on how this is achieved. 

 

4.1 Identification of putative SPL3 target genes following a candidate gene approach 

The floral pathway integrators SOC1 and FT as well as the floral meristem identity genes 

FUL, CAL and LFY and FPF1 fulfilled the previously described criteria for putative SPL3 

target genes. Therefore their expression levels were compared between SPL3 transgenic 

seedlings and wild type. 

 

4.1.1 Precocious expression of SPL3 causes upregulation of FT and FUL in seedlings 

As expected, transcript levels of both the floral pathway integrators were low in wild-type 

seedlings. In SPL3OX seedlings transcript levels of FT, but not those of SOC1, were clearly 

upregulated. Also, expression levels of the floral meristem identity genes were found 

generally low in both wild-type and SPL3OX transgenic seedlings with the exception, 

however, of FUL. FUL transcript levels were found to be significantly higher expressed in the 

transgenics. With respect to the upregulation of both FT and FUL it is particularly interesting 

to note that the phenotype obtained through constitutive overexpression of FT as described by 

(Teper-Bamnolker and Samach 2005) mimics the phenotype of SPL3OX plants, i.e. relatively 

small and early flowering plants with curled leaves. Moreover, an accumulation of FUL 

transcripts in seedlings was found in response to FT overexpression. However, in contrast to 

SPL3OX transgenic seedlings, Teper-Bamnolker and Samach also found higher transcript 

levels for of the floral meristem identity gene AP1. Similarly, SEP3, capable of enhancing 

earliness through interacting with AP1 (Pelaz et al., 2001) and strongly upregulated in 
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35S::FT, showed only slightly increased expression in SPL3OX transgenic seedlings. 

Furthermore, the relative increase in expression levels of both FT and SEP3 in SPL3OX 

seedlings were found to be much lower in comparison to that of FUL. Therefore, it is 

concluded that the molecular genetic mechanisms underlying the early flowering phenotype 

of SPL3OX transgenics are not merely a copy of those in the FT overexpressors. It remains, 

however, reasonable to speculate that upregulation of FUL in SPL3OX transgenics is a 

subsequent consequence of enhanced FT expression. Alternatively, FUL may represent the 

primary target of SPL3 with the upregulation of FT as secondary, i.e. feedback, effect. 

 

 

4.1.2 Diurnal expression analysis reveals that SPL3`s effect on FUL expression is partly 

independent on FT 

FT expression shows a diurnal rhythm with a strong peak at the end of the light period in LD 

conditions (Mizoguchi et al., 2005) as a result of the complex regulation of CO on both 

transcriptional and post-translational level. Therefore, the time of sampling may become 

decisive to uncover altered transcriptional behaviour when studying FT or any other gene 

showing a diurnal expression rhythm. The expression analysis over a 24 h period revealed that 

the diurnal expression profile of FT was not notably altered in SPL3OX seedlings in 

comparison to wild-type. FT transcript levels in SPL3OX seedlings were, however, slightly 

higher than in wild-type. In contrast, FUL transcription was significantly upregulated in the 

SPL3 overexpressors during the light and dark period. Interestingly, FUL expression levels 

raised even more towards the end of the light period in the SPL3 overexpressing lines, what 

could reflect a certain dependency on FT.  

If SPL3 would regulate FUL expression through FT, FUL transcript should be barely 

detectable in SPL3OX transgenics grown under SD conditions, because FT transcript is 

expected to stay low during the entire day then. However, FUL transcripts remained at 

significantly higher levels in the SPL3 overexpressors compared to wild-type and remarkably 

also peaked at the end of the day independently of the presence of light, i.e. showed the same 

diurnal rhythm as found before under LD conditions. FT mRNA on the other hand indeed 

remained undetectable in the same SD samples. Therefore, the temporal increase of FUL 

expression at the end of a day seemed to be independent of the light period and independent 

of FT. It is thus concluded that the promotion of FUL is unlikely to happen through FT. At 

least SPL3 is probably not promoting FUL expression through upregulation of FT. Final proof 

though can only come from testing the FUL expression in ft SPL3 transgenics. 
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4.1.3 FUL represents a major mediator in SPL3 induced earliness 

To determine to what extend FUL and FT actually mediate the effect of SPL3 overexpression 

on flowering, the SPL3OX transgene was analysed against both a ful-2 and a ft-10 mutant 

background. Concerning bolting and anthesis, under LD conditions ful SPL3OX plants 

resembled very much wild-type, but when compared on bases of their TLN, ful SPL3OX 

plants were still slightly earlier flowering than wild-type. This means that in a ful-2 mutant 

background the earliness of flowering accomplished by SPL3 overexpression is almost 

completely abolished. Determination of flowering time under SD conditions revealed that 

again ful SPL3OX plants flowered earlier than wild-type when counting the number of rosette 

leaves, but not when expressed in days to bolting and anthesis. In fact, ful SPL3OX plants 

flowered even somewhat later. Nevertheless, both SPL3OX and ful SPL3OX remained 

photoperiodically sensitive, since the flowering times under SD conditions were longer than 

under LD. Remarkably, under SD conditions the number of cauline leaves of both ful-2 and 

ful SPL3OX plants were greatly increased.  

As recently published, 35S::FT ful-2 plants flower later than 35S::FT plants both under LD 

and SD conditions (Melzer et al., 2008), which gives additional evidence for a decisive role 

for FUL presence during the floral transition. 

Taken together these results suggest, that constitutive overexpression of SPL3 results in early 

flowering primarily because of a precocious upregulation of the floral meristem identity gene 

FUL. 

 

 

4.1.3 AGL24 and SOC1 are not affected in their expression by SPL3 

MADS-domain proteins like FUL are known to function as homo- or heterodimers 

(Kaufmann et al., 2005). Among the MADS-domain proteins capable of forming 

heterodimers with FUL and known to promote flowering are SOC1 and AGL24 (deFolter et 

al., 2005). Moreover, these latter MADS-box genes are believed to act upstream of FUL in 

integrating flowering signals (Liu et al., 2008). With respect to FUL mediated early 

flowering, SOC1 and AGL24 expression levels could be important factors in SPL3 

overexpressor plants. However, RT-PCR transcription profiling over 24 h revealed that the 

expression of both AGL24 and SOC1 in SPL3OX as well as in ful SPL3 seedlings did not 

differ much from wild-type. Therefore it is unlikely that AGL24 or SOC1 expression are 

directly influenced by elevated SPL3 or FUL levels. Furthermore, although SOC1 levels 

seemed to be slightly elevated in response to SPL3 overexpression, it is unlikely to be 
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responsible for the high expression levels of FUL. More likely, through a so far unknown 

feedback mechanism on more upstream acting flowering time determining genes, high SPL3 

or FUL expression levels may lead to elevated SOC1 expression levels. As discussed later, 

this feedback mechanism may involve the circadian clock and could thereby also explain the 

elevated FT levels observed in SPL3 overexpressing plants. 

Another possibility of promoting flowering time is the precocious repression of flowering 

time repressors such as SVP. SVP is a MADS domain protein that is controlled by the 

autonomous, thermosensory and gibberellin pathway (Lee et al. 2007) and is expressed in 

vegetative tissue before the floral transition (Hartmann et al., 2000) It is independently of 

photoperiod repressing flowering time in a dosage dependent manner (Hartmann et al., 2000 

Yu et al., 2002, Michaels et al., 2004) and has shown to be epistatic to AGL24 (Gregis et al., 

2006). An interaction of FUL-likes with SVP-likes has been found in rice, petunia (deFolter et 

al., 2005) and Lolium penne (Ciannamea et al., 2006). Moreover, FUL has been shown to be 

able to interact with SOC1 in Arabidopsis (deFolter et al., 2005). It has already been stated 

that there might be positive and negative crosstalk between the induction of flowering and the 

formation of floral organ identity (deFolter et al., 2005) and that proteins involved in both 

processes might have an early and a late function (Mandel and Yanovsky, 1992; Ferrandiz et 

al., 2000).  

This could mean that the elevated expression levels of FUL in SPL3OX transgenic plants 

could titer out the repressing protein SVP either through a so far undiscovered direct 

interaction of SVP and FUL or through the slightly elevated levels of SOC1. This could then 

result in an early flowering phenotype. 

Therefore, it is conceivable that SPL3 overexpression not only promotes flowering by 

upregulation of FUL on the transcriptional level, but also by repressing flowering time 

repressors such as SVP at a post transcriptional level. Through direct interaction on the 

protein level slightly elevated expression of both FUL and SOC1 protein might titer out the 

repressor SVP. This of course could not be detected in a transcriptional profiling. 

 

 

4.2 Characterization of the interaction of SPL3 with its putative target gene FUL 

In vitro DNA-binding assays showed that SBP-domain proteins require the nucleotide 

sequence GTAC as core motif for high affinity DNA binding (Birkenbihl et al. 2005, Liang et 

al., 2008) and that functional studies in planta indicate that multiple copies of the core motif 

have to be present as cis-elements for target gene responsiveness (Nagae et al., 2008, Quinn et 
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al., 2003, Yamasaki et al., 2009). The expression data presented in this study pointed to FUL 

as representing a direct target of SPL3. In agreement, the GTAC motif was found abundantly 

in and around the FUL genomic locus. Also, the motif CGTAC, shown to be preferred by 

SPL3 (Birkenbihl, et al., 2005), was found to be enriched particularly in the first intron of 

FUL. With respect to theses features, the FUL locus clearly differed from the evolutionary 

and functional related AP1 and CAL loci (Purugganan 1997, Ferrandiz et al., 2000). 

Expression of the latter was also not found to be upregulated in SPL3OX transgenic seedlings. 

 

4.2.1 Definite proof for physical interaction between SPL3 and FUL remains elusive 

The Crosslinked Chromatin Immunoprecipitation (X-ChIP) technique is a powerful tool to 

identify direct targets of a transcription factor, when an adequate antibody against the 

transcription factor is available (Orlando 2000). Initial analysis indicated that fragments of the 

promoter region of FUL and in particular of the 3’ region of its first intron, could be enriched 

after X-ChIP with an SPL3 antibody. Since in both SPL3OX and wild-type inflorescences 

FUL and SPL3 are known to be expressed (Mandel and Yanovsky 1995a, Hempel et al., 

1997, Cardon et al., 1996), this finding would be clearly in favor of a physical interaction 

between SPL3 and FUL. Furthermore, FUL promoter region as well as first intron sequences 

could also be enriched after X-ChIP on SPL3OX seedlings. However, when 

immunoprecipitated material of wild-type seedlings was analyzed a similar enrichment was 

obtained. The latter observation seems to offer a contradiction. Albeit SPL3 mRNA is 

detectable in wild-type seedlings it is believed to be translationally repressed by miR156 and 

therefore SPL3 protein remains undetectable by Western blot analysis (Gandikota et al., 

2007).  

It is unknown to what extend the SPL3 antiserum discriminates between native and denatured 

protein. Western blot analysis could thus be less sensitive in comparison to X-ChIP in 

combination with quantitative real-time PCR. Low SPL3 protein levels in seedlings would 

remain unnoticed on Western blots but detectable in X-ChIP. However, it remains difficult to 

understand why then, in comparison to wild-type, the high SPL3 protein levels obtained in 

transgenic seedlings (Gandikota et al., 2007) did not result in relative higher enrichments.  

Therefore, the X-ChIP experiment does not allow to draw the univocal conclusion that FUL is 

a direct target of SPL3 although the results seem to suggest this. Furthermore, it indicates that 

that the first intron of FUL might play an important role in its regulation. 
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4.2.2 Remote cis-regulatory sequences are required for upregulation of FUL in SPL3OX 

transgenics 

Several different GUS reporter gene constructs were generated to determine the functional 

relevance of the CGTAC motifs in the promoter region and the first intron of FUL. None of 

the corresponding transgenic plants showed detectable GUS expression, even not in an 

SPL3OX background. Therefore a direct conclusion on the functional relevance of these 

motifs can not be drawn. This is quite unexpected, because GUS activity derived from a GUS 

reporter inserted in the endogenous FUL genomic locus, i.e. having generated the ful-1 mutant 

allele (Gu et al., 1998), was detectable. Moreover, when crossing this line with SPL3OX 

plants, the GUS reporter responded clearly to the SPL3OX transgene with a stronger signal 

and a wider distribution. It is reasonable to assume that all FUL regulatory sequences (unless 

the insertion of the GUS reporter destroyed one) are preserved in the ful-1 allele. Moreover, 

SPL3 affected the GUS activity also in the NASC line N8847, which carries a GUS reporter 

driven by 2.3 kb promoter region from upstream of the FUL ATG translation start codon. In 

contrast to the NASC N8847 transgene, however, my constructs did not cover a CGTAC 

motif 2.2kb upstream of the FUL ATG. However, in the NASC line, the GUS activity also 

remained very low and, in contrast to ful-1 mutant plants, was undetectable in coteyledons. So 

despite of the regulatory motifs in the promoter region, that might have been missed in my 

constructs but covered in the NASC line, the low GUS signal indicates that downstream 

intragenic sequences, i.e. in the 1st intron, play a role in the regulation of FUL. On the other 

hand, the presence in the first intron, carrying several CGTAC motifs, is insufficient for an 

activation of the GUS reporter. It therefore must be concluded that regulatory motifs in both 

the promoter region and the first intron are necessary for FUL expression and the response to 

SPL3 per se. Moreover, the motifs within the first intron positively affect expression levels 

and might contribute to a tissue specific expression.  

Notably, it has been recently reported that transcriptional regulators bind target genes not only 

in the promoter, but also in the first intron (Helliwell et al., 2006, Schauer et al. 2008, Rosea 

et al., 2008 ) 

 

4.2.3 Precocious expression of SPL3 not sufficient to activate FUL in all tissues 

All expression data obtained in this study confirm that constitutive over-expression of a 

miR156 resistant SPL3 transgene results in precocious activation of FUL. Notably, the SPL3 

transgene is under the control of the 35S CaMV promoter and thus expected to be more or 

less expressed ubiquitously in all tissues (Benfey and Chua 1990). However, upregulation of 
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FUL, as determined in planta with a GUS reporter, seems to be largely restricted to the leaves 

and there predominantly to the veins. Therefore, this strongly suggests that SPL3 does not 

activate FUL alone but that it needs (a) partner(s). As discussed before, such a partner could 

be FT. FT transcript levels remained largely unaffected in SPL3OX transgenics but flowering 

of SPL3OX transgenics was strongly delayed against an ft mutant background but yet not as 

late as in the ft mutant. Furthermore, spatial expression of FT in wild-type (Takada and Goto, 

2003, Abe et al., 2005.) resembles that of FUL in SPL3OX transgenics, i.e. largely restricted 

to the veins of the leaf blade. Nevertheless, FT cannot be the only partner required by SPL3 to 

activate FUL as upregulation of FUL since the earliness in SPL3OX transgenics is not 

completely lost under SD conditions and ft SPL3OX transgenics flower earlier than ft-10 

transgenics. TWIN SISTER OF FT (TSF, Yamaguchi et al., 2005) acts redundantly to FT as a 

floral pathway integrator (Yamaguchi et al., 2005) with a similar diurnal and spatial 

expression, although with lower expression levels. Therefore one could speculate that TSF 

could fulfil the role as an interaction partner of SPL3 as well. Thus it would be interesting to 

study the SPL3OX transgene in an ft tsf double mutant background with respect to FUL 

expression. 

 

The expression pattern of FUL, as observed in SPL3OX transgenics, raises an important 

question with respect to how this is translated into an early flowering phenotype. If, in 

response to SPL3, FUL becomes primarily upregulated in leaves how then could this promote 

flowering?  

It is known that upon photoperiodic induction hormonal and metabolic signals are send from 

the leaves to the apex (Bernier et al. 1993). Notably, recent data strongly suggest that part of 

the multifactoral signal, transported through the phloem, is the 20 kDa FT protein (Corbesier 

et al., 2007; Jaeger and Wigge 2007). Arrived at the apex, FT interacts with the bZIP 

transcription factor FLOWERING LOCUS D (FD) to promote flowering (Abe et al., 2005). 

As in SPL3OX transgenic plants, FUL and FT expression merge in the veins of cotyledons 

and early leaves, it is interesting to speculate that FUL promotes flowering through 

facilitation of loading and/or transporting FT protein through the phloem. In this context, the 

observation that expression of MIR156 in early leaves is also linked to the veins (Schwab 

2006) and that miR156 has also been detected in the phloem sap (Yoo et al., 2005) may be of 

relevance to maintain juvenility. It is believed that the leaves of juvenile plants are incapable 

of producing (sufficient) floral stimulus in response to an inductive photoperiod (Zeevaart 

1985). MiR156 as well as several of SBP-box gene targets have been associated with the 
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juvenile to adult phase transition in both Arabidopsis and maize (Wu and Poethig, 2006; 

Schwarz et al., 2008; Chuck et al., 2008) 

 

4.3 Global expression profiling of SPL3OX transgenics revealed alterations of the 

circadian clock, in sugar metabolism and light perception 

With a global expression analysis using Affymetrix ATH1 arrays more putative target genes 

for SPL3 should be identified. Having chosen two timepoints of the day for sampling gave the 

unique opportunity to follow the impact of overexpression of SPL3 over a day and gave a 

more dynamic picture of gene expression than a one time sampling would have provided. This 

was particularly interesting since an additional alteration of FUL expression towards the 

evening was previously discovered. Fluctuation of transcripts can be caused by the adaptation 

of an organisms’ physiology to the earth rotation via the circadian clock. Research on the 

biological clock has revealed that up to 90% of all transcripts in Arabidopsis show a rhythmic 

expression pattern (Michaels et al., 2008) and that most of the physiological processes are 

influenced by the circadian clock. 

As the GO annotations and AmiGo analysis revealed, an increased number of missexpressed 

genes in SPL3OX seedlings was associated with the chloroplast. Moreover, the AmiGo data 

indicated that overexpression of SPL3 affects the circadian clock, sugar metabolism and red 

and far red light perception. This is particularly interesting, since the circadian clock is 

involved in photoperiodic induction of flowering (Salomé and McClung 2004 and references 

therein). 

It has been shown that the levels of sucrose is a stimulus for flowering because sucrose in the 

phloem sap and/or soluble sugars in the apical bud increase early upon photoperiodic floral 

induction in both LD and SD plants (Bodson and Outlaw 1985, Houssa et al., 1991). 

Moreover, upon photoperiodic induction of flowering, the ratio of C:N in the leaf exudates as 

well as in the shoot apical meristem greatly and early increases, which led to the suggestion 

that an imbalance of C:N in favour for C positively affects the transition to flowering 

(Corbesier et al., 2002). Interestingly, the starchless mutant phosphoglucomutase (pgm, 

Caspar et al., 1985) as well as the starch-in excess1 mutant (sex1, Caspar et al., 1991), which 

are both late flowering in days shorter than 16h, always show a large, early and transient 

increase of carbohydrate export from leaves under LD inductive conditions, whereas a 

displaced short day (DSD), which does not alter the period for photosynthesis, does not 

increase the export of carbohydrates from leaves (Corbesier et al., 1998). Therefore, the 

authors concluded that floral induction increases the capability of the phloem loading system 
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(Corbesier et al., 1998) and suggested an increased sink activity of the SAM for 

carbohydrates during the floral transition (Corbesier et al., 2002). This is particularly 

interesting since also FT protein is exported from the leaves through the phloem sap. 

Notably, the pgm mutant not only showed a large change of diurnally expressed sugar-

responsive genes but also a subset of circadian-regulated genes were found to be affected 

when a global expression analysis was conducted (Bläsing et al., 2005). The authors found 

that for a quarter of the circadian regulated genes, the diurnal change of sugars in a light/dark 

cycle reinforced the circadian regulation and therefore concluded that sugars modify the phase 

of a subset of the clock-regulated genes (Bläsing et al., 2005). 

 
 

4.4 Leaf movement analysis and expression analysis of clock genes confirmed the 

missregulation of the circadian clock in SPL3OX seedlings 

 

In order to investigate if and how the clock is affected by overexpression of SPL3, the 

circadian movement of cotyledons in two SPL3OX lines, ful SPL3 and ful-2 seedlings was 

tested under free-running conditions after the seedlings had been entrained to LD conditions. 

This experiment uncovered that in the two SPL3OX lines the period of the circadian clock is 

shortened by about 2 hour compared to wild-type. Nevertheless the movement of the 

cotyledons was not arrhythmic.  

The expression of the core components of the circadian clock as well as genes known to be 

closely associated with circadian rhythms were subsequently analysed by means of 

quantitative real time PCR under both LD and SD conditions. Expression of transcripts 

known to be associated with the circadian clock indicated that indeed the diurnal expression 

of the clock genes TOC1, ELF4, PRR7 and GI is altered in SPL3OX as well as in ful SPL3OX 

whereas the diurnal expression pattern of LUX and ELF3 though remained largely unaffected. 

The altered expression of TOC1 could be responsible for the slightly elevated CCA1 and LHY 

expression at the beginning of the light period in both SPL3OX and ful SPL3OX, since the 

genes are believed to be connected via a feedback loop (Alabadi et al., 2001; Schaffer et al., 

1998; Strayer et al., 2000; Wang et al., 1998), that is responsible to sustain the rhythmicity of 

the clock (Ding et al., 2007). Moreover, ELF4 has been shown to be a positive regulator of 

CCA1 (Doyle et al., 2002; Kikis et al., 2005). Since the expression of ELF4 is lower in 

SPL3OX, this could have dampened the effect of higher TOC1 levels on CCA1. Nevertheless, 

the higher ELF4 expression levels do not explain the lowered CCA1 levels in comparison to 

SPL3OX in the ful SPL3 mutant. Interestingly, the elf4 mutant has been reported to be at least 
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partially a gating mutant that is hyposensitive to red-light repression of elongation of 

hypocotyl growth (McWatters et al., 2007). Also several other clock-associated genes have 

been shown to be involved in phytochrome-dependent red-light signaling. For example TOC1 

and PRR7 are discussed to be positive regulators of the red-light signaling pathway acting 

downstream of PHYB, while CCA1 and LHY are believed to be negative regulators in this 

pathway (Ito et al., 2007). 

GI is known to mediate the output of the circadian clock by positively affecting the expression 

of CO and FT (Kardailsky et al., 1999; Kobayashi et al., 1999; Samach et al., 2000; Suarez-

Lopez et al., 2001). Additionally, it has been more recently reported to be also involved in 

light input signalling (Huq et al., 2000) and blue light signalling (Martin-Tryon et al., 2007) 

and therefore might have separable roles in circadian clock regulation and flowering time 

regulation. Since the expression of GI is significantly enriched in both SPL3OX and ful SPL3 

plants under both LD and SD conditions, but the expression of the downstream genes of GI, 

that were tested (i.e. CO, FT, SOC1, AGL24), was only slightly affected in SPL3OX plants it 

seems unlikely that the altered GI expression in those plants is causing the early flowering 

phenotype of SPL3OX. It is more likely, that the effect of overexpression of SPL3 on the 

circadian clock is secondary and of indirect nature. 

 

5. Role for SPL3 during the floral transition 
Taken together the data obtained in this study suggest a decisive role for SPL3 during the 

transition from vegetative to reproductive growth. In the SPL3OX transgenic plants, SPL3 is 

responsible for an early upregulation of FUL, primarily in the vasculature of the leaves. 

Moreover, SPL3 seems to positively affect sugar availability in the leafs. It is interestingly to 

speculate that what is actually decisive is, that FUL might facilitate the loading of leaf 

produced substances into the phloem. Together with the leaf carbohydrates the FT protein, 

also produced in the leaves, could be earlier transported into the phloem and transported into 

the apex, which causes the early flowering phenotype. 

Upon photoperiodic stimulus SPL3 is among the fastest responding genes (Schmid et al., 

2003). Since its expression in wild-type is detectable in the apex, in leaf primordia and early 

leaves it seems likely that SPL3 activates FUL in theses organs. The expression of FUL may 

then promote the floral transition through an enhanced and facilitated transport of leaf 

produced substances into the phloem, through which they are transported into the apex. In the 

apex then the role of SPL3 could not only be the activation of FUL to act as a floral meristem 

identity gene, but also as a factor that facilitates the transport of phloem substances into the 
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apex, thus creating a sink-like activity of the SAM. This role of FUL during the floral 

transition could correspond to the early function of FUL previously described (Mandel et al., 

1992, Ferrandiz et al. 2000). Notably, the GUS analysis did not show an ectopic GUS staining 

in the apices of seedlings. 

Nevertheless it will be interesting to further investigate how sugar metabolism, red-light 

signalling and the circadian clock are influenced by SPL3. 

In the future it will be important to further elucidate the function of all microRNA regulated 

SPL-genes during the phase change from vegetative to reproductive growth to gain a better 

understanding of how the members of this plant-specific transcription factor family enable a 

plant to interpret environmental signals and to adjust their most crucial developmental 

processes to their environment in order to guarantee a maximized success of reproduction. 
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Appendix 

Appendix A 
Table Appendix A 
List of primers used in this study; Efficiency for qRT-PCR was tested for an annealing temperature of 58°C. 

Primer No. Gene Sequence 5' -3' Orientation Efficiency  
at 58°C [%] 

NB1 FUL ATATCACATCGATCATATCTATC forward 89.7 
NB2 FUL GGTGAGTCCACAAAACATCATAG reverse 80.7 
NB3 FUL TGCACGTGCTTCCATACATCAAAAGG reverse 89.7 
NB4 FUL AGCACGTGCACTCAGACACGTAC forward 80.7 
NB7 FUL TAGTCGTTATAGTGTTACTGTAG forward 84.8 
NB8 FUL CATAGACGATGATATTTGTGG reverse 84.8 
NB9 FUL CAATGCTCCAACTCTTCTTCAG  forward 89.2 
NB10 FUL TCGTTCGTAGTGGTAGGACG reverse 89.2  
NB11 FUL TGGACTTCAATTCAACTAGGCCCAG forward 94.7 
NB12 FUL TTGGGTGAGATTCTCTGCCACAC reverse 94.7 
NB25 FUL TGTATTCACGTCACATACCG forward 99.7 
NB26 FUL GAGAAAGTAACTTGCCTATTGA reverse 99.7 
NB27 FUL CGAGTCAGGAGGGAAACTCGAATC  forward 93.7 
NB28 FUL TTGTGAAACGTCTCGGCCAAC reverse 93.7 
NB29 FUL GTTGTAGTAACTAATGTTTATCATACA forward 84.1 
NB30 FUL CACGATCAATACACATTCATTC  reverse 84.1 
NB31 FUL CCTTTACTTAAGAGGGAATGAATG forward 78.7 
NB32 FUL GTATGTAACTATGTATCCATGTTGTCC reverse 78.7 
NB33 FUL GGACAACATGGATACATAGTTACA forward 75.4 
NB34 FUL GCAAGGCTTTATCCTGATGA reverse 75.4 
NB35 FUL CATCAGGATAAAGCCTTGCAAG forward 88.1 
NB36 FUL TGGTCTCCATTATATATTAGTACCGG  reverse 88.1 
NB37 FUL CGGTACTAATATATAATGGAGACC forward 70.8 
NB38 FUL TTACCACTTTGAGTCTTACGAAG reverse 70.8 
NB39 FUL TTGCAACTGTAGATTTATGCTGG forward 88.6 
NB40 FUL GATGCACCACCGTTCTCTCC  reverse 88.6 
NB45 AP1 cDNA GCACCAAATCCAGCATCCTT forward 97.1  
NB46 AP1 cDNA  CAGACCACCCATGTTGAGAAAA reverse 97.1  
NB47 CAL cDNA  TCTCACGTTAATGCACAGACGA forward 108.9  
NB48 CAL cDNA  TCAATCTTGGCCTTAAGCCTG reverse 108.9  
NB49 AG cDNA  GCGTACCAATCGGAGCTAGGAGG forward 92.5  
NB50 AG cDNA  GACGCAATTTGGCTGATTCTTGTTG reverse 92.5  
NB51 FUL  CACTAGTGAAGGGAAACAATG forward  
NB52 FUL  ACTAGTGACTTTTGTTATTG reverse  
NB55 FT cDNA  GAGACCCTCTTATAGTAAGCAGAG forward 96.5  
NB56 FT cDNA  CGTAACACACAATCTCATTGCC reverse 96.5  
NB59 SOC1 cDNA GGGGCAAAACTCAGATGAAG forward 96.5  
NB60 SOC1 cDNA  TCCTATGCCTTCTCCCAAGA reverse 96.5  
NB61 FD cDNA  ACCACCTAAACCGACACAGC forward 89.5  
NB62 FD cDNA  CATGAGCGTTTGAGAGGTGA reverse 89.5  
NB63 CO cDNA  CATGGAAACTGGTGTTGTGC forward 92.9  
NB64 CO cDNA  ATCGTGTTGAACCCTTGCTC reverse 92.9  
NB65 SEP3 cDNA  ATGCTTCGGACACTGGAGAG forward 89.6  
NB66 SEP3 cDNA  CAGTCAGCATGCGTTCCTTA reverse 89.6  
NB67 JH2295 TAAGCTCAATGATATTCCCGTACA   
NB68 JH2295  CAGGTTCAAAACAAGCCAAGA   
NB69 JH2295  CCCATTTGACGTGAATGTAGACAC   
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Table Appendix A condtinued 

NB74 FPF1 cDNA  TCAGGATCCGACACACAGAA forward 93.1  
NB75 FPF1 cDNA  TCAATGGGAGTCTCGGACAT reverse 93.1  
NB76 LFY cDNA  CAACGAGAGCATTGGTTCAA forward 102.2 
NB77 LFY cDNA  CAAGAAGCTCCCAACGAAAG reverse 102.2  
NB86 AGL24 cDNA  GCGGCTGGAGAAACTACTTG forward 91.9  
NB87 AGL24 cDNA  CAGGGAAGTGTCGGAGTCAT reverse 91.9 
NB98 ELF4 cDNA  CGACAATCACCAATCGAGAATG forward 90.3 
NB99 ELF4 cDNA  AATGTTTCCGTTGAGTTCTTGAATC reverse 90.3 
N100 TOC1 cDNA  ATCTTCGCAGAATCCCTGTGATA forward 82.6 
N101 TOC1 cDNA  GCACCTAGCTTCAAGCACTTTACA reverse 82.6 
N102 CCA1 cDNA  TCTGTGTCTGACGAGGGTCGAATT forward 92.2 
N103 CCA1 cDNA  ACTTTGCGGCAATACCTCTCTGG reverse 92.2 
N104 LHY cDNA  CAACAGCAACAACAATGCAACTAC forward 88.8 
N105 LHY cDNA  AGAGAGCCTGAAACGCTATACGA reverse 88.8 
N106 ELF3 cDNA GATGCCCACCATAATGAACC forward 92.6 
N107 ELF3 cDNA  TTGCTCGCGGATAAGACTTT reverse 92.6 
N108 GI cDNA  CTGTCTTTCTCCGTTGTTTCACTGT forward 100.2 
N109 GI cDNA  TCATTCCGTTCTTCTCTGTTGTTGG reverse 100.2 
N110 LUX cDNA  AGATGATGCAGATGCCAGTT forward 87.6 
N111 LUX cDNA  TAATTCTCATTTGCGCTTCC reverse 87.6 
N112 PRR9 cDNA  GCACAGAGAAACCAAAGGAA forward 90.4 
N113 PRR9 cDNA  CTTTCACTCGAGGACGTTGT reverse 90.4 
N114 PRR7 cDNA  TGAAAGTTGGAAAAGGACCA forward 89.0 
N115 PRR7 cDNA  GTTCCACGTGCATTAGCTCT reverse 89.0 
SH 258 SPL3       CAAGTAGTAGTGGAGTTTGTCAGGTCG forward 97.9 
SH 259 SPL3 TTTCCGCCTTCTCTCGTTGTGTCC reverse 97.9 
SH 286  PP2A        TAACGTGGCCAAAATGATGC forward 97.0 
SH 287 PP2A        GTTCTCCACAACCGCTTGGT reverse 97.0 
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Appendix B 

                                     
Phenotypes of wild-type, SPL3OXs, ful-2 and ful SPL3OX plants grown under SD conditions. 
A) Phenoytpes of wild-type, ful-2 and SPL3OX-2342, SPL3OX-2350 plants at the same age of about 12-14 
weeks after sowing grown under SD conditions. 
B) Phenotype of wild-type, ful-2 and SPL3OX-2342, and ful SPL3OX-2342 plants at the same age of about 12-14 
weeks after sowing grown under LD conditions. 
C) Phenotype of wild-type, ful-2 and SPL3OX-2350, and ful SPL3OX-2350 plants at the same age of about 12-14 
weeks after sowing grown under LD conditions. 
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Appendix C 

 
 
Overview on FUL expression in Arabidopsis organs. Figure taken from the TAIR homepage 
http://bbc.botany.utoronto.ca/efp/cgi-bin/efpWeb.cgi?primaryGene=AT5G60910&modeInput=Absolute 
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Appendix D 

 
Diural expression of several clock associated genes in 7 d old seedlings under LD and SD conditions. Diurnal 
Expression of LHY (A and B), CCA1 (C and D), LUX (E and F) and ELF3 (G and H) under LD and SD 
conditions. All genes were normalized against PP2A and ZT2 of WT was set arbitrarily set as one. blue = WT, 
red =SPL3OX line 2342, yellow = SPL3OX line 2350, green = SPL3OX line 2350 ful-2. 
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Nomenclature and Abbreviations 

 
cDNA  Complementary Deoxyribonucleic Acid 
Col-0   Columbia-0 
DNA  Deoxyribonucleic Acid 
DNase  Deoxyribonuclease 
dNTP   Deoxynucleoside Triphosphate 
EtOH   Ethanol 
g   Gram 
GUS   β-Glucoronidase 
kb   Kilo Base Pair 
L   Liter 
LD   Long Day 
L. er  Landsberg errecta 
min   Minute 
mm   Millimeter 
mRNA  Messenger Ribonucleic Acid 
PCR   Polymerase Chain Reaction 
RNA   Ribonucleic Acid 
RPM   Rounds per Minute 
RT   Room Temperature 
qRT-PCR  quantitative Reverse Transcription Polymerase Chain Reaction 
SAM   Shoot Apical Meristem 
SBP   Squamosa Promoter Binding Protein 
SD   Short Day 
Sec   Second 
SPL   Squamosa Promoter Binding Protein Like 
SPL3OX SPL3 overexpressor 
WT   Wild Type 
μl   Microliter 
M   Molar 
ZT  Zeitgeber, here ZT0 = beginning of light period 
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