## Biochemie und Molekularbiologie von hydroxyprolinreichen Glykoproteinen aus *Chlamydomonas*

Inaugural - Dissertation

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Daniel Wirth

aus Aachen

Köln

Berichterstatter: Prof. Dr. Sabine Waffenschmidt Prof. Dr. Helmut Klein

Tag der letzten mündlichen Prüfung: 26.05.2009

Die vorgelegte Arbeit wurde in der Zeit von August 2005 bis März 2009 am Institut für Biochemie der Universität zu Köln unter der Anleitung von Frau Prof. Dr. Sabine Waffenschmidt angefertigt. Although the ground seems barren, Here and there, at odd times New ideas arise, Soaking through the dry surface, And ultimately joining An aquifer of subconsciousness.

Sometimes, somehow, They break through the dusty surface As freshets, Trickling out to join others In a stream of consciousness, Finally washing into a lake Of useful knowledge.

At other times a drought returns. Ideas dry up, rising like steam To join Empyrean clouds; And yet later, like rain, They may trickle down again Elsewhere, on other patches Of seemingly barren soil.

Ralph Lewin

# Inhaltsverzeichnis

# 1. Einleitung

| 1.1 | Die pflanzliche Zellwand                                    | 1  |
|-----|-------------------------------------------------------------|----|
| 1.2 | Modellorganismus <i>Chlamydomonas reinhardtii</i>           | 4  |
| 1.3 | Zellwand von <i>Chlamydomonas reinhardtii</i>               | 6  |
| 1.4 | Proteine der äußeren Zellwand von Chlamydomonas reinhardtii | 8  |
| 1.5 | Zellwände der Volvocales                                    | 13 |
| 1.6 | Chlamydomonas incerta und Chlamydomonas reinhardtii:        | 14 |
|     | ein Vergleich beider Arten                                  |    |
| 1.7 | Zielsetzung dieser Arbeit                                   | 15 |

# 2. Ergebnisse

| 2.1 Präp<br>2.2 Self | aration der perchloratlöslichen Zellwand<br>assembly der Zellwand                  | 16<br>18 |
|----------------------|------------------------------------------------------------------------------------|----------|
| 2.2.1                | Wiederherstellung der Zellwand durch <i>self</i> und                               | 20       |
| 2.2.1.1              | Assembly mit zelleigenen GPs                                                       | 20       |
| 2.2.1.2              | Assembly mit zellfremden GPs                                                       | 22       |
| 2.2.1.3              | Assembly ohne Wandschicht W6                                                       | 23       |
| 2.2.2                | Assembly an nicht- <i>chlamydomonas</i> Oberflächen                                | 25       |
| 2.2.3                | Assembly mit Kontrollproteinen                                                     | 28       |
| 2.3 Inte             | raktionsanalysen von Glykoproteinen                                                | 29       |
| 2.3.1                | Sandwich-ELISA                                                                     | 29       |
| 2.3.1.2              | Biotinylierung von Glykoproteinen                                                  | 30       |
| 2.3.1.3              | CD-Spektroskopie biotininarkierter Grykoproteine                                   | ン<br>ン   |
| 2.3.1.4              | Vergleich zweier kovalenter Konnlungsmethoden                                      | 32       |
| 2.3.1.3              |                                                                                    | 55       |
| 2.3.2                | Interaktionsanalysen durch Sandwich-ELISA                                          | 36       |
| 2.3.2.1              | Interaktion zelleigener Glykoproteine                                              | 38       |
| 2.3.2.2              | Interaktion von zelleigenen mit zellfremden                                        | 39       |
|                      | Glykoproteinen                                                                     |          |
| 2.3.3                | Interaktionsanalysen durch Resonant-Mirror                                         | 40       |
| 2.3.3.1              | Interaktion von zelleigenen Glykoproteinen                                         | 41       |
| 2.3.3.2              | Interaktion von zelleigenen mit zellfremden                                        | 42       |
|                      | Glykoproteinen                                                                     |          |
| 2.4 Verg             | jleich von GP2 bei drei Arten der Volvocales                                       | 44       |
| 2.4.1                | Suche nach Homologien mit MALDI peptide mass                                       | 45       |
|                      | fingerprinting                                                                     |          |
| 2.4.2                | Alignment von putativen AS Sequenzen von GP2 zur                                   | 51       |
|                      | Feststellung von Homologien                                                        |          |
| 2.4.3                | Sequenzierung von GP2 aus Chlamydomonas incerta                                    | 55       |
| 2.4.4                | Vergleich der <i>shaft-</i> Sequenzen von <i>GP2</i> bei drei Arten der Volvocales | 59       |

## 3. Diskussion

| 3.1          | HRGPs aus der äußeren Zellwand von Chlamydomonas sind zu self assembly fähig        | 66       |
|--------------|-------------------------------------------------------------------------------------|----------|
| 3.2          | Nucleated assembly von HRGPS kann Hinweise auf Homologien geben                     | 67       |
| 3.3          | HRGPs aus der äußeren Zellwand von Chlamydomonas interagieren hochaffin miteinander | 71       |
| 3.4          | GP2 besitzt bei den Volvocales hohe Homologien                                      | 78       |
| 3.4.         | 1 Schaftbereiche von GP2 bei Volvocales sind hoch homolog                           | 79       |
| 3.5          | Ausblick                                                                            | 81       |
| 4. M         | aterial und Methoden                                                                |          |
| 4.1          | Algenstämme                                                                         | 82<br>82 |
| <b>T.I</b> . |                                                                                     | 02       |

| 4.1.2      | Stammkulturen                                                  | 82  |
|------------|----------------------------------------------------------------|-----|
| 4.1.3      | Belüftungskulturen                                             | 83  |
| 4.1.4      | Bestimmung der Zelldichte                                      | 83  |
| 4.2 Isolie | rung und Reinigung von Glykoproteinen aus                      | 84  |
| Chlar      | nydomonas                                                      |     |
| 4.2.1      | Präparation von Proteinen der perchloratlöslichen Zellwand     | 84  |
| 4.2.2      | Präparation der perchloratlöslichen Zellwand                   | 85  |
| 4.2.3      | Aggregate der perchloratlöslichen Zellwand                     | 86  |
| 4.2.4      | Anreicherung der perchloratlöslichen Zellwand-Aggregate        | 86  |
| 4.2.5      | Trennung der Glykoproteine der perchloratlöslichen<br>Zellwand | 86  |
| 1 2 6      |                                                                | ~ ~ |

| 4.2.6 | Reinigung der Glykoproteine der perchloratlöslichen | 88 |
|-------|-----------------------------------------------------|----|
|       | Zellwand                                            |    |

| 4.3  | Elekt | rophoretische Methoden                            | 89 |
|------|-------|---------------------------------------------------|----|
| 4.3. | .1    | SDS-Polyacrylamid-Gelelektrophorese               | 89 |
| 4.3. | .2    | SDS-Minigelelektrophorese                         | 90 |
| 4.3. | .3    | Gelelektrophoretische Molekulargewichtsbestimmung | 90 |
| 4.4  | Prote | inbestimmung                                      | 91 |
| 4.4. | .1    | Qualitative Proteinbestimmung                     | 91 |
| 4.   | 4.1.1 | Coomassie-Blaufärbung von SDS-Gelen               | 91 |
| 4.   | 4.1.2 | Silberfärbung von SDS-Gelen                       | 92 |
| 4.4. | .2    | Quantitative Proteinbestimmung                    | 92 |
| 4.   | 4.2.1 | Warburg und Christian                             | 92 |
| 4.   | 4.2.2 | Mikro-Lowry                                       | 93 |
| 4.5  | Circu | lardichroismus-Spektroskopie                      | 93 |
| 4.6  | Imm   | unochemische Methoden                             | 94 |

| FO TUU |                                       | 94 |
|--------|---------------------------------------|----|
| 4.6.1  | Biotinylierung von Proteinen          | 94 |
| 4.6.2  | Proteintransfer auf Blottingmembranen | 94 |
| 4.6.3  | Immunodetektion                       | 95 |

| 4.7 Intera<br>4.7.1<br>4.7.1.1<br>4.7.1.2<br>4.7.2<br>4.7.2.2<br>4.7.2.3<br>4.7.2.4                                | aktionsanalysen<br>Interaktionsanalysen durch ELISA<br>Titerplatten Typ Greiner Microlon<br>Titerplatten Typ Nunc CovaLink<br>Interaktionsanalysen durch <i>Resonant-mirror</i><br>Immobilisierung von Glykoproteinen an CMD-Küvetten<br>Kopplung eines Glykoproteins als Interaktionspartner<br>Datenauswertung                                                                         | 97<br>97<br>98<br>99<br>101<br>103<br>103                          |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 4.8 Molek<br>4.8.1<br>4.8.2<br>4.8.2.1<br>4.8.2.2<br>4.8.2.3<br>4.8.3<br>4.8.3<br>4.8.4<br>4.8.5<br>4.8.6<br>4.8.7 | tularbiologische Methoden<br>Bakterienstämme<br>Phagenbank von <i>Chlamydomonas incerta</i><br>Herstellung von Phagenlysaten<br>Titerbestimmung des Phagen λ EMBL3<br>Isolierung von Phagen-DNA aus Lysat<br>Isolierung genomischer DNA aus <i>Chlamydomonas</i><br>Primerdesign<br>Polymerase-Kettenreaktion zur Vervielfältigung von<br>templates für die Sequenzierung<br>Agarosegele | 104<br>104<br>104<br>104<br>104<br>105<br>105<br>106<br>106<br>108 |
| 4.9 Peptic                                                                                                         | le mass fingerprint                                                                                                                                                                                                                                                                                                                                                                      | 109                                                                |
| 4.10 <i>Nucle</i><br>4.10.1<br>4.10.2                                                                              | ated assembly<br>Markierung von Glykoproteinen mit FITC<br>Durchführung des <i>nucleated assembly</i>                                                                                                                                                                                                                                                                                    | 109<br>109<br>110                                                  |
| 4.11 Comp                                                                                                          | uterprogramme                                                                                                                                                                                                                                                                                                                                                                            | 111                                                                |
| 4.12 Chem<br>4.12.1<br>4.12.2<br>4.12.3                                                                            | ikalien und Laborgeräte<br>Chemikalien<br>Oligonukleotide<br>Laborgeräte                                                                                                                                                                                                                                                                                                                 | 112<br>112<br>112<br>113                                           |

| 5. Anhang               | 116 |
|-------------------------|-----|
| 6. Literaturverzeichnis | 128 |
| 7. Zusammenfassung      | 143 |
| 8. Danksagung           | 145 |
| 9. Erklärung            | 146 |

# Abkürzungsverzeichnis

| Abb.             | Abbildung                                    |
|------------------|----------------------------------------------|
| APS              | Ammoniumperoxodisulfat                       |
| AS               | Aminosäure                                   |
| bp               | Basenpaar                                    |
| BSA              | bovine serum albumin                         |
| bzw.             | beziehungsweise                              |
| C. incerta       | Chlamydomonas incerta                        |
| CD               | Circulardichroismus                          |
| СРМВ             | Current protocols in molecular biology       |
| C. reinhardtii   | Chlamydomonas reinhardtii                    |
| Da               | Dalton                                       |
| dest.            | destilliert                                  |
| DMF              | Dimethylformamid                             |
| E <sub>280</sub> | Extinktion bei 280 nm                        |
| EDTA             | Ethylendiamintetraessigsäure                 |
| ELISA            | enzymgekoppelter Immunnachweis               |
| et al.           | et aliter                                    |
| FCR              | Folin-Ciocalteu-Reagenz                      |
| FPLC             | schnelle Protein-Flüssigkeitschromatograhie  |
| g                | Erdbeschleunigung                            |
| ggf.             | gegebenenfalls                               |
| GP               | Glykoprotein                                 |
| НМ               | High-Molecular-Weight-Marker                 |
| HRGP             | hydroxyprolinreiches Glykoprotein            |
| Нур              | Hydroxyprolin                                |
| ISW              | perchlorat-unlöslicher Zellwandbereich       |
| Кар.             | Kapitel                                      |
| kb               | Kilobase                                     |
| kDa              | KiloDalton                                   |
| lt.              | laut                                         |
| М                | Molarität [mol/L]                            |
| MALDI            | matrix assisted laser dersorption/ionization |
| MW               | Molekulargewicht (g/Mol)                     |

| MS                 | Massenspektrometrie                  |
|--------------------|--------------------------------------|
| Ν                  | Normalität                           |
| n.b.               | nicht bestimmt                       |
| NS                 | Nukleinsäure                         |
| ORF                | open reading frame                   |
| PAGE               | Polyacrylamid-Gelelektrophorese      |
| PBS                | phosphatgepufferte Kochsalzlösung    |
| PCR                | polymerase chain reaction            |
| рН                 | potentium hydrogenii                 |
| Pro                | Prolin                               |
| PSW                | perchlorat-löslicher Zellwandbereich |
| rpm                | rotations per minute                 |
| RT                 | Raumtemperatur                       |
| S.                 | siehe                                |
| s.a.               | siehe auch                           |
| SDS                | Natriumdodecylsulfat                 |
| Ser                | Serin                                |
| s.o.               | siehe oben                           |
| Tab.               | Tabelle                              |
| ТАР                | Tris-Acetat-Phosphat-Medium          |
| TBS                | Trisgepufferte Kochsalzlösung        |
| TEMED              | N,N,N`,N`,-Tetramethylendiamin       |
| TFA                | Triflouressigsäure                   |
| Тм                 | Schmelztemperatur                    |
| Tris               | Tris-(hydroxymethyl)-aminoethan      |
| u.a.               | unter anderem                        |
| UV                 | Ultraviolett                         |
| ÜN                 | über Nacht                           |
| vgl.               | vergleiche                           |
| V/V                | Volumen pro Gesamtvolumen            |
| W1, W2, W4, W6, W7 | Zellwandbereiche von Chlamydomonas   |
| w/V                | Masse pro Gesamtvolumen              |
| z.B.               | zum Beispiel                         |

Des Weiteren wurden die Maßeinheiten des "Internationalen Einheitssytems" (Système international d'Unités, SI) sowie die daraus abgeleiteten Einheiten verwendet.

## 1. Einleitung

## **1.1** Die pflanzliche Zellwand

Die Zellen von Landpflanzen sind in der Regel von einer starren Zellwand umgeben. Diese Zellwand nimmt eine Reihe von wichtigen Funktionen für die Pflanze wahr. Sie verleiht Stabilität, ist formgebend, beeinflusst die Entwicklung, schützt vor Pathogenen und wirkt dem osmotischen Druck entgegen. Bei sich streckenden Zellen ist die Zellwand noch plastisch dehnbar, nach der Differenzierung geht diese Eigenschaft verloren. Man unterscheidet daher zwischen der Primär- und der Sekundärwand.

In Abbildung 1.1 ist eine schematische Übersicht der pflanzlichen Primärwand dargestellt.



Abb. 1.1: Darstellung eines Ausschnitts der pflanzlichen Primärzellwand (nach ALBERTS *et al.* 1998)

Einer der wichtigsten Bestandteile der pflanzlichen Primärwand ist das Polysaccharid Cellulose. Dieses liegt als Fibrille vor und ist für die Zugfestigkeit der Zelle verantwortlich. Die Cellulosefibrillen sind in eine Matrix aus quervernetzter Hemicellulose, stützenden Pektinen sowie einer Reihe von Proteinen eingebettet.

#### Einleitung

Zu den strukturellen pflanzlichen Zellwandproteinen zählen die Familien der Hydroxyprolinreichen Glykoproteine (HRGPs), die glycinreichen Proteine (GRPs) und die prolinreichen Proteine (PRP). SHOWALTER (1993) teilt die strukturellen Zellwandproteine in fünf große Klassen ein (siehe Tab. 1.1).

| Proteinklasse                  | % Protein | % Zucker-    | häufige       |
|--------------------------------|-----------|--------------|---------------|
|                                |           | seitenketten | Aminosäuren   |
| Extensine                      | 25-70     | 30-75        | O,S,P,K,Y,V,H |
| Glycinreiche Proteine (GRP)    | 100       | 0            | G             |
| Prolinreiche Proteine (PRP)    | 80-100    | 0-20         | O,P,V,Y,K     |
| Arabinogalaktanproteine (AGPs) | 2-10      | 90-98        | A,O           |
| Lektine                        | 55        | 45           | nicht bekannt |

Tabelle 1.1: Fünf Hauptklassen struktureller Zellwandproteine bei Pflanzen.

O = Hydroxyprolin

Zu der Familie der HRGPs zählt man die Arabinogalaktanproteine (AGPs), die durch ihren sehr hohen Grad an Glykosylierung gut wasserlöslich und häufig als Bestandteile der extrazellulären Matrix zu finden sind. Über ihre Funktion gibt es bisher keine eindeutigen Erkenntnisse, Vorschläge hierzu reichen über Kleb- und Gleitstoffe bis hin zu einer Rolle in der pflanzlichen Wundheilung (SHOWALTER 1993).

Eine weitere wichtige Klasse der HRGPs sind die Lektine. Hierbei handelt es sich um chimäre Proteine, die aus Lektin- und Extensindomänen bestehen. Ihre Funktion besteht darin, spezifisch Kohlenhydrate oder andere Glykoproteine zu erkennen und zu binden. Obwohl ihre physiologische Funktion unverstanden ist, geht man davon aus, dass sie maßgeblich in der Zell-Zell-Interaktion von Bedeutung sind (SHOWALTER 1993, 2001).

Die Extensine sind in der Zellwand aller Landpflanzen wie z.B. Tomate, Karotte oder Tabak sowie der ihnen entwicklungsgeschichtlich am nächsten stehenden Algen vorhanden (SHOWALTER 1993, KIELISZEWSKI & LAMPORT 1994, CANNON *et al.* 2007).

Typisch für alle Extensine ist eine repetitive Aminosäuresequenz, meist im charakteristischen Motiv Ser-(Hyp)<sub>4</sub>, das jedoch artenspezifisch variieren kann (SHOWALTER 1993, siehe Tab. 1.2).

| Protein       | repetitive                        |  |  |
|---------------|-----------------------------------|--|--|
|               | Aminosäuresequenz                 |  |  |
| Tomate P1     | SOOOOTOVYK                        |  |  |
| Tomate P2     | SOO <u>OOVYK</u> YK               |  |  |
| Petunie       | <u>SPPPTPVYK</u>                  |  |  |
| Tabak         | <u>SPPPPTPVYK</u>                 |  |  |
| Zuckerrübe    | <u>SO</u> OVHEYP <u>OOTOVYK</u>   |  |  |
| Mais THRGP    | <u>SO</u> K <u>POTPK</u> PTOOTYTO |  |  |
| Karotte       | <u>SPPPPTPVYK</u> YK              |  |  |
| Sojabohne PRP | <u>PPVYK</u>                      |  |  |
| Sojabohne     | <u>PPHE</u> K <u>PPP</u>          |  |  |
| Nodulin       |                                   |  |  |
| Tomate P3     | SOOOOSOSOOOOYYYK                  |  |  |
| Mais HHRGP    | AOOOHFPSOO                        |  |  |
|               |                                   |  |  |

Tabelle 1.2: Beispiele für repetitive Aminosäuresequenzen bei den Extensinen, unterstrichen sind konservierte Sequenzteile (nach SHOWALTER 1993).

O = Hydroxyprolin

Allen HRGPs gemein ist der variable Anteil an posttranslational gebildetem 4-Hydroxyprolin, das O-glykosidisch gebundene Zuckerseitenketten trägt. Das 4-Hydroxyprolin entsteht durch posttranskriptionelle Modifikation von Prolin durch Prolyl-4-Hydroxylasen (KESKIAHO *et al.* 2007). Die Zusammensetzung der Zuckerseitenketten ist bei den Extensinen artentypisch. Landpflanzen und die meisten Algen besitzen eher uniforme Seitenketten aus Arabinose, während Vertreter der Volvocales Seitenketten aus Arabinose, Mannose und Glukose besitzen (BOLLIG 2006, KAMPA 2007, KAMERKE 2007).

Eine weitere Besonderheit der Volvocales ist, dass die extensinähnlichen Proteine Hauptbestandteile ihrer Zellwände sind, ihnen aber die Zuckerpolymere Cellulose, Hemicellulose und Pektin fehlen. Die am eingehendsten untersuchte Art neben *Volvox carteri* ist *Chlamydomonas reinhardtii.* 

#### 1.2 Modellorganismus Chlamydomonas reinhardtii

Chlamydomonas reinhardtii gehört als eukaryontische, einzellige Alge zu der Klasse der Chlorophyceae (Grünalgen) und wurde erstmalig im Jahre 1833 von Ehrenberg morphologisch beschrieben. Ihr Verbreitungsraum ist vielgestaltig, so findet man Chlamydomonas in Salz-, Süß- sowie Brackwasser und mitunter auch im Boden. Die meisten Arten von Chlamydomonas besitzen eine ovale oder ellipsenförmige Gestalt, einen basal liegenden, becherförmigen Chloroplasten und zwei charakteristische, anterior liegende isokonte Flagellen. Diese dienen hauptsächlich zur Fortbewegung und zur Erkennung von kompatiblen Geschlechtspartnern großen Glykoproteinen, die anhand der Agglutinine, auf der Flagellenoberfläche exponiert sind.

Weitere zentrale Merkmale von *Chlamydomonas* sind eine bis zwei kontraktile Vakuolen, ein zentral liegender Nucleus mit angrenzendem Nucleolus und ein Augenfleck, durch den die Alge phototaktisch reagieren kann. Allen Arten der Chlamydomonadaceae gemeinsam ist eine hoch organisierte, cellulosefreie Zellwand, deren Hauptbestandteil verschiedene Glykoproteine sind.

Der vegetative Lebenszyklus von *Chlamydomonas reinhardtii* unter günstigen Laborbedingungen wird meist durch einen 24-stündigen Rhythmus von Licht und Dunkel bestimmt, welcher zu synchronen Zellteilungen führt (HARRIS 1989). Bei Beginn einer 12-stündigen Dunkelphase, der Wachstum und Syntheseleistungen vorangegangen sind, zieht *Chlamydomonas reinhardtii* die Flagellen ein und rundet sich kugelförmig ab.

Darauf folgen insgesamt vier mitotische Teilungen, bei denen acht bis 16 Tochterzellen entstehen. Diese schlüpfen zu Beginn der Lichtphase unter Zuhilfenahme der Zink-Metalloprotease V-Lysin, die spezifisch nur die Zellwände der Sporangien auflöst, in denen sich die Tochterzellen befinden (JAENICKE *et al.* 1987).

In der nachfolgenden Lichtphase wachsen die Tochterzellen heran, bauen ihre Zellwand auf und erbringen umfangreiche Syntheseleistungen.

#### Einleitung

Der generative Lebenszyklus von *Chlamydomonas reinhardtii* tritt unter ungünstigen Bedingungen auf, im Laborumfeld maßgeblich durch das Fehlen einer Stickstoffquelle im Kulturmedium (HARRIS 1989). Bei diesem Zyklus differenzieren sich die Zellen phänotypisch zu isomorphen Gameten vom Typ mt<sup>+</sup> und mt<sup>-</sup> (mt= *mating type*) um. Diese unterschiedlichen Gametenarten können sich anhand von kompatiblen Oberflächenproteinen auf ihren Flagellen, den Agglutininen, gegenseitig erkennen (HARRIS 1989, FERRIS & GOODENOUGH 1997, FERRIS *et al. 1996, 2002, 2005*). Haben sich zwei Gameten mit unterschiedlichem Paarungstyp (*mating type*) anhand ihrer Agglutinine als kompatibel erkannt (s. Abb. 1.2), so lösen diese enzymvermittelt ihre Zellwände auf und verschmelzen zu einer diploiden Zygote, die auch als Dauerform dienen kann.



Abb. 1.2: Zwei Gameten von *Chlamydomonas* erkennen sich anhand ihrer flagellengebundener Agglutinine (EM-Aufnahme von U.W. Goodenough, Washington University, St. Louis, Missouri).

Das an der Zellwandauflösung beteiligte Enzym G-Lysin, ebenfalls eine Zink-Metalloprotease (MATSUDA *et al.* 1985) wie das V-Lysin, ähnelt diesem stark, ist aber auch in der Lage, die Zellwände von vegetativen Zellen aufzulösen (JAENICKE *et al.* 1987).

Durch eine meiotische Teilung der gebildeten Zygote entstehen bis zu vier Tochterzellen, die sich wiederum vegetativ oder generativ vermehren können.



Abb. 1.3: Darstellung der zwei verschiedenen Lebenszyklen von *Chlamydomonas reinhardtii* (nach SNELL 1990): Vegetative Zellen teilen sich (A) und können bei Stickstoffmangel (B) zu Gameten differenzieren (C). Diese erkennen kompatible *mating types* (D), können dann nach enzymvermittelter Auflösung der Zellwand (E) fusionieren (F) und eine diploide Zygote bilden (G).

## 1.3 Die Zellwand von Chlamydomonas reinhardtii

Bei Landpflanzen besteht die primäre Zellwand maßgeblich aus Cellulose, Hemicellulosen, Pektinen und zu geringen Anteilen aus (Glyko-)Proteinen. Letztere werden hauptsächlich von den HRGPs vertreten, die entwicklungsgeschichtlich betrachtet auch die Ältesten sind.

Die Zellwand von *Chlamydomonas reinhardtii* wird von bis zu 25 meist hydroxyprolinreichen Glykoproteinen gebildet und enthält im Gegensatz zu Pflanzenzellen keinerlei Cellulose (IMAM *et al.* 1985). Der Aufbau der Zellwand ist hoch organisiert und nicht variabel. Erste morphologische Untersuchungen der äußeren Zellwand mit Hilfe von Elektronenmikroskopie wurden 1985 von GOODENOUGH & HEUSER durchgeführt. Aufgrund ihrer Daten wurde ein fünfschichtiges Zellwandmodell konzipiert, welches ältere Daten von ROBERTS (1972) mit einem noch siebenschichtigen Zellwandmodell (W3 & W5) berichtigte.

#### Einleitung

Wandschicht W1/W7 wird von sehr langen, radiär von Die der Plasmamembran nach außen laufenden Fasern gebildet, die als eine Art dreidimensionales Gerüst dafür sorgen, dass sich die übriaen Zellwandschichten vertikal dazwischen bilden können. Kovalent miteinander verknüpfte und mit Iso- oder Dityrosinbrücken guervernetzte HRPGs sind zu der inneren Zellwandschicht W2 zusammengefasst (WAFFENSCHMIDT et al. 1993, 1999). Die nur durch sekundäre Wechselwirkungen zusammengehaltenen äußeren Zellwandschichten werden als W4 und W6 bezeichnet. Sie bestehen aus Glykoproteinen, die einen hohen Anteil globulärer Sekundärstrukturelemente sowie charakteristische Bereiche mit PolyProlinII-Helices besitzen. Die nachfolgenden Abbildungen 1.4 und 1.5 zeigen Schemata dieses Zellwandaufbaus.



Abb. 1.4: Elektronenmikroskopische Darstellung der äußeren Zellwand von *Chlamydomonas reinhardtii*, tangentialer Schnitt. Die morphologisch unterscheidbaren Zellwandschichten sind mit den Ziffern 1-7 bezeichnet, mit P ist die Plasmamembran des Protoplasten gekennzeichnet (nach GOODENOUGH & HEUSER 1985), Vergrößerung 1:65.000.

Einleitung



Abb. 1.5: Schematische Darstellung der äußeren Zellwand von *Chlamydomonas reinhardtii*; mit W1-7 sind die Zellwandschichten analog zu Abb. 1.4 bezeichnet. Zu beachten dabei ist, dass die Glykoproteine in W1 und W7 zusammen die gleiche Wandschicht in Form von radiär nach außen laufenden Fasern ausmachen und somit identisch sind.

# **1.4 Proteine der äußeren Zellwand von** *Chlamydomonas reinhardtii*

Während die innere Zellwand aus faserartigen, über Tyrosindimere (Di-Tyrosine [dt] und (Di)-IsodiTyrosine [IdT]), Disulfidbrücken und  $\gamma$ -Glutamyl-Lysin-Bindungen quervernetzen Proteinen besteht (WAFFENSCHMIDT *et al.* 1993, 1999), sind in der äußeren kristallinen Zellwand lösliche Glykoproteine mit einem hohen Anteil globulärer Strukturelemente sowie charakteristischen Bereiche mit PolyProlinII-Helices zu finden.

Diese Glykoproteine lassen sich mit chaotropen Reagenzien, wie beispielsweise Natriumperchlorat oder Lithiumchlorid, aus dem kovalent verknüpften Fasernetz der inneren Zellwand herauslösen und werden daher als *perchlorate soluble wall* (PSW) bezeichnet (CATT *et al.* 1978, GOODENOUGH *et al.* 1986). Die innere, nicht mit Natriumperchlorat ablösbare Zellwand wird als *insoluble wall* (ISW) bezeichnet.

Die HRGPs aus der PSW haben die Eigenschaft sich *in vitro* zu einer Struktur zusammenzulagern, die ähnlich der Struktur der nativen Zellwand *in muro* ist (s. Abb. 1.6).

Dieser Vorgang der Selbstorganisation wird als *self assembly* bezeichnet (GOODENOUGH & HEUSER 1985).



Abb. 1.6: Schematische Darstellung des *self assembly* von Glykoproteinen der Zellwandschichten W4 und W6 von *Chlamydomonas reinhardtii* (nach GOODENOUGH & HEUSER 1986).

Nach einer Präparation mit Natriumperchlorat und anschließender Dialyse zur Entfernung des Chaotrops bilden die HRPGs der PSW eine dreischichtige, sandwich-artige Struktur aus, bei der oben und unten jeweils die Schicht W6 liegt. Diese wiederum besteht aus zwei Teilen A und B, die jeweils bestimmte HRPGs enthalten. Die Schicht W6A enthält die Glykoproteine GP2 und GP3, die Schicht W6B wird von GP1 gebildet. Die Benennung dieser drei Glykoproteine erfolgte anhand ihres Laufverhaltens bei der SDS-PAGE (GOODENOUGH *et al.* 1986).

Die mittlere Schicht der Sandwich-Struktur wird als W4 bezeichnet und enthält fast ausschließlich ein Glykoprotein ohne faserige Anteile und mit sehr geringem Anteil an Hydroxyprolin, das GP1,5. Die Glykoproteine GP1, GP2 und GP3 können durch *Fast Protein Liquid Chromatographie* (FPLC) über einen Kationenaustauscher voneinander getrennt werden. Das Protein GP1,5 hingegen besteht zu 23% aus sauren Aminosäuren und kann mit gleicher Methode, jedoch über einen Anionenaustauscher, abgetrennt werden (GOODENOUGH *et al.* 1986).

#### Einleitung

Die Morphologie der drei oben genannten Glykoproteine und ihrer kristallinen Aggregate (*self-assembly*) wurde im Jahre 1985 von GOODENOUGH & HEUSER elektronenmikroskopisch beschrieben. Es ist bekannt, dass alle drei Glykoproteine GP1, GP2 und GP3 eine globuläre Kopfregion besitzen, an die sich ein faseriger Bereich, bezeichnet als Hals, anschließt. Die Proteine GP2 und GP3 enthalten im Anschluss an die Halsregion zwei bzw. drei globuläre Domänen, während sich bei GP1 dort ein faseriger Schaft, unterbrochen durch zwei Knicke in 28 und 70 nm Entfernung vom Kopf, befindet (siehe Abb. 1.7).



Abbildung 1.7.: Elektronenmikroskopische Aufnahmen der Glykoproteine GP1, GP2 und GP3 von *Chlamydonomas reinhardtii* (A), darunter Skizzen mit Längenangaben (B) (nach GOODENOUGH & HEUSER 1985).

Erste biochemische Daten der drei Glykoproteine, z.B. über die Aminosäurezusammensetzung in Prozent, wurden ebenfalls von GOODENOUGH *et al.* 1986 ermittelt. Weiterführende biochemische Daten wie Zuckeranteil und -zusammensetzung, eine Molekulargewichtsbestimmung und die Sekundärstruktur wurden in den Jahren 2000 und 2001 von KILZ *et al.* durchgeführt und sind in der nachfolgenden Tabelle in Auszügen dargestellt.

| Protein | Masse in kDa | Masse in kDa | Masse in kDa   | Zuckeranteil |
|---------|--------------|--------------|----------------|--------------|
|         | (SDS-PAGE)   | (MALDI)      | (MALDI)        | %            |
|         |              | nativ        | deglykosyliert |              |
| GP1     | 500          | 273          | 64             | 76           |
| GP2     | 273          | 281          | 142            | 49           |
| GP3     | 243          | 275          | 174            | 37           |
| GP3a    | 150          | 131          | 70             | 46           |
| GP3β    | 140          | 144          | 102            | 29           |

Tabelle 1.3: Apparente und per MALDI bestimmte Molekularmassen der Glykoproteine von *Chlamydomonas reinhardtii* (KILZ *et al.* 2000, 2001).

Wegen ihres hohen Anteils an Hydroxyprolin und des Zuckergehaltes werden die Glykoproteine GP1, GP2 und GP3 der Gruppe der Extensine zugeordnet. Für diese Eingruppierung spricht ebenfalls, dass bei den o.g. GPs wie auch bei den Extensinen der Landpflanzen hochrepetitive prolinhaltige Aminosäuresequenzen vorkommen (LAMPORT 1993, KIELISZEWSKI & LAMPORT 1994).

Eine einfache Umsetzung einer hochrepetitiven Poly-Prolinsequenz ist das  $[P]_n$ -Motiv. Bei *Chlamydomonas*, aber auch bei anderen Arten der Volvocales gibt es Zellwandproteine aus der Gruppe der Pherophorine, die von zwanzig bis mehrere hundert aneinander gereihter Proline enthalten können (HALLMANN 2006). Außer bei Glykoproteinen von *Chlamydomonas reinhardtii* findet sich dieses Motiv auch bei anderen Algen der Volvocales, beispielsweise beim ISG, dem *inversion specific glycoprotein* von *Volvox carteri*, wieder (HALLMANN & KIRK 2000).

Das Motiv mit dem geringsten Anteil an Prolin ist  $[XP]_n$ . In vielen Fällen ist die dem Prolin vorangestellte Aminosäure (X) ein Serin, was zu dem ebenfalls für Extensine von Landpflanzen typischen Motiv  $[SP]_x$  führt.

Zellwandproteine mit diesem Motiv, z.B. VSP-1 oder ZSP-2, sind auch in *Chlamydomonas reinhardtii* zu finden (WAFFENSCHMIDT *et al.* 1993, SUZUKI *et al.* 2001).

Neben den Motiven mit 50 % bis 100 % Anteil an Prolin oder Hydroxyprolin gibt es Mischformen, die als  $[XP_y]_n$  zusammengefasst werden. Hierzu zählen die für Extensine typischen Motive Serin-(Prolin)<sub>4</sub> [SP<sub>4</sub>] und Serin-(Hydroxyprolin)<sub>4</sub> [SO<sub>4</sub>].

Eine besondere Form ist auch die wechselnde Kombination von [XP<sub>2</sub>]- und [SP]-Motiven, die als PPSPX-Motiv bezeichnet wird. Bei *Chlamydomonas reinhardtii* kommen beide Motive vor; [XP<sub>2</sub>] findet sich vorwiegend beim GP2. Vertreter der Mischform PPSPX gibt es beispielsweise in den Agglutininen (Sag1, Sad1) oder GP1 (FERRIS *et al.* 2005).

Für Proteinteile mit kurzen, repetitiv prolinhaltigen Motiven, die sich in allen bisher bei Landpflanzen und Algen untersuchten HRGPs finden lassen, gibt es ein charakteristisches Sekundärstrukturelement: die PolyProlinII-Helix (PPII) (*Ferris et al.* 2001, 2005). Diese Helix ist linksgängig und benötigt 3,2 Aminosäurereste pro Windung, wobei 3,34 Aminosäuren einer Höhe von 1 nm entsprechen (STAPLEY & CREAMER 1999, RUCKER *et al.* 2003). Häufig liegen Peptide mit Prolinresten in einer PPII-Konformation vor, es sind aber auch andere Polypeptide, die diese Konformation einnehmen können, wie beispielsweise Polyglycin, Polylysin, Polyglutamat oder Polyaspartat (BOCHICCHIO & TAMBURRO 2002) bekannt.

Die strukturelle Aufklärung der PPII-Helix erfolgte weitestgehend durch die *Circular-Dichroismus-Spektroskopie* (CD). CD-Spektren von Proteinen oder kurzen Polypeptiden in PPII-Konformation sind durch ein schwaches Maximum bei 227 nm und ein stark ausgeprägtes Minimum bei 205 nm charakterisiert (s. Abb. 1.8). Für hydroxyprolinreiche Proteine oder kurze Polypeptide wird eine Verschiebung des Maximums nach 225 nm bei gleichzeitig stärkerer Auslenkung beschrieben (SREERAMA & WOODY 1994).



Abbildung 1.8.: CD-Spektrum von Poly-L-Prolin, Konzentration 200µg/ml, 5°C Messtemperatur

Ältere Arbeiten zeigten, dass die PPII-Helix bei Extensinen aus Karotten ohne Glykosylierung instabil ist (VAN HOLST & VARNER 1984, STAFSTROM & STAEHELIN 1986). Dieser strukturstabilisierende Effekt ist neben einem Schutz vor proteolytischem Abbau oder erhöhter Löslichkeit der bis heute maßgeblich diskutierte der Grund dafür, dass Hydroxyproline in der PPII-Helix glykosyliert werden (LEE *et al.* 2007).

#### 1.5 Zellwände der Volvocales

Bereits Arbeiten aus den frühen 1980er Jahren von ROBERTS et al. konnten zeigen, dass alle Algen aus der Ordnung der Volvocales über Zellwände mit einer kristallinen Struktur verfügen, die einer amorphen inneren Struktur aufliegen. Diese Zellwände ähneln sich teils sehr stark, so ist bekannt, dass die einzellige Chlamydomonas reinhardtii und ihr vielzelliger Verwandter Volvox carteri eine ähnliche Zellwandstruktur haben. Beide Arten besitzen eine mikroskopisch nicht unterscheidbare Zellwandschicht W2 und ebenfalls ein vermutlich homologes Glykoprotein GP2, das Bestandteil der Wandschicht W6A ist. Biochemisch konnte diese Ähnlichkeit der sonst morphologisch gänzlich unterschiedlichen Algen anhand des nucleated assembly gezeigt werden (ADAIR et al. 1987). Bei diesem Versuchsansatz Glykoproteine der PSW extrahiert und wurden versucht, diese Proteinextrakte auf ein Zellgrundgerüst der jeweils anderen Art zu reassemblieren (vgl. self assembly nach GOODENOUGH & HEUSER 1986).

Ein erfolgreiches *nucleated assembly* zeigt zum einen die hohe Spezifität der Interaktion von HRGPs, zum anderen aber auch, dass taxonomische Zuordnungen aufgrund von strukturellen und morphologischen Merkmalen der Zellwandproteine möglich sind.

Untersuchungen hierzu mit den Organismen *Chlamydomonas reinhartii*, *Chlamydomonas eugametos* und *Volvox carteri*, die aus der Ordnung der Volvocales stammen, jedoch morphologisch verschieden sind, wurden im Jahr 1987 von ADAIR *et al.* durchgeführt. Sie zeigten, dass es möglich ist, einzelne Glykoproteine von *Chlamydomonas reinhardtii* auf *Volvox* carteri und *vice versa* zu assemblieren (*interspecific reconstitution*). Dies bedeutet, dass beide Organismen über eine ähnliche Zellwandstruktur verfügen. Mit *Chlamydomonas eugametos*, dessen Zellwand aus nur einem einzigen, morphologisch dem GP2 homologen Glykoprotein besteht, war diese Rekonstitution nicht möglich (ADAIR *et al.* 1987).

Es zeigte sich, dass die Spezifität des *nucleated assembly* mit der Zellwandstruktur zusammenhängt und nicht auf Organismen einer Art beschränkt ist. Daher wurde gefolgert, dass *Chlamydomonas reinhardtii* näher verwandt zu *Volvox carteri* als zu *Chlamydomonas eugametos* ist, was durch phylogenetische Untersuchungen von PROSCHÖLD *et al.* erst 2005 bestätigt wurde. Dies zeigt ebenfalls, dass die Struktur der Zellwand auch ein phylogenetischen Marker ist (ROBERTS *et al.* 1974, 1982).

# **1.6** Chlamydomonas incerta und Chlamydomonas reinhardtii: ein Vergleich beider Arten

In dieser Arbeit wurden zwei Arten aus der Unterordnung der *Chlamydomonadaceae* verglichen: *Chlamydomonas reinhardtii* (CC-479) und *Chlamydomonas incerta* (CC-3871).

Beide Arten besitzen eine sehr ähnliche Morphologie und ebenso kompatible G-Lysine. Dies sind Zink-Metalloproteasen, die gametenstadienspezifisch die Zellwand auflösen können (MATSUDA *et al.* 1985). Die Kompatibilität von G-Lysinen wird ebenfalls als ein taxonomischer Marker für Verwandtschaften betrachtet (SCHLÖSSER *et al.* 1976). Viel wesentlicher für Aussagen über Verwandschaftsbeziehungen aber sind Erkenntnisse über die Struktur, die Aminosäure- sowie die Nukleotidsequenz der Zellwandproteine von *Chlamydomonas reinhardtii* und *Chlamydomonas incerta.* 

Bei den bisher untersuchten Genen *GP1* und *VSP3* sowie den Agglutininen *SAG1* und *SAD1* zeigte sich auf Nukleinsäureebene eine hohe Homologie mit vielen synonymen Basenaustauschen in prolin- und serinreichen Sequenzteilen (LEE *et al.* 2007). Zu ähnlichen Ergebnissen bei der Untersuchung von 67 orthologen Genen, basierend auf EST-Datenbanken beider Organismen, kam POPESCU *et al.* 2006.

Weiterhin geht man anhand von Sequenzvergleichen von dreier ribosomaler Introns und zweier *internal transcribed spacer regions* (ITS2) davon aus, dass beide Arten sich vor weniger als 10 Millionen Jahren aus einem gemeinsamen Vorfahren entwickelt haben (LISS *et al.* 1997, COLEMAN & MAI 1997, PRÖSCHOLD *et al.* 2005).

Gerade Vergleiche von ITS2-Sequenzen haben sich, nicht zuletzt aufgrund der sehr großen Datenbasis, als gutes Mittel herausgestellt, um Phylogenie zu betreiben (SCHULTZ *et al.* 2006, SELIG *et al.* 2008, review: SCHULTZ & WOLF 2009).

Allerdings ist *Chlamydomonas incerta* vermutlich aufgrund inkompatibler Agglutinine nicht in der Lage, sich mit *Chlamydomonas reinhardtii* generativ zu reproduzieren. Daher stellt *Chlamydomonas incerta* eine sexuell isolierte Art dar (PRÖSCHOLD *et al.* 2005).

## **1.7 Zielsetzung dieser Arbeit**

Ziel dieser Arbeit ist es, Erkenntnisse über strukturelle Eigenschaften der Glykoproteine GP1, GP2 und GP3 aus *Chlamydomonas incerta* zu gewinnen und mit *Chlamydomonas reinhardtii* zu vergleichen.

Im Mittelpunkt standen hierbei strukturbiochemische und Interaktionsanalysen, die mit den Methoden des *nucleated assembly*, ELISA und der Plasmonresonanz mit isolierten Glykoproteinen der äußeren Zellwand von *Chlamydomonas incerta* durchgeführt wurden. Zusätzlich wurde eine Sequenzierung des Gens *GP2* aus *Chlamydomonas incerta* durchgeführt, dieses mit anderen Orthologen der Volvocales verglichen und diskutiert, um evolutionäre Zusammenhänge zu verstehen.

### 2. Ergebnisse

#### 2.1 Präparation der perchloratlöslichen Zellwand

In den Jahren 1975 (HILLS *et al.*), 1978 (CATTS *et al.*) und 1986 (GOODENOUGH *et al.*) wurde beschrieben, dass sich nichtkovalent gebundene hydroxyprolinreiche Zellwandproteine (HRGPs) aus zwei Schichten der äußeren Zellwand (W4 und W6) von *Chlamydomonas reinhardtii* durch chaotrope Reagenzien wie Natriumperchlorat vom Protoplasten ablösen lassen und nach Dialyse wieder reassemblieren, wobei eine elektronenmikroskopische Analyse zeigte, dass sich dabei wand-identische Sandwich-Komplexe bildeten.

Zu Beginn dieser Arbeit war unklar, ob die Glykoproteine der äußeren Zellwand von *Chlamydomonas incerta* ebenfalls zu diesem *self assembly* in der Lage sind. Eine zuvor im Arbeitskreis durchgeführte Diplomarbeit (KOP-WEIERSHAUSEN 2002) kam zu dem Ergebnis, dass die in der äußeren Zellwand von *Chlamydomonas incerta* enthalten Glykoproteine nicht, wie für *Chlamydomonas reinhardtii* gezeigt wurde, nach Dialyse des Chaotrop reassemblieren. Als maßgeblicher Grund hierfür wurde ein nicht näher charakterisiertes Protein von 195 kDa Größe postuliert, welches bei der Präparation von PSW mit isoliert wurde und den Prozess der Assemblierung vermutlich stört (KOP-WEIERSHAUSEN 2002).

Um dies zu klären, wurde eine Reassemblierung nach der Methode, die 1986 für Chlamydomonas reinhardtii von GOODENOUGH et al. beschrieben wurde (Schema s. 4.2.1), durchgeführt. Es konnte beobachtet werden, dass sich bei der Dialyse ein blassgrünes Präzipitat und ein sattgrüner Überstand ausbildeten. Nach der ersten Gefriertrocknung des gewonnenen Überstandes wurden durchschnittlich 1,1 g Protein (Trockengewicht) aus einer Algenkultur von 35 L mit einer Zelldichte von  $\sim 2 \times 10^6$  Zellen erhalten. Das Aussehen dieses trockenen 1. Assembly entsprach dem von Chlamydomonas reinhardtii. Bei einer qualitativen Analyse des 1. Assembly durch SDS-PAGE zeigte sich ein ähnliches charakteristisches Laufmuster, wie es für die HRGPs von Chlamydomonas reinhardtii von GOODENOUGH et al. beschrieben wurde (s. Abb. 2.1).

#### Ergebnisse



Abb. 2.1: (A) Gefriergetrocknetes 1. Assembly der PSW von *Chlamydomonas incerta*, (B) SDS-PAGE des 1. Assembly aus (A), Auftragsmenge 30  $\mu$ g Protein, Silberfärbung, mit HM ist der Proteinmassenstandard bezeichnet.

Die oberste Proteinbande verbleibt im Sammelgel, knapp 1 cm unter der Sammelgelkante ist eine zweite Bande zu sehen und bei ca. 170 kDa ist eine, durch Zugabe von 2-Mercaptoethanol entstandene, Proteindoppelbande zu erkennen. Dies lässt den Schluss zu, dass es sich hierbei um die Glykoproteine GP1, GP2 und GP3 aus der PSW von *Chlamydomonas incerta* handelt. Im Gegensatz zu KOP-WEIERSHAUSEN wurde kein Protein von 195 kDa gefunden.

Zusätzlich konnte gezeigt werden, dass eine Trennung der HRGPs im 1. Assembly durch FPLC (vgl. 4.2.5 und 4.2.6) ebenfalls erfolgreich durchführbar ist, dies ist den Abbildungen 2.2 und 2.3 dargestellt.





Ergebnisse



Abbildung 2.3: Analytische SDS-PAGE von Fraktionen der in Abbildung 5.2 gezeigten Reinigung von 1. Assembly durch FPLC. Spur A: Fraktion 16-21, Spur B: Fraktion 28-38, Spur C: Fraktion 56-61, Auftragsmenge jeweils 30 µg Protein, Silberfärbung, mit HM ist der Proteinmassenstandard bezeichnet.

## 2.2 Self assembly der Zellwand

Eine herausragende Eigenschaft isolierter hydroxyprolinreicher Glykoproteine (HRGPs) aus der äußeren Zellwand aus *Chlamydomonas* ist es, sich *in vitro* zu einer sandwichartigen Struktur zusammenzulagern, welche die gleiche Zellwandstruktur wie *in muro* beobachtet besitzt (*self assembly*, GOODENOUGH *et al.* 1986).

Nach einer Präparation mit Natriumperchlorat und anschließender Dialyse des Chaotrops bilden die HRPGs der perchloratlöslichen äußeren Zellwandschichten (PSW) eine sandwichartige Struktur von Wandschichten in der Form W6-W4-W6 aus. Die Schicht W6 besteht aus zwei unterschiedlichen Teilschichten A und B, die jeweils definierte HRPGs enthalten. Die Schicht W6A besteht aus den Glykoproteinen GP2 und GP3, die Schicht W6B wird aus GP1 gebildet. Die mittlere Schicht der beschriebenen Sandwich-Struktur wird als W4 bezeichnet und enthält fast ausschließlich ein Glykoprotein ohne faseförmige Anteile, das GP1,5. Strukturelle und genetische Untersuchungen an den HRGPs von *Chlamydomonas* (LEE *et al.* 2007) und anderen Algen aus der Gattung der *Volvocales* (ADAIR & APPEL 1989) haben gezeigt, dass zwischen den HRPGs der einzelnen Arten hohe Homologien vorliegen, so dass vermutet werden kann, dass die Proteine auch Kreuzreaktivität zwischen verschiedenen Spezies zeigen.

Ein Versuchsansatz, um diese Hypothese zu bestätigen, besteht in dem sogenannten *nucleated assembly* (ADAIR *et al.* 1987, ADAIR & APT 1990). Hierbei wird versucht, die Proteine der äußeren Zellwandschichten, W6A und W6B, jeweils auf die innere, darunterliegende Zellwandschicht W2 (s. Abb. 1.5) einer anderen Art anzulagern und so hybride Mischformen der nativen Zellwand herzustellen. Ein erfolgreiches *nucleated assembly* zeigt zum einen die hohe Spezifität der Interaktion von HRGPs, zum anderen aber auch, dass taxonomische Zuordnungen aufgrund von proteinstrukturellen Merkmalen der Zellwand möglich sind.

Erste Untersuchungen hierzu mit Proteinen der Organismen Chlamydomonas reinhardtii, Chlamydomonas eugametos/moewusii und Volvox carteri, die aus der Ordnung der Volvocales stammen, jedoch morphologisch verschieden sind, wurden im Jahr 1987 (ADAIR *et al.*) durchgeführt. Diese Untersuchungen zeigten, dass es möglich ist, einzelne Glykoproteine von Chlamydomonas reinhardtii auf Volvox carteri und vice versa zu assemblieren (interspecific reconstitution), was so interpretiert wurde, dass zwischen beiden Organismen eine ähnliche Zellwandstruktur vorliegt. Mit Chlamydomonas eugametos/moewusii, dessen Zellwand aus nur einem einzigen, morphologisch dem GP2 ähnlichem Glykoprotein besteht, war diese Rekonstitution nicht möglich (ADAIR et al. 1987). Es zeigte sich, dass die Spezifität des nucleated assembly mit der Zellwandstruktur zusammenhängt und nicht auf Organismen einer Art beschränkt ist. Zusätzlich wurde gefolgert, dass Chlamydomonas reinhardtii näher verwandt zu Volvox carteri als zu Chlamydomonas eugametos ist. Die Struktur der Zellwand macht sie somit auch zum phylogenetischen Marker (ROBERTS et al. 1974, 1982).

# 2.2.1 Wiederherstellung der Zellwand durch *self* und *nucleated assembly*

#### 2.2.1.1 Assembly mit zelleigenen GPs

In dieser Arbeit wurde der *nucleated assembly* mit zwei Arten aus der Unterordnung der Chlamydomonadaceae durchgeführt:

Chlamydomonas reinhardtii und Chlamydomonas incerta.

Beide Arten besitzen eine sehr ähnliche Morphologie und ebenso kompatible G-Lysine. Dies sind Zink-Metalloproteasen, die gametenstadienspezifisch die Zellwand auflösen können (MATSUDA *et al.* 1985). Die Kompatibilität von G-Lysinen ist als taxonomischer Marker für Verwandtschaften von Bedeutung (SCHLÖSSER *et al.* 1976).

Die Versuche zum *nucleated assembly* wurden ähnlich wie in der ursprünglichen Arbeit von ADAIR *et al.* (1987) durchgeführt, allerdings wurde eine Fluoreszenzmarkierung nicht über eine indirekte Färbung mit einem FITC-Streptavidin gekoppelten Antikörper, sondern mit direkter Fluoreszenzmarkierung der Proteine selbst nachgewiesen. Hierzu wurden zuerst HRGPs beider Arten isoliert, gereinigt und abschließend mit dem Fluoreszenzfarbstoff Fluorescein-iso-thiocyanat (FITC) markiert (siehe 4.10.1). Als "Gerüst" für ein Assembly von HRGPs dienten sogenannte *ghosts*, welches Zellen von *Chlamydomonas* sind, bei denen die PSW (W6 + W4) mit Natriumperchlorat extrahiert wurde und auf dem Protoplasten nur noch die Zellwandschichten W1/W7 und W2 vorhanden waren.

Es wurde zunächst ein *assembly* von HRGPs auf *ghosts* der jeweils eigenen Art durchgeführt, um eine Spezifität des *assembly* zu zeigen. Später dann erfolgten Versuche, um die *interspecific reconstitution* von *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* zu zeigen. Damit sollte überprüft werden, ob es wie auch in den Versuchen von ADAIR *et al.* 1987 möglich ist, HRGPs einer Art auf eine andere zu assemblieren.

Auf der nachfolgenden Abbildung 2.4 sind jeweils eine Phasenkontrastaufnahme (A) sowie eine Fluoreszenzaufnahme (B) von mehreren Zellen von *Chlamydomonas reinhardtii* zu sehen, bei der ein *nucleated assembly* von mit FITC markierten GP1 aus der Wandschicht W6B auf ein Gitter (*crystal lattice*) von GP3/GP2 aus der Wandschicht W6A gemacht wurde.

Dies konnte die Beobachtungen von GOODENOUGH *et al.* (1986) bestätigen, nach denen ein intaktes Gitter von GP3/GP2 als "template" zwingend nötig ist, damit sich darauf GP1 auflagern und die äußerste Wandschicht W6B korrekt gebildet werden kann. Eine positive Fluoreszenz (Abb. 2.4 B) zeigt zunächst, dass sich GP1-FITC auf eine template-Wandschicht W6A aufgelagert hatte.

Weiterhin impliziert die Abbildung, dass vor der Auflagerung von GP1-FITC eine ebenfalls korrekt assemblierte Zellwandschicht W6A vorlag, da ohne diese Schicht das GP1 keinen Bindungs- bzw. Interaktionspartner besitzt und sich W6B nicht ausbilden kann.



Abb. 2.4: *Ghosts* von *Chlamydomonas reinhardtii*, inkubiert mit GP3+GP2 und GP1-FITC von *Chlamydomonas reinhardtii*.

A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Dieselbe Annahme für ein korrekt erfolgtes *nucleated assembly* wurde für Zellen von *Chlamydomonas incerta* gemacht, da in Abbildung 2.5 B ebenfalls ein positives Fluoreszenzsignal zu erkennen ist.



Abb. 2.5: *Ghosts* von *Chlamydomonas incerta*, inkubiert mit GP3+GP2 und GP1-FITC von *Chlamydomonas incerta*.

A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

## 2.2.1.2 Assembly mit zellfremden GPs

Nachdem gezeigt werden konnte, dass ein *nucleated assembly* der Zellwandschichten durch Inkubation von *ghost*s mit zelleigenen gereinigten und markierten GPs möglich ist, wurde in der nächsten Versuchsreihe überprüft ob es möglich ist, zellfremde GPs ebenfalls zu rekonstituieren. Dieser Versuch ist interessant, da bekannt ist, dass ein Schaftbereich GP1 von *Chlamydomonas incerta* um 50 Aminosäuren ( $\triangleq$  15 nm) größer ist als beim GP1 von *Chlamydomonas reinhardtii* (LEE *et al.* 2007).

Es stellt sich daher die Frage, ob und wie die GPs von *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* miteinander interagieren können.

In der nachfolgenden Abbildung 2.6 ist ein Versuchsansatz abgebildet, bei dem GP1-FITC von *Chlamydomonas incerta* zusammen mit GP2 und GP3 aus *Chlamydomonas reinhardtii* auf *ghosts* von *Chlamydomonas reinhardtii* assembliert wurde. Die Abbildung 2.6 B zeigt hierbei durch ein deutliches Fluoreszenzsignal, dass es in diesem Fall zu einem korrekten *nucleated assembly* gekommen ist.



Abb. 2.6: *Ghosts* von *Chlamydomonas reinhardtii*, inkubiert mit GP3+GP2 von *Chlamydomonas reinhardtii* und GP1-FITC von *Chlamydomonas incerta*. A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Für den umgekehrten Fall, bei dem getestet wurde, ob GP1-FITC von *Chlamydomonas reinhardtii* auf *ghosts* von *Chlamydomonas incerta* assembliert, wurde ebenfalls ein positives Fluoreszenzsignal detektiert (s. Abb. 2.7).

#### Ergebnisse



Abb. 2.7: *Ghosts* von *Chlamydomonas incerta*, inkubiert mit GP3+GP2 von *Chlamydomonas incerta* und GP1-FITC von *Chlamydomonas reinhardtii*. A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Es zeigte sich also, dass es trotz morphologischer Unterschiede möglich ist, artfremdes GP1-FITC auf einen *ghost* zu assemblieren, wenn eine *template*-Wandschicht W6A aus zelleigenen GP3/GP2 vorliegt.

## 2.2.1.3 Assembly ohne Wandschicht W6

GOODENOUGH *et al.* zeigten 1986, dass GP1 ein intaktes Gitter von GP3/GP2 benötigt, um korrekt zu reassemblieren und die Wandschicht W6B auszubilden. Es sollte nun untersucht werden, ob GP1-FITC auch reassemblieren kann, wenn nur eines der Proteine GP2 oder GP3 vorliegt. Die Abbildungen 2.8 und 2.9 zeigen, dass auch in diesen Versuchen eine scheinbar ungestörte Fluoreszenzmarkierung beobachtet wurde. Dies widerspricht scheinbar den Beobachtungen von GOODENOUGH *et al.* 1986, da hier gezeigt wurde, dass GP1-FITC von *Chlamydomonas reinhardtii* an *ghosts* von *Chlamydomonas incerta* bindet, auch wenn mit GP3 nur eines der mutmaßlich benötigten GPs vorliegt und keine vollständige Wandschicht W6A ausgebildet sein kann (s. Abb. 2.8).



Abb. 2.8: *Ghosts* von *Chlamydomonas incerta*, inkubiert mit GP3 und GP1-FITC von *Chlamydomonas reinhardtii*. A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Ebenso bindet GP1-FITC von *Chlamydomonas incerta* an *ghosts* von *Chlamydomonas reinhardtii* (s. Abb. 2.9).



Abb. 2.9: *Ghosts* von *Chlamydomonas reinhardtii*, inkubiert mit GP3 und GP1-FITC von *Chlamydomonas incerta*.

Dies bedeutet, dass in diesem Fall anscheinend kein intaktes Gitter von GP3/GP2 für die Reassemblierung von GP1 benötigt wird.

Offensichtlich ist GP1-FITC sehr wohl in der Lage, auf einem nicht vollständigen *template* von Zellwandschicht W6A zu assemblieren und zu einem positiven Fluoreszenzsignal zu führen.

Das erhaltene Resultat ließ die Frage aufkommen, ob mit FITC markiertes GP1 generell an Oberflächen binden kann oder ob es eine Eigenschaft ist, mit seinen zahlreichen Zuckerseitenketten über schwache Wechselwirkungen an Oberflächen, ob nun an *ghost*, andere GPs oder auch sonstige Werkstoffe, zu binden.

A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

## 2.2.2 Assembly an nicht-chlamydomonas Oberflächen

Um ein generelles Bindevermögen von GP1 an Oberflächen zu testen, wurden in einem Versuchsansatz unmarkierte Glaskugeln verwendet, die eine möglichst inerte Oberfläche bieten sollten. Auf der nachfolgenden Abbildung 2.10 konnte gezeigt werden, dass GP1-FITC nicht in der Lage ist, an Oberflächen wie Glas zu binden. GP1 benötigt also Wechselwirkungen mit anderen HRGPs, sei es mit deren Protein- oder Zuckeranteil.



Abb. 2.10: Glaskugeln, inkubiert mit GP1-FITC von *Chlamydomonas incerta*. A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Im nächsten Schritt wurde überprüft, ob die Fluoreszenzsignale aus Abb. 2.8 und 2.9 durch eine unspezifische Bindung von GP1 an Zucker durch schwache Wechselwirkungen der Zuckerseitenketten zu erklären sind. Dazu wurde mit kugelförmigen Säulenmaterialien wie Sephadex und Sephacryl (Pharmacia/ GE Healthcare), die aus an Agarose bzw. Acrylamid gekoppelten a-1,6 glykosidisch verknüpfte Glukosen bestehen, gearbeitet. Dieses Material ist ideal, da es mit seiner Kugelform und einem Durchmesser von 10-100 µm einer Zelle von *Chlamydomonas* recht ähnlich ist.

Die Abbildung 2.11 zeigt die molekulare Struktur der Oberflächen beider Gelfiltrationsmaterialien.



Abb. 2.11: Teilabbildung der Strukturen von Sephadex (A) und Sephacryl (B) (B. BARTHOLOMEW, Dep. of Biochemistry and Molecular Biology, Southern University Illinois, Carbondale, IL, USA).

Die Abbildung 2.12 zeigt nun, dass GP1-FITC tatsächlich an Sephadex binden kann.



Abb. 2.12: Sephadex G-150, inkubiert mit GP3 von *Chlamydomonas reinhardtii* und GP1-FITC von *Chlamydomonas incerta*. A:Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Ein ähnliches Resultat wurde erhalten, als versucht wurde, isoliertes GP1-FITC direkt an Sephadex oder Sephacryl zu reassemblieren. Die beiden nachfolgenden Abbildungen zeigen, dass es bei Inkubation von GP1-FITC mit Sephadex (s. Abb. 2.13) oder Sephacryl (s. Abb. 2.14) ebenfalls zu einem Fluoreszenzsignal kommt.

#### Ergebnisse



Abb. 2.13: Sephadex G-150, inkubiert mit GP1-FITC von *Chlamydomonas reinhardtii*. A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme



Abb. 2.14: Sephacryl S-400, inkubiert mit GP1-FITC von *Chlamydomonas reinhardtii.* A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Dies bedeutet, dass GP1-FITC in der Lage ist, direkt mit zuckerhaltigen Oberflächen zu interagieren und an diese zu binden, ähnlich wie beim *assembly* der Zellwand *in vivo*.
### 2.2.3 Assembly mit Kontrollproteinen

Abschließend wurde überprüft, ob die Reassemblierung von FITC gekoppelten Proteinen an andere GPs eventuell alleine vom FITC herrührt. Dazu wurde BSA (Sigma-Aldrich) wie in 4.10.1 beschrieben mit FITC markiert und damit ein *nucleated assembly* durchgeführt. Es zeigte sich, dass BSA-FITC nicht an Sephadex binden kann (Abb. 2.15).



Abb. 2.15: Sephadex G-150, inkubiert mit BSA-FITC A: Phasenkontrastaufnahme, B: Fluoreszenzaufnahme

Damit kann ausgeschlossen werden, dass eine Markierung von Proteinen mit FITC dazu führt, dass diese an zuckerartige Oberflächen binden.

Abschließend bedeutet das aber, dass der Versuchsansatz des *nucleated assembly* nicht geeignet ist, um eine spezifische Interaktion der GPs zu zeigen, da GP1 offensichtlich generell Zucker-Zucker-Wechselwirkungen eingeht. Außerdem bietet der Versuchsansatz keinerlei Möglichkeit, die Bindung zu quantifizieren und damit Unterschiede im Bindungsverhalten zu überprüfen. Daher wurde nachfolgend angestrebt, solche quantitativen Methoden zu etablieren.

#### 2.3 Interaktionsanalysen von Glykoproteinen

Moleküle können auf vielfältige Weise miteinander interagieren, zum Beispiel durch van-der-Waals-Kräfte, hydrophobe Wechselwirkungen, Wasserstoffbrücken oder Ionenbindungen. Bei Proteinen sind die Möglichkeiten der Wechselwirkung durch die Aminosäuresequenz bestimmt. Untersucht werden solche Interaktionen üblicherweise mit Echtzeitanalysen oder Festphasenassays. Erstere haben den Vorteil, dass sie mit geringen Proteinmengen auskommen und keine Markierung der Proteine mit chromophoren Gruppen oder Tags wie Biotin benötigen. In dieser Arbeit wurden sowohl eine Echtzeitmethode (Resonant-Mirror, s. 4.7.2.1) sowie ein einfacheres System zur Interaktionsanalyse, ein an den Sandwich-ELISA angelehnter Festphasen-Assay (s. 2.3.1), verwendet.

#### 2.3.1 Sandwich-ELISA

Der in dieser Arbeit durchgeführte Festphasenassay beruht vom Prinzip her auf dem Sandwich-ELISA (Übersicht: CROWTHER 1995). Beim Sandwich-ELISA wird normalerweise ein Antikörper auf einer speziellen Mikrotiterplatte immobilisiert und nach Blockierung unspezifischer Bindungsstellen das zum Antikörper passende Antigen hinzugegeben. Dieses bindet an den Antikörper und wird seinerseits zum Nachweis dieser Bindung mit einem ebenfalls gegen ihn gerichteten, enzymgekoppelten 2. Antikörper inkubiert (s. Abb. 2.16). Das an diesen zweiten Antikörper gekoppelte Enzym, meistens eine alkalische Phosphatase oder Peroxidase, wird zur Umsetzung eines Farbsubstrates genutzt, welches dem Nachweis der erfolgten Bindungen Antikörper-Antigen dient.

Diese theoretische Grundlage wurde zur Abwandlung des beschriebenen Sandwich-ELISA verwendet. Anstelle des Antikörpers wurde eines der Glykoproteine auf der Mikrotiterplatte immobilisiert und als Antigen ein weiteres Glykoprotein in verschiedenen Konzentrationen gegeben. Um nun eine Bindung und damit Interaktion zwischen den Glykoproteinen nachzuweisen, musste am zweiten Glykoprotein eine Modifikation durchgeführt werden, damit ein enzymgekoppelter zweiter Antikörper daran binden kann.

Für Glykoproteine aus der PSW von *Chlamydomonas* sind keine spezifischen Antikörper vorhanden, so dass die Proteine auf eine andere Weise für den enzymgekoppelten Antikörper zugänglich gemacht werden mussten. Hierfür wurde eine Markierung der Glykoproteine mit Biotin gewählt, um diese dann mit einer avidin-gekoppelten Peroxidase kolorimetrisch nachweisen zu können.



Abb. 2.16: Schematische Darstellung des Sandwich-ELISA (nach PINGOUD & URBANKE 1997).

#### 2.3.1.2 Biotinylierung von Glykoproteinen

Die Biotinylierung von Proteinen bietet drei wichtige Vorteile. Erstens gibt es eine große Auswahl an Antikörpern, die auf der hochaffinen Bindung von Avidin an Biotin beruhen. Zweitens war die in dieser Arbeit verwendete Methode zur Kopplung von Biotin an Proteine (s. 4.6.1) einfach durchzuführen und ist gut zu reproduzieren. In Abbildung 2.17 (B) ist eine Immunfärbung durch Avidin-Peroxidase der mit Biotin markierten Glykoproteine dargestellt. Dieser Western-Blot wurde von dem Gel angefertigt, das in Abbildung 2.17 (A) gezeigt ist. Auf dem Western-Blot sind drei distinktive Banden zu erkennen, die an denselben Positionen wie die Glykoproteine GP1, GP2 und GP3 im vorher angefertigten präparativen SDS-Gel liegen.





Abb. 2.17: (A) Präparative SDS-PAGE von biotinylierten Glykoproteinen,
Spur A: GP1, Spur B: GP2, Spur C: GP3, Auftragsmenge jeweils 50 μg Protein, HM ist der Proteinmassenstandard.
(B) Western-Blot der biotinylierten Glykoproteine aus (A), Immunfärbung mit Avidin-Peroxidase.

Zur Kontrolle, ob eine Biotinylierung stabil ist, wurden regelmäßige Kontrollen durch Western-Blot durchgeführt. Potentielle Sekundärstrukturänderungen wurden mit CD-Spektroskopie untersucht (s. nächster Abschnitt).

#### 2.3.1.3 CD-Spektroskopie biotinmarkierter Glykoproteine

Für den Sandwich-ELISA war es nötig, mit Biotin markierte GPs zu erzeugen. Ob eine Derivatisierung der GPs oder der stark alkalische pH-Wert während der Inkubation eine Auswirkung auf die Sekundärstruktur des Proteins hat, sollte mit CD-Spektroskopie (Übersicht: JOHNSON 1988, 1990) untersucht werden.

In Abbildung 2.18 A-C ist ein Spektrenvergleich von biotinylierten Glykoproteinen zu nicht biotinyliertem Glykoproteinen aus *Chlamydomonas incerta* dargestellt. Alle Glykoproteine stammen in diesem Fall aus derselben Präparation.

Zu erkennen ist ein nahezu identischer Verlauf der Spektren aller untersuchten Glykoproteine. Die Spektren sind nicht absolut deckungsgleich, was auf geringen Konzentrationsunterschieden beruht. Die Extrema aber lassen sich jeweils bei der gleichen Wellenlänge finden, lediglich der Betrag der Extrema variiert. Die Unterschiede von nativ zu biotinyliert betragen dabei bei GP1 -10,8 mdeg, bei GP2 -6,8 mdeg und bei GP3 -5,7 mdeg. Hervorzuheben ist weiterhin, dass auch der Durchtritt durch die Nulllinie (mdeg =0) bei allen Spektren nicht verschoben sind, so dass die Kontrolle durch CD auf keine Denaturierung oder andere Veränderung der Sekundärstruktur hinweist.

Es wurde gezeigt, dass eine Kopplung von Biotin an Glykoproteinen (vgl. 2.3.1.2) nicht zu einem Verlust der Sekundärstruktur führte, so dass mit annähernd nativen Proteinen gearbeitet werden konnte. Dies lässt den Schluss zu, dass die hier durchgeführte Biotinylierung keine Auswirkungen auf die Sekundärstruktur von Glykoproteinen hat.

Somit kann festgehalten werden, dass die von DELLA-PENNA 1986 beschriebene Methode zur Markierung von Proteinen mit Biotin auch für die Glykoproteine aus der PSW von *Chlamydomonas incerta* geeignet ist.



Abbildung 2.18: Überlagerung der CD-Spektren der Glykoproteine GP1 (A), GP2 (B) und GP3 (C) aus *Chlamydomonas incerta*; blaue Linie: natives Glykoprotein, grüne Linie: biotinyliertes Glykoprotein. Konzentrationen jeweils 200µg/ ml; 5°C Messtemperatur.

#### 2.3.1.4 Auswahl von Titerplatten für Sandwich-ELISA

Von der Firma Nunc gibt es seit Ende 2004 speziell beschichtete Titerplatten der Marke CovaLink, die eine Möglichkeit zur chemisch vermittelten, kovalenten Kopplung von Proteinen bieten.

Der Boden in den Wells von CovaLink-Mikrotiterplatten besteht aus einer Polystyrol-Oberfläche, an die 10<sup>14</sup>/cm<sup>2</sup> sekundäre Amine mit einem 2 nm langen Abstandhalter gekoppelt sind (s. Abb. 2.19, A). Die Kopplung von Proteinen an diese sekundären Amine erfolgt über Amidbindungen. Diese werden durch 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimid [*EDC*] geknüpft, indem EDC den Carboxylterminus des Proteins aktiviert und zu einem o-Acylharnstoffester umformt. Durch Zugabe von Sulfo-N-hydroxysuccinimid (*Sulfo-NHS*) wird dieser Harnstoffester stabilisiert und kann mit dem sekundären Amin auf dem Boden der Wells eine stabile Amidbindung eingehen.

Dies bietet den Vorteil einer stabilen, hochspezifischen Kopplung des zu untersuchenden Proteins über den Carboxyterminus.

Ein Schema dieser Kopplungsreaktion ist in der nachfolgenden Abbildung 2.19 dargestellt.

Herkömmliche Titerplatten ohne spezielle Oberflächen haben den Nachteil, dass die Bindung von Molekülen an die Oberfläche oft in rein zufälliger Ausrichtung erfolgt. Dadurch könnte es sein, dass ein Glykoprotein nicht in der richtigen Position gebunden ist, um eine effektive Interaktion mit einem Bindungspartner durchzuführen.



Abb. 2.19: Reaktionsmechanismus der Immobilisierung von Peptiden auf CovaLink-Mikrotiterplatten, hier an einem Dinitrophenol-markierten Tripeptid (*DNP-peptide*) dargestellt, (A) molekularer Abstandshalter von 2 nm Größe (Bildnachweis: Produktbroschüre Firma Nunc).

#### 2.3.1.5 Vergleich zweier kovalenter Kopplungsmethoden

In der Literatur sind zwei Methoden zur kovalenten Kopplung von Proteinen an oben beschriebene Mikrotiterplatten erwähnt, die vom Hersteller Nunc empfohlene Methode nach RASMUSSEN (1990) und eine weitere von SONDERGARD-ANDERSEN *et al.* (1990).

Der wesentliche Unterschied zwischen den beiden Methoden liegt darin, dass nach RASMUSSEN keine Blockierung der Wells mit BSA zur Absättigung freier Bindungsstellen vorgesehen ist. Stattdessen werden mit Wells mit einem *Tween*-haltigen Puffer gewaschen, welcher die sekundären Amine unreaktiv machen soll. Dies soll geeigneter als eine klassische Absättigung der Bindungsstellen sein (RASMUSSEN 1990).

Ein weiterer Unterschied zwischen den beiden Methoden ist, dass nach RASMUSSEN die Kopplungsreaktion für zwei Stunden bei Raumtemperatur erfolgt, während SONDERGARD-ANDERSEN *et al.* eine Kopplung von 30 Minuten bei 4°C vorsehen.

Es konnte zudem gezeigt werden, dass eine klassische Absättigung mit BSA geeigneter als eine Behandlung mit *Tween* ist und die Kopplungsreaktion bei 4°C vollständiger erfolgt als bei Raumtemperatur (SONDERGARD-ANDERSEN *et al.* 1990).

Es galt daher, beide Methoden zu evaluieren und einen Kompromiss zwischen guter Kopplung der Glykoproteine an die Oberfläche der Wells und akzeptablen Zeitaufwand zu finden.

In der nachfolgenden Abbildung 2.20 wird ein Experiment dargestellt, Parallelansatz welches in einem die beiden beschriebenen Kopplungsmethoden vergleichen soll. Dabei ist zu erkennen, dass eine Kopplung nach Sondergard-Andersen bei nachfolgender Zugabe von Interaktionspartner zu einer bis zu Faktor 5 höheren gemessenen Extinktion führt. Der Kurvenverlauf dieser Bindungskinetik ist als annähernd asymptotisch zu beschreiben und ähnelt einer enzymatischen Sättigungskurve.



Abb. 2.20: vergleichender Sandwich-ELISA mit an die Titerplatte gekoppeltem GP3 als Vorlage und Zugabe von biotinyliertem GP2 als Interaktionspartner. (A) rote Datenreihe: Kopplung nach SONDERGARD-ANDERSEN *et al.* 1990, (B) blaue Datenreihe: Kopplung nach RASMUSSEN 1990.

#### 2.3.2 Interaktionsanalysen durch Sandwich-ELISA

Bei der Bestimmung von Bindungs-/ Affinitätskonstanten von Glykoproteinen wurde zunächst ein einfacherer Versuchsansatz gewählt, welcher der in 2.3.1 beschriebenen Methode eines Sandwich-ELISA entsprach. In Anlehnung an Vorarbeiten zu diesem Thema durch JOLK 1997 und TSCHECHE 2000 wurde mit ähnlichen Proteinkonzentrationen gearbeitet, so wurden als Vorlage in eine Mikrotiterplatte in der Regel 1-3  $\mu$ g ( $\triangleq$  3-6 Picomol), gebunden und der Interaktionspartner dann in Konzentrationen von 0,1-10  $\mu$ g ( $\triangleq$  0,5-45 Picomol) zugegeben. Als Interaktionspartner wurden die Glykoproteine gewählt, welche auch in vivo miteinander Zellwandstrukturen bilden, also GP2 mit GP3 und vice versa sowie GP1, das sich auf einen gekoppelten Komplex [GP2-GP3] auflagern sollte (vgl. 2.2). Die ermittelten Extinktionswerte der Interaktion wurden in ein Diagramm übertragen, bei dem die Extinktion gegen die Konzentration des zugegebenen Interaktionspartners aufgezeichnet ist. Die Berechnung der Affinitätskonstante K<sub>D</sub> erfolgte als lineare Regression in einem Eadie-Hofstee-Diagramm, in dem die Reaktionsgeschwindigkeit v (hier: Extinktion) gegen v/[Glykoprotein] aufgetragen wird.

Die negative Steigung der linearen Regressionsgrade ist K<sub>D</sub>.

In Abbildung 2.21 ist die Interaktion von zwei Glykoproteinen (A) und die Ermittlung der Affinitätskonstante (B) an einem Beispiel exemplarisch dargestellt, die in den nachfolgenden Tabellen dargestellten Werte sind gewichtete Mittelwerte aus einer Vielzahl von Versuchsdurchführungen.



Abb. 2.21: Interaktion von gebundenem Glykoprotein GP3 mit dem biotinmarkierten Glykoprotein GP2, beide aus *Chlamydomonas reinhardtii*. In (A) ist die Extinktionszunahme bei steigender Konzentrationen dargestellt, in (B) das aus diesen Extinktionswerten (hier: V) abgeleitete Eadie-Hofstee-Diagramm mit der linearen Regression zur Ermittlung der Affinitätskonstante K<sub>D</sub>.

Die Abbildung 2.21 (A) zeigt die Interaktion von kovalent an die Titerplatte gekoppeltem GP3 mit biotin-markiertem GP2, jeweils von *Chlamydomonas reinhardtii*. Der Verlauf der Bindungskurve lässt sich als asymptotisch beschreiben und ist am ehesten mit dem Verlauf einer enzymatischen Sättigungskinetik zu vergleichen. Die Kurve erreicht ihr Maximum bei etwa der doppelten Konzentration des vorgelegten GP2, danach fällt sie ab. Die aus der Bindungskurve durch lineare Regression nach Eadie-Hofstee abgeleitete Affinitätskonstante  $K_D$  liegt mit 1,5 x 10<sup>-9</sup> im nanomolaren Bereich.

#### 2.3.2.1 Interaktion zelleigener Glykoproteine

Die Interaktion von zelleigenen Glykoproteinen miteinander und die berechneten Affinitätskonstanten  $K_D$  zeigen die nachfolgenden Tabellen 2.1 und 2.2.

Tabelle 2.1: Berechnete Affinitätskonstanten bei der Interaktion von Glykoproteinen aus *Chlamydomonas reinhardtii* (C.rein.) per ELISA. X=an die Titerplatte gekoppeltes Glykoprotein, O=zugegebener Interaktionspartner

| GP1      | GP2      | GP3      | $K_D$ berechnet         | delta  |
|----------|----------|----------|-------------------------|--------|
| C. rein. | C. rein. | C. rein. | [Mol]                   |        |
|          | 0        | Х        | 2,14 x 10 <sup>-9</sup> | ± 0,5  |
|          | Х        | 0        | 1,14 x 10 <sup>-9</sup> | ± 0,08 |
| 0        | Х        | Х        | 0,48 x 10 <sup>-9</sup> | ± 0,13 |

Für die Interaktion von Glykoproteinen aus *Chlamydomonas reinhardtii* konnten per ELISA Affinitätskonstanten ermittelt werden, die im Bereich von etwa 0,5 bis zu 2,2 nMol liegen, also sehr niedrig sind. Dies zeigt eine äußerst hohe Affinität der Glykoproteine zueinander *in vitro*, die in etwa so affin reagieren wie Antikörper-Antigen-Bindungen (BREITLING & DÜBEL 1997).

Tabelle 2.2: Berechnete Affinitätskonstanten bei der Interaktion von Glykoproteinen aus *Chlamydomonas incerta* (C.inc) per ELISA. X=an die Titerplatte gekoppeltes Glykoprotein, O=zugegebener Interaktionspartner

| GP1     | GP2     | GP3     | K <sub>D</sub> berechnet | delta  |
|---------|---------|---------|--------------------------|--------|
| C. inc. | C. inc. | C. inc. | [Mol]                    |        |
|         | 0       | Х       | 1,2 x 10 <sup>-9</sup>   | ± 0    |
|         | Х       | 0       | 1,23 x 10 <sup>-9</sup>  | ± 0,17 |
| 0       | Х       | Х       | 0,51 x 10 <sup>-9</sup>  | ± 0,09 |

Bei der Interaktion von Glykoproteinen aus *Chlamydomonas incerta* (Tab. 2.2) sind ähnliche Affinitätskonstanten ermittelt worden wie für Glykoproteine aus *Chlamydomonas reinhardtii*.

Die Interaktion von GP2 mit GP3 ist mit 1,2 nMol doppelt so hoch wie bei *Chlamydomonas reinhardtii*, die beiden anderen berechneten Affinitäten der Interaktion von GP3 mit GP2 und [GP2-GP3] mit GP1 ähneln diesen und sind ebenfalls in nanomolaren Bereichen.

## 2.3.2.2 Interaktion von zelleigenen mit zellfremden Glykoproteinen

Die Glykoproteine wurden hierzu im Schema einer Interaktion von GP2 mit GP3 und *vice versa* sowie vom Komplex [GP2-GP3] mit GP1 in Mikrotiterplatten pipettiert.

In Tabelle 2.3 sind die ermittelten Affinitätskonstanten der verschiedenen untersuchten Interaktionen dargestellt.

Tabelle 2.3: Berechnete Affinitätskonstanten bei der Interaktion von Glykoproteinen aus *Chlamydomonas reinhardtii* (C.rein.) und *Chlamydomonas incerta* (C.inc.) per ELISA.

| GP1      | GP2      | GP3      | GP1     | GP2     | GP3     | K <sub>D</sub> berechnet | delta  |
|----------|----------|----------|---------|---------|---------|--------------------------|--------|
| C. rein. | C. rein. | C. rein. | C. inc. | C. inc. | C. inc. | [Mol]                    |        |
|          | 0        |          |         |         | Х       | 0,45 x 10 <sup>-9</sup>  | ± 0,08 |
|          | Х        |          |         |         | 0       | 1,9 x 10 <sup>-9</sup>   | ± 0,14 |
|          |          | Х        |         | 0       |         | 2,55 x 10 <sup>-9</sup>  | ± 0,3  |
|          |          | 0        |         | Х       |         | 1,73 x 10 <sup>-9</sup>  | ± 0,8  |
|          | 0        | 0        | Х       |         |         | 0,41 x 10 <sup>-9</sup>  | ± 0,05 |
| Х        |          |          |         | 0       | 0       | 0,58 x 10 <sup>-9</sup>  | ± 0,04 |

X= an die Titerplatte gekoppeltes Glykoprotein,

O= zugegebener Interaktionspartner

Zusammengefasst lässt sich festhalten, dass die Interaktion von GP2 mit GP3 zwischen den beiden untersuchten Arten von *Chlamydomonas* ähnlich ist wie die Affinitätskonstanten, die bei der gleichen Interaktion bei ausschließlich zelleigenen Glykoproteinen berechnet wurden.

Sie liegen alle im Bereich von etwa 2 x  $10^{-9}$  Mol, einzig die Interaktion von gekoppeltem GP2 von *Chlamydomonas incerta* mit biotinyliertem GP3 aus *Chlamydomonas reinhardtii* ist mit 0,45 x  $10^{-9}$  Mol etwa ein Viertel so hoch, sprich vier Mal so affin wie alle anderen beobachteten Interaktionen von GP2 mit GP3.

Die Interaktion vom Komplex [GP2-GP3] mit zellfremden biotinylierten GP1 ist mit etwa  $0.5 \times 10^{-9}$  Mol als hoch affin zu beschreiben.

#### 2.3.3 Interaktionsanalysen durch Resonant-Mirror

In weiteren Versuchsreihen sollte überprüft werden, ob die per ELISA ermittelten Affinitätskonstanten für die Interaktion von Glykoproteinen mit der sehr viel empfindlicheren Echtzeitanalyse nach dem Resonant-Mirror-Prinzip bestätigt werden können. Die Echtzeitanalyse bietet verglichen mit dem Festphasenassay eine messbedingt höhere Genauigkeit und ermöglicht den Einsatz nativer Glykoproteine, obwohl eine Markierung dieser mit Tags soweit untersucht unproblematisch ist (vgl. 2.3.1.3). Die Resonant-Mirror-Methode bot zusätzlich noch den Vorteil, dass ein einmal kovalent an die Küvette gekoppeltes Glykoprotein mehrfach zur Untersuchung von Interaktionen verwendet werden konnte. Die Küvette konnte durch Spülen mit einer chaotropen Perchloratlösung von dem zugegebenem Interaktionspartner wieder regeneriert werden und stand dann für weitere Analysen zur Verfügung. So konnten mit einem Versuchsaufbau bis zu sechs einzelne Interaktionen mit einem gekoppelten Glykoprotein durchgeführt werden. Gezeigt ist dies exemplarisch in der Abbildung 2.22, die eine Interaktion von an eine Küvette gekoppeltem GP2 mit GP3 als Interaktionspartner zeigt.



Abb. 2.22: Interaktion von gekoppeltem Glykoprotein GP2 mit dem Glykoprotein GP3, beide aus *Chlamydomonas incerta*. Zuerst erfolgt eine Zugabe/ Assoziation von GP3 (A), aus der jeweils die Affinitätskonstante nach einer Kinetik 1.Ordnung ermittelt werden. Nach der Interaktion erfolgt die Dissoziation des Interaktionspartners mit Puffer (B) sowie die Regeneration der Küvette (C), bei der jegliches GP3 entfernt wird. Die Küvette kann nun für weitere Analysen erneut verwendet werden.

### 2.3.3.1 Interaktion von zelleigenen Glykoproteinen

Die nachfolgende Tabelle 2.4 zeigt die berechneten Affinitätskonstanten für die Interaktion von Glykoproteinen aus *Chlamydomonas reinhardtii* und *Chlamydomonas incerta*.

X= an die Küvette gekoppeltes Glykoprotein,

O= zugegebener Interaktionspartner

| GP1      | GP2      | GP3      | GP1     | GP2     | GP3     | K <sub>D</sub> berechnet | delta  |
|----------|----------|----------|---------|---------|---------|--------------------------|--------|
| C. rein. | C. rein. | C. rein. | C. inc. | C. inc. | C. inc. | [Mol]                    |        |
|          | Х        | 0        |         |         |         | 5,28 x 10 <sup>-8</sup>  | ± 1,08 |
|          | 0        | Х        |         |         |         | 2,58 x 10 <sup>-8</sup>  | ± 0,4  |
| 0        | Х        | Х        |         |         |         | 1,96 x 10 <sup>-7</sup>  | ± 0,35 |
|          |          |          |         | Х       | 0       | 4,4 x 10 <sup>-8</sup>   | ± 0,8  |
|          |          |          |         | 0       | Х       | 2,06 x 10 <sup>-8</sup>  | ± 0,5  |
|          |          |          | 0       | Х       | Х       | 1,1 x 10 <sup>-7</sup>   | ± 0,09 |

Auch bei diesen Versuchsreihen konnten für die Interaktion von Glykoproteinen Affinitätskonstanten ermittelt werden, die innerhalb einer nanomolaren Spanne liegen. Diese sind jedoch um einen Faktor von 25 (GP2-GP3) bis zu einem Faktor von 100 ([GP2-GP3]-GP1) niedriger als die Affinitäten, die per ELISA ermittelt wurden (vgl. 2.3.2.1). In sich betrachtet sind die mit *Resonant-Mirror* erhaltenen Interaktionsdaten jedoch konsistent und liegen innerhalb einer gleichen Spannbreite, die je nach betrachteter Interaktion um einen Faktor von 2 bis 3 variiert.

Ein Vergleich der Interaktion von Glykoproteinen bezogen auf den jeweiligen Organismus zeigt, dass sich die Affinitätskonstanten im Rahmen der Messabweichungen sehr ähneln. So ist zum Beispiel die Interaktion von GP2 mit GP3 aus *Chlamydomonas reinhardtii* mit  $K_D$ =5,28 x 10<sup>-8</sup> ähnlich affin wie die gleiche Interaktion von Glykoproteinen aus *Chlamydomonas incerta* mit  $K_D$ =4,4 x 10<sup>-8</sup>.

Tabelle 2.4: Berechnete Affinitätskonstanten bei der Interaktion von Glykoproteinen aus *Chlamydomonas reinhardtii* (C.rein.) und *Chlamydomonas incerta* (C.inc.) per *Resonant-Mirror*.

## 2.3.3.2 Interaktion von zelleigenen mit zellfremden Glykoproteinen

Die in 2.2.1.2 beschriebenen Versuche zum *nucleated assembly* von Glykoproteinen aus der äußeren Zellwand von *Chlamydomonas* haben gezeigt, dass es möglich ist, zellfremde Proteine auf einem Zellwandgrundgerüst einer anderen Art aufzulagern. Dies ließ den Schluss zu, dass sich die Zellwandproteine GP1, GP2 und GP3 von *Chlamydomonas reinhardtii* und *incerta* strukturell ähneln.

Daher sollte es auch möglich sein, eine Interaktion dieser Glykoproteine nicht nur qualitativ über Fluoreszenzmikroskopie, sondern auch quantitativ zu untersuchen.

Die Versuche zur Interaktion in 2.3.2.1 haben gezeigt, dass eine Interaktion von zelleigenen Glykoproteinen in nanomolaren Maßstab bei Affinitätskonstanten von 10<sup>-8</sup> bis 10<sup>-9</sup> stattfindet. Im Folgenden soll nun gezeigt werden, dass auch eine Interaktion von zellfremden GPs miteinander quantifizierbar nachzuweisen ist.

Zum Abschluss der Interaktionsanalyse von Glykoproteinen wurde erneut die Methode des *Resonant-Mirror* verwendet. Bei der Verwendung dieser Methode zeigten sich, wie bereits in 2.3.3.2 beschrieben und hier in Tabelle 2.5 gezeigt, um den Faktor 10 größere Affinitätskonstanten.

Tabelle 2.5: Berechnete Affinitätskonstanten bei der Interaktion von Glykoproteinen aus *Chlamydomonas reinhardtii* (C.rein.) und *Chlamydomonas incerta* (C.inc.) per *Resonant-Mirror*.

X= an die Küvette gekoppeltes Glykoprotein,

O= zugegebener Interaktionspartner,

nb= nicht bestimmt

| GP1      | GP2      | GP3      | GP1     | GP2     | GP3     | K <sub>D</sub> berechnet | delta  |
|----------|----------|----------|---------|---------|---------|--------------------------|--------|
| C. rein. | C. rein. | C. rein. | C. inc. | C. inc. | C. inc. | [Mol]                    |        |
|          |          | 0        |         | Х       |         | 5,45 x 10 <sup>-8</sup>  | ± 0,08 |
|          | Х        |          |         |         | 0       | 2,9 x 10 <sup>-8</sup>   | ± 0,14 |
|          |          | Х        |         | 0       |         | 2,55 x 10 <sup>-8</sup>  | ± 0,3  |
|          | 0        |          |         |         | Х       | 2,73 x 10 <sup>-8</sup>  | ± 0,8  |
|          | Х        | Х        | 0       |         |         | 1,5 x 10 <sup>-8</sup>   | ± 0,05 |
| 0        |          |          |         | Х       | Х       | nb                       |        |

Die berechneten Affinitätskonstanten der untersuchten Interaktionen waren um einen Faktor von 7 ([GP2-GP3]-GP1) bis 25 (GP2-GP3) höher als diejenigen, die mit ELISA ermittelt wurden. Somit scheint wie Affinität der Interaktionen zwar niedriger als zunächst ermittelt, die ermittelten Daten sind aber in sich sowie mit den bisher mit dieser Methode ermittelten übereinstimmend. Die untersuchten Interaktionen sind jedoch nach wie vor hoch affin wie Antigen-Antikörper-Bindung. Verglichen mit den SO Affinitätskonstanten bei der Interaktion von zelleigenen Glykoproteinen, lagen sie in einem ähnlichen Bereich von etwa 15-54 nanoMol. Die im vorherigen Kapitel gezeigte, sehr hoch affine Interaktion zwischen [GP2-GP3] mit GP1 konnte bei Messungen mit der Resonant-Mirror-Methode nicht so eindeutig nachgewiesen werden. Dies hängt möglicherweise mit einer Konzentrationsabhängigkeit der Interaktion von GP1 mit dem template [GP2-GP3] zusammen, mit der verwendeten Messmethode kann dies aber nicht abschließend verifiziert werden.

GP1 von *Chlamydomonas incerta*, aufgelagert auf [GP2-GP3] von *Chlamydomonas reinhardtii* zeigt mit 1,5 x 10<sup>-8</sup> Mol eine ähnlich starke Affinität wie die Interaktionen der anderen GPs miteinander. Für die Interaktion von GP1 von *Chlamydomonas reinhardtii* mit zellfremden GPs konnten keine verlässlichen Daten ermittelt werden.

#### 2.4 Vergleich von GP2 bei drei Arten der Volvocales

Während zu Beginn dieser Arbeit für einige HRGPs aus *Chlamydomonas reinhardtii* bereits Sequenzdaten vorlagen, wie z.B. für das hochglykosylierte *GP1* (FERRIS *et al.* 2001, GenBank AAG45420) oder Teilsequenzen von *GP2* (FERRIS *et al.* 2004, GenBank AY596305) waren die anderen HRGPs aus der PSW bisher nur morphologisch oder biochemisch beschrieben worden (GOODENOUGH *et al.* 1985, 1986, KILZ *et al.* 2000, 2001).

Über die HRGPs der *Chlamydomonas reinhardtii* am nächsten verwandten Art, *Chlamydomonas incerta*, wurden im Laufe dieser Arbeit nur wenige Datensätze aus einer cDNA-Bank publiziert (LEE et al. 2007, GenBank EF057410). Vermutlich haben diese beiden Arten vor etwa 10 Mio. Jahren als letzte einen gemeinschaftlichen Vorfahren geteilt (COLEMAN & MAI 1997, POPESCU *et al.* 2006).

Erste Untersuchungen zu der Homologie von bestimmten HRGPs bei Chlamydomonas reinhardtii und Chlamydomonas incerta wie den Agalutininen Sad1 Saq1, GP1 oder VSP3 auf und Basis von molekularbiologischen Daten wurden erst in jüngerer Zeit durchgeführt (LEE et al. 2007). Dabei zeigte sich, dass gerade in hydroxyprolinreichen Domänen des Proteins entweder keine oder nur synonyme Basenaustausche vermutlich, das typische stattgefunden haben, um den HRGPs Aminosäuremotiv PPSPX/PPX zu erhalten. Weiterhin wurde vor kurzem entdeckt, dass auch globuläre Proteindomänen von HRGPS eine hohe Homologie aufweisen können (LEE, WAFFENSCHMIDT & GOODENOUGH, Manuskript in Vorbereitung).

Da in den Zellwänden aller bisher untersuchten Volvocales das Glykoprotein GP2 oder ein homologes vorkommt, wurde es als Kandidat ausgewählt, um vergleichende Analysen aufgrund von genomischen Daten durchzuführen.

# 2.4.1 Suche nach Homologien mit MALDI-peptide mass fingerprinting

Um nun zuerst einmal mögliche Homologien zwischen GP2 zu zeigen, wurden diese aus *Chlamydomonas reinhardtii*, *Chlamydomonas incerta* und *Volvox carteri* wie in 2.2.1 beschrieben mit Natriumperchlorat isoliert und per SDS-PAGE präparativ getrennt, dann mit MALDI-peptide mass fingerprinting analysiert.

Als Datengrundlage für den Vergleich von gefundenen Peptiden diente zum einen die Datenbank MASCOT (PERKINS *et al.* 1999), zum anderen eine selbst erstellte Datenbank, die alle extensinartigen Zellwandproteine von *Chlamydomonas reinhardtii* enthält (s. 4.9).

Die nachfolgenden Tabellen fassen die dabei gefundenen Peptide zusammen.

|                         |             | Molekulargewicht [M+H <sup>+</sup> ] in Dalton |           |       |  |  |  |  |
|-------------------------|-------------|------------------------------------------------|-----------|-------|--|--|--|--|
| Sequenz                 | AS-Position | nemessen                                       | herechnet | Delta |  |  |  |  |
|                         | 99-105      | 732.36                                         | 732.46    | -0.1  |  |  |  |  |
| WSCATYK                 | 103-200     | 959 13                                         | 250 30    | 0,1   |  |  |  |  |
|                         | 200 221     | 2445 02                                        | 2445 10   | 0,05  |  |  |  |  |
|                         | 200-221     | 2445,05                                        | 2445,10   | -0,07 |  |  |  |  |
| AGATQGPLPSK             | 222-233     | 1026,59                                        | 1026,55   | 0,04  |  |  |  |  |
| DLSGAAGSSLFLAAEYSIVK    | 234-252     | 1999,03                                        | 1999,03   | 0     |  |  |  |  |
| YSVSQIGTAETGFYCGDPR     | 253-272     | 2107,91                                        | 2107,93   | -0,02 |  |  |  |  |
| TSMIAGQTLQTLALQGGVVNL   | 272-306     | 3444,99                                        | 3445,09   | -0,1  |  |  |  |  |
| AAIPGFFLPPSCK           |             |                                                |           |       |  |  |  |  |
| VYAMMR                  | 388-394     | 769,91                                         | 769,97    | -0,06 |  |  |  |  |
| YGLGCGIGNNPNVCLK        | 395-409     | 1734,80                                        | 1734,81   | -0,01 |  |  |  |  |
| MFFDGDK                 | 434-440     | 831,21                                         | 831,36    | -0,15 |  |  |  |  |
| DGSGQPYPTSEQNK          | 441-454     | 1507,60                                        | 1507,65   | -0,05 |  |  |  |  |
| LGAIPQNTNYQR            | 567-578     | 1374,60                                        | 1374,70   | -0,1  |  |  |  |  |
| NPDCSLLATLVQSTFTQGVQLR  | 667-688     | 2448,24                                        | 2448,24   | 0     |  |  |  |  |
| FQMSVINGDQNDAINCPR      | 845-862     | 2078,82                                        | 2078,93   | -0,09 |  |  |  |  |
| YTSWMNAMMDSFER          | 863-876     | 1768,73                                        | 1768,70   | 0,03  |  |  |  |  |
| DGGVPCGSAVR             | 928-938     | 1074,33                                        | 1074,49   | -0,13 |  |  |  |  |
| LYNPAGGGFFTDYR          | 939-952     | 1577,68                                        | 1577,73   | -0,05 |  |  |  |  |
| TYEIFAPFK               | 1093-1101   | 1115,49                                        | 1115,57   | -0,08 |  |  |  |  |
| TVQFWLCPALK             | 1154-1163   | 1362,62                                        | 1362,71   | -0,09 |  |  |  |  |
| ITVAAQQSAHDAVMDFILSGGDF | 1164-1188   | 2648,35                                        | 2648,30   | 0,05  |  |  |  |  |
| VR                      |             |                                                |           |       |  |  |  |  |
| LVCGSQIR                | 1192-1199   | 932,49                                         | 932,49    | 0     |  |  |  |  |
| IGEAEPPR                | 1200-1207   | 868,41                                         | 868,44    | -0,03 |  |  |  |  |
| AVFPSPFDPK              | 1212-1221   | 1104,59                                        | 1104,56   | 0,03  |  |  |  |  |
| AAVDPYLYLSGK            | 1222-1233   | 1296,62                                        | 1296,67   | -0,05 |  |  |  |  |
| AGSPGAGVCIDKLPV         | 1234-1248   | 1440,70                                        | 1440,74   | -0,04 |  |  |  |  |

Tabelle 2.6: Entdeckte Peptidfragmente von GP2 aus *Chlamydomonas reinhardtii* bei MALDI-PMF, gefundene Fragmente entsprechen 22,83% von 1533 AS.

Beim MALDI-PMF von GP2 aus *Chlamydomonas reinhardtii* wurden insgesamt 26 Peptide entdeckt, die nach MASCOT der AS-Sequenz von GP2 aus *Chlamydomonas reinhardtii* (Protein Accession AAT02521) zuzuordnen sind. Für diese Zuordnung spricht die geringe Abweichung von berechnetem zu gemessenem Molekulargewicht der Fragmente. Diese entsprechen 22,8% von den 1533 Aminosäuren, die GP2 besitzt. Für 27 weitere Peptide im Massenbereich von 800 bis 3500 Da konnten keine Zuordnungen zu GP2 gemacht werden. Dies liegt vermutlich an einer posttranslationalen Modifizierung wie der O- oder N-Glykosylierung, welche die Massen der Peptide erhöht, so dass die nicht der Masse der erwarteten Peptide entsprechen.

Dennoch sprechen die Ergebnisse dafür, dass das in GenBank als GP2 annotierte Protein mit dem aus der präparativen SDS-PAGE isolierten Protein identisch ist und daher die Annotierung korrekt ist.

Für das aus einem SDS-Gel isolierte und mit MALDI-PMF untersuchte GP2 von *Chlamydomonas incerta* wurden elf Peptide gefunden, die ebenfalls in dem in GenBank hinterlegten Protein AAT02521 wiedergefunden werden können (s. Tab. 2.7).

|                     |             | Molekularge | in Dalton |       |
|---------------------|-------------|-------------|-----------|-------|
| Sequenz             | AS-Position | gemessen    | berechnet | Delta |
| WSCATYK             | 193-199     | 915,3       | 915,4     | -0,1  |
| AGATQGPLPSK         | 222-232     | 1026,49     | 1026,55   | -0,06 |
| DGGVPCGSAVR         | 928-938     | 1074,44     | 1074,49   | -0,05 |
| LYNPAGGGFFTDYR      | 939-952     | 1577,67     | 1577,73   | -0,07 |
| TYEIFAPFK           | 1093-1101   | 1115,51     | 1115,57   | -0,07 |
| ITVAAQQSAHDAVMDFILS | 1164-1188   | 2648,27     | 2648,31   | -0,04 |
| GGDFVR              |             |             |           |       |
| QARLVCGSQIR         | 1189-1199   | 1287,56     | 1287,69   | -0,04 |
| IGEGEPPRQK          | 1200-1209   | 1124,54     | 1124,6    | -0,13 |
| LKAVFPSPFDPK        | 1210-1221   | 1345,68     | 1345,74   | -0,07 |
| AVFPSPFDPK          | 1212-1221   | 1104,5      | 1104,57   | -0,07 |

Tabelle 2.7: Entdeckte Peptidfragmente von GP2 aus *Chlamydomonas incerta* bei MALDI-PMF, gefundene Fragmente entsprechen 9,06% von 1533 AS.

Insgesamt 28 weitere Peptide mit einem Molekulargewicht von 800 bis 3500 Da konnten hier nicht weiter einem Protein zugeordnet werden. Weiterhin ist zu erkennen, dass neun der gefundenen elf Fragmente ähnlich bis identisch mit denen sind, die beim MALDI-PMF von GP2 aus *Chlamydomonas reinhardtii*, s. Tabelle 2.6, gefunden werden konnten. Dies gibt bereits einen Hinweis auf die sehr hohe Homologie von GP2 bei diesen beiden Arten.

#### Ergebnisse

Ein vollständiges Alignment der beiden Aminosäuresequenzen ist in Abbildung 2.16 dargestellt und wird an späterer Stelle besprochen, da sich die putative Aminosäuresequenz von GP2 aus *Chlamydomonas incerta* erst durch die Sequenzierung der Nukleotidsequenz ableiten ließ. Dieses Alignment wird zeigen, dass zwischen den beiden GP2 auf Ebene der Aminosäuren eine Identität von 60% vorhanden ist.

Als letzter der drei bisher untersuchten Organismen, die über GP2 in ihrer Zellwand verfügen, wurde die Alge *Volvox carteri* gewählt. Sie ist einer der einfachsten multizellulären Organismen mit einer echten Trennung zwischen chlamydomonas-artigen somatischen Zellen und Gonidien. *Volvox* gilt als nächster multizellulärer Verwandter von *Chlamydomonas*, mutmaßlich haben diesen beiden zuletzt vor etwa 60 Mio. Jahren einen gemeinsamen Vorfahren besessen (PRÖSCHOLD *et al.* 2001).

Frühere Untersuchungen haben gezeigt, dass die Zellwand von *Volvox* der von *Chlamydomonas* sehr ähnlich ist und auch über ein GP2-artiges Zellwandprotein verfügt (ADAIR & APPEL 1989, s. JGI: estExt\_fgenesh5\_synt.C\_10116, Protein ID 120176). Dieses ist jedoch bisher nicht annotiert, da von *Volvox* erst eine EST-Datenbank vorhanden ist und ein annotiertes Genom-Projekt am DOE Joint Genome Institute zurzeit noch am Anfang steht (siehe http://genome.jgi-psf.org/Volvox).

Die obige in der EST-Datenbank gefundene Nukleotidsequenz wurde mit dem Programm Translate (s. 4.11) in putative Aminosäuresequenzen übersetzt, dabei wurde das zweite Leseraster in 5'->3' Richtung gewählt, da nur dieser eine genügend lange Aminosäuresequenz (1171 AS) nach einem potentiellen Start-Methionin enthielt. Diese putative Aminosäuresequenz ist trunkiert in der Abbildung 2.23 sowie vollständig im Anhang, Abb. 5.4 zu finden.

Bei einem MALDI-PMF konnten 16 Peptide wiederentdeckt werden, die in der Datenbank (s. 4.9) aller extensinartigen HRGPs von *Chlamydomonas reinhardtii* vorkommen (s. Tabelle 2.8). Dies entspricht gut 20% der Aminosäuren von GP2 und stellt die zweithöchste gefundene Übereinstimmung aller drei hier verglichenen GP2 dar.

|                                    |             | Molekularge     | wicht     |       |
|------------------------------------|-------------|-----------------|-----------|-------|
|                                    |             | $[M+H^+]$ in Da | alton     |       |
| Sequenz                            | AS-Position | gemessen        | berechnet | Delta |
| WCAISNR                            | 10-16       | 906,48          | 906,43    | 0,05  |
| YQDTCR                             | 62–67       | 842,50          | 842,35    | 0,15  |
| DYSDNIYFTVQLEGTSR                  | 92-108      | 2007,96         | 200,93    | 0,03  |
| FPVFGLGAPDTGFYCGDPR                | 222-240     | 2072,96         | 2072,95   | 0,01  |
| FALGCGYNGDPDK                      | 363-375     | 1413,61         | 1413,61   | 0     |
| MFFDGYYDGDIIAAETE<br>RPGLAR        | 403-425     | 2607,15         | 2607,22   | 0,07  |
| FSIMSSTIR                          | 597-605     | 1041,71         | 1041,54   | 0,17  |
| AADCSALASQANIVAR                   | 610-625     | 1617,80         | 1617,80   | 0     |
| VGVIQCDRPAAETILK                   | 821-836     | 1769,96         | 1769,96   | 0     |
| DSGVPCGSAVR                        | 864-874     | 1104,55         | 1104,51   | 0,04  |
| TYEVFSPFISAATK                     | 1000-1013   | 1560,81         | 1560,80   | 0,01  |
| NTNVNER                            | 1014-1020   | 846,47          | 846,41    | 0,06  |
| TVVYWLCPALR                        | 1021-1031   | 1377,74         | 1377,74   | 0     |
| AALASQLGVAVSFKPHPQGIACSDY<br>YTLSR | 1032-1061   | 3207,34         | 3207,63   | 0,29  |
| IAAIPPTPFDPK                       | 1115-1126   | 1266,71         | 1266,71   | 0     |
| STSDPYEYLVGGKPTLGFCLNTL            | 1127-1149   | 2532,18         | 2532,23   | 0,05  |

Tabelle 2.8: Entdeckte Peptidfragmente von GP2 aus *Volvox carteri* bei MALDI-PMF, gefundene Fragmente entsprechen 19,9% von 1171 AS.

Bei allen isolierten Peptiden, die eine Entsprechung in der putativen AS-Sequenz von GP2 von *Volvox carteri* hatten, wurden nur Peptiden aus globulären Proteinanteilen gefunden. Dies ist insofern nicht verwunderlich, da GP2 einen höheren Anteil globulärer Domänen aufweist als z.B. das GP1, das über zwei ausgeprägte *shaft*-Regionen mit langen Polyprolin-II Helices verfügt (GOODENOUGH & HEUSER 1985).

Weiterhin auffallend ist, dass in allen gefundenen Peptiden kaum Prolin vorkommt und keines aus den (hydroxy)prolinreichen *shaft*-Regionen zu stammen scheint. Dies hat einen wesentlichen Grund, da alle Peptide, die Prolin oder mögliche N-Glykosylierungsstellen enthalten, durch die Glykosylierung eine höhere Masse besitzen als das berechnete Gewicht der Summe ihrer Aminosäuren. Somit können diese Peptide nicht per Masse mit anderen, erwarteten Peptidstücken abgeglichen und in der AS-Sequenz von GP2 wiedergefunden werden. Weiterhin wurde aufgrund dieser guten Ergebnisse versucht, auch andere GPs per MALDI-PMF nachzuweisen bzw. wiederzuentdecken. Dies gelang mit einem Monomer des GP3, hier dem GP3 beta aus *Chlamydomonas reinhardtii*, das bislang im Genom noch nicht annotiert ist. Die zugehörige Tabelle mit den gefundenen Peptiden ist im Anhang, Tab. 5.1 dargestellt.

## 2.4.2 Alignment von putativen AS-Sequenzen von GP2 zur Feststellung von Homologien

In 2.4.1 konnte gezeigt werden, dass von den Zellen isoliertes und durch präparative SDS-PAGE getrenntes und mit MALDI-PMF untersuchtes GP2 aller drei untersuchten Arten in variablen Teilen mit den annotierten Sequenzen oder in EST-Datenbanken niedergelegten Sequenzen identisch ist.

*Chlamydomonas incerta* ist die einzige der drei in dieser Arbeit untersuchten Arten, von der bis auf wenige Sequenzen keinerlei genomische Daten vorliegen (LEE *et al.* 2007, GenBank Accession EF057410, AY795084, AY937239, AY858986). Es ist aber anzunehmen, dass *Chlamydomonas incerta* sehr nah verwandt zu *Chlamydomonas reinhardtii* ist (COLEMAN & MAI 1997, POPESCU *et al.* 2006).

Daher wurde zunächst bioinformatisch untersucht, wie groß die Homologie von GP2-Proteinen aus den beiden Arten *Chlamydomonas reinhardtii* und *Volvox carteri* ist.

Für GP2 von *Chlamydomonas reinhardtii* sind zwei verschiedene relevante Sequenzen annotiert, zum einen in GenBank (AY596305), zum anderen in der Datenbank des JGI (FER\_e\_gwW-3-32-1, Protein ID 195768). Der bei GenBank hinterlegten Sequenz fehlen das Start-Methionin, die Signalsequenz sowie ein Intron, dass 289 bp lang ist und bei Position 181-469 liegt. In der Sequenz des JGI liegt bei Position 3479-3997 eine Sequenzierlücke von 519 bp vor. Ein teilweises Alignment der beiden Gensequenzen findet sich im Anhang in Tabelle 5.5.

Mit der Software GENtle wurden nun diesen beiden Sequenzen zu einer Gesamtsequenz kombiniert, so dass eine möglichst vollständige Sequenz von GP2 ab dem Start-Methionin vorliegt und das Intron sowie die Sequenzierlücke entfernt wurden. Bei der Sequenzierlücke von 519 bp wurde darauf geachtet, dass keine Leserasterverschiebungen auftraten, da 519 bp einer geraden Summe von 173 AS entsprechen.

Die kombinierte Nukleotidsequenz von *GP2* aus *Chlamydomonas reinhardtii* wurde nun mit Translate in eine putative AS-Sequenz übersetzt und ein Alignment mit der putativen AS-Sequenz von GP2 aus *Volvox carteri* durchgeführt (s. Abb. 2.23).

| Cr_GP2<br>Vc_GP2 | MARSTALLVALLGLAALGAANAQGAYPPPARGLNAYCAIQNRTTNAWACNLGVNTPTACE<br>MARSSVLLVALMGLAALQAAVAQGPARGVSKWCAISNRATAAWACNLAVGTSTSCE                                 | 60   |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Cr_GP2<br>Vc_GP2 | TTDLWSTDATECSLPQVPGFPVPANTFPYTDTCQYQVARLPLVYKGTTTVGGFLVLFKDY<br>TSDLWATDSGECAVPNF-GQPLAAETFKYQDTCRYQVAQVPLVFNGTSTLGAYLLIFKDY                             | 120  |
| Cr_GP2<br>Vc_GP2 | ADNIYYTLSLNATARAANQPDGQWLYVEPTLPGQTGPSGAVYLWDSPPDSSKPLSVQASV<br>SDNIYFTVQLEGTSRVSGQVDGQWLYTEPVITGANSPSAAIYFWDSPPNTAVQIAQQAQL                             | 180  |
| Cr_GP2<br>Vc_GP2 | QDYMIEDRNSYKRWSCATYKTSLNNYCAPGYVFDAAGICQPKAGATQGPLPSKDLSGAAG<br>VNLMTEDRNSYKRWSCFTYSAPTTNFCAPGSQYNGSTCVASSGSPSSKNLALTPS<br>B                             | 240  |
| Cr_GP2<br>Vc_GP2 | SSLFLAAEYSIVKYSVSQIGTAETGFYCGDPRTSMIAGQTLQTLALQGGVVNLAAIPGFF<br>SNLYISVVVNVVKFPVFGLGAPDTGFYCGDPRGDLSLRVGTLVLNTTGNVLRLADIARFD                             | 300  |
| Cr_GP2<br>Vc_GP2 | LPPSCKTTSRPPSPLPPSPPPQPPSPLPPSPAPLPPSPPPSPLPPSPKPPTPPSPLPPA<br>LPTNCANTQRPPSPPLPPSPPPLPPSPAPPSPRPPSPLPPSPPPPSPGPPPSPPVPFPPS                              | 360  |
| Cr_GP2<br>Vc_GP2 | PPTQQFTGSVFVYAPNRPNGFNQDDVTKVYAMMRYGLGCGIGNNPNVCLKSQPYVTINET<br>PPTQQFSVSVFVYHPNRPTPFADADVAKVIRVMRFALGCGYNGDPDKCLRSKPYATFNTT                             | 420  |
| Cr_GP2<br>Vc_GP2 | NNAFYPAYTMLG <mark>VKMFFDG</mark> SKDGSGQPYPTSEQNKWAADAVTSMFAVLGSSELWKALAGP<br>NNAAFPLFTMLG <mark>VKMFFDG</mark> YYDG-DIIAAETERPGLARASVTSLYNNMNANLVWAQLA | 480  |
| Cr_GP2<br>Vc_GP2 | VQFGGLGLGCGAFMSFEAVVDGQYYSQPIGGGSPPLVDSYDGSTYTYQGARYVCPLLLGG<br>AADTGLNLFCGAYMSLEAITDGAFYSQPGFTDGASGTNLGALYVCPIIP                                        | 540  |
| Cr_GP2<br>Vc_GP2 | FGGPQWPNASLPYYIPDGVAGLPGYIRLGAIPQNTNYQRRCATILTPPDLMQPSTSCPL<br>NVGVPTALPADVVGLPGFVRLGNITSNTNYVPRLCSPSLAQGPPMMCPM                                         | 600  |
| Cr_GP2<br>Vc_GP2 | SPPPSPSPPSPPQPPSPPVPSPPSPPSPPSPAPPAPPAAFCGLNFKVISRI<br>PPPPPSPPMPPSPPSPPSPPSPPSPPSPPSPASPSPPPSPAQFCSIRFSIMSST                                            | 660  |
| Cr_GP2<br>Vc_GP2 | PKNGVDRNPDCSLLATLVQSTFT-QGVQLRNPPQFRCGTTVSATEISAVADTLTTEGAQV<br>IRYNS-RAADCSALASQANIVARSAGVVVRQPGSFACN-TSSPVELAVTADLLDATAAQT<br>E                        | 720  |
| Cr_GP2<br>Vc_GP2 | FLRNMAGNIGAFNQFTFPAPGGLGLICGDYFNVTSTCGMNTTAPVPVFQP-NGTVVNATY<br>YLIALSNNGALYGNIGLMINLLCGDYFNISASCIGTTVPSVSVTLPGSSTPTTVSY                                 | 780  |
| Cr_GP2<br>Vc_GP2 | PFVVGPDAIFYPQFVLPSYTCPPPPPAPSPPPKPPTPSPPPLPPQPNPPPAPPSPNPSPP<br>PLVIKAGDPLYPVGFAFCPPAPPSPPTPPSPPPPSPPPAPPSPPSPPPPPALP                                    | 840  |
| Cr_GP2<br>Vc_GP2 | PPPPGFRFQMSVINGDQNDAIN-CPRYTSWMNAMMDSFERTNTIQRVNPSAPYCSRPAQE<br>PPPPGFTLQLSIINGDINDATTNCDRYKKWLNAMLTSYEIAGIINRVGVIQCDRPAAE<br>F                          | 900  |
| Cr_GP2<br>Vc_GP2 | TLLSPELAQPSQVNFLYQYLSV <mark>NST</mark> IGVFVRDGGVPCGSAVRLYNPAGGG <mark>FFTDYRC</mark> SRD<br>TILKQELLRPSEVNILYTALLVPGVIGAFARDSGVPCGSAVRLYNPTG-SVFTDYACS | 960  |
| Cr_GP2<br>Vc_GP2 | VPTNPAVAVLDLCCPLPPSPPPPTPPSPPPPSPPPPVLSPPPSPPPPSPPPPAPPPSPP<br>T <u>NSS</u> APTYVQDLCCSPPPSP-MPLPPSPPPPRPPGPLASPPPPNPPPPSPP                              | 1020 |
| Cr_GP2<br>Vc_GP2 | PPVPPPPSPPPSPPPSPPPAAASPPPSPPPPPSPPPPVARLPPWPPLPVNNVPPAP<br>PPNPPPSPPPKPPPPPASPPPPTRR-PPWPPIPAKNAAPPP<br>G                                               | 1080 |
| Cr_GP2<br>Vc_GP2 | TAFNTTWTAPAGTTVRTYEIFAPFKGTGGRNTGVSGRTVQFWLCPALKAALQDQLGQPVS<br>PYTNATWNPPANLEIRTYEVFSPFISAATKNTNVNERTVVYWLCPALRAALASQLGVAVS                             | 1140 |
| Cr_GP2<br>Vc_GP2 | VKPNVMASISCTDWYQVKKKAKGLFYRITVAAQQSAHDAVMDFILSGGDFVRQARLVCGS<br>FKPHPQG-IACSDYYTLSR-AKGIYYRITVAAQTAAHDALLDFMSTSGDFVFQANLVCGG<br>H                        | 1200 |
| Cr_GP2<br>Vc_GP2 | QIRIGEAEPPRQKLKAVFP <mark>SPFDPKA</mark> AVDPYLYLSGKAGSPGAGVCIDKLPV 1252<br>QIRVGMGEAARSKIAAIPPTPFDPKS <mark>TSDPYEYLVG-GKPTLGFCLNTL</mark>              |      |

Abb. 2.23: Alignment der Aminosäuresequenzen von GP2 aus *Chlamydomonas reinhardtii* (Cr) und *Volvox carteri* (Vc);

Farberläuterung: rot = kleine und hydrophobe AS (AVFPMILW), blau = saure AS (ED), magenta = basische AS (RK), grün = Hydroxyl- und Aminoseitenketten (STYHCNGQ) nach http://www.ebi.ac.uk/Tools/clustalw2/help.html#color und TAYLOR 1986; in den grauen Boxen sind die konservierten Regionen A bis H dargestellt; umrahmt sind potentielle Stellen für eine N-Glykosylierung nach GUPTA *et al.* 2004.

Das durchgeführte Alignment in Abbildung 2.23 zeigt, dass bei GP2 aus *Chlamydomonas reinhardtii* und *Volvox carteri* eine sehr hohe Ähnlichkeit der Aminosäuren vorliegt. Diese wurden nach ihren Eigenschaften in vier Gruppen eingeteilt: kleine und hydrophobe AS, saure AS, basische AS und hydrophile AS (Mengendiagramm nach TAYLOR 1986).

Beim GP2 der beiden verglichenen Arten sind 622 AS vollkommen identisch, dies entspricht annähernd 50% der verglichenen Sequenzen. Innerhalb einer Gruppe konserviert ausgetauscht wurden 14% bzw. 176 Aminosäuren, z.B. ein hydrophobes Isoleucin gegen ein hydrophobes Valin oder eine basische gegen eine andere basische Aminosäure.

Insgesamt gab es 166 semikonservative Austausche von Aminosäuren zwischen zwei verschiedenen Gruppen (z.B. Serin gegen Asparagin), was etwa 13 % entspricht. Für die Lokalisierung der identischen oder ausgetauschten AS im Protein kann man keine offensichtlichen Rückschlüsse auf speziell konservierte Bereiche ziehen.

Einerseits sind die Positionen der identischen AS heterogen über die gesamte AS-Sequenz verteilt. Jedoch liegen sie zu 27 % (169 von 622 AS) innerhalb von Proteinbereichen mit hohem Serin- und Prolingehalt, welcher in PPII-Konformation vorliegt. Andererseits bieten die meisten Programme zur Sekundärstrukturvorhersage keine Datensätze für Proteine mit PPII-Helices an, sondern klassifizieren dieses spezielle Sekundärstrukturelement zumeist als Zufallsknäuel (random coil). So wird z.B. für GP2 von Volvox vorhergesagt, dass es zu 22 % in Alpha-Helix, 17 % als Beta-Faltblatt und zu 61% als random coil vorliegt (nach COMBET et al. 2000). Dies macht eine exakte Zuordnung von identischen AS in klar definierte Sekundärstrukturbereiche schwierig.

Deutlich zu erkennen ist aber, dass die beiden putativen Signalsequenzen zu 73% (17 von 23 AS) identisch sind. Lediglich 3 von insgesamt 18 putative N-Glykosylierungstellen in beiden AS-Sequenzen sind konserviert. An der AS-Position 952 (V.c.)/ 1000 (C.r.) befindet sich in einem Schaftbereich, der als Shaft D bezeichnet wird und später in 2.4.4 eingehender besprochen wird, eine Verkürzung. Diese Stelle im Protein ist im Vergleich zum GP2 aus *Chlamydomonas reinhardtii* um 26 AS verkürzt, was bedeutet, dass in einem mutmaßlich strukturell wichtigen Bereich mit PPII-Helix eine Deletion stattgefunden hat.

Insgesamt entsprechen die beschriebenen identischen AS oder semi-/konservierten Austausche 964 von 1252 AS, was eine Ähnlichkeit der AS-Sequenz von 74,8% ausmacht. An dieser Stelle kann somit festgehalten werden, dass sich die AS-Sequenzen des GP2 von *Chlamydomonas reinhardtii* und *Volvox carteri* sehr ähnlich sind. Weiterhin kann gesagt werden, dass GP2 von *Volvox* mit 1172 AS etwas kleiner als das von *Chlamydomonas reinhardtii* ist, welches 1252 AS besitzt.

Wenn sich also GP2 dieser beiden Arten so ähneln und weiterhin die Annahme gilt, dass *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* ebenfalls sehr homolog sind, könnte also versucht werden, mittels der bekannten Nukleotidsequenz von *GP2* aus *Chlamydomonas reinhardtii* Primer zu entwickeln, die dazu geeignet sind, *GP2* aus *Chlamydomonas incerta* zu sequenzieren.

#### 2.4.3 Sequenzierung von GP2 aus Chlamydomonas incerta

Wie in 2.4.2 gezeigt werden konnten, weisen die GP2 von *Chlamydomonas reinhardtii* und *Volvox carteri* eine hohe Homologie auf. *Chlamydomonas incerta* ist zu *Chlamydomonas reinhardtii* näher verwandt als *Volvox carteri* zu *Chlamydomonas reinhardtii* (LEE *et al.* 2007). Dies lies die Vermutung zu, dass man mit Hilfe von degenierten Oligonukleotiden, die anhand der Sequenz von *GP2* aus *Chlamydomonas incerta* mittels PCR isoliert werden kann.

Der Vergleich der GP2 von *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* kann wichtige Hinweise auf die Verwandtschaft dieser Arten zueinander und die Evolution der HRGPs geben.

Der potentielle ORF von *GP2* aus *Chlamydomonas incerta* wurde mit Daten aus dem MALDI-PMF (s. Tab. 2.7) umrissen und durch ein Alignment mit ClustalW2 Bereiche mit hoher Konservierung bei den Aminosäuren von GP2 aus *Chlamydomonas reinhardtii* und *Volvox carteri* herausgesucht (s. Abb. 2.23, graue Boxen mit Regionen A bis H).

Dazu wurde überprüft, an welchen Stellen mit hoch konservierten AS in der zugehörigen Nukleotidsequenz Codons liegen, die eine möglichst geringe Degeneration bezogen auf die jeweilige Aminosäure vorweisen.

Dadurch sollte gewährleistet sein, dass nach Möglichkeit nur wenige Codons infrage kommen, um eine bestimmte Aminosäure zu codieren und somit die Degeneration von Primern klein zu halten, da degenerierte Primer die Eigenschaft besitzen, unspezifischer an DNA zu binden als nicht degenerierte (LINHART & SHAMIR 2002).

Überlappende Bereiche mit guter Konservierung von AS und geringer Degeneration von Codons auf Nukleotidebene wurden ausgewählt und mit Region A bis H bezeichnet (s. graue Boxen in Abb. 2.23). Dann wurden anhand einer Codon-Gebrauchstabelle für *Chlamydomonas* (NAKAMURA *et al.* 2000) degenerierte forward und reverse Primer für Genabschnitte aus *GP2* konstruiert. Die Primer wurden so ausgewählt, dass sich überlappende Genabschnitte von ~ 500 bp bilden ließen. Diese Liste von Primern (s. Anhang Tab. 5.2) wurde in Kooperation mit Jae-Hyeok Lee (Department of Biology, Washington University, St. Louis, Missouri, USA) angefertigt.

Nach ersten Versuchen wurde nach Rücksprache mit J.-H. Lee das ursprüngliche erste Primerset überarbeitet.

Die Methode zum Design dieses neuen Primersets beruhte auf folgender Überlegung: Falls *GP2* in *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* hochkonserviert ist, wie für andere Glykoproteine bereits gezeigt wurde (FERRIS *et al.* 1997, 2005; LEE *et al.* 2007), dann sollten Primer, die auf Basis der Nukleotidsequenz von *Chlamydomonas reinhardtii* konstruiert wurden, auch an *GP2* von *Chlamydomonas incerta* binden.

Daher wurde nun aus dem ersten degenerierten Primerset (s. Tab. 5.2) alle degenerierten Codons entfernt und gemäß einer Codon-Gebrauchstabelle für *Chlamydomonas incerta* (NAKAMURA *et al.* 2000) ein neuer Satz Primer entworfen. Mit diesem neuen Primerset (s. Tab. 5.3) wurde die Amplifizierung von Genabschnitten aus *GP2* erneut angegangen, um diese dann zu sequenzieren (s. 4.8.7).

Zusätzlich wurde mit der Software Primer3Plus (s. 4.11) eine Liste von möglichen Primern anhand folgender Rahmenparameter erstellt:

Größe 15-21 Nukleotide; GC-Gehalt 40-80%; Schmelztemperatur  $T_m$  minimal 55°C/ optimal 60°C/ maximal 62°C. Primer aus dieser Liste wurden so ausgewählt, dass sich überlappende Genabschnitte von ~ 500 bp bilden ließen und diese Primer abschließend mit der Software NetPrimer (s. 4.11) auf ihre Qualität hin überprüft. Dieses dritte Primerset wurde verwendet, um bei der Sequenzierung entstandene Lücken weiter zu schließen.

Die in dieser Arbeit erstellte Teilsequenz von GP2 ist im Rahmen eines Alignments mit der homologen Sequenz aus *Chlamydomonas reinhardtii* als Ganzes im Anhang (s. Abb. 5.6) dargestellt.

Im Folgenden werden die putativen AS-Sequenz sowie Teilbereiche der erstellten Nukleotidsequenz besprochen. Zunächst wurde wie auch in 2.4.2 beschrieben ein Alignment der AS-Sequenzen durchgeführt, welches in Abbildung 2.24 dargestellt ist.

| Cr_GP2<br>Ci_GP2 | MARSTALLVALLGLAALGAANAQGAYPPPARGLNAYCAIQNRTTNAWACNLGVNTPTACE                                                                                               | 60    |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Cr_GP2<br>Ci_GP2 | TTDLWSTDATECSLPQVPGFPVPANTFPYTDTCQYQVARLPLVYKGTTTVGGFLVLFKDY<br>KGTTTVGGFLVLFKDY                                                                           | 120   |
| Cr_GP2<br>Ci_GP2 | ADNIYYTLSL <mark>NAT</mark> ARAANQPDGQWLYVEPTLPGQTGPSGAVYLWDSPPDSSKPLSVQASV<br>ADNIYYTLSL <mark>NAT</mark> ERAANQPDGQWLYVEPTLPGQTGPSG-AYLWDSPPDSSKPLSVQASV | 180   |
| Cr_GP2<br>Ci_GP2 | QDYMIEDRNSYKRWSCATYKTSLNNYCAPGYVFDAAGICQPKAGATQGPLPSKDLSGAAG<br>QDYMIEDRNSYKRWSCATYKTSLNNYCAPGYVFDAAGICQPKAGATQGPLPSKDLSGAAG                               | 240   |
| Cr_GP2<br>Ci_GP2 | SSLFLAAEYSIVKYSVSQIGTAETGFYCGDPRTSMIAGQTLQTLALQGGVVNLAAIPGFF<br>SSLFLAAEYSIVKYSVSQIGTAETGFYCGDPRMNAAEQLALQAASVNLAAIPGFF                                    | 300   |
| Cr_GP2<br>Ci_GP2 | SNAIL A<br>-LPPSCKTTSRPSPPLPPSPPPQPPSPLPPSPAPLPPSPPPSPLPPSPKPPTPPSPLPP<br>SLPPSCKTTSRPSPPLPPSPPPQPPSPLPPSPAPLPPSPPPSPLPPSPKPPTP                            | 360   |
| Cr_GP2<br>Ci_GP2 | APPTQQFTGSVFVYAPNRPNGFNQDDVTKVYAMMRYGLGCGIGNNPNVCLKSQPYVTINE                                                                                               | 420   |
| Cr_GP2<br>Ci_GP2 | TNNAFYPAYTMLGVKMFFDGSKDGSGQPYPTSEQNKWAADAVTSMFAVLGSSELWKALAG<br>                                                                                           | 480   |
| Cr_GP2<br>Ci_GP2 | PVQFGGLGLGCGAFMSFEAVVDGQYYSQPIGGGSPPLVDSYDGSTYTYQGARYVCPLLLG<br>PVQFGGLGLGCGAFMSFEAVVDGQYYSQPIGGGSHTLVDSYHGSTYTYQGARYVCPLLLG                               | 540   |
| Cr_GP2<br>Ci_GP2 | GFGGPQWPNASLPYYIPDGVAGLPGYIRLGAIPQNTNYQRRRCATILTPPDLMQPSTSCP<br>GFGGPQWPNASLPYYIPEGVAVLPGYSDERSHPCLTPGGTDAEGPIRA                                           | 600   |
| Cr_GP2<br>Ci_GP2 | SNAIL B<br>LSPPPSPSPPSPPQPPSPPP-VPPSPPSPPSPPSPPSPANPSPPPPAPFAAFCGLNFKVIS<br>LSPPPSPSPPPSPRQPPSPPRCPRRLPLLLPILGAPPTP-LPAHAPFAAFCGLNFKVIS                    | 660   |
| Cr_GP2<br>Ci_GP2 | RIPKNGVDRNPDCSLLATLVQSTFTQGVQLRNPPQFRCGTTVSATEISAVADTLTTEGAQ<br>RIPKNGVDRKGECSLLFTLKQSTFTQGGELCNPPQFRCG-TTSATEISAVADTLTTEGAQ                               | 720   |
| Cr_GP2<br>Ci_GP2 | VFLRNMAGNIGAFNQFTFPAPGGLGLICGDYFNVTSTCGMNTTAPVPVFQPNGTVVNAT<br>VFLRNMAGNIGAFNQFTCQHRGGCYECIQTAPVPVFQPNGTVVNATY                                             | r 780 |
| Cr_GP2<br>Ci_GP2 | SNAIT C<br>PFVVGPDAIFYPQFVLPSYTOPPPPAPSPPPKPPTPSPPPLPPQPNPPPAPPSPNPSPP<br>PFVVGPDAIFYPQFVLPSYTOPPPPAPSPPPKPPTPSPPPLPPQPNPPPAPPSPNPSPP                      | 840   |
| Cr_GP2<br>Ci_GP2 | PPPPGFRFQMSVINGDQNDAINCPRYTSWMNAMMDSFERTNTIQRVNPSAPYCSRPAQET<br>PPPPGFRFQMSVINGDQNDAINCPRYTSWMNAMMDSFERTNTIQRVNPSAPYCSRPAQET                               | 900   |
| Cr_GP2<br>Ci_GP2 | LLSPELAQPSQVNFLYQYLSVNSTIGVFVRDGGVPCGSAVRLYNPAGGGFFTDYRCSRDV<br>LLSPELAQOSQVNFLYQYLSVNSTIGVFVRDGGVPCGSAVRLYNPAGGGFFTDYR                                    | 958   |
| Cr_GP2<br>Ci_GP2 | PTNPAVAVLDLCCPLPPSPPPTPPSPPPPSPPPPVLSPPPSPPPPSPPPPSPP                                                                                                      | 1020  |
| Cr_GP2<br>Ci_GP2 | PVPPPPSPPPSPPPSPPPAAASPPPSPPPPPSPPPPVARLPPWPPLPVNNVPPAPT                                                                                                   | 1080  |
| Cr_GP2<br>Ci_GP2 | ARNTTWTAPAGTTVRTYEIFAPFKGPLASAACHNVPPAPTAR <mark>NTT</mark> WTAPAGTTVRTYEIF                                                                                | 1140  |
| Cr_GP2           | APFKGTGGRNTGVSGRTVQFWLCPALKAALQDQLGQPVSVKPNVNASISCTDWYQVKKKA                                                                                               | 1200  |

Ci\_GP2

Cr\_GP2

Ci\_GP2 Cr\_GP2

Ci\_GP2

Abbildung 2.24: Alignment der Aminosäuresequenzen von GP2 aus Chlamydomonas reinhardtii (Cr) und Chlamydomonas incerta (Ci);

FDPKAAVDPYLYLSGKAGSPGAGVCIDKLPV 1289

FDPKAAVDPYLYLSSKAGLPG---

APFK-TGGRNTGVSGRTVQFWLCPALKAALQDQLGQPVSVKPNVNASISCTDWYQVKKKA

KGLFYRITVAAQQSAHDAVMDFILSGGDFVPKA-----LVIGEGEPPRQKLKAVPCST

KGLFYRITVAAQQSAHDAVMDFILSGGDFVRQARLVCGSQIRIGEAEPPRQKLKAVFPSP 1260

Farberläuterung: rot = kleine und hydrophobe AS (AVFPMILW), blau = saure AS (ED), magenta = basische AS (RK), grün = Hydroxyl- und Aminoseitenketten (STYHCNGQ) nach http://www.ebi.ac.uk/Tools/clustalw2/help.html#color und TAYLOR 1986; umrahmt sind Schaftbereiche in PPII-Konformation, grau hinterlegt sind alle nicht-semi- oder nicht-konservativen AS-Austausche, gestrichelt umrahmt wurden potentielle Stellen für eine N-Glykosylierung nach GUPTA et al. 2004.

#### Ergebnisse

Auch dieses Alignment zeigt eine große Ähnlichkeit der verglichenen AS-Sequenzen des GP2 von *Chlamydomonas reinhardtii* mit *Chlamydomonas incerta*. Von 1289 verglichenen AS sind 783 identisch, was 60% der gesamten putativen Sequenz entspricht. GP2 aus *Volvox* hingegen wies nur 50% identische AS auf (s. 2.4.2). Sehr auffällig ist die geringe Summe von konservierten Austauschen innerhalb einer Gruppe von Aminosäuren (Mengendiagramm nach TAYLOR 1986), auf die ganze Sequenz gesehen gab es lediglich 16 davon, was 1,2% entspricht. Ein ähnlich geringer Wert zeigte sich auch bei dem semikonservierten Austauschen, die 2,2% der Sequenz bzw. 29 AS ausmachten. Eine deutlich höhere Anzahl von 72 AS, respektive 5,6%, fiel auf Austausche, die nicht semi- oder konservativ sind.

Die durch die nicht vollständige Sequenzierung von *GP2* aus *Chlamydomonas incerta* entstandene Lücke in der putativen AS-Sequenz ist 402 AS groß, demzufolge konnten knapp über 30% der Sequenz nicht weiter verglichen werden. Zu diesen 30% gehören auch die Signalsequenz sowie mögliche Introns. Von den insgesamt zehn putativen Stellen für eine N-Glykosylierung bei GP2 sind fünf konserviert.

Wie auch schon beim Alignment von GP2 aus Chlamydomonas reinhardtii und Volvox carteri scheint es kein Muster zu geben, nach denen die Austausche stattgefunden haben. Die einzigen beiden Stellen im Alignment, an denen gehäuft andere Austausche stattgefunden haben, sind ab Position 577 sowie in einem Schaftbereich, der als shaft B bezeichnet wird. Für den letzten der vier Schaftbereiche von GP2 gibt keinerlei es Sequenzinformationen. Die Schaftbereiche sind insofern von großer Bedeutung, da dort die Stellen der O-Glykosylierung liegen und sie daher ein sehr wichtiger Bestandteil der Proteinstruktur sind sowie eine Interaktionsfläche für andere Glykoproteine bieten können (FERRIS et al. 2005).

# 2.4.4 Vergleich der *shaft*-Sequenzen von *GP2* bei drei Arten der Volvocales

Alle derzeit untersuchten HRGPs aus *Chlamydomonas* verfügen über Proteinbereiche mit hohem Anteil an Hydroxyprolin, das in bestimmten repetitiven Aminosäuremotiven vorliegt. Diese Proteinbereiche liegen in Form einer PPII-Helix vor und werden als *shaft* bezeichet (FERRIS *et al.* 2001, 2005; LEE *et al.* 2007).

Von LEE *et al.* 2007 wurde gezeigt, dass im Vergleich zwischen *shafts* von Agglutinen und Zellwandproteinen Änderungen in der Nukleotidsequenz tolerabel sind, wenn das repetitive AS-Motiv erhalten bleibt. Außerdem wurde gezeigt, dass in Positionen, in denen Prolin oder Serin vorkommt, identische oder synonyme Codons vorliegen.

Im Laufe der Evolution war somit es wichtig, diese *shafts* beizubehalten, da sie beispielsweise bei den Agglutininen essentiell für die Zell-Zell-Erkennung sind.

Diese Untersuchungen sollten in Rahmen dieser Arbeit für das Zellwandprotein GP2, welches in der Zellwand vieler Arten der Volvocales vorkommt, ausgeweitet werden.

Hierfür wurden die vier in GP2 vorkommenden Schaftbereiche (s. Abb. 2.24) jeweils in der putativen AS-Sequenz sowie der Nukleinsäuresequenz miteinander verglichen.

| shaft              | A              |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
|--------------------|----------------|------------|------------|--------------|-----------------|-------------------|------------------|------------------|------------|-----------------|------------|------------|--------------|---------|--------------------------|-------|-------------|------------|--------|------------------|
| (A)                |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| GP2_C              | Cr             | -LPI       | PSCK       | TTS          | RPPS            | PPLF              | PSP              | PPQF             | PSP        | LPPS            | P          | APL        | PPSI         | PPPS    | PLPF                     | SPK   | PPTF        | PSP        | 356    |                  |
| GP2_C              | Ci<br>Va       | SLPI       | PSCK       | TTSI         | RPPS            | PPLF              | PSP              | PPQE             | PSP        | LPPS            | P          | -APL       | PPSE         | PPS     | PLPF                     | SPK   | PPTF        | YKRF       | 248    |                  |
| GPZ_V              | /C             | -LP<br>**  | TNCA       | * ;          | XPPS            | 89916<br>* * * *  | ***              | 89916<br>* * * * | ***        | APPS<br>***     | *          | **         | ****         | **      | SPGE                     | *     | * * * *     |            | 340    |                  |
| GP2 (              | !r             | LPP        |            | OOF          | rgsv            | FVYA              | PNR              | PNGF             | NOD        | оутк            | VYA        | MMRY       | GLG          | GTG     | NNPN                     | IVCL  | KSOF        | YVT        | 416    |                  |
| GP2_C              | Ci             | LSP        | A          |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| GP2_V              | <sup>7</sup> C | FPP        | SPPT       | QQFS         | SVSV            | FVYF              | IPNR             | PTPF             | 'ADA       | DVAK            | VIRV       | VMRF       | ALG          | GYN     | GDPI                     | KCL   | RSKE        | YAT        | 406    |                  |
|                    |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
|                    |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| <sub>l</sub> reinh | ardtii         | : 0.000    | 000        |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
|                    | incer          | ta: 0.0    | 1852       |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          | — w   | nivnx:      | 0.351      | 85     |                  |
|                    |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             | 0.001      | 00     |                  |
|                    |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| (B)                |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| rein.              | CTG            | CCC        | CCC        | AGC          | TGC             | AAG               | ACC              | ACC              | TCC        | CGC             | CCT        | CCC        | TCG          | CCG     | CCT                      | CTG   | CCT         | CCC        | TCG    | CCG 60           |
| unc.<br>volv.      | CTG            | CCC        | ACC        | AGC          | TGC             | GCC               | ACC              | ACC              | CAA        | CGC             | CCG        | CCG        | TCG          | CCG     | CCG                      | CTG   | CCG         | ACG<br>CCA | TCG    | CCG 60<br>CCG 60 |
|                    | * * *          | * * *      | * *        | * *          | * * *           |                   | * *              | * *              |            | * * *           | *          | * *        | * * *        | * * * * | k ;                      | * **  | *           | *          | * *    | * * *            |
| rein.              | CCC            | CCG        | CAG        | CCG          | CCC             | AGC               | CCG              |                  | CTG        | CC-             |            | CCC        | CAG          | CC-     | -CG                      | GCG   | CCT         | CTG        | CCC    | CCC111           |
| inc.               | CCC            | CGG        | -AG        | CCG          | GCC             | AGC               | CCG              | G                | CTG        | CC-             | TCC        | CCC        | CAG          | CC-     | -CG                      | GCG   | CCT         | CTG        | CCC    | CCC111           |
| VOIV.              | **             | * *        | *          | * * *        | **              | ICA               | ***              | 909              | * *        | * *             | 100        | **         | * *          | **      | *                        | *     | **          | ***        | * *    | **               |
| rein.              | TCC            | ССТ        | ССТ        | CCG          | TCT             | ccc               | CTG              | ccc              | CCG        | AGC             | ccc        | AAG        | ССТ          | CCT     | ACT                      | ccc   | ccc         | AGC        | ccc    | CTG171           |
| inc.               | тсс            | CCT        | CCT        | CCG          | TCT             | CCC               | CTG              | CCC              | CCG        | AGC             | CCC        | AAG        | ССТ          | ССТ     | ACT                      | CCC   | AAA         | AGA        | TTT    | <u>T</u> TG171   |
| volv.              | TCG<br>* *     | CCG<br>* * | CCG<br>* * | CCG<br>* * * | <u>ccc</u><br>* | <u>TCA</u><br>* * | с <u>са</u><br>к | GGG<br>*         | CCG<br>* * | <u>CCG</u><br>* | CCG<br>* * | AGC<br>* * | CCG<br>* * * | CCG     | <u>GT</u> T<br>* * * * : | * CCC | <u>TT</u> C | CCG        | CCA    | T <u>CA</u> 180  |
|                    |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| rein               | CCG            | ССТ        | GCT        | CCC          | CCG             | 186               |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| inc.               | <u>T</u> CG    | CCT        | GCT        |              |                 | 180               |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| volv.              | CCG<br>* *     | CCG        |            |              |                 | 186               |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
|                    |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
| ₁reinł             | hardti         | i: -       |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             |            |        |                  |
|                    |                |            |            |              |                 |                   | ince             | rta: 0.          | 1387       | 1               |            |            |              |         |                          |       |             |            |        |                  |
|                    |                |            |            |              |                 |                   |                  |                  |            |                 |            |            |              |         |                          |       |             | -volv      | /ox: 0 | .36129           |

Abb. 2.25: Aminosäure- (A) und Nukleinsäurealignment (B) von shaft A bei Chlamydomonas reinhardtii (GP2\_Cr; rein.), Chlamydomonas incerta (GP2\_Ci; inc.) und Volvox carteri (GP2\_Vc; volv.); Farben nach TAYLOR 1986 und http://www.ebi.ac.uk/Tools/clustalw2/help.html#color; grau hinterleat sind synonyme Basenaustausche, unterstrichen sind nicht-synonyme Basenaustausche; Phylogenetische Bäume erstellt durch neighbor-joining nach SAITOU & NEI 1987.

Der in Abbildung 2.25 dargestellte untersuchte Schaftbereich umfasst insgesamt 65 Aminosäuren. Gut zu erkennen sind die shaft-typischen repetitiven Aminosäuresequenzen, hier von Typus SP, SP<sub>2</sub> und PPSPX. Interessant ist, dass bei dem Motiv PPSPX die Aminosäure X häufig ein Leucin, Alanin oder Lysin ist und die Motive so PPSPL, PPSPA oder PPSPK lauten. Beim Vergleich der AS-Sequenzen zeigte sich, dass GP2 aller drei Arten 38 vollkommen identische AS besitzt und weitere 10 AS entweder semi- (9) oder konserviert (1) sind.

Somit sind ca. 73% der putativen AS-Sequenz von *shaft* A homolog. Eine phylogentische Rekonstruktion nach der Methode des *neighbor-joining* (SAITOU & NEI 1987) zeigt, dass *shaft* A von *Chlamydomonas reinhardtii* näher verwandt zu dem von *Chlamydomonas incerta* ist (relative Distance 0,018) als zu dem Homolog von *Volvox* (relative Distance 0,35).

Auf Ebene der Nukleinsäuren zeigt sich ein ähnliches Bild beim Phylogenetischen Baum (s. Abb. 2.18 unten).

Das Alignment der Nukleinsäuren zeigte, dass von 195 Basen 104 identisch bei allen drei verglichenen Arten sind. Auffällig ist, dass fast ausschließlich bei *Volvox* zu 19 synonymen Basenaustauschen bei 135 identischen Basen kommt (graue Hinterlegung in Abb. 2.25). Von diesen synonymen Austauschen erhalten 13 ein Prolin und einer ein Serin, während für *Chlamydomonas incerta* nur zwei Austausche bei 166 identischen Basen beobachtet werden konnten, die jedoch andere AS erhalten. Das Verhältnis von nichtsynonymen Basenaustauschen von *Volvox* und *Chlamydomonas incerta* beträgt etwa 3:1.

Das Alignment der AS-Sequenzen von *shaft* B aller drei Arten (s. Abb. 2.26) weist eine Homolgie von 63% auf. Dabei sind von 47 beobachteten AS 22 identisch und acht semi- (7) bzw. konserviert (1). Die vorherrschenden repetitiven AS-Motive sind SP<sub>2</sub> und SP.

| <i>shaft</i> B              |                                                                  |                     |             |                     |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
|-----------------------------|------------------------------------------------------------------|---------------------|-------------|---------------------|---------------------|-------------------|------------|------------|------------|----------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------------|
| (A)                         |                                                                  |                     |             |                     |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
| GP2_Cr                      | SCPL                                                             | SPPI                | PSPS        | PPP                 | SPPÇ                | PPS               | PPP-       | VPP        | SPPS       | PPP            | SPPS       | PANE       | PSPP       | PPAF       | PAA        | FCGL       | NFK        | 655        |                      |
| GP2_Ci                      | I IRAISPPPSPSPSPROPPSPPPRCPRRLPLLLPILGAPPTP-LPAHAPPAAFCGLNFK 458 |                     |             |                     |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
| GP2_Vc                      | c MCPNPPPPPSPPPMPPSPPSPPP-SPPLPPSPPSPPSPPSPPAQFCSIRFS            |                     |             |                     |                     |                   |            |            |            |                |            |            |            | RFS        | 620        |            |            |            |                      |
|                             | ••                                                               | •••                 | •           |                     |                     |                   |            |            |            | •              | •          | ••         |            | •••        |            | • •        | ••••       |            |                      |
|                             | — reinł                                                          | hardtii             | i: 0.03     | 912                 |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
|                             |                                                                  |                     |             |                     |                     |                   |            |            | - volv     | у <b>ч П 2</b> | 0578       |            |            | – ince     | erta: O    | .3150      | 5          |            |                      |
|                             |                                                                  |                     |             |                     |                     |                   |            |            | 10110      |                |            |            |            |            |            |            |            |            |                      |
|                             |                                                                  |                     |             |                     |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
| (B)                         |                                                                  |                     |             |                     |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
| rein. TC                    | C CCT                                                            | CCT                 | CCC         | TCT                 | CCC                 | TCT               | CCT        | CCT        | CCC        | AGC            | CCC        | CCG        | CAG        | CCG        | CCT        | TCT        | CCT        | CCC        | CCG60                |
| volv. CC                    | G CCG                                                            | CCG                 | CCG         |                     | CCG                 | TCG               | CCA        | CCA        | CCG        | AGC<br>ATG     | CCG        | CCA        | TCG        | CCA        | CCA        | TCG        | CCG        | CCA        | CC <mark>A</mark> 60 |
| *                           | * *                                                              | * *                 | * *         | *                   | * *                 | * *               | * *        | * *        | * *        | *              | * *        | *          | *          | * *        | * *        | * *        | * *        | * *        | * *                  |
| rein                        | G TGC                                                            | CCC                 | CGT         | CGC                 | CTC                 | CCT               | CTC        | CTC        | CTC        | CCT            | CTC        | CTC        | CCA        | GCC        | CCG        | CCA        | ACC        | CCT        | CTC118               |
| inc. CG<br>volv. T-         | G TGC                                                            | CCC<br>CGC          | CGT         | CGC<br>TGC          | CTC<br>CGC          | CCT<br>CGT        | CTC<br>CAC | CTC<br>CGC | CTC<br>CGT | CCT<br>CAC     | ATC<br>CGC | CTC<br>CAC | GGA<br>CGA | GCC<br>GCC | CCG<br>CCG | CCA<br>CCA | ACC<br>GCC | CCT<br>CGT | CTC120<br>CGC118     |
|                             | * *                                                              | * *                 | * * *       | **                  | * *                 | * *               | * *        | * *        | *          | *              | *          | * *        | *          | * * *      | * * *      | * * *      | **         | * *        | * *                  |
| rein. CC                    | C CTC                                                            | CTC                 | CCG         | CCC                 | CCC                 | CT :              | 138        |            |            |                |            |            |            |            |            |            |            |            |                      |
| inc. CC                     | TG                                                               | CTC                 | <u>A</u> CG | CCC                 | CCC                 | CT :              | 138        |            |            |                |            |            |            |            |            |            |            |            |                      |
| volv. C <mark>A</mark><br>* | c c <u>a</u> c                                                   | C <u>G</u> C<br>* * | CAT         | C <u>T</u> C<br>* * | C <u>G</u> C<br>* * | C <u>C</u> :<br>* | 138        |            |            |                |            |            |            |            |            |            |            |            |                      |
|                             |                                                                  |                     |             |                     |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
| rein.: -                    |                                                                  | in                  | c.UU        | 7600                |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |
|                             |                                                                  |                     | 0.0         | 1009                |                     |                   |            |            |            |                |            |            |            |            |            |            | volv.:     | 0.380      | 43                   |
|                             |                                                                  |                     |             |                     |                     |                   |            |            |            |                |            |            |            |            |            |            |            |            |                      |

Abb. 2.26: Aminosäure- (A) und Nukleinsäurealignment (B) von *shaft* B bei *Chlamydomonas reinhardtii* (GP2\_Cr; rein.), *Chlamydomonas incerta* (GP2\_Ci; inc.) und *Volvox carteri* (GP2\_Vc; volv.); Farben nach TAYLOR 1986 und http://www.ebi.ac.uk/Tools/clustalw2/help.html#color; grau hinterlegt sind synonyme Basenaustausche, unterstrichen sind nicht-synonyme Basenaustausche; Phylogenetische Bäume erstellt durch *neighbor-joining* nach SAITOU & NEI 1987.

Auf Nukleinsäureebene sind bei allen drei Arten 81 von 138 Nukleotiden, respektive 59%, identisch. Auch hier zeigt sich wie bei *shaft* A, dass zwischen *Volvox* und *Chlamydomonas reinhardtii* deutlich mehr synonyme (13) und nichtsynonyme Basenaustausche (33) stattgefunden haben, als bei *Chlamydomonas incerta*, wo lediglich 2 nichtsynonyme Basenaustausche auftraten. Bei *Volvox* erhalten zwei Basenaustausche ein Serin und zehn ein Prolin. Diese Tatsache lässt sich bei den phylogenetischen Rekonstruktionen beobachten, auch hier ist *Chlamydomonas incerta* näher verwandt mit *Chlamydomonas reinhardtii* (relative Distance 0,07) als mit *Volvox* (0,38).

Beim Alignment von *shaft* C gab es eine außergewöhnliche Zusammensetzung repetitiver AS-Sequenzen. So sind hier vorwiegend die Motive  $SP_3$  und  $P_n$  zu finden, das Motiv PPSPX kommt nur ein einziges Mal vor.

| <pre>shaft C (A) GP2_Cr GP2_Ci GP2_Vc</pre>               | TVVN<br>TVVN<br>TPTT<br>*                                                                                                                                                                                                               | ATYPI<br>ATYPI<br>VSYPI<br>.:**       | FVVG<br>FVVG<br>LVIK<br>:*:  | PDAIF<br>PDAIF<br>AGDPL                         | YPQF<br>YPQF<br>YP<br>* *         | VLPS<br>VLPS<br>-VGF<br>:             | YTC<br>YTC<br>AFC               | PPPP<br>PPPP<br>PPAP<br>* * • * | PAPS<br>PAPS<br>PSPI<br>*:*   | SPPP<br>SPPP<br>SPPP<br>SPPP   | KPPI<br>KPPI<br>SPPI              | PSP<br>PSP<br>PSP       | PPLF<br>PPLF<br>PPAF<br>* * *     | PQP<br>PQP<br>PSP        | NPPF<br>NPPF<br>PSPA     | PAPP<br>PAPP<br>APPP<br>APPP  | 831<br>620<br>789                                                                          |                                          |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|-------------------------------------------------|-----------------------------------|---------------------------------------|---------------------------------|---------------------------------|-------------------------------|--------------------------------|-----------------------------------|-------------------------|-----------------------------------|--------------------------|--------------------------|-------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|
| GP2_Cr<br>GP2_Ci<br>GP2_Vc                                | SPNPSPPPPPFGFRFQMSVINGDQNDAIN-CPRYTSWMNAMMDSFERTNTIQRVNPSAPY 8<br>SPNPSPPPPFGFRFQMSVINGDQNDAIN-CPRYTSWMNAMMDSFERTNTIQRVNPSAPY 6<br>RPPPALPPPFGFTLQLSIINGDINDATTNCDRYKKWLNAMLTSYEIAGIINRVGVIQ 8<br>* * * ******* * * * * * * * * * * * * |                                       |                              |                                                 |                                   |                                       |                                 |                                 |                               |                                |                                   |                         |                                   |                          | 890<br>679<br>847        |                               |                                                                                            |                                          |
| reinhardtii: 0.00000<br>incerta: 0.00000<br>volvox: 0.355 |                                                                                                                                                                                                                                         |                                       |                              |                                                 |                                   |                                       |                                 |                                 |                               |                                |                                   |                         |                                   | 556                      |                          |                               |                                                                                            |                                          |
| (B)                                                       |                                                                                                                                                                                                                                         |                                       |                              |                                                 |                                   |                                       |                                 |                                 |                               |                                |                                   |                         |                                   |                          |                          |                               |                                                                                            |                                          |
| rein. CC<br>inc. CC<br>volv. CC<br>**                     | T CCT (<br>T CCT (<br>G CCG (<br>**                                                                                                                                                                                                     | ccc c<br>ccc c<br><u>gcg</u> c<br>* * | CT C<br>CT C<br>CG C         | CC GCC<br>CC GCC<br>CG <u>T</u> C <u>C</u><br>* | CCC<br>CCC<br>CCA<br>**           | TCT<br>TCT<br><u>CCC</u><br>*         | CCG<br>CCG<br><u>A</u> CG<br>** | CCG<br>CCG<br>CCA<br>**         | CCC<br>CCC<br>CCG<br>**       | AAG<br>AAG<br><u>TC</u> G<br>* | CCC<br>CCC<br>CCC<br>***          | CCG<br>CCG<br>CCA<br>** | ACC<br>ACC<br><u>CCA</u><br>*     | CCC<br>CCC<br>CCC<br>*** | TCG<br>TCG<br>TCG<br>*** | CCT<br>CCT<br>CCT<br>***      | CCT<br>CCT<br>CCG<br>* *                                                                   | CCT60<br>CCT60<br>CC <b>G</b> 60<br>**   |
| rein<br>inc<br>volv. <u>GC</u>                            | - CTG (<br>- CTG (<br><u>G</u> C <u>C</u> G (<br>* * *                                                                                                                                                                                  | CCC C<br>CCC C<br>CCG <u>T</u><br>**  | CT C<br>CT C<br>CT C<br>** * | AG CCC<br>AG CCC<br><u>C</u> C CC<br>**         | AAC<br>AAC<br>A <u>G</u> C<br>* * | CCG<br>CCG<br>CC <mark>A</mark><br>** | CCC<br>CCC<br><u>G</u> CC<br>** | CCG<br>CCG<br>CCA<br>**         | GCT<br>GCT<br><u>CCG</u><br>* | CCT<br>CCT<br>CCC<br>**        | CCC<br>CCC<br>C <u>G</u> C<br>* * | AGC<br>AGC<br>C<br>*    | CCC<br>CCC<br>C <u>G</u> C<br>* * | AAC<br>AAC<br>CGC<br>*   | CCG<br>CCG<br>CCG<br>*** | TCG<br>TCG<br><u>CCC</u><br>* | $\begin{array}{c} \text{CCT} \\ \text{CCT} \\ \underline{\text{TCC}} \\ \star \end{array}$ | CCT117<br>CCT117<br>C <u>GC</u> 118<br>* |
| rein. CCU<br>inc. CCU<br>volv. CA                         | C CCT (<br>C CCT (<br>C C <u>A</u> C (<br>* *                                                                                                                                                                                           | CCT C<br>CCT C<br>CCC C<br>** *       | CG 1<br>CG 1<br>C- 1         | 29<br>29<br>29                                  |                                   |                                       |                                 |                                 |                               |                                |                                   |                         |                                   |                          |                          |                               |                                                                                            |                                          |
| rein.: 0.00000<br>inc.: 0.00000<br>volv.: 0.46512         |                                                                                                                                                                                                                                         |                                       |                              |                                                 |                                   |                                       |                                 |                                 |                               |                                |                                   |                         | 2                                 |                          |                          |                               |                                                                                            |                                          |

Abb. 2.27: Aminosäure- (A) und Nukleinsäurealignment (B) von *shaft* C bei *Chlamydomonas reinhardtii* (GP2\_Cr; rein.), *Chlamydomonas incerta* (GP2\_Ci; inc.) und *Volvox carteri* (GP2\_Vc; volv.); Farben nach TAYLOR 1986 und http://www.ebi.ac.uk/Tools/clustalw2/help.html#color; grau hinterlegt sind synonyme Basenaustausche, unterstrichen sind nicht-synonyme Basenaustausche; Phylogenetische Bäume erstellt durch *neighbor-joining* nach SAITOU & NEI 1987.

Neben der erwähnten Besonderheit der repetitiven Motiven zeigt sich hier noch einer weitere: *shaft* C von *Chlamydomonas incerta* ist mit 129 von 129 AS vollkommen identisch zu dem von *Chlamydomonas reinhardtii*. Dies spiegelt sich in der relativen Distance bei der phylogenetischen Rekonstruktion wieder, welche zwischen *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* null beträgt. *Volvox* ist von diesen beiden jeweils 0,35 Einheiten entfernt.
#### Ergebnisse

Der Vergleich aller drei Schaftbereiche miteinander zeigt 29 identische AS, 9 semi- und 2 konservierte Austausche, somit sind insgesamt 93% identisch. Die Nukleinsäuresequenz von *shaft* C bei *Volvox* weist verglichen mit *Chlamydomonas reinhardtii* 79 identische Basen auf, 15 Basenaustausche sind synonym und erhalten ein Prolin, weitere 35 nicht-synonym, was dennoch eine Homologie von 73% bedeutet. In der phylogenetischen Rekonstruktion zeigt sich auch hier, dass *shaft* C von *Volvox* trotz der hohen Homologie weiter entfernt von den beiden anderen ist (relative Distance 0,46).

Der Vergleich des letzten Schaftbereiches D, dargestellt in Abbildung 2.28 auf der folgenden Seite, war nur zwischen *Chlamydomonas reinhardtii* und *Volvox* möglich, da hier für *Chlamydomonas incerta* keine Nukleotidsequenz ermittelt werden konnte.

Eine Besonderheit bei diesem letzten Alignment war, dass sich beide Sequenzen nicht vollständig abgleichen ließen, da in *shaft* D von *Volvox* zwei Lücken von neun und 14 AS enthalten sind. Die übrigen Sequenzteile ließen aber dennoch gut miteinander vergleichen. An diesen Stellen muss im Lauf der Evolution eine Deletion stattgefunden haben.

Der Rest der Sequenz der 95 untersuchten AS zeigt, dass bei *Volvox* 53 AS identisch und fünf weitere AS ähnlich sind. Abzüglich der Lücken im Alignment von 23 AS sind beide Sequenzen somit zu etwa 61% homolog.

Eine phylogenetische Rekonstruktion zeigt keine Entfernung der beiden AS-Sequenzen voneinander. Die vorwiegenden repetitiven AS-Sequenzen sind hier SP<sub>3</sub> und SP<sub>4</sub>, zudem kann man bei *Volvox* vermehrt das Motiv P<sub>n</sub> beobachten.



Abb. 2.28: Aminosäure- (A) und Nukleinsäurealignment (B) von *shaft* D bei *Chlamydomonas reinhardtii* (GP2\_Cr; rein.), *Chlamydomonas incerta* (GP2\_Ci; inc.) und *Volvox carteri* (GP2\_Vc; volv.); Farben nach TAYLOR 1986 und http://www.ebi.ac.uk/Tools/clustalw2/help.html#color; grau hinterlegt sind synonyme Basenaustausche, unterstrichen sind nicht-synonyme Basenaustausche; Phylogenetische Bäume erstellt durch *neighbor-joining* nach SAITOU & NEI 1987.

Die oben beschriebenen Lücken beim AS-Alingment haben Einfluß auf interessanterweise kaum einen das Alignment der Nukleinsäuresequenzen von shaft D. Hierbei zeigte sich, dass Volvox über 126 identische Nukleotide verfügt und 31 synonyme Basenaustausche stattgefunden haben. Diese Basenaustausche erhalten entweder Prolin (29 Stk.) oder Serin (1), in der Summe entspricht dies einer Homologie von etwa 54%.

Insgesamt 56 Basenaustausche sind nicht-synonym. Viel interessanter aber ist die Beobachtung, dass sich beide NS-Sequenzen ohne Ausbildung einer Lücke oder ähnlichem alignieren ließen.

#### 3. Diskussion

# 3.1 HRGPs aus der äußeren Zellwand von *Chlamydomonas incerta* sind zu *self assembly* fähig

Bereits seit Anfang der 1970er Jahre sind Struktur und der Aufbau der äußeren Zellwand von *Chlamydomonas reinhardtii* (ROBERTS *et al.* 1972, HILLS *et al.* 1972, ROBERTS 1974, GOODENOUGH & HEUSER 1985) sowie die Struktur der in den Zellwandschichten W6 und W4 enthaltenen, perchloratlöslichen hydroxyprolinreichen Glykoproteine bekannt (GOODENOUGH *et al.* 1986).

Eine der bemerkenswertesten Eigenschaften dieser Glykoproteine ist es, dass sie sich nach Extraktion mit einem Chaotrop und Dialyse dessen selbsttätig wieder zu einer Struktur zusammenlagern (CATT *et al.* 1978), die der nativen Zellwand entspricht. GOODENOUGH *et al.* prägten 1986 dafür den Begriff des *self assembly* und zeigten eine Methode, HRGPs aus der äußeren Zellwand nach Extraktion chromatographisch voneinander in Reinfraktionen zu trennen.

Zu Beginn dieser Arbeit, in welcher hauptsächlich die Art *Chlamydomonas incerta* untersucht wurde, war nicht bekannt, ob sich trotz ihrer nahen Verwandtschaft zu *Chlamydomonas reinhardtii* (COLEMAN & MAI 1997, LISS *et al.* 1997, POPESCU *et al.* 2006) die bereits für diese Spezies etablierten Methoden zur Isolation und Reinigung von HRGPs auch für *Chlamydomonas incerta* eignen würden.

So zeigte KOP-WEIERSHAUSEN 2002, dass ein *self assembly* extrahierter HRGPs aus *Chlamydomonas incerta* nicht möglich ist. Als möglicher Grund dafür stand ein zu diesem Zeitpunkt unbekanntes Glykoprotein mit einer Masse von ~ 195 kDa zur Diskussion, dass die Reassemblierung stört oder verhindert. Dieses wurde über analytische SDS-PAGE im dialysierten Zellwandextrakt identifiziert und konnte bei FPLC nicht von den restlichen Proteinen getrennt werden, sondern blieb zusammen mit GP3 in einer Fraktion. Diese Bindung an GP3 sollte der Grund dafür sein, dass ein *self assembly* bei *Chlamydomonas incerta* nicht möglich ist, da hierbei GP2 und GP3 stöchiometrisch (JOLK 1997) miteinander interagieren müssen.

Ein homologes oder orthologes Glykoprotein mit ähnlicher Masse ist bei *Chlamydomonas reinhardtii* nicht bekannt und wurde im Rahmen dieser Arbeit auch nicht gefunden.

In dieser Arbeit wurde gezeigt (vgl. Abb. 2.1 A und B), dass nach Anwendung der von GOODENOUGH *et al.* 1986 für *Chlamydomonas reinhardtii* beschriebenen Methoden zur Extraktion und Reinigung von HRGPs auch bei *Chlamydomonas incerta* erfolgreich anwendbar sind. Die im Proteinextrakt enthaltenen Proteine zeigen nach analytischer SDS-PAGE das gleiche charakteristische Laufverhalten sowie apparenten Molekulargewicht wie ihre Homologe aus *Chlamydomonas reinhardtii* (vgl. Abb. 5.1 bis 5.3, GOODENOUGH *et al.* 1986, figures 8 und 9).

Ebenso konnte gezeigt werden, dass hingegen der Ergebnisse früherer Arbeiten die HRGPs der äußeren Zellwand von *Chlamydomonas incerta* zu *self assembly* fähig sind (vgl. Abb. 2.1).

# 3.2 *Nucleated assembly* von HRGPS kann Hinweise auf Homologien geben

Die Struktur sowie der Auf- und Zusammenbau der Zellwand von Chlamydomonas reinhardtii sind mit mikroskopischen und biochemischen Methoden sowohl in vivo, wie auch in vitro eingehend untersucht worden (CATT et al. 1978, GOODENOUGH & HEUSER 1985, GOODENOUGH et al. 1986, HEUSER 1980, HILLS 1973, HILLS et al. 1973, ROBERTS 1974, ROBERTS et al. 1972, 1981, 1985). Besonderes Interesse galt der perchloratlöslichen Zellwandschicht W6, da die in ihr enthaltenen Glykoproteine nach Dialyse in vitro wieder zu einer nativen Struktur reassemblieren (HILLS 1973, HILLS et al. 1973). Darüber hinaus wurde entdeckt, dass diese Glykoproteine per se nur kleinere kristalline Strukturen ausbilden. Wenn ihnen jedoch extrahierte Algenzellen, insbesondere mit einer intakten Wandschicht W2 vorliegen, bilden sie größere, zellwandartige Strukturen de novo. Besagte Wandschicht wurde von ADAIR et al. 1987 als "nucleating agent", also zellen- bzw. keimbildende Struktur bezeichnet, ohne die ein assembly von extrahierten Glykoproteinen aus der Wandschicht W6 nicht stattfinden kann. Weiterhin konnte ADAIR et al. 1987 zeigen, dass bei zellwanddefekten Mutanten ein nicht stattfindet. (nucleated) assembly Anderseits können aber Glykoproteine von Chlamydomonas reinhardtii auf die Zellwand von Volvox carteri und vice versa assemblieren.

Somit wurde in dieser Arbeit erstmals gezeigt, dass Glykoproteine zwischen Arten kompatibel und in der Lage sind, eine artfremde Zellwand aufzubauen.

Des Weiteren wurden zwei Theorien zum Zellwandaufbau erstellt:

1. alle nötigen Informationen zum Aufbau einer der Zellwand liegen in der molekularen Struktur der Glykoproteine

2. der perchloratunlösliche Zellwandanteil besitzt spezifische Bindungsstellen für Glykoproteine und kann seinen Aufbau selbst initiieren.

Jedoch ist ein *nucleated assembly* selbst innerhalb einer Art nicht immer möglich, wie für die zellwandlosen Mutanten *cw-2* (Stamm CC-851) und *cw-15* (Stamm CC-400) gezeigt wurde (ADAIR *et al.* 1987). Bei diesen Mutanten liegt ein Defekt in der Wandschicht W1/W7 vor. Die Glykoproteine der übrigen Wandschichten werden zwar synthetisiert, jedoch nicht zu einer intakten äußeren Zellwand assembliert.

Bei einer anderen Art der Gattung, *Chlamydomonas eugametos/moewusii* (CC-1419), war ein *nucleated assembly* ebenfalls nicht erfolgreich. Es wurde vermutet, dass dies an der Beschaffenheit ihrer Zellwand liegt, welche anders aufgebaut ist als die von *Chlamydomonas reinhardtii* (ROBERTS *et al.* 1982). Daraus wurde gefolgert, dass diese Art auf der Entwicklungslinie der Volvocales liegt und mit *Chlamydomonas eugametos* nur weit entfernt verwandt ist.

Neuere molekularbiologische und phylogenetisch ausgerichtete Arbeiten an den Chloroplastengenen *RbcL, AtpB* und *PsaB* (NoZAKI *et al.* 2002) sowie an ITS-2 Sequenzen (PRÖSCHOLD *et al.* 2005) konnten zeigen, dass *Chlamydomonas eugametos* in der Tat auf einem weit entfernten Ast im phylogenetischen Stammbaum der *Volvocales* liegt (vgl. NoZAKI *et al.* 2002, figure 1,2,3) und sich mutmaßlich vor mehr als hundert Millionen Jahren von *Chlamydomonas reinhardtii* getrennt hat (PRÖSCHOLD *et al.* 2001).

Aufgrund dieser Erkenntnisse und neueren Arbeiten zur Verwandtschaft von *Chlamydomonas reinhardtii* und der dieser am nächsten verwandten Art, *Chlamydomona incerta* (CC-3871) (COLEMAN & MAI 1997, LISS *et al.* 1997, PRÖSCHOLD *et al.* 2005, POPESCU *et al.* 2006) wurde in dieser Arbeit versucht, ein *nucleated assembly* mit den Glykoproteinen GP1, GP2 und GP3 dieser beiden Arten durchzuführen.

Dabei galt die Grundannahme, dass ein *nucleated assembly* zwischen Arten der Volvocales, insbesondere mit dem Vielzeller *Volvox* gelingt, dies auch mit *Chlamydomonas incerta* möglich sein sollte, zumal dessen nahe Verwandschaft zu *Chlamydomonas reinhardtii* bereits mehrfach gezeigt wurde (COLEMAN & MAI 1997, LISS *et al.* 1997, PRÖSCHOLD *et al.* 2005, POPESCU *et al.* 2006).

In dieser Arbeit wurde gezeigt, dass mit FITC markiertes GP1 (s. 4.10) auf einer arteigenen, extrahierten Algenzelle (*ghost*) reassembliert werden kann, wenn eine durch zugegebenes GP2 und GP3 gebildete Wandschicht W6A als *template* vorliegt (vgl. 2.2.1.1). Dabei machte es keinen Unterschied, ob zelleigenes oder zellfremdes GP1-FITC auf einem extrahierten *ghost* assembliert wurde, stets wurde ein positives Fluoreszenzsignal erhalten. Dies ist interessant, da durch Arbeiten von LEE *et al.* 2007 bekannt ist, dass Schaftbereiche bei GP1 von *Chlamydomonas incerta* insgesamt um 50 Aminosäuren, dies entspricht einer Länge von etwa 15 nm, größer als beim GP1 von *Chlamydomonas reinhardtii* ist.

Dieser oder auch weitere morphologische Unterschiede sind durchaus auch bei den anderen GPs der Zellwandschichten W6 vorstellbar. Somit wäre es denkbar, dass ein *nucleated assembly* nicht möglich ist, weil die beteiligten HRGPs rein morphologisch inkompatibel sind. Dies lässt sich jedoch nicht mit der Methode des *nucleated assembly* zeigen, da er nicht spezifisch genug ist, um einen korrekten Aufbau der äußeren Zellwand zu zeigen. ADAIR *et al.* haben in ihren Versuchen stets elektronenmikroskopische Aufnahmen verwendet, um einen korrekten Zellwandaufbau zu bestätigen, was im Rahmen dieser Dissertation nicht durchgeführt werden konnte.

Schlussendlich ist bis heute nicht klar, an oder mit welchen Stellen des Proteins und mit welchem Mechanismus die Glykoproteine GP1, GP2 und GP3 die Wandschicht W6 bilden. ADAIR *et al.* (1987) haben für die Versuche zum *nucleated assembly* stets alle GPs aus der Wandschicht W6 verwendet, so dass diese Frage nicht entgültig aufgeklärt werden konnte.

Obiges Ergebnis stützt die Erkenntnis, dass der Zellwandaufbau nach einem festen Schema stattfindet. So wird bisher davon ausgegangen, dass sich beim Aufbau der äußeren Zellwand zuerst die heteropolymere Wandschicht W6A ausbildet, auf die sich dann GP1 als homopolymere Schicht auflagern kann und die abschließende Wandschicht W6B bildet (vgl. Abb. 1.5 und ADAIR *et al.* 1987).

#### Diskussion

Arbeiten Arbeitskreis im konnten zeigen, dass nach einem enzymvermittelten Zellwandabbau bei der Regeneration der Zellwand zuerst GP1,5 sekretiert wird und danach erst die Glykoproteine GP2 und GP3. Es wird angenommen, dass der Zellwandaufbau in einem bestimmten Zeitrahmen stattfindet. In den ersten 60 Minuten wird die über die Transglutaminasen quervernetzte Wandschicht W1 gebildet, danach werden in einem zweistündigen Zeitfenster die äußeren Wandschichten W6 und W4 assembliert und erst zum Abschluss wird die durch Peroxidasen quervernetzte Wandschicht W2 gebildet (WAFFENSCHMIDT, persönliche Mitteilung).

Um der Frage nachzugehen, ob GP1-FITC in der Lage ist zu reassemblieren, wenn keine Wandschicht W6A als *template* vorliegt und ob das Protein an weitere Oberflächen binden kann, wurde weitere Versuche gemacht. Diese zeigten, dass GP1-FITC auf nicht intakte Wandschichten W6A reassemblieren kann (s. 2.2.1.3). Außerdem konnte gezeigt werden, dass GP1 an Oberflächen bindet, die eine zuckerhaltig sind (s. 2.2.2.) und an chemisch inerte Glasoberflächen nicht binden kann (s. 2.2.1.3).

Aus diesen drei Ergebnissen lässt sich schließen, dass eine Interaktion von Glykoproteinen maßgeblich davon abhängt, dass sie glykosyliert sind und mit anderen Zuckern wechselwirken können. So kann erklärt werden, dass GP1-FITC auf *ghost* reassemblieren kann, obwohl keine intakte Wandschicht W6A als *template* vorliegt. Denn wenn die Grundlage der Assemblierung lediglich das Vorhandensein von zuckerhaltigen Oberflächen ist, dann ist es denkbar, dass GP1-FITC an andere Glykoproteine, die in der Restzellwand des extrahierten *ghost* vorhanden sind, beispielsweise an die aus W2, bindet. Unterstützt wird dieser Gedanke von Versuchen, in denen gezeigt wurde, dass GP1-FITC an die Oberflächen der Gelfiltrationsmaterialien Sephadex und Sephacryl bindet. Diese Oberflächen enthalten Dextrane und sind somit reich an Zuckern, mit denen das Glykoprotein wechselwirken kann.

Zuletzt konnte in Negativkontrollen mit einem anderen, FITC-markierten Protein gezeigt werden, dass ein positives Fluoreszenzsignal nicht von den chemischen Eigenschaften des FITC herrührt, sondern von Zucker-Zucker-Wechselwirkungen. Weitere Versuche sind denkbar, in denen ein *assembly* von deglykosylierten und mit FITC markierten HRGPs durchgeführt wird.

Damit könnte gezeigt werden, ob ein *assembly* von den Zuckern des Glykoproteins abhängig ist oder vom Proteinanteil und welche GPs assemblieren können.

# 3.3 HRGPs aus der äußeren Zellwand von *Chlamydomonas* interagieren hochaffin miteinander

In früheren Diplomarbeiten im Arbeitskreis (JOLK 1998, WOLTERS 1999, TSCHESCHE 2000) wurden bereits Untersuchungen zu der Interaktion der Glykoproteine von *Chlamydomonas reinhardtii* gemacht. Diese wurden sowohl mit Festphasenassays (JOLK) als auch mit Echtzeitanalysen (TSCHESCHE, WOLTERS) durchgeführt, dabei betont besonders TSCHESCHE die Problematik von Echtzeitanalysen, in denen beispielsweise es auf eine sehr genaue Kenntnis über die eingesetzte Proteinkonzentration ankommt.

Die Glykoproteine GP2 und GP3 binden hochspezifisch zu einem kristallinen Gitter aneinander (GOODENOUGH & HEUSER 1985), wobei durch ELISA eine Stöchiometrie dieser Bindung von 1:2 gezeigt wurde, das heißt ein Molekül GP2 bindet zwei Moleküle GP3 und umgekehrt (JOLK 1997). Die Affinitätskonstante für diese Interaktion wurde durch Echtzeitanalysen mit etwa 51 nMol bestimmt (TSCHESCHE 2000).

Der in dieser Arbeit für Untersuchungen zur Interaktion dieser Proteine verwendete Festphasenassay konnte ebenfalls zeigen, dass bei der Interaktion von GP2 mit GP3 und *vice versa* eine Absättigung jeweils bei Zugabe der doppelten Konzentration des Bindepartners stattfand (vgl. Abb. 2.21 und 5.5). Dies wurde für Glykoproteine aus *Chlamydomonas reinhardtii, Chlamydomonas incerta* sowie für Kreuztest mit den Glykoproteinen beider Spezies beobachtet.

JOLK und TSCHESCHE postulierten, dass dieser Absättigungseffekt möglicherweise bedeutet, dass GP2 und GP3 jeweils zwei Bindestellen füreinander besitzen. Dies wurde damit begründet, dass GP2 über drei und GP3 über vier globuläre Domänen verfügt, die zur Interaktion dienen könnten. Die verbleibende Domäne von GP3 könnte mit dieser an GP1 binden (TSCHECHE 2000).

Die hier durchgeführten molekularbiologischen Untersuchungen zu GP2 konnten zeigen, Homologie von dass dieses über vier hydroxyprolinreiche Schaftbereiche verfügt. Von dessen Interaktionspartner GP3 ist bekannt, dass er über fünf Schaftbereiche verfügt, wie auch das Homolog bei Volvox carteri (LEE, persönliche Mitteilung). Somit könnte die Theorie von TSCHESCHE zwar weiterhin bestand haben, jedoch lassen die Ergebnisse in der hier vorliegenden Arbeit eher die Vermutung zu, dass für die Interaktion zwischen den Glykoproteinen nicht die globulären Domänen entscheidend sind, sondern die Schaftbereiche.

Dieser Schluss lässt sich aus der hohen Konservierung der Schaftbereiche von GP2 (vgl. 2.4.4) ziehen, obwohl auch bekannt ist, dass gewisse globuläre Strukturbereiche bei den Zellwandproteinen VSP3 und GP1 sehr stark konserviert sind (LEE, WAFFENSCHMIDT & GOODENOUGH, Manuskript in Vorbereitung). TSCHESCHE hingegen schloss aus Experimenten mit deglykosylierten Glykoprotein GP1, bei denen sich keine Unterschiede im Bindeverhalten zeigten, dass der Zuckeranteil für eine Interaktion nicht von Belang sein kann. Diese Einschätzung TSCHESCHES kann insofern nicht geteilt werden, da eine Deglykosylierung von HRGPs eine massive Strukturveränderung mit sich ziehen muss. Es ist bekannt, dass die Struktur der PPII-Helix maßgeblich von der Glykosylierung der Hydroxyproline initiiert und stabilisiert wird (VAN HOLST & VARNER 1984, STAFSTROM & STAEHELIN 1986, KILZ et al. 2001, FERRIS et al. 2005, LEE et al. 2007), was auch im Arbeitskreis durch mehrere Arbeiten gezeigt wurde.

Eine andere mögliche Theorie ist, dass die Schaftbreiche von GP2 lediglich als molekulare Abstandshalter dienen, damit die globulären Proteindomänen ungestört mit GP3 interagieren können. Dafür wäre zum einen die in dieser Arbeit beobachtete Konservierung von Schaftbereichen nötig, da nur dadurch repetitive AS-Sequenzen erhalten bleiben, somit eine korrekte Glykosylierung und damit schlussendlich ein klar definierter Strukturbereich gewährleistet ist. Zusätzlich würde sich dadurch auch die Konservierung der globulären Bereiche erklären lassen, da dort für eine Interaktion ebenfalls klar definierte und unveränderbare Strukturen vorliegen müssten.

Bestätigen lassen sich beide Theorien an dieser Stelle nicht, da zu diesem Aspekt eigene experimentelle Interaktionsdaten fehlen.

#### Diskussion

Eine weitere Interaktion von Glykoproteinen wurde charakterisiert für das von GP2 und GP3 gebildete kristalline Gitter, auf welches sich GP1 auflagert (JOLK 1998, WOLTERS 1999, TSCHESCHE 2000). Die Stöchiometrie dieser Bindung wurde mit 1:1 (GP1 zu [GP2-GP3]) bestimmt (JOLK 1997), als Bindungskonstante für diese Interaktion wurden K<sub>D</sub>-Werte von 280 nMol (WOLTERS 1999) bis zu 1700 nMol (TSCHECHE 2000) bestimmt. Immobilisiertes GP1 alleine ist nicht in der Lage, einzelnes GP2 zu binden, wie von JOLK gezeigt wurde. Dieser Effekt konnte aber durch Zugabe von GP3 zur Ausbildung kompensiert werden, wobei Einzelversuche zeigten, dass GP1 wohl äquimolar an GP3 binden kann. Letztere Beobachtung konnte im Rahmen dieser Arbeit nicht bestätigt werden, die eingangs beschriebene Stöchiometrie der Interaktion (GP1-[GP2-GP3]) von 1:1 ließ sich ebenfalls zeigen (vgl. Abb. 5.6) und fügt sich somit mit in das bisher geltende Schema des Zellwandaufbaus ein (GOODENOUGH & HEUSER 1988, TSCHECHE 2000).

Neben Versuchen zur Interaktion, bei denen unter anderem die Stöchiometrie untersucht wurde, lag ein weiteres wichtiges Augenmerk auf der Bestimmung von Affinitätskonstanten der beteiligten Glykoproteine. Hierbei muss einleitend festgehalten werden, dass bei einem Festphasenassay Endbestimmungen der Gleichgewichtskonstanten durchgeführt werden können, die Echtzeitanalyse mit Resonant-mirror hingegen dynamischer gestaltet werden kann. Daher werden an dieser Stelle die mit beiden Methoden bestimmten Affinitätskonstanten besprochen und sollen miteinander sowie mit Angaben aus der Literatur verglichen werden.

Die Methode des Festphasenassays nach Art des ELISA ist für eine prinzipielle Beobachtung von Ligand-Ligat-Interaktionen sehr gut geeignet und wird zumeist im klinischen Bereich eingesetzt oder häufig auch, um Ergebnisse aus *Yeast Two-Hybrid* Versuchen zusätzlich *in vitro* zu bestätigen. Ebenso ist der ELISA aber auch für Hochdurchsatzscreening geeignet (WOJTOWICZ *et al.* 2007, SANDERSON 2008), meist aber werden damit keine quantitativen Analysen gemacht, obwohl der ELISA ursprünglich für diesen Zweck entwickelt wurde (LEQUIN 2005).

Als eine von wenigen jüngeren Arbeiten wurde die von CHÈNE (2004) zum Vergleich der in dieser Arbeit ermittelten Kinetiken herangezogen.

CHÈNE demonstrierte eine Hemmung der Bindung des Proteins p53 (Tumorsuppressor) an dessen Suppressor MDM2. Hierbei wurden Bindungskonstanten im Bereich von 8,7 x  $10^{-6}$  Mol bis hin zu 5 x  $10^{-9}$  Mol ermittelt, was als eine hochaffine Bindungscharakteristik bezeichnet werden kann (REHM 2000). In einer weiteren Arbeit, in der SYLVESTER-HVID *et al.* (2002) die Bindung von Peptiden an MHC Klasse 1 charakterisierten, wurden ebenfalls Kinetiken mit K<sub>D</sub>-Werten im nanomolaren Bereich (3,4 x  $10^{-6}$  bis 6 x  $10^{-9}$  Mol) ermittelt. Dies zeigt, dass der ELISA sich durchaus dazu eignet, Affinitätskonstanten mit einer Empfindlichkeit bis hin zu  $10^{-9}$  Mol zu ermitteln.

Für alle in dieser Arbeit untersuchten Interaktion von Glykoproteinen miteinander, seien es zelleigene oder zellfremde, wurden Affinitätskonstanten ermittelt, die ausnahmslos im nanomolaren Bereich liegen (vgl. 2.3.2) und somit zeigen, dass die Glykoproteine von der äußeren Zellwand von *Chlamydomonas* hochaffin miteinander interagieren.

Mit der Methode des *Resonant-mirror* (s. 4.7.2) bietet sich im Gegensatz zum ELISA die Möglichkeit, Bindungskinetiken in Echtzeit sowie getrennt in Assoziations- und Dissoziationsphase zu betrachten, wohingegen beim ELISA stets eine Endpunktbestimmung der Bindung stattfindet. Eine hohe Anzahl verschiedenster Interaktionen ist mit Plasmonresonanz untersucht worden, die Tabelle 3.1 zeigt einen Auszug davon, um die eigenen in dieser Arbeit erhaltenen Daten zu vergleichen und in Kontext zu setzen.

| Immobilisiertes Protein | Ligand     | K <sub>D</sub> [Mol]     | Referenz                   |
|-------------------------|------------|--------------------------|----------------------------|
| TNF-alpha               | s-TNFR-i   | 5 x 10 <sup>-7</sup>     | Li <i>et al.</i> 2005      |
| Avidin                  | Biotin     | 3,6 x 10 <sup>-14</sup>  | Hytönen <i>et al.</i> 2004 |
| Streptavidin            | Biotin     | 1 x 10 <sup>-15</sup>    | Hytönen et al. 2004        |
| Herpes Simplex Virus    | Nectin-1   | 2,8 x 10 <sup>-6</sup>   | BERTUCCI et al. 2003       |
| glycoprotein D          |            |                          |                            |
| TVA                     | RSV-A      | 10 x 10 <sup>-9</sup>    | Y∪ <i>et al.</i> 2003      |
| Maspin                  | Collagen I | 0,6 x 10 <sup>-6</sup>   | BLACQUE & WORRALL 2003     |
| ТАР                     | Tocopherol | 4,6 x 10 <sup>-7</sup>   | ZIMMER et al. 2000         |
| HRG (histidine rich     | IgG        | 1,9 x 10 <sup>-6</sup>   | Gorgani <i>et al.</i> 1999 |
| glycoprotein)           |            | bis 3 x 10 <sup>-9</sup> |                            |

Tabelle 3.1: Zusammenstellung einiger Affinitätskonstanten für Protein-Protein-Interaktionen, bestimmt mit Plasmonresonanz.

Die stärkste bisher in der Biologie beschriebene Interaktion konnte zwischen Avidin aus dem Hühnereiweiß und Biotin, dem Vitamin H gezeigt werden. Sie hat eine Affinität von etwa 10<sup>-14</sup> Mol und ist somit um einen Faktor 100.000 höher als die Bindung eines Antikörpers an ein Antigen, die mit etwa 10<sup>-9</sup> Mol als hochaffin bezeichnet wird. Andere untersuchte Interaktionen, z.B. die der Glykoproteine D aus Herpes Simplex oder dem HRG, zeigen Affinitätskonstanten, die mit 10<sup>-6</sup> bis 10<sup>-9</sup> Mol um einen Faktor von 1000 voneinander variieren können. Dennoch sind all diese Protein-Protein-Interaktionen sehr affin.

Für die Interaktion von Glykoproteinen der äußeren Zellwand aus *Chlamydomonas* konnten sowohl in dieser Arbeit (s. 2.3.3.1 und 2.3.3.2) als auch in anderen Arbeiten (WOLTERS 1999, TSCHECHE 2000) Bindungskonstanten bestimmt werden, die in Tabelle 3.2 zusammengefasst sind.

Tabelle 3.2: berechnete Bindekonstanten bei der Interaktion von Glykoproteinen aus *Chlamydomonas reinhardtii* (C.rein.) per Plasmonresonanz nach TSCHECHE 2000 (Tsche) und Wolters 1999 (Wolt).

X= an die Küvette gekoppeltes Glykoprotein, O= zugegebener Interaktionspartner, nb= nicht bestimmt

| GP1      | GP2      | GP3      | K <sub>D</sub> (Tsche) | Delta  | $K_D$ (Wolt)           | delta |
|----------|----------|----------|------------------------|--------|------------------------|-------|
| C. rein. | C. rein. | C. rein. | [Mol]                  |        | [Mol]                  |       |
|          | Х        | 0        | 5,1 x 10 <sup>-8</sup> | ± 2,1  | nb                     | nb    |
|          | 0        | Х        | 5,1 x 10 <sup>-8</sup> | ± 2,1  | nb                     | nb    |
| 0        | Х        | Х        | 1,7 x 10 <sup>-6</sup> | ± 0,16 | 2,8 x 10 <sup>-7</sup> | ± 0,5 |

WOLTERS (1999) konnte mit der besprochenen Methode lediglich für die Interaktion von GP1 mit dem Komplex [GP2-GP3] eine Affinitätskonstante ermitteln, diese liegt bei etwa 280 Nanomol, wohingegen TSCHESCHE (2000) eine nochmals um einen Faktor 10 niedrigere Affinität von 1700 Nanomol ermittelte. Die eigenen bestimmten Konstanten für diese Interaktion lagen bei zelleigenen Glykoproteinen im Bereich von 110-196 Nanomol, sind also noch etwas affiner wie von WOLTERS ermittelt. Bei der Interaktion zellfremder Glykoproteine konnte nur für die Konstellation GP1 aus *Chlamydomonas incerta* mit [GP2-GP3] von *Chlamydomonas reinhardtii* eine Affinitätskonstante ermittelt werden, diese lag bei 15 Nanomol.

Für die Interaktion GP1 aus *Chlamydomonas reinhardtii* mit [GP2-GP3] von *Chlamydomonas incerta* konnte die Dissoziationskonstante nicht zuverlässig ermittelt werden, so dass sich hier kein K<sub>D</sub> berechnen ließ. Die Assoziationskonstante K<sub>ass</sub> jedoch konnte mit 3 x 10<sup>4</sup> Mol bestimmt werden, dieser Wert korreliert mit dem von WOLTERS ermittelten (3,5 x 10<sup>4</sup>), TSCHESCHE zeigte bei der oben genannten Interaktion eine um den Faktor 13 niedrigere Assoziation von 2,25 x 10<sup>3</sup> Mol .

Ein entscheidender Aspekt darf jedoch insbesondere bei der Bestimmung der Affinitätskonstante von GP1 nicht unbeachtet bleiben. Dieses Glykoprotein kann in vivo an ein fertig ausgebildetes template von [GP2-GP3] binden, da der Zellwandaufbau in einem bestimmtem Zeitfenster stattfindet (vgl. 3.2). In vitro lässt sich dieser Zustand zwar vergleichbar darstellen, jedoch ist es nicht möglich, die exakt gleichen Proteinkonzentrationen wie beim Zellwandaufbau in vivo einzustellen, da diese nicht genau bekannt sind. Daher kann nicht ausgeschlossen werden, dass in der Küvette nicht die idealen Proteinkonzentrationen zur Ausbildung der Wandschicht W6A vorliegen und GP1 somit auf ein möglichst natives Umfeld zur Interaktion trifft. Eine korrekte Ausbildung von W6A in vitro kann derzeit mit keiner kommerziell erhältlichen Methode geeignet überprüft werden. Dies könnte einer der Gründe sein, dass bei dieser Interaktion, insbesondere bei der Resonant-mirror Methode, experimentell deutlich niedrigere K<sub>D</sub> bestimmt wurden als bei der Verwendung des ELISA. Von der Empfindlichkeit her betrachtet sind sich beide Methoden sicher ebenbürtig, wie verschiedene Arbeiten zeigen konnten (SYLVESTER-HVID et *al.* 2002, CHÈNE 2004, vgl. Tabelle 3.1).

Für die Interaktion von GP2 mit GP3 konnten in dieser Arbeit Bindekonstanten im Bereich von 20-54 Nanomol bestimmt werden. Vergleichswerte für diese Interaktion liegen lediglich von TSCHECHE vor und Von WOLTERS etwa 30-72 Nanomol. konnten betragen keine Affinitätskonstanten hierzu ermittelt werden, da die Bestimmung der Dissoziationskonstante aufgrund einer starken, nicht durch Spülen mit Puffer lösbaren Bindung von GP2 und GP3 unmöglich war. Es konnten jedoch Assoziationskonstanten bestimmt werden, die bei etwa 3 x 10<sup>5</sup> Mol lagen.

Zieht man in Betracht, dass die für die Interaktion von GP2 mit GP3 bestimmten Dissoziationskonstanten stets bei  $10^{-3}$  Mol lagen, so kommt man bei einer hypothetischen Berechnung des K<sub>D</sub> auf einen Wert von 160 Nanomol, der um einen Faktor 2 höher liegt, als eigene Messungen oder die von TSCHECHE zeigen.

Zusammengefasst kann somit gesagt werden, dass sich die Interaktionen der Glykoproteine GP1, GP2 und GP3 miteinander, gleich in welcher Konstellation und ob zelleigene oder zellfremde Proteine verwendet werden, stets in einem Wertebereich von etwa 10<sup>-9</sup> bis 10<sup>-8</sup> Mol liegen. Dabei zeigten die beiden verwendeten Methoden, dass die mit ihnen ermittelten Daten in sich betrachtet konsistent sind, die mit ELISA bestimmten Proteininteraktionen aber methodenbedingt aufschlussreichere Daten liefert als die Echtzeitanalyse mit *Resonant-mirror*.

### 3.4 GP2 besitzt bei den Volvocales hohe Homologien

Im Rahmen der Versuche zum *nucleated assembly* konnte gezeigt werden, dass zellfremdes Glykoprotein GP1 auf perchlorat-extrahierte Algenzellen reassemblieren kann. Ältere Arbeiten zu diesem Thema konnten zeigen, dass dies auch mit Glykoproteinen aus der Zellwand mehrzelliger Algen wie *Volvox* und *Gonium* möglich ist (ADAIR *et al.* 1987, ADAIR & APPEL 1989). Biochemische, immunologische und strukturelle Untersuchungen konnten zeigen, dass bei bis dato untersuchten Volvocales immer ein Glykoprotein vorhanden ist, das homolog zu GP2 aus *Chlamydomonas reinhardtii* ist (ROBERTS *et al.* 1985, ADAIR & APPEL 1989, vgl. dort Fig. 3).

In dieser Arbeit wurden zunächst aus drei Arten der Volvocales, *Chlamydomonas incerta*, *Chlamydomonas reinhardtii* und *Volvox carteri*, Glykoproteine isoliert und mit präparativer SDS-PAGE getrennt. Proteinbanden, die von Laufmuster und apparentem Molekulargewicht her GP2 entsprachen, wurden ausgeschnitten und per MALDI-PMF analysiert. Als Datengrundlage dienten die Datenbanken MASCOT sowie eine selbst erstellte, in der alle extensinartigen Proteine aus *Chlamydomonas reinhardtii* enthalten sind.

Diese Untersuchungen zeigten, dass bei GP2 der drei Arten auf Aminosäureebene 9% bis zu 22% der Aminosäuren identisch sind. Bemerkenswert an diesen Homologien ist, dass als Datengrundlage die AS-Sequenzen von *Chlamydomonas reinhardtii* vorlagen, da diese die einzige der drei Arten ist, die zum Zeitpunkt dieser Arbeit vollständig sequenziert und annotiert war. Dies bedeutet, dass die zahlreichen gefundenen Peptide also nicht nur auf Homologie, sondern Identität hinweisen.

Durch Alignments von Aminosäuresquenzen konnte in dieser Arbeit gezeigt werden, dass GP2 von *Volvox carteri* mit dem Homolog in *Chlamydomonas reinhardtii* zu etwa 50% identisch ist (vgl. 2.4.2). Bei der durch Sequenzierung ermittelten putativen AS-Teilsequenz von GP2 aus *Chlamydomonas incerta* konnte eine 60%ige Identität zu GP2 von *Chlamydomonas reinhardtii* gezeigt werden (vgl. 2.4.3).

# 3.4.1 Schaftbereiche von GP2 bei Volvocales *sind hoch* homolog

Ein besonderes Augenmerk bei Untersuchungen zu Homologien bei GP2 lag in speziellen Teilen der Proteinsekundärstruktur, den (hydroxy)prolinreichen Schaftbereichen.

Von diesen Schaftbereichen besitzt GP2 insgesamt vier, diese verfügen über repetitive Aminosäuresequenzen und nehmen die Form einer PPII-Helix ein (FERRIS *et al.* 2001, 2005). Zusätzlich sind diese Bereiche diejenigen im Protein, an denen die O-Glykosylierung von Hydroxyprolin stattfindet. LEE *et al.* (2007) vermuten, dass sich ein O-glykosylierter Schaft hauptsächlich als eine Sequenz von Zuckerresten, vorstellbar wie eine Flaschenbürste, der Zelle präsentiert und damit spezifisch intermolekulare Wechselwirkungen ermöglichen kann (vgl. VAN DEN STEEN *et al.* 1998). Dies macht die polyprolinreichen Schaftbereiche zu einem wichtigen strukturellen Bestandteil von GP2 und auch anderer Glykoproteine aus der äußeren Zellwand.

Weiterhin wurde bei einem Vergleich zwischen *shafts* von Agglutinen und zwei weiteren Zellwandproteinen (GP1 und VSP3) gezeigt, dass Änderungen in der Nukleotidsequenz tolerabel sind, wenn das repetitive AS-Motiv erhalten bleibt. Bei den Schaftbereichen von GP1 sind in den Motiven PPSPX beim X häufig die Aminosäuren Alanin (59%), Prolin (13%) oder Valin (11%) vertreten (LEE *et al.* 2007).

In dieser Arbeit zeigte sich, dass bei Schaftbereichen von GP2 ebenfalls alle für extensinartige Proteine bisher beschriebenen hochrepetitiven AS-Motive (LAMPORT 1993, KIELISZEWSKI & LAMPORT 1994, HALLMANN & KIRK 2000, SUZUKI *et al.* 2001, FERRIS *et al.* 2005, HALLMANN 2006, vgl. 1.4) vorhanden sind. Bei dem AS-Motiv PPSPX waren an der Position X am häufigsten die Aminosäuren Leucin, Alanin und Lysin vertreten.

Es ist außerdem bekannt, dass in Schaftbereichen von GP1 bei *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* in Positionen, an denen für Prolin oder Serin codiert wird, meist identische oder synonyme Codons vorliegen (LEE *et al.* 2007). Die in dieser Arbeit untersuchten Schaftbereiche zeigten bei einem Vergleich zwischen *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* keine oder nur sehr geringe Unterschiede in der Nukleotidsequenz. Für die Schaftbereiche von GP2 bei *Volvox carteri* wurde in dieser Arbeit gezeigt, dass bei Codons, die für Serin oder Prolin kodieren, in der Mehrheit synonyme Basenaustausche stattgefunden haben, wie in Tab 3.1 dargestellt ist.

|         | Basen | davon      |        |       |             |               |  |
|---------|-------|------------|--------|-------|-------------|---------------|--|
|         |       | synonyme   | Prolin | Serin | andere AS   | nichtsynonyme |  |
|         |       | Austausche | kons.  | kons. | konserviert | Austausche    |  |
| shaft A | 135   | 19         | 13     | 1     | 5           | 32            |  |
| shaft B | 138   | 13         | 10     | 2     | 1           | 33            |  |
| shaft C | 129   | 18         | 17     | 1     | 0           | 17            |  |
| shaft D | 126   | 31         | 29     | 1     | 1           | 56            |  |

Tab. 3.1: Vergleich von Basenaustauschen in Schaftbereichen von *GP2* zwischen *Volvox* und *Chlamydomonas,* kons. = konserviert

Im Laufe der Evolution war es daher sehr wichtig, diese Schaftbereiche und damit insbesondere Stellen für die O-Glykosylierung zu erhalten, da sie essentiell für die Ausbildung der PPII-Helix und für die Zell-Zell-Erkennung sind. Dies wurde für die Agglutinine (FERRIS *et al.* 2005) und auch andere HPRGs in Landpflanzen bereits gezeigt (Wu *et al.* 2001).

Allerdings muss in diesem Zusammenhang erwähnt sein, dass auch Untersuchungen vorliegen, in denen gezeigt wird, dass die globulären Domänen von GP1 zwischen *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* ebenfalls stark konserviert sind, während die globulären Domänen der Agglutinine stark variieren (LEE, WAFFENSCHMIDT & GOODENOUGH, Manuskript in Vorbereitung).

Die vergleichenden Analysen von hydroxyprolinreichen Schaftbereichen des GP2 bei drei Arten der Volvocales in dieser Arbeit zeigen, dass diese Homologien von 59% bis zu 93% besitzen (vgl. 2.3.4). Die Schaftbereiche von *Volvox* waren stets diejenigen, die bei einer phylogenetischen Rekonstruktion am weitesten von denen der anderen beiden Arten entfernt waren. Dies ist insofern nicht verwunderlich, als dass durch phylogenetische Untersuchungen mit SSU-rRNA gezeigt wurde, dass *Volvox* und *Chlamydomonas* vor vermutlich 60 Millionen Jahren divergiert sind (PRÖSCHOLD *et al. 2001*) und sich daher auch die HRGPs anders entwickelt haben könnten.

*Chlamydomonas reinhardtii* und *Chlamydomonas incerta* hingegen sind vor nur knapp 10 Millionen Jahren aus einem gemeinsamen Vorfahren entstanden, so dass die hier gezeigte sehr hohe Homologie der Schaftbereiche dafür spricht, dass sie nicht so weit voneinander divergiert sind.

# 3.5 Ausblick

Weiterführende Untersuchungen zu den in dieser Arbeit behandelten biochemischen und molekularbiologischen Aspekten von HRGPs aus *Chlamydomonas* sollten im Wesentlichen noch drei weitere Punkte behandeln.

So bieten neuere Techniken die Möglichkeit, eine Interaktion mit Plasmonresonanz unter kinetischen Gesichtspunkten zu betrachten und gleichzeitig räumlich sowie zeitlich mit einem Mikroskop aufzunehmen. Diese Techniken brächten einen sehr wichtigen Beitrag zum exakten zeitlichen und räumlichen Aufbau der äußeren Zellwand aus isolierten Glykoproteinen.

Ferner ist es von großen Wert, den Einfluss der Glykosylierung auf die Interaktion eingehender zu untersuchen, um final die Frage zu klären, welcher strukturelle Teil der Glykoproteine wichtig für ihre Interaktion und den Aufbau der äußeren Zellwand sind, da hierzu keine eindeutigen Ergebnisse vorliegen.

Zu guter Letzt können weitere Sequenzdaten zu Genen aus *Chlamydomonas incerta* und Homologievergleiche der Glykoproteine bei den Volvocales und auch mit den Landpflanzen tiefergehende Kenntnisse darüber liefern, wie Evolution und Divergenz der Zellwände von einzelligen Algen und den Landpflanzen stattgefunden hat.

# 4. Material und Methoden

# 4.1 Algenstämme

Im Rahmen dieser Dissertation wurden Zellen der einzelligen Grünalgen *Chlamydomonas incerta* (Stamm CC-3871) und *Chlamydomonas reinhardtii* (Stämme CC-479, CC-478, CC-1731) des Chlamydomonas Center (Department of Botany, Duke University, Durham NC, USA) verwendet.

# 4.1.1 Kulturmedium

Die Zellen wurden in Tris-Acetat-Phosphatmedium (TAP) nach GORMAN & LEVINE, welches Hutners Spurenelementlösung (HUTNER *et al.* 1950) enthält, vegetativ kultiviert (in HARRIS 1989).

Hutners Spurenelementlösung (nach Hutner *et al.* 1950, in HARRIS 1989)

| Substanz                                                                             | Konzentration (mMol/L) |
|--------------------------------------------------------------------------------------|------------------------|
| Na <sub>2</sub> EDTA x 2 H <sub>2</sub> O                                            | 147,7                  |
| ZnSO <sub>4</sub> x 7 H <sub>2</sub> O                                               | 76,5                   |
| H <sub>3</sub> BO <sub>4</sub>                                                       | 183,5                  |
| $MnCl_2 \times 4 H_2O$                                                               | 25,8                   |
| $FeSO_4 \times 7 H_2O$                                                               | 17,8                   |
| $CoCl_2 \times 6 H_2O$                                                               | 6,7                    |
| CuSO <sub>4</sub> x 5 H <sub>2</sub> O                                               | 6,4                    |
| (NH <sub>4</sub> ) <sub>6</sub> Mo <sub>7</sub> O <sub>24</sub> x 4 H <sub>2</sub> O | 0,9                    |

Die Lösung wurde mit *Aqua dest.* auf 800 mL aufgefüllt und bis zum Siedepunkt erhitzt. Nach dem Abkühlen wurde der pH-Wert mit Kaliumhydroxid auf 6,8 eingestellt und die Lösung mit *Aqua dest.* auf 1 L aufgefüllt.

# 4.1.2 Stammkulturen

Die Algenstammkulturen wurden in Reagenzgläsern mit 10 mL sterilem TAP-Medium ohne Belüftung bei 25 °C in einem 12 h Licht-Dunkel-Rhythmus und einer Lichtstärke von 12000 Lux kultiviert. 100  $\mu$ L der gewachsenen Algen mit einer Zelldichte von ca. 2 x 10<sup>6</sup> Zellen wurden wöchentlich bis zweiwöchentlich in frisches Medium überimpft.

# 4.1.3 Belüftungskulturen

Die Belüftungskulturen wurden unter Luftzufuhr in 0,5 L oder 5 L-Erlenmeyerkolben mit 0,3 L bzw. 3,5 L TAP-Medium bei 25°C in einem 12 h Licht-Dunkel-Rhythmus bei einer Lichtstärke von 12000 Lux kultiviert. Die Kulturen wurden je nach Zelldichte (ca.  $2 \times 10^6$  Zellen) mit 0,5 bis 2 mL Algenstammkultur in 0,5 L Erlenmeyerkolben angeimpft und für vier Tage kultiviert.

Danach erfolgte ein Umimpfen des kompletten Inhaltes des 0,5 L-Erlenmeyerkolbens in einen 5 L-Erlenmeyerkolben und weitere Kultivierung für drei Tage.

# 4.1.4 Bestimmung der Zelldichte

Die Zelldichte pro mL wurde durch Auszählen in einer Neubauer-Zählkammer (s. Abb. 2.1) mit 0,1 mm Kammertiefe und 0,05 mm Seitenlänge pro Kleinstquadrat bestimmt. Es wurden Aliquots der Kulturen 1:1 mit 0,5% Formaldehyd in der Zählkammer gemischt und dadurch fixiert. Beim Auszählen wurden mindestens vier Großquadrate berücksichtigt.

Die Zellzahl pro mL wurde mit folgender Formel berechnet:

# (gezählte Zellen x A x B) / C

- mit A = Verdünnungsfaktor der Zellkultur-Aliquots
  - B = konstanter Kammerfaktor von 10<sup>4</sup>, um Schichtdicke und
    Größe auf 1 mL Volumen umzurechnen
  - C = Anzahl der ausgezählten Großquadrate



Abbildung 4.1: Darstellung einer Zellzählkammer nach Neubauer (Quelle: LO - Laboroptik GmbH, Friedrichsdorf)

## 4.2 Isolierung und Reinigung von Glykoproteinen aus *Chlamydomonas*

# 4.2.1 Präparation von Proteinen der perchloratlöslichen Zellwand

Mit Hilfe des chaotropen Salzes Natriumperchlorat wurden Hydroxyprolinreiche Glykoproteine (HRGPs) aus der Zellwand der Algen präpariert und nachfolgend angereichert sowie gereinigt. Schematisch lässt sich dieser Vorgang wie folgt darstellen:

35 L Zellkultur (~ 2 x 10<sup>6</sup> Zellen pro mL)





gereinigte Glykoproteine

# 4.2.2 Präparation der perchloratlöslichen Zellwand

Die Gewinnung der perchloratlöslichen Zellwand (PSW) wurde modifiziert nach GOODENOUGH *et al.* (1986) durchgeführt. Belüftungskulturen der Algen mit einem Volumen von etwa 35 L pro Präparationansatz bei einer Zelldichte von etwa 2 x 10<sup>6</sup> Zellen pro mL wurden für 72 h bei 4 °C aufbewahrt, damit die Zellen sich absetzen. Anschließend wurde das algenfreie Medium per Saugstrahlpumpe entfernt und die Algen durch Zentrifugation (2 min., 5000 g, 4 °C) pelletiert. Die Algenpellets wurden dann in 50 mL Natriumperchloratlösung (2 mol/L) pro Zentrifugenbecher resuspendiert, gepoolt und für 30 min. bei 4 °C auf einem Schüttler (30 rpm) inkubiert.

Den Proteinrohextrakt der perchloratlöslichen Zellwand erhielt man nach Zentrifugation (10 min., 10000 g, 4 °C) im Überstand. Dieser wurde drei Tage bei 4 °C gegen mehrfach gewechseltes *Aqua dest.* dialysiert.

# 4.2.3 Aggregate der perchloratlöslichen Zellwand

Die bei der Dialyse des Rohextraktes präzipitierten Proteinkomplexe wurden pelletiert (10 min., 15000 g, 4 °C) und der Überstand gefriergetrocknet. Das gefriergetrocknete Lyophilisat wurde in Natriumperchloratlösung (1 mol/L) resuspendiert (etwa 1 mL pro mg Lyophilisat) und unlösliche Rückstände pelletiert (10 min., 15000 g, 4 °C). Der Überstand wurde drei Tage bei 4°C gegen 10 mMol/L EDTA; 0,05 % w/V NaN<sub>3</sub> dialysiert. Die dabei entstandenen Glykoproteinaggregate (1. Assembly) wurden anschließend durch Zentrifugation (10 min., 15000 g, 4 °C) gewonnen.

# 4.2.4 Anreicherung der perchloratlöslichen Zellwand-Aggregate

Zur weiteren Anreicherung wurden die Glykoproteinaggregate erneut in Natriumperchloratlösung (1 mol/L, etwa 1 mL pro mg Lyophilisat) resuspendiert und die unlöslichen Bestandteile pelletiert (10 min., 15000 g, 4 °C). Der Überstand wurde drei Tage bei 4 °C gegen 10 mMol/L EDTA; 0,05 % w/V NaN<sub>3</sub> dialysiert und die entstehenden Glykoproteinaggregate (2. Assembly) pelletiert. Die Proteinpellets wurden anschließend in 20 mL *Aqua dest.* resuspendiert und bei -20 °C bis zur weiteren Verwendung gelagert.

# 4.2.5 Trennung der Glykoproteine der perchloratlöslichen Zellwand

Die Trennung der Glykoproteine der perchloratlöslichen Zellwand erfolgte durch *Fast Protein Liquid Chromatographie* (FPLC) nach GOODENOUGH *et al.* (1986).

Als Trennphase diente eine Kationenaustauschersäule Typ *HiLoad 16/10 Sepharose* (Pharmacia) mit Sulfonat-Resten als funktionelle Gruppe.

Folgende Laufpuffer wurden verwendet:

| [A1] | Kaliumacetat | 50 mMol/L              | pH 3,5 |
|------|--------------|------------------------|--------|
| [A2] | Kaliumacetat | 50 mMol/L              | pH 5,5 |
| [B]  | Kaliumacetat | 50 mMol/L, 1 mol/L KCl | pH 3,5 |

Die Pufferlösungen wurden vor der Verwendung sterilfiltriert und die Trennsäule vor der Chromatographie für 30 min. mit Puffer A1 äquilibiert. Nach einem Trennprogramm würde die Säule erneut für 30 min. mit Puffer A1 äquilibriert. Die zu trennenden Proben von Glykoproteinen mit bis zu 100 mg Gesamtproteinkonzentration wurden in maximal 45 mL Puffer [A1] gelöst und über eine Probenschleife auf die Säule aufgetragen.

Über ein in der Steuereinheit gespeichertes Programm wurde durch Mischen der Puffer A2 und B über ein Zweipumpen-System ein diskontinuierlicher Kaliumchlorid-Gradienten von 0 bis 1 mol/L KCl erzeugt.

| Bezeichnung  | Zeitpunkt | Elutionsvolumen | [KCI] in mol/L | [KCI] in mol/L |
|--------------|-----------|-----------------|----------------|----------------|
|              | [min]     | [mL]            | bei Beginn     | bei Ende       |
| Waschen A    | 0         | 40              | 0              | 0              |
| Waschen B    | 20        | 40              | 0              | 0,1            |
| Elution 1    | 40        | 40              | 0,1            | 0,1            |
| Elution 2    | 60        | 120             | 0,1            | 0,19           |
| Elution 3    | 120       | 40              | 0,19           | 0,2            |
| Elution 4    | 140       | 120             | 0,2            | 0,23           |
| Elution 5    | 200       | 140             | 0,23           | 0,27           |
| Elution 6    | 270       | 60              | 0,27           | 0,5            |
| Elution 7    | 300       | 60              | 0,5            | 1,0            |
| Regeneration | 330       | 60              | 1,0            | 1,0            |

Tabelle 4.1: Programmablauf der FPLC

Während der Chromatographie mit einer konstanten Flussrate von 2 mL/min. wurde durchgängig die Extinktion bei 280 nm mit einem UV-Spektrometer mit Durchflusszelle gemessen.

Es wurden Fraktionen von jeweils 8 mL aufgefangen. Die Peakfraktionen wurden vereinigt, für mindestens 3 Tage gegen *Aqua dest.* dialysiert, durch SDS-PAGE qualitativ analysiert und zur späteren Verwendung bei –20 °C eingefroren.

# 4.2.6 Reinigung der Glykoproteine der perchloratlöslichen Zellwand

Die weitere Reinigung (Rechromatographie) der nach 4.2.5 getrennten Glykoproteine erfolgte ebenfalls durch FPLC nach GOODENOUGH *et al.* (1986). Dies war nötig, falls die qualitative Analyse der nach 4.2.5 erhaltenen Glykoproteine keine Proteinreinfraktionen ergab.

Als Trennphase diente eine Kationenaustauschersäule vom Typ *Mono S 5/5* (Pharmacia) mit Sulfonat-Resten als funktionelle Gruppe. Es wurden die gleichen Laufpuffer wie in 2.2.5 beschrieben verwendet.

Vor und nach jeder Chromatographie wurde die Säule für 30 min. mit Puffer [A1] äquilibiert. Die zu reinigenden Proben von Glykoproteinen mit bis zu 10 mg Gesamtproteinkonzentration wurden in maximal 10 mL Puffer [A1] gelöst und über eine Probenschleife auf die Säule aufgetragen. Über ein in der Steuereinheit gespeichertes Programm wurde durch Mischen der Puffer A2 und B über ein Zweipumpen-System ein diskontinuierlicher Kaliumchlorid-Gradienten von 0 bis 1 mol/L KCl erzeugt.

| Bezeichnung | Zeitpunkt | Elutionsvolumen | [KCI] in mol/L | [KCI] in mol/L |
|-------------|-----------|-----------------|----------------|----------------|
|             | [min]     | [mL]            | bei Beginn     | bei Ende       |
| Waschen A   | 0         | 5               | 0              | 0              |
| Waschen B   | 5         | 2               | 0              | 0              |
| Elution 1   | 7         | 5               | 0              | 0,1            |
| Elution 2   | 12        | 30              | 0,1            | 0,1            |
| Elution 3   | 42        | 20              | 0,1            | 0,3            |
| Elution 4   | 62        | 20              | 0,3            | 0,5            |
| Reinigung   | 65        | 3               | 0,5            | 1,0            |

Tabelle 4.2: Programmablauf der FPLC

Die Chromatographie wurde wie in 4.2.5 beschrieben, jedoch mit einer Flussrate von 1 mL/min. durchgeführt und die Peakfraktionen entsprechend vereint. Anstatt 8 mL wurde 1 mL pro Fraktion gesammelt.

# 4.3 Elektrophoretische Methoden

## 4.3.1 SDS-Polyacrylamid-Gelelektrophorese

Die diskontinuierliche SDS-PAGE wurde modifiziert nach JAENICKE (1984) und SAMBROOK *et al.* (1989) in einem vertikalen Flachbettgel mit einer Schichtdicke von 1,6 mm und einer Fläche von 14 x 14 cm durchgeführt.

Von den in  $H_2O$  gelösten Proben von PSW oder reinen HRGPs wurde zunächst der Proteingehalt (s. 4.4) bestimmt, danach entsprechend die gewünschte Proteinmenge von 5-300 µg in maximal 50 µL im Verhältnis 1:1 mit Dissoziations-Probenpuffer versetzt und zur Reduzierung von Disulfitbrücken 5 µL 2-Mercaptoethanol zugegeben. Zur Trennung unter nicht-reduzierenden Bedingungen wurde im Probenpuffer auf 2-Mercaptoethanol verzichtet.

Die Proben wurden für 5 min. bei 95 °C in einem Thermoblock erhitzt und danach direkt mit einer Hamilton-Spritze in die Probentaschen aufgetragen. Während der Fokussierung der Proben im Sammelgel erfolgte die Elektrophorese bei einer Stromstärke von 35 mA. Bei Erreichen des Trenngels wurde die Stromstärke auf 45-50 mA erhöht.

Dissoziations-Probenpuffer

| Stammlösung                | Menge [mL]    | Konzentration [mMol/L] |
|----------------------------|---------------|------------------------|
| 10% SDS                    | 4,0           | 140,0                  |
| 0,5 Mol/L Tris/HCl, pH 6,8 | 2,5           | 125,0                  |
| 0,5% Bromphenolblau        | 0,01          | 7,23 x 10⁻³            |
| Glycerin                   | 2,0           | 2,73                   |
| Aqua dest.                 | 1,49          |                        |
|                            | $\Sigma$ 10,0 |                        |

#### Elektrophoresepuffer (pH 8,3)

| Stammlösung        | M | enge [mL] | Konzentration [mMol/L] |
|--------------------|---|-----------|------------------------|
| 10% SDS            |   | 10        | 3,5                    |
| 0,5 M Tris, pH 8,3 |   | 50        | 25                     |
| 10% Glycin         |   | 100       | 192                    |
| Aqua dest.         |   | 840       |                        |
|                    | Σ | 1000      |                        |

# 4.3.2 SDS-Minigelelektrophorese

Zur Herstellung von Minigelen (Schichtdicke 1,6 mm; 5,5 x 8,5 cm) wurden die in 2.3.1 aufgeführten Lösungen zu jeweils einem Fünftel der angegebenen Menge verwendet. Während der Fokussierung der Proben im Sammelgel erfolgte die Elektrophorese bei einer Stromstärke von 10 mA. Diese wurde auf 15 mA erhöht, nachdem die Laufmittelfront das Trenngel erreicht hatte.

# 4.3.3 Gelelektrophoretische Molekulargewichtsbestimmung

Das apparente Molekulargewicht von Proteinen wurde aus ihrem Wanderungsverhalten bei der SDS-PAGE ermittelt. Dazu wurden parallel zu den Proteinbanden Standardproteingemische aufgetragen. Verwendet wurden hierzu PageRuler<sup>™</sup> Protein Ladder und PageRuler<sup>™</sup> Prestained Protein Ladder (Fermentas, St.Leon-Rot), die ein Gemisch rekombinanter Proteine enthalten.

| Protein Ladder |                  | prestained Protein Ladder |                  |  |
|----------------|------------------|---------------------------|------------------|--|
| Proteine       | Molekulargewicht | Proteine                  | Molekulargewicht |  |
|                | [kDa]            |                           | [kDa]            |  |
|                | 200              |                           | 170              |  |
|                | 150              |                           | 130              |  |
|                | 120              |                           | 100              |  |
|                | 100              |                           | 72               |  |
| rekombinantes  | 85               | rekombinantes             | 55               |  |
| Protein        | 70               | Protein                   | 40               |  |
|                | 60               |                           | 33               |  |
|                | 50               |                           | 24               |  |
|                | 40               |                           | 17               |  |
|                | 30               |                           | 11               |  |
|                | 25               |                           |                  |  |
|                | 20               |                           |                  |  |
|                | 15               |                           |                  |  |

Tabelle 4.3: Fermentas Proteinmassenstandards

# 4.4 Proteinbestimmung

# 4.4.1 Qualitative Proteinbestimmung

# 4.4.1.1 Coomassie-Blaufärbung von SDS-Gelen

Diese von JAENICKE (1984) beschriebene Methode zur unspezifischen Proteinfärbung sah folgende Schritte vor:

| 1. Fixieren  | 45% (V/V) Methanol;            | mind. 1 h  |
|--------------|--------------------------------|------------|
|              | 10% (V/V) Essigsäure           | oder ÜN    |
| 2. Färben    | 45% (V/V) Methanol;            |            |
|              | 10% (V/V) Essigsäure;          | 30 min.    |
|              | 0,2% (w/V) Coomassie Brilliant |            |
|              | Blue R-250                     |            |
| 3. Entfärben | 20% (V/V) Methanol;            | 3 x 2 h    |
|              | 10% (V/V) Essigsäure           |            |
| 4. Spülen    | Aqua dest.                     | 3 x 1 min. |

Ein Vorteil an dieser Methode ist, dass Gele, deren Proteinbanden unter der Nachweisgrenze von 0,1 µg Protein liegen, nach gründlicher Entfärbung anschließend mit der nachfolgend beschriebenen Silberfärbung (Nachweisgrenze 0,1 ng Protein) untersucht werden konnten.

Die Gele wurden nach Färbung zur Dokumentation auf einem Flachbettscanner eingescannt.

Zur dauerhaften Aufbewahrung wurden die Gele zuerst auf ein Filterpapier, dann luftblasenfrei zwischen zwei angefeuchtete Zellglasfolien gelegt und in einem Geltrocker mit vierstündiger Zuschaltung einer Heizung unter Vakuum über Nacht getrocknet.

# 4.4.1.2 Silberfärbung von SDS-Gelen

Die nach HEUKESHOVEN und DERNICK (1985) modifiziert durchgeführte Silberfärbung sah folgende Arbeitsschritte vor:

| 1. Fixieren     | 50 % (V/V) Methanol:            | mind 1 h    |
|-----------------|---------------------------------|-------------|
|                 | 12 % (V/V) Essigsäure:          | oder ÜN     |
|                 | 0,05 % (V/V) Formaldehyd        |             |
| 2. Waschen      | 50 % (V/V) Ethanol              | 3 x 20 min. |
| 3. Vorbehandeln | 0,2 % (w/V) Natriumthiosulfat   | 1 - 2 min.  |
| 4. Spülen       | $H_2O$ dest.                    | 3 x 1 min.  |
| 5. Färben       | 0,2 % (w/V) Silbernitrat;       | 30 min.     |
|                 | 0,075 % (V/V) Formaldehyd       |             |
| 6. Spülen       | Aqua dest.                      | 3 x 1 min.  |
| 7. Entwickeln   | 6 % (w/V) Natriumcarbonat;      | bis zu 10   |
|                 | 0,05 % (V/V) Formaldehyd;       | min.        |
|                 | 0,004 % (w/V) Natriumthiosulfat |             |
| 8. Stoppen      | 50 % (V/V) Methanol; 12 % (V/V) | 10 min.     |
|                 | Essigsäure                      |             |
| 9. Waschen      | 50 % (V/V) Methanol             | 1 h         |
| 10. Spülen      | Aqua dest.                      | 3 x 1 min.  |

Dokumentation und Aufbewahrung der Gele erfolgte wie in 4.4.1.1 beschrieben.

# 4.4.2 Quantitative Proteinbestimmung

Von den nachfolgend beschriebenen Methoden wurde in der Regel die Proteinbestimmung nach WARBURG & CHRISTIAN (1942) durchgeführt, um vergleichbare Ergebnisse zu erhalten. Die Mikro-Lowry Methode (PETERSON 1977) diente als Kontrolle oder wurde nur in speziellen Fällen angewandt.

# 4.4.2.1 Warburg und Christian

Diese in Abänderung nach JAENICKE (1984) verwendete Methode ist gut zu einer schnellen Abschätzung der Proteinkonzentration geeignet, da sie simpel und ohne Probenverlust durchführbar ist. Es wurde die Extinktion verdünnter Proteinlösungen bei 260 nm und 280 nm gemessen und die Proteinkonzentration nach folgender Gleichung berechnet:

## Proteinkonzentration [mg/mL] = $1,45 \times E_{280} - 0,74 \times E_{260}$

# 4.4.2.2 Mikro-Lowry

Diese empfindliche Methode zur Bestimmung der Proteinkonzentration wurde von PETERSON (1977) entwickelt. Eine optimale Quantifizierung erreicht man bei einer Proteinkonzentration von 10 bis 50 µg/mL.

Folgende Lösungen wurden verwendet:

Lösung 1: 0,8 mol/L NaOH

Lösung 2: 10 % SDS

Lösung 3: Cu-Tartrat-Reagenz:

0,5 g CuSO<sub>4</sub> x 5 H<sub>2</sub>O und 1 g K-Na-Tartrat werden in 250 mL H<sub>2</sub>O *dest.* gelöst und dazu 250 mL einer 20%igen Na<sub>2</sub>CO<sub>3</sub>-Lösung gegeben

Lösung 4: 20 % (V/V) Folin-Ciocalteu-Reagenz (FCR)

Zu 400  $\mu$ L Proteinprobe wurden 400  $\mu$ L eines frisch angesetzten Gemisches der Micro-Lowry-Lösungen 1, 2 und 3 sowie H<sub>2</sub>O *dest.* im Verhältnis 1:1:1:1 gegeben.

Nach 10 min. wurden jeweils 200 µL FCR zugesetzt und das Gemisch für 30 min. bei Raumtemperatur (RT) inkubiert. Die durch Reduktion des Folinreagenzes entstehende blaue Färbung wurde dann photometrisch bei einer Wellenlänge von 750 nm gemessen.

Zur Quantifizierung der Proteinkonzentration wurde bei jeder Proteinbestimmung eine BSA-Verdünnungsreihe (0, 10, 20, 25, 40 und 50 µg/mL) erstellt und per Doppelbestimmung daraus eine Eichgerade ermittelt.

# 4.5 Circulardichroismus-Spektroskopie

Die nach 4.2.5 oder 4.2.6 gereinigten nativen Glykoproteine wurden zur Bestimmung des Circulardichroismus in einer Konzentration von 0,2 mg/mL in H<sub>2</sub>O *dest.* oder phosphatgepufferte Kochsalzlösung (PBS) eingesetzt. Die CD-Spektren wurden an einem J-715-Spektralphotometer der Firma Jasco aufgezeichnet, welches zuvor nach Herstellerangaben mit Ammonium-d-10-Kampfersulfat geeicht wurde. Als Küvette diente eine thermisch kontrollierte Quarzglaszelle mit einer Schichtdicke von 0,1 cm. Die CD-Spektren wurden im Wellenlängenbereich von 250 bis 180 nm mit einer Messgeschwindigkeit von 50 nm/min. aufgenommen. Es wurde eine Temperatur von 5 °C bei einem Stickstoffstrom von 7 L/min. eingestellt. Für jede CD-Bestimmung wurden pro Probe 20 Spektren akkumuliert und mit der zugehörigen Software von Jasco die gemessenen Spektren nach Abzug der Basislinie (H<sub>2</sub>O *dest.* bzw. PBS) geglättet.

PBS (pH 7,4)

| Substanz    | Konzentration (mMol/L) |
|-------------|------------------------|
| NaCl        | 136                    |
| KCI         | 3                      |
| $Na_2HPO_4$ | 1                      |
| $KH_2PO_4$  | 1,7                    |

# 4.6 Immunochemische Methoden

# 4.6.1 Biotinylierung von Proteinen

Die Biotinylierung von Glykoproteinen erfolgte abgewandelt nach DELLA-PENNA *et al.* (1986). Es wurde 1 mg trockenes Protein in 1 mL einer NaHCO<sub>3</sub>-Lösung (0,1 mol/L, pH 9) aufgenommen und mit 500  $\mu$ L NHS-Biotin (1 mg/mL in Dimethylformamid) gemischt.

Die Inkubation erfolgte über Nacht bei 4 °C in einem Überkopfschüttler. Nach Inkubation wurden die biotinylierten Proteine 6 Tage gegen H<sub>2</sub>O *dest.* dialysiert, um überschüssiges NHS-Biotin zu entfernen und abschließend in einer Evaporatorzentrifuge getrocknet.

Eine qualitative Kontrolle, ob die Biotinylierung erfolgreich war, wurde durch SDS-PAGE und anschließendem Western-Blot durchgeführt.

# 4.6.2 Proteintransfer auf Blottingmembranen

Beim Western-Blot wurden Proteine durch Elektroelution von SDS-Gelen auf PVDF-Membranen übertragen und konnten dadurch immunologisch nachgewiesen werden.

Der Proteintransfer erfolgte nach der Methode von KYSE-ANDERSON (1984) unter Verwendung eines diskontinuierlichen Puffersystems in einer halbtrockenen Blottingkammer. Zum Transfer wurde eine Dauer von 60 min. bei einer Stromstärke von 0,8 mA pro cm<sup>2</sup> Membranfläche gewählt.

Als Puffersystem wurden die folgenden Puffer verwendet:

| Kathodenpuffer (pH 9,4)                                                               |                                                                                                |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|
| Substanz                                                                              | Konzentration (mMol/L)                                                                         |  |  |
| Trishydroxymethyl-                                                                    | 30                                                                                             |  |  |
| aminoethan (Tris)                                                                     |                                                                                                |  |  |
| 6-Aminohexan                                                                          | 40                                                                                             |  |  |
| Methanol                                                                              | 20% (V/V)                                                                                      |  |  |
|                                                                                       |                                                                                                |  |  |
| Anodenpuffer 1 (pH 10                                                                 | ,4)                                                                                            |  |  |
| - · ·                                                                                 |                                                                                                |  |  |
| Substanz                                                                              | Konzentration (mMol/L)                                                                         |  |  |
| Substanz<br>Tris                                                                      | Konzentration (mMol/L)<br>300                                                                  |  |  |
| Substanz<br>Tris<br>Methanol                                                          | Konzentration (mMol/L)<br>300<br>10% (V/V)                                                     |  |  |
| Substanz<br>Tris<br>Methanol                                                          | Konzentration (mMol/L)<br>300<br>10% (V/V)                                                     |  |  |
| Substanz<br>Tris<br>Methanol<br>Anodenpuffer 2 (pH 10                                 | Konzentration (mMol/L)<br>300<br>10% (V/V)<br>,4)                                              |  |  |
| Substanz<br>Tris<br>Methanol<br>Anodenpuffer 2 (pH 10<br>Substanz                     | Konzentration (mMol/L)<br>300<br>10% (V/V)<br>,4)<br>Konzentration (mMol/L)                    |  |  |
| Substanz<br>Tris<br>Methanol<br>Anodenpuffer 2 (pH 10<br>Substanz<br>Tris             | Konzentration (mMol/L)<br>300<br>10% (V/V)<br>,4)<br>Konzentration (mMol/L)<br>25              |  |  |
| Substanz<br>Tris<br>Methanol<br>Anodenpuffer 2 (pH 10<br>Substanz<br>Tris<br>Methanol | Konzentration (mMol/L)<br>300<br>10% (V/V)<br>,4)<br>Konzentration (mMol/L)<br>25<br>10% (V/V) |  |  |

# 4.6.3 Immunodetektion

Nach dem Blotting biotinylierter Glykoproteine erfolgte als Nachweis eine Immunfärbung abgewandelt nach TOBWIN *et al.* (1979).

Zur Absättigung der noch freien Bindungsstellen wurde die Membran über Nacht bei 4 °C mit 1% Magermilchpulver in Tris-gepufferter Kochsalzlösung (TBS) inkubiert. Danach wurde zwei Mal für 5 min. mit TBS gewaschen und für drei Stunden mit dem primären Antikörper Avidin-Peroxidase (1:10.000 in TBS/1% BSA, Sigma-Aldrich) bei RT inkubiert. Alle Inkubations- oder Waschschritte erfolgten auf einem Schüttler. Nach Inkubation mit dem primären Antikörper wurde die Membran drei Mal für 5 min. mit TBS gewaschen und die Substratlösung für die Farbreaktion zugegeben. Nach ausreichender Farbentwicklung wurde die Farbreaktion durch Entfernen der Substratlösung und Zugabe von TBS gestoppt. Es wurden folgende Lösungen verwendet:

TBS (pH 8)

| Substanz | Konzentration (Mol/L) |
|----------|-----------------------|
| Tris     | 1                     |
| NaCl     | 0,15                  |

Farbsubstrat:

| Stammlösung                                   | Konzentration [mMol/L] | Endgehalt<br>[%]    |
|-----------------------------------------------|------------------------|---------------------|
| TBS<br>4-Chloro-1-naphthol                    | 0,4                    | 80 V/V              |
| Ethanol<br>30 % H <sub>2</sub> O <sub>2</sub> | ,                      | 20 V/V<br>0,002 V/V |

Das 4-Chloro-1-naphthol wurde in 6 mL Ethanol gelöst und mit 24 mL TBS gemischt. Zu dieser Lösung wurden 60  $\mu$ L einer 30%igen H<sub>2</sub>O<sub>2</sub>-Lösung gegeben.

# 4.7 Interaktionsanalysen

# 4.7.1 Interaktionsanalysen durch ELISA

# 4.7.1.1 Titerplatten Typ Greiner Microlon

Der ELISA (enzyme linked immunosorbent assay) wurde in hochbindenden Mikrotiterplatten (Greiner Microlon 600 High Binding) durchgeführt. Es wurden gereinigte Glykoproteine in verschiedenen Konzentrationen als Antigen in die Wells pipettiert und zur Bindung an die Oberfläche über Nacht bei 4 °C auf einem Schüttler inkubiert. Die nachfolgenden Inkubationsschritte erfolgten bei Raumtemperatur auf einem Schüttler.

| 1. Waschen      | 3 x 200 µL PBS                           |            |
|-----------------|------------------------------------------|------------|
| 2. Blocken      | 200 µL PBS/ 1% BSA                       | 60 min.    |
| 3. Waschen      | 3 x 200 µL PBS                           |            |
| 4. Inkubation   | Biotinyliertes Glykoprotein              | 180 min.   |
| 5. Waschen      | 3 x 200 µL PBS                           |            |
| 6. Inkubation   | 50 µL Avidin-Peroxidase                  | 60 min.    |
|                 | 1:10000 in PBS/ 1% BSA                   |            |
| 7. Waschen      | 3 x 200 µL PBS                           |            |
| 8. Farbreaktion | 50 µL Farbsubstrat für Avidin-Peroxidase | 15-30 min. |
| 9. Messung      | Messung der Extinktion bei 490 nm        |            |

Tabelle 4.3: schematische Übersicht des ELISA

Tabelle 4.4: Farbsubstrat für Avidin-Peroxidase:

| Stammlösungen                      | Konzentration [mMol/L] | Endgehalt<br>[%] |
|------------------------------------|------------------------|------------------|
| Zitronensäure                      | 3,8                    | 25,7 V/V         |
| Na <sub>2</sub> HPO <sub>4</sub>   | 8,2                    | 24,3 V/V         |
| o-Phenylendiamin                   | 3,7                    | 0,04 V/V         |
| 35 % H <sub>2</sub> O <sub>2</sub> |                        | 1,2 V/V          |
| H₂O <i>dest.</i>                   |                        | 50 V/V           |

# 4.7.1.2 Titerplatten Typ Nunc CovaLink

Diese Platten mit der Bezeichnung *CovaLink* zeichneten sich dadurch aus, dass sie mit sekundären Aminen als funktionelle Gruppe beschichtet sind. Durch eine chemische Reaktion mit Sulfo-N-hydroxysuccinimid (Sulfo-NHS) und 1-Ethyl-3(3-dimethylaminopropyl)-carbodiimid (EDC) können Proteine nach Aktivierung mit ihrem Carboxyterminus kovalent an das sekundäre Amin gebunden werden.

Es wurden wie in 2.6.3 beschrieben gereinigte Glykoproteine in verschiedenen Konzentrationen als "Antigen" in die Wells pipettiert und kovalent an die Titerplatte gekoppelt. Die nachfolgenden Inkubationsschritte erfolgten bei RT auf einem Schüttler.

Die Durchführung des ELISA selbst erfolgte nach zwei unterschiedlichen Methoden:

- nach RASMUSSEN (1990)
- nach Sondergard-Andersen *et al.* (1990)

| Tabelle 4.5: | ELISA   | nach  | RASMUSSEN        | (1990) |  |
|--------------|---------|-------|------------------|--------|--|
| rubene nor   | LL10/ ( | nacri | I C ST I C S E L | (+)))) |  |

| 1 Kanalun a      | Ductoire reus Mall is FO ul               | 120        |
|------------------|-------------------------------------------|------------|
| 1. Kopplung      | zum Protein pro weil je 50 µL             | 120 min.   |
|                  | Sulfo-NHS (5 mMol/L) und EDC              |            |
|                  | (60 mMol/L) bei RT                        |            |
| 2. Waschen A     | 2 x 250 µL CovaBuffer                     |            |
| 3. Waschen B     | 1 x 250 µL CovaBuffer                     | 15 min.    |
| 4. Inkubation    | biotinyliertes Glykoprotein               | 180 min.   |
| 5. Waschen A     | 2 x 250 µL CovaBuffer                     |            |
| 6. Waschen B     | 1 x 250 µL CovaBuffer                     | 15 min.    |
| 7. Inkubation    | 100 µL Avidin-Peroxidase                  | 60 min.    |
|                  | 1:10000 in PBS/ 1% BSA                    |            |
| 8. Waschen A     | 2 x 250 µL CovaBuffer                     |            |
| 9. Waschen B     | 1 x 250 µL CovaBuffer                     | 15 min.    |
| 10. Farbreaktion | 100 µL Farbsubstrat für Avidin-Peroxidase | 15-30 min. |
| 11. Messung      | Messung der Extinktion bei 490 nm         |            |

CovaBuffer

| Substanz                               | Konzentration [mol/L] |
|----------------------------------------|-----------------------|
| NaCl                                   | 2                     |
| MgSO <sub>4</sub> x 7 H <sub>2</sub> O | 0,04                  |
| Tween 20                               | 0,5% V/V              |
| PBS                                    | ad 1000 mL            |

| 1. Kopplung     | zum Protein pro Well je 50 µL<br>Sulfo-NHS (5 mMol/L) und EDC | 60 min.  |
|-----------------|---------------------------------------------------------------|----------|
|                 | (60 mMol/L) bei 4 °C                                          |          |
| 2. Waschen      | 3 x 200 µL PBS                                                |          |
| 3. Blocken      | 200 µL PBS/ 1% BSA                                            | 40 min.  |
| 4. Inkubation   | biotinyliertes Glykoprotein                                   | 180 min. |
| 5. Waschen      | 3 x 200 µL PBS                                                |          |
| 6. Inkubation   | 100 µL Avidin-Peroxidase                                      | 60 min.  |
|                 | 1:10000 in PBS/ 1% BSA                                        |          |
| 7. Waschen      | 3 x 200 µL PBS                                                |          |
| 8. Farbreaktion | 100 µL Farbsubstrat für Avidin-Peroxidase                     | 15 min.  |
| 9. Messung      | Messung der Extinktion bei 490 nm                             |          |

Tabelle 4.6: ELISA abgewandelt nach Sondergard-Andersen et al. (1990)

# 4.7.2 Interaktionsanalysen durch *Resonant-mirror*

Mit der Verwendung des Gerätes IASys plus (Affinity Sensors/ NeoSensors) wurde eine Methode gewählt, die eine Echtzeit-Interaktionsanalyse auf Basis einer der Plasmonresonanz verwandten Technik mit nativem Ausgangsmaterial ermöglicht (Übersicht in: CUSH 1993, HÄNEL & GAUGLITZ 2002).

Hierbei wird polarisiertes Laserlicht durch eine als Prisma wirkende Quarzglasschicht in einer Küvette (s. Abb. 4.2) an eine dünne Kopplungsschicht mit niedrigem Refraktionsindex gestrahlt und dort reflektiert.



Abb. 4.2: Darstellung einer Küvette (A) und des dazugehörigen Gerätes zur Messung der Plasmonresonanz, der IASys Plus (B)
Es kommt dabei jedoch nicht zu einer Totalreflexion, sondern die Energie des eingestrahlten Lichts setzt sich als elektromagnetische Welle durch die Kopplungsschicht fort, da sie sich dort nicht ausbreiten kann. Dabei nimmt die Amplitude der Welle exponentiell ab. In der aufliegenden, dichteren Resonanzschicht mit hohem Refraktionsindex wird sie abermals reflektiert. Zwischen diesen beiden Schichten baut sich nun ein schwingendes oder evaneszentes Feld auf, das reflektierte Restlicht gelangt wieder zurück in die Quarzglasschicht. Bei dem oben beschriebenem Vorgang wird das Licht um 90° gedreht, so dass es bei Durchtritt durch einem zweiten Polarisator gemessen werden kann (Schema s. Abb. 4.3).



Abb. 4.3: Schema der *Resonant-mirror*-Methode, mit *Prism* ist die Quarzglasschicht bezeichnet, der Ligand bindet an der violetten Sensorschicht, die Bestandteil des Probennapfes ist. Reflektiertes Licht (schwarze Pfeile) wird durch einen zweiten Polarisator gelenkt und von einer Detektoreinheit (blau) gemessen (Bildnachweis: NeoSensors Ltd., Sedgefield, UK).

Bindet nun ein Ligand an die Sensorschicht, so ändert sich der Brechungsindex an der Fläche. Dies führt zu einer minimalen Änderung des Resonanzwinkels, die in Bogensekunden gemessen wird und sich proportional zur Menge an gebundenem Liganden ändert.

Bei der Plasmonresonanz wird vom Gerät ein winkelabhängiger Intensitäts<u>verlust</u> des an einer Küvette einstrahlenden monochromatischen Lichts gemessen, während sich beim Gerät IAsys plus, das nach dem Prinzip des *Resonant mirror* arbeitet, eine winkelabhängige Intensitäts<u>verschiebung</u> gemessen wird. Vom Grundprinzip unterscheiden sich also die beiden Methoden, bei beiden wird jedoch eine "Response" gemessen, die proportional zu einer Menge an gebundenem Liganden in ng pro mm<sup>2</sup> Fläche ist und daher vergleichbare Ergebnisse liefert.

### 4.7.2.2 Immobilisierung von Glykoproteinen an CMD-Küvetten

Die Kopplung von Glykoproteinen (GPs) als Liganden an eine Carboxymethyldextran-Matrix (CMD) erfolgte über eine Aktivierung von Carboxylgruppen mit EDC/ NHS und der anschließenden kovalenten Bindung des Aminoterminus des Glykoproteins als sekundäres Amin an CMD.





Die Kopplung eines Proteins an die CMD-Matrix sah folgende Schritte vor:

|                                                            | -         |
|------------------------------------------------------------|-----------|
| Schritt                                                    | Dauer     |
| Waschen mit PBS/T                                          | 4x 5 min  |
|                                                            |           |
| Aktivierung mit je 50 $\mu$ L EDC und NHS                  | 3x 5 min. |
| Waschen mit PBS und Basislinie aufzeichnen                 | 4x 1 min. |
| Immobilisieren mit Na-Acetat (10 mMol/L)                   | 3x 2 min. |
| Esterinaktivierung mit Ethanolamin (1 mol/L, pH 8,5)       | 3x 2 min. |
| Beladen mit 1µg Ligand/ Glykoprotein                       | 3x 5 min. |
| Waschen mit PBS                                            | 4x 1 min. |
| Waschen mit PBS/T                                          | 4x 2 min. |
| Waschen mit PBS                                            | 4x 1 min. |
| Blocken mit PBS/5% BSA                                     | 2x 5 min. |
| Waschen mit PBS/T                                          | 4x 1 min. |
| ungebundenes GP entfernen mit NaOCl <sub>4</sub> (2 mol/L) | 3x 2 min. |
| Waschen mit PBS                                            | 4x 1 min. |
|                                                            |           |

| Tabelle 4.7: Schema der Kopplungsreaktion eine | es Glykoproteins als Liganden |
|------------------------------------------------|-------------------------------|
|------------------------------------------------|-------------------------------|

Alle verwendeten Lösungen wurden in Volumina von jeweils 100  $\mu$ L in die CMD-Küvette gegeben.

EDC

| Substanz                   | Konzentration |
|----------------------------|---------------|
| 1-Ethyl-3-(3-dimethylamino | 200 mMol/ mL  |
| propyl)-carbodiimid        |               |

NHS

| Substanz            | Konzentration |
|---------------------|---------------|
| N-Hydroxysuccinimid | 50 mMol/ mL   |

PBS/T

| Substanz | Konzentration |
|----------|---------------|
| Tween 20 | 50 mMol/ mL   |

## 4.7.2.3 Kopplung eines Glykoproteins als Interaktionspartner

Eine Interaktionsmessung eines GPs mit einem nach 4.6.4.2.2 gekoppelten GPs erfolgte in vier Schritten. Es wurde zunächst eine Basislinie des Signals aufgenommen, danach wurde der Interaktionspartner in die Küvette gegeben und die Interaktion über einen Zeitraum von 10 min. aufgezeichnet. Hiernach wurde der Interaktionspartner entfernt und die Küvette mit Natriumperchlorat (2 mol/L) regeneriert.

| Tabelle 2.8: Schema der Kopplung e | eines Interaktionspartners |
|------------------------------------|----------------------------|
|------------------------------------|----------------------------|

| Schritt                       | Dauer      |
|-------------------------------|------------|
| Waschen mit PBS               | 4 x 1min.  |
| Assoziation von 1 µg GP/      | 2 x 5 min. |
| Interaktionspartner           |            |
| Waschen mit PBS               | 4 x 1min.  |
| ungebundenes GP entfernen mit | 4 x 1 min. |
| NaOCl₄ (2 mol/L)              |            |

Bei einer Interaktion mit mehr als einem GP als Interaktionspartner wurde nach der Assoziation nicht mit Natriumperchlorat regeneriert, sondern erst das zweite GP assoziiert.

## 4.7.2.4 Datenauswertung

Die Auswertung der mit dem Gerät IASys plus erhaltenen Daten wurde mit dem Programm Scrubber2 (Center for Biomolecular Interaction Analysis, University of Utah) durchgeführt.

Aus den Daten wurden drei kinetische Konstanten ermittelt:

| Assoziationskonstante   | K <sub>Ass</sub>  | in mol <sup>-1</sup> x s <sup>-1</sup> |
|-------------------------|-------------------|----------------------------------------|
| Dissoziationskonstante  | $K_{\text{Diss}}$ | in s-1                                 |
| Gleichgewichtskonstante | K <sub>D</sub>    | in mol x l <sup>-1</sup>               |

Nach dem Massenwirkungsgesetz gilt für  $K_D$ :  $K_D = K_{Diss} / K_{Ass}$ 

### 4.8 Molekularbiologische Methoden

### 4.8.1 Bakterienstämme

Für molekularbiologische Arbeiten wurde der Modellorganismus *Escherischia coli*, Stämme DH5a (GRANT *et al.* 1990, Institut für Genetik der Universität zu Köln) und XL-1 Blue (Stratagene) verwendet.

Zur Vermehrung wurden diese, falls nicht anders angegeben, in LB-Medium (lysogeny broth, SAMBROOK *et al.* 1989) bei 37 °C in Schikanenkolben bei ~ 100 rpm auf einem Schüttler kultiviert.

#### 4.8.2 Phagenbank von Chlamydomonas incerta

Zur Sequenzierung des Gens *GP2* wurde als Template eine Phagenbank des Genoms von *Chlamydomonas incerta* verwendet. Dessen genomische DNA wurde teilweise mit Sau3AI verdaut und Fragmente von 15-22 kb Länge in mit BamHI/EcoRI geschnittene Phagen EMBL3  $\lambda$  (ProMega) kloniert (FERRIS 1989).

Diese Phagenbank wurde von P.J. FERRIS (Plant Biology Laboratory, Salk Institute, La Jolla, California 92037) zur Verfügung gestellt.

### 4.8.2.1 Herstellung von Phagenlysaten

Zur Vermehrung von Phagen-DNA wurden Zellen von *E.coli* mit dem Phagen EMBL3  $\lambda$  infiziert, nach der Lyse der Zellen das Phagenlysat gesammelt und bis zu einer weiteren Verwendung bei -20 °C aufbewahrt (nach Sambrook *et al.* 1989, Molecular Cloning: A Laboratory Manual Kapitel 1.12.1).

### 4.8.2.2 Titerbestimmung des Phagen $\lambda$ EMBL3

Von dem in 4.8.2.1 hergestellten Phagenlysat wurde nachfolgend der Titer (nach Sambrook *et al.* 1989, Molecular Cloning: A Laboratory Manual Kapitel 1.11.1) bestimmt.

### 4.8.2.3 Isolierung von Phagen-DNA aus Lysat

Zu einer Lösung von 50 mL Phagenlysat wurden 10  $\mu$ L DNAse (5 mg/mL) sowie 25  $\mu$ L RNAse (10 mg/mL) gegeben und für eine Stunde bei 37°C inkubiert. Danach wurden die Phagen durch Ultrazentrifugation bei 27.000 rpm, 4 °C für 1,5 Std. pelletiert und anschließend das Pellet in 500  $\mu$ L Tris (50 mMol/L, pH 8) resuspendiert.

Die Lösung wurde in ein frisches Reaktionsgefäß überführt, mit 200  $\mu$ L Tris/EDTA-gesättigtem Phenol versetzt, für 20 min. auf einem Schüttler inkubiert und bei 10.000 g in einer Tischzentrifuge für 2 min. zentrifugiert. Dieser Schritt wurde mit dem erhaltenen Überstand erneut durchgeführt. Hiernach erfolgte eine zweimalige Extraktion der wässrigen Phase mit je 200  $\mu$ L Chloroform.

Zur Präzipitation der DNA wurde die wässrige Phase in ein frisches Reaktionsgefäß überführt, mit 500  $\mu$ L Ethanol sowie 40  $\mu$ L Natriumacetat (3 Mol/L, pH 5,5) versetzt und kurz bei RT inkubiert.

Nach fünfminütiger Zentrifugation (10.000 g, Tischzentrifuge) wurde das erhaltene Präzipitat mit 1 mL Ethanol (70%) resuspendiert und erneut zentrifugiert (10.000 g, 5 min.).

Das hiernach erhaltene Pellet wurde getrocknet und bei 4 °C gelagert.

### 4.8.3 Isolierung genomischer DNA aus *Chlamydomonas*

Zusätzlich zur Phagenbank (4.8.2) als Template für die Sequenzierung von *GP2* wurde in einem parallelen Ansatz mit genomischer DNA aus *Chlamydomonas reinhardtii* und *Chlamydomonas incerta* gearbeitet. Diese wurde modifiziert nach dem Protokoll von NEWMAN *et al.* (1990) extrahiert:

Von einer dicht gewachsenen Kultur (~  $2 \times 10^6$  Zellen) wurde 1 mL in einer Tischzentrifuge bei 10.000 g pelletiert und in 1 mL Tris-EDTA-Natriumchlorid-Puffer (TEN) resuspendiert. Hiernach wurde erneut pelletiert, der Überstand abgenommen und das Pellet auf Eis mit 150 µL H<sub>2</sub>O und 300 µL SDS-EB resuspendiert.

Die erste Extraktion wurde durch zehnminütige Inkubation bei RT mit 350  $\mu$ L TE-gesättigtem Phenol/Chlorofom/iso-Amylalkohol (25:24:1 Teile v/v) und anschließender Zentrifugation bei 10.000 g für 5 min. bei RT in einer Tischzentrifuge durchgeführt. Die wässrige Phase wurde danach in ein frisches Reaktionsgefäß überführt.

Eine zweite Extraktion erfolgte mit Chloroform/iso-Amylalkohol (24:1 Teile), ebenfalls bei 10.000 g für 5 min. bei RT. Die wässrige Phase wurde in ein frisches Reaktionsgefäß überführt, mit 2 Volumen eiskaltem Ethanol sowie 40  $\mu$ L Natriumacetat (3 mol/L, pH 5,5) versetzt und für 30 min. auf Eis inkubiert. Nach zehnminütiger Zentrifugation wurde das erhaltene Präzipitat mit 200  $\mu$ L Ethanol (70%) gewaschen und erneut zentrifugiert (10.000 x g, 10 min.). Das hiernach erhaltene Pellet wurde getrocknet und bei 4 °C gelagert, kurz vor Verwendung wurde es in 40  $\mu$ L H<sub>2</sub>O gelöst und die DNA bei 4 °C gelagert.

**TEN-Puffer** 

| Substanz | Konzentration (mMol/L) |
|----------|------------------------|
| Tris     | 10                     |
| EDTA     | 10                     |
| NaCl     | 150                    |

SDS-EB Puffer (pH 8)

| Substanz  | Konzentration (mMol/L) |
|-----------|------------------------|
| SDS       | 2% (w/V)               |
| Tris/ HCl | 100                    |
| EDTA      | 40                     |
| NaCl      | 400                    |

#### 4.8.4 Primerdesign

Für das Gen *GP2* spezifische Oligonukleotide wurde mit der Software Primer3Plus ausgewählt und anschließend mit dem Programm NetPrimer überprüft. Alle verwendeten Oligonukleotide wurden von der Firma Operon Biotechnologies hergestellt. Die Sequenzen sind in Anhang 5.3 aufgelistet.

# 4.8.5 Polymerase-Kettenreaktion zur Vervielfältigung von templates für die Sequenzierung

Als Vorbereitung für die Sequenzierungsreaktionen mit dem Gen *GP2* wurden Genabschnitte von ~500 bp Größe zuerst durch PCR nach MULLIS *et al.* (1987) amplifiziert. Pro Ansatz wurden 100 ng genomische DNA aus *Chlamydomonas incerta* oder 30 ng Phagen-DNA (siehe 4.8.2) verwendet.

In der Regel wurde mit MasterMix der Firma 5 PRIME/ Eppendorf gearbeitet, bei problematischeren Amplicons wurden DNA-Polymerasen der Firma Fermentas laut Angaben des Herstellers verwendet.

Die routinemäßige Zugabe von Betain (6 mol/L) zu jedem Reaktionsansatz diente dazu, Sekundärstrukturen der sehr GC-reichen DNA von *Chlamydomonas* zu minimieren (HENKE *et al.* 1997).

PCR-Reaktionsansatz mit 5 PRIME MasterMix

| Volumen | Komponente                 |
|---------|----------------------------|
| 12 µL   | 5 PRIME MasterMix (2,5x)   |
| 2 µL    | forward Primer (10 µMol/L) |
| 2 µL    | reverse Primer (10 µMol/L) |
| 5 μL    | Betain (6 mol/L)           |
| 7 μL    | H <sub>2</sub> O           |
| 100 ng  | genomische Template-DNA    |

PCR-Reaktionsansatz mit Fermentas Polymerasen

| Volumen                                            | Komponente                                                                                                                                                                                                 |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0,3 µL                                             | Fermentas High Fidelity PCR Enzyme ( $\triangleq$ 1,25 U) oder                                                                                                                                             |
| je 1 μL<br>2 μL<br>2 μL<br>5 μL<br>15 μL<br>100 ng | Fermentas Long PCR Enzyme ( $\triangleq$ 1,25 U)<br>dATP, dCTP, dGTP, dTTP (10 mMol/L)<br>forward Primer (10 µMol/L)<br>reverse Primer (10 µMol/L)<br>Betain (6 Mol/L)<br>H <sub>2</sub> O<br>Template-DNA |

Durchgeführt wurde die PCR in Thermocyclern von Eppendorf oder Biometra mit dem folgenden Programm:

| Schritt                   | Temperatur [°C] | Dauer [sek.] |
|---------------------------|-----------------|--------------|
| 1. initiale Denaturierung | 94              | 3600         |
| 2. Denaturierung          | 94              | 30           |
| 3. Annealing der Primer   | 55-62           | 90           |
| 4. Elongation             | 72              | 120          |
| 5. finale Elongation      | 72              | 3600         |

Tabelle 4.9: Zyklus der PCR

Die Schritte 2-4 wurden nach der initialen Denaturierung für 30 oder 40 Zyklen wiederholt. Als Temperatur für das Annealing der Primer wurde die vom Hersteller angegebene Schmelztemperatur  $T_m$  minus 5 °C gewählt. Erhaltene PCR Produkte wurden bis zur Verwendung bei 4 °C gelagert.

#### 4.8.6 Agarosegele

Die in 4.8.5 erhaltenen PCR-Produkte wurden mit 0,8 %igen Agarosegelen, die den 1:50.000 eingesetzten Farbstoff GelRed<sup>TM</sup> (Biotium) enthielten, auf ihre Größe hin überprüft. Von jedem erhaltenen PCR-Produkt wurden 5 oder 10  $\mu$ L mit der entsprechenden Menge 6x DNA Loading Dye (Fermentas) gemischt und in eine Geltasche pipettiert.

Als DNA-Größenstandard wurden GeneRuler<sup>™</sup> 1kb Plus DNA Ladder, MassRuler<sup>™</sup> DNA Ladder Mix oder Lambda DNA/Eco91I (BstEII) Marker (alle Fermentas) verwendet.

| Substanz            | Einwaage (g/50 mL) | Konzentration          |
|---------------------|--------------------|------------------------|
| Agarose             | 0,4                | 0,8 % w/V              |
| TBE-Puffer          | 49,75              |                        |
| GelRed <sup>™</sup> | 5 µL/ 50 mL        |                        |
| TBE-Puffer          |                    |                        |
| Substanz            | Einwaage (g/L)     | Konzentration (mMol/L) |
| Tris                | 10,78              | 89                     |
| Borsäure            | 5,5                | 89                     |
| EDTA                | 0,74               | 2                      |

### 0,8 % Agarosegel

#### 4.8.7 Sequenzierungsreaktionen

Die DNA-Sequenzierung erfolgte durch Mitarbeiter des Servicelabors der Zentralen Bioanalytik (ZBA) des Zentrums für Molekulare Medizin Köln (ZMMK) auf einem ABI Prism 377 DNA Sequencer der Fa. Applied Biosystems nach dem *"Taq FS BigDye-terminator cycle sequencing*" Protokoll mittels Dideoxy-Kettenabbruchmethode nach SANGER *et al.* (1977).

Pro Sequenzierungsansatz wurden 100 ng template DNA (PCR Produkt, s. 4.8.5) sowie 5 pMol Primer (forward oder reverse) in 6  $\mu$ L H<sub>2</sub>O gelöst beim ZMMK abgegeben.

Die erhaltenen Sequenzdaten und Elektropherogramme wurden mit der Software GENtle (MANSKE, Institut für Biochemie 2003) korrekturgelesen und verwaltet.

#### 4.9 Peptide mass fingerprint

Aus SDS-Gelen, die mit Coomassie gefärbt waren, wurden mit einem Skalpell Proteinbanden ausgeschnitten und in Würfel mit 2-3 mm Kantenlänge zerkleinert. Die Würfel wurden in Eppendorf-Reaktionsgefäße gegeben und von Mitarbeitern des Servicelabors der Zentralen Bioanalytik (ZBA) des Zentrums für Molekulare Medizin Köln (ZMMK) mittels *Peptide mass fingerprint* (COTTRELL 1994) analysiert.

Die Identifikation eines Proteins erfolgte durch Suche nach dem durch dessen Abbau mit Trypsin erhaltenen, charakteristischen Muster aus kurzen Peptidfragmenten.

Zusätzlich zu einer Datenbanksuche der erhaltenen Peptidfragmente in der Suchmaschine MASCOT (PERKINS *et al.* 1999) wurde dem ZMMK eine Liste mit sämtlichen Proteinen aus *Chlamydomonas*, die vermutlich zur Zellwand gehören, zur Verfügung gestellt.

### 4.10 Nucleated assembly

#### 4.10.1 Markierung von GPs mit FITC

Die Markierung von Glykoproteinen mit Fluorescein-iso-thiocyanat (FITC) erfolgte abgewandelt nach COLOWICK & KAPLAN (1980).

Per SpeedVac getrocknete GPs wurden in 1 mL pro mg Protein PBS (pH 7,5) gelöst und dann mit dem zehnfachen Überschuss FITC (1 mg/mL) in NaHCO<sub>3</sub>-Puffer (0,1 mol/L, pH 9) versetzt.

Danach erfolgte eine Inkubation bei RT für 3 Std. oder lichtgeschützt ÜN bei 4 °C. Eine danach folgende, mehrtätige Dialyse gegen H<sub>2</sub>O diente dazu, ungebundenes FITC zu entfernen. Zusätzlich wurden die markierten GPs abschließend über eine Entsalzungsäule (PD-10, Amersham) nochmals von ungebundenem FITC befreit.

Die erhaltenen FITC-GPs wurden bei -20 °C aufbewahrt.

#### 4.10.2 Durchführung des nucleated assembly

Der *nucleated assembly*, die Auflagerung von löslichen Zellwandproteinen auf das Zellwandgrundgerüst, wurde modifiziert nach ADAIR *et al.* (1987) durchgeführt:

Eine normal dicht gewachsene Kultur (~ 2 x  $10^6$  Zellen) von *Chlamydomonas* wurde bei 5000 g für 10 min. pelletiert, der Überstand verworfen und das Pellet in 50 mL Natriumperchloratlösung (2 mol/L) resuspendiert. Es folgte eine 30-minütige Inkubation auf einem Schüttler (~ 50 rpm) bei 4 °C.

Das Pellet wurde zwei Mal mit PBS (pH 7) bei 3300 g und 4 °C für 5 min. gewaschen und abschließend in 10 mL PBS (pH 7) resuspendiert. Im Pellet waren nun die sog. *ghosts* enthalten, dies sind Protoplasten von *Chlamydomonas*, die noch ihre perchloratunlöslichen Zellwandbestandteile enthalten. *Ghosts* wurden sofort verwendet oder bis zu einer Woche bei 4 °C aufbewahrt.

Pro Ansatz für ein *nucleated assembly* wurden 500  $\mu$ L *ghosts* (~10<sup>6</sup> Zellen) mit 1 mL FITC-gelabelter GPs (100  $\mu$ g/mL) in einem Eppendorf-Reaktionsgefäß über Nacht bei 4 °C auf einem Überkopfschüttler inkubiert. Nach Inkubation wurde drei Mal mit 2 mL PBS (pH 7) bei 3000 rpm in einer Tischzentrifuge gewaschen und die *ghosts* abschließend in 1 mL PBS (pH 7) resuspendiert.

Bis zum Mikroskopieren der Ansätze an einem Fluoreszenzmikroskop wurden diese bei 4 °C dunkel aufbewahrt. Die Aufnahmen wurden an einem E800 Eclipse Mikroskop (Nikon) mit einer RT Monochrome Spot Kamera (Diagnostic Instruments Inc.) gemacht und mit der Software MetaMoprh (Molecular Devices) bearbeitet.

110

#### Alle nicht näher beschriebenen Methoden wurden nach SAMBROOK et al. (1989) durchgeführt.

#### 4.11 Computerprogramme

Nachfolgend eine Auflistung aller Computerprogramme, die im Rahmen dieser Dissertation verwendet wurde mitsamt einer Kurzbeschreibung und der zugehörigen URL (Stand: März 2009)

**Ex**pert **P**rotein **A**nalysis **Sy**stem Proteomic Server ExPASy (GASTEIGER *et al.* 2003)

ProtParam http://www.expasy.org/tools/protparam.html

• Ermittlung genereller Proteindaten anhand der Primärstruktur

SignalP

http://www.cbs.dtu.dk/services/SignalP/

• Vorhersage über mögliche Signalsequenzen eines Proteins

Translate

http://expasy.org/tools/dna.html

• Übersetzung von Nukleotidsequenzen in Aminosäuresequenzen in allen möglichen Leserastern

Dichroweb http://www.cryst.bbk.ac.uk/cdweb/html/home.html

• Sekundärstrukturvorhersage anhand von CD-Daten

GENtle

http://gentle.magnusmanske.de/

• Verwaltung des Genmodells von *GP2* und Primerlisten, Überprüfung von Sequenzdaten

ClustalW2/ X http://www.ebi.ac.uk/Tools/clustalw2/index.html

• Alignments von Nukleotid- oder Aminosäuresequenzen

Primer3Plus

http://www.bioinformatics.nl/cgi-in/primer3plus/primer3plus.cgi

• Suche nach geeigneten Primern im Gen GP2

Netprimer http:

http://www.premierbiosoft.com/netprimer/index.html

 Kontrolle von ausgewählten Primer auf Hairpin-Strukturen oder Dimere

Chlamy 3.0 Genome http://genome.jgi-psf.org/Chlre3/Chlre3.home.html Chlamy 3.0 Genome Blast

http://genome.jgi-psf.org/cgi-bin/runAlignment?db=Chlre3&advanced=1

- Entwicklung eines vollständigen Genmodells von GP2 von Chlamydomonas reinhardtii
- Überprüfung von Sequenzdaten auf Vorkommen im Genom

NCBI Genebankhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genomeNCBI Blasthttp://blast.ncbi.nlm.nih.gov/Blast.cgi

- Entwicklung eines vollständigen Genmodells von GP2 von Chlamydomonas reinhardtii
- Überprüfung von Sequenzdaten auf Vorkommen im Genom

NetNGlyc Server 1.0 http://www.cbs.dtu.dk/services/NetNGlyc/

• Vorhersage von Stellen für eine N-Glykosylierung

# 4.12 Chemikalien und Laborgeräte

## 4.12.1 Chemikalien

Bei der Anfertigung dieser Dissertation wurden Enzyme, Feinchemikalien der Qualitätsstufe p.A., Protein- und DNA-Massenstandards der Firmen 5 PRIME (HAMBURG), APPLICHEM (DARMSTADT), BIORAD (MÜNCHEN), BIOTIUM (HAYWARD, CA, USA), BOEHRINGER (MANNHEIM), FERMENTAS (ST.LEON-ROT), FLUKA (MÜNCHEN), MERCK (DARMSTADT), MP BIOMEDICALS (HEIDELBERG), SERVA (HEIDELBERG), SIGMA-ALDRICH (MÜNCHEN), ROCHE (MANNHEIM), ROTH (KARLSRUHE) und VWR (DARMSTADT) verwendet.

## 4.12.2 Oligonukleotide

Als Primer für die spezifische Amplifikation von Teilsequenzen aus dem Gen *GP2* von *Chlamydomonas incerta* wurden kundenspezifisch synthetisierte Oligonukleotide der Firma Operon Biotechnologies verwendet.
Die Synthetisierung der Oligonukleotide erfolgte nach der β-Cyanoethyl-Phosphoramidit-Methode (MATEUCCI & CARUTHERS 1992).
Eine Liste dieser Primer befindet sich in Anhang 5.1 und 5.2.

## 4.12.3 Laborgeräte

Tabelle 4.8: Geräteliste

| Gerät                | Bezeichnung                 | Hersteller       |  |  |  |
|----------------------|-----------------------------|------------------|--|--|--|
| Autoklav             | Varioklav Dampfsterilisator | H+P Labortechnik |  |  |  |
| CD-Spektrometer      | J-715 Spectropolarimeter    | Jasco            |  |  |  |
| Evaporatorzentrifuge | UVC 150 H                   | Univapo          |  |  |  |
|                      | Kühlfalle Unicryo MC 1L     | Univapo          |  |  |  |
| ELISA-Reader         | MR 5000                     | Dynatech         |  |  |  |
|                      | EL 808                      | BioTek           |  |  |  |
| Fluoreszenzmikroskop | Eclipse E800                | Nikon            |  |  |  |
|                      | Kamera RT Monochrome        | Diagnostic       |  |  |  |
|                      | Spot                        | Instuments Inc.  |  |  |  |
| FPLC                 | Controller LCC-500          | Pharmacia        |  |  |  |
|                      | Pumpe P-500                 | Pharmacia        |  |  |  |
|                      | Motor Valve MV-7            | Pharmacia        |  |  |  |
|                      | Fraktionssammler            | Pharmacia        |  |  |  |
|                      | Frac-100                    |                  |  |  |  |
|                      | UV-VIS-Filter Photometer    | Knauer           |  |  |  |
|                      | Datenschreiber BD 40        | Kipp & Zonen     |  |  |  |
|                      | Säule HiLoad 16/10 S        | Pharmacia        |  |  |  |
|                      | Säule MonoS HR 5/5          | Pharmacia        |  |  |  |

#### Material und Methoden

| Gerät            | Bezeichnung             | Hersteller       |
|------------------|-------------------------|------------------|
| Gelkammern       |                         |                  |
| Agarosegele      |                         | Biotec Fischer   |
| SDS-PAGE         | Eigenbau des Instituts  |                  |
| Heizblock        | Thermomixer compact     | Eppendorf        |
|                  |                         |                  |
| Kühlbad          | RC 20                   | mgw Lauda        |
|                  |                         |                  |
| Lyophilisator    | Lyovac GT 2             | Leybold AG       |
|                  | Vakuumpumpe Trivac      | Leybold AG       |
| Dflanzanlauchtan |                         | Conoral Electric |
| Phanzemeuchten   | F90PG17 CW              | General Electric |
| Magnetrührer     | MR 82                   | Heidolph         |
| 2                |                         | ·                |
| Mikroskop        | Dialux 20               | Leitz            |
|                  |                         |                  |
| Gleichstrom-     | EPS 601                 | Amersham/        |
| spannungsgeräte  |                         | Phamacia         |
|                  | Modell 2197             | LBK/ Bromma      |
| Dhatamatan       |                         |                  |
| Photometer       | nH-Meter 766 Calimatic  | HILACHI          |
| pH-Elektrode     | pri ficter 700 cannatic | Knick            |
|                  |                         |                  |
| Rotoren          | HFA 13.94               | Heraeus          |
|                  | HFA 21.94               | Heraeus          |
|                  | HFA 15.250              | Heraeus          |
|                  | F-12/M.18               | Sorvall          |
|                  |                         |                  |
| Schüttler        | REAX top                | Heidolph         |
|                  | REAX 3                  | Heidolph         |
| SPR Analyse      | ΙΔενε                   | Affinity Sensors |
| SI IN ANDIYSE    | ingyg                   | Anning Sensors   |

| Material und Methoden |                                                                                                                                                                                                                                                         |  |  |  |  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bezeichnung           | Hersteller                                                                                                                                                                                                                                              |  |  |  |  |
| Personal Cycler       | Biometra                                                                                                                                                                                                                                                |  |  |  |  |
| Mastercycler          | Eppendorf                                                                                                                                                                                                                                               |  |  |  |  |
| Mastercycler gradient | Eppendorf                                                                                                                                                                                                                                               |  |  |  |  |
| FD-53                 | WTB Binder                                                                                                                                                                                                                                              |  |  |  |  |
| Transsonic Digital    | Elma/ Faust                                                                                                                                                                                                                                             |  |  |  |  |
| Feinwaage FA-210-4i   | Faust                                                                                                                                                                                                                                                   |  |  |  |  |
| PC 4400               | Mettler                                                                                                                                                                                                                                                 |  |  |  |  |
| Тур 1518              | Satorius                                                                                                                                                                                                                                                |  |  |  |  |
| Clear Plus            | SG GmbH                                                                                                                                                                                                                                                 |  |  |  |  |
| Exatherm 3            | Julabo                                                                                                                                                                                                                                                  |  |  |  |  |
| SemiPhor Model TE77   | Hoefer/ Pharmacia                                                                                                                                                                                                                                       |  |  |  |  |
| Imobilon-P PVDF       | Millipore                                                                                                                                                                                                                                               |  |  |  |  |
| Tischzentrifuge 5415  | Eppendorf                                                                                                                                                                                                                                               |  |  |  |  |
| Biofuge A             | Heraeus                                                                                                                                                                                                                                                 |  |  |  |  |
| Sepatech Suprafuge 22 | Heraeus                                                                                                                                                                                                                                                 |  |  |  |  |
| MC 12V                | Sorvall                                                                                                                                                                                                                                                 |  |  |  |  |
|                       | Material und MethodenBezeichnungPersonal CyclerMastercyclerMastercycler gradientFD-53Transsonic DigitalFeinwaage FA-210-4iPC 4400Typ 1518Clear PlusExatherm 3SemiPhor Model TE77Imobilon-P PVDFTischzentrifuge 5415Biofuge ASepatech Suprafuge 22MC 12V |  |  |  |  |

## 5. Anhang



Abb. 5.1: Elutionsprofil einer Trennung von PSW durch FPLC an HiLoad 16/10 Sepharose mit teilweise unsauberer Trennung der Glykoproteine GP2 und GP3 in Mischfraktionen.

Tabelle 5.1: Entdeckte Peptidfragmente von GP3 beta aus *Chlamydomonas reinhardtii* bei MALDI-PMF, gefundene Fragmente entsprechen 17,9% von 851 AS.

|                                    |             | Molekularge              | ewicht    |       |
|------------------------------------|-------------|--------------------------|-----------|-------|
|                                    |             | [M+H <sup>+</sup> ] in C | alton     |       |
| Sequenz                            | AS-Position | gemessen                 | berechnet | Delta |
| MEDGDNLQFCVPSHGF<br>CAMACSTVPLRR   | 1-27        | 3110,33                  | 3110,38   | -0,05 |
| GRSPVAYWVPHDIVVGTYDN<br>PTGYVQLIDR | 202-231     | 3386,36                  | 3386,7    | -0,34 |
| SPVAYWVPHDIVVGTYDNPT<br>GYVQLIDR   | 204-231     | 3173,31                  | 3173,59   | -0,27 |
| IQLLNLGGVYTVR                      | 583-595     | 1444,85                  | 1444,84   | -0,01 |
| QQMPITSQTFVAGK                     | 596-609     | 1534,76                  | 1534,78   | -0,02 |
| IAFSGTPMSYADCIAPTGGAN<br>VVAAK     | 716-741     | 2568,16                  | 2568,24   | -0,08 |
| GPIPAGVPNFLSK                      | 836-848     | 1295,74                  | 1295,72   | -0,02 |

| Bezeichnung | Aminosäu | iresequenz  | Nukleotidsequenz              |
|-------------|----------|-------------|-------------------------------|
| RegionAF1   | DTCQYQ\  | / (at 570)  | GAY/ACN/TGY/CAR/TAY/CAR/GT    |
| RegionBF2   | GFYCGDF  | (at 1090)   | GGI/TTY/TAY/TGY/GGN/GAY/CC    |
| RegionBR1   |          |             | CGC/GGR/TCN/CCR/CAR/TAR/AA    |
| RegionCF3   | VKMFFDG  | 6 (at 1595) | GT/GTN/AAR/ATG/TTY/TTY/GAY/GG |
| RegionCR2   |          |             | AG/CCR/TCR/AAR/AAC/ATY/TTN/AC |
| RegionDF4   | PQNTNYQ  | ) (at 2010) | CCI/CAR/AAY/CAN/AAY/TAY/CA    |
| RegionDR3   |          |             | CGC/TGR/TAR/TTN/GTR/TTY/TG    |
| RegionEF5   | CGDYFNV  | ′ (at 2530) | TGY/GGN/GAY/TAY/TTY/AAY/GT    |
| RegionER4   |          |             | ACR/TTR/AAR/TAR/TCN/CCR/CA    |
| RegionFF6   | GFFTDYR  | C (at 3135) | GGI/TTY/TTY/CAN/GAY/TAY/CG    |
| RegionFR5   |          |             | CAC/CGR/TAR/TCN/GTR/AAR/AA    |
| RegionGF7   | YEIFAPFK | (at 3580)   | GAG/ATY/TTY/GCN/CCN/TTY/AA    |
| RegionGR6   |          |             | AAI/GGN/GCR/AAR/ATY/TCR/TA    |
| RegionHR7   | SPFDPKA  | (at 3945)   | GCC/TTN/GGR/TCR/AAN/GGN/GA    |
| τ.          |          |             |                               |
| 1:          | inosine  |             |                               |
| Y WODDIE:   | C+1      |             |                               |

Tab. 5.2: Degenerierte Primer zur Sequenzierung von *GP2* aus *Chlamydomonas incerta*.

R wobble: A+G N wobble: G+A+T+C

| Tab. 5.3: Nicht-degenerierte Primer zur Sequenzierung | von | GP2 | aus |
|-------------------------------------------------------|-----|-----|-----|
| Chlamydomonas incerta.                                |     |     |     |

| Bezeichnung | Aminosäuresequenz       | Nukleotidsequenz      |
|-------------|-------------------------|-----------------------|
| CrRegionAF1 | DTCQYQV (at 570)        | GACACTTGCCAGTACCAGGTT |
| CrRegionBF2 | GFYCGDP (at 1090)       | GGCTTCTACTGCGGTGACCC  |
| CrRegionBR1 |                         | GGGTCACCGCAGTAGAAGCC  |
| CrRegionCF3 | VKMFFDG (at 1595)       | ACCATGCTGGGTGTGAAGATG |
| CrRegionCR2 |                         | CATCTTCACACCCAGCATGGT |
| CrRegionDF4 | PQNTNYQ (at 2010)       | CCCCAGAACACCAACTACCA  |
| CrRegionDR3 |                         | TGGTAGTTGGTGTTCTGGGG  |
| CrRegionEF5 | CGDYFNV (at 2530)       | CTGATTTGCGGTGACTACTT  |
| CrRegionER4 |                         | ACGTTGAAGTAGTCACCGCA  |
| CrRegionFF6 | GFFTDYRC (at 3135)      | GGATTCTTCACTGACTACCG  |
| CrRegionFR5 |                         | CGGTAGTCAGTGAAGAATCC  |
| CrRegionGF7 | YEIFAPFK (at 3580)      | GCCTGTCACAACGTGCCTCCT |
| CrRegionGR6 |                         | AGGAGGCACGTTGTGACA    |
| CrRegionHR7 | SPFDPKA (at 3945)       | GTATGGGTCGACGGCAGCCTT |
| 3860F       | LPVITD (at 1357)        | GCTGCCCGTCTAAATCACA   |
| 3860R       |                         | TGTGATTTAGACGGGCAGC   |
| 4223F       | ACVRVP (at 1473)        | GTGCGTGCGTGTATGACC    |
| 4223R       |                         | GGTCATACACGCACGCAC    |
| 4419F       | ILAGVV (at 1532)        | ATACTAGCGGGCGTGGTG    |
| 4419R       |                         | CACCACGCCCGCTAGTAT    |
| uUTR_F      | LLAGC                   | TACTGGCGGGTTGCTGAT    |
|             | (at -41 upstream UTR)   |                       |
| dUTR_R      | GVLCGC                  | GCACCCACACACACACCT    |
|             | (at +34 downstream UTR) |                       |

| Vc_GP2 | MARSSVLLVALMGLAALQAAVAQGPARGVSKWCAISNRATAAWACNLAVGTSTSCETSDL | 60   |
|--------|--------------------------------------------------------------|------|
| Vc_GP2 | WATDSGECAVPNFGQPLAAETFKYQDTCRYQVAQVPLVFNGTSTLGAYLLIFKDYSDNIY | 120  |
| Vc_GP2 | FTVQLEGTSRVSGQVDGQWLYTEPVITGANSPSAAIYFWDSPPNTAVQIAQQAQLVNLMT | 180  |
| Vc_GP2 | EDRNSYKRWSCFTYSAPTTNFCAPGSQYNGSTCVASSGSPSSKNLALTPSSNLYISVVVN | 240  |
| Vc_GP2 | VVKFPVFGLGAPDTGFYCGDPRGDLSLRVGTLVLNTTGNVLRLADIARFDLPTNCANTQR | 300  |
| Vc_GP2 | PPSPPLPPSPPPLPPSPAPPSPRPPSPLPPSPPPPSPGPPPSPPVPFPPSPPTQQFSVSV | 360  |
| Vc_GP2 | FVYHPNRPTPFADADVAKVIRVMRFALGCGYNGDPDKCLRSKPYATFNTTNNAAFPLFTM | 420  |
| Vc_GP2 | LGVKMFFDGYYDGDIIAAETERPGLARASVTSLYNNMNANLVWAQLAAADTGLNLFCGAY | 480  |
| Vc_GP2 | MSLEAITDGAFYSQPGFTDGASGTNLGALYVCPIIPNVGVPTALPADVVGLPGFVRLGNI | 540  |
| Vc_GP2 | TSNTNYVPRLCSPSLAQGPPMMCPMPPPPPSPPPMPPSPPSPPPSPPLPPSPPSPPSP   | 600  |
| Vc_GP2 | ASPSPPPPSPPAQFCSIRFSIMSSTIRYNSRAADCSALASQANIVARSAGVVVRQPGSFA | 660  |
| Vc_GP2 | CNTSSPVELAVTADLLDATAAQTYLIALSNNGALYGNIGLMINLLCGDYFNISASCIGTT | 720  |
| Vc_GP2 | VPSVSVTLPGSSTPTTVSYPLVIKAGDPLYPVGFAFCPPAPPSPPTPPSPPPPSPPPAPP | 780  |
| Vc_GP2 | SPPSPAPPPRPPPALPPPPPGFTLQLSIINGDINDATTNCDRYKKWLNAMLTSYEIAGII | 840  |
| Vc_GP2 | NRVGVIQCDRPAAETILKQELLRPSEVNILYTALLVPGVIGAFARDSGVPCGSAVRLYNP | 900  |
| Vc_GP2 | TGSVFTDYACSTNSSAPTYVQDLCCSPPPSPMPLPPSPPPPPPPGPLASPPPPNPPPPSP | 960  |
| Vc_GP2 | PPPNPPPPSPPXPKPPPPPPASPPPPTRRPPWPPIPAKNAALPPPPPYTNATWNPPANLE | 1020 |
| Vc_GP2 | IRTYEVFSPFISAATKNTNVNERTVVYWLCPALRAALASQLGVAVSFKPHPQGIACSDYY | 1080 |
| Vc_GP2 | TLSRAKGIYYRITVAAQTAAHDALLDFMSTSGDFVFQANLVCGGQIRVGMGEAARSKIAA | 1140 |
| Vc_GP2 | IPPTPFDPKSTSDPYEYLVGGKPTLGFCLNTL 1172                        |      |

Abb. 5.2: Putative Aminosäuresequenz von GP2 aus *Volvox carteri* (Vc), abgeleitet aus der am JGI unter estExt\_fgenesh5\_synt.C\_10116, Protein ID 120176 hinterlegten Nukleotidsequenz, übersetzt mit Translate, 2. Leseraster in 5' -> 3' Leserichtung.

Farberläuterung: rot = kleine und hydrophobe AS (AVFPMILW), blau = saure AS (ED), magenta = basische AS (RK), grün = Hydroxyl- und Aminoseitenketten (STYHCNGQ) nach http://www.ebi.ac.uk/Tools/clustalw2/help.html#color und Taylor 1986. Rot unterstrichen ist die mit SignalP (EMANUELSON *et al.* 2007) vorhergesagte Signalsequenz, umrahmt sind Shaftsequenzen in PPII-Konformation.

#### Anhang

| GP2_JGI                | ATG                                                         | GC  | CAG        | GAG        | CAC        | AGC          | GCT      | CCT        | GGT        | GGC        | ССТ        | CTT          | GGG        | ССТ        | GGC     | CGC        | CCT        | CGG        | GGC  | GGCC           | 60         |
|------------------------|-------------------------------------------------------------|-----|------------|------------|------------|--------------|----------|------------|------------|------------|------------|--------------|------------|------------|---------|------------|------------|------------|------|----------------|------------|
| AS                     | M                                                           | A   | R          | S          | т          | A            | L        | L          | V          | A          | L          | L            | G          | L          | A       | A          | L          | G          | A    | A              |            |
| GP2_JGI<br>GP2_GenBank | AAC                                                         | GC  | CCA        | GGG        | CGC        | GTA          | .ccc     | TCC        | ccc        | TGC        | GCG        | TGG          | тст        | GAA        | CGC     | TTA        | CTG        | CGC        | TAT  | TCAG           | 120        |
| AS                     | N                                                           | A   | Q          | G          | A          | Y            | Ρ        | Ρ          | Ρ          | A          | R          | G            | L          | N          | A       | Y          | С          | A          | Ι    | Q              |            |
| GP2_JGI<br>GP2_ConBank | AACCGCACCACCACGCTTGGGCTTGCAACCTGGGCGTGAACACTCCCACTGCTTGCGAG |     |            |            |            |              |          |            |            |            | 180        |              |            |            |         |            |            |            |      |                |            |
| AS                     | Ν                                                           | R   | Т          | Т          | Ν          | A            | W        | A          | С          | Ν          | L          | G            | V          | N          | Т       | Ρ          | Т          | A          | С    | Е              |            |
| GP2_JGI<br>GP2_GenBank | Int<br>GTG                                                  | AG  | on1<br>ACT | ,<br>TGG   | 289<br>TTG | 9 k<br>Cat   | p<br>Gat | GAT        | TCG        | TCG        | GTT        | TTT          | СТС        | СТА        | CTC     | GCG        | сте        | CGG        | GGT  | TACG           |            |
| GP2_JGI<br>GP2_GenBank | TGG                                                         | CC( | GCG        | ACT        | CAA<br>    | .GAT         | CAG      | ATA        | ACT<br>    | AGT        | GTG        | CAA<br>      | АТА<br>    | CAG        | CAG     | CAG        | TGT        | CGA        | ACA  | AGCT           |            |
| GP2_JGI<br>GP2_GenBank | ATG<br>                                                     | GC  | GCT        | CGC        | TAG<br>    | CAA          | GAG      | ICGA       | .CCG<br>   | TCA<br>    | GTC        | GGT<br>      | CGC        | ATT<br>    | TTG     | AGT        | TGA        | CC1        | CGG  | CAGC           |            |
| GP2_JGI<br>GP2_GenBank | TTC                                                         | CT  | GAA        | ATT<br>    | TTG        | AAT          | GCI      | тсс        | ATC<br>    | AAT<br>    | тст        | GCG<br>      | CGA        | .GGC       | AAA<br> | GTC        | AGC        | GCC        | CTA  | тстс           |            |
| GP2_JGI<br>GP2_GenBank | ATT<br>                                                     | TG  | CGC        | СТТ        | тсс        | TTT<br>      | сте      | ACC        | CAT<br>    | стс        | TAC<br>    | тст<br>      | ccc        | CTT<br>    | GCI     | CGC        | AG         |            |      |                |            |
| GP2_JGI<br>GP2_ConBank | ACC                                                         | AC  | CGA        | ГСТ        | CTG        | GTC          | CAC      | GGA        | CGC        | CAC        | TGA        | GTG          | стс        | TCT        | GCC     | TCA        | GGT        | ccc        | CGG  | CTTC           | 240        |
| AS                     | Т                                                           | Т   | D          | L          | W          | S            | Т        | D          | A          | Т          | Е          | С            | S          | L          | Ρ       | Q          | V          | Ρ          | G    | F              |            |
| GP2_JGI                | CCC                                                         | GT  | CCC        | CGC        | GAA        | CAC          | CTT      | ccc        | GTA        | CAC        | GGA        | CAC          | TTG        | ССА        | GTA     | .CCA       | GGT        | TGC        | TCG  | сстб           | 300        |
| AS                     | P                                                           | V   | P          | A          | N          | T            | F        | P          | Y          | T          | D          | T            | С          | Q          | Y       | Q          | V          | A          | R    | L              |            |
| GP2_JGI                | ccc                                                         | СТ  | GGT        | CTA        | CAA        | GGG          | CAC      | TAC        | CAC        | CGT        | TGG        | CGG          | CTT        | CCT        | GGT     | CCT        | GTT        | CAA        | .GGA | CTAC           | 360        |
| AS                     | Р                                                           | L   | V          | Y<br>Y     | K          | G            | T        | T          | T          | V          | G          | G            | F          | L          | V       | L          | F          | K          | D    | Y              | JT         |
| GP2_JGI<br>GP2_GenBank | GCC<br>GCC                                                  | GA( | CAA<br>CAA | САТ<br>САТ | СТА<br>СТА | .CTA<br>.CTA | CAC      | TCT<br>TCT | GTC<br>GTC | GCT<br>GCT | GAA<br>GAA | .CGC<br>.CGC | GAC<br>GAC | TGC<br>TGC | GCG     | TGC<br>TGC | CGC<br>CGC | CAA<br>CAA | ICCA | .GCCG<br>.GCCG | 420<br>111 |
| AS                     | A                                                           | D   | Ν          | Ι          | Y          | Y            | Т        | L          | S          | L          | Ν          | А            | Т          | A          | R       | Α          | A          | Ν          | Q    | Р              |            |

Abb. 5.3: Partielles Alignment von Nukleotidsequenzen von *GP2* aus *Chlamydomonas reinhardtii*, hier Vergleich der Sequenz vom JGI (GP2\_JGI) und der bei GenBank (GP2\_GenBank) hinterlegten. In blau dargestellt ist das in *GP2* vorkommende Intron. Die abgeleitete Aminosäuresequenz ist mit AS bezeichnet, rot unterstrichen ist die putative Signalsequenz.

| Cr_GP2        | ATGO<br>M A                                  | GCCAC<br>A R                                      | GGAG<br>S                                   | CAC<br>T                              | AGC(<br>A                                    | GCT<br>L                               | CCT<br>L                               | GGT<br>V                              | GGC<br>A                               | CCT<br>L                               | CTT<br>L                               | GGG<br>G                               | CCT<br>L                             | GGC<br>A                        | CGC<br>A                        | CCT(<br>L                      | CGG<br>G                 | GGC<br>A                 | GGCC<br>A                    | 60  |
|---------------|----------------------------------------------|---------------------------------------------------|---------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------|--------------------------|--------------------------|------------------------------|-----|
| Cr CP2        |                                              |                                                   |                                             |                                       | GTA                                          |                                        | ———<br>ТСС                             |                                       | тес                                    |                                        | тсс                                    |                                        | саа                                  | CGC                             |                                 |                                | <br>- GC                 |                          | TCAG                         | 120 |
| AF1           | N A                                          | A Q                                               | G                                           | A                                     | Y                                            | P                                      | P                                      | P<br>                                 | A                                      | R<br>                                  | G                                      | L<br>                                  | N                                    |                                 | Y                               | C                              | A                        | I<br>                    | Q<br>                        | 120 |
| Cr_GP2        | AACC                                         | CGCAC                                             | CCAC                                        | CAA                                   | CGC                                          | ITG                                    | GGC                                    | TTG                                   | CAA                                    | ССТ                                    | GGG                                    | CGT                                    | GAA                                  | .CAC                            | TCC                             | CAC                            | IGC                      | TTG                      | CGAG                         | 180 |
| <br>AF1       | N F                                          | ς Т<br>                                           | Τ                                           | N<br>                                 | A<br>                                        | W                                      | A<br>                                  | C                                     | N<br>                                  | L<br>                                  | G                                      |                                        | N<br>                                | T<br>                           | P                               | T<br>                          | A<br>                    | C                        | E<br>                        |     |
|               | Intr<br>GTGA<br>TGGC<br>ATGG<br>TTCC<br>ATTT | ron1<br>AGACI<br>CCGCC<br>GCGCI<br>CTGA#<br>IGCGC | VON<br>ITGG<br>GACT<br>ICGC<br>AATT<br>CCTT | 28<br>TTG<br>CAA<br>TAG<br>TTG<br>TCC | 9 b]<br>CAT(<br>GAT(<br>CAA(<br>AAT(<br>TTT) | D L<br>GAT<br>CAG<br>GAG<br>GCT<br>CTG | äng<br>GAT<br>ATA<br>CGA<br>TCC<br>ACC | e,<br>TCG<br>ACT<br>CCG<br>ATC<br>CAT | hie<br>TCG<br>AGT<br>TCA<br>AAT<br>CTC | r e<br>GTT<br>GTG<br>GTC<br>TCT<br>TAC | ntf<br>TTT<br>CAA<br>GGT<br>GCG<br>TCT | ern<br>CTG<br>ATA<br>CGC<br>CGA<br>CCC | t<br>CTA<br>CAG<br>ATT<br>GGC<br>CTT | CTC<br>CAG<br>TTC<br>AAA<br>GCI | GCG<br>CAG<br>AGT<br>GTC<br>CGC | CTG<br>TGT<br>TGA<br>AGC<br>AG | CGG<br>CGA<br>CCT<br>GCC | GGT<br>ACA<br>CGG<br>CTA | TACG<br>AGCT<br>CAGC<br>TCTC |     |
| Cr_GP2<br>AF1 | ACCA<br>T 1<br>                              | ACCGZ<br>I D                                      | ATCT<br>L                                   | CTG<br>W                              | GTC<br>S                                     | CAC<br>T                               | GGA<br>D                               | CGC<br>A<br>                          | CAC<br>T<br>                           | TGA<br>E<br>                           | GTG<br>C                               | CTC<br>S<br>                           | TCT<br>L<br>                         | GCC<br>P                        | TCA<br>Q                        | GGT(<br>V                      | CCC<br>P<br>             | CGG<br>G                 | CTTC<br>F                    | 240 |
| Cr_GP2        | ccco                                         | STCCO                                             | CCGC                                        | GAA                                   | CAC                                          | CTT                                    | ccc                                    | GTA                                   | CAC                                    | GGA                                    | CAC                                    | TTG                                    | CCA                                  | .GTA                            | .CCA                            | GGT                            | IGC                      | ICG                      | CCTG                         | 300 |
| AF1           | Р V<br>                                      | / P                                               | A<br>                                       | N<br>                                 | т<br>                                        | F.                                     | P<br>                                  | Ү<br>                                 | Т<br>                                  | D<br>                                  | т<br>                                  |                                        | Q<br>                                | ¥<br>                           | Q<br>                           | V<br>                          | A<br>                    | R<br>                    | -CTG<br>L                    | 3   |
| Cr_GP2        |                                              | CTGGI                                             | ICTA<br>v                                   | CAA                                   | GGG                                          | CAC                                    | TAC                                    | CAC                                   | CGT                                    | TGG                                    | CGG                                    | CTT                                    | CCT                                  | GGT                             | CCT                             | GTT(                           | CAA                      | GGA                      | CTAC                         | 360 |
| AF1           | CCC-<br>P                                    | -TGGI<br>W S                                      | ICT-<br>S                                   | –AA)<br>K                             | GGG(<br>G                                    | CAC<br>T                               | TAC<br>T                               | CAC<br>T                              | CGT<br>V                               | G<br>TGG<br>G                          | CGG<br>G                               | CTT<br>F                               | CCT<br>L                             | GGI<br>V                        | CCT<br>L                        | GTT(<br>F                      | CAA<br>K                 | GGA<br>D                 | CTAC<br>Y                    | 60  |
| Cr_GP2        | GCCG<br>A F                                  | GACAA                                             | ACAT<br>T                                   | CTA                                   | CTA                                          | CAC                                    | TCT<br>L                               | GTC                                   | GCT                                    | GAA<br>N                               | CGC                                    | GAC<br>T                               | TGC<br>A                             | GCG                             | TGC                             | CGC                            | CAA                      | CCA                      | GCCG<br>P                    | 420 |
| AF1           | GCCG<br>A E                                  | GACAA<br>D N                                      | ACAT<br>I                                   | CTA<br>Y                              | CTA<br>Y                                     | CAC<br>T                               | TCT<br>L                               | GTC<br>S                              | GCT<br>L                               | GAA<br>N                               | CGC<br>A                               | GAC<br>T                               | TGA<br>E                             | .GCG<br>R                       | TGC<br>A                        | CGC(<br>A                      | CAA<br>N                 | CČA<br>Q                 | GCCG<br>P                    | 120 |
| Cr_GP2        | GATO<br>D G                                  | GCCA                                              | AGTG<br>W                                   | GCT(                                  | GTA                                          | CGT                                    | GGA<br>E                               | GCC<br>P                              | CAC<br>T                               | CCT                                    | GCC<br>P                               | CGG                                    | TCA                                  | .GAC<br>T                       | CGG                             | CCC(                           | CAG                      | CGG                      | CGCC                         | 480 |
| AF1           | GATO<br>D O                                  | GCCZ<br>GCCZ<br>GQ                                | AGTG<br>W                                   | GCT(<br>L                             | GTA<br>Y                                     | CGT<br>V                               | GGA<br>E                               | GCC<br>P                              | CAC<br>T                               | CCT<br>L                               | GCC<br>P                               | CGG<br>G                               | TĈA<br>Q                             | .GAC<br>T                       | CGG<br>G                        | CCC(<br>P                      | CAG<br>S                 | CGG<br>G                 | CGCC<br>A                    | 180 |
| Cr_GP2        | GTCI                                         | TACCI                                             | IGTG                                        | GGA                                   | CTC                                          | ICC                                    | ccc                                    | GGA                                   | CAG                                    | стс                                    | CAA                                    | GCC                                    | ТСТ                                  | GTC                             | GGT                             | CCA                            | GGC                      | стс                      | CGTC                         | 540 |
| AF1           | GTCI<br>V Y                                  | IACCI<br>IACCI<br>I                               | W<br>IGTG<br>W                              | D<br>GGA<br>D                         | CTC<br>S                                     | P<br>ICC<br>P                          | P<br>CCC<br>P                          | dga<br>D                              | S<br>CAG<br>S                          | CTC<br>S                               | K<br>CAA<br>K                          | Р<br>GCC<br>Р                          | TCT<br>L                             | GTC<br>S                        | GGT<br>V                        | Q<br>CCA(<br>Q                 | A<br>GGC<br>A            | S<br>CTC<br>S            | V<br>CGTC<br>V               | 240 |
| Cr_GP2        | CAGO                                         | GACTA                                             | ACAT                                        | GAT'                                  | TGA                                          | GGA                                    | CCG                                    | CAA                                   | стс                                    | GTA                                    | CAA                                    | GCG                                    | CTG                                  | GTC                             | TTG                             | CGC                            | CAC                      | CTA                      | CAAG                         | 600 |
| AF1           | Q L<br>CAGO<br>Q L                           | ) Y<br>GACTA<br>) Y                               | M<br>ACAT<br>M                              | GAT'<br>I                             | E<br>TGA(<br>E                               | D<br>GGA<br>D                          | R<br>CCG<br>R                          | N<br>CAA<br>N                         | CTC<br>S                               | gta<br>Y                               | K<br>CAA<br>K                          | R<br>GCG<br>R                          | w<br>CTG<br><mark>W</mark>           | GTC<br>S                        | TTG<br>C                        | A<br>CGC(<br>A                 | T<br>CAC<br>T            | Y<br>CTA<br>Y            | K<br>CAAG<br>K               | 300 |
| Cr_GP2        | ACTA                                         | AGCCI                                             | IGAA<br>N                                   | CAA                                   | CTA                                          | CTG                                    | CGC                                    | CCC                                   | CGG                                    | CTA                                    | CGT                                    | GTT                                    | CGA                                  | .CGC                            | GGC                             | CGG                            | CAT                      | TTG                      | CCAG                         | 660 |
| AF1           | ACTA<br>T S                                  | AGCCI<br>S L                                      | IGAA<br>N                                   | CAA<br>N                              | CTA<br>Y                                     | CTG<br>C                               | CGC<br>A                               | CCC<br>P                              | CGG<br>G                               | CTA<br>Y                               | CGT<br>V                               | GTT<br>F                               | CGA<br>D                             | .CGC<br>A                       | GGC<br>A                        | CGG(<br>G                      | CAT<br>I                 | TTG<br>C                 | CCAG<br>Q                    | 360 |
| Cr_GP2        | CCCA                                         | AGG                                               | CTGG                                        | TGC                                   | CAC                                          | CCA                                    | GGG                                    | CCC                                   | CCT                                    | GCC                                    | CTC                                    | CAA                                    | GGA                                  | TCT                             | GTC                             | GGG                            | CGC                      | GGC                      | TGGA                         | 720 |
| AF1           | P K                                          | AAGGO<br>AAGGO<br>K <mark>A</mark>                | CTGG<br>G                                   | TGC<br>A                              | CAC<br>T                                     | CCA<br>Q                               | GGG<br>G                               | CCC<br>P                              | CCT<br>L                               | GCC<br>P                               | CTC<br>S                               | CAA<br>K                               | GGA<br>D                             | TCT<br>L                        | GTC<br>S                        | GGG(<br>G                      | CGC<br>A                 | GGC<br>A                 | TGGA<br>G                    | 420 |
| Cr_GP2        | TCCI                                         | гстст                                             | ICTT                                        | CCT                                   | GGC                                          | GGC                                    | CGA                                    | GTA                                   | CAG                                    | CAT                                    | CGT                                    | CAA                                    | GTA                                  | CTC                             | GGT                             | CTC                            | CCA                      | GAT                      | CGGC                         | 780 |
| AF1           | TCCI<br>S S                                  | FCTCI<br>S L                                      | r<br>fctt<br>F                              | CCT<br>L                              | GGC(<br>A                                    | A<br>GGC<br>A                          | CGA<br>E                               | t<br>GTA<br>Y                         | CAG<br>S                               | CAT<br>I                               | CGT<br>V                               | CAA<br>K                               | i<br>gta<br><mark>y</mark>           | CTC<br>S                        | GGT<br>V                        | CTC<br>S                       | CCA<br>Q                 | GAT<br>I                 | CGGC<br>G                    | 480 |
| Cr_GP2        | ACTO                                         | GCTG                                              | AGAC                                        | CGG                                   | CTT                                          | CTA                                    | CTG                                    | CGG                                   | TGA                                    | CCC                                    | GCG                                    | CAC                                    | CAG                                  | CAT                             | GAT                             | CGC                            | CGG                      | CCA                      | GACC                         | 840 |
| AF1           | ACTO                                         | GCTGA                                             | AGAC                                        | CGG                                   | r<br>CTT(                                    | CTA                                    | CTG                                    |                                       |                                        |                                        |                                        |                                        |                                      | -PI                             | AAT                             | GAA                            | CGC                      | GGC.                     | -<br>A <mark>N</mark> AC     | 503 |

| Cr_GP2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 900         |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| BF2           | CTGCAGACCCTGGCCCTTCAGGCGGCGTCGGTCAACCTGGCCGCCATCCCTGGCTTCTTC<br>E Q L A L Q A A S V N L A A I P G F F S                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Cr_GP2<br>BF2 | CTGCCCCCAGCTGCAAGACCACCTCCCGCCCCCCCCGCCGCCTCTGCCTCCCCCGCG<br>L P P S C K T T S R P P S P P L P P S P<br>CTGCCCCCCAGCTGCAAGACCACCTCCCGCCTCCCCCGCCGCATCTGCTTACGTGGCCG                                                                                                                                                                                                                                                                                                                                                                      | 960         |
| Cr_GP2        | L       P       P       S       C       K       T       T       S       R       P       P       S       P       L       P       P       S       P         CCCCCGCAGCCGCCCCAGCCCCGCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                         | 1020        |
| BF2           | CCCCGGAGCCGGCCAGCCCGGCTGCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| Cr_GP2<br>BF2 | CCGTCTCCCCTGCCCCGAGCCCCAAGCCTCCTACTCCCCCCAGCCCCCTGCCGCCTGC<br>P S P L P P S P K P P T P P S P L P P A<br>CCGTCTCCCCTGCCCCGAGCCCCCAAGCCTCCTACTCCCAAAGATTTTTGTCGCCTGCT<br>P S P L P P S P K P P T P K R F L S P A                                                                                                                                                                                                                                                                                                                          | 1080        |
| Cr_GP2        | CCCCCGACCCAGCAGTTCACTGGCTCTGTCTTCGTCTACGCCTCAACCGCCCTAACGGC<br>P P T Q Q F T G S V F V Y A P N R P N G                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1140        |
| Cr_GP2        | TTCAACCAGGACGTGACCAAGGTGTACGCCATGATGCGCTATGGTCTGGGCTGCGGC<br>F N Q D D V T K <mark>V Y A M M R Y G L G C G</mark>                                                                                                                                                                                                                                                                                                                                                                                                                        | 1200        |
| Cr_GP2        | ATTGGCAACAACCCCAACGTGTGCCTGAAGTCCCAGCCCTACGTGACCATCAACGAGACC<br>I G N N P N V C L K S Q P Y V T I N E T                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1260        |
| Cr_GP2        | AACAACGCCTTCTACCCCGCCTACACCATGCTGGGTGTGAAGATGTTCTTTGATGGCTCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1320        |
| CF3           | N N A F I P A I I M L G V K M F F D G S<br>TTGAGTC<br>L S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7           |
| Cr_GP2        | AAGGATGGTTCTGGCCAGCCCTACCCCACCTCCGAGCAGAACAAGTGGGCTGCTGACGCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1380        |
| CF3           | K       D       G       S       G       O       P       Y       P       T       S       E       Q       N       K       W       A       D       A         AAGTATGGTTCTGGCGAGCCTTACCCCACCTCCGAGCAGAACAAGTGGGCTGCTGACGCC       K       Y       G       S       G       E       P       Y       P       T       S       E       Q       N       K       W       A       D       A         K       Y       G       S       G       E       P       Y       P       T       S       E       Q       N       K       W       A       D       A | 61          |
| Cr_GP2<br>CF3 | GTGACCTCCATGTTCGCCGTGCTGGGCTCGTCTGAGCTTTGGAAGGCCCTGGCTGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1440<br>121 |
| Cr_GP2<br>CF3 | GTCCAGTTCGGTGGCCTGGGTCGGGCGGGGGGGGGGGGCGTCGTGGGCGGGGCGGGGCGGGGCGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1500<br>181 |
| Cr_GP2<br>CF3 | eq:Gacggccagtactacagccagccagccgcagccgccagcccctcgctggcagccagc                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1560<br>241 |
| Cr CP2        | D G Q Y Y S Q P I G G G S H T L V D S Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1620        |
| CF3           | D G S T Y T Y Q G A R Y V C P L L G G<br>CACGCAGCACTTACACGTACCAGGGTGCCCGCTACGTGTGCCCTCTGCTGCGGCGGC<br>H G S T Y T Y Q G A R Y V C P L L G G                                                                                                                                                                                                                                                                                                                                                                                              | 266         |
| Cr_GP2<br>DR4 | TTTGGTGGACCGCAGTGGCCCAACGCCAGCCTGCCTACTACATCCCCGACGGCGTTGCC<br>F G G P Q W P N A S L P Y Y I P D G V A<br>TTTGGTGGACCGCAGTGGCCCAACGCCAGCCTGCCTACTACATCCCGGAGGGCGTTGCC<br>F G G P Q W P N A S L P Y Y I P E G V A                                                                                                                                                                                                                                                                                                                         | 1680<br>283 |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |

| Cr_GP2        | GGTCTGCCCGGCTACATCCGCCTTGGCGCCATCCCCCAGAACACCAACTACCAGCGTCGC 1740                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR4           | GTGCTGCCTGGCTACATCCGACGAAAT 308<br>V L P G Y S D E -                                                                                                                                        |
| Cr_GP2        | $\begin{array}{c} CGCTGCGCCACCATCCTCACCCCGCCGGATCTGATGCAGCCGTCCACTTCGTGCCCTCTG \ 1800 \\ \mathsf{R \ C \ A \ T \ I \ L \ T \ P \ P \ D \ L \ M \ Q \ P \ S \ T \ S \ C \ P \ L \end{array}$ |
| DF4           | AGGTCCCACCCATGCCTAACCCCAGGGGGAACTGATGCAGAAGGTCCAATTCGTGCCCTC<br>R S H P C L T P G G T D A E G P I R A L                                                                                     |
| Cr_GP2<br>DF4 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                        |
| Cr_GP2        | GTGCCCCGTCGCCTCCCTCTCCTCCCAGCCCGCCAACCCCTCTCCC 1920<br>V P P S P P S P P S P P S P A N P S P                                                                                                |
| DF4           | CGGTGCCCCGTCGCCTCCCTCCCCTATCCTCGGAGCCCCGCCAACCCCTCTC<br>R C P R R L P L L L P I L G A P P T P L                                                                                             |
| Cr_GP2        | CCTCCTCCCGCCCCCTGCGGCTTTCTGCGGCCTGAACTTCAAGGTCATCTCGCGCATC 1980<br>P P P A P P A A F C G L N F K V I S R I                                                                                  |
| DF 4          | CCTGCTCACGCCCCCTGCGGCCTTCTGCGGCCTGAACTTCAAGGTCATCTCGCGCATC<br>P A H A P P A A F C G L N F K V I S R I                                                                                       |
| Cr_GP2        | CCCAAGAACGGTGTTGACCGCAACCCTGACTGCTCTCTGCTGGCGACCCTGGTGCAGAGT 2040<br>P K N G V D R N P D C S L L A T L V Q S                                                                                |
| DF 4          | CCCAAGAACGGTGTTGACCGCAAGGGTGAGTGCTCTCTGCTGTTTACCCTCAAACAAA                                                                                                                                  |
| Cr_GP2        | ACGTTCACCCAGGGCGTGCAGCTGCGCAACCCTCCCCAGTTCCGCTGCGGCACGACCGTC 2100<br><mark>T F T Q G V Q L R</mark> N P P Q F R C G T T V                                                                   |
| DF4/ER5       | ACGTTCACCCAGGGCGGGGGGGGGGGCGCGCACCTCCCCAGTTCCGCTGCGGCACGACC<br>T F T Q G G E L C N P P Q F R C G T T                                                                                        |
| Cr_GP2        | AGCGCTACCGAGATCAGCGCCGTCGCCGACACTCTGACTACGGAGGGTGCTCAGGTTTTC 2160<br>S A T E I S A V A D T L T T E G A Q V F                                                                                |
| ER5           | AGCGCTACCGAGATCAGCGCCGTCGCCGACACTCTGACTACGGAGGGTGCTCAGGTTTTC<br>S A T E I S A V A D T L T T E G A Q V F                                                                                     |
| Cr_GP2        | CTGCGCAACATGGCCGGCAACATTGGTGCCTTCAACCAGTTCACCTTCCCTGCCCCCGGC 2220<br>L R N M A G N I G A F N Q F T F P A P G                                                                                |
| ER5           | CTGCGCAACATGGCCGGCAACATTGGTGCCTTCAACCAGTTCACCTGCCAGCACCGCGGC<br>L R N M A G N I G A F N Q F T C Q H R G                                                                                     |
| Cr_GP2        | GGTCTGGGCCTGATTTGCGGTGACTACTTCAACGTCACTTCGACTTGCGGCATGAACACC 2280 G L G L I C G D Y F N V T S T C G M N T                                                                                   |
| ER5/EF5       | GGCAGTGTTATGAGTGTATACAG<br>G C Y E C I Q                                                                                                                                                    |
| Cr_GP2        | ACCGCGCCCGTGCCCGTGTTCCAGCCTAACGGCACCGTTGTCAACGCCACCTACCCCTTC 2340<br>T A P V P V F Q P N G T V V N A T Y P F                                                                                |
| EF5           | ACCGCGCCCGTGCCCGTGTCAGCCTAACGGCACCGTTGTCAACGCCACCTACCCCTTC<br>T A P V P V F Q P N G T V V N A T Y P F                                                                                       |
| Cr_GP2        | GTCGTCGGCCCCGACGCCATCTTCTACCCCCAGTTCGTCCTGCCGTCCTACACCTGCCCT 2400<br>V V G P D A I F Y P Q F V L P S Y T C P                                                                                |
| EF5           | GTCGTCGGCCCCGAGGCCATCTTCTACCCCCAGTTCGTCCTGCCGTCCTACACCTGCCCT<br>V V G P D A I F Y P Q F V L P S Y T C P                                                                                     |
| Cr_GP2        | CCTCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                      |
| EF,2          | CUTCUCUCTCCCGCCCCTCCCCCCCCCCCCCCCCCCCCC                                                                                                                                                     |

| Cr_GP2<br>EF5 | $\begin{array}{c} \texttt{CCCCCTCAGCCCAACCCGCCCCGGCTCCTCCCCAGCCCAACCCGTCGCCTCCTCCCCCC7} \\ \texttt{P} & \texttt{Q} & \texttt{P} & \texttt{N} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{N} & \texttt{P} & \texttt{S} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{P} \\ \texttt{CCCCCTCAGCCCAACCCGCCCCCGGCTCCTCCCAGCCCCAACCCGTCGCCTCCTCCCCCT} \\ \texttt{P} & \texttt{Q} & \texttt{P} & \texttt{N} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{S} & \texttt{P} & \texttt{N} & \texttt{P} & \texttt{S} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{P} \\ \texttt{P} & \texttt{Q} & \texttt{P} & \texttt{N} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{S} & \texttt{P} & \texttt{N} & \texttt{P} & \texttt{S} & \texttt{P} & \texttt{P} & \texttt{P} & \texttt{P} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 520        |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Cr_GP2<br>EF5 | $\begin{array}{c} \texttt{CCTCCGGGCTTCCGCTTCCAGATGTCAGTCATCAACGGTGACCAGAACGACGCCATCAAC 2} \\ \texttt{P} & \texttt{P} & \texttt{G} & \texttt{F} & \texttt{R} & \textcolor{black}{\texttt{F}} & \texttt{Q} & \textcolor{black}{\texttt{M}} & \texttt{S} & \textcolor{black}{\texttt{V}} & \textcolor{black}{\texttt{I}} & \textcolor{black}{\texttt{N}} & \textcolor{black}{\texttt{G}} & \textcolor{black}{\texttt{M}} & \textcolor{black}{\texttt{G}} & \textcolor$ | 580        |
| Cr_GP2<br>EF5 | TGCCCTCGCTACACATCCTGGATGAACGCCATGATGGACTCGTTCGAGCGGACCAACACC 2<br>C P R Y T S W M N A M M D S F E R T N T<br>TGCCCTCGCTACACATCCTGGATGAACGCCATGATGGACTCGTTCGAGCGGACCAACACC<br>C P R Y T S W M N A M M D S F E R T N T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 640        |
| Cr_GP2<br>EF5 | ATCCAGCGCGTGAACCCCAGCGCCCCAGCAGCGCCCCAGCAGAGACGCTGCTG 2<br>I Q R V N P S A P Y C S R P A Q E T L L<br>ATCCAGCGCGTGAACCCCAGCGCCCCCTACTGCAGCCGCCCCAGGAGAGCGCTGCTG<br>I Q R V N P S A P Y C S R P A Q E T L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 700        |
| Cr_GP2<br>EF5 | AGCCCCGAGCTGGCCCAGCCCAGGTCAACTTCCTGTACCAGTACCTGTCGGTGAAC 2<br>S P E L A Q P S Q V N F L Y Q Y L S V N<br>AGCCCCGAGCTGGCCCAGCAAAGCCAGGTCAACTTCCTGTACCAGTACCTGTCGGTGAAC<br>S P E L A Q Q S Q V N F L Y Q Y L S V N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 760        |
| Cr_GP2<br>EF5 | AGCACGATTGGTGTTTTCGTGCGCGATGGCGGCGTGCCTTGCGGCTCGGCTGTGCGCCTG 2<br>S T I G V F V R <mark>D G G V P C G S A V R L</mark><br>AGCACGATTGGTGTTTTCGTGCGCGGATGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 820        |
| Cr_GP2        | TACAACCCCGCTGGCGGTGGATTCTTCACTGACTACCGGTGCTCTCGCGACGTGCCCACC 2<br>Y N P A G G G F F T D Y R C S R D V P T<br>Y N P A G G G F F T D Y R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 880        |
| Cr_GP2        | AACCCGGCCGTGGCCGTCCTCGACCTGTGCTGCCCCTCGCCCCCGCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 940        |
| Cr_GP2        | Sequenzlücke von 519 bp an Pos. 2990, aufgefüllt mit Sequenzda<br>von GenBank AY596305<br>ACTCCCCGTCGCCTCCTCCCCCCGCGTCCTCTCGCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ten<br>000 |
| Cr_GP2        | CCTCCTCCTCCCCCGCCTCCTCCCCCGGCTCCCCCCGCCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 060        |
| Cr_GP2        | CCCCCTCCCCGTCGCCTCCCCCCCCGGCTCCCCCCGGCTCCC<br>P P P S P P P S P P P S P P P A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120        |
| Cr_GP2        | GCCTCTCCCCCGCCCTCTCCCCCCCCCCCCCCCCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180        |
| Cr_GP2        | CGGCTGCCCCCCGGCTGCCGCTGCCGCACGGCGCGCGCGGCGGCGCGCGGCGGCGGCGGCGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 240        |
| Cr_GP2<br>GF6 | AACACCACCTGGACTGCCCCGCCGGCACCACTGTCCGCACCTATGAGATCTTCGCCCCC 3<br>N T T W T A P A G T T V R T Y E I F A P<br>CACCTGGACTGCCCCCGCTGCAACCACTGTCCGCACCTATGAGATCTTCGCCCCC<br>T W T A P A A T T V R T Y E I F A P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 300        |

| Cr_GP2<br>GF6     | Ende der Sequenzlücke, "N" wurden entfernt<br>TTCAAGGG ACTGGTGGCAGGAACACCGGCGTGTCTGGCCGCACCGTGCAGTTCTGGCTG 3360<br>FK – TGGRNTGVSGRT <u>VQFWL</u><br>TTCAAGGG ACTGGTGGCAGGAACACCGGCGTGTCTGGCCGCACCGTGCAGTTCTGGCTG<br>FK – TGGRNTGVSGRTVQFWL       |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cr_GP2<br>GF6     | TGCCCCGCCTGAAGGCCGCGCTGCAGGACCAGCTGGGCCAGCCCGTGTCGGTCAAGCCC 3400<br>C P A L K A A L Q D Q L G Q P V S V K P<br>TGCCCCGCCCTGAAGGCCGCGCTGCAGGACCAGCTGGGCCAGCCCGTGTCGGTCAAGCCC<br>C P A L K A A L Q D Q L G Q P V S V K P                            |
| Cr_GP2<br>GF6     | AACGTGAACGCCTCGATCTCCTGCACGGACTGGTATCAGGTCAAGAAGAAGGCCAAGGGT 3460<br>N V N A S I S C T D W Y Q V K K K A K G<br>AACGTGAACGCCTCGATCTCCTGCACGGACTGGTATCAGGTCAAGAAGAAGGCCAAGGGT<br>N V N A S I S C T D W Y Q V K K K A K G                           |
| Cr_GP2<br>GF6     | CTGTTCTACCGTATCACTGTGGCTGCCCAGCAGTCTGCTCACGATGCTGTCATGGACTTC 3520<br>L F Y R <mark>I T V A A Q Q S A H D A V M D F</mark><br>CTGTTCTACCGTATCACTGTGGCTGCCCAGCAGTCTGCTCACGATGCTGTCATGGACTTC<br>L F Y R <mark>I T V A A Q Q S A H D A V M D F</mark> |
| Cr_GP2<br>GF6/HR7 | ATCCTCTCTGGCGGCGACTTCGTGCGCCAGGCGCGCCTGGTCTGCGGCTCCCAGATCCGC 3580<br>I L S G G D F V R Q A R <mark>L V C G S Q I R</mark><br>ATCCTCTCTGGCGGCGACTTCGTGGCCCAAGGCTCTCGTGGGCT-CGGCTCCCAGATCCGC<br>I L S G G D F V P K A L V                           |
| Cr_GP2<br>HR7     | ATTGGCGAGGCCGAGCCCCGCGCCAGAAGCTCAAGGCTGTGTTCCCCTCGCCGTTCGAC 3640<br>I G E A E P P R Q K L K A V F P S P F D<br>ATTGGCGAAGGCGAGCCCCGGGCCAGAAGCTCAAGGCTGTGGCCTGCTCGACGTTCGAC<br>I G E G E P P R Q K L K A V P C S T F D                             |
| Cr_GP2<br>3860r   | CCCAAGGCTGCCGTCGACCCATACCTGTACCTGTCGGGCAAGGCTGGTTCGCCCGGCGCT 3700<br>P K A A V D P Y L Y L S G K A G S P G A<br>CCCAAGGCTGCCGTCGACCCATACCTGTACTTGTCGAGCAAGGCTGGTTTGCCAGGGG<br>P K A A V D P Y L Y L S S K A G L P G -                             |
| Cr_GP2<br>4223r   | GGCGTCTGCATCGACAAGCTGCCCGTCTAA 3728 <b>ab hier downstream UTR</b><br>G V C I D K L P V Stop<br>GTCTAA                                                                                                                                             |

Abb. 5.4: Alignment von Nukleotidteilsequenzen von GP2 aus Chlamydomonas reinhardtii (Cr\_GP2, 1. Zeile) und Chlamydomonas incerta (3. Zeile). Die ermittelten Teilsequenzen von Chlamydomonas incerta sind nach den jeweiligen Primerabschnitten benannt, bspw. BF1, DR4, EF5, bei denen sie gefunden wurden. Farblich gekennzeichnet sind ausgestausche AS, Farberläuterung: rot = kleine und hydrophobe AS (AVFPMILW), blau = saure AS (ED), magenta = basische AS (RK), Aminoseitenketten grün = Hydroxylund (STYHCNGQ) nach http://www.ebi.ac.uk/Tools/clustalw2/help.html#color und TAYLOR 1986. Dunkelgrün (Chlamydomonas reinhardtii) und hellgrün (Chlamydomonas incerta) hinterlegt sind Peptidsequenzen, die bei MALDI-PMF gefunden wurden, vgl. Kap. 2.3.1.





Abb. 5.5: Interaktion von gebundenem Glykoprotein GP3 aus *Chlamydomonas incerta* mit dem biotinmarkierten Glykoprotein GP2 aus *Chlamydomonas reinhardtii*. In (A) ist die Extinktionszunahme bei steigender Konzentrationen dargestellt, in (B) das aus diesen Extinktionswerten (hier: V) abgeleitete Eadie-Hofstee-Diagramm mit der linearen Regression zur Ermittlung der Affinitätskonstante K<sub>D</sub>.





Abb. 5.6: Interaktion von gebundenem Glykoproteinkomplex [GP3-GP2] aus *Chlamydomonas reinhardtii* mit dem biotinmarkierten Glykoprotein GP1 aus *Chlamydomonas incerta*.

In (A) ist die Extinktionszunahme bei steigender Konzentrationen dargestellt, in (B) das aus diesen Extinktionswerten (hier: V) abgeleitete Eadie-Hofstee-Diagramm mit der linearen Regression zur Ermittlung der Affinitätskonstante  $K_D$ .

Anhang



Abb. 5.7: Interaktion von gekoppeltem Glykoprotein GP3 mit dem Glykoprotein GP2, beide aus *Chlamydomonas reinhardtii*. Die y-Achse zeigt die vom Gerät IASys gemessen Signale in Bogensekunden, auf der x-Achse ist die Zeit in Minuten angegeben.

Es erfolgt eine Assoziation von GP3 (A). Nach der Interaktion erfolgt die Dissoziation des Interaktionspartners mit Puffer (B) sowie die Regeneration der Küvette (C). Die Küvette kann nun für weitere Analysen erneut verwendet werden.



Abb. 5.8: Interaktion von gekoppeltem Glykoproteinkomplexes [GP3-GP2], beide aus *Chlamydomonas reinhardtii* mit dem Glykoprotein GP1 aus *Chlamydomonas incerta*. Die y-Achse zeigt die vom Gerät IASys gemessen Signale in Bogensekunden, auf der x-Achse ist die Zeit in Minuten angegeben. Es erfolgt eine Assoziation von GP1 (A). Nach der Interaktion erfolgt die Dissoziation des Interaktionspartners mit Puffer (B) sowie die Regeneration der Küvette (C).

#### 6. Literaturverzeichnis

Adair S.W., Steinmetz S.A., Mattson D.M., Goodenough U.W., Heuser J.E., Nucleated assembly of *Chlamydomonas* and *Volvox* cell walls J Cell Biol 1987, Vol. 105: 2373-2382

Adair S.W., Organization and in vitro assembly of the *Chlamydomonas reinhardtii* cell wall Self-Assembling Architecture 1988: 25-41

Adair S.W., Appel H., Identification of a highly conserved hydroxyprolinerich glycoprotein in the cell walls of *Chlamydomonas reinhardtii* and two other Volvocales Planta 1989, Vol. 179: 381-386

Adair S.W., Apt K.E., Cell wall regeneration in *Chlamydomonas*: Accumulation of mRNAs encoding cell wall hydroxyproline-rich glycoproteins Proc Natl Acad Sci USA 1990, Vol. 87: 7335-7359

Alberts B., Bray D., Johnson A., Lewis J., Raff M., Roberts K., Walter P., Lehrbuch der molekularen Zellbiologie Wiley-VCH Weinheim 1999, ISBN: 3-527-30101-1

Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K., Current protocols in molecular biology New York Press John Wiley & Sons, 1994 ISBN: 047150338X

Bertucci C., Cimitan S., Menotti L., Optical biosensor analysis in studying herpes simplex virus glycoprotein D binding to target nectin1 receptor J Pharm Biomed Anal 2003, Vol. 8(32): 697-706

Blacque O.E., Worrall D.M., Evidence for a direct interaction between the tumor suppressor serpin, maspin, and types I and III collagen J Biol Chem 2002, Vol. 277(13): 10783-10788

Bochicchio B., Tamburro A.M., Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions Chirality 2002, Vol. 14: 782-792

Bollig K., Hydroxyprolin gebundene Glykane der Zellwand von *Chlamydomonas reinhardtii* Inaugural-Dissertation am Institut für Biochemie an der Universität zu Köln 2006

Breiling F., Dübel S. in: Rekombinante Antikörper Spektrum Akademischer Verlag 1997, ISBN 382740150X

Catt J.W., Hills G.J., Roberts K., Cell wall glycoproteins from *Chlamydomonas reinhardtii*, and their self-assembly Planta 1978, Vol. 138: 91-98

Cannon M.C., Terneus K., Hall Q., Tan L., Wang Y., Wegenhart B.L., Chen L., Lamport D.T., Chen Y., Kieliszewski M.J., Self-assembly of the plant cell wall requires an extensin scaffold Proc Natl Acad Sci USA 2008, Vol. 105(6): 2226-2231

Chène P., Inhibition of the p53-MDM2 Interaction: Targeting a Protein-Protein Interface Molecular Cancer Research 2004, Vol. 2: 20-28

Coleman A.W., Mai J.C., Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness J Mol Evol 1997, Vol. 45: 168-177

Colowick S.P., Kaplan N.O. in: Vunakis H.V., Langone J.J. (Editors): Methods in enzymology, Vol. 70 Immunological techniques part A Academic Press New York 1980, ISBN 0121819701

Cottrell J.S., Protein identification by peptide mass fingerprinting Pept Res 1994, Vol. 7(3): 115-124 Combet C., Blanchet C., Geourjon C., Deléage G., NPS@: Network Protein Sequence Analysis TIBS 2000, Vol. 25(3): 147-150

Crowther J.R., ELISA. Theory and practice Meth Mol Biol 1995, Vol. 42: 1-218

Cush R., Conin J.M., Stewart W.J., Maule C.H., Molloy J., Goddard N.J., The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions. Part I: Principle of operation and associated instrumentation Biosensors and Bioelectronics 1993, Vol. 8: 347-355

Della-Penna D., Christofferson R.E., Bennett A.B., Biotinylated proteins as molecular weight standards on western blots Anal Biochem 1986, Vol. 152: 329-332

Emanuelsson O., Brunak S., von Heijne G., Nielsen H., Locating proteins in the cell using TargetP, SignalP, and related tools Nature Protocols 2007, Vol. 2: 953-971

Ferris P.J., Characterization of a *Chlamydomonas* transposon, Gulliver, resembling those in higher plants Genetics 1989, Vol. 122: 363-377

Ferris P.J., Woessner J.P., Goodenough UW., A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of *Chlamydomonas reinhardtii* Mol Biol Cell 1996, Vol. 7: 1235-1248

Ferris P.J., Pavlovic C., Fabry S., Goodenough U.W., Rapid evolution of sex-related genes in *Chlamydomonas* Proc Natl Acad Sci USA 1997, Vol. 94(16): 8634-8639

Ferris P.J., Woessner J.P., Waffenschmidt S., Kilz S., Drees J., Goodenough U.W., Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins Biochemistry 2001, Vol. 40(9): 2978-2987 Ferris P.J., Armbrust E.V., Goodenough U.W., Genetic structure of the mating-type locus of *Chlamydomonas reinhardtii* Genetics 2002, Vol. 160(1): 181-200

Ferris P.J., Waffenschmidt S., Umen J.G., Lin H., Lee J.H., Ishida K., Kubo T., Lau J., Goodenough U.W., Plus and Minus Sexual Agglutinins from *Chlamydomonas reinhardtii* 

The Plant Cell 2005, Vol. 17: 597-615.

Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A., ExPASy: the proteomics server for in-depth protein knowledge and analysis Nucleic Acids Res 2003, Vol. 31: 3784-3788

Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A., Protein identification and analysis tools on the *ExPASy* Server In: Walker J.M. (Editor): The proteomics protocols handbook: 571-607 Humana Press 2005, ISBN 1588295931

Gorgani N.N, Parish C.R, Altin J.G., Differential binding of histidine-rich glycoprotein (HRG) to human IgG subclasses and IgG molecules containing kappa and lambda light chains

J Biol Chem 1999, Vol. 274(42): 29633-29640

Grant S.G., Jessee J., Bloom F.R., Hanahan D., Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants

Proc Natl Acad Sci USA 1990, Vol. 87(12): 4645-4649

Gupta R., Jung E., Brunak S., Prediction of N-glycosylation sites in human proteins in preparation, 2004 (http://www.cbs.dtu.dk/services/NetNGlyc/abstract.php)

Hallmann A., Kirk D.L., The developmentally regulated ECM glycoprotein ISG plays an essential role in organizing the ECM and orienting the cells of *Volvox* 

J Cell Sci 2000, Vol. 113 (24): 4605-4617

Hänel C., Gauglitz G., Comparison of reflectrometric interference spectroscopy with other instruments for label-free optical detection Anal Bioanal Chem 2002, Vol. 372: 91-100 Harris E.H., The *Chlamydomonas* Sourcebook: A comprehensive guide to biology and laboratory use Academic Press San Diego 1989, ISBN 012326880X

Henke W., Herdel K., Jung K., Schnorr D., Loening S.A., Betaine improves the PCR amplification of GC-rich DNA sequences Nucleic Acids Res 1997, Vol. 25(19): 3957-3958

Heukeshoven J., Dernick R., Simplified method for silver staining of proteins in polyacrylamid gels and the mechanism of silver staining Elektrophoresis 1985, Vol. 6: 103-112

Hills G.J., Phillips J.M., Gay M.R., Roberts K., Self-assembly of a plant cell wall *in vitro*J Mol Biol 1975, Vol. 96: 431-441

Hutner H.S., Provasoli L., Schatz A., Haskins C.P., Some approaches to the study of the role of metals in the metabolism of microorganisms Proc Am Philos Soc 1950, Vol. 94: 152-170

Hytönen V.P., Nyholm T.K., Pentikäinen O.T., Vaarno J., Porkka E.J., Nordlund H.R., Johnson M.S., Slotte J.P., Laitinen O.H., Kulomaa M.S., Chicken avidin-related protein 4/5 shows superior thermal stability when compared with avidin while retaining high affinity to biotin J Biol Chem 2004, Vol. 279(10): 9337-9343

Goodenough U.W., Heuser J.E., The *Chlamydomonas* cell wall and its constituent glycoproteins analyzed by the quick-freeze, deep-etch technique J. Cell Biol.1985, Vol. 101: 1550-1568

Goodenough U.W., Gebhart B., Mecham R.P., Heuser J.E., Crystals of the Chlamydomonas reinhardtii cell wall: Polymerization, depolymerization, and purification of glycoprotein monomers

J. Cell Biol. 1986, Vol. 103: 405-417

Gorman D.S., Levine R.D., Cytochrome f and plastocyan: their sequence in the photosynthetic eletron transport chain of *Chlamydomonas reinhardtii* Proc Natl Sci USA 1965, Vol. 54: 1665-1669

van Holst G.J., Varner J.E., Reinforced polyproline II conformation in a hydroxyproline rich cell wall glycoprotein from carrot root Plant Physiol 1984, Vol. 74: 247-251

Imam S.H., Buchanan M.J., Shin H.C., Snell W.J., The *Chlamydomonas* cell wall: Characterization of the wall framework J Cell Biol. 1985, Vol. 101: 1599-1607

Jaenicke L., Einführung in die Praxis des Biochemikers 1984, Institut für Biochemie der Universität zu Köln

Jaenicke L., Kuhne W., Spessert R., Wahle U., Waffenschmidt S., Cell-wall lytic enzymes (autolysins) of *Chlamydomonas rheinhardtii* are (hydroxy)proline-specific proteases Eur J Biochem 1987, Vol. 170: 485-491

Johnson W.C. jr., Secondary structure of proteins through circular dichroism spectroscopy Annu Rev Biophys Biophys Chem 1988, Vol. 17: 145-166

Johnson W.C. jr., Protein secondary structure und circular dichroism: A practical guide Proteins 1990, Vol. 7: 205-241

Jolk, E., Biochemische Untersuchungen von Assembly-kompetenten Zellwandproteinen aus *Chlamydomonas reinhardtii* Diplomarbeit am Institut für Biochemie an der Universität zu Köln 1998

Kamerke C., Hydroxyprolin gebundene O-Glykane der Zellwand von *Volvox carteri f. nagariensis Iyengar* Bachelorarbeit am Institut für Biochemie an der Universität zu Köln 2007

133

Kampa A., Hydroxyprolin gebundene Glykane der *Volvocales* Diplomarbeit am Institut für Biochemie an der Universität zu Köln 2007

Keskiaho K., Hieta R., Sormunen R., Myllyharju J., *Chlamydomonas reinhardtii* has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly The Plant Cell 2007, Vol. 19: 256-269

Kieliszewski M.J., Lamport D.T.A., Extensin: repetitive motifs, functional sites, post-translational codes an phylogenie J Plant 1994, Vol. 5: 157-172

Kieliszewski M.J., O'Neill M., Leykam J., Orlando R., Tandem mass spectrometry and structural elucidation of glycoprotein indicate that contiguous hydroxyproline residues are the major site of hydroxyproline Oarabinosylation

J Biol Chem 1995, Vol. 10: 2541-2549

Kilz S., Waffenschmidt S., Budzikiewicz H., Mass spectrometric analysis of hydroxyproline glycans J Mass Spec 2000, Vol. 35: 689-697

Kilz S., Budzikiewicz H., Waffenschmidt S., In-gel deglycosylation of sodiumdodecyl sulfate polyacrylamide gel electrophoresis-separated glycoproteins for carbohydrate estimation by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry J Mass Spec 2001, Vol. 37: 331-335

Kop-WeiershausenT.,BiochemischeUntersuchungenderHydroxyprolinreichen Glykoproteine aus Chlamydomonas incertaDiplomarbeit am Institut für Biochemie an der Universität zu Köln 2002

Kyse-Anderson J., Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamid to nitrocellulose

J Biochem and Biophys Meth 1984, Vol. 10:203-209

134

Lee J.H., Waffenschmidt S., Small L., Goodenough U., Between-species analysis of short-sepeat modules in cell wall and sex-related hydroxyproline-rich glycoproteins of *Chlamydomonas* Plant Phys 2007, Vol. 144: 1813-1826

Lequin R.M., Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA) Clin Chem 2005, Vol. 51(12): 2415-2418

Li J., Huang J.D., Wu B.Y., Chen Q., Effects of propyl gallate on interaction between TNF-a and sTNFR-I using an affinity biosensor Acta Pharmacologica Sinica 2005, Vol. 26(10): 1212-1216

Linhart C., Shamir R., The degenerate primer design problem Bioinformatics 2002, Vol. 18 Suppl. 1: 172-181

Liss M., Kirk D.L., Breyser K., Fabry S., Intron sequences provide a tool for high-resolution phylogenetic analysis of volvocine algae Curr Genet 1997, Vol. 31: 214-227

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with the Folin phenol reagent J Biol Chem 1951, Vol. 193(1): 265–275

Matsuda Y., Saito T., Yamaguchi T., Kawase H., Cell wall lytic enzyme released by mating gametes of *Chlamydomonas reinhardtii* is a metalloprotease and digests the sodium perchlorate-insoluble component of cell wall

J Biol Chem 1985, Vol. 260(10): 6373-6377

Matteucci M.D., Caruthers M.H., Synthesis of deoxyoligonucleotides on a polymer support 1981 Biotechnology 1992, Vol. 24: 92-88
Merchant S.S., Prochnik S.E., Vallon O., Harris E.H., Karpowicz S.J., Witman G.B., Terry A., Salamov A., Fritz-Laylin L.K., Maréchal-Drouard L., Marshall W.F., Qu L.H., Nelson D.R., Sanderfoot A.A., Spalding M.H., Kapitonov V.V., Ren Q., Ferris P.J., Lindquist E., Shapiro H., Lucas S.M., Grimwood J., Schmutz J., Cardol P., Cerutti H., Chanfreau G., Chen C.L., Cognat V., Croft M.T., Dent R., Dutcher S., Fernández E., Fukuzawa H., González-Ballester D., González-Halphen D., Hallmann A., Hanikenne M., Hippler M., Inwood W., Jabbari K., Kalanon M., Kuras R., Lefebvre P.A., Lemaire S.D., Lobanov A.V., Lohr M., Manuell A., Meier I., Mets L., Mittag M., Mittelmeier T., Moroney J.V., Moseley J., Napoli C., Nedelcu A.M., Niyogi K., Novoselov S.V., Paulsen I.T., Pazour G., Purton S., Ral J.P., Riaño-Pachón D.M., Riekhof W., Rymarquis L., Schroda M., Stern D., Umen J., Willows R., Wilson N., Zimmer S.L., Allmer J., Balk J., Bisova K., Chen C.J., Elias M., Gendler K., Hauser C., Lamb M.R., Ledford H., Long J.C., Minagawa J., Page M.D., Pan J., Pootakham W., Roje S., Rose A., Stahlberg E., Terauchi A.M., Yang P., Ball S., Bowler C., Dieckmann C.L., Gladyshev V.N., Green P., Jorgensen R., Mayfield S., Mueller-Roeber B., Rajamani S., Sayre R.T., Brokstein P., Dubchak I., Goodstein D., Hornick L., Huang Y.W., Jhaveri J., Luo Y., Martínez D., Ngau W.C., Otillar B., Poliakov A., Porter A., Szajkowski L., Werner G., Zhou K., Grigoriev I.V, Rokhsar D.S., Grossman A.R., The Chlamydomonas genome reveals the evolution of key animal and plant functions

Science 2007, Vol. 318 (5848): 245-250

Mullis K.B., Faloona F.A., Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction Methods Enzymol 1987, Vol. 155: 335-350

Nakamura, Y., Gojobori, T. and Ikemura, T., Codon usage tabulated from the international DNA sequence databases: status for the year 2000 Nucl Acids Res 2000, Vol. 28: 292

Newman S.M., Boynton J.E., Gillham N.W., Randolph-Anderson B.L., Johnson A.M., Harris E.H., Transformation of chloroplast ribosomal RNA genes in *Chlamydomonas*: molecular and genetic characterization of integration events Genetics 1990, Vol. 126(4): 875-88 Nozaki H., Onishi K., Morita E., Differences in pyrenoid morphology are correlated with differences in the rbcL genes of members of the Chloromonas lineage (volvocales, chlorophyceae) J Mol Evol 2002, Vol. 55(4): 414-430

Perkins D.N., Pappin D.J.C., Creasy D.M., Cottrell J.S., Probability-based protein identification by searching sequence databases using mass spectrometry data Electrophoresis 1999, Vol. 20(18): 3551-3567

Peterson G.L., A simplification of the protein assay method of Lowry *et al.* which is more generally applicable Anal Biochem 1977, Vol. 83: 289-309

Pingoud A., Urbanke C., Arbeitsmethoden der Biochemie de Gruyter Verlag Berlin 1997, ISBN 3-11-016513-9

Popescu C.E., Borza T., Bielawski J.P., Lee R.W., Evolutionary rates and expression level in *Chlamydomonas* Genetics 2006, Vol. 172: 1567–1576

Pröschold T., Marin B., Schlösser U.G., Melkonian M., Molecular phylogeny and taxonomic revision of *Chlamydomonas* (Chlorophyta). I. Emendation of *Chlamydomonas Ehrenberg* and *Chloromonas Gobi*, and description of *Oogamochlamys* gen. nov. and *Lobochlamys* gen. nov. Protist 2001, Vol. 152(4): 265-300

Pröschold T., Harris E.H., Coleman A.W., Portrait of a species: *Chlamydomonas reinhardtii* Genetics 2005, Vol. 170(4): 1601-1610

Rasmussen S.E., Covalent immobilization of biomolecules onto polystyrene MicroWells for use in biospecific assay Ann Biol Clin (Paris) 1990, Vol. 48: 647-650

Rehm H., Der Experimentator Spektrum Akademischer Verlag Heidelberg 2000, ISBN 3-8274-1025-8 Roberts K., Gurney-Smith M., Hills G.J., Structure, composition and morpho-genesis of the cell wall of *Chlamydomonas reinhardtii*, 1. Ultrastructure and preliminary chemical analysis J Ultrastru Res 1972, Vol. 40: 599-613

Roberts, K., Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Philos Trans R Soc Lond B Biol Sci 1974, Vol. 268: 129-146

Roberts, K., Visualizing an insoluble glycoprotein Micron 1981, Vol. 12: 185-186

Roberts K., Grief C., Hills G.J., Shaw P.J., Cell wall glycoproteins: structure and function J Cell Sci 1985, Supplement 2:105-127

Rozen S., Skaletsky H.J., Primer3 on the WWW for general users and for biologist programmers in: Krawetz S, Misener S (eds) *Bioinformatics Methods and Protocols: Methods in Molecular Biology.* Humana Press, Totowa, NJ, pp 365-386 (2000)

Rucker A.L., Pager C.T., Campbell M.N., Qualls J.E., Creamer T.P., Hostguest scale of left-handed polyproline II helix formation Proteins 2003, Vol. 53: 68–75

Saitou N., Nei M., The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol Evol Biol 1987, Vol. 4(4): 406-425

Sambrook J., Fritsch E.F., Maniatis T., Molecular Cloning: A Laboratory Manual (2<sup>nd</sup> Edition) Cold Spring Harbor Laboratory Press, 1989 ISBN 0879693096

Sanderson C.M., A new way to explore the world of extracellular protein interactions Genome Res 2008, Vol. 18: 517 - 520 Sanger F., Nicklen S., Coulson A.R., DNA sequencing with chain-terminating inhibitors

Proc Natl Acad Sci USA 1977, Vol. 74: 5463-5467

Schlösser U.G., Sachs H., Robinson D.G., Isolation of protoplasts by means of a "species-specific" autolysine in *Chlamydomonas* Protoplasma 1976; Vol. 88(1): 51-64

Schultz, J., Müller, T., Achtziger, M., Seibel, P.N., Dandekar, T., Wolf, M., The internal transcribed spacer 2 database - a web server for (not only) low level phylogenetic analyses Nucleic Acids Research 2006, Vol. 34: W704-707

Schultz J., Wolf M., ITS2 sequence–structure analysis in phylogenetics: A how-to manual for molecular systematics Mol Phylogenet Evol. 2009 in press

Selig, C., Wolf, M., Müller, T., Dandekar, T. and Schultz, J., The ITS2 Database II: homology modelling RNA structure for molecular systematics Nucleic Acids Research 2008, Vol. 36: D377-380

Showalter A.M., Structure and function of plant cell wall proteins Plant Cell 1993, Vol. 5: 9-23

Showalter A.M., Introduction: plant cell wall proteins Cell Mol Life Sci 2001, Vol. 58: 1361–1362

Snell W.J., Adair S.W., Organization and assembly of plant and animal extracellular matrix Academic Press New York 1990, ISBN 0120440601

Sondergard-Andersen J., Lauritzen E., Lind K., Holm A., Covalently linked peptides for enzyme linked immunosorbent assay J Imm Methods 1990, Vol 131: 99-104

Sreerama N., Woody R.W., Poly(pro)II helices in globular proteins: identification and circular dichroic analysis Biochemistry 1994, Vol. 33: 10022-10025; Erratum in: Biochemistry 1995, Vol. 21: 7288

Stafstrom J.P., Staehelin L.A., The role of carbohydrate in maintaining Extensin in an extended conformation Plant Physiol 1986, Vol. 81(1): 242-246

Stapley B.J., Creamer T.P., A survey of left-handed polyproline II helices Protein Sci 1999, Vol.8: 587–595

Suzuki L., Woessner J.P., Uchida H., Kuroiwa H., Yuasa Y., Waffenschmidt S., Goodenough U., Kuroiwa T., A zygote-specific protein with hydroxyproline-rich glycoprotein domains and lectin-like domains involved in the assembly of the cell wall of *Chlamydomonas reinhardtii* J Phycol 2000, Vol. 36: 571–583

Sylvester-Hvid C., Kristensen N., Blicher T., Ferré H., Lauemøller S.L., Wolf X.A., Lamberth K., Nissen M.H., Pedersen L.Ø., Buus S., Establishment of a quantitative ELISA capable of determining peptide - MHC class I interaction Tissue Antigens 2002, Vol. 59(4): 251-258

Taylor W.R., The classification of amino acid conservation J Theor Biol. 1986, Vol. 119(2): 205-218

Thompson J.D., Gibson T.J., Higgins D.G., Multiple sequence alignment using ClustalW and ClustalX Curr Protoc Bioinformatics 2002, Chapter 2: Unit 2.3

Towbin H., Staehlin T., Gordon J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications

Proc Natl Acad Sci USA 1979, Vol 76: 4350

Tschesche C., Untersuchungen zur Interaktion von Hydroxyprolinreichen Glykoproteinen (HRGPs) aus *Chlamydomonas reinhardtii* Diplomarbeit am Institut für Biochemie an der Universität zu Köln 2000

Van den Steen P., Rudd P.M., Dwek R.A., Opdenakker G., Concepts and principles of O-linked glycosylation Crit Rev Biochem Mol Biol 1998, Vol. 33: 151–208

Waffenschmidt S., Spessert R., Jaenicke L., Oligosaccharide side chains of wall molecules are essential for cell-wall lysis in *Chlamydomonas reinhardtii* Planta 1988, Vol. 175: 513-519

Waffenschmidt S., Woessner J.P., Beer K., Goodenough U.W., Isodityrosine cross-linking mediates insolubilization of cell walls in *Chlamydomonas* The Plant Cell 1993, Vol. 5: 809-820

Waffenschmidt S., Kusch T., Woessner J.P., A transglutaminase immunogically related to tissue transglutaminase catalyzes cross-linking of cell wall proteins in *Chlamydomonas reinhardtii* Plant Physiol 1999, Vol. 121: 1003-1015

Warburg, O. and Christian, W. (1942) Biochem. Z., 310, 384.

Wojtowicz W.M., Wu W., Andre I., Qian B., Baker D., Zipursky S.L., A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains Cell 2007, Vol. 130(6): 1134-1145

Wolters A., Charakterisierung der Interaktion von Hydroxyprolin-reichen Glykoproteinen aus *Chlamydomonas reinhardtii* Diplomarbeit am Institut für Biochemie an der Universität zu Köln 1999

Wu H., de Graaf B., Mariani C., Cheung A.Y., Hydroxyproline-rich glycoproteins in plant reproductive tissues: structure, functions and regulation

Cell Mol Life Sci 2001, Vol. 58(10): 1418-1429

Yu X., Wang Q.Y., Guo Y., Dolmer K., Young J.A., Gettins P.G., Rong L., Kinetic analysis of binding interaction between the subgroup A Rous sarcoma virus glycoprotein SU and its cognate receptor Tva: calcium is not required for ligand binding

J Virol 2003, Vol. 77(13): 7517-7526

Zimmer S., Stocker A., Sarbolouki M.N., Spycher S.E., Sassoon J., Azzi A., A novel human tocopherol-associated protein: cloning, in vitro expression, and characterization

J Biol Chem 2000, Vol. 275(33): 25672-25680

Die äußere Zellwand der einzelligen Grünalge *Chlamydomonas reinhardtii* besteht im Gegensatz zu den Zellwänden von Landpflanzen ausschließlich aus Proteinen. Diese gehören der Familie der hydroxyprolinreichen Glykoproteine (HRGPs) an und besitzen hochrepetitive Aminosäuremotive, deren Hydroxyprolinreste O-glykosidisch gebundene Zuckerseitenketten tragen und die in Form einer PolyProlinII-Helix vorliegen. Eine weitere herausragende Eigenschaft dieser HRGPs ist es, dass sie *in vivo* wie auch *in vitro* ein hohes Maß an Selbstorganisation zeigen (*self assembly*).

In dieser Arbeit wurden vergleichende biochemische und molekurbiologische Untersuchungen an den Zellwandproteinen aus zweier nah verwandeter Arten der Gattung *Chlamydomonas*, die im Laufe der Evolution vor etwa 10 Millionen Jahren divergierten, durchgeführt.

Dazu wurden zunächst die HRGPs von der Zelle präpariert, angereichert und mit FPLC in Reinfraktionen getrennt. Mit diesen Proteinen wurde eine Interaktion miteinander sowie Kreuzreaktivität zwischen verschiedenen Spezies demonstriert. Dabei wurde mit *nucleated assembly* gezeigt, dass das Protein GP1 vermutlich über Zucker-Zucker-Wechselwirkungen an andere HRGPs der Zellwandschichten von *Chlamydomonas* binden kann. Die Affinität von HRGPs aus der Zellwandschicht W6 zueinander liegt mit  $K_D$ -Werten von  $10^{-7}$  bis  $10^{-8}$  Mol in einem Bereich hochaffiner Protein-Protein-Wechselwirkungen. Dabei war es ebenfalls möglich, eine Interaktion der Proteine beider Arten miteinander nachzuweisen und zu berechnen. Auch diese Interaktionen sind als hochaffin zu bewerten.

Die Sequenzierung von GP2 aus *Chlamydomonas incerta* in dieser Arbeit und der damit durchgeführte molekularbiologische Vergleich des Glykoproteins GP2 bei drei Arten der *Volvocales* zeigt eine hohe Homologie untereinander, die für bestimmte globuläre Proteinbereiche und Bereiche in Form von PolyProlinII-Helix (*shafts*) als sehr hoch bezeichnet werden kann. Darüber hinaus konnte in dieser Arbeit dargelegt werden, dass in den *shafts* ein großer Teil Nukleotide bei allen drei untersuchten Arten identisch sind oder aber synonyme Basenaustausche stattgefunden haben, die Prolin und seltener Serin konservieren und ein repetitives Aminosäuremotiv erhalten. The unicellular green alga *Chlamydomonas reinhardtii* possesses an outer cell wall exclusively consisting of hydroxyproline-rich glycoproteins (HRGPs), similar to the extensines of land plants. HRGPs carry highly repetitive amino acid motifs which are O-glycosylated on hydroxyproline residues and form polyproline II helices. Furthermore, these proteins can self-assemble to form the outer cell wall.

In this thesis biochemical and molecular examinations were carried out in order to compare cell wall proteins of two closely related species of the genus *Chlamydomonas* that diverged approximately 10 million years ago. In detail, HRGPs were extracted, enriched and FPLC-separated into pure fractions. Interaction and interspecific reaction of these proteins was shown. Using the technique of *nucleated assembly*, it was demonstrated that glycoprotein GP1 can bind to other cell wall proteins, presumably via sugar-sugar interaction. Affinity constants of cell wall layer W6 glycoprotein interaction were experimentally determined and shown to be in the range of highly affine protein-protein interactions. In addition, K<sub>D</sub> of interspecific protein-protein interactions was also shown to be in the high nanomolar range.

Sequence analysis of the glycoprotein GP2 from *Chlamydomonas incerta* and comparison of GP2 from three species of the volvocine algae showed a high homology in both globular and proline-rich shaft regions. In regard to those shaft regions, it was revealed that the nucleotide composition of all three sequences investigated was highly identical. Furthermore, synonymous nucleotide exchanges mostly took place in order to conserve proline or, more scarcely, serine residues and the repetitive motifs.

144

Es liegt in der Natur einer Dissertation, dass sich ihr Entstehen über einen langen Zeitraum erstreckt.

Folgenden Personen gebührt für diese Zeit mein ganz besonderer Dank:

Frau Prof. Dr. Sabine Waffenschmidt danke ich für meine Zeit in ihren Laboren, die Betreuung dieser Dissertation sowie für die vielen wissenschaftlichen und auch persönlichen Freiheiten, die sie mir in dieser Zeit gewährte.

Herrn Prof. Dr. Helmut W. Klein gilt mein Dank für die Anfertigung des zweiten Gutachtens und für seine Unterstützung dieser Dissertation.

Ich danke Herrn Prof. Dr. em. Lothar Jaenicke für das eine oder andere ausgeliehene Buch und vor allem die Gespräche über Wissenschaft früher und heute.

Eva Glees für ihre ausgezeichnete technische Unterstützung, ihre ständige Hilfsbereitschaft und dafür, an ihrem immensen Erfahrungsschatz teilhaben zu dürfen.

Bei all meinen Laborkollegen der letzten Jahre für die schöne Zeit mit ihnen in Labor, Mensa, Subway usw., für die nette Zusammenarbeit und ihre stetige Hilfsbereitschaft.

Den Kollegen von der 3. Etage, mit denen ich das Vergnügen hatte, Praktika zu betreuen und die mich zuweilen auch materiell unterstützt haben; insbesondere Vera, Sascha, Jens, Marc und Kay.

Daniela, Jule, Donnt, Helge, Jan und Phil für ihre Zeit beim aufmerksamen und kritischen Korrekturlesen dieser Dissertation und vor allem dafür, dass dies so unfassbar schnell ging.

Mimi, Nora, Helge, Leif und Michel für die aufmunternden Worte, die ihr in der stressigen Schlussphase für mich übrig hattet.

Michel für Cyan, Magenta und das Ganze nötige technische Drumherum.

Annette für eine langjährige Freundschaft, dass du immer da warst, wenn es am düstersten schien und ganz besonders für deine Zeit und die Motivierungen im letzten Jahr.

Maike für die vielen schönen Tage mit dir seit letztem Frühling und für deine Liebe.

Danke vor allem dafür, meine kritischste Lektorin gewesen zu sein und ganz besonders für das verbale Peitsche schwingen zum Abgabetermin hin. Ohne dich und deinen Einsatz wäre ich nicht so weit gekommen.

Wofür ich meinen Eltern danke, dass kann ich nicht in Worte fassen. Seid stolz. Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe;

dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat;

dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen der Promotionsordnung sind mir bekannt.

Die von mir vorgelegte Dissertation ist von Frau Prof. Dr. Sabine Waffenschmidt betreut worden.

Köln, den 19/03/2009

Daniel Wall