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iii

Contents

Contents iii

1 Introduction 1

1.1 Physical systems . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Interacting electrons in one dimension . . . . . . . . . . . . . . 3
1.3 Thin superconducting films . . . . . . . . . . . . . . . . . . . 7
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 9

2 Transport in a Luttinger liquid with dissipation 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Renormalization group analysis . . . . . . . . . . . . . . . . . 14
2.4 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Friedel oscillations . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.A Conductance from the Fermi golden rule . . . . . . . . . . . . 21

3 Realization of spin-polarized current in a quantum wire 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Resonant tunneling of spinless electrons . . . . . . . . . . . . . 31
3.4 Weak impurities . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Strong impurities . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.A Bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.B Bosonized model . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 The effect of randomness in one-dimensional fermionic sys-

tems 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 Rigidities and ac conductivity . . . . . . . . . . . . . . . . . . 50



iv Contents

4.4 Fixed points and phases . . . . . . . . . . . . . . . . . . . . . 51
4.5 Mott-glass phase . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Disscussions and conclusions . . . . . . . . . . . . . . . . . . . 55

5 Vortex configurations in a superconducting film with a mag-

netic dot 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Ground states with vortices . . . . . . . . . . . . . . . . . . . 62
5.4 Magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.5 Numerical study of ground states with low number of vortices 67
5.6 Discussions and conclusions . . . . . . . . . . . . . . . . . . . 72
5.A Derivation of the model . . . . . . . . . . . . . . . . . . . . . 73
5.B Calculation of Umv . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Superconducting film with randomly magnetized dots 79

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Model and its solution . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Discussions and conclusions . . . . . . . . . . . . . . . . . . . 84
6.A Equivalence between random potentials . . . . . . . . . . . . . 86

Bibliography 89

Acknowledgements 97

Abstract 99

Zussamenfassung 101

Erklärung 103

Curriculum vitae 105



1

Chapter 1

Introduction

In this chapter we introduce two different systems that will be con-
sidered in this thesis: one-dimensional interacting electronic systems
and thin superconducting films.

1.1 Physical systems

Physical systems are very diverse and can be classified in many ways. They
can be macroscopically large or microscopically small regarding their size,
they can be solid, liquid or gaseous with respect to their state, and there
are many other classifications with respect to some property. While some
physical systems are well understood, many of them are not. The main
obstacle hindering a thorough understanding is the interaction. For systems
that we will investigate in this thesis, it is the electromagnetic interaction that
is responsible for non-trivial physical effects. The other three fundamental
interactions are irrelevant for our considerations.

We begin with a simple example which demonstrates one aspect of the
space dimensionality. The electromagnetic potential Φ(r) produced by the
charge density ρ(r) is governed by the Poisson equation [1]

∇2Φ(r) = −4πρ(r). (1.1)

The solution of the previous equation for a single electron placed at the origin
depends on the system dimensionality d. It is given by

Φ(r) =





−e/|r|, d = 3,
const − 2e log |r|, d = 2,
2πe|r| + const, d = 1.

(1.2)

While the electron charge −e enters the potential in the same way in different
dimensions, the spatial coordinate does not. For the interaction between two
electrons the previous expression gives the usual Coulomb 1/r interaction in
three dimensions, but a logarithmic interaction in two dimensions. We see
that even the simplest interacting system shows significant differences in the
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potential energy behavior. We should be aware that an interacting many
body system has quite often an effective interaction that is different from the
aforementioned Coulomb interaction. The reason for this are complicated
many body interaction processes that occur in reality and which can not be
all treated exactly. However, at the end an effective picture emerges as a
result of some well suited approximative treatment. For example, it is well
known that two electrons of opposite spin and momentum effectively attract
each other in superconductors. This occurs due to the presence of phonons
that mediate the electron-electron interaction in that particular case.

Apart from interaction, other principles of physics are also involved.
Quantum-mechanical indistinguishability of particles classifies them into fer-
mions and bosons, apart from possible exotic particles in some two-dimen-
sional systems. At large temperatures quantum mechanics is not important
any more, rather laws of classical mechanics apply. There both kinds of parti-
cles behave similarly. At low temperatures fermions and bosons behave quite
differently, due to the Pauli exclusion principle. It states that two identical
fermions can not occupy the same quantum state simultaneously.

In three dimensions, non-interacting fermions at zero temperature fill
the available quantum states up to the Fermi level, while non-interacting
bosons condense in a macroscopic quantum state all having zero momentum.
This defines the ground state (the state having the lowest possible energy)
of non-interacting fermions and bosons. The lowest-lying excitations in the
fermionic case occur when a fermion near and below the Fermi level is excited
to an empty quantum state above it. In the bosonic case an excitation
consists of taking a boson from the rest state, where it has zero momentum,
to a moving state.

Effects of interactions in the systems from the previous paragraph are
also well understood. Upon switching-on interactions, the Fermi level is still
well defined. The low-energy excitations may be described by quasi-particles.
They satisfy Fermi-Dirac statistics and carry the same spin, charge and mo-
mentum as the original fermions, but have a renormalized mass. These quasi-
particles are nearly free and have a finite lifetime, which is inversely propor-
tional to the square of the excitation energy measured relative to the Fermi
energy. The theory of interacting fermions in three dimensions is known as
Landau’s Fermi liquid theory [2].

While interaction between fermions in three dimensions does not qual-
itatively alter the non-interacting picture, for bosons this is not the case.
Weakly interacting bosons become superfluid at low temperatures. Exper-
imentally, a superfluid flows without friction through narrow capillaries at
low temperatures. For 4He atoms it occurs below the lambda line, at satu-
rated vapor pressure below 2.17 K [3]. Theoretically, due to interactions the
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lowest part of the spectrum of quasi-particles, which diagonalize the inter-
acting Hamiltonian, becomes linear, which is a necessary condition for the
frictionless flow. Excitations of interacting bosons are of collective nature.

The system dimensionality is also very important. Opposite to the three-
dimensional case, non-interacting bosons do not condense in one and two
space dimensions due to large fluctuations [3, 4]. Quite generally, effects of
thermal fluctuations are drastic in two- and less-dimensional systems, pre-
venting long-range order in systems with a continuous symmetry [4, 5].

These are just some very well known facts where the interplay between
fluctuations, interaction and dimensionality leads to different physical sce-
narios. Another very important ingredient is disorder. In solid state physics
systems it can be thermal, due to thermal fluctuations, topological, due to
topological defects and compositional, due to externally immersed particles
into the host system [6]. Effects of disorder are very important, in particular
in low-dimensional systems. This will be also shown in this thesis. In the
rest of the thesis we will be dealing only with disordered low-dimensional
systems, i.e. with one- and two-dimensional interacting systems. More
precisely, we focus on systems that are described as if they were effectively
low-dimensional. The one-dimensional systems that we consider are inter-
acting electrons, while the two-dimensional systems are thin superconducting
films.

1.2 Interacting electrons in one dimension

The effects of interactions in one-dimensional fermionic systems are drastic.
Fermi liquid theory breaks down and one does not have low-energy excita-
tions that have a single-particle character. Rather, the excitations become
collective. Due to their spin and their charge, electrons are described by
two kinds of collective excitations, for the charge and for the spin degrees
of freedom. These excitations have different velocities, which has also been
confirmed experimentally [7]. This phenomenon, that an interacting one-
dimensional electron systems has different velocities of collective excitations,
is known as spin-charge separation.

In the non-interacting case the Fermi level reduces to two Fermi points,
±kF . Effects of interactions between electrons in one dimension can be
treated using the bosonization technique [8]. There, one diagonalizes a fermi-
onic Hamiltonian by going over to a bosonic one. Some details about the
procedure are presented in appendix 3.A of chapter 3. Loosely speaking,
bosonization translates interacting fermions into free bosons. We should
stress here that bosonization properly covers only the low-energy part of the
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fermionic spectrum, and in the rest of the thesis we should bear this in mind.
In the following we consider only spinless electrons for simplicity. The

two parameters that play a role in the bosonic description are the velocity of
excitations v and the Luttinger parameter K. The velocity of excitations is
the Fermi velocity modified by interaction, while the parameter K controls
the interaction. In the non-interacting case we have K = 1, while for re-
pulsive (attractive) interactions we have K < 1 (K > 1). Apart from these
two parameters, the bosonic Hamiltonian contains also canonically conjugate
position and momentum operators of particles.

Within the classical physics, repulsively interacting electrons in one di-
mension at zero temperature are equidistantly distributed, where the dis-
tance between two electrons is determined by the electron density. However,
their quantum-mechanical nature prevents that. The Heisenberg uncertainty
relation

∆x∆p ≥ ~

2
(1.3)

requires a completely undetermined momentum for an electron that has a
specified position. Oppositely, zero momentum of an electron implies that
it is positioned everywhere in space with equal probability. A compromise
between these two cases is that both the electron’s position and momentum
are fluctuating quantities. This is a quantum-mechanical consequence. To
describe particles, one introduces the operator ϕi which measures the position
of the electron, indexed by i with respect to its classical lattice position.
Going over to the continuum limit, ϕi translates into the displacement field
ϕ(x). The momentum Π(x) is introduced as the canonically conjugated field
to ϕ(x) and they satisfy the bosonic commutation relation

[ϕ(x),Π(y)] = i~δ(x− y). (1.4)

The two parameters, v and K, and the two fields, ϕ and Π, completely de-
scribe the interacting electrons in one-dimension. A new state of matter that
arises is called the Luttinger liquid. It is experimentally realized in a number
of different systems, which include carbon nanotubes [9, 10], polydiacetylen
[11], quantum Hall edges [12], semiconductor cleaved edge quantum wires
[13], and in one-dimensional ultra-cold gases [14].

The effects of disorder on Luttinger liquids are also well known. We
distinguish between two kinds of disorder, that are an isolated point impu-
rity and densely spaced many weak impurities that act collectively. While
some interesting effects may occur when impurities are not static [15], in the
following we concentrate only on static impurities.
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Without impurities a Luttinger liquid is perfectly conducting, so we can
say that it has metallic properties [8]. We review the influence of impu-
rities starting from the non-interacting case K = 1. In the presence of a
single impurity the analysis can be done inside the one-body Schrödinger
equation, from which we simply conclude that an incident wave (electron) is
partially transmitted and partially reflected by a potential barrier created by
the impurity. This means the non-interacting system remains metallic due to
nonzero transmission. The case with many impurities is more complicated.
An electron can coherently backscatter from many impurities and it is not a
priori clear whether an electron inserted in the middle of the system can leave
it or not. By now it is well established that any disorder in one dimension
localizes all electronic states [16, 17], meaning the electron will be localized
by disorder. We get an insulating state at zero temperature. Without in-
elastic scattering processes, the finite temperature conductivity remains zero.
When inelastic processes are accounted for, like electron-phonon interaction,
the situation changes. With the assistance of phonons, electrons may hop
between localized states at any non-zero temperature, leading to a small,
but non-vanishing conductivity. This form of electron conduction is known
as hopping conductivity [18].

When the interaction is switched on, the situation becomes different. A
single point impurity of any strength placed into a Luttinger liquid has a very
strong effect. For any repulsive interaction it makes the system insulating
at zero temperature [19, 20, 21]. Oppositely, for attractive interaction the
presence of an impurity is unimportant and the system remains metallic;
this means the phase transition occurs at zero temperature for K = 1. At
finite temperature the conductance vanishes with temperature as a power law
controlled by the interaction parameter K. In this thesis we will consider a
system that consists of a single impurity and in the presence of dissipation.
Qualitatively, the dissipation may be understood as an inelastic scattering
process that diminishes the conductance. We will show that in chapter 2.

Another interesting situation occurs when the two barriers, made by two
point impurities, are present in a Luttinger liquid. Somewhat surprisingly
and opposite to the single impurity case, the system may be metallic for not
too strong repulsive interactions. This rather subtle phenomenon is known in
quantum mechanics of non-interacting particles as resonance tunneling [22].
A free particle that impinges on the two-barrier potential always tunnels
through the potential. In the special case, when its incident wavevector
matches the wavevector it would have if the barriers were impenetrable, there
is no reflection and the transmission coefficient is one. This is the resonant
tunneling phenomenon.

In the interacting case, when the barriers are large in comparison to the
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Fermi energy, the island in between them has a well defined charge. For an
electron driven by an external voltage, there are two possible ways to over-
come the barriers. One option is direct tunneling through both impurities,
and the other is the process of sequential tunneling, where an electron first
enters the island from one side and then leaves it at the other. The former
process is inhibited by the product of strengths of the barriers, while the
latter is inhibited by the strength of one barrier and also by the electrostatic
repulsion from other electrons that sit on the island. The electrostatic repul-
sion that prevents an electron to enter the island is known as the Coulomb
blockade. When the chemical potential on the island is such that adding
another electron to the island has no cost in energy, the Coulomb blockade is
lifted. In addition, if the interaction is not too strong, the double-barrier is
fully transmitting [20] at zero temperature. When the Coulomb blockade is
not lifted, the two impurities effectively act as a single one, and the system
is insulating at zero temperature.

An external magnetic field tends to split electrons at the Fermi level.
Electrons having different spin projection on the direction of the magnetic
field acquire different Fermi momenta. If a double barrier is placed in such
a system, an interesting situation may occur. Because electrons of different
spin projection have different Fermi momenta, it may happen that just one
spin direction resonantly tunnels. This leads to a spin filtering effect. As
we know, the effects of interactions are very important in one dimension and
they will be examined in chapter 3.

A different kind of disorder is realized when the system contains many
impurities that are densely distributed and very weak, so they act collectively.
This kind of disorder is called Gaussian disorder. It is characterized by a
single parameter, that is the product of the impurity density and the typical
squared single impurity strength [8]. The Gaussian disorder couples to the
electron density. It tends to deform the electron displacement field according
to its minima, while the electrons classically tend to have the displacement
field undistorted. The competition between these two effects, the elastic
energy and the disorder, crucially depends on the Luttinger parameter K.
For K > 3/2 the elastic term wins and the low-energy properties of the
system correspond to the free Luttinger liquid model without disorder. For
K < 3/2 the system is disorder dominated and the displacement field is
pinned by the disorder. The resulting phase is called the Anderson insulator.

Another kind of ordering in Luttinger liquids occurs when a periodic po-
tential is present in the system. Effectively, the periodic potential may arise
due to umklapp processes [8, 23]. It wants to keep the electron displace-
ment field constant in order to minimize the total energy. The displacement
field “trapped” by the periodic potential is a ground state of the system as
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long as the fluctuations of the displacement field, which are measured by
K, are small enough. When K increases, the displacement field is “less and
less arrested” by the periodic potential, becoming free for sufficiently large
K. The low-K phase is known as the Mott insulator for electronic systems.
When both the periodic potential and the Gaussian disorder are present, the
situation is complicated since the two insulating phases compete. We will
consider this issue in chapter 4.

1.3 Thin superconducting films

Superconductivity was discovered nearly a century ago. The two hallmarks
of superconductivity are perfect conductivity and perfect diamagnetism [24].
Inside the phenomenological Ginzburg–Landau theory, one introduces the
local superconducting order parameter ψ(r) in order to describe the super-
conducting state. The density of superconducting electrons equals ns(r) =
|ψ(r)|2 and is nonzero in the superconducting phase. The correlation func-
tion 〈ψ∗(r)ψ(0)〉 (where 〈. . .〉 denotes an average over the Ginzburg–Landau
energy functional) acquires a finite value for |r| → ∞ in three dimensions
for temperatures T smaller than the critical temperature Tc, which means
that there is long-range order for the parameter ψ. For T > Tc the corre-
lation function decays exponentially and there is short-range order for the
parameter ψ.

A strong magnetic field always destroys superconductivity. In type-I su-
perconductors this process appears as an abrupt magnetic flux penetration
through the whole sample when the external magnetic field exceeds the ther-
modynamic critical field. In type-II superconductors, for external magnetic
fields between the lower and the upper critical field, magnetic flux penetrates
the sample only partially in the form of regularly distributed flux lines. The
density of superconducting electrons vanishes inside a flux line, and there
normal electrons are present. A flux line, also called a vortex, has a typical
spatial extension ξ in the transverse direction. The parameter ξ is called the
coherence length and is a characteristic of the superconductor. The magnetic
field around a vortex decays over distances beyond the London penetration
depth λL. This is the length scale determined by the electromagnetic re-
sponse of the superconductor. A single vortex line has the energy per unit
length [24]

ǫ1 =

(
φ0

4πλL

)2

ln
λL

ξ
, (1.5)

meaning its energy becomes large for samples long in the direction parallel
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to the vortex (and the external magnetic field). This explains the fact that
vortices do not appear due to thermal fluctuations in three-dimensional su-
perconductors in zero magnetic field. By φ0 = hc/(2e) we have denoted a
flux quantum.

Thin superconducting films are effectively two-dimensional systems, where
the effect of thermal fluctuations is very pronounced. Divergent fluctuations
of the phase of the order parameter at low temperatures prevent a true long-
range order of the order parameter. Rather, the low-temperature phase shows
quasi-long-range order, 〈ψ(r)ψ(0)〉 ∼ |r|−η(T ), where η(T ) ∼ T . The effect
of magnitude fluctuations of the order parameter are also very important in
two dimensions. We should make a distinction between small fluctuations in
the magnitude of ψ, where ψ does not vanish, and large fluctuations, where
ψ reaches zero value. The former lead to a slight renormalization of the pa-
rameter η(T ) for low temperatures [25], and are not important. The latter
play a very important role. Points where ψ(r) = 0 define vortices. As a
difference to the three-dimensional case, here vortices appear due to thermal
fluctuations, even in the absence of an external magnetic field. We will show
this now.

For thin superconducting films it is very important that the magnetic
field and the vector potential do not vanish out of the film plane, whereas
the order parameter exists only in the film plane. This difference with respect
to the three-dimensional case leads to a new effective penetration depth for
films, λ = λ2

L/ds, where ds is the film thickness [25, 26]. This affects the single
vortex energy, and also the energy of a vortex-antivortex pair separated by
a distance r, which respectively read

Uv ≈ ε0 ln
min(λ, L)

ξ
, (1.6)

Uvv(r) = 2ε0 ln
r

ξ
, r < L < λ, (1.7)

where

ε0 =
φ2

0

16π2λ
(1.8)

and L is the typical lateral film size. Analyzing the free energy of a single
vortex [27] F = Uv − TS, where S = ln(L/ξ)2 we conclude that the two
different possibilities arise. For large system sizes, L > λ, the entropy term
always prevails, meaning any nonzero temperature leads to the spontaneous
appearance of free vortices. This ultimately leads to short-range order of the
order parameter and the film loses its superconductivity. The more inter-
esting case is when L < λ. Then, free vortices are created just above the
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critical temperature T2D = ε0/2. We set Boltzmann’s constant to kB = 1 in
the following. Below T2D the system has only bound vortex-antivortex pairs.
They are very important excitations of the amplitude of the order parame-
ter not only in thin films, but in a broad class of two-dimensional systems
with continuous symmetry. These systems include superfluid films and pla-
nar magnets. Using the renormalization group method one can show that
the transition temperature becomes T2D = ε0(T2D)/2, where ε0(T2D) means
that one should use the renormalized value for λ in expression (1.8). This
comes from the renormalization of the vortex-antivortex interaction (1.7) due
to the presence of other bound vortex-antivortex pairs at low temperatures
[25, 28]. Hence, the quasi-long-range order of the order parameter survives at
low temperatures T < T2D, and vortex-antivortex excitations do not destroy
this kind of order. The low-temperature phase is superconducting in the
sense that it has a nonlinear current-voltage relation of the form V ∼ I3 at
T → T−

2D. The high-temperature phase, for T > T2D, behaves like a normal
metal and we have V ∼ I [29].

In this thesis we will consider a thin film in the presence of small magnetic
dots placed on top of it. Such magnetic nanostructures can be easily cre-
ated experimentally and are an interesting tool for probing different physical
phenomena [30, 31]. The magnetic substructure creates the inhomogeneous
magnetic field in the film and may cause creation and pinning of vortices in
the film. It also changes the transport properties and the transition tem-
perature of the superconductor. In particular, in chapter 5 we will consider
a single magnetic dot and determine vortex configurations induced by the
dot. The vortex configurations depend on the parameters of the dot and also
on the superconductor parameters. In chapter 6 we will study a lattice of
magnetic dots with random magnetization and determine the phase diagram
of the system.

1.4 Outline of the thesis

This thesis contains six chapters. After the introductory one, the next three
chapters study a Luttinger liquid with impurities, while the last two chapters
are dealing with thin superconducting films. In chapter 2 we consider a
Luttinger liquid with dissipation and a single impurity. We show that the
dissipation changes the conductance behavior at low applied voltages and
temperatures, while at higher voltages and temperatures the system behaves
as if it was dissipation-free. In chapter 3 we consider a Luttinger liquid in
the presence of an external magnetic field and two impurities. We show that
such system may have spin-filtering properties for not too strong repulsive
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interactions. Chapter 4 contains a study of effects of Gaussian disorder on
the Mott-insulating state. We show that the intermediate Mott-glass state
does not appear, in contrast to some studies. In chapter 5 we calculate the
ground state configurations of vortices in the film when a small ferromagnetic
dot is placed on the top of the film. In chapter 6 we show that a system that
consists of a superconducting film covered by magnetic dots with random
magnetization maps to the two-dimensional XY model and infer its phase
diagram.
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Chapter 2

Transport in a Luttinger liquid

with dissipation

In this chapter we study electron transport through a single impu-
rity in a one-channel Luttinger liquid coupled to a dissipative Ohmic
bath. For nonzero dissipation, the single impurity is always a relevant
perturbation and suppresses transport strongly.

2.1 Introduction

The physics of a particle coupled to a dissipative environment is a funda-
mental problem [32, 33]. Such theoretical model is realized in many different
physical situations, which include damped motion of a particle in an external
potential with thermal noise [34], tunnel junctions at low temperatures [35],
motion of a heavy particle placed in a Luttinger liquid [36], and a supercon-
ducting grain coupled to leads via Josephson junctions [37].

Common for the aforementioned systems is that they are problems of
a single degree of freedom. A problem we are interested in is the electron
tunneling through a single impurity placed in a Luttinger liquid. Since single
particle excitations are absent in interacting one-dimensional systems, one
would expect that our case belongs to a different class of problems. However,
a closer look reveals that this is also a problem of a single particle; in our
case this single particle is played by the fluctuating electron displacement
field at the impurity position.

Our main concern in this chapter will be a question of transport in a
Luttinger liquid with dissipation and a single impurity. While the Luttinger
liquid state can be realized in a broad class of systems, see chapter 1 for
some examples, we primarily consider quantum wires. In a one-dimensional
quantum wire the transverse motion of electrons is quantized into discrete
modes due to finite width of the wire, while the longitudinal motion is free.
For simplicity in the following we assume that just one transverse mode is
occupied.
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The wire is connected at its ends to Fermi-liquid leads which are reservoirs
of electrons. When one lead has higher electrochemical potential than the
other electrons propagate along the wire. If the applied field is an ac field of
frequency ω, one obtains in the limit ω → 0 the two-terminal conductance
G(ω → 0) = 2e2/h, provided the length of the wire L obeys the condition
L ≪ Lω = v/ω, where v denotes the plasmon (excitation) velocity [38, 39,
40]. On the contrary, for L≫ Lω, one observes the low-frequency microwave
conductance G(ω) < 2e2/h.

In realistic cases electrons from the wire couple to other degrees of free-
dom, e.g. to phonons or to electrons in nearby gates. It is usually the effect of
screening of long-range Coulomb interaction between electrons due to gates
which is considered for one-dimensional conductors [41]. Here we rather con-
sider another effect: the dissipation. The electrons in the nearby gates are
degrees of freedom which act as a dissipative bath for the electrons in the
wire [32]. In particular, it has been shown recently that the coupling of the
electrons from a clean wire to the electrons from surrounding metallic gates
results in an Ohmic dissipation of the electrons in the wire [42].

The dissipation introduces a length scale Lη. Above that length scale the
electron motion is damped. While the electrons in quantum wires scatter of
other electrons and of impurities (if they are present) elastically, the dissi-
pative bath serves a source of inelastic scattering. Loosing their momenta
in inelastic scattering events, the electrons dissipate energy of the system.
On physical grounds it means that the external dissipation increases the
resistance of the wire, or equivalently decreases the conductance. What is
important here is the ratio between wire’s length L and the dissipative length
Lη. Certainly, when Lη ≫ L, the effect of the dissipation is very small and
hence of no practical importance. In the opposite limit, Lη ≫ L, the elec-
tron motion in the wire is dominated by the dissipation and one expects that
conductance is strongly reduced.

In addition, we are also interested in effects of an isolated impurity placed
in the wire. The case without the dissipation is considered in a pioneering
work by Kane and Fisher [19]. They found that impurity leaves the zero
temperature conductance unchanged, provided the interaction is attractive.
This result is independent of the strength of the impurity. For repulsive
interaction, on the other hand, the conductance vanishes at zero temperature
as G ∼ V 2/K−2, where V is the applied voltage [19, 20, 21, 43]. At nonzero
temperatures T and small voltages the conductance behaves as G ∼ T 2/K−2,
remaining finite even for V → 0. This is due to thermally excited electrons
which tunnel through the impurity.

The question that arises is: what is the influence of dissipation on the
transport properties of disordered Luttinger liquids? We address it in the
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rest of this chapter. In particular we study the influence of weak dissipation
on the tunneling of electrons through a single impurity. This chapter is orga-
nized as follows. In section 2.2 we introduce a model for interacting electrons
in one dimension in the presence of a single impurity and dissipation. The
model is analyzed in using the renormalization group method in section 2.3.
In section 2.4 we calculate the conductance of the system at finite voltage
and temperature. In section 2.5 we calculate the decay of the mean elec-
tron density, which is followed by conclusions. Some technical details are
presented in appendix 2.A.

2.2 Model

We consider spinless electrons in a one-dimensional wire which are coupled
to a dissipative bath. In the center of the wire of length L is a single δ-
function like impurity of arbitrary strength. Following Haldane [44], the
charge density ρ(x) can be rewritten as

ρ =
kF

π
− 1

π
∂xϕ+

kF

π
cos(2ϕ− 2kFx) + . . . , (2.1)

where ϕ(x) denotes the bosonic (plasmon) displacement field and kF is the
Fermi wavevector. The Euclidean action of the system then reads [8]

S

~
=

1

2πK

∫ L/2

−L/2

dx

∫
~β/2

−~β/2

dτ

[
1

v
(∂τϕ)2 + v(∂xϕ)2 − 2πKW (ϕ)δ(x)

]

+
η

4

∫ L/2

−L/2

dx

∫
~β/2

−~β/2

dτ

∫
~β/2

−~β/2

dτ ′
[ϕ(x, τ) − ϕ(x, τ ′)]2

{~β sin[π(τ − τ ′)/~β]}2
, (2.2)

where β = 1/T . For K ≪ 1 Eq. (2.2) describes also a charge or spin density
wave, while K → 0 corresponds to the classical limit. W (ϕ) is the impurity
potential which is a periodic function of periodicity π. The last part in
the action (2.2) describes Ohmic dissipation [32]. It was derived from a pure
Luttinger liquid coupled electrostatically to a metallic gate in Ref. [42], where
it was found that such a coupling is only relevant for K < Kη = 1/2. This
fact can be taken into account by writing η = η0ξ

−1
η where ξη denotes the

Kosterlitz-Thouless correlation length diverging at the transitionK → Kη−0
and η0 is a dimensionless coupling constant. Since there may be other sources
of dissipation which survive also for K > 1/2, in the following we assume
that η > 0.
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In treating the influence of the impurity we first consider the zero tem-
perature case. After Fourier transforming

ϕ(x, τ) =

∫
dω

2π

∫
dk

2π
ϕk,ωe

ikx+iωτ , (2.3)

the harmonic action reads

S0

~
=

1

2πK

∫
dω

2π

∫
dk

2π

[
1

v
ω2 + vk2 +Kη|ω|

]
|ϕk,ω|2. (2.4)

The last term of Eq. (2.4) describes the (weak) damping of the plasmons
of complex frequency ωP ≈ v(k + i/(2Lη)), where Lη = 1/(Kη) is the dissi-
pative length. The upper cutoff for momentum and frequency are Λ and ωc,
respectively. ωc = min{vΛ, Ediss/~} where Ediss corresponds to the maximal
energy which can be dissipated by the dissipative bath. For simplicity we
will assume that Ediss > ~vΛ, so that ωc = vΛ. Since the impurity acts
at one point in space, the action is harmonic outside the impurity position.
One can then get an effective action by integrating out all degrees of freedom
outside the impurity. Then, the resulting effective impurity action reads

S

~
≈ 1

πK

∫
dω

2π

√
ω2 +Kvη|ω||φω|2 −

∞∑

n=1

wn

∫
dτ cos(2nφ), (2.5)

where φω =
∫
dτφ(τ)e−iτω and φ(τ) ≡ ϕ(x = 0, τ). Since W (φ) is a periodic

function it is decomposed into a Fourier series in Eq. (2.5). As can be seen
from Eq. (2.5), for low frequencies, ω < v/Lη, the behavior of the system is
controlled by the dissipation. For very large values of ω and sufficiently small
dissipation, η ≪ Λ/K, the effective action (2.5) includes also a contribution
∼
∫

dω
2π
ω2|φω|2 [8], while in the opposite case of large dissipation, η ≫ Λ/K, it

contains a term ∼
∫

dω
2π
|ω||φω|2. This high frequency limit will be important

for the analysis of the model in the strong impurity limit that we perform in
the next section.

2.3 Renormalization group analysis

In the following we will perform a renormalization group analysis of the effec-
tive model given by Eq. (2.5). For weak impurity strength we can calculate
the renormalization of wn perturbatively. This gives for the flow equations
of wn

dwn

dl
=

(
1 − n2K√

1 + ηKel/Λ

)
wn. (2.6)
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There is no renormalization of K and η. This can already be argued from
the fact that K and η are bulk quantities which cannot be renormalized by
the local perturbation from the impurity. On a more formal level, one finds
from integrating out the high frequency modes in Eq. (2.5) that one does not
obtain terms depending in a nonanalytic way on frequency, see Refs. [19, 34].

For η = 0 we recover from Eq. (2.6) the result of Kane and Fisher [20],
namely that the impurity is a relevant perturbation for repulsive interaction
K < 1 and irrelevant for attractive interaction K > 1. As soon as the dissipa-
tion is switched on, the downward renormalization saturates at a length scale
l∗ given by el∗ ≈ ΛLη. Thus the impurity is a relevant perturbation even for
attractive interaction, provided the dissipation remains finite in this region.
If the dissipation results from the coupling to gate electrons, as considered
in Ref. [42], η renormalizes to zero for K > 1/2 and hence the impurity
potential renormalizes to zero for K > 1.

Motivated by the fact that a weak impurity flows toward strong impurity
limit, we will consider now the system starting initially from very large im-
purity strength. Then the cosine terms of impurity potential are important
and the displacement field gets locked in their minima. The main contribu-
tion to the partition function comes from configurations φ(τ) = nπ with n
integer, interrupted by kinks which connect these pieces. These multi-kinks
configurations are saddle points of the effective action (2.5). For very large
impurity strength kinks are narrow, and hence are characterized by the high
frequency limit of the action (2.5).

For sufficiently weak dissipation, η ≪ Λ/K, the resulting saddle point
equation is the sine-Gordon equation in one dimension. It has a kink solution
that interpolates between φ = nπ and φ = (n + 1)π in a narrow region of
width δ ∼ 1/

√
w1. Outside that narrow region the solution very rapidly

reaches the values φ = nπ and φ = (n+ 1)π.
In the opposite case of strong dissipation, η ≫ Λ/K, the resulting saddle

point equation is the sine-Hilbert (or Peierls-Nabarro called by some authors)
equation [45, 46, 47]. As a difference from the sine-Gordon equation, it has
a ‘nonlocal’ derivative of the displacement field

∫
dτ ′ [φ(τ) − φ(τ ′)] /(τ − τ ′)2

instead of d2φ/dτ 2. A kink solution for the sine-Hilbert equation is also
localized within a scale δ ∼ 1/

√
w1, but as a difference from the sine-Gordon

case this solution has a long power law tail away from its center toward
values φ = nπ and φ = (n + 1)π. The important consequences of that
fact is a significant interaction energy between two kinks separated by a
distance d proportional to ln(L/d). For the sine-Gordon case this interaction
is exponentially small with the distance between kink centers and is negligible
for separations larger that the kink width. In the following we will consider
only the weak dissipation case.
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A saddle point solution φs(τ) of the effective action (2.5) with n kinks
and n antikinks can be written as

φs(τ) ≈ π
2n∑

i=1

ǫiΘ(τ − τi), (2.7)

where ǫi = ±1 and kinks satisfy the electroneutrality condition
∑2n

i=1 ǫi = 0.
Θ(τ) is the Heaviside step function and τi are the kink positions. In frequency
space the saddle point configuration can be written as

φs,ω ≈ iπ

ω

2n∑

i=1

ǫi exp(iωτi). (2.8)

We should emphasize that in addition to the interaction between kinks
due the high frequency limit, exponentially small in the present case, an
extra interaction is present due to the low frequency part of the quadratic
part of the action (2.5). The low frequency part does not influence the shape
of kinks, but contributes to the partition function. The partition function of
the system is a sum over all possible saddle point solutions, and reads

Z =

∞∑

n=0

∑

ǫj=±1

t2n

δ2n(n!)2

∫
dτ1 . . .dτ2n exp

[
2

K

∑

i<j

ǫiǫjf(τi − τj)

]
. (2.9)

Here t ∼ exp(−Skink/~) is the tunneling transparency of the impurity and
Skink ∼ √

w1 denotes the action of an isolated kink. δ is a short time cutoff
of the order of the kink width. The partition function (2.9) is valid in the
dilute kink gas approximation [48] when the overlap of kinks is neglected.
The stronger the impurity is, the narrower the kink is and the smaller the
tunneling transparency is. Then the dilute kink gas approximation is very
well justified. The kink interaction is encoded into f(τ) and is given by the
expression

f(τ) =

∫ ωc

0

dω

√
ω2 + vKη|ω|

ω2
[1 − cos(ωτ)] . (2.10)

In the limit of ωcτ ≫ 1 we obtain, up to an additive constant, an interpolating
expression

f(τ) ≈ lnωcτ +
√

2πvηKτ. (2.11)

The logarithmic interaction prevails for small kink-antikink distances τ , while
for larger τ the interaction exhibits a power law behavior. The different
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behavior of f(τ) is very important and will determine different transport
characteristics when one changes the external parameters (voltage or tem-
perature).

A strong impurity can alternatively be considered as a weak link between
the two half-wires x < 0 and x > 0, respectively. It is therefore convenient to
rewrite the partition function (2.9) in a form in which t denotes the strength
of the nonlinear terms. This can be done in the standard way, Refs. [21, 48],
with the result Z =

∫
Dθe−Seff[θ]/~ with

Seff

~
=
K

π

∫
dω

2π

ω2

√
ω2 + vηK|ω|

|θω|2 − 2t

∫
dτ cos 2θ(τ). (2.12)

We can now consider the renormalization of t which is given by

dt

dl
=

(
1 −

√
1 + ηKel/Λ

K

)
t. (2.13)

Again η ≡ 0 reproduces the known result of Ref. [20] that the weak link is
renormalized to zero forK < 1. In the dissipative case the weak link is renor-
malized to zero for all K provided η remains finite. Thus from Eq. (2.6) and
Eq. (2.13) we conclude that the impurity is always a relevant perturbation.

2.4 Transport

So far we were concentrated on equilibrium properties. However, one is
often interested in transport characteristics of the system. In this section we
calculate the current I through the impurity when the voltage V is applied
to the ends of the wire. Their ratio determines the conductance G = I/V .

In the case without impurity one may use the linear response theory [8].
In the limit of large system sizes L → ∞ and for low frequencies Lω ≫ Lη

one gets finite conductivity σ(ω → 0) = e2

h
2KLη. On the other hand for very

weak dissipation, when Lη ≫ Lω ≫ L, we know the result for the static con-
ductance G = e2/h. While in the former result the conductance of the wire
is purely determined by the dissipation, in the latter case the dissipation is
very weak and does not change the result for a clean quantum wire. Knowing
the connection between the conductance G and the conductivity, which is in
one dimension G = σ/L, one may write an interpolating expression for the
static conductance

G =
e2

h

{
1, L≪ Lη,
2KLη

L
, L≫ Lη.

(2.14)
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In the case with impurity we have shown that impurity strength flows
to large values. Under an applied external voltage electrons tunnel through
the impurity. The tunneling rate Γ and hence the current follows from the
expression [49]

~Γ = 2T Im lnZ(V ), Z = Z0 + iZ1, (2.15)

where Z(V ) denotes the partition function in the presence of an external
voltage. Z0 includes the (stable) fluctuations of the φ field close to a local
minimum φ = nπ, whereas Z1 includes the voltage driven (unstable) fluc-
tuations which connect neighboring minima φ = nπ → (n + 1)π. Since the
strength of the impurity is renormalized to large values, we can use the sad-
dle point approximation employed in the previous section for the calculation
of Z. To obtain the saddle point action it is sufficient to consider a con-
figuration consisting of a pair of kinks separated by a distance τ . Then we
have

S(τ)

~
=

2

K
f(τ) +

2Skink

~
− eV

~
τ. (2.16)

Here we have taken into account that the voltage creates into the action (2.5)
a term −eV

∫
dτφ/(~π). Note that two-terminal voltage applied to the leads

is, in general, different from the four-terminal voltage V which is relevant for
tunneling. However, if the wire is not too long and the impurity is strong
both voltages are approximately the same. The saddle point follows then
from

2

K
f ′(τ) − eV

~
= 0. (2.17)

This gives for larger voltages for the saddle point τc ≈ 2~/(eV K) and hence
for the current

I ∼ exp

[
−S(τc)

~

]
∼ t2

(
eV

~ωc

)2/K

, eV ≪ ~ωc. (2.18)

Taking into account quadratic fluctuations around the saddle point, we get
an additional factor −1 in the exponent in the previous formula, i.e. we
reproduce the result of Kane and Fisher [20] for the conductance G ∼
(eV /~ωc)

2/K−2. On the contrary, for smaller voltages we get for the sad-
dle point τc ≈ 2πηv~2/(e2V 2K) and hence

I ≈ A(V ) exp

[
−S(τc)

~

]
= A(V )t2 exp

(
− C1η

κeV

)
, eV ≪ η

κ
. (2.19)
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From fluctuations around the saddle point one gets for the prefactor A(V ) ∼
(η/κ(eV )3)1/2, while the numerical constant is C1 = 2. Here we have in-
troduced the compressibility κ = K/(πv~). The cross-over between regimes
(2.18) and (2.19) happens at eV/~ ≈ ηv. An independent calculation using
the Fermi golden rule approach gives similar results, see appendix 2.A for
more details.

In the case of non-interacting electrons κ coincides with the density of
states. Then Eq. (2.19) can be obtained from the following argument: the
probability that an electron tunnels over a distance r is proportional to
Pr(r) ∼ exp (−2r/Lη). To find the minimal r the number of states which
can be reached has to be at least of the order one, i.e. κeV r ≈ 1. Inserting
this into Pr(r) gives Eq. (2.19) apart from a numerical factor.

As expected, the dissipation reduces the current with respect to the Kane-
Fisher result strongly. This means that the tunneling density of states into
the end of a semi-infinite Luttinger liquid with dissipation ρend(E) is sup-
pressed at low energies more than a power law found in the dissipation free
case [20]. The current through the impurity may be written as

I ∼ t2
∫ eV

0

dEρend(E)ρend(eV − E). (2.20)

Then using Eq. (2.19) we get

ρ(E) ∼ exp

[
− C1η

4κE

]
. (2.21)

Next we consider finite temperatures. In this case the extension of the
τ axis is finite. Hence there will be a cross-over from Eq. (2.19) to a new
behavior when the instanton hits the boundary, i.e. if τc ≈ ~/T . This eV
to T dependence cross-over happens for eV ≈ T . For larger T the current is
given by

I ≈ t2B(T ) exp

[
−
√

C2η

κT

]
V, T ≪ η

κ
. (2.22)

The instanton calculation gives for the numerical constant C2 = 8. The
prefactor B(T ) may be obtained from the Fermi golden rule approach, and

is equal B(T ) ∼ T−2 (κT/η)1/4. More details can be found in appendix 2.A.
In the dissipation free limit the conductance becomes G ∼ (T/~ωc)

2/K−2.
A simple way to reproduce formula (2.22) follows from integration of the

flow equation for the transparency (2.13) and truncating the renormalization
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group flow at the thermal de Broglie wavelength ~v/T of the plasmons [8].
This gives an effective tunneling transparency

teff ∼ t
~vΛ

T
exp

[
−
√

4η

πκT

]
. (2.23)

The total current is then proportional to t2eff which agrees with result (2.22)
apart from the value of C2 and the prefactor. Result (2.22) resembles variable
range hopping in disordered quantum wires. Indeed, it can be written in the

form I ∼ exp
[
−
√

C2/(KκLηT )
]
V , which agrees with the variable hopping

result if we replace Lη by the correlation length ξd of the disordered system
[50]. This type of behavior has been indeed observed in quasi-one-dimensional
La3Sr3Ca8Cu24O41, but attributed to variable range hopping [51].

2.5 Friedel oscillations

The presence of an impurity in a metal produces Friedel oscillations in the
electron density [52]. The asymptotic form of the density in d ≥ 2 dimensions
behaves as

ρ(x) ∼ cos(2kFx+ ζ)

rd
, (2.24)

where r is the distance from the impurity, kF the the Fermi vector and ζ
is a phase shift. Effects of interactions in d ≥ 2 can be incorporated by
Fermi liquid theory and does not change x−d decay. On the other hand in
an interacting system in d = 1 dimension Fermi liquid theory breaks down.
There the decay is slower for repulsive interactions, and behaves as x−K ,
and faster for attraction K > 1, where behaves as x1−2K . It is obviously
controlled by the interactions [53, 54].

In the present situation the dissipation is present and is expected to
change the density profile at distances larger than Lη, provided the sys-
tem size is large enough. In this section we calculate the charge density
oscillations. To determine the averaged charge density we write

〈ρ(x)〉 =
kF

π
− 1

π
〈∂xϕ〉 +

kF

π
cos(2kFx)e

−2〈ϕ2(x)〉, (2.25)

where the average 〈. . .〉 is taken with respect to the full action (2.2). The
disorder average in the first term vanishes. To calculate the second term we
remark that in the presence of dissipation the impurity is always a relevant
perturbation and its strength grows under renormalization, see Eqs. (2.6)
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and (2.13). To determine the large scale behavior of 〈ρ(x)〉 it is therefore
justified to assume that ϕ is fixed at the defect. The fluctuation 〈ϕ2(x)〉 is
therefore identical to 1

2
〈(ϕ(x) − ϕ(−x))2〉0, where 〈. . .〉0 is the average with

respect to the quadratic action (2.4), see Ref. [47]. From this one finds

〈ρ(x)〉 ∼ kF

π
cos(2kFx)

{
|x|−K

�
1+ 1

2πΛLη

�
, x≪ Lη,

1 + KLη

|x| , x≫ Lη.
(2.26)

For smaller distances x ≪ Lη we get the well known power from Luttinger
liquids, while for |x| ≫ Lη the decay saturates.

2.6 Conclusions

In this chapter we have considered a Luttinger liquid model with Ohmic
dissipation. In such a system on length scales larger than the dissipative
length Lη the elementary excitations (plasmons) become diffusive and the
displacement fluctuations become strongly suppressed restoring translational
long range order (some kind Wigner crystal, but not due to the unscreened
Coulomb interaction [55]). For large system sizes the system gets finite con-
ductivity, which is paralleled by diverging superfluid fluctuations. We have
shown that weak dissipation has a dramatic effect on transport properties
of a Luttinger liquid with a single impurity. The voltage and temperature
dependence of the conductance is reduced from power laws in the dissipation
free case to an exponential dependence, Eqs. (2.19) and (2.22), respectively.

2.A Conductance from the Fermi golden rule

In this appendix we will calculate the conductance for the system we have
introduced in this chapter using the Fermi golden rule approach. We closely
follow the paper by Furusaki and Nagaosa [21] where the conductance of a
Luttinger liquid with a single impurity is calculated. In our case the presence
of dissipation changes the quadratic part of the action, producing a change
in the conductance. For strong cosine potential the displacement field tend
to stay in one of the minima of the cosine from Eq. (2.5) at zero tempera-
ture. At finite temperature and finite small applied voltage the displacement
field tunnels to a neighboring minimum, because the applied voltage tilts the
potential landscape. The increase of the displacement field physically cor-
responds to the motion of electrons through the system due to the applied
voltage; this is expressed in terms of the conductance.
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Rather than working directly with the model (2.5) for strong impurity,
we consider the problem in terms of an equivalent model which gives the
same partition function, see Refs. [21, 56]. The equivalent model is given as
a system of linear harmonic oscillators to which is coupled the single degree
of freedom–in our case the displacement field φ(τ). Then calculating the
voltage driven tunneling probability for the displacement field Pφ0→φ1

from
where φ changes from φ0 to φ1 one gets the current I = e(P0→π − Pπ→0)
in the lowest order of the tunneling probability matrix element t. The final
expression for the current reads [21]

I =et2
[
1 − exp

(
−eV
T

)]∫ +∞

−∞
dz cos

(
eV

~
z

)
× (2.27)

exp

{
−π
∫ ∞

0

dω
J(ω)

ω2

{
[1 − cos(ωz)] coth

(
~ω

T

)
+ i sin(ωz)

}}
,

where

J(ω) =
2

πK

√
ω2 +Kvη|ω|. (2.28)

Physically, the current is produced by the electron tunneling from one to
another minimum of the cosine term which forms the potential landscape.
In the previous expression only the processes for tunneling into a neighboring
minimum have been taken into account. In principle one should also take
tunneling processes into the second (and higher order) nearest neighboring
minimum, but these processes are expressed as higher powers of t and are
neglected in Eq. (2.27).

The evaluation of Eq. (2.27) can be done in limiting cases when J(ω) ∼ |ω|
and J(ω) ∼ |ω|1/2. In the latter case by taking the exponential cutoff
exp(−ω/(Kvη)) which mimics the frequency range where the dispersion
comes purely from dissipation, one gets for T = 0 the result

I = 2πe~t2 exp

[
4

K
− eV

~Kvη

]√
η

κ(eV )3
exp

[
− 4η

κeV

]
. (2.29)

In the former case again by taking the exponential cutoff exp(−ω/ωc) one
gets

I =
πet2

ωcΓ(2/K)
exp

[
− eV

~ωc

](
eV

~ωc

) 2
K
−1

. (2.30)

For nonzero temperatures one can also get the result for the conductance
by evaluating expression (2.27). In the dissipative regime it reads

I ∼ ~e2t2V

T 2

(
κT

η

)1/4

exp

[
−
√

C2η

κT

]
, (2.31)
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under the assumption eV ≪ T ≪ η/κ. For the numerical factor we get

C2 = 9
4

(
16

√
2

ζ(3/2)

)2/3

≈ 9.49. For larger temperatures one gets the power law

result

I ∼ e2t2V

~ω2
c

(
T

~ωc

)2/K−2

, (2.32)

which is the well known result for the conductance of a Luttinger liquid with
a single impurity at nonzero temperatures [19, 20].
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Chapter 3

Realization of spin-polarized

current in a quantum wire

In this chapter we consider an interacting quantum wire, modeled
as a spinfull one-channel Luttinger liquid, placed in an external mag-
netic field. For the case of two point-like impurities embedded in the
wire, under a small voltage bias, the spin-polarized current occurs at
special points in the parameter space, tunable by a single parameter.
Complete spin-polarization may be achieved at sufficiently low temper-
atures, provided repulsive interactions are not too strong.

3.1 Introduction

In quantum mechanics it is well known that a one-dimensional plane wave
incident on a high potential barrier is always partially transmitted. This
effect is called quantum tunneling and does not exist in classical physics.
When the same plane wave impinges on a symmetric double barrier, it can
be completely transmitted. This surprising effect occurs only for certain
wavevectors, otherwise the plane wave is partially reflected and partially
transmitted. This phenomenon, when the double barrier is transparent, but
the individual one is opaque, is called resonant tunneling [57]. In optics,
this phenomenon is in essence of a Fabry-Pérot interferometer, made of two
parallel highly reflecting mirrors. Its transmission spectrum as a function
of wavelength of incident light exhibits peaks of high transmission corre-
sponding to resonances. The resonance tunneling effect can be explained as
destructive interference of all reflected partial waves from the two barriers,
leading to perfect transmission.

In addition to its wave nature, an electron has a charge. Therefore, the
electron transport in interacting one-dimensional systems is affected by the
Coulomb interaction. This is strikingly seen when a potential barrier, created
by a point impurity, is present in the system. When a voltage is applied at the
ends of the system, the impurity reflects (backscatters) electrons pushed by
the voltage, and tends to suppresses the transport. The conductance, which
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is proportional to the transmission of electrons, vanishes with the voltage for
any strength of repulsive interaction [19, 20].

When two point impurities are present in the system, they make an island.
Knowing the physical picture of the single barrier, one would naively expect
that the conductance of electrons is again strongly suppressed. However, this
is not generally the case since the resonant tunneling effect also exists in the
present situation. It explains perfect transmission through the island under
some conditions. We can obtain them using a simple reasoning [8, 20], as
will be explained now.

For weak impurities, the electron displacement field is just slightly per-
turbed by them and tends to be constant in order to minimize the energy.
The condition for resonant tunneling follows from the requirement that the
lowest harmonic of the electron density, that couples to the impurity poten-
tial, vanishes. For not too strong repulsion this leads to perfect transmission.
In the opposite case, higher order harmonics of the electron density become
important and destroy the resonance.

Direct tunneling through both impurities has very low probability, when
the impurities are strong. Rather, the process of sequential tunneling is
important. Strong impurities do not allow the leakage of charge under a small
applied voltage, and the island has a well defined charge on it. In the ground
state, this charge is fixed to an integer, which is determined by the position
of the Fermi level. An empty state on the island is important for sequential
tunneling. The process of electron transfer to the island is penalized by the
electrostatic energy, that occurs due to the existence of electrons at the island
which fill the energy states below the Fermi level. This process, when the
host electrons prevent the other to enter the island, is known as the Coulomb
blockade. However, when the distance between the impurities, or the gate
voltage at the island, is such that the states on the island that differ by one
electron become degenerate in energy, the Coulomb blockade is lifted. Under
such circumstances, an electron can enter the island from one side and then
leave at the other. While the Coulomb blockade does not hinder such process,
the barrier strength does. Knowing that the barrier strength is irrelevant
quantity for sufficiently strong quantum fluctuations in the system with a
single barrier, we expect the same in the present case. Quantum fluctuations
in these systems are measured by the Luttinger parameter K, which also
measures the interaction strength. It turns out that the critical value of K,
when the two barriers become irrelevant, is inside the region of repulsive
interaction. This makes the effect of resonant tunneling of interacting one-
dimensional electrons more realistic and interesting. The resonant condition
in both limits of strong and weak impurities is the same, cos(kFa) = 0. Here,
kF is the Fermi wavevector and a is the distance between impurities.
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Until now we considered spinless electrons. Including the electron spin
degree of freedom, there will be no differences for weak impurity strengths.
Again, there is perfect transmission for not too strong repulsion, when a
single parameter, such as the distance between impurities or the voltage
on the island, is tuned [20]. However, important differences appear in the
large-barrier limit. Resonant tunneling is also possible in that case, but the
interpretation of this effect is different than in the spinless case and is based
on the Kondo effect. When the number of electrons on the island is an
odd integer, the spin on the island is degenerate. Then, the electron from
the island may tunnel out of it, being replaced by an electron which enters
from outside and which has opposite spin. In such way the electrons may
be transferred through the island at no energy cost. The resulting current
is non-spin-polarized due to SU(2) spin symmetry. In contrast to resonances
in the spinless case when the charge state on the island is required to be
degenerate, in the case with spin is needed a degenerate spin state. For
electrons with spin, the aforementioned “charge” resonance mechanism is
also possible, but requires more than one parameter to be tuned. Hence, it
is difficult to achieve such resonances in practice.

Switching on a magnetic field, the electron spin symmetry is broken.
Electrons having different spin projections on the direction of the magnetic
field become different particles, having different Fermi momenta and differ-
ent spin. Assuming the field is not too strong to completely polarize the
system, there are four Fermi points instead of two. The resonant tunneling
phenomenon occurs for certain momenta of incident particles for a fixed dis-
tance between the impurities. In the case with magnetic field, electrons of
one spin direction can fulfill the resonance condition, while electrons having
the other spin direction need not. This simple observation leads to the ap-
pearance of a spin-polarized current in the case of non-interacting electrons
at low temperatures under a small voltage bias at the ends of the system.

In literature little attention has been devoted to the question of trans-
port in Luttinger liquids in an external magnetic field. Theoretical studies
have shown that spin-polarized current may occur due to a strong degree
of electron polarization [58], spin-dependent interactions [59], a large Fermi
velocity difference of electrons having different spin [60, 61] or due to a mag-
netic impurity [62]. Spin-orbit interaction in combination with a magnetic
field may also enhance the degree of current polarization [63, 64, 65].

In contrast to the previous studies, we take into account neither Fermi
velocity asymmetry nor strong electron polarization. Rather, our study is
based on the phenomenon of resonant tunneling. By tuning a single parame-
ter, that changes the Fermi wavevector, we can reach a point where the reso-
nance condition is achieved for only one spin direction in the interacting case.
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Electrons having other spin direction are strongly reflected by the barriers,
like in the single impurity case, giving a spin-polarized current. Pictorially,
two strong impurities may serve as a spin filter for electrons traversing the
wire.

This chapter is organized as follows. In section 3.2 we introduce a model
of interacting electrons in one dimension in an external magnetic field with
two impurities. In section 3.3 we present the theory for resonant tunneling
of spinless electrons [20, 66], that is needed later for the analysis of the case
with magnetic field. We analyze our model (for weak magnetic fields) in the
limit of weak impurities in section 3.4 and in the limit of strong impurities in
section 3.5. From these two limiting cases we infer the renormalization flow
and possible new fixed points. In section 3.6 we consider transport properties
of the system. Section 3.7 contains conclusions. Some technical details are
postponed to the appendices.

3.2 Model

We consider electrons in a one-dimensional quantum wire along the x axis
at zero temperature. The effect of temperature is briefly discussed in sec-
tion 3.6. An external magnetic field is applied to the wire. Since electrons
are confined in transverse directions to the wire, the orbital effect is sup-
pressed and the magnetic field only polarizes electrons. Hence, the direction
of the magnetic field relative to the wire is unimportant for our study. In the
non-interacting case the magnetic field splits electrons in momentum space.
At the Fermi energy EF the momentum splitting is |kF↑ − kF↓| ≈ ∆/(~vF )
for ∆ ≪ EF , where kFs, vF and ∆ are the Fermi momenta of spin-s elec-
trons (s =↑, ↓), the Fermi velocity and the Zeeman energy, respectively. The
Hamiltonian of an electronic system that have split momenta by a magnetic
field, in the external potential impurity potential V (x) can be described by
the Tomonaga–Luttinger model

H =
∑

s

∫
dx

{
− i~vF

[
ψ†

Rs(x)∂xψRs(x) − ψ†
Ls(x)∂xψLs(x)

]
(3.1)

+ V (x)ρs(x)

}
+

1

2

∑

s,s′

∫
dxdx′W (x− x′)ψ†

s(x)ψ
†
s′(x

′)ψs′(x
′)ψs(x),

where ψRs(x), ψLs(x) are the annihilation operators for right- and left-moving
spin-s electrons, ψs = ψRs + ψLs is the annihilation operator for spin-s elec-
trons, ρs = ψ†

sψs is the electron density of spin-s electrons, and W (x− x′) is
the screened Coulomb interaction between electrons.
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We first consider the system without impurities, V (x) = 0. Then, the
model (3.1) describes an interacting quantum wire with four Fermi points.
In that case the interaction terms split into inter-subband and intra-subband
interaction terms [67]. While intra-subband terms describe interaction in
subsystems consisting of interacting electrons of spin up and spin down,
inter-subband terms couple these two subsystems. For spin independent in-
teraction, the electrons stay in their bands during scattering processes (inter-
action), and the only allowed low-energy processes are forward and backward
inter-subband scattering, see appendix 3.A.

In the following we consider only weak magnetic fields, ∆ ≪ EF when the
momentum splitting of the electrons is small. In other cases things are more
complicated and one should use more elaborate approaches, like one used
in Ref. [58]. While mutually non-interacting subsystems consisting of spin
up and spin down electrons in the bosonized representation are described by
the standard Luttinger liquid Hamiltonian (see Eq. 3.38) in terms of bosonic
fields ϕ↑, ϕ↓ with the Luttinger parameter

K =

(
1 +

W̃ (0) − W̃ (2kF )

π~vF

)−1/2

, (3.2)

the inter-subband interaction is diagonalized in symmetric ϕρ = (ϕ↑+ϕ↓)/
√

2
and antisymmetric ϕσ = (ϕ↑ − ϕ↓)/

√
2 combinations of these fields. The

action of the system without impurities then reads

S0

~
=
∑

ℓ=ρ,σ

1

2πKℓ

∫
dxdτ

[
1

vℓ

(∂τϕℓ)
2 + vℓ(∂xϕℓ)

2

]
, (3.3)

where

Kℓ = K

(
1 ± K2W̃ (0)

π~vF

)−1/2

, (3.4)

with the convention that the upper(lower) sign corresponds to ℓ = ρ(σ).
The velocities of excitations are vℓ = vF/Kℓ. A detailed derivation is given
in appendix 3.A. We have obtained that interacting electrons in a weak
magnetic field are described by the Luttinger liquid action (3.3) with spin
and charge degrees of freedom separated.

Non-trivial effects come from impurities. We consider two point-like im-
purities, modeled as δ-functions of equal strength V , placed at ±a/2. Intro-
ducing the displacement fields at the impurity positions φ1s(τ) = ϕs(−a/2, τ)
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and φ2s(τ) = ϕs(a/2, τ), the bosonized form of the electron–impurity inter-
action reads

S1

~
=
∑

s

V

~παs

∫
dτ [cos (2φ1s + kFsa) + cos (2φ2s − kFsa)] , (3.5)

where αs is the short distance cutoff. Some details about the previous formula
are given in appendix 3.B.

To proceed further in analyzing the full action S0 + S1 it is useful to
integrate out all degrees of freedom outside the impurities. In that way one
gets an action in terms of four fields fluctuating in imaginary time. For low
frequencies, |ω| ≪ vℓ/a, the effective action can be written in the form

Seff

~
=
∑

ℓ

∫
dω

2π

|ω|
πKℓ

(
|φℓ+(ω)|2 +

1

4
|φℓ−(ω)|2

)
+

1

~

∫
dτVeff , (3.6)

where the effective potential energy Veff reads

Veff(φ1↑, φ2↑, φ1↓, φ2↓) =
∑

ℓ

Uℓφℓ−(τ)2 (3.7)

+
∑

s

Vs [cos(2φ1s + kFsa) + cos(2φ2s − kFsa)] .

We have introduced Uℓ = ~vℓ

2πaKℓ
, Vs = V

παs
and the fields

φℓ+ =
1

2
√

2
(φ1↑ + φ2↑ ± (φ1↓ + φ2↓)), (3.8)

φℓ− =
1√
2
(φ2↑ − φ1↑ ± (φ2↓ − φ1↓)). (3.9)

The effective potential energy (3.7) consists of two types of terms: the charg-
ing energy

EC =
∑

ℓ

Uℓφ
2
ℓ− (3.10)

suppresses fluctuations of the charge on the island between the impurities,
while the cosine terms tend to fix the displacement fields at the impurity
positions. The part of the action (3.6) with |ω||φℓ−|2 should be understood
as a fluctuating correction to EC and is important at resonance points for
strong impurities, when φℓ− are undetermined.

Without inter-subband interaction the two subsystems of electrons, each
having one spin direction and Fermi momentum, do not mutually interact
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and each of them is analogous to the spinless case [20]. For the spinless case
we know that resonant tunneling, and hence perfect transmission, occurs
only at special values of the product kFsa, which means this condition may
be satisfied just for one subsystem, meaning the spin-polarized current oc-
curs. The inter-subband interaction is a new interaction in our system that
distinguishes it from the spinless situation and that may spoil spin-selective
transparency. We will show that this is not the case.

In the following we will examine the system described by Eq. (3.6) in two
limiting cases, for strong and weak impurity strengths. For the realistic case
of repulsive interaction we have Kρ < 1, Kσ > 1 and Uσ < Uρ. Our steps
will be to first determine the ground state without fluctuations from Veff , see
Eq. (3.6), and then to include fluctuations to check for the stability of that
ground state. Before doing that, in the next section we consider the spinless
case for completeness.

3.3 Resonant tunneling of spinless electrons

In this section we will present the theory of Kane and Fisher [20, 66] for
resonant tunneling of spinless electrons in the case of two single impurities
having the strength V . This is also a limiting case of our model (3.1) for
strong magnetic fields which polarizes the system and leaves only a band with
electrons of one spin direction. Similarly to Eq. (3.6), the effective action in
terms of the fluctuating fields at the impurity positions φ1(τ) = ϕ(−a/2, τ)
and φ2(τ) = ϕ(a/2, τ) can be derived and reads

S
(1)
eff

~
=

∫
dω

2π

|ω|
πK

(
|φ+(ω)|2 +

1

4
|φ−(ω)|2

)
+

1

~

∫
dτV

(1)
eff , (3.11)

where the effective potential energy V
(1)
eff reads

V
(1)
eff (φ+, φ−) = Uφ−(τ)2 +

2V

πα
cos(2φ+(τ)) cos(φ−(τ) − kFa). (3.12)

By α we have denoted the short distance cutoff and U = ~vF

2πaK2 . We have
also introduced the fields

φ+ =
1

2
(φ1 + φ2), (3.13)

φ− = φ2 − φ1, (3.14)

and they measure the charge transferred across the two impurities and the
charge on the island in between, respectively. We analyze the model (3.11)
for weak and strong impurity strengths.
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Figure 3.1: The renormalization group flow diagram for the impurity strength V as a
function of the interaction K when the resonant condition cos(kF a) = 0 is fulfilled [20]. For
K > 1/2 two equal point impurities are transparent, leading to the perfect conductance
G = e2/h.

In the weak impurity limit V/α ≪ U , the action (3.11) is minimized for
φ1 = φ2, i.e. for φ− = 0. There the charging energy suppresses the change of
the charge on the island. In that case of one can integrate out the (frozen)
degrees of freedom φ− from the partition function in a cumulant expansion
in powers of V/(αU). For the new scattering potential we get

V
(1)′

eff =
2V

πα
cos(kFa) cos(2φ+) +

1

2U

(
V

πα

)2

sin(kFa)
2 cos(4φ+). (3.15)

The resonant scattering occurs when the first term of the previous equation
vanishes, cos(kFa) = 0. Then the most important term is the second one,
and it is relevant in the renormalization group sense for K < 1/4. This
leads to the interval of repulsive interactions 1/4 < K < 1 when the weak
double impurity structure is transparent for electrons, oppositely to the single
impurity case where any repulsion leads to the strong relevancy of a single
impurity and insulating behavior.

In the strong impurity limit V/α≫ U,EF , the effective potential energy
(3.12) can be minimized by minimizing the cosine terms first and then the
charging energy. The former are minimal for

2φp = ∓kFa+ π(1 + 2np), (p = 1, 2) (3.16)
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where np are integers. Then, we get

V
(1)
eff = Uπ2

(
n+

kFa

π

)2

− 2V

πα
, (3.17)

where n = n2 − n1 is an integer. Eq. (3.17) has a degenerate solution for n
when cos(kFa) = 0. A physical interpretation for −n is that it corresponds to
the number of electrons on the island. This means that the Coulomb blockade
in that case is does not play a role and does not penalize the change of charge
on the island inside the interval [kFa/π − 1/2, kFa/π + 1/2]. In that case the
analysis of the model (3.11) can be done in terms of small tunneling tunneling
matrix elements t which describe hopping of electrons from outside to the
island and vice versa. The island is described as a two-level system with two
states, corresponding to the two possibilities for the number of electrons on
the island. For small t the renormalization group equation obtained from the
Coulomb gas representation reads

dt

dl
= t

(
1 − 1

2K

)
, (3.18)

meaning for K > 1/2 fluctuations tend to increase the value of t. Since the
two impurities are local quantities, they are not expected to renormalize the
interaction parameter K and since the conditions for the resonant tunneling
in the weak and strong impurity case are identical, [20, 66] have concluded
that the resonant tunneling occurs in the region of repulsive interactions,
see Fig. 3.1. Then the system has the perfect conductance G = e2/h. Here
we should also mention that in the case of attractive interaction between
electrons, K > 1, both a single impurity and two impurities are irrelevant
perturbation and the system always has the perfect conductance.

3.4 Weak impurities

Now we are back to the original problem. In the limit of weak impurities,
V↑, V↓ ≪ Uρ, Uσ, the action (3.6) is minimized for φ1s = φ2s. Then the
charging energy (3.10) is minimal, EC = 0. A fixed phase at both impurities
means no change of charge on the island, and hence the two barriers act
as a single one. Integrating out these massive fluctuations contained in the
fields φ2s −φ1s from the action (3.6), new scattering processes are generated.
Apart from the one-electron backscattering terms present in Eq. (3.7), a
newly generated scattering potential contains two-electron processes. For a
repulsive interaction the only relevant such process is when two electrons of
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different spins get simultaneously backscattered from the impurities. For the
new scattering potential we obtain

V ′
eff =

∑

s

2Vs cos(kFsa) cos(φ1s + φ2s) (3.19)

+ V (2) sin(kF↑a) sin(kF↓a) cos(φ1↑ + φ2↑ + φ1↓ + φ2↓),

where

V (2) = V↑V↓
Uσ − Uρ

2UρUσ
. (3.20)

For a generic situation cos(kFsa) 6= 0, the single electron backscattering
processes, the first terms in Eq. (3.19), are the most important. To leading
order in the impurity potential, the renormalization group flow equations is

dVs

dl
= Vs

(
1 − Kρ +Kσ

2

)
, (3.21)

from which we conclude that backward scattering terms Vs are relevant for
Kρ +Kσ < 2. Then the impurities tend to suppress the motion of electrons
of both spins through them. The flow of V↓ is shown in Fig. 3.3a in the region
of small V↓ values.

On the other hand, when cos(kF↓a) = 0 and cos(kF↑a) 6= {0, 1}, the
two-particle processes should be taken into account (only for spin-↓ elec-
trons since spin-↑ already have backscattering as a leading term). From the
renormalization group flow equation

dV (2)

dl
= V (2)(1 − 2Kρ), (3.22)

we conclude that spin-↓ electrons are effectively free at low energies for Kρ >
1/2. This means that for not too strong repulsive interactions spin-↓ electrons
effectively do not scatter, while spin-↑ electrons scatter off the impurities.
This means that an asymmetry of the double barrier transparency is present
at special points in the parameter space. The flow of V↓ is shown in Fig. 3.3b
in the region of small V↓ values.

For other rather special cases, when | cos(kFsa)| vanishes for s =↑ (s =↓)
and reaches one for s =↓ (s =↑), one should take three-electron backscatter-
ing processes. We do not consider such a possibility here, since it requires
tuning of two parameters and is of lesser importance.
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Figure 3.2: The ground state energy configurations of the charging energy EC(n↑, n↓)
in the limit of strong impurities, Eq. (3.24), for repulsive interaction Uσ < Uρ. Points
at boundaries between different ground state configurations correspond to the resonance
points, special points where the ground state degeneracy is present. The boundaries drawn
as solid lines describe resonances for either up or down spins, while the dotted line is a
resonance for a spin exchange process at the island. The latter is the Kondo resonance
and does not lead to the spin-polarized transport in our system.

3.5 Strong impurities

In the limit of very strong impurities, V↑, V↓ ≫ Uρ, Uσ, EF , the ground state
of the system can be determined by subsequent minimization of the cosines
and the charging energy, see Eqs. (3.7) and (3.10). The cosine terms are
minimal for

2φps = ∓kFsa + π(1 + 2nps), (p = 1, 2) (3.23)

where nps are integers. Obviously, the ground state just with the cosine
terms is highly degenerate. This degeneracy is broken by the charging energy.
Plugging φps into EC and defining ns = n1s − n2s one gets

EC(n↑, n↓) =
π2

2
Uρ

(
kF↑a

π
+
kF↓a

π
− n↑ − n↓

)2

(3.24)

+
π2

2
Uσ

(
kF↑a

π
− kF↓a

π
− n↑ + n↓

)2

.

To characterize different nonequivalent minima of Eq. (3.24), it is useful to
restrict the Fermi momenta and the impurity distance to satisfy the condition
0 < kF↑a, kF↓a ≤ π. Then, 0 ≤ n↑, n↓ ≤ 1. Allowing other values for kFsa
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just shifts ns. A physical meaning of ns is given by the fact that the (mean)
particle number on the island is n↑+n↓. The ground states obtained after the
minimization of the charging energy (3.24) for Uσ < Uρ are shown in Fig. 3.2.
For generic values of kFsa, the ground state is uniquely determined and has
certain ns values. However, at special lines different ground states meet.
These lines define the resonance conditions. Boundaries between different
ground states drawn as solid lines in Fig. 3.2 are important for our work:
while the number of particles on the island with one spin direction fixed, the
number of other spins is determined up to ±1. The Coulomb blockade is
lifted just for one spin direction. This condition is needed for spin-selective
barrier transparency.

We further solve the model along the boundary lines where EC(1, 0) =
EC(1, 1). Similar results hold for the other cases. While the electrostatic en-
ergy for changing the charge on the island is degenerate along these boundary
lines, there is still a barrier strength which is nonzero and suppressed the elec-
tron flow. As we know from the solution of the single impurity problem [19],
the barrier strength can be reduced by strong fluctuations (for attractive in-
teraction in that particular case). Along the lines where EC(1, 0) = EC(1, 1)
the fields φp↑ are locked in deep cosine minima and have fixed n↑. Ap-
proximating the nonlinear cosine term by a quadratic term for φp↑ one can
integrate them out from the action (3.6). In the strong impurity limit one
gets for the resulting action

Sr

~
=

∫
dω

2π

|ω|
2πKeff

(∣∣φ1↓(ω)|2 + |φ2↓(ω)
∣∣2
)

(3.25)

+
1

~

∫
dτVeff

(
−kF↑a + π

2
,
kF↑a+ π

2
, φ1↓, φ2↓

)
,

with

Keff =
2KρKσ

Kρ +Kσ

. (3.26)

The same result could also be obtained by assuming a constant value for
2φp↑ = ∓(kF↑a + π) and eliminating these fields from Eq. (3.6) using the

identity
∫

dω|ω||φ(ω)|2 =
∫

dτdτ ′ (φ(τ)−φ(τ ′))2

(τ−τ ′)2
. The action (3.25) describes

resonant tunneling of spin-↓ electrons in our model and is analogous to the
case of spinless electrons [20]. The partition function is dominated by tun-
neling events connecting degenerate minima of the strong impurity potential.
Using the Coulomb gas representation [20, 21, 66] one can produce the renor-
malization group equations for the tunneling transparency t↓ of barriers for



3.5 Strong impurities 37

* * *

*

*

* *

V↓

1+V↓

0

1

11
2 Keff

?

(a)

EC(n↑, 0) = EC(n↑,−1)

cos(kF↓a) 6= 0

* * *

*

*

*

*

* *

V↓

1+V↓

0

1

1 Kρ
1
2

?

(b)

cos(kF↓a) = 0

Figure 3.3: The renormalization group flow diagram for V↓ as a function of interaction
for parameters when the resonance is achieved only for strong impurities (a), and only for
weak impurities (b). The middle region 1/2 < Keff < 1 contains a line of fixed points
in the case (a). The middle region 1/2 < Kρ < 1 contains a phase transition line in the
case (b). Precise form of these lines is unknown within our approach. The non-interacting
point is achieved for Kρ = Kσ = Keff = 1.

spin-↓ electrons. For strong impurity potential V↓ it reads

dt↓
dl

= t↓

(
1 − 1

2Keff

)
, (3.27)

from which we get that for Keff > 1
2

the transparency t↓ is increased, or
equivalently, the strength of V↓ is reduced. The point Keff = 1/2 is inside
the region where the interaction is repulsive.

Outside the special point 2kF↓a = kF↑a = π, we already obtained in the
previous section that an initially weak impurity is a relevant perturbation
for any repulsive interaction. Since point impurities are local quantities they
can not renormalize bulk quantities such as Kρ, Kσ, and the flow of Vs is
vertical [20, 34]. The flow diagram for V↓ is shown is Fig. 3.3a. Since the
two limiting cases (weak and strong impurity case) have opposite flows, it is
highly plausible to have a line of fixed points somewhere in between. These
attractive fixed points denote a new phase, where spins of one direction feel a
finite-barrier strength at zero temperature, while electrons having the other
spin direction are fully blocked and feel infinite-barrier strength, as we will
show now.

We examine the model (3.6) for repulsive interactions in cases when the
fields φp↓ are freely fluctuating and completely frozen, an assumption which is
appropriate close to the non-interacting point and in the strongly repulsive
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region, respectively, see Fig. 3.3a. In the former case integrating out φp↓
fields one gets an action that exactly matches the action of a single impurity
in a Luttinger liquid, with the Luttinger parameter (Kρ + Kσ)/2. In the
latter case one arrives again to the same model, now with the Luttinger
parameter Keff . In both cases any repulsion ultimately renormalizes V↑ to
infinity, meaning massive fluctuations φp↑ are justified, and also that spin-↑
electrons are completely blocked.

Outside the resonance lines, see Fig. 3.2, a certain ground state is realized,
and it has the ns values fixed. There our model translates again into a single
impurity problem with the Luttinger parameter Keff , and the conclusions are
similar to the single impurity case.

In Fig. 3.3b we show the flow of V↓ for cos(kF↓a) = 0 and | cos(kF↑a)| 6= 1.
Again the flows of the two limiting cases are opposite, resulting in a separatrix
in between the two resulting phases: perfectly conducting for spin down for
small enough V↓ and insulating for larger V↓. Outside the middle region, the
flow of V↓ is as in the single impurity case: toward zero for attractive inter-
action and toward infinity for very repulsive interactions. While the precise
shapes of the separatrix and the line of fixed points can not be inferred from
the present approach, it is plausible that they smoothly interpolate between
insulating and conducting phases as the interaction strength is changed.

The condition for having strong impurities breaks down as the impurity
strength is reduced towards the region where Vs ∼ Uℓ. Then our minimization
procedures for Veff from sections 3.4 and 3.5 are not justified. We expect that
the new line of fixed points is defined by that condition. Notice that Uℓ is
interaction dependent (stronger for stronger repulsion) and that the new line
follows this trend.

3.6 Transport

In this section we will calculate conductances of our system using the antic-
ipated flow diagram, Fig. 3.3. Assuming the applied voltage to the island is
VG and to the ends of the wire is VL, an additional term should be included
in the action (3.6):

−eVG

√
2

π~

∫
dτφρ− − eVL

√
2

π~

∫
dτφρ+ . (3.28)

The voltage VL pushes the electrons to advance in one direction along the
wire, while the gate voltage VG serves as a single tuning parameter. The
above results are still valid, but one should take the shifted Fermi momenta
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Figure 3.4: Zero temperature and low voltage conductances G↓ and G↑ at the resonance
that correspond to the case shown in Fig. 3.3a (Fig. 3.3b) are shown on the left (a) (right
(b)) side. The non-interacting point is Kρ = Keff = 1. By the asterisk symbol we denote
the fixed point values of parameters. The spin-polarized transport occurs in regions where
G↑ 6= G↓.

due to nonzero VG

k′Fs = kFs −
eVGK

2
ρ

~vF
. (3.29)

This means the resonant condition can be achieved by adjusting VG for a
fixed magnetic field and fixed distance between impurities.

Without impurities the system is described by Eq. (3.3) and has the
perfect non-spin-polarized conductance 2e2/h, taking into account external
leads [38, 39, 40]. The situation may drastically change when impurities are
present. In the non-resonant case the conductance is suppressed at low VL

for repulsive interaction for both spin directions as ∼ V
2/Keff−2
L , similar to

the single impurity case, since our model outside resonance translated into
it with the Luttinger parameter Keff .

On the resonance that corresponds to Fig. 3.3a, i.e. for strong impuri-
ties when the charge state for spin-↓ electrons is degenerate on the island,
one gets spin-polarized conductance. Inside the region where the new line
of fixed points appears, different scattering is experienced by two spin ori-
entations. While G↑ is suppressed at low voltages as ∼ V

2/Keff−2
L near the

point Keff = 1/2, and as ∼ V
4/(Kρ+Kσ)−2
L for Kρ +Kσ → 2−, G↓ is not sup-

pressed even at very low voltages. It is controlled by the fixed point which
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determines the effective strength of impurity scattering. We can estimate
it as G↓(Keff) ∼ e2

h
|t↓(Keff)|2 where t↓(Keff) is the tunneling matrix element

between neighboring cosine minima which corresponds to the fixed point.
Within our approach we are not able to determine its value.

On the resonance that corresponds to weak impurities, Fig. 3.3b, the
system again has spin-polarized conductance which is controlled by the fixed
points. In the lowest non-trivial order we have G↓ = e2/h for Kρ > 1/2

and G↑ ∼ V
4/(Kρ+Kσ)−2
L , for not too big initial values of impurity strengths.

Otherwise the spin polarization is destroyed and the conductance behaves as
in the non-resonant case. The conductances on the resonances are shown in
Fig. 3.4.

So far we considered zero temperatures. At finite temperature the pic-
ture will be qualitatively unchanged until the electron thermal energy is much
smaller than the charging energy and the Zeeman energy. In the opposite
case, which is the high frequency limit |ω| ≫ vℓ/a, or translated to temper-
ature T ≫ KℓUℓ, for the starting action one would get Eqs. (3.6) and (3.7)
with the replacements Kℓ → Kℓ/2, Uℓ → 0. This is exactly the action of
a system of one-dimensional electrons with two impurities in series where
coherent effects of impurities are missing. Such a system has essentially the
same behavior as the single impurity case [20, 21].

3.7 Conclusions

In this chapter we have shown that a quantum wire with two impurities
in an external magnetic field may have spin-filter properties for repulsive
interactions. Our study is based on the resonance tunneling phenomenon
which may be tuned by a single parameter, the gate voltage, for only one spin
direction. The strength of the magnetic field is not important for our study, it
is only required that electrons of different spin have different Fermi momenta.
This leaves us with a region of parameters where the spin-polarized current
appears at zero temperature. Sufficiently strong thermal effects destroy our
picture and the system regains non-spin-polarized current. A qualitative
study of low-temperature effects as well as details about the flow diagrams
presented in Fig. 3.3 are left for a future study.

3.A Bosonization

In this appendix we present some details about the derivation of the bosonized
action used in chapter 3. As a special case, our derivation also contains a
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bosonized form of for the Luttinger liquid action used in chapters 2 and
4. Quite generally, we can write down the Hamiltonian of an interacting
electronic system in one dimension in second quantization

HTL = − i~vF

∑

s

∫
dx
[
ψ†

Rs(x)∂xψRs(x) − ψ†
Ls(x)∂xψLs(x)

]
(3.30)

+
1

2

∑

s,s′

∫
dxdx′W (x− x′)ψ†

s(x)ψ
†
s′(x

′)ψs′(x
′)ψs(x),

where the index s can take two values ↑ and ↓ for two spin projections,
ψRs(x), ψLs(x) are the annihilation operators for right- and left-moving spin-s
electrons, and ψs = ψRs+ψLs is the annihilation operator for spin-s electrons.
This Hamiltonian takes into account linear dispersion of free electrons from
the very beginning. For free electrons this is true only in the vicinity of the
Fermi points. However, we are interested in deriving an effective Hamiltonian
which properly captures low energy excitations, and this issue is unimportant
for the rest of our derivation.

The low energy excitations occur in the vicinity of the Fermi points. Then
the single particle field operator can be expressed as [8]

ψs(x) = ψRs(x) + ψLs(x) (3.31)

= eikF sxRs(x) + e−ikF sxLs(x),

where the fields Rs(x), Ls(x) are slowly varying on the scale k−1
Fs . In the

bosonized representation they can be expressed in terms of bosonic displace-
ment ϕs(x) and phase θs(x) fields as

Rs(x) =
ηs√
2παs

ei(θs(x)−ϕs(x)), (3.32)

Ls(x) =
ηs√
2παs

ei(θs(x)+ϕs(x)), (3.33)

where αs is the short distance cutoff which is of the order of k−1
Fs , and ηs

are the Klein factors, introduced to insure proper anticommutation relations
between the original fermionic operators. They anticommute {ηs, ηs′} = 2δs,s′
and satisfy η†s = ηs. The bosonic fields satisfy the following commutation
relation

[ϕs(x), θs′(x
′)] =

iπ

2
sign(x− x′)δs,s′. (3.34)

The fermionic densities for right and left moving electrons are

R†
s(x)Rs(x) = − 1

2π
∂x(ϕs(x) − θs(x)), (3.35)

L†
s(x)Ls(x) = − 1

2π
∂x(ϕs(x) + θs(x)). (3.36)
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The total electron density ρs(x) = ψ†
s(x)ψs(x) can now be written as a sum

of the long-wavelength part ρ
(0)
s and the oscillating part ρ

(2kF s)
s :

ρs(x) = ρ(0)
s (x) + ρ(2kF s)

s (x) (3.37)

= −1

π
∂xϕs(x) +

1

παs
cos(2ϕs(x) − 2kFsx).

Notice that Eq. (3.37) does not contain a constant part, kFs/π, that is the
part of the density coming from the filled Fermi sea.

Using the bosonic variables, the kinetic part (W (x) = 0) of the Hamil-
tonian (3.30) becomes

Hkin =
∑

s

~vs

2π

∫
dx

[
1

Ks

(∂xϕs)
2 +Ks(∂xθs)

2

]
, (3.38)

where the dimensionless Luttinger parameter Ks = 1 has been introduced,
and vs is the velocity of excitations, satisfying vs = vF/Ks.

Up to an additive constant, the interaction energy between electrons can
be rewritten as

Hint =
1

2

∑

s,s′

∫
dxdx′

(
ψ†

RsψRs + ψ†
LsψLs︸ ︷︷ ︸

q≈0

+ψ†
RsψLs + ψ†

LsψRs︸ ︷︷ ︸
|q|≈2kF s

)
x

(3.39)

×
(
ψ†

Rs′ψRs′ + ψ†
Ls′ψLs′︸ ︷︷ ︸

q≈0

+ψ†
Rs′ψLs′ + ψ†

Ls′ψRs′︸ ︷︷ ︸
|q|≈2kF s′

)
x′W (x− x′),

where by q we have denoted the momentum transfer of a scattering process.
The low energy part of the interaction energy (3.39) is encoded in scattering
processes which have small overall momentum transfer. They occur when
either one has terms q ≈ 0 simultaneously at x and x′, or q ≈ 2kFs at x and
q ≈ −2kFs′ at x′, or q ≈ −2kFs at x and q ≈ 2kFs′ at x′.

We can distinguish forward and backward scattering parts of the inter-
action, Hint = Hf

int +Hb
int. The former one, using the bosonic representation

for the fermionic operators, Eqs. (3.31)-(3.33), reads

Hf
int =

1

2

∑

s,s′

∫
dxdx′W (x− x′)ρ(0)

s (x)ρ(0)
s (x′) (3.40)

=
W̃ (0)

2π2

∑

s,s′

∫
dx(∂xϕs)(∂xϕs′) + . . . ,

where we have expanded in the last line the density ρ
(0)
s (x′) around x using

the fact that W (x−x′) is the short-ranged interaction and that fields ϕs are
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Figure 3.5: Inter-subband scattering processes: left is shown forward scattering and right
backward scattering. EF denotes the Fermi energy.

slowly varying on scales where W (x− x′) appreciably decays. The condition
that ϕs is slowly varying on scales k−1

Fs gives us a condition that W (x − x′)

should have a range ∼ k−1
Fs . By W̃ we have denoted a Fourier transform.

For the situation that we consider, where electrons of different spins
have different Fermi momenta, the forward scattering part of the interac-
tion, (3.40), consists of two different scattering processes: between elec-
trons of equal spins s = s′ and between electrons of different spin s 6=
s′. These processes are called intra-subband and inter-subband scatter-
ing processes, respectively [67]. The inter-subband scattering processes are
shown in Fig. (3.5).

Using the bosonic representation of fermionic operators, Eqs. (3.31)-
(3.33), the backward interaction can be cast in the form

Hb
int =

1

8π2α↑α↓

∑

s,s′

∫
dxdx′W (x′)

(
ei2x(kF s′−kF s)e−ix′(kF s+kF s′) (3.41)

ei2(ϕs(x+x′/2)−ϕs′ (x−x′/2)) + h.c.
)
.

For the intra-subband part s = s′, we should expand the fields. To do this
safely, the fields should be normal-ordered [8]. Using the formula

cos(ϕs) = 〈cos(ϕs)〉 : cos(ϕs) :, (3.42)

where 〈. . .〉 is an average over the Hamiltonian (3.38), : . . . : denotes normal
ordering, and the expression

〈
(ϕs(x) − ϕs(x

′))2
〉

= ln
|x− x′|
αs

, (3.43)

for the intra-subband part of interaction we get

Hb,intra
int = −W̃ (2kFs)

2π2

∑

s

∫
dx(∂xϕs)

2. (3.44)
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For the inter-subband part s 6= s′ we get

Hb,inter
int =

W̃ (kF↑ + kF↓)

2π2α↑α↓

∫
dx cos [2ϕ↑(x) − 2ϕ↓(x) + 2(kF↓ − kF↑)x] .

(3.45)

The total interaction is given as a sum Hint = Hf
int +Hb,intra

int +Hb,inter
int .

Including only intra-subband interaction in the kinetic energy, for the low
energy effective Hamiltonian we get Eq. (3.38) with

Ks =

(
1 +

W̃ (0) − W̃ (2kFs)

π~vF

)−1/2

. (3.46)

For repulsive interaction we have Ks < 1. Had we considered spinless elec-
trons from the very beginning, for the low energy Hamiltonian we would have
obtained Eq. (3.38) without the sum over s, with the Luttinger parameter
given by (3.46). This is a standard Luttinger liquid Hamiltonian given in
terms of bosonic fields [8].

Taking into account inter-subband interaction, under the assumption
K↑ = K↓ = K that is justified for a small difference between kF↑ and kF↓,
we get

H0 =
∑

ℓ=ρ,σ

~vℓ

2π

∫
dx

[
1

Kℓ
(∂xϕℓ)

2 +Kℓ(∂xθℓ)
2

]
, (3.47)

with

Kℓ = K

(
1 ± K2W̃ (0)

π~vF

)−1/2

, (3.48)

ϕρ =
1√
2
(ϕ↑ + ϕ↓), (3.49)

ϕσ =
1√
2
(ϕ↑ − ϕ↓), (3.50)

and similarly for θρ, θσ. The inter-subband backward interaction Hb,inter
int is an

irrelevant operator for any repulsive interaction (and also because it contains
under the cosine an oscillating term that makes this term also irrelevant) and
is neglected in Eq. (3.47). Therefore, the effective low-energy Hamiltonian of
a quantum wire is a sum of two free Luttinger liquid Hamiltonians, for spin
and for charge degrees of freedom, Eq. (3.47). The corresponding imaginary-
time action used in the main text is given by formula (3.3).
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3.B Bosonized model

In this appendix we will derive the full form of the Hamiltonian (3.1) in the
bosonized representation, showing that the effect of the forward scattering
part ρ

(0)
s of the electron density that couples to the impurity potential V (x)

is to renormalize the Fermi wavevector. The starting Hamiltonian (3.1) is a
sum

H = H0 +HV , (3.51)

where the part without impurity potential is given by Eq. (3.47), and the
impurity part is

HV =
∑

s

∫
dxV (x)ρs(x). (3.52)

Using Eq. (3.37), it can be rewritten in the bosonized form as

HV = H
(0)
V +H

(2kF )
V (3.53)

= −
√

2

π

∫
dxV (x)∂xϕρ(x) +

∑

s

∫
dx
V (x)

παs
cos(2ϕs(x) − 2kFsx).

Introducing the new fields

ϕ′
s(x) = ϕs(x) −

Kρ

~vρ

∫ x

0

dyV (y), (3.54)

θ′s(x) = θ(x), (3.55)

which satisfy the commutation relation (3.34), the first part of Eq. (3.53),

H
(0)
V , can be diagonalized by a square completion with the corresponding

term from H0, and up to an unimportant additive constant we get

H =
∑

ℓ=ρ,σ

~vℓ

2π

∫
dx

[
1

Kℓ
(∂xϕ

′
ℓ)

2 +Kℓ(∂xθ
′
ℓ)

2

]
(3.56)

+
∑

s

∫
dx
V (x)

παs
cos

(
2ϕ′

s(x) − 2kFsx+
2Kρ

~vρ

∫ x

0

dyV (y)

)
.

Taking the impurity potential to be

V (x) = V (δ (x+ a/2) + δ(x− a/2)) , (3.57)
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we finally obtain

H =
∑

ℓ=ρ,σ

~vℓ

2π

∫
dx

[
1

Kℓ
(∂xϕ

′
ℓ)

2 +Kℓ(∂xθ
′
ℓ)

2

]
(3.58)

+
∑

s

V

παs

∫
dx [cos (2ϕ′

s(−a/2) + k′Fsa) + cos (2ϕ′
s(a/2) − k′Fsa)] ,

where

k′Fs = kFs −
V Kρ

~vρa
. (3.59)

We have proved that the effect of the forward scattering of electrons on two
impurities is unimportant taking into account the renormalization of the
Fermi wavevector and a new definition of the displacement field. In the main
text of chapter 3 we use the notation without primes, keeping in mind that
that fields and the wavevector have the meaning derived in this appendix.

We would also like to stress here, that the question of a term in the
Hamiltonian which arises from the forward scattering of electrons on a single
or double impurity is often neglected in literature, or even not mentioned
[19, 20, 21, 68]. Here we have shown that it is justified to neglect it even in
the case with magnetic field, when one has a bit more complicated problem
with four Fermi points. As a special case, our proof also applies to the case
without magnetic field.
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Chapter 4

The effect of randomness in

one-dimensional fermionic

systems

In this chapter we study the competition between the Mott and
the Anderson-insulating state in a one-dimensional disordered fermi-
onic system. The notorious difficulties associated with strong coupling
phases are avoided by using a new description in terms of the kink
energies (or instanton surface tension) of the electronic displacement
pattern. Tracing back both a finite compressibility and a nonzero ac
conductivity to vanishing kink energy we exclude the existence of an
intermediate Mott-glass phase in systems with short range interaction.

4.1 Introduction

Quantum-mechanical interference effects lead to the localization of non-in-
teracting electrons in even weakly disordered solids in one and two space di-
mensions [16, 17, 23, 69]. This type of (Anderson) insulator is characterized
by both a finite ac conductivity at low frequencies and a finite compressibil-
ity [70]. Interaction between electrons reduces the effect of disorder and may
lead to metallic behavior in two dimensions [71]. In Mott insulators, on the
other hand, insulating behavior results from the blocking of sites by repul-
sive interaction between electrons [72] and hence is dominated by correlation
effects. The Mott-insulating phase is incompressible and has a finite gap in
the ac conductivity. A natural question is then: what happens in systems
when both disorder and interactions are non-negligible? Is there, depending
on the strength of interaction or disorder, a single transition between these
two phases, or is the scenario more complex, including more phases? Are
there more than just these two types of insulators?

A particularly interesting case to consider these questions is that of elec-
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trons in one space dimension where both interaction and disorder effects
are strong, destroying Fermi liquid behavior [8]. Systems of this type have
been considered in a number of studies. Early work by Ma [73] using real-
space renormalization group for the disordered one-dimensional Hubbard
model suggests a direct transition from the Anderson-insulating to the Mott-
insulating phase. This result contrasts with more recent work (see, for exam-
ple, Refs. [23, 69, 74, 75] and references therein) where a new type of order,
different from the Mott-insulating and Anderson-insulating phase, was found.
In particular in Refs. [23, 69, 75], the existence of a new Mott-glass phase
was postulated which was supposed to be incompressible but had no gap
in the optical conductivity. Analytical investigations are hampered by the
strong coupling nature of the phases which does not allow a renormalization
group study. Alternative approaches, like the variational method used in
Refs. [23, 69], are difficult to control when applied to scalar fields as in the
present case.

In this chapter we tackle this problem by relating both the compressibility
and the ac conductivity to the kink energy of the bosonic displacement field
ϕ(x) describing electrons in one dimension [8]. The approach has some simi-
larities with the treatment of the flat phase of a surface undergoing a rough-
ening transition [76] and may be useful for other strong coupling problems as
well. Adding (removing) a charge at a site x corresponds to the insertion of
a δϕ(x) = ±π kink in the bosonic field. The compressibility of the systems is
determined by adding kinks (or antikinks) to the classical ground state of the
system. If the kink energy is finite, the system is incompressible. Similarly,
the optical conductivity follows from transitions between the ground state
and the first excited state which involves kink-antikink pairs. For vanishing
kink energy, the level splitting between the ground and the excited state is
exponentially small in the kink-antikink distance. A decreasing energy ~ω
will then drive transitions between levels of pairs of ever increasing distance,
and hence the ac conductivity remains finite for small ω. This is no longer
the case when the kink energy is finite: the energy of the kink-antikink pair
is the lower bound for the level splitting, and hence the optical conductivity
shows a gap of this size. Thus, as long as there is no true long range interac-
tion between charges, incompressibility and a gap in the optical conductivity
require each other. Thus, there is no Mott-glass phase for systems with short
range interaction only.

This chapter is organized as follows. In section 4.2 we introduce a model
of interacting fermions in one dimension in the presence of both disordered
and commensurate potentials. In section 4.3 we introduce the rigidities of our
system and discuss its ac conductivity. Renormalization group equations and
the phase diagram are discussed in section 4.4. We consider the question of
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the Mott glass phase existence in section 4.5, which is followed by discussions
and conclusions.

4.2 Model

The electron density ρ(x) of the electrons is related to their displacement
field ϕ(x) as [8]

ρ(x) =
kF

π
− 1

π
∂xϕ+

kF

π
cos(2ϕ− 2kFx) + . . . , (4.1)

where kF is the Fermi momentum. For simplicity throughout this chapter
we use e = ~ = 1. The ground state energy of the system follows from

E0 = − lim
T→0

T ln

∫
Dϕe−S[ϕ], (4.2)

where the action is [8, 23, 69]

S =
1

2πK

∫ LΛ

0

dx

∫ λT Λ

0

dτ
[
(∂τϕ)2 − (∂xϕ+ µ(x))2 (4.3)

+ (ζ(x)e−i2ϕ + h.c.) − w cos(2ϕ) − 2πκ

Λ2
Fϕ
]
.

Here we have introduced dimensionless space and imaginary time coordinates
by the transformation Λx→ x and Λvτ → τ where v is the plasmon velocity
and Λ a large momentum cutoff. λT = v/T and L and denote the ther-
mal de Broglie wavelength of the plasmons and the system size, respectively.
w denotes the strength of the umklapp scattering term (or the strength of
a commensurate potential), F the external driving force and κ the com-
pressibility [50, 77]. µ(x) and ζ(x) result from the coupling of the random
impurity potential to the long wavelength and the periodic part of electron
density (4.1), respectively, with

〈ζ(x)ζ∗(x′)〉 = u2δ(x− x′), (4.4)

〈µ(x)µ(x′)〉 = σδ(x− x′), (4.5)

all other correlators vanish. As a difference with respect to chapters 2 and
3 here we consider a system that contains many weak, densely spaced impu-
rities. In that case the scale of variation of the physical quantities is much
larger than the distance between the impurities. This type of disorder is
called the Gaussian disorder and there impurities act collectively [8]. This
is, for example, seen in the renormalization of the Luttinger parameter and
the plasmon velocity, in contrast to the single impurity case.



50 The effect of randomness in one-dimensional fermionic systems

4.3 Rigidities and ac conductivity

We begin with a discussion of the rigidities, which are related to the (inverse)
compressibility and conductivity of the system. If the rigidities diverge (as
in the strong coupling phases), the appropriate description is that in terms
of the kink energies Σx/τ . We first consider the application of a fixed strain ϑ
by imposing the boundary conditions ϕ(0, τ) = 0 and ϕ(L, τ) = πϑLΛ. The
boundary condition in the τ -direction is assumed to be periodic. For ϑ ≪ 1
and L→ ∞ the corresponding increase ∆E0(ϑ, 0) = E0(ϑ, 0)−E0(0, 0) of the
ground state energy E0(ϑ, 0) is clearly an even but not necessarily analytic
function of ϑ. Thus

∆E0(ϑ, 0)

L

∣∣∣∣
L→∞

≈
{
ϑ2/(2κ), Σx = 0,
Σx|ϑ|, κ = 0.

(4.6)

The right hand side of this relation has to be understood as follows: if Σx = 0
then the stiffness 1/κ describes the response to the twisted boundary condi-
tions; the change of ϕ is spread over the whole sample. If however the system
becomes incompressible, then the kink energy Σx is nonzero; the change of
ϕ from 0 to π occurs in a narrow kink region of width ξ much smaller than
L. The position of the kink is chosen such that the energy is minimal. A
nonzero kink energy resembles the step free energy of a surface below the
roughening transition [76]. If we apply instead of the fixed boundary condi-
tions an external stress to the system, then Σx is of the order of the critical
stress to generate the first kink.

In a similar manner we can apply non-trivial boundary conditions in the
τ -direction by choosing ϕ(x, 0) = 0 and ϕ(x, Lτ ) = πjLτ/v. This corresponds
to imposing an external current j = 〈∂τϕ〉/π at x = 0 and x = L:

∆E0(0, j)

L

∣∣∣∣
L→∞

≈
{
j2/(2D), Στ = 0,
Στ |j|, D = 0.

(4.7)

Here D = κv2 denotes the charge stiffness and determines the Drude peak
of the conductivity σ(ω) = Dδ(ω) + σreg(ω) [8, 78]. In Lorentz invariant
systems we have Σx = vΣτ .

So far we have assumed that Σx is self-averaging if L → ∞. In the
same way we may introduce local rigidities by applying twisted boundary
conditions over a large but finite interval [x, x+ LxΛ], Λ−1 ≪ Lx ≪ L. The
result for Σx will then depend in general on the size Lx of the interval, i.e. Σx

should be replaced by Σx(Lx).
In cases where D vanishes, the frequency dependent conductivity σ(ω)

may still be nonzero, provided ω is finite. For low kink energy Σx, spon-
taneous tunneling processes between metastable states and their instanton
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Lx

x

ϕ(x)

1
2

π

kink antikink

Figure 4.1: Kink and antikink in the displacement profile ϕ(x). The thin lines represent
the minima of the potential energy in the absence of the driving force, the bold line one
metastable state and the dashed line the instanton configuration, respectively. Applying
a fixed strain to the system only kinks (or antikinks) are enforced in the system.

configurations (configurations 1 and 2 in Fig. 4.1) will occur. Metastable
states are here the classical ground states of Eq. (4.3) in the absence of the
driving force [50, 77]. Different metastable states follow from each other by a
shift of ϕ by a multiple of π. The instanton configuration connects two neigh-
boring metastable states. Spontaneous tunneling leads to a level splitting of
the two states of the order

δE ≈
√

4Σ2
x(Lx) + C(vΛ)2e−2LxΣτ , (4.8)

which has to match the energy ω of the external field. Here, 1/Στ ∼ Kξ
plays the role of the tunneling length, while C > 0 is a numerical factor.
This mechanism was first considered for non-interacting electrons by Mott
[70] and extended to the interacting case in Refs. [79, 80, 81]. Thus, to get
a non-zero σ(ω) for arbitrary low frequency ω, 2Σx(Lx) < ω → 0 which
requires 2Σx(Lx) → 0 for a finite density of kink positions, which implies a
finite compressibility.

4.4 Fixed points and phases

We come now to the discussion of the possible phases of model (4.3) by
attributing them to their renormalization group fixed points (denoted by
superscript ∗). Bare values will get a subscript 0. For small u and w the
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lowest order renormalization group equations read:

dK

dl
= −K(au2 + bw2), (4.9)

dσ

dl
= σ(1 − 2bw2), (4.10)

dw

dl
= w

(
2 −K − 2

π
σ

)
, (4.11)

du2

dl
= u2(3 − 2K) +

1

π
σw2, (4.12)

dκ

dl
= −bκw2. (4.13)

As far as there is an overlap, the flow equations agree with those found in
Refs. [82, 83]. l is the logarithm of the length scale and a, b are positive non-
universal constants of order one that depend on the renormalization proce-
dure. The dynamical critical exponent has been chosen z = 1 corresponding
to the Luttinger liquid fixed point.

The Luttinger liquid phase is characterized by u∗L = w∗
L = 0 and hence

Σx = Στ = 0. K∗
L > 0 and κ∗L = K∗

L/(πv
∗
L) > 0. The fixed point is

reached for sufficiently large values of K. The long time and large scale
behavior of the system is that of a clean Luttinger liquid characterized both
by a finite compressibility κ∗L and a finite charge stiffness DL = κ∗Lv

∗2
L . The

dynamical conductivity is given by σreg = iDL/(πω). The presence of the
forward scattering term ∼ µ(x)∂xϕ does not change these results since it can
be always removed by the transformation

ϕ(x) → ϕ(x) +

∫ x

0

dx′µ(x′). (4.14)

The Mott insulator is characterized by K∗
M = κ∗M = u∗M = σ∗

M = 0 but
w∗

M ≫ 1. Clearly the fixed point w∗
M is outside the applicability range of

Eqs. (4.9)-(4.13), but nevertheless some general properties of this phase can
be concluded. The system is in the universality class of the two-dimensional
classical sine Gordon model which describes, among other things, the Mott
insulator to Luttinger liquid transition and the roughening transition of
a two-dimensional classical crystalline surface [76]. In the Mott inslua-
tor phase κ vanishes. The system is characterized by a finite kink en-
ergy Σx ∼ (κ0ξM)−1, where ξM denotes the correlation length of the Mott-
insulating phase [76]. According to Eq. (4.8), the ac conductivity vanishes
for ω . 2Σx.
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The Anderson insulator is characterized by w∗
A = K∗

A = 0 but u∗A ≫ 1.
κ∗A ≈ κ0 is finite which is the result of the so-called statistical tilt symmetry
[84]: the boundary condition ϕ(L, y) = πϑL can be made periodic by the
transformation ϕ = ϕ̃ + πϑx and α = α̃ − πϑx with the same statistical
properties of α̃ and α. α is defined as ζ = |ζ |eiα. The twist in boundary
conditions appears then in the elastic energy (2κπ2)−1〈(∂xϕ−πϑ)2〉 and hence
Σx = 0. The transition to the Luttinger liquid phase occurs at K ≥ 3/2.

Next, we look at Σx(Lx) at a finite length scale ξA ≪ Lx ≪ L, such that
the parameters are close to their fixed point values. ξA is the correlation
length which diverges at the transition to the Luttinger liquid phase. To find
the classical ground state of the system under periodic boundary conditions
we have first to choose 2ϕi + αi = 2πni with ni integer, and secondly the
elastic term has to be minimized with respect to the ni. The subscript i refers
to the sites of the lattice with spacing ξA and ζi = |ζi|eiαi . The solution is
ni =

∑
j≤i[(αj − αj−1)/2π]G, see Refs. [50, 77]. [x]G denotes the closest

integer to x. The ground state is uniquely determined by the αj apart from
the pairs of sites (of measure zero) at which αj−αj−1 = ±π. At such pairs the
ground state bifurcates since two solutions are possible. For pairs at which
αj − αj−1 = ±π + ǫ, |ǫ| ≪ 1 we can go over to an excited state by creating
a kink which costs at most the energy Σx ≈ ǫ/(κ0ξA). Those “almost”
bifurcating sites correspond to states close to the Fermi energy. The smallest
ǫ found with probability of order one in a sample of length Lx is of the order
ξA/Lx and hence Σx ≈ 1/(Lxκ0), i.e. the kink energy vanishes for Lx → ∞
and hence the system is compressible. Twisted boundary conditions in the
τ -direction gives Στ ∼ (K0ξA)−1 [50, 77].

As explained already, a vanishing Σx is also crucial for the existence of the
low frequency conductivity σ(ω) ∼ ω2 ln2 ω as has been discussed in detail
in Refs. [79, 80, 81]. This result can be understood in terms of tunneling
processes between rare positions at which the kink energies Σx are much
smaller than 1/(κ0Lx).

4.5 Mott-glass phase

This new hypothetical phase was proposed in Refs. [23, 69] to be character-
ized by a vanishing compressibility, κ∗G = 0, but a nonzero optical conduc-
tivity at low frequencies. Since the phase is considered to be glassy, both
fixed point values are expected to be nonzero, w∗

G, u
∗
G ≫ 1. Similarly to

the Anderson insulator, the ground state can be found by minimizing first
the two backward scattering terms followed by minimization of the elastic
energy. Although the ground state solution is now more involved than for
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the Mott-insulating and Anderson-insulating case, for F = 0 it is clearly
periodic with period π. As before, kinks (or antikinks) with δϕ = ±π al-
low the accommodation of twisted boundary conditions and the formation of
instantons. A vanishing compressibility corresponds to a finite kink energy
Σx ≥ C > 0 which, according to (4.8), leads to a gap in the ac conductivity.
Thus, in a system with a nonzero σ(ω) for small ω also the compressibility
has to be nonzero, contrary to the claims in Refs. [23, 69].

So far, we have assumed that all interactions are short range. In the case
of an Anderson insulator with additional long range Coulomb interaction, the
bare compressibility κ0 is diminished by a factor [1 + D ln(kFLx)]

−1 where
D = 2π2κ0/εs [50, 77]. εs denotes the dielectric constant. Thus, for Lx → ∞,
the Anderson insulator becomes incompressible. The effect of Coulomb in-
teraction on σ(ω) is known for K = 1 only [85], where σ(ω) is increasing by a
factor {εsξA|ω| ln[vF/(ξAω)]}−1. Thus the Anderson insulator is transformed
to a Mott-glass phase, but there are again only two phases.

We come now to the discussion of the phase diagram of our model (4.3).
From Eqs. (4.9)-(4.13) follows that the random backward scattering term is
generated by forward scattering and the commensurate pinning potential.
Since σ(l) = σ0e

l the two eigenvalues λ1 = 3 − 2K and λ2 = 4 − 2K −
4σ/π describing the renormalization group flow of u2 and w2 around the the
Luttinger liquid fixed point u∗ = w∗ = 0 have opposite sign: u(l) increases
whereas w(l) decreases. Thus the hypothetical Mott-glass phase, if it existed,
could not reach up to the point u = w = 0, in contrast to the findings in
Refs. [23, 69]. From this we conclude that for not too large values of w0 the
Anderson insulator phase is stable, as is shown in Fig. 4.2. To find the phase
boundary to the Mott-insulating phase we consider the stability of the Mott-
insulating phase with respect to the formation of a kink by the disorder. To
lowest order in the disorder we get for the kink energy in the Mott-insulating
phase

Σx ∼
√
w0

κ0

[
1 − 1

2

(
σ2

0

w0

)1/4

− u0

π2w
3/4
0

]
, (4.15)

which gives from Σx = 0 for the phase boundary between the Mott-insulating
and the Anderson-insulating phase as depicted in Fig. 4.2. A similar result
follows from the self-consistent harmonic approximation.

So far we considered only typical disorder fluctuations. If |ζ(x)| and
µ(x) are Gaussian distributed and rare events are taken into account, then
Eq. (4.15) remains valid with the replacements σ0 → σ0 ln(LΛ) and u2

0 →
u2

0 ln(LΛ). Thus the size of the Mott-insulating phase is reduced but finite
unless we have L→ ∞.
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Figure 4.2: Schematic phase diagram with wc ∼ σ2. MI (AI) denotes that the Mott
insulator (Anderson insulator) is realized in indicated region of parameters.

These findings are supported by the observation that the forward scatter-
ing term in Eq. (4.3) can be removed from the action by transformation (4.14)
[86]. On sufficiently large scales & 1/(σ0Λ) this transformation leaves only a
random backward scattering term of strength

√
u2

0 + w2
0/(4σ0) in the action,

which results for sufficiently small K in the Anderson-insulating phase.

4.6 Disscussions and conclusions

Now we briefly comment on the variational approach and replica symmetry
breaking which have been used in Refs. [23, 69] where the Mott glass phase
has been found. In the variational approach the full Hamiltonian is replaced
by a harmonic one; this leads to the decoupling of Fourier components ϕq with
different wavevector q. Without replica symmetry breaking one obtains from
this approach the results of perturbation theory which is valid only on small
scales. Replica symmetry breaking gives the possibility of a further reduction
of the free energy. The results obtained in this way are exact only in cases
when the coupling between different Fourier components is irrelevant and
the physics is dominated by the largest length scale. Thus replica symmetry
breaking is not an intrinsic property of the true solution of the problem,
but a property of the variational approach. An illustrative example is the
related problem of the interface roughening transition in a random potential
[87]. The variational approach with replica symmetry breaking gives three
phases: a flat, a rough and a glassy flat phase [88], where the rough phase
has Flory like exponents. The functional renormalization group (which takes
the coupling of different Fourier modes into account) gives however only two
phases: the flat and the rough phase, but at the transition a logarithmically
diverging interface width [87]. A similar situation may exist also in the
present case.

To conclude, in this chapter we have shown for a one-dimensional disor-
dered Mott insulator (4.3), tracing back both the compressibility and the ac
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conductivity to the kink energy Σx of the electronic displacement field, that
an incompressible system has also a vanishing optical conductivity. Thus we
exclude the possibility of the existence of a Mott-glass phase in systems with
short range interaction.
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Chapter 5

Vortex configurations in a

superconducting film with a

magnetic dot

In this chapter we consider a thin superconducting film with a mag-
netic dot, having permanent magnetization normal to the film surface,
placed on the film. For sufficiently high dot magnetization a single vor-
tex is created in the film. A further increase of the magnetization is
accompanied by the appearance of more vortices and antivortices in
the ground state.

5.1 Introduction

Type-II superconductors in an external homogeneous magnetic field are com-
prehensively studied and well understood [24, 89]. They accommodate regu-
larly distributed flux tubes–vortices for external fields between the lower and
the upper critical field [90]. A similar scenario occurs in type-II supercon-
ducting films in perpendicular fields [26, 91]. A difference is that the first
critical field for films vanishes for macroscopically large samples [91, 92].

An interesting class of systems which have attracted a great attention
only recently are ferromagnet–superconductor hybrid systems. There one
examines the influence of a material with heterogeneous magnetization on a
superconductor [30]. Direct contact between the magnetic material and the
superconductor is avoided usually by a thin insulating layer which suppresses
the proximity effect. These hybrid systems can be fabricated under the full
control of their parameters [31]. The inhomogeneous magnetization of fer-
romagnets generates an inhomogeneous magnetic field that penetrates the
superconductor. As a response to that field, supercurrents and vortices are
induced in the film. The magnetic field generated by the supercurrents in-
teracts with the magnetic subsystem. By tuning the parameters of the latter
we examine different phenomena of the composite system. Hybrid systems
offer a number of realizations of new interesting phenomena, which include
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pinning of magnetization induced vortices, commensurability effects between
the external magnetic field and the periodic structure of magnetic material
on the superconductor resistivity and others [30, 31, 93, 94].

In this chapter we are focused on the simplest ferromagnet–supercon-
ductor hybrid system. It consists of a single magnetic dot grown on top
of a type-II superconducting film. The magnetic dot is assumed to have
permanent magnetization normal to the film surface. Despite its simplicity,
this system deserves attention since many different ground states can be
realized in the parameter space. Dots having sufficiently small magnetization
produce only supercurrents in the film. There is a critical dot magnetization
above which the appearance of a single vortex is energetically favorable.
Further increase of magnetization is accompanied with the appearance of
different configurations of vortex states in the ground state (GS) [95, 96, 97,
98, 99, 100]. This is in striking contrast with respect to films in homogeneous
fields, where any external magnetic field induces vortices [91, 92].

Our main goal is to define regions in the parameter space with different
ground state configurations of vortices. A possible question that is under
debate in literature is whether antivortices may also be induced in the film.
One finds different statements about the presence of antivortices: while their
existence is claimed in [97, 100, 101], they are not found in [98, 99]. Rough
estimates [97], calculations with magnetic dipole [101] or studies inside the
nonlinear Ginzburg–Landau theory with restriction to zero total vorticity
states [100] seems to be insufficient. We give an independent and detailed
study of this problem in this chapter. We will determine conditions for the
appearance of different vortex–antivortex states and their spacial configura-
tions.

The dot magnetization produces the magnetic field in the film, which is
parallel to the magnetization under the dot, but antiparallel for distances
larger than the dot radius. This magnetic field favors the creation of vortices
under the dot and of antivortices outside the dot region. Which vortex–
antivortex configuration has the smallest energy depends on the parameters
of the system.

A vortex has a spatial structure. The superconducting order parameter
vanishes, roughly speaking, at distances smaller than ξ around the center
of the vortex. Here ξ denotes the coherence length of a superconductor
[24]. The nonlinear Ginzburg–Landau approach takes into account the finite
size of the vortex core. However, except from numerical treatments one can
hardly derive any analytic results [100]. Our approach is rather based on the
London–Maxwell equations [98, 102]. Although it treats vortices as point
objects, it is a useful approach since one may derive analytic expressions for
relevant quantities which become asymptotically exact when all lengths in



5.2 Model 59

the problem are larger than the spatial vortex extension.
It is interesting to mention that the vortex nucleation in superconducting

microtriangles and squares occurs in such a way that the symmetry of the
superconductor is preserved [103, 104]. For example, in the case of a triangle,
the state having the total vorticity two is realized when three vortices are
placed around a single antivortex in the center of the triangle. This means
that C3 symmetry is preserved. Our system, consisting of the infinite su-
perconducting film and with magnetic dot on top of it, has rotational C∞
symmetry around the dot center. This symmetry is reduced in the pres-
ence of vortices and antivortices, contrary to the above mentioned example.
For the most possible symmetric states with the total vorticity zero, the ro-
tational symmetry is either reduced to a discrete CN symmetry (when the
number of vortices and antivortices is N ≥ 2) or does not exist at all (for a
vortex–antivortex pair). When two and more (we have checked up to four)
vortices and antivortices are present in the zero vorticity state, vortices are
distributed in a symmetric fashion around the dot center, while antivortices
are placed outside the dot in the same manner, like homothetically trans-
formed vortices. In the case of a single vortex–antivortex pair, the dot’s
center, vortex and antivortex are collinear. Other states with nonzero vor-
ticity are less symmetric. When the number of antivortices is five and more,
they may form shells around a central vortex in zero vorticity states [100].
We do not consider such situation in our study.

The rest of the chapter is organized as follows. In section 5.2 we introduce
a theoretical model to describe the system. We calculate the interaction en-
ergy between a cylindrical magnetic dot and vortices in the film. In section
5.3 we determine the conditions for the ground state configurations that con-
sist of a single vortex and a vortex–antivortex pair. We also find separatrices
between those ground states and the positions of vortices. In section 5.4 we
calculate the magnetic field in the whole space and the supercurrents in the
film when a single vortex is present in the system. In section 5.5 we present
numerical results for the phase diagram with diversity of vortex–antivortex
configurations. Section 5.6 contains numerical estimates of the relevant pa-
rameters and our conclusions. Some technical details are relegated to the
appendices.

5.2 Model

We consider a circular magnetic dot of a radius R and a thickness at placed
at a distance d above an infinite superconducting film, with its basis parallel
to the film surface. The dot magnetization M is assumed to be constant and
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normal to the film surface, see Fig. 5.1. Apart from the supercurrents, the dot
may also induce vortices and antivortices in the film. We will study these
vortex configurations. Since our problem has many parameters there are
many regions in the parameter space which may have different ground state
configurations (GSC). The GSC denotes a configuration of vortices in the film
having the lowest energy among all other configurations; the trivial GSC has
no vortices. This is expected for sufficiently small M . With increasing M
creation of vortices becomes energetically favorable.

We assume quite generally that our system consists of N vortices of vor-
ticities ni placed at positions ρi for a given magnetization of the dot M . The
energy of the system in that case reads

En1,...nN
=

N∑

i=1

n2
iUv +

N∑

i<j

ninjUvv(ρij, 1, 1) +
N∑

i=1

niUmv(ρi, 1), (5.1)

where ρij = |ρi − ρj | and ρi = |ρi|. Uv is the single vortex energy, Uvv is the
vortex–vortex interaction, and Umv is the vortex–magnet interaction. For a
given magnetization of the dot, the system will be in the state where En1,...nN

is minimal. Expression (5.1) assumes that the system in the trivial ground
state has zero energy, E0 = 0.

Expressions for Umv and Uvv can be calculated by using the approach
developed in Refs. [98, 102] based on the London–Maxwell equations. The
details are presented in appendix 5.A. For the interaction energy between
the dot and a vortex of vorticity n placed at the distance ρ from the dot’s
center we get

Umv(ρ, n) = −nMRφ0

∫ ∞

0

dkJ0(kρ)J1(kR)
e−kd − e−k(d+at)

k(1 + 2λk)
, (5.2)

where J0 and J1 are the Bessel functions of the first kind. λ is the effective
penetration depth and is equal λ2

L/ds, where λL is the London penetration
depth and ds the film thickness. The film thickness is assumed to satisfy
ds ≪ λL, when the variation of the vector potential and the phase of the order
parameter may be neglected across the thickness of the film, see appendix
5.A. Expression (5.2) can be evaluated asymptotically in some regions, see
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Figure 5.1: Magnetic dot with perpendicular permanent magnetization M upon infinite
superconducting film.

appendix 5.B, and has the following behavior (we take d = 0 for simplicity):

Umv(ρ, n) = −nMatφ0
R

4λ





2 − ρ2

2R2 , ρ≪ at ≪ R ≪ λ,
R
2at

+ R
at

ln 2at

R
− ρ2

2Rat
, ρ≪ R≪ at ≪ λ,

R
2λ

(
2λ
ρ

+ ln ρ
4λ

+ γ
)
, at, R ≪ ρ≪ λ,

4λ2R
ρ3 , at, R ≪ λ≪ ρ.

(5.3)

The interaction between the two vortices of vorticities n1 and n2 separated
by a distance ρ is given by

Uvv(ρ, n1, n2) =
n1n2φ

2
0

16πλ

[
H0

( ρ
2λ

)
− Y0

( ρ
2λ

)]
, (5.4)

and has the asymptotic form

Uvv(ρ, n1, n2) = n1n2





2Uv, ρ≪ ξ ≪ λ,
φ2

0

8π2λ

(
ln 4λ

ρ
− γ
)
, ξ ≪ ρ≪ λ,

φ2
0

4π2

1
ρ
, λ≪ ρ.

(5.5)

In the previous expressions φ0 is the magnetic flux quantum, H0 is the Struve
function of order zero and Y0 is the Bessel function of the second kind of order
zero [105]. Uv is the single vortex energy [106], and reads

Uv =
φ2

0

16π2λ

(
ln

4λ

ξ
− γ

)
, (5.6)

where γ ≈ 0.577 is the Euler constant. Two vortices which centers are at
distances smaller than ξ are considered in our model as a double vortex.
Its total energy is 4Uv: from the two single vortices comes 2Uv as well as
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from their interaction. In the same way a vortex–antivortex pair at distances
smaller than ξ does not exist, i.e. it is annihilated. Here we mention that
Eqs. (5.4) and (5.6) are valid for films with lateral dimensions larger than the
effective penetration depth. In the opposite case the lateral system size enters
expressions (5.4) and (5.6) instead of λ. This change does not complicate
further considerations and we do not consider such situation. We would like
also to point out that the core energy of a vortex should be, in principle,
also included in Eq. (5.1), but it can be taken into account through the small
renormalization of the term in brackets in Eq. (5.6) for Uv.

In the following we will use the energy expression (5.1) which will be
minimized in the parameter space and which determines the structure of
vortex configurations in the GS.

5.3 Ground states with vortices

To determine the GSCs of the system with respect to different parameters,
we consider the asymptotic forms of Eqs. (5.2) and (5.4). For simplicity we
will just consider the case of thin magnetic dots (at < R) placed on the
film surface (d = 0). The other cases may be straightforwardly done having
calculated the asymptotic forms of Umv, Eq. (5.3).

The necessary condition for the appearance of an extra vortex with re-
spect to the trivial GSC is E1 ≤ E0. Using Eq. (5.3) in the lowest order in
λ/R we obtain

M ≥ 2λ

R
, (5.7)

where we have introduced

M =
Matφ0

Uv

. (5.8)

This result agrees with the one from Ref. [98]. Here we have taken into ac-
count that the strongest attraction energy between single vortex and magnet
occurs at ρ = 0. The phase boundary is a linear function of λ/R for R < λ.
For large dot radii R, result (5.7) shows that any nonzero magnetization in-
duces a vortex in the film. This resembles the result for vanishing of the first
critical field for thin films in an external homogeneous magnetic field [91, 92].

Apart from the trivial GSC and the single vortex state, there are other
states for higher M. We will now determine a portion of the parameter
space where a vortex–antivortex pair appears in the GS. The energy E1,−1 of
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Figure 5.2: Phase diagram of a magnetic dot for Lg = 6 and at/R = 0.01: the vortex–
antivortex state appears for large enough dot magnetization and large enough λ/R. The
solid lines are obtained numerically, while the dashed are analytic formulae (5.7), (5.11)
and (5.12) with A = 1.7. Inset: the upper(lower) curves show the antivortex(vortex)
positions. The solid (dashed) lines correspond to the upper (lower) phase boundary of the
vortex–antivortex pair. The dotted lines are plotted using analytic formulae (5.14) and
(5.15).

a vortex–antivortex pair separated by a distance ρ (ρ≪ 2λ) with the vortex
under the dot center reads

E1,−1(ρ)

Uv
=2 +

Umv(0, 1)

Uv
+

MR2

4λρ
−
(

2

Lg
+

MR2

8λ2

)(
Lg − ln

ρ

ξ

)
, (5.9)

where

Lg = ln
4λ

ξ
− γ (5.10)

is the logarithmic factor in the vortex self energy. We may notice from
Eq. (5.9) that the main contribution from the magnetic dots on the an-
tivortex is the energy cost, and it scales with the distance from the dot as
1/ρ, while the energy gain due to the vortex–antivortex attraction scales
logarithmically. This different behavior (1/ρ vs. ln ρ) may lead to a stable
potential minimum for some parameters. For that energy minimum we find
ρ∗ = 2λ/(1+ 2

Lg

8λ2

MR2 ) which should be supplemented with the self consistency

condition ρ∗ ≪ λ where Eq. (5.9) is valid, and also with ρ∗ > at, R. The
implicit equation E1,−1(ρ

∗) = 0 defines the phase boundary for the creation
of a vortex–antivortex pair. In addition, if the conditions E1,−1(ρ

∗) < E1

and E1,−1 < 0 are satisfied, the vortex–antivortex pair forms the GS. The
condition E1,−1 ≤ E1 gives

M ≤ λ2

R2

32

Lg

[
exp

(
1 + γ + Lg

2

)
− 2
] , (5.11)
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which is the upper dashed line for the vortex–antivortex phase boundary
in Fig. 5.2. The other phase boundary we get from the condition that the
antivortex is placed outside the dot, ρ∗ ≥ AR, which gives

M ≥ 8

Lg

λ

R
A, (5.12)

where A is a positive number of order one.
From the last two inequalities we obtain the condition on λ/R when the

vortex–antivortex forms the GS (in the case at < R, d = 0):

λ

R
≥ A

4

[
exp

(
1 + γ +

Lg

2

)
− 2

]
. (5.13)

For simplicity, in Eq. (5.9) we have assumed that the vortex position
is under the dot, ρ1 = 0. Having in mind relatively flat magnet–vortex
interaction (5.3) for ρ < R the system can gain even more energy allowing
ρ1 > 0 toward the antivortex, since the energy loss in the vortex–magnet
interaction may be overcompensated by the vortex–antivortex attraction. A
similar calculation to the previous one gives for the vortex displacement

ρ1

R
=

64λ2

M2R2L2
g

, (5.14)

while for the antivortex

ρ

2λ
=

1

1 + 2
Lg

8λ2

MR2

− 2R

MLgλ
, (5.15)

and the center of the dot, vortex and antivortex are collinear. Physically, the
stronger the magnetization of the dot is, the closer the vortex to the dot’s
center is. We also see that the symmetry of the single vortex GSC is broken
for the range of parameters where the antivortex appears.

5.4 Magnetic field

The magnetic dot on top of the superconducting film induces circular super-
currents in the film. These currents generate magnetic field in and outside
the film. The total magnetic field in space is a sum of three terms: due to
the supercurrents, due to the dot and due to vortices. In this section we
calculate the magnetic field. The details of calculation are given in appendix
5.A.
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A vortex of vorticity n produces normal to the film surface (axial) and
parallel the film surface (radial) magnetic field which respectively read [107]

Bv
z (ρ, z) =

nφ0

2π

∫ ∞

0

dk
k exp(−k|z|)

1 + 2λk
J0(kρ), (5.16)

Bv
‖(ρ, z) =

nφ0

2π

|z|
z

∫ ∞

0

dk
k exp(−k|z|)

1 + 2λk
J1(kρ). (5.17)

The previous expressions at the film surface z = 0 have the following asymp-
totic forms:

Bv
z (ρ, 0) =

nφ0

8πλ2

{ 2λ
ρ
, ρ≪ λ,(

2λ
ρ

)3

, λ≪ ρ,
(5.18)

Bv
‖(ρ, z → 0) =

nφ0

8πλ2

|z|
z

{ 2λ
ρ
, ρ≪ λ,(

2λ
ρ

)2

, λ≪ ρ.
(5.19)

The parallel magnetic field outside the film (remember that in our calcula-
tions the film is just in the z = 0 plane) changes the sign going from one
side of the film to the other. This is due to the fact that the vortex induces
the supercurrents in the film which circulate around it, and the jump in Bv

‖
crossing the film surface is the condition for the jump of parallel magnetic
field at boundaries due to surface currents [1]. The normal magnetic field is
continuous across the film. The surface current density Kv produced by the
vortex is given by

Kv =
c

4π
ẑ × (Bv

‖(ρ, 0
+) − Bv

‖(ρ, 0
−)), (5.20)

which agrees with the (integrated over z) expression for the current density
around a vortex, Eq. (5.42).

The magnetic field due to the dot is given by the two integrals:

Bd
z (ρ, z) = −2πMR

∫ ∞

0

dkJ0(kρ)J1(kR)
{exp(−k(|z| + d))

1 + 2λk
(5.21)

× [1 − exp(−kat)] + sign(d− z) [1 − exp(−k|d− z|)]−
sign(d+ at − z) [1 − exp(−k|d+ at − z|)]

}
,

Bd
‖(ρ, z) = −2πMR

∫ ∞

0

dkJ1(kρ)J1(kR)
{

sign(z)
exp(−k(|z| + d))

1 + 2λk
(5.22)

× [1 − exp(−kat)] + exp(−k|d− z|) − exp(−k|d+ at − z|
}
.
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Eq. (5.21)(Eq. (5.22)) we write as a sum Bd
z(‖) = Bdm

z(‖)+B
df
z(‖) of the fields due

to the dot Bdm
z(‖) and due to the supercurrents Bdf

z(‖). B
dm
z(‖) is mathematically

defined by setting λ→ ∞ in Eq. (5.21)(Eq. (5.22)), which physically means
the system with the dot but without the film. We evaluate (5.21) and (5.22)
for d = 0 and at the film surface. The purely magnetic terms are given by

Bdm
z (ρ, 0) = −πMR2at

1

ρ3
, (5.23)

Bdm
‖ (ρ, 0) = −πMR2at

3at

2ρ4
, (5.24)

to the leading order for ρ≫ at, R. The previous result can be understood as
the magnetic dipolar field [1]. The part due to the supercurrents is

Bdf
z (ρ, 0) = −πMR2at

{
1

4λρ2 , at, R≪ ρ≪ λ,

O
(

1
ρ4

)
, at, R≪ λ≪ ρ,

(5.25)

Bdf
‖ (ρ, z → 0) = −πMR2at

|z|
z

{ 1
λρ2 , at, R≪ ρ≪ λ,
6λ
ρ4 , at, R≪ λ≪ ρ.

(5.26)

Again, the parallel field Bdf
‖ jumps across the film surface due to the surface

currents. The surface current density Km in the film due to the presence of
the dot is given by

Km =
c

4π
ẑ × (Bdf

‖ (ρ, 0+) −B
df
‖ (ρ, 0−)). (5.27)

As first proposed in Ref. [98] the presence of a single vortex in the film
can be proved by observing the change of sign of the total field Bz near the
film. We can now calculate that it happens when Bd

z (ρsz, 0)+Bv
z (ρsz, 0) = 0,

which gives ρsz = 2π
√
MR2atλ/φ0 provided a single vortex appears in the

GS. Using the condition for the single vortex appearance, Eq. (5.7), we obtain
ρsz ≈

√
LgRλ/2. We can also formulate a similar condition for the presence

of a single vortex for the parallel field, which also changes the sign for at
the distance ρs‖ from the dot. ρs‖ is defined as a solution of the equation
Bd

‖(ρs‖, 0) + Bv
‖(ρs‖, 0) = 0. The solution of the resulting cubic equation is

ρs‖ ≈ (6π2MR2a2
tλ/φ0)

1/3 above the film (z → 0+), which using Eq. (5.7)
becomes ρs‖ ≈ (3LgRatλ/4)1/3.

Qualitatively different behavior of the normal and parallel magnetic field
is summarized in Fig. 5.3 when a single vortex is present in the GS. Suffi-
ciently close to the dot dominates the dipolar field from the dot, while at
larger distances the vortex part of the field is a leading term.
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Figure 5.3: Behavior of the magnetic field near the upper film surface. The magnetization
of the dot is assumed to be directed as in Fig. 5.1, such that a single vortex appears under
the dot. The magnetic field changes the sign at some distance from the dot due to the
presence of the vortex.

So far we have only considered a single vortex under the dot. Since there
may be many other vortex–antivortex states in the film, the magnetic field
(the vortex part only) of such configurations will behave differently than
in Eqs. (5.18) and (5.19). It will also have the angular dependence. In
that case the total magnetic field close enough to the dot will be dominated
by the dipolar field from the dot, while at larger distances the anisotropic
vortex part of the magnetic field will prevail. One should be able to use the
measurement of the magnetic field near the film for detection of vortex states
induced by the dot.

5.5 Numerical study of ground states with

low number of vortices

In section 5.3 we have shown analytically that a vortex–antivortex pair can
be present in the GS. That was the simplest GSC containing the antivortex.
Certainly there are other more complicated states for a range of parame-
ters. The analytic study of these states is in principle straightforward using
already introduced expressions, but tedious. In this section we study numer-
ically GSCs. For a given configurations uniquely determined by n1, n2, . . .
we use expression (5.1) to obtain the energy minimum and the positions of
vortices and antivortices. The GSC for given λ/R, at/R, Lg and M has the
energy minimum over of all possible vortex–antivortex configurations. In our
calculations we took into account just states with low numbers of vortices,
since they cover significant part of the parameter space as well as the other
states are computationally demanding. The dot–magnet distance is set to
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Figure 5.4: Phase diagram of a magnetic dot for Lg = 6 and at/R = 0.01 with different
vortex–antivortex configurations.
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Figure 5.5: Phase diagram of a magnetic dot for Lg = 6 and at/R = 1 with different
vortex–antivortex configurations.

d = 0. We have examined all states which have up to four vortices with an-
tivortices, while for the states with five vortices we took into account vortices
without antivortices. This is certainly not correct since antivortices appear
in states with five vortices as well, but such states are located in a particular
region of the parameter space and do not affect states containing up to three
vortices (see further in the text).

The states with six and more vortices are not taken into account. This is
not crucial for our study since the vortex state of vorticity n will appear in
the phase diagram for M ≥ 2nλ/R, which is either for large magnetization
or large magnetic dots (with respect to λ). On the other hand, the boundary
line for n single vortices (and antivortices) is moved a little bit toward smaller
M for a given λ/R.

In Fig. 5.4 we show the GSCs for the case of a magnetic dot with at/R =
0.01 and Lg = 6. For low values of M there are no vortices in the GS for
any λ/R. With increasing M the state E1 appears. Further increase of M is
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ultimately followed with the appearance of antivortices. To be specific, let us
consider λ/R = 50. After E1, the state with antivortex E1,−1 appears which
is the GSC for some region of M. Then the states E1,1,−1,−1, E1,1,1,−1,−1,−1,
E1,1,1,−1,−1, E1,1,1,1,−1,−1,−1,−1 appear for larger M. Further states might have
included the states with five vortices with antivortices if we had taken them
into account. The states that evolve from each other have one vortex and/or
one antivortex more/less than its neighbors. We believe that this should
mean that the states with three vortices will not be affected by the states
with five vortices.

Also the net vorticity of the GSCs is small (0,±1), in general, just near the
origin it is higher. However, for small λ/R the dot radius is pretty large for
realistic films and a further analysis with finer resolution of λ/R is necessary.
We are here mainly concentrated in the region where R < λ since it is the
most interesting experimentally.

The distances between the center of the dot and vortices and antivortices
are shown in Fig. 5.6 and Fig. 5.7 respectively. We see that they abruptly
change at the boundaries between different GSCs. We also see that the an-
tivortices when are present, are placed at distances of a few R. Inside the
same GSC, for fixed λ/R, the antivortices spread with increasing M, while
the vortices shrink. This is plausible, since very large magnetization of the
dot would expel antivortices to very large distances. The interaction energy
can not be then compensated by the attractive vortex–antivortex attraction.
On the other hand, vortices are attracted at smaller distances toward the
potential minimum of the vortex–magnet interaction. These results are also
confirmed by the analytic formulae (5.14) and (5.15) from the study of a
single pair. We also find that in the states of zero total vorticity that contain
two, three and four vortices, the positions of antivortices are obtained as ho-
mothetically transformed positions of vortices, and they form line, equilateral
triangle and square, respectively.

The GSCs without antivortices are shown in Fig. 5.8. The relative energy
difference due to the presence of antivortices is shown in Fig. 5.9. The relative
energy gain is quite significant, which means that states without and with
antivortices have quite different energies.

We see at Fig. 5.9 that the vortex states containing single vortices appear
for smaller values of magnetization, while the state with a double vortex, E2,
is present for higher M. A simple analytical check translated the condition
E1,1 ≤ E2 into

M ≤ 1

Lg
exp (2Lg + 1 − 2γ)

R

λ
, (5.28)

which for Lg = 6 becomes M ≤ 23200R/λ. This also gives one expla-
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Figure 5.6: Vortex distances (in units of the dot radius R) from the dot center for Lg = 6
and at/R = 0.01 which correspond to the ground state configurations given in Fig. 5.4.
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Figure 5.7: Antivortex distances (in units of the dot radius R) from the dot center for
Lg = 6 and at/R = 0.01 which correspond to the ground state configurations given in
Fig. 5.4.
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Figure 5.8: Phase diagram of a magnetic dot for Lg = 6 and at/R = 0.01 when antivor-
tices are excluded from the energy minimization procedure.
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Figure 5.9: Relative energy change in the ground state when antivortices are included
for Lg = 6 and at/R = 0.01.

nation why the only ground state that has giant vortices (vortices having
the vorticity larger than one) in Fig. 5.4 is E2,−1,−1. It appears around
λ/R = 100,M = 250, which is in agreement with the rough estimate of
Eq. (5.28). The other states with giant vortices may appear only for higher
Mλ/R ratios.

For comparison with thicker magnetic dots, we have calculated the GSCs
for at/R = 1 and they are shown in Fig. 5.5. The single vortex appears now
for larger M, which is obvious from Eq. (5.7). The state E1,−1 now occurs
for larger λ/R. However, a global picture with diversity of vortex–antivortex
states again holds. A GSC here is shifted toward higher λ/R and M values
with respect to the corresponding GSC for thinner dots.
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5.6 Discussions and conclusions

Now we comment about the applicability of the London approximation to
our system. The ratio between the dot radius R and the coherence length ξ
as a function λ/R is given as R/ξ = R exp(Lg + γ)/(4λ). We may conclude
that for λ/R < 100 and Lg = 6 the dot radius is always larger than the
coherence length. On the other hand, a necessary condition for the London
approach to be valid is that the all lengths are (much) larger than the coher-
ence length. We see that this is well satisfied when λ/R approaches smaller
values. We expect that our results with different GSCs are valid even qual-
itatively for λ/R . 50, while the general picture with antivortices and low
vorticity GSCs holds even for smaller dot radii. However, it is expected that
for smaller R/ξ ratios, giant vortices are favorable. We have already men-
tioned such tendency. Let us mention that a certainly better numerical way
would be the nonlinear Ginzburg–Landau theory. For the case of mesoscopic
superconducting discs, a comparison of these two methods shows that they
give similar results for R = 6ξ and for states that have up to five vortices
[108].

Let us consider numerical values of parameters for realistic systems. For
thin Nb films close to the critical temperature T/Tc = 0.98, the values for
the London penetration depth and the coherence length are λL

∼= 560 nm
and ξ ∼= 58 nm [109]. Then Lg = 6 corresponds to a film of the thickness
ds

∼= 30 nm having the effective penetration depth λ ∼= 10.5 µm. The
condition for the E1,−1 state (5.13) can be rewritten as R < λL

√
ξ/(9ds),

or R < 260 nm in our case. The condition for the applicability of the
London theory, ξ < R is still satisfied, so the results should be also valid.
Larger magnetic dots may have other vortex–antivortex configurations, and
the London theory is expected to be applicable there.

In this chapter we have considered infinite films. We expect this not to be
a severe limitation as soon as the dot radius is much smaller than the system
size, since the antivortices when appear are placed at distances of the order
of R and the boundaries of the film should not affect them. For films with
lateral dimensions smaller than λ, the single vortex energy given by Eq. (5.6)
will have under the logarithm the lateral system dimension instead of 4λ. For
small dot radii one should repeat the same procedure as we described, just
with a new value for the single vortex energy Uv.

To conclude, in this chapter we have considered a thin superconducting
film with a cylindrical magnetic dot with permanent magnetization placed
on the top of it. Inside the Maxwell–London approach we have calculated the
vortex–magnet interaction and its asymptotic limits. Using these results we
have shown analytically that a vortex–antivortex pair appears in the ground
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state of the system for some range of dot’s radii and its magnetization. The
necessary magnetization for that is comparable to the magnetization for the
appearance of a single vortex. The magnetic field everywhere in space is also
calculated. Near the film surface, it has different scaling forms with respect
to the distance from the center of the dot. This fact may be used for the
experimental detection of vortices. In addition to that, we have calculated
the phase diagram numerically, taking into accounts the states that have up
to four vortices and antivortices.

5.A Derivation of the model

In this appendix we will calculate several quantities used in the main text of
this chapter. We consider the system which consists of a superconducting film
and a single magnetic dot, as shown in Fig. 5.1. Magnetic field everywhere in
space B(ρ, z) is determined by the total current density j(ρ, z) via Ampère’s
law, ∇ × B(ρ, z) = 4πj(ρ, z)/c. The total current density is a sum of the
superconducting current density and the current density due to the presence
of magnetic dot, which reads c∇× M(ρ, z).

The supercurrent density is determined by the second Ginzburg–Landau
equation. In a three-dimensional superconductor with the order parameter
ψ(r) = |ψ(r)|eiϕ(r) it reads [24]

js(r) =
~e∗

m∗ |ψ(r)|2
(
∇ϕ(r) − e∗

~c
A(r)

)
, (5.29)

where e∗ and m∗ are the effective charge and mass of a pair of electrons and
A(r) is the vector potential. In the London approximation |ψ(r)| is regarded
as a constant except in the small core regions around vortices. Then, the
previous equation can be written as

js(r) =
c

4πλ2
L

(
φ0

2π
∇ϕ(r) −A(r)

)
, (5.30)

where λL is the London penetration depth, which is given by

λ2
L =

m∗c2

4πe∗2|ψ(r)|2 , (5.31)

and the flux quantum is φ0 = hc/e∗ = hc/(2e).
For a superconducting film placed in the x-y plane one integrates Eq. (5.30)

over a film thickness ds along the ẑ direction. If the film is much thinner than
λL we may assume that ϕ(r) and A(r) remain constant across the thickness



74 Vortex configurations in a superconducting film with a magnetic dot

of the film. If we imagine that all current is concentrated in a delta-function
sheet in the plane z = 0, the three-dimensional superconducting current
density (5.30) can be written as

js(ρ, z) =
c

4πλ

(
φ0

2π
∇ϕ(ρ) − A2d(ρ)

)
δ(z), (5.32)

where we have introduced the effective penetration depth of the film

λ =
λ2

L

ds

. (5.33)

A2d(ρ) is the vector potential in the two-dimensional film. Expressing the
magnetic field as B = ∇× A, the Ampère’s law becomes

∇× (∇× A(ρ, z)) = − 1

λ
A2d(ρ)δ(z) +

1

λ

φ0

2π
∇ϕ(ρ)δ(z) (5.34)

+ 4π∇× M(ρ, z).

We have got the London-Maxwell equation which determines currents and
interaction energies in our system. Due to linearity of the London-Maxwell
equation the vector potential may be written as a sum A = Av +Am, where
Av and Am are determined as solutions of the corresponding London-Maxwell
equations generated by vortices and by the dot magnetization, respectively.

We will first solve the vortex part of the Eq. (5.34) which reads

∇× (∇× Av(ρ, z)) = −1

λ
Av2d(ρ)δ(z) +

1

λ

φ0

2π
∇ϕ(ρ)δ(z). (5.35)

For a single vortex of vorticity n the gradient of its phase is given by the
expression

∇ϕ(ρ) = n
ẑ × ρ

ρ2
. (5.36)

Introducing the Fourier-transform of the vortex vector potential

Av(kρ, kz) =

∫
d2kρ

∫
dkze

−ikρρe−ikzzAv(ρ, z) (5.37)

and

Av2d(kρ) =

∫
d2kρe

−ikρρAv2d(ρ) (5.38)
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and using the Coulomb gauge ∇ · Av = 0, Eq. (5.35) becomes

Av(kρ, kz) +
1

λ(k2
ρ + k2

z)
Av2d(kρ) =

inφ0

λ(k2
ρ + k2

z)

kρ × ẑ

k2
ρ

. (5.39)

Taking into account that the three-dimensional vector potential at z = 0
must match the two-dimensional one Av(ρ, z = 0) = Av2d(ρ), after some
elementary algebra we get [107]

Av(kρ, kz) =
2inφ0

(k2
ρ + k2

z)(1 + 2λkρ)

kρ × ẑ

kρ
. (5.40)

Using Eq. (5.40) and inverse Fourier transforming the expression Bv(kρ, kz) =
ik×Av(kρ, kz), where k = kρ+kzẑ, one gets the expressions for the magnetic
field produced by the vortex, Eqs. (5.16) and (5.17).

The current density produced by a single vortex of vorticity n placed at
origin can be calculated from the Fourier transformed Ampère’s law

js(kρ, kz) =
c

4π
ik × (ik × Av(kρ, kz)) (5.41)

=
c

4π
(k2

ρ + k2
z)Av(kρ, kz).

We get

js(ρ, z) =
ẑ × ρ

ρ
δ(z)

nφ0c

4π2

∫ ∞

0

dkρ
kρJ1(kρρ)

1 + 2λkρ
(5.42)

=
ẑ × ρ

ρ
δ(z)

nφ0c

32λ2π

[
H1

( ρ
2λ

)
− Y1

( ρ
2λ

)
− 2

π

]
.

The force acting on a vortex of vorticity n1 separated by a distance ρ from
the vortex of vorticity n at origin is [24]

F =

∫
dzjs(ρ, z) ×

n1φ0

c
ẑ. (5.43)

On the other hand, the force is determined as a negative gradient of the
interaction energy between these two vortices

F = −∇Uvv(ρ, n, n1). (5.44)

Combining the last two equations, for the interaction energy between the two
vortices we get

Uvv(ρ, n, n1) = nn1
φ2

0

16πλ

[
H0

( ρ
2λ

)
− Y0

( ρ
2λ

)]
. (5.45)
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Next, we will solve the London–Maxwell equation for the magnetic part.
It reads

∇× (∇× Am(ρ, z)) = −1

λ
Am2d(ρ)δ(z) + 4π∇× M(ρ, z). (5.46)

Fourier transforming Eq. (5.46) we get

k2Am(kρ, kz) − k(k · Am(kρ, kz)) = −1

λ
Am2d(kρ) + 4πik ×M(kρ, kz),

(5.47)

which in the axial gauge Amz = 0 has the solution [98]

Amρ(kρ, kz) = 4πi
M(kρ, kz)

kz
· kρ × ẑ

kρ
, (5.48)

Amϕ(kρ, kz) = −Am2dϕ(kρ)

λ(k2
ρ + k2

z)
+

4πiM(kρ, kz)

kρ(k2
ρ + k2

z)
· (kzkρ − k2

ρẑ). (5.49)

For a cylindric magnetic dot with magnetization along ẑ, see Fig. 5.1 for
parameters of the dot, one obtains the vector potential Am with components
Amρ = Amz = 0 and

Amϕ(kρ, kz) =
4πikρM(kρ)

k2
ρ + k2

z

[
e−kρd − e−kρ(d+at)

atkρ(1 + 2λkρ)
−M(kz)

]
, (5.50)

where the Fourier transform of the dot magnetization is given by M(kρ, kz) =
M(kρ)M(kz)ẑ with

M(kρ) =
2πMRa

kρ
J1(kρR), (5.51)

M(kz) =
i

kzat

[
e−ikz(d+at) − e−ikzd

]
. (5.52)

Using Eq. (5.50) one can calculate the magnetic field produced by the dot
everywhere in space. The final expressions are given in Eqs. (5.21) and (5.22).

To determine the interaction energy vortex–dot we need an expression
for the current density produced by the dot in the film. Using the Fourier
transformed Ampère’s law,

jm(kρ, kz) =
c

4π
ik × (ik × Am(kρ, kz)) (5.53)

=
c

4π
(k2

ρ + k2
z)Amϕ(kρ, kz)

ẑ × kρ

kρ
,
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for the current density in the film sheet produced by the magnetic dot, we
obtain

j′m(ρ, z) = δ(z)cMRat
ρ × ẑ

ρ

∫ ∞

0

dkρJ1(kρρ)J1(kρR)
e−kρd − e−kρ(d+at)

a(1 + 2λkρ)
.

(5.54)

The force acting on a vortex of vorticity n separated by a distance ρ from
the dot’s center is

F =

∫
dzj′m(ρ, z) × nφ0

c
ẑ. (5.55)

On the other hand, this force is determined as a negative gradient of the
interaction energy between the dot and vortex

F = −∇Umv(ρ, n). (5.56)

Combining the last two equations for the interaction energy we obtain

Umv(ρ, n) = −nMRφ0

∫ ∞

0

dkρJ0(kρρ)J1(kρR)
e−kρd − e−kρ(d+at)

kρ(1 + 2λkρ)
. (5.57)

5.B Calculation of Umv

In this appendix we calculate asymptotically the integrals that appear in the
interaction energy (5.2). To do that it is sufficient to calculate the integral
of the form

I(a, b, c) =

∫ ∞

0

dxJ0(ax)J1(x)
e−cx

x(1 + 2bx)
. (5.58)

In the limit a ≫ c and a ≫ 1 this integral will be cut by the oscillations
of the Bessel functions and the main contribution comes from the region
x < 1/a≪ 1. Then we can expand J1(x) exp(−cx) ≈ x(1− cx)/2. Using the
tabulated integrals [110]

∫ ∞

0

dx
J0(αx)

1 + x
=
π

2
[H0(α) − Y0(α)] , (5.59)

∫ ∞

0

dxJ0(αx) =
1

α
, (5.60)

we easily obtain

I(a, b, c) =
2b+ c

8b2
π

2

[
H0

( a
2b

)
− Y0

( a
2b

)]
− c

4ab
. (5.61)
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Using the expansion [105]

π

2
[Y0(x) −H0(x)] =

{
γ + log x

2
− x, x≪ 1

−x−1 + x−3, x≫ 1
(5.62)

where γ ≈ 0.577 is the Euler constant, one can further simplify the asymp-
totic expressions for I(a, b, c).

In the limit a ≪ c and a ≪ 1 integral (5.58) is cut by the exponential
function at x ≈ 1/c, which means the argument of J0 function ax ≈ a/c≪ 1
and we expand J(0, ax) ≈ 1 − a2x2/4. We obtain

I(a, b, c) =

∫ ∞

0

dxJ1(x) exp(−cx)
(
−a

2

8b
+

1

x
+

a2

8b
− 2b

1 + 2bx

)
. (5.63)

Then using the tabulated integrals [110]

∫ ∞

0

dx
J1(αx)

1 + x
= 1 +

1

α
+
π

2
[Y1(α) −H1(α)] , (5.64)

∫ ∞

0

dxJ1(αx)
exp(−γx)

x
= −γ +

√
1 + γ2, (5.65)

∫ ∞

0

dxJ1(αx) exp(−γx) = 1 − γ√
1 + γ2

, (5.66)

and the expansion for x ≪ 1 [105]

π

2
[H1(x) − Y1(x)] =

1

x
+
x

4

(
1 − 2γ + log

4

x2

)
(5.67)

we obtain for a≪ c≪ 1 ≪ b

I(a, b, c) =
1

8b

(
1 − 2γ + c(a2 − 4) − a2

√
1 + c2 + log

16

b2

)
(5.68)

+ c− c√
1 + c2

.

In the above expressions J0 and J1 are the Bessel functions of the first kind,
Y0 and Y1 are the Bessel functions of the second kind, while H0 and H1 are
the Struve functions of order zero and one, respectively [105].
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Chapter 6

Superconducting film with

randomly magnetized dots

In this chapter we consider a thin superconducting film with randomly
magnetized dots on top of it. We show that for dots with permanent
and random magnetization normal or parallel to the film surface, our
system is an experimental realization of the two-dimensional XY model
with random phase shifts. The low-temperature superconducting phase,
that exists without magnetic dots, survives in the presence of magnetic
dots for sufficiently small disorder.

6.1 Introduction

Since the pioneering papers by Berezinskii [111] and Kosterlitz and Thou-
less [27] finite temperature phase transitions in two-dimensional (2D) sys-
tems, which have a continuous symmetry specified by a phase, have become
a very active research field. It turned out that two-dimensional superflu-
ids [112] as well as thin superconducting films [28, 29, 113, 114] have a
Berezinskii–Kosterlitz–Thouless transition at a finite temperature T2D. The
low-temperature phase is superfluid (superconducting) and has quasi-long
range order, while the disordered high-temperature is normal liquid (metal-
lic) for superfluids (superconductors). These systems are successfully de-
scribed by the two-dimensional XY model, see Eq. (6.1) with Aij ≡ 0. The-
oretical predictions were confirmed experimentally: a universal jump in the
superfluid density at T2D [115] and different current-voltage characteristics
of superconducting films below and above T2D [116].

Introducing the disorder through the random phase shifts in the two-
dimensional XY model physics becomes more complex. The Hamiltonian of
the two-dimensional XY model with random phase shifts reads [117, 118]

H = −ε0

π

∑

i,j

cos(φi − φj −Aij), (6.1)

where the sum runs over all nearest neighboring sites on a square lattice.
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TT2D

σc

σ

bound vortices

(SC)

unbound vortices

(N)

?

(SC)

Figure 6.1: Phase diagram of the two-dimensional XY model with random phase shifts.
At low temeprature and weak disorder σ < σc a superconducting phase (SC) occurs
where vortices are bound in pairs. Above T2D vortices are unbound and the phase is
non-superconducting (N). According to some studies, see Refs. [124, 125, 126], at low
temperatures and for strong enough disorder appears another superconducting phase.

φi denotes the phase of the order parameter, while Aij are quenched ran-
dom phase shifts on bonds of the square lattice produced by some kind of
disorder. We assume that Aij are Gaussian distributed, uncorrelated, have
the mean value zero 〈Aij〉 = 0, and the variance 〈A2

ij〉 = σ. The pure two-
dimensional XY model contains two different kinds of excitations which are
decoupled. The spin-wave excitations describe small changes of the phase
φ and do not drive any phase transitions. Another kind of excitations are
vortices, topological excitations, and they are essential for the existence of a
Berezinskii–Kosterlitz–Thouless transition in the two-dimensional XY model
at T2D. Vortices are bound in pairs in the low-temperature phase, and un-
bound at high temperatures. Introducing the disorder in the form of random
phase shifts, the low-temperature superconducting phase survives for weak
enough disorder; this has been shown first analytically [118, 119, 120, 121]
and then numerically [122, 123]. The phase diagram of the model (6.1) is
given in Fig. 6.1.

The Hamiltonian (6.1) describes the thermodynamic behavior of several
disordered systems, including two-dimensional ferromagnets with random
Dzyaloshinskii–Moriya interaction [117], Josephson junction arrays with posi-
tional disorder [127] and vortex glasses [128]. In this chapter we will consider
another system and show that it also belongs to the class of systems that
can be described by the model (6.1). It is a ferromagnet-superconductor
hybrid system. The system consists of a thin superconducting film covered
by magnetic dots with permanent, but random magnetization. For more
details about hybrid systems see recent reviews [30, 31]. We will show that
our system can be described by the Hamiltonian (6.1) under some conditions
defined below. Knowing the solution of the model (6.1) we can establish the
possible phases of the system.
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Placed on top of the film, a single magnetic dot with sufficiently large
magnetization, normal to the film surface, induces and pins vortices and
antivortices around it [96, 97, 100]. We have also shown it in chapter 5. A
regular lattice of magnetic dots with constant and equal magnetization is the
source of a periodic pinning potential for vortices in the film. The magnetic
dots induce periodic arrays of vortices and antivortices in the film, provided
the dot magnetization is high enough [129, 130]. The periodic pinning is
absent in the case of a random dot magnetization, and there magnetic dots
are a source of disordered pinning potential for vortices. Lyuksyutov and
Pokrovsky [30, 96] considered a superconducting film with a magnetic dots
array with random, sufficiently strong magnetic moments and concluded that
the dot array induces the resistive state in the film. They have not considered
the case when magnetic moments are weak. In this chapter we will show that
the superconducting state survives provided the disorder is not too strong.
Hybrid systems with a regular lattice of magnetic dots with random magne-
tization [131], and without a lattice, but homogeneously distributed dots on
top of a thin superconducting film [132] have been recently experimentally
realized.

In the rest of the chapter in section 6.2 we introduce a model for our hybrid
system and give its solution by mapping it to the model (6.1). Section 6.3
contains discussions and conclusions. Some technical details are postponed
to the appendix.

6.2 Model and its solution

We consider a thin superconducting film characterized by the London pene-
tration depth λL, the coherence length ξ, a thickness ds and a typical lateral
dimension L. The London penetration depth is in general temperature de-
pendent and we assume that our film has the effective penetration depth
λ = λ2

L/ds that exceeds film’s lateral dimension L. This limit is valid for
“dirty” superconducting films [28]. In addition, provided the bulk critical
temperature is larger than a critical temperature T2D for vortex unbinding,
the film has a Berezinskii–Kosterlitz–Thouless transition at T2D [28, 113].

We consider dots with permanent random magnetization placed on top
of the film. They produce a random potential V for vortices in the film.
Assuming vortices of vorticities ni are places on a quadratic lattice with the
lattice constant a (which is of the order of the coherence length), the effective
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lattice Hamiltonian for the system may be written as

Hv =
∑

i

[
n2

i (Ec + Uv) + niVi

]
+

1

2

∑

i6=j

ninjUvv(ρij), (6.2)

where the sum runs over all lattice sites, ε0 = φ2
0/(16π2λ), the flux quantum is

φ0 = hc/(2e), Vi is the random potential at site i, while Ec is the single vortex
core energy which is of the order ε0. Uv and Uvv(ρij) are the single vortex
energy and the interaction energy of two vortices separated by a distance ρij,
respectively. For L < λ they read [106, 133]

Uv = ε0 ln
L

a
, (6.3)

Uvv(ρij) = 2ε0 ln
L

ρij

. (6.4)

Using expressions (6.3) and (6.4) it is useful to rewrite the Hamiltonian (6.2)
in the form

Hv =
∑

i

(
n2

iEc + niVi

)
− ε0

∑

i6=j

ninj ln
ρij

a
+N2Uv, (6.5)

where we have introduced the total vorticity of the system N =
∑

i ni. In the
limit L ≫ a (a ∼ ξ) the last term of Eq. (6.5) penalizes the total energy for
nonzero total vorticities, so we consider in the following only configurations
of vortices with the total vorticity N = 0. Without the disorder potential,
Vi = 0, a superconducting film described by the model (6.5) has a Berezinskii–
Kosterlitz–Thouless transition at the temperature T2D = ε0(T2D)/2, where
ε0(T2D) denoted that one should take value λ(T2D) renormalized by the pres-
ence of vortices [27, 28, 113].

Next, we consider effects of the random potential. First we consider the
case when the dots have random magnetization parallel to the film surface.
We model the magnetic dots as magnetic dipoles placed on top of the film at
lattice sites. To characterize statistical properties of the dots, we assume that
the x− and y− components of the magnetic moment at site i are Gaussian
distributed, have zero mean value and are uncorrelated from site to site:

〈miα〉 = 0, 〈miαmjβ〉 = µ2δijδαβ , α, β = x, y (6.6)

where 〈. . .〉 denotes an average over disorder. Since the dots have random
magnetic moments, we can say that µ is the measure for a typical magnetic
moment of a magnetic dot at some lattice site.
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The interaction energy between a single dot having the magnetic moment
m parallel to the film surface and a vortex of vorticity n placed at a relative
distance ρ from the dot can be calculated using the approach from chapter
5, appendix 5.A, and reads

U‖
mv(n, ρ) =

m · ρ
ρ

nφ0

2π

∫ ∞

0

dk
kJ1(kρ)

1 + 2λk
(6.7)

=
m · ρ
ρ

nφ0

16λ2

[
H1

( ρ
2λ

)
− Y1

( ρ
2λ

)
− 2

π

]
,

where J1 is the Bessel function of the first kind, H1 is the Struve function and
Y1 is the Bessel function of the second kind [105]. Notice that the interaction
energy between the magnetic dipole and the vortex can be simply written in
the form −m · Bv, where Bv is the magnetic field produced by the vortex
(Eq. (5.17)) at the dipole position [134]. In the limit ρ ≪ λ the interaction
energy (6.7) reads

U‖
mv(n, ρ) =

m · ρ
ρ

nφ0

4πλρ
. (6.8)

The random site potential Vi is given as a sum over the lattice

Vi =
∑

j 6=i

U
‖
mv(nj , ρij)

nj

=
φ0

4πλ

∑

j 6=i

mj · ρij

ρ2
ij

. (6.9)

By summing over j 6= i in the previous expression we avoid the short scale
cutoff divergence of the interaction energy (6.7) at ρ = 0, which exists because
the dots are placed at the top of the film in our model. In reality magnetic
dipoles are separated from the film surface by some small distance ∼ a. Since
Vi is a sum of many independent random variables it is Gaussian distributed
(notice here that the assumption about Gaussian distribution for miα is not
necessary condition for Vi to be Gaussian distributed; it is sufficient that dots
have a distribution with a finite variance). Its mean, variance and site to site
correlations can be calculated and read

〈Vi〉 = 0, (6.10)

〈V 2
i 〉 = 2π

µ2ε0

λa2
ln
L

a
+ O(1), (6.11)

〈(Vi − Vj)
2〉 = 4π

µ2ε0

λa2
ln
ρij

a
+ O(1). (6.12)

The model (6.5) with the disorder potential (6.9) which has properties (6.10),
(6.11) and (6.12) exactly matches the vortex part of the two-dimensional XY
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model with random phase shifts [117, 135]. From the solution of the model
(6.1), see Refs. [118, 121, 135], we know its phase diagram, see Fig. 6.1. At
zero temperature there is a critical value for the typical magnetic moment
per unit length µc/a = φ0/(8π

√
2π). Below that value the system has no free

vortices, while above that value the disorder spontaneously induces unbound
vortices. The connection between σ introduced as the disorder strength in
Eq. (6.1) and the typical magnetic moment µ introduced in Eq. (6.6) is

σ =
(

4π2µ
φ0a

)2

, while the random phase is Ai = 4π2

φ0a
ẑ × mi where the x−

(y−)component of Ai corresponds to the disorder Aij on horizontal (vertical)
bond at site i.

In the case that the dot magnetization is normal to the film surface,
similar to Eq. (6.7), for the interaction energy between a dot of magnetization
m and a vortex of vorticity n separated by a distance ρ we get

U⊥
mv(n, ρ) = m

nφ0

2π

∫ ∞

0

dk
kJ0(kρ)

1 + 2λk
(6.13)

= m
nφ0

16λ2

[
Y0

( ρ
2λ

)
−H0

( ρ
2λ

)
− 4λ

πρ

]
.

The previous expression simplifies for ρ≪ λ and reads

U⊥
mv(n, ρ) = m

nφ0

4πλρ
. (6.14)

By assuming that the film is covered by magnetic dots with random magne-
tization normal to the film surface (along the ẑ direction), satisfying

〈miz〉 = 0, 〈mizmjz〉 = µ2δij , (6.15)

for the site random potential we get

V ′
i =

∑

j 6=i

U⊥
mv(nj, ρij)

nj

=
φ0

4πλ

∑

j 6=i

mjz

ρij

, (6.16)

which, as we show in the appendix, is equivalent to Vi; it has statistical
properties (6.10)-(6.12). We may conclude that the system with magnetic
moments normal to the film has the same phase diagram as in the case of
moments parallel to the film surface.

6.3 Discussions and conclusions

Having shown the equivalence between our system and the vortex part of
the two-dimensional XY model with random phase shifts, we may infer some
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properties of the former. The phase diagram is given in Fig. 6.1. The low
temperature and low disorder phase is superconducting. There vortices and
antivortices are bound in pairs. The current–voltage characteristic for T →
T2D and T < T2D and for weak disorder is expected to be very similar to the
one of Halperin and Nelson [29] for the pure case, V ∼ I3, possibly with a
small correction due to the disorder. This phase has zero linear resistivity.
The high temperature phase is metallic and has a nonzero linear resistivity.
There free vortices dissipate energy and produce the linear current–voltage
characteristic V ∼ I.

In Ref. [96] the conclusion about the resistive state of the film when the
dots with normal magnetization are present relies on the assumption that
the randomly magnetized dots pin vortices of vorticity ±1. These pinned
vortices serve as a source of the random potential for other bound vortices,
which unbind and fill deep valleys of the random potential. These unbound
vortices lead to the resistive state of the film. We agree that this scenario
occurs for sufficiently strong disorder when the dots can induce and pin
vortices. A single dot can induce and pin quite different configurations of
vortices and antivortices regarding its magnetic moment, as we have shown
in chapter 5. We expect that a random lattice of dots can also pin, from site
to site, quite a different number of vortices and antivortices which produce
different potential than one assumed in Ref. [96]. However, our conclusion,
that the resistive state in films occurs when the disorder is sufficiently strong,
agrees with the one from Ref. [96]. Moreover, we give the strength of the
disorder above which the resistive state occurs.

By making a comparison between µc and the magnetic moment m1c of a
single magnetic dot with normal magnetization necessary to induce and pin
an extra vortex in the film, we obtain m1c ≈ µc

√
8π(b/a) ln(L/a), where b is

the distance between the dipole and the film surface. In addition, knowing
that the value µc corresponds not to typical but rare magnetic moments
from the tail of distribution [118, 136], we may conclude that even a very
rare magnetic dot in the film that has the magnetic moment µc is not able to
induce and pin vortices. Such pinned vortices served as a source of random
potential in [96].

In this chapter we have considered the dots as magnetic dipoles. This fact
is unimportant as long as the dot size is not too big with respect to the lattice
constant. What is crucial for any kind of magnetic dots is their interaction
with a vortex which decays as 1/ρ, which is universal for any geometrical
shape of dots, when the vortex is sufficiently far from the dot. The magnetic
field produced by a vortex decays as 1/ρ and the interaction energy dot–
vortex universally decays, regardless of the shape of the dot. This form
of the interaction produces logarithmically diverging, with the system size,
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variance of the disorder potential that is characteristic for the Hamiltonian
(6.1).

Recently, the question of a possible third phase for strong disorder and
at low temperatures has been raised in numerical studies of the model (6.1)
with uniformly random phase Aij in the interval [−rπ, rπ] with 0 ≤ r ≤ 1,
with conflicting results about its existence [124, 126, 137]. While for r <
rc ≈ 0.37 [123] it is accepted that the superconducting phase survives at
low temperature, the case r > rc is still under debate. An experimental
study of Josephson junction arrays with positional disorder [125] supports
the existence the third phase. The new phase is superconducting according
to the experiments of Ref. [125] and numerical investigations of Ref. [124].
In the limit σ → ∞ the model (6.1) and the so-called gauge glass limit,
r = 1, are equivalent, and we expect that the conjectures about the phase
diagram for the case of uniformly distributed phase apply as well to the
Gaussian distribution of the phase. The existence of the third phase is a
challenging question that could be experimentally resolved by using magneto-
superconducting hybrid systems as a realization for the model (6.1).

To conclude, we have shown that a thin superconducting film covered by
magnetic dots with random magnetization provides an experimental realiza-
tion for the two-dimensional XY model with random phase shifts. The phase
diagram of the latter model helped us to conclude that a low-temperature
superconducting phase of a superconducting film without dots survives when
the dots are placed on top of the film, provided their magnetization is not
too large.

6.A Equivalence between random potentials

In this appendix we prove that expressions for the disorder potential with
magnetic moments parallel to the film surface (6.9) and normal to the film
surface (6.16) are equivalent. Rewriting the expression mj · ρij/ρ

2
ij from

Eq. (6.9) as mj cos(αj − αρ)/ρij , where cosαj = mj · x̂/mj and cosαρ =
ρij · x̂/ρij , we will in the following show that the distribution of the random
variable mrj = mj cos(αj − αρ) (which is the projection of mj onto ρij) is
Gaussian distributed with zero mean and the variance µ2.

By assumption (6.6), the components of the magnetic moment mjx and
mjy are Gaussian distributed and have the distribution function

p(t) =
1√
2πµ

exp

(
− t2

2µ2

)
, t = mjx, mjy. (6.17)

Then the distribution function of the magnetic moment mj =
√
m2

jx +m2
jy
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is

p(mj) =

∫ ∞

−∞
dmjx

∫ ∞

−∞
dmjyp(mjx)p(mjy)δ

(
mj −

√
m2

jx +m2
jy

)

(6.18)

=
mj

µ2
exp

(
−
m2

j

2µ2

)
,

while the angle αj between mjx andmj is uniformly distributed in the interval
[0, 2π) and has the distribution p(αj) = 1/(2π). The distribution of the
random variable mrj is

p(mrj) =

∫ ∞

0

dmj

∫ 2π

0

dαjp(mj)p(αj)δ (mrj −mj cos(αj − αρ)) .

(6.19)

The previous expression can be most easily evaluated first by taking the
Fourier transform of p(mrj)

p̃k =

∫ ∞

0

dmj

∫ 2π

0

dαj
mj

2πµ2
exp

(
−
m2

j

2µ2

)
exp[ikmj cos(αj − αρ)]

(6.20)

= exp

(
−k

2µ2

2

)
,

and then taking the inverse Fourier transform of the previous expression. It
leads to

p(mrj) =
1√
2πµ

exp

(
−
m2

rj

2µ2

)
. (6.21)

In that way we have proved that the random potential (6.9)

Vi =
φ0

4πλ

∑

j 6=i

mj · ρij

ρ2
ij

=
φ0

4πλ

∑

j 6=i

mrj

ρij
(6.22)

matches the random potential (6.16). We conclude that frozen magnetic
dipoles parallel to the film create the same random potential for vortices in
the film as magnetic dipoles normal to the film, provided both are Gaussian
distributed.
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Abstract

The subject of this thesis is order and transport in interacting disordered
low-dimensional systems, namely Luttinger liquids and thin superconducting
films. The disorder is produced by point impurities in Luttinger liquids and
by magnetic dots in thin films.

In the second chapter we consider the influence of dissipation on the
transport properties of a Luttinger liquid. In the presence of a single impurity
we find an exponential suppression of the conductance as a function of applied
voltage and temperature at sufficiently low voltages and temperatures.

In the third chapter we study a Luttinger liquid in the presence of two
impurities and of an external magnetic field. The magnetic field splits the
electrons with respect to their spin. We show that this system exhibits
spin-filtering effect due to the resonance tunneling effect, which can also be
achieved in this particular case, similarly to the case without the field. By
tuning a single parameter, one may reach the resonance points when the
transmission of spins with one spin-direction is dominating at low tempera-
tures and voltages.

The fourth chapter is related to the question of the competition of a pe-
riodic and random potential in a Luttinger liquid. The periodic potential
alone produces a Mott-insulating state at sufficiently small amount of quan-
tum fluctuations, measured by the interaction parameter K. The random
potential alone leads to the Anderson-insulating state for small values of K.
In the presence of both potentials and when the interaction is short-ranged,
we do not find an intermediate Mott-glass phase, contrary to some studies.

The fifth chapter deals with a thin superconducting film with a magnetic
dot placed on top of it. We calculate the configurations of vortex-antivortex
ground states for such system, finding a diversity of vortex-antivortex states
as a function of parameters of the dot.

The sixth chapter studies a thin superconducting film covered by magnetic
dots of random magnetization. We show that this system is a realization of
the two-dimensional XY model with random phase shifts. The latter model
helps us to determine the phase diagram of our system.
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Zusammenfassung

Gegenstand der vorliegenden Arbeit sind Ordnung und Transport in un-
geordneten niedrigdimensionalen Systemen mit Wechselwirkung, wobei der
Schwerpunkt auf ungeordneten Luttingerflüssigkeiten und dünnen supraleit-
enden Filmen liegt. In Luttingerflüssigkeiten ist die Unordnung durch Punk-
tstörstellen realisiert, in dünnen supraleitenden Filmen betrachten wir mag-
netische Verunreinigungen.

Im zweiten Kapitel studieren wir den Einfluß von Dissipation auf die
Transporteigenschaften einer Luttingerflüssigkeit. Bei hinreichend niedrigen
Temperaturen und äußeren Feldern finden wir, in Gegenwart einer einzelnen
Verunreinigung, eine exponentielle Unterdrückung des Leitwertes als Funk-
tion der angelegten Spannung und der Temperatur.

Im dritten Kapitel betrachten wir eine Luttingerflüssigkeit in Gegenwart
zweier Störstellen und eines zusätzlichen externen magnetischen Feldes. Das
Magnetfeld unterteilt die Elektronen hinsichtlich ihres Spins. Wir zeigen,
daß dieses System einen Spinfiltereffekt aufweist, der sich aus dem Resonanz-
Tunneleffekt ergibt. Durch Abstimmen eines einzelnen Parameters kann man
die Resonanzpunkte treffen, an denen bei tiefen Temperaturen und Spanun-
gen die Transmission von Spins einer vorgegebenen Ausrichtung dominiert.

Das vierte Kapitel bezieht sich auf die Frage nach dem Gegenspiel eines
periodischen und eines Unordnungspotentials in einer Luttingerflüssigkeit.
Das periodische Potential allein führt zu einem Mottisolator, wenn die Quan-
tenfluktuationen hinreichend schwach sind. Ein Maß hierfür ist der dimen-
sionslose Luttingerparameter K. Liegt nur ein Unordnungspotential vor,
so ergibt sich für kleine Werte von K ein Andersonisolator. In Gegenwart
beider Potentiale schließen wir für kurzreichweitige Wechselwirkungen die
intermediäre Mottglass-Phase aus, die in anderen Arbeiten postuliert wurde.

Mit dünnen supraleitenden Filmen, auf deren Oberseite ein magnetis-
cher Punkt platziert ist, befassen wir uns im fünften Kapitel. Wir berech-
nen die Konfigurationen von Vortex-Antivortex-Grundzuständen in einem
solchen System und finden eine Vielzahl an Vortex-Antivortex-Zuständen in
Abhängigkeit der Parameter des Magnetpunktes.

Das sechste Kapitel ist dem Studium dünner supraleitender Filme gewid-
met, auf denen Magnetpunkte zufälliger Magnetisierung verteilt sind. Es
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wird gezeigt, daß solche Systeme Realisierungen des zweidimensionalen XY-
Modells mit stochastischer Phase darstellen. Dieses Modell erweist sich als
hilfreich bei der Bestimmung des Phasendiagramms für unser System.
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