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Abstract 
 
Carbohydrates are an attractive class of starting materials for organic syntheses since they are 
highly functionalized and environmentally sound, in this way promoting a sustainable 
chemistry. A somewhat exotic, but nevertheless readily available family of carbohydrates 
allowing a fascinating chemistry are inositols (cyclohexane-1,2,3,4,5,6-hexols). myo-Inositol 
which is the stereoisomer with one axial hydroxyl group, is commercially available at 
reasonable prices. Inositols have been used previously as hydrophilic head group in 
amphiphilic liquid crystals, and recently our group involved myo-inositol in syntheses of 
surface active agents (surfactants). It seems that one unit of myo-inositol is not enough to 
assure a good aqueous solubility for these compounds. To improve the inositol-based 
amphiphiles in this respect we extended the inositol head group by a triethylene oxide 
substructure leading to a new class of inositol surfactants. 
This thesis describes the synthetic routes to novel inositol amphiphiles as well as their 
characterization concerning liquid crystalline, solution and surface properties. The 
supramolecular properties of the new amphiphiles will be related to those of surfactants with 
comparable structures.  
The second topic presented in this work refers to syntheses of new phosphine oxide metal 
complexes. Phosphine oxide groups can bind various metal cations such as alkaline, alkaline 
earth, transition and lanthanide metal ions through ion dipolar interactions. This property 
allows phosphine oxide-based derivatives to be used in various fields of large economical 
impact. In addition to the synthesis, the liquid crystalline properties of these complexes are 
investigated and presented.   
 
Kurzzusammenfassung 
 
Aufgrund ihrer hohen Funktionalisierung und ihrer guten Umweltverträglichkeit sind Kohlen-
hydrate ein attraktiver Ausgangsstoff für die organische Synthese und fördern zudem eine 
nachhaltige Chemie. Eine etwas exotische, aber dennoch leicht zugängliche Familie der 
Kohlenhydrate, die eine faszinierende Chemie ermöglicht, sind die Inosite (Cyclohexan-
1,2,3,4,5,6-hexole). myo-Inosit, also das Stereoisomer mit einer axialen Hydroxylfunktion, ist 
zu angemessenen Preisen kommerziell erhältlich. Im Vorfeld wurden Inosite bereits als 
hydrophile Kopfgruppe von amphiphilen Flüssigkristallen eingesetzt und kürzlich wurden in 
unserer Arbeitsgruppe oberflächenaktive Verbindungen (engl.: surfactants) auf der Basis von 
myo-Inosit synthetisiert. Jedoch scheint eine myo-Inosit-Einheit nicht auszureichen, um eine 
gute Wasserlöslichkeit des oberflächenaktiven Moleküls gewährleisten zu können. Um die 
Löslichkeit der Inosit-basierten Amphiphile zu verbessern, wurde die Inosit-Kopfgruppe um 
eine Triethylenoxid-Substruktur erweitert und eine neue Klasse der Inosit-Surfactants 
geschaffen. 
Die vorliegende Dissertation beschreibt sowohl den synthetischen Zugang zu neuen Inosit-
Amphiphilen, als auch deren Charakterisierung in Bezug auf ihre Flüssigkristallinität und 
ihrer lösungs- und oberflächenaktiven Eigenschaften. Ihre supramolekularen Eigenschaften 
werden in Relation zu Amphiphilen mit vergleichbaren Strukturen gesetzt.  
Das zweite Themengebiet dieser Arbeit widmet sich der Synthese von neuen Phosphinoxid-
Metall-Komplexen. Phosphinoxid-Funktionen können durch ionische Dipolwechselwirkun-
gen an zahlreiche Metall-Kationen binden, darunter Alkali- und Erdalkali-, sowie Übergangs-
metall- und auch Lanthanoid-Kationen. Diese Eigenschaft ermöglicht den Einsatz von 
Phosphinoxid-basierten Verbindungen in diversen Bereichen von hoher ökonomischer 
Bedeutung. Zusätzlich zu der Synthese werden die flüssigkristallinen Eigenschaften dieser 
Komplexe untersucht und vorgestellt.  
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 1. INTRODUCTION 1 

1. INTRODUCTION 
 
 
The present work is part of a complex project which was funded by the European 

Community’s Marie Curie Research Training Network “Self-Organisation under 

Confinement” (SOCON). The SOCON network ran for four years (2005-2008) and it counted 

thirteen research groups from nine European countries: Ireland (Dublin), Sweden (Stockholm, 

Lund, Stenungsund), Bulgaria (Sofia), Germany (Cologne, Berlin), Lithuania (Vilnius), 

Hungary (Budapest), United Kingdom (Oxford, Durham), Denmark (Aarhus), and France 

(Paris). The focus of the network was on aqueous films, which are either confined between 

two solid surfaces or by air (foam film) or oil (emulsion film), respectively. Its emphasis was 

put on complex self-organising systems of environmentally friendly components, such as 

sugar-based surfactants and polymeric carbohydrate derivatives, but also on the use of 

traditional surfactants and polymers. The interest in the former class of surfactants and 

polymers is motivated by the fact that they can be made from renewable materials and that 

they have favourable properties with respect to applications in various fields. To advance the 

increased use of more environmentally friendly components, synergistic and antagonistic 

effects in multicomponent systems have to be understood. In fact, this is one essential element 

of the joint network research. The wide range of systems which were examined has had in 

common self-assembly and strong surface activity. The main objective of our research team 

was to design and synthesize new environmentally friendly compounds from natural building 

blocks which were further characterized within the network.[1] 

One of the models of the multicomponent systems studied in our network dealt with mixtures 

of the two non-ionic surfactants n-dodecyl-β-D-maltoside (β-C12G2) and n-dodecyl-

hexaethylene oxide (C12E6) (Fig. 1.1). 
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Fig. 1.1. Molecular structures of the surfactants n-dodecyl-β-D-maltoside (β-C12G2) and 
 n-dodecyl-hexaethylene oxide (C12E6) 
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The reason for studying mixtures of ethylene oxide (CiEj) and sugar (CnGm) – based 

surfactants is that they behave quite differently despite of both being non-ionic. To illustrate 

how differently they behave five examples will be given.  

The first example is the adsorption of n-dodecyl-hexaethylene oxide (C12E6) and n-dodecyl-β-

D-maltoside (β-C12G2), respectively, on hydrophilic silica. At first sight, one would not expect 

a big difference as both surfactants are uncharged, i.e., that the interactions between the silica 

surface and the non-ionic surfactants cannot differ very much. In fact, quite the opposite was 

observed. While C12E6 adsorbs strongly on silica, β-C12G2 does not adsorb at all. This is 

surprising and still not understood.[2,3]  

A second prominent difference lays in the temperature-sensitivity of the phase properties: 

while the phase properties of aqueous solutions of sugar surfactants are not very temperature-

sensitive, those of the corresponding ethylene oxide solutions are. The temperature–

insensitivity of sugar surfactants in aqueous solution results from the strength of the hydrogen 

bonds between the hydroxyl groups of the sugar unit and water, which prevents any 

significant dehydration of the head group in the experimentally relevant temperature range. In 

contrast to the strong hydrogen bonds between water and sugar units, the hydration water of 

the corresponding ethylene oxide units is attached only via weak dipole–dipole interactions, 

which leads to an easy dehydration of the head group.[4] 

Thirdly, it is not only the strength of hydration but also the hydration number that is 

completely different. It was found that under similar conditions and for similar head group 

sizes (as a rule of thumb, a glucose unit is comparable to three to four ethylene oxide units) 

the hydration of ethylene oxide-based surfactants is one order of magnitude higher than that 

of sugar-based surfactants.[5]  

Fourthly, the flexibility of the head groups is different. While a maltoside unit behaves like a 

hard rod, the ethylene oxide units behave more like short polymer chains, which, in turn, 

means that they are much more flexible.[6]  

Last but not least, the surface charge density q0 of foam films stabilized by sugar surfactants is 

pH insensitive down to the so-called isoelectric point, while that of ethylene oxide-based 

surfactants changes linearly with the pH. It is argued that this difference is a consequence of 

the fact that an ethylene oxide unit is able to “react” to pH-changes by changing either its 

hydration degree (easy uptake and release of water) or its conformation (high flexibility).[7] 

As both processes are very unlikely in the case of a sugar unit, the uptake of HO− ions is 

given by the total surfactant concentration rather than by the pH, which results in the observed 

pH insensitivity. 
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The mentioned differences automatically lead to the question of how mixtures of CiEj and 

CnGm surfactants would behave. The answer to this question does not concern only the 

physical mixtures of the named surfactants[8] but also a “chemical” one, which would be 

possible by synthesis of a new class of surfactants which contains in the head groups a sugar 

unit (“half” of the maltoside) together with three units of ethylene oxide (“half” of the 

hexaethylene oxide) and the dodecyl chain as hydrophobic tail.  

The aim of the present work is the synthesis and characterization of this new class of 

surfactants using as sugar a relatively unknown class of carbohydrates named inositols.  

Inositols (cyclohexane-1,2,3,4,5,6-hexols) belong to the group of carbohydrates since they 

have the same molecular formula C6H12O6 as conventional hexoses but a different 

constitution. In a way they present the homocyclic carbon analogue of pyranoses like e.g. 

glucopyranose, which is why they are sometimes called “C-sugars”. The nine possible 

stereoisomers of inositol are renewable primary natural products which differ only in their 

relative stereochemical configuration (Fig. 1.2). 

 

 

 
Fig. 1.2. The molecular structures of the inositol stereoisomers. chiro-Inositol occurs as both  
enantiomers, but here only one of them is represented.  
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Inositol-based surfactants are expected to have properties which are very similar to those of 

sugar-based ones. The polyol structure of inositol makes it as suitable as conventional sugars 

to be used as a hydrophilic head group. Compared to the latter, inositol derivatives possess a 

higher thermal stability, cannot undergo mutarotation or ring opening reaction, not even at 

low pH-values, because an anomeric center is lacking. Due to their natural occurrence and 

similarity to conventional sugars, should be as biodegradable as other carbohydrates. 

The past decade witnessed a renaissance in the chemistry and biochemistry of inositols, 

mainly due to the realization of the role played by phosphorylated myo-inositol (1, Fig. 1.2) 

derivatives in important biological phenomena such as cellular signal transduction, calcium 

mobilization, insulin stimulation, exocytosis, cytoskeletal regulation, intracellular trafficking 

of vesicles, and anchoring of certain proteins to cell membrane. 

myo-Inositol (1), the major nutritionally active form of inositol, is a cheap and easily 

accessible compound as it is industrially extracted from wheat pods. It could be found as well 

in beans, nuts and fruits. It is vital to many biological processes of the body, participating in a 

diverse range of activities. It is essential for the growth of rodents, but not for most animals, 

including humans. Humans can produce myo-inositol endogenously, from glucose, and, even 

though myo-inositol is sometimes referred to as a vitamin, it is not a vitamin for humans or 

most animals.  

myo-Inositol belongs to the class of cyclitols caring five equatorial and one axial hydroxyl 

groups. The carbon atom which bears the axial hydroxyl function is always indicated as C2 

while the other carbon atoms of the inositol ring are counted from C1 to C6 (Fig. 1.3). myo-

Inositol does not present optical activity being a meso compound since it presents a plane of 

symmetry through the atoms C2 and C5 of the inositol ring.  

 

 

 

Fig. 1.3. The molecular structure of myo-inositol 

 

In the last decade, inositols have been used as hydrophilic head group in amphiphilic 

molecules.  To improve the knowledge on the properties of such inositol-based amphiphiles a 
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number of new regiochemically defined myo-inositol ethers and esters (Fig. 1.4) were 

previously synthesized and investigated by means of their liquid crystalline mesomorphism as 

well as their surface activity in aqueous solution.[9-15] 

 

 

 

Fig. 1.4. Examples of myo-inositol derivatives previously synthesized  

 

The main problem of the above mentioned derivatives regarding the surface activity was their 

low solubility in aqueous media. In order to improve the inositol amphiphiles with respect of 

this propriety, a new class of inositol-based derivatives which contain a triethylene oxide unit 

in their head group was developed. The present work is going to describe the synthesis and 

characterization of this new class of amphiphiles. 

 

A second project which will be treated in this thesis involves studies regarding the synthesis 

and characterization of phosphine oxide metal complexes. Phosphine oxide groups can bind 

various metal cations such as alkaline, alkaline earth, transition and lanthanide metal ions 

through ion dipolar interactions. This property allows phosphine oxide-based derivatives to be 

used in various fields of large economical impacts, such as environmental sciences, medical 

diagnostics, cell biology, etc. Lipophilic phosphine oxides have been used also as extraction 

agent for precious metals from aqueous solutions. This property raised the question if it would 

be possible to induce supramolecular order like e.g. thermotropic or lyotropic liquid 

crystallinity in phosphine oxides metal complexes amphiphiles. The results of respective 

investigations will be presented.  
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2. STATE OF KNOWLEDGE 

 

Surfactants (a contraction of the term surface active agent) are among the most versatile 

products of the chemical industry, appearing in such diverse products as motor oils for 

automobiles, pharmaceuticals, detergents, drilling muds used in prospecting for petroleum, 

and flotation agents used in benefication of ores. The last decades have seen the extension of 

surfactant applications to such high-technology areas as electronic printing, magnetic 

recording, biotechnology, micro-electronics, and viral research.[16] 

Over the past thirty years liquid crystals (LCs) have become the quintessential molecular 

electronic materials of our present day era (Fig. 2.1). The ease with which they can be 

reoriented in electrical fields has led to the development of a plethora of high technology 

applications, resulting, for example, in the dominance of the flat-panel displays market. Yet, 

even though the field of displays may appear mature, there is still considerable interest in the 

development of 3D-diplays, trans-reflective mode displays which utilise the ability of LCDs 

for daylight viewing, and colour frame sequential devices which in combination with LEDs 

could lead to brighter displays.[17] 

 

 

Fig. 2.1. Structural design in, and applications of, liquid crystals. The molecules are shown as  
               molecular materials of defined shape.[17] 
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2.1. Surfactants 

 

2.1.1. General structural features and behaviour of surfactants  

 

A surface active agent (surfactant) is a substance that, when present at low concentration in a 

system, has the property of adsorbing onto the surfaces or interfaces of the system and of 

altering to a marked degree the surface or the interfacial free energies of those surfaces (or 

interfaces). The term interface indicates a boundary between any two immiscible phases; the 

term surface denotes an interface where one phase is a gas, usually air.[16]  

The surface tension is a measure of the difference in nature of the two phases meeting at the 

surface. The greater the dissimilarity in their nature, the greater the surface tension between 

them.  A surfactant is a substance which at low concentrations adsorbs at some or all of the 

interfaces in the system and significantly changes the amount of work required to expand 

those interfaces. Surfactants usually act to reduce interfacial free energy rather than to 

increase it, although there are occasions when they are used to increase it.[16]  

Surfactants have a characteristic molecular structure consisting of a structural group that has 

very little attraction for the solvent, known as a lyophobic group, together with a group that 

has strong attraction for the solvent, called the lyophilic group. This is known as an 

amphiphilic structure (Fig. 2.2.).  

 

 

 

 

Fig. 2.2. Schematic representation of an amphiphilic structure. 

 

When a molecule with an amphiphilic structure is dissolved in a solvent, the lyophobic group 

may distort the structure of the solvent, increasing the free energy of the system. When that 

occurs, the system responds in some fashion in order to minimize the contact between the 

lyophobic group and the solvent. In case of a surfactant dissolved in aqueous medium, the 

lyophobic (hydrophobic) group distorts the structure of the water by breaking hydrogen bonds 

between the water molecules and by structuring the water in the vicinity of the hydrophobic 

group. As a result of this distortion, some of the surfactant molecules are expelled to the 

Lyophilic group  
 

Lyophobic group 
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interfaces of the system, with their hydrophobic groups oriented in such a way that their 

contact with water molecules is minimized. The surface of the water becomes covered with a 

single layer of surfactant molecules with their hydrophobic groups oriented predominantly 

towards the air. Since the air molecules are essentially nonpolar in nature, as are the 

hydrophobic groups, this decrease in the dissimilarity of the two phases contacting each other 

at the interface results in a decrease in the surface tension of water. On the other hand, the 

presence of the lyophilic (hydrophilic) groups prevents the surfactant from being expelled 

completely from the solvent as a separate phase, since that would require dehydration of the 

hydrophilic group. The amphiphilic structure of the surfactant therefore causes not only 

concentration of the surfactant at the surface and reduction of the surface tension of the water, 

but also orientation of the molecules at the surface with its hydrophilic group in the aqueous 

phase and its hydrophobic group oriented away from it.[16]  

The chemical structures of groups suitable as the lyophobic and lyophilic portions of the 

surfactant molecule vary with the nature of the solvent and the conditions of use. The 

hydrophobic group is usually a long-chain hydrocarbon residue, and less often a halogenated 

or oxygenated hydrocarbon or siloxane chain. The hydrophilic group is an ionic or highly 

polar group. Depending on the nature of the hydrophilic group, surfactants are classified as: 

1. Anionic – the surface active portion of the molecules bears a negative charge, for example 

RCOO-Na+ (soap), sodium dodecyl sulfate (SDS) (Fig. 2.3). 

 

 

 

Fig. 2.3. The molecular structure of sodium dodecyl sulfate (SDS).  

 

2. Cationic – the surface active portion bears a positive charge, for example RNH+
3 Cl- (salt of 

a long-chain amine), cetyl trimethylammonium bromide (CTAB) (Fig. 2.4). 

 

 

 

Fig. 2.4. The molecular structure of cetyl trimethylammonium bromide (CTAB). 
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3. Zwitterionic – both positive and negative charges may be present in the surface active 

portion, for example long-chain amino acid like N,N-dimethyl-N-dodecylglycine 

(dodecylbetaine, C12BET) (Fig. 2.5). 

 

 

 

Fig. 2.5. The molecular structure of N,N-dimethyl-N-dodecylglycine  
                                    (dodecylbetaine, C12BET). 

 

4. Nonionic – the surface active portion bears no apparent ionic charge, for example 

oligo(ethylene) oxides or sugar based surfactants (Fig. 2.6). 

 

 

 

       Fig. 2.6. Molecular structures of the surfactants n-dodecyl-β-D-maltoside (β-C12G2) and  
                      n-dodecyl-hexaethylene oxide (C12E6). 
 
 
2.1.2. Nonionic surfactants 

 

As it was previously mentioned the nonionic surfactants have the surface active portion 

bearing no apparent ionic charge. There are few advantages and disadvantages of using 

nonionic surfactants. As advantages could be counted that they are compatible with all other 

types of surfactants; are generally available as 100% active material free of electrolyte; can be 

made resistant to hard water, polyvalent metallic cations, electrolyte at high concentrations; 

are soluble in water and organic solvents, including hydrocarbons. The disadvantages depend 

on the class of the nonionic surfactants, some of them are poor foamers (which also can be an 

advantage sometimes) or have no electrical effects (e.g., no strong adsorption onto charged 

surfaces). Ethylene oxide derivatives show inverse temperature effect on solubility in water, 

may become insoluble in water on heating, etc. 
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The present work is dealing with two main classes of nonionic surfactants: the carbohydrate 

(sugar)-based and the oligo(ethylene) oxide-based surfactants.  

 

Carbohydrate-based surfactants 

 

Natural surfactants are abundant in both plants and animals in small quantities. The cost of the 

isolation of these compounds led to the development of the cheaper synthetic surfactants, 

mainly derived from petroleum. The increasing need for products less toxic and highly 

biodegradable resulted in numerous studies of new sugar-based surfactants, also considered 

“natural surfactants”, as they can occur in nature or may be prepared from natural raw 

materials.[18] This class of surfactants can be used in several areas, such as food industry 

(having good functional properties as emulsion stabilization, foaming, etc.), biology 

(extraction and purification of membranes proteins), molecular recognition in glycobiology or 

immunology and detergents. Carbohydrate-derived surfactants that are produced and used on 

an industrial scale are sorbitan esters, sucrose esters, and, which is rather new, fatty acyl 

glucamides and alkyl polyglucoside.[19] 

Sugar-based surfactants possess a carbohydrate hydrophilic part, which can be a mono- or 

oligosaccharide, and a hydrophobic tail, usually hydrocarbon long-chains. The two moieties 

can be directly linked via a functional group (ester, ether, hydrazine, amino group, etc.) or 

separated by a spacer (gemini surfactants). 

Alkyl polyglucosides with a worldwide production capacity recently increased to about 

60.000 metric tons/year are by far the most important sugar-based surfactant. They are 

produced by proton-catalyzed acetalation of carbohydrates, preferably of glucose, or by 

transacetalation of butyl polyglucoside with fatty alcohol.  

Strictly speaking, alkyl polyglucosides are not new surfactants but were described as early as 

100 years ago by E. Fischer.[20] However, it was not until 1934 that their potential as surface-

active agents was appreciated in a patent granted to H. Th. Böhme AG of Chemnitz.[21] They 

then felt into obscurity for a long time, probably not only because they were difficult to 

manufacture but also because many other surfactants were already in production. It was not 

until the first half of the 1980s that this old class of surfactants was unearthed again, against a 

background of increasing environmental concern. 

The intensive use of anomeric alkyl glucosides such as n-octyl β-D-glucoside (β-C8G1) and n-

dodecyl β-D-maltoside (β-C12G2) (Fig. 2.7) in biology as effective solubilizing agents for 
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membrane proteins, among other applications, indicated that these surfactants should be very 

safe.  
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Fig. 2.7. Molecular structures of sugar-based surfactants n-octyl-β-D-glucoside  
                          (β-C8G1) and n-dodecyl-β-D-maltoside (β-C12G2)  
 

A huge number of application-related patents in particular are based on the special properties 

of alkyl polyglucosides, including their compatibility and synergetic effects when they are 

combined with many other surfactants and ingredients of surfactant-based formulation. This, 

combined with their low environmental impact, as already mentioned, their amazingly 

economical cost/performance ratio, and finally the high quality standard already achieved, 

explains the current interest in carbohydrate-based surfactants. Hence, there is a good chance 

that sugar-based amphiphiles will play a major role alongside the frequently used traditional 

surfactants.[22,23] 

 

Polyethylene oxide-based surfactants 

 

The most important class of commercially available nonionic surfactants is the polyethylene 

oxide alcohols derived from reaction of an alcohol with ethylene oxide. These materials are 

produced in an excess of billions tons a year and are used in such diverse applications as 

household and institutional laundry, textile scouring, pulp and paper manufacturing, oil field 

surfactants, agriculture spray adjuvants, and environmental clean-up. The type of alcohol used 

as the initiator and the length of the polyethylene oxide chain define the application of these 

versatile commercial products. A primary driving force for the use of these surfactants is their 

ready biodegradability and overall environmental acceptability. Nevertheless, current and 

anticipated environmental pressures ensure their continued replacement of other surfactant 

materials.[23] 

Alcohol ethoxylates, like alcohol sulfates and alcohol ethoxysulfates, can be made from either 

oleochemical or petrochemical alcohols. Consequently, the linearity of the hydrophobe can 
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vary from highly linear when the alcohol is derived from oleochemical sources and some 

petrochemical sources to highly branched from other petrochemical sources. Often a blend of 

several carbon chain length alcohols is used to produce commercial products.  

 
2.1.3. Critical micelle concentration. Surface tension. Surface concentration. 

 

Micelle formation is the property of surfactant that may be as fundamental, and certainly is as 

important, as their property of being adsorbed at interfaces and consists in ability of surface 

active solutes of forming colloidal-sized clusters in solution. Micelle formation or 

micellization is an important phenomenon not only because a number of important interfacial 

phenomena, such as detergency and solubilization, depend on the existence of the micelles in 

solution, but also because it affects other interfacial phenomena, such as surface or interfacial 

tension reduction, that do not directly involve micelles. Micelles have become a subject of 

great interest to the organic chemist and the biochemist – to the former because of their 

unusual catalysis of organic reactions and to the latter because of their similarity to the 

biological membranes and globular proteins. 

The shape of the micelle produced in aqueous media is of importance in determining various 

properties of the surfactant solution, such as viscosity, its capacity to solubilize water-

insoluble material, and its cloud point. 

At the present time, the major types of micelles appear to be: 

a) relatively small, spherical structures (aggregation number < 100); 

 

 

 

b) elongated cylindrical, rod like micelles with hemispherical ends; 

 

 

 

 

c) large, flat lamellar micelles (dislike extended oblate spheroids); 
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d) vesicles – more or less spherical structures consisting of bilayer lamellar micelles arranged 

in one or more concentric spheres. 

 

 

 

The proportion of molecules present at the surface or as micelles in the bulk of the liquid 

depends on the concentration of the amphiphile. At low concentrations surfactants will favour 

arrangement on the surface. As the surface becomes crowded with surfactant more molecules 

will arrange into micelles. At a specific concentration the surface becomes completely loaded 

with surfactant and any further additions must arrange as micelles. This concentration is 

called the critical micelle concentration (cmc). It follows that measurement of surface 

tension may be used to determine the cmc. A graph of surface tension versus log of 

concentration of surfactant added will appear as follows (Fig. 2.8): 

 

 

Fig. 2.8. Schematic drawing of the concentration dependence of the surface tension. 

 

In this graph one can identify three phases: 

1

2 

3
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1) At very low concentrations of surfactant only a slight change in surface tension is detected; 

2) Additional surfactant decreases the surface tension; 

3) Surface becomes fully loaded, no further change in surface tension. 

As shown above, the technique to determine the cmc by measurement of surface tension σ is 

simple and straightforward. A graph of surface tension versus log concentration is produced. 

The cmc is found as the point at which two lines intersect: the baseline of minimal surface 

tension and the slope where surface tension shows linear decline (plateau).  

There are different theoretical models to describe surface tension σ versus log concentration 

curves. The most common is the model derived by Langmuir and Szyszkowski.[24,25] The 

Langmuir – Szyszkowski equation is given by equation (2.1): 








 +Γ−= ∞ c

a
RT 1ln0σσ                                                                (2.1) 

where σ is the surface tension of the surfactant solution, σ0 is the surface tension of the 

solvent, Γ∞ is the maximum surface concentration (saturation monolayer coverage), R is the 

gas constant, T is the temperature, c is the surfactant concentration, and a is the concentration 

at which a surface concentration of Γ∞/2 is reached. The equation (2.1) is only valid if there 

are no interactions between the adsorbed molecules.  

In the present work another model is used to describe the surface tension curves, namely the 

Frumkin model. This model takes into account the attractive interactions between molecules 

adsorbed at the interface. The equation for the Frumkin model is given by equation (2.2): 
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with a’ being the interaction parameter. According to this model the surface tension increases 

with increasing interaction between absorbed surfactant molecules because the mobility of the 

molecules decreases.[26] 

The tendency to adsorb at the water/air interface increases with increasing hydrophobic chain 

length in a homologous series, which means that the concentration needed for some particular 

adsorption value decreases with increasing chain length. For a homologous series the shape of 

the curve itself stays the same. The adsorption rises with increasing concentration until the 

cmc when the adsorption value reaches a plateau. The interface concentration reaches its 

maximum Γ∞ at this point. Further surfactant addition has no effect on the adsorption density 
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and thus on the surface tension. The minimal required space per surfactant molecule can be 

calculated from the Γ∞ value and is given by the equation (2.3): 

 

min

1

ANA

=Γ∞                                                               (2.3) 

 

where NA is the Avogadro constant (NA = 6.023 1023 mol-1) and Amin is the minimal surface 

area per surfactant molecule. 

 

2.1.4. The Krafft boundary 

 

Most systems possess many qualitatively different solubility boundaries at different 

temperatures. If we talk about solubility boundary, we tend to think about the liquid phases. 

But it is important to remember that other phases may possess solubility boundaries as well. 

In other words, two liquids, a liquid and a solid or two solids can coexist in a miscibility 

gap.[27]  

The amphiphilic nature of surfactants allows them to form numerous aggregates in aqueous 

solutions, which, in turn, may result in numerous different phases, depending on the 

temperature and the composition. Many surfactants are high soluble in liquid water at high 

temperatures, but separate from the solution as a crystal phase at lower temperatures. The 

crystal solubility boundary in aqueous surfactant solutions is called the “Krafft boundary” in 

honour of its discoverer, Prof. Friedrich Krafft (1852-1923). This boundary has a distinctive 

shape (Fig. 2.9), and terminates at its upper temperature limit at a eutectic discontinuity. This 

eutectic is called the Krafft discontinuity or Krafft eutectic. The saturating phase at the 

solubility boundary at temperatures above the Krafft eutectic is usually (but not always) a 

liquid crystalline phase. 
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Fig. 2.9. The general form of the Krafft boundary.[28] 

 

Far below the temperature of the Krafft eutectic the solubility of surfactants is small and the 

crystal solubility boundary is steep, which signifies that a low temperature coefficient of 

solubility exists. As the temperature is increased a turnover or “knee” develops, and just 

above this knee a plateau exists. Along the plateau the slope is small and the temperatures 

coefficient of solubility is very large. The plateau terminates at the Krafft eutectic, at which 

the crystal solubility boundary intersects that solubility boundary which exists at higher 

temperatures. The liquid phase at the intersection of these two solubility boundaries is also the 

most dilute of the three phases that may coexist at the Krafft eutectic. [28] 

In a series of studies aiming to explain the shape of the Krafft boundary it was noted that the 

composition of the boundary at the knee is similar to the critical micelle concentration (cmc) 

of surfactants. The dependence of the cmc on temperature, at values above the Krafft 

boundary, has been determined for a number of soluble alkyl sulfate salt surfactants. The cmc 

versus temperature function has been extrapolated to its intersection with the independently 

determined Krafft boundary, and the point of intersection (which clearly falls within the knee) 

has been termed the Krafft point (Fig. 2.9).  

The presence of a knee and a plateau in a crystal solubility boundary is not unique to aqueous 

surfactant systems, and the existence of these features does not require that micellar 

phenomena exist within the liquid phase. They are found in the crystal solubility boundary in 

the phase diagrams of all solute-solvent systems that are useful for purification by 

recrystallization, and micellization within the liquid phase does not exist in the vast majority 

of these systems. [28] 
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2.1.5. Few analytical methods used in surfactants characterization  

2.1.5.1. Methods for surface and interfacial measurements  

 

Reduction of the surface and interfacial tension is one of the most commonly measured 

properties of surfactants in solution. Since it depends directly on the replacement of molecules 

of solvent at the interface by molecules of surfactant, and therefore on the surface (or 

interfacial) excess concentration of the surfactant, it is also one of the most fundamental of 

interfacial phenomena.[16] 

Measurements of the surface or interfacial tension of liquid systems is accomplished readily 

by a number of methods. Some of them are based on dynamic principles and are thus suitable 

to measure the tension as a function of time. Others are static or quasi-static methods and 

yield dynamic tensions as well, but also allow reaching the equilibrium state of a liquid 

interface and hence are able to measure the equilibrium tension. While dynamic methods 

require theories for data interpretation that take the dynamic character into consideration, the 

data from static methods can be understood more easily. To overcome this problem Joos 

developed a theory which reduces the data from dynamic methods to a so-called effective 

lifetime of the interface, which is equivalent to the time needed at a static interface to reach 

the same adsorption state.[29] In this way measurement results from all experimental 

techniques can be directly compared.  

The following Table 2.1 gives an overview of methods dedicated to surface tension 

measurements of liquid interfaces.  

 

Table 2.1. Methods for measuring surface and interfacial tension of liquid interfaces[30] 

Method Suitability for liquid/liquid Suitability for liquid/gas 

Capillary Rise Technique possible good 
Capillary Wave Damping possible possible 

Drop Volume Method good good 
Growing Drops and Bubbles good good 

Inclined Plate Method bad good 
Maximum Bubble Pressure Method possible good 

Oscillating jet bad good 
Pendent Drop Method good good 

Plate Tensiometry bad good 
Ring Tensiometry bad good 

Sessile Drop Method possible possible 
Spinning Drop Method good possible 

Static Drop Method good good 
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In the present work the method used to measure the surface tension is the ring tensiometry 

after Du Noüy, therefore this method is going to be described more detailed.  

 

Ring tensiometry after du Noüy 

 

The ring tensiometry is the most frequently used technique to measure the surface tension of 

pure liquids and solutions. As mentioned above the ring tensiometry is difficult to apply to 

liquid/liquid interfaces, as it is connected with complicated wetting problems. The same is 

true for the plate tensiometry, so that complementary techniques are required for these 

interfaces.  

In the du Noüy ring method, a thin wire ring is inserted below the interface and held 

horizontal. Then the ring is pulled up through the interface. The force F measured by a 

balance goes through a maximum Fmax.
[31] In a first approximation the surface tension σ is 

given by equation (2.4): 

 

           
R

F

π
σ

4
max=                                                                 (2.4) 

 

where R is the radius of the ring. Note that for equation (2.4) to hold, the radius of the wire 

must be much smaller than the radius of the ring and that the solution must wet the wire 

completely. For this reason a clean platinum wire is usually used. For precise measurements, a 

correction factor f to the ideal case is required: 

     

           
Rf

F

π
σ

4
max=                                                               (2.5) 

 

This correction factor f takes in account the ring geometry and the liquid density ρ and usually 

is included into the software of most tensiometers but can be also determined by using the 

tables. For this thesis, the values for measured surface tension were calculated using the 

Harkins and Jordan correction factors which are expressed as a function of R/r and R3/V, 

where r is the radius of the wire and V is the volume of the liquid raised above the free 

surface.  

Surface tension measurements for the present work were carried out using a STA-1 

tensiometer from Sinterface (Fig. 2.10), which has an accuracy of 0.1 mN m-1.  
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Fig. 2.10. (a) STA-1 tensiometer, (b) Sartorius balance, (c) measurement vessel,  
                            (d) platinum ring, (e) Plexiglas box. 

 

The equipment consists of three parts: a computer to control the measurements, a Sartorius 

balance and the tensiometer itself (Fig. 2.11). Solutions were placed into a glass vessel, and 

the measurements are done in a closed Plexiglas box to prevent contamination and to maintain 

the humidified environment. 

 

 

Fig. 2.11. The surface tension measurements equipment: the computer, 
                                    the STA-1 tensiometer and the Sartorius balance. 
 

2.1.5.2. Diffusion ordered spectroscopy (DOSY) 

 

Studies of surfactants have constituted a cornerstone in physical chemistry ever since the 

pioneering work of McBain[32] at the beginning of the twentieth century, and many different 

experimental methods as well as the theoretical modelling have been employed. Of the 

experimental methods, nuclear magnetic resonance (NMR) has come to play a pivotal role 

during the last decades. It is fair to say that no other spectroscopic methods can compete with 

a 

b

c 

d
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NMR regarding versatility, and the technique offers many unique capabilities. It is essentially 

a nonperturbing method in that it utilises nuclei already present in the investigated molecules 

or inserted into them by means of isotope labelling as probes.[33] 

There are many different aspects of NMR studies of surfactant systems, covering both liquid 

solution phases and liquid crystalline phases. This subchapter will summarise one of the NMR 

diffusion methods for surfactants in solution, respectively diffusion ordered spectroscopy 

(DOSY) using pulsed field-gradient (PFG) NMR spectroscopy.  

Over the last decade, pulsed field-gradient (PFG) NMR spectroscopy has become the method 

of choice for measuring diffusion in solution in both chemical and biological systems. In 

principle, the diffusion coefficient of a certain molecular species under given conditions (for 

example, solvent and temperature) depends on its “effective” molecular weight, size and 

shape. Therefore, it is evident that diffusion can be used to map intermolecular interactions 

that play an important role in both chemistry and biology in solution and which lie at the heart 

of molecular recognition, a process which is essential to supramolecular and combinatorial 

chemistry.[34] 

The fact that molecular diffusion can be measured by NMR methods was realised in the early 

days of NMR spectroscopy.[35] The most practical pulse sequence for measuring diffusion 

coefficients was introduced by Stejskal and Tanner in 1965[36] long before the advent of 2D 

NMR spectroscopy which is currently routinely used by chemists worldwide. The last decade 

has witnessed an explosion in the utilization of gradients in all areas of NMR spectroscopy, 

ranging from coherence selection in high-resolution NMR spectroscopy to magnetic 

resonance imaging (MRI). Being a totally non-invasive technique it is particularly suited to 

studying molecular dynamics and translational diffusion.  

Translational diffusion is one of the most important modes of the molecular transport. Self-

diffusion is the random translational motion of ensembles of particles (molecules or ions) as a 

consequence of their thermal energy. In case of self-diffusion, no (net) force acts on the 

molecular particles and, consequently, no net displacement is observed. It is well known that 

diffusion is closely related to molecular size, as seen from the Einstein-Smoluchowski 

equation: 

fN

RT

f

Tk
D

A

b ==                                                   (2.6) 

 

where D is the self-diffusion coefficient, kb is the Boltzmann constant, T is the absolute 

temperature, f is the so-called hydrodynamic frictional coefficient, NA is Avogadro’s number, 
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and R is the gas constant. For a sphere in a continuous medium of viscosity η, f is given by the 

Stokes equation: 

f = 6πηRH                                                       (2.7) 

 

where RH is the hydrodynamic radius. Combining equations (2.6) and (2.7) leads to the 

familiar Stokes-Einstein equation: 

H

b

R

Tk
D

πη6
=                                                      (2.8) 

 

The Stokes-Einstein equation (2.8) indicates that, by measuring the self-diffusion coefficient 

of a given molecular species under controlled conditions, one may obtain information on its 

effective size or weight and, therefore, on the specific interactions of the species with its 

molecular environment. Thus the diffusion coefficients are sensitive to structural properties of 

the observed molecular species such as weight, size and shape, as well as binding phenomena, 

aggregation and molecular interactions.[34] 

Different mobility rates or diffusion coefficients may also be used as the basis for the 

separation of the spectra of mixtures of compounds in solution, this procedure being referred 

to as diffusion ordered spectroscopy or DOSY. The application of NMR diffusion 

measurements to the separation of small-molecule mixtures in this way is a relative newcomer 

to high-resolution NMR and is a developing area that is sure to find increasing use in the 

research laboratory.  

All modern NMR-based diffusion measurements rely on the application of pulsed field 

gradients to map the physical location of a molecule in solution and have recently been made 

possible on conventional high-resolution NMR spectrometers through the provision of 

actively shielded PFG probe heads. Molecular diffusion is then characterized along the 

direction of the applied field gradient, which is typically along the z-axis of conventional 

gradient probeheads. The basic scheme for the characterization of diffusion is the pulsed field 

gradient spin-echo (Fig. 2.12). 

 

Fig. 2.12. The pulsed field gradient spin-echo sequence (Gz – gradient chanel,  
                              τ – evolution time, ∆ – diffusion time, δ – gradient length).[37] 
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In the absence of gradient pulses, this will refocus chemical shift evolution such that the 

detected signal is attenuated only by transverse relaxation during the 2τ period. When pulsed 

field gradients are employed, complete refocusing of the signal will only occur when the local 

field experienced by a spin is identical during the two gradient pulses. Since a field gradient is 

used, the local field is spatially dependent, meaning this refocusing condition is only met if 

the spin remains in the same physical location when the two PFGs are applied. If the molecule 

was to diffuse away from its initial position during the diffusion delay ∆, the local field 

experienced during the second PFG would not exactly match that of the first and only partial 

refocusing of the signal would occur. The detected signal would therefore be attenuated by an 

amount dictated by how far the molecule moved during the period ∆, and hence by its 

diffusion coefficient.[37]  

To characterise diffusion rates, it is possible to progressively alter the delay ∆, the length or 

the strength of the gradient pulses and to monitor the corresponding signal decay. However, 

changes made to the overall length of the echo sequence will introduce additional 

complications arising from increasing relaxation losses, so it is universal practice to increase 

gradient strength whilst keeping all time periods invariant. Whilst T2 relaxation losses still 

occur in this case, they are constant for all experiments and thus do not contribute to the 

progressive signal attenuation that is monitored (Fig. 2.13). 

 

 

 

Fig. 2.13. Diffusion proton spectra measured at constant diffusion delay ∆  
                                and progressively increasing gradient strength G. 
 

 

G 
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The observed signal intensity I, for the basic PFG spin-echo experiment is given by the 

Stejskal-Tanner equation: 
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where I0 is the signal intensity at zero gradient strength, τ is the time between the 90° and 

180° pulses, T2 is the transverse relaxation time, γ is the proton magnetogyric constant, G is 

the gradient strength, D is the diffusion coefficient,  ∆ is the diffusion time and δ is the length 

of the gradient. 

In the procedure used in this work, τ was kept constant and thus the T2 effects are kept 

constant, which means that there are no variations in the relaxation term that affects the 

intensity I, and thus only diffusion contributes to the echo-decay. Since the relaxation term 

2τ/T2 is constant it can be included in I0, so that equation (2.9) can be simplified to: 
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The PFG spin-echo sequence is limited in practice by the afore-mentioned relaxation losses 

and is nowadays little used for diffusion measurements. Because magnetization is transverse 

during the diffusion period, these losses are dictated by the transverse (T2) relaxation rates 

which themselves increase with molecular size. Since larger molecules (or aggregates) require 

longer diffusion periods to move significant distances, the use of long ∆ delays can lead to 

unacceptable signal-to-noise degradation. In the stimulated-echo sequence (Fig. 2.14) 

magnetisation is longitudinal during the diffusion period, by virtue of the second 90° pulse, 

meaning the sequence is now limited by slower longitudinal (T1) relaxation rates instead. 

Following the diffusion period, the magnetization is returned to the transverse plane by the 

third 90° pulse for refocusing and detection. All recently introduced diffusion sequences are 

derived from this basic stimulated-echo sequence.[37] 
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Fig. 2.14. The pulsed field gradient stimulated-echo sequence.[37] 

 

The diffusion experiments presented above can be processed and displayed as a 2D matrix 

with chemical shifts plotted along one axis and diffusion coefficients plotted along the 

perpendicular axis (Fig. 2.15). 

 

 

Fig. 2.15. 2D DOSY spectrum showing four different species characterized  
                                by four different diffusion coefficients.[34] 
 

One of the applications of DOSY experiments is to separate species spectroscopically (not 

physically) present in a mixture of compounds. In this sense the use of DOSY is reminiscent 

of the physical separation of compounds by chromatography. Thus, DOSY is also termed 

“NMR chromatography”. Fig. 2.15 illustrates this concept, each horizontal line represents a 

distinct diffusion coefficient and, hence, all peaks on the horizontal line correlate with signals 

in the chemical shifts dimension, and should be attributed to a specific molecular species.  
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Solvent suppression  

Fortunately the majority of solvents used in organic NMR spectroscopy are readily available 

in the deuterated form. For proton spectroscopy in particular, this allows the chemist to focus 

on the solute spectrum, undisturbed by the solvent that is present in vast excess. 

Unfortunately, there are applications like surfactants systems, molecules of biochemical or 

medicinal interest, which must be studied in water and in order to observe all protons of 

interest within these systems, protonated water must be employed as the solvent. Whereas 

H2O is 110 M in protons, solute concentrations are more typically in the millimolar region 

and the 104 – 105 concentration difference imposes severe experimental difficulties which 

demand the attenuation of the solvent resonance.[37] 

 The goal of the solvent suppression is therefore to reduce the magnitude of the solvent 

resonance before the NMR signal reaches the receiver. This seemingly simple requirement 

has generated an enormous research area[38] emphasising the fact this is by no means a trivial 

exercise. The more widely used approaches can be broadly classified into three areas: a) 

methods that saturate the water resonance, b) methods that produce zero net excitation of the 

water resonance and c) methods that destroy the water resonance with pulsed field gradients. 

The most effective approach to date to solvent suppression is the destruction of the net solvent 

magnetization by pulsed field gradients (PFGs), so ensuring nothing of this remains 

observable immediately prior to acquisition. The method used within the present work is 

called excitation sculpting and is an improved approach to gradient suppression applying a 

double PFG spin-echo instead of one (Fig. 2.16).[39] This may be represented G1 – S – G1 

where S represents any selective 180° pulse and the bracketing gradients are identical. The 

phase profile of the selected resonance(s) is also dictated by the phase proprieties of the 

selective pulse S, which may not be ideal. Repeating the gradient-echo once again (Fig. 2.16, 

with a different gradient strength G2 to avoid accidental refocusing of the previously dephased 

unwanted magnetisation) exactly cancels any remaining phase errors and the resulting pure-

phase excitation profile depends only on the inversion properties of the selective pulse.  

Experimentally this is an enormous benefit because it makes implementation of the selective 

sequence straightforward and because the field gradients ensure excellent suppression of the 

unwanted resonance. 

 

 



 2. STATE OF KNOWLEDGE 26 

 

Fig. 2.16. Exitation sculpting (double pulsed field gradient spin-echo) principle.[37] 

 

The resulting excitation profile of the double PFG spin-echo (DPFGSE) is dictated by the 

cumulative effect of the repeated inversion pulses, resulting in a “chipping away” of 

magnetisation by the series of gradient-echoes, hence the term excitation sculpting.[39,40] 

 

Self-diffusion measurements in dilute micellar solutions  

 

The observed surfactant diffusion coefficient, as obtained from NMR experiment, is an 

average including contribution from both the monomers and the aggregated surfactant. 

However it is the contribution from the aggregated surfactant to the observed diffusion 

coefficient that conveys the information about size and structure of the micelles.  Of course, 

Dmono also gives information about size and structure of the single molecule, but this is not the 

subject of interest for this chapter. The observed diffusion coefficient (Dobs) is assumed to be 

a combination of the diffusion coefficients for aggregated (Dmic) and free surfactant 

monomers (Dmono), so that under fast exchange[41,42]: 

 

( ) monomicobs DPPDD −+= 1                                                   (2.11) 

 

where P is the fraction of micellized surfactant, which is given by: 

 

c
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P

−=                                                                  (2.12) 

 

where c is the total surfactant concentration and cmc is the critical micelle concentration. 

Dmono can be obtained by measuring the surfactant self-diffusion below cmc, where the 

diffusion coefficient is expected to have a constant value, and can be assumed to be constant 
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above cmc. Once Dmic has been determined, it can be compared with theoretical models to 

predict the size and indicate the structure of the micelles in solution.  

As it was mention at the beginning of this subchapter, the hydrodynamic radius RH can be 

calculated from the self-diffusion coefficients using the Stokes-Einstein equation (2.8), which 

describe a spherical particle diffusing in a solvent at infinite dilution: 
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=                                                                 (2.8) 

 

where kb is the Boltzmann constant, T is the absolute temperature, η is the viscosity of the 

solvent and RH is the hydrodynamic radius including the hydrophobic part, the head group and 

the hydration water. 

The Stokes-Einstein equation (2.8) assumes the absence of intermolecular interaction of the 

surfactant, i.e. infinite dilution. In the presence of micelles, aggregate obstruction effects must 

be taken into account. In the case of spherical micelles, a functional form according to the 

following equation (2.13) is often used: 

 

( )Φ−= kDDmic 10                                                       (2.13) 

 

 where Dmic is the measured micelle diffusion coefficient, D0 is the micelle diffusion 

coefficient at infinite dilution, k is a constant and Φ is the volume fraction of micelles. In the 

case of spherical aggregates, k ≈ 2-2.5, depending on the surfactant. 

Not only the aggregate self-diffusion, but also the self-diffusion of solvent molecules depends 

on the shape of aggregates. Different micellar geometries, i.e. spheres, prolates and oblates, 

give different obstruction effects. This allows the determination of micellar shape through the 

measurement of solvent diffusion. The relevant theory for this has been worked out by 

Jönsson et al.[43] In short, the presence of spherical and rod-shaped aggregates give rise to 

minor obstruction effects, while oblate or disk-shaped particles cause a larger effect. 
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2.2. Liquid crystals 

 

At a certain moment of life everyone learned that there are three states of matter: solid, liquid 

and gas. This, however, is not the whole story. There are situations in which more than just 

three states of matter exist. For now, consider the large class of organic molecules which no 

not show a single transition from solid to liquid, but rather a series of transitions between the 

solid and the normal (isotropic) liquid as their temperature is raised. These new phases have 

mechanical, optical, and structural properties between those of the crystalline solid and the 

corresponding isotropic liquid. For this reason this phases are referred to as liquid crystalline 

phases, and the materials which form them upon a change in phase are often referred to as 

thermotropic liquid crystal. Another proper name which is used is mesomorphic (or 

intermediate) phases.[44] 

But the temperature is not the only term which may be variable. Another possible way of 

generating this intermediate state is by addition of solvents in appropriate amount to 

convenient compounds leading to lyotropic liquid crystals. In this type of liquid crystals the 

concentration range in which the system is liquid crystalline can be compared with the 

temperature between the melting- and the clearing point of thermotropic liquid crystals.  

Chemical compounds which exhibit both kinds of liquid crystal formation are named 

amphitropic (or amphotropic) liquid crystals. Such particular compounds show thermotropic 

liquid crystalline behaviour in their pure state on heating or the formation of lyotropic 

mesophases on the addition of a further component, mostly of an inorganic or organic solvent 

in certain amounts.[45] 

Almost all novel inositol derivatives which are going to be presented in this work are 

amphitropic liquid crystals. For this reason the next two chapters will present some features 

about both the thermotropic and lyotropic liquid crystals. 

 

2.2.1. Thermotropic liquid crystals 

 

 As it was mentioned above, the thermotropic liquid crystals exist in dependence of 

temperature in certain temperature interval. Thermotropic liquid crystals which are stable at 

temperatures above the melting point of the compound are called enantiotropic. In certain 

cases the liquid crystalline state is only stable at temperatures below the melting point and can 

be obtained only with decreasing the temperature. Phases of this kind are called monotropic. 
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The structure of the liquid crystalline phases is characterized by the arrangement and 

conformation of the molecules and the intermolecular interaction. Similar phase structures can 

be formed by molecules which belong to completely different classes from the chemical stand 

point. This could be explained by looking at some of the most important phase structures.[44] 

 

The nematic mesophases  

 

The simplest liquid crystalline phase is the nematic phase. There are several types of nematic 

phases (Fig. 2.17) but all of them can, to a first approximation, simply be described as liquids 

which have long range orientational order, but lack of positional or bond orientational order. 

The various types of nematics have slightly different properties based on the details of their 

molecular structure and chemical behaviour. The two primary types of nematics are uniaxial 

and biaxial. 

The uniaxial is characterized by the following features: a) no positional order, so no bond 

orientational order; b) orientational order parallel to the director n; c) the direction of n in 

space is arbitrary and typically imposed by outside forces such as electric/magnetic fields; d) 

n and –n are equivalent; ad e) molecules which form nematics are either achiral or racemic .   

 

 

           

 

Fig. 2.17. Schematic representation of the most common nematic phases (N = nematic  
“rod-like” phase, ND = nematic discotic, Ncol = nematic columnar). 

 

The biaxial nematic phase is also characterized by the above properties. However this liquid 

crystalline phase does not posses cylindrical symmetry about n. This phase presents two 

unique directions perpendicular to n rendering it biaxial. It should be pointed out that the 

existence of biaxial phases has been confirmed mostly in lyotropic than in thermotropic liquid 

crystals. 
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The smectic mesophases    

 

The name “smectic” was given by G. Friedel to describe certain mesophases that feel slippery 

like soap when touched, and was originally associated with what is now known as smectic A 

(SmA) phase. The important feature that distinguishes smectic phases is that they have a 

layered structure. In fact, positional and bond orientational order have been observed among 

molecules lying in a smectic phase resulting in over 20 smectic liquid crystalline phases. The 

most common phase are SmA, SmB, SmC, SmF and SmI. 

The simplest is the SmA phase made of achiral and nonpolar molecules and characterized by 

one-dimensional layered structure on which each layer is essentially a two-dimensional liquid 

(Fig. 2.18). This phase is uniaxial, the layers are essentially incompressible, and the long axes 

of molecules within the layer, on the average, are perpendicular to the layers. The SmA phase 

is characterized by short range positional order and short range bond orientational in the 

layers. 

 

                    

 

Fig. 2.18. Schematic representation of two smectic phases: 
 smectic A (SmA) and smectic C (SmC). 

 

The smectic B (or hexatic smectic B) describes a phase which is characterized by a layered 

structure, just like the SmA phase, and long range bond orientational order within the layers. 

The bond orientational order is the essential property of a hexatic phase. In the SmB phase, 

the molecules are locally hexagonally packed and the resulting six-fold bond orientational 

order is maintained for macroscopic distances. The hexatic smectic B phase is a uniaxial 

phase. 

The smectic C (SmC) phase is similar to the SmA phase in that it is a layered structure and 

each layer may be described as a two dimensional liquid film. However, in this case the 

molecules are on the average tilted with respect to the normal to the layers, i.e. n and the 

SmA SmC 
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smectic layer normal are not collinear (Fig. 2.18). Furthermore, the tilt angle, which the 

molecular long axis makes with the layer normal, is a strong function of temperature. A 

consequence of the tilting of the molecules is that this phase exhibits biaxial optical and 

physical properties. There are also chiral versions of the tilted smectic C phases. In these 

phase the director rotates around the cone generated by the tilt angle as the position along the 

normal to the layers is varied. These phases with chiral structures are designated by an 

asterisk to differentiate them from their achiral analogues.   

The smectic F (SmF) and smectic I (SmI) phases may be described as tilted analogues of the 

hexatic smectic B phase. However, with a hexagonal arrangement within smectic planes, the 

molecules can tilt along two distinct directions with respect to the hexagonal lattice.    

 

The columnar mesophases 

 

Positional order in discotic liquid crystals displays itself by the tendency of the molecules to 

arrange themselves in columns. This means that in the plane perpendicular to the columns, the 

molecules tend to arrange themselves in a two-dimensional lattice, either rectangular or 

hexagonal, as they diffuse throughout the sample. This is called a columnar phase (Fig. 2.19). 

The stacking along the columns is sometimes not regular. In some columnar phases, the 

molecules are tilted with their short axes not parallel to the column axes. The tilt direction 

alternates from one column to the next.  

 

 

 

Fig. 2.19. Schematic representation of a hexagonal columnar phase (Colh). 

 

Cubic mesophases  
 
Optically isotropic cubic mesophases are known to occur in some thermotropic systems and 
more commonly in lyotropic systems. In contrast to the rich information available on 
lyotropic materials, not much is known about cubic mesophases in thermotropic systems.  
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2.2.2. Lyotropic liquid crystals 
 
A mesophase formed by dissolving an amphiphilic mesogen in a suitable solvent, under 
appropiate conditions of concentration, temperature, and pressure is called lyotropic 
mesophase.[46] There are six classes of lytropic liquid crystals: lamellar, hexagonal, cubic, 
nematic, gel and intermediate phases (Fig. 2.20).  

 
 

 

Fig. 2.20. Schematic representation of different types of lyotropic mesophases.[47] 

 

In all of the states except the gel phases, both surfactant and water have a liquid-like 

molecular mobility that is short-range rotational and translational diffusion on a time scale of 

10-12 s. They differ in the long-range symmetry of the surfactant aggregates and in the 

curvature of micelle surface. Except for the phases with flat aggregate surfaces, each class can 

occur with the polar or the nonpolar regions as the continuous medium, the former being 

referred to as normal, while the latter are reversed. Each class of mesophases is usually 

labelled by a particular letter (Fig. 2.20) with the symbols having subscripts 1 or 2 to 

distinguish between the normal and reversed forms.  

 

Lamellar phase (Lα) 

 

The most common surfactant mesophase is the lamellar phase (Lα), also known as the neat 

phase from its occurrence during soap manufacture. In this phase, the surfactant molecules are 

arranged in bilayers frequently extending over large distances (a micron or more) which are 
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separated by water layers (Fig. 2.21a). This phase is similar to the thermotropic SmA phases. 

Its major repeating unit, the bilayer, forms the basic structural matrix of biological membranes 

(Fig. 2.21b). While the lamellar phase does not usually flow under gravity, it has a fairly low 

viscosity, with the material easily shaken into a container. It is readily identify from its 

characteristic optical textures. [45] 

  

          

 

Fig. 2.21. Schematic representation of a) a lamellar phase and  
                                           b) a model of biological membranes. 

 

Hexagonal phases (H1, H2) 

 

 The next most common mesophase type is the hexagonal. There are two distinct classes of 

hexagonal phase, these being normal hexagonal (H1) also known as the middle phase (again 

from the soap industry) and a reversed hexagonal (H2) (Fig. 2.22).  

 

 

 

Fig. 2.22. Schematic representation of a normal (H1) and reversed (H2) hexagonal phase. 

 

The normal phase (H1) is water-continuous, while the reversed (H2) is alkyl chain-continuous. 

They consist of indefinitely long circular aggregates packed on hexagonal lattice.[45] 

 

 

(a) (b) 

H1 H2 
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Cubic phases (I, V) 

 

A third category of mesophases formed by surfactants comprises the cubic phases. They are 

also known as “viscous isotropic”. As the name implies, these phases are based around one of 

three cubic lattices, namely the primitive, face centred and body centred. Therefore, they have 

no optical texture under polarized light. There are at least four classes of cubic phase, these 

being the normal and reversed forms of two very different structures. One set of structures (I) 

is comprised of small globular micelles while the second (V) consists of a 3D micellar 

network. Within each class several different structures occur. 

The simplest cubic phase is that of the I type where the surfactant aggregates are small 

globular micelles. For the water- continuous I1 phases, primitive, body centred and face 

centred lattices have all been proposed. A reversed I2 structure of globular aggregates packed 

in a cubic array has been reported recently for some surfactants. Here it appears that the 

micelles are spherical, but of two different sizes. For reversed micelles the alkyl chain 

packing constrains no longer limit the micelle diameter, hence the coexistence of two 

spherical micelles of different size is more plausible than for I1
. 

 

Fig. 2.23. Schematic representation of bicontinuous cubic phases. 
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The second set of cubic phases has a bicontinuous aggregate structure. Three main space 

groups Pn3m, Im3m and Ia3d have been reported (Fig. 2.23). The aggregates form a 3D 

network extending throughout the sample, having curvature towards water (V1) or towards oil 

(V2).  These phases are structurally similar to the intermediate phases and although organized 

around the same cubic lattices as the I phases, have a completely different aggregate structure. 

The cubic phases are all optically isotropic (as are micellar solutions), but they have very high 

viscosities hence are easily distinguished from micellar solutions. The two classes of cubic 

phase, I and V, are distinguished from each other by their location in the phase diagram. I 

phases occur at the composition between micellar solutions and hexagonal phases, whilst V 

phases occur between hexagonal and lamellar phases.[45] 

 

Nematic phases (N) 

 

Lyotropic nematic phases are some what less common than the mesophases discussed so far. 

They occur at the boundary between an isotropic micellar phase (L1) and the hexagonal phase 

(H1) or between L1 and the lamellar phase (Lα). As their name implies they have a similar 

long range micellar order to that of molecules in thermotropic nematic phase. They are of low 

viscosity, possessing long range micellar orientational order but reduced translational order 

compared to the other lyotropic phases, and like the thermotropic phase can be aligned in a 

magnetic field. It is possible to identify nematic phases optically because of their 

characteristic schlieren texture.[45] 

 

Gel phases (Lβ) 

 

The gel phase (Lβ) closely resembles the lamellar phase in that it is comprised of surfactant 

layers, but it differs in its very high viscosity. The term “gel” originates from industry where 

these systems were observed to have a gel-like rheology. There are commonly reported to be 

three different structures of the gel phase normal, tilted and interdigitated. The first structure, 

with the bilayer normal to the liquid crystal axis, is the structure most commonly found in 

dialkyl lipid systems. The second structure, the tilted bilayer, is found in systems where the 

polar head group is larger than the width of the alkyl chain (monoglyceride systems). The 

third structure, the interdigitated form, is found with long chain monoalkyl systems 

(potassium stearate).[45] 
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Intermediate phases 

 

A number of so-called “intermediate” phases have been identified. They replace V1 

bicontinuous cubic phases for surfactants with longer or more rigid hydrophobic chains. It is 

likely that they can replace the V2 phases under some conditions. Unlike the V1/V2 phases, 

intermediate phases are anisotropic in structure, and consequently birefringent. Also they are 

often much more fluid than the cubic phases. There are three broad types of intermediate 

phases according with the symmetry: rectangular ribbon structures, layered mesh structures, 

and the bicontinuous structures which do not have cubic symmetry. Ribbon phases may be 

regarded as a distorted hexagonal phase. Mesh phases are distorted lamellar phases in which 

the continuous bilayers are broken by water filled defects which may or may not be correlated 

from one layer to the next. The bicontinuous phases are distorted cubic structures.[45] 

 

Phase diagrams of binary systems 

 

The best way to illustrate the behaviour of an amphiphilic material in water is to show a phase 

diagram. The typical phase diagram of a binary system is a graph-like plot of composition 

(along the abscissa) against temperature (along the ordinate). A general convention 

established placing water to the left and the surfactant to the right. The term “graph-like” is 

used advisedly, for the phase diagrams differ importantly from the graphs. The span of 

compositions is restricted to 0-100%, and the vertical boundaries at these limits have special 

significance: they are phase diagrams in their own right. 

The area within phase diagrams is divided into regions by lines. Some of these are straight 

lines that are either precisely horizontal or vertical, while others are smooth curves. The latter 

generally depict the limits of miscibility of the components, and are called phase boundaries. 

A one-phase region always exists to one side of phase boundaries and a two-phase region to 

the other. The regions are labelled so that both the number of phases present, and their 

structures, can be read from the diagram.[28] 

A phase diagram can present horizontal lines (lines of constant temperature or isotherms) 

called isothermal discontinuities. These reflect the existence of discontinuities in phase 

behaviour which occur at these temperatures. Vertical lines (lines of constant composition or 

isopleths) can also exist and are called isoplethal discontinuities. Two vertical lines are 

always found at 0 and 100% compositions which are the unary diagrams of components. In 
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the diagnosis of phase behaviour, these isopleths (as well as the components themselves) 

should be treated as phase regions whose span of composition is zero.  

Phase diagrams constitute a dense form of information. With a little practice it is easily 

possible to read phase behaviour at specific coordinates. With further practice progressive 

changes in phase behaviour along isothermal or isoplethal process trajectories may be readily 

be perceived. Finally, phase diagrams make it possible to grasp quickly and comprehensive 

the phase behaviour of a system as a whole. No better way to communicate visually all these 

kinds of information has been yet devised. 

 

2.2.3. Analytical methods to characterize liquid crystals  

 

The liquid crystalline phase is a distinct phase of matter, but there are many different types of 

liquid crystalline phases. The various liquid crystalline phases and other mesophases are 

characterised and then classified according to the molecular ordering that constitutes the 

phase structure. Not surprisingly, the difference between the many different liquid crystal 

phases is generally minimal. Such minimal differences in structure mean that the precise 

classification of liquid crystals often requires the use of several analytical techniques (and a 

great deal of experience).[48] 

The most common analytical techniques used in characterization of liquid crystalline 

materials are optical polarizing microscopy (PM), differential scanning calorimetry (DSC), X-

ray diffraction, and miscibility studies. Other techniques used to identify the structure of 

liquid crystalline mesophases include neutron scattering studies and nuclear magnetic 

resonance (NMR) studies.  

 

Optical polarizing microscopy 

 

 The most widely used technique of liquid crystal phase identification is optical polarizing 

microscopy (PM), which reveals that each different liquid crystal phase has a distinct optical 

texture.  

The identification of mesophase trough PM usually involves the magnified view of a thin 

sample of a mesogenic material sandwiched between a glass microscope slide and a glass 

coverslip. The microscope slide of material is usually placed on a stage, which can be 

accurately temperature-controlled, between polarizers which are crossed at 90° to each other. 

The manner in which the molecules are arranged within the phase can be detected by careful 
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analysis of the microscopic texture. Since the polarizers in the microscope are crossed at 90° 

to each other, then with no sample in place light is extinguished and so blackness is seen. 

Similarly, if an isotropic liquid is analyzed, the polarized light remains unaffected by the 

sample and so no light passes trough the analyser. However, when an anisotropic, birefringent 

medium is present (e.g. a liquid crystalline mesophase) light is not extinguished and an optical 

texture appears that gives information relating to the arrangement of the molecules within the 

medium. When analyzing mesophases by PM, the texture that is revealed depends upon how 

the sample is aligned, in addition to being dependent upon the phase structure of the sample. 

There are two basic forms of alignment for the liquid crystalline compounds, homeotropic and 

homogeneous (planar).  Homeotropic alignment is where the molecules that constitute the 

phase are oriented such that their long axes (more importantly their optic axes) are normal to 

the supporting substrate. When the molecules are so oriented polarised lights is unaffected by 

the material and so light cannot pass trough the analyser. Hence from this vantage point the 

observer looking trough the microscope will see complete blackness. In homogeneous 

(planar) alignment the constituent molecules of the liquid crystal phase are oriented parallel to 

the supporting substrates.  

The optical polarizing microscopy enables the identification of the type of liquid crystal and 

other mesophases from the optical texture that is generated. However, the technique is also 

essential when evaluating the physical properties of liquid crystals in certain phases and over 

particular temperature ranges.[48] 

   

Differential scanning calorimetry (DSC) 

 

Differential Scanning Calorimetry (DSC) is a useful tool which complements optical methods 

in the study of liquid crystal phase transitions. DSC means the measurement of the change of 

the difference in the heat flow rate to the sample and a reference sample while they are 

subjected to a control temperature program.[49] 

This method has the advantages of high sensitivity for detecting enthalpy changes (as small as 

~0.01J/g), very small sample size (up to 10 mg), rapid and convenient operation procedures 

using commercial instruments with flexible computer software programs.  

The basic principle underlying this technique is that, when the sample undergoes a physical 

transformation such as phase transitions, more or less heat will need to flow to it than the 

reference to maintain both at the same temperature. Whether more or less heat must flow to 

the sample depends on whether the process is exothermic or endothermic. For example, as a 
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solid sample melts to a liquid it will require more heat flowing to the sample to increase its 

temperature at the same rate as the reference. This is due to the absorption of heat by the 

sample as it undergoes the endothermic phase transition from solid to liquid. Likewise, as the 

sample undergoes exothermic processes (such as crystallization) less heat is required to raise 

the sample temperature. By observing the difference in heat flow between the sample and 

reference, differential scanning calorimeters are able to measure the amount of heat absorbed 

or released during such transitions. DSC may also be used to observe more subtle phase 

changes, such as glass transitions. There are two types of DSC systems in common use, the 

power compensation DSC and the heat flux DSC.  

In power compensation DSC the temperatures of the sample and reference are controlled 

independently using separate, identical furnaces. The temperature of the sample and reference 

are made identical by varying the power input to the two furnaces. The energy required to do 

this is a measure of the enthalpy or heat capacity changes in the sample relative to the 

reference. 

In heat flux DSC a defined exchange of the heat to be measured with the environment takes 

place via a well-defined heat conduction path with given thermal resistance. The primary 

measurement signal is a temperature difference which is related to enthalpy change in the 

sample using calibration experiments. In commercial heat flux differential scanning 

calorimeters, the heat exchange path is realized in different ways. The most important 

fundamental types are the disk-type, the turret-type and the cylinder-type measuring systems. 

 

 

Fig. 2.24. Schematic representation of a heat-flux DSC with disk-type measuring system: 1 – 
disk, 2 – furnace, 3 – lid, 4 – differential thermocouple(s), 5 – programmer and controller, S – 
crucible with sample substance, R – crucible with reference sample substance, ΦFS – heat flow 
rate from furnace to sample crucible, ΦFR - heat flow rate from furnace to reference sample 
substance, Φm – measured heat flow rate, K – calibration factor. 
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In case of disk-type measuring system the main heat flow from the furnace to the samples 

passes symmetrically trough a disk of medium thermal conductivity (Fig. 2.24). The samples 

(or the samples containers) are positioned on this disk symmetrical to the centre. The 

temperature sensors are integrated in the disk which can be made from metal, quartz glass or 

ceramic.  

The characteristic feature of the turret-type measuring system is that the essential heat flow 

passes from the bottom of the furnace through the jacket of two thin-walled cylinders to the 

top of them which serve as sample and reference sample support. 

For the case of the cylinder-type measuring system, a block-type cylindrical furnace is 

provided with two cylindrical cavities, each containing a cylindrical, fixed sample container, 

which is connected with the furnace or directly with the other container by means of several 

thermocouples.  

The differential scanning calorimetry cannot identify the type of liquid crystal phase, but the 

level of the enthalpy change does give some information about the degree of molecular 

ordering within the mesophase.[49] 

 

X-ray diffraction 

 

X-ray diffraction is the most useful technique in investigating the microscopic structure of 

liquid crystals. This technique will map the positions of the molecules within the phase and 

hence determine the phase structure and classification to which the particular phase belongs. 

However, to maximize information, aligned samples are needed. 

 

Miscibility studies 

 

Liquid crystal phases present in novel compounds can be identified and classified by 

miscibility studies. The material with unknown mesophase is mixed with a known material 

that possesses mesophases that have been already identified. If a particular mesophase of the 

unknown material is completely miscible with a known mesophase of the known material, 

then it can be concluded that the two phases of each compound are identical and belong to the 

same miscibility group.  
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3. RESULTS AND DISCUSSION I  

 

The present chapter is divided in two subchapters. The first one offers details concerning the 

syntheses of a number of new regiochemically defined inositol derivatives, while the second 

one presents the physical properties with regard to liquid crystalline mesomorphism as well as 

the solution/surface activity in aqueous solution. 

 

3.1. Syntheses 

 

3.1.1. Protective group strategies with respect to myo-inositol 

 

When a chemical reaction is to be carried out selectively at one reactive site in a 

multifunctional compound, other reactive sites must be temporarily blocked. Many protective 

groups have been, and are being, developed for this purpose. A protective group must fulfil a 

number of requirements: it must react selectively in good yield to give a protected substrate 

that is stable to the projected reactions; it must be selectively removed in good yield by 

readily available, preferably non-toxic reagents that do not attack the regenerated functional 

group; should form a crystalline derivative that can be easily separated from side products 

associated with its formation or cleavage; should have a minimum of additional functionality 

to avoid further sites of reaction. [50] 

The well-established protecting group chemistry[51-55] of myo-inositol (1) mainly consists of 

selective acetalization, etherification, esterification, and the respective deprotection reactions. 

The main factor for the synthetic differentiation of the dissimilar ring positions in myo-

inositol (1) is the axial hydroxyl function at the 2-position. On one hand, this leads to the 

formation of cis-annealed 6-ring/5-ring acetals which are energetically favoured over the 

respective trans-annealed structures and on the other hand, the axial or the equatorial 

hydroxyl functions can be distinguished by their accessibility and reactivity.  

Subsequent application of such protecting group strategies allows specifically addressing and 

modifying the different ring positions in myo-inositol. Exemplary, Scheme 3.1 presents a 

number of possible strategies which are described more detailed later in the present work.  
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Scheme 3.1. Protective group strategies for selective substitution of the hydroxyl function in 
                      myo-inositol (R – any substituent). 
 

3.1.1.1. Synthesis of 1,4,5,6- tetra-O-benzyl-myo-inositol (rac-6) 

 

In order to functionalise the position 1 and/or position 2 from the inositol ring, it is necessary 

at first to synthesize the 1,4,5,6-tetra-O-benzyl-myo-inositol (rac-6). For this purpose the 

desired free hydroxyl groups have to be selective protected. Therefore the hydroxyl groups 

from C1 and C2 were protected by acetalisation with cyclohexanone. The four free remaining 

hydroxyl functions were subsequently benzylated and finally the acetal was hydrolized to give 

rac-6 (Scheme 3.2). 
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Scheme 3.2. The synthetic route towards 1,4,5,6-tetra-O-benzyl-myo-inositol (rac-6): 
                     a) cyclohexanone, p-TsOH, toluene, 170 °C, 80%; b) BnCl, KOH, 100 °C, 80%;   
                     c) acetic acid, H2O, 100 °C, 98%. 
 

For the synthesis of 1,2-O-cyclohexylidene-myo-inositol (rac-11), myo-inositol (1) was 

refluxed for 6 hours with cyclohexanone in toluene and p-toluene sulfonic acid monohydrate 

as catalyst with continuously separation of formed water using a Dean-Stark separator.  To 

use only a small amount of p-toluene sulfonic acid as catalyst is important because in larger 

concentrations it promotes the self-condensation of the cyclohexanone. Using a big excess of 

cyclohexanone, a mixture of di- and triketals together with the desired monocyclohexylidene 

derivative is formed, but these by-products could mildly be hydrolyzed to the desired 

monoketal by addition of ethanol. The acetal rac-11 was obtained by recrystallization from 

ethanol with a yield of 80% (lit.[56] 82%). 

The next step is the protection of the remaining hydroxyl functions as benzyl ethers leading to 

1,4,5,6-tetra-O-benzyl-2,3-O-cyclohexylidene-myo-inositol (rac-12). For this aim, the tetraol 

rac-11 was heated with benzyl chloride and potassium hydroxide for 20 hours at 100°C. The 

desired rac-12 was obtained after recrystallization from methanol in 80% yield (lit.[57] 74% ). 

The final step for achieving the 1,4,5,6-tetra-O-benzyl-myo-inositol (rac-6) resides in rac-12 

hydrolysis which was performed by heating with acetic acid and water at 100 °C for 2.5 hours 

with a yield of 98 %  (lit.[57] 84%) followed by recrystallization from methanol. 
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3.1.1.2. Synthesis of 1,3,4,5,6-penta-O-benzyl-myo-inositol (7) 

 

In order to selectively attach a substituent to the hydroxyl at position 2 of the myo-inositol 

ring, all the other 5 hydroxyl functions should be protected. One of the possibilities to achieve 

this goal is the synthesis of 1,3,4,5,6-penta-O-benzyl-myo-inositol (7) (Scheme 3.3). 

 

 

 

Scheme 3.3. Selective synthesis of 1,3,4,5,6-penta-O-benzyl-myo-inositol (7): 
                                  a)1. Bu2SnO, MeOH, reflux; 2. BnBr, CsF (1.3 eq), DMF, toluene; 90%. 
 

The regioselective manipulation of hydroxyl groups via stannylene derivatives has been 

already applied in carbohydrate chemistry since many years and is noteworthy because it 

accomplishes the regioselective activation of a specific hydroxyl function e.g. the equatorial 

hydroxyl of a six-membered ring cis-1,2-diol.[58]  The origin of the activation is not yet clear 

but structural evidence including X-ray data point to dimeric (or oligomeric) stannylene 

structures in which the tin atoms are in the centre of a trigonal bi-pyramid with the butyl 

groups occupying the two equatorial positions (Scheme 3.4). The more electronegative of the 

two oxygen atoms occupies the apical position and is co-ordinated to only one tin atom 

whereas the less electronegative oxygen is ensconced in a Sn2O2 bridge and is therefore co-

ordinated to two tin atoms. Thus the observed regioselectivity is a consequence of a selection 

of a particular pair of hydroxyl functions for stannylene formation followed by orientation of 

the more electronegative oxygen in the apical position, which is intrinsically more reactive.[59] 
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Scheme 3.4. Dimeric structure of stannylene derivatives of 1,2-diols. 
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To synthesize 1,3,4,5,6-penta-O-benzyl-myo-inositol (7), the first step consisted in refluxing 

1,4,5,6-tetra-O-benzyl-myo-inositol (rac-6) with dibutyltin oxide in dry methanol for 3 hours. 

After evaporation of the solvent, the resulted crude mixture was dissolved into a 1:1 mixture 

of DMF and toluene and reacted with benzyl bromide and CsF to afford the desired 1,3,4,5,6-

penta-O-benzyl-myo-inositol (7) with 90% (lit.[15] 96%) yield. 

 

3.1.1.3. Synthesis of 1,3,5-O-myo-inositol orthoformate (8) 

 

In the last decade, protection of the hydroxyl groups at positions 1, 3, and 5 of myo-inositol as 

the corresponding orthoester has frequently been used. This is mainly because orthoesters of 

myo-inositol can be easily obtained in gram scale as a single product.  

The formation of the 1,3,5-orthoester of myo-inositol involves inversion of the inositol ring 

(Scheme 3.5). Consequently, this orthoester has five oxygen atoms in axial positions and an 

oxygen atom in the equatorial position with respect to the myo-inositol ring. The myo-inositol 

orthoester is in fact a highly functionalized adamantane. Three of the carbon atoms in 

adamantane are replaced by three oxygen atoms (C1, C3 and C5 oxygen atoms of the inositol 

ring) and three of the methylene groups of adamantane are hydroxylated (C2, C4 and C6 of the 

inositol ring). This results in an analogue of the adamantane molecule, which has two pairs of 

1,3-trans hydroxyl groups and one pair of 1,3-cis hydroxyl groups. 
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Scheme 3.5. Synthesis of 1,3,5-O-myo-inositol orthoformate (8): 
                                            a) CH(EtO)3, p-TsOH, DMF, 100 °C, 80%. 
 

The 1,3,5-O-myo-inositol orthoformate (8) was prepared by heating of myo-inositol (1) with 

triethyl orthoformate and p-toluenesulfonic acid in dry DMF at 100 °C. The desired product 

was isolated by column chromatography in 80% yield (lit.[60,61]  80%). 
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3.1.1.4. Synthesis of 1,2:4,5-di-O-cyclohexylidene-myo-inositol (rac-9) 

 

To selectively functionalize the hydroxyl groups from positions 1 or/and 4 of myo-inositol, it 

would be necessary to protect the other four hydroxyl groups. This aim could be achieved by 

a one step synthesis of 1,2:4,5-di-O-cyclohexylidene-myo-inositol (rac-9) (Scheme 3.6).  

 

 

 

Scheme 3.6. Synthesis of 1,2:4,5-di-O-cyclohexylidene-myo-inositol (rac-9): 
                                   a) 13, p-TsOH, DMF, 100 °C, 30%. 
 

Treatment of myo-inositol (1) with 1-ethoxycyclohexene (13) and a catalytic amount of p-

toluenesulfonic acid in dry DMF produced a mixture of three derivatives: 1,2:3,4-, 1,2:4,5-, 

and 1,2:5,6-di-O-cyclohexylidene-myo-inositol in yields of 20, 30 and 35%. The desired 

1,2:4,5 derivative (rac-9) can be easily separated from the mixture by crystallization whereas 

column chromatography is necessary to separate the other two derivatives.[62,63] 

 

3.1.1.5. Synthesis of 1,6:3,4-bis-O-(2’,3’-methoxybutane-2’,3’-diyl)-myo-inositol (10) 

 

The application of the butane-2,3-diacetal (BDA) protecting group for the selective protection 

of trans-1,2-diols in various monosaccharide derivatives was first demonstrated by 

Montchamp et al.[64] These authors also reported the first synthesis of 6 on a 1 g scale by 

acidic-catalysed reaction of myo-inositol with 2,2,3,3-tetramethoxybutane (TMB) in refluxing 

methanol for 135 h in the presence of trimethyl orthoformate as a dehydrating agent. It was 

later shown[65] that the BDA group could be introduced into a variety of polyols using cheap 

and commercially available butane-2,3-dione instead of TMB. Potter et al[66] reported that, in 

addition to the symmetrical diol 10, a second major product also results from the acid-

catalysed reaction of butane-2,3-dione with myo-inositol: namely the asymmetrical DL-

1,6:4,5-bis-O-(2’,3’-dimethoxybutane-2’,3’-diyl)-myo-inositol (±) 14 (Scheme 3.7). 
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Furthermore, it was found that long reaction times would give better yields for 10 but led to 

the gradual accumulation of a less polar by-product, which is difficult to remove. For large-

scale production of 10 therefore it was preferable to use moderate reaction times (20-96 h).[67] 

 

 

 
Scheme 3.7. Application of BDA protection of 1,2-diols on myo-inositol: 

a) HC(OMe)3, MeOH, CSA, butane-2,3-dione. 
 

Refluxing myo-inositol (1) with trimethyl orthoformate, butane-2,3-dione and a catalytic 

amount of camphor sulphonic acid in methanol for around 40 hours, the symmetric diol 10 

was obtained with 26% yield. The modest yield is acceptable considering the low cost of the 

starting materials, convenience of the method, and ease of isolation. Because the diol 10 has a 

very low solubility in methanol, while the other major product 14, and various minor by-

products at this stage are all soluble, the product is simply filtered off from the cooled 

reaction mixture and dried. 
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3.1.2. Synthetic strategies towards myo-inositol derivatives 

 

3.1.2.1. Synthesis of 1-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol    

(rac-19) 

 

Rac-19 is the first representative of a new class of inositol-based surfactants that combine the 

properties of classical sugar surfactants and oligo(ethylene oxide) alkyl surfactants.  

Its synthesis starts with a Williamson etherification of triethylene oxide, analogue to lit.[68] 

For this purpose, triethylene oxide (15) were stirred for 1 hour at 100 °C with 50% aq NaOH 

followed by the dropwise addition of dodecyl bromide. The reaction was allowed to proceed 

for 23 hours at 100 °C.  After the required work-up and purification, the triethylene oxide 

monododecyl ether (16) was obtained with 82 % yield and subsequently tosylated[69]  with p-

tosyl chloride and 17% aq NaOH in THF at 0 °C for four hours. The tosylated triethylene 

glycol monododecyl ether (17) was obtained in 85% yield (Scheme 3.8). 

 

 

 

           

                                                                                                                                                                                                                                                                 

Scheme 3.8. Synthesis of rac-19:  
          a) C12H25Br,  NaOH 50% aq, 100°C, 82%; b) p-TsCl, NaOH 17% aq, THF, 0 °C, 85%;  
           c) 1. Bu2SnO, MeOH, reflux; 2. 17, CsF, DMF, rt; 50%; d) H2, Pd/C (10 mol%),  
           MeOH, EtOAc, 90%. 
 

The next step consists of the regioselective combination of the two building blocks, rac-6 and 

17. This step was realized by refluxing rac-6 for three hours with dibutyltin oxide in methanol 
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followed, after evaporation of the solvent, by the addition of tosylate 17 in presence of 

caesium fluoride in dry DMF, and stirring at r.t. for 48 hours. After the necessary work-up 

and purification, the protected rac-18 was obtained in 50% yield (Scheme 3.8). 

The new derivative rac-19 was produced after deprotection by hydrogenolysis under pressure 

(~ 8 bars) with 10 mol% Pd/charcoal, which gave rac-19 in 90% yield (Scheme 3.8).  

The desired 1-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]-myo-inositol (rac-19) was 

obtained in seven steps starting from myo-inositol with an overall yield of 20%. 

 

3.1.2.2. Synthesis of 2-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol (21) 

 

In order to study the influence of regiochemical position of the attached alkyl-triethylene 

oxide chain to myo-inositol ring with regard to mesomorphism and surface activity, a further 

new derivative (21) – in which the sidechain is attached to the hydroxyl group at the 2-

position (the axial) of myo-inositol – was synthesized in eight steps starting from myo-inositol 

in 31% overall yield.   

To arrive at this compound, the 1,3,4,5,6-penta-O-benzylated-myo-inositol 7 was reacted with 

tosylate 17 in the presence of NaH (55-65% in mineral oil) and dry DMF to give the protected 

20 in 90% yield.  This intermediate was subsequently deprotected in presence of hydrogen 

(pressure ~ 8 bars) and Pd/charcoal to cleave the five benzyl ethers and to give the desired 21 

in 88% yield (Scheme 3.9) 

 

 
 

Scheme 3.9. The last two steps from the synthesis of the meso derivative 21: 
                                   a) 17, NaH, DMF, rt, 90%; b) H2, Pd/C, MeOH, EtOAc, 88%. 
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3.1.2.3. Synthesis of 4-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol  

 (rac-26) 

 

Another possible isomer of rac-19 would be rac-26 in which the alkyl-triethylene oxide chain 

is attached to the hydroxyl group of position 4 of myo-inositol ring.  

As it was previously mentioned (subchapter 3.1.1.3), the myo-inositol orthoester (8) is in fact 

a highly functionalized adamantane. The rigidity of the adamantane frame-work and the 

presence of six oxygen atoms in the molecule impart unusual chemical and physical 

properties on myo-inositol orthoesters and its derivatives. This orthoester has meso 

configuration and hence two of the hydroxyl groups (C4 and C6) are chemically equivalent. 

The C4 and C6 hydroxyl groups form a strong intramolecular hydrogen bond[61,70] (Scheme 

3.10) as a result of which, one of these hydroxyl groups is more acidic than the C2 hydroxyl 

group. Hence bases that can deprotonate the more acidic hydroxyl group (C4 or C6) result in 

the formation of the corresponding anion 23 which is also stabilized by intramolecular 

hydrogen bonding with the other axial hydroxyl group. When the metal hydrides are used as 

bases, the resulting alkoxide at the C4 or the C6 hydroxyl group is stabilized by chelation (24) 

with the cis-hydroxyl group. As the result of these intramolecular interactions, selective mono 

functionalization of one of the 1,3-cis-hydroxyl groups or the C2 hydroxyl group can be 

achieved.[71] 

 

 
Scheme 3.10. Intramolecular interactions in myo-inositol orthoester  

 

Alkylation of myo-inositol orthoformate 8 with the tosylate 17 in presence of NaH and dry 

DMF results in formation of the corresponding C4 ether 25 in 62% yield. The final step is the 

hydrolysis of orthoester 25 by refluxing it with methanol and 6M HCl for four hours to 

achieve rac-26 in 83% yield after purification (Scheme 3.11). 
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                               Scheme 3.11. The last steps of synthesis of rac-26: 
a) 17, NaH, DMF, rt, 62%; b) MeOH, HCl 6 M, reflux, 83% 

 

The new isomer, rac-26, could be obtained in five steps starting from myo-inositol with an 

overall yield of 30%. 

 

3.1.2.4. Synthesis of 1-O-dodecyl-4-O-[2’-[2"-[2"'-(hydroxy)ethoxy]ethoxy]ethyl]- myo-

inositol (rac-32) 

 

In order to study and compare the influence of the molecular arrangement of the 

oligo(ethylene oxide) and sugar units on mesomorphism and surface activity, a new inositol-

based derivative (rac-32)  was synthesized which has the alkyl chain attached to the hydroxyl 

group from position 1 and the triethylene oxide unit attached to hydroxyl group from position 

4. The surfactant rac-19 represents the sequence inositol–triethylene oxide–dodecyl chain, 

while rac-32 represents the “inversed” sequence, triethylene oxide–inositol–dodecyl chain. 

This “inversion” of the building block results in interesting differences with regard to physical 

properties, as it will be presented in chapter 3.2. 

As the synthesis of rac-19, the synthesis of rac-32 begins with the corresponding preparation 

of the triethylene oxide building block. For this purpose, the triethylene oxide 15 was first 

protected at one end by etherification with benzyl chloride and 50% aq NaOH for 19 hours at 

100 °C to give the monobenzyl ether 27 in 65% yield (lit.[72,73] 60%). The protected 

triethylene oxide 27 was next tosylated by reaction with p-tosyl chloride and 17% aq NaOH at 

0 °C to give the desired tosylate 28 in 85% yield (Scheme 3.12).[74] 

 

 

Scheme 3.12. The synthesis of tosylate 28: 
              a) BnCl, NaOH 50% aq, 100°C, 65%; b) p-TsCl, NaOH 17% aq, THF, 0 °C, 85%; 
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Scheme 3.13. The synthesis of the “inverse” rac-32: 

a) C12H25Br, NaH, DMF, rt, 65%; b) 28, NaH, DMF, rt, 90%;  
           c) H2, Pd/C, MeOH, EtOAc, 98%; d) acetic acid, H2O, reflux, 70%. 

 
The synthesis continues with the attachment of the alkyl chain to the protected inositol rac-9 

via an alkylation with dodecyl bromide in presence of NaH suspended in dry DMF to give 

rac-29 in 65% yield. The next step consists of an alkylation of rac-29 with the monobenzyl 

ether 28 in presence of NaH/DMF to give rac-30 with 90% yield. This compound was 

subsequently deprotected first by Pd/charcoal catalyzed hydrogenolysis to cleave the benzyl 

ether (98% yield) and secondly by hydrolysis of the cyclohexylidene acetals by refluxing with 

a concentrated aqueous solution of acetic acid to finally give the new inositol-based derivative 

rac-32 in 70% yield (Scheme 3.13).  

The new derivative rac-32 was obtained in seven steps starting from myo-inositol with an 

overall yield of 8%. 
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3.1.2.5. Synthesis of 2-O-dodecyl-5-O-[2’-[2"-[2"'-(hydroxy)ethoxy]ethoxy]ethyl]- myo-

inositol (36) 

 

For the purpose of studying the influence of molecular symmetry on physical properties like 

solubility, mesomorphism or surface activity, a new inositol-based derivative (36) was 

synthesized starting from myo-inositol in seven steps in 7% overall yield. 

The selective alkylation of the hydroxyl group at C5 with dodecyl bromide in presence of 

NaH and DMF generated the desired monoalkylated intermediate with 40% yield, whereas 

the further alkylation with tosylate 28 and NaH in DMF afforded 34 in 70% yield (Scheme 

3.14). 

 

 

 

Scheme 3.14. The synthesis of the symmetric derivative 36: 
a) C12H25Br, NaH, DMF, rt, 40%; b) 28, NaH, DMF, rt, 70%;  

    c) H2, Pd/C, MeOH, EtOAc, 98%; d) TFA, H2O, DCM, rt, 93%. 
 

The next step is the cleavage of the benzyl ether via hydrogenolysis with Pd/charcoal catalyst 

to give 35 in 98% yield. The cleavage of the BDA protection groups, as the last step of this 

synthesis, was achieved in presence of an aqueous solution of trifluoracetic acid and DCM 

and gave the desired compound 36 in 93% yield (Scheme 3.14). 
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3.1.2.6. Synthesis of 2-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]-5- O-dodecyl-myo-

inositol (38) 

 

In order to study the influence of the hydrophilic–hydrophobic ratio on various physical 

properties of inositol-based surfactants, a number of new derivatives were synthesized. In all 

derivatives presented up to this point (rac-19, 21, rac-32, 36) the hydrophilic–hydrophobic 

ratio was 2:1, which means two hydrophilic head groups (myo-inositol and triethylene oxide 

units) and one hydrophobic tail (the dodecyl chain). 

A derivative which presents a hydrophilic–hydrophobic ratio of 2:2 is 38, which contains two 

hydrophilic head groups (myo-inositol and triethylene oxide units) and two hydrophobic tails 

(dodecyl chains). The synthesis of 38 counts six steps starting from myo-inositol and was 

realised in 8% overall yield. 

The last two steps of this synthesis comprise of an alkylation and a cleavage of the BDA 

protection groups. The alkylation of 33 with the corresponding tosylate 17 was done in the 

presence of NaH/DMF leading to 37 in 82% yield. The cleavage of BDA protection groups 

was achieved in the presence of an aqueous solution of trifluoracetic acid and DCM and gave 

the desired 38 in 95% yield (Scheme 3.15). 

 

 

 
Scheme 3.15. Completion of the synthesis of compound 38: 

a) 17, NaH, DMF, rt, 82%; b) TFA, H2O, DCM, rt, 95% 
 

3.1.2.7. Synthesis of 1,2-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol 

(rac-40) 

 

A hydrophilic–hydrophobic ratio 3:2 can be achieved by synthesis of rac-40, its molecule 

containing three hydrophilic head groups (one myo-inositol and  two triethylene oxide units) 

and two hydrophobic tails (dodecyl chains). The synthesis of rac-40 has seven steps starting 

from myo-inositol and was realised in 21% overall yield. 
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Scheme 3.16. Completion of the synthesis of rac-40: 
a) 17, NaH, DMF, rt, 51%; b) H2, Pd/C, MeOH, EtOAc, 95%. 

 

The remaining free hydroxyl groups in rac-6 were alkylated with the tosylate 17 in presence 

of NaH/DMF leading to a mixture of mono- and di-substituted compounds from which rac-39 

was isolated in 51% yield. The cleavage of the benzyl ethers was realized by hydrogenolysis 

under pressure (~ 8 bars) with 10 mol% Pd/charcoal catalyst to give the desired derivative 

rac-40 in 95% yield (Scheme 3.16). 

 

3.1.2.8. Synthesis of 1,4-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol 

(rac-42) 

 

The position of the two O-attached alkyl-triethylene oxide chains at the myo-inositol ring 

could create major differences in various physical properties. In this way a new possible 

derivative which has the hydrophilic–hydrophobic ratio 3:2 – rac-42 – can be achieved in five 

steps in 10% overall yield.  

For this purpose, the corresponding protected rac-9 was treated with the tosylate 17 and 

NaH/DMF to give rac-41, after work-up and purification, in 50% yield.  The last step consists 

of the cleavage of the cyclohexylidene acetals which was realized by reflux with a 

concentrated aqueous solution of acetic acid to obtain rac-42, after a tedious purification, in 

74% yield (Scheme 3.17). 
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Scheme 3.17. The last two steps of the synthesis of rac-42 
a) 17, NaH/DMF, rt, 50%; b) acetic acid, H2O, reflux, 74%. 

 

3.1.2.9. Synthesis of 2,5-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-

inositol (44) 

 

The last synthesized derivative which has the hydrophilic–hydrophobic ratio 3:2 is the meso 

compound 44 which has two alkyl-triethylene oxide chains attached at the hydroxyl groups 

from C2 and C5.  

 

 

 
Scheme 3.18. The last two steps of the synthesis of compound 44: 

a) 17, NaH, DMF, rt, 50%; b) TFA, H2O, DCM, rt, 53%. 
 

For this purpose the BDA protected inositol 10 was treated with the corresponding tosylate 17 

in the presence of NaH/DMF to afford 43 in 50% yield followed by the cleavage of the BDA 

protection groups with aqueous trifluoracetic acid and DCM to achieve the final compound 44 

in 53% yield after purification by flash chromatography and recrystallization, (Scheme 3.18).  

The synthesis of 44 was completed in five steps in 7% overall yield. 
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3.2. Physical properties 

 

This section comprises studies regarding thermotropic and lyotropic mesomorphism displayed 

by the new synthesized inositol-based derivatives as well as their solution properties and 

surface activity in aqueous media. The assignment of different types of mesophases was 

achieved by polarization microscopy (PM) and differential scanning calorimetry (DSC). The 

solution properties were described using surface tension measurements in aqueous solutions, 

total internal reflection (TIR) Raman spectroscopy and self-diffusion NMR experiments 

(DOSY). 

The surface tension measurements were performed in collaboration with the research group of 

Prof. Dr. Cosima Stubenrauch at University College Dublin, School of Chemistry and 

Bioprocess Engineering, Ireland, and were carried out by Dipl. Chem. Valeria Gärtner, Dr. 

Sandeep Patil and myself. 

Total internal reflection (TIR) Raman spectroscopy measurements were performed in 

collaboration with research group of Prof. Dr. Colin Bain at University of Durham, United 

Kingdom, and were carried out by Dr. Eric Tyrode and Dr. Scott Shaw. 

The self-diffusion NMR experiments (DOSY) were performed at Universität zu Köln, Institut 

für Organische Chemie.  

In this chapter some abbreviations as C12, E3 or I1 were added. This abbreviations stand for: 

C12 = dodecyl chain, E3 = triethylene oxide unit, I1 = one myo-inositol unit. In order to 

simplify the description of connections between the hydrophilic head group and the 

hydrophobic tail every compound is addressed as well using these abbreviations. For 

example: rac-19 (1-C12E3I1) means that dodecyl chain (C12) is connected with triethylene 

oxide (E3) to the hydroxyl group from position 1 of one myo-inositol ring (I 1). 

 

3.2.1. Thermotropic mesomorphism 

 

The most common thermotropic mesophase displayed by carbohydrate liquid crystals is the 

smectic A phase. This phase requires comparable space demands of the sugars and the alkyl 

chains. Nearly all monoalkylated carbohydrates exhibit this phase as a thermotropic 

mesophase. Moreover, sugars with two alkyl chains will give a thermotropic columnar phase, 

since the two alkyl chains need more space than the sugar moiety. This creates a curvature of 

the separation plane which is bent to a cylinder. The cylinders are “filled” with the sugars and 

are surrounded by the alkyl chains. The cylinders themselves are arranged in the best way of 
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packing, i.e. in a hexagonal lattice. If one molecular part is more dominant, a discontinuous 

cubic phase is formed.[75]  

With few exceptions, the mesomorphic behaviour of the newly synthesized inositol-based 

derivatives follows these features. The phase transition data of different types of inositol-

based liquid crystals are presented in the Tables 3.1, 3.2, 3.3.  

 

Table 3.1. Phase transition data of the amphiphilic inositol derivatives of type C12E3I1 and 
C12I1 (Fig. 3.1.) 

Pentol Cr1  Cr2  M  I 

rac-19 
 (1-C12E3I1) 

• 81/80.1 (43.3) - - SmA 153/153.1 (0.5) • 

 21 
 (2-C12E3I1) 

•     - /51.8 (23.0) • - /149.0 (29.6) {M 1    -  /147.1 (0.7)} • 

rac-26  
(4-C12E3I1) 

•   85/- - - SmA  159/- • 

rac-45 
(1-C12I1)

[11,12] 
• 124/127.6 (32.0) - - SmA 221/221.7 (1.8) • 

46 
(2-C12I1)

[11,12] 
• 220/223.5 (48.8) - - {M 1 215/216.7 (6.6)} • 

rac-47  
(4-C12I1)

[10] 
• 147/150.2 (29.1) - - SmA 216/216.3 (1.8) • 

Temperatures in °C; polarizing microscopy/differential scanning calorimetry: PM/DSC; enthalpies (kJ 
mol-1) in brackets; heating rate 5 K min-l. Cr: crystalline, M: thermotropic mesophase, SmA: smectic 
A, M1 a monotropic mesophase most probably of a smectic type, I: isotropic liquid. 
 
 

 

Fig.3.1. Derivatives of type C12E3I1 and C12I1. 
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For the sake of comparison, the data for the ethoxylated inositol derivatives are presented 

together with the similar inositol derivatives in which the triethylene oxide unit is lacking 

(Fig. 3.1). As can be seen, the ethoxylated inositol derivatives rac-19 (1-C12E3I1) and rac-26 

(4-C12E3I1) display the same thermotropic behaviour as the non-ethoxylated systems (rac-45 

and rac-47) presenting a smectic A (SmA) mesophase (Fig 3.2, 3.3), but the melting and 

clearing temperatures decrease significantly by introducing the triethylene oxide chain.  

 

Fig. 3.2. (a) DSC curve (heating); (b) PM: the oily streak-like texture of the thermotropic 
SmA phase of rac-19 (1-C12E3I1) at 90°C. 

 
 

 
 

Fig. 3.3. PM: the oily streak-like texture of the thermotropic SmA phase 
 of rac-26 (4-C12E3I1) at 103 °C. 

 
In general, axial functional groups weaken the stability of the mesophase exhibited by inositol 

derivatives. The more symmetric such a monoether derivative with respect to its functional 

groups, the lower its tendency to exhibit a mesophase of the above mentioned type.[10] The 

axial derivative 21 (2-C12E3I1) does not exhibit an enantiotropic SmA but a monotropic 

mesophase most probably of smectic type. Fig. 3.4 presents the DSC curves for heating (a) 

and cooling (b) for the axial derivative together with PM photography of the isotropic phase 
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at ~ 148 °C by cooling when it was possible to observe the presence of batonnets which led to 

idea of a monotropic phase of a smectic type. 

 

Fig. 3.4. DSC curve (a) heating, (b) cooling; (c) PM: the appearance of batonnets 
 for 21 (2-C12E3I1) at ~ 148 °C. 

 

No thermotropic liquid crystalline properties could be detected for derivatives of type C12I1E3 

(Fig. 3.5) which represents the inversed situation in which the triethylene oxide is connected 

as the terminal hydrophilic head group having an unsubstituted hydroxyl group at the end. 

The phase transition data of the derivatives of this type are presented in Table 3.2. 

 

 

 

Fig. 3.5. The structures of the C12I1E3 type derivatives. 
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                        Table 3.2. Phase transition data of derivatives of type C12I1E3 

Tetrol Cr  I 

rac-32 (1-C12I1E3) • 80/80.6 (38.92) • 
36 (2-C12I1E3) • 174/173.7 (46.4) • 

Temperatures in °C; polarizing microscopy/differential scanning calorimetry: PM/DSC; enthalpies (kJ 
mol-1) in brackets; heating rate 5 K min-l. Cr: crystalline, I: isotropic liquid 

 

 It seems that the presence of a terminal triethylene oxide unit disturbs the hydrogen bond 

network in such a way that it does not allow the initiation of stable aggregates which enable 

the formation of thermotropic liquid crystalline phases.  

By attaching an additional alkyl-triethylene oxide chain to the myo-inositol ring as it is 

realised in compounds of type (C12E3)2I1, the mesomorphic behaviour changes depending on 

the position of the substituents.  

The phase transition data of the newly synthesized diethers are presented in Table 3.3 together 

with the data for the similar compounds[11] in which the triethylene oxide unit is missing (Fig. 

3.6). 
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Fig. 3.6. Derivatives of type (C12E3)2I1 and (C8)2I1. 
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Table 3.3. Phase transition data of derivatives of type (C12E3)2I1 and (C8)2I1 

Tetrol Cr1  Cr2  M  M  I 

rac-40 
1,2(C12E3)2I1 

• 
16/14.8 
(34.08) 

- - Cub 
26/24.4 
(0.78) 

Colh 
46/45.4 
(0.46) 

• 

rac-42 
1,4(C12E3)2I1 

• 
20/15.8 
(33.1) 

• 
57/57.3 
(70.9) 

- - - - • 

44 
2,5(C12E3)2I1 

• 
43/42.4 
(38.68) 

• 
110/108.8 

(44.07) 
- - - - • 

rac-48 
1,2(C8)2I1

[10] 
• 

102/101.8 
(20.8) 

- - Colh 
131/131.7 

(1.2) 
- - • 

rac-49 
1,4(C8)2I1

[10] • 
139/141.2 

(28.8) 
- - SmA 

168/170.1 
(10.5) 

- - • 

Temperatures in °C; polarizing microscopy/differential scanning calorimetry: PM/DSC; enthalpies (kJ 
mol-1) in brackets; heating rate 5 K min-l. Cr1, Cr2: crystalline, M: thermotropic mesophase, SmA: 
smectic A phase, Colh: hexagonal columnar phase, Cub: cubic phase, I: isotropic liquid. 
 

The first remarks are the dramatically decreased melting and clearing temperatures in the 

presence of the triethylene oxide between the alkyl chain and myo-inositol ring.  

Most often, mesogenic molecules of the peg-shaped geometry like rac-40 (1,2-(C12E3)2I1) and 

rac-48 (1,2-(C8)2I1) aggregate into columns which are arranged in a hexagonal lattice. As can 

be seen from Table 3.3 and Fig. 3.7, derivative rac-40  (1,2-(C12E3)2I1) exhibits a hexagonal 

columnar mesophase as the similar derivative rac-48  (1,2-(C8)2I1) but additionally presents 

also a cubic mesophase which appears homeotropic by polarized microscopy and which could 

be detected by cooling down to low temperatures. 

 

 

 

Fig. 3.7. (a) DSC curve (heating); (b) PM picture of rac-40 (1,2-(C12E3)2I1)  

at 33,4°C (cooling). 
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An interesting feature appeared in case of the 1,4 disubstituted, ethoxylated derivative rac-42 

(1,4-(C12E3)2I1) which was expected to exhibit a smectic A mesophase as does the similar 

non-ethoxylated inositol derivative rac-49 (1,4-(C8)2I1)
[10]. However, this is not the case: rac-

42 (1,4-(C12E3)2I1) presents crystalline polymorphism (Fig. 3.8) but no thermotropic 

mesomorphism.  

 

 
Fig 3.8. DSC curve for rac-42 (1,4-(C12E3)2I1). 

 

As previously shown, high molecular symmetry in inositol derivatives appears to be 

disadvantageous to the formation of mesophases. It seems that this is also the case for 

derivative 44 (2,5-(C12E3)2I1) which shows crystalline polymorphism but no thermotropic 

mesomorphism as can be also seen from the DSC curve (Fig. 3.9) as well. 

 
 
 

  Fig. 3.9. DSC curve of derivative 44 (2,5-(C12E3)2I1). 
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As concluding remarks, the appearance of a mesophase on heating of each of the ethoxylated 

inositol derivatives seems to be determined by the relative molecular symmetry originating 

from the different localization of the ether groups at the inositol core. From the study of 

various liquid crystalline target compounds by polarizing microscopy and differential 

scanning calorimetry it emerges that the occurrence, type, and stability of their mesophases 

are clearly determined by the number, the position, and the stereochemical arrangement of 

both the triethylene oxide group and the alkyl chains at the inositol ring  

 
 
3.2.2. Lyotropic mesomorphism 

 

The binary systems water – inositol-based derivatives were studied by polarizing microscopy 

using so called penetration experiments for all new synthesized compounds. A complete 

phase study with known concentrations at various temperatures was completed only in case of 

rac-19 (1-C12E3I1).
[76] 

The samples for the penetration experiments were prepared by melting the crystalline 

derivative between a microscope glass slide and a microscope cover glass. The samples were 

cooled down to approximately 22°C. Water was then added at the edge of the smaller top 

glass plate. By diffusion of water, a concentration gradient was created laterally between the 

two glass plates and it was further studied by polarizing microscopy. 

The binary system water – rac-19 (1-C12E3I1) was studied by polarizing microscopy and the 

resulting phase diagram is shown in Fig. 3.10. Measurements with samples of known 

concentration at various temperatures were made for concentrations less than ~60 wt % 

surfactant. Sample preparation at higher concentrations was not possible due to the high 

viscosity of the solution. To obtain additional information about the phase diagram for 

concentrations higher than 60 wt % we used the contact preparation technique. Thus the 

concentrations to which the readings belong are only rough estimates. The temperature 

dependent measurements revealed that the phase behavior is not temperature sensitive within 

the studied temperature range (23 to 70°C). Consequently it is justified to draw the vertical 

phase boundaries for that temperature range as seen in Fig. 3.10. The phase diagram mainly 

consists of an isotropic phase (L1) up to concentrations of about 35 wt % which is followed by 

a hexagonal phase (H1) from ~ 40 – 57 wt %, and a bicontinuous cubic phase (V1) from ~ 80 

– 85 wt %. The high concentration region above ~ 85 wt % shows a lamellar phase (Lα). In 

between these single phase regions lie two phase regions where both adjoining phases 

coexist.[76] 
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Above 35 wt.-% all studied samples formed liquid crystalline phases over the whole studied 

temperature range. In view of the fanlike textures seen between 40 and 57 wt % under crossed 

polarizers, this phase can clearly be identified as a hexagonal liquid crystal (H1), which is 

followed by the optically isotropically appearing bicontinuous cubic phase (V1). Both of these 

phases are much more viscous than the lamellar phase (Lα), which follows in phase diagram at 

higher concentrations.[76] 

 

(a)

C12E3I1

wt.-% surfactant

0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

L1

an
is

o
tr

o
pi

c 
(V

1+
H

1)

T
 /

 °
C

an
is

o
tr

o
pi

c 
(L 1+

H
1)

H1

V1

an
is

o
tr

op
ic

 (
V 1+

L
α)

(b) (c) 

         (d) 

 

Fig. 3.10. Phase diagrams of the binary systems (a) water – n-dodecyl-β-maltoside (C12G2)
[77], 

(b) water – rac-19 (1-C12E3I1), (c) water – n-dodecyl-hexaethylene oxide (C12E6)
[78], and (d) 

the texture of the system water – rac-19 (1-C12E3I1) between crossed polarizers (from 
penetration experiment). 
 
For the sake of comparison the phase diagrams of the binary system (a) water – n-dodecyl-β-

maltoside (β-C12G2) and (c) water – n-dodecyl-hexaethylene oxide (C12E6) are presented 

together in Fig. 3.10. As can be seen, the phase diagram of water – n-dodecyl-β-maltoside (β-

C12G2) is as temperature-insensitive as the one of water – rac-19 (1-C12E3I1). In the former, 

two liquid crystalline phases are observed, namely the hexagonal (H1) and the lamellar (Lα) 

phase. In contrast to n-dodecyl-β-maltoside (β-C12G2) and rac-19 (1-C12E3I1), the phase 

behavior of the binary system water – n-dodecyl-hexaethylene oxide (C12E6) is very 

temperature-sensitive. Three liquid crystalline phases are observed, namely a hexagonal (H1), 
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a bicontinuous cubic (V1), and a lamellar phase (Lα). In addition, a miscibility gap is observed 

at higher temperatures and lower surfactant concentrations. The temperature insensitivity of 

aqueous solutions of the maltoside surfactant is due to the strong hydrogen bonds between the 

sugar units and water, which prevent a significant dehydration of the head group with 

increasing temperature. On the other hand, the ethylene oxide units can be easily dehydrated 

with increasing temperature as the interactions between water and oligo(ethylene oxide) are 

much weaker (mainly weak dipole-dipole interactions). Assuming that the hydration of the 

myo-inositol substructure is comparable to that of a glucoside head group, one expects an 

“intermediate” behavior for the new rac-19 (1-C12E3I1). This, however, is not the case. The 

presence of the three ethylene oxide units obviously does not lead to a temperature-dependent 

phase behavior, an observation that cannot yet be explained.  

As will be explained later (subchapter 3.2.3.1) the isomer 21 (2-C12E3I1) has lower solubility 

in water, a situation which has been met as well in other sugar-based surfactants with the 

hydrophobic tail attached to an axial (α) position. This is the reason why the lyotropic 

mesomorphsim of 21 (2-C12E3I1) is compared with the glucosidic analogue n-octyl-α-D-

glucoside (α-C8G1) (Fig. 3.11). The glucoside α-C8G1 has a Kraft boundary starting from 38 

°C and increases with increasing surfactant concentration (the dashed line in Fig. 3.12 b)[39]. 

There are micellar, hexagonal and lamellar phases present. The penetration experiment of the 

binary system water – 21 (2-C12E3I1) revealed no lyotropic mesophase at 25°C but on heating 

up to ~ 55 °C the sequence micellar – hexagonal – cubic – crystal was present. The optically 

isotropically appearing zone between the hexagonal and crystal phase was established to be a 

bicontinuous cubic phase because this phase is more viscous than an isotropic fluid.  

 
 

Fig. 3.11. The structure of 21 (2-C12E3I1) and n-octyl-α-glucoside (α-C8G1)  
in which the side chain is attached in axial position. 
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(a)     (b)    (c) 
 
Fig. 3.12. a) The penetration experiment of binary system water – 21 (2-C12E3I1) at 25 °C; b) 
the phase diagrams of the binary systems water – n-octyl-α-glucoside (α-C8G1)

[39], c) the 
penetration experiment of binary system water – 21 (2-C12E3I1) at 55 °C (Lam = lamellar 
phase, Liq+Cryst = water in equilibrium with crystalline surfactant, and 2Φ = two-phase 
region). 
 

As it was mentioned above, the binary system rac-19 (1-C12E3I1) behaves more like the 

maltoside-based surfactant and is insensitive towards temperature. It seems that this is not the 

case for the binary system water – rac-32 (1-C12I1E3) for which, the preliminary penetration 

experiments revealed that the lyotropic mesophase sequence changes by increasing 

temperature. A drawback of this experimental technique is that one cannot determine 

boundaries of a specific phase situation. The more comprehensive study of the phase 

behaviour is going to be done soon.  

The disubstituted derivatives of type (C12E3)2I1 (rac-40, rac-42, 44) do not show lyotropic 

mesomorphism in the presence of water. Some preliminary penetration experiments with 

apolar solvents revealed the appearance of lyotropic mesophases but the systems need to be 

studied in more detail in order to assign the type of the observed mesophases. 

As concluding remarks, it can be stated that from the studies of binary system solvent – 

inositol-based surfactants by polarizing microscopy it emerges that, as in case of 

thermotropism, the occurrence, type, and stability of their lyotropic mesophases are clearly 

determined by the number, the position, and the stereochemical arrangement of both the 

triethylene oxide group and the alkyl chains on the inositol ring.  
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3.2.3. Solution properties and surface activity  
 
3.2.3.1. Solubility in aqueous solution 
 

Solubility in water is a very important physical property which a compound needs to possess 

in order to be studied for its solution properties and surface activity. Previous work of our 

group revealed that only one unit of myo-inositol as hydrophilic head group is not enough to 

assure a good solubility in water and consequently the cmc could not be measured.[79] By 

increasing the head group with a triethylene oxide unit, it was hoped that the solubility issue 

could be solved, but it seems that there are other factors which can influence the solubility in 

water. Table 3.4 summarizes the characterization of all new synthesized inositol-based 

derivatives with respect to their aqueous solubilitiy. 

                             Table 3.4. The solubility of new inositol-based derivatives 

Compound Solubility 

rac-19 (1-C12E3I1) + 
21 (2-C12E3I1) low 

rac-26 (4-C12E3I1) + 
rac-32 (1-C12I1E3) + 

36 (2-C12I1E3) low 
38 (2-(C12E3)I1-5-C12) - 
rac-40 (1,2-(C12E3)2I1) - 
rac-42 (1,4-(C12E3)2I1) - 

44 (2,5-(C12E3)2I1) - 
 

As can be observed from Table 3.4, the symmetric derivative 21 (2-C12E3I1) has lower 

solubility in water compared with its non-symmetric isomers rac-19 (1-C12E3I1) and rac-26 

(4-C12E3I1). It is well known that molecular symmetry has a pronounced effect on the melting 

properties and solubility of organic compounds. As a general rule, symmetrical molecules in 

crystalline form have higher melting temperatures and exhibit lower solubility compared with 

molecules of similar structure but with lower symmetry. Symmetry in a molecule imparts a 

positive amount of residual entropy in the solid phase (i.e., more possible arrangements 

leading to the same structure). This means that the entropy of a crystal of symmetric 

molecules is greater than the entropy of crystal of a similar, but non-symmetric molecule. In 

fact, symmetrical molecules are less soluble precisely because of the higher melting 

temperature of their crystals.[80-83]  

Coming back to the inositol-based derivatives, all symmetric inositol derivatives, which have 

the substituents attached to the C2 (axial) or/and C5 hydroxyl group (21 (2-C12E3I1), 36 (2-

C12I1E3), 44 (2,5-(C12E3)2I1) have melting points higher than their similar non-symmetric 
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isomers rac-19 (1-C12E3I1), rac-26 (4-C12E3I1), rac-32 (1-C12I1E3), rac-40 (1,2-(C12E3)2I1) and 

rac-42 (1,4-(C12E3)2I1) (Tables 3.1, 3.2, 3.3, subchapter 3.2.1.) which leads to idea that the 

symmetric derivatives form more stable crystal lattices. This crystal stability could be the 

reason why this type of inositol-based surfactants is much less soluble than the non-

symmetric ones. Actually, this feature is met also in sugar-based surfactants (Fig. 3.13), 

where the α-linkage (axial) between the hydrocarbon chain and the sugar head group 

promotes a more stable crystal packing than in case of β-linkage (equatorial). As a 

consequence, the Krafft boundary is considerably higher in the α-linkage case, as compared to 

the β-linkage. For example the n-octyl-α-glucoside has a Krafft boundary starting from 38 °C 

and increases with increasing surfactant concentration, whereas the n-octyl-β-glucoside is 

soluble down to the freezing point of water.[41] 

 

 

 

Fig. 3.13. The structures of sugar-based surfactants indicating how the hydrocarbon chain is 
attached to the sugar molecule: to the equatorial (e) (rac-19 (1-C12E3I1) and n-octyl-β-
glucoside) or the axial (a) hydroxyl group (21 (2-C12E3I1) and n-octyl-α-glucoside). 
 

In case of the double substituted inositol derivatives, 38 (2-(C12E3)I1-5-C12), rac-40 (1,2-

(C12E3)2I1), rac-42 (1,4-(C12E3)2I1), and 44 (2,5-(C12E3)2I1) (Fig. 3.14) the presence of two 

dodecyl chains increases the hydrophobic part of the amphiphiles which can also be a reason 

for very low aqueous solubility.  
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Fig. 3.14. The structures of the double substituted derivatives 38 (2-(C12E3)I1-5-C12),  
rac-40 (1,2-(C12E3)2I1), rac-42 (1,4-(C12E3)2I1), and 44 (2,5-(C12E3)2I1). 

 

3.2.3.2. Surface tension 

 

Figures 3.17 and 3.18 show the surface tension σ as a function of the concentration c of the 

inositol-based derivatives which were enough soluble in water in order to make possible the 

measurements (Fig. 3.15). 

 

 

Fig. 3.15. The structures of the investigated inositol–based surfactants:  
rac-19 (1-C12E3I1), 21 (2-C12E3I1), rac-26 (4-C12E3I1), and rac-32 (1-C12I1E3). 

 

 The surface tension increases with decreasing surfactant concentration until it levels off at the 

value of the surface tension of pure water (72.3 mN/m at 23 °C). All curves are fitted with 

Frumkin isotherm[26], model which describes the experimental data very well. Because the 

surface tension is very sensitive to slight impurities, which is usually reflected in a minimum 

or a smooth levelling off at concentrations around cmc, the σ–c curve serves as indicator for 
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the purity of a surfactant. As can be seen from Fig. 3.16 and 3.17, the surface tension curves 

of the newly synthesized inositol-based surfactants have a sharp bend and no minimum at 

cmc, which indicates that the analyzed compound are very pure. 
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Fig. 3.16. (a) Surface tension σ as a function of the surfactant concentration c  
(b) molecular structures 1-C12E3I1 (rac-19), 2-C12E3I1 (21), and 4-C12E3I1 (rac-26). 

 

Fig. 3.16  presents as well the σ–c curve of 21 (2-C12E3I1), but in this case the cmc could not 

be measured because this compound is low soluble in water and the solution turned turbid at 

concentration ~ 5.2 x 10-5
 M. From the same figure can be also seen that the position of the 

hydrophobic chain attached to the hydrophilic head group has only a minor effect on both the 

cmc and the surface concentration when the chain is attached to an equatorial position of 

inositol ring (Table 3.5). 

 
Table 3.5. Physicochemical properties of β-C12G2, 1-C12E3I1, 4-C12E3I1, 1-C12I1E3, and C12E6 

Surfactant cmc/mM σcmc/mN m-1 Γ∞ 10-6/mol m-2 Amin/nm2 

β-C12G2 (n-dodecyl- β-maltoside) 0.16 34.7 3.8 0.44 

1-C12E3I1 (rac-19) 0.14 34.4 3.1 0.53 

4-C12E3I1 (rac-26) 0.13 33.7 3.3 0.51 

1-C12I1E3 (rac-32) 0.37 35.0 3.5 0.47 

C12E6 ( n-dodecyl hexaethylene oxide) 0.09 31.6 3.1 0.53 

 

(a) (b) 
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For the sake of comparison, in Fig. 3.17a the σ–c curves of inositol-based surfactants are 

plotted together with those of the corresponding sugar (n-dodecyl-β-maltoside, β-C12G2) and 

ethylene oxide (n-dodecyl hexaethylene oxide, C12E6) surfactants (Fig. 3.17 b). 
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Fig. 3.17. (a) Surface tension σ as a function of the surfactant concentration c and 
(b) molecular structures of β-C12G2, 1-C12I1E3, 1-C12E3I1, 4-C12E3I1 and C12E6 

 

The cmc of 1-C12E3I1 (rac-19) and 4-C12E3I1 (rac-26) are very close to those of β-C12G2 and 

C12E6 which is expected for nonionic surfactants with the same hydrophobic chain length. 

However, the cmc values of 1-C12E3I1 (rac-19), 4-C12E3I1 (rac-26) and β-C12G2 are much 

more similar than those of the inositol derivatives and C12E6 which can be explained by 

similar monomeric solubilities. Also the plateau values of the surface tension (i.e., the surface 

tension at concentrations above cmc) of 1-C12E3I1 (rac-19) and 4-C12E3 I1 (rac-26) are much 

more similar to that of β-C12G2 than to the plateau value obtained for C12E6.
[76] On the other 

hand, 1-C12I1E3 (rac-32), as can be observed from Fig. 3.18a, is less surface active than β-

C12G2, 1-C12E3I1 (rac-19), 4-C12E3I1 (rac-26) and C12E6, and thus has a higher cmc value 

which means that the I1E3 head group is more hydrophilic than G2, E3I1 and E6. 

(a) (b) 
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Fig. 3.18. Surface concentration Γ as a function of the surfactant concentration 
of β-C12G2, 1-C12I1E3, 1-C12E3I1, 4-C12E3I1 and C12E6. 

 

The corresponding adsorption isotherms of the five surfactants are shown in Fig. 3.18 and the 

adsorption parameters are listed in Table 3.5. The isotherms were derived by differentiating 

the Frumkin fits and using the Gibbs equation. As can be seen, the surface concentration 

curves of the 1-C12E3I1 (rac-19) and 4-C12E3I1 (rac-26) are very similar to that of 

hexaethylene oxide surfactant C12E6 and level off in the same or almost the same Γ∞ value. 

This is rather unexpected, recalling the observation that these three surfactants have different 

plateau values of the surface tension (see Table 3.5). As a rule of thumb, one can say that the 

lower the plateau value the more densely packed is the monolayer. Thus one would expect 

that the maximum surface concentration Γ∞ of C12E6 is larger than that of 1-C12E3I1 (rac-19) 

and 4-C12E3 I1 (rac-26). However, this is not the case. A possible explanation could be that the 

E3I1 head group is as flexible as the hexaethylene oxide head group thus needing as much 

surface area as the E6 unit. Secondly, a monolayer consisting of E6 units can obviously pack 

more densely compared to one consisting of E3I1 units leading to a lower surface tension at 

the cmc.  

On the other hand, the minimum area per head group (= the maximum surface concentration) 

for 1-C12I1E3 (rac-32), is in between that for β-C12G2 and C12E6 which means that attaching an 

inositol unit directly to the hydrophobic chain reduces the surface area considerably compared 

to C12E6, while the terminating E3 group still provides a certain amount of flexibility and thus 

volume. Comparing the three inositol derivatives it can be seen that the minimum area per 
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head group for 1-C12I1E3 (rac-32), is smaller than that for 1-C12E3I1 (rac-19) and 4-C12E3I1 

(rac-26), therefore Γ∞ is higher. The explanation would be most likely the conformation and 

orientation of the surfactants at the surface.  

In order to monitor the conformation and orientation of the surfactants at the surface 

molecular dynamic simulations or more sophisticated surface sensitive techniques are 

required. 

 

3.2.3.3. Adsorption on silica surface studied by Total Internal Reflection Raman 

spectroscopy (TIR Raman) 

 

Knowledge of the adsorption behaviour of a surfactant is crucial for understanding the 

underlying mechanisms for applications such as wetting, detergency and lubrication. Previous 

studies on sugar and ethylene oxide surfactants revealed that the former hardly adsorb on 

silica, while the later adsorb strongly on this oxide surface. The standard explanation put 

forward to describe the adsorption of nonionic surfactants on hydrophilic surfaces from 

aqueous solutions is hydrogen bonding. The main difficulty with this hypothesis is that water 

is able to form very strong hydrogen bonds with both the surface and the surfactant head 

group and it is hard to see how replacements of such hydrogen bonds with surfactant head 

group – surface hydrogen bonds will result in an energy gain. Nevertheless, the enthalpy of 

adsorption for poly(ethylene oxide) on silica is negative. The conclusion would be that the 

driving force for adsorption is not yet well-understood. However, one may perceive a 

situation where water hydrogen bonded both to the surface and the surfactant head group 

mediates the surfactant – surface interactions.[2,3] 

The aim of the present project was to determine the adsorption behaviour of inositol-based 

surfactants due to structural changes and to correlate this to similar relationships for alkyl 

polyglucoside (β-C12G2) and ethylene oxide (C12E6) surfactants.  

The technique used to study the adsorption behaviour was TIR Raman spectroscopy. Raman 

scattering has a reputation for being a weak effect: typical Raman scattering cross-sections are 

ten orders of magnitude lower than infrared absorption cross-sections.[84] With the use of 

evanescent waves to enhance the surface signal and discriminate against bulk signals, total 

internal reflection Raman scattering (TIR-Raman) is in reality the most sensitive form of 

vibrational spectroscopy for studying adsorption on dielectric materials.[85] 
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In TIR-Raman experiments for the present 

work, an evanescent wave with a 

penetration depth of 100 nm is used to 

probe the adsorbed surfactant film at the 

silica-water interface.  

A schematic of the experimental setup is 

shown in Fig. 3.19. A 532 nm CW laser 

was directed to the centre of a silica 

hemisphere at an angle of 73 degrees from 

the surface normal. The Raman scattered 

light was collected with a microscope objective placed immediately above the hemisphere, 

and directed towards a spectrograph and CCD camera where the spectra was recorded. Raman 

scattering is not intrinsically surface sensitive and TIR-Raman spectra therefore contain 

contributions from the silica substrate and the solution within the evanescent field as well as 

from the adsorbed surfactant layer. The contributions from the bulk silica are removed by 

subtraction of a background spectrum. 

Fig. 3.20 shows representative subtracted TIR Raman spectra obtained for the adsorption of 

n-dodecyl-β-maltoside (β-C12G2), n-dodecyl hexaethylene oxide (C12E6), and rac-19 (1-

C12E3I1) on silica. All spectra shown were collected at concentrations above the respective 

critical micellar concentrations (cmc). The results clearly indicate that the C12G2 and 1-C12E3I1 

do not adsorb in any measurable quantities on silica. However, as expected, the ethylene 

oxide surfactant does adsorb.  
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Fig. 3.20. TIR Raman subtracted spectra of silica in contact with n-dodecyl-β-maltoside (β-
C12G2), n-dodecyl hexaethylene oxide (C12E6), and rac-19 (1-C12E3I1) solutions collected 
under the polarization combinations Sx, at concentrations above the cmc.  
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The measurements for the “invers” derivative rac-32 (1-C12I1E3) are presented in Fig. 3.21 

and 3.22. The four spectra in each plot are labelled with the concentration of rac-32 (1-

C12I1E3) in the original solution and with a temperature at which the data were recorded. The 

concentrations were chosen so that one would be well below the cmc (0.03 mM) and the other 

very near the cmc (0.3 mM). The difference between the data on each individual graph is the 

polarization of the incident and collected light. Each different polarization is sensitive to 

vibrational modes of the rac-32 (1-C12I1E3) orientated in a different direction with respect to 

the interface. For example, the Px polarization indicates that the incident beam is polarized in 

the 'P' direction with samples modes that are perpendicular to the interface, while the 'x' 

indicates that the collected light is turned 90 degrees around an axis perpendicular to the 

interface. The result is two sample modes perpendicular to the interface that are also in a 

specific orientation along another axis.  

Looking at the data for the Px case, the really interesting result comes from the 0.03 mM 

concentration of the rac-32 (1-C12I1E3). At lower temperatures the molecule shows lower 

overall signal intensity than at higher temperatures which could mean that there is a rather 

dramatic reorganization of the adsorbed rac-32 (1-C12I1E3) as a function of temperature. In 

theory, the change in signal intensity could be due to the molecules being compact at lower 

temperatures, and then becoming increasingly solvated and elongated at higher temperatures. 

Understanding why this would happen for a lower concentration and not for a higher 

concentration would be interesting.  

2600 2700 2800 2900 3000 3100 3200

0

2000

4000

6000

8000  0.03 mM; 10 °C
 0.03 mM; 30 °C
   0.3 mM; 10 °C
   0.3 mM; 30 °C

C
ou

nt
s

Wavenumber (cm-1)

Adsorption on silica: C12I1E3 
Polarization: Px

 

2600 2700 2800 2900 3000 3100 3200

0

2000

4000

6000  0.03 mM; 10 °C
 0.03 mM; 30°C
   0.3 mM; 10 °C
   0.3 mM; 30 °C

C
ou

nt
s

 Wavenumber (cm-1)

Adsorption on silica: C
12

I
1
E

3
Polarization: Py

 

Fig. 3.21. TIR Raman subtracted spectra of silica in contact with rac-32 (1-C12I1E3) solutions 
of different concentrations (0.03 mM and 0.3 mM) and temperatures (10 °C and 30 °C) 
collected under the polarization combinations (a) Px and (b) Py. 
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Fig. 3.22. TIR Raman subtracted spectra of silica in contact with rac-32 (1-C12I1E3) solutions 
of different concentrations (0.03 mM and 0.3 mM) and temperatures (10 °C and 30 °C) 
collected under the polarization combinations (a) Sx and (b) Sy.   
 

These results may imply that adsorption behaviour is controlled by the nature of the terminal 

group. These are only preliminary results. The same study at a concentration above the cmc 

would be interesting as would a study at trace levels of rac-32 (1-C12I1E3) or acquiring data 

for more than two temperatures and also determining if this change in intensity with 

temperature is reversible. 
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3.2.3.4. Self-diffusion NMR (DOSY) 

 

In order to find out more information about the hydration of the inositol-based surfactants, 

self-diffusion coefficients were measured using a magnetic field gradient method called 

diffusion ordered spectroscopy (DOSY).  

Because the measurements were desired to be performed in water at very low surfactant 

concentrations (10-4 M) two main problems occurred: the handling of the spectrometer (lock 

solvent and shimming) in absence of a deuterated solvent and the quality of spectrum because 

of the deleterious effects of the huge water resonance.  

To solve the technical problem regarding the spectrometer handling, a special type of tubes 

were used, namely NMR tubes with stem coaxial inserts of type WGS-5BL from Rototec-

Spintec, having the reference capacity of 60 µL and the sample capacity of 530 µL (Fig. 3.23). 

The deuterated solvent was introduced in the inner tube and the examination material was 

placed in the outer tube. As can be seen, the reference capacity is low (60 µL) and for this 

reason it was necessary to use a solvent with a high percentage of deuterium. After few tests 

with different deuterated solvents, the deuterium oxide (D2O) has given the best results and 

consequently it was further used for measurements.  

 

Fig. 3.23. The NMR tube used for DOSY experiments 

 

Dealing with low concentration samples, the signals of the compound of interest were almost 

invisible compared with water signal in the 1H NMR spectra. This is the reason why a new 

pulse sequence (stebpgpes1s1d.sek) was developed including the suppression of water signal 

by excitation sculpting using arbitrary waveforms and pulsed field gradients. In order to check 

the reliability of the results obtained with the new developed method (with water 

suppression), test experiments were done with literature known compound n-octyl-β-D-

glucoside using both methods, with and without water suppression. The measured values for 
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the self-diffusion coefficient D were very similar (D = 4.424 10-11 m2 s-1 for the sequence 

without water suppression and D = 4.428 10-11 m2 s-1 for the sequence with water suppression) 

and comparable with the values from literature.[42] The detailed pulse program is presented in 

chapter 7 (Experimental part). 

DOSY experiments were performed on two inositol derivatives rac-19 (1-C12E3I1) and rac-32 

(1-C12I1E3) as well as on the reference systems n-dodecyl hexaethylene oxide (C12E6) and n-

dodecyl-β-maltoside (β-C12G2). Figures 3.24, 3.25, 3.26, 3.27 present examples of diffusion 

spectra (a) 2D and (b) 1D for every compound at concentrations 6 x cmc.  

 

      

Fig. 3.24. (a) 2D DOSY spectrum and (b) 1H spectrum at 2% and 95%  
gradient strength for rac-19 (1-C12E3I1) in aqueous solution. 

 

        

Fig. 3.25. (a) 2D DOSY spectrum and (b) 1H spectrum at 2% and 95% 
 gradient strength for rac-32 (1-C12I1E3) in aqueous solution. 
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Fig. 3.26. (a) 2D DOSY spectrum and (b) 1H spectrum at 2% and 95% gradient  
strength for n-dodecyl hexaethylene oxide (C12E6) in aqueous solution. 

 

         

Fig. 3.27. (a) 2D DOSY spectrum and (b) 1H spectrum at 2% and 95% gradient  
strength for n-dodecyl-β-maltoside (β-C12G2) in aqueous solution. 

 

The readings of the self-diffusion coefficient belong to C12 chain signal which is the most 

intense signal in the 1H NMR and consequently the less influenced by the errors. The self-

diffusion coefficient D was obtained by fitting equation 2.10 to the obtained NMR data.  
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where I0 is the signal intensity at zero gradient strength, γ is the proton magnetogyric constant, 

G is the gradient strength, D is the diffusion coefficient,  ∆ is the diffusion time and δ is the 

length of the gradient. 

The obtained results are presented as plots of the diffusion coefficient D versus the total 

surfactant concentration c (Fig. 3.28) and of the diffusion coefficient D versus c/cmc ratio (c = 

total surfactant concentration), cmc = critical micelle concentration) (Fig. 3.29).  
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Fig. 3.28. The  measured self-diffusion coefficients versus concentration in the micellar 
region of the four surfactants rac-19 (1-C12E3I1), rac-32 (1-C12I1E3), C12E6, C12G2; the first 

point from each plot represents Dmono (the diffusion coefficient of free monomer). 
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Fig. 3.29. The measured self-diffusion coefficients versus c/cmc ratio, in micellar region of 
the four surfactants rac-19 (1-C12E3I1), rac-32 (1-C12I1E3), C12E6, C12G2. 
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The rapid decrease of the diffusion coefficients with increasing concentrations at low 

surfactant concentrations can be attributed to the formation of aggregates and their subsequent 

growth but also to the decrease in fraction of surfactant present as monomer. 

Aggregate/aggregate obstruction effects at finite micellar concentrations also lower the 

surfactant diffusion coefficients.  

The value of Dmono (the diffusion coefficient of the free monomer) was obtained performing 

experiments at concentrations below the cmc, where the diffusion coefficient is expected to 

have a constant value and the obtained results are presented in Table 3.6. 

 

Table 3.6. The measured Dmono for the four investigated surfactants 

Surfactant c = 0.8 cmc/10-3, mol l-1 Dmono/10-10, m2 s-1 

n-dodecyl-β-maltoside (C12G2) 0.13 3.86 

rac-19 (1-C12E3I1) 0.11 3.79 

rac-32 (1-C12I1E3) 0.30 3.64 

n-dodecyl hexaethylene oxide (C12E6) 0.07 4.89 
 

Rounding the Dmono-values in Table 3.6 according to the errors given in section 7.5 (3.86 ± 

0.09, 3.79 ± 0.09, 3.64 ± 0.04, 4.89 ± 0.07) one clearly sees that the self-diffusion coefficients 

of the two inositol-based surfactants and of the sugar surfactant are the same, while that of 

C12E6 is larger. The later observation is indeed very surprising.  

A possible reason for DC12E6 > DC12G2 could be simply the lower total surfactant 

concentration. Although both systems were measured at 0.8 cmc, in case of C12E6 this 

corresponds to 0.06 mM, while it corresponds to 0.13 mM in case of C12G2. Arguing via the 

total surfactant concentration explains the results for C12E6, C12G2 and rac-19. However, the 

value obtained for rac-32 should be much lower if it were only the total surfactant 

concentration that plays a role. One possible explanation could be the different shape of the 

molecules (stiff, rod-like in case of C12G2 and rac-19, coil-like in case C12E6 and rac-32). The 

obstruction factor of the former is larger and thus diffusion is more hindered compared to 

coil-like molecules at the same total surfactant concentration. In other words, rac-32 has the 

same coefficient as rac-19 at a much larger total surfactant concentration as it is coil-like 

rather than rod-like. Note that at the time being, this is only speculation. 

Another explanation could be the contribution of pre-micellar aggregates (dimmers, trimers, 

tetramers, etc). The cmc is no “fixed” value but rather a concentration range. Depending on 

the technique and the model via which the data are evaluated different values are obtained. 

Thus choosing c = 0.8 cmc as concentration for the determination of Dmono could be too close 
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to the cmc, which means that in some cases pre-micellar aggregates may already be formed. 

These aggregates could decrease the Dmono value significantly compared to a solution of “real” 

monomers.  

The self-diffusion coefficients measured for concentrations above cmc can be used to infer 

information about the possible size/structure of the micelles present. One problem that has to 

overcome before such an analysis can be performed is the fact that there are contributions 

from the surfactant present in free monomer form. This contribution can be accounted by 

means of a simple two-site exchange model which yields the following relation:[42] 

 

Dobs = PDmic + (1 – P)Dmono                                  (2.11, see chapter 2.1.5.2) 

 

where Dobs is the observed diffusion coefficient, Dmic is the micellar diffusion coefficient, 

Dmono is the monomer diffusion coefficient, and P is the fraction of micellized surfactant, 

which is given by equation 2.12: 

 

c

cmcc
P

−=                                         (2.12, see chapter 2.1.5.2) 

As it was mentioned above, in presence of micelles, aggregate obstructions effects must be 

taken into account. In case of spherical micelles, a functional form according to the following 

equation 2.13 is often used: 

 

( )Φ−= kDDmic 10                                  (2.13, see chapter 2.1.5.2) 

 

 where Dmic is the measured micelle diffusion coefficient, D0 is the micelle diffusion 

coefficient at infinite dilution, k is a constant and Φ is the volume fraction of micelles. In case 

of spherical aggregates, k ≈ 2-2.5, depending on the surfactant. Eq. 2.13 can be applied only 

for the case of spherical micelles, in case of other geometries (e.g. prolates, oblates or 

hemisphere capped rods) this expression will be different.[41,86] 

Using the equations 2.8, 2.11 and the relevant expressions for the different geometries 

together with the acquired experimental data, a number of new information about the formed 

aggregates can be achieved. These calculations are to be done therefore they are not included 

in the present work.  
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4. RESULTS AND DISCUSSION II 

 

4.1. Phosphine oxides metal complexes 

 

n-Dodecyldimethyl phospine oxide (C12DMPO) was synthesized and purified for an ongoing 

project at University College Dublin (UCD) under the supervision of Prof. Dr. Cosima 

Stubenrauch. This project aims to study the correlation between single foam films and foams 

by varying the surfactant mixing ratio, thus providing new insights into how to tune the 

properties of foams. Foams are widely used in industrial applications and everyday products 

such as cleaning agents, beverages, fire-fighting and flotation. However, the reason for their 

stability - or instability - is not yet understood in sufficient detail so that the development of 

new products is mostly based on "trial and error". Studying surfactant mixtures is 

indispensable in order to understand and to optimize technical products and processes where 

foam films and foams are involved. Phosphine oxide surfactants are an ideal candidate for this 

project as they are chemically quite resistant, pH- and temperature stable.[87,88] A hydrophobic 

chain length of C12 was chosen to allow for optimum foaming condition. 

Phosphine oxide groups can bind various metal cations such as alkaline, alkaline earth, 

transition and lanthanide metal ions through ion dipolar interactions. This property allows 

phosphine oxide-based derivatives to be used in various fields of large social and economical 

impacts, such as environmental sciences, medical diagnostics, cell biology, etc.[89-91] 

Lipophilic phosphine oxides like the respective trioctyl derivative (TOPO) or more 

specialized derivatives with additional complexation sites have been used also as extraction 

agent for precious metals from aqueous solutions.[92,93] This property inspired the question if it 

would be possible to induce supramolecular order like e.g. thermotropic or lyotropic liquid 

crystallinity in phosphine oxides metal complexes amphiphiles. The results of respective 

investigations will be presented in this chapter. However, it has to be mentioned that parallel 

to present studies on such (calamitic) amphiphilic phosphine oxides, a report on a columnar 

liquid crystal based on discotic triphenylphosphine oxide and on its interaction with alkaline 

metal ions was published by Kato et al.[94] 

 

 

 

 



 4. RESULTS AND DISCUSSION II 

 

85 

4.1.1. Syntheses 

 

The synthesis of n-dodecyldimethyl phospine oxide (C12DMPO, 52) is well known[95-98] and 

straightforward as can be seen from Scheme 4.1: 

 

 
 

Scheme 4.1. Synthetic steps towards the n-dodecyldimethyl phospine oxide 52 (C12DMPO): 
a) MeMgBr, THF, rt; b) C12H25Br, reflux; 80% after two steps. 

 

The synthesis starts from commercially available diethyl phosphite which was added 

dropwise into a solution of methyl magnesium bromide (1 M in THF) under argon 

atmosphere in such a way that the inner temperature did not rise 25 °C. After stirring for 1 h 

at ambient temperature, dodecyl bromide was added and the reaction was refluxed for 10 

additional hours. After the required work-up, the crude product was thoroughly purified by 

bulb-to-bulb distillation and few recrystallizations from n-hexane. 

The preparation of C12DMPO metal complexes consisted in mixing the phosphine oxide with 

various metal salts (Scheme 4.2) for ~ 1.5 h at room temperature in presence of a proper 

solvent (methanol or water), followed by the concentration to dryness. In a number of cases 

homogeneous products were obtained showing sharp transition temperatures indicating a 

defined complexation (Table 4.1). 

 
 

Scheme 4.2. Synthetic step towards the n-dodecyldimethyl phospine oxide  
(C12DMPO) metal complexes. 
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        Table 4.1. Composition and transition temperatures of C12DMPO : salt mixtures 
 

Mn+ Xm Hmg Cr1  Cr2  Cr3 I 

Cu2+ Cl- + • 55/53,4 (28,0)    • 
Cu2+ SO4

2- - • -/51.1 (1.65) • 83/79,1 (11,9)  • 
Cu2+ Br- + • 48/48,9 (25,4)    • 
Cu2+ BF4

- + • -/34.5 (1.3) • 55/54,5 (0,5) • [b] 
Cu2+ C5H7O2

- - • 83/81,4 (34,3)    • 
Cu2+ CH3COO- - • 83/82,3 (27,3)    • 
Li+ Cl- + • 92/93,5 (0,3) • 116,0/115,9 (3,5)  • 
Li+ Br- + • 72/69,9 (17,5)    • 
Na+ Cl- - • 85/81,0 (27,7)    • 

       [a]Temperatures given in °C: PM / DSC (∆Hrel in kJ/mol); ∆Hrel = ∆Habs(x1MC12DMPO+x2Msalt);               
        x1, x2 = molar fractions; ∆Habs measured by DSC; Hmg = Homogeneity; 
       [b] Complex thermal behavior upon repeated heating/cooling cycles, the clearing point is not     
        visible in DSC and in PM is between 70 – 90°C. PM = polarized microscopy; Cr = crystalline;  
        Iso = isotropic. 
 
The first analytical method which was used to confirm the complexation of C12DMPO (52) 

with various salts is infrared spectroscopy (IR). As can be seen from Fig. 4.1, the IR spectra 

of resulting compounds are almost identical to the IR spectra of pure C12DMPO, with the 

exception that the P – O band is shifted and/or deformed which is indicative for complexation 

at the oxygen atom of phosphine oxide group. 

The IR spectra are presented as following: Fig. 4.1a – spectra belong to C12DMPO complexes 

which have the same cation (Cu2+) but different inorganic anions (Cl-, SO4
2-, Br-, BF4

-); Fig. 

4.1b – spectra belong to C12DMPO complexes which have the same cation (Cu2+) but 

different organic anions (C5H7O2
-, CH3COO-); Fig. 4.2a – spectra belong to C12DMPO 

complexes which have the same anion (Cl-) but different cations (Cu2+, Li+, Na+); Fig. 4.2b – 

spectra belong to C12DMPO complexes which have the same anion (Br-) but different cations 

(Cu2+, Li+).  
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(a) (b) 
 

Fig. 4.1. The IR spectra of C12DMPO : salt mixtures having the same  
cation (Cu2+) but different (a) inorganic anion and (b) organic anion. 

 
In Fig. 4.1a and b can be observed that the P – O band is shifted and/or deformed for those 

mixtures C12DMPO : salt which are homogeneous (see Table 4.1), but not for those ones 

which are inhomogeneous, like C12DMPO + CuSO4, Cu(CH3COO)2 or Cu(C5H7O2)2. This 

fact means that the P – O band was not affected by the presence of the salt consequently the 

complexation was not achieved.  

The same situation can be observed in Fig. 4.2a for C12DMPO + NaCl which again forms an 

inhomogeneous mixture and the P – O band from 1157 cm-1 was not affected.  

The conclusion which rises from figures 4.1 and 4.2 is that C12DMPO is able to form 

complexes with metal salts but the complexation depends on both the cation and the anion of 

the respective salt.  
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(a) (b) 
 

Fig. 4.2. The IR spectra of C12DMPO : salt mixtures having the same  
anion (a: Cl-; b: Br-) but different anion (a: Cu2+, Li+, Na+; b: Cu2+, Li+). 

 
The ability of C12DMPO to form complexes was proven by X-ray investigations. As can be 

seen in Table 4.1., the melting points of the C12DMPO : salt complexes are low, hence a 

normal recrystallization from solvents was not successful. For this reason it has been tried to 

obtain proper crystals from melt by cooling very slow (0,1 °C/10min). The crystal structure of 

C12DMPO : CuCl2 complex is presented in Fig. 4.3.  

 

 
 

Fig. 4.3. Crystal structure of C12DMPO : CuCl2 complex. 
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4.1.2. Physical properties 

  

4.1.2.1. Thermotropic mesomorphism 

 

Thermotropic behaviour of C12DMPO : salt complexes was investigated by polarizing 

microscopy (PM) and differential scanning calorimetry (DSC). Their phase transition data are 

summarized in Table 4.1. Three of the studied mixtures exhibit crystalline polymorphism but 

none of the observed phases were liquid crystalline.  

 

4.1.2.2. Lyotropic mesomorphism 

 

As can be seen from the phase diagram (Fig. 4.4a) already the pure C12DMPO displays 

lyotropic mesophases. Most of C12DMPO : salt mixtures show also lyotropic phase behavior, 

but from preliminary PM investigations they partly differ in phase types, stabilities and 

sequence (Fig. 4.5, 4.6) from pure C12DMPO (Fig. 4.4b).  

 

                 
(a) (b) 

 
Fig. 4.4. (a) Phase diagram of binary system water – C12DMPO[28], (b) Penetration experiment 
of binary system water – C12DMPO showing the phase sequence Cr, Lam, Hex at 12,1°C (Cr 
= crystalline, Lam = lamellar, Hex = hexagonal). 
 

                                 
Fig. 4.5. Penetration experiment of binary                Fig. 4.6. Penetration experiment of binary  
system water – C12DMPO+LiCl at 23 °C.                 system water – C12DMPO+LiBr  at 25°C. 
 

Cr 

Hex Lam Cr 
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The pentration experiment of binary system water – C12DMPO+LiCl revealed the sequence 

micellar – hexagonal – cubic V1 – lamellar – crystalline, while the binary system water – 

C12DMPO+LiBr presents the sequence micellar – hexagonal – lamellar – crystalline.  

The concluding remarks regarding this topic are that C12DMPO is able to form complexes 

with metal salts depending both on cation and anion, and the newly formed complexes present 

lyotropic but not thermotropic mesomorphism.  
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5. SUMMARY AND OUTLOOK I 

 

This chapter is going to present a summary of studies towards the syntheses and 

characterization of novel inositol-based amphitropic liquid crystals and surfactants together 

with a short outlook. 

 

5.1. Syntheses 

 

The aim of the present work from synthetically point of view consists on synthesis of novel 

inositol-based derivatives as amphitropic liquid crystals and surfactants. Previous work in this 

field showed that one inositol unit is not enough to induce a good solubility in aqueous media 

of this type of sugar-based amphiphiles. In order to improve the inositol derivatives with 

respect to this property, the hydrophilic head group was increased by addition of a triethylene 

oxide unit leading to a new class of inositol-based amphiphiles.  

The first representative of this new class of inositol derivatives is rac-19 (1-C12E3I1) which 

has the ethoxylated chain and the hydrophobic tail attached to the hydroxyl group from 

position 1 of myo-inositol ring. Its synthesis was achieved in seven steps with an overall yield 

of 20% (Scheme 5.1).  

In order to functionalise the hydroxyl group from C1, it was necessary to protect the other four 

positions, which was realized in three steps with an overall yield of 62%. In parallel, the 

dodecyl chain was attached via a Williamson etherification to the triethylene oxide, which 

was subsequently tosylated to give 17 with 70% yield after two steps. Next step consisted in 

regioselective unification of the two building blocks, rac-6 and 17, which was achieved via a 

stannylene intermediate. The last step of this synthesis was the cleavage of benzyl protecting 

groups by palladium/charcoal catalyzed hydrogenolysis under pressure (~ 8 bars) (Scheme 

5.1). 
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Scheme 5.1. Total synthesis of rac-19 (1-C12E3I1). 
 
 
To study the influence of position of the alkyl-triethylene oxide on myo-inositol ring with 

regard to mesomorphsim and surface activity, a new derivative, 21 (2-C12E3I1), was 

synthesized in eight steps starting from myo-inositol (1) and triethylene oxide (15), in 31% 

overall yield. To arrive to 21, the hydroxyl groups from positions 1, 3, 4, 5, and 6 were 

protected over four steps with an overall yield of 56%. The addition of alkyl-triethylene oxide 

chain was achieved by reaction with the corresponding tosylate 17 in the presence of NaH and 

DMF with 90% yield. The final step, the cleavage of benzyl ethers, was realized by 

palladium/charcoal catalysed hydrogenolysis in 88% yield (Scheme 5.2). 
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Scheme 5.2. Total synthesis of derivative 21 (2-C12E3I1). 
 

In order to attach the alkyl-triethylene oxide chain to hydroxyl group from position 4, another 

protective group strategy was applied, respectively the formation of myo-inositol orthofomate, 

8. Addition of tosylate 17 to orthoformate 8 in the presence of NaH/DMF resulted in 

formation of corresponding C4 ether 25 in 62% yield. After the hydrolysis of orthoester 25 

with methanol/HCl, rac-26 (4-C12E3I1) was obtained with 83% yield (Scheme 5.3). 

 

 
 
 

Scheme 5.3. Total synthesis of rac-26 (4-C12E3I1). 
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To study and compare the influence of molecular arrangement of oligo(ethylene oxide) and 

sugar units, a new inositol-based derivative, rac-32 (1-C12I1E3) was synthesized. This 

derivative represents the “inversed” sequence triethylene oxide – inositol – dodecyl chain,  

which induced interesting differences with regard to physical properties.  

Synthesis of rac-32 was realised in seven steps with 8% overall yield. The first step is 

represented by protection of hydroxyl groups from positions 1, 2, 4, and 5 by acetalization 

with cyclohexanone, followed by alkylation with dodecyl bromide and the attachment of 

tosylate 28 to the hydroxyl group from C6. The last step, the cleavage of acetals, was done in 

acidic conditions (Scheme 5.4). 

 

 
 
 

Scheme 5.4. Total synthesis of rac-32 (1-C12I1E3). 

 

The meso compound 36 (2-C12I1E3) was synthesized in seven steps (overall yield 7%) for the 

purpose of studying the influence of symmetry on physical properties. Its synthesis resemble 

the one for rac-32, but in this case the acetalization was realised selectively for trans hydroxyl 

functions using butane-2,3-dione. After alkylation of free positions 2 and 5 with the desired 
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side chains (alkyl and triethylene oxide, respectively), the last two steps consisted in 

deprotection reactions in order to cleave the benzyl ether and the acetals (Scheme 5.5). 

 

 
 

Scheme 5.5. Total synthesis of derivative 36 (2-C12I1E3). 
 

The hydrophilic–hydrophobic ratio could have a considerable influence on various physical 

properties, therefore new derivatives were synthesized. In all derivatives presented up to this 

point (rac-19, 21, rac-26, rac-32, 36) the hydrophilic–hydrophobic ratio was 2:1, which 

means two hydrophilic head groups (myo-inositol and triethylene oxide unit) and one 

hydrophobic tail (dodecyl chain). A derivative which presents the ratio 2:2 is 38, whose 

synthesis counts six steps starting from myo-inositol and was realised in 8% overall yield, 

using similar procedures as for 36 (Scheme 5.6). 
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Scheme 5.6. Total synthesis of compound 38. 
 

The hydrophilic–hydrophobic ratio 3:2 can be achieved by synthesis of rac-40 (1,2-

(C12E3)2I1). Its molecule contains three hydrophilic head groups (one myo-inositol and  two 

triethylene oxide units) and two hydrophobic tails (dodecyl chains). Synthesis of rac-40 has 

seven steps starting from myo-inositol and triethylene oxide, and was realised in 21% overall 

yield (Scheme 5.7). 

 

 
 

Scheme 5.7. Total synthesis of rac-40 (1,2-(C12E3)2I1). 
 

A similar compound which has hydrophilic–hydrophobic ratio 3:2 is rac-42 (1,4-(C12E3)2I1) 

in which the alkyl-triethylene oxide chains are attached to the hydroxyl groups from position 

1 and 4. This derivative can be achieved in five steps with 10% overall yield (Scheme 5.8). 
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Scheme 5.8. Total synthesis of rac-42 (1,4-(C12E3)2I1). 

 

The last synthesized derivative which has hydrophilic–hydrophobic ratio 3:2 is represented by 

the meso compound 44 (2,5-(C12E3)2I1) which has two alkyl-triethylene oxide chains attached 

at the hydroxyl groups from C2 and C5. Its synthesis was completed in five steps in 7% overall 

yield (Scheme 5.9). 
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Scheme 5.9. Total synthesis of derivative 44 (2,5-(C12E3)2I1). 

 

Consequently, by present work was possible to synthesize a number of nine representatives of 

a new class of inositol-based amphiphiles.  

What else can be done in this field? There are a number of new ideas which could be 

approached. As it could be seen, excepting the meso compounds, all the other synthesized 
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derivatives are racemic mixtures. It would be interesting to study the influence of the chirality 

on the mesomorphism and solution properties of the enantiomerically pure inositol-based 

amphiphiles. Actually, this is an ongoing project in our group and the final results will be 

presented somewhere else.  

Other possible projects which could be approached would be the synthesis of so-called bola 

amphiphiles of type 53 or maltose-like diinositol derivatives of type 54 or glycolipid-like 

amphiphiles of type 55 where R1, R2 (identical or different) could both be alkyl chains or 

combination of an alkyl chain,  ethylene oxide units or another sugar unit.  
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5.2. Physical properties 

 

The novel inositol derivatives were characterized with respect of their thermotropic and 

lyotropic mesomorphism, as well as their solution properties and surface activity in aqueous 

media. The assignment of different types of mesophases was achieved using polarization 

microscopy (PM) and differential scanning calorimetry (DSC). Solution properties were 

described using surface tension measurements in aqueous solutions, total internal reflection 

(TIR) Raman spectroscopy and self-diffusion NMR experiments (DOSY). 

 
5.2.1 Thermotropic mesomorphism 
 
The appearance of mesophases on heating for each of the ethoxylated inositol derivatives 

seems to be determined by the relative molecular symmetry originating from different 

localization of the ether groups at inositol core. From study of various liquid crystalline target 

compounds by polarizing microscopy and differential scanning calorimetry it emerges that the 

occurrence, type, and stability of their mesophases are clearly determined by number, 

position, and stereochemical arrangement of the triethylene oxide group or/and the alkyl 

chains at inositol ring. The phase transition data of newly synthesized inositol derivatives are 

summarized in table 5.1. 

 
Tabel 5.1. The summarized phase transition data of novel inositol derivatives 

Compound Cr1  Cr2  M  M  I 

rac-19 
(1-C12E3I1) 

• 
81/80.1 
(43.3) 

- - SmA 
153/153.1 

(0.5) 
- - • 

21 
(2-C12E3I1) 

• 
- /51.8 
(23.0) 

• 
- /149.0 
(29.6) 

{M 1 
- /147.1 
(0.7)} 

- - • 

rac-26 
(4-C12E3I1) 

• 85/- - - SmA 159/- - - • 

rac-32 
(1-C12I1E3) 

• 
80/80.6 
(38.92) 

- - - - - - • 

36 
(2-C12I1E3) 

• 
174/173.7 

(46.4) 
- - - - - - • 

rac-40 
1,2(C12E3)2I1 

• 
16/14.8 
(34.08) 

- - Cub 
26/24.4 
(0.78) 

ColH 
46/45.4 
(0.46) 

• 

rac-42 
1,4(C12E3)2I1 

• 
20/15.8 
(33.1) 

• 
57/57.3 
(70.9) 

- - - - • 

44 
2,5(C12E3)2I1 

• 
43/42.4 
(38.68) 

• 
110/108.8 

(44.07) 
- - - - • 

Temperatures in °C; polarizing microscopy/differential scanning calorimetry: PM/DSC; enthalpies   
(kJ mol-1) in brackets; heating rate 5 K min-l. Cr1, Cr2: crystalline, M: thermotropic mesophase, SmA: 
smectic A phase, M1: monotropic mesophase most probably of a smectic type, ColH: hexagonal 
columnar phase, Cub: cubic phase, I: isotropic liquid. 
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5.2.2. Lyotropic mesomorphism 

 

Binary systems solvent–inositol-based derivative were studied by polarizing microscopy 

using so called penetration experiments for all novel compounds. A phase study with known 

concentrations at various temperatures was completed in case of rac-19 (1-C12E3I1). Water 

was the solvent used to study binary systems for all compounds. Preliminary studies were also 

done with some other apolar solvents but these systems need to be studied more 

comprehensive.  

The phase diagram of rac-19 (1-C12E3I1) consists of an isotropic micellar (L1), a hexagonal 

phase (H1), a bicontinuous cubic phase (V1), and a lamellar phase (Lα) with vertical phase 

boundaries within the studied temperature range (23 to 70 °C). In between these single phase 

regions lie two phase regions where both adjoining phases coexist. The presence of the 

vertical phase boundaries means that the phase behaviour is not temperature sensitive.  

Penetration experiment of binary system water–21 (2-C12E3I1) revealed no lyotropic 

mesophase at 25 °C but by heating up to ~ 55 °C the sequence micellar–hexagonal–cubic–

lamellar was present. The optically isotropically appearing zone between hexagonal and 

lamellar phase was established to be bicontinuous cubic phase because it appears to be more 

viscous than an isotropic fluid. This type of behaviour was compared with the glucosidic 

analogue n-octyl-α-glucoside (C8G1) which has as well the hydrophobic tail attached to the 

axial position. The Kraft boundary in case of n-octyl-α-glucoside starts from 38 °C and 

increases with increasing surfactant concentration. There are micellar, hexagonal and lamellar 

phases present. 

As it was mentioned above, the binary system water–rac-19 (1-C12E3I1) is insensitive toward 

the temperature. It seems that this is not the case anymore for the binary system water–rac-32 

(1-C12I1E3) for which seems to be temperature-sensitive. 

Disubstituted derivatives of type (C12E3)2I1 (rac-40, rac-42, 44) do not present lyotropic 

mesomorphism in mixtures with water. Some preliminary penetration experiments with apolar 

solvents revealed the appearance of lyotropic mesophases but the systems need to be studied 

in more detail in order to assign the type of the observed mesophases. 

The main conclusion which results from these analyses is that the aqueous phase behaviour of 

the inositol-based amphiphiles is very much influenced by the end-capping group of the 

molecules. When the end of the hydrophilic head group is inositol (rac-19, 1-C12E3I1), the 

aqueous phase behaviour is temperature-insensitive as in case of the reference system C12G2, 

despite its three ethylene oxide units. It seems that this is not the case for the “inverse” 
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derivative rac-32 (1-C12I1E3), where the end of the hydrophilic head group is represented by 

the three ethylene oxide units. Preliminary studies using the penetration experiments showed 

that the binary system water–rac-32 (1-C12I1E3) is temperature-sensitive. A complete phase 

study with known concentrations at various temperatures is going to be done soon and the 

obtained phase diagram could be then compared with the one from the binary system water–

rac-19 (1-C12E3I1). 

 

5.2.3. Solution properties and surface activity 

 

One of the aims of the present work was to design new inositol-based surfactants with a good 

aqueous solubility. In order to achieve this aim, the head group was increase with three units 

of ethylene oxide. In general, the solubility issue was solved but the studies regarding the 

solution properties of novel inositol derivatives proved that the size of the hydrophilic head 

group is not the only feature which has to be taken into account to assure a good solubility in 

water. Table 5.2 summarize the characterization of all newly synthesized inositol-based 

derivatives with respect to their aqueous solubility. 

 

                            Table 5.2. The solubility of new inositol-based derivatives 

Compound Solubility 

rac-19 (1-C12E3I1) + 
21 (2-C12E3I1) low 
rac-26 (4-C12E3I1) + 
rac-32 (1-C12I1E3) + 
36 (2-C12I1E3) low 
38 (2-(C12E3)I1-5-C12) - 
rac-40 (1,2-(C12E3)2I1) - 
rac-42 (1,4-(C12E3)2I1) - 
44 (2,5-(C12E3)2I1) - 

 

As can be noticed from Table 5.2, the symmetric derivatives 21 (2-C12E3I1) and 36 (2-C12I1E3) 

present lower solubility in water compared with their non-symmetric isomers rac-19 (1-

C12E3I1), rac-26 (4-C12E3I1) and rac-32 (1-C12I1E3). This phenomenon reminds about the 

glucosidic analogues where the hydrophobic tail is attached to the axial (α) position (n-octyl-

α-glucoside) compared with the ones where is attached to the equatorial (β) (n-octyl-β-

glucoside). It seems that axial/α–linkage promotes a more stable crystal packing than in case 

of equatorial/β–linkage and consequently, the Krafft boundary is considerably higher and the 

solubility is lower.  
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In case of double substituted inositol derivatives 38 (2-(C12E3)I1-5-C12), rac-40 (1,2-

(C12E3)2I1), rac-42 (1,4-(C12E3)2I1) and 44 (2,5-(C12E3)2I1), the presence of  two alkyl chains 

increases the hydrophobic part of amphiphiles which led to a very low aqueous solubility.  

 

Surface tension measurements were carried out for rac-19 (1-C12E3I1), 21 (2-C12E3I1), rac-26 

(4-C12E3I1) and rac-32 (1-C12I1E3). The cmc values could not be measured for derivative 21 

(2-C12E3I1), since the solutions turned turbid because of low aqueous solubility of this 

derivative. For the sake of comparison, the results are presented together with reference 

systems n-dodecyl-β-maltoside (β-C12G2) and n-dodecyl hexaethylene oxide (C12E6). 

 

Table 5.3. Physicochemical properties of β-C12G2, 1-C12E3I1, 4-C12E3I1, 1-C12I1E3, and C12E6 

Surfactant cmc/mM σcmc/mN m-1 Γ∞ 10-6/mol m-2 Amin/nm2 

β-C12G2 0.16 34.7 3.80 0.44 
rac-19 (1-C12E3I1) 0.14 34.4 3.10 0.53 
rac-26 (4-C12E3I1) 0.13 33.7 3.25 0.51 
rac-32 (1-C12I1E3) 0.37 35.0 3.52 0.47 

C12E6 0.09 31.6 3.10 0.53 
 

From these measurements can be concluded that the analyzed compounds are pure because 

the surface tension curves have a sharp bend and no minimum at cmc. The position of alkyl-

triethylene oxide chain attached to the inositol ring has only a minor effect on both the cmc 

and the surface concentration when the chain is attached to an equatorial position.  

The cmc values of rac-19 (1-C12E3I1) and rac-26 (4-C12E3I1) are between those of β-C12G2 

and C12E6 as it was expected but this is not the case for rac-32 (1-C12I1E3) whose cmc is 

almost three times higher than its isomers. The “inverse” derivative rac-32 (1-C12I1E3) seems 

to be less surface active than β-C12G2, rac-19 (1-C12E3I1), rac-26 (4-C12E3I1) and C12E6 and 

thus has a higher cmc value which means that the I1E3 head group is more hydrophilic than 

G2, E3I1 and E6. 

The corresponding adsorption isotherms of the three surfactants, rac-19 (1-C12E3I1), rac-26 

(4-C12E3I1) and rac-32 (1-C12I1E3), are also presented. From these studies, one could say that 

the “inverse” derivative rac-32 (1-C12I1E3) pack more densely than its isomers thus its 

minimum area per head group is smaller than that for 1-C12E3I1 and 4-C12E3I1, therefore Γ∞ is 

higher. The explanation would be most likely the conformation and orientation of the 

surfactants at the surface.  
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In order to monitor the conformation and orientation of the surfactants at the surface 

molecular dynamic simulations or more sophisticated surface sensitive techniques are 

required. 

 

The adsorption behaviour of inositol-based surfactants on silica surface was studied using TIR 

Raman spectroscopy. The experiments were done for rac-19 (1-C12E3I1) and rac-32 (1-

C12I1E3) using solution below and above the cmc and were compared with the reference 

systems n-dodecyl-β-maltoside (β-C12G2) and n-dodecyl hexaethylene oxide (C12E6). 

 The results of these studies revealed that adsorption behaviour is controlled by the nature of 

the terminal group. The rac-19 (1-C12E3I1) has a maltoside-like behaviour since it does not 

adsorb in any measurable quantities on silica whilst the “inverse” isomer rac-32 (1-C12I1E3) it 

adsorbs on silica surface. However, in case of later, at lower temperatures the molecule shows 

lower overall signal intensity than at higher temperatures which could mean that there is a 

rather dramatic reorganization of the adsorbed surfactant as a function of temperature. In 

theory, the change in signal intensity could be due to the molecules being compact at lower 

temperatures, and then becoming increasingly solvated and elongated at higher temperatures.  

These were only preliminary results. The same study at concentrations above the cmc would 

be interesting as would a study at trace levels of rac-32 (1-C12I1E3) or acquiring data for more 

than two temperatures and also determining if this change in intensity with temperature is 

reversible. 

 

In order to find out more information about the hydration of the inositol-based surfactants, 

self-diffusion coefficients were measured using a magnetic field gradient method called 

DOSY (Diffusion Ordered SpectroscopY).  

Because the measurements were desired to be performed in water at very low concentrations 

(10-4 M), there were some problems which were solved by developing a new pulse sequence 

(stebpgpes1s1d.sek) including the suppression of water signal, and using a special type of 

NMR tubes with stem coaxial inserts of type WGS-5BL from Rototec-Spintec. 

The experiments were done using aqueous solution of rac-19 (1-C12E3I1), rac-32 (1-C12I1E3), 

n-dodecyl hexaethylene oxide (C12E6) and n-dodecyl-β-maltoside (β-C12G2) for 

concentrations from 0.8 cmc to 6 cmc.  

The results for the diffusion coefficient of free monomer (Dmono), which were obtained 

performing experiments at concentrations below the cmc, are presented in Table 5.4. 
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Studying these values, one could say that the molecules of novel inositol-based derivatives, 

rac-19 (1-C12E3I1) and rac-32 (1-C12I1E3), are moving slower than the reference systems 

which can lead to the conclusion that the hydrodynamic radius (RH) of the inositol derivatives 

has a higher value than the hydrodynamic radius (RH) of the reference systems, and 

consequently, inositol-based surfactants molecules are more hydrated. 

 

Table 5.4. The cmc measured Dmono for the four surfactants 

Surfactant c = 0.8 cmc/10-3, mol l-1 Dmono/10-10, m2 s-1 

n-dodecyl-β-maltoside (β-C12G2) 0.13 3.86 
rac-19 (1-C12E3I1) 0.11 3.79 
rac-32 (1-C12I1E3) 0.30 3.64 

n-dodecyl hexaethylene oxide (C12E6) 0.07 4.894 
 

Rounding the Dmono-values in Table 3.6 according to the errors given in section 7.5 (3.86 ± 

0.09, 3.79 ± 0.09, 3.64 ± 0.04, 4.89 ± 0.07) one clearly sees that the self-diffusion coefficients 

of the two inositol-based surfactants and of the sugar surfactant are the same, while that of 

C12E6 is larger.  

A possible reason for DC12E6 > DC12G2 could be simply the lower total surfactant 

concentration. Arguing via the total surfactant concentration explains the results for C12E6, 

C12G2 and rac-19. However, the value obtained for rac-32 should be much lower if it were 

only the total surfactant concentration that plays a role. One possible explanation could be the 

different shape of the molecules (stiff, rod-like in case of C12G2 and rac-19, coil-like in case 

C12E6 and rac-32). In other words, rac-32 has the same coefficient as rac-19 at a much larger 

total surfactant concentration as it is coil-like rather than rod-like.  Another explanation could 

be the contribution of pre-micellar aggregates (dimmers, trimers, tetramers, etc). These 

aggregates could decrease the Dmono value significantly compared to a solution of “real” 

monomers. At the time being, these are only speculations. 

Self-diffusion coefficients measured for concentrations above the cmc can be used to infer 

information about the possible size/structure of micelles present, but for the time being, these 

studies were not finished, therefore they are not included in the present work.  
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6. SUMMARY AND OUTLOOK II  

 

n-Dodecyldimethyl phospine oxide (C12DMPO) was synthesized and purified for an ongoing 

project at University College Dublin (UCD) under the supervision of Prof. Dr. Cosima 

Stubenrauch. This project aims to study the correlation between single foam films and foams 

by varying the surfactant mixing ratio, thus providing new insights into how to tune the 

properties of foams. 

The special property of phosphine oxides to bind various metal cations through ion dipolar 

interactions inspired the question if it would be possible to induce supramolecular order like 

e.g. thermotropic or lyotropic liquid crystallinity in phosphine oxides amphiphiles.  

The preparation of C12DMPO metal complexes consisted in mixing the phosphine oxide with 

various metal salts for ~ 1.5 h at room temperature in presence of a proper solvent (methanol 

or water), followed by the concentration to dryness (Scheme 6.1).  

 

 

 

Scheme 6.1. Synthetic step towards the n-dodecyldimethyl phospine  
oxide (C12DMPO) metal complexes 

 

A number of homogeneous products were obtained showing sharp transition temperatures 

indicating a defined complexation (Table 6.1). 

The analytical methods used to confirm the complexation of C12DMPO were X-ray analysis 

and infrared spectroscopy (IR). The crystalline structure of the complex C12DMPO : CuCl2 is 

presented in Fig. 6.1. As can be seen from Table 6.1 the melting points of these complexes are 

relatively low, hence a proper recrystallization was not successful. The crystalline structure 

which is presented in Fig. 6.1 was obtained from the melt of respectively compound. 
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Fig. 6.1. Crystal structure of C12DMPO : CuCl2 complex. 
 

The infrared analysis of the phosphine oxide metal complexes showed that C12DMPO is able 

to form complexes with metal salts depending both on cation and anion.  

The thermotropic and lyotropic mesomorphism were investigated by polarizing microscopy 

(PM) and differential scanning calorimetry (DSC). Their thermotropic phase transition data 

are summarized in Table 6.1. Three of studied mixtures exhibit crystalline polymorphism but 

none of the observed phases were thermotropic liquid crystalline.  

 

       Table 6.1. Composition and transition temperatures of the C12DMPO : salt  mixtures 
 

Mn+ Xm Hmg Cr1  Cr2  Cr3 I 

Cu2+ Cl- + • 55/53,4 (28,0)    • 
Cu2+ SO4

2- - • -/51.1 (1.65) • 83/79,1 (11,9)  • 
Cu2+ Br- + • 48/48,9 (25,4)    • 
Cu2+ BF4

- + • -/34.5 (1.3) • 55/54,5 (0,5) • [b] 
Cu2+ C5H7O2

- - • 83/81,4 (34,3)    • 
Cu2+ CH3COO- - • 83/82,3 (27,3)    • 
Li+ Cl- + • 92/93,5 (0,3) • 116,0/115,9 (3,5)  • 
Li+ Br- + • 72/69,9 (17,5)    • 
Na+ Cl- - • 85/81,0 (27,7)    • 

       [a]Temperatures given in °C: PM / DSC (∆Hrel in kJ/mol); ∆Hrel = ∆Habs(x1MC12DMPO+x2Msalt);               
        x1, x2 = molar fraction; ∆Habs measured by DSC; Hmg = Homogeneity; 
       [b] Complex thermal behavior upon repeated heating/cooling cycles, the clearing point is not     
        visible in DSC and in PM is between 70 – 90°C. PM = polarized microscopy; Cr = crystalline;  
        Iso = isotropic. 
 

Most of the C12DMPO metal complexes show lyotropic mesomorphism, their penetration 

experiments presenting various types of mesophases. 

Being easy to synthesize and non-toxic, C12DMPO could be a good solution for metal 

extractions, therefore should be further investigated, especially for other valuable metals like 

Hg, Pt, Pd, etc.  
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7. EXPERIMENTAL PART 

 

7.1. General 

 

Water or air sensitive reactions were carried out under an argon atmosphere using Schlenk 

techniques. The glassware was flame-dried in high vacuum (0.5-1 mbar) and allowed to cool 

down under an argon atmosphere. The syringes, needles and transfer cannulas were dried in 

an oven at 70°C and were flushed with argon directly before use. 

 

Solvents and reagents 

Reagents and solvents were purchased from Merck, Aldrich, Fluka, Strem, Lancaster, Acros, 

Glycon or Deutero (deuterated solvents for NMR Spectroscopy) and were used without 

further purification except the following cases: 

Pyridine was dried by distillation from CaH2 and stored over molecular sieve (4 Å) under 

argon.  

CH2Cl2 was dried by distillation from CaH2 under argon atmosphere prior to use. 

THF and toluene were dried by distillation from sodium/benzophenone under argon 

atmosphere prior to use. 

DMF was dried by distillation from MgSO4 at reduce pressure and stored over molecular 

sieve (3 Å) under argon. 

MeOH was dried by distillation from magnesium and stored over molecular sieve (3 Å) under 

argon.  

 

Distillations 

The solvent evaporation from reaction mixtures was done using a rotary evaporator R-114 

from Büchi (pressure 10-1013 mbar, water bath temperature: 40 °C). The advanced drying 

was performed at room temperature by applying an oil-pump vacuum.  

 

Molecular sieves 

Molecular sieves (3 Å or 4 Å, from Roth) were dried under vacuum at 300 °C and stored 

under argon atmosphere. 
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Pressure reactor  

Reactions under pressure were carried out using an autoclave Miniclave 35624 DN50, 10 bar 

from Büchi. 

 

Flash-chromatography 

Chromatographic purification and separation was done using silica 60 (230-400 mesh) 

supplied by Merck. 

 

Thin layer chromatography (TLC) 

Qualitative analysis of reaction mixtures via TLC was done using Merck-TLC-aluminium 

sheets coated with silica 60 F 254. The staining reagent used was a solution of potassium 

permanganate. The corresponding Rf values were determined as the distance travelled by the 

compound (the middle of spot) divided by the distance travelled by the solvent. The KMnO4 

solution was prepared from 3 g KMnO4 mixed with 20 g K2CO3, 5 ml NaOH 5% aq, and 300 

ml water.  

 

Melting points (m.p.) 

Melting points were measured by PM (Polarized Microscopy) or DSC (Differential Scanning 

Calorimetry) (see below). 

 

Differential Scanning Calorimetry (DSC) 

The differential scanning calorimetry analyses were carried out using a Mettler TA 3000/DSC 

30-S instrument with TA 72.5 software. 

 

Polarized Microscopy (PM) 

The polarized microscopy (PM) analyses were carried out using a Leitz Laborlux 12 Pol 

microscope equipped with a Linkam THMS 600 hot stage and a Linkam THM 91 control unit. 

 

Nuclear magnetic resonance (NMR) 

The 1H-NMR -spectra were recorded on Bruker Avance II 600 (600 MHz) or Bruker Avance 

DRX 500 (500 MHz) apparatus. Chemical shifts (δ) are given in ppm relative to the solvent 

reference as the internal standard (CDCl3: δ = 7.26 ppm, DMSO-d6: δ = 2.50 ppm). Data are 

reported as follows: chemical shift (multiplicity: s for singlet, d for doublet, t for triplet, and m 

for multiplet, coupling constant [Hz], integration, atom number).  
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The 13C-NMR  spectra were recorded on Bruker Avance II 600 (150 MHz) or Bruker Avance 

DRX 500 (125 MHz) apparatus. Chemical shifts (δ) are given in ppm relative to the solvent 

reference as the internal standard (CDCl3: δ = 77.00 ppm, DMSO-d6: δ = 39.43 ppm). Data 

are reported as follows: chemical shift (multiplicity: s for quaternary carbon, d for tertiary 

carbon, t for secondary carbon, q for primary carbon, atom number). Multiplicities were 

assigned based on the APT (Attached Proton Test) spectra.  

Numbering of the atoms was done based on the priority of the atom-containing subunit on the 

name of compound. Numbers stand for both, carbon and hydrogen atoms. Spectra processing 

was done using the programs Mestre-C and Topspin. 

DOSY experiments were performed on a Bruker Avance II 600 spectrometer, equipped with a 

600 MHz (14.1 Tesla) Narrow bore magnet and a 5 mm TBI probe head. The system is 

equipped with a field gradient probe, capable of generating field gradients strength of 1.0 

T/m. The measurements were performed at 25 °C. 

 

Fourier transform infrared spectroscopy (FT-IR) 

IR-spectra were recorded on a Perkin Elmer FT-IR Paragon 1000 spectrometer as ATR 

(Attenuated Total Reflectance) using a ZnSe-crystal. Absorption bands are given in wave 

numbers (υ~ , cm-1). Intensities of the bands are given as follows: ‘s’ for strong bands, ‘m’ for 

bands with medium intensity and ‘w’ for weak signals. Broad bands are marked with 

supplement ‘br’. 

 

Mass spectrometry  

Mass spectra (MS) were recorded on a Finnigan Incos 50 Galaxy System, and high resolution 

mass spectra (HR-MS) were recorded on a Finnigan MAT 900S. The method of ionization is 

given individually at each spectrum in parentheses.  

 

Elemental analyses (EA) 

Elemental analyses were carried out using an Elementart Vario El instrument. 

 

X-ray  

The crystal data were recorded on a Nonius-Kappa CCD-diffractometer. 
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Surface tension measurements  

The surface tensions were measured as a function of the surfactant concentration by Du Noüy 

ring method, using a STA1 Tensiometer from Sinterface Technologies. All samples were 

prepared with Milli-Q water.  
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7.2. Studies towards the synthesis of alkyl-oligoethoxylated myo-inositol 

derivatives 

 

7.2.1 Synthesis of 1-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]-3,4,5,6-tetra-O-

benzyl-myo-inositol (rac-18) 

 

 

 

2.5 g (4.63 mmol) of 3,4,5,6-tetra-O-benzyl-myo-inositol (rac-6) and 1.17 g (4.30 mmol) of 

di-n-butyltin oxide  were dissolved in 100 ml dry methanol and refluxed for 3 hours under 

argon. The crude mixture was cooled to r.t. and the solvent was evaporated. To the residual 

syrup 1.4 g (9.21 mmol) of caesium fluoride were added and the mixture was kept under high 

vacuum for 1 hour, when a solution of 4.37 g (9.25 mmol) of tosylate 17 in 100 ml dry DMF 

was added and the reaction was allowed to proceed at r.t. for 48 h. 70 ml MTBE were added 

and the resulting mixture was washed with 50 ml water, 40 ml Na2CO3 and again 50 ml water. 

The combined organic fractions were dried over MgSO4 and solvents were evaporated. The 

crude product was purified by flash chromatography (silica, DCM:EtOAc = 4:1 → 3:2). 

The benzylated rac-18 was obtained as a yellow oil (1.9 g, 2.26 mmol, 50 %). 

 

 

 

M  (C52H72O9) = 841.1227 g/mol; 

TLC (SiO2, CyHex:AcOEt = 7:3):  Rf = 0.17; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.27 – 7.38 (m, 20H; 20 Aryl-H), 4.71 – 4.93 (m, 

8H; 4 OCH2 from Bn),  4.32 (t, 3J = 2.5 Hz, 1H; 2-H), 4.03 (t, 3J = 9.5 Hz, 1H; 4-H), 3.93 (t, 
3J = 9.5 Hz, 1H; 6-H), 3.76 – 3.82 (m, 2H; 1’-H), 3.53 – 3.67 (m, 10H; 5 OCH2 of triethylene 

oxide chain), 3.39 – 3.46 (m, 4H; 3-H, 5-H and 1iv-H), 3.28 (dd, 3J  = 2.5 Hz, 3J = 9.5 Hz, 1H; 
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1-H), 2.95 (s, 1H; OH), 1.58 (m, 2H; 2iv-H), 1.21 – 1.35 (m, 18H; 9 CH2 of dodecyl chain), 

0.88 (t, 3J = 6.9 Hz, 3H;  12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 138.89, 138.71, 138.68, 138.08 (4s; 4 C from Aryl), 

128.34, 128.28, 128.25, 128.03, 127.92, 127.81, 127.76, 127.66, 127.50, 127.46 (10d; 10 CH 

of Bn),  83.03 (d; C-5), 81.18 (d; C-4 or C-6), 81.14 (d; C-4 or C-6), 81.11 (d; C-1), 79.63 (d; 

C-3), 75.92, 75.86, 75.74 (3t; 4 OCH2 of Bn), 72.41 (t; C-1’), 71.51 (t; C-1iv), 70.72, 70.55, 

70.46, 69.94, 69.64 (5t; 5 OCH2 of triethylene oxide chain), 66.84 (d; C-2), 31.87, 29.63, 

29.60, 29.58, 29.52, 29.46, 22.31, 26.02, 22.65 (9 t; 10 CH2 of dodecyl chain), 14.10 (q; C-

12iv); 

FT-IR (ATR) υ~  [cm-1] = 3446 (br, m), 2921 (s), 2852 (s), 1723 (w), 1495 (w), 1452 (m), 

1357 (m), 1275 (w), 1209 (w), 1087 (s), 1069 (s), 1027 (m), 731 (s), 695 (s), 614 (w); 

MS (positive ESI) m/z (%): 836.61 (100) [M+Na]+, 773.40 (6), 319.22 (4); 

HR-MS (ESI) calc. for C52H72O9Na [M+Na]+: 863.507, found: 863.507. 

 

7.2.2. Synthesis of 1-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol     

(rac-19) 

 

 

 

A solution of 0.640 g (0.76 mmol) rac-18 in 10 ml of a MeOH:EtOAc = 3:1 mixture was 

degassed with argon for 30 min. To this solution, 0.080 g (0.076 mmol) Pd (10% supported 

on charcoal) were added and the reaction was proceeded under hydrogen atmosphere 

(pressure ~ 8 bar) for 3 days. The resulting mixture was filtrated over celite and concentrated 

to dryness. The crude product was purified by flash chromatography (silica, DCM:MeOH = 

4:1). The pentol rac-19 was obtained as a white waxy solid (0.328 g, 0.68 mmol, 90 %). 

 

 

M  (C24H48O9) = 480.6325 g/mol; 
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TLC (SiO2, DCM:MeOH = 4:1): Rf = 0.34; 

Melting point: liquid crystal (see Table 3.1, chapter 3.2.1. Thermotropic mesomorphism); 
1H-NMR (600 MHz, DMSO-d6): δ [ppm] = 4.58 (d, 3J = 3.4 Hz, 1H; OH), 4.50 (d, 3J = 3.1 

Hz, 1H; OH), 4.44 (d, 3J = 4.3 Hz, 1H; OH), 4.37 (m, 2H; 2 OH), 3.88 (m, 1H; 2-H), 3.58 – 

3.69 (m, 2H; 1’-H), 3.48 – 3.55 (m, 8H; 4 OCH2 of triethylene oxide chain), 3.40 – 3.47 (m, 

3H; 6-H and OCH2 of triethylene oxide chain), 3.37 – 3.31 (m, 3H; 4-H and 1iv-H), 3.09 (d, 
3J= 8.3 Hz, 1H; 3-H), 2.98 (dd, 3J = 2.3 Hz, 3J = 9.7 Hz, 1H; 1-H), 2.91 (ddd, 3J = 2.6 Hz, 3J 

= 8.9 Hz, 3J = 9.0 Hz, 1H; 5-H), 1.44 – 1.48 (m, 2H; 2iv-H), 1.17 – 1.30 (m, 18H; 9 CH2 of 

dodecyl chain), 0.85 (t, 3J = 6.5 Hz, 3H; 12iv-H); 
13C-NMR (150 MHz, DMSO-d6): δ [ppm] = 80.48 (d; C-1), 75.19 (d; C-5), 72.37 (d, C-3), 

71.73 (d; C-4 or C-6), 71.60 (d; C-4 or C-6), 70.21 (t; C-1iv), 69.94, 69.68, 68.36, 68.33 (4 t; 5 

OCH2 of triethylene oxide chain), 68.32 (d; C-2), 68.33 (t; OCH2 of triethylene oxide chain), 

31.20, 29.10, 28.92, 28.77, 28.61, 25.55, 21.99 (7t; 10 CH2 of dodecyl chain), 13.85 (q; C-

12iv); 

FT-IR (ATR) υ~  [cm-1] = 3357 (br, m), 2919 (s), 2851 (s), 1456 (m), 1351 (m) 1113 (br, s), 

859 (m), 720 (m); 

MS (positive ESI) m/z (%): 503.22 (100) [M+Na]+, 481.26 (8); 

HR-MS (ESI) calc. for C24H48O9Na [M+Na]+: 503.319, found: 503.320. 

 

7.2.3. Synthesis of 1,3,4,5,6-penta-O-benzyl-2-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy] ethoxy] 

ethyl]-myo-inositol (20) 

 

 

 

To a solution of 0.133 g (3.33 mmol) NaH (55-65% in mineral oil) in 50 ml dry DMF were 

added 1.5 g (2.38 mmol) of compound 7 under argon atmosphere and the mix was stirred at 

0°C for 15 min when 1.57 g (3.33 mmol) of tosylate 17 were introduced and the reaction 

proceeded under argon for 60 h at r.t. The resulting mixture was poured onto 100 ml ice-water 

and 70 ml brine were added. After extraction with EtOAc (3 x 80 ml) the combined organic 

layers were dried over MgSO4, filtrated and dried under vacuum. The crude product was 

purified by flash chromatography (silica, CyHex:EtOAc = 4:1).  
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The benzylated derivative 20 was obtained as a colourless oil (1.991 g, 2.14 mmol, 90%). 

 

 

 

M (C59H78O9) = 931.2452 g/mol; 

TLC (SiO2, CyHex:EtOAc = 4:1): Rf = 0.37; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.26 – 7.34 (m, 25H; 5 Aryl-H), 4.67 – 4.89 (m, 

10H; 5 CH2 of Bn), 3.95 – 4.01 (m, 5H; 2-H, 4-H, 6-H and 1’-H), 3.53 – 3.67 (m, 10H; 5 

OCH2 of triethylene oxide chain), 3.44 (dd, 3J = 6.65 Hz, 3J = 11.72 Hz, 1H; 5-H), 3.40 (t, 3J 

= 6.86 Hz, 2H; 1iv-H), 3.32 (dd, 3J = 2.02 Hz, 3J = 9.84 Hz, 2H; 1-H and 3-H), 1.51 – 1.57 (m, 

2H; 2iv-H), 1.24 – 1.31 (m, 18H; 9 CH2 of dodecyl chain), 0.88 (t, 3J = 6.91 Hz, 3H; 12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 138.78, 138.75, 138.30 (3s; 5 C of Bn), 128.37, 

128.33, 128.29, 128.02, 127.84, 127.64, 127.61, 127.50 (8d; 25 CH of Bn), 83.58 (d; C-5), 

81.56 (d; C-4 and C-6), 80.64 (d; C-1 and C-3), 75.95, 75.83, 72.65 (3t; 5 CH2 of Bn), 75.68 

(d; C-2), 72.42 (t; C-1’), 71.53 (t; C-1iv), 70.87, 70.64, 70.60, 70.57, 70.00 (5t; 5 OCH2 of 

triethylene oxide chain), 31.90, 29.65, 29.63, 29.61, 29.59, 29.48, 29.34, 26.06, 22.68 (9t; 10 

CH2 of dodecyl chain), 14.12 (q; C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 3023 (w), 2921 (m), 2851 (m), 1495 (w), 1453 (m), 1358 (m), 1304 

(w), 1208 (w), 1085 (br, s), 1067 (s), 1038 (m), 1027 (m), 731 (s), 694 (s); 

MS (positive ESI) m/z (%): 953.54 (100) [M+Na]+, 181.5 (4), 91.06 (4);  

HR-MS (ESI) calc. for C59H78O9Na [M+Na]+: 953.554; found: 953.554; 

EA: calc: 76.10 % C; 8.44 % H; found: 75.98% C; 8.59% H. 

 

7.2.4. Synthesis of 2-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol (21) 
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A solution of 1.60 g (1.76 mmol) compound 20 in 30 ml of a MeOH:EtOAc = 3:1 mixture 

was degassed with argon for 30 min. To this solution, 0,187 g (0.17 mmol) Pd (10% 

supported on charcoal) were added and the reaction proceeded under hydrogen atmosphere 

(pressure ~ 8 bar) for 5 days. The resulting mixture was filtrated over celite and concentrated 

to dryness. The crude product was purified by flash chromatography (silica, DCM:MeOH = 

9:1). The pentol 21 was obtained as a white solid (0.74 g, 1.54 mmol, 88%). 

 

 

 

M (C24H48O9) = 480.6325 g/mol; 

TLC (SiO2, DCM:MeOH = 4:1): Rf = 0.38; 

Melting point: liquid crystal, (see Table 3.1, chapter 3.2.1. Thermotropic mesomorphism); 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.59 (dd, 3J = 4.39 Hz, 3J = 8.06 Hz, 3H; 3 OH), 

4.39 (d, 3J = 5.72 Hz, 2H; 2 OH), 3.76 (t, 3J = 5.16 Hz, 2H; 1’-H), 3.44 – 3.52 (m, 11H; 2-H 

and 5 OCH2 of triethylene oxide chain), 3.35 (t, 3J = 6.62 Hz, 2H; 1iv-H), 3.29 (dt, 3J = 4.50 

Hz, 3J = 9.37 Hz, 3J = 9.30 Hz, 2H; 4-H and 6-H), 3.15 – 3.18 (m, 2H; 1-H and 3-H), 2.87 

(ddd, 3J = 4.26 Hz, 3J = 8.99 Hz, 3J = 9.01 Hz, 1H; 5-H), 1.48 – 1.43 (m, 2H; 2iv-H), 1.24 – 

1.31 (m, 18H; 9 CH2 of dodecyl chain), 0.85 (t, 3J = 6.81 Hz, 3H; 12iv-H); 
13C-NMR (125 MHz, DMSO-d6): δ [ppm] = 82.54 (d; C-2), 75.06 (d; C-5), 73.02 (d; C-4 and 

C-6), 72.17 (t; C-1’), 71.85 (d; C-1 and C-3), 70.30 (t; C-1iv), 69.99, 69.77, 69.73, 69.67, 

69.44 (5t; 5 OCH2 of triethylene oxide chain), 31.30, 29.19, 29.02, 28.88, 28.72, 25.64, 22.10 

(7t; 10 CH2 of dodecyl chain), 13.96 (q; C-12iv); 

FT-IR ( ATR) υ~  [cm-1] = 3254 (br, s), 2916 (s), 2846 (s), 1660 (br, w), 1468 (m), 1361 (m), 

1232 (w), 1118 (s), 1082 (w), 1040 (s), 1014 (m), 960 (w), 861 (w), 715 (m); 

MS (positive ESI) m/z (%): 503.24 (100) [M+Na]+, 481.28 (8); 

HR-MS (ESI) calc. for C24H48O9Na [M+Na]+: 503.319; found: 503.319. 
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7.2.5. Synthesis of 4-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol 

orthoformate (25) 

 

 

 

0.5 g (2.63 mmol) of myo-inositol orthoformate 8 were dissolved into a suspension of 0.12 g 

(2.5 mmol) NaH (55-65% mineral oil) in 40 ml dry DMF under argon atmosphere and the mix 

was stirred for 15 min at 0°C. 1.24 g (2.63 mmol) of tosylate 17 were added dropwise and the 

reaction mixture was stirred under argon for additional 24 h at r.t. The crude mix was poured 

onto 50 ml ice-water and 25 ml brine were added. After extraction with EtOAc (3 x 50 ml) the 

combined organic fractions were dried over MgSO4, filtrated and concentrated under vacuum. 

The crude product was purified by flash chromatography (silica, DCM:EtOAc = 4:1).  

The compound 25 was obtained as colourless oil (0.795 g, 1.62 mmol, 62%). 

 

 

 

M (C25H46O9) = 490.6273 g/mol; 

TLC (SiO2, DCM:EtOAc = 1:1): Rf = 0.21; 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 5.46 (d, 3J = 0.86 Hz, 1H; CH of orthoformate), 

5.29 (d, 3J = 6.09 Hz, 1H; 2-OH), 4.86 (d, 3J = 6.24 Hz, 1H; 6-OH), 4.26– 4.29 (m, 1H; 5-H), 

4.21 – 4.25 (m, 1H; 6-H), 4.15 (m, 1H; 4-H); 4.03 – 4.06 (m, 1H; 3-H), 3.93 (t, 3J = 5.06 Hz, 

1H; 2-H), 3.87 – 3.90 (m, 1H; 1-H), 3.59 – 3.72 (m, 2H; 1’-H), 3.42 – 3.54 (m, 10H; 5 OCH2 

of triethylene oxide chain), 3.35 (t, 3J = 6.59 Hz, 2H; 1iv-H), 1.42 – 1.50 (m, 2H; 2iv-H), 1.31 

– 1.18 (m, 18H; 9 CH2 of dodecyl chain), 0.85 (t, 3J = 6.79 Hz, 3H; 12iv-H); 
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13C-NMR  (125 MHz, DMSO-d6): δ [ppm] = 102.06 (d; CH of orthoformate), 74.49 (d; C-1 or 

C-4), 74.38 (d; C-1 or C-4), 72.35 (d; C-3), 70.24 (t; C-1iv), 69.72, 69.69, 69.60, 69.39, 68.06 

(5t; 6 OCH2 of triethylene oxide chain), 68.25 (d; C-5), 67.18 (d; C-6), 58.70 (d; C-2), 31.25, 

29.14, 29.00, 28.99, 28.96, 28.82, 28.67, 25.59, 22.05 (9t; 10 CH2 of dodecyl chain), 13.91 (q; 

C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 3467 (br, m), 2920 (s), 2846 (s), 1459 (m), 1415 (w), 1350 (w), 

1296 (m), 1242 (m), 1161 (s), 1092 (br, s), 990 (s), 955 (s), 876 (m), 804 (m), 769 (m), 722 

(w), 694 (m); 

MS (positive ESI) m/z (%): 513.20 (100) [M+Na]+, 427.22 (4), 341.21 (10), 301.22 (6);  

HR-MS (ESI) calc. for C25H46O9Na [M+Na]+: 513.304; found: 513.304; 

EA: calc: 61.20% C; 9.45% H; found: 61.36% C; 9.56% H. 

 

7.2.6. Synthesis of 4-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol      

(rac-26) 

 

 

 

A solution of 0.625 g (1.27 mmol) compound 25 in 60 ml methanol and 11 ml HCl 6M was 

heated to reflux for 4 hours. After cooling down, the mix was neutralized with NaOH 50%, 

filtrated, dried over MgSO4, concentrated and dried under vacuum. The crude product was 

purified by flash chromatography (silica, DCM:MeOH = 9:1). 

The pentol rac-26 was obtained as a white waxy solid (0.503 g, 1.05 mmol, 83%). 

 

 

M (C24H48O9) = 480.6325 g/mol; 

TLC (SiO2, DCM:MeOH = 4:1): Rf = 0.37; 

Melting point: liquid crystal, (see Table 3.1, chapter 3.2.1. Thermotropic mesomorphism); 
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1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.61 (d, 3J = 3.47 Hz, 1H; OH), 4.56 (dd, 3J = 

4.46 Hz, 3J = 9.54 Hz; 2H; 2 OH), 4.41 (d, 3J = 5.55 Hz, 1H; OH), 4.38 (d, 3J = 5.15 Hz, 1H; 

OH), 3.71 – 3.80 (m, 2H; 1’-H), 3.68 (m, 1H; 2-H), 3.44 – 3.52 (m, 10H; 5 OCH2 of 

triethylene oxide chain), 3.33 – 3.37 (m, 3H; 6-H and 1iv-H), 3.19 – 3.23 (m, 2H; 3-H and 4-

H), 3.06 -3.10 (m, 1H; 1-H), 2.99 (dt, 3J = 4.39 Hz, 3J = 4.39 Hz, 3J = 13.38 Hz, 1H; 5-H), 

1.43 – 1.49 (m, 2H; 2iv-H), 1.17 – 1.30 (m, 18H; 9 CH2 of dodecyl chain), 0.85 (t, 3J = 6.83 

Hz, 3H; 12”-H); 
13C-NMR  (125 MHz, DMSO-d6): δ [ppm] = 82.65 (d; C-4), 74.58 (d; C-5), 72.75 (d; C-6), 

72.60 (d; C-2), 71.52 (d; C-1), 71.17 (d; C-3), 70.82, 70.25, 68.70, 69.66, 69.54, 69.38 (6t; 6 

OCH2 of triethylene oxide chain), 70.02, 31.24, 29.14, 28.99, 28.98, 28.96, 28.82, 28.66, 

25.59, 22.05 (10t; 11 CH2 of dodecyl chain), 13.91 (q; C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 3358 (br, s), 2920 (s), 2851 (s), 1656 (br, w), 1456 (w), 1347 (w), 

1293 (w), 1245 (w), 1113 (br, s), 1058 (s), 1000 (m), 936 (w), 882 (w), 718 (m); 

MS (positive ESI) m/z (%): 503.22 (100) [M+Na]+, 481.26 (6), 440.67 (4); 

HR-MS (ESI) calc. for C24H48O9Na [M+Na]+: 503.319; found: 503.319; 

 

7.2.7. Synthesis of 1,2:4,5-di-O-cyclohexylidene-3-O-dodecyl–myo-inositol (rac-29) 

 

 

 

To a solution of 0.141 g (2.94 mmol) NaH (55-65% in mineral oil) in 30 ml dry DMF were 

added 0.500 g (1.47 mmol) of rac-9 under argon atmosphere and the suspension was stirred at 

0°C for 15 min. After the addition of 0.35 ml (0.366 g, 1.47 mmol) of n-dodecyl bromide the 

reaction proceeded under argon for 20 h at r.t. The resulting mixture was poured onto 100 ml 

ice-water and 50 ml brine were added. After extraction with DCM (3 x 80 ml) the combined 

organic fractions were dried over MgSO4, filtrated and dried under vacuum. The crude 

product was purified by flash chromatography (silica, CyHex:EtOAc = 7:3).  

The desired rac-29 was obtained as a colourless oil (0.485 g, 0.955 mmol, 65%). 
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M  (C30H52O6) = 508.7303 g/mol; 

TLC (SiO2, CyHex:AcOEt = 7:3): Rf = 0.36; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 4.49 (m, 1H; 2-H), 4.00 (dd, 3J = 5.10 Hz, 3J = 6.44 

Hz, 1H; 1-H), 3.94 (t, 3J = 9.74 Hz, 1H; 4-H), 3.86 (dd, 3J = 6.71 Hz, 3J = 10.66 Hz, 1H;6-H), 

3.71 (dd, 3J = 3.48 Hz, 3J = 4.43 Hz, 1H; 3-H), 3.65 (t, 3J = 6.98 Hz, 2H; 1’-H), 3.29 (dd, 
3J=9.60 Hz, 3J = 10.48 Hz, 1H; 5-H), 2.76 (s, 1H; OH), 1.58 – 1.76 (m, 18H; 2’-H and 8 CH2 

of cyclohexylidene rings), 1.24 – 1.38 (m, 22H; 9 CH2 of dodecyl chain and 2 CH2 of 

cyclohexylidene rings), 0.87 (t, 3J = 6.91 Hz, 3H; 12’-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 112.87, 110.66 (2s; 2 C of cyclohexylidene rings), 

81.25 (d; C-1), 78.14 (d; C-5), 76.43 (d; C-4), 76.30 (d; C-3), 75.62 (d; C-2), 75.01 (d; C-6), 

70.22 (t; C-1’), 37.74, 36.44, 36.28, 35.076 (4t; 5 CH2 of cyclohexylidene ring), 31.88, 29.68, 

29.65, 29.61, 29.52, 29.42, 29.32, 25.98, 22.65 (9t; 10 CH2 of dodecyl chain), 23.90, 23.70, 

23.67, 25.58 (4t; 5 CH2 of cyclohexylidene ring), 14.10 (q; 12’-C); 

FT-IR (ATR) υ~  [cm-1] = 3453 (br, w), 2922 (s), 2850 (s), 1447 (m), 1364 (m) 1332 (w), 

1275 (m), 1250 (w), 1229 (w), 1162 (s), 1113 (s), 1060 (s), 1004 (m), 933 (s); 907 (s), 847 

(m), 777 (m), 730 (m); 

MS (positive ESI) m/z (%): 1039.74 (42) [2(M+Na)]+, 963.72 (6), 663.42 (10), 547.31 (10), 

531.31 (100) [M+Na]+, 411,25 (4), 127.02 (4), 99.06 (6); 

HR-MS (ESI) calc. for C30H52O6Na [M+Na]+: 531.366, found: 531.366; 

EA: calc: 70.83% C; 10.30% H; found: 70.82% C; 10.31% H. 

 

7.2.8. Synthesis of 6-O-[2'-[2"-[2"'-(benzyloxy)ethoxy]ethoxy]ethyl]-1,2:4,5–di–O-                                

cyclohexylidene-3-O-dodecyl-myo-inositol (rac-30) 
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To a solution of 0.104 g (2.4 mmol) NaH (55-65% in mineral oil) in 15 ml dry DMF were 

added 0.610 g (1.2 mmol) of rac-29 under argon and the suspension was stirred at 0°C for 15 

min. 0.520 g (1.32 mmol) of tosylate 28 were then introduced and the reaction proceeded 

under argon for 22 h at r.t. The resulting mixture was poured onto 100 ml ice-water and 50 ml 

brine were added. After extraction with DCM (3 x 80 ml) the combined organic fractions 

were dried over MgSO4, filtrated and dried under vacuum. The crude product was purified by 

flash chromatography (silica, CyHex:EtOAc = 7:3).  

The pure rac-30 was obtained as colourless oil (0.788 g, 1.08 mmol, 90%). 
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M  (C43H70O9) = 731.0105 g/mol; 

TLC (SiO2, CyHex: EtOAC = 7:3): Rf = 0.36; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.26 – 7.34 (m, 5H; 5 Aryl-H), 4.58 (s, 2H; CH2 of 

Bn), 4.45 (t, 3J = 4.56 Hz, 1H; 2-H), 4.05 (dd, 3J = 5.06 Hz, 3J = 6.35 Hz, 1H; 1-H), 3.90 – 

3.96 (m, 3H; 4-H and 1’-H), 3.65 – 3.71 (m, 10H; 5 OCH2 of triethylene oxide chain), 3.60 – 

3.64 (m, 3H; H-3 and 1iv-H), 3.57 (dd, 3J = 6.61 Hz, 3J = 10.27 Hz, 1H; 6-H), 3.30 (dd, 1H, 3J 

= 9.42 Hz, 3J = 10.51; H-5), 1.58 – 1.76 (m, 18H; 2iv-H and 8 CH2 of cyclohexylidene ring), 

1.24 – 1.38 (m, 22H; 9 CH2 of dodecyl chain and 2 CH2 of cyclohexylidene ring), 0.87 (t, 3J = 

6.92 Hz, 3H; 12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 138.24 (s; C from Aryl), 128.32, 127.72, 127.54 

(3d; 5 CH of Aryl), 112.43, 110.45 (2s; 2 C of cyclohexylidene rings), 82.40 (d; C-6), 80.71 

(d; C-1), 78.23 (d; C-5), 76.24 (d; C-4), 76.17 (d; C-3), 75.64 (d; C-2), 73.20 (t; CH2 of Bn), 

70.63, 70.48, 70.39, 70.33, 70.19, 70.07 (6t; 6 OCH2 of triethylene oxide chain), 69.40 (t; C-

1iv), 37.96, 37.72, 36.42, 36.38, 35,13 (5t; 5 CH2 of cyclohexylidene ring), 31.89, 29.86, 

29.71, 29.66, 29.61, 29.44, 29.33, 25.99, 22.67 (9t; 10 CH2 of dodecyl chain), 25.03, 24.97, 

23.93, 23.75, 23.58 (5t; 5 CH2 of cyclohexylidene ring), 14.11 (s, C-12iv); 
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FT-IR (ATR) υ~  [cm-1] = 2923 (s), 2851 (s), 1448 (m), 1363 (m), 1331 (w), 1276 (m), 1250 

(w), 1229 (w), 1162 (m), 1096 (br, s), 1030 (m), 934 (s), 907 (s), 847 (m), 777 (m), 732 (m), 

696 (m); 

MS (positive ESI) m/z (%): 753.44 (100) [M+Na]+;  

HR-MS (ESI) calc. for C43H70O9Na [M+Na]+: 753.491, found: 753.491; 

EA: calc: 70.65% C; 9.65% H; found: 70.26%C; 9.58% H. 

 

7.2.9. Synthesis of 1,2:4,5-di-O-cyclohexylidene-3-O-dodecyl-6-O-[2'-[2"-[2"'-(hydroxy) 

ethoxy]ethoxy]ethyl]-myo-inositol (rac-31) 

 

 

 

A solution of 0.586 g (0.803 mmol) rac-30 in 38 ml of a MeOH:EtOAc = 3:1 mixture was 

degassed with argon for 30 min. To this solution, 0,085 g (0.080 mmol) Pd (10% supported 

on charcoal) were added and the reaction mixture was stirred at r.t. under hydrogen 

atmosphere (pressure ~ 1.5 bar) for two days. The resulting mix was filtrated over celite and 

concentrated to dryness. The crude product was purified by flash chromatography (silica, 

DCM: EtOAc = 3:2 → 1:1). The desired rac-31 was obtained as a white solid (0.503 g, 0.786 

mmol, 98%). 

 

 

 

M (C36H64O9) = 640.4550 g/mol; 

TLC (SiO2, DCM:EtOAC = 2:3): Rf = 0.34; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 4.47 (t, 3J = 4.47 Hz, 1H; 2-H), 4.07 (t, 3J = 5.6 Hz, 

1H; 1-H), 3.88 – 3.96 (m, 3H; 4-H and 1’-H), 3.64 – 3.72 (m, 11H; 3-H and 5 OCH2 of 
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triethylene oxide chain), 3.60 – 3.64 (m, 2H; 1iv-H), 3.57 (dd, 3J = 4.0 Hz, 3J = 6.4 Hz, 1H; 6-

H), 3.32 (m, 1H; 5-H), 2.98 (s, 1H; OH), 1.58 – 1.76 (m, 18H; 2iv-H and 8 CH2 of 

cyclohexylidene rings), 1.24 – 1.38 (m, 22H; 9 CH2 of dodecyl chain and 2 CH2 of 

cyclohexylidene rings), 0.87 (t, 3J = 6.83 Hz, 3H; 12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 112.59, 110.44 (2s; 2 C of cyclohexylidene rings), 

82.35 (d; C-6), 80.69 (d; C-1), 78.10 (d; C-5), 76.27 (d; C-4), 76.12 (d; C-3), 75.69 (d; C-2), 

72.61 (t; C-1iv), 70.57, 70.54, 70.23, 70.00, 61.70 (5t; 6 OCH2 of triethylene oxide chain), 

37.73, 36.43, 36.34, 35.11 (4t; 4 CH2 of cyclohexylidene ring), 31.91, 29.72, 29.68, 29.63, 

29.45, 29.35, 26.00, 22.68 (8t; 10 CH2 of dodecyl chain), 25.01, 24.96, 23.94, 23.81, 23.75, 

23.60 (6t; 6 CH2 of cyclohexylidene ring), 14.13 (q; C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 3447 (br, w), 2921 (s), 2850 (s), 1456 (m), 1448(m), 1364 (m), 

1277 (m), 1249 (w), 1229 (w), 1162 (m), 1108 (br, s), 1067 (s), 1035 (m), 1011 (m), 964 (w), 

936 (m), 908 (m), 849 (w), 833 (w), 778 (w), 729 (w); 

MS (positive ESI) m/z (%): 663.43 (100) [M+Na]+, 241.10 (4); 

HR-MS (ESI) calc. for C36H64O9Na [M+Na]+: 663.444, found: 663.445. 

 

7.2.10 Synthesis of 1-O-dodecyl-4-O-[2’-[2"-[2"'-(hydroxy)ethoxy]ethoxy]ethyl]- myo- 

inositol (rac-32) 

 

 

 

0.197 g (0.307 mmol) of rac-31 with a mixture of 0.73 ml (0.76 mg, 12.7 mmol) glacial acetic 

acid and 0.18 ml water were heated to reflux for 2.5 hours. The resulting mixture was 

evaporated under reduced pressure to dryness. In order to remove the remaining traces of 

acetic acid the mix was dissolved in methanol (2 x 20 ml) and toluene (2 x 30 ml) and 

subsequently concentrated. The crude solid product was purified by flash chromatography 

(silica, DCM:MeOH = 9:1).The tetrol rac-32 was obtained as a white waxy solid (0.103 g, 

0.214 mmol, 70%). 
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M (C24H48O9) = 480.6325 g/mol; 

TLC (SiO2, DCM:MeOH = 8:1): Rf = 0.36; 

Melting point (DSC): 80.6 °C; 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.56 – 4.58 (m, 2H; OH of triethylene oxide 

chain and 5-OH), 4.49 – 4.48 (m, 2H; 2-OH and 6-OH), 4.42 (d, 3J = 4.88 Hz, 1H; 3-OH), 

3.85 (m, 1H; 2-H), 3.72 – 3.81 (m, 2H; 1’-H), 3.35 – 3.52 (m, 13H; 5 OCH2 of triethylene 

oxide chain, 6-H and 1iv-H), 3.23 – 3.20 (m, 2H; 3-H and 4-H), 3.01 (dd, 3J = 6.54 Hz, 3J = 

13.03 Hz, 1H,; 5-H), 2.88 (dd, 3J = 2.08 Hz, 3J = 9.69 Hz, 1H; 1-H), 1.47 (m, 2H; 2iv-H), 1.28 

– 1.24 (m, 18H; 9 CH2 of dodecyl chain), 0.85 (t, 3J = 6.80 Hz, 3H; 12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 82.37 (d; C-4), 79.81 (d; C-1), 74.63 (d; C-5), 71.78 

(d; C-6), 71.03 (d; C-3), 69.12 (d; C-2), 69.04 (t; C-1iv), 72.24, 69.98, 69.57, 69.54, 60.11 (5t; 

6 OCH2 of triethylene oxide chain), 31.19, 29.50, 28.97, 28.91, 28.60, 25.48, 21.98 (7t; 10 

CH2 of dodecyl chain), 13.85 (q, C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 3398 (br, s), 2919 (s), 2850 (s), 1660 (w), 1463 (w), 1347 (w), 1296 

(w), 1245 (w), 1119 (w), 1081 (br, s), 1021 (m), 933 (w), 885 (w), 708 (w); 

MS (positive ESI) m/z (%): 503.27 (100) [M+Na]+, 481.29 (4); 

HR-MS (ESI) calc. for C24H48O9Na [M+Na]+: 503.319, found: 503.320; 

EA: calc: 59.97% C; 10.07% H; found: 59.70% C; 9.99% H. 

 

7.2.11. Synthesis of 5-O-dodecyl-1,6:3,4-bis-O-(2’,3’-methoxybutane-2’,3’-diyl)-myo-

inositol (33) 
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0.5 g (1.22 mmol) compound 10 was dissolved into a suspension of 0.03 g (1.47 mmol) NaH 

(in 55-65% mineral oil) in 40 ml dry DMF and the mix was stirred for 1h at 70°C under 

argon. After cooling down, 0.87 ml (0.90 g, 3.6 mmol) of n-dodecyl bromide were added and 

the mixture was stirred under inert atmosphere for 15h at r.t. The crude mixture was poured 

onto 80 ml ice-water and extracted with EtOAc (3 x 50 ml). The combined organic fractions 

were dried over MgSO4, filtrated, concentrated and dried under vacuum. The crude product 

was purified by flash chromatography (silica, DCM:EtOAc = 4:1). Compound 30 was 

obtained as a white powder (0.277g, 0.480 mmol, 40%). 

 

 

 

M (C30H56O10) = 576.7596 g/mol; 

TLC (SiO2, CyHex:EtOAc = 1:1): Rf = 0.41; 

Melting point (DSC): 110 °C; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 3.98 (t, 3J = 9.84 Hz, 2H; 4-H and 6-H), 3.70 (t, 3J = 

6.45 Hz, 2H; 1”-H), 3.61 – 3.65 (m, 2H; 2-H and 5-H), 3.46 (dd, 3J = 2.26 Hz, 3J = 10.28 Hz, 

2H; 1-H and 3-H), 3.22, 3.26 (2s, 12H; 2 2’-OCH3 and 2 3’-OCH3), 2.42 (s, 1H; OH), 1.54 – 

1.60 (m, 2H; 1”-H), 1.25 – 1.35 (m, 30H; 9 CH2 of dodecyl chain, 2 1’-H and 2 4’-H), 0.87 (t, 
3J = 6.91 Hz, 3H; 12”-H); 
13C-NMR  (125 MHz, CDCl3): δ [ppm] = 99.51, 99.01 (2s; 2 C-2’ and 2 C-3’), 76.58 (d; C-5), 

72.57 (t; C-1”), 70.75 (d; C-2), 69.27 (d; C-4 and C-6), 69.03 (d; C-1 and C-3), 47.90, 47.81 

(2q; 2 2’-OCH3 and 2 3’-OCH3), 31.92, 30.09, 29.74, 29.69, 29.65, 29.60, 29.36, 26.00, 22.68 

(9t; 10 CH2 of dodecyl chain), 17.77, 17.64 (2q; 2 C-1’ and 2 C-4’), 14.12 (q; C-12”); 

FT-IR ( ATR) υ~  [cm-1] = 3502 (br, m), 2921 (s), 2851 (s), 1457 (m), 1373 (s), 1112 (br, s), 

1034 (s), 950 (m), 917 (m), 882 (m), 845 (m), 781 (m), 728 (m), 672 (m), 629 (m); 

MS (positive ESI) m/z (%): 599.36 (100) [M+Na]+; 

HR-MS (ESI) calc. for C30H56O10Na [M+Na]+: 599.377; found: 599.377; 

EA: 62.47% C; 9.79% H; found: 62.49% C; 9.77% H. 
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7.2.12. Synthesis of 2-O-[2'-[2"-[2"'-(benzyloxy)ethoxy]ethoxy]ethyl]-5- O-dodecyl-

1,6:3,4-bis-O-(2,3-methoxybutane-2,3-diyl)-myo-inositol (34) 
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0.5 g (0.86 mmol) of 33 were dissolved into a suspension of 0.05 g (1.04 mmol) NaH (55-

65% mineral oil) in 30 ml dry DMF and the mix was stirred for 15 min at 0°C under argon. 

0.41 g (1.04 mmol) of tosylate 28 were added dropwise and the reaction mixture was stirred 

under inert atmosphere for additional 20 h at r.t. The crude mix was poured onto 70 ml ice-

water and 25 ml brine were added. After extraction with DCM (3 x 50 ml) the combined 

organic fractions were dried over MgSO4, filtrated, concentrated and dried under vacuum. The 

crude product was purified by flash chromatography (silicagel, CyHex:EtOAc = 6:1).  

The benzylated 34 was obtained as colourless oil (0.479 g, 0.60 mmol, 70%). 

 

 

 

M (C43H74O13) = 799.0399 g/mol; 

TLC (SiO2, CyHex:EtOAc = 7:3): Rf = 0.24; 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 7.33 – 7.33 (m, 5H; 5 Aryl-H), 4.55 (s, 2H; CH2 

of Bn), 4.03 – 4.00 (m, 2H; 4-H and 6-H), 3.93 (dd, 3J = 4.79 Hz, 3J = 5.15 Hz, 2H; 1”-H), 

3.60 – 3.69 (m, 12H; 5 OCH2 of triethylene oxide chain and 1v-H), 3.58 (m, 1H; 2-H), 3.43 – 

3.45 (m, 2H; 1-H and 3-H), 3.29 (dd, 3J = 6.52 Hz, 3J = 15.82 Hz, 1H; 5-H), 3.22, 3.24 (2s, 
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12H; 2 2’-OCH3 and 2 3’-OCH3), 1.54 – 1.60 (m, 2H; 2v-H), 1.25 – 1.35 (m, 30H; 9 CH2 of 

dodecyl chain, 2 1’-H and 2 4’-H), 0.88 (t, 3J = 6.87 Hz, 3H; 12v-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 138.23 (s; C of Aryl), 128.33, 127.73, 127.55 (3d; 5 

CH of Aryl), 99.45, 98.87 (2s; 2 C-2’ and 2 C-3’), 79.23 (d; C-5), 76.50 (d; C-2), 73.22 (t; 

CH2 of Bn), 72.53 (t; C-1v), 72.42, 70.87, 70.69, 70.65 (4t; 6 OCH2 of triethylene oxide 

chain), 69.64 (d; C-4 and C-6), 69.27 (d; C-1 and C-3), 47.84, 47.70 (2q; 2 2’-OCH3 and 2 3’-

OCH3), 31.92, 30.13, 29.73, 29.69, 29.66, 29.59, 29.36, 25.98, 22.69 (9t; 10 CH2 of dodecyl 

chain), 17.88, 17.60 (2q; 2 C-1’ and 2 C-4’), 14.12 (q; C-12v); 

FT-IR (ATR) υ~  [cm-1] = 2921 (s), 2851 (s), 1680 (w), 1453 (m), 1373 (s), 1211 (w), 1181 

(w), 1112 (br, s), 1035 (s), 950 (m), 916 (m), 882 (m), 846 (m), 732 (m), 697 (m), 671 (w), 

633 (w); 

MS (positive ESI) m/z (%): 821.49 (100) [M+Na]+, 671.38 (4), 91.06 (4); 

HR-MS (ESI) calc. for C43H74O13Na [M+Na]+: 821.502; found: 821.503; 

EA: calc: 64.64% C; 9.33% H; found: 64.74% C; 9.38% H. 

 

7.2.13. Synthesis of 2-O-[2’-[2”-[2’’’-(hydroxy)ethoxy]ethoxy]ethyl]-5- O-dodecyl-1,6:3,4-

bis-O-(2’,3’-methoxybutane-2’,3’-diyl)-myo-inositol (35) 

 

 

 

A solution of 0.3 g (0.376 mmol) 34 in 12 ml of a MeOH:EtOAc = 3:1 mixture was degassed 

with argon for 30 min. To this solution, 4 mg (0.037 mmol) Pd (10% supported on charcoal) 

were added and the reaction mixture was stirred at r.t. under hydrogen atmosphere (pressure ~ 

1.5 bar) for 3 days. The resulting mix was filtrated over celite and concentrated to dryness. 

The crude product was purified by flash chromatography (silica, CyHex:EtOAc = 3:2 → 1:1).  

The deprotected derivative 35 was obtained as a colourless oil (0.26 g, 0.367 mmol, 98%). 
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M (C36H68O13) = 708.9173 g/mol; 

TLC (SiO2, DCM:EtOAc = 1:1): Rf = 0.16; 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.58 (t, 3J = 5.48 Hz, 1H; OH), 3.72 -3.78 (m, 

4H; 1”-H, 4-H and 6-H), 3.58 (t, 3J = 6.08 Hz, 3H; 1v-H and 2-H), 3.44 – 3.53 (m, 10H; 4 

OCH2 of triethylene oxide chain, 1-H and 3-H), 3.38 (t, 3J = 5.31 Hz, 2H; OCH2 of triethylene 

oxide chain), 3.17 (t, 3J = 9.24 Hz, 1H; 5-H), 3.13, 3.14 (2s, 12H; 2 2’-OCH3 and 2 3’-OCH3), 

1.43 – 1.48 (m, 2H; CH2 of dodecyl chain), 1.20 – 1.36 (m, 18H; 9 CH2 of dodecyl chain), 

1.17 (d, 3J = 1.27 Hz, 12H; 2 1’-H and 2 4’-H), 0.85 (t, 3J = 6.84 Hz, 3H; 12v-H); 
13C-NMR (125 MHz, DMSO-d6): δ [ppm] = 98.72, 98.33 (2s; 2 C-2’ and 2 C-3’), 77.93 (d; 

C-5), 76.09 (d; C-2), 72.31 (t; C-1”), 71.63 (t; C-1v), 71.55, 70.03, 69.78, 69.69 (4t; 4 OCH2 

of triethylene oxide chain), 69.27 (d; C-4 and C-6), 68.22 (d; C-1 and C-3), 60.12 (t; OCH2 of 

triethylene oxide chain), 47.43, 47.05 (2q; 2 2’-OCH3 and 2 3’-OCH3), 31.25, 29.64, 29.05, 

28.94, 28.85, 28.65, 25.49, 22.05 (8t; 10 CH2 of dodecyl chain), 17.57, 17.43 (2q; 2 C-1’ and 

2 C-4’), 13.92 (q, C-12v); 

FT-IR (ATR) υ~  [cm-1] = 3467 (br, w), 2921 (s), 2846 (s), 1455 (m), 1373 (m), 1215 (w), 

1184 (w), 1113 (br, s), 1035 (s), 950 (m), 918 (m), 882 (m), 846 (m), 781 (w), 761 (w), 730 

(w), 673 (w), 647 (w); 

MS (positive ESI) m/z (%): 731.43 (100) [M+Na]+, 581.34 (6); 

HR-MS (ESI) calc. for C36H68O13Na [M+Na]+: 731.455; found: 731.455; 

EA:  calc: 60.99% C; 9.67% H; found: 60.72% C; 9.72% H. 

 

 

 

 

 

 



 7. EXPERIMENTAL PART 

 

128 

7.2.14. Synthesis of 2-O-dodecyl-5-O-[2’-[2"-[2"'-(hydroxy)ethoxy]ethoxy]  ethyl] - myo-

inositol (36) 

 

 

 

To a solution of 0.20 g (0.25 mmol) 35 in 6 ml DCM was added a solution of 1 ml (1.48 g, 

12.98 mmol) trifluoroacetic acid (TFA) in 0.2 ml water and the obtained mixture was stirred 

at r.t. for 1 h. After evaporation of solvents, 3 x 30 ml of CHCl3 were added and subsequently 

evaporated. The crude product was purified by flash chromatography (silica, DCM:MeOH = 

15:1) and recrystallization from MeOH.  

The tetrol 36 was obtained as a white solid (0.112 g, 0.233 mmol, 93%). 

 

 or               

 

M (C24H48O9) = 480.6325 g/mol; 

TLC (SiO2, DCM:MeOH = 11:1): Rf = 0.16; 

Melting point (DSC): 173.7 °C; 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.62 (t, 3J = 5.38 Hz 1H; OH of triethylene oxide 

chain), 4.55 – 4.57 (m, 2H; 2 OH), 4.49 – 4.50 (m, 2H; 2 OH); 3.77 (t, 3J = 4.91 Hz, 2H; 1’-

H), 3.61 (t, 2H, 3J = 6.42 Hz; 1iv-H), 3.46 – 3.51 (m, 8H; 4 OCH2 of triethylene oxide chain), 

3.44 (m, 1H; 2-H), 3.37 – 3.41 (m, 4H; 4-H, 6-H and OCH2 of triethylene oxide chain), 3.16 – 

3.20 (m, 2H; 1-H and 3-H), 2.79 (t, 3J = 9.03 Hz, 1H; 5-H), 1.45 – 1.43 (m, 2H; 2iv-H), 1.28 – 

1.23 (m, 18H; 9 CH2 of dodecyl chain), 0.85 (t, 3J = 6.44 Hz, 3H; 12iv-H); 
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13C-NMR (125 MHz, DMSO-d6): δ [ppm] = 85.29 (d; C-5), 82.07 (d; C-2), 73.14 (t; C-1iv), 

72.95 (d; C-4 and C-6), 72.35 (d; C-1 and C-3), 72.82, 71.37, 70.55, 70.16, 70.14, 60.66 (6t; 6 

OCH2 of triethylene oxide chain), 31.79, 30.41, 29.59, 29.53, 29.22, 26.13, 22.58 (7t; 10 CH2 

of dodecyl chain), 14.45 (q, C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 3336 (br, s), 2917 (s), 2848 (m), 1650 (br, w), 1466 (w), 1354 (w), 

1235 (w), 1136 (br, m), 1068 (m), 1038 (s), 929 (w), 718 (m);  

MS (positive ESI) m/z (%): 503.25 (100) [M+Na]+, 481.29 (10); 

HR-MS (ESI) calc. for C24H48O9Na [M+Na]+: 503.319; found: 503.319. 

 

7.2.15. Synthesis of 2-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]-5- O-dodecyl- 

1,6:3,4-bis-O-(2,3-methoxybutane-2,3-diyl)-myo-inositol (37) 

 

NaH/DMF, rt, 24h

O

OO

OO

OC12H25

OMe

OMe

OMe

OMe

OH

OO

OO

OC12H25

OMe

OMe

OMe

OMe

C12H25
O

TsO

3

C12H25
O

3

33

17

37  
 

0.5 g (0.87 mmol) of alkylated 33 were dissolved into a suspension of 0.09 g (1.87 mmol) 

NaH (in 55-65% mineral oil) in 25 ml dry DMF and the mix was stirred for 15 min at 0°C 

under argon. 0.6 g (1.52 mmol) of tosylate 17 were added dropwise, and the reaction mixture 

was stirred under inert atmosphere for additional 24 h at r.t. The crude mix was poured onto 

100 ml ice-water and 25 ml brine were added. After extraction with EtOAc (3 x 50 ml) the 

combined organic layers were dried over MgSO4, filtrated, concentrated and dried under 

vacuum. The crude product was purified by flash chromatography (silica, DCM: EtOAc = 

4:1). The protected derivative 37 was obtained as yellow oil (0.62 g, 0.706 mmol, 82%). 
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M (C48H92O13) = 877.2363 g/mol; 

TLC (SiO2, Cyhex: EtOAc = 7:3): Rf = 0.38; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 4.02 (t, 3J = 9.80 Hz, 2H; 4-H and 6-H), 3.93 (t, 3J = 

4.92 Hz, 2H; 1”-H), 3.65 – 3.68 (m, 4H,  1vi-H and 2”-H),  3.61 – 3.64 (m, 6H; 3 OCH2 of 

triethylene oxide chain), 3.57 – 3.59 (m, 1H; 2-H), 3.55 – 3.56 (m, 2H; OCH2 of triethylene 

oxide chain), 3.45 (dd, 3J = 8.61 Hz, 3J = 4.14 Hz, 2H; 1-H and 3-H), 3.43 (t, 3J = 6.80 Hz, 

2H; 1v-H), 3.29 (t, 3J = 9.29 Hz, 1H; 5-H), 3.22, 3.24 (2s, 12H; 2 2’-OCH3 and 2 3’-OCH3), 

1.51 – 1.59 (m, 4H; 2v-H and 2vi-H), 1.23 – 1.34 (m, 48H; 18 CH2 of dodecyl chains, 2 1’-H 

and 2 4’-H), 0.88 (t, 3J = 6.74 Hz, 6H; 12v-H and 12vi-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 99.43, 98.85 (2s; 2 C-2’ and 2 C-3’), 79.22 (d; C-5), 

76.48 (d; C-2), 72.52, 72.42 (2t; 2 OCH2 of triethylene oxide chain), 71.55 (t; C-1vi), 70.85, 

70.63, 70.34, 70.03 (4t; 4 OCH2 of triethylene oxide chain and C-1v), 69.63 (d; C-4 and C-6), 

69.26 (d; C-1 and C-3), 47.85, 47.70 (2q; 2 2’-OCH3 and 2 3’-OCH3), 31.92, 31.91, 30.13, 

29.73, 29.69, 29.66, 29.61, 29.49, 29.37, 29.35, 26.07, 25.98, 22.69 (13t; 20 CH2 of dodecyl 

chains), 17.88, 17.60 (2q; 2 C-1’ and 2 C-4’), 14.13 (q; C-12v and C-12vi); 

FT-IR (ATR) υ~  [cm-1] = 2920 (s), 2851 (s), 1462 (m), 1373 (m), 1211 (w), 1184 (w), 1113 

(br, s), 1036 (s), 950 (m), 916 (m), 882 (m), 846 (m), 780 (w), 759 (w), 722 (w), 671 (w); 

MS (positive ESI) m/z (%): 899.68 (100) [M+Na]+, 749.48 (4), 597.47 (9); 

HR-MS (ESI) calc. for C48H92O13Na [M+Na]+: 899.643; found: 899.644; 

EA: calc: 65.72% C; 10.57% H; found: 65.67% C; 10.54% H. 

 

 

 

 

 

 

 



 7. EXPERIMENTAL PART 

 

131 

7.2.16. Synthesis of 2-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]-5- O-dodecyl-myo-

inositol (38) 

 

 
 

To a solution of 0.5 g (0.57 mmol) derivative 37 in 6 ml DCM was added a solution of 1.9 ml 

(2.85 g, 25 mmol) trifluoroacetic acid (TFA) in 0.3 ml water and the obtained mixture was 

stirred at r.t. for 1 h. After evaporation of solvents, 3 x 30 ml of CHCl3 were added and again 

evaporated. The crude product was purified by recrystallization from MeOH. 

The final compound 38 was obtained as a white solid (0.35 g, 0.54 mmol, 95%). 

 

or      

 

M (C36H72O9) = 648.9515 g/mol; 

TLC (SiO2, DCM: MeOH = 10:1): Rf = 0.37; 

Melting point (DSC): 155.1 °C; 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.54 (d, 3J = 4.52 Hz, 2H; 2 OH), 4.47 (d, 3J = 

4.96 Hz, 2H; 2 OH), 3.76 (t, 3J = 5.16 Hz, 2H; 1’-H), 3.61 (t, 3J = 6.52 Hz, 2H; 1v-H), 3.49 – 

3.52 (m, 8H; 4 OCH2 of triethylene oxide chain), 3.44 – 3.46 (m, 3H; 2-H and OCH2 of 

triethylene oxide chain), 3.40 (ddd, 3J = 4.59 Hz, 3J = 9.42 Hz, 3J = 9.47 Hz, 2H; 4-H and 6-

H), 3.35 (t, 3J = 6.61 Hz, 2H; 1iv-H), 3.16 – 3.19 (m, 2H; 1-H and 3-H), 2.78 (t, 3J = 9.05 Hz, 

1H; 5-H), 1.41 – 1.49 (m, 4H; 1iv-H and 1v-H), 1.19 – 1.31 (m, 36H; 18 CH2 of dodecyl 

chains), 0.85 (t, 3J = 6.77 Hz, 6H; 12iv-H and 12v-H); 



 7. EXPERIMENTAL PART 

 

132 

13C-NMR (125 MHz, DMSO-d6): δ [ppm] = 84.79 (d; C-5), 81.52 (d; C-2), 72.56 (t; C-1v), 

72.41 (d; C-4 and C-6), 71.82 (d; C-1 and C-3), 72.85 (t; C-1’), 70.24 (t; C-1iv) 70.03, 69.70, 

69.67, 69.57, 69.39 (5t; 5 OCH2 of triethylene oxide chain), 31.24, 29.89, 29.13, 29.05, 28.99, 

28.82, 28.68, 25.61, 25.59, 22.04 (10t; 20 CH2 of dodecyl chains), 13.90 (q; C-12iv and C-

12v); 

FT-IR (ATR) υ~  [cm-1] = 3324 (br, m), 2917 (s), 2846 (s), 1660 (br, w), 1466 (m), 1373 (w), 

1311 (w), 1132 (s), 1074 (w), 1037 (s), 983 (w), 966 (w), 861 (w), 718 (m); 

MS (positive ESI) m/z (%): 671.47 (100) [M+Na]+, 649.51 (16), 319.21 (6), 257.24 (4); 

HR-MS (ESI) calc. for C36H72O9Na [M+Na]+: 671.507; found: 671.508; 

EA: calc: 66.63% C; 11.18% H; found: 66.46% C; 11.12% H. 

 

7.2.17. Synthesis of 1,2-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]-3,4,5,6-tetra-

O-benzyl-myo-inositol (rac-39) 

 

 

 

1.71 g (3.17 mmol) of rac-6 were dissolved into a suspension of 0.33 g (6.98 mmol) NaH (in 

55-65% mineral oil) in 50 ml dry DMF and the mix was stirred under argon for 15 min at 

0°C. 3 g (6.35 mmol) of tosylate 17 were added dropwise, and the reaction mixture was 

stirred under inert atmosphere for additional 24 h at r.t. The crude mix was poured onto 100 

ml ice-water and 20 ml brine were added. After extraction with EtOAc (3 x 50 ml) the 

combined organic fractions were dried over MgSO4, filtrated, concentrated and dried under 

vacuum. The crude product was purified by flash chromatography (silica, CyHex: EtOAc = 

4:1 → 3:2).  

The benzylated rac-39 was obtained as yellow oil (1.842 g, 1.61 mmol, 51%). 
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M (C70H108O12) = 1141.5993 g/mol; 

TLC (SiO2, CyHex:EtOAc = 7:3): Rf = 0.28; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.26 – 7.36 (m, 20H; 20 Aryl-H), 4.67 – 4.90 (m, 

8H; 4 OCH2 of Bn), 4.00 – 4.03 (m, 1H; 2-H), 3.92 – 3.99 (m, 3H; 4-H and 1’-H), 3.90 (t, 3J 

= 7.06 Hz, 1H; 6-H), 3.71 – 3.79 (m, 2H; 1’-H), 3.66 – 3.69 (m, 4H; OCH2 of triethylene 

oxide chain), 3.58 – 3.64 (m, 12H; OCH2 of triethylene oxide chain), 3.53 – 3.55 (m, 4H; 

OCH2 of triethylene oxide chain), 3.39 – 3.53 (m, 5H; 5-H and 2 1iv-H), 3.34 (dd, 3J = 2.09 

Hz, 3J = 9.84 Hz, 1H; 3-H), 3.23 (dd, 3J = 2.06 Hz, 3J = 9.82 Hz, 1H; 1-H), 1.52 – 1.58 (m, 

4H; 2 2iv-H), 1.19 – 1.36 (m, 36H; 18 CH2 of dodecyl chains), 0.88 (t, 6H, 3J = 6.93 Hz; 2 

12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 138.99, 138.78, 138.77, 138.37 (4s; 4 C of Aryl), 

128.35, 128.31, 128.29, 128.27, 128.04, 127.94, 127.86, 127.57, 127.49, 127.47 (10d; 10 CH 

of Aryl),  83.48 (d; C-5), 81.79 (d; C-1), 81.54 (d; C-4), 81.47 (d; C-6), 80.63 (d; C-3), 75.93, 

75.83 (2t; 2 OCH2 of Bn), 75.69 (d; C-2), 75.62, 72.61 (2t; 2 OCH2 of Bn), 71.54 (t; 2 C-1iv), 

72.43, 70.93, 70.80, 70.65, 70.60, 70.59, 70.58, 70.57, 70.54, 70.10, 70.00, 69.98 (12t; 12 

OCH2 of triethylene oxide chains), 31.90, 29.66, 29.63, 29.61, 29.49, 29.34, 26.07, 22.68 (8 t; 

20 CH2 of dodecyl chains), 14.13 (q; 2 C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 2920 (s), 2846 (s), 1493 (w), 1452 (m), 1356 (m), 1300 (w), 1245 

(w), 1208 (w), 1085 (br, s), 1067 (s), 1024 (w), 943 (w), 8756 (w), 731 (s), 694 (s); 

MS (positive ESI) m/z (%): 1163.77 (100) [M+Na]+, 598.30 (8), 301.23 (4); 

HR-MS (ESI) calc. for C70H108O12Na [M+Na]+: 1163.774; found: 1163.775; 

EA: 73.65% C; 9.54% H; found: 73.66% C; 9.54% H. 

 

 

 

 

 

 



 7. EXPERIMENTAL PART 

 

134 

7.2.18. Synthesis of 1,2-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol 

(rac-40) 

 

 

 

A solution of 0.80 g (0.70 mmol) rac-39 in 20 ml of a MeOH:EtOAc = 3:1 mixture was 

degassed with argon for 30 min. To this solution, 0,074 g (0.070 mmol) Pd (10% supported 

on charcoal) were added and the reaction mixture was stirred at r.t. under hydrogen 

atmosphere (pressure ~ 8 bar) for 3 days. The resulting mix was filtrated over celite and 

concentrated to dryness.  

The tetrol rac-40 was obtained as a white solid (0.523 g, 0.67 mmol, 95%). 

 

 

 

M (C42H84O12) = 781.1092 g/mol; 

TLC (SiO2, DCM: MeOH = 9:1): Rf = 0.38; 

Melting point: liquid crystal, (see Table 3.3, chapter 3.2.1. Thermotropic mesomorphism); 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.57 – 4.64 (m, 3H; OH); 4.37 (s, 1H; OH), 3.59 

– 3.80 (m, 5H; 2-H and 2 1’-H), 3.50 – 3.45 (m, 20H; 10 OCH2 of triethylene oxide chains), 

3.33 – 3.40 (m, 5H; 6-H and 2 1iv-H), 3.28 (t, 3J = 9.08 Hz, 1H; 4-H), 3.15 (dd, 3J = 1.92 Hz, 

3J = 9.63 Hz, 1H; 3-H), 3.02 (dd, 3J =1.77 Hz, 3J = 9.84 Hz, 1H; 1-H), 2.89 (ddd, 3J = 4.21 

Hz, 3J = 8.90 Hz, 3J = 8.95 Hz, 1H; 5-H), 1.46 (m, 4H; 2 2iv-H), 1.23 – 1.26 (m, 36H; 18 CH2 

of dodecyl chains), 0.85 (t, 3J = 6.35 Hz, 6H; 2 12iv-H); 
13C-NMR (125 MHz, DMSO-d6): δ [ppm] = 80.81 (d; C-1), 79.25 (d, C-2), 75.11 (d; C-5), 

72.77 (d; C-4), 72.01 (d; C-6), 71.88 (t; 2 C-1’), 71.62 (d, C-3), 70.30, 70.09 (2t, 2 C-1iv), 

70.06, 69.79, 69.69, 69.46, 69.18 (5t; 10 OCH2 of triethylene oxide chains), 31.31, 29.20, 

29.05, 29.03, 28.89, 28.73, 25.65, 22.10 (8t; 20 CH2 of dodecyl chains), 13.94 (q; 2 C-12iv); 
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FT-IR (ATR) υ~  [cm-1] = 3399 (br, m), 2918 (s), 2850 (s), 1463 (m), 1347 (w), 1293 (w), 

1242 (w), 1110 (br, s), 1034 (w), 1000 (w), 933 (w), 878 (w), 715 (m); 

MS (positive ESI) m/z (%): 803.54 (100) [M+Na]+, 781.55 (6), 319.23 (4); 

HR-MS (ESI) calc. for C42H84O12Na [M+Na]+: 803.586; found: 803.586; 

EA:  calc: 64.58% C; 10.84% H; found: 64.52% C; 10.85% H. 

 

7.2.19. Synthesis of 1,2:4,5-di-O-cyclohexylidene-3,6-bis-O-[2'-[2"-[2"'-(dodecyloxy) 

ethoxy]ethoxy]ethyl]-myo-inositol (rac-41) 

 

 

 

0.3 g (0.88 mmol) of rac-9 were dissolved into a suspension of 0.09 g (1.93 mmol) NaH (in 

55-65% mineral oil) in 40 ml dry DMF and the mix was stirred for 15 min at 0°C under 

argon. 0.95 g (2.01 mmol) of tosylate 17 were added dropwise, and the reaction mixture was 

stirred under argon atmosphere for additional 20 h at r.t. The crude mix was poured onto 70 

ml ice-water and 25 ml brine were added. After extraction with DCM (3 x 50 ml) the 

combined organic layers were dried over MgSO4, filtrated, concentrated and dried under 

vacuum. The crude product was purified by flash chromatography (silica, CyHex:EtOAc = 

3:1). The protected derivative rac-41 was obtained as a yellow oil (0.4 g, 0.43 mmol, 50%). 

 

 

 

M (C54H100O12) = 941.3646 g/mol; 

TLC (SiO2, CyHex:EtOAc = 1:1): Rf = 0.30; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 4.49 (t, 3J = 4.46 Hz, 1H; 2-H), 4.05 (t, 3J = 5.65 Hz, 

1H; 3-H), 3.84 – 3.95 (m, 5H; 6-H and 2 1’-H), 3.79 (dd, 3J = 3.99 Hz, 3J = 10.19 Hz, 1H; 1-

H), 3.62 – 3.73 (m, 16H; 8 OCH2 of triethylene oxide chains), 3.56 – 3.58 (m, 5H; 4-H and 2 
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OCH2 of triethylene oxide chains), 3.44 (t, 3J = 6.82 Hz, 4H; 2 1iv-H), 3.30 (t, 3J = 9.95 Hz, 

1H; 5-H), 1.53 – 1.75 (m, 20H; 2 2iv-H and 8 CH2 of cyclohexylidene rings), 1.19 – 1.37 (m, 

40H; 18 CH2 of dodecyl chains and 2 CH2 of cyclohexylidene rings), 0.87 (t, 3J = 6.85 Hz, 

6H; 2 12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 112.51, 110.39 (2s; 2 C of cyclohexylidene rings), 

82.37 (d; C-4), 80.75 (d; C-3), 78.22 (d; C-5), 76.64 (d; C-1), 76.32 (d; C-6), 75.84 (d; C-2), 

71.54 (t; 2 C-1iv), 70.74, 70.61, 70.57, 70.48, 70.07, 70.03, 69.25 (7t; 12 OCH2 of triethylene 

oxide chains), 37.70, 36.43, 36.38, 35.22 (4t; 4 CH2 of cyclohexylidene rings), 31.90, 29.65, 

29.61, 29.49, 29.34, 26.07, 22.67 (7t; 20 CH2 of dodecyl chains), 25.01, 24.97, 23.93, 23.81, 

23.77, 23.57 (6t; 6 CH2 of cyclohexylidene rings), 14.12 (q, 2 C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 2920 (s), 2850 (s), 2354 (w), 1461 (w), 1448 (m), 1364 (m), 1276 

(m), 1250 (w), 1230 (w), 1103 (br, s), 1031 (w), 960 (w), 934 (m), 907 (w), 847 (m), 830 (w), 

776 (m), 718 (w); 

MS (positive ESI) m/z (%): 963.72 (100) [M+Na]+, 727.75 (14), 641.52 (36), 427.24 (6), 

319.25 (6), 109.00 (3); 

HR-MS (ESI) calc. for C54H100O12Na [M+Na]+: 963.711; found: 963.712. 

 

7.2.20. Synthesis of 1,4-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-inositol 

(42) 

 

 

 

A mixture of 0.28 g (0.36 mmol) rac-41, 1.6 ml (1.68 g, 28 mmol) glacial acetic acid and 0.4 

ml water was stirred for 2 h at 95°C. To the resulting crude mix 3 x 50 ml methanol were 

added and subsequently evaporated. In order to remove the traces of acetic acid, the obtained 

solid was dissolved in 3 x 50 ml toluene, subsequently evaporated and dried under vacuum. 

The crude product was purified by flash chromatography (silica, DCM:EtOAc = 3:2, and 

DCM: MeOH = 10:1). 

The tetrol rac-42 was obtained as a white waxy solid (0.206 g, 0.26 mmol, 74% yield). 
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M (C42H84O12) = 781.1092 g/mol; 

TLC (SiO2, DCM:MeOH = 9.5:0.5): Rf =0.22; 

Melting point (DSC): 57.3 °C; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 4.61 (d, 3J = 4.36 Hz, 1H; 5-OH), 4.52 – 4.57 (m, 

2H; 2-OH and 6-OH), 4.42 (d, 3J = 4.71 Hz, 1H; 2-OH), 3.86 (m, 1H; 2-H), 3.71 – 3.80 (m, 

2H; 1’-H), 3.55 – 3.67 (m, 2H; 1’-H), 3.42 – 3.54 (m, 21H; 6-H and 10 OCH2 of triethylene 

oxide chains), 3.33 – 3.36 (m, 4H; 2 1iv-H), 3.16 – 3.22 (m, 2H; 3-H and 4-H), 2.98 – 3.03 (m, 

1H; 5-H), 2.96 (t, 1H, 3J = 9.66 Hz; 1-H), 1.42 – 1.51 (m, 4H; 2 2iv-H), 1.17 – 1.31 (m, 36H; 

18 CH2 of dodecyl chains), 0.85 (t, 3 J = 6.75 Hz, 6H; 2 12iv-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 82.39 (d; C-4), 80.26 (d; C-1), 74.62 (d; C-5), 71.87 

(d; C-6), 71.00 (d; C-3), 70.02 (t; 2 C-1iv), 70.87, 70.25, 69.98, 69.71, 69.55, 69.39, 68.42 (7t; 

12 OCH2 of triethylene oxide chains), 69.34 (d; C-2), 31.25, 29.14, 28.97, 28.83, 28.67, 

25.59, 22.05 (7t; 20 CH2 of dodecyl chains), 13.91 (q, 2 C-12iv); 

FT-IR (ATR) υ~  [cm-1] = 3428 (br, m), 2919 (s), 2851 (s), 1734 (w), 1663 (w), 1465 (m), 

1350 (w), 1297 (w), 1112 (br, s), 1033 (w), 942 (w), 887 (w), 720 (m); 

MS (positive ESI) m/z (%): 803.58 (100) [M+Na]+, 781.58 (20); 

HR-MS (ESI) calc. for C42H84O12Na [M+Na]+: 803.586; found: 803.586. 

 

7.2.21. Synthesis of 2,5-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]-1,6:3,4-bis-

O-(2’,3’-methoxybutane-2’,3’-diyl)-myo-inositol (43) 
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1 g (2.45 mmol) of derivative 10 were dissolved into a suspension of 0.24 g (4.90 mmol) NaH 

(in 55-65% mineral oil) in 50 ml dry DMF and the mix was stirred for 15 min at 0°C under 

argon atmosphere. 1.8 g (3.81 mmol) of tosylate 17 were added dropwise, and the reaction 

mixture was stirred under argon for additional 22 h at r.t. The crude mix was poured onto 100 

ml ice-water and 25 ml brine were added. After extraction with EtOAc (3 x 50 ml) the 

combined organic fractions were dried over MgSO4, filtrated, concentrated and dried under 

vacuum. The crude product was purified by flash chromatography (silica, CyHex:EtOAc = 

3:1). Compound 43 was obtained as a yellow oil (1.234 g, 1.22 mmol, 50%). 

 

 

 

M (C54H104O16) = 1009.3940 g/mol; 
1H-NMR (500 MHz, CDCl3): δ [ppm] = 3.96 – 4.01 (m, 2H; 4-H and 6-H), 3.90 – 3.94 (m, 

2H; 1”-H), 3.87 (t, 3J = 5.18 Hz, 2H; 1”-H), 3.76 – 3.80 (m, 2H; 2”-H), 3.55 – 3.71 (m, 19H; 

2-H and 9 OCH2 of triethylene oxide chains), 3.41 – 3.49 (m, 6H; 1-H, 3-H and 2 1v-H), 3.30 

(t, 3J = 9.32 Hz, 1H; 5-H), 3.22 – 3.26 (m, 12H; 2 2’-OCH3 and 2 3’-OCH3), 1.52 – 1.61 (m, 

4H; 2 2v-H), 1.19 – 1.34 (m, 48H; 2 1’-H , 2 4’-H and 18 CH2 of dodecyl chains), 0.88 (t, 3J = 

6.92 Hz, 6H; 2 12v-H); 
13C-NMR (125 MHz, CDCl3): δ [ppm] = 99.48, 98.90 (2s; 2 C-2’ and 2 C-3’), 79.02 (d; C-5), 

77.15 (d; C-2), 72.69, 72.45 (2t; 2 OCH2 of triethylene oxide chain), 71.55, 71.54 (2t; C-1v), 

70.90, 70.83, 70.70, 70.64, 70.57, 70.56, 70.51, 70.46, 70.34, 70.02 (10t; 10 OCH2 of 

triethylene oxide chain), 69.56 (d; C-4 and C-6), 69.07 (d; C-1 and C-3), 47.88, 47.75 (2q; 2 

2’-OCH3 and 2 3’-OCH3), 31.91, 29.66, 29.64, 29.63, 29.61, 29.51, 29.49, 29.35, 28.08, 22.68 

(10t; 20 CH2 of dodecyl chains), 17.85, 17.62 (2q; 2 C-1’ and 2 C-4’), 14.13 (q; 2 C-12v); 

FT-IR (ATR) υ~  [cm-1] = 2920 (s), 2851 (s), 1457 (m), 1373 (m), 1296 (w), 1247 (w), 1212 

(w), 1182 (w), 1111 (br s), 1035 (s), 950 (m), 917 (m), 882 (m), 846 (m), 781 (w), 755 (w), 

731 (w), 673 (w), 641 (w); 

MS (positive ESI) m/z (%): 1031.70 (100) [M+Na]+, 881.72 (10), 731.43 (12), 641.49 (38), 

373.14 (3);  
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HR-MS (ESI) calc. for  C54H104O16Na [M+Na]+: 1031.722; found: 1031.725; 

EA: calc: 64.25% C; 10.39% H; found:64.37% C; 10.44% H. 

 

7.2.21. Synthesis of 2,5-bis-O-[2'-[2"-[2"'-(dodecyloxy)ethoxy]ethoxy]ethyl]- myo-  

inositol (44) 

 

 

 

To a solution of 1.2 g (1.2 mmol) 43 in 10 ml DCM was added a solution of 5 ml (7.4 g, 64.9 

mmol) trifluoroacetic acid (TFA) in 1 ml water and the mixture was stirred at r.t. for 1.5 h. 

After evaporation of solvents, 3 x 30 ml of CHCl3 were added and again evaporated. The 

crude product was purified by recrystallization from MeOH. 

The tetrol 44 was obtained as a white solid (0.490 g, 0.63 mmol, 53%). 
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M (C42H84O12) = 781.1092 g/mol; 

TLC (SiO2, DCM: MeOH = 15:1): Rf =0.24; 

Melting point (DSC): 108.8 °C; 
1H-NMR (500 MHz, DMSO-d6): δ [ppm] = 4.56 (d, 3J = 4.47 Hz, 2H; 4-OH and 6-OH), 4.46 

(d, 3J = 5.69 Hz, 2H; 1-OH and 3-OH), 3.76 (dd, 3J = 5.73 Hz, 3J = 11.16 Hz, 4H; 2 1’-H), 

3.44 – 3.52 (m, 21 H; 10 OCH2 of triethylene oxide chain and 2-H), 3.34 – 3.40 (m, 6H; 4-H, 

6-H and 2 1iv-H), 3.17 – 3.20 (m, 2H; 1-H and 3-H), 2.78 (t, 1H, 3J = 9.10 Hz; 5-H), 1.42 – 
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1.50 (m, 4H; 2 2iv-H), 1.18 – 1.30 (m, 36 H; 18 CH2 of dodecyl chains), 0.85 (t, 3J = 6.75 Hz, 

6H; 2 12iv-H); 
13C-NMR (125 MHz, DMSO-d6): δ [ppm] = 84.60 (d; C-5), 82.34 (d; C-2), 72.48 (d; C-4 and 

C-6), 72.14 (t; C-1’), 71.73 (d; C-1 and C-3), 70.91 (t; C-1’), 70.25 (t; 2 C-1iv), 70.02, 69.95, 

69.71, 69.69, 69.64, 69.58, 69.39 (7t; 10 OCH2 of triethylene oxide chains), 31.25, 29.15, 

28.98, 28.84, 28.68, 25.60, 22.06 (7t; 20 CH2 of dodecyl chains), 13.92 (q; 2 C-12iv);  

FT-IR (ATR) υ~  [cm-1] = 3338 (br s), 2916 (s), 2849 (s), 1466 (m), 1369 (m), 1310 (w), 1290 

(w), 1246 (w), 1126 (br s), 1033 (s), 960 (w), 926 (w), 880 (w), 719 (s); 

MS (positive ESI) m/z (%): 803.41 (100) [M+Na]+, 781.43 (18), 319.25 (10); 

HR-MS (ESI) calc. for  C42H84O12Na [M+Na]+: 803.586; found: 803.586. 
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7.3. Studies towards the synthesis of phosphine oxide metal complexes  

 

7.3.1. Synthesis of complex C12DMPO : copper (II) chloride (56)  

 

 

 

A solution of 0.264 g (1.073 mmol) C12DMPO (52) in 4 ml methanol was mixed with a 

solution of 0.072 g (0.54 mmol) CuCl2 in 2 ml methanol when a green mixture formed. After 

stirring for 30 min at r. t., the solvent was evaporated to dryness. Resulting green crystalline 

solid was used for investigations without further purification. 

 

Melting point (DSC): 53.4 °C; 

FT-IR (ATR) υ~  [cm-1] = 2920 (s), 2851 (s), 1464 (m), 1293 (m), 1108 (br s), 946 (s), 865 

(m). 

 

   

 

 

 

Fig. 7.1. Crystal structure of 56 
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Table 7.1. Crystal data for complex C12DMPO:CuCl2 (56) 

Identification code gc43 

Empirical formula C28H62O2P2Cl2Cu 

Formula weight 627.16 

Temperature 100(2) K 

Wavelength 0.71073Å 

Crystal system, space group triclinic,  P-1 

Unit cell dimensions a = 8.314(2) Å   α = 80.897(7)° 

b = 9.337(2) Å   β= 85.101(9)° 

c = 23.665(6) Å   γ = 72.388(7)° 

Volume 1727.4(7) A^3 

Z, Calculated density 2,  1.206 Mg/m3 

Absorption coefficient 0.901 mm-1 

F(000) 678 

Crystal size 0.3 x 0.2 x 0.06 mm 

Crystal Colour  green 

Crystals from  Melt 

Theta range for data collection 0.87 to 26.99° 

Limiting indices -10<=h<=10, -11<=k<=11, -28<=l<=30 

Reflections collected / unique 7705 / 6144 [R(int) = 0.0726] 

Reflection observed [I>2sigma(I)] 3266 

Completeness to theta = 26.99 81.50% 

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6144 / 0 / 322 

Goodness-of-fit on F2 0.967 

Final R indices [I>2sigma(I)] R1 = 0.0669, wR2 = 0.1489 

R indices (all data) R1 = 0.1453, wR2 = 0.1847 

Largest diff. peak and hole 0.538 and -1.010 e. Å-3 
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7.3.2. Synthesis of complex C12DMPO : copper (II) sulphate (57) 

 

 
 

A solution of 0.246 g (1.00 mmol) C12DMPO (52) in 7 ml water was mixed with a solution of 

0.079 g (0.5 mmol) CuSO4 in 3 ml water when a blue mixture formed. After stirring for 1 

hour at r. t., the solvent was evaporated to dryness. Resulting light blue crystalline solid was 

used for investigations without further purification. 

 

Melting point (DSC): 51.1 °C; 

FT-IR (ATR) υ~  [cm-1] = 3377 (br m), 2914 (s), 2846 (s), 1658 (w), 1285 (m), 1157 (s), 942 

(m), 867 (m), 745 (m). 

 

7.3.3. Synthesis of complex C12DMPO : copper (II) bromide (58) 
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A solution of 0.123 g (0.50 mmol) C12DMPO (52) in 4 ml methanol was mixed with a 

solution of 0,079 g (0.25 mmol) CuBr2 in 3 ml methanol when a brown mixture formed. After 
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stirring for 1 hour at r. t., the solvent was evaporated to dryness. Resulting brown crystalline 

solid was used for investigations without further purification. 

 

Melting point (DSC): 48.9 °C; 

FT-IR ( ATR) υ~  [cm-1] = 2918 (s), 2850 (s), 1465 (w), 1292 (m), 1110 (br s), 946 (m), 866 

(m), 753 (w). 

 

7.3.4. Synthesis of complex C12DMPO : copper (II) acetate (59) 

 

 

 

A solution of 0.123 g (0.50 mmol) C12DMPO (52) in 3 ml methanol was mixed with a 

solution of 0.045 g (0.25 mmol) Cu(CH3COO)2 in 10 ml methanol when a blue-green mixture 

formed. After stirring for 1 hour at r. t., the solvent was evaporated to dryness. Resulting blue-

green crystalline solid was used for investigations without further purification. 

 

Melting point (DSC): 82.3 °C; 

FT-IR (ATR) υ~  [cm-1] = 3416 (br w), 2915 (s), 2846 (s), 1619 (s), 1426 (m), 1285 (m), 1157 

(s), 942 (m), 867 (m), 745 (w), 681 (w). 
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7.3.5. Synthesis of complex C12DMPO : copper (II) acetylacetonate (60) 

 

 

 

A solution of 0.123 g (0.50 mmol) C12DMPO (52) in 3 ml methanol was mixed with a 

solution of 0.065 g (0.25 mmol) Cu(C5H7O2)2 in 12 ml methanol when a grey mixture formed. 

After stirring for 2 hours at r. t., the solvent was evaporated to dryness. Resulting blue-grey 

crystalline solid was used for investigations without further purification. 

 

Melting point (DSC): 81.4 °C; 

FT-IR (ATR) υ~  [cm-1] = 2913 (m), 2846 (m), 1575 (s), 1552 (m), 1524 (s), 1465 (w), 1411 

(w), 1353 (w), 1285(w), 1274 (w), 1158 (s), 1021 (w), 936 (w), 867 (m), 779 (m), 745 (w), 

686 (w). 

 

7.3.6. Synthesis of complex C12DMPO : copper (II) borofluorate (61) 
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A solution of 0.123 g (0.50 mmol) C12DMPO (52) in 3 ml methanol was mixed with a 

solution of 0.060 g (0.25 mmol) Cu(BF4)2 in 5 ml methanol when a blue mixture formed. 

After stirring for 1 hour at r. t., the solvent was evaporated to dryness. Resulting light blue 

crystalline solid was used for investigations without further purification. 

 

Melting point (DSC): see Table 4.1, chapter 4: Results and discussion II; 

FT-IR ( ATR) υ~  [cm-1] = 3300 (br m), 2920 (s), 2851 (m), 1636 (w), 1464 (m), 1309 (m), 

1020 (br s), 948 (m), 868 (m), 761 (w). 

 

7.3.7. Synthesis of complex C12DMPO : lithium chloride  (62) 

 

 

 

A solution of 0.123 g (0.50 mmol) C12DMPO (52) in 3 ml methanol was mixed with a 

solution of 0.010 g (0.25 mmol) LiCl in 3 ml methanol. After stirring for 1 hour at r. t., the 

solvent was evaporated to dryness under high vacuum. Resulting colourless solid was used for 

investigations without further purification. 

 

Melting point (DSC):  115.9°C; 

FT-IR (ATR) υ~  [cm-1] = 3373 (br s), 2919 (s), 1850 (s), 1638 (br m), 1465 (m), 1296 (m), 

1132 (br s), 944 (s), 865 (m). 
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7.3.8. Synthesis of complex C12DMPO : lithium bromide (63)  

 

 

 

A solution of 0.123 g (0.50 mmol) C12DMPO (52) in 3 ml methanol was mixed with a 

solution of 0.022 g (0.25 mmol) LiBr in 3 ml methanol. After stirring for 2 hours at r. t., the 

solvent was evaporated to dryness. Resulting colourless solid was used for investigations 

without further purification. 

 

Melting point (DSC): 69.9 °C; 

FT-IR (ATR) υ~  [cm-1] = 3421 (m), 3336 (m), 2917 (s), 2848 (s), 1627 (w), 1466 (m), 1296 

(m), 1161 (s), 1140 (s), 945 (m), 868 (m), 729 (w), 720 (w). 

 

7.3.9. Synthesis of complex C12DMPO : sodium choride (64) 
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A solution of 0.123 g (0.50 mmol) C12DMPO (52) in 3 ml water was mixed with a solution of 

0.146 g NaCl (0.25 mmol) in 4 ml water. After stirring for 2 hours at r. t., the solvent was 

evaporated to dryness. Resulting colourless solid was used for investigations without further 

purification. 

 

Melting point (DSC): 81.0 °C; 

FT-IR (ATR) υ~  [cm-1] = 2915 (s), 2846 (s), 1464 (m), 1285 (m), 1157 (s), 942 (m), 868 (m), 

745 (m). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7. EXPERIMENTAL PART 

 

149 

7.4. Surface tension measurements 
 
 
7.4.1. Surface tension measurements for rac-26 (4-C12E3I 1) 
 

A 100 ml stock solution of 6.958 x 10-4 M was prepared from 33.6 mg of rac-26 (4-C12E3I1) 

and water. For each measurement 20 ml of solution were taken out and the volumetric flask 

was refilled with Milli-Q water, therefore every new solution had a dilution factor of 0.8. 

From the 20 ml solution, 5 ml were used to rinse the measurements vessel and 15 ml were 

used for experiment. Necessary glassware was previously cleaned with Deconex (surfactant 

free solution) and was rinsed thoroughly with Milli-Q water. The same type of water was used 

for solutions and its purity was checked by measuring the surface tension σ over a long period 

of time (σ = 72.8 mN m-1 at 20 °C). All measurements were carried out at an ambient 

temperature of 20 ± 1 °C. 

Experimental data are presented in table 7.2. 

 

Table 7.2. Experimental data for surface tension measurements of rac-26 (4-C12E3I1) 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample c/mol l-1 
σ/mN m-1 

1 6.958 x 10-4 33.72 
2 5.566 x 10-4 33.65 
3 4.453 x 10-4 33.72 
4 3.562 x 10-4 33.73 
5 2.850 x 10-4 33.73 
6 2.280 x 10-4 33.70 
7 1.824 x 10-4 33.75 
8 1.459 x 10-4 33.91 
9 1.167 x 10-4 34.29 
10 9.339 x 10-5 35.93 
11 7.471 x 10-5 37.96 
12 5.977 x 10-5 39.60 
13 4.781 x 10-5 41.75 
14 3.825 x 10-5 43.57 
15 3.060 x 10-5 45.20 
16 2.448 x 10-5 46.85 
17 1.956 x 10-5 48.89 

Sample c/mol l-1 σ/mN m-1 

18 1.566 x 10-5 50.66 
19 1.253 x 10-5 52.63 
20 1.003 x 10-5 53.51 
21 8.022 x 10-6 55.52 
22 6.417 x 10-6 57.25 
23 5.134 x 10-6 58.60 
24 4.107 x 10-6 60.23 
25 3.286 x 10-6 61.53 
26 2.628 x 10-6 63.44 
27 2.103 x 10-6 64.79 
28 1.682 x 10-6 65.21 
29 1.346 x 10-6 66.47 
30 1.076 x 10-6 67.31 
31 8.613 x 10-7 68.50 
32 6.891 x 10-7 68.67 
33 5.512 x 10-7 70.47 
34 4.409 x 10-7 71.05 
35 3.527 x 10-7 71.88 
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7.4.2. Surface tension measurements for rac-32 (1-C12I 1E3) 

 

A 100 ml stock solution of 6.875 x 10-4 M was prepared from 33.0 mg of rac-32 (1-C12I1E3) 

and Milli-Q water. For each measurement 20 ml of solution were taken out and the volumetric 

flask was refilled with Milli-Q water, therefore every new solution had a dilution factor of 

0.8. From the 20 ml solution, 5 ml were used to rinse the measurements vessel and 15 ml were 

used for experiment. Necessary glassware was previously cleaned with Deconex (surfactant 

free solution) and was rinsed thoroughly with Milli-Q water. The same type of water was used 

for solutions and its purity was checked by measuring the surface tension σ over a long period 

of time (σ = 72.8 mN m-1 at 20 °C). All measurements were carried out at an ambient 

temperature of 20 ± 1 °C. 

Experimental data are presented in table 7.3. 

 
Table 7.3. Experimental data for surface tension measurements of rac-32 (1-C12I1E3) 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Sample c/mol l-1 
σ/mN m-1 

 1 6.875 x 10-4 35.10 
2 5.500 x 10-4 35.10 
3 4.400 x 10-4 34.75 
4 3.520 x 10-4 34.68 
5 2.816 x 10-4 36.80 
6 2.253 x 10-4 39.25 
7 1.802 x 10-4 40.83 
8 1.422 x 10-4 42.90 
9 1.153 x 10-4 44.63 
10 9.228 x 10-5 46.53 
11 7.382 x 10-5 48.52 
12 5.905 x 10-5 50.43 
13 4.724 x 10-5 51.84 
14 3.780 x 10-5 53.58 
15 3.023 x 10-5 54.82 

Sample c/mol l-1 
σ/mN m-1 

16 2.418 x 10-5 56.63 
17 1.935 x 10-5 58.23 
18 1.548 x 10-5 59.79 
19 1.238 x 10-5 60.86 
20 9.908 x 10-6 61.78 
21 7.926 x 10-6 63.31 
22 6.341 x 10-6 63.96 
23 5.072 x 10-6 65.90 
24 4.058 x 10-6 67.41 
25 3.246 x 10-6 67.92 
26 2.597 x 10-6 68.54 
27 2.077 x 10-6 69.15 
28 1.662 x 10-6 69.91 
29 1.329 x 10-6 70.37 
30 1.063 x 10-6 70.67 
31 8.510 x 10-7 70.07 
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7.5. DOSY measurements 
 
 
7.5.1. DOSY measurements for rac-19 (1-C12E3I 1) 
 

A 10 ml stock solution of 0.85 10-3 M was prepared from 4.08 mg of rac-19 (1-C12E3I1) and 

pure water. For each measurement 4 ml of solution were taken out and the volumetric flask 

was refilled with water therefore every new solution had a dilution factor of 0.6.  

For experiment, 1 ml of solution was used for rinsing the NMR tube and 0.5 ml were used for 

measurements. The stem coaxial insert of the NMR tube was filled with 0.1 ml D2O and it 

was used for all measurements. Samples were sealed with parafilm and allowed to equilibrate 

for at least 12 hours before measurement. For every sample were recorded first a standard 1H-

NMR, afterwards two 1D 1H-NMR experiments with water suppression using the pulse 

sequence: stebpgpes1s1d.sek (with 2% and 95% gradient strength) and one 2D DOSY 

experiment with the pulse sequence stebpges1s.sek. All measurements were carried out at 

25°C. Details about concentration, results and experimental parameters are presented in Table 

7.4.  

 
Table 7.4. Experimental data for rac-19 (1-C12E3I1); TD (F1) = 8k, TD (F2) = 32, NS = 256 
 

c/mM c/cmc D/10-10 m2s-1 ∆/ms δ/ms 

0.85 6.0 1.098 100 1.5 
0.51 3.6 1.551 100 1.5 
0.3 2.1 1.904 50 2.0 
0.18 1.2 2.828 50 1.5 
0.11 0.8 3.793 50 1.3 

   ∆D = ±0.008 ÷ ± 0.09 (the error increases with decreases of c) 

 
7.5.2. DOSY measurements for rac-32 (1-C12I 1E3) 
 
A 10 ml stock solution of 2.21 10-3 M was prepared from 10.61 mg of rac-32 (1-C12I1E3)  and 

pure water. For each measurement 4 ml of solution were taken out and the volumetric flask 

was refilled with water, therefore every new solution had a dilution factor of 0.6. 

For experiment, 1 ml of solution was used for rinsing the NMR tube and 0.5 ml were used for 

measurements. The stem coaxial insert of the NMR tube was filled with 0.1 ml D2O and it 

was used for all measurements. Samples were sealed with parafilm and allowed to equilibrate 

for at least 12 hours before measurement. For every sample were recorded first a standard 1H-

NMR, afterwards two 1D 1H-NMR experiments with water suppression using the pulse 

sequence: stebpgpes1s1d.sek (with 2% and 95% gradient strength) and one 2D DOSY 
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experiment with the pulse sequence stebpges1s.sek. All measurements were carried out at 

25°C.  Details about concentration, results and experimental parameters are presented in 

Table 7.5. 

 
Table 7.5. Experimental data for rac 28 (1-C12I1E3); TD (F1) = 8k, TD (F2) = 32, NS = 256  
 

c/mM c/cmc D/10-10 m2s-1 ∆/ms δ/ms 

2.21 5.9 1.235 100 1.5 
1.32 3.6 1.565 100 1.5 
0.80 2.1 2.101 50 1.7 
0.47 1.2 3.118 50 1.5 
0.28 0.8 3.639 50 1.3 

∆D = ±0.007 ÷ ± 0.04 (the error increases with decreases of c) 

 
7.5.3. DOSY measurements for n-dodecyl hexaethylene oxide (C12E6) 
 
A 10 ml stock solution of 0.79 10-3 M was prepared from 3.57 mg of n-dodecyl hexaethylene 

oxide (C12E6) and pure water. For each measurement 4 ml of solution were taken out and the 

volumetric flask was refilled with water therefore every new solution had a dilution factor of 

0.6.   

For experiment, 1 ml of solution was used for rinsing the NMR tube and 0.5 ml were used for 

measurements. The stem coaxial insert of the NMR tube was filled with 0.1 ml D2O and it 

was used for all measurements. Samples were sealed with parafilm and allowed to equilibrate 

for at least 12 hours before measurement. For every sample were recorded a standard 1H-

NMR, two 1D 1H-NMR experiments with water suppression using the pulse sequence 

stebpgpes1s1d.sek (with 2% and 95% gradient strength) and one 2D DOSY experiment with 

the pulse sequence stebpges1s.sek. All measurements were carried out at 25 °C. Details about 

concentration, results and experimental parameters are presented in Table 7.6. 

 
Table 7.6. Experimental data for n-dodecyl hexaethylene oxide (C12E6); TD (F1) = 8k, TD 
(F2) = 32, NS = 256  
 

c/mM c/cmc D/10-10 m2s-1 ∆/ms δ/ms 

0.79 8.8 1.048 100 1.7 
0.47 5.2 1.224 100 1.5 
0.28 3.1 1.606 100 1.5 
0.17 1.9 2.316 60 1.5 
0.10 1.1 3.527 50 1.4 
0.06 0.7 4.894 50 1.1 

∆D = ±0.004 ÷ ± 0.07 (the error increases with decreases of c) 
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7.5.4. DOSY measurements for n-dodecyl-β-maltoside (β-C12G2) 
 
A 10 ml stock solution of 1.01 10-3 M was prepared from 5.15 mg of n-dodecyl-β-maltoside 

(β-C12G2) and pure water. For each measurement 4 ml of solution were taken out and the 

volumetric flask was refilled with water, therefore every new solution had a dilution factor of 

0.6.   

For experiment, 1 ml of solution was used for rinsing the NMR tube and 0.5 ml were used for 

measurements. The stem coaxial insert of the NMR tube was filled with 0.1 ml D2O and it 

was used for all measurements. Samples were sealed with parafilm and allowed to equilibrate 

for at least 12 hours before measurement. For every sample were recorded a standard 1H-

NMR, two 1D 1H-NMR experiments with water suppression using the pulse sequence: 

stebpgpes1s1d.sek (with 2% and 95% gradient strength) and one 2D DOSY experiment with 

the pulse sequence: stebpges1s.sek. All measurements were carried auto at 25 °C. Details 

about concentration, results and experimental parameters are presented in Table 7.7. 

 

Table 7.7. Experimental data for n-dodecyl-β-maltoside (β-C12G2); TD (F1) = 8k, TD (F2) = 
32, NS = 256  
 

c/mM c/cmc D/10-10 m2s-1 ∆/ms δ/ms 

1.01 6.3 1.306 100 1.6 
0.6 3.8 1.698 50 1.9 
0.36 2.2 2.225 50 1.6 
0.21 1.3 3.476 50 1.5 
0.13 0.8 3.858 50 1.3 

∆D = ±0.006 ÷ ± 0.09 (the error increases with decreases of c) 
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The pulse sequence stebpgpes1s1d.sek: 

 

 

 

The pulse program used for diffusion experiments with water suppression is following: 

 

;stebpgpes1s1d 
;avance-version (07/05/08) 
;1D sequence for diffusion measurement using stimulated echo 
;using bipolar gradient pulses for diffusion 
;using 1 spoil gradient 
;water suppression using excitation sculpting with gradients 
;T.-L. Hwang & A.J. Shaka, J. Magn. Reson., Series A 112 275-279 (1995) 
;$CLASS=HighRes 
;$DIM=1D 
;$TYPE= 
;$SUBTYPE= 
;$COMMENT= 
prosol relations=<triple> 
#include <avance.incl> 
#include <Grad.incl> 
#include <Delay.incl> 
"p2=p1*2" 
"d12=20u" 
"TAU=de+p1*2/3.1416+50u" 
"DELTA1=d20-p1*2-p2-p30*2-d16*3-p19" 
1 ze 
2 30m 
  d1 
  50u UNBLKGRAD 
  p1 ph1 
  p30:gp6 
  d16 
  p2 ph2 
  p30:gp6*-1 
  d16 

F1 

z 

ZE 

 30m D1 50u D16 D16 D16DELTA1 D16 D16 50u D16 
4uD12 4u D16TAU D16 4uD12 D16 4u 30m 

P1 ph1 P2 ph2 P3 ph3 P1 ph4 P2 ph2 P12:sp1 ph5 P2 ph6 P12:sp1 ph7 P2 ph8 

PL0 PL1 PL0 PL1 

MC 
ZD 

Go loop 
   MC  loop 

P30:6 P30:6 P19:7 P30:6 P30:6 P16:1 P16:1 P16:2 P16:2 
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  p1 ph3 
  p19:gp7 
  d16 
  DELTA1 
  p1 ph4 
  p30:gp6 
  d16 
  p2 ph2 
  p30:gp6*-1 
  d16 
  50u 
  p16:gp1 
  d16 pl0:f1 
  (p12:sp1 ph5:r):f1 
  4u 
  d12 pl1:f1 
  p2 ph6 
  4u 
  p16:gp1 
  d16  
  TAU 
  p16:gp2 
  d16 pl0:f1 
  (p12:sp1 ph7:r):f1 
  4u 
  d12 pl1:f1 
  p2 ph8 
  p16:gp2 
  d16 
  4u BLKGRAD 
  go=2 ph31  
  30m mc #0 to 2 F0(zd) 
exit 
ph1= 0 
ph2= 0 0 0 0  2 2 2 2 
ph3= 0 0 0 0  0 0 0 0  2 2 2 2  2 2 2 2 
ph4= 0 1 2 3 
ph5= 0 0 0 0  1 1 1 1  
ph6= 2 2 2 2  3 3 3 3  
ph7= 0 0 0 0  0 0 0 0 1 1 1 1 1 1 1 1  
ph8= 2 2 2 2  2 2 2 2 3 3 3 3 3 3 3 3 
ph31=0 3 2 1  2 1 0 3  
;pl0 : 120dB 
;pl1: f1 channel - power level for pulse (default) 
;p1 : f1 channel -  90 degree high power pulse 
;p2 : f1 channel - 180 degree high power pulse 
;sp1 : f1 channel - shaped pulse 180 degree 
;p12: f1 channel - 180 degree shaped pulse (Squa100.1000) [2 msec] 
;p16: homospoil/gradient pulse 
;p19: gradient pulse 2 (spoil gradient) 
;p30: gradient pulse (little DELTA * 0.5) 
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;d1 : relaxation delay; 1-5 * T1 
;d12: delay for power switching                           [20 usec] 
;d16: delay for gradient recovery 
;d20: diffusion time (big DELTA) 
;NS : 8 * n, total number of scans: NS * TD0 
;DS : 4 * m 
;use gradient ratio:    gp 6 : gp 7 
;                       var  : -17.13 
;use gradient ratio:    gp 1 : gp 2 
;                         31 :   11 
;for z-only gradients: 
;gpz1: 31% 
;gpz2: 11% 
;gpz6: 1-100% 
;gpz7: -17.13% (spoil) 
;use gradient files:    
;gpnam1: SINE.100 
;gpnam2: SINE.100 
;gpnam6: SINE.100 
;gpnam7: SINE.100 
;$Id: stebpgpes1s1d,v 1.0 2009/02/10 09:36:59 ber Exp $ 
 

 



 8. APPENDIX 

 

157 

8. APPENDIX 
 
8.1. Overview over all newly synthesized compounds 
 
        8.1.1. Alkyl-ethoxylated myo-inositol derivatives 
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         8.1.2. Complexes C12DMPO : salts 
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8.2. Abrevations 
 
ATR attenuated total reflection  
APT attached proton test 
BDA butane-2,3-diacetal 
Bn benzyl 
br broad 
C12DMPO n-dodecyldimethyl phosphine oxide 
calc. calculated 
ColH columnar hexagonal mesophase 
CSA camphor sulfonic acid 
Cub  cubic mesophase 
CyHex cyclohexan 
DCM dichlormethane 
DMF N,N-dimethylformamide 
DOSY diffusion ordered spectroscopy 
DSC differential scanning calorimetry 
EA elemental analysis 
eq equivalent(s)  
EtOAc ethyl acetate 
FT-IR Fourier transform infrared spectroscopy 
h hour 
HR-MS high-resolution mass spectroscopy 
KOH potassium hydroxide 
LC liquid crystal 
LCD liquid crystal display 
M molar 
Me methyl 
MeOH methanol 
min minute(s) 
mp melting point 
MS mass spectroscopy 
MTBE methyl-tert-butylether 
NaH sodium hydride 
NaOH sodium hydroxide 
NMR nuclear magnetic resonance 
Pd/C palladium supported on charcoal 
PFG Pulsed field gradient 
PM polarization microscopy 
ppm parts per million 
p-TsOH p-toluene sulfonic acid 
r.t. room temperature 
Rf ratio of fronts 
SmA Smectic A mesophase 
TFA trifluoracetic acid 
THF tetrahydrofuran 
TIR total internal reflection  
TLC thin liquid chromatography  
Ts tosyl  
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