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Zusammenfassung

In dieser Arbeit werden mehrere Probleme der Oberflächenphysik bearbeitet,
die auf Diffusion als Transportmechanismus beruhen. Wesentliche Teile behan-
deln Systeme, in denen Teilchen durch Reaktion oder Keimbildung bei einem
Zusammentreffen wechselwirken.

Für das astrophysikalische Problem der Wasserstoffrekombination auf inter-
stellarem Staub wird die bisherige analytische Behandlung wesentlich verbessert:
Der für die Reaktion entscheidende Parameter wird konsistent definiert, und bei
seiner Berechnung wird die Natur zweidimensionaler Diffusion berücksichtigt. Im
Rahmen mehrerer Modelle, die miteinander verglichen werden, kommt man zu
expliziten Resultaten, die durch Monte-Carlo-Simulationen exzellent bestätigt
werden. Ein besonderes Augenmerk gilt dabei dem Einfluss der eingeschränkten
Geometrie, die anhand eines Minimalmodells analytisch untersucht und ver-
standen werden kann. Auch Fragen zum Einfluss von Unordnung in der Ober-
flächenstruktur werden behandelt. Ein weiterer Abschnitt betrachtet das eng
verwandte Problem der Keimbildung am Inselrand bei epitaxialem Kristallwachs-
tum, das sich aber bereits unter moderaten Annahmen als analytisch nicht mehr
behandelbar erweist.

Das Stufenwachstum unter Einfluss von kodeponierten Verunreinigungen ist
ein technologisch wichtiger Prozess, der in einem eindimensionalen Random-Walk-
Modell untersucht wird. Anhand mikroskopischer Modelle der so entstehenden
Unordnung der Oberfläche lassen sich interessante und ebenfalls für Simulationen
relevante Aussagen treffen. Diese betreffen sowohl den allgemeinen Einfluss auf
die Geschwindigkeit und Stabilität des Stufenwachstums als auch die Natur der
Randbedingungen im entsprechenden Kontinuumsmodell.

Im letzten Teil wird ein Modell ausführlich analytisch untersucht, das Dif-
fusionsfelder in Desorptionsexperimenten beschreibt, welche man durch Echt-
zeitbeobachtung auf großem Maßstab direkt sichtbar machen kann. Das Modell
beschreibt experimentelle Daten sehr gut und stellt einen wichtigen Schritt im
Verständnis der zugrundeliegenden Prozesse dar. Aufgrund dieses Verständnisses
lassen sich aus der Beobachtung einer Oberfläche mit komplexer Morphologie
direkte Rückschlüsse auf ihre mikroskopischen Eigenschaften ziehen.
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Abstract

In this work we address several problems of surface physics which are all based
on the transport mechanism of diffusion. Essential parts consider systems in
which particles interact upon meeting, either by reaction or by nucleation.

For the astrophysical problem of hydrogen recombination on interstellar dust,
the previous analytical treatment is substantially improved upon: The parameter
responsible for reaction is defined consistently, and in its calculation, we account
for the nature of two-dimensional diffusion. Within several models that are also
compared with each other, one obtains explicit results that excellently agree
with Monte Carlo simulations. Special attention is given to the influence of the
confined geometry, which is analytically examined and explained for a minimal
model. We also deal with the role of disorder in the surface structure. A further
section presents the closely related problem of nucleation at island edges, which,
however, proves to be no longer tractable analytically even under moderate
assumptions.

Step growth under the effect of codeposited impurities is a technologically
relevant process, which is examined in a one-dimensional random walk model.
Using microscopic models for the resulting disorder on the surface, one finds
interesting results that also bear implications for simulations. Those results
concern the general influence on the speed and stability of step growth as well
as the nature of boundary conditions in the corresponding continuum model.

In the last part we thoroughly analyze a model to describe the diffusion field
in desorption experiments, which can be made directly visible on a large scale
and with real time resolution. The model agrees well with experimental data and
hence constitutes an important step in understanding the fundamental processes
involved. Based on this understanding, one can draw direct conclusions from the
observation of a surface of complex morphology on its microscopic properties.
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Chapter 1

General Introduction

One can hardly imagine a more general physical mechanism than diffusion.
All phenomena that involve transport yet are of stochastic (as opposed to
deterministic) character, are based on diffusion: Mixing of heterogeneous gases
or liquids, osmotic transport in biological cells, moving atoms or whole clusters
in crystal growth, as well as the role of exciton transport in the mechanism
of photosynthesis or in semiconductors — this variety shows that stochastic
systems have come a long way from the original single-particle Brownian motion
ingenuously explained by Einstein [1]. Moreover, many processes that are not
genuinely diffusive in the obvious microscopic sense of the word are still described
by the same mathematics as if they were, e.g., heat conduction in solids, certain
traffic models or the spreading of an epidemic disease.

To specialize a bit more, we will not deal with diffusion in the bulk, but rather
on surfaces [2]. The importance of this aspect is due to several factors. First,
the surface of a system is the interface to its environment. In many processes
this is the only region where reactants can enter or leave the system, where
experimental probing and manipulation are easiest, and where equilibration
phenomena with the surroundings take place. Second, for the systems and
regimes considered herein, the surface is the only part of the system where
particles are truly mobile (for steric or energetic reasons), or where their mobility
furnishes effects qualitatively different from the bulk case (as in island edge
diffusion, cf. Chapter 6). These characteristics of surface diffusion render it the
key mechanism behind thin film growth and the build-up of nanostructures at
surfaces.

For quite a long time, people were mostly interested in the long-time / long-
distance behavior of diffusion, i.e., in rather general transport properties, such
as the (asymptotic) mean-square displacement once a disordered environment
is considered [3, 4]. In principle, the isozone problem discussed in this thesis
(Part III) belongs to this sort of problems, in that they feature non-interacting
particles. The random walk (RW) here was considered mostly a model system
that, under certain very general conditions, exhibits a diffusive behavior in a
proper continuum limit.

Starting in the early 1970s however, this has changed considerably, as reaction-
diffusion systems have received a lot of attention. In such systems, diffusion
is the mechanism that transports particles, but those particles are considered
interacting (typically on contact) by pair annihilation, particle creation, forming
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another species, forming an immobile nucleus etc. Clearly, systems of that type
suggest completely different questions: How often do particles meet? How long
does it take for the first (or any later) encounter to occur (depending on the
initial separation of a pair)? What distance has been traveled before the meeting
takes place? What is the asymptotic behavior of the concentration of a given
species? All these quantities can be desired for a fixed initial condition or as an
average over an appropriate ensemble.

The processes discussed herein are recombination [e.g., 5, for a recent review
in our context], where a reaction to another species takes place upon meeting,
and nucleation [2], where meeting particles form a stable immobile nucleus. It
should be obvious that many of the questions we have raised above are of a
first-passage type [6]: They are not concerned with the final fate of the system,
but with the time until an event (such as meeting a partner) happens for the
first time, or with the probability for the individual particle to have a certain
destiny, such as having an encounter or leaving the system altogether.

The following systems will be discussed in this thesis (in this order):

Hydrogen recombination on interstellar dust grains: This forms the ma-
jor part of this work and is based on the publications Lohmar and Krug
[7, 8], with further unpublished efforts (e.g., on the disordered situation)
included. Our contribution to the vast astrophysical literature on this sub-
ject is an important conceptual clarification, an assessment of the influence
of the global geometry, and the analysis of different modeling approaches,
necessary to enable accurate comparison with experimental and numerical
data. Together this forms an entirely analytic theory of the process that
agrees with kinetic Monte Carlo simulations.

Island edge nucleation in homoepitaxial crystal growth: This is an ‘off-
spring’ problem with some intricate relations to the main matter of the
first part. We basically lay out a general approach that, unfortunately, has
not lead to many hard results.

Impurity-induced step growth instabilities: This presents a small analyt-
ically tractable model that may be of importance for the understanding of
experimental features.

Isozone theory: Here we develop a theory to interpret recent large-scale real-
time observations of diffusion fields on metal surfaces. The model presented
in Roos et al. [9] is extended, and we explain in some detail what features
of the striking experimental observations it can explain.

The first and the third system are prototypical as they exhibit all crucial
features mentioned already in the title of this thesis: Diffusion or random walks
in confined geometries (i.e., with non-open boundary conditions and for a certain
spatial dimension) and reaction upon meeting of particles, in the presence of
disorder. The questions asked here always are of the first-passage type as
mentioned above. The latter feature also holds true for island edge nucleation,
but here, (spatially quenched) disorder does not occur. Obviously, these systems
are far from equilibrium, and including reaction processes, they share a non-linear
time evolution.

The last item (isozone theory) is linked to the rest rather on the level of
the physical system than on such more fundamental similarities. It is, however,
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still a surface diffusion problem, but to the extent discussed herein, it is neither
strongly dependent on geometry, nor does it incorporate disorder. Moreover, it
will become clear that our treatment there is not always limited to a steady-state
situation; where it is, “steady-state” has a different meaning than, e.g., for the
hydrogen recombination system.

The methods to treat our problems are as follows:

• Analytical treatment of (mostly stationary) diffusion equations. Those are
solvable for many geometries and boundary conditions. Solutions can be
expanded asymptotically to gain insight into the system’s properties.

• Exact random walk theory using generating functions, Fourier (and
possibly Laplace) transforms, Tauberian theorems, recursion relations,
and again asymptotic expansions. Similar techniques may be applied to
many relevant master equations.

• Kinetic Monte Carlo simulation of the detailed microscopic processes
nowadays always allows the treatment of the full problem including possible
disorder.

These techniques may lead to a very simple solution of certain problems, but
may become virtually useless for others. One finds that the spatial dimension has
a crucial impact: One dimension often leads to relatively easy problems, while two
dimensions are often most difficult, as this is the upper critical dimension of many
diffusion-mediated systems, and for d ≥ 3 dimensions, a simple mean-field-like
treatment may give good results again. A difficulty at least as fundamental is the
introduction of any disorder (in transition rates). If one wants to retain a detailed
description (not annealing the disorder), a very restricted one-dimensional class
of models (described in Part II) is, to the best of our knowledge, the only fully
analytically tractable case (cf. Section 7.2.1, however). Finally, for problems
of first-passage nature (as opposed to transport properties), we are not aware
of reasonably general effective theories. The real-space renormalization group
(RSRG) technique [10] is a powerful method, but, alas, it relies on a self-similarity
feature of the potential landscape to renormalize.

The relation between the different parts and possible ramifications to other
work as well as the cause and effect of the aforementioned difficulties will
always be highlighted in more detail in the corresponding parts of this thesis.
Obviously, very similar systems come in many guises, and on the other hand,
slight alterations introduced to the model may completely change its behavior
and the appropriate means to understand it. As it stands, this might even be
considered a typical feature of reaction-diffusion systems [11].
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Chapter 2

Motivation, Related
Questions, and Outline

Hydrogen is the most common element in our universe, and its molecular form
is the most common molecule, yet formation of the latter from the former is a
puzzle not completely resolved to this day. This simplest of chemical reactions,
H + H −→ H2, is part of the complex network of processes that occur in
interstellar clouds of gas and dust, taking place both in the gas phase and on
the surfaces of dust grains. It has long been known that this particular reaction
is very inefficient in the gas phase, to the extent that one cannot reconcile the
mechanism with observed cloud temperatures and hydrogen abundances [12].
Instead, it is the most important surface reaction [13], the underlying scenario
being as follows: Atoms impinge onto the dust grain surface and stick to it.
They diffuse as random walkers, possibly reacting and forming a molecule if they
meet each other before desorbing again [12, 14, 15]. Note that for more complex
reactions, chemistry is believed to often take place “in the matrix”, i.e., in the
solid phase of ice mixture mantles around the dust grain core.

The theory of such processes has been constantly refined over the last 40 years,
see Vidali et al. [5] for a recent review. From an astrophysical point of view, the
paramount aim is to be able to efficiently and accurately determine production
rates, depending on all parameters including grain and gas phase temperature,
grain size distribution and reactant concentrations, and to incorporate them
into models of the gas phase reaction network. To achieve this, the most basic
approach employs chemical rate equations (RE), which characterize the state
of the single grain by continuous concentration variables. The production rate
of any species is taken proportional to the product of the concentrations of the
reactants.

Because of these features, rate equations are inappropriate as soon as (tempo-
ral or spatial) fluctuations in the reactant number on a dust grain become of the
order of their mean values, a condition easily satisfied for small grains subject
to low fluxes of reactants. One then has to account for the full probability
distribution P (N) of the number of reactants N on a grain. This can be achieved
in stochastic Monte Carlo (MC) simulations [16–18] or by solving the master
equation (ME) governing the time evolution of P (N) [19–22].

From a theoretical point of view, surface reactions as described above are
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interesting as an example of a reaction-diffusion system in a confined geometry.
All the aforementioned frameworks are similar in that they neglect any spatial
structure (including this confinement) of the system as well as the microscopic
processes responsible for transport and reaction on the surface. These aspects
are instead solely represented by the sweeping rate A, which is typically defined
as the inverse of the time a single atom would require to visit all S adsorption
sites. Moreover, it is conventionally taken to be of the form [17]

A = a/S (2.1)

with a denoting the rate of hops between neighboring sites. The latter approxima-
tion neglects back-diffusion, i.e., the re-visiting of sites that cannot be neglected
for the two-dimensional random walk, and that slows down exploration. The
former definition suffers from the more fundamental shortcoming that it takes a
single-atom point of view and focuses on the exploration of the surface; however,
the actual problem is the joint diffusion of two reactants, terminated either by
desorption or meeting, and hence a first-passage problem in nature.

Obviously, kinetic (sometimes termed ‘microscopic’) Monte Carlo simulation
can easily account for these details [23, 24], but apart from the general interest
in analytical results, it poses a computational challenge to reliably learn about
the long-time behavior of possibly complex reaction networks.

As is typical for reaction-diffusion systems, it is very easy to add features of
experimental relevance to a perfectly understood model that immediately render
it virtually impossible to solve analytically. For hydrogen recombination on dust
grains, important extensions include a complicated, possible fractal structure of
the network of adsorption sites, porosity of the grain (both geometric factors),
and most importantly, a wide distribution of binding and transition energies that
implies disordered rates of hopping and desorption. Under such circumstances,
microscopic Monte Carlo simulations are currently the only means to examine
the full system. In fact, despite the extensive literature on disordered media [e.g.,
3, 4, 11, 25], to the best of our knowledge this even holds true already for the
fundamental two-particle first-passage problem once we account for a confined
(two-dimensional) geometry and possible desorption.

It will still be important to examine simple homogeneous models, both to
establish a reference point to validate Monte Carlo simulations against, and to
further progress of analytical exploration. Herein, we will mostly be considered
with such homogeneous settings, and successively determine the importance (or
lack thereof) of factors such as using different shapes and types of the lattice of
adsorption sites.

2.1 Experimental and Observational Status

Quantitative predictions for production rates and abundances of certain reaction
products obviously depend on an array of “microscopic” parameters. Among
these are reactant concentrations in the gas phase and its temperature (governing
the impingement flux onto the dust grains), and a multitude of characteristics
of the dust grains: Their temperature (possibly subject to stochastic heating,
cf. Cuppen et al. [26]), the size distribution (see Mathis et al. [27], Weingartner
and Draine [28] and Lipshtat and Biham [29] for the importance for hydrogen
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Ediff
H /meV Edes

H /meV Edes
HD/meV Surface Ref.

25.5± 0.6 polycryst. olivine [32]
24.7 32.1 27.1 polycryst. olivine [34]
44.0 56.7 46.7 amorphous carbon [34]
44.5 52.3 46.5, 52.8, 61.2 por. water ice, low dens. [36]
55 62 68.7 por. water ice, high dens. [36]
35 44 35, 53 amorphous olivine [37]
35 44 35, 53, 75 amorphous olivine [38]

Table 2.1: List of activation energy barriers for diffusion and desorption of reactants
and products.

formation rates), the grain geometry (i.e., the lattice structure formed by ad-
sorption sites and maybe its fractal nature, as well as the overall shape), and
possible porosity (the influence of which is examined in Perets and Biham [30]).

While we mentioned observations of interstellar clouds of gas and dust that
lead to the intricate models of combined gas-phase grain-surface chemistry, one
always has to make further far-reaching assumptions on the nature of the grains:
What material(s) are they made of (and for a mixture: are the various ingredients
clustered or spatially uncorrelated in occurrence?)? Do they have layers of ice on
top and made up of what substance(s)? What is the roughness of the surface?
What are the typical binding and transition-state energies of the adsorption sites,
and what is their distribution?

It is only a relatively recent development that one tries to find answers to
some of those questions in laboratory experiments. Let us describe an exemplary
setup employed to examine conditions which can, as is expected, be reasonably
extrapolated to astrophysically relevant conditions: One picks a surface of a given
composition, and maybe of specified roughness, which is placed in an ultra-high
vacuum (UHV) chamber cooled by a He cryostat. In the first phase (“irradiation”)
the probe is held at constant low temperature of the range 5 . . . 30 K. By distinct
atom beams, H and D atoms are deposited onto the surface. In the second
phase called “temperature-programmed desorption” (TPD), the surface slab
is heated up linearly with time to let adsorbed atoms desorb on time scales
amenable to laboratory experiments. The desorbed species yield is then detected
by quadrupole mass spectroscopy. The TPD curves thus obtained can be used to
find the overall production rate of HD as well as the activation energy barriers
for diffusion and desorption of hydrogen atoms as well as molecules.

Such experiments have been performed for several surfaces which are believed
to be of astrophysical relevance. Among these are olivine (a silicate rich in Fe,
Mg, Si and oxygen), amorphous and crystalline carbonaceous solids, as well
as (possibly porous) water ice layers [31–38]. We give a non-exhaustive list of
activation energies thus obtained in Table 2.1. We will return to discuss the
limited knowledge on surface roughness, porosity and (maybe corresponding to
these factors) the distributions of activation energies in Section 5.1.
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2.2 Related Problems

As specific as the above setting may seem, the fundamental theoretical problems
that arise are intimately connected to very remote fields. This is basically due
to the ubiquity of the random walk and stochastic reaction-diffusion models in
physics. We shall briefly highlight two such connections.

One problem that will only indirectly appear elsewhere in this thesis (Sec-
tion 6.3.1) is that of second-layer nucleation in epitaxial crystal growth [2].
Consider a crystal surface onto which further atoms impinge and afterwards
diffuse. There exists a kinetic regime in which the critical cluster size is unity,
i.e., dimers that form upon meeting of two atoms become stable and immobile.
Crystal growth will then proceed to form islands on the surface, and atoms
impinging after such islands have been nucleated may land on the second layer,
i.e., on top of an island. It is an important question fundamental to the theory of
surface morphology with what probability nucleation occurs on top of an island,
hence in the second or even higher layers.

If atoms could cross the step edges between the underlying atomic layer and
the island layer without any additional energetic barrier, nucleation properties on
top of the island would obviously be homogeneous throughout the system (apart
from possible steric effects). However, the Ehrlich-Schwoebel (ES) effect [39]
is precisely such an additional energy barrier of inter-layer transport (compared
to intra-layer diffusion), its strength depending on the probe temperature and
the material(s) involved. This confines atoms to the top of the island, and
can greatly affect the nucleation rate and the spatial distribution of nucleation
events. Under certain experimental conditions, an effectively infinite ES barrier
is realized, such that atoms are forever confined to the top of the island, and are
certain to participate in a nucleation event sooner or later.

The basic similarity of second-layer nucleation and surface reactions is that
reactants impinge onto a finite region, either with boundaries or closed, and may
leave it prior to a reaction event by stepping down the terrace or by desorption
from any adsorption site, respectively. In second-layer nucleation, the first
event is the important one, for surface reactions, steady-state situations are of
most interest. Despite those differences, there is a common feature of utmost
importance: the confined geometry, which has been identified as the reason that
mean-field-like rate equation analysis to determine the reaction / nucleation rate
fails in both problems [40].

Another very similar problem is the diffusion and nucleation of atoms along
the edge of islands as described above. This topic will be discussed in Chapter 6
of this thesis.

There are more remote fields that provide interesting applications, such as
the chemical kinetics in aerosol droplets [41], and biological problems like exciton
trapping on photosynthetic units [42] as well as several search, transport and
binding processes of or along DNA strands [43, 44]. For the latter ones, the
homogeneous situation is only a first step to relevant results, and the crucial two-
dimensionality of our problem does not necessarily apply either. However, other
biological mechanisms such as protein diffusion and reaction on biomembranes
raise questions very similar to ours and can take place on a two-dimensional
surface [45].

For the discussion of the relation of our efforts to a variety of theoretical
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works the reader is referred to Chapter 7.

2.3 Outline

In this Part of the present thesis we tackle the following problems. We will
first introduce the basic approaches to analytically determine the reaction
rate / efficiency, explaining why a näıve rate equation treatment fails in the
relevant regimes, and what renders the master equation framework superior. A
central part of our work is the consistent definition of the important parameter
common to both approaches, the sweeping rate A hitherto roughly approximated,
and we establish the relation to the encounter probability p of a pair of reac-
tants. The latter will afterwards be calculated using different models: First, a
continuum diffusion model, second, a discrete random walk analysis. We obtain
asymptotic expressions in two limiting regimes of experimental relevance. The
different models to find the encounter probability are compared and we explain
the considerable discrepancy for realistic system sizes and parameters, which
is of crucial importance for comparison to simulations. The random walk case
also allows a study of the effect of a distorted aspect ratio as a toy model of
the effect of the global grain geometry. We demonstrate that this reduces the
encounter probability by several mechanisms, and can give rise to a crossover to
one-dimensional behavior, both of which features we explain. Afterwards, we
determine the effect that the proper definition has on the sweeping rate compared
to earlier approximations. We proceed to discuss in some detail the behavior
of the master equation results, and examine the observationally relevant effects
that the revised set of parameters implies. We also supply results of extensive
kinetic Monte Carlo simulations for the encounter probability, and show that for
those, only the random walk analysis provides a full quantitative understanding.
Finally, we discuss some efforts to understand the role of rate disorder in the
system, and we explain the related problem of island edge nucleation that turns
out surprisingly (i.e., too) hard to solve.

For simplicity, we will speak of reactants, particles, and hydrogen atoms
interchangeably throughout; we expect results to be relevant for general networks
of diffusion-mediated reactions.
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Chapter 3

Analytical Results

3.1 Sweeping Rate and Encounter Probability

a

F

W

?

Figure 3.1: The basic
setup for hydrogen recom-
bination.

Let us first describe more precisely the system at
hand, cf. Figure 3.1. Consider a dust grain onto
which H atoms impinge homogeneously at a total flux
F (number per unit time),1 and they can desorb again
at a rate W . If two atoms meet, they are assumed to
react to form molecular hydrogen which immediately
desorbs, or which at least does not affect diffusion
and reaction of H atoms. One may then set up a
standard rate equation for the mean number 〈N〉 of
H atoms on a single grain [46],

d〈N〉
dt

= F −W 〈N〉 − 2A〈N〉2. (3.1)

The last term shows the fundamental assumption of
the rate equation treatment, namely that the reaction rate is proportional to
the mean number of all reactants involved, thus neglecting both the discreteness
and fluctuations of the particle number. Here, we have a production / reaction
rate of

RRE = A〈N〉2, (3.2)

as two atoms are used to form one molecule. The factor of proportionality is the
sweeping rate A.

The above expression for the reaction rate is substituted in the master
equation treatment, where [19–21]

RME = A〈N(N − 1)〉. (3.3)

As it should, the rate is now proportional to the mean number of pairs of atoms
on the grain, and in particular it vanishes for N = 1. Both expressions agree if
and only if 〈N2〉 − 〈N〉2 = 〈N〉. This equality of the variance and the mean of

1Up to (and including) Chapter 5, F will denote a surface-integrated flux, deviating from
the notation commonly used in transport phenomena, and the term flux will be used loosely.
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the distribution of the reactant number on the grain, P (N), defines the Poisson
distribution and is independent of the magnitude of 〈N〉.

Comparison of both equations shows that the failure of the rate equation
prediction with respect to the master equation reaction rate is not an implication
of a small mean number of particles 〈N〉 � 1 [47]. In fact, as long as Poisson
statistics of N are preserved by atoms that may freely enter and leave the
system, the rate equation treatment is exact for arbitrary 〈N〉. It fails on small
grains because of the confinement of reactants to the surface, thus strongly
increasing the probability for atoms simultaneously present to meet each other.
Consequently, it is then much less probable to find such a pair of reactants on
the grain surface than it would have been with a Poisson distribution, and the
master equation reaction rate is smaller than the rate equation result. We will
shortly recur to this point with a quantitative result in Section 3.1.1. The closely
related failure of rate equations to describe second-layer nucleation is reviewed
in Section 6.3.1; it corresponds to treating particles as non-interacting.

Equation (3.3) suggests a clear interpretation for the sweeping rate A. There
are N(N − 1)/2 pairs of reactants on the grain, hence 2A is the rate at which
pairs of atoms are removed by the reaction. This is one channel for a pair to exit
the system, the other being the desorption of one of the particles, with a total
rate 2W . Therefore, the probability that the given pair of atoms meets before
one partner has desorbed is the encounter probability

p =
2A

2A+ 2W
=

A

A+W
. (3.4)

(Throughout, subscripts will denote certain models and / or simulations from
which it is obtained, as well as further specializations.) This formulation clearly
expresses the first-passage problem nature. It also provides us with the sweeping
rate in terms of the encounter probability,

A =
Wp

1− p
. (3.5)

Before we investigate several ways to calculate p and also examine the implications
for the sweeping rate A, we derive an alternative interpretation of the encounter
probability.

For numerical simulations, especially for the inclusion in large networks of
both surface and gas phase reactions, modified rate equation treatments have
been proposed [17, 48]. The basic idea was to replace the coefficient A by another
parameter if it exceeds F and W . The methodology is briefly reviewed in Biham
and Lipshtat [21], where it amounts to replacing A by W as soon as F/W < 1
and W/A < 1. This procedure can be made plausible for both relevant kinetic
regimes, that we will later identify as ‘small-’ and ‘large-grain’ regimes. While it
quantitatively improves upon the standard rate equation results, it is still an ad
hoc procedure. More importantly, it still neglects discreteness of the reactants,
and the fact that the kinetics is fluctuation-dominated on small grains.

In a recent development, Garrod [49] proposes a novel modification scheme
of the rate equation, not restricted to replacing coefficients, but rather changing
the entire functional form of the production rate under certain conditions. The
prescription (we specialize to single-species reactions) is that if the average
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number of reactants 〈N〉 � 1, the RE production rate is modified to read

RRE,mod = Cmod · F 〈N〉, where Cmod =
k

k + 2W
.

Cmod is dubbed an “efficiency factor” that quantifies the competition between
reaction and desorption, and is introduced to the production rate in a (well-
motivated) ad hoc step. Therein, k is the conventional approximation for the
reaction rate that should read 2A in our notation. With this identification, the
efficiency factor obviously coincides precisely with our encounter probability
p of (3.4). It is mentioned in Garrod [49] that the rate for Cmod = 1 can be
obtained from the master equation treatment, in the regime of small grains on
which additionally, reaction outshines desorption. We may now add that in fact,
the production rate RRE,mod perfectly agrees with the small-grain approximation
of the ME result (3.29) for any Cmod ≡ p. Here we have supplied a genuine
derivation for its appearance (earlier in this Section and by deriving (3.29)).

3.1.1 Non-Poissonian statistics

We now establish a simple quantitative relation between the encounter probability
p and the deviation of P (N) from a Poisson distribution, in the limit where
the mean number of reactants on the grain is small (〈N〉 � 1). One may then
truncate the distribution P (N) at N = 2, so that 〈N〉 ≈ P (1) + 2P (2) and
〈N2〉 ≈ P (1) + 4P (2). Therefore, the recombination rate (3.3) reads

RME ≈ 2AP (2). (3.6)

On the other hand, RME can be determined for 〈N〉 � 1 with the following
simple statistical argument [40, 50]: An atom that lands on the grain will be
involved in a reaction if, first, there is another atom already present (true with
probability P (1)) and, second, if both encounter each other (true with probability
p). Thence we have

RME ≈ FP (1)p ≈WP (1)2p, (3.7)

where the second step uses that, to leading order for 〈N〉 → 0, 〈N〉 ≈ F/W ≈
P (1) (cf. Section 3.8). Combining (3.6), (3.7) and (3.5) we obtain the central
relation

P (2) ≈ 1
2

(1− p)P (1)2. (3.8)

The Poisson distribution has P (2) = P (1)2/2 for 〈N〉 → 0. Hence the factor 1−p
quantifies the deviation of P (N) from the Poisson distribution, corresponding
to the depletion of the probability to find pairs, and caused by the recombination
reaction.

The relation (3.8) furnishes a simple expression for the discrepancy of the
rate equation recombination rate (3.2) compared to the true rate (3.3). For
〈N〉 → 0 the ratio of the two reads

RME

RRE
≈ 2P (2)/P (1)2 ≈ 1− p,

showing that the confined grain geometry is crucial for the breakdown of the
rate equation description.
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3.2 Diffusion Model for p

Let us start with a continuum diffusion model to find the encounter probability.
We choose the simplest closed two-dimensional surface, a sphere of radius R, on
which there is an equidistant lattice of S adsorption sites. This geometry has
the important feature that all adsorption sites are equivalent. (We will briefly
discuss an example where this is not the case in Section 3.2.4.)

We have to consider a pair of atoms, each of which hops between adjacent
sites at a rate a and desorbs at a rate W . Using the translational invariance
to our advantage, the situation may equally be described as a single particle
moving and desorbing at twice the rates, 2a and 2W , respectively, while the
other atom has become an immobile target present throughout. Since we are
only concerned with the probability, not the time of the meeting or desorption,
this constant common factor of 2 does not influence the result at all — we may
thus use the original rates a and W and ask with what probability a particle
meets a fixed non-desorbing target.

3.2.1 Stationary Diffusion Problem

Analogously to Krug [40] we now pass to a continuum limit where the occupation
probability n(x) of the moving atom obeys a stationary diffusion equation. For
the spherical grain of radius R, we model the fixed ‘target atom’ as a circular
area of radius r at the north pole of the sphere. We will always assume the grain
large enough to host at least a few hundred adsorption sites, whence r � R. In
the discrete setting the surface is tiled by adsorption sites forming some regular
lattice, so that the radius r of the target atom implies a distance of 2r between
adjacent adsorption sites. It is then easy to show for some common lattice
structures that the number of adsorption sites is given by

S = g(2R/r)2,

where the factor g = O(1) reflects the lattice geometry (see Appendix A.1).
For an undirected (total) hopping rate a between adjacent adsorption sites,

the diffusion constant of the two-dimensional random walk on the lattice formed
by the sites reads D = a(δx)2/4; since the length of a single step is δx = 2r, we
have D = ar2 [2]. We thus obtain the stationary diffusion equation

D∇2n+
F

4πR2
−Wn = 0, (3.9)

governing the occupation probability n of the moving atom in the steady state
of impingement, desorption and reaction. To employ the azimuthal symmetry of
the problem we transform into spherical polar coordinates, where the Laplace
operator becomes

∇2 =
1

R2 sin θ
∂

∂θ
sin θ

∂

∂θ
.

We account for the reaction that removes the pair of atoms by prescribing an
absorbing boundary condition at the boundary of the fixed atom,

n(θ = r/R) = 0. (3.10)
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3.2.2 Exact Solution

There exists a unique non-negative solution of (3.9), (3.10) that remains finite
at the south pole θ = π. It is most easily found after transforming to the new
variable z = cos θ, and is given in terms of Legendre functions of the first kind
Pν(z) by2

n(θ) =
F

4πR2W

[
1− Pν(− cos θ)

Pν(− cos(r/R))

]
,

with the index

ν = −1
2

+

√
1
4
−
(
R

`D

)2

, (3.11)

and the diffusion length
`D =

√
D/W.

The latter is the typical distance that an atom on an unbounded surface would
diffuse before it desorbs.

There are now two contributions to the encounter probability of the pair
of atoms (already averaged over all possible starting points). First, a certain
fraction of all impinging atoms reaches the target by diffusion, namely the
fraction of the impingement flux F that enters the target as a diffusion flux:

pflux = 2πR sin(r/R)× D

R

∂n

∂θ

∣∣∣∣
θ=r/R

× 1
F
.

Using a standard identity [51, 8.752, 1.] this yields

pflux =
sin(r/R)
2(R/`D)2

P 1
ν (− cos(r/R))
Pν(− cos(r/R))

, (3.12)

where P 1
ν = −(1− z2)1/2 dPν/dz. Second, a (small) fraction of atoms impinges

directly on top of the target area. This gives rise to an additional contribution
to the encounter probability, namely the (purely geometrical) ratio u ≡ (1 −
cos(r/R))/2 of the target versus the total surface area.3

Together, the total encounter probability of a pair of atoms becomes

pdiff =
sin(r/R)
2(R/`D)2

P 1
ν (− cos(r/R))
Pν(− cos(r/R))

+
1− cos(r/R)

2
. (3.13)

Equation (3.13) is the central result of this Section. We emphasize that the
encounter probability does not depend on the impingement flux because it only
contains information about two atoms that are already assumed to be present
on the grain. The following Section will discuss the behavior of the encounter
probability in the regimes of physical interest.

2Mathematical details can be found in Gradshteyn and Ryzhik [51], Sections 8.7f., especially
8.706f., 8.823 and 8.840 to 8.842. Although the index ν can become complex, all physical
expressions are real.

3Although this term is of the order of (r/R)2 � 1, we found it must be accounted for
in certain situations. The essential reason for this is that, while u � pflux < pdiff is valid
in all regimes of interest, we will also be concerned with the complementary quantity 1− p
appearing in (3.5). This however can become arbitrarily small, and particularly of the order of
u or smaller. Appendix A.2 will show that inclusion of u even simplifies further analysis.
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3.2.3 Limiting Behavior

The different asymptotic regimes of interest are defined by the ordering of the
three length scales, r, R and `D. As mentioned before, r � R is mandatory
such that the dust grain can host a reasonable number of adsorption sites.
Clearly, r � `D as well, because otherwise the adatom hardly performs any
hops before it desorbs again. We first derive the approximate behavior based
on these assumptions, and hence common to all relevant regimes. In terms of
the parameters of (3.13) the common feature is that r/R� 1, thus being the
appropriate quantity in which to expand first.

The actual calculation involves some subtleties, whence we relegate most of
this to Appendix A.2. To leading order in r/R, one obtains4

p−1
diff ≈

(
R

`D

)2
[

ln
(

2R
r

)2

− 2γ − 2ψ(ν + 1)− π cot(νπ)

]
. (3.14)

Here ψ(z) ≡ d(ln Γ)/dz, with Γ(z) the Γ-function, and γ = −ψ(1) ≈ 0.577215665
is Euler’s constant. To better understand the behavior of the encounter
probability we examine the two remaining regimes in which r is the smallest
length scale of the problem. The relation between the grain radius R and the
diffusion length `D then defines ‘small’ and ‘large’ grains.

3.2.3.1 Small Grains

This regime is defined by r � R � `D, and hence |ν| � 1. A first-order
expansion of pdiff about ν → 0− yields pdiff ≈ 1 + ν[ln(2R/r)2 − 1], so that with
ν ≈ −(R/`D)2 we have5

pdiff ≈ 1−
(
R

`D

)2
[

ln
(

2R
r

)2

− 1

]
→ 1.

With a small desorption rate each atom spends enough time on the grain to
fully explore it many times. For low fluxes, the recombination efficiency is then
limited by the rare event that two atoms are simultaneously present on the
grain. If this situation arises however, they almost surely meet. This is the
regime where the failure of the rate equation approach is most pronounced, see
Section 3.1.1.

3.2.3.2 Large Grains

Here on the other hand, r � `D � R and ν = −1/2 + iλ with λ ≈ R/`D � 1.
Owed to the form of ν, the cotangent in (3.14) is purely imaginary and cancels
the imaginary part of ψ(ν + 1) (cf. Footnote 4). The Γ-function behavior
implies ψ(z) ≈ ln z + O(z−1) for arguments of large modulus, which leads to
Reψ(ν + 1) ≈ ln(R/`D) for the remaining real part of ψ. Together this yields

pdiff ≈
(
`D
R

)2 1
ln(2`D/r)2 − 2γ

� 1. (3.15)

4This approximation does not invalidate the reality of p for values of ν of the form (3.11).
5We will treat logarithms of large quantities as being of the order of unity throughout,

consequently retaining coequal numerical constants in sums, although the logarithms are
usually significantly larger. This might slightly blur the fundamental functional relation, but
it is numerically adequate in many realistic situations.
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Here, low fluxes imply a low recombination efficiency due to fast desorption,
which does not allow the atoms to spend sufficient time on the grain to react.
In contrast to the small-grain regime, the confinement of the atoms to the grain
surface is not felt, and hence the rate equation continues to apply even for small
numbers of reactants. This is the second order regime of Biham and Lipshtat
[21] and Krug [40].

3.2.3.3 Translation to Discrete Parameters

For consistency and easy comparison with later results we translate our results
back to the original language of the discrete picture: This is done via the
relations (2R/r)2 = S/g, `D/r =

√
(D/r2)/W =

√
a/W , and accordingly

R/`D =
√
SW/(4ga). Figure 3.2 shows the encounter probability pdiff as a

function of the (logarithmic) grain size for three representative values of the
ratio W/a� 1.

1 2 3 4 5 6 7 8 9 10 11
0.0
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W/a = 10−8

log S

pdiff

Figure 3.2: Encounter probability pdiff as a function of the grain size S (on a
logarithmic scale to the basis of 10). The grain size discriminating between small and
large grains is given by a/W . Starting at unity and monotonically decreasing, one can
see the gentle roll-off of the encounter probability to take place around this critical
size, yet of very similar shape in all three cases.

In the small-grain regime, now characterized by SW/a � 1, we have the
encounter probability

pdiff ≈ 1− SW

4ga
[ln(S/g)− 1] , (3.16)

while for large grains, given by W/a� 1� SW/a, we obtain

pdiff ≈
4ga
SW

1
ln(4a/W )− 2γ

. (3.17)

3.2.4 Disc Geometry

The idea to obtain the encounter probability from a stationary diffusion equation
was demonstrated in Krug [40] for the simpler case of a flat disc geometry. The
outer boundary (at the radius R) is taken to be reflecting, and the fixed absorbing
target atom area is a small disc of radius r in its center.
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The asymptotic results obtained ibid. assume logarithms of large arguments
to be generally large as well (dominating possible numerical constants of the order
of unity). For better comparison (and foreseeing later important consequences)
we re-derived the asymptotics including such numerical (pre-)factors, see Ap-
pendix A.3 for details. Moreover, we included the contribution for encounters
“by deposition”. One may easily translate the results to the discrete parameter
set analogously to the spherical case. This shows that, first, in both regimes the
functional form as well as the pre-factors coincide.

In the “large-disc” regime the asymptotic behavior precisely agrees with
the sphere result (3.17), even including the logarithmic factor (or coequal O(1)
terms). However, there is a slight difference in the “small-disc” regime, where

pdiff,disc ≈ 1− SW

4ga
[ln(S/g)− 3/2] ,

with the lattice factor g defined before, compared to (3.16) with a constant 1
instead of 3/2. Numerical evaluation shows that under realistic assumptions on
the parameters, there is only a small (of the order of a few per cent) difference
of both geometries in between these limiting cases.

We regard this as strong evidence supporting our conviction that curvature
effects do not matter with S � 1: The underlying reason is that the radius of
curvature (in terms of the lattice spacing) is always of the same order as the
(linear) system size. In the large-grain regime, the random walk typically does
not travel long enough to feel the radius of curvature, as `D �

√
S, so that

obviously, curvature remains meaningless. But as soon as `D ∼
√
S, essentially

the whole lattice is explored anyway, and the small fraction of unvisited sites
depends on the failure of locally dense sweeping, not on curvature.

3.3 Random Walk Theory

There are several reasons to strive for an alternative model that allows calculation
of the encounter probability. First, as we are basically considering a reaction-
diffusion system here, the ‘atomistic’ point of view of the random walk is clearly
more natural than a continuum theory as described above. Second, we will see
that the random walk picture can be generalized to a lattice with distorted
aspect ratio without substantial complications. It is therefore possible to study,
on a fundamental quantitative level, the influence of a change in the confining
geometry which was already found to be of great importance, cf. Section 3.1.1.

3.3.1 Our Model

We start our treatment with a homogeneous lattice of adsorption sites, i.e., all
sites are equivalent, and the lattice extends to Lj lattice sites in the jth of
d dimensions, with periodic boundary conditions. Two walkers are randomly
placed on two (not necessarily different) sites of the lattice. Then they move
between nearest-neighbor sites with an undirected hopping rate a (corresponding
to diffusion of the atoms on the grain surface), and may desorb at a constant
rate W � a, ending the random walk realization. In the language of random
walk theory, the latter property is described as a mortal random walk. In our
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case, the survival probability per step reads

ξ = 1− W

a+W
=

a

a+W
=

1
1 +W/a

. 1 (3.18)

(obviously, only the ratio of the rates W/a can enter the treatment as long as we
consider the discrete-time two-particle problem). When the two walkers meet by
one hopping onto the site the other one occupies, they react and this random
walk realization has ended successfully. The probability for this to happen is the
encounter probability p defined in Section 3.1.

Although the physical picture might rather suggest a continuous-time random
walk (CTRW) version with an appropriate waiting time distribution, we will only
consider the discrete-time variant herein. This keeps the analytical treatment as
easy as possible, and we will later argue and numerically prove (cf. Section 4)
that it accurately describes our situation. Homogeneity of the lattice implies
that the problem reduces to that of a single (mortal) walker to meet a target
site, cf. Appendix A.4.

3.3.2 Exact Results

Using only well-known facts from the theory of random walks, we refer the reader
to Appendix A.4 for details of the calculation. For the encounter probability on
a lattice as described above, one obtains an expression already found, e.g., in
den Hollander and Kasteleyn [52], viz.

p−1
rw = (1− ξ)SP ∗(0; ξ) =

∑
m∈Ω

1− ξ
1− ξλ(2πL−1m)

. (3.19)

Here, S =
∏d
j=1 Lj is the total number of sites and P ∗(0; ξ) is the number

of times a mortal walker on a periodic homogeneous lattice returns to the
origin. Ω denotes the lattice, m is a ‘lattice vector’ of d integer components
0 ≤ mj ≤ Lj − 1 with j = 1, . . . , d, and L = diag(L1, . . . , Ld). The type of
lattice is represented by the structure function λ (basically a discrete Fourier
transform of the normalized transition probability) of the walk. We specify to
d = 2 at this point, where it reads λ(k) = (cos k1 + cos k2)/2 for an isotropic
walk on a square lattice that we will further on refer to as ‘type (a)’, and
λ(k) = [cos k1 + cos k2 + cos(k1 + k2)]/3 for the isotropic walk on a triangular
lattice (coordination number 6), now designated as ‘type (b)’.

As suggested by the applications we have in mind, we focus on the two-
dimensional case where both L1,2 � 1, and with ‘long survival’ as defined by
1 − ξ � 1. Under these conditions, (3.19) affords several regimes which are
defined by comparison of all dimensionless ‘lengths’. Introducing the typical
single-atom random walk length

` =
√
a/W � 1,

we distinguish ‘large’ lattices for which 1� `� L1,2 and ‘small’ lattices with
1 � L1,2 � `. We will later return to the intermediate regime in which one
lattice length is smaller, yet the other one larger than the random walk length.

The aforementioned cases (a) and (b) belong to a fairly general class of walks
for which one summation in equation (3.19) can be carried out explicitly [42]. We
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generalized the result to the case L1 6= L2, and present it in Appendix A.5. The
single-sum expression thus obtained is used whenever we want to numerically
evaluate prw, and we have implemented this evaluation in a small and straight-
forward GNU Octave script.

Note that the encounter probability given in (3.19) includes walkers starting
on the same site, counted as encounters on the zeroth step. For comparisons we
will sometimes need the encounter probability p̃rw calculated such that it does
not allow this special initial condition, but only counts meetings by hopping.
Both quantities are related by

prw =
1
S

+
(

1− 1
S

)
p̃rw,

as one can see by splitting up prw according to the starting site of the second
walker, i.e., either on the same site as the first one (with probability 1/S), or on
any other site (with probability 1− 1/S). This leads to the expression

p̃rw =
Sprw − 1
S − 1

in terms of prw. Similarly, p̃ with other subscripts will henceforth denote
probabilities p that are obtained from other models using the corresponding
analogous convention, i.e., excluding an encounter due to coinciding initial
positions. In the context of hydrogen recombination on dust grain surfaces, this
convention is realized by the mechanism of ‘Langmuir-Hinshelwood rejection’
of atoms that impinge on top of another [53, and references therein].

3.3.3 Large-Lattice Approximation

Formally, large lattices are characterized by S � a/W � 1 or, more precisely,
by 1� `� L1,2, but one may also define this regime by the fact that boundary
conditions and (apart from the initial placement) the total number of adsorption
sites no longer matter. Even if those boundaries were not periodic, but really
affected the random walker, e.g., by reflection, the walk might either come close
to the target or experience boundary effects due to the finiteness of the lattice,
but not in the same walk realization. One may then send L1,2 →∞ in (3.19),
and the sum becomes an area integral. After some manipulations detailed in
Appendix A.6, one obtains6

prw ≈
a

SW

{
π 1

ln[8a/W ] square lattice,
2π√

3
1

ln[12a/W ] triangular lattice,
(3.20)

with relative errors of O(1− ξ).

3.3.4 Small-Lattice Approximation

In this regime, 1 � L1,2 � ` or a/W � S � 1, and again we use results for
P ∗(0; ξ) from the random walk literature.

6For approximations here and in the following we will treat 1− ξ and (1− ξ)/ξ = W/a
synonymously due to ξ . 1, and will no longer mention this when it only introduces higher-
order errors compared to the desired accuracy. Moreover, we will consider logarithms as being
of the order of unity, which can render some expressions more cumbersome but is numerically
adequate.
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We first restrict ourselves to the quadratic lattice, i.e., L1 = L2 =
√
S. Note

that the result is later generalized to L1 6= L2, whence we refer the reader
to Section 3.4.4 for details of the calculation. Generally, the expansion for
1− ξ � S−1 � 1 reads

P ∗(0; ξ) =
1

S(1− ξ)
+ c1 ln(cS) +O

(
S−1, S(1− ξ),

√
1− ξ)

)
,

with real constants c and c1. This is shown in Montroll [42], which gives the
first calculations providing the important pre-factor inside the logarithm (for
square and triangular lattices), later extended and subject to minor corrections
in den Hollander and Kasteleyn [52]. The earlier and easily accessible derivation
in Montroll and Weiss [54] does not deliver this pre-factor, unfortunately. For
the encounter probability this yields

prw ≈ 1− SW

a
c1 ln(cS). (3.21)

Note that the original expansion is valid only for (1 − ξ)Sπ−1 ln(cS) � 1, or
equivalently, as long as 1 − prw � 1. This would thus make a more precise
definition of a ‘small lattice’.

The constant c1 takes the value 1/π for the square lattice case (a), and
c1 =

√
3/(2π) for the triangular lattice (b), respectively. The crucial factor c

inside the logarithm appears in the different guise c2 in Montroll [42], which is
related to ours by c2/c1 = ln c. For the square lattice this ratio reads

ln c =
π

3
+ 2

(
γ − lnπ +

1
2

ln 2
)

+ 4
[
e−2π +

3
2

e−4π +
4
3

e−6π + . . .

]
≈ 0.612807020,

whereas for the triangular lattice one obtains

ln c =
π

2
√

3
+ 2

(
γ − lnπ +

1
2

ln 3
)
− 4

[
e−
√

3π −3
2

e−2
√

3π +
4
3

e−3
√

3π − . . .
]

≈ 0.853262084.

We used standard rounding and checked the consistency of the numerical evalua-
tion against, first, the original figures and, when available, the improved ones
from den Hollander and Kasteleyn [52].

The proper continuum limit of these results will be analyzed in Section 3.5,
not only because it is of genuine theoretical interest, but also to compare with
results of the diffusion approach.

3.3.5 A Heuristic Derivation

This Section describes an argument that originally was presented in Lohmar and
Krug [7] to re-cover the results of the diffusion model on the sphere. It is given
here as it is based on random walk considerations; the fact that it may serve
as an explanation for continuum models as well will be briefly returned to in
Section 3.5.

All asymptotic results obtained so far have a characteristic logarithmic factor.
Its argument is of the order of the number of sites that the random walk of
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the moving atom has seen (we still consider the first H atom fixed and present
throughout, as explained at the beginning of Sections 3.2 and 3.3.2): For the
two-dimensional random walk, a well-studied quantity is the number of distinct
sites the walker has visited in n� 1 steps. It is asymptotically given by

Ndis ≈
πn

C ln(Bn)
,

where C and B are constants depending on the lattice type, viz. C = 1 and B = 8
for the square, and C =

√
3/2 and B = 12 for a triangular lattice, respectively

(Montroll and Weiss [54], or Hughes [55] as a textbook reference). Note that the
above Ndis is the leading term of an asymptotic expansion, and thence a poor
estimate for moderate values of n. We relate the number of steps to the time
passed by n = at, which is a good approximation for n� 1.

Our reasoning is complemented by the effective residence time tres of the
moving atom in the two limiting regimes. For the encounter probability very
small (large grains / lattices), only a small portion of the grain is explored,
and (to first order in a/(SW )) the residence time is governed by desorption,
tres ≈ 1/W . The atom has thence performed n = a/W hops and visited
Ndis ≈ (π/C)(a/W )/ ln(Ba/W ) distinct sites. Since the encounter probability
averages over all spatial initial conditions, it is simply given by the ratio Ndis/S,
such that

prw,heur ≈
πa

CSW

1
ln(Ba/W )

.

Comparison with (3.20) shows that both expressions agree exactly including the
pre-factor inside the logarithm.

On the other hand, for an encounter probability near unity (small grains /
lattices), the stay of the atom is almost always ended by recombination, hence the
residence time reads tres ≈ 1/A. By this time, the entire grain has been explored,
and the number of distinct sites visited has saturated at Ndis(n = atres) ≈ S.
Inversion (again to first order) yields tres ≈ S ln[BC/π · S] · C/(πa). The atom
desorbs prior to any reaction with probability 1 − p, or alternatively in this
regime with a probability given by the desorption rate W times the residence
time 1/A. This gives

prw,heur ≈ 1− CSW

πa
ln[BC/π · S].

We have to compare to prw as of (3.21), wherein a factor c1 occurs. It can be
read off to satisfy c1 = C/π for the types of lattice considered here, so that again,
pre-factors and functional dependence of both results agree. The pre-factor inside
the logarithm has to be evaluated numerically, which yields lnBC/π values of
0.934711656 . . . and 1.196335728 . . . for type (a) and (b) lattices, respectively,
to be compared with the values of ln c given in Section 3.3.4. This is not a good
agreement, but understandably so: Not even accounting for the nature of the
Ndis expansion, the ensuing heuristic derivation assumes the walker does not die
until it has visited all S sites, and is based on the inversion of the transcendental
equation Ndis(at) = S, which is approximated by one iteration. It is the very
pre-factor just mentioned that suffers from this approximation.
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3.4 The Distorted Lattice

3.4.1 Motivation and Basic Definitions

On the one hand we have seen that changes in the model to calculate p, which
one might have suspected to be of great importance, only leave a rather minute
imprint on the result: See, e.g., the comparison of the disc geometry with
reflecting boundary, compared to the closed surface of the sphere, Section 3.2.4.
We will find the same phenomenon in the overall comparison of the continuum
to the random walk models (Section 3.5) — all the time, the only difference in
asymptotic results for both regimes occurs solely in the pre-factor inside the
logarithm.

The corresponding discrepancies show in the same order of magnitude in
both cases, although in the first case (sphere versus disc), topology and boundary
conditions fundamentally differ, in contrast to the latter comparison. With
hindsight, this is strong quantitative evidence that curvature and connectivity
effects are not responsible for the difference between diffusion and random walk
model results, as we had considered at some point.

On the other hand one cannot deny that boundary conditions and the general
shape of the lattice should have some effect on random walk properties, at least
in certain regimes, and quite likely, on the encounter probability. Questions
concerning the influence of confined geometries, albeit without desorption and
hence focusing on mean first-passage times rather than on probabilities, have
been detailedly analyzed in a recent remarkable series of papers [56–58]. We have
experienced the peculiarity of spatial dimension two for the random walk and
the encounter probability — one question that naturally arises is what happens
for a large distortion such that the lattice becomes effectively one-dimensional?

To examine such effects, the random walk model suggests itself, i.e., we
continue to examine periodic torus lattices with lengths L1 and L2 now generally
different. The case L1 6= L2 will be referred to as rectangular, while L1 = L2 is
called quadratic. Note that we use the term square exclusively to label the lattice
type (internal structure) as opposed to its shape or geometry. We still assume
all lengths L1,2, `� 1 in view of the applications, and without loss of generality
set L2 ≤ L1, which might further be specialized to L2 � L1. Ordering lengths,
we then have the following three (instead of the former two) refined asymptotic
regimes:

• The earlier large-lattice regime 1� `� L2 ≤ L1.

• The intermediate regime 1 � L2 � ` � L1. This is a new situation for
rectangular lattices, where the walk easily sweeps one dimension but is
typically short compared to the other.

• The known small-lattice regime 1� L2 ≤ L1 � `.

We define the aspect ratio as µ := L2/L1 ∈ (0, 1].
The large-lattice regime will not be of much interest for the remainder of this

Section. As there, the walker does not feel boundaries, the double integral limit
of (3.19) appropriately yields a result merely depending on the total number of
sites S, not on the lattice lengths, cf. Section 3.3.3. Any analytical refinement for
the rectangular situation can only provide very limited insight, viz. regarding the
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nature and direction of subordinate corrections (depending on the aspect ratio
L2/L1) to the small encounter probability. These corrections are rooted in the
rare events when a random walker actually experiences the periodic boundary
and comes close to the target during one walk.

3.4.2 Plots of prw

We show the encounter probability prw on a type (a) square lattice as a function
of (the logarithm of) the aspect ratio µ, while keeping S and ξ constant inside
each graph (we checked that the type (b) lattice shows no qualitative difference).
Figure 3.3 starts in the small-lattice regime for the quadratic case (rightmost in
the plot), Figure 3.4 shows the results starting in the large-lattice regime, and
in both cases, we present one absolutely small (S = 4× 102) and one absolutely
large lattice (S = 4× 106).

−7 −6 −5 −4 −3 −2 −1 0
0.0

0.2

0.4

0.6

0.8

1.0

logµ

prw

Figure 3.3: Encounter probability (on a square lattice) as a function of logµ, for fixed
sizes S = 4× 106 (thick) and S = 4× 102 (thin), respectively, and SW/(4a) = 10−2 in
both cases.
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Figure 3.4: As Figure 3.3 with SW/(4a) = 1.

In each instance the encounter probability exhibits a stark monotonic decline
upon distortion (i.e., moving left in the Figures), although for the absolutely
small lattice, the shape is less pronounced and the curve ends at a fair fraction
of its peak value. First, we analyze separately several aspects of this behavior,
and finally we will put our findings together in a qualitative explanation.
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3.4.3 Extreme Distortion

The simplest situation arises if we use the two-dimensional prw result on a type
(a) lattice, but let one dimension shrink to a single lattice unit (S = L1L2 = L·1).
From (3.19) we then obtain

p−1
rw =

S−1∑
m=0

1− ξ
1− (ξ/2) (cos(2πm/S) + 1)

.

Second, we directly employ a truly one-dimensional lattice, where the sum for
an unbiased walk (different structure function!) reads

p−1
rw, 1d =

S−1∑
m=0

1− ξ
1− ξ cos(2πm/S)

,

different from the former limit. Obviously, prw, 1d > prw for a given number of
adsorption sites S and equal ξ.

Explaining this result for the “extremely distorted” situation will point out one
factor in the general problem. As the two-dimensional lattice is periodic, it has
now become a torus in which the one-lattice-unit direction is completely “wrapped
up”, and the walker still performs steps in this direction. Quite differently, the
genuinely one-dimensional walk only performs steps in the extended direction.
The net effect is that the two-dimensional walker wastes on average half of the
steps it takes, moving in the ‘wrong’ dimension and not coming any closer to the
target site. Indeed, this suffices to re-gain one result from the other heuristically:
The 2d-walk then corresponds to a 1d-walk with the same desorption rate W , but
with the undirected hopping rate effectively halved by the useless waiting steps,
a→ a/2. This implies (1− ξ)/ξ → 2(1− ξ)/ξ, and minimal manipulation of the
two expressions given above yields that this casts the 1d-walk result into that for
the two-dimensional walk. A related phenomenon for an immortal walker in the
presence of an absorbing boundary has been explained comparing the structure
functions and equating wasted steps to a sojourn probability by Montroll and
Scher [59].

3.4.4 Generalization of the RW Result

The small-lattice asymptotics of Section 3.3.4 can be generalized to the case
L1 6= L2. The calculations are shown in some detail in Appendix A.7.

With some re-ordering we obtain the following generalization of P ∗(0; ξ) for
a distorted lattice:7

P ∗(0; ξ) =
1

L1L2(1− ξ)
+

lnL1

rπ(1− 2q0)

+
L2
3L1

+ 1
rπ [2γ + 2 ln(2/π)− ln(1 + η)] + S

(0)
3 /r

2(1− 2q0)

+
− 1

3 + (3η−1)π
36r

L2
L1

+ S
(1)
3 /r

2(1− 2q0)L1L2
+O(L−4) +O(1− ξ)1/2,

(3.22)

7To stay close to the notation in Montroll [42], we re-use the notation r and η only for the
remainder of this Section and in the associated Appendix A.7; these quantities are unrelated
to any radial coordinate or efficiency elsewhere in this Part.
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where, first of all, terms are arranged in orders of
√

1− ξ, as this is the smallest
quantity, and, inside, according to orders of L1,2. q0 is the probability for a
step into a lattice unit direction (cf. Appendix A.5), and r and η are defined in
Appendix A.7. Here it suffices to say that they take the values r = 1 = η for the
square lattice case (a), and r =

√
3/2, η = 1/3 for the triangular lattice case (b),

respectively. The sum contributions S(0,1)
3 have to be evaluated for the lattice

type at hand; we could easily do this only for the square lattice, for which they
read (r = 1 = η and q0 = 1/4 inserted)

S
(0)
3 =

4
π

(
e−2πµ +

3
2

e−4πµ +
4
3

e−6πµ + . . .
)
,

S
(1)
3 = −4π

3
µ
(

e−2πµ +3 e−4πµ +4 e−6πµ + . . .
)

+
8π2

3
µ2
(

e−2πµ +6 e−4πµ +12 e−6πµ + . . .
)
,

(3.23)

Note however that also for the triangular lattice, S3 can be expected to be a
small correction (in the vicinity of the quadratic lattice) to the other terms in
P ∗(0; ξ).

The expansion is asymmetric in the lattice lengths, since they enter different
approximations: In the given form, L2 is the limit of the sum which is exactly
and explicitly evaluated (see Appendix A.5), whereas L1 is the limit in several
Euler-MacLaurin formulas. Clearly, one expects the expansion to fit best for
L2 ≤ L1, and this is the ordering we will assume consistently.

We collect the assumptions entering the result: We need L1L2(1− ξ)� 1,
since otherwise, the overall form of the expansion is meaningless., cf. Eq. B35
of Montroll [42]. Further it is crucial that the evaluated sum limit is small,
L2 � ` =

√
ξ/(1− ξ) ≈ 1/

√
1− ξ, for the first summand’s expansion to converge

(ibid. Eqs. B11f.), and the other large for the Euler-MacLaurin formula,
L1 � 1. Finally, the aspect ratio L2/L1 must not be too small as to allow
convergence in Eqs. B28ff. ibid., also see (3.23). These conditions are satisfied in
the small-lattice regime whenever L2/L1 does not become too small, and for the
intermediate regime provided that additionally, L1L2(1− ξ)� 1.

Obviously one could exchange the roles of the lengths L2 < L1 in the
derivation, the sum evaluated in the 1-direction instead. Therefore, the results
above will remain valid upon swapping L1 against L2 as long as the corresponding
conditions remain satisfied; we call this the ‘swapped-lengths’ version. Owed
to L1 � ` we are restricted to the small-lattice regime, and detailed inspection
of the B28 derivation of Montroll [42] shows the remaining condition to read
L1/L

3
2 � 1.

Checking for consistency between the two expressions has to take place in
the small-lattice regime and has to account for the changing orders of several
terms. A numerical comparison between both approximation versions and the
exact prw showed that in fact, the swapped-lengths version better reproduces
the exact result, not bothered by the aforementioned convergence issues. This
is a minute problem, and both versions agree with each other and the exact
result (for a square lattice) over a certain range of distortions. We tested
µ = L2/L1 = 1/4 . . . 1 for the small-lattice regime with S = 4 · 106, a/W = 108,
where the swapped-lengths version agrees with the exact result farther down to
µ ∼ 1/10.
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3.4.5 Small Distortion

With the result of Section 3.4.4 we can complement our earlier study of extreme
distortion by an analysis of the effect of a small deformation of the quadratic
lattice. What are the effects of the global change of geometry on the random walk
if we start to distort a quadratic lattice of S = L2 sites, keeping W/a and S fixed.
The latter requirement is crucial since (as can be seen from previous results)
changing S would dominate more subtle effects, hindering us from distorting to
“nearby” integer lengths as (L− 1)(L+ 1) = S − 1.

Instead, we will treat prw as a function of µ, S and ξ, where we keep the latter
two arguments constant and assume µ to vary continuously. The local behavior
around the quadratic shape value µ∗ is meaningful provided higher-order terms
do not restrict its validity to an interval too small. We do not feel this is a
restriction, essentially since we cannot conceive of a mechanism that could render
prw|S, ξ=const, µ≤µ∗ non-monotonic.

Here we focus on the small-lattice regime for two reasons: First, one expects
aspect ratio effects to be most prominent there, second, we there know the
general asymptotic behavior from Section 3.4.4. Intermediate lattices are out of
reach starting from a square lattice, and large lattices were argued before to be
rather insusceptible to distortion.

We have d2p/dµ2 = [S(1 − ξ)]−1 d2(P∗(0;ξ))−1

dµ2 , and at the extremal point,
d2(P∗(0;ξ))−1

dµ2 = −(P ∗(0; ξ))−2 d2P∗(0;ξ)
dµ2 , since the first derivative dp/dµ|µ=µ∗

vanishes due to L1 ↔ L2 symmetry of p. All we need to know here is the sign of
the second P ∗(0; ξ) derivative. We employ the approximation of Section 3.4.4
and suppose that the dominant contributions to P ∗(0; ξ) also dominate the sign
of the second derivative. The mere µ dependence of the expression (in terms of
S and µ instead of any lengths) then reads

P ∗(0; ξ) = const +
ln
√
S/µ

rπ(1− 2q0)
+
µ/3 + S

(0)
3 /r

2(1− 2q0)

+
(3η−1)π

36r µ+ S
(1)
3 /r

2(1− 2q0)S
+O

(
L−4, (1− ξ)1/2

)
,

whence in the second derivative, only the S3 contributions and those from the
square root term survive, viz.

d2P ∗(0; ξ)
dµ2

≈
1
πµ
−2 + d2(S(0)

3 + S
(1)
3 /S)/dµ2

2r(1− 2q0)
.

The S(1)
3 contribution is irrelevant due to the S−1 factor, and

d2S
(0)
3

dµ2
= 16π

(
e−2πµ +6 e−4πµ +12 e−6πµ + . . .

)
,

where (as before), we only treat case (a) with r = 1 = η. We numerically evaluate
this at µ = 1 and obtain an approximate figure of 0.095. Thence, d2P∗(0;ξ)

dµ2 > 0,
and consequently, d2p/dµ2 < 0: The encounter probability of the random walk
in the small-lattice regime has a maximum for the quadratic lattice, and it
decreases with any distortion from this shape.8 This is the quantitative basis for
the heuristic arguments in Section 3.4.7.

8We checked by numerical evaluation that P ∗(0; ξ) is monotonic, or equivalently, that the
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3.4.6 The Quasi-One-Dimensional Limit

Between the quadratic and the extremely distorted cases we want to clarify the
nature of the transition to one-dimensionality. We will examine a lattice whose
macroscopic structure approaches one-dimensionality as the aspect ratio goes to
zero.

To this end we first establish a relation between the regimes of the one-
dimensional and the distorted two-dimensional lattice. The 2d-large-lattice
regime is characterized by ` being the smallest length scale, which does not
sensibly correspond to any one-dimensional regime. This obviously implies that
the large-lattice regime of a one-dimensional lattice (length L � `1d) is the
analogue of the 2d-intermediate lattice given by 1 � L2 � ` � L1: In both
cases, exactly one lattice dimension is much larger than the typical random
walk length. The analogy is intuitive, as a 2d-intermediate lattice, with an `
circle around the fixed target, looks just like a one-dimensional large lattice
when viewed “from afar”. Similarly, the 2d-small lattice (1 � L2 � L1 � `)
corresponds to the 1d-small lattice 1 � L � `, both defined by the diffusion
length that easily extends over the lattice size.

Next we have to determine the proper scaling limit of all lengths in the
2d-small-lattice regime that enables us to apply (3.22) of Section 3.4.4. We
let the largest length ` approach to infinity and express L1,2 in powers of `.
To allow for µ = L2/L1 → 0, we opt for the swapped-lengths version. Let
L1 ∼ ` and L2 ∼ `1/2 (for the latter, any exponent in [1/3, 1) works, the lower
bound presumably an artefact of the details of the involved approximations
only). Then L1/L

3
2 ∼ `−1/2 → 0, which satisfies a central assumption for the

approximations, while L1/L2 ∼ `1/2 →∞, so that the S(0),(1)
3 terms also vanish.

Further, L1L2(1−ξ) ∼ `−1/2 → 0 and L1/L2 ·L1L2(1−ξ)→ const. This scaling
describes a situation where all lengths diverge, but the larger lattice dimension
proportional to the random walk length, while the smaller length increases more
slowly, hence distorting the lattice to vanishing aspect ratio L2/L1.

If we combine these results we get that

p−1
rw ≈ 1 + L1L2(1− ξ)

{
lnL2

rπ(1− 2q0)
+

L1/L2

6(1− 2q0)

}
, (3.24)

where we omitted higher-order terms in the brackets. In this form, logarithmic
correction terms (and coequal O(1) terms in P ∗(0; ξ)) can be seen to extinct,
but the second correction term actually approaches a constant. Neglecting all
higher-order terms thence yields

prw ≈ 1− L2
1(1− ξ)

6(1− 2q0)
= 1− (L1/`)2

3
,

where in the second step we naturally chose a square lattice (q0 = 1/4) and used
1− ξ ≈ `−2 to leading order. The corresponding outcome of the one-dimensional

first derivative of P ∗(0; ξ) indeed does not change its sign from µ = 1 to µ = 1/4, corresponding
to the distortion L1 → 2L1, L2 → 1

2
L2 from a quadratic lattice with even lengths L = L1 = L2.

Again we used the swapped-lengths version of (3.22) to avoid convergence issues and improve
agreement with the exact result, for details cf. Section 3.4.4; the conditions for this to be
allowed are easily satisfied.
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small-lattice regime (A.9) implies (cf. Appendix A.8)

prw, 1d ≈ 1− (L/`1d)2

6
.

The proper scaling limit thus produces a crossover from logarithmic correction
terms in the full two-dimensional small-lattice regime to the squared length ratio
correction we found for the corresponding genuinely one-dimensional small-lattice
regime. The result only depends on the larger length (scaling as the random
walk length), while the smaller one has disappeared. As it should be, with the
appropriate rescaling of the random walk length, `1d → `/

√
2 (which respects

that the number of steps is split up between the two dimensions, as explained in
Section 3.4.3 and in Appendix A.8) we recover the precise numerical pre-factor
of the leading correction term.

We finally remark that the crossover behavior also holds for lattice type
(b), due to the fact that the (swapped-lengths version) S3 terms still vanish
for L1/L2 → ∞, as can easily be seen from the details of the derivation (not
shown). This vanishing is forced, because the eventual 1d-limit on the level
of the (symmetric) structure function only admits a freedom of choice in the
(effective) sojourn probability, irrelevant for the encounter probability.

3.4.7 Discussion of Figures 3.3 and 3.4

It is now appropriate to put the piecewise explanation of the previous Sections
together for a thorough understanding of how the behavior of Figures 3.4 and 3.3
arises. S and ξ are kept constant ‘inside one plot’.

The cumulative effect of full distortion from the quadratic shape to a S · 1
lattice strongly depends on the absolute lattice size: For an absolutely large
lattice, the minimum probability drops to less than 0.5% of that in the quadratic
case peak of prw (henceforth in this Section p for brevity), while 1/6 of the peak
value is left on the absolutely small lattice. For the quadratic case, either p ∼ 1
or p ∼ (a/W )/S, but invariably, lattices end in their 1d-large-lattice regime
(with halved hopping rate), where p1d ∼

√
a/W/S, see Appendix A.8. For

given quadratic lattice regime SW/a but allowing S to vary, p is unaffected,
whence p/p1d ∝ S

√
W/a =

√
SW/a

√
S ∝

√
S holds in both regimes. The

two-dimensional walk misses many sites with increasing length,9 yet still sweeps
an area ∼ `2 in the large-lattice limit; there, the one-dimensionality of the
extremely distorted case (in the 1d-large-lattice regime) changes the ` power to
the unfavorable. In contrast, starting from a quadratic 2d-small lattice, distortion
could only yield minute corrections to near-perfect encounter probability.

The shape of the prw decline is governed by two cooperating effects both
decreasing the encounter probability on distortion, related to the dynamics and
the initial conditions of our problem.

As for the dynamics, ‘wasted steps’ (described in Section 3.4.3) in the smaller
lattice dimension have an impact on the exploration of the surface. There
surely are no steps wasted close to quadratic shape, but even close to maximal
distortion, where the effect is strongest, it only halves the hopping rate, or
equivalently modifies the random walk length by an O(1)-factor. This hardly

9van Wijland et al. [60] give a detailed analysis of the support of the two-dimensional
simple random walk with some far-reaching intriguing results.
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shows on our logarithmic scale, since we only expect power-law behavior of p
in the lengths. Once L2 � `, motion in the 2-direction is indeed ‘wasteful’, as
more steps or further reduction of L2 no longer facilitate reaching the target:
The walker’s residence probability is already spread out in this direction, and
uncharted waters can only be explored by stepping out in the other dimension.
But whenever this significantly worsens the chances to reach the target on
distortion, it is a result of increasing the larger lattice length exclusively. If we
introduced two different random walk length scaling with lattice dimensions
(e.g., by an anisotropic hoping rate), nothing would change at all. The dynamic
effect amounts to distortion changing the ratios L1,2/`, which may switch the
(refined) regimes and enter asymptotic expressions (they determine how fast the
lattice is swept in one direction, or how much of it is swept at all).

The ‘static’ effect is independent of the dynamics and solely depends on
initial conditions. Throughout, deposition of the walker is taken as homogeneous.
Even when, in the small-lattice regime, the largest parts of the lattice will be
explored by most walks, it is still an obstacle for the individual walk if it starts
further away from the target. A simple sketch then suffices to see that as soon
as the lattice becomes distorted, the whole distribution of initial distance to the
target (in particular its average) is shifted to larger distances. In the large-lattice
regime, a ‘sharp’ region of radius ` around the target is not directly affected,
but the spatial probability distribution of an immortal walker is then essentially
a Gaussian spreading with time: Moving sites slightly further away strongly
reduces the chance of a walker to reach the target from there in a given number
of steps. Therefore, rare long and successful walks are additionally suppressed
by shifting the initial distance distribution. The effect is amplified only further
by the exponential distribution of the number of steps taken during the walker’s
lifetime.

Depending on the absolute lattice size, the regimes, and the aspect ratio of
the lattice, it is not easy to quantify the relative impact of both effects. We
will analyze the different regimes of L1,2 and ` to explain their influence; any
numerical O(1) factors in the comparisons will be omitted.

In the large-lattice regime `� L1,2, the walk is always two-dimensional in
nature. We earlier argued that different lengths of the lattice hardly have any
effect here, and the encounter probability reads p ∼ `2/S � 1, independent of
the aspect ratio. This region is seen in the small peak plateau at the right of
Figure 3.4. Only the static effect might be important here.

The small-lattice regime L1,2 � ` has p . 1. A small fraction of walks
do not lead to recombination, but in this regime, avoiding the target does
not become much easier when the lattice is distorted. The aspect ratio then
determines whether the random walk behaves essentially one- or two-dimensional.
From (3.24) of Section 3.4.6 we expect a crossover between these regions at an
aspect ratio of roughly µ = 1/ lnL2 below which (small-lattice) one-dimensional
behavior prevails, namely p ≈ 1− (L1/`)2/3. Though, apart from the absence of
logarithmic corrections, this is very different from the two-dimensional behavior
in that only the larger length enters, we cannot spot it in the plots, since the
respective term has to be small anyway for the expression to be applicable. This
implies that again, there is but a minute effect of distortion, cf. the peak plateaus
in Figure 3.3. Actually, those plateaus are more pronounced here compared to
the corresponding large-lattice plots, since even the static effect has no more
significant influence — basically the whole lattice is swept anyway.
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The intermediate case L2 � ` ≤ L1 is more complicated, since it is unclear
whether dying or meeting the target dominates the residence time of the walker
and the magnitude of p. Again, the aspect ratio decides whether we deal
with a genuinely two-dimensional lattice, or rather one so elongated it is of
one-dimensional nature.

For µ = L2/L1 � 1 extremely small, the system is effectively one-dimensional
in its 1d-large-lattice regime. Homogenization in the L2-direction is much faster
than the spreading in the L1-direction then, and the probability to reach the
target becomes that of reaching the projection of the target position onto the
L1-dimension. This roughly coincides with the probability for the walker to start
within a reach ` of the projected position which reads p ∼ `/L1. Appendix A.8
justifies this reasoning for an effectively one-dimensional intermediate lattice.

However, for aspect ratios not small enough, the nature of the two-dimensional
random walk wins: spreading without densely visiting the swept area, but with
increasing ‘sponginess’ of the set of visited sites, the specialty of spatial dimension
two. We are led to expect a dependence on S/`2 with characteristic logarithmic
corrections similar to the quadratic case. For moderately small L2/L1 we employ
the result of Section 3.4.4 provided that (L1/`)(L2/`) � 1, which leads to
p ≈ 1− (S/`2)c1(const.+ lnL1), a functional dependence similar to the small-
grain quadratic lattice expansion. We could not determine the crossover aspect
ratio between these behaviors, because in this regime, the expansion breaks on
the way to the one-dimensional asymptotics. For the quadratic periodic lattice,
the logarithmic correction emerges from integration of the slowly decaying return
probability of long walks. With a distorted lattice, the dominant bounding
contribution stems from the larger length only, as is most easily seen by rescaling
the approximate integral expression, Appendix A.6.

We have described in detail the intermediate regime because it is responsible
for all the behavior of the plots in Figures 3.3 and 3.4 outside the plateau
around the quadratic shape. Invariably, once the larger (smaller) length of
L1,2 becomes of the order of `, depending on whether we started in the small-
(large-)lattice regime, we observe the onset of a linear decline on a logµ scale
(∼ − lnL1 ∝ 1

2 logµ with S constant) — this is precisely the condition to enter
the intermediate regime along with its predicted two-dimensional behavior.

In the leftmost (most distorted) part of the Figures, the absolute lattice
size becomes crucial. On absolutely large lattices (thick lines in the Figures),
the linear decline ends in an exponential shape close to full distortion, as we
end up with effective 1d-large-lattice behavior p ∼ `/L1 as argued above. The
crossover aspect ratio is read off to be roughly between 1/400 and 1/1000. It is
no longer sensible to separate a dynamic from a static effect here: The latter one
considers the number of sites in reach ` of the target, reading 2L2` to leading
order, whence for constant S we also obtain p ∼ L2`/S ∼ `/L1.

Quite the contrary, the absolutely small lattices (thin lines in the Figures)
nowhere clearly deviate from the 2d-intermediate-regime decline down to full
distortion. First, the overall decline is now less extreme, as explained before. In
fact, the exponential tail on the absolutely large lattices provides precisely the
decrease of the remaining ∼ 15% of the peak value that are still present for fully
distorted absolutely small lattices. Second, we are still in the 1d-limit for full
distortion. But leaving µ = 1/S, two-dimensional effects and the corresponding
logarithmic terms (linear on our scale) immediately dominate the p behavior,
because the aspect ratio is far less extreme than for the absolutely large lattices
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— consistently, the crossover aspect ratio determined there is not reached here.

3.5 Model Comparison and Convergence

So far, we have examined two models to obtain the encounter probability, which
differ in their basic nature: Continuum diffusion versus a lattice model. For the
diffusion model, we already compared the sphere to the flat disc, and despite other
boundary conditions and curvature, found good agreement in the asymptotic
results. In the random walk analysis, we checked against a heuristic derivation
from long-known random walk results and find a similar agreement. It is now
mandatory to compare the continuum with the discrete approaches, and this
will provide important information for the comparison between analytical theory
and simulations (Chapter 4).

We first determine the proper scaling of the discrete random walk parameters
to perform the continuum limit. We have to stay in the same regime of the
system, hence we need to keep both ratios Lj/`, and consequently SW/a, fixed.
Further, the aspect ratio has to be conserved, whence L2/L1 is kept constant
as well (this point is moot as long as we use quadratic lattices, i.e., L1 ≡ L2

anyhow). Subject to these constraints, we then let the number of lattice sites
become very large, S → ∞. This joint limit preserves all quantities of our
expressions depending only on the ‘regime parameter’ ∼ S(1− ξ), hence we can
analyze separately the asymptotic results obtained for the two regimes of the
quadratic lattice.

Throughout, we allow for walkers to meet by coinciding initial positions, and
corresponding terms in the diffusion models will be incorporated as well; that is,
we always use p and not p̃.

3.5.1 Large Grains

Translating the diffusion model result (3.15) via the relations given in Section 3.7,
one has

pdiff ≈
4ga
SW

1
ln(4a/W )− 2γ

,

with g = π/4 for the square lattice, and g = π/(2
√

3) for the triangular lattice,
respectively. The corresponding random walk result is (3.20),

prw ≈
πa

CSW

1
ln(Ba/W )

,

with B, C as found in Section 3.3.3 and explicitly defined in Section 3.3.5.
Comparison of the factors g and C immediately shows that for our cases 4g =
π/C, therefore not only the functional dependence, but also the numerical
pre-factors of pdiff and prw coincide once again.

The pre-factor inside the logarithm however clearly differs, which only be-
comes irrelevant in the true limit S →∞. Note specifically that in the diffusion
result, there is no longer any imprint of the lattice type, as opposed to the
discrete result. We should emphasize that (e.g., in Section 3.2.3) care was taken
that in the given form of the asymptotic expressions, all omitted terms are of
higher order, particularly in the denominator expression, where further terms
are of ‘polynomially’ smaller order than unity.
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With this, we calculate the relative error of pdiff with respect to the random
walk expression,

∆ =
lnB − 2(ln 2− γ)

ln(a/W ) + 2(ln 2− γ)
.

With 2(ln 2 − γ) ≈ 0.23 and taking into account the values of B this implies
that in the large-lattice regime, the diffusion model result for the encounter
probability systematically exceeds that given by the random walk. Although the
discrepancy vanishes in the continuum limit S →∞, it does so only very slowly,
like 1/ ln(a/W ) or as 1/ lnS (since SW/a = const.).

3.5.2 Small Grains

The earlier asymptotic results for small lattices read

pdiff ≈ 1− SW

4ga
[ln(S/g)− 1] ,

with the lattice factor g as before, while the random walk derivation yielded (3.21),

prw ≈ 1− SW

a
c1 ln(cS).

We observe that pre-factors satisfy c1 = 1/(4g), and once more, the pre-factors
as well as the functional dependence of both expressions agree.

For the pre-factor inside the logarithm, we have, on the one hand, the
numerical values of ln c as given in Section 3.3.4. The analogous factor in
the diffusion model result reads − ln g − 1, and numerical evaluation provides
−0.758435525 . . . and −0.902276561 . . . for types (a) and (b), respectively, both
completely off. The discrepancy here is much stronger than in the comparison
of the exact random walk asymptotics to the heuristically derived, although the
latter was flawed by several approximations, cf. Section 3.3.5.

For S →∞ with SW/a = const. we will eventually still leave the small-lattice
regime as p drifts away from unity, cf. the remark in Section 3.3.4 regarding the
used expansion. Therefore, here the discrepancy between the models is more
appropriately measured by the relative deviation of the complements 1− p,

∆′ = − ln(cg e)
ln(cS)

< 0

for the diffusion model outcome relative to that of the random walk. Again the
diffusion model encounter probability systematically exceeds that obtained from
the random walk model, and again, this discrepancy vanishes only logarithmically
slowly as the system size S →∞.

3.5.3 Results

We have established that the asymptotics of the random walk encounter probabil-
ity prw differ from its diffusion model analogon pdiff in logarithmic terms. In the
true continuum limit S → ∞, W/a → ∞ with SW/a = const., this difference
eventually vanishes, however, it does so only logarithmically in the system size S:
This slow convergence is inevitable, and a direct consequence of the marginality
of spatial dimension two for the random walk and diffusion. Note that, especially



36 Chapter 3. Analytical Results

4 6 8
0

5

10

15

20

25

logS

100 · δp/p

(a) SW/(4a) = 10−3

4 6 8
0

5

10

15

20

25

logS

100 · δp/p

(b) SW/(4a) = 10−2 (still a small lattice)

Figure 3.5: Relative difference (per cent) of 1 − pdiff w.r.t. 1 − prw, type (a)
(dashed / squares), type (b) (dotted / triangles); thinner lines the prediction −∆′.

for the comparison of discrete-space simulations to analytic results, this might
be a crucial point.

To illustrate the magnitude of the effect, we thence plot the relative discrep-
ancy of the exact result of the diffusion model pdiff w.r.t. that of the random
walk prw per cent, i.e., 100 · (pdiff − prw)/prw for the large lattice regime; for
the small-lattice plots, this is substituted by the relative difference of the com-
plements (1− p). For each plot, lattice sizes are chosen such that the lengths
L1 = L2 = L are integers most closely yielding S = 4 · 102, 4 · 103 . . . , viz.
L = 20, 63, 200, 632, 2000, 6325. At the same time, log(a/W ) = 2, 3 . . . in-
creases with the lattice size, whence the ‘regime’ parameter SW/(4a) stays nearly
constant and we properly approach the continuum limit. We also show the error
estimates ∆ and ∆′ as appropriate for the given regime.

We find that the error predictions nicely agree with the discrepancy of the
exact results in both regimes, and with increasing precision the further we delve
into a certain regime. This also verifies that the different asymptotic results
(used to derive the estimates) are inherent in the respective models, not due to
any relevant terms erroneously omitted. The discrepancy shows the expected
slow logarithmic decrease in the system size throughout, and it is obviously
considerable even for the largest lattices, where still, the error increases the
further we enter one regime.

While we have not examined the hexagonal lattice in the full random walk
result, it is known that in the Ndis expression used in the heuristic derivation
of Section 3.3.5, one has C = 3

√
3/4 [55]. Hence the identification C = π

4g still
holds in this case (cf. Appendix A.1), and the agreement of the leading-order
behavior between diffusion model and the heuristic random walk result extends
to the hexagonal lattice.

3.6 On Lattice Type Effects

Chang et al. [23] performed kinetic Monte Carlo simulations of the hydrogen
recombination system, on the basis of which they argued that the lattice type
(e.g., simple square or triangular) substantially affects recombination efficiency.
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(a) SW/(4a) = 100 (already a large lattice)
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Figure 3.6: Relative difference (per cent) of pdiff w.r.t. prw, type (a) (dashed / squares),
type (b) (dotted / triangles); thinner lines the prediction ∆.

This was suspected a result of supposedly higher encounter probability on lattices
with higher coordination number due to less back-diffusion.

From the standpoint of the diffusion model that preceded the random walk
analysis in our work, such claims do not appear entirely unreasonable: We have
to rule out the possibility that the continuum approximation is fundamentally
flawed in this respect. Although the transition from a lattice walk to continuum
diffusion obliterates the basic differences of lattice types, most properties of a
random walk are immune to this limiting process. The effect of different types
of lattice on the encounter probability obtained in the diffusion model is carried
by the lattice factor g occurring in the expressions of Section 3.2.3.3, and is
owed to back-diffusion (for the effect of the latter cf. also Section 3.7.2). On
the other hand, the effect of back-diffusion is most easily quantified in terms of
Ndis, the number of distinct visited sites, as explained in Section 3.3.5. From
the comparison of models in Section 3.5 it then follows that the diffusion model
accurately represents lattice type effects on this fundamental level, and at least
to leading order in the asymptotic expressions.

To explain our findings contrary to the above claim, note that back-diffusion
is not a local effect. Typically, a two-dimensional random walker does not return
to the site he currently occupies by stepping out and then reversing this step,
which would occur with a probability equal to the inverse coordination number.
In fact, the major contribution to the return probability stems from paths of long
intermediate excursions before eventually coming back. This does not contradict
the observation that qualitatively, the sweeping rate indeed obeys the behavior
implied by the ‘immediate-return’ assumption, as it scales with g (for large
grains), which increases with the coordination number (cf. Section A.1).

Our result is strengthened by the agreement of all ways, including the rigorous
random walk analysis, to derive the asymptotic behavior of p. They differ only
in sub-leading terms, but predict identical functional form and a coinciding
leading-order dependence on the lattice type, namely as a mere factor close to
unity. Section 3.9.1 will show that the difference in p due to the lattice type
(square, triangular, or hexagonal) has an equally minute effect when used in
the master equation recombination efficiency (asymptotically in both regimes).
There we offer an explanation for the discrepancy with Chang et al. [23] as well.
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3.7 Effect on Sweeping Rate

The encounter probability p was originally introduced as an auxiliary quantity
to find the recombination rate [40] or the true sweeping rate A [7], respectively.
Therefore we shall now examine the sweeping rate inasmuch as it is changed
from the conventional approximation A ≈ a/S.

3.7.1 Asymptotic Behavior

Using the results of Section 3.3.4, for the small-grain regime SW/a � 1 we
obtain the sweeping rate (3.5)

A ≈ W

1− prw
≈ a/S

c1 ln(cS)
, (3.25)

where c1 is an explicit and c ∼ O(1) a numerical constant depending on the
lattice type, see Section 3.3.4. For large grains we have W/a � 1 � SW/a,
leading (Section 3.3.3) to a sweeping rate of

A ≈Wprw ≈
π

C

a/S

ln(Ba/W )
, (3.26)

where the lattice-dependent constants B and C are as defined in Section 3.3.5.
Compared to the conventional approximation (2.1), we see that in both limits,
the sweeping rate is reduced by a logarithmic factor.

3.7.2 Comparison with the Conventional Approximation
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Figure 3.7: Reduction factor of the true
sweeping rate w.r.t. the conventional ap-
proximation, for three different values of
the ratio W/a� 1.

We now compare the true sweeping rate
as obtained from (3.19) and (3.5) with
the conventional approximation a/S,
measured by the reduction factor

A

a/S
=
SW

a

prw

1− prw
.

The lattice structure will not concern
us in this Section, thence we restrict
ourselves to the square lattice case.

To illustrate the behavior derived in
Section 3.7.1, Figure 3.7 shows the re-
duction factor A/(a/S) plotted versus
the (logarithmic) grain size for three
values of W/a. For (absolutely) small
grains, all graphs converge, as once the
small-grain regime is entered, the reduc-
tion is no longer affected by W/a, cf.

(3.25). On the other hand for large grain sizes, the reduction approaches an
asymptotic value depending on W/a.

Obviously, the sweeping rate is considerably reduced throughout, but it may
be a bit surprising that it is most pronounced for large grains. This can be
understood as follows: The crucial effect in the reduction of A compared to the
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conventional approximation is back-diffusion — the fact that a random walker
revisits sites already seen. On small grains, however, this is not effective, as in
most cases, the whole grain is swept anyway; also, different values of W/a� 1
do not change the reduction factor since recombination (not desorption) limits
the residence time. With increasing grain size, desorption increasingly competes
with recombination as the limiting factor, and hence back-diffusion becomes
more effective. In the large-grain regime, this effect saturates (as a function of
the grain size), as basically all walks are ended by desorption, and increasing S
does not affect the single walk anymore.

In contrast to the effect of back-diffusion, we have seen in Section 3.1.1
that the change from the rate equation to the master equation description (for
〈N〉 � 1) is only important (and reduces the reaction rate) for small grains.
This is because it is due to another mechanism: The spatial confinement induces
a large encounter probability on such grains, which deforms the distribution
P (N) from its Poisson shape.

3.8 Master Equation Results

We have by now extensively discussed the encounter probability of two particles,
measuring the first-passage competition between reaction and desorption, and the
resulting sweeping rate. Ultimately, however, we want to know the reaction rate
or efficiency; moreover, this is the quantity that is most directly observable for
experimental systems like the interstellar cloud dust grains. As we have explained
in Section 3.1.1, only the master equation framework appropriately accounts for
fluctuations in the particle number on the grain by governing the time evolution
of the full distribution P (N). The zero-dimensional master equation reads

dP (N)
dt

= F [P (N − 1)− P (N)] +W [(N + 1)P (N + 1)−NP (N)]

+A [(N + 2)(N + 1)P (N + 2)−N(N − 1)P (N)]

(with minor modifications for N = 0, 1). For the stationary situation dP/dt ≡ 0,
the main analytical results of this approach are [19, 21]

〈N〉 =

√
F

2A
IW/A(2

√
2F/A)

IW/A−1(2
√

2F/A)
, (3.27)

η =
2RME

F
=

2A
F
〈N(N − 1)〉 =

IW/A+1(2
√

2F/A)

IW/A−1(2
√

2F/A)
, (3.28)

where F = fS is the total flux of reactants, and Iν(z) are modified Bessel
functions (see Appendix B.1). The definition of η is normalized to account for
the fact that it takes two atoms to form one molecule. The physically meaningful
set of parameters in these expressions consists in S, F/W , and W/A.

One should note that the ME does not include Langmuir-Hinshelwood
(LH) rejection, i.e., there is no repulsion of any impinging atoms due to a site
already being occupied. Such a rejection would imply a modification of the
impingement term in the master equation, namely F [P (N − 1)− P (N)] →
F
[(

1− N−1
S

)
P (N − 1)−

(
1− N

S

)
P (N)

]
, and using p̃ instead of p in calculat-

ing the sweeping rate A, thus only accounting for reactions triggered by hopping
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of already present adatoms. While the modification in the second half of the
impingement term could be absorbed in the (appropriately modified) corre-
sponding desorption rate term, one cannot do the same for the first half, and
consequently, the modified ME would differ significantly. Here we thence neglect
LH rejection, and appropriately we will use p as well for the numerical evaluation
in Section 3.9.

In Appendix A.9, we detailedly examine the analytical behavior of (3.27)
and (3.28). Here we only mention that in the regime of small mean particle
number on the grain, 〈N〉 � 1, one obtains

η /
2F
W

1
W/A+ 1

� 1.

Since p = 1/(W/A+ 1) according to (3.4),

η ≈ 2F
W
p, (3.29)

which coincides with the result found in Krug [40], Eq. 8 for small particle
number. On large enough grains, W/A � 1 and η = 2AF/W 2 [see also 21].
For W/A � 1 on the other hand (small enough grains), η ≈ 2F/W ; since the
meeting rate becomes very large, all atoms that impinge during the fraction
of time F/W � 1 when a possible partner is already present on the grain do
recombine (the factor 2 is the number of atoms involved in a reaction). This is
perfectly reasonable for a small mean particle number on the grain.

3.9 Experimentally Relevant Efficiency Behav-
ior

Here we will examine the effect of an altered sweeping rate on the master equation
efficiency, under relevant experimental conditions for interstellar dust clouds.
To facilitate comparison to previous work, we consider the following standard
scenario: Desorption and hopping are assumed to be thermally activated by the
grain temperature T , i.e.,

W = ν exp
(
− EW
kBT

)
, a = ν exp

(
− Ea
kBT

)
, (3.30)

where ν = 1012 s−1 is a uniform attempt frequency for the processes. From the
experimental results listed in Table 2.1, we choose the set Katz et al. [34] which
is commonly used [20, 21, e.g.]: For an olivine surface, analysis of temperature-
programmed desorption experiments yielded activation energies Ea/kB = 287 K
and EW /kB = 373 K (in more suitable units). The flux of H atoms is obtained
as F = nHvHπR

2, where nH is the number density of hydrogen atoms in the gas
phase, vH =

√
8kBTgas/(πmH) the thermal velocity of hydrogen atoms of mass

mH = 1.67× 10−24 g and temperature Tgas, and πR2 arises as the cross section
of spherical grains of radius R (we assume the perfect sticking of H atoms onto
the grain surface throughout). Finally, with the area density s of adsorption
sites we have f = F/(4πR2s) = nHvH/(4s).

We adopt typical parameters for an interstellar gas cloud from Biham et al.
[20], with a density nH = 10 cm−3 of H atoms in the gas phase at a temperature
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of 100 K. Their estimate s ≈ 2 × 1014 cm−2 for the site density on an olivine
surface, also derived from laboratory experiments, leads to an effective flux of
f = 1.8× 10−9 s−1. Altogether the physical parameters are hence given as

W

a
= exp

(
−86 K

T

)
,

f

W
= exp

(
373 K
T
− 47.665

)
. (3.31)

Our results are always obtained for a single grain of fixed size S. The more
commonly used production rate per unit volume RH2 is recovered by an average
over the grain size distribution according to

RH2 =
∑
S

RME(S)ng(S) =
∑
S

1
2
fSη(S)ng(S),

where ng(S) denotes the number density of dust grains with S adsorption sites.
The general expectation is a broad distribution of grain sizes with many small
grains dominating the total surface area [27, 28]. The influence of such a size
distribution on RH2 has been examined by Lipshtat and Biham [29]. Typically,
the total number density of dust grains is taken to be of the order of 10−12nH

[13].

3.9.1 Size Dependence

Here, we keep the grain temperature fixed at T = 10 K and focus on the size
effect on the recombination efficiency η. For the remainder of this chapter, the
true sweeping rate is evaluated using the random walk encounter probability
prw. Figure 3.8 shows that the reduced true sweeping rate (as compared to the
conventional approximation) also decreases the efficiency. The quick decline in
efficiency as one passes from the large- into the small-grain regime is shifted to
the left however, such that small grains have gained in importance relative to
the total efficiency. It is illustrative to compare to the outcome ηRE of using
the rate equation results consistently, i.e., employing the production rate (3.2)
with the mean particle number obtained as the stationary solution of (3.1).
The choice of the conventional approximation A ≈ a/S then eliminates any
dependence of ηRE on the grain size: 2A/F scales like S−2, and (3.1) implies
that 〈N〉 scales with S, so that powers of S cancel due to the special form of
a/S. Both scaling relations obviously break down using the true sweeping rate,
which introduces a far more complicated S dependence. Against intuition, this
would even render small grains more efficient than larger ones, the reason being
that for the RE result, the only size dependence arises because of the reduction
factor A/(a/S), see Figure 3.7. This is another illustration for a fact we already
mentioned (Section 3.7), namely that the substitution of the conventional a/S
by the true sweeping rate accounts for a different aspect of the problem and most
strongly affects a different regime than the replacement of the rate equation by
the superseding master equation framework.

Microscopic Monte Carlo simulations for the efficiency have been performed
in Chang et al. [23] using a continuous-time random walk algorithm. While
we find good agreement with their square lattice results and agree with the
identification of back-diffusion as the prime factor undermining the efficiency,
our results show only a minute increase in efficiency on the triangular lattice, in
stark contrast to the considerable improvement found ibid.
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Figure 3.8: Recombination efficiency η as a function of the grain size S on a 10 K
olivine grain in the standard scenario. The thick lines show η(S) as computed with the
master equation and the true sweeping rate (as found via the random walk model),
the continuous line standing for a square, the dashed one for a triangular lattice. The
thick dotted graph was plotted using a/S as in Biham et al. [20]. The corresponding
thin lines show the predictions of the rate equation treatment for the respective choice
of sweeping rate.

We have already argued in Section 3.6 that the lattice type (as far as
investigated herein) has a very weak effect on the level of the encounter probability,
independent of the model used to calculate p. We supplement this by an argument
that there is no pronounced effect on the recombination efficiency as well: As
argued in Sections 3.3.5 and 3.7.1, for large grains we have A ≈ WNdis/S.
Consequently, the asymptotic large-grain value of A for the triangular lattice
exceeds that for a square lattice by a factor of 2/

√
3 ≈ 1.15, the ratio of the

respective values of g or C−1. On the other hand, we have η ≈ 2AF/W 2 from the
large-grain behavior of the master equation result, and the aforementioned ratio
should reappear in the efficiencies, which is in good agreement with Figure 3.8.

Commenting on the discrepancy to Chang et al. [23], we believe it is most
likely due to a different scaling of rates: While we kept the undirected hopping
rate a fixed in the comparison of square and triangular lattices, according
to (3.30), it appears to us that in Chang et al. [23], the directed hopping rate
was held constant. This entails an undirected rate a larger by a factor of 3/2 for
the triangular lattice, which is of the correct order of magnitude to explain the
change in η found ibid., judging by the above approximations.

We cannot, however, completely rule out that lattice effects could be more
pronounced in a many-particle situation, for which the zero-dimensional master
equation formalism neglects all correlations.

3.9.2 Temperature Dependence

From an astrophysical point of view, the whole puzzle of hydrogen recombination
in interstellar dust clouds is about the temperature window in which this process
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is efficient; hence the temperature dependence is a most interesting aspect of the
recombination efficiency. The temperature window arises from two factors: At the
upper temperature bound, desorption has become so fast compared to hopping
that the encounter probability of two atoms is virtually zero. At the lower bound
however, desorption is suppressed so much that the grain coverage becomes of
the order of unity. Once this happens, LH rejection becomes important: Atoms
that impinge on adsorption sites already occupied are repelled, therefore the
fraction of impinging atoms that participates in recombination events becomes
very small.

Simulations of the system in Chang et al. [23] show results close to the
analytical results of Biham et al. [20] in the efficiency peak, and somewhat
smaller for still higher temperatures, both facts as expected in our model,
compare, e.g., the fixed-temperature plot in Figure 3.8.

We focus on the effect of the sweeping rate here. Note first that we do not
include LH rejection, as there is no feasible way to incorporate it in the master-
equation framework. Therefore, we may only examine the high-temperature
breakdown starting from the peak efficiency, where LH rejection should already
be negligible [20]. Using (3.31) we obtain a rough estimate for the temperature
at which our results fail: The mean coverage of H atoms on the grain is of the
order of f/W . A temperature where this coverage becomes of the order of unity
surely is beyond the validity of our assumptions, and this temperature is given
by TLH ≈ 7.8 K.

For fixed grain size (hence total impingement flux), the recombination effi-
ciency is governed, first, by the relation between (fixed) S and the temperature-
dependent W/a which determines the regime, and second, by the average number
of reactants on the grain, smaller than but of the order of F/W . For increasing
temperature, W/a increases and F/W decreases. This means we approach the
large-grain regime with its small encounter probability, while the mean num-
ber of H atoms drops down, and both effects prohibit efficient recombination.
Lowering the temperature, we enter the small-grain regime with almost certain
encounters and an increasing mean coverage, both enhancing the recombination
process. Without LH rejection, the reaction will become perfect as T → 0: While
diffusion of the atoms is heavily suppressed, desorption is so even more, and the
steady-state point of view does not reveal that the eventually successful reaction
process becomes extremely slow.

Consider first an absolutely small grain of 1000 adsorption sites, then even
with the increased resolution, differences among the efficiency predictions are
hardly visible in Figure 3.9a. As explained before, the breakdown of η for T > 8 K
is expected to apply to an analogous model including LH rejection as well. For
a large grain of 106 adsorption sites (Figure 3.9b), the true sweeping rate results
in a lower upper temperature bound for efficient recombination, the lattice type
difference still nearly imperceptible. The impact of using the proper A is only
visible for large grains, as the back-diffusion reducing A (with respect to a/S) is
most effective there. (We refer to Figure 3.8 again to illustrate how η is affected
once the temperature exceeds that at the efficiency peak.) The limiting efficiency
behavior for low and high temperatures is independent of the choice of sweeping
rate however: The argument given above only relies on the limits the encounter
probability approaches in these cases; using the approximation A ≈ a/S in (3.4),
instead of the true p we obtain the quantity 1/(1 + SW/a), which has the same
limits. The Figures suggest that the size of the grain hardly matters for the
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Figure 3.9: Left: Recombination efficiency as a function of the temperature T , for a
grain of S = 103 sites. Again, the continuous line shows the master equation result
with the true sweeping rate and a square lattice, the dashed line represents the result
for a triangular lattice, and the dotted line uses the conventional approximation. Note
that this plot is horizontally stretched to uncover the small differences. The regime of
large grains only starts at higher temperatures outside the plotted region. Right: The
same plot, now for a grain of size S = 106 sites. This size is ‘large’ for practically all
shown temperatures.

upper temperature bound on effective recombination — a vast change in the
number of adsorption sites results in only a minute change of the temperature
bound.
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Figure 3.10: An Arrhenius plot of the
recombination efficiency under the previous
conditions.

Let us finally recast the last plot
in the Arrhenius fashion, i.e., as
ln η(1/T ), shown in Figure 3.10. Tem-
perature increases to the left of the
plot, which shows thermally activated
behavior with an effective energy read
off to be Eact/kB ≈ −440 K. The large-
grain result η ≈ 2AF/W 2 and the A
asymptotics (3.26) would imply an ac-
tivation energy Ea−2EW , which eval-
uated for the parameters (3.30) yields
−459 K, in good accordance with the
plot.

We summarize the astrophysically
relevant effect of employing the true
sweeping rate (3.5) instead of (2.1) as

follows: For given temperature, large grains are more affected by back-diffusion,
whence small grains gain in importance compared to the reduced overall efficiency.
For a fixed grain size, only (absolutely) large grains are subject to a correction,
but the upper temperature bound for efficient recombination is not affected
considerably. Since this bound seems instead to be very sensitive to a more
refined modeling of the complex surface structure [23, 30], our findings strengthen
the claim that such factors are crucial for hydrogen recombination.
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Chapter 4

Kinetic Monte Carlo
Simulations

In this Chapter, we will quantitatively compare our findings for the encounter
probability to simulation results. The motivation is two-fold: First, one may
consider it generally appropriate to validate theoretical findings by a direct simu-
lation. Second, and more importantly, the simulation itself needs an established
point of reference if we want to extend it to an inhomogeneous disordered envi-
ronment (most likely for the ‘full’ efficiency simulation). The latter motivation
indeed was our driving force here.

Algorithm. It is not difficult to simulate both the stochastic two-particle
system employed in the definition of p and also the complete diffusion-reaction
model of a dust grain, which includes ongoing stochastic deposition of random
walkers and provides the recombination efficiency of the process.

Our simulation is based on a standard kinetic Monte Carlo (KMC) algorithm
(described in detail in, e.g., Gödecke [61]) that tracks individual atoms deposited
onto, hopping around on and desorbing from the lattice. Exactly as in the
random walk model of Section 3.3 and as close as possible to the diffusion model,
we use a homogeneous lattice with periodic boundaries. Waiting times are drawn
from an exponential distribution with the mean given by the inverse of the total
rate of all processes. This is the simplest implementation of the continuous-time
random walk (CTRW) introduced in Montroll and Weiss [54].

Below we present a rough pseudo-code of the algorithm. For brevity, we
only show a simplified main program for the efficiency simulation of a given
grain realization, and leave out all details, subroutines, intermediate output
and counting (this is where the bulk of the work lies). Notation of the main
text is re-used whenever this appears unambiguous. The specialization to the
two-particle case for finding the encounter probability should be obvious: The
stochastic impingement is substituted by a random initial deposition of exactly
two particles, and the large repeat loop becomes a for loop over the desired
number of trials.

We have a few additional remarks: For the homogeneous situation that we
have considered in the preceding Chapters, we devised simplified algorithms
providing a substantial speedup. In the form presented here, the algorithm is
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Algorithm 1 KMC simulation of the dust grain.
general initialization
set (disordered) process rates
populate grain with atoms k = 1 . . . N at positions rk

repeat
increase time according to total rate of processes
draw random x ∈ [0, total rate)
if x < F then {a new atom shall impinge}

draw random position; count the impingement
if it position is empty then

increment N ; count a deposition
update atom list / occupancy array / total rate

else
count a rejection

end if
else

set sum X = F
repeat

increment k; add X ← X+ rate sum at rk
until x < X {kth atom to move}
use x to determine its move (directed hop or desorption) analogously
if atom desorbs then

decrement N ; count a desorption
update atom list / occupancy array / total rate

else {it hops to a target site}
if target site is empty then {just hop there}

update atom list / occupancy array / total rate
else {a recombination!}

decrement N by 2; count a recombination
update atom list / occupancy array / total rate

end if
end if

end if
until wanted number of atoms have impinged

print Statistics
print ηMC = #recombinations/(#impingements/2)
print NMC = time-averageN
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fully suited to deal with arbitrarily inhomogeneous rates (for nearest-neighbor
transitions) however, and we will use it again when we examine the influence of
disorder in Chapter 5. Second, we only count simulation data from the stationary
state of the system. To decide when this state is entered, we sub-divide the
simulation into passes of a certain number of impingements, and generate per-
pass statistics. Only if the efficiency has not changed too much (as judged by
the pass length and its absolute value) between to consecutive passes, we assume
the stationary state is reached and start counting for the final result.

With respect to the fully general standard KMC algorithm [61], we have
made some small adjustments, benefiting from the special system at hand: Every
atom always has a fixed number of possible moves (coordination number +1),
and the corresponding rates only depend on its current position, hence we can
store partial sums of rates per site once and for all. Moreover, the list of possible
processes is naturally partitioned by the atoms, which facilitates finding the
process to carry out, without the need to employ a full tree of comparisons. Lastly,
we only need to keep a compact list of atom positions, completely specifying
the simulation state at any time; for speed purposes however, we additionally
entertain a complementary quantity — an array storing the number of the atom
(if any) sitting at a given site of the lattice.

Technicalities. We chose Fortran 95 to implement the algorithm. This
language is straightforward, highly portable, has a well-defined specification,1

and a huge re-usable code-base (e.g., for the pseudo-random-number generator we
employed). It offers lots of features (such as fully standards-compliant and user-
controlled numerical precision specification, single-bit manipulation, vectorized
matrix calculations, and easy dynamical memory management, all as part of
the language core) tailored to tackle numerical problems and to foster quick
development, all without sacrificing the ultimate goal of sheer execution speed.
The simulations have been carried out on the IBM high-performance computing
cluster of the Institute for Theoretical Physics of the University of Cologne. We
used parallel computing in the most primitive sense, i.e., by letting simulations
for different parameter sets run simultaneously on up to roughly 20 computing
nodes.

Relations to earlier work. If we consider a single moving and possibly
desorbing random walker to meet an immobile and immortal target site in a
homogeneous environment, this clearly eliminates any effect of continuous time
and may be treated in terms of steps exclusively, a situation fully equivalent to
the one we used to derive p̃rw. A flawless microscopic Monte Carlo simulation of
such a system will eventually converge to the theoretic prediction if we sample
more and more trials. Such simulations (without desorption, however) have been
performed by Hatlee and Kozak [62], confirming the predictions of Montroll [42]
and also analyzing alternative boundary conditions of the finite lattice.

In our simulations, both reactants are mobile and may desorb, and a
continuous-time algorithm guarantees an ordering of all events. For the diffu-
sion model, the equivalence of the one- and two-walker scenarios regarding the
encounter probability was obvious, owed to the continuum picture, the station-
arity (no time), and the fact that the concentration is effectively an average

1http://j3-fortran.org/doc/standing/archive/007/97-007r2/pdf/97-007r2.pdf

http://j3-fortran.org/doc/standing/archive/007/97-007r2/pdf/97-007r2.pdf
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over all random walk realizations. But now, in the single CTRW instance in a
homogeneous environment, we could still keep one walker fixed: If it were to
make a move, we could simply re-label lattice sites and let the other walker hop
appropriately instead, and if it were to desorb, the trial ends as if the other
had desorbed. An equivalent description thus is that of a single walker to meet
a fixed immobile target, and moving or desorbing at twice the original rates,
with waiting times still exponentially distributed: The survival probability per
step, and hence the encounter probability, remains unchanged. Note also that
the description in terms of steps is completely justified; although the number of
steps that occur in a given time interval is a stochastic quantity for the CTRW
(in contrast to the discrete-time random walk, the relation for a huge class of
waiting-time distributions investigated in, e.g., Bedeaux et al. [63]), the time
passed is irrelevant for the encounter probability.

LH rejection. In Section 3.3.2 we have already mentioned LH rejection. Our
simulations respect this rejection mechanism, i.e., the repulsion of atoms imping-
ing on top of occupied sites for the full system, and the restriction that atoms
start on distinct sites for the two-particle case. It is hence appropriate to refer
to p̃rw for all comparisons to theory.

Data analysis. A repeated sampling of Nruns independent Bernoulli trials
with an (unknown) success probability p (recombination in our context) has a
result with absolute standard deviation σ =

√
p(1− p)/Nruns. Hence we expect

a relative standard deviation σ̃ = σ/p, evaluated using the (known) values of
p̃rw, for the simulation average. Note that σ̃ can become rather large for small
p, i.e., in the large-lattice regime. Furthermore, the binomial distribution for the
number of recombinations for fixed success probability p of the single trials and
the number of trials Nruns →∞ approaches a Gaussian distribution. The mean
value of p̃mc (one data point) is thence drawn from a normal distribution with
the above standard deviation. This implies that, plotting relative deviations
from the theoretical prediction, we expect roughly a third of the (independent)
data points to lie outside a corridor of half width σ̃.

4.1 Quadratic Lattices

For quadratic lattices we tested a wide range of parameters S and W/a, and
for both types of lattices. We performed Nruns = 106 individual trials for each
data point, apart from the largest lattice S ≈ 4× 107 with ` ≥ 108, where time
constraints led to Nruns = 105.

Figures 4.1a–4.1g show the relative error (per cent) 100 · (p̃mc − p̃rw)/p̃rw as
a function of the lattice size S on a logarithmic scale. The lattice sizes and rate
ratios a/W are chosen as described in Section 3.5.3, so that one plot roughly
describes a fixed regime and about constant p, cf. the approximate expressions,
to keep the standard deviation of the same order of magnitude. Outside the
shown parameter ranges, nothing interesting happens; in the large-lattice regime,
the leftmost data points are omitted as they no longer satisfy a/W � 1. We
have also plotted a corridor of half width σ̃ around perfect coincidence.

As expected after the above considerations, we find excellent agreement
between the analytic random walk result p̃rw and p̃mc obtained from Monte
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Figure 4.1: Relative difference of p̃mc w.r.t. p̃rw for various regimes SW/(4a), type
(a) (dashed / squares), type (b) (dotted / triangles). The lines form a corridor with a
width given by the expected relative standard deviation.
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Carlo simulations, verifying the analytical results as well as our simulation
method. In fact, counted over all simulations we find precisely 26/78 values
outside the σ̃ range; the largest deviations from p̃rw are of the order of less than
3σ̃, and less than 7%, and there is no systematic over- or underestimate of our
theory. The simple random walk result describes the continuous-time simulations
to excellent accuracy. As an aside, this also shows that the diffusion model
results would completely fail as a quantitative description, most pronounced in
the large-lattice regime: While we may properly simulate the largest realistic
grain sizes and large diffusion lengths within reasonable time, we are still in a
regime where, due to the slow logarithmic convergence of the continuum limit,
only the random walk result agrees with KMC simulations, cf. Section 3.5.

4.2 Varying Aspect Ratio

We also checked that the discrete-time random walk picture is accurate for the
distorted lattice with L1 6= L2. Nruns = 106 trials were sampled for each data
point, except for the case of absolutely large lattices (S = 4× 106) still in the
small-lattice regime (a/W = 108), where we used at least Nruns = 105.

Here we keep S constant for one plot, while varying the individual lengths
L1,2. Conforming to plots in Section 3.4.2, we only present the results for
S = 400 and S = 4 × 106 as examples of absolutely small and large lattices,
respectively. Also, we keep the “regime” (in the original sense introduced for
quadratic lattices) constant as well: for S = 400, we choose a/W = 102 or
a/W = 104, for S = 4 × 106 we test with a/W = 106 and a/W = 108 (the
latter figures belonging to the small-lattice regime), but recall that the refined
regimes for L1 6= L2 actually change when distorting the lattice. Values are
chosen so that the larger length L1 exceeds the random walk length ` in the
large-lattice regime throughout, and that it is much smaller than this length
in the small-lattice regime for the quadratic case, but finally becoming much
larger than it when distorting the lattice. Again, we show the relative error
of simulations with respect to the random walk result in per cent, and plot a
(relative) standard deviation (as obtained from p̃rw) corridor for comparison,
Figure 4.2.

We find that in fact, the agreement of Monte Carlo simulations with p̃rw is
again very good. The statistical insignificance of fluctuations (24 of 64 data
points outside the plotted corridor of standard deviation) is slightly less obvious
than for the quadratic case. However, combined with the largest errors of the
order of 3σ̃, all deviations at < 11%, and no systematic error to be seen, we
conclude that simulations agree with the simple random walk prediction here as
well.

This completes our proof of full equivalence of the fixed-time-step random
walk prediction and Monte Carlo CTRW simulation for all practical purposes.
In retrospect, this justifies the exclusive use of analytic random walk results as
far as the encounter probability is concerned. For the modeling and parameter
extraction from experiments, the relevance of our findings is that we have
illustrated that standard approximations like using a continuum instead of a
spatially discrete model may have far-reaching consequences on the accuracy of
comparisons.
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Figure 4.2: Relative difference of p̃mc w.r.t. p̃rw for two lattice sizes in both regimes,
type (a) (dashed / squares), type (b) (dotted / triangles). Lines mark the expected
relative standard deviation.
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Chapter 5

Rate Disorder

It has been suggested very early [15] that a disordered grain surface, in the sense
that binding energies and diffusion barriers are inhomogeneous over the grain,
is crucial for the explanation of observed abundances of molecular hydrogen.
This concept is by now generally accepted in the astrochemical community [64].
The reasoning is that even a few strong adsorption sites can greatly enhance
the recombination efficiency: They will bind atoms for an unusually long time,
such that other adatoms quickly scanning the surface by hopping between the
‘shallower’ sites can find them and react. The basic mechanism hence is best
viewed as resulting in an increase of the average number of adatoms on the
grain surface, while for the most intuitive kind of rate disorder, the encounter
probability of two given atoms on the grain is not changed, cf. Section 5.3.1.

A full analytic theory of this reaction-diffusion problem with quenched
disorder is beyond reach, owed to its two-dimensionality, confined geometry,
included desorption, and the underlying first-passage nature. This Chapter
contains modest efforts to understand and quantify the effect of disorder on
hydrogen recombination on dust grain surfaces.

5.1 Observations and Experiments

If disorder is that important then one also expects it is crucial to have a reasonable
model for the distribution of energies. From the astrophysical side, systematical
experiments to determine binding energies and diffusion barriers are a fairly
recent development altogether. Typically using TPD experiments, even then,
the distributions of these energies can hardly be determined reliably. Buch and
Czerminski [65], Hixson et al. [66] describe experiments and calculations of the
eigenstates and energies of hydrogen, deuterium and H2 on an amorphous ice
cluster. Though not their focus, one can see [65, Figure 2] that the distribution
of the binding energy in potential minima as well as of the energy barrier for
diffusion is reasonably approximated by a Gaussian distribution, but the width
they find is not easily transferred to our system. Cazaux and Tielens [67] is
widely cited, since it accounts for diverse processes of hydrogen formation on
dust grains; for our purposes however, the distinction between physisorption and
chemisorption binding sites basically describes a model with two distinct binding
energies. Perets et al. [36] find a discrete number of adsorption site types with
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different mean binding energy to properly fit TPD experiments (for the produced
H2 only). The energy distribution is assumed to be Gaussian, however, neither
are more specific reasons given for that, nor is the width of the distribution. A
similar fit to distributions around few different energies corresponding to distinct
adsorption site types is found in Perets et al. [37], Vidali et al. [38] for a TPD
analysis of HD molecules on amorphous olivine. Amiaud et al. [68, 69] study
TPD experiments of D2 on amorphous (non-)porous water ice. They find a
binding energy distribution of polynomial form, ρ(E) = c1(E0 − E)c2 , which,
combined with an attempt frequency in the Arrhenius law, provides four fitting
parameters. It is not clear to us how sensitive these findings are to details of the
analyzed surfaces, and whether such a distribution may reproduce experimental
results significantly better than, e.g., an exponential one.

Generally speaking, the distribution of binding energies and their effective
mean value is always associated with the surface morphology: Porosity automat-
ically provides a broader distribution of binding energies, e.g., for low-density
ice one finds a broader distribution than for high-density ice [36]. Likewise,
amorphous materials have significantly higher effective binding energies than
their polycrystalline counterparts, as is pointed out, e.g., in Perets et al. [37],
due to the inherently increased surface roughness. The latter correspondence is
made quantitative in the KMC simulations of Cuppen and Herbst [24].

Little seems to be known about the activation energy distribution on the
surfaces of interest. In the lack of more detailed results, it is reasonable to assume
a Gaussian distribution, if only because the central limit theorem suggests it for
the sum of the many different random contributions to the activation energies
at a given site. The width of the distribution remains unknown at this point.
Therefore we can model the effect of disorder, but have a large uncertainty in
comparison to experiments.

5.2 General Theoretical Remarks

Fundamentally, quenched disorder in the rates emerges from disordered activation
energies for desorption and hopping, and we will always assume thermal activation
of the rates with the form ν exp(−βE), with inverse temperature β = 1/(kBT ).
Here, the attempt frequency ν is taken to be a single overall constant, and the
activation energy E is a random variable that is drawn once and for all times.

We further imagine a potential energy landscape for the adatom which has
constant saddle-point energies, but ‘traps’ of varying depths (binding energies).
Obviously, the activation energies for hopping and desorption should then be
correlated: The harder it is for an atom to hop to an adjacent adsorption site,
the harder it is to desorb completely, and vice versa; however, the exact nature
of this correlation is not as clear. There is also still a great freedom of choice for
the dependence of rates on the energies.

We first restrict ourselves to nearest-neighbor transitions (for hopping) and
rates which are all defined at sites, not on bonds; for hopping rates, this shall
imply isotropy from a given site to all its nearest neighbors. Let us call this
choice ‘ultra-locality’ of rates. For thermally activated rates this amounts to
choosing one activation energy per site for hopping and one for desorption.1

1Spatially uncorrelated and isotropic hopping rates can always be described as only
depending on an activation energy at the initial site, irrespective of the microscopic model for
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One can then derive a relation between the rates as for hopping (with
directed hopping rate as/z for coordination number z) and Ws for desorption
at an adsorption site s. We balance desorption by an impingement flux f per
site, and consider the stationary state. The stationary gain-loss equation for the
adatom probability ps at a site s with these contributions reads

ps(as +Ws) = f +
∑

n.n.ofs

ps′
as′

z
.

We now impose detailed balance to hold, i.e., there must not be any net flux
between any two sites in the stationary state, ps′as′/z = psas/z for any two
nearest neighbors. Inserting this yields the obvious ps = f/Ws (hopping does not
affect the stationary state of only flux and desorption), and re-inserting this into
the detailed balance condition implies that Ws/as is the same for neighboring
sites. Hence on a dynamically connected lattice, we have Ws/as = const. as a
result merely of ultra-local rates and detailed balance.

The thermal form of rates now trivially implies that the activation energies
only differ by a constant offset energy (so each site is independently assigned one
energy drawn from a distribution, which then fixes both rates). This is a very
natural choice suggested by the energy landscape picture, and such a correlation
is also consistent with certain experimental findings for the systems discussed in
Section 5.1 [36].

Chang et al. [23] also assume ultra-local thermally activated rates for their
KMC simulations, but in contrast to our reasoning (and without a microscopic
argument), they employ activation energies that are correlated by a constant
ratio instead. We will not follow this route, not least for ease of calculation:
In this case, W/a still strongly depends on the disordered activation energy at
a given site, cf. the end of Section 5.4. More fundamentally however, we have
shown above that this treatment is inconsistent with detailed balance.

In the following, we will therefore assume that all over the grain, W/a = const.,
and there is a uniform extra activation energy needed for desorption compared
to hopping. This model for activation energies and the associated rates is the
natural generalization of the random-trap model [3, Chapter 7]; in its original
form, this model prescribes site-dependent isotropic nearest-neighbor hopping,
but does not include desorption.

5.3 A Simplistic Model: Effective Parameters

We start from the well-understood ME framework, and stick to a finite regular
lattice with periodic boundary conditions. We will try to incorporate a distri-
bution of the activation energies for hopping and desorption merely by using
effective parameters for W/A, f/W and S. These parameters are easily defined
for a homogeneous grain, where only the sweeping rate A involved some effort,
as demonstrated in Section 3.1. Obviously, the total number of adsorption sites
S cannot be changed. We now turn to the other parameters.

those rates.



56 Chapter 5. Rate Disorder

5.3.1 Encounter Probability

In the continuum model for the encounter probability (Section 3.2), homogeneity
is lost in each realization of disorder, and it cannot be regained by a local
rescaling in the stationary diffusion equation, since the flux term is present. We
argue in the random walk picture that this two-particle quantity nevertheless
is unaffected by disorder: W/a is a constant all over the surface, hence the
survival probability (per step) ξ = a

a+W = const. as well. Again, as far as the
encounter probability is concerned, one can then describe the walk in terms of
steps (instead of a continuous time), independent of the disorder realization.
Since the latter is seen to play no role, the reasoning holds true for specific initial
and target sites and specific paths as well as for all averages.

For the homogeneous system, we found the sweeping rate (3.5) in terms of
the encounter probability. The averages implicit in the latter quantity p are first,
an average over initial positions, and second, over random walk paths. These
averages are unaffected by disorder, as we argued above.

To give meaning to an effective parameter W/A in the disordered system, one
has to include a third average over the disorder. This W/A is then understood
to be the average ratio of the single adatom desorption rate and its meeting rate
with a given partner atom. For a given pair of atoms on a disordered grain with
several pairs, the relation between W/A and p seems less obvious than before,
but the argument which leads to (3.4) still holds when we include the disorder
average.

5.3.2 Flux vs. Desorption

Therefore disorder can only affect the effective value of the flux-parameter f/W .
The flux is still assumed to be homogeneous. For a homogeneous grain,

one can interpret the parameter f/W as the mean coverage in the absence of
recombination (in the stationary state). This interpretation can indeed serve
as a definition of the parameter, since summing the original master equation
without the recombination term, one obtains d(〈N〉/S)/dt = f −W (〈N〉/S).
Since the ME is unchanged, and only rates have to take some effective values,
f/Weff must still be given by the stationary mean coverage in the absence of
recombination. The mean occupation probability of a site s is then given by
f/Ws, and averaging over the grain leads to the mean coverage

f

Weff
=

1
S

∑
s

f

Ws
= fW−1.

Here we introduce the overbar to denote the spatial average over all sites and in
a given quenched disorder realization, whereas angles will always denote a full
disorder average irrespective of any quenched realization. From this, the effective
rate itself reads Weff = 1/W−1. In the limit of large grains, S →∞, this spatial
average converges with the one over the disorder distribution, since rates at
different sites are independent identically distributed variables, and we shall
first näıvely identify both averages (cf. Section 5.3.3 however). To quantify the
difference, we note the well-known fact that the variance of a sum of independent
random variables is the sum of their respective variances (given they all exist).
Consequently, the sum of our identically distributed variables has a standard



5.3. A Simplistic Model: Effective Parameters 57

deviation of
√
Sσ, and the spatial average has the standard deviation σ/

√
S,

where σ is the standard deviation of the distribution of the single-site quantity.

Microscopic argument. Why do we have to average the waiting times W−1

as opposed to the rates W ? We only note that this average coincides with the one
found appropriate in a related problem: Haus and Kehr [3] show straightforwardly
that the random-trap model (without desorption) exhibits diffusive behavior at
all times if one starts from the stationary distribution, with a diffusion coefficient
corresponding to an effective hopping rate 1/a−1. Similarly, the average residence
time of the single atom on the grain reads (recall (3.18))

tres := a−1 · (1 + ξ + ξ2 + . . . ) = a−1
a+W

W
=

a

W
a−1(1 +W/a),

and the last factor is approximately unity, so that with W/a = const. we have
an effective desorption rate t−1

res = 1/W−1.
This inverted waiting time average (for hopping or for desorption) coincides

with an average of the rates that is weighted with the stationary distribution (of
non-interacting walkers). The reason is that on the one hand, we can consider a
single random walk stepwise. Then we deal with the waiting times at individual
sites (as above), and the average over these uncorrelated quantities need not be
weighted. On the other hand, we can look at an ensemble of random walkers
in a single time step and then deal with their rates as distributed spatially.
Here, one has to take into account the appropriate distribution of the walker
ensemble onto the sites, which brings into play the stationary distribution. The
two averaging procedures thus correspond to the (self-averaging) single walk vs.
the walk ensemble point of view.

Exemplary distributions. We consider the effect of simple distributions in
systems large enough to identify the spatial and the disorder average.

Say we have a fraction q ∈ [0, 1] of randomly distributed traps with an
enhanced binding energy E+ for desorption, and balance this by sites with
lowered binding energy E−. (In the following, we typically omit the subscript
“W” for brevity.) Given q, the mean energy 〈E〉 = qE+ + (1 − q)E−, and the
energy spread ∆E = E+−E−, the binding energies read E+ = 〈E〉+ (1− q)∆E
and E− = 〈E〉 − q∆E. This yields an effective desorption rate

Weff =
1

〈W−1〉
= W (〈E〉) eqβ∆E

(1− q) + q eβ∆E
.

A more interesting case is that of a continuous distribution of activation
energies, the most natural being a Gaussian or an offset exponential distribution,

ρG(E) =
1√

2πσ2
exp

[
− (E − 〈E〉)2

2σ2

]
, or

ρP(E) =
1
σ

exp
[
−(E − Emin)

σ

]
(E ≥ Emin, 〈E〉 = Emin + σ).

Here σ is the standard deviation of the energy distribution.
In the Gaussian case (with W ∝ exp(−βE)) one obtains the effective rate
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by a simple integration,

〈W−1〉−1 = W (〈E〉) exp
(
−β2σ2/2

)
.

This effect is not a mere additional activation energy, but introduces a rather
strong reduction of the effective desorption rate especially for σ/kB larger than
the temperature. For cold grains at T = 10 K and a small standard deviation of
σ/kB = 20 K, the suppressing factor already becomes e−2 . 1/7.

Using the exponential distribution has an even more profound effect. For the
energy E ≥ Emin the yet unaveraged inverse rate W−1 picks up an additional
factor φ := exp[β(E − 〈E〉)] ≥ exp[β(−σ)] compared to the value at the average
activation energy. The distribution of φ can be obtained via ρP(E)dE =
ρ̃(φ) dφ = ρ̃(φ)βφ dE as ρ̃(φ) = 1

βσ e−1 φ−1−1/(βσ). Now as long as σ < 1/β, i.e.,
for high temperatures or small variance, φ has a finite average of exp(−βσ)/(1−
βσ). For lower temperatures or large variance however, βσ ≥ 1, and the φ
average becomes infinite. Consequently we have (continuous in βσ)

〈W−1〉−1 =

{
W (〈E〉) exp(βσ)(1− βσ) for βσ < 1,
0 for βσ ≥ 1.

In the latter regime, the single atom desorbs after a finite time, but for any given
time no matter how late, there is too large a fraction of cases in which the atom
is still present. We note that the above seemingly innocent example T = 10 K
and σ/kB = 20 K lies well inside this regime.

Clearly, a diverging reaction-free coverage is inconsistent with the (forced)
neglect of LH rejection. It is also unphysical since the individual atom has a
finite lifetime on the grain, and hence, a non-zero chance to desorb before it
recombines. However, the recombination efficiency η with diverging reaction-
free coverage is the same as that of an infinite flux, keeping W/a and S fixed.
Consequently, in the ME efficiency given by (3.28) we only have to send the
argument 2

√
2F/A ∝

√
S ·W/A · f/W to infinity. From Appendix B.1 we

then get η → 1 +O(z−1) for z →∞, contrary to the physical argument. This
illustrates the implications of lacking any dependence on the disorder realization
and the individual random walk.

5.3.3 Finite Size Effects

For exponentially distributed binding energies, a disorder average like the reaction-
free coverage f〈1/W 〉 can diverge, although for a finite number S of adsorption
sites on the grain it must clearly be finite. We now discuss how to account
for finite S as this effect is of general importance. A typical way to prevent
divergences is to introduce a cutoff at a finite upper energy bound, and often
one chooses the expectation value of the maximum binding energy of the S
adsorption sites (and renormalizes accordingly).

Assuming the probability distribution function (PDF) ρ of the single random
variable ‘binding energy’ to include necessary cutoffs (like Θ(E − Emin) for the
exponential distribution), the PDF for the maximum of S independent identically
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distributed (i.i.d.) random variables to be E is given by

ρmax(E) =
d

dE


 E∫
−∞

ρ(E′) dE′

S
 = Sρ(E)

 E∫
−∞

ρ(E′) dE′

S−1

.

In the first form, the curly brackets are the probability for S independent energies
to be less than or equal to E, so the derivative is the PDF of being equal to E.
The second form shows as factors that we have S possible ways to choose the
site which has maximal binding energy E, the probability that this energy is
realized on that site, and the probability for all other sites’ energies to be lower
or equal. The expectation value of the maximum thus reads

〈Emax〉 =

∞∫
−∞

dE E
d

dE


 E∫
−∞

ρ(E′) dE′

S
 .

Note that the tempting integration by parts generally leads to convergence
trouble here. We consider distributions with finite mean 〈E〉 and variance σ2,
and the new variable Ẽ = (E − 〈E〉)/σ (with PDF ρ̃(Ẽ) = σρ(E)) consequently
has zero mean and unit variance. Rewriting the above expression in Ẽ, we obtain
(using the normalization of ρmax(E) and omitting the tilde in the end)

〈Emax〉 = 〈E〉+ σ

∞∫
−∞

dE E
d

dE


 E∫
−∞

ρ̃(E′) dE′

S
 ,

and the derivative will be noted ρ̃max(E) accordingly.

Exponential distribution. For the exponential distribution (which raised
the issue and makes explicit calculations feasible) this can be evaluated in a
nearly closed form. We have ρ̃(E) = Θ(E + 1) exp[−(E + 1)], so ρ̃max(E) =
SΘ(E + 1) exp[−(E + 1)] {1− exp[−(E + 1)]}S−1 and

∞∫
−∞

dE Eρ̃max(E) =

∞∫
0

dE (E − 1)ρ̃max(E − 1)

= −1 + S

∞∫
0

dE E
S−1∑
k=0

(
S − 1
k

)
(−)k exp[−E(k + 1)]

= −1 + S

S−1∑
k=0

(
S − 1
k

)
(−)k

(k + 1)2
=: −1 +XS .

Dragging one (k + 1) into the binomial, we get XS =
∑S−1
k=0

(
S
k+1

) (−)k

k+1 . We split
the binomial into

(
S−1
k

)
+
(
S−1
k+1

)
. The first sum can be evaluated by again dragging

in a factor (k + 1) to yield (1/S)
∑S−1
k=0

(
S
k+1

)
(−)k = −(1/S)

∑S
k=1

(
S
k

)
(−)k =

−(1/S)[(1− 1)S − 1] = 1/S. The second sum reads
∑S−2
k=0

(
S−1
k+1

) (−)k

k+1 = XS−1,
since the k = S − 1 term vanishes. Thus XS = XS−1 + 1/S, and with X1 = 1
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we have XS =
∑S
k=1(1/k). Hence for the exponential distribution,

〈Emax〉 = 〈E〉+ σ

(
−1 +

S∑
k=1

1
k

)
= Emin + σ

S∑
k=1

1
k
.

The sum approaches the logarithm and can (by Euler-MacLaurin summation)
be approximated as lnS + γ + 1/(2S) with an absolute error of less than about
2× 10−3 for S > 400, and obviously, the order of magnitude of the error is not
changed by omitting the 1/(2S) term. γ = 0.577 . . . is Euler’s constant.

We now calculate the disorder average 〈W−1〉S that one obtains from an
energy distribution cut off at 〈Emax〉 (for S sites) and renormalized, so that

〈W−1〉S = ν−1

〈Emax〉∫
−∞

dE exp(βE)
ρ(E)
N

,

where N =
∫ 〈Emax〉
−∞ dE ρ(E) is the normalization. Using the approximation∑S

k=1(1/k) ≈ lnS + γ, this gives

N ≈
lnS+γ∫

0

e−x dx = 1− 1
eγ S

and

〈W−1〉S ≈ ν−1

lnS+γ∫
0

e−x

N
exp[β(σx+ Emin)]dx

= W−1(〈E〉) e−βσ
1
N

1
1− βσ

(
1− 1

(eγ S)1−βσ

)
= W−1(〈E〉) e−βσ

1− βσ
· eγ S − (eγ S)βσ

eγ S − 1
,

where the last fraction is the finite-S correction to the expression that was
formerly obtained only for βσ < 1. Since S � 1, this fraction can be further
approximated by

[
1− (eγ S)βσ−1

]
. For very large temperatures, the correc-

tion goes to unity as it should, while for the problematic low temperatures,
the combined correction factors caused by disorder and by finite S now yield
〈W−1〉S ≈W−1(〈E〉) (eγ−1 S)βσ

βσ for βσ � 1, which is large but finite.

5.4 Simulations

Having established a set of “effective parameters” (including finite-size correc-
tions), we shall now briefly examine whether the “effective parameters” approach
can describe reasonably well the outcome of KMC simulations. In all of the
following, rates are determined as in Section 3.9, and we use the standard olivine
parameter set of Katz et al. [34] as our average energies. The general simulation
method has been described in Chapter 4.
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We compare full-grain KMC simulations of 106 impinging hydrogen atoms
onto a dust grain in the stationary state to the above theory: We keep the
(quadratic) grain size fixed at S = 4 × 104 with a square lattice, and also fix
the temperature T = 12 K, corresponding to a ratio a/W ≈ 1295.519. Without
any disorder, the encounter probability prw ≈ 0.011 implies an efficiency of
only ηME ∼ 5× 10−5 under such conditions. With this setup, we first examine
Gaussian disorder of strengths σEW /〈EW 〉 = 0.05, 0.1, 0.2 and 0.3; the results
are shown in Figure 5.1. For each plot, the horizontal axis shows the spatial
average W−1 of a given disorder realization, and we used 8 . . . 10 arbitrary
realizations in each setting. For all those values as found in simulations for
a certain quenched disorder realization, we also give the ME result. It is
obvious that for a single realization, the ME prediction typically (except for
very weak disorder) clearly overestimates the efficiency. Therefore, comparison
with the result for the full disorder-averaged parameter 〈f/W 〉 is moot: It has
to overestimate the average of simulations as well. In a completely analogous
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Figure 5.1: Recombination efficiency for Gaussian disorder of increasing strengths
σEW /〈EW 〉. Squares show the KMC result, diamonds the corresponding ME prediction
for the flux / coverage parameter as evaluated for the single realization.

way, Figure 5.2 shows the result for exponential disorder in the binding energies.
Here we consider strengths σEW /〈EW 〉 = 0.05, 0.06, 0.08, 0.10 only, since the
effect of exponential disorder is, not surprisingly (cf. Section 5.3.2), even more
pronounced. For both types of disorder, broader distributions lead to averages



62 Chapter 5. Rate Disorder

f/W so large that numerical evaluation of ηME overflows, and just before this
happens, we already have 1− ηME < 10−3.
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Figure 5.2: Recombination efficiency as in Figure 5.1 for exponential disorder of
increasing strengths σEW /〈EW 〉.

All simulations show that already for moderate disorder (below a width of
0.1〈EW 〉), the recombination efficiency increases dramatically, due to a likewise
increased coverage. This corroborates the paradigm that disorder in local
transition rates has such a strong effect that it may easily shift the temperature
window of efficient recombination so that it complies with observed hydrogen
abundances.

Unfortunately, effective rates completely fail to describe this situation, and
do so on a very basic level. For the ME efficiency evaluated at a full disorder
average of the parameter f/W , a discrepancy to the average of MC simulations’ η
values would not be too surprising. Even when the result for 〈f/W 〉 is corrected
for the finiteness of S, it averages over all realizations of disorder before ηME is
evaluated — for a strongly non-linear dependence as that of the efficiency on the
flux parameter, the outcome can obviously be vastly different from the average
of ηME as evaluated for a given disorder realization (corresponding to averaging
ηMC values).

However, even for a given quenched disorder realization, ηME for the corre-
sponding f/W value still differs significantly from the simulation result ηMC of
this realization. There are three possible explanations, which may also apply
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simultaneously. First, we have not yet examined systematically how well the
master equation actually describes the full system, cf. Section 3.9. The correla-
tions between adatoms that the ME approach neglects might become relevant at
least when the mean adatom number is no longer small. Since disorder greatly
increases this adatom number, it may also render these many-particle effects
more important. Second, the ME framework does not and cannot account for
LH rejection, in contrast to our simulations. The relative importance of this
factor increases with the coverage, and hence with decreasing temperature or
with increasing disorder. We believe this is not crucial for the comparison in
general, as we tried to make sure that the coverage does not become too large
even for the strong disorder examples above. However, it may well be partly
responsible for the discrepancy seen in the strongest disorder plots in Figure 5.1,
though surely not in the last plot of Figure 5.2. The third factor is, in a way, the
most subtle one, but probably also the most important: One can see that by no
means does ηMC depend in a simple manner on W−1 of the quenched disorder
realization; in fact, in several plots it seems as if it hardly depends on it at all!
This can be understood by remembering that the finite-grain average W−1 may
be dominated by one or two very deep wells, while there could also be quite a
few moderately deep wells, which are far more helpful to recombination. One
very deep well will mostly be occupied, and once another atom falls into this
trap, we count one recombination event. However, if it is loosely surrounded
by 10 moderately deep wells, these may frequently be occupied and (by their
sheer number) much more often emptied again in a recombination event. We
see that rare events in the guise of deep wells dominate the system’s behavior,
but definitely not in a simple way.

We finally comment briefly on comparable KMC simulations of Chang et al.
[23]. They choose activation energies for hopping and desorption to be related by
a constant factor (as opposed to the rates). Hence the relative standard deviation
of the distributions of both activation energies coincide, σ̃Ea = σEa/〈Ea〉 =
σEW /〈EW 〉 = σ̃W , and the absolute σEW is larger than σEa by a factor of
〈EW 〉/〈Ea〉. In our case, however, binding energies are only shifted w.r.t. diffusion
barriers, their absolute standard deviations thus coincide. (Note that the disorder
averages 〈Ea〉 and 〈EW 〉 agree between both approaches, and that we neglect
the distinction between spatial and disorder average for this argument.)

We compared data points with the same absolute standard deviation σEa
of the hopping activation energy. Our (unsystematic) findings seemed to agree
reasonably well with theirs (ibid., Figure 3) as long as disorder is weak (σEa <
0.06·〈Ea〉 ≈ 0.045〈EW 〉), but show increasingly larger η the stronger the disorder.
At a first glance, this seems contradictory: For given σEa , Chang et al. [23]
employ a larger binding energy standard deviation σEW than we do; judging from
Section 5.3.2, this should increase the average coverage and thus the efficiency,
while we see just the opposite!

We offer an explanation based on the effect of the second parameter. W/a =
exp[−β(〈EW 〉 − 〈Ea〉)] = const. in our case (independent of site and disorder).
Compared to this, W/a as in Chang et al. [23] picks up an additional (site-
dependent) factor such that

(W/a)Chang

W/a
= exp

[
−β(Ea − 〈Ea〉)

(
EW − 〈EW 〉
Ea − 〈Ea〉

− 1
)]

= exp[−β(Ea − 〈Ea〉)(〈EW 〉/〈Ea〉 − 1)].
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We calculate the disorder average over this additional factor in terms of σEa
(which coincides in our comparison): For Gaussian disorder, this yields〈

W

a

〉
Chang

=
W

a
· exp

(
1
2
β̃2σ2

Ea

)
,

whereas for exponential disorder we obtain〈
W

a

〉
Chang

=
W

a
· eβ̃σEa

1 + β̃σEa
,

with β̃ = β(〈EW 〉/〈Ea〉 − 1). In both cases (with 〈EW 〉/〈Ea〉 − 1 . 1), the
correction factor is 1 + O(βσ)2 for small βσ, but it becomes significant for
βσ ≥ 1. Now since the mortality of the random walker at a given site is
W/(a + W ) ≈ W/a, this increased average means that the adatoms have on
average a higher mortality per step (or lower encounter probability) than in our
treatment. This result is based on two factors: First, the activation energy scaling
lowers the difference EW − Ea for energies below their average and increases
it above. Second, due to the falling exponential shape of exp[−β(EW − Ea)],
the effect of a change in energy differences EW − Ea below the average value
dominates that of the change above. The thus increased per-step mortality can
overcompensate the larger coverage, so that the efficiency is diminished.

5.5 Summary

While all results point into the “right” direction (namely that disorder substan-
tially increases the efficiency), we lack any reasonable quantitative theory: The
effective-parameter ME approach fails for all but the weak-disorder case, which
we deem practically irrelevant.

One problem is that the efficiency typically depends on the given quenched
disorder realization, and an average over the outcomes is only loosely related
to the result of an average on the parameter level because of the profound
non-linearity of ηME. More fundamentally, however, even the single disorder
realization is typically ill-described by the (zero-dimensional) master equation
framework. This appears to be an effect of the intricate way in which the
dominant processes on the grain depend on the full distribution of binding
energies in the given quenched realization, and possibly even on their spatial
correlations. This calls for entirely different approaches than the zero-dimensional
master equation used so far.

Coming back to an earlier point, we note that for independent distributions
of W and a, using effective rates would imply to perform separate averages. This
is an additional grave approximation that is insensible to even consider at this
point.

An interesting approach to deal with disorder (in the case W/a = const.)
maps the complicated energy landscape onto few types of binding sites. For
such a system, one might consider coupled rate equations as in the numerical
treatment of Cuppen and Herbst [24], which may at least be solved for certain
reasonable simplifying assumptions. As pointed out ibid., it is an irony that
stochastic methods like the ME framework were introduced to properly deal
with astrophysically relevant grain sizes and low coverages, yet the disorder in
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energies increases the coverage again: Therefore, rate equations may not only be
the only feasible means to study the system analytically, but they may also be
the correct limiting equations in a stricter sense.
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Chapter 6

Island Edge Nucleation

The study of this problem was motivated by its similarity to the hydrogen
recombination analysis. In fact, it is a one-dimensional analogon of the dust
grain nucleation problem in a certain sense (made explicit in Section 6.2.1); hence
one may regard it as an “offspring problem” of the former. Moreover, a question
of high mathematical semblance, viz. homogeneous second-layer nucleation, had
already successfully been treated analytically, cf. Section 6.3.1. Together this let
the study of island edge nucleation appear as a promising enterprise.

6.1 Introduction

Homoepitaxial crystal growth of platinum, especially of the Pt/Pt(111) system,
has been extensively studied experimentally [2, also for a general review of the
relevant system properties]. As an important example of thin film growth, it is
of high general technological relevance, but also of particular interest because of
the catalytic properties of platinum.

To fully understand its properties, one eventually has to explain its features
on the basis of fundamental microscopic processes. The common method is
to use kinetic Monte Carlo (KMC) simulations, and for an overview of these
techniques as well as many technical details, we refer the reader to Gödecke
[61]. Of course, every aspect of this complex problem that can be understood
analytically is very welcome. Here we wish to analyze one particular feature to
be introduced shortly.

Consider a Pt(111) surface onto which Pt atoms are deposited. They can
diffuse on the surface and may attach to other adatoms, forming immobile nuclei
of islands growing afterwards. This system exhibits a wide variety of island
shapes (fractal, hexagonal, triangular, dendritic) and corresponding growth
modes, depending on flux, surface temperature, and current island size, cf.
Figure 6.1. Under the conditions used in the images, one observes a transition
from fractal-like island shapes for lower temperatures to a compact growth mode
leading to triangular islands around T = 400 K. The edges of these islands are
oriented along the 〈11̄0〉 directions. With increasing temperature this changes
again to dendritic shapes, and only at much higher temperatures around 700 K
one returns to compact islands, now close to hexagonal shape. The explanation
lies in the changing adatom mobility on the surface. At lower T , adatoms landing
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Figure 6.1: The widely varying growth shapes of Pt/Pt(111): Islands of monatomic
height in STM (surface tunneling microscopy) topographs (1560 A×1560 A). Deposition
at (a) 200 K, (b) 300 K, (c) 400 K, (d) 500 K, (e) 600 K, (f) 700 K, after deposition of
0.15 ML at a rate of 7× 10−3 ML/s in (a)–(e), and 0.08 ML at 2.7× 10−3 ML/s in (f),
respectively. [2], with kind permission of Joachim Krug.

on the surface between islands stick to the island edges as soon as they attach
to one. Increasing the temperature, those adatoms stay mobile after attachment
and diffuse along the island edges before coming to rest in energetically favorable
positions (i.e., forming complete rows).

A

B

Figure 6.2: Ball-model illus-
tration of the geometrically dif-
ferent A- and B-edges.

The edge orientation and the varying degree
of symmetry can be explained as follows: The
Pt(111) surface is an fcc(111) facet, hence one ex-
pects a six-fold symmetry. (For adatoms moving
along the island edges, one need not account for
intermediate hcp positions for energetic reasons.)
Owed to the underlying atom layer, one can how-
ever distinguish between two types of edges, con-
ventionally termed “A-” and “B-edges”. In both
cases an adatom attached to the edge has two
nearest neighbors in the island layer, and three in
the underlying layer. But while for A-edges, the
triangle of an adatom and its island-layer nearest
neighbors points into the same direction as the
triangle formed by the underlying three nearest
neighbors, for a B-edge, those two triangles point
in opposite directions, see Figure 6.2. Edges de-
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limiting an island change the edge type at the corner, once for each turn by a
30◦ angle.

The different geometry corresponds to a different binding energy discrimi-
nating between the two types of positions. In fact, the experiment shows that
compact triangular islands are almost always delimited by B-edges exclusively,
for the following reason: A-edges bind adatoms more strongly. Starting from
a regular hexagonal shape with some kinks, this implies that the A-edges ob-
tain an additional adatom influx at their corners, coming from the neighboring
B-edges (Section 6.3); consequently, they grow at a faster normal velocity vA

than the B-edges. This means (as can be seen from a sketch) that the lengths
of the A-edges shrink. As long as vA/vB < 2, a stationary hexagonal shape is
approached, where vA/vB = dA/dB and dA/B are the distances to the island
center. However, if vA/vB > 2, the A-edges eventually vanish.

This mechanism becomes irrelevant at much higher temperatures, when
the difference in binding energies (and possibly in diffusion barriers) no longer
outshines the thermal energy, and one can observe nearly hexagonal islands
then. The overall picture is also corroborated by the observation that in the
same regime, homoepitaxial growth on Ag(111) retains the full symmetry of
hexagonal islands, corresponding to the fact that both step orientations have
the same energies.

6.2 The Problem

Here we want to examine the particular problem of where (and possibly when)
one-dimensional growth forms the first nucleus, i.e., where two adatoms attached
to kinkless (perfectly faceted) island edges meet for the first time. This problem
has not yet been understood analytically, and it is relevant for several reasons:
It may provide a more detailed explanation for the different kink density on the
two types of edges, starting from first principles. It also applies to other fcc(111)
surfaces of transition metals [70]. Moreover as we shall see in Section 6.3, there
is a regime in which formation of the first nucleus is the rate-limiting step for
island growth. Finally, all further nucleation events are far more complicated
and may at best be described in a continuum theory. Present kinks change
the geometry and allow two different ways for edge atoms to be captured: By
nucleating with a partner, but also by being incorporated at the kink.

6.2.1 Close Links to Hydrogen Recombination

In both cases, one considers two random walkers, and time is not essential.
While the first-passage problem for hydrogen recombination arises out of the
competition between meeting and desorption and we ask for the probability of
one of the two possible outcomes, here the question concerns the position of
the (eventually sure) meeting of the edge atoms. We do not treat any disorder
here, but spatial homogeneity is still broken by the two types of edges. While
the topology is, in a sense, the same as before (periodic boundary conditions),
one-dimensionality of the island edge originally promised a reasonably simple
solution.

Second-layer nucleation as described in Section 6.3.1 has a slightly different
relation to the hydrogen problem. In the latter, the surface is closed and hence,
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has no boundaries, but the atom can desorb from each adsorption site. In
the nucleation problem, boundary conditions are partly reflecting (for a finite
Ehrlich-Schwoebel (ES) barrier exacerbating inter-layer transport), so the
atom may escape, but only at the boundary. In both cases, one may ask the
same question, viz. with what probability does the atom nucleate / recombine?

6.3 Review of Known Results

The topic of island edge nucleation has been approached on many levels, e.g.,
ab initio density functional theory (DFT) calculations for the energy landscape
along the island edge, molecular dynamics simulations [70], or KMC simulations
as in Gödecke [61]. We will only review one string of development of the analytic
kinetic theory of the process.

The conventional picture of island edge nucleation (underlying the island
growth) treats edge atoms as a continuous concentration n, and takes the
nucleation rate to be the RE expression R ∼ Dedgen

2. The local adatom density
n is obtained from the solution of a Burton-Cabrera-Frank diffusion equation.
An analogous procedure used to treat second-layer nucleation, i.e., the formation
of a stable nucleus on top of an existing island, has been demonstrated to fail
for large ES barriers (effectively confining the geometry) [50]. Moreover, the
analogy to the case of hydrogen recombination also suggests that fluctuations
and rare events dominate nucleation, so that we have to improve upon this
näıve rate equation treatment. Using the single-particle quantity n to obtain
the two-particle nucleation rate ω will also be referred to as the ‘mean-field’ way.
For the remainder of this Part, n will be a mere site index.

Concerning the ensuing island edge growth, a simple argument [2, Sec-
tion 2.4.3] provides the estimate `1d ≈ (a0Dedge/F1d)1/4 for the distance between
kinks along the one-dimensional island edge, with Dedge the edge diffusion co-
efficient and F1d the one-dimensional flux1 onto the edge. A single-adatom
diffusion analysis shows [2] that this leads to a net mass transfer to the A step
if
√
DA/DB exp[Eb,B − Eb,A] > 1, where DA and DB label the edge diffusion

coefficients and Eb,A, Eb,B the binding energies: Differences in binding energy
taken aside, faster diffusion finds kinks more quickly, which overcompensates the
lower kink density, and the corresponding edge grows more quickly.

A general random walk understanding of the first nucleation event along
an island edge is what we now focus on exclusively. As promised above, the
kink density estimate provides an additional reason to consider this problem:
Obviously, at low temperatures or for small islands, the typical kink distance
will be much larger than the island edge length, and consequently, islands may
spend a long time in a fully faceted configuration. Forming the first nucleus is
then the rate-limiting step for island growth.

1Different from F before, F1d is a flux per length, hence of dimension 1/(LT ).
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6.3.1 Homogeneous Second-Layer Nucleation

In a series of papers Castellano and Politi [71], Politi and Castellano [72, 73] have
examined the problem of second-layer-nucleation in one- and two-dimensional
geometries in a truly atomistic random walk fashion. Their boundary conditions
are fully or partially absorbing, but the analysis is restricted to the homogeneous
case throughout.

They find [72] that the mean-field approach generally fails. For the nucleation
rate, it is proven approximately equivalent to treating the particles as non-
interacting, hence allowing for repeated meetings of a given pair of particles
even after their first encounter. In fact, whenever step-edge barriers are not
weak, i.e., when the geometry is effectively confined, the mean-field expression
of the spatial distribution of nucleation events is dominated by these fictitious
later nucleations. Moreover it is shown that the thus obtained nucleation rate
overestimates the true nucleation rate by a factor Nall/Ndis; this is the ratio of
the total number of sites (or steps) and the number of distinct sites a single
random walker sees on the terrace (or the island edge, in one dimension).

The analytical theory laid out in Politi and Castellano [72, 73] is based
on the following steps (we will focus on the one-dimensional case). First, the
authors argue that one need only consider two-atom processes. In a discrete-
space discrete-time setup, one then determines the single-particle propagator,
starting from a homogeneous initial distribution pn(0) = pU

n = 1/L on an
edge of length L, for the boundary conditions corresponding to a given ES
barrier.2 The next step considers the second atom impinging after a time τ
(which is distributed exponentially with mean τdep = 1/L), and one aims for
the probability distribution of the position of their first meeting. All quantities
of interest are linear in the atoms’ initial distributions, hence one may absorb
the stochastically distributed time τ between arrivals into the single-particle
distribution for the first atom, pU

n → peff
n =

∑∞
τ=0

e−τ/τdep

τdep
pn(τ). In this way, any

sought quantity can now be avaluated for two simultaneously present particles,
but with initial distributions peff

n and pU
n , respectively. Now one has to find peff

n

using the time-evolution pn(t). Under mild assumptions it is shown that

peff
n =

τres

τdep + τres
pS
n, (6.1)

where pS
n is the stationary one-particle distribution and τres the residence time

of the single atom.
Essential for our purpose are the following further measures: It remains

to calculate the probability distribution of the first encounter position of two
particles deposited simultaneously with given initial distributions peff

n and pU
n .

For the one-dimensional setting we want to expand on, the problem of two
meeting random walkers can be mapped to a single two-dimensional random
walk pm,n(t). Initial conditions then read pm,n(t = 0) = peff

m p
U
n , and a nucleation

event corresponds to the absorption at the diagonal m = n, i.e., pn,n(t) = 0.
The spatio-temporal distribution of nucleation events is given by the probability
current to this diagonal.

2Throughout this Chapter, p denotes the particle propagator.
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In discrete time the evolution equation reads

pm,n(t+ 1) =
1
4

[pm−1,n(t) + pm+1,n(t) + pm,n−1(t) + pm,n+1(t)]

for m 6= n, with the boundary condition pn,n(t) ≡ 0 (at all times), and starting
from the initial condition pm,n(t) = 1

2

[
pU
mp

S
n + pS

mp
U
n

]
which has been sym-

metrized (pn,n(t = 0) = 0). The nucleation distribution reads

Rn(t) =
1
4

[pn−1,n(t) + pn+1,n(t) + pn,n−1(t) + pn,n+1(t)]

for times t > 0 and Rn(t = 0) = pU
np

S
n using the initial distribution.

In general, the single-particle evolution is solved by a separating ansatz. This
delivers spatial eigenfunctions Ak sin(nφk) +Bk cos(nφk) and a temporal part
exp [t ln cos(φk)] for k = 0 . . . L− 1, with angles and pre-factors determined by
the boundary and initial conditions.

As an example we recall the outcome for perfectly reflecting boundaries. One
obtains [72] φk = kπ/L and Ak = Bk tan(kπ/(2L)), such that spatial eigen-
functions read Xk(n) = [tan(kπ/(2L)) sin(nkπ/L) + cos(nkπ/L)] The initial
distribution only affects the pre-factor Ak = 1

Nk

∑L
n=1 pn(0)Xk(n) with nor-

malization Nk = L
2

[
1 + tan2(kπ/(2L))

]
(1 + δk0). Obviously, the single-particle

distribution pn(0) = pU
n = 1/L stays constant, while arbitrary other contribu-

tions to the initial distribution decay exponentially; they become negligible for
t� 2L2/π2 ∼ τtr, with τtr the single-atom traversal time of the edge.

For the two-particle case, an analogous separating ansatz delivers the general
solution in terms of the one-particle eigenfunctions [73],

pm,n(t) =
L−1∑
k,j=0

Bk,j · exp
[
t ln

cos(kπ/L) + cos(jπ/L)
2

]
Xk(m)Xj(n),

with coefficients Bk,j available to satisfy boundary and initial conditions. It is now
of crucial importance that both particles cannot change places without meeting
first: This implies that the ‘triangles’ m < n and m > n of the distribution
cannot affect each other’s time evolution, they are dynamically disconnected.
Consequently, one can apply the method of images to satisfy the “nucleation”
boundary condition: Replace the initial pm,n(0) by

p̃m,n(0) =


pm,n(0) for m < n

0 for m = n

−pm,n(0) for m > n,

which clearly satisfies the condition on the diagonal. The antisymmetry renders
the coefficients Bk,j antisymmetric (due to linear independence of the eigenfunc-
tions), and thence, it is preserved for all times. This means that the nucleation
condition is automatically obeyed at all times as well, while outside the diagonal,
the distribution is always the physical one or its negative, respectively. (Note
that this does not work for the two-dimensional case, since then, the nucleation
condition no longer separates the four-dimensional hypercube into disconnected
regions.) The exact result then has coefficients

Bkj =
1

NkNj

∑
m<n

pm,n(0) [Xk(m)Xj(n)−Xj(m)Xk(n)] .
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With this, one may finally evaluate the spatial nucleation distribution

Pn =
∑
t

Rn(t) = pU
np

S
n +

∞∑
t=0

1
2

[p̃n,n+1(t) + p̃n−1,n(t)] ,

where p̃ coincides with p at the positions occurring. Politi and Castellano [73]
show that to high accuracy, the distribution is approximated as

Pn ∝ cosh(π)− cosh
[
π

(
2n
L+ 1

− 1
)]

.

In the next Section we will explain the difficulties in extending the method
of Castellano and Politi [71], Politi and Castellano [72, 73] to the situation of a
periodic inhomogeneous island edge.

6.4 First Nucleation Distribution

We should state first of all that our aim was an analytic description of the
dependence of the first nucleation distribution on the parameters (transition
rates and step lengths). Obviously, one could easily simulate the system by
kinetic Monte Carlo techniques [as in 61], or alternatively solve the evolution
equations (see below) numerically [as in parts of 71–73]. We have not followed
this road, since these approaches share one problem: Especially given the huge
parameter space, one can hardly deduce the general dependence of Pn on the
parameters (at least not beyond the level heuristics may provide).

6.4.1 Model Assumptions

Consider a highly simplified picture of the island edge growth processes. We
start with a regular hexagonal shape, albeit with (alternating A- and B-) edges
of different lengths, without any kinks present. Adsorption sites are spatially
discrete positions distributed uniformly along the edges. The incoming (one-
dimensional) adatom flux is assumed homogeneous, neglecting the inhomogeneity
of the diffusion field around an island [61, Section 5.2]. After an adatom has
attached to the edge, it only stops its edge diffusion once it has met another
adatom, which is the nucleation event we are interested in. We thus assume that
atoms cannot detach from the island edge, so that without a partner, its lifetime
would be infinite.

In reality, the one-dimensional energy landscape for an edge atom is very
complicated; for example, there is a weakly bound state at the corner position
between two edges. For the effects we are interested in, we shall be content with
modeling the following features: Each type of edge (synonymously, each ‘zone’
or step) has a uniform binding energy, given by the potential minimum at the
position of the classical adsorption site. (The energy will be taken positive, so
that a larger binding energy means a weaker binding.) The diffusion constant is
homogeneous as well and governed by the uniform height of the energy barrier
separating neighboring sites. At the corner where two edges meet, there is an
additional barrier, see Figure 6.3. For simplicity, we consider an island with
only two (instead of six) edges of lengths `A and `B (in terms of adsorption
sites), so that one can imagine the edge as in the Figure, with periodic boundary
conditions. We further set L := `A + `B.
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Figure 6.3: Simplified energy landscape along the island edge.

In the discrete picture, the energy landscape can be described with four
hopping rates: The rates ΓA and ΓB for transitions between adjacent sites of one
and the same edge, and the rates ΓAB and ΓBA for hopping from the outermost
site of zone A to zone B or vice versa. We adopt the standard assumption that
these rates are made up of a fixed ‘attempt frequency’ pre-factor ν0 and follow
an Arrhenius law, thence the connection to the characteristic energies reads:

ΓA = ν0 exp (−βED,A) , ΓB = ν0 exp (−βED,B) ,
ΓAB = ν0 exp [−β (Ec − Eb,A)] , ΓBA = ν0 exp [−β (Ec − Eb,B)]

(6.2)

ΓAB

ΓBA
= exp [β (Eb,A − Eb,B)] =: exp (−β∆Eb) ,

where β = 1/(kBT ) is the inverse temperature. Eb,A, Eb,A are the binding
energies for zone A and B, ED,A, ED,B the diffusion barriers between adjacent
sites inside zone A and B, respectively, and Ec is the corner energy barrier
height. This is the simplest way to satisfy detailed balance. It has the benefit not
to introduce additional parameters (governing, e.g., the lowering of transition
state energies if the target position is energetically favorable) that can hardly be
measured experimentally.

As in Section 6.3.1 we only treat two-atom processes. This is justified if the
flux is small enough, so that the typical nucleation time is much shorter than the
deposition time after which a third atom arrives (note that the validity of this
assumption has been questioned for realistic experimental conditions in Gödecke
[61]). For actual comparison with experimental regimes, the typical nucleation
time could be calculated after we have obtained the temporal distribution of
nucleation events to ensure self-consistency up to a certain maximum flux.

6.4.2 Mapping to Simultaneous Deposition

Again we start from a homogeneous initial distribution of the first edge atom,
pn(0) = pU

s := 1/L, where L is the total length (in terms of adsorption sites) of
the edge. At a later time t > 0, the second atom (the ‘partner’) impinges on the
island edge, while the first atom propagator has evolved since its own arrival.
As before, all necessary information is contained in its effective distribution

peff
n =

∞∫
0

dt pn(t)ρdep(t)
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with ρdep(t) = exp(−t/τdep)/τdep the time distribution between successive depo-
sitions of atoms. Time is continuous now as with inhomogeneous hopping rates,
there is no longer any natural time step.

The residence time in our situation is infinite, τres → ∞, since without a
partner, the single adatom would live on the edge forever. Given (6.1) is valid
here as well, we would obtain peff

n = pS
s . We lack the one-particle-distribution

necessary to prove this explicitly, but we will show it is reasonable with an order-
of-magnitude estimate. We estimate the time τtr an atom needs to traverse the
step edges. Along the edges themselves a random walk takes the time ∼ `2A/ΓA +
`2B/ΓB. Typically we assume that hopping around the corner has a slower rate,
ΓAB � ΓA and ΓBA � ΓB. This then takes a time ∼ `A

2
ΓA+ΓAB
ΓAΓAB

+ `B
2

ΓB+ΓBA
ΓBΓBA

∼
`A

2ΓAB
+ `B

2ΓBA
to ‘escape’ both steps. The deposition time is τdep = 1/(F1da0L)

(with the probability for a deposition after a much shorter time τ � τdep of the
order τ/τdep � 1). If the traversal time is much smaller than the deposition
time, most atoms can perform many round-trips on the island edge before their
partner atom is deposited, and it is reasonable to assume they have reached
their stationary distribution. The condition for this thence roughly reads

max
(
`2A
ΓA

,
`2B
ΓB

)
+ max

(
`A

2ΓAB
,
`B

2ΓBA

)
� 1

F1da0L
.

Interestingly, corner crossing is now one process which may limit the rate at which
the stationary distribution is approached, replacing the escape via the boundaries
in the original setting of Section 6.3.1. Correspondingly, for ` ∼ `A ∼ `B,
Γ ∼ ΓA ∼ ΓB, and Γc ∼ ΓAB ∼ ΓBA, the left hand side reads `

Γ

(
`+ Γ

Γc

)
, which

appears analogous to the residence time expression (βL + α`ES)L/Γ [50, 71]
upon reasonable identification of the Ehrlich-Schwoebel length `ES with Γ

Γc
.

Provided the flux is small enough, this condition will always be satisfied.

6.4.3 One-Particle Distribution

Since hopping rates are no longer uniform, the evolution equations are now
differential instead of difference equations in time. For the single particle, the
Markovian one-step process with nearest-neighbor transitions is governed by

dpn(t)
dt

= gn−1pn−1(t) + rn+1pn+1(t)− (gn + rn)pn(t), (6.3)

where rn labels the transition probability (per unit time) from site n to the left
n−1, and gn from site n to the right n+1. The island edge is periodic, such that
n = 0 equals n = L, n = 1 equals n = L+ 1 etc. While sometimes periodicity is
helpful in finding a solution, it turned out here that it is a fundamental problem.

In Appendix A.10 we review in more detail one standard procedure to solve
this equation. Separating the time dependence ∝ exp(−λt), for the spatial part
an eigenvalue problem (for −λ) remains to be solved. Zone-wise solutions are
easily found to be linear combinations of z±n with z = zA, zB ∈ C depending
on the zone, and they are related to the eigenvalue λ by

2− λ

ΓA
= zA +

1
zA
, 2− λ

ΓB
= zB +

1
zB
.
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The eigenvalue problem is thus reduced to the matching of these two partial
solutions at the corners. One obtains a homogeneous 4 × 4 system for the
(complex) coefficients in the partial solutions, given essentially by the simple
matrix

γAzA γAz
−1
A z`BB (1− γB − zB) z−`BB (1− γB − z−1

B )
γAz

`A
A γAz

−`A
A zB(1− γB − z−1

B ) z−1
B (1− γB − zB)

z`AA (1− γA − zA) z−`AA (1− γA − z−1
A ) γBzB γBz

−1
B

zA(1− γA − z−1
A ) z−1

A (1− γA − zA) γBz
`B
B γBz

−`B
B


(6.4)

with γA := ΓAB/ΓA and γB := ΓBA/ΓB.
Solving the system non-trivially will only be possible for certain values of λ,

rendering the simple matrix singular, or letting its determinant vanish. Then
one can express all four coefficients in terms of only one, leaving us with one
global pre-factor for the normal mode, which can be fixed by an orthonormality
condition.

The general difficulty stems from the fact that either, one easily eliminates
λ, thus retaining two parameters zA and zB which do not have a simple relation
with each other, or one substitutes the explicit roots z in terms of λ, which
greatly complicates matters.

Comments. With computer algebra, one quickly obtains the determinant
of (6.4), and we checked that it is rightly invariant under switching the zones (i.e.,
simultaneous zA ↔ zB, `A ↔ `B, γA ↔ γB) as well as under the simultaneous
inversion of zA and zB.

Furthermore, one correctly recovers the results for the homogeneous edge:
Setting zA = zB =: z and γA = γB = 1 yields

det = z−2−L(1− z2)2(1− zL)2.

In this case, the exact roots are given by z = e2πi·k/L with k = 0 . . . bL/2c, and
for L odd, z = −1 additionally (other solutions are inverses, hence yielding the
same eigenvalue −λ), which makes for bL+1

2 c+ 1 independent solutions. (There
are no real solutions z < −1 in this situation.)

More generally, the determinant for equal ΓA = ΓB, hence zA = zB =: z,
reads

det = z−2−L(1− z)2
{

[1− (1− γA − γB)z]2 − z2`A [(1− γA)− (1− γB)z]2

−z2`B [(1− γB)− (1− γA)z]2−2γAγBz
L(1+z)2 +z2L [(1− γA − γB)− z]2

}
,

which assuming lengths to be equal, `A = `B, further simplifies to

det = z−2−L(1−z)2(1−zL)
{

[1− (1− γA − γB)z]2 − zL [(1− γA − γB)− z]2
}
.

While little can be said about zeros of the former, one can read off the last
result that all solutions of the ‘fully homogeneous’ result are still zeros (except
for z = −1 for odd L), and that one may find additional solutions in those of
(1− cz)2 = zL+2(1− c/z)2, where c := 1− γA − γB.
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Since finding the eigenvalues in closed form (let alone the coefficients) fails
for any generality, we stop our examinations here for obvious reasons. It will also
become clear that the two-particle case brings about an even more fundamental
problem. However, in the Appendix Section A.10.3 we nevertheless review some
further efforts to analytically understand the single-particle distribution, which
show the kind of problems one faces even in an approximate treatment.

6.4.4 Two-Particle Problem

As before, the joint two-particle 1d-random walk (with walker positions m, n)
can be mapped onto a single two-dimensional random walker (at coordinate
(m,n)). The symmetrized initial condition of the propagator (there is no need
to distinguish the two particles) reads pm,n(t = 0) = 1

2

[
pU
mp

S
n + pS

mp
U
n

]
(1− δmn)

using the effective distribution derived above. The nucleation event translates
to the absorbing diagonal pn,n(t) = 0 at all times, and for m 6= n, the time
evolution reads

dpm,n(t)
dt

= gm−1pm−1,n(t) + rm+1pm+1,n(t)− (gm + rm)pm,n(t)

+ gn−1pm,n−1(t) + rn+1pm,n+1(t)− (gn + rn)pm,n(t).

Suppose this equation would hold for all m, n, including the diagonal. Then,
analogous to the solution in Section 6.3.1, one obtains

pm,n(t) =
L−1∑
k,j=0

Bk,j · exp(−(λk + λj)t)ψ(k)
m ψ(j)

n ,

where ψ(k) is the one-particle normal mode for the eigenvalue −λk of the
system. The symmetry of the initial condition implies a symmetric Bk,j by linear
independence of the modes, so it is also preserved under time evolution. The
spatio-temporal distribution of nucleation events Rn(t) is now given by

Rn(t > 0) = gn−1pn−1,n(t) + rn+1pn+1,n(t) + gn−1pn,n−1(t) + rn+1pn,n+1(t)

and Rn(t = 0) = pS
np

U
n .

For the line segment topology of Section 6.3.1, the absorbing diagonal sepa-
rated the 2d-lattice into two dynamically disconnected regions, hence allowing
use of the image method to solve the full problem: This trick incorporated the
changed equation for m = n, yet one could still build upon the known single-
particle solutions. For our case (ring topology), periodicity breaks this method
already in the one-dimensional setting: The walkers can interchange positions
without meeting, or equivalently, the regions m < n and m > n are dynamically
connected, such that the true distribution pm,n(t) can nowhere be replaced by an
auxiliary one. As in Politi and Castellano [73] for the two-dimensional problem,
we do not see a way to overcome this analytically.

We finally note that the problem on the homogeneous island edge is trivial:
Since then, the uniform, the stationary, and hence the effective single-particle
distribution all coincide, and the system is translationally invariant due to
periodicity, the nucleation probability is uniformly distributed over the island
edge.
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6.5 Summary

Analysis of the first nucleation distribution at an inhomogeneous island edge
arose from the similarity of this problem to the hydrogen recombination scenario.
Moreover, there are KMC simulations, which provide interesting results to
be checked, and the analytical and numerical work of Castellano and Politi
[71], Politi and Castellano [72, 73] that uses analytical methods which seemed
applicable to the new situation. It turned out however that, first, the analytical
single-particle solution of the master equation is already out of reach once the
island edge is inhomogeneous in the moderate sense described in Section 6.4.1
(owed to inhomogeneity and periodicity). Second, periodicity of the island
edge does not allow the use of the image method to employ these one-particle
solutions. Since our aim was set to study certain effects analytically, we had to
stop investigations at this point.

Obviously, there are many other approaches to learn about this interesting
system, of which we mention a few.

We tried to analyze a continuum diffusion approximation, first for the single-
particle case. For this, one has to rescale hopping rates and edge lengths, which
are sent to infinity. This introduces several new difficulties: First, for position-
dependent binding energies and diffusion barriers, the form of the appropriate
diffusion equation is subtle and may produce paradoxical effects [74–76]. Second,
the corner plays a special role, where the concentration becomes discontinuous,
while the current should stay continuous. It is non-trivial to model the corner
hopping rates ΓAB and ΓBA in a continuum framework [77].

Since timescales for changing the edge are expected significantly larger than
those for hopping inside one zone, one could try to separate those scales, and
expand the problem in the number of ‘edge changes’. Inside one zone, known
results for the nucleation probability and distribution in the case of a partially
absorbing boundary could be used. However, such results have, once again,
been obtained only with rough approximations or numerically in Politi and
Castellano [72, 73]. Consequently, one might at best improve upon our heuristic
understanding.

Therefore it seems that at the moment, this simple yet intriguing system can
be understood heuristically fairly well, but analytical results are rare, and one
ultimately has to resort to KMC simulations again.
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Chapter 7

Outlook

7.1 An Open Field

Concerning hydrogen recombination in the homogeneous system, further work
should first assess how exactly the master equation describes the system: What
is the quantitative effect of the neglect of all spatial correlations between random
walkers on the lattice?

Moreover, as we have stated before, an improved quantitative analysis has
to incorporate the complex surface structure of interstellar dust grains. Most
notably this implies disorder in the rates, i.e., the replacement of a single binding
energy and diffusion barrier by energy distributions. However, we have also seen
that the given master equation framework does not seem appropriate for this
hard task.

There are several approaches to this problem: As mentioned in Section 5.5,
one idea is the mapping of a full disordered grain to an effective coarse-grained
model of the ‘relevant’ strong-binding sites. Such a model could be treated
with the ME approach for homogeneous grains. Relatedly, one could also set
up coupled rate equations for several types of binding sites [24], which might,
at least in certain regimes, be an efficient way to capture the essentials of the
system.

Another approach is annealing of the disorder, such that activation energies
or rates are not drawn from a distribution once and for all for each adsorption
site, but are rather drawn anew on each step of a walker. This leads to a
CTRW reaction-diffusion model with a (global) non-exponential waiting time
PDF (WTD), and including desorption and a confined geometry. While we still
deem this a hard analytical problem, the huge literature on the CTRW [standard
references to start from are 25, 54, 59, 78–80] has one hoping that it can be
solved at least partially. Similarly, the corresponding system might be analyzable
with an appropriate fractional dynamics equation [for a review see, e.g., 81].

Geometric aspects. Somewhat complementary, but equally interesting, one
can focus on geometric aspects such as the connectivity graph of adsorption
sites. The effect of the porosity of the dust grains has been studied [30, for a
simple heuristic model]. Conceptually related, one might also investigate the
influence of geometric disorder in the sense of a complex (random, or possibly
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fractal) graph of adsorption sites, and typically, first-passage problems have
not been addressed in this context [3, 11]. Some exceptions are Klafter et al.
[82], Goldhirsch and Gefen [83], Noskowicz and Goldhirsch [84] and follow-ups
as well as Haynes and Roberts [85].

It should be understood that treating (rate as well as geometric) disorder
is highly important for a variety of other applications as well, owed to the fact
that the underlying diffusion-reaction system is of a very general nature.

7.2 Connections to Other Work

We finally want to highlight a few connections to problems to which similarities
and differences might be best appreciated in retrospect.

Rosenstock. First consider the work of Rosenstock, exemplarily Rosenstock
[86, 87]. It concerns a simple cubic lattice walk (in one, two, or d ≥ 3 dimensions)
among static absorbing traps of given concentration, and addresses the following
problems: What is the probability of return to the origin before the walker is
absorbed by a trap? If the walk has a certain probability to emit spontaneously
in each step (to desorb or die in our terminology), what is the probability that
this happens before the walk is absorbed? What is the mean time until the
(immortal) walker is trapped? Especially the second problem is closely related
to our analysis of the encounter probability. Indeed, it furnishes two regimes
depending on the ratio of trap concentration (corresponding to 1/S for our case)
and emission probability (1−ξ), when both are small (so the random walk length
is � 1).

The crucial difference in Rosenstock’s work (compared to ours) is that
space is not confined, and that the traps occur “geometrically annealed”: They
are modeled as a certain absorption probability per step (corresponding to
reaction in our case), and not a spatially fixed configuration as in our case.
The then-novel two-dimensional result of Rosenstock [86] expressed in our lan-
guage is as follows: For few traps compared to the emission probability (our
large grains / lattices), the leading-order probability of absorption by a trap
(our recombination) is πa/(SW ) · 1/ ln(a/W ), only differing in numerical pre-
factors from our result. For many traps (our small grains), one would obtain
1−SW/(πa) [ln(S/π) + ln ln(S/π) + const.+O(1/ ln(π/S))], which (apart from
the overall functional form) features a double-logarithm and more logarithmic
corrections compared to our result: This is to be expected, as the boundedness
of our system then implies correlations of the meeting probability per step that
are not present in the infinite ‘stochastic absorption’ case.

Trapping and trap annihilation. Other typical problems in this realm are
the survival probability of particles diffusing among truly static perfect traps
(the ‘trapping problem’), with the famous Donsker-Varadhan asymptotics [88],
and the converse problem called ‘target annihilation’, in which the traps move
and the target is static (or equivalently, the ‘trap’ species no longer survives an
encounter but is eliminated by the particle) [89, e.g.]. The analysis has recently
been extended to traps and particles both moving [90, 91, and references therein],
and possibly with super- or subdiffusive behavior [92–95, e.g.]. Throughout,
there is no simple connection to our situation. As part of the analysis of a
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rather elaborate model of diffusion-limited reactions, Bénichou et al. [96] also
highlights the meaning and the possible failure of the Rosenstock approximation
(to ‘anneal’ trap positions) in both the target and the trapping problem.

We also mention Ziff [97], where the flux of (non-interacting) particles to a
trap is calculated for all times; the particles start out homogeneously distributed
and either perform Rayleigh flights around an absorbing sphere or hop on a
lattice around an absorbing site. The author also considers the effect of the
spatial dimension and subtleties to care for in simulations of the system. Interest
in the subject has not waned over the years [98]. Note that infinity of space
renders all these problems fundamentally different from the systems analyzed in
this Part of the thesis.

MFPTs in a confined geometry. Mentioned before in Section 3.4, the works
Condamin et al. [99], and references therein consider first-passage questions in
confined geometries. They examine mean first-passage times (MFPT) and
splitting probabilities, i.e., the probability to end in a specific one of several
absorbing states [6]. This yields explicit results without knowledge of the full
propagator required in earlier work [100]. Those results can be applied to
diffusion-limited reactions [99], and they were extended to the sub-diffusive case
and arbitrary fractal graphs by means of a general scaling ansatz [101]. We have
not found a straightforward application to our problems: First, desorption cannot
be implemented in a natural way in this approach, and second, the confining
geometry either destroys the scaling ansatz for the latter citation, or it turns
out that for our two-dimensional situation its influence cannot be reasonably
approximated.

7.2.1 One-dimensional Systems

Though our original problem exemplifies the difficulties of spatial dimension two,
similar one-dimensional models are of great appeal: They may serve as toy models
to explore general effects (mostly of disorder) not strongly dependent on the
dimension, and they are also applicable to a large variety of physical situations

— consider, e.g., Chapter 6, or protein-on-DNA search problems [43, 44]. At the
same time, they are substantially easier to handle analytically.

Random random walks. There is a huge literature on random walks and
first-passage probabilities for the ‘random-force’, ‘random random walk’ or
‘Sinai’ model in one dimension; some illustrative references are Bouchaud et al.
[102, 103], Comtet and Dean [104], Chave and Guitter [105]. Their common
feature is that the potential landscape is a random walk (continuous in the
energies) itself. Later, a Real Space Renormalization Group (RSRG) technique
was devised, in which the smallest barriers below some cutoff (set by the time-
scale of interest) are successively removed. This approach allows one to study
first-passage and reaction-diffusion properties as well [10, 106, 107], and can be
applied to a broad class of energy landscapes [108].

It is however based on the property that the spatial variation of binding
energies follows a stochastic process (rendering the landscape self-similar), as
opposed to the energies themselves being i.i.d. random variables. This means that
the differences in binding energy (at potential minima) diverge with diverging
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spatial distance; one finds deeper and deeper wells on a larger length scale,
making the energy distribution ever broader upon renormalization. In contrast
to this, the random-trap model, e.g., does not have this property and shows
normal diffusive behavior (as do other bounded potentials). The method cannot
work properly here, since a very deep potential well quickly becomes the typical
energy scale, and renormalization no longer increases barriers.

MFPT on quenched-disorder chain. For a one-dimensional chain (with
one reflecting and one absorbing end), Murthy and Kehr [109] finds an explicit
expression for the mean first-passage time in terms of the individual probabilities
for hopping left or right (i.e., not yet averaged over disorder). This made
concrete the findings of Noskowicz and Goldhirsch [110]. Following a quick
development [111, 112], the full distribution of this quantity as induced by
disorder is considered in Kehr and Murthy [113], Noskowicz and Goldhirsch [114]
and references therein. Giacometti and Murthy [115] include the possibility for
spontaneous desorption for an otherwise restricted class of hopping rates, and
the effects of non-conservation of probability are examined. For the original
generality of hopping rates, but in the extended model including desorption and
on a semi-infinite chain, Sire [116] computes exactly the full escape probability
distribution (caused by disorder). Again without desorption, but on a one-
dimensional chain which may have two absorbing boundaries, the MFPT and
the mean residence time are also known exactly, and their behavior has been
analyzed for a wide variety of disorder models [117, 118].

An important step forward is the generalization of Murthy and Kehr [109]
to the case including desorption, or to a ring topology, or possibly only to
alternative boundary conditions. Changing the topology renders the problem
hard because typically, results for these systems are obtained with techniques
(such as recursion relations) which rely heavily on the essential uniqueness of
the path between initial and final site. Including desorption as a site-dependent
probability one would want to know the first-passage probability to a target site
and the (conditional) mean first-passage time. Note that for the assumptions of
Chapter 5, i.e., isotropic (‘ultra-local’) rates and W/a = const., the argument of
Section 5.3.1 means that this two-particle problem with periodic boundaries is
easily solved (in terms of steps of the walk, when disorder becomes irrelevant).
Here the interest is rather in a result for arbitrary disorder or truly site-dependent
probabilities, when the timescale cannot be eliminated.

FPT of CTRW. Recently, the problem of the full first-passage time (FPT)
distribution has, in principle, been solved for the CTRW on a chain with nearest-
neighbor transitions and irreversible trapping (i.e., desorption) [119, 120]. The
model includes a site-dependent bias, site- and direction-dependent hopping
WTDs, and a site-dependent trapping probability and WTD: This no longer
corresponds to the situation obtained by an annealing of disorder, but is in fact
a much more general model than in Murthy and Kehr [109]. Moreover, the
authors claim their results can also be applied to a ring topology. Complementary
information on the probability of certain paths is available as well [121, 122].
These results are intriguing, but of an abstract nature, viz. given in Laplace
space by rather involved summation procedures. This might make it difficult
(for realistic models of disorder) to obtain information as concrete as in, e.g.,
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Murthy and Kehr [109]. We have not studied this work in more detail yet.

Many-particle systems. All of these 1d-approaches as well as all the efforts
concerned with first-passage information consider one-particle quantities ex-
clusively, as opposed to the full problem including stochastic deposition and
desorption. The many-particle features that, as we have seen, depend strongly
on the average number of particles in the system, are thence inaccessible in
those frameworks. Of the huge literature on interacting particle systems (con-
tact processes, branching-annihilating RWs, heterogeneous annihilation etc.) we
mention but two interesting approaches that might deserve further attention in
our context (although they do not include particle deposition and desorption).

First, Schütz and Mussawisade [123] maps multi-particle annihilation on a 1d-
disordered chain onto a single-particle first-passage problem in a dual landscape.
Second, the relation between stochastic systems and the quantum-mechanical
formalism has been exploited to employ a real-space renormalization group
approach (different from the RSRG described above) for interacting particles
[124]. In this way, one obtains information (like the particle density) about the
final fate of the system as well as critical exponents. However, this technique
seems hardly suited to examine finite-time properties.
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Chapter 8

Introduction

In epitaxial crystal growth at low enough temperatures, the crystal surface
exhibits atomic steps, thermodynamically stable one-dimensional defects which
separate terraces at different heights between them. Along these objects, atoms
are incorporated into the lattice, causing the steps to move. A wide field of
study considers vicinal, i.e., stepped surfaces (a more detailed introduction to
vicinal surfaces can be found in Section 10.1, where specific material systems
are considered). It is often assumed that the merging of steps as well as island
nucleation on the terraces are irrelevant; one may then adopt a coarse-grained
point of view that treats steps (as opposed to atoms) as the fundamental objects
that undergo motion.

The time evolution of such a system depends on parameters such as the
impingement flux, the diffusion constant and desorption rate of atoms, and
certain kinetic coefficients that govern the attachment of atoms to the step and
the possibility to cross a step to the neighboring terrace. Additional influences are
step curvature (via the stiffness of the step), its proneness to thermal roughening,
and the interaction of steps via entropic (steric) and elastic (via bulk strain)
repulsion, and genuinely electrostatic dipole and possibly electronic interactions.

As such, this system may already show step bunching, i.e., the morphological
instability that drives an initially equi-separated step train to separate into
large terraces and regions with bunches of steps. This instability can arise from
attractive step-step interactions, but also from an asymmetry in the attachment
rates to down- and up-steps, breaking their equivalence: It has long been known
that the normal Ehrlich-Schwoebel (ES) effect [39] (k+ > k−), i.e., the
preferential attachment of adatoms to ascending steps from below, stabilizes
growing step trains (while the inverse ES effect leads to bunching) [125]. This
can be understood by noting that larger terraces entail faster incorporation into
the ascending step, which moves faster than its neighbors and thus equalizes the
step spacing.

As additional influences are considered, the ways to instability thrive. Elec-
tromigration caused by external electric fields can de-stabilize step trains. Also,
impurities in the crystal may pin steps and hence lead to step bunching. It
has been noted, however, that impurities can evoke step instabilities also via
a different mechanism, namely by their codeposition and inclusion in the flat
terrace, which implies disorder in the local transition rates [126]. Exclusively
this last mechanism will be considered herein.
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A concise primer on the fascinating field of step dynamics and their (possible)
instability is given in Krug [127], while a more general introduction to far-from-
equilibrium crystal growth can be found, e.g., in Michely and Krug [2].

8.1 Physical Situation and Mapping

Thermal excitations and non-equilibrium kink nucleation at step edges are
responsible for the roughness of a step. The corresponding step instability mode
is that of meandering (wavy) steps. Both factors will be neglected herein, i.e.,
we deal with ideal straight steps, and with the instability mode of bunching
only. It then suggests itself to map the whole essentially two-dimensional surface
structure onto a one-dimensional model of step positions, where the terraces
between adjacent steps become intervals on which atoms may diffuse.

Note that this implies that disorder in the transition rates on the terrace is
effectively one-dimensional as well, hence an impurity in this model corresponds
to a straight line impurity on the terrace. It depends on the kinetic regime and
the nature of the disorder (hence on the kind of effect the impurity has) whether
this is a gross over-simplification or qualitatively reasonable. For example, in
the random-trap model considered below, we do not expect the two-dimensional
analogue to show qualitative differences from our results, as the trapping of an
atom in a potential well cannot be avoided in any case. In contrast, for the
random-barrier model, we expect a substantial discrepancy: While a barrier in
one dimension inevitably has to be overcome to move forward, there are typically
many ways to circumvent it in the two-dimensional case.

For the reduced problem on a vicinal surface, we then disregard step mergers
and on-terrace nucleation, as well as desorption. This amounts to treating a
kinetic regime in which there is always only one atom on the terrace, and is a
valid picture when the diffusion time to reach a step edge is much smaller than
the deposition time of an atom, and hence, whenever the flux is small or the
temperature high (to enhance diffusion).

The essential question in this highly simplified situation is with what proba-
bility an atom deposited on a certain position on the terrace reaches either the
descending or the ascending step edge. As it arrives at one or the other, we also
neglect step permeability, such that the atom that surmounts a given energy
barrier at the boundary is always counted as being incorporated (absorbed) in
the step edge. Knowing the splitting probability (i.e., where the atom attaches),
one can (in principle) easily calculate the resulting step velocity, and hence
identify possible (de-)stabilizing effects.

So far, there was no mention of the role of co-deposited impurities. It has
been found [126] that there are situations when these “foreign” atoms, making
up a small fraction of all deposited particles, are incorporated into the crystal
bulk immediately upon impinging on a terrace, by changing places with an
underlying “pure” atom. Obviously, one then has to account for the local change
in the potential landscape, such that local binding strength is affected and a
possible bias for diffusing atoms may be implied. This means that the energy
landscape will become disordered.

On the level of the single moving atom (always of the “main species”), this
introduces disorder to the local hopping rates, which will render an appropriate
model much more interesting. What is more is that the strength / frequency
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Figure 8.1: Schematic view of a mov-
ing step train and the average impu-
rity concentration θ(x) on a terrace of
length l. F and F ′ are the overall and
the impurity impingement flux (per
length), respectively.

of the disorder will be position-dependent.
The steps move, and only on the currently
exposed parts of the crystal, viz. the ter-
races between steps, impurities are incor-
porated and generate disorder. This im-
plies that the longer a certain part of a
terrace has been exposed to the impinge-
ment flux, the higher will be the concen-
tration of impurities in that part. Clearly,
close to the ascending step, the terrace has
been exposed to the impurity flux for the
longest time, while close to a descending
step, parts have only recently be created,
and thus have hardly been exposed to the
in-flux. In the approximation of a constant
speed v of steps, the total exposure time
of a certain part of the terrace increases
linearly with its distance from the descending step. Consequently, the impurity
concentration profile θ(x) on the terrace (averaged over stochastic deposition or
adopting a spatially coarse-grained picture) also increases linearly, cf. Figure 8.1.
The value of the maximum concentration (at the ascending step) follows from a
simple argument: Imagine the crystal being built solely by the deposition flux
and moving steps. As the position close to the ascending step vanishes into the
bulk on movement of the adjacent step, the concentration of impurities there has
to equal that in the bulk then, and this has to equal the ratio in the impingement
flux.

The disorder as suggested by the physical situation is thus characterized by
changed local transition probabilities wherever there is an impurity, and the
probability for this to happen is linearly increasing with the distance to the
descending step.

8.2 Relation to Previous Problems

From an analytical point of view, the most obvious difference to the other
problems discussed in this thesis is that this model includes arbitrary disorder,
but can still be solved exactly (in principle). The reasons are as follows: We have a
one-dimensional system with absorbing ends; this is the easiest possible topology,
and (somewhat ironically and owed to the first-passage nature) especially easier
than the periodic boundary of Chapter 6. There is no mortality / desorption with
the implied competition to absorption, and we are only interested in splitting
probabilities, not in mean first-passage times [cf. 109]. As a result, the disorder
is characterized essentially by one degree of freedom per lattice site, such that on
a one-dimensional chain, an appropriate recursion equation can easily be solved
explicitly.

The series of papers Condamin et al. [56], Condamin and Bénichou [57], Condamin
et al. [58] shows a natural generalization to find the splitting probabilities in the
higher-dimensional case in terms of pseudo-Green functions. However, to the
best of our knowledge, the inclusion of quenched disorder (as is essential to our
model) is not feasible in the framework described ibid.
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8.3 Outline

In the next Chapter, we will first introduce the model and solve it exactly in the
general case. We then motivate several possible choices of disorder and boundary
conditions. We compare to the continuum model results of Krug [128], which
we can recover exactly in the proper continuum limit with effective parameters.
Careful analysis will clarify the choice of “natural” boundary conditions and
how they translate between the discrete and the continuum model.

Besides obtaining nice analytical results and clarifying certain aspects of a
complex experimental situation, we mention that our results may be of interest
to Monte Carlo simulations. The lack of tests of the appropriateness of the
one-dimensional modeling notwithstanding, the possibility to decide with a
reasonably simple analytical expression at which step a single deposited atom
will end up may provide an enormous speedup for such numerical analysis,
actually taking the bulk of the simulation time out of the equation.
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Chapter 9

A Simple Model and
Results

9.1 Model and General Solution

Under the conditions described above (Section 8.1) we are naturally led to
describe the atom as a one-dimensional discrete-time discrete-space random walk
on an interval (the terrace) with absorbing ends (corresponding to inclusion of
the atom in the step), the situation depicted in Figure 9.1.

0 1 . . . r − 1 r r + 1 . . . N − 1N

αrβr

Figure 9.1: The random walk model for a single atom on a single terrace. The
probability to step to the left (right) is given by βr (αr = 1− βr) and fixed for each
site by the realization of disorder.

Here, αr and βr denote the probabilities to jump from site r to its right
or its left neighbor, respectively. It should be understood that all relations for
those probabilities etc. always hold for r = 1, . . . , N − 1 unless stated otherwise.
We will no longer care for the timescales at all, which is why the probabilities
suffice, and because there is no desorption, they add up to unity: αr + βr = 1.
We assume our step edges to be perfectly absorbing, clearly, α0 = 0 = βN then.
This is not a restriction on the attachment process, as we can envisage the states
0 and N to correspond to fully incorporated atoms, whereas 1 and N − 1 would
describe states of an atom ‘at the step edge’, and only incorporated with a
certain probability β1 or αN−1, respectively. Note that, for physical reasons as
well as in order for the mathematics to work smoothly, we assume that αr and
βr are strictly positive for r = 1, . . . , N − 1. Therefore, any random walk will
eventually end up at 0 or N .

Let us further note that step permeability could be included in a more general
model using our results. No matter how the detailed processes proceed, we
can definitely cater for them with an appropriate extra energy barrier at the
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boundary. An atom surmounting this barrier would then be split up into a
probability for both processes, i.e., into a certain part for attachment to the
step (contributing to step velocity) and the complement for permeating the step
(showing up as an additional influx of atoms at the step edge states N = 1,
N − 1).

Our goal is now to determine the probability of a deposited atom to end up
being incorporated at the left or the right step edge, in a given realization of
hopping rate disorder. The answer to the above absorbing random walk problem
is well-known in the literature, e.g., the nice monograph of Chung [129]; the
probabilities for a walker, deposited at site j, to end up at the right at N , or at
the left at 0, read

Pj→ =
∑j−1
r=0 ρr∑N−1
r=0 ρr

, Pj← =

∑N−1
r=j ρr∑N−1
r=0 ρr

, (9.1)

respectively, where ρr = β1...βr
α1...αr

(with ρ0 := 1).

9.2 Disorder Models

Let us briefly skim through possible implementations of disorder in the bulk. For
given N , there is a surjective many-to-one correspondence of one-dimensional
energy landscapes to sets of αr (or βr), and we will typically start from par-
ticularly simple models for the landscape. As elsewhere in this thesis, hopping
rates shall always be of Boltzmann form, depending only on the difference
between the current adsorption site binding energy and the transition state
energy to overcome in the direction of the jump. For the time being, we will not
assume anything special to happen at the boundaries, as we will later show that
boundary conditions are easily implemented.

We may first rewrite the completely general result in a simpler form using
the transition state energies Er→r+1 between site r and its right neighbor. We
generally define the local change of (normalized) transition state energies as
∆εr = β[Er→r+1−Er−1→r], where β = 1

kBT
. Then throughout, we have βr/αr =

exp(∆εr). Obviously, this yields ρr =
∏r
i=1 exp(∆εi) = exp (

∑r
i=1 ∆εi) =

exp [β(Er→r+1 − E0→1)] for 0 ≤ r ≤ N − 1, so that we obtain the still general
result

Pj→ =
∑j−1
r=0 exp (βEr→r+1)∑N−1
r=0 exp (βEr→r+1)

. (9.2)

The energies can be expressed relative to an arbitrary offset, corresponding
to canceling an exponential factor in all terms. It is obvious that with the
above choice of hopping rates, the binding energies of adsorption states cannot
matter at all. On a general note, properties such as independence, identity,
and the symmetry of the disorder distribution when mirrored at the midpoint
of the interval, are in general not equivalent irrespective of whether they are
formulated with {αr} or {Er→r+1}! For example, from the above we get αr =
exp[β(Er→r+1−Er−1→r)], such that a (non-identical) distribution of the Er→r+1

which is shifted by a constant offset per site would still render the αr distributed
identically. We now discuss a few special cases.
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Homogeneous case. Without any local bias, we have αr = βr and ρr ≡ 1,
whence Pj→ = j/N .

Constant local bias. This model still has no disorder, but a local bias, e.g.,
determined by linearly increasing transition state energies. This renders βr/αr
a constant, say c. Consequently, ρr = cr, and simplifying the geometric sums in
(9.1), one obtains the standard result Pj→ = 1−cj

1−cN .

Random traps. Here, adsorption sites correspond to wells of random depth,
whereas all transition states between the wells have the same energy. The term
usually also implies the choice of hopping rates described above, so that still,
αr = βr = 1/2. Therefore, Pj→ coincides with that of the fully homogeneous
case.

Random barriers. Since we have seen that random binding depths do not
matter we can set them constant. Instead, we now vary the transition barriers
between the sites.

Let us simplify the situation by considering binary disorder, i.e., either
Er→r+1 = E, or Er→r+1 = E + ∆E. For brevity, we introduce the following
notation: ‖i, j‖ will denote the number of ∆E-barriers between the two sites i
and j. Then (9.2) is reduced to mere counting of extra barriers, and canceling a
factor exp(βE) (or choosing E as our energy zero level) yields

Pj→ =
j + (exp(β∆E)− 1) · ‖0, j‖
N + (exp(β∆E)− 1) · ‖0, N‖

.

We will examine an interesting limit: Suppose there are few barriers, but they
are so high that any atom deposited between two of them basically equilibrates
in a ‘cell’ enclosed by those high walls before it finally escapes to the left or
right. The appropriate condition for this situation is given as follows: It takes
∼ N2

c steps to diffuse in a cell of width Nc � 1. With almost perfectly reflecting
walls, the probability to be at an endpoint is ∼ 2/Nc, and there, the probability
to escape is e−β∆E . Hence the number of steps needed to escape is the inverse
of the average escape probability ‘per step’, or ∼ (Nc/2) eβ∆E . We assume the
escape takes much longer than diffusion in the cell, i.e., eβ∆E � Nc. Using
that the number of barriers between 0 and j will be ∼ j/Nc, only the second
summands in the fraction matter, so that

Pj→ ≈
‖0, j‖
‖0, N‖

.

This merely says that in such a situation we can adopt a coarse-grained view
of the random walk in terms of hopping between adjacent cells instead of sites.
Then ‖0, j‖ is the index of the initial cell and ‖0, N‖ the total number of cells
(counting from 0), and this result could also be written down immediately
applying the homogeneous result to the walk on cells.

“I.i.d.-disorder”. Let the transition state energies Er ≡ Er→r+1 (0 ≤ r ≤
N−1) be i.i.d. random variables — this is not relevant for the original model, but
maybe of general interest: We now have a stochastic energy barrier distribution
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independent of the site. Let angles denote the disorder average, then it is easy
to see that 〈Pj→〉 = 〈PN−j←〉: Mirror the whole setting, and since the mirrored
disorder realizations are the same as the original ones, the averages are as well.
Therefore, spatial averages of the (disorder-averaged) “left-going” and the “right-
going” probabilities are equal, 1

N−1

∑N−1
j=1 〈Pj→〉 = 1

N−1

∑N−1
j=1 〈Pj←〉. Due to

probability conservation (Pj→ + Pj← = 1 for each realization), the right hand
side is 1− 1

N−1

∑N−1
j=1 〈Pj→〉, and thence,

1
N − 1

N−1∑
j=1

〈Pj→〉 = 1/2.

Since both averages are linear, their order is irrelevant. Note that the argument
only relies on the “mirror symmetry” of the energy distribution of the different
sites, so it would also hold for non-identical and even non-independent distribu-
tions of the energy barriers (or the αr) with this property. The i.i.d.-case merely
is the simplest non-trivial example.

For truly independently and identically distributed variables Ek we can say
something about 〈Pj→〉 itself. Obviously, the disorder average〈

eβEk∑N−1
r=0 eβEr

〉
cannot depend on k; it is the same for all indices in the numerator. But then it
follows that 〈Pj→〉 ∝ j. As this quantity’s spatial average has to yield 1/2 we
arrive at

〈Pj→〉 =
j

N

for arbitrarily i.i.d. random variables Ek; the i.i.d.-disorder-average recovers the
result as the homogeneous case.

These examples should provide a good idea of the behavior of Pj→. We
will shortly return to the random-trap and random-barrier cases, applied to a
realistic situation that further specifies both the disorder as well as boundary
conditions.

9.3 Boundary Conditions

We now introduce boundary conditions that specialize a non-bulk behavior at sites
1 and N − 1. As described before, states 0 and N are the fully absorbing states
where the atom has been incorporated, whereas states 1 and N −1 correspond to
sites ‘at the edge’, where there is only a certain rate to incorporate atoms into the
terrace. Those rates1 are called k± (where the plus sign refers to the ascending
edge we place at N−1) and can here be expressed in terms of a certain transition
energy barrier to the absorbing states again: Let ∆E± denote additional barriers
at the respective step edges w.r.t. a pure homogeneous surface in between, then
we would obtain β1/α1 = exp(−β∆E−), and βN−1/αN−1 = exp(β∆E+). (The
explicit relation between k± and our parameters will be derived for more specific
assumptions below.)

1Using our conventions, their dimension actually is [k±] = L/T .
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Example: random traps or homogeneous case. Boundary conditions
render this model interesting again, and can here be examined in great simplicity.
Apart from the above expressions at edge sites, for 2 ≤ r ≤ N − 2, we still have
βr/αr = 1. Directly using (9.2) with the pure surface transition state energy as
the offset yields

Pj→ =
exp(β∆E−) + (j − 1)

exp(β∆E−) + (N − 2) + exp(β∆E+)
. (9.3)

In the interesting case of both β∆E± � 1, the effect of the starting site becomes
marginal compared to the competition between the attachment rates k±. In the
other extreme of β∆E± � 1, the exponentials approach unity and we correctly
regain the homogeneous result.

With the proper choice of the zero energy level, it should be fairly obvious
how to implement any type of boundary condition (given via ∆E±) into any
type of bulk model.

9.4 Comparison with a Diffusion Model

We can now compare results of the discrete model to those obtained in earlier
work in a continuum diffusion picture [128].2 First, we treat the random-barrier
model (with binary disorder).

∆E∆E−
∆E+

0 1 . . . N

Figure 9.2: Energy landscape in the random-barrier model with binary disorder and
additional step edge attachment barriers.

Random barriers (binary). In our setting the exact probability to end up
at the ascending (right) edge, starting from site j, reads

Pj→ =
eβ∆E− +(j − 1) + (eβ∆E −1) ‖1, j‖

eβ∆E− +(N − 2) + (eβ∆E −1) ‖1, N − 1‖+ eβ∆E+
.

The physically given probability to have an impurity at position k, i.e., an
increased diffusion barrier from adsorption site k to site k − 1, reads kp, linearly
increasing with the distance to the descending step (as the exposure time to the
impurity flux grows linearly). Right now, p is some constant subject only to
(N −1)p ≤ 1. In the continuum limit, the number of sites will eventually become
arbitrarily large, and it is therefore justified to replace ‖1, j‖ by its disorder
average or expectation value, reading 〈‖1, j‖〉 =

∑j−1
k=1 kp = pj(j − 1)/2, such

2Vollmer et al. [130] have performed kinetic Monte Carlo simulations of the two-dimensional
system beyond quasi-stationary mean-field approximations and compared them to Krug [128].
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that

〈Pj→〉 =
eβ∆E− +(j − 1) + (eβ∆E −1)p j(j−1)

2

eβ∆E− +(N − 2) + (eβ∆E −1)p (N−1)(N−2)
2 + eβ∆E+

.

This early change to expectation values corresponds to fixing a certain diffusion
constant profile D(x) in the continuum picture, see below. Averaging over initial
sites j = 1, . . . , N − 1 and using

∑N
j=1 k

2 = N(N + 1)(2N + 1)/6 we find

P→ :=
1

N − 1

N−1∑
j=1

〈Pj→〉

=
eβ∆E− +N−2

2 + (eβ∆E −1)pN(N−2)
6

eβ∆E− +(N − 2) + (eβ∆E −1)p (N−1)(N−2)
2 + eβ∆E+

=
1
2

1 + N−2
2 e−β∆E−

[
1 + (eβ∆E −1)pN3

]
1
2 (1 + eβ(∆E+−∆E−)) + N−2

2 e−β∆E−
[
1 + (eβ∆E −1)pN−1

2

] .
(9.4)

The continuum limit is defined by N →∞ and the lattice spacing a0 → 0, with
the terrace width l = (N − c)a0 constant. Here c is an arbitrary constant much
smaller than the typical N and independent of it, which becomes irrelevant in
this limit.

We now have to establish a connection to the two special cases of step edge
attachment rates discussed in Krug [128]: Type I is the impurity-independent
choice k± = k, and type II chooses rates proportional to the local adatom
mobility, in continuous terms expressed as k−/D(0) = k+/D(l) = λ−1. Note
that both choices are designed to become symmetric in the absence of any
impurities. The translation of these continuum picture conditions to our setting
requires some thought. We first do this purely formally, and afterwards decide
whether they are reasonable choices.

Type-I boundary conditions are explicitly formulated as λ0 = D0/k+ =
D0/k−, with D0 the diffusion constant on a pure surface. Thus in terms of
the directed hopping rate on the pure surface, Γ0, we have D0 = a2

0Γ0. In
the discrete picture and with constant binding energies, rates can be expressed
with ∆E± such that the ratio Γ0/k± = a−1

0 exp(β∆E±), where for type-I b.c.s,
∆E+ = ∆E−. Therefore, λ0 = a0 exp(β∆E±).

Second we adopt the definition b = φ(eβ∆E −1)/l, where φ = F ′/F �
1 is the impurity flux concentration. The physical model tells us that the
impurity concentration on the terrace increases linearly up to φ at the ascending
step, corresponding to the barrier probability (N − 1)p in the discrete picture
(Section 8.1), whence p = φ/(N − 1). This implies that (eβ∆E −1)p/a0 =
bl/(a0(N − 1)).

We insert factors a0 into P→ to get

P→ =
1
2

1 + a0(N−2)
2

e−β∆E−
a0

[
1 + (eβ∆E −1)p

a0

a0N
3

]
1
2 (1 + eβ(∆E+−∆E−)) + a0(N−2)

2
e−β∆E−

a0

[
1 + (eβ∆E −1)p

a0

a0(N−1)
2

] .
In the above limit and using the derived relations and ∆E+ = ∆E− we obtain

P→ →
1
2

1 + l
2λ0

+ bl2

6λ0

1 + l
2λ0

+ bl2

4λ0

,
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which is precisely the result for j+/(Fl) = 1 − j−/(Fl) found in Krug [128],
Eq. 12.3

Type-II boundary conditions are defined as k−/D(0) = k+/D(l) = λ−1,
where the diffusion constant used in Krug [128] reads D(x) = D0

1+bx . Substi-
tuting k± for the respective energy differences we can write λ = a0 e+β∆E− =

1
1+bla0 e+β∆E+ , which also implies eβ(∆E+−∆E−) = 1 + bl. In analogy to the
above, we can perform the continuum limit to obtain

P→ →
1
2

1 + l
2λ + bl2

6λ

1 + bl
2 + l

2λ + bl2

4λ

,

which differs from the type-I result only by one term in the denominator. Again,
this perfectly coincides with j+/(Fl) = 1− j−/(Fl) as derived from Krug [128],
Eq. 14, provided we identify λ0 with λ.

We lastly describe an interesting limit: With the discrete result (9.4) consider
high impurity barriers such that eβ∆E Np� 1. Take absolute attachment rates
(type-I), so that ∆E− = ∆E+, and let them be positive and small enough such
that N e−β∆E± ∼ 1 or larger (boundary conditions do not dominate the results).
Then we obtain P→ ≈ 1/3: The increasing concentration of barriers approaching
the ascending step makes it only half as likely to end up there as it is to reach
the descending step.

∆E

∆E− ∆E+

0 1 . . . N

Figure 9.3: Energy landscape in the random-trap model with additional step edge
attachment barriers.

Random traps (binary). While the general result for the (binary disorder)
random-trap case has already been shown to be (9.3), its connection to the
boundary conditions as described in the continuum model is slightly more subtle.
Following the steps of the random-barrier treatment, one merely has to leave
out the summands containing (eβ∆E −1), or may even formally and sensibly set
∆E = 0 (in the present notation), whence we obtain

P→ =
1
2

1 + a0(N−2)
2

e−β∆E−
a0

1
2 (1 + eβ(∆E+−∆E−)) + a0(N−2)

2
e−β∆E−

a0

.

Note that this is not equivalent to setting b = 0 in the above results, since
there, b can also arise in one type of boundary conditions. It may however be
obtained alternatively as the spatial average of (9.3) after inserting and canceling

3j± are the particle current densities to the ascending and the descending step, respectively,
and are of dimension [j±] = 1/(Ld−1T ) = 1/T for a d = 1-dimensional system — recall that
F and F ′ are fluxes per length, of dimension 1/(LT ).
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appropriate factors. We emphasize this to highlight that here, no disorder
average (hence no approximation) is involved at this stage (in contrast to the
random-barrier case), as the random trap result is independent of bulk disorder.

Next, let ∆E denote the impurity-induced binding energy difference of the
model (positive for increased binding strength), and then set b = φ(eβ∆E −1)/l
as before. Here, impurities induce a chemical potential gradient µeff(x) =
−β−1 ln(1 + bx) [128], where −µeff expresses (arbitrary additive constant aside)
the disorder-averaged continuous effective binding energy (increasing for increased
binding strength), analogously to the effective diffusion coefficient in the above.
However, for a surface symmetric in the absence of impurities, such a gradient
can only occur together with an effective diffusion coefficient, which still reads
D(x) = D0/(1+bx). This is due to the change of the diffusion barrier associated
with a random-trap impurity, as mentioned in Krug [128]. Note that here, this
term refers to the barrier as seen by the atom sitting in an adsorption site,
whereas so far we exclusively used transition state energies w.r.t. a global zero
level. The two effects precisely cancel on the terrace, which is obvious in the
discrete picture.

This time, we begin with type-II boundary conditions k−/D(0) = k+/D(l) =
λ−1. Accounting for both the additional boundary barrier but also the effective
chemical potential implies

D0

k−
= a0 exp(β(∆E− − µeff(0))),

D0

k+
= a0 exp(β(∆E+ − µeff(l))),

because compared to the pure surface diffusion D0, both the additional transition
state energies as well as the increased binding by traps expressed in −µeff suppress
attachment. Hence, λ = D0

k−
= a0 exp(β∆E−) = D0

(1+bl)k+
= a0 exp(β∆E+) 1+bl

1+bl ,
so that ∆E− = ∆E+, and P→ → 1/2. Here, the two competing effects also
cancel at the boundary and one recovers the pure surface result as in Krug [128].

It is only in this last step that the effective diffusion constant and chemical
potential of the continuum model enter, and once again, we are forced to include
this separate averaging out of effects to properly establish the connection between
the continuum and random walk points of view. This cancellation can be argued
heuristically: Thinking continuously we have a larger impurity concentration
close to the ascending step, which (in the random-trap model) renders diffusion
slower there. Type II boundary conditions as originally specified clearly aim at
balancing this effect by proportionally slower attachment to the edge as well.
In terms of the underlying energy landscape viewed discretely, this balance is
simply achieved by the same extra diffusion barrier for the transitions to both
absorbing states, so ∆E− = ∆E+.

On the other hand, type-I boundary conditions λ = D0/k− = D0/k+ now
imply exp(β(∆E+ −∆E−)) = 1/(1 + bl), and this yields

P→ =
1
2

1 + l
2λ

1
2

(
1 + 1

1+bl

)
+ l

2λ

=
1
2

(
1 +

bl/2
1 + bl

2 + l
2λ + bl2

2λ

)
.

Again, this agrees with the qualitative statement made in Krug [128]: For
∆E > 0, 0 < bl < ∞, and P→ > 1/2, attachment to the ascending (+) step
is preferred, whereas for ∆E < 0, −φ < bl < 0, and P→ < 1/2 means that
attachment to the descending (−) step is preferred.
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Altogether, we have shown that the exact one-dimensional random walk result
precisely and effortlessly reproduces the outcome of the continuum diffusion
model. The fact that one has to use expectation values for the effect of the
impurity distribution is no shortcoming, but corresponds to inevitably using a
fixed diffusion constant profile and effective chemical potential in the continuum
approach.

On boundary conditions. We conclude with some general statements on
the relation between boundary conditions in the diffusion and the discrete model.
In a way, the two types of boundary conditions change their roles when switching
from the random-barrier to the random-trap model: While type-I boundary
conditions (“absolute attachment rates”) in the random-barrier model translate
to impurity-independent (equal) ∆E± barriers in the discrete setting, they
imply impurity-dependent barriers for the random-trap model; and while type-II
boundary conditions refer to an impurity-dependent boundary energy barrier for
the random-barrier model, they translate into absolute (impurity-independent)
and equal boundary barrier heights for the random-trap case.

The symmetry of the pure surface attachment rates in the absence of impu-
rities (as postulated in the continuum model) is a subtle property: Assuming
the boundary transition barriers (in our model) to be independent of the impu-
rities, it is only satisfied if ∆E− = ∆E+ for the extra barriers w.r.t. the pure
surface (constant) binding or transition state energy. This corresponds to type-I
conditions in the random-barrier, and type-II conditions in the random-trap
model. The proper way to look at the other choices is that for varying b ∝ φ
the step edge barriers change accordingly, and then we always recover the above
condition and symmetry for the pure surface limit b→ 0.

On the other hand, coming from the discrete / microscopic point of view,
there is (if we include special boundary effects at all) only one distinguished
choice for the additional barriers at the edges, and that is ∆E− = ∆E+. The
respective other choice (depending on the disorder models discussed above)
amounts to some fine-tuning of the boundary energy barriers in dependence
on the disorder-“averaged” energy landscape properties at the boundaries, as
expressed by D(x) and possibly by µeff(x). Thinking of the random-trap model
specifically, there is a well-known possibility that a deeper trough can also “drag
down” the transition state energies to its neighbors. It would be inconsistent,
however, not to implement such an effect on the terrace, but exclusively at the
step edges.

9.5 Outlook

Ultimately, one would like to find explicit expressions for spatial- and / or disorder-
averaged splitting probabilities. This is easy only for certain types of disorder.
Unfortunately, the kind of disorder which is suggested by the physical situation
is a most difficult one, since transition state energies are no longer i.i.d. random
variables then. For the statistics of such random variables there are very few
general results to the best of our knowledge.

We tried several familiar statistical physics techniques, but failed to cast
the searched expectation values into an amenable form. In the present form,
we inserted expectation values of the (disorder-dependent) number of barriers
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between two given sites into the splitting probabilities, corresponding to the
continuum models which employ a fixed profile of the diffusion coefficient and
the chemical potential. One might be content with improving this approximation
by the next order: We expect a normal distribution for the number of enclosed
barriers in the limit of a broad interval, and with this distribution it might be
possible to integrate for the expectation values of the splitting probabilities.

More generally considering further research, we refer back to the one-
dimensional machinery for first-passage problems that we reviewed in Sec-
tion 7.2.1. The system provides an interesting testbed to compare KMC find-
ings with analytical results obtained in the spirit of ‘annealing the disorder’.
This seems especially worthwhile w.r.t. the work of Flomenbom and Klafter
[119], Flomenbom et al. [120]: Here we have a physically relevant example of
truly site-dependent bias and waiting time distributions (obtained by site-wise
averaging over the physically suggested impurity probability), not to mention
the possibility to include desorption.
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Chapter 10

Introducing the Problem

We have stressed the ubiquity and importance of diffusion already in the in-
troduction of this thesis. Paradoxically however, at least for surface diffusion
it has been very difficult to gain reliable knowledge of the relevant parameters
(attempt rates and activation energies). Such data can be obtained indirectly
from experiments counting the island density [2], but this method is rendered
practically useless as soon as diffusion properties become anisotropic. As is
reviewed in Wall [131], there is work analyzing an influence of anisotropies on the
island density distribution [132] observable with surface tunneling microscopy
(STM), which needs extreme anisotropies (at least 200 : 1) to function. There
are microscopic studies like field ion microscopy [133], STM-adatom-tracing [134]
and video-STM [135] that are restricted to slow diffusion (i.e., low temperatures)
and small length scales. Finally, there are several studies of diffusion anisotropy
on mesoscopic scales (∼ 100 nm), but they typically use scanning probe methods
to examine only the difference between before- and after-states of a spreading
experiment [136–140, among many others]. Yet precisely dynamic large-scale
collective effects are held responsible for ordering and formation of nanostructures
on surfaces (see Roos et al. [141] exemplarily).

It is an exciting recent development in this field that diffusion properties can
now be envisaged in situ with real-time observations (i.e., producing images at
video rate) on mesoscopic length scales and at high temperatures. The technique
used to achieve this is photoemission electron microscopy (PEEM) [9]. We
describe the system and experiments in the next Sections, while more detailed
reviews and illustrations can be found in Wall [131].

10.1 The Physical System

While the method has been shown to be applicable also to many other epitaxial
growth systems (Meyer zu Heringdorf, Roos, private communication), we focus
on the epitaxial behavior of silver (Ag) on silicon (Si) surfaces exclusively.

Pure Si surfaces. A Si surface can already exhibit surface reconstructions
without any adatom overlayer structure. For example, the Si(001) surface (i.e.,
the twofold-symmetric surface perpendicular to the [001] crystal direction of
the Si fcc lattice) has a lot of dangling bonds if one simply truncates the bulk
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structure by a cut. As a consequence, the topmost Si atoms of the substrate may
form dimers by bonding to lower the free surface energy, and the resulting surface
structure is called the (2× 1) reconstruction of the Si(001) surface. Moreover,
the dimer bonds can become asymmetric (the bond axis is angled w.r.t. the
bulk), and this asymmetry is consistent inside a dimer row (i.e., in the bond
direction), but may change between adjacent dimer rows, leading to various
possible meta-symmetries.

Another important instance is the (7×7) reconstruction of the Si(111) surface,
which has a huge unit cell, but still, it is the energetically favorable configuration
up to temperatures of 850◦C.

Vicinal surfaces are miscut against the main symmetry axes of the crystal,
and are of great practical importance. To be more precise, they have high
Miller indices, but typically, one rather specifies the miscut angle w.r.t. a
certain lattice direction, as it is determined more easily. Specifically for silicon
surfaces, the vicinality results in single and / or double steps occurring. As we
mentioned above, dimer rows form in a certain direction, hence steps also have
to be discriminated by their relative orientation to those rows. One finds an
intricate dependence between the step edge orientation, the step height and the
miscut angle [142, 143]. The orientation of the dimer rows alternates between
layers of the crystal, such that it changes crossing a single step.

Ag on Si surfaces. Silver on silicon surfaces is a model system of surface
diffusion, owed to the large diffusion lengths and the absence of any alloy
formation that allows for total cleaning of any remnant silver after an experiment.
In the presence of Ag adatoms, Si shows a number of surface reconstructions
depending on temperature, Ag coverage and Si surface orientation and (possible)
vicinality. Islands of Ag adatoms only form once a “wetting” monolayer of
silver has been deposited underneath, and in this wetting layer the surface
reconstructions occur.

On the Si(001) surface, the (3× 2) reconstruction is omnipresent; it starts to
form for lowest Ag coverages and becomes complete for 2/3 monolayers (ML)
[144]. Excess Ag adatoms do not disturb this layer, but rather diffuse on top,
affecting the surface roughness. Once roughly a full monolayer is deposited, Ag
island formation is observed.

On the Si(111) surface, there exists a well-known (
√

3×
√

3)−R30◦ recon-
struction for temperatures between 350◦C and 600◦C. Necessary Ag coverages
for saturation range between 2/3 and 1 ML, a fact that Raynerd et al. [145]
explains by measuring and deriving from a model a temperature-dependent
critical coverage. A structural model (that predicts a 1 ML critical coverage)
has been analyzed by Ding et al. [146], and STM measurements in Wan et al.
[147] agree with it. Moreover, there exists a (3× 1) surface reconstruction the
structure of which has long been subject to debates. The critical coverage here
is 1/3 ML of silver adatoms, and the reconstruction is only observed in a narrow
range of high temperatures [147].

10.2 Experimental Techniques (PEEM, LEED)

Surface electron microscopy, i.e., the use of electrons to produce images of crystal
surfaces, is a technique that started out already in the early 1930s. By now,
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this field has branched into a plethora of experimental methods to examine
a multitude of surface properties and processes, employing vastly differing
approaches. As recounted in the review Bauer [148], the techniques that are of
direct relevance to us were developed starting in the sixties of the last century,
owed to the advent of ultra high vacuum (UHV) technology that precludes the
influence of contaminations. One method to obtain information on metal surface
structures is low energy electron diffraction (LEED), in which an electron beam
upon interaction with the surface produces diffraction patterns that can be
analyzed. To arrive at an unambiguous interpretation, however, still requires
independently obtained information on the microstructure of the surface. This
lead to low energy electron (reflection) microscopy (LEEM), in which electrons
are elastically scattered at the sample, thus producing a direct image of the
surface. A prototype for this technique was first successfully tested in 1962 [149,
and references therein], but it took a rather long time for the method to be ready
for everyday use. By ingenious experimental refinements one can select which
feature of the surface to measure, e.g., the reconstruction periodicity or the local
geometric surface structure.

Another method to obtain direct images of the surface structure is photo
emission electron microscopy (PEEM). Here, the sample is illuminated by (typi-
cally UV energy) photons, and by the photoelectric effect, electrons are emitted
and then accelerated by a high voltage supplied to the probe. The image contrast
arises from the spatially varying density of states of the surface electrons as well
as due to different ionization voltages of the various materials (also dependent
on the surface orientation and the reconstruction).

All of these techniques are true imaging methods, in that they simultaneously
deliver all pixels of the image to be obtained. On the contrary, scanning methods
obtain information on different parts of the surface by sequentially sampling
different points of a grid. It is evident that true imaging is mandatory if one
finally strives for a real-time observation of surface processes (i.e., at video rate),
as is fundamental to our problem.

The device used in the experiments of Roos et al. [9], Wall [131] works in
a UHV. Electrons (or photons for PEEM) of ∼ 15 keV are emitted from an
electron cannon, guided by a system of deflectors, condensers and lenses, and
decelerated by an electric field to hit the probe at low energies. The reflected
(or emitted) electrons then travel back and are accelerated again by the same
electric field. This beam is separated from the ingoing one by a magnetic field
(in the so-called sector), and is focused onto a multichannel plate (essentially
an electron multiplier) and then to a CCD (charge-coupled device) camera, see
Figure 10.1 for a schematic. By its very nature, this apparatus can be employed
for all three imaging methods mentioned above. Specifically, a LEED image
is obtained by projecting (via setting the focal length of projector lenses) not
the real-space image, but rather a diffraction image. We finally mention the
important µLEED technique, in which only a µm size portion of the sample is
imaged via LEED. This provides detailed “microdiffraction” information on the
local surface structure, especially the nature of the reconstruction.
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Figure 10.1: Schematic view of the IBM LEEM I, used in the experiments we refer
to. (Original image: workgroup Horn-von Hoegen, University Duisburg-Essen.)

10.3 Observations

The experiments to which we refer are conducted in the PEEM imaging mode,
with detailed surface reconstruction information verified by µLEED. Samples
are prepared as well-oriented or vicinal (miscut by 4◦ in the [110] direction)
Si(001) surfaces, cleaned by degassing and flash-annealing. Ag is then evaporated
thermally and surface growth and desorption are monitored in situ.

As described before, Ag first forms the (3 × 2) reconstruction, and finally,
Ag islands with well-defined facets form on top of the reconstruction layer. The
sample is held at ≈ 650◦C after the deposition process.

In the following desorption stages, one first observes that the surface breaks
into bright and dark zones. Islands are seen very bright in the center of large
bright zones (henceforth succinctly called “isozones” for reasons explained shortly)
surrounded by dark areas. Quickly, the bright zone extension assumes a ‘steady-
state’ value that decreases only very slowly. Simultaneously, the island radius
shrinks, and once the island vanishes, the bright zone rapidly disappears as well.
Figure 10.2 shows snapshots of the whole process. The typical time evolution of

Figure 10.2: The processes of isozone formation, decay to the steady state, and final
desorption stages as seen in PEEM images of Ag on a flat Si(001) surface [9].
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island and isozone radius over time is seen in Figure 10.3: First, there is a fast
initial relaxation to the, second, steady-state regime, and finally the quick decay
of the bright zone after the island has vanished. Desorption sets the overall

50 100 150 200 250 300
0

5

10

15

(i) (ii) (iii)

t/s

radii/µm

Figure 10.3: The radii of island (dashed, values doubled for visibility) and isozone
(solid) in the time evolution depicted in Figure 10.2 [9].

timescale of the experiment. For temperatures below 640◦C, no bright zones
form at all, and above 690◦C desorption is so fast they have no time to form. In
between, the higher the temperature, the shorter the duration of the steady-state
regime (ii) in Figure 10.3.

One can interpret this scenario in terms of microscopic features and processes
on the surface [9]: The decaying central Ag island constantly feeds a current
of Ag atoms into the surrounding areas. Around the island, where the Ag
coverage is highest, it lies above the critical coverage needed to form the (3× 2)
reconstruction (always assumed to be 2/3 ML here), while further outside, the
coverage has dropped below that value, and the surface is in the standard (2× 1)
reconstruction of a flat pure Si(001) surface. In both areas, one expects a dilute
lattice gas of Ag atoms formed by the (excess) coverage.

Figure 10.4: µLEED diffraction images
found for the bright and the dark areas,
respectively [131].

In fact, µLEED pictures (Fig-
ure 10.4) show the diffraction pat-
terns associated with the aforemen-
tioned reconstructions, and they con-
firm that the reconstruction precisely
corresponds to the observed PEEM
image contrast (via differing photoe-
mission yields). This means that the
image brightness directly depicts the
surface reconstruction. Since the cov-
erage decides on the reconstruction
seen at a certain point and varies con-
tinuously over the area around one
island, the boundaries between bright
and dark zones are isocoverage lines of
the corresponding critical reconstruc-
tion coverage: This is the reason we
call the bright zones “isozones”. The
shape of the isozone is a direct foot-
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print of the diffusion field which is responsible for the surface reconstruction, a
relation which is explained in more detail when we describe a theoretical model,
cf. Sections 11.1ff.

Later, similar experiments were conducted on a flat (as well as a vicinal 1◦

miscut) Si(111) surface [131]; in Section 10.1 we briefly described the relevant
reconstructions of the pure surface and Ag/Si(111). A striking observation
was that for this system, one does not only see a bright zone surrounding the
island, but in fact one bright zone, a surrounding small black region, and a
moderately dark outside area. Along the same line of thought as above, analysis
with µLEED images showed that these regions indeed are isozones again. This
time they correspond (innermost to outermost zone) to the

√
3×
√

3, the 3× 1,
and the 7× 7 reconstruction (at high temperatures around 820◦C, thus partially
contradicting the phase diagram set up in Wan et al. [147]). This “double-zone”
observation motivated us to generalize our model (Section 11.1) to the case of
multiple isozones.

Our contribution to the analysis consists in an extension and a detailed
analysis of a simple steady-state model for the isozone experiments proposed in
Krug [150]. We also set up and evaluate models for both the relaxation process
leading to this steady state as well as the free decay after the central island has
vanished.

10.4 Relation to the Work Presented Herein

It is not hard to see that, on a theoretical level, the present task has only fairly
general connections to the previous parts of this thesis. While we still deal with
diffusion and its role in surface processes, the differences are as follows:

• We are interested in the collective diffusion of a large number of particles,
as opposed to the one- to few-particle problems tackled earlier.

• There is simply no first-passage question involved.

• Most of the time, we will examine the steady state of the system. This
we also did to find the encounter probability in Part I, but there we were
concerned with an auxiliary quantity. The full problem was not stationary
at all, although we finally removed the time-dependence by (what effectively
amounts to) time-averaging (cf. Section 3.8).

• Boundary conditions in the full problem were static, e.g., the periodic
boundaries of Section 3.3, whereas here, boundaries (of the isozones) are
moving in principle. This leads to completely different questions, such as
the necessity of a stability analysis of solutions.

• The geometry of the system does not play a crucial role now; more precisely,
we deal with an effectively infinite system, while confinement to a limited
space was essential before (due to the first-passage type of problems).

The interest arose out of the experimentally intriguing situation that quickly
proved to be amenable to analytical modeling. The fact that one treats two-
dimensional diffusion also provides some mathematical connections we could
exploit, cf. the disc model to calculate the encounter probability in Section 3.2.4.
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Chapter 11

Analytical Results

11.1 Model and Assumptions

While this model was originally conceived for the situation of a single isozone,
we found it can easily be generalized to an arbitrary number of zones N , as
motivated by the “double-zone” experiments. Some results will, however, only
be proven rigorously for the single-zone case.

We consider a rotationally invariant setup and employ polar coordinates with
the radial coordinate r, cf. Figure 11.1. The total Ag coverage is labeled θ(r),
continuous throughout. Centered around the origin sits the feeding island, and
its radius will be denoted by R0. Surrounding the island are (possibly several)
isozones with radii R1, R2 etc. from in- to outside.

θ(r)

r

θ0

R0

θ1

R1

θ2

R2(island) (“0” rec.) (“1” rec.) (“2” unrec.)

φ0

φ1

φ2

D0, τ0

D1, τ1

D2, τ2

Figure 11.1: Model of the total Ag coverage versus radial coordinate for N = 2.

All specified radii are associated with certain critical concentrations θi that
govern the surface reconstruction, such that θ(r = Ri) = θi. From now on we
assume θ(r) monotonically decreasing and θ1 > θ2 > . . . , so that θi > θ(r) > θi+1

exactly if Ri < r < Ri+1, which we will henceforth call region or zone “i”. In each
of these regions, the excess coverage is defined as φ(r) = θ(r)− θi+1, obviously
discontinuous. In terms of the excess coverages, the zone radii conditions
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are thence given as φ(Ri+) = φi (with φi = θi − θi+1) and φ(Ri−) = 0 for
i = 0, 1, . . . N , and φ(r → ∞) → 0. The last condition may also be read as a
vanishing φ at a virtual outer boundary RN+1, where RN+1 →∞ eventually. In
this sense, all separate regions have equal boundary conditions, and we will see
that we can eventually recover the proper profile in zone N from a delayed limit
RN+1 →∞. The innermost boundary condition is a given excess coverage φ0

provided by the island at its edge R0.
Within the described setting, we assume only the excess coverage in each

region i to be mobile by diffusion with coefficient Di and to desorb on a charac-
teristic time-scale τi, defining a diffusion length `i =

√
Diτi. Hence in the steady

state, the excess coverage satisfies a stationary diffusion equation throughout,
and with ∇2f(r) = r−1∂(r∂f/∂r)/∂r = (∂2/∂r2 + r−1∂/∂r)f(r) it reads(

∂

∂r̃2
+

1
r̃

∂

∂r̃
− 1
)
φ =

∂φ

∂t̃
≡ 0

in rescaled coordinates r̃ = r/`i, t̃ = t/τi.
In the following we use standard units for all quantities, i.e., r, `i etc. are

lengths, [D] = L2/T , [j] = 1/(LT ), and [θ] = [φ] = L−2. Sheer numbers for the
latter coverages should be understood as meaning monolayers, hence in units of
1 ML = Ω−1 = a−2

0 , where a0 is the lattice spacing and Ω the adatom area.

11.2 Zone Radii and Steady State

The solution for zone i is obtained as (cf. Appendix B.1)

φ(r) = φi
Hi(r)
Hi(Ri)

(11.1)

with

Hi(r) = I0

(
Ri+1

`i

)
K0

(
r

`i

)
− I0

(
r

`i

)
K0

(
Ri+1

`i

)
.

For the outermost region “N” and RN+1 →∞, the factor K0(RN+1/`N )→ 0
lets the second term in HN vanish, so that in φ, the I0 terms in the first
summands cancel; this correctly yields φ = φNK0(r/`N )/K0(RN/`N ) as one
would also obtain from the original boundary conditions.

This is the solution for prescribed radii Ri, however, for those to be the
stationary-state radii, the diffusion current across the zone boundaries has to
be continuous. The (radial component of the) particle current density reads
j = −D∇θ · er = −D∂θ/∂r, such that (cf. Appendix B.1) in zone i (i.e., for
Ri < r < Ri+1) one has

j(r) =
Diφi
`i

I0

(
Ri+1
`i

)
K1

(
r
`i

)
+ I1

(
r
`i

)
K0

(
Ri+1
`i

)
Hi(Ri)

,

and particularly,

j(Ri+1−) =
Diφi
`i

`i/Ri+1

Hi(Ri)
=

Diφi
Ri+1Hi(Ri)

.
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The requirement of continuity at Ri, j(Ri−) = j(Ri+), thus becomes

∆i :=
Di−1φi−1

Diφi
=
Ri
`i

Hi−1(Ri−1)
Hi(Ri)

×

×
[
I0

(
Ri+1

`i

)
K1

(
Ri
`i

)
+ I1

(
Ri
`i

)
K0

(
Ri+1

`i

)]
. (11.2)

Again, by sending RN+1 →∞ at the outermost boundary i = N , the K0 terms
in the second summand of HN (RN ) as well as in the expression in brackets
vanish and the remaining I0 factors of these expressions cancel. Thence we get

[. . . ]
HN (RN )

→ K1

K0

(
RN
`N

)
,

leading to the same result as a calculation which treats the outermost zone
separately,

∆N =
RN
`N

K1

K0

(
RN
`N

)
HN−1(RN−1). (11.3)

11.3 Solvability and Stability

A solution of Equations (11.2) and (11.3), i.e., a set of radii for given parameters,
is the steady-state solution of the problem. It is not clear, however, that such a
solution always exists, let alone that it is stable. We found it highly involved
to (analytically) address these questions for the general multi-zone case, but it
is rather easy to prove that in the single-zone case N = 1, there always exists
a unique solution, and that this solution is stable. Because of the far-reaching
analogy between the different N cases, and failing to see any substantial specialty
of N = 1, we assume there is a unique and stable solution for any N then as
well.

For N = 1 the stationarity condition reads1

∆1 =
R

`1

K1

K0

(
R

`1

)
H0(R0). (11.4)

Since I0 is monotonically increasing and K0 monotonically decreasing, H0(R0)
as a function of R increases monotonically (vanishing for R = R0 and diverging
for R→∞). The same is true for zK1(z)/K0(z) (z ≥ 0):

z
d
dz
Kν(z) + νKν(z) = −zKν−1(z)

[51, 8.486 12.] for ν = 1 shows that its derivative reads d
dz (zK1(z)/K0(z)) =

z[(K1/K0)2 − 1] > 0, where the sign can, e.g., be read off [51, 8.432 1.]

Kν(z) =

∞∫
0

exp(−z coshx) cosh νxdx.

1Here as well as in Sections 11.5f., the (variable) isozone radius will be denoted R ≡ R1,
and R∗ will label the stationary solution.
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The limits of zK1(z)/K0(z) are easily obtained from the exact and asymptotic
series of Appendix B.1, it approaches zero as z → 0+, and diverges ∼ z for
z → ∞. Hence altogether, the right-hand-side of the stationarity condition is
strictly monotonic increasing from zero at R = R0 to infinity for R →∞. By
the intermediate value theorem there exists a unique solution R = R∗ then
for arbitrary values ∆1 > 0 of the left-hand-side, R∗ → R0 corresponding to
∆1 → 0+.

Now we will prove that this unique solution is stable. The solution for R = R∗

is stationary since it has a continuous diffusion current at the zone boundary. In
the general solution with zone radius at an arbitrary R this radius evolves with
time according to

dR
dt

= Ω (j(R−)− j(R+)) ,

where Ω denotes the area occupied by a single Ag atom in the reconstructed
zone. Stability thence means that

d
dR

∣∣∣∣
R=R∗

dR
dt

< 0,

so that an infinitesimal perturbation of R∗ would quickly relax. Using expressions
of the previous Section we find (recall θ1 = φ1 for N = 1)

dR
dt

=
ΩD1θ1

`1

[
∆1

H0(R0)R`1
− K1

K0

(
R

`1

)]
=
−ΩD1θ1

`1

H0(R0)R`1
K1
K0

(
R
`1

)
−∆1

H0(R0)R`1
.

(11.5)
Evaluating the derivative at R = R∗ with the product rule, one half vanishes
due to (11.4), and the other yields

d
dR

∣∣∣∣
R=R∗

dR
dt

=
−ΩD1θ1

`1

d
dR

∣∣
R=R∗

[
H0(R0)R`1

K1
K0

(
R
`1

)
−∆1

]
H0(R0)R∗`1

< 0, (11.6)

as the numerator derivative has been shown positive in the proof of existence.

11.4 Approximate Solution

We shall now see that, given relatively mild assumptions, one can derive simple
power law behaviors of the steady-state zone radii Ri.

We assume that diffusion dominates the situation in the sense that for given
i (i.e., if we want to obtain Ri) Ri, Ri+1 � `i and Ri−1, Ri � `i−1, so that
all arguments appearing in the stationarity condition for Ri are small. First of
all, this is a reasonable deduction from experimental facts: Once the island has
disappeared, the extended isozone rapidly vanishes. This suggests that in fact,
individual diffusing excess atoms necessarily have enough time to travel to the
zone boundaries from the island (referring to the single-zone case) before they
desorb. Second, this assumption is fully reconcilable with activation energies
found experimentally and / or theoretically. In particular, such results imply
that for the single-zone case, `0 ≤ `1, the diffusion length in the unreconstructed
area is larger than in the reconstructed one. Finally, we deem the assumption
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valid judging, in hindsight, by the good agreement of its predictions with the
experiment and other available data.

Note that here, we actually have to treat separately the outermost zone
radius RN , since obviously, RN+1 � `N is no longer satisfied if we finally send
RN+1 →∞. This is easily accounted for by using the special form of stationarity
condition for this radius; however, we emphasize that the failure to fulfill this
requirement is the basic reason that this diffusion length will still appear in our
result, whereas all others will not play any role.

With judicious use of the expressions for I0,1 and K0,1 (cf. Appendix B.1)
we deduce that for all arguments small (in the sense defined above) we have

z
K1

K0
(z) = z

1
z +O(z ln z, z)

− ln z
2 − γ +O(z2, z2 ln z)

=
1 +O(z2)O((ln z)+1,0,−1)

ln(1/z)− γ + ln 2
,

H̃(x, y) : = I0(x)K0(y)− I0(y)K0(x) = ln
x

y

[
1 +O(x2, y2)

]
+O(x2, y2),

⇒ ∂H̃

∂y
= −1

y

[
1 +O(x2, y2)

]
+ ln

x

y
O(y),

∂H̃

∂x
=

1
x

[
1 +O(x2, y2)

]
+ ln

x

y
O(x).

(11.7)
Using these relations in the continuity conditions (11.2) and neglecting all
higher-order terms we obtain

∆i ≈
ln(Ri/Ri−1)
ln(Ri+1/Ri)

,

while for the special case of the outermost boundary we get

∆N ≈
ln(RN/RN−1)

ln(`N/RN ) + ln 2− γ
.

This translates into the following approximate power-law dependencies (also
neglecting ln 2− γ ≈ .115932� 1 compared to the logarithm)

Ri
Ri+1

≈
(
Ri−1

Ri+1

)(1+∆i)
−1

and
RN
`N
≈
(
RN−1

`N

)(1+∆N )−1

.

(11.8)

It is immediately obvious that all these steps may easily be applied to an arbitrary
number of zones. We find it a striking feature that in the outermost region,
the diffusion length substitutes for the “zone radius” Ri+1 →∞ as the limiting
length scale. On the other hand, the universal form of the relationship for any
of the inner zone boundaries shows that, given our assumptions on the length
scales, the adatom-supplying “island” boundary at R0 is not a special boundary
condition at all: In fact, for all zones the next inner region works in precisely
the same way as a supplying island as well.

Comparison with experiments. Let us first collect several results on acti-
vation energies for the specific system of Ag on a Si(001) surface. The density
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functional theory (DFT) calculation Kong et al. [151] for the unreconstructed
surface finds Eτ1 = 3.1 eV and ED1 = 0.5 eV. A nucleation study Hanbücken
et al. [152] yields ED0 = 0.7 eV and Eτ0 ≥ 2.1 eV.

2 3 4 5 6
12

16

20

24

R0/µm

R/µm

Figure 11.2: Experimentally found isozone
radii vs. island radii as of Roos et al. [9] in a
double-logarithmic plot.

Experimentally, island and iso-
zone radii may be obtained directly
from PEEM observations [9]. They
are found to conform nicely to the
power-law behavior (11.8) predicted
by our model, as shown in Fig-
ure 11.2. Using this relation (for
the single-isozone steady-state case)
to fit the data, one can deduce
∆1 as well as `1. Such an anal-
ysis has been performed [9] and
yields Eτ1 − ED1 ≈ 2.3 eV (assum-
ing coinciding attempt frequencies
for hopping and desorption in one
region) and D0/D1 ≈ 4/(9φ0) (us-
ing θ1 = 2/3 ML). The former re-
sult is consistent with the DFT-

based Eτ1 − ED1 ≈ 2.6 eV. From the latter one finds (for the plausible value
φ0 = 1 ML) that ED0−ED1 ≈ 0.1 eV. Using the DFT estimate for ED1 results in
ED0 ≈ 0.6 eV, which agrees reasonably well with the nucleation study outcome.

This is the right time to assess the validity of our assumptions R1 � `0, `1.
The experimental data taken at T = 919 K (≈ 0.080 eV with kB = 8.6173 ×
10−5 eV/K) shows that R1 < 30µm, such that one should have, say, `0 ≥
100µm. With equal attempt frequencies of hopping and desorption we have
`0 = a0/2 exp [β (Eτ0 − ED0) /2], and with a lattice spacing of a0 = 7 Å this
would imply Eτ0 −ED0 > 2 eV, consistent with the lower bound from nucleation
given above. Moreover, the previously available data clearly suggests that the
diffusion length in the unreconstructed region is much larger still. Obviously,
the simple model can consistently account for all observed steady-state features
of the complex Ag on Si(001) system, and the isozones are indeed a proper
footprint of the diffusion field.

We finally mention the “double-zone” experiments of Wall [131]: Since the
observation of this feature requires still higher temperatures (around 820◦C)
than for Ag/Si(001), the desorption is rather quick even in the ‘quasi-stationary’
phase (ii) of Figure 10.3. Moreover, islands are no longer compact. Higher
contrast in the PEEM image reduces radii data scatter on the other hand, and
the results of a fit to the power-law dependence (11.8) still seem to agree with
data available otherwise.

11.5 Relaxation Time to Steady State

For the single-zone situation, we have shown there always exists a unique and
stable solution to our model, i.e., an isozone radius R∗ for given critical coverages,
island radius and island edge concentration as well as kinetic parameters (diffusion
coefficients and desorption times). Experimentally, one observes a relaxation
of the diffusion zone radius to this steady-state value, and hence we strive for
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predictions for the corresponding relaxation time.
From the stability analysis of Section 11.3 we know dR/dt in terms of R,

(11.5). Expanding this first-order differential equation about the stationary
solution, i.e., in terms of R−R∗, one obtains a relation of the form

d(R−R∗)
dt

= − 1
tr

(R−R∗) +O
(
(R−R∗)2

)
,

and the zeroth order vanishes due to R∗ stationarity. Such an equation has the
(leading-order) solution R−R∗ ∝ exp(−t/tr), thence tr is (to the order of the
expansion) the searched relaxation time. From the expansion we have

t−1
r = − d

dR

∣∣∣∣
R=R∗

dR
dt

=
Ωθ1

τ1

1
H0(R0)R`1

· `1
d

dR

[
H0(R0)

R

`1

K1

K0

(
R

`1

)]∣∣∣∣∣
R=R∗

,

and we employed (11.6) in the evaluation. Rewriting this using an earlier result
for d[zK1/K0]/dz and stationarity (11.4) yields

t−1
r =

Ωθ1

τ1

1
H0(R0)R∗`1

{
H0(R0)

R∗

`1

[(
K1

K0

)2(
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− 1

]

+ `1
dH0(R0)
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∣∣∣∣
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=
Ωθ1
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K1
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)2(
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`1

)(
1 +

R∗

∆1

dH0(R0)
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∣∣∣∣
R=R∗

)
− 1

]
.

(11.9)

We could not improve upon this result by more explicit evaluation of the H0

derivative. Ωθ1 < 1 is the critical coverage for reconstruction given as a fraction
of the monolayer coverage Ω−1. Note that all quantities in the pre-factor also
affect R∗.

11.5.1 Standard Approximation

We argued earlier in favor of the “dominating diffusion” assumption, cf. Sec-
tion 11.4. For the single-zone case this means R0 ≤ R� `0, `1, whence we may
use the approximations (11.7) in (11.9) (neglecting O(1) terms in the brackets)
to find

tr ≈
τ1

Ωθ1

∆1

1 + ∆1

(
R∗

`1

)2 [
ln
(
`1
R∗

)]2

.

The essential scaling here reads tr ∝ R∗2/D1. Using the approximate result for
R∗, we can eliminate the isozone radius,

tr ≈
τ1

Ωθ1

∆1

(1 + ∆1)3

(
R0

`1

)2/(1+∆1) [
ln
(
`1
R0

)]2

. (11.10)

Further specialization to uniform diffusion and desorption merely allows for the
substitution ∆1 = φ0/φ1. More interesting in view of experimental data is the
case ∆1 � 1, which implies a nearly linear relation between R and R0, such that
tr ∝ R0

2/D1.
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11.5.2 Temperature Dependence

We finally examine the temperature dependence of the relaxation time in our
standard approximation (11.10).

For low temperatures, β(ED0 −ED1)� 1, ∆1 � 1, and expansion to leading
order in ∆1 yields

tr ≈
τ1∆1

Ωθ1

(
R0

`1

)2 [
ln
(
`1
R0

)]2

=
∆1

Ωθ1

R2
0

D1

[
ln
(
`1
R0

)]2

.

Inserting thermally activated behavior, for T → 0 the logarithm essentially
contributes a factor β2(Eτ1 − ED1)2/4 which only adds to the exponential
divergence of ∆1/D1 ∝ D0/D

2
1 ∝ exp[−β(ED0 − 2ED1)]; we reasonably assume

that ED0 − 2ED1 < 0, and consequently tr →∞ for T → 0 with this activation
energy.

For high temperatures β(ED0 −ED1)� 1 we have ∆1 ≈ φ0/θ1 ∼ 1 instead.
Obviously, for T →∞, the relaxation time decreases to a finite limit, viz.

tr ≈
τ1

Ωθ1

φ0/θ1

(1 + φ0/θ1)3

[
ln
(
`1
R0

)]2(
R0

`1

)2/(1+φ0/θ1)

,

where `1 → a0/2
√
νD1/ντ1 is the limit of the diffusion length for attempt

frequencies νD1 and ντ1 of hopping and desorption, respectively. While one
can easily insert the temperature dependencies and properly expand in the
small parameter β(ED0 − ED1)� 1, the result is awkward and not particularly
enlightening.

Experimental results. There have been efforts to determine the temperature
dependence of the relaxation time in the Duisburg group of F. J. Meyer zu
Heringdorf. At present, there are no data sets to reasonably compare our results
with, mostly owed to the narrow temperature range exhibiting a steady state at
all.

11.6 Free Isozone Decay: A Toy Model

As mentioned above, the end of the steady-state scenario is marked by a quickly
vanishing central island, triggering a rapid decay of the remaining isozone. To
enhance our understanding of the overall situation, as well as to use one more
observed process to gather information about involved activation energies and
such, we propose a simple model for this decay as well.

We re-consider the circular single-isozone setup. Obviously, we now need a
time-dependent description of the situation. However, the diffusion equation
with structurally different zones, in which diffusion and desorption coefficients
can differ, and only the excess coverage is mobile, is a highly involved Stefan
problem [153]. Therefore we shall be content to treat a single equation with
uniform D, τ , and for the total coverage θ(r, t) mobile and desorbing, which
then reads

D∇2θ − θ

τ
=
∂θ

∂t
,

with the diffusion length ` =
√
Dτ .
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We use an ansatz starting from free desorption: θ = exp(−t/τ)θ̃(r, t). For
the resulting standard equation D∇2θ̃ = ∂θ̃/∂t (without any desorption term),
the solution in two dimensions (bounded at all times t > 0) writes [154, pp.251ff.]

θ̃(r, t) =
1

4πDt

∫
d3r′θ(r′, t = 0) exp

[
−|r− r′|2

4Dt

]
with θ(r, t = 0) the initial coverage. The searched isocoverage line is given by
θ(r(t), t) = θ1, and restricting ourselves to rotational symmetry the isozone
radius is determined by θ(R(t), t) = θ1.

Delta peak model. We prescribe an initial delta profile θ(r, t = 0) = Cδ(r),
where C > 0 is the initial number of adatoms. Obviously, the solution has
R(t = 0) = 0 and growing at first, but we may simply start at an appropriate
later time t0 > 0. One obtains the well-known Gaussian for t ≥ t0,

θ(r, t) =
C

4πDt
exp

[
−
(
r2

4Dt
+
t

τ

)]
. (11.11)

This will be our (analytically tractable) approximation of an initial profile; we
will later comment on its applicability. For clarity, the parameters C and t0 can
be expressed in terms of the initial peak concentration θ0 = θ(r = 0, t = t0) (the
notation purposely suggests to use the former island edge concentration here),
and the initial isocoverage radius R(t = t0), where θ(R(t0), t0) = θ1. Those
definitions imply

θ(r, t = t0) = θ0 e
−

„√
ln θ0/θ1
R(t0) r

«2

,

and comparison (for all r) then yields

1
4Dt0

=
ln θ0/θ1

R2(t0)
,

C e−t0/τ

4πDt0
= θ0, (11.12)

such that
C

θ1
=
θ0

θ1
π
R2(t0)
ln θ0/θ1

exp
(

R2(t0)
4`2 ln θ0/θ1

)
.

R(t) analysis. From the original form (11.11) we find the isocoverage line
radius

R(t) =

√
−4Dt

(
ln

4πDtθ1

C
+
t

τ

)
,

with the following behavior: R(t = 0) = 0, and as long as 4πDtθ1/C � 1,
R(t) ≈

√
4Dt ln(4πDtθ1/C)−1 first grows by diffusive spreading (with negligible

desorption). At the time when (4πDtθ1/C)−1 = exp(1 + 2t/τ), the radius R(t)
reaches a maximum. After the following decline, R(t) becomes zero again at the
time t∗ given by

C

4πDt∗θ1
= et

∗/τ , (11.13)

which is the time when the isozone has vanished.
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A few notes on orders of magnitude of the different terms are appropriate.
At the initial time t0, the isozone is covered with at least the critical coverage
θ1, so that θ1 · πR2(t0) < C. We now assume that desorption is weak compared
to dominating diffusion, in the sense C � θ1`

2 (where θ1 ∼ 1 ML) — this also
implies R2(t0) � `2, like we generally assumed in the more involved models
and was found experimentally. Moreover, we then have t/τ � 4πDtθ1/C <
1 throughout, the latter inequality as at that time, the radicand in R(t) is
already negative: The whole vanishing of the isozone takes place long before the
desorption timescale τ is reached. Diffusion dominates the process, and the zone
vanishes by spreading out the coverage over the plane, not by desorption.

Under these assumptions, 4πDtθ1/C � 1 in the phase of growing R(t) implies
t/τ ≪ 1, which is obviously no longer true at the maximum of R(t). Now let t
be large enough such that ln(4πDtθ1/C)−1 < 1 + 2t/τ , when R(t) is declining
again. Assume for a moment we turn off desorption by τ →∞, so that we reach
R(t) = 0 slightly later, when 4πDtθ1/C = 1. Set 4πDtθ1/C = 1− ε for the late
stage close to the vanishing of the isozone. To leading order in ε one obtains

R(t) ≈
√
Cε/(πθ1) =

√
1−4πDtθ1/C

πθ1/C
, which still reproduces the exact time at

which the isozone vanishes.
For weak (instead of no) desorption we have t/τ � 4πDtθ1/C =: 1 − ε,

where ε→ 0 can no longer be reached, but still ε� 1. The R(t) solution then
approximates to

R(t) =

√
1− ε
πθ1/C

(
ε+O(ε2)− 1− ε

4πθ1`2/C

)
,

and to leading order in both ε and (θ1`
2/C)−1 this yields

R(t) ≈
√

C

πθ1

√
ε− (4πθ1`2/C)−1 =

√
C

πθ1

√
1− 4πDtθ1/C − (4πθ1`2/C)−1.

This has the same functional form as the R(t) dependence obtained from another
simple model: Decay of a hemisphere island without desorption by outflow
through its (shrinking) circular boundary touching the surface [131]. It appears
as if the dominating diffusion lets the isozone spread through its boundary in a
similar way. The time at which the isozone vanishes is read off as

t∗ ≈ 1− (4πθ1`
2/C)−1

4πDθ1/C
,

corresponding to ε ≈ (4πθ1`
2/C)−1 � 1.

Finally, we have seen earlier that R(t) might first grow at the initial time t0
if the maximal R occurs only later, a situation not seen in the experiment. The
condition for R(t) monotonically decreasing right from the start t = t0 is that
ln(4πDtθ1/C) + 1 + 2t/τ > 0 at t = t0. Equivalently we have (with (11.12))

ln
(
θ1

θ0
e−t0/τ

)
+ 1 + 2t0/τ > 0

which is satisfied if and only if 1 + t0/τ > ln θ0
θ1

, or (neglecting weak desorption)
if and only if the initial coverage contrast is not larger than e. For the typical
experimental situation, θ0/θ1 ≈ 3/2, which is on the proper side of the inequality.
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Central result. It remains to evaluate the time ∆t := t∗− t0 passing from our
starting point with a certain initial distribution until the zone finally vanishes,
and to express it in physical parameters. Though possible, it makes for a rather
intransparent derivation to employ the approximate results obtained so far.
Instead we use that by (11.12) we have

θ0

θ1
=

C

4πθ1Dt0
e−t0/τ ,

while t∗ is implicitly given by (11.13), hence

θ0

θ1
=
t∗

t0
exp

(
t∗ − t0
τ

)
=
(

∆t
τ

τ

t0
+ 1
)

e∆t/τ .

We expand the exponential as we have seen that ∆t/τ � 1 for realistic conditions,
thus obtaining

θ0

θ1
− 1 =

∆t
τ

[(
τ

t0
+ 1
)

+
∆t
τ

(
τ

t0
+

1
2

)
+ . . .

]
.

In the first term, the desorption timescale drops out, hence we still include the
second one as our first correction. Solving this truncated equation yields

∆t
t0

=
(
θ0

θ1
− 1
)(

1− θ0

θ1

t0
τ

+O(t0/τ)2

)
or, upon inserting t0 = R2(t0)

4D ln θ0/θ1
,

∆t =
R2(t0)
D

θ0/θ1 − 1
4 ln θ0/θ1

(
1− θ0

θ1

R2(t0)
4`2 ln θ0/θ1

+O(t0/τ)2

)
. (11.14)

This is the most important and experimentally relevant result of this model.
The leading order dependence reads ∆t ∼ R2(t0)

D . This is to be expected for
dominating diffusion, because that is the time for diffusive motion of a length
R(t0) over which the coverage falls off from its maximum to the critical coverage —
we now have additionally found the pre-factor (ofO(1) since ln θ0/θ1 . 1 ∼ θ0/θ1)
and correction terms. The first correction in parentheses is small due to the
weak desorption assumption R(t0) � `. In the limit of no desorption, ` → ∞
and this would vanish completely.

Beyond the Gaussian. The time-dependent coverage for an arbitrary initial
distribution θ(r, t = 0) is an integral that can only be evaluated for special cases.
However, for a radially symmetric function the angular part can be integrated
out: Without any restriction let the ϕ = 0 ray of plane polar coordinates
coincide with the direction r in which to evaluate the integral. Hence |r− r′|2 =
r2 − 2rr′ cosϕ+ r′2, and

θ(r, t) =
e−t/τ

4πDt

∞∫
0

dr′ r′ exp
(
−r

2 + r′2

4Dt

)
θ(r′, t = 0)

2π∫
0

dϕ exp
(

2rr′ cosϕ
4Dt

)
,

and using
∫ π

0
exp(z cosx)dx = πI0(z) [51, 3.339] we obtain

θ(r, t) =
exp

(
− t
τ + r2

4Dt

)
2Dt

∞∫
0

dr′ r′ exp
(
− r′2

4Dt

)
θ(r′, t = 0)I0

(
2rr′

4Dt

)
.
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One might want to insert a stationary profile obtained from the full model
introduced in Roos et al. [9], where coefficients could differ in the different zones,
and only excess coverage w.r.t. the critical coverage is mobile in the inside zone.
However, such a procedure is complicated and unlikely to be fruitful: Even when
evaluated with uniform coefficients all over the surface, the models have obvious
structural differences. Furthermore, one cannot simply extend the solution (11.1)
(a combination of modified Bessel functions) to the origin: Certain terms
diverge in this limit, since the solution of the diffusion equation without an inner
boundary is the Gaussian, not a Bessel function. Moreover, as we now expect
diffusion to be the main driving force behind the isozone decay, it is natural to
assume that all smooth distributions rapidly approach a shape similar to the
Gaussian found in our delta peak example. Hence, we cannot expect to improve
upon our current results in this direction, and thus abstain from introducing
unnecessary complications.

11.7 Final Remarks

Figure 11.3: Comparison of the isozone
shapes for a flat surface as opposed to a vic-
inal one. (Image kindly provided by Frank
Meyer zu Heringdorf.)

Anisotropic diffusion. We first
show an interesting implication of the
isozone concept for the interpretation
of observations. As mentioned be-
fore, isozone experiments have been
performed also on vicinal Si(001) and
Si(111) surfaces, miscut by various an-
gles. This leads to a surface morphol-
ogy incorporating step edges at regular
intervals. Diffusion along the edges as
well as across the edges may be much
easier or harder than on the terraces
between steps, and it could also be
anisotropic on the terrace itself (based
on the orientation of dimer rows, e.g.,

cf. Section 10.1). If the diffusion is effectively anisotropic, this can drastically
affect the isozone shape [9, 131]: Even on well-oriented surfaces, local pertur-
bations lead to an aspect ratio of island and isozone that varies stochastically
over the surface; for vicinal surfaces, the effect becomes systematic. A rescaling
of the fundamental diffusion equation of the analytical model shows that the
isozone aspect ratio directly reflects the ratio of diffusion lengths, or the square
root of the effective diffusion coefficients, in the two directions.

In this way, without any detailed knowledge of all the diffusion barriers,
one may immediately deduce from a PEEM picture as shown in Figure 11.3
the dominant direction of adatom diffusion. Such information cannot be easily
obtained from a study of island densities and the shapes of the compact islands
themselves; in fact, both have been found to be virtually independent of the
vicinality of the Ag/Si(001) system in Roos et al. [9].

Typically, diffusion across step edges is severely hindered. Since an isozone
usually spans a lot of these steps, small changes in the diffusion activation
energies suffice to evoke a highly anisotropic isozone shape (elongated parallel to
the step edges). It can even lead to isozone shapes that are no longer elliptical,
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but where the smaller diameter is effectively reduced to the island radius. Clearly,
this situation can no longer be described by our simple model.

Outlook. A more general comparison between theory and experiments is
hampered by the fact that the steady-state situation only arises in a narrow
temperature range, cf. Section 10.3. It is therefore difficult to make meaningful
statements about, e.g., the temperature dependence of the exponent in the
zone-radii power law (11.8).

Progress in this direction may include determining the dependence of the
relaxation time on the island radius as of (11.10) (although this involves a larger
uncertainty since desorption sets the timescale, depending on activation energy
and attempt frequency), and testing the prediction (11.14) for the isozone decay
time after the island has disappeared.

The images of Figures 10.2 and 11.3 as well as the data shown in Figures 10.3
and 11.2 were kindly provided by Frank Meyer zu Heringdorf. The schematic
drawing in Figure 10.1 was friendly enough made available to me by Dirk
Wall, courtesy of the workgroup of Michael Horn-von Hoegen, University of
Duisburg-Essen. We also thank Dirk Wall for the image in Figure 10.4.
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Chapter 12

Conclusions

Part I: Hydrogen Recombination on Interstellar Dust Grains. Start-
ing with a master equation analysis, we have shown that it is possible to rigorously
define the true sweeping rate for such diffusion-mediated reactions on a closed
surface, namely in terms of the two-particle encounter probability. This quantity
has been calculated using both a continuum diffusion model as well as a random
walk on a periodic lattice. We have compared both approaches and find that
the RW result only converges logarithmically slow to the continuum limit, a
consequence of the critical dimension two of diffusion. The generalization of
the RW model to a distorted lattice has been thoroughly analyzed. Even in
the quadratic case, the confining geometry plays a crucial role, and with the
rectangular lattice we have a toy model to study this influence: Distortion
can strongly decrease the encounter probability by several mechanisms, with a
crossover to effectively one-dimensional behavior. These quantitative findings
have been explained in depth. On the other hand, the effect of the lattice
type is marginal. All these results have been validated by kinetic Monte Carlo
simulations of the continuous-time equivalent of the random walk model.

As for the sweeping rate one wants to evaluate, we find it is reduced compared
to its conventional approximation due to back-diffusion, most pronounced for
large grains. Consequently, the recombination efficiency as predicted by the ME
framework is decreased in this regime, and we have analyzed the implications
under typical astrophysical conditions, finding that the temperature window of
efficient recombination is hardly shifted.

As far as the homogeneous situation is concerned, we have thus described
a fully analytic theory for the encounter probability that precisely agrees with
simulations, including the aspects of global grain geometry and lattice type. The
full recombination problem is thence solved inasmuch as the zero-dimensional
master equation suffices. We expect these results to remain relevant for much
more general reaction networks and grain types, since the explanation of the
relevant effects remains sensible as well.

For the case of disordered transition rates, we have identified the simplest rea-
sonable kind of disorder, and examined the influence on the encounter probability,
sweeping rate, and recombination efficiency if one sticks to the zero-dimensional
ME approach with a set of effective parameters. We have also considered how
these parameters can account for the finite number of adsorption sites on the
grain. Not too surprisingly however, it has turned out in KMC simulations that
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for all but very weak disorder, the simplistic idea of effective parameters does not
work well. This outcome is explained by the dependence of the recombination
process on the full distribution of binding energy depths in a given realization.
Finally, we have shown how the choice of disorder model can subtly affect the
outcome of KMC simulations by comparing to previous work in the field.

Lastly, we have also examined the offspring problem of (inhomogeneous)
island edge nucleation. Unfortunately, an analytical treatment beyond most
restrictive assumptions seems out of reach.

Part II: Disordered Step Growth. For the problem of step growth in the
presence of codeposited impurities, we have analyzed a simple one-dimensional
model of the adatom on the terrace between two step edges. It has an explicit
quenched-disorder expression for the probability to attach to the ascending or
the descending step, respectively. This general result can already be useful
in greatly speeding up Monte Carlo simulations of the system or of possible
extensions to more complex models. We have applied it to several models of
disorder which may strongly or not at all affect the outcome, and examined
interesting limiting cases. The relation to continuum models that were used
before has been established, and we have clarified the nature and importance of
boundary conditions in this setting.

These results can be but one small piece in the puzzle of morphological step
(in)stability, and as mentioned in Section 8.1 the one-dimensionality of our toy
model obviously can have grave consequences. However, it is our impression that
the experimental findings as well as the interpretation of simulations have not
produced any consensus yet as to which factors are truly governing the phenomena
observed for a particular physical system. Depending on the details of impurity
effects we thence believe that our work is helpful in a better understanding of
the physics of step growth.

Part III: Isozones and Surface Reconstructions. We have given a simple
analytical theory for several of the observed Ag isozone phenomena on silicon
surfaces as observed with the exciting PEEM approach. Based on the steady-state
solution of simple diffusion equations with moving boundaries, we have derived
a simple power-law dependence of the isozone radii in terms of the supplying
island, which has been generalized to the multi-zone case also observed. It agrees
with the experimentally measured dependence to the extent that results are fully
compatible with activation energies obtained from various other experimental
and analytical methods. The theory thus enhances our understanding of the
fundamental processes that lead to the observed phenomena.

For the initial relaxation to the steady state, we have shown how to obtain
the characteristic time-scale and analyzed its behavior in several regimes. Finally,
we have thoroughly investigated a toy model of the isozone decay once the island
has vanished, identifying reasonable assumptions on parameters. This eventually
yields a simple expression for the time it takes for the isozone to vanish. These
results are still to be tested in experiments.

The bigger picture. In the three Parts of this thesis, the emphasis clearly
lies on different aspects.
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The model system for hydrogen recombination is long-known and naturally
suggests itself, yet even for the homogeneous case we have seen that there
were blind spots (such as the sweeping rate definition) concerning fundamental
questions (the importance of back-diffusion and the influence of the geometry
to name only two). Addressing these questions, we feel we have essentially
contributed to the theory, such that the zero-dimensional approach for the
homogeneous (standard-lattice) system may be considered complete. Obviously
this does not hold true for the disordered system, where work has just begun it
seems.

For disordered step growth on the other hand, the focus was rather on
the application of easily obtained results for the simple 1d-model to concrete
physical conditions. This has established relations to other treatments of the
same (physical) model, and served to clarify conceptual issues on the role of
boundary conditions.

Still different, the work on isozones is basically a proof that we have the
proper notion of the interplay of surface reconstructions and adatom diffusion
and desorption. After all, predictions derived from the intuitive model could
be tested (and verified) in experiments. Without these steps that provide an
understanding of what we see, the value of the PEEM observations would be
very limited.

However, these differences in emphasis should not create the impression that
the Parts of this thesis are separate and unrelated to each other. Quite the
opposite, the connections are manifold, and they show on the conceptual or
mathematical level as well as in the form of identical physical mechanisms or
similar material systems. In addition to our explanation in Chapter 1, this has
also been stressed in the introductions to the various Parts (also cf. Section 6) —
we have hopefully convinced the reader of our feeling that this is indeed one big
field of study.

As should have become clear in the individual Parts, we have only touched
tiny research areas of this huge field summarized by the title Diffusion, Nucleation
and Recombination in Confined Geometries. Apart from a plethora of open
questions in this general context, there is still a lot to do simply naturally
continuing some trains of thoughts we presented herein. We hope to pursue
some of these lines a bit further in the future.
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Appendix A

Related to Part I

A.1 Lattice Geometry

Assuming S � 1, curvature effects do not play any role for the single atomic
‘tile’, and we cover the surface area 4πR2 by simply dividing it into such tiles,
each of the area that a single atom occupies. This tile area depends on the
distance of (the centers of) nearest-neighbor sites, 2r, and the lattice type. From
elementary trigonometry one deduces that, for a hexagonal lattice (which by
common terminology refers to a ‘honeycomb’ lattice formed by the adsorption
sites, with coordination number 3), it is given by 3

√
3r2, for a square lattice it

is obviously 4r2, and a triangular lattice (i.e., one with coordination number 6)
has a tile area of 2

√
3r2. Therefore, S = g(2R/r)2 with a factor g = π/(3

√
3)

for the hexagonal, π/4 for the square, and π/(2
√

3) for the triangular lattice,
which is smaller than but of the order of unity in all three cases.

A.2 Expansion of pdiff

Erdélyi [155], 3.9.1 (13)ff. provides asymptotic expansions of Legendre functions
near their singularity. It was not clear from the outset that their order sufficed,
so we extended them with the aid of computer algebra, and en route found a
misprint (not accounted for in the errata) in equation (15) ibid., which erroneously
lacks a factor of 2 preceding Euler’s constant, cf. (A.1)f. below.

After rewriting (3.13) as

pdiff =
{

1− z2

2ν(ν + 1)
d
dz

[lnPν(z)] +
1 + z

2

}
z=− cos(r/R)

,

we use Mathematica to expand the encounter probability to first order in (1 +
z) about 0, keeping ν (hence the regime) fixed. Then we manually apply
various transformations (valid for arbitrary complex ν) to cast the result into a
reasonable form by getting rid of all Γ and most ψ functions, viz. Γ(1 ∓ ν) =
±π/ [sin(νπ)Γ(±ν)], ψ(±ν) = ψ(1±ν)∓1/ν, and ψ(1∓ν) = ψ(±ν)±π cot(νπ).

We may identify u = (1 + z)/2, and with

X := lnu−1 − 2γ − 2ψ(ν + 1)− π cot(νπ) (A.1)
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(the square brackets in (3.14)) we obtain

pdiff ≈
1

−ν(ν + 1)X
+

1 + 2ν(ν + 1) + 2ν(ν + 1)X
−ν(ν + 1)X2

· u

as the expansion of the encounter probability up to linear order in u ≈ [r/(2R)]2.
The zeroth order term corresponds to equation (3.14) and describes a non-trivial
behavior that is examined in the main text. It remains to explain why the next
order is not needed in either of the two regimes discussed in Section 3.2.3. Again,
we consider the lnu−1 term as being of the order of unity (cf. Footnote 5).

For large grains, terms ofO(u) need not be included: X is then ofO(1) (shown
in the main text), while −ν(ν+1) = (R/`D)2 � 1. Even the largest contribution
of the second term thence has an additional factor of −ν(ν+1)u ≈ [r/(2`D)]2 � 1
compared to the first summand.

The small-grain regime is more subtle, since ν and u may generally be of
comparable order now. Expanding about ν → 0−, we get ψ(1 + ν) = −γ +O(ν)
so that X = lnu−1 − 1/ν + O(ν). Hence −νX = 1 − ν lnu−1 + O(ν2) and
(ν + 1)X = −1/ν + lnu−1 − 1 +O(ν) = −1/ν[1− ν(lnu−1 − 1) +O(ν2)]. The
O(u0) term thus reads 1 + ν(lnu−1− 1) +O(ν2). Similarly evaluating the O(u1)
terms yields the pre-factor ν[1− ν +O(ν2)]: Since there is no contribution of
O(ν0u1) present, this is but a higher order correction to the first summand. Note
further that the direct impingement term u included in (3.13) is of precisely that
order, and thence must have gone to cancel a corresponding term of the expression
(3.12). Altogether we have shown that equation (3.14) of the main text contains
all terms necessary to consistently perform the subsequent approximations.

A.3 Asymptotics of pdisc

The disc model of Krug [40] is described by the stationary diffusion equation

D∇2n+ f̃ −Wn = 0,

where n is the moving adatom concentration, f̃ the impingement flux per unit
area and D and W diffusion constant and desorption rate, respectively. Boundary
conditions are given in terms of the radial coordinate r by ∂n/∂r = 0 at the
outer reflecting boundary r = L, and n(r = l) = 0 at the absorbing target area
boundary.1 Due to rotational symmetry, ∇2 simplifies to ∂2/∂r2 + r−1∂/∂r, and
one finds the exact solution

n(r) =
f̃

W

[
1− I0(kr)K1(kL) + I1(kL)K0(kr)

I0(kl)K1(kL) + I1(kL)K0(kl)

]
,

where k :=
√
W/D =: 1/`D. For this and the following, Appendix B.1 provides

some mathematical reference.
The translation to the discrete model parameters is achieved by D = al2 as

before, and completed by the relation S = g · L2/l2, also completely analogous
to the spherical case, and the reasoning and values of the lattice factor g
precisely apply as given in Appendix A.1. With this we have kl =

√
W/a

and kL =
√
W/aL/l. We assume again that

√
W/a � 1 and S � 1, or

correspondingly that l is the smallest of the three lengths l, `D and L.
1Notation herein differs from that of the spherical model (Section 3.2 of the main text).
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The encounter probability for this setting (including the direct impingement
onto the target area) is then given by

pdisc =
2πlD ∂n/∂r|r=l

f̃πL2
+
l2

L2

= 2
al3

WL2
k
I1(kL)K1(kl)− I1(kl)K1(kL)
I0(kl)K1(kL) + I1(kL)K0(kl)

+
l2

L2

= 2
√

a

W

l2

L2

I1(kL)K1(kl)− I1(kl)K1(kL)
I0(kl)K1(kL) + I1(kL)K0(kl)

+
l2

L2
.

For the asymptotics we assume l is the smallest length. In the numerator
we note that kl� 1, K1(kl) ∼ 1/(kl) decreases and I1(kl) ∼ kl (much smaller)
increases monotonically. Even if kL� 1 to compensate, we have I1(kL) ∼ kL
and K1(kL) ∼ 1/(kL), such that the second term can always be neglected. In
the denominator, leading-order terms of I0 and K0 suffice and canceling I1(kL)
one obtains (treating logarithms of large quantities as being large as well)

pdisc ≈
4ga
SW

[
ln(4a/W ) + 2K1/I1

(√
SW/ga

)]−1

,

as given in Krug [40] apart from logarithmic differences and the assumption
g = 1; the ensuing asymptotics for the two regimes are given ibid.

A more detailed analysis shows that, using kl � 1, one first has for p =
pdisc − g/S (thus excluding the direct impingement)

p =
2ga
SW

I1(kL)
[
1 + (kl)2

2

(
ln kl

2 + γ − 1
2

)
+O(kl)4

]
−K1(kL)

[
(kl)2

2 +O(kl)4
]

K1(kL)
[
1 +

(
kl
2

)2
+O(kl)4

]
+ I1(kL)

[
ln 2

kl − γ +O(kl)2
] .

In the small-disc regime, kL� 1 still, whence

p =
2ga
SW

kL
2

[
1 + 1

2

(
kL
2

)2 − l2

L2 +O
(
(kL)4, (kl)2, (kL)2(l/L)2

)]
1
kL

[
1 + (kL)2

2

(
ln kL

2 + γ − 1
2

)
+ (kL)2

2

(
ln 2

kl − γ
)

+O ((kL)4, (kl)2)
] ,

and upon translation one obtains

pdisc ≈ 1− SW

4ga

(
ln
S

g
− 3

2

)
,

neglecting terms with additional powers of S and / or W/a. Note that (as for
the spherical case), the direct impingement contribution cancels a corresponding
term in the mere flux expression. For the large-disc regime we have kL � 1,
such that the (exponentially!) small K1 terms can immediately be neglected.
Canceling the I1 factors we get

pdisc =
2ga
SW

1
ln 2

kl − γ
(
1 +O(kl)2

)
≈ 4ga
SW

1
ln 4a

W − 2γ
,

and here, the direct impingement is irrelevant as it is smaller by the order W/a.

A.4 Derivation of prw

We closely follow and mimic the notation of Hughes [55] without citing individual
known results. The techniques used here have been devised quite some time ago,
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see, e.g., Montroll and Weiss [54] with the exact same formula as (A.5), and we
basically put together all the necessary pieces in an appropriate form to treat a
physically motivated problem.

We consider a finite homogeneous lattice with S =
∏d
j=1 Lj sites in total

and with periodic boundary conditions, or a d-dimensional torus with extensions
Lj in the jth direction. (Although most references herein consider lattices with
equal lengths in all directions, the generalization is usually straightforward.)
We place two discrete-time random walkers, onto random sites of this lattice,
independently and homogeneously distributed. They do not interact except when
they meet. The walkers are assumed mortal (corresponding to desorption) with
a constant and equal survival probability ξ per step. Our question is: “What is
the probability that these two walkers meet before one of them dies?”

This problem can be mapped to that of a single walker which starts from a
random site s0, with the same survival probability per step, the question being
with what probability it eventually reaches a certain fixed site s∗ on the lattice
without dying prematurely (all sites are labeled by a variable s whose structure
is irrelevant right now).

As dying and moving of the walker are independent, one has

Pr{Mortal walker reaches site s∗ for the first time on the kth step}
= Pr{Mortal walker has completed at least k steps}×
× Pr{Immortal walker reaches s∗ for the first time on the kth step}

= ξk · Fk(s∗|s0),

where Fk(s|s0) is the probability (of an immortal random walker) of arriving at
site s for the first time on the kth step, given that the walk started at site s0.
Note that we first adopt the convention that F0(s|s0) = 0, and therefore do not
count a walker already starting at s0. We do not care for the time when this
first passage of s∗ occurs, but are only interested in the quantity

F (s∗|s0; ξ) :=
∞∑
k=0

ξkFk(s∗|s0),

which happens to be the generating function of Fk(s∗|s0). One can convince
oneself that, by the definition of Fk as the first-passage probability, every
encounter is counted precisely once, so F (s∗|s0; ξ) is the probability of a mortal
random walker with survival rate ξ, starting from s0, to reach s∗ before dying.

For the remainder we only have to be concerned with immortal (usual)
random walkers. Then for any random walk we have [e.g. 55, Eq. 3.27]

F (s|s0; ξ) =
P (s|s0; ξ)− δs,s0

P (s|s; ξ)
, (A.2)

where P (s|s0; ξ) is the generating function of Pk(s|s0), the probability that the
random walker, starting at site s0, is at site s on the kth step (its propagator),
with the convention that P0(s|s0) = δs,s0 .

For the first-passage probability we now want to count a walker that starts
at the target site as “reaching it for the first time” on the 0th step, not counting
later returns. Denoting the corresponding probability by F̃k(s|s0), it is related
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to the original one by

F̃k(s|s0) = δs,s0δk,0 + (1− δs,s0)Fk(s|s0).

For the generating functions this means that

F̃ (s|s0; ξ) = δs,s0 + (1− δs,s0)F (s|s0; ξ),

and inserting (A.2) yields

F̃ (s|s0; ξ) =
P (s|s0; ξ)
P (s|s; ξ)

. (A.3)

We can already write down a very general answer to our problem. We actually
want the average S−1

∑
s0∈Ω F̃ (s|s0) of the revised first-passage probability (A.3)

over all starting sites s0 of our finite periodic lattice Ω, which gives us the
encounter probability of the original two random walkers:

prw =

∑
s0∈Ω P (s|s0; ξ)
SP (s|s; ξ)

. (A.4)

The dependence on the target site s will vanish in passing to a homogeneous
setting.

For further evaluation, we need to obtain P (s|s0; ξ). For the time being, let
this denote the generating function of the random walk propagator on an infinite
lattice. Moreover, as our walk is homogeneous or translationally invariant, we
may use a single vector l pointing from the starting site s0 to the final site s as
our variable. Such ‘lattice vectors’ have d components, all of which take arbitrary
integer values that can be thought of as components of a ‘spatial vector’ with
respect to the d fundamental vectors of the lattice. It is well-known that [e.g.
55, section 3.3.1]

P (l; ξ) =
1

(2π)d

∫
[−π,π]d

ddk
exp(−ilk)
1− ξλ(k)

,

with the integration domain the first Brillouin zone. λ(k) is the structure
function of the walk,

λ(k) =
∑
l

exp(ilk)q(l),

the sum running over all lattice vectors, and q(l) being the probability of a step
translating by l. Since

∑
l q(l) = 1, |λ(k)| ≤ 1.

The transition to a truly finite periodic lattice is achieved by

P ∗n(l) =
∑
m

Pn(l + Lm),

where we attach a star to the respective residence probabilities, and L =
diag(L1, . . . , Ld). The sum runs over all translation vectors of the (infinite)
lattice, and this implies a completely analogous relation for the generating
functions. Obviously, P ∗n(l + Lm) = P ∗n(l) for an arbitrary m in the infinite
lattice. From now on the vector l is understood to lie in the subset Ω of the
infinite lattice that stands for the finite periodic lattice (we use the same symbol
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for both the finite sets of sites and of associated translation vectors). It can be
shown that consequently we have2

P ∗(l; ξ) =
1
S

∑
m∈Ω

exp[−2πil(L−1m)]
1− ξλ(2πL−1m)

. (A.5)

The sum over the finite lattice Ω is explicitly a multiple sum over the components
of the vector m, each ranging between mj = 0 . . . Lj − 1.

After we rewrite (A.4) for the homogeneous walk and substitute the appro-
priate starred probabilities, we obtain

prw =
∑

l∈Ω P
∗(l; ξ)

SP ∗(0; ξ)
. (A.6)

The numerator of this expression is nothing but the ξ transform of
∑

l∈Ω P
∗
n(l),

but this is unity due to conservation of the immortal walker, so that∑
l∈Ω

P ∗(l; ξ) =
1

1− ξ
.

Again using (A.5) for the denominator of (A.6) yields a general expression
for the encounter probability on a homogeneous regular finite periodic lattice,
namely (3.19) of the main text.

One often wants to consider a different convention that does not allow both
walkers to start at the same site. To this end, one simply has to exclude
the lattice distance 0 (talking about translationally invariant walks) from the
average (A.4), the result of which is given in the main text as well. We note
this is not equivalent to simply employing the original first-passage probability
F instead of F̃ , which would allow this situation, but not appreciate it as an
encounter, and would simply lead to ξprw instead of prw.

A.5 Evaluation of One Sum

We restrict ourselves to a still fairly large class of walks, namely those with
structure functions

λ(k) = 2q0[cos k1 + cos k2] + 2(q1 + q2) cos k1 cos k2 + 2(q2 − q1) sin k1 sin k2.

This corresponds to walks with transition probabilities q0 to take a step into either
lattice unit direction, and q1 and q2 the probabilities to step into direction (1, 1)
or (−1,−1), and (1,−1) or (−1, 1), respectively, subject to the normalization
4q0 + 2(q1 + q2) = 1. Clearly, this includes the aforementioned cases of the
main text: The isotropic square lattice ‘type (a)’ is represented by q0 = 1/4 and
q1 = q2 = 0, the isotropic triangular lattice walk ‘type (b)’ has q0 = q2 = 1/6,
q1 = 0.

For this class of walks, one summation can be explicitly evaluated [42]. The
result can be generalized to the L1 6= L2 case by some easy accounting work and

2The underlying identity
P

m exp[−i(Lm)k]/(2π)d =
P

m δ(k−2πL−1m)/(
Q

j Lj) works
component-wise. In a way, this is a more general expression than that for the infinite lattice,
which can be recovered by sending Lj →∞.
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then reads

P ∗(0; ξ) =
1
L1

L1−1∑
m1=0

[1− 2q0ξ cos(2πm1/L1)]−1

× [1− ρ2
m1

]−1/2 1− x2L2
m1

1− 2xL2
m1 cosL2φm1 + x2L2

m1

,

(A.7)

corresponding to Eq. B1 ibid. Here, 0 < xm1 = [1− (1− ρ2
m1

)1/2]/ρm1 < 1, and
with

w1 =
2ξ[q0 + (q1 + q2) cos(2πm1/L1)]

1− 2ξq0 cos(2πm1/L1)
, w2 =

2ξ(q1 − q2) sin(2πm1/L1)
1− 2ξq0 cos(2πm1/L1)

,

0 < ρm1 < 1 and φm1 are given by w1 + iw2 = ρm1 eiφm1 . In general, this yields

ρ2
m1

= w2
1 + w2

2

=
(2ξ)2

[
q2
0 + q2

1 + q2
2 + 2q1q2 cos 4πm1

L1
+ 2q0(q1 + q2) cos 2πm1

L1

]
[1− 2ξq0 cos(2πm1/L1)]2

,

and

tanφm1 =
(q1 − q2) sin 2πm1

L1

q0 + (q1 + q2) cos 2πm1
L1

(whenever well-defined).
For case (a) one obtains ρm1 = [2/ξ − cos(2πm1/L1)]−1 and φm1 = 0, such

that

P ∗(0; ξ) =
1
L1

L1−1∑
m1=0

2/ξ√
ρ−2
m1 − 1

×
1 + xL2

m1

1− xL2
m1

.

For type (b) one has

ρm1 =
√

2
√

1 + cos(2πm1/L1)
3/ξ − cos(2πm1/L1)

=
2|cos(πm1/L1)|

3/ξ − cos(2πm1/L1)

and

tanφm1 = − sin(2πm1/L1)
[1 + cos(2πm1/L1)]

= − tan(πm1/L1)

(whenever well-defined), which yields φm1 = −π(m1/L1 − b2m1/L1c). The
peculiar form of the angle is necessary to assure |φm1 | ≤ π/2 corresponding to
w1 ≥ 0, and while the chosen expression may result in a wrong sign of sinφm1 ,
only the unaffected cos(L2φm1) is used in the remainder. Hence we obtain

P ∗(0; ξ) =
1
L1

L1−1∑
m1=0

3/ξ
2|cos(πm1/L1)|

1√
ρ−2
m1 − 1

1− x2L2
m1

1− 2xL2
m1 cos(L2φm1) + x2L2

m1

,

and throughout, xm1(ρm1) as given above.
The attentive reader may object that, in case (b), there is actually one term

for which both w1 = 0 = w2 and thus ρm1 vanishes (see our valid explicit result
for the latter), namely for even L1 and m1 = L1/2. Hence, xm1 , φm1 and the last
expression for P ∗(0; ξ) are ill-defined then. From the definition of xm1 one can
see that for ρm1 → 0+, xm1 ≈ ρm1/2→ 0+ as well, and the second line of (A.7)
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(corresponding to the evaluated ‘inner sum’ in the derivation of Montroll [42])
converges to unity, which is the correct value of the original quantity. Our last
expression complies with this via canceling singularities — we chose the simplest
form of the result, which has to be slightly altered for numerical evaluation.

A.6 Large-Lattice Approximation

Sending L1,2 → ∞ in P ∗(0; ξ) of (3.19) one obtains a double integral, which
after two linear substitutions becomes

p−1
rw

(1− ξ)S
= P (0; ξ) =

1
(2π)2

∫
[0,2π]2

dk1 dk2

1− ξλ(k)
.

λ periodicity allows a shift of the patch of integration to the first Brillouin
zone. As is shown in the Appendices of Hughes [55], in terms of the complete
elliptic integral of the first kind,

K(k) =

1∫
0

dx√
(1− x2)(1− k2x2)

, with |k| < 1,

one can derive that P (0; ξ) = 2
πK(ξ) for the square, and

P (0; ξ) =
6

πξ
√

(c− + 1)(c+ − 1)
×K

(√
2(c+ − c−)

(c− + 1)(c+ − 1)

)
for the triangular lattice, where c± = 3/ξ + 1±

√
3 + 6/ξ. One then employs

the expansion of the elliptic integral for k . 1 (which is also the case for the
triangular lattice if ξ itself is close to unity), viz.

K(k) =
∞∑
n=0

[(
1
2

)
n

n!

]2

(1− k2)n
[
−(1/2) ln(1− k2) + ψ(n+ 1)− ψ(n+ 1/2)

]
,

here (z)n = Γ(z+n)/Γ(z) is the Pochhammer symbol, equal to z(z+ 1) . . . (z+
n − 1) for positive integer n. Using these expressions in the exact results for
P (0; ξ), one obtains

P (0; ξ) = [1 +O(1− ξ)]×

{
1
π ln[8/(1− ξ)] square lattice,
√

3
2π ln[12/(1− ξ)] triangular lattice.

This yields the expressions for prw presented in the main text.

A.7 Generalization of the prw Asymptotics

We follow the derivation of Montroll [42], and refer to the corresponding equations
ibid. for the interested reader. Our starting point is (B1) therein, corresponding
to our (3.19), and proceeding as in Appendix A.5 to evaluate the sum over m2

for certain structure functions, we consider the expression (A.7) for P ∗(0; ξ).
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Form1 = 0 (w2 = φm1=0 = 0) one has (B8) ρm1 = 2ξ(q0+q1+q2)/(1−2q0ξ) =
ξ(1− 2q0)/(1− 2q0ξ). Hence the corresponding term in P ∗ is (B9, corrected)

1
L1

1 + xL2

1− xL2

[
(1− 2q0ξ)2 − ρ2(1− 2q0ξ)2

]−1/2
= . . .

=
1
L1

1 + xL2

1− xL2
α−1

{
2 [1− 2q0]

[
1− β2(1− 4q0)

]}−1/2
,

where α = (1 − ξ)1/2 and β = α [2(1− 2q0)]−1/2. Here, xm1=0 yields the
unchanged β expansion (B11),

x = 1− 2β + 2β2 + (4q0 − 3)β3 +O(β4),

whence (B12) reads

xL2 = 1− 2L2β + 2L2
2β

2 − 4
3
L2β

3

(
L2

2 − 3q0 +
5
4

)
+O(β4),

and the m1 = 0 term (B13) finally becomes

1
L1L2(1− ξ)

+
L2

2 − 1
6L1L2(1− 2q0)

+O(1− ξ)1/2.

We define

r =
2[(q0 + 2q1)(q0 + 2q2)]1/2

1− 2q0
,

η =
q0(1− 2q0)

(q0 + 2q1)(q0 + 2q2)
− 1 =

4q0

(1− 2q0)r2
− 1,

which take the values r = 1 = η for the square lattice case (a), and r =
√

3/2,
η = 1/3 for the triangular lattice case (b). For m1 6= 0 one obtains the unchanged
relation (B14),

(1− 2q0ξ cos(2πm1/L1))
(
1− ρ2

m1

)1/2
=
{

4 [(q0 + 2q1)(q0 + 2q2)]1/2
[
1 + η sin2(πm1/L1)

]1/2
sin(πm1/L1)

}
×

× (1 +O(1− ξ)).

Combining several results yields expression (B15),

P ∗(0; ξ) =
1

L1L2(1− ξ)
+

1
2(1− 2q0)

{
L2

2 − 1
3L1L2

+
S1 + S2 + S3

r

}
+O(1− ξ)1/2,

where all contributions from m1 6= 0 occur in the split sums (B16, corrected)

S1 =
1
L1

L1−1∑
m1=1

1
sin(πm1/L1)

,

S2 =
1
L1

L1−1∑
m1=1

[
1 + η sin2(πm1/L1)

]−1/2 − 1
sin(πm1/L1)

,

S3 =
1
L1

L1−1∑
m1=1

[
1 + η sin2(πm1/L1)

]−1/2

sin(πm1/L1)

{
2xL2

m1
(cosL2φm1 − xL2

m1
)

1− 2xL2
m1 cosL2φm1 + x2L2

m1

}
.
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The evaluation of S1 and S2 is essentially a clever application of the Euler-
MacLaurin summation formula, detailed in Montroll [42]. The results read
(B22), (B24),

S1 =
2
π

{
lnL1 + [γ + ln(2/π)]− π2

72L2
1

+
7π4

43200L2
1

+ . . .

}
,

S2 = − 1
π

ln(1 + η) +
ηπ

12L2
1

+
ηπ3

720L2
1

(1 + 9η/2) + . . . .

So far, the assumptions on which all approximations have been based are: 1− ξ
(and consequently, α and β) is so small that βL2 ∼ L2/` � 1 (for the xL2

m1

expansion to be valid), L1 is large enough such that the Euler-MacLaurin
formulas are applicable, and L1L2(1− ξ) ∼ S/`2 � 1 for the overall expansion
of P ∗ to make sense.

The most laborious part of the derivation is to find the S3 asymptotics. First,
we have (B26)

xm1 = 1− 2r sin(πm1/L1) + 2r2 sin2(πm1/L1)

− sin3(πm1/L1)
r

[
4q0(1− 2r2)

1− 2q0
+ r2(4r2 − 1)

]
.

From that one finds for small x (B28),

xL2
m1
∼ e−2πrm1(L2/L1)×

×
[
1 +

1
L2

1

L2

L1

4π3m3
1

3r
2r2 − 1
1− 2q0

(3q0 − r2 + 2r2q0) +O(L−4
1 )
]
.

This step holds provided L2/L1 is not too small (which will be an evident
restriction looking at the result for S3), and more importantly, that L2/L

3
1 � 1

for the above equation to be a proper expansion.
One now specializes to the two cases detailed above. For (a) one finds that

φm1 ≡ 0, while in case (b), φm1 = −π(m1/L1 − b2m1/(L1)c), the peculiar form
of the angle necessary to assure |φm1 | ≤ π/2 corresponding to w1 ≥ 03 . This
yields

2xL2
m1

(cosL2φm1 − xL2
m1

)

1− 2xL2
m1 cosL2φm1 + x2L2

m1

=
2xL2

m1

1− xL2
m1

for case (a). While for L2 = L1 as in Montroll [42], lengths cancel in cosL2φm1 ,
whence this becomes (−1)min(m1,L1−m1) for case (b), this no longer holds for
arbitrary lengths, and we could not find a reasonably simple way around this
complication. Thence we focus on the square lattice case (a) in the remainder
of this Section, which consists in brute-force expansions in the inverse lattice
lengths. Symmetry considerations for S3 still apply, and it can be shown that
xm1 vanishes exponentially for fixed m1/L1 and L1 →∞. Therefore the small-x

3This form with the ‘conditional offset’ by π also changes the sign of sinφm1 , which could
be preserved by the choice φm1 = −π(1 −m1/L1) whenever m1 ≥ L1/2. The difference is
irrelevant in the following as it amounts to a conditional change of sign of φm1 and we only
consider cosL2φm1 .
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expansion for xL2
m1

can be used in the sum and one obtains first that

2xL2
m1

1− xL2
m1

= 2
(

e−2π(L2/L1)m1

1− e−2π(L2/L1)m1

)
×
[
1 +

L2

L1

4π3m3
1/3

L2
1(1− e−2π(L2/L1)m1)

(
5q0 − 1
1− 2q0

)
+O(L−4

1 )
]
,

[sin(πm1/L1)]−1 [1 + η2 sin2(πm1/L1)
]−1/2

=
L1

πm1

[
1− π2m2

1

3L2
1

+O(L−4
1 )
]
,

and from that (B30),

S3 =
4
π

bm/2c∑
m1=0

1
m1

(
e−2π(L2/L1)m1

1− e−2π(L2/L1)m1

)

×
{

1− π2m2
1

3L2
1

[
1− 4π(L2/L1)m1

1− e−2π(L2/L1)m1

(
5q0 − 1
1− 2q0

)]
+O(L−4

1 )
}

=
4
π

[
e−2πµ +

3
2

e−4πµ +
4
3

e−6πµ + . . .

]
− 4π e−2πµ

3L2
1

×
{[

1 + 3 e−2πµ +4 e−4πµ + . . .
]

− 4π
5q0 − 1
1− 2q0

L2

L1

[
1 + 6 e−2πµ +12 e−4πµ + . . .

]}
+O(L−4

1 ),

where denominators have been expanded as geometric series, and we use the
aspect ratio µ = L2/L1.

A.8 Asymptotics of the Truly One-Dimensional
Result

The one-dimensional symmetric random walk with structure function λ ≡ cos
on a lattice of S ≡ L sites has

P ∗(0; ξ) =
1
L

L−1∑
m=0

1
1− ξ cos(2πm/L)

.

Using the identity of Appendix A in Montroll [42] (with w1 = ξ, w2 = 0, so that
ρm1 = ξ and φm1 ≡ 0, and xm1 = [1− (1− ξ2)1/2]/ξ) then yields

P ∗(0; ξ) =
1√

1− ξ2

1 + xLm1

1− xLm1

=
1√

1− ξ2

ξL + [1− (1− ξ2)1/2]L

ξL − [1− (1− ξ2)1/2]L
.

For comparison with the asymptotic two-dimensional behavior, we determine
the asymptotics of the 1d-expression for a ‘small’ lattice, i.e., for L � ` =√
ξ/(1− ξ). Let α =

√
1− ξ2 � 1, which is not exactly the α of Montroll [42].

However, L/` ≈ L
√

1− ξ = L
√

1−
√

1− α2 ≈ Lα/
√

2, and since this is to be
� 1, we still have Lα � 1 in the following. With 1 − ξ = 1 −

√
1− α2 and
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p−1
rw = L(1− ξ)P ∗(0; ξ) we then obtain after minor manipulations

p−1
rw, 1d =

L[1− (1− α2)1/2]
α

1 +
(

1−α
1+α

)L/2
1−

(
1−α
1+α

)L/2 . (A.8)

Straight-forward expansion in Lα� 1 yields

p−1
rw, 1d = 1 +

(Lα)2

12
+O(Lα)3, (A.9)

where we omitted all terms of relative order α. This is sufficient for the sought
scaling limit L→∞, α→ 0 while Lα ' const., and it is additionally justified by
a Mathematica check of our calculations, which shows that the only interesting
α orders left out in the result are terms of O(α2) and thus much smaller than
(Lα)2 = L2(1− ξ2) ≈ 2(L/`)2.

Obviously, the most striking difference compared to the 2d case is the absence
of logarithmic terms, which are a characteristic sign of the marginal dimension
two.

Let us also give the large-lattice asymptotics, i.e., for the case Lα � 1.
Starting from the still exact (A.8), we use (1 − α)/(1 + α) = 1 − 2α +O(α2).
For Lα� 1, this raised to the L/2 power is much smaller than unity, the correct
expansion thus reading exp(−Lα)(1 + O(Lα2)), where we assume that terms
of the latter relative order can be omitted as being much smaller than unity

— this is an example that may be refined as necessary. One thus obtains the
large-lattice result

prw, 1d =
2
Lα

(
1− 2 e−Lα +O(e−Lα Lα2, e−2Lα)

)
≈
√

2
`

L

(
1− 2 e−

√
2L/`

)
.

Note that in this regime, the ratio of lengths no longer appears squared. In
one dimension and for large lattices, the essential question for the encounter
probability is whether the walker is deposited in the range ` from the target,
and the probability for this to happen is the length ratio raised to the lattice
dimension. The crucial difference to the two-dimensional case is that the 1d
random walk explores a dense region instead of a sponge-like structure.

Lastly, corresponding asymptotics for the extremely distorted version of
the originally two-dimensional random walk are obtained by a mere rescaling
`→ `/

√
2, as can be seen from Section 3.4.3.

A.9 Analysis of Master Equation Results

A.9.1 Mean Particle Number

Obviously, 〈N〉 ≤ F/W : There can be at most as many atoms on the grain as
when there is no recombination, but only impingement and desorption. This
can also be seen from (3.27): Inserting the series representation [51, 8.445] for
Iν gives (ν, z ∈ R+)

fν(z) :=
Iν(z)
Iν−1(z)

=

∑∞
k=0

(z/2)
ν+k

(z/2)2k

k!Γ(ν+k)∑∞
k′=0

(z/2)2k′

k′!Γ(ν+k′)

<
z

2ν
.
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Identifying z = 2
√

2F/A and ν = W/A in (3.27) shows 〈N〉 < (z/4)z/(2ν) =
z2/(8ν) = F/W . This limit is realized by a vanishing meeting rate A → 0,
making ν and z approach ∞ simultaneously. ν then dominates in 1/(ν + k), so
that fν(z) and 〈N〉 approach their maximum. (While not rigorously proved, this
result is obvious by common sense.)

Hence F/W � 1 is a sufficient condition for 〈N〉 � 1. The converse
cannot simply be based on physical intuition: Even when F/W � 1 is not
satisfied, diffusion and recombination, i.e., an A large enough, could strongly
deplete the grain to still achieve 〈N〉 � 1. However, while a large meeting
rate heavily decreases 〈N〉 compared to F/W , there is a lower bound (for fixed
F/W ) completely independent of W/A: We start with z and ν as above, and
set c = 2F/W , so that z/2 =

√
cν. Then

〈N〉 =
cν

2

∑∞
k=0

(cν)k

k!Γ(ν+k+1)∑∞
k′=0

(cν)k′

k′!Γ(ν+k′)

=
cν

2

∑∞
k=0

(cν)k

k!Γ(ν+k+1)

1
Γ(ν) +

∑∞
k′=0

(cν)k′+1

(k′+1)!Γ(ν+k′+1)

,

where we split off the first term in the denominator and performed an index
shift. The first estimate uses cν/(k′ + 1) ≤ cν in the denominator sum, whence

〈N〉 ≥ cν

2

∑∞
k=0

(cν)k

k!Γ(ν+k+1)

1
Γ(ν) + cν

∑∞
k′=0

(cν)k′

k′!Γ(ν+k′+1)

=
c

2

(νΓ(ν)
∞∑
k=0

(cν)k

k!Γ(ν + k + 1)

)−1

+ c

−1

.

The second estimate is to neglect all but the zeroth term of the sum to get rid
of any ν-dependence. This means that νΓ(ν)

∑∞
k=0 · · · ≥ νΓ(ν)/Γ(ν + 1) = 1.

So we finally have

〈N〉 ≥ c

2
1

1 + c
=

F

W

1
1 + 2F/W

=
1

2 +W/F
.

Both estimates involved become equalities for ν = 0 (canceling terms in the
second sum properly is subtle and crucial): The bound is the limit as W/A→ 0.

The mean particle number thus obeys

1
2 +W/F

≤ 〈N〉 ≤ F

W
,

where (for fixed F/W ) the lower bound is realized by a diverging meeting rate,
and the upper bound for vanishing A, with 〈N〉 growing monotonically (as
a function of W/A, F/W fixed) in between. (Proof omitted, since, e.g., by
considering the situation of fixed F and W , this result is physically obvious.)
Keeping W/A fixed and increasing F/W , 〈N〉 grows monotonically as well (as
becomes clear from a similar reasoning).

The maximum relative error of approximating 〈N〉 by one of its bounds is
given by

∆〈N〉
〈N〉

≤
F
W −

1
2+W/F

1
2+W/F

=
2F
W
.
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This means that for small flux F/W � 1, the approximation 〈N〉 ≈ F/W only
bears a small (relative) error. Phrasing this differently, a large A can only be
effective (in achieving 〈N〉 � F/W ) for F/W not much smaller than 1, i.e.,
when there would be a considerable number of atoms on the grain in the absence
of diffusion and recombination; this is rather intuitive. If 〈N〉 � 1, the lower
bound also shows that inevitably F/W � 1, implying 〈N〉 ≈ F/W again. We
have thus established that 〈N〉 � 1 if and only if F/W � 1, and then the
approximation 〈N〉 ≈ F/W is valid with small relative error. (Of course, the
converse of the last implication does not hold, since without diffusion, we always
have 〈N〉 = F/W independent of the value of F/W .)

A.9.2 Recombination Efficiency

We start from a simple connection between particle number and efficiency:
Gradshteyn and Ryzhik [51], 8.486 1. states zIν−1(z) − zIν+1(z) = 2νIν(z).
With the above identifications in (3.27), (3.28) we easily read off (2ν/z =√
F/(2A)/(F/W ), and again, η ≡ ηME in this Section)

η = 1− 〈N〉
F/W

,

which has a clear interpretation: The fraction of atoms participating in recombi-
nation events is exactly the relative deficit of 〈N〉 to the ‘diffusionless’ particle
number F/W . Moreover, one can see that 〈N〉 � F/W always goes hand in
hand with η → 1, efficient recombination, whereas 〈N〉 / F/W yields η � 1.
From the above, the latter case of small efficiency is also entailed by a small
impingement flux F/W � 1 or, equivalently, by a small mean particle number
〈N〉 � 1.

Using the bounds obtained for 〈N〉 yields 0 ≤ η ≤ 1/(1 +W/(2F )), with η
as a function of W/A for fixed F/W monotonically decreasing in between. The
lower bound can only be useless, because (owed to the derivation) it does not
depend on W/A, and for a vanishing meeting rate obviously η = 0. The upper
bound of the efficiency however is realized for infinitely fast diffusion.

We now derive a lower bound on η that still depends on W/A, and an
analogous upper bound will also prove useful. In analogy to the 〈N〉 expression
we have

η =
Iν+1(z)
Iν−1(z)

=

∑∞
k=0

(z/2)2

(ν+k)(ν+k+1)
(z/2)2k

k!Γ(ν+k)∑∞
k′=0

(z/2)2k′

k′!Γ(ν+k′)

<
(z/2)2

ν(ν + 1)
,

hence η < (2F/W )/(W/A + 1). A lower bound will also be obtained along
the same line of thought as before: Now separating the first two terms of the
nominator sum (to reach the same expression for both sums) and shifting its
index results in

η = cν

∑∞
k=0

(cν)k

k!Γ(ν+k+2)

1
Γ(ν) + cν

Γ(ν+1) +
∑∞
k′=0

(cν)k′+2

(k′+2)!Γ(ν+k′+2)

.

Estimating (cν)2/[(k′+1)(k′+2)] ≤ (cν)2/2 and canceling the sums and ν yields

η ≥ c
[(
νΓ(ν)

∑
(. . . )

)−1

+ c
(

Γ(ν + 1)
∑

(. . . )
)−1

+
c2ν

2

]−1

,
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where
∑

(. . . ) is the original denominator expression of which we retain the
zeroth term 1/Γ(ν + 2) only. Both inner parentheses then equal ≥ 1/(ν + 1), so
that

η ≥ c

(ν + 1)(1 + c) + c2ν/2
>

c

ν + 1
1

1 + c+ c2/2

=
2F
W

1
W/A+ 1

1
1 + 2F/W + (2F/W )2/2

.

The last estimate enables us to cancel the W/A dependence when evaluating
below the relative error of the approximation. Note that one could again obtain an
upper bound independent of W/A from these considerations, namely η < 2F/W ,
which is larger than the one derived from the bound on 〈N〉.

Together, the restrictions on η read

2F
W

1
W/A+ 1

1
1 + 2F/W + (2F/W )2/2

≤ η ≤ 2F
W

1
W/A+ 1

.

The maximum relative error of approximating η by these bounds is given by

∆η
η
≤ 2F
W

+
1
2

(
2F
W

)2

,

which implies that 〈N〉 � 1 (whence 〈N〉 / F/W � 1) renders η / 2F/W
W/A+1 � 1

valid.

A.10 Island Edge: One-Particle Eigen-Problem

We briefly review the standard method to solve an equation like (6.3) [156]. This
master equation is an L-dimensional system of linear homogeneous ordinary
first-order differential equations. Written in matrix form it reads dp/dt = Mp
for the ‘vector’ p(t) with components pn(t), and M the real square matrix

M =



−ΓA↑ ΓA ΓBA

ΓA −2ΓA ΓA

. . . . . . . . .
ΓA −2ΓA ΓA

ΓA −ΓA↑ ΓBA

ΓAB −ΓB↑ ΓB

ΓB −2ΓB ΓB

. . . . . . . . .
ΓB −2ΓB ΓB

ΓAB ΓB −ΓB↑


where ΓA↑ = ΓAB + ΓA and ΓB↑ = ΓBA + ΓB. Each column adds up to zero,
since what is at one site has to go somewhere for probability to be conserved.
The exponential ansatz pn(t) = exp(−λt)ψn leads to an eigenvalue problem for
the ‘vector’ ψ, namely Mψ = −λψ. If the matrix M can be diagonalized, this
problem can be solved to give L linearly independent eigenvectors (for possibly
degenerate ≤ L different eigenvalues), hence a basis of solution space. We will
now show that this is the case.
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M is not symmetric due to the situation at the corners, hence it is not
obvious it can be diagonalized. It admits a unique and positive stationary
state (corresponding to a non-degenerate eigenvalue λ = 0), since M cannot be
decomposed into dynamically disconnected parts (each two sites are connected
by a chain of non-zero transition probabilities). One can easily check that

pS
n =


[
`A + `B

ΓAB
ΓBA

]−1

(n = 1 . . . `A),[
`A

ΓBA
ΓAB

+ `B

]−1

= ΓAB
ΓBA

pS
n

∣∣
A

(n = `A + 1 . . . L = `A + `B),

is in the kernel of M. Because of (6.2), this obeys the Boltzmann distribution
(which in turn suffices, together with normalization, to derive it).

We prove by symmetrization that M can be diagonalized: Treating pS
n

as a non-singular diagonal matrix, powers work component-wise. Consider
M̃ =

(
pS
)−1/2

M
(
pS
)1/2 with elements M̃mn = [pS

m]−1/2Mmn[pS
n]1/2, i.e., a

mere change of basis. Suppose this can be diagonalized, then for an eigenvector
ψ̃ with eigenvalue −λ̃, M̃ψ̃ = −λ̃ψ̃ implies

∑
nMmn[pS

n]1/2ψ̃n = −λ̃[pS
m]1/2ψ̃m,

hence ψ =
(
pS
)1/2

ψ̃ is an eigenvector of M with the same eigenvalue. Starting
with the existing basis of eigenvectors of M̃ the newly constructed eigenvectors
is again a basis (by the properties of a similarity transformation). Therefore, M
can be diagonalized as well choosing the eigenvectors ψ as our basis.

Since the stationary solution only takes one of two different values depending
on the zone, the ‘diagonal blocks’ in M (transitions inside one zone) remain
unchanged. The almost empty other two blocks acquire additional factors
(pS
∣∣
A
/ pS

∣∣
B

)±1/2 = (ΓBA/ΓAB)±1/2, changing their every entry to
√

ΓABΓBA:
M̃ is symmetric, and real symmetric matrices are (even orthonormally) diago-
nalizable. From the above lemma, M can then be diagonalized as well.4

A.10.1 Finding the ‘Normal Modes’

In principle the eigenvalues can be obtained by solving det(M + λ1L) = 0, but
although the matrix is only sparsely populated, we failed to find a sufficiently
simple recursion relation to calculate this determinant. It would finally lead to a
polynomial of high degree in λ, which we will find in a different way.

For given λ, we first find the general solution of the eigen-equation restricted
to one zone, i.e., without boundary conditions. The equation can be written as(

2− λ

ΓA

)
ψn = ψn−1 + ψn+1 for n = 2 . . . `A − 1, (A.10)

in zone A, and the standard ansatz to solve this difference equation with constant
coefficients is ψn ∝ zn with z ∈ C (any complex solution ψn conveys two real
solutions by its real and imaginary part). The resulting equation

2− λ

ΓA
= z +

1
z

(A.11)

4We only used positivity of the stationary distribution in the above reasoning, but it can
be shown [156] that this specific choice proves diagonalizability of M whenever the physical
system obeys ‘detailed balance’, i.e., for the stationary solution and each pair of states m and
n, transitions balance: Mm,npS

n = Mn,mpS
m. In our case the solution makes this explicit, it is

intuitive from a microscopic point of view, and lastly it generally applies to a broad class of
systems the present one belongs to.
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has two solutions z1,2 satisfying z1z2 = 1. By (A.11), their sum is real, so
that either, z1 ∈ R with modulus |z1| > 1 and its inverse z2, or z1 = eiq,
z2 = e−iq with a real angle 0 ≤ q ≤ π (including the case z1 = z2 =
−1, and z1 = z2 = 1 which corresponds to the stationary mode λ = 0).

λ = 0λ = 4ΓA

λ→∞

λ = 2ΓA

Figure A.1: Structure of possible solu-
tions z; one drawn red, the inverse drawn
blue (and dashed), with some correspond-
ing values λ indicated.

Detailed balance also implies that the
non-zero eigenvalues of M are negative,
λ ≥ 0; this is to be expected as our
system should always approach the sta-
tionary solution. Therefore the left hand
side of (A.11) is smaller than 2, and real
solutions z > 1 can be excluded. For the
‘oscillating’5 z ∈ S1 solutions, we have
λ = 2ΓA(1 − cos q) = 4ΓA sin2(q/2) ∈
[0, 4ΓA], while for the remaining real so-
lutions, λ > 4ΓA. Figure A.1 visual-
izes these possibilities and the correspon-
dence to the eigenvalue −λ. In either
case, the (still complex) general solution
reads ψn = C+

A z
n
A+C−A z

−n
A with complex

coefficients and zA one of the above solu-
tions. Note that, to obey (A.10) for all
appropriate values of n, this form must
hold for all n occurring in the equation, i.e., for the whole zone n = 1 . . . `A.

The exact same procedure can be carried out for zone B. Since we examine a
restriction of the same eigenfunction, λ is already fixed. But now ΓB appears
in the place of ΓA, so the solutions zB of (A.11) and the angle qB are first
taken independent, and C±B are independent coefficients anyway. Therefore an
eigenfunction for the eigenvalue −λ is of the following form (better, the real part
of)

ψn =

{
C+

A z
n
A + C−A z

−n
A for n ∈ A ,

C+
B z

n
B + C−B z

−n
B for n ∈ B ,

(A.12)

where zA and zB are given uniquely by λ > 0: Fixing the z-ranges (without
any loss of generality), we either have zA > −1 for λ > 4ΓA, while zA = eiqA
(0 ≤ qA ≤ π) corresponds to λ = 4ΓA sin2(qA/2) ≤ 4ΓA (and analogously for
zone B). The general form of the latter solutions (per zone), i.e., the sinusoidal
function of the argument qn, can easily be guessed as it was in Castellano and
Politi [71].

A.10.2 Matching Conditions

We stress that in our context, periodicity does not impose typical restrictions on
the wave vectors qA and qB when z = eiq, as the solution has an expression that
differs between the two zones.

The two parts of (A.12) have to match using the equations for the corner
sites. Note that this possibly glues together solutions of different type (oscillatory
vs. real z) in the two regions. The yet unused equations of (6.3) for the corner

5We will stick to that term although it might be a misnomer: z < −1-solutions also
oscillate in a way.
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sites (n = L, 1, `A, `A + 1) read

(ΓB↑ − λ)ψL = ΓBψL−1 + ΓABψ1

(ΓA↑ − λ)ψ1 = ΓBAψL + ΓAψ2

(ΓA↑ − λ)ψ`A = ΓAψ`A−1 + ΓBAψ`A+1

(ΓB↑ − λ)ψ`A+1 = ΓABψ`A + ΓBψ`A+2,

and inserting (A.12) yields

(ΓB↑ − λ)(C+
B z

L
B + C−B z

−L
B )

= ΓB(C+
B z

L−1
B + C−B z

−L+1
B ) + ΓAB(C+

A zA + C−A z
−1
A )

(ΓA↑ − λ)(C+
A zA + C−A z

−1
A ) = ΓBA(C+

B z
L
B + C−B z

−L
B ) + ΓA(C+

A z
2
A + C−A z

−2
A )

(ΓA↑ − λ)(C+
A z

`A
A + C−A z

−`A
A )

= ΓA(C+
A z

`A−1
A + C−A z

−`A+1
A ) + ΓBA(C+

B z
`A+1
B + C−B z

−`A−1
B )

(ΓB↑ − λ)(C+
B z

`A+1
B + C−B z

−`A−1
B )

= ΓAB(C+
A z

`A
A + C−A z

−`A
A ) + ΓB(C+

B z
`A+2
B + C−B z

−`A−2
B ).

(A.13)

We use λ+ ΓAz
±1
A − ΓA↑ = ΓA(1− z∓1

A )− ΓAB (and the A↔ B equivalent)
and L = `A + `B, and then absorb ΓA in C±A and ΓBz

±`A
B in C±B (all without

changing the notation). Thus we obtain the simple matrix (6.4) of this system
(with rows re-arranged), shown in the main text.

A.10.3 The Most Interesting Normal Modes

Typically, one can learn about the long-time asymptotic behavior of a stochastic
system more easily than about its full time-dependent behavior. Here this means
to examine the small eigenvalue modes: λ is the decay rate of a mode, hence
modes with smallest λ are most stable and dominate the late-time behavior of
the approach to the stationary distribution (corresponding to λ = 0). Smallness
is defined by the diffusion rates; we assume hopping rates inside each zone to
clearly differ from their ‘corner-crossing’ values, though not by much more than
an order of magnitude, in which case we end up in limiting regimes corresponding
to much simpler models.

Determinant in the oscillatory regime. Clearly, the most stable normal
modes will be of the ‘oscillating’ type (Section A.10.1) on the whole edge, and
both wave numbers qA, qB � 1. The latter will additionally be of the same
order of magnitude, as this should also hold for the rates ΓA, ΓB. To obtain
the spectrum of small eigenvalues, we use the known form of zA, zB in (A.13),
and can pass to the real part of ψn, thence substituting C+zn + C−z−n with
C̃+ cos(qn) + C̃− sin(qn) with newly defined real coefficients C̃+ = Re(C+ +C−)
and C̃− = Im(C− − C+). Using computer algebra again, and after re-ordering
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terms in a lengthy expression to make the symmetry explicit, we obtain

det
2Γ2

AΓ2
B

= (2− γB − γA)
[
γB sin(`AqA) cos(`BqB) sin qB[1− cos qA]

+ γA sin(`BqB) cos(`AqA) sin qA[1− cos qB]
]

+ γAγB sin qA sin qB [1− cos(`AqA) cos(`BqB)]

+ sin(`AqA) sin(`BqB)
{

[1− cos qA] γ2
B + [1− cos qB] γ2

A

− [1− cos qA] [1− cos qB]×
×
[
[2(1− γA)(1− γB)− γAγB] + γ2

A + γ2
B

]}
.

The arguments of trigonometric functions are reduced to qA, qB, `AqA, and `BqB

here. Again we checked proper recovery of the homogeneous expression, which
yields 2 sin2 q sin2[qL/2], with the exact same solutions as before in terms of q.

One can rewrite the multiple angle functions using Chebyshev polynomials
of the first and second kind, Tn and Un, respectively [51, 8.940 with x→ cos q],

sin(nq) = sin q Un−1(cos q), and cos(nq) = Tn(cos q).

For non-trivial zeros of the determinant consider X as defined by det =
− sin qA sin qB · X; this solely depends on the wave numbers via cos qA,B =
1 − λ/(2ΓA,B), so we can rewrite it as a polynomial in λ at the price of re-
introducing all rate parameters:

X = λ(ΓAΓBA − 2ΓAΓB + ΓBΓAB)×[
ΓBAU`A−1

(
1− λ

2ΓA

)
T`B

(
1− λ

2ΓB

)
+ ΓABU`B−1

(
1− λ

2ΓB

)
T`A

(
1− λ

2ΓA

)]
+ 2ΓAΓBΓABΓBA

[
T`A

(
1− λ

2ΓA

)
T`B

(
1− λ

2ΓB

)
− 1
]

+ U`A−1

(
1− λ

2ΓA

)
U`B−1

(
1− λ

2ΓB

){
−λΓAΓ2

BA − λΓBΓ2
AB

+
λ2

2

[
[2(ΓA − ΓAB)(ΓB − ΓBA)− ΓABΓBA] +

ΓA

ΓB
Γ2

BA +
ΓB

ΓA
Γ2

AB

]}
.

(A.14)

Approximation of the determinant. Finally, one can approximate (A.14)
for small λ. This is difficult for the following reasons. One can show that

T`

(
1− λ

2Γ

)
=
∑̀
m=0

`

`+m

(
`+m

2m

)(
−λ
Γ

)m
= 1− `2

2

(
λ

Γ

)
+O(λ3),

U`−1

(
1− λ

2Γ

)
=

`−1∑
m=0

(
`+m

2m+ 1

)(
−λ
Γ

)m
= `

[
1− `2 − 1

6

(
λ

Γ

)
+O(λ3)

]
.

For the lowest eigenvalues one expects λ/Γ ∼ L−2, the basic reason being that
the decay time of an ‘excitation’ mode of a ring of length L is set (in the ‘worst’
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case, i.e., for the most stable mode) by the traversal time ∼ L2 of a single random
walker. Hence all terms in the above expressions are of O(1) for T` and of O(`)
for U`−1, suppressed only by the denominator factorial, as higher orders only
acquire additional factors of the order `2λ/Γ ∼ 1. Terminating a λ/Γ expansion
is thence inconsistent: The Chebyshev polynomials (expanded about unity) are
very poorly approximated by the first few terms (e.g., one needs the first seven
terms of U30(1− λ/(2Γ)) to approximate its smallest zero reasonably well).

Closer inspection of X instead suggests to neglect terms which are (taking
into account powers of the lengths as well as powers of λ) suppressed by negative
powers of a length, leaving the Chebyshev polynomials untouched. The whole
second summand is of O(1), as are the terms of the form ‘UUλ ∼ `2λ’ in the
last summand. All other terms are suppressed by inverse powers of lengths, e.g.,
the first term is of O(`Aλ/Γ) < O(Lλ/Γ) . O(L−1). This approximation relies
on the idea that once the edge lengths become too small, the basis of the model
(a highly simplified energy landscape), becomes obsolete anyway. For large edge
lengths, we consequently have

X ≈ 2ΓAΓBΓABΓBA

[
T`A

(
1− λ

2ΓA

)
T`B

(
1− λ

2ΓB

)
− 1
]

− λU`A−1

(
1− λ

2ΓA

)
U`B−1

(
1− λ

2ΓB

)(
ΓAΓ2

BA + ΓBΓ2
AB

)
.

(A.15)

Plotting this approximation in comparison with the exact (A.14) shows that X
is approximated quite well up to the first zero, provided only a large enough total
length (L > 50). The larger L, the better the approximation also for the next
zeros, though it soon breaks down anyway. Moreover, (A.15) still shows a highly
irregular oscillatory behavior that sensitively depends on all parameters. We
did not see any way for analytical progress here, and even a numerical solution
seemed rather involved.

Comment on equal rates. Interestingly, in this approximation (in contrast
to the exact result), there is no difference between setting all rates equal to a
single Γ, or setting the ‘intra-zone’ rates to one rate Γ and the ‘inter-zone’ rates
to another rate Γc. From the energy landscape of Figure 6.3, the only difference
to the homogeneous case is then the corner barrier separating the two identical
landscape parts, and the lowest eigenvalues of the problem are approximately
insensitive to this barrier. This is reasonable if we obey the earlier assumption
that the corner hopping rate must not differ extremely from Γ, such that the
majority of hopping processes still occurs inside one zone. For rates specified
like this (ΓA = ΓB and ΓAB = ΓBA), the zeros of the approximation (A.15) are
still unavailable exactly, but with the additional `A = `B, one again re-covers
the result for the completely homogeneous edge.
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Appendix B

General Auxiliary Material

B.1 Properties of Modified Bessel Functions

The ordinary differential equation of second order[
d2

dz2
+

1− 2α
z

d
dz

+
(
β2 +

α2 − ν2

z2

)]
f = 0

has solutions f(z) = zαZν(βz), where Z = J, N, H(1), H(2) [51, 8.491 8.].
Modified Bessel functions occur upon transforming to imaginary argument, such
that the solution to (d2/dz2 + z−1d/dz−1)f = 0 reads f(z) = AI0(z) +BK0(z),
where I0 and K0 are modified Bessel functions [51, 8.494 with ν = 0]. In the
case arg(z) ∈ (−π, π/2], Gradshteyn and Ryzhik [51], 8.406f. defines

Iν(z) = e−iπν/2 Jν(eiπ/2 z), Kν(z) = iπ/2 eiπν/2H(1)
ν (eiπ/2 z),

furnishing series representations [51, 8.445f.]

Iν(z) =
∞∑
k=0

(z/2)ν+2k

k!Γ(ν + k + 1)
,

Kn(z) =
1
2

n−1∑
k=0

(−)k
(n− k − 1)!
k!(z/2)n−2k

+ (−)n+1
∞∑
k=0

(z/2)2k+n

k!(k + n)!

[
ln
z

2
− 1

2
ψ(k + 1)− 1

2
ψ(n+ k + 1)

]

with n ∈ N0. For z →∞, Gradshteyn and Ryzhik [51], 8.451 5.f. provide the
asymptotic expansions

Iν(z) ∼ ez√
2πz

[ ∞∑
k=0

(−1)k

(2z)k
Γ(ν + k + 1/2)
k!Γ(ν − k + 1/2)

]
+ ∝ e−z →∞,

Kν(z) ∼
√

π

2z
e−z

[
n−1∑
k=0

1
(2z)k

Γ(ν + k + 1/2)
k!Γ(ν − k + 1/2)

+ remainder(n)

]
→ 0.
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For z � 1 one uses the exact series to get [51, 8.447 1.–3., 8.446 for n = 1]

I0(z) =
∞∑
k=0

(z/2)2k

k!2
= 1 +

(z
2

)2

+O(z4),

I1(z) =
∞∑
k=0

(z/2)2k+1

k!(k + 1)!
=
z

2
+

1
2

(z
2

)3

+O(z5),

K0(z) = −I0(z) ln
z

2
+
∞∑
k=0

(z/2)2k

k!2
ψ(k + 1)

= − ln
z

2
− γ +

(z
2

)2 (
− ln

z

2
+ 1− γ

)
+O(z4),

K1(z) =
1
z

+ I1(z) ln
z

2
−
∞∑
k=0

(z/2)2k+1

k!(k + 1)!

(
ψ(k + 1) +

1
2(k + 1)

)
=

1
z

+
z

2

(
ln
z

2
+ γ − 1

2

)
+O(z3),

where we employed ψ(k + 1) = −γ +
∑k
n=1 n

−1.
We note a few further properties of modified Bessel functions that are used

in the main text. First, dI0(z)/dz = I1(z) and dK0(z)/dz = −K1(z) [51, 8.486 9.
& 18.]. Also, one has Iν(z)Kν+1(z) + Iν+1(z)Kν(z) = 1/z [51, 8.477 2.]. Lastly,
with Γ(5/2) = 3

√
π/4, Γ(1/2) =

√
π, Γ(3/2) =

√
π/2 and Γ(−1/2) = −2

√
π, we

find that
K1(z)
K0(z)

∼ 1 +
1
2z

+O(z−2) as z →∞.
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List of Frequently Used Symbols

The following list is not exhaustive; in particular, quantities which only occur
in the Appendices are not listed. Notation in the different Parts is generally
unrelated; collisions within one Part were hard to avoid, and should always be
unambiguous from the context.

Part I: Hydrogen Recombination on Interstellar Dust

A sweeping rate
a hopping rate
S # adsorption sites on grain / lattice
F total impingement flux (surface-integrated)
W desorption rate
N, P (N), 〈N〉 # adatoms, its PDF, its time / ensemble average
RME, RRE reaction rate in given framework
p encounter probability (subscripts for model)
p̃ encounter probability, without ‘on-top’ contribution

g lattice type factor
D diffusion coefficient
r target area radius
R grain radius
`D diffusion length (dimension of a length)
n(x), n(θ) diffusion model adatom probability

Li lattice dimensions (L for 1d case)
µ lattice aspect ratio
ξ survival probability per step
λ(k) structure function
` random walk “length” (dimensionless, steps)
qi transition probabilities for RW
P ∗(l; ξ) RW generating fn. on periodic lattice
Ω lattice (vectors)
S

(0),(1)
3 sum contributions [54]
Ndis # distinct sites visited by RW

η recombination efficiency (subscripts for framework)
f impingement flux per site

as, Ws, ps hopping rate, desorption rate, occ. probability at site s
ρ PDF (subscripts denote shape or quantity)
σ, σ̃ standard deviation; relative s. d.
F1d 1d-flux per length
Dedge, DA, DB general and specific edge diffusion coefficients
Eb,A, ED,A binding energy, diffusion barrier (zone A)
pn(t), pm,n(t) 1d / 2d-particle propagator
pU
n , p

S
n, p

eff
n special distributions (uniform, stationary, effective)

τdep, τtr, τres time scales of deposition, traversal, residence
`A, `B, L island edge zone lengths, total length (dimensionless)
Rn(t) nucleation probability at site n, time t
Pn spatial nucleation distribution
ΓA, ΓAB, γA intra-zone, corner, and rescaled corner rates (zone A)
λ, zA, qA eigenvalue, complex parameter, wave number (zone A)
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Part II: Disordered Step Growth

k± step edge attachment rates (dimension L/T )
v step velocity
F, F ′ total / impurity flux (dimension 1/(LT ))
l terrace length
θ(x) average impurity concentration profile

αr, βr stepping probabilities
N # sites on terrace
Pj→/← right / left side attachment probability starting from j
P→/← Pj→/← averaged over starting position and disorder
Er ≡ Er→r+1 transition state energies
∆E, ∆E± additional trap / barrier height, step edge barriers
‖i, j‖ # extra barriers between i and j (random-barrier model)

D(x), µ(x) effective diffusion coefficient and chemical potential
φ impurity concentration in influx
p impurity concentration gradient (on terrace)
λ, λ0 kinetic lengths

Part III: Isozones and Surface Reconstructions

N # isozones
r radial coordinate
R0, R, Ri, R

∗ isozone / island radii
θ(r) total coverage
θi critical (or supplied) coverage
φ(r) excess coverage
φi critical (or supplied) excess coverage
Di, τi diffusion coefficient, desorption time in zone i
`i diffusion length in zone i
Ω adatom area
∆i dimensionless constant for stationary profile
j radial component of current

tr relaxation time to steady state
D, τ diffusion coefficient and desorption time in decay model
t0, t

∗, ∆t decay start and end time, vanishing time

General Notation:

t time variable
T temperature (subscripts specify)
β = 1/(kBT ) inverse temperature, kB the Boltzmann constant
EW , Ea, EDi , Eτi activation energies for subscripted quantity
Es, Er relevant activation energy at a site (with disorder)
ν attempt frequency (subscripts: activated quantity)
a0 lattice constant
d number of dimensions

〈. . . 〉 disorder average
. . . spatial average
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List of Abbreviations

This is a list of abbreviations used herein, roughly in order of appearance.

RE rate equation
(K)MC (kinetic) Monte Carlo
ME master equation
TPD temperature-programmed desorption
UHV ultra-high vacuum
(CT)RW (continuous-time) random walk
LH Langmuir-Hinshelwood (rejection mechanism)
PDF probability distribution function
WTD waiting time distribution
DFT density functional theory
RSRG real-space renormalization group
(M)FPT (mean) first-passage time
ES Ehrlich-Schwoebel (inter-layer transport barriers)
i.i.d. independent identically distributed (random variables)
STM surface tunneling microscopy
PEEM photoemission electron microscopy
(µ)LEED (µm size) low energy electron diffraction
LEEM low energy electron microscopy
ML mono-layer, coverage unit
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