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Abstract 

 A number of micro-organisms and cells, such as sperm and some spieces of 
roundworms (nematodes), employ a sinusoidal beating motion of their rod-like body 
to swim though a fluid medium. For the motion of these microscopic swimmers, the 
viscosity is dominating and the inertia is negligible. They cooperate with each other 
through hydrodynamic interactions and exhibit complex swarm behaviors, such as 
aggregation near surfaces and clustering at high density. These interesting and 
surprising phenomena indicate that, in addition to the individual motion of wandering 
and struggling alone, there are more efficient cooperative ways for the swimmers to 
overcome long distance and obstacles to reach their ultimate goal. This applies 
especially for sperm as one of the most important cells for the reproduction of high 
animals. 
 The goal of this work is to explain the importance of hydrodynamic interaction 
and volume exclusion for the cooperation and swarm behavior of micro-swimmers 
which employ sinusoidal beating, like sperm and nematodes. We classify the 
swimmers as rod-like self-propelled particles (rSPP) in a viscous environment, and 
compare the swarm behaviors of straight self-propelled rods and sinusoidal beating 
swimmers by simulations. The hydrodynamic interaction between the swimmers is 
simulated by multi-particle collision dynamics (MPC), a particle-based meso-scopic 
simulation method for fluid dynamics. We also perform the simulations with 
anisotropic frictions (AF), an approximation of hydrodynamics, which neglects 
hydrodynamic interactions between swimmers. The contributions of hydrodynamic 
interaction and volume exclusion are distinguished by comparing results in a MPC 
fluid and with AF. 
 Sperm and nematodes in experiments usually swim in a quasi-two-dimensional 
space due to the aggregation at the surfaces. Furthermore, from a simulation 
viewpoint, sperm swimming in a two-dimensional fluid is a less demanding problem 
than in three dimensions, so that cooperative behaviors can be studied in much more 
detail. Thus we focus on simulations in two dimensions.  

Volume exclusion of the elongated particles is the key factor to induce the 
alignment and clustering behavior of self-propelled rods in viscous environment in 
two dimensions. Two kinds of clusters are found: motile clusters with all of their 
components polarized, which are found for low rod density and strong environmental 
noise; giant, immobile clusters of blocked rods, which are found for high rod density 
and weak environmental noise. A stable distribution function of cluster size is reached 
when the system is balanced between the formation rate and break-up rate. Three 
types of the distribution functions, corresponding to three states of the system, are 



 6 

found. For systems of motile clusters, the distribution function always has a 
power-law-decay part. The average cluster size shows a power-law relation with the 
variance of environmental noise. Giant density fluctuations, which are a characteristic 
fingerprint of aggregating systems of self-propelled particles, are also found in our 
rod simulations.  

The main difference between self-propelled rods and flagella systems is that the 
sinusoidal beating flagella have synchronization and attraction through hydrodynamic 
interaction. The hydrodynamic synchronization and attraction make the flagella in the 
same cluster tightly packed and locked in phase. The clusters extend strongly in the 
direction of motion, and the probability to find small clusters is decreased. 
Hydrodynamic interaction between clusters acts as the environmental background 
noise. The swarm behavior of sinusoidal undulating flagella is basically the same as 
the self-propelled rods. The distribution function of cluster size has a power-law decay. 
In nature, sperm and nematodes can have a wide distribution of beat frequencies, 
which can be considered as noise due to internal property. The average cluster size has 
a power-law dependence on the variance of distribution of beating frequencies.  

A sperm is a sinusoidal beating flagellum with a head attached in front. Although 
the heads generate strong viscous resistance, the hydrodynamic interaction - 
synchronization and attraction - between beating tails is still dominating. The 
swarming behavior of a multi-sperm system is the same as a multi-flagellum system. 
However, the heads make the cluster configuration much looser, thus the stability of 
large clusters decreases.  

Thus we conclude that, in two dimensions, the fundamental elements for the 
swarming behavior of active rod-like particles like sperm and nematodes are the 
anisotropic shape and the self-propelled motion. The volume exclusion is a strong 
mechanism to induce the alignment. The hydrodynamic interaction due to the 
sinusoidal beating motion regulates the shape of the clusters and the distribution 
function of cluster size.  

In three dimensions, the hydrodynamic interaction is still strong enough to make 
cooperating clusters of flagella or sperm. The flagella can get synchronized through 
different pathways - shifting the relative position, or rotating their beating planes. 
However, the cooperation in three dimensions is not as stable as in two dimensions.  

Our results are in good agreements with experimental observations of the 
swarming of sperm and nematodes in a thin layer of fluid medium near surfaces. 
Interesting experimental phenomena, such as the elongated cluster of rodent sperm 
and the vortices of sea-urchin sperm, are reproduced in the simulations. 
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I. Introduction 

1.1  Motivation 
Swimming is the active motion of a body in a fluid. Most familiar to us is the 

swimming of humans on the surface of water, like in a swimming pool. In human 
swimming, inertia is very important. We push back the water with our arms, and then 
glide through the water for a while. This inertia effect can be seen very clearly in even 
larger objects, e.g. a ship continuous to float for a large distance after its engine stops. 
With increasing fluid viscosity, decreasing swimming velocity, or decreasing size of 
the swimmer, the viscous forces become more and more important. Imagine a human 
swimming in honey, where the viscosity is much higher than in water. The motion 
immediately stops when his arms stop waving.  

Studies of swimmers at the length scale of micrometers, such as sperm and 
bacteria, have profound biological importance. Sperm use a beating flagellum 
several-ten micrometers long to swim towards the egg. The flagellum has a rod-like 
structure and pushes the surrounding fluid backwards by a snake-like motion. The 
flagella of some bacteria are several micrometers long and have a helix structure. The 
bacteria rotate their flagella as screw propellers to swim through a fluid to find food. 
Both sperm and bacteria swim in a fluid environment where viscosity is dominant and 
inertia is negligible [1]. If they stop their propelling motion, the swimming velocity 
vanishes at the time scale of microseconds [2].  

Swimmers propel the surrounding fluids backwards to gain a forward motion. 
Through the flow field created by it, the swimmer interacts with other particles in the 
fluid. For example, you feel a strong water flow in the swimming pool when a 
swimming person passes by. This interaction is called hydrodynamic interaction. 
Hydrodynamic interaction is significant when the separating distance of two 
micro-swimmers is comparable to their typical size [3]. For example, experimental 
observations of two paramecium cells have shown that the changes in the direction of 
motion between two cells are induced mainly by hydrodynamic forces [4]. The 
hydrodynamic interaction between two bacterial flagella, has been investigated both 
experimentally [5] and theoretically [6][7]. For the bacteria using rotating helical 
flagella, such as E. coli, each cell typically has several flagella, which bundle or 
disperse depending on the sense of motor rotation. The bundling of the bacterial 
flagella is arising from the interplay of hydrodynamic interactions, and its rate is 
determined mainly by the rotating period.  

Computer simulations have been employed to study the motion of microswimmer 
models [8], as well as the hydrodynamic interactions between two swimmers [9]. 
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Even studies of a minimal swimming model of three linearly connected spheres [10] 
show a complex cooperative behavior [11]. The swimmer-swimmer interaction is a 
complicated function of their relative displacement, orientation and phase, leading to 
motion that can be attractive, repulsive, or oscillatory. However, despite the 
considerable progress in modeling elementary structures of those swimmers and the 
behavior of a single one in a fluid medium [12][13][14], relatively few theoretical 
studies have examined the hydrodynamic interaction of swimmers with other 
mesoscopic or macroscopic objects, e.g., the coordinated beating motions of two 
flagella [15][16], the tendency of accumulation near substrates [17][18][19][20], etc. 

Collective behavior, also called swarm behavior, means the way in which an 
individual unit’s activity is coordinated with its neighbors so that all units 
simultaneously alter their behavior to a common pattern [21]. Swarm behavior is 
common in nature, such as the group activities of humans, the collectively migration 
of birds, and the swirling of a fish school. Quite a few cells and organisms on 
different size scale, such as nematodes (roundworms) and sperm, exhibit similar 
swarm behavior when their local concentration is high. In experiments, they aggregate 
at the surfaces and form motile clusters consisting of a large number of individuals 
with coordinated movements [12][22][23]. Sperm and nematodes have a similar 
self-propelling mechanism. They employ a snake-like motion to push backwards the 
surrounding fluid, thus the bodies move forwards. Their aggregation and clustering 
behaviors correspond to the swarm behavior of self-propelled-rod systems. However, 
although the phase transition and cluster size distributions for the self-propelled-rod 
systems have been observed theoretically [24][25], a detailed understanding is still 
lacking. On the other hand, the distance between individuals in the same cluster is 
small, thus hydrodynamic interaction plays an important role in aggregation and 
clustering behavior. The effect of hydrodynamic interaction on the swarm behavior of 
self-propelled rods [26] was suggested to be important to adjust the orientation of rods. 
However, the interesting swarm behavior of dense systems of swimmers with 
hydrodynamic coupling remains to be explored. 
 

1.2  Sperm 
Sperm is one of the most important cells for the reproduction of high plants and 

animals. Their motility is crucial to fertilization. When released, sperm usually have 
to overcome a large distance compared with their own length before they find the egg. 
Organisms such as sea urchins that utilize external fertilization, in which egg and 
sperm cells are released into the surrounding water, demand high swimming 
efficiency. By contrast, for organisms employing internal fertilization, sperm have to 
travel much shorter distances but in a much rougher environment with high viscosity 
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and diverse obstacles. After the exhausting marathon, only a very small fraction of the 
initial huge number of sperm can reach the egg for fertilization. For the human case, 
only 300-500 from one injection of 200-300 million sperm will reach the egg at last. 
The others get lost or died on the way. Thus, the most healthy and energetic sperm are 
selected and their genes are passed on to the next generation.  
 
1.2.1 High animal sperm structure 

Although different from species to species, the basic structure of high animal 
sperm is quite universal. Usually, sperm of high animal consists of three parts: a head, 
a beating long tail, and a mid-piece to connect head and tail. Fig. 1.1 illustrates the 
structure of a human sperm as an example.  

The sperm is characterized by a minimum of cytoplasm and the most densely 
packed DNA. The head part of sperm contains all genetic information to be passed ib 
to the next generation. Usually the head has a larger diameter than the cross section of 
the tail, and is covered by a cell membrane rich of membrane proteins for different 
functions. The head generates viscous resistance when the sperm moves forwards. 
The shape of the head is not a perfect sphere (see the illustration for human sperm in 
Fig. 1.1a and rodent sperm in Fig. 1.2a). The anisotropic shape of the head may lead 
to hydrodynamic effects modifying the swimming trajectories or special functions for 
the fertilization purpose. The diameter of the head is several micrometers, typically 
about 1/10 of the total length of the sperm. For example, the head of sea urchin sperm 
is about 3μm long and 1μm thick [27], while the total sperm length is 50μm. For 
human sperm, the cell consists of a 5μm by 3μm head and a 50μm tail.  

The tail flagellum is the most important part for the motion of sperm. The tail has 
an axoneme in its center. For most of sperm, the axoneme has a “9+2” structure, 
which means two central microtubules (stiff polymers, the “bone” of the cytoskeleton) 
are surrounded by 9 double microtubules as illustrated in Fig. 1.1b. The microtubules 
are long and stiff polymers which form the backbone of the axoneme. They consist of 
tubulin monomers that are arranged in a helix to form a hollow tube. The 
microtubules of the axoneme are connected by motor proteins (dyneins) consume ATP 
to move along the microtubules. They are the most important active component to 
generate local bending of axoneme and thereby induce the active beating motion. The 
other structure elements, such as radial spokes and nexus, are different classes of 
proteins to regulate the pattern of the beat. The axoneme of the tail is covered with a 
cell membrane and is decorated with a lot of different functional proteins. Those 
proteins not only act as ion channels or chemical receptors, but also change the 
rigidity of the tail. The rigidity is important to the beating pattern of flagella in a 
viscoelastic media [28].  
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The mid-piece of sperm, illustrated in Fig. 1.1a, has an axoneme as the center part. 
The axoneme of mid-piece is covered with mitochondria sheath and dense fibres. The 
mid-piece is quite rigid and not actively beating although it has the same axoneme 
structure as the tail.  
 
1.2.2 Hydrodynamics of sperm 

Sperm are swimming in a low Reynolds number fluid environment where the 
viscosity is dominating and inertia is negligible [1]. A dimensionless number, the 
Reynolds number (Re = ρυl/η) provides a measure of the ratio of inertial (ρυ) and 
viscous (η/l) forces, where υ is the fluid velocity, ρ is the fluid density, η is the 
dynamic viscosity of the fluid and l is a characteristic length scale of the system. In 

Figure 1.1: (a) Diagram of human sperm. (b) Diagram of “9+2” structure of 
axoneme. From Wikipedia.org. 

(a) 

(b) 
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the high Reynolds number region (Re>2×103), e.g. a person swimming in water 
(Re~106) and a large ocean ship (Re~109), the inertial force is dominant and flow is 
turbulent. In the low Reynolds number region (Re<<1), e.g. the sperm (Re~10−2) and 
the bacteria (Re~10-5) swimming in water, the viscous force dominates. The Reynolds 
number associated with sperm is on the order of 10-2. Therefore, the sperm exhibit 
lamellar flow, and the inertial force is negligible.  

In the past decades, the effort to quantitatively describe the fluid dynamics of 
sperm has been very successful [29][30]. For example, the swimming velocity of a 
sea-urchin sperm has been calculated by assuming a sine-shaped beat-pattern [29]. 
The hydrodynamics is approximated by two friction coefficients for a rod dragged 
parallel or perpendicular to its orientation. The friction coefficients are functions of 
the ratio of rod length and diameter. The average swimming speed is [29] 

1
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where f is the beating frequency, λ is the wave length, b is the amplitude of the beat, n 
is the number of waves present on the tail, CH is the drag coefficient of the head, and 
γ|| is the friction coefficient parallel to the rod. The friction coefficient perpendicular 
to the rod is assumed to be twice the value of γ||, which corresponds to the limit of a 
long and thin rod. The speed is proportional to the beating frequency, and is a 
complicated function of λ and b. Due to the pre-defined shape assumed in the 
derivation, the fluid viscosity does not influence the swimming speed. The response 

Figure 1.2:  (a) the hook structure on head of rodent sperm. (b) Motile aggregation of 
approximately 50 sperm. (c) A large motile sperm train over 2-mm in length and 
consisting of thousands of sperm. (d) Image of formalin-fixed sperm from a train. (e) 
A sperm attached by the apical hook to the flagellum of another cell (indicated by an 
arrow). (f) Fluorescent immunolocalization of filamentous actin in the sperm head 
with propidium iodide counterstain. Actin was expressed in the apical hook region 
more intensely after deployment. Scale bars: a, d, e, f, 5μm; b, 10μm; c, 1mm. (cite 
from Ref. [23]) 
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of the shape of the sperm tail to the viscous friction in 2D was also studied 
theoretically.  

In a fluid medium, two obstacles at a distance can interact through hydrodynamic 
interactions. At low Reynolds numbers, hydrodynamic interactions in 3D are not 
negligible for two swimmers when the separating distance between them is less than 
3-5 times their size [3]. In nature, the density of sperm can be extremely high. For 
example, one injection of human sperm has tens to one hundred million cells inside a 
small volume of 1cm3. So the average distance between sperm is around 10μm while 
the length of sperm is 50μm. In experiments, sperm tend to accumulate at surfaces 
[17][18][19][20]. The sperm density at substrates is much higher than in the bulk. 
Thus, hydrodynamic interaction is important and must be taken into consideration for 
multi-sperm behavior.  

The hydrodynamic interaction between sperm was noticed very early. Already in 
1951, Taylor [16] has derived the hydrodynamic interaction at Re=0 between two 
sinusoidal undulating strings in 2D, which corresponds to infinitely large sheets in 3D. 
He demonstrated the hydrodynamic forces on undulating strings, which leads to phase 
locking and synchronized beating. The energy consumption decreases if two strings 
are synchronized and closer. Simulations of two sperm as well as two undulating 
strings in 2D [15][31] agree with Taylor’s results. A strong correlation between sperm 
beating phase and relative sperm head position was found experimentally in 
self-organized sea-urchin vortices [32] (for more details see Section 1.2.3 below). 
This also reflects the “synchronization” effect through hydrodynamics. However, 
there is no systematic study of hydrodynamic interaction between sperm in 3D yet.  

From experimental observations [17][19] and theoretical studies [18][20], sperm 
is known to have a strong aggregation tendency near substrates due to the 
self-propelled motion and the hydrodynamic interaction with the boundary. The beat 
mode is also influenced by the hydrodynamic interaction with the walls. The tail tends 
to beat parallel to the boundary.  
 
1.2.3 Sperm cooperation in experiments 

Sometimes, in order to conquer the tough swimming environment and blocking 
obstacles, sperm temporarily cooperate. Sperm from a single male have to compete 
with sperm from another male if present in the female reproductive tract at the same 
time. Close genetic relatedness predisposes individuals towards altruism, and as 
haploid sperm cells of an ejaculate will have genotypic similarity of 50%, it is 
predicted that sperm may display cooperation and altruism to gain an advantage when 
intermale sperm competition is intense [23][33]. The motile sperm could cooperate 
with one another through several possible interactions. The most fundamental 
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interaction is volume exclusion, because sperm cannot penetrate each other. Due to 
the short distance between two sperm, the hydrodynamic interaction is not negligible. 
Other possible interactions could be chemical bond connections and electrostatic 
interactions. Several examples of sperm cooperation have been reported in mollusces 
[34], insects [34][35][36] and wood mouse [22][23] experiments. 

For wood mouse, multiple matings resulting in sperm competition and mixed 
paternity in littermates are believed to be widespread. In experiments [23], healthy 
and motile wood mouse sperm are released into an in vitro fertilization medium. 
Initially, the sperm are in single cell suspension, which means that they are separate in 
the fluid medium. Within 5 minutes, motile “trains” of sperm comprising hundreds to 
several thousand cells are formed, as shown in Fig. 1.2. The same experiment was 
done with different species of mouse sperm [22]. “An advantage in straight-line 
velocity does not hold in the house mouse where individual sperm were faster than 
sperm groups. It is possible that although the sperm groups in the house mouse are 
slower than individual sperm, they have greater thrust force.”(From Ref. [22]) In 
European wood mouse, sperm “trains” exhibit increased thrust force in response to 
the gelatinous copulatory plugs left by males during copulation. In addition, the main 
function of a hook structure on the head of rodent sperm appears to be to maintain the 
stability of sperm groups rather than the actual attachment of sperm to each other 
[23].  

The sperm clusters of fish fly [35] and the sperm pairs of opossum [37] have 
special agglutination between their heads. A fish-fly-sperm cluster has ten to hundred 
sperm sticking together at their heads, swimming with synchronized tails, as shown in 
Fig. 1.3. Two opossum sperm stick together at the flat surface of their heads and form 
a cooperating pair. The sperm pair has a more straight-forward trajectory than that of 
a single sperm. It can swim through a highly viscous fluid medium in which a single 
sperm is trapped locally and unable to escape.  

Figure 1.3:  (a) Sperm-bundles of the Fishfly Parachauliodes japonicus. X and Y are 
the maximum length and width of the head agglutination part. Scale bar is 0.1mm 
[35]. (b) Paired sperm of opossum Monodelphis domestica. Sperm heads are joined 
over their flat acrosomal surface to form a hydrodynamic biflagellate unit [37]. 

(a)  (b)
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A special experiment of cooperation of sea urchin sperm shows self-organized 
vortices with extremely high cell density near a substrate [32] (Fig. 1.4). The vortices 
emerge only when the sperm density at the substrate reaches a critical number of 
2000/mm2. In Fig. 1.4, each vortex contains 10±2 sperm, has the radius of 
13.2±2.8μm, and diffuses randomly on the substrate. The swimming speed of sperm 
in the vortex is 125±21μm/s. If the sperm density is extremely high, the vortex density 
increases until the vortices are packed in a hexagonal array. Although the biological 
meaning of the vortices arrangement is not clear, at least the experiment indicates a 
very general interaction between sperm to build up cooperation – volume exclusion 
and hydrodynamic interactions.  

 
1.3 Swarm behavior 
 Swarming is the collective motion of a large number of self-propelled agents. The 
interaction between two agents is simple, but the behavior of a lot of the same agents 
is complicated. Collective motion can be observed at almost every scale in nature, 
from human crowds [38][39][40] to fish schools, and unicellular organisms such as 
amoebae [41] and bacteria [42]. The system has neither an apparent leader, nor 
long-range communication between agents. However, although the specific biological 
details can be very different, there is a surprising amount of coordination among the 
agents in their collective motion.  

For the last two decades, there has been a continuing interest in studying simple 
models to describe swarming. There are a lot of experimental [43][44][45], theoretical 
[33][46][47][48] and simulation [49][50][51][52][53][54][55][56][57][58] studies, 

Figure 1.4: Circulating sea-urchin sperm form a 2D array of vortices [32]. (A) Single 
frame showing the heads of sperm at a surface density of 6000/mm2. (B) The average 
intensity of 25 consecutive frames shows an arrangement of rings, each corresponding 
to a vortex of ~10 sperm. (C to E) Successive frames of a phase-contrast movie 
showing nine sperm swimming clockwise within a vortex.   
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which analyzed different aspects of the swarm behavior such as orientation, 
aggregation and energy consumption. In experiments, self-propelled cells such as 
bacteria [42][59][60][61][62], sperm [22][32][35][36] and keratocyte cells [45] were 
used to study the swarming behavior on the length scale of micrometers. In 
simulations, the systems are drastically simplified to self-propelled particles with a 
defined neighborhood in which the average velocity affects the particle velocity 
towards alignment.  
 However, most of the simulations were done by assuming an artificial interaction 
between particle velocities. Thus the results depend strongly on the set of parameters 
like the radius of interaction region, and the strength of the interaction. In nature, the 
alignment mechanism for high animal swarms like fish schools or migratory birds is 
unknown, but the mechanism for some cells as E. coli and sperm is clearer. Bacillus 
subtilis and E. coli propel themselves through fluid and obviously the volume 
exclusion helps to align their directions [61][62]. In sperm experiments [22][32] and 
simulations [15][63], not only the volume exclusion, but also a hydrodynamic 
interaction between beating tails adjusts the swimming motion. Simulations of actin 
filaments on motor protein decorated substrates show that the filaments align and 
block movement by volume exclusion [64]. This shows the importance of volume 
exclusion for alignment. However, there are few studies of swarm behavior with 
volume exclusion induced alignment [25][52][53][64][65].  

  
1.3.1 Swarm behavior of rod-like self-propelled particles  

Microscopic organisms swimming in low-Reynolds-number environment are 
good examples for swarm behavior at small length scales. Those organisms are simple 
animals or single cells, thus their form of interaction is much simpler than the 
complex interactions between higher animals. Actively wiggling and self-propelled 
bacteria, such as E. coli and B. subtilis [42], show swarm behavior.  

Myxobacteria [66] show a very interesting collective behavior. When starved, 
myxobacteria become elongated with an aspect ratio of approximately 1:7. They glide 
along the long axis and undergo a process of alignment, rippling, streaming, and 
aggregation that culminates in a three-dimensional fruiting body, as shown in Fig. 
1.5a. The fruiting body formation in bacteria occurs in response to adverse conditions 
and is critical for species survival [67].  

Sperm is another good example of self-propelled rod-like particles in a 
microscopic scale. When sperm have a high local density, they exhibit interesting 
cooperation, as introduced in Section 1.2.3. Other than the obvious chemical and 
electrostatic interactions in fish-fly and opossum sperm, the main aligning and 
aggregation origin of rodent sperm train and sea-urchin sperm vortices are simply 
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volume exclusion and hydrodynamic interaction.  
Nematodes, which are about 2mm long and propel themselves by a snake-like 

motion, show a similar swarm behavior as sperm do although they are much larger 
and swim at a higher Reynolds number of Re≈1. A remarkable tendency for a number 
of nematodes to adhere together in a thin film of water was found [12], as shown in 
Fig. 1.5b. When a culture of swimming nematodes is kept in a covered glass container, 
the animals creep at the walls and form large bundles extending to the boundary of 
damp region. Inside a bundle, the nematodes seem to have the same type of waves 
and move in phase with neighbors. The nematodes are moving in a thin layer of fluid 
at the surface, a quasi-two-dimensional condition, where volume exclusion plays a 
dominant role. Unfortunately, there is no systematic study of the swarm behavior of 
nematodes. It is unclear if there is any other interaction like chemical signal or inner 
mechanism to attune the beat motion for the worms to achieve coordinated 
movement. 

An interesting experiment to study the swarm behavior of propelled rods was 
designed in Ref. [44]. Copper rods of 4.6mm length and 0.8mm diameter are confined 
between two hard substrates to form a quasi-two-dimensional space. The driven 
motion of the rods is introduced by a vibrating external magnetic field. Different from 
sperm and nematodes, the copper granules do not have a preferred propagating 
direction. They randomly move forwards or backwards along their extended direction. 
However, they still exhibit fundamental swarm properties such as giant density 
fluctuations (see Fig. 1.6). Here, giant density fluctuations are character by a variance 
ΔN of particle number fluctuations in a given area 

dens~ βNNΔ   
with 0.5<βdens<1, where N is the average particle number. 

Figure 1.5: (a) A snapshot of the fruiting body of myxobacteria M. Xanthus [68]. (b) 
Co-ordinated movement of an aggregate of Panagrellus when on a damp surface of 
glass [12]. Scale 1mm.  

(a)  (b)
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1.3.2 Theoretical studies of swarm behavior 
 In most models of swarm behavior, the mechanism of orientation alignment of 
agents is artificial and arbitrary. In realistic swarm systems, such as fish school and 
bird groups, the origin of alignment is often unclear, and is therefore just described 

phenomenologically. Typically, the agents move with an imposed non-zero speed and 
tend to align with others in their neighborhood. Although different models have 
different mechanisms or potential for aligning, the basic properties of swarm behavior 
is quite universal [56]. The first model, which shows the emergence of a dynamic 
phase transition from a disordered state (in which agents move in random directions) 
to an ordered state (where they head in approximately the same direction) as the noise 
level is decreased or the mean density is increased, is due to Vicsek [58]. 

Figure 1.6: (a) A snapshot of the nematic order of driven rods. (b) The magnitude of 
the number fluctuations (quantified by ΔN and normalized by N1/2) against the mean 
number of particles, for subsystems of various sizes [44]. 

(a)

(b)
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The original Vicsek model is defined by 

ttttt iii Δ+=Δ+ )()()( vrr  

θθθ Δ+=Δ+
ri ttt )()(  

where r
t)(θ  denotes the average direction of the velocities of particles (including 

particle i) within a circle of radius r around ri. The noise term Δθ is a random number 
chosen with a uniform probability from the interval [-θ'/2, θ'/2]. Thus θ'=2π 
corresponds to the “infinite temperature” limit of the system. 
 A number of agents are put into the two-dimensional space randomly at the 
beginning. A transition from the disordered to the ordered state is found by attuning 
the agent density and noise amplitude, as shown in Fig. 1.7. In a disordered state, the 
system has a random distribution of agent positions, and has no preferred velocity 
direction. In the ordered phase, all the agents tend to move in a coordinated direction 
and aggregate although there is no attractive potential. The transition was originally 
thought to be of second order [58]. But this result has been disputed in Ref. [53], in 
which a first order transition is found for large enough system. However, the nature of 
the phase transition can depend strongly on the way in which the noise is introduced 
into the system [70]. On the other hand, the difference between a continuous and a 
discontinuous phase transition can only be observed for very large systems, where it is 
difficult to carry out extensive numerical computations.  
 For a system at thermal equilibrium, density is a property that can be measured 
easily with high accuracy. Consider a system of Brownian particles passively moving 
with thermal fluctuations. The probability to find k particles in a fixed volume obeys a 
Poisson distribution,  

!/);( kekf k λλλ −=  

where k! is the factorial of integer k and λ is the mean particle number in the 

Figure 1.7: The transition from the disordered to the ordered state by attuning the 
agent density and noise amplitude in Vicsek model [58]. (a) Disordered state with 
large noises and small densities; (b) For small densities and noise the particles tend to 
form groups moving coherently in random directions; (c) For high density and small 
noise, the motion of particles becomes ordered.

(a)  (b) (c)  
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observation volume, which is the product of particle number density ρ and the volume 
V. Thus, the standard deviation of the particle number in the observation box is λ1/2. 
The accuracy of the density measurement is proportional to λ1/2/V～V−1/2. So, the 
larger the observed volume is, the more accurately the density can be measured. 
 In a swarming system, the aligning of velocity directions introduces aggregation. 
The density fluctuations ΔN are much stronger than in a thermal equilibrium state, a 
signature of “nonequilibium” systems that form high-density regions. It is the 
statistical consequence of the complex, coupled, spatiotemporal dynamics of density 
and orientation in the system [71]. The giant number fluctuations have been analyzed 
experimentally [43][44] and in simulations [71]. ΔN is found to be proportional 
to densβλ , with βdens=1/2 for a disordered state and βdens>1/2 for the ordered state. 
Sometimes βdens approaches to 1, corresponding to a high degree of aggregation.  
 
1.3.3 Theoretical study of self-propelled rods 
 In some cases on a microscopic scale, the aligning mechanism is well defined. 
For example, self-propelled spheres embedded in viscous fluids at low Reynolds 
number swarm though hydrodynamic interaction [57]. 
  Another example is the swarming of rod-like self-propelled particles (rSPP) in 2D. 
The rods are propelled along the elongated direction in an overdamped environment. 
When two rods meet, they interact with each other simply by volume exclusion and 
exchange momentum by collision. Due to the viscous environment, the momentum is 
not conserved and the energy is dissipated. The result of the collision can be 
alignment in the same direction, or anti-parallel directions. Thus, the two-dimensional 
self-propelled-rods system has a natural aligning mechanism due to volume exclusion. 
The rods aggregate and form clusters as most swarm models do. However, the 
different aligning mechanisms lead to specific behaviors. In contrast to the power-law 
distribution of the cluster size of point self-propelled particles with artificial aligning 
interaction [55], for rods two clustering regions were distinguished by looking at the 

Figure 1.8: A typical stream adjacent to an annular aggregate in myxobacteria 
simulation [68] . 
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transition from unimodal shape to bimodal shape of weighted cluster size distribution 
functions [25]. In Ref. [24], it was emphasized that the system is incapable of 
generating a macroscopic polarized state at low density because of the 
indistinguishable ends of a rod. The only possible bulk states are isotropic and 
nematic.  
 The simulations of self-propelled rods successfully reproduce some experimental 
phenomena. In Ref. [64], the cooperative behavior of cytoskeleton filaments propelled 
by motor proteins binding to the substrates was studied by simulations. The actively 
driven systems undergo an analogous phase transition and the motor activity enhances 
the tendency for nematic order. For myxobacteria, a lattice cell model based on 
short-range interaction was used in Ref. [68] and reproduced the aggregation 
mediated by transient streams. The alignment force is the attraction between the front 
and rear ends of rod cells, which mimics the cell-cell contact at the cell poles of the 
myxobacteria. The extended structures lead to annular aggregates and streams 
between two aggregates, as shown in Fig. 1.8.  
 
1.4 Methods 

We focus on hydrodynamic interaction and volume exclusion of sperm and 
rod-like self-propelled particles, and analyze the importance of those interactions for 
the cooperative behavior.  

We first analyze the swarm behavior of rSPP systems, undulating flagella 
systems and sperm systems in two dimensions. Although the volume exclusion effect 
is much stronger in two dimensions, and the hydrodynamics is different from that in 
three dimensions, the results in two dimensions still help to understand the complex 
non-equilibrium phenomena in these systems. On the other hand, the bacteria, 
nematodes and sperm have a tendency to aggregate near the experimental substrates 
due to the self-propelled motion and rod-like configuration. For sperm, hydrodynamic 
interaction between tails and substrate even strengthen the aggregation [20]. Thus, 
those active cells and organisms usually swim in a quasi-two-dimensional 
environment. By comparing results for different systems, we differentiate the 
fundamental properties of rSPP from other influences such as the sinusoidal 
undulation and the viscous resistance of large heads. Some of the experimental 
phenomena such as sperm “trains” and vortices are successfully reproduced in our 
simulations. 

In three dimensions, the system has more degrees of freedom, thus the 
cooperation is much more complex. The behavior of flagella and sperm systems in 
bulk and in confined space is simulated.  

We use a particle-based mesoscale simulation technique, called multi-particle 
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collision dynamics (MPC), to model the hydrodynamics [72][73]. MPC is well suited 
for systems with a wide range of Reynolds number [74][75]. Elgeti et al [20][76] 
applied MPC to the study of three-dimensional sperm behavior near substrates. We 
also perform simulations of sperm and flagella models with anisotropic friction, 
which is a first order approximation of hydrodynamics. The flagella and sperm take 
advantage of the different friction coefficients to move forwards, whereas the 
interaction between two swimmers is only the physical volume exclusion. Thus, by 
comparing the results in MPC fluid and with anisotropic friction, we can separate the 
effects of purely volume exclusion from hydrodynamic interaction between sperm. 



 22 

II.  Simulation methods and models 

2.1 Navier-Stokes equation 
The Navier-Stokes equation for incompressible flow of Newtonian fluids is [77]  

extp
t

fvvv +∇−∇=⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂ 2ηρ          [2.1] 

where v is the flow velocity, ρ is the density, η is the dynamic viscosity, p is the 
pressure, ∇ is the gradient operator, and fext represents body forces (per unit volume) 
acting on the fluid. The term on the left side of equation is inertia force per volume. 
∂v/∂t is the unsteady acceleration and (v⋅∇)v represents the convective acceleration. 
The first term on right side is the viscous force, and the second term is the pressure 
gradient.  

The dimensionless form of Navier-Stokes equation can be obtained by rescaling 
all quantities in the equation. If we rescale them by 
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the dimensionless form of the equation is,  
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Here, υ is the velocity of the stream, and l is a typical length of the system, e.g. the 
diameter of pipe for fluids flow though it. A dimensionless number, Reynolds number, 
is defined as Re=ρυl/η. Thus,  
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According to the law of similarity, flows of the same type with the same Reynolds 
number are similar. When Re is very large, the viscosity term (Re-1∇'2v) is negligible. 
The equation becomes Euler’s equation for ideal fluid in which thermal conductivity 
and viscosity are unimportant. For example, Re is about 4×106 for a person swimming 
in water.  

Another dimensionless form of Eq. 2.1 is 
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When Re<<1, the terms on the left side of the equation vanishes. The equation 
becomes Stokes’s equation for creeping flow in which viscosity is dominating and the 
flow velocity is small. For sperm swimming in the fluid medium, Re is approximately 
10-2.  
 
2.2 Multi-particle collision dynamics (MPC) 

MPC was first introduced by Malevanets and Kapral [78][79] in 1999. It employs 
a discrete-time dynamics with continuous velocities and local multi-particle collisions. 
Mass, momentum, and energy are locally conserved quantities by construction and it 
has been demonstrated that hydrodynamic equations are satisfied. This method is 
adequate to describe the complex fluid behavior for a wide range of Reynolds 
numbers (see review in Ref. [72][73]).  

The MPC fluid is modeled by N point particles, which are characterized by their 
mass mi, continuous space position ri and continuous velocity ui, where i = 1…N. In 
MPC simulations, time t is discrete. During every time step Δτ, there are two 
simulation steps, streaming and collision. In the streaming step, the particles do not 
interact with each other, and move ballistically according to their velocities 

ττ Δ+=Δ+ iii tt urr )()(  

In the collision step, the particles are sorted into collision boxes of side length a 
according to their position, and interact with all other particles in same box through a 
multi-body collision. The collision step is defined by a rotation of all particle 
velocities in a box in a co-moving frame with its center of mass. Thus, the velocity of 
the i-th particle in the j-th box after collision is 
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is the center-of-mass velocity of j-th box. Rj(α) is a stochastic rotation matrix to rotate 
a vector around a random direction generated independently for each collision box j. 
In two dimensions (2D), R j(α) rotates a vector by an angle ±α, with the sign chosen 
randomly. In three dimensions (3D), R j(α) rotates a 3D vector by the given angle 
around a random direction in 3D. There are two schemes for the random collisions in 
3D. The first scheme [80] chooses the rotation direction among the three main axis 
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Figure 2.1: (a) Rotation of a vector u around a direction given by a unit vector e. (b) 
Diagram of the random shift of the collision grid. 

(a) (b) 

and the rotation is performed by an angle α; in the second one [81], the random 
direction is generated in each collision box by selecting two uncorrelated random 
numbers r1, r2 from a distribution in the interval [0, 1]. The random unit vector e has 
components, 

2
2
1 cos1 ϕϕ−=xe , 2

2
1 sin1 ϕϕ−=ye , 1ϕ=ze  

where φ1=2r1－1 and φ1=2πr2. The new vector ui'' is the result of rotating ui' = ui−ucm,j 
around e by an angle α, 

 ( ) αα sin'cos'''' || euuuu ×++= ⊥⊥  

where u'|| =(e · u') e and u'⊥=u'－u'||, as shown in Fig. 2.1a. We use the second scheme 
in our 3D simulation, because it introduces less anisotropy in the system due to the 
underling lattice. 

During the collision each particle changes the magnitude and direction of its 
velocity, but the total momentum and kinetic energy are conserved within every 
collision box. In order to ensure Galilean invariance, a random shift of the collision 
grid has to be performed [82][83]. The collision grid is displaced by a random number 
uniformly distributed in the interval (0,a) which is chosen independently in each 
collision. In Fig. 2.1b, the solid grid represents the fixed grid, while the discontinuous 
grid would be one of the possible displaced grids. 

The total kinematic viscosity ν=η/ρ is the sum of two contributions, the kinetic 
viscosity νkin and the collision viscosity νcoll. The approximate analytical expressions 
are [80][84]  
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in 2D, and  
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in 3D. Here ρ is the average number of solvent particle in each collision box, m is the 
mass of solvent particle and 2/ maTkh BτΔ=  is the rescaled mean free path. We 
use kBT=1, m=1, a=1, ρ=10. This implies, in particular, that the simulation time unit 
(ma2/kBT)1/2 equals unity. In 2D simulations, we choose α=90° and Δτ=0.025. Thus 
the total kinematic viscosity of fluid is ν=νcoll + νkin≈3.02. In 3D simulations, we 
choose α=130° and Δτ=0.05. Thus the total kinematic viscosity of fluid is ν=νcoll + 
νkin≈1.60. 
 In some 3D simulations, we implement fixed walls with no-slip boundary 
conditions. For MPC solvent particles, standard bounce-back is applied during the 
streaming step. This means, when a particle hits the walls, it returns in the incoming 
direction with inverted velocity. Due to the random shift of the collision grid, the 
walls generally do not coincide with the cell boundaries, as shown in Fig. 2.2. The 
cells in the boundary are generally partially filled. During the collision step, for all the 
cells of the channel which are cut by walls, extra virtual particles are added. The 
number of virtual particles n' in box j at the wall equals the number of solvent 
particles inside the corresponding cell j' at the opposite wall. Thus the total number of 
solvent particles and virtual particles in box j still obeys a Poisson distribution. The 
velocities of the virtual particles are drawn from a Maxwell-Boltzmann distribution of 
zero average velocity and the same temperature kBT as the fluid. The collision step is 
then carried out with the average velocity of all particles in the cell,  

Figure 2.2: Random-shift in the presence of walls. 

j 
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where a is a vector whose components are numbers from a Maxwell-Boltzmann 
distribution with zero average and variance n'jkBT. Note that the temperature of virtual 
particles represents the temperature of the walls. The total energy and momentum of 
the fluid is not conserved with the presence of walls. The system is in contact with a 
thermal bath of temperature T. 

We use the MPC method to model the hydrodynamics of swimmers. Since energy 
is injected into the system by the active beating motion, we employ a thermostat to 
keep the fluid temperature constant by rescaling all fluid-particle velocities in a 
collision box relative to its center-of-mass velocity after each collision step, 
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where ui,thermo is the velocity of the i-th particle after the thermostat, kBT' is the local 
temperature of j-th box. Through the thermostat, we extract energy from the system,  
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which is the energy dissipated by swimmers, in other words the energy consumption 
of swimmers to propel themselves in the viscous medium. Note that we do not apply 
the thermostat to swimmer particles. 
 

2.3 Self-propelled rods in two dimensions 
 N rods of equal length l are put into a 2D simulation box of size Lx×Ly with 
random initial positions and random initial orientations without any overlap. The 
number density of the rod is ρr=N/(Lx×Ly). Each rod is characterized by a direction 
angle θi, center-of-mass position ri, center-of-mass velocity vi and a rotation velocity 
along the center of mass ωi. The rods move ballistically according to their velocities, 

')()'( ττ Δ+=Δ+ iii tt vrr  
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The time step is Δτ'=10-3 in rod simulations. The center-of-mass velocity vi can be 
separated into two parts, 

 ⊥+= ,||, iii vvv  

where vi,|| is the velocity component parallel to the extended axis of a rod, and vi,⊥ is 
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perpendicular to the extended axis.  
A simple first-order approximation of hydrodynamics of rods at low Reynolds 

number is an anisotropic friction. The viscous resistance force of a rod is  

|||||| vF γ= , ⊥⊥⊥ = vF γ             [2.3] 

where γ|| and γ⊥ are the parallel and perpendicular friction coefficients, respectively. γ|| 
and γ⊥ depend on the rod length as well as the aspect ratio of rod length and diameter. 
In the limit of long and thin rod, the ratio is γ|| /γ⊥ =1/2.  

The rod performs an overdamped translational motion with anisotropic friction 
coefficient. The equations of motion are 
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where e|| is the unit vector of orientation direction of rod, e⊥ is the unit vector 
perpendicular to the rod, vi,0 is the forward speed of rod i when it is freely swimming. 
Fij

ex is the volume exclusion (VE) force on rod i from rod j and Mij is the torque 
generated by the volume exclusion force on rod i. The friction coefficients are γ||=l, 
γ⊥=2γ|| and the rotational friction coefficient γr = γ||l2/6. ξ||, ξ⊥ and ξr are white noise 
with variances σ2l, σ2l and σ2l3/12 respectively. Note that the noise here is not due to 
thermal fluctuation in a fluid with different intensities in different directions. Thermal 
fluctuations usually are not important for the self-propelled cells and organisms, thus 
we do not consider them here.  

vi,|| 

ri 

θi 

vi,⊥ 

ωi 

Figure 2.3: Two-dimensional model of a self-propelled rod. The rod is discretized into 
Lr beads when calculating volume exclusion force. 
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We discretize the rod into Lr particles as illustrated in Fig. 2.3. The distance 
between neighbor particles is the unit length. To describe the volume exclusion we 
use the shifted, truncated Leonard-Jones potential between particles in different rods 
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where r is the distance between particles. We use the interaction strength ε = 1 for all 
rod simulations.  
 We study the rods of length Lr=11, which corresponds to an aspect ratio of 
approximately 10. The aspect ratio of our rods compares reasonably well with 
myxobacteria, which aggregation, are elongated with their width of 0.7 to 1.2μm and 
length of 2 to 12μm [68] . The diversity of rod lengths and propulsion forces, which 
serve as source of the internal fluctuation of rods, are not taken into consideration 
here. If not explicitly mentioned, the simulation box size is Lx×Ly = 400×400.  
 
2.4 Flagella and sperm models in two dimensions 

We construct the coarse-grained flagellum model by a sequence of connected 
particles as shown in Fig. 2.4. Nf particles are aligned and linked with neighbors by 
springs of finite rest length l0 = 0.5a, where a is the length unit of the MPC fluid. 
Each particle has a mass m'=10m. A bending elasticity is necessary for the flagella to 
maintain a smooth shape in a fluctuating environment, and to implement the beating 
pattern. Two flagella can not intersect or overlap. Thus the total potential of the model 
is 

VEbendbondtotal VEEE ++=  

 ( )∑
−

−=
1

2
02

1fN

i
ibond lkE R  

( ){ }
2

12
1∑ −= +

i
iibend clE RR 0Rκ  

VVE is the shifted, truncated Leonard-Jones potential (Eq. 2.4) between particles on 
different flagella, with ε = 15kBT. Ri is the vector from the i-th particle to the (i+1)-th 
particle, R(l0c) is a rotation matrix, which rotates a vector anti-clockwise by an angle 
l0c, and c is the local spontaneous curvature. The spring constant is chosen to be 
k=2×105kBT/a2, and the bending rigidity κ = 104kBT/a2. They are much larger than the 
thermal energy kBT to guarantee that the mechanical forces dominate the thermal 
forces. The local spontaneous curvature c changes with time t and the position x along 
the flagellum to create a propagating bending wave, 
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The detailed analysis of the beating pattern of nematodes [12] and bull sperm [86][87] 
shows that a single sine mode represents the beat to a very good approximation. The 
wave number q determines the number of complete waves on the flagellum. For 
q=2π/l0Nf, one complete wave is present. fs is the beating frequency of the s-th 
flagellum. In nature, sperm of the same species always have a wide distribution of 
beat frequencies. For example, the beat frequency of sea-urchin sperm ranges from 
30Hz to 80Hz [29][29], and the frequency of bull sperm ranges from 20Hz to 30Hz 
[87]. Thus the frequency is chosen from a Gaussian distribution with average 
frequency f0 and variance σf f0 and 

( )
0

2
0

f
ffs

f
>−<

=σ  

Two flagella with different frequencies have a small difference in their forward 
velocities. The constant c0 determines the average spontaneous curvature of the 
flagellum. φs is the initial phase of the first particle on the s-th flagellum, and A is a 
constant related to the beating amplitude. We choose A=0.2, which induces a beating 
amplitude Atail=3.2a when Nf = 50 and q=2π/l0Nf. As t increases, a wave propagates 
along the flagellum from the first to the last particle, pushing the fluid backwards, and 
at the same time propelling the flagellum forward. We keep A, q, fs, and φs constant for 
each flagellum during a simulation. Although the spontaneous local curvature is 
prescribed, the tail is elastic and its configuration is affected by the viscous medium 
and the flow field generated by the motion of other flagella. For flagellum simulations, 
we use Nf=50, q=2π/l0Nf and f0=1/120 unless mentioned explicitely.  

As explained in Section 1.2.1, a sperm usually consists of three parts: a head 
containing the genetic information, a beating long tail, and a mid-piece to connect 
head and tail. We constructed a coarse-grained 2D sperm model by adding a head and 
a mid-part in front of the flagellum model as shown in Fig. 2.5. The head is 

Figure 2.4: The illustration of the basic segment of 2D flagellum model. 
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constructed of Nhead=25 particles, where neighboring particles are linked by springs of 
finite length l0=0.5a with interaction potential  
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into a circle of radius 2a. Each of the head particles has a mass mhead=20m. The 
mid-piece consists of Nmid=14 particles of mass mmid=10m connected by springs of 
length l0=0.5a. The first particle of the mid-piece, which is fixed to the center of the 
head, is connected with every particle on the head by a spring of length lhead-mid=2a, in 
order to maintain the circular shape of the head, as well as to stabilize the connection 
between head and mid part. The tail has Ntail=100 particles of mass mtail=10m, linked 
together by springs of length l0=0.5a. The spring constants are chosen to be 
khead-mid=104kBT/a2, khead=105kBT/a2, kmid=ktail=2×105kBT/a2, where khead-mid is the 
spring constant for the connection of the head particles and the center, and ktail and 
kmid are the spring constants for the tail and the mid-piece, respectively. The wave 
number q=4π/l0Ntail is chosen to mimic the tail shape of sea-urchin sperm [29][29], so 
that the phase difference between the first and the last particles of the tail is 4π, and 
two waves are present. 

In order to avoid intersections or overlaps of different sperm, the shifted, 
truncated Leonard-Jones potential Eq. 2.4, is employed, and all other parameters are 
the same as for 2D flagella.  

For the simulations with full hydrodynamics, during the MPC streaming step, the 
equations of motion of the flagella and sperm particles are integrated by a 
velocity-Verlet algorithm, with a molecular-dynamics time step Δτ'=5×10-4, which is 
1/50 of the MPC time step Δτ. The coarse-grained model only interacts with the fluid 
during the MPC collision step. This is done by sorting the particles together with the 
MPC solvent particles into the collision cells and rotating their velocities relative to 
the center-of-mass velocity of each cell [73].  
 In order to distinguish the effects of volume exclusion (VE) and hydrodynamic 
interaction (HI), we also perform the simulations of the flagellum model with 
anisotropic frictions (AF) by Eq. 2.3. The friction coefficients are different in tangent 
and normal directions of the flagellum configuration  

 ( ) )()(||||,||||, 1111 −+−+ −−⋅−=−=
iiiiiii RRRR eevvF γγ  

Figure 2.5: Two-dimensional model of sperm. The model consists of three parts, the 
head (blue), the mid-piece (red) and the tail (cyan). Two sinusoidal waves are present 
on the beating tail. 
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where )( 11 −+ − ii RRe  is the unit vector along rod direction at i-th particle on flagella.  
For sperm or nematodes, thermal fluctuations are negligible due to the large 

mass of the self-propelled particles (SPPs) relative to mass of the solvent molecules. 
In fluid dynamics, the Péclet number is a dimensionless number relating the rate of 
advection of flow to its rate of diffusion. For a self-propelled particle of large size, the 
Péclet number Pe can be written as, 

D
LvPe =               [2.6] 

where L is the characteristic length of the particle, v is the forward velocity and D is 
its thermal diffusion coefficient. In our MPC fluid, the thermal diffusion coefficient of 
a Brownian particle of mass M is [88],  
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where χ is the decorrelation factor, 
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For a flagellum swimming in a MPC fluid, with the parameters kBT=1, M=500, 
h=0.025, ρ=10, α=90°, L=25a, we get the velocity of the flagella of v=0.020±0.001. 
Thus the Péclet number is Pe = 9.5×104. For overcome a distance of L=25a, the 
thermal diffusion takes 9.5×104 times longer time than the self-propelled motion. 
Therefore, in our AF simulation, thermal fluctuations are not considered. In addition, 
note that in AF approximation, there is no hydrodynamic interaction between two 
flagella, which plays an important role as environmental fluctuation in MPC 
simulation.  
 
2.5 Flagellum and sperm model in three dimensions 

We construct a 3D flagellum model by three strings of particles connected by 
springs, as illustrated in Fig. 2.6. The mass of each particle is ms=5m. The same model 
was applied to the study of single sperm behavior near the substrate [76]. The 
flagellum consists of N repeated segments of three point particles and 12 springs. The 
potential of each spring is,  

( )202
1 llkE −=  

where k=2×104kBT/a2, which makes the thermal fluctuation of spring length is less 
then 2% of its rest length l0. l0 is different for each spring. The values of l0 for springs 
of different color in Fig. 2.6 are  
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where a is the length unit in MPC fluid, i is the number of the segment on the 
flagellum counted from the front of the flagellum. The red springs are active springs 
which are changing their rest length with time. Thus a sinusoidal wave propagating 
along the flagellum is created. As in the 2D model, fs is the frequency of the s-th 
flagellum, q is the wave number, φ0,s is the initial phase, A is the amplitude of the 
change of the rest length and determines the amplitude of the sinusoidal configuration 
of flagellum. An extra constant c' implies a constant curvature of the flagellum.  
 VE in 3D is applied between the centers of mass of segments on different flagella 
by the same shifted, truncated Leonard-Jones potential of Eq. 2.4. The force is 
calculated and divided into three equal components applied to each particle in the 
segment.  
 The 3D sperm model is simply the flagellum model plus a mid-part and a head. 
The mid-part has the same structure as the flagellum model with l0,red=l0,blue, because 
the mid-part is not actively beating. The head is modeled by a sphere, constructed of 
43 monomers, which are attached to the front of the mid-part. The head has a radius 
of rh=a and is held together by harmonic springs (with spring constants kh=104kBT/a2 

Figure 2.7: The illustration of a 3D sperm model.  

Figure 2.6: A structure segment of 3D flagellum model. Lines of different colors 
represent springs of different rest length. The dotted lines represent the springs and 
particles belonging to the next segment.  
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between center and head monomer, and kh2=105kBT/a2 between neighbor monomers). 
The same VE potential of Eq. 2.4 is applied for each head monomer. A snapshot of 3D 
sperm model is shown in Fig. 2.7.  
 The motion equation of particles is integrated by a velocity-Verlet algorithm, with 
the molecular-dynamic time step Δτ'=5×10-4. During the MPC collision step, the 
particles of each flagellum or sperm are sorted into collision boxes and collide with 
solvent particles.  

 
2.5 Comparison with real micro-organisms 

Our flagellum and sperm models in 2D and in 3D retain the most important 
features, such as the rod-like structure and the active undulating motion. We neglect 
many details of these structures, such as the non-uniform thickness and asymmetry of 
the sperm head. The local spontaneous curvature is simplified as a simple sine wave. 
We expect that such details will not influence the general self-propelling and 
cooperation behavior. 

However, there are at least one important difference between real 
micro-organisms and our models, which possibly changes the behavior qualitatively. 
The spontaneous curvature to generate the beat motion of the flagellum does not 
change in response to an external force. In our model, the flagellum shape is able to 
respond to the viscous medium. However, the spontaneous local curvature of a 
flagellum (Eq. 2.5 and Eq. 2.7) does not have a term to interact with external force. 
The external force comes from the interaction with solvent particles and the VE with 
other flagellum or sperm in system. For a real sperm or nematode, there could be 
some mechanisms to change the frequency and phase of the beat mode, or even the 
shape, according to local HI and VE contacts with other particles.  
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III. Self-propelled rods in two dimensions 

 In our model, the self-propelled rods (rSPP, rod-like self-propelled particles) of 
the same length collide and interact through volume exclusion. Due to the 
overdamped motion and the propelling forces, the result of the collision is neither 
energy- nor momentum-conserving. The only aligning mechanism is the hard core 
interaction which does not distinguish the two rod orientations. Thus the volume 
exclusion (VE) aligns the rods parallel or anti-parallel. After collision, due to the 
gliding motion along the long axis, two parallel rods move together for a time period 
until the environmental noise separates them; two anti-parallel rods leave each other 
very quickly. When the rods form clusters, the environmental noise shakes the clusters 
and tends to break up them. There is a competition between cluster formation and 
cluster break-up. The degree of aggregation depends on the system parameters such as 
the rod length Lr, the gliding speed v0, the variance of environmental noise σ2, and the 
rod number density ρr.  
 
3.1 Probability density function (PDF) of cluster size 

The simulations start with random states. The rods are put into the simulation box 
with random orientation and random position without any overlapping. When they 
start gliding, they aggregate and form clusters. Large clusters are formed by the 
collisions of smaller ones, at the same time they break up into smaller ones due to the 
external forces from collisions or the environmental noise. After some time, the 
system reaches a stationary state that the formation rate of any cluster of size n is 
balanced by its break-up rate. In the stationary state, the probability density function 
(PDF) of finding a cluster of size n does not change with time, and all those quantities 
related to PDF, such as the average cluster size <n> and the average cluster weight 
<w>, are stationary. However, due to the finite simulation box size, these quantities 
fluctuate around their stationary value.  

We define a cluster as follows. We consider two rods to be in the same cluster, if 
the angle between them is less than π/6 and the nearest distance is less than 2a, which 
is about two times the rod diameter. A cluster is defined here as a set of rods that are 
connected or neighbor either directly or through other rods at a given moment in time. 
Its size is the number of rods it contains. A freely gliding rod without any neighbors is 
considered as a “cluster” of size 1. Three types of PDF, corresponding to three 
different states of the system, are found. 
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3.1.1 Three types of PDF 
 With low rod density ρr or strong environmental noise σ2, we find the first type of 
PDF (denoted PDF1), as shown in Fig. 3.1. PDF1 decreases as a power law for small 
cluster size, then deviates from the power-law decay and drops quickly for large n. In 
a system characterized by PDF1, very large clusters are hardly found. The system is 
filled with small clusters which glides in all directions and make frequent collisions. 

The power-law decay results from the competition of cluster formation and break 
up. The formation rate depends on the collision rate of clusters, while the break-up 
rate depends on not only the collision rate, but also the environmental noise and the 

Figure 3.1: The first type of PDF. The parameters are: ρrLr
2=0.7744, σ2=26 for black 

squares (□); ρrLr
2=0.7744, σ2=27.2 for red circles (○); ρrLr

2=0.1936, σ2=26 for blue 
triangles (▽). The dashed lines are fit lines of the power-law-decay part of PDF1. The 
snapshot on the right is from the system for black squares (□). Red dots in the 
snapshot denote the front of rods. Note that periodic boundary conditions are 
employed.  

Figure 3.2: The second type of PDF. The parameters are: ρrLr
2=0.7744, σ2=23.6 for 

black squares (□); ρrLr
2=0.7744, σ2=24.9 for red squares (○); ρrLr

2=2.1901, σ2=26 for 
blue triangles (△). The dashed line is the fit line of the power-law-decay part of black 
squares (□). The snapshot is from the system for black squares (□). Red dots in the 
snapshot denote the front of rods. Note that periodic boundary conditions are 
employed. 
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cluster size. A larger cluster, which contains more rods, has more chance to reduce its 
size due to the noise and larger scattering cross section. How far the power-law-decay 
region of PDF1 can extend depends on the rod density ρr and environmental noise σ2.  

The second type of PDF (denoted PDF2), shown in Fig. 3.2, is the transition form 
of PDF1 and PDF3. It is found for intermediate values of ρr and σ2. PDF2 has a 
power-law-decay part for small clusters, and an increased probability (compared to 
the power-law decay) for large cluster size. The large clusters are randomly 
distributed in space, and move in all directions. The rods inside the same cluster are 
well polarized, thus the cluster still shows a good motility. These large motile clusters 
generate a large flux of mass inside the system, and thereby cause strong density 
fluctuations. Increasing ρr or decreasing σ2, shifts the prominent shoulder to larger 
cluster size.  

When ρr is high and σ2
 is low, we find the third type of PDF (denoted PDF3), as 

shown in Fig. 3.3. Giant clusters containing a large fraction of particles are formed. 
These huge clusters are usually formed by the collision of several large clusters in a 
short time from different directions. The rods block each other, thus the propelling 
forces are balanced with each other and the mobility of the giant cluster is very small. 

PDF3 has two parts which arise from different spatial regions in the system. A 
peak at large n represents the size of giant clusters. For small n, PDF3 only has a peak 
for very small cluster, corresponding to some freely swimming rods not collected by 
the giant cluster. Since most of the rods are in the giant clusters, the average rod 
density outside the giant clusters is very low.  

 
3.1.2 The exponent β of power-law decay of PDF 

In the rSPP simulations, both PDF1 and PDF2 have a power-law-decay part for 
small clusters. The exponent β is a function of system parameters like ρr and σ2. In 

Figure 3.3: The third type of PDF. The parameters are: ρrLr
2=0.7744, σ2=20 for black 

squares (□); ρrLr
2=0.7744, σ2=20.6 for red circles (○). The snapshot is from the system 

for red circles (○). Red dots in the snapshot denote the front of rods. 
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both PDF1 and PDF2 regions, β increases with increasing ρr and decreases with 
increasing σ2 (Fig. 3.4). However, the changing rate of β varies in the PDF1 region 
always much faster than in the PDF2 region. The exponent β approaches –2 in the 
PDF2 region. 

The power-law distribution of self-propelled rods indicates several basic 
properties of the system: 
(1) The system is far from the thermal equilibrium state, and is not approaching 

thermal equilibrium. In our simulation, there is an energy input to maintain the 
particle motion, and energy dissipation due to friction.  

(2) The elements of the system are not performing Brownian motion. The particles 
are self-propelled with directed motion despite of a random noise. 

(3) There is cooperation between particles. Although there is no attractive potential 
between particles, the cooperation tendency is strong enough to aggregate the 
particles into clusters.  
 

3.1.3  Balance between cluster formation rate and break-up rate 
The Smoluchowski coagulation equation is an integral-differential equation 

introduced by Marian Smoluchowski in 1916, to describe the evolution of the number 
density of clusters of size n at time t.   

Suppose a system consists of monomers which aggregate into clusters of different 
sizes. The evolution of the number density П(n, t) of clusters of size n at time t is 
described by Smoluchowski coagulation equation [97]: 
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The original Smoluchowski equation only considers the aggregation of clusters. The 
break-up term is not included in the equation. The first term on the right side of Eq. 

Figure 3.4: The exponent β of the power-law-decay part of PDF as a function of (a) the 
environmental noise σ2 with ρrLr

2=0.7744 and (b) the rod density ρrLr
2 with σ2=26.0=64.  

(a)  (b)  
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3.1 describes the formation of a cluster of size n from clusters of size i and n-i. The 
second term is the decrease of the number of the clusters of size n when they form a 
larger cluster by aggregation with another cluster of size i. The operator, K(i, j), is 
known as the coagulation kernel and describes the rate at which the clusters of size i 
coagulate with the cluster of size j. In most of cases, K(i, j) has a complex form. For 
example, if all particles and clusters are moving as ideal-gas molecules and aggregate 
after collisions, then K is, 
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where m(i) is the mass of cluster and d(i) is the scattering size.  
 The Smoluchowski equation has two assumptions. First, only two-body 
coagulation is taken into consideration, multi-body collisions are neglected. In the 
ideal-gas model, this assumption is valid, because the number density of clusters is 
very low, thus the chance to have multi-cluster collisions is small. Second, the 
collision time of two clusters is shorter than the time interval Δt of the discrete form 
of Eq. 3.1. If one takes the continuous form or Δt→0, the collision time is negligible 
to the average time for a cluster to meet another one. This also corresponds to the low 
density region. 
 The Smoluchowski equation was also combined with a mean-field approximation 
to analyze the long-range order and phase behavior of rSPP [24]. By using the 
Smoluchowski equation, Peruani et al [25] distinguished two clustering regions by 
looking at the transition from a unimodal shape to a bimodal shape of the 
weighted-cluster-size distribution function. It is assumed that the cluster only loose 
one monomer each time and that the speeds of all clusters is the same. However, the 
one-monomer-loss assumption seems not to be a good approximation of the clustering 
behavior in our simulation. A large cluster breaks up into any size depending on the 
collision with other clusters. On the other hand, the swimming speed of different 
cluster is not unique due to different cluster configurations.  

A modified Smoluchowski equation, which takes into account not only cluster 
aggregation but also break-up, can be written as,  
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The first and second terms are the original terms of the Smoluchowski equation, 
which represents the collision of clusters. K+(i,j) is the cluster formation rate of two 
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clusters of size i and j to form a larger cluster of size i+j. The third and fourth term 
represents the break-up of clusters. K–(i,j) is the spontaneous break-up rate for a large 
cluster of size (i+j) into two clusters of size i and j. 

Note that we made several assumptions in Eq. 3.2. First, directly inherited from 
the assumptions of the original Smoluchowski equation, the density of clusters is very 
low. The cluster size is small enough compared with the average free gliding distance, 
so that the time interval between two collisions is much longer than the collision time 
for two clusters. Thus the collisions between more than two bodies are neglected. 
Second, for the break-up, only the case of a cluster splitting into two parts is 
considered. The noise of the system is assumed to be low that the decay time of 
clusters is longer than the collision time, thus the collapse of a large cluster into 
several small ones can be considered as the result of several break-up steps. 

Eq. 3.2 helps to understand the properties of the system. For the stationary state, 
∂Π(n)/∂t=0 and all coefficients on the right side of Eq. 3.2 are independent of time. In 
the special case that the formation rate K+(i, j) equals the break-up rate K–(i,j), the 
exponential function AnenΠ −∝)(  is a stable root of ∂Π(n)/∂t=0. Of course, in most 
cases, K+(i, j) does not equal K−(i,j).  

The formation rate is the product of two parts, K+(i,j)=K'(i,j)⋅C, where C is the 
collision rate of clusters which increases with increasing cluster density. K'(i,j) is the 
possibility to form the large cluster after collision, which is influenced by the cluster 
shape, velocity, environmental noise etc. K–(i,j) increases if the noise is increased.  

Consider a stationary system with stable PDF. At an instance, we suddenly 
increase the rod density by adding new clusters according to the PDF, thus the PDF of 
the system is not changed at the moment. However, the cluster density increases, 
consequently the collision rate K+ increase. The PDF has to adapt accordingly. The 
increased K+ makes the probability density decrease for small cluster sizes and 
increase for large ones. Similarly, if we keep the rod density but increase the 
environmental noise, K– increases and number density flows from large size to small 
size. So, if the system is in the PDF1 region, increasing rod density ρr or decreasing 
environmental noise σ2 increase the exponent β (Fig. 3.4) and extend the power-law 
part of PDF1 to larger cluster size (Fig. 3.1). In the PDF2 region, this will slightly 
increase β (Fig. 3.4), at the same time the peak for large motile cluster increases and 
shift to larger size (Fig. 3.2).  

 
3.1.4 Phase diagram 

By systematically varying the rod density ρr and the environmental noise σ2, we 
can construct a phase diagram with regions of different type of PDF (Fig. 3.5). From 
the diagram, we see clearly PDF1 at low density and high noise, PDF3 at high density 
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and low noise, and PDF2 in the transition region between PDF1 and PDF3.  
The phase diagram is at the same time the phase diagram of the cluster 

configuration, from motile ones at low density and high noise region to immobile 
giant ones at high density and low noise region. The competition of two types of 
cluster configurations is responsible for the emergence of PDF1 and PDF3 in the 
different ρr and σ regions. 

Note that all systems in Fig. 3.5 start from disordered states. The state with PDF2 
is similar as the supercooled state of a liquid system below the freezing point. The 
PDF2 phase can be maintained until a “nucleus” for giant cluster is formed by the 
collision of several large and motile clusters from different directions. Several motile 
clusters happened to bounce into each other and form a blocked structure, which is 
smaller than the “giant” one at last. Then, the seed floats in space and gradually 
collects all rods through the random collision with other clusters. Then the system will 
transit to PDF3 phase. The system with log2σ =0.6 has PDF2 although it has lower 
noise than the system with log2σ =0.9 because the “nucleus” is not formed yet. 
 
3.2 Cluster configuration 

In the rSPP systems, although there are three kinds of PDF, we find only two 
types of cluster structures. One is the motile clusters in which the rods are polarized. 
Another is the giant clusters consisting of large number of rods blocking each other.  

Systems of different types of clusters can be identified by analyzing the 
orientational correlation function. We define the orientation correlation function as  

Figure 3.5: The phase diagram of three PDF type. The black squares (■) represent the 
system with PDF1; the red bullets (●) with PDF2; the blue triangles (▲) with PDF3. 
The dashed lines indicate the boundaries of different regions.  
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Here ûi is the unit vector of the orientation of rod i, rij(r, φ) is the vector pointing 
from the center of mass of rod i to rod j, and φ  is the angle between ûi and rij, as 
shown in Fig. 3.6. A clustering system always has high local order parameter as 

Figure 3.6: Illustration of rod j in the coordinate system of rod i. 
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Figure 3.7: The correlation function G(r) as the relative position rij(r,φ) to rod i (a) in 
the system of PDF2, ρrLr

2=0.7744 and σ2=23.6; (b) in the system of PDF3, ρrLr
2=0.7744 

and σ2=20.  
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shown in Fig. 3.7, so that G(r) has a peak at r=0. The correlation decreases with 
distance, and approaches zero at large distance, since there are no long-range 
interactions. 

When motile clusters are dominant in the system, G(r) is symmetric with a peak 
at r=0, reflecting the polarization inside clusters (see Fig. 3.7a). The correlated region 
gives information about the cluster configuration. The elongation of G(r) in the 
directions φ=0°  and φ=180° indicates that the large clusters extend slightly in the 
orientation direction. The width is narrower in the front and wider in the end. The 
large clusters have more chance to collide with other clusters head on than with their 
tails. The result of the collision can be increasing the cluster size by collecting the 
other clusters, or changing the directions of each cluster to be anti-parallel. The 
collision resulting in anti-parallel state is responsible for sharpening the front-end of 
large clusters.  

If the largest cluster in the system is a giant cluster, G(r) shows a very different 
picture (Fig. 3.7b). The peak with G>0 still stays at r=0, which stands for the high 
local-order-parameter for the close neighborhood of a rod. However, a region with 
negative correlations, G<0, develops, with its lowest value at a position (r',φʹ). The 
largest r for non-zero G(r) also represents the diameter of the giant cluster. Inside the 
giant cluster, because all rods point preferentially to the center of cluster, the 
propelling forces of rods block each other. So the locomotion speed of a giant cluster 
is far smaller than the gliding speed of a single rod. Also, the body force of the giant 
cluster implies a rotation motion due to the deviation of the rod orientation from 
pointing to the center of mass. Thus, φ' represents the rotational property. If 
0°<φʹ<90°, the cluster is rotating anti-clockwise; if –90°<φʹ<0°, it is rotating 
clockwise; if φʹ=0°, the propelling force inside the cluster are totally balanced, and the 
giant cluster is not rotating. 
 
3.3 Average cluster size and weight 

The average cluster size <n> and weight <w> of the system are 
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where Π(n) is the normalized PDF. The average cluster size <n> is the ratio of the 
total cluster number and the total rod number. Since Π(n) usually has much higher 
value for small n, the small clusters contribute more to <n>.  

Fig. 3.8 shows the evolution of <n> of PDF1 and PDF2 systems. At t=0, <n> is 
approximately 1 due to the random initial state. <n> increases with t until the system 
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reaches a stationary state with a stable PDF. For an infinitely large system, <n> is a 
constant. However, due to the effect of the finite simulation box size, <n> fluctuates 
around a constant value, which we denote as n . Similarly, <w> fluctuates around a 
constant value w . The amplitude of the fluctuation is inverse to the simulation box 
size. 

We average <n> and <w> over time and obtain n  and w  as a function of the 
environmental noise σ2 and the rod density ρr, as shown in Fig. 3.9 and Fig. 3.10. n  
and w  increase with increasing ρr and decreases with increasing σ2. In the 
low-density limit, the rods hardly can find each other. In the high σ2 limit, the noise 
quickly separates rods in the same cluster. So, the values of n  and w  approach 1 in 
these limits, which means a suspension of single particles. 

Figure 3.8: The average cluster size <n> as a function of simulation time t. The density 
for both systems is ρrLr

2=0.7744. Symbols indicate systems with PDF2 (+), and PDF1 
(×). 

Figure 3.9: The stationary average cluster size n  as a function of (a) the 
environmental noise σ2 with ρrLr

2=0.7744 and (b) the rod density ρrLr
2
 with σ2=26.0=64. 

The black squares (■) represent systems start with disordered state, while the red 
bullets (●) represent systems start with the initial state of a giant cluster. The dash line 
is the power-function fitting.   

(a) (b) 
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Interestingly, n  shows a power-law decay with σ2 in the PDF1 and PDF2 
regions if the system starts from a disordered state, see Fig. 3.9a. The PDF2 phase is 
the “supercooled” state which will transit to PDF3 phase once a nucleus of a giant 
cluster is formed. If the initial state has a giant cluster, the system stays in the PDF3 
phase unless the noise is large enough to break the giant cluster, as indicated in Fig. 
3.9a and Fig. 3.10a. The power-law relation suggests that the cluster size diverges 
when the noise approaches zero, even though the system is in “supercooled” state.  

 

3.4 Density fluctuation 
The variance of density fluctuation in a fixed volume V is 

( ) dens~2 βλλ >−<=Δ NN           [3.3] 
where N is the particle number in volume V, and λ=ρrV is the anticipated particle 
number in a fixed volume V. ΔN grows as densβλ . 

Fig. 3.11 plots ΔN as a function of the anticipated number λ in a log-log scale. For 
systems in PDF1 and PDF2 regions in the phase diagram, the density fluctuations 
have two parts. If we analyze the density in a small observation volume 
(corresponding to small λ), the exponent βdens is much larger than 1/2. With increasing 
observation volume, the exponent βdens decreases and approaches 1/2. ΔN gradually 
transforms from the giant-fluctuation region to the normal-fluctuation region. The 
transition occurs at larger λ for system with smaller noise. 

Fig. 3.12 shows the exponent βdens of Eq. 3.3 as a function of the environmental 
noise σ2 and the rod density ρr. At high density or low noise, βdens approaches 1, 
corresponding to the strong aggregation limit. At very high σ2, the fluctuations 
dominate the self-propelled motion and the aggregation tendency. At low density, the 
time for a freely gliding rod to find another to form a cluster is much longer than the 

Figure 3.10: The stationary average cluster weight w  as a function of (a) the 
environmental noise σ2 with ρrLr

2=0.7744 and (b) the rod density ρrLr
2 with σ2=26.0=64. 

The black squares (■) represent systems start with disordered state, while the red 
bullets (●) represent systems start with the initial state of a giant cluster.

(a) (b)
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average time of two rod cooperation before the environmental noise separates them. 
Thus, the exponent βdens decreases with increasing σ2 and decreasing ρr.  

Since βdens is related to the degree of aggregation, we also plot it as a function of 
average cluster size n  (Fig. 3.13). Both βdens and n  are quantities reflecting the 
aggregation degree of the system. Thus βdens increases with n . The stronger the 
system aggregates, the larger is βdens. 

The density fluctuations obey a Poisson distribution for a thermal equilibrium 
system with βdens=1/2. In a swarming system, there are giant density fluctuations for 
which βdens is greater than 1/2 and sometimes approaches 1. The giant number 
fluctuations are a signature of an aggregating system [44].  

Figure 3.11: The mean square root of rod number variance ΔN as a function of the 
mean number of rods λ in a volume of size V. The slopes of the red and blue dashed 
lines are 0.91 and 0.50, respectively. Two sequences of data correspond to systems with 
the same rod density ρrLr

2=0.7744 and the same simulation box size Lx×Ly=566×566, 
but different noise level as indicated. Symbols indicate systems of PDF2 (□) and PDF1 
(○). 

Figure 3.12: The exponent βdens of ΔN(λ) for small rod numbers λ as a function of (a) 
environmental noise amplitude σ2 with ρrLr

2=0.7744 and (b) the average rod density 
ρrLr

2
 with σ2=26.0=64. The corresponding PDF type is marked on the diagram.  

(a) (b) 
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Usually, βdens=1/2 represents a disordered state with no aggregation. However, 
PDF1 and PDF2 systems still have a strong aggregation tendency, although the 
density fluctuations approach the same behavior as disordered system at large 
observation volume. For a system with stronger aggregation, we need a larger 
observation scale to see the normal density fluctuation region. The transition point 
between normal density fluctuation and giant density fluctuation can be used to 
characterize the degree of aggregation of the system. If we observe below this 
characteristic size-scale, the fluctuations are strong, the swarming behavior is 
dominant and the aggregation tendency is strong. Above that size-scale, the density 
fluctuations increase as the square root of observation box size as in thermal 
equilibrium systems, and the system behaves more like a disordered system.  

 
3.5 Cluster speed 

We calculate <v2>1/2 as a function of cluster size n, as shown in Fig. 3.14. The 
velocity v is determined from the displacement of the center of mass in a time interval 
Δt=100. As shown in Fig. 3.14, <v2>1/2 decreases with the cluster size. For the motile 
clusters, shown in the snapshots in Fig. 3.1 and Fig. 3.2, <v2>1/2 decreases quite 
slowly. For the giant clusters shown in Fig. 3.3, the rods block each other strongly, so 
that the velocity decreases much faster. Since the rods are arranged like an inner 
radius structure, the moving velocity and the rotating speed depends on the structure 
defects of the giant cluster. 

The motility of a cluster strongly depends on its configuration. The average 
velocity vector of all clusters vanishes, because the system does not have long-range 
order of velocity orientations. Although the rods are polarized locally, the orientation 
of the whole cluster changes with time. The forward speed v0=0.01 of a freely gliding 

Figure 3.13: The exponent βdens as a function of average cluster size n  of systems in 
the phase diagram. 
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rod is a system parameter. <v2>1/2 is greater than v0 for small n when the 
environmental noise is strong. As the cluster size increases, the noise has less 
influence on the cluster velocity. If the particles are passive, then the variance of 
velocity distribution of a cluster is proportional to the inverse of the square root of n. 
For a cluster consisting of n rSPP, the center-of-mass velocity is not only influenced 
by the environmental noise, but also by the cluster configuration. The rods can block 
each other because they are self-propelled by a constant force along their long axis. 
The slowing-down of motile clusters with mid size is due to a few rods which 
partially block the motion of the cluster, so that the cluster as a whole still keeps a 
reasonable moving speed. 
 
3.6 Cluster life time 

We define the life time of a cluster as the length of the time during which its 
members do not change. Fig. 3.15 and Fig. 3.16 show Tlife(n) as a function of cluster 
size n. The average life time of clusters, Tlife(n), is not only a function cluster size n, 
but also of the rod density ρr and the environmental noise σ2. The higher the cluster 
number density, the higher is the collision rate, thus the shorter the average cluster life 
time will be. The noise σ2 determines the rate of cluster break-up. Thus their life time 
is shorter with larger σ2.  
 Note that the life time of a cluster is analyzed with time interval Δt=100. Thus, 
cluster life times Tlife(n)<Δt cannot be resolved. The average life time decreases with 
the size of cluster. Usually, we have much more samples for small clusters than larger 
ones due to the power-law PDF. Also, larger clusters have more possible 
configurations. Thus, Tlife(n) for small n has much better statistics. The life time for 
size n=1 is always much higher than other cluster sizes.  

Figure 3.14: The center-of-mass velocity as a function of cluster size. The system with 
ρrLr

2=0.7744 and σ2=20=1 has PDF3 and giant clusters are formed (×). The system with 
ρrLr

2=2.1901 and σ2=26=64 has PDF2 and does not have giant clusters (+).  
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 The “cluster” of size n=1 is special because a single rod can not “break up” into 
smaller clusters. results in a much longer life time than cooperating clusters. For n≥2, 
Tlife(n) decreases smoothly with the cluster size. For n>30, the data become very noisy 
due to bad statistics. Also, the data for Tlife(n)∼100 is strongly influenced by our 
analyzing time step size Δt=100. The data for mid-size clusters (2<n<30) shows an 
interesting power-law dependence 

lifenT β~life  
The exponent βlife is plotted as a function of σ2 and ρr in Fig. 3.17. βlife stays near the 
value −0.2, except for a low density ρrLr

2=0.0968, essentially independent of ρr and 
σ2.  
 Fig. 3.18 shows Tlife(n) for n=1 to n=5 as a function of ρr and σ2. The life time 

Figure 3.15: The cluster life time Tlife(n) of different size in systems with same rod 
density ρrLr

2=0.7744 but different noise, as indicated. The dashed lines are power law 
functions with exponent −0.20.  

Figure 3.16: The cluster life time Tlife(n) of different size in systems with same noise 
σ2=26.0=64 but different rod density, as indicated. The dashed lines are power functions 
with exponent −0.20.  
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Tlife(n) for n≥2 is independent of ρr, in agreement with Fig. 3.16. In contrast, Tlife(1) 
decreases strongly with increasing density.  

The life time of single rods reflects their cluster forming rate by collision. A 
simple explanation of the relation between life time and rod density can be obtained 
as follows. Suppose that all clusters and single rods are distributed randomly in the 
space. According to Fig. 3.14, the forward velocities of the motile clusters do not 
change too much with the cluster size. Thus, we assume that all clusters have a same 
velocity v0=0.01. Suppose the average distance between clusters is large, so that the 
clusters move ballistically. Then, the frequency of collisions of a single rod is 
 ∑⋅

n
ccollision nnvf )('~ 0 ρ            [3.3] 

where ρ'c(n) is the number density of clusters of size n. We approximate the scattering 
cross section of a cluster of size n by n . Since the collision is between an 
“immobile” cluster of size n and a single rod, we neglect the rod width which is small 
comparing with the scattering section of the cluster. Rewriting Eq. 3.3, we obtain  

Figure 3.17: The exponent βlife of power-function fitting of the small size part of cluster 
life time function.  

Figure 3.18: The life time Tlife of clusters of size n=1~5 as functions of (a) the 
environmental noise σ2 with ρrLr

2=0.7744 and (b) the rod density ρrLr
2 with σ2=26.0=64. 

(a)  (b)  
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where ρc=∑ρ'c=ρr /<n> is the total cluster number density. The life time is proportional 
to the inverse of the collision rate, 
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where <n> is the average cluster size, C(⋅) is a function of quite a few parameters, 
such as environmental noise σ2, the rod length and width, etc, but not a function of rod 
density ρr. So, if we fit all the system parameters, C is just a constant.  

We plot Tlife(1) versus ><>< −− nn r
11 ρ  in Fig. 3.19a. The data fit a linear 

relation quite well. The fit lines have an off-set for small noise σ2. The off-set is due to 
the assumptions and approximations of the calculation. The slope of the fitting line as 
a function of the environmental noise σ2 is shown in Fig. 3.19b. It decreases for small 
σ2 and increases for large σ2.  
 
3.7 Finite-size effects 

In our simulations, we employ periodic boundary conditions. The finite box size 
implies a finite number of particles. The cluster size can never be larger than the total 
particle number [89]. Thus, all quantities related to cluster size, such as PDF, average 
cluster size and weight, are affected accordingly. Similarly, the density fluctuations at 
the scale of the simulation box are suppressed. The statistical results approach their 
value for infinitely large systems with increasing the simulation box size.  
 
3.7.1 Effects on PDFs 
 The effect of simulation box size on PDFs is shown in Fig. 3.20. The lack of the 
contribution of break-up of clusters larger than total particle number reduces the PDF 

Figure 3.19: (a) The linear relation between Tlife(1) and <n><n1/2>-1ρ. (b) The slope C 
of fit lines in (a) as a function of the environmental noise σ2.  

(a)  (b)  



 51

for large n. This shortage can affect the exponent of the power-law part. 
 Fig. 3.20a shows PDFs of a system of ρ=6.4×10-3, σ2=26.6=97 and different 
simulation box size. The simulation of the largest box (Lx=Ly=566) has a PDF of type 
PDF1. The PDFs of small box size (Lx=Ly=50, 142) still obey a power law decay for 
small clusters without obvious change of the exponent, and they deviate when n 
approaches the total particle number. When the simulation box is large (Lx=Ly=400, 
566), the PDFs almost overlap each other, and show the drop-off for large cluster 
sizes at the same place. Thus systems larger than Lx=Ly=400 are large enough for 
PDF1 to be unaffected by finite size effects.  
 Fig. 3.20b shows the finite-size effects on PDF2. Similar as for PDF1, the 
power-law part extends with increasing box size. The exponents of the power-law stay 
near β= −2. The shoulder moves to larger cluster size when the simulation box size is 
enlarged.  
 Fig. 3.20c shows the finite-size effects on PDF3. The limited total particle 
number has the most profound influence to PDF3 systems, comparing with the other 
types. When the system is too small, the total rods number is not sufficient to form a 
blocked structure. The PDF is of type 2 instead of type 3 in an insufficiently large 
system. Thus, the total number must be large enough for a blocked cluster. In most of 
our simulation, the total number of rods is more than 1000, which is enough for a 
blocked cluster.  

Figure 3.20: PDFs with different simulation box sizes of systems (a) ρrLr
2=0.7744 and 

σ2=26.6=97 with PDF1, (b) ρrLr
2=0.7744 and σ2=23.0=8 with PDF2 and (c) ρrLr

2=0.7744 
and σ2=20=1 with PDF3.  

(a) (b) 

(c) 



 52 

 By looking at the influence of box size to PDF, we found that, except for PDF3, 
the basic shape and type of PDF1 and PDF2 does not change. The transition point to 
the drop-off in PDF1, and the peak or shoulder of PDF2, shift their position with box 
size.  
 Fig. 3.21 shows the exponent β of PDF1 and PDF2 as a function of the side 
length Lx of the simulation box. It fluctuates strongly with small simulation boxes, and 
converges for large box sizes.  
 
3.7.2 Influence on average cluster size and weight 
 The dependence of stationary cluster size n  and w  on the side length Lx of the 
simulation box is shown in Fig. 3.22. For the systems of PDF1 and PDF2, n  
increases with small Lx and converge, while w  is divergent. For the system of PDF3, 
both n  and w  are divergent. 

Suppose the cluster-size distribution of an infinitely large system obeys a power 
law,  

β
β

β n
N

nΠ
1

1)( 1 −
+

= + ,  β<−1          [3.5] 

∑
=

=
N

n
nΠ

1
1)(  

N is the total number of rods in the system and N >>1. We assume that the system is 
not large enough to exhibit the strong decay for large cluster numbers. The sharp drop 
due to the limited box size is neglected. The average cluster size of the system is then 
easily calculated to be 

Figure 3.21: The exponent β of power-law part in PDF is plotted as a function of side 
length Lx of simulation box. The rod density is ρrLr

2=0.7744. The system of red square 
(■) sits in PDF2 region on the phase diagram, while the system of black square (■) in 
PDF1 region. 
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If N is sufficiently large, the average cluster number takes the simpler form, 
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When β>−2, the average cluster size strongly depends on the total number of rods in 
the system. But <n> is independent of N if β is smaller than −2. For very large β, <n> 
approaches 1, which means nearly all rods are gliding freely.  

From the size distribution, it is easy to obtain the weight distribution,  

1
2 1

2)( +
+ −
+

= β
β
β n

N
nΠw ,  β<−2 

Similarly, the average weight of clusters for sufficiently large N is  

(a) (b) 

(c) 

Figure 3.22: Stationary cluster size n  and weight w  with different simulation box 
sizes of systems (a) ρrLr

2=0.7744, σ2=26.6=97 and β= −2.98 with PDF1, (b) 
ρrLr

2=0.7744, σ2=23.0=8 and β= −2.04 with PDF2 and (c) ρrLr
2=0.7744 and σ2=20=1 

with PDF3.  
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Thus, in the PDF1 region, if the total rod number is large, but not large enough to 
exhibit the crossover to an exponential decay, the average cluster size <n> is 
convergent when β<−2, and the average cluster weight <w> is convergent when β<−3.   
 
3.7.3 Influence on density fluctuations 
 The giant density fluctuations at small observation scale are a typical signature of 
aggregation of rSPP systems. At large scale, the fluctuations are the same as in a 
thermal equilibrium state. Since the total particle number is a constant, the density 
fluctuations on the scale of simulation box size are zero. Thus the density fluctuations 
are suppressed at that size scale.  
 The density fluctuations ΔN(λ) of different box size are shown in Fig. 3.23. The 
system of ρrLr

2=0.7744 and σ2=26.6=97 is located in the PDF1 region in the phase 
diagram. The systems with large size (Lx=Ly≥282), which have PDFs exhibiting the 
correct transition point, also have ΔN(λ) functions overlapping each other and have 
the same transition point from the giant density fluctuation region to normal 
fluctuations. For small systems (Lx=Ly<282), the curves deviate before the transition 
point due to the constant rod number. Similarly, all ΔN(λ) in Fig. 3.23b deviate at 
different places. Thus, all systems of PDF2 have not yet reach a large enough size to 
show a correct ΔN(λ) function. 
 

Figure 3.23: The density deviation ΔN as a function of average particle number λ in the 
observed space. The data is for system with same parameters ρr and σ2 but different box 
size in systems of (a) ρrLr

2=0.7744 and σ2=26.6=97 with PDF1 and (b) ρrLr
2=0.7744 and 

σ2=23.0=8 with PDF2. These are the same systems as in Fig. 3.20. 

(a) (b) 
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3.8 Conclusions 
 We have simulated systems of rSPP which are propelled by a constant force along 
their long axis. Without any attractive potentials, the rSPP exhibit aggregation 
behavior. Started from a random initial state, the system reaches a stationary state 
when the rate of cluster forming is balanced by the rate of break-up.  
 We found three types of PDF by changing the environmental noise σ2 and rod 
density ρr, and get a state phase diagram by judging the type of PDF. At high σ2 and 
low ρr, the system has PDF1, which shows a power-law distribution for small cluster 
sizes. The probability to find clusters larger than a critical size drops fast. At low σ2 
and high ρr, giant clusters consisting of the blocked rods are formed. The system has 
PDF3, which has a peak at the cluster size near the total particle number and a few 
floating rods and small clusters. Systems in an intermediate region of ρr and σ2 have 
PDF2 which is a transit form between PDF1 and PDF3. The state of PDF2 is 
comparable to the supercooled state of a liquid system below the freezing point. 
Clusters in PDF1 and PDF2 systems retain high motility, whereas the giant clusters in 
PDF3 system is nearly immobile due to the blocked configuration.  
 Quantities directly related to PDF, such as average cluster size and weight, 
change with the system parameter ρr and σ2. Especially, the average cluster size shows 
a power-law relation with σ2

 before entering the PDF3 state. Giant density fluctuation, 
which is an important character of SPP systems, is also found in our rSPP simulation.  
 Inspired by the two regions of PDF1 (power law decay for small size and a faster 
decay for large size) and two regions of density fluctuations of PDF1 systems (giant 
density fluctuation and normal density fluctuation), we make a hypothesis that there is 
a characteristic observation size for rSPP system. Below that size, the swarming 
behavior is dominant and the aggregation tendency is strong, while above that size the 
system behaves more like a disordered system.  
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IV. Sinusoidal beating flagella in 2-dimensions 

 Flagella with their sinusoidal traveling wave of deform action, are the simplest 
systems in which the self-propulsion mechanism is taken into account explicitly. We 
consider here flagella of length 25a are embedded in a two-dimensional (2D) 
multi-particle collision dynamic (MPC) fluid. The viscosity of MPC fluid is ν=3.02. 
The flagella of length Lf=25a have an average spontaneous curvature c0=0 and the 
beat frequency f0=1/120, and swim forwards with the velocity usingle=0.020±0.001. 
The other parameters of the system are given in Chapter II. Thus, we estimate a 
Reynolds number Re=2Atailusingle/ν ≈ 0.04 for our flagella model, where Atail=3.2a is 
the beating amplitude. 

For the simulation with the anisotropic friction (AF), we choose the friction 
coefficient γ|| = 5 and γ⊥ = 8.4. Thus the flagellum model moves forwards with a 
velocity of usingle=0.020 when f0=1/120. 
 

4.1 Single flagellum simulation in MPC fluid 
We put a single flagellum in the simulation box of side length Lx=Ly=100a, 

which is four times the flagellar length and about 30 times the beating amplitude. 
Thus the simulation box is relatively large compared to the size of our flagellum. 

Fig. 4.1 shows the square of the flagellum displacement, <r2>, as a function of 
the observation time interval Δt. On the diagram, there are two distinct regions. At the 
short time intervals, the flagellum mainly shows a linear motion with constant 
velocity, so that <r2> is approximately proportional to Δt2. When Δt is large, the 
flagellum behaves like a Brownian particle with random steps, <r2>~Δt. The 

Figure 4.1: The square of displacement of flagella, <r2>, as a function of the time 
interval Δt. The power-law fit lines (red) have the exponent 1.9 and 1, respectively. The 
blue dashed line indicates the intersection of the fit lines located at Δtf0≈360. 
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intersection of the fit lines for different parts of the curve is located at Δtf0≈360. The 
persistence length of the oriented motion is about 25 flagellar lengths. Thus the effect 
of the thermal fluctuations on the self-propelled motion is negligible in our simulation 
for Δtf0<360. Thermal fluctuations are important only for very long time intervals.  
 
4.2 Two flagella cooperation through hydrodynamic interaction (HI) 

Two flagella are put into a MPC fluid with straight and parallel configurations 
with a distance of 1.5a in between, as shown in Fig. 4.2a. They start to beat with the 
same initial phases (φ1=φ2=0), but different frequencies (f1=1/120×0.999 and f2=1/120 
with only 0.1% difference). Due to the synchronization and attraction effects, they 
swim together for a long time, keep in touch and gradually change the relative 
positions according to the increasing phase difference Δφ. The flagella are always 
synchronized when the phase difference is small, as shown in Fig. 4.2b-d. In Fig. 4.2e, 
the phase difference is too large to maintain the cooperation. So the flagella separate 
and go in different directions. 

We track the distance (d) between the front particles of two flagella, and plot it as 
a function of the simulation time, as shown in Fig. 4.3. The phase difference Δφ is 
proportional to time,  

( )tff 122 −=Δ πϕ . 

Therefore, the x-axis in Fig. 4.3 is also Δφ. A remarkable linear relation between the 
distance d and the simulation time t, or between d and phase difference Δφ, is shown, 
which indicates the cooperating flagella pair with their shape locked in phase. 
Although there are some fluctuations in the data, the linear part extends until tf2≈416 
and Δφ≈0.83π. Then the distance increases suddenly because the cooperation between 
the flagella is disrupted, and two flagella are swimming separately. Due to the 
periodic boundary condition, these flagella can meet again later and make a new 
cooperating pair. The linear part with negative slope on the right side of the diagram 
corresponds to the time that the cooperation is rebuilt. 

(a) (b) (c) (d) (e) 
Figure 4.2: The snapshots of two flagella simulation with 0.1% difference of beat 
frequency. The frequency of the flagella are f1=1/120×0.999 (the swimming direction is 
indicated by black arrows) and f2=1/120 (the swimming direction is indicated by red 
arrows). (a) tf2=0, Δφ=0π, (b) tf2=1, Δφ=0.002π; (c) tf2=200, Δφ=0.4π; (d) tf2=400, 
Δφ=0.8π; (e) tf2=460, Δφ=0.92π. 
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Fig. 4.4 shows the energy dissipation or energy consumption P per beat of the 
two-flagellum system. Each data point is averaged over 10 beats, in order to smooth 
the curve. However, the data still fluctuates a lot. P increases with increasing Δφ for 
the cooperating flagella pair. Near tf2≈416 or Δφ≈0.83π, it suddenly jumps to a plateau 
at the value double of single flagellum energy consumption Psingle=(2.3±0.2)×103, 
which refers to the separation of the cooperating pair. And there is a sudden drop 
afterwards due to the reformation of the flagella pair. By the cooperation, about 10% 
of energy is saved for a flagella pair in a MPC fluid. 

In 2D, a string of finite length corresponds to an infinitely large sheet in 3D. Two 
undulating strings in a low Reynolds number fluid can adjust the irrelative positions 
to synchronize the phase of the beat through HI. The phase-locking arises from 

Figure 4.4: The energy consumption P per beat of two cooperating flagella system as a 
function of time t and phase difference Δφ.  

Figure 4.3: The distance d between the front particles of two cooperating flagella as a 
function of time t and phase difference Δφ. The red line is the linear fitting of the data 
when two flagella are cooperating. 
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hydrodynamics forces along [96]. Taylor [16] predicted this synchronization effect for 
sinusoidal undulating strings. In Taylor’s calculation, the strings are infinite and their 
beating motion is prescribed by shape functions. The force density encountered on 
two strings through hydrodynamics is calculated as a function of the phase difference 
between the strings. Taylor found that, the force dipole on the strings always push 
them to the direction of phase locking. Also, the energy dissipated on the strings is 
less when the phase difference is smaller. The hydrodynamic synchronization effects 
between sinusoidal beating flagella, predicted by Taylor [16], was validated by several 
experimental [32][63] and simulation studies [15][31][63]. Another result of HI 
between two undulating strings is an effective attraction. The synchronized strings 
will gradually get closer and stay together for a long time if they have no beat 
frequency difference [63].  

In our simulation, different from Taylor’s calculation, we use a flagellum model 
of finite length instead of an infinite one, with only one full sine wave. Furthermore, 
the motion is generated by a defined spontaneous curvature instead of a prescribed 
shape. Thus, the shape of the flagellum can respond to the viscous environment and 
noises. The short flagella with only one complete sine wave - different from the 
infinitely long strings considered by Taylor - show strong cooperative behavior in 2D. 
The synchronization and attraction effects come purely from HI between undulating 
motions of flagella when they are separate. If two flagella are touching, the strong 
volume exclusion (VE) effect in 2D also strengthens the synchronization effect. 
 

4.3 Swarm behavior of multi-flagellum systems 
 There are several factors influencing the swarm behavior of a multi-flagellum 
system, such as HI, VE, the sinusoidal beat and the distribution of beat frequencies. 

HI is very important for the cooperation of flagella, as shown in the 
two-flagellum simulations. The attraction and synchronization effects of sinusoidal 
beating flagella pull the nearby flagella closer and attune the relative positions to lock 
in phase. At the same time, a flagellum feels HI from all other flagella distributed in 
space, which it is not cooperating with. Thus, the flagellum is exposed to a strong 
environmental noise generated by others. This noise reduces the flagellar cooperation. 
Thus it is hard to say whether the hydrodynamic interaction favor or disfavor the 
cooperation and clustering behavior in a multi-flagellum system.  

On the other hand, in 2D, VE plays a very important role for rSPP, as we 
discussed in Chapter III. VE has a strong effect on alignment of rSPP in a viscous 
environment such as a low-Reynolds-number fluid. This alignment is crucial to the 
emergence of the swarm behavior [24][25].  

In systems of sinusoidal undulating flagella, the effect of VE on alignment should 
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be similar as for rSPP. When two flagella swimming in different direction meet, they 
are aligned parallel or anti-parallel, instead of bouncing back as in elastic collisions. 
Although VE is crucial for swarming system of rSPP, the influence of the sinusoidal 
beat has to be investigated. Also, the distribution of frequencies as an internal 
diversity of rSPP properties, affects the swarm behavior of flagella. In the 
multi-flagellum simulations, we hope to understand the influence of those factors, 
especially the contribution of hydrodynamic interactions. 

In our simulation, N flagella are put into the simulation box with random initial 
positions and orientations, without any overlap. If not explicitly mentioned, the side 
length of a simulation box is Lx=Ly=200a, which is eight times of the contour length 
of a flagellum. The number density of flagella is ρf=N/(Lx×Ly). The configuration of 
flagella is straight before they start beating. At t=0, each flagellum starts to swim with 
a random initial phase and a frequency selected from a Gaussian distribution. The 
Gaussian distribution of the frequencies has an average f0=1/120 and a rescaled 
variance σf = <(f-f0)2>1/2/f0. The frequency of a flagellum remains constant during the 
simulation. Each system runs for the simulation time t>4×105, corresponding to more 
than 3000 beats. 

In a multi-flagellum system, large clusters are formed by the combination of 
small ones. At the same time large clusters break up into small ones due to the 
environmental noise or the diversity of the flagella frequencies. As discussed in 
Section 3.1 above for rod-like self-propelled particles, the system reaches a 
dynamically stationary state when the forming rate balances the break-up rate.  
 
4.3.1 Configuration of clusters 

A multi-flagellum system in 2D has VE as alignment mechanism and 
hydrodynamic interactions as attraction between the motile agents. It shows the 
swarm behaviors as SPP systems, with alignment in the moving direction. In both 
MPC and AF simulations, we see aggregation and clustering (Fig. 4.5) for not too 
large σf values. In addition, flagella strongly fluctuate due to environmental noise in a 
MPC fluid. Thermal fluctuations are not important for flagella motion although it is 
naturally included in MPC method. The environmental noise for a flagellum mainly 
arises from HI with all other flagella in the system. Flagella with AF have smooth 
trajectories due to the absence of noise. 

The difference in the configurations of large clusters in MPC fluid and with AF is 
remarkable. In MPC simulations, a large cluster is usually strongly extended in its 
moving direction. The flagella inside the cluster are well synchronized, as shown in 
Fig. 4.5a. This structure is reminiscent of the “sperm-train” structure observed in the 
rodent sperm experiments. As explained in Section 1.2, rodent sperm which are 
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initially in a single suspension, aggregate and form huge clusters with strongly 
elongated shape [23]. In AF simulations (shown in Fig. 4.5b), flagella in a large 
cluster are synchronized only due to VE, but not as well polarized as in MPC fluids. 
The configurations of large clusters in this case are more similar to the motile clusters 
of rSPP (Fig. 3.2), and extend slightly in the direction of motion.  

In order to compare the cluster structure, we define a correlation function of 

Figure 4.5: The snapshots of the multi-flagellum system (a) in a MPC fluid and (b) 
with AF. The parameters are ρfLf

2=1.5625, σf=0.1%. The black box denotes the 
boundary of the simulation box. The periodic boundary condition is employed.  

(a)  (b) 

Figure 4.6: The orientational correlation function of flagella as a function of the 
relative position of two flagella in polar coordinates (a) in MPC fluid and (b) with AF 
with ρfLf

2=1.5625 and σf=0.1%; (c) in MPC fluid and (d) with AF with ρfLf
2=1.5625 

and σf=3%. 

r/Lf 
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flagella orientation, the same as that for rods in Section 3.2,  

>−⋅⋅=< )(ˆˆ)( ijjiG rruur δ . 

The unit vector ûi pointing from the end to the front of the i-th flagellum represent the 
flagellar orientation. The vector rij points from center-of-mass of flagellum i to 
flagellum j in a polar coordinate system where ûi is the direction of φ=0° (Fig. 3.6). 
Thus G(r) is the orientational correlation of another flagellum at the relative position 
r.  

Fig. 4.6 shows the correlation function G for different systems. The flagella in the 
same cluster are polarized (Fig. 4.5), whereas the orientation correlation between 
different clusters is weak. Thus, G(r) vanishes for large r. G(0)=1 because a flagellum 
is trivially correlated with itself. Near r=0, G(r) is positive since the neighbor flagella 
have to attune their orientation due to VE. The correlated region is larger for small σf 
(Fig. 4.6ab) than for large σf (Fig. 4.6cd) in both MPC and AF simulations, which 
shows the stronger aggregation in systems with smaller σf. When the correlated region 
extends to r>100, the correlation function is strongly affected by the periodic 
boundary conditions in our simulations. 

The difference in the correlation functions demonstrates the large difference of 
the cluster configurations in MPC and AF simulations. The correlations with AF, 
similar as Fig. 3.7a, show a larger range in the parallel directions than in the 
perpendicular directions due to the rod-like structure of the flagellum. Compared with 
AF simulations, G in MPC simulations extends more in the parallel directions (φ=0° 
and φ=180°) and shrinks in the perpendicular directions (φ=90° and φ=270°). In 
MPC fluid, a clear reduction of G is found in the perpendicular direction even for 
large σf. The reduction is due to the hydrodynamic attraction. The synchronization 

Figure 4.7: The orientational correlation function G in the parallel and perpendicular 
directions with ρfLf

2=1.5625 and σf=0.1%. G in all directions of same systems are 
shown in Fig. 4.6ab. 
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elongates the clusters, thus G extends strongly in the parallel direction. 
G in parallel and perpendicular directions are shown in Fig. 4.7. With same σf and 

ρf, G in the parallel directions decreases slower in MPC fluid than with AF, while in 
the perpendicular directions G in MPC fluid decreases faster. This indicates a larger 
aspect ratio of clusters in MPC fluid than in AF simulations.  
 
4.3.2 Probability density function (PDF) of cluster size 

We define a cluster as follows. If the angle between unit vectors of flagellar 
orientations ûi and ûj is smaller than π/6, and at the same time the nearest distance 
between two flagella is smaller than 4a, which is on the scale of the amplitude of the 
flagellar beat, we consider these two flagella neighbor to each other and in the same 
cluster. A cluster is defined as a set of flagella that are connected or neighbor either 
directly or through other agent at a given moment in time. Its size is the number of 
flagella it contains.  

Figures 4.8 and 4.9 show examples of different types of PDF in MPC and AF 
simulations. Each PDF has a power-law-decay part for small n. Such a power-law 
distribution agrees with Huepe et al's results [55][56] of the swarm behavior 
simulation of point SPP and with our results for rSPP presented in Chapter III. In the 
rSPP simulations, PDFs are sorted into three types. PDF1 (Fig. 4.8) has a power-law 
part for small n and approaches to exponential or Poisson distribution for large cluster 
size. In PDF2 (Fig. 4.9), there is a peak at high n corresponding to the large, motile 
clusters.  

The exponent β of the power-law part of PDF is a function of a set of system 
parameters such as the flagellum density, the flagellar length and the frequency 
distribution, etc. We only investigate the influence of the flagellum density ρf and the 

Figure 4.8: The first type of probability density functions (PDF1) of cluster size n for 
MPC (top) and AF (bottom) simulations. The flagella number density is ρfLf

2=1.5625 
and σf=2%.  
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variance of the frequency distribution σf here. 
 Fig. 4.10 shows β as a function of the flagellum density in MPC fluid. β increases 
with increasing density ρf, which corresponds to a higher probability to find larger 
clusters at higher density. Fig. 4.11 shows β as a function of the frequency variance σf. 
Although the distribution of beating frequencies is an internal property of the 
swimmers, the influence of σf on β is similar to the external noise of self-propelled 
rods (as discussed in Section 3.1). β is nearly constant for σf <3%, then decreases 
smoothly with an increasing σf. The relation of β and ρf is very similar as for rods 
(Section 3.1). 

In our flagellum simulations, we found PDF1 and PDF2 in both MPC and AF 
simulations, but no PDF3 with giant clusters as rSPP system. The number of flagella 

Figure 4.9: The second type of probability density functions (PDFs) of cluster size n 
for MPC (top) and AF (bottom) simulations. The flagella number density is 
ρfLf

2=1.5625 and σf=0.1%.  

Figure 4.10: The exponent β of cluster size distribution function is plot as a function of 
flagella density in the system in MPC fluid. The simulation box size is 200a×200a, and 
the frequency deviation σf = 3%.  
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is not large enough in our simulation to form the blocked structure of a giant cluster. 
The similarity of PDFs of flagella clusters with those of rSPP indicates that the 
flagellar beat, and HI as environmental noise and synchronization / attraction effects 
do not destroy the fundamental swarm behavior. The crucial elements of swarm 
behavior are the self-propulsion and the mechanism of alignment, mainly induced by 
VE of the rod-like configuration. 

PDFs are influenced by system parameters such as the flagellar length, density, 
the frequency distribution, etc. Decreasing the flagellar length and density, or 
increasing the width of the frequency distribution, decreases the probability to form a 
large cluster. At the same time, PDFs transit from type 2 to type 1, and then decrease 
the range of power-law decay until the flagella are randomly distributed. 

The difference between PDFs of MPC and AF simulation is seen for small n. The 
power-law decay starts from n=1 in AF simulation, while it does not in MPC 
simulation, especially with small σf (see Fig. 4.9). The probability to find clusters of 
size n=1 and 2 in a MPC fluid is lower than expected from the power law for larger n. 
A possible explanation of this behavior is as follows. The large clusters in MPC 
simulation are more elongated (Fig. 4.5a) and can sometimes even extend to a 
distance as large as the side length of the simulation box. So the scattering cross 
section of these clusters is large. They create a strong flow field, and easily collect 
nearby small clusters. However, the extended configuration is also more likely to 
break up if there is a frequency distribution, and the larger clusters have lower 
swimming velocities in MPC fluid (as discussed in Section 4.3.4). Before an extended 
cluster can absorb another large but slowly moving cluster, it may already have 
broken up. Thus the large cluster mainly collects nearby small clusters.  

Figure 4.11: The exponent β of cluster size distribution function is plot as a function of 
the variance of frequency distribution. The simulation box size is 200a×200a, and the 
flagellum density ρfLf

2=1.5625. Symbols represent the results in MPC fluid (■) and 
with AF (●).  
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4.3.3 Stationary average cluster size n  and weight w  

As explained in Section 3.3 for rSPP, the stationary average cluster size and the 
stationary average cluster weight are defined as,  

t
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where < >t is the average over time t. Due to the random initial conditions, the 
average cluster size <n> and weight <w> are about 1 at the beginning, and increase 
when the flagella start to beat and aggregate. Due to the finite simulation-box-size, 
<n> and <w> fluctuates with time when the stationary state is reached. The average 
value of <n> and <w>, denoted by n  and w  respectively, approaches <n> and <w> 
in the infinite system if we increase the simulation box size. 

n  and w  change with σf and ρf, as shown in Fig. 4.12 and Fig. 4.13. 
Decreasing σf, the break-up rate of clusters is decreased; hence the chance to find the 
large clusters, and the average cluster size, increase. At large σf, n  and w  approach 
1, corresponding to a disordered state of the randomly distributed flagella. However, 
in both cases, the remarkable power-law decay emphasizes the fundamental property 
of the swarm behavior of rSPPs (Section 3.3). The power law of n  implies a 
divergence for σf→0, which is valid for the AF simulation without any system noise. 
In the low density limit, when ρf approaches 0, n  and w  approaches 1. With 
increasing ρf, n  and w  also increase as a power law function of ρf, as indicated by 
the fit lines. The absolute values of n  and w  in MPC and AF simulations are not 
easily comparable, e.g. due to the different cluster velocity profiles and the 

Figure 4.12: The stationary average cluster size n  and the stationary average cluster 
weight w  as a function of the variance of frequency distribution σf with ρfLf

2=1.5625. 
Symbols represent the result in MPC fluid (■) and with AF (●). The error bars 
represent the standard deviation of the fluctuations with time. The fit lines indicate the 
power-law decay. 

(a)  (b)  
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environmental noise.  
The power-law decay of n  with σf in MPC simulation is different from that in 

AF simulation. The exponent of the power law is a single value in AF simulations, 
while there seem to be two regimes in MPC simulation. The transition occurs at 
σf=3%. It can be understood in this way. As discussed in Section 4.3.2, due to the 
extended configuration of the large clusters, the PDF for MPC simulation has a 
deviation from the power-law decay at small cluster size. HI of flagella elongates the 
cluster configuration and decreases the probability density of small clusters, thus 
increases <n>. With increasing σf, the break-up rate of clusters increases, and the 
probability to find large clusters decreases. The effect of elongation fades quickly 
with the cluster size, thus the PDF deviation from a power law at small n gradually 

Figure 4.13: The stationary average cluster size n  and the stationary average cluster 
weight w  as functions of flagella density ρfLf

2. The variance of the frequency 
distribution is σf=3%.  

Figure 4.14: Cluster size distribution П(n) for various variances σf of the frequency 
distribution. The lines fit the power-law part of each PDF of systems with same 
flagellum density ρfLf

2=1.5625, as indicated in the inset.  
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disappears with increasing σf, as shown in Fig. 4.14. On the other hand, if the phase 
difference between flagella is large, the hydrodynamic synchronization effect will 
draw them apart. Even though a cluster may form by chance, it will break down soon 
after due to the large difference in beat frequencies of its members. The increasing 
number of clusters in the system causes an increasing environmental noise which also 
increases the break-up rate. This effect is strong when σf is really large. It makes the 
system with MPC approach the disordered state faster than AF simulations, and it 
leads to a lower n  near 1.  

Thus, in MPC simulation with different σf, n  is determined by the competing 
mechanisms. For small σf, HI elongates cluster configurations and decreases the 
number of small clusters, while for large σf it plays the role of a system noise and an 
internal mechanism to break up the clusters. In Fig. 4.12, σf=3% is the transition point 
of the competition of these two mechanisms. In AF simulations, there is neither 
hydrodynamics nor other system noise. So we see only one power-law decay of n .  
 
4.3.4 Cluster velocity 

We start to analyze the velocity of a cluster of size n when it is formed, and stop 
data collection when the cluster breaks down or collides and forms a cluster of 
different size or with different members. Fig. 4.15 shows the displacement Δs of the 
center-of-mass of the clusters per beat. Due to the power-law decay of PDF, the data 
for the small clusters has more samples with a lot of different configurations than the 
large clusters. Although we choose the parameters to make the same forward 
velocities of a single flagellum in MPC fluid and with AF, the cluster velocities are 
very different. In MPC fluid, despite the weak effect of environmental noise on large 
clusters, Δs decreases with cluster size n. With AF, the cluster velocity is nearly a 
constant.  

The scatters of the data in MPC simulations for large cluster sizes indicate not 
only the small number of samples, but also a wide distribution of velocities. The 
velocity of large cluster depends on several factors such as the cluster configuration, 
the frequency distribution and the noise. Although the scatter is large, the reduction of 
Δs for large n is still clear. 

The decrease of Δs with cluster size n in a MPC fluid has several reasons. First, 
Δs(1) in a multi-flagellum simulation is higher than in a single-flagellum simulation, 
because HI with other clusters generates an environmental noise which strongly 
affects the small clusters. The influence of the environmental noise decreases with n 
due to the increasing size. Second, a large “train” cluster in MPC fluid can be 
considered as a huge “flagellum”. The flagella are synchronized and tightly packed 
due to the hydrodynamic synchronization and attraction effects. Such a huge 
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“flagellum” has same frequency and wave length, but the propelling force is mainly 
contributed by the flagella at the cluster boundary. Thus the smaller propelling force 
and the larger body produce a lower velocity than for a single flagellum.  

Δs with AF is much smoother than that in a MPC fluid. For large n, although the 
number of samples in our simulation is on the same scale of that in MPC fluid, Δs 
stays near the plateau of single flagellum value with only a little scatter. In AF 
simulations, the propelling forces do not change when the flagella form clusters, and 
the hydrodynamic interaction between flagella is absent. Also, there is no 
environmental noise. The velocity difference of flagella is averaged out for large 
clusters. Therefore, Δs approaches the value of a single flagellum of the average 
frequency. Our rSPP simulations in Section 3.5 have shown that the cluster velocity 
decreases for large clusters due to a blocking of the motion of individual particles. 
However, in our flagellum simulations, the cluster size is not large enough yet to show 
this effect.  

Our results of flagella motion in MPC fluid are consistent with mouse-sperm 
cluster experiments [22]. The cooperative behavior of mouse sperm does not always 
increase the swimming speed. In most of the cases, a single sperm has higher speed in 
the fluid medium then cooperating sperm pairs or clusters.  
 
4.3.5 Cluster life time 
 We define the life time of a cluster in the same way as we did for the rod 
simulations, see Section 3.6.  
 Fig. 4.16 shows the average cluster life time Tlife as a function of cluster size n. 
Note that the system size is not as large as for the rod simulations. The total number 

Figure 4.15: The average center-of-mass displacement Δs of the clusters per beat as a 
function of cluster size n in MPC fluid (□) and with AF (○). The variance of 
frequency distribution σf =3%. The dash line indicates the displacement per beat of a 
single flagellum of the average beat frequency in the single-flagellum simulation.  



 70 

of flagella is only from 50 to 250. Thus, for most simulations, we do not have as good 
statistics for large clusters. The average life time decreases with the cluster size. In the 
rod simulations, the cluster of size 1 always has a longer life time due to the lack of 
break-up. However, in MPC fluid, due to the hydrodynamic interaction, Tlife(1) does 
not always have the largest value (e.g. σf =0.5% in Fig. 4.16a). We set aside Tlife(1) 
and the scattered data for large n, and only consider the range where the data are 
consistent with a power-law relation (as in the case for rSPP). Fig. 4.17 shows the 
exponent βlife of this tentative power law of Tlife(n). The values of βlife are scattered 
around −0.55 and does not strongly depend on ρf and σf, as in the rod simulations.  

Tlife is a function not only of cluster size n, but also of the flagella density ρf and 
the variance of frequency distribution σf. The greater σf is, the shorter is the time 
needed to generate a large enough phase difference to break down the cluster. 
 Fig. 4.18 shows Tlife(n) for 1≤n≤5 as a function of the flagellum density ρf. The 

Figure 4.16: The cluster life time Tlifef0 of different size n in MPC simulations. (a) The 
systems with same flagella density ρfLf

2=1.5625. (b) The systems with the same 
variance of frequency distribution σf=3%. The blue dash lines in (a) and (b) are 
power-law functions with the exponent of −0.4. 

(a) (b) 

Figure 4.17: The exponent βlife of the cluster life time function Tlife(n) for small cluster 
sizez n. βlife is nearly independent of (a) the variance of frequency distribution σf, and 
(b) the flagellum density ρfLf

2. The dash lines indicate the average value of βlife.  

(a) 

(b) 



 71

life time Tlife(n) for 2≤n≤5 decreases slightly with ρf. As an exception, the life time of 
the single flagellum changes a lot with density (the same as Fig. 3.18b for rSPP).  

Fig. 4.19 shows Tlife(n) for 1≤n≤5 as a function of the variance σf of the frequency 
distribution. Data for both MPC simulations and AF simulations are shown. In rod 
simulations, the life time of clusters of size n decreases with the environmental noise 
(see Fig. 3.18a). In our flagellum simulations, σf can be regarded as the internal 
“noise” of the flagella. The decay of Tlife in AF simulation (Fig. 4.19b) is purely due 
to this noise. In a cluster of n flagella with different frequencies, the phase difference 
between neighbor flagella increases with time. Due to the synchronization effect and 
volume exclusion, the cluster breaks at the place where the phase difference is too 
large to keep the flagellar cooperation. Similar as the self-propelled-rod systems, Tlife 
for different n decreases roughly as a power-law of σf in AF simulations.  

The most profound difference between Fig. 4.19a and 4.19b is the curves for 
Tlife(1). Tlife(1) decreases with the same exponent as other curves in AF simulation, 
while in MPC simulations it clearly decreases much slower for σf <3%. Tlife(1) is 

Figure 4.18: Tlifef0 for 1≤n≤5 as functions of the flagellum density ρfLf
2 in MPC 

simulations. 

Figure 4.19: Tlifef0 for 1≤n≤5 as functions of the variance of frequency σf (a) in MPC 
fluid and (b) with AF. The flagella density is ρfLf

2=1.5625.

(a) (b) 
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inverse to the collision rate of a single flagellum with other cluster and flagella. The 
slower decrease of Tlife(1) can be the result of two aspects, a decreasing collision cross 
section or a weaker attraction between swimmers. In MPC simulations, the large 
clusters have extended structures as discussed in Section 4.3.1. Their collision cross 
section is much larger than in AF simulations. With increasing σf, the collision cross 
section decreases with decreasing average cluster size. In addition, a large cluster with 
the extended structure creates a strong flow field to attract the nearby small clusters. A 
single flagellum can be easily caught by the flow field of a very large cluster. Due to 
these two reasons, Tlife(1) decreases slower for small σf in MPC simulations. For large 
σf, HI acts more like an environmental noise and the synchronization effect break up 
the clusters quickly. The extended large clusters have too low probability to form. 
Thus the decrease of Tlife(1) becomes faster. 
 
4.3.6 Finite-size effects 
 As mentioned in Section 3.7 for the rod simulations, the finite system size affects 
the results. Thus, we investigate now the dependence on the simulation box size with 
fixed flagella density and variance of the frequency distribution. We choose two 
densities (ρfLf

2=1 and ρfLf
2=2) and two frequency deviations (σf =3% and σf =10%). 

The total flagella number is proportional to the square of the side length. Note that, 
because of the small flagella number, the frequency distributions for the small systems 
deviate from the Gaussian distribution. For small systems with less than 20 flagella, 
the deviations from our anticipated frequency distribution are larger than 5%. 

Fig. 4.20 and Fig. 4.21 show the PDF of cluster size with different size of the 
simulation boxes. As explained in Section 3.1, PDF1 has a power-law part for small n 
and an exponential part for large n. When the simulation box is not large enough, PDF 
only shows part of the power law region, and decreases near the total number of the 

Figure 4.20: The distribution function of system with ρfLf
2=2 and same σf = 3% and 

different simulation box sizes, as indicated. 
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agents. The exponential part only exists when the system is large enough. In Fig. 4.20 
with smaller σf, although all systems have PDF1, none of the simulation boxes is large 
enough. The power-law region continues to increase with increasing system size. In 
Fig. 4.21 with larger σf for the side length larger than 150a, the system is large enough 
that the power-law region is fully developed and exponential region emerges.  

The value of the exponent β scatters a lot when we change the system size, as 
shown in Fig. 4.22. The strong deviation from a Gaussian distribution induces large 
error to the exponent β. As known from rod simulations, β of PDF1 approaches to a 
finite and non-zero value with increasing the system size. 

The stationary average cluster size n  and the stationary average cluster weight 
w  are also influenced by the system box size as shown in Fig. 4.23. In most of 

Figure 4.21: The distribution function of system with ρf=2 and same σf = 10% and 
different simulation box sizes, as indicated. 

Figure 4.22: The exponent β of PDF as a function of the side length Lx of the 
simulation box. The open symbols denote the systems with a total flagellum number 
less than 20.  
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observed systems, n  and w  are not converged yet. Only for the system of ρfLf
2=1 

and σf=10%, n  has reached the limiting bulk value. w  depends more on the 
density of large clusters, and has not yet convergent for all system. The corresponding 
dependence of n  and w  of rSPP on system size is discussed in Section 3.7.2.  

The analysis of the finite-size effects shows that the results have to be interpreted 
carefully. Most of the simulation systems have a flagellum density ρfLf

2=1.5625 and 
the variance of frequency distribution σf ranging from 0.1% to 30%. Some systems 
(usually those with small σf) are not large enough to avoid finite-size effects. Systems 
of PDF1 with small σf or large ρf have not shown the full power-law region yet. 
Systems of PDF2 have even stronger dependence on the simulation box size as 
discussed in Section 3.7 for rSPP. Thus, statistical quantities, such as n  and w , 
deviate from their values for infinitely large systems.  

However, according to our analysis of rSPP systems, some statistical properties 
are still reliable. The type of PDF does not change. A system with PDF2 will not have 
PDF1 by decreasing the system size. Also, in order to distinguish the contribution of 
HI on the swarm behavior by comparing MPC and AF simulations, the influence of 
simulation box size is not important if the same box size is used for all simulations.  
 
4.4 Curved-flagellum system 

A curved flagellum means that the average spontaneous curvature along the 
whole configuration is not zero. In our coarse-grained model, a curved flagellum is 
modeled by a non-zero value for c0 in Eq. 2.5. In order to mimic the tail shape of 
sea-urchin sperm, we choose the flagellum length to be 50a, and wave number 
q=4π/50a. Thus there are two complete sine waves on the flagellum. The average 
spontaneous curvature is chosen to be c0=0.04/a. The diameter of the trajectory of a 
single flagellum is then 45a with AF, approximately the length of the flagellum.  

A couple of flagella with straight initial configuration are put into the simulation 

Figure 4.23: The stationary average cluster size n  and the stationary average cluster 
weight w  as functions of the side length Lx of the simulation box. The empty 
symbols denote the systems with a total flagellum number less than 20.  



 75

box with random initial positions and orientations. Once they start to beat, due to the 
positive c0, they all tend to make a clockwise motion on circular trajectories. If the 
density is high, the flagella collide with each other and aggregate into clusters.  

A snapshot of the stationary state in AF simulations in Fig. 4.24a shows that the 
curved structure avoids the formation of large clusters. The small clusters are 
localized due to the circular motion. In addition, the clusters have no random 
diffusion due to the absence of the environmental noise. After a short while, the 
system comes to a stationary state where the flagella form a number of localized 
vortices. A vortex may break up due to the collision with other vortices. Thus, there is 
mass transportation between vortices. The flagella in the same layer in a vortex are 
synchronized due to volume exclusion. However, flagella in different layers are 
usually not synchronized. 

The density function ρ'(r)=ρ(r)/ρf exhibits rings corresponding to the vortices, as 
shown in Fig. 4.24b. The flagella in the same vortex rotate together and push other 
vortices by VE. Considering a high density of the vortices, one can quickly imagine a 
hexagonal array. However, the flagellum density is not high enough to show a 
hexagonal array yet. The rings in Fig. 4.24b are randomly distributed as in a glassy 

Figure 4.24: (a) A snapshots of the stationary state of curved-flagellum system with AF 
and ρfLf

2=6.25, σf =0%. The simulation box size is Lx=Ly=200a. The circles of dotted 
lines indicate the curvature of some clusters. (b) The density function ρ'(r) of system in 
(a) averaged over 1000 beats. (c) The density function ρ' on the dashed line in (b). 

(a) (b) 

(c) 



 76 

state.  
The density correlation function <ρ'(r) ρ'(r+Δr)>−1 of the AF simulation is 

shown in Fig. 4.25. The width of the first peak represents the thickness of the rings in 
Fig. 2.4b, which is approximately 15a. The second peak is located at Δr=32a, 
corresponds to the average diameter of the vortices (the distance between the peaks of 
density in Fig. 4.24c). The diameter of the vortices is much smaller than the diameter 
of the circular trajectory of a single curved flagellum. The third peak at Δr=61a 
corresponds to the average distance between the centers of the vortices. It is much 
larger than the size of vortices (32a+15a=47a). Thus volume exclusion between 
vortices is not strong enough to exhibit a hexagonal array of vortices. The vortices 
arrange themselves in a glassy state, so that the correlation function approaches 0 very 
fast. 

The angular velocity ω of layers in a vortex is a function of the radius r of the 
layer. The velocity of flagella in the same layer, ωr, is drawn as the function of the 
radius in Fig. 4.26. The velocity for r smaller than radius of the vortex radius (r<16a) 
increases with an approximately linearly with r, thus the angular velocity ω is nearly a 
constant for r less than the radius of the vortices. The velocity for r>16a approaches a 
plateau of single flagellum velocity. Thus, inside a vortex, the flagella in the inner 
layer (r<16a) tend to be synchronized due to VE. However, VE is not sufficient to 
maintain the synchronization. Thus there is still some difference in ω in the inner 
layer. The flagella in the outer layer (r>16a) have different ω and are not 
synchronized. 

In MPC simulations, those vortices are not stable due to too strong HI in 2D. A 
snapshot of the system with the same parameters, but now in MPC fluid is shown in 
Fig. 4.27. For small σf, the cluster size is obviously larger than in AF simulations, and 

Figure 4.25: The density correlation function <ρ'(r)ρ'(r+Δr)>−1 of the density function 
with ρfLf

2=6.25 and σf =0%.  
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the flagella are well synchronized. The better linear relation of ωr/f with r (see Fig. 
4.26) indicates a better synchronization in MPC fluid. However, the curvature of the 
cluster structure strongly depends on cluster size and phase differences between 
flagella. The cluster curvature has a wide distribution. Also, HI as environmental 
noise is too strong and breaks the vortex structure, although it also helps to keep 
synchronized flagella together. The density correlation function <ρ'(r) ρ'(r+Δr)>−1 of 
the same system shown in Fig. 4.27 approaches zero monotonically, without special 
structures. 

The vortices in AF simulation are very similar to the phenomenon in experiments 
of sea-urchin sperm [32]. Riedel et al found experimentally that the vortices emerge 
when the density of sea-urchin sperm at the substrate reaches a critical value. The 
sea-urchin sperm swim in a quasi-2D environment, thus VE effect is enhanced. Our 
2D simulation suggests that VE plays an important role, while HI in 3D might mainly 

Figure 4.26: The rotating velocity ωr/f of vortices at different layers of radius r in the 
system with ρfLf

2=6.25 and σf =0%. The blue dash lines are linear fitting of r<15.  

Figure 4.27: The snapshots of an MPC simulation of curved-flagellum system of 
ρfLf

2=6.25 and σf =0%. Different flagella are denoted by different colors. The circles of 
dotted lines indicate the curvature of some clusters. 
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contributes to the correlation between beat phase and sperm position within a vortex, 
as found in Ref. [32].  
 
4.5 Conclusion 
 We have simulated the aggregation and clustering behavior of sinusoidal beating 
flagella in a low-Reynolds-number fluid by the MPC method, and with the AF 
approximation. In MPC fluid, the flagella are interacting with each other through 
hydrodynamics, while no HI between the flagella is present in AF simulations. By 
comparing the results, we distinguish the different contribution of VE and HI to the 
swarm behavior. 

VE in two dimensions is crucial for the swarm behavior of flagella. The hard-core 
repulsion acts as the strongest alignment mechanism to attune the moving directions 
of flagella to be parallel or anti-parallel. Despite the undulating motion, the basic 
swarm behavior of swimming flagella is very similar as that of point SPP with 
aligning mechanism [25][56] and rSPP with VE (Chapter III), such as the power-law 
decay in PDF of cluster size. We find both PDF1 and PDF2 by changing the variance 
of frequency distribution σf, and find the power-law dependence of the average cluster 
size on σf. 

Although HI is not the essential reason for the swarm behavior, it has strong 
impact on the cluster configurations and on the shape of PDF. The clusters with HI in 
a MPC fluid consist of flagella which are well synchronized and tightly stacked, and 
the clusters extend strongly in their moving directions. In AF simulations, the clusters 
do not have such extended and compact structure. A huge cluster in MPC fluid looks 
like a huge “train” with all its components aligned in the same direction. This 
phenomenon is related to that found in the rodent sperm experiments [23]. The 
extended cluster in MPC is motile although the moving velocity decreases with its 
size. On the other hand, HI makes the PDF deviate from the power-law decay at small 
cluster size, and yields a different exponent from AF simulations in the power-law 
dependence of average cluster size on the variance σf of the frequency distribution. 

We also present some simulations of curved-flagellum system. In AF simulations, 
the vortices of clusters are formed, which is similar to the vortices in sea-urchin sperm 
experiments [32]. However, in MPC simulation, the vortices are not stable due to the 
strong HI in 2D. Thus, we speculate that VE plays an important role in this 
sea-urchin-sperm experiment where sperm are swimming in a quasi-2D environment, 
while HI in 3D might mainly contributes to synchronization of sperm tails in a vortex.  
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V.  Coarse-grained sperm model in 2D 

A sperm is a sinusoidal beating flagellum with a head attached in front. The head 
generates viscous resistance and breaks the symmetry of configuration. We consider 
sperm with an average spontaneous curvature c0,tail=0 on tails and an average beat 
frequency f0=1/120. For our sperm model, the tail length is Ls=50a, and the wave 
number q=4π/Ls. Thus there are two sine waves propagating on the tail to mimic the 
shape of a sea-urchin sperm tail. The sperm model swims smoothly forward with the 
velocity usingle=0.016±0.001. Like for flagella, the diffusion coefficient of a sperm due 
to the thermal fluctuations of the MPC fluid is very small because of its large size, on 
the order of 10-4[95]. This implies that the time a sperm needs to cover a distance of 
half the length of its flagellum by passive diffusion is more than a factor 104 larger 
than the time to travel the same distance by active swimming. Therefore, diffusion 
plays a negligible role in our simulations. The energy consumption per unit time is 
Psingle=25.2±2.4, corresponding to the energy consumption per beat about 3000. We 
estimate a Reynolds number Re=2Atailusingle/ν≈0.03 for our sperm model, where 
Atail=3.2a is the beating amplitude of the tail. 
 

5.1 Flow field of trapped sperm 
 We trap the center of head and the common particle of mid-part and head by 
strong harmonic potentials. Thus the sperm is captured. It cannot move forward 
against the harmonic potentials, but still can push the surrounding fluids backwards 
by the beating tail. Fig. 5.1a shows the flow field of one sperm. The flow field, as well 
as the sperm configuration, is the average over 500 beats at the same beating phase. 
The thermal fluctuations of MPC fluid are reduced by this averaging procedure. In 

Figure 5.1: The flow field of a single swimming sperm. (a) The flow field of a special 
phase averaged over 500 beats (with average flow velocity subtracted). (b) The flow 
field averaged over a whole beat. 

(b) (a)  
X  for 

r/Lr  
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addition, the flow field drawn here actually is the result of fluid velocity field of a 
captured sperm minus a constant field of average flow velocity of the fluid, 

 tyxyx ,flowflow ),(),( rvvv ><−=   

where v is the vector field drawn in Fig. 5.1a, vflow is the real flow field in the 
simulation and <vflow> is the flow velocity averaged over the whole simulation box 
and time. Thus we transfer our reference system from the sperm to the center of mass 
of fluid, which corresponds to the experimental reference system.  
 The sperm moves forwards. The velocity of fluids inside the head is 
approximately the same as head velocity. Vortices of flow are formed by the beating 
tail. Note that the sperm is swimming at the low Reynolds number. The vortices will 
disappear immediately if the tail stops beating. The flow field of sinusoidal beating 
motion was visualized by Gray [12] in the nematodes experiments. The trajectories of 
colloids near the swimming nematodes embedded in a thin film of viscous fluid were 

Figure 5.2: Flow field of the cooperating sperm with different Δφ=φ2－φ1. The plots on 
the left show the flow field at a specific phase. The plots on the right show the flow 
field averaged over a whole beat. All fields are plotted with average flow velocity 
subtracted. Note that the shape of the tail responds to the hydrodynamic forces 
generated by the other sperm.  

(b) Δφ=0.5π 

(a) Δφ=0 

(c) Δφ=π 
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tracked. The pattern of the colloid trajectories, which corresponds to the flow line, is 
similar to our flow field diagram. The flow field of a sperm tail with only one 
complete sinusoidal shape in a two-dimensional fluid was calculated in the 
simulations of Fauci et al [15][31] also. The vortices are “pushed” backwards and the 
sperm moves forwards. An efficiency coefficient can be defined as Sslip=(vwave-v)/vwave 

[12], where vwave is the propagation velocity of the sinusoidal wave on the tail, and v 
is the forward velocity of swimmer. The smaller is Sslip, the more efficient the 
swimming is. In our sperm simulations, Sslip is approximately 92%. For Taylor’s 
calculation at Re=0, the velocity of an infinite string beating in 2D is [16] 
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where λwave is the wave length and Awave is the amplitude of beating. Applying our 
parameters λwave=25a, Awave=3a, we get Sslip=90.8% for Taylor’s beating string is, 
which is roughly the same as our simulation result.  
 Fig. 5.1b is the flow field averaged over a complete beating period. The 
configuration of sperm is also averaged over the whole beat, thus the tail is straight. 
Different from Fig. 5.1a, the flow field takes the center of mass of the sperm as the 
reference system. In the averaged flow field diagram, the vortices made by the tail are 
averaged out. The fluid near the tail is pushed backwards. At the distance, the flow 
field is a constant, which corresponds to the swimming velocity of free sperm, or the 
transportation velocity of the tail. 
 A more interesting thing is to analyze the flow field of two sperm interaction 
through hydrodynamics. Two sperm with straight configurations are put parallel with 
a distance of 5a between their heads. Each sperm is localized by strong harmonic 
potentials in the same way as we did for a single sperm. Technically, we collect data 
of the third beat after they start beating to avoid the influence of the initial state. 
When the third beat is finished, we restart the system with new random numbers. The 
simulation is repeated for 500 times to get averaged fields. Since the strong 
hydrodynamic attraction effect will gradually pull synchronized tails to stick together, 
we cannot do the averaging on time. Note that all fields shown in Fig. 5.2 are the 
results of real flow fields minus a constant field of average velocity. 

Fig. 5.2 shows the flow field of a cooperating sperm pair with different phase 
differences Δϕ. When Δϕ=ϕ1－ϕ2=0 (Fig. 5.2a), the sperm tails are beating 
synchronized and the elongated vortices are formed. Since the tails are locked in 
phase and close in space, they can be considered as a thick and large “tail”. The flow 
field diagram as well as the average flow field diagram is very similar to that for a 
single sperm in Fig. 5.1, with only a few differences, such as the amplitude of 
velocities and the shape of vortices. Fig. 5.2b shows the flow field of two sperm with 
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Δϕ=0.5π. Since the parallel mid-pieces are captured, the tails cannot get synchronized, 
but they are deformed. The beating amplitude of the tails is changed. The lower one 
has the smaller amplitude because the hydrodynamic force is pulling to the right to 
extend the tail, whereas the upper one shrinks a little and increases the amplitude 
because the total hydrodynamic force on it is pulling to the left. The interacting force 
through hydrodynamics between two sinusoidal beating strings in 2D was calculated 
in Taylor’s work [16]. Imagine we release the sperm, the upper one will move 
relatively more forward due to the viscous force on the tail, while the lower one will 
move relatively less forward. Then they are synchronized. In the diagram of the 
average flow field of Δϕ=0.5π, the extension and the shrinking of the averaged 
configurations of two tails are clearly seen. The flow field is not symmetric due to the 
phase difference. Fig. 5.2c is the flow fields of two sperm with Δϕ=π. Δϕ=π is a 
special case in which the tails are not synchronized but the system is symmetric. If the 
sperm are not trapped by harmonic potentials, the symmetry will be broken by the 
thermal fluctuations, and then two sperm can get synchronized. 
  
5.2 Two-sperm simulations 
5.2.1 Synchronization and attraction 

We consider two sperm, S1 and S2, with the same beating frequency f=1/120, and 
the same spontaneous curvature c0,tail=0. They are placed inside the fluid, initially 
with straight and parallel tails at a distance d=5a (i.e. with touching heads). They start 
to beat at t=0 with same frequency f=1/120 and different phases φ1 and φ2. The initial 
positions of sperm do not matter too much, because two freely swimming sperm 
always have the chance to come close to each other after a sufficiently long 
simulation time. 

In the dynamical behavior of these hydrodynamic interacting sperm, the same 
effects seen in our flagellum simulation are found, short-time “synchronization” and a 

Figure 5.3: Snapshots of two sperm with same frequency and different phases φ1 
(upper), φ2 (lower), and phase difference Δφ=φ2－φ1=0.5π. (a) tf=1/6 initial position; 
(b) tf=2/3; (c) tf=7/6; (d) tf=5/3; (e) tf=13/6; (f) tf=61/6; (g) tf=601/6. From (a) to (e), 
the synchronization process takes place. The tails are already beating in phase in (e). 
From (e) to (g), two synchronized sperm form a tight cluster due to hydrodynamic 
attraction. [Yang2008]  
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longe-time “attraction” process. If the initial phase difference Δφ=φ2－φ1 at time t=0 
is not too large, an HI synchronization takes place, which is accomplished within a 
few beats. This process is illustrated in Fig. 5.3a-e by snapshots at different simulation 
times. The synchronization time depends on the phase difference, and varies from 
about two beats for Δφ=φ2－φ1=0.5π (see Fig. 5.3) to about five beats for Δφ=π. A 
difference in swimming velocities adjusts the relative positions of the sperm. After a 
rapid transition, the velocities of two cells become identical once their flagella beat in 
phase. Because the initial distance between tails d=5a is smaller than the beating 
amplitude 2Atail=6.4a, the sperm tails can touch when they start to beat for 
0.6π<Δφ<1.4π. This geometrical effect is reduced by the hydrodynamic interaction, 
which affects the beating amplitude. In case contact occurs, it accelerates the 
synchronization. In order to avoid this direct interaction due to volume exclusion, we 
have also performed simulations of two sperm with initial distance d=10a, and find 
the synchronized state achieved within several beats, as in the simulations with d=5a. 
Thus, the synchronization effect is of purely hydrodynamic origin. Since the beating 
phase at time t is determined by f and φs, which are kept constant in our simulations, 
our model sperm can only achieve synchronization by adjusting the relative position. 

Our results are in good agreement with the prediction of Taylor [16], based on an 
analytical analysis of two-dimensional hydrodynamics, that the viscous stress between 
sinusoidally beating tails tends to force the two waves into phase. The same 
phenomenon has also been observed by Fauci and McDonald [15] in their simulations 
of sperm in the presence of boundaries, and has been called “phase-locking” effect. A 
similar effect of undulating filaments immersed in a two-dimensional fluid at low 
Reynolds number was seen by Fauci in Ref. [31]. 

Synchronization is a fast process, which is achieved in at most ten beats in our 
simulations. Hydrodynamic attraction, takes much longer time. Two synchronized and 
separated sperm gradually approach each other when they are swimming together, as 
if there was some effective attractive interaction between them. The only way in 
which the sperm can attract each other in our simulations is through the 
hydrodynamics of the solvent. This effect takes several ten beats to overcome the 
initial distance of d=5a between the tails. The final state of attraction, in which the 
sperm tails are touching tightly, is shown in Fig. 5.3g.  

In the simulations of Ref. [15] hydrodynamic attraction is not reported, because 
they considered a sperm pair confined between two walls. There is an evident 
tendency for a single sperm to approach the wall. When two parallel sperm are placed 
between the walls, as mentioned in Ref. [15], there seems to be a critical initial 
distance between the sperm, below which synchronization occurs, and above which 
swimming towards the wall occurs. Our understanding is that, in their simulations, the 
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viscous drag towards the walls was competing with the viscous attractive effect 
between sperm. Hence in some cases, they could only see a synchronization effect, 
and neither a clear towards-wall tendency nor a distinguishable attraction effect. The 
hydrodynamic attraction was masked by the presence of the walls. 

To analyze the cooperating sperm pair in more detail, we choose the head-head 
distance dh to characterize the attraction and synchronization, because it is easy 
experimentally to track the head position. The dependence of dh on the phase 
difference is symmetric with respect to Δφ=0 because of the symmetry of the sperm 
structure. Thus, we show in Fig. 5.4 only results for Δφ>0. There is a plateau at about 
dh=5a for Δφ<0.4π, which corresponds to the sperm heads touching each other. For 
Δφ>0.4π, dh increases linearly with Δφ. Finally, for Δφ>1.5π, the phase difference is 
so large that the attraction is not strong enough to overcome the environmental 
fluctuations and pull the sperm close together. Although synchronization still occurs at 
the beginning, the two sperm leave each other soon after. 

Riedel et al. [32] also see such a linear relation in their experiments of sea-urchin 
sperm vortices. They define the beating phase of a sperm by its head oscillation, and 
an angular position of the sperm head within the vortex. In this way, the beating phase 
difference of the other sperm in the same vortex was found to have a linear relation 
with the angular position difference, which corresponds to the head-head distance in 
our simulations. 

So far, we have considered sperm with a single beat frequency. In nature, sperm 
of the same species always have a wide distribution of beat frequencies. For example, 

Figure 5.4: Head-head distance dh of two cooperating sperm. Simulation data are 
shown for fixed phase difference (□), with error bars denoting the standard deviation. 
The interpolating (red) line is a linear fit for 0.4π<Δφ<1.5π. The distance dh is also 
shown as a function of time tf1 (top axis) in a simulation with a 0.5% difference in the 
beat frequencies of the two sperm (solid black line).
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the beat frequency of sea-urchin sperm ranges from 30Hz to 80Hz [29][29], and the 
frequency of bull sperm ranges from 20Hz to 30Hz [87]. Thus, we assign different 
beat frequencies to two sperm, f1=1/120 and f2=1/119.4, corresponding to Δf/f1≈0.5%, 
but set the same initial phases φs=0. This implies that the phase difference of the beats 
between the two sperm increases linearly in time, 

( )tff 122 −=Δ πϕ  

The black line in Fig. 5.4 shows the head-head distance versus time. It agrees very 
well with the data for fixed phase differences. At tf1=150 where Δφ≈1.5π, the sperm 
trajectories begin to depart. This agrees well with our two-flagellum simulation (see 
Section 4.2).  

Fig. 5.5 shows two cooperating human sperm swimming in an in-vitro 
experiment near a glass substrate [92][93]. The two sperm swim together for more 
than 6 seconds at a beat frequency of approximately 8Hz. Their tails remain 
synchronized during this time, while the head-head distance and phase difference 
increases with time. After a while, the sperm leave each other because the phase 
difference becomes too large. There is no indication of a direct adhesive interaction 
between the sperm.  
 
5.2.2 Energy consumption 

As we know from two-flagellum simulations (Section 4.2), the energy 
consumption of a cooperating pair is much less than two free ones. For our sperm 
model, although there is a large head present, HI between sinusoidal beating tails still 
dominants the swimmer’s behavior. Thus, the energy consumption of two sperm also 
decreases through cooperation. Fig. 5.6 displays the energy consumption of two 
sperm with the same beat frequency f=1/120 as a function of the phase difference. As 
we experienced in the flagellum simulations, even for averages over 10 beats (Fig. 
4.4), the data scatter noticeably. Note that all data in Fig. 5.6 are averages over two 
beats. Thus the error bar is the deviation of the average energy consumption in a time 

Figure 5.5: Snapshots of two synchronized human sperm in experiment at different 
times [63][93]. (Left) Two sperm with initially well synchronized tails and very small 
phase difference; (Middle) the sperm are still swimming together and are well 
synchronized after 4 seconds; a phase difference has developed; (Right) the sperm 
begin to depart after 7 seconds. The scale bar corresponds to a length of 25 μm.  
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interval of two beats.  
The energy consumption P is nearly a constant at small phase difference. This 

plateau was not seen in the 2-flagellum simulation (Fig. 4.4). it is a consequence of 
the volume exclusion of the sperm head. P increases for Δφ≥0.5π roughly linearly 
until it reaches another plateau for Δφ≥1.5π. The second plateau corresponds to two 
sperm swimming separately, so that the energy consumption is twice the value of a 
single sperm. Fig. 5.6 also shows the energy consumption of two sperm with f1=1/120, 
f2=1/119.4 and φ1=φ2=0 as a function of time t. In this simulation, we start with two 
sperm which are parallel and at a distance d=5. For tf1<25, the energy consumption 
decreases as the sperm are approaching each other. The data agrees quantitatively very 
well with the results for constant Δφ, and reaches a plateau when the cooperating 
sperm pair departs.  
 
5.3 Multi-sperm MPC simulation 
 When two sperm with the same beating period happen to get close and parallel, 
they interact strongly through hydrodynamics and swim together. It is similar to the 
cooperation of two flagella through hydrodynamics. With this knowledge of HI 
between two sperm, we now study a system of 50 sperm in a simulation box of 
200a×200a. The initial position and orientation for each sperm are chosen randomly. 
Considering that in real biological systems the beat frequencies are not necessary the 
same for all sperm, we perform simulations with Gaussian-distributed beating 
frequencies. The initial phases of all sperm are φs=0. 

We consider a system of symmetric sperm (c0=0). Fig. 5.7 shows some snapshots 

Figure 5.6: Energy consumption per unit time, P, of two cooperating sperm. Symbols 
show simulation data for fixed phase difference (□), where error bars denote the 
standard deviation. The solid black line is P versus time t in a simulation with a 0.5% 
difference in the frequencies of two sperm.   
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of the systems with different deviation σf = <(Δf)2>1/2/<f> of the Gaussian distribution 
of frequencies. Here, <(Δf)2> is the mean square deviation of the frequency 
distribution, and <f>=1/120 is the average frequency. 

For σf =0, once a cluster has formed, it does not disintegrate without a strong 
external force. A possible way of break-up is by bumping head-on into another cluster. 
For σf >0, however, sperm cells can leave a cluster after sufficiently long time, since 
the phase difference to other cells in the cluster increases in time due to the different 
beat frequencies. At the same time, the cluster size can grow by collecting nearby free 
sperm or by merging with other clusters. Thus, there is a balance between cluster 
formation and break-up, as shown in the movie of Ref. [94]. Obviously, the average 
cluster size is smaller for large σf than for small σf (see Fig. 5.7). The stationary state 
of balanced break-up rate and formation rate is very similar as the flagella system in 
Section 4.3. 

 
5.3.1 Average cluster size 

To analyze the multi-sperm systems, we define a cluster in a similar way used for 
flagellum clusters in Section 4.3. If the angle between vectors from the last to the first 
bead of the tails of two sperm is smaller than π/6, and at the same time the nearest 
distance between the tails is smaller than 4a, which is approximately 1/10 of the 
length of the tail, then we consider these two sperm to be in the same cluster. Sperm 
in one cluster have synchronized beats. Due to VE of the large heads, the 
configurations of sperm clusters are not as tight as that of flagellum clusters (as shown 
in Fig. 4.5 and Fig. 5.7). The fan-like clusters in Fig. 5.7a is a special case for σf =0 
and ϕs=0. 
By the cluster definition, we find the evolution of the average cluster size <n> shown 
in Fig. 5.8. For σf =0, the average cluster size continues to increase with time. All 
systems in Fig. 5.8 with σf >0 reach a stationary cluster size n  after about 50 beats, 

Figure 5.7: Snapshots from simulations of 50 symmetric sperm with different 
frequency deviation σf. (a) σf =0; (b) σf=0.9%; (c) σf =4.5%. The red ellipses in (b) and 
(c) indicate some sperm clusters. The black frames show the simulation boxes. Note 
that we employ periodic boundary conditions. 
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where n  is the time-averaged value of <n>. The stationary cluster size is plotted in 
Fig. 5.9 as a function of the frequency deviation σf. We find a power-law decay similar 
as in flagella simulation (Section 4.3.3). The negative power law indicates that the 
cluster size diverges when σf →0. This tendency is also implied by the continuously 
increasing cluster size for σf =0 in Fig. 5.8.  
 
5.3.2 Cluster size distribution 

The cluster-size distribution in the stationary state is shown in Fig. 5.10. 
Cluster-size distributions have been studied in our rSPP and flagella simulations (see 
Chapter III, IV). A power-law decay of the cluster-size distribution has been found 
[55], followed by a rapid decay for large cluster sizes due to finite-size effects. A 
power-law decay of the cluster-size distribution is also consistent with our results for 
smaller cluster sizes, as shown Fig. 5.10. We attribute the exponential decay of the 

Figure 5.9: The stationary average cluster size, n , the frequency deviation σf. The 
total number of sperm N is proportional to the number density of sperm. The red lines 
are fitting power functions with their exponents approximately −0.20.  

Figure 5.8: Time dependence of the average cluster size, <n>, in a system of 50 
symmetric sperm with the frequency deviation σf, as indicated. 
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cluster-size distribution for larger cluster size, which is apparent in the inset of Fig. 
5.10, due to finite-size effects of simulation boxes. The sperm number from 25 to 100 
is far from enough. And the data still scatter a lot for large clusters, which indicates 
not long enough simulation time.  

 
5.3.3 Cluster forward velocity and energy consumption 

To analyze the energy consumption of sperm clusters, we consider a special case 
where sperm of the same frequency are prearranged to pack tightly and to be 
synchronized, as shown in the inset of Fig. 5.11a. The phase difference between 
neighbor ones is Δϕ=0.4π. A simple linear relationship between the energy 
consumption of the sperm cluster and the cluster size is shown in Fig. 5.11a. From the 

Figure 5.10: Cluster size distribution, Π(n). Data are shown for 25 sperm in a 
200×200a2 box (●), 100 sperm in a 400×400a2 box (□) [note that both systems have 
the same sperm density], and 50 sperm in a 200×200a2 box (Δ). The lines correspond 
to a power-law distribution nc

-1.8. The inset shows the same data in a semi-logarithmic 
representation. The line indicates an exponential distribution. 

Figure 5.11: (a) Energy consumption per unit time, P, of sperm clusters as a function of 
cluster size n. Symbols indicate simulations results. The fit line (red) is given by 
P=13.7n+10.1. The inset shows an illustration of a prearranged cluster of 20 sperm. (b) 
Center-of-mass speed of sperm clusters as a function of cluster size n. The fit line (red) 
is given by nv /4.1642.600334.0 += . 
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linear fit of the data, we obtain an energy consumption per sperm for an infinitely 
large cluster, P/n=13.7. Thus, a freely swimming sperm can reduce its energy 
consumption by almost a factor 2 by joining a cluster. 

The swimming speed of a sperm cluster decreases slowly with increasing sperm 
number, as shown in Fig. 5.11b. When flagella are very close, with distances smaller 
than the size of a MPC collision box, hydrodynamic interactions are no longer 
properly resolved. Instead, the collision procedure yields a sliding friction for the 
relative motion of neighboring flagella. Thus, the energy of the beat is not only used 
for propulsion, but also to overcome the sliding friction. The energy consumption of 
tail-tail friction is proportional to the number of neighbor pairs, and the hydrodynamic 
resistance of moving the whole cluster is proportional to the cluster size and speed. 
Thus, the total energy consumption can be written as [63] 

 ( )12 −+= cfc npvCnP            [5.1] 

where pf is the energy consumption due to tail-tail friction, and C is a constant. With 
the relation P=13.7nc+10.1 obtained above, the data for the cluster speed can be fitted 
to Eq. 5.1, which yields pf=7.28 and C=8.96×104. Thus, the cluster speed reaches a 
non-zero asymptotic value [(13.7－pf)/C]1/2 ≈ 0.0085 for large cluster size, about a 
factor 2 slower than a single sperm.  
 Note that the estimation of the speed of an infinitely large cluster is an 
extrapolation for special case of a prearranged cluster. A cluster in a multi-sperm 
simulation with random initial state can have many different configurations. The 
rough estimation is just an attempt to understand the relation between the energy 
consumption and the forward velocity. 
 
5.4 MPC simulation of bended sperm 

In nature, sperm have an abundance of different shapes. In particular, these 
shapes are typically not perfectly symmetric. The asymmetric shape can cause a 
curvature of the sperm trajectory [20][76]. For example, sea-urchin sperm uses the 
spontaneous curvature of the tail to actively regulate the sperm trajectory for 
chemotaxis [90][91].  In our simulations, we impose an asymmetry of the tail by 
employing a non-zero spontaneous curvature c0. 

We consider curved sperm tails, with c0 =0.04/a, which results in a mean 
curvature of the trajectory of a single sperm of cta=0.041±0.009. For sperm with 
curved tails, the head-head distance dh(Δφ) is not symmetric about Δφ=0, as shown in 
Fig. 5.12. Here Δφ is defined as the phase of the sperm on the inner circle minus the 
phase of the sperm on the outer circle. The steric repulsion of the heads causes a 
plateau of the head-head distance at dh=5a for small phase differences Δφ, as in Fig. 
5.4 for symmetric sperm. For Δφ<－π/2 and Δφ>π/4, the head distance increases 
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linearly with increasing phase difference, with a substantial difference of the slopes 
for Δφ<0 and Δφ>0, see Fig. 5.12. The two sperm depart when Δφ>0.7π.  For Δφ≤－
2π, the sperm pair briefly looses synchronicity, but then rejoins with a new phase 
difference Δφ′=Δφ+2π. 

The energy consumption P for sperm with spontaneous curvature (see Fig. 5.13) 
also increases sharply at Δφ=0.8π and stays at the plateau with P=51.0±2.8 for larger 
Δφ, as the sperm are swimming separately. However, for Δφ<−π/2, P increases rather 
smoothly until the cooperation is lost for large phase differences. 

The strong curvature of the tail breaks the symmetry of the head-head distance dh 
and the energy consumption P in Δφ, but the effect of synchronization and attraction 
are still present and play an important role in the cooperation of sperm pairs. 

Figure 5.12: Head-head distance dh of two cooperating sperm with spontaneous 
curvature c0l=0.04/a as a function of the phase difference Δφ. The error bars represent 
standard deviations. Lines are linear fits to the data in the range -1.9π<Δφ<-0.5π and 
0.3π<Δφ<0.7π, respectively. The inset shows two typical conformations with positive 
and negative phase difference. 

Figure 5.13: Energy consumption per unit time, P, versus phase difference Δφ of two 
sperm with spontaneous curvature c0 =0.04/a of their tails. The error bars represent 
standard deviations. 
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We also simulated systems containing many curved sperm. However, the hexagon 
array of vortices seen in the curved flagella simulation (Section 4.4) does not emerge 
in the sperm model case. For the flagellum system, 2D HI is too strong and prevents 
the formation of vortices. For sperm, the large head is another reason for the absence 
of vortices. 

 
5.5 Conclusion 
5.5.1 Comparison with flagellum simulation 

The difference between the flagellum model and the sperm model is a large head 
added in front of the sperm tail. The head generates strong viscous resistance, so that 
the beat shape of the tail is modified and the sperm velocity is lower than the velocity 
of a single flagellum. 

Although the head makes it tougher for sperm to move forward, HI between the 
sinusoidal beating tails is strong enough that the cooperation and swarming behavior 
of a multi-sperm system is basically the same as in a multi-flagellum system. 

We have simulated the HI between sperm in 2D by the multi-particle collision 
dynamics (MPC) method. The same effects in flagellum cooperation, synchronization 
and attraction, are found in sperm simulations. When two sperm are close in space 
and swimming parallel, they synchronize their tail beats by adjusting their relative 
positions. This process can be accomplished in a very short time, less than 10 beats. 
Two such synchronized sperm have a tendency to get close and form a tight pair. This 
process takes much longer time than synchronization. It usually takes about 100 beats 
to overcome a distance of 1/10 tail length between two sperm in our simulations. 

For a multi-sperm system, the average cluster size increases if the deviation of 
frequency distribution decreases. A distribution of frequencies leads to a stationary 
cluster-size distribution with a finite average cluster size, which decreases with a 
power law of the frequency deviation. Furthermore, the average cluster size increases 
with increasing sperm density. The probability to find a cluster of a given size 
decreases with a power law for small cluster sizes; an exponential decay for large 
cluster sizes in sperm simulations is attributed to finite-size effects of simulation 
boxes. 

Although the existence of a head does not influence the 2D sperm cooperation 
qualitatively, there are quantitative differences. For example, plateaus in the 
head-head distance (Fig. 5.4) and the two-sperm energy consumption (Fig. 5.6) at 
small phase differences emerge. Also, the head leads to a looser cluster configuration 
than flagellum clusters, which decreases the stability of a large cluster.  
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5.5.2 Comparison with experiments 
In sperm experiments, large bundles have been found in some species, like fish 

flies [36][35] and wood mice [23][37][23]. For fish-fly sperm, this has been attributed 
to some agglutination of the sperm heads to keep the size and structure of the bundles. 
Wood mouse sperm, released into an in-vitro laboratory medium initially in single cell 
suspension [37], form large bundles containing hundreds or thousands of sperm as 
motile “trains” within 10 minutes. Motile bundles of 50-200 sperm were also found in 
the after-mating female’s body, as well as many non-motile single sperm. The hook 
structure on the head of wood mouse sperm is believed to favor the formation of such 
huge cluster in in-vitro experiments. 

In our simulations, sperm clusters are always seen at sufficiently high concentrate, 
e.g. as marked in Fig. 5.7, after the system has reached a dynamically balanced state 
of cluster sizes. Thus, we predict that volume exclusion and hydrodynamic interaction 
play an important role in the cluster formation of healthy and motile sperm. 

However, there are few reports on sperm cooperation through hydrodynamics and 
swarm behavior. This is due to several reasons. First, scientists so far were more 
interested in single sperm behavior and motion mechanisms, such as the response to 
the visco-elastic environment [28] and chemotaxis [90] etc. In experiments, the sperm 
are diluted thousands or even more times than their original concentration in vivo. At 
a really low density of moving agents, according to our results of rSPP and flagellum, 
the system is in a random state. The possibility for a sperm to find another is low, thus 
cooperation is hardly found. Also, large clusters are nearly impossible to find because 
the probability to find a cluster decreases with as a power-law function of its size. 
Second, as indicated by comparing with flagellum simulations, a head which has 
strong viscous resistance and VE will influence the clustering behavior quantitatively, 
although not qualitatively. If the head becomes very small, the sperm model 
transforms back to the flagellum model. If the head is very large, it is like a colloidal 
particle, and HI between tails is negligible. Third, since the cluster size decreases with 
increasing deviation σf of the distribution of beat frequencies, our results are 
consistent with the experimental observation that if the sperm are hyperactivated [37], 
which is an abnormal beat mode, or if some sperm are dead, the clusters fall apart. At 
large σf, hydrodynamic synchronization between simusoidal beating flagella breaks 
clusters quickly. The variance of frequencies of sperm from same species but different 
individuals might be large; however, the frequency distribution of sperm from an 
individual male is not known. 
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VI. Flagella and sperm simulations in 3 dimensions 

The simulations of rod-like self-propelled particles, flagella and sperm in two 
dimensions (2D) have shown interesting swimming and swarming behavior, as 
described in Chapter III~V. Several of these dynamical properties resemble those of 
experimental systems in three dimensions. However, there are several reasons why a 
quantitative prediction of the behavior of real flagella and sperm requires simulations 
of these systems in three dimensions (3D). 

First, particles in 3D have much more degrees of freedom. For example, the 
beating plane does not have to be confined in a plane. The tail distorts to cope with 
the viscous resistance. Also, the swimmer can rotate around its direction of motion, 
which is impossible in 2D. More freedom degrees imply more complicated behaviors. 

Second, two important interactions for the swarming behavior in 2D, volume 
exclusion (VE) and hydrodynamic interaction (HI), are much weaker in 3D. For VE, 
it is well known for rod-like particles of length l and diameter d that a volume fraction 
ψ larger than 4d/l is necessary in equilibrium to go from the isotropic to the nematic 
phase, in which rods align spontaneously. This volume fraction is much larger than 
the overlap volume fraction ψ~(d/l)2.Hydrodynamics in 3D is also very different. A 
point in 2D corresponds to an infinitely long string in 3D. Thus, the hydrodynamic 
interaction between point particles in 3D decays as a function of distance as 1/r, while 
in 2D there is a much larger-ranged logarithmic decay.  

In this chapter, we present some preliminary results of flagella and sperm in 3D. 
3D simulations always require far more computer time. In 3D, there are plenty of 
open questions. Most of the results indicate the complexity of 3D sperm behavior.  
 
6.1 Cooperation of two flagella 

A flagellum is the limit of sperm with a very small head. According to our 2D 
simulation, the cooperation of sperm, especially the hydrodynamic contribution, is 
mainly due to the beat motion of their flagella. If two 3D flagella cooperate through 
HI, not-too-large heads will not destroy the similar behavior of two sperm. Thus, we 
also start from flagellum simulations to observe two-body cooperation in 3D. The 
beating frequency is f=1/50, and the wave number q=4π/Nl0 where N=100.  

 
6.1.1 Synchronization  

Two parallel flagella with straight configuration are put into the MPC fluid with a 
distance d=5a, which is also the distance between their parallel beating planes. When 
they start to beat, the flagella do not touch each other. The can only interact though 
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hydrodynamics at the beginning.  
Compared to 2D, there are more pathways to achieve synchronization in 3D. Fig. 

6.1 shows two flagella with phase difference Δϕ=0.5π as an example. At the initial 
state, the beating planes are parallel, thus the active springs are on the same side  in 
Fig. 6.1. During the process of synchronization, the flagella gain different velocities to 
shift their relative position and lock in phase, similar as the synchronization in 2D. In 
addition, they rotate their beating planes due to HI and thermal fluctuations. When the 
flagella are locked in phase and nearly touch each other, two states with different 
configurations are found. In most of the cases of our simulations, the flagella reach 
the state of parallel beating planes, as shown in Fig. 6.1b. The flagella swim together 
with the distance between front particles proportional to the phase difference. The 
active springs are on the same side (just as in 2D). Another state, in which the beating 
planes are anti-parallel, is shown in Fig. 6.1c. Two flagella rotate their beating planes 
in opposite directions and achieve the final state in which their active strings are on 
the opposing sides. This happens rarely in the initial state of parallel beating planes. In 
the simulation with a random initial state, two flagella meet each other with any 
possible angle between their beating planes. Since the final state of synchronization 
always has parallel or anti-parallel beating planes, they have to rotate to get 
synchronized and decrease the distance between their beating planes.  

In 2D, two synchronized flagella with the same beating frequency swim together 
for a very long time because of the strong HI. In 3D, the cooperation is not persistent 
even for flagella with the same beating frequency. The hydrodynamic attraction effect 
is weak. The swimming velocity of a flagellum is 0.02. Thus the Péclet number is on 
the scale of 105. So the flagellum body is large enough that the diffusion of a single 
flagellum is negligible, comparing with its swimming motion.  

We define the normal vector of the beating plane of a flagellum at time t as 

Figure 6.1: The snapshots to show the synchronization of two flagella with a phase 
difference Δϕ=0.5π. (a) The initial configuration at tf=1/12; (b) phase locking with 
parallel normal vectors of beating planes; (c) phase locking with anti-parallel normal 
vectors of beating planes. The red beads are those connected by the active springs, 
while the cyan ones are connected by inactive springs. The solid arrow indicates the 
swimming directions 

(a) 

(b) 

(c) 

v 
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follows. The local normal vector n at same position xi along the flagellum is in the 
direction of the bond opposite to the active filament, as illustrated in Fig. 6.2. For a 
flagellum not distorted too strongly, we define the normal vector Ni of its average 
beating plane of the i-th flagellum as 

∑=
tail

i

N

x
i

tail
i x

N
)(1 nN  

When two flagella are synchronized, their beating planes are parallel or anti-parallel. 
Thus, N1·N2 is 1 or −1. Fig. 6.3 shows the N1·N2 of the cooperating pair in Fig. 6.1b as 
a function of the simulation time. The cooperating pair has parallel beating planes, 
thus N1·N2 shows very little fluctuations, less than 5°. Even though the cooperating 
pair is separated at time tf =200, the beating planes remain parallel due to the viscous 
resistance to rotate them.  

Figure 6.2: The illustration of the definition of the local normal vector n of the beating 
plane. The picture is looking from the front of our flagellum model to its end. The red 
line are active springs changing their relax length with time. The red beads are 
connected by the active springs.  

n

Figure 6.3: N1 · N2 as a function of time t of two cooperating flagella with same 
frequency and no phase difference, as illustrated in the insert. 
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6.1.2 Distortion 

The correlation function of the normal vectors n(xi) along a flagellum is  

>Δ+⋅=<Δ )()()( iiii xxxxS nn  

where Δxi is the distance between two segments on the flagellum. S(Δxi) represents 
the degree of distortion of the beating plane. S equals 1 at Δxi=0 and 0 when Δxi→∞, 
if the resistant distortion is finite.  
 We analyze S(Δxi) of the flagella of a cooperating pair, and compare it with that 
of a single flagellum, as shown in Fig. 6.4. In both cases, S(Δxi) decreases slowly with 
Δxi. For a single flagellum, the average angle between the normal vectors at the front 
and at the end of a flagellum is approximately 16°. When two flagella form a 
cooperating pair, they are not only interacting through hydrodynamics, but also 
collide with each other from time to time. So S(Δxi) decreases faster for a cooperating 
pair than a single flagellum. For the cooperating pair in Fig. 6.4 the angle is 
approximately 18°. So, the distortion for flagella in cooperation is stronger than in 
single suspension.  
 A stronger distortion means more distortion energy stored in the body and a 
stronger distortion force. The distortion is not uniformly distributed in the swimmer 
body. It is strong at the point of collision when two flagella hit each other. Then, the 
distortion spreads along the flagellum and decays through viscous friction. Due to a 
weak attraction, two synchronized flagella tend to get closer. When they are very 
close, the higher probability to collide increases the probability of distortion. When 
the distortion is too strong, it breaks the cooperation. Two flagella sometimes leave 
each other due to a collision which slightly changes their swimming directions and 
beating planes. HI in 3D is not strong enough to recover the cooperation after the 

Figure 6.4: The correlation function S of the normal vectors of beating plane at 
different position on a flagellum. The black square (■) is the result of a cooperating 
flagella pair. The red bullet (●) is for a single flagellum simulation. 
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collision.  
 
6.1.3 Influence of hard walls 

The self-propelled rod-like particles, such as sperm [17] and nematodes [12], 
have an aggregation tendency at the boundaries. In a confined space, sinusoidally 
beating swimmers have strong HI with the boundaries. In 2D, it is found that the hard 
wall exerts a viscous drag to pull a swimming sperm to the boundary, and an elastic 
boundary has a shape deformation responding to the beating tail [15]. However, in 2D, 
the beating plane is always perpendicular to the boundary. In 3D, the beating plane of 
a single sperm near the hard wall prefers to be parallel to the substrate, because HI 
with the substrate and generates a viscous repulsion rather then a drag force towards 
the wall [20]. This repelling force lifts the tail, so that the sperm has a small angle 
against the wall, which implies a thrust force of sperm head towards the wall. Thus, 
HI between tail and wall in 3D also helps the sperm accumulation at boundaries, 
although the detail mechanism is very different from 2D.  

We analyze the influence of hard substrates by putting our flagellum model into a 
confined space. Two hard walls are placed at z=0 and z=30a. The distance between 
the walls is smaller then the length of flagella, but is about 10 times of the amplitude 
of the flagella configuration. At beginning, the flagellum is parallel to the substrates 
with a straight configuration and at z=15a, where the distance to each substrate is 
equal. The normal vector of the beating plane is parallel to the substrates. VE between 
the substrate and the flagellum particles is applied by a shifted, truncated 
Leonard-Jones potential.  

After the flagellum starts to beat, it rotates the beating plane to get parallel to the 
substrates in about 20 beats, although the beating plane is perpendicular to walls 
initially. The rotation speed is much faster than a single flagellum simulation without 
substrates. Thus, the rotation is not induced by thermal fluctuations. There is no VE 
with wall during the rotation. Thus, it is HI with the substrates, which rotates the 
beating plane.  

After the flagellum rotates its beating plane, it declines and approaches one of the 
substrates. Once it hits the substrate, the flagellum stays at the substrate for a very 
long time with a constant angle θ against the wall, as illustrated in Fig. 6.5.  

Figure 6.5: The snapshot of a single flagellum at the substrate. The end of flagellum 
tail is lifted by HI, so the flagellum has an angle θ against the substrate. The front of 
the flagellum is on the left side. 

θ 
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This phenomenon is closely related to sperm motion near boundaries [20]. A 
sperm has a large head which generates strong viscous resistance force and induce the 
asymmetry in structure. Our flagellum model does not have the asymmetry on its 
structure. The asymmetry of our flagellum is the swimming by a propagating wave in 
fluid which is not time reversible. The angle θ between the beating plane and the 
substrate indicates that the viscous force induced by HI between the flagellum and the 
substrate is not uniform distributed on the flagellum body. The repelling force on the 
end of flagellum is stronger then on the front.  

Note that the detail settings of the simulation may influence the results 
qualitatively. In our simulations, the interaction between the substrates and the 
flagellum is only volume exclusion. Also, the stiffness of the flagellum may affect to 
the aggregation tendency at the wall.  
 
6.2 Single sperm simulation 

For the study of two sperm cooperation, it is necessary to understand the general 
properties of our model for a single sperm. The behavior of the 3D sperm model 
strongly depends on the simulation parameters. 

We keep the property of our MPC fluid, of which the total kinematic viscosity is 
ν=1.60. A head of radius r=2a is chosen to generate strong viscous resistance. The 
beat frequency is f=1/20π. The length of the tail is Ntaill0=25a. The length of the 
mid-part is (Nmid-5)l0=5a. The part of the flagellum embedded in the head to stabilize 
the head-mid piece connection is not considered as the mid-piece. All the other 
parameters are described in Chapter II. In the single-sperm simulation, we only 
change the wave number q. qNtaill0 denotes the phase difference between the first and 
last segment on tail. Thus, the size, stiffness and beating frequency of a sperm are 

Figure 6.6: Snapshots of sperm with different number of waves on their tail with (a) 
q=3π/Ntaill0; (b) q=2π/Ntaill0; (c) q=1.2π/Ntaill0. (d) The trajectories of sperm heads with 
q=3π/Ntaill0 (black), q=2π/Ntaill0 (blue) and q=1.2π/Ntaill0 (red).  

(a) 

(b) 

(c) 
(d) 
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always the same.  
The sperm models are put into MPC fluid with straight configuration initially. 

The tails beat and push the surrounding fluid in order to overcome the viscous 
resistance of the large head to move forwards. The shape of the tail and the orientation 
of the beating plane can adjust and distort according to the environmental forces.  

Fig. 6.6 shows the snapshots as well as the trajectories of heads of sperm with 
different q. When q is large enough (see Fig. 6.6a), a quite flat beating plane is found. 
The tail has almost perfect sinusoidal shape constantly pushing the fluid backwards; 
thus the sperm moves on a nearly straight line. The head trajectory for q=3.0π/Ntaill0 in 
Fig. 6.6d is weakly curved, although the beating plane is approximately flat. This 
curvature is mainly due to the asymmetry of our 3D flagellum. We have only one 
active filament to change the local spontaneous curvature on the tail, and the viscous 
force encountered by the tail is not quite symmetry due to the discretized structure. 
When q is smaller (see Fig. 6.6b), the tail is distorted, although its stiffness and length 
are not changed. The twisting causes an overall curvature of the tail, which makes a 
helix trajectory of the sperm head, as the blue curve shown in Fig. 6.6d. When q is 
reduced even further (Fig. 6.6c), the distortion gets stronger and stronger until the 
curvature on the tail is so large that the sperm gets localized (see Fig. 6.6d).  

Fig. 6.7 shows the forward speed as a function of qNtaill0. The speed is calculated 
from the displacement of the head in 10 beats, so that the influence of thermal 
fluctuations is averaged out, and the curvature of the trajectories is taken into account. 
At small qNtaill0, where the tail is strongly distorted, the speed nearly vanishes. With 
increasing qNtaill0, the distortion of beating plane gets weaker, thus the forward 
velocity increases until it reaches the highest value at qNtaill0=2.4π. Although the 
further increasing in q implies less distortion of the beating plane, the amplitude of the 
tail beat decreases, so that the forward velocity decreases for q>2.4π/Ntaill0. Thus, the 
velocity approaches zero in both limits of q→0 and q→∞.  

Figure 6.7: The velocity of a 3D sperm as a function of qNtaill0.  
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6.3 Comparison with single sperm in experiments 

The wave number q, which describes the preferred shape of tail, is an internal 
parameter and is not necessarily the same for each individual in real systems. For 
example, in the hyperactivated state of human sperm, some individuals gain a higher 
frequency and higher swimming velocity, while others slow down or even become 
localized [93]. This might be caused by the diversity of individual structures. A 
possible way to regulate the sperm motion in hyperactivated state is by changing the 
wave number q. However, because of the beating mechanism of axoneme is not fully 
understood yet, it is hard to design an experiment to observe the influence of changing 
q. 

The tail distortion also can be understood in this way. If the environment is too 
viscous and the bending and twist rigidity is not large enough, the tail prefers a 
distorted shape rather than its spontaneous configuration with lowest bending and 
distorting energy. This is the reason for why sinusoidal beat does not exist in bacteria. 
Although the basic “9+2” axoneme structure is same for bacteria and sperm, the 
bacteria flagella are much thinner and in a much lower Reynolds number region. Even 
though the flagellum employs a same motion mechanism as for sperm, the viscous 
resistance will make it distorted. Thus, a sinusoidal beating is not an efficient motion 
for small cells as bacteria. E. coli swim by rotating flagella of helix structures. The 
rotation is generated by the protein motors embedded in the cell body.  

The experiments of single opossum sperm in different viscous media support our 
results. As shown in Fig. 6.8 from Ref [37], although the trails of sperm in a low 
viscosity fluid oscillate and fluctuate, the sperm still can swim forwards in their 
moving directions. In a highly viscous fluid medium, the sperm are captured by the 
viscous environment. The trails are localized into small circles, as shown in Fig. 6.8b. 
We conjecture that the sperm tails are strongly distorted in this case. The opossum 

Figure 6.8: The trails of single opossum sperm over 7 sec in fluid medium with 
different viscosity μ. (a) μ=2.28 poise; (b) μ=13.50 poise. The bar denotes 100μm. The 
diagrams are from Ref [Moore1995].  

(a) (b) 
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sperm shape was not analyzed in this experiment. By looking at the response of sperm 
trajectory to the viscosity of fluid medium, an experiment can be designed to analyze 
the rigidity of sperm tail.  

The results of our simulations of a single sperm in 3D suggest that, the wave 
number q should not be too small; otherwise a tail of high rigidity is needed to keep 
the beat plane reasonably flat. Also, q should not be too large. It is good enough to use 
q=2π to generate an approximately flat beating plane. A more important problem is 
that we do not have experimental data for the rigidity of the flagellum. The rigidity of 
our sperm model is not easily comparable to the experiments.  

 
6.4 Multi-sperm simulation 

Our 3D multi-sperm simulations employ a simulation box with the side length 
Lx=Ly=200a and Lz=30a. Two hard walls are put at Lz=0 and Lz=30a. On x and y 
directions, we employ periodic boundary conditions.  

The total length of a sperm from the head to the end of the tail is 51a, with the 
radius of the head r=1a and the length of mid-part 8a. Thus, the side length of the 
simulation box on x and y directions are four times of the sperm length, while the 
distance between the hard walls is smaller than the sperm length. So, the sperm are 
impossible to be perpendicular to the walls. They are swimming in a strongly 
confined space that HI with substrates is strong.  

Sperm are put into the simulation box with straight configuration, initially. The 
positions and orientations are not randomly chosen as in 2D, but in a regular array, as 
shown in Fig. 6.9. The frequencies are chosen from a Gaussian distribution of an 
average value <f>=1/20π. The rescaled standard deviation of the frequencies is σf = 
0.1%. The initial phases are chosen from a uniform random number in [-π,π]. The 
beating planes are perpendicular to substrates.  

Once the sperm start to beat, the synchronization and rotation take place. The 
relative positions of neighbor sperm are regulated according to their phase differences, 
and the beating planes rotate to get parallel to substrates. After some time, the system 

Figure 6.9: The snapshot of a 64-sperm system at time t=0. The sperm are put parallel 
to each other at the center of box.  
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will at least come to a stationary state as shown in Fig. 6.10. In the stationary state, we 
see the aggregation near the substrate and some small clusters of cooperating sperm 
with synchronized configurations.  

As our experience from 2D simulations, the simulation box with the side length 
of only four times of the swimmer length at the periodic direction is too small. The 
analyzation of the swarming behavior strongly depends on the simulation box size 
with a constant agent density. However, since our 3D simulations are at a trial stage at 
the moment, this box size is already good to show quite a lot of behaviors. Also, the 
swarm behavior needs very-long-time simulations to observe the evolution of system, 
but the simulation time goes cubic with side length. So, before we start the long-time 
simulation, we first try small box size and observe the quantities which do not 
strongly influenced by the periodic boundary condition. The system is much more 
complicated than in 2D. Thus we only tried two simulations with total sperm number 
Ns=64 and Ns=128, respectively. 
 
6.4.1 Distortion on tails 

The correlation function S(Δxi) of two normal vectors n(xi) on the same sperm 
flagellum with distance Δxi is shown in Fig. 6.11.  

The curve for both systems with different sperm number decreases smoothly. The 
total number of sperm Ns is proportional to the sperm density. In Fig. 6.11, S(Δxi) 
decreases faster in system of higher sperm density. The sperm tails are more distorted 
in a system of higher density for three reasons.  

First, the possibility to make cooperation with others is higher. As suggested by 
2D simulations, the average cluster size increases with the swimmer density. The 
cluster size is larger, thus the distortion on tail is stronger.  

Second, the collision with other sperm is more frequent. The collisions between 
sperm cause local distortions on tails. This distortion spread along the tail and decay 

Figure 6.10: The snapshot of the stationary state of a 64-sperm system. The cyan arrow 
points out a cluster of three sperm with synchronized shape and swimming together. 
Note that we employ a periodic boundary condition in the directions other than that 
perpendicular to the substrates. 
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through viscous friction.  
Third, a sperm is exposed in the flow field of all other sperm cooperating or not 

cooperating with it. The HI from sperm which are not cooperating can be considered 
as an environmental noise. The higher sperm density means a stronger environmental 
noise, which induce a stronger distortion on tails.  

 
6.4.2 Angle between substrate and beating plane 

We define the normal vector of the plane of the substrate N0=(0,0,1)T. If the 
beating plane of the i-th sperm is parallel to the substrate, |Ni·N0|=1.  

Fig. 6.12 shows the evolution of <|Ni·N0|> as a function of time. The value of 
<|Ni·N0|> is zero at beginning, because the beating plane is perpendicular to the 
substrates as the initial state. Once the sperm start swimming, <|Ni·N0|> increases very 
fast. In both systems for Ns=64 and Ns=128, <|Ni·N0|> increases from 0 to more than 
0.7 within Δt=1500. Such a large increasing means that, the average rotation angle for 
sperm is more than 45° during the first 20 beats. This is much faster than the rotation 

Figure 6.11: The correlation function S between the normal vectors of two segments at 
distance Δxi on same flagellum. Ns is the total number of sperm in the simulation.  

Figure 6.12: The dot product of normal vectors of beating plane and substrate <ns·n0>.   
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caused by the thermal diffusion. It is induced by two effects from HI.  
The first is the HI with substrates. The sperm are confined in a small space that 

HI with the substrate is strong. In a single flagellum simulation with the same distance 
between substrates, HI with substrates rotates the flagellum quickly. This effect exists 
in the multi-sperm simulations also.  

The second effect is the synchronization effect between sperm. In order to get 
lock in phase, the sperm not only shift their relative position as in 2D simulations, but 
also rotates to decrease the distance between their beating planes.  

After the fast rotation at beginning, <|Ni·N0|>increases slowly with fluctuations 
and approaches to a none-zero value. In Fig. 6.12, the limit value of <|ni·n0|> for 
64-sperm system is higher than of 128-sperm system. The higher sperm density 
makes a larger average angle between beating planes and substrates.  

 
6.4.3 Aggregation towards the substrates 
 The average distance <dsub> between the sperm head and the nearest substrate is 
shown in Fig. 6.13 as a function of time t. In the 64-sperm system, all the sperm are 
initially at the position z=15a with equal distance to each substrate. Thus <dsub> for 
64-sperm system is 15a at t=0. In the 128-sperm system, due to not enough space to 
put all sperm at center of the simulation box, half of sperm are put at z=10a and 
another half at z=20a. Thus, <dsub> for 128-sperm system is 10a at t=0.  
 In 128-sperm system, <dsub> increases at beginning. The hydrodynamic attraction 
between sperm pulls them to aggregate. In a long-time term, <dsub> for both systems 
decreases. The sperm move towards the substrates and aggregate at the hard walls. 
The decreasing of <dsub> in higher sperm density system is slower than in a lower 
density system. However, <dsub> is still decreasing in our simulation time. Thus, after 
about 500 beats, our system has not yet reached the stationary state yet.  

X  
Figure 6.13: The average distance <dsub> between sperm head and the nearest substrate 
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 The aggregation at the substrate is also revealed by the probability density 
function of dsub, as shown in Fig. 6.14. The distribution has a peak at the radius of the 
sperm head. Most of the sperm stay at the substrate with the head touch against the 
hard walls. Both systems have not yet reached the stationary state. The continually 
decreasing <dsub> with time indicates that the width of the distribution will decrease if 
we continue the simulation. The second peak at dsub≈6a for 128-sperm system is also 
probably due to the unbalanced system.  
 
6.5 Discussion 
 We simulated the flagellum and sperm embedded in 3D MPC fluid. For 
multi-sperm systems, we employ hard walls in our simulation for the reason of saving 
computational labor. Also, in experiments, there are usually experimental boundaries 
such as glass containers.  

Our simulation is different from realistic for several aspects. First, the Reynolds 
number is on the same order for nematodes in water, but is still higher than that for 
sperm. Second, we do not consider any mechanism to change the beat frequency and 
phase to cope with the hydrodynamics. Third, in experiments, especially for sperm, 
the fluid is usually a visco-elastic medium rather than a viscous one. The fluid has a 
memory of last moment due to the elasticity property raised from macro-molecule 
buffers.  
 Although our simulation model has a few detail differences from reality, there are 
still plenty of hints for us to understand the complicated experimental phenomenon.  
 First, the single sperm behavior strongly depends on the wave number on tail. By 
keeping all other parameters but decreasing the wave number, the curvature of the 
trajectory increases until the cell can only jiggle in a localized region.  
 Second, although not as strong as in 2D, HI between sinusoidal beating flagella – 

Figure 6.14: The distribution of the distance dsub between the sperm head and the 
nearest substrate.  
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synchronization and attraction – is still adequate to make cooperating clusters. Also, 
the synchronized state can be reached not only by shift the relative position, but also 
by rotating the beating planes.  
 Third, the hard substrates influence the behavior of flagella and sperm. HI 
between walls and flagella draws the beating planes to be parallel to wall, and helps 
the aggregation of swimmers at the substrates. However, our simulation time is not 
long enough yet to see if the walls can collect all sperm.  

Thus we guess the sea-urchin sperm experiment [32], in which all sperm are 
condensed near substrate and form vortices, must have even strong confinements to 
force a high density of sperm at the substrate. Then the sperm are extensively 
confined in a quasi-2D space, vortices are direct consequence of curved rSPP as 
indicated in our 2D simulation.  
 Anyhow, our 3D simulation is just a trial for future works. Although the behavior 
in 3D is more complicated then in 2D, but it shows a promising prospect. Simulations 
with larger systems to observe the swarming behavior in bulk and under confinements 
is our next step. 
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VIII. Summary 

We have analyzed the swarm behavior of rod-like swimmers propelled by a 
sinusoidal beating motion, such as nematodes and sperm, in a low-Reynolds-number 
fluid environment. The hydrodynamic interaction between swimmers is simulated by 
the multi-particle-collision dynamics (MPC) method, which is a particle-based 
meso-scopic simulation method for fluid dynamics. We also perform the simulations 
with anisotropic frictions (AF), which is a first order approximation of hydrodynamics, 
neglecting hydrodynamic interactions between swimmers. By comparing the results in 
a MPC fluid and with AF, the hydrodynamic interaction is shown to be very important 
for the aggregation and clustering behavior of these swimmers. 
 The side length of the simulation boxes must be several times of the characteristic 
length of the system, such as the length of swimmers, to avoid finite-size effects. 
From a simulation viewpoint, sperm swimming in a two-dimensional fluid is a less 
demanding problem than in three dimensions, and allow much more detailed studies 
of cooperative behaviors. In addition, sperm and nematodes in experiments usually 
swim in a quasi-two-dimensional space due to aggregation at the surfaces. Thus we 
focus on simulations in two dimensions.  

The swimmers are simplified as straight rods with a constant propelling-force 
along the extended directions. The hydrodynamics is approximated as AF. A 
white-noise force as environmental noise is applied to rods, while the thermal 
fluctuation is neglected.  
 Without any attractive potentials, the system of self-propelled rods exhibits 
aggregation behavior. The volume exclusion between rods acts as the aligning 
mechanism, so that the rods are aligned by collision and aggregate into clusters. 
Started from a random initial state, the system reaches a stationary state when the rate 
of cluster formation is balanced by the break-up rate.  

Three types of cluster size distribution functions with different shape are found at 
different density and environmental noise regions. Different distribution functions 
correspond to different cluster configurations in the system. With low rod density and 
strong environmental noise, the clusters are motile ones with all rods polarized in the 
same cluster; with high density and weak noise, giant and immobile clusters 
consisting of blocked rods are found. Quantities directly related to the PDF, such as 
average cluster size and weight, change with the rod density and the environmental 
noise. Especially, the average cluster size shows a power-law relation with the 
variance of environmental noise if the system starts with a disordered state. Giant 
density fluctuations, which are a characteristic fingerprint of aggregating systems of 
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self-propelled particles, are also found in our rod simulation.  
A flagellum has a wave propagating on its rod-like structure, thus propels itself 

though fluid medium. The flagella have different beating frequencies, because in 
nature, sperm and nematodes can have a wide distribution of beat frequencies. The 
frequency distribution can be considered as noise due to internal property.  

The main difference between rods and flagella is that the sinusoidal beating 
induces hydrodynamic synchronization and attraction between flagella. With small 
variance of frequency distribution, the hydrodynamic effects make the flagella in the 
same cluster tightly packed and locked in phase. The clusters extend strongly in the 
direction of motion, and the probability to find small clusters is decreased. However, 
with large variance of frequency distribution, hydrodynamic interaction between 
clusters also acts as an environmental background noise to break up clusters. 

The swarming behavior of sinusoidal undulating flagella is very similar as the 
self-propelled rods. In order to separate the contributions of volume exclusion 
between the rod-like body and the hydrodynamic interaction between the sinusoidal 
beating motions, we compare the swarming behavior of flagella in a MPC fluid and 
with AF, separately.  

Since the flagellum has a rod-like structure, the volume exclusion in two 
dimensions is still the most important mechanism to align the swimmers and raise the 
swarming behavior. The power-law distribution functions of cluster size, and the 
power-law dependence of average cluster size on the diversity of beating frequencies, 
are the same as we found in rod simulations.  

Although hydrodynamic interaction is not the essential reason for swarm behavior, 
it has a strong effect on the cluster configurations. Hydrodynamic interaction between 
flagella in different clusters acts as the environmental background noise. However, the 
synchronization and attraction due to hydrodynamic interactions make the flagella in 
the same cluster tightly packed and locked in phase, if the deviation of frequencies is 
not large. The large clusters in MPC fluid extend in the moving direction, while the 
clusters without hydrodynamic interactions in anisotropic friction simulations show 
more compact structures. A huge cluster in MPC fluid looks like a motile “train” with 
all its components aligned in the same direction. Due to their large scattering sections 
and the strong flow field created by them, the “train” clusters collect the nearby small 
clusters. Thus the probability to find small clusters is decreased, and the average 
cluster size increases. On the other hand, the blocked structure of huge, immobile 
cluster is prevented by hydrodynamic interactions.  

The difference between a flagellum and a sperm is the large head added in the 
front. The head generates strong viscous resistance, so that the beat shape of tail is 
modified and the sperm velocity is lower than of a single flagellum. 
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Although the head make the swimming more difficult, the hydrodynamic 
interaction – synchronization and attraction - between sinusoidal beating tails is still 
dominating in two dimensions. The swarming behavior of a multi-sperm system is the 
same as a multi-flagellum system. However, the heads of large diameters make the 
cluster configuration much looser, thus the stability of a large cluster is decreased.  

From our two-dimensional simulations, we conclude that the fundamental 
elements for the swarming behavior of the active particles with sinusoidal 
configurations are the rod-like shape and the self-propelled motion. The volume 
exclusion in two dimensions is a strong mechanism to induce the alignment. The 
hydrodynamic interaction raised by the beating motion regulates the shape of the 
clusters and the distribution function of cluster size.  

The swimming behaviors in three dimensions are much more complicated than in 
two dimensions. The sperm behavior strongly depends on the elasticity and the wave 
number of the tail. The effect of volume exclusion is much weaker, but the 
hydrodynamic interaction still plays an important role.  

The hydrodynamic attraction between beating flagella and a hard substrate help 
the aggregation in confinement. A single flagellum at a substrate has a thrust towards 
the wall with its end lifted by the viscous force from the wall.  

The hydrodynamic interaction between beating flagella – synchronization and 
attraction – is still strong enough in 3D to make cooperating clusters. The flagella can 
get phase locked through different pathways - shifting the relative position as the 
synchronization process in two dimensions, and rotating the beating planes. The 
existence of a not-too-large head does not destroy the cooperation between flagella. 
However, the cooperation in three dimensions is not as stable as in two dimensions, 
because a strong distortion of the tail and the higher collision rate during cooperation 
can easily separate a pair of swimmers. Our simulations in 3D show a rotation motion 
of beating planes, a three-dimensional package of swimmers in a cluster, and mass 
transport between the two walls in a slit geometry. Simulations with larger systems to 
observe the swarming behavior in bulk and under confinement are needed in the 
future. 

Our results are in good agreements with the swarming of sperm and nematodes in 
a thin layer of fluid medium near surfaces. Some interesting experimental phenomena 
are reproduced. The coordinated movement of an aggregate of nematodes when on a 
damp surface of glass [12], as well as the huge “train” structure containing hundreds 
to thousands of rodent sperm at surface [37], have a similar extended and 
synchronized structure as we found in flagella simulations in a MPC fluid. Since the 
cluster size decreases with increasing variance of frequency distribution of flagella, 
our results are consistent with the experimental observation that if the rodent sperm 
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are hyperactivated, which is an abnormal beat mode, or if some sperm are dead, the 
clusters fall apart. The vortices arrays of sea-urchin sperm near a substrate is 
reproduced by curved flagella simulations with AF.  

However, there are few reports on the hydrodynamic cooperation and swarm 
behavior of sinusoidal beating swimmers so far because research was focused on the 
behavior and motion mechanisms of single sperm, diluted thousands or even more 
times than their original concentration in vivo. At a really low density of moving 
agents, according to our simulation results, the cooperation is very weak. 
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Abbreviations and variable symbols used in thesis 

Abbreviations 

2D, 3D two dimension, three dimensions 

MPC Multi-Particle Collision Dynamics 

HI  hydrodynamic interaction 

VE  volume exclusion 

SPP  self-propelled particles 

rSPP rod-like self-propelled particles, self-propelled rods 

 

Navier-Stokes equation 

∇  gradient operator 
ρ  fluid density 

η  dynamic viscosity 

v  flow velocity 
υ  velocity of the main stream 
p  pressure 
fext  body forces per unit volume acting on the fluid 
l  a typical length of the system 
Re  Reynolds number 

 

MPC variables and parameters 

a  length unit of MPC method 

t  time 

m  mass of MPC solvent partiles 

ρ  average solvent particle number in each box of MPC fluid 

ri  space position of the i-th MPC solvent particle 

ui  velocity of the i-th MPC solvent particle 

ucm,j  center of mass velocity of the j-th box in MPC method 

kBT  temperature 

νkin  kinetic viscosity 

νcoll  collision viscosity 

α  the rotation angle of MPC method 

R j(α) the rotation maxtrix of j-th box which rotate a vector by an angle α around a direction 

h  rescaled mean free path of MPC solvent particles 

Δτ  collision time (time step) of MPC method 
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Simulation variables and parameters 

v  velocity of particle 

Δτ’  molecular-dynamics time step  

ε  the constant in Leonard-Jones potential 

γ  friction coefficient 

ξ  white noise 

c  curvature 

k  spring constant 

κ  bending rigidity constant 

F  force 

M  torque 

Ri  the bond vector connecting particle i and (i+1) 

 

System parameters 

S  simulation box size 

N  total particle (rod, flagellum or sperm) number of simulation system 

Ntail  the number of monomers on a sperm tail 

Lr  length of rods 

Lf  length of flagella 

Ls  length of sperm tails 

ρr  the number density of rods  

ρc  the number density of clusters 

ρf  the number density of flagella 

σ2  the variance of the environmental noise in the rSPP simulations 

f  beating frequency 

σf  dimensionless variance of the distribution of beating frequencies 

T  total simulation time 

φ  initial phase of beating 

 

Analyzed variables and quantities 

Tlife(n) average life time of clusters of size n 

β  the exponent of cluster distribution function 

βdens  the exponent of density deviation dens~ βλNΔ  where λ is the anticipated particle 

number 

βlife  the exponent of the power-law part of Tlife(n) 

Π  number density function or probability density function 

P  energy consumption 

<n>  average cluster size 
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n   stationary average cluster size 

<w>  average cluster weight 

w   stationary average cluster weight 

β'  the exponent of power law part of Tlife(n) for small cluster size 

G  orientation correlation function 

Δs  the displacement of the center-of-mass of a cluster 

xs  the position of a segment on the flagellum model, with xs=0 for the first segment. 

 

Others 

φ    angle in the polar coordinate system 

K(i,j) coagulation kernel of Smoluchowski equation 

K+(i,j) cluster formation rate of two clusters of size i and j to form a cluster of size i+j 

K-(i,j) the spontaneous break-up rate for a cluster of size i+j into two clusters of size i and j 

Pe  Péclet number 
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Kurzzusammenfassung 

Eine Vielzahl von Mikroorganismen und Zellen, wie zum Beispiel Spermien und 
einige Arten von Spulwürmern (Nematoden), schwimmen durch Flüssigkeit, indem 
sie mit ihrem stäbchenförmigen Körper sinusförmige Schlagbewegungen vollführen. 
Die Fortbewegung dieser mikroskopischen Schwimmer wird durch die Viskosität der 
Flüssigkeit dominiert, wärend ihre eigene Trägheit vernachlässigbar ist. Sie 
kooperieren miteinander über hydrodynamische Wechselwirkungen und zeigen ein 
komplexes Schwarmverhalten, wie zum Beispiel Anlagerung in der Nähe von 
Oberflächen und Clusterbildung bei hoher Dichte. Diese interessanten und 
überraschenden Phänomene deuten darauf hin, dass für die Schwimmer zusätzlich zu 
der individuellen Bewegung noch andere, auf Kooperation beruhende Möglichkeiten 
bestehen, große Strecken und Hindernisse zu überwinden um ihr Ziel zu erreichen. 
Insbesondere trifft dies auf Spermien zu, den wichtigsten Zellen in der Fortpflanzung 
höherer Tiere. 
 Das Ziel dieser Arbeit ist es, die Bedeutung von hydrodynamischen 
Wechselwirkungen und Volumenausschluss Effekten für die Kooperation und das 
schwarm-typische Verhalten von mikroskopischen Schwimmern wie Spermien und 
Nematoden zu erklären, die sinusförmige Schlagbewegungen als Antrieb nutzen. 
Diese Schwimmer können zusammengefasst als stäbchenförmige selbst-angetriebene 
Teilchen (rod-like self-propelled particles, rSPP) in einer viskosen Umgebung 
betrachtet werden. Wir vergleichen in Simulationen das Schwarmverhalten gerader 
stäbchenförmiger Teilchen mit solchen, welche sich durch sinusförmige Schläge 
fortbewegen. Die hydrodynamischen Wechselwirkungen zwischen den Schwimmern 
werden über multi-particle collision dynamics (MPC) simuliert, eine teilchenbasierte, 
mesoskopische Simulationsmethode für die Dynamik von Flüssigkeiten. Wir führen 
desweiteren Simulationen mit richtungsabhängigem Reibungskoeffizienten 
(anisotropic friction, AF) durch, als eine Näherung der Hydrodynamik, welche 
hydrodynamische Wechselwirkungen zwischen den Schwimmern vernachlässigt. Die 
Beiträge von hydrodynamischen Wechselwirkungen und Volumenausschluss können 
identifiziert werden, indem die Ergebnisse von MPC- und AF-Simulationen 
verglichen werden. 
 Wegen der Anlagerung an der Oberfläche schwimmen Spermien und Nematoden 
in einem quasi-zweidimensionalen Raum. Spermien in einer zweidimensionalen 
Flüssigkeit zu simulieren ist weniger aufwendig als in drei Dimensionen, und 
ermöglicht somit sehr viel detailliertere Untersuchungen des kooperativen Verhaltens. 
Daher haben wir uns auf zweidimensionale Simulationen konzentriert. 
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 Der gegenseitige Volumenausschluss ist der Schlüsselfaktor für das Auftreten von 
kollektiver Ausrichtung und Clusterbildung von selbst angetriebenen Stäbchen in 
viskoser Umgebung in zwei Dimensionen. Zwei Arten von Clustern können 
beobachtet werden: Bei niedriger Stäbchendichte und starkem Umgebungsrauschen 
treten freibewegliche Cluster auf, in denen alle Stäbchen polarisiert sind, wärend bei 
hohen Dichten und schwachem Rauschen riesige, unbewegliche Cluster sich 
gegenseitig blockierender Stäbchen auftreten. Erreicht das System ein Gleichgewicht 
zwischen Clusterbildungsrate und -zerfallsrate, bildet sich eine stabile 
Verteilungsfunktion der Clustergröße heraus. Es werden drei verschiedene 
Verteilungsfunktionen unterschieden, die den drei Zuständen des Systems entsprechen. 
In Systemen mit freibeweglichen Clustern hat die Verteilungsfunktion immer einen 
Abschnitt, der einem Potenzgesetz folgt. Die durchschnittliche Clustergröße folgt 
einem Potenzgesetz des Umgebungsrauschens. Auch werden riesige 
Dichtefluktuationen in den Stäbchensimulationen gefunden, welche eine 
charakteristische Eigenschaft von Systemen aggregierender selbstangetriebener 
Teilchen sind. 
 Der Hauptunterschied zwischen selbstangetriebenen Stäbchen und 
Flagellum-Systemen ist, dass die sinusförmig schlagenden Flagellen sich über 
hydrodynamische Wechselwirkungen gegenseitig synchronisieren und anziehen. 
Diese hydrodynamischen Synchronisations- und Anziehungseffekte sorgen dafür, dass 
Flagellen innerhalb eines Clusters sehr dicht gepackt sind und die Phasen ihrer 
Schlagbewegung koppeln. Die Cluster sind in ihrer Bewegungsrichtung deutlich 
länger ausgedehnt, und die Häufigkeit kleiner Cluster ist gering. Die 
hydrodynamischen Wechselwirkungen zwischen den Clustern wirken als 
Hintergrundrauschen. Das Schwarmverhalten von sinusförmig schlagenden Flagellen 
gleicht im wesentlichen dem selbstangetriebener Stäbchen. Die Verteilungsfunktion 
der Clustergröße folgt einem Potenzgesetz. Natürliche Spermien und Nematoden 
können eine sehr breite Verteilung von Schlagfrequenzen aufweisen, was als durch 
innere Eigenschaften bestimmtes Rauschen angesehen werden kann. Die 
durchschnittliche Clustergröße folgt einem Potenzgesetz der Varianz der Verteilung 
der Schlagfrequenzen. 
 Ein Spermium ist ein sinusförmig schlagendes Flagellum mit einem Kopf an der 
Vorderseite. Obwohl die Köpfe starke viskose Reibungskräfte verursachen, 
dominieren weiterhin die hydrodynamischen Wechselwirkungen – Synchronisation 
und Anziehung – zwischen den schlagenden Flagellen. Auch das Schwarmverhalten 
eines System aus vielen Spermien gleicht dem aus Flagellen, wobei die Köpfe für eine 
sehr viel lockerere Bindung der Cluster sorgen, und somit deren Stabilität reduzieren. 
 Daher schlussfolgern wir, dass in zwei Dimensionen die anisotrope Form und die 
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selbstangetriebene Bewegung die grundlegenden Elemente des Schwarmverhaltens 
von aktiven stäbchenförmigen Teilchen wie Spermien und Nematoden sind. Der 
Volumenausschluss ist ein starker Mechanismus, der zu paralleler Ausrichtung führt. 
Die hydrodynamischen Wechselwirkungen aufgrund der sinusförmig schlagenden 
Bewegung bestimmen die Form der Cluster und die Verteilungsfunktion der 
Clustergrößen. 
 In drei Dimensionen ist die hydrodynamische Wechselwirkung noch immer stark 
genug um zu kooperierenden Clustern von Flagellen und Spermien zu führen. Die 
Flagellen können über unterschiedliche Abläufe synchronisiert werden – sie können 
ihre relative Position verschieben oder in ihrer Schlagebene rotieren. Dennoch ist die 
Kooperation in drei Dimensionen nicht so stabil wie in zwei Dimensionen. 
 Unsere Ergebnisse befinden sich in guter Übereinstimmung mit experimentellen 
Beobachtungen des Schwarmverhaltens von Spermien und Nematoden in einer 
dünnen Schicht einer Flüssigkeit nahe der Oberfläche. Interessante, experimentell zu 
beobachtenden Phänomene, wie die gestreckten Cluster von Maus-Spermien und die 
Wirbel von Seeigel-Spermien, werden reproduziert. 
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