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ABSTRACT 

In recent phylogenetic analyses combining nuclear and nucleomorph RNA 

genes of the ribosomal operons, three different colourless lineages were found 

in the genus Cryptomonas. This raised questions about the evolutionary history 

of these interesting objects and their relatives as well as the role of plastid 

genomes such as whether these three lineages resulted from similar or from 

different evolutionary events or what are the mutual relationship or/and roles of  

photosynthetic genes in the absence of photosynthetic activities, etc.  To answer 

the interesting questions, the biological information has to been collected 

systematically from their plastid genomes.  

At the first stage of the thesis, the cryptophyte plastid rbcL gene (1,5-

biphosphate carboxylase/oxygenase [RuBisCO] large subunit) was chosen to 

amplify by BioTherm™ Taq DNA Polymerase and read their DNA 

compositions by SequiTherm EXCEL™ II DNA Sequencing Kit-LC and Li-Cor 

4200L bidirectional sequencer. Eighteen newly rbcL sequences of 

Cryptomonas strains were obtained. Of these, five sequences were from 

heterotrophic (colorless) strains and the remaining was from photosynthetic 

(pigmented) strains. The results of rbcL phylogeny analyses showed that the 

colorless C. paramecium and their closely relative photosynthetic Cryptomonas 

had increased their evolutionary rates significantly. These were congruent with 

those of nuclear rDNA (concatenated SSU rDNA, ITS2 and partial LSU rDNA) 

and nucleomorph SSU rDNA that had been examined in previously. They were 

combined with other result done by Dr. Kerstin Hoef-Emden such as analyzing 

the shift from NNC to NNU in two-fold degenerate NNY codon in rbcL gene in 

Cryptomonas to discuss some hypotheses of the loss of photosynthetic activities 

in the colorless C. paramaecium strains. Detail results and discussion were 

published in BMC Evolutionary Biology 2005; 5:56. 
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In the second part of the thesis, the goals were to amplify the cryptophyte 

plastome 16S rRNA-rbcL fragments by MasterAmpTM Extra-long PCR kit and 

read their DNA sequences by BigDye Terminator v1.1 Cycle sequencing kit 

and automated ABI3730 sequencer, then exploited the sequencing information 

for further understanding the evolutionary history of cryptophyte plastomes. 

The task also attempted to find new evidence to explain the relationship 

between the changing from autotrophic to heterotrophic lifestyle in colorless 

Cryptomonas lineages and the elevation of evolutionary rates of photosynthetic 

genes that were located in the plastome 16S rRNA-rbcL fragment.  

Twenty-two cryptophyte strains (four of them were colorless) were participated 

in this part. Most of the fragments (15) were read completely as planned while 

several fragments (7) were not, due to lack of time. The colorless strains 

possessed the smallest fragments; their plastomes, thus, were predicted to be the 

smallest among those of Cryptomonas. Strain C. erosa  CCAC 0018 and C. 

obovoidea CCAC 0031 seemed to have the largest plastomes as their 16S-rbcL 

fragments contained an additional gene – ycf26 – that was not found in other 

Cryptomonas strains. Advantages and disadvantages of long-range PCR and 

primer-walking sequencing combination were discussed.  

Based on the conserved domain analyses, all ycf26 from secondary plastids 

seems to be inactive and on the way to become pseudogene than alter its 

function. Another additional gene – ORF403 encoding Tic22 protein – also was 

examined the conserved domains and done a phylogenetic analysis. Some 

specific characteristics of ORF403 in rhodoplasts and cryptophyte plastome 

were found.  

Three protein-coding genes – chlI, rps4 and rbcL – were used as separated 

phylogenetic markers or in combined. The results confirmed that one colorless 

lineage (presented by CCAC 0056, CCAP 977/2a, M2452, M2180) had 

accelerated evolutionary rates in all gene or/and protein trees.  

The observations also suggested that chlI gene increased its substitution rate 

earlier than rps4 and rbcL genes as well as the elevated evolutionary rates could 
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be ordered by chlI > rps4 > rbcL. Although having moderate size (609 bp), 

rps4 had an evolution rate neither as high as in chlI gene nor as low as in rbcL 

gene, producing acceptable phylogenetic trees for both nucleotide and protein 

levels. Therefore, rps4 gene seems to be more suitable protein-enoding plastid 

gene maker for phylogenies than its sisters, chlI and rbcL genes. 

The ratio of NNC to NNU in two-fold degenerate NNY codons was calculated 

for each gene and discussed. It is possible that the shift in codon usage from 

NNC to NNU did not correlate to the relaxation of functional constraints and/or 

reduction of gene expression levels. Furthermore, the usage of NNU codons 

over the NNC in two-fold degenerate NNY codon seemed to be controlled by 

neutral mutation pressure rather than by selection followed by the gradually 

acceleration of evolutionary rate 

A hypothetical scenario for the relations among the loss of photosynthesis, 

increasing of substitution rate of interring genes and time of diverging in 

colorless lineages was discussed. 



Zusammenfassung 

In den letzten phylogenetische Analysen mit nuklearen und nucleomorph RNA-Gene der 

ribosomalen Operons wurden drei farblos verschiedenen Linienin der Gattung 

Cryptomonas gefunden. Diese Fragen über die evolutionäre Geschichte dieser 

interessanten Objekten und deren Angehörige sowie die Rolle der Plastiden Genome, ob 

diese drei Linien aus ähnlichen oder aus verschiedenen evolutionären Ereignisse oder 

sind die gegenseitigen Beziehungen und / oder Rollen der Photosynthese-Gene in das 

Fehlen der photosynthetischen Aktivitäten usw. Um diese interessanten Fragen zu 

antworten werden die biologischen Daten systematisch aus ihren Plastiden Genome 

gesammelt. 

In der ersten Phase des Thema wurde rbcL Gene in den cryptophyten Plastiden (1,5-

biphosphate Carboxylase / Oxygenase [RuBisCo] großen Untereinheit) zur Ergänzung 

von Biotherm™ Taq DNA Polymerase gewaehlt und zum Lesen der DNA-

Kompositionen von SequiTherm EXCEL™ II DNA-Sequenzierung Kit-LC und Li-Cor 

4200L. Achtzehn von rbcL Sequenzen Cryptomonas wurden gesammelt. Fünf davon 

Sequenzen wurden aus heterotrophen (farblos) und die übrigen Teile wurde von 

photosynthetischen (pigmentiert) gesammelt. Die Ergebnisse der rbcL Phylogenie 

Analysen zeigten, dass die farblose C. paramecium und ihre eng relative 

photosynthetische Cryptomonas ihre evolutionäre Entwicklung deutlich hatten. Diese 

waren deckungsgleich mit denen der nuklearen rDNA (verketteten SSU rDNA, ITS2 und 

teilweise LSU rDNA) und nucleomorph SSU rDNA, die in zuvor geprüft worden. Sie 

wurden zusammen mit anderen Ergebnis von Dr. Kerstin Hoef-Emden, wie die Analyse 

der Verschiebung von NNC zu NNU in zwei-fach entartet NNY Codons in rbcL Gen in 

Cryptomonas zu diskutieren einige Hypothesen der Verlust der photosynthetischen 

Aktivitäten in den farblos C. paramaecium Stämme. Detaillierte Ergebnisse und 

Diskussionen wurden in BMC Evolutionary Biology 2005, 5:56 veroeffentlicht. 

Im zweiten Teil der Doktorarbeit sind die Ziele zur Ergänzung der cryptophyten 

plastome 16S rRNA-rbcL Fragmente von MasterAmpTM Extra-lange PCR Kit und lesen 

die DNA-Sequenzen von BigDye Terminator v1.1 Cycle Sequencing-Kit und 

automatisierte ABI3730 Sequenzer, dann nutzte die Sequenzierung Informationen für das 

Verständnis der Evolutionsgeschichte der cryptophyten plastomes. Die Aufgabe auch 

versucht, neue Beweismittel zu erklären, das Verhältnis zwischen dem Wechsel von 



autotrophen zu heterotrophen Lebensweise in farblose Cryptomonas-Linien und die 

Höhe der Evolution von photosynthetische Gene, die in der plastome 16S rRNA-rbcL 

Fragment sind. 

Zweiundzwanzig cryptophyte Stämme (vier von ihnen wurden farblos) waren an diesem 

Teil. Die meisten der Fragmente (15) wurden vollständig lesen wie geplant, während 

mehrere Fragmente (7) nicht wegen Mangel an Zeit wurden. Die farblose Stämme im 

Besitz der kleinsten Fragmente, deren plastomes, so wurden vorhergesagt, werden die 

kleinsten unter den von Cryptomonas. Stamm C. erosa emend CCAC 0018 und C. 

obovoidea emend CCAC 0031 zu haben schien die größte plastomes als 16S rRNA-rbcL 

Fragmente enthalten ein zusätzliches Gen - ycf26 - das war nicht in anderen 

Cryptomonas Stämme. Vor-und Nachteile der Langstrecken-und PCR-Primer-Walking-

Sequenzierung Kombination erörtert. 

Auf der Grundlage der erhaltenen Domain-Analysen scheinen alle ycf26 von sekundären 

Plastiden inaktiv zu sein und auf dem Weg zu pseudogene als ihre Funktion verändern. 

Eine weitere zusätzliche Gen - ORF403 Codierung Tic22 Protein - auch wurde die 

konservierte Domänen und phylogenetische Analyse geleistet. Einige Besonderheiten der 

ORF403 in rhodoplasts und cryptophyten plastome wurden gefunden. 

Drei Protein-kodierenden Gene – chlI, rps4 und rbcL - wurden als phylogenetische 

Marker getrennt oder in Kombination. Die Ergebnisse bestätigten, dass ein farbloses 

Linie (von CCAC 0056, CCAP 977/2a, M2452, M2180) beschleunigten evolutionären in 

allen Gen-und / oder Protein-Bäume  hatte. 

Die Beobachtungen auch darauf hin, dass chlI Gen erhöhte seine Substitution Rate früher 

als rps4 und rbcL Gene sowie die erhöhten Sätze nach chlI> rps4> rbcL evolutionären 

könnte. Obwohl mit mäßiger Größe (609 bp), rps4 eine Entwicklung Rate weder so hoch 

wie in chlI -Gen noch so niedrig wie in rbcL Gen produziert akzeptabel phylogenetische 

Bäume für beide Nucleotid-und Protein-Ebene war. Daher rps4 Gen scheint besser 

geeignet enoding Plastiden-Protein-Gen-Maker für phylogenies als seine Schwestern, 

Chli und rbcL Gene zu sein. 

Das Verhältnis von NNC auf NNU in zwei-fach entartet NNY Codons wurde für jedes 

Gen und diskutiert. Es ist möglich, dass die Verschiebung der Codon-Nutzung von NNC 

zu NNU korrelierte nicht zur Entspannung der funktionellen Einschränkungen und / oder 

Verringerung der Genexpression Ebenen. Außerdem ist die Nutzung von NNU Codons 



über die NNC in zwei-fach entartet NNY Codon durch neutrale Mutation Druck und 

nicht durch Auswahl, gefolgt von der schrittweise Beschleunigung der evolutionären 

Kurs 

Ein mögliches Szenario für die Beziehungen zwischen den Verlust der Photosynthese, 

der zunehmenden Substitution von interring Gene und Uhrzeit der unterschiedlichen 

Linien war in farblos. 
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1.1 The principal characteristics of the Cryptophyta cell 

The Cryptophyta (crypto means "hidden" and phyta means "plant [phylum 

name]"), the phylum of which individuals are called cryptophytes, or 

cryptomonads (monad means "single object [unicell]") is a small group of 

flagellates, distributing in fresh, salt, and brackish water environments. This 

division consists of more than 20 genera (Chroomonas, Cryptomonas, 

Falcomonas, Geminigera, Goniomonas, Guillardia, Hemiselmis, 

Plagioselmis, Proteomonas, Storeatula, Rhodomonas, Teleaulax etc…) 

and approximately 200 species, half of which living in freshwater and the rest 

in marine environment (van den Hoek, 1996; Lee, 1999; Clay et al., 2001; 

Hoef-Emden & Melkonian, 2003; Hoef-Emden, 2005a; Hoef-Emden, 2007, 

Hoef-Emden and Archibald, 2008a). 

The cryptophyte cell appearances are ovoid to sole-shape, around 10 – 50 µm in 

size and have a dorsoventrally motif with a convex shape in the dorsal side and 

a flattened one in the ventral side (see Fig. 1.1.1) - ventral faces being defined 

by with the cell is invaginated (Hoef-Emden and Archibald, 2008a).  

Cells are naked, lack of true cell wall, but covered by periplast, a sandwich-

layered structure which is proteinaceous and is subdivided into inner and 

surface periplast components (IPC and SPC, respectively) with the plasma 

membrane in between. The IPC contains protein and consist of single sheet or 

multiple plates which have various shapes. The SPC, which is immediately 

outside of plasma membrane, contains plates, heptagonal rosette scales, 

mucilage or a combination of any of these (Hoef-Emden and Archibald, 2008a).  

They have two unequal flagella emerging from above a deep furrow-gullet 

system (cells have a slit-like ventral opening or tubular invagination, 

respectively) located on the ventral side of the cell. The wall of this system is 

lined by numerous ejectosomes (explosive organelles) similar to trichocysts. 
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Some genera, such as Cryptomonas, have a combination of furrow and gullet, 

while other genera may have either only gullet or only a furrow. The flagella of 

cryptophytes, which differ in length, resemble those of stramenoplile. Two 

opposite rows of stiff flagellar hairs (mastigonomes) are carried by longer 

flagellum, while only single shorter row is in the shorter flagellum (Hoef-

Emden and Archibald, 2008).  

Most of autotrophic Cryptophyta contain one or two parietal plastids in bi-lobed 

and/or H-shaped form response for photosynthetic activities while 

phagoptrophic genus Goniomonas has no plastid. In the heterotrophic lineage 

Cryptomonas paramaecium [formerly Chilomonas paramaecium (Hoef-Emden 

& Melkonian, 2003)], the plastids are still present but are called as leukoplast 

due to the missing of photosynthetic pigments. The plastid is surrounded by 

four distinct membranes: two from chloroplast endoplasmic reticulum and two 

from the chloroplast envelope (Hoef-Emden and Archibald, 2008a).  

In the space between the two inner and outer membranes, called periplastidial 

compartment, the nucleomorph, starch granules and 80S ribosomes are located. 

The nucleomorph can be interpreted as the vestigial nucleus of the red algal 

endosymbiont that gave rise to the chloroplasts of the Cryptophyta. Inside of 

the plastid, the thylakoids are often arranged in pairs, to form lamella with no 

girdle lamellae; sometime, lamella with a larger number of thylakoids is found 

(Hoef-Emden and Archibald, 2008a).  

A single pyrenoid (proteinaceous structure contains high amounts of 

paracrystalline ribulose-1,5-bisphosphate carboxylase/oxygenase) may be 

present centrally in the plastid, towards the dorsal side of the cell. In bi-lobed 

plastids this position corresponds to the bridge between the two plastid lobes. In 

some species, two or more pyrenoids are closely appressed to the left and right 

inner sides of the plastid lobes (Hoef-Emden and Archibald, 2008).  
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The natural colors of the cryptophytes can be blue, blue-green, reddish, red-

brown, olive green, brown or yellow-brown, since they contain chlorophylls a 

and c2 (but not chlorophyll b) on the outside of the thylakoids and one kind of 

phycobiliproteins in the thylakoids lumina, no phycobilisomes (Lee, 1999). 

According to Hoef-Emden (2008b), there are eight cryptophyte biliproteins 

named according to their absorption maximum: PE (phycoerythrin) 545, PE 

555, PE 566, PC (phycocyanin) 569, PC 577, PC 612, PC 630, PC 645.  

Since the plastids of the cryptophytes were originated from a red alga, it is also 

termed a rhodoplast to differentiate it from the chloroplasts of the green lineage 

and cyanelle of glaucophyte algae derived from endosymbiotic cyanobacteria 

(van den Hoek, 1996). 

All cryptophyte algae contain ejective organelle called ejectosome or 

ejectisome. They occur in two sizes in the cells: the small one is located 

underneath the cell surface while the larger line a sub-apically and ventrally 

located cell invagination. When inactivated, the ejectosomes are two connected 

ribbons tightly coiled like springs: the central and peripheral larger spiral 

ribbons. When the central tube “ejects”, it pulls the spiral tube along its body. 

These two ribbons will be discharged when the cell exposes to environmental 

stimulus and the cells try to escape from the source of danger by jumping away 

in a zig-zag course. The formation of ejectosome seems to be involved with 

Golgi complex (van den Hoek, 1996; Lee, 1999; Clay et al., 2001, Hoef-Emden 

and Archibald, 2008a).  
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Fig. 1.1.1: Morphology of the cryptophytes. © 2008 Kerstin Hoef-Emden. 
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1.2 The genomes of cryptophytes 

Douglas et al. (1990) demonstrated phylogienatically that cryptophytes have 

originated from two different eukaryotic cells via secondary endosymbiotic 

process: a heterotrophic protozoon ancestor engulfed a eukaryotic 

photoautotrophic alga, but instead of being digested completely the “eukaryotic 

photoautrophic alga” was remained and reduced to a complex plastid. As a 

result, four phylogentically distinct genomes are presented in the cryptophytes 

(see Fig. 1.2.1). The host cell contributed the nucleus and mitochondrion; the 

engulfed alga supported its nucleus (now so termed a nucleomorph) and 

chloroplast genome as well as cytosol of the red alga with ribosome and starch 

synthesis. While the ancestor of eukaryotic photoautotrophic alga was accepted 

widely to be rhodophyte alga (red alga), the ancestor of the host cell component 

is still in the debate (Douglas et al., 2001; Cavalier-Smith, 2002, Hoef-Emden 

and Archibald, 2008).  

 

Fig. 1.2.1: Illustration of the secondary endosymbiotic process (above) and 

four phylogenetically distinct genomes in the cryptophytes (copied from 

Douglas et al., 2001). 
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Genomes of chloroplast and mitochondria are double-strand circular DNA. 

While cryptophyte mitochondria genome sizes are around 48.5 kb and 60.5 kb 

[Rhodomonas salina (Hauth et al., 2005) and Helmiselmis andrenii CCMP644 

(Kim et al., 2008), respectively], the sizes of cryptophyte plastomes are two or 

three time larger. Plastid genome of G. theta is 124.5 kb (Douglas & Penny, 

1999) and R. salina is 135.8 kb (Khan et al., 2007b) in size that are recorded the 

largest secondary endosymbiotic genomes thus far.  

Some differences in characteristics among cryptophyte plastomes and to other 

plastid genomes of chromophytes and rhodophytes, mainly in the presence or 

absence of one or some genes, were found. For example, there are 12 genes 

presented in R. salina but not found in G. theta; and 8 genes are in G. theta but 

are absent from R. salina; HlpA gene (a histone-like protein) presented in G. 

theta, R. salina, Cyanidioschyzon merolae, Galdieria sulphuraria, but not 

found in haptophytes, heterokonts and nucleus-encoded in apicomlexans. The 

intron seems to be not an element of any chromist and red plastomes but they 

are still kept in R. salina plastome. And most surprisingly, the R. salina 

plastome acquired a gene encodes the tau/gamma components of bacterial DNA 

polymerase III (dnaX) by lateral gene transfer (Khan et al., 2007b). 

Except for genus Goniomonas, all cryptophytes possess small double-

membrane bound organelles located in the space between chloroplast and 

chloroplast endoplasmic reticulum called nucleomorph. It has nuclear pore-like 

structure and an electron-dense region similar to a nucleolus. A broadly survey 

the karyotypic structure of nucleomorph genomes by using pulsed-field gel 

electrophoresis done by Lane et al. (2006b), Tanifuji et al. (2006) and Phipps et 

al. (2008) showed that the genome sizes of cryptophyte nucleomorphs are quite 

different. The smallest and the largest ones are 450 kb and 845 kb in colorless 

C. paramaecium CCAP 977/2a and pigmented Rhodomonas sp. CCMP 1178, 

respectively. Even though the sizes are distinct, all Cryptophyta nucleomorph 

always contain three small linear chromosomes. Interestingly, this feature is 
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shared universally with an unrelated algal group, the chlorarachniophytes. Still 

now, there are only two fully sequenced nucleomorph genomes, one of G. theta 

and one of Hemiselmis andersenii, with 551 and 572 kb in size, respectively 

(Douglas et al., 2001; Lane & Archibald, 2006a). Both have very high level of 

gene compaction, 1 gene/kb. They eliminated most metabolic functional genes, 

but kept genes encoding protein required for basic eukaryotic cellular process 

and 30 genes that their gene products will be transferred to chloroplast. To 

express the genes, cryptophyte nucleomorph genomes need hundreds of 

genetic-housekeeping genes. Interestingly, the sizes of proteins produced by 

cryptophyte nucleomorph are smaller than those in their free-living alga 

ancestor are. Even, in the smaller genome, G. theta, the producing of protein is 

less than that of H. andresenii. The evolutionary processes seem to control 

strongly the capacity of the nucleomorph genome in which the genome 

compaction occurred not only in noncoding DNA but also in coding regions. 

The evolution of their protein structures and functions, therefore, has been 

examined (Lane & Archibald, 2006a).  

The host cell nucleus, lying in the posterior half of the cell, is quite large, 350 

Mb in size, with 40 to 210 linear chromosomes to be counted at metaphase (van 

den Hoek, 1996; Lee, 1999; Douglas et al., 2001). However, little molecular 

genetic information of the cryptophyte host nuclear genomes is available. 

Fortunately, Khan et al., (2007a) published the partial results of the sequencing 

projects for two distantly related cryptomonad nuclear genomes, 

photoautotrophic R. salina CCMP 1319 and heterotrophic C. paramaecium 

CCAP 977/2a. This publication provided the first insight of the partial structure 

and composition of the cryptomonad nuclear genomes.  

1.3 Sequencing strategies for Cryptophyta genomes 

Since the first plastid physical map of G. theta (mislabeled as Cryptomonas Φ) 

published (Douglas, 1988) the genome studies of phylum Cryptophyta have 
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developed strongly with the assistance of the cost-effective, high-throughput 

sequencing facilities.  

At the first stage of genomic era, Douglas & Penny (1999) used the most 

common strategy to read the whole plastid genome of G. theta. They isolated 

the chloroplast DNA from total DNA by ultracentrifugation with Hoechst 

33258-cesium chloride. According to density gradient, each genome distributed 

as independently separated bands. The plastid DNA was fractionated by upward 

displacement. Clear chloroplast DNA, then, was cut into small fragments by 

several different restriction endonucleases and cloned into suitable vectors. To 

get the physical map, the authors used several significantly probes containing 

reliable makers such as 23S rRNA, 16S rRNA, psaA, rbcL, etc … These clones 

were read for nucleotide compositions. 

The advantages of genome DNA isolation by ultracentrifugation with Hoechst 

33258-cesium chloride are allowing the researchers to obtain fractions of other 

genomes (mitochondria, nucleormorph and host nucleus) in addition to plastid 

genome. Hoechst 33258 or bisbenzamide is a member of a family of fluorescent 

stains for labeling DNA in fluorescence microscopy and fluorescent-activated 

cell sorting, excited by ultraviolet light at around 350 nm. This dye associates 

with AT-rich portions of the DNA and causes regions of DNA with higher 

proportions of AT to be buoyed up in the gradient (Sambrook & Russell, 2006). 

Utilizing this, Douglas et al. (2001) published the fully nucleotide compositions 

of G. theta nucleomorph genome with DNA material obtained from the above 

centrifugation process.  

However, one of the challenges of this approach is the contamination. Because 

the bands of genome DNA are very close together, the contamination among 

genomes cannot be avoided when pick up a certain genome DNA (Jansen et al., 

2005).  
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To ovoid the problems of contamination, the shotgun strategy seems to be more 

powerful in sequencing projects (Sterky & Lundeberg, 2000; Jansen et al., 

2005). In this approach, the ultracentrifugation is ignored but total DNA can get 

by any standard methods, and then sheared them into fragments with the size up 

to 150 kb. The 40 – 50 kb or/and 100 – 150 kb are separated by pulse field gel 

electrophoresis, and then collect for cloning into Fosmid or BAC, respectively. 

Using the hybridization techniques, in which the probes prepared by PCR 

technique of the marker genes distributed throughout the plastome, the 

chloroplast-gene-holding fragments can be recognized. A minimal collection of 

Formids that covers the whole plastid genome is obtained and then the inserts 

are read by any available sequencing techniques. In case of using BAC library, 

very few of clones are needed to read the whole plastome, dependence on its 

size. This strategy was employed by Khan et al., (2007b) and Lane & Archibald 

(2006a) for sequencing the entire R. salina CCMP 1319 plastome and H. 

andersenii nucleomorph genome. The host nuclear genome sequencing projects 

of photosynthetic R. salina CCMP 1319 and heterotrophic C. paramaecium 

CCAP 977/2a are now ongoing but the partial results using shotgun approach 

were published (Khan et al., 2007a). 

One of the advantages of the shotgun sequencing is that all genomes of certain 

examined organism can be cloned into Fosmid or/and BAC libraries. The 

clones, then, are stored for further investigation. Secondly, the readings based 

on the well-chosen Fosmid or BAC libraries help to save time at later stages of 

sequencing projects such as base-calling and assembling the inserts (Jansen et 

al., 2005).  

Generally, the plastome sizes are extremely small in comparison with total 

cellular DNA, therefore the ratio of nonplastid-to-plastid clones are very high. 

Thus, a great number of clones are needed for screening to guarantee enough 

plastid clones will be get to cover the whole plastome. Besides, the shotgun 
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strategy requires more time, cost, labors and high-tech instruments (Jansen et 

al., 2005). 

Even though the above strategies helped the researchers harvest a huge amount 

of molecular information from interesting Cryptophyta genomes, they still have 

had some limitations as pointed out. Specially, both approaches require the 

remarkable initial materials. It is impossible for rare or hard to culture subjects, 

for example colorless Cryptomonas SAG 977-2f.  

Another approach for collecting genome structures and sequences is the 

combination of long-range PCR and primer-walking strategies. At first, a set of 

large fragments (up to 20 kb) covering the whole plastomes are amplified by 

using highly conserved chloroplast primers. The amplicons, then, are used to 

produce smaller segments for cloning or reading directly by any sequencing 

methods. The first DNA reading is started with two universal primers at two 

ends of the segments. The newly obtained DNA databases are used to construct 

new sequencing primers for the second reaction. This process is continued until 

the whole nucleotide compositions of interesting fragments are fully read on 

both strands. In this approach, less initial DNA samples are needed (Ponce & 

Micol, 1992; Cheng et al., 1994; Jansen et al., 2005).  

The combination of long-range PCR and primer-walking approaches was 

mainly applied in mitochondria sequencing projects, especially in animal 

mitochondria since the mitochondrial sizes were about 16 kb in length. The 

researchers using this strategy valued that it helped to collect entire 

mitochondrial sequences more rapidly than traditional methods, e.g. cloning the 

mitochondrial DNA into suitable vectors and sequencing them. Moreover, this 

approach were very useful in case the total DNA was not enough (up to 

hundreds of milligram) to subject for ultracentrifugation as in traditional 

strategies. In addition, this approach required standard molecular biology 

facilities only (Giesecke et al., 1992; Hu et al., 2002; Yamauchi et al., 2004a; 
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Yamauchi et al., 2004b; Kim et al., 2005; Munemasa et al., 2006; Mereu et al., 

2007). 

However, the long-range PCR combined with primer-walking sequencing 

approach seemed to be un-favorite to chloroplast genomic researchers. Almost 

only one group of researchers employed long-range PCR to sequence three 

basal angiosperm genomes (Goremykin et al., 2003a; Goremykin et al., 2003b; 

Goremykin et al., 2004). Geromykin’s group isolated the entire chloroplast 

plastome by long-range PCR techniques. The products with the size up to 20 

kb, then, were sheared by nebulization to get the smaller fragments of 0.5 to 1.5 

kb in length, which were sub-cloned to suitable vectors for reading nucleotide 

compositions. This strategy seems to be a modified version of shotgun 

approach, in which the total DNA isolation step is replaced by long-range PCR 

to cover plastid genome only. 

Some disadvantages of this approach were pointed out by Jansen et al. (2005) 

(1) The primers for long-range PCR may be useless if plastomes 

changed their gene orders or the primers cannot hit expected sites due to 

the substantial sequences divergence;  

(2) This approach replies on PCR technique which can sometime give 

negative results or false positive in certain DNA fragments; 

(3) The designing primers for long-range PCR could be problematic if 

the chloroplast genome information of more or less relative taxa are not 

available;  

(4) Time-consuming may be a minus when comparison with other 

available methods.  
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Investigating the completely sequenced chloroplast genomes from 

Cyanobacteria to higher plant showed that there is core set of 45 genes retained 

in all taxa (Martin et al., 1998; Martin et al., 2002; Grzebyk et al., 2003; 

Nozaki et al., 2003). This gene list is extremely useful when applied to 

sequence certain chloroplast(s). The construction of universal primers for 

chloroplast is thankfully easier. Subsequently, the primers can be combined 

together in the most optimal manners to increase the probability of amplifying 

the fragment in between the two selected genes. The amplicons, afterward, can 

be sequenced following the available standard protocols. Hence, the 

disadvantages of the long-range PCR combined with primer-walking 

sequencing approach seem to be overcome.  

1.4 Aims of study 

Traditionally, the common approach in plastid phylogenetic studies is that 

sequence one or several highly conserved genes such as ribosomal operon, 

transfer RNAs and protein – coding genes, then construct the phylogenies based 

on single or concatenated data sets (Hoef-Emden, 2005b). Another approach is 

that using whole plastid genomes to analyze the molecular evolution (Martin et 

al., 1998; Martin et al., 2002; Grzebyk et al., 2003; Nozaki et al., 2003). The 

phylogenetic relationship among cryptophyte algae was well established by 

applying the former approach (Marin et al., 1998; Clay et al., 1999; Deane et 

al., 2002; Hoef-Emden et al., 2002; Hoef-Emden & Melkonian, 2003; Hoef-

Emden, 2005a; Hoef-Emden, 2007).  

Hoef-Emden (2005a) used both the partial nuclear and nucleomorph ribosomal 

operon phylogenies to show a new and unexpected finding that at least three 

different colorless lineages were found in the genus Cryptomonas. This raised 

questions about the evolutionary history of these interesting objects and their 

relatives as well as the role of plastid genomes such as whether these three 

lineages resulted from similar or from different evolutionary events or what are 
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the mutual relationship or/and roles of  photosynthetic genes in the absence of 

photosynthetic activities, etc. 

In the first stage of the thesis, the rbcL genes (1,5-biphosphate 

carboxylase/oxygenase [RuBisCO] large subunit) was chosen for searching and 

sequencing among photosynthetic and heterotrophic Cryptomonas species. The 

data set was then done a phylogenetic analysis to compare with those of nuclear 

rDNA (concatenated SSU rDNA, ITS2 and partial LSU rDNA) and 

nucleomorph SSU rDNA. The rbcL sequences also were subjected to examine 

the codon usage of two-fold degenerate NNY codons to deduce the differences 

of functional constraints and expression levels in this gene in the genus 

Cryptomonas (the later works were done by Dr. Kerstin Hoef-Emden).  

In the next stage, an ambition for investing deeply the evolutionary pathways of 

the colorless plastids by comparison of their plastome information to those of 

pigmented relatives was planned. In the proposal, strains C. paramaecium 

977/2a and C. oobovoidea CCAC 0031 (representative for a heterotrophic and 

autotrophic Cryptomonas, respectively) were chosen to isolate by 

ultracentrifugation with Hoechst 33258-cesium chloride then sequence by 

shotgun approach. However, the plastid genome isolation was unsuccessful 

repeatedly due to the technical problems. To save the time, the object has been 

changed in which the fragment from 16 rRNA to rbcL genes (around 7 kb) was 

replaced for whole plastid genomes. Another significant alternation was that 

long-range PCR and primer-walking approaches were applied to read these 

fragments. The numbers of taxon sampling also increased to 22 strains in which 

five strains were not Cryptomonas.  

The protein-coding genes harvested from these fragments were used as 

alternative makers for Cryptomonas phylogenies to compare with other 

previously results published recently. The study also attempts to find new more 

evidence to explain the relationship between the changing from autotrophic to 

heterotrophic lifestyle in colorless Cryptomonas lineages. 
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2.1 Chemicals and medium 

β-mercaptoethanol  Sigma 

Ammonium acetate Merck 

Bromophenol blue Merck 

Agarose Invitrogen 

Amoniumpersulfat (APS) Sigma 

Biotin  

Ca(NO3)2.4H2O 

Serva 

Merck 

Chloroform Applichem 

CoCl2.6H2O Merck 

CTAB (Cetyltrimethyl ammonium bromide) Fluka 

DMSO Merck or/and Roth 

EDTA (Titriplex III) Serva 

Ethanol (pure for analysis 99.8%) Roth 

Ethidiumbromid 1% Applichem 

FeSO4.7H2O Merck 

Glacial acetic acid Merck 

Glycerol Sigma 

H3BO3 Merck 

HCl Merck 

HEPES Roth 

Isoamylalcohol Merck 

KNO3 Merck 

KOH Merck 
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Lab-Lemco Broth Oxoid 

MgSO4.7H2O Merck 

MnCl2.4H2O Merck 

NaCl 

Niacinamide 

Merck 

Sigma 

Sodium acetate trihydrate Merck 

(NH4)2HPO4 Merck 

TEMED (N,N,N’, N’-Tetramethylethylendiamin) 

Thiamine-HCl 

Fluka 

Serva 

Tris, 

Vitamin B12 

Invitrogen 

Serva 

Urea Sigma 

Xylene cyanol Merck 

ZnSO4.7H2O Merck 

2.2 Algal culture medium 

Thirty-one cryptophyte strains used in this study were listed in the Table 2.1. Their 

participating in the first part or/and second part of the project (rbcL and 16S rRNA-

rbcL fragments, respectively) were indicated clearly in the Table 2.2.1.  

Five colorless strains were grown in CHM medium at 15oC without light. The 

photoautotrophic strains were grown in WARIS-H medium (Kies, 1967: modified, 

(McFadden & Melkonian, 1986) at 15oC, under 70 µmol photon x m2 x sec-1 light with 

a 14:10h light: dark cycle. Stocks were checked every week to be sure contamination 

free, when the cells reached high density, they were transfer into sterile Erlenmeyer 

flasks containing 75 ml new autoclaved medium.  
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WARIS-H medium 

Stock solutions and final concentration in 

culture medium 

Addition per 1 

litre stock 

solution 

Addition per 1 

litre culture 

medium 

1. KNO3 (1.00 mM)  100.00 g  1 ml 

2. MgSO4.7H2O (81.10 µM) 20.00 g  1 ml 

3. (NH4)2HPO4 (0.15 mM)  20.00 g  1 ml 

4. Ca(NO3)2.4H2O (0.42 mM)  100.00 g  1 ml 

5. HEPES (1.00 mM) 238.31 g 1 ml 

6. P-II Metals   1 ml 

EDTA (Titriplex III) (8.06 µM) 

H3BO3 (18.43 µM) 

MnCl2 .4 H2O (0.73 µM) 

ZnSO4 . 7 H2O (73.00 nM) 

CoCl2 . 6 H2O (16.80 nM) 

3.00 g  

1.14 g 

144.00 mg 

21.00 mg 

4.00 mg  

 

Dissolve EDTA (Titriplex III) and 

boric acid in bidistilled H2O, then add 

metals one after the other. 

 

 

7. Fe-EDTA   1 ml 

EDTA (Titriplex II)(17.86 µM)  

FeSO4.7H2O (17.90 µM) 

1 N KOH 

5.22 g 

4.98 g 

54.00 ml 
 

EDTA (Titriplex II) and FeSO4.7H2O is 
heated for 30 min (100oC); KOH is added to 
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the cooled mixture 

8. Vitamins   1 ml 

Vitamin B12 (0.15 nM) 

Biotin (4.10 nM) 

Thiamine-HCl (0.30 µM) 

Niacinamide (0.80 nM) 

0.20 mg 

1.00 mg 

100.00 mg 

0.10 mg 

 

pH of this solution should be around 
pH 7.0 

 
 

9. Soil Extrac   10 ml 

Preparations of stock solutions were done by technical in the lab.  

Preparation of soil extract: 10g of garden-soil was mixed with 120 ml Super Q water 

and boiled for 10 minutes. Afterwards it was centrifuged for 10 minutes (low speed), 

and the supernatant was filtered through a series of membrane filters from 1.2 µm – 

0.1 µm pore size. The remaining filtrate was adjusted to 100 ml with bi-distilled water. 

Aliquots of 10 ml were stored frozen. The soil should not be recently fertilized and 

should not contain too much humus. 

Preparation of culture solution: Added 1 ml of stock solutions 1-8 to 1000 ml of 

bidistilled water. Added 1 ml of thawed soil extract (stock solution 9); adjusted the pH 

to 7.0 and autoclaved. 

CHM (Chilomonas medium) 

Sodium acetate trihydrate 1g 

Lab-Lemco Broth 1g 

Water 1 l 

Autoclave and keep in cold room (15 °C) at least 3 days before use. 
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Table 2.2.1: List of Cryptophyta strains were used in this study 

  

Strain 

 

rbcL 

project 

16S rRNA-

rbcL 

fragment 

project 

01 C. commutata  CCAC 0109 (M0739)  Y Y 

02 C. erosa CCAC 0018 (M0788) N Y 

03 C. loricata  M2088 N Y 

04 

05 

C. oobovoidea CCAC 0031 (M1094) 

C. oobovoidea CCAP 979/46 

Y 

Y 

Y 

N 

06 C. curvata CCAC 0006 (M0420) N Y 

07 

08 

C. borealis CCAC 0113 (M1083)  

C. borealis SCCAP K-0063 

Y 

Y 

Y 

N 

09 C. gyropyrenoidosa sp. nov. CCAC 0108 (M1079) Y Y 

10 C. lundii CCAC 0107 (M0850) N Y 

11 

12 

C. marssonii CCAC 0086 

C. marssonii CCAC 0103 (M1475) 

Y 

Y 

Y 

N 

13 C. ovata CCAC 0064 (M0847) Y Y 

14 

15 

16 

17 

18 

C. paramaecium CCAP 977/1 

C. paramaecium CCAP 977/2a 

C. paramaecium CCAC 0056 (M1303) 

C. paramaecium M2452 

C. paramaecium M2180 

Y 

N 

Y 

Y 

Y 

N 

Y 

Y 

Y 

N 
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19 

20 

C. sp. M1634 

C. SAG 977-2f 

Y 

Y 

Y 

Y 

21 C. phaseolus SAG 2013 N Y 

22 

23 

24 

C. pyrenoidifera CCAP 977/61 

C. pyrenoidifera CCMP 0152  

C. pyrenoidifera M1077 

Y 

Y 

Y 

N 

Y 

N 

25 

26 

C. tetrapyrenoidosa M1092 

C. tetrapyrenoidosa NIES 279 

Y 

Y 

Y 

N 

27 Chroomonas sp. SAG 980-1  N Y 

28 Hemiselmis tepida CCMP 0443 N Y 

29 Proteomonas sp. CCPM 0704 N Y 

30 Rhodomonas sp. M1480 N Y 

31 Teleaulax sp. SCCAP K-416 N Y 

 

Note:  Y – yes, participated in the project; N – No participated in the project 

CCAP: Culture Collection of Algae and Protozoa (UK); M: Algae Culture Collection 

Melkonian at the University of Cologne (Germany); CCAC Culture Collection of 

Algae at the University of Cologne (Germany), SCCAP: Scandinavian Culture Centre 

for Algae and Protozoa at the University of Copenhagen (Denmark); NIES: Microbial 

Culture Collection at the National Institute for Environmental Studies (Japan). SAG 

(Sammlung von Algenkulturen der Universität Göttingen, Germany), species names 

according to Hoef-emden & Melkonian (2003), Hoef-Emden (2007) and Land & 

Archibald (2008). 
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2.3 Harvest the cells for DNA isolation 

In general, cells were harvested at the high density (105 - 106 cells/ml) empirically. 

Two ml of stock culture were poured into one sterile Eppendorf tube then centrifuged 

at 1000 g for 10-20 minutes (Beckman Coulter, Krefeld, Germany). The pellet was 

washed with fresh culture medium or dH2O to remove old culture medium, centrifuged 

again. The supernatant was removed completely while the pellet was stored by liquid 

nitrogen or in deep cold (-70°C) at least 30 minutes before continuing the isolation of 

total DNA.  

2.4 Isolation of total genomic DNA by CTAB method 

To quickly isolate total DNA, the pellet obtained above was processed either by 

DNAEasy Plant MiniKit (Qiagen) according to manufacturer’s procedure or CTAB 

method (Hoef-Emden et al., 2002 modified from Doyle & Doyle, 1990). Suspended 

frozen cells in 2X CTAB-buffer and 2 µl β-mercaptoethanol. Vortexed immediately 

and incubated in 60 °C (water-bath), for 10 – 15 minutes (β-mercaptoethanol broke the 

S-S bonds while CTAB formed a soluble complex with the DNA in the presence of 

high salt; cell wall debris, denatured proteins, and polysaccharides were removed by 

extracting the aqueous phase with chloroform). Added 1 ml chloroform-

isoamylalcohol, then wrapped tube with aluminum, shook (inverted) gently the tube 

for 10 minutes continuously at room temperature. Centrifuged by small table 

centrifuger for 2 – 3 minutes at maximum speed in order to separate the sample into 

two phases (organic/ aqueous). Transferred the aqueous phase (containing the DNA) 

into new-labeled 2ml- Eppendorf tube, without traces of the other phases (pipette 

slowly helps with this); incubated on ice; filled up volume with water to 1 ml. 

Repeated these steps 3-5 times to remove completely contaminants. Added 0.7 ml 

Isopropanol to precipitate DNA, immediately inverted tube several times, incubated at 

-20°C for 10 minutes (optimally, DNA-flakes should be visible). Centrifuged the tube 

at 15300 rpm for 5 – 10 minutes by cooled desk-centrifuge at 4°C (Sigma 2K15), 
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discarded supernatant very carefully (colorless pellet was usually visible). Added 1 ml 

of cold 70 – 80% Ethanol (- 20°C), inverted gently, then incubated for 5 min (-20°C). 

Centrifuged again, discarded the supernatant; sometimes, the DNA-pellet was no 

longer firmly attached, and swam somewhere. Opened the tube and dried the pellet at a 

clean place at room temperature, 30 minutes to 2 h, pellet had to be dried (no traces of 

ethanol).  

Added 1 ml TE-buffer to dilute total genomic DNA (working on ice 4°C), transferred 

to new free-DNA Eppendorf tube (if necessary; mixed for some time). Applied 

RNase-I (Ribonulcease A type I-A from bovine pancreas, Sigma-Aldrich, R4875) to 

destroy unnecessary RNA (final concentration should be 10 µg/ml), then incubated for 

30 minutes to 1 h at 37°C, mixed gently during the reaction. Transferred the solution 

to a new free-DNA 5ml Falcon tube before added 2 ml ammonium acetate 2.5 M and 

2.5 ml cold (4°C) absolute ethanol; mixed well and incubated again for 1 – 2h or 

overnight at -20 °C. Longer time would tend to yield more DNA, but also more 

contaminants. Centrifuged at 10000 g for 10 minutes, 4 °C. Discarded carefully the 

supernatant and washed by 80% ethanol (cold) for 10 minutes; transferred to new 

sterile 2 ml tube; centrifuged again for 5 minutes at 10000 g 4 °C. Discarded carefully 

the supernatant; dried 30 – 60 minutes at the clean air. Added 1 ml TE buffer, mixed 

by pipette gently then stored at - 20 °C until use.  

The DNA concentration was determinate by monitoring absorbance at 260 and 280 nm 

in a UV spectrophotometer (Eppendorf). 

CTAB buffer for 1l: 

 100 ml  of 1 M Tris, pH 8.0 

 280 ml  of 5 M NaCl 

 40 ml   of 0.5 M EDTA  

 20 g   of CTAB (Cetyltrimethyl ammonium bromide) 

Ethanol: 

 Absolute 
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 Cold 90%, 80% and 70% (store at - 20 °C) 

CI Chloroform-Isoamylalcohol (24:1 v/v) 

Chloroform 24 ml 

Isoamylalcohol 1 ml 

store at 4°C in dark glass bottle. 

Ammoniumacetate 2.5 M: 

 250 ml of Ammoniumacetate 10 M 

TE buffer for 1l use: 

 10 ml of 1 M Tris, pH 8.0 

 2 ml of 0.5 M EDTA 

1 M Tris, pH 8.0 for 1 l: 

 121.1 g Tris 

 700 ml ddH2O dissolve Tris and bring to 900 ml. 

 pH to 8.0 with concentrated HCl (will need ~50ml) and bring to 1 l. 

0.5 M EDTA pH 8.0 for 1l:  

 186.12 g of EDTA 

 750 ml ddH2O add about 20 g of NaOH pellets  

 slowly add more NaOH until pH is 8.0,  

EDTA will not dissolve until the pH is near 8.0.  

5 M NaCl for 1l 

 292.2 g of NaCl  

 700 ml ddH2O dissolve and bring to 1 L.  

Ammoniumacetate 10 M: 

  Ammonium acetate  770 g 

Glacial acetic acid   800 ml 

Add distilled H2O to make a final volume of 1 liter. 
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2.5 Amplify the plastid rbcL gene of Cryptomonas strains by 

BioTherm™ Taq DNA Polymerase and read their DNA 

compositions by SequiTherm EXCEL™ II DNA Sequencing 

Kit-LC and Li-Cor 4200L bidirectional sequencer 
 

At the first stage of the project, the Cryptophyta plastid rbcL gene was chosen to read 

its nucleotide composition prior phylogenetic analyses.  

2.5.1 Construct primers 

The rhodophyte/cryptophyte-specific rbcL primers were constructed manually by 

comparing and looking for highly conserved domains of around 100 rbcL genes of 

cryptophytes, rhodophytes and chlorophytes obtained from the EMBL/GeneBank 

database and were purchased from Metabion (Germany). The PCR products and 

length of sequenced products were expected around 1.3 to 1.4 kb. The names and 

approximate positions of those primers were given in Table 2.5.1.1 and Fig. 2.5.1.1. 
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Fig. 2.5.1.1: Approximate positions of the PCR (above) and sequencing primers 

(below). The positions had been aligned following the sequence of G. theta 

(AF041468). 
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Table 2.5.1.1: PCR and sequencing primers for amplifying and  

sequencing cryptophyte rbcL gene 

PCR PRIMERS 

Name SEQUENCE (5’ to 3’) 

CRYPrbcL1F 

CRYPrbcL2F 

CRYPrbcL3F 

CRYPrbcL1Rbiot 

CAA GGA GGA AWA YAT GTC TCA ATC  

AGG AGG AAW AYA TGT CTC CTC AAT CCG 

GAA TCT TCA ACA GCA ACW TGG AC 

5’biotin-TCA GCT GTA TCW GTA GAA GC 

SEQUENCING PRIMERS 

CRrbcL1R-700 

CRrbcL1046R-700 

CRrbcL1300R-700 

CRrbcL2F-800 

CRrbcL31F-800 

CRrbcL60F-800 

CRrbcL728-800 

IRD700-TCA GCT GTA TCW GTA GAA GC 

IRD700-ACC WGC CAT RCG CAT CCA CTT AC 

IRD700-TCT ARA GCY GTY ZGA AGA GGW CCA 

IRD800-AGG AGG AAW AYA TGT CTC AAT CCG 

IRD800-CTA AAT CCG TWG AAW CRC GGA CTCG 

IRD800-AAC GAA CGT TAT GAA TCA GGY G 

IRD800-CTC CAR CCW TTY ATG AGA TGG 

 

Note: CRYPsL1Rbiot was labelled at its 5’-terminus with biotin and all sequencing 

primers were labelled with the 700 nm (reverse primers) or 800 nm (forward primer) 

IR-fluorescent dye.  
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2.5.2 Set up conditions for PCR running 

Component for each PCR reaction:  

Reverse primer (10 pmol/µl):   0,25 

Forward primer (10 pmol/µl):   0,25 

dNTP (2mM) :   2,5 

Buffer 10X:   2,5 

Water:   17,5 

 BioTherm™ Taq DNA Polymerase (5UI/µl): 0,5 

DNA template (50-100 ng/µl)  1.5 

Reactions were run in an MWG biotech thermal cycler following by THD-PCR3 or 

THD-PCR5 program: 

THD-PCR3  

Initially denature the template: 95oC for 3’ 

Followed 30 cycles: 

Denature at 95 oC for 2’ 

Anneal at 45 oC for 2’ 

Extend at 68 oC for 3’ 

Ended with 68 oC for 3’ 

THD-PCR4 

Initially denature the template: 96oC for 3’ 

Followed 30 cycles: 

Denature at 95 oC for 1’ 

Anneal at 52 oC for 2’ 

Extend at 68 oC for 3’ 

Ended with 68 oC for 5’ 

After amplification, the samples might be kept at 4 oC overnight. 
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2.5.3 Purify PCR products by use streptavidin-coated dynabeads M-280 

system 

After the first PCR reaction using biotinylated primers, the amplified biotinylated 

DNA fragments were isolated by apply Dynabead M-280 system (Dynal, Olso, 

Norway). Took 5 µl of streptavidin-coated dynabeads solution for 1 PCR product. Put 

on magnetic field for 1-2 minutes, removed supernatant completely, and did not touch 

precipitate. Added 5 µl washing buffer, mixed gently and put on magnetic field again, 

discarded supernatant as before. Repeated washing step several times. Took PCR 

products (at least 5 µl) and mixed with washed streptavidin-coated dynabeads. Mixed 

well and laid on the table for 45 minutes for biotin-streptavidin reaction to take place. 

Mixed several times during this process to avoid partial reaction between PCR 

products and streptavidin-coated dynabeads.  

2.5.4 Prepare Pre-Mix and Mix for PCR-based sequencing 

Labelled 200 µl-PCR tubes with C, A, T, G for ddCTP, ddATP, ddTTP, ddGTP, 

respectively. Put 1 µl of each dNTP into correspond tube. 

Prepared Pre-Mix for each reaction: 

Water:  3,675 µl;  

SequiTherm EXCEL II Sequencing Buffer:  3,825 µl; 

SequiTherm EXCEL II DNA Polymerase (5 U/µl):  0.5 µl; 

Primer Forward or Primer reverse(1.0 pmol/ µl):  1 µl; 

Total volume:  9 µl. 

Mixed well, put on ice and in dark light condition until use.  

See Table 2.5.1.1 for the detail the names, compositions and binding sites of 

sequencing primers. 

After reaction between PCR products and streptavidin-coated dynabeads had been 

completed, the precipitated complex was washed as before with washing-buffer 3-5 
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times. The washing-buffer was removed by adding 5 µl of denionized water to the last 

precipitate then mixed well and poured out water completely. Pre-Mix was added 

immediately poured and pipette carefully. The last solution was Mix; it was already 

for use. One point eight µl of Mix was then distributed into each of labelled PCR tube 

containing 1 µl of dNTP. These tubes were laid immediately at 5 oC before applied to 

PCR machine.  

Program the thermal cycler for sequencing  

KHE-SEQ1 

Initially denature the template: 95 oC for 2’ 

Followed 30 cycles: 

Denature at 94 oC for 30” 

Anneal at 40 oC for 30” 

Extend at 70 oC for 1’ 

Ended with 69 oC for 5’ 

Reactions were run in an MWG biotech thermal cycler, after completion of PCR-

sequencing, applied 1.5 µl of red buffer into each PCR tube to kill enzyme. Stored at -

20 oC before reading sequences. 

2.5.5 Read the nucleotide compositions 

Double-stranded sequences were determined with Sanger sequencing techniques using 

SequiTherm EXCEL™ II DNA Sequencing Kit-LC for 66 cm gels according to 

manufacturer’s protocol (Epicenter Technologies) and a Li-Cor 4200L bidirectional 

sequencer (Li-Cor Biosciences, Bad Homburg, Germany).  

Electrophoresis conditions were set up Voltage (V): 2000; Current (mA): 35; Power 

(W): 50; Temperature (oC): 45; Time remaining: 30 minutes. The gel had been pre-

running for 30 minutes, while the samples were prepared in denaturation step by 

putting them into heat lock at 80 oC for 10-15 seconds. When denaturation step had 
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finished, the red buffer was applied for the sample (1µ/tube). Run progress was taken 

place for 18 hours.  

2.5.6 Proofread newly sequenced rbcL gene 

The AlignIR 2.0 (Licor-Biotechnology, Germany) program was used to assemble and 

proofread the sequences obtained. The multi sequence alignment editor SeaView 

(Galtier et al., 1996) was applied for the manual alignment of rbcL gene. 

2.5.7 Deposit the sequence data  

The newly Cryptophyta plastid rbcL sequences were submitted to gene bank to obtain 

the accession numbers by Dr. Kerstin Hoef-Emden. 

2.6 Amplify the the cryptophyte plastome 16S rRNA-rbcL 

fragments by MasterAmpTM Extra-long PCR kit and read 

their DNA sequences by BigDye Terminator v1.1 Cycle 

sequencing kit and automated ABI3730 sequencer 

In the second stage of the project, the long fragments in between 16S rRNA and rbcL 

genes (around 7 kb) of 22 cryptophytes were sequenced for some further phylogenetic 

analyses. At first, the long fragments were amplified by using MasterAmpTM Extra-

long PCR kit. The long PCR products were then re-amplified by BioTherm™ Taq 

DNA Polymerase to produce the two short overlapping fragments (around 4 – 4.5 

kb/fragment each) that would be used as the templates for reading the DNA sequences 

by automated ABI3730 system.  

The 16S rRNA–rbcL fragment was chosen as potential object because it satisfied 

following criterions: 

• Having some essential gene categories according to their functions: There are 4 

gene families observed in the 16S rRNA–rbcL fragments of G. theta and R. 

salina plastome: genes family for translational machinery (16S rRNA and rps4 
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gene); gene coding for photosynthetic apparatus (psaM); genes participate in 

biosynthetic process (chlI and rbcL); hypothetical or miscellaneous gene family 

(ycf26, ORF403); and tRNA genes. Having some essential gene families allows 

later analyzing make more sense.  

• Allowing to design universal primers for long-range PCR conveniently: 

Database of nucleotide sequences 23S rRNA, 16S rRNA and rbcL gene for 

Cryptophyta are now available in many gene banks (Hoef-Emden et al., 2002; 

Hoef-Emden & Melkonian, 2003; Hoef-Emden et al., 2005; Hoef-Emden, 

2005a). They are excellent resources for designing the primers for long-PCR.  

2.6.1 Design the primers for long-PCR 

To amplify the long fragment, primers for long PCR about 25 – 30 bp long were 

requested. They were constructed according to some standard considerations (Palumbi, 

1990):  

- Hit to highly conserved domains of ribosomal RNA, transfer RNA and protein-

coding genes; 

- Contain some G/C at their 3’ terminus to enhance the primer – template 

annealing step at those positions.  

To design the universal long primers binding at upstream end of rbcL gene, the rbcL 

gene database of genus Cryptomonas harvested from the first part of the project was 

utilized; the primers were named CRYPrbcL2R and CRYPrbcL3R, accordingly. 

To construct the conserved primer starting from 23S rRNA gene, the initial sequence 

database of cryptophyte ribosomal gene was needed. To fulfill this requirement, five 

Cryptomonas strains – CCACP 977/2a, M1634 (colorless strain), CCAC 0031, CCAC 

0109 and CCAC 0006 – were randomly chosen to sequence a small section of plastid 

23S rRNA gene. These obtained sequences were imported into Dr. Birger Marin’s 

plastid and Cyanobacterial ribosomal operon database for aligning. Two primers for 
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cryptophyte plastid rRNA operon were designed based on the highly conversed 

regions: domain C-D and helix G20 in 23S rRNA. They were named pt1Rlong and 

G20Rlong, respectively.  

Approximately positions, lengths and synthetic directions of long-primers were listed 

and illustrated in Table 2.6.1.1 and Fig. 2.6.1.1. 

Table 2.6.1.1: Primers for long-range PCR to amplify the  

cryptophyte plastid 23S rRNA-rbcL fragments 

pt1Rlong:  

 GCCACTRCCTAYAAGTCGCCGGCTCATTCTTCAAC  

from 585th to 620th position of G. theta platid 23S rRNA gene  

G20Rlong:  

 CTCTARCGCCTRCACCGGATATGGACCGAACTGTC  

from 2574th to 2609th position of G. theta platid 23S rRNA gene  

CRYPrbcL2R:  

 ATCWGTAGAAGCRTARTTRAAHGTDATRTCTTTCC  

end of rbcL; overlapping with CRYPrbcL1Rbiot (Hoef-Emden et al., 

2005) 

CRYPrbcL3R: 

 GCTTGRATACCRTCWGGRTGWCCWATWGTACCMCCACC  

about 100 nucleotides from the star point of primers CRYPrbcL2R 

(Hoef-Emden et al., 2005). 
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Fig. 2.6.1.1: Illustration the approximately positions, manner combinations of long 

PCR primers and the expected long PCR products using G. theta plastome as 

reference. 
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2.6.2 Optimize the long-range PCR protocol and screen the primers 

Even though long-PCR approach has been using widely, optimization still needed to 

be done, at least in this study. MasterAmpTM Extra-long PCR kit (Epicentre) was 

already prepared with 9 different Master Premix (numbered PreMix 1 to PreMix 9) 

containing a buffered salt solution with nucleotides, Mg2+ and enhancer (with betaine). 

To handle the kit, two rounds of reactions had to be run: the first round for searching 

the appropriate buffer(s) and the second one for optimizing PCR conditions. The 

component for one reaction was set up as the manufacturer’s recommend but slightly 

modified.  

For this purpose, total genomic DNA of strain CCAC 0031 was used as template; four 

couples of primers were employed from the combinations of two long forward primers 

and two long reverse primers:  

• G20Rlong – CRYPrbcL2R, expected size: 10.3 kb 

• G20Rlong – CRYPrbcL3R, expected size: 10.3 kb 

• pt1Rlong – CRYPrbcL2R, expected size: 8.3 kb 

• pt1Rlong – CRYPrbcL3R; expected size: 8.3 kb 

Two different PCR programs were set up, one of which has 20 cycles and the other has 

30 cycles of amplification (LONGPCR-20 and LONGPCR-30 programs, 

respectively). For each program, four sets of PCR were done for four couples of 

primers. In each set, nine different buffers were tested. The size of PCR products was 

expected around 8 – 10 kb depended on primer pair combination.  

The testing results showed that buffer 1, 4 and 7; primers G20Rlong, pt1Rlong and 

CRYPrbcL2R performed better than others in both PCR programs.  

Buffer 4, primer pair pt1Rlong – CRYPrbcL2R, and PCR program with 20 cycles 

(LONGPCR-20 program) were chosen as the optimal procedure and be used for 

further works.  
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Component for each PCR reaction:  

Forward primer (100 pmol/µl)  1.5 µl 

Reverse primer (100 pmol/µl) 1.5 µl 

DNA template (100-150 ng/µl) 2-2.5 µl 

MasterAmp Extrac-long DNA polymerase Mix:  0.5 µl 

MasterAmp Extrac-long DNA 2X PreMix (buffer) 12.5 µl 

Water up to 25 µl 

LONGPCR-20  

Initially denature the template: 94oC for 1’ 

Followed 20 cycles: 

Denature at  98 oC for 20” 

Anneal  at  56 oC for 1’ 

Extend at  69 oC for 9’ 

Ended  with  69 oC for 5’ 

LONGPCR-30  

Initially denature the template: 94oC for 1’ 

Followed 30 cycles: 

Denature  at  98 oC  for 20” 

Anneal  at  56 oC  for 1’ 

Extend  at  69 oC  for 9’ 

Ended  with  69 oC  for 5’ 

Reactions were run in an MWG biotech thermal cycler and kept at 4 oC overnight after 

amplification. The long PCR products were purified by DNeasy plant Mini Kit (250) 

according to manufacturer’s guide and stored in deep cold until use.  

2.6.3 Verify the PCR products 

Four cryptophyte strains CCAP 977/2a, CCAC 0113, CCAC 0109, CCAC 0031 were 

sampled randomly to amplify the 10 kb fragment between 23S rRNA and rbcL gene as 
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done for CCAC 0031 in previous step. The results showed that the length of fragments 

vary from 8 kb to 10 kb as expected. 

To verify the PCR products, two sequencing primers 1040R-700 (personal information 

from Dr. Birger Marin) and 1046R-700 (Hoef-Emden et al. (2005)) that were specific 

for 16S rRNA and rbcL gene, respectively, were employed to read these.  

The sequencing results confirmed that the 10 kb fragments were actually comprised 

16S rRNA and rbcL gene in at each ends.  

2.6.4 Amplify the plastid 23S rRNA–rbcL fragment by optimal long-

range PCR protocol 

Twenty-two cryptophyte strains, including 4 heterotrophic strains and 18 autotrophic 

strains in which four strains were not genus Cryptomonas as out-group, were sampled 

to amplify the plastid 23S rRNA–rbcL fragments by optimal PCR protocols obtained 

above. Because the fate of rbcL gene in colorless strain M1634 was unclear, strain 

M1634 was delayed until rps4 gene in cryptophyte group to be read; then the 16S 

rRNA – rps4 fragment was amplified instead of the 23S rRNA–rbcL fragment as its 

sisters  

Even thought the long PCR protocol was optimized, it was still needed some minor 

modification when applied each examined strains, mainly increasing or decreasing the 

DNA concentration and choosing the appropriate buffer(s). As expected, these PCRs 

ran successfully in all examined cryptophyte algae. 

The PCR products were purified by elution from gel agarose electrophoresis and 

stored in -20 oC until use. 

2.6.5 Produce the smaller segment by BioTherm™ Taq DNA Polymerase 

Ten kb fragments of 21 cryptophytes harvested from long-range PCR above could be 

applied directly in reading the sequences. However, using only MasterAmpTM Extra-
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long PCR kit to produce a huge amount of materials was considered not efficient 

economically. It was necessary to amplify smaller fragments by BioTherm™ Taq 

DNA Polymerase.  

Two overlapping fragments, one from 23S rRNA to tRNA-T (called fragment 1) and 

the other from tRNA-R – rbcL (called fragment 2), were amplified using intermediate 

primers. For designing the intermediate primers, the tRNA-R (UCU) and tRNA-T 

(UGU) genes, located near the central of 23S rRNA – rbcL fragment according to G. 

theta plastome map, were chosen and named R_Rev and T_For, respectively.  

Fragment 1 (around 4.5 kb) was produced by a combination of pt1Rlong and T_For 

run by PCR program set up named THD_PCR6 while fragment 2 (around 4 kb) was 

from combination of R_Rev and CRYPrbcL2Rlong primers run by THD-PCR4 

program (see THD_PCR4 parameters as above). 

As transcribed direction of both tRNA-R and tRNA-T to be opposite with rbcL gene, 

R_Rev, though its name, they worked as forward primer when combined with 

CRYPrbcL2R and similarly, T_For played its role as reverse primers when paired 

with pt1Rlong or/and G20Rlong primers (see Fig. 2.6.5.1). 

The short PCR products were selected by visualization in agarose with ethilium 

bromide, then purified by QiaGene kit and stored in -20 oC until use.  

THD-PCR6 

Initially denature the template: 96oC for 3’ 

Followed 30 cycles: 

Denature at 95 oC for 1’ 

Anneal at 52 oC for 2’ 

Extend at 68 oC for 4’ 

Ended with 68 oC for 5’ 
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Fig. 2.6.5.1: Illustration the approximately positions, manner combinations of PCR 

primers and the expected short PCR products using G. theta plastome as reference. 
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2.6.6 Sequence the short PCR products (4kb) by primer-walking 

approach and using automated ABI3730 sequencer 

To sequence double strands of the short PCR products obtained just above, BigDye 

Terminator v1.1 Cycle sequecing kit 1000 reactions/unit (Applied Biosystems, Cat. N 

= 4337451) and ABI3730 automated sequencer were employed.  

The lab-workings were begun at two ends of each fragment. In fragment 1, sequencing 

primer 16SH4Rev, a newly constructed primer that bound to the helix 4 domain of 16S 

rRNA, and primer T_For were used. Similarly, in case of fragment 2, R_Rev primer 

and primer rbcLStart_Rev, a newly designed sequencing primer that bound at 

approximate 120th position of G. theta rbcL, were employed. 

The reactions were taken place on 96-well plates, with compositions for 1 reaction: 

BigDye Buffer (5X): 0.5 µl  

Primer (10 pmol/µL): 0.2 µl  

Template: x µl  (to enough 150-300 ng DNA) 

Water: y ml to enough 2.5µl  in total volume 

Seq-ABI1 program for sequencing  

Initially denature the template: 94 oC for 2’ 

Followed 30 cycles: 

Denature at 94 oC for 2’ 

Anneal at 40 oC for 30” 

Extend at 6 oC for 1’30’’ 

Ended with 60 oC for 6’ 

Reactions were run in an MWG biotech thermal cycler. After completion of PCR-

sequencing, each of wells was applied for 17.5 µl of water before sent them to 

Sequencing Facility (Cologne Center for Genomics, University of Cologne) for 

reading by automated ABI 3730 system. 
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The draft sequences of the PCR products were imported to ChromasPro® version 1.41 

(Technelysium Pty Ltd.) for proof-calling. The relative sequences were assembled into 

contigs using SeaView (Galtier et al., 1996). The contigs from at least five examined 

cryptophytes were then collected for aligning to find the conserved domains near two 

ends of samples that would be employed to design next sequencing primers. 

In most case, the sequencing primers were universal. However, in fact, some 

sequencing primers were inapplicable to, for example, ycf26, ORF403 genes in several 

Cryptophyta strains and chlI gene in all colorless strains. The ycf26 gene was detected 

in R. salina plastome but not in G. theta chloroplast genome; and it had not been 

planned to be sequenced in phylum Cryptophyta in the early state of the project since 

R. salina plastome had not been published. To overcome the problems, individual 

sequencing primers for specific cases were required. The universal and individual 

specific sequencing primers were listed and explained in detail in Table 2.6.6.1 and 

2.6.6.2. 
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Table 2.6.6.1: The universal sequencing primers for cryptophyte plastomes  

16S rRNA-rbcL fragments 
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Table 2.6.6.2: The specific sequencing primers for some Cryptophyta strains to read 

the plastomes 16S rRNA-rbcL fragments 
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Table 2.6.6.2 (continued): The specific sequencing primers for some Cryptophyta 

strains to read the plastomes 16S rRNA-rbcL fragments  
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Table 2.6.6.2 (continued): The specific sequencing primers for some Cryptophyta 

strains to read the plastomes 16S rRNA-rbcL fragments  
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Table 2.6.6.2 (continued): The specific sequencing primers for some Cryptophyta 

strains to read the plastomes 16S rRNA-rbcL fragments 
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Table 2.6.6.2 (continued): The specific sequencing primers for some Cryptophyta 

strains to read the plastomes 16S rRNA-rbcL fragments 
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2.7 Annotate the genes 

The nucleotide sequences of the 16S rRNA–rbcL fragment of each examined 

cryptophyte strains were transferred separately to Vector NTI (Invitrogene). Genetic 

code was set as Bacterial and Plant Plastid Code. ORF search was run in all six 

possible reading frames. Putative ORFs were translated to protein sequences for a 

PHI-BLAST search (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) with non-redundant 

protein sequences search set and then was annotated through comparison to those G. 

theta or/and R. salina CCMP 1319 plastome (Douglas & Penny, 1999; Khan et al., 

2007b). The tRNA genes were pointed out by using tRNAscan-SE search server at 

http://lowelab.ucsc.edu/tRNAscan-SE/. 

2.8 Search for homologous protein by SMART server 

The deduced protein sequence of each gene or ORF was submitted directly to SMART 

server (http://smart.embl-heidelberg.de/) to analyze the conserved domains and 

calculate E-value.  

2.9 Align based on codon 

The sequence collections were pre-aligned with SeaView (Galtier et al., 1996), they 

then were imported to Selecton server for codon-based alignments 

(http://selecton.tau.ac.il/). Then, positions with codon-gaps in any of the sequences 

were omitted manually prior any phylogenies.  

2.10  Analyze the phylogenetic issues    

As first, the nucleotides or/and protein data sets were determined the most appropriate 

model of sequence evolution to use according to corrected Akaike Information 

Criterion (AICc) framework by jModeltest 0.1 and ProtTest1.4 with deactivated "+F" 

option, respectively (Posada, 2008; Posada & Crandall, 2001).  
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2.10.1  For nucleotide data sets 

To construct the maximum likelihood trees, the date sets were uploaded to PhyML 3.0 

(Guindon & Gascuel, 2003) using the proposed evolutionary model obtained from 

jModeltest 0.1. 

Distances analyses were done by PAUP* 4.0b10 (Swofford, 2003), in which 

maximum likelihood parameter copied from jModeltest 0.1 and under minimum 

evolution. In case of data sets with heterogeneous base frequencies, the LogDet 

transformation was added into the phylogenetic process. The trees obtained from both 

these runs were inferred with neighbor-joining algorithm.  

The PAUP* 4.0b10 was also employed to search for unweighted maximum parsimony 

trees using 10 random addition replicates in combination with heuristic tree search 

algorithm.  

All of these runs, 1000 bootstrapped replicates were calculated.  

For posterior probability analyses, MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003) 

was used with highly recommended settings such as Dirichlet distribution for relative 

substitution rates and base frequencies, bounded uniform distribution for proportion of 

invariable sites and gamma shape parameter for the distribution of among site rate 

variation, uniform distribution for topologies, and exponential distribution for branch 

lengths; 1.000.000 generations (due to the limited PC power) with one cold and three 

heated chains; trees saving every 100 generations and burn-in was determined 

manually according to the sum-plot displayed in the screen. In case of the combined 

data set, the analyses were performed with a partitioned model approach i.e. the 

appropriate parameters were calculated separately for each DNA partitions.  

2.10.2  For amino acid sequences 

After obtained the suitable evolutionary model, the protein data sets were subjected to 

the phylogenies like those of nucleotide data sets.  
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The PhyML 3.0 was used again for constructing the maximum likelihood trees in 

which CpRev model (Adachi et al., 2000) was applied in all cases.  

The neighbor-joining trees were done by MEGA 4 (Kumar et al., 2008) with JTT 

(Jones-Taylor Thornton) matrix, gamma shape setting to results of ProtTest, and 1000 

replicates.  

Like the nucleotide sequences, un-weighted maximum parsimony trees for protein data 

sets were done by the PAUP* 4.0b10 using 10 random addition replicates in 

combination with heuristic tree search algorithm.  

Bayesian analyzes for protein sequences were inferenced with MrBayes 3.1.2 with 

basic parameters like those of nucleotide data set exception for amino acid model was 

set to CpRev model ((aamodel=fixed(cpRev)). 

All phylogenetic trees were displayed by TREEVIEW (Page, 1996).  
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3. RESULTS  
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3.1 Search and sequence the Cryptophyta plastome rbcL gene  

Eight-teen newly sequences of the rbcL gene of Cryptomonas strains were obtained in 

the first part of the project were presented in the Table 3.1.1. Of these, four sequences 

were from heterotrophic (colorless) strains and the remaining was from 

photoautotrophic (pigmented) strains.  

Five strains of three different colorless lineages were examined in this study: the 

colorless strain M1634 represented one lineage; strain CCAC 0056, CCAP 977/1, 

M2180 and M2452 represented the other; and strain SAG 977-2f represented the last.  

Unfortunately, the strain SAG 977-2f did not survive during this study and some PCR 

attempts using the available frozen total DNA to amplify its rbcL were unsuccessful. 

Therefore, strain SAG 977-2f was rejected from the study.  

PCR amplifications of the rbcL gene were successful in most colorless strains, but 

strain M1634 repeatedly gave negative results. A possible explanation for the 

unsuccessful PCR in strain M1634 was PCR primers did not fit. The reason may be 

that rbcL was highly diverged, was a pseudo-gene or was completely lost. Therefore, 

the existence of rbcL in the colorless M1634 was unclear. The actual situation of the 

rbcL gene of colorless strain M1634 should be studied in detail by another suitable 

strategy such as sequencing its whole plastid genome.  
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Table 3.1.1: List of Cryptomonas strains were read rbcL sequence 

 Strain Accession Numbers 

01 

02 

C. oobovoidea CCAC 0031 (M1094) 

C oobovoidea CCAP 979/46 

AM051221 

AM051223 

03 C. curvata CCAC 0006 (M0420) AM051204 

04 

05 

C. borealis CCAC 0113 (M1083) 

C. borealis SCCAP K-0063 

AM051202 

AM051203 

06 C. gyropyrenoidosa sp. nov. CCAC 0108 (M1079) AM051206 

07 C. lundii CCAC 0107 (M0850) AM051207 

08 

09 

C. marssonii CCAC 0086 

C. marssonii CCAC 0103 (M1475) 

AM051208 

AM051209 

10 

11 

12 

13 

C. paramaecium CCAP 977/1 

C. paramaecium CCAC 0056 (M1303) 

C. paramaecium M2452 

C. paramaecium 2180 

AM051213 

AM051212 

AM051215 

AM051214 

14 

15 

16 

C. pyrenoidifera CCAP 977/61 

C. pyrenoidifera CCMP 0152  

C. pyrenoidifera M1077 

AM051216 

AM051217 

AM051218 

17 

18 

C. tetrapyrenoidosa M1092 

C. tetrapyrenoidosa NIES 279 

AM051219 

AM051220 
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3.2 Phylogenetic analyses based one the cryptophyte plastid rbcL 

gene 
 

Eighteen newly sequences of the rbcL genes of Cryptomonas strains read in the first 

stage of the project were then combined with other five newly sequenced rbcL genes 

(done by Dr. Kerstin Hoef-Emden) that also belong to Cryptomomas for phylogenies. 

The results of phylogenetic analyses were compared with those of nuclear rDNA 

(concatenated SSU rDNA, ITS2 and partial LSU rDNA) and nucleomorph SSU rDNA 

to infer the evolutionary history of genus Cryptomonas. The rbcL sequences also were 

subjected to examine the codon usage of two-fold degenerate NNY codons to deduce 

the differences of functional constraints and expression levels in this gene in the genus 

Cryptomonas (these works were done by Dr. Kerstin Hoef-Emden). 

The results showed that the rbcL gene in the colorless C. paramecium and their closely 

relative photosynthetic Cryptomonas had increased their evolutionary rates 

significantly. The shift from NNC to NNU in two-fold degenerate NNY codon in rbcL 

gene was recorded in the heterotrophic Cryptomonas and their closely relative 

photosynthetic Cryptomonas. The loss of photosynthetic activities in the colorless 

Cryptomonas paramaecium strains were explained by some possibilities. Detail results 

and discussion were published BMC Evolutionary Biology 2005;5:56. 

In the second stage of the project, five newly sequenced rbcL gene (M2488, 

CCA0018, SAG 2013, M1480 and SCCAP K416) were harvested. They then were 

added into the previously rbcL data set for re-run phylogenies. The newly rooted 

maximum likelihood tree of cryptophyte rbcL sequences (51 taxa of 972 positions) 

was congruent with the tree published previously (46 taxa of 990 positions). The new 

adding C. phaseolus SAG 2013 grouped with C. curvata CCAC 0006 and CCAC 0080 

but not always supported. Meanwhile, C. loricata M2088 attached with C. commutata 

CCAC0109 with moderate support (53/56/70/55/0.96; Fig. 3.2.1).  
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Fig. 3.2.1: Rooted maximum-likelihood tree inferred from rbcL gene sequences (51 

taxa of 972 positions). The evolutionary model (TIM2+I+G), - ln L= 16097.8824) 

were proposed by jModelTest 0.1 base.d on the Akaike information criterion. From left 

to right: maximum likelihood bootstrap/maximum parsimony bootstrap/neighbor-

joining bootstrap/logdet transformation bootstrap/posterior probabilities (Bayesian 

analysis). Names in bold: newly sequenced rbcL obtained in the second stage of the 

project; scale bar: substitution per site. 
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3.3 Annotate the 16S rRNA–rbcL fragments 

In 22 Cryptophyte strains examined, 15 strains were read from 16S rRNA to rbcL 

without gap; and seven strains contain gaps due to the lack of time.  

3.3.1 Gene contents 

As mentioned in the previous part, the rbcL gene of colorless strain M1634 was not 

obtained, the attempts applying couple of primers pt1Rlong and CRYPrbcL2R, 

therefore, were unsuccessful repeatedly. Fortunately, using other couples of primers 

pt1Rlong with T_For and R_Rev with rps4Rev4 to amplify the 16S rRNA–tRNA-T 

and tRNA-R–rps4 fragments released two overlapping short fragments that 

subsequently to be sequenced; hence, M1634 was read from one-third end of chlI gene 

to end of rps4. Using G. theta and R. salina CCMP 1319 plastome as reliable 

references, the gene contents and gene orders of the 16S rRNA–rbcL fragments 

obtained above were annotated.  

16S rRNA gene is a non-coding RNA gene translating the genetic 

information held in DNA to make the component of the small prokaryotic 

ribosomal subunit (30S). The conservation of rRNA genes (including 16S 

rRNA) are extremely high in all cells, therefore they have been used widely in 

investigating the phylogeny such as to identify an organism's taxonomic group, 

calculate related groups, and estimate rates of species divergence (Hillis & 

Dixon 1991; Harris et al., 1994). Except for M1634, CCAC 0107 and CCAC 

0108 strains had not been read the 16S rRNA gene, all examined cryptophytes 

were sequenced the 5’-terminus region of 16S rRNA with the numbers of 

nucleotides obtained from 116 to 557. The initial aligning showed they were 

strictly conserved as expected. Therefore, they are expected to be a convincible 

resource that someone can utilize in future project related to 16S rRNA gene of 

Cryptophyta algae.  



[RESULTS] 73 

 

psaM gene is a small gene coding for a peripheral, membrane- integral 

subunits about 3.5 kDa involving the formation of stable Photosystem I (PSI) 

trimers that found in Cyanobacteria (Naithani et al., 2000). The roles of psaM 

in the PSI complex of eukaryotic algae and higher plants have not been well-

established as well as no paper reports finding this protein in PSI, despite being 

present in the chloroplast genome (Fromme et al., 2001; Nelson & Yocum, 

2006). In cryptophytes, all psaM genes are 93 bp in size with only one 

exception for 90 bp in M1092. The absence of psaM from colorless strains is a 

new finding.  

chlI gene (synonym: bchlI for bacteriochlorophyl) is a gene encoding for 

a soluble protein (chlI protein) with molecular weights of 38 – 45 kDa. This 

protein combines with other two close relatively components (chlD and chlH) 

forming the multisubunit Mg-chelatase that catalyses the insertion of Mg2+ into 

protoporphyrin IX in the first unique step of the chlorophyll synthesis (Suzuki 

et al., 1997; Valentin et al., 1998; Bollivar, 2006). Recent studies also 

demonstrated that the accumulation of Mg-protoporphyrin IX product was both 

necessary and sufficient for regulation by retrograde signaling of a large 

number of nuclear genes encoding plastid products (Rodermel, 2001; Strand et 

al., 2003; Nott et al., 2006). Like those of G. theta and R. salina, the start codon 

of examined Cryptophyta chlI gene is GTG, but changing to ATG triplet in case 

of CCAC0113 and three colorless strains. The chlI gene in most cryptophyte 

species are 1062 bp long but fall down to 1002, 1020 and 1041bp in all three 

colorless CCAP 977/2a, M2452 and CCAC 0056, respectively.  

tRNA genes include tRNA-R (UCU), tRNA-V(UAC) and tRNA-

T(UGU), the lengths of which are identical in all strains, 73, 72 and 73 bp 

respectively. Only a minor difference observed in strain CCMP 0704 of which 

tRNA-T is 74 bp in size instead of 73 kb as usual. All three tRNA genes form a 

cluster in G. theta plastomes but they are separated by ycf26 in between tRNA-

V and tRNA-T in R. salina plastomes. At least two C. erosa CCAC 0018 and 
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C. oobovoidea CCAC 0031 containing the ycf26 gene inserted into tRNA-V 

and tRNA-T is reported in this study.  

rps4 gene is a gene encoding protein 4 of the small plastid ribosomal 

(Douglas & Durnford, 1990; Harris et al., 1994). Exception for M1634 lacking 

five last nucleotides because of the sequencing error, all of rps4 genes obtained 

are uniform in length, 609 bp. The predicted proteins have 203 amino acid 

residues. The start and stop codons are ATG and TAA in most case, 

respectively; some strains such as M1092, CCMP 0152, CCAC 0108 and 

CCAC0006 terminated by TAG triplet.  

 ycf26 is a gene that encodes a hypothetical sensor-like histidine kinase 

(Douglas & Penny, 1999; Khan et al., 2007b). The presences of ycf26 in C. 

erosa CCAC 0018, C. obovoidea CCAC 0031, and non-Cryptomonas strains 

are unexpected.  

ORF403 is a gene encoding Tic-22-like protein, one of five protein 

families involving to the pre-protein translocation at the inner envelope 

membrane of chloroplasts (Kouranov et al., 1998; Reumann et al., 2005). 

Unlike ycf26, this ORF403 presents in all cryptophytes. However, both 

cryptophyte ycf26 and ORF403 are highly divergent in size and nucleotide 

compositions, making the universal sequencing primers designed to read them 

useless. That was the reason why more specie-specific primers had been newly 

constructed to full-fill the ycf26 and ORF403. 

rbcL is a gene that encodes ribulose-1,5-biphosphate 

carboxylase/oxygenase with a very important role in the photosynthetic Calvin 

cycle as the carbon dioxide fixating enzyme. This enzyme catalyzes at least two 

reactions, the carboxylation of D-ribulose 1,5-bisphosphate and the oxidative 

fragmentation of the pentose substrate. The former is the primary event in 

photosynthetic carbon dioxide fixation and the later is in the photorespiration 

process. In the chloroplasts, both reactions work simultaneously and 
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competitively at the same active site. The rbcL is a much-conserved gene and it 

has been used extensively by phylogenetists to unravel the phylogenetic history 

of plants (Kellogg and Juliano, 1997; Spreitzer & Salvucci, 2002) as well as 

algae (Melkonian et al., 1995). Exception for M1634 and SAG 977-2f, all 

examined cryptophytes were read the rbcL genes. 

In overall view, all cryptophyte strains which 16S rRNA–rbcL fragment were 

sequenced in this study can be divided into three small groups following their gene 

contents: 

• Group 1: including most Cryptomonas strains such as CCAC 0109, M2088, 

CCAC 0006, CCAC 00113, CCAC 0086 (Fig. 3.3.1), SAG 2013, CCMP 0152 

and M1092, with the gene contents, gene orders and transcribed direction like 

those of G. theta plastome.  

• Group 2: comprising all colorless strains CCAP 977/2A, M2452 (Fig. 3.3.2) 

and CCAC 0056 which are similar to those of group 1 but lack of psaM gene. 

• Group 3: containing two Cryptomonas strains CCAC0018, CCAC 0031 (Fig. 

3.3.3) and five non-Cryptomonas strains SAG 980-1, CCMP 0443, CCMP 

0704, M1480 and SCCAP K-416 that have an additional ycf26 gene in between 

tRNA-V and tRNA-T gene as observed in R. salina CCMP1319 plastid 

genome. 

Strain M1634 can be put into group two as its colorless sisters; strains CCAC 00107, 

CCAC 0108 have not been grouped yet due to lack of information. Even though its 

ORF403 was not read, strain SAG 980-1 could be clastified to group 1 in an 

assumption that ORF403 always exists in all cryptophyte algae. The illustrations of the 

gene contents and gene order for the 16S rRNA–rbcL fragment in these groups were in 

Appendix 1 to Appendix 20. 
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Fig. 3.3.1: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 

in C. marssonii CCAC 0086 plastome. 
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Fig. 3.3.2: Illustration the gene contents, gene orders of the 16S rRNA–rbcL fragment 

in C. paramaecium M2452 plastome. 

 



[RESULTS] 78 

 

 

Fig. 3.3.3: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 

in C. obovoidea CCAC 0031 plastome. 
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3.3.2 Overlapping genes  

The overlapping gene was recorded in the last 43 bp of rps4 gene and ORF403 in 

colorless CCAC 0056. The overlapping phenomenon also observed in R. salina and G. 

theta plastomes such as between the pairs of atpD – atpF genes, rpl4 – rpl23 genes, 

rpl16 – rpl29 and ORF142 – ORF146 (Khan et al., 2007b). The rps4 and ORF403 

overlapped together is newly finding. The absence of psaM as well as the overlapping 

gene of rps4 and ORF403 found in colorless strains relate hypothetically to the plastid 

genome reduction in colorless Cryptomonas.  

3.3.3 Compare the lengths of the fragments  

Because the un-identical sizes of partial 16S rRNA genes, the distance from the 

starting points of 16S rRNA to those of rbcL genes were chosen and calculated to 

compare the 16S rRNA–rbcL fragment sizes among studied cryptophytes. Obviously, 

the presence or absence of ycf26 from the fragments was one of the reasons for the 

difference in lengths among examined cryptophytes. The lack of ycf26 and psaM 

genes in the 16S rRNA-rbcL fragments of the colorless group caused these fragments 

to be the shortest: 3667, 3748 and 4564 bp in sizes in CCAP 977/2a, M2452 and 

CCAC 0056, respectively. In the contrary, the dominantly longer 16S rRNA–rbcL 

fragments were in non-Cryptomonas and CCC 0018 and CCAC 0031 strains as they 

contain ycf26 genes. Surprisingly, two strains CCAC 0018 and CCAC 0031 hold the 

longest fragments: 6111 and 6074 bp in sizes, respectively. The differential value 

between CCAP 977/2a and CCAC 0018 were around 45%. This suggests that CCAP 

977/2a and its colorless sisters possesses propably the smallest plastomes while CCAC 

0018 and CCAC 0031 carried the largest plastomes among cryptophyte algae. Another 

suggestion is that the future whole plastome sequencing projects should focus in 

colorless CCAC 977/2a, M2452 and CCAC 0056 strains and photoautotrophic CCAC 

0018 and CCAC 0031 strains together with another strain belongs to group 2 to 

compare the shortest, medium and longest plastomes among cryptophytes. See Table 

3.2.3.1 for gene sizes in the fragments 16S rRNA–rbcL of studied cryptophytes.  
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Table 3.3.1: Gene sizes in the cryptophyte plastome 16S rRNA–rbcL fragments. 
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Table 3.2.3.1 (continued): Gene sizes in the cryptophyte plastome  

16S rRNA–rbcL fragments. 
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Sequenced length is total length to be read in certain fragment; comparative length is 

the length of the distance from the starting point of 16S rRNA genes to those of rbcL 

genes. (-) the region was not read; (NA) the gene was not detected in the fragments; 

(
1*

) The number of base pairs were read; (
2*

) All 16S rRNA gene were read partial 

only at 3’ terminus; (3*
) Only partial ORF403 was read; (4*

) rbcL gene sequences was 

read and submitted to GenBank to get accession number in the first stage of this study 

(Hoef-Emden et al., 2005); they were then full-filled the upstream gap afterward; (5
*) 

rbcL genes are available in the GenBank, they were re-read and full-filled the 

upstream gap in the second part of the study; (
6*

) Strain CCAC 0113 has a unread 

region in noncoding space between ORF403 and rbcL gene; (
7*

) one-third end of chlI 

gene was read. 
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3.4 AT content and Identity characteristics 

3.4.1 AT content 

The AT contents were calculated for every genes in each strain (Table 3.4.1). Because 

the whole plastomes of examined strains are not yet available, the AT% of the 16S 

rRNA–rbcL fragments was used instead. The non-coding regions also were extracted 

for AT% content calculation. On the overall, the AT% of each genes in the colourless 

strains were not significantly different to the corresponding genes in the 

photosynthetic sisters. The rbcL, rps4, chlI and three tRNA genes held lower AT 

percentage than the whole fragments, while those of the psaM, ycf26 and ORF genes 

were higher; for example these values in strain CCAC 0018 are 57.5, 62.1, 62.8, 40.3, 

66.7, 68.3 and 67.5% in comparison with its whole fragment AT% – 65.3%. These 

observations of AT% contents suggest that the psaM, ycf26 and ORF403 genes were 

being directed toward the genome compositional bias approach more strongly than 

rbcL, rps4, chlI and three tRNA genes. 

3.4.2 Identity characteristics  

The identity degree of nucleotide or/and protein sequences is one of the basic 

parameters to estimate the evolutionary distances between close relatives strains. 

Genes located in 16S rRNA–rbcL fragment were calculated the mean degree of 

sequence identity (Table 3.4.2). 

For preparing the data set prior to analysis, collections of each psaM, chlI, rps4, ycf26, 

ORF403 and rbcL genes were done. The collection consisted of the newly read 

sequences plus those of G. theta and R. salina as references. Each collection was 

submitted separately to Selection server for codon-alignment. Then, positions with 

triplet-gaps in any of the sequences were omitted manually.  
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The data set of psaM gene contained 90 nucleotide positions of 18 taxa, none of which 

was colorless. In case of chlI gene, strain M1634 was rejected from the identity 

analysis because it composed only the last one-third of chlI sequence in length. The 

chlI dataset contained 21 taxa, three of them were colorless, and the sequence length 

was 963 nucleotide positions. Three tRNA genes were combined as one unit, 

consisting of 22 taxa of 217 characters. Strains CCAC 0117 and CCAC 0118 were 

absent from these three collections as they were not read from the rps4 to 16S-rRNA. 

Four colorless strains jointed with 20 photosynthetic cryptophytes to produce a 

collection of rps4 genes with 597 nucleotide characters. The ORF403 database had 20 

strains and 345 nucleotide positions mainly distributed in the C-terminus, strains 

CCAC0107, CCAC0109 were out of the analysis due to their partial sequence 

readings. The largest collection was of rbcL, 30 strains of 972 nucleotide positions but 

only 3 colorless present while the shortest collection was of ycf26, only 8 strains and 

462 nucleotides. 

Then, the data sets were transferred to Vector NTI suite for calculating the identity 

values. The analyses were done in both nucleotide and protein characters with and 

without colorless strains.  

The overall result showed that the identity values were very high in photosynthetic 

strains but they fell down when the non-photosynthetic strains were added to the 

comparison.  

The lowest conservation was detected in ycf26 and ORF403 genes at both nucleotide 

and protein data sets in which their amplitude of identity values were very high: min 

value at 18% to 31% while max value at 77%. In ORF403 case, the identity values 

between photo and non-photosynthetic groups were not significantly different. 

Unsurprisingly, the three tRNA genes displayed the highest identity values in 

nucleotide data sets while psaM and rbcL proteins revealed the most conservation in 

protein comparison. Furthermore, the largest difference between colorless and non-

colorless dataset was found in chlI gene.  
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Table 3.4.1: AT content of genes located between 16S rRNA and rbcL genes in 

examined Cryptophyta strains 
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Table 3.4.1 (continued): AT content of genes located between 16S rRNA and rbcL 

genes in examined Cryptophyta strains 

 

(p): the genes were read partially, thus AT contents were not calculated 

(-) The genes were not read or not presented. 
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Table 3.4.2: Comparison of identity values in non-photosynthetic and photosynthetic 

groups at both nucleotide and protein databases of genes in the Cryptophyta plastome 

16S rRNA–rbcL fragments 

 Number 

of Taxa 

Number 

of 

Nucleotide 

Positions 

Nucleotide sequences Protein sequences 

without 

colorless 

with 

colorless 

without 

colorless 

with 

colorless 

psaM 18 90 68 – 88 % - 70 – 100% - 

chlI 21 960 71 – 88% 57 – 63% 84 – 95% 50 – 59% 

3tRNA 22 217 94 -100% 89 – 95%   

ycf26 8 462 18 – 57 %. - 18 – 52% - 

rps4 24 597 68 – 88% 64 – 73% 74 – 96 % 62 – 82% 

ORF403 20 345 48 – 77% 45 – 50% 31 – 72% 31 – 61% 

rbcL 30 972 80 – 94% 77 – 85% 88 – 99% 86 – 90% 

(-) not calculated due to the lack of these genes in colorless strains 



[RESULTS] 88 

 

 

3.5 Detect Shine-Dalgarno sequence, -35 and -10 boxes of genes in 

16S rRNA–rbcL fragments 

In this part of study, the inter-space sequences in between 16S – psaM, psaM – chlI, 

tRNA-T–rps4, rps4–ORF403 and ORF403–rbcL were isolated to search for the 

transcriptional and translational regulation elements, among which focusing to Shine-

Dalgarno (SD) sequences, -35 box and -10 box as  these elements play very important 

roles in translational and transcriptional regulation for gene expression (Hirose & 

Sugiura, 2004; Somanchi & Mayfield, 2004). 

The results showed that the upstream region of rbcL gene was the easiest alignable 

region then followed by those of 16S rRNA–psaM and tRNT–rps4; the upstream of 

chlI gene was very high variant making it unalignable. Through the aligning process, 

the conserved domains in the upstream regions of most photosynthetic strains were 

easily recognizable while those of colourless, CCAC0107, CCAC0108 and CCAC113 

strains were not.  

Among the express regulating elements located in the upstream, the SD sequences 

were exposed obviously. They were found in the upstream region of rbcL, psaM and 

rps4 with AGGAG motif. Surprisingly, the chlI genes consisted of no SD sequence but 

with an adenine-rich cluster. The common core AGGAG was also used to search for 

SD sequence in ORF403 and ycf26 but no results returned. 

Douglas et al. (1990) pointed out the SD sequence – AGGAGG – in rbcL of G. theta. 

In our rbcL data set, this formula was found to be highly conserved. However, some 

changings were observed in strain colourless and CCAC 0113 – the first A altered to C 

or G or T and the second A changed to G.  

While the conservation of SD block in rbcL genes was very strict, the situation in rps4 

genes was relax. The SD core sequences of rps4 were formulated as GGAGAA. The 

SD clusters in two colourless strain CCAP 977/2a and M1624, again, showed the 

difference in comparison with their sister – first uninterrupted A and ended with GTT. 
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The SD clusters of two strains CCMP 0152 and M1092 were recored with four or five 

G then ended with one A while those of strain CCAC 0006 and CCAC0086 ended 

with four A. 

The lost of psaM gene as well as the compress of the genomes in colorless strains 

caused their inter-space between 16S rRNA and psaM/chlI became shorter. The SD 

sequences and other express regulation sites, therefore, were probably lost as well. In 

the remain photosynthetic strains, a conserved block in front of psaM genes - 

A(C)GGA(T)G(A)A(T/G) - can be assigned as SD sequences.  

The identification of -35 and -10 boxes for rbcL dataset were based on the description 

from Douglas et al. (1990). The -10 box sequences displayed a high similarity in 

photosynthetic strains but not in colourless, CCAC0107, CCAC0108 and CCAC0113 

strains. Douglas et al. (1990), pointed out the -35 box of G. theta rbcL gene 

(TTGAGT) was around 19 nucleotides distance to -10 box, however, the non coding 

regions in the upstream of rbcL in this study showed that this cluster could be inexact. 

Instead, at least two high-conserved clusters could be marked as potential -35 boxes. 

The conclusion of exactly position of these two regular elements is expected to be 

done by reverse genetics or any experiments in the future.  

Due to the lack of information of the regulation boxes of rps4, psaM, ycf26, ORF403 

and 16S rRNA genes for cryptophytes, the sequences of interested  regular elements 

were identified by scanning the conserved blocks in the upstream regions of these 

genes by eyes. Two blocks, around 110 nucleotide from start triplet of G. theta, were 

assigned as prospect -35 and -10 boxes for rps4 genes. Three conserved blocks 

emerged as potential regulation sequences in the non-coding region of psaM while one 

unknown-function conserved domain was found in the upstream region of 16S rRNA. 

The finding for regulatory elements in ORF403 and ycf26 were unsuccessful. 

Detail of conserved block, -35 box, -10 box and SD sequences in non-coding regions 

of 16S rRNA, psaM, chlI, rps4 and rbcL genes were illustrated in Fig. 3.5.1 to Fig 

3.5.5, respectively.  
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Fig. 3.5.1: Alignment for 16S rRNA upstream region, one unknown-function conserved 

was found. 
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Fig. 3.5.2: The non-coding region of psaM gene, one SD sequences and three potential 

regulation sequences were illustrated. 
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Fig. 3.5.3: The upstream part of chlI gene, no SD sequence or regulation elements was 

detected, but an adenine-rich block emerged. 
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Fig. 3.5.4: Alignment for upstream region of rps4 gene, the -35, -10 boxes and SD 

sequences were recognized. 
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Fig. 3.5.4 (continued):  Alignment for upstream region of rps4 gene, the -35, -10 boxes 

and SD sequences were recognized. 
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Fig. 3.5.5: The non-coding region of rbcL gene, the SD sequences, -35 box and -10 

box (marked with *) pointed out by Douglas et al. (1990) beside two new potential -35 

boxes.  



[RESULTS] 96 

 

3.6 ycf26 – Unexpected protein in C. erosa CCAC 0018 and C. 

ovoidea CCAC 0031 

3.6.1 The distribution of ycf26 in photosynthetic organisms 

The sequencing and annotating results showed that there are ORFs lying between 

tRNAt and tRNA-V in the 16S rRNA–rbcL fragments of several cryptophytes such as 

C. erosa CCAC 0018, C. obovoidea CCAC 0031, Proteomonas CCMP 0704, 

Hemiselmis tepida  CCMP 0443, Teleaulax SCCAP K-416, Rhodomonas M 1480 and 

Chroomonas SAG 980-1. These ORFs were submitted to NCBI to search for the 

homologies; all the results obtained showed that these ORFs were similar with ycf26 

of R. salina CCMP 1319. Surprisingly, the ycf26 gene was detected in R. salina 

plastome but not in G. theta chloroplast genome; and it had not been planned to be 

sequenced in phylum Cryptophyta in the early state of the project since R. salina 

plastome had not been published. The presences of ycf26 in C. erosa CCAC 0018, C. 

obovoidea CCAC 0031 and non-Cryptomonas strains are unexpected.  

The ycf26 was originally named for a hypothetical chloroplast ORF with 1968 bp long 

that was found at first time in P.purpurea plastome (Reith & Munholland, 1993). It 

then was discovered in all genomes of Cyanobacteria and in some red-line plastomes 

such as rhodophyte, haptophyte, raphidophyte, but it was absent totally in green-line 

chloroplasts. The finding of ycf26 in only two strains C. erosa CCAC 0018 and C. 

obovoidea CCAC 0031 in this study also showed its non-universal distribution in 

species level. The ycf26 has been called under different names such as hik33 (sensor-

like histidine kinase), chk33, ycf26 (hypothetical chloroplast protein), dfr 

(dihydrofolate reductase), dspA (drug sensor protein A), nblS (non-bleaching mutant 

Sensor), tsg1 (transcriptional sensor gene 1) depending on the pioneer researchers who 

gave the names (Ashby & Houmard, 2006); from now on, ycf26 will be used for short. 

Summary of distribution of ycf26 is in Table 3.6.1.  
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3.6.2 Describe the functional structure of ycf26 protein  

Due to the major critical roles in biological activities of bacteria, ycf26 drew much 

attention from researchers. The ycf26 gene encodes a sensor-like histidine kinase 

(Hik), which functions were deeply investigated in bacteria, including Cyanobacteria. 

The sensor-like histidine kinase (Hik) is the common name for a protein super-class 

that perceive the extracellular environmental stimuli then transfer these signals to their 

partners (called Response regulator – Rre) subsequently regulate a wide variety of 

cellular processes to response to these stresses. The sensor and regulator form a so-

called two-component signal transduction system that is vitally important for cell 

survival and growth. Briefly, the cyanobaterial Hik33 has been proved as a “multi-

stress” sensor, receiving many extracellular signals such as strong light, nutrient, 

chemical, temperature and osmotic stresses (Stock et al., 2000; Suzuki, 2000; Mikami 

et al., 2002; van Waasbergen et al., 2002; Mikami et al., 2003; Morrison et al., 2005; 

Ashby & Houmard, 2006; Morici et al., 2006; Kanesaki et al.; 2007).  

Unfortunately, almost nothing has demonstrated the expression signals of ycf26 in both 

mRNA and protein levels in algae. Duplessis et al. (2007) planned to locate the 

position of ycf26 protein in chloroplast of Heterosigma akashiwo by monoclonal 

antibody, but no results have been published still now. The analysis for ycf26 in this 

part, therefore were based on the described cyanobacterial ycf26 (Morrison et al., 

2005). For convenience, the functional domains of Synechocystic PCC 6803 ycf26 is 

described here before steps forward in next parts. 

The predicted ycf26 structure in Synechocystic PCC 6803 comprises 663 amino acids 

building seven functional domains. Two potential TMH regions (trans-membrane 

helical) at 33 – 55 and 201 – 223 positions help the protein integrate into cell 

membrane. Inserted between two TMH regions is a 140 amino acid long segment (at 

58 – 197 positions). This strictly conserved region in all cyanobacterial ycf26 is 

assumed to be putative periplasmic sensor domain (PSD), playing the role of a 

periplasmic sensor. Overlapping with the second TMH is the HAMP region (Histidine 

kinases, Adenylyl cyclases, Methyl binding proteins, Phosphatase) located at 200 – 
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269 positions which plays the role of transmitter, to transfer the extracellular signal 

from PSD domain to into Hik33 cytoplasmic regions. Beside the HAMP is the PAS 

domain (Per, Arnt, Simi or period protein, aryl hydrocarbon receptor nuclear 

translocator protein and single-mined protein) positioned at 283 – 349. An assumption 

is that the combination of PSD and PAS domains enables the capability of ycf26 to 

receive a wide variety of extracellular stimuli. The two most important regions are 

HiKA (422 – 490 positions) and HATPase_c (535 – 656 positions) domains nearly the 

C-terminus of Hik33 polypeptides. The HiKA is responsible for dimerisation and 

ATP-dependent autophosphorylation of the histidine residue and subsequently transfer 

the phosphoryl group from the kinase to an aspartate residue of the response regulator 

by the catalysis of HATPase_c domain. Scattered distribution in both HiKA and 

HATPase_c domains are highly conversed boxes named H, N, F, G1, G2 and G3 

following the main amino acids located in these boxes. The H box near the N-terminus 

contains the consensus amino acid array HELRT (432 – 436 positions) in which the 

histidine residue is phosphorylation site and the array to be considered as indicators for 

classifying of sensor kinases. The N (NLIGNS), G1 (ISDTGI), F (IEFREYR), G2 

(GTGL) and G3 (only G) boxes are found closer to the C-terminus in a catalytic 

domain responsible for Mg2+ and ATP binding at position 546 – 551, 586 – 591, 601 – 

607, 617 – 620 and 645 positions, respectively.  

3.6.3 Search the functional domains of red-line plastid ycf26 

Fifteen ycf26 protein sequences, including eight new cryptophyte ycf26, six other 

plastids and one from Cyanobacterium Synechocystic PCC6803, were submitted 

separately to SMART server for searching the functional domains. 

The results obtained from SMART server showed that 14 plastid ycf26 could be 

grouped into two clades. Clade A included four ycf26 from Rhodophyta and one from 

Haptophyta Emiliania huxleyi in which their functional domain numbers were similar 

to those of Cyanobacteria. Clade B comprised eight strains of Cryptophyta and one of 

Heterokontophyta in which the average length was around 316 residues, nearly a half 
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of those of primary plastids, containing mostly the HiKA and HATPase_c domains 

only. 

SMART identified a very high accuracy (95% to 100%) in almost the functional 

domains of Cyanobacteria (PCC6803) ycf26 with except for PSD. It is possible that the 

PSD has not been archived in the SMART database. The domains correspond to the 

PSD in strains of clade A were reported as the intrinsic disorder regions; they therefore 

were annotated based on the aligned proteins obtained from Selecton server and 

according to description from Morrison et al. (2005). Observation the PSD of ycf26 

proteins from plastids showed that they actually were not as conserved as ycf26 from 

Cyanobacteria. These suggested the regions that function like periplasmic sensors for 

the environmental signals seemed to be changed either to receive other specific stimuli 

for plastids or to degenerate their functions.  

Five other putative functional domains were assigned for ycf26 from primary plastids 

and E. huxleyi with the support e-value were similar to those of PCC 6803.  

In the opposite, the two trans-membrane helical, HAMP and PAS regions were not 

found in the ycf26 protein sequences of the truncated-ycf26 clade; only HiKa and 

HATPase_c domains existed but very weak E-value. SMART also pointed out so 

many intrinsic disorder domains distributed across the ycf26 protein sequences of this 

clade.  

The presence of the array HELRT in the conserved H box helped to verify that the 

plastid ycf26 proteins actually belong to type one sensor. Among the conserved boxes, 

the H and N boxes were highly conserved while the F, G1, G2 and G3 were relaxed. 

The G1, G2, and F boxes were collapsed completely in strain CCAC 0031. The F box 

was nearly not recognized in strain CCAC 0018 and M1480 because of the strongly 

amino acid composition altering in these boxes.  

Details of starting and ending points of each functional domain and E-values obtained 

from SMART server for 14-plastid ycf26 and one Cyanobacterium were listed in the 

Table 3.6.2.  
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Observing the ycf26 genes from CCAC0031 and CCAC0018 revealed an unusual 

difference in length (831 versus 1329) and start codon (CTG instead of ATG). It was 

doubtful that there was a relic of ycf26 exepctely in the upstream part of current 

CCAC0031 ycf26. ORF detection for the upstream region of CCAC 0031 ycf26 was 

done again. Fortunately, a small ORF (257 nucleotides) in the beginning of current 

CCAC 0031 ycf26 was found. This additional ORF was transferred to NCBI for 

BALSTX search. Surprisingly, it matched with a protein of Tetrahymena thermophila 

SB210 (gene ID 4512514) containing protein kinase domain. Meanwhile, the 

translated ORFs (+1, +2 and +3) were put into SMART server to detect functional 

domains. Again, it was interesting that two of these translated ORFs contained one 

or/and two trans-membrane regions without E-values while the other one held nothing.  

The functional domains of ycf26 protein of cryptophytes and some random chosen 

Cyanobacterium were illustrated in Fig.3.6.1.  

3.6.4 Reconstruct the phylogenetic trees 

For the first view of the evolutionary history, the phylogenetic trees were conducted. 

To increase the number of taxon sampling, 14 red-line algae and 45 Cyanobacteria 

ycf26 sequences were jointed for a large dataset comprises 59 taxa (see Appendix 22 

for detail of names and accession numbers of Cyanobacteria). The ycf26 collection 

was then submitted to Selecton server for codon-alignment. Alignable condon-based 

regions in nucleotides or/and protein sequences were extracted prior phylogenies.  

The jModelTest 0.1 and ProtTest 1.4 proposed TVM + G + I and JTT + G (Posada, 

2003) as the best fitting evolutionary for nucleotide and protein data set, respectively.  

The red-line ycf26 always formed a separated clade in phylogenetic trees (Fig. 3.6.2 

and 3.6.3). In both trees, their evolutionary rates were extremely high, of which the 

most significantly increased was Teleaulax sp. SCCAP K-416. There was a 

competition for the basal position in red-line clade; E. huxleyi occupied this place in 

the gene tree while two Porphyra strains replaced in the protein tree. The cryptophytes 

formed a separated clade in both protein and gene trees but not support. 
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Table 3.6.1: The distribution of ycf26 in photosynthetic plastomes 

 

Coppied and enriched from Duplessis et al. (2007). 
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Table 3.6.2: The positions and E-values of functional domains for  
cryptophytes ycf26 protein 

 

(-) E-values are not supported on SMART server; (***) The positions were identified 

based on the codon alignment by SMART server and comparison with Synechocystis 

sp. PCC 6803, thus E-values were not available; Empty boxes, unavailable sequences 

in the genome, thus SMART cannot identify.  



[RESULTS] 103 

 

 
Fig. 3.6.1: Alignment for ycf26 proteins of cryptophytes and some random chosen 

Cyanobacteria. 
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Fig. 3.6.1 (continued):  Alignment for ycf26 proteins of cryptophytes and some random 

chosen Cyanobacteria. 
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Fig. 3.6.1 (continued): Alignment for ycf26 proteins of cryptophytes and some random 

chosen Cyanobacteria. 
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Fig. 3.6.2: Rooted maximum-likelihood tree inferred from 59 ycf26 protein sequences 

(154 characters). The evolutionary model (JTT+I+G, - ln L= 8192.52) were selected 

according to the results of the corrected Akaike Information Criterion (AICc) in 

ProtTest 1.4 without “+F” option. Bootstrap values were assigned from left to right: 

maximum likelihood/maximum parsimony/neighbor-joining/posterior probabilities. 

Names in bold faces: newly sequenced ycf26 in this study; scale bar = substitution per 

site. 
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Fig. 3.6.3: Rooted maximum-likelihood tree reconstructed based on ycf26 gene 

sequences (59 taxa of 462 positions). The evolutionary model (TVM+I+G, - ln L= 

17953.7167) were proposed by jModelTest 0.1 based on the corrected Akaike 

Information Criterion (AICc). From left to right: maximum likelihood 

bootstrap/maximum parsimony bootstrap/neighbor-joining bootstrap/logdet 

transformation bootstrap/posterior probabilities. Names in bold faces: newly 

sequenced ycf26 in this study; scale bar = substitution per site. 
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3.7 ORF403 

As described above, lying between rps4 and rbcL genes of Cryptophyta 16S rRNA–

rbcL fragments were un-uniform sized ORFs. ORFs that occupy similar genomic 

location in the G. theta and/or R. salina plastomes are called ORF282 and/or ORF403 

because putative proteins of these ORFs consisted of 282 or/and 403 amino acids, 

respectively (Douglas & Penny, 1999; Khan et al., 2007a). Its structure and function in 

chloroplast of Pisum sativum var. Green Arrow were uncovered at first by Kouranov 

& Schnell (1997) and Kouranov et al. (1998). The authors described Tic22 protein as a 

22-kD largely hydrophilic protein with no predicted transmembrane domains that was 

located in the intermembrane space between the outer and inner envelope membranes 

and was peripherally associated with the outer face of the inner membrane. The 

authors also proposed Tic22 acted as a receptor for precursor proteins as they emerged 

from the Toc complex (translocon at the outer envelope membrane of chloroplasts), or 

mediate the association of Toc and Tic complexes (translocon at the inner envelope 

membrane of chloroplasts) at contact sites. However, Tic22 has been less well defined 

in algae. In this part of study, Tic22 and ORF403 was used alternatively.  

3.7.1 Verify the translated ORF403 of cryptophytes as Tic22 protein  

All of Cryptophyta translated ORF403 nucleotides were put into SMART server to 

explore domain architectures and confidences. SMART recognized some Cryptophyta 

putative ORF403 proteins as Tic22 but very weak E-values (see Table 3.7.1). ORF403 

of strains CCAC 0107, CCAC0109 CCAC0108, CCAC0113 and three colourless were 

not identified as Tic22 protein homologies. However, they were still kept in the 

ORF403 collection for some analyses in the next steps.  

3.7.2 The distribution of Tic22 in host genomes 

Using the Protein search function in NCBI database with Tic22 as the keyword, the 

finding showed interesting results of the distribution of the putative Tic22 proteins 

from Cyanobacteria to land-plants (Table 3.7.2). 
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At least one copy of the gene encoding for Tic22 was present in almost completed 

sequenced cyanobacterial genomes and plastomes of rhodophytes, cryptophytes such 

as those of P. purpurea, P. yezoensis, G. tenuistipitata var. liui, Cyanidium caldarium,  

Cyanidioschyzon merolae, G. theta, R. salina, Cryptomonas sp. (this study), etc. One 

copy of this gene also was found in one haptophyte plastome, E. huxleyi, but nothing 

within chloroplast genomes of heterokont. The distribution of Tic22 was not limited in 

the plastomes; it also located in the other genetic machines such as nucleomorph 

or/and main nucleus. For example, the completely sequenced nucleomorph genomes of 

two cryptophyte G. theta and H. andersenii contain versions of Tic22 (Douglas et al., 

2001; Lane & Archibald, 2006a). In genome of Cyanidioschyzon merolae, the 

investigators identified the genes encode for Tic22 and Tic22-like proteins (CMJ105C 

and CMC181C) while an EST (expression sign tags) for Tic22 was found in the 

nucleus of G. theta (Matsuzaki et al., 2004; Gould et al., 2006). Interestingly, the 

Tic22 encoding gene was not located in the apicomplast but in nucleus of 

apicomplexan Plasmodium falciparum (Waller et al., 2005). 

While searching the documents for this part, an interesting paper published by 

Kalanon & McFadden in 2008 involving the chloroplast protein translocation 

complexes in plant, green algae and red algae were found According to this report, the 

copy of Tic22 encoding genes seemed to be more than one in land-plants. For 

example, the genomes of vascular plant Arabidopsis thaliana and non-vascular plant 

Physcomitrella patents had two Tic22 paralogs while other vascular plant Pisum 

sativum contained one Tic22 gene. Whereas, only one copy of this gene was found in 

the main nucleus of Chlamydomonas reinhardtii and no trace of Tic22 encoding gene 

was detected in other green algae Ostreococcus lucimarinus and O. tauri. The authors 

also argued the existence of Tic22 in the chloroplast genome of Cyanidioschyzon 

merolae; and did not include at least two copies of Oryza sativa Tic22 proteins into 

their database. Therefore, in this part of study, these abandon sequences were accepted 

for analyses. EST in genomes of some being sequenced organisms also verified the 

existences of Tic22. Hence, nuclear-encoded Tic22 version of non-photosynthetic 

green algal Prototheca wickerhamii was recognized (Borza et al., 2005). Moreover, 
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the EST database in NCBI supported that Glycine max, Nicotina benthamiana, 

Avicennia marian, Gossypium hirsutum, Solanum tuberosum etc. consisted of nuclear-

encoded Tic22 genes; unfortunately, these EST coding for these Tic22 contained so 

many sequencing errors, so they were ignored in this analysis.  

3.7.3 Reconstruct the phylogenetic trees 

To take a closer look at the evolution of Tic22, attempts to reconstruct the 

phylogenetic trees based on the protein and nucleotide sequences were done. Most 

available Tic22 sequences in the NCBI data bank were downloaded and combined 

with newly sequenced Cryptophyta Tic22 to produce a large Tic22 data set of which 

28 were Cyanobacteria, two were green algae, eight are land-plants, three were 

apicomplexan and 27 are red-line algae. Strains CCAC 0107 and CCAC0109 were not 

participated in this investigating because of their partial sequences.  

The raw data set was submitted to Selecton server for codon-based alignment. Then, 

the alignable codon positions in both nucleotides and amino acid samples were 

extracted prior phylogenies. The nucleotide database consisted of 306 positions in 

length correspond with 102 amino acids. For nucleotide data set, jModeltest proposed 

GTR + G + I (General time reversible model with among-site substitution rate 

variation plus proportion of invariable sites) while ProtTest chose the CpREV + G 

(general time reversible model for plastid-encoded model gene) for protein data set.  

Although the numbers of positions contained in data sets offered in phylogenetic 

analyses were not so long, the trees built on the protein and/or nucleotide database 

opened the first look about the evolution of Tic22 (Fig. 3.7.1 and 3.7.2).  

In overall view, the sequences of Tic22 protein formed four main clades: the first clade 

was all Cyanobacteria, the second clade was those of red-line plastids, the third clade 

contained the Tic22 sequences that positioned in main nuclear genomes of green-algae 

(Chlorophyta) and land-plants (Magnoliophyta), the last clade comprised 

chromalveolate non-plastid Tic22 proteins (nucleomorph or/and nuclei genomes).  
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However, in the Tic22 gene tree, the branch pattern had some changes. The red-line 

and green-line Tic22 sequences were still present beside the Cyanobacteria clade, but 

the non-plastid clade was divided into two small groups: one contained all 

Plasmodium sequences and one was those of red-line non-plastid Tic22. 

The bootstrap values for red-line Tic22 clade were obtained only in the protein but not 

in gene tree. In both trees, C. borealis CCAC0113, C. erosa CCAC 0108 and three C. 

paramaecium were always found in the Cryptomonas clade. The CCAC0113 

displayed a significantly accelerated evolutionary rate than those of other 

Cryptomonas or even though of red-line ORF403. In the gene tree, three Tic22 of 

rhodophytes formed a clade at the basal position, but they were replaced by cluster of 

E. huxleyi and Cyanidium caldarium RK1 in the protein tree.  

Like the red-line ORF430 sequences, the green-line Tic22 formed a separated clade 

with support values for both phylogenies trees (74%/57%/79%/0.84 and 94%/83%/-/-

/0.99 for protein and nucleotide trees, respectively). Interestingly, non-photosynthetic 

P. wickerhamii and photosynthetic C. reinhardtii were always occupied at the basal 

positions in both phylogenetic trees.  

The forming of chromalveote non-plastid genome Tic22 clade in the protein tree but 

not always support was an attractive result. This clade, however, was dispersed in the 

gene tree. The cluster contained nuclear Cyanidioschyzon merolae, nucleomorph H. 

andersenii nucleomorph G. theta and cluster contained three Plasmodium strains 

seemed to be relative while nuclear G. theta sequences was inserted into 

Cyanobacteria clade.  

All Cyanobacterial Tic22 sequences grouped together as a super-clade but not always 

supported in the protein tree. They still formed a super clade in the gene tree but there 

were some strains jumped out of the Cyanobacterial cluster to insert into other clades. 

Surprisingly, the second version of C. merolae Tic22 (assigned Tic22-like protein - 

CMC181C) was always belong to Cyanobacteria clade in both phylogenetic trees.  
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3.7.4 Search for the conserved domains  

The amino acid alignment showed that the alignable regions distributed mainly in the 

C-termini rather than in N-termini. These regions were considered to determine the 

conserved motifs. Unfortunately, the identification within these regions was not strict 

across all taxa. Thus, no region was assigned as the conserved motif. This contradicts 

to the report of Kalanon & McFadden (2008) that two conserved motifs were found in 

Tic22 proteins at 104 – 119 and 186 – 200 residues, respectively, according to C. 

reinhardtii. The explanation may be due to the limited numbers (nine sequences) of 

taxa distributed in nuclei genome in their survey versus the extended Tic22 collection 

of 70 sequences distributed in many kinds of genomes in this study. Incidentally, the 

annotation in the Figure 4 in their report had a minor mistake in that the sequences that 

were noted as PpTic22-1, PpTic22-2, AtTic22-III, TeTic22, CrTic22, CmTic22 and 

CmTic22-like have to chance to AtTic22-III, PpTic22-1, PpTic22-2, CrTic22, 

CmTic22.  

3.7.5 Classify the Tic22 proteins 

Base on the multi-alignment by Selecton server as well as the protein tree, the Tic22 

protein sequences were divided into four groups.  

The first group consisted of all Tic22 from Cyanobacteria. This group was 

characterized by the alignable N-terminus and polar-residue rich C-terminus. 

Exception for Synechococcus sp. PCC7002, all members of this class displayed a high 

homologous. The Cyanidioschyzon merolae Tic22-like protein was assigned into this 

group as its position the protein and gene trees was always in the Cyanobacteria clade.  

The second group composed of Tic22 proteins located in non-plastid genomes of 

chromalveote (nucleomorph or/and nuclear genomes). Unlike group 1, the N-termini 

region of this group was high variant.  

The third group contained Tic22 that positioned in nuclear genomes of green algae 

(Chlorophyta) and land-plants (Magnoliophyta). The non-photosynthetic P. 



[RESULTS] 113 

 

wickerhamii also belonged to this group. Like group 2, the N-termini region of group 3 

was unalignable.  

The fourth group included all Tic22 proteins originated from red-line plastids. This 

group was characterized by a specific conserved cluster containing 27 amino-acids and 

laying at about 125 residues from start Methionine, it was illustrated in Fig. 3.7.3 

under the name “red-line plastid cluster”. Moreover, exception for G. theta, C. lundii 

CCAC 0107, C. borealis CCAC 0113 and three colourless, the cryptophytes had a 

strictly identical block of about 25 amino-acids at the C-terminus – called 

“Cryptophyte tail”.  

The partial Tic22 sequences of CCAC 0107 and CCAC 0109 showed that their C-

termini regions were alignable with other red-line Tic22 proteins. Especially, strain 

CCAC 0109 presented its cryptophyte tail. Strains CCAC 0113 and three colorless had 

no “cryptophyte tail” but possessed the red-line plastid cluster in their sequences. 

These verify that the putative translated ORF403 sequences of strains CCAC 0107, 

CCAC 0109, CCAC0113 and three colourless are actually Tic22 proteins. 

As mentioned above, the translated sequence ORF403 of Cryptomonas colourless and 

CCAC 0113 were not recognized as the Tic22 protein by SMART server, the 

phylogenetic analyses in both protein and nucleotide data sets always showed that they 

actually belong to Cryptophyta clade with high-accelerated evolutionary rates. 

Moreover, three colorless always displayed a strong attachment to each other in a 

single group.  

These result, again, confirmed that ORF403 of CAC 0107, CCAC0109 CCAC0108, 

CCAC0113 and colourless strains was obviously belong to ORF 403 family despite of 

the refutation of SMART server. 
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Table 3.7.1: E-values supported by SMART server for identify  

the Cryptophyta Tic22 proteins. 

Strain E values 

CCA C0086 6.00e-03 

CCAC 0056 not recognized 

CCAC 0018 2.80e-02 

CCAC 0107 not recognized 

CCAC 0108 2.10e-01 

CCAC 0109 not recognized 

CCAC 0113 not recognized 

CCAC0031 1.20e-04 

CCAP 977/2a not recognized 

CCMP 0443 1.90e-02 

CCMP 0152 7.70e-03 

CCMP 0704 4.70e-03 

G. theta - nucleomorph 5.40e-155 

G. theta - plastid 7.10e-02 

H. andersenii - nucleomorph 2.3e-26 

M 1092 4.50e-02 

M 1480 1.90e-04 

M 2088 6.60e-04 

M 2452 not recognized 

R. salina CCMP 1319 8.60e-05 

SAG 2013 3.40e-04 

SCCAP K416 3.90e-04 
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Table 3.7.2: The number and location of Tic22 genes in algae  

and land plant genomes. 
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Fig. 3.7.1: Rooted maximum-likelihood tree reconstructed based on 68 ORF403 

protein sequences (102 characters). The evolutionary model (CpRev+G, - ln L= 

11324.68) were selected according to the results of the corrected Akaike Information 

Criterion (AICc) in ProtTest 1.4 without “+F” option. Bootstrap values were assigned 

from left to right: maximum likelihood/maximum parsimony/neighbor-

joining/posterior probabilities; names in bold faces: newly sequenced ORF403 in this 

study; scale bar = substitution per site; (1): cyanobacterial genomes; (2) 

chromalveote non-plastid genomes; (3) Chloroplast and Magnoliophyta nuclear 

genomes; (4)red-line plastomes. 
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Fig. 3.7.2: Rooted maximum-likelihood tree inferred from ORF403 gene sequences 

(68 taxa of 306 positions). The evolutionary model (TVM+I+G, - ln L= 19876.3852) 

were proposed by jModelTest 0.1 based on the corrected Akaike Information Criterion 

(AICc). From left to right: maximum likelihood bootstrap/maximum parsimony 

bootstrap/neighbor-joining bootstrap/logdet transformation bootstrap/posterior 

probabilities. Names in bold faces: newly sequenced ORF403in this study; scale bar = 

substitution per site. 
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Fig. 3.7.3: Alignment of Tic22 protein sequences originated from red-line plastids. 
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Fig. 3.7.3 (continued): Alignment of Tic22 protein sequences originated from red-line 

plastids. 
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Fig. 3.7.3 (continued): Alignment of Tic22 protein sequences originated from red-line 

plastids. 
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3.8 Cluster of psaM and chlI gene and phylogenetic analyses 

based one the cryptophyte plastid chlI gene 

3.8.6 psaM and chlI as a conserved cluster in red-line plastid genomes  

Protein cluster analysis in NCBI server showed that psaM and chlI genes grouped 

together as a conserved cluster in some red-lineage algae such as Odontella sinensis, 

Phaeodactylum tricornutum, Thalassiosira pseudonana and Porphyra purpurea, 

Porphyra yezoensis, Guillardia theta, Rhodomonas salina and Gracilaria tenuistipitata 

var. liui (Fig. 3.8.1).  

The absence of psaM genes from the fragments of 16S rRNA–rbcL of three colorless 

strains (M2452, CCAC 0056 and CCAP 977/2a) examined in this study is unexpected. 

Due to the lack of nucleotide information of the 16S rRNA–chlI fragments of colorless 

strain M1634, the presence or absence of psaM from M1634 is therefore questionable.  

3.8.7 Annotate the conserved domains of chlI protein 

The structural and functional information of psaM in algae chloroplast have not been 

documented. Therefore, only the conservation of chlI protein was considered by 

observation the functional and conserved domains. To do that, the previously produced 

data sets were added by 11 red-lineage algae and one Cyanobacterium; the M1634 chlI, 

though was sequenced one third at C terminal only, was also added to have the 

preliminary view of its structure in compared with other cryptophytes.  

The codon-alignment results showed all chlI predicted protein sequences contained four 

highly conserved regions at the positions of 11 – 57, 106 – 212, 280 – 306 and 318 – 338 

as described for chlI of C. phi (previous name of G. theta) (Nakajama et al., 1995 ). The 

conservation of these regions was very strict in photosynthetic algae but relaxed in 

colorless strains. Moreover, the divergence of chlI protein sequences in heterotrophic 

Cryptomonas seemed to be very great in the last 140 amino acids. 

The first conserved region contained an ATP/GTP-binding site (GDRGTGKST) located at 

45 – 53 positions of G. theta chlI. The second region also held other ATP/GTP-biding 
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motif (ILYVDEVN) in between of 147 – 154 positions of G. theta chlI. Unsurprisingly, 

all plastid chlI proteins displayed a significant conservation in both ATP/GTP-binding 

motifs in which the second motif was completely conserved in all chlI proteins and the 

first motif had several minor changes in those of three colorless strains. Strain M 1634 

was not read for the N-termini part of its chlI gene, so the first ATP/GTP-binding motif 

has to be waited until this chlI gene was read fully.  

The codon-alignment also displayed two variant regions in all of chlI protein sequences 

that located between the first and second and the second and third conserved regions, 

respectively. The first variant region was equivalent to the insertion region 1, while the 

second one was correspond to helices *6 and *7 (see Fodje et al., 2001 for more detail 

about three-dimension structure of chlI protein). In this study, a deletion of around 7 – 10 

amino acid residues in the first variant region was found in colorless strains CCAC 0056 

and CCAP 977/2a, respectively. Other point, the chlI protein of photosynthetic H. 

akashiwo CCMP 0452 also was suffered a cluster of 14 amino acids in this region. All 

four leukoplast-bearing Cryptomonas strains showed a significantly alteration in the 

second variant region.  

Valentine et al. (1998) analyzed the N-termini of chlI protein to assume the localization of 

this protein in the cell. According to their information, the signal sequences were 

presented in the N-termini of chlI proteins. The first hydrophilic region with variant length 

contained basic residue such as K and R, the second region was hydrophobic with 10 – 11 

amino acid residues, and the third hydrophilic region comprised five residues. The protein 

alignment result showed that the loss of 15 – 17 amino acid residues in two colourless 

strain M2452 and CCAP 977/2a were correspond to the hydrophilic region. 

The relaxation in the last 140 amino acid residues and the divergence in the second variant 

region seemed to be the main factor caused the reducing of the identity degree of colorless 

chlI in comparison with those of photosynthetic cryptophytes  

3.8.8 Reconstruct phylogenetic trees 

To build in the phylogenetic trees based on the chlI sequences, the partial sequence of 

colorless M1634 was rejected while P. purpurea, P. yezonensis and G. tenuistipitata var. 
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liui were chosen as the out-group. The alignment, therefore, contained 24 taxa of 963 

positions. The constant, variable and parsimony informative were counted and showed in 

the Table 3.8.1.  

The number of variable sites at the third codon position was most extensive, nearly 100%; 

however, dropped down to 67.3% and 44.4% for the first and second codon positions, 

respectively. Moreover, almost all variation at third codon positions was phylogenetically 

informative (98.7% of variable sites) while the parsimony informative sites at the first and 

second codon positions occurred at 63.8% and 78.76%, respectively. These suggested that 

many of the sense changes were concentrated at the extreme terminal node of the tree(s). 

The high number of A and T (TA % = 77.7) at the third codon position indicated that a 

marked bias towards codons ending in TA.  

The pruned data set with only cryptophytes showed that the number of variable and 

parsimony informative site nearly the same with the case of full data set.  

When all taxa were included, the chi-square test of homogeneity of base frequencies 

results in significant P-values (Chi-square = 99.293971, df=69, P = 0.00988196) until 

CCAP 977/2a was deleted from the data set (Chi-square = 58.192941, df=51, P = 

0.22766298).  

The full data set was retested for the homogeneity with the first, the second position and 

the first two-codon positions (Chi-square = 57.116624, df=69, P = 0.84581378; Chi-

square = 9.423643, df=69, P = 1.00000000 and Chi-square = 37.471928, df=69, P = 

0.99930335, respectively). 

To test what sequence(s) in the cryptophytes caused the bias, the collection of only 

cryptophytes was introduced to PAUP* to calculate the P-value again. As expected, the 

full cryptophyte data failed the test (Chi-square = 86.584238, df=60, P = 0.01395624). 

The extreme sequences (maxima and minima) in the T nucleotide content were removed 

one by one before searching the P-values. The collection still failed the test (P<0.05) when 

CCAC0109 , CCAC0064, SCCAP K-416, CCMP 0443 and G. theta were deleted but the 

P-value increased to 0.13014625 when colorless CCAC0056 excluded (Chi-square = 

52.417327, df=42), and it jumped to 0.69342256 when the second colorless strain 

CCAP977/2a was removed from the data set (Chi-square = 34.083432, df=39). Exclusion 
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of the last colorless strains M2452 lead the slightly increased in the P-values (Chi-square 

= 28.270793, df=36, P = 0.81741040). That suggested the colourless strains were the main 

factor affecting the homogeneity of base composition in the cryptophyte clade.  

The jModeltest 0.1.1 proposed GTR+I+G as the best-fitting evolutionary model for chlI 

gene data set; and accompanied relative parameters were listed below.  

 Model = GTR+I+G 

 partition = 012345 

 -lnL = 14241.4952 

 K = 56 

 freqA = 0.4091  

 freqC = 0.1250  

 freqG = 0.1359  

 freqT = 0.3301  

 R(a) [AC] = 6.1772 

 R(b) [AG] = 8.5566 

 R(c) [AT] = 0.0167 

 R(d) [CG] = 3.2582 

 R(e) [CT] = 21.6152 

 R(f) [GT] = 1.0000 

 p-inv = 0.0460 

 gamma shape = 0.2570 

Meanwhile, the amino acid data set was imported to ProtTest 1.4 to search for the suitable 

model without F option. The CpREV+G model was proposed for chlI protein data set.  

The maximum likelihood tree of chlI gene obtained by PhyML revealed some un-

expected points. The first point was the very high-accelerated evolutionary rate of 

colorless strains – M2452, CCAC 0056 and CCAP 977/2a – in comparison with other taxa 

in entire data set. The second point was that they occurred at the basal position in the 

Cryptomonas clade without close relative.  

Unfortunately, the strain CCAC0107 and CCAC0108 were not presented in the chlI data 

set, their positions in the evolutionary tree, therefore, were not able to be determined. 

However, the current position of CCAC0113 and colourless strains in the chlI gene tree 

suggested that the LB clade found in rbcL gene tree seemed to be dispersed strongly.  

The branching for Cryptomonas in the chlI gene tree was incongruent with those of rbcL 

gene tree (Hoef-Emden et al., 2005) and concatenated nuclear partial LSU rDNA and 

nucleomorph SSU rDNA gene tree (Hoef-Emden, 2008). Exception for colorless clade 
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with very high support values, there were only several clusters obtained the support values 

such as CCAC0006-M1092 (77%/63%/63%/79%/0.66, Fig. 3.8.3), CCAC0109-M2088 

(94%/76%/79%/73%/1.0) and CCAC0031- CCAC0109-M2088 

(71%/57%/59%/55%/0.98). 

The branching of chlI protein tree, otherwise, was conflict with the gene tree (Fig. 3.8.4). 

The basal position in the Cryptomonas clade belonged to CCACC0113 while the three 

colorless strains moved inside grouping with clade M2088-CCAC0109 

(76%/60%/57%/0.87) to form a moderate clade without support. 

3.8.9 Codon usage 

Observation the codon usage of amino acids coded by NNY codon (two-fold degenerate 

codon) in chlI gene found that NNU codon was preferred over codon NNC in all 

cryptophytes. Also, there was a shift in codon usage from RNN to YNN codons in three 

heterotrophic strains. In autotrophic cryptophytes, the numbers of RNN codon were 

always around 99 – 108 and those of YNN codon were around 213 – 222 while these 

numbers significantly increased or/and decreased in three colourless strains (123 – 133 

and 188 – 198 for RNN and YNN codon, respectively).  
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Table 3.8.1: Base composition and variability of chlI sequences 
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Table 3.8.2: Codon usage of RNN, YNN and NNY codon in cryptophytes chlI gene. 

 

The chlI data set used in phylogenetic analysis was used for counting RNN, YNN and NNY 

codon per 321 codon (963 nucleotide positions); bold face values indicate some exception 

in which NNC over NNT codon. 
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Fig. 3.8.1: The Genome ProtMap (NCBI) searching results showed the psaM-chlI 

clusters in some red-lineage algae such as Odontella sinensis, Phaeodactylum 

tricornutum, Thalassiosira pseudonana and Porphyra purpurea, Porphyra yezoensis, 

Guillardia theta, Rhodomonas salina and Gracilaria tenuistipitata var. liui. The light 

arrows in the boxes are chlI genes and the gray smaller arrows just behind the chlI 

are psaM genes. 
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Fig. 3.8.2: The annotating for the conserved regions and hydrophilic and hydrophobic 

regions of chlI protein were based on codon-alignment of sequences from 

cryptophytes, Cyanobacteria and some red-line plastids.  
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Fig.3.8.2 (continued): The annotating for the conserved regions and hydrophilic and 

hydrophobic regions of chlI protein were based on codon-alignment of sequences from 

cryptophytes, Cyanobacteria and some red-line plastids. 
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Fig. 3.8.2 (continued): The annotating for the conserved regions and hydrophilic and 

hydrophobic regions of chlI protein were based on codon-alignment of sequences from 

cryptophytes, Cyanobacteria and some red-line plastids. 
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Fig. 3.8.3: Rooted maximum-likelihood tree inferred from chlI gene sequences (24 

taxa of 963 positions). The evolutionary model (GTR+I+G, - ln L= 14241.4952) were 

proposed by jModelTest 0.1 based on the corrected Akaike Information Criterion 

(AICc). From left to right: maximum likelihood bootstrap/maximum parsimony 

bootstrap/neighbor-joining bootstrap/logdet transformation bootstrap/posterior 

probabilities. Names without accession number: newly sequenced chlI in this study; 

scale bar = substitution per site. 
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Fig. 3.8.4: Rooted maximum-likelihood tree reconstructed based on 24 chlI protein 

sequences (321 characters). The evolutionary model (CpRev+G, - ln L=5069.26) were 

selected according to the results of the corrected Akaike Information Criterion (AICc) 

in ProtTest 1.4 without “+F” option. Bootstrap values were assigned from left to 

right: maximum likelihood/maximum parsimony/neighbor-joining/posterior 

probabilities. Names without accession number: newly sequenced chlI in this study; 

scale bar = substitution per site. 
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3.9 Analyses based one the cryptophyte plastid rps4 gene 

3.9.1 Annotate conserved domains 

To evaluate the conservation of the functional domains of rps4 protein, the data set 

mentioned above was extended to 36 taxa with the additional 12 taxa same as those in 

chlI database.  

The result revealed the strictly conservation of secondary structure of rps4 protein 

regardless of photosynthetic or non-photosynthetic strains (Fig. 3.9.1). Moreover, the 

number and order of α-helices and β-sheets in red-line algae were not altered in 

comparison with rps4 of green algae or land-plant (Davies et al., 1998 and Markus et 

al., 1998). The amino acid residues involving in the important functions of rps4 such 

as putative RNA-binding, hydrophobic core, etc. seemed to be significantly constraint. 

However, the surprise came from rps4 protein of Cyanidioschyzon merolae and H. 

akashiwo CCMP 0152: the rps4 from the primary plastid lost completely the α-6 and a 

part of 3/10 helix while the latter did not contain the loop 10 between α-6 and β-4. 

3.9.2 Reconstruct the phylogenetic trees 

Like the chlI data set for phylogenies, three rhodophytes (P. pupurea, P. yezoensis and 

G. tenuistipitata var. liui) were kept as out-group. Codon-gaps at any positions were 

excluded prior any analyzes. The modified data set then had 597 nucleotide or/and 199 

amino acid positions. 

Table 3.9.1 showed the results of base composition calculating for entire taxa as well 

as the clusters of cryptophytes. In the entire data set, the third codon position got a 

high values of AT content (78.1%) while the first and second position contained a 

moderate values (52.2% and 60.7% respectively) suggested that the codons ending 

with AT would be dominant in the rps4 amino acid population. Like chlI gene 

observed above, rps4 gene had extremely high variable site number at the third codon 

positions, then followed by the first and second positions (196/199, 131/199 and 

83/199, respectively). The large portion of parsimony informative sites in all codon 
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positions (84%, 61.4% and 99% of variable sites for first, second and third codon 

positions, respectively) indicated that all position contributed to sense substitutions. 

These values were nearly the same when three out-group strains were removed from 

the data set.  

Despite of the high abundant of AT content at the third codon position, the result of 

test for stationarity of base composition with the Chi-square test implemented in 

PAUP* v4.0 showed that the data set passed the test (Chi-square = 47.698593, df=78, 

P = 0.99731159). 

To select the best-fitting evolutionary model for rps4 gene and rps4 protein database 

proposed, jModeltest 0.1.1 and ProtTest 1.4 were employed. The TIM3+G and 

cpRev+G model were proposed as the selected models, respectively.  

Model selected:  

 

 Model = TIM3+G 

 partition = 012032 

 -lnL = 9696.0158 

 K = 59 

 freqA = 0.4048  

 freqC = 0.1218  

 freqG = 0.1331  

 freqT = 0.3403  

 R(a) [AC] = 11.0136 

 R(b) [AG] = 23.6176 

 R(c) [AT] = 1.0000 

 R(d) [CG] = 11.0136 

 R(e) [CT] = 32.7261 

 R(f) [GT] = 1.0000 

 gamma shape = 0.2700 

In the rooted maximum likelihood tree of rps4 nucleotide sequences, the Cryptomonas 

strains separated into two main clades without support (Fig. 3.9.2).  

The first main clade contains the colorless M1634 and CCAC0018, CCAC0031, 

CAC0109 and M2088 in which the colorless strain occupied at the early divergence 

position with slight increased evolutionary rate. The cluster CCAC0109-M2088 had 

the support values from moderate to high (71%/64%/53%/0.94) while the cluster 
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CCAC0108-CCAC0031 got the bootstrap values from maximum likelihood and 

posterior probability analyzes only (62%/-/-/0.98). 

The remaining Cryptomonas strains were pushed into the second main clade in which 

they were further subdivided into two small clades. The three colorless strains grouped 

with CCAC0107, CCAC0108, CCAC0113 and SAG 2013 to form a clade that was 

nearly the same with long-branch clade observed in the rbcL gene tree. However, the 

cluster CCAC0107-CCAC0108 became the closest relative to three colorless in the 

rps4 gene tree instead of CCAC0113 in the rbcL gene tree.  

Unlike the chlI protein phylogenetic tree, the maximum likelihood tree of rps4 protein 

sequences was nearly congruent with rps4 nucleotide sequence tree (Fig. 3.9.3). 

Generally, all Cryptomonas strains were distributed into two main halves, each had the 

same terminal nodes with those of rps4 gene tree. However, the positions of some 

strains were changed. For example, the colorless M1634 offered the basal position to 

strain M2088; while strain SAG 2013 split out of CCAC0013 to become close sister 

with three colorless (but without support).  

Observation the evolutionary rate of colorless lineages showed that they had a slightly 

accelerated evolutionary rates in the rps4 gene trees while these rate were significantly 

increased in the protein trees.  

3.9.3 Codon usage 

Table 3.9.2 displayed the dominant numbers of NNU in compassion to NNC in two-

fold degenerate NNY codon of cryptophytes rps4 gene.  
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Table 3.9.1: Base composition and variability of rps4 sequences 
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Table 3.9.2: Codon usage of NNC and NNY codon in cryptophytes rps4 gene 

 

The rps4 data set used in phylogenetic analysis was used for counting NNY codon per 

199 codon (597 nucleotide positions); bold face values indicate some exception in 

which NNC over NNT codon.  
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Fig. 3.9.1: Codon-alignment of rps4 protein sequences from cryptophytes, 

Cyanobacterium and some red-line plastids showed the numbers and order of α-

helices and β-sheets.  
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Fig. 3.9.1 (continued): Codon-alignment of rps4 protein sequences from cryptophytes, 

Cyanobacterium and some re-line plastids showed the numbers and order of α-helices 

and β-sheets. 
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Fig. 3.9.2: Rooted maximum-likelihood tree inferred from rps4 gene sequences (27 

taxa of 597 positions). The evolutionary model (TIM3+G, - ln L= 9696.0158) were 

proposed by jModelTest 0.1 based on the corrected Akaike Information Criterion 

(AICc). From left to right: maximum likelihood bootstrap/maximum parsimony 

bootstrap/neighbor-joining bootstrap/posterior probabilities. Names without 

accession number: newly sequenced rps4 in this study; scale bar = substitution per 

site. 
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Fig. 3.9.3: Rooted maximum-likelihood tree reconstructed based on 27 rps4 protein 

sequences (199 characters). The evolutionary model (CpRev+I+G, - ln L=3250.31) 

were selected according to the results of the corrected Akaike Information Criterion 

(AICc) in ProtTest 1.4 without “+F” option. Bootstrap values were assigned from left 

to right: maximum likelihood/maximum parsimony/neighbor-joining/posterior 

probabilities. Names without accession number: newly sequenced rps4 in this study; 

scale bar = substitution per site. 
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3.10   Analyses based on the concatenated data sets of chlI, rps4 

and rbcL genes 

3.10.1  Reconstruct phylogenetic trees 

Base on the separated data sets that have done phylogenies in previously sections, a 

concatenated data set was established include chlI gene (963 nucleotide positions), 

rps4 gene (597 nucleotide positions) and rbcL gene (972 nucleotide positions). P. 

pupurea, P. yezoensis and G. tenuistipitata var. liui still involved as out-group while 

strains M1634, CCAC0107 are CCAC0108 did not participate in as they lack one or 

two genes above.  

The entire concatenated data set was not passed the chi-squares test for homogeneity 

of base frequencies across taxa (Chi-square = 115.738636, df=69, P = 0.00036474). 

However, the P-value increased to 0.99938197 when the third co don positions were 

removed (Chi-square = 37.206271 df=69, P = 0.99938197). This was congruent with 

chlI and rbcL data sets as they only passed the chi-squares test after exclusion of the 

third codon positions.  

As did for smaller database, the combined data set was subjected to jModeltest 0.1.1 

and ProtTest 1.4 to detect the best-fitting evolutionary model. Two models TIM3+I+G 

and CpREV+I+G were selected for nucleotide and protein sequences, respectively.  

Model selected:  

 Model = TIM3+I+G 

 partition = 012032 

 -lnL = 32546.6433 

 K = 54 

 freqA = 0.3828  

 freqC = 0.1222  

 freqG = 0.1397  

 freqT = 0.3553  

 R(a) [AC] = 4.2253 

 R(b) [AG] = 8.2980 

 R(c) [AT] = 1.0000 

 R(d) [CG] = 4.2253 

 R(e) [CT] = 18.1463 

 R(f) [GT] = 1.0000 
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 p-inv = 0.1960 

 gamma shape = 0.3500 

The rooted maximum likelihood tree showed that the Cryptomonas strains divided into 

two main halves (Fig. 3.10.1 and Fig. 3.10.2). The first clade contained CCAC 0018, 

CCAC 0031, CCAC 0109 and M2088 with high bootstrap values 

(99%/89%/92%/99%/1.0) while the second clade comprised 10 remaining strains 

without bootstrap support in which CCAC 0013 and three heterotrophic strains formed 

a separated clade with moderate bootstrap values (52%/78%/85%/75%/0.77). Due to 

the lack of strains CCAC 0107 and CCAC0108 in this concatenated data set, the 

presence of long-branch was still questionable. However, the evolutionary rates of 3 

colorless and CCAC 0113 were higher than other Cryptomonas. Three strains 

CCAC0006, M1092 and CCMP0152 again displayed the attachment to each other 

even though the bootstrap value was not so high (61%/72%/57%/92%/0.73).  

In the amino acid translated data set, the three colorless Cryptomonas still displayed an 

accelerated evolutionary rate as well as early divergent position in Cryptomonas clade 

(Fig. 3.10.3). Strain CCAC 0113 also had a high evolutionary rate but not grouped 

with three colorless as seen in nucleotide tree, it otherwise located at the basal position 

of one of two main clades without support. The other strain, includes non-

Cryptomonas strains, branched similar to those of nucleotide phylogenetic trees.  

3.10.2 Calculate distance genetics 

Maximum likelihood distances between strain CCMP0152 and other cryptophytes 

were calculated in each genes chlI, rps4 and rbcL. They then were transferred to chart 

diagram (Fig. 3.10.3). Obviously, the maximum likelihood distance increased 

significantly in three colorless strains in all data sets, especially, extremely high 

substitution rate in chlI data set was observed. Apparently, the evolutionary rates 

increased from rbcL to rps4 and chlI genes in cryptophyte strains.  
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Fig. 3.10.1: Rooted maximum-likelihood tree inferred from concatenated plastid chlI, 

rps4 and rbcL gene sequences (24 taxa of 2532 positions). The evolutionary model 

(TIM3+I+G, - ln L= 32546.6433) were proposed by jModelTest 0.1 based on the 

corrected Akaike Information Criterion (AICc). From left to right: maximum 

likelihood bootstrap/maximum parsimony bootstrap/neighbor-joining bootstrap/logdet 

transformation bootstrap/posterior probabilities; scale bar = substitution per site. 
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Fig. 3.10.2: Rooted maximum-likelihood tree reconstructed based on a concatenation 

of chlI, rps4 and rbcL protein sequences (24 taxa of 844 characters). The evolutionary 

model (CpRev+I+G, - ln L=10619.92) were selected according to the results of the 

corrected Akaike Information Criterion (AICc) in ProtTest 1.4 without “+F” option. 

Bootstrap values were assigned from left to right: maximum likelihood/maximum 

parsimony/neighbor-joining/posterior probabilities; scale bar = substitution per site. 
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Fig. 3.10.3: The maximum likelihood distances (genetic distances) among 

cryptophytes with three data sets, strain C. pyrenoidifera CCMP 0152 was used as 

reference.  
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4. DISCUSSIONS  
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4.1 Advantages and disadvantages of long-range PCR and 

primer-walking sequencing combination 

Though there were some gaps in several strains need to be full-filled, the long-range 

PCR combined with primer-walking methods applied to purify and read the nucleotide 

compositions of the 16S rRNA–rbcL fragments of wide range cryptophyte strains 

simultaneously was successful. 

The 23S rRNA–rbcL fragment was chosen for reading as it comprised ribosomal 

operon, transfer RNA and protein coding genes, which have very high conservative 

degrees, satisfying the strictly criterions for constructing the primers for long-range 

PCR. Alternatively, the designing for primers for long-range PCR was facilitated by 

the published plastid ribosomal operon and rbcL sequence database as well as newly 

readings. Therefore, all primers for long-range PCR  were universal and were expected 

to be applied successfully for other cryptophytes. 

The long-range PCR was almost successful for all examined strains thanks to the 

carefully prepared optimization of PCR protocol, except for the colorless M1634 strain 

that only the fragment from 16S rRNA to rps4 gene was amplified. 

The most advantage of the used approach was that not so many initial DNA materials 

were required; about 10 to 25 ng of DNA template was satisfied for one reaction. This 

helped to save time and cost in preparation of DNA material. Unlike the isolation 

chloroplast by ultracentrifugation, dozens of grams of fresh biomass were needed to 

obtain the total DNA and subsequently to segment the genomes into separately bands 

in two or three days. In fact, the colorless strain C. SAG 977-2f was one of the favorite 

choices for searching and reading its rbcL as well as 16S rRNA–rbcL fragments. 

Unfortunately, the strain always died after few weeks arrived from SAG collection; 

and the available frozen total DNA was not enough for running analysis. The success 

of amplification a plastome large fragment by MasterAmpTM Extra-long PCR kit will 

open an opportunity to be back for continuing the uncompleted lab-workings on this 

interesting strain.  
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The utilizing set of 45 genes retained in all plastid genomes for designing universal 

primers then combining them in many optimal manners to produce large fragments is 

like using endonuclease restriction enzymes techniques to cut genome into small 

pieces, subsequently mapping and reading whole plastome. However, less initial 

material was required as mentioned above and no more time is spent to read and infer 

the plastid map based on cut segments.  

The shotgun approach seems to be the best choice nowadays for large-scale 

sequencing projects; but more time, cost, labor and high-tech instruments are required 

to apply this trend. The primer-walking strategy, on the contrary, requires standard 

molecular biology facilities only (Sterky & Lundeberg, 2000).  

The ultracentrifugation methods, as Douglas et al. (2001) conceded, also caused the 

contamination of mitochondria genome into other bands by many factors.  Amplifying 

the larger fragments of plastid genome by long-rang PCR avoided this unendurable 

issue.  

The lab-workings of this project were done in half a year could be considered 

beneficial in comparison with other methods.  

Inspire of these advantages, there are some unprejudiced problems: 

- The ycf26 gene and ORF403 in all strains were highly divergent in both 

nucleotide compositions, sizes caused the sequencing primers for ORF403, and 

ycf26 genes were nearly useless. Several specie-specific sequencing primers for 

these two genes had to be done to full-fill the gaps.  

- The absence of psaM as well as the substantial sequence divergence at the 

upstream portion of chlI gene in colorless lineages caused the same problems.  

These disadvantages seemed not to be major problems, and were overcome easily.  

In summary, the combination of long-range PCR with primer-walking approaches is 

reliable in the future not only to get the sequence database of the same fragments from 

another cryptophyte strains but also to be able to extent for whole plastome of 

examined Cryptomonas. The approach actually opened an ability to harvest huge 

amount of inter-species plastid genome information quickly and economically. 
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4.2 psaM and chlI formed a cluster in red-line plastids. 

An attractive finding from NCBI Genome Map search pointed that psaM and chlI 

genes formed a tightly cluster in almost red-line plastomes. The clustering of genes in 

the plastome is not new phenomena. In the early stage of genome era, when the 

biological data from genomes of chloroplast or/and nucleus were still limited, the 

researchers had based on the clusters of genes recognized in relative examined 

genomes as one of the most important feature to deduce the origin and evolutionary 

history of these genomes (Ohta et al., 1997). Observing from cyanobacterial genomes 

to plastid geomes, the researchers also discovered that some genes widely distributed 

in Cyanobacteria genomes but they would fused to form clusters in some plastid 

genomes from several lineages after the endosymbiosic process had taken place, for 

example ribosomal protein cluster, the rRNA cistrons, the rpoBC/atpA cluster, and the 

psbBTNH cluster (Douglas & Penny, 1999). Another example that researcher 

successful exploited the phylogenetic information from gene clusters in chloroplast 

genomes was that G. theta plastome directly originated from red-lineage plastid 

thought out the comparison of the distribution, arrangements of gene clusters in full-

sequenced plastome G. theta, P. pupurea, C. paradoxa. This hypothesis afterward had 

been supplemented, developed and accepted widely when the abundant biological 

information easy obtained from plastomes as well as the assistance of more powerful 

analyze tools (Reith & Munholland, 1993). 

As mentioned above, the psaM functions have not been established as well as the 

signal of its protein and mRNA have not yet been proved (Nelson & Yocum, 2006). 

Scanning the 5’ non-coding region of psaM or/and chlI showed that most regulation 

sites such as SD sequences, boxes -10 and -35 were found in front of psaM gene while 

nothing was detected in the upstream part of chlI gene except for an adenine-rich block 

(Fig. 3.5.2 and Fig. 3.5.3). This suggested that the pasM-chlI cluster seemed to be a 

co-transcriptional unit (di-cistronic unit) but the translational regulation for chlI gene 

could be directed by another pathway in which adenine-rich region to be involved.  
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4.3 The first evidence of reduced size of cryptophyte leukoplast 

genomes 

Surprisingly, no psaM gene was found in the colorless lineage of CCAP 977/2a, 

M2452 and CCAC 0056. There are two possibilities to judge the fate of psaM in 

leukoplast-bearing cryptophytes: the gene must have been lost completely or relocated 

to somewhere in their plastomes. It was assumed that the translocating of psaM, had it 

happened in colorless Cryptomonas strains, should be coupled with its partner chlI. In 

this case, chlI would not be found in between 16S rRNA and tRNA-R genes. In fact, 

chlI gene was found in the 16S rRNA–rbcL fragments of colorless plastomes. 

Therefore, the possibility of psaM translocation seems not to be persuasive.  

Moreover, unlike the main genetic machinery located in nucleus, the chloroplast 

genomes are non-recombination and uniparental inheritance, hence the translocation of 

certain gene(s) in plastome(s) of interspecies are almost not occurring. The 

evolutionary routine of colorless plastids prefered to reject unnecessary genes and 

compressed their plastomes rather than rearranged their genes (Sato, 2006). These 

hypothesis supported the assumption that psaM was lost completely in heterotrophic 

cryptophytes instead of being transported to another position in leukoplast genome of 

C. paramaecium.  

Even thought whole plastid genome sequencing of colorless cryptophyte strains have 

not yet been done completely to compare with other photosynthetic relatives, the 

comparison of 16S rRNA–rbcL fragment sizes showed that the leukoplast plastids of 

cryptophytes seemed to reduce their genome sizes which was evinced not only in the 

gene loss (psaM, ycf26 gene) but also in the curtailment of the non-coding regions and 

overlapped genes. The result is preliminary evidence that strongly support the 

hypothesis of plastome size reduction in colorless Cryptomonas lineages that was 

revealed by Hoef-Emden (2005a).  
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4.4 First overviews lock about ORF403  

Still now, the biological role of Tic22 (ORF403) protein in protein import apparatus at 

the chloroplast membrane was affirmed evidently in some published papers. However, 

most of them only issued the recognized biological role of that protein; no more papers 

have presented the deeply investigation of relationship between structure and function 

of Tic22 or phylogenies of this interesting object. 

The paper of Kalanon & McFadden (2008), in a comprehensive bioinformatic 

examination of the chloroplast protein translocation complex, pointed out some 

characteristics of Tic22 protein, however, only in green algae, land plants and some 

Cyanobacteria. 

This study, not only published some newly sequenced ORF403 of cryptophyte 

plastomes but also built an extended Tic22 collection of 70 sequences distributed in 

many kinds of genomes, opened the first look about the evolution of Tic22 protein 

after it diverged from its Cyanobacterial ancestors. The codon- alignment of Ti22 

amino acid sequences revealed several specific characteristics that only were found in 

cryptophyte and red-line plastids. 

4.5 ycf26 in cryptophyte plastids seems to be a pseudogene than 

alters function 

Martin et al. (1998), Ashby et al. (2002) and Martin et al. (2002) showed that the 

ycf26 gene was deleted from all green-line plastome in very early stage of evolution 

history of these organisms while this gene was still found in some red-lineage 

plastomes such as Rhodophyta, Haptophyta and Heterokontophyta. The finding of 

ycf26 several Cryptophyta species as well as in some Cryptomonas strains in this study 

showed that the non-universal distribution of this gene was not only at the phylum 

level but also in species and lineage level 

Analyzing the functional domain of current ycf26 pointed out that the ycf26 proteins 

were divided into two groups in which they were different in the numbers of the 
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domains recognized in the ycf26 proteins. The first group (mostly red-algae and one 

representative for haptophyte) held the numbers of functional domains like those of 

Cyanobacteria while the second group (Cryptophyta and Raphidophyta) mostly 

contained the HiKa and HATPase_c domains in which evidence for the degradation of 

the HATPase_c domains were emerged. 

Whether the truncated-ycf26 proteins in Cryptophyta as well as Raphidophyta still 

have had the functions like those of full–ycf26 protein in Cyanobacteria or their 

biological functions were altered to compatible with their current structures or they 

were relic of full ycf26 on the going to become pseudogenes? 

In the activity model of ycf26 deeply investigated in Cyanobaceria (Stock et al., 2000; 

Suzuki et al., 2000; Mikami et al., 2002; van Waasbergen et al., 2002; Mikami et al., 

2003; Morrison et al., 2005; Ashby & Houmard, 2006; Morici et al., 2006; Kanesaki 

et al.; 2007), the PSD domain was assigned as the domain responsible for receiving 

the extracellular stimuli, the cooperation between PSD and PAS domains was assumed 

to enable ycf26 to sense a wide variety of stress conditions while the HAPTase_c 

played a very important role in the support energy and catalyze the signal transmission 

from sensory histidine protein kinase to the response regulator protein. 

The truncated-ycf26 in Cryptophyta and Heterokontophyta lost completely the 

stimulus receiving domains (PSD and PAS) as well as having degraded the catalyze 

HATPase_c domain. Therefore, it is hardly to answer how truncated-ycf26 can play its 

function with only the HiKA domain? 

Lerat & Ochman (2005) demonstrated that one of the feature of pseudogenes that they 

have the moderate AT% values in comparison with functional genes and non-coding 

regions. The calculate the AT% for non-coding region in the cryptophyte 16S rRNA – 

rbcL fragments containing ycf26 showed that the AT% of ycf26 complied with this 

rule (Table 3.4.1). The extended calculation for ycf26 occupied in full sequenced 

plastid genomes also obtained the same results: the AT% contents of these ycf26 were 

always higher than AT% content of their plastomes. In contract, most AT% contents 

of ycf26 in cyanobacterial genomes were lower than A T% content of their host 

genomes (see Appendix 22). Obviously, the increasing AT% content over the AT % 
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content of its plastomes could be considered indicative for genome compositional bias 

as well as the pseudogenezation. 

Duplessis et al., (2007) assumed that the ycf26 gene of H. akashiwo CCMP 0152 was 

split into several small parts. However, it was not supported by detailed analysis of the 

completely sequenced H. akashiwo CCMP 0452 chloroplast genome. In the same way, 

the traces of trans-membranes, sensor and HAMP domains were not detected in the 

full sequenced plastome of R. salina and G. theta. 

Even thought there has been nothing to know about the full-detail mechanisms for 

regulation of ycf26 gene expression, an attempt to search for sites involve to gene 

regulation such as SD sequences, - 35 boxes and -10 boxes that were usually found in 

the upstream part of functional genes was done. Unfortunately, nothing was detected. 

Unexpected, the relics of trans-membrane regions were found in front of current ycf26 

of CCAC 0031. 

The phylogenetic tree displayed a very high evolutionary rate of non-Cyanobacterium 

ycf26 in both protein and nucleotide levels in which the cryptophyte clade showed the 

longest branch. 

From these evidences, it is possible to assume that the truncated-ycf26 genes without 

trans-membranes, sensor and HAMP domains in Cryptophyta as well as Raphidophyta 

lost their functions and on the way to become pseudogenes. Moreover, the degradation 

pathway seemed to be favorite starting at the N-terminus rather than at C-terminus; it 

means they lost the trans-membrane, the sensor domains at the N-terminus then 

continued with HATPase_c at the C-terminus. In the other word, the mutation pressure 

in ycf26 gene allowed the appearing of start codon to be easier than stop codon. 

Duplessis et al., (2007) also implied that the ycf26 protein that lacked trans-membrane 

regions would be a soluble protein and most likely present in the stroma. To verify the 

location of this protein in the cell, the authors reported that studies were underway 

using a Tsg1 (ycf26) peptide antibody. However, this assumption seemed not to be 

matched with observation concerning the domain distribution of algae ycf26 analyzed 

in this study. 
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4.6 The evolutionary pathway of chlI seems to difference with 

those of SSU, LSU, rps4 and rbcL  

Based on the nucleotide and amino acid sequences of rps4 and chlI genes, the 

phylogenetic trees of cryptophytes were displayed. However, the obvious differences 

in substitution rates among the differences clades and genes examined were observed.  

Unlike the unacceptable protein tree of rbcL amino acid sequences which failed to 

recover specific clades that were solved in other DNA sequences data sets (Hoef-

Emden et al., 2005), the protein sequence of rps4 gene revealed an acceptable 

phylogenic tree in scheme of the branching pattern of terminal clades in comparison to 

nucleotide trees obtained from itself or with other DNA trees (Hoef-Emden et al., 

2005; Hoef-Emden, 2008). Fortunately, the rps4 sequences of the second colorless 

lineage (presented by M1634) was read; thus, the position of this colorless strain in the 

rps4 phylogenetic trees was observed and confronted with other previously results 

(Hoef-Emden et al., 2005; Hoef-Emden, 2008). This result again confirmed that two 

colorless lineages differenced in their evolutionary history.  

The phylogenetic trees that were reconstructed from both nucleotide and protein chlI 

data sets, however, resolved the positions of the Cryptomonas strains in a total 

different pattern in comparison with all other results. The LB clade, that was formed 

by the colorless group (M2452, CCAC 0056 and CCAP 977/2a) with other close 

relative autotrophic C. lundii CCAC 0107, C. gyropyrenoidosa CCAC 0108, C. 

borealis CCAC 0113 named by their accelerated substitution rates and terminally 

diverging of colorless lineage, was broken up in chlI trees. Moreover, the 

heterotrophic strains now located at the basally tips without close relatives with 

extremely high evolutionary rates. The calculated genetic distances pointed out 

dominantly accelerated evolutionary rates of chlI in comparison with those of rps4 and 

rbcL. Thus, it was the reason resulted in unusual tree topologies. Due to the lack of 

M1634 chlI sequence, the position of the second colorless was not archived in this 

study.  
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These observations suggested that chlI gene increased their substitution rate earlier 

than rps4 and rbcL genes as well as the elevated evolutionary rates was ordered by 

chlI > rps4 > rbcL. The other thing was noted that the different evolutionary way of 

chlI gene in comparison with other genes.  

Although having moderate size (609 bp), rps4 has an evolution rate neither as high as 

in chlI gene nor as low as in rbcL gene, producing acceptable phylogenetic trees for 

both nucleotide and protein levels. Therefore, it seems to be more suitable protein-

enoding plastid gene maker for phylogenies than its sisters, chlI and rbcL genes. 

4.7 The colorless group (M2452, CCAC0056, CCAP 977/2a) 

diverged early or late depended on the gene surveyed.  

As mentioned in the previously results, the colorless strains always occupied at the 

terminally position regardless of gene markers chosen in nucleus, nucleomorph or 

plastid. However, in the chlI phylogenies, its position was changed significantly to 

basally tip. These results suggested that at least one gene group in the leucoplast 

genome represented by chlI had increased rapidly its rate at the very early of 

Cryptomonas evolutionary history while the other gene included rps4, rbcL, SSU and 

LSU just speeded in recently. The chlI tree also implied that the colorless group spilt 

out of its pigmented ancestor in the early stage of Cryptomonas evolutionary history 

while the other surveyed gene supported the colorless group just diverged in recently.  

4.8 Hypothetical scenario for the evolutionary history of colorless 

Cryptomonas  

In previously study, Hoef-Emden et al., (2005) released several potential caused for 

lineage-specific rates in correlating with the loss of photosynthesis in the colorless 

Cryptomonas. This study supported some new evidence.  

Some genes directly relative to photosynthetic system (for example, chlI gene of three-

subunit enzyme Mg-chelatase of chlorophyll biosynthesis) had increased their 

substitution rate at the very early stage of Cryptomonas evolutionary history. The 
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elevation, especially, was extremely strong in the colorless strains with unknown 

reasons resulted in the less or loss of functional constraints on gene products. The 

photosynthetic process, in compelling conditions, was affected dramatically so that 

they became inactive. The loss of photosynthesis was the premise of emergence of at 

least three independently colorless lineages in genus Cryptomonas. The successful 

changing from autotrophic to heterotrophic lifestyle became the second premise for 

reducing size of plastid genomes in which many genes have been lost or dramatically 

altered; rbcL gene was a notorious example.  

4.9 The shift from NNC to NNT in two-fold degenerate NNY 

codon seems not relative to the relaxation of the functional 

constraints of plastome protein-coding genes.  

In the previously analyzes (Hoef-Emden et al., 2005), the ratio of NNC/NNU in two-

fold degenerate NNY codon calculated for rbcL gene showed that this ratio was below 

1 in the colorless strains and some close pigmented Cryptomonas strains while this 

value was always above 1 in other Cryptomonas. The functional constraints of rbcL 

gene in colorless Cryptomonas, therefore, was assigned to have been relaxing as well 

as the gene expression level was on the way to reduce.  

Continuing with this analysis, the numbers of NNC and NNU again were counted for 

chlI, rps4 genes of all examined cryptophytes and several newly sequenced rbcL gene 

of autotrophic non-Cryptomonas strains. The results in the Appendix 21 showed that 

most ratios of NNC/NNU in rbcL gene of non-Cryptomonas strains were higher one 

but this ratio dropped down below one in cases of GAC/GAU codon (aspartate).  

Surprisingly, the NNU codons were always preferred over the NNC codon in rps4 and 

chlI genes in all cryptophytes regardless of photo- or nonphotosynthetic strains (Table 

3.9.2 and Table 3.10.2). From these results, however, the notion of relaxed functional 

constraints could not be revealed for rps4 and chlI concerning to their functions in the 

biological activities of the cells. 

Being considered as a well-conserved protein in prokaryotes and eukaryotes, which 

suggests strong functional constraints on structural evolution, rps4 gene was used 
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widely for evolutionary reconstruction in many phylogenies. With the essential role in 

protein biosynthetic system in the cells, rps4 gene with other genes coding for 

components of the plastid translational apparatus, therefore, have been preferentially 

retained in some the reduced leukoplast genome such as Prototheca, Astila, … Thus, it 

was hard to make a linking between the shift from NNC to NNU in two-fold 

degenerate NNY codon in rps4 gene with its decreasing selective constraints and also 

expression level in cryptophyte plastid. Similar explanation was applied for chlI gene.  

4.10  The usage of NNU codons over the NNC in two-fold 

degenerate NNY codon seems to be controlled by neutral 

mutation pressure rather than by selection followed by the 

gradually acceleration of evolutionary rate. 

As mentioned above, the order of accelerated evolutionary rate can be followed rbcL, 

rps4 and chlI in which those of rps4 and chlI were dominantly higher than rbcL. 

Obviously, the shift from NNC to NNU did not emerge in most autotrophic 

Cryptomonas strains where the evolutionary rate of rbcL was lowest. The NNU 

increased the numbers over the numbers of NNC in colorless strains in LB clade and 

some close relative strains in which their substitution rates were higher. The using of 

NNU spread in all strains of Cryptomonas (and non-Cryptomonas) in case of rps4 and 

chlI of which their rates were surpassing. Therefore, the shift from NNC to NNU 

codon in the two-fold degenerate NNY codon seemed to be controlled by neutral 

mutation pressure in order to increase the AT content rather than by selection; and it 

was followed by the gradient of accelerated evolutionary rate. The other thing was that 

the codon GAC/GAU could be considered at the first victim of this changing pressure.  

Besides the shift from NNC to NNU was recognized, the usage of YNN codons over 

the RNN codons also was found in chlI gene of colorless Cryptomonas. The 

acceleration of YNN codons meant increasing the appearing probability of stop codons 

(UAG, UAA and UGA) somewhere in the chlI gene.  
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5. PERSPECTIVES 
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The readings for full-length genomes are always exciting projects. Nowadays, the 

improvements in strategies and DNA sequencing technology have assisted the genome 

projects to be done for more efficiently, quickly, costly, etc. This study, sequencing 

fragments of cryptophyte plastomes by combination of long-range PCR and primer-

walking sequencing strategies, revealed the basic results of a long journey to discovery 

full-length cryptophyte plastomes. It is reliable in the future not only to get the 

sequence database of the same fragments from another cryptophyte strains but also to 

be able to extent for whole plastome Cryptomonas examined. The approach actually 

opens an ability to harvest huge amount of inter-species plastid genome information 

quickly and economically. As mentioned in the previously part, the three colorless 

lineages should be the first chosen for complete leucoplast genome reading; strain C. 

erosa CCAC 0018 and/or C. obovoidea CCAC 0031 also to be paid more attention as 

they are able to possess the biggest platomes among those of Cryptomonas. Some 

plastomes in which their size at the moderate level such as CCAC 0064 also are 

interesting objects for next stages of the project. 

Borza et al. (2005) demonstrated that the chlI was still expressed after removed to 

nucleus in colorless Prototheca wickerhamii. The authors assumed that the chlI gene 

product was still functional in the communicating regulation between nucleus and 

plastid genomes. In the heterotrophic Cryptomonas, the chlI gene product, obviously, 

has not been participated in the chlorophyll biosynthetic system; however, whether it 

has  been still employed to form the Mg-chelates that involves in the regulation for 

plastid-to-nucleus retrograde signals? As pointed out, the shift from NNC to NNU in 

two-fold degenerate NNY codons of chlI gene were happened in all examined 

cryptophytes, the predicting for chlI function in colorless strains, therefore, cannot be 

discussed. Several additive evidences such as the relaxation in 140 last amino acid 

residues as well as divergence strongly in the second variant region (Fig. 3.9.2) or/and 

the increased numbers of YNN codon (Table 3.9.2) means increasing the probability 

of stop codon appearing in colorless chlI can be considered as the signals to suggest 

that the chlI gene in colorless to be relaxed the functional constraints and/or on the 
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way to be pseudo-gene. More works and knowledge in the future, however, are needed 

to get the suitable answer for the relationship in between the present structure and 

function(s) of chlI protein in heterotrophic Cryptomonas lineages. Besides that, the 

same questions can be questioned also to ycf26 and ORF403.  

The evolutionary history of colorless Cryptomonas is one of the main objects that have 

been attracting the attention of many molecular systematic investigators. The potential 

causing of the forming of these lineages as well as the relationship between loss 

photosynthesis and increased substitution rates were published recently. This study, 

also, discussed one of hypothetical scenario to explain the extremely acceleration of 

photosynthetic genes with correlating with the changing from autotrophic to 

heterotrophic lifestyle of colorless lineages turning to be the main factor affects the 

increasing evolutionary rate of other genes. As any new hypothesis, it will be accepted 

or rejected if new lines of evidence will be available in the future.  
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Appendix 1: Illustration the gene contents, gene orders of the 16S rRNA–rbcL 
fragment in Rhodomonas sp. M1480 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLycf26 orf403

1  k b

Appendix 2: Illustration the gene contents, gene orders of the 16S rRNA–rbcL 
fragment in Teleaulax sp. SCAP K-416 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403ycf26

1  k b

 

Appendix 3: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 
in C. commutata CCAC 0109 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403

non-sequenced region

1  k b

 

Appendix 4: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 
in C. loricata M 2088 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403

1  k b

 

Appendix 5: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 
in C. erosa CCAC 0018 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-V tRNA-T

chII rbcLycf26 orf403

1  k b

 

Appendix 6: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 
in C. loricata M 2088 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403

1  k b
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Appendix 7: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 
in C. curvata CCAC 0006 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI orf403

1  k b

 

Appendix 8: Illustration the gene content, gene order of the 16S rRNA–rbcL fragment 
in C. borealis CCAC 0113 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403

non-sequenced region

1  k b

 

 

Appendix 9: Illustration the gene content, gene order of the rps4 – rbcL fragment  
in C. gyropyrenoidosa sp. nov. CCAC 0108 plastome 

1  k b

rps4 rbcLorf403

 

Appendix 10: Illustration the gene content, gene order of the rps4–rbcL fragment  
in C. lundii CCAC 0107 plastome 

Non-sequenced region

rps4 rbcL

orf403

1  k b

 

Appendix 11: Illustration the gene content, gene order of the 16S rRNA–rbcL 
fragment in C. ovata CCAC 0064 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-V tRNA-T

chlI rbcLorf403

non-sequenced region

1  k b
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Appendix 12: Illustration the gene contents, gene orders of the 16S rRNA–rbcL 
fragment in C. paramaecium CCAP 977/2a plastome 

rps4

16S rRNA tRNA-R tRNA-V tRNA-T

chlI rbcLorf403

1  k b

 

Appendix 13: Illustration the gene content, gene order of the 16S rRNA–rbcL 
fragment in C. paramaecium CCAC 0056 plastome 

rps4

16S rRNA

tRNA-R tRNA-V

tRNA-V

rbcLchlI

orf403

1  k b

 

Appendix 14: Illustration the gene content, gene order of the chlI–rps4 fragment  
in C. M1634 plastome 

tRNA-R tRNA-V

tRNA-T

chlI rps4

1  k b

 

Appendix 15: Illustration the gene content, gene order of the 16S rRNA–rbcL 
fragment in C. phaseolus SAG 2013 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403

1  k b

 

Appendix 16: Illustration the gene content, gene order of the 16S rRNA–rbcL 
fragment in C. pyrenoidifera CCMP 0152 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403

1  k b

 

Appendix 17: Illustration the gene content, gene order of the 16S rRNA–rbcL 
fragment in C. tetrapyrenoidosa M 1092plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLorf403

1  k b
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Appendix 18: Illustration the gene contents, gene orders of the 16S rRNA–rbcL 
fragment in Chroomonas sp. SAG 980-1 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

chlI rbcLycf26

Non-sequenced region

1  k b

 

Appendix 19: Illustration the gene contents, gene orders of the 16S rRNA–rbcL 
fragment in Hemiselmis tepida CCMP 0443 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-TtRNA-V

rbcLchlI ycf26 orf403

1  k b

 

Appendix 20: Illustration the gene contents, gene orders of the 16S rRNA–rbcL 
fragment in Proteomonas sp. CCMP 0704 plastome 

rps4

psaM16S rRNA tRNA-R tRNA-V tRNA-T

chlI rbcLorf403ycf26

1  k b
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Appendix 21: NNC and NNU codon numbers in rbcL gene of some non-Cryptomonas 
strains 
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Appendix 22: Accession numbers of Cyanobateria ycf26; AT% of the cyanobacterial 
genomes and ycf26 genes 
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