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Zusammenfassung

Meine Dissertation besteht aus zwei Teilen. Im ersten Teil befasse ich mich
mit dem Schicksal klassischer, kosmologischer Singularitäten in der Quan-
tenkosmologie. Der zweite Teil widmet sich der Extraktion von Vorhersagen
aus der Quantenkosmologie.

Im ersten Teil habe ich zwei Klassen kosmologischer Modelle untersucht.
Universen aus der ersten Klasse von Modellen beginnen oder enden ihre
Entwicklung mit einer big-rip–Singularität. Hier divergieren Energiedichte,
Druck und Skalenfaktor in endlicher Zeit. Diese Art von Singularität ist
ein generischer Bestandteil von kosmologischen Modellen mit dunkler Ener-
gie, die durch ein Phantomfeld generiert wird. Für jedes dieser Modelle
wurde auch das entsprechende Gegenstück mit normalem Skalarfeld betrach-
tet. Durch das gewöhnliche Skalarfeld wird eine big-bang–Singularität her-
vorgerufen. Die zweite Modellklasse, die ich untersucht habe, weist eine
big-brake–Singularität auf. Am big brake wird die Ausdehnung des Univer-
sums durch eine unendlich große, negative Beschleunigung zum Stillstand
gebracht.

Die Wahl all dieser Modelle ist motiviert duch das Auftreten einer Singu-
larität bei großem Skalenfaktor. Die grundsätzliche Frage, die es zu beant-
worten galt, war, ob diese Singularitäten auf Quantenebene vermieden wer-
den. Wenn eine solche Vermeidung tatsächlich stattfindet, so ist dies ein
Beleg und Beispiel für das Auftreten von Quantengravitationseffekten im
makroskopischen Universum.

Nach der Entwicklung von Modellen, die die gewünschten Singularitäten
aufweisen, habe ich nämliche quantisiert. Quantisierung erfolgte im geo-
metrodynamischen Zugang. Die zentrale Gleichung ist hier die Wheeler–
DeWitt–Gleichung. Ich habe Lösungen zu dieser Gleichungen gefunden,
in einem Fall konnte ich sogar eine exakte Lösung angeben. Aus diesen
Lösungen habe ich Wellenpakete entlang Bahnen konstruiert, die auf klassi-
scher Ebene in die Singularität führen würden. Die klassichen Bahnen konn-
ten mit Hilfe des Prinzips der konstruktiven Interferenz aus den Paketen
abgeleitet werden.

Als Kriterien für eine tatsächliche Vermeidung der Singularität auf dem
Quantenlevel wurde das Verschwinden der Wellenfunktion am Ort der klas-
sischen Singularität, sowie das Verschmieren von Wellenpaketen bei Annähe-
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iv ZUSAMMENFASSUNG

rung an die klassische Singularität benutzt. Dies entspricht einem Zusam-
menbruch der semi-klassischen Näherung und einer Auflösung der Raumzeit.

In allen Fällen konnte ich Singularitätsvermeidung nachweisen. Im Falle
der big-bang und der big-brake Singularität, die beide bei endlichen Werten
der Konfigurationsraumvariablen auftreten, verschwindet die Wellenfunk-
tion. Für die big-brake Singularität zerfließt zusätzlich das Wellenpaket.
Die ist nicht der Fall für die big-bang Singularität. Die big-rip Singularität
liegt im Unendlichen. Das Wellenpaket zerläuft bei Annäherung an diese
Singularität, verschwindet aber nicht.

Im zweiten Teil meiner Arbeit habe ich mich mit der Anwendung von ge-
neralisierten, effektiven Gleichungen auf Systeme mit Zwangsbedingungen
beschäftigt. Generalisierte, effektive Gleichungen benutzen zur Beschrei-
bung von Quantensystemen die Erwartungswerte fundamentaler Operatoren
und die höheren Momente der Wellenfunktion anstelle der Wellenfunktion
selbst. Dieser Formalismus ist damit wie geschaffen für die Extraktion von
Vorhersagen aus der Quantenkosmologie, zum Beispiel in der Form von Kor-
rekturen zu klassischen Bewegungsgleichungen. Der Formalismus ist auf
einem, im allgemeinen Fall, unendlich-dimensionalen Quantenphasenraum
aufgebaut.

Die erste Aufgabe bei der Anwendung auf Systeme mit Zwangsbedingun-
gen war die Übertragung der Dirac’schen Quantisierungsregel für Zwangs-
bedingungen auf diesen Quantenphasenraum. Die resultierenden Zwangsbe-
dingungen — es entstehen tatsächlich unendlich viele Zwangsbedingungen
auf dem Quantenphasenraum — eliminieren die unphysikalischen Freiheits-
grade in der zu erwartenden Art und Weise. Dies wurde für den Fall einer
einzelnen, linearen Zwangsbedingung gezeigt. Daraus folgt, daß auch für
eine beliebige Zwangsbedingung die Freiheitsgrade, zumindest lokal, korrekt
eliminiert werden.

In einem zweiten Schritt mußte die neugefundene Menge an Zwangsbe-
dingungen konsistent genähert werden, so daß eine endliche Zahl an Bedin-
gungen verbleibt. Nur dann kann man dem System überhaupt Informatio-
nen entziehen.

Ein solches Näherungsverfahren wurde für nicht-relativistische Systeme
entwickelt und am Beispiel des parametrisierten, freien, nicht-relativistischen
Teilchens demonstriert.



Abstract

This thesis consists of two parts. The first part is concerned with the fate of
singularities in quantum cosmology. The second part addresses the deriva-
tion of predictions from quantum cosmology.

In the first part, I studied two classes of cosmological models. In the first
class of models, the universe evolves to or emerges from a big-rip singularity.
Here, energy density, pressure and scale factor diverge after a finite amount
of time. This type of singularity arises rather generically in cosmological
models with phantom dark energy. For each of these phantom-field models,
the corresponding scenario with ordinary scalar field was studied. The scalar
field induced a big-bang singularity. The second class of models studied
was dominated by a big-brake singularity. At the big brake, the universe
evolution comes to a halt due to an infinite deceleration.

The motivation behind this choice of models was the occurrence of a
singularity at large scale factor. The major question pursued was whether
these types of singularity were resolved on the quantum level. If such singu-
larities were resolved in quantum cosmology, this would imply that quantum
gravitational effects can occur in the macroscopic universe.

After devising classical models that contain the respective singularity,
I subjected these models to quantization which was carried out in the ge-
ometrodynamical approach. The governing equation is then the Wheeler–
DeWitt equation. I found solutions to the Wheeler–DeWitt equation, in one
case even an exact solution. Wave packets were constructed around trajec-
tories which, on the classical level, would lead into the singularity. I have
then shown that the classical trajectory can indeed be recovered from these
packets through the principle of constructive interference.

As criteria for singularity avoidance, the vanishing of the wave function
at the location of the classical singularity, as well as the spreading of wave
packets upon approach of this region, was used. Whereas the former ensures
that the classical singularity does not contribute to the quantum theory, the
latter signals a dissolution of the semi-classical approximation and thus of
spacetime.

In all cases, I found singularity resolution. In the case of the big-bang
and big-brake singularities, the wave function vanishes at the classical sin-
gularity. These two have in common that they occur at finite value of the
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configuration space variables. A spreading of the wave packet is however
only observed upon approach of the big-brake singularity. A strict vanish-
ing cannot be found at the location of the classical big-rip singularity. This
singularity is located at the infinite boundary of configuration space. The
wave packet spreads upon approach of this singularity.

The second part of my thesis deals with the application of the general-
ized effective-equation scheme to constrained systems. Generalized effective
equations describe a quantum system via expectation values of fundamen-
tal operators and higher moments of the wave function — instead of using
the wave function itself. It is thus a very useful scheme for the derivation
of predictions from quantum cosmology, e.g. in the form of corrections to
classical equations of motion. The theory is formulated on a, generally,
infinite-dimensional quantum phase space. The first task was to find a for-
mulation of Dirac’s constraint-quantization condition on this phase space.
Such a formulation was found and proven to remove degrees of freedom ap-
propriately in the case of a single linear constraint. This result ensures the
correct removal of degrees of freedom for any singly constrained system at
least locally. In a second step, the newly formulated constraints — there are
actually infinitely many of them — had to be consistently approximated.
Such an approximation is necessary to reduce the infinite number of con-
straints to a finite one. Only then can information be extracted from the
system.

Such an approximation scheme for non-relativistic systems was devel-
oped. Its consistency was explicitly checked using the parametrised, free
non-relativistic particle.
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Notation and conventions

Starting point of all our derivations is a four-dimensional manifoldM with
metric g of signature (−,+,+,+). We will consider spatial hypersurfaces Σ
inM which are assumed to be compact throughout.

Greek indices range from 0, . . . 3 and latin indices from 1, . . . 3. Round
brackets around indices denote symmetrisation, x(ab), and square brackets
anitsymmetrisation, x[ab].

Poisson brackets will be denoted by {·, ·} and commutators by [·, ·].

We will use the abbreviation κ2 = 8πG
c4

containing the gravitational con-

stant G and the speed of light c. Also C = 3V
κ2 will be used as abbreviation.

I decided to follow the conventions in the choice of variables for the dif-
ferent quantities. As a consequence, some letters occur with double meaning
and in different styles, especially p and H. If the same letter is used for dif-
ferent quantities, then this happens in different contexts so that no confusion
can arise.

Units are chosen such that c = 1. The constant c will only be retained
in exceptional cases.
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Geometrical quantities

g spacetime metric h metric on Σ
K extrinsic curvature Gαβ Einstein tensor
x points in Σ X points inM

Derivatives

, α partial derivative ∇α covariant derivative of g

| a covariant derivative of h

Canonical formulation

hab three-metric on Σ pab conjugate momentum of hab
N lapse function pN conjugate momentum of N
Na shift vector pNa conjugate momentum of Na

φ scalar field pφ conjugate momentum of φ
V volume of Σ V (φ) scalar-field potential
H⊥ Hamiltonian constraint Ha diffeomorphism constraints
Γ phase space Γc constraint hypersurface
Qx space of three-metrics at x Q(Σ) configuration space of GR
Q superspace

Cosmological quantities

p pressure ρ energy density
w = p

ρ equation of state

Λ cosmological constant k curvature index
λ = CΛ K = Ck

Effective equations

q canonical coordinate p conjugate momentum of q

Ga,bc,d quantum variable CQ principal constraint



Chapter 1

Introduction

General relativity is the theory describing the gravitational interaction.
Even though it is experimentally well verified, it has the disturbing fea-
ture that it predicts its own break-down in the form of spacetime singular-
ities. Famous examples are the big-bang singularity arising in cosmological
spacetimes and the black-hole singularity arising in spherically symmetric
spacetimes.

As these are both highly symmetric solutions to Einstein’s equations, one
might hope that the singular nature is due to the high symmetry and not to
general relativity itself. However, the singularity theorems of Hawking and
Penrose squash this hope. Singularities are a generic feature of physically
interesting spacetimes. So we really need a theory that goes beyond general
relativity — this is at least the usual introduction found in many quantum-
gravity reviews.

The general assumption is that ‘the theory beyond’ should be a quantum
theory transcending general relativity. Depending on the own capacity of
transcendation, one of the following two paths is pursued. Either, one can
attempt to include general relativity in a quantum theory comprising all
four known interactions, i.e. to devise a grand unified theory. Or, one can
contend oneself with a mere quantization of general relativity.

We reserve the name quantum gravity for the latter approach.

Simply subjecting general relativity to quantization leads to quantum
general relativity. Here, ‘simply’ refers to a straight forward application
of canonical or path-integral quantization rules. In this thesis, we work
in the functional Schrödinger picture of quantum general relativity, i.e. in
the canonical formulation. This approach is known as quantum geometro-
dynamics and often treated as opposed to the corresponding path-integral
formulation. But we see quantum geometrodynamics just as one side of the
coin of quantum general relativity.

Quantum general relativity is the oldest candidate for a quantum theory
of gravity. The problem with this theory is that it does not fit into the

1



2 CHAPTER 1. INTRODUCTION

mathematical corset of ordinary quantum theory. Therefore many other
approaches have arisen over the years. On the canonical level, the most
fervent opponent of quantum general relativity is loop quantum gravity.
Being not only faced with problems but also with an alternative, it seems
wise to review the path taken and examine it carefully. This will be the
content of Chapters 2 – 4.

But let us come back to the singularity issue — which is actually inter-
mingled with the list of problems of quantum general relativity.

As it was introduced above, the resolution of classical spacetime singu-
larities forms a major motivation for the setup of quantum gravity. Let us
take the time to check this motivation. Should we really expect that quan-
tum general relativity resolves all classical singularities? Which arguments
can be given in favour of this hope?

Another expectation that is generally raised in connection with the res-
olution of classical singularities is that quantum general relativity itself be
a singularity-free theory. Note that this issue is a priori unrelated to the
first one. Furthermore, it is our aim to elucidate whether the expectation of
singularity-freedom is a valid and well-founded one. Chapter 5 is devoted to
a critical review of these two expectations connected with singularities on
the quantum gravitational level.

Apart from just checking whether these two expectations are justified,
we want to study whether they are actually met. That means, we discuss
whether classical singularities are resolved on the quantum level and whether
quantum general relativity is itself a singularity-free theory. It is difficult
to arrive at general statements on these issues. A tentative answer to the
second question is, however, given in Chapter 5. Following the results of
this chapter, criteria are developed which account for singularity resolution
on the quantum level.

Armed with these criteria, we approach the first question, namely the
question of singularity resolution on the quantum level. It is discussed for
two different types of quantum-cosmological singularity in Chapters 6 and 7.

Quantum cosmology is the adaptation of quantum general relativity to
cosmology. It has two main applications. Firstly, it is considered as the
theory relevant for the study of the early Universe. Secondly, it is often
used as a toy model for full quantum general relativity. This is the sense in
which it is employed in Chapters 6 and 7.

Of course, the cosmological singularity of primary interest for our Uni-
verse is the big bang. But other, more exotic types of singularity also exist.
The two singularities studied here are the big rip and the big brake. They
both occur at large scale factor, i.e. in the macroscopic universe. We ana-
lyze what happens to these singularities upon quantization. Can we expect
quantum gravitational effects in the macroscopic universe?

The last chapter is devoted to a rather new effective formulation developed
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for quantum cosmology. This formulation is based on expectation values
and higher moments of the wave function instead of the wave function it-
self. Therefore it is very well suited for the extraction of predictions from
quantum cosmology. In Chapter 7 a formalism is developed that allows the
application of this effective scheme to constrained, non-relativistic systems.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Hamiltonian formulation of

General Relativity

The Hamiltonian formulation is the classical starting point of canon-
ical quantum general relativity. It is based on a (3+1)-decomposition
of spacetime. The corresponding action arising from the Einstein–
Hilbert action is the so-called Arnowitt–Deser–Misner action. Most
significantly, the Hamiltonian dynamics of general relativity turns
out to be constrained, the Hamiltonian itself being one of the con-
straints.

2.1 The Arnowitt–Deser–Misner action

Any canonical formulation rests on the isolation of velocities of configuration
space variables. From these, the conjugate momenta are inferred which
then span up phase space. Thus to obtain a canonical formulation one has
to identify a time variable. For general relativity this implies that four-
dimensional spacetime has to be decomposed into spatial hypersurfaces. On
each hypersurface, canonical variables can then be defined which evolve
along the foliation. The resulting formalism is implicitly generally covariant
if it does not depend on a specific choice of time, i.e. foliation.

The decomposition of the Einstein–Hilbert action into time and space
directions is called Arnowitt–Deser–Misner action, or ADM-action for short.

In the following, I want to present the (3 + 1)-decomposition and derive
the ADM-action for pure gravity. Finally, some remarks are made on the
inclusion of matter.

We start from a Lorentzian manifold M with spacetime metric g of
signature (−,+,+,+). This metric is a solution of Einstein’s equations
derived from the Einstein–Hilbert action

5
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SEH[g] =
c4

16πG

∫

M

d4x
√
−det g (R− 2Λ) .

The prefactor containing the gravitational constant G and the velocity of
light c will be abbreviated through κ2 = 8πG

c4
. The determinant of g will

be written as det g, R is the Ricci scalar of g. The cosmological constant is
denoted by Λ.

2.1.1 The (3 + 1)-decomposition

Now we decompose this spacetime manifoldM into three-dimensional, space-
like hypersurfaces. These hypersurfaces shall actually be Cauchy hypersur-
faces: the specification of initial data on these hypersurfaces shall determine
a (up to diffeomorphisms) unique solution to Einstein’s equations. We know
that such hypersurfaces do not exist for arbitrary spacetimes but only for
globally hyperbolic ones.1

The foliation of spacetime

Globally hyperbolic spacetimes are diffeomorphic to a product manifold of
a three-dimensional, spacelike manifold, Σ, with the real line. This diffeo-
morphism is just the foliation

E : Σ×R −→ M
(x, t) 7−→ E(x, t) .

In the following, we will assume Σ to be compact. For each t ∈ R, we get a
special embedding of the hypersurface Σ intoM

Et : Σ −→ M
x 7−→ Et(x) = E(x, t) .

In this way, a global time function can be defined. Namely let

E−1 : M −→ Σ× R

X 7−→ E−1(X) = (σ(X), τ(X)) ,

where σ : M −→ Σ and τ : M −→ R. Then τ(Et(x)) = t. This map
associates with each point inM a time coordinate in R, the foliation time.

1For non-globally hyperbolic spacetimes, data on a three-hypersurface determine the
metric only in a limited region, the domain of dependence.
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For all x ∈ Σ, the map Ex : R −→ M defines a timelike curve in M. Its
tangent vector is Ėx, where the dot denotes derivation with respect to t. As
this holds at each x ∈ Σ, this actually defines a tangent vector field. It is
called deformation vector field. At each point X ∈ Et(Σ) it describes the
change of the embedding as a function of t. As a vector field it thus specifies
how one hypersurface Et(Σ) is deformed into an infinitesimally neighbouring
one Et+δt(Σ), see Figure 2.1.

If we introduce coordinates Xα, α = 0, . . . 3, on M — which are not to
be confused with the point X ∈ M — this field has components Ėαx where
Eα = Xα(Et(x)) at each point x in the hypersurface.PSfrag replacements

Et(Σ)

Et+δt(Σ)
n

Nδt

x

xa + δxa

~N

Ex(t) Ey(t)

y

Ėy(t)

PSfrag replacements

Et(Σ)

Et+δt(Σ)

n

Nδt

x

xa + δxa
~N

Ex(t)

Ey(t)
y

Ėy(t)

Figure 2.1: Two embeddings of the hypersurface Σ into M are shown.
These embeddings are separated by a foliation-time interval δt. On the left-
hand side, the timelike curves Ex(t), Ey(t) for two points x, y ∈ Et(Σ) are
shown. The deformation vector Ėy(t) is depicted at y. The figure on the
right-hand side illustrates the geometrical interpretation of lapse and shift.
Following the hypersurface normal n by an amount Nδt along a geodesic to
the intersection point with Et+δt(Σ) and then Na by an amount −δxa, we
arrive at the intersection point of Ex(t) with Et+δt(Σ).

Keeping in mind that we want a theory that is defined on spatial hyper-
surfaces, we have to strife for a way to separate quantities which lie in the
hypersurface from those orthogonal to it. This can be done with the help of
the hypersurface normal vector field n. For each embedding Et it is defined
via

nα(x)Eαt ,a (x) = 0 ,

where Eαt , a(x) = dEα(x,t)
dxa and x ∈ Σ. Furthermore, as we are interested in

spacelike embeddings, we want this normal to satisfy

gαβ(x)nα(x)nβ(x) = −1 .
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Both equations imply that the normal vector field depends on the spacetime
metric g as well as on the embedding Et. So, to be correct, we should write
n = n(x; Et, g]. For the sake of simplicity, I will refrain from doing so.

With these quantities, nα(x) and Eαt , a(x), we can decompose each tensor
into its hypersurface-orthogonal and -normal parts. For the deformation
vector, we write

Ėαx (t) = N(x, t)gαβnβ +Na(x, t)Eαt ,a .

We call the function N(x, t) lapse function and the three-vector ~N(x, t) with
components Na(x, t) shift vector. I use (x, t) as a short-hand to denote their
dependence on the embedding and the location on the hypersurface Σ. The
correct notation would be: N = N(x; Et, g] and similarly for the shift vector.

As can be seen from their definition, they describe the change of the
hypersurface with t in the orthogonal and tangential directions, respec-
tively. More precisely, for two embeddings Et(Σ) and Et+δt(Σ), N(x, t)δt
gives the proper time separation between Et(Σ) and Et+δt(Σ) normal to
Et(Σ), N(x, t)δt = δ⊥τ(x). Similarly (but more complicated to phrase),
Na(x, t)δt describes the displacement of Et+δt(x) with respect to the in-
tersection point of the geodesic normal to Et(x) with Et+δt(Σ). Let the
intersection point have coordinates xa+ δxa on Σ, then we can write this as
Na(x, t)δt = −δxa, see Figure 2.1 for clarification.

(3 + 1)-decomposition of the spacetime metric

We consider the pull-back E∗ of the spacetime metric g under the foliation
E to Σ× R. Coordinates on Σ× R are adapted to the product structure of
this manifold. Namely, the coordinates Y α are chosen such that Y 0 = t and
Y a = xa, a = 1, . . . 3, and xa is the coordinate system on Σ. Then we get
the following metric components under pull-back

(E∗g)00(x, t) = habN
aN b −N2

(E∗g)a0(x, t) = habN
b

(E∗g)ab(x, t) = hab .

So lapse and shift are basically the time-space and time-time components
of the space-time metric g. Often one finds the short-hand version of this
decomposition, leaving out the details connected with the embedding. Then
the spacetime metric is simply given in its ADM-form

gαβ =

(
−N2 + habN

aN b habN
a

habN
b hab

)
, (2.1)

also referred to as ADM-metric. As is obvious from the left-hand side of this
equation, this formula depends on the choice of coordinate system onM.
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The extrinsic curvature

We want to make one last observation before turning to the decomposition
of the action. This concerns the change of the metric on an initial surface
Et(Σ) under evolution to the neighbouring one, Et+δt(Σ), projected along the
hypersurface normal. With hindsight one might guess that this quantity will
serve as metric-velocity. One finds

nα(x)
δhab(y)

δEαt (x)
= −2Kab(x)δ(x− y) . (2.2)

Kab is the extrinsic curvature of Et(Σ) and describes the way the hypersur-
face is embedded intoM. As such it characterizes the extrinsic geometry of
Et(Σ). This can be seen from its definition

Kab = −Eαt ,a Eβt ,b∇αnβ
where ∇ is the covariant derivative of g. From this follows also that the
extrinsic curvature has components only in the three-hypersurface. Using
lapse and shift, we can write this as

Kab =
1

2N

(
−ḣab + L ~Nhab

)
, (2.3)

where L ~Nhab is the Lie derivative of hab along the shift vector.

2.1.2 The Arnowitt–Deser–Misner action

The ADM-formulation of the Einstein–Hilbert action consists now in pulling
back the Einstein–Hilbert Lagrangian with the help of E and expressing the
result in terms of three-metric, extrinsic curvature, lapse and shift. This
amounts to inserting (2.1) into the Einstein-Hilbert Lagrangian, making use
of (2.3) and isolating as many total derivatives as possible.

One arrives at the following form of the action

SADM =
1

2κ2

∫
dt

∫

Σ

d3xN
√

deth
[
KabK

ab − (Ka
a )

2 +
(

(3)R− 2Λ
)]
−∆SADM ,

(2.4)
where (3)R denotes the Ricci scalar of the three-metric h. The determinant
of this metric is denoted by deth and

∆SADM = 2(
√

dethK),t−(
√

deth(KN b − habN,a)),b

=
(
2
√
−det g(nα∇βnβ − nβ∇βnα)

)
,α .

This total-derivative term is usually dropped. Recall that we restricted the
discussion to compact Σ.
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Note that the ADM-action is first-order in time-derivatives of the metric.
Moreover, all quantities occurring in this action — apart from lapse function
and shift vector — lie in the three-hypersurface, i.e. they are three-covariant.
We thus put the action into first-order form and reformulated it in terms
of quantities defined entirely on the spatial hypersurface. These were the
principles according to which Arnowitt, Deser and Misner derived the ADM-
action originally.

2.2 The Hamiltonian of General Relativity

The canonical formulation is set up on the three-hypersurface Σ. As ex-
plained in the beginning, this hypersurface is a Cauchy surface of (M, g).
The ADM-metric components and their foliation-time derivatives are thought
of as being prescribed on this hypersurface. The components themselves
serve as canonical coordinates, the time derivatives are thought of as veloci-
ties. The time dependence of both, coordinates as well as velocities, are not
known but to be determined by the equations of motion.

Due to its first-order form and due to the fact that all quantities it
depends on are defined on Σ, we can use the ADM-action as starting point
of the canonical formulation. But we have to forget about the construction
of SADM and just consider the hypersurface and the quantities defined on
it as fundamental — and not as having arisen from a decomposition of a
spacetime metric g.

We use (2.4) with ∆SADM = 0.

2.2.1 Phase space variables of General Relativity

We thus have as canonical coordinates lapse N(x), shift ~N(x) and three-
metric h(x) at each x ∈ Σ. The momenta corresponding to lapse and shift,
pN , pNa , vanish as the action does not depend on their velocities (if the
total derivative in (2.4) is removed2),

pN ≈ 0 , pNa ≈ 0 . (2.5)

These are primary constraints! The Hamiltonian dynamics of general rela-
tivity is thus constrained. This is a consequence of the fact that the ADM-
Lagrangian is singular. The algorithm that tells us how to proceed with
such a constrained system on the Hamiltonian level is the Bergmann–Dirac
algorithm. It is explained in Appendix A. In the following, I will use the ter-
minology of constrained systems as presented there. Equations (2.5) define
the primary constraint surface.

2Otherwise the linear dependence of the action on the velocities of lapse and shift
yields their canonical momenta as functions of the three-metric components, see Dirac’s
own derivation [2].
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For the three-metric components, we find momenta

pab =
δSADM

δḣab
= −
√

deth

κ2

(
Kab − habKc

c

)
. (2.6)

So whereas the three-metric describes the intrinsic geometry of Σ, its canon-
ical momentum characterizes the extrinsic geometry.

The space (N,Na, hab; pN , pNa , pab) defines the phase space of general
relativity. It can be equipped with a Poisson bracket in the conventional
way. The only non-vanishing brackets are3

{Nα(x), p0β(y)} = δβαδ(x− y) ,
{hab(x), pcd(y)} = δ

(c
(aδ

d)
b) δ(x− y) ,

where I introduced Nα = (N,Na) and p0β = (pN , pNa) for the sake of
shortness.

The geometrical structure of this phase space is, to my perception, best
discussed in a review by Fischer and Marsden, [16]. There, the ADM-
decomposition is described in differential geometric language. The main
result is that the phase space of general relativity does form a cotangent
bundle over configuration space. More precisely, let configuration space
Q(Σ) be the space of all C∞, Riemannian metrics h on Σ. The tangent
bundle TQ(Σ) associates with each Riemannian metric a C∞, 2-covariant
symmetric tensor field on Σ. This can be thought of as the ‘velocity’ K of h.
The cotangent bundle is defined as T ∗Q(Σ) and associates a C∞ symmetric
2-contravariant tensor density of weight one with each metric. This can be
thought of as canonically conjugate momentum of h. This cotangent bundle
can then be equipped with the above Poisson bracket which turns it into a
symplectic manifold.

2.2.2 The Hamiltonian of General Relativity

Equation (2.6) can be solved for the velocities,

Kab = − κ2

√
deth

(
pab − 1

2
habpcc

)
,

so that one arrives at the canonical Hamiltonian density through

H(x;h, p,N, ~N ] = pN Ṅ + pNaṄa + pabḣab − LADM[h,N, ~N ] ,

3The brackets on the right-hand side of the second Poisson bracket denote symmetriza-
tion on the product of Kronecker δ.
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as

H(x;h, p,N, ~N ] = 2pabNa|b

− N√
deth

(
1

2
(paa)

2 − pabpab + deth
(

(3)R− 2Λ
))

,

where the vertical bar denotes the covariant derivative of h. After the ne-
glection of a surface term,

H(x;h, p,N, ~N ] = N(x, t)H⊥(x;h, p] +Na(x, t)Ha(x;h, p]
= NαHα(x;h, p,N, ~N ] ,

were we introducedHα = (H⊥,Ha) for the sake of shortness. The hypersurface-
orthogonal and -tangential parts of the Hamiltonian density are given by

Ha(x;h, p] = −2pba|b(x) ,

H⊥(x;h, p] =
κ2

2
√

deth
[hac(x)hbd(x) + hbc(x)had(x)− hab(x)hcd(x)]

×pab(x)pcd(x)−
√

deth(x)

κ2

(
(3)R(x;h]− 2Λ

)
.

The tensor

Gabcd(x) :=
1

2
√

deth(x)
[hac(x)hbd(x) + hbc(x)had(x)− hab(x)hcd(x)]

is called DeWitt metric. We will come to its meaning in Chapter 5. The
Hamiltonian itself will be denoted by

HC =

∫
d3xNαHα =

∫
d3xHC .

2.3 Constraints of General Relativity

The occurence of primary constraints entails more constraints (otherwise
one would hardly call them primary). These arise from the requirement
that the primary constraint surface be conserved under evolution through
the primary Hamiltonian. From this, an iteration procedure results which
shrinks the primary constraint surface to the constraint surface and termi-
nates when all constraints are conserved under evolution.

Furthermore, constraints generate transformations on phase space.
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In this section, the complete set of constraints for general relativity will
be determined and the transformations they generate analyzed. Finally, we
will introduce the concept of the partially reduced phase space which is the
starting point for quantization.

2.3.1 The set of constraints

The primary Hamiltonian is obtained from the canonical one through the
addition of the primary constraints,

HP (x;h, p,N, ~N ] = H(x;h, p,N, ~N ] + vαp
0α , (2.7)

with arbitrary functions vα. In the following, I will drop the dependence of
the Hamiltonian on (x;h, p,N, ~N ].

We require the primary constraints (2.5) to be conserved in time. This
yields the consistency conditions

ṗ0α = {p0α,HP} = Hα ≈ 0 .

Thus, conservation of the primary constraints yields the Hamiltonian com-
ponents as secondary constraints,

H⊥(x;h, p] ≈ 0 , Ha(x;h, p] ≈ 0 .

The total Hamiltonian is therefore constrained to vanish.4 The constraints
pN ≈ 0, pNa ≈ 0, H⊥ ≈ 0 and Ha ≈ 0 define the secondary constraint
surface. Requiring conservation of constraints on it, yields no new con-
straints. The set pN ≈ 0, pNa ≈ 0, H⊥ ≈ 0 and Ha ≈ 0 is the complete set
of constraints for general relativity, the secondary constraint surface is the
constraint hypersurface.

We will denote this hypersurface in phase space by Γc.

2.3.2 Transformations generated by the constraints

Evaluating Poisson brackets between all constraints, they are found to van-
ish on Γc. This follows trivially for Poisson brackets involving the primary
constraints. Poisson brackets between secondary constraints are more com-
plicated to evaluate. They are given by

4Alternatively, one can arrive at this result from the Hamiltonian form of the action

SADM =

Z

dt

Z

Σ

d3x
“

pabḣab −NH⊥ −N
aHa

”

through variation with respect to lapse and shift.
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{H⊥(x),H⊥(y)} = 2Hb(x)δ, b(x− y) +Hb, b(y)δ(x− y) , (2.8)

{H⊥(x),Ha(y)} = H⊥(y)δ, a(x− y) , (2.9)

{Ha(x),Hb(y)} = Hb(x)δ, a(x− y) +Ha(y)δ, b(x− y) . (2.10)

This algebra is called Dirac algebra. It will be discussed in Section 2.5.

Thus, Poisson brackets between secondary constraints vanish also on Γc.
We conclude that the set of constraints is first class. First-class constraints
generate gauge transformations. Which transformations are generated by
the constraints of general relativity?

The primary ones, pN ≈ 0, pNa ≈ 0, correspond to arbitrary lapse and
shift. But these just specify the coordinate system off the hypersurface Σ.
Thus, these primary first-class constraints signal that the canonical formu-
lation does not depend on the coordinate system surrounding Σ. Gauge
transformations generated by these constraints are just coordinate transfor-
mations that leave the coordinates on Σ untouched.

The transformations generated by secondary constraints, H⊥ ≈ 0, Ha ≈
0, are somewhat more subtle to derive. We can approach the problem from
the total Hamiltonian H =

∫
d3xH. This clearly defines transformations on

phase space mapping pab → pab
′
and hab → h′ab such that both, (hab, p

ab)

and (h′ab, p
ab′) describe solutions to Einstein’s equation. That means they

both correspond to the same spacetime metric g, but arise from a different
slicing of the latter. The points on the orbit of (hab, p

ab) generated by
HC correspond to one and the same solution of Einstein’s equation, but
expressed in different coordinate systems. If one defines a physical state
in general relativity as a spacetime, then H⊥ and Ha are rightly called the
generators of gauge transformations in the sense defined in Appendix A.5

Splitting the generator of four-diffeomorphisms into its tangential and
orthogonal parts, we conclude that H⊥ relates spatial hypersurfaces that
arise from different leaves of the foliation. The tangential components, on
the other hand, generate diffeomorphisms in the hypersurface. For a fixed
foliation, the orthogonal part clearly determines the dynamics whereas the
tangential parts just change the coordinate system in the hypersurface.

Therefore, the tangential parts are usually referred to as diffeomorphism
constraints, whereas the orthogonal part is somewhat ambiguously called
Hamiltonian constraint.

5The term ‘gauge’ is used in different meanings and contexts in physics. Here, we
use the terms local and rigid gauge transformations for those transformations to which
Noether’s first and second theorem applies. The term gauge transformation, on the other
hand, is reserved for the transformations generated by first-class constraints that leave the
physical state invariant.
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2.3.3 The partially reduced phase space

Usually, one fixes the coordinate system off Σ through a specific choice of
N , Na and assumes the first-class primary constraints to be satisfied. This
choice of coordinate system in the canonical formulation corresponds to a
choice of gauge. It just fixes the foliation. Covariance is preserved as any
choice is possible.

Then H⊥, Ha describe how the hypersurface Σ ‘moves’ through this
‘background’. We will assume that such a gauge fixing has been carried out
before quantization. This does not restrict our formalism or makes it less
covariant as lapse and shift will not enter on the quantum level, as will be
seen later.

2.4 Equations of motion

2.4.1 Hamiltonian equations of motion

The Hamiltonian equations of motion follow from a variation of the Hamil-
tonian. For lapse and shift, we just get the trivial statement

Ṅα = {Nα,HP } = vα .

This confirms the previous statement that they are superfluous degrees of
freedom that can be freely specified.

Variation with respect to three-metric and momentum yields

ṗab = {pab,HP } = −δH
P

δhab
, (2.11)

ḣab = {hab,HP } =
δHP

δpab
. (2.12)

N and Na thus enter as arbitrary functions. Here it becomes obvious that
they have to be prescribed in order to give meaning to the equations of
motion. We also see that N , Na specify the time parameter t, i.e. the
foliation. The freedom to choose N , Na arbitrarily insures that the theory
does not depend on a specific foliation — it holds for any foliation.

The equations of motion (2.12) for hab can be solved for pab = pab(ḣcd).
Using the defining equation for pab in terms of extrinsic curvature, (2.6),
one can express the extrinsic curvature in terms of the time derivative of the
metric h — which just yields (2.3).

The equations (2.11) for ṗab are dynamical equations and complete the
set of Hamiltonian equations of motion for general relativity.

2.4.2 Relation to Einstein’s equations

We expect these equations in some sense to be equivalent to Einstein’s equa-
tions as they arise from the ADM-action which in turn arises from a rewriting
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of the Einstein–Hilbert action. Due to the constraints, some of the Hamil-
tonian equations should be redundant. Both expectations are met. First of
all, the following equivalence can be shown

From Einstein to ADM:
Let a spacetime with metric, (M, g), be given, where g is a solution to
Einstein’s equations. Now foliate this spacetime with a one-parameter
family of spacelike embeddings Et : Σ −→ M of a three-hypersurface
Σ into M. These embeddings define lapse and shift. Furthermore,
we get a family of induced three-metrics t 7−→ h(t), and similarly for
the momenta t 7−→ p(t). Here, p is defined in terms of the extrinsic
curvature.

It then follows that the pair h(t) and p(t) satisfies Hamilton’s equations
of motion, (2.11) and (2.12) and the constraints. It is thus shown
that we obtain solutions to Hamilton’s equations of motion and the
constraints through the foliation of a spacetime obeying Einstein’s
equations, [8].

From ADM to Einstein:
On the other hand, let a spacetime with metric (M, g) be given —
but let g be an arbitrary metric that is not a priori required to satisfy
Einstein’s equations. Carry out a foliation as described above. But
now assume that h(t) and p(t) satisfy the Hamiltonian equations of
motion and the constraints.

It then follows that the spacetime metric g satisfies Einstein’s equa-
tions. So, a solution to Hamilton’s equations and the constraints is
associated with a solution to Einstein’s equations through whose foli-
ation it arises, [8].

Actually, (2.11) and (2.12) are the projections of the vacuum Einstein equa-
tions into the surface: Gab = 0 ⇔ (2.11), (2.12), where Gαβ is the Einstein
tensor. And the constraints are its projections perpendicular to the hyper-
surface, namely

H⊥ ≈ 0 ⇔ nαnβGαβ = 0 , Ha ≈ 0 ⇔ nαGαa = 0 .

But we also suspected that some of the equations of motion are redundant
due to the existence of constraints. This is the subject of the interconnection
theorems, for a full list see [8]. I only quote the two which are important for
the justification of the quantum scheme we will use.

The first statement was discovered by Dirac and can be found in his Lec-
tures, [3]. It guarantees that the constraints are conserved by the equations
of motion. More precisely, if the constraints and the equations of motion
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for pab and hab are satisfied by a pair (pab, hab) for all points on Et(Σ), then
the constraints will be satisfied for all ET (Σ) with T > t. This ‘conservation
law’ is a consequence of the Bianchi identities.

Reversely, if the constraints are satisfied by a pair (pab, hab) on Et(Σ)
for all parameters t ∈ R, i.e. on all hypersurfaces of a foliation, then the
equations (2.11), (2.12) for pab and hab are automatically satisfied. This
statement is due to Kuchar, [7].

From these two statements we learn that the entire dynamics of the
Hamiltonian theory is contained in the Hamiltonian constraints. This is the
reason why it is believed to be sufficient to quantize these constraints alone.

2.5 Dirac algebra

I want to come back to the algebra generated by the secondary constraints,
the Dirac algebra. It characterizes the transformations generated by the
secondary constraints.

Before discussing several interpretations of this algebra, note that the
Dirac algebra is not a Lie algebra6 and consequently, the generators cannot
be exponentiated to form a group. However, the Ha(x) alone do form a Lie
algebra, namely the algebra of three-diffeomorphisms in the hypersurface.

Last but not least it should be noted that the signature of the embedding
spacetime metric can be read off from this algebra. If the right-hand side of
(2.8) is positive, the spacetime metric has signature (−,+,+,+), whereas a
negative sign on the right-hand side comes from a Euclidean four-metric.

2.5.1 Reparametrization-invariant theories

It was already observed by Dirac that any diffeomorphism-invariant theory
necessarily has weakly vanishing Hamiltonian.

Theories with weakly vanishing Hamiltonian are called reparametriza-
tion invariant.7 Any theory can be brought into such a form. To this end,
one has to introduce an unphysical ‘time’ parameter that elevates physical
time to a dynamical variable. The resulting theory is then obviously in-
variant under reparametrizations of the unphysical ‘time’ parameter. This
procedure can of course be carried out with any of the coordinates. The
resulting formulation is then invariant under reparametrizations of the ar-
tificially introduced parameters. But general relativity is already invariant
under ‘reparametrizations’ of coordinates. This is just the essence of gen-
eral covariance, or diffeomorphism invariance. Thus, general relativity is

6Note that in the first bracket, (2.8), the indices are raised using the three-metric on
the right-hand side.

7In the literature one also finds the name parametrization invariant. But to my under-
standing, the theories are parametrization independent and therefore reparametrization
invariant.
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naturally in reparametrization invariant form. Other such theories are the
relativistic free particle and the free bosonic string.

Irrespective of whether or not the theory has been artificially turned into
a reparametrization-invariant one or is reparametrization invariant from the
very beginning, the canonical Hamiltonian will always be of the form

H = vµHµ , Hµ ≈ 0 .

Decomposing Hµ into hypersurface-orthogonal and -tangential parts, one
always arrives at the Dirac algebra, (2.8) — (2.10), see [3].

2.5.2 The hypersurface-deformation algebra

It has been shown by Kuchar, Hojman and Teitelboim that — for artificially
as well as naturally reparametrization-invariant theories — the Dirac algebra
can be interpreted as the algebra of hypersurface deformations. Here, the
Ha generate the deformations in the hypersurface which are just equivalent
to a change of coordinate system in the hypersurface. And H⊥ generates the
deformations perpendicular to the hypersurface and thus the dynamics.8

In this way, the Dirac algebra can be derived from first principles, [12].
In spirit, this is however very close to the way Dirac himself interpreted the
algebra in his Lectures, [3].

2.5.3 Relation to diffeomorphisms

The question is now how the transformations generated by the Hamiltonian
constraints relate to invariance transformations on the Lagrangian level.5

This issue has been studied by Bergmann and Komar, [14]. First of all, note
that a hypersurface deformation is equivalent to the transformation of one
coordinate system specifying a spacelike hypersurface into another one de-
scribing the same hypersurface. Generators of such a transformation would
just be the generators of four-diffeomorphisms. But due to the canonical
form and the projection tangential and orthogonal to the hypersurface, we
are here not dealing with the generators of four-diffeomorphisms. This can
be immediately argued from the fact that such a projection is not unique.
Therefore the set of hypersurface deformations is larger than the set of four-
diffeomorphisms. This argument is made precise by Bergmann and Komar,
[14]. They showed that general relativity (i.e. the Einstein–Hilbert action)
is not only invariant under four-diffeomorphisms

xµ −→ xµ ′ = fµ(x) , (2.13)

8It is also a result of Kuchar’s work that the Hamiltonian constraints of artificially
reparametrization-invariant theories depend linearly on the canonical momenta whereas
those of the truly reparametrization-invariant theories have quadratic dependence on the
momenta, [9].
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but under the larger set of transformations

xµ −→ xµ ′ = fµ[x, gρσ(x)] . (2.14)

How do these two groups relate to the transformations generated by the
Hamiltonian constraints? First of all, note that (2.13) is a subgroup of
(2.14). The Dirac algebra is a proper subalgebra of the Lie algebra of (2.14)
only if Nα depend on the canonical variables h and p. The group generated
by (2.13), on the other hand, is a subgroup of the group generated by Ha
— but only for spatial diffeomorphisms.

2.6 Gravity coupled to matter

If we go beyond vacuum gravity, the matter action has to be added to the
Einstein–Hilbert action,

S = SEH +

∫

M

d4x
√
−det gLmatter .

The decomposition of the Einstein–Hilbert part was carried out in the pre-
vious sections. Now we also have to decompose the matter Lagrangian.
Essentially, we have to express the metric determinant as det g = −N 2deth
and split derivatives into timelike and spatial ones. Note that because the
matter Hamiltonian describes the matter density, what we have to do, is to
decompose the energy-momentum tensor into its timelike and spatial parts
and express the resulting quantities in terms of the field and its momenta.

The total Hamiltonian is likewise constrained to vanish. Tangential and
orthogonal components include now

Hmatter
⊥ = N

√
deth ρ , Hmatter

a = N
√

deth ja ,

where ρ and ja are energy density and energy-flow components, respectively.

References: I heavily relied on Isham’s presentation of the (3 + 1)-
decomposition given in ‘Canonical Quantum Gravity and the Problem of
Time’, [11]. The relation between the canonical equations of motion and
Einstein’s equations is explained in Kuchar’s papers on canonical quantum
gravity, [8] as well as in a review by Isham, [10]. I also used Kuchar’s lecture
notes from 1976, [7], as well as the review article of Bergmann and Komar
in the first volume of ‘General Relativity and Gravitation’, [13].
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Chapter 3

Dirac Constraint

Quantization

The road to quantum general relativity is a rather bumpy one — and
the final destination is still not in sight. Different authors blame dif-
ferent problems for the deprivations of the enduring voyage. More-
over, with the advent of loop quantum gravity, a shortcut with speedy
vehicle is claimed to exist, putting someone chugging in a rusty old
car along a run-down road into a position of defence. I therefore
want to get out of the car and walk the road to quantum general rela-
tivity step by step, trying to separate the problems of the path (Dirac
constraint quantization) from those of the vehicle (general relativity),
trying to identify those potholes which are natural and those which
one should be able to avoid. The present chapter is entirely dedicated
to the path, i.e. Dirac’s constraint quantization scheme.

3.1 Canonical Quantization

3.1.1 Canonical Quantization of Classical Mechanics

Canonical Quantization is a scheme originally devised for the quantization
of classical, mechanical systems with simple phase-space structure R2n. It
was mainly developed by von Neumann, Weyl and Dirac. The idea is to
give a clear prescription of how to pass from a given classical system to its
quantum counterpart. In such a way one tries to axiomatize the heuristic
steps that led to the discovery of the Schrödinger equation. Such an effort
results in five axioms, given in Appendix B. Their essence is the following
instruction: promote phase-space functions to operators on a Hilbert space
of square integrable functions over configuration space such that all Poisson

21
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bracket relations are turned into commutators. Schematically, this can be
written as

f 7−→ f̂ such that {·, ·} 7−→ − 1

i~
[·, ·] .

The problem with this system of axioms is that it is inconsistent, see Ap-
pendix B. Moreover, the Groenewold–van Hove theorem shows that not all
phase-space functions can be elevated to operators such that the Poisson
algebra is preserved in the form of a commutator algebra. Another problem
is that not all phase spaces have the simple structure R2n. It would be
desirable to generalize the quantization procedure to systems whose phase
space is a general symplectic manifold Γ. Both of these problems have been
tackled in various ways.

I just want to emphasize here that the canonical quantization scheme
does not provide a consistent, unique, axiomatic prescription. One of the
major draw-backs is that it does not tell us which variables have to be
implemented under preservation of their Poisson algebra. This is a direct
consequence of Groenewold–van Hove’s work and will be of some importance
in the quantization of gravity.

Dynamics in canonical quantization in the Schrödinger picture is given
by the Schrödinger equation. According to it, any state vector, i.e. element
of the Hilbert space, evolves in external time t through the Hamiltonian
operator,

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉,

where Ĥ is the operator corresponding to the system’s Hamiltonian.

3.1.2 Canonical Quantization of Field Theories

Generalizing the canonical scheme to infinitely many degrees of freedom
yields the so-called functional Schrödinger picture of quantum field theory.
Essentially, the rules of the theory with finite degrees of freedom are taken
over to field theory. This is done, of course heuristically, through a dis-
cretization of fields — thus truncating the field theory at finite orders. Af-
ter employment of the quantization rules, the continuum limit to infinitely
many degrees of freedom is taken. For details, see Appendix B.

The functional Schrödinger picture is a generalization of the usual Fock-
space representation. The latter is tied to the particle interpretation, whereas
the former also applies on curved hypersurfaces — which are just the type
of hypersurfaces we are dealing with in canonical general relativity.1

1For a free field theory in Minkowski space, one usually uses the Fock space repre-
sentation. It is invariant under Poincaré transformations, that means 1) the vacuum
is invariant under action of the Poincaré group, 2) creation and annihilation operators
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Despite its intuitive nature, there are some subtleties involved in the
setup of the functional Schrödinger picture. For example, it is not obvious
to which function space the canonical field should belong, i.e. it is not
clear what the correct choice of configuration space Q shall be. Related
to this is the fact that an infinite analogue of Lebesgue measure does not
exist. In fact, for a non-interacting scalar field, one has to choose a Gaussian
measure µ. It turns out that as configuration space not only functions but
also distributions have to be included, [10].

A more serious problem are the divergences arising from the fact that
one is dealing with infinitely many degrees of freedom. The products of
non-commuting operators taken at the same spacetime point are generally
ill-defined as they produce δ(0)-divergences. In a flat background, one uses
operator ordering to get rid of these infinities.

The divergences stemming from the products of non-commuting oper-
ators arise on the same level as the UV-divergences in the path-integral.
Renormalization of these is generally done through the introduction of a
regulator. In the end, the regulator is removed after the potentially diver-
gent terms have been rendered finite. If the divergences cannot be dealt
with, the theory is meaningless — at least it is not valid as a fundamental
theory.2

So note that infinities associated with operator products at the same space
point arise in any quantum field theory in the functional Schrödinger pic-
ture. A particular problem of quantum gravity is the perturbative non-
renormalizability of general relativity and the lack of background structure.

Analogous to the finite-dimensional case, one arrives at the representa-
tion

φ̂(x, t)Ψ [φ] = φ(x, t) ·Ψ [φ] , π̂(x, t)Ψ [φ] = −i~
δΨ [φ]

δφ(x, t)

for fundamental variables φ, π, where Ψ [φ] ∈ L2(Q, µ). They satisfy the
equal-time commutation relations

transform covariantly amongst themselves and 3) an n-particle state is mapped onto an
n-particle state under the action of the Poincaré group. This can be summarized by the
statement that Fock space carries a unitary representation of the Poincaré group. This
does no longer hold if the theory acquires an interaction term. Then Poincaré invariance
is generally broken which means that a particle interpretation does no longer exist. The
same effect occurs if one considers field theory on curved instead of flat surfaces. From
this we see that the Schrödinger representation is a more fundamental concept than the
Fock space representation. The latter is tied to the particle interpretation whereas the
former incorporates the field aspects.

2But as general relativity does not couple to fermions, one might expect that its quan-
tization cannot yield a fundamental theory anyway.
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[
φ̂(x, t), φ̂(y, t)

]
= 0 ,

[π̂(x, t), π̂(y, t)] = 0 ,[
φ̂(x, t), π̂(y, t)

]
= i~ δ3(x− y)

Dynamics of the system is given here as well through the (functional) Schrö-
dinger equation,

i~
∂

∂t
|Ψ[φ]〉 = Ĥ|Ψ[φ]〉 ,

where Ĥ now contains functional derivatives, e.g. in the position represen-
tation with respect to the field φ(x, t) for fixed t.

3.2 Constraint Quantization

Any theory with local gauge invariance is constrained on the Hamiltonian
level. Even though we did not obtain the ADM-action through a gauging
of a rigid symmetry, i.e. even though we are not dealing with a gauge the-
ory of general relativity, we still encounter constraints. These are due to
the diffeomorphism invariance of general relativity. More generally, we saw
that any reparametrization-invariant theory obeys a constrained Hamilto-
nian dynamics.

So in order to quantize reparametrization-invariant theories — as well as
gauge theories — canonically, we need a prescription for the implementation
of constraints in the functional Schrödinger formulation of quantum field
theory.3

3.2.1 Dirac Constraint Quantization

There are several ways in which one could try to realize such a formula-
tion. For a given system with a set of first-class constraints, the following
approaches towards quantization can be found in the literature:

1. One can solve the constraints on the classical level and quantize only
the true degrees of freedom. This quantization method is also referred
to as true canonical quantization, [10]. But often the true degrees of
freedom are only known implicitly through the constraint equations.
In general relativity, for a general solution to Einstein’s equations, it
is not known which the true degrees of freedom are. Several attempts
have been made but all in one or the other way failed due to the
complexity of the constraints.

3Diffeomorphism-invariance is just a special case of reparametrization-invariance as
they are called in Chapter 2 and Appendix A.
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2. One can gauge-fix the freedom generated by the constraints. This is
done by adding gauge-fixing conditions until no gauge freedom is left.
This turns the first-class into a second-class system. These second-
class constraints can then be implemented as operator identities, pro-
vided that Dirac brackets instead of Poisson brackets are used to derive
commutators.

When applied to general relativity, this procedure faces the same prob-
lems as do Yang–Mills theories. No global gauge choices are possible
and one has to be content with local coordinate conditions.

3. A third possibility is to interpret the constraint operators as restric-
tions on the quantum state space. This is done via the requirement
that they annihilate admissible states. I use the term admissible in-
stead of physical as additional conditions may arise that prevent some
admissible states from being physical.

Another condition that points nonetheless in the same direction as (3.) is
the requirement that the matrix elements of the constraint operators with
respect to admissible states do vanish. This criterion presupposes that the
spectrum of the constraints is known before admissible states can be identi-
fied. The impracticability of this procedure is surely the reason why I found
this criterion solely in the book by Sundermeyer, [23].

In any case, (2.) or (3.), the quantum state space should not be more
restricted than the classical state space. This poses restrictions on the com-
mutators of constraints.4 So in case (3.), the constraint algebra has to
annihilate all admissible states. Case (3.) is referred to as Dirac constraint
quantization.

Note that so far, these quantization procedures are, apart from the first
one, only suggestions. They do not follow from some principle. It remains
to be proven that they yield the correct results. Correct results here mean
that the canonical constraint quantization has to yield results which are in
accord with experiment for those theories where experiments exist or simply
coincide with the established path-integral quantization for those theories
where path-integral results are trusted.

In general relativity, a mixture of the above recipes is used. The primary
first-class constraints pµ0 ≈ 0 are solved on the classical level. Lapse and
shift are specified before quantization. The remaining, secondary constraints
which encode the dynamics, are subject to Dirac constraint quantization.
The two axioms of this quantization scheme (3.) are

(q6) The classical first-class constraints are promoted to operators in such
a way that the classical Poisson algebra of the constraints is preserved

4Actually, it is this restriction that requires second-class constraints to be implemented
as operator identities.
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as commutator algebra of the constraint operators with the constraint
operators ordered to the right of the operators of structure functions.

(q7) The thus constructed operators select all physically admissible states
through

K̂αΨ = 0 ,

for all classical first-class constraints Kα and Ψ ∈ F , where F is the
representation space of the operators.

I will use simply (q6) and (q7) whenever I refer to the respective requirement.
Condition (q7) will also be referred to as Dirac’s constraint quantization
condition.5

3.2.2 Dirac’s constraint quantization condition: an example

Once we accept (q7), (q6) is a logical consequence. But the constraint
quantization condition (q7) itself is harder to justify. It is not obvious that
it should yield the same result as (1.).

That is why I want to present an example that shows how and that the
above prescription (q7) works. Despite this example, there are other cases
in which Dirac constraint quantization does not yield the same result as the
path-integral method.

A strong support in favour of Dirac constraint quantization in the special
case of general relativity, however, is provided by its equivalence to the path-
integral, see Chapter 4.

The free, parametrized non-relativistic particle

This example is due to Komar, [25]. I quote it here, because it exhibits the
general structures and problems arising in the quantization of a reparametri-
zation-invariant system. As general coordinate invariance is a form of repa-
rametrization invariance, this is of particular interest for the quantization
of any general-relativistic theory.

Classical theory On the classical level, we are dealing with a particle
of mass m, described by canonical coordinates qµ and momenta pν . These
satisfy Poisson-bracket relations {qµ, pν} = δµν .

The system is subject to a constraint K = p0 + papa

2m which arises because
the time-coordinate has been turned into a dynamical variable through the
introduction of an unphysical time-parameter, q0 = q0(τ). The system is
invariant under reparametrization of τ . The constraint restricts dynamics
to a hypersurface of phase space. It also generates transformations of phase-
space variables in the constraint surface

5The axioms (q1) — (q5) can be found in Appendix B.
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qµ → qµ + εδqµ = 0 , pµ → pµ + εδpµ = 0 ,

where δqµ = (δµ0 + δµi
pi

m
) , δpµ = 0 .

One recognizes that these are just the classical trajectories.

Observables are those quantities which commute (weakly) with the con-
straint {A,K} ≈ 0, see Chapter 4, Section 4.3.2 and Appendix A. An
over-complete set of observables is e.g. given by the components of linear
momentum pν , orbital angular momentum qipj − qjpi and qi − pi

mq0. These
observables can be used to label the trajectories. As the trajectories are one-
dimensional on the seven-dimensional constraint hypersurface, a minimum
of six observables is needed to characterize a trajectory uniquely. Under the
action of observables, trajectories are mapped upon trajectories. Note that
the action of the constraint (namely along the trajectory) is perpendicular
to the action of all observables (namely from trajectory to trajectory). Thus
the induced symplectic structure on the constraint surface is singular.6

Quantum theory On the quantum level, the theory is described by op-
erators q̂µ, p̂ν with only non-trivial commutator [q̂µ, p̂ν ] = i~ δµν . These
are realized on a Hilbert space of states |Ψ〉. Out of this space, the con-
straint projects a hypersurface of admissible states via K̂|Ψ〉 = 0. In the
Schrödinger representation, this equation turns out to be just the time-
dependent Schrödinger equation.

The first point of irritation is that the constraint cannot be realized as a
self-adjoint operator. If it could, one would arrive at the following paradox
conclusion

δ〈Ψ|q̂i|Ψ〉 = 〈Ψ|
[
q̂i, K̂

]
|Ψ〉

=
i~

m
〈Ψ|p̂i|Ψ〉 = 0 ,

as the constraint annihilates the bra as well as the ket, if we take the ex-
pectation value in an admissible state. As the constraint thus cannot be
represented by a self-adjoint operator, consider the action of a state under
the adjoint K̂†,

δ|Ψ〉 = − i

2
εK̂†|Ψ〉 .

6This can be rigorously proven using the Lagrange bracket. One can show that the
Lagrange bracket vanishes and thus a symplectic structure on the constraint surface is
singular.
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If K̂ is a normal operator, i.e. if the inner product is chosen such that[
K̂, K̂†

]
= 0, the adjoint can be interpreted as generating the gauge trans-

formations in the quantum theory. This can be seen from the fact that the
transformation |Ψ〉 7−→ |Ψ̃〉 = |Ψ〉+ δ|Ψ〉 for K̂|Ψ〉 = 0

• preserves the inner product of admissible states: 〈Ψ̃|Ψ̃〉 = 〈Ψ|Ψ〉,

• preserves the expectation values of observables if these are defined via[
Â, K̂

]
|Ψ〉 = 0 for each admissible state: 〈Ψ̃|Â|Ψ̃〉 = 〈Ψ|Â|Ψ〉,

• preserves admissible states, i.e. leaves the admissible state space (the
‘quantum constraint hypersurface’) invariant: K̂|Ψ̃〉 = 0.

This is a first step towards a classical-to-quantum correspondence.

The second point that deserves special mention is that the inner product
on the quantum constraint hypersurface is singular. As a consequence, the
inner product of states is at best indefinite and can become negative. Sin-
gularity on the quantum constraint hypersurface follows from the fact that
K̂†|Ψ〉 is orthogonal to every admissible state. This is the quantum analogue
of the fact that the symplectic structure on the classical constraint surface
is singular.

Komar further discusses the quantum-to-classical correspondence. He
takes offence in the fact that for any non-linear constraint operator, as
e.g. K̂, expectation values do not satisfy the classical constraint equations.
Therefore, he argues, we do not recover Ehrenfest’s correspondence princi-
ple for the constraints. Driven by this critique, he introduces the concept of
quasi-observables. These are operators that commute with K̂ − K̂†. This is
his attempt at an interpretation of the constrained quantum theory.

The parametrized, free, non-relativistic particle exhibits already all the prob-
lems related to Dirac’s constraint quantization condition.

First of all, the measure includes integration over all qµ, also the unphys-
ical q0. This is a restriction on the Hilbert space on which the theory is set
up. Furthermore, the theory contains unphysical states and therefore has
no positive definite inner product. Moreover, the Hamiltonian should not be
represented as a self-adjoint operator on these states. Lastly, not all opera-
tors q̂µ, p̂µ should correspond to self-adjoint operators. Komar distinguishes
the relevant operators through the concept of a quasi-observable.

The parametrized, free particle is a simple system not only in the math-
ematical sense. But also because we know what is actually going on. We
know that q0 is no dynamical variable and can therefore interpret the the-
ory accordingly. General relativity, on the other hand, is reparametrization
invariant by nature and thus we do not know which are the dynamical vari-
ables.
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3.3 Summary

From all this, one can see that the canonical quantization scheme does not
provide a unique, axiomatic prescription that turns a classical into a quan-
tum theory. We will list the encountered ambiguities and problems hier-
archically, starting from the general quantization problems, via the specific
problems encountered in the quantization of field theory, to the difficulties
arising for constrained field theories, ending with the specific problems of
reparametrization-invariant theories.

We will link each problem to its counterpart in the covariant approach.

Most generally, as a consequence of the Gronewold–van Hove theorem,
we do not know which Poisson bracket relations to enforce as commutator
relations. Thus we are deprived of a means that tells us how to quantize
more complicated phase-space functions. This problem is known as factor-
ordering problem. On the covariant level, it is reflected in the ambiguity in
the definition of the path-integral measure. Namely, one has to choose a
specific slicing of time in the construction of the path-integral measure. Dif-
ferent choices correspond to different factor orderings of the theory’s Hamil-
tonian.

In going from ordinary quantum mechanics to field theory, one automat-
ically encounters divergences related to operator products at the same space
point — in the canonical formulation on curved surfaces. Because in this
case, we can no longer take refuge to the Fock-space representation but have
to use the functional Schrödinger picture. The divergences here arise on the
same level as UV-divergences in the path-integral approach and should be
removed through one of the familiar renormalization schemes.

But we are not just trying to quantize an arbitrary field theory, but
we are trying to quantize a constrained system. This entails a whole se-
ries of alterations, if not complications, compared to the quantization of an
unconstrained system. The difference to the unconstrained case becomes
particularly severe as, in general relativity, we cannot easily and unambigu-
ously isolate the true degrees of freedom. Therefore we are led to Dirac’s
constraint quantization condition. The application of this condition entails
that not only the physical, but all degrees of freedom are promoted to oper-
ators. As a consequence, a positive inner product cannot be defined. From
the point of view of the path integral, the arisal of negative norm states
is necessary to cancel the contribution of unphysical states to the overall
transition amplitude. The corresponding procedure on the canonical level
would be to add gauge-fixing conditions on the classical level and quantize
the resulting second-class system.

We saw in the example of the parametrized, free particle that the result-
ing theory is very difficult to interpret.

But general relativity is not simply governed by constraints, here the
Hamiltonian itself is constrained to vanish. This is the case for any reparame-
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trization-invariant theory. For a theory of this type, we expect that the
Hamiltonian cannot be defined as a self-adjoint operator.

I emphasize again that, apart from the last problem, all other problems
occur in the canonical quantization of any constrained field theory. More-
over, these problems are well-known problems on the covariant level where
in principle methods exist that allow to cope with them — albeit on a very
formal level.

References:
As sources for the general scheme of canonical quantization served the

article by Giulini [18] and the review on quantization methods written by
Ali and Englis, [17]. The methods of constraint quantization are described
in Sundermeyer’s book, [23].



Chapter 4

Quantum General Relativity

The application of the canonical quantization scheme is referred to
as quantum general relativity. This application is not without flaws.
Therefore, I will outline quantum general relativity as a programme.
This programme still has mathematical as well as interpretational
problems. Despite these, the theory has some successes to its name.
These will be described in the last section of this chapter.

4.1 The Programme

Now we will apply the just presented ‘quantization scheme’ to general rel-
ativity. We put ‘scheme’ in quotation marks to remind the reader that we
are not using an axiomatic system that is guaranteed to yield the correct
quantum theory.

4.1.1 The quantization map Q

As fundamental variables serve the three-metric h and its canonically con-
jugate momentum p. These are represented by operators

hab(x) −→ ĥab(x) , pab(x) −→ p̂ab(x)

such that

[
ĥab(x), p̂

cd(y)
]

= i~ δ
(c
(aδ

d)
b) δ(x− y) ,[

ĥab(x), ĥcd(y)
]

= 0 ,
[
p̂ab(x), p̂cd(y)

]
= 0 .

31



32 CHAPTER 4. QUANTUM GENERAL RELATIVITY

We use the Schrödinger representation as is required by the axioms of the
canonical quantization scheme, see (q4) in Appendix B,

ĥab(x)Ψ[h] = hab(x) ·Ψ[h] , p̂ab(x)Ψ[h] = −i~
δΨ[h]

δhab(x)
. (4.1)

Here, Ψ[h] ∈ F is the state vector. It can be any functional of the metric
sufficiently well-behaved to allow differentiation but not restricted other-
wise. Especially, it does not need to be square-integrable with respect to
h. So the representation space F is the vector space of all functionals over
configuration space Q(Σ).

4.1.2 The Dirac Algebra

A minimalistic approach requires the realization of the classical Hamiltonian
constraints as operators on F . This realization is restricted by the condition
that commutators of constraints shall not generate new constraints. This
limits the choice of factor ordering of the constraints. Namely, it has to be
chosen such that metric operators occur to the left of constraints operators
in the operator algebra corresponding to (2.8) — (2.10).

The search for such an ordering is beset with problems and an open issue.
The general ordering of the constraint operators, containing parameters α,
β and γ labelling the ambiguities in the ordering of the operators, is given
by

Ĥa(x) = −2
[
ĥab(x)p̂

bc ,c (x) + Γ̂abc(x)p̂
bc(x)

]
+ αδ,a (0) ,

Ĥ⊥(x) = −2κ2 1√
d̂eth

[
1

2
ĥab(x)ĥcd(x)− ĥac(x)ĥbd(x)

]
p̂ab(x)p̂cd(x)

+

√
d̂eth

2κ2

(
(3)R̂− 2Λ

)

+ β δ3(0)
1√
d̂eth

ĥab(x)p̂
ab(x) + γ

[
δ3(0)

]2 1√
d̂eth

.

where δ3(0) denotes the usual, three-dimensional Dirac delta-distribution
evaluated on zero, [32], and Γabc is the Christoffel connection of h.

The problems related to the consistent representation of the constraints
as operators in Section 4.2.3.

4.1.3 The solution space F0

Assume that we were in some way able to fix the ambiguities in the previous
form of the constraint operators. Any admissible state then has to satisfy

Ĥ⊥Ψ[h] = 0 , ĤaΨ[h] = 0 . (4.2)
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We will denote the space of solutions to these equations solution space F0.
The quantum analogue of the Hamiltonian constraint is called Wheeler–
DeWitt equation. The quantum diffeomorphism constraint has no special
name. Whether a non-trivial solution exists at all as well as the inter-
pretation of the constraint, depends on the choice of ordering, again see
Section 4.2.3.

4.2 Mathematical Problems

4.2.1 Positivity requirement for the three-metric h

The first step, (4.1), looks rather innocent but already at this level, diffi-
culties arise. Namely, the metric h is not simply a symmetric tensor but a
metric. It has to yield a positive norm for any vector field on Σ. If this
geometric property of the metric is implemented on the quantum level, the
operator p̂cd is no longer (formally) self-adjoint (with respect to the naive
Schrödinger measure, see Section 4.3.3), see [11]. A proposed solution to
this problem is to generalize the canonical commutation relations to affine
commutation relations, [24].

The general question behind this is which geometrical properties of op-
erators should be implemented on the quantum level.

4.2.2 Factor ordering

Classically equivalent functions of phase-space variables are not equivalent
on the quantum level when phase-space variables have been turned into non-
commuting operators. This problem, known as factor-ordering problem,
always arises if one quantizes a classical system. One has to find other
conditions that fix the thus arising ambiguities. One such condition is that
all Poisson-bracket relations be realized as commutators. But it is just the
content of the Groenewold–van Hove theorem that this is not possible: either
one has to limit the space of quantizable observables or one has to alter the
commutator relations.

Kuchar emphasizes that the factor-ordering problem cannot be under-
estimated. In fact, the choice of factor ordering determines the quantum
theory, [19]. Changes in the factor ordering produce order ~-corrections. Of
course, the factor ordering is most severe in quantum gravity and there has
the biggest impact on the factor ordering of constraints.

4.2.3 Consistent constraint operators

The constraint operators decide which state is to count as an admissible
state in quantum gravity. Therefore, their representation decides about
the physical content of the theory. More importantly, it depends on their
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realization whether or not a (sensible) canonical theory of quantum gravity
does exist at all.

As discussed above, the constraints, being non-linear in h and p, are
subject to operator-ordering ambiguities. One can try to fix them through
the following requirements:

1. Consistency: The constraints have to satisfy the Dirac algebra with
the structure-function operators to the left. If such an ordering cannot
be found, the theory does not incorporate general coordinate invari-
ance and has to be dismissed.

2. Regularity: The constraints contain products of non-commuting op-
erators at the same space point and thus have to be regularized. Such
a regularization has to be in accord with the constraint algebra. Note
that the corrections obtained from different regularization schemes are
on equal footing to those produced by different factor orderings. (They
are simply divergences.)

3. Transformation properties: The diffeomorphism constraints should
be ordered such that they describe the transformation of the wave func-
tion under diffeomorphisms on Σ. Such a rule does not apply to the
Hamiltonian constraint as it is not generator of a Lie algebra.

4. Formal self-adjointness: As was pointed out by Komar, [25], the
Hamiltonian operator cannot be realized as a symmetric operator. The
criterion of formal self-adjointness which was pursued in the early days
of quantum gravity thus does not apply for this constraint — but it
does, of course, for the diffeomorphism constraints.

If one searches the literature on this topic, one quickly comes to realize
that the number of articles is inversely proportional to the importance of
the problem. A first factor ordering was given by Anderson — but it did
not satisfy (1.), [27]. To the contrary, he found that no symmetric factor
ordering of the Hamiltonian constraint can exist such that (1.) holds, [30].
Irritatingly, Schwinger claimed that Anderson’s orderings were actually con-
sistent with (1.), [31]. This discrepancy was cleared up independently by
Tsamis and Woodard, [32], and Friedman and Jack, [33], more than twenty
years later. I will follow the argument of Tsamis and Woodard. Namely
they show that if the constraints are taken at face value and not regular-
ized, one can achieve any result from formal manipulations of the operators
in the Dirac algebra. This is due to the fact that in shifting the constraint
operators to the left after the commutators were calculated, one has to use
distributional identities which are not well-defined when acting on operator
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products.1

It thus follows that the problem of consistency of the constraints is not
even well-posed before the constraints are not regularized.

This problem is aggravated by the fact that general relativity is a pertur-
batively non-renormalizable theory. The regulator thus cannot be removed.
Obviously, we cannot demand that the regulated theory has the same sym-
metry as the original one. Thus one can require closure of the constraint
algebra only in a limiting sense for the regulated theory.

A rather simple regularization was proposed by DeWitt in 1967, [4].
He just advocated that operators at the same space point should commute.
Then of course, consistency of the constraints holds if it holds on the classical
level (which it does).

A mostly used pragmatic attitude is to use the Laplace–Beltrami factor
ordering for the kinetic part of the Hamiltonian constraint. This ensures
that this part is invariant under three-coordinate transformations.

Choosing the factor ordering such that all momenta stand to the right of
the metric operators, the Wheeler–DeWitt equation and the diffeomorphism
constraints become

[
−2κ~2Gabcd

δ2

δhabδhcd
−
√

d̂eth

2κ2

(
(3)R− 2Λ

)]
Ψ[h] = 0 ,

−2
~

i

δΨ

δhab |b
= 0 .

I will refer to this ordering as naive ordering. It is just the ordering that
results from DeWitt’s regularization condition.

4.3 Interpretational Problems

Even if we assume that we were able to find consistent, well-defined con-
straint operators and moreover solve the ensuing constraint equations —
we would not be much better off. Because there is no agreement how to

1A very simple example of such manipulations is actually already given by Dirac, [34].
Differentiate the identity

xδ(x) = 0 (4.3)

to obtain

xδ′(x) = −δ(x) . (4.4)

Multiplying (4.3) by δ′(x), one finds xδ(x)δ′(x) = 0. On the other hand, multiplying
(4.4) by δ(x), we get xδ(x)δ′(x) = − [δ(x)]2, obviously a contradiction. Dirac ended his
explications on the quantization of the gravitational field with this line and never came

back to this topic again.
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proceed: Neither do we know how to identify the physically relevant states
in the solution space, nor do we know how to extract any predictions from
the physical state space. One can distinguish the following aspects of the
problem.

4.3.1 Identification of physical state space

The identification of the space of physical states is a difficult problem, quan-
tum gravity shares with any constrained, canonical theory. This problem is
due to the loss of Hilbert-space structure on F coming with the constraints.2

But it is the existence of an inner product that establishes the equivalence
between momentum and position space representation. This is thus lost and
the theory depends on our choice of representation. Therefore, the space of
solutions to the constraints, F0, depends on the representation.

There are additional conditions that prevent the identification of the
solution space F0 with the physical state space. First of all, no boundary
conditions have been imposed so far. In fact, there is no agreement on
the conditions that should be imposed and so F0 is surely larger than the
physical state space.

Several proposals for boundary conditions exist. In general, they are con-
nected with the issue of singularity avoidance in quantum gravity. In prin-
ciple, they try to remove singularities from the quantum framework. This is
most obvious in DeWitt’s boundary proposal, [4]. He requires Ψ

[
(3)G

]
= 0

for all three-geometries (3)G that constitute a barrier to quantum evolution.
The relation to singularity avoidance is equally obvious in the ‘no-boundary’
proposal of Hartle and Hawking, [39], which was raised in the cosmological
context as a condition on the path-integral.

Apart from boundary conditions, further conditions might arise. For
example, in the Klein–Gordon theory, only half of the solution space consists
of physical states. A similar splitting has been tried in quantum general
relativity, but cannot be carried out because no timelike Killing vector field
exists in superspace. Also, there might be other restrictions necessary which
we do not know of.

Thus, even if we were able to set up the theory as required, we would
not able to extract the set of physical states — at least not with our today
standard of knowledge.

2The inner product on F is used to define operators. As it contains unphysical degrees
of freedom, it is not connected to measurement results. This Hilbert space on F is therefore
called kinematical or auxiliary Hilbert space. This is opposed to the physical Hilbert space
on Fphys.
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4.3.2 Observables

A huge problem in quantum gravity, or at least a point of diverging opin-
ion, is the question of how to extract information from a (yet to establish)
quantum theory of gravity.

So far, the only variables we have quantized, are the three-metric and
its momentum, the Hamiltonian and diffeomorphism constraints. But if we
want to measure other quantities, as e.g. volume, we have to introduce the
corresponding operators. An ongoing debate is caused by the question as to
which quantities might be observable. This problem has nothing to do with
the quantization of gravity but arises already on the classical level.

The community is divided into two factions: one faction which claims
that observables are those quantities which have vanishing Poisson brackets
with all the constraints, whereas the opposite camp reserves the name ob-
servables for those quantities which commute with the diffeomorphism but
not with the Hamiltonian constraint. I will in the following adopt the termi-
nology of Kuchar and refer to quantities that commute with all constraints
as perennials and those which only commute with the diffeomorphism con-
straints as observables.

The differing points of view arise from a different characterization and
understanding of a physical state. Whereas the notion of perennial charac-
terizes a state as an entire trajectory in phase space (labelled by its constants
of motion), in the observable picture, a physical state is characterized by a
point in phase space which corresponds to a fixed instant of time. So I
do not see any contradiction between these definitions — they just refer to
different concepts.

A problem for those sticking with perennials is that, so far, no perennials
for general relativity are known, neither is it clear whether such quantities
exist at all. To the contrary, it has been shown that globally, i.e. on the
entire manifoldM, such perennials cannot exist, [29].

Whatever opinion one has on this point concerning the classical theory,
the realization on the quantum level is given by

[
Â, Ĥµ

]
Ψ = 0 , for perennials and

[
Â, Ĥi

]
Ψ = 0 , for observables ,

where Ψ is an element of the physical state space, Ψ ∈ Fphys.

4.3.3 The physical state space Fphys

A point of similar dissent is the Hilbert-space structure. In ordinary quan-
tum field theory, a Hilbert space is used to define observables, namely as
self-adjoint operators on that space, and their expectation values with re-
spect to physical states. These are then interpreted as possible outcomes of
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measurements. Thus the Hilbert space is the essential ingredient connecting
quantum theory with experiment. It may seem therefore weird to call this
structure into question. As excuse let it be said that this structure was not
called into question voluntarily but challenged itself.

The Wheeler–DeWitt equation as it stands is a timeless equation. Our
understanding of quantum theory, however, is tightly knit to the existence
of a time variable. Hilbert spaces define probabilities that are conserved in
time and measurement outcomes at fixed instants of time. The difficulty to
interpret such a timeless theory is called the problem of time. Attempts have
been made to identify one of the configuration space variables as ‘internal
time’. But these did not yield consistent results so far. Note also that
this concept clearly transcends our understanding of quantum theory where
measurements always take place in a background of space and time (which
here is lost, i.e. quantized).

Moreover, there are indications that we might not need such a Hilbert
space structure. These are discussed in the following Section 4.4.1.

4.4 Successes of quantum General Relativity

4.4.1 The semi-classical limit

In quantum theory, different approximation schemes are used to determine
what is then called the semi-classical limit. Here, I want to present one such
scheme.

It is an expansion in terms of the Planck massmPl in the limitmPl →∞.
Through this expansion, quantum field theory on curved spacetimes can be
derived from quantum general relativity. This is an important and non-trivial
result. It gives confidence in the correctness of the general scheme. But it
also bears upon the interpretation of the overall quantum gravity scheme, as
will be explained below.

A second approximation that will be used later on is the Born–Oppenhei-
mer one, see Chapter 8. It is presented in Appendix E.

Derivation of quantum field theory in curved spacetimes

Quantum field theory in curved spacetimes can be recovered from the four
quantum constraint equations, ĤµΨ = 0, through an expansion in the
Planck mass in the limit mPl → ∞. The underlying assumption is that
all other masses in the scheme are masses of fundamental particles and thus
much smaller than the Planck mass.

Furthermore, one has to assume that the wave functional is complex and
consists just of one branch given by

Ψ[h, φ] = e
i
~
S[h,φ] , (4.5)
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where φ is a minimally coupled scalar field representing a matter degree of
freedom. The form (4.5) is a suitable approximation if the two branches

Ψ[h, φ] = e
i
~
S[h,φ] and Ψ[h, φ] = e−

i
~
S[h,φ] decohere from each other. That

this is indeed the case, at least for the first order S = S0 ∈ R, has been
shown only for a minisuperspace model, [38].

Moreover, the matter content just consists of a single field. Fermionic
matter, however, cannot be taken into account as it cannot consistently be
coupled to general relativity already on the classical level.

If these conditions are satisfied, the expansion scheme is completely anal-
ogous to the expansion of the free Klein–Gordon equation in the velocity of
light c in the limit c → ∞. From the thus obtained (special) relativistic
correction terms to the one-particle Schrödinger equation, relativistic cor-
rections to the energy (as expectation value of the corrected Hamiltonian)
can be calculated. This can be done despite the fact that the Klein–Gordon
equation itself has no well-defined interpretation as a one-particle equation.
But see [37] for more details on the non-relativistic limit of the Klein–Gordon
equation.

Similarly, predictions in terms of corrections to the energy of the matter
content can be derived from the Wheeler–DeWitt equation in the mPl →∞
limit, despite the fact that the full equation cannot be given a sensible
interpretation due to a lacking Hilbert space.

Note that the following calculations are formal in the sense that no regu-
larization scheme has been employed to render the operator products finite.
Furthermore, the factor-ordering problem has not been addressed. Rather,
a specific ordering is chosen. In the end, the dependence of the results on
the factor ordering should be discussed. The factor ordering in the Wheeler–
DeWitt equation is the following

[
−2~2κ2Gabcd

δ2

δhabδhcd
− 1

κ2

√
d̂eth

(
(3)R− 2Λ

)
+ Ĥm

]
Ψ[h, φ] = 0 ,

(4.6)
where Hm is the scalar-field Hamiltonian. So basically, we work with the
DeWitt-regularized Wheeler–DeWitt equation. Introducing the parameter

M =
1

κ2
=

1

8π~
m2

Pl (4.7)

as expansion parameter, one can rewrite the Wheeler–DeWitt equation as

[
− ~2

2M
Gabcd

δ2

δhabδhcd
+MV [h] + Ĥm

]
Ψ[h, φ] = 0 ,

where V [h] = − 1
κ2

√
deth

(
(3)R− 2Λ

)
was introduced as a short-hand for

the potential. As listed above, a first assumption is that the solution is of
the form (4.5) where
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S[h] = MS0 + S1 +M−1S2 + . . . .

At the highest order, O(M 2), one thus derives

(
δS0

δφ

)2

= 0 .

From this follows that S0 depends only on the gravitational degrees of free-
dom. This is not the case if more than one matter field is present and one
of these can have negative kinetic energy. Similarly, the above conclusion
cannot be drawn if S0 is not purely imaginary or real.

The interesting order is the next one. Here, at O(M), one arrives at the
Hamilton–Jacobi equation of general relativity,

1

2
Gabcd

δS0

δhab

δS0

δhcd
+ V [h] = 0 . (4.8)

This equation provides a classical spacetime satisfying Einstein’s equations.
Assume that a solution S0 to the Hamilton–Jacobi equation (4.8) was found.
The momentum can be read off from the Hamilton–Jacobi equation to be

pab = M
δS0

δhab
. (4.9)

Now insert on the left-hand side the defining equations for the gravitational
momentum, (2.6) and (2.3). These make the connection to general relativity.
On the right-hand side insert the solution to (4.8). Solve the resulting
equation for ḣab which enters (4.9) through the definition of pab,

ḣab = 2NGabcd
δS0

δhcd
+N(a|b) . (4.10)

To solve this equation, one has to specify lapse and shift. Having done so,
an initial three-geometry hab(t0) will be evolved through (4.10) yielding a
spacetime solving Einstein’s equations.3

There are two observations to make at this point: First of all, as input
one does not only need the initial three-geometry but also lapse and shift,
i.e. one has to specify a foliation. As a result, and that is the second point
worth mentioning, a solution to Einstein’s equation comes with a specific
foliation in the semi-classical expansion scheme. Lastly, as can be retraced
using DeWitt’s paper, [4], p. 1127, it is necessary that the diffeomorphism
constraint is also satisfied at this order of the expansion scheme. Otherwise,
one cannot prove that the resulting spacetime indeed satisfies Einstein’s
equations.

3That the spacetime obtained in this way is indeed a solution to Einstein’s equations
can be deduced from the calculations of DeWitt’s paper [4], p. 1127.
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Having thus recovered classical general relativity from the quantum frame-
work, we can proceed to the next order, O(M 0). The equation at this order
contains S0 as well as S1. If one rewrites

χ[h, φ] = D[h]e
i
~
S1[h,φ] ,

where the prefactor D shall satisfy the ‘conservation law’

Gabcd
δ

δhab

(
1

D2

δS0

δhcd

)
= 0 ,

one arrives at the following equation

i~Gabcd
δS0

δhab

δ

δhcd
χ[h, φ] = Ĥmχ[h, φ] .

This takes the form of a Schrödinger equation for the matter part (at each
point in the three-hypersurface), if one introduces the time parameter τ(x;h]
in the following way

δ

δτ
= Gabcd

δS0

δhab

δ

δhcd
,

i.e.

Gabcd
δS0

δhab(y)

δτ(x;h]

δhcd(y)
= δ(x− y) .

Because we thus have a time-parameter at each point in the hypersurface,
this parameter τ is also called many-fingered time, or, due to the way it is
derived, WKB-time. The interpretation of this parameter becomes obvious
if one contracts the equation of motion for h, (4.10), with δ

δhab
, yielding

ḣab
δ

δhab
= 2NGabcd

δS0

δhcd

δ

δhab
+N(a|b)

δ

δhab

= 2N
δ

δτ
+N(a|b)

δ

δhab
.

Thus we obtain, using the definition of the extrinsic curvature, (2.2),

δ

δτ
= Kab

δ

δhab
= nα

δ

δE tα(x)
.

Thus the parameter τ has a clear interpretation: it labels the foliation of
the spacetime. Note that τ(x;h] is determined by the three-geometry!

At higher orders, O(M−1), correction terms to the functional Schrödinger
equation occur. Real correction terms imply an energy shift for the matter
part. But imaginary corrections also occur, i.e. unitarity in τ is violated
for the matter wave functional. From this perspective, unitarity violation
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seems to be a rather natural consequence of the fact that the (approximate)
Schrödinger equation takes account only of one part of the full wave func-
tional, namely the matter part.

The semi-classical approximation as presented here thus underpins the
Dirac quantization scheme as it is applied to general relativity: at least,
classical general relativity can be recovered from this scheme. Moreover,
it is possible to extract predictions through this approximation which —
in principle — could be measured. In order to extract numerical values, of
course, it is necessary to regularize the relevant quantities. Moreover, factor-
ordering issues may change the results, even though the claim is that these
are not altered by a reordering of the kinetic term of the Wheeler–DeWitt
equation, [37].

Lastly, note that the DeWitt metric diverges for deth = 0. At these
points the Wheeler–DeWitt equation breaks down and no semi-classical time
τ can be derived at this point anyway. But see the Chapter 5 for more details
on this.

Interpretational consequences

We saw that the semi-classical approximation connects quantum general
relativity with quantum field theory on curved spacetimes.

This suggests the following attitude towards the problem of time. We
accept that Fphys has no inner product. We accept further that quantum
general relativity is a timeless theory — i.e. it does not have a time param-
eter. In the semi-classical limit, however, we recover our ordinary notion of
time in the form of WKB-time.

Therefore we take the most conservative point of view that the usual
interpretation of quantum theory applies only as long as a (classical or semi-
classical) background of space and time exists. As soon as the semi-classical
approximation breaks down, spacetime and especially time dissolves. This
is not only the end of the world as we know it, but also the boundary of the
region in which the ordinary interpretation of quantum theory does apply.

In the full quantum regime, no time and therefore no Hilbert-space struc-
ture exists.

4.4.2 Relation to path integral

It was shown that the path-integral of the Einstein–Hilbert action, when
constructed properly, solves the Wheeler–DeWitt equation. This holds for-
mally and was checked explicitly up to the one-loop approximation, [36].4

Therefore, canonical quantum general relativity has an equivalent covari-
ant formulation. Or, to formulate it the other way round, covariantly and
canonically quantizing general relativity yields two equivalent formulations

4Of course, the factor ordering has to be chosen appropriately.
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of the same theory. So I could (and actually should) extend the name quan-
tum general relativity to include the covariant formulation. Indeed, this is
how the name is often used in the literature. I will, however, refrain from
doing so, because this thesis is only concerned with the canonical scheme.

The equivalence to the covariant formulation is a second assurance that
the approach we pursue is not completely wrong. Moreover, anyone who
is put off by the breaking of (explicit) covariance that is necessary for any
canonical formulation, should now rest assured.

Canonical and covariant quantization are in general relativity — as in
any other known quantum field theory — just two sides of the same coin.

References:
A concise list of goals and failures of quantum general relativity is given

by Kuchar, [19]. A review of the semi-classical approximation in quantum
general relativity is given by Kiefer in [37] which I used as source for the first
section. All information on the relation between the canonical approach and
the path-integral was drawn from the rather extensive review by Barvinsky,
[36].
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Chapter 5

Singularities in quantum

General Relativity

One of the major motivations that stand behind the attempt to quan-
tize general relativity is the fact that the classical theory itself pre-
dicts its own break-down in the form of spacetime singularities. The
hope is that, on the quantum level, these singularities are, in some
still to be specified way, overcome. But more than that, the resulting
quantum-gravity theory is supposed to be singularity free itself, i.e. it
should not break down at some point. There are two major questions
pursued in this chapter. First of all, are the expectations of singu-
larity resolution and singularity freedom well justified? Secondly, ir-
respective of our expectations, what happens to classical singularities
in quantum general relativity? Is quantum general relativity singu-
larity free? Following these questions, we will derive criteria which
will be used to account for singularity resolution of the singularities
of classical general relativity in the following chapters.

5.1 Singularities in classical General Relativity

It is a well-known fact that solutions to Einstein’s equations rather gener-
ically form singularities. Best known examples of these are the big-bang
singularity arising in the past of cosmological Friedmann–Robertson–Walker
models and the black-hole singularity arising in spherically symmetric space-
times. These singularities are both associated with gravitational collapse of
either the entire spacetime or only a portion of it.

The big-bang singularity is characterized by infinite scalar curvature, en-
ergy density and pressure. The volume of spacetime shrinks to zero. The
metric becomes degenerate. ‘At’ the black-hole singularity scalar curvature

45
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likewise diverges, as does gravitational redshift. The metric becomes degen-
erate here as well.

Even though these are the most popular representatives of spacetime
singularities, other types also exist — and not all of them are captured by
the criterion of diverging curvature scalars. For example, plane gravitational
waves as vacuum solutions of Einstein’s equations have vanishing curvature
scalars but diverging curvature tensor components. Another example are
conical singularities.

An accepted criterion which encompasses most but not all types of sin-
gularity is that of geodesic incompleteness: a spacetime contains a singular
point if at least one geodesic cannot be extended to its infinite parameter
range. This is the definition used in the singularity theorems of Hawking and
Penrose. These theorems pose certain conditions on spacetime and matter.
I will quote here the most general of the theorems. Matter has to satisfy
the strong energy condition. Spacetime has to be free of closed timelike
curves and the timelike and null generic conditions have to be satisfied.1

Then the singularity theorem states that if spacetime contains a trapped
surface or a point from which on the expansion of a null geodesic congru-
ence becomes negative along each geodesic or the spacetime is closed, then
spacetime contains at least one incomplete causal geodesic.

One can conclude that rather generically spacetimes arise in which an
observer (or light) can reach the end of spacetime in a finite time. As the
singularity theorems make use of Einstein’s equations only to employ the
strong energy condition, not much can be learned from them as to what
happens upon approach to the classical singularity.

5.2 What do we expect from quantum General

Relativity?

The question is then what happens to these singularities if we go from classi-
cal to quantum general relativity. There are two questions that intermingle
here. The first question is whether classical general relativity singularities
persist in quantum general relativity. The second, a priori unrelated, ques-
tion is whether quantum general relativity is itself a singularity-free theory
or not.

5.2.1 Resolution of classical singularities?

The general expectation is that the singularities of classical general relativity
are — in a yet to be specified way — resolved through quantum general

1A spacetime satisfies the timelike (null) generic condition if each timelike (null)
geodesic contains at least one point at which Rαβγδv

αvδ 6= 0. Here v is the tangent
of the geodesic, Rαβγδ is the Riemann curvature tensor.
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relativity.

But let us be very careful and ask why we actually should expect this.
There are scarcely any arguments given in the literature. Singularity reso-
lution through the quantization of general relativity seems to be more of a
silent consensus than a well-argued expectation. But looking more closely
at the problem, it seems very hard to find any argument for it.

Singularity resolution in quantum general relativity takes its cue from
the quantization of the Coulomb problem. At least, this problem is regularly
quoted when singularity resolution is discussed. Therefore, I reviewed the
motion of an electron in the potential of a nucleus in the non-relativistic as
well as special-relativistic setting on the classical and quantum level in detail
in Appendix C. It turns out that this problem is actually a bad example for
singularity resolution. Because in the non-relativistic case, no singularity
exists on the classical level and on the special-relativistic level, the classical
singularity persists in the quantum theory. So, in fact, there is no singularity
resolution in the Coulomb potential case — either there is no singularity or
there is no resolution.

Moreover, classical general relativity singularities are characterized by
geodesic incompleteness. These are trajectories of point particles. But be-
fore classical general relativity breaks down, surely the point-particle ap-
proximation breaks down. Thus before looking at quantum general relativity
effects, one should exclude that the singularity problem of general relativ-
ity could not be solved by the quantum aspects of matter propagating in
spacetime.

5.2.2 Singularity-free quantum General Relativity?

Turning now to the second question, namely whether or not quantum gen-
eral relativity itself is free of singularities or not, we first have to specify
what we mean by this statement. Generalizing the term singularity here as
referring to any point of configuration space of a theory at which the laws
of physics do not yield unique predictions, singularities occur in physics at
all ends. Usually they signal the breakdown of the framework one is using.
This may be an effective description, as is the case e.g. in molecular physics
and physical chemistry where singular potentials are used to mimick com-
plicated molecular interactions. Or this may be a physical theory which is
encompassed by a more fundamental one.

Mathematically, singularities are points at which the equations of the
system break down.

Physically, a theory with singularities does not yield unique predictions
throughout configuration space. In quantum theory, this can be discussed
on two levels. Either in the language of self-adjoint operators. Then a
unique solution exists if the Hamiltonian operator is essentially self-adjoint.
Or in the language of partial differential equations. Then a unique solution
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exists if the initial- or boundary-value problem (depending on the form of
the quantum equation) is well-defined.

In quantum general relativity, the Hamiltonian is no self-adjoint operator
— and should not be, so we cannot resort to operator language. Rather, we
have to check whether the theory produces (functional) partial differential
equations which have a well-defined initial- or boundary-value problem.

But we saw above that the Coulomb potential is singular in special rel-
ativity and remains so on the quantum level. Obviously, this is no reason
to completely dismiss either the Coulomb potential or the Klein–Gordon
equation. Rather, this singularity signals that the problem at hand — the
motion of an electron in the potential of a nucleus — can, in the special-
relativistic domain and on the quantum level, no longer be described by an
instantaneous interaction as is suggested by the Coulomb potential. So the
singularity of the Klein–Gordon equation with Coulomb potential stirred no
crisis in physics because, anyway, the Coulomb potential is not believed to
be a fundamental description of the problem at hand.

This bridges the gap to another idea that may underlie the assumption
that quantum general relativity should be free of singularities. Namely, the
idea that quantum general relativity is a fundamental theory. But this can
be ruled out straight away. How can a perturbatively non-renormalizable
theory like quantum general relativity be fundamental? Even more so, if
the theory cannot be consistently coupled to fermionic matter?2

So actually, quantum general relativity is not a fundamental theory — it
cannot be, and therefore singularities occurring on the quantum-gravitational
level do not necessarily signal that the theory itself is meaningless. They
merely stress the fact that quantum general relativity is not the final and
fundamental theory.

5.2.3 Expectation

So we should not expect that quantum general relativity is free of singu-
larities. Nor do we know what happens to classical singularities on the
quantum level. It might be that some classical singularities persist in quan-
tum general relativity. This is at least what we can learn from the Coulomb
example. But then, what happens to classical general relativity singularities
in quantum general relativity? And is quantum general relativity free of
singularities in the sense that it predicts unique results or not?

2However, in Blagojevic’s textbook the Hamiltonian formulation of Einstein–Cartan
and general Poincare gauge theories are given, [40].
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5.3 Singularities in quantum cosmology

Before turning to the full theory, I want to discuss the cosmological Fried-
mann–Robertson–Walker model, which will be introduced thoroughly in
Chapter 6. The quantum-cosmological model arises through the quantiza-
tion of the symmetry-reduced Friedmann–Robertson–Walker metric. Such
a model is called minisuperspace model for reasons that will become clear
in Section 5.4.1. The reduction makes this model much easier to deal with
mathematically than the full theory. Nonetheless, relevant features survive
in this model. Moreover, the cosmological case is central to this thesis and
therefore has to be discussed.

Let us now pursue the question whether the quantum-cosmological model
is singular or not, i.e. whether unique predictions can be retrieved from this
model or not.

5.3.1 The Wheeler–DeWitt equation with cosmological con-

stant

Due to the symmetry, no diffeomorphism constraint arises. We just have
to deal with the Wheeler–DeWitt equation. To include all possible factor
orderings, we write the kinetic term in the general form

[
ar+m−1 ∂

∂a
a−r

∂

∂a
a−m

]
,

where r and m are any real numbers and a is the scale factor, but see
Chapter 6. The naive factor ordering where momenta are ordered to the
right is then recovered for r = 0, m = 0. The ‘Laplace–Beltrami’ factor
ordering is given by m = 0, r = 1

2 .3

The Wheeler–DeWitt equation in the vacuum case is given by

b

a
ψ′′ − b

a2
(r + 2m)ψ′ +

[
bm

a2

(
r +

m− 1

a

)
+ λa3 −Ka

]
ψ = 0 , (5.1)

where the following short-hands were used

b =
~2κ2

12
, λ =

Λ

κ2
, K =

k

κ2
,

and Λ denotes the cosmological constant, k = 0,±1 the spatial curvature
and ψ = ψ(a) is the wave function. The derivatives with respect to a are
written as primes.

This is a well-defined equation on the interval a ∈ I = ]0;∞[ . The
requirements on ψ shall be minimal: it is supposed to be twice continuously

3The Laplace–Beltrami ordering is defined for two-dimensional surfaces. Carrying over
this definition to the one-dimensional case, we obtain the given ordering.
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differentiable in I, ψ ∈ C2(I). On I, the Wheeler–DeWitt equation can be
brought into the form

ψ′′ +
P (a)

a
ψ′ +

Q(a)

a2
ψ = 0 , (5.2)

with

P (a) = −(r + 2m) , Q(a) = m(ra+m− 1) +
λ

b
a6 − Ka

4

b
. (5.3)

From this, one can immediately read off that the left boundary of the in-
terval, a = 0, is a weakly singular point of the equation.4 This means that
p(a) = P (a)

a has a pole of at most first, and q(a) = Q(a)
a2 a pole of at most

second order at a = 0.

On the other hand, the right boundary of I, a = ∞, is in general no
weakly singular point. To determine the behaviour there, make a transfor-
mation onto ζ = 1

a and consider ζ = 0. Using Φ(ζ) := ψ( 1
ζ ) and dots to

denote derivatives with respect to ζ, (5.2) becomes

Φ̈ +
P̃ (ζ)

ζ
Φ̇ +

Q̃(ζ)

ζ2
Φ = 0 ,

where

P̃ (ζ) = 2 + 2m+ r , Q̃(ζ) = m(m− 1) +
1

ζ
mr +

λ

b

1

ζ6
− K
b

1

ζ4
.

Obviously, q̃(ζ) = Q̃(ζ)
ζ2

has poles of at most second order only for vanishing
curvature, vanishing cosmological constant and r = 0. The boundary a =∞
is thus a strongly singular point of the Wheeler–DeWitt equation (5.2).

A basis that spans the two-dimensional solution space of the Wheeler–
DeWitt equation (5.2) is obtained through Frobenius’ method, [47]. It allows
to determine a solution around a weakly singular boundary point. This solu-
tion may then be extended to the weakly singular boundary. The quantum
cosmological theory yields unique predictons if a unique extension to the
weakly singular point exists.

I will do this in some detail for the left boundary a = 0. The same
methods and calculations can be applied to a = ∞ in the case that this
point is weakly singular as well.

4Often, one also finds the expression ‘regular singular point’.
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The weakly singular point a = 0

Before Frobenius’ method can be applied to (5.2), the equation has to be
normalized. That means it has to be brought to the form

a2ψ′′ + aP (a)ψ′ +Q(a)ψ = 0 , (5.4)

where P and Q are analytical functions around the origin a = 0. Generally,
they are therefore given in terms of power series’, P (a) =

∑∞
j=0 pja

j , Q(a) =∑∞
j=0 qja

j . Here, of course, the sum is finite and the coefficients can be
directly read off from (5.3). Frobenius’ method then simply consists of the
ansatz

ψ(a) = aµ
∞∑

n=0

cna
n , c0 6= 0 .

This solution can be complex valued, µ ∈ C, and aµ = eµ ln a for a > 0. The
power series

∑∞
n=0 cna

n converges on 0 < a <∞. Inserting this ansatz into
(5.4), one obtains, after dividing by aµ,

∞∑

n=0


(n+ µ)(n+ µ− 1)cna

n +
∑

j+k=n

ck (pj(k + µ) + qj)


 = 0 ,

where Cauchy’s product rule has been applied. Comparing coefficients, one
arrives at

[(n+ µ)(n+ µ− 1) + p0(n+ µ) + q0] +

n−1∑

k=0

ck (pn−k(k + µ) + qn−k) = 0 .

For n = 0, one arrives at the indicial equation determining the characteristic
exponents µ

µ(µ− 1) + p0µ+ q0 = 0 .

In our case, the characteristic exponents are given by

µ1,2 =
r + 2m+ 1

2
±
√

(r + 2m+ 1)2

4
−m(m− 1) .

For clarity, I will here assume first that µ1,2 ∈ R and the labelling is done
such that µ1 ≥ µ2. I will come to the case of complex µ1, µ2 subsequently.
Note that whether or not µ1,2 are real, depends on the factor ordering.
Setting c0 = 1 (this is done conventionally), the series is determined through
the recurrence relation
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cn = − 1

D(n+ µ)

n−1∑

k=0

ck (pn−k(k + µ) + qn−k) , (5.5)

for each characteristic exponent. Here, D(ν) = ν(ν − 1) + p0ν + q0. This
works, of course, only if D(n + µ) 6= 0. For µ1, D(n + µ1) 6= 0 always —
it is the larger of the two roots. For µ2, D(n + µ2) = 0 for n = 0 and for
n = µ1−µ2. So for the characteristic exponent µ1, Frobenius’ method always
provides a generalized power series solution. For the second characteristic
exponent µ2, this is also the case as long as µ1−µ2 6∈ N. But if µ1−µ2 ∈ N,
the second, linearly independent solution has to be found from the series
expansion with slight modifications. In the respective cases, a basis of the
solution space is given by

Case A: µ1 − µ2 6∈ N

In this case, the recurrence relation (5.5) can be used to arrive at a so-
lution for both characteristic exponents. The two linearly independent
solutions are given by

ψ1(a) = aµ1

∞∑

n=0

cna
n , ψ2(a) = aµ2

∞∑

n=0

dna
n .

Here, c0 = 1, d0 = 1 and all higher coefficients follow from (5.5) with
µ = µ1 for cn and µ = µ2 for dn, respectively.

Case B: µ1 − µ2 ∈ N

In this case, the recurrence relation (5.5) can be used to arrive at a so-
lution only for the characteristic exponent µ1, ψ1(a) = aµ1

∑∞
n=0 cna

n.
The second solution is of the form

ψ2(a) = aµ2

∞∑

n=0

dna
n + γ ψ1 ln a .

The values of dn and γ depend on whether µ1 − µ2 = 0 or not.

Case B. I: µ1 − µ2 = 0
Here, d0 = 0 and higher coefficients follow from

dn = − 1

D(n+ µ1)

n−1∑

k=0

dk (pn−k(k + µ1) + qn−k) +
λn

D(n+ µ1)
,

where λn follow from a series expansion of

aµ1

∞∑

n=0

λna
n = (1− P (a))ψ1 − 2aψ′1 .
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Moreover, γ = 1. Thus, in this case, a logarithmic contribution
and thus a divergence at a = 0 is unavoidable.

Case B. II: µ1 − µ2 6= 0
Set µ1 − µ2 = M . Then d0 = 1 and dM = 0. Higher coefficients
follow from

dn = − 1

D(n+ µ2)

n−1∑

k=0

dk (pn−k(k + µ2) + qn−k) ,

for n < M . The equation for n = M is used to determine γ,

−Mγ =
M−1∑

k=0

dk (pM−k(k + µ2) + qM−k) ,

whereas all coefficients for n > M follow from

dn = − 1

D(n+ µ2)

n−1∑

k=0

dk (pn−k(k + µ2) + qn−k) + γ
λn−M

D(n+ µ2)
.

And λn is given as in Case B.I. Here, we cannot determine straight
away whether or not a logarithmic divergence occurs. It depends
on the specific form of the equation and has to be inferred from
the recurrence relation.

Depending on the values of r and m, several cases arise. These are
depicted in Table 5.1.

Let the difference µ1 − µ2 = r + 2m + 1 be an arbitrary number, r +
2m+ 1 6∈ N. Then a unique, well-defined solution exists for r + 2m+ 1 > 0
and m ∈ ]0; 1[, as well as for r + 2m+ 1 ≤ 0.

If, on the other hand, r + 2m + 1 > 0 and m = 0 or m = 1, then the
additional condition ψ → 0 as a→ 0 is needed to pick a unique solution.

However, if r + 2m+ 1 > 0 and m(m− 1) > 0, no solution is picked by
this condition as both vanish at the origin.5

If r + 2m+ 1 ∈ N, ψ2 may acquire a logarithmic divergence.

Therefore, we conclude that for factor orderings m ∈ ]0; 1[, a unique so-
lution exists which can be continuously extended to the origin and vanishes
there. For m ∈ [0; 1] and r+ 2m+ 1 ≤ 0, ψ1 is the only contiuously extend-
able solution but does not necessarily vanish.

The form of the two linearly independent solutions depends thus very deci-
sively on the factor ordering.

5We assume that m, r are chosen such that µi are real.
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A > 0 A = 0 A < 0

B > 0
µ1 > 0 no real µ1 < 0
µ2 > 0 solution µ2 < 0

B = 0
µ1 > 0 µ1 = 0 µ1 = 0
µ2 = 0 µ2 = 0 µ2 < 0

B < 0
µ1 > 0 µ1 > 0 µ1 > 0
µ2 < 0 µ2 < 0 µ2 < 0

Table 5.1: This table shows which factor-orderings allow which kind of so-
lutions. The factor-orderings are parametrized by r and m. The relations
A = r+2m+1 andB = m(m−1) determine the nature of the solution. In the
table, white cells denote factor-orderings for which a single, regular solution
exists. These are the cases we are looking for: the Wheeler–DeWitt equation
can be uniquely extended to the origin. There are two cases in which two
regular solutions might exist. The corresponding cells are coloured light-
grey. For these factor-orderings, no unique solution to the Wheeler–DeWitt
equation can be found. For A < 0 and B > 0, no regular solution exists.
The Wheeler–DeWitt equation is singular.

As examples, I want to discuss the naive ordering and the ‘Laplace–
Beltrami’ one. For the naive factor ordering, µ1 = 1, µ2 = 0. Thus, we
have a Case–B.II scenario: there may be a logarithmic contribution. Direct
calculation yields that γ = −q1 = 0, and so no logarithmic dependence
occurs. The two solutions are continuous as a→ 0. But whereas ψ1 → 0 in
this limit, ψ2 → const. there. The boundary condition ψ(0) = 0 would then
pick a unique solution.

For the ‘Laplace–Beltrami’ ordering, one obtains µ1 = 3
2 , µ2 = 0 and

therefore a Case–A scenario. Again, only ψ1 vanishes at the origin, but
both solutions remain bounded.

So for both factor orderings, a unique solution is chosen by the requrire-
ment that the wave function vanish at the origin a = 0. In both cases, both
solutions can be continuously extended to the weakly singular boundary
point a = 0.

Note that because we are not working with self-adjoint operators here,
the requirement ψ(0) = 0 does not arise in a natural way.6

The procedure remains essentially unaltered if complex characteristic expo-
nents are taken into account. Instead of comparing µ1 and µ2, one now has
to compare e2πiµ1 and e2πiµ2 .

6Recall that e.g. for the Schrödinger equation with Coulomb potential the condition
rψ(r) → 0 as r → 0 arises as a consequence of the self-adjointness of the Hamiltonian
operator. The radial coordinate is denoted by r here.
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The Case–A scenario is then recovered if e2πiµ1 6= e2πiµ2 . In this case, the
recurrence relation can be used to obtain two linearly independent solutions

ψ1(a) = aµ1 (1 + h1(a)) , ψ2(a) = aµ2 (1 + h2(a)) , (5.6)

where hi are analytical functions vanishing for a = 0. For e2πiµ1 = e2πiµ2,
the general solution can contain a logarithmic dependence. This is just the
Case–B scenario. Solutions are again of the form

ψ1(a) = aµ1 (1 + h1(a)) , ψ2(a) = aµ2 (1 + h2(a)) + γ ψ1(a) ln a . (5.7)

These solutions are unique on the punched disk U(a) around the origin.
Out of the system of solutions, those can be picked for which the limit
lim
a→0

ψ exists and is continuously differentiable. Let this solution space be

called {f0ψ0(a)|f0 ∈ R}.

The strongly singular point at a =∞

Infinity is a strongly singular point of the equation — if Λ 6= 0, k 6= 0, r 6= 0.
Only if these terms vanish, infinity is a weakly singular point. Thus, counter-
intuitively, the problematic point of the cosmological Wheeler–DeWitt equa-
tion is not the origin but infinity. If infinity is a weakly singular point, as
above, the solution can be determined through a power-series expansion. So
solutions are of the form (5.6) or (5.7), depending on the relation between
the two characteristic exponents. Similarly, conditions have to be posed on
the wave function at infinity in order to pick a unique solution. Let this
solution space be called {f∞ψ∞(a)|f∞ ∈ R}.

The overall solution is uniquely defined only when the two solutions
ψ0(a) and ψ∞(a) differ at most by a constant.

More specifically, from the indicial equation follow the characteristic expo-
nents

ν1,2 = −1

2
−m±

√
1

4
+ 2m .

Thus ν1 − ν2 =
√

1 + 8m. For the naive ordering, we have m = 0 and thus
ν1 − ν2 = 1. We therefore have a Case–B.II scenario. Because γ = 0 and
cn = 0, dn = 0 for all n > 0, we get the two solutions

Φ1(ζ) = 1 , Φ2(ζ) = ζ−1 .

On the other hand, the same choice of constants Λ = 0, k = 0, r = 0
produces the following solutions around a = 0
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ψ1(a) = a , ψ2(a) = 1 .

If we require that ψ → 0 as a→ 0 and Φ→ 0 as ζ → 0, no overall solution
is found. If we require ψ → const. as a → 0 and Φ → const. as ζ → 0, the
only solution is the trivial one, the solution is simply constant. So it seems
that no overall solution exists! This is a general result and does not depend
on the simplifying assumption m = 0 made here.

What I want to emphasize at this point, however, is that here the regu-
larity condition at the origin alone suffices to fix the solution. If we simply
require that ψ → 0 as a → 0 and choose the solution at infinity so that
it matches with the one obtained at the origin, we get the unique solution
ψ(a) = a.7 This can be justified by the observation that infinity is not a
singular point like any other. It is much more natural to accept a solu-
tion which diverges as the argument goes out to infinity than to accept a
divergence at a finite value like the origin.

For example, the Legendre differential equation has two weakly singular
points at ±1. The solution is found as outlined above and the extensions
to both singular points are made in a continuous way. The Laguerre dif-
ferential equation, on the other hand, is weakly singular at the origin and
strongly singular at infinity — just like the vacuum Wheeler–DeWitt equa-
tion encountered here. Whereas one requires continuity of the solution at
the origin, no such condition is imposed at infinity. Instead, one subjects
solutions to the requirement that they be square-integrable with respect to
a certain measure. Again, this condition results from the inner product
which we have not at hand here. So, infinity is subjected to much weaker
conditions than a finite singular point.

This brings us back to the conditions on the cosmological wave function
at infinity. I would suggest to ‘ignore’ the fact that infinity is a strongly
singular point of the equation and simply use the solution as determined at
a = 0. Recall that, in any case, a = ∞ will not be a weakly singular point
in general. This solution will then diverge at infinity and, of course, will
not be square-integrable with respect to the measures conventionally used
in quantum theory.

But, anyway, we are not interested in square-integrable wave functions
with respect to a. Moreover, a wave function that vanishes for large radii of
the universe would suggest an untimely end for the corresponding classical
world. It would imply that no universe could expand forever — which really
would be too bad. Lastly, note that ψ → 0 as a → 0 and as a → ∞ would
imply a fixing of the wave function at both ends and thus quantization

7This is no general result but depends on the choice of factor ordering. Note that
the existence of a unique, regular solution and the factor-ordering question are tightly
interwoven. The fact that a certain factor ordering provides a unique solution could be
used as an argument in favour of this specific ordering.
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conditions.

So, to conclude, for the class of factor orderings m ∈ ]0; 1[, a unique solution
exists which can be continuously extended to the origin and vanishes there.
Moreover, in all cases except r+2m+1 > 0 and r+2m+1 6∈ N, the condition
of mere continuous extendability to the origin picks ψ1(a) as unique solution.

5.3.2 The Wheeler–DeWitt equation containing matter

Even though the cosmological-constant case is the easiest to deal with, it
is surely not the most relevant scenario. Actually, little effort has to be
made to arrive at some conclusions including matter. But to this end, some
assumptions have to be made. First of all, note that minimally coupled fields

have a kinetic term Lkin ∼ N
√

deth (φ̇)2

2 , where φ represents any bosonic
field component. Therefore, the inverse of the determinant deth enters in

the kinematical part of the Hamiltonian Hkin ∼
p2φ

2
√

deth
with momentum pφ

of the field. Defining H′matter through Hmatter = 1√
deth
H′matter and using

that
√

deth = a3, the Wheeler–DeWitt equation becomes

[
Ĥgrav +

1

a3
Ĥ′matter

]
ψ = 0 .

This is only helpful if we decompose the wave functional into ψ(a, φ) =
Cn(a)ϕn(a, φ) where

Ĥ′matterϕn(a, φ) = En(a)ϕn(a, φ) .

Then the Wheeler–DeWitt equation reads

[
Ĥgrav +

1

a3
En(a)

]
ψ(a, φ) = 0 ,

or,

ψ′′ +
P (a)

a
ψ′ +

Q(a)

a2
ψ = 0 , (5.8)

with

P (a) = −(r+2m) , Q(a) = m(ra+m−1)+
λ

b
a6−Ka

4

b
+
En(a)

b
. (5.9)

To apply the previously used Frobenius’ method, it is necessary to evaluate
the derivatives, ψ′ = ϕ′nCn + ϕnC

′
n and similarly the higher ones. The

resulting equation for Cn has to be brought into the form (5.8), with Cn
replacing ψ. From the newly determined P (a) and Q(a) one can then infer
whether or not the boundaries a = 0 and a =∞ are weakly singular. If they
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are, Frobenius’ method can be employed and solutions can be determined.
As the result depends very crucially on the matter wave function, no general
conclusion can be drawn on this level.

The Wheeler–DeWitt equation coupled to matter will be an arbitrarily
complicated partial differential equation. In a specific case, it will therefore
be much more useful to take refuge to the known existence and uniqueness
proofs for partial differential equations.

Wheeler–DeWitt equation with free scalar field

A simple example, however, is the cosmological model with free scalar field.
With Laplace–Beltrami factor ordering, the Wheeler–DeWitt equation reads

~2κ2

12

(
1

a2

∂ψ

∂a
+

1

a

∂2ψ

∂a2

)
− ~2

2

1

a3

∂2ψ

∂φ2
+

(
−Ka+

λ

3
a3

)
ψ = 0 .

Making the ansatz ψ(a, φ) = Cn(a)ϕn(a, φ) with

−~2

2

∂2ϕn
∂φ2

= n2 ϕn ,

as suggested above, yields

C ′′ +
P (a)

a
C ′ +

Q(a)

a2
C = 0 ,

where here P (a) = 1 and Q(a) = n2

b − K
b a

4 + λ
3ba

6 and primes still de-
note differentiation with respect to a. At a = 0, we find the characteristic
exponents

µ1,2 = ± n√
b
.

Therefore µ1 − µ2 = 2|n|√
b
. Thus, it depends on the values of n which sce-

nario we encounter. But note that any solution which is free of a logarithm
vanishes at the origin. So we always have one solution which vanishes at the
origin, namely ψ1(a) = aµ1

∑
m cma

m with µ1 = |n|√
b
.

Note that µ1 − µ2 = 0 only for the trivial ϕn = const. solution obtained
for n = 0.

For arbitrary values of n, µ1−µ2 6∈ N. Then ψ2 diverges as the origin is

approached because µ2 = − |n|√
b
. If |n| = M

√
b

2 , M ∈ N, then µ1−µ2 ∈ N. In

this case ψ2 diverges at least as ψ2 ∼ a−M . A logarithmic divergence may
ensue, depending also on the precise value of M .

Therefore, for n 6= 0 a unique solution exists which can be continuously
extended to the origin and vanishes there. For n = 0, again ψ1 is the only
solution that can be extended to the origin as for µ2 = 0, γ = 1 and ψ2
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contains a logarithmic divergence. But in this case, the only continuously
extendable solution is constant at the origin.

5.3.3 Conclusions

The Wheeler–DeWitt equation with cosmological constant is singular. It
has two singular points, a = 0 and a = ∞. The singularity at a = 0 is,
however, a weak singularity. That means solutions can be extended to this
point. We showed that for the class of factor orderings m ∈ ]0; 1[, a unique
solution exists which can be contiuously extended to the origin. The same
holds for r + 2m + 1 ≤ 0. Whereas in the first case the only continuously
extendable solution vanishes at the origin, it may remain constant in the
second scenarios.

The singularity at infinity is a strong one. Generally, this implies that
solutions diverge as a → ∞. I suppose that there is no physical argument
against such behaviour.

The weak singularity a = 0 of the quantum equation has, of course, a coun-
terpart on the classical level: a = 0 is just the ‘location’ of the big-bang
singularity. So this singularity which is associated with the collapse of the
entire three-volume to one point pertains to the quantum level in the form of
a weakly singular point of the Wheeler–DeWitt equation with cosmological
constant.

It is hard to draw any conclusions for the Wheeler–DeWitt equation with
arbitrary matter content. The reason for this is that additional degrees of
freedom turn the Wheeler–DeWitt equation into a partial differential equa-
tion whose precise form depends on the matter Hamiltonian. One can, how-
ever, expect that the singular point a = 0 remains problematic as the second
derivative with respect to a always occurs with a prefactor a−1. Moreover,
singularities in the matter potential are candidates for problematic points
of the Wheeler–DeWitt equation.

In the simple case of a free scalar field, the singular nature of a = 0 does
not hinder the existence of a unique solution which is constant at a = 0.

We will see that this method generalizes also to scalar fields with po-
tential term — after a suitable approximation has been carried out, see
Chapter 7 and Chapter 8.

5.4 Singularities in full quantum General Relativ-

ity

We will now try to find out how these features of the quantum-cosmological
Wheeler–DeWitt equation look like in full quantum general relativity. The
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Wheeler–DeWitt equation will contain only a cosmological constant. Again,
not much can be said about other matter content.

In full quantum general relativity, the governing equations are the Wheeler–
DeWitt equation and the quantum diffeomorphism constraints. The Wheeler–
DeWitt equation in the naive factor ordering is given by (4.5). In the follow-
ing, I will disregard the infinities associated with the functional character of
the equations. Assume that these are regularized in some way.

It is immediately obvious from (4.5) that the Wheeler–DeWitt equation
as it stands is no well-defined equation. Due to the divergence of the DeWitt
metric for deth = 0, the kinetic term diverges — irrespective of the choice of
factor ordering — at all points where deth = 0. We thus have no existence
and uniqueness proof for the solution at these points. So the quantum theory
contains a singularity which is a priori not connected with the singularities
of classical general relativity.

This is just the same phenomenon as in the quantum-cosmological case
where deth = a6 = 0. There, we could use Frobenius’ method to ensure
that at least the cosmological constant and free scalar-field solutions could be
continuously extended to deth = a6 = 0. If we deal with the full Wheeler–
DeWitt equation, our mathematical tools are much more limited.

To discuss this singularity properly, it is useful to take a closer look at
the domain manifold of the wave functional.

5.4.1 Superspace

At each point of Σ, the space of all three-metrics is given. The DeWitt-
metric defines a metric on this space, turning it into a metric manifold —
again at each x ∈ Σ. Denote this manifold by Qx. The configuration space,
Q(Σ), is then a product manifold

Q(Σ) =
∏

x∈Σ

Qx .

The quantum diffeomorphism constraints insure that the admissible wave
functional depends only on the three-geometry, not the three-metric. As-
suming that the diffeomorphism constraints have been solved, the Wheeler–
DeWitt equation can be considered as an equation defined on Q(Σ) modulo
the orbits of three-diffeomorphisms. The resulting orbifold is the space of all
three-geometries, (3)G, denoted by Q. This space is called superspace and
often also referred to as the configuration space of general relativity.

DeWitt discovered that the manifold Qx can be mapped onto a six-
dimensional manifold with Lorentzian signature. The timelike variable is

given by ξ =
√

32
3 (deth)

1
4 . This manifold is geodesically incomplete with a

curvature singularity at (6)R ∼ −ξ−2, where (6)R denotes the six-dimensional
Ricci scalar.
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In the new coordinates, the Wheeler–DeWitt equation becomes

[
~2

2M

(
− δ2

δξ2
+

32

3ξ2
GAB

δ2

δξAδξB

)
+

3M

32
ξ2
(

(3)R− 2Λ
)]

Ψ[(3)G] = 0 .

(5.10)
The metric GAB is positive definite and a function of the three-metric and
its inverse; ξA, A = 1, . . . 5 are the spatial coordinates with respect to the
DeWitt metric. It is obvious that on the spatial hypersurface (in Qx) ξ = 0
the Wheeler–DeWitt equation is not well-defined. This means that unique
solutions for ξ < 0 and ξ > 0 can be joined to each other in a unique way
only if some additional condition is provided. The singular hypersurface in Q
defined through deth = 0 (or ξ = 0) is called quantum barrier and denoted
by Bquant following the notation of DeWitt. Note that deth = 0 for the
cosmological big-bang singularity as well as for the black-hole singularity.
But this does not mean that deth = 0 always corresponds to a geometrical
singularity. Σ and the foliation may just have been chosen poorly.

So, as in the quantum-cosmological case, we encounter a singularity of the
quantum equation also for the full theory. This singular region is connected
with the vanishing of the determinant of the three-metric. That means,
we encounter a singularity of the Wheeler–DeWitt equation whenever the
three-metric becomes degenerate.

The structure of this singular region is much more complicated than in
the cosmological case.8 Here, the singular region arises from the product
manifold

F (Σ) =
∏

x∈Σ

Fx ,

where Fx contains all elements from Qx which have vanishing determinant.
But then we still have to divide out the diffeomorphisms. In this way we
arrive at Bquant.

I want to make two remarks at this point. First of all, note that in quan-
tum cosmology deth = 0 was equivalent to a = 0 and thus the singularity lie
at the boundary of configuration space (minisuperspace). Here, the region
deth = 0 does not lay at the boundary because we have not taken care of
the positivity condition of the three-metric, recall Chapter 4, Section 4.2.1.
If we would in some way take care of this property of the three-metric, we
would exclude deth < 0, i.e. negatively oriented volume, and move the
singular region to the ‘boundary’ of configuration space.

Secondly, in the quantum-cosmological case a unique solution exists that
vanishes at the origin. Here, we encounter the problem that we do not know

8It is hard to beat a point in simplicity.
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how to join together the wave functions in the regions deth < 0 and deth > 0
across F (Σ). But we could alleviate the problem by simply imposing some
condition there. This condition should, of course, be chosen such that it
simultaneously makes the Wheeler–DeWitt equation on deth = 0 finite.

5.4.2 DeWitt’s boundary proposal

Such a condition was proposed by DeWitt. He supposes that a well-defined
problem arises for the Wheeler–DeWitt equation when one subjects the wave
functional to the additional condition

Ψ[(3)G] = 0 , ∀ (3)G ∈ Bquant . (5.11)

On configuration space Q(Σ) instead of superspace, this condition reads

Ψ[h] = 0 , ∀ h ∈ F (Σ) .

This condition is known as DeWitt’s boundary proposal. There are two
facts which support that this proposal might actually work. First of all,
note that the term 1√

deth
Ψ[h] that causes the divergence in the Wheeler–

DeWitt equation vanishes if Ψ[h] = 0 for deth = 0. Secondly, consider
the Klein–Gordon form, (5.10), of the Wheeler–DeWitt equation. From
the form of this equation, one would suppose that a unique solution needs
specification of Ψ and δΨ

δξ on a ξ = const. hypersurface. The core idea of
DeWitt’s proposal is then to fix Ψ on two hypersurfaces of constant ξ —
instead of fixing the first derivative. One of these hypersurfaces corresponds
just to some arbitrary ξ = const. but the second one should be ξ = 0 and
the condition on it Ψ[ξ = 0] = 0.

Thus fixing the wave function at each x for two spatial hypersurfaces Fx
and Sx in Qx fixes the wave function on surfaces F (Σ) and S(Σ) in Q(Σ).
Note that dimF (Σ) = dimS(Σ) = 5 ×∞3. We can thus expect that this
suffices to fix the wave function completely for all three-geometries.

DeWitt carries this construction further to superspace. Let S(Σ) modulo
three-diffeomorphisms be denoted by S. Then we fix Ψ[(3)G] on Bquant and
S.

5.4.3 Regularizing the Wheeler–DeWitt equation

A way of regularizing the Wheeler–DeWitt equation is the transformation
on a new variable

X = ln

(
deth

deth0

)
,

where deth0 is some constant with unit length to the sixth power, used to
keep the dimensions right. The deth = 0 singularity is moved from the finite
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value deth = 0 to the infinite X = −∞. As deth ∼ eX 6= 0, the Wheeler–
DeWitt equation can, after this transformation of variables, be multiplied by
eX to yield a finite, singularity-free (functional) partial differential equation.

More than just regularizing the Wheeler–DeWitt equation, the new vari-
able implements the positivity condition on the metric: deth > 0. This was
the original context in which this proposal arouse. We will use this method to
obtain a well-defined partial differential equation in the cosmological models
discussed in the following chapters.

5.4.4 Coupling to matter

Note that so far, we only considered pure gravity. As discussed in Section 5.3,
coupling to matter introduces another singularity stemming from the fact

that minimally coupled fields have a kinetic term Lkin ∼ N
√

deth (φ̇)2

2 . Writ-
ing Hmatter = 1√

deth
H′matter, the Wheeler–DeWitt equation reads

[
Ĥgrav +

1√
deth

Ĥ′matter

]
Ψ = 0 .

One can then use the same tricks as in the cosmological case, simply replac-
ing a by hab. However, now we have no mathematical tool to deal with the
resulting equation,

[
Ĥgrav +

1√
deth

Ek(h)

]
Ψ = 0 .

But we see that the coupling to matter does not alleviate, but to the contrary
rather aggravates the problem associated with the deth = 0 singularity.

5.5 Criteria for singularity resolution

We thus encountered two sets of singularities. First, there are the classical
singularities of general relativity. Secondly, the Wheeler–DeWitt equation
is singular on the set Bquant of quantum general relativity singularities.

Because classical singularities are defined via geodesic motion in space-
times, it is not easy to track down the classical singularities in the quantum
framework. Considering Einstein’s equations as evolution equations, the
idea is that a regular three-geometry evolves into a singular three-geometry.
The set of singular three-geometries is a subset of superspace. This set is
denoted by Bclass. It seems that the set of classical singularities comprises
that of quantum singularities, Bquant ⊂ Bclass.

9 Thus out of the total set

9Arguments can be found in [4]. In my opinion, the relation between Bclass and Bquant is
not very well understood. A connection between both sets can be made through geodesic
motion in Q. Any geodesic hits the quantum barrier Bquant in finite proper time. On
the other hand, one can recover Einstein’s equations from a WKB-ansatz to the Wheeler–
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of classical singularities, we have those which do not occur on the quan-
tum level and those, as the big bang, for example, which do occur through
deth = 0.

Singularities of the first class are thus simply resolved through the fact
that classical spacetime is dissolved. The corresponding criterion is the
break-down of the semi-classical approximation. Those of the second class,
that is the hope, are resolved if the wave functional vanishes on the respective
region Bquant of superspace. The question remains whether this has to be
put in by hand, as in DeWitt’s boundary proposal, or is insured by some
other mechanism.

I will use the two criteria described above as indicators for singularity
resolution. In the following, I will briefly describe the picture standing
behind these criteria and also comment shortly on other criteria that can be
found in the quantum-cosmology literature.

5.5.1 Break-down of semi-classical approximation

Through the quantization of three-metric and extrinsic curvature, in the
form of conjugate momentum, we loose classical spacetime. Loosely speak-
ing, we either have three-geometries but no prescription of how to stack
these together to a spacetime or we have a prescription of how to stack
three-geometries together but do not have any three-geometry. This fol-
lows in a hand-wavy way from the uncertainty relations of three-metric and
momentum.

Of course, the choice of criteria depend on the attitude one takes towards
the interpretation of the Wheeler–DeWitt equation and its solutions. Recall
that we adopt the semi-classical interpretation here.

Only in the semi-classical realm can we recover spacetime as a history
of three-geometries (‘geometrodynamics’), recall Chapter 4. Whenever the
semi-classical approximation breaks down, no spacetime exists which can be
probed for geodesic incompleteness. No spacetime, no singularity.

A breakdown of the semi-classical approximation is signalled by the
spreading of initially tightly peaked wave packets.

5.5.2 Vanishing of the wave function

As discussed already in the previous section, the singularities associated
with Bquant require a vanishing wave functional. We accept the vanishing of
the wave functional at the classically singular point in configuration space
as a valid criterion for singularity avoidance. If the wave functional vanishes

DeWitt equation. It turns out that Einstein’s equations are just geodesic equations in
superspace — plus an extra force term. The question is then whether the force term
is strong enough to prevent the three-geometry from hitting the deth = 0 frontier. An
answer to this question is not known. Neither is it clear under which conditions the
singular three-metric deth = 0 corresponds to a true geometrical singularity in spacetime.
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at some region in configuration space, this region cannot contribute to the
quantum theory. However, we do not want to put this vanishing in by hand,
as is done in DeWitt’s boundary condition. Rather, we want to see whether
other mechanisms already enforce this vanishing.

5.5.3 Other criteria

As another citerion for singularity avoidance the finiteness of expectation
values of classically diverging quantities has been used. As we have no well-
defined inner product to define such expectation values and as expectation
values defined outside the realm of the semi-classical approximation surely
transcend our understanding of ordinary quantum theory, we do not apply
such a criterion here. But see also Chapter 9, Section 9.1.1

Another criterion is that of a quantum bounce in which the wave packet
remains tightly peaked but deviates from the classical trajectory. Here the
classical trajectory is altered through quantum effects. That means a semi-
classical approximation holds throughout but yields a different evolution
than the purely classical one. Usually, the wave packet falls off exponentially
in the region of the classical singularity. Therefore this scenario is comprised
in Section 5.5.2.

References: I used the textbook of Robert Wald for the brief discussion
of the classical singularities in general relativity, [41]. For the singularities
of quantum general relativity, I used DeWitt’s paper, [4]. A very read-
able introduction to the theory of ordinary differential equations is given
in Jänich’s textbook, [43]. Further reading is provided in the textbook of
Fischer and Kaul, [47].
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Chapter 6

Quantum Cosmology

In this chapter the canonical quantization scheme will be applied to
the Friedmann–Robertson–Walker metric. Quantization on such a
highly-symmetric superspace is called minisuperspace quantization.
This name alludes to the fact that the symmetry actually reduces the
infinite number of degrees of freedom of the full theory to a finite
one. Quantum cosmology thus provides a simple testing ground for
quantum general relativity concepts. Moreover, it can be used to
explore qualitative features.

6.1 Hamiltonian formulation of classical cosmol-

ogy

6.1.1 Motivation

The assumption of spatial homogeneity and isotropy yields the well-known
Friedmann–Robertson–Walker line element. This is given by

ds2 = −dt2 + a2(t) dΩ2
k ,

where dΩ2
k is the line element of a three-space with constant curvature k =

0,±1,

dΩ2
k =





dψ2 + sin2 ψ
(
dθ2 + sin2θ dφ2

)
k = 1

dx2 + dy2 + dz2 k = 0
dψ2 + sinh2 ψ

(
dθ2 + sin2θ dφ2

)
k = −1

.

There are several problems with the assumption of homogeneity and isotropy.
First of all, this approximation applies only to large scales. It is very ques-
tionable why such a model — in which points correspond to galaxies! —
could be used as starting point for a quantum framework. Secondly, already

67
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on the classical level, it is not clear whether such an approximation can
hold throughout the universe’s evolution. It is surely not applicable in the
vicinity of the big-bang singularity. Besides these theoretical concerns, there
is the plain fact that the Friedmann–Robertson–Walker model is not able
to explain the current, observed accelerated expansion of the Universe. To
reproduce such an acceleration, one has to introduce exotic forms of matter
— or a mysterious cosmological constant.

Nonetheless, I want to use this model in the following — not as a realistic
device to extract predictions but as a playground to study the quality of
quantum gravitational effects. Quantum general relativity models with a
finite number of degrees of freedom, as the one described here, are called
minisuperspace models.

6.1.2 Gravitational Hamiltonian

As discussed above, imposing spatial homogeneity and isotropy, the metric
reduces to

gαβ =

( −1 0

0 a2(t)h̃ab

)
, (6.1)

where h̃ab is the metric of a space of constant curvature. Comparing this to
the ADM-metric (2.1), we find the ADM-form of the Friedmann–Robertson–
Walker metric (6.1), the only non-vanishing components of which are

g00 = −N(t) , gab = a2(t)h̃ab = hab .

This can now be used to calculate the ADM-action (2.4). Using

Kab = − ȧ

aN
hab ,

(3)R =
6k

a2
,

√
deth = a3 ,

where a dot denotes derivatives with respect to t, one obtains

SgravADM =
3

κ2

∫
dt

∫

Σ

d3xN

(
− 1

N2
ȧ2a+ ka− Λ

3
a3

)
−∆SADM ,

where κ2 = 8πG
c4

= 8πG as before. In the following, we will assume that
the boundary term is made to vanish. For a closed FRW model, this follows
trivially. For the flat case, we want to assume that space has been compacti-
fied to a torus. Carrying out the integration over a volume V of three-space,
we arrive at the Lagrangian density

LgravADM = CN

[
− 1

N2
ȧ2a+ ka− Λ

3
a3

]
,
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where C = 3V
κ2 . The gravitational momenta are thus

pa =
∂L
∂ȧ

= −2C

N
ȧa , pN =

∂L
∂Ṅ
≈ 0 ,

yielding the Hamiltonian

Hgrav = NHgrav⊥ = NC

[
− p2

a

4aC2
− ka+

Λ

3
a3

]
.

Note that the index on pa here is no space index but just stands for the
momentum of the scale factor a.

Conservation of the primary constraint ṗN ≈ 0 yields the Hamiltonian
constraint Hgrav⊥ ≈ 0.

6.1.3 Coupling to scalar-field matter

We use a scalar field as toy model for matter. It thus replaces the perfect
fluid usually used in cosmology. Such a replacement is necessary as a perfect
fluid is just an effective description of matter. But on the quantum level,
we need some fundamental field. Of course, a scalar field is not the best
experimentally verified sort, but it is easiest to deal with. Moreover, we
are only interested in the qualitative behaviour of the model, anyway, and
in this respect a scalar field is an appropriate substitute for bosonic field
components. The action for such a scalar field φ with arbitrary potential
V (φ) is given by

SmatADM =
1

2

∫
dt

∫

Σ

d3xN
√

deth

[
−`gαβ ∂φ

∂xα
∂φ

∂xβ
− 2V (φ)

]
,

where the constant ` = ±1 is introduced for later convenience. For an
ordinary scalar field, ` = 1. If ` = −1, the field is a so-called phantom field,
see Chapter 7. Using the ADM-form of the Friedmann–Robertson–Walker
metric, this can be written as

SmatADM =
1

2

∫
dt

∫

Σ

d3xNa3

[
`
φ̇2

N2
+ `hab

∂φ

∂xa
∂φ

∂xb
− 2V (φ)

]
.

After integration over the volume V of Σ, the scalar field momentum is
derived

pφ = `Va3 φ̇

N
. (6.2)

The matter part of the Hamiltonian is thus
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Hmat = NHmat⊥ =
NVa3

2

[
`
p2
φ

V2a6
+ hab

∂φ

∂xa
∂φ

∂xb
+ 2V (φ)

]
.

The energy-momentum tensor for the scalar field is defined in the usual
way as

Tαβ = − 2√−det g

δLmat
δgαβ

.

In the homogeneous case, it has only four non-vanishing components

T00 = `
φ̇2

2
+NV (φ) , Tbb = a2

(
`
φ̇2

2N2
− V (φ)

)
.

Comparing this with the perfect fluid energy-momentum tensor for a co-
moving observer1

Tαβ = ρnαnβ + p (gαβ + nαnβ) ,

we can assign an energy density ρ and a pressure p to the scalar field

ρ = `
φ̇2

2
+ V (φ) , p = `

φ̇2

2
− V (φ) . (6.3)

The equation of state is then defined as the ratio of pressure to energy
density w = p

ρ . Do not confuse the pressure p with the momenta pa and
pφ. Assuming a constant equation of state parameter w for the scalar field,
we can use the equations for ρ and p to find the relation between the scalar
field and its potential,

V (φ(t)) =
`

2

1− w
1 + w

φ̇2(t) , (6.4)

where w 6= −1. This is analogous to the virial theorem in which the kinetic
energy is proportional to the potential energy of the field.

6.1.4 Total Hamiltonian for Friedmann–Robertson–Walker

cosmology coupled to a homogeneous scalar field

To fit the symmetry conditions of the Friedmann–Robertson–Walker model,
the scalar field should not depend on the spatial coordinates, φ = φ(t). The
total Hamiltonian is then given by

1Recall that n = (−1, 0, 0, 0) is the hypersurface normal and N has to be fixed to
N = 1, see Section 6.1.5 below.
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H = NH⊥ = N

[
− p2

a

4aC
+ `

p2
φ

2Va3
−Ka+

λ

3
a3 + a3VV (φ)

]
, (6.5)

where K = Ck and λ = CΛ. The total Hamiltonian is constrained to vanish
as a consequence of the conservation of the primary constraint. From the
kinetic term, we can read off the inverse of the two-dimensional analogue of
the DeWitt metric

GAB =

( − 1
4aC 0

0 `
2Va3

)
.

Note that this inverse exists everywhere except at a = 0.

6.1.5 Hamiltonian equations of motion

To make the connection to Einstein’s equations, the equations of motion in
the Hamiltonian framework are briefly discussed. In order that the equations
of motion can be solved — or acquire any meaning in the first place, it is
necessary to fix the foliation. This is done by fixing the lapse function.
For N = 1 we obtain Friedmann time t, whereas the choice N = a yields
conformal time τ . We will use N = 1.

Now note that the Hamiltonian itself, when expressed in terms of veloc-
ities, is just the Friedmann equation

(
ȧ

a

)2

=
κ2

3
ρ− k

a2
+

Λ

3
. (6.6)

Note that this constraint is of the form Ekin + Epot = 0 with

Ekin = −
(
ȧ

a

)2

+ `
κ2

6

φ̇2

2
, Epot =

κ2

6
V (φ)− k

a2
+

Λ

3
. (6.7)

For ` = −1, the ‘kinetic energy’ is thus negative. Consequently, the ‘po-
tential energy’ therefore has to be positive (or zero), Epot ≥ 0. The region
Epot < 0 is classically forbidden for ` = −1.

The equations of motion determining the evolution of the scale factor
are

ṗa = {pa,H⊥} = − p2
a

4a2C
+Ka− λa2 + 3`

p2
φ

2Va4
− 3Va2V (φ) ,

ȧ = {a,H⊥} = − ṗa
2aC

− p2
a

4a3C2
.
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Differentiating the second equation with respect to t and using the first
yields the well-known evolution equation

ä

a
=

Λ

3
− κ2

6
(ρ+ 3p) . (6.8)

For the scalar field, one obtains in the same way

ṗφ = −a3VV ′(φ) , φ̇ = `
pφ
Va3

,

where a prime shall denote derivation with respect to φ here. This yields

φ̈+ 3
ȧ

a
φ̇+ `V ′(φ) = 0 , (6.9)

which is equivalent to the conservation equation

ρ̇+ 3H(ρ+ p) = 0 . (6.10)

In the following sections, I will also use the Hubble parameter H = ȧ
a to

keep expressions short and simple.2

6.2 Wheeler–DeWitt equation for cosmology

Quantization now consists in the promotion of scale factor, scalar field and
their momenta to operators. These operators shall act on the wave function
ψ(a, φ) in the following way

p̂aψ(a, φ) = −i~
∂ψ

∂a
, âψ(a, φ) = a · ψ(a, φ) ,

p̂φψ(a, φ) = −i~
∂ψ

∂φ
, φ̂ψ(a, φ) = φ · ψ(a, φ) .

Here we assume that ψ is sufficiently differentiable, but nothing else. The
Hamiltonian constraint is then turned into the Wheeler–DeWitt equation.
There is some factor-ordering ambiguity in the gravitational kinetic term.
Parametrizing this ambiguity by arbitrary real numbers r, m, the Wheeler–
DeWitt equation becomes

~2

2

[
ar+m−1

2C

∂

∂a
a−r

∂

∂a
a−m − `

Va3

∂2

∂φ2

]
ψ(a, φ) + V (a, φ)ψ(a, φ) = 0 ,

where

2The letter H denotes several different quantities in this thesis. In order to distinguish
the Hubble parameter from the Hamiltonian constraint, I use roman, H, and calligraphic,
H, H for the Hamiltonian and simply H for the Hubble parameter.
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V (a, φ) = −Ka+
λ

3
a3 + a3VV (φ) .

Choosing the Laplace–Beltrami factor ordering, we obtain

~2

2

[
1

2C

(
1

a2

∂

∂a
+

1

a

∂2

∂a2

)
− `

a3

∂2

∂φ2

]
ψ(a, φ) + V (a, φ)ψ(a, φ) = 0 .

(6.11)

6.2.1 Regularization of the Wheeler–DeWitt equation

As described in Chapter 5, Section 5.4.3, a regularization of the Wheeler–
DeWitt equation at a = 0 can be obtained through the introduction of a
new variable α which moves the singularity out to infinity,

α = ln

(
a

aref

)
,

where aref is some constant with length dimension.3 With this new variable,
(6.11) becomes

~2

2
a−3

ref e
−3α

[
1

2C

∂2

∂α2
− `

V
∂2

∂φ2

]
ψ(α, φ) + Varef

(α, φ)ψ(α, φ) = 0 .

After multiplication with the non-zero quantity e3α, we obtain

~2

2a3
ref

[
1

2C

∂2

∂α2
− `

V
∂2

∂φ2

]
ψ(α, φ) + e3αVaref

(α, φ)ψ(α, φ) = 0 , (6.12)

where

Varef
(α, φ)ψ(α, φ) = −Karefe

α +
λ

3
a3

refe
3α + a3

refVe3αV (φ) .

Choosing now units such that V = 1 and C = 1, i.e. κ2 = 6, and aref = 1,
the Wheeler–DeWitt equation becomes

~2

2

[
∂2

∂α2
− `∂

2

∂φ2

]
ψ(α, φ) + e3αV1(α, φ)ψ(α, φ) = 0 . (6.13)

Note that the Wheeler–DeWitt equation is a hyperbolic equation in the case
of a standard scalar field (` = 1). This structure implies that the scale factor
should serve as evolution parameter. Initial conditions should be prescribed

3In Chapter 5, Section 5.4.1, we used the letter X to denote this variable. The choice
of α here follows the conventional quantum cosmology literature.
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on surfaces of constant α. For the phantom field (` = −1), the equation
is no longer hyperbolic but elliptic. If other types of matter are present in
addition to the phantom field, the equation becomes ultra-hyperbolic.

In the following two chapters, V = 1 throughout. The constants aref and κ2

are kept.



Chapter 7

Quantum phantom

cosmology

Phantom dark energy is still an experimentally allowed candidate
for dark energy. A characteristic feature of classical cosmological
models with this sort of dark energy is the occurrence of a new type
of singularity, the so-called big-rip singularity. In contrast to the
familiar big-bang singularity, the big rip ‘takes place’ in the macro-
scopic universe. The question therefore arises what happens to such
a singularity in quantum cosmology? More pointedly, can we expect
quantum gravitational effects in the macroscopic universe?

7.1 Phantom dark energy — motivation and gen-

eral properties

In 1998, supernovae 1a (SNe1a) data suggested for the first time that the
Universe might undergo an accelerated expansion, [50]. This was confirmed
by a second group in the following year, [51]. From the evolution equation
(6.8), it can be read off that the matter component has to satisfy ρ+3p < 0
in order to drive such an accelerated expansion. This implies a violation of
the strong energy condition. Introducing the equation of state parameter
w = p

ρ , acceleration requires w < − 1
3 . The unknown type of matter driving

the acceleration of our Universe is called dark energy.
What comes to mind first, is the cosmological constant Λ with w = −1.1

This has since then been the most promising and most conservative candi-
date for dark energy. The serious problem this proposal suffers from, is that
no one is able to explain what this cosmological constant may be. The sug-
gestion is that it may just be the vacuum energy density. But for this, the

1This follows also from (6.8).
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measured value of Λ is far too high. Nonetheless, the so-called ΛCDM-model
with dark energy given by an unexplained cosmological-constant term, Λ,
and a Cold Dark Matter component, is the current standard model of cos-
mology.

In 2002, Caldwell suggested to look beyond the w = −1 barrier, [55].
He showed that dark energy with w < −1, but ρ > 0, is indeed consistent
with the supernovae data of Riess et al. and Perlmutter et al. [50, 51], and
the cosmic microwave background (CMB) data available at that time.2 He
called such an energy component phantom and the corresponding equation of
state w < −1 super-negative. Such a super-negative w implies that not only
the strong but also the weak and dominant energy conditions are violated.
This means that observers exist that measure a negative energy density of
the phantom fluid and a phantom energy flow faster than light. From a
theoretical point of view, this is clearly an odd suggestion.

I first want to discuss the cosmological evolution driven by such dark
energy, before exploring the possible ways in which such matter could be
realized on the fundamental level.

First, note that (6.10) implies that the energy density grows as ρ ∼
a3|1+w| with the scale factor. Phantom thus dominates late over matter. As
soon as it dominates, the Universe accelerates more rapidly than with cos-
mological constant. This epoch of phantom dominance starts the later the
more negative w. The age, and correspondingly the horizon distance, are
larger than in the Λ case. But this effect is less and less important, the more
negative w becomes — for a fixed value of the matter density. Caldwell more-
over calculated characteristic, measurable quantities for a phantom model
with w = −3

2 and compared it to quintessence and cosmological constant
characteristics.

First of all, the volume-redshift relationship in a phantom universe dif-
fers of course from that of ΛCDM. The phantom predicts a larger differential
number of objects per redshift interval. This leads to more strong gravita-
tionally lensed quasars than ΛCDM. A comparison of the magnitude-redshift
relationship with the binned data3 of [50, 51] shows that the phantom with
w = −3

2 is in best accord with data — apart from one single data point at
redshift larger than one. But even for this point, the phantom fit is bet-
ter than the one obtained for Λ. Using the constraints from SNe1a data
on the matter density and w, phantom is also in the admissible range. A
comparison with the CMB-anisotropy spectrum shows that phantom dimin-
ishes the lower multipoles due to a weaker late-time integrated Sachs-Wolffe
effect. For low multipoles it is thus not in best accord with data. The acous-
tic peaks, on the other hand, get shifted to higher multipoles, thus fitting

2Caldwell used the compilation of CMB data provided by Wang, Tegmark and Zaldar-
riaga including data from BOOMERaNG, DASI, Maxima and CBI, [52].

3Binning was carried out in [56].
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the data better than the ΛCDM model. Due to a larger amplitude of the
growth suppression factor, the perturbations persist longer and stronger in
the phantom models.

Most significantly, a phantom-driven universe is finite. Let the time of
phantom dominance be denoted by tp, then

a(t) = a(tp)

[
−w + (1 + w)

t

tp

] 2
3
(1+w)

for t > tp. Clearly, the scale factor diverges after a finite time. For a suf-
ficiently large matter density, this divergence arises well after the present
epoch. This divergence of the scale factor after a finite time provides a sin-
gular end of the universe called the big-rip singularity. It is the growing
energy density of a fluid with negative pressure whose repulsion ‘rips’ the
universe apart. In a follow-up of the first paper, Caldwell et al. calculated
the time at which different structures in the universe are torn apart for a
fixed value of w, [57]. Calculation of the perturbation spectrum caused by
phantom energy makes it necessary to introduce a field-theoretical descrip-
tion of the phantom fluid. In order to keep the energy dark and produce
the desired equation of state, Caldwell used a scalar field with reversed sign
of the kinetic energy term. This just corresponds to the choice ` = −1 in
the formulas of the previous Chapter 6. It follows from (6.9) that the field
will run up and not down the potential. As a justification for such a weird
kind of matter, Caldwell cites supergravity theories and higher-derivative
theories of gravity.

Caldwell’s idea was taken up in the following years. The High-z Super-
novae Search Team included in their data analysis the probability contours
for w over the matter density. They found that −1.48 < w < −0.72 at a
95% confidence level, [53]. In comparison to the Riess and Perlmutter data
of 1998/1999, these new samples contain also SNe1a at redshifts z larger
than z = 1. Another analysis combined the data from the Sloan Digital Sky
Survey (SDSS) with the data of the Wilkinson Microwave Anisotropy Probe
(WMAP) of 2004, [54].4 They used a six-parameter model but also allowed
w to be a free parameter in one of their evaluations. Using just WMAP
temperature and polarization information, they found w > −1. But includ-
ing SDSS data, they obtained w = −1.05 +0.13

−0.14 which one might interpret
as a slight indication for phantom dark energy.

New data, including more high-redshift SNe1a (which was the weak re-
gion of the phantom model already in Caldwell’s first paper), however, are
not able to rule out but clearly disfavour the phantom model. The SDSS
Supernovae Legacy currently provides the largest and qualitatively best su-
pernovae data set. They found w = −0.969 +0.059

−0.063 (stat) +0.063
−0.060 (sys), [58].

4During the SDSS-I, power spectra of over 200 000 galaxies were recorded over five
years from 2000 until 2005.
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The restrictions on the dark energy equation of state were also determined
by the WMAP Science Team using the five-year data. They give as limit
−1.14 < w < −0.88, [49]. These are the most recent constraints on the dark
energy equation of state, both published in October 2008.

So, at the time when the following research was carried out, the phantom
model was an experimentally motivated model. Despite its physical flaws,
like the violation of energy conditions, it was found to be in accord with
the data and therefore received much interest. In a rather short amount of
time, data were put forward that disfavoured this model, bringing physical
common sense and experimental data together again. As a side, I may
learn that it is sometimes wiser to view experimental data with theoretical
prejudice.

However, there are also reasons from the quantum cosmological side to
study such a phantom universe.

7.2 Quantizing the big-rip singularity

As explained above, phantom dark energy produces a new type of cosmo-
logical singularity at which scale factor, energy density and pressure diverge
after a finite amount of time. This big-rip singularity thus occurs at large
scale factor and thus in the macroscopic universe. Nonetheless energy den-
sity and pressure traverse the Planck scale. At this scale, we assume that
quantum gravity effects become important. The motivation standing behind
the quantisation of phantom cosmologies is the study of quantum cosmologi-
cal models with singularity in the macroscopic universe. Are there quantum
gravity effects at large scale factor and what is the possible impact of quan-
tum gravity on the new singularity? In particular, we want to see whether
this macroscopic big-rip singularity is avoided in the quantum cosmological
model.

Moreover, the introduction of a phantom field changes the nature of the
Wheeler–DeWitt equation. If no other fields but the phantom are present,
it becomes elliptic. This influences the type of boundary conditions to be
imposed on the wave function.

7.3 Classical cosmological models with phantom

dark energy

In the following, three models will be discussed. The first of these is just
a toy model exhibiting some ‘phantom features’. The next two are genuine
phantom models. The first contains a phantom field with exponential po-
tential, thus yielding a universe ending with a big rip. The second model
contains a negative cosmological constant in addition to a phantom field with
hyperbolic-cosine potential. The conditions in the latter model are chosen
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such that the universe evolves from big rip to big rip. None of the models
is chosen with the aim to fit cosmological data but to provide solvable and
interesting models on the quantum level. This means that they should end
or start their evolution with a big-rip singularity. For all models, ` will be
kept as a parameter, allowing the comparison of ordinary scalar field matter
with phantom.

There are two steps which are carried out on the classical level with fore-
sight on the quantum analysis. First of all, as pointed out already in the
previous section, the phantom field will not be described by a perfect fluid
Lagrangian but by a fundamental field. As a substitute for this will serve
a scalar field with reversed sign of the kinetic energy term. Secondly, the
classical trajectories will ultimately be given in configuration space, i.e. in
the (a, φ)-plane. This is the space on which the quantum cosmological wave
function is defined — the minisuperspace of this model. The classical tra-
jectory in configuration space is the only link we have between the classical
model and the quantum theory.

7.3.1 Cosmological toy model with vanishing phantom po-

tential

In this section we shall consider a simple model with field potential V (φ) = 0
and cosmological constant Λ = 0. This leads to an equation of state for stiff
matter, p = ρ, w = 1. Moreover, in such a case the energy density ρ < 0,
and thus this model does not seem to represent dark energy which is usually
assumed to have positive energy density. However, it captures interesting
‘phantom features’, since it violates all energy conditions, and it has the
merit that it is easily manageable.

It follows from the remarks after (6.7) that for vanishing potential and
` = −1, the curvature index k has to be chosen negative, k = −1, in order
that a classical solution exists at all.

Since φ is a cyclic variable, pφ is constant, so from (6.2) one has φ̇2 =
P 2
φ/a

6 with a constant Pφ. From (6.6) together with (6.3) one then has

dφ

da
= ± Pφ

a
√
a4 + `κ

2

6 P
2
φ

,

which for ` = −1 and the choice Pφ > 0 integrates to

φ(a) = ±
√

3

2

1

κ
arccos

Pφκ√
6a2

. (7.1)

The classical trajectory (7.1) has a minimum value of the scale factor, amin =√
Pφκ√

6
, and reaches infinite values of a at finite values of φ = ±π/4. In this

sense, it resembles a big-rip solution. However, with respect to t, the scale
factor reaches infinity only at t = ±∞ and, moreover, ρ ∝ a−6 which is
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Figure 7.1: The classical trajectory in configuration space for the toy model
with vanishing scalar field potential and vanishing cosmological constant.
The diagram on the left hand side shows the trajectory for the phantom
field model. On the right-hand side the trajectory for the ` = 1 scalar field
model is plotted.

the density scaling appropriate to a stiff fluid. Nonetheless, in configuration
space the trajectory has some features of a big rip, and this is why this toy
model is of interest.

For an ordinary scalar field (` = 1) and for k = −1, one gets instead of
(7.1),

φ(a) = ±
√

3

2

1

κ
arcsinh

Pφκ√
6a2

. (7.2)

There is no turning point. Equation (7.2) just describes two branches for
which a→∞ if φ→ 0, and a→ 0 if φ→ ±∞. The two solutions (7.1) and
(7.2) are depicted in Figure 7.1.

7.3.2 Cosmological model with phantom dark energy

A model with phantom equation of state and a true big-rip singularity ap-
pears if the dark-energy potential is chosen exponential,

V (φ) = V0e
−γκφ , (7.3)

with γ > 0 and Λ = 0. Interest in this type of scalar field potentials in cos-
mology arose when it became clear that the classical model has an attractor
solution with scalar-field domination, [61]. This alleviates the fine-tuning
problem of the initial energy of the scalar field. Such an attractor exists not
only in the case of a conventional scalar field, but also for the phantom field
[59, 60]. At this point, cosmologists quote that exponential potentials for
scalar fields arise in the context of Kaluza–Klein theories, higher-derivative
gravity in higher dimensions, higher-order gravity, supergravity and super-
string theories, see [62] for an overview.
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In the following, we shall consider the case of a flat universe, k = 0.
From the discussion after (6.7) one sees immediately that for this choice of
parameters, neither the ordinary scalar field nor the phantom field model
possesses classically forbidden regions.

To find a solution to the equations of motion which actually produces
phantom behaviour, the system of equations (6.8) and (6.9) is most conve-
niently transformed into an autonomous system. This system evolves under
the Friedmann equation (6.6) as constraint. Solutions with constant equa-
tion of state parameter w are fix points of this system. The autonomous
system is obtained for the new variables

x =
κ√
6

φ̇

H
=

κ√
3

dφ

dα
, y =

κ√
3

√
V

H
,

where a dot is used to denote differentiation with respect to t. These are

considered as functions of α = ln
(

a
aref

)
. The constraint (6.6) is then given

by

1 = `x2 + y2 ,

and the evolution equations (6.8) and (6.9) are equivalent to

x′ = −3x+ 3`x3 +

√
3

2
`γy2 ,

y′ = xy

(
3x−

√
3

2
`γ

)
,

where primes denote derivation with respect to the variable α. The equation
of state of the matter field is now

w =
`x2 − y2

`x2 + y2
(7.4)

and we see that it is constant for fix points of the above system. There are
only two fix points for non-trivial potential. These are given by

x = `
γ√
6
, y = ±

√
1− `γ

2

6
. (7.5)

For y > 0, the universe is expanding, for y < 0 contracting — this depends
on the initial value H0 = H(t0) of the Hubble parameter. We consider here
the case of an expanding universe. For ` = −1 and arbitrary values of γ,
as well as for ` = +1 and γ <

√
6, the above is an attractor solution of the

system.

From (7.5), we obtain the equation for φ
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φ(α) = `
γ

κ
(α− α0) + φ0 , (7.6)

where α0 = ln
(
a0
aref

)
is the initial value of α. We choose φ0 = `γκα0. With

the knowledge of (7.6), the equation for y can be integrated to yield

a(t)

a0
=

[
1 + `

γ2H0

2
(t− t0)

]` 2
γ2

. (7.7)

The corresponding equation for φ(t) is then

φ (t) =
2

γκ
ln

[
1 + `

γ2H0

2
(t− t0)

]
. (7.8)

For this attractor solution, the ‘kinetic energy’ is given by

Ekin ≡
κ2

6

(
dφ

dα

)2

=
γ2

6
,

and thus constant. Therefore, also the ‘potential energy’ of the scalar field
is constant,

Epot ≡
κ2V

3H2
= 1− `γ2

6
.

Inserting the fix-point values into the equation of state (7.4), one immedi-
ately sees that

w = −1 + `
γ

6
,

which, for ` = −1, obviously describes a phantom field, whereas the scalar
field with ` = 1 covers the range w > −1. Accordingly, the energy density

scales as ρ = ρ0

(
a
a0

)−`γ2

. As expected, this yields a big-rip singularity for

` = −1. In the limit t → t1 ≡ t0 − 2`/(γ2H0) the energy density and the
scale factor diverge. For t→∞, a and ρ vanish.

This is opposed to the ` = 1 model. In the limit t → t1, a goes to zero
and ρ diverges, yielding a big-bang singularity, whilst for t→∞, a diverges
and ρ goes to zero.

7.3.3 Cosmological model evolving from big rip to big rip

We now introduce a negative cosmological constant in addition to the phan-
tom field. The attraction of the negative Λ counteracts the repulsion of the
phantom. This allows a model which evolves symmetrically between two
big rips. Again, the universe is assumed to be flat, k = 0, but Λ < 0. Now
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we assume a constant equation of state from the outset. In this case, the
energy conservation equation gives

ρ = ρ0

(
a

a0

)−3(w+1)

,

and pΛ = −ρΛ = − Λ
κ2 for the cosmological constant holds. This can be used

to solve the system (6.6) and (6.8) in terms of the scale factor as

a(t) = a0

(
ρ0

|ρΛ|

) 1
2D

[sinX]
1
D , (7.9)

where

X =
|D|√

3

√
|Λ|(t− t0) + arcsin

(√
|ρΛ|
ρ0

)
,

and D = 3
2(1 + w). Using the short-hand D, we can rewrite (6.4) in the

form

V (φ(t)) =
`

2

3−D
D

φ̇2(t) , (7.10)

which allows to write the energy density in (6.3) as

ρ =
3`

2D
φ̇2 =

3

κ2

(
ȧ2

a2
− Λ

3

)
. (7.11)

With all these assumptions we are able to calculate the evolution of the
scalar field as

φ(t) = ±
√

2

κ

√
`D

D
ln

[
tan

(
X

2

)]
, (7.12)

For simplicity, we choose t0 such that a(t0 = 0) = 0. Then X in (7.12) and

in (7.9) simplifies to X = |D|√
3

√
|Λ|t. For later reference, let us furthermore

introduce the short-hand A = aD0

√
ρ0
|ρΛ| . Note that D/` = |D| > 0.

For the model with ordinary scalar field, D > 0. The evolution of the
universe based on (7.9) begins with a big bang at t = 0, reaches a maximum
amax = A1/D, and terminates with a big crunch at t = π.

For the phantom case, D = −|D| < 0. The evolution starts with a big
rip at t = 0, reaches a minimum amin = A−1/|D|, and terminates with a big
rip at t = π. Thus we have a symmetric evolution of the scale factor from big
rip to big rip. The corresponding trajectory therefore has a turning point.
This is of special interest in the quantum theory.

We use (7.9) to eliminate the classical time coordinate in (7.12) and
obtain the trajectory in configuration space
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Figure 7.2: The classical trajectories in configuration space for the models
with cosh-potential and negative cosmological constant. On the left-hand
side, the trajectory for the phantom field model is shown. The classical
trajectory for the scalar field model ` = 1 is shown on the right-hand side.
The similarity to the classical trajectories in the toy model in Section 7.3.1
is obvious.

φ(a) = ±
√

2

κ

√
`D

D
ln

(
θ

1 +
√

1− θ2

)
, (7.13)

where θ = aDA−1. This trajectory has two branches. For ` = −1 each
of them extends to infinity, that is, φ → ±∞, for a → ∞ and reaches
a minimum φ(a) = 0, for amin = A−1/|D|. For ` = 1 one recognizes the
presence of the maximum amax. The trajectories in configuration space are
depicted in Figure 7.2.

From (7.12) and (7.10), one can reconstruct the potential of the scalar
field,

V (φ) = V0 cosh2

(√
3

`D
Dφ

)
, (7.14)

where V0 = (D−3)
18 Λ. To make the expression simple, I will use the short-

hand F−1 = `
√

3|D|. Note that for ` = 1 the potential is positive only for
D < 3 (i.e., w < 1). This restriction is similar to the restriction λ <

√
6 in

Section 7.3.2.

7.4 Quantum Cosmological models with phantom

dark energy

We now subject the previously presented models to quantization as pre-
sented in Chapter 6.
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7.4.1 Quantum cosmological toy model with vanishing phan-

tom potential

We start from the Wheeler–DeWitt equation with Laplace–Beltrami factor
ordering, (6.11), where for the toy model V (φ) = 0, Λ = 0 and k = −1.
Multiplication by a3 (or, more correctly, regularizing, multiplying be e3α

and then transforming back to a), we get the Wheeler–DeWitt equation

~2

2

[
κ2

6

(
a
∂

∂a
+ a2∂

2

∂a2

)
− `∂

2

∂φ2

]
ψ(a, φ) +

3

κ2
a4ψ(a, φ) = 0 . (7.15)

A solution to this equation is found from the separation ansatz,

ψn(a, φ) = Cn(a)ϕn(φ) . (7.16)

This yields

ϕn(φ) = e−
i
~
nφ . (7.17)

We choose the oscillating solution, because real exponentials would yield
exponentially growing solutions as φ→ ±∞. The equation for the gravita-
tional part is then given by

a2C̈n + aĊn +
36

~2κ4
(a4 + `ñ2)Cn = 0 , (7.18)

where ñ2 = κ2

3 n
2. Solutions of this equation are Bessel functions Z√−` 3n

~κ
(3a2

~κ ).

However, we have to impose the boundary condition that ψ(a, φ)
a→0−→ 0 in

order to reflect the behaviour of the classical trajectories (7.1) which have
a minimum with respect to a in configuration space. We therefore have to
choose the Bessel function J√−` 3n

~κ
(3a2

~κ ) with n > 0.

Let us first discuss the phantom case, ` = −1. The connection to the classi-
cal solution (7.1) should be performed through a formal WKB-limit ‘~→ 0’.
We thus have to look for an asymptotic expansion of Jµ(z) where both the
argument and the index are large. We use relation

Jν(νz) =

(
4ζ

1− z2

)1/4
(

Ai(ν2/3ζ)

ν1/3
+

exp(−2
3νζ

3/2)

1 + ν1/6|ζ|1/4 O
(

1

ν4/3

))
, (7.19)

see [64] and set ν = 3n
~κ , z = a2

n . The choice for ζ depends on whether z2 ≥ 1
or z2 < 1,
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2

3
(−ζ) 3

2 =
√
z2 − 1− arccos

(
1

z

)
for z2 ≥ 1 , (7.20)

2

3
ζ

3
2 = ln

(
1 +
√

1− z2

z

)
−
√

1− z2 for z2 < 1 , (7.21)

see [64]. Now expand the Airy function for large argument |z̃|,

Ai (z̃) ∼ 1

2
z̃−

1

4 exp

(
−2

3
z̃

3

2

) ∞∑

m=0

(−1)mcm

(
2

3
z̃

3

2

)−m

for |argz̃| < π , (7.22)

Ai (−z̃) ∼ π−
1

2 z̃−
1

4

[
sin

(
2

3
z̃

3

2 +
π

4

) ∞∑

m=0

(−1)mc2m

(
2

3
z̃

3

2

)−2m

− cos

(
2

3
z̃

3

2 +
π

4

) ∞∑

m=0

(−1)mc2m+1

(
2

3
z̃

3

2

)−2m−1
]

for |argz̃| < 2

3
π , (7.23)

see [65]. Thus for z2 ≥ 1 which corresponds to a4

n2 ≥ 1, the argument of the
Airy function is negative, ζ ≤ 0, and (7.23) applies. The phase associated
with the gravitational part is therefore

Θn = ν

(√
z2 − 1− arccos

(
1

z

))
+
π

4
.

For z2 < 1, the argument of the Airy function is positive, ζ > 0, and
the first of the above equations, (7.22), applies. But this yields no phase.
The Airy function decays exponentially. This is perfectly consistent as the
region z2 < 1 corresponds to a4

n2 < 1 — which is just the classically forbidden
region.

In the classically allowed region, however, the total phase is given by

Sn ≡ Θn ±
n

~
φ . (7.24)

The extremum of this phase should yield the classical trajectory. The re-
quirement ∂Sn/∂n = 0 at n = n̄ leads to

φ(a) = ±1

2
arccos

κn̄√
6a2

.

Comparing this to the classical trajectory, (7.1), it is clear that n̄ has to be
identified with Pφ.
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One can also easily check that Sn is a solution of the Hamilton–Jacobi
equation arising from (6.5) through the substitutions pa → ∂Sn/∂a and
pφ → ∂Sn/∂φ.

In the case of the conventional scalar field, one gets a change of sign for
the n2-term in (7.18). The solutions for Cn(a) are then the Bessel functions

Jiν(
3a2

~κ ) and J−iν(3a2

~κ ). Since there are no classically forbidden regions,
both solutions seem to be allowed. The classical solution (7.2) follows in the
formal limit ‘~→ 0’ from the principle of constructive interference.

Since (6.11) is hyperbolic for ` = 1, one is free to impose boundary
conditions at constant a, that is, one can either impose one packet or two
packets there, depending on whether one wants one branch of the classical
solution to be represented or both.

In the phantom case discussed above, the Wheeler–DeWitt equation is
elliptic. One imposes there only the boundary condition that ψ goes to zero
at a → 0 and that it is at most oscillating at the other boundaries. This
fixes the solution to be Jν(

3a2

~κ ) or a superposition thereof. Explicitly, one
would consider the following superposition for the construction of a wave
packet,

ψ(a, φ) =

∫ ∞

0
dn A(n)e−i n

~
φJ 3n

~κ

(
3a2

~κ

)
, (7.25)

where A(n) is a function of n that is peaked around a particular value n̄,
e.g. a Gaussian. One would not expect the packet to exhibit dispersion
near the minimum of the classical trajectory, since the phase of the Bessel
function does not vary rapidly with respect to n. We shall, however, expect
the occurrence of dispersion at large values of a.

7.4.2 Quantum cosmological model with phantom dark en-

ergy

For non-zero, exponential potential as in Section 7.3.2, the Wheeler–DeWitt
equation can actually be solved exactly. This is obtained through a trans-
formation to new variables. We start from (6.12) with Λ = 0 and k = 0,

~2

2

[
κ2

6

∂2

∂α2
− `∂

2

∂φ2

]
ψ(α, φ) + a6

refV0e
6α−γκφψ(α, φ) = 0 .

Exact solution to the Wheeler–DeWitt equation The new variables
are chosen such that the potential in front of ψ cancels. This is done in two
steps. First, we transform to light-cone like coordinates
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z1 =

√
6

κ
α+
√
`φ , z2 =

√
6

κ
α−
√
`φ .

For ` = 1, these are just the characteristics of the Wheeler–DeWitt equation.
The equation now takes the form

~2 ∂2ψ

∂z1∂z2
+ f (z1, z2)ψ = 0 ,

from which a transformation to new variables can be made such that f (z1, z2)
is cancelled. This corresponds to a transformation to variables

u`(α, φ) =
κ

3

√
V0

3
a3
ref

e3α− γ
2

κφ

1− `
(

γ√
6

)2

(
cosh(X) +

1√
`

γ√
6

sinh(X)

)
,

v`(α, φ) =
κ

3

√
V0

3
a3
ref

e3α− γ
2

κφ

1− `
(

γ√
6

)2

(
1√
`

sinh(X) + `
γ√
6

cosh(X)

)
,

where X =
√
`(
√

3
2κφ− `

γ
√

6
2 α). For both, the phantom and the ordinary

field, u` and v` are real. Note that whereas v1, u−1 and v−1 cover the entire
real line, u1 > 0 is restricted to the positive real axis due to the requirement
γ <
√

6.
The Wheeler–DeWitt equation in these variables takes the simple form

~2

(
∂2ψ

∂u2
`

− `∂
2ψ

∂v2
`

)
+ ψ = 0 .

Making a WKB-ansatz, ψ(u`, v`) = Ce±
i
~
S , one obtains at lowest order the

Hamilton–Jacobi equation

(
∂S0

∂u`

)2

− `
(
∂S0

∂v`

)2

= 1 . (7.26)

This is solved via a separation ansatz by S0n = nu` −
√
`(n2 − 1)v`. Of

course, the Hamilton–Jacobi equation is also solved by actions carrying dif-
ferent signs in front of u` and v`. These are obtained from the one chosen
above by rotations in the (u`, v`)-plane. For ` = −1, all solutions can be
mapped onto each other in this way. This is an obvious consequence of
the rotational symmetry of equation (7.26) for ` = −1. As u1 > 0 for the
conventional scalar field, here only two solutions can be mapped onto each
other. So that for ` = 1, we have two solutions given by

S
(1)
0n = nu1 −

√
(n2 − 1)v1 , S

(2)
0n = −nu1 −

√
(n2 − 1)v1 .

Plugging this lowest-order ansatz into the Wheeler–DeWitt equation, one
finds that the equation is already satisfied exactly.
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Recovery of classical trajectories From the classical action S
(1)
0n , the

equations of motion are obtained via
∂S

(1)
0n

∂n |n=n̄ = 0. This yields

φ(α) = `
γ

κ
α+

√
2

3

1

κ
arctanh

(
c
(1)
n̄,`

)
,

where

c
(1)
n̄,` =

`γn̄−
√

6`(n̄2 − 1)

γ
√
`(n̄2 − 1)− n̄

√
6
.

The same holds, of course, also for S
(2)
0n where c

(1)
n̄,` is replaced by

c
(2)
n̄,` =

γn̄+
√

6(n̄2 − 1)

γ
√

(n̄2 − 1) + n̄
√

6
.

For the choice

n̄2 = 1/Epot =

(
1− `γ2

6

)−1

,

c
(1)
n̄,` = 0, c

(2)
n̄,` = 0 and one obtains the classical trajectory

φ(α) = `
γ

κ
α ,

cf. (7.6).

Construction of wave packets For the phantom model, we get the fol-
lowing exact wave-packet solution to the Wheeler–DeWitt equation,

ψ(u−1, v−1) =

∫
dnA(n)

(
C1e

i
~
S

(1)
0n + C2e

− i
~
S

(1)
0n

)
.

For the scalar field, on the other hand, four terms contribute,

ψ(u−1, v−1) =

∫
dnA(n)

(
C1e

i
~
S

(1)
0n + C2e

− i
~
S

(1)
0n + C3e

i
~
S

(2)
0n + C4e

− i
~
S

(2)
0n

)
.

(7.27)
By construction, the classical trajectories can be recovered from these equa-
tions through the principle of constructive interference. We choose for the
amplitude a Gaussian with width σ centred around n̄,

A(n) =
e−

(n−n̄)2

2σ2~2

(
√
πσ~)1/2

.
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Let us start with the calculation for the wave packet for the phantom model.
Taking C1 = C2 for definiteness, one obtains wave packets of the form

ψ(u−1, v−1) ≈ C1π
1/4

√
2σ~

1− iσ2~S′′0
exp

(
iS0

~
− S′20

2(σ−2 − i~S′′0 )

)
+ c.c ,

(7.28)

where a Taylor expansion of S
(1)
0n has been carried out around n̄ and primes

denote derivatives with respect to n. Terms of order (n−n̄)3 in the exponent
have been neglected. This can be done if the Gaussian is strongly peaked
around n̄, that is, if σ is sufficiently small. For simplicity, in this expression

S0 = S
(1)
0n (n̄). Since S

′(1)
0n (n̄) = 0 defines the classical trajectory, the packet

is peaked around it.

For the conventional scalar field, choose C1 = C2 and C3 = C4. However,
we leave the relation between C1 and C3 open for the time being. Then one

obtains two packets of the form (7.28), one of them with S0 = S
(1)
0n (n̄) and

the second one with S0 = S
(2)
0n (n̄).

The wave packet for the phantom-field model is depicted in Appendix F,
Figure F.4. It can be clearly seen that the wave packet follows the classical
trajectory

u−1 = − n̄√
1− n̄2

v−1 . (7.29)

The wave packet for the scalar field model is depicted in Appendix F, Fig-
ure F.5. In this plot, the entire (u1, v1)-lane is shown — but the (α, φ)-plane
just corresponds to one quadrant of it. All quadrants are equivalent to each
other. The wave packet is seen to follow the classical trajectory.

For both, the conventional scalar field and the phantom field, the wave
packet spreads as v2

` → ∞. This can be seen from (7.28), since the term
proportional to [S ′′0n(n̄)]2 in the width of the Gaussian increases without
limit,

S′′0n(n̄) =
v`

(`(n̄2 − 1))
3
2

.

This is even more obvious from the absolute square of the wave packet
(neglecting for simplicity the complex conjugate part in (7.28)),

|ψ(u`, v`)|2 ≈ |C1|2
√
π

2σ~√
1 + σ4~2(S′′0 )2

exp

(
− S′20
σ−2 + σ2~2(S′′0 )2

)
.

The spreading occurs due to the non-trivial dispersion relation, that is, due
to the fact that S0n depends non-linearly on n. The semiclassical approxi-
mation is thus not valid throughout configuration space.
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Behaviour at the classical singularities For the phantom field we have
u−1 → −∞, v−1 → ∞ when we approach the big-rip singularity. As the
wave packet spreads upon approach of that region, this singularity lies in a
genuine quantum region. Note that for ` = −1, u`, v` are defined in terms
of sine and cosine. Since these are between −1 and 1 for all α and φ, we can
write

v2
` ∼ e6α−γκφ ≡ e6αV (φ) .

Therefore, the occurrence of the non-trivial potential is responsible for the
dispersion.

The big-rip singularity is thus smoothed out — the wave packets disperse.
We loose connection to classical spacetime. Classical spacetime dissolves.
Correspondingly, we can no longer use the approximate time parameter
given by WKB-time. Time and classical evolution come to an end, and one
is just left with a stationary quantum state. This is a quantum gravity effect
at large scales. Hitherto such a case has only been encountered near the
turning point of a classically recollapsing universe, as a consequence of the
demand that the wave function go to zero for large scale factor, [63].

Turning now to the conventional scalar field model, we recall that due
to the fact that u1 > 0, here two inequivalent actions exist. Apart from the

wave packet constructed from the function S
(1)
0n = nu1−

√
n2 − 1v1, one gets

a second wave packet constructed from S
(2)
0n = −nu1−

√
n2 − 1v1. Moreover,

the entire (α, φ)-plane is mapped into only one quarter of the (u1, v1)-plane.
One would therefore require the wave packet to vanish on the boundary of
the physical region, i.e. on (u1, 0) and (0, v1). The only solution satisfying
this requirement is naturally the trivial one. To get a non-trivial solution,
one has to lessen the boundary condition and require ψ = 0 either only on
u1 = 0 or only on v1 = 0. Note that u1 = 0 corresponds to α→ −∞ and v1

vanishes for α→ −∞ and for φ(α) = γ
κα+arctanh

(
− γ√

6

)
. But as the latter

corresponds to the classical trajectory for specific initial conditions, it is not
consistent to require ψ = 0 for v1 = 0 — this would make it impossible to
find wave packets that follow this specific classical path. Therefore we just
require vanishing on the u1 = 0 line. But this means that we require ψ → 0
as α → −∞. This is in fact just DeWitt’s boundary proposal (recall that
α→ −∞ as a→ 0). Note that v1 vanishes also for α→ −∞. So, in fact, we
require that ψ vanish at the origin of the (u1, v1)-plane. This necessitates
the choice C1 = −C3 in (7.27).

The implementation of this condition results in a wave packet which
vanishes at the big-bang singularity, ψ → 0 as α → −∞, and spreads for
large α. The big-bang singularity does therefore not exist in the quantum
theory. In Appendix F, Figure F.5 the wave packet is shown for different
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choices of C1 and C3. From Appendix F, Figure F.6 can be seen that the
choice of C1 and C3 satisfies the condition of vanishing ψ at the origin of
the (u1, v1)-plane.

The fact that the wave packet does not vanish at both, the u1 = 0 and
v1 = 0 line, is due to the non-normalizability of the wave packet in both α
and φ, which in turn has its origin in the fact that the classical trajectory
has no turning point.

In the phantom field model, no such restriction occurs due to the fact
that the entire (u−1, v−1)-plane represents the entire (α, φ)-plane. There is
no big-bang singularity in the phantom model and consequently, no condi-
tion ψ = 0 as a→ 0 arises.5 In this model, at least, it seems that DeWitt’s
boundary proposal arises naturally — through the choice of coordinates. It
only arises in the scalar-field model which on the classical level exhibits a
big bang. For the phantom-field model, on the other hand, the variables
are chosen in the same way as for the scalar-field case. However, here De-
Witt’s boundary proposal does not arise as a natural condition. This is in
accord with the fact that the phantom model does not start with a big-bang
singularity on the classical level.

7.4.3 Quantum cosmological model with phantom dark en-

ergy and cosmological constant

To obtain a classical trajectory with turning point in configuration space,
we introduced a negative cosmological constant and a potential of the form
V (φ) = V0 cosh2(φ/F ), cf. (7.14), in Section 7.3.3. The Wheeler–DeWitt
equation for this model is given by

~2

2

(
κ2

6

∂2

∂α2
− ` ∂

2

∂φ2

)
ψ(α, φ) + a6

refe
6α

(
V0 cosh2

(
φ

F

)
+

Λ

κ2

)
ψ(α, φ) = 0 .

(7.30)
To find a solution to this equation, I divided the φ-axis into two regions.
One region is the regime of large |φ|, i.e. V (φ) > |Λ|

κ2 . This is the region were
the phantom field dominates over Λ. In this region lie the classical big-rip
singularities. Moreover, I approximated the matter potential in this region
for large |φ|.

The second region is the region of small |φ|, V (φ) < |Λ|
κ2 . Here, the

attractive force of Λ dominates over the phantom repulsion. This is the re-
gion of the classical turning point. Furthermore, I approximated the matter
potential for small |φ|.

Due to this splitting, however, the impact of the classical turning point
on the wave function at the big-rip singularity can only be felt upon matching

5I want to emphasize again that we do not put in the condition of vanishing ψ by
hand, but that it is enforced upon us through the choice of coordinates in which the
Wheeler–DeWitt equation becomes exactly solvable.



7.4. QUANTUM PHANTOM COSMOLOGY 93

the solutions of the respective regions. Such a matching has not been carried
out.

Vicinity of the big-rip singularity

We thus assume that the Λ-term in (7.30) is negligible in comparison to
the phantom potential. The classical singularities lie in a region of large
|φ|. Thus in order to study the quantum behaviour there, we furthermore
approximate the potential for large |φ|,

Ṽ (φ) ≈ a6
refV0

4
e±

2φ
F ,

where in the following the upper sign refers to positive φ, and the lower
sign to negative φ. This makes the problem very similar to the one of
Section 7.4.2. The Wheeler–DeWitt equation is here simplified by a trans-
formation on the variables

u`(α, φ) =

√
V0

3

κ√
6
a3
ref

e3α± 1

F
φ

1− `
(

2
Fκ

)2

(
cosh(X)∓ 1√

`

√
2

3

1

Fκ
sinh(X)

)
,

v`(α, φ) =

√
V0

3

κ√
6
a3
ref

e3α± 1

F
φ

1− `
(

2
Fκ

)2

(
1√
`

sinh(X)∓ `
√

2

3

1

Fκ
cosh(X)

)
,

where X =
√
`
(√

3
2κφ± `

√
6

Fκα
)
. In these variables, we recover the form

~2

(
∂2ψ

∂u2
`

− `∂
2ψ

∂v2
`

)
+ ψ = 0 .

Again, one obtains a solution from a WKB-ansatz. The Hamilton–Jacobi
equation is again given by (7.26). This equivalence is, of course, only formal,

since u` and v` are defined differently. It is again solved by S
(1)
0n = nu` −√

` (n2 − 1)v` and additionally by S
(2)
0n = −nu` −

√
` (n2 − 1)v` for ` = 1.

The remarks of Section 7.4.2 concerning choice of solution apply here as
well.

The equations of motion obtained for ∂S0n

∂n |n=n̄ = 0 are

φ(α) = ∓` 2

κ2

1

F
α+ arctanh (cn̄,`) ,

with some constant cn̄,` depending on n̄ and `. Introducing D again, (7.14),
we obtain

φ(α) = ∓2
√

3

κ2

√
`Dα+ arctanh (cn̄,`) .

This solution coincides approximately with the classical solutions (7.13)
which can be seen from the following calculations.



94 CHAPTER 7. QUANTUM PHANTOM COSMOLOGY

If one approximates (7.13) for ` = −1 for large a, one gets (± label the
different branches of the classical solution)

φ±(α) = ±2
√

3

κ2

√
`Dα± F ln (2A) ,

where α ≥ 0. Therefore, the limit of large positive φ is obtained on the φ+–
branch, while the limit for large negative φ is reached on the φ−–branch.

On the other hand, an approximation of (7.13) for small a in the case
` = 1 yields

φ±(α) = ±2
√

3

κ2

√
`Dα∓F ln (2A) ,

where α ≤ 0. Due to this, the limit of large positive φ is obtained on the
φ−–branch, and for large negative φ on the φ+–branch. Thus the solution
to the approximated Hamilton–Jacobi equation (7.26) coincides with the
approximation of equation (7.13). Of course, a special choice for n̄ has to
be made to fix the onset.6

With the help of the classical action S0n, the approximate Wheeler–
DeWitt equation can be solved. Again, the WKB-ansatz satisfies the equa-
tion exactly. The wave packet is of the same form as in Section 7.4.2, with
a different definition of u` and v` and another choice of the centre of the
Gaussian, n̄. As in the case of vanishing cosmological constant, the wave
packet spreads for v2

` → ∞. The big-rip singularity in these variables oc-
curs at v2

−1 → ∞, u−1 → ∞. Thus, again, the singularity is hidden in a
quantum regime and the semiclassical approximation is not valid throughout
configuration space.

Due to the restriction D < 3 for the ` = 1 model, the same remarks
concerning the range of the coordinates as in Section 7.4.2 apply here. So

6The fact that for ` = −1 large φ correspond to large a, and for ` = 1 large φ correspond
to small a is due to ‘phantom-scalar field duality’. This denotes the following property
of the Wheeler–DeWitt equation for k = 0. The Wheeler–DeWitt equation of a phantom
field can be transformed in the Wheeler–DeWitt equation for an ordinary scalar field
through

a→
1

ā
, φ→ −iφ̄ .

Under this transformation, the Wheeler–DeWitt equation with phantom field,

„

~2

2

κ2

6
a
∂

∂a
a
∂

∂a
− `

~2

2

∂2

∂φ2
+ a6

„

V (φ) +
Λ

κ2

««

ψ(a, φ) = 0 ,

takes the form of a Wheeler–DeWitt equation with ordinary scalar field but altered and
complex potential

„

~2

2

κ2

6
ā
∂

∂ā
ā
∂

∂ā
+ `

~2

2

∂2

∂φ̄2
+

1

ā6

„

V
`

iφ̄
´

+
Λ

κ2

««

ψ(ā, φ̄) = 0 .

The transformation for φ is thus just a Wick rotation.
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at the big bang, ψ → 0. This condition is enforced through the choice of
coordinates. Again, this arises only at the big bang and only in the model
that on the classical level actually exhibits a big-bang singularity.

Vicinity of the classical turning point

We assume that V (φ)� |Λ|
κ2 . But this implies that Epot = κ2

3

(
V (φ)− |Λ|

κ2

)
<

0. For the phantom case, this is the classically forbidden region. This will
be of relevance in the choice of solutions from the general one.

In the vicinity of the classical turning point, φ → 0, i.e. V (φ) → 4V0.
The Wheeler–DeWitt equation in this realm is the given by

~2

2

(
κ2

6

∂2

∂α2
− `∂

2

∂φ2

)
ψ(α, φ) + a6

refe
6α

(
4V0 +

Λ

κ2

)
ψ(α, φ) = 0 .

Using the short-hand B = aref |V0 + Λ
κ2 |, the equation becomes

~2

2

(
κ2

6

∂2

∂α2
− ` ∂

2

∂φ2

)
ψ(α, φ)−Be6αψ(α, φ) = 0 ,

and thus very similar as (7.15). It is consequently solved by the same ansatz

ψn(α, φ) = Cn(α)ϕn(φ) .

For convenience, we define the separation constant somewhat differently
from (7.17). Then we arrive at

ϕn(φ) = e
− n√

`~
φ
.

We choose n such that we get an oscillating solution for the ordinary scalar
field, ϕn(φ) = e−i n

~
φ. For the phantom field, however, we choose the one

that depends exponentially on φ, namely ϕn(φ) = e±
n
~
φ, where ± are chosen

such that ϕn increases exponentially with increasing |φ|. In order to obtain
this, we have to choose a purely imaginary n in both cases. We replace n
by in. The gravitational part then has to satisfy

C̈n −
12B

~2κ2

(
e6α − ñ2

)
Cn = 0 ,

where ñ2 = n2

2B . The general solution to this equation is then, as in Sec-
tion 7.4.1, given in terms of Bessel functions

ψ(α, φ) = c1Jiν

(
i

2

κ~

√
B

3
e3α

)
+ c2Yiν

(
i

2

κ~

√
B

3
e3α

)
,

where ν =
√

2
3
n
~κ . For the phantom field, the classical turning point lies at

a minimum of the scale factor, whereas it occurs at maximum scale factor
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for the ordinary scalar field. This knowledge should be used to exclude one
of the two Bessel functions. To this end, we need the asymptotics of Bessel
functions for large and small imaginary argument and imaginary index.

Recovery of the classical trajectories is done in principle in full analogy
to Section 7.4.1. But here, we do not expect to recover the exact trajectory:
we just used an approximation of the correct Wheeler–DeWitt equation. Of
course, for the phantom field, no classical trajectory exists in this realm.

To obtain a full picture, we would have to match the two solutions, the one
obtained in the vicinity of the respective singularities and the one that holds
in the vicinity of the classical turning point, along the V (φ) = |Λ|

κ2 –line. Such
a matching has not been carried out due to the complicated dependence of
u` and v` on α and φ. In my opinion it is also questionable whether such a
matching could be carried out. More than just solving the Wheeler–DeWitt
equation in two regions, I further approximated the potential in each region.

7.5 Conclusions

In the preceding chapter, I showed that standard quantum cosmology can
be applied to scenarios with phantom matter. The main motivation for
the quantization of these phantom cosmologies were the novel features with
regard to the structure of the Wheeler–DeWitt equation (elliptic or ultra-
hyperbolic instead of hyperbolic) as well as the presence of a new type of
singularity. This big-rip singularity occurs at macroscopic scale factor and
thus provides, in fact, the major question behind this project: do quantum
effects occur in the macroscopic universe?

For three models, I discussed classical trajectories in configuration space.
The first model was just a toy model without true phantom energy. In the
second model, however, phantom dark energy was mimicked by a phantom
field with exponential potential. The last model was chosen such that the
classical trajectory has a turning point in configuration space. Moreover, it
contained singularities at both ends of its evolution.

For the first two models, an exact solution to the Wheeler–DeWitt equa-
tion was given. In the third case, it was necessary to approximate the field
potential in the vicinity of the singularity. Carrying out approximations in a
differential equation is a difficult task, because one never knows whether the
neglected terms really remain small after a solution was found. I showed,
however, that in all three cases the classical trajectory can be recovered from
the quantum solution through the principle of constructive interference. For
the last model, this was only possible approximately.

Using these solutions, I constructed wave packets following the classical
trajectory in configuration space. In a last step, I discussed the influence of
quantum effects at the singularity.
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In the approach to the big-rip singularity, wave packets disperse. This
signals the break-down of the semi-classical approximation and thus of space-
time. In this sense, the big-rip singularity is resolved on the quantum level.
It would however be interesting to study how an inside observer would per-
ceive the approach to this singularity. For this it would be necessary to find
out at which time-scale quantum effects set in.

For each phantom model, I also discussed the corresponding one contain-
ing an ordinary scalar field. Instead of a big-rip singularity, these exhibit
the well-known big bang at a = 0. In accord with DeWitt’s proposal, the
structure of the equation imposes conditions which then imply that the wave
function vanish at the big bang. In this way, this singularity is also removed
from the theory. Without the boundary condition the wave packet would
just have approached the region α → −∞ without spreading; this lack of
dispersion is a result of the fact that the Wheeler–DeWitt equation takes
the form of a free wave equation in this limit.

Note that there are two different mechanisms resolving the big-rip and
the big-bang singularity. Whereas the first is hidden in a genuine quantum
regime, the latter is removed through a vanishing wave function.

References: This work was published in [66]. The model presented in
Section 7.3.3 was proposed by Mariusz P. Dabrowski.
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Chapter 8

Quantum Cosmology with

big-brake singularity

A second singularity that occurs at large scale factor is the so-called
big-brake singularity. In contrast to the big rip, it arises at finite
value of the scale factor. The big-brake singularity is a generic fea-
ture of cosmological models with anti-Chaplygin gas. In the present
chapter, we will carry out a classical and a quantum cosmological
analysis of such a big-brake singularity.

The project presented in this chapter was a direct follow-up of the project
presented in the previous chapter. The motivation behind it is similar:
the study of models with singularities in the macroscopic universe in the
framework of quantum cosmology. After having studied one such singularity,
why should one be interested in a second one?

The major reason for doing so is that not all singularities are alike. The
singularity that is the subject of this chapter, is, for reasons that will become
clear later, called big-brake singularity. It exhibits features very differently
from the big rip. First of all, it can be induced by an ordinary scalar field.
Furthermore, recall that at the big-rip singularity, pressure, energy density
and scale factor diverge after finite time. The big-brake singularity now
occurs at finite scale factor. The singularity in this model thus no longer
lies on the boundary of configuration space, as do the big rip (a→∞) and
the big bang (a = 0). No boundary conditions can be imposed in the region
of the big brake. Moreover, as it is a singularity that lies somewhere in
configuration space, one can study evolution through the singularity. The
situation is then analogous to the big-bang singularity in loop quantum
cosmology. There, due to the existence of negative scale factors, the big
bang lies in the middle of configuration space.

The big brake belongs to a wider class of cosmological singularities called
soft, quiescent, or sudden. These singularities occur at finite value of the

99



100CHAPTER 8. QUANTUM COSMOLOGY OF BIG-BRAKE MODEL

scale factor and its time derivative and hence of the Hubble parameter.
But the first or higher derivatives of the Hubble parameter are divergent.
This implies that some curvature invariants diverge. At the big brake, for
example, the first derivative of the Hubble parameter diverges, Ḣ → −∞,
while H → 0. Due to the fact that (3)R ∼ Ḣ + 2H2, we see that the
curvature of three-space has to diverge at this singularity. More precisely,
what happens is the following. The acceleration becomes more and more
negative, ä→ −∞, thus causing the universe to slow down and finally come
to a halt, ȧ → 0. The universe then ends its evolution at a finite radius
a = a?. It is this behaviour that gave the singularity its name.

The big-brake was first considered in [67] and later discussed in detail
in [68]. It can arise in tachyonic cosmological models [69] with a particular
potential. But the big brake can also occur in a much simpler model. A
universe filled with a perfect fluid obeying the equation of state p = A/ρ,
where A is a positive constant, ends its evolution with a big-brake singularity.
This is, again, a rather odd equation of state. It was first considered in [70] in
the context of wiggly strings.1 But it can also be viewed as a generalization
of the so-called Chaplygin equation of state. The corresponding Chaplygin
gas obeys the equation p = −A/ρ. It was introduced into cosmology to unify
the dark sectors of the universe, [71]. How this can be achieved can be seen
immediately from the energy conservation equation, (6.10). The Chaplygin
gas behaves like dust at early times and like a cosmological constant at late
times.

Because of the reversed sign in the equation of state, we call the fluid
with p = +A/ρ used here anti-Chaplygin gas. Of course, it is again not
the purpose of the model to fit current universe observations. The idea is
merely to produce a sufficiently simple but nonetheless interesting model for
quantum cosmology.

8.1 Classical cosmology with big-brake singularity

The model is set up in a flat Friedmann–Robertson–Walker universe. This
is filled with an anti-Chaplygin gas. The first task is now to derive the cor-
responding scalar field potential that might produce such an anti-Chaplygin
equation of state. To this end, we first of all calculate the evolution of the
energy density with scale factor. This follows in the usual way from (6.10)
and the equation of state,

ρ(a) =

√
B

a6
− A , (8.1)

where B > 0 is some integration constant of dimension mass squared. The
constant A has dimension of mass squared over length to the sixth power.

1These are cosmic strings with small-scale wiggles imposed on their dynamics.
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We have chosen the solution with ρ ≥ 0. Note that ρ is well defined only for
a < a? ≡ (B/A)1/6, cf. Figure 8.2. As a? is approached, the density goes to
zero.

Using the result (8.1), one obtains from (6.6)

∫ a?

a

dã
(
B
ã2 − Aã4

) 1
4

=
κ√
3

(t0 − t) , (8.2)

where a(t0) = a? is the big-brake singularity and a(0) = 0 the big bang.
In order to calculate this integral, we substitute z = (B/a6 − A)1/4, with
0 ≤ z ≤ ∞. Then (8.2) becomes

∫ z

0
dz̃

z̃2

z̃4 +A
=
κ
√

3

2
(t0 − t) . (8.3)

The integral on the left-hand side can be found in [72]. For (8.3) one then
gets2

1

4A1/4
√

2

(
ln
z2 −A1/4z

√
2 + A1/2

z2 +A1/4z
√

2 + A1/2

+2arctan
A1/4z

√
2

A1/2 − z2
+ πθ(z2 − A1/2)

)

=
κ√
3
(t0 − t) .

We have added the Heaviside θ-function in order to make the arctan-function
continuous at the point z2 = A1/2.

For the total time that elapses from big bang to big brake one then finds

t0 =
2

3

√
C

∫ ∞

0
dz

z2

z4 +A
=

π√
6κA1/4

. (8.4)

A simple approximate solution can be found in the vicinity of a?. To this
end, we write a = a? −∆a, which simplifies the above integral to

∫ ∆a

0
d∆a

1

a?(6∆a)
1
4

=
κ√
3

(t− t0) ,

yielding

∆a(t) = [c1(t0 − t)]
4
3 .

So we find for the scale factor and its derivatives

2The derivation of this expression is due to Alexander Y. Kamenshchik.
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Figure 8.1: These plots show the dependence of the derivatives of the scale
factor on the scale factor itself. It can be clearly seen how the velocity, see
left-hand side, diminishes due to an infinite deceleration, see right-hand side.

a(t0) = a?, ȧ(t0) = 0, ä(t0) = −∞ .

At t0, the evolution of the scale factor comes to a halt. Its ‘speed’ is zero
due to an infinite negative acceleration. It is this peculiar feature that gave
the singularity its name.

The first and second time derivatives of the scale factor in terms of the
scale factor itself are given by simple expressions. To this end, note that
(8.2) can be differentiated with respect to a, thus connecting ȧ(t) with the
scale factor according to

da

dt
=

κ√
3
a

(
B

a6
− A

) 1
4

, (8.5)

cf. Figure 8.1. Obviously, as a → a?, ȧ → 0. Differentiating again with
respect to time, one finds

d2a

dt2
=
κ2

3
a

(
B

a6
− A

) 1
2

[
1− B

4a6

(
B

a6
− A

)−1
]
, (8.6)

showing that ä(t)→ −∞ as a→ a?, cf. Figure 8.1.

What remains to be found, is an equation for φ. As we are interested in
the quantum model, the solution in configuration space, φ(a), suffices. This
is obtained from

φ̇2 = ρ+ p ,

using the equation of state and the Friedmann equation (6.6). The exact
solution is
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Figure 8.2: The evolution of the energy density ρ of the scalar field with
scale factor a is depicted on the left-hand side. The classical trajectory
in configuration space is shown on the right-hand side. This is the only
information about the classical trajectory that we can access on the quantum
level. Time t is absent in quantum cosmology.

φ∓(a) = ∓ 1√
3κ2

artanh

(√
1− Aa6

B

)
, (8.7)

cf. Figure 8.2. This is only consistent if the potential is chosen to be

V (φ) = V0


sinh

(√
3κ2|φ|

)
− 1

sinh
(√

3κ2|φ|
)


 . (8.8)

Given the trajectories φ(a) and a(t) — the latter in explicit form only in the
vicinity of the singularity — the classical model is thus fully described. Note
that V0 =

√
A/4. From (8.4) we find for the total lifetime of this model

universe

t0 ≈ 7× 102 1√
V0

[ g
cm3

] s .

This lifetime is much bigger than the current age of our Universe if

V0 � 2.6× 10−30 g

cm3
,

which is a reasonable result because the critical value of V0 just corresponds
to the scale of the observed dark-energy density.

8.2 Quantum cosmology of the big-brake model

We use the regularized Wheeler–DeWitt equation (6.12) with potential (8.8),
derived in the previous Chapter 6,
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~2

2

(
κ2

6

∂2

∂α2
− ∂2

∂φ2

)
ψ (α, φ)

+a6
refV0e

6α


sinh

(√
3κ2|φ|

)
− 1

sinh
(√

3κ2|φ|
)


ψ (α, φ) = 0 . (8.9)

As we are interested in the behaviour of (8.9) in the vicinity of the big-brake
singularity, where φ is small, we approximate the potential there. We find

~2

2

(
κ2

6

∂2

∂α2
− ∂2

∂φ2

)
ψ (α, φ)− Ṽ0

|φ|e
6αψ (α, φ) = 0 , (8.10)

where Ṽ0 = V0a
6
ref/
√

3κ2.

8.2.1 Born–Oppenheimer approximation to the Wheeler–

DeWitt equation

In order to solve this, already approximated, equation, I used another ap-
proximation: the Born–Oppenheimer approximation. This scheme is ex-
plained in detail in Appendix D, Section D.1. First, make the ansatz
ψ (α, φ) =

∑
n Cn(α)

ϕn(α, φ), where ϕn(α, φ) is a solution of

−
(

~2

2

∂2

∂φ2
+
Ṽ0

|φ|e
6α

)
ϕn(α, φ) = En(α)ϕn(α, φ) . (8.11)

This is the radial part of the time-independent Schrödinger equation for
a particle in a Coulomb potential with l = 0 and the wave function rϕn,
where |φ| takes the place of the radial coordinate r. Thus, the normalizable
solutions are given by

ϕn(xn) = Nnxne
−xn

2 L1
n−1(xn) , (8.12)

where xn = 2
√
−2En(α)

~2 |φ|, and L1
n−1(xn) denote the associated Laguerre

polynomials. Nn = n−
3
2 is the normalization factor and n ∈ N.

The choice of the normalizable solution to (8.11) is enforced through the
condition on the wave function imposed for large |φ|, cf. Section 8.3.4. From
it one can infer that the exact solution obtained from the Wheeler–DeWitt
equation with full potential has a discrete spectrum. Coincidence with the
behaviour at small |φ| is thus only achieved if the normalizable solution
(8.12) is selected, since the non-normalizable solutions have a continuous
spectrum.

Note that ϕn(xn)→ 0 for |φ| → 0, since L1
n−1(0) = n.
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To simplify notation, we introduce Z(α) ≡ ~2/Vα and Vα ≡ Ṽ0e
6α. Then,

xn = 2|φ|/Z(α)n. The functions ϕn(xn) are orthogonal such that3

∫
dφ ϕn(xn)ϕl(xl) = Z(α)δnl . (8.13)

The energy eigenvalues are

En(α) = − V 2
α

2~2n2
. (8.14)

Inserting this ansatz in (8.10), it is necessary to carry out a number of
approximations to arrive at a solvable equation for Cn. After a Born–
Oppenheimer approximation an expansion in κ is made. The details of
this approximation are given in Appendix D. The resulting equation for
Cn(α) becomes

C̈n(α)− 6Vα
2

~4n2κ2
Cn(α) = 0 , (8.15)

where dots denote derivatives with respect to α. Thus Cn is given by

Cn(α) = c1I0

(
1√
6

Vα
~2nκ

)
+ c2K0

(
1√
6

Vα
~2nκ

)
, (8.16)

where I0, K0 denote modified Bessel functions of first and second kind,
respectively. As a boundary condition, we require that the solution should
vanish in the classically forbidden region, a > a?. Therefore, c1 = 0 and
only the MacDonald function K0 remains as solution.

On the level of the Born–Oppenheimer approximation, the complete so-
lution is therefore given by

ψ (α, φ) =
∞∑

n=1

AnNnK0

(
1√
6

Vα
~2nκ

)(
2
Vα
n
|φ|
)
e
− Vα

n|φ|L1
n−1

(
2
Vα
n
|φ|
)
.

(8.17)

8.2.2 Derivation of classical equations of motion from the

principle of constructive interference

To derive a phase from this expression, we approximate (8.11) and (8.15)

further by a WKB-approximation. Making the ansatz ϕn(α, φ) = e
i
~
Sφ

n0(α,φ)

in (8.11), Cn(α) = e
i
~
Sα

n0(α) in (8.15), one obtains to zeroth order in ~ the
Hamilton–Jacobi equation for the φ- and α-part, respectively. Integration
yields for Sφn0(α, φ)

3The validity of this relation is clear from the property of the ϕn being eigenfunctions
of a Hermitian operator; its direct verification is discussed in [77].
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Sφn0(α, φ) = ~k

[
arcsin

(
1− Vα|φ|

~2n2

)
− π

2

]

−
√

2Vα|φ|
√

1− Vα|φ|
2~2n2

− π

4
, (8.18)

in which the Langer boundary condition at the α-dependent turning point
φturn (α) = 2~2n2/Vα has been employed. From (8.15), no phase results.
This coincides with the limit ~→ 0 in (8.16), as limx→∞ K0 (x) ≈

√
π
2xe

−x.

So Sφn0(α, φ) constitutes the entire phase.
The classical equations of motion should follow from the phase through

the principle of constructive interference,

∂Sφn0

∂n
|n=n̄ = ~

[
arcsin

(
1− Vα|φ|

~2n2

)
− π

2

]
+

√
2Vα|φ|
n

√
1− Vα|φ|

2~2n2

!
= 0 . (8.19)

Here, n̄ =
√

Ṽ0√
3κ2

a3
?

~
. This constant arises under the conditions that, first, n

and so also n̄ have to be dimensionless, and that, secondly, the only constants
of the model are V0 (or Ṽ0), a? (or A and B), ~ and κ.4 With this choice,
(8.19) simplifies to

∂Sφn0

∂n
|n=n̄ = ~


−arccos

(
1−

(
a

a?

)6

|φ|
)

+

(
a

a?

)3
√

2|φ| −
(
a

a?

)6

φ2


 .

For the classical trajectory, (8.7), this is

∂Sφn0

∂n
|n=n̄ = ~


−arccos


1− |φ|

cosh2
(√

3κ2|φ|
)




+

√
|φ|

cosh
(√

3κ2|φ|
)
√√√√2− |φ|

cosh2
(√

3κ2|φ|
)


 . (8.20)

But the classical equation of motion was derived using the full potential. The
quantum theory, on the other hand, uses an approximation to the original

potential which is valid up to order O
(
|φ| 32

)
for small φ. Applying the same

approximation to (8.20), one finds

4There is of course also the reference length aref , but this is no characteristic quantity
of the model.
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∂Sφn0

∂n
|n=n̄ = ~ O

(
|φ| 32

)
,

and so the classical solution (8.7) satisfies the condition for constructive
interference with the above choice for n̄ for small φ, which is consistent with
the approximation of the potential in (8.10).

8.2.3 Singularity avoidance

As explained in Chapter 4, two criteria are used here to account for singu-
larity avoidance: first, the vanishing of the wave function and second, the
dispersion of wave packets along the classical trajectory in the vicinity of the
singularity. I will therefore study both, the vanishing of the wave function
at the origin as well as wave packets along the classical trajectory. But I
will also comment on the implication of the use of expectation values in the
context of singularity avoidance.

8.2.4 Behaviour at the classical singularity

Wave packets constructed from the solutions of (8.10) are of the general
form

ψ(α, φ) =
∞∑

n=1

AnCn(α)ϕn(α, φ) .

We can choose initial conditions on a hypersurface α = α0. Here, it suffices
to fix the values ψ(α0, φ) and ∂ψ(α,φ)

∂α |α=α0. As for the chosen normalizable
solution (8.12), ϕn(α, φ) vanishes at φ = 0 for all n and α, the wave packet
is zero there. This is, of course, independent of the initial conditions. But
the classical singularity occurs at φ = 0. So out of these solutions, no wave
packet can be constructed which does not vanish at the classical singularity.
This suffices to count as singularity resolution according to the criteria I
admitted. Note that the big brake is thus resolved in a different way than
the big rip: the latter was hidden in a genuine quantum region, but the wave
function was non-zero there.

As already stated in Chapter 4, there are also other criteria which are
used to prove singularity avoidance. These make use of an internal-time
variable, which just means that one of the configuration space variables is
chosen as evolution parameter. This is done throughout configuration space
or only for a portion of it, depending on whether the respective variable
changes monotonously with classical time t. I do not support this point of
view, but I nonetheless want to show how it would work in this context, but
see Chapter 9 for more details on the internal-time idea.

Taking α as internal time variable, one can calculate the probability
distribution,
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|ψ|2(α0, φ) =
∑

l,n

AnAlCn(α0)Cl(α0)ϕl(α0, φ)ϕn(α0, φ) ,

for each ‘instant of time’ α0. It is obvious that |ψ|2(α0, 0) = 0 at φ = 0.
This is a consequence of the choice of (8.12). Assuming that the internal
time α can be treated in the same way as classical time t, one can then
calculate expectation values on surfaces of constant α. These are obtained
through an integration over φ with the measure provided through the matter
Hamiltonian, cf. (8.13). From this follows that

〈ψ(α, φ)|ψ(α, φ)〉 =
∑

n

A2
nC

2
n(α)Z(α) ∼

∑

n

A2
n

[
K0(e

6α)
]2

e6α
.

The larger α becomes, the smaller the norm of ψ. Note that the norm is
not conserved in internal time α.

Before calculating now the expectation value for |φ|, recall that the avoid-
ance of the singularity of the Coulomb potential in ordinary quantum me-
chanics is caused by a lowest bound on the energy due to quantization. This
again leads to a minimal radius for the ‘trajectory’ of the electron.

Analogously to the Coulomb potential in ordinary quantum mechanics,
the energy of the matter component in our model is also bounded from
below. The minimal energy, given by (8.14) for n = 1, corresponds to a
minimal ‘radius’, that is, to a minimal value for |φ|. This is given by

〈|φn|〉(α) = [Cn(α)]2
3

2
[Z(α)]2 n2

=

[
K0

(
1√
6

Vα
~2nκ

)]2 3~4

2V 2
α

n2 , (8.21)

for n = 1. The classical singularity lies at α = α?. In this case the minimal
energy is given by

E1(α?) = −V
2
α?

2~2
,

and the expectation value for |φ| is consequently given by 〈|φ1|〉(α?). The
boundedness of the energy here prevents the scalar field to evolve to the
singularity, |φ| = 0, in complete analogy to the Coulomb case.

Note that for α → ∞, the energy is no longer bounded. In this case
〈|φ1|〉 → 0, cf. (8.21). Of course, one should keep in mind that the expec-
tation value in quantum cosmology, as defined above, has no interpretation
in terms of measurement results as it has in conventional quantum theory.
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Construction of wave packets

Apart from the avoidance of the singularity, we want to study semi-classical
and quantum regimes of the model. To this end, we construct semi-classical
wave packets and study their behaviour. Especially, we are interested in the
regions of configuration space where these packets spread — if they spread
at all.

We want ψ(α0, φ) to be a Gaussian centred at φ0 with width
√

Z0
2 , where

Z0 ≡ Z(α0). The centre φ0 should be the value of the classical trajectory
at α0. Note that we have two classical solutions, φ+ and φ−, see (8.7).5 So
in fact, we have to construct two Gaussians, one centred at φ0, the other at
−φ0 and superpose both. Write therefore

ψ(α0, φ) = ψ−(α0, φ) + c1ψ+(α0, φ) ,

where ψ+ denotes the part of the wave packet being centred around φ0 and
ψ− the part centred around −φ0 at initial ‘time’ α0.

The calculation of the wave packet will employ only the WKB solution
of (8.15). With suitable initial conditions, it reads

Cn(α) =
e3α0

e3α
exp

[
−1

6

Ṽ0√
2~2n2

√
6

κ2

(
e6α − e6α0

)
]
. (8.22)

Introducing τ ≡ e6α (and denoting τ0 ≡ e6α0),

Cn(τ) =
(τ0
τ

) 1
2
exp

[
−1

6

Ṽ0√
2~2n2

√
6

κ2
(τ − τ0)

]
.

Start with the ψ+–part of the wave packet. We here find the requirement

ψ+(α0, φ) =

∞∑

n=1

A+
nϕn(α0, φ)

!
= e

− (φ−φ0)2

Z0 .

Decomposing the Gaussian into the ϕn(α0, φ), one obtains for the coefficients
the somewhat lengthy expression

A+
n = Nn

n exp
[
− φ2

0
Z0

+ 1
2Z0

(
1
2n − φ0

)2]×
∑n−1

m=0(−1)m(m+ 1) (n!)
(n−m−1)!(m+1)! ×(√

2
Z 0

1
n

)m
D−(m+2)

[√
2
Z 0

(
1
2n − φ0

)]
,

5The case with two Gaussians is the most general one. One may, of course, wish to
choose only one Gaussian in order to represent only one branch of the classical solutions
by a wave packet.
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where Dm(x) denote parabolic cylinder functions. Note that this expansion
in ϕn cannot be performed at φ = 0. Here, ϕn(α, φ = 0) = 0 for all n as
remarked above.

The amplitude of ψ− is obtained in a similar way, or by just substituting
−φ0 for φ0. The solution is

A−n = Nn

n exp
[
− φ2

0
Z0

+ 1
2Z0

(
1
2n + φ0

)2]×
∑n−1

m=0(−1)m(m+ 1) (n!)
(n−m−1)!(m+1)! ×(√

2
Z 0

1
n

)m
D−(m+2)

[√
2
Z 0

(
1
2n + φ0

)]
.

So the wave packet is given by

ψ(α, φ) =
∞∑

n=1

[
A+
n + c1A

−
n

]
Cn(α)ϕn(α, φ) . (8.23)

The total probability for the wave packet is calculated via

∫
dφ |ψ|2 = τ0~2

Ṽ0

1
τ2

∑∞
n=1 [A+

n + c1A
−
n ]

2 ×

exp
(
−1

3
Ṽ0√

2~2n2

√
6
κ2 (τ − τ0)

)
.

Probability is thus not conserved with respect to internal ‘time’ τ . Choose
the normalization of the wave packet such that at α0 it is normalized to
unity,

∫
dφ |ψ|2 = 1. Then,

ψ(α, φ) =
1

Cnorm

∞∑

n=1

[
A+
n + c1A

−
n

]
Cn(α)ϕn(α, φ) , (8.24)

where the normalization factor is given by

Cnorm ≡

√√√√ ~2

Ṽ0τ0

∞∑

n=1

[
A+
n + c1A

−
n

]2
.

A plot of the wave packet is shown in Figure F.3. Let me make some
technical remarks concerning the plot of the wave packet before discussing
the features of the packet itself. The wave packet is given by an infinite
series. In any numerical evaluation this series has to be truncated at some
point. As becomes obvious from Figure F.1, no new information is obtained
if more than 20 terms are taken into account. Therefore, the series evaluated
for the plot terminates at n = 20.

We recognize that the wave function is peaked around the two branches
of the classical trajectory in configuration space, but goes to zero if the
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region of the classical big-brake singularity, a → a?, is approached. In this
sense the classical singularity is avoided in the quantum theory. This is a
consequence of the choice of the normalizable solution (8.12), which vanishes
at φ = 0 — the region of the big-brake singularity. Moreover, it can be seen
directly in Figure F.3 or read off from Figure F.2 that the packet disperses
long before the classical singularity is approached.

8.3 Remarks on the big-bang singularity

8.3.1 Solution to the Wheeler–DeWitt equation

So far, only the big-brake singularity of the model was considered. But the
model possesses a second singularity. Namely, its evolution starts with a big
bang: as a→ 0, one has |φ| → ∞. Thus one can approximate the potential
by an exponential in the vicinity of this singularity — and such an equation
was already solved in Section 7.4.2. The calculation is analogous to the one
presented there. Namely, we start from the Wheeler–DeWitt equation with
approximated potential

~2

2

(
κ2

6

∂2

∂α2
− ∂2

∂φ2

)
ψ(α, φ) +

Ṽ0

2
e6α+

√
3κ|φ|ψ(α, φ) = 0 .

Introducing z1 =
√

6
κ α+ |φ|, z2 =

√
6
κ α− |φ|, one arrives at

~2 ∂2

∂z1∂z2
ψ(z1, z2) = f(z1, z2)ψ(z1, z2) .

Choosing again coordinates such that f(z1, z2) cancels, one arrives at

~2

(
∂2

∂u2
− ∂2

∂v2

)
ψ(u, v) + ψ(u, v) = 0 , (8.25)

where

u(α, φ) =
√

2V0
a3

ref

9
e3α±

√
3κ
2
|φ|
[
coshX ∓ 1√

2
sinhX

]
,

v(α, φ) =
√

2V0
a3

ref

9
e3α±

√
3κ
2
|φ|
[
sinhX ∓ 1√

2
coshX

]
,

and X =
√

3
2κ
(
φ±

√
3
κ α
)
. A solution to this equation can be found from

the WKB–ansatz ψ =
∫

dnA(n)e±
i
~
S0n . Inserting this ansatz into (8.25)

yields the Hamilton–Jacobi equation of which an exact solution is given

by S
(1)
0n = nu −

√
n2 − 1v. Of course, the Hamilton–Jacobi equation is

also solved by actions with different signs in front of u and v. These are
obtained from the one chosen above through rotations in the (u, v)-plane.
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As u > 0, only two solutions can be mapped onto each other and S
(2)
0n =

−nu−
√
n2 − 1v provides a second solution.

8.3.2 Recovery of classical trajectories

The classical trajectory in the vicinity of the big bang is recovered using the
principle of constructive interference ∂S0n

∂n |n=n̄ = 0. For n̄ =
√

2 one finds

φ(α) = ±
√

3
κ α. This is just the classical trajectory obtained from (8.7) in

the limit |φ| � 1 with initial condition B = A
4 and fixed A.

8.3.3 Construction of wave packets

We get the following exact wave-packet solution to the Wheeler–DeWitt
equation:

ψ(u, v) =

∫
dnA(n)

(
C1e

i
~
S

(1)
0n + C2e

− i
~
S

(1)
0n

)

+

∫
dnA(n)

(
C3e

i
~
S

(2)
0n + C4e

− i
~
S

(2)
0n

)
.

By construction, the classical trajectories can be recovered from this equa-
tion through the principle of constructive interference. Choosing as ampli-
tude a Gaussian with width σ centred around n̄,

A(n) =
e−

(n−n̄)2

2σ2~2

(
√
πσ~)1/2

,

and taking C1 = C2, C3 = C4 for definiteness, one obtains two contributions
of the form

ψ(u, v) ≈ Ciπ1/4

√
2σ~

1− iσ2~S′′0
exp

(
iS0

~
− S′20

2(σ−2 − i~S′′0 )

)
+ c.c. , (8.26)

where i = 1 for S0 = S
(1)
0n and i = 3 for S0 = S

(2)
0n and primes denote

derivatives with respect to n. All this is completely analogous to the scalar
field with exponential potential discussed in Section 7.4.2. As there, a Taylor
expansion of S0n has been carried out around n̄. Terms of the order (n− n̄)3

in the exponent have been neglected which is admissible if the Gaussian is

strongly peaked around n̄, that is, if σ is sufficiently small. Since S
′(i)
0n (n̄) = 0

gives the classical trajectory, the packet is peaked around it.



8.4. RELATION TO LOOP QUANTUM COSMOLOGY 113

8.3.4 Singularity avoidance

Here, we can argue as in Section 7.4.2. Due to the fact that u > 0, two
inequivalent actions exist. Apart from the wave packet constructed from

S
(1)
0n = nu −

√
n2 − 1 v, one gets a second wave packet constructed from

S
(2)
0n = −nu −

√
n2 − 1 v. Moreover, the entire (α, φ) plane is mapped only

into a quarter of the (u, v) plane. One would therefore require the wave
packet to vanish on the boundary of the physical region. To get a solution
which does not vanish on the classical trajectory, we require ψ = 0 at u = 0.
But u vanishes for α → −∞, i.e. at the big bang. We thus simply require
that the wave packet vanishes at the big bang. This requirement is forced
upon us through the coordinates in which the Wheeler–DeWitt equation is
exactly solvable. As v = 0 for α→ −∞ as well, the requirement that ψ → 0
as α → −∞ amounts to requiring that the wave function vanishes at the
origin of the (u, v) plane. The implementation of this condition results in a
wave packet which vanishes at the big-bang singularity, ψ → 0 as α→ −∞,
and spreads for large α. Thus, again, we find that the big-bang singularity
is resolved through a vanishing wave function.

But if we take α → −∞ along the classical trajectory, we move into a
region were |φ| → ∞. Our wave packet follows the classical trajectory and
thus we find that ψ → 0 for large |φ|.

The condition implied for large |φ| in the vicinity of the big bang thus
implies and justifies the normalization condition imposed in the derivation
of the solution to the Wheeler–DeWitt equation in the vicinity of the big
brake, cf. (8.11). We thus impose basically two conditions on the wave func-
tion. The first one is that ψ → 0 when |φ| → ∞, resulting in a normalization
condition for the approximate solution in the vicinity of the big-brake singu-
larity and the elimination of the big-bang singularity. The second condition
is to require ψ → 0 as α→∞ to ensure the existence of wave packets that
follow the classical trajectory.

Note that because we require ψ → 0 as α → ∞ and as α → −∞, the
wave function is fixed at both ends. Upon matching the solution for large
|φ| to the one obtained for small |φ|, quantization conditions should arise,
cf. Figure 8.3.

8.4 Relation to Loop Quantum Cosmology

Loop quantum gravity arose as an alternative proposal to quantum general
relativity, the main difference being the choice of fundamental variables, en-
tailing a representation of operators inequivalent to the Schrödinger repre-
sentation. The symmetry reduced ‘minisuperspace’ model of loop quantum
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Figure 8.3: The different regions of the wave packets for one of the branches
of the classical trajectory are shown. For small and large scale factor, the
universe undergoes a quantum phase.

gravity goes under the name of loop quantum cosmology.6 As loop quantum
gravity is also a canonical quantization scheme, the governing equation in
the cosmological context is the Hamiltonian constraint. On the quantum
level, the universe is likewise described via a wave function on configuration
space which has to be the solution of the quantized Hamiltonian constraint.

The difference between both approaches lies in the way this equation is
quantized. In loop quantum cosmology, one uses a so-called polymer rep-
resentation instead of the conventional Schrödinger representation. This is
done in analogy to the full theory. If this procedure is carried out in a naive
way, it leads to a difference equation in steps of a smallest length µ0. In ge-
ometrodynamics, one arrives at a differential equation, the Wheeler–DeWitt
equation. In the continuum limit, µ0 → 0, suitable conditions on the higher
derivatives of the wave function implied, the loop quantum cosmological
difference equation fades into the Wheeler–DeWitt equation [73].

The question here is under which conditions the continuum limit is jus-
tified. It is justified if the discreteness of spacetime is negligible compared
to the length scales occurring in the model. For large scale factor, a � µ0,
one can argue that the limit µ0 → 0 is a sensible approximation. Thus
singularity avoidance for large-scale singularities as, for example, the big rip

6I will use the name loop quantum cosmology here exclusively for the loop quantized
Friedmann–Robertson–Walker models, simply for the sake of brevity.
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or big brake, in loop quantum cosmology reduces to singularity avoidance
induced by the Wheeler–DeWitt equation.

At the time when this research was carried out, several versions of
the Hamiltonian constraint in loop quantum cosmology were published.
Ashtekar et al. [75, 76] extended the ansatz using µ0, replacing it by µ̄,
which is a function of the densitized triad operator p̂. The equation is
then a difference equation in eigenvalues v of the volume operator, and the
Wheeler–DeWitt equation follows in the continuum limit for large volume.
The factor ordering of the Wheeler–DeWitt equation then does depend on
the factor ordering chosen for the difference equation. In [73] and [75, 76]
different factor orderings have been chosen.

The two difference equations, in µ0 or µ̄, can be understood in a broader
context as implementing different actions of the full Hamiltonian constraint.
They are thus just two special cases of a wider class of constraints that might
arise, the actual form of which should in principle be determined by the full
Hamiltonian constraint, [74]. Whereas in the first case, the coordinate edge
length of a holonomy is fixed and does not depend on the scale factor, in the
second case it does. This can be interpreted as an implementation of the
fact that in the full theory, the Hamiltonian constraint, whatever its exact
form may be, creates vertices — in addition to changing the edge labels of
the existing edges. As new vertices are created, the edge lengths decrease.
The altered dynamics using µ̄ then corresponds to a lattice in which the
number of vertices grows linearly with volume.

In the following, both factor orderings, [73] and [75, 76], will be consid-
ered.

8.4.1 Non-covariant factor ordering

The Wheeler–DeWitt equation emerging in the continuum limit of the dif-
ference equation employed in [73] is

~2

2

[
κ2

6
a2∂

2ψ

∂a2
− ∂2ψ

∂φ2

]
− a6 Ṽ0

|φ|ψ = 0 ,

which differs from (8.10) by the choice of factor ordering. Making the ansatz
ψ(a, φ) =

∑
nA(n)Cn(a)ϕn(a, φ) and requiring ϕn(a, φ) to be a solution of

(
~2

2

∂2

∂φ2
+ a6 Ṽ0

|φ|

)
ϕn(a, φ) = −En(a)ϕn(a, φ) ,

one finds as before the solution

ϕn(xn) = Nnxne
−xn

2 L1
n−1(xn) ,

where xn = 2
√
−2En(a)

~2 |φ| and En(a) = − 1
2~2n2 Ṽ0

2
a12, Nn = n−

3
2 . Then

the equation for Cn(a) is given by
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d2Cn(a)

da2
− 6Ṽ0

2

~4n2κ2
a10Cn(a) = 0 ,

which is solved by

Cn(a) = c1
√
a J 1

12


1

6

√

− 6Ṽ0
2

~4n2κ2
a6


+ c2

√
a Y 1

12


1

6

√

− 6Ṽ0
2

~4n2κ2
a6


 .

The complete solution has an analogous form to the quantum geometrody-
namical formulation in Section 8.2.1. The decisive result is that, because
only the factor ordering of the gravitational part has been changed compared
to (8.10), the solution for ϕn(φ, a) handles the singularity avoidance in this
framework as well.

8.4.2 Covariant factor ordering

The factor ordering in the more recent papers [75, 76] yields the Laplace–
Beltrami factor ordering for the Wheeler–DeWitt equation in the continuum
limit. As this is the factor ordering we employed throughout this chapter
anyway, the results of the previous sections carry over to the loop quantum
cosmology analysis without alteration.

Note, though, that a consistent loop quantization requires a polymer
representation of the matter fields as well. This would require a Bohr com-

pactification of φ which may bound the approximate potential V (φ) = Ṽ0
|φ|

from above. As the vanishing of the wave function at φ = 0 is related to
the divergence of the potential at this point, it is not clear whether the
previous results would survive in the polymer representation. Namely, it is
imaginable that the regularity condition and thus the ensuing result that
ϕn(φ = 0, α) = 0 becomes redundant.

Qualitatively, the ‘loop quantization’ of φ would result in a difference
equation in a and φ. In the vicinity of the big bang, this equation can be
approximated by a differential equation in φ and a difference equation in a.
In the vicinity of the big brake, however, the variable a can be considered
continuous and obeys a differential equation. But now φ is still described
by a difference equation.

8.5 Conclusion

I studied a Friedmann–Robertson–Walker model with a scalar field obeying
an anti-Chaplygin equation of state. This model classically ends with a
big-brake singularity. The singularity stands out because of its negatively
diverging second derivative of the scale factor. This works as an infinitely
strong ‘brake’, forcing the derivative of the scale factor to go to zero.
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Upon quantizing this model in the quantum geometrodynamical frame-
work, we are led to the Wheeler–DeWitt equation. It can be solved in the
vicinity of the big-brake singularity. A separation ansatz yields a Schrödinger-
type equation for the hydrogen atom for φ which here plays the role of the
radius in the quantum mechanical equation. Normalizable solutions to this
equation vanish at φ = 0, which corresponds to the singularity. Thus,
independent of the choice of initial conditions, whatever wave packet is con-
structed out of these solutions, it is condemned to vanish at the singularity.
Therefore we can conclude that in this model as well, the large scale, soft,
future singularity is removed from the quantum theory.

This singularity resolution is different from the one encountered for the
big-rip singularity. It is twofold. First of all, the wave function itself van-
ishes at the big brake. This feature depends crucially on the fact that the
normalizable solutions for the matter-dependent part of the wave function
have been chosen. This choice is justified through the study of the same
model in the vicinity of its second singularity, the big bang. The fact that
a solution could be found exactly in this region is due to the special form of
the potential. But more than that, the wave packet spreads as the big-brake
singularity is approached.

The choice of variables enforces a boundary condition which causes the
wave function to vanish at the big bang. This singularity is thus also elim-
inated in the quantum theory. The boundary condition at the big bang is,
again, just DeWitt’s boundary proposal. It is this condition which justifies
the choice of normalizable solutions in the vicinity of the big-brake singu-
larity. So in this sense, vanishing of the wave function at the big brake
and at the big bang are connected. Better, the vanishing at the big-brake
singularity is a consequence of the vanishing at the big bang.

The imposition of boundary conditions on both ends of the evolution,
near the big bang and near the big brake, should imply some kind of quan-
tization rule upon matching the wave packets in both regimes. Such a
matching has not been carried out.

References: This work was published in [48].
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Chapter 9

Effective constraints for

quantum systems

The last chapter is devoted to the application of a generalized effective
formulation of quantum theory to constrained systems. This formu-
lation is based on quantum phase space coordinatized by expectation
values of fundamental operators and moments of the wave function.
As a generalization of the effective action, such a formulation is of
interest in its own right. Moreover, the hope is to gain some insight
into the internal-time approach.

9.1 Motivation

9.1.1 From the quantum General Relativity side

Canonical general relativity obeys a constrained Hamiltonian dynamics. The
arisal of constraints signals that one is dealing with more variables then are
actually necessary to describe the physical properties of the system. At some
point, one has to get rid of these superfluous variables — either before or
after quantization. Canonical general relativity is characterized by four con-
straints at each point in Σ. The Hamiltonian constraint generates evolution
from one hypersurface to the adjacent one. The diffeomorphism constraints
generate diffeomorphisms in Σ. The corresponding quantum diffeomorphism
constraints can easily be interpreted. They insure that the wave function
does not depend on the three-metric but only the three-geometry. So it
seems that is does not matter whether we solve this constraint on the clas-
sical level and quantize on the space of three-geometries (superspace) or
whether we quantize on the space of all three-metrics and reduce the metric

119
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dependence through the quantum diffeomorphism constraints.1

The issue is somewhat more subtle in the case of the Hamiltonian con-
straint. On the classical level, it encodes time evolution.2 So we expect
that on the quantum level it does the same. The problem is just that no
foliation and thus no time exists on the quantum level. In fact, the quantum
Hamiltonian constraint, i.e. the Wheeler–DeWitt equation, is a second-
order, functional differential equation in which all fields occur on an equal
footing.

The fact that the quantum Hamiltonian has to encode time in some way
but does not refer to any time variable, is known as the problem of time.
At its heart lies the observation that the three-metric contains information
about time in an inextractable way. This follows by a simple counting
argument. The six degrees of freedom of the three-metric are reduced to
three through the diffeomorphism constraints. So one of the remaining three
has to be unphysical and thus related to time. The question is just — which
one?

There are several attitudes towards this problem. The first decision one
has to make is whether one wants to eliminate this superfluous variable
already on the classical level or keep it on the quantum level. In Isham’s
terminology, we have to decide whether we want to identify time before quan-
tization or time after quantization. Note that identifying time before quanti-
zation would yield a theory with classical time parameter and a Hamiltonian
which is no longer constrained to vanish but generates evolution just in that
parameter. On the quantum level, we would thus obtain a Schrödinger equa-
tion. This may seem very appealing because we are back to something we
know. But, as I pointed out in Chapter 3, we should not expect to recover
too many familiar features when we quantize gravity. Moreover, we do not
know which of the three degrees of freedom we should identify with time.
But each choice produces a unitarily inequivalent quantum theory. In ad-
dition to that, there are indications that time may not be separable from
three-geometry, [82]. And, most convincingly, the constraints of general rel-
ativity cannot be solved globally, [29], implying that such a time variable
cannot be defined globally.

For all these reasons, we want to include the ‘time’ variable into the set
of quantum operators. So we follow the time after quantization approach.
This yields the already known Wheeler–DeWitt equation.

Even though it is clear now that we are going to identify time after
quantization, it is less clear how this identification should be carried out.
In the previous chapters, the Wheeler–DeWitt equation was treated as a

1But, of course, it is mathematically simpler to quantize on the space of all three-
metrics and make the reduction on the quantum level by simply changing the domain of
dependence of the wave function to superspace. We want to emphasize that this is done
only formally.

2Time here refers to the foliation parameter.
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timeless equation. The concept of time was entirely reserved for the semi-
classical realm. Here, time referred to the foliation time recovered from
the Wheeler–DeWitt equation in the WKB-limit. There is just one concept
of time in this interpretation and this is the well-known classical foliation
parameter.

However, this is not the only way in which one can identify time on the
quantum level. Namely, one can try to identify a time parameter through
its function. For example, the Klein–Gordon form of the Wheeler–DeWitt
equation suggests to interpret the determinant of the three-metric or three-
volume as time parameter. Such a time variable built up from the con-
figuration space variables after quantization is called internal time. Note,
however, that this concept of time is unrelated to the classical concept of
time. It refers to the fact that one of the quantized degrees of freedom
plays the role of a time variable, i.e. has the same function. But it has
nothing whatsoever to do with a time-coordinate of an ordinary spacetime.
The internal-time variable defines ‘equal-time’ hypersurfaces in superspace
on which inner products are defined through the integration over all remain-
ing degrees of freedom. Therefore different choices of internal time result in
unitarily inequivalent theories.

The internal-time approach clearly transcends the framework of ordinary
quantum field theory in that it interprets ‘equal-time’ hypersurfaces in con-
figuration space analogously to spatial hypersurfaces in ordinary spacetime.
Most significantly, expectation values of observables obtained through an
integration over hypersurfaces of constant internal time are interpreted in
terms of measurement results. This is a non-trivial generalization of the
interpretational framework of ordinary quantum field theory. The previous,
semi-classical time interpretation is clearly the more conservative framework.

Despite these warnings, the internal-time idea provided one major mo-
tivation for the project discussed in this chapter. The hope was that a
different formulation of the same theory might shed light on the problems
of the internal-time approach.

Such an alternative formulation of quantum theory is provided by the
geometrical formulation which goes back to Kibble, [79]. The basic ob-
servation is that any quantum theory formulated on a Hilbert space can be
alternatively formulated on a generally infinite-dimensional phase space, the
so-called quantum phase space.3 Schrödinger dynamics is then replaced by
Hamiltonian dynamics. The central quantity is no longer the wave function
but expectation values of fundamental operators. More specifically, one can
choose expectation values of canonical variables and moments of the wave
function as coordinates on this quantum phase space. The quantum Poisson
bracket between any two functions on this phase space is, up to a prefactor,

3This quantum phase space is finite dimensional for systems with finite-dimensional
Hilbert space, e.g. spin systems.
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the expectation value of the commutator of the same function with opera-
tors as arguments. Dynamics is then given by a quantum Hamiltonian in
the form of Hamilton’s equations of motion — but employing the quantum
Poisson bracket, of course. This is the already known set-up of the geomet-
rical formulation of quantum mechanics — or quantum field theory for that
matter. Assume now that moreover a set of constraints on quantum phase
space has been found which is equivalent to Dirac’s constraint quantization
condition.

Why should such a setup be a promising starting point to study the
internal-time approach?

Because a quantum constrained system in the geometrical formulation
is described by an infinite-dimensional phase space equipped with a number
of constraints. Thus Dirac’s constraint quantization condition can be dealt
with in the language of classical, constrained systems — and therefore we
can draw on the familiar concepts and methods.

Choosing one variable as internal time corresponds to the elimination of
the corresponding canonical pair on quantum phase space and all degrees of
freedom associated with it. But this can then be done in full analogy to a
classical, constrained system.

After such an elimination has been carried out, we can analyse the struc-
ture of the resulting system. That means we can check whether the remain-
ing operators can be formulated as self-adjoint ones on a Hilbert space.
This can then be done by simply requiring that all remaining variables on
quantum phase space be real.4

Mathematically, this sounds very straight and simple, not least because
everything is formulated in the well-known language of classical constrained
systems. Theories arising for different choices of internal time and their
relations can be studied. Probing the resulting theory for a Hilbert space
structure seems also pretty easy — because we do not have to write down
the inner product explicitly but simply implement reality conditions.

The only crux is that quantum phase space is generally infinite dimen-
sional. Practically, it may turn out very difficult to solve a system of coupled,
even though ordinary, differential equations. Approximation schemes will
generally be needed to reduce this system to a finite number of coupled equa-
tions. Such approximations can correspond to perturbations of an arbitrary
state, or even an arbitrary class of states. These can be semi-classical states,
but also coherent or squeezed states, for example.

Moreover, there exist systems for which the infinitely many equations
decouple. These are called solvable systems. They can be used as starting
point of a perturbation series. This is then analogous to the perturbation
around free field theories usually employed for interacting ones in quantum

4Recall that quantum variables are just expectation values and that the expectation
value of any phase space operator function can be expanded in terms of them.
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field theory.
Therefore the generalization of the effective equation scheme is a first

step in the study of the internal-time approach.

9.1.2 From the quantum theory side

One may also approach the present chapter from a completely different, but
much more general perspective.

The geometrical formulation of quantum theory serves as the starting
point for the derivation of so-called generalized effective equations. Effec-
tive equations describe quantum motion in an approximate manner through
equations of the classical type.

A well-known and successful example of such a framework is the effective
action. It is derived from the path-integral in quantum field theory (or
quantum mechanics for that matter) through a perturbation around the
mean field. In the absence of an external source, the mean field is just
the vacuum expectation value of the field itself. Otherwise the mean field
corresponds to the matrix element of the field operator between two different
in and out vacua. The assumption is that quantum fluctuations around the
mean field are small. At the end of a series of mathematical tricks then
stands an effective action which equals the classical action plus quantum
corrections,

Γeff [〈φ〉] = S[〈φ〉] +
∑

k

~kΓk−loop[〈φ〉] ,

where 〈φ〉 is the mean field, S the classical and Γeff the effective action.
Γk−loop correspond to k-loop corrections. From the ~-expansion we read off
that the formalism works only in the semi-classical regime.

Furthermore, the mean field as matrix element between in and out vacua
ties the effective action to scattering-like setups.

Moreover, the effective action is tied to the covariant framework. It is
interesting in its own right to look, firstly, for a generalization of this effective
scheme which, secondly, applies to Hamiltonian formulations.5 Also, the
effective action uses an expansion around the vacuum in the case of a free
theory. But it may be desirable to expand around some other state but the
vacuum. Most importantly in this context, for general relativity the vacuum
is not known.

Speaking of a generalization implies, of course, that the original scheme
is comprised in the general one.

Such a generalization of the effective action scheme is provided by a
formulation that goes under the somewhat lengthy name of generalized ef-

5One may invoke that the WKB-approximation is the canonical scheme corresponding
to the effective action. But still, the WKB-approximation is tied to the semi-classical
regime.
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fective equations. These can be derived from the geometrical formulation
outlined above through suitable expansions around arbitrary states — not
only semi-classical ones.

So, from a more general perspective, the present chapter is concerned
with the question of how this generalization of the effective-action scheme
might be formulated for constrained systems. And even though this thesis
deals with quantum cosmology, I want to see this as a major motivation
behind the work presented below. Moreover, a consistent formulation of
constraints in the generalized effective-equation framework has to be devel-
oped before any questions on the internal-time approach can be answered —
or even be posed.

9.2 Geometrical formulation

The basic structures of the geometric formulation of quantum theory are
easily understood. Let the Hilbert space of the theory be denoted by H

with Hermitian inner product 〈·, ·〉. Now regard H as a real vector space,
equipped with complex structure J which just represents multiplication by
the imaginary unit, i. Correspondingly, split the Hermitian inner product
into its real and imaginary parts

〈Ψ|Φ〉 = 1

2~
G(Ψ,Φ) +

i

2~
Ω(Ψ,Φ) ,

where the prefactor is chosen out of convenience and Ψ, Phi ∈ H. Then G
defines a positive inner product and Ω a symplectic form. Both are non-
degenerate. Canonically identifying the tangent space at each point of H

with H itself, Ω extends to a non-degenerate, closed two-form. It follows
immediately that every Hilbert space can be interpreted as a phase space.
Now define for every self-adjoint operator F̂ the Schrödinger vector field

YF̂ (Ψ) = −1

~
JF̂Ψ .

Furthermore define the expectation value function

F : H −→ R , F (Ψ) = 〈Ψ|F̂Ψ〉 .

The Hamiltonian vector field XF generated by F then coincides with the
Schrödinger vector field YF̂ . From this follows immediately that the Schrödinger
equation in this formulation is just Hamilton’s equation,

Ψ̇ = YĤ(Ψ) = XH(Ψ) .

Moreover, the commutator defines a quantum Poisson bracket for the ex-
pectation values via
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{F,K}Ω = Ω(XF ,XK) =
1

i~
〈Ψ|[F̂ , K̂]|Ψ〉 . (9.1)

But, of course, the space of physical states is not the Hilbert space H, but
the space of rays in the Hilbert space. Wave functions which differ only by
a complex factor are physically equivalent. This fact is taken care of if one
restricts attention to those elements of H which have unit norm. The result-
ing space is a projective Hilbert space denoted by P. The above definitions
carry over to the new, projective Hilbert space if one considers P as the
reduced phase space arising under the first-class constraint

C = 〈Ψ|Ψ〉 − 1 .

The resulting reduced phase space is called quantum phase space. This phase
space is, generally, infinite dimensional.6

9.3 Generalized effective equations — the setting

The geometrical formulation gave the idea for the effective framework. But
we will see that the framework presented in this section can be seen as
completely independent from the geometrical formulation.

The effective-equation formalism is set up in quantum phase space. We
equip this space with coordinates suited for our purpose. These coordinates
are given by the expectation values of fundamental operators, in the follow-
ing simply p̂ and q̂. Expectation values of higher powers of these operators
are included in the following way

Ga,b =
〈
(p̂− 〈p̂〉)a(q̂ − 〈q̂〉)b

〉
Weyl

, (9.2)

where a, b ∈ N such that a + b ≥ 2 and the totally symmetric ordering is
used, indicated by the index 〈·, ·〉Weyl.

For a+b = 2, this provides fluctuations (∆q)2 = G0,2 = Gqq and (∆p)2 =
G2,0 = Gpp as well as the correlation G1,1 = Gqp. Generally, Ga,b are just
the moments of the wave function. I will also speak of quantum variables
when I refer to these moments, because these are just the quantities that
incorporate the quantum properties. Whereas one can think of 〈p̂〉 and
〈q̂〉 as the peak position of a wave packet which, in a semi-classical state,
simply follows the classical trajectory, quantum variables describe deviations
from this classical path. As long as they are negligible, the wave packet
describes an approximate classical path. But as soon as higher moments
become important, the wave packet spreads and its motion is no longer well
described by a classical path.

6Finite dimensional quantum phase spaces arise, e.g., for spin systems.
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So instead of making the detour via the geometrical formulation, I could
equally well have started with the statement that we describe a state by its
moments rather than a wave function in a certain Hilbert space represen-
tation. Such a setting has the immediate advantage that the description is
manifestly representation independent and deals directly with quantities of
physical interest, namely expectation values and fluctuations.

Before continuing, let me spend some words on notation. In the following,
I will denote expectation values simply by ‘un-hatting’ the corresponding
operator, e.g. q for 〈q̂〉. Also, I will often use p and q as indices instead
of numbers on low moments, as already introduced above, e.g. G0,2 = Gqq.
The largest system that is going to be considered here, has two degrees of
freedom. The notation for quantum variables of such a system is just a
straight generalization of (9.2), namely

Ga,bc,d ≡ 〈(p̂− p)a(q̂ − q)b(p̂1 − p1)
c(q̂1 − q1)d〉Weyl ,

for a system with canonical pairs (q, p; q1, p1). For these as well, the more in-
tuitive notation using a direct listing of canonical variables, as in Gq

p1 = G0,1
1,0

will be used. The order M of a quantum variable is defined as the total
power of contributing operators, i.e. M = a + b + c + d in the case of the
two-dimensional system. I hope the notation is sufficiently intuitive for the
reader to follow easily.

The symplectic structure is obtained from (9.1). But for simplicity, I will
drop the index Ω which denotes that we are actually dealing with the quan-
tum Poisson bracket. This can be safely done as no reference is made to the
classical Poisson bracket anywhere in this chapter.

For functions of expectation values p and q, the quantum Poisson bracket
just yields the same result as would the classical Poisson bracket for classical
phase space functions of the same form. Expectation values have vanishing
Poisson brackets with the moments of the wave function.7 The Poisson
bracket between quantum variables is, on the other hand, fairly complicated,

{Ga,b, Gc,d}=
∞∑

r,s=0

(− 1
4~2)r+s ×

∑

j,k

(
a

j

)(
b

k

)(
c

k

)(
d

j

)
Ga+c−j−k,b+d−j−k(δj,2r+1δk,2s − δj,2rδk,2s+1)

−adGa−1,bGc,d−1 + bcGa,b−1Gc−1,d , (9.3)

where the summation range of j and k is given by 0 ≤ j ≤ min(a, d) and
0 ≤ k ≤ min(b, c), respectively. Therefore, low order moments are easier

7Actually, it is this feature which motivated the choice of coordinates in the beginning,
[81].
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calculated via expectation values of commutators. In the original paper by
Bojowald and Skirzewski, [81], the general Poisson bracket between quantum
variables for systems with an arbitrary number of degrees of freedom is also
given.

Now we still lack the dynamics. The Schrödinger equation is replaced
by the Hamiltonian equations of motion on quantum phase space. These
are determined by the quantum Hamiltonian which is just the expectation
value of the Hamiltonian operator. Carrying out a Taylor expansion around
the expectation values, it can be expressed in terms of our coordinates as

HQ(q, p,Ga,b) = 〈H(q̂, p̂)〉Weyl = 〈H(q + (q̂ − q), p+ (p̂− p))〉Weyl

= H(q, p) +
∞∑

a=0

∞∑

b=0

1

a!b!

∂a+bH(q, p)

∂pa∂qb
Ga,b , (9.4)

where we understand Ga,b = 0 if a + b < 2 and H(q, p) is the classical
Hamiltonian evaluated on expectation values. As written explicitly, we as-
sume the Hamiltonian to be Weyl ordered. This is done for definiteness.
Any other ordering can be reduced to Weyl ordering by adding re-ordering
terms and vice versa. Note that (9.4) is in form already very close to the
effective action — it also consists of a classical contribution plus quantum
corrections.

Having a Hamiltonian and Poisson brackets, one can compute Hamilto-
nian equations of motion

q̇ = {q,HQ} , ṗ = {p,HQ} , Ġa,b = {Ga,b,HQ} .
Of course, these equations generalize to any system with more than one
degree of freedom. This ends our reformulation of the quantum system.

So, in sum, we traded the Schrödinger equation for an infinite set of ordinary
differential equations. Even worse, in general, these equations are all coupled
to each other. But such a bad deal can actually turn into a good stroke of
business.

First and foremost, there are systems for which the equations of motion
for expectation values and higher moments decouple. In this case, the system
of equations is solvable. This is the case for the harmonic oscillator, for
example. I will follow the terminology of [81] and call such systems solvable
systems. One can expand around such systems. In this way, one gets a
chance to solve also non-solvable models. The anharmonic oscillator can,
for example, be considered as a perturbation of the harmonic oscillator.
In this sense, solvable systems provide a basis for perturbation theory to
analyse more general systems — just like free quantum field theory provides
a solvable basis for interacting ones.
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Moreover, semi-classical and some other regimes, depending on the sys-
tem under study, allow one to truncate and decouple the equations con-
sistently. In this way, one arrives at a finite set of ordinary differential
equations.

Lastly, I want to comment briefly on the relation of this scheme to the effec-
tive action. Using the example of the anharmonic oscillator, it was shown
that the equations of motion obtained from this effective-equation scheme
coincide with those derived from the effective action — for a special choice
of parameters. These parameters arise as integration constants from the
Hamiltonian equations of motion. In the generalized effective-equation for-
malism, these are arbitrary — corresponding to an arbitrary initial state.
But for a specific choice, one recovers effective action results. In this way,
one sees directly that generalized effective equations allow a wider class to
expand around than the effective-action scheme.

9.4 Effective constraints

So far for the unconstrained system. But what I actually promised in the
introduction, was a description for systems subject to constraints. To de-
velop such a formulation, it seems sensible to start with the easiest case,
namely one constraint. In the following, C will always refer to the classical
constraint.

The characteristic property of reparametrization-invariant theories is
that this one constraint is given by the Hamiltonian, C = H = 0. We will
also consider this special case. Then we can further divide these systems into
artificially reparametrization-invariant and truly reparametrization-invariant
systems. Into the latter category fall all diffeomorphism-invariant theories.
One can distinguish the two classes on the canonical level in a simple way:
artificially reparametrization-invariant theories have at least one momen-
tum that occurs only linearly whereas for truly reparametrization-invariant
systems all momenta enter quadratically in the Hamiltonian.

In this chapter, we will only make the first steps into the direction of an
effective formalism for constrained systems. We will only deal with artifi-
cially reparametrization-invariant systems.

On the quantum level, assuming Dirac’s quantization condition, the con-
straint translates into Ĉ|Ψ〉 = 0.

The main task in this section will be to reformulate Dirac’s condition on
quantum phase space.

9.4.1 Form of quantum constraints

What should we expect from such a reformulation? First of all, the result-
ing set of conditions should neither be stronger nor weaker than Dirac’s
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condition. This is the case if it eliminates exactly one degree of freedom.
That means, through the set of effective constraints, expectation values of
one canonical pair have to be eliminated. But more than that, all quantum
variables depending on this canonical pair have to be removed. There are
infinitely many of these and therefore we expect infinitely many effective
constraints.

On the other hand, we know that Ĉ|Ψ〉 = 0. This means that all expec-
tation values of the form

C(n) := 〈Ĉn〉 = 0 , (9.5)

C
(n)
f(q,p) := 〈f(q̂, p̂)Ĉn〉 = 0 , (9.6)

for positive integer n and arbitrary phase space functions f(q, p), will vanish.
This is the general set of quantum constraints. The expectation value CQ =

〈Ĉ〉 will be called principal constraint. Note that for each constraint an
expansion as in (9.4) can be carried out.

All concepts used in the theory of constrained systems can be carried over
to the quantum constraint system. The vanishing of quantum constraints
defines the quantum constraint surface. Quantum constraints whose Poisson
brackets with all other constraints vanish on this surface are first-class con-
straints, the remaining ones are second class. Transformations generated by
first-class quantum constraints are gauge transformations. A second-class
function varies along some of these flows and is therefore gauge dependent.
For the sake of brevity, I will often drop ‘quantum’ when no confusion can
arise.

The quantum constraints satisfy the commutation relations

[f̂ Ĉn, ĝĈm] = [f̂ , ĝ]Ĉn+m + f̂ [Ĉn, ĝ]Ĉm + ĝ[f̂ , Ĉm]Ĉn , (9.7)

whose expectation value in any physical state vanishes. Consequently, these
constraints have vanishing quantum Poisson brackets on the constraint sur-
face, thus providing a weakly commuting set,

{C(n)
f , C(m)

g } =
1

i~
〈[f̂ Ĉn, ĝĈm]〉 ≈ 0 .

Therefore, the set of quantum constraints is first class.
Each quantum constraint thus removes variables in two ways. First of

all, by simply solving the quantum constraint for one variable, the latter is
eliminated from the theory. But in addition to that, first-class constraints
generate gauge transformations on a phase space. So on quantum phase
space, quantum constraints generate gauge transformations.

They transform states into physically equivalent states through

Ga,bc,d −→ G̃a,bc,d = Ga,bc,d + ε0{C(n)
f , Ga,bc,d} ,
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and similarly for expectation values.

One may not have expected that gauge flows generated by quantum
constraints on the quantum phase space play an important role. In the
usual Dirac treatment, only a constraint equation is written for states, but
no gauge flow on the Hilbert space needs to be factored out. In fact, the
gauge flow which one could define by exp(itĈ)|ψ〉 for a self-adjoint Ĉ is
trivial on physical states which solve the constraint equation, Ĉ|ψ〉 = 0. I.e.
it does not change these states. On the other hand, recall the parametrized,
free particle reviewed in Chapter 3. There, it was emphasized that Ĉ†

generates the gauge flow on quantum states. However, such a procedure is
never carried out in quantum general relativity.

How can we understand that the gauge flow becomes non-trivial in the
phase-space formulation? Note that the gauge flow could only be trivial
if we would assume self-adjoint constraint operators. Because only then
〈ψ|Ĉ = 0 would follow from Ĉ|ψ〉 = 0 and the flow on the expectation
values, 〈ψ| exp(−itĈ)Â exp(itĈ)|ψ〉 vanish. But constraint operators are
generally not self-adjoint, recall Chapter 3 and [25].

The expectation values and moments we are dealing with when imposing
quantum constraints thus have to form a much wider manifold than the
Hilbert space setting would allow. Here, not only constraint equations but
also gauge flows on the constraint surface are crucial.

From these very general considerations, we inferred the general structure
of quantum constraints. But so far, f(q̂, p̂) is any function of the opera-
tors. We thus have not only infinitely many, but even uncountably many
constraints. Not all of them can be independent. So what we need, is a
prescription that tells us which f we should choose.

The resulting infinite set should still be first class. Moreover, we have
to insure that it removes the infinite number of variables on quantum phase
space associated with one classical degree of freedom.

9.4.2 Iteration procedure for quantum constraints

Also, for practical purposes, one would like to keep the number of allowed
functions minimal while keeping the system complete. Then, however, the
set of quantum constraints is not guaranteed to be closed for any restricted
choice of phase-space functions f used in their definition.

If C
(n)
f and C

(m)
g are quantum constraints, closure requires the presence

of C
(n+m)
[f,g] (for n ≥ 2), C

(m)
f [Cn,g] and C

(n)
g[Cm,f ] as additional constraints ac-

cording to (9.7). In this way, a construction procedure for a closed set of
quantum constraints is prescribed. It has to be iterated until a closed sys-
tem is obtained. This iteration does not necessarily terminate after a finite
number of steps.

But although many independent constraints have to be considered for
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a complete system, most of them will involve quantum variables of a high
order. To a given order in the moments, it is thus sufficient to consider only
a finite number of constraints. Such truncations and approximations will be
discussed by examples in Section 9.5.

9.4.3 Reality conditions

Note that the definition of constraints in (9.6) uses expectation values of
non-symmetric operators, thus implying complex valued constraint func-
tions. But this is no problem as we are working with unconstrained states.
Only after the constraints have been solved, all expectation values should be
real. Because solving the constraints corresponds to the transition from the
kinematical Hilbert space, or auxiliary Hilbert space, to the physical Hilbert
space.8 Whereas the kinematical Hilbert space is just an auxiliary structure
used to set up the theory, define operators etc., the physical Hilbert space
contains physically admissible states and thus carries the standard inter-
pretation. On the kinematical Hilbert space, operators can have imaginary
eigenvalues — because we are still dealing with unphysical states and with
an unphysical inner product. On the physical Hilbert space, however, ex-
pectation values should be real, as here they correspond to measurement
results.

The transition from kinematical to physical Hilbert space then consists
simply in the implementation of reality conditions for the physical variables.

So there is no problem in defining quantum constraints as complex func-
tions. Moreover, in constrained theories it is even required to work with
constraint operators which are not self-adjoint, cf. Chapter 3 again, and
thus complex valued constraints have to be expected in general.

Furthermore, note that we cannot order symmetrically in (9.6). This
would give rise to terms where some q̂ or p̂ appear to the right while others
remain to the left. Thus the expression would not vanish for physical states
and therefore not correspond to a constraint.

Still, one could avoid the question of reality of the constraints altogether

by using quantum constraints defined as GCnf(q,p) = 〈Ĉnf̂(p, q)〉Weyl such
as GC

nq and GC
np with the symmetric ordering used as in (9.2). Here, the

symmetric ordering contained in the definition of quantum variables must
leave Ĉ intact as a possibly composite operator, i.e. we have for instance
GC,p = 1

2〈Ĉp̂+p̂Ĉ〉−Cp independently of the functional form of Ĉ in terms of
q̂ and p̂. Otherwise it would not be guaranteed that the expectation value
vanishes on physical states. We could not include variables with higher
powers of q and p, such as GCnpp as constraints because there would be
terms in the totally symmetric ordering (such as p̂Ĉnp̂) not annihilating a

8I find the name kinematical Hilbert space somewhat misleading because it suggests the
existence of a ‘dynamical Hilbert space’ as opposite. However, it is this convention that
dominates the literature and so I will succumb to convention.
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physical state. But, e.g., GĈp̂2 understood as 1
2〈Ĉp̂2 + p̂2Ĉ〉−Cp2 would be

allowed. The use of such symmetrically ordered variables would imply real
quantum constraints.

However, this procedure cannot be reconciled with the requirement that
the constraints be first class. We have, for instance,

{GCnf(q,p), GC
mg(q,p)} =

1

4i~
〈[Ĉnf̂ + f̂ Ĉn, Ĉmĝ + ĝĈm]〉

− g

2i~
〈[Ĉnf̂ + f̂ Ĉn, Ĉm]〉 − Cm

2i~
〈[Ĉnf̂ + f̂ Ĉn, ĝ]〉

− f

2i~
〈[Ĉn, Ĉmĝ + ĝĈm]〉 − Cn

2i~
〈[f̂ , Ĉmĝ + ĝĈm]〉

+{Cnf, Cmg} .

The first commutator contains, apart from several terms which vanish when
the expectation value is taken in a physical state, also the two terms
[Ĉn, ĝ]Ĉmf̂ and f̂ Ĉm[Ĉn, ĝ]. Their expectation value only vanishes if f̂ or ĝ
commute with Ĉ. This would require quantum perennials to be known and
used in the quantum constraints, which in general would be too restrictive
and impractical. A further possibility using Weyl-ordered constraints of a
specific form was discussed in [80], but seems to be less practical in concrete
examples.

So, in general, there seems neither reason nor way to escape complex quan-
tum variables on the kinematical level. We will even see that complex-valued
quantum variables are actually helpful to ensure consistency.

9.4.4 Linear constraint operator: Number of effective con-

straints

We now have a prescription that, for a given phase-space function f , gen-
erates quantum constraints through an iteration procedure. The question
remains, how f shall be chosen.

We will show here that for the general class of linear constraints, f can
be chosen as polynomial function in the fundamental operators. The results
are then locally valid for any system subject just to one, single constraint.

The number of degrees of freedom shall be finite, say N + 1 and the
canonical operators are (q̂i, p̂i)i=1,...,N+1 with the usual commutation rela-

tions [q̂i, p̂j ] = i~ δij . The system is subject to the linear constraint Ĉ.

A first step that simplifies the analysis significantly, is to transform on
variables in which the constraint is just one of the configuration variables.
I.e. we introduce a new canonical pair (q̂, p̂) which is defined through the
requirements
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q̂ = Ĉ and [q̂, p̂] = i~ .

Furthermore, the following commutation relations with the remaining vari-
ables (x̂i)i=1,...,2N shall be satisfied

[q̂, x̂i] = [p̂, x̂i] = 0 , [x̂i, x̂j ] = i~ (δi,j−N − δi−N,j)
where x̂i with i = 1, . . . , N and i = N + 1, . . . , 2N correspond to the config-
uration and momentum operators, respectively.9

So in the following, our quantum system is parametrised by expectation
values q := 〈q̂〉, p := 〈p̂〉, xi := 〈x̂i〉, i = 1, . . . , 2N and quantum variables

Ga1,a2,...,a2N ;b,c =
〈
(x̂1 − x1)

a1 · · · (x̂2N − x2N )a2N (p̂− p)b(q̂ − q)c
〉

Weyl
.

(9.8)
If we follow the above prescription, the quantum constraints are given by
Cf = 〈f̂ Ĉ〉— and we restrict f̂ to be a polynomial operator in the canonical
variables. Now we have to prove that this proposition indeed works.

First of all, it is consistent with Ĉ|ψ〉 = 0 and the set of operators of
the form f̂ Ĉ is closed under taking commutators. As a result, the set of all

functions Cf is first class. Note that C
(n)
f is automatically included in the

above constraints through Cf ′ where f̂ ′ = f̂ Ĉn−1, which is polynomial in

the canonical variables as long as f̂ is.
What remains to be shown is that the restriction to polynomial functions

f is sufficient to reduce quantum phase space properly. To see how the
degrees of freedom are reduced, we proceed order by order.

Variables of order M in N + 1 canonical pairs are defined as in (9.8), with∑
i ai + b + c = M . The total number of different combinations of this

form is the same as the number of ways the positive powers adding up to
M can be distributed between 2(N + 1) terms, that is

(M+2(N+1)−1
2(N+1)−1

)
. So at

order M , we have
(M+2(N+1)−1

2(N+1)−1

)
quantum variables. Out of the total set,

those of the form Ga1,a2,...,a2N ;b,0, b 6= 0, and Ga1,a2,...,a2N ;0,c, c 6= 0, should
be eliminated through constraints. The variables Ga1,a2,...,a2N ;0,0, however,
shall be unrestricted.

The remaining part of this section is dedicated exactly to this proof.
First, it is convenient to make another change of variables. We note that

in order to permute two non-commuting canonical operators in a product
we need to add i~ times a lower order product. Starting with a completely
symmetrized product of order M and iterating the procedure we arrive at

9The linear combinations that would satisfy the above relations may be obtained by
performing a linear canonical transformation on the operators. Such combinations are not
unique, but this fact is not important for the purpose of counting the degrees of freedom.
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a sum of unsymmetrized products of order M and lower. This justifies the
choice of new variables,

F a1,a2,...a2N ;b,c :=
〈
(x̂1)

a1 · · · (x̂2N)a2N p̂bq̂c
〉

(9.9)

It is easy to see that there is a one-to-one correspondence between variables
(9.8), combined with the expectation values, and (9.9), but the precise map-
ping is tedious to derive. As it is not needed for the counting of degrees of
freedom, we will not bother with it here.

Now our constraints require F a1,a2,...a2N ;b,c ≈ 0 for c 6= 0 — because
q̂|ψ〉 = 0. Moreover, all of the constraints Cf = 〈f̂ Ĉ〉 may be written as a
combination of the variables F a1,a2,...a2N ;b,c, c 6= 0. However, the constraints
cannot restrict F a1,a2,...a2N ;b,0! But anyway, we have not taken into account
the gauge flows yet.

Each Cf generates a flow on the constraint surface. But we decided to
study the elimination of degrees of freedom order by order in the moments.
At a fixed order, however, the flows generated by the constraints are not
necessarily independent on the constraint hypersurface. This is due to the
fact that quantum phase space reduced to a fixed order of moments is a
non-symplectic Poisson manifold.10

This degeneracy becomes obvious when we count the degrees of freedom
to a given order. To order M , the constraints are accounted for by variables
F a1,a2,...a2N ;b,c+1, where

∑
i ai + b + c + 1 = M . Counting as earlier in the

section, there are
(M+2(N+1)−2

2(N+1)−1

)
such variables. Subtracting the number of

constraints from the number of quantum variables of order M , we are left
with

(
M + 2(N + 1)− 1

2(N + 1)− 1

)
−
(
M + 2(N + 1)− 2

2(N + 1)− 1

)

=

(
M + 2(N + 1)− 1

M + 2(N + 1)− 1− (2N + 1)
− 1

)(
M + 2(N + 1)− 2

2(N + 1)− 1

)

=
2(N + 1)− 1

M

(
M + 2(N + 1)− 2

2(N + 1)− 1

)
(9.10)

unrestricted quantum variables. If each constraint generates an independent
non-vanishing flow, we should subtract the number of constraints from the
result again. We find 2(N+1)−1−M

M

(M+2(N+1)−2
2(N+1)−1

)
physical degrees of freedom

at orderM . However, this number becomes negative onceM is large enough,
raising the possibility that the system has been over-constrained.

10This can be read off from the Poisson bracket (9.3). The Poisson bracket of two
quantum variables of order M , a+b = M , c+d = M , contains quantum variables of order
2M and lower.
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Fortunately, we can show that our system is not overconstrained, i.e. the
gauge flows are not all independent. This is demonstrated by the following
argument.

All of the operators x̂i commute with the original constraint operator
Ĉ = q̂, which means that any function of the expectation value of a poly-
nomial in (x̂i)i=1,...,2N , here denoted by g = 〈g[x̂i]〉, weakly commutes with
every constraint

{Cf , 〈g[x̂i]〉} =
1

i~

〈[
f̂ Ĉ, g[x̂i]

]〉
=

1

i~

〈
f̂
[
Ĉ, g[x̂i]

]
+
[
f̂ , g[x̂i]

]
Ĉ
〉

=
1

i~

〈[
f̂ , g[x̂i]

]
Ĉ
〉
≈ 0 . (9.11)

This means that the variables F a1,a2,...a2N ;0,0 are not only unconstrained but
also unaffected by the gauge flows.

They can be used to construct the quantum variables corresponding to
precisely N canonical pairs, so that we have at least the correct number of
physical degrees of freedom.

But, still, we were not able to remove the variables F a1,a2,...a2N ;b,0, b 6= 0.
They are unrestricted by the constraints. So they have to be affected by
gauge transformations. In fact, we can show that F a1,a2,...a2N ;b,0, b 6= 0 are
gauge dependent. This follows from a direct evaluation of

{Cf , F a1,a2,...a2N ;b,0} =
1

i~

〈[
f̂ Ĉ, (x̂1)

a1 · · · (x̂2N )a2N p̂b
]〉

=
1

i~

〈[
f̂ , (x̂1)

a1 · · · (x̂2N )a2N p̂b
]
Ĉ

+ i~bf̂(x̂1)
a1 · · · (x̂2N )a2N p̂b−1

〉

≈ b
〈
f̂(x̂1)

a1 · · · (x̂2N )a2N p̂b−1
〉
.

One may still suspect that a gauge may be selected such that the flows on
one of these variables vanish. However, this is not the case. Substituting a
constraint such that f̂ = g[x̂i]Ĉ

b−1, where g[xi] is some polynomial in 2N
variables

{
CgCb−1 , F a1,a2,...a2N ;b,0

}
≈ b

〈
g[x̂i] ((x̂1)

a1 · · · (x̂2N)a2N ) Ĉb−1p̂b−1
〉

and commuting all the Ĉ to the right one by one, such that Ĉb−1p̂b−1 =
(b− 1)!(i~)b−1 + · · · up to operators of the form ÂĈ, we have

{
CgCb−1 , F a1,a2,...a2N ;b,0

}
≈ b!(i~)b−1 〈 g[x̂i] ((x̂1)

a1 · · · (x̂2N )a2N )〉 . (9.12)
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Since the right-hand side is a gauge-independent function, (9.12) tells us
that it is impossible to get rid of all flows on a given variable F a1,a2,...a2N ;b,0

by simply picking a gauge.

In summary, using an alternative set of variables F a1,a2,...a2N ;b,c defined in
(9.9) we find that constraints become F a1,a2,...a2N ;b,c ≈ 0, c 6= 0. The vari-
ables F a1,a2,...a2N ;b,0, b 6= 0, are gauge dependent, which leaves the gauge-
invariant and unconstrained physical variables F a1,a2,...a2N ;0,0. These may
then be used to determine the physical quantum variables Ga1,...,a2N ;0,0 de-
fined in (9.8).

Thus, for a linear constraint a correct reduction of the degrees of freedom
is achieved by applying constraints of the form Cf = 〈f̂ Ĉ〉 where f is poly-
nomial in the canonical variables, as can be directly observed order by order
in the quantum variables. Locally, our procedure of effective constraints is
complete and consistent since any irreducible constraint can locally be cho-
sen as a canonical coordinate. Still, global issues may pose non-trivialities
since entire gauge orbits must be factored out when constraints are solved.

Example: A canonical variable as constraint: Ĉ = q̂

Given that the precise implementation of a set of quantum constraints de-
pends on the form of the constrained system, we illustrate typical properties
by an example. Further examples can be found in [80] which, for the sake
of brevity, are not included here.

The method of solving quantum constrained systems may be outlined as
follows: We start by finding the complete first-class set of constraint func-
tions representing Dirac’s constraint condition. Setting these to zero defines
the constraint surface, with constraint functions generating gauge transfor-
mations on it. We construct observables from the gauge-invariant functions
and recover dynamics, where appropriate, as a gauge transformation of non-
observable quantities.

To show how the counting argument of the previous section actually
works in practice, we will consider the constraint Ĉ = q̂.

From C(n) = 0 we obtain that all quantum variables Gqn
are constrained

to vanish, in addition to CQ = q itself. C
(n)
q is included as C(n+1). To elim-

inate moments depending not only on q̂ but also on p̂, we have to add

C
(n)
pm = 〈p̂mq̂n〉. If we restrict attention to moments up to second order, it

suffices to add C
(n)
p = 〈p̂q̂n〉. This already produces a closed set of con-

straints.

In this example, it is feasible to work with the symmetrically ordered
quantum variables introduced in Section 9.4.3. Because here we know a
quantum variable that is gauge invariant, i.e. commutes with the constraint,
namely q̂. For instance, quantum variables GCnq and GC

np form a closed
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set of constraints as may be deduced from (9.8) and the subsequent discus-
sion. Using the Poisson relations (9.3), we verify the first-class nature of the
system of constraints

{Ga,0, Gc,0} = 0 for b = d = 0 ,

{Ga,0, Gc,1} = a(Ga+c−1,0 −Ga−1,0Gc,0) ≈ 0 for b = 0, d = 1 ,

{Ga,1, Gc,1} = (a− c)Ga+c−1,1 − aGa−1,1Gc,0 + cGa,0Gc−1,1 ≈ 0

for b = d = 1 .

To discuss moments up to second order, constraints with at most a single
power of p are needed. These constraints are in fact equivalent to constraints
given by quantum variables due to

Gqn

= 〈(q̂ − q)n〉 =
n∑

j=0

(
n

j

)
(−1)jqj〈q̂n−j〉 =

n−1∑

j=0

(
n

j

)
(−1)jqjC(n−j) + (−1)nqn ,

Gqnp =
1

n+ 1
〈(q̂ − q)n(p̂− p) + (q̂ − q)n−1(p̂− p)(q̂ − q) + · · ·+ (p̂− p)(q̂ − q)n〉

=
1

n+ 1
〈(n+ 1)(p̂− p)(q̂ − q)n + 1

2 in(n+ 1)~(q̂ − q)n−1〉

= 〈p̂q̂n〉 − p〈(q̂ − q)n〉+
n∑

j=1

(
n

j

)
(−1)jqj〈p̂q̂n−j〉+ 1

2
in~〈(q̂ − q)n−1〉

= C(n)
p − pGqn

+
n−1∑

j=1

(
n

j

)
(−1)jqjC(n−j)

p + (−1)nqnp+
1

2
i~nGqn−1

.

Starting from n = 1, one can iteratively verify that the relations above
provide a one-to-one mapping from

(
C(n), C(m−1)

p

)
n,m∈N

−→
(
Gq

n

, Gq
mp
)
n,m∈N

.

This is thus a specific demonstration of the relation between (9.8) and (9.9)
discussed in Section 9.4.4.

Thus, the constraint surface can be analyzed using quantum variables.
What about the gauge flow?

For this type of classical constraint, reordering will only lead to either
a constant or to terms depending on quantum variables defined without
reference to p̂. Since these are already included in the set of constraints and
a constant does not alter the generated canonical transformations, they can
be eliminated when computing the gauge flow.11

The gauge flow generated by the quantum constraints up to second order
can therefore be computed using symmetrically-ordered quantum variables,

11The constant term 1
2
i~ in Gqnp for n = 1, however, will play an important role in

determining the constraint surface.
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such as Gq
n

and Gq
np for example. For the moments of different orders, we

then have the following constraints and gauge transformations.

Expectation values
We just have one constraint, q = 0, which generates the gauge trans-
formation p 7→ p+ ε1.

Fluctuations
Here, two constraints arise, Gqp ≈ const. and Gqq ≈ 0. They generate
gauge transformations Gpp 7→ Gpp + 4ε2G

qp and Gpp 7→ Gpp(1 + 2ε3),
respectively. As we will see in (9.13) below, Gqp is non-zero on the con-
straint surface, so that Gpp can be freely rescaled using gauge trans-
formations.

Higher Moments

At each order, we have constraints C
(n−m)
pm with m < n. The only

quantum variable that is not eliminated through these is Gpn
. This

has to be removed by gauge transformations, generated for example
by Gq

n
. This confirms the counting of Section 9.4.4.

Thus, to second order, we see that two moments are eliminated by quan-
tum constraints while the remaining one is gauge. In this way, the quantum
variables are eliminated completely.

Let us now discuss the reality conditions of quantum variables. The con-

straint C
(1)
p = 〈p̂q̂〉 = 0 implies that

Gqp =
1

2
〈q̂p̂+ p̂q̂〉 − qp = 〈p̂q̂〉 − qp+

1

2
i~ ≈ 1

2
i~ (9.13)

must be imaginary. From the point of view of the kinematical inner prod-
uct this seems problematic since we are taking the expectation value of a
symmetrically ordered product of self-adjoint operators. However, the in-
ner product of the kinematical Hilbert space is only auxiliary, and from our
perspective not even necessary to specify. But an imaginary value of some
kinematical quantum variable is not only admissible but also has a big ad-
vantage. Only with such an imaginary value can the uncertainty relations
be satisfied.

For an unconstrained system, we have the generalized uncertainty rela-
tion

GqqGpp − (Gqp)2 ≥ ~2

4
. (9.14)

So this relation has to hold on the physical Hilbert space. More than that,
we want it to hold on the kinematical level already. We do so because the
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uncertainty relations are useful to construct coherent states and it is often
helpful to have them at ones disposal.

If we had worked with real quantum constraints, Gqq ≈ 0 ≈ Gqp in-

stead of C(2) ≈ 0, C
(1)
p ≈ 0, the uncertainty relation (9.14) would have

been violated. The imaginary value of Gqp obtained with our definition of
the quantum constraints, on the other hand, allows us to implement the
constraints in a way respecting the standard uncertainty relation. Choosing
−(Gqp)2 = 1

4~2 from (9.13) just saturates relation (9.14).

So, linear constraints show that quantum constraints can be formulated
in a consistent and complete way. This then also entails local consistency
and completeness of every system with a single constraint since every con-
straint can be linearized by a canonical transformation. But nonetheless,
global issues may be important, especially in quantum theory. Moreover,
such a canonical transformation linearizing a constraint induces complicated
transformations on quantum variables in which their orders mix. Such a lin-
earization, even though in principle possible, might thus not be a very handy
option. We will therefore have to discuss non-linear examples to show the
practicality of our procedures. Note that already in the above, simple ex-
ample, we restricted attention to second-order moments.

9.5 Approximation schemes

The aim of this section will be to devise a general method to consistently
approximate quantum constraints. The approximated constraints will be
referred to as effective constraints. Such a reduction of the full system is
in general necessary for practical purposes. The infinite-dimensional system
has to be reduced to a certain finite order of quantum variables so that one
can actually retrieve some information from it.

The most immediate approximation scheme that may come to mind, is
a sharp truncation. That means that we simply set all quantum variables
above a certain order to zero. It is then necessary to check whether the
system of constraints can still be formulated in a consistent way after such
a reduction has been carried out. A priori one cannot assume, for instance,
that a sharply truncated system of constraints has any non-trivial solution at
all. It may turn out that all degrees of freedom are removed by the truncated
constraints. Also, it is not clear how many (truncated) constraints have to
be taken into account at a certain order of the truncation. In this section,
we first consider a linear example and show that it can be consistently trun-
cated. We then turn to the more elaborate and more physical example of
the parametrized free, non-relativistic particle. Here, sharp truncations turn
out to be inconsistent.

This motivated a more careful approximation scheme which removes
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degrees of freedom order by order — as is already suggested by the proof in
Section 9.4.4.

We will first show that sharp truncations are unreliable as a general tool,
before turning to consistent approximations.

9.5.1 Truncations

We will discuss truncations for the simple constraint C = q of Section 9.4.4
and then turn to the relativistically more relevant case of the parametrized,
free particle.

Truncated system of constraints for Ĉ = q̂

The system of Section 9.4.4 is governed by a constraint C = q, which, on
the quantum level, entails the constraint operator Ĉ = q̂. This implies the
following constraints on quantum phase space:

C(n) = 〈Ĉn〉 = Cn +
n−1∑

j=0

(
n− 1

j

)
CjG0,n−j ,

C(n)
q = 〈q̂Ĉn〉 = C(n+1) ,

C(n)
p = 〈p̂Ĉn〉 = pCn + p

n−1∑

j=0

(
n

j

)
CjG0,n−j

+
n−1∑

j=0

(
n

j

)
Cj

an−j

(
G1,n+1 − i~

(n− j)2
(n− j + 1)

G0,n−j−1

)
,

where an−j are constant coefficients. These are accompanied by similar ex-

pressions of higher-polynomial constraints, i.e. C
(n)
pm , which are more lengthy

in explicit form due to the reordering involved in quantum variables.

The lowest power constraint yields C(1) = C ≈ 0. Inserting this, the
higher power constraints reduce to

C(n) ≈ G0,n , C(n)
q ≈ G0,n+1 ,

C(n)
p ≈ pG0,n +

1

an

(
G1,n − i~

n2

(n+ 1)2
G0,n−1

)
.

Performing a sharp truncation atN th order, we set Ga,b = 0 for all a+b > N .
As non-trivial constraints remain
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C(n)|N ≈ G0,n for all n ≤ N ,

C(n)
p |N ≈ pG0,n +

1

an

(
G1,n − i~

n2

(n+ 1)2
G0,n−1

)
for all n ≤ N − 1 ,

C(N)
p |N ≈ pG0,N +

1

aN

(
−i~ N2

(N + 1)2
G0,N−1

)
for n = N .

Solving the quantum constraints C(n) ≈ 0 and inserting the solutions into

the constraints C
(n)
p , yields

C(n)
p |N ≈ 1

an
G1,n for all n ≤ N − 1 ,

C(n)
p |N ≈ 0 for all n ≥ N.

Thus we find that for the truncated system, G0,n are eliminated through the
constraints C(n) = 0, whereas the quantum variables G1,n are eliminated

through C
(n)
p = 0. Higher polynomial constraints can be expanded as

C
(n)

pk =
k∑

i=0

n∑

j=0

(
k

i

)(
n

j

)
piCj〈(p̂− p)k−i(q̂ − q)n−j〉

≈
k∑

i=0

(
k

i

)
pi〈(p̂− p)k−i(q̂ − q)n〉 = Gk,n

bk,n
+ · · ·

with some coefficients bk,n. Moments of lower order in p are not written
explicitly because they can be determined from constraints of smaller k.

So we see that these constraints fix all remaining moments except Gn,0.
Moreover, due to the constraint C(1) = C ≈ 0, expectation values are re-
stricted to the classical constraint hypersurface. No further restrictions on
these degrees of freedom arise.

The remaining unconstrained Gn,0 are, on the other hand, pure gauge.
They can be changed arbitrarily by a gauge transformation. This again

confirms considerations of Section 9.4.4 because the gauge flow of C
(n)
qm =

C(n+m) is sufficient to remove all gauge without making use of C
(n)
pm with

m 6= 0, where operators not commuting with the constraint would occur.
We therefore conclude that the system can thus be truncated consis-

tently. For a truncation at N th order of a linear classical constraint, con-
straints up to order N have to be taken into account.

However, the linear case is quite special because we only had to trun-
cate the system of constraints, but not individual constraints: any effective
constraint contains quantum variables of only one, fixed order. This was
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just the point of Section 9.4.4. When Ĉ is linear, we can impose all of the
constraints and remove all gauge degrees of freedom in variables up to a
given order without invoking higher-order constraints. This is accomplished
by treating higher-order constraints as imposing conditions on higher-order
quantum variables — possibly in terms of the lower-order unconstrained
ones — and noting that, using (9.12), there is no need to refer to constraints
containing polynomial terms of order above F a1,a2,...,a2N ;b,0 itself, in order to
demonstrate that this variable may be rescaled using gauge transformations.

Moreover, the gauge-invariant degrees of freedom that remain, weakly
commute with all constraints and not just with the constraints up to the or-
der considered, see (9.11). As a result, in the linear example of Section 9.4.4,
higher-order constraints do not affect the reduction of degrees of freedom
for lower orders and so could be disregarded without making any approxi-
mations. For non-linear constraints, however, orders of moments mix and
constraints relevant at low orders can contain moments of higher order. It
is then more crucial to see how the higher moments could be disregarded
consistently, as we will do in what follows.

Truncated system of constraints for the parametrized free, non-
relativistic particle

The motion of a free particle of mass M in one dimension is described on
phase space with coordinates (p, q). Through the introduction of an arbi-
trary time parameter τ , time can be turned into an additional degree of free-
dom. The system is then formulated on the 4-dimensional phase space with
coordinates (t, pt; q, p). The Hamiltonian constraint of the parametrized free,
non-relativistic particle is given by

C = pt +
p2

2M
,

which is constrained to vanish. Because this is the scenario encountered in
all reparametrization-invariant theories, this example is of special interest
for diffeomorphism-invariant theories as general relativity.

Promoting phase space variables to operators, Dirac constraint quanti-
zation yields the quantum constraint

(
p̂t +

p̂2

2M

)
Ψ = 0 . (9.15)

In the Schrödinger representation, one arrives at an equation that is formally
equivalent to the time-dependent Schrödinger equation12

12In contrast to the ordinary, time-dependent Schrödinger equation, time is an operator

in the equation obtained here and not an external parameter. This implies that the

Hamiltonian which generates evolution in time, Ĥphys = p̂2

2M
, has the same action on

physical states as the momentum operator canonically conjugate to time. In contrast to
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i~
∂Ψ(t, q)

∂t
= − ~2

2M

∂2Ψ(t, q)

∂q2
.

As is well known, solutions to this equation are given by

Ψ(t, q) =

∫
dkA(k)e

i
~
E(k)t+ikq , (9.16)

where E(k) = ~2k2

2M .

For quantum variables we use, as before, the notation

Ga,bc,d = 〈(p̂− p)a(q̂ − q)b(p̂t − pt)c(t̂− t)d〉Weyl .

In their general form, the set of constraints on the quantum phase space is
given in Appendix E.

Zeroth-order truncation Truncation of the system at zeroth order, i.e.
setting all quantum variables to zero, yields C(n)|N=0 = Cn together with

C(n)
q |N=0 = qCn +

i~

2
n
p

m
Cn−1 , C

(n)
t |N=0 = tCn +

i~

2
nCn−1

as the required constraints. This truncation is not consistent. Inserting the
condition C = 0 into the expressions for the remaining constraints results

in inconsistent equations. For example C
(1)
t |N=0 = tC + 1

2 i~, implies i~
2 = 0.

The reason for the failure of the sharp truncation seems clear. A trunca-
tion at zeroth order can be understood as neglecting all quantum properties
of the system. But this is not possible for a free particle. For example,
there is no solution in which the spread in both p and q would stay neg-
ligible throughout the particle’s evolution. There is no wave-packet which
would remain tightly peaked throughout and so a description in terms of
expectation values alone seems insufficient in this case.

Second-order truncation But even if one takes into account second-
order quantum variables, spreads and correlations, an inconsistent system
results. The expanded constraints can also be found in Appendix E, which
we now sharply truncate at second-order moments.

From C(n) only three non-trivial constraints follow

the physical Hamiltonian, which is bounded below and positive semi-definite, the spectrum
of the time momentum p̂t covers the entire real line. On physical solutions, however, only
positive ‘frequencies’ contribute.
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C(1) = C +
1

2M
G2,0

0,0 ,

C(2)|N=2 = C2 − (6C − 4pt)G
2,0
0,0 +

4p

2M
G1,0

1,0 +G0,0
2,0 ,

C(3)|N=2 = C3 ,

upon inserting the constraints successively. Thus for an N = 2 order trun-
cation, at n = 3, the classical constraint is recovered and must vanish for
the truncated system. Then, C(1) ≈ 0 yields G2,0

0,0 ≈ 0 which is too strong
for a consistent reduction since one expects the fluctuation Gpp to be freely
specifiable. It has to remain a physical degree of freedom after solving the
constraints, for otherwise no general wave packet as in (9.16) can be posed
as an initial condition for the free particle. As we see, the sharply trun-
cated system is over-constrained. In particular, the constraint C(3), when
truncated to second-order moments, reduces to the classical constraint C3,
which then immediately implies Gpp = 0 due to C(1).

This observation points already — and luckily — to a resolution of the
inconsistency. While C(1) is already of second order even without a trunca-
tion, C(3) contains higher-order moments. The truncation is then inconsis-
tent because we are ignoring higher orders next to an expression which we
then constrain to be zero. Thus, a more careful approximation scheme must
be devised where we do not truncate sharply but ignore higher moments only
when they appear together with lower moments not constrained to vanish.
In such a scheme, as discussed in the following section, C(3) would pose a
constraint on the higher moments in terms of C ≈ −Gpp/2M , but would
not require C or Gpp to vanish.

9.5.2 Consistent approximations

We saw in the preceding section that a sharp truncation scheme in which
all moments larger than a certain order are set to zero, does not yield sen-
sible results. We have to devise a more careful approximation scheme that
takes into account, e.g. products of moments, but also orders of ~. Most
importantly, we want to avoid the situation in which terms are considered
as dominant over others and are consequently set to zero, which themselves
vanish due to some quantum constraint.

General procedure and moment expansion

The consistent approximation is based on a moment expansion. To formalize
this moment expansion, one replaces each moment

Ga,bc,d
by−→ λa+b+c+dGa,bc,d
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and expands in λ. This automatically guarantees that higher-order moments
appear at higher orders in the expansion, and that products of moments are
of higher order than the moments themselves. Moreover, in order to leave
the uncertainty relation unchanged, we have to replace

~
by−→ λ2~ ,

which ensures that it is of higher order, too, without performing a specific
~-expansion. After the λ-expansion has been performed, λ can be set equal
to one to reproduce the original terms.

In addition to such an expansion scheme, it is important to establish
a certain hierarchy of constraints that determines in which order the con-
straints have to be considered, i.e. which are to serve as constraints on
expectation values, which restrict second-order moments and which have to
be considered as constraints on higher-order moments.

This scheme will be demonstrated for the parametrized particle of the
previous section, but the general considerations apply to any parametrized,
non-relativistic, i.e. artificially reparametrization-invariant, system.

Hierarchy of constraints

Variables and constraints were determined in Section 9.5.1. The form of
constraints establishes a hierarchy, suggesting to solve C (n) first, then C

(n)
q ,

C
(n)
t , C

(n)
pt and C

(n)
p , and the remaining constraints (E.3) – (E.6) first for

k = 1, then k = 2 etc. Note that for each k in (E.3) – (E.6) the r = k term
is the only contribution of a form not appearing at lower orders. The terms
occurring in the r-sum are linear combinations of the constraints (E.3) –
(E.6) for k′ < k. Thus, apart from the r = k term, all terms vanish if the
lower k constraints are satisfied.

To actually see that this is a sensible way of sorting the constraints, one
has to look a bit more into the structure of the constraints.

First notice that the structure of the constraints is such that on the
constraint hypersurface C(n), C

(n)

qpk , C
(n)
q , C

(n)

tpk and C
(n)
t contain as lowest

order terms expectation values, whereas C
(n)

ppk , C
(n)
p , C

(n)

ptpk and C
(n)
pt have

second-order moments as lowest contribution. The highest order moments

occurring in C(n) are of order 2n, of order 2n + 1 for C
(n)
q , C

(n)
t , C

(n)
p and

C
(n)
pt and of order 2n+ 1 + k in C

(n)

qpk , C
(n)

tpk , C
(n)

ppk and C
(n)

ptpk .

The structure of (E.3) – (E.6) implies that the lowest contributing order in
the j- and `-sums (on the constraint hypersurface) is j + `+ k± 1 and rises
with k. Consequently, there exists a maximal k up to which constraints have
to be studied if only moments up to a certain order are taken into account.

This can be seen by studying the constraint
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C(n) =

n∑

m=0

m∑

j=0

2(n−m)∑

`=0

(
n

m

)(
m

j

)(
2(n−m)

`

)
pm−jt

p2(n−m)−`

(2M)n−m
G`,0j,0 .

This specific constraint shall only serve as a representative. The other con-
straints, (E.1) – (E.6), are of the same structure. Assume that we are
interested in moments up to order N . For such a fixed order N of moments,
there is a factor of lowest and one of highest power of C. In C (n), e.g.,
the highest power is given for j = 0, ` = 0 (with m = n) and is simply
Cn, whereas the lowest power is given for ` = 0, j = N and is given by
n(n− 1) · · · (n− (N − 1))Cn−N .13

In the j-`-summation, the relevant moments then occur for j + `± 1 ≤
N . From this condition, a number of pairs (j, `) result for which the sums
occurring in (9.5.2), and thus also in (E.1) – (E.6), can be evaluated.

There remain sums over m containing pt, which should be eliminated if
we choose t as internal time to make contact with the quantum theory of the
deparametrized system. (Our consistent approximation procedure, however,
is more general and does not require the choice of an internal time.) We can
achieve this by rewriting these as terms of the form n(n−1) · · · (n−g)Cn−g−1

multiplied by powers of p and 2M , where g is an integer depending on the
values of j and `, see (E.7) – (E.21) as examples. This is achieved by
eliminating pt via C(1) = CQ ≈ 0 and illustrates the central role played by
the principal quantum constraint CQ.14

Since C ≈ −G2,0
0,0/2M , powers of second-order moments ensue — or

higher q-moments if there is a potential. Together with powers of ~ in some
of the terms, this must be compared with the orders of higher moments in
order to approximate consistently.

One can now rewrite the sum over m for all those terms which produce
factors with powers of C down to the lowest power occurring in front of
the relevant moments. In C(n) this would correspond to Cn−N . One can
therefore rewrite the constraints in the form

CnY1 + nCn−1Y2 + n(n− 1)Cn−2Y3 + · · ·+R ≈ 0 , (9.17)

where Yi are functions linear in moments including those of order smaller
than N , and R contains only moments which are of higher order. This allows
one to successively solve the constraints for n = 1, n = 2, etc. and discard
all constraints arising for n ≥ N+1, n > 0. In each case, one has to find the
terms of lowest order in the moment expansion, in combination with powers
Cn, to see at which order a constraint becomes relevant.

13This term arises of course as well for (` = N, j = 0), (` = 1, j = N − 1), etc.
14In our example of the free particle, we have CQ = pt + p2/2M +G2,0

0,0/2M . If there is

a potential, there will be further classical terms as well as quantum variables G0,n
0,0 .
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It is crucial for this procedure to work that Cn, which arises in all con-
straints, can be eliminated at least for all n > n′ through terms of higher-
order moments using the principal constraint CQ. This key property is
indeed realized for any non-relativistic particle even in a potential, as long
as pt appears linearly. For relativistic particles, additional subtleties arise
that have not been studied yet. While (E.1) – (E.6) change their form for a
different classical constraint, the procedure sketched here still applies. Thus,
it does not only refer to quadratic constraints but is sufficiently general for
non-relativistic quantum mechanics.

We will explicitly demonstrate the procedure for the free particle in what
follows. For that purpose, we rewrote the set of constraints in the required
form (9.17) for moments up to third order as seen in Appendix E.

9.5.3 Consistent approximations: the parametrized, free non-

relativistic particle as an example

Consistency of constraints for expectation values

At zeroth order, we keep only expectation values. All moments are of order
O(λ2) or higher. As only relevant constraints we therefore find C (n) ≈ 0,
cf. Appendix E. Keeping only zeroth-order terms, this reduces to C (n) =
Cn ≈ 0. This in turn corresponds to the single constraint C ≈ 0 which can
be used to eliminate pt in terms of p. The system of constraints is obviously
consistent at zeroth order and no constraints on variables associated with
the pair (q, p) result.

The only constraint C(1) = C ≈ 0 generates a gauge flow on expectation
values given by

ṗ = 0 , ṗt = 0 , q̇ =
p

M
, ṫ = 1 .

where a dot denotes derivation with respect to parameter time τ . The two
observables of the system are therefore

P(0) = p and Q(0) = q − t p
M

with {Q(0),P(0)} = 1 , (9.18)

These correspond to the two physical degrees of freedom corresponding to
expectation values of canonical variables. Among the four original degrees
of freedom of the system, pt is eliminated via the constraint and t is a pure
gauge degree of freedom. There are no further constraints to this order,
which is thus consistently approximated.

Consistency of constraints up to second-order moments

At second order, we include second-order moments and orders of ~ — recall
that ~ is of order λ2 in the moment expansion — in addition to expectation
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values. Third order contributions are set to zero. We find that in addi-
tion to C(1), the new constraints C

(1)
q , C

(1)
t , C

(1)
pt and C

(1)
p arise. All other

constraints are of higher order, since second-order moments enter in these
equations only through quadratic terms or with a factor of ~, both of which
are considered as higher-order terms, cf. Appendix E. The only non-trivial
constraints are therefore

C(1) = C +
1

2M
G2,0

0,0 ≈ 0 ,

C(1)
q = G0,1

1,0 +
p

M

i~

2
+

p

M
G1,1

0,0 ≈ 0

C
(1)
t =

p

M
G1,0

0,1 +G0,0
1,1 +

i~

2
≈ 0

C(1)
pt

= G0,0
2,0 +

p

M
G1,0

1,0 ≈ 0

C(1)
p = G1,0

1,0 +
p

M
G2,0

0,0 ≈ 0 ,

where third-order contributions have been set to zero. In accordance with
the order of expectation values, we use the first constraint to eliminate
pt = −p2/2M −G2,0

0,0/2M and solve for second-order moments

G0,1
1,0 = − p

M

i~

2
− p

M
G1,1

0,0 ,
p

M
G1,0

0,1 = −G0,0
1,1 −

i~

2
(9.19)

G0,0
2,0 = − p

M
G1,0

1,0 , G1,0
1,0 = − p

M
G2,0

0,0 .

As constraints for k > 1 contain second-order moments only through Cn,
they are trivial as well. This follows from the first constraint which sets

Cn ∼
(
G2,0

0,0

)n
∼ O(λ2n).

Thus, as far as second-order moments are concerned, the system of con-
straints is consistent. The moments G0,0

2,0, G
1,0
1,0, G

1,0
0,1 and G0,1

1,0 are fully deter-
mined while all second-order moments associated with the pair (q, p) can be
specified freely. All remaining constraints then determine higher moments.
This is the same situation as experienced in the linear case, as far as solving
the constraints for second-order moments is concerned. The inconsistency
of Section 9.5.1 is avoided because C(3), which made C and thus G2,0

0,0 vanish
in the sharp truncation, is now realized as a higher-order constraint in the
moment expansion.

Gauge transformations are generated by C(1), C
(1)
q , C

(1)
t , C

(1)
pt and C

(1)
p ,

where third-order contributions are set to zero as in (9.19). In comparison
to Section 9.5.3 we have four additional gauge transformations. Whereas
P(2) := P(0) remains gauge invariant under these transformations as well,
this is not the case for Q(0). The latter has to be altered by adding second-
order moments such that an observable
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Q(2) = Q(0) − 1

M
G1,0

0,1 (9.20)

results which also satisfies {Q(2),P(2)} = 1.
Calculating the transformations generated by constraints on second-

order moments shows that Gpp(2) = G2,0
0,0 is an observable, i.e. commutes

with all five constraints on the hypersurface defined by these constraints.
The form of gauge orbits suggests to make the ansatz

Gqp(2) = G1,1
0,0 +G0,0

1,1 −
t

M
G2,0

0,0 +
i~

2
, (9.21)

Gqq(2) = G0,2
0,0 − 2

p

M
G0,1

0,1 +
p2

M2
G0,0

0,2 −
2t

M

(
G1,1

0,0 +G0,0
1,1 +

i~

2

)

+
t2

M2
G2,0

0,0 ,

for the remaining two observables. They are invariant under gauge transfor-
mations. The term i~

2 is included such that Poisson brackets between Gqq(2)

and the remaining two quantum observables are of the required form. They
satisfy

{Gpp(2),Gqp(2)} = −2Gpp(2) , {Gpp(2),Gqq(2)} = −4Gqp(2) ,

{Gqp(2),Gqq(2)} = −2Gqq(2) .

Commutators between Q(2), P(2) and the physical quantum variables Gqq(2),
Gpp(2) and Gqp(2) vanish.

Thus we showed that four of the ten second-order moments are eliminated
directly by the constraints. Three of the remaining second-order moments,
G0,0

1,1, G
0,0
0,2 and G0,1

0,1, are pure gauge degrees of freedom. Consequently three
physical quantum degrees of freedom remain at second order. The observ-
ables can be used to determine the general motion of the system in co-
ordinate time: From (9.18) and (9.20) together with (9.19) and (9.21) we
obtain

q(t) = Q(2) +
t

M
P(2) +

1

M
Gpt ≈ Q(2) +

t

M
P(2) − 1

p

(
Gtpt +

i~

2

)

= Q(2) +
t

M
P(2) − 1

P(2)

(
Gqp(2) +

t

M
Gpp(2) −Gqp

)
(9.22)

for the relational dependence between q, t and Gqp. Thus, the moments
appear in the solutions for expectation values in coordinate time which il-
lustrates the relation between expectation values and moments.
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At this stage, we still have to choose a gauge if we want to relate the
non-observables q, t and Gqp in this equation to properties in a kinematical
Hilbert space. A convenient choice is to treat (t, pt) like a fully constrained
pair.

The choice should ensure that physical quantum variables take real val-
ues and the uncertainty relations are satisfied for all, physical as well as
unphysical, quantum variables. This suggests to fix the gauge by requiring
that Gtpt = −1

2 i~ has no real part. Then, physical quantum variables are
real. Moreover, as in the linear case, we can gauge fix Gtt = 0, such that the
uncertainty relation GttGptpt − (Gtpt)

2 ≥ ~2/4 is saturated independently of
the behaviour of the (q, p)-variables. For Gtt 6= 0, it would depend on those
variables via Gptpt ≈ p2Gpp/M2 from (9.19). Finally, this is the only gauge
condition for Gtpt which works for all values of P (2), including P(2) = 0 in
(9.22).

In this gauge, we obtain

q(t) = Q(2) +
P(2)

M
t , Gqp(t) = Gqp(2) +

Gpp(2)

M
t

in agreement with the solutions one would obtain for the deparametrized
free particle. In this case, there is no quantum back-reaction of quantum
variables affecting the motion of expectation values because the particle is
free. In the presence of a potential, equations analogous to those derived
here would exhibit those effects.

Consistency of constraints up to third-order moments

Including third-order terms in the analysis, solutions to the constraints C
(1)
q ,

C
(1)
t , C

(1)
pt and C

(1)
p become

G0,1
1,0 = − p

M

i~

2
− p

M
G1,1

0,0 −
1

2M
G2,1

0,0 ,

p

M
G1,0

0,1 = −G0,0
1,1 −

i~

2
− 1

2M
G2,0

0,1 ,

G0,0
2,0 = − p

M
G1,0

1,0 −
1

2M
G2,0

1,0 ,

G1,0
1,0 = − p

M
G2,0

0,0 −
1

2M
G3,0

0,0 .

As in the previous paragraph, they will be used to determine second-order
moments. The constraint C(1) contains no third-order terms and thus re-
mains unaltered. Third-order moments are determined by higher constraints

C
(1)
qp , C

(1)
tp , C

(1)
ptp, C

(1)
p2

and C
(2)
q , C

(2)
t , C

(2)
pt .

All other constraints contain third-order moments with a factor of ~ or
of second or higher moments, both of which provides terms of higher order.
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For instance, we may consider the constraints C
(1)
qp2

, C
(1)
tp2

, cf. (E.17), (E.18).
They both contain third-order moments with a factor of C, which, after
solving C(1), becomes a term of fifth order. The remaining second- and third-
order terms occur with a factor of ~, and are thus of fourth and fifth order.
From this consideration of orders in the moment expansion, we conclude that

C
(1)
qp2

and C
(1)
tp2

do not constrain third-order moments but become relevant
only at higher than third orders of the approximation scheme.

For n = 1 the constraints that actually do determine third-order moments

are C
(1)
qp , C

(1)
tp , C

(1)
ptp and C

(1)
p2

. On the constraint hypersurface, they imply

G1,1
1,0 ≈ − p

M
G2,1

0,0 +
1

2M
G2,0

0,0

(
G1,1

0,0 − i~
)
,

G1,0
1,1 ≈ 1

2M
G2,0

0,0G
1,0
0,1 −

p

M
G2,0

0,1 ,

G1,0
2,0 ≈ 1

2M
G2,0

0,0

(
1

2M
G3,0

0,0 +
p

M
G2,0

0,0

)
− p

M
G2,0

1,0, ,

G2,0
1,0 ≈ 1

2M
G2,0

0,0G
2,0
0,0 −

p

M
G3,0

0,0 .

Note that this holds on the constraint hypersurface defined by the con-

straints C(1), C
(1)
q , C

(1)
t , C

(1)
pt and C

(1)
p . Dropping fourth- and fifth-order

terms, we find the simple relations

G1,1
1,0 ≈ − p

M
G2,1

0,0 , G1,0
1,1 ≈ − p

M
G2,0

0,1 ,

G1,0
2,0 ≈ − p

M
G2,0

1,0 , G2,0
1,0 ≈ − p

M
G3,0

0,0 .

This happens in a consistent manner because unconstrained third-order mo-
ments appear on the right-hand sides. No condition on the (q, p)-moments
present in these equations arises in this way, but the third-order moments
G1,0

1,1 and G0,0
2,1 associated with (t, pt) remain unspecified at this stage. The

constraints C
(2)
q , C

(2)
t , C

(2)
pt arising for n = 2 yield

G0,1
2,0 ≈ p

2M2
G2,0

0,0G
1,1
0,0 ,

G0,0
2,1 ≈ 1

M

(
G2,0

0,0

(
G0,0

1,1 +
1

2M
G2,0

0,1

)
+
p2

M
G2,0

0,1

)
,

G0,0
3,0 ≈ 2

p

M

(
− p2

2M2
G3,0

0,0 +
1

2M
G2,0

0,0

(
1

2M
G3,0

0,0 +
p

2M
G2,0

0,0

))
,

which, after setting higher-order terms to zero, sets
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G0,1
2,0 ≈ 0 , G0,0

2,1 ≈
p2

M2
G2,0

0,1 , G0,0
3,0 ≈ −2

p3

2M3
G3,0

0,0 .

Now we turn to the elimination of degrees of freedom through gauge
transformations. The inclusion of third-order terms and new constraints
does not affect P(2) and Q(2). They remain constant under gauge transfor-
mations. We therefore write

P(3) := P(0) and Q(3) := Q(2) .

Accordingly, their Poisson bracket is unaltered. The situation is, however,
altered for the second-order quantum variables. Only Gpp(2) remains invari-
ant under the flow generated by third-order constraints. Now that third-
order terms are included, Gqp(2) and Gqq(2) are no longer observables. The
former changes under gauge transformations as follows

{Gqp(2), C(1)
q } =

1

2M
G2,1

0,0 , {Gqp(2), C
(1)
t } =

1

2M
G2,0

0,1 ,

{Gqp(2), C(1)
pt
} =

1

2M
G2,0

1,0 , {Gqp(2), C(1)
p } =

1

2M
G3,0

0,0 ,

whereas Poisson brackets with C
(1)
qp , C

(1)
tp , C

(1)
ptp and C

(1)
p2

are of fourth order in
the moment expansion. The terms on the right-hand side can be eliminated
through the addition of a third-order moment by

Gqp(3) := Gqp(2) − 1

2M
G2,0

0,1 .

This has vanishing Poisson brackets with all constraints up to fourth-order
terms. Moreover, it has vanishing Poisson bracket with P (3) as well as Q(3).
The Poisson brackets with Gpp(3) := Gpp(2) remains unaltered, {Gqp(3),Gpp(3)} =
2Gpp(3).

Transformations generated by the constraints on Gqq(2) are of a more
complicated form and I have not found a simple way of writing Gqq(3) in
explicit form.

Nonetheless we can end our calculations because the applicability of
effective constraints has been demonstrated.

9.6 Conclusions

I thoroughly motivated and briefly introduced the formalism of generalized
effective equations. This is set up on quantum phase space coordinatized
by expectation values and higher moments of the wave function which are
also referred to as quantum variables. The main part of this chapter was
concerned with the application of this scheme to constrained systems.
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Two major tasks had to be solved in order to provide such an application.
First of all, a handy set of constraints on quantum phase space had to be
found that replaces Dirac’s quantization condition. The major problem was
to ensure that this set would provide neither stronger nor weaker restrictions
than the original constraint quantization condition. Secondly, the resulting
infinite set had to be dealt with in some way. That means we had to find
a consistent approximation method. This method had to be chosen such
that quantum variables can be treated order by order. Nonetheless, the
approximated system should remove degrees of freedom up to a certain order
correctly.

We developed an iteration procedure that allows one to determine a
minimal set of quantum constraints. It was shown how this set would look
like for linear constraints and moreover demonstrated that the thus chosen
set meets all requirements. The degrees of freedom are removed correctly.

Furthermore, we presented a consistent approximation scheme that works
for any artificially reparametrization-invariant theory. This procedure also
applies to interacting systems. We can solve the constraints in the same
manner and using the same orders of constraints. The main consequence
in the presence of a potential V (q) is that additional q-moments appear as
extra terms in solutions at certain orders, whose precise form depend on
the potential. For a small potential, this can be dealt with by perturbation
theory around the free solutions.

The relativistic, or truly reparametrization-invariant case, awaits further
study.
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Chapter 10

Conclusions

In this thesis, I gave a careful derivation of quantum general relativity. I
paid particular attention to the problems of this approach. Quantum general
relativity is usually blamed for not allowing a positive definite inner product
and thus no Hilbert space structure. A positive definite inner product is
however not what one would expect from a constrained quantum theory. To
the contrary, one has to require that the theory does not allow a positive
definite inner product because it still contains unphysical states.

The second reproach quantum general relativity has to face are diver-
gences arising from operator products at the same space point. These, how-
ever, are an inherent feature of the functional Schrödinger picture. Every
quantum field theory when formulated in this picture suffers from these
divergences. Thus this type of divergences is a problem of the functional
Schrödinger picture and not a specific deficit of quantum general relativ-
ity. The fact that these divergences cannot be simply removed by some
renormalization procedure, is however owed to general relativity.

The third problem is related to the divergence of the Wheeler–DeWitt
equation whenever the three-metric becomes degenerate.

This bridges the gap to the major topic of this thesis, namely the fate
of singularities in quantum cosmology. First of all, I argued that we should
not expect that quantum general relativity is a theory free of singularities.
Simply because it is not the final and fundamental theory. Furthermore, I
used the example of singular potentials in classical and quantum mechan-
ics to demonstrate that we cannot expect that the singularities of classical
general relativity do not occur on the quantum level as well. Namely, in
the case of singular potentials, classical singularities persist on the quantum
level. A familiar example is the inverse-square potential. From this point
of view, the motivation of quantum gravity through the existence of classical
singularities is invalid.

And indeed, the divergence of the Wheeler–DeWitt equation for degen-
erate three-metrics signals that some singularities persist on the quantum
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level.
For the cosmological model this divergence arises for vanishing scale-

factor, i.e. at the usual location of the big-bang singularity. I showed,
however, that for a Friedmann–Robertson–Walker universe with cosmolog-
ical constant for a whole class of factor-orderings a unique solution to the
Wheeler–DeWitt equation exists which can be continuously extended to
zero scale factor. So in the simple quantum-cosmological models considered
here, the degeneracy of the three-metric does not prevent the theory from
providing unique predictions.

A way to cope with this divergence of the Wheeler–DeWitt equation in
the full theory, is to exclude degenerate three-metrics from the very begin-
ning. This just amounts to an implementation of the positivity condition of
the three-metric.

All classical singularities that do not correspond to a degenerate three-
metric are absent on the quantum level — as long as they do not correspond
to singular points of the matter Hamiltonian.

From this picture, two criteria seem to be sensible benchmarks to judge
singularity resolution. The first one is the vanishing of the wave function at
the location of the classical singularity. This, of course, can only apply if the
classical singularity can be tracked down in configuration space. The van-
ishing of the wave function then simultaneously turns the Wheeler–DeWitt
equation into a well-defined equation. Note that a point on which the wave
function vanishes cannot contribute to the quantum theory.

The second criterion is the break-down of the semi-classical approxi-
mation. It applies especially to singularities which cannot be located in
configuration space. Here, the dissolution of spacetime suffices to account
for singularity resolution. The end points of classically incomplete geodesics
are hidden in a quantum region. That means observers cannot ‘fall’ into
the singularity because spacetime itself dissolves before the singularity is
reached.

With these two criteria at hand, I approached two different cosmological
scenarios. Both scenarios are dominated by singularities which end the
evolution of the universe at large scale factor. The first scenario is motivated
by phantom dark energy. This type of dark energy generically drives the
universe into a big-rip singularity at which the scale factor diverges after
a finite amount of time. So in this model, the singularity is found at the
boundary of configuration space opposite to the big bang.

In the second scenario, the universe is governed by an anti-Chaplygin
gas. This type of matter produces a big-brake singularity which ends the
universe’s evolution at finite, large scale factor.

Both singularities are resolved on the quantum level. The big-rip singu-
larity does not correspond to a singularity of the Wheeler–DeWitt equation.
As expected, it is therefore resolved through a mere spreading of wave pack-
ets, i.e. a break-down of the semi-classical approximation. As a side, let me
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remark that an exact solution to the Wheeler–DeWitt equation was given
for one of the phantom models. For each phantom model with big-rip sin-
gularity, a corresponding scalar-field model was studied. These exhibit a
big-bang singularity. The big bang can be tracked down in configuration
space and does correspond to a singular point of the Wheeler–DeWitt equa-
tion. Consequently it is, as expected, resolved through a vanishing of the
wave function. The big-brake singularity, on the other hand, corresponds
to a singularity of the matter potential. The wave function is consequently
found to vanish at the big brake, but also spreads upon approach of the
classical singularity.

So, we can conclude that these more exotic types of singularity are re-
solved on the quantum level. This resolution of singularities occurring at
large scale factor stands as proof for the occurrence of quantum gravitational
effects in the macroscopic universe.

The last chapter does not relate to the previous ones. It was devoted to
the development of a formalism that allows the application of generalized
effective equations to constrained systems. The two major hurdles to clear
were the consistent formulation of a set of constraints on quantum phase
space and the development of a consistent approximation scheme for these.
Both difficulties were overcome. The consistency of the set of constraints
was shown for a single, linear constraint and thus for all singly constrained
systems at least locally. The applicability of the approximation scheme was
demonstrated for artificially reparametrization-invariant theories. The ex-
tension to relativistic systems awaits further study.
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Appendix A

Generalized Hamiltonian

dynamics

In classical mechanics, one can distinguish between regular and singular
systems. Singular systems have the property that the matrix of second
derivatives of the Lagrangian with respect to the velocities is degenerate,
i.e.

det

(
∂2L(q, q̇)

∂q̇iq̇j

)
= 0

for a system with Lagrangian L(q, q̇) depending on positions qi and veloc-

ities q̇i = dqi

dt for each degree of freedom i = 1, . . .N . There are certain
peculiarities arising from this degeneracy, in the Lagrangian as well as in
the Hamiltonian framework.

As the Hamiltonian framework is the starting point for quantization, I
will focus on the setup of the Hamiltonian formulation for such a singular
system. This formulation is given by the Bergmann–Dirac algorithm.

A.1 The Bergmann–Dirac algorithm for classical

mechanics

As described above, we start from a system with action

S =

∫
dt L(q, q̇) ,

where qi and q̇i for i = 1, . . . N are the positions and velocities of a mechani-
cal system. We assume that this system is consistent but singular. The aim
is to arrive at a Hamiltonian formulation for it. In the following we will use
q, q̇ or p to refer to all qi, q̇i and pi.
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A.1.1 Canonical momenta and primary constraints

The Hamiltonian framework is set up on phase space Γ consisting of all
positions q and canonically conjugate momenta p defined via

pi =
∂L(q, q̇)

∂q̇i
.

Because we are dealing with a singular system, the matrix W =
(
∂pi

∂q̇j

)
is

degenerate, i.e. it does not have full rank. Let the rank be R < N . This
means that we can eliminate just R of the velocities in terms of the momenta
and the remaining velocities,

q̇a = fa(q, pα, q̇
ρ) ,

where a = 1, . . . R, α = 1, . . . R and ρ = R + 1, . . .N . The velocities q̇ρ

remain in the formalism. We thus have

pi = gi(q, pα, q̇
ρ)

for the canonical momenta. The set of momenta dissociates into two groups:
those which still contain velocities

pα = gα

and those which do not

pr = gr(q, pα, q̇
ρ) , where r = R+ 1, . . . N . (A.1)

The latter are constraints. As they arise in the definition of the momenta,
they are called primary constraints.

A singular Lagrangian system thus corresponds to a Hamiltonian system
with 2N variables (q, pα, q̇

ρ) set up on a hypersurface Γp of phase space
defined by the primary constraints, (A.1).

A.1.2 Canonical Hamiltonian and equations of motion

We define the quantity

Hc(q, pα, q̇
ρ) = piq̇

i − L(q, q̇) .

Inserting the defining equations for the momenta, this becomes

Hc(q, pα, q̇
ρ) = pαḟ

α + grq̇
r − L(q, q̇) .

Differentiating this quantity with respect to the variables (q, pα, q̇
ρ), we find

the equations



A.1. THE BERGMANN–DIRAC ALGORITHM I 161

q̇a =
∂Hc

∂pa
− ∂gr
∂pa

q̇r , (A.2)

ṗi = −∂Hc

∂qi
+
∂gr
∂qi

q̇r , (A.3)

whereas ∂Hc

∂q̇ρ = 0. These equations hold by means of the Euler–Lagrange
equations, i.e. when the equations of motion are satisfied (because we re-
placed ∂L

∂q̇i by ṗi).

The Hamiltonian thus yields N + R equations of motion. The N − R
velocities q̇r remain undetermined. Thus we have equations of motion on the
constraint hypersurface Γp – but only for the qa and all pi. The equations
look very similar to the Hamiltonian equations of motion for a regular system
but are not symmetric in p and q (more equations for p than for q) and
contain undetermined functions q̇r.

The decisive step in the Bergmann–Dirac algorithm consists now in ex-
tending this set of equations as well as the Hamiltonian to the entire phase
space Γ. To this end it is convenient to introduce the notions of weak and
strong equalities.

A.1.3 Weak and strong equalities

Weak and strong equalities can be defined for any function F (p, q) on a
neighbourhood of Γp. The function F (p, q) is weakly equal to zero if F (p, q)|Γp

= 0. We write

F (p, q) ≈ 0 if F (p, q)|Γp = 0.

The function F (p, q) vanishes strongly if itself and its gradient vanish weakly.
We use the notation

F (p, q) ' 0 if F (p, q)|Γp = 0

and
(
∂F
∂qi ,

∂F
∂pi

)
|Γp = 0 .

Fixing a function on the primary constraint hypersurface up to first-order
derivatives is sufficient for the reformulation of the Hamilton equations of
motion, because they only contain first-order derivatives with respect to
phase-space variables.

One can then define the primary constraint hypersurface by a set of
weakly vanishing functions

Gr(p, q) = pr − gr(q, pα) ≈ 0 . (A.4)
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It can be shown (for the proof see Sundermeyer’s book [23], p. 48) that
every weakly vanishing function is strongly equal to a linear combination of
the primary constraints Gr,

F (p, q) ≈ 0 ⇔ F (p, q) ' Gr(p, q)
∂F (p, q)

∂pr
. (A.5)

A.1.4 Primary Hamiltonian and extended equations of mo-

tion

The generalized Hamiltonian H

With this result and these definitions, one can extend the Hamiltonian Hc

over the entire phase space. This generalized Hamiltonian H′ has to be
equivalent to the canonical Hamiltonian on Γp, Hc ≈ H′. According to the
previous result (A.5) for F (p, q) = Hc − H′ ≈ 0 it follows that

Hc −H′ +
∂H′

∂pr
Gr(p, q) ' 0 ,

where we used the fact that Hc does not depend on pr. By definition, the
derivatives of this expression with respect to all positions and momenta
vanish weakly. Employing the equations of motion (A.2), we find that

q̇a ≈ ∂

∂pa

[
H′ − ∂H′

∂pr
Gr(p, q)− grq̇r

]
,

− ∂L
∂qi

≈ ∂

∂qi

[
H′ − ∂H′

∂pr
Gr(p, q)− grq̇r

]
.

We can now replace gr by Gr in these equations as the derivatives of pr with
respect to pa and qi vanish. Note further that

∂Gr
∂pi

q̇r =
∂Gr
∂pa

q̇r ,

so that we finally obtain a symmetric form of the equations of motion

q̇i ≈ {qi,H + q̇rGr} ,
∂L

∂qi
≈ {pi,H + q̇rGr} ,

where H = H′ − Gr
∂H′
∂pr

. The price we pay for the additional equations
of motion for the q̇r is that the equations of motion are now only weak
equations. Also the equations contain the not completely fixed function H.
The latter problem can easily be circumvented as Hc ' H. Therefore the
equations of motion can be written as
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q̇i ≈ {qi,Hc + q̇rGr} ,
∂L

∂qi
≈ {pi,Hc + q̇rGr} .

The primary Hamiltonian Hp

In a last step, one takes care of those cases in which the constraints cannot
be solved for the momenta pr. In general this is not possible and we thus
cannot assume that the primary constraint hypersurface be described by
equations of the form Gr, (A.4). We therefore characterize Γp by the weakly
vanishing

φr(p, q) ≈ 0 , where r = R+ 1, . . .N .

We relate this to the former expression Gr by taking derivatives with respect
to q and pa,

dφr
dqi

=
∂φr
∂qi

+
∂φr
dps

∂gs
dqi
≈ 0 ,

dφr
dpa

=
∂φr
∂pa

+
∂φr
dps

∂gs
dpa
≈ 0 .

The matrix V = (∂φr

dps
) is invertible and therefore we can solve these equa-

tions for ∂gs

dqi and ∂gs

dpa
. We can again substitute gr by Gr weakly. Thus we

can rewrite the equations of motion

q̇i ≈ {qi,Hc}+ q̇sV −1
sr

∂φr
dpi

,

ṗi ≈ {pi,Hc}+ q̇sV −1
sr

∂φr
dqi

.

Introducing µr = q̇sV −1
sr , we can define the primary Hamiltonian

Hp = Hc + µrφr

with the help of which the time-development for an arbitrary phase space
function A(p, q) can be written as

Ȧ ≈ {A,Hp}+ µr{A,φr} .
These µr are then seen to contain the arbitrariness carried in the velocities
q̇r which could not be expressed in terms of momenta.
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A.1.5 Consistency and secondary constraints

The system can only be described consistently if the constraints themselves
are conserved in time. This can yield new constraints or restrict the multplier
functions µr, depending on the form of the consistency conditions. These
are

φ̇r ≈ {φr,Hc}+ µs{φr, φs} .

Using the short-hands hr = {φr,Hc} and Prs = {φr, φs}, the following four
cases can arise.

Case I: h 6≈ 0

Case IA: detP 6≈ 0
In this case, P can be inverted and multiplier functions µ be
determined through

µs ≈ −P−1
rs hr .

The equations of motion thus become

Ȧ ≈ {A,Hp} − {A,φs}P−1
rs {φr,Hc} ,

and do no longer contain any ambiguities. The motion is com-
pletely determined.

Case IB: detP ≈ 0
The matrix P does not have full rank. Let its rank be denoted
by M < N −R. In this case, P has N −R−M null eigenvectors
e(α) yielding new constraints

e(α)
r Prs ≈ 0 ⇒ e(α)

r hr ≈ 0 .

These constraints restrict the primary constraint hypersurface
further to a hypersurface Γ′ ⊂ Γp. The new constraints are called
secondary constraints.

Case II: h ≈ 0

Case IIA: detP 6≈ 0
Now the fact that P can be inverted fixes the µr — they have
to vanish weakly µsPrs ≈ 0 ⇔ µs ≈ 0. Thus the canonical
Hamiltonian is equal to the primary one.

If Hc = 0, one therefore has to demand that detP ≈ 0 — other-
wise the theory is trivial. This is an additional, secondary con-
straint.
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Case IIB: detP ≈ 0
In this case, the condition µsPrs ≈ 0 yields constraints on the
multipliers µ. Let the rank of P beM , thenN−R−M multipliers
get weakly fixed through these equations.

Requiring the constraints to be conserved in time yields a number of sec-
ondary constraints that further shrink the constraint hypersurface. More-
over, some of the multiplier functions get fixed. We denote the new con-
straint hypersurface by Γ′. It is defined via

φr(p, q) ≈ 0 , r = R+ 1, . . .N and

χρ′(p, q) ≈ 0 , ρ′ = 1, . . . L′ .

Weak equalities from now on refer to Γ′.
From the arisal of new constraints, two iteration procedures result.
First of all, the primary constraints have to be conserved on the new

constraint hypersurface Γ′. From this requirement one might get more (ter-
tiary) constraints that restrict the surface to Γ′′ etc. In the end we will
arrive at a constraint hypersurface Γ′′ described by the weak vanishing of

φr(p, q) ≈ 0 , r = R+ 1, . . .N and (A.6)

χρ′′(p, q) ≈ 0 , ρ′′ = 1, . . . L′′ , (A.7)

where L′′ ≥ L′. We will call all new constraints arising in this process
secondary constraints.

The second iteration procedure takes care of the time-conservation of
these new, secondary constraints. Whether or not new constraints arise at
this stage depends now on the matrix

(
{φr, φs}
{χ′′ρ, φs}

)
.

For every null eigenvector of this matrix we get a new constraint from mul-
tiplication of {φr,Hc}+ {χρ,Hc} by the null eigenvector.

Iteration of these two procedures yields the final constraint hypersurface
Γc defined by a set of primary and secondary constraints

φr(p, q) ≈ 0 , r = R+ 1, . . .N and

χρ(p, q) ≈ 0 , ρ = 1, . . . L ≥ L′′ .

For every null eigenvector e(i) of

D =

(
{φr, φs}
{χρ, φs}

)
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the equations

e(i)r {φr,Hc}+ e(i)ρ {χρ,Hc} ≈ 0

are satisfied on Γc. Furthermore the functions µs are subject to the condi-
tions

{φr,Hc}+ µs{φr, φs} ≈ 0 (A.8)

{χρ,Hc}+ µs{χρ, φs} ≈ 0 (A.9)

on Γc. In practice, this procedure terminates after a few steps and in each
step it is very obvious what to do without recurring to matrices P or D and
their rank.

A.1.6 Determination of multiplier functions µ

In the last paragraph we just noted that the multiplier functions get fixed
through consistency relations for certain primary and secondary constraints.
We now want to look somewhat closer on how this happens. More specifi-
cally, we want to know how many of the multiplier functions get fixed.

To answer this question, it is useful to introduce the notion of first- and
second-class constraints. A first-class constraint has weakly vanishing Pois-
son brackets with all other constraints and all linear combinations of them.
All constraints that do not have this property are called second class. Note
that here and in the following, weak vanishing refers to the final constraint
hypersurface Γc.

With these notions at hand, we can discuss the fixing of multiplier func-
tions. Conditions on µ arise whenever the matrix D in (A.8) has full
rank N − R. This is just Case IA discussed above. If the rank of D is
K < N − R, then K multipliers get fixed through the above equations.
From the N −R−K null eigenvectors e(J) of D, one can construct the new
constraints

φJ = e(J)
r φr, J = 1, . . .N −R−K

through linear combination. Because the e(J) are null eigenvectors of D, we
find that

{φJ , φr} ≈ 0 , {φJ , χρ} ≈ 0 .

The new constraints are first class. We call the remaining primary con-
straints φi where i = N −R−K + 1, . . . N −R. These are then necessarily
second class. We carry out a similar split for the secondary constraints. The
first-class ones will be denoted by χA, the second-class ones by χa. In this
step, primary and secondary constraints get mixed. Thus we will only speak
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of primary first- and second-class constraints φ but the remaining constraints
χ will no longer be referred to as secondary as they are linear combinations of
secondary and primary constraints. We write therefore µsφ

s = φJvJ +φiui.
Inserting this in (A.8), we obtain the following equations

{φJ ,Hc} ≈ 0 (A.10)

{χA,Hc} ≈ 0 (A.11)

{φi,Hc}+ uj{φi, φj} ≈ 0 (A.12)

{χa,Hc}+ uj{χa, φj} ≈ 0 . (A.13)

There are several observations one can make at this point. First of all, we see
that any first-class constraint necessarily commutes with the Hamiltonian.
Secondly, the multipliers associated with the primary first-class constraints
all drop out. Thus there are as many undetermined multiplier functions as
there are primary first-class constraints. Thirdly, the multiplier functions
associated with the second-class constraints are determined by (A.10).

They are fixed to

uj ≈ −∆−1
jµ {ξµ,Hc} ,

where ξµ = (φi, χa) stands for any second-class constraint and the matrix
∆ is given by

∆ =

(
{φi, φj}
{χa, φj}

)
.

The derivation of these results can be found in Sundermeyer’s book, [23], p.
58 — it is essentially the same calculation as in Case IA above.

The equation of motion for a general phase space function A(p, q) is then
given by

Ȧ ≈ {A,Hc}+ vJ{A,φJ} − {A, ξν}∆−1
µν {ξµ,Hc} . (A.14)

So whereas all second-class constraints appear in a symmetric manner, the
primary first-class constraints play a distinguished role.

A.1.7 First-class constraints and gauge transformations

Gauge transformations

The equation of motion (A.14) shows that there is some arbitrariness in the
time evolution of phase space functions due to the undetermined vJ . More
specifically, given an initial value A0 of a phase space function A at time
t = t0, the evolution of A(t) is not uniquely determined. The transformation
between two solutions A(t) obtained through the evolution with two different
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parameters v is called a gauge transformation. A priori this has nothing to do
with gauge theories nor the invariance of the Lagrangian under certain (rigid
or local) gauge transformations. However, there is a link between gauge
transformations defined here and local gauge invariance of the Lagrangian.
This connection will be discussed now.

We assume for the time being that the system at hand has only first-class
constraints so that the primary Hamiltonian is Hp = Hc +λJφ

J . The gauge
transformation maps two solutions Aλ(t), Aλ′(t) with Aλ(t0) = Aλ′(t0) = A0

onto each other. If we expand

Aλ(t) = A0 + {A0,Hc}t+ λJ(0){A0, φ
J}t+ higher derivatives ,

corrBthe following transformation is a gauge transformation

Aλ(t)− Aλ′(t) = t
(
λJ(0)− λ′J(0)

)
{A0, φ

J} = δεA = εJ{A0, φ
J} . (A.15)

First of all, one can see from calculating the commutator of two such gauge
transformations δε, δη that in general these transformations do not form
a group. The group property holds only weakly. Moreover, the primary
first-class constraints are not the only constraints generating gauge trans-
formations. Evolution over a larger amount of time makes it necessary to
include also second derivatives Ä(t). Thus also φ̇J generate gauge transfor-
mations. In general, one can construct the set of all gauge transformations
iteratively, including higher-order time derivatives in (A.15). Let the set
G0 be the set of all first-class primary constraints. Then we find from the
inclusion of second derivatives that G1 = G ∪ {G0,Hp} is the set of gauge
transformations. Here, {G0,Hp} stands for the set of constraints that arises
from the derivation of the constraints in G with respect to time. This proce-
dure has to be iterated, Gi+1 = Gi ∪ {Gi,Hp}, until Gi+1 = Gi. We call the
resulting set of gauge transformation-generating constraints G. It follows
from the construction that, firstly, all primary first-class constraints gener-
ate gauge transformations. Secondly, G does not necessarily exhaust the set
of all first-class constraints. There may be first-class constraints that do not
generate gauge transformations. Before we turn to the content of the Dirac
conjecture, we want to briefly shed light on the relationship between gauge
transformations as they are defined here and local gauge transformations.

Gauge transformations and Lagrangian invariance

In the Lagrangian approach, the name of gauge transformations is used
for transformations that leave the Lagrangian invariant. Depending on the
character of these transformations, one speaks of rigid or local gauge trans-
formations. They are the subject of the first and second Noether theorem,
respectively.
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Assume a system with action

S[φA] =

∫
dµxL[φA, ∂φA, xµ]

describing a theory with fields φA depending on coordinates xµ. Let
L[φA, ∂φA, xµ] be the system’s Lagrangian density and ∂φA a short-hand

denoting the dependence of the Lagrangian on ∂µφ
A = ∂φA

∂xµ .

If under an infinitesimal transformation

xµ −→ x′µ = xµ + δxµ , (A.16)

φA(x) −→ φ′A(x′) = φA(x) + δφA , (A.17)

the Lagrangian remains invariant, we say that the transformations (A.16)
generate gauge transformations of the system. Inserting (A.16) into the
Lagrangian and requiring δL = L[φ′A, ∂′φ′A, x′µ] − L[φA, ∂φA, xµ] = 0, one
finds the condition

∂µ

[
Lδxµ +

δL
δ(∂µφA)

δ∗φA
]

+ LAδ
∗φA = 0 , (A.18)

where δ∗φA = δφA − ∂ρφAδxρ is the substantial variation of φA and LA =
δL
δφa − ∂µ

(
δL

δ(∂µφa)

)
are the Euler derivatives. This statement holds irre-

spective of the form of δxµ and δφA. We specify these further. Let the
transformations be parametrized by r parameters εk,

δxµ = εkχ
µ
k δφA = εkξ

A
k .

corrBIf these are constant, we speak of rigid gauge transformations. In this
case, Noether’s theorem tells us that there exist r conserved currents —
if the equations of motion are satisfied (just use (A.18)). We are however
interested in local gauge transformations. These are transformations with
xµ-dependent εk(x). Writing

δφA = εkξ
A
k + εk,µ ψ

Aµ
k ,

we get from (A.18) the so-called generalized Bianchi identities

LA
(
ξAk − (∂µφ

A)χµk
)
− ∂µ

(
LAψ

Aµ
k

)
= 0 . (A.19)

These are trivially satisfied if the equations of motion are. But they hold
also if the equations of motion are not satisfied, showing that the set of
Euler–Lagrange equations is not independent. Also, one can show that
(A.19) implies that the Lagrangian is singular. Therefore, any locally gauge-
invariant theory yields constrained Hamiltonian dynamics. (The reverse,
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however, is not true: Singular Lagrangians with second-class constraints on
the Hamiltonian level are not locally gauge-invariant.)

On the Hamiltonian level, such a local gauge transformation is a canon-
ical transformation. One finds that the generators of canonical transforma-
tions corresponding to local gauge transformations are in fact linear com-
binations of all first-class constraints. On the other hand, out of the set
of transformations δεA = εα{A,ϕα}, where ϕα = (φJ , χA) is the set of all
fist-class constraints, one can construct those which leave the Lagrangian
invariant. The condition δεL = 0 restrict the εα. The local gauge transfor-
mation that leaves the Lagrangian invariant is usually a linear combination
of first-class constraints.

Thus it is generally not possible to construct such a transformation out
of the primary first-class constraints alone.

A.1.8 The Dirac conjecture

Because, firstly, local gauge transformations are generally a linear combina-
tion of all first-class constraints and, secondly, the set of gauge transforma-
tions generally exceeds the set of primary first-class constraints, one may
be tempted to generalize the Hamiltonian even further and introduce the
extended Hamiltonian

HE = Hp + µAχ
A ,

containing all first-class constraints. In fact, Dirac conjectured that all first-
class constraints generate gauge transformations and consequently the re-
placement of Hp by HE was admissible in the equations of motion. This is
just the content of the Dirac conjecture. There are certain arguments that
speak in favour of such a generalization of the Hamiltonian.

First of all, depending on whether one uses a first- or second-order ac-
tion formalism, the role of primary and secondary constraints may be in-
terchanged. Moreover, the secondary first-class constraints are in a sense
already contained in the primary Hamiltonian. Namely, one can rewrite
Hc = H′ + λAχ

A, where λA = λA(q, pa), see Matschull [5] for illustrative
examples. Thirdly, due to the ambiguous functions q̇r, the positions qr

themselves remain undetermined. But as λA = λA(q, pa), these are also
undetermined and therefore generate gauge transformations. Lastly, one
can state that HE at least captures the full gauge aspect of the theory and
therefore is suitable for the analysis of gauge issues.

On the other hand, there exist examples, see [23], where G is not the set
of all first-class constraints — thus violating the Dirac conjecture. Moreover,
there is no indication in the Bergmann–Dirac algorithm itself for such an
extension of the primary Hamiltonian. Note that here, all statements were
only local as they refer to local coordinate charts. Sundermeyer adds that
a geometrical and global formulation as it was given by Gotay, Nester and
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Hinds (see the reference in Sundermeyer’s book) does neither indicate the
generalization to the extended Hamiltonian.

Conclusively, whether or not Dirac’s conjecture holds has to be specified
on a case-by-case basis. So in the end, one has to check for the specific
model at hand which transformations are indeed gauge transformations and
which are not.

A.2 The Bergmann–Dirac algorithm for field the-

ories

If one tries to generalize the Bergmann–Dirac algorithm to field theories,
complications arise. These are essentially based on the fact that not all
conclusions drawn in the above section carry over from the finite-dimensional
to the infinite-dimensional case.

I will give a brief list of the complications that arise and refer again to
Sundermeyer’s book for an illustrative example and further explanations.

Let the field theory be described by fields Q and momenta Π. The pri-
mary constraints then generally contain ‘spatial’ derivatives of these fields,
φr = φr[Q,Π, ∂iQ, ∂jΠ].1

So, first of all, the constraints are no longer algebraic relations but dif-
ferential equations. Moreover, for each φr ≈ 0 (now referring to the pri-
mary constraint hypersurface) its spatial derivatives and spatial integrals
also vanish weakly. Thus we can no longer conclude that a weakly vanishing
functional is a linear combination of the primary constraints. Recall that
this was a decisive step in the derivation of the generalized Hamiltonian.

Due to the spacetime dependence of the fields and momenta, each con-
straint φr ≈ 0 stands for an infinite number of constraints: φr ≈ 0 at each
space point. All summations are thus augmented by an integration over all
space points. For example, the primary Hamiltonian becomes

Hp = Hc +
∑

r

∫
d3xur(x)φr(x) ,

ensuing the following consistency relations

{φs,Hc}+

∫
d3y ur(y){φs(x), φr(y)} ≈ 0 . (A.20)

The matrix P is consequently infinite-dimensional,

Prs(x
a, yb) = {φs(x), φr(y)}x0=y0 ,

1‘Spatial’ here depends on the choice of time variable with respect to which velocities
are defined.
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where (xa, yb) denote dependence just on the spatial coordinates of x and
y. If its determinant is non-zero on the constraint hypersurface, an inverse
exists. But this inverse is no longer unique.

Equivalently, one can look at (A.20) and expand

{φs(x), φr(y)}x0=y0 = arsδ(x
a − ya) + birs∂iδ(x

a − ya)
+ higher-order derivatives .

If birs 6≈ 0, (A.20) is a differential equation for ur. Thus, boundary condi-
tions are needed to get a unique solution ur from (A.20). The same holds
if the determinant of P is weakly vanishing. Then the null eigenvectors
are not uniquely defined and again we need boundary conditions to fix the
arbitrariness in the formalism.

So to make the Bergmann–Dirac algorithm work for field theories, ad-
ditional conditions in the form of boundary conditions are needed. Other-
wise the secondary constraints cannot be found nor the multiplier functions
uniquely be fixed.

References:
In this appendix, I followed the presentation given in Sundermeyer’s book
on ‘Constrained Dynamics’, [23], very closely. I focussed on the relevant
properties of systems with first-class constraints only. This is the relevant
case for general relativity. A thorough exposition of Hamiltonian systems
with second-class constraints and their relation to the Poisson bracket can
be found in Sundermeyer’s book. He also exhibits very clearly the relation
between Lagrangian singular systems and their Hamiltonian formulation. I
only used those bits relevant to understand the definition of gauge transfor-
mations in the canonical context.



Appendix B

The canonical quantization

scheme

B.1 Canonical Quantization in Classical Mechan-

ics

Quantization here shall be understood as a description of how to pass from
a given classical system to a quantum theoretical one. The oldest attempt
at a formalisation of such a procedure is given by canonical quantization.
This method was mainly devised by Weyl, von Neumann and Dirac.

In the original form, canonical quantization makes use of a phase space
Γ = Rn × Rn with coordinates (p, q) where p, q are short-hands for all
pi, qi and i = 1, . . . N labels the number of degrees of freedom. The task of
quantization is then to find a map ̂ from a suitable subset C of the space
of functions f(p, q) on phase space, C ⊆ C∞(Γ), into the space of self-adjoint
operators, SELFADJ(H), acting on the Hilbert space H = L2(Rn, dnq),

̂: f 7−→ Qf ,

such that the following conditions hold:

(q1) The map

̂: C −→ SELFADJ(H),

f 7−→ Qf = f̂

is linear.

(q2) The function with constant value one is mapped onto the identity
element on the Hilbert space: Q1 = 1.

173
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(q3) Any function on phase space is realized as an operator on Hilbert space
via the von-Neumann rule.

For any function φ : R→ R for which Qφ◦f and φ(Qf ) are well-defined,
Qφ◦f = φ(Qf ).

Note that this rule gives a prescription of how the multiplication of
phase-space functions is realized on the space of operators. It thus
requires the preservation of the associative structure on C given by
multiplication of functions on phase space.

(q4) The quantization map is consistent with the Schrödinger representa-
tion, i.e.

Q(qi)ψ(q) = qiψ(q) , Q(pi)ψ(q) = −i~
∂ψ(q)

∂qi
,

for ψ ∈ L2(Rn, dnq).

(q5) A correspondence between the classical Poisson bracket and the quan-
tum commutator exists in the following way

Q{f,g} =
1

i~
[Qf , Qg] ,

for all quantizable observables f, g ∈ C.

The Stone–von Neumann theorem ensures that (q4) is the only irreducible
representation — up to finite multiplicity — of the canonical variables p and
q such that the canonical commutation relations hold as they follow from
the Poisson bracket:

[
q̂i, p̂

j
]

= i~ δij and all others vanish.

The Lie algebra spanned by (p, q,1) under the Poisson bracket is called
Heisenberg algebra. One can therefore replace (q4) by:

(q4’) The Heisenberg algebra has to be represented irreducibly (up to finite
multiplication) on H.

The problem with this simple list is that any three out of the four conditions
(q1), (q3), (q4) and (q5) are inconsistent, [17].1 A famous example of such an
inconsistency proof is given by Groenewold, later elaborated on by van Hove
[21, 22]. Their statement is simply that (q5) cannot be satisfied whenever
(q1) and (q4) are and the space of quantizable functions is given by all
polynomials in (p, q) of degree smaller than four. This theorem makes no
use of the von-Neumann rule. More importantly, it is part of the proof of
the theorem to show that the multiplicative structure is partially conserved
by the quantisation map — by virtue of the conditions (q1), (q2), (q4) and

1The second axiom (q2) is redundant, as it follows e.g. from (q5) with f = q and g = p.
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(q5) alone. More specifically, the von-Neumann rule is trivially satisfied for
q2, p2 and pq, see also [18].

If any three out of four conditions are inconsistent, one condition obvi-
ously has to be dropped. Essentially, two ways have been chosen out of this
predicament: One can drop the von-Neuman rule (q3). But, as was pointed
out above, this does not suffice to circumvent the Groenewold–van Hove
theorem. So further, one has to restrict the space of quantizable observables
suitably. E.g. if C is restricted to the space of all polynomials of at most
second order C = Cpoly(2), the axiom (q5) can be satisfied. This holds also
if C contains all polynomial functions at most linear in p but of arbitrary
order in q, C = Cpoly(∞,1). Thus there is more than one suitable choice of
quantizable variables.

Another possibility is to lessen (q5) and generalize the Poisson bracket–
commutator relation.

Modern formulations of the canonical quantization programme try to
implement these ideas and furthermore extend quantization to situations
where phase space is given by an arbitrary symplectic manifold.

We will restrict the general outline of the canonical quantization pro-
gramme to the case that the underlying phase space is a symplectic manifold
of dimension 2n which at the same time is a cotangent bundle over some
configuration space. We will denote the manifold by Γ and the symplectic
form by ω, i.e. ω is a closed, non-degenerate two-form. Configuration space
is given by Q, the cotangent bundle consequently by T ∗Q. The dimensions
are dimQ = n, dimT ∗Q = 2n. Due to Darboux’ theorem, the manifold
looks locally like R2n. More precisely, we can equip Γ locally with coordi-
nates (qi, pi), i = 1, . . . n. In these coordinates, ω = dqi ∧ dpi and ∧ denotes
the wedge product. For two functions f and g on Γ, the Poisson bracket is
defined via

{f, g} = −ω(Xf ,Xg) ,

where Xf , Xg are the Hamiltonian vector fields of f and g, respectively. In
the local coordinate chart, the Hamiltonian vector field of a function f is
given by

Xf =
∂f

∂qi
∂

∂pi
− ∂f

∂pi

∂

∂qi
.

And thus the above definition coincides with the usual Poisson bracket,

{f, g} =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

We then require the quantization map ̂ : C −→ SELFADJ(H), f 7−→
Qf to satisfy the conditions (q1), (q2) and (q5). We require that (q4) holds
in a local coordinate chart and in the case that Γ = R2n. We drop the
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von-Neumann rule and keep in mind that we have no general rule how to
select the suitable subspace C ⊆ C∞(Γ) which satisfies (q5).

There are several fixed structures in this procedure: first of all, oper-
ators are defined on a Hilbert space. Secondly, operators are self-adjoint.
Thirdly, the representation of the fundamental variables is fixed. Each of
these structures has been challenged in quantum gravity.

B.2 Canonical Quantization of Field Theories

So far, we gave a more or less axiomatic system to be realized for the quan-
tization of a finite dimensional system. The whole procedure becomes more
elaborate but not altered in principle if one generalizes these ideas further
to field theory. This is known as the functional Schrödinger representation
of quantum field theory.

The functional Schrödinger representation constitutes a generalization
of the usual Fock space representation. The latter is restricted to situations
where the particle interpretation applies. But the Schrödinger representa-
tion applies also when the particle interpretation does not exist — it can be
generalized to arbitrarily curved spacetimes. But in fact, for a free scalar
field theory in Minkowski space, it can be shown that both descriptions are
equivalent.

In either case, we have to specify a constant-time hypersurface.
The relation between the Schrödinger and Fock representations is one

way to carry over the quantization scheme of the previous section to a field
theory, [10]. Another way is to discretize the hypersurface into cubes of
volume δVi where i numbers the cube, [35]. Then the field in one such
volume is approximated by its value at the centre xi of this cube:

qri(t) := φr(xi, t) = φr(i, t) ,

where r = 1, . . .N labels the different degrees of freedom, different fields or
components of a vector field, for instance. Replacing similarly derivatives
by differences at neighbouring lattice points, one can rewrite the Lagrangian
of the theory L = L(φr, φ̇r, φr,a ) in a discretized form as

L(t) = δVjLj(φr(i, t), φ̇r(i, t)φr(i′, t)) ,
where i′ is the difference of fields at neighbouring lattice points and summa-
tion over j is assumed. The conjugate momentum is thus

pri(t) =
∂L

∂q̇ri
= πr(i, t)δVi ,

where
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πr(i, t) =
∂Li

∂φ̇r(i, t)
.

Thus actually the conjugate momentum is a density of weight one. We
choose, to be consistent with the literature on canonical quantum gravity,
the conjugate fields πr(i, t). In the limit of vanishing volume, δVi → 0, we
obtain

H = δVj

[
πr(j, t)φ̇r(j, t)− Lj

]
−→ H =

∫
dV H(x) ,

where
H(x) = πr(x)φ̇r(x)− L(φr(x, t), φ̇r(x, t), φr,a (x, t)) .

References:
I used the review article by Ali and Englis, [17], as well as Giulini’s con-
tribution to the book ‘Quantum Gravity — From Theory to Experimental
Search’, [18] in the first section to give an axiomatic approach to canoni-
cal quantization. For the generalization of this quantization scheme to field
theories, I used Mandl and Shaw’s book on quantum field theory, [35].
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Appendix C

‘Singularity resolution’: the

Coulomb potential

The standard example for singularity resolution cited in the quantum general
relativity literature is an electron moving in the attractive Coulomb potential
of a nucleus. The claim is that here, the classical singularity consisting in
the fall of the particle to the centre is resolved on the quantum level.

C.1 Singular potentials in quantum and classical

mechanics

The Coulomb potential is more generally discussed in the study of singular
potentials in classical and quantum physics. Let the potential be described
by a single coordinate r which stands for the radial distance.

Then singular potentials in classical, non-relativistic mechanics are all
attractive potentials which fall off faster than the inverse-square potential
r−2 as the origin is approached. The inverse-square potential itself is a
transitional potential, i.e. it exhibits singular features only for a certain
range of coupling. In relativistic mechanics already the Coulomb potential
is transitional, thus singular for certain parameter ranges. All potentials
that fall off faster at the origin are truly singular.

Physically, such classically singular potentials are characterized by the
existence of trajectories along which the particle spirals into the origin. The
velocity diverges in this approach. And so does the scattering angle. In-
finitely many trajectories go through the origin — all with the same tan-
gent. Thus, in- and outgoing trajectories can only be matched if additional
conditions are imposed, as, for example, energy and angular momentum
conservation. It is the occurrence of an infinite curvature of the particle’s
trajectory which prevents a unique continuation of the trajectory through
the origin.

179
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Upon quantization, singular potentials remain singular. That means a prob-
lem such as the motion of a particle in an attractive inverse-square potential
which exhibits singular features on the classical level, will do so as well
on the quantum level. For singular potentials, no singularity resolution
takes place upon quantization. In non-relativistic quantum mechanics, for
the radial Schrödinger equation all potentials which fall off as fast as the
inverse-square potential or faster, are problematic. In the relativistic case,
the Klein–Gordon and Dirac equation exhibit singular features already for
the Coulomb potential. All potentials that fall off faster than the Coulomb
potential are truly singular potentials of these equations.

Physically, singular potentials on the quantum level are characterized by
the fact that no unique solution to the quantum equation exists. For the
Schrödinger equation with inverse-square potential, this implies for example
that both solutions vanish at the origin — but differ by a phase factor (again,
this holds for a certain parameter range). This phase factor cannot be
determined and mirrors the non-uniqueness of outgoing trajectory for a
given ingoing one that is found on the classical level. More generally, a
boundary condition does not pick a unique solution for a quantum equation
with singular potential. From this results an arbitrary phase in scattering
amplitudes. Generally, the bound-state spectrum is not unique — there is
an infinity of bound states. Lastly, the energy is generally unbounded from
below.

Mathematically, these singular potentials correspond to strong singu-
larities at r = 0 of the corresponding differential equation. Equivalently,
one can say they stem from a Hamiltonian operator which has no unique
self-adjoint extension to r = 0.

C.2 The classical motion of a particle in the at-

tractive Coulomb potential

On the non-relativistic level, the motion of the electron is perfectly well
behaved. As long as the particle has non-vanishing angular momentum, it
does not fall to the centre. In the case of a vanishing angular momentum,
the particle falls to the centre, but does so on a straight line. Because
the total energy remains constant and finite, the kinetic energy and thus
the velocity diverges as the origin is approached, thus compensating the
infinitely negative potential energy. The equation of motion poses a well-
defined initial value problem. The predictions inferred are unique (for a given
set of initial conditions). The classical motion is not singular. The fact that
the fall of the electron to the centre is not in agreement with observation is a
different question and might at this level be justified by the argument that
the state of exactly vanishing angular momentum might never be exactly
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realized in Nature.1

In the relativistic case, however, the particle spirals into the centre when-
ever angular momentum becomes smaller than the coupling, i.e. the total
charge. In this case, the scattering angle diverges and we encounter the
problems listed above.2

C.3 The quantized Coulomb problem

Quantizing the motion in the Coulomb potential, one ends up with the ra-
dial Schrödinger equation and the additional condition, following from the
self-adjointness of the Hamiltonian operator, that its solutions vanish at
the origin and infinity sufficiently quickly.3 This fixes the wave function
uniquely. The radial Schrödinger equation thus poses a well-defined prob-
lem. The resulting wave function corresponding to zero angular momentum
remains constant at the origin. The energy is unbounded from below. The
quantum motion is not singular — as one would have expected from the
quantization of a non-singular classical system. But it is now in (better) ac-
cord with observation: instead of a classical trajectory which leads straight
into the nucleus, the electron is described by a wave function with zero
probability density at the origin.

The case is, again, different in the relativistic setting. The Klein–Gordon
equation with Coulomb potential is singular for certain angular-momentum
eigenvalues. The boundary condition at the origin here does not pick a
unique solution.

C.4 Conclusion

So I do not know why and how one can speak of singularity resolution in the
case of the Coulomb potential. To the contrary: the Coulomb potential is an
example where either both, quantum and classical motion, are well-defined
or both pose an ill-defined problem. In fact, this is what is expected from
the study of singular potentials.

What happens upon quantization of the Coulomb problem in the non-
relativistic case is that the wrong prediction of the classical framework is
substituted by a correct prediction through the quantum framework. The
singularity occurring in the special relativistic description is due to the fact

1This resembles the point of view taken before the formulation of the singularity theo-
rems in general relativity: The singularities occur only because we make idealized assump-
tions about Nature (like exact spherical symmetry, for example) which are not realized.

2The divergence in the relativistic case is due to the fact that the effective potential
contains the square of the real potential — in contrast to the non-relativistic case were
the potential enters the effective potential linearly.

3The condition is that rψ(r) = 0 as r → 0 and as r → ∞, where r is the radial
coordinate.
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that in special relativity instantaneous interactions are not admissible. The
Coulomb potential has to be substituted by a photon-mediated interaction.
This, in a sense, is a consequence of the fact that the Klein–Gordon equation
does not allow a consistent interpretation and has to be subjected to second
quantization. In this way, one arrives at quantum field theory. The gauge
principle than yields the correct description of the interaction. Thus the
correct statement would be that the singularity of the Coulomb potential
occurring in special relativity is cured by the replacement of an instantaneous
interaction through the gauge principle and the field quantization of the
resulting problem.

Another example where the classical and the quantum motion are singu-
lar is the radial Schrödiger equation with attractive inverse-square potential.

References: Singular potentials in quantum mechanics are discussed in
the review by Frank and Land, [42]. Moreover, the singular inverse-square
case is discussed in Landau and Lifshitz’s book, [44]. The specific case of the
Coulomb potential can be found in Newton’s textbook, [45] and the article
by Case, [46].



Appendix D

Approximating the

Wheeler–DeWitt equation

for the big-brake model

D.1 The Born–Oppenheimer approximation

The Born–Oppenheimer approximation is used in atomic physics to simplify
the full Schrödinger equation comprising the full motion of all electrons and
nuclei. It relies on the fact that nuclei have much larger mass than electrons.
It can be carried over to the quantum general relativity case where the role
of the nuclei is played by gravitation and the matter fields take the place
of the electrons. I will give here a brief outline of the Born–Oppenheimer
approximation in atomic physics as well as the conditions under which it
applies.

I will use R to denote the coordinate of the nucleus and r to denote the
electron location. By simply substituting the metric for R and the matter
fields for r, one arrives at the quantum gravitational case. The parame-
ter M used in the following is originally given by the mass of the nucleus
and in quantum general relativity turns into (4.7). The time-independent
Schrödinger equation is then of the form

[
− ~2

2M
∆2
R + ĥ(r,R)

]
Ψ(r,R) = 0 , (D.1)

where ĥ(r,R) is the electron-part of the Hamiltonian and ∆R is the Lapla-
cian with respect to the nucleus’ coordinate. One makes the ansatz

Ψ(r,R) =
∑

n

Cn(R)ϕn(R, r) ,

183
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where

ĥ(r,R)ϕn(R, r) = En(R)ϕn(R, r)

and

∫
dr ϕ∗m(R, r)ϕn(R, r) = δmn .

Upon inserting this equation in (D.1) and multiplying the resulting equation
by ϕ∗n(R, r), integrating over r and using the orthogonality of the electron-
eigenfunctions, one obtains

[
− ~2

2M
∆2
R + En(R)

]
Cn(R)

− ~2

2M

∑

k

∫
dr ϕ∗n(R, r)

[
2∆RCm∆Rϕm + Cm∆2

Rϕm
]

= 0 .

The Born–Oppenheimer approximation now consists in neglecting the off-
diagonal terms. The Schrödinger equation then simplifies to

[
− ~2

2M
∆2
R + En(R)

]
Cn(R)

− ~2

2M

∫
dr ϕ∗n(R, r)

[
2∆RCn∆Rϕn + Cn∆

2
Rϕn

]
= 0 .

When does this approximation apply? This can be seen from a rewriting of
the neglected terms as

∫
dr ϕ∗m∆Rϕn ∼ 〈ϕm|P̂R|ϕn〉 =

〈ϕm|
[
P̂R, ĥ

]
|ϕn〉

En(R)−Em(R)
, (D.2)

were PR is the canonically conjugate momentum to R. This is thus negligible
if the energy levels are well separated. This justifies the neglection of the
first off-diagonal term. The second one is basically given by 〈ϕm|P̂ 2

R|ϕn〉
and the assumption is that 〈ϕm|P̂ 2

R|ϕn〉 ≈ (〈ϕm|P̂R|ϕn〉)2. Thus the spread
in the momentum of the nucleus has to be small.

For a real-valued wave function, the diagonal terms vanish: the first one,
〈ϕn|P̂R|ϕn〉, due to the self-adjointness of P̂R, the second one again in the
approximation 〈ϕn|P̂ 2

R|ϕn〉 ≈ (〈ϕn|P̂R|ϕn〉)2.
Note that the last two assumptions make some difficulty when applied to

quantum general relativity: First of all, the wave functional does not have
to be real and secondly, the operator corresponding to the kinetic energy of
the gravitational field is generally not self-adjoint.

Moreover, for exotic matter potentials as will be used later in this work,
see Chapters 7, 8, the matter Hamiltonian also depends on the gravitational
coupling and thus on the Planck mass. The general assumption that gravity
is ‘heavier’ than matter then cannot be made, as will be seen in the following.
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D.2 Approximating the Wheeler–DeWitt equation

We start from the full Wheeler–DeWitt equation (8.10),

~2

2

(
κ2

6

∂2

∂α2
− ∂2

∂φ2

)
ψ (α, φ)− Ṽ0

|φ|e
6αψ (α, φ) = 0 ,

where Ṽ0 = V0aref/3κ
2. Into this equation, we insert the ansatz ψ (α, φ) =∑

nCn(α)ϕn(α, φ), where ϕn(α, φ) is the solution of (8.11),

Ĥφϕn(α, φ) = En(α)ϕn(α, φ) ,

where Ĥφ = 1
2 p̂

2
φ + â6V (φ̂). The eigenfunctions of the matter Hamiltonian

Ĥφ are just the eigenfunctions of the radial Schrödinger equation for the
Coulomb potential with vanishing orbital angular momentum. They are
given by (8.12) and obey the orthogonality relation (8.13). Inserting the
ansatz, the Wheeler–DeWitt equation turns into

∑

n

{
~2

2

κ2

6

[
C̈nϕn + 2Ċnϕ̇n + Cnϕ̈n

]
+ EnCnϕn

}
= 0 ,

where dots are used to denote derivatives with respect to α. This equation
can be simplified by multiplication with ϕm and integration over φ. This
may not be very obvious at this point, but recall the procedure used in
the Born–Oppenheimer approximation, cf. Section D.1. After using the
orthogonality relation, the Wheeler–DeWitt equation becomes

~2

2

κ2

6

[
C̈m + EmCm

]
Z(α)

+
∑

n

~2

2

κ2

6

[
2Ċn〈ϕm|ϕ̇n〉+ Cn〈ϕm|ϕ̈n〉

]
= 0 .

In the following, Dirac brackets denote an inner product given by integration
over φ which is suggested by the orthogonality relation (8.13).

I will now carry out an approximation in two steps. First, the cross terms
〈ϕm|ϕ̇n〉, 〈ϕm|ϕ̈n〉 will be neglected in a Born–Oppenheimer approximation.
In a second step, I will show that the remaining diagonal terms contain-
ing derivatives of ϕn with respect to α can also be neglected. In atomic
physics, this follows trivially from the Born–Oppenheimer approximation
and the fact that all operators are self-adjoint. Here, counting powers of the
gravitational coupling κ2 will be employed.

D.2.1 Born–Oppenheimer approximation of the Wheeler–

DeWitt equation

We have to show that two terms are negligible: 〈ϕm|ϕ̇n〉 and 〈ϕm|ϕ̈n〉.
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I will start with the first term. Rewriting this term as

〈ϕm|ϕ̇n〉 = 〈ϕm|
∂

∂α
|ϕn〉 = 〈ϕm|a

∂

∂a
|ϕn〉

= − 1

i~
〈ϕm|ap̂a|ϕn〉 .

The last equation can then be rewritten in the well-known way, cf. (D.2),
as

〈ϕm|ap̂a|ϕn〉 = a
〈ϕm|

[
p̂a, Ĥφ

]
|ϕn〉

En −Em
,

where square brackets denote commutators. Thus, we obtain

〈ϕm|ϕ̇n〉 = −
6i~a6

En − Em
〈ϕm|V (φ̂)|ϕn〉 .

If the expectation value of the potential remains finite, the term on the left
hand side is negligible, if the energy eigenvalues are well separated. Using
the energy eigenvalues, (8.14), this reads

〈ϕm|ϕ̇n〉 = −
6i~3

Vα

1(
1
n2 − 1

m2

)〈ϕm|V (φ̂)|ϕn〉 .

So if 〈ϕm|V (φ̂)|ϕn〉 remains finite, the approximation applies. The expecta-
tion value of the potentials yields an integral of the form

〈ϕm|V (φ̂)|ϕn〉 = Ṽ0µν

∫
dφφe−(µ+ν

2 )φL1
n−1(µφ)L1

m−1(νφ) ,

where µ = 2Vα

~2m
and similarly ν = 2Vα

~2n
. This can be integrated with the help

of

∫ ∞

0
dxe−bxxβLβl (νx)L

β
j (µx) =

Γ (j + l + β + 1)

j!l!

(b− ν)l (b− µ)j

bj+l+β+1

×F
(
−j,−l;−j − l − β;

b (b− ν − µ)

(b− ν) (b− µ)

)
,

where F (a, b; c;x) denotes the hypergeometric function, [78]. This yields

〈ϕm|V (φ̂)|ϕn〉 =
Ṽ0

Km,n

Γ(m+ n)

(m− 1)!(n− 1)!

× F

(
−m+ 1,−n+ 1;−m− n+ 1;

(
n+m

n−m

)2
)
,
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Recall that n 6= m. This is obviously finite.

We therefore conclude that the term 〈ϕm|ϕ̇n〉 can be safely neglected
due to the fact that the spectrum of the matter Hamiltonian is discrete and
the energy levels are well separated.

The second term, 〈ϕm|ϕ̈n〉 can basically be rewritten as 〈ϕm|p̂2
a|ϕn〉.1

The assumption is that

〈ϕm|p̂2
a|ϕn〉 ≈ 〈ϕm|p̂a|ϕn〉2

and, as the right-hand side vanishes, so does the left-hand side. In this
way, we get rid of the off-diagonal terms. This is analogous to the Born–
Oppenheimer approximation as it was presented in Section D.1.

With these approximations, the Wheeler–DeWitt equation simplifies to

~2

2

κ2

6

[
C̈m + EmCm

]
Z(α)

+
~2

2

κ2

6

[
2Ċm〈ϕm|ϕ̇m〉+ Cm〈ϕm|ϕ̈m〉

]
= 0 .

D.2.2 Neglection of matter motion

Whereas in atomic physics, the diagonal terms, 〈ϕm|ϕ̇m〉, 〈ϕm|ϕ̈m〉, van-
ish trivially, here some work is needed to show that they can actually be
neglected. We thus have to show that the term C̈mZ(α) = C̈m〈ϕm|ϕm〉 dom-
inates over Ċm〈ϕm|ϕ̇m〉 and Cm〈ϕm|ϕ̈m〉. This is rather easily seen. First

of all note that the derivatives of Cm(α) = c2K0

(
1√
6

Vα

~2mκ

)
with respect to

α, cf. (8.16) satisfy

Cm ∼ Cm , Ċm ∼ Vα , C̈m ∼ V 2
α .

On the other hand, as a consequence of the orthogonality relation, (8.13),

〈ϕm|ϕm〉 ∼ 〈ϕm|ϕ̇m〉 ∼ 〈ϕm|ϕ̈m〉 ∼
1

Vα
.

Therefore, the different terms behave as

C̈m〈ϕm|ϕm〉 ∼ Vα ∼
e6α

κ2

Ċm〈ϕm|ϕ̇m〉 ∼ 1

Cm〈ϕm|ϕ̈m〉 ∼
1

Vα
∼ κ2

e6α
.

1It also gives one contribution proportional to 〈p̂a〉 which can be negelcted due to the
arguments given above.
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Recall that Vα depends on κ,

Vα = Ṽ0e
6α =

arefV0

3κ2
.

There are thus two arguments that justify the neglection of the terms con-
taining derivatives of ϕm. First of all, one can use an expansion in terms of
the Planck mass. This is analogous to the mass parameter M = 1

4κ2 intro-
duced in the derivation of the approximate functional Schrödinger equation,
cf. Section 4.4.1, (4.7). Then the C̈m term gives the highest order contribu-
tion.2 Moreover, in the vicinity of the big-brake singularity the scale factor
is large. This is another reason why we can safely neglect the derivative
terms.3

Thus, we finally end up with the approximated Wheeler–DeWitt equa-
tion (8.15),

C̈n(α)− 6Vα
2

~4n2κ2
Cn(α) = 0 .

2Recall that Em ∼ V 2
α .

3Recall that, anyway, the potential used here is a good approximation to the full
potential only in that regime.



Appendix E

System of constraints for the

parametrized free particle

General expression for the constraints are

C(n) =
n∑

m=0

m∑

j=0

2(n−m)∑

`=0

(
n

m

)(
m

j

)(
2(n−m)

`

)
pm−j

t

p2(n−m)−`

(2M)n−m
G`,0

j,0 , (E.1)

C(n)
q =

n∑

m=0

m∑

j=0

2(n−m)∑

`=0

(
n

m

)(
m

j

)(
2(n−m)

`

)
pm−j

t

p2(n−m)−`

(2M)n−m

×
(
qG`,0

j,0 +G`,1
j,0 +

i~

2
`G`−1,0

j,0

)
,

C
(n)
t =

n∑

m=0

m∑

j=0

2(n−m)∑

`=0

(
n

m

)(
m

j

)(
2(n−m)

`

)
pm−j

t

p2(n−m)−`

(2M)n−m

×
(
tG`,0

j,0 +G`,0
j,1 +

i~

2
jG`,0

j−1,0

)
,

C(n)
pt

=

n∑

m=0

m∑

j=0

2(n−m)∑

`=0

(
n

m

)(
m

j

)(
2(n−m)

`

)
pm−j

t

p2(n−m)−`

(2M)n−m

×
(
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In addition to those written explicitly here, there are those involving higher
polynomials also in q, t and pt. The first two types of those constraints are
more lengthy due to reorderings in the quantum variables. The constraints
listed suffice for considerations in Chapter 9.
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In a moment expansion, the leading terms of these constraints are
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where Xi and Ri are linear functions of higher, i.e. at least fourth, order
moments.
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Appendix F

Figures

F.1 Wave packet for the big-brake model

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  5  10  15  20

PSfrag replacements

φ

ψ

n = 21

n = 5
n = 20

Figure F.1: This figure shows the wave packet for the big-brake model at
τ = 1. Here, the sum in equation (8.24) is carried out up to different n. It
can be seen that it is sufficient to sum the series up to n = 20. Including
more terms does not alter the form of the wave packet: The packet obtained
for n = 21 is exactly of the same shape as the one obtained from summation
up to n = 20.
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Figure F.2: This plot shows how the wave packet for the big-brake model
looses its form. The different lines show the packet at different τ . Summa-
tion is carried out up to n = 20. The initially Gaussian packet at τ = 1
disperses as τ = 2 and at τ = 5 is already a mere oscillation around zero.
The classical singularity occurs at τ ≈ 7.
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Figure F.3: The figure shows the wave packet for the big-brake model. One
clearly sees that the initially peaked packet disperses quickly. The classical
singularity occurs at τ ≈ 7, φ = 0 — where the wave packet is zero anyway.
The centre of the Gaussian at τ = 1 is chosen to be φ0 = 10. Units are
determined such that ~ = 1 and κ = 0.05. As parameter V0 = 1 was chosen.
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F.2 Wave packet for the phantom- and scalar-field

models

Figure F.4: This figure shows the wave packet for the phantom model with
exponential potential. The packet is displayed in the (u−1, v−1)-plane. It is
clearly peaked around the classical trajectory (7.29) but spreads as |u−1|,
|v−1| become large, which is just the region of the classical big-rip singularity.
In this plot, λ =

√
3 was chosen. The gravitational constant has units such

that κ2 = 6.
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Figure F.5: These two figures exhibit the wave packet for the scalar field
model with exponential potential, Chapter 7. In the upper plot, the initial
conditions are chosen such that the two solutions add up at the origin of
the (u1, v1)-plane. For wave packet shown below, the initial conditions have
been chosen such that the packet vanishes on u1 = 0. Recall that u1 > 0
and one quarter of the (u1, v1)-plane corresponds to the entire (α, φ)-plane.
Parameters are chosen as in the corresponding phantom model, λ =

√
3 and

κ2 = 6.
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Figure F.6: This figure shows the same wave packets as F.5. From this
perspective, one can clearly see that the boundary condition ψ = 0 at u1 = 0
is satisfied for the upper wave packet.
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(an acknowledgement cannot be good if not at least three Christophs are
mentioned) for putting his master’s words into such nice form, see the above
Theorem 1 and an efficient proof reading.

I want to thank the Friedrich–Ebert–Stiftung for financial support, during
my undergraduate as well as graduate studies.



Erklärung

Ich versichere, daß ich die von mir vorgelegte Dissertation selbständig ange-
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