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Aspects of Application of Neural Recognition
to Digital Editions

Daniele Fusi

Abstract

Artificial neuronal networks (ANN) are widely used in software systems which require
solutions to problems without a traditional algorithmic approach, like in character
recognition: ANN learn by example, so that they require a consistent and well-chosen
set of samples to be trained to recognize their patterns. The network is taught to react
with high activity in some of its output neurons whenever an input sample belonging
to a specified class (e.g. a letter shape) is presented, and has the ability to assess the
similarity of samples never encountered before by any of these models. Typical OCR
applications thus require a significant amount of preprocessing for such samples, like
resizing images and removing all the “noise” data, letting the letter contours emerge
clearly from the background. Furthermore, usually a huge number of samples is re-
quired to effectively train a network to recognize a character against all the others.
This may represent an issue for palaeographical applications because of the relatively
low quantity and high complexity of digital samples available, and poses even more
problems when our aim is detecting subtle differences (e.g. the special shape of a spe-
cific letter from a well-defined period and scriptorium). It would be probably wiser for
scholars to define some guidelines for extracting from samples the features defined as
most relevant according to their purposes, and let the network deal with just a subset
of the overwhelming amount of detailed nuances available. ANN are no magic, and
it is always the careful judgement of scholars to provide a theoretical foundation for
any computer-based tool they might want to use to help them solve their problems:
we can easily illustrate this point with samples drawn from any other application of IT
to humanities. Just as we can expect no magic in detecting alliterations in a text if we
simply feed a system with a collection of letters, we can no more claim that a neural
recognition system might be able to perform well with a relatively small sample where
each shape is fed as it is, without instructing the system about the features scholars
define as relevant. Even before ANN implementations, it is exactly this theoretical
background which must be put to the test when planning such systems.

Zusammenfassung

Künstliche neuronale Netze (Artificial Neural Networks, ANN) sind in solchen Soft-
waresystemen weit verbreitet, die Probleme wie Zeichenerkennung zu lösen suchen,
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ohne einen traditionellen algorithmischen Ansatz zu verfolgen. Weil ANN am Beispiel
lernen, brauchen sie einen konsistenten und gut ausgewählten Satz an Proben um die
Mustererkennung zu trainieren. Das Netz reagiert mit einer hohen Aktivität in seinen
Output-Neuronen, wenn ihm ein Input-Muster präsentiert wird, das zu einer bestimm-
ten Klasse (z.B. einer Zeichenform) gehört. Es kann die Ähnlichkeit von Beispielen
berechnen, die mit einem solchen Modell noch nicht verglichen worden sind. Typi-
sche OCR-Anwendungen erfordern eine erhebliche Vorverarbeitung der Beispiele, bei
der die Größen der Abbildungen verändert und das »Rauschen« (d.h. störende Daten)
entfernt werden, so dass sich die Buchstabenformen klar vom Hintergrund abheben.
Darüber hinaus braucht man normalerweise eine sehr große Zahl von Beispielen, um
das Netz darauf zu trainieren, ein Zeichen von allen anderen zu unterscheiden. Dies
stellt wegen der relativ niedrigen Qualität und der hohen Komplexität der verfügbaren
digitalen Beispiele eine Herausforderung für paläographische Anwendungen dar. Es
wirft noch mehr Probleme auf, wenn es darum geht, feine Unterschiede, z.B. die be-
sondere Form eines einzelnen Buchstabens aus einer bestimmten Phase eines Scripto-
riums, zu entdecken. Dabei scheint es ratsam, einige Regeln zu bestimmen, nach denen
die für bestimmte Fragestellungen wichtigsten Merkmale aus den Proben extrahiert
würden, und das Netz dann nur noch mit einer Teilmenge der andernfalls überwälti-
genden Menge an feinen Unterschieden arbeiten zu lassen. ANN sind keine Zauberei,
und es bedarf immer des sorgfältigen Urteils der Forschenden, um eine theoretische
Grundlage für ein computergestütztes Werkzeug zu schaffen, das bei der Lösung ihrer
Probleme helfen soll: Dies lässt sich leicht an anderen Beispielen zu IT-Anwendungen
in den Geistes-und Kulturwissenschaften belegen. So wie wir kein Hexenwerk bei der
Erkennung von Alliterationen erwarten können, wenn wir ein System nur mit einer
Reihe von Buchstaben füttern, so können wir auch von keinem neuronalen Erken-
nungssystem verlangen, dass es mit einem relativ kleinen Satz an Beispielen zurecht
kommt, wenn jedes Zeichen unbearbeitet eingegeben wird, ohne das System darüber
zu informieren, welcheMerkmale von den Forschenden als besonders wichtig definiert
werden. Ein solches theoretisches Fundament muss jedoch noch vor der Planung und
Umsetzung künstlicher neuronaler Netzwerke entwickelt und geprüft werden.

1 Scenario

This paper derives from a much wider discussion of a digital edition system.¹ I have
been creating the collection of a large amount of different data related to a specific
subject. One of the chief points I often stress about the principles of this system is that
its purpose is to create a “truly” digital edition of textual and/or non-textual material,

¹ For what follows see e.g. Fusi 2007 (principles for the epigraphical system) and Fusi 2008 (expert metrical
system), together with their hosting website.
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Figure 1. Digital Drawing. Figure 2. Some shapes extracted
from the drawing.

which should also be treated as a research tool rather than as a mere clone of a tradi-
tional paper edition. Also, the system aims to be greatly expandable so that new, often
very specialized, data can be added to the existing material at any time, attaching to its
structure rather thanmodifying it. For instance, a collection of epigraphical texts can be
enriched by specialized data about linguistics, metrics, history, prosopography, archae-
ology, palaeography, etc. which may eventually come from expert systems capable of
providing automated analysis (like in the case of metrical analysis); also, some of the
existing data, e.g. a collection of digital drawings taken from photographs, can also lay
out the foundation for further developments which may sound particularly interesting
in fields like palaeography. Here, I would just like to discuss some basic aspects of one
of these suggested applications, exploring the feasibility of applying neural techniques
to graphical data: among others, a further application for the multimedia capabilities
of digital editions can be provided by pattern recognition using neural methods. Typi-
cally we can start with a sample of inscriptions, even if such methods can be applied to
several other scenarios (e.g. manuscripts, brick stamps, iconography, coins, etc.), prob-
ably with different levels of efficiency and different requirements for data preparation.
In the hypothetical scenario of an epigraphical edition already provided with several
digital drawings extracted from their photographs, the next step might be to extract the
shapes of each letter from each of them, and then feed a neural recognition system with
them as samples for a given period or region.
For instance, we could extract all the letter forms from selected Greek inscriptions in

our corpus (see the Figures 1 and 2) and use them to train a neural system, providing it
with different chronological classes. Once this is done, we could imagine a publishing
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scenario where users perform a truly graphical query to retrieve all the inscriptions
whose letters resemble a provided sample, which might come from a photo, or from a
drawing sketched by the user himself with an inking system; such a system might then
provide a first indication for the dating of the inscription the letter sample has been
taken from, or just any other type of palaeographical classification we have defined as
relevant in our texts. A by-product of this system (or rather a prerequisite for it) might
also be a detailed catalogue listing all the shapes of all the palaeographically relevant
inscriptions in a corpus, where users can browse them on screen century by century, or
according to any other filtering or sorting criterion, and immediately get a feeling for
the evolution of the writing system. This is just a small example but the possibilities
might be endless; here I would like to stress the importance of fully exploiting the
abilities of a true digital edition. Automatic pattern recognition is just another sample
of these abilities.

2 Pattern Recognition and ANN

In today’s software, pattern recognition (including, of course, optical character recog-
nition, OCR) is typically accomplished using artificial neural networks (ANN). ANNs
are a complex subject, and even an introduction to them would be beyond the scope of
this work, therefore I’ll sketch out some of their principles with reference to their prac-
tical application to software systems². The easiest method to grasp the way an ANN
works is to compare its behaviour to traditional software solutions which typically use
an algorithmic approach for solving problems: there is a sequence of instructions to fol-
low, and this, of course, implies that we must know them in advance. Instead, neural
networks, composed by interconnected elements (neurons) working in parallel, learn
by example, so that they cannot be programmed to perform a specific task. This implies
that selecting the right examples and defining the relevance of their traits is a crucial
point.
An artificial neural network is a set of nodes and connections between them; the

nodes (neurons) are the computational units: they get some input and process them to
produce an output. It is the right interaction of nodes through their connections which
leads to defining an emergent behaviour for the network, so that its abilities supersede
those of its elements. These artificial neurons are inspired by natural neurons, which
receive signals through synapses; when the strength of the signals exceeds a certain
threshold the neuron is activated and emits a signal through the axon. This signal
in turn might be sent to another synapse, and might activate other neurons, and so

² Introductions to ANN abound in theweb. Here I’ll mainly follow (with consistent simplifications) Stergiou
and Siganos, and Gershenson. Other material can be found in the documentation of the API of several
open-source and/or freeware software libraries implementing ANN or their derivatives (see e.g. Chang
and Lin LIBSVM website for a list of ports of this software library in several languages).
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on. An artificial neuron is a device with several inputs and a single output. These
inputs are multiplied by weights (strength of the respective signals) and then computed
by mathematical functions which determine if a neuron should be activated or not.
Another function, which may or not be different, calculates the output of the neuron,
often related to a specific threshold. By adjusting the weights of a neuron we can obtain
the output we desire for each specific input. As a typical ANN contains many neurons,
it would be very complex to do such adjustments by hand, so special algorithms are
used; this process of adjusting weights represents the training or learning of the ANN.
A neuron thus operates in training mode or in usage mode: in the training mode it is
trained to fire, or not, for particular input patterns, i.e. to associate a specific input to
a specific output. In usage mode, a neuron either encounters a taught pattern or a new
one; in the former case it simply fires the taught output, in the latter case a firing rule
is used to determine whether to fire or not.
In connection to our subject it is to be stressed that a firing rule relates not only

to the taught input patterns, but to all the input patterns. For instance, a firing rule
can be implemented with a technique which compares elements in patterns so that
the neuron fires or not according to whether the compared patterns have more input
elements in common with the nearest pattern in the firing-taught set, or in the not-
firing-taught set. Such a rule provides the neuronwith the “sense” of similarity so that it
can respond to patterns never encountered before, returning the output corresponding
to the taught input pattern which is most similar to the given pattern. Also, more
complicated neurons can be used, where inputs are “weighted” bymultiplying the input
values of a pattern by a specific number and adding their results, letting the neuron fire
only when the sum exceeds a predefined threshold value. Such neurons can adapt to
specific situations by changing their weights or threshold; there are several algorithms
for adapting, and one of the commonest is the back error propagation, where we start
with randomly chosen weights and then adjust them so that the error is minimal.
A very common type of ANN is built of three sets of neurons: a layer of input neurons

is connected to a middle layer of “hidden” neurons, which in turn is connected to a layer
of output neurons. The activity in the input layer represents the input data fed into the
network; the activity of the middle layer is defined by the activity of the input layer
and the weights assigned to the connections between the input and the middle layer;
and in turn the activity of the output layer is defined by the activity of the middle layer
and the weights assigned to the connections between the middle and the output layer.
In this model the middle layer is thus free to build its own representation of the input,
by connecting one or more neurons of the input layer to one or more neurons of the
middle layer and assigning various weights to these connections. The input pattern
units can thus be variously grouped, combined, selected and weighted according to the
specific problem the ANN should solve.
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These connections and their weights define the “knowledge” of an ANN network;
modifying this knowledge according to experience implies a learning rule which can
change these weights. Typically for pattern recognition the learning is supervised, in
the sense that it happens by associating input samples (e.g. the various shapes of the
character A) with their desired output (the character identified as A). For instance, say
we want to recognize the 26 printed lowercase letters of the standard ASCII alphabet
(a–z): we might use a grid of 16×16 optical sensors, each capable of detecting the pres-
ence, or absence, of ink on a small portion of the printed character area. We would thus
need an input layer of 256 units (16×16) and an output layer of 26 units (one for each
letter): for each letter the network should produce high activity in the corresponding
output neuron and low activities in all the other output neurons. For instance, for a
correctly recognized letter c there might also be a fair amount of activity in the output
neuron corresponding to the letter o, which “looks” like c, but the activity in the out-
put neuron corresponding to c should be considerably higher. To train the network we
would present it a set of sample images for each letter, compare the activity produced
in the output layer by each of them and calculate the error (defined as the square of
the difference between the actual and the desired activities). We would then use some
algorithm to adjust the weights of each connection in order to reduce the error to its
minimum and thus get the best recognition results.
As shown in this sample, we are thus representing each letter shape with a set of

units, i.e. a vector of numerical values: just think of superposing an ideal grid to
a printed character, and mapping each grid cell to a number representing the pres-
ence (e.g. 1), or absence (e.g. 0), of ink on a small portion of the printed character
area. For instance, if we were using a 3x5 grid we might represent a letter A like:

Figure 3.

in Figure 3, which in turn might be represented by a vector of num-
bers like [0,1,0, 1,0,1, 1,1,1, 1,0,1, 1,0,1]. Of course, in a generic
OCR scenario a first issue is represented by the amount of pre-
processing required to extract such a black and white silhouette
from a photographic image: first of all, we must reduce the amount
of non-essential information, which for a digital image typically
means resizing each character image to a predefined size using the
proper resampling algorithm, removing colour information, reduc-
ing a greyscale image to a black and white one and applying any
adjustment technique considered useful for letting the image con-

tours emerge clearly from the background “noise”. This step can be very complex and
implies a lot of digital image processing techniques. Also, the size of the character
should be accurately chosen so that it is not too small (otherwise complex shapes might
result into a barely readable black spot once resized) nor too big (which might result in
vectors too big to be manipulated in learning and recognition). Nevertheless, it might
also happen that our chosen vector size still impacts the performance of our network:
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indeed, it is easy for a vector size to grow when representing letters, especially when
their nuances are essential. Even a very small grid like 16×16, which would probably be
too small to be usable for palaeographical purposes, implies 256-units vectors, and just
doubling the grid would already take us to 1024 units. Computers are fast, but if you
think of the complexity and number of calculations implied by the usage of an ANN
built of at least 3 interconnected layers with several input characters each represented
by thousands of units, which must be trained by adjusting the weights of the whole
system even hundreds of times, it is easy to understand that we might incur very seri-
ous performance problems. To this end, OCR specialists often use additional processing
techniques like receptors: for instance, think of a grid of points representing a character
shape; instead of using vectors containing a unit for each point we might imaginarily
draw a set of line segments over the shape, with arbitrary size and directions, and state
that a receptor has an activated value when it crosses a letter and a deactivated value
when this does not happen. This way we would just have as many units per vector as
receptors (i.e. lines). This technique (which, of course, implies the problem of generat-
ing such receptors in an efficient way) may be very powerful in some contexts where
we can be satisfied in detecting the essential traits of each character in order to dis-
tinguish them, but it does not fit well where our shapes are rather complex and our
objective is to pay attention to finer nuances.
For such applications it is probably better to consider a relatively recent out-

growth of ANN, support vector machines (SVM), which are close to ANN but typi-
cally outperform them when dealing with specific problems like pattern recognition;

Figure 4.

SVM work by finding the optimal
“boundary” (“hyperplane”) which di-
vides groups of vectors (i.e. the set of fea-
tures which define a pattern) so that (all
or most of) the ones belonging to a recog-
nized class (e.g. a letter, when recogniz-
ing characters) stand on one side of the
plane, while all the others stand on the
other side (the vectors along this “bound-
ary” are named support vectors, whence
the term). As for ANN, there are several
open-source libraries available for build-
ing applications using such techniques; a
sample of a trivial application based on
one of these libraries (built in C# and just
slightly modified by myself for easier use
in an asynchronous environment) is represented by the example shown here.
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In this demo application, users literally draw a set of shapes (which might represent
letters or any other thing), assign them a class (e.g. tell the software that the given
sample represents an A, another a B, etc.), and let the system learn from them by getting
its own “idea” of each of the declared classes. Once the system is trained, the user can
draw a new shape and ask the system to identify it.

3 Application Issues

The above sample is just a demonstration, but by its very nature, this is a field where
it is very difficult to make previsions on the efficiency of any given real-world system
before actually putting it to the test. From a practical standpoint, detecting patterns us-
ing such methods poses several problems. First of all, as we have seen, all these neural
approaches require very careful training and consequently a very high number of sam-
ples (i.e. images, in our case): these techniques solve problems by learning to associate
(in various complex ways) input patterns (e.g. a given shape for letter A) with output
patterns (the letter A in itself): there is no algorithmic approach here, as (fortunately!)
we are not going to tell the machine which all the steps are to recognize each shape as a
specific letter. We just “show” it samples for each letter, and let it “figure out” to which
of these samples any given sample is the nearest. This is, of course, the only way of
handling such problems rather than thinking exclusively in algorithmic terms, which
might easily turn the desired solution into a programmer’s nightmare, even supposing
that we can imagine a set of well-defined and ordered steps to instruct a machine to dis-
tinguish each single shape from all the others (and what if we decide to add new classes
to be recognized?). Usually such techniques are used for experimental data which can
be increased at will, and often happen to be so overwhelming in number that man-
ual processing would be impossible. This may represent an issue for palaeographical
or other similar applications because of the relatively low quantity of digital samples
available, and poses even more problems when our aim is detecting subtle differences
rather than essential patterns. For instance, if we want to train a system so that it rec-
ognizes the differences between the same letter alpha with or without serifs, or with
a broken rather than continuous horizontal segment, rather than training it mainly for
distinguishing between different letters (an alpha is more obviously different from an
omicron), this would require even more samples, and might possibly still result in an
excessive number of system failures. So, for real-world applications of such techniques
to palaeographical data we must take into account several potential issues:

1. The preprocessing required to obtain vectors describing each shape we want to
use for training or recognition from a photographic image (resizing, dealing with
colour or greyscale information, detecting edges, removing noise, etc.) is very
complex. Also, the required graphical preprocessing especially for manuscripts
should cope with a very “noisy” background and with very different sizes, shapes,
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and locations of letters. In some scenarios it might be possible to exploit existing
digital data if available, but even then the image-letter(s) pairs to be used to feed
the training process should meet some basic requirements (in terms of resolution,
colours, shape isolation, etc.) which would probably require additional processing.

2. The scenario is evenworse when applied tomanuscripts rather than to epigraphical
material, as for obvious reasons in the former case the shapes are usually much
more complex and ligatures and abbreviations define new graphical signs which
we should treat like individual letters, as they may bear no resemblance to their
simple components. Thus, the target alphabet to recognize would be much bigger,
including not only the simple letters but also several of their peculiar combinations;
in other terms, we would have a much bigger output layer in our network.

3. Also, if we want to experiment with different variants of the same shape, things
get even worse as the nuances in the general context of a shape may be so subtle
that this would require a very troublesome learning process, the required sam-
ples would probably exceed the size of the samples we could provide, the process-
ing performance would be seriously degraded and the results inadequate, as there
would be too much noise activity in the output layer. The very nature of such tech-
niques relies completely on learning by samples, and when samples belonging to
different classes are too similar each other, it becomes impossible for the machine
to grasp their differences; we would have to raise the similarity thresholds up to a
point where each sample would be judged as representative of a different class. In
this case, the only approach should probably be a much wiser preprocessing, even
manually driven, which selects just the traits we judge as relevant for our purposes:
but a similar approach might easily become too expensive to be rewarding.

In a similar scenario, a more proficient approach would take into account a number of
helpermethods and start from the assumption that neural recognition is best fit to figure
out and compare essential patterns from large sample data rather than distinguishing
subtle nuances among similar types. In practical terms this means that first of all we
would have to think about a number of pre-processing steps which help define a priori
which traits of each sample should be treated as more relevant, thus reducing all the
noise data present in the original sample. This does not only include generic digital
image processing as explained above; on a more specific ground it would be wise to
preprocess the resulting images so that the system gets some well-directed clues about
the features which scholars themselves define as relevant for the definition of a pattern.

This often sounds odd to people in connection with neural systems, but especially in
these contexts such systems probably would never be proficient unless directed, and it
does not need to be remarked that any digital tool is not meant to replace scholars but
only to be useful for their research. As for any other technology, such systems must
be applied to the right problems and satisfy a number of requirements. In a palaeo-
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graphical scenario it would be necessary to isolate the traits which scholars define as
essential for the classification of a sign, dropping all the other features which just pro-
duce noise; for instance, this might mean erasing some portions of each sample letter
to keep just the traits which are essential to the definition of each sign, and then let the
system train on such “mutilated” samples rather than on the full picture. Automatic or
semi-automatic specialized systems might be devised for such preprocessing, but the
main point is that it is up to the scholar’s judgement to decide the kind of material
and the edition purposes. In this context, a neural system might prove useful anyway
as it provides a means of defining patterns in a more abstract way, without having to
explicitly define a fully exhaustive list of models and devise some (maybe complex)
digital format to store and compare them. For example, think of a number of letter
shapes: if we were just interested in some very selected aspects we could even dispose
of images, and rather describe them with a variable set of attributes, which may or
not be present in this essential description of each letter (e.g. serifs, horizontal angular
traits, shading, etc.), and still have a searchable system without even requiring neural
techniques. We might need to go further and take into account a greater number of
traits for each shape, and we might not even be able to list them in advance, or to say
whether some of them can be treated as equivalent or not, because we still do not know
the whole corpus with all its thousands samples. In such cases, it might be useful to
provide a neural system with some well-preprocessed samples and let it build some
patterns from them, thus providing some sort of fuzzy comparison less constrained to
predefined sets of attributes. Of course, the main job of the scholar in this context is
defining a theoretical framework which provides the clues to the system about what is
more or less relevant in any given type of sample data; this framework might often be
just a working hypothesis to start with, as this analysis process typically implies “on the
spot” adjustment of a number of sensitive parameters which affect the general appre-
ciation of observed data and repeating the process several times until the best result is
attained. This is the typical way of working in most fields where information technol-
ogy is applied to human sciences: in my opinion, one of the most difficult yet intriguing
aspects of such applications is the requirement of a degree of formal definition of every
theoretical aspect strict enough to be applicable to machine analysis. Of course, often
it is not possible to attain such definitions in theory, but at any rate we must provide
at least a good working hypothesis which fits the purpose of our research and works as
well as we can reasonably expect in our digital product.

4 Theoretical Frameworks and Preprocessing: A Textual Analogy

The examples could be easily multiplied, but I think it might be useful to quote just
one to emphasize this essential point. I have already stressed the concept of a digital
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“edition” which can be the basis of any other specialized application, like e.g. metri-
cal analysis of the texts collected in some corpus. A component of my expert system
devoted to such problems refers to the observation of alliteration, which is much more
relevant in Latin than in Greek texts, but can also be used in connection with other
languages and researches.³ Of course, a full discussion of this component would be
beyond the scope of this paper, but I would just like to stress the same methodological
implications already referred to the problem of applying neural recognition systems to
graphical samples.
As alliteration refers to the repetition of sounds,⁴ a first naive approach to detect

this phenomenon might be counting all the equal sounds in a given context.⁵ Even if
(for economical reasons) we do not discuss here the issues connected to defining which
(even approximate) “sounds” correspond to a sequence of letters, and which of them
may be treated as “equal” for the purpose of alliteration, it is obvious that such issues
represent the first step in building a theoretical framework for our analysis. Wemust go
further: the phenomenon of alliteration cannot be oversimplified to the point of simply
counting the equal sounds in some text. Otherwise, we might end up concluding (with
Evans) that hexameter parts like Pergama Graiis or talia fatur are alliterations just
because in the first sample the syllables in strong position share the “letters” g and r,
and in the second they share t and a, even if their order is reversed, as we are just
“counting letters”. On these premises, it is hardly surprising that Evans claims that
“the lines which satisfy the fundamental rule [...] are very numerous” and that for
instance in Ovid’s Fasti they are “about eighty percent of the whole” (44). Evans himself
goes further, noticing that at any rate “owing to the fact that there are only sixteen
consonant or vowel sounds which cannot echo each other, it is difficult to construct a
long line without a single rhyme” (5). In more modern terms, given that language is
articulated, it will be obvious that any text, whatever its extent, will be built with a
very limited set of phonemes: It is right the finite and very small number of phonemes
which grants language its economy, and it is a trivial prediction that any text will show
the repetition of these phonemes. Even to the ears of a more naive listener it should
be clear enough that lines like iam licet venias marite (Catull. 61, 187) could hardly

³ The component itself has no dependency on a specific language (nor digital format), even if, of course, the
theory behind it fits somewell-defined principles; for instance, the component has been used in connection
with Latin, Greek and Italian, for both metrical and non-metrical texts.

⁴ Even if a true theory of alliteration seems missing from ancient authors, there are some relevant traces of
their appreciation of the phenomenon; one of them is the synthetic yet significant definition in rhet. ad
Herennium 4,2,18 “nimia assiduitas eiusdem litterae”).

⁵ That this approach has not been judged as naive as it might sound is shown by the fact that scholars like
Evans did really base a full “theory” of alliteration on it. In his view alliteration is just a subset of what
he calls “rhyme”, defined as (p. xiii) “an agreement in sound between two or more syllables” which “may
extend either to one letter or more”, so that even words like like and roll would “rhyme” because of the
shared l.
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be said to have the same acoustical effect as lines like tympana tenta tonant palmis
et cymbala / circum concava (Lucr. 2, 618–9). This is, of course, the effect of the fact
that the phenomenon cannot be described on a purely quantitative basis (the count of
“letters”), as what is relevant is the relative position and distance of the repeated sounds
and their distribution into linguistic units (words and syllables), rather than the (trivial)
fact that sooner or later they must repeat in a text.
Should we limit ourselves to count the occurrences of each “letter” (or better “sound”)

in a line, we might grasp the existence of some alliteration when this is rather empha-
sized, like in the Lucretius line quoted above, but even there it appears that several letter
counts just add noise to our picture rather than clearly presenting it, as we can see from
the following chart representing the raw letter counts (as percent) in this line:

Figure 5.

As you can easily see, the /t/ in this chart does not stand out as it does when we hear
this line (even if uttered with sounds which do not correspond to the ancient ones):
this happens because the chart assigns the same value to each letter rather than reflect-
ing the hierarchy of the linguistic elements involved, their relations, and the literary
tradition at the base of the texts examined. Of all the letters represented in this chart,
only very few are really relevant for our purpose, not because of their intrinsic phonetic
value but just because of their position in the text examined. Thus, most of the slices in
this chart are just noise which distract attention from the phenomenonwe have selected
for analysis. If we want to provide some score of the level of alliteration detectable in
a text, we must first provide at least a theoretical definition of the phenomenon as a
working hypothesis, thus ruling out all the irrelevant “letters”, just like in ANN each
neuron can “weight” its inputs to produce the expected output. To this end, we could
broadly state some chief starting points:⁶

⁶ For the alliteration proper these points mainly reflect to some extent Valesio; some good examples (col-
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Phonemic analysis: alliteration is the repetition of sounds, and as such any text re-
quires analysis in phonemic terms. Of course, this implies an approximate reconstruc-
tion of phonemic values for the texts being examined, in this sample Greek and Latin
texts, whose limits in terms of chronological and geographical extent are well known,
but this is a necessary limitation. This also enforces the assumption that phonetic vari-
ants of the same phoneme are treated as alliteration: thus the ground for this analysis is
defined in phonological (rather than phonetic) terms. Also, it must be remembered that
the Greek and Latin texts analysed were read aloud for an audience rather than silently
read, so that we must resist the temptation of analysing this phonetic phenomenon as
a printed text, referring to the eye rather than to the ear.
Alliteration and language constraints: it is very difficult to estimate language con-

straints on alliteration, but in this working model I stress the (primarily word-) begin-
ning sounds rather than the ending sounds, for both practical and theoretical reasons.
First, cases of homeoteleuton (which is often also an homoioptoton) are very frequent
among connected words in inflectional languages like Latin or Greek (and in general
in Indo-European languages) where the grammatical role of suffixes is generally much
wider than that of prefixes: the frequency of such “grammatical rhymes” was already
noticed and discarded as irrelevant since Evans.⁷ Second, the alliteration of word-initial
sounds is well-attested as a traditional feature which might well go back to what com-
paratists call the Indo-European metrics (it is the main metrical feature of systems like
the ancient German poetry,⁸ and its importance in the archaic Latin poetry is well-
known). Also, some morphosyntactic diachronic phenomena clearly show the impor-
tance of word-initial sounds in connecting words into combinations which later can
be frozen (e.g. Italian domineddio / domeneddio from domine Deus, or the strong con-
nection between ἦμος and the expression of solar chronology in Homer and Hesiod,
enforced by the combination with ἠώς and ἠέλιος⁹).
Of course, for the general sound of the whole verse or sentence also inner- and fi-

nal (even if much more forced by the language structure) repetitions count,¹⁰ nor is

lected with a fine stylistic sense but in the context of a much weaker theory) are also found in Herescu,
who anyway devotes only a section to the alliteration.

⁷ “Such rhymes in Latin are merely accidental” (Evans 2, quoting Hor. ars 100–101 ending with two imper-
atives: ... sunto /... agunto).

⁸ Cf. Valesio 25 ff.
⁹ Cf. Valesio 179–181 who refers to Monteil.
¹⁰ Valesio, who also restricts (for the same practical reason of economy) his definition of alliteration, really

takes into account only sequences of initial or final sounds, regarding every combination of them (i.e. all
the sounds must be initial or all the sounds must be final: no combination is taken into account) or any
internal repetition at most as “para-allitterazioni”. Instead, he widens his definition when dealing with
vowels, thus being forced to abandon the consideration of their relative position, probably also because
of the English texts he uses as samples (for some considerations about vowels in Latin poetry see Herescu
84ff., whose approach anyway seems somewhat questionable because of the more limited role of vocalic
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discussing the intentions of the poet relevant here,¹¹ as I am looking for an essential
pattern detection function. Also, I prefer to apply to the tradition of the rhyme and its
ancestors a different set of analysis functions, which in Classical times play little or no
role in Latin and Greek poetry and anyway mostly relates to another context (typically
alliteration is an intrastichic and rhyme an extrastichic feature). Thus I mainly define
(detect) alliteration in terms of beginning sounds, looking to the other repetitions only
at a second stage, and descending from “words” to syllables and phonemes. The main
pillars for building an alliterating sequence are thus considered the “words”; inner (syl-
labic and phonemic) alliterations are taken into account only in dependency of word
alliterations. Finally, more generic euphonic considerations are not of concern when
dealing with this strict working definition of alliteration: thus I exclude the analysis of
repetitions of vowels whatever their position may be, unless they are involved in the
alliteration as already defined (e.g. words beginning with the same vowel, syllables
beginning with the same vowel, vowels echoing the main alliterating vowel).

• The resulting hierarchy of linguistic units for this analysis is as follows: sentence,
word, syllable, phoneme. The sentence (or line in metrical texts) defines the analy-
sis context; words beginning with the same sound(s) define alliterating sequences;
in each of these sequences I extend the analysis of repeated initial sounds to each
syllable of each word, and finally add some weight to the “echoes” of the main
sound in the remaining (i.e. not included in initial repetitions) phonemes of each
syllable.

• The context for alliteration is defined as the single verse in metrical texts and the
single sentence in non-metrical texts. This does not rule out the fact that some-
times alliterations can be carried over more lines, but this is a secondary feature
when dealing with an essential detection function, and belongs to a wider analysis
context which is not my primary concern at this stage.

• Leftwards scan: each word in a sequence is compared with any of the words
at its left in the same sequence, taking into adequate account the number of the
initial segments which are considered equal for the purpose of alliteration and their
relative distance. This is compliant with the assumption that most of the ancient
poetry is defined in acoustic rather than in visual terms, as it is orally performed for
an audience: thus the repetition of sounds becomes apparent once the same sound
pattern is repeated by newly uttered words: the word just uttered can be traced

phonemes in the Latin language, but at least takes into account the necessary distinction between “strong”
and “weak” syllables – p.26).

¹¹ On this questionable aspect cf. e.g. Herescu 128: “même si les rencontres phoniques se produisaient
d’elles-mêmes, à l’insu de l’écrivain, il reste néanmoins que celui-ci part avec, dans l’oreille, un certain
enchaînement de sons, une certaine musique, qui se réalisera dans ses vers même sans qu’il s’en rende
compte. Les sons, dira-t-on, ont leurs propres intuitions et le poète est un « peintre aveugle » (Michel-
Ange).”
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back to all the words already uttered in the same portion of the speech (typically
a verse or a sentence), but it cannot be compared to what it is still to come in the
speech. In other words, the ear can go leftwards, not rightwards as the eye.

• As for detection of the alliteration I make no attempt to distinguish between iconic
and non-iconic alliteration, which relates to style and may involve a certain level
of arbitrariness (and for the same reason is also difficult to be understood by ma-
chine analysis).¹²

Without delving into the details, the algorithm I devised from the theoretical framework
sketched out above acts on text portions defined on linguistical and metrical grounds,
the sentence (in non-metrical texts) and the line (in metrical texts), which thus define
its context of application. For instance, we will analyse a single line at a time, like the
hexameter quoted above, tympana tenta tonant palmis et cymbala circum. According
to the principles stated above, I start detecting alliterating sequences, defined as all
the (not necessarily adjacent) “words” beginning with the same sound(s), which in this
sample are tympana tenta tonant and cymbala circum. This approximation reflects the
paramount role of initial sounds at the beginning of words as the building blocks of
an alliterating sequence; it must be noted that not all the words need to be adjacent
to each other, but typically at least a predefined number of them are (as we want to
detect the repetition of initial sound(s) even when there is some other word between
two words in the same context, but we do not want to treat as an alliterating sequence
a sentence where e.g. the first and last word separated by several words happen to
begin with the same sound): this number is a parameter for the scorer (a “sequence
threshold”), typically set to 2; clients can customize it to change the scorer sensitivity to
the accumulation of adjacent words. For each sequence I compare the initial sound(s)
of each word to the initial sound(s) of each word to its left, picking up the pair with the
longest portion in common and recording its length (the more sounds in common, the
higher the effect) and relative distance (the nearer the words, the higher the effect).
This procedure takes into account the initial sounds of each word in the sequence

as the basis for the repetition, according to the relevance of word-beginning sounds
defined in the above theory and to the assumption that most of the ancient poetry is
defined in acoustic rather than in visual terms, as it is orally performed for an audience.
Thus the repetition of sounds becomes apparent once the same sound pattern is repeated
by newly uttered words: the word just uttered can be traced back to all the words
already uttered in the same portion of the speech (typically a verse or a sentence), but it
cannot be compared to what it is still to come in the speech. I then apply at the level of
the syllable in the context of a word the same procedure already applied at the level of
the word in the context of a sentence (or verse), walking down the linguistic hierarchy:
each syllable is compared with all the left syllables in the same word, but also with the

¹² For some examples see Herescu 108ff; for the discussion about onomatopoeia see also p.125 n.2.
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first syllable of the first word of the sequence. This produces an array of counts of equal
initial segments for each syllable, together with their relative distance, and constitutes
what we can call the “syllabic heads” of a sequence. Finally, the segments of each
syllables not included in the previous analysis (the syllabic heads) are also examined
to see whether any of them are equal to the “master” segment in each sequence, which
is simply the first segment of the first word in the sequence itself. For instance, in the
sequence tympana tenta tonant the word to.nant has the second syllable containing
the same /t/ segment beginning the sequence. The occurrence of this sound, even if not
initial (which is already taken into account by syllabic heads), has somewhat the effect
of “echoing” the dominant sound in the sequence and thus enforces its perception. This
constitutes what we can call the “segmental echoes” of a sequence.
At this stage I have considered all the linguistic levels from “word” to syllable and

phoneme, taking into account their position and distance, with a set of procedures
which reflect the theoretical framework outlined above; once this analysis has been
completed, I take into account the word heads, syllabic heads, and segmental echoes
of every sequence in an input text (either a sentence or a line), combining them into a
single numeric score using a set of parameters which assign a specific weight to several
aspects of the algorithm, like word and syllabic heads distance and phonemic echoes;
the greater the score, the higher the alliterating effect. Clients can change these pa-
rameters to variously adjust the scorer sensitivity to the texts being examined and the
purposes of the analysis: typically scorer results on sample texts can be used at this
stage for fine-tuning these parameters and then repeat the analysis several times until
the best result is achieved.
To sum up, this sample starts from what might be considered a simple problem

(detecting some repetition of sounds) to show the consequences of a trivial analysis
(“counting letters”), which simply tries to take in all the available data with no pre-
liminary evaluation of their relevance on theoretical grounds: a casual analyst might
well be tempted by the raw computing power at his disposal to just count all the letters
in every sentence of his texts to detect some alliterations in them. Of course, a more
sophisticated analysis would refer to sounds rather than to letters, for the trivial fact
that for historical and practical reasons no written language faithfully represents the
corresponding sounds with a simple one–to–one ratio between letters and phonemes.
In this case, a possibly complex preprocessing would be required to output e.g. a se-
quence of IPA characters from a sequence of a national alphabet letters. Even then
(counting IPA characters rather than generic letters) the appreciation of the alliteration
would probably be too inaccurate, as the analyst would just be facing a number of raw
counts among which it would be very difficult to grasp what he can easily perceive
by his ears: this is the situation already depicted by the pie-chart above, where each
sound is given the same weight, while it should be clear that its position is the first
factor defining the phenomenon under analysis. With such treatment probably the
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most emphasized alliterations might be detected, but we would also get a noise level so
high that we might often be mislead in not only underestimating but (probably worse)
overestimating several cases (remember Evan’s samples like Pergama Grais).
In other words, not all the sounds have the equal weight for defining an allitera-

tion, so several of them just represent noise data in a text: excluding them or at least
reducing their weight it is not some sort of “trick” or adjustment we should take care
of before feeding data to a machine, just because otherwise it would not “work” as ex-
pected; excluding them is right a consequence of a well-defined theoretical background,
according to which it would be an error to do otherwise, an error which would a priori
invalidate any experimental result, whatever it might be. We have seen that allitera-
tion is a complex phenomenon and that in order to give at least a working definition
of it, we must recur to linguistics and metrics, taking into account sentences, words,
syllables, phonemes (rather than allophones), their “equality”, positions and distances;
and we cannot expect a machine to “understand” all these aspects without instruction,
just feeding it with raw characters. It’s up to our theory to define the relevance of
each of these characters in the big picture we’re trying to sketch, assigning them a
well-rounded weight. Of course, it will probably be difficult to do this from the very
beginning of our analysis: as a matter of fact, the results themselves will help us in
fine-tuning all the parameters involved in our detection algorithm so that it “works”
best for our texts and our purposes: we might want to give more, or less, relevance to
the number of words which should be adjacent to define an alliterating sequence, to
the count of phonemes that words or syllables share, to their relative distance etc., so
that our analysis is sensitive to certain types of alliterations.
The same applies to the usage of neural recognition systems in contexts like palaeog-

raphy: preprocessing here is not just a remedy for an otherwise poorly performing
system. As we cannot expect miracles in detecting alliterations if we just feed a system
with a bunch of letters, we can no more claim that a neural recognition system might
be able to perform well with a relatively small sample where each shape is fed as it is,
without instructing the system about the features scholars define as relevant for their
data and purposes. As for the pie chart sampled above, we might well get some positive
results even in the worst context, but the noise level and consequently the number of
failures would be so high that such a system would be as unpractical for our purposes
as the above chart is for detecting alliterations.
It must also be emphasized that the directions given to the system via preprocessing

would probably be different according to the data being analysed and to our purposes
in analysing them. The alliteration sample shows that different languages and literary
traditions might well require a different adjustment of the various parameters, or even
more significant changes in the algorithm itself: if we just refer to the theoretical points
outlined above we can see that several aspects directly derive from various linguisti-
cal, metrical and literary assumptions (e.g. the role of suffixation in Indo-European
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morphology and its consequences for omeoteleuton and rhyme; the role of consonants
vs. vowels in alliteration; the role of words, syllables, and phonemes in alliterating se-
quences; the relevance of word-initial sounds in poetic traditions like old German and
ancient Latin; the importance of recitation in ancient poetry; etc.), which might have
different weight in different languages, texts, literary genres, etc. Also, such software
systems are created with specific purposes, and often it is important to adjust their
sensitivity according to these purposes: for instance, running an alliteration detection
system on a literary Italian corpus of prose texts where for some reason we might want
to look for alliterating sentences would require a higher sensitivity than running it on
a corpus of early Latin poetry.
The same applies to palaeographical applications, where our factors would rather

be the types of shapes involved and their level of complexity and similarity, but also
our purposes in setting up a recognition system: a system designed to recognize just
different letters might probably require to be less sensitive than one designed to detect
relevant differences between shapes of the same letter. If our data are not enough
to provide a good number of samples we might even want to define some automatic
distortion procedures which artificially increase them by applying to each letter shape
some slight distortions which do not affect their relevant features. Even then, we would
always refer to our theoretical framework, which would be the only judge for defining
which features can be treated as relevant (and thus cannot be touched by the distortion
process) and which can instead be freely altered, just like for alliteration our principles
define which letters are relevant, and to what extent, and which represent just noise.

5 Digital Editions: Possible Approaches

On these premises, it seems very likely that such neural systems might find different
types of application and success in different scenarios, and at any rate it is not possible
to predict their outcome until they are tested “on the spot”, fine-tuning their parameters
and eventually even the theoretical framework behind data preprocessing until we get
the best results, according to the data type and the system purposes. As for any other
technology, there is no miracle here, and such systems are orders of magnitude far
behind the capacity of judgement of human beings: after all, we are not supposed to, nor
would we probably want to, find some way of avoiding to think and set up a theoretical
framework by ourselves. Such tools are just a convenient way of dealing with very
large amount of data, and it is up to scholars to use them with judgement and profit. To
sum up, the problem with palaeographical scenarios is that usually the most suggestive
applications would require far too many samples to be practical or even possible, given
our relatively limited set of data and/or the effort spent in their preprocessing: if we
want our machine to recognize different letters like an OCR software we would have to



Neural Recognition to Digital Editions 193

lower our “similarity” threshold, so that the variants can be easily recognized as such;
but if at the same time we also want to recognize chronological, regional, or personal
variants of each different shape we would have to raise the threshold, maybe up to
a level where the machine would be so picky that each shape would be judged as a
different letter; finding the right balance would be very difficult if not impossible.
Rather, in a practical implementation we might think of partitioning the problems

and limit the application of such techniques to pattern subsets, referring to a carefully
defined theoretical background, just like in the alliteration sample. For instance, we
might think of applications where visuals are even more compelling, like cataloguing
brick stamps. In this case we’re dealing with letters of abbreviations which often are so
connected and reshaped into monograms-like shapes that they can be treated as single
drawings; of course, even with stamps it might often be the case that differences are
too fine to be efficiently detected, but given their high number it could be useful to
have a system trained only to recognize some single traits of each of the main classes,
maybe just to provide users of a digital catalogue a quick and approximative way of
detecting the major classification of a sample. In this context, an algorithmic approach
describing each single shape would be extremely impractical, and even providing some
sort of input for a hypothetical query system would be difficult. For example, once we
have defined a subset of relevant shape traits, extracting them from the much more
complex shapes of the actual samples we might think of presenting a relatively long
list of them to the user to pick from; but this would probably be a cumbersome way of
querying our catalogue, as users would have to carefully browse our samples list until
they find what they are looking for. Even if the count of such more generalized samples
were not so big, users would require a certain effort only to make a simple query.
A more user-friendly approach might be to provide users with a virtual board where

they sketch with their mouse (or other pointing device) the traits we have defined as
relevant for our super-classes, rather than looking for them in a relatively long list of
prebuilt samples: then a neural network trained to recognize just these traits might
be used to select the class of the sample being queried. This is a purely hypothetical
example, but it shows how an ANN might even be used to just improve the users’
experience in defining their input for querying a digital catalogue: here the classes
to be recognized would be much less than the actual stamps patterns, because editors
would have restricted them to a much more abstract subset, defining only their most
relevant traits. But this might be enough to restrict the query to a more significant set
of classes (which might be later again restricted by means of similar or different query
parameters, probably a combination of visual and non-visual ones), and this would be
accomplished with a user simply drawing something, and letting the ANN recognize
the most similar pattern in its trained set.
Here again it would be up to the scholars’ publishing the catalogue to define which

traits should be selected as the most relevant partitioning criteria for their data, ac-



194 Daniele Fusi

cording to the theoretical framework they have set for their research method. Going
one step further, this “partitioned” approach might also prove useful in palaeographical
scenarios, where at a first approach it is not so easy to think of “decomposing” letter
shapes into isolated traits which might not even make any sense for a human reader.
Here a broader analogy might help: think of a typical identikit procedure, where wit-
nesses must help building up the face of a person by selecting each trait from a set of
galleries: they select head shape, nose, lips, ears, hairs, etc., one at a time from sepa-
rated galleries of samples, picking one from each of them and then assembling all the
components into a hypothetical portrait. As for letters, we have seen that in several
cases we might have to face issues originated by the limited set of available samples
in contrast with a high number of classes to be recognized, often distinguished by nu-
ances which are too fine to be efficiently manipulated. We might think of partitioning
the problem in advance, even before letting an ANN enter the scene, and define a set
of single features we consider as relevant for distinguishing at least the most impor-
tant classes. For instance, we might extract from letters just the shape of their serifs,
the orientation of some selected segments, the shape of elliptical parts, etc., and define
each as a separate step, to be treated by a specifically trained ANN. Like when using
an identikit, users might just literally draw a sample for each of these features and let
several trained ANNs recognize their patterns. Each of these steps would be a progress
towards the final result, which would lead to some sort of classification of the letter
sample. This way, the letter would no more be treated as a single pattern but rather
deconstructed into a set of individual patterns, each recognized by a differently trained
ANN. Later, we might be able to sum up the results of the output of all the ANNs,
eventually combine them with other (non-visual) query parameters and get the desired
classification. Of course, this is a hypothetical scenario, which would probably be prac-
tical only when dealing with a large amount of data and classes, or when no feasible
alternatives to a purely visual way of querying a database of patterns are available; but
it might be more rewarding than letting the machine try to perform a good recognition
on data which are intrinsically very difficult to be treated.
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