Trifluormethyltellur(IV)-Verbindungen

Inaugural-Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

> vorgelegt von Holger Weigand aus Santa Barbara

> > Köln 2009

Berichterstatter: Prof. Dr. D. Naumann Prof. Dr. A. Klein

Tag der mündlichen Prüfung22.06.2009

Die experimentellen Untersuchungen der vorliegenden Arbeit wurden von Juni 2006 bis Oktober 2008 am Lehrstuhl II des Instituts für Anorganische Chemie der Universität zu Köln unter Leitung von Herrn Prof. Dr. D. Naumann durchgeführt.

Ich danke Herrn Prof. Dr. D. Naumann für die interessante Themenstellung, seine Unterstützung und Motivation.

Ebenso gilt mein Dank Herrn Prof. Dr. A. Klein für die Übernahme des Korreferats und Herrn Prof. Dr. U. Deiters für die Übernahme des Prüfungsvorsitzes sowie Herrn Prof. Dr. S. Mathur für die freundliche Aufahme in seinen Arbeitskreis.

Für die Unterstützung, die Diskussionsbereitschaft, die vielen Anregungen, die Durchsicht der Arbeit und auch die Übernahme des Prüfungsbeitsitzes möchte ich Herrn Dr. W. Tyrra danken.

Mein Dank gilt Herrn Dr. H. Scherer, Herrn Dr. I. Pantenburg und den Damen Daniela, Astrid, Silke und Nurgül, meinen Laborkollegen Prof. Dr. Y. Yagupolskii, Dr. N. Kirij, Dr. M. Kremlev, Alex, Hendrik, Alfred, Frank, Said, Roland, Harald und Thomas, meinen Bürokollegen Thomas, Eva, Janine, Ramona, Jun, Lisong, Frank, Simon, Raquel und Melanie, meinen Praktikanten Lisa, Costa, Julika, Hülya, Johannes, Christoph, Muhammet, Christian, Manuel und Aysegül, meinen Komilitonen Sebastian, Irena, Anne, Nina, Renate, Philipp, David, Ilona, Christoph, Ralf, Jürgen, Andrea, usw. sowie allen Mitarbeitern des Instituts für Anorganische Chemie, die auf die eine oder andere Art und Weise zum Gelingen der Arbeit beigetragen haben, für die Unterstützung, die Analytik, die Diskussionsund Hilfsbereitschaft, die Anregungen und die nette Arbeitsatmosphäre.

Und nicht zuletzt danke ich meiner Familie, insbesondere meiner Frau Anna, für alles.

Meiner Familie

Kurzzusammenfassung

Ziel dieser Arbeit ist die Darstellung und Analyse von Bis(trifluormethyl)tellur(IV)-Verbindungen. Über Ligandenaustauschreaktionen an den Bis(trifluormethyl)tellurdihalogeniden Te(CF₃)₂X₂ (X=F, Cl, Br) wurden die Carbon- und Sulfonsäurederivate der (CF₃)₂Te(IV)-Verbindungen synthetisiert. Als Ligandenaustauschreagenzien fungierten Trimethylsilylverbindungen und Silbersalze. Die Umsetzungen wurden mit Hilfe der ¹⁹F-NMR-Spektroskopie kontrolliert. Die Untersuchung der Produkte erfolgte über CHNS-Elementaranalyse, Schmelzpunktbestimmung, Massen- und Schwingungsspektroskopie sowie NMR-Spektren der Produkte in Lösung und Einkristallstrukturanalysen, sofern Einkristalle erhalten wurden. Auf diese Weise wurden die Verbindungen Te(CF₃)₂(CO₂R)₂ (R = CF₃, CH₃, C₆F₅, C₆H₃F₂, C₆H₄F) und Te(CF₃)₂(SO₃R)₂ (R = CF₃, C₆H₄CH₃) dargestellt und charakterisiert.

Die NMR-Spektren der Verbindungen in verschiedenen Lösungsmitteln deuten auf ein ungewöhnliches Verhalten in Lösung hin. So zeigen diese einen je nach Solvens unterscheidbaren Habitus. Die Produkte lösen sich in Wasser unter Hydrolyse. Mit den starken Säuren als Liganden bilden sich nicht sofort die schon seit längerem bekannten polymeren oxidischen Verbindungen. Es stellt sich ein Gleichgewicht zwischen einer neutralen $(CF_3)_2Te(IV)$ -Verbindung, womöglich $Te(CF_3)_2(OH)_2$, und den ionischen Te(IV)-Derivaten $[Te(CF_3)_3]^+$ und $[Te(CF_3)R_4]^-$ ein.

In polaren und unpolaren organischen Lösungsmitteln muss angenommen werden, dass die Bis(trifluormethyl)tellur(IV)-Verbindungen Gleichgewichtsreaktionen eingehen. Mögliche Gleichgewichte, wie z.B. eine [1,3]-sigmatrope Umlagerung der Säureliganden oder die Oligomerisierung zu Telluroxanen, werden diskutiert und durch die Ergebnisse der Analytik untermauert.

Abstract

The aim of this work is the synthesis and analysis of Bis(trifluoromethyl)tellurium(IV)compounds. Starting from the dihalogen-derivatives $Te(CF_3)_2X_2$ (X = F, Cl, Br) ligand exchange reactions with trifluoromethyltrimethylsiliyl-compounds, silver salts and other reactants were investigated. The synthesis was monitored by ¹⁹F-NMR-spectroscopy and $Te(CF_3)_2(CO_2R)_2$ (R = CF₃, CH₃, C₆F₅, C₆H₃F₂, C₆H₄F) and $Te(CF_3)_2(SO_3R)_2$ (R = CF₃, C₆H₄CH₃) resulted as solids. The isolated products were analysed and characterised by means of elemental analysis, melting point analysis, mass spectroscopy, vibrational spectroscopy and, if possible, by X-ray diffraction of single crystals. The behaviour of the compounds in solution was investigated by NMR-spectroscopy.

In water hydrolysis takes place. With the strong acids as ligands the known polymeric oxides of Bis(trifluormethyl)tellurium-compounds are not formed initially. An equilibrium between a neutral species, possibly $Te(CF_3)_2(OH)_2$, and the two ionic derivatives $[Te(CF_3)_3]^+$ and $[Te(CF_3)R_4]^-$ can be described.

In polar and unpolar organic liquids equilibria are formed, too. ¹⁹F-NMR-spectra show different habitus depending on the solvent used. Possible reactions are discussed and supporting facts from other analytical methods mentioned, especially for a [1,3]-sigmatropic shift of the carboxylic ligands or an oligomerisation of the $(CF_3)_2Te(IV)$ -derivatives to telluroxanes.

Inhaltsverzeichnis

1	Einleitung	1
2	Ergebnisse und Diskussion	15
2.1	Synthese von Bis(trifluormethyl)tellur(IV)-Verbindungen	15
2.1.1	NMR-Spektroskopie von Trifluormethyltellurverbindungen	16
2.1.1.1	Die Chemische Verschiebung	17
2.1.1.2	Die Kopplungskonstanten	18
2.1.2	Bis(trifluormethyl)tellurbis(trifluoracetat)	22
2.1.2.1	$\label{eq:Kristallstruktur von Te} (CF_3)_2 (CO_2 CF_3)_2 \ \ldots \ $	28
2.1.3	Bis(trifluormethyl)tellurdiacetat	32
2.1.4	Bis(trifluormethyl)tellurbis(pentafluorbenzoat)	37
2.1.4.1	$\label{eq:Kristallstruktur von Te} (CF_3)_2 (CO_2C_6F_5)_2 \dots \dots$	44
2.1.5	Bis(trifluormethyl)tellurbis(2,6-difluorbenzoat)	50
2.1.6	Bis(trifluormethyl)tellurbis(2-fluorbenzoat)	55
2.1.7	Bis(trifluormethyl)tellurbis(trifluormethylsulfonat)	60
2.1.7.1	$\label{eq:Kristallstruktur von} [(Te(CF_3)_2)_3O_2] [SO_3CF_3]_2 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	64
2.1.8	Bis(trifluormethyl)tellurbis(toluolsulfonat)	70
2.1.9	Versuche zur Darstellung von weiteren Bis(trifluormethyl)tellur(IV)-Verbindungen	74
2.2	Eigenschaften von $\text{Te}(\text{CF}_3)_2 Y_2$	78
2.2.1	Verhalten von Te $(CF_3)_2$ Y ₂ in Lösung	81
2.2.1.1	Verhalten von $Te(CF_3)_2Y_2$ in Wasser	83
2.2.1.2	Zersetzungsreaktionen	89
2.2.1.3	Gleichgewichte in Lösung	91

3	Darstellung und Reinigung der Ausgangssubstanzen	101
3.1	Verwendete Chemikalien	101
3.2	Eigenständig synthetisierte Ausgangsverbindungen	102
3.2.1	Bis(trifluormethyl)tellur	102
3.2.2	Bis(trifluormethyl)tellurdifluorid	102
3.2.3	Bis(trifluormethyl)tellurdichlorid	103
3.2.4	Bis(trifluormethyl)tellurdibromid	103
3.2.5	Silberpentafluorbenzoat	104
3.2.5.1	Kristallstruktur von Silberpentafluorbenzoat Monohydrat	104
3.2.6	Silber-2,6-difluorbenzoat	112
3.2.7	Silber-2-fluorbenzoat	112
4	Analytik	113
4.1	NMR-Spektroskopie	113
4.2	Schmelzpunktbestimmung	114
4.3	Massenspektrometrie	114
4.4	IR-Spektroskopie	114
4.5	Raman-Spektroskopie	115
4.6	Elementaranalyse	115
4.7	Kristallstrukturanalyse	115
5	Experimenteller Teil	117
5.1	Synthese und Eigenschaften von $Te(CF_3)_2Y_2$	117
5.1.1	Bis(trifluormethyl)tellurbis(trifluoracetat)	117
5.1.1.1	Kristallstruktur von Te $(CF_3)_2(CO_2CF_3)_2$	123
5.1.2	Bis(trifluormethyl)tellurdiacetat	127
5.1.3	Bis(trifluormethyl)tellurbis(pentafluorbenzoat)	131
5.1.3.1	Kristallstruktur von Te $(CF_3)_2(CO_2C_6F_5)_2$	140
5.1.4	Bis(trifluormethyl)tellurbis(2,6-difluorbenzoat)	145
5.1.5	Bis(trifluormethyl)tellurbis(2-fluorbenzoat)	151

5.1.6	Bis(trifluormethyl)tellurbis(trifluormethylsulfonat)	157
5.1.6.1	$\label{eq:Kristallstruktur von} [(Te(CF_3)_2)_3O_2] [SO_3CF_3]_2 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	163
5.1.7	Bis(trifluormethyl)tellurbis(toluolsulfonat)	171
6	Zusammenfassung und Ausblick	179
Literaturverzeichnis 18		

Abkürzungsverzeichnis

br

breit

Allgemein		Massenspektroskopie		
Е	Element	m/z	Masse-Ladungsverhältnis	
Me	Methyl	rel. Int.	relative Intensität	
Et	Ethyl			
Ph	Phenyl	Lösungsmittel		
R	organischer Rest	EtOH	Ethanol	
R_{f}	perfluorierter Rest	Glyme	Dimethoxyethan	
Ar	aromatischer Rest	DMF	N,N-Dimethylformamid	
<i>o</i> , <i>m</i> , <i>p</i>	ortho, meta, para	THF	Tetrahydrofuran	
ax	axial			
eq	äquatorial	Kristallstukturbestimmung		
ber.	berechnet	a, b, c, α , β , γ	Gitterkonstanten	
gef.	gefunden	max	maximal	
VSEPR	Valence Shell Electron Pair Repulsion	min	minimal	
DFT	Dichte-Funktional-Theorie			
h	Plank'sches Wirkungsquantum	NMR-Spektroskopie		
v	Frequenz	δ	chemische Verschiebung	
n.b.	nicht bestimmt	J	Kopplungskonstante	
RT	Raumtemperatur	br	breites Signal	
		m	Multiplett	
Schwingungsspektroskopie		S	Singulett	
W	schwach	d	Dublett	
m	mittel	t	Triplett	
S	stark	q	Quartett	
sh	Schulter	sept	Septett	

dez

Dezett

1 Einleitung

Seit mehr als 25 Jahren ist die Organotellurchemie Gegenstand von Untersuchungen im Arbeitskreis *Naumann*. Der Stand der Forschung wurde 2001 ausführlich zusammengefasst.^[1] Von Interesse sind vor allem die perfluorierten Verbindungen. Diese zeichnen sich durch ihre anders gearteten Eigenschaften im Vergleich zu den entsprechenden nicht-fluorierten Verbindungen aus. Eine Erklärung hierfür ist die Polarisierung der C–Te-Bindung, z.B. in Methylderivaten von Tellurverbindungen (siehe Abb. 1.1).

$$\begin{array}{ccc} \delta + & \delta - & & \delta - & \delta + \\ \mathbf{H_3C} & & \mathbf{F_3C} & & \mathbf{F_3C} & \mathbf{Te} \end{array}$$

Abbildung 1.1: Zur Veranschaulichung der unterschiedlichen Polarisierung der C-Te-Bindung in Methyl- und Trifluormethyltellurverbindungen.

Durch die Anwesenheit der Fluoratome verschiebt sich die Polarität. Auf die chemischen Eigenschaften wirkt sich das am Beispiel der Methylderivate wie folgt aus: $(CH_3)_2$ Te ist eine Lewis-Base, und Te $(CF_3)_2$ verhält sich wie eine Lewis-Säure. Die Betrachtung der CF₃-Gruppe als Pseudohalogen wurde schon vor über 50 Jahren von *Emeleus* eingeführt. Dieses reagiert wie die Halogene als Radikal unter radikalischen Bedingungen und wie ein Anion unter polaren Bedingungen, obwohl ein "nacktes CF_3^- " nicht beobachtet wird. Auf welche Art die CF₃-Gruppe in CF₃–E-Verbindungen reagiert, hängt stark vom Atom E ab, die Übergänge sind jedoch fließend.

Bell, Pullman und West beschrieben 1963 die erste Trifluormethyltellur-Verbindung.^[2] Sie

ließen CF_3 -Radikale, die thermisch aus Hexafluoraceton CF_3COCF_3 erzeugt wurden, auf einen Tellurspiegel einwirken und erhielten Bis(trifluormethyl)ditellur $Te_2(CF_3)_2$.

$$2 \operatorname{Te} + \operatorname{CF}_3 \operatorname{COCF}_3 \xrightarrow{\Delta} \operatorname{Te}_2(\operatorname{CF}_3)_2 + \operatorname{CO}$$

Denniston und *Martin* gelang 1975 durch die Bestrahlung einer Mischung aus $(CH_3)_2$ Te und Perfluoriodalkan R_fI (mit $R_f = CF_3$, C_2F_5) die Darstellung von Methylperfluoralkyltellur CH_3TeR_f und Bis(perfluoralkyl)tellur $Te(R_f)_2$, wie sie mit Hilfe der ¹⁹F-NMR-Spektroskopie belegen konnten. ^{[3]*}

$$2(CH_3)_2Te + 3R_fI \xrightarrow{h \cdot v} CH_3TeR_f + Te(R_f)_2 + 3CH_3I \qquad (R_f = CF_3, C_2F_5)$$

Lagow^[4,5] und *Schmeißer*^[6] stellten CF_3 -Radikale in Entladungsreaktionen aus Hexafluorethan C_2F_6 dar, um sie mit Tellur bzw. Tellurtetrabromid $TeBr_4$ reagieren zu lassen. In kleinen Mengen konnten $Te(CF_3)_2$ und $Te_2(CF_3)_2$ erhalten werden.

$$C_2F_6 + Te \longrightarrow Te(CF_3)_2 + Te_2(CF_3)_2$$

$$C_2F_6 + TeBr_4 \longrightarrow Te(CF_3)_2 + Te_2(CF_3)_2$$

Perfluoralkyltellur-Verbindungen konnten bis vor 30 Jahren allerdings noch nicht genauer erforscht werden, da die Synthesemethoden es nicht gestatteten, größere Mengen darzustellen.

^{*}Diese Reaktion und einige der Folgenden sind nur schematisch dargestellt, um das Reaktionsprinzip zu verdeutlichen. Angegeben sind nur die für das Thema wesentlichen Produkte, auf Weitere wird hier nicht eingegangen.

Die erste Darstellung einer Perfluoralkyltellur-Verbindung in Mengen, die für präparative Zwecke geeignet sind, gelang *Passmore et al.* in einer Umsetzung von Tetrafluorethen C_2F_4 mit Tetratellurbis(hexafluoroarsenat) $Te_4[AsF_6]_2$.^[7,8] Es entstehen Bis(pentafluorethyl)tellur $Te(C_2F_5)_2$ und -ditellur $Te_2(C_2F_5)_2$, allerdings zeigte sich, dass diese Reaktion schlecht reproduzierbar ist.

$$Te_4[AsF_6]_2 + C_2F_4 \longrightarrow Te(C_2F_5)_2 + Te_2(C_2F_5)_2$$

Die erste einfache und reproduzierbare Möglichkeit, Perfluoralkyltellur-Verbindungen in präparativen Mengen darzustellen, wurde 1982 von *Naumann et al.* beschrieben.^[9] $Te(CF_3)_2$ wird bei Normaldruck unter leichter Erwärmung in einer Reaktion von Bis-(trifluormethyl)quecksilber $Hg(CF_3)_2$ mit Tellurtetrachlorid $TeCl_4$ dargestellt und kann durch Tieftemperaturdestillation isoliert werden. *Morrison et al.* zeigten, dass diese Reaktion auch mit TeBr₄ statt TeCl₄ abläuft.^[10]

$$\operatorname{Hg}(\operatorname{CF}_3)_2 + \operatorname{TeCl}_4 \xrightarrow{\Delta} \operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{Te}(\operatorname{CClF}_2)_2 + \operatorname{HgCl}_2 + \operatorname{Te}$$

Eine weitere Darstellungsmöglichkeit für Te $(CF_3)_2$ wurde von *Boye* während ihrer Dissertation untersucht und weiterentwickelt. ^[11] Ausgehend von elementarem Tellur und weiteren einfach zugänglichen Edukten kann die Verwendung von Quecksilberverbindungen vermieden werden. Natriumtrifluoracetat, NaCO₂CF₃, und Tellur werden unter Kupferaktivierung bei hohen Temperaturen in einem hochsiedenden Lösungsmittel wie Sulfolan miteinander zur Reaktion gebracht. NaCO₂CF₃ fungiert unter Decarboxylierung als CF₃-Gruppenübertragungsreagenz und Tellur reagiert unter Disproportionierung zu Natriumtellurid Na₂Te und Te(CF₃)₂.

$$2 \operatorname{Te} + 2 \operatorname{NaCO}_2 \operatorname{CF}_3 \xrightarrow[\operatorname{Cu, 200 °C}]{\text{Sulfolan}} \operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{Na}_2 \operatorname{Te} + 2 \operatorname{CO}_2$$

Die Forschung zur Darstellung von Bis(trifluormethyl)tellur und seinen höheren homologen Perfluoralkylverbindungen, wurde 1988 von *Naumann et al.* weitergeführt. Angelehnt an die Reaktion von *Denniston* und *Martin* wird Dimethyltellur mit Perfluoriodalkanen in Gegenwart von Triethylamin (C_2H_5)₃N unter Bestrahlung umgesetzt. ^[12]

$$(CH_3)_2 Te + R_f I + (C_2H_5)_3 N \xrightarrow{h \cdot v} CH_3 TeR_f + [(C_2H_5)_3 NCH_3]I$$

$$CH_3 TeR_f + R_f I \longrightarrow Te(R_f)_2 + Te_2(R_f)_2$$

Ohne die Anwesenheit von Triethylamin entsteht bei -78 °C das Telluroniumsalz Trifluormethyldimethyltelluriodid $[(CH_3)_2 TeCF_3]I$.^[13] Dieses zersetzt sich ab 70 °C zu CH₃TeCF₃ und CH₃I.

$$CF_{3}I + (CH_{3})_{2}Te \xrightarrow{h \cdot v} [(CH_{3})_{2}TeCF_{3}]I \xrightarrow{70 \circ C} CH_{3}TeCF_{3} + CH_{3}I$$

Eine alternative Syntheseroute zur Darstellung von Bis(perfluoralkyl)tellur-Verbindungen bietet die Reaktion von Na_2Te mit R_fI in THF. Das Lösungsmittel kann hier allerdings nicht vollständig vom Produkt abgetrennt werden.^[14]

$$\operatorname{Na}_{2}\operatorname{Te} + 2\operatorname{R}_{f}\operatorname{I} \longrightarrow \operatorname{Te}(\operatorname{R}_{f})_{2} + 2\operatorname{NaI} \qquad (\operatorname{R}_{f} = \operatorname{C}_{2}\operatorname{F}_{5}, \operatorname{C}_{6}\operatorname{F}_{5})$$

1987 wurde von *Naumann et al.* die erste präparative Methode zur Darstellung von Bis(trifluormethyl)ditellur vorgestellt.^[15] In einer Belichtungsreaktion reagiert $Te(CF_3)_2$

mit Furan unter Bildung von Trifluormethylfuranen und dem TeCF₃-Dimer. 1996 waren es *Haas et al.*, die drei weitere Methoden zur Darstellung von Bis(perfluoralkyl)tellur-Verbindungen veröffentlichten. ^[16] In Reaktionen von elementarem Tellur mit Perfluoralkylquecksilber Hg(R_f)₂, Perfluoralkylquecksilberiodid HgR_fI bzw. Perfluoriodalkanen R_fI unter Anwesenheit von elementarem Kupfer werden Perfluoralkyltellur- Te(R_f)₂ und -ditellurverbindungen Te₂(R_f)₂ dargestellt.

Te(CF₃)₂ und Te₂(CF₃)₂ sind beides Flüssigkeiten, die leicht zu oxidieren sind, z.B. an Luft, aber nicht hydrolysiert werden. Ersteres wurde vor allem in Bezug auf die Anwendung als Trifluormethylierungsmittel erforscht. Bei radikalischen Bedingungen werden in der elementorganischen und organischen Chemie hauptsächlich die von *Emeleus* hergestellten Verbindungen Bis(trifluormethyl)quecksilber Hg(CF₃)₂ und Trifluoriodmethan CF₃I verwendet. ^[17, 18] *Naumann et al.* verglichen die Reaktivität von Te(CF₃)₂ mit der von Hg(CF₃)₂ und CF₃I in Reaktionen mit ungesättigten organischen Verbindungen. ^[19–22] Die Reaktionen wurden in Mischungen der Reinstoffe durch Erhitzen oder Bestrahlen gestartet und so die hohe Reaktivität von Te(CF₃)₂ im Vergleich zu Hg(CF₃)₂ und CF₃I dokumentiert.

Weiterhin wurden Wasserstoffaustauschreaktionen untersucht, die trifluormethylierte Isomere in hohen Ausbeuten liefern.

Ganja und *Morrison* konnten Trifluormethylelementverbindungen aus $Te(CF_3)_2$ in Reaktionen bei hohen Temperaturen mit Iod, Schwefel, Selen, Phosphor und Arsen erhalten. ^[23] Es wurden desweiteren die Gleichgewichtsreaktionen zwischen $Te(CF_3)_2$ und Metallalkylen in Lösung bei Raumtemperatur untersucht. ^[24] Diese Gleichgewichte lassen sich durch eine geeignete Wahl des Stoffmengenverhältnisses verschieben, und die Produkte CH_3TeCF_3 , CH_3MCF_3 und $M(CF_3)_2$ werden in präparativen Mengen isoliert. Auch die höheren Homologen der Perfluoralkylverbindungen sind für diese Reaktionen geeignet.

$$Te(CF_3)_2 + (CH_3)_2 M \Longrightarrow CH_3 TeCF_3 + CH_3 MCF_3 \Longrightarrow (CH_3)_2 Te + M(CF_3)_2$$

$$(M = Zn, Cd)$$

Weniger gut untersucht sind die Reaktionen des dimeren Bis(trifluormethyl)ditellurs. Mit den Metallen Quecksilber und Cadmium bilden sich Verbindungen des Typs $M(TeCF_3)_2$.^[15]

$$(\text{TeCF}_3)_2 + M \Longrightarrow M(\text{TeCF}_3)_2$$
 $(M = \text{Hg, Cd})$

Mit Iod findet in Chloroform oder n-Pentan eine Reaktion zu CF_3 TeI statt, welches sich bei Isolierungsversuchen zu Tellur, Tellurtetraiodid TeI₄ und Trifluoriodmethan zersetzt. ^[25, 26]

$$(\text{TeCF}_3)_2 + \text{I}_2 \rightleftharpoons 2 \text{ CF}_3 \text{TeI}$$

 CF_3 TeI konnte nur in Lösung anhand spektroskopischer Methoden und Folgereaktionen, die das hohe Synthesepotential belegen, identifiziert werden. In Reaktionen mit anderen Ligandenaustauschreagenzien, wie z.B. Lithium-, Silber- oder Quecksilbersalzen, werden unter Bildung der Metalliodide neue Trifluormethyltellur-Verbindungen synthetisiert. Die NMR-Spektren zeigen hier, dass die ¹⁹F- und ¹²⁵Te-chemische Verschiebung sowie die ²J(¹²⁵Te-¹⁹F)-Kopplungskonstante von der Donorzahl des Lösungsmittels abhängig sind.

$$2 \operatorname{CF}_3 \operatorname{TeI} + \operatorname{Hg}(\operatorname{SeCF}_3)_2 \longrightarrow 2 \operatorname{CF}_3 \operatorname{TeSeCF}_3 + \operatorname{HgI}_2$$

 $CF_3TeI + AgSCN \longrightarrow Te(CF_3)SCN + AgI$

 $CF_3TeI + LiSC_6F_5 \longrightarrow Te(CF_3)SC_6F_5 + LiI$

In Reaktionen des Hg(TeCF₃)₂ mit Diethylaluminiumiodid (C₂H₅)₂All konnte das erste Difluorotellurketon dargestellt, isoliert und analysiert werden. Dieses wird bei -196 °C als dunkelviolettes, kurzlebiges, amorphes Material erhalten, das zu dem cyclischen Dimer (F₂CTe)₂ dimerisiert. ^[26,27]

$$Hg(TeCF_3)_2 + 2(C_2H_5)_2AII \longrightarrow F_2C = Te + HgI_2 + 2(C_2H_5)_2AIF$$

Eine einfachere Darstellung gelingt durch die Pyrolyse von Trifluormethyltellurotrimethylzinn, welche auch für die Darstellung der höheren homologen Perfluoralkylderivate genutzt werden kann. *Haas et al.* zeigten außerdem, dass Stannyltellur-Verbindungen als TeCF₃-Gruppenübertragungsreagenzien sehr gut geeignet sind. ^[28]

$$(\text{TeCF}_3)_2 + 2 (\text{CH}_3)_3 \text{SnH} \longrightarrow 2 (\text{CH}_3)_3 \text{SnTeCF}_3 + \text{H}_2 \xrightarrow{280 \,^{\circ}\text{C}} \text{F}_2\text{C} = \text{Te} \xrightarrow{2\times} (\text{F}_2\text{CTe})_2 \text{CTe} = \text{TE} \xrightarrow{2} (\text{F}_2\text{CTE})_2 \text{CTE} = \text{TE} \xrightarrow{2} (\text{TE} \xrightarrow{2} (\text{TE} \xrightarrow{2} (\text{TE} \xrightarrow{2} (\text{TE} \xrightarrow{2} (\text{TE} \xrightarrow{2} (\text{TE} \xrightarrow$$

Seit 1974 beschreiben *Passmore et al.* die Oxidation von $\text{Te}(\text{C}_2\text{F}_5)_2$ und $\text{Te}_2(\text{C}_2\text{F}_5)_2$ mit Chlorfluorid CIF, Xenondifluorid XeF₂ und Chlor Cl₂ um Perfluoralkyltellur(IV)und (VI)-Halogenide darzustellen.^[29,30] Oxidationsreaktionen an $\text{Te}(\text{CF}_3)_2$ wurden von *Naumann et al.* untersucht. $\text{Te}(\text{CF}_3)_2$ reagiert mit der Umgebungsluft, Sauerstoff O₂ und Ozon O₃ zu einem weißen Feststoff, der in den meisten Lösungsmitteln unlöslich ist. NMR-, Massen- und Schwingungsspektren beweisen, dass es sich dabei um eine Trifluormethyltellur(IV)-Verbindung handelt, wahrscheinlich polymeres $[(\text{CF}_3)_2\text{TeO}]_x$.^[31]

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \frac{1}{2}\operatorname{O}_2 \longrightarrow [(\operatorname{CF}_3)_2\operatorname{TeO}]_x$$

Der Feststoff zeigt einen Schmelzpunkt oberhalb von $350 \,^{\circ}$ C und ist nicht hydrolysierbar. Er löst sich in HF unter Bildung von Bis(trifluormethyl)tellurdifluorid Te(CF₃)₂F₂ und liegt in Trifluoressigsäureanhydrid (CF₃CO)₂O im Gleichgewicht mit Bis(trifluormethyl)tellurbis(trifluoracetat) Te(CF₃)₂(CO₂CF₃)₂ vor. In konzentrierter Salzsäure wird überwiegend Trifluormethyltellurtrichlorid Te(CF₃)Cl₃ gebildet, das mit Cäsiumchlorid CsCl zu Dicäsiumhexachlorotellurat Cs₂[TeCl₆] reagiert.

$$[(CF_3)_2 TeO] + 3 HCl \longrightarrow CF_3H + Te(CF_3)Cl_3 + H_2O \xrightarrow{CsCl} Cs_2[TeCl_6] + CF_3H$$

In Tieftemperaturfluorierungen von Te(CF₃)₂ mit Fluor, Xenondifluorid, Chlorfluorid und Bromtrifluorid BrF₃ wird Te(CF₃)₂F₂ als hydrolysierbarer weißer Feststoff erhalten. ^[32] Dieser sublimiert ab einer Temperatur von 65 °C und zeigt einen Schmelzpunkt von 185 °C, der im Vergleich zu anderen Bis(perfluoralkyl)tellurdifluoriden sehr hoch liegt. Die Oxidation von Te(CF₃)₂ zu Te(CF₃)₂F₂ mit einem Überschuss ClF verläuft unter Bildung des Intermediats Bis(trifluormethyl)tellurchloridfluorid Te(CF₃)₂ClF, das anschließend unter Komproportionierung von Cl⁺ und Cl⁻ weiterreagiert.

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{ClF} \longrightarrow \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{ClF} \xrightarrow{+\operatorname{ClF}} \operatorname{Te}(\operatorname{CF}_3)_2 F_2 + \operatorname{Cl}_2$$

Dieses Intermediat selber wird nur NMR-spektroskopisch in Lösung nachgewiesen. Es liegt im Gleichgewicht mit $Te(CF_3)_2F_2$ und Bis(trifluormethyl)tellurdichlorid $Te(CF_3)_2Cl_2$ vor. Bei Isolierungsversuchen wird kein $Te(CF_3)_2ClF$ erhalten, es entstehen immer die beiden Dihalogenide.

$$2 \operatorname{Te}(\mathrm{CF}_3)_2 \mathrm{ClF} \Longrightarrow \operatorname{Te}(\mathrm{CF}_3)_2 \mathrm{F}_2 + \operatorname{Te}(\mathrm{CF}_3)_2 \mathrm{Cl}_2$$

 $Te(CF_3)_2$ wird außerdem von elementarem Chlor bzw. Brom oxidiert. Darstellung und Eigenschaften der Produkte $Te(CF_3)_2Cl_2$ und Bis(trifluormethyl)tellurdibromid $Te(CF_3)_2Br_2$ werden von *Naumann et al.* beschrieben.^[31] Bei Raumtemperatur reagiert $Te(CF_3)_2$ mit elementarem Chlor zu $Te(CF_3)_2Cl_2$. Wird ein Überschuss Cl_2 eingesetzt, entstehen $Te(CF_3)Cl_3$ und CF_3Cl .

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{Cl}_2 \xrightarrow{\operatorname{RT}} \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{Cl}_2 \xrightarrow{\operatorname{Cl}_2} \operatorname{Te}(\operatorname{CF}_3) \operatorname{Cl}_3 + \operatorname{CF}_3 \operatorname{Cl}_3$$

Die Darstellung von $Te(CF_3)_2Br_2$ dagegen ist nur in CCl_3F bei tiefer Temperatur erfolgreich.

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{Br}_2 \xrightarrow[-78 \circ C]{\operatorname{CCl}_3F} \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{Br}_2$$

Die Darstellung des Diiodids $Te(CF_3)_2I_2$ gelingt dagegen nicht, die Zerfallsprodukte lassen aber darauf schließen, dass es zumindest kurzzeitig entstanden sein muss.^[31]

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{I}_2 \longrightarrow \{\operatorname{Te}(\operatorname{CF}_3)_2\operatorname{I}_2\} \xrightarrow{\operatorname{I}_2} \operatorname{CF}_3\operatorname{I} + \operatorname{TeI}_4$$

Desweiteren wurden Reaktionen von Bis(trifluormethyl)tellurdihalogeniden untersucht. ^[33] Diese bilden mit Natriumfluorid NaF bzw. den elementaren Halogenen Gleichgewichte in Abhängigkeit vom gewählten Stoffmengenverhältnis. So können die Dihalogenide der Trifluormethyltellur(IV)-Derivate ineinander überführt werden.

$$Te(CF_3)_2X_2 + 2 NaF \Longrightarrow Te(CF_3)_2F_2 + 2 NaX (X = Cl, Br)$$

$$Te(CF_3)_2X_2 + Cl_2 \rightleftharpoons Te(CF_3)_2Cl_2 (X = F, Br)$$

$$\operatorname{Te}(\operatorname{CF}_3)_2 X_2 + \operatorname{Br}_2 \rightleftharpoons \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{Br}_2 (X = F, \operatorname{Cl})$$

Mit elementarem Iod werden wieder die für "Te $(CF_3)_2I_2$ " beobachteten Zersetzungsprodukte erhalten.

$$\operatorname{Te}(\operatorname{CF}_3)_2 X_2 + 3 \operatorname{I}_2 \longrightarrow 2 \operatorname{CF}_3 \operatorname{I} + \operatorname{TeI}_4 (X = F, \operatorname{Cl}, \operatorname{Br})$$

Ähnlich der Reaktion mit ClF wird $Te(CF_3)_2$ auch von Chlornitrat $ClONO_2$, unter Ausbildung des nicht isolierbaren Intermediats Bis(trifluormethyl)tellurchloridnitrat $Te(CF_3)_2Cl(ONO_2)$, zu Bis(trifluormethyl)tellurdinitrat $Te(CF_3)_2(ONO_2)_2$ oxidiert.

$$Te(CF_3)_2 + CIONO_2 \longrightarrow Te(CF_3)_2CI(ONO_2) \xrightarrow{CIONO_2} Te(CF_3)_2(ONO_2)_2$$

Ligandenaustauschreaktionen eignen sich zur Darstellung von weiteren Bis(trifluormethyl)tellur(IV)-Derivaten. So können in Reaktionen von $Te(CF_3)_2F_2$ mit den Säureanhydriden $(CF_3CO)_2O$ und N_2O_5 Bis(trifluormethyl)tellurbis(trifluoracetat) $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(ONO_2)_2$ dargestellt werden.

$$\operatorname{Te}(\operatorname{CF}_3)_2\operatorname{F}_2 + 2(\operatorname{CF}_3\operatorname{CO})_2\operatorname{O} \longrightarrow \operatorname{Te}(\operatorname{CF}_3)_2(\operatorname{CO}_2\operatorname{CF}_3)_2 + 2\operatorname{CF}_3\operatorname{COF}_3$$

 $\mathrm{Te}(\mathrm{CF}_3)_2\mathrm{F}_2 + 2\,\mathrm{N}_2\mathrm{O}_5 \longrightarrow \mathrm{Te}(\mathrm{CF}_3)_2(\mathrm{ONO}_2)_2 + 2\,\mathrm{NO}_2\mathrm{F}$

Für den Fluoraustausch sind auch Trimethylsilylverbindungen geeignet, wobei die Bildung der thermodynamisch bevorzugten Si–F-Bindung als Triebkraft ausgenutzt wird. Analog kann auch die Bildung von schwerlöslichen Silber-, Alkalimetall- oder auch Tetramethylammoniumhalogeniden als Triebkraft für Ligandenaustauschreaktionen genutzt werden. So konnte *Louven* im Rahmen ihrer Dissertation einige neue Bis(trifluormethyl)tellur(IV)-Derivate, wie z.B. Fluorsulfonat-, Isocyanat-, Amid- und Alkoxy-Derivate, darstellen und untersuchen.^[34] *Klapötke et al.* gelang es auch, Bis(trifluormethyl)tellurdiazid Te(CF₃)₂(N₃)₂ zu synthetisieren.^[35]

$$Te(CF_3)_2F_2 + 2Me_3SiY \longrightarrow Te(CF_3)_2Y_2 + 2Me_3SiF$$
 (Y = z.B. SO₃CF₃, NCO, N₃)

Von Interesse sind auch die Reaktionen von $Te(CF_3)_2F_2$ mit Wasser bzw. Ammoniak. ^[32] Die Verbindungen $Te(CF_3)_2Y_2$, mit Y = OH, NH_2 , werden hier nicht erhalten und sind auch in Lösung nicht NMR-spektroskopisch nachzuweisen. Die Bildung von wahrscheinlich polymeren Feststoffen der Art $[Te(CF_3)_2Y]_x$ (mit Y = O, NH), lässt aber darauf schließen, dass beide Verbindungen zumindest als Zwischenstufen entstehen. Im Falle der Hydrolyse ist anzunehmen, dass sich derselbe polymere Feststoff bildet, der schon bei der Oxidation von $Te(CF_3)_2$ mit Sauerstoff entsteht.

Die Oxidation zu Te(VI)-Spezies wurde ebenfalls untersucht, bisher jedoch ohne Ergebnis.^[1] In Reaktionen von Te(CF_3)₂ F_2 mit F_2 konnten lediglich spektroskopische Hinweise auf Te(CF_3)₂ F_4 gesammelt werden, eine Isolierung gelang nicht.

Die Fluorierung von $Te(C_6F_5)_2$ dagegen ist erfolgreich, und $Te(C_6F_5)_2F_2$ sowie $Te(C_6F_5)_2F_4$ wurden isoliert und analysiert.^[36]

$$\operatorname{Te}(C_{6}F_{5})_{2} \xrightarrow[-35 \circ C]{F_{2}} \operatorname{Te}(C_{6}F_{5})_{2}F_{2} \xrightarrow[-35 \circ C]{F_{2}} \operatorname{Te}(C_{6}F_{5})_{2}F_{4}$$

Der Versuch, $Te(C_6F_5)_2F_4$ aufzureinigen, erwies sich jedoch als schwierig. Schon ein kleiner Überschuss an F_2 führt zu einer partiellen Fluorierung des Aromaten. Wird die Fluorierung fortgeführt, so können nacheinander alle fluorierten Derivate ¹⁹F-NMR-spektroskopisch nachgewiesen und schließlich $Te(C_6F_{11})_2F_4$ als weißer Feststoff erhalten werden.

$$\operatorname{Te}(C_{6}F_{5})_{2}F_{4} \xrightarrow{F_{2}} \operatorname{Te}(C_{6}F_{7})_{2}F_{4} \xrightarrow{F_{2}} \operatorname{Te}(C_{6}F_{9})_{2}F_{4} \xrightarrow{F_{2}} \operatorname{Te}(C_{6}F_{11})_{2}F_{4}$$

Tellurtetrahalogenide zeigen einen amphoteren Charakter. So ist bekannt, dass TeF₄ das Komplexanion $[TeF_5]^-$ bildet, nicht aber $[TeF_6]^{2-}$, während von TeCl₄ und TeBr₄ auch die hexakoordinierten Spezies, $[TeCl_6]^{2-}$ und $[TeBr_6]^{2-}$ bekannt sind. Mit Halogenidakzeptoren reagieren sie zu den entsprechenden Kationen $[TeX_3]^+$. Die Bis(trifluormethyl)tellur(IV)-dihalogenide wurden zum Vergleich auch in Bezug auf ihre amphoteren Eigenschaften in Reaktionen mit Halogenid-Donatoren und -Akzeptoren untersucht. ^[37] Das Kation $[Te(CF_3)_2F]^+$ konnte in Reaktionen des Difluorids mit Fluoridionenakzeptoren wie BF₃, AsF₅ und SbF₅ isoliert werden. Die entsprechenden Kationen des Chlor- bzw. Bromderivats konnten dagegen nicht dargestellt werden. Während die von TeCl₄ und TeBr₄ bekannten hexakoordinierten Komplexanionen nicht gebildet werden, gelingt die Synthese der pentakoordinierten Anionen $[Te(CF_3)_2X_3]^-$ in Reaktionen mit Alkalimetall- und Tetramethylammoniumhalogeniden sowie Silberfluorid. Die Stabilität der Anionen nimmt vom Fluorid zum Bromid ab, und die isolierten Metalltellurate zersetzen sich im Vergleich mit den in Lösungsmitteln vorliegenden Metalltellurate nerst bei deutlich höheren Temperaturen.

Wenige Untersuchungen zu Tellur(IV)-Verbindungen mit mehr als zwei Perfluoralkylgruppen sind bisher in der Literatur bekannt, ganz im Gegensatz zu Tetraalkyltellur ^[38, 39], Tetrakis(perfluorphenyl)tellur ^[40] oder Hexaaryltellur ^[41,42]. Die Reaktion von Te(CF₃)₂Cl₂ mit Cd(CF₃)₂·Glyme in Acetonitril bei -10°C ist geeignet für die Darstellung von Te(CF₃)₄. ^[43,44] TeCl₄ wird in einem ersten Schritt mit Cd(CF₃)₂ zu Te(CF₃)₂Cl₂ umgesetzt, welches in einem zweiten Schritt dann Te(CF₃)₄ bildet.

$$\operatorname{TeCl}_4 + \operatorname{Cd}(\operatorname{CF}_3)_2 \longrightarrow \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{Cl}_2 + \operatorname{CdCl}_2$$

$$\operatorname{Te}(\operatorname{CF}_3)_2\operatorname{Cl}_2 + \operatorname{Cd}(\operatorname{CF}_3)_2 \longrightarrow \operatorname{Te}(\operatorname{CF}_3)_4 + \operatorname{Cd}\operatorname{Cl}_2$$

Te(CF₃)₄ ist eine gelbe Flüssigkeit mit einem Schmelzpunkt von -45°C. Die ¹⁹F-NMR-Spektren zeigen nur ein scharfes Singulett für die CF₃-Gruppen. In Lösung werden 1:1 Addukte mit dem Lösungsmittel gebildet, und die chemische Verschiebung sowie die ²J(¹²⁵Te⁻¹⁹F)-Kopplungskonstante zeigen eine Abhängigkeit von der Donorzahl des Lösungsmittels. Ligandenaustauschreaktionen mit Wasser oder Ammoniak führen wieder zu den polymeren Feststoffen $[Te(CF_3)_2Y]_x$ (mit Y = O, NH), die auch schon in den Reaktionen von Wasser und Ammoniak mit Te(CF₃)₂F₂ erhalten wurden. Te(CF₃)₄ reagiert als Trifluormethylübertragungsreagenz. Unter polaren Bedingungen werden zwei der vier CF₃-Gruppen ausgetauscht. Mit Alkalimetallfluoriden wird hauptsächlich das Anion $[Te(CF_3)_2F_3]^-$ gebildet, zudem wird das instabile Anion $[Te(CF_3)_4F]^-$ beobachtet. Das Kation $[Te(CF_3)_3]^+$, das in Reaktionen mit Lewis-Säuren gebildet wird, ist stabiler und kann auch als $[Te(CF_3)_3][BF_4]$ isoliert werden. Weitere Versuche Te(CF₃)₄ zu oxidieren, zeigten nur in Reaktionen mit XeF₂ NMR-spektroskopische Hinweise auf die Bildung von

$Te(CF_3)_4F_2$.

Seitdem die ersten Trifluormethyltellurverbindungen dargestellt und untersucht wurden, gab es einige Neuerungen und Verbesserungen für Synthese und Analyse. Die Forschung hat sich weiterentwickelt und ältere Arbeiten bzw. Fragestellungen sind erneut von Interesse. In der vorliegenden Arbeit werden Ligandenaustauschreaktionen an Bis(trifluormethyl)tellurdihalogeniden und die Eigenschaften der Produkte untersucht. Durch die Bildung von Me₃SiF oder Metallhalogeniden angetrieben, werden die Umsetzungen mit Hilfe der NMR-Spektroskopie in Lösung beobachtet und die Produkte auf ihre Eigenschaften hin analysiert. Vermutungen in Bezug auf das Verhalten von Trifluormethyl-tellurverbindungen, die in früheren Arbeiten aufgestellt wurden, finden sich in aktuellen Arbeiten zu verwandten Themen wieder und werden hier bei der Diskussion der Ergebnisse berücksichtigt.

2 Ergebnisse und Diskussion

2.1 Synthese von

Bis(trifluormethyl)tellur(IV)-Verbindungen

Es gibt verschiedene Möglichkeiten zur Variation der Reaktionsbedingungen bei Ligandenaustauschreaktionen. Ein Überschuss eines Reaktionspartners kann das Gleichgewicht auf die Seite der Produkte verschieben, und auch die Wahl des Lösungsmittels hat einen Einfluss. Für die in dieser Arbeit beschriebenen Ligandenaustauschreaktionen hat sich gezeigt, dass Dichlormethan und Toluol gut geeignete Lösungsmittel sind. Außerdem werden die Reaktionen bei tiefer Temperatur durchgeführt, da es bei Raumtemperatur zu unerwünschten Nebenreaktionen kommt. Die Isolierung der Produkte kann dagegen bei Raumtemperatur erfolgen. Als Ligandenaustauschreagenzien werden Trimethylsilylverbindungen, Silber-, Tetramethylammonium- und Kaliumsalze sowie Grignard-Reagenzien genutzt. Die Wahl der Reagenzien scheint keinen Einfluss auf die Ligandenaustauschreaktionen und somit auf die Bildung der Produkte zu haben. So bringt die Variation der Ligandenaustauschreagenzien, wie z.B. Silber(I)-Salze anstatt von Trimethylsilyl-Verbindungen, in den Fällen, in denen eine Synthese oder Isolierung eines Produktes nicht erfolgreich ist, auch keine Verbesserung. Anscheinend sind diese Derivate der Bis(trifluormethyl)tellur(IV)-Verbindungen, mit OC_6F_5 und C_6H_5 bzw. C_6H_5 -p-CH₃ sowie den Pseudohalogenen CN, NCO und NCS als Ligand, bei den gewählten Bedingungen instabil.

Bei der NMR-spektroskopischen Analyse der Produkte fällt auf, dass sich abhängig von der Wahl des Lösungsmittels das NMR-Spektrum verändert. So zeigen die Carbon- und Sulfonsäurederivate der Bis(trifluormethyl)tellur(IV)-Verbindungen sowohl für polare und unpolare Lösungsmittel, als auch für Wasser einen unterscheidbaren Habitus in den ¹⁹F-NMR-Spektren. Diese Eigenschaften werden in Kapitel 2.2.1 diskutiert. In den folgenden Kapiteln werden zunächst die Reaktionskontrolle mittels NMR-Spektroskopie, die Darstellung und die spezifischen Eigenschaften der Te(CF₃)₂Y₂-Verbindungen vorgestellt.

2.1.1 NMR-Spektroskopie von

Trifluormethyltellurverbindungen

Die NMR-Spektroskopie ist eine einfache und praktische Möglichkeit zur Reaktionskontrolle und eignet sich sehr gut für die Analyse von Trifluormethyltellurverbindungen mit den drei NMR-aktiven Kernen Kohlenstoff, Fluor und Tellur. In dieser Arbeit spielt die ¹⁹F-NMR-Spektroskopie eine besondere Rolle, da Fluor zu 100 % aus Spin- $\frac{1}{2}$ -Kernen besteht (siehe Tab. 2.1). Die chemische Verschiebung und die Kopplungskonstanten der Signale, die den Fluoratomen der CF₃-Gruppen von Trifluormethyltellurverbindungen zugeordnet werden können, sind in ¹⁹F-NMR-Spektren nicht nur von den üblichen Parametern, wie z.B. Temperatur, Konzentration und Lösungsmittel, sondern auch von der Oxidationsstufe des Tellurs, den substituierten Liganden und der Ladung des untersuchten Moleküls abhängig. Variieren die Parameter während einer Reaktion, so ist auch in den ¹⁹F-NMR-Spektren zur Reaktionskontrolle ein Veränderung der chemischen Verschiebung und der Kopplungskonstanten zu erkennen. Somit kann eine Aussage darüber getroffen werden,

100

0.87

6,99

Kenie.					
Isotop	¹ H	¹³ C	¹⁹ F	¹²³ Te	¹²⁵ Te
Spin	1/2	1/2	1/2	1/2	1/2

1.108

ob eine Reaktion abläuft und wie weit diese fortgeschritten ist.

99.98

Tabelle 2.1: Aufstellung der natürlichen Häufigkeit und des Spins der relevanten NMR-aktiven

2.1.1.1 Die Chemische Verschiebung

nat. Häufigkeit in %

Die formale Oxidationsstufe des Tellurs beeinflusst die chemische Verschiebung der ¹⁹F-Resonanzen von Trifluormethyltellurverbindungen. Bei ca. 0 ppm zeigt die CF₃-Gruppe des $[TeCF_3]^-$ mit Tellur in der Oxidationsstufe (0) seine Resonanz in ¹⁹F-NMR-Spektren. Bei Trifluormethyltellur(II)-Verbindungen sind in ¹⁹F-NMR-Spektren Verschiebungen von ca. -20 bis -30 ppm zu erwarten. So zeigt z.B. $Te(CF_3)_2$ eine chemische Verschiebung von -21,0 ppm.^[9] Für die TeCF₃-Verbindungen mit Tellur in der Oxidationsstufe +IV zeigen z.B. die Halogen-Derivate in CH₃CN Resonanzen bei -53,6 ppm (Te(CF₃)₂F₂^[31]), -48,9 ppm (Te(CF₃)₂Cl₂^[31]) und -44,9 ppm (Te(CF₃)₂Br₂^[31]). Hier zeigt sich, dass auch der Ligand Y von Te(CF₃)₂Y₂-Verbindungen die chemische Verschiebung der CF₃-Resonanzen beeinflusst. Je elektronegativer der Ligand, desto stärker ist die Hochfeldverschiebung. Analog sind in Arbeiten von Naumann die chemischen Verschiebungen der CF3-Resonanzen von ionischen Spezies beschrieben. Kationische Spezies zeigen eine Tieffeldverschiebung und anionische eine Hochfeldverschiebung relativ zu der chemischen Verschiebung einer entsprechenden neutralen Spezies. Zur Veranschaulichung der Einflüsse auf die ¹⁹F-NMR-chemische Verschiebung sind in Tabelle 2.2 ausgewählte Daten von Trifluormethyltellurverbindungen zusammengefasst.

2 Ergebnisse und Diskussion

Verbindung	Lösungsmittel	δ^{19} F	${}^{1}J({}^{19}F{-}^{13}C)$	$^{2}J(^{125}Te^{-19}F)$
[NMe ₄]TeCF ₃ ^[46]	DMF-d ₇	1,9	349	206
$[NMe_4]Au(TeCF_3)_2^{[47]}$	CD ₃ CN	-9,1	352	165
$[NMe_4][(TeCF_3)_3]^{[48]}$	CD ₃ CN	-17,8	-	-
$Te(CF_3)_2^{[9]}$	CH ₃ CN	-21,0	352	37
$[PNP][(TeCF_3)I_2]^{[48]}$	CD ₃ CN	-23,8	354	264
$[PNP][Te(CF_3)_2I]^{[49]}$	CD ₃ CN	-26,5	360	154
$Te_2(CF_3)_2^{[49]}$	CD_3CN	-26,6	358	124
$Te(CF_3)_2(N_3)_2^{[35]}$	CDCl ₃	-41,7	368	134
$Te(CF_3)_2O^{[33]}$	CH ₃ CN	-44,0	365	17
$Te(CF_3)_4$ [44]	CH ₃ CN	-44,4	364	45
$Te(CF_3)_2Br_2^{[31]}$	CH ₃ CN	-44,9	368	66
$[NMe_4]Te(CF_3)_3$, ax ^[50]	Glyme	-45,7	415	230
$[NMe_4]Te(CF_3)_3, eq^{[50]}$	Glyme	-29,4	354	111
$Te(CF_3)_3X$, (X=OH) ^[44]	CH ₃ CN	-46,8	382 ^{<i>a</i>}	45
$Te(CF_3)_4^{[44]}$	DMF	-47,1	364	49
$[Te(CF_3)_2F][SbF_6]^{[37]}$	CH ₃ CN	-47,9 (d)	-	-
$Te(CF_3)_2Cl_2^{[31]}$	CH ₃ CN	-48,9	366	31
$Te(CF_3)_2(ONO)_2^{[33]}$	CH ₃ CN	-49,0	364	38
$Te(CF_3)_2(CO_2CF_3)_2^{[33]}$	CH ₃ CN	-49,7	363	-
$Te(CF_3)_2 ClF^{[32]}$	CH ₃ CN	-50,0 (d)	-	-
$Te(CF_3)_2F_2^{[32]}$	CH ₃ CN	-53,6 (t)	358	97
$Ag[Te(CF_3)_2F_3]^{[37]}$	CH ₃ CN	-68,6 (q)	-	-

Tabelle 2.2: ¹⁹F-NMR-spektroskopische Daten der CF_3 -Gruppe einer Auswahl von
Trifluormethyltellur-Verbindungen.

^a Hier kann eine Septett Aufspaltung der ¹³C-Satelliten beobachtet werden.

2.1.1.2 Die Kopplungskonstanten

Mit Fluor, Kohlenstoff und Tellur weisen die Te $(CF_3)_2Y_2$ -Verbindungen unabhängig vom Ligand Y drei NMR-aktive Kerne auf, die für jedes Signal im ¹⁹F-NMR-Spektrum einen Satz von Kopplungen hervorrufen. Abbildung 2.1 veranschaulicht anhand einer Strukturformel einer Te $(CF_3)_2Y_2$ -Verbindung die auftretenden Kopplungen, Abbildung 2.2 zeigt ein ¹⁹F-NMR-Signal für den Fall, dass der Ligand Y nicht mit der CF₃-Gruppe koppelt (z.B. hier: Te $(CF_3)_2Cl_2$) und in Tabelle 2.2 sind die NMR-Parameter von verschie-

Abbildung 2.1: Veranschaulichung von Struktur und Kopplung in $Te(CF_3)_2Y_2$ -Verbindungen, in denen der Ligand Y nicht mit der CF₃-Gruppe koppelt.

Abbildung 2.3: Die Molekülstruktur von Bis(trifluormethyl)tellurdifluorid zur Veranschaulichung einer *pseudo*-trigonal-bipyramidalen Ligandenanordnung entsprechend dem VSEPR-Modell für ein AB₄E-System.

denen Tellurverbindungen angegeben. Im ¹⁹F-NMR-Spektrum sind neben dem Singulett bei -46,1 ppm die für Tellurverbindungen spezifischen ¹²⁵Te- und ¹²³Te-Satelliten zu erkennen. Außerdem ist die Aufspaltung der ¹³C-Satelliten und der ¹²C/¹³C-Shift zu sehen, der für die unsymmetrische Lage der ¹³C-Satelliten im Vergleich zum ¹²C-Hauptsignal verantwortlich ist. Für die Aufspaltung der ¹³C-Satelliten zu einem Quartett ist die ⁴J(¹⁹F–¹⁹F)-Kopplung verantwortlich, die durch die Wechselwirkung mit den Fluoratomen der anderen CF₃-Gruppe am Telluratom zustande kommt. Diese Kopplung
bewegt sich in einer Größenordnung von ca. 6 Hz. Wenn nur eine CF₃-Gruppe an das Tellur gebunden ist, sind die ¹³C-Satelliten nicht aufgespalten. Bei drei CF₃-Gruppen hingegen sind die ¹³C-Satelliten entsprechend zu einem Septett aufgespalten. Die ${}^{1}J({}^{19}F-{}^{13}C)$ -Kopplungskonstante gibt einen Hinweis auf die Koordination der CF₃-Liganden an das Tellurzentralatom. In Tellur(IV)-Verbindungen mit vier Liganden, sind diese, entsprechend dem VSEPR-Modell für ein AB₄E-System, trigonal-bipyramidal angeordnet, z.B. in Te(CF₃)₂F₂ (siehe Abb. 2.3). Dem Prinzip der Apikophilie entsprechend nehmen die elektronegativeren Liganden die axialen Positionen und die elektropositiveren Liganden mit dem freien Elektronenpaar zusammen die äquatorialen Positionen ein. Da die Elektronegativität von Fluor größer ist, als die von Kohlenstoff, besetzen in diesem Beispiel die CF₃-Gruppen die äquatorialen Positionen. Für solche Te(CF₃)₂-Verbindungen, in denen die CF₃-Gruppen die äquatorialen Positionen einnehmen, betragen ${}^{1}J({}^{19}F-{}^{13}C)$ -Kopplungen ca. 360 Hz. Nehmen die CF₃-Gruppen die axialen Positionen ein, so liegen die Kopplungen über 390 Hz. Die ²J(Te-¹⁹F)-Kopplung der ¹²⁵Te- und ¹²³Te-Kerne geben keine Hinweise auf die Koordination der Liganden an Tellur. Am Beispiel der Bis(trifluormethyl)tellur(IV)-Verbindungen (siehe Tab. 2.2) hat sich für die ${}^{2}J({}^{125}Te-{}^{19}F)$ -Kopplung gezeigt, dass ein elektronegativerer Ligand eine positivere Kopplung aufweist. Da das Vorzeichen der Kopplung nicht bestimmt ist, können auch Nulldurchgänge auftreten und bei Kopplungen von ca. 0 Hz kann das Hauptsignal die Tellur-Satelliten überlagern. Gerade ein Vergleich dieser ²J(¹²⁵Te-¹⁹F)-Kopplungen gibt in Spektren zur Reaktionskontrolle einen schnellen Hinweis auf den Verlauf einer Reaktion. Da sich die chemische Verschiebung durch die Überlagerung mehrerer Effekte weniger und langsamer ändert als die ²J(¹²⁵Te-¹⁹F)-Kopplungskonstante, darf die Tellur-Fluor-Kopplung bei der Auswertung der NMR-Spektren nicht vernachlässigt werden.

2.1.2 Bis(trifluormethyl)tellurbis(trifluoracetat)

Schon 1982 haben Naumann et al. die Synthese von Bis(trifluormethyl)tellurbis-(trifluoracetat) Te(CF₃)₂(CO₂CF₃)₂ im Rahmen einiger Untersuchungen zu Ligandenaustauschreaktionen an Bis(trifluormethyl)tellur(IV)-dihalogeniden veröffentlicht.^[33] Dargestellt wurde die Verbindung in einer Reaktion von Bis(trifluormethyl)tellurdifluorid Te(CF₃)₂F₂ mit einem Überschuss Trifluoressigsäureanhydrid (CF₃CO)₂O bei Raumtemperatur. In der vorliegenden Arbeit wird $Te(CF_3)_2(CO_2CF_3)_2$ auf anderem Wege dargestellt. In einer Ligandenaustauschreaktion mit der entsprechenden Trimethylsilyl-Verbindung wird die Bildung von Trimethylsilylfluorid Me₃SiF als Triebkraft ausgenutzt, um zu dem gewünschten Produkt zu gelangen. Die Reaktion von $Te(CF_3)_2F_2$ und Trimethylsilyltrifluoracetat Me₃SiCO₂CF₃ erfolgt bei -30 °C in Dichlormethan und wird mit Hilfe von ¹⁹F-NMR-Spektren kontrolliert (siehe Kap. 5.1.1, Tab. 5.2 und Tab. 5.3). Die NMR-Probe wird hierfür bei der Reaktionstemperatur entnommen und erst nach dem Erwärmen auf Raumtemperatur gemessen. In diesen NMR-Spektren wird ein schrittweiser Austausch der Fluor- durch Trifluoracetat-Liganden festgestellt. Neben den Signalen der Ausgangsstoffe werden auch die Signale von Produkten und Zwischenprodukten zugeordnet. Dem Zwischenprodukt $Te(CF_3)_2F(CO_2CF_3)$ können die Signale bei -47,6 ppm mit den Kopplungen ${}^{2}J({}^{125}Te - {}^{19}F) = 130 \text{ Hz}$ und ${}^{3}J({}^{19}F - {}^{19}F) = 9 \text{ Hz}$ für die CF₃-Gruppen, -77,4 ppm für die CO₂CF₃-Gruppe und -118,6 ppm für das an Tellur gebundene Fluoratom zugeordnet werden. Dieses Intermediat wird hier nicht isoliert oder weitergehend analysiert. Das Fluoratom des Beiprodukts der Ligandenaustauschreaktion, Me₃SiF, zeigt seine Resonanz bei -160,0 ppm mit den Kopplungen ${}^{1}J({}^{29}Si - {}^{19}F) = 273 \text{ Hz}$ und ${}^{3}J({}^{19}F - {}^{1}H) = 7,2 \text{ Hz}.$ Dem Produkt $Te(CF_3)_2(CO_2CF_3)_2$ werden die Signale bei -43,5 ppm mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 360 \text{ Hz}$ und ${}^{2}J({}^{125}Te-{}^{19}F) = 100 \text{ Hz}$ sowie -77,0 ppm zugeordnet.

Diese Daten sind unter Berücksichtigung der Abhängigkeit der ¹⁹F-NMR-chemischen Verschiebung vom Lösungsmittel im Einklang mit den von Naumann publizierten Daten (CH₃CN: $\delta^{19}F(CF_3) = -49.7$; ${}^{1}J({}^{19}F-{}^{13}C) = 363$ Hz; ${}^{2}J({}^{125}Te-{}^{19}F) = n.b.$). Die typischen Signale von Zersetzungsprodukten der Bis(trifluormethyl)tellur(IV)-Verbindungen, wie z.B. CF_3H ($\delta^{19}F \approx -80$ mit ${}^2J({}^{19}F - {}^1H) \approx 80$ Hz) und $Te(CF_3)_2$ ($\delta^{19}F \approx -23$), sind erst in späteren NMR-Spektren derselben Probe zu erkennen. Ein Überschuss an Trimethylsilvltrifluoracetat stellt einen vollständigen Ligandenaustausch sicher. Dadurch, dass das gut lösliche Beiprodukt Me₃SiF bei Normalbedingungen gasförmig ist, gestaltet sich die Aufarbeitung relativ simpel, da sowohl das Beiprodukt als auch das Solvens sowie überschüssiges Edukt unter vermindertem Druck abdestilliert werden können. Der aus dem Reaktionsansatz isolierte Feststoff wird mit Hilfe von Massen- (siehe Tab. 5.6), IR- (siehe Tab. 5.7) und NMR-Spektren (siehe Tab. 5.8 - Tab. 5.12) sowie Schmelzpunkt- (135 °C; Naumann: 138 °C) und CHNS-Analyse (siehe Tab. 5.4) eindeutig als Te(CF₃)₂(CO₂CF₃)₂ identifiziert (siehe Kap. 5.1.1). Die Massenspektren zeigen, wie es für Verbindungen dieser Art häufig der Fall ist, nicht den Molekülpeak M⁺, aber die für den Zerfall zu erwartenden Fragmente M⁺-L, Te(CF₃)₂(CO₂CF₃)⁺ mit m/z = 381 (rel. Int. = 100%) und $Te(CF_3)(CO_2CF_3)_2^+$ mit m/z = 425 (rel. Int. = 6%), können mit vollständiger Auflösung des Isotopengatters eindeutig zugeordnet werden. In den IR-Spektren sind die typischen Banden für Trifluormethyl- und Carboxyl-Gruppen zu erkennen .^[51] Die CHNS-Analyse (ber. (gef.) C: 14,66 % (13,95 %), H: 0 % (0,1 %), N: 0 % (0,06 %)) zeigt, dass die Aufarbeitung nicht zu einem Reinstoff führte. Der Feststoff ist bei angelegtem statischen Vakuum sublimierbar und auch Einkristalle der Verbindung Te(CF₃)₂(CO₂CF₃)₂ können bei vorsichtig eingestellter Kühlung und ca. 30 °C Ölbadtemperatur erhalten werden. Diese sind nur im Vakuum und in perfluoriertem Öl stabil. Desweiteren werden Einkristalle aus gesättigten Lösungen von Te $(CF_3)_2(CO_2CF_3)_2$ in organischen Lösungsmitteln erhalten. Die

Einkristalle, die in Acetonitril und Nitromethan entstehen, zeigen ein Verhalten, das dem der sublimierten Einkristalle ähnelt. Außerhalb der Kristallisationsumgebung sind sie nur in einem perfluoriertem Öl stabil.

Für NMR-spektroskopische Untersuchungen wird $Te(CF_3)_2(CO_2CF_3)_2$ in verschiedenen organischen Lösungsmitteln gelöst. Die Löslichkeit des Produkts ist ausreichend für ¹⁹F-NMR-Spektren, es kommt allerdings trotzdem bei verschiedenen Spektren zu Qualitätseinbußen. Das Signal-Rausch-Verhältnis ist teilweise nicht gut genug, um alle Satelliten-Signale analysieren zu können. Und je nach Lösungsmittel verändert sich auch die Halbwertsbreite von verschiedenen Signalen, die für diese Arbeit von Interesse sind. Es ist außerdem vielfach nicht möglich, gute 1D-13C- und 125Te-NMR-Spektren aufzunehmen. Für die Bestimmung der ¹²⁵Te-chemischen Verschiebung hat es sich als praktisch erwiesen, die 2D-NMR-Spektroskopie zu nutzen. In ¹²⁵Te-¹⁹F-HMBC-Korrelationsspektren, optimiert auf die NMR-Parameter der Produktsignale, die die Auswertung der ¹⁹F-NMR-Spektren liefert, werden den Signalen von CF3-Gruppen der CF3Te(IV)-Verbindungen ¹²⁵Te-Verschiebungen zugeordnet. Beachtet werden muss hierbei, dass Signale eingespiegelt werden können. Wenn NMR-Proben von Suspensionen entnommen werden, bleibt die Frage unbeantwortet, ob es sich bei dem NMR-Spektrum der Lösung auch um ein für den Feststoff repräsentatives Spektrum handelt. Im Feststoff können unlösliche Rückstände enthalten sein oder in Reaktionen mit dem Lösungsmittel oder Verunreinigungen entstehen. ¹⁹F-NMR-Spektren von $Te(CF_3)_2(CO_2CF_3)_2$ in verschiedenen polaren und unpolaren Lösungsmitteln deuten ein ungewöhnliches Verhalten des Produkts an. Neben den zu erwartenden Unterschieden der chemischen Verschiebung und der Kopplungskonstanten verändert sich auch der Habitus der Spektren. Zur Veranschaulichung ist das Signal der Trifluormethyltellurgruppe von $Te(CF_3)_2(CO_2CF_3)_2$ in Dichlormethan (siehe Abb. 2.4) und in Acetonitril (siehe Abb. 2.5) abgebildet.

Abbildung 2.4: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2CF_3)_2$ in CD_2Cl_2 (Gerät: Avance II 300; Messtemperatur: RT). Die Resonanz der CF_3 -Gruppen bei - 40,9 ppm hat eine Halbwertsbreite von 1,1 Hz.

Die NMR-Spektren in CD_2Cl_2 zeigen das Hauptsignal der CF_3 -Gruppen von $Te(CF_3)_2(CO_2CF_3)_2$ bei einer chemischen Verschiebung von -40,9 ppm. Es weist eine Halbwertsbreite von 1,1 Hz auf und die Kopplungskonstanten können zu ${}^{1}J({}^{19}F-{}^{13}C) = 364$ Hz, ${}^{2}J({}^{125}Te-{}^{19}F) = 103$ Hz, ${}^{2}J({}^{123}Te-{}^{19}F) = 85$ Hz und ${}^{4}J({}^{19}F-{}^{19}F) = 5,2$ Hz bestimmt werden. Dem Integrationsverhältnis der Signale nach zeigen die CO_2CF_3 -Gruppen des Produkts ihre Resonanz bei -74,7 ppm. Daneben ist wenigstens noch ein weiteres Signal einer potentiellen Trifluormethyltellur(IV)-Verbindung zu sehen, Kopplungen können jedoch nicht aufgelöst werden. Das Hauptsignal bei -75,8 ppm muss einer Trifluoracetat-Verbindung zugeordnet werden. Da ein Feststoff in Lösung zurückgeblieben ist, können Zersetzungs- oder Nebenreaktionen nicht aus-

Abbildung 2.5: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2CF_3)_2$ in CD_3CN (Gerät: Avance II 300; Messtemperatur: RT).

geschlossen werden. In Acetonitril dagegen ist das Produkt vollständig löslich. Das ¹⁹F-NMR-Spektrum zeigt für die CF₃-Gruppen des Produkts zwei Signale, bei -49,9 und -51,0 ppm, mit ähnlichen Integralen und Halbwertsbreiten, die so groß sind, dass beide Signale überlagern. Eine Integration über den gesamten Bereich der Signale der CF₃-Gruppen im Vergleich zu dem Integral über das Signal der CO₂CF₃-Gruppe ergibt das Verhältnis 1:1, wie es der Summenformel von Te(CF₃)₂(CO₂CF₃)₂ nach zu erwarten ist. Zum Vergleich, Spektren mit dem Lösungsmittel Glyme zeigen jeweils nur ein breites Signal für die Resonanzen der CF₃- und CO₂CF₃-Gruppen. Es liegt die Vermutung nahe, dass Te(CF₃)₂(CO₂CF₃)₂ lösungsmittelabhängige Gleichgewichte ausbildet. Die NMR-Daten für die CF₃-Gruppen in den verschiedenen Lösungsmitteln sind in Tabelle 2.3 zusammengefasst und eine Interpretation folgt in Kapitel 2.2.1, da ähnliche

Lösungsmittel	CD_2Cl_2	C_6D_6	CH ₃ CN	[33]	Glyme	D ₂ O
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$	-40,9	-42,3	-49,9	-49,7	-52,1	-54,0
$^{1}J(^{19}F-^{13}C)$ /Hz	364	365	-	363	-	364
$^{2}J(^{125}Te^{-19}F)$ /Hz	103	78	-	-	-	-
$^{2}J(^{123}Te^{-19}F)$ /Hz	85	65	-	-	-	-
$^{4}J(^{19}F-^{19}F)$ /Hz	5,2	5,5	-	-	-	-
Integral	(100)	(100)	(100^{a})		100	100
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$	-47,0	-47,2	-51,0			-42,7
Integral	(15)	(4)	(100^{a})			18
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$						-63,4
Integral						6

Tabelle 2.3: ¹⁹F-NMR-spektroskopische Daten von $Te(CF_3)_2(CO_2CF_3)_2$ und Derivaten in verschiedenen Lösungsmitteln. Zum Vergleich sind für CH₃CN auch die Daten von *Naumann* ^[33] angegeben. (Gerät: Avance II 300; Messtemperatur: RT)

^a Die Signale überlagern, so dass eine genaue Integration nicht möglich ist.

NMR-spektroskopische Eigenschaften für das Verhalten in Lösung für jedes Carbon- und Sulfonsäurederivat der Bis(trifluormethyl)tellur(IV)-Verbindungen beobachtet werden. Die NMR-Spektren von Te(CF₃)₂(CO₂CF₃)₂ in Wasser oder bei Wasserzugabe zeigen sich deutlich verändert. Das Hauptsignal bei -54,0 ppm im Verschiebungsbereich der an Tellur(IV) gebundenen CF₃-Gruppen ist im Vergleich zu anderen Lösungsmitteln hochfeldverschoben. Daneben sind zwei weitere Signale bei -42,7 und -63,4 ppm zu erkennen. Das Hauptsignal kann als das Signal einer Te(IV)-Spezies mit zwei CF₃-Substituenten identifiziert werden, da die ¹³C-Satelliten zu einem Quartett aufgespalten sind. Dem Signal bei -63,4 ppm wird eine Te(IV)-Verbindung zugeordnet, die nur einen CF₃-Liganden aufweist, da die ¹³C-Satelliten nicht aufgespalten sind. Die ¹³C-Satelliten des Signals bei -42,7 ppm dagegen sind stark verbreitert. Dies legt die Vermutung nahe, dass in dieser Spezies mehr als zwei CF₃-Gruppen an Tellur gebunden sind. Für die CO₂CF₃-Gruppen ist nur noch ein einziges Signal im ¹⁹F-NMR-Spektrum zu erkennen. Eine wässrige Lösung von Te(CF₃)₂(CO₂CF₃)₂ hat einen pH-Wert von ungefähr 2. In einer Titration mit NaOH werden zwei Äquivalenzpunkte bei pH4,5 und pH8 beobachtet (siehe Abb. 5.1). Vergleichbare Ergebnisse werden auch für die später noch beschriebenen Produkte Te(CF₃)₂(SO₃CF₃)₂ und Te(CF₃)₂(SO₃C₆H₄CH₃)₂ erhalten. Eine Interpretation folgt in Kapitel 2.2.1.1.

2.1.2.1 Kristallstruktur von $Te(CF_3)_2(CO_2CF_3)_2$

Abbildung 2.6: In dem AB₄E-System des Te(CF₃)₂(CO₂CF₃)₂ nehmen die beiden CO₂CF₃-Liganden die axialen Positionen ein und schließen einen O–Te–O-Winkel von 157° ein. Das freie Elektronenpaar und die beiden CF₃-Liganden liegen auf der äquatorialen Ebene. Der von ihnen eingeschlossene Winkel am Telluratom beträgt 97°.

Einkristalle werden durch Sublimation bei Raumtemperatur erhalten. Präpariert werden können sie in einem perfluorierten Öl, das auch zur Aufbewahrung der Kristalle in die Glaskapillare gefüllt werden muss, da sich die Kristalle außerhalb des Vakuums oder eines perfluorierten Öls trüben. Te $(CF_3)_2(CO_2CF_3)_2$ kristallisiert in der monoklinen Raum-

Abbildung 2.7: Jedes Telluratom der Te(CF₃)₂(CO₂CF₃)₂-Moleküle hat intermolekulare Kontakte zu zwei weiteren Te(CF₃)₂(CO₂CF₃)₂-Molekülen. In Abständen von 293 pm koordinieren die Sauerstoffatome der Säureliganden, die nicht direkt an das Telluratom gebunden sind, an das nächste Telluratom.

Abbildung 2.8: Die intermolekularen Kontakte zwischen den CO_2CF_3 -Liganden eines Moleküls zu den Telluratomen der nächsten $Te(CF_3)_2(CO_2CF_3)_2$ -Moleküle ergeben eine Zick-Zack-Kette in der 2D-Struktur des Feststoffes.

Abbildung 2.9: In den Zick-Zack-Ketten sind sämtliche CF₃-Liganden nach außen orientiert, so dass sich eine röhrenartige Struktur mit Fluor-Hülle ergibt. Gezeigt ist hier die Elementarzelle in Blickrichtung der c-Achse, in der sich vier halbe dieser Röhren befinden.

gruppe C2/c (Nr. 15) mit 4 Formeleinheiten in der Elementarzelle. Die Kristalldaten und Strukturverfeinerungsparameter sind in Tabelle 2.4 aufgeführt. Entsprechend dem VSEPR-Modell für ein AB₄E-System ist das Tellur im Te(CF₃)₂(CO₂CF₃)₂ pseudotrigonalbipyramidal umgeben (siehe Abb. 2.6). Auf den axialen Positionen liegen die beiden Säureliganden, wobei der Te–O-Abstand 213,4(5) pm und der O–Te–O Winkel 156,9(3) ° beträgt. Die Te–C-Abstände der CF₃-Gruppen auf den äquatorialen Positionen betragen 221(1) pm. Das Tellur hat zwei intermolekulare Fernkontakte von ca. 295 pm zu den Sauerstoffatomen von zwei benachbarten Te(CF₃)₂(CO₂CF₃)₂-Molekülen, die nicht direkt an ein Telluratom gebunden sind. Der sterische Einfluss des freien Elektronenpaares und Packungseffekte, die durch die Kontakte des Tellurs zu den nächsten Molekülen auftreten, könnten für den kleinen Winkel von 156,9 ° der axialen CO₂CF₃-Liganden des pseudo-trigonalbipyramidalen-Systems verantwortlich sein (siehe Abb. 2.7). In der Festkörperstruktur bilden sich Zick-Zack-Ketten aus, in denen sämtliche CF_3 -Gruppen nach außen orientiert sind (siehe Abb. 2.8). In den Zick-Zack-Ketten sind somit die Tellur- und Sauerstoffatome von einer Fluor-Hülle umgeben. Diese röhrenartigen Strukturen sind parallel zur c-Achse ausgerichtet. In jeder Elementarzelle sind vier halbe Röhren enthalten (siehe Abb. 2.9). In Tabelle 2.5 sind die wichtigsten Abstände und Winkel der Kristallstruktur zusammengefasst.

Summenformel	$C_6F_{12}O_4Te$	Raumgruppe	C2/c (Nr. 15)
Kristallsystem	Monoklin	Z	4
		a / Å	12,558(3)
R _{int}	0,1487	b / Å	14,842(5)
R ₁	0,0655	c / Å	7,910(2)
wR ₂	0,1881	eta / $^{\circ}$	107,41(2)
Goof	0,915	V / Å ³	1406,8(6)

Tabelle 2.4: Kristalldaten und Strukturverfeinerungsparameter von $Te(CF_3)_2(CO_2CF_3)_2$.

Abstände / pm		Winkel / °			
Te-C1	221(1)	C-Te-C	96,8(6)		
Te-O1	213,4(5)	O1 - Te - O1	156,9(3)		
Te-O2	297,0(8)	O2 - Te - O2	134,9(2)		
Te-O2'	292,6(8)	O2' - Te - O2'	103,0(2)		
C1 - F	123-128	C-Te-O1	85,3(3)		
C3 - F	114-122	C-Te-O2	81,6(3)		
C2 - O1	128(1)	C-Te-O2'	166,7(3)		
C2 - O2	120(1)	O1 - Te - O2	113,4(2)		
Te-Te	494,0(1)	Te-Te-Te	106,4(3)		

Tabelle 2.5: Wichtige Abstände und Winkel der Kristallstruktur von $Te(CF_3)_2(CO_2CF_3)_2$.

2.1.3 Bis(trifluormethyl)tellurdiacetat

Für die Darstellung von Bis(trifluormethyl)tellurdiacetat $Te(CF_3)_2(CO_2CH_3)_2$ wird Bis(trifluormethyl)tellurdibromid $Te(CF_3)_2Br_2$ statt des fluorierten Derivats $Te(CF_3)_2F_2$ als Ausgangsstoff verwendet. Die Ligandenaustauschreaktion von $Te(CF_3)_2Br_2$ mit AgCO₂CH₃ wird bei -60 °C in CH₂Cl₂ durchgeführt, wobei die Bildung von AgBr als Triebkraft genutzt wird. Die Reaktion ist erst abgeschlossen, nachdem der Ansatz auf Raumtemperatur aufgewärmt und noch einige Zeit gerührt wird. Alternativ bietet sich auch eine Darstellung über eine Redoxreaktion von Bis(trifluormethyl)tellur(II) $Te(CF_3)_2$ mit Bleitetraacetat Pb(CO₂CH₃)₄ an, beschrieben von *Louven* in ihrer Dissertation. ^[34] Diese Reaktion führt nur bei tiefen Temperaturen und großer Verdünnung zu einem quantitativen und selektiven Umsatz.

Die ¹⁹F-NMR-Spektren zur Reaktionskontrolle (siehe Kap. 5.1.2, Tab. 5.18 und 5.19), die Proben wurden bei Reaktionstemperatur entnommen und nach der Erwärmung auf Raumtemperatur gemessen, zeigen die Signale von neuen Bis(trifluormethyl)tellur(IV)-Verbindungen. Die Resonanz bei einer chemischen Verschiebung von -47,0 ppm mit den Kopplungen ¹J(¹⁹F-¹³C) = 366 Hz und ²J(¹²⁵Te-¹⁹F) = 60 Hz wird dem Produkt Te(CF₃)₂(CO₂CH₃)₂ zugeordnet und ist mit den Daten von *Louven* vergleichbar (Lösungsmittel: CH₃CN; δ^{19} F=-46,8; ²J(¹²⁵Te-¹⁹F) = 25,4 Hz). Daneben sind noch Signale von weiteren Trifluormethyltellur(IV)-Verbindungen bei -44,4 ppm und -46,0 ppm (mit den Kopplungen ¹J(¹⁹F-¹³C) = 365 Hz und ²J(¹²⁵Te-¹⁹F) = 39 Hz) zu erkennen, die durch noch vorhandene Mengen des Ausgangsstoffs Te(CF₃)₂Br₂ sowie Zwischenstufen (z.B Te(CF₃)₂Br(CO₂CH₃)), die bei der Reaktion durchlaufen werden, zu erklären sind. Die Signale bei chemischen Verschiebungen von -19,1 ppm (CF₃Br), -22,5 ppm (Te(CF₃)₂) und -49,0 ppm (d) (Te(CF₃)₂FR) müssen Zersetzungsprodukten zugeordnet werden. Von dem während der Umsetzung ausgefallenen Feststoff, einem Produktgemisch aus dem schwerlöslichen AgBr und Te $(CF_3)_2(CO_2CH_3)_2$, wird die überstehende Lösung abpipettiert und aus dem zurückbleibenden Feststoff wird weiteres Produkt mit Dichlormethan extrahiert. Von den vereinigten Lösungen wird das Solvens unter vermindertem Druck abkondensiert. Der isolierte weiße Feststoff kann mit Hilfe von CHNS-Analyse (siehe Tab. 5.20), Massenspektrometrie (siehe Tab. 5.22) und Schmelzpunktbestimmung als $Te(CF_3)_2(CO_2CH_3)_2$ charakterisiert werden, was auch ein Vergleich mit den entsprechenden Daten von Louven bestätigt. Im Massenspektrum ist der Molekülpeak M⁺, $Te(CF_3)_2(CO_2CH_3)_2^+$ mit m/z = 386 nicht zu erkennen. Die für den Zerfall des Produkts zu erwartenden Fragmente M⁺-L, Te(CF₃)₂(CO₂CH₃)⁺ mit m/z = 327 (rel. Int. 100 %) und $Te(CF_3)(CO_2CH_3)_2^+$ mit m/z = 317 (rel. Int. 12 %), sind dagegen bei vollständiger Auflösung des Isotopengatters zu erkennen. Aufällig sind die beiden Peaks bei m/z = 285 (rel. Int. 48 %) und m/z = 494 (rel. Int. = 4 %). Während m/z = 285 eindeutig Te(CF₃)₂OH⁺ zugeordnet werden kann, deutet das Isotopengatter von m/z = 494 auf ein Fragment mit 2 Telluratomen hin. Diesem kann eine Summenformel Te₂C₆H₄F₆O⁺₃ zugeordnet werden. Zu erklären ist dies, wenn hierbei beachtet wird, dass das Fragment $Te(CF_3)(CO_2CH_3)^+$ mit m/z = 258 nicht beobachtet werden kann, aber durch eine Kondensationsreaktion zweier solcher Fragmente im Massenspektrometer (siehe Abb. 2.10) das entsprechende Fragment $Te_2(CF_3)_2(C_4H_4O_3)^+$ entsteht. Das Fragment mit m/z = 425 (rel. Int. < 4%), das durch Abspaltung einer CF₃-Gruppe entsteht, zeigt ebenfalls das vollständig aufgelöste Isotopengatter für ein Fragment mit 2 Telluratomen. Die CHNS-Analyse (ber. (gef.) C: 18,78 % (18,57%), H: 1,58% (1,57%)) zeigt, dass das Produkt nur wenig verunreinigt ist. Der Feststoff hat einen Schmelzpunkt von 133 °C (Louven: 133 °C) und ist sublimierbar, kann somit weiter aufgereinigt werden. Einkristalle können ebenso in einer Sublimation bei schwach eingestellter Kühlung und nicht mehr als 30 °C Ölbadtemperatur erhalten wer-

Abbildung 2.10: Vorschlag für eine mögliche Kondensation von $Te(CF_3)(CO_2CH_3)^+$ im Massenspektrometer zur Bildung des Fragments $Te_2(CF_3)_2(C_4H_4O_3)^+$.

Tabelle 2.6: ¹⁹F-NMR-spektroskopische Daten von $Te(CF_3)_2(CO_2CH_3)_2$ und Derivaten in verschiedenen Lösungsmitteln. (Gerät: Avance II 300 (CD₃NO₂: Avance 200); Messtemperatur: RT)

Lösungsmittel		CD_2Cl_2	CDCl ₃	CD_3NO_2
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-46,0	-45,2	-43,6
${}^{1}J({}^{19}F-{}^{13}C)$	/Hz	361	362	-
$^{2}J(^{125}Te^{-19}F)$	/Hz	60	69	-
$^{2}J(^{123}Te^{-19}F)$	/Hz	50	57	-
${}^{4}J({}^{19}F-{}^{19}F)$	/Hz	4,8	4,8	-
Integral		100	100	100
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-50,0	-49,2	-53,9
Integral		41	24	34
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$			-46,4	-46,9
${}^{1}J({}^{19}F{-}{}^{13}C)$	/Hz		-	358
$^{2}J(^{125}Te^{-19}F)$	/Hz		87	38
Integral			19	60
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$			-44,9	-44,6
$^{2}J(^{125}Te^{-19}F)$	/Hz		72	14
Integral			18	11

den, wobei diese bisher noch nicht für eine röntgenographische Untersuchung präpariert werden konnten.

Für NMR-spektroskopische Untersuchungen wird $Te(CF_3)_2(CO_2CH_3)_2$ in verschiedenen deuterierten und nicht-deuterierten oganischen Lösungsmitteln gelöst. Die Löslichkeit ist mit der von $Te(CF_3)_2(CO_2CF_3)_2$ vergleichbar, die NMR-Spektren dagegen zeigen mehr Signale im Bereich der Trifluormethyltellur(IV)-Verbindungen. In Dichlormethan (siehe Abb. 2.11) und Chloroform kann das Signal des Produkts noch samt aller Satelliten-Signale aufgelöst werden, während in Nitromethan (siehe Abb. 2.12) die Satelliten nur zu erahnen bzw. gar nicht erkennbar sind.

Abbildung 2.11: Ausschnitt des ¹⁹F-NMR-Spektrums von $\text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2$ in CD_2Cl_2 (Gerät: Avance II 300; Messtemperatur: RT). Die Resonanz der CF_3 -Gruppen bei - 46,0 ppm hat eine Halbwertsbreite von 2,3 Hz.

Die Halbwertsbreite des Signals von $\text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2$ in Dichlormethan, bei -46,0 ppm mit den Kopplungen ${}^{1}\text{J}({}^{19}\text{F}-{}^{13}\text{C}) = 361 \text{ Hz}, ~{}^{2}\text{J}({}^{125}\text{Te}-{}^{19}\text{F}) = 60 \text{ Hz},$ ${}^{2}\text{J}({}^{123}\text{Te}-{}^{19}\text{F}) = 50 \text{ Hz}$ und ${}^{4}\text{J}({}^{19}\text{F}-{}^{19}\text{F}) = 4,8 \text{ Hz}$, kann zu 2,3 Hz bestimmt werden. Außerdem ist ein breites Signal bei -50,0 ppm zu sehen, das wahrscheinlich auch einer $(\text{CF}_3)_2\text{Te}(\text{IV})$ -Verbindung zuzuordnen ist. Die Spektren von $\text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2$ in Nitromethan zeigen einen veränderten Habitus. Das Hauptsignal bei -43,6 ppm z.B. hat

Abbildung 2.12: Ausschnitt des 19F-NMR-Spektrums von $Te(CF_3)_2(CO_2CH_3)_2$ in CD_3NO_2 . Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2CH_3)_2$ in CD_3NO_2 (Gerät: Avance 200; Messtemperatur: RT). Die Resonanz der CF_3 -Gruppen bei - 43,6 ppm hat eine Halbwertsbreite von 9,6 Hz.

eine Halbwertsbreite von 9,6 Hz. Satellitensignale können nicht aufgelöst werden, es sollte sich trotzdem um Trifluormethyltellur(IV)-Verbindungen handeln, genauso wie bei dem breiten Signal bei -53,9 ppm. Die Signale bei -46,9 ppm und -44,6 ppm zeigen Tellur-Satelliten mit ²J(¹²⁵Te-¹⁹F)-Kopplungen von 38 bzw. 14 Hz. Die ¹⁹F-NMR-Spektren, zusammengefasst in Tab. 2.6, geben eindeutige Hinweise, dass sich Gleichgewichte in Lösung einstellen. Ähnliche Beobachtungen werden auch für die anderen untersuchten Bis(trifluormethyl)tellur(IV)-Verbindungen gemacht. Eine Interpretation folgt in Kapitel 2.2.1.

2.1.4 Bis(trifluormethyl)tellurbis(pentafluorbenzoat)

Alle Bis(trifluormethyl)tellurdihalogenide isolierbaren eignen sich als Ausgangsstoffe für Ligandenaustauschreaktionen. So kann auch ausgehend von Bis(trifluormethyl)tellurdichlorid $Te(CF_3)_2Cl_2$ in einer Umsetzung mit Silberpentafluorbenzoat $AgCO_2C_6F_5$ Bis(trifluormethyl)tellurbis(pentafluorbenzoat) $Te(CF_3)_2(CO_2C_6F_5)_2$ dargestellt werden, wobei die Bildung von Silberchlorid als Triebkraft genutzt wird. Die Reaktion wird in Dichlormethan bei -30 °C durchgeführt, ist aber erst nach dem Aufwärmen auf Raumtemperatur und weiteren zwei Stunden Rühren beendet. ¹⁹F-NMR-Spektren bei Raumtemperatur, die Proben werden bei der jeweiligen Reaktionstemperatur entnommen und gegebenenfalls auf Raumtemperatur erwärmt, werden auch hier wieder zur Reaktionskontrolle genutzt (siehe Kap. 5.1.3, Tab. 5.27 und 5.28). Diese zeigen Signale von neuen Trifluormethyltellur(IV)-Verbindungen. Dem Produkt Te $(CF_3)_2(CO_2C_6F_5)_2$ wird das Singulett bei -44,1 ppm mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 363 \text{ Hz}, {}^{2}J({}^{125}Te-{}^{19}F) = 79 \text{ Hz}, {}^{2}J({}^{123}Te-{}^{19}F) = 64 \text{ Hz}$ und ${}^{4}J({}^{19}F-{}^{19}F) = 5,1 \text{ Hz}$ für die CF₃-Gruppen und die Multipletts höherer Ordnung bei -138,4 ppm für die ortho-Fluor-Atome, -148,6 ppm für die para-Fluor-Atome und -162,0 ppm für die meta-Fluor-Atome der CO₂C₆F₅-Liganden zugeordnet. Außerdem sind noch drei weitere Signale von Trifluormethyltellur(IV)-Verbindungen zu erkennen, nämlich ein Singulett bei -45,2 ppm mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 376 \text{ Hz}$, ${}^{2}J({}^{125}Te - {}^{19}F) = 72 \text{ Hz}, \ {}^{2}J({}^{123}Te - {}^{19}F) = 59 \text{ Hz} \text{ und } {}^{4}J({}^{19}F - {}^{19}F) = 5,1 \text{ Hz}, \text{ ein Singu$ lett bei -46,1 ppm mit einer Kopplung ${}^{2}J({}^{125}Te-{}^{19}F) = 61 \text{ Hz}$ und ein Dublett bei -47,3 ppm mit einer Kopplung ${}^{3}J({}^{19}F-{}^{19}F) = 9,6$ Hz. Neben den Signalen für die Pentafluorbenzoat-Gruppen des Produkts sind noch die Multipletts von zwei weiteren Pentafluorbenzoat-Derivaten zu erkennen; bei -138,8 und -139,3 ppm die ortho-Fluor-

Atome, bei -149,1 und -149,5 ppm die para-Fluor-Atome und bei -162,0 und -162,4 ppm die meta-Fluor-Atome, wobei das Multiplett bei -162,0 ppm mit dem entsprechenden Multiplett des Produkts überlagert. Diese Signale für CF3- und CO2C6F5-Gruppen können dadurch erklärt werden, dass noch nicht umgesetzte Mengen der Ausgangsstoffe AgCO₂C₆F₅ und Te(CF₃)₂Cl₂, während der Reaktion entstehende Neben- oder Zwischenprodukte und Zersetzungsprodukte, wie $Te(CF_3)_2F(CO_2C_6F_5)$, in Lösung vorhanden sind. Nachdem sich keine Veränderungen mehr durch ein Fortschreiten der Reaktion in den NMR-Spektren zur Reaktionskontrolle abzeichnen, wird die Lösung vom Feststoff abpipettiert und unter vermindertem Druck das Lösungsmittel abkondensiert. Es resultiert ein weißer Feststoff, der sich nach einiger Zeit dunkler verfärbt. CHNS-Analyse und Massenspektren des Rohprodukts weisen noch auf Verunreinigungen wie AgCl hin, welche durch eine Soxhlet-Extraktion mit Toluol oder Dichlormethan als Lösungsmittel entfernt werden können. Die CHNS-Analyse (siehe Tab. 5.29), Massen- (siehe Tab. 5.31), IR- (siehe Tab. 5.32) und NMR-Spektren (siehe Tab. 5.33 - Tab. 5.39) identifizieren den weißen Feststoff mit einem Zersetzungspunkt (siehe Tab. 5.30) von 175 °C als das Produkt $Te(CF_3)_2(CO_2C_6F_5)_2$. In den Massenspektren ist der Molekülpeak selber nicht zu erkennen, wie auch für andere Bis(trifluormethyl)tellur(IV)-Verbindungen typisch. Die zu erwartenden Zerfallsfragmente M⁺–L, Te(CF₃)(CO₂C₆F₅)⁺₂ mit m/z=621 (rel. Int. = 100%) und Te(CF₃)₂(CO₂C₆F₅)⁺ mit m/z = 479 (rel. Int. = 50%), hingegen können mit vollständiger Auflösung des Isotopengatters und den zu erwartenden Fragmentierungen zugeordnet werden. Die IR-Spektren zeigen Banden in den Bereichen, die für Trifluormethyl- und Carboxyl-Gruppen sowie fluorierte aromatische Verbindungen zu erwarten sind. ^[51] Die CHNS-Analyse (ber. (gef.) C: 27,94 % (27,88 %), H: 0 % (0,16 %)) zeigt vernachlässigbare Mengen von Verunreinigungen an. Eine weitere Aufreinigung kann durch Sublimation erfolgen. Bisher ist es noch nicht gelungen, in einer Sublimation

Lösungsmittel	CD_2Cl_2	CD ₃ CN	CD_3NO_2	THF	EtCN	Et ₂ O	D_2O
δ^{19} F(CF ₃)	-43,0	-43,0	-45,0	-48,1	-45,9	-45,1	-53,7
$^{1}J(^{19}F-^{13}C)$ /Hz	363	364	362	363	-	-	-
$^{2}J(^{125}Te^{-19}F)$ /Hz	79	-	52	21	30	51	-
$^{2}J(^{123}Te^{-19}F)$ /Hz	66	-	44	-	-	-	-
$^{4}J(^{19}F-^{19}F)$ /Hz	5,1	-	5,3	6,4	-	-	-
Integral	100	(100)	100	100	21	28	(100)
δ^{19} F(CF ₃)	-47,9	-51,5	-50,5	-51,5	-50,5	-49,9	-42,3
$^{1}J(^{19}F-^{13}C)$ /Hz	-	-	-	353	371	-	-
$^{2}J(^{125}Te^{-19}F)$ /Hz	-	-	62	-	-	-	-
Integral	32	(41)	63	68	100	100	(17)
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$	-43,5	-49,9	-42,0	-53,1	-42,8	-42,5	-63,3
$^{2}J(^{125}Te^{-19}F)$ /Hz	-	-	17	-	-	-	-
Integral	1	(6)	3	11	1	3	(14)

Tabelle 2.7: ¹⁹F-NMR-spektroskopische Daten von Te(CF3)2(CO2C6F5)2 und Derivaten in verschiedenen Lösungsmitteln (Gerät: Avance II 300; Messtemperatur: RT).

Einkristalle zu erhalten, die für röntgenographische Untersuchungen geeignet sind. Eine bessere Möglichkeit hierzu besteht in der Kristallisation aus konzentrierten Lösungen. Das Lösungsmittel der Wahl scheint hierfür Toluol zu sein. Kristalle, die aus Dichlormethan oder Benzol kristallisieren, sind nicht stabil genug, um sie zu für eine Analyse zu präparieren. Sie verlieren ihre Einkristallinität außerhalb der Kristallisationsumgebung. Die Kristalle aus Toluol können röntgenographisch untersucht werden. Lösung und Verfeinerung der Struktur stellen allerdings nicht eindeutig lösbare Probleme dar.

Das Verhalten von Te $(CF_3)_2(CO_2C_6F_5)_2$ in verschiedenen Lösungsmitteln ähnelt dem der anderen untersuchten Produkte. Zur Veranschaulichung ist das ¹⁹F-NMR-Spektrum von Te $(CF_3)_2(CO_2C_6F_5)_2$ in CD₂Cl₂ bei Raumtemperatur abgebildet (Abb. 2.13 und Abb. 2.14). Das Hauptsignal bei -43,0 ppm mit den Kopplungen ¹J $(^{19}F-^{13}C) = 363$ Hz, ²J $(^{125}Te-^{19}F) = 79$ Hz, ²J $(^{123}Te-^{19}F) = 66$ Hz und ⁴J $(^{19}F-^{19}F) = 5,1$ Hz und einer Halbwertsbreite von 2,3 Hz kann den beiden CF₃-Gruppen von Te $(CF_3)_2(CO_2C_6F_5)_2$ und

die Resonanzen bei -137,4 (*ortho*), -147,5 (*para*) und -160,9 ppm (*meta*) den $CO_2C_6F_5$ -Gruppen zugeordnet werden. Bestätigt wird dies durch das Integrationsverhältnis von 6:10 der Signale der CF_3 -Gruppen (-43,0 ppm) und der $CO_2C_6F_5$ -Gruppen (-137,4; -147,5; -160,9 ppm) zueinander, sowie durch ein 1D-NOE-Spektrum. Neben dem Hauptsignal sind noch weitere Signale im chemischen Verschiebungsbereich für an Te(IV) gebundene CF_3 -Gruppen zu erkennen, darunter ein breites Signal bei -47,9 ppm. Im Bereich der aromatischen Fluoratome sind in den Spektren die Signale einer weiteren $CO_2C_6F_5$ -Gruppe zu erkennen. Die Integration über den gesamten Bereich der CF_3 -Gruppen und der aromatischen Fluoratome ergibt das Verhältnis 6:10.

Abbildung 2.13: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2C_6F_5)_2$ in CD_2Cl_2 (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der $(CF_3)Te(IV)$ -Signale. Die Resonanz der CF_3 -Gruppen bei - 43,0 ppm hat eine Halbwertsbreite von 2,3 Hz.

Abbildung 2.14: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2C_6F_5)_2$ in CD_2Cl_2 (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der Signale der aromatischen Fluoratome.

In dem Spektrum von Te(CF₃)₂(CO₂C₆F₅)₂ in Nitromethan (siehe Abb 2.15 und Abb. 2.16) ist es für das breite Signal bei -50,5 ppm gelungen, die ¹²⁵Te-Satelliten aufzulösen, wodurch bestätigt ist, dass es sich bei der dazugehörigen Spezies um ein (CF₃)Te(IV)-Derivat handelt. Das Hauptsignal, das dem Produkt zugeordnet wird, zeigt seine Resonanz bei -45,0 ppm mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 362$ Hz, ${}^{2}J({}^{125}Te-{}^{19}F) = 52$ Hz, ${}^{2}J({}^{123}Te-{}^{19}F) = 44$ Hz und ${}^{4}J({}^{19}F-{}^{19}F) = 5,3$ Hz und einer Halbwertsbreite von 2,5 Hz. Das Integrationsverhältnis der Signale, die direkt dem Produkt Te(CF₃)₂(CO₂C₆F₅)₂ zugeordnet werden, ist 6:10, genauso wie das Verhältnis der Integrale über den gesamten Bereich der (CF₃)Te(IV)-Gruppen zu dem Integral über den gesamten Bereich der

Abbildung 2.15: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2C_6F_5)_2$ in CD_3NO_2 (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der $(CF_3)Te(IV)$ -Signale. Die Resonanz der CF_3 -Gruppen bei - 45,0 ppm hat eine Halbwertsbreite von 2,5 Hz.

 $CO_2C_6F_5$ -Gruppen. In Tabelle 2.7 sind die chemischen Verschiebungen sowie die Kopplungskonstanten und Integrale der Trifluormethyltellur(IV)-Verbindungen in den Spektren von Te(CF₃)₂(CO₂C₆F₅)₂ in verschiedenen Lösungsmitteln aufgeführt. Je nach Lösungsmittel unterscheidet sich das Integrationsverhältnis des Hauptsignals zu dem breiten Signal bei ca. -50 ppm. Auch das Integrationsverhältnis der Signale der unterscheidbaren Perfluorbenzoat-Liganden zueinander verändert sich entsprechend. Somit muss davon ausgegangen werden, dass die schwachen Signale im Bereich der CF₃-Gruppen (wozu auch das breite Signal bei -50 ppm gehört) und die Signale der zweiten CO₂C₆F₅-Gruppe zu Verbindungen gehören, die in Lösung Gleichgewichte mit Te(CF₃)₂(CO₂C₆F₅)₂ ausbilden

Abbildung 2.16: Ausschnitt des ¹⁹F-NMR-Spektrums von Te(CF₃)₂(CO₂C₆F₅)₂ in CD₃NO₂ (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der Signale der aromatischen Fluoratome.

und die Lage des Gleichgewichts vom Lösungsmittel beeinflusst wird. Interpretation und Diskussion von möglichen Gleichgewichten folgt in Kapitel 2.2.1. ¹⁹F-NMR-Spektren von $Te(CF_3)_2(CO_2C_6F_5)_2$ in Wasser oder in organischen Lösungsmitteln nach Wasserzugabe zeigen die schon bekannten Signale bei -42,3, -53,7 und -63,3 ppm. Die Satellitensignale werden vom jeweiligen Signal überlagert und können nicht aufgelöst werden. Außerdem sind nur die drei Signale einer $CO_2C_6F_5$ -Verbindung bei -144,3, -155,5 und -162,6 ppm zu erkennen. Der Habitus dieses Teils des Spektrums ähnelt dem von reiner Pentafluorbenzoesäure in CH₂Cl₂.

2.1.4.1 Kristallstruktur von $Te(CF_3)_2(CO_2C_6F_5)_2$

Einkristalle werden in Sublimationen und aus gesättigten Lösungen von $Te(CF_3)_2(CO_2C_6F_5)_2$ in den Lösungsmitteln Dichlormethan, Benzol und Toluol erhalten. Alle haben gemein, dass sie schon durch die leichtesten Veränderungen Gefahr laufen, ihre Einkristallinität zu verlieren. Die Präparation eines geeigneten Kristalls gestaltet sich somit schwierig. Am ehesten geeignet für Strukturuntersuchungen sind die Kristalle, die aus Toluol auskristallisieren. Die Kristalle werden in ein perfluoriertes Öl überführt und ein geeignetes Exemplar für eine röntgenographische Untersuchung präpariert. Es zeigt sich, dass die optimale Messtemperatur bei 0 °C liegt, bei tieferen Temperaturen trübt sich der Kristall. $Te(CF_3)_2(CO_2C_6F_5)_2$ kristallisiert in der triklinen Raumgruppe P-1 (Nr. 2) mit 2 Formeleinheiten in der Elementarzelle. Ausgewählte Kristalldaten und Strukturverfeinerungsparameter sind in Tabelle 2.8 aufgeführt. Bei

Summenformel	$C_{16}F_{16}O_4Te$		
Kristallsystem	Triklin	a / Å	7,619(2)
Z	2	b / Å	10,291(3)
Raumgruppe	P-1 (Nr. 2)	c / Å	16,766(5)
R _{int}	0,1391	$lpha$ / $^{\circ}$	95,89(2)
R ₁	0,1653	$m eta$ / $^{\circ}$	90,06(2)
wR_2	0,3702	γ/°	89,99(2)
Goof	1,549	V / Å ³	1307,8(7)

Tabelle 2.8:	Kristalldaten und	Strukturverfeinerungsparameter	von Te(C	$(CO_{2}C_{6}F_{5})_{2}$	
		8°r		- 3/2(2-0-5/2	٠Ť.,

Lösung und Verfeinerung der Kristallstruktur zeigt sich eine Problematik, die eine gute und eindeutige Aufklärung der Molekülstruktur erschwert und bisher ein nicht zufriedenstellendes Ergebnis liefert. Zur Verdeutlichung der Problematik ist in Abbildung 2.17 die Elektronendichteverteilung in der asymmetrischen Einheit dargestellt. Sie zeigt eine symmetrische Anordnung von Mehrringsystemen, die durch die Überlagerung zweier

Abbildung 2.17: Schema zur Verteilung der Elektronendichte im Bereich der Benzoatliganden. Die Skizze verdeutlicht die Schwierigkeiten bei der Zuordnung der Ligandenatome.

Benzoatliganden entsteht. Zwei Möglichkeiten für die Orientierung der Liganden sind in Abbildung 2.18 dargestellt. Eine unterstützende Beobachtung wird in Kapitel 2.2.1 bei der Diskussion des Verhaltens in Lösung angeführt. Ob hierfür eine Verwachsung, ein Zwillingskristall statt eines Einkristalls oder eine ca. 50-prozentige Fehlordnung der Liganden verantwortlich ist, kann nicht festgestellt werden. Die Verfeinerung der Struktur verbessert sich auch unter Einbeziehung dieser Annahmen nicht. Für die Diskussion wird eine mögliche Anordnung der Liganden ausgewählt. Die asymmetrische Einheit (siehe Abb. 2.19) zeigt die Molekülstruktur des Te(CF₃)₂(CO₂C₆F₅)₂. Deutlich wird hier, dass die aromatischen Kohlenstoffatome und die Fluoratome der CF₃-Gruppen verzerrt sind. Zu erkennen ist die *pseudo*-trigonal-bipyramidale Anordnung der Liganden um das Tellur entsprechend dem VSEPR-Modell für ein AB₄E-System. Die CF₃-Gruppen nehmen mit dem freien Elektronenpaar die äquatorialen Positionen ein. Die Te–C-Abstände liegen zwischen 200 und 222 pm. Nach dem Prinzip der Apikophilie zu erwarten, nehmen die

Abbildung 2.18: Dargestellt sind zwei mögliche Anordnungen der Benzoatliganden im $Te(CF_3)_2(CO_2C_6F_5)_2$. Sind beide Anordnungen gleichwahrscheinlich, so könnte dies für die Probleme bei der Strukturlösung verantwortlich sein.

Abbildung 2.19: Die asymmetrische Einheit zeigt die Molekülstruktur von $Te(CF_3)_2(CO_2C_6F_5)_2$.

Benzoatliganden die axialen Positionen ein. Der Te–O-Abstand liegt zwischen 204(2) und 206(2) pm und der O–Te–O-Winkel beträgt 155,5(7) ° (zum Vergleich: Der O–Te–O-Winkel im Te(CF_3)₂(CO_2CF_3)₂ beträgt 156,9 °). Ausgewählte Winkel und Abstände sind in Tabelle 2.9 angegeben. Das Tellur zeigt zwei intermolekulare Fernkontakte von 302(5)

Abstände /	pm	Winkel / °			
Te1 – O1	206(2)	C3 - Te - C4	79(3)		
Te1 - O2	204(2)	O1 - Te - O2	155,5(7)		
Te1 - C3	222(9)	O11 - Te - O12	136,2(9)		
Te1 - C4	201(9)	C3 - Te - O1	69(2)		
Te1 – O11	281(4)	C3 - Te - O2	90(2)		
Te1 – O21	288(3)	C4 - Te - O1	77(2)		
Te1 – O11'	302(5)	C4 - Te - O2	86(2)		
Te1 – O21"	316(4)	O21" – Te–O11'	107,2(8)		
$C-F(CF_3)$	107 - 174	C1 - O1 - Te	99(2)		
$C - F(CO_2C_6F_5)$	121 - 164	C2 - O2 - Te	100(2)		

Tabelle 2.9: Ausgewählte Abstände und Winkel der Kristallstruktur von $Te(CF_3)_2(CO_2C_6F_5)_2$.

und 316(4) pm zu den Sauerstoffatomen O11' und O21", die nicht direkt an ein Tellur gebunden sind, von zwei benachbarten $Te(CF_3)_2(CO_2C_6F_5)_2$ -Molekülen (siehe Abb. 2.20). Diese Kontakte setzen sich fort und bilden eine Zick-Zack-Kette aus (siehe Abb. 2.21). Wie bei der Struktur von $Te(CF_3)_2(CO_2CF_3)_2$ bilden die Fluoratome eine Hülle um den Kern aus Te- und O-Atomen. Diese fluorumhüllten Kettenstrukturen ordnen sich in Schichten nebeneinander an (siehe Abb. 2.22).

Abbildung 2.20: Die Sauerstoffatome der Benzoatliganden weisen Kontakte um ca. 300 pm zu den Telluratomen von zwei weiteren Molekülen auf.

Abbildung 2.21: Die intermolekularen Kontakte führen zu der Ausbildung einer Zick-Zack-Kette in der 2D-Struktur, ähnlich wie bei $Te(CF_3)_2(CO_2CF_3)_2$.

Abbildung 2.22: Die Zick-Zack-Ketten ordnen sich in Schichten in der Elementarzelle an.

2.1.5 Bis(trifluormethyl)tellurbis(2,6-difluorbenzoat)

der Darstellung von Bis(trifluormethyl)tellurdiacetat $Te(CF_3)_2(CO_2CH_3)_2$ Analog die kann Ligandenaustauschreaktion von Bis(trifluormethyl)tellurdibromid $Te(CF_3)_2Br_2$ mit den Silbersalzen von Carbonsäureanionen zur Synthese von $Bis(trifluormethyl) tellurbis(2,6-difluorbenzoat) \ Te(CF_3)_2(CO_2C_6H_3F_2)_2 \ genutzt \ werden.$ Dieses wird dargestellt in der Reaktion von Silber-2,6-difluorbenzoat AgCO2C6H3F2 mit Te(CF₃)₂Br₂ in Toluol bei -30 °C, wobei die Bildung von AgBr als Triebkraft ausgenutzt wird. Die ¹⁹F-NMR-Spektren zur Reaktionskontrolle bei Raumtemperatur, die Proben werden bei der jeweiligen Reaktionstemperatur entnommen und gegebenenfalls auf Raumtemperatur erwärmt, (siehe Kap. 5.1.4, Tab. 5.45) zeigen Signale von neuen Bis(trifluormethyl)tellur(IV)-Verbindungen. Das Signal bei einer chemischen Verschiebung von -45,3 ppm mit den Kopplungskonstanten ${}^{1}J({}^{19}F-{}^{13}C) = 364$ Hz, ${}^{2}J({}^{125}Te - {}^{19}F) = 47 \text{ Hz}, \quad {}^{2}J({}^{123}Te - {}^{19}F) = 38 \text{ Hz} \text{ und } {}^{4}J({}^{19}F - {}^{19}F) = 4.8 \text{ Hz} \text{ wird dem}$ Produkt zugeordnet. In den Spektren ist auch noch das Signal von nicht umgesetzten Silber-2,6-Difluorbenzoat bei einer chemischen Verschiebung von -111,5 ppm zu erkennen. Ein ¹⁹F-NMR-Spektrum einer Probe, zu der zusätzlich etwas Silber-2,6-Difluorbenzoat zugegeben wurde, bestätigt dies. Daneben zeigen die ¹⁹F-NMR-Spektren mit fortschreitender Zeit ein Dublett bei -49,2 ppm, das im Vergleich zu dem Hauptsignal der Trifluormethyltellur-Verbindung etwas hochfeldig verschoben ist. Mit den zugehörigen Resonanzen bei ca. -97,0 ppm und -110,5 ppm zusammen bestätigt sich, dass in den NMR-Proben eine Zersetzung des Te $(CF_3)_2(CO_2C_6H_3F_2)_2$ zu Te $(CF_3)_2F(CO_2C_6H_3F_2)$ erfolgt. Die weiteren Signale im Bereich der Trifluormethyltellur(IV)-Verbindungen können u.a. von noch nicht umgesetzten $Te(CF_3)_2Br_2$ oder Zwischenprodukten der Reaktion, wie z.B. $Te(CF_3)_2Br(CO_2C_6H_3F_2)$ stammen. Als weitere Zersetzungsreaktion ist auch hier

wieder die Bildung von Te(CF₃)₂ festzuhalten. Zur Vervollständigung der Reaktion wird der Ansatz auf Raumtemperatur erwärmt und wenigstens 30 Minuten weitergerührt. Der während der Umsetzung entstehende helle Feststoff ist ein Produktgemisch aus AgBr und der Tellurverbindung. Da AgBr deutlich schwerer löslich ist als Te $(CF_3)_2(CO_2C_6H_3F_2)_2$, kann die Tellurverbindung nach dem Abpipettieren der überstehenden Lösung leicht aus dem zurückbleibenden Feststoff mit Toluol extrahiert werden. Der nach dem Abkondensieren des Lösungsmittels aus dieser Lösung resultierende Feststoff wird mit Hilfe von CHNS-(siehe Tab. 5.46) und Schmelzpunktanalyse (siehe Tab. 5.47) sowie Massen-(siehe Tab. 5.48), IR-(siehe Tab. 5.49) und NMR-Spektren (siehe Tab. 5.50 - Tab. 5.54) analysiert und charakterisiert. Der Schmelzpunkt von 146 °C passt gut in die Reihe der bisher untersuchten Bis(trifluormethyl)tellurdicarbonsäurederivaten. Bemerkenswert ist, dass hier keine Zersetzung bei der Schmelzpunktbestimmung zu beobachten ist, wie das bei den untersuchten perfluorierten Derivaten der Fall ist. Der Schmelzpunkt wird daher erneut bestimmt, diesmal in einem abgeschmolzenem 4 mm-NMR-Röhrchen, worin das wieder erstarrte Produkt anschließend durch Zugabe von Toluol für eine NMRspektroskopische Untersuchung gelöst wird, um es NMR-spektroskopisch zu untersuchen. Ein ¹⁹F-NMR-Spektrum bestätigt, dass es sich unverändert um $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ handelt. Die Massenspektren zeigen auch für dieses Produkt nicht den Molekülpeak M⁺, $Te(CF_3)_2(CO_2C_6H_3F_2)_2^+$ mit m/z=582. Dafür sind jedoch die für den Zerfall des Produkts zu erwartenden Fragmente M⁺-L, Te(CF₃)(CO₂C₆H₃F₂)⁺₂ mit m/z = 513 (rel. Int. = 90 %) und $\text{Te}(\text{CF}_3)_2(\text{CO}_2\text{C}_6\text{H}_3\text{F}_2)^+$ mit m/z = 425 (rel. Int. = 70 %), mit vollständig aufgelöstem Isotopengatter zu erkennen. Die IR-Spektren zeigen Banden in den Bereichen, die für Trifluormethyl- und Carboxyl-Gruppen sowie teilfluorierte aromatische Verbindungen typisch sind. [51] Die CHNS-Analyse (ber. (gef.) C: 33,14 % (34,48 %); H: 1,04 % (2,00 %)) bestätigt, dass das Produkt nur leicht verunreinigt vorliegt.

Lösungsmittel	CD_2Cl_2	Toluol	CD ₃ CN	THF	CD ₃ NO ₂	D_2O
δ^{19} F(CF ₃)	-44,1	-45,3	-47,5	-46,3	-44,5	-52,8
$^{1}J(^{19}F-^{13}C)$ /Hz	362	364	362	-	-	-
$^{2}J(^{125}Te^{-19}F)$ /Hz	70	47	71	-	-	-
$^{2}J(^{123}Te^{-19}F)$ /Hz	58	38	59	-	-	-
$^{4}J(^{19}F-^{19}F)$ /Hz	5,0	4,8	4,8	-	-	-
Integral	100	100	100	30	(100)	100
δ^{19} F(CF ₃)	-44,5	-45,8	-52,2	-48,4	-45,9	-41,5
$^{2}J(^{125}Te^{-19}F)$ /Hz				46		
Integral	4	2	34	1	(13)	23
δ^{19} F(CF ₃)	-41,0	-49,8		-56,5		-62,5
Integral	9	2		100 ^a		8
δ^{19} F(CF ₃)	-46,8 (d)	-49,2 (d)	-47,9 (d)	-53,1 (d)	-49,3 (d)	
$^{3}J(^{19}F-^{19}F)$ /Hz	9,4	8,7	7,9	7,7	7,2	
Integral	30	2	4	100 ^a	(25)	
δ^{19} F(CF ₃)				-48,8		
Integral				5		
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$	-49,2 (t)		-50,2 (t)		-52,7 (t)	
$^{3}J(^{19}F-^{19}F)$ /Hz	8,6		8,8		7,9	
Integral	24		13		(40)	

Tabelle 2.10: ¹⁹F-NMR-spektroskopische Daten von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ und Derivaten in verschiedenen Lösungsmitteln. (Gerät: Avance II 300; Messtemperatur: RT)

^aDie Signale überlagern, so dass eine genaue Integration nicht möglich ist.

Zur weiteren Aufreinigung des Produkts empfiehlt sich eine Sublimation. Bei 30 °C im statischen Vakuum wird $\text{Te}(\text{CF}_3)_2(\text{CO}_2\text{C}_6\text{H}_3\text{F}_2)_2$ als weißer Feststoff am Kühlfinger abgeschieden. Einkristalle werden bei den gewählten Bedingungen nicht erhalten.

Das Verhalten von Te $(CF_3)_2(CO_2C_6H_3F_2)_2$ in Lösung ähnelt dem der bisher untersuchten Bis(trifluormethyl)tellur(IV)-Verbindungen. In polaren und unpolaren organischen Lösungsmitteln variiert der Habitus der ¹⁹F-NMR-Spektren. Tabelle 2.10 fasst die NMR-Daten von Te $(CF_3)_2(CO_2C_6H_3F_2)_2$ in verschiedenen Lösungsmitteln zusammen. Im Vergleich zu den Spektren in unpolaren Lösungsmitteln sind die Signale von Trifluormethyltellur(IV)-Verbindungen in polaren Lösungsmitteln verbreitert. Das NMR-Spektrum von Te(CF₃)₂(CO₂C₆H₃F₂)₂ in CD₂Cl₂ (siehe Abb. 2.23) zeigt das Hauptsignal bei -44,1 ppm mit den Kopplungen ¹J(¹⁹F-¹³C) = 362 Hz, ²J(¹²⁵Te-¹⁹F) = 70 Hz, ²J(¹²³Te-¹⁹F) = 58 Hz und ⁴J(¹⁹F-¹⁹F) = 5,0 Hz sowie einer Halbwertsbreite von 3,0 Hz. Es sind hier nur intensitätsschwache Signale von weiteren Trifluormethyltellur(IV)-Verbindungen zu erkennen, u.a. die Signale von Zersetzungsprodukten wie Te(CF₃)₂F(CO₂C₆H₃F₂). In polaren Lösungsmitteln sind die Signale des

Abbildung 2.23: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ in CD_2Cl_2 (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der (CF3)Te(IV)-Signale. Die Resonanz der CF_3 -Gruppen bei - 44,1 ppm hat eine Halbwertsbreite von 3,0 Hz.

Hauptsignals zum einen so stark verbreitert, dass Satellitensignale nicht zu erkennen sind, und zum anderen die Signale von weiteren Trifluormethyltellur(IV)-Verbindungen deutlich intensiver sind, im Vergleich mit dem Spektrum von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ in Dichlormethan. Auch die Signale von Zersetzungsprodukten, hier vor allem $Te(CF_3)_2$ und $Te(CF_3)_2F(CO_2C_6H_3F_2)$, sind stärker ausgeprägt. Dieses Verhalten wird im Rahmen des vergleichbaren Verhaltens der anderen Bis(trifluormethyl)tellur(IV)-Derivate der Carbonund Sulfonsäureanionen in Kapitel 2.2 diskutiert. Das Produkt löst sich nach gelindem Erwärmen in Wasser und die ¹⁹F-NMR-Spektren zeigen im Bereich der Trifluormethyltellur-Verbindungen den schon bekannten Habitus. Das Hauptsignal liegt bei -52,8 ppm und zwei weitere Singuletts sind bei -41,5 und -62,5 ppm zu erkennen. Die Spektren zeigen für den Difluorbenzoat-Liganden nur noch ein Signal. Durch die Zugabe von etwas 2,6-Difluorbenzoesäure kann bestätigt werden, dass es sich bei diesem Signal auch tatsächlich um die freie Säure handelt. Eine Interpretation folgt in Kapitel 2.2.1.1.

2.1.6 Bis(trifluormethyl)tellurbis(2-fluorbenzoat)

Analog zur Darstellung von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ wird Bis(trifluormethyl)tellurbis-(2-fluorbenzoat) Te(CF₃)₂(CO₂C₆H₄F)₂ in einer Ligandenaustauschreaktion von Silber-2-fluorbenzoat $AgCO_2C_6H_4F$ mit Bis(trifluormethyl)tellurdibromid $Te(CF_3)_2Br_2$ in Toluol bei -30 °C synthetisiert. Die ¹⁹F-NMR-Spektren zur Reaktionskontrolle bei Raumtemperatur, die Proben werden bei der jeweiligen Reaktionstemperatur entnommen und gegebenenfalls auf Raumtemperatur erwärmt, (siehe Kap. 5.1.5, Tab. 5.56) zeigen das Signal einer neuen Bis(trifluormethyl)tellur(IV)-Verbindung bei einer chemischen Verschiebung von -46,3 ppm mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 362 \text{ Hz}, {}^{2}J({}^{125}\text{Te}-{}^{19}F) = 45 \text{ Hz}$ und ${}^{2}J({}^{123}Te-{}^{19}F) = 39$ Hz. Die Aufspaltung der Kohlenstoffsatelliten ist nicht geeignet für eine Bestimmung der ⁴J(¹⁹F-¹⁹F)-Kopplungskonstante. Die Signale, die den 2-Fluorbenzoat-Liganden zugeordnet werden müssen, überlagern bzw. sind nicht eindeutig unterscheidbar von den Signalen weiterer 2-Fluorbenzoat-Derivate. Zu diesen zählen überschüssiges AgCO₂C₆H₄F und die in einer Zersetzungsreaktion entstehende monofluorierte Spezies Te(CF₃)₂F(CO₂C₆H₄F). Das zugehörige Dublett der CF₃-Gruppen bei -49,3 ppm und ${}^{3}J({}^{19}F-{}^{19}F) = 8,6$ Hz ist zu erkennen. Die Spektren zeigen desweiteren typische Signale von Zersetzungsprodukten, wie Te(CF₃)₂ bei -22,6 ppm. Zur Vervollständigung der Reaktion wird der Ansatz auf Raumtemperatur erwärmt und wenigstens 30 Minuten weitergerührt. Bei der Umsetzung fällt als Rohprodukt ein Feststoff aus, der sich aus AgBr und Te $(CF_3)_2(CO_2C_6H_4F)_2$ zusammensetzt. In der abpipettierten überstehenden Lösung ist vorwiegend die Tellurverbindung gelöst, und weiteres Produkt kann mit Toluol aus dem Feststoffrückstand extrahiert werden. Aus den vereinigten Lösungen wird Te $(CF_3)_2(CO_2C_6H_4F)_2$ als weißer Feststoff isoliert und mit Hilfe von Massen- (siehe Tab. 5.60), IR- (siehe Tab. 5.61) und NMR-Spektren (siehe Tab.

5.59 und Tab. 5.62 -Tab. 5.65) sowie CHNS- (siehe Tab. 5.57) und Schmelzpunktanalyse (siehe Tab. 5.58) charakterisiert. Der Schmelzpunkt passt mit 144 °C gut in die Reihe der Carbonsäurederivate der Trifluormethyltellurverbindungen. Auch hier handelt es sich um einen echten Schmelzpunkt, wie im 4 mm-NMR-Röhrchen analog der Analyse von Te(CF₃)₂(CO₂C₆H₃F₂)₂ nachgewiesen werden kann. Die Massenspektren dieses Produkts zeigen nicht den Molekülpeak M⁺, Te(CF₃)₂(CO₂C₆H₄F)⁺₂ mit m/z = 546. Die für einen Zerfall zu erwartenden Fragmente M⁺-L, Te(CF₃)(CO₂C₆H₄F)⁺₂ mit m/z = 477 (rel. Int. = 56%) und Te(CF₃)₂(CO₂C₆H₄F)⁺ mit m/z = 407 (rel. Int. = 24%), sind bei vollständiger Auflösung des Isotopengatters zu erkennen. Die IR-Spektren zeigen Banden in den Bereichen, die für Trifluormethyl- sowie Carboxyl-Gruppen und fluorierte aromatische Verbindungen typisch sind. ^[51] Die CHNS-Analyse bestätigt, dass das Produkt nur leicht verunreinigt vorliegt. Eine Aufreinigung durch Sublimation ist möglich. Bei 30 °C im statischen Vakuum scheidet sich schon nach wenigen Stunden ein weißer Feststoff am Kühlfinger ab. Einkristalle werden bei den gewählten Bedingungen nicht erhalten.

Bis(trifluormethyl)tellurbis(2-fluorbenzoat) lässt sich in organischen Lösungsmitteln lösen, um mit Hilfe der NMR-Spektroskopie das Verhalten in Lösung zu untersuchen. Die Löslichkeit in unpolaren Lösungsmitteln, wie Toluol, ist ausreichend für ¹⁹F-NMR-Spektren, für ¹³C- und ¹²⁵Te-NMR-Spektren reicht diese jedoch nicht aus. Es können die ¹²⁵Te-chemischen Verschiebungen nur mit Hilfe von 2D-Spektren (¹²⁵Te-¹⁹F-Korrelation) ermittelt werden. Auch bei den polareren Lösungsmitteln ist die Löslichkeit nicht ausreichend für 1D-¹³C- und ¹²⁵Te-NMR-Spektren. Die für Analyse, Charakterisierung und Vergleich von Te(CF₃)₂(CO₂C₆H₄F)₂ notwendigen Daten aus den NMR-Spektren sind in Tab. 2.11 zusammengefasst. Ein Vergleich der NMR-Spektren von Te(CF₃)₂(CO₂C₆H₄F)₂ in verschiedenen organischen Lösungsmitteln deutet erneut auf eine Abhängigkeit des Habitus vom Lösungsmit-
Lösungsmittel		CD_2Cl_2	Toluol	THF	CD_3NO_2	D_2O
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-45,0	-46,3	-56,8	-43,9	-53,7
${}^{1}J({}^{19}F-{}^{13}C)$	/Hz	361	367	-	-	-
$^{2}J(^{125}Te^{-19}F)$	/Hz	65	45	-	-	-
$^{2}J(^{123}Te^{-19}F)$	/Hz	54		-	-	-
${}^{4}J({}^{19}F-{}^{19}F)$	/Hz	4,7	-	-	-	-
Integral		100	100	100	100	100
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-41,5		-49,8	-46,6	-43,9
$^{2}J(^{125}Te^{-19}F)$	/Hz	42		15	46	-
Integral		21		15	27	15
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-45,2		-48,4	-45,2	-63,2
$^{2}J(^{125}Te^{-19}F)$	/Hz			45	17	-
Integral		2		2	16	18
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-47,3 (d)				
${}^{3}J({}^{19}F-{}^{19}F)$	/Hz	8,8				
Integral		8				
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-49,5		-46,7	-49,6	
Integral		14		51	10	

Tabelle 2.11: ¹⁹F-NMR-spektroskopische Daten von Te(CF3)2(CO2C6H4F)2 und Derivaten in
verschiedenen Lösungsmitteln. (Gerät: Avance II 300; Messtemperatur: RT)

tel hin. In Toluol ist ein Signal für die CF₃-Gruppen des Produkts bei einer chemischen Verschiebung von -46,3 ppm mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 367 \text{ Hz}$ und ${}^{2}J({}^{125}Te-{}^{19}F) = 45 \text{ Hz}$ zu erkennen. Spektren mit andern Lösungsmitteln zeigen mehr Signale von Trifluormethyltellur(IV)-Verbindungen. In Dichlormethan (siehe Abb 2.24) kann darunter auch ein Dublett bei -47,3 ppm Te(CF₃)₂FR (mit R vermutlich CO₂C₆H₄F), dem Produkt einer Zersetzungsreaktion, zugeordnet werden. Daneben sind noch weitere Signale von Trifluormethyltellur(IV)-Verbindungen zu erkennen, das Hauptsignal des Produkts bei einer chemischen Verschiebung von -45,0 ppm wird mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 361 \text{ Hz}, {}^{2}J({}^{125}Te-{}^{19}F) = 65 \text{ Hz}, {}^{2}J({}^{123}Te-{}^{19}F) = 54 \text{ Hz}, {}^{4}J({}^{19}F-{}^{19}F) = 4,7 \text{ Hz}$ und einer Halbwertsbreite von 2,4 Hz vollständig aufgelöst. In den

Abbildung 2.24: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2C_6H_4F)_2$ in CD_2Cl_2 (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der $(CF_3)Te(IV)$ -Signale. Die Resonanz der CF_3 -Gruppen bei -45,0 ppm hat eine Halbwertsbreite von 2,4 Hz.

polaren Lösungsmitteln THF und Nitromethan (siehe Abb. 2.25) dagegen ist das Hauptsignal von Te $(CF_3)_2(CO_2C_6H_4F)_2$ so stark verbreitert (in CD_3NO_2 beträgt die Halbwertsbreite des Hauptsignals bei -43,9 ppm 52 Hz), dass Satellitensignale nicht mehr aufgelöst werden können. Spektren von Te $(CF_3)_2(CO_2C_6H_4F)_2$ in Acetonitril können nicht gemessen werden, weil hier eine Zersetzung des Produkts sofort einsetzt. Interpretation und Diskussion zum Verhalten in Lösung folgen in Kapitel 2.2.

Bis(trifluormethyl)tellurbis(2-fluorbenzoat) löst sich in Wasser nach leichter Erwärmung vollständig. ¹⁹F-NMR-Spektren dieser Lösung zeigen ein Hauptsignal bei -53,7 ppm. Der aus den ¹⁹F-NMR-Spektren der bisher untersuchten Tellurverbindungen in Wasser bereits

Abbildung 2.25: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(CO_2C_6H_4F)_2$ in CD_3NO_2 (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der $(CF_3)Te(IV)$ -Signale. Die Resonanz der CF_3 -Gruppen bei -43,9 ppm hat eine Halbwertsbreite von 52 Hz.

bekannte Habitus mit den zwei weiteren Singuletts bei -43,9 ppm und -63,2 ppm findet sich auch hier wieder. Für den Benzoat-Liganden ist ein Signal bei -113,1 ppm zu sehen. Diese Resonanz kann der freien 2-Fluorbenzoesäure zugeordnet werden, nachgewiesen durch die Zugabe von etwas 2-Fluorbenzoesäure zu der NMR-Probe. Eine Interpretation folgt in Kapitel 2.2.1.1.

2.1.7 Bis(trifluormethyl)tellurbis(trifluormethylsulfonat)

Ähnlich der Synthese die Louven^[34] beschreibt, werden bei -30 °C in Dichlormethan Bis(trifluormethyl)tellurdifluorid $Te(CF_3)_2F_2$ und Trimethylsilyltrifluormethylsulfonat Me₃SiSO₃CF₃ zur Reaktion gebracht und diese mit Hilfe von ¹⁹F-NMR-Spektren bei Raumtemperatur (siehe Kap. 5.1.6, Tab. 5.67) verfolgt. Die Spektren zeigen eine Vielzahl von Signalen, die Trifluormethyltellur(IV)-Verbindungen zuzuordnen sind, bei chemischen Verschiebungen von -41,8 bis -48,1 ppm mit ${}^{2}J({}^{125}Te-{}^{19}F)$ -Kopplungen zwischen 70 und 100 Hz, wie auch das Zwischenprodukt der Ligandenaustauschreaktion $\text{Te}(\text{CF}_3)_2\text{F}(\text{SO}_3\text{CF}_3)$ bei -46,0 ppm mit den Kopplungen ${}^2\text{J}({}^{125}\text{Te}-{}^{19}\text{F}) = 105 \text{ Hz}$ und ${}^{3}J({}^{19}F-{}^{19}F) = 7,2$ Hz. Welches Signal zwischen -40 und -50 ppm dem Produkt $Te(CF_3)_2(SO_3CF_3)_2$ zuzuordnen ist, bleibt hier unklar. Nach dem Aufwärmen auf Raumtemperatur und nachdem keine Bildung von weiterem Me3SiF mehr festgestellt werden kann, wird das Solvens unter vermindertem Druck abkondensiert und $Te(CF_3)_2(SO_3CF_3)_2$ resultiert als ein weißer Feststoff mit einem leichten Braunstich. CHNS-Analyse (siehe Tab. 5.68), Massen-(siehe Tab. 5.70), IR-(siehe Tab. 5.71) und NMR-Spektren (siehe Tab. 5.72 - Tab. 5.76) identifizieren das Produkt als $Te(CF_3)_2(SO_3CF_3)_2$. Der Schmelzpunkt liegt wie von Louven beschrieben über 350 °C, und somit oberhalb des Messbereichs des Schmelzpunktbestimmungsgeräts. Die CHNS-Analyse (ber. (gef.) C: 8,52 % (8,69 %), H: 0% (0,21%), S: 11,38% (10,35%)) zeigt, dass das Produkt leicht verunreinigt vorliegt. Eine Aufreinigung wird durch Sublimation versucht, ist aber nicht erfolgreich. Die Massenspektren zeigen nicht den Molekülpeak M⁺, Te(CF₃)₂(SO₃CF₃)⁺₂ mit m/z = 566. Die für einen Zerfall zu erwartenden Fragmente M⁺–L, Te(CF₃)₂(SO₃CF₃)⁺ mit m/z=417 (rel. Int. = 100%) und Te(CF₃)(SO₃CF₃)⁺₂ mit m/z = 497 (rel. Int. = 5%), hingegen können mit vollständiger Auflösung des Isotopengatters eindeutig zugeordnet werden. In

den IR-Spektren sind die typischen Banden für Trifluormethyl- und Sulfonat-Gruppen zu erkennen^[51]. Raman-Spektren des Produkts können nicht aufgenommen werden, da der Feststoff für die Raman-Spektroskopie scheinbar ungeeignet ist, wie von Louven auch festgestellt wurde. Versuche, Kristalle dieser Verbindung zu erhalten, waren bisher nicht erfolgreich. Eine Sublimation führt nicht zur Abscheidung eines Feststoffs, sondern zur Bildung eines flüssigen Films am Kühlfinger. Weitere Versuche, Kristalle aus Lösung durch vorsichtiges Abdampfen des Lösungsmittels bzw. durch Kühlung von konzentrierten Lösungen bei -4 und -35 °C zu erhalten, führten ebenfalls zu keiner Kristallbildung. Der Feststoffrückstand aus einer Kombination dieser unterschiedlichen Kristallisationsansätze wird, obwohl keine Kristallbildung direkt beobachtet wird, unter dem Polarisationsmikroskop betrachtet, mit dem Ergebnis, dass ein Pulver einen kristallinen Feststoff zu bedecken scheint. Aus dem Feststoff kann ein kleiner Kristall für röntgenographische Untersuchungen präpariert werden. Dieser liefert einen Datensatz mit sehr großen Fehlerwerten für die Zellparameter. Dementsprechend sind auch die Gütefaktoren (siehe Kap. 2.1.7.1) nicht gut, die Struktur konnte dennoch gelöst werden und lieferte das überraschende Ergebnis einer Oligotelluroxan-artigen Struktur.

Obwohl Te(CF₃)₂(SO₃CF₃)₂ in Dichlormethan dargestellt wird, ist das isolierte Produkt darin fast unlöslich genauso wie in anderen relativ unpolaren Lösungsmitteln, z.B. Benzol. Daher können keine NMR-Daten von Te(CF₃)₂(SO₃CF₃)₂ in diesen Lösungsmitteln angegeben werden. In polareren Lösungsmitteln ist Te(CF₃)₂(SO₃CF₃)₂ auch nicht vollständig löslich, aber zumindest gut genug für verschiedene ¹⁹F-NMR-Spektren. Der Vergleich der NMR-Spektren von Te(CF₃)₂(SO₃CF₃)₂ zeigt auch hier wieder, dass sich der Habitus der Spektren mit dem Lösungsmittel verändert. Auffallend ist, dass in sämtlichen Lösungsmitteln die SO₃CF₃-Gruppen nur eine Resonanz zeigen. Demnach ist die chemische Verschiebung des SO₃CF₃-Signals relativ unabhängig von der Bindung des Li-

Lösungsmittel		CD ₃ CN	CD ₃ NO ₂	Glyme	THF	D ₂ O
$\delta^{19}\mathbf{F}(\mathbf{CF}_3)$		-49,1	-48,2	-50,5	-48,8	-54,0
${}^{1}J({}^{19}F - {}^{13}C)$	/Hz	365	366	366	366	365
$^{2}J(^{125}Te^{-19}F)$	/Hz	11	52	23	-	-
$^{4}J(^{19}F-^{19}F)$	/Hz	6,8	-	7,3	-	6,7
Integral		100	(100)	100	(100)	100
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-59,6	-59,6		-50,1	-63,4
${}^{1}J({}^{19}F-{}^{13}C)$	/Hz	-	-		367	-
Integral		1	(2)		(58)	2
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-47,9	-47,4		-47,6	-42,4
$^{2}J(^{125}Te^{-19}F)$	/Hz	-	50		197	25
Integral		4	(12)		(48)	6

Tabelle 2.12: ¹⁹F-NMR-spektroskopische Daten von Te(CF₃)₂(SO₃CF₃)₂ und Derivaten in verschiedenen Lösungsmitteln. (Gerät: Avance II 300; Messtemperatur: RT)

Abbildung 2.26: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(SO_3CF_3)_2$ in CD_3CN (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der $(CF_3)Te(IV)$ -Signale. Die Resonanz der CF_3 -Gruppen bei -49,1 ppm hat eine Halbwertsbreite von 3,5 Hz.

ganden an Tellur bzw. muss angenommen werden, dass SO3CF3 als Anion in Lösung annähernd isoliert vorliegt. Das Massenspektrum mit dem Fragment $Te(CF_3)(SO_3CF_3)^+_2$ ist ein Hinweis darauf, dass sich das gesuchte Produkt gebildet hat, und zumindest im Feststoff SO_3CF_3 -Liganden an die $(CF_3)_2Te(IV)$ -Einheit gebunden sind. In Acetonitril (siehe Abb. 2.26) kann dem Produkt das Signal bei -49,1 ppm mit den Kopplungen ${}^{1}J({}^{19}F-{}^{13}C) = 365 \text{ Hz}, \ {}^{2}J({}^{125}Te-{}^{19}F) = 11 \text{ Hz und } {}^{4}J({}^{19}F-{}^{19}F) = 6,8 \text{ Hz und einer Halb-}$ wertsbreite von 3,5 Hz zugeordnet werden. Signale von weiteren Trifluormethyltellur(IV)-Verbindungen sind weniger deutlich ausgeprägt. In Nitromethan wird für das Hauptsignal des Produkts bei einer chemischen Verschiebung von -48,2 ppm mit den Kopplungskonstanen ${}^{1}J({}^{19}F-{}^{13}C) = 366 \text{ Hz und } {}^{2}J({}^{125}Te-{}^{19}F) = 52 \text{ Hz eine Halbwertsbreite von 5,4 Hz}$ bestimmt, und die Signale von weiteren Trifluormethyltellur(IV)-Verbindungen sind intensiver, als das in unpolareren Lösungsmitteln der Fall ist. Entgegen der Beobachtung in den ¹⁹F-NMR-Spektren von *Louven* (Lösungsmittel: Glyme; Derivat-1: $\delta CF_3 = -49,3$; Derivat-2: $\delta CF_3 = -49,3$; Lösungsmittel: CH₃CN; Derivat-1: $\delta CF_3 = -44,8$; Derivat-2: $\delta CF_3 = -44,8$; 46,7) kann hier in den NMR-Spektren von $Te(CF_3)_2(SO_3CF_3)_2$ in Glyme bzw. Acetonitril ein weiteres Derivat nicht eindeutig zugeordnet werden. In THF dagegen zeigt sich der Habitus des ¹⁹F-NMR-Spektrums komplett verändert. Hier sind drei relativ intensive Signale von Trifluormethyltellur(IV)-Verbindungen zu erkennen. Da sich die Lösung im NMR-Röhrchen komplett verfestigt, muss davon ausgegangen werden, dass hier, ähnlich wie von Naumann et al. [52] beschrieben, THF polymerisiert und so die Viskosität der Lösung erhöht. Im NMR-Spektrum sind demnach Signale von Verbindungen, die in Reaktionen mit dem Lösungsmittel entstehen, zu sehen. Für eine Verbindung $Te(CF_3)_2(SO_3CF_3)_2$ sollte in den ¹⁹F-NMR-Spektren das Verhältnis der Integrale der CF₃-Signale zu dem SO₃CF₃-Signal 1:1 sein. In Acetonitril und THF kann dieses Verhältnis beobachtet werden, in den Lösungsmitteln Glyme und Nitromethan dagegen zeigen die NMR-Spektren ein anderes Verhältnis der Integrale. Es muss davon ausgegangen werden, dass $Te(CF_3)_2(SO_3CF_3)_2$ in Lösung Gleichgewichtsreaktionen eingeht, die je nach Lösungsmittel unterschiedlich stark ausgeprägt sind. *Louven* diskutiert dahingehend zum einen die Möglichkeit von zwei chemisch nicht äquivalenten CF₃-Gruppen des Produkts und zum anderen das Auftreten von ionischen Strukturen. Welche Gleichgewichtsreaktionen für dieses Verhalten letztendlich verantwortlich sind, wird in Kapitel 2.2 tiefergehend diskutiert, da ähnliche Verhaltensmuster für die meisten untersuchten Bis(trifluormethyl)tellur(IV)-Verbindungen nachgewiesen sind. Außerdem zeigen die ¹⁹F-NMR-Spektren von Te(CF₃)₂(SO₃CF₃)₂ in Wasser dieselben Signale wie Te(CF₃)₂(CO₂CF₃)₂ (vgl. Kap. 2.1.2), was auch durch ein ¹⁹F-NMR-Spektrum einer Mischung von Te(CF₃)₂(CO₂CF₃)₂ und Te(CF₃)₂(SO₃CF₃)₂ in Wasser belegt wird. Eine Titration einer wässrigen Lösung von Te(CF₃)₂(SO₃CF₃)₂ mit NaOH lieferte die in Abbildung 5.2 dargestellte Titrationskurve. Sie zeigt, wie bei Te(CF₃)₂(CO₂CF₃)₂, zwei Äquivalenzpunkte bei pH 4,5 und pH 8. Dieses Phänomen wird in Kapitel 2.2.1.1 diskutiert.

Tabelle2.1 $\{[(Te(CF_3)_2)_3]$	3: Kristalldaten und ${}_{3}O_{2}][SO_{3}CF_{3}]_{2}\}_{\infty}$.	Strukturverfeinerungsparameter	von
Summenformel	$C_8F_{24}O_8S_2Te_3$		
Kristallsystem	Triklin	a / Å	10,884(8)
Raumgruppe	P-1 (Nr. 2)	b / Å	11,90(1)
Ζ	2	c / Å	13,079(8)
R _{int}	0,5129	$lpha$ / $^{\circ}$	81,97(9)
R ₁	0,0952	eta / °	70,90(7)
wR_2	0,218	γ/°	63,68(8)
Goof	0,693	V / Å ³	1435(2)

2.1.7.1 Kristallstruktur vo	on	[(Te(CF	3)2)	₃ О	₂][SC) ₃ CF	- 3]2
-----------------------------	----	---------	------	----------------	-------------------	-------------------	----------

Das Kation $[(Te(CF_3)_2)_3O_2]^{2+}$ wird von drei sauerstoffverbrückten $Te(CF_3)_2$ -Einheiten

Abbildung 2.27: Dargestellt ist die Struktur einer Formeleinheit von $\{[(Te(CF_3)_2)_3O_2][SO_3CF_3]_2\}_{\infty}$. Die beiden zentralen Sauerstoffatome der Te–O-Kette haben kurze Abstände zu den äußeren Telluratomen und lange Abstände zu dem inneren Telluratom. Die Te–O–Te-Winkel der kettenartigen Te–O-Struktur betragen 129,9 - 130,2 ° und der zentrale O–Te–O-Winkel 153,9(9) °. Die Bindungen an beiden Kettenenden des Kations zu den Sauerstoffatomen der beiden verbrückenden SO₃CF₃-Anionen sind die kürzesten Te–O-Abstände zwischen Tellur und SO₃CF₃-Anionen in dieser Struktur.

gebildet, wobei die Te–O-Abstände 181 - 216 pm betragen (vgl. Abb. 2.27). In der Te–O-Kette betragen die Te–O–Te-Winkel 129,9 - 130,2 ° und der zentrale O–Te–O-Winkel 153,9(9) °. Die Winkel, die am jeweiligen Telluratom von den CF₃-Gruppen eingeschlossen werden, liegen zwischen 89 und 107 °. Die endständigen Telluratome sind jeweils über ein SO₃CF₃-Anion mit den nächsten Kationen verbrückt. Die Te–O-Abstände betragen hierbei 267(2) und 253(2) pm. Somit bildet sich eine Kettenstruktur aus (vgl. Abb. 2.29). Das dritte Sauerstoffatom des Anions koordiniert mit einem Abstand von 270,5 pm an ein endständiges Telluratom eines benachbarten Kations (vgl. Abb. 2.28). Das zweite kristallographisch unterscheidbare SO₃CF₃-Anion ist mit einem Abstand von 269 pm über ein Sauerstoffatom an ein endständiges Telluratom koordiniert. Die beiden verbleibenden Sau-

Abbildung 2.28: Die äußeren Telluratome der Te–O-Kette weisen weitere Kontakte zu SO₃CF₃-Anionen mit Abständen bis zu 308,7 pm auf. Die Struktur zeigt zwei kristallographisch unterschiedliche Anionen. Nur eines dieser beiden Anionen verbrückt zwei Tellur-Trimer-Einheiten miteinander zur Ausbildung einer längeren Kettenstruktur.

erstoffatome dieses SO₃CF₃-Anions besitzen Kontakte von 302,7 - 308,2 pm zu dem anderen endständigen Telluratom der zweiten Kette. Somit sind zwei Ketten "-Anion-Dikation-Anion-" leicht versetzt zueinander über die beiden unterscheidbaren SO₃CF₃-Anionen verknüpft. In diesen Doppelketten weisen die Fluoratome sämtlicher CF₃-Gruppen, wie bei der Kristallstruktur von Te(CF₃)₂(CO₂CF₃)₂, nach außen und schirmen so das Innere der röhrenartigen Struktur ab (vgl. Abb. 2.30). Entlang der Blickrichtung hkl = -170, -84, 297 sind wiederum vier halbe Röhren in einer Elementarzelle angeordnet. In Tab. 2.14 sind die wichtigsten Abstände und Winkel der Kristallstruktur zusammengefasst.

Beckmann et al.^[53,54] beschreiben Darstellung und Eigenschaften von Telluroxanen mit nicht fluorierten Liganden. Zum Vergleich finden sich in der Kristallstruktur von

Abbildung 2.29: Die Kettenstrukturen, die durch die Tellur-Trimere und die verbrückenden SO₃CF₃-Einheiten ausgebildet werden, orientieren sich in Form von leicht gegeneinander versetzten Doppelketten. Das zweite kristallographisch unterscheidbare SO₃CF₃-Anion verknüpft diese Ketten miteinander.

2 Ergebnisse und Diskussion

Abbildung 2.30: Sämtliche CF₃-Gruppen der Doppelketten sind nach außen orientiert, wodurch sich eine röhrenartige Struktur mit Fluorhülle ausbildet. Von den Doppelketten sind insgesamt vier halbe in einer Elementarzelle zusammengefasst.

 $(p-MeOC_6H_4)_2$ TeO Abstände (Te-O: 202,5 - 210,0 pm) und Winkel (O-Te-O: 169,61°; Te-O-Te: 126,0°) für die zentrale Te-O-Te-Einheit, die sich in der selben Größenordnung bewegen, wie bei der hier vorgestellten Struktur.

Abstände / pm		Wink	kel / °
Te-C	206 - 237	Te-O-Te	129,9 - 130,2
Te-O1/O2	182 - 216	O1 - Te - O2	153,9(9)
Te-O11/O12 (Kettenende)	253(2); 267(2)	C-Te-C	89 - 107
$Te-O(SO_2CF_3)$ kurze Verknüpfung	269 - 270,5		
$Te-O(SO_2CF_3)$ lange Verknüpfung	302,7 - 308,7		
$Te-O(SO_2CF_3)$ lange Kontakte	324,5 - 355,4		

2.1.8 Bis(trifluormethyl)tellurbis(toluolsulfonat)

von $Te(CF_3)_2F_2$ mit $Me_3SiSO_3CF_3$ Analog der Umsetzung wird Te(CF₃)₂(SO₃C₆H₄CH₃)₂ in einer Reaktion von Te(CF₃)₂F₂ mit Me₃SiSO₃C₆H₄CH₃ in Dichlormethan bei -30 °C dargestellt und als weißer Feststoff isoliert. Die Reaktion wird mit ¹⁹F-NMR-Spektren bei Raumtemperatur, die Proben werden bei der jeweiligen Reaktionstemperatur entnommen und gegebenenfalls auf Raumtemperatur erwärmt, (siehe Kap. 5.1.7, Tab. 5.84) kontrolliert. Die Spektren zeigen schon zu Beginn der Reaktion das zu einem Dezett aufgespaltene Signal von Me₃SiF bei -159,2 ppm als Hauptsignal. Als Signal einer Trifluormethyltellur(IV)-Verbindung kann einzig das Singulett bei -43,6 ppm mit einer ${}^{2}J({}^{125}Te-{}^{19}F)$ -Kopplung von 85 Hz erkannt werden. Es sind noch weitere Signale mit sehr geringen Intensitäten zu erkennen, die allerdings nicht näher zugeordnet werden können. Bei dieser Reaktion ist bis zu diesem Zeitpunkt auffallend, dass deutlich mehr Feststoff ausgefallen ist, als bei den anderen Umsetzungen von Bis(trifluormethyl)tellurdifluorid mit Trimethylsilylverbindungen. Das Lösungsmittel, das leichtflüchtige Beiprodukt Me₃SiF und überschüssiges Me₃SiSO₃C₆H₄CH₃ werden unter vermindertem Druck abkondensiert. Ein weißer Feststoff resultiert als Produkt und wird mit Hilfe von CHNS-Analyse (siehe Tab. 5.85) sowie Massen- (siehe Tab. 5.86), IR/Raman- (siehe Tab. 5.87) und NMR-Spektren (siehe Tab. 5.88 - Tab. 5.91) untersucht und charakterisiert.

Das Massenspektrum dieser Verbindung zeigt, im Gegensatz zu den anderen Trifluormethyltellur(IV)-Verbindungen, den Molekülpeak M⁺ Te(CF₃)₂(SO₃C₆H₄CH₃)⁺₂ mit m/z = 610 (rel. Int. = 8%) bei vollständig aufgelöstem Isotopengatter. Die zu erwartende Fragmentierung wird ebenfalls beobachtet. Auch die IR- und Raman-Spektren bestätigen das Vorliegen des Produkts durch das Auftreten von Banden, die Trifluormethyl-

und Sulfonat-Gruppen sowie aromatischen Verbindungen ^[51] zuzuordnen sind, die CHNS-Analyse (ber. (gef.) C: 31,40 % (33,66 %), H: 2,96 % (3,57 %), S: 10,48 % (11,32 %)) weist jedoch daraufhin, dass Lösungsmittel oder andere Verunreinigungen noch nicht vollständig entfernt sind. Die Bestimmung eines Schmelzpunktes ist nicht verlässlich. Durch Sublimation können Kristalle, die für eine Einkristallstrukturanalyse geeignet sind, erhalten werden. Bei diesen handelt es sich jedoch um Hydroniumtolylsulfonat $[H_3O]^+[SO_3C_6H_4CH_3]^-$. In Versuchen, bei denen die Kristallisation durch Abdampfen des Lösungsmittels ohne inerte Bedingungen durchgeführt wird, kristallisiert ebenfalls Hydroniumtolylsulfonat aus. Daher muss davon ausgegangen werden, dass Te(CF₃)₂(SO₃C₆H₄CH₃)₂ sehr einfach mit Wasser unter Abspaltung des Tosylat-Liganden reagiert. Dementsprechend ist Te(CF₃)₂(SO₃C₆H₄CH₃)₂ von den hier untersuchten Te(CF₃)₂-Verbindungen am besten in Wasser löslich bzw. hydrolysierbar. In Kristallisationsansätzen, in denen das Lösungsmittel langsam im Stickstoffgegenstrom verdampft wird, wird keine Kristallisation beobachtet.

Das ¹⁹F-NMR-Spektrum von Te(CF₃)₂(SO₃C₆H₄CH₃)₂ in Wasser zeigt im Bereich der Trifluormethyltellur(IV)-Verbindungen wieder die drei bekannten Signale. Das Hauptsignal zeigt seine Resonanz bei einer chemischen Verschiebung von -52,2 ppm, eine ¹J(¹⁹F-¹³C)-Kopplung von 363 Hz und eine ²J(¹²⁵Te-¹⁹F)-Kopplung von 42 Hz. Die beiden anderen Signale, die ein Integrationsverhältnis von 1:3 aufweisen, liegen bei chemischen Verschiebungen von -62,2 ppm mit den Kopplungen ¹J(¹⁹F-¹³C) = 362 Hz und ²J(¹²⁵Te-¹⁹F) = 18 Hz bzw. -40,7 ppm mit der ¹J(¹⁹F-¹³C)-Kopplung von 363 Hz und der ²J(¹²⁵Te-¹⁹F)-Kopplung von 30 Hz. Die wässrige Lösung hat einen pH-Wert von ca.2. Eine Titration mit Natronlauge liefert die Titrationskurve (Abb. 5.3), die schon bei der Untersuchung wässriger Lösungen der Verbindungen Te(CF₃)₂(CO₂CF₃)₂ (siehe Kap. 2.1.2) und Te(CF₃)₂(SO₃CF₃)₂ (siehe Kap. 2.1.7) resultiert, mit den Äquivalenzpunkten

Lösungsmittel		CH_2Cl_2	CD ₃ CN	Glyme	DMF	D_2O
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$		-43,6	-50,7	-51,5	-51,4	-52,2
${}^{1}J({}^{19}F - {}^{13}C)$	/Hz	-		-	368	363
$^{2}J(^{125}Te^{-19}F)$	/Hz	85		38	36	42
Integral		(100)	100	100	100	100
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$				-51,1	-52,9	-62,2
${}^{1}J({}^{19}F-{}^{13}C)$	/Hz			-	-	362
$^{2}J(^{125}Te^{-19}F)$	/Hz			19	17	18
Integral				24	7	18
$\delta^{19}\mathbf{F}(\mathbf{CF_3})$					-53,7	-40,7
${}^{1}J({}^{19}F-{}^{13}C)$	/Hz				-	363
$^{2}J(^{125}Te^{-19}F)$	/Hz				17	30
Integral					6	48

Tabelle 2.15: ¹⁹F-NMR-spektroskopische Daten von Te(CF₃)₂(SO₃C₆H₄CH₃)₂ und Derivaten in verschiedenen Lösungsmitteln. (Gerät: Avance II 300; Messtemperatur: RT)

bei pH 4,5 und pH 8. Eine Interpretation folgt in Kapitel 2.2.1.1.

Te(CF₃)₂(SO₃C₆H₄CH₃)₂ lässt sich schlechter als die übrigen Produkte in organischen Lösungsmitteln lösen, so dass in NMR-Spektren ein schlechtes Signal-Rausch-Verhältnis beobachtet wird, was die Analyse der Satellitensignale erschwert. Die ¹⁹F-NMR-Spektren zeigen in verschiedenen organischen Lösungsmitteln jeweils als Hauptsignal die Resonanz einer Trifluormethyltellur(IV)-Verbindung, die Te(CF₃)₂(SO₃C₆H₄CH₃)₂ zugeordnet wird. Die ¹²⁵Te-Satelliten können aufgelöst werden. In allen Lösungsmitteln ist wenigstens ein Signal einer weiteren Trifluormethyltellur(IV)-Verbindung zu erkennen. In Dichlormethan (siehe Abb 2.31) zeigt das Produkt seine Resonanz bei -43,6 ppm mit einer ²J(¹²⁵Te–¹⁹F)-Kopplung von 85 Hz und einer Halbwertsbreite von 6,6 Hz. Daneben sind noch zwei weitere Signale im Verschiebungsbereich der Trifluormethyltellur(IV)-Verbindungen bei -37,6 und -48,2 ppm zu erkennen. In den polareren Lösungsmitteln Acetonitril, Glyme und Dimethylformamid liegt die Resonanz, die dem Produkt zugeordnet wird, hochfeldverschoben, im Vergleich zu der Resonanz in Dichlormethan, und

Abbildung 2.31: Ausschnitt des ¹⁹F-NMR-Spektrums von $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ in CH_2Cl_2 (Gerät: Avance II 300; Messtemperatur: RT). Dargestellt ist der Bereich der $(CF_3)Te(IV)$ -Signale. Die Resonanz der CF_3 -Gruppen bei -43,6 ppm hat eine Halbwertsbreite von 6,6 Hz.

die ${}^{2}J({}^{125}Te-{}^{19}F)$ -Kopplungen sind betraglich kleiner. In CD₃CN ist das Signal von Te(CF₃)₂(SO₃C₆H₄CH₃)₂ das einzige Signal des ${}^{19}F$ -NMR-Spektrums, in Glyme sind zwei Signale, und in DMF sind noch zwei weitere Signale von CF₃Te(IV)-Verbindungen zu erkennen. Damit gilt auch für Te(CF₃)₂(SO₃C₆H₄CH₃)₂, dass sich der Habitus der ${}^{19}F$ -NMR-Spektren mit dem Lösungsmittel verändert. Tab. 2.15 gibt eine Zusammenfassung der Ergebnisse der ${}^{19}F$ -NMR-spektroskopischen Untersuchungen, und eine Interpretation folgt in Kapitel 2.2.

2.1.9 Versuche zur Darstellung von weiteren Bis(trifluormethyl)tellur(IV)-Verbindungen

Neben den Carbon- und Sulfonsäurederivaten der Bis(trifluormethyl)tellur(IV)-Verbindungen wird auch der Ligandenaustausch mit anderen Ligandenarten untersucht. Erfolgsversprechend scheint der Ansatz mit Pseudohalogenen zu sein. Untersuchungen hierzu wurden schon von *Louven*^[34] beschrieben, und auch *Klapötke* hat $Te(CF_3)_2(N_3)_2^{[35]}$ synthetisiert. Mit den Pseudohalogenen Cyanid, Isocyanat und Thioisocyanat werden die folgenden Umsetzungen angestrebt:

$$\begin{split} \text{Te}(\text{CF}_3)_2\text{F}_2 + 2\,\text{Me}_3\text{SiY} &\longrightarrow \text{Te}(\text{CF}_3)_2\text{Y}_2 + 2\,\text{Me}_3\text{SiF} \ (\text{Y} = \text{CN}, \ \text{OCN}, \ \text{SCN}) \\ \\ \text{Te}(\text{CF}_3)_2\text{Cl}_2 + 2\,\text{AgY} &\longrightarrow \text{Te}(\text{CF}_3)_2\text{Y}_2 + 2\,\text{AgCl} \\ \\ \text{Te}(\text{CF}_3)_2\text{Cl}_2 + 2\,\text{KY} &\longrightarrow \text{Te}(\text{CF}_3)_2\text{Y}_2 + 2\,\text{KCl} \end{split}$$

¹⁹F-NMR-Spektren zur Reaktionskontrolle geben Hinweise auf den Ablauf von Ligandenaustauschreaktionen. Die daraus isolierten Produkte hingegen, können nicht mit $Te(CF_3)_2Y_2$ -Derivaten (Y = Stickstoffhaltiger Ligand) in Verbindung gebracht werden. Die Umsetzungen werden zuerst mit Trimethylsilyl-Verbindungen als Ligandenaustauschreagenzien in absolutierten Lösungsmitteln versucht und nach Misserfolg auch die Silber(I)- und die Kalium-Salze der Pseudohalogenide. Aus den ¹⁹F-NMR-Spektren geht nicht hervor, was bei den Isolierungsversuchen tatsächlich abläuft, aber in einigen Spektren der Umsetzungen mit CN^- und NCO^- ist unter den Signalen von Trifluormethyltellur(IV)-Verbindungen auch ein Signal zu erkennen, das auf die Bildung von Tetrakis(trifluormethyl)tellur $Te(CF_3)_4$ hinweist. Dieses Signal bei ca. -41 ppm (siehe Tab. 2.16 und Abb. 2.32) weist ¹³C-Satelliten auf, deren Aufspaltungsmuster nicht zu $Te(CF_3)_2Y_2$ -Verbindungen passt. Vielmehr deutet eine Analyse der NMRspektroskopischen Daten darauf hin, dass es sich hierbei tatsächlich um $Te(CF_3)_4$ handelt,

Abbildung 2.32: Ausschnitt des ¹⁹F-NMR-Spektrums nach beginnender Zersetzung. Die Vergrößerung verdeutlicht, dass der ¹³C-Satellit nicht zu einem Quartett oder Dezett aufgespalten ist. Eine exakte Interpretation ist nicht möglich, da ein breites Signal überlagert (Gerät: Avance 400; Messtemperatur: RT).

über das *Naumann et al.* erstmals 1985 berichteten. ^[43] Die ¹⁹F-chemische Verschiebung sowie die Kopplungskonstanten und das Aufspaltungsmuster der ¹³C-Satelliten stimmen mit dieser Annahme überein. Wie es zu der Bildung dieser Verbindung gekommen ist, ist unklar. Denkbar wäre eine Symmetrisierung der Verbindungen $Te(CF_3)Y_2$ (Y= NC, NCO) (vgl. Abb. 2.33). In den ¹⁹F-NMR-Spektren wird dieses Signal von $Te(CF_3)_4$ immer von einem sehr breiten Signal begleitet und häufig auch überlagert. *Klapötke et al.* ^[55] zeigten in ihren Untersuchungen zu $Te(CN)_4$, dass die Verbindung oberhalb -20 °C nicht stabil ist, konnten aber die Existenz durch die Zersetzungsprodukte $Te(CN)_2$ und $(CN)_2$ (Dicyan) nachweisen. Versuche, Dicyan durch Gasphasen-IR-Spektroskopie nachzuweisen, lieferten keine Ergebnisse.

Tabelle 2.16: NMR-Parameter des möglichen Zersetzungsprodukts Te(CF₃)₄ aus den Reaktionen mit Cyaniden und Cyanaten (Gerät: Avance 400; Messtemperatur: RT). Zum Vergleich sind die Daten von *Naumann*^[43] in Klammern angegeben.

$Te(CF_3)_4$	δ^{19} F	-41,2	(-44,5)	
	${}^{1}J({}^{19}F{}-{}^{13}C)/Hz$	ca. 360		(388,6)
	$^{2}J(^{125}Te^{-19}F)/Hz$	31		(45)
2 ◯Te 2 ◯Te	CF ₃	Те: Y Y	+	CF ₃ CF ₃ CF ₃ CF ₃

Abbildung 2.33: Mögliche Symmetrisierung der Verbindungen Te $(CF_3)_2Y_2$ (Y= NC, NCO).

Es wird versucht, ein O-Nukleophil als Ligand an Tellur zu binden. Die Umsetzungen von Te(CF₃)₂Cl₂ und Te(CF₃)₂Br₂ mit Ag-, [NMe₄]- und K-OC₆F₅ sind allesamt nicht erfolgreich. In den NMR-Spektren zur Reaktionskontrolle sind für die Signale von Bis(trifluormethyl)tellur(IV)-Verbindungen Veränderungen der chemischen Verschiebung und der dazugehörigen ²J(¹²⁵Te-¹⁹F)-Kopplung zu erkennen, das gewünschte Produkt (Te(CF₃)₂(OC₆F₅)₂) kann jedoch nicht isoliert werden.

Bei Umsetzungen mit Grignard-Reagenzien (BrMgR, mit $R = C_6H_5$, $C_6H_4CH_3$) zur Ligandenaustauschreaktion mit C-Nukleophilen zeichnen sich ebenso NMR-spektroskopische Hinweise auf den Ablauf einer Reaktion ab. Aus Lösung können dagegen nur undefinierbare schwarze Feststoffe isoliert werden, die Massen- und NMR-spektroskopisch nicht charakterisierbar sind. In den ¹⁹F-NMR-Spektren ändern sich die chemischen Verschiebungen um mehrere ppm und auch die ²J(¹²⁵Te-¹⁹F)-Kopplungskonstanten ändern sich um zumeist mehr als 20 Hz. Die Veränderung der ¹J(¹⁹F-¹³C)-Kopplungskonstanten zeigen hier eine Tendenz zu Kopplungen von mehr als 370 Hz. Mit fortwährender Analyse der NMR- Proben sind verstärkt Signale von Zersetzungsprodukten in den Spektren zu erkennen. Dies sind neben den Signalen von Te(CF₃)₂ und CF₃H in den ¹⁹F-NMR-Spektren auch Signale von R₂ in den ¹H-NMR-Spektren. Die ansteigende Größe der ¹J(¹⁹F–¹³C)-Kopplung kann so interpretiert werden, dass in diesen Verbindungen eine Berry-Pseudorotation einsetzt, in der die CF₃-Gruppen und die C-Nukleophile die Positionen tauschen. Hierbei kommt es dann nur nicht zu der Ausbildung der Verbindung Te(CF₃)₂R₂, mit den CF₃-Gruppen auf den apikalen Positionen (siehe Abb. 2.34), es setzt zuvor eine Zersetzung ein, bei der sich Te(CF₃)₂ und R₂ bilden.

Abbildung 2.34: In einer pseudo-trigonalbipyramidalen Anordnung der Liganden nimmt der elektronegativere Ligand die axialen Positionen ein. Besitzen beide Ligandenarten eine ähnliche Elektronegativität, so ist ein Gleichgewicht zwischen beiden Formen denkbar.

2.2 Eigenschaften von $Te(CF_3)_2Y_2$

Werden Darstellung und spezifische Eigenschaften der in dieser Arbeit untersuchten Bis(trifluormethyl)tellur(IV)-Verbindungen $Te(CF_3)_2Y_2$ betrachtet, fällt auf, dass sich einige Besonderheiten darin wiederholen. Abhängig von der Art des Liganden Y ist vor allem das Verhalten in Lösung vergleichbar. Im Folgenden werden die Ergebnisse und Besonderheiten der Umsetzungen zusammengefasst und anschließend das auffällige Verhalten der Produkte in Lösung weitergehend interpretiert. Tabelle 2.17 gibt einen Überblick über die untersuchten $Te(CF_3)_2Y_2$ -Verbindungen und zeigt eine Zusammenfassung der wichtigsten analytischen Ergebnisse.

$Te(CF_3)_2Y_2$		Lösung	g / NMR	Feststoffe	ststoffe Feststoffe analysiert				
Y=		Hinweis	Nachweis	isoliert	MS	IR	Raman	CHNS	FP / °C
CO ₂ CF ₃	(1)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	135
CO_2CH_3	(2)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	133
$CO_2C_6H_4F$	(3)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	144
$CO_2C_6H_3F_2$	(4)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	146
$CO_2C_6F_5$	(5)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	175
SO ₃ CF ₃	(6)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_a	\checkmark	>350
SO ₃ C ₆ H ₄ CH	₃ (7)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Tabelle 2.17: Übersicht der untersuchten $Te(CF_3)_2Y_2$ -Verbindungen.

^a Das Produkt ist für die Ramanspektroskopie nicht geeignet.

Die Carbonsäurederivate (1-5) lassen sich erfolgreich in Ligandenaustauschreaktionen darstellen. Diese laufen bei tiefer Temperatur in den unpolaren Lösungsmitteln Dichlormethan und Toluol sowohl mit Silbersalzen als auch Trimethylsilylverbindungen ab. Bei einem Austausch von Fluor- durch Carbonsäure-Liganden, wie bei der Darstellung von $Te(CF_3)_2(CO_2CF_3)_2$, kann mit Hilfe von ¹⁹F-NMR-Spektren zur Reaktionskontrolle auch das monosubstituierte Zwischenprodukt $Te(CF_3)_2F(CO_2CF_3)$ (Kap. 2.1.2) nachgewiesen werden. Die Bis(trifluormethyl)tellur(IV)-Derivate der Carbonsäuren lassen sich aus Lösung isolieren, indem die Beiprodukte (AgCl, AgBr oder Me₃SiF) abgetrennt und das Lösungsmittel unter vermindertem Druck abkondensiert wird. Die resultierenden weißen Feststoffe sind alle sublimierbar. Die mono- und difluor-substituierten Benzoatderivate haben einen Schmelzpunkt, während sich die anderen Derivate dabei zersetzen. Sie kristallisieren in Sublimationsapparaturen an den Kühlfingern oder aus gesättigten Lösungen, allerdings verhindert die unzureichende Stabilität der Einkristalle bisher eine durchgängige Charakterisierung der Kristallstrukturen. Werden die Kristallisationsbedingungen nicht mehr aufrecht erhalten, z.B. um die Kristalle für eine Strukturanalyse zu präparieren, verlieren sie ihre Einkristallinität. Verschiedene Ansätze, um dieser Problematik beizukommen, führten nur bei Te(CF₃)₂(CO₂CF₃)₂ und Te(CF₃)₂(CO₂C₆F₅)₂ zu einem bedingten Erfolg. Die Kristallstruktur von $Te(CF_3)_2(CO_2CF_3)_2$ konnte gelöst werden, die von Te $(CF_3)_2(CO_2C_6F_5)_2$ aufgrund eines vorliegenden Zwillingskristalls oder einer Fehlordnung nicht. Die Feststoffe werden weiterhin durch CHNS- und Schmelzpunktanalyse sowie Massen- und Schwingungsspektren charakterisiert. Die ¹⁹F-NMR-Spektren zeigen nicht, wie es idealer Weise zu vermuten wäre, nur ein Signal für die CF3-Gruppen, sondern mehrere. Für die Carbonsäure-Liganden ist ebenso mehr als nur ein Signal pro unterscheidbarem Fluor-Atom zu erkennen. Auch der Habitus der NMR-Spektren variiert je nach verwendetem Lösungsmittel. Einige der Signale für Trifluormethyltellur(IV)-Verbindungen könnten von Verunreinigungen oder Produkten stammen, die in Zersetzungsreaktionen entstehen. Da sich das Verhalten der Produkte in Lösung aber auch mit den Feststoffen reproduzieren lässt, die aus den untersuchten Lösungen wieder isoliert werden, kann dieses Verhalten in Lösung nicht befriedigend durch Verunreinigungen oder Zersetzungsreaktionen erklärt werden. Diskussion und Interpretation hierzu folgen in Kapitel 2.2.1. Die beiden Sulfonsäurederivate (6 und 7) können ebenfalls synthetisiert, isoliert und anhand der gängigen Analysemethoden charakterisiert werden. Raman-Spektren können nur von $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ aufgenommen werden, bei $Te(CF_3)_2(SO_3CF_3)_2$ ist dies nicht möglich. Eine Ursache hierfür war in der Vergangenheit häufig Schlifffett, eine Fluoreszenz kann aber nicht ausgeschlossen werden. Der erste signifikante Unterschied zu den Carbonsäurederivaten sind die bei den Schmelzpunktbestimmungen ermittelten deutlich höheren Zersetzungspunkte der Sulfonsäurederivate. Versuche, die Produkte zu kristallisieren, sind nicht erfolgreich. Bei Sublimationen und Kristallisationsansätzen aus gesättigten Lösungen können keine Einkristalle erhalten werden, stattdessen sublimiert bzw. kristallisiert Hydroniumtolylsulfonat im Falle des Toluolsulfonsäurederivats und bei dem Trifluormethylsulfonsäure-Derivat bildet sich ein flüssiger Film auf dem Kühlfinger der Sublimationsapparatur. Für das Trifluormethylsulfonsäurederivat zeigt eine Analyse des zurückbleibenden Feststoffs, dass sich sauerstoffverbrückte Oligomere der Trifluormethyltellurverbindung bilden. Sauerstoffverbrückte Tellurverbindungen, Telluroxane, sind bekannt, aber bisher noch nicht mit Trifluormethyl-Gruppen als Liganden am Tellur bewiesen. Die ¹⁹F-NMR-Spektren der Sulfonsäurederivate in verschiedenen Lösungsmitteln deuten auf ein ähnliches Verhalten wie das der Carbonsäurederivate in Lösung hin. Diskussion und Interpretation hierzu folgen in Kapitel 2.2.1.

2.2.1 Verhalten von $Te(CF_3)_2Y_2$ in Lösung

Die bisher aufgeführten Ergebnisse deuten auf eine Vielzahl von möglichen Reaktionen der Bis(trifluormethyl)tellur(IV)-Verbindungen hin. Auch die Erkenntnisse aus der NMR-Spektroskopie unterstützen diese Beobachtungen. Die Art des Substituenten Y hat neben dem unterschiedlichen Erfolg im Hinblick auf die Darstellung von Bis(trifluormethyl)tellur(IV)-Verbindungen auch einen Einfluss auf die Gleichgewichtsreaktionen, die mit Hilfe der NMR-Spektroskopie in Lösung zu beobachten sind. Während bei den nicht erfolgreich synthetisierten Verbindungen mit den Pseudohalogen-, Alkoholat- und Aryl-Liganden Spekulationen über mögliche Reaktionen in Lösung und dadurch erfolgte Zersetzung aufgestellt werden müssen, können für die Derivate der Carbonsäure- und Sulfonsäureanionen stichhaltige Hinweise auf Reaktionen in Lösung diskutiert werden. Die Hauptsignale für diese ungeladenen Bis(trifluormethyl)tellur(IV)-Verbindungen unterscheiden sich vor allem in der ¹⁹F-NMR-spektroskopischen Verschiebung und den ²J(¹²⁵Te-¹⁹F)-Kopplungskonstanten. Neben diesem rein formal zu erwartenden Unterschied zeigen die NMR-Spektren aber auch ein vergleichbares lösungsmittelabhängiges Verhalten. Es fällt auf, dass in polaren Lösungsmitteln die Signale in den ¹⁹F-NMR-Spektren gegenüber den Signalen in unpolaren Lösungsmitteln verbreitert sind und dass ihre Intensitäten variieren (siehe Kap. 2.1.2 - Kap. 2.1.8). Die Tabellen 2.3, 2.6, 2.7, 2.10, 2.11, 2.12 und 2.15 zeigen einen Vergleich der chemischen Verschiebungen und Kopplungskonstanten der Produkte in verschiedenen Lösungsmitteln. Das Auftreten von vielen Signalen im Bereich der Trifluormethyltellurverbindungen erschwert die Analyse und Interpretation der Spektren. Die zusätzlichen Resonanzen sind vermutlich nicht auf Verunreinigungen der isolierten Verbindungen zurückzuführen, sondern müssen vielmehr durch verschiedene Gleichgewichtsreaktionen in Lösung erklärt werden. Diese Reaktionen

2 Ergebnisse und Diskussion

und Gleichgewichte werden im Folgenden diskutiert.

2.2.1.1 Verhalten von $Te(CF_3)_2Y_2$ in Wasser

Die bisher untersuchten Bis(trifluormethyl)tellur(IV)-Verbindungen ^[31–35] werden alle als hydrolyseempfindliche Festkörper beschrieben. Als Produkt der Hydrolyse entsteht ein weißer, oxidischer Feststoff, der Aufgrund seiner Eigenschaften als das polymere $[(CF_3)_2TeO]_x$ formuliert werden muss. Die postulierte Zwischenstufe $Te(CF_3)_2(OH)_2$ kann bisher nicht gefasst werden. Die in der vorliegenden Arbeit untersuchten neuen sowie bekannten Carbon- und Sulfonsäurederivate (1 - 7) zeigen dasselbe Verhalten. Sie lösen sich in Wasser unter Hydrolyse spätestens nach leichtem Erwärmen, ein weißer Feststoff fällt nach einiger Zeit bzw. starker Erwärmung aus. Die stark aciden Eigenschaften der Carbon- und Sulfonsäureliganden scheinen die Bildung von $[(CF_3)_2TeO]_x$ im Vergleich zu den weniger aciden Liganden zu verlangsamen. Dieses Verhalten wird auch bei $Te(CF_3)_2F_2$ beobachtet.

Die ¹⁹F-NMR-Spektren von Lösungen der Bis(trifluormethyl)tellur(IV)-Derivate in Wasser bzw. in organischen Lösungsmitteln nach Wasserzugabe zeigen einen veränderten Habitus im Vergleich zu den ¹⁹F-NMR-Spektren unter Verwendung von wasserfreien organischen Lösungsmitteln.

In den NMR-Spektren ist jeweils nur ein Signal je unterscheidbarem Fluoratom eines Liganden Y nachzuweisen. Bei diesem Derivat des Liganden in wässrigen Lösungen handelt es sich um die freie Säure, die sich bei der Hydrolyse der $Te(CF_3)_2Y_2$ -Verbindungen bildet. Eine Zugabe von $HCO_2C_6F_5$ bzw. $HCO_2C_6H_4F$ zu einer NMR-Probe eines entsprechenden Ansatzes hat dementsprechend zur Folge, dass kein neues Signal zu erkennen ist, aber die Resonanz des Liganden Y sich intensiviert.

Der Ausschnitt der ¹⁹F-NMR-Spektren im Bereich von -40 bis -70 ppm, in dem CF₃-Gruppen an Te(IV) gebunden zu erwarten sind, zeigt für alle Te(CF₃)₂Y₂-Verbindungen

$Te(CF_3)_2Y_2$	δ	${}^{1}J({}^{19}F{-}^{13}C)$	$^{2}J(^{125}Te^{-19}F)$	$^{2}J(^{123}Te^{-19}F)$	${}^{4}J({}^{19}F{}-{}^{19}F)$	Int.
Y=		/Hz	/Hz	/Hz	/Hz	
CO_2CF_3	-54,0	364	-	-	-	16,7
$CO_2C_6F_5$	-53,7	-	-	-	-	17,8
$CO_2C_6H_3F_2$	-52,8	-	-	-	-	13,0
$CO_2C_6H_4F$	-53,7	-	-	-	-	20,0
SO ₃ CF ₃	-54,0	365	-	-	6,7	50,0
SO ₃ C ₆ H ₄ CH ₃	-52,2	363	42	-		6,3
CO ₂ CF ₃ /SO ₃ CF	₃ -52,7	365	9	-	6,7	3,0
F	-54,7	360	60	50	6,5	6,8

Tabelle 2.18: ¹⁹F-NMR-spektroskopische Daten der Verbindungen $Te(CF_3)_2Y_2$ in wässriger Lösung im Verschiebungsbereich von -40 bis -70 ppm, Resonanzen bei -53 ppm. Analysiert wird auch eine Mischung aus $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)_2$ in CH₃CN/CD₃CN zu der wenige Tropfen H₂O gegeben wurden.

in wässriger Lösung einen vergleichbaren Habitus (siehe Tab. 2.18 - 2.20 und Abb. 2.35 - 2.37). Daher ist davon auszugehen, dass alle $Te(CF_3)_2Y_2$ -Verbindungen beim Lösen in Wasser bzw. bei Zugabe von Wasser unter Bildung derselben Produkte reagieren. Diese Annahme wird bestärkt durch einen Versuch, in dem $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)_2$ in Wasser gemischt werden, da sich hier der Habitus des ¹⁹F-NMR-Spektrums im Bereich der CF₃Te-Gruppen im Vergleich zu den Spektren der einzelnen Stoffe nicht verändert. Die ¹⁹F-NMR-Spektren in Wasser zeigen alle als Hauptsignal eine Resonanz einer (CF₃)₂Te(IV)-Verbindung bei einer chemischen Verschiebung von ca. -53 ppm (siehe Tab. 2.19 und Abb.2.35). Ob es sich dabei um $Te(CF_3)_2(OH)_2$ handelt, ist noch nicht nachgewiesen. Titrationen der Verbindungen $Te(CF_3)_2Y_2$ in Wasser mit NaOH ergeben immer die gleiche Titrationskurve mit zwei Äquivalenzpunkten bei pH 4,5 bzw. pH 8. Dies könnte ein Hinweis darauf sein, dass sich bei der Hydrolyse von $Te(CF_3)_2Y_2$ die zweibasige Säure $Te(CF_3)_2(OH)_2$ bildet. Neben dem Hauptsignal sind noch zwei weitere Singuletts bei -43 bzw. -63 ppm in den ¹⁹F-NMR-Spektren zu erkennen (siehe Tab. 2.18 und Abb. 2.36 bzw. Tab. 2.20 und Abb. 2.37). Diese drei Signale sind in allen Fäl-

Abbildung 2.35: ¹⁹F-NMR-Spektrums einer Lösung von $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)_2$ in CH₃CN/CD₃CN nach der Zugabe von etwas H₂O (Gerät: Avance II 300; Messtemperatur: RT). Der Ausschnitt zeigt exemplarisch für alle $Te(CF_3)_2Y_2$ -Verbindungen das Signal bei ca. -53 ppm. Die ¹³C-Satelliten zeigen eine Aufspaltung zu einem Quartett.

len verbreitert, was das Vorliegen eines Gleichgewichts nahe legt und die Interpretation der Satelliten-Signale erschwert. Die chemische Verschiebung der Signale deutet darauf hin, dass die Spezies bei -63 ppm ein Anion bzw. -43 ppm ein Kation sein kann. Die ¹³C-Satelliten des Signals bei -63 ppm sind nicht aufgespalten, demnach handelt es sich bei dem Anion um eine Te(IV)-Spezies mit nur einem CF₃-Liganden. Die ¹³C-Satelliten des Signals der kationischen Spezies bei -43 ppm sind aufgespalten. Es ist nicht immer eindeutig erkennbar, nach welchem Muster die Satelliten aufgespalten sind. Ein Septett wird einmal nachgewiesen und ein Quartett kann ausgeschlossen werden, da die Intensitäten der

$Te(CF_3)_2Y_2$	δ	${}^{1}J({}^{19}F{-}^{13}C)$	$^{2}J(^{125}Te^{-19}F)$	$^{2}J(^{123}Te^{-19}F)$	${}^{4}J({}^{19}F{}-{}^{19}F)$	Int.
Y=		/Hz	/Hz	/Hz	/Hz	
CO ₂ CF ₃	-42,7	-	-	-	-	3,0
$CO_2C_6F_5$	-42,3	-	-	-	-	3,0
$CO_2C_6H_3F_2$	-41,5	-	-	-	-	3,0
$CO_2C_6H_4F$	-43,9	-	-	-	-	3,0
SO ₃ CF ₃	-42,4	-	25	-	br	3,0
SO ₃ C ₆ H ₄ CH ₃	-40,7	363	30	-	-	3,0
CO ₂ CF ₃ /SO ₃ CF	3 -42,6		25			3,0
F	-44,9	368	-	-	7,8	3,0

Tabelle 2.19: ¹⁹F-NMR-spektroskopische Daten der Verbindungen $Te(CF_3)_2Y_2$ in wässriger Lösung im Verschiebungsbereich von -40 bis -70 ppm, Resonanzen bei -43 ppm. Analysiert wird auch eine Mischung aus $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)_2$ in CH_3CN/CD_3CN zu der wenige Tropfen H₂O gegeben wurden.

einzelnen Linien der ¹³C-Satelliten dafür zu klein sind. Die Intensität des ¹²³Te-Satelliten mit einer natürlichen Häufigkeit von 0,8 % lässt eine Abschätzung zu, wie intensiv die einzelnen Linien des ¹³C-Satelliten mit einer natürlichen Häufigkeit von 1,1 % sein sollten. Werden die Integrale der beiden Nebensignale für die CF₃-Gruppen bei -43 und -63 ppm verglichen, so fällt auf, dass das Verhältnis meistens bei 3:1 liegt. Dies bestätigt die Vermutung, dass die Entstehung beider Spezies zusammenhängt.

Tabelle 2.20: ¹⁹F-NMR-spektroskopische Daten der Verbindungen $Te(CF_3)_2Y_2$ in wässriger Lösung im Verschiebungsbereich von -40 bis -70 ppm, Resonanzen bei -63 ppm. Analysiert wird auch eine Mischung aus $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)_2$ in CH₃CN/CD₃CN zu der wenige Tropfen H₂O gegeben wurden.

$Te(CF_3)_2Y_2$ Y=	δ	¹ J(¹⁹ F- ¹³ C) /Hz	² J(¹²⁵ Te- ¹⁹ F) /Hz	² J(¹²³ Te- ¹⁹ F) /Hz	Int.
CO_2CF_3	-63,4	-	-	-	1,0
$CO_2C_6F_5$	-63,3	-	-	-	2,6
$CO_2C_6H_3F_2$	-62,5	-	-	-	1,0
$CO_2C_6H_4F$	-63,2	-	-	-	3,6
SO ₃ CF ₃	-63,4	-	-	-	1,0
SO ₃ C ₆ H ₄ CH ₃	-62,2	362	18	-	1,1
CO ₂ CF ₃ /SO ₃ CF ₃	-62,4		-	-	0,4
F	-63,9	-	-	-	0,42

Abbildung 2.36: ¹⁹F-NMR-Spektrums einer Lösung von $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)_2$ in CH₃CN/CD₃CN nach der Zugabe von etwas H₂O (Gerät: Avance II 300; Messtemperatur: RT). Der Ausschnitt zeigt exemplarisch für alle $Te(CF_3)_2Y_2$ -Verbindungen das Signal bei ca. -43 ppm. Die ¹³C-Satelliten zeigen eine Aufspaltung zu einem Septett, wie es für $Te(CF_3)_3$ -Derivate bei äquivalenten CF₃-Gruppen erwartet wird.

Das Gleichgewicht zwischen der neutralen und den beiden ionischen Spezies könnte wie in Abbildung 2.38 aussehen, wobei in Wasser der Rest R wahrscheinlich einem Proton entspricht.

Abbildung 2.37: ¹⁹F-NMR-Spektrums einer Lösung von $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)_2$ in CH_3CN/CD_3CN nach der Zugabe von etwas H_2O (Gerät: Avance II 300; Messtemperatur: RT). Der Ausschnitt zeigt exemplarisch für alle $Te(CF_3)_2Y_2$ -Verbindungen das Signal bei ca. -63 ppm. Die ¹³C-Satelliten zeigen keine Aufspaltung.

Abbildung 2.38: Mögliches Gleichgewicht der Bis(trifluormethyl)tellur(IV)-Verbindungen Te(CF_3)₂Y₂ in Wasser (mit Y = OR und OR = Säureanion, in Wasser wahrscheinlich R = H).

2.2.1.2 Zersetzungsreaktionen

Die in der NMR-Spektroskopie zum Einsatz kommenden NMR-Röhrchen können über die zum Verschließen genutzten Kappen, auch wenn mit Parafilm zusätzlich abgedichtet wird, eine Inertgasatmosphäre nicht dauerhaft aufrecht erhalten. Umgebungsluft und damit auch Feuchtigkeit gelangen in die Probe. Obwohl eine Zersetzung der Produkte im Reaktionskolben nicht so schnell voranschreitet, zeigen NMR-Spektren trotzdem häufig die Signale von Zersetzungsprodukten wie CF_3H und $Te(CF_3)_2$:

1. $Te(CF_3)_2Y_2 = > CF_3H$

Durch die Abstraktion eines Protons vom Lösungsmittel oder Wasser kann es zur Bildung von CF₃H als Zersetzungsprodukt kommen.

2. $Te(CF_3)_2Y_2 = = > Te(CF_3)_2 + Y_2$

Redoxprozesse laufen ab, in denen auch $Te(CF_3)_2$ als Zersetzungsprodukt bei der Reduktion der $(CF_3)_2Te(IV)$ -Verbindungen entsteht.

3. $Te(CF_3)_2Br_2 = > CF_3Br$

In den Umsetzungen ausgehend von Te $(CF_3)_2Br_2$ zeigen die NMR-Spektren neben Te $(CF_3)_2$ auch immer die Verbindung CF₃Br als Zersetzungsprodukt.

Intramolekularer Ligandenaustausch Des weiteren treten je nach Ligand Y spezifische Zersetzungsreaktionen auf. Bei den Benzoesäurederivaten $Te(CF_3)_2(CO_2C_6F_5)_2$, $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ und $Te(CF_3)_2(CO_2C_6H_4F)_2$ wird die Bildung von $Te(CF_3)_2F_2$ Derivaten und etwas später auch die Bildung von $Te(CF_3)_2F_2$ beobachtet. Eine Erklärung hierfür ist die in Abb. 2.39 beschriebene Umlagerung. Der *ortho*-Fluorsubstituent einer der beiden Benzoatliganden bindet direkt an Tellur unter Bruch der C–F-Bindung und spaltet so diesen Benzoatliganden ab, der wiederum selbst unter Ringbildung zum Lacton B reagiert. Ebenso kann auch der zweite Benzoesäureligand reagieren und es entsteht $Te(CF_3)_2F_2$. Signale in den ¹⁹F- und ¹H-NMR-Spektren, die die Entstehung des Lactons **B** belegen, können allerdings nicht zugeordnet werden.

Abbildung 2.39: Schema einer möglichen Zersetzungsreaktion der fluorierten Benzoate mit *or*tho-ständigen Fluoratomen. Es bilden sich $Te(CF_3)_2F$ -Spezies A und das Lacton B.

Zersetzungsreaktionen mit dem Lösungsmittel In der Trifluormethyltellurchemie sind Reaktionen der Lösungsmittel mit Trifluormethyltellur-Verbindungen dokumentiert. Hier kann es z.B. mit Dichlormethan zu einem $Cl-TeCF_3$ -Austausch kommen. Ebenso ist ein Ligandenaustausch mit Lösungsmittelmolekülen denkbar, so kann z.B. Acetonitril unter Wasserstoffabspaltung an Tellur binden.

2.2.1.3 Gleichgewichte in Lösung

Die ¹⁹F-NMR-Signale, die keinen Zersetzungsprodukten zuzuordnen sind, werden als Hinweis darauf gedeutet, dass sich in Lösung Gleichgewichte einstellen. Diese Gleichgewichte sind von der Art des Lösungsmittels und den Liganden Y abhängig.

lonisches Gleichgewicht Die Reaktionen von Te $(CF_3)_2Y_2$ -Verbindungen mit Wasser wurden im Kapitel 2.2.1.1 bereits vorgestellt. Das dabei diskutierte Gleichgewicht kann sich analog auch in organischen Lösungsmitteln für die nicht hydrolisierten Verbindungen einstellen (siehe Abb. 2.38). Die neutralen Verbindungen $Te(CF_3)_2Y_2$ können im Gleichgewicht mit ihren korrespondierenden Ionenpaaren Te $(CF_3)_3^+$ und Te $(CF_3)Y_4^-$ vorliegen. In einigen ¹⁹F-NMR-Spektren können Signale mit ähnlichen chemischen Verschiebungen beobachtet werden, wie sie im Fall der hydrolysierten Verbindungen zu erkennen sind. Im Fall der organischen Lösungsmittel ist dieses Gleichgewicht nicht die einzige auftretende Nebenreaktion, im Gegensatz zu den Reaktion mit H2O als Lösungsmittel. Es sind stets weitere Signale in den ¹⁹F-NMR-Spektren zu erkennen, so dass Signale überlagern und neben einer meistens auftretenden Signalverbreiterung eine eindeutige Bestimmung von Kopplungskonstanten nur schwer möglich machen. Dadurch kann eine Zuordnung von Signalen zu den Verbindungen aus dem hier beschriebenen Gleichgewicht nicht getroffen werden. Es können nur die chemischen Verschiebungen von verschiedenen Signalen in den ¹⁹F-NMR-Spektren als Hinweise auf dieses ionische Gleichgewicht gedeutet werden und nicht die hier aussagekräftigen ¹³C-Satelliten.

Vollständige lonisierung Wie bei dem vorangehend beschriebenen ionischen Gleichgewicht können die chemischen Verschiebungen von Signalen in den ¹⁹F-NMR-Spektren als Hinweise auf ionische Strukturen gewertet werden. Die in Abb. 2.40 dargestellte vollständige Ionisierung kann das Auftreten von ionischen Trifluormethyltellur(IV)-Spezies erklären. Für die ¹⁹F-NMR-Signale solcher Ionen fehlen vergleichbare Daten in der Literatur. Die Trifluormethylsulfonat-Gruppe ist von den hier untersuchten Liganden Y die stärkste Base. Demzufolge sollte die Te–O-Bindung im Vergleich den höchsten ionischen Bindungsanteil aufweisen. Dadurch lässt sich erklären, dass eine Veränderung der elektronischen Situation am Tellur, z.B. durch diese Gleichgewichtsreaktion, keinen Einfluss auf die chemische Verschiebung des SO₃CF₃-Liganden hat. Damit ist eine Unterscheidung von unterschiedlichen CF₃Te(IV)-Derivaten anhand des SO₃CF₃-Liganden nicht möglich. Auch die Ergebnisse der Massenspektrometrie unterstützen die Annahme, dass eine solche

Abbildung 2.40: Schematische Darstellung zur vollständigen Ionisierung von Bis(trifluormethyl)tellur(IV)-bisorganyl-Verbindungen

Ionisierung stattfinden kann. Das Fragment mit dem höchsten Masse-Ladungs-Verhältnis ist, mit der Ausnahme des Tolylsulfonatderivats, nicht der Molekülpeak M⁺, sondern die Fragmente M⁺-L, die durch Abspaltung eines Liganden entstehen.
[1,3]-sigmatrope Umlagerung Aufgrund der Verwandschaft der Tellurchemie mit der Iodchemie, können Erkenntnisse aus der besser untersuchten Iodchemie sinnvolle Hinweise auf noch nicht aufgeklärte Sachverhalte in der Tellurchemie liefern. Auf ein ähnliches unerwartetes und ungewöhnliches Verhalten, wie das in dieser Arbeit beobachtete NMR-spektroskopische Verhalten von Bis(trifluormethyl)tellur(IV)-Verbindungen in Lösung, machen *Mocci et al.* ^[56] in ihren Untersuchungen zu der Struktur von λ^3 -Iodanen in Lösung aufmerksam. Sie untersuchten eine Serie von I-O gebundenen Bis(acyloxy)iodanen in Chloroform-Lösung mit Hilfe von ¹⁷O-NMR-Spektroskopie und DFT-Rechnungen. Mocci et al. und andere davor publizierte Arbeiten von Cerioni et al. [57], Ho et al. [58] und Ochiai et al. [59] haben in NMR-Spektren die Beobachtung gemacht, dass bei vielen Acetoxyiodoarenen nur ein zuweilen stark verbreitertes Signal gerade für die Sauerstoffatome der Acetoxy-Gruppen zu erkennen ist. Als mögliche Ursachen für dieses Phänomen werden eine Ionenpaar-Struktur, chelatartige Strukturen, eine degenerierte [1,3]-sigmatrope Umlagerung, vollständige Ionisierung und der intermolekulare Austausch von Acyloxy-Gruppen diskutiert - alles Reaktionen, die auch bei den untersuchten Trifluormethyltellur-Verbindungen denkbar sind. Nach sorgfältiger Untersuchung und Diskussion von sämtlichen aufgeführten Erklärungsansätzen kommen Mocci et al. zu dem Schluss, dass einzig die [1,3]-sigmatrope Umlagerung die Ursache für die Verbreiterung der ¹⁷O-NMR-spektroskopischen Signale der Sauerstoffatome von Acyloxy-Gruppen in Acyloxyiodanen sein kann. Bei dieser Umlagerung (siehe Abb. 2.41) liegt in Lösung ein dynamisches Gleichgewicht zwischen zwei möglichen Anordnungen der Acyloxy-Liganden vor, bei dem ein Übergangszustand durchlaufen wird, in dem beide Sauerstoffatome eines Acyloxy-Liganden an das Iodatom koordinieren. Die Festkörperstruktur entspricht in den diskutierten Beispielen gerade der Struktur der Iodoarene in Lösung, die laut DFT-Rechnungen das globale Minimum auf der Energiehyperfläche aufweist.

Abbildung 2.41: Oben: Schema zur [1,3]-sigmatropen Umlagerung von Iod zwischen den zwei Sauerstoffatomen einer Acyloxy-Gruppe aus Bis(acetoxy)iodbenzol (I–C_{ac}–O1 Winkel fett gedruckt). Unten: Die Strukturberechnungen der DFT-Rechnungen.^[56]

Bezogen auf das Verhalten in Lösung der in dieser Arbeit diskutierten $Te(CF_3)_2Y_2$ -Verbindungen kann eine [1,3]-sigmatrope Umlagerung wie in Abb. 2.42 dargestellt aussehen. Wird die Festkörperstruktur von $Te(CF_3)_2(CO_2CF_3)_2$ betrachtet, so entspricht diese annähernd der Struktur **A**, dem globalen Minimum aus DFT-Rechnungen für die Struktur der Iodverbindungen. Die aus DFT-Rechnungen abgeleitete Struktur mit einem relativen Minimum für die Iodverbindungen entspricht im Falle der Tellurverbindungen der Struktur **B**. Es ist durchaus möglich, dass diese Struktur im Falle des $Te(CF_3)_2(CO_2C_6F_5)_2$ für die Probleme, die bei Strukturlösung und -verfeinerung auftreten, verantwortlich ist. Demnach sind verbreiterte Signale für die CF₃-Gruppen von $(CF_3)_2Te(IV)$ -Verbindungen in ¹⁹F-NMR-Spektren zu erkennen, weil ein Gleichgewicht zwischen den Strukuren **A**, **B** und dem Übergangszustand (Abb. 2.42) in Lösung vorliegt. Analog lässt sich auch für die Sulfonsäurederivate $Te(CF_3)_2(SO_3CF_3)_2$ und $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ eine [1,3]sigmatrope Umlagerung formulieren.

Abbildung 2.42: Schema für die [1,3]-sigmatropen-Umlagerung der Te-O1- zur Te-O2-Bindung in Bis(trifluormethyl)tellur(IV)-bis(carboxylaten).

Oligomerisierung Schon Untersuchung der mit der Eigenschaften von Bis(trifluormethyl)tellur ^[9], Te(CF₃)₂, bezüglich der Oxidation durch Luftsauerstoff sowie Bis(trifluormethyl)tellur(IV)-Verbindungen^[31-35] bezüglich einer Hydrolyse wird von Naumann et al. diskutiert, dass polymere oxidische Festkörper entstehen. Die Strukturen, die für diese Festkörper vorgeschlagen wurden, weisen Te-O-Te-verbrückte Einheiten auf. In dieser Arbeit konnte mit der Kristallstrukur von $\{[(Te(CF_3)_2)_3O_2][SO_3CF_3]_2\}_{\infty}$ ein solches Strukturelement gefasst werden. Auch in der aktuellen Forschung gewinnen diese Te-O-Te-verbrückten Oligomere eine größere Bedeutung. Hinweise darauf, wie Gleichgewichtsreaktionen aussehen, die zu Oligomeren führen, werden in Arbeiten von Tyrra^[60], und auch in Publikationen von Kobayashi et al.^[61,62] (vgl. Abb. 2.43), Domasevitch et al. ^[63] und Beckmann et al. ^[53,54] (vgl. Abb. 2.44 und Abb. 2.45) geliefert.

Abbildung 2.43: Nucleophile Addition von Telluroxiden an ein kationisches Ditelluroxan: Oligotelluroxane.^[62]

Werden die Produkte Te(CF₃)₂Y₂ als gemischte Säureanhydride Te(CF₃)₂(OR)₂ betrachtet, so ist es leicht vorstellbar, dass diese in einer Anhydridumlagerung (vgl. Abb. 2.46) Bis(trifluormethyl)telluroxane und die entsprechenden Säureanhydride ROR bilden. Abbildung 2.46 zeigt weiterhin, wie diese Anhydridumlagerung zur Bildung von längerkettigen Spezies bzw. Oligomeren führen kann. Die, den Gütefaktoren nach zu urteilen, unbefriedigend gelöste Kristallstruktur von {[(Te(CF₃)₂)₃O₂][SO₃CF₃]₂}_∞ bestätigt die Vermutung, dass sich Oligomere bilden. Somit können den Signalen in den ¹⁹F-NMR-

$$2 R_2 TeO + 4 Ph_2 PO_2 H \longrightarrow -H_2 O$$
(1)

$$(Ph_2 PO_2) R_2 TeO TeR_2 (O_2 PPh_2) \cdot 2 Ph_2 PO_2 H$$

$$2$$

$$R = p-MeOC_6 H_4$$

Abbildung 2.44: Beim Verdampfen der Lösung aus $(p-MeOC_6H_4)_2$ TeO und HO_2PPh_2 konnte das Tetraorganoditelluroxan $(Ph_2PO_2)R_2$ TeOTe $R_2(O_2PPh_2)\cdot 2Ph_2PO_2H$ isoliert werden. ^[53]

Abbildung 2.45: Bei der Verdampfung einer Lösung von $[R_2 \text{TeOH}]^+$ und $SO_3 CF_3^-$ in CH₃CN konnte $(F_3 CSO_3)R_2 \text{TeOTeR}_2(O_3 SCF_3)$ als farbloser kristalliner Feststoff erhalten werden. ^[53]

Spektren, die neben dem Hauptsignal für die CF₃-Gruppen der Produkte auftreten, Spezies zugeordnet werden, die bei der Bildung der längerkettigen Telluroxane durchlaufen werden. Diese Signale entsprechen somit keinen Verunreinigungen, da sie in den NMR-Spektren aller Te(CF₃)₂(OR)₂-Verbindungen in verschiedenen Lösungsmitteln zu finden sind, obwohl einige Produkte laut CHNS-Analyse sehr gut aufgereinigt sind.

Abbildung 2.46: Möglicher Reaktionsmechanismus der Umlagerung des gemischten Anhydrids $Te(CF_3)_2(OR)_2$ und der Oligomerbildung, in dem mehrere $Te(CF_3)_2$ -Einheiten über Sauerstoffbrücken miteinander verknüpft sind.

Bei der Untersuchung zur Bildung von Telluroxanen weisen *Beckmann et al.* darauf hin, dass das Säureanion einen Einfluss hat. Strukturuntersuchungen an Telluroxanen zeigen, dass in diesen der Abstand zwischen den SO_3CF_3 -Liganden und den Tellurzentralatomen größer ist, als bei der monomeren Tellur(IV)-Verbindung, das Anion liegt etwas isolierter vor. Bei schwach koordinierenden Anionen, wie z.B. $SO_3CF_3^-$, kann diese Lage natürlich besser stabilisiert werden, als bei stärker koordinierenden Anionen. Da $SO_3CF_3^-$ auch von den in dieser Arbeit untersuchten Liganden der basischste ist, erscheint es nicht mehr ganz so überraschend, das genau hier der Nachweis einer Telluroxanartigen Struktur gelingt.

3 Darstellung und Reinigung der Ausgangssubstanzen

3.1 Verwendete Chemikalien

Da die meisten Edukte und viele der Produkte Hydrolyse- und Sauerstoffempfindlich sind, ist eine Reaktionsführung unter Inertgasatmosphäre nötig. Die Inertisierung der Apparaturen erfolgt durch jeweils dreimaliges Evakuieren und anschließendes Begasen mit Stickstoff oder Argon. Überdruck in den Reaktionsapparaturen wird durch Quecksilberüberdruckventile vermieden. Das Öffnen der Apparaturen erfolgt im Stickstoff- oder Argongegenstrom. Alle Chemikalien wurden von den Herstellern Fluka, Merck, Aldrich, ABCR oder Acros käuflich erworben. Die Feststoffe werden ohne weitere Reinigung eingesetzt. Die Flüssigkeiten werden unter Inertgasatmosphäre gelagert und ohne weitere Reinigung verwendet. Die Lösungsmittel werden nach den üblichen Verfahren getrocknet. Empfindliche Flüssigkeiten werden, wenn notwendig, in besser handhabbare Gefäße überführt.

3.2 Eigenständig synthetisierte Ausgangsverbindungen

3.2.1 Bis(trifluormethyl)tellur

 $2 \operatorname{Te} + 2 \operatorname{NaCO}_2 \operatorname{CF}_3 \xrightarrow[\operatorname{Cu, 200 °C}]{} \operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{Na}_2 \operatorname{Te} + 2 \operatorname{CO}_2$

Bis(trifluormethyl)tellur(II) wird nach einer Vorschrift aus dem Arbeitskreis *Naumann*^[11] in einer Reaktion von elementarem Tellur mit Natriumtrifluoracetat in Sulfolan bei ca. 200 °C unter Kupfer-Katalyse und CO₂-Abspaltung als hellgelbe Flüssigkeit dargestellt.

3.2.2 Bis(trifluormethyl)tellurdifluorid

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{F}_2 \xrightarrow[-78 \circ C]{\operatorname{CCl}_3 F} \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{F}_2$$

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{XeF}_2 \xrightarrow[-78 \circ \operatorname{C}]{\operatorname{CCl}_3\operatorname{F}} \operatorname{Te}(\operatorname{CF}_3)_2\operatorname{F}_2 + \operatorname{Xe}$$

Bis(trifluormethyl)tellur(IV)-difluorid wird nach einer Vorschrift aus dem Arbeitskreis *Naumann*^[32] in einer Reaktion von Bis(trifluormethyl)tellur mit einem Fluor-Argon-Gasgemisch oder Xenondifluorid in CCl₃F bei -78 °C als weißer Feststoff dargestellt.

3.2.3 Bis(trifluormethyl)tellurdichlorid

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{Cl}_2 \xrightarrow[-30\,^{\circ}\mathrm{C}]{\operatorname{CCl}_3\mathrm{F}} \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{Cl}_2$$

Bis(trifluormethyl)tellur(IV)-dichlorid wird nach einer Vorschrift aus dem Arbeitskreis *Naumann*^[33] in einer Reaktion von Bis(trifluormethyl)tellur mit Chlorgas in CCl₃F bei -30 °C als weißer Feststoff dargestellt.

3.2.4 Bis(trifluormethyl)tellurdibromid

$$\operatorname{Te}(\operatorname{CF}_3)_2 + \operatorname{Br}_2 \xrightarrow[-78 \circ C]{\operatorname{CCl}_3F} \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{Br}_2$$

Bis(trifluormethyl)tellur(IV)-dibromid wird nach einer Vorschrift aus dem Arbeitskreis Naumann^[33] in einer Reaktion von Bis(trifluormethyl)tellur mit elementarem Brom in CCl₃F bei -78 °C als hellgelber Feststoff dargestellt.

3.2.5 Silberpentafluorbenzoat

$$AgNO_{3} + NaCO_{2}C_{6}F_{5} \xrightarrow{H_{2}O} AgCO_{2}C_{6}F_{5} + NaNO_{3}$$

Für die Reaktion von $Te(CF_3)_2Cl_2$ mit $AgCO_2C_6F_5$ wird Silberpentafluorbenzoat in einer Reaktion von $AgNO_3$ mit $NaCO_2C_6F_5$ in wässriger Lösung^[64] hergestellt und kann als weißer Feststoff mit einem Zerstezungspunkt von 210 °C isoliert werden. Die bisherige Analytik dieses Feststoffs beschränkt sich auf thermische^[65,66] und photochemische^[65] Zersetzung sowie Massen-^[67], IR- und NMR-Spektroskopie^[66]. Eine Aufklärung der Molekülstruktur fehlt jedoch. Da bei den Untersuchungen Einkristalle von $AgCO_2C_6F_5$ angefallen sind, wird die Struktur hier aufgeklärt.^[68] Aus einer gesättigten wässrigen Lösung kristallisiert $AgCO_2C_6F_5$ bei Raumtemperatur über Nacht als Monohydrat in der monoklinen Raumgruppe P2₁/c (Nr. 14) mit 4 Formeleinheiten in der Elementarzelle.

3.2.5.1 Kristallstruktur von Silberpentafluorbenzoat Monohydrat

Die Eignung für röntgenographische Untersuchungen wird mit Hilfe eines IP-Diffraktometers (STOE IPDS I) überprüft und die Datensammlung erfolgt an demselben Gerät. Lösung und Verfeinerung der Struktur wird mit den Programmen SIR-92^[69] und SHELXL-97^[70] durchgeführt. Alle Atome sind anisotrop verfeinert und die H-Atome der H₂O-Moleküle sind berechnet. Die Kristalldaten und Strukturverfeinerungsparameter sind in Tabelle 3.1 zusammengefasst. Die asymmetrische Einheit ist in Abbildung 3.1 dargestellt. Die Bindungslängen zwischen dem Kohlenstoffatom und den beiden Sauerstoffatomen (O1 und O3) der Carboxylgruppe unterscheiden sich nur geringfügig (124,6(5) pm / 124,5(5) pm). Daher kann die negative Ladung als delokalisiert betrachtet werden. In Ab-

Abbildung 3.1: Asymmetrische Einheit von AgCO₂C₆F₅·H₂O und das Numerierungsschema.

bildung 3.2 ist die Verknüpfung eines $AgCO_2C_6F_5$ Moleküls mit dem nächsten über das Sauerstoffatom O3 dargestellt. Es bilden sich fast lineare O-Ag-O-Einheiten (167,2°) in denen sich die O-Ag-Abstände um 0,2 pm unterscheiden (219,3(2) pm / 219,5(2) pm). Die Carboxylgruppen der Benzoatliganden bauen eine helicale Struktur auf, die eine Schicht AgCO₂C₆F₅ mit den nächsten Schichten darüber und darunter verbindet. Weiterhin hat jedes Ag-Atom Kontakte von 248,6(4) pm und 272,6(4) pm zu zwei H₂O-Molekülen. Diese bilden eine Zickzack-Kette auf jeder Seite der Helix aus Ag-Atomen und CO₂C₆F₅-Liganden. Abbildung 3.2 zeigt diese Anordnung, die Elementarzelle ist in Abbildung 3.3 dargestellt. Es werden keine weiteren Kontakte zwischen Ag- und O-Atomen gefunden. Die Bindungslängen und -winkel entsprechen den zu erwartenden Werten jedoch sollte auf den extrem kurzen Ag-Ag-Kontakt (296,48(8) pm) explizit hingewiesen werden. Ohne diesen Kontakt überbewerten zu wollen, muss er als argentophile Wechselwirkung betrachtet werden, da er im Bereich der Ag-Ag-Abstände liegt, die in elementaren Ag (288,9 pm) zu finden sind ^[71-73]. Dies führt zu einer verzerrt oktaedrischen Umgebung der

Abbildung 3.2: Helix (gestrichelte Linie und unten), Zickzack-Kette (fettgedruckte Linie) und Ag-Ag-Kontakte (gepunktete Linie) von AgCO₂C₆F₅ · H₂O.

Abbildung 3.3: Elementarzelle von $AgCO_2C_6F_5 \cdot H_2O$.

Ag-Atome in der Kristallstruktur von $AgCO_2C_6F_5 \cdot H_2O$, in der die Ag-Atome Zickzack-Ketten bilden (Abbildung 3.2). Die Atomlagen (Tab. 3.2), die anisotropen Auslenkungsparameter (Tab. 3.3) und die Bindungslängen und -winkel (Tab. 3.4) sind angegeben.

$ \begin{array}{c c c c c } Summenformel & C_7H_2AgF_5O_3 \\ \medsake/g/mol & 336,96 \\ \hline \end{tabular} & 36,96 \\ \hline \end{tabular} & 35,918(5) \\ \end{tabular} & 5,918(5) \\ \end{tabular} & 6,90 \\ \hline \end{tabular} & 6,90 \\ \hline \end{tabular} & 90 \\ \hline \end{tabular} & 92 \\ \hline tabu$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Summenformel		C ₇ H ₂ AgF ₅ O ₃	
Gitterparameter a /pm 18,269(3) b/pm 3,5918(5) c/pm 13,871(3) a/l ^o 90 β/l^o 110,55(2) γ'^o 90 Zellvolumen / 10 ⁶ pm ³ 852,3(3) Formeleinheiten 4 Kristallsystem monoklin Raumgruppe P2,/c (Nr. 14) Kristallform Prisma Farbe farblos Messtemperatur / K 293(2) Messgerät TPDS I Messgeröt 0 ≤ $\psi \le 200^\circ$ Absorptionskorrektur numerisch, nach Kristallgestaltoptimierung [^{74,75]} Messbereich 2θmin / max -23 / 24 kmin / max -23 / 24 kmin / max -4 / 4 Imin / max -24 / 24 Imin / max -24 / 24 Kmin / max -24 / 24 Kmin / max -23 / 24 Kmin / max -18 / 18 F(000) 640 Absorptionskoeffizient / mm ⁻¹ 2,439 Dichte Dx / g/cm ³ 2,626 Rint 0.0607	Molmasse / g/mo	1	336,96	
$ \begin{array}{cccc} b/pm & 3,5918(5) \\ c/pm & 13,871(3) \\ a/^{\circ} & 90 \\ \beta/^{\circ} & 110,55(2) \\ \gamma'^{\circ} & 90 \end{array} \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Gitterparameter	a /pm	18,269(3)	
$ \begin{array}{cccccc} c/pn & 13,871(3) \\ \alpha/^{\circ} & 90 \\ \beta/^{\circ} & 110,55(2) \\ \gamma'^{\circ} & 90 \end{array} \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$		b/pm	3,5918(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		c/pm	13,871(3)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		αĺ°	90	
γ'° 90Zellvolumen / 10 ⁶ pm ³ 852,3(3)Formeleinheiten4KristallsystemmonoklinRaumgruppeP21/c (Nr. 14)KristallformPrismaFarbefarblosMesstemperatur / K293(2)MessgerätIPDS IMessgeröt $0 \le \psi \le 200^{\circ}$ $\Delta \psi = 2^{\circ}$ 100 BilderBelichtungszeit / min6Absorptionskorrekturnumerisch, nach Kristallgestaltoptimierung [74.75]Messbereich $2\theta_{min / max}$ -23 / 24 $k_{min / max}$ -23 / 24 $k_{min / max}$ -18 / 18F(000)640Absorptionskoreftizient /mm ⁻¹ 2,439Dichte Dx / g/cm ³ 2,626 R_{int} 0,0607Strukturlösung / -verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe1916unabhängige Reflexe1916beobachtet Reflexe1119 σ -Schranke[I > 2\sigma(I)]S2 (beobachtet / alle Daten)0,0339 / 0,0721wR2 (beobachtet / alle Daten)0,0543 / 0,0602 $\Delta \rho_{min/max}$ / 10 ⁶ e-pm ⁻³ -0,451 / 0,547Wichtung ab 0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer ^[68] CCDC 679653		β/°	110,55(2)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		γ/ °	90	
Formeleinheiten4KristallsystemmonoklinRaumgruppeP21/c (Nr. 14)KristallformP21/c (Nr. 14)KristallformfarblosMesstemperatur / K293(2)MessgerätIPDS IMessgeometrie $0 \le \psi \le 200^{\circ}$ Age 2 °100 BilderBelichtungszeit / min6Absorptionskorrekturnumerisch, nach Kristallgestaltoptimierung ^[74,75] Messbereich $2θ_{min / max}$ -23 / 24kmin / max-23 / 24kmin / max-18 / 18F(000)640Absorptionskoeffizient /mm ⁻¹ 2,439Dichte Dx / g/cm ³ 2,626Rint0,0607Strukturlösung / -verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflex1119σ-Schranke[I ≥ 2σ(I)]S2 (beobachtet / alle Daten)0,0339 / 0,0721wR2 (beobachtet / alle Daten)0,0543 / 0,0602Δρ _{min/max} / 10 ⁶ e-pm ⁻³ -0,451 / 0,547Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer ^[68] CCDC 679653	Zellvolumen / 10	⁶ pm ³	852,3(3)	
KristallsystemmonoklinRaumgruppe $P2_1/c (Nr. 14)$ KristallformPrismaFarbefarblosMesstemperatur / K293(2)MessgerätIPDS IMessgerati $O \leq \psi \leq 200^{\circ}$ Messgerati $O \leq \psi \leq 200^{\circ}$ MessgeratiID0 BilderBelichtungszeit / min6Absorptionskorrekturnumerisch, nach Kristallgestaltoptimierung ^[74,75] Messbereich $2\theta_{min / max}$ $2,38 / 28,1$ Indexbereich $h_{min / max}$ $4 / 4$ $l_{min / max}$ $-18 / 18$ F(000)640Absorptionskorftzient /mm ⁻¹ $2,439$ Dichte Dx / g/cm ³ $2,626$ R_{int} $No607$ Strukturlösung / -verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe1916beobachtet Reflexe119 σ -Schranke $[I > 2\sigma(I)]$ $S_2 (beobachtet / alle Daten)0,0339 / 0,0721wR2 (beobachtet / alle Daten)0,0256 / 0Anzahl Parameter / Beschränkungen / Daten51 / 2 / 1916Hinterlegungsnummer [68]CCDC 679653$	Formeleinheiten	-	4	
Raumgruppe P_2/c (Nr. 14)KristallformPrismaFarbefarblosMesstemperatur / K293(2)MessgerätIPDS IMessgeometrie $0 \le \psi \le 200^{\circ}$ $\Delta \psi = 2^{\circ}$ 100 BilderBelichtungszeit / min6Absorptionskorrekturnumerisch, nach Kristallgestaltoptimierung ^[74,75] Messbereich $2\theta_{min/max}$ $238/28,1$ Indexbereich $h_{min/max}$ $4/4$ min/max $-23/24$ $k_{min/max}$ $k_{min/max}$ $-18 / 18$ F(000)640Absorptionskoeffizient /mm ⁻¹ $2,626$ R_{int} $0,0607$ Strukturlösung /-verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe 119 σ -Schranke $[I > 2\sigma(I)]$ S_2 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR2 (beobachtet / alle Daten) $0,0256 / 0$ $Anzahl Parameter / Beschränkungen / Daten151/2 / 1916Hinterlegungsnummer [68]CCDC 679653$	Kristallsystem		monoklin	
KristallformPrismaFarbefarblosMesstemperatur / K293(2)MessgerätIPDS IMessgeometrie $0 \le \psi \le 200^{\circ}$ $\Delta \psi = 2^{\circ}$ 100 BilderBelichtungszeit / min6Absorptionskorrekturnumerisch, nach Kristallgestaltoptimierung [74,75]Messbereich $2\theta_{min / max} / ^{\circ}$ $\lim / max2,38 / 28,1Indexbereichh_{min / max}\min / max-23 / 24kmin / max-23 / 24kmin / maxKimi / max-4/4\lim / max-18 / 18F(000)640Absorptionskoeffizient /mm^{-1}2,439Dichte Dx / g/cm32,626Rimt0,0607Strukturlösung / -verfeinerungSIR-92 [69] und SHELXL-97 [70]gemessene Reflexe119\sigma-SchrankeII > 2\sigma(I)]S2 (beobachtet / alle Daten)0,821 / 0,821R1 (beobachtet / alle Daten)0,0543 / 0,0602Ap_{min/max} / 10^6 e pm^{-3}-0,451 / 0,547Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer [68]CCDC 679653$	Raumgruppe		$P2_1/c$ (Nr. 14)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Kristallform		Prisma	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Farbe		farblos	
MessgerätIPDS IMessgeometrie $0 \le \psi \le 200^{\circ}$ $\Delta \psi = 2^{\circ}$ 100 BilderBelichtungszeit / min6Absorptionskorrekturnumerisch, nach Kristallgestaltoptimierung [74, 75]Messbereich $2\theta_{min / max}$ /°2,38 / 28,1Indexbereichhmin / max hmin / max-23 / 24 kmin / maxkmin / max-4 / 4 lmin / max100 Bilder640Absorptionskoeffizient /mm ⁻¹ 2,439Dichte Dx / g/cm ³ 2,626Rint0,0607Strukturlösung / -verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe1916beobachtete Reflexe1119 σ -Schranke[I > 2 σ (I)]S2 (beobachtet / alle Daten)0,0339 / 0,0721w ₂ (beobachtet / alle Daten)0,0543 / 0,0602 $\Delta \rho_{min/max} / 10^6 e-pm^{-3}$ -0,451 / 0,547Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer ^[68] CCDC 679653	Messtemperatur /	/ K	293(2)	
Messgeometrie $0 \le \psi \le 200^{\circ}$ $\Delta \psi = 2^{\circ}$ 100 BilderBelichtungszeit / min6Absorptionskorrekturnumerisch, nach Kristallgestaltoptimierung ^[74, 75] Messbereich $2\theta_{min / max} / ^{\circ}$ $2,38 / 28,1$ Indexbereich $h_{min / max}$ $23 / 24$ kmin / max $k_{min / max}$ $-18 / 18$ F(000)640Absorptionskoeffizient /mm ⁻¹ $2,439$ Dichte Dx / g/cm ³ $2,626$ Rint $0,0607$ Strukturlösung / -verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe1119 σ -Schranke $[I > 2\sigma(I)]$ S_2 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR_2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{min/max} / 10^6 e·pm^{-3}$ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / DatenHinterlegungsnummer ^[68] CCDC 679653	Messgerät		IPDS I	
$\begin{array}{ccccccc} & & & & & & & & & & & & & & & &$	Messgeometrie		$0 < \psi < 200^{\circ}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C		$\Delta \Psi = 2^{\circ}$	
			100 Bilder	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Belichtungszeit /	min	6	
Messbereich Indexbereich $2\theta_{\min/\max}/^{\circ}$ $2,38/28,1$ Indexbereich $h_{\min/\max}$ $-23/24$ $k_{\min/\max}$ $-4/4$ $l_{\min/\max}$ $-18/18$ F(000)640Absorptionskoeffizient /mm ⁻¹ $2,439$ Dichte Dx / g/cm ³ $2,626$ R_{int} $0,0607$ Strukturlösung / -verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe7441unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke[I > $2\sigma(I)$]S2 (beobachtet / alle Daten) $0,0339/0,0721$ wR2 (beobachtet / alle Daten) $0,0543/0,0602$ $\Delta \rho_{\min/max}/10^6 e\cdotpm^{-3}$ $-0,451/0,547$ Wichtung a/b $0,0256/0$ Anzahl Parameter / Beschränkungen / Daten $151/2/1916$ Hinterlegungsnummer ^[68] CCDC 679653	Absorptionskorre	ektur	numerisch, nach Kristallgestaltoptimierung ^[74,75]	
Indexbereich $h_{min / max}$ $-23 / 24$ $k_{min / max}$ $-4 / 4$ $l_{min / max}$ $-18 / 18$ F(000) 640 Absorptionskoeffizient /mm ⁻¹ $2,439$ Dichte Dx / g/cm ³ $2,626$ R_{int} $0,0607$ Strukturlösung / -verfeinerung SIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe 7441 unabhängige Reflexe 1916 beobachtete Reflexe 1119 σ -Schranke [I > $2\sigma(I)$] S2 (beobachtet / alle Daten) $0,821 / 0,821$ R1 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{min/max} / 10^6$ e·pm ⁻³ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten 151 / 2 / 1916 Hinterlegungsnummer ^[68] CCDC 679653	Messbereich	$2\theta_{\min/\max}/\circ$	2,38/28,1	
kmin / max lmin / max-4 / 4 -18 / 18F(000)640Absorptionskoeffizient /mm ⁻¹ 2,439Dichte Dx / g/cm ³ 2,626Rint0,0607Strukturlösung / -verfeinerungSIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe7441unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke[I > 2 σ (I)]S2 (beobachtet / alle Daten)0,821 / 0,821R1 (beobachtet / alle Daten)0,0339 / 0,0721wR2 (beobachtet / alle Daten)0,0543 / 0,0602 $\Delta \rho_{min/max} / 10^6 \text{ e-pm}^{-3}$ -0,451 / 0,547Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer ^[68] CCDC 679653	Indexbereich	h _{min / max}	-23 / 24	
$I_{min / max}$ -18 / 18 F(000) 640 Absorptionskoeffizient /mm ⁻¹ 2,439 Dichte Dx / g/cm ³ 2,626 R _{int} 0,0607 Strukturlösung / -verfeinerung SIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe 7441 unabhängige Reflexe 1916 beobachtete Reflexe 1119 σ -Schranke [I > 2 σ (I)] S2 (beobachtet / alle Daten) 0,821 / 0,821 R1 (beobachtet / alle Daten) 0,0543 / 0,0602 $\Delta \rho_{min/max}$ /10 ⁶ e·pm ⁻³ -0,451 / 0,547 Wichtung a/b 0,0256 / 0 Anzahl Parameter / Beschränkungen / Daten 151 / 2 / 1916 Hinterlegungsnummer ^[68] CCDC 679653		k _{min} / max	-4 / 4	
F(000) 640 Absorptionskoeffizient /mm ⁻¹ 2,439 Dichte Dx / g/cm ³ 2,626 R_{int} 0,0607 Strukturlösung / -verfeinerung SIR-92 ^[69] und SHELXL-97 ^[70] gemessene Reflexe 7441 unabhängige Reflexe 1916 beobachtete Reflexe 1119 σ -Schranke [I > 2 σ (I)] S2 (beobachtet / alle Daten) 0,821 / 0,821 R1 (beobachtet / alle Daten) 0,0543 / 0,0602 $\Delta \rho_{min/max}$ /10 ⁶ e·pm ⁻³ -0,451 / 0,547 Wichtung a/b 0,0256 / 0 Anzahl Parameter / Beschränkungen / Daten 151 / 2 / 1916 Hinterlegungsnummer ^[68] CCDC 679653		l _{min / max}	-18 / 18	
Absorptionskoeffizient /mm^{-1} $2,439$ Dichte Dx / g/cm ³ $2,626$ R_{int} $0,0607$ Strukturlösung / -verfeinerung $SIR-92^{[69]}$ und SHELXL- $97^{[70]}$ gemessene Reflexe 7441 unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke $[I > 2\sigma(I)]$ S_2 (beobachtet / alle Daten) $0,821 / 0,821$ R_1 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{min/max} / 10^6$ e·pm ⁻³ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten $151 / 2 / 1916$ Hinterlegungsnummer $^{[68]}$ CCDC 679653	F(000)		640	
Dichte $Dx / g/cm^3$ 2,626 R_{int} 0,0607Strukturlösung / -verfeinerungSIR-92 [69] und SHELXL-97 [70]gemessene Reflexe7441unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke[I > 2 σ (I)]S2 (beobachtet / alle Daten)0,821 / 0,821R1 (beobachtet / alle Daten)0,0339 / 0,0721wR2 (beobachtet / alle Daten)0,0543 / 0,0602 $\Delta \rho_{min/max} / 10^6 e \cdot pm^{-3}$ -0,451 / 0,547Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer [68]CCDC 679653	Absorptionskoef	fizient /mm $^{-1}$	2.439	
R_{int} 0,0607Strukturlösung / -verfeinerungSIR-92 [69] und SHELXL-97 [70]gemessene Reflexe7441unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke[I > 2 σ (I)]S2 (beobachtet / alle Daten)0,821 / 0,821R1 (beobachtet / alle Daten)0,0543 / 0,0602 $\Delta \rho_{min/max}$ /10 ⁶ e·pm ⁻³ -0,451 / 0,547Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer ^[68] CCDC 679653	Dichte Dx / g/cm	3	2.626	
ImSIR-92 [69] und SHELXL-97 [70]gemessene Reflexe7441unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke $[I > 2\sigma(I)]$ S2 (beobachtet / alle Daten)0,821 / 0,821R1 (beobachtet / alle Daten)0,0339 / 0,0721wR2 (beobachtet / alle Daten)0,0543 / 0,0602 $\Delta \rho_{\min/max} / 10^6 \text{ e·pm}^{-3}$ -0,451 / 0,547Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer [68]CCDC 679653	Rint		0.0607	
gemessene Reflexe7441unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke $[I > 2\sigma(I)]$ S_2 (beobachtet / alle Daten) $0,821 / 0,821$ R_1 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{\min/max} / 10^6 \text{ e·pm}^{-3}$ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten $151 / 2 / 1916$ Hinterlegungsnummer $[^{68]}$ CCDC 679653	Strukturlösung /	-verfeinerung	SIR-92 ^[69] und SHELXL-97 ^[70]	
unabhängige Reflexe1916beobachtete Reflexe1119 σ -Schranke $[I > 2\sigma(I)]$ S_2 (beobachtet / alle Daten) $0,821 / 0,821$ R_1 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{\min/max} / 10^6 \text{ e·pm}^{-3}$ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten $151 / 2 / 1916$ Hinterlegungsnummer $[^{68]}$ CCDC 679653	gemessene Refle	xe	7441	
beobachtete Reflexe1119 σ -Schranke $[I > 2\sigma(I)]$ S_2 (beobachtet / alle Daten) $0,821 / 0,821$ R_1 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR_2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{\min/max} / 10^6 \text{ e·pm}^{-3}$ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten $151 / 2 / 1916$ Hinterlegungsnummer $[^{68]}$ CCDC 679653	unabhängige Ref	lexe	1916	
σ -Schranke $[I > 2\sigma(I)]$ S_2 (beobachtet / alle Daten) $0,821 / 0,821$ R_1 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR_2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{\min/max} / 10^6 \text{ e-pm}^{-3}$ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten $151 / 2 / 1916$ Hinterlegungsnummer ^[68] CCDC 679653	beobachtete Refle	exe	1119	
S_2 (beobachtet / alle Daten) $0,821 / 0,821$ R_1 (beobachtet / alle Daten) $0,0339 / 0,0721$ wR_2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{\min/max} / 10^6 \text{ e·pm}^{-3}$ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten $151 / 2 / 1916$ Hinterlegungsnummer ^[68] CCDC 679653	σ -Schranke		$[I > 2\sigma(I)]$	
R_1 (beobachtet / alle Daten) 0,0339 / 0,0721 wR_2 (beobachtet / alle Daten) 0,0543 / 0,0602 $\Delta \rho_{\min/max}$ /10 ⁶ e·pm ⁻³ -0,451 / 0,547 Wichtung a/b 0,0256 / 0 Anzahl Parameter / Beschränkungen / Daten 151 / 2 / 1916 Hinterlegungsnummer ^[68] CCDC 679653	S_2 (beobachtet / alle Daten)		0.821 / 0.821	
wR2 (beobachtet / alle Daten) $0,0543 / 0,0602$ $\Delta \rho_{\min/max} / 10^6 \text{ e·pm}^{-3}$ $-0,451 / 0,547$ Wichtung a/b $0,0256 / 0$ Anzahl Parameter / Beschränkungen / Daten $151 / 2 / 1916$ Hinterlegungsnummer ^[68] CCDC 679653	R ₁ (beobachtet / alle Daten)		0,0339 / 0,0721	
$\begin{array}{lll} \Delta \rho_{\min/max} / 10^{6} \ e \cdot pm^{-3} & -0,451 / 0,547 \\ \text{Wichtung a/b} & 0,0256 / 0 \\ \text{Anzahl Parameter / Beschränkungen / Daten} & 151 / 2 / 1916 \\ \text{Hinterlegungsnummer}^{[68]} & \text{CCDC } 679653 \end{array}$	wR_2 (beobachtet	/ alle Daten)	0.0543 / 0.0602	
Wichtung a/b0,0256 / 0Anzahl Parameter / Beschränkungen / Daten151 / 2 / 1916Hinterlegungsnummer ^[68] CCDC 679653	$\Delta \rho_{\rm min/max} / 10^6 {\rm e} \cdot {\rm pm}^{-3}$		-0,451 / 0,547	
Anzahl Parameter / Beschränkungen / Daten 151 / 2 / 1916 Hinterlegungsnummer ^[68] CCDC 679653	Wichtung a/b	1	0,0256/0	
Hinterlegungsnummer ^[68] CCDC 679653	Anzahl Paramete	r / Beschränkungen / Daten	151/2/1916	
	Hinterlegungsnu	mmer ^[68]	CCDC 679653	

Tabelle 3.1: Kristalldaten und Strukturverfeinerungsparameter von $AgCO_2C_6F_5 \cdot H_2O$

Atom	x/a	y/b	z/c	U _{eq}
Ag1	-0.020171(18)	-0.64475(14)	0.15936(3)	0.04742(14)
F1	0.26539(13)	-0.6921(9)	0.45252(18)	0.0458(8)
F2	0.21986(13)	-0.2868(8)	0.11184(18)	0.0447(8)
F3	0.37231(13)	-0.3501(11)	0.1445(2)	0.0640(9)
F4	0.47188(12)	-0.5968(12)	0.3289(2)	0.0720(10)
F5	0.41727(13)	-0.7666(9)	0.4820(2)	0.0618(10)
01	0.10406(13)	-0.5830(10)	0.1813(2)	0.0374(8)
O2	-0.0852(2)	-0.1934(12)	0.0197(3)	0.0548(11)
O3	0.13469(14)	-0.2891(9)	0.3327(2)	0.0369(9)
C1	0.26704(19)	-0.4082(14)	0.2039(3)	0.0274(10)
C2	0.23728(19)	-0.4882(13)	0.2807(3)	0.0247(10)
C3	0.2900(2)	-0.6031(15)	0.3748(3)	0.0298(10)
C4	0.1504(2)	-0.4490(13)	0.2627(3)	0.0292(11)
C5	0.3685(2)	-0.6428(16)	0.3911(3)	0.0368(11)
C6	0.3955(2)	-0.5578(15)	0.3132(3)	0.0397(13)
C7	0.3458(2)	-0.4411(15)	0.2201(3)	0.0370(13)
H1	-0.038(2)	-0.116(16)	0.015(3))	0.055
H2	-0.125(2)	-0.090(15)	0.038(3)	0.055

Tabelle 3.2: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} [10⁻⁴ pm²] von AgCO₂C₆F₅·H₂O

 $U_{eq} = \frac{1}{3} \sum_{ij} a_i a_j A_{ij}$

Tabelle 3.3: Koeffizienten der anisotropen Temperaturfaktoren $U_{ij}~[10^{-4}~pm^2]$ von $AgCO_2C_6F_5\cdot H_2O$

Aton	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ag1	0.02385(14)	0.0711(3)	0.0476(2)	0.0014(2)	0.01289(12)	-0.0116(2)
F1	0.0365(12)	0.070(3)	0.0285(13)	0.0110(13)	0.0089(10)	0.0022(13)
F2	0.0363(12)	0.064(3)	0.0347(14)	0.0118(13)	0.0138(10)	-0.0020(12)
F3	0.0413(13)	0.106(3)	0.0571(17)	-0.0043(18)	0.0333(13)	-0.0131(16)
F4	0.0200(11)	0.115(3)	0.081(2)	-0.011(2)	0.0169(12)	0.0036(15)
F5	0.0314(12)	0.083(3)	0.0525(17)	0.0105(15)	-0.0078(12)	0.0117(13)
01	0.0225(12)	0.060(3)	0.0295(16)	-0.0079(16)	0.0082(11)	-0.0098(14)
O2	0.0546(19)	0.062(3)	0.049(2)	-0.0085(19)	0.0206(17)	0.0023(19)
03	0.0263(13)	0.052(3)	0.0342(17)	-0.0069(15)	0.0133(12)	0.0032(13)
C1	0.0244(16)	0.031(3)	0.028(2)	-0.001(2)	0.0107(15)	-0.0039(19)
C2	0.0186(16)	0.028(3)	0.028(2)	-0.0069(18)	0.0079(15)	-0.0024(15)
C3	0.0284(18)	0.030(3)	0.031(2)	-0.006(2)	0.0102(16)	0.000(2)
C4	0.0256(18)	0.037(4)	0.026(2)	0.007(2)	0.0111(17)	-0.0023(18)
C5	0.0240(17)	0.038(3)	0.038(2)	-0.003(2)	-0.0029(16)	0.002(2)
C6	0.0174(17)	0.049(4)	0.053(3)	-0.019(3)	0.0128(18)	-0.0034(19)
C7	0.031(2)	0.043(4)	0.045(3)	-0.014(2)	0.024(2)	-0.012(2)

 $U_{ij} = e^{[-2\pi(h^2a^{*2}U_{11} + \dots + 2hka^*b^*U_{12})]}$

Atom 1	Atom 2	Abstand /Å	Atom 1	Atom 2	Atom 3	Winkel /°
Ag1	01	2.193(2)	01	Ag1	O3"	167.18(11)
Ag1	O3'	2.195(2)	01	Ag1	O2	103.32(12)
Ag1	O2	2.486(4)	O3"	Ag1	O2	89.44(12)
Ag1	O2""	2.726(4)	O1	Ag1	O2""	110.07(12)
F1	C3	1.344(4)	O3"	Ag1	O2""	71.34(11)
F2	C1	1.338(4)	O2	Ag1	O2""	87.00(10)
F3	C7	1.341(5)	C4	01	Ag1	120.4(2)
F4	C6	1.341(4)	C4	O3	Ag1'	129.2(2)
F5	C5	1.339(5)	F2	C1	C7	118.0(3)
01	C4	1.246(5)	F2	C1	C2	120.4(3)
O3	C4	1.245(5)	C7	C1	C2	121.6(4)
C1	C7	1.381(5)	C3	C2	C1	117.1(3)
C1	C2	1.387(5)	C3	C2	C4	121.4(3)
C2	C3	1.385(5)	C1	C2	C4	121.4(3)
C2	C4	1.524(5)	F1	C3	C2	120.6(3)
C3	C5	1.379(5)	C5	C3	C2	121.6(4)
C5	C6	1.370(6)	O3	C4	O1	128.0(3)
C6	C7	1.359(6)	O3	C4	C2	115.2(3)
Ag1	Ag1'	2.9648(8)	01	C4	C2	116.8(3)
Ag1	Ag1"	3.5918(5)	C7	C6	C5	120.8(3)
			F3	C7	C1	119.5(4)
			C6	C7	C1	119.5(4)

Tabelle 3.4: Ausgewählte interatomare Abstände und Winkel von $AgCO_2C_6F_5 \cdot H_2O$

3.2.6 Silber-2,6-difluorbenzoat

$$AgNO_3 + KCO_2C_6H_3F_2 \xrightarrow{H_2O/EtOH} AgCO_2C_6H_3F_2 + KNO_3$$

Silber-2,6-difluorbenzoat wird in einer Reaktion einer wässrigen AgNO₃-Lösung mit einer Lösung $KCO_2C_6H_3F_2$ in Ethanol bei Raumtemperatur dargestellt.

3.2.7 Silber-2-fluorbenzoat

$$AgNO_3 + KCO_2C_6H_4F \xrightarrow{H_2O/EtOH} AgCO_2C_6H_4F + KNO_3$$

Silber-2-fluorbenzoat wird in einer Reaktion einer wässrigen $AgNO_3$ -Lösung mit einer Lösung $KCO_2C_6H_4F$ in Ethanol bei Raumtemperatur dargestellt.

4 Analytik

4.1 NMR-Spektroskopie

 Tabelle 4.1: Messfrequenzen in MHz der verwendeteten NMR-Spektrometer und Referenzsubstanzen für verschiedene Kerne.

Gerät	$^{1}\mathrm{H}$	¹³ C	¹⁹ F	¹²³ Te
AC 200	200,13	50,32	188,3	-
Avance II 300	300,13	75,47	282,4	94,7
Avance 400	400,13	100,61	376,5	126,2
DRX 500	500,13	125,76	470,6	-
Referenzsubstanz	SiMe ₄	SiMe ₄	CCl ₃ F	TeMe ₂

Die NMR-Spektren wurden an den Spektrometern AC 200, Avance II 300, Avance 400, DRX 500 der Firma Bruker Analytische Messtechnik AG, Karlsruhe-Rheinstetten aufgenommen. Ausgestattet sind die Geräte mit PFT-Technik und Deuterium-Lock. Die Messfrequenzen sind in Tabelle 4.1 angegeben. Alle Spektren wurden, wenn nicht anders erwähnt, bei Raumtemperatur (20 - 25 °C) aufgenommen. Als Solvens wurden entweder deuterierte Lösungsmittel verwendet oder Aceton-d₆ als Außenlock. Alle chemischen Verschiebungen werden in ppm angegeben, hochfeldverschobene Signale mit negativen, tieffeldverschobene Signale mit positiven Vorzeichen relativ zum entsprechenden Standard. Alle Kopplungskonstanten werden in Hertz ohne Berücksichtigung der Vorzeichen angegeben. Integrale werden, wenn nicht gekennzeichnet, als Absolutwerte angegeben, mit dem größten Signal auf 100 kalibriert. Relative Integrale werden mit () gekennzeichnet. Signale, deren Integral < 3 ist, werden in den Tabellen im experimentellen Teil nicht angegeben, es sei denn, es soll verdeutlicht werden, dass Spuren bestimmter Substanzen detektiert werden. Zur Bearbeitung der Spektren dienten die Programme 1D-WIN-NMR, XWIN-NMR und TopSpin der Firma Bruker.

4.2 Schmelzpunktbestimmung

Die Bestimmung der Schmelzpunkte in Glaskapillaren erfolgte mit einem Gerät (Typ SMP10) der Firma Stuart Scientific, England. Die Bestimmung der Schmelzpunkte in 4 mm NMR-Röhrchen erfolgte mit einem Gerät (SG2000) der Firma HWS Laboratoriumstechnik, Mainz.

4.3 Massenspektrometrie

Die Messung der EI-Massenspektren erfolgte in einem Massenspektrometer vom Typ Thermo Quest Finnigan MAT 95 der Firma Finnigan MAT GmbH, Bremen. Die Elektronenstoßionisation erfolgte bei 20 eV. Die Quellentemperatur betrug in allen Fällen 200 °C.

4.4 IR-Spektroskopie

Die FT-IR-Spektren wurden mit einer 5 SPC Workbench der Firma Nicolet aufgenommen. Alle Proben wurden in Form von KBr-Presslingen gemessen.

4.5 Raman-Spektroskopie

Die Raman-Spektren wurden am IFS 66v/S Spektrometer der Firma Bruker Optik aufgenommen.

4.6 Elementaranalyse

Die Elementaranalysen(C, H, N, S) wurden mit dem Gerät Euro Vector CHNS-O Elementaranalysator (Euro EA 3000 Serie) der Firma Euro Vector, Instruments and Software erstellt. Bei den Messungen wurden die prozentualen Anteile der Elemente Kohlenstoff, Wasserstoff, Stickstoff und Schwefel bestimmt. Die angegebenen Werte entsprechen den Mittelwerten aus jeweils zwei Messungen.

4.7 Kristallstrukturanalyse

Die Sammlung der Röntgenbeugungsdaten erfolgte mit einem Flächenzähler-Diffraktometer (IPDS I und IPDS II, Stoe & Cie., Mo K α , $\lambda = 71,073$ pm, 50 kV, 40 mA). Für die Einkristallstrukturanalyse wurde jeweils die Güte eines geeigneten Einkristalls unter dem Polarisationsmikroskop bestimmt, derselbige in ein Markröhrchen überführt und mit wenig Schlifffett fixiert. Schwingungsellipsoide in den Abbildungen der Molekülstrukturen sind mit einer Wahrscheinlichkeit von 50 % gezeichnet.

5 Experimenteller Teil

5.1 Synthese und Eigenschaften von $Te(CF_3)_2Y_2$

5.1.1 Bis(trifluormethyl)tellurbis(trifluoracetat)

$$Te(CF_3)_2F_2 + 2 Me_3SiCO_2CF_3 \xrightarrow[-30 \circ C]{CH_2Cl_2} Te(CF_3)_2(CO_2CF_3)_2 + 2 Me_3SiF_3CO_2CF_3)_2 + 2 Me_3SiF_3CO_2CF_3 Te(CF_3)_2CF_3 Te(CF_3)_2CF_3$$

Substanz	M / $g \cdot mol^{-1}$	n / mmol	m / g
$Te(CF_3)_2F_2$	303,61	2,44	0,74
Me ₃ SiCO ₂ CF ₃	186,21	7,31	1,36
CH_2Cl_2			

 Tabelle 5.1: Reaktionsansatz

Te(CF₃)₂F₂ wird in einem Schlenk-Kolben vorgelegt und in 20 ml CH₂Cl₂ gelöst. Der Ansatz wird mit einem Isopropanol-Trockeneis-Kühlbad auf ca. -30 °C temperiert, und unter Rühren erfolgt die Zugabe von Me₃SiCO₂CF₃ im 1,5 fachen Überschuss. Nach wenigen Minuten ist die Bildung eines weißen Feststoffs zu beobachten. Nach 18 Stunden sind in den ¹⁹F-NMR-Spektren zur Reaktionskontrolle (Tab. 5.2 und Tab. 5.3) bei Raumtemperatur keine Signale des Edukts mehr zu erkennen, was das Ende der Reaktion andeutet. Die Spektren zeigen neben den Signalen des Produkts Te(CF₃)₂(CO₂CF₃)₂ noch weitere Signale von fluorhaltigen Verbindungen, u.a. die des Beiprodukts Me₃SiF. Der Ansatz wird auf Raumtemperatur erwärmt und 30 Minuten weitergerührt. Das Lösungsmittel und die leichtflüchtigen Komponenten werden bei Raumtemperatur unter vermindertem Druck abkondensiert, und ein weißer Feststoff resultiert als Produkt mit einer Ausbeute von 1,13 g (2,30 mmol; 94 %; M = 491,64 g/mol;). NMR-Spektren in verschiedenen Lösungsmitteln (Tab. 5.8 - Tab. 5.12) sowie Massen-(Tab. 5.6), IR- und Raman-Spektren (Tab. 5.7), Schmelzpunktbestimmung (Tab. 5.5) und CHNS-Analyse (Tab. 5.4) charakterisieren dieses als Te(CF₃)₂(CO₂CF₃)₂. Die Aufreinigung erfolgt durch Sublimation im statischen Vakuum bei ca. 30 °C.

Tabelle 5.2: ¹⁹F-NMR-Spektrum zur Reaktionskontrolle der Synthese von $Te(CF_3)_2(CO_2CF_3)_2$ in CH_2Cl_2 (Probenentnahme nach 30 min).

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-43,5	s	${}^{1}J({}^{19}F{}-{}^{13}C) = 360$	25	$Te(CF_3)_2(CO_2CF_3)_2$
-47,6	d	${}^{2}J({}^{125}Te - {}^{19}F) = 100$ ${}^{2}J({}^{125}Te - {}^{19}F) = 130$ ${}^{3}J({}^{19}F - {}^{19}F) = 9$	49	$Te(CF_3)_2F(CO_2CF_3)$
-50,5	br		6	CF ₃ Te(IV)-Verbindung
-51,5	t	$^{3}J(^{19}F-^{19}F) = 7$	11	$Te(CF_3)_2F_2$
-77,0	S		25	$Te(CF_3)_2(CO_2CF_3)_2$
-77,4	S		24	$Te(CF_3)_2F(CO_2CF_3)_2$
-78,4	S		30	Me ₃ SiCO ₂ CF ₃
-78,9	S		100	CO ₂ CF ₃ -Verbindung
-118,6	br		7	$Te(CF_3)_2 F(CO_2 CF_3)$
-124,9	br		3	$Te(CF_3)_2F_2$
-160,0	dec	${}^{1}J({}^{29}Si - {}^{19}F) = 273$ ${}^{3}J({}^{19}F - {}^{1}H) = 7,2$	60	Me ₃ SiF

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-39,2	S	$^{2}J(^{125}Te^{-19}F) = 53$	3	CF ₃ Te(IV)-Verbindung
-42,2	S	${}^{1}J({}^{19}F{-}^{13}C) = 363$	25	$Te(CF_3)_2(CO_2CF_3)_2$
		$^{2}J(^{125}Te^{-19}F) = 100$		
		$^{2}J(^{123}Te^{-19}F) = 83$		
		${}^{4}J({}^{19}F{}-{}^{19}F) = 5,4$		
-44,2	S	$^{2}J(^{125}Te^{-19}F) = 82$	3	CF ₃ Te(IV)-Verbindung
-48,0	S		3	$CF_3Te(IV)$ -Verbindung
-49,3	S	$^{2}J(^{125}Te^{-19}F) = 119$	8	$CF_3Te(IV)$ -Verbindung
-75,8	S		26	$Te(CF_3)_2(CO_2CF_3)_2$
-77,2	S		52	CO ₂ CF ₃ -Verbindung
-77,7	S		91	CO ₂ CF ₃ -Verbindung
-158,9	dec	${}^{1}J({}^{29}Si-{}^{19}F) = 274$	100	Me ₃ SiF
		$^{3}J(^{19}F-^{1}H) = 7,4$		U

Tabelle 5.3: ¹⁹F-NMR-Spektrum zur Reaktionskontrolle der Synthese von $Te(CF_3)_2(CO_2CF_3)_2$ in CH_2Cl_2 (Probenentnahme nach 18 h).

Tabelle 5.4: CHNS-Analyse von $Te(CF_3)_2(CO_2CF_3)_2$.

	C / %	Н/%	N / %	S / %
berechnet	14,66	0	0	0
gemessen	13,95	0,1	0,06	0

Tabelle 5.5: Schmelzpunktanalyse von $Te(CF_3)_2(CO_2CF_3)_2$.

Verbindung	Schmelzpunkt / °C	Zersetzungstemperatur / °C	^[33] / °C
$Te(CF_3)_2(CO_2CF_3)_2$	135	135	138

m/z	rel. Intensität / %	Zuordnung
425	6	$Te(CF_3)(CO_2CF_3)_2^+$
381	100	$Te(CF_3)_2(CO_2CF_3)^+$
287	6	$Te(CF_3)_2F^+$
268	14	$Te(CF_3)^+_2$
199	36	$Te(CF_3)^{+}$
69	22	CF_3^+
18	6	H_2O^+

IR /	cm^{-1}	Zuordnung	Raman	Raman / cm^{-1}	
			2908	W	
1682	S	<i>v</i> (CO)	1652		
1426	m	<i>v</i> (CO)	1425	m	
1188	s,br	$\nu(CF_3)$			
1103	S	$v(CF_3)$	1105	W	
1055	S	$v(CF_3)$	1053	W	
853	W	5	853	m	
798	W				
734	m		745	S	
692	m,br				
604	W				
521	W				
			475	W	
464	W				
419	W				
			403	m	
			308	W	
			288	W	
			271	m	
			238	S	
			145	W	
			102	S	

Tabelle 5.7: IR- und Raman-Spektren von $Te(CF_3)_2(CO_2CF_3)_2$.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-40,9 ^x	S	${}^{1}J({}^{19}F-{}^{13}C) = 364$ ${}^{2}J({}^{125}Te-{}^{19}F) = 103$ ${}^{2}J({}^{123}Te-{}^{19}F) = 85$ ${}^{4}J({}^{19}F-{}^{19}F) = 5,2$	73	$\begin{array}{c} \operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\operatorname{CF}_3)_2\\ \text{Derivat} \end{array}$
-47,0	br		11	$Te(CF_3)_2(CO_2CF_3)_2$ Derivat
-74,7	S	${}^{1}J({}^{19}F-{}^{13}C) = 287$ ${}^{3}J({}^{19}F-{}^{13}C) = 43$	74	$Te(CF_3)_2(CO_2CF_3)_2$
-75,8	S	${}^{1}J({}^{19}F-{}^{13}C) = 285$ ${}^{3}J({}^{19}F-{}^{13}C) = 42$	100	CO ₂ CF ₃ -Verbindung
-76,7	S	(-)	2	CO ₂ CF ₃ -Verbindung

Tabelle 5.8: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2CF_3)_2$ in CD_2Cl_2 .

 $^{x} \delta^{125}$ Te = 1052.

Tabelle 5.9: 19 F-NMR-Spektrum von Te(CF3)2(CO2CF3)2 in C6D6.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,3 ^x	S	${}^{1}J({}^{19}F-{}^{13}C) = 365$ ${}^{2}J({}^{125}Te-{}^{19}F) = 78$ ${}^{2}J({}^{123}Te-{}^{19}F) = 65$ ${}^{4}J({}^{19}F-{}^{19}F) = 5,5$	96	$\begin{array}{c} \operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\operatorname{CF}_3)_2\\ \text{Derivat} \end{array}$
-46,8	d	${}^{3}J({}^{19}F-{}^{19}F) = 8,1$	1	$Te(CF_3)_2F(CO_2CF_3)$
-47,2	br		4	$Te(CF_3)_2(CO_2CF_3)_2$ Derivat
-74,3	S	$^{1}J(^{19}F-^{13}C) = 287$	100	$Te(CF_3)_2(CO_2CF_3)_2$
-75,4	S	$^{1}J(^{19}F-^{13}C) = 285$	70	CO ₂ CF ₃ -Verbindung

 $^{x} \delta^{125}$ Te = 1085.

Tabelle 5.10: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2CF_3)_2$ in CH₃CN.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-49,9	br		50 a	$Te(CF_3)_2(CO_2CF_3)_2$
				Derivat
-51,0	br		50 a	$Te(CF_3)_2(CO_2CF_3)_2$
				Derivat
-76,6	s, br		100	$Te(CF_3)_2(CO_2CF_3)_2$

Tabelle 5.11: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2CF_3)_2$ in Glyme.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-52,1	br		100	$Te(CF_3)_2(CO_2CF_3)_2$
-77,0	br		100	$Te(CF_3)_2(CO_2CF_3)_2$

Tabelle 5.12: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2CF_3)_2$ in D_2O .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,7	S		18	$Te(CF_3)_3^+$
-54,0	S	${}^{1}J({}^{19}F-{}^{13}C) = 364$	100	$Te(CF_3)_2R_2$
-63,4	S		6	$Te(CF_3)R_4^-$
-76,2	S	${}^{1}J({}^{19}F-{}^{13}C) = 291$	94	HCO_2CF_3

Abbildung 5.1: Die Abbildung zeigt die Titration einer Lösung von $Te(CF_3)_2(CO_2CF_3)_2$ in Wasser mit Natronlauge. Dargestellt sind die 5 einzelnen Messreihen, die jeweils 2 Umschlagspunkte aufweisen. der erste Äquivalenzpunkt liegt bei ca. pH 4,5 und der zweite bei ca. pH 8.

5.1.1.1 Kristallstruktur von ${\rm Te}({\rm CF_3})_2({\rm CO_2CF_3})_2$

Sowohl durch die Sublimation von $Te(CF_3)_2(CO_2CF_3)_2$ als auch durch die Kristallisation aus verschiedenen organischen Lösungsmitteln können Einkristalle erhalten werden, die für Einkristallstrukturuntersuchungen geeignet scheinen. Diese Einkristalle sind außerhalb des Lösungsmittels oder eines perfluorierten Öls instabil. Für die röntgenographische Untersuchung wird daher eine Glaskapillare zuerst mit perfluoriertem Öl gefüllt, bevor der Einkristall eingebracht wird. $Te(CF_3)_2(CO_2CF_3)_2$ kristallisiert in der monoklinen Raumgruppe C2/c (Nr. 15) mit 4 Formeleinheiten in der Elementarzelle. Die röntgenographische Untersuchung wird mit Hilfe eines IP-Diffraktometers (STOE IPDS II) durchgeführt. Die Lösung und Verfeinerung der Struktur wird mit den Programmen SIR-92^[69] und SHELXL-97^[70] vorgenommen. Alle Atome werden anisotrop verfeinert. Die Kristalldaten und Strukturverfeinerungsparameter sind in Tabelle 5.13 zusammengefasst. Die Atomlagen (Tab. 5.14), die anisotropen Auslenkungsparamter (Tab. 5.15) sowie die Bindungslängen und -winkel (Tab. 5.16) sind angegeben.

	Summenformel		$C_6F_{12}O_4Te$	
	Molmasse / g/mol		491,66	
	Gitterparameter	a /pm	12,558(3)	
		b/pm	14,842(5)	
		c/pm	7,9097(17)	
		α / \circ	90	
		β/°	107,406(16)	
		$\gamma / ^{\circ}$	90	
	Zellvolumen / 10 ⁶	⁵ pm ³	1406,8(6)	
	Formeleinheiten	-	4	
	Kristallsystem		monoklin	
	Raumgruppe		C2/c (Nr. 15)	
	Kristallform		Prisma	
	Farbe		farblos	
	Messtemperatur /	Κ	293(2)	
	Messgerät		IPDS II	
	Messgeometrie		$0 \le \omega \le 180^\circ; \psi = 0^\circ$	
			$0 \le \omega \le 180^\circ; \psi = 90^\circ$	
			$\Delta \omega = 2^{\circ}$	
			180 Bilder	
	Belichtungszeit /	min	15	
	Absorptionskorrel	ktur	numerisch, nach Kristallgestaltoptimierung ^[74,75]	
	Messbereich	$2\theta_{\min/\max}/\circ$	2,18 / 29,66	
	Indexbereich	h _{min / max}	-17 / 17	
		k _{min / max}	-20 / 20	
		l _{min / max}	-9 / 10	
	F(000)		912	
	Absorptionskoeffi	zient /mm $^{-1}$	2,268	
	Dichte Dx / g/cm ²	3	2,321	
	R _{int}		0,1487	
	Strukturlösung / -	verfeinerung	SIR-92 ^[69] und SHELXL-97 ^[70]	
	gemessene Reflex	e	11080	
	unabhängige Refle	exe	1970	
	beobachtete Refle	xe	1015	
	σ -Schranke		$[I > 2\sigma(I)]$	
	S_2 (beobachtet / a	lle Daten)	0,915 / 0,915	
R_1 (beobachtet / alle Daten)		lle Daten)	0,0655 / 0,1197	
wR_2 (beobachtet / alle Daten)		/ alle Daten)	0,1571/0,1881	
	$\Delta \rho_{\min/\max} / 10^6 \text{ e} \cdot \text{p}$	cm^{-3}	-0,912 / 0,921	
	Extinktionskoeffiz	zient	0,0032(7)	
	Wichtung a/b		0,1111/0	
	Anzahl Parameter	/ Beschränkungen / Daten	106 /0 /1970	
		=		

Tabelle 5.13: Kristalldaten und Strukturverfeinerungsparameter von $Te(CF_3)_2(CO_2CF_3)_2$

Atom	x/a	y/b	z/c	U _{eq}
Te1	0.5000	0.09972(4)	-0.2500	0.07005(18)
01	0.6622(4)	0.1285(4)	-0.2705(7)	0.0891(15)
O2	0.6290(5)	0.0230(6)	-0.4752(10)	0.137(2)
C1	0.5595(7)	0.1985(8)	-0.0337(14)	0.112(3)
C2	0.6890(6)	0.0779(6)	-0.3825(11)	0.086(2)
C3	0.8054(7)	0.0899(8)	-0.3928(14)	0.120(3)
F1	0.4932(6)	0.2096(7)	0.0523(12)	0.254(4)
F2	0.6544(7)	0.1778(7)	0.0686(12)	0.206(4)
F3	0.5849(12)	0.2736(6)	-0.0918(15)	0.247(6)
F4	0.8678(6)	0.1283(9)	-0.2812(15)	0.311(5)
F5	0.8489(7)	0.0188(11)	-0.413(2)	0.328(8)
F6	0.8064(8)	0.1190(12)	-0.5356(18)	0.283(8)

Tabelle 5.14: Atomkoordinaten und äquivalente Temperaturfaktoren $U_{eq}~[10^{-4}~pm^2]$ von $Te(CF_3)_2(CO_2CF_3)_2$

 $U_{eq} = \frac{1}{3} \sum_{ij} a_i a_j A_{ij}$

Tabelle 5.15: Koeffizienten der anisotropen Temperaturfaktoren $U_{ij}\ [10^{-4}\ pm^2]$ von $Te(CF_3)_2(CO_2CF_3)_2$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Te1	0.0642(3)	0.0812(4)	0.0676(3)	0.000	0.0239(2)	0.000
01	0.072(2)	0.104(4)	0.099(3)	-0.018(3)	0.039(2)	-0.012(2)
O2	0.098(3)	0.186(6)	0.136(4)	-0.090(4)	0.048(3)	-0.048(4)
C1	0.098(5)	0.126(7)	0.125(6)	-0.037(6)	0.049(5)	-0.022(5)
C2	0.066(3)	0.113(6)	0.079(4)	-0.012(4)	0.022(3)	-0.008(4)
C3	0.081(4)	0.179(10)	0.121(5)	-0.058(6)	0.061(4)	-0.017(5)
F1	0.155(4)	0.390(10)	0.257(6)	-0.232(6)	0.122(4)	-0.102(6)
F2	0.151(6)	0.252(9)	0.168(6)	-0.111(6)	-0.026(5)	0.037(6)
F3	0.405(16)	0.131(6)	0.194(8)	-0.059(6)	0.072(10)	-0.081(8)
F4	0.117(3)	0.538(14)	0.317(9)	-0.289(8)	0.126(4)	-0.163(6)
F5	0.141(5)	0.330(15)	0.569(19)	-0.200(14)	0.192(8)	-0.053(8)
F6	0.149(6)	0.51(2)	0.224(10)	0.090(11)	0.102(7)	-0.029(9)

 $U_{ij} = e^{[-2\pi(h^2a^{*2}U_{11} + \dots + 2hka^*b^*U_{12})]}$

Atom 1	Atom 2	Abstand /Å	Atom 1	Atom 2	Atom 3	Winkel /°
Te1	01	2.134(5)	01	Te1	01	156.9(3)
Te1	01	2.134(5)	O1	Te1	C1	79.4(3)
Te1	C1	2.207(10)	O1	Te1	C1	85.3(3)
Te1	C1	2.207(10)	O1	Te1	C1	85.3(3)
01	C2	1.281(10)	O1	Te1	C1	79.4(3)
O2	C2	1.200(10)	C1	Te1	C1	96.8(6)
C1	F1	1.233(11)	C2	01	Te1	113.0(5)
C1	F2	1.262(11)	F1	C1	F2	110.0(10)
C1	F3	1.283(15)	F1	C1	F3	111.2(12)
C2	C3	1.498(11)	F2	C1	F3	98.8(10)
C3	F4	1.142(12)	F1	C1	Te1	112.9(7)
C3	F6	1.214(16)	F2	C1	Te1	111.8(8)
C3	F5	1.220(17)	F3	C1	Te1	111.3(8)
			O2	C2	01	124.9(7)
			O2	C2	C3	119.5(8)
			O1	C2	C3	115.5(7)
			F4	C3	F6	110.2(13)
			F4	C3	F5	107.5(12)
			F6	C3	F5	93.4(13)
			F4	C3	C2	118.2(9)
			F6	C3	C2	112.0(9)
			F5	C3	C2	112.7(11)

Tabelle 5.16: Ausgewählte interatomare Abstände und Winkel von $Te(CF_3)_2(CO_2CF_3)_2$

5.1.2 Bis(trifluormethyl)tellurdiacetat

$$Te(CF_3)_2Br_2 + 2 \operatorname{AgCO}_2CH_3 \xrightarrow[-60 \circ C]{CH_2Cl_2} Te(CF_3)_2(CO_2CH_3)_2 + 2 \operatorname{AgBr}_2CH_3 \xrightarrow[-60 \circ C]{CH_2CH_3} Te(CF_3)_2 + 2 \operatorname{AgBr}_2CH_3 + 2$$

 Tabelle 5.17:
 Reaktionsansatz

Substanz	M / g·mol $^{-1}$	n / mmol	m / g
$Te(CF_3)_2Br_2$ AgCO ₂ CH ₂	425,42 166,91	1,36 2.71	0,58 0,45
CH_2Cl_2			-, -

Te(CF₃)₂Br₂ wird in einem Schlenk-Kolben vorgelegt und mit 20ml CH₂Cl₂ aufgeschlemmt. Der Ansatz wird in einem Isopropanol-Trockeneis-Kühlbad auf ca. -60 °C temperiert, und unter Rühren erfolgt die Zugabe einer Lösung von AgCO₂CH₃ in 10 ml CH₂Cl₂. Die Reaktion wird mit Hilfe von ¹⁹F-NMR-Spektren (Tab. 5.18 und Tab. 5.19) bei Raumtemperatur kontrolliert. Der Ansatz wird auf Raumtemperatur erwärmt und 2 Tage gerührt. Die Bildung eines hellen Feststoffs, der sich mit zunehmender Zeit dunkel verfärbt, ist zu beobachten. Von diesem Feststoff wird die Lösung abpipettiert, und die so gewonnene klare Lösung wird bei Raumtemperatur unter vermindertem Druck eingeengt. Das Produkt resultiert als weißer Feststoff mit einer Ausbeute von 0,24 g (0,63 mmol; 46 %; M = 383,70 g/mol). NMR-Spektren in verschiedenen Lösungsmitteln (Tab. 5.23 -Tab. 5.25) sowie Massenspektren (Tab. 5.22), Schmelzpunkt- (Tab. 5.21) und CHNS-Analyse (Tab. 5.20) charakterisieren dieses als Te(CF₃)₂(CO₂CH₃)₂. Einkristalle können durch Sublimation im statischen Vakuum bei Raumtemperatur und sehr schwach eingestellter Wasserkühlung erhalten werden. Außerhalb der Kristallisationsumgebung verlieren sie ihre Einkristallinität.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-19,1	S		5	CF ₃ Br
-22,5	S	$^{2}J(^{125}Te^{-19}F) = 48$	26	$Te(CF_3)_2$
-44,4	S		55	$CF_3Te(IV)$ -Verbindung
-46,0	S	${}^{1}J({}^{19}F{-}^{13}C) = 365$	93	$CF_3Te(IV)$ -Verbindung
		$^{2}J(^{125}Te^{-19}F) = 39$		
-47,0	S	${}^{1}J({}^{19}F{-}^{13}C) = 366$	100	$Te(CF_3)_2(CO_2CH_3)_2$
		$^{2}J(^{125}Te^{-19}F) = 60$		
-49,0	d	$^{3}J(^{19}F-^{19}F) = 9,3$	25	$Te(CF_3)_2F$
-100,8	br		9	$\operatorname{Te}(\operatorname{CF}_3)_2\mathbf{F}$

Tabelle 5.18: ¹⁹F-NMR-Spektrum zur Reaktionskontrolle der Synthese von $Te(CF_3)_2(CO_2CH_3)_2$ in CH_2Cl_2 (Probenentnahme nach 3 h).

Tabelle 5.19: ¹⁹F-NMR-Spektrum zur Reaktionskontrolle der Synthese von $Te(CF_3)_2(CO_2CH_3)_2$ in CH_2Cl_2 (Probenentnahme nach 19 h).

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-19,1	S		1	CF ₃ Br
-22,5	S	$^{2}J(^{125}Te^{-19}F) = 48$	13	$Te(CF_3)_2$
-47,0 ^x	S	${}^{2}J({}^{123}Te^{-19}F) = 40$ ${}^{1}J({}^{19}F^{-13}C) = 362$ ${}^{2}J({}^{125}Te^{-19}F) = 60$ ${}^{2}J({}^{123}Te^{-19}F) = 50$ ${}^{4}J({}^{19}F^{-19}F) = 5,6$	100	$Te(CF_3)_2(CO_2CH_3)_2$
-49,0	d	${}^{3}J({}^{19}F{}-{}^{19}F) = 9,0$	7	$Te(CF_3)_2F$
-51,0	br		2	CF ₃ Te(IV)-Verbindung

 $^{x} \delta^{125}$ Te = 995.

 $\label{eq:chi} \textbf{Tabelle 5.20: CHNS-Analyse von } Te(CF_3)_2(CO_2CH_3)_2.$

	C / %	Н/%	N / %	S / %
berechnet	18,78	1,58	0	0
gemessen	18,57	1,57	0	0

Tabelle 5.21: Schmelzpunktanalyse von $Te(CF_3)_2(CO_2CH_3)_2$.

Verbindung	Schmelzpunkt / °C	Zersetzungstemperatur / °C	^[34] / °C
$Te(CF_3)_2(CO_2CH_3)_2$	133	133	133
m/z	rel. Intensität / %	Zuordnung	
-----	---------------------	-----------------------------	
494	4	$Te_2(CF_3)_2(C_4H_4O_3)^+$	
425	<4	$Te_2(CF_3)(C_4H_4O_3)^+$	
327	100	$Te(CF_3)_2(CO_2CH_3)^+$	
317	12	$Te(CF_3)(CO_2CH_3)_2^+$	
285	48	$Te(CF_3)_2(OH)^+$	
268	10	$Te(CF_3)_2^+$	
199	8	$Te(CF_3)^+$	
180	<4	$TeCF_2^+$	
149	<4	TeF ⁺	
130	<4	Te ⁺	
69	6	CF_3^+	
43	6	CH_3CO^+	
18	4	H_2O^+	

Tabelle 5.22: Massenspektrum von $Te(CF_3)_2(CO_2CH_3)_2$.

Tabelle 5.23: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2CH_3)_2$ in CD_2Cl_2 .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,3	S		2	$\begin{array}{c} \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2\\ \text{Derivat} \end{array}$
-46,0	S	${}^{1}J({}^{19}F-{}^{13}C) = 361$ ${}^{2}J({}^{125}Te-{}^{19}F) = 60$ ${}^{2}J({}^{123}Te-{}^{19}F) = 50$ ${}^{4}J({}^{19}F-{}^{19}F) = 4,8$	100	$Te(CF_3)_2(CO_2CH_3)_2$
-46,9	br		1	$\begin{array}{c} \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2\\ \text{Derivat} \end{array}$
-47,9	br		4^a	$\begin{array}{c} \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2\\ \text{Derivat} \end{array}$
-48,0	br		4^a	$\begin{array}{c} \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2\\ \text{Derivat} \end{array}$
-48,1	br		4^a	$Te(CF_3)_2(CO_2CH_3)_2$ Derivat
-50,0	br		41	$Te(CF_3)_2(CO_2CH_3)_2$ Derivat

^a Die Signale überlagern, so dass eine genaue Integration nicht möglich ist.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-44,9	S	$^{2}J(^{125}Te^{-19}F) = 72$	18	$Te(CF_3)_2(CO_2CH_3)_2$
-45,2	S	${}^{1}J({}^{19}F-{}^{13}C) = 362$	100	$\operatorname{Te}(\mathbf{CF}_3)_2(\operatorname{CO}_2\operatorname{CH}_3)_2$
		${}^{2}J({}^{125}Te-{}^{19}F) = 69$ ${}^{2}I({}^{123}Te-{}^{19}F) = 57$		Derivat
		${}^{4}J({}^{19}F-{}^{19}F) = 4,8$		
-46,4	br	$^{2}J(^{125}Te^{-19}F) = 87$	19	$Te(CF_3)_2(CO_2CH_3)_2$
-46,9	d		5	$Te(CF_3)_2F$
-49,2	br		24	$Te(CF_3)_2(CO_2CH_3)_2$
				Derivat

 $\label{eq:tabelle} \textbf{Tabelle 5.24: } ^{19}\text{F-NMR-Spektrum von } \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2 \text{ in } \text{CDCl}_3.$

 $\label{eq:constraint} \textbf{Tabelle 5.25:} \ ^{19}\text{F-NMR-Spektrum von } \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{CH}_3)_2 \text{ in } \text{CD}_3\text{NO}_2.$

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-43,6	S		100	$Te(CF_3)_2(CO_2CH_3)_2$ Derivat
-44,6	S	$^{2}J(^{125}Te^{-19}F) = 14$	11	$Te(CF_3)_2(CO_2CH_3)_2$ Derivat
-46,9	8	${}^{1}J({}^{19}F-{}^{13}C) = 358$ ${}^{2}J({}^{125}Te-{}^{19}F) = 38$	60	$Te(CF_3)_2(CO_2CH_3)_2$ Derivat
-53,9	br		34	$Te(CF_3)_2(CO_2CH_3)_2$ Derivat

5.1.3 Bis(trifluormethyl)tellurbis(pentafluorbenzoat)

$$\operatorname{Te}(\mathrm{CF}_3)_2\mathrm{Cl}_2 + 2\operatorname{AgCO}_2\mathrm{C}_6\mathrm{F}_5 \xrightarrow[-30\,^\circ\mathrm{C}]{\operatorname{CH}_2\mathrm{Cl}_2} \operatorname{Te}(\mathrm{CF}_3)_2(\mathrm{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 + 2\operatorname{AgCl}_2 \operatorname{AgCl}_2 \operatorname{AgCl}_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 + 2\operatorname{AgCl}_2 \operatorname{AgCl}_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 + 2\operatorname{AgCl}_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{C}_6\mathrm{F}_5)_2 \operatorname{CO}_2\mathrm{C}_6\mathrm{C$$

 Tabelle 5.26:
 Reaktionsansatz

Substanz	M / g·mol $^{-1}$	n / mmol	m / g
$Te(CF_3)_2Cl_2$ AgCO_2C_6F_5	336,52 318,94	1,07 2,14	0,36 0,68
$CH_2Cl_2^2$ or 5	7	,	- ,

Te(CF₃)₂Cl₂ wird in einem Schlenk-Kolben vorgelegt und mit 20 ml CH₂Cl₂ aufgeschlemmt. Der Ansatz wird in einem Isopropanol-Trockeneis-Kühlbad auf ca. -30 °C temperiert und unter Rühren erfolgt die Zugabe einer Lösung von AgCO₂C₆F₅ in 10 ml CH₂Cl₂. Der Ansatz wird auf Raumtemperatur erwärmt und noch 2 Stunden weitergerührt bis die NMR-Spektren zur Reaktionskontrolle (Tab. 5.27 und Tab. 5.28) das Ende der Reaktion anzeigen. Das Lösungsmittel wird unter vermindertem Druck abkondensiert. Aus dem zurückbleibenden Feststoff wird in einer Soxhlet-Extraktion mit Dichlormethan als Solvens die Tellurverbindung vom Silberchlorid abgetrennt. Nachdem das Lösungsmittel erneut unter vermindertem Druck abkondensiert ist, resultiert ein weißer Feststoff mit einer Ausbeute von 0,55 g (0,80 mmol; 75 %; M = 687,74 g/mol) als Produkt. NMR-Spektren in deuterierten Lösungsmitteln (Tab. 5.33 - Tab.5.39), sowie Massen- (Tab. 5.31), IR- und Raman-Spektren (Tab. 5.32), Schmelzpunktbestimmung (Tab. 5.30) und CHNS-Analyse (Tab. 5.29) charakterisieren dieses als Te(CF₃)₂(CO₂C₆F₅)₂. Aus NMR-Proben und Kristallisationsansätzen in den Lösungsmitteln Toluol, Benzol und Dichlormethan werden für röntgenographische Untersuchungen geeignete Kristalle erhalten.

Tabelle5.27: 19 F-NMR-SpektrumzurReaktionskontrolle $Te(CF_3)_2(CO_2C_6F_5)_2$ in CH_2Cl_2 (Probenentnahme nach 3 h). der Synthese von

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-44,1 ^x	S	${}^{1}J({}^{19}F{-}^{13}C) = 363$	100	$Te(CF_3)_2(CO_2C_6F_5)_2$
		$^{2}J(^{125}Te^{-19}F) = 79$		
		$^{2}J(^{123}Te^{-19}F) = 64$		
		${}^{4}J({}^{19}F-{}^{19}F) = 5,1$		
-45,2 ^y	S	${}^{1}J({}^{19}F - {}^{13}C) = 376$	67	CF ₃ Te(IV)-Verbindung
		$^{2}J(^{125}Te - ^{19}F) = 72$		
		$^{2}J(^{123}Te - ^{19}F) = 59$		
		${}^{4}J({}^{19}F-{}^{19}F) = 5,1$		
$-46,1^{z}$	S	$^{2}J(^{125}Te^{-19}F) = 61$	9	$CF_3Te(IV)$ -Verbindung
-47,3	d	$^{3}J(^{19}F-^{19}F) = 9,6$	4	$Te(CF_3)_2F$
-49,0	br		5	CF ₃ Te(IV)-Verbindung
-138,4	m		68	$Te(CF_3)_2 o - (CO_2C_6F_5)_2$
-138,8	m		22	o-CO2C6F5
-139,3	m		14	o-CO2C6F5
-148,6	m		36	$Te(CF_3)_2 p - (CO_2C_6F_5)_2$
-149,1	m		12	<i>p</i> - <i>CO</i> 2 <i>C</i> 6 <i>F</i> 5
-149,5	m		8	p-CO2C6F5
-162,0	m		92	$Te(CF_3)_2m-(CO_2C_6F_5)_2$
-162,4	m		15	m - CO2C6F5

^x δ^{125} Te = 1018. ^y δ^{125} Te = 1061. ^z δ^{125} Te = 1088.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-44,1	S	${}^{1}J({}^{19}F{-}^{13}C) = 362$	100	$Te(CF_3)_2(CO_2C_6F_5)_2$
		$^{2}J(^{125}Te^{-19}F) = 79$		
		$^{2}J(^{123}Te^{-19}F) = 65$		
		${}^{4}\mathrm{J}({}^{19}\mathrm{F}{-}^{19}\mathrm{F}) = 6,1$		
-45,3	S		4	$\text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{F}_5)_{2}$
				Derivat
-47,4	d	${}^{3}J({}^{19}F-{}^{19}F) = 9,2$	5	$Te(CF_3)_2F$
-49,0	br		18	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-138,8	m		67	$Te(CF_3)_2 o - (CO_2C_6F_5)_2$
-139,3	m, br		17	o-CO ₂ C ₆ F ₅
-148,6	m		35	$Te(CF_3)_2 p - (CO_2C_6F_5)_2$
-150,5	m, br		10	$p-\mathrm{CO}_2\mathrm{C}_6\mathrm{F}_5$
-162,0	m		70	$Te(CF_3)_2m-(CO_2C_6F_5)_2$
-162,5	m		20	m-CO ₂ C ₆ F ₅

Tabelle5.28: 19 F-NMR-SpektrumzurReaktionskontrollederSynthesevon $Te(CF_3)_2(CO_2C_6F_5)_2$ in CH_2Cl_2 nach Soxhlet-Extraktion.

 $\label{eq:characteristic} \mbox{Tabelle 5.29: CHNS-Analyse von } Te(CF_3)_2(CO_2C_6F_5)_2.$

	C / %	Н/%	N / %	S / %
berechnet	27,94	0	0	0
gemessen	27,88	0,16	0	0

 $\label{eq:constant} \mbox{Tabelle 5.30: Schmelzpunktanalyse von } Te(CF_3)_2(CO_2C_6F_5)_2.$

Verbindung	Schmelzpunkt / °C	Zersetzungstemperatur / °C
$Te(CF_3)_2(CO_2C_6F_5)_2$	175	175

m/z	rel. Intensität / %	Zuordnung
621	100	$Te(CF_3)(CO_2C_6F_5)_2^+$
479	50	$Te(CF_3)_2(CO_2C_6F_5)^+$
464	20	$Te(CF_3)_3CHOC_6F_5^+$
366	8	$Te(CF_3)_2CHO^+$
369	5	$Te(CF_3)(CO_2C_6F_5)^+$
334	54	$C_{12}F_{10}^{+}$
297	12	$Te(CF_3)_2CHO^+$
268	12	$Te(\overline{CF}_3)_2^+$
212	16	$CO_2C_6F_5^+$
195	100	$COC_6F_5^+$
168	10	$C_6F_5H^+$
69	5	CF_3^+
44	5	CO_2^+
18	5	H_2O^+

 $\label{eq:constraint} \textbf{Tabelle 5.31:} Massenspektrum von \ Te(CF_3)_2(CO_2C_6F_5)_2.$

 $\label{eq:constraint} \textbf{Tabelle 5.32: IR-Spektrum von } Te(CF_3)_2(CO_2C_6F_5)_2.$

IR / a	cm^{-1}	Zuordnung	IR / cr	n^{-1}	Zuordnung
3450	m,br		1105	m	v(CF)
3000	W		1051	S	$v(CF_3)$
2950	W		1005	m	
2870	W		994	m	
1652	S	v(CO)	936	W	
1624	m		814	W	
1607	m		767	m	
1528	m		751	W	
1493	S	v(CO)	735	W	
1414	m		711	W	
1377	m		685	W	
1346	S		613	W	
1292	m		587	W	
1265	S	v(CO)	527	W	
1194	S	$v(CF_3)$	509	W	
1160	m	v(CF)	486	W	

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-43,0	S	${}^{1}J({}^{19}F{-}^{13}C) = 363$	100	$Te(CF_3)_2(CO_2C_6F_5)_2$
		$^{2}J(^{125}Te^{-19}F) = 79$		
		$^{2}J(^{123}Te^{-19}F) = 66$		
		${}^{4}J({}^{19}F{-}^{19}F) = 5,1$		
-43,5	S		1	$\mathrm{Te}(\mathbf{CF_3})_{2}(\mathrm{CO}_2\mathrm{C}_6\mathrm{F}_5)_{2}$
				Derivat
-47,9	br		32	$\mathrm{Te}(\mathbf{CF_3})_{2}(\mathrm{CO}_2\mathrm{C}_6\mathrm{F}_5)_{2}$
				Derivat
-137,4	m		67	$Te(CF_3)_2 o - (CO_2C_6F_5)_2$
-138,2	m, br		23	o-(CO ₂ C ₆ F ₅) ₂
-147,5	m		33	$Te(CF_3)_2 p - (CO_2C_6F_5)_2$
-148,7	m, br		11	p-(CO ₂ C ₆ F ₅) ₂
-160,9	m		66	$\mathrm{Te}(\mathrm{CF}_3)_2 \mathbf{m} \cdot (\mathbf{CO}_2 \mathbf{C}_6 \mathbf{F}_5)_2$
-161,2	m, br		24	m-(CO ₂ C ₆ F ₅) ₂

Tabelle 5.33: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6F_5)_2$ in CD_2Cl_2 .

Tabelle 5.34: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6F_5)_2$ in CD_3CN .

δ	Aufspaltung	Kopplungskonstanten / Hz Integr		Zuordnung
-43,0	S	${}^{1}J({}^{19}F-{}^{13}C) = 364$	97	$\operatorname{Te}(\mathbf{CF_3})_{2}(\operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_{2}$
				Derivat
-45,5	br ^a		5	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-45,9	br ^a		5	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-49,9	br		6	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-51,5	br		41	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-53,6	br		2	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-80,0	d	$^{2}J(^{19}F-^{1}H) = 79 Hz$	1	CF ₃ H
-140,0	m, br		2	$o - (CO_2C_6F_5)_2$
-141,2	m, br		98	$o - (CO_2C_6F_5)_2$
-152,5	m, br		51	$p - (CO_2C_6F_5)_2$
-162,8	m, br		4	$m - (CO_2C_6F_5)_2$
-163,2	m, br		100	$m - (CO_2C_6F_5)_2$

^a Die Signale überlagern, sodass eine genaue Integration nicht möglich ist.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,0	S	$^{2}J(^{125}Te^{-19}F) = 17$	3	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-45,0	8	${}^{1}J({}^{19}F{-}^{13}C) = 362$	100	$\text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{F}_5)_{2}$
		$^{2}J(^{125}Te^{-19}F) = 52$		
		$^{2}J(^{123}Te^{-19}F) = 44$		
		${}^{4}J({}^{19}F-{}^{19}F) = 5,3$		
-45,3	8		1	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-46,2	S		1	$\text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{F}_5)_{2}$
				Derivat
-48,8	S		1	$\operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\operatorname{C}_6\operatorname{F}_5)_2$
				Derivat
-50,5	S	$^{2}J(^{125}Te^{-19}F) = 62$	63	$\operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\operatorname{C}_6\operatorname{F}_5)_2$
				Derivat
-139,5	m		69	$Te(CF_3)_2 o - (CO_2C_6F_5)_2$
-140,8	m, br		57	$o-(\mathrm{CO}_2\mathrm{C}_6\mathrm{F}_5)_2$
-150,1	m		34	$Te(CF_3)_2 p-(CO_2C_6F_5)_2$
-152,3	m, br		29	$p - (CO_2C_6F_5)_2$
-163,1	m		67	$Te(CF_3)_2m-(CO_2C_6F_5)_2$
-163,5	m, br		56	m-(CO ₂ C ₆ F ₅) ₂

Tabelle 5.35: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6F_5)_2$ in CD_3NO_2 .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-48,1	S	${}^{1}J({}^{19}F-{}^{13}C) = 363$ ${}^{2}J({}^{125}Te-{}^{19}F) = 21$ ${}^{4}J({}^{19}F-{}^{19}F) = 6.4$	100	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_2(\text{CO}_2\text{C}_6\text{F}_5)_2\\ \text{Derivat-A} \end{array}$
-51,5	s, br	${}^{1}J({}^{19}F-{}^{13}C) = 353$	68	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_2(\text{CO}_2\text{C}_6\text{F}_5)_2\\ \text{Derivat-B} \end{array}$
-53,1	br		11	CF ₃ Te(IV)-Verbindung
-140,7	m		67	$\begin{array}{c} \operatorname{Te}(\operatorname{CF}_3)_2 \boldsymbol{o} \cdot (\operatorname{CO}_2 \operatorname{C}_6 \operatorname{F}_5)_2 \\ \text{Derivat-A} \end{array}$
-141,9	m, br		66	$\begin{array}{c} \operatorname{Te}(\operatorname{CF}_3)_2 \boldsymbol{o} \text{-} (\operatorname{CO}_2 \operatorname{C}_6 \operatorname{F}_5)_2 \\ \text{Derivat-B} \end{array}$
-152,8	m		33	$\begin{array}{c} \operatorname{Te}(\operatorname{CF}_3)_2 \boldsymbol{p} \cdot (\operatorname{CO}_2 \operatorname{C}_6 \operatorname{F}_5)_2 \\ \text{Derivat-A} \end{array}$
-154,7	m, br		32	$\begin{array}{c} \text{Te}(\text{CF}_3)_2 \textbf{p} \cdot (\text{CO}_2 \text{C}_6 \text{F}_5)_2 \\ \text{Derivat-B} \end{array}$
-164,0	m		67	$Te(CF_3)_2m-(CO_2C_6F_5)_2$ Derivat-A
-164,5	m, br		64	$\begin{array}{c} \operatorname{Te}(\operatorname{CF}_3)_2 \textit{m}\text{-}(\operatorname{CO}_2\operatorname{C}_6\operatorname{F}_5)_2\\ \text{Derivat-B} \end{array}$

Tabelle 5.36: $^{19}\text{F-NMR-Spektrum von}\ \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{C}_6\text{F}_5)_2$ in THF.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,8	S		1	$Te(CF_3)_2(CO_2C_6F_5)_2$
				Derivat
-45,9	S	$^{2}J(^{125}Te^{-19}F) = 30$	21	$\operatorname{Te}(\mathbf{CF_3})_{2}(\operatorname{CO}_2\mathrm{C}_6\mathrm{F}_5)_{2}$
				Derivat-A
-50,5	S	${}^{1}J({}^{19}F{-}^{13}C) = 371$	100	$\text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{F}_5)_{2}$
				Derivat-B
-140,1	m		14	$Te(CF_3)_2 o - (CO_2C_6F_5)_2$
				Derivat-A
-141,3	m, br		74	$Te(CF_3)_2 o - (CO_2C_6F_5)_2$
				Derivat-B
-150,7	m		7	$Te(CF_3)_2 p-(CO_2C_6F_5)_2$
				Derivat-A
-152,7	m, br		37	$Te(CF_3)_2 p-(CO_2C_6F_5)_2$
				Derivat-B
-163,2	m		15	$Te(CF_3)_2 m - (CO_2C_6F_5)_2$
				Derivat-A
-163,7	m, br		74	$Te(CF_3)_2 m - (CO_2C_6F_5)_2$
				Derivat-B

Tabelle 5.37: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6F_5)_2$ in EtCN.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,5	S		3	$\mathrm{Te}(\mathbf{CF_3})_{2}(\mathrm{CO}_2\mathrm{C}_6\mathrm{F}_5)_{2}$
-45,1	S	$^{2}J(^{125}Te^{-19}F) = 51$	28	Derivat Te(CF_3) ₂ ($CO_2C_6F_5$) ₂ Derivat-A
-47,3			1	$Te(CF_3)_2(CO_2C_6F_5)_2$ Derivat
-49,9	br		100	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_2(\text{CO}_2\text{C}_6\text{F}_5)_2\\ \text{Derivat-B} \end{array}$
-80,0	d	$^{2}J(^{19}F-^{1}H) = 79 Hz$	1	CF ₃ H
-139,3	m		19	$\begin{array}{c} \operatorname{Te}(\operatorname{CF}_3)_2 \boldsymbol{o} \cdot (\operatorname{CO}_2 \operatorname{C}_6 \operatorname{F}_5)_2 \\ \text{Derivat-A} \end{array}$
-141,0	m, br		74	$Te(CF_3)_2 o - (CO_2C_6F_5)_2$ Derivat-B
-150,7	m		10	$Te(CF_3)_2 p - (CO_2C_6F_5)_2$ Derivat-A
-153,5	m, br		38	$Te(CF_3)_2 p - (CO_2C_6F_5)_2$ Derivat-B
-162,9	m		18	$Te(CF_3)_2m-(CO_2C_6F_5)_2$ Derivat-A
-163,7	m, br		73	$Te(CF_3)_2m-(CO_2C_6F_5)_2$ Derivat-B

Tabelle 5.38: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6F_5)_2$ in Et_2O .

Tabelle 5.39: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6F_5)_2$ in D_2O .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,3	S		14	$Te(CF_3)_3^+$
-53,7	S		83	$Te(CF_3)_2R_2$
-63,3	S		12	$Te(CF_3)R_4^-$
-79,7	d	$^{3}J(^{19}F^{-1}H) = 79 Hz$	8	CF ₃ H
-144,3	m		100	o-HCO ₂ C ₆ F ₅
-155,5	m		57	<i>p</i> -HCO ₂ C ₆ F ₅
-162,6	m		99	m-HCO ₂ C ₆ F ₅

5.1.3.1 Kristallstruktur von $Te(CF_3)_2(CO_2C_6F_5)_2$

Sämtliche Kristalle von Te $(CF_3)_2(CO_2C_6F_5)_2$ aus den verschiedenen Lösungsmitteln sind außerhalb der jeweiligen Mutterlösung nicht dauerhaft stabil. Als am besten geeignet für röntgenographische Untersuchungen sind diejenigen aus den Kristallisationsversuchen mit Toluol. Die röntgenographische Untersuchung wird mit Hilfe eines IP-Diffraktometers (STOE IPDS II) durchgeführt. Die Lösung und Verfeinerung der Struktur wird mit den Programmen SIR-92^[69] und SHELXL-97^[70] vorgenommen. Te $(CF_3)_2(CO_2C_6F_5)_2$ kristallisiert in der Raumgruppe P-1 (Nr. 2) mit 2 Formeleinheiten in der Elementarzelle. Die Molekülstruktur kann nicht zweifelsfrei aufgeklärt werden, da ein Zwillingskristall oder eine Fehlordnung der Liganden die Verfeinerung komplizieren. Wo es möglich ist, werden die Atome anisotrop verfeinert. Die Kristalldaten und Strukturverfeinerungsparamter (Tab. 5.40), Atomlagen (Tab. 5.41), anisotropen Auslenkungsparamter (Tab. 5.42) und ausgewählte Bindungslängen und Winkel (Tab. 5.43) sind angegeben.

Summenformel		C ₁₆ F ₁₆ O ₄ Te
Molmasse / g/mol		687.76
Gitterparameter	a /pm	7,619(2)
	b/pm	10,291(3)
	c/pm	16,766(5)
	α / °	95,89(2)
	β / °	90,06(2)
	γ/ °	89,99(2)
Zellvolumen / 10 ⁶	⁵ pm ³	1307,8(7)
Formeleinheiten		2
Kristallsystem		triklin
Raumgruppe		P-1
Kristallform		Prisma
Farbe		farblos
Messtemperatur /	Κ	273(2)
Messgerät		IPDS II
Messgeometrie		$0 \le \omega \le 180^\circ; \psi = 0^\circ$
		$0 \le \omega \le 180^\circ; \psi = 90^\circ$
		$\Delta \omega = 2^{\circ}$
		180 Bilder
Belichtungszeit /	min	5
Absorptionskorre	ktur	numerisch, nach Kristallgestaltoptimierung ^[74,75]
Messbereich	$2\theta_{\min/\max}/\circ$	1,99 / 27,32
Indexbereich	h _{min / max}	-9 / 8
	k _{min / max}	-13 / 12
	l _{min / max}	-21 / 21
F(000)		648
Absorptionskoeff	izient /mm $^{-1}$	1,269
Dichte Dx / g/cm ²	3	1,747
R _{int}		0,1391
Strukturlösung / -	verfeinerung	SIR-92 ^[69] und SHELXL-97 ^[70]
gemessene Reflex	æ	12187
unabhängige Refl	exe	5590
beobachtete Refle	exe	2170
σ -Schranke		$[I > 2\sigma(I)]$
S_2 (beobachtet / a	lle Daten)	1,549 / 1,549
R ₁ (beobachtet / a	alle Daten)	0,1653 / 0,2408
wR ₂ (beobachtet	/ alle Daten)	0,3702 / 0,3962
$\Delta \rho_{\rm min/max}$ /10 ⁶ e·1	pm^{-3}	-0,864 / 2,553
Extinktionskoeffiz	zient	0,071(8)
Wichtung a/b		0,1 / 0
Anzahl Parameter	/ Beschränkungen / Daten	210 / 0 / 5590

Tabelle 5.40: Kristalldaten und Strukturverfeinerungsparameter von $Te(CF_3)_2(CO_2C_6F_5)_2$

Atom	x/a	y/b	z/c	U _{eq}
Te1	0.75005(17)	0.64024(14)	-0.00076(9)	0.0649(7)
01	0.756(3)	0.7013(16)	0.1203(9)	0.118(7)
C1	0.566(6)	0.663(4)	0.142(3)	0.151(13)
C12	0.667(2)	0.6940(18)	0.2748(11)	0.054(4)
C15	0.332(4)	0.718(3)	0.3623(16)	0.084(7)
F14	0.440(5)	0.749(3)	0.483(2)	0.235(12)
C11	0.530(6)	0.692(4)	0.226(3)	0.159(14)
C14	0.426(18)	0.734(12)	0.385(8)	0.39(6)
011	0.497(4)	0.542(8)	0.0986(15)	0.53(7)
C16	0.364(5)	0.684(4)	0.268(2)	0.132(11)
C13	0.634(6)	0.727(4)	0.372(3)	0.149(13)
F16	0.251(2)	0.6671(17)	0.2134(10)	0.118(5)
F13	0.753(2)	0.741(2)	0.4230(10)	0.138(6)
F12	0.837(3)	0.691(2)	0.2736(12)	0.150(7)
F15	0.163(3)	0.712(3)	0.3637(13)	0.170(8)
O2	0.754(4)	0.6636(18)	-0.1203(10)	0.129(8)
C22	1.149(5)	0.603(4)	-0.257(2)	0.130(11)
C25	0.878(5)	0.605(4)	-0.367(2)	0.137(11)
O21	1.023(4)	0.532(4)	-0.106(2)	0.189(11)
F23	1.341(3)	0.606(2)	-0.3571(15)	0.168(8)
F22	1.259(2)	0.6012(15)	-0.2149(10)	0.127(6)
C2	0.941(7)	0.620(6)	-0.140(3)	0.182(17)
C23	1.170(4)	0.605(3)	-0.3571(16)	0.078(7)
F24	1.088(6)	0.602(4)	-0.474(3)	0.275(16)
C21	0.969(6)	0.606(5)	-0.229(3)	0.169(15)
F26	0.670(2)	0.6077(17)	-0.2757(13)	0.144(7)
F25	0.7497(19)	0.6167(18)	-0.4254(8)	0.114(5)
C26	0.828(2)	0.6133(18)	-0.2769(11)	0.054(4)
C24	1.102(10)	0.609(7)	-0.381(5)	0.22(3)
F42	0.474(6)	0.796(4)	-0.043(3)	0.263(16)
F41	0.477(5)	0.823(4)	0.051(2)	0.254(14)
F43	0.613(11)	0.905(9)	-0.057(4)	0.45(3)
F31	0.894(9)	0.903(7)	-0.051(3)	0.37(3)
F32	1.035(5)	0.777(4)	-0.054(2)	0.240(13)
F33	1.027(5)	0.819(4)	0.044(2)	0.223(13)
C3	0.930(12)	0.809(8)	0.024(5)	0.34(3)
C4	0.579(11)	0.790(8)	0.010(5)	0.30(3)

Tabelle 5.41: Atomkoordinaten und äquivalente Temperaturfaktoren $U_{eq}~[10^{-4}~pm^2]$ von $Te(CF_3)_2(CO_2C_6F_5)_2$

 $U_{eq} = \frac{1}{3} \sum_{ij} a_i a_j A_{ij}$

Atom	n U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Te1	0.0541(8)	0.0652(10)	0.0742(10)	0.0016(6)	0.0006(5)	-0.0094(6)
O 1	0.23(2)	0.063(10)	0.062(10)	0.003(8)	0.009(12)	-0.024(12)
O11	0.15(3)	1.32(18)	0.064(15)	-0.11(4)	0.040(16)	-0.37(6)
F16	0.095(10)	0.141(14)	0.119(12)	0.011(10)	-0.017(9)	-0.017(9)
F13	0.129(13)	0.184(19)	0.097(11)	-0.012(11)	-0.030(10)	-0.013(12)
F12	0.136(14)	0.143(16)	0.165(17)	-0.008(12)	-0.042(12)	-0.025(12)
F15	0.121(15)	0.23(3)	0.160(18)	-0.002(15)	0.000(13)	-0.011(14)
O2	0.24(3)	0.074(12)	0.075(12)	0.006(9)	0.003(14)	0.004(14)
F23	0.115(14)	0.160(19)	0.22(2)	-0.009(16)	-0.037(14)	0.009(12)
F22	0.156(14)	0.090(11)	0.132(13)	0.005(9)	-0.076(12)	-0.002(10)
F26	0.090(10)	0.099(12)	0.24(2)	0.014(12)	0.021(12)	-0.006(9)
F25	0.091(9)	0.180(16)	0.074(9)	0.032(9)	-0.007(7)	-0.017(10)

Tabelle 5.42: Koeffizienten der anisotropen Temperaturfaktoren U_{ij} [10⁻⁴ pm²] von Te(CF₃)₂(CO₂C₆F₅)₂

 $U_{ij} = e^{[-2\pi(h^2 a^{*2} U_{11} + \dots + 2hka^* b^* U_{12})]}$

Atom 1	Atom 2	Abstand /Å	Atom 1	Atom 2	Atom 3	Winkel /°
Te1	C4	2.01(9)	C4	Te1	O2	86(2)
Te1	O2	2.043(18)	C4	Te1	O1	77(2)
Te1	O1	2.063(15)	O2	Te1	O1	155.5(7)
Te1	C3	2.22(9)	C4	Te1	C3	79(3)
01	C1	1.56(5)	O2	Te1	C3	90(2)
C1	C11	1.42(5)	C1	01	Te1	99(2)
C1	011	1.47(7)	C11	C1	O11	120(4)
C12	F12	1.30(3)	C11	C1	01	112(4)
C12	C11	1.33(5)	011	C1	O1	116(3)
C12	C13	1.64(4)	C11	C12	C13	119(3)
C15	C14	0.82(13)	C14	C15	C16	110(10)
C15	F15	1.29(3)	C12	C11	C1	116(4)

Tabelle 5.43: Ausgewählte interatomare Abstände und Winkel von $Te(CF_3)_2(CO_2C_6F_5)_2$

5 Experimenteller Teil

Atom 1	Atom 2	Abstand /Å	Atom 1	Atom 2	Atom 3	Winkel /°
C15	C16	1.60(4)	C1	C11	C16	129(4)
F14	C14	1.64(11)	C15	C14	F14	122(10)
C11	C16	1.45(5)	C13	C14	F14	94(8)
C14	C13	1.60(12)	F16	C16	C11	105(3)
C16	F16	1.25(4)	F16	C16	C15	128(3)
C13	F13	1.25(4)	C11	C16	C15	127(3)
O2	C2	1.52(6)	F13	C13	C14	128(6)
C22	F22	1.09(4)	F13	C13	C12	124(3)
C22	C21	1.45(5)	C14	C13	C12	107(6)
C22	C23	1.69(5)	C2	O2	Te1	100(3)
C25	F25	1.40(4)	F22	C22	C21	121(4)
C25	C26	1.55(4)	F22	C22	C23	124(3)
C25	C24	1.72(8)	C21	C22	C23	114(4)
O21	C2	1.28(6)	F25	C25	C26	121(3)
F23	C23	1.30(3)	F25	C25	C24	126(4)
F23	C24	1.87(8)	C26	C25	C24	113(4)
C2	C21	1.50(6)	O21	C2	C21	112(5)
C23	C24	0.67(7)	O21	C2	O2	125(5)
F24	C24	1.55(7)	C21	C2	O2	110(4)
C21	C26	1.35(5)	C24	C23	C22	123(8)
F26	C26	1.21(2)	C26	C21	C22	124(4)
F42	C4	1.20(8)	C26	C21	C2	118(4)
F41	C4	1.07(8)	C22	C21	C2	117(4)
F43	C4	1.74(9)	F26	C26	C25	105(2)
F31	C3	1.68(9)	C21	C26	C25	112(3)

Tabelle 5.43: Fortsetzung.

5.1.4 Bis(trifluormethyl)tellurbis(2,6-difluorbenzoat)

$$\operatorname{Te}(\mathrm{CF}_3)_2 \operatorname{Br}_2 + 2\operatorname{AgCO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{F}_2 \xrightarrow[-30\,^{\circ}\mathrm{C}]{} \operatorname{Te}(\mathrm{CF}_3)_2 (\operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{F}_2)_2 + 2\operatorname{AgBr}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{F}_2)_2 + 2\operatorname{AgBr}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{F}_2)_2 + 2\operatorname{AgBr}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{C}_2 \operatorname{C}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{C}_2 \operatorname{C}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{C}_2 \operatorname{C}_2 \operatorname{C}_2 \operatorname{C}_6 \operatorname{H}_3 \operatorname{C}_2 \operatorname{C}$$

 Tabelle 5.44:
 Reaktionsansatz

Substanz	M / $g \cdot mol^{-1}$	n / mmol	m / g
$Te(CF_3)_2Br_2$	425,42	0,38	0,16
$AgCO_2C_6H_3F_2$ Toluol	264,96	1,43	0,38

Te(CF₃)₂Br₂ wird in einem Schlenk-Kolben vorgelegt und mit 20 ml Toluol aufgeschlemmt. Der Ansatz wird in einem Isopropanol-Trockeneis-Kühlbad auf ca. -30 °C temperiert und unter Rühren erfolgt die Zugabe einer Lösung von AgCO₂C₆H₃F₂ in 10 ml Toluol. Danach wird auf Raumtemperatur erwärmt und noch 2 Stunden weitergerührt bis die ¹⁹F-NMR-Spektren zur Reaktionskontrolle (Tab. 5.45) das Ende der Reaktion anzeigen. Von dem ausgefallenen Feststoff wird die Lösung abpipettiert und anschließend bei Raumtemperatur im Vakuum eingeengt, bis ein weißer Feststoff mit einer Ausbeute von 0,14 g (0,24 mmol; 64 %; M = 579,80 g/mol) resultiert. NMR-Spektren in verschiedenen Lösungsmitteln (Tab. 5.50 - Tab. 5.54), sowie Massen- (Tab. 5.48), IR-Spektren (Tab. 5.49), Schmelzpunktbestimmung (Tab. 5.47) und CHNS-Analyse (Tab. 5.46) charakterisieren das Produkt als Te(CF₃)₂(CO₂C₆H₃F₂)₂.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-19,1	S		1	CF ₃ Br
-22,7	S	$^{2}J(^{125}Te^{-19}F) = 54$	5	$Te(CF_3)_2$
$-45,3^{x}$	S	${}^{1}J({}^{19}F{}-{}^{13}C) = 364$	100	$Te(CF_3)_2(CO_2C_6H_3F_2)_2$
		$^{2}J(^{125}Te^{-19}F) = 47$		
		$^{2}J(^{123}Te^{-19}F) = 38$		
		${}^{4}J({}^{19}F-{}^{19}F) = 4.8$		
-45,8	S	×	2	CF ₃ Te(IV)-Verbindung
-49,2	d	$^{3}J(^{19}F-^{19}F) = 8,7$	2	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-49,8	br		2	$CF_{3}Te(IV)$ -Verbindung
-97,0	br		2	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-110,0	m, br		66	$Te(CF_3)_2(CO_2C_6H_3F_2)_2$
-110,5	br		<1	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-111,5	m, br		21	$AgCO_2C_6H_3F_2$

 $^{x} \delta^{125}$ Te = 1027.

Tabelle 5.46: CHNS-Analyse von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$.

	C / %	Н/%	N / %	S / %
berechnet	33,14	1,04	0	0
gemessen	34,48	2,00	0	0

 $\label{eq:constant} \mbox{Tabelle 5.47: Schmelzpunktanalyse von } Te(CF_3)_2(CO_2C_6H_3F_2)_2.$

Verbindung	Schmelzpunkt / °C	Zersetzungstemperatur / °C
$Te(CF_3)_2(CO_2C_6H_3F_2)_2$	146	-

m/z	rel. Intensität / %	Zuordnung
513	90	$Te(CF_3)(CO_2C_6H_3F_2)_2^+$
435	6	
425	70	$Te(CF_3)_2(CO_2C_6H_3F_2)^+$
391	6	
337	6	$Te(CF_3)_3^+$
312	6	
268	12	$Te(CF_3)^+_2$
199	6	$Te(CF_3)^{+}$
158	92	$HCO_2C_6H_3F_2^+$
141	100	$COC_6H_3F_2^+$
114	18	$HC_6H_3F_2^+$
92	8	$C_6H_8^+$
69	6	CF_3^+
44	66	CO_2^+
18	48	H_2O^+

 $\label{eq:constraint} \textbf{Tabelle 5.48:} Massenspektrum von \ Te(CF_3)_2(CO_2C_6H_3F_2)_2.$

 $\label{eq:constraint} \mbox{Tabelle 5.49: IR-Spektrum von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$}.$

IR / a	cm^{-1}	Zuordnung	IR / a	cm^{-1}	Zuordnung	IR /	cm^{-1}
3448	w,br		1367	m		804	m
3106	W		1335	W		771	W
2963	W		1294	W		747	W
2672	w,br		1274	w,sh		735	W
2558	w,br		1262	m	<i>v</i> (CO)	686	W
1701	m		1240	W		596	W
1628	S		1189	S	$v(CF_3)$	582	w,sh
1606	m		1131	m	v(CF)	520	W
1701	m,br		1109	m	v(CF)	463	W
1628	S	v(CO)	1056	S	$v(CF_3)$	441	W
1606	m		1020	m	C C	410	W
1470	m	v(CO)	919	W			
1420	W		862	W			

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-41,0	br		9	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_2(\mathbf{CO}_2\mathbf{C}_6\mathbf{H}_3\mathbf{F}_2)_2\\ \text{Derivat} \end{array}$
-44,1	S	${}^{1}J({}^{19}F-{}^{13}C) = 362$ ${}^{2}J({}^{125}Te-{}^{19}F) = 70$ ${}^{2}J({}^{123}Te-{}^{19}F) = 58$ ${}^{4}J({}^{19}F-{}^{19}F) = 5,0$	100	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_2(\text{CO}_2\text{C}_6\text{H}_3\text{F}_2)_2\\ \text{Derivat} \end{array}$
-44,5	S		4	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{H}_3\text{F}_2)_2\\ \text{Derivat} \end{array}$
-46,8	d	${}^{2}J({}^{125}Te - {}^{19}F) = 123$ ${}^{3}J({}^{19}F - {}^{19}F) = 9,4$	30	$\mathrm{Te}(\mathbf{CF_3})_{2}\mathrm{F}(\mathrm{CO}_{2}\mathrm{C}_{6}\mathrm{H}_{3}\mathrm{F}_{2})$
-49,2	t	$^{3}J(^{19}F-^{19}F) = 8,6$	24 ^{<i>a</i>}	$Te(CF_3)_2F_2$
-104,2	m	$^{3}J(^{19}F-^{19}F) = 9,4$	8	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-109,1	m		10	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-109,4	m		65	$Te(CF_3)_2(CO_2C_6H_3F_2)_2$
-110,2	m		48	CO ₂ C ₆ H ₃ F ₂ -Verbindung

Tabelle 5.50: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ in CD_2Cl_2 .

^{*a*} Das Signal wird von einem breiten Signal überlagert.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-47,5	S	${}^{1}J({}^{19}F-{}^{13}C) = 362$ ${}^{2}J({}^{125}Te-{}^{19}F) = 71$ ${}^{2}J({}^{123}Te-{}^{19}F) = 59$	100	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{H}_3\text{F}_2)_2\\ \text{Derivat} \end{array}$
		${}^{4}J({}^{19}F-{}^{19}F) = 4,8$		
-47,9	d	$^{3}J(^{19}F-^{19}F) = 7,9$	4	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-50,2	t	${}^{3}J({}^{19}F{-}{}^{19}F) = 8,8$	13	$Te(CF_3)_2F_2$
-52,2	S		34	$\operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\operatorname{C}_6\operatorname{H}_3\operatorname{F}_2)_2$
				Derivat
-108,5	m		2	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-112,5	m		5	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-112,8	m		63	$Te(CF_3)_2(CO_2C_6H_3F_2)_2$
-113,8	m		37	$CO_2C_6H_3F_2$ -Verbindung

Tabelle 5.51: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ in CD_3CN .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-46,3	S		30	$Te(CF_3)_2(CO_2C_6H_3F_2)_2$
-48,4	S	${}^{2}J({}^{125}Te{}^{-19}F) = 46 \text{ Hz}$	1	$\operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\mathrm{C}_6\mathrm{H}_3\mathrm{F}_2)_2$
-48,8	S		5^a	$\operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\mathrm{C}_6\mathrm{H}_3\mathrm{F}_2)_2$
-49,3	br		5 ^{<i>a</i>}	Derivat Te($\mathbf{CF_3}$) ₂ ($\mathbf{CO}_2\mathbf{C}_6\mathbf{H}_3\mathbf{F}_2$) ₂
-49,5	br		5 ^{<i>a</i>}	Derivat Te(CF_3) ₂ (CO ₂ C ₆ H ₃ F ₂) ₂
-53 1	d	${}^{3}I({}^{19}F - {}^{19}F) = 7.7 \text{ Hz}$	100^{b}	Derivat Te(CF_2)_F(CO_2C_H_2F_2)
-56,5	br	J (I I) = 7,7 IL	100^{b}	$Te(CF_3)_2(CO_2C_6H_3F_2)_2$
				Derivat
-65,6	q		6	
-112,8	m		2	CO ₂ C ₆ H ₃ F ₂ -Verbindung
-114,3	m		91	$CO_2C_6H_3F_2$ -Verbindung

Tabelle 5.52: 19 F-NMR-Spektrum von Te $(CF_3)_2(CO_2C_6H_3F_2)_2$ in THF.

 a Die Signale überlagern, so dass eine genaue Integration nicht möglich ist. b Die Signale überlagern, so dass eine genaue Integration nicht möglich ist.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-44,5	br		40	$\operatorname{Te}(\mathbf{CF_3})_{2}(\operatorname{CO}_2\mathrm{C}_6\mathrm{H}_3\mathrm{F}_2)_{2}$
				Derivat
-45,9	S		5	$\operatorname{Te}(\mathbf{CF_3})_{2}(\operatorname{CO}_2\mathrm{C}_6\mathrm{H}_3\mathrm{F}_2)_{2}$
				Derivat
-49,3	d	$^{3}J(^{19}F-^{19}F) = 7,2$	10	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-52,7	t	$^{3}J(^{19}F-^{19}F) = 7,9$	16	$Te(CF_3)_2F_2$
-106,8	m		4	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-110,1	m		7	$Te(CF_3)_2F(CO_2C_6H_3F_2)$
-112,1	m		100	$CO_2C_6H_3F_2$ -Verbindung
-130,1	m		6	$Te(CF_3)_2F_2$

Tabelle 5.53: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6H_3F_2)_2$ in CD_3NO_2 .

δ Aufspaltung Kopplungskonstanten / Hz Integral Zuordnung -41,5 23 $Te(CF_3)_3^+$ S $\begin{array}{c} \operatorname{Te}(\operatorname{CF}_3)_3\\ \operatorname{Te}(\operatorname{CF}_3)_2\operatorname{R}_2\\ \operatorname{Te}(\operatorname{CF}_3)\operatorname{R}_4^-\\ \operatorname{CF}_3\operatorname{H}\\ \operatorname{HCO}_2\operatorname{C}_6\operatorname{H}_3\operatorname{F}_2\end{array}$ -52,8 100 s -62,5 s 8 -79,5 d 8 -113,9 94 m

 $\label{eq:constraint} \mbox{Tabelle 5.54:} \ ^{19}\mbox{F-NMR-Spektrum von } \mbox{Te}(\mbox{CF}_3)_2(\mbox{CO}_2\mbox{C}_6\mbox{H}_3\mbox{F}_2)_2 \ \mbox{in } \mbox{D}_2\mbox{O}.$

5.1.5 Bis(trifluormethyl)tellurbis(2-fluorbenzoat)

$$\operatorname{Te}(\mathrm{CF}_3)_2 \operatorname{Br}_2 + 2\operatorname{AgCO}_2 \operatorname{C}_6 \operatorname{H}_4 \operatorname{F} \xrightarrow{\operatorname{Toluol}}_{-30\,^\circ\mathrm{C}} \operatorname{Te}(\mathrm{CF}_3)_2 (\operatorname{CO}_2 \operatorname{C}_6 \operatorname{H}_4 \operatorname{F})_2 + 2\operatorname{AgBr}_3 \operatorname{H}_4 \operatorname{F}_3 \operatorname{H}_4 \operatorname{H}_4 \operatorname{H}_4 \operatorname{H}_4 \operatorname{H}_3 \operatorname{H}_4 \operatorname{H$$

 Tabelle 5.55:
 Reaktionsansatz

Substanz	M / g·mol $^{-1}$	n / mmol	m / g
$Te(CF_3)_2Br_2$	425,42	0,94	0,40
AgCO ₂ C ₆ H ₄ F Toluol	246,97	1,86	0,46

Te(CF₃)₂Br₂ wird in einem Schlenk-Kolben vorgelegt und mit 20 ml Toluol aufgeschlemmt. Der Ansatz wird in einem Isopropanol-Trockeneis-Kühlbad auf ca. -30 °C temperiert, und unter Rühren erfolgt die Zugabe einer Lösung von AgCO₂C₆H₄F in 10 ml Toluol. Danach wird auf Raumtemperatur erwärmt und noch 3 Tage weitergerührt, bis die ¹⁹F-NMR-Spektren zur Reaktionskontrolle (Tab. 5.56) das Ende der Reaktion anzeigen. Von dem ausgefallenen Feststoff wird die Lösung abpipettiert und anschließend bei Raumtemperatur im Vakuum eingeengt, bis ein weißer Feststoff als Rohprodukt mit einer Ausbeute von 0,52 g resultiert. NMR-Spektren in verschiedenen Lösungsmitteln (Tab. 5.62 - Tab. 5.65), sowie Massen- (Tab. 5.60), IR-Spektren (Tab. 5.61), Schmelzpunktbestimmung (Tab. 5.58) und CHNS-Analyse (Tab. 5.57) charakterisieren das Produkt als Te(CF₃)₂(CO₂C₆H₄F)₂.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-19,1	S		2	CF ₃ Br
-22,6	S	$^{2}J(^{125}Te^{-19}F) = 53$	18	$Te(CF_3)_2$
-46,3	S	${}^{1}J({}^{19}F{-}^{13}C) = 362$	100	$Te(CF_3)_2(CO_2C_6H_4F)_2$
		$^{2}J(^{125}Te^{-19}F) = 45$		
		$^{2}J(^{123}Te^{-19}F) = 39$		
-49,3	d	$^{3}J(^{19}F-^{19}F) = 8,6$	8	$Te(CF_3)_2F(CO_2C_6H_4F)$
-108,1	m, br		34	CO ₂ C ₆ H ₄ F-Verbindung
-108,3	m, br		31	CO ₂ C ₆ H ₄ F-Verbindung

Tabelle5.56: 19 F-NMR-Spektrum zur Reaktionskontrolle der Synthese von
Te(CF₃)₂(CO₂C₆H₄F)₂ in Toluol (Probenentnahme nach 72 h).

Tabelle 5.57: CHNS-Analyse von $Te(CF_3)_2(CO_2C_6H_4F)_2$.

	C / %	Н/%	N / %	S / %
berechnet	35,34	1,48	0	0
gemessen	37,47	1,61	0	0

Tabelle 5.58: Schmelzpunktanalyse von $Te(CF_3)_2(CO_2C_6H_4F)_2$.

Verbindung	Schmelzpunkt / °C	Zersetzungstemperatur / °C
$Te(CF_3)_2(CO_2C_6H_4F)_2$	144	-

Tabelle 5.59: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6H_4F)_2$ in Toluol nach Schmelzpunktbestimmung.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-46,3	S	${}^{1}J({}^{19}F-{}^{13}C) = 367$ ${}^{2}I({}^{125}Te-{}^{19}F) = 45$	100	$\mathrm{Te}(\mathbf{CF_3})_{2}(\mathrm{CO}_{2}\mathrm{C}_{6}\mathrm{H}_{4}\mathrm{F})_{2}$
-108,0 -108,2	m, br m, br	J(10 1)-+J	47^{a} 33^{a}	$CO_2C_6H_4F$ -Verbindung Te(CF ₂) ₂ (CO ₂ C ₄ H ₄ F) ₂

^a Die Signale überlagern, so dass eine genaue Integration nicht möglich ist.

Zuordnung rel. Intensität / % m/z $\frac{\text{Te}(\text{CF}_3)(\text{CO}_2\text{C}_6\text{H}_4\text{F})_2^+}{\text{Te}(\text{CF}_3)_2(\text{CO}_2\text{C}_6\text{H}_4\text{F})^+}$ $\begin{array}{c} {\rm Te}({\rm CF}_3)_2^+ \\ {\rm Te}({\rm CF}_3)^+ \end{array}$ $\begin{array}{c} \text{HCO}_2\text{C}_6\text{H}_4\text{F}^+ \\ \text{COC}_6\text{H}_4\text{F}^+ \\ \text{C}_6\text{H}_4\text{F}^+ \\ \text{C}_6\text{H}_3\text{F}^+ \\ \text{H}_2\text{O}^+ \end{array}$

Tabelle 5.60: Massenspektrum von $Te(CF_3)_2(CO_2C_6H_4F)_2$.

IR /	cm^{-1}	Zuordnung	IR / a	cm^{-1}	Zuordnung
3425	w,br		1163	m,sh	$\nu(CF)$
3071	w,br		1133	S	$\nu(CF)$
2963	m		1092	s,br	$\nu(CF)$
2925	w,sh		1056	S	$v(CF_3)$
2854	w,sh		1030	m,sh	-
2705	w,sh		919	w,br	
2666	w,sh		868	W	
2594	w,sh		845	W	
2549	w,sh		809	m,sh	
1941	W		801	m	
1697	S		755	S	
1615	S	v(CO)	734	W	
1604	m,sh		696	w,sh	
1578	W		689	W	
1489	m		662	m,sh	
1464	m	v(CO)	654	m	
1419	W		575	W	
1364	m		549	W	
1329	s,br		519	W	
1260	S	v(CO)	483	W	
1234	m		436	W	
1186	S	$v(CF_3)$			

 $\label{eq:constraint} \textbf{Tabelle 5.61: IR-Spektrum von } Te(CF_3)_2(CO_2C_6H_4F)_2.$

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-41,5 ^x	S	$^{2}J(^{125}Te^{-19}F) = 42$	21	$\begin{array}{c} \text{Te}(\textbf{CF_3})_{\textbf{2}}(\text{CO}_2\text{C}_6\text{H}_4\text{F})_2\\ \text{Derivat} \end{array}$
-45,0 ^y	S	${}^{1}J({}^{19}F-{}^{13}C) = 361$ ${}^{2}J({}^{125}Te-{}^{19}F) = 65$ ${}^{2}J({}^{123}Te-{}^{19}F) = 54$ ${}^{4}J({}^{19}F-{}^{19}F) = 4,7$	100	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{H}_4\text{F})_2\\ \text{Derivat} \end{array}$
-45,2	S		2	$\begin{array}{c} \text{Te}(\textbf{CF_3})_{\textbf{2}}(\text{CO}_2\text{C}_6\text{H}_4\text{F})_2\\ \text{Derivat} \end{array}$
-47,3	d	$^{3}J(^{19}F-^{19}F) = 8,8$	8	$Te(CF_3)_2F(CO_2C_6H_4F)$
-49,5	br		14	$\operatorname{Te}(\mathbf{CF_3})_2(\operatorname{CO}_2\mathrm{C}_6\mathrm{H}_4\mathrm{F})_2$
				Derivat
-101,6	m		3	$Te(CF_3)_2 F(CO_2C_6H_4F)$
-108,5	m		2	$Te(CF_3)_2F(CO_2C_6H_4F)$
-108,9	m		34	$Te(CF_3)_2(CO_2C_6H_4F)_2$
-109,6	m		17	$CO_2C_6H_4F$ -Verbindung

Tabelle 5.62: $^{19}\mbox{F-NMR-Spektrum von }Te(CF_3)_2(CO_2C_6H_4F)_2$ in $CD_2Cl_2.$

 $^{x} \delta^{125}$ Te = 881. $^{y} \delta^{125}$ Te = 999.

Tabelle 5.63: $^{19}\text{F-NMR-Spektrum von Te}(\text{CF}_3)_2(\text{CO}_2\text{C}_6\text{H}_4\text{F})_2$ in THF.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-46,7	8		51	$\text{Te}(\mathbf{CF_3})_{2}(\text{CO}_2\text{C}_6\text{H}_4\text{F})_{2}$
				Derivat
-48,4	S	$^{2}J(^{125}Te^{-19}F) = 45$	2	$Te(CF_3)_2(CO_2C_6H_4F)_2$
				Derivat
-49,8	S	$^{2}J(^{125}Te^{-19}F) = 15$	15	$Te(CF_3)_2(CO_2C_6H_4F)_2$
				Derivat
-56,8	br		100	$Te(CF_3)_2(CO_2C_6H_4F)_2$
				Derivat
-65,5	br		6	
-111,2	m		5	CO ₂ C ₆ H ₄ F-Verbindung
-112,0	m		65	$Te(CF_3)_2(CO_2C_6H_4F)_2$

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-43,9	br		100	$Te(CF_3)_2(CO_2C_6H_4F)_2$
				Derivat
-45,2	S	$^{2}J(^{125}Te^{-19}F) = 17$	16	$Te(CF_3)_2(CO_2C_6H_4F)_2$
				Derivat
-46,6	S	$^{2}J(^{125}Te^{-19}F) = 46$	27	$Te(CF_3)_2(CO_2C_6H_4F)_2$
				Derivat
-49,6	br		10	$Te(CF_3)_2(CO_2C_6H_4F)_2$
				Derivat
-79,8	d	$^{2}J(^{19}F-^{1}H) = 79$	18	CF ₃ H
-80,5	t	$^{2}J(^{19}F-^{2}D) = 12$	28	CF_3D
-110,9	m		8	CO ₂ C ₆ H ₄ F-Verbindung
-111,6	m		73	$\rm CO_2C_6H_4F$ -Verbindung

Tabelle 5.64: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(CO_2C_6H_4F)_2$ in CD_3NO_2 .

Tabelle 5.65: $^{19}\text{F-NMR-Spektrum von } \text{Te}(\text{CF}_3)_2(\text{CO}_2\text{C}_6\text{H}_4\text{F})_2 \text{ in } \text{D}_2\text{O}.$

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-43,9	S		15	$Te(CF_3)_3^+$
-53,7	S		100	$Te(CF_3)_2R_2$
-63,2	S		18	$Te(CF_3)R_4^-$
-79,5	d		26	CF ₃ H
-113,1	m		77	$HCO_2C_6H_4F$

5.1.6 Bis(trifluormethyl)tellurbis(trifluormethylsulfonat)

 Tabelle 5.66:
 Reaktionsansatz

Substanz	M / g·mol $^{-1}$	n / mmol	m / g
$\begin{tabular}{ c c c c c }\hline $Te(CF_3)_2F_2$ \\ $Me_3SiSO_3CF_3$ \\ CH_2Cl_2 \\ \hline \end{tabular}$	303,61	2,54	0,77
	222,26	7,61	1,69

Te(CF₃)₂F₂ wird in einem Schlenk-Kolben vorgelegt und in 20 ml CH₂Cl₂ gelöst. Der Ansatz wird in einem Isopropanol-Trockeneis-Kühlbad auf ca. -30 °C temperiert und unter Rühren erfolgt die Zugabe von Me₃SiSO₃CF₃ im 1,7 fachen Überschuß. Nach wenigen Minuten fällt ein weißer Feststoff aus, und nach 30 Minuten sind in den ¹⁹F-NMR-Spektren zur Reaktionskontrolle (siehe Tab. 5.67) bei Raumtemperatur keine Signale der Edukte mehr zu erkennen, was das Ende der Reaktion andeutet. Die Spektren zeigen neben den Signalen des Produkts Te(CF₃)₂(SO₃CF₃)₂ noch weitere Signale von fluorhaltigen Verbindungen, u.a. die des Beiprodukts Me₃SiF. Der Ansatz wird auf Raumtemperatur erwärmt und 30 Minuten weitergerührt. Das Lösungsmittel und die leichtflüchtigen Komponenten werden bei Raumtemperatur unter vermindertem Druck abkondensiert, und ein weißer Feststoff resultiert mit einer Aubeute von 1,35 g (2,40 mmol; 94 %; 563,75 g/mol) als Produkt. NMR-Spektren in verschiedenen Lösungsmitteln (Tab. 5.72 - Tab.5.76) sowie Massen-(Tab. 5.70) und IR-Spektren (Tab. 5.71), Schmelzpunktbestimmung (Tab. 5.69) und CHNS-Analyse (Tab. 5.68) werden zur Charakterisierung des Produkts angefertigt. Der Feststoff ist für Untersuchungen durch Raman-Spektroskopie nicht geeignet. Eine

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-41,8	S	$^{2}J(^{125}Te^{-19}F) = 98$	7	CF ₃ Te(IV)-Verbindung
-46,0	d	$^{2}J(^{125}Te^{-19}F) = 105$	13	$Te(CF_3)_2F(SO_3CF_3)$
		$^{3}J(^{19}F-^{19}F) = 7,2$		
-46,4	S	$^{2}J(^{125}Te^{-19}F) = 72$	11	$CF_3Te(IV)$ -Verbindung
-47,5	S	$^{2}J(^{125}Te^{-19}F) = 77$	9	$CF_3Te(IV)$ -Verbindung
-48,1	S	$^{2}J(^{125}Te^{-19}F) = 72$	4	$CF_3Te(IV)$ -Verbindung
-76,9	S		6	SO ₃ CF ₃ -Verbindung
-78,3	S		99	SO ₃ CF ₃ -Verbindung
-79,1	S		51	SO ₃ CF ₃ -Verbindung
-132,7	sept	J = 6, 1	2	"Me ₂ SiF ₂ "
-158,6	dec	${}^{1}J({}^{29}Si - {}^{19}F) = 274$	100	Me ₃ SiF
		$^{3}J(^{19}F^{-1}H) = 7,3$		U U

Tabelle 5.67: ¹⁹F-NMR-Spektrum zur Reaktionskontrolle der Synthese von $Te(CF_3)_2(SO_3CF_3)_2$ in CH_2Cl_2 (Probenentnahme nach 30 min).

Sublimation ist nicht erfolgreich, es scheidet sich ein Flüssigkeitsfilm am Kühlfinger ab, und Kristallisationsansätze liefern keine Einkristalle von $Te(CF_3)_2(SO_3CF_3)_2$. Für die Untersuchungen zum Verhalten in Wasser wird etwas $Te(CF_3)_2(SO_3CF_3)_2$ in H₂O gelöst und mit NaOH titriert. Die Titrationsurve ist in Abbildung 5.2 wiedergegeben. Zu einer NMR-Probe von $Te(CF_3)_2(SO_3CF_3)_2$ in CH₃CN wird etwas Wasser gegeben und mit einer entsprechend vorbereiteten NMR-Probe von $Te(CF_3)_2(CO_2CF_3)_2$ in CH₃CN/H₂O vermischt und untersucht.

Tabelle 5.68: CHNS-Analyse von $Te(CF_3)_2(SO_3CF_3)_2$.

	C / %	Н/%	N / %	S / %
berechnet	8,52	0	0	11,38
gemessen	8,69	0,21	0	10,35

 $\label{eq:constraint} \textbf{Tabelle 5.69:} Schmelzpunktanalyse von Te(CF_3)_2(SO_3CF_3)_2.$

Verbindung	Schmelzpunkt / °C	Zersetzungstemperatur / °C
$Te(CF_3)_2(SO_3CF_3)_2$	>350	>350

Tabelle 5.70: Massenspektrum von $Te(CF_3)_2(SO_3CF_3)_2$.

m/z	rel. Intensität / %	Zuordnung
497	5	$Te(CF_3)(SO_3CF_3)_2^+$
417	100	$Te(CF_3)_2(SO_3CF_3)^+$
394	4	$(\text{TeCF}_3)_2^+$
287	18	$Te(CF_3)_2F^+$
268	72	$Te(CF_3)^+_2$
213	5	
199	62	$Te(CF_3)^+$
180	12	$TeCF_2^+$
149	12	TeF ⁺
130	12	Te ⁺
69	62	CF_3^+

Tabelle 5.71: IR-Spektrum von $Te(CF_3)_2(SO_3CF_3)_2$.

IR / cm^{-1}		Zuordnung	IR / c	IR / cm^{-1}	
1618	W	<i>v</i> (SO)	769	W	
1262	S	v(SO)	736	W	
1230	W	v(SO oder CF)	728	W	
1179	S	$v(CF_3)$	652	sh	
1101	m	v(SO oder CF)	644	S	
1084	m	v(SO oder CF)	584	W	
1033	S	$v(CF_3)$	520	W	

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-47,9	S		4	$\begin{array}{c} \operatorname{Te}(\mathbf{CF_3})_{2}(\operatorname{SO_3CF_3})_{2}\\ \text{Derivat} \end{array}$
-49,1 ^{<i>x</i>}	S	${}^{1}J({}^{19}F-{}^{13}C) = 365$ ${}^{2}J({}^{125}Te-{}^{19}F) = 11$ ${}^{4}J({}^{19}F-{}^{19}F) = 6,8$	100	$\begin{array}{c} \text{Te}(\mathbf{CF_3})_2(\text{SO}_3\text{CF}_3)_2\\ \text{Derivat} \end{array}$
-59,6 ^y	S		1	$Te(CF_3)_2(SO_3CF_3)_2$ Derivat
-79,5	8	${}^{1}J({}^{19}F{-}^{13}C) = 318$	92	SO ₃ CF ₃

Tabelle 5.72: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(SO_3CF_3)_2$ in CD_3CN .

 $^{x} \delta^{125}$ Te = 1314. $^{y} \delta^{125}$ Te = 1545.

Tabelle 5.73: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(SO_3CF_3)_2$ in CD_3NO_2 .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-47,4	8	$^{2}J(^{125}Te^{-19}F) = 50$	5	$Te(CF_3)_2(SO_3CF_3)_2$
-48,2	S	${}^{1}J({}^{19}F-{}^{13}C) = 366$ ${}^{2}J({}^{125}Te-{}^{19}F) = 52$	43	Derivat Te(\mathbf{CF}_{3}) ₂ (SO ₃ CF ₃) ₂ Derivat
-59,6	S		1	$Te(CF_3)_2(SO_3CF_3)_2$
-79,3	S	${}^{1}J({}^{19}F-{}^{13}C) = 318$	100	Derivat SO ₃ CF ₃

Tabelle 5.74: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(SO_3CF_3)_2$ in Glyme.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-50,5 ^x	S	${}^{1}J({}^{19}F-{}^{13}C) = 366$ ${}^{2}J({}^{125}Te-{}^{19}F) = 23$ ${}^{4}J({}^{19}F-{}^{19}F) = 7.3$	100	$Te(CF_3)_2(SO_3CF_3)_2$
-79,3	S		60	SO ₃ CF ₃

 $^{x} \delta^{125}$ Te = 1318.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-47,6	s, br	${}^{2}J({}^{125}Te{}^{-19}F) = 197$	25	$Te(CF_3)_2(SO_3CF_3)_2$
-48,8	S	${}^{1}J({}^{19}F{}-{}^{13}C) = 366$	52	$Te(CF_3)_2(SO_3CF_3)_2$
-50,1	S	${}^{1}J({}^{19}F{}-{}^{13}C) = 367$	30	$Te(CF_3)_2(SO_3CF_3)_2$
-78,7	S		100	SO ₃ CF ₃

Tabelle 5.75: ¹⁹F-NMR-Spektrum von Te(CF₃)₂(SO₃CF₃)₂ in THF.

Tabelle 5.76: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(SO_3CF_3)_2$ in D_2O .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,4	S	2 J(125 Te $-^{19}$ F) = 25	6	$Te(CF_3)_3^+$
-54,0	S	${}^{1}J({}^{19}F{}-{}^{13}C) = 365$	100	$Te(CF_3)_2R_2$
		${}^{4}\mathrm{J}({}^{19}\mathrm{F}{-}^{19}\mathrm{F}) = 6,7$		
-63,4	S		2	$Te(CF_3)R_4^-$
-79,6	S	${}^{1}J({}^{19}F-{}^{13}C) = 317$	57	HSO ₃ CF ₃

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-42,6 ^x	S	$^{2}J(^{125}Te^{-19}F) = 25$	62	$Te(CF_3)_3^+$
-52,7 ^y	S	$^{1}J(^{19}F-^{13}C) = 365$	62	$Te(CF_3)_2R_2$
		${}^{4}\mathrm{J}({}^{19}\mathrm{F}{-}^{19}\mathrm{F}) = 6,7$		
$-62,4^{z}$	S		9	$Te(CF_3)R_4^-$
-76,2	S		34	HCO_2CF_3
-79,2	S	${}^{1}J({}^{19}F-{}^{13}C) = 317$	100	HSO ₃ CF ₃
-79,8	d	$^{2}J(^{19}F-^{1}H) = 79 Hz$	20	CF ₃ H

 $s_{x}^{x} \delta^{125} \text{Te} = 992.$ $s_{y}^{y} \delta^{125} \text{Te} = 1231.$ $s_{z}^{z} \delta^{125} \text{Te} = 1476.$

Abbildung 5.2: Die Abbildung zeigt die Titration einer Lösung von $Te(CF_3)_2(SO_3CF_3)_2$ in Wasser mit Natronlauge. Dargestellt sind die 5 einzelnen Messreihen, die jeweils 2 Umschlagspunkte aufweisen. Der erste Äquivalenzpunkt liegt bei ca. pH 4,5 und der zweite bei ca. pH 8.

5.1.6.1 Kristallstruktur von $[(Te(CF_3)_2)_3O_2][SO_3CF_3]_2$

Der kristalline Feststoff wird als Rückstand von nacheinander durchgeführten Kristallisationsversuchen erhalten. Zuerst wird in einer Sublimation versucht, das Produkt $\text{Te}(\text{CF}_3)_2(\text{SO}_3)_2$ als Einkristall am Kühlfinger abzuscheiden. Nachdem sich auch durch Erhitzen auf ca. 200 °C am Kühlfinger kein Feststoff abgeschieden hat, wird der in der Vorlage verbliebene Feststoff zuerst in Dichlormethan und anschließend in Benzol gelöst, um durch das Verdampfen des Lösungsmittels eine Kristallisation herbeizuführen. Dass ein kristalliner Feststoff entstanden ist, kann erst unter einem Polarisationsmikroskop erkannt werden. Der farblose kristalline Feststoff ist von einem bräunlichen Pulver umhüllt und an Raumluft längere Zeit stabil. Massenspektren (Tab. 5.78) zeigen Fragmente, die mehrere Te-Atome aufweisen. Es kann ein Kristall mit der monoklinen Raumgruppe P-1 (Nr. 2) mit 2 Formeleinheiten in der Elementarzelle analysiert werden. Die röntgenographische Untersuchung wird mit Hilfe eines IP-Diffraktometers (STOE IPDS I) durchgeführt. Die Lösung und Verfeinerung der Struktur wird mit den Programmen SIR-92^[69] und SHELXL-97^[70] vorgenommen. Die Kristalldaten und Strukturverfeinerungsparameter sind in Tabelle 5.79 zusammengefasst. Die Atomlagen (Tab. 5.80), die anisotropen Auslenkungsparamter (Tab. 5.81) und die Bindungslängen und -winkel (Tab. 5.82) sind angegeben. Die röntgenographische Untersuchung legt eine Verbindung der Struktur $[{Te(CF_3)_2}_3O_2][SO_3CF_3]_2$ nahe.

m/z	rel. Intensität / %	Zuordnung
1421	<4	mehr als 3 Te-Atome
1341	<4	mehr als 3 Te-Atome
1317	<4	mehr als 3 Te-Atome
1263	<4	mehr als 3 Te-Atome
1233	<4	mehr als 3 Te-Atome
1153	<4	
1109	<4	mehr als 3 Te-Atome
1059	<4	mehr als 3 Te-Atome
979	12	$[{Te(CF_3)_2}_{3}O_2]SO_3CF_3^+$
955	<4	
869	<4	
857	<4	
777	36	$Te_4O_3(CF_3)_2SO_3^+$
697	28	$Te_4O_3(CF_3)_2^+$
497	10	$Te(CF_3)(SO_3CF_3)_2^+$
417	86	$Te(CF_3)_2(SO_3CF_3)^+$
394	>4	$(\text{TeCF}_3)_2^+$
287	12	$Te(CF_3)_2F^+$
268	100	$Te(CF_3)_2^+$
199	70	TeCF ₃
180	20	$TeCF_2^+$
149	24	TeF ⁺
130	20	Te ⁺
69	86	CF_3^+

Tabelle 5.78: Massenspektrum der Überreste von $Te(CF_3)_2(SO_3CF_3)_2$ nach den Kristallisationsansätzen.
Summanfarmal		
Summenformel	1	$C_8F_{24}O_8S_2Ie_3$
Citternaremeter	1 0 /nm	1127 10.884(8)
Gitterparameter	a /pill	10,004(0) 11,002(11)
	o/pm	11,902(11) 12,070(8)
	c/pin	13,079(8)
	α	81,97(9)
	p_{1}	(10,90(7))
Zallualuman / 10	γ/ 10 mm 3	(05,08(8)) 1425 1(18)
Zenvolumen / 10	° pin-	1455,1(18)
<i>Vristellevetern</i>		
Ristalisystelli		$\begin{array}{c} \text{UIKIII} \\ \text{D} \ 1 \ (\text{Nr}, 2) \end{array}$
Kaumgruppe		P-1 (Nr. 2) Driama
Kiistainoinii		FIISIIIa
raibe Maastammanatur	/ V	
Messtemperatur	K	293(2)
Massgerat		1 FDS I
Messgeonneune		$0 \le \psi \le 230$
		$\Delta \psi = 2$
Daliahtungazait /	min	
A basentionalson		22 night durchaaführt
Massharaich	$20 \cdot 10^{\circ}$	2 31 / 28 27
Indexbaraich	$20 \min / \max /$	2,31720,27
IIIdexDefeicit	Ilmin / max	-14/14
	Kmin / max	-13713
F(000)	Imin / max	-1//1/
Absorptionskoaf	fizient $/mm^{-1}$	3 363
Dichte Dy / g/cm		2,608
R.	I.	0,5129
R _{int} Strukturlösung /	-verfeinerung	SIR-92 ^[69] und SHEI XI -97 ^[70]
gemessene Refle	xe	17670
unabhängige Ref	leve	6422
beobachtete Refl		1158
σ_{-} Schranke	exe	$[I > 2\sigma(I)]$
O-Schränke S. (hachachtat / alla Datan)		[1 > 20(1)] 0.603 / 0.603
S_2 (beobachtet / alle Daten) R_1 (beobachtet / alle Daten)		0,0952 / 0,3497
\mathbf{R}_1 (beobachtet / alle Daten) wR ₂ (beobachtet / alle Daten)		0.218 / 0.3513
Λ_{0} min (and 10^6 e.nm^{-3}		-2 459 / 1 265
Extinktionskooff	rient	-2, +3, 7, 1, 203 0, 0032(7)
Wichtung a/h	LIUII	0.1221/0
Anzahl Paramata	r / Beschränkungen / Doten	390 / 0 / 6422
		5707 07 0422

Tabelle 5.79: Kristalldaten und Strukturverfeinerungsparameter von $[{Te(CF_3)_2}_3O_2][SO_3CF_3]_2$

Atom	x/a	y/b	z/c	U _{eq}
Te1	1.7715(2)	-0.7723(3)	-0.4171(2)	0.0515(8)
Te2	1.9825(2)	-0.7431(3)	-0.6865(2)	0.0526(8)
Te3	2.2951(2)	-0.7959(3)	-0.9168(2)	0.0559(8)
O01	1.803(2)	-0.694(2)	-0.554(2)	0.065(7)
O02	2.104(2)	-0.715(2)	-0.8470(19)	0.049(6)
S 1	1.6934(9)	-0.8906(11)	-1.1289(8)	0.056(3)
C1	1.756(7)	-0.822(8)	-1.028(5)	0.13(2)
F11	1.709(4)	-0.724(5)	-1.039(3)	0.157(15)
F12	1.903(4)	-0.861(4)	-1.116(3)	0.181(15)
F13	1.825(4)	-0.929(4)	-0.984(4)	0.183(15)
C2	1.258(10)	-0.941(16)	-0.371(5)	0.34(9)
F21	1.167(5)	-0.883(7)	-0.287(4)	0.26(3)
F22	1.352(4)	-1.018(5)	-0.355(3)	0.22(3)
F23	1.309(4)	-0.843(4)	-0.424(3)	0.158(14)
S2	1.1633(12)	-0.9462(16)	-0.4608(9)	0.085(4)
O21	1.047(2)	-0.808(2)	-0.472(2)	0.064(7)
011	1.676(3)	-0.807(2)	-1.217(2)	0.063(7)
O22	1.104(3)	-1.024(3)	-0.409(3)	0.106(12)
O23	1.276(3)	-0.997(4)	-0.558(3)	0.112(13)
O12	1.792(3)	-1.019(4)	-1.154(3)	0.128(16)
013	1.564(3)	-0.888(4)	-1.049(2)	0.133(16)
C31	2.316(8)	-0.619(8)	-0.950(6)	0.22(4)
F122	1.599(3)	-0.565(3)	-0.255(2)	0.114(11)
F111	1.539(2)	-0.738(4)	-0.499(2)	0.142(15)
F323	2.121(3)	-0.788(5)	-1.047(2)	0.19(2)

Tabelle 5.80: Atomkoordinaten und äquivalente Temperaturfaktoren U_{eq} [10⁻⁴ pm²] von[{Te(CF_3)_2}_3O_2][SO_3CF_3]_2

Tabene 5.80. Fol isetzung.						
Atom	x/a	y/b	z/c	U _{eq}		
F112	1.469(3)	-0.746(4)	-0.329(2)	0.164(18)		
F123	1.707(5)	-0.504(4)	-0.398(3)	0.19(2)		
C12	1.725(8)	-0.610(8)	-0.342(6)	0.19(4)		
F121	1.823(4)	-0.632(3)	-0.280(3)	0.146(14)		
F321	2.246(6)	-0.709(3)	-1.129(3)	0.21(2)		
F311	2.335(6)	-0.570(4)	-0.883(4)	0.20(2)		
F312	2.182(3)	-0.517(3)	-0.954(3)	0.124(12)		
F313	2.388(3)	-0.600(4)	-1.046(2)	0.156(13)		
C21	1.986(16)	-0.570(12)	-0.702(8)	0.35(9)		
F211	2.025(7)	-0.509(4)	-0.743(6)	0.33(6)		
F212	1.814(3)	-0.470(3)	-0.642(4)	0.171(18)		
F213	1.968(4)	-0.548(3)	-0.599(5)	0.20(2)		
F113	1.488(3)	-0.596(4)	-0.408(4)	0.164(17)		
C11	1.545(4)	-0.699(3)	-0.406(4)	0.072(15)		
C32	2.235(6)	-0.784(5)	-1.065(4)	0.085(14)		
F322	2.338(4)	-0.874(8)	-1.132(4)	0.40(5)		
F221	1.877(3)	-0.777(4)	-0.845(3)	0.140(14)		
F222	1.708(3)	-0.707(5)	-0.711(3)	0.21(2)		
F223	1.773(4)	-0.583(3)	-0.801(3)	0.157(15)		
C22	1.827(4)	-0.734(12)	-0.782(8)	0.33(10)		

Tabelle 5.80: Fortsetzung

 $U_{eq} = \frac{1}{3} \sum_{ij} a_i a_j A_{ij}$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Te1	0.0373(12)	0.079(2)	0.0376(16)	0.0016(13)	0.0001(11)	-0.0326(13)
Te2	0.0348(12)	0.081(2)	0.0359(16)	0.0036(13)	-0.0023(11)	-0.0257(13)
Te3	0.0446(13)	0.080(2)	0.0309(16)	0.0024(13)	0.0060(11)	-0.0283(14)
O01	0.039(12)	0.09(2)	0.061(18)	0.005(15)	-0.010(12)	-0.031(13)
O02	0.044(12)	0.044(16)	0.047(17)	-0.022(12)	0.008(11)	-0.016(11)
S 1	0.039(5)	0.079(8)	0.046(7)	-0.020(6)	0.010(4)	-0.031(5)
C2	0.23(8)	0.9(3)	0.08(5)	0.06(9)	-0.06(5)	-0.48(14)
F21	0.15(3)	0.53(9)	0.12(4)	-0.17(5)	-0.02(3)	-0.12(5)
F22	0.17(4)	0.37(7)	0.25(5)	-0.02(4)	-0.16(4)	-0.14(4)
F23	0.20(3)	0.21(4)	0.17(4)	0.02(3)	-0.06(3)	-0.17(3)
S2	0.064(6)	0.157(14)	0.053(8)	-0.007(8)	-0.021(6)	-0.060(9)
O21	0.060(14)	0.055(17)	0.072(19)	-0.055(14)	0.011(13)	-0.025(13)
011	0.088(17)	0.056(17)	0.053(19)	-0.003(14)	0.015(14)	-0.062(15)
O22	0.08(2)	0.11(3)	0.16(4)	0.04(2)	-0.07(2)	-0.05(2)
O23	0.064(16)	0.15(3)	0.08(3)	-0.06(2)	0.015(17)	-0.010(19)
O12	0.045(16)	0.22(5)	0.07(3)	-0.02(3)	0.007(16)	-0.03(2)
O13	0.080(17)	0.30(5)	0.06(2)	0.09(3)	-0.017(16)	-0.14(3)
C31	0.15(6)	0.29(11)	0.01(5)	-0.07(5)	0.12(4)	0.02(7)
F122	0.099(19)	0.12(3)	0.06(2)	-0.053(18)	0.056(16)	-0.043(19)
F111	0.046(14)	0.30(5)	0.07(2)	0.03(3)	-0.016(15)	-0.08(2)
F323	0.11(2)	0.48(7)	0.032(18)	0.01(3)	-0.016(16)	-0.17(3)
F112	0.065(14)	0.33(5)	0.08(3)	0.06(3)	0.003(15)	-0.11(2)
F123	0.34(5)	0.15(3)	0.06(2)	-0.06(2)	0.10(3)	-0.17(4)
C12	0.28(7)	0.29(9)	0.22(7)	0.22(7)	-0.21(7)	-0.27(8)
F121	0.15(3)	0.09(3)	0.22(4)	-0.05(3)	-0.05(3)	-0.07(2)
F321	0.41(7)	0.05(2)	0.14(3)	0.06(2)	-0.14(4)	-0.06(3)
F311	0.36(7)	0.20(4)	0.10(3)	-0.02(3)	-0.04(4)	-0.21(5)
F312	0.12(2)	0.10(2)	0.09(3)	0.040(18)	0.01(2)	-0.032(19)
F313	0.101(19)	0.26(4)	0.07(2)	0.03(2)	0.026(17)	-0.09(2)
C21	0.41(18)	0.31(13)	0.06(7)	-0.10(7)	-0.12(10)	0.13(12)
F211	0.33(7)	0.10(3)	0.48(13)	-0.09(5)	0.15(7)	-0.18(5)
F212	0.12(2)	0.06(2)	0.31(6)	-0.08(3)	0.00(3)	-0.036(18)
F213	0.14(3)	0.05(2)	0.33(6)	-0.08(3)	0.10(3)	-0.06(2)
F113	0.055(17)	0.16(4)	0.25(5)	0.03(3)	-0.06(2)	-0.02(2)
C11	0.04(2)	0.000(18)	0.10(4)	-0.01(2)	-0.01(2)	0.049(17)
F322	0.13(3)	0.84(14)	0.10(4)	-0.19(6)	-0.04(3)	-0.05(5)
F221	0.10(2)	0.22(4)	0.12(3)	-0.11(3)	-0.02(2)	-0.06(2)
F222	0.082(19)	0.42(6)	0.16(3)	0.13(4)	-0.08(2)	-0.16(3)
F223	0.20(3)	0.15(3)	0.18(4)	-0.07(3)	-0.08(3)	-0.08(3)
C22	0.010(19)	0.56(19)	0.36(13)	-0.45(15)	-0.02(4)	0.03(5)

Tabelle 5.81: Koeffizienten der anisotropen Temperaturfaktoren $U_{ij}~[10^{-4}~pm^2]$ von $[\{Te(CF_3)_2\}_3O_2][SO_3CF_3]_2$

 $U_{ij} = e^{[-2\pi(h^2a^{*2}U_{11} + \dots + 2hka^*b^*U_{12})]}$

Atom 1	Atom 2	Abstand /Å	Atom 1	Atom 2	Atom 3	Winkel /°
Te1	O01	1.90(2)	O01	Te1	C12	90.1(17)
Te1	C12	2.08(9)	O01	Te1	C11	88.7(13)
Te1	C11	2.18(4)	C12	Te1	C11	89(2)
Te2	O01	2.05(2)	O01	Te2	C21	95(4)
Te2	C21	2.06(15)	O01	Te2	O02	153.9(9)
Te2	O02	2.16(2)	C21	Te2	O02	68(3)
Te2	C22	2.37(5)	O01	Te2	C22	85(2)
Te3	O02	1.82(2)	C21	Te2	C22	107(5)
Te3	C31	2.18(10)	002	Te2	C22	81(3)
Te3	C32	2.21(5)	002	Te3	C31	91.6(17)
S 1	O11	1.41(3)	O02	Te3	C32	87.1(16)
S 1	O12	1.43(4)	C31	Te3	C32	93(3)
S 1	O13	1.44(2)	Te1	O01	Te2	130.2(12)
S 1	C1	2.06(6)	Te3	O02	Te2	129.9(12)
C1	F11	1.06(7)	011	S 1	O13	117.1(17)
C1	F13	1.32(7)	012	S 1	O13	108(2)
C1	F12	1.54(6)	012	S 1	C1	109(3)
C2	F22	1.09(14)	013	S 1	C1	96(2)
C2	F21	1.25(10)	F11	C1	F13	158(8)
C2	F23	1.50(11)	F13	C1	F12	83(5)
C2	S2	1.83(5)	F11	C1	S 1	104(5)
S2	O22	1.34(3)	F12	C1	S 1	88(3)
S2	O23	1.42(3)	F22	C2	F21	112(6)
S2	O21	1.60(3)	F21	C2	F23	100(10)
C31	F311	1.24(9)	F22	C2	S2	126(10)
C31	F313	1.30(6)	F23	C2	S2	101(5)

Tabelle 5.82: Ausgewählte interatomare Abstände und Winkel von $[{Te(CF_3)_2}_3O_2][SO_3CF_3]_2$

5 Experimenteller Teil

Atom 1	Atom 2	Abstand /Å	Atom 1	Atom 2	Atom 3	Winkel /°
C31	F312	1.44(8)	O22	S2	O21	113.0(16)
F122	C12	1.39(9)	O23	S2	021	115(2)
F111	C11	1.39(5)	O22	S2	C2	103(3)
F323	C32	1.20(5)	O21	S2	C2	109(5)
F112	C11	1.31(5)	F311	C31	F313	108(8)
F123	C12	1.34(6)	F313	C31	F312	95(7)
C12	F121	1.46(5)	F311	C31	Te3	122(6)
F321	C32	1.16(6)	F312	C31	Te3	112(6)
C21	F211	1.00(17)	F123	C12	F121	110(4)
C21	F213	1.34(8)	F122	C12	F121	96(5)
C21	F212	1.70(13)	F123	C12	Te1	120(5)
F113	C11	1.10(4)	F121	C12	Te1	111(5)
C32	F322	1.31(7)	F211	C21	F213	103(10)
F221	C22	0.90(5)	F211	C21	F212	101(10)
F222	C22	1.26(8)	F211	C21	Te2	151(10)
F223	C22	1.64(14)	F213	C21	Te2	100(8)
			F112	C11	Te1	116(3)
			F321	C32	Te3	119(4)
			F322	C32	Te3	109(3)
			F223	C22	Te2	93(4)
			F221	C22	Te2	111(4)

Tabelle 5.82: Fortsetzung.

5.1.7 Bis(trifluormethyl)tellurbis(toluolsulfonat)

$$\operatorname{Te}(\mathrm{CF}_3)_2\mathrm{F}_2 + 2\operatorname{Me}_3\mathrm{SiSO}_3\mathrm{C}_6\mathrm{H}_4\mathrm{CH}_3 \xrightarrow[-30\,^{\circ}\mathrm{C}]{}\operatorname{CH}_2\mathrm{Cl}_2 \xrightarrow{} \operatorname{Te}(\mathrm{CF}_3)_2(\mathrm{SO}_3\mathrm{C}_6\mathrm{H}_4\mathrm{CH}_3)_2 + 2\operatorname{Me}_3\mathrm{SiF}_3\mathrm{Ch}_2\mathrm{Ch}$$

 Tabelle 5.83:
 Reaktionsansatz

Substanz	M / $g \cdot mol^{-1}$	n / mmol	m / g
$\begin{array}{c} \text{Te}(\text{CF}_3)_2\text{F}_2\\ \text{Me}_3\text{SiSO}_3\text{C}_6\text{H}_4\text{CH}_3\\ \text{CH}_2\text{Cl}_2 \end{array}$	303,61	2,87	0,87
	246,40	8,60	2,12

Te(CF₃)₂F₂ wird in einem Schlenk-Kolben vorgelegt und in 20 ml CH₂Cl₂ gelöst. Der Ansatz wird in einem Isopropanol-Trockeneis-Kühlbad auf ca. -30 °C temperiert und unter Rühren erfolgt die Zugabe von Me₃SiSO₃C₆H₄CH₃ im 1,5 fachen Überschuss. Die Bildung eines weißen Feststoffs ist sofort zu beobachten. Nach 30 Minuten sind in den ¹⁹F-NMR-Spektren zur Reaktionskontrolle (siehe Tab. 5.84) bei Raumtemperatur keine Signale von Te(CF₃)₂F₂ mehr zu erkennen, was das Ende der Reaktion andeutet. Die Spektren zeigen neben dem Signal des Produkts Te(CF₃)₂(SO₃C₆H₄CH₃)₂ noch weitere Signale von fluorhaltigen Verbindungen, die dem Beiprodukt Me₃SiF und den Zersetzungsprodukten Te(CF₃)₂ und CF₃H zugeordnet werden können. Der Ansatz wird auf Raumtemperatur erwärmt und noch 30 Minuten weitergerührt. Das Lösungsmittel und die leichtflüchtigen Komponenten werden bei Raumtemperatur unter vermindertem Druck abkondensiert, und ein weißer Feststoff resultiert als verunreinigtes Rohprodukt mit einer Auswaage von 1,90 g. Eine weitere Aufreinigung, um noch vorhandene Mengen des Lösungsmittels oder Edukts, Me₃SiSO₃C₆H₄CH₃, zu entfernen, gelingt nicht. NMR-Spektren in organischen Lösungsmitteln (Tab. 5.88 - Tab. 5.91) sowie Massen- (Tab. 5.86), IR- und Raman-Spektren (Tab. 5.87) und CHNS-Analyse (Tab. 5.85) charakterisieren dieses als $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$, wenn auch die CHNS-Analyse auf eine Verunreinigung hinweist. Eine Sublimation ist nicht erfolgreich und auch die durchgeführten Kristallisationsversuche liefern keine Einkristalle von $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$.

Tabelle 5.84: ¹⁹F-NMR-Spektrum zur Reaktionskontrolle der Synthese von
 $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ in CH_2Cl_2 (Probenentnahme nach 30 min).

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-37,6	s		1	CF ₃ Te(IV)-Verbindung
-43,6	S	$^{2}J(^{125}Te^{-19}F) = 85$	8	$Te(CF_3)_2(SO_3C_6H_4CH_3)_2$
-48,2	S		1	CF ₃ Te(IV)-Verbindung
-159,2	dec		100	Me ₃ Si F

Tabelle 5.85: CHNS-Analyse von $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$.

	C / %	Н/%	N / %	S / %
berechnet	31,40	2,96	0	10,48
gemessen	33,66	3,57	0	11,32

m/z	rel. Intensität / %	Zuordnung
610	8	$Te(CF_3)_2(SO_3C_6H_4CH_3)_2^+$
541	54	$Te(CF_3)(SO_3C_6H_4CH_3)^+$
461	24	$Te(SO_3C_6H_4CH_3)_2^+$
439	20	$Te(CF_3)_2(SO_3C_6H_4CH_3)^+$
369	5	$Te(CF_3)(SO_3C_6H_4CH_3)^+$
268	40	$Te(CF_3)_2^+$
199	16	$Te(CF_3)^{+}$
172	86	CH ₃ C ₆ H ₄ SO ₃ H ⁺
155	100	$CH_3C_6H_4SO_2^+$
107	16	$CH_3C_6H_4O^+$
91	60	$C_6H_4CH_3^+$
84	22	$CH_2Cl_2^+$
49	20	$\overline{CH_2Cl^+}$
18	4	H_2O^+

 $\label{eq:constraint} \textbf{Tabelle 5.86:} \ \text{Massenspektrum von } \text{Te}(\text{CF}_3)_2(\text{SO}_3\text{C}_6\text{H}_4\text{CH}_3)_2.$

IR / cm^{-1}		Zuordnung	Raman	/ cm ⁻¹
			3066	S
			2984	W
			2929	S
1601	W		1599	W
1496	W			
1449	W		1451	W
1396	W		1381	W
1340	W			
1193	S	$v(CF_3)$	1212	W
1129	S	v(SO oder CF)	1146	S
1076	m,sh	v(SO oder CF)	1092	m
1042	S	$v(CF_3)$	1048	W
1014	m	-	989	m
815	m		801	S
736	m		741	m
727	S			
692	S			
			635	m
568	m			
495	W			
			415	m
			289	m
			266	m
			243	S

 $\label{eq:constraint} \textbf{Tabelle 5.87:} \ \text{IR- und Raman-Spektren von } Te(CF_3)_2(SO_3C_6H_4CH_3)_2.$

Tabelle 5.88: 19 F-NMR-Spektrum von Te(CF3)2(SO3C6H4CH3)2 in CD3CN.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-50,7 ^x			100	$Te(CF_3)_2(SO_3C_6H_4CH_3)_2$

 $^{x} \delta^{125}$ Te = 1238.

Tabelle 5.89: $^{19}\text{F-NMR-Spektrum von } \text{Te}(\text{CF}_3)_2(\text{SO}_3\text{C}_6\text{H}_4\text{CH}_3)_2 \text{ in Glyme.}$

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-51,1	S	$^{2}J(^{125}Te^{-19}F) = 19$	24	$Te(CF_3)_2(SO_3C_6H_4CH_3)_2$
		2 125 10		Derivat
-51,5	S	$^{2}J(^{125}Te - ^{19}F) = 38$	100	$\operatorname{Te}(\operatorname{CF}_3)_2(\operatorname{SO}_3\operatorname{C}_6\operatorname{H}_4\operatorname{CH}_3)_2$
				Derivat

Tabelle 5.90: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ in DMF.

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-51,4	S	${}^{1}J({}^{19}F-{}^{13}C) = 368$ ${}^{2}J({}^{125}Te-{}^{19}F) = 36$	100	$Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ Derivat
-52,9	s, br	$^{2}J(^{125}Te^{-19}F) = 17$	7	$Te(CF_3)_2(SO_3C_6H_4CH_3)_2$
-53,7	S	$^{2}J(^{125}Te^{-19}F) = 17$	6	$Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ Derivat

Tabelle 5.91: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ in D_2O .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-40,7	S	${}^{1}J({}^{19}F-{}^{13}C) = 363$	48	$Te(CF_3)_3^+$
-52,2	S	${}^{2}J({}^{125}Te - {}^{19}F) = 30$ ${}^{1}J({}^{19}F - {}^{13}C) = 363$ ${}^{2}I({}^{125}Te - {}^{19}F) = 42$	100	$Te(CF_3)_2R_2$
-62,2	S	${}^{1}J({}^{19}F-{}^{13}C) = 362$ ${}^{2}J({}^{125}Te-{}^{19}F) = 18$	18	$Te(CF_3)R_4^-$
-78,8	S	${}^{2}J({}^{19}F-{}^{1}H) = 79$	16	CF ₃ H

Abbildung 5.3: Die Abbildung zeigt die Titration einer Lösung von $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ in Wasser mit Natronlauge. Dargestellt sind die 5 einzelnen Messreihen, die jeweils 2 Umschlagspunkte aufweisen. der erste Äquivalenzpunkt liegt bei ca. pH 4,5 und der zweite bei ca. pH 8.

Tabelle 5.92: ¹⁹F-NMR-Spektrum von $Te(CF_3)_2F_2$ in H_2O .

δ	Aufspaltung	Kopplungskonstanten / Hz	Integral	Zuordnung
-44,9 ^x	s	${}^{1}J({}^{19}F{-}^{13}C) = 368$	44	$Te(CF_3)_3R^+$
		${}^{4}J({}^{19}F{-}^{19}F) = 7,8$		
-54,7 ^y	S	${}^{1}J({}^{19}F{}-{}^{13}C) = 360$	100	$Te(CF_3)_2R_2$
		$^{2}J(^{125}Te^{-19}F) = 60$		
		$^{2}J(^{123}Te^{-19}F) = 50$		
		${}^{4}J({}^{19}F{-}^{19}F) = 6,5$		
-63,9 ^z	S		6	$Te(CF_3)R_4^-$
-79,5	d	$^{2}J(^{19}F-^{1}H) = 79$	9	CF ₃ H
-96,3	br		13	SiF-Verbindung ^a
-130,0	m, br		21	SiF-Verbindung ^a
-150,9	m		1	BF-Verbindung ^a

^x δ^{125} Te = 966. ^y δ^{125} Te = 1172. ^z δ^{125} Te = 830. Die Bestimmung der ¹²⁵Te-chemischen Verschiebung kann durch die Einspiegelung von Signalen verfälscht werden. Daher die Diskrepanz zwischen der hier angegebenen Verschiebung und der aus Tab. 5.77 für dieselbe Verbindung. Wird die Einspiegelung mit eingerechnet, so liegt die Verschiebung hier bei 1430 ppm.

^{*a*} Die Bildung von Silicium- und Borfluoriden kann durch eine Reaktion mit Glas erklärt werden.

6 Zusammenfassung und Ausblick

Das Ziel der Arbeit ist die Darstellung von Bis(trifluormethyl)tellur(IV)-Verbindungen Te(CF₃)₂Y₂ (Y = fluorierte und nicht fluorierte Organyle, z.B. OR, NR, CR) und die Untersuchung ihrer Eigenschaften. Für die Herstellung bieten sich verschiedene Möglichkeiten an. Die ersten Te(CF₃)₂Y₂-Verbindungen wurden über die Oxidation von Te(CF₃)₂ dargestellt. Vor allem die Dihalogenide Te(CF₃)₂F₂, Te(CF₃)₂Cl₂ und Te(CF₃)₂Br₂ lassen sich so erhalten, welche exzellent für Ligandenaustauschreaktionen geeignet sind. In Umsetzungen von Te(CF₃)₂F₂ mit Säuren oder Trimethylsilyl-Verbindungen konnten neue Bis(trifluormethyl)tellur(IV)-Verbindungen synthetisiert werden. Auch Ligandenaustauschreaktionen an Te(CF₃)₂Cl₂ mit Salzen werden erwähnt.

In dieser Arbeit werden Carbonsäure- und Sulfonsäurederivate der Bis(trifluormethyl)tellur(IV)-Verbindungen durch Ligandenaustauschreaktionen aus den Bis(trifluormethyl)tellurdihalogeniden hergestellt.

$$Te(CF_3)_2X_2 + 2ZY \longrightarrow Te(CF_3)_2Y_2 + 2ZX$$

(mit X = F: Z = Me₃Si; Y = CO₂CF₃, SO₃CF₃, SO₃C₆H₄CH₃;
mit X = Cl, Br: Z = Ag; Y = CO₂CH₃, CO₂C₆F₅, CO₂C₆H₃-2,6-F₂, CO₂C₆H₄-2-F)

Es zeigt sich, dass sowohl Ligandenaustauschreaktionen an $Te(CF_3)_2F_2$ durch Me_3SiY -Verbindungen als auch Umsetzungen von $Te(CF_3)_2Cl_2$ bzw. $Te(CF_3)_2Br_2$ mit Silbersalzen erfolgreich für die Darstellung genutzt werden können. Eine Variation der Liganden von den Säureanionen hin zu Pseudohalogenen, Oxoaryl- oder Aryl-Liganden liefert leider nur Hinweise auf neue Bis(trifluormethyl)tellur(IV)-Verbindungen. In Lösung kann anhand von ¹⁹F-NMR-Spektren die Entstehung neuer Bis(trifluormethyl)tellur(IV)-Verbindungen diskutiert werden. Bei den isolierten Rohprodukten handelt es sich jedoch nicht um die gewünschten neuen Bis(trifluormethyl)tellur(IV)-Verbindungen. Es können allerdings Hinweise auf mögliche Zersetzungsreaktionen gesammelt werden, die zumindest das kurzzeitige Vorliegen der Produkte voraussetzen.

Die Ligandenaustauschreaktionen laufen schrittweise ab. Die Zwischenprodukte Te(CF₃)₂XY (mit X=Halogen; Y=substituierter Ligand), die durch den Austausch eines Liganden entstehen, werden NMR-spektroskopisch beobachtet. Diese können bei den Umsetzungen mit Te(CF₃)₂F₂ in den ¹⁹F-NMR-Spektren eindeutig zugeordnet werden. Bis(trifluormethyl)tellurbis(trifluoracetat) wird in einer Reaktion von Te(CF₃)₂F₂ mit einem Überschuss an Me₃SiCO₂CF₃ in Dichlormethan dargestellt. Die Isolierung des Produkts ist einfach, da das Beiprodukt Me₃SiF, alle Nebenprodukte, das Lösungsmittel und auch die Überschusskomponente unter vermindertem Druck abkondensiert werden können. Der resultierende weiße Feststoff ist sublimierbar, für gängige Analysen wie Massenund Schwingungsspektroskopie geeignet, und auch Einkristalle werden erhalten. Da die Kristalle sich außerhalb der Kristallisationsansätze oder eines perfluorierten Öls trüben, gestaltet sich die Präparation für röntgenographische Analysen jedoch kompliziert. Die Molekülstruktur zeigt den für ein AB₄E-System nach dem VSEPR-Modell zu erwartenden Aufbau einer *pseudo*-trigonalen Bipyramide. Die CF₃-Gruppen und das freie Elektronenpaar besetzen die äquatorialen Positionen und die CO₂CF₃-Gruppen die axialen.

Bis(trifluormethyl)tellurdiacetat wird in einer Ligandenaustauschreaktion von $Te(CF_3)_2Br_2$ mit AgCO₂CH₃ in Dichlormethan dargestellt. Für die Isolierung des

Produkts wird zuerst die Tellurverbindung von dem schwerer löslichen AgBr abgetrennt und anschließend das Lösungsmittel unter vermindertem Druck abkondensiert. Eine Aufreinigung kann durch Sublimation erfolgen, und Einkristalle können in Kristallisationsansätzen erhalten werden. Die Kristalle zeigen ein Verhalten, das dem von $Te(CF_3)_2(CO_2CF_3)_2$ ähnelt. Die präparierten Kristalle waren allerdings hier nicht für röntgenographische Untersuchungen geeignet.

In einer Ligandenaustauschreaktion von $Te(CF_3)_2Cl_2$ mit $AgCO_2C_6F_5$ wird Bis(trifluormethyl)tellurbis(pentafluorbenzoat) dargestellt. Die Trennung des Produktgemischs aus AgCl und $Te(CF_3)_2(CO_2C_6F_5)_2$ kann per Soxhlet-Extraktion in Dichlormethan oder Toluol erfolgen. Das Produkt wird durch das Abkondensieren des Lösungsmittels unter vermindertem Druck isoliert. Der Feststoff ist sublimierbar und auch Einkristalle, die in ihrem Verhalten den obigen Verbindungen ähneln, werden erhalten. Eine Präparation der Einkristalle gelingt, Lösung und Verfeinerung der Struktur sind allerdings deutlich komplizierter und stellen ein nicht zufriedenstellend lösbares Problem dar. In der Molekülstruktur von $Te(CF_3)_2(CO_2C_6F_5)_2$ nehmen die CF₃-Gruppen und das freie Elektronenpaar die äquatorialen Positionen einer *pseudo*-trigonalen Bipyramide ein. Die Anordnung der Benzoatliganden auf den axialen Positionen bleibt unklar.

 $Te(CF_3)_2(CO_2C_6H_3-2,6-F_2)_2$ wird in einer Reaktion von $Te(CF_3)_2Br_2$ mit AgCO_2C_6H_3-2,6-F_2 in Toluol als weißer Feststoff dargestellt. Dieser ist sublimierbar und im Gegensatz zu den meisten anderen hier dargestellten Verbindungen auch schmelzbar. Kristalle können in Sublimationen und aus gesättigten Lösungen erhalten werden, für röntgenographische Untersuchungen sind diese jedoch nicht geeignet.

Analog der Darstellung von Te $(CF_3)_2(CO_2C_6H_3-2,6-F_2)_2$ kann Te $(CF_3)_2(CO_2C_6H_4-2-F)_2$ in einer Umsetzung von Te $(CF_3)_2Br_2$ mit Ag $CO_2C_6H_4-2-F$ in Toluol als weißer Feststoff erhalten werden. Dieser ist sublimierbar und ebenfalls schmelzbar. Kristalle können in Sublimationen und aus gesättigten Lösungen erhalten werden, für röntgenographische Untersuchungen sind diese jedoch bisher nicht geeignet.

Bis(trifluormethyl)tellurbis(trifluormethansulfonat) wird analog zu $Te(CF_3)_2(CO_2CF_3)_2$ in einer Ligandenaustauschreaktion von $Te(CF_3)_2F_2$ mit $Me_3SiSO_3CF_3$ dargestellt. $Te(CF_3)_2(SO_3CF_3)_2$ kann als schmutzig weißer Feststoff erhalten werden, der für die Ramanspektroskopie ungeeignet ist. Der Feststoff ist nicht sublimierbar, und auch Einkristalle von $Te(CF_3)_2(SO_3CF_3)_2$ können nicht erhalten werden.

Bis(trifluormethyl)tellurbis(toluolsulfonat) wird analog zu den Darstellungen von $Te(CF_3)_2(CO_2CF_3)_2$ und $Te(CF_3)_2(SO_3CF_3)$ synthetisiert. Das resultierende Produkt ist in den verwendeten Lösungsmitteln am schlechtesten löslich, weshalb auch die NMR-Spektren die am wenigsten aussagekräftigen sind. Desweiteren zeigen auch CHNS- und Schmelzpunktanalyse, dass es nicht gelingt, $Te(CF_3)_2(SO_3C_6H_4CH_3)_2$ in absoluter Reinheit zu isolieren.

Die durchgeführten Versuche zeigen, dass die Bis(trifluormethyl)tellurdihalogenide $Te(CF_3)_2F_2$, $Te(CF_3)_2Cl_2$ und $Te(CF_3)_2Br_2$ geeignet sind für Ligandenaustauschreaktionen, bei einer geeigneten Wahl des auszutauschenden Liganden. Zu erwarten ist, dass noch eine ganze Reihe von weiteren Carbon- und Sulfonsäurederivaten darstellbar sind. Andere Säuren sollten auch geeignet sein, z.B. die Phosphorsäuren. Die Untersuchungen zur Darstellung von Bis(trifluormethyl)tellur(IV)-Verbindungen mit O-, N- und C-Nukleophilen sind noch nicht abgeschlossen. So kann eine weitere Variation der Reaktionsbedingungen zum Ziel führen. Aber auch die Veränderung der Reihenfolge, in der die Liganden an Tellur gebunden werden, kann variiert werden. Vielleicht empfiehlt es sich, zuerst beispielsweise die Bis(aryl)tellurdifluoride zu synthetisieren, um anschließend in Umsetzungen mit Me_3SiCF_3 die entsprechenden Bis(trifluormethyl)tellur(IV)-Verbindungen darzustellen.

NMR-Spektren zeigen nicht nur ein Signal für die $Te(CF_3)_2Y_2$ -Verbindungen, sondern je nach Art des Lösungsmittels verändert sich der Habitus.

Die Produkte lösen sich in Wasser unter Hydrolyse spätestens nach vorsichtiger Erwärmung. Die ¹⁹F-NMR-Spektren zeigen unabhängig vom Liganden Y immer dieselben Produktsignale. Das Hauptsignal kann einer $(CF_3)_2 Te(IV)$ -Verbindung zugeordnet werden, die im Gleichgewicht mit Anionen und Kationen der Form $[Te(CF_3)R_4]^-$ bzw. $[Te(CF_3)_3]^+$ vorliegt.

$$2 \operatorname{Te}(\operatorname{CF}_3)_2(\operatorname{OH})_2 \rightleftharpoons [\operatorname{Te}(\operatorname{CF}_3)_3]^+ + [\operatorname{Te}(\operatorname{CF}_3)(\operatorname{OH})_4]^-$$

Bei zu starker Erwärmung oder längerem Stehenlassen der Lösungen entsteht ein weißer Feststoff. Bei diesem handelt es sich um einen oxidischen Feststoff polymerer Natur, $[Te(CF_3)_2O]_x$, wie schon *Naumann et al.* feststellten.

In unpolaren Lösungsmitteln weisen die Hauptsignale im allgemeinen eine geringere Halbwertsbreite auf. In polaren Lösungsmitteln verbreitern sich die Signale und Nebensignale werden intensiver. Dabei handelt es sich sozusagen um ein reversibles Verhalten und nicht um mögliche Zersetzungsreaktionen. Ein Abkondensieren der Lösungsmittel und anschließende NMR-spektroskopische Untersuchungen der isolierten Feststoffe in anderen Lösungsmitteln führten zu denselben Ergebnissen.

Auf der Suche nach Gründen für das beschriebene Verhalten der Carbon- und Sulfonsäurederivate der Bis(trifluormethyl)tellur(IV)-Verbindungen kann man ein ähnliches Phänomen in der Iodchemie finden. Hier wird diskutiert und belegt, dass in Iod(III)carboxylaten Gleichgewichte auftreten, in denen die Carbonsäureliganden eine [1,3]-sigmatrope-Umlagerung eingehen. Aufgrund der Verwandtschaft von Tellur- und Iodchemie ist anzunehmen, dass diese Umlagerungsreaktion bei den hier untersuchten Verbindungen eintreten kann.

$$Te(CF_3)_2(O^1CO^2R)_2 \rightleftharpoons Te(CF_3)_2(O^1CO^2R)(O^2CO^1R) \rightleftharpoons Te(CF_3)_2(O^2CO^1R)_2$$

Dies kann ein Grund für das Auftreten eines unterscheidbaren Habitus in den ¹⁹F-NMR-Spektren von Lösungen der Tellurverbindungen in den verschiedenen Lösungsmitteln sein. Als ein weiterer Hinweis auf dieses Verhalten kann auch die Kristallstruktur von $Te(CF_3)_2(CO_2C_6F_5)_2$ gewertet werden. Hier scheint es zwei mögliche Anordnungen der Benzoatliganden zu geben, die in oben erwähnter [1,3]-sigmatroper-Umlagerung ineinander überführt werden können. Untersuchungen an weiteren Bis(trifluormethyl)tellur(IV)-Derivaten der Carbonsäuren könnten hier vielleicht einen Aufschluss darüber geben, von welchen Parametern eine mögliche Verschiebung des Gleichgewichts in der sigmatropen Umlagerung abhängig ist.

Die Bildung von polymeren Feststoffen wird bei Untersuchungen von Trifluormethyltellurverbindungen häufig beobachtet. Gegenstand der aktuellen Forschung ist die Bildung von oligomeren Telluroxanen aus nicht-fluorierten Organotellurverbindungen. Eine Oligomerisierung ist eine Erklärung für das NMR-spektrokopisch beobachtete Verhalten der untersuchten Bis(trifluormethyl)tellur(IV)-Derivate in Lösung. Die Bestimmung der Kristallstruktur von $[(Te(CF_3)_2)_3O_2][SO_3CF_3]_2$ zeigt, dass die Bildung von Perfluororganotelluroxanen erfolgt. Durch die Variation der Reaktionsbedingungen und der verwendeten Säurederivate sollte die selektive Bildung von Oligomeren der Perfluororganotellur(IV)-Verbindungen aufzuklären sein.

$$\operatorname{Te}(\operatorname{CF}_3)_2(\operatorname{OR})_2 \rightleftharpoons \operatorname{Te}(\operatorname{CF}_3)_2 \operatorname{O} + \operatorname{OR}_2 \xleftarrow{\operatorname{Te}(\operatorname{CF}_3)_2(\operatorname{OR})_2} (\operatorname{CF}_3)_2(\operatorname{OR}) \operatorname{TeOTe}(\operatorname{CF}_3)_2(\operatorname{OR}) \rightleftharpoons \operatorname{usw...}$$

Literaturverzeichnis

- [1] Naumann, D. Phosphorus, Sulfur, Silicon, Relat. Elem. 2001, 171, 113.
- [2] Bell, T. N.; Pullman, B. J.; West, B. O. Austr. J. Chem. 1963, 16, 722.
- [3] Denniston, M. L.; Martin, D. R. J. Inorg. Nucl. Chem. 1975, 37, 1871.
- [4] Lagow, R.; Gerchman, L.; Jacob, R.; Morrison, J. J. Am. Chem. Soc. 1975, 97, 518.
- [5] Juhlke, T.; Braun, R.; Bierschenk, T.; Lagow, R. J. Am. Chem. Soc. 1979, 101, 3229.
- [6] Schmeißer, M.; Walter, R.; Naumann, D. Z. Anorg. Allg. Chem. 1980, 464, 233.
- [7] Paige, H.; Passmore, J. Inorg. Nucl. Chem. Letters 1973, 9, 277.
- [8] Desjardins, C.; Paige, H.; Passmore, J.; Taylor, P. J. Chem. Soc., Dalton Trans. 1975, 488.
- [9] Herberg, S.; Naumann, D. Z. Anorg. Allg. Chem. 1982, 492, 95.
- [10] Ganja, E.; Ontiveros, C.; Morrison, J. Inorg. Chem. 1988, 27, 4535.
- [11] Boye, S. Dissertation, Universität zu Köln, 1996.
- [12] Naumann, D.; Klein, G. Z. Anorg. Allg. Chem. 1987, 550, 162.
- [13] Naumann, D.; Fischer, J.; Wilkes, B. Z. Anorg. Allg. Chem. 1989, 576, 225.

- [14] Kasemann, R.; Lichenheim, C.; Nowicki, G.; Naumann, D. Z. Anorg. Allg. Chem. 1995, 621, 213.
- [15] Kischkewitz, J.; Naumann, D. Z. Anorg. Allg. Chem. 1987, 547, 167.
- [16] Beck, J.; Haas, A.; Herrendorf, W.; Heuduk, H. J. Chem. Soc., Dalton Trans. 1996, 4463.
- [17] Banks, A.; Emeleus, H.; Haszeldine, R.; Kerrigan, V. J. Chem. Soc. 1948, 2188.
- [18] Emeleus, H.; Haszeldine, R. J. Chem. Soc. 1949, 2953.
- [19] Naumann, D.; Wilkes, B.; Kischkewitz, J. J. Fluorine Chem. 1985, 30, 73.
- [20] Naumann, D.; Kischkewitz, J.; Wilkes, B. Z. Anorg. Allg. Chem. 1988, 560, 141.
- [21] Naumann, D.; Kischkewitz, J. J. Fluorine Chem. 1990, 46, 265.
- [22] Naumann, D.; Kischkewitz, J. J. Fluorine Chem. 1990, 47, 283.
- [23] Ganja, E. A.; Morrison, J. A. Inorg. Chem. 1990, 29, 33.
- [24] Herberg, S.; Lange, H.; Naumann, D. J. Fluorine Chem. 1987, 35, 267.
- [25] Dukat, W.; Gall, F.; Meyer, C.; Mootz, D.; Naumann, D.; Nowicki, G.; Schulz, K. Z. Anorg. Allg. Chem. 1996, 622, 617.
- [26] Boese, R.; Haas, A.; Limberg, C. J. Chem. Soc., Dalton Trans. 1993, 2547.
- [27] Boese, R.; Haas, A.; Limberg, C. J. Chem. Soc., Chem. Commun. 1991, 1378.
- [28] Haas, A.; Heuduk, H.; Monse, C.; Yagupolskii, L. J. Fluorine Chem. 1999, 94, 195.
- [29] Desjardins, C.; Lau, C.; Passmore, J. Inorg. Nucl. Chem. Letters 1974, 10, 151.

- [30] Lau, C.; Passmore, J.; Richardson, E.; Whidden, T.; White, P. Can. J. Chem. 1985, 63, 2273.
- [31] Herberg, S.; Naumann, D. Z. Anorg. Allg. Chem. 1982, 494, 151.
- [32] Herberg, S.; Naumann, D. J. Fluorine Chem. 1982, 19, 205.
- [33] Herberg, S.; Naumann, D. Z. Anorg. Allg. Chem. 1982, 494, 159.
- [34] Louven, A. Dissertation, Universität zu Köln, 1997.
- [35] Klapötke, T. M.; Krumm, B.; Mayer, P.; Naumann, D.; Schwab, I. J. Fluorine Chem.2004, 125, 997.
- [36] Klein, G.; Naumann, D. J. Fluorine Chem. 1985, 30, 259.
- [37] Naumann, D.; Wilkes, B. Z. Anorg. Allg. Chem. 1988, 560, 147.
- [38] Hellwinkel, D.; Fahrlach, G. Chem. Ber. 1968, 101, 574.
- [39] Gedridge, R.; Harris, D.; Higa, K.; Nissan, R. Organometallics 1989, 2817.
- [40] Cohen, S.; Reddy, M.; Massey, A. J. Organomet. Chem. 1968, 11, 563.
- [41] Minoura, M.; Sagami, T.; Akiba, K.; Modrakowski, C.; Sudau, A.; Seppelt, K.; Wellenhauer, S. Angew. Chem. 1996, 108, 2827.
- [42] Minoura, M.; Sagami, T.; Miyasato, M.; Akiba, K. Tetrahedron 1997, 53, 12195.
- [43] Naumann, D.; Wilkes, B. J. Fluorine Chem. 1985, 27, 115.
- [44] Naumann, D.; Butler, H.; Fisher, J.; Hanke, J.; Mogias, J.; Wilkes, B. Z. Anorg. Allg. Chem. 1992, 608, 69.

- [45] Bruker Analytik GmbH, Bruker Almanac 1997, Karlsruhe-Rheinstetten, 1997.
- [46] Tyrra, W.; Kirij, N.; Naumann, D.; Yagupolskii, Y. J. Fluorine Chem. 2004, 125, 1437.
- [47] Kirij, N.; Tyrra, W.; Naumann, D.; Yagupolskii, Y.; Pantenburg, I.; Schäfer, M. J. Fluorine Chem. 2004, 125, 1933.
- [48] Fischer, H.; Naumann, D.; Tyrra, W. Chem. Eur. J. 2006, 12, 2515.
- [49] Fischer, H.; Naumann, D.; Tyrra, W. Z. Anorg. Allg. Chem. 2007, 633, 127.
- [50] Kirij, N. V.; Yagupolski, Y. L.; Maggiarosa, N.; Tyrra, W.; Naumann, D. J. Fluorine Chem. 2001, 112, 213.
- [51] Hesse, M.; Meier, H.; Zeh, B. Spektroskopische Methoden in der organischen Chemie; Georg Thieme Verlag, Stuttgart, 7. ed., 2005.
- [52] Möckel, R.; Tyrra, W.; Naumann, D. J. Fluorine Chem. 1995, 73, 229.
- [53] Beckmann, J.; Dakternieks, D.; Duthie, A.; Lewcenko, N.; Mitchell, C.; Schürmann, M. Z. Anorg. Allg. Chem. 2005, 631, 1856.
- [54] Beckmann, J.; Dakternieks, D.; Duthie, A.; Ribot, F.; Schürmann, M.; Lewcenko, N. Organomet. 2003, 22, 3257.
- [55] Klapötke, T. M.; Krumm, B.; Gálvez-Ruiz, J. C.; Nöth, H.; Schwab, I. Eur. J. Inorg. Chem. 2004, 4764.
- [56] Mocci, F.; Uccheddu, G.; Frongia, A.; Cerioni, G. J. Org. Chem. 2007, 72, 4163.
- [57] Cerioni, G.; Uccheddu, G. Tetrahedron Letters 2004, 45, 505.

- [58] Ho, Z.; Livant, P.; Lott, W.; Webb, T. J. Org. Chem. 1999, 64, 8226.
- [59] Ochiai, M.; Takaoka, Y.; Masaki, Y.; Nagao, Y.; Shiro, M. J. Am. Chem. Soc. 1990, 112, 5677.
- [60] Tyrra, W. unveröffentlichte Arbeiten.
- [61] Kobayashi, K.; Deguchi, N.; Takahashi, O.; Tanaka, K.; Horn, E.; Kikuchi, O.; Furukawa, N. Angew. Chem. 1999, 111, 1746.
- [62] Kobayashi, K.; Tanaka, K.; Izawsa, H.; Arai, Y.; Furukawa, N. Chem. Eur. J. 2001, 7, 4272.
- [63] Domasevitch, K.; Skopenko, V.; Rusanov, E. Z. Naturforsch. 1996, 51 b, 832.
- [64] Sartori, P.; Weidenbruch, M. Chem. Ber. 1967, 100, 3016.
- [65] Fields, E. K.; Meyerson, S. J. Org. Chem. 1976, 41, 916.
- [66] Szlyk, E.; Lakomska, I.; Grodzicki, A. Thermochim. Acta 1993, 223, 207.
- [67] Roberts, G.; White, E. Org. Mass Spectrom. 1981, 16, 546.
- [68] Weigand, H.; Tyrra, W.; Naumann, D. Z. Anorg. Allg. Chem. 2008, 634, 2125.
- [69] Altomare, A.; Cascarano, G.; Giacovazzo, C. J. Appl. Crystallogr. 1993, 26, 343.
- [70] Sheldrick, G. SHELX-97, Programs for Crystal Structure Analysis, Göttingen, 1997.
- [71] Pykkö, P. Chem. Rev. 1997, 97, 597.
- [72] Vehlow, K.; Köhler, K.; Blechert, S.; Dechert, S.; Meyer, F. Eur. J. Inorg. Chem. 2005, 13, 2727.

- [73] Kalf, I.; Braun, M.; Wang, Y.; Englert, U. Cryst. Eng. Comm. 2006, 8, 916.
- [74] Stoe & Cie, X-Red 1.22, Stoe Data Reduction Program, Darmstadt, 2001.
- [75] Stoe & Cie, X-Shape 1.06, Crystal Optimisation for Numerical Absorption Correction, Stoe Data Reduction Program, Darmstadt, 1999.

Erklärung

Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie – abgesehen von unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde.

Die Bestimmungen dieser Promotionsordnung sind mir bekannt.

Die von mir vorgelegte Dissertation ist von Prof. Dr. D. Naumann betreut worden.

Teilpublikationen:

Weigand, H.; Tyrra, W.; Naumann, D. Z. Anorg. Allg. Chem. 2008, 634, 2125.

Holger Weigand

Lebenslauf

Persönliche Daten

Name	Holger Weigand
Geburtsdatum	06.09.1979
Geburtsort	Santa Barbara, USA
Anschrift	Rhöndorfer Str. 120, 50939 Köln
Staatsangehörigkeit	deutsch
Familienstand	verheiratet

Schulische Laufbahn

08/1985 - 12/1988	Deutsche Schule Kobe, Japan
01/1989 - 06/1989	Fontane Grundschule, Leverkusen
08/1989 - 07/1995	Otto-Hahn-Gymnasium, Bensberg
09/1995 - 06/1996	Wando High School, Mount Pleasant, S.C. USA
08/1996 - 06/1998	Otto-Hahn-Gymnasium, Bensberg

Zivildienst

07/1998 - 07/1999	Werkstatt für Behinderte, Refrat	th

Studium

10/1999	Beginn des Studiengangs Chemie (Diplom) an der
	Universität zu Köln
11/2002	Diplom-Chemiker-Vorprüfung
06/2006	Diplom-Chemiker-Hauptprüfung
12/2005 - 06/2006	Diplomarbeit unter Anleitung von Prof. Dr. D. Naumann
	$, Liganden austauschreaktionen \ an \ Trifluormethyltellur (IV)-Verbindungen ``$
07/2006 - 12/2008	Dissertation unter Anleitung von Prof. Dr. D. Naumann
	"Trifluormethyltellur(IV)-Verbindungen"

Tätigkeiten

30/07/2001 - 21/09/2001	Werksstudent, Bayer AG, Leverkusen
01/10/2002 - 26/02/2003	Aushilfe, Sport & Markt AG, Köln
01/03/2004 - 30/06/2006	Studentische Hilfskraft, Universität zu Köln
seit 01/07/2006	Wissenschaftliche Hilfskraft, Universität zu Köln