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„Phantasie ist wichtiger als Wissen, denn Wissen ist begrenzt“ 

Albert Einstein 



Abstract 

Abstract 

 

The membrane protein YggB of Corynebacterium glutamicum was previously described to 

belong to the MscS-type family of mechanosensitive (MS) channels functioning as 

emergency valves upon osmotic downshift. Bacterial cells respond to rapid water influx by 

immediate activation of MS channels that allow efflux of compatible solutes to prevent cell 

lysis. Recently, YggB was also connected to the glutamate export in C. glutamicum under 

glutamate productive conditions. The mechanism of glutamate export is not fully 

understood so far although C. glutamicum has been used for the industrial production of 

amino acids for decades. Deletion of yggB led to a drastic decrease in glutamate excretion 

while truncation of 110 AA resulted in continuous export of glutamate. In this work YggB 

was characterized with respect to its dual function as MS channel on the one hand and in 

the excretion of glutamate on the other. Using the patch clamp technique and additional 

physiological approaches it was shown that YggB harbors the functions of a pressure-

sensitive MS channel similar to the E. coli homolog MscS. However, for the first time also 

an involvement of a MS channel in bacterial response to hyperosmotic conditions was 

shown. A so called ‘pump and leak’ model including active betaine uptake (via BetP) and 

passive betaine efflux (via YggB) to accurately adjust the internal solute concentration, 

which are accumulated under hyperosmotic conditions to balance the osmotic gradient, is 

proposed. Concerning the second function of YggB in the glutamate production of C. 

glutamicum the integrity of the C-terminal domain was shown to have a strong effect on 

the inducibility of glutamate production. However, the exact function of the C-terminal 

domain cannot be unequivocally clarified. Additionally, this work provides strong 

evidence that glutamate excretion is triggered directly by the C. glutamicum MS channel 

YggB.  

 
 



Kurzzusammenfassung 

Kurzzusammenfassung 

 

Das Membranprotein YggB aus Corynebacterium glutamicum gehört zu der MscS-

ähnlichen Familie von mechanosensitiven (MS) Kanälen, die im Fall eines osmotischen 

downshifts als Notfallventil dienen. Bakterielle Zellen antworten auf plötzlichen 

Wassereinstrom mit der direkten Aktivierung der MS Kanäle, die den Ausstrom von 

kompatiblen Soluten aus der Zelle erlauben und so die Zelllyse verhindern. Vor kurzem 

wurde YggB auch mit dem Export von Glutamat aus C. glutamicum unter Glutamat-

produzierenden Bedingungen in Verbindung gebracht. Der Mechanismus des 

Glutamatexports ist bisher nicht bekannt, obwohl C. glutamicum seit Jahrzehnten zur 

industriellen Produktion von Aminosäuren genutzt wird. Deletion von yggB hat eine 

drastische Verringerung der Glutamat Ausscheidung zur Folge während eine Verkürzung 

um 110 Aminosäuren zu kontinuierlich stattfindender Glutamatproduktion führt. In dieser 

Arbeit wurde YggB in Bezug auf seine duale Funktion charakterisiert, zum einen als MS 

Kanal und zum andern bei der Exkretion von Glutamat. Mit Hilfe der Patch clamp Technik 

und weiteren physiologischen Ansätzen konnte gezeigt werden, dass YggB die Funktionen 

eines Druck-sensitiven MS Kanals ähnlich wie das E. coli Homolog MscS besitzt. 

Allerdings konnte in dieser Arbeit auch zum ersten Mal eine Beteiligung eines MS Kanals 

in der bakteriellen Antwort auf hyperosmotische Bedingungen gezeigt werden. Ein 

sogenanntes ‚pump and leak‘ Modell wird vorgeschlagen, welches die aktive Aufnahme 

(via BetP) und den passiven Ausstrom von Betain (via YggB) beinhaltet, um die interne 

Solutkonzentration, welche unter hyperosmotischen Bedingungen akkumuliert werden um 

den osmotischen Gradienten auszugleichen, sehr genau einzustellen. Bezogen auf die 

zweite Funktion von YggB in der Glutamatproduktion von C. glutamicum, konnte gezeigt 

werden, dass die Integrität der C-terminalen Domäne einen starken Effekt auf die 

Induzierbarkeit der Glutamatproduktion hat. Allerdings bleibt die genaue Funktion der C-

terminalen Domäne von YggB unklar. Zusätzlich liefert diese Arbeit starke Anhaltspunkte 

dafür, dass der Export von Glutamat direkt durch den MS Kanal YggB aus C. glutamicum 

vermittelt wird. 
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1 Introduction  

 

1.1 YggB of Corynebacterium glutamicum 

The membrane protein YggB of Corynebacterium glutamicum is proposed to harbor a dual 

function in the osmotic stress response and in the glutamate production by C. glutamicum. 

The combination of these two functions by one protein makes YggB a novel and quite 

interesting topic.  

YggB is encoded by the gene NCgl1221 (yggB) and harbors 533 amino acids (AA). Due to 

structural similarity the protein YggB belongs to the family of MscS-type 

(Mechanosensitive channel of small conductance) mechanosensitive (MS) channels 

(Ruffert el al., 1999). These channels function as emergency valves preventing cell lysis 

under hypoosmotic conditions. Together with yggB another open reading frame (orf), 

NCgl0843 (mscL), homologous to mscL of E. coli was identified by homology search for 

MS channel homologs within the genome of C. glutamicum. The related proteins were 

associated with the two different electrical conductances observed in patch clamp analysis 

of C. glutamicum membrane fragments fused into liposomes (Ruffert el al., 1999). The 

MscL homolog (135 AA) has a high sequence similarity to MscL of E. coli (38 % identical 

and 57 % similar amino acids). On the contrary, YggB is more closely related to MS 

channel homologs from mycolic acid containing actinomycetes than to the E. coli MscS 

(only 26 % identical and 46 % similar amino acids) (Nottebrock et al., 2003). The 

sequence similarity of YggB to MscS of E. coli is restricted to the three N-terminally 

located transmembrane domains. However, YggB contains 533 AA and is therefore almost 

double in length compared to the E. coli MscS (286 AA) (Fig. 1.1). The additional C-

terminal elongation of C. glutamicum YggB, harboring 247 AA, includes a putative fourth 

transmembrane domain (www.predictprotein.org) and might therefore also harbor an 

additional function. However, the putative MS channels of C. glutamicum are barely 

characterized so far.  

 

 

 

 

 

 

 

Fig. 1.1: Schematic model of MscS 
and YggB. 
Topology of MscS of E. coli (286 AA) 
and predicted topology of YggB of C. 
glutamicum (533 AA).  
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Aside from its suggested function as MS channel, YggB was recently connected to the 

export of glutamate by C. glutamicum. A truncation mutant, missing 110 AA at the C-

terminal end, led to permanent excretion of glutamate (Nakamura et al., 2007). 

Additionally, an elevated expression level of the yggB gene was observed upon glutamate 

triggering treatments (Radmacher et al., 2005, Schiekel, 2005). Since C. glutamicum is the 

most important organism used in industrial production of L-glutamate, understanding of 

the mechanisms leading to glutamate production and excretion are of major interest. 

Although C. glutamicum has been used in glutamate production for decades the 

mechanisms leading to glutamate production have not been completely resolved so far. 

The possible involvement of YggB in (a) osmotic stress situations functioning as MS 

channel and (b) glutamate production acting as excretion system makes the protein YggB 

of C. glutamicum a very interesting study object. For a better understanding, the two fields 

concerning YggB, osmotic stress and glutamate production, will be described in the 

following sections. 

 

1.2 C. glutamicum in general 

C. glutamicum, a Gram-positive, biotin-auxotrophic bacterium, was isolated about 50 years 

ago in a screening program for L-glutamate-producing bacteria (Kinoshita et al., 1957, 

Udeka, 1960). C. glutamicum is a nonmotile, aerobic, and nonsporulating bacterium 

inhabiting mainly the surface layers of the soil. In its natural environment C. glutamicum 

has to deal with several stress situations, e.g. osmotic stress caused by sudden changes of 

the external osmolarity. Like mycobacteria it belongs to the suborder Corynebacterineae 

which is characterized by very unique cell wall components and a high G+C content of the 

DNA (Stackebrandt et al., 1997). In addition to a ubiquitous inner plasma membrane, the 

cell envelope has an outer lipid layer which contains mycolic acids and is probably also 

organized as a bilayer (Eggeling and Sahm, 2001). Importantly, this hydrophobic layer was 

shown in related genera to play an important role in drug und substrate transport due to its 

high impermeability (Jarlier and Nikaido, 1990; 1994). For C. glutamicum the mycolic 

acids were shown to be essential for the impermeability of the cell wall (Tropis et al., 

2005; Gebhardt et al., 2007). 

The 3.3 Mb genome of C. glutamicum was completely sequenced by three independent 

research groups in Europe and Japan (Kalinowski et al., 2003; Ikeda and Nakagawa, 2003; 

Yukawa et al., 2007). Due to many genes which are highly conserved within the 

Corynebacterineae species and its close relationship to pathogenic organisms, such as C. 
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diphtheria, Mycobacterium tuberculosis, and M. leprae, C. glutamicum is of high interest 

as non-pathogenic model organism. Furthermore, C. glutamicum is one of the 

biotechnologically most important bacterial species, because of its intense use for amino 

acid production. The annual production was more than two million tons of amino acids, 

mainly L-glutamate and L-lysine in 2005 (Leuchtenberger et al., 2005). Up to now 

glutamate production alone has increased to an annual production of two million tons 

(Sano, 2009). Due to this immense industrial importance, glutamate production by C. 

glutamicum has been studied intensively.  

 

1.3 Osmotic stress response in C. glutamicum 

In the upper layer of the soil, the natural environment of C. glutamicum, changes in 

external osmolarity are very common as a result of environmental changes, like sunshine 

and rainfall, respectively. Compensation of these changes is essential for the cell to prevent 

dehydration or disrupture. Bacterial cells need to maintain an outwardly directed turgor, 

which pushes the cytoplasmic membrane against the cell wall and appears to be essential 

for the enlargement of the cell envelope and therefore for growth and cell division (Koch, 

1983). To achieve this turgor, solutes are accumulated against their chemical gradient, 

leading to water flow into the cytoplasm (Epstein, 1986). In high osmolarity environments 

C. glutamicum actively accumulates these compatible solutes to ensure the continuous flow 

of water into the cytoplasm. After an osmotic downshift C. glutamicum releases solutes 

from the cytoplasm via so-called MS channels, thus counterbalancing excessive water 

influx to prevent cell lysis (Morbach and Krämer, 2002; 2008). 

 

1.3.1 Response to hyperosmotic stress conditions 

As first consequence of environmental change to hyperosmotic conditions efflux of water 

occurs and cells impend to dehydrate. Thereupon, to maintain cell turgor, C. glutamicum as 

other bacteria responds with a fast influx of K+ followed by the accumulation of 

compatible solutes, such as glycine betaine, trehalose, and proline, at high concentrations 

(Wood, 1999; Morbach and Krämer, 2005a). These compatible solutes harbor two main 

characteristics. On the one hand they increase the internal osmolality in order to redirect 

water fluxes and maintain the necessary cell turgor. On the other hand compatible solutes 

are able to stabilize proteins and protect them against denaturation under hyperosmotic 

conditions (Bolen and Rose, 2008). Accumulation of compatible solutes can be 

accomplished either by de novo biosynthesis (mainly proline and trehalose) or by uptake 
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from the surrounding environment (Morbach and Krämer, 2005a). In general bacteria 

prefer uptake over biosynthesis due to lower energy costs. C. glutamicum harbors four 

osmoregulated uptake systems for compatible solutes, namely BetP, EctP, ProP, and LcoP 

(Peter et al., 1998; Morbach and Krämer, 2005a). Among these BetP is the most 

intensively studied uptake system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to adapt to osmolarity changes of the environment, bacterial cells have to sense 

these changes. Therefore, C. glutamicum harbors the osmosensory two-component system 

MtrAB consisting of a membrane-bound histidine kinase MtrB and the soluble response 

regulator MtrA (Möker et al., 2004). MtrB is able to sense a so far unknown stimulus 

related to hyperosmotic stress via its cytoplasmatically located phosphorylation domain. 

The response regulator MtrA becomes phosphorylated by MtrB and binds to the DNA, 

regulating the transcription of several genes involved in osmoregulation, e.g. betP, proP, 

lcoP, and mscL (Krämer 2009). 

One of these genes, betP, encodes the transporter BetP which is a specific uptake carrier 

for glycine betaine. BetP is a secondary transporter which belongs to the BCCT-type 

family of transporters (Krämer and Morbach, 2004). It consists of 594 AA forming 12 

transmembrane segments. Both, the C- and N-terminal, domains of about 50-55 AA are 

exposed to the cytoplasm. Electron cryo-microscopy of 2D crystals revealed that three 

BetP proteins form a trimer (Ziegler et al., 2004). Recently, the crystal structure of BetP 

Fig. 1.2: Systems involved in the osmotic stress response of C. glutamicum. 
Under hyperosmotic conditions compatible solutes are accumulated either via de novo synthesis or 
via the osmoregulated uptake systems BetP, ProP, EctP, and LcoP. The two-component system 
MtrBA senses these hyperosmotic conditions and regulates the transcription of several genes 
which are either up- (green arrow) or down-regulated (red arrow). To prevent cell lysis upon 
osmotic downshift the MS channels MscL and YggB open within milliseconds to allow the release 
of compatible solutes. 
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was also solved at a resolution of 3.3 Å (Ressl et al., 2009). The uptake of glycine betaine 

is energetically coupled to the membrane potential dependent co-transport of two Na+ ions 

(Peter et al., 1996; Krämer and Morbach 2004; Morbach and Krämer, 2005b). Upon 

activation BetP transports betaine into the cell in a very specific manner reaching a Km 

value of 8.9 µM and so is able to build up extremely high betaine gradients of 4 x 106 

(inside/out ratio) (Peter et al., 1996). Besides its transport activity, BetP is also able to 

function as osmosensor. Three different stimuli are involved in the activation of BetP, (a) 

the C-terminal, regulatory domain, (b) the cytoplasmic K+ concentration, and (c) negative 

membrane surface charges (Rübenhagen et al., 2001; Ott et al., 2008). Once the 

hyperosmotic stress is compensated the cell has to keep the internal betaine concentration 

at a constant level. Thus, an appropriate fine-tuning mechanism that regulates the internal 

betaine concentration by balancing uptake and efflux is necessary. In principle, two such 

mechanisms are possible. One is the gradual downregulation of the transport activity of 

BetP; the other is the presence of a counteracting efflux system compensating the ongoing 

betaine uptake. However, a combination of both mechanisms also seems possible. It was 

already shown that BetP activity is strongly decreased upon adaption to hyperosmotic 

stress (Botzenhardt et al., 2004). Nevertheless, the knowledge of the exact fine-tuning 

process of internal betaine concentration is still very limited.  

 

1.3.2 Response to hypoosmotic stress conditions 

Mechanosensitive (MS) channels are described as protection system against sudden 

osmotic downshifts. This rapid decrease of external osmolarity leads immediately to an 

excessive water influx and consequently to a dramatically increased turgor pressure. To 

avoid cell lysis, emergency release valves, the MS channels, are activated within 

milliseconds mediated by the increased membrane tension. As a result, cytoplasmic solutes 

are released into the environment and the driving force for water entry is reduced (Fig. 1.3) 

(Morbach and Krämer 2002; Booth et al., 2007).  

 

 

 

 

 

 

MS channels

H2O-Influx

compatible solutes

MS channel

H2O-Influx

compatiblesolutes

Fig. 1.3: Response to hypoosmotic 
stress conditions. 
Sudden decrease of the external 
osmolarity, e. g. caused by rainfall, leads 
to an excessive water influx. To prevent 
cell disruption mechanosensitive channels 
are activated immediately to allow the 
release of compatible solutes. 
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According to this function, MS channels have to sense lipid deforming forces within the 

membrane leading to structural rearrangements that lead to channel opening and allow 

immediate efflux of solutes. However, the way how MS channels respond to mechanical 

forces along the plane of the cell membrane is not completely clear. Changes in the lipid 

bilayer caused by increased membrane tension must somehow be sensed and transmitted to 

the channel (Martinac, 2004).  

In contrast to C. glutamicum, the MS channels of E. coli have been intensively studied for 

many years. Using patch clamp techniques, three types of MS channels could be identified 

in E. coli. Dependent on their conductance the channels are named MscL, MscS and MscM 

for large, small or very small (mini) conductance (Fig. 1.4) (Berrier et al., 1996; Perozo 

and Rees, 2003). Corresponding to their conductance the three channels open at different 

activation thresholds to allow a stepwise response to hypoosmotic conditions (Fig. 1.4) 

(Martinac et al., 1987; Perozo and Rees, 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While the associated genes of MscL (mscL) and MscS (yggB) have been identified, the 

gene encoding MscM is still unknown (Levina et al., 1999). MscL and MscS have been 

Fig. 1.4: Mechanosensitive channels from E.coli. 
Shown are the channels responsible for (a) the MscL (large conductance), 
(b) two channels of small conductance, MscS (non specific) and MscK 
(potassium ions), and (c) MscM (mini conductance) mechanosensitive 
activity as topology model, their single channel activity, and activation 
threshold.  
From: Perozo and Rees, 2003 
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studied most extensively, resulting in the crystal structure of both proteins (Chang et al., 

1998; Bass et al., 2002). These two channel proteins are generally not found in animals, 

but homologs are present in plants and in some fungi and oomycetes. Other structural 

classes of MS channels are known to exist in higher organisms, from yeast to humans 

(Kung, 2005). MscL is the largest of the known MS channels. It assembles as 

homopentamer, each subunit (136 AA) containing two transmembrane domains. For 

activation a much stronger membrane tension is necessary than it is the case for MscS and 

MscM. The threshold level of the membrane tension that activates MscL is reached at 

imminent cell lysis. Accordingly, MscL acts as emergency valve activated at the last 

moment to allow an extremely fast compensation of the osmotic gradient. Deletion of mscL 

in E. coli shows no significant differences concerning growth or survivability upon 

hypoosmotic stress compared to the wild type. Thus, lack of MscL function seems to be 

compensated by the other MS channels. MscS activity in E. coli is composed of two 

different channel activities. The gene product of yggB, MscS, constitutes the main part of 

activity, while kefA encodes a potassium regulated MS channel (MscK). MscS belongs to a 

family of small membrane proteins of about 300 AA (E. coli MscS: 286 AA). However, 

MscK is part of a family of larger membrane proteins of more than 700 AA (E. coli MscK: 

1120 AA). E. coli mutants lacking MscL and MscS are not able to survive severe osmotic 

downshifts. However, lack of MscK (also KefA) has no influence on the survivability 

(Levina et al. 1999; Perozo and Rees 2003; Pivetti et al., 2003). Besides sensing membrane 

stretches (activation threshold is about 50 % of MscL) MscS is able to detect changes of 

the membrane potential (Sukarev, 2002). The crystal structure revealed that MscS 

assembles a homoheptamer (Fig. 1.5) (Bass et al., 2002).  

 

Fig. 1.5: E. coli MscS heptamer 
(side view). 
E. coli MscS assembles as 
homoheptamer. Each subunit is shown 
in a different colour. The periplasmatic 
part (N– terminus) is displayed at the 
top, the cytoplasmic part (C–terminus) 
at the bottom. 
From: Bass et al., 2002 

membrane 

cytoplasm 
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Each MscS subunit contains 286 AA assembling three transmembrane helices and an 

additional large, cytoplasmic C–terminal domain. However, some MscS homologs are 

predicted to have more than three transmembrane (TM) spans which are observed in E. 

coli MscS (Pivetti et al., 2003). While the TM1 and TM2 domains act probably as sensor 

of changes in membrane tension and membrane potential, the TM3 domains of each 

subunit pack tightly in the heptameric complex to line a pore. In the crystal structure (Fig. 

1.5), this pore has a diameter of about 8 – 11 Å at the narrowest point generated by the side 

chains of Leu105 and Leu109, which form the hydrophobic seal in the closed channel 

(Bass et al. 2002, Miller et al. 2003). The pore forming TM3 helix contains a conserved 

glycine- and alanine-rich motif that forms a helix-helix interface. The smooth glycine face 

allows a sliding of the opposite TM3 helices across each other inducing a conformational 

change that opens the channel (Edwards et al., 2005). It was proposed that opening and 

closing of the channel is caused by an iris-like rotation of the helices in the membrane. The 

current model suggests that under outwardly directed turgor pressure, the density of lipids 

in the cytoplasmatic membrane is decreased. Thereupon, TM1 and TM2 adjust their 

conformation to increase their buried volume. This rotation of TM1 and TM2 might lead to 

a shift of TM3. Movement of TM3 withdraws the side chains of Leu105 and Leu109 from 

the central pore allowing solvated ion transport (Wang et al., 2008). Single amino acid 

exchanges within the three TM domains important for channel gating often have a high 

impact on channel activation. For MscS several loss-of-function (LOF - difficult or no 

channel opening), and gain-of-function (GOF - easy or flickering channel opening) 

mutants are described (Nomura et al., 2006; Okada et al., 2002; Miller et al., 2003; 

Edwards et al., 2005; Wang et al., 2008). GOF-mutations can especially have severe 

consequences for the cell as a permanently open channel would cause cell death.  

In contrast to the MS channels known for E. coli which release different molecules in a 

very unspecific way, C. glutamicum MS channels show much higher substrate specificity 

for compatible solutes, mainly betaine and proline (Ruffert et al., 1997). As mentioned 

above, two different conductances were observed in patch clamp analysis of C. glutamicum 

membrane fragments (Ruffert et al., 1999). Two putative MS channel genes, mscL and 

yggB, identified by sequence homologies to the E. coli MS channels, were further 

characterized by Nottebrock et al. (2003). While a deletion of mscL showed no phenotype, 

the absence of yggB led to a reduced ability to release betaine upon osmotic downshift. A 

double mutation had an intermediate phenotype concerning its ability to cope with 

hypoosmotic stress indicating the existence of a third efflux channel, not identified yet 
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(Nottebrock et al., 2003). This assumption was further supported by the fact that the 

double deletion in C. glutamicum was not lethal upon severe hypoosmotic conditions. 

However, deletion of yggB also included an essential regulatory sequence, located 

upstream the genes of isoleucine/valine biosynthesis. This additional deletion resulted in a 

strain auxotroph for isoleucine, leucine, and valine. Side effects on the phenotype due to 

this auxotrophy could not be completely excluded (Nottebrock et al., 2003). 

As described above, MscS of E. coli has been under intensive investigation by several 

research groups. The C. glutamicum homolog YggB, on the contrary, has been poorly 

investigated. Therefore, not much knowledge exists about its function as MS channel. 

Furthermore, there is still no proof, e.g. using patch clamp analysis, that the YggB protein 

really harbors the functions of a MS channel. 

 

1.4 Glutamate production by C. glutamicum 

Among the amino acids produced by microbial fermentation, L-glutamatic acid in the form 

of monosodium glutamate (MSG) is the one with the highest production rate. MSG has a 

unique flavor, which is called umami in Japanese, and is used as flavor-enhancer. About 

2.0 million tons of MSG is currently produced worldwide per year by fermentation using 

coryneform bacteria (Shirai et al., 2005; Sano, 2009). The fermentation process is carried 

out under strictly controlled conditions (temperature, pH, aeration) using sugar cane syrup 

as the most common carbon source. The L-glutamic acid excreted by the bacteria into the 

fermentation solution is then obtained by crystallization (Leuchtenberger et al., 2005).  

To induce glutamate productive conditions several treatments are known since C. 

glutamicum does not excrete any glutamate under normal growth conditions. As described 

below all these treatments somehow alter the cell wall. Consequently, the structure of the 

cell wall and its regulation is supposed to have significant influence on amino acid efflux 

(Eggeling et al., 2008). A schematic model of the C. glutamicum cell wall is shown in 

figure 1.6. The cytoplasm is surrounded by the cytoplasmic membrane composed of 

phospholipids in which the membrane proteins, e.g. importers and exporters, are 

embedded. The pepdidoglycan–arabinogalactan is arranged on top in outward direction. 

The mycolate layer consists of one layer of mycolic acids (mainly dimycolates) which are 

esterified with arabinogalactan, and of one layer of non-covalently bound trehalose 

mycolates. This upper layer is already part of the outer layer containing also a large 

quantity of soluble lipids, such as trehalose di- and monomycolates. The mycolate layer 
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has a highly ordered structure that leads to a cell wall of unusually low permeability 

(Puech et al., 2001; Eggeling and Sahm, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

The conditions of normal growth of C. glutamicum can be changed towards glutamate 

productive conditions by several treatments. In general, two major modifications of (a) the 

cell wall structure and (b) the metabolic flux between tricarboxylic acid (TCA) cycle and 

glutamate synthesis are involved in glutamate production by C. glutamicum. One 

possibility to induce glutamate overproduction is limited supply of biotin which is 

necessary for growth (Shiio et al., 1962). Glutamate excretion triggered by biotin 

limitation is explained by the inhibition of fatty acid synthesis which leads to a decreased 

availability of phospholipids and consequently to membrane alterations. In the presence of 

sufficient biotin, glutamate excretion can be induced by the addition of fatty acid ester 

surfactants such as Tween 40 (polyoxyethylene sorbitan monopalmitate) or Tween 60 

(polyoxyethylene sorbitan monostearate) (Takinami et al., 1965; Duperray et al., 1992). 

However, monolaurate or monooleate esters (Tween 20 and 80, respectively) are not 

effective. Further triggering methods are the addition of (a) the beta-lactam antibiotic 

penicillin inhibiting cell wall biosynthesis by binding to penicillin-binding proteins, which 

catalyze the transglycosylation and transpeptidation of peptidoglycan (Nunheimer et al., 

1970); (b) the antimycobacterial drug ethambutol targeting a series of 

arabinosyltransferases, and therefore causing a decreased arabinan deposition in the cell 

wall (Radmacher et al., 2005); (c) local anesthetics, e. g. chlorpromazine, tetracaine, 

butacaine, and benzocaine, which change the order of the lipid bilayer by insertion into the 

membrane (Lambert et al., 1995). It becomes quickly obvious that all these treatments or 

Fig. 1.6: Cell wall composition of C. 
glutamicum. 
On top of the cytoplasmatic membrane 
the peptidoglycan is located. To the 
peptidoglycan a layer of arabinogalactan 
is linked. To the ends of the 
arabinogalactan mycolic acids (mainly 
dimycolates) are esterified which 
together with soluble mycolic acids in 
the form of trehalose monomycolates 
and trehalose dimycolates form an outer 
layer. 

Mycolates Phospholipids

Glycolipids

Proteins

Porin
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conditions alter the cell envelope of C. glutamicum. The amount of mycolic acids is 

reduced by up to approximately 40 % under glutamate production conditions. Additionally, 

the spectrum of mycolic acids, normally consisting of 30, 32 or 34 carbons is altered to 

much shorter mycolic acids containing 22 and 24 carbons (Hashimoto et al., 2006). 

However, not only treatments directly altering the cell wall induce glutamate production, 

but also genetic manipulations of the cell wall via fatty acid synthesis can trigger glutamate 

excretion. Here it has to be mentioned that trehalose becomes covalently linked to fatty 

acids forming trehalosemono- and dimycolates (Tropis et al., 2005). A mutant lacking the 

trehalose synthesis genes treS, otsA, and treY is devoid of the mycolic acid layer under 

distinct cultivation conditions. This lack of mycolates is sufficient to induce continuous 

glutamate excretion (Gebhardt et al., 2007). Additionally, the overexpression or 

inactivation of the genes involved in lipid synthesis results in a strong alteration of the 

phospholipid composition and as a consequence of the modified lipid synthesis in a 

dramatically changed glutamate efflux (Nampoothiri et al., 2002).  

Several genes are up- or downregulated under glutamate productive conditions (Kataoka et 

al., 2006). One is the gene dtsR1 encoding a homolog of the β-subunit of some biotin-

containing enzyme complexes (Kimura et al., 1996). The expression of the dtsR1 gene and 

therefore the cellular concentration of the protein are decreased under biotin limited 

conditions and upon Tween 40 addition. A disruption of the dtsR1 gene results in a strain 

strictly auxotroph for fatty acids (oleic acid). The ∆dtsR mutant produced glutamate 

efficiently also in excess of biotin (Kimura et al., 1997). Although the related protein 

DtsR1 has no biotin-binding motif, it seemed very likely that it might form a complex with 

another subunit that contains biotin. The two carboxylases identified in C. glutamicum 

which were shown to be essential for fatty acid and mycolic acid synthesis (Gande et al., 

2007) were assumed to be counterparts of DtsR1 forming a complex including biotin 

molecules as co-factors.  

As mentioned above, also a change in metabolic flux is involved in glutamate production 

by C. glutamicum. On the metabolic level a reduced specific activity of the 2-oxoglutarate 

dehydrogenase complex (ODHC) was observed in the dtsR1 disruptants (Kimura, 2002). 

Interestingly, such a decrease in the specific activity of the ODHC was also observed under 

biotin limitation inducing glutamate production. Therefore, the ODHC seems to be a key 

enzyme in glutamate production, which is located at the metabolic branch point between 

the glutamate biosynthesis pathway and the TCA cycle where it catalyzes the oxidative 

decarboxylation of 2-oxoglutarate to succinyl-CoA (Kawahara et al., 1997). It was shown 
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that the activity of the ODHC was also decreased under glutamate productive conditions 

induced by several other treatments than biotin limitation, while the activity of the 

glutamate dehydrogenase (GDH), catalyzing ammonia assimilation of 2-oxoglutarate to 

form glutamate, was mainly unchanged. Furthermore, the level of ODHC activity seemed 

to be inversely correlated to the yield of glutamate (Kawahara et al., 1997). Metabolic flux 

analysis indicated that attenuation of ODHC activity is the factor with the greatest impact 

on glutamate formation in the metabolic network (Shirai et al., 2005). ODHC consists of 

three subunits, one the 2-oxoglutarate dehydrogenase subunit E1o encoded by the gene 

odhA (Usada et al., 1996). Deletion of odhA results in the elimination of any ODHC 

activity. The ∆odhA mutant produces glutamate spontaneously under normal growth 

conditions. In this mutant no alteration in the fatty acid composition of the cells was 

observed. Glutamate production by this mutant additional to the basal glutamate excretion 

could be triggered by several treatments (Asakura et al., 2007). However, overexpression 

of odhA leading to an increased ODHC specific activity results in dramatically reduced 

glutamate production despite Tween 40 addition (Kim et al., 2009). These results suggest 

that decrease in ODHC activity is an important factor for glutamate production by C. 

glutamicum, leading to increased metabolic flux towards glutamate biosynthesis. Thus, it is 

very interesting how reduction of the ODHC activity and alterations of the cell envelope 

are correlated.  

Recently, a novel regulation mechanism of ODHC was discovered. The 15 kDa protein 

OdhI in its unphosphorylated form is responsible for the inhibition of ODHC by direct 

interaction with the E1o subunit (OdhA). OdhI is phosphorylated by the Ser/Thr protein 

kinase PknG (Niebisch et al., 2006). Phosphorylated OdhI is inactive and cannot bind to 

the ODHC. Dephosphorylation of OdhI is catalyzed by the phosphoprotein phosphatase 

Ppp. PknG is a soluble protein which is assumed to be membrane associated whereas Ppp 

is a membrane-integral protein. These proteins might function as sensors and their de-

/phosphorylation activity is thought to be dependent on the absence or presence of specific 

stimuli. Deletion of the odhI gene nearly abolishes glutamate production. However, the 

effect of a pknG deletion varies depending on the inducing conditions but can lead to a 

significantly increased glutamate production. The positive influence of the pknG deletion 

on glutamate production might be caused by an increased level of unphosphorylated OdhI, 

resulting in an increased inhibition of ODHC activity and therefore a higher flux of 2-

oxoglutarate towards glutamate synthesis (Schultz et al., 2007). 
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Taken together glutamate overproduction seems to be the result of a combination of cell 

wall alteration, possibly mediating the activation of a glutamate excretion system, and 

metabolic alteration towards efficient glutamate synthesis. A model to combine all effects 

connected with the induction of glutamate production involves sensing of cell wall 

alterations, a regulatory cascade up to the central metabolism, and activation of a specific 

glutamate export system (Fig. 1.7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7: Model for the induction of glutamate production by C. glutamicum. 
Treatments triggering glutamate production alter the cell envelope of C. glutamicum. 
Biotin limitation and detergent addition alter the membrane by inhibiting fatty acid 
synthesis. Genetic manipulations resulting in effects like trehalose deficiency or changed 
fatty acid synthesis also change the composition of the cell wall. Addition of penicillin or 
ethambutol inhibits cell wall biosynthesis. These cell wall alterations might be sensed by 
the glutamate export carrier itself or by other membrane bound proteins, like PknG and 
Ppp. These proteins could regulate the ODHC activity via the phosphorylation status of 
OdhI. 
Modified from Nakamura et al., 2007 and Eggeling et al., 2008 
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1.5 Glutamate export 

Since C. glutamicum is used for the industrial production of various amino acids, which 

have to cross the cell membrane on their way into the external medium, a main focus of 

research laid on the identification of the corresponding export systems. Several exporters 

have been identified so far, such as LysE exporting the basic amino acids L-lysine and L-

arginine (Vrljic et al., 1996), BrnFE exporting branched chain amino acids and L-

methionine (Kennerknecht et al., 2002; Trötschel et al., 2005), and ThrE exporting L-

threonine (Simic et al., 2001). For the export of glutamate the situation slightly differs. 

Because all the triggers known at the time being affected the cell surface of C. glutamicum, 

it was initially assumed that glutamate passively leaks through the membrane and cell wall 

(‘leak model’). However, it was shown that membrane permeability does not change 

during glutamate production, since other amino acids, as well as actetate and ions (H+, K+, 

and Cl-) do not leak from the cell (Hoischen and Krämer, 1989; 1990). Furthermore, the 

leak model itself could not explain the accumulation of external glutamate. Therefore, the 

presence of a specific glutamate export system in the membrane was proposed (Hoischen 

and Krämer, 1989; Gutmann et al., 1992). However, this export carrier for the industrial 

important glutamate was not known for decades.  

Recently, the MS channel homolog YggB of C. glutamicum was connected to the export of 

glutamate (Nakamura et al., 2007). As previously mentioned, the activity of the ODHC is 

significantly decreased under glutamate producing conditions. Therefore, the construction 

of odhA disruptants was one strategy to increase glutamate productivity. However, these 

mutants showed a reduced ability to grow on minimal medium and had an extremely 

unstable phenotype resulting in suppressor mutations. To identify such a mutation in a 

glutamate producing mutant, a Sau3AI library of wild-type C. glutamicum chromosomal 

DNA was used. The gene which restored normal growth and abolished glutamate 

production was identified by sequencing as NCgl1221 (yggB). Several odhA disruptants 

showing elevated levels of glutamate production revealed mutations within the yggB gene. 

One mutant with a yggB (V419::IS1207) gene leading to a protein with a C-terminal 

truncation of 110 AA showed continuous glutamate production without induction. 

Overexpression of yggB from a plasmid resulted in increased glutamate production only 

upon induction by various triggers. The deletion of yggB was followed by a dramatically 

decrease in glutamate production. However, a small residual excretion of glutamate could 

still be observed. Based on the obtained results, Nakamura and co-workers proposed the 

following model for the role of YggB in glutamate production by C. glutamicum: (a) 
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several treatments inducing glutamate production cause changes in membrane tension, (b) 

the structure of YggB is altered by these changes so that YggB becomes activated, and (c) 

allows glutamate excretion. However, YggB is localized in the cytoplasmic membrane, 

while most of the treatments which induce glutamate production, alter the cell wall of C. 

glutamicum. Here the unique C-terminal elongation provides an interesting candidate to 

sense and transduce these changes of the cell wall under the assumption that it is localized 

in the periplasmic space. The reduced ODHC activity might be only a consequence of 

glutamate production and not an activator. However, a decrease in ODHC activity can then 

further increase glutamate productivity. Besides the proposed major glutamate export 

system YggB, a second minor glutamate export carrier might exist. However, the existence 

of another so far unknown glutamate export system is also possible. In this case YggB 

might just function as regulator of this glutamate exporter Xy (Fig. 1.8) (Nakamura et al., 

2007). 
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Fig. 1.8: Possible functions of 
YggB in the export of glutamate. 
YggB might either function as 
glutamate exporter together with a 
minor export system responsible for 
residual glutamate excretion of the 
yggB deletion strain or as regulator 
of another unknown export system 
(shown here as protein Xy). 
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1.6  Thesis objective 

The aim of this work was a detailed characterization of the protein YggB of C. 

glutamicum. Research on YggB is interesting because a dual function of the protein was 

proposed as mechanosensitive channel under hypoosmotic conditions on the one hand and 

an involvement in the export of the industrial important amino acid glutamate on the other. 

MS channels can sense alterations of the membrane tension and transduce these alterations 

into a conformational change allowing solute efflux. As all treatments inducing glutamate 

production go along with an alteration of the cell envelope, a MS channel harboring the 

mentioned properties might be a good candidate to be involved in the sensing of these 

alterations. 

However, the actual function of YggB as MS channel has still to be proven. An approved 

method to show mechanosensitive properties of a channel are electrophysiological analyses 

via the patch clamp technique. Additionally, YggB should be physiologically characterized 

under different osmotic stress conditions to gain a comprehensive understanding of its 

properties. Regarding the proposed involvement of YggB in the export of glutamate the 

main question is if YggB is the glutamate exporter itself or whether it is just a regulator of 

another so far unknown glutamate export system. To answer this question, several 

physiological and biochemical attempts are made to characterize the role of YggB under 

glutamate productive conditions. In addition to a functional characterization of YggB, the 

correct topology of the protein in the membrane should be determined. Depending on the 

computer program used, the existence of a fourth transmembrane domain was predicted 

which would localize the C-terminal elongation in the periplasm. 
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2 Materials and Methods  

 

2.1 Bacterial strains and plasmids  

All strains used in this work are listed in table 2.1. 

 

Table 2.1: Bacterial strains 

Strain Genotype Reference 

E. coli 

DH5αmcr endA1 supE44 thi-1 λ- recA1 gyrA96 relA1 deoR 

∆(lacZYA-argF) U196 φ80DlacZ ∆M15mcrA ∆(mmr 

hsdRMS mcrBC) 

Grant et al. 1990 

BL21 (DE3) F- ompT gal [dcm] [lon] hsdSB (rB –mB -; an E. coli B 

strain) with DE3, a λ prophage carrying the T7 RNA 

polymerase gene 

Novagen, 

Darmstadt 

Frag 1 F–, rha, thi, gal, lacZ Epstein and Kim, 

1971 

MJF455 Frag1, ∆mscL::Cm, ∆yggB Levina et al. 1999 

MJF465 Frag1, ∆mscL::Cm, ∆yggB, ∆kefA::Km Levina et al. 1999 

 

C. glutamicum 

ATCC 13032 wild type Abe et al. 1967 

ATCC 13032 ∆mscL Derivative of ATCC 13032 with an in frame-deletion of 

the mscL gene 

Nottebrock et al. 

2003 

ATCC 13032 ∆yggB Derivative of ATCC 13032 with an in frame-deletion of 

the yggB gene 

this work 

ATCC 13032 ∆mscL 

∆yggB 

Derivative of ATCC 13032 with in frame-deletions of the 

mscL and yggB genes 

this work 

ATCC 13032 

∆Cgl0590∆yggB 

Derivative of ATCC 13032 with in frame-deletions of the 

Cgl0590 and yggB genes 

this work 

ATCC 13032 

∆Cgl2211∆yggB 

Derivative of ATCC 13032 with in frame-deletions of the 

Cgl2211 and yggB genes 

this work 

ATCC 13032 

∆Cgl2211∆Cgl0590 

Derivative of ATCC 13032 with in frame-deletions of the 

Cgl2211 and Cgl0590 genes 

this work 

ATCC 13032 

∆Cgl2211∆Cgl0590 

∆yggB 

Derivative of ATCC 13032 with in frame-deletions of the 

Cgl2211, Cgl0590, and yggB genes 

this work 

ATCC 13032 IS::Cgl0063 Derivative of ATCC 13032 with an insertion-deletion of 

the Cgl0063 gene, Cgl0063::Am 

Elena Jolkver 
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ATCC 13032  

∆kup ∆CglK 

Derivative of ATCC 13032 with in frame-deletions of the 

kup and CglK genes 

Follmann et al., 

2009 

 

All plasmids used in this work are listed in table 2.2. 

 

Table 2.2: Plasmids 

Plasmid Features Reference 

pET29b Km
R
, PT7 Novagen, Inc. 

Madison, USA 

pET29b_yggB-his pET29b containing yggB-his6 for overexpression of yggB 

with C–terminal (His)6-tag fusion in E. coli 

Nina Möker 

pET29b_yggB ∆110-his pET29b containing yggB∆110-his6 for overexpression of 

yggB with a C–terminal truncation of 110 AA and a 

(His)6-tag fusion in E. coli 

Nina Möker 

pET29b_yggB ∆132-his pET29b containing yggB∆132-his6 for overexpression of 

yggB with a C–terminal truncation of 132 AA and a 

(His)6-tag fusion in E. coli 

Nina Möker 

pET29b_yggB ∆247-his pET29b containing yggB∆247-his6 for overexpression of 

yggB with a C–terminal truncation of 247 AA and a 

(His)6-tag fusion in E. coli 

Nina Möker 

pEKex2 Km
R
, tac promotor, oriVE.c., oriVC.g. Eikmanns et al., 

1991 

pEKex2_yggB pEKex2 containing yggB for overexpression of yggB in 

C. glutamicum 

this work 

pEKex2_yggB-his pEKex2 containing yggB-his6 for overexpression of yggB 

with C–terminal (His)6-tag fusion in C. glutamicum 

this work 

pEKex2_yggB ∆110-his pEKex2 containing yggB∆110-his6 for over expression 

of yggB with a C–terminal truncation of 110 AA and a 

(His)6-tag fusion in C. glutamicum 

this work 

pEKex2_yggB ∆132-his pEKex2 containing yggB∆132-his6 for overexpression of 

yggB with a C–terminal truncation of 132 AA and a 

(His)6-tag fusion in C. glutamicum 

this work 

pEKex2_yggB ∆247-his pEKex2 containing yggB∆247-his6 for overexpression of 

yggB with a C–terminal truncation of 247 AA and a 

(His)6-tag fusion in C. glutamicum 

this work 

pEKex2_Cgl0590 pEKex2 containing Cgl0590 for overexpression of 

Cgl0590 in C. glutamicum 

this work 

pEKex2_Cgl0590-His pEKex2 containing Cgl0590-his6 for overexpression of 

Cgl0590 with a (His)6-tag fusion in C. glutamicum 

this work 

pEKex2_Cgl2211-His pEKex2 containing Cgl2211-his6 for overexpression of this work 
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Cgl2211 with a (His)6-tag fusion in C. glutamicum 

pMS3 pEKex2 fused with a β-galactosidase alkaline 

phosphatase reporter cassette for topology studies 

Seidel et al., 2007 

pMS3_yggB pEKex2 containing yggB fused to a β-galactosidase 

alkaline phosphatase reporter cassette for 

overexpression in E. coli and  in C. glutamicum 

this work 

pMS3_yggB ∆110 pEKex2 containing yggB ∆110 fused to a β-

galactosidase alkaline phosphatase reporter cassette for 

overexpression in E. coli and  in C. glutamicum 

this work 

pMS3_yggB ∆132 pEKex2 containing yggB ∆110 fused to a β-

galactosidase alkaline phosphatase reporter cassette for 

overexpression in E. coli and  in C. glutamicum 

this work 

pMS3_yggB ∆247 pEKex2 containing yggB ∆110 fused to a β-

galactosidase alkaline phosphatase reporter cassette for 

overexpression in E. coli and  in C. glutamicum 

this work 

pEKex2_mscS pEKex2 containing E. coli mscS for overexpression of 

mscS in C. glutamicum 

this work 

pEKex2_mscS-His pEKex2 containing E. coli mscS -his6 for overexpression 

of mscS with C–terminal (His)6-tag fusion in C. 

glutamicum 

this work 

pEKex2_mscS/CtyggB pEKex2 containing E. coli mscS fused to the C-terminal 

domain of YggB for overexpression of mscS/CtyggB in 

C. glutamicum 

this work 

pEKex2_mscS/CtyggB-

His 

pEKex2 containing E. coli mscS fused to the C-terminal 

domain of YggB-his6 for overexpression of mscS/CtyggB 

with C–terminal (His)6-tag fusion in C. glutamicum 

this work 

pEKex2_mscS-His 

I37N/L86N 

pEKex2 containing E. coli mscS I37N L86N-his6 for 

overexpression of mscS I37N L86N with C–terminal 

(His)6-tag fusion in C. glutamicum 

this work 

pEKex2_mscS/CtyggB-

His I37N/L86N 

pEKex2 containing E. coli mscS I37N L86N fused to the 

C-terminal domain of YggB-his6 for overexpression of 

mscS/CtyggB I37N L86N with C–terminal (His)6-tag 

fusion in C. glutamicum 

this work 

pEKex2_mscS-His 

A51N/F68N 

pEKex2 containing E. coli mscS A51N F68N-his6 for 

overexpression of mscS A51N F68N with C–terminal 

(His)6-tag fusion in C. glutamicum 

this work 

pEKex2_mscS/CtyggB-

His A51N/F68N 

pEKex2 containing E. coli mscS A51N F68N fused to the 

C-terminal domain of YggB-his6 for overexpression of 

mscS/CtyggB A51N F68N with C–terminal (His)6-tag 

fusion in C. glutamicum 

this work 
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pEKex2_mscS-His V40D pEKex2 containing E. coli mscS V40D-his6 for 

overexpression of mscS V40D with C–terminal (His)6-tag 

fusion in C. glutamicum 

this work 

pEKex2_mscS/CtyggB-

His V40D 

pEKex2 containing E. coli mscS V40D fused to the C-

terminal domain of YggB-his6 for overexpression of 

mscS/CtyggB V40D with C–terminal (His)6-tag fusion in 

C. glutamicum 

this work 

pEKex2_mscS-His 

A106V 

pEKex2 containing E. coli mscS A106V-his6 for 

overexpression of mscS A106V with C–terminal (His)6-

tag fusion in C. glutamicum 

this work 

pEKex2_mscS/CtyggB-

His A106V 

pEKex2 containing E. coli mscS A106V fused to the C-

terminal domain of YggB-his6 for overexpression of 

mscS/CtyggB A106V with C–terminal (His)6-tag fusion in 

C. glutamicum 

this work 

pEKex2_mscS-His L109S pEKex2 containing E. coli mscS L109S-his6 for 

overexpression of mscS L109S with C–terminal (His)6-

tag fusion in C. glutamicum 

this work 

pQE60 Am
r
, T5 promotor, Col E1 Qiagen, Hilden 

pREP Km
r
, lacI Qiagen, Hilden 

pQE60-lacI pQE60 with integrated lacI gene this work 

pQE60-lacI_yggB pQE60-lacI containing yggB for overexpression of yggB 

in E. coli 

this work 

pQE60-lacI_yggB-His pQE60-lacI containing yggB-His for overexpression of 

yggB with C–terminal (His)6-tag fusion in E. coli 

this work 

pQE60-lacI_yggB ∆110 pQE60-lacI containing yggB ∆110 for overexpression of 

yggB ∆110 in E. coli 

this work 

pQE60-lacI_yggB ∆132 pQE60-lacI containing yggB ∆132 for overexpression of 

yggB ∆132 in E. coli 

this work 

pQE60-lacI_yggB ∆247 pQE60-lacI containing yggB ∆247 for overexpression of 

yggB ∆247 in E. coli 

this work 

 

 

2.2 Media and growth conditions  

E. coli strains DH5αmcr (Grant, 1990) and MJF strains (Levina et al. 1999) as well as C. 

glutamicum wild type strain ATCC13032 (Abe, 1967) and its derivatives (this work) were 

cultivated in shaking flasks (125 rpm) under aerobic conditions. E. coli was grown at 37 °C 

in Luria-Bertani (LB) medium, C. glutamicum at 30 °C in brain heart infusion (BHI, Difco, 

Detroit, USA) or in CgXII MOPS minimal medium, pH 7.0. The cell density of bacterial 

cultures was measured photometrical at 600 nm (OD600) (Spektrophotometer Novaspec II, 
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Pharmacia Biotech Inc.). An OD600 of 1 equates approximately 109 cells per ml (Miller, 

1992) or a cell dry weight of 0.34 mg/ml. Unless otherwise stated, C. glutamicum cells 

were grown in BHI medium for about 8 h. This culture was washed twice in 0.9 % NaCl 

and used to inoculate CgXII MOPS, pH 7.0 to an optical density (OD600) of 0.2 - 0.5 for 

adaptation to the minimal medium. Protein expression was already induced in the 

overnight (o/n) culture by addition of 25 or 200 µM IPTG, respectively.  After ~ 16 h this 

culture was used to inoculate the main cultures. For growth under different osmolalities 

MM1 medium, pH 7.0 was used containing different salt concentrations.  

Antibiotics were added in concentrations of 100 µg/ml for E. coli and 25 µg/ml for C. 

glutamicum.  

For a general approach to look for the excretion of amino acids besides glutamate, cells 

were grown in BHI + 500 mM NaCl for about 8 h to let the cells accumulate different 

solutes. After washing twice, cells were resuspended in CgXII MOPS at an OD600 of about 

10. Following incubation at 30 °C for 30’ samples were taken, centrifuged and the 

supernatant analyzed by HPLC. 

 

For 1 L: 

LB   10 g tryptone, 5 g yeast extract, 10 g NaCl 

CgXII MOPS  20 g (NH4)2SO4, 5 g urea, 1 g KH2PO4, 1.6 g K2HPO4, 42 g MOPS, 

2.9 g NaCl, 4 % glucose, 0.25 g MgSO4, 0.01 g CaCl2, 0.2 mg biotin, 

30 mg protocatechuate, 1 ml trace elements 

MM1  5 g (NH4)2SO4, 5 g urea, 2 g KH2PO4, 2 g K2HPO4, 3 g NaCl, 4 % 

glucose, 0.25 g MgSO4, 0.01 g CaCl2, 0.2 mg biotin, 30 mg 

protocatechuate,1 ml trace elements 

Trace elements 10 g FeSO4 x 7 H2O, 10 g MnSO4 x H2O, 1 g ZnSO4 x 7 H2O, 0.2 g 

CuSO4 x 5 H2O, 20 mg NiCl2 x 6 H2O  

 

 

2.3 Molecular biological approaches  

2.3.1 Preparation of competent E. coli cells and transformation  

To prepare competent E. coli cells, 5 ml LB medium were inoculated from an agar plate of 

the respective E. coli cells and cultivated for 8 h at 37 °C. Subsequently, this culture was 

used to inoculate 125 ml SOB medium. After 16 h, the cultures were chilled on ice for 10 

min, before harvested by centrifugation (2500 rpm, 4 °C, 10 min). The cell pellet was 
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resuspended in 40 ml TB buffer, chilled on ice for 10 minutes and again centrifuged. The 

pellet was now resuspended in 10 ml TB puffer, 700 µl DMSO was added drop wisely and 

chilled on ice for 10 min. Aliquots of 100 µl were transferred into pre-cooled reaction 

tubes, immediately frozen in liquid nitrogen and stored at -80 °C. 

Prior to transformation, an aliquot of competent E. coli cells was thawed on ice. Plasmid 

DNA was added and the cells were incubated on ice for 30 min. Heat shock at 42 °C for 30 

sec was followed by the addition of 800 µl LB medium. The cell suspension was cultivated 

for 1 h at 37 °C. Subsequently, the cell suspension was plated on a LB plate containing the 

appropriate antibiotic. 

 

SOB (1L) 5 g tryptone, 1.25 g yeast extract, 0.125 g NaCl, 2.5 mM KCl • H2O, 10 mM 

Mg Cl2 

TB  10 mM Pipes, 15 mM CaCl2, 250 mM KCl, 55 mM MnCl2 

 

2.3.2 Preparation of competent C. glutamicum cells and transformation  

To prepare competent C. glutamicum cells, 5 ml LB medium plus 2 % glucose were 

inoculated from an agar plate of the respective C. glutamicum cells and cultivated for ~ 16 

h at 30 °C. Subsequently, this culture was used to inoculate 25 ml LB medium plus 2 % 

glucose, which was again inoculated for ~ 8 h. This culture was now used to inoculate 250 

ml LB medium supplemented with 4 g/l isonicotine acid hydrazide, 2.5 % (w/v) glycine, 

and 0.1 % (v/v) Tween 80 to an OD600 of 0.3. The cells were cultivated at 20 °C, 140 rpm. 

After ~ 16 h, the cultures were chilled on ice for 20 min, before harvested by centrifugation 

(4000 rpm, 4 °C, 10 min). The cells were washed five times in ice-cold 10 % glycerol. 

After the final washing step, the cell pellet was resuspended in 1 ml ice-cold 10 % 

glycerol. Aliquots of 55 µl were transferred into pre-cooled reaction tubes, immediately 

frozen in liquid nitrogen and stored at -80 °C. 

Prior to transformation, an aliquot of competent C. glutamicum cells was thawed on ice. 

Plasmid DNA was added and the cells were transferred to a pre-cooled electroporation 

cuvette (Peqlab, Erlangen). Electroporation was performed with a Gene-Pulser (Biorad, 

München) at 2.5 kV, 600 Ω, and 25 µF for at least 5 msec. 1 ml BHIS medium (BHI + 0.5 

M sorbitol) was added immediately and the cell suspension was transferred to a cultivation 

tube. The cells were cultivated for 1 – 2 h at 30 °C. Subsequently, the cell suspension was 

plated on a BHI plate containing the appropriate antibiotic. 
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2.3.3 DNA techniques  

2.3.3.1 Isolation of plasmid DNA from E. coli and C. glutamicum 

The isolation of plasmid DNA was performed following the principle of alkaline lysis. For 

this purpose, 5 ml rich medium was inoculated with a single colony from an E. coli or C. 

glutamicum plate and inoculated overnight. For the isolation of plasmid DNA from these 

cultures, the NucleoSpin® Plasmid DNA Purification kit (Macherey-Nagel, Düren) was 

used as recommended by the supplier. For plasmid isolation from C. glutamicum cells a 

pre-incubation step in resuspension buffer A1 containing 15 mg/ml lysozyme for 1 – 2 h at 

37 °C was necessary. 

 

2.3.3.2 Isolation of genomic DNA from E. coli and C. glutamicum 

The isolation of genomic DNA was performed using the phenol-chloroform extraction 

method. For this purpose, 5 ml rich medium was inoculated with a single colony from an 

E. coli or C. glutamicum plate and cultivated o/n at 37 °C or 30 °C, respectively. Cells 

were harvested and the pellet resuspended in 200 µl ddH2O. Subsequently, 200 µl phenol 

was added and the cell suspension was incubated for 10 min at 65 °C followed by a 2 min 

incubation step on ice. Then, 200 µl chloroform was added and the suspension was 

vortexed generously. The supernatant was separated from the cell debris (15,300 rpm, 5 

min, 4 °C) and 200 µl chloroform was added. After another centrifugation step the 

supernatant contained the extracted DNA and was stored at -20 °C. 

 

2.3.3.3 Gel electrophoresis and extraction of DNA from agarose gels  

Gel electrophoresis of DNA was performed using 0.9 % agarose gels in 1x TAE buffer as 

described by Sambrook et al. (1989). For this purpose, DNA samples were mixed with 5x 

Loading Dye (MBI Fermentas, St. Leon-Roth). After electrophoresis, DNA was stained 

with ethidium bromide. For detection of stained DNA, the Image Master VDS system 

(Amersham Biosciences, Freiburg) was used. DNA was isolated from agarose gels using 

the NucleoSpion® Extract kit (Macherey-Nagel, Düren) as recommended by the supplier. 

 

1x TAE 40 mM Tris, 1 mM EDTA, pH (acetic acid) = 8.0 
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2.3.3.4 Polymerase chain reaction (PCR)  

The amplification of specific DNA fragments was performed by the polymerase chain 

reaction (PCR, Mullis et al., 1986) using the 2.5x Eppendorf Master Mix (Eppendorf, 

Hamburg) as recommended by the supplier. Therefore, two primers were used, flanking 

the DNA region, which should be amplified. Primers were diluted to a concentration of 10 

pmol/µl in ddH2O. The annealing temperature was chosen with respect to the forward and 

reverse primer. For each guanine and cytosine 4 °C, for each adenine and thymine 2 °C are 

required to separate the hydrogen bonds. As template, chromosomal DNA, plasmid DNA, 

or a colony was used. The PCR reaction was performed using the thermocycler 

Mastercycler® gradient (Eppendorf, Hamburg) or FlexCycler (analytikjena, Jena).  

 

PCR reaction mixture   4 µl 2.5x Eppendorf Master-Mix  

1 µl forward primer  

1 µl reverse primer  

1 µl template 

ddH2O ad 10 µl 

 

 

PCR amplification program 94 °C_3 min  

     94 °C_15 sec 

     Annealing temperature_15 sec 

     72 °C_60 sec per 1000 bp 

     72 °C_10 min 

     4 °C 

 

If necessary, the PCR product was purified either with the NucleoSpin® Extract Kit 

(Macherey-Nagel, Düren) as recommended by the supplier, or by gel electrophoresis as 

described in section 2.3.3.3. 

All primers (oligonucleotides) used in this study were manufactured by Eurofins MWG 

Operon (Ebersberg) and are listed in table 7.1 in the supplement. 

 

2.3.3.5 Restriction, ligation, and sequencing of DNA  

For restriction of DNA, restriction enzymes were used as recommended by the suppliers 

(NEB, Frankfurt/Main; MBI Fermentas, St. Leon-Roth). If dephosphorylation of 5’ ends 

30 cycles 
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was necessary, 1 µl antarctic phosphatase (NEB, Frankfurt/Main) was added to the 

samples. For refill of 3’-end overhangs, the DNA Polymerase I, Large (Klenow) Fragment 

(NEB, Frankfurt/Main) was used. After restriction, dephosphorylation, and/or blunting, 

DNA was purified either with the NucleoSpin® Extract kit (Macherey-Nagel, Düren) 

following the supplier’s protocol or by gel electrophoresis as described in section 2.3.3.3. 

For the ligation of DNA fragments into restricted vectors, the T4 DNA ligase (MBI 

Fermentas, St. Leon-Roth) was used as recommended by the supplier. For direct ligation of 

PCR products into the pDrive vector by T/A-cloning, the QIAGEN PCR Cloning kit 

(Qiagen,Hilden) was used. After ligation, 5 µl of the reaction mix was used to transform 

competent E. coli cells as described in section 2.3.1. 

DNA sequence analyses were carried out by GATC Biotech (Konstanz). 

 

2.3.4 Construction of deletion strains and plasmids  

The construction of several deletion strains was performed according to the methods of 

cross over PCR (Jakoby et al., 1999) and double homologous recombination using the 

suicide vector pK19mobsacB (Rübenhagen et al., 2001). The correct deletion of the gene 

was verified by PCR analysis.  

Plasmids were constructed by standard molecular genetic methods and confirmed by DNA 

sequence analysis. To overexpress YggB in the deletion mutant the yggB gene was 

amplified via PCR using ATCC 13032 chromosomal DNA as template. The amplified 

fragment was cleaved with BamHI and SalI and ligated to BamHI/SalI-cleaved pEKex2, 

resulting in pEKex2_yggB. According to that E. coli mscS was amplified via PCR using 

MG1655 chromosomal DNA as template. The amplified fragment was cleaved with 

BamHI and NotI and ligated to BamHI/NotI-cleaved pEKex2, resulting in pEKex2_mscS-

His. The fusion of the E. coli mscS gene and the C-terminal domain of C. glutamicum yggB 

was constructed by PCR using the named template DNAs as described previously (Yon 

and Fried, 1989). 

Different truncations of yggB were subcloned from pET29b (plasmids constructed by Nina 

Möker) into the E. coli C. glutamicum shuttle vector pEKex2. Therefore, fragments were 

cleaved with BlpI and XbaI. Upon refill of 3´-end overhangs fragments were ligated into 

Ecl136II–cleaved pEKex2. 

All these plasmids were introduced into ATCC 13032 ∆yggB by electroporation. 
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2.3.5 Site-directed mutagenesis 

Site-directed mutagenesis was performed using the Stratagene Quickchange Site-Directed 

Mutagenesis protocol to introduce single amino acid exchanges. Mutagenic primer pairs 

are listed in table 7.2 in the supplement. Subsequent to the PCR, the methylated initial 

template DNA was digested by addition of 1 µl DpnI and the residual DNA was 

transformed into E. coli DH5α competent cells. 

 

PCR reaction mixture   5 µl Pfu buffer (10x)  

2.5 µl of each primer  

5 µl plasmid (1:100 dilution) 

6 µl dNTPs (2 mM) 

1 µl Pfu Turbo polymerase 

ddH2O ad 50 µl 

 

 

PCR amplification program 95 °C_30 sec  

     95 °C_30 sec 

     55 °C_60 sec 

     68 °C_15 min 

     68 °C_7 min 

     4 °C 

 

 

2.4 General analytic methods  

2.4.1 Cell disruption and membrane preparation 

To control the extent of protein expression, cells were disrupted using a Ribolyser 

(FastPrepTM, Waltham, USA) three times at maximum speed of 6.5 for 45 sec. The cell 

debris was separated from the supernatant by centrifugation (20 min, 13,000 rpm, 4 °C). 

The supernatant was then again centrifuged (20 min, 80,000 rpm, 4 °C) and membranes 

were resuspended in PBS buffer, pH 7.5. 

 

PBS  137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 

(NaOH) = 7.5 

18 cycles 
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2.4.2 Determination of protein concentrations  

Protein concentrations of cell or membrane extracts were measured by the Bradford 

spectrophotometric technique (Bradford, 1976). For this purpose, 1 to 10 µg of protein 

were diluted in 100 µl ddH2O and supplemented with 900 µl Bradford reagent. Known 

concentrations of bovine serum albumine (BSA; NEB, Frankfurt/Main) were used as 

standard. The optical density of the samples was measured at 595 nm and the concentration 

of the protein solution could be determined by the use of the BSA calibration curve. 

 

Bradford reagent 35 mg Coomassie Brillant Blue G250, 50 ml phosphoric acid, 25 ml 

ethanol, ddH20 ad 500 ml 

 

2.4.3 SDS-Polyacrylamide Gel Electrophoresis (PAGE)  

For the electrophoretic analyses of proteins under denaturing conditions, cell extract or 

membrane preparations were diluted in loading dye and subjected to SDS-PAGE using 12 

% SDS polyacrylamide gels (Laemmli et al., 1970). 

 

12 % Separation gel  1.5 ml separation gel buffer, 2.21 ml ddH2O, 2.5 ml 

acrylamide: bisacrylamide (30 : 0.8), 40 µl APS (100 mg/ml), 

4 µl TEMED 

Stacking gel 0.625 ml stacking gel buffer, 1.465 ml ddH2O, 0.41 ml 

acrylamide : bisacrylamide (30 : 0.8), 11.25 µl APS (100 

mg/ml), 3.75 µl TEMED 

 

Gel electrophoresis was performed in Minigel-Twin Electrophoresis Units (Biometra, 

Göttingen) at 50 V for about 40 min and subsequently at 160 V up to 2 h. 

 

Separation gel buffer  1.5 M Tris, 0.4 % SDS, pH (HCl) = 8.8 

Stacking gel buffer  0.5 M Tris, 0.4 % SDS, pH (HCl) = 6.76 

1x Electrophoresis buffer 25 mM Tris, 192 mM glycine, 3.5 mM SDS, pH (HCl) = 8.2 

5x Loading buffer 4 % SDS, 20 % glycerol , 10 % 2-mercaptoethanol, 0.01 % 

serva blue G, 25 % separation gel buffer 
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2.4.4 Staining of SDS-gels - Coomassie Brilliant Blue staining 

Via SDS-PAGE separated proteins were routinely made visible by Coomassie Brilliant 

Blue staining (Sambrook et al., 1989). For this purpose, the SDS-gels were incubated in 

staining solution for 1 to 16 h, followed by decolorizing of the gels using 10 % acetic acid. 

 

Staining solution  2.5 g Serva Blue G-250, 454 ml ddH2O, 454 ml methanol, 10 % 

acetic acid 

 

2.4.5 Immunoblot analyses  

The expression level of specific proteins was determined by means of immuno blotting. 

After SDS-PAGE, the proteins were transferred from the SDS-gels to a PVDF membrane 

(Millipore Immobilon P, Roth, Karlsruhe) by semi dry blotting. For this purpose, the 

membrane was first incubated in methanol and then equilibrated in transfer buffer. 

Following, the membrane was placed on top of three chromatography papers (Whatman, 

Dassel), which were equilibrated in the same buffer. After removal of the stacking gel the 

SDS-gel was applied on top of the membrane and covered with another three filters, which 

were equilibrated in transfer buffer. The protein transfer reaction was carried out inside of 

a semi dry blotter (Pharmacia Biotech, GE Healthcare, München) for 45 min at 0.8 mA / 

cm2. After shaking for 1 h in blocking buffer 1, the membrane was incubated for another 1 

h in blocking buffer 1 containing the first antibody raised against 6xHis-tag (1:2000 

dilution) (Qiagen, Hilden) or against YggB (1:1000 dilution) (produced by Eurogentech, 

Köln). After 3 washing steps with TBST buffer for 10 min each, as second antibody anti-

Mouse IgG alkaline phosphatase (1:10,000 dilution in blocking solution 2) or anti-Rabbit 

IgG alkaline phosphatase (1:10,000 in blocking solution 1) (Sigma-Aldrich, Deisenhofen) 

was used and incubated for 1 h at RT. After 4 further washing steps (10 min each), the 

signal detection was achieved by the addition of the alkaline phosphatase substrate 

BCIP/NBT (final concentration 0.0165 % and 0.033 %, Roth, Karlsruhe) in AP buffer. 

Depending on the desired signal intensity, the membrane was incubated for 5 to 60 min in 

the dark, before the reaction was stopped by the addition of ddH2O. 

 

Transfer buffer   10 mM CAPS, 10 % (v/v) methanol, pH (NaOH) = 11 

1x TBS   10 mM Tris, 150 mM NaCl, pH (HCl) = 7.5 

1x TBST 20 mM Tris, 500 mM NaCl, 0.05 % (v/v) Tween 20, 0.2 % 

(v/v) Triton-X-100 
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Blocking buffer 1  3 % BSA in TBS 

Blocking buffer 2  10 % milk powder in TBS 

AP buffer   100 mM Tris, 100 mM NaCl, 5 mM MgCl2, pH (HCl) = 9.5 

 

2.4.6 Determination of osmolality 

To determine the osmolality of any buffer or medium an osmometer (Osmomat 030, 

Gonotec, Berlin) was used as recommended by the suppliers. Calibration solutions of 0.4 

and 1.2 osmol/kg were used as recommended by the suppliers. 

 

2.4.7 HPLC (high-performance liquid chromatography) – analysis  

Glutamate concentrations were determined using the HPLC systems Agilent HP1100 and 

VWR/Hitachi EliteLaChrom. Samples were diluted to a range between 10 and 250 µM. 

Glutamate solutions of 10, 50, 100 and 250 µM were used to obtain a calibration curve. A 

derivatization of glutamate with o-Phtaldialdehyd/Borat/2-Mercaptoethanol (OPA) was 

performed previously, which could be detected by a fluorescence detector. Samples were 

separated via a reversed-phase precolumn (Multospher 40x4mm, CS-Chromatographie) 

followed by a reversed phase main column (Nucleodur RP-18, 125x4mm, Macherey & 

Nagel). The program used is displayed in table 2.3. 

 

OPA (100 ml) 90 ml ddH2O, 2.5 g boric acid, pH (KOH) = 10.4, 0.3 ml Brij 35 (30 

% (w/v)), 0.244 ml mercato-propion acid, OPA (80 mg in 1 ml 

MeOH), ad 100 ml with ddH2O 

 

 

Time [min] Buffer A [%] Buffer B [%] 

0.0 90 10 

3.0 80 20 

3.5 70 30 

5.5 62 38 

12 90 10 

Flow rate: 1 ml/min 

 

Buffer A 40 mM sodium acetate, 0.06 % sodium azide, 5 % (v/v) 

MeOH:Acetonitrile (1:1) 

Buffer B MeOH:Acetonitrile (1:1) 

Table 2.3: HPLC-program used for determination of glutamate concentrations. 
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Complete amino acid analysis was performed under the same conditions described above, 

using the program displayed in table 2.4. To detect the amino acid proline derivatization 

with Fmoc (fluorenylmethyloxycarbonyl chloride) was used additionally to OPA.  

 

 

Time [min] Buffer A [%] Buffer B [%] 

0.0 93 7 

3.1 93 7 

5.0 93 7 

7.0 90 10 

15 85 15 

22 50 50 

25 40 60 

28 30 70 

29 20 80 

30 50 50 

31 80 20 

32 93 7 

Flow rate: 1 ml/min 

 

2.5 Biochemical approaches  

2.5.1 Enzyme assays 

For alkaline phosphatase and β-galactosidase activity determinations, LB o/n cultures of E. 

coli BL21 (DE3) cells harboring the pMS3 plasmid with different yggB truncations were 

diluted to an OD600 of 1 with LB. Cells were permeabilized by addition of 70 µl 0.1% 

sodium deoxycholate and 70 µl toluol. After incubation for 30 min at 37 °C, 1ml assay 

buffer was added. The enzyme reaction was started by addition of 200 µl substrate (each 4 

mg/ml, OPNG in 0.1 M KH2PO4, BCIP in DMSO) and stopped after a yellow or rather 

blue coloration became visible by addition of 1 ml Na2CO3 or K2CO3, respectively. 

Alkaline phosphatase activity was assayed essentially as described by Brickman and 

Beckwith (1975), except using an extinction coefficient of ε405nm = 1.85 x 10-4 M-1cm-1 

with 5-bromo-4-chloro-3-indolyl phosphate disodium salt (BCIP) as a substrate, whereas 

β-galactosidase was assayed according to Miller (1992) with o – nitrophenyl β-D-

galactopyranoside (OPNG) using an extinction coefficient of ε420nm = 2.13 x 10-4 M-1cm-1. 

Enzyme activities were then determined using the Lambert-Beer-Law: 

 

Table 2.4: HPLC-program used for complete amino acid analysis. 
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 Enzyme activity [µM/min] = ∆A  3.34 (dilution factor) 106/(ε d ∆t) 

 

Assay buffer for AP  10 mM Tris, 10 mM MgSO4, pH 8  

Assay buffer for β-Gal 37 mM NaH2PO4, 63 mM Na2HPO4, 1 mM MgSO4, 0.2 mM 

MnSO4 

 

2.5.2 Analysis of cell viability  

Survival rates of E. coli cells after an osmotic downshift were determined using the 

LIVE/DEAD® BacLight™ Bacterial Viability Kit as recommended by the supplier 

(Molecular Probes, Leiden, The Netherlands). Cultivation of MJF455 was performed as 

described earlier (Levina et al., 1999). O/n cultures were grown at 37 °C in MacIlvaine 

medium + 0.4 g/l glucose for ~ 16 h. Subsequently, 2 g/l glucose was added and cells were 

incubated for 1 h at 37 °C. Cells were then diluted with MacIlvaine medium + 2 g/l 

glucose to an OD600 of 0.05 and grown at 37 °C to an OD600 of 0.2 – 0.3. A second o/n 

culture was inoculated in MacIlvaine medium (2 g/l glucose) + 500 mM NaCl at an OD600 

of 0.025 and incubated at 25 °C. Subsequently, 0.2 mM IPTG was added for 2-3 hours. 1 

ml of the cultures was harvested and resuspended in isoosmotic buffer (50 mM MOPS, pH 

7.0 adjusted to an osmolality of 1.12 osmol/kg with sorbitol) or in hypoosmotic buffer (50 

mM MOPS, pH 7.0 adjusted to an osmolality of 0.19 osmol/kg with sorbitol). After 

incubation for 10 min, cells were diluted in the identical buffer to an OD600 of 0.03 and 

incubated for 15 min in the dark with a mixture of SYTO 9 and propidium iodide. The 

fluorescence emission spectra of the samples (excitation 470 nm, emission 490-700 nm) 

were measured in a fluorimeter (SLM Aminco, Rochester, USA). The ratio of the 

integrated intensity of the spectrum between 510 and 540 nm and that between 620 and 

650 nm was determined for each sample and the percentage of live cells was calculated by 

comparing this ratio with a standard curve of live/dead E. coli cells. 

 

MacIlvaine (1L) 8.58 g NaH2PO4, 1.34 g citric acid, 0.87 g KH2PO4, 1 g NH4SO4,  

0.1 g MgSO4, 0.002 g (NH4)2SO4 • FeSO4 • 6 H2O, 0.001 g thiamine

  

2.5.3 Efflux of glutamate upon hypoosmotic shock 

The standard pre-cultivation scheme was used. Main cultures were inoculated with an 

OD600 of about 2 and cultivated at 30 °C, 125 rpm. After reaching of an OD600 of about 6, 

solid NaCl was added to a final concentration of 750 mM and the cultures were further 
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incubated for 20 minutes to induce internal glutamate accumulation. Subsequently, the 

cells were stored on ice and pre-heated for 3 min. at 30 °C prior to use. To determine 

external glutamate concentrations after an osmotic downshift, cells were centrifuged, the 

supernatant discarded and the pellet resuspended within seconds in 100 mM Mes/Tris, pH 

8.0, containing NaCl at concentrations up to 0.9 M. After 15 seconds 200 µl samples were 

withdrawn and cells were rapidly separated from the surrounding medium by silicone oil 

centrifugation with perchloric acid in the bottom layer (oil density of  1.09 kg/l for 

osmolalities > 1.2 osmol/kg and 1.03 kg/l for osmolalities < 1.2 omol/kg). The external 

glutamate concentration could be measured in the supernatant by HPLC-analysis.  

 

2.5.4 Efflux of glycine betaine upon hypoosmotic shock 

The enzymatic synthesis of labeled glycine betaine was performed according to Landfald 

and Strom (1986) and has been described previously (Peter et al., 1996). C. glutamicum 

strains were grown aerobically at 30 °C, 125 rpm o/n in BHI medium containing 500 mM 

NaCl for hyperosmotic growth conditions. Cells were harvested by centrifugation and 

washed twice with chilled downshock buffer. The hypoosmotic washing step resulted in 

efflux of the majority of compatible solutes which were taken up or synthesized during the 

prior growth period. Uptake of the labeled betaine was performed by incubating the cells at 

an OD600 of 4 for 80 min at 30 °C in a hyperosmotic uptake buffer. Shortly after transfer 

into the uptake buffer, [14C]-glycine betaine at a final concentration of 1 mM (25,000 

cpm/ml) was added. Subsequently, the cells were stored on ice and pre-heated for 3 min. at 

30 °C prior to use. To measure betaine efflux, cells were centrifuged, the supernatant 

discarded and the pellet resuspended within seconds in 100 mM Mes/Tris, pH 8.0, 

containing NaCl at concentrations up to 0.9 M. After 15 seconds 200 µl samples were 

withdrawn and cells were rapidly separated from the surrounding medium by silicone oil 

centrifugation with perchloric acid in the bottom layer (oil density of  1.09 kg/l for 

osmolalities > 1.2 osmol/kg and 1.03 kg/l for osmolalities < 1.2 omol/kg). The 

radioactivity of 150 µl of the supernatant and of the whole cell suspension supplemented 

with 3.8 ml Rotiszint ecoplus (Roth, Karlsruhe) was determined by liquid-scintillation 

counting (Beckman, München) for the amount of excreted and total glycine betaine, 

respectively. 

 

Downshock buffer 100 mM Mes/Tris, pH 8.0, 5 mM Na2HPO4, 5 mM K2HPO4,  

(4 °C) 



Material and Methods 

33 
 

Uptake buffer 100 mM Mes/Tris, pH 8.0, 0.9 M NaCl, 30 mM glucose, 30 

mM urea, 30 mM KCl 

 

2.5.5 Betaine uptake and efflux under hyperosmotic conditions 

C. glutamicum strains were cultured, washed and resuspended in uptake buffer as 

described for betaine efflux (section 2.5.4). Shortly after transfer into the uptake buffer, 

[14C]-glycine betaine at a final concentration of 1 mM (25,000 cpm/ml) was added. After 

different time intervals (up to 90 min after the addition of betaine), samples were taken and 

filtered rapidly through glass fibre filters (Typ GF5, Schleicher und Schuell, Dassel). The 

filters were washed with uptake buffer, and the radioactivity was determined by liquid 

scintillation counting. To visualize net betaine efflux in the stationary phase an excess of 

unlabeled betaine to a final concentration of 50 mM was added and samples were taken at 

times indicated. This surplus of unlabeled betaine masked betaine uptake as only unlabeled 

betaine was taken up after the addition. The net efflux of betaine could therefore be 

calculated via the change of radioactivity inside the cells. 

 

2.5.6 Betaine uptake rate during osmotic compensation 

C. glutamicum strains were cultured, washed and resuspended in uptake buffer as 

described for betaine efflux (section 2.5.4). Shortly after transfer into the uptake buffer 

[14C]-glycine betaine at a final concentration of 4 mM (25,000 cpm/ml) was added. After 

different time intervals (up to 90 min after the addition of betaine), samples were taken and 

filtered rapidly through glass fibre filters. A parallel culture was incubated with 4 mM non-

labeled betaine. After 3, 30, 60, and 90 minutes an aliquot was taken and tracer-free label 

(25.000 cpm/ml) in uptake buffer was added. To determine the betaine uptake rate samples 

were taken immediately after 20, 40, 60, and 80 seconds and filtered rapidly through glass 

fibre filters. The filters were washed with uptake buffer, and the radioactivity was 

determined by liquid scintillation counting.  

 

2.5.7 Determination of membrane potential 

The membrane potential was determined as described earlier (Ebbighausen et al., 1991, 

Krämer et al., 1990). Therefore, the lipophile radioactiv labeled permeant cation [14C]-

tetraphenylphosphonium bromide (TPP) (Hartmann Analytic, Braunschweig) was used. 

TPP is able to permeate the cytoplasmic membrane and is accumulated within the cell. 
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This accumulation depends on the electric potential over the membrane and occurs until an 

equilibrium is reached. At the equilibrium state the chemical potential of TPP is equal to 

the electric membrane potential. Consequently, the membrane potential can be calculated 

based on the intra- and extracellular TPP concentration. 

 

∆ψ = (- 2.303 RT/F) log ([TPP+]in/[TPP+]ex) 

 

To exclude unspecific accumulation of TPP the ionophores valinomycin and nigericin  

which provoke the breakdown of the membrane potential were used. The still intracellular 

accumulated TPP binds unspecific within the cell and its concestration has to be abstracted.  

Different pre-cultivation schemes were used to investigate the membrane potential under 

various conditions. Depending on the experimental setup 20 µl 14[C]-TPP+ working 

solution (10 µM, 2.21 x 109 D/min mmol) per 1 ml cell suspension was added. At distinct 

time points 200 µl cells were separated from the medium by silicone oil centrifugation 

with perchloric acid in the bottom layer. Radioactivity of 150 µl supernatant was 

determined by liquid scintillation counting. The internal TPP concentration was obtained 

by measuring the radioactivity of the whole cell suspension. TPPinternal = TPPtotal – 

TPPexternal. The obtained values of membrane potential were corrected for unspecific probe 

binding by addition of the uncoupler valinomycin and nigericin at final concentrations of 

20 µM and 5 µM, respectively. 

 

2.5.8 Determination of the internal pH and the pmf (proton motive force) 

The pH gradient was determined via the distribution of a weak acid over the cell 

membrane or a weak base, respectively. This method is based on the assumption that the 

membrane is permeable for the neutral form of the molecule but not for the ionic form. 

Depending on the internal pH an equilibrium is adjusted between internal and external 

amounts of the molecule. In this case, the external pH of the loading buffer (pH = 8.0) was 

expected to be higher than the internal pH. Therefore, radio-labeled 14[C]-

methylammonium (pK
A 

= 10.65) (Hartmann Analytic, Braunschweig) was used as probe. 

For the determination of internal and external methylammonium concentrations a final 

concentration of 15 µM methylammonium (specific activity 3.3 mCi/mmol) was added to 

the cells and samples were taken before and 15 minutes after addition of 1 mM betaine and 

separated by rapid silicon oil centrifugation with perchloric acid in the bottom layer. 

Previously the cells were treated as described for betaine efflux experiments (severe 
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osmotic downshock followed by resuspension in high osmolality buffer). Radioactivity in 

the supernatant as well as in the resuspended cells was determined by liquid scintillation 

counting. To exclude unspecific binding 0.022 % CTAB (cetyltrimethyl-

ammoniumbromide) was added as control. With the internal and external 

methylammonium concentrations the pH gradient as well as the internal pH could be 

calculated: 

 

∆pH = pH
ex 

– pH
in 

= log ([methylammonium+]
in

/[methylammonium+]
ex

)  

pH
in 

= -log ([methylammonium
total

]
in

/[methylammonium
total

]
ex 

(10
-pKs 

+ 10
-pHex

) – 10
-pKs

)  

 

The determination of membrane potential and pH gradient over the cytoplasma membrane 

allows the calculation of the pmf : 

∆p (pmf) = ∆ψ – z ∆pH  

∆p = electrochemical proton potential [mV]  

∆ψ = membrane potential [mV]  

z = 2,3 RT/F ~ 61 mV at 30 °C  

 

2.5.9  Test for pyruvate efflux 

For this assay the inhibitor aminoethyl-phosphinate was used. Within the cell aminoethyl-

phosphinate is converted to acetylphosphinate which inhibits the pyruvate dehydrogenase. 

As result high amounts of pyruvate are accumulated within the cell and an increased export 

of pyruvate occurs (Laber and Amrhein, 1987). To perform this assay, respective strains 

were grown in MM1 minimal medium, inoculated from a MM1 o/n culture with an OD600 

of about 1. Simultaneously, aminoethyl-phosphinate was added to a final concentration of 

300 µM. Pyruvate concentrations in the external medium were determined by HPLC 

analysis at different time points. 

 

2.5.10 Test for K+ permeability 

To test K+ permeability due to expression of yggB ∆110-His, a strain completely unable to 

transport K+ was used. Recently, it was shown that C. glutamicum requires potassium for 

pH homeostasis at low pH values and is therefore not able to grow under these conditions 

in the absence of potassium. While wild type cells recover after the addition of KCl the K+-

transport negative mutant ∆kup∆CglK does not. This mutant lacks all import systems for 
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potassium ions and is so not able to import potassium ions necessary for pH homeostasis at 

low pH (Follmann et al., 2009). The ability of YggB ∆110 to restore growth in the 

∆kup∆CglK was tested. For this purpose cells were grown o/n in normal, potassium 

containing MM1 medium, pH 7.0. This culture was used to inoculate potassium-free MM1 

medium containing 250 mM MES at a pH of 6.0 on the one hand and 250 mM MOPS, pH 

6.5 on the other. Although there was no potassium in the medium due to contaminations 

there are always very low amounts of potassium present. Cultures were incubated at 30 °C 

for 4 hours before 20 mM KCl was added and the further growth was monitored via the 

OD600. 

 

2.5.11 Susceptibility of antibiotics 

One indicator for the general permeability of the cell wall is the susceptibility to different 

antibiotics. Using Etest® strips (AB Biodisk, Solna, Sweden) containing different 

antibiotics the minimum inhibitory concentrations (MIC) could be determined. The strips 

had a MIC scale on one side and an immobilized exponential grade of antibiotic on the 

other side. When an Etest strip is applied to an inoculated agar surface the antibiotic 

gradient diffuses into the agar. After incubation, whereby bacterial growth becomes 

visible, a symmetrical ellipse centered along the strip occurs. Here the antibiotics 

erythromycin, ethambutol, and penicillin were used. For inoculation, a CgXII MOPS o/n 

culture was diluted to an OD600 of 1 and spread with a cotton swab over the CgXII agar 

plates containing 25 µg/ml kanamycin and 25 µM IPTG. The inoculated plates were 

incubated at 30 °C until growth became visible. 

 

2.5.12 Glutamate production 

The standard pre-cultivation scheme was used. Main cultures were inoculated with an 

OD600 of about 2 and cultivated at 30 °C, 125 rpm. Glutamate excretion was induced 

during the exponential growth phase (OD600 5 – 6) by the addition of 0.15 % Tween 60 or 

6 U/ml Penicillin G, respectively (both Sigma-Aldrich, Deisenhofen). For biotin-limited 

conditions an additional 24 hours pre-culture in CgXII MOPS minimal medium, pH 7.0 

containing 0.5 µg/l biotin was necessary. Samples were centrifuged (5-8 min, 13,000 rpm, 

RT) to separate the cells from the supernatant. Concentrations of external glutamate in the 

supernatant were determined by HPLC analysis. 

In order to perform an osmolality shift during glutamate production, cells were grown in 

CgXII MOPS minimal medium, pH 7.0 as described before. Glutamate excretion was 
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induced by addition of 0.15 % Tween. After 2 hours of incubation parts of the main culture 

were diluted 1:1 with media of different osmolalities (ddH2O, CgXII MOPS and CgXII 

MOPS + 622.5 mM NaCl) resulting in osmolalities of 0.566, 1.132 (isoosmolar), and 1.726 

osmol/kg. Glutamate concentrations in the external medium were measured as described 

above. 

 

2.5.13 Hypoosmotic stress response under glutamate productive conditions 

C. glutamicum strains were grown aerobically at 30 °C, 125 rpm o/n in BHI medium 

containing 500 mM NaCl for hyperosmotic growth conditions. Cells were harvested by 

centrifugation and washed twice with chilled downshock buffer analog to the procedure for 

the betaine efflux experiments (section 2.5.4). Then, the experiment was split into two 

parts. In the first part cells were loaded with [14C]-labeled betaine at a final concentration 

of 1 mM (25,000 cpm/ml) under hyperosmotic conditions (CgXII MOPS + 400 mM NaCl 

(1.839 osmol/kg)) by incubating the cells at an OD600 of 4 for 80 min at 30 °C. In the 

second part cells were just incubated in the same manner but without labeled betaine. Upon 

loading, glutamate production was induced by the addition of Tween 60 and cells were 

incubated for 3 more hours at 30 °C. The cells were then incubated at decreasing external 

osmolalities as described in section 2.5.4. After 15 seconds 200 µl samples were 

withdrawn and cells were rapidly separated from the surrounding medium by silicone oil 

centrifugation (oil density of  1.09 kg/l for osmolalities > 1.2 osmol/kg and 1.03 kg/l for 

osmolalities < 1.2 omol/kg). For determination of betaine efflux, the radioactivity of 150 µl 

of the supernatant and of the whole cell suspension supplemented with 3.8 ml Rotiszint 

ecoplus (Roth, Karlsruhe) was measured by liquid-scintillation counting (Beckman, 

München) for the amount of excreted and total glycine betaine, respectively. For 

determination of glutamate efflux from the experimental setup without labeled betaine, the 

external glutamate concentrations were measured directly in the supernatant by HPLC-

analysis. For the internal glutamate concentrations the cell pellet was resuspended in 120 

µl ddH2O and 100 µl silicone oil was added. The cells were disrupted by ultrasonification 

for 15 min. After centrifugation (13,000 rpm, 20 min, 4 °C) the aqueous supernatant was 

used for HPLC-analysis as well. 
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2.6 Electrophysiological approaches  

2.6.1 Preparation of giant spheroplasts 

Spheroplasts were prepared from E. coli strain MJF465 lacking MscL, MscS, and MscK 

and expressing the plasmid-encoded yggB of C. glutamicum in a manner similar to that 

described previously (Ruthe and Adler, 1985; Martinac et al., 1987). Since the MJF465 

strain already harbors a kanamycin and chloramphenicol resistance a new vector was 

constructed. The pQE60 vector (ampicillin resistance) was fused to the lacI gene normally 

encoded on a second plasmid. The yggB gene was amplified via PCR using ATCC 13032 

chromosomal DNA as template. The amplified fragment was cleaved with NcoI and 

BamHI and ligated to NcoI/BamHI-cleaved pQE60-lacI. A culture of MJF465 containing 

the respective pQE60-lacI was grown in LB medium at 37 °C up to an OD600 of 0.4 – 0.5, 

then diluted 1:10 into LB medium, and cephalexin was added to 60 µg/ml. The culture was 

then incubated at 42 °C for 2-2½ until single-cell filaments reached sufficient length (50-

150 µm) for formation of giant spheroplasts (5-10 µm in diameter). Afterwards, IPTG 

(final concentration 100 µM) and glycerol was added (0.4 %) and cells were incubated at 

25 °C, 180 rpm for about 1 hour. Then filaments were harvested by centrifugation, and the 

pellet was rinsed without resuspension by gentle addition of 1 ml of 0.8 M sucrose (0.4 % 

glycerol). After a second centrifugation step, the supernatant was removed, and the pellet 

was resuspended in 2.5 ml of 0.8 M sucrose (0.4 % glycerol). The following reagents were 

added in order: 150 µl of 1 M Tris (pH 7.2); 120 µl of lysozyme (5 mg/ml); 50 µl of 

DNase I (5 mg/ml); 150 µl of 0.125 M EDTA. This mixture was incubated at room 

temperature for 3-5 min to hydrolyze the peptidoglycan layer, and the progress of 

spheroplast formation was followed under the microscope. At the end of this incubation, 1 

ml of a solution containing 20 mM MgCl2 (to remove the EDTA and activate the DNase), 

0.7 M sucrose, 0.4 % glycerol, and 10 mM Tris (pH 7.2) was added. The mixture was then 

diluted with 5 ml solution containing 10 mM MgCl2, 0.8 M sucrose, 0.4 % glycerol and 10 

mM Tris (pH 7.2). Aliquots were made and stored at -20 °C. 

 

2.6.2 Electrical Recording 

Single-channel analysis was performed on giant E. coli spheroplasts (Martinac et al., 

1987). Spheroplasts (1.5-3 µl) were placed in a bath containing, unless otherwise stated, 

250 mM KCl, 90 mM MgCl2, and 5 mM Hepes (pH 7.2). Borosilicate glass pipettes 

(Drummond Scientific Co., Broomall, USA) were pulled using a Flaming/Brown pipette 

puller (P-87, Sutter Instrument Co., Novato, USA) to a diameter which corresponded to a 
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pipette resistance between 3.0 and 6.0 MΩ. The pipettes were filled with 200 mM KCl, 90 

mM MgCl2, and 5mM Hepes (pH 7.2). All recordings were made by use of standard patch-

clamp technique (Hamill et al., 1981) at room temperature (19-23o C). Negative pressure 

(suction) recorded in mm Hg was applied to patch pipettes by using a syringe and was 

monitored using a piezoelectric pressure transducer (Omega Engineering, Stamford, USA). 

Ion currents arising from activation of the proteins using suction were recorded using an 

Axon 1D patch-clamp amplifier (Axon Instruments), filtered at 2 kHz and digitized at 5 

kHz. Single channel analysis was done using pCLAMP10 software (Axon Instruments). 
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3 Results 

 

3.1 Recombinant YggB proteins 

The C. glutamicum YggB protein consists of 533 amino acids (AA) including an N-

terminal part (~ 286 AA) similar to other proteins of the MscS-type family and an 

additional C-terminal domain of 247 AA absent in the E. coli homolog MscS (see figure 

7.1 in the supplement for alignment comparing the primary sequence of C. glutamicum 

YggB and E. coli MscS). Using YggB as template only six other members of the MscS-

type family with a similar protein length (450 – 600 AA) were found, all belonging to 

strains of the genus Corynebacterium. Homology search using only the C-terminal part 

results in the same six species. Furthermore, no homology of the C-terminal domain to any 

other sequence was found, indicating that this C-terminal domain is a characteristic feature 

of C. glutamicum YggB and its close relatives. In order to investigate the functions of 

YggB, several recombinant C. glutamicum strains were constructed, one harboring a 

deletion of the yggB gene as well as another one with a deletion of the mscL gene and a 

double deletion lacking both mechanosensitive (MS) channel genes. These strains were the 

prerequisite to investigate the role of YggB in the cell’s response to osmotic stress 

conditions on the one hand in the production of glutamate on the other.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1: Topology model of YggB indicating different truncations. 
Different truncated forms of YggB were analyzed, namely the ∆110 mutant (423 AA) 
excreting glutamate spontaneously, the ∆132 mutant (401 AA) lacking a fourth putative 
transmembrane domain, and the ∆247 mutant assembling the length of the E. coli 
homolog MscS (286 AA). All genes were recombinantly expressed in the yggB deletion 
strain. All truncation mutants as well as the full length protein carried a C-terminally 
added 6xHis-tag. 
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Using the shuttle-vector pEKex2 different plasmid-encoded variants of yggB were 

expressed in the yggB deletion strain, including a native yggB gene, a His-tagged version 

of the yggB gene, as well as several truncations (Fig. 3.1). The truncated versions of yggB 

were supposed to provide more information about the role of the C-terminal domain of 

YggB. Additionally, the homologous E. coli gene mscS and a mscS/CtyggB fusion gene 

was expressed in the yggB deletion strain. The mscS/CtyggB fusion gene encodes a protein 

containing the E. coli MscS which is 286 AA in length fused to the additional 247 C-

terminal AA of YggB.  The expression efficiency of the various constructs using different 

IPTG concentrations is summarized in figure 3.2. Not only in the yggB deletion mutant but 

also in the wild type, which carries a genomic copy of yggB, the YggB protein could not be 

visualized. This indicates a naturally very low expression of yggB. However, such a low 

protein level in the cell was also reported for MscS in E. coli, where approximately 3 – 5 

channels per cell occur (Booth, personal communication). The yggB-His construct on the 

other hand was extremely overexpressed. Even without IPTG induction a clear signal was 

detectable. However, based on the low expression of yggB in the wild type, all constructs 

were overexpressed.  

 

For the complementation of the yggB deletion phenotype the expression of the plasmid-

encoded yggB gene was initially induced by the addition of 200 µM IPTG as a standard 

concentration used for gene expression in C. glutamicum. However, expression of the 

different yggB variants by addition of 200 µM IPTG led to peculiar growth phenotypes 

(Fig. 3.3). The ∆110-His mutant showed a strongly delayed onset of growth reaching a 

final OD600 after o/n cultivation of only 8.2. The YggB-His strain had also an impaired 

growth but to a smaller extent (o/n OD600 20.8). Under the same conditions the ∆247-His 

mutant  reached an o/n OD600 of 39.5 which was just very slightly decreased compared to 

the wild type (o/n OD 46.6) (Fig. 3.3). The growth of the ∆132-His mutant showed no 

Fig. 3.2: Western blot analysis of differnt YggB and MscS constructs. 
wt – wild type strain harboring only the genomic copy of yggB, ∆yggB – yggB deletion strain, 
all constructs were expressed from the vector pEKex2 in C. glutamicum ∆yggB. 30 µg of 
membrane extract (60 µg for ∆132-His) were loaded to each gel. Below the blot lanes, the 
concentration of IPTG used for gene expression is indicated.The six lanes on the left were 
developed using anti-YggB antibody, for all the other lanes anti-(penta)-His antibody was 
used. 
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significant difference compared to the wild type (data not shown). A concern was the fact 

that at least the ∆110-His strain started to grow normally after several hours of incubation. 

In this phase no more synthesis of the YggB ∆110-His protein was detected. Due to this 

observation in the majority of the described experiments 25 µM IPTG was used to induce 

gene expression. MscS-His and MscS/CtYggB strains had no growth phenotype under the 

later used conditions (data not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Topology of C. glutamicum YggB 

YggB harbors three N-terminally located transmembrane domains which show high 

sequence homology to their counterparts in E.coli MscS (see figure 7.1 in the supplement 

for sequence alignement). The N-terminal end of E.coli MscS is localized in the periplasm 

while the C-terminal end faces the cytoplasm. However, depending on the computer 

program used, for YggB of C. glutamicum a fourth transmembrane segment was predicted 

which would localize the C-terminal end of YggB in the periplasm instead. In order to 

reveal the correct topology of the protein, yggB gene variants encoding the full length 

protein as well as the different truncated forms were fused to an alkaline phosphatase-β-

galactosidase reporter cassette (Seidel et al. 2007). This system enables to localize the 

fusion point to the periplasmic side when alkaline phosphatase is active and β-

galactosidase is inactive or to the cytoplasmic side when the enzyme activities are 

reversed. The E. coli C. glutamicum shuttle vector pMS3 containing such an alkaline 
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Fig. 3.3: Growth curves of C. glutamicum strains. 
Shown is the increase of optical density (OD) at a wave length of 600 nm. Variants of 
yggB-His were expressed in the C. glutamicum yggB deletion and strains were grown 
in CgXII MOPS minimal medium, pH 7.0 containing 25 µg/ml kanamycin and 200 µM 

IPTG). wt (■), YggB-His ( ), ∆110-His ( ), ∆247-His ( ). 
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phosphatase-β-galactosidase reporter cassette was provided by the group of Lothar 

Eggeling, Forschungszentrum Jülich (Germany). This pMS3 vector containing the 

different truncated forms of yggB was transformed in E. coli BL21 (DE3) cells. With the 

resulting strains β-galactosidase as well as alkaline phosphatase activity assays were 

performed. Table 3.1 summarizes the ratios of the β-galactosidase/alkaline phosphatase 

activity for the different truncations. Due to the genomic copy of the lacZ gene, the 

absolute values for both enzyme activities were quite different. However, the ratio clearly 

demonstrates that YggB harbors a fourth transmembrane domain. In the yggB and ∆110 

variants the alkaline phosphatase activity was much higher than in the ∆132 and ∆247 

mutants indicating a periplasmic localization of the C-terminal domain. Vice versa, ∆132 

and ∆247 had a highly increased β-galactosidase activity compared to the other two 

mutants. Based on these results, it was proven that C. glutamicum YggB harbors a fourth 

transmembrane domain and that consequently the elongated C-terminal end is localized in 

the periplasm.  

 

 

 

 

 

 

 

 

 

 

 

 

3.3  Electrophysiological characterization of YggB 

Although YggB was proposed to function as MS channel, a final proof was still missing. 

Patch clamp analysis is the accepted technique for the characterization of channel proteins. 

A small glass electrode tip is tightly sealed onto a patch of cell membrane, thereby making 

it possible to record the flow of current through individual ion channels or pores in the 

patch (Hamill et al., 1981). For electrophysiological analysis of C. glutamicum YggB using 

the patch clamp technique E. coli giant spheroplasts (cells in which the cell wall was 

removed) were used. For spheroplast preparation yggB wt, ∆110, ∆132, ∆247 and yggB-

Table 3.1: Ratio of ß-galactosidase and alkaline phosphatase 
activity [∆µM/min] of E. coli BL21 (DE3) heterologuously 
expressing the respective yggB variant. Mean values from 
three independent experiments. 
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6xHis were expressed in the E. coli triple knock out strain MJF465 lacking MscL, MscS 

and MscK. The pQE60 vector fused to the lacI gene was used. Subcloning of yggB into 

pQE60 resulted in a single amino acid exchange from isoleucine to valine since the NcoI 

restriction site had to be used. As they are both nonpolar amino acids, no effect of this 

exchange was expected.  

Electrical recordings were made from single channels of the prepared spheroplasts. To 

form a tight (1-2 GΩ) seal strong suction was used to move the spheroplast onto the tip of 

the pipette. After seal formation suction was released. When a spheroplast was lifted out of 

the bath solution and returned very quickly, the spheroplast was destroyed, leaving only a 

small patch of membrane across the opening of the pipette (excised patch) (Martinac et al., 

1987).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patch clamp analysis of inside-out excised patches from the spheroplasts revealed the 

presence of stretch-activated channels. Upon stepwise increasing tension several channels 

opened, the first channel upon a negative pressure of about – 80 mm Hg. However, this 

value differed depending on the patch. With increasing pressure more and more channels 

opened and remained open for several minutes (Fig. 3.4). In contrast to E. coli MscS no 

desensitization (inactivation) occurred. Instead, an oscillating behavior of channel activity 

was observed indicating the closure of some channels reopening after a further period. As 
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Fig. 3.4: Gating behavior of YggB in E. coli spheroplasts. 
The trace was recorded under asymmetrical conditions (200 mM KCl, 40 mM MgCl2, 
5 mM Hepes, pH 7.2 in the pipette and 250 mM KCl, 90 mM MgCl2, 5 mM Hepes, pH 
7.2 in the bath) at + 50 mV applied voltage. Increasing tension opened more 
channels. C and On denote the closed and open state of n number of channels. 
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Fig. 3.6: I/V plot of YggB in E. coli spheroplasts. 
This exemplary I/V plot was obtained under asymmetrical conditions (200 mM KCl, 
40 mM MgCl2, 5 mM Hepes, pH 7.2 in the pipette and 250 mM KCl, 90 mM MgCl2, 5 
mM Hepes, pH 7.2 in the bath). Straight lines represent linear regression. 
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there were hundreds of channels in a single patch their number was difficult to ascertain. 

Therefore, no Boltzmann curve (open probability vs. tension) was obtained. As shown in 

figure 3.5 the channel strongly rectifies, meaning that the conductance is different 

depending on the direction of ion flux. Measuring the currents upon voltages from – 90 

mV up to + 90 mV in steps of 10 mV allows the display of the current/voltage relationship 

(I/V plot) of YggB (Fig. 3.6). 
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Fig. 3.5: Effects of positive and negative voltages on YggB conductance. 
The channel showed higher conductance at positive voltages (about 23 pA at + 70 mV) than at 
negative voltages (about 7 pA at – 70 mM). The trace was recorded under asymmetrical 
conditions (200 mM KCl, 40 mM MgCl2, 5 mM Hepes, pH 7.2 in the pipette and 250 mM KCl, 
90 mM MgCl2, 5 mM Hepes, pH 7.2 in the bath). 
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The slope at negative and positive voltages represents the conductance of the channel. The 

conductance was about 346.3 ± 22.5 pS (n = 8) at positive voltages and 99.5 ± 4.5 pS (n = 

8) at negative voltages. Although the conductances described for the E. coli homolog MscS 

(950 pS and 650 pS) are higher, YggB showed the same rectifying behavior with the 

conductance at negative voltages being only about 30 % of that at positive voltages. Thus, 

C. glutamicum YggB is clearly a MS channel related to E. coli MscS, but with several 

different properties. Additionally, the behavior of the channel under several other 

conditions was determined. The I/V plot shown in figure 3.7a was obtained under 

symmetric conditions (250 KCl, 90 MgCl2, 5 mM Hepes, pH 7.2). Holding the patch and 

substitution of the buffer in the bath to 250 mM NaCl, 90 mM MgCl2, 5 mM Hepes, pH 

7.2 had no significant impact on the conductance of the channel or its pressure sensitivity. 

Conductance was also measured in NaCl solutions only (250 mM in the bath and 200 mM 

in the pipette). Here again, no significant difference was detected (Fig 3.7b), indicating that 

the channel has no preference for either potassium or sodium ions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As YggB became interesting due to its possible role in the export of glutamate, also the 

conductivity of the channel for glutamate was tested. Seal formation was always performed 

under asymmetric conditions of 250 mM KCl or NaCl, 90 mM MgCl2, 5 mM Hepes, pH 

7.2 in the bath and 200 mM KCl or NaCl, 40 mM MgCl2, 5 mM Hepes, pH 7.2 in the 

pipette. The solution in the bath was then substituted by 430 mM KGlu or NaGlu (5 mM 

Fig. 3.7: Ionic preference for potassium or sodium ions. 
(a) The I/V plot was obtained under symmetric conditions (250 mM KCl, 90 mM MgCl2, 5 mM 
Hepes, pH 7.2) (■) followed by a substitution of bath solution to buffer containing 250 mM NaCl. 
(●); (b) The I/V plot was obtained in sodium containing buffers (200 mM NaCl, 40 mM MgCl2, 5 mM 
Hepes, pH 7.2 in the pipette and 250 mM NaCl, 90 mM MgCl2, 5 mM Hepes, pH 7.2 in the bath). 
Straight lines represent linear regression. 
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Hepes, pH 7.2). As illustrated in figure 3.8a and b, glutamate is able to pass the channel. 

However, the conductance for glutamate is much lower than for chloride ions. 

Additionally, the organic acid pyruvate, related to glutamate roughly in size and charge, 

was tested to allow a better comparison with a more similar substrate. As was the case with 

glutamate, pyruvate also passed through the channel. Correlating to the slightly smaller 

size of pyruvate, the conductance upon positive voltage (at 175 pS) was even higher than 

observed for glutamate (data not shown). 

 

E. coli MscS shows a slight anionic preference for chloride over potassium (PCl /PK ~ 1.5 – 

3.0) (Martinac et al., 1987). To examine if a similar preference for the ion species could be 

observed for C. glutamicum YggB, the channel behavior was recorded in symmetric 

solutions in bath and pipette of 200 mM KCl, 40 mM MgCl2, 5 mM Hepes, pH 7.2 

followed by an increase of the KCl concentration in the bath to 400 mM. Due to the 

concentration gradient, ions flew from the bath towards the pipette, resulting in a shift of 

about 8 mV of the zero current potential in the positive direction (Fig 3.9a, b). This 

positive shift revealed that more potassium ions were able to pass the channel. 

Consequently, the rightward shift of the I/V plot indicates a channel preference for cations 

over anions with a selectivity ratio for potassium over chloride of PK/PCl ~ 3.0. 

 

 

 

 

Fig. 3.8: Channel conductance for glutamate. 
The I/V plots were obtained under standard conditions with either KCl (a) (■) or NaCl (b) (■) 
followed by a substitution of bath solution with 430 mM KGlu or NaGlu, 5 mM Hepes, pH 7.2 (●). 
Straight lines represent linear regression.       
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Fig. 3.9: Preference for anions or cations. 
(a) The I/V plot was obtained under symmetric conditions (200 mM KCl, 40 mM MgCl2, 5 mM 
Hepes, pH 7.2) (■) followed by substitution of bath solution to 400 mM KCl (●). 15 b shows an 
enlargement of the intersection points with the axes visualizing a ~ 8 mV shift of the zero-
current potential. Straight lines represent linear regression.     
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Additionally, the channel conductance as a dependence on different ion concentration were 

tested. Therefore, symmetric solutions in bath and pipette were used containing KCl 

concentrations from 100 mM to 400 mM as well as 40 mM MgCl2, 5 mM Hepes, pH 7.2. 

As displayed in figure 3.10 the conductance increased with increasing KCl concentration. 

However, this dependency was not linear. At concentrations over 250 mM KCl the 

conductance became saturated at positive pipette voltage while the conductance at negative 

pipette voltage was not affected. This indicates that the conductance threshold of the 

channel was reached. 
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Fig. 3.10: Conductance vs. KCl concentration. 
Single channel conductance as a function of specific buffer conductivity measured in symmetrical 
conditions containing different mM concentrations of KCl, 40 mM MgCl2, 5 mM Hepes, pH 7.2. 
Dependency of the conductance is shown upon negative (■) and positive (●) voltages.  
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All other YggB constructs (∆110, ∆132, ∆247) as well as YggB-His were just briefly 

analyzed. However, the conductance of all these constructs was comparable to the wt 

conductance (Table 3.2). This result suggests that the pore of the channel itself is not 

affected by different truncations. If indeed there is an effect concerning the regulation or 

selectivity of the channel this has still to be investigated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 Functionality of C. glutamicum YggB in E. coli 

Using the patch clamp technique the functionality of C. glutamicum YggB in the 

membrane of the E. coli triple knock out strain MJF465 lacking MscL, MscS and MscK 

was shown. To complete studies in E. coli also the ability of YggB to rescue the mscL, 

yggB double deletion strain MJF455, which is not able to survive upon severe hypoosmotic 

stress (Levina et al., 1999), under physiological conditions was tested. This experiment 

was aimed to help understanding the differences of the C. glutamicum YggB and the E. 

coli MscS protein, which should be mainly caused by the C-terminal elongation of YggB. 

Genes coding for T7 polymerase were integrated via λDE3 phages (λDE3 Lysogenization 

Kit, Novagen) into the genome of E. coli Frag1 (wt) and MJF455 to allow expression of C. 

glutamicum YggB variants encoded on the plasmid pET29b (work of Nina Möker). 

However, upon induction of yggB ∆110-His and ∆132-His gene expression in the high 

osmolality medium, necessary for an osmotic downshift, no protein could be detected in 

Table 3.2: Conductance values of different YggB 
channel constructs. 
Conductance was determined via I/V plots obtained 
under standard conditions (200 mM KCl, 40 mM 
MgCl2, 5 mM Hepes, pH 7.2 in the pipette and 250 
mM KCl, 90 mM MgCl2, 5 mM Hepes, pH 7.2 in the 
bath). 
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the cells. However, the ability of the other C. glutamicum YggB variants to compensate the 

lack of MS channels in E. coli and enable the cells to survive an osmotic downshift was 

investigated. Therefore, cells were adapted to high osmolality medium and gene expression 

was induced by the addition of IPTG. Afterwards, a severe hypoosmotic shock from 1.028 

osmol/kg to 0.056 osmol/kg was performed by resuspension in the respective buffer. Using 

the LIVE/DEAD cell viability Kit (Invitrogen) survival rates were determined (Fig. 3.11). 

Surprisingly, only about 50 % of wild type cells (Frag 1) survived an osmotic downshift, 

while the MJF455 double deletion mutant showed almost no survival upon hypoosmotic 

shock. However, expression of yggB ∆247 (corresponding to the length of E. coli MscS) 

could fully complement this phenotype. Complementation with the full length YggB 

protein could only be shown in few experiments probably caused by the fact that the yggB 

gene was unsteadily expressed in E. coli under these conditions (data not shown). Thus, 

while the MJF455 phenotype could be fully complemented by the presence of YggB ∆247, 

complementation with the YggB full length protein could not be shown definitely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5  Function of YggB under osmotic stress conditions 

3.5.1  Glutamate efflux upon osmotic downshift 

The solute efflux mediated by the C. glutamicum MS channels upon osmotic downshift 

was described as quite specific, releasing preferentially betaine and proline (Ruffert et al., 

1997). Since YggB was recently linked to the glutamate excretion by C. glutamicum 
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Fig. 3.11: Survival rates of E. coli strains upon osmotic downshift. 
Survival of different E. coli strains is monitored after resuspension in isoosmolar 
buffer (dark grey) and after a severe hypoosmotic shock from 1.028 osmol/kg to 
0.056 osmol/kg (light grey). Survival rates were determined using the LIVE/DEAD 
cell viability Kit. Mean values from three independent experiments. 
Frag1 – wt; MJF455 – ∆mscL∆yggB; d247 – yggB ∆247 expressed in MJF455.   
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(Nakamura et al., 2007), the efflux of glutamate upon different osmotic downshifts was 

tested. Therefore, salt stress was applied for a short period of time to induce internal 

accumulation of glutamate. The cells were then transferred into buffer of decreasing 

external osmolalities down to very low values and the concentration of glutamate in the 

external medium was determined immediately (15 sec) after transfer, using HPLC-

analysis. Depending on the extent of the downshift increasing amounts of glutamate were 

released (Fig.  3.12).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Prior to the downshift the cells had accumulated about 350 – 400 µmol/g dm of glutamate. 

A strong hypoosmotic shock of about ∆1.7 osmol/kg led to the release of most of this 

internal glutamate. Comparison of the wild type with the ∆yggB deletion mutant as well as 

with the ∆mscL deletion and the ∆mscL∆yggB double deletion strains indicated that these 

deletions have not a large effect on the ability of the cell to release glutamate. Strains 

lacking the yggB gene released slightly less glutamate (Fig. 3.12). However, the cells still 

showed considerable glutamate efflux. Nevertheless, it was shown that glutamate efflux 

occurs upon hypoosmotic stress, although an involvement of YggB in this efflux is not 

essential. 

 

 

 

 

Fig. 3.12: Glutamate efflux upon hypoosmotic shock. 
Efflux of glutamate was quantified after salt stress-induced accumulation of glutamate 
(internal amount of glutamate ~ 350 – 400 µmol/g dm). Cells were exposed to buffers 
of different osmolalities and efflux of glutamate was measured 15 sec after the 

dilution into hypoosmotic buffer. wt (■), ∆yggB (●), ∆mscL (▼), ∆mscL∆yggB (♦). 
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3.5.2 Betaine efflux upon osmotic downshift 

In order to investigate the efflux of betaine by C. glutamicum cells upon osmotic 

downshift, cells were pre-incubated in high osmolality medium to induce full expression of 

importers accumulating compatible solutes. Upon release of all internal solutes, the cells 

were first loaded with radioactively labeled betaine before they were transferred into buffer 

of decreasing external osmolalities starting at isoosmolar conditions of 1.8 osmol/kg down 

to very low osmolality values. Lack of the YggB protein resulted in a reduced betaine 

efflux upon the same extent of hypoosmotic stress compared to the wild type, meaning that 

stronger osmotic downshifts were required to detect the same amounts of external betaine 

(Fig. 3.13). However, deletion of the mscL gene had no influence on the efflux pattern 

compared to the wild type (data not shown) and accordingly no additional effect in the 

∆mscL∆yggB double deletion mutant was observed. This result indicated the existence of 

at least one additional MS channel in C. glutamicum, which was already suggested 

previously (Nottebrock et al., 2003). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

The phenotype of the ∆yggB mutant could be fully complemented by the expression of the 

yggB gene from a plasmid. Different IPTG concentrations of 25 µM and 200 µM used for 

induction of gene expression had no influence on the efflux pattern in this case. However, 

for the expression of the yggB-His construct 0 µM and 25 µM IPTG were used, which had 

a high impact on the protein level (Fig. 3.2). Concerning the function as MS channel, the 
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Fig. 3.13: Betaine efflux upon hypoosmotic shock. 
Efflux of the compatible solute glycine betaine (in radiolabeled form) was quantified 
after preloading C. glutamicum cells under hyperosmotic conditions (1.8 osmol/kg). 
Cells were exposed to media at different osmolalities and efflux of betaine is 
measured 15 sec after the dilution into hypoosmotic buffer. Plasmid-encoded gene 

expression was induced by addition of 25 µM IPTG. wt (■), ∆yggB (●), YggB (▲), 

∆mscL∆yggB (♦), YggB-His ( ). 
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strain harboring moderate amounts of YggB-His (0 µM IPTG) revealed a similar betaine 

efflux pattern as the complementation (YggB) strain (data not shown). On the contrary, the 

high overexpression of yggB-His (25 µM IPTG) led to a much stronger betaine efflux upon 

the same extent of hypoosmotic stress compared to the wild type and the complementation 

strain (Fig. 3.13). 

For the purpose of investigating the role of the C-terminal domain of YggB, the different 

truncations of the protein were also tested regarding their function as MS channel. The 

same experiment using labeled betaine as in figure 3.13 was performed. Figure 3.14a 

displays the efflux patterns of the strains expressing different yggB variants. The increased 

betaine efflux of YggB-His (25 µM IPTG) was already shown in figure 3.13. However, 

also the other mutants showed a significantly changed betaine efflux. The phenotype of the 

∆132-His mutant was comparable to the yggB deletion, indicating an inactive or non-

functional channel. On the contrary, betaine efflux of the ∆110-His mutant started at an 

already lower level of internal betaine. The ∆247-His mutant possessed an intermediate 

phenotype in between wild type and ∆yggB. However, when the absolute betaine efflux in 

counts per minute (cpm) instead of the relative betaine efflux (% of the entire internal 

betaine) was plotted against the external osmolality, it became obvious that the loading of 

the different mutants with radio-labeled betaine prior to the hypoosmotic shock differed 

strongly in respect of the efficiency (Fig. 3.14b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.14: Betaine efflux upon hypoosmotic shock. 
Efflux of the compatible solute glycine betaine (in radiolabeled form) was quantified after 
preloading C. glutamicum cells under hyperosmotic conditions (1.8 osmol/kg). Cells were exposed 
to media at different osmolalities and efflux of betaine is measured 15 sec after the dilution into 
hypoosmotic buffer. Data are displayed as (a) relative efflux in percent and as (b) absolute efflux in 
cpm. Plasmid-encoded gene expression was induced by addition of 25 µM IPTG. YggB-His ( ), 
∆110-His ( ), ∆132-His ( ), ∆247-His ( ), wt is shown as dotted line. 
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The amounts of betaine accumulated under hyperosmotic conditions strongly varied 

depending on the expressed yggB variant. Consequently, the initial amount of internal 

betaine then detected previous to the osmotic downshift differed significantly. This 

observation was in contrast to the normal situation under hyperosmotic stress conditions, 

when cells accumulate compatible solutes until the osmotic gradient is balanced. 

Two reasons seemed possible to explain the observed effects. One is an impairment of the 

main betaine uptake carrier BetP leading to the accumulation of less betaine. However, 

there was no evidence that the expression of different variants of the yggB gene might 

influence BetP. The other possibility, that some YggB mutants harbor efflux channel 

activity also under conditions of hyperosmotic stress, seemed much more likely. Therefore, 

it was now of interest to study the significance of YggB also under conditions of 

hyperosmotic stress. 

 

3.5.3 Betaine accumulation under hyperosmotic conditions 

Bacterial cells adapt to hyperosmotic conditions extremely accurate by accumulation of 

compatible solutes to maintain the ideal cell turgor. To ensure such an exact adjustment, a 

fine-tuning mechanism including balanced uptake and efflux of these compatible solutes 

was proposed previously (Grammann et al., 2002). However, the origin responsible for this 

efflux has not yet been identified. Experimental evidence obtained in this work suggests a 

possible efflux activity of YggB, also under hyperosmotic conditions. To test this 

hypothesis the different strains were grown under hyperosmotic conditions analogous to 

the previous described loading with labeled betaine (see materials & methods) while the 

uptake of the labeled betaine was monitored (Fig 3.15). As already expected, cells 

harboring different truncated forms of YggB as well as the highly overexpressed YggB-His 

had a decreased ability to accumulate betaine. Only the ∆132-His mutant was able to 

accumulate betaine to amounts comparable to the wild type, yggB deletion, and the 

complementation (YggB) strain expressing a plasmid-encoded yggB gene. The strain 

expressing the ∆110-His truncation was not able to accumulate betaine at all. Also, betaine 

uptake by cells expressing yggB ∆247-His was significantly reduced as well as the uptake 

by yggB-His expressing cells, reaching approximately half of the amount of internal 

betaine accumulated by wild type cells. 
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Fig. 3.15: Betaine accumulation under hyperosmotic conditions. 
Betaine uptake is monitored, the amount of labeled betaine in the cytoplasm of the 
respective cells was measured by rapid filtration. Plasmid-encoded gene expression 

was induced by addition of 25 µM IPTG.  wt (■), ∆yggB (●), YggB (▲), YggB-His ( ), 

∆110-His ( ), ∆132-His ( ), ∆247 ( ). 
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However, with this experiment alone a possible involvement of YggB in the efflux of 

betaine could not be revealed. Under steady state conditions of internally accumulated 

betaine no uptake or efflux of betaine can be detected with the described experimental 

setup. Nevertheless, a balance of uptake and efflux may be assumed to exist during this 

state. To reveal the net efflux of betaine, a pulse-chase experiment was applied, in which a 

large excess of unlabeled betaine was added to the cells after reaching the steady state 

level. This betaine chase masked further uptake of label due to a strongly decreased 

specific radioactivity in the external buffer and allows separation and quantification of 

betaine efflux. Importantly for this kind of experiment it has to be mentioned that betaine is 

not metabolized in C. glutamicum cells.  

Figure 3.16a shows betaine uptake and efflux visualized by the addition of unlabeled 

substrate of wild type cells. In the yggB deletion mutant the efflux of betaine was slightly 

but significantly decreased, indicating a contribution of YggB to betaine efflux. The 

difference of betaine efflux between wild type and the ∆yggB mutant displays the portion 

of betaine efflux mediated by YggB (Fig. 3.16b). The conclusion of YggB as efflux system 

for betaine was further supported by the strains expressing yggB and yggB-His induced by 

different IPTG concentrations (Fig. 3.16c). Strains with moderate protein levels (YggB, 

YggB-His (0 µM IPTG)) showed normal betaine uptake, but significantly increased efflux. 

In the strain which highly overexpressed yggB-His (25 µM IPTG) the net outward flux was 

even more enhanced, explaining the explicitly decreased steady state level of betaine 

accumulation compared to the other strains. Consequently, the YggB protein level and 
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function in the cell seemed to be directly correlated with the extent of efflux. Taken 

together, the efflux during the steady state situation of betaine accumulation could be 

clearly correlated with the presence of YggB.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Concerning the different YggB truncations, ∆132-His showed the same 

accumulation/efflux pattern as the yggB deletion mutant (Fig. 3.15, data not shown). The 

∆247-His mutant which was only able to accumulate little amounts of glutamate, also 

displayed enhanced efflux upon the betaine chase (Fig. 3.16d). The ∆110-His mutant 

Fig. 3.16: Kinetic discrimination of betaine uptake and efflux. 
Betaine uptake is monitored until the steady state level. The amount of labeled betaine in the 
cytoplasm of the respective cells was measured by rapid filtration. The arrow indicates the addition 
of an excess of unlabeled betaine and the following efflux is visualized. (a) wt uptake (■), chase (■); 

(b) ∆yggB uptake (●), chase (●), for comparison the result for the wt efflux (from a) are added 
(dotted line). Therefore, the values of the wt were normalized to those of ∆yggB by using the mean 
values of those six measurements from 40 to 90 min without addition of unlabeled betaine in both 
panels as basis for normalization; (c) YggB (25 µM IPTG) chase (▲); YggB (200 µM IPTG) chase 
(▲); YggB-His (0 µM IPTG) chase ( ); YggB-His (25 µM IPTG)  uptake   ( ), chase ( ); Betaine 
uptake by the first three strains was averaged (■).  (d) ∆247-His uptake ( ), chase ( ). 
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accumulated nearly no betaine, making the pulse-chase experiment inapplicable. However, 

to test if there occurs at least some initial betaine uptake in the ∆110-His mutant the first 

60 seconds of betaine accumulation were visualized (Fig. 3.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

But, also within this short period of time no betaine uptake of the cells expressing yggB-

His ∆110 was observed. This might indicate that the ∆110 subunits form a basically leaky 

pore allowing very rapid betaine efflux, at least under the conditions used here. However, 

such an transiently open pore possibly allowing free flux of several substrates, e. g. 

protons, would change the energetic situation of the cell resulting in decreased activity of 

the betaine uptake systems. In order to investigate a possible leakiness of the respective 

strains the energetic situation of these strains was analyzed further (see section 3.5.3.2). 

 

3.5.3.1 BetP activity during osmotic compensation  

A possible fine-tuning mechanism of steady state betaine accumulation under 

hyperosmotic conditions being ensured by a balanced uptake (by BetP) and efflux (via 

YggB) was proposed in the previous section. The extent of betaine efflux was dependent 

on the YggB protein level present in the cell. To test a putative feedback of a changed 

YggB activity on BetP regulation, the adaption of BetP activity during osmotic 

compensation under the same conditions used before was monitored. Recently, it was 

shown that BetP activity becomes downregulated when enough compatible solutes, 

Fig. 3.17: Initial betaine uptake by the YggB ∆110-His mutant. 
Betaine uptake is monitored during the first 60 sec of betaine accumulation, the 
amount of labeled betaine in the cytoplasm of the respective cells was measured by 
rapid filtration. Plasmid-encoded gene expression was induced by addition of 25 µM 
IPTG. wt (■), ∆110-His ( ). 
 

0 10 20 30 40 50 60
0

10

20

30

B
e
ta

in
e

 u
p

ta
k
e

 [
µ

m
o
l/
g

 d
m

]

Time [sec]



Results 

58 
 

sufficient to balance the osmotic gradient and maintain ideal cell turgor, were accumulated 

under hyperosmotic conditions, called osmotic compensation (Botzenhardt et al., 2004).  

In order to monitor the actual BetP activity during the course of betaine accumulation in 

the experimental setup used before (see section 3.5.3), the experiment to determine betaine 

uptake was split into two parallel parts. The first part just monitored the uptake of labeled 

betaine at high external concentration (4 mM), as described before. In a parallel culture, 4 

mM unlabeled betaine was added instead under identical conditions. Betaine uptake and 

consequently the course of the remaining external betaine concentration could be derived 

from the first part of the experiment. Consequently, the external betaine concentration at 

any time point was known and could be transferred to the second part of the experiment. 

This betaine concentration at the respective time point could then be used to calculate the 

specific activity of external betaine present in the short term uptake measurements in the 

second part of the experiment. In this second part pure label was added to an aliquot of 

cells at different time points and thereupon the uptake kinetics of betaine within a short 

time (20 – 80 sec) could be monitored resulting in the absolute values of uptake rates at the 

distinct time point during osmotic compensation. Using this experimental setup, the actual 

betaine uptake activity of BetP could be monitored at any given time point during betaine 

accumulation. In wild type cells BetP activity becomes downregulated during osmotic 

compensation (Botzenhardt et al., 2004) which could be shown for the conditions used 

here as well (Fig. 3.18).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.18: Actual betaine uptake rate during osmotic compensation. 
Uptake rate of betaine via BetP in the different strains was monitored after initial 
addition of unlabeled betaine by the addition of pure label at distinct time points. 
Hyperosmotic conditions were chosen analog to the conditions of the latter 
experiments. Plasmid-encoded gene expression was induced by addition of 25 µM 
IPTG. wt (■), ∆yggB (●), YggB (▲), YggB-His ( ), both with 25 µM IPTG. 
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However, in the yggB deletion strain this inactivation was observed in a similar manner 

indicating that the difference in betaine uptake due to the lack of efflux via YggB is too 

small to be monitored by this kind of experiment. On the contrary, plasmid-encoded 

expression of yggB resulting in an increased betaine efflux had a clear impact on BetP, the 

activity becoming less downregulated. No decrease of BetP activity was detected in the 

strain highly overexpressing yggB-His which was not able to accumulate sufficient 

amounts of betaine. Consequently, a direct correlation of YggB efflux activity and BetP 

uptake activity was demonstrated indicating a tightly connected activity regulation of these 

two proteins.  

 

3.5.3.2 Energetics during betaine accumulation 

One important parameter of the energetic situation of the cell is the electrical membrane 

potential which is also a major contributor of the electrochemical Na+ potential, the driving 

force of betaine uptake via BetP under physiological conditions. In order to investigate 

whether different YggB truncations result in the formation of a leaky channel the 

permeability for smaller solutes than betaine and glutamate was tested. Therefore, it was 

determined if protons as very small molecules pass trough these channels by measuring the 

membrane potential. To determine the membrane potential of a cell the lipophile 

radioactivly labeled catione 14[C]-TPP+ was used. TPP is able to permeate the cytoplasmic 

membrane and is accumulated within the cell. This accumulation depends on the electric 

potential over the membrane and occurs until an equilibrium is reached. At the equilibrium 

state the chemical potential of TPP is equal to the electric membrane potential. Therefore, 

the membrane potential can be calculated based on the intra- and extracellular TPP 

concentration. 

The membrane potential of several strains was analyzed under the same hyperosmotic 

conditions used for betaine accumulation experiments described in section 3.5.3 (Fig. 

3.19). It was obvious that the membrane potential of the ∆110-His mutant had a much 

lower value of around 137 mV compared to the other mutants. Also the ∆247-His mutant 

which was able to accumulate small amounts of betaine showed a decreased membrane 

potential (~ 160 mV). Indeed, it increased during the uptake of betaine suggesting that the 

cells started to recover. The strain expressing yggB-His (with a potential of about 180 mV) 

had a slightly lower membrane potential than that expected (200 mV) at a pH value of 8.0 

(pH of the loading buffer). This corresponded to the values obtained for the membrane 

potential of wild type and the ∆132-His mutant.   
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Fig. 3.19: Membrane potential of different C. glutamicum strains. 
Membrane potential was analyzed using the radioactiv labeled catione 

14
[C]-TPP

+
, 

the amount of labeled TPP in the cytoplasm of the respective cells was measured by 
rapid filtration. The respective strains were cultivated under hyperosmotic conditions 
causing betaine accumulation. Plasmid-encoded gene expression was induced by 
addition of 25 µM IPTG. wt (■), YggB-His ( ), ∆110-His ( ), ∆132-His ( ), ∆247-His 

( ). 
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A reduction of the membrane potential leads to a decreased activity of secondary active 

transporters, such as BetP. Therefore, the low ability of some mutants to accumulate 

betaine can be caused by diminished BetP activity. Still, evidence was provided previously 

that betaine leaves the cell through the channel formed by different YggB subunits (see 

section 3.5.3). Thus, the cause for the low efficiency of the betaine loading by the YggB 

truncation strains seems to be a combination of reduced betaine uptake as well as 

immediate outward flux. The cells had to cope with an extreme osmotic downshift prior to 

betaine loading by application of a high osmolality buffer. Therefore, it was now 

interesting if the reduced membrane potentials of particularly the ∆110-His and the ∆247-

His mutant resembled physiological growth conditions or whether this effect was stress 

induced.  

In order to analyze the energetic situation of the cell under different conditions, the 

membrane potential was determined before the first osmotic downshift when the cells were 

adapted to hyperosmotic conditions (Table 3.3, schema I) and when the adapted cells were 

directly resuspended in loading buffer of higher osmolality without previous osmotic 

downshift (Table 3.3, schema II). The membrane potentials upon these different treatments 

compared to the initial membrane potential displayed in figure 3.19 are summarized in 

table 3.3. Previous to the hypoosmotic shock there was no significant difference between 

the cells harboring different YggB constructs (Table 3.3, I). Upon direct resuspension in 
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even higher osmolar loading buffer the membrane potential of nearly all strains was around 

or slightly above 200 mV. The only exception was the ∆110-His mutant with a reduced 

membrane potential of 178 mV (Table 3.3, II). However, the decrease in membrane 

potential of this mutant was not as strong as it was with an extreme osmotic downshift 

previous to the resuspension in the hyperosmolar loading buffer (Table 3.3, III). The cause 

for the strong decrease in membrane potential of the ∆110-His mutant and also of the 

∆247-His mutant seemed to be a combination of a drastic osmotic downshift (the condition 

when YggB normally gets activated) followed by an immediate osmotic upshift. This 

observation suggested that YggB itself was the reason for the decreased membrane 

potential. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The membrane potential of bacteria is directly correlated with the proton motive force (pmf) 

necessary for the generation of ATP. The pmf is the sum of the chemical gradient across the 

plasma membrane and the membrane potential. To exclude that the decreased membrane 

potential was caused by a changed internal pH as an adjustment of the pmf, the internal pH 

Table 3.3: Membrane potential of C. glutamicum strains upon different combinations of 
osmotic stress. 
Membrane potential of respective strains was analysed using TPP. The conditions used are 
displayed schematically: (I) Cells were adapted to hyperosmotic conditions (~ 1.3 osmol/kg) o/n; 
(II) cells from I were transferred to hyperosmotic buffer (~ 1.8 osmol/kg); (III) cells from I were first 
transferred into hypoosmotic buffer (~ 0.1 osmol/kg) followed by a transfer to hyperosmotic 
conditions (~ 1.8 osmol/kg). Values of membrane potential of the respective C. lutamicum strains 
are summarized in the table below. 

BHI + 500 mM NaCl

~ 1.3 osmol/kg

II
Loading buffer

~ 1.8 osmol/kg

Downshock buffer

~ 0.1 osmol/kg, 4 °C

I

Loading buffer

~ 1.8 osmol/kg
III
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(pH gradient) as well as the pmf was determined. However, there was no difference in the 

internal pH of the ∆110-His mutant compared to the wild type (data not shown). These 

results clearly show that the decreased membrane potential of the ∆110-His mutant is not a 

consequence of a changed internal pH, adjusting the pmf of the cell. Contrary, the pmf 

itself is significantly decreased in the ∆110-His mutant under hyperosmotic conditions 

following an osmotic downshift.  

 

3.5.4 Growth at different osmolalities 

Strains expressing different truncated forms of yggB-His were strongly impaired especially 

under osmotic stress conditions which was shown via the energetic situation of the 

respective strains. In the following growth of these strains was monitored under different 

osmolalities. Therefore, cells were grown in MM1 minimal medium, pH 7.0 additionally 

containing different amounts of NaCl (0 mM, 100 mM, 200 mM, 300 mM, 400 mM), 

corresponding to osmolalities of 0.448 osmol/kg, 0.746 osmol/kg, 0.931 osmol/kg, 1.101 

osmol/kg, and 1.287 osmol/kg. Growth of cells expressing different yggB–His constructs, 

especially ∆110-His, was significantly changed depending on the osmolality of the 

medium (Fig. 3.20). Growth of the wild type was nearly independent of the external 

osmolality. However, the ∆110-His mutant showed an extended lag phase previous to the 

exponential growth phase. The degree of this lag-phase was clearly dependent on the 

osmolality of the environment, elongating with increasing osmolality. However, without 

previous osmotic downshift (as performed in the experiments decribed before) the cells 

seemed to be able to overcome this lag-phase indicating that the channel pore formed by 

YggB ∆110 subunits is not likely to be permanently open under these conditions. The same 

effect was observed for the YggB-His and in a lower extent for the ∆247-His mutant. 

Altogether, these growth phenotypes were not as much due to different growth during the 

exponential phase rather than due to the lag phase of distinct duration. These results 

indicated that the strains expressing the different yggB constructs need a certain amount of 

a special substance or need to reach a defined state before they are able to start growing. 

Other parameters, such as the pH value, might also have an impact on growth of the 

mutants. Taken together, this led to the question, what the extended lag phase caused and 

what made then the following growth phase possible? 
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It was tested if the accumulation of any substrate in the external medium is necessary to 

allow growth of the ∆110-His mutant. Therefore, cells in the exponential growth phase 

were used to inoculate fresh medium on the one hand and medium containing 25 % of the 

previously used medium (supernatant without cells) on the other. Although the presence of 

this ‘used’ medium seemed to support growth in some experiments, this effect could not be 

definitely shown. Further tests additionally revealed that neither externally added 

glutamate abolished the lag phase nor a pH shift caused the growth phenotype of the ∆110-

His mutant (data not shown).   

 

 

Fig. 3.20: Growth of C. glutamicum strains expressing yggB-His and its truncated forms 
under different osmolalities. 
Growth curves of the respective strains were obtained in MM1 minimal medium, pH 7.0 containing 
0 mM, 100 mM, 200 mM, 300 mM, and 400 mM NaCl by monitoring the OD600. Related 
osmolalities of the media were 0.448 (■), 0.746 (●), 0.931 (▲), 1.101 (▼), and 1.287 (♦) osmol/kg. 
Plasmid-encoded gene expression was induced by addition of 25 µM IPTG 
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3.5.5 Characterization of leakiness mediated by YggB ∆110-His  

As described above the presence of YggB variants, especially the ∆110-His mutant, 

resulted in a strong phenotype regarding growth, accumulation of betaine, and membrane 

potential under hyperosmotic conditions. Additionally, the ∆110-His mutant was able to 

excrete glutamate permanently without trigger (Nakamura et al., 2007) as will be described 

in CgXII MOPS minimal medium, pH 7.0 (~ 1.0 osmol/kg) later (see section 3.6.1). One 

possible explanation for all these effects might be the formation of a basically or 

transiently leaky channel by the ∆110 subunits allowing the unspecific release of ions and 

molecules. Such a transient hole in the membrane might be the reason for the severe 

problems of the cells mainly under osmotic stress conditions. 

To analyze if the permeability of the cell envelope was changed and an unspecific outward 

flux of ions and molecules occurred in the ∆110-His mutant a number of other solutes were 

tested for an increased permeability through the plasma membrane. Such an increased 

permeability could be expected if mutant forms of YggB would form a leaky unspecific 

channel. HPLC-analysis of culture supernatant resulted in the detection of only very small 

amounts of glutamine and possibly alanine excreted besides glutamate. Surprisingly, also 

proline, known as a compatible solute in C. glutamicum, seemed not to flow through a 

possible leaky pore (data not shown).  

Additionally, the permeability for a solute, related to glutamate roughly in size and charge, 

namely the organic acid pyruvate was tested. Therefore, the internal concentration of 

pyruvate was artificially increased by the addition of the inhibitor aminoethyl-phosphinate 

(Laber and Amrhein, 1987). Within the cell aminoethyl-phosphinate is converted to 

acetylphosphinate which inhibits the pyruvate dehydrogenase. Application of this inhibitor 

led to spontaneous pyruvate excretion, which, however, was not increased in the ∆110-His 

mutant compared to the wild type (data not shown).  

As example for another ion, different from protons, the permeability for K+ ions was 

tested. Recently, it was shown that C. glutamicum requires potassium for pH homeostasis 

at low pH values and is therefore not able to grow under these conditions in the absence of 

potassium. While wild type cells recover after the addition of KCl, the K+-transport 

negative mutant ∆kup∆CglK does not (Follmann et al., 2009). While addition of the 

potassium ionophore valinomycin could complement this K+ defiency, transformation of 

the ∆kup∆CglK mutant with the ‘leaky’ YggB ∆110-His did not. This result again 

indicated that potassium ions were not able to permeate the membrane of ∆kup∆CglK upon 

expression of yggB ∆110-His. However, it has to be admitted that K+ ions would have to 
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permeate the leaky channel in the opposite direction, which would only be possible upon 

the assumption of a rather unspecific pore in the membrane which seemed not to be the 

case (data not shown). 

Finally, the susceptibility to different antibiotics of cells harboring the YggB ∆110-His 

mutant compared to the complementation strain (YggB) was tested. In the case of 

penicillin and ethambutol, which, however, do not need to cross the plasma membrane, the 

susceptibility of the ∆110-His mutant was slightly increased. Erythromycin, targeting in 

the cytoplasm, affected growth of the ∆110-His mutant compared to the complementation 

strain. Although this effect was more pronounced, it was still not fully convincing. If the 

particular antibiotic really enters the cells through a leaky pore to cause an increased 

susceptibility or whether this effect is due to general impairment of the cell wall integrity 

could not be proven by this kind of experiment. It is just another hint that the expression of 

a truncated version of yggB leads to a disturbed cell envelope (data not shown). 

Taken together, these results indicated that the pore formed by the ∆110-His mutant is still 

relatively selective under the conditions used here, although the cell integrity seemed to be 

significantly impaired. However, severe osmotic stress, such as osmotic up- and downshift, 

seemed to lead to a more unspecific efflux as shown above for betaine and protons as well 

as for proline previously (Ruffert et al., 1997). In fact, the permeability of the cells 

expressing yggB ∆110-His for glutamate seemed to be a quite specific effect. None of the 

tested molecules, like pyruvate, proline, and even K+ was released by the cell via the 

proposed leaky pore under the conditions similar to the situation of glutamate production.  

 

3.5.6  E. coli MscS and MscS/CtYggB in C. glutamicum ∆yggB 

In addition to the different YggB constructs the mechanosensitive functionality of E. coli 

MscS, the direct structural counterpart of YggB from C. glutamicum, and the fusion 

construct MscS/CtYggB, respectively, present in C. glutamicum ∆yggB was also tested. 

Although significant level of both proteins could be detected in Western blot analysis (Fig. 

3.2), the phenotype of the ∆yggB mutant was not complemented by either of the proteins 

(data not shown). Both strains showed a betaine efflux pattern comparable to the yggB 

deletion strain, indicating that E. coli MscS as well as the fusion protein MscS/CtYggB 

does not function as MS channel in C. glutamicum mediating betaine efflux. Accordingly, 

the betaine uptake and efflux behavior under hyperosmotic conditions of either strain was 

the same as observed for the yggB deletion mutant. Additionally, heterologously expressed 
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mscS as well as mscS/CtyggB did not influence growth of C. glutamicum cells in medium 

of different osmolalities (data not shown). 

 

 

3.6 Glutamate production 

3.6.1  Glutamate production upon different treatments 

Glutamate production by C. glutamicum can be induced by various treatments. Three 

different triggers were used to characterize the phenotype of the yggB deletion mutant, 

namely biotin limitation, the addition of Tween 60 and penicillin G. All treatments led to a 

dramatically decreased glutamate production in the absence of YggB (Table 3.4). 

However, a residual glutamate production of about 30 % was still detectable in the ∆yggB 

mutant. Additional deletion of mscL had no effect on glutamate production (data not 

shown). 

 

 

 

 

 

 

 

 

 

 

 

Glutamate excretion of the respective strains upon addition of penicillin is shown in figure 

3.21. Excretion rates were determined via the linear regression of external glutamate 

concentrations between one and five hours after induction. As penicillin was most 

effective, it was used to induce glutamate production in the majority of the following 

experiments. Plasmid-encoded expression of the yggB gene fully complemented the ∆yggB 

phenotype (Fig. 3.21). Indeed, glutamate excretion was slightly enhanced in the 

complementation strain (YggB), probably due to overexpression of yggB compared to the 

wild type harboring the genomic copy of the gene (Fig. 3.2).  

 

Table 3.4: Glutamate excretion rates [µmol/(min g dm)] after 
addition of different trigger. 
Glutamate excretion was induced by addition of the respective 
trigger in the exponential growth phase. Glutamate excretion rates 
were determined using linear regression of external amounts of 
glutamate at adequate time points. n ≥ 3 for penicillin G and 
Tween 60. n.d. – not determined 
YggB – yggB deletion mutant, expressing the yggB gene from the 
vector pEKex2. 
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Fig. 3.21: Induction of glutamate excretion by addition of 6 U/ml penicillin G. 
Glutamate excretion was induced by addition of penicillin (t=0) in the exponential 
growth phase. Amounts of glutamate in the external medium were measured via 
HPLC-analysis. Straight lines represent linear regressions. Plasmid-encoded gene 

expression was induced by addition of 25 µM IPTG. wt (■), ∆yggB (●), YggB (▲).  
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The extended C-terminal elongation of YggB can only be found in close relatives of C. 

glutamicum and is not present in most MscS channel homologs. To investigate the role of 

the C-terminal domain strains harboring the truncated derivatives of YggB were analyzed 

concerning their ability to excrete glutamate without and upon induction (Fig. 3.22). As 

reported by Nakamura et al. (2007) the ∆110-His mutant strain produced highly elevated 

amounts of glutamate without any induction which could be shown here also in C. 

glutamicum ATCC 13032. It has to be mentioned that the membrane potential of the ∆110-

His mutant strain was not changed under the conditions used here, being between 160 – 

170 mV (a normal range) and comparable to all other strains (data not shown). 

Surprisingly, also expression of the full length yggB gene with a 6xHis-tag added at the C-

terminal end resulted in excretion of remarkable amounts of glutamate without any 

induction. However, it should be remembered that yggB-His is highly overexpressed in C. 

glutamicum (Fig. 3.2, induction of gene expression by addition of 25 µM IPTG). 

Investigation of the glutamate production of the YggB-His strain without induction of gene 

expression (0 µM IPTG) revealed no glutamate excretion without trigger (data not shown). 

Therefore, the observed effect of the YggB-His strain was due to the high protein level in 

the cell instead of the added 6xHis-tag possibly interfering with the natural role of the C-

terminal domain.  

The amount of glutamate accumulated in the external medium without induction started 

decreasing after 2 – 3 hours of cultivation. This effect could be explained by an on-going 

growth of the cells during that the uptake of glutamate masked the export. However, 
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glutamate uptake measurements would be necessary to prove this hypothesis. The ∆247-

His mutant excreted only very small amounts of glutamate at an average of about 150 – 

200 µmol/g dm compared to the YggB-His and ∆110-His strains. These amounts were still 

significantly higher as the amounts of glutamate excreted by the wild type or the ∆132-His 

mutant, being in a low µmolar range (< 10 µmol). Here again a possible simultaneous 

uptake of glutamate could not be measured with this kind of experiment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Induction of glutamate production by addition of penicillin resulted in further glutamate 

excretion in addition to the basal level of all strains (Fig. 3.22b). Starting at a higher level, 

the glutamate excretion rate of the YggB-His strain was comparable to the wild type, while 

the ∆110-His mutant had a slightly smaller glutamate excretion rate. The strain expressing 

yggB-His at moderate level (0 µM IPTG) showed a normal glutamate excretion rate similar 

to the rate determined for the complementation strain (YggB) (Table 3.4 and 3.5). The 

∆247-His mutant excreted slightly elevated amounts of glutamate, somehow consistent 

with the very small amount of glutamate excreted without induction. In the ∆132-His 

mutant no additional glutamate excretion compared to the yggB deletion strain could be 

induced. This result was consistent with the previous analysis of mechanosensitive 

function, indicating a non-functional channel assembled by YggB ∆132-His subunits. 

Glutamate excretion rates of the described strains are summarized in table 3.5. 
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Fig. 3.22: Glutamate excretion without induction or upon addition of 6 U/ml penicillin G. 
The concentration of glutamate in the external medium (a) without induction and (b) at various 
time points after induction with penicillin (t=3) is displayed. T=0 represents the start of cultivation. 
Addition of penicillin is indicated by an arrow. Amounts of glutamate in the external medium were 
measured via HPLC-analysis. Straight lines represent linear regressions. Plasmid-encoded gene 
expression was induced by addition of 25 µM IPTG. YggB-His ( ), ∆110-His ( ), ∆132-His ( ), 
∆247-His ( ). wt is shown as dotted, ∆yggB as dashed line; both strains did not excrete any 
glutamate without induction. 
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In summary, all modifications of YggB had a more or less pronounced effect on the 

glutamate production by the respective strains of C. glutamicum, indicating an important 

role of the protein in the process of glutamate excretion. Obviously, the integrity of the C-

terminal domain has a strong effect on the inducibility of glutamate production. However, 

a decision if YggB is really the glutamate exporter or whether it is just a regulator of 

another so far unknown export system cannot be made based on the experiments described 

so far. 

 

3.6.2 Influence of external osmolality, media, and pH  

Due to a possible connection of YggB’s function as MS channel and its putative additional 

function as glutamate exporter, the influence of osmolality changes during glutamate 

production was investigated. Therefore, glutamate production was induced during 

exponential growth by the addition of Tween 60. 2 hours after induction the osmolality of 

the external medium was shifted by 1:1 dilution of the cultures with ddH2O or media 

containing different amounts of NaCl resulting in osmolalities of 0.566, 1.132 (isoosmolar) 

and 1.726 osmol/kg. Depending on the osmotic conditions after the shift, the glutamate 

excretion rates of wild type and the yggB deletion strain were effected (Fig. 3.23). A 

decrease of the external osmolality resulted in elevated glutamate excretion while an 

increase of the external osmolality decreased the amount of glutamate in the medium. A 

similar effect was already described by Lambert et al. (1995) for wild type cells but under 

Table 3.5: Glutamate excretion rates [µmol/(min g dm)] of 
recombinant C. glutamicum strains. 
Glutamate excretion rates of C. glutamicum ∆yggB expressing 
truncated forms of yggB-His upon addition of 6 U/ml penicillin 
were determined using linear regression of external amounts of 
glutamate at adequate time points. If not otherwise stated gene 
expression was induced by addition of 25 µM IPTG. n ≥ 3 
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different conditions. Surprisingly, the same dependency was observed for the yggB 

deletion strain, though at a lower level, indicating that the presence of YggB is not required 

to transduce the impact of osmolality changes on glutamate production.  

To exclude other physiological effects besides the osmolality change caused by the dilution 

in ddH2O to reach an osmolality of 0.556 osmol/kg the experiment was repeated in MM1 

minimal medium, pH 7.0 possessing a much lower osmolality of about 0.3 osmol/kg than 

CgXII MOPS. Osmolalities were adjusted with NaCl to the same values used in the first 

experiment. Thus, a dilution in MM1 was possible to reach a comparable low osmolality. 

The in MM1 minimal medium detected effects of osmolality changes were similar to the 

effects described for CgXII MOPS, though the amount of excreted glutamate was less 

(data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.23: Effect of osmolality shift on glutamate production. 
Glutamate excretion was induced by addition of 0.15 % (v/v) Tween 60 (t=0) in the 
exponential growth phase. After 2 hours of incubation a shift in external osmolality 
from 1.132 osmol/kg to 0.566 osmol/kg (squares), 1.132 osmol/kg (isoosmolar, 
circles), and 1.726 osmol/kg (triangles) was performed. Amounts of glutamate in the 
external medium were measured via HPLC-analysis. Straight lines represent linear 
regressions. 
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Based on the latter described result evidence was provided that there are multiple factors 

influencing glutamate excretion. CgXII MOPS contained a high amount of MOPS (pKa 

7.2) and thus possessed strong buffer capacity compared to MM1. Obviously related to the 

present buffer capacity were the pH values of the medium. To investigate the influence of 

the pH value on glutamate production, MM1 (+ 42 g/l MOPS) with varying pH values of 

6.0, 7.0, and 8.0 were used. Changes of pH values during glutamate excretion were 

measured via a pH electrode (Hydrus 300, Fisher Scientific, Schwerte). During the growth 

period between inoculation and induction of glutamate production (approximately 3 – 4 

hours) the pH value of the external medium was already shifted towards more alkaline 

values (Fig. 3.24a, t=0).  However, a dependency of glutamate productivity of the wild 

type from the external pH was observed (Fig. 3.24b), increasing glutamate excretion being 

correlated to increasing pH values. Looking at the development of the external pH during 

glutamate production, the glutamate accumulated externally acidified the medium. The 

high amount of glutamate excreted by wild type cells decreased the external pH values 

depending on the initial pH (Fig. 3.24a). Taken together, the efficiency of glutamate 

production seems to be dependent on the pH of the medium and/or the pre-cultivation 

conditions. In order to investigate this interesting effect further fermentation experiments 

have to be performed in which a constant pH can be guaranteed during cultivation. 
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Fig. 3.24: Glutamate excretion in MM1/MOPS medium of different pH values. 
Glutamate excretion by wild type cells was induced by addition of 6 U/ml penicillin G (t=0) in 
the exponential growth phase. (a) pH values of the external medium during glutamate 
production, (b) amounts of glutamate in the external medium were measured via HPLC-
analysis. Straight lines represent linear regressions. wt, pH 6.0 (■), pH 7.0 (●), pH 8.0 (▲). 
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3.6.3 Influence of on-going glutamate production on hypoosmotic stress  

 response 

The influence of an osmolality shift on glutamate production was described in section 

3.6.2. Here the influence of on-going glutamate production on the immediate hypoosmotic 

stress response was also analyzed. Therefore, a similar experiment as described for 

glutamate and betaine efflux upon osmotic downshift (see sections 3.5.1 and 3.5.2) was 

split into two parts. In the first part cells were loaded with [14C]-labeled betaine under 

hyperosmotic conditions (CgXII MOPS + 400 mM NaCl (1.839 osmol/kg)). In the second 

part cells were incubated in the same medium containing unlabeled betaine. Subsequent to 

loading, glutamate production was induced for 3 hours by the addition of Tween 60 in both 

parts. The cells were then incubated at decreasing external osmolalities starting at 

isoosmolar conditions of 1.8 osmol/kg down to very low osmolality values analog to the 

experiments described in section 3.5.1 and 3.5.2. Efflux of labeled betaine from the first 

part of the experiment as well as glutamate from the second part was measured under these 

conditions. The pattern of betaine efflux of wild type and the yggB deletion strain was 

similar to the betaine efflux upon osmotic downshift shown in figure 3.13 (data not 

shown). Therefore, on-going glutamate excretion seems not to influence betaine efflux 

under hypoosmotic conditions. This indicates that betaine is not excreted with glutamate 

simultaneously before the osmotic downshift was applied, although the internal betaine 

concentration is suggested to be on a high level due to the previous loading. 

Indeed, hypoosmotic efflux of glutamate was decreased in both strains when Tween 60 

was added previously to induce glutamate production (Fig. 3.25a). Interestingly, glutamate 

efflux upon osmotic downshift of the yggB deletion strain without previous induction of 

glutamate production was strongly decreased compared to the wild type. Such a difference 

was not detected under the conditions used before to investigate glutamate efflux upon 

hypoosmotic stress (see section 3.5.1). Although the conditions used in section 3.5.1 were 

slightly different from the conditions used here, an explanation for these unequal results is 

still missing. The internal amount of glutamate was measured as control and corresponded 

roughly to the glutamate efflux upon hypoosmotic stress in both strains (pre-induction of 

glutamate excretion) (Fig. 3.25b, c).  
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3.6.4  Alternative candidates for the glutamate exporter 

Based on the previous experiments, the question of the exact role of YggB in the export of 

glutamate – as exporter or regulator – could not be answered yet. Therefore, also other 

candidates than YggB were tested to be involved in the export of glutamate. 

De Angeli et al. (2006) described the member of the chloride channel (CLC) protein 

family AtCLCa of Arabidopsis thaliana being a NO3
-/H+ antiporter. Additionally, this 

channel was described to harbor a certain affinity for glutamate. In view of this 

information the C. glutamicum gene Cgl0063 which was annotated as putative chloride 

Fig. 3.25: Glutamate efflux upon osmotic downshift under glutamate productive 
conditions. 
Efflux of glutamate upon hypoosmotic shock was quantified 3h after glutamate production 
was induced by addition of 0.15 % Tween 60. Cells were exposed to buffers of different 
osmolalities and efflux as well as internal amounts of glutamate were measured 15 sec after 
the dilution into hypoosmotic buffer. (a) Glutamate efflux of wt (black) and yggB deletion (red) 
without previous induction (squares) and after addition of Tween 60 (circles); (b) internal 
(triangles) and external (circles) amounts of glutamate of wild type cells; (c) internal 
(triangles) and external (circles) amounts of glutamate of ∆yggB cells. 
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channel became an interesting candidate for an alternative glutamate export system. Thus, 

the insertion mutant IS::Cgl0063 existent in our group was investigated with respect to a 

possible effect on glutamate productivity upon the addition of Tween 60.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, inactivation of the Cgl0063 gene did not result in decreased glutamate 

production (Fig. 3.26). In fact, an elevated glutamate excretion rate was detected. Since no 

decrease of glutamate excretion was detected upon inactivation of Cgl0063, the channel 

encoded by Cgl0063 seems not to be involved in glutamate excretion triggered by Tween 

60. The increased amount of excreted glutamate might be caused by disturbed membrane 

integrity due to the missing or non-functioning channel. However, this aspect was not 

investigated further so far. 

Due to information from our industry cooperation partner Ajinomoto Co., Inc. two other 

candidates for the glutamate export carrier were identified in C. glutamicum. These were 

encoded by the genes Cgl0590 and Cgl1221.  To test an involvement of the proteins 

encoded by these two candidate genes in glutamate production the single deletion mutants 

were constructed. Additionally, several double deletion strains in combination with the 

yggB gene as well as the triple deletion mutant were generated in C. glutamicum. The 

resulting strains were analyzed regarding their ability to excrete glutamate upon induction 

by penicillin. However, there was no effect of a ∆Cgl0590∆Cgl2211 double deletion on 

glutamate production of the corresponding strain, excreting similar amounts of glutamate 

compared to the wild type level. Although all other mutants produced less glutamate there 

Fig. 3.26: Glutamate excretion by the IS::Cgl0063 mutant. 
Glutamate excretion was induced by addition of 0.15 % (v/v) Tween 60 in the 
exponential growth phase (t=0). Amounts of glutamate in the external medium were 
measured via HPLC-analysis. Straight lines represent linear regressions. wt (■), 
∆yggB (●), IS::Cgl0063 (♦). 
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was no difference compared to the yggB single deletion strain indicating that the effect on 

glutamate excretion is exclusively caused by the yggB deletion (Fig. 3.27).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nevertheless, before a function of the genes Cgl0590 and Cgl2211 in glutamate production 

was completely excluded the effect of overexpression was investigated. Plasmid-encoded 

expression of the genes Cgl0590 and Cgl2211 was induced in the yggB deletion mutant. As 

the C-terminal His tag had a crucial impact on the expression or function in the case of 

YggB, both of the genes were expressed with as well as without His-tag fusion.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.27: Glutamate excretion by ∆Cgl0590 and ∆Cgl2211 deletion mutants. 
Glutamate excretion was induced by addition of 6 U/ml penicillin (t=0) in the 
exponential growth phase. Amounts of glutamate in the external medium were 
measured via HPLC-analysis. Straight lines represent linear regressions. ∆yggB (●), 
∆Cgl2211∆Cgl0590 (♦), ∆Cgl0590∆yggB (◄), ∆Cgl2211∆yggB ( ), 
∆Cgl2211∆Cgl0590∆yggB (►).  
 

0 1 2 3 4 5

0

1

2

3

4

5

E
x
te

rn
a
l 
g
lu

ta
m

a
te

 [
m

m
o
l/
g
 d

m
]

Time [h]

Fig. 3.28: Glutamate excretion upon Cgl0590 and Cgl2211 overexpression. 
Glutamate excretion was induced by addition of 6 U/ml penicillin (t=0) in the 
exponential growth phase. Amounts of glutamate in the external medium were 
measured via HPLC-analysis. Straight lines represent linear regressions. Plasmid-
encoded gene expression was induced by addition of 25 µM IPTG. wt (■), ∆yggB (●), 
Cgl0590 (▲), Cgl0590-His (▼), Cgl2211-His (♦). 
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Expression of the Cgl0590 gene with/without His-tag led to distinct growth reduction 

giving a strong hint that protein expression occurred (data not shown). Nevertheless, the 

amount of excreted glutamate upon overexpression of these proteins was not affected (Fig. 

3.28). Although, the strain expressing the His-tagged Cgl0590 seemed to excrete a slightly 

increased amount of glutamate 2 hours after the addition of penicillin, there was no 

significant effect visible. Taken together with the results obtained from the deletion 

mutants an involvement of the C. glutamicum genes Cgl0590 and Cgl2211 in the excretion 

of glutamate is not very likely. 

 

3.6.5  E. coli MscS and MscS/CtYggB in C. glutamicum ∆yggB 

On the basis of the experiments described so far, it was still not possible to discriminate 

between the hypothesis of YggB being the glutamate excretion system on the one hand and 

the hypothesis of YggB regulating another channel on the other. A further attempt to 

elucidate whether YggB is the glutamate exporter in C. glutamicum was the expression of 

E. coli mscS and a fusion construct of mscS and the additional C-terminal domain of YggB 

in the C. glutamicum yggB deletion mutant. Strains harboring both constructs, MscS and 

MscS/CtYggB, were analyzed with respect to their ability to restore glutamate production 

in the yggB deletion mutant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.29: Glutamate excretion of MscS and MscS/CtYggB strains. 
E. coli mscS and the mscS/CtyggB fusion construct +/- His-tag were expressed in C. 
glutamicum ∆yggB. Glutamate excretion was induced by addition of 6 U/ml penicillin 
(t=0) in the exponential growth phase. Amounts of glutamate in the external medium 
were measured via HPLC-analysis. Straight lines represent linear regressions. 
Plasmid-encoded gene expression was induced by addition of 25 µM IPTG. ∆yggB 

(●), YggB (▲), MscS ( ), MscS-His ( ), MscS/CtYggB ( ), MscS/CtYggB-His ( ). 
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Table 3.6: Glutamate excretion rates [µmol/(min g dm)] of 
C. glutamicum MscS-His and MscS/CtYggB-His strains. 
Glutamate excretion rates of respective C. glutamicum strains 
upon addition of 6 U/ml penicillin were determined using linear 
regression of external amounts of glutamate at adequate time 
points. Gene expression was induced by addition of 25 µM 
IPTG. n ≥ 3 

Due to the high impact of a C-terminal His-tag added to the native yggB gene expression 

and consequently on the protein level and glutamate production, the new constructs were 

expressed with and without His-tag. However, in this case the His-tag had no influence on 

the glutamate production of the mutants (Fig. 3.29). Therefore, all further experiments 

were performed with the tagged proteins, since their level could be verified. 

The strain MscS-His as well as MscS/CtYggB-His showed significantly increased 

glutamate production compared to the yggB deletion mutant (Fig. 3.29). Nevertheless, the 

excretion rates were not as high as in the complementation strain (YggB), expressing the 

untagged C. glutamicum yggB gene. The MscS-His mutant showed an increased glutamate 

production with an excretion rate of 9.85 µmol/(min g dm). The MscS/CtYggB-His mutant 

harboring MscS fused to the additional C-terminal domain of YggB showed a glutamate 

excretion rate at an average of 13.95 µmol/(min g dm) laying in between the mean rates of 

∆yggB with 5.13 µmol/(min g dm) and the complementation strain (YggB) with 20.16 

µmol/(min g dm). Glutamate excretion rates are summarized in table 3.6. The obtained 

result indicates that the fusion protein is at least partly able to restore the ability of the cell 

to produce glutamate upon the induction by penicillin. The presence here of the C-terminal 

domain of YggB enhanced glutamate excretion. 
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MscS/CtYggB-HisMscS-His

A51N/F68N A51N/F68NI37N/L86N I37N/L86N

Fig. 3.30: Western blot analysis of MscS-His and 
MscS/CtYggB-His LOF-mutants. 
LOF-mutants of mscS-His and mscS/CtyggB-His were 
expressed from the vector pEKex2 in C. glutamicum 
∆yggB. 25 µM IPTG were used to induce gene 
expression. 60 µg of membrane extract were loaded to 
each gel. The blot was developed using anti-(penta)-His 
antibody. 

3.6.6  LOF- and GOF mutants of E. coli MscS and MscS/CtYggB  

The experiments described above provide first evidence that the MscS channel was 

responsible for glutamate excretion. For MscS several loss-of-function (LOF - difficult or 

no channel opening), and gain-of-function (GOF - easy or flickering channel opening) 

mutants are described. In order to confirm the hypothesis of MscS mediating glutamate 

excretion, several of these mutations were constructed. In the LOF-mutants the 

hydrophobic residues near either end of the first or the second transmembrane helix (TM1 

or TM2) of MscS were replaced by asparagines, leading to a LOF phenotype as described 

by Nomura et al. (2006). E. coli strains harboring these MscS A51N/F68N and I37N/L86N 

mutants in E. coli were hardly able to survive an osmotic downshift and no channel 

openings could be detected in patch clamp analysis. The same point mutations were 

introduced into mscS-His and mscS/CtyggB-His, respectively, via site-directed mutagenesis 

and the resulting genes were expressed in the C. glutamicum yggB deletion mutant. Upon 

expression of the four genes, significant level of protein could be detected in Western blot 

analysis only for three of the proteins (Fig. 3.30). However, no protein was detected upon 

expression of the mscS-His I37N/L86N gene.  

 

 

 

 

 

 

 

 

 

 

Stains harboring LOF-mutants produced no glutamate in addition to the amount produced 

by the ∆yggB mutant when investigated regarding their ability to excrete glutamate upon 

the addition of penicillin (Fig. 3.31). The fact that the introduction of LOF-mutations 

abolished glutamate production observed by expression of wild type mscS-His and 

mscS/CtyggB-His, respectively, further supported the hypothesis of glutamate passing 

through the MscS pore itself. These experiments were not possible using directly the C. 

glutamicum YggB because no LOF-mutants for its mechanosensitive function are known 

or investigated, respectively. 
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Since LOF-mutants had a significant impact on glutamate production mediated by MscS-

His and MscS/CtYggB-His, respectively, also several GOF-mutations described for E. coli 

MscS were investigated regarding their effect on glutamate production in C. glutamicum.  

GOF-mutants of the MscS channel were characterized to require less membrane tension in 

order to reach the threshold for channel opening and some mutants show also a flickering 

behavior of channels opening and closing randomly. The following single amino acid 

exchanges in MscS were described to result in a GOF phenotype: V40D (Okada et al., 

2002), A106V (Edwards et al., 2005; Wang et al., 2008), and L109S (Miller et al., 2003) 

and were tested in respect to glutamate excretion. The mutations V40D and A106V could 

be introduced into mscS-His and mscS/CtyggB, respectively. However, the presence of the 

respective protein could only be verified for MscS-His A106V, MscS/CtYggB-His V40D, 

and A106V in Western blot analysis (data not shown). Although a significant level of these 

proteins was detected no influence on glutamate production was observed. On the contrary, 

the supposed GOF-mutants had the same effect as the LOF-mutants resulting in no 

additional glutamate production in the C. glutamicum ∆yggB strain (data not shown). This 

indicated that expression in C. glutamicum harboring a quite different cytoplasmic 

membrane as E. coli results in the assembling of non-functional channel in the membrane. 

The reason for this effect remains unclear. The L109S GOF-mutation could so far only be 

introduced in the MscS-His protein. However, expression of mscS-His L109S in C. 

Fig. 3.31: Glutamate excretion of MscS-His and MscS/CtYggB-His LOF-mutants. 
LOF-mutants of E. coli mscS-His and the mscS/CtyggB-His fusion construct were 
expressed in C. glutamicum ∆yggB. Glutamate excretion was induced by addition of 
6 U/ml penicillin (t=0) in the exponential growth phase. Amounts of glutamate in the 
external medium were measured via HPLC-analysis. Straight lines represent linear 
regressions. wt (■), ∆yggB (●), MscS-His A51N/F68N (▲) MscS/CtYggB-His 
A51N/F68N (▲), MscS/CtYggB-His I37N/L86N(▼). 
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glutamicum led to a strong growth phenotype depending on the IPTG concentration used 

for gene expression (Fig. 3.32).  

 

 

 

 

 

 

 

 

 

 

 

 

In Western blot analysis only a very low protein level of MscS-His L109S could be 

detected when gene expression was induced by 25 µM IPTG. Lower IPTG concentration 

led to protein amounts probably below the detection threshold (data not shown). This 

observation was consistent with the expression of MscS L109S in E. coli. In these 

experiments the protein was also expressed very poorly compared to other MscS channel 

mutants investigated in the corresponding study, indicating the presence of a highly active 

channel (Miller et al., 2003). 

Due to the strongly decreased growth upon induction of gene expression with 25 µM IPTG 

the inoculation schema for the determination of glutamate production was slightly 

adjusted. Gene expression was induced with 5 µM instead of 25 µM in the pre-culture. The 

main cultures were split and gene expression was once induced with 5 µM and once with 

25 µM IPTG. The latter culture was inoculated at an elevated OD as slow growth was 

expected. Glutamate production of these two parts without induction and upon addition of 

penicillin is summarized in figure 3.33. The amount of glutamate which was permanently 

excreted by the MscS-His L109S mutant was correlated to the protein level. However, the 

cells that continued growth (without penicillin) probably started to import glutamate again 

at a distinct time point during growth as seen in the right hand part of figure 3.33. 

Consequently, it seemed as if the amount of glutamate in the external medium decreased 

over time for MscS-His L109S (25 µM IPTG). In order to prove the actual occurrence of 

Fig. 3.32: Growth of C. glutamicum ∆yggB expressing mscS-His L109S. 
Shown is the increase of optical density (OD) at a wave length of 600 nm. Strains 
were grown in BHI (●) and CgXII MOPS minimal medium, pH 7.0 containing 25 µg/ml 
kanamycin. Gene expression in the minimal medium was induced by different IPTG 
concentrations, 0 µM (▼), 5 µM (■), and 25 µM (▲). 
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glutamate uptake the respective uptake measurements have to be performed. Additional 

induction of glutamate production by addition of penicillin resulted in glutamate excretion 

rates of 6.98 µmol/(min g dm) (5 µM IPTG) and 8.62 µmol/(min g dm) (25 µM IPTG), 

respectively. The latter rate was comparable to the glutamate excretion rate of 9.85 

µmol/(min g dm) obtained for the MscS-His strain. Taken together, the GOF mutant 

L109S of MscS-His led to continuous glutamate excretion without induction while the 

glutamate excretion rates upon application of a trigger for glutamate production were not 

increased compared to wild type MscS-His. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.33: Glutamate excretion of MscS-His L109S GOF-mutant. 
GOF-mutant L109S of E. coli mscS was expressed in C. glutamicum ∆yggB using 5 
µM or 25 µM IPTG. Glutamate excretion was monitored without induction and after 
addition of 6 U/ml penicillin (Pe) in the exponential growth phase (t=0, indicated by an 
arrow). Amounts of glutamate in the external medium were measured via HPLC-
analysis. Straight lines represent linear regressions. MscS-His L109S (5 µM IPTG) – 
Pe (■), + Pe (●); L109S (25 µM IPTG) – Pe (▲), + Pe (▼); wt MscS-His is shown as 
black line. 
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4 Discussion 

 

Bacteria respond to sudden decrease in external osmolality by activation of so-called 

mechanosensitive (MS) channels (Booth et al., 2007). High intracellular osmolality leads 

to rapid water influx, threatening cell disruption. Consequently increased membrane 

tension opens MS channels which allow efflux of compatible solutes to protect the cell 

(Morbach and Krämer, 2002; 2008). Their activity is composed of channels belonging to 

the MscL- and MscS-type family (Perozo and Rees, 2003). C. glutamicum YggB, a 

structural homolog of the E. coli MscS, was suggested to function as MS channel (Ruffert 

et al., 1999). However, its function has so far been poorly investigated. Recently, YggB 

was also connected to glutamate export in C. glutamicum (Nakamura et al., 2007). C. 

glutamicum is the most important organism in the industrial production of glutamate. 

Although it has been investigated extensively for decades the export mechanism of 

glutamate is still unknown. However, several mutation hot spots within the yggB gene 

were identified to be correlated to permanent glutamate excretion. Furthermore, deletion of 

yggB resulted in drastically decreased glutamate production (Nakamura et al., 2007).  

In this work the suggested dual function of YggB as MS channel under osmotic 

stress conditions and in the export of the industrially important amino acid glutamate was 

investigated. The YggB MS channel homolog MscS of E. coli has been studied extensively 

for years, but only few other members of the MscS-type family have been characterized as 

functional MS channels. In difference to E. coli MscS (286 AA) C. glutamicum YggB 

harbors an elongated C-terminal domain since the protein consists of 533 amino acids 

(AA). While the N-terminal part of the YggB protein structure is homologous to MscS, 

including three transmembrane spans, the C-terminal part is quite unique among bacteria. 

Computer prediction revealed a putative fourth transmembrane domain within this C-

terminal domain. Using alkaline phosphatase – β-galactosidase fusions, the topology of 

YggB was experimentally confirmed in this work. Concerning the question if YggB 

combines the two functions of a MS channel and a glutamate excretion system the role of 

the unique C-terminal domain might be crucial. The main question regarding the proposed 

involvement of YggB in the export of glutamate was, if YggB is the glutamate exporter 

itself or whether it is a regulator of another, so far unknown, glutamate export system. In 

order to answer this question several recombinant strains expressing, among others, 

truncated derivatives of yggB were studied.  
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4.1 Topology of YggB 

The major difference between E. coli MscS and C. glutamicum YggB is the additional C-

terminal elongation of YggB only found in closely related bacteria. Concerning its 

structure, the N-terminal half of the protein is highly similar to MscS, thus a comparable 

topology with the N-terminus located in the periplasmic space was assumed (see Figure 4.2 

and figure 7.1 in the supplement for alignment comparing the primary sequence of C. 

glutamicum YggB and E. coli MscS). The C-terminal domain only found in close relatives 

of C. glutamicum, e.g. C. efficiens, is a characteristic feature of YggB. Regarding its 

topology, computer predictions differed concerning the existence of a fourth 

transmembrane domain within the C-terminal elongation of YggB. Using phoA and lacZ 

fusions with different truncations of the yggB gene, the existence of this fourth 

transmembrane segment was confirmed. Truncations that localized the fusion point to the 

periplasmic side showed increased alkaline phosphatase activity while cytoplasmic 

localization resulted in increased β-galactosidase activity (Seidel et al., 2007). The 

obtained topology is consistent with results of a recent publication where an α-amylase was 

located extracellularly by fusion to YggB ∆110 (Yao et al., 2009). Localization of the 

unique C-terminal domain of YggB within the periplasmic space may be taken as an 

indication for a physical connection to the cell wall. With about 110 AA the periplasmic C-

terminal part could easily span the periplasmic space reaching the cell wall. As most 

treatments inducing glutamate production somehow alter the cell envelope of C. 

glutamicum the C-terminal extension of YggB might be involved in sensing of these 

alterations. However, truncation of the C-terminal domain of YggB resulted in channel 

proteins that functioned similar to the wild type protein (∆247 AA) or showed even an 

enhanced activity (∆110 AA) concerning glutamate production (see section 3.6.1). These 

results argue against a function of the C-terminal domain of YggB in sensing of cell wall 

alterations caused by treatments which trigger glutamate production. 

 

 

4.2 Electrophysiological characterization of YggB 

In this work it was shown that YggB harbors the functions of a MS channel. 

Electrophysiological analysis of C. glutamicum yggB expressed in E. coli giant 

spheroplasts lacking all native MS channels revealed the presence of a pressure-dependent 

channel. Like E. coli MscS the channel strongly rectifies, meaning that its conductance 

differs depending on the applied voltage (hyper-, or depolarizing) (Fig. 3.5). However, 
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with approximately 30 % at positive and 15 % at negative voltages the conductance of 

YggB in general is much lower than that of MscS. Different conductances of a channel 

upon positive or negative voltages, respectively, is caused by a different ion permeability 

of the channel depending on the direction of ion flux. Seal formation in patch clamp 

analysis of spheroplasts results in inside-out spheroplast patches where the channels are in 

a right-side-out orientation, meaning that the pipette solution is facing the extracellular side 

of the spheroplast membrane with the embedded channels (Martinac et al., 1987). 

Increased ion flux towards the pipette solution then occurs upon application of positive 

voltage. The higher conductance under these conditions is probably due to the outwardly 

directed ion flux under physiological conditions as MS channels release solutes from the 

cell upon hypoosmotic stress (Martinac, 2001).  

In contrast to E. coli MscS, which becomes desensitized (inactivated) within 

seconds (Akitake et al., 2005), YggB showed an oscillating behavior with several channels 

opening and closing constantly over a period of several minutes (Fig. 3.4). Since there 

were hundreds of channels in a single patch this wave-like behavior might be due to the 

opening of many channels leading to a decrease of membrane tension. Upon decreasing 

tension several channels close resulting in higher membrane tension which in turn leads 

again to channel opening. Not only the high number of channels in a single patch but also 

the relatively large pore size support such a hypothesis, previously also stated for MscL 

channels (Martinac, personal communication; Morris, 2002). The activity of the YggB 

channel was not altered by the presence of sodium ions instead of potassium ions (Fig. 

3.7). However, channel conductance for the organic anions glutamate and pyruvate was 

significantly lower (Fig. 3.8). Nevertheless, it was shown that glutamate is able to pass the 

channel although not in a highly specific way. Unlike the previously described high 

specificity of solute efflux upon osmotic downshift (Ruffert et al., 1997), the YggB 

channel appeared rather unspecific in patch clamp analysis, at least for glutamate and 

pyruvate as well as for K+, Na+, and Cl- ions. A further difference of YggB compared to E. 

coli MscS is its conductance saturation at high salt concentrations at positive pipette 

voltages. For E. coli MscS such conductance saturation was not reported up to a 

concentration of 1.5 M KCl, indicating a wide aquous pore (Sukharev, 2002). 

Consequently, the rapid saturation of YggB might in part suggest a smaller or more 

specific pore. An increase of KCl concentration in the bath led to a shift of the zero current 

potential. In order to balance the concentration gradient of ions, more positive potassium 

ions flow towards the pipette indicating a slight preference for cations over anions (PK/PCl 
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~ 3.0, reflecting that YggB passes approximately 3 potassium ions per chloride ion) (Fig. 

3.9). E. coli MscS, on the other hand, shows a slight preference for anions (PCl/PK ~ 1.5 - 

3.0) (Martinac et al., 1987; Sukarev, 2002), probably caused by the presence of lysine and 

arginine residues in the C-terminal domain of MscS (Sotomayor, 2007). Accordingly, the 

presence of a large number of acidic residues in the cytoplasmically located C-terminal 

portion following the third transmembrane domain enables the preference of YggB for 

cations over anions (Martinac, personal communication).  

 

 

4.3 Significance of YggB under osmotic stress conditions 

The function of YggB as MS channel was not only shown in E. coli spheroplasts, but 

additionally in in vivo experiments. However, functional complementation of C. 

glutamicum YggB in the E.coli double deletion strain MJF455 (∆mscL ∆yggB) was just 

shown for the ∆247-His mutant, resembling the exact length of the E. coli homolog. Such 

an effect was reported previously for the MscS channel homolog MSC1 from 

Chlamydomonas being only functionally expressed in E. coli cells upon N-terminal 

truncation down to the length of the E. coli homolog (Nakayama et al., 2007). In contrast 

to the situation in E. coli spheroplasts and in C. glutamicum, expression of full length yggB 

did not complement the lethal phenotype of the E. coli mutant upon osmotic downshift. 

However, expression of the yggB gene was problematic in the high osmolality minimal 

medium required for the performed downshift experiments in contrast to yggB expression 

in rich medium (used for gene expression previous to preparation of giant sheroplasts). 

Consequently, it could not be discriminated whether the missing functional 

complementation was due to the lack of YggB full length protein or due to a non functional 

channel in E. coli under these conditions. 

In order to verify the function of YggB as MS channel in vivo, further biochemical 

methods were used. Solute efflux by C. glutamicum as response to hypoosmotic shock was 

investigated as described previously (Nottebrock et al., 2003). In the present work, 

however, some differences to previous results were observed. Efflux of glutamate upon 

osmotic downshift was clearly shown (Fig. 3.12), while previous work reported the efflux 

of only small amounts of the internal glutamate pool upon osmotic downshift (Ruffert et 

al., 1997). But, involvement of YggB in this glutamate efflux could not be proven 

unequivocally. Taken together with the results obtained in patch clamp analysis, 

hypoosmotic solute efflux in C. glutamicum seems to be less specific as described before 
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(Ruffert et al., 1997). Involvement of YggB in the efflux of glycine betaine was shown as 

reported previously (Nottebrock et al., 2003). Additional evidence that YggB in fact 

mediates the efflux of betaine was provided by the elevated ability of the yggB-His 

overexpression strain to excrete betaine upon lowering the external osmolality. In contrast 

to the situation in E. coli (Levina et al., 1999), double deletion of mscL and yggB is not 

lethal and betaine is still released upon osmotic downshift. These results indicate the 

existence of at least one more efflux channel in C. glutamicum, as previously suggested 

(Nottebrock et al., 2003).  

 

The results of this work furthermore provide strong evidence for an involvement of YggB 

not only in efflux of compatible solutes upon osmotic downshift but also in the cell’s 

response upon salt stress, namely hyperosmotic conditions. Under hyperosmotic conditions 

cells accumulate compatible solutes to balance the osmotic gradient and maintain cell 

turgor (Wood, 1999). Accordingly, an exact adjustment of the internal solute concentration 

is required to provide cells with ideal conditions for growth and metabolism. To achieve 

such a balanced state different strategies are conceivable. (a) On the one hand the uptake 

carrier may be downregulated when the osmotic gradient across the membrane is balanced. 

At least a partial downregulation was shown for the activity of the betaine transporter BetP 

in C. glutamicum (Botzenhardt et al., 2004). However, in order to adjust the internal solute 

concentration accurately the cell seems to require a type of dynamic control. (b) In general, 

secondary carrier systems switch from unidirectional uptake into an adapted state where an 

exchange of substrate occurs (Jung et al., 2006). This mechanism does not change the 

internal solute concentration anymore and is therefore also not able to compensate slight 

variations of the concentration gradient across the plasma membrane. (c) Another model is 

the so-called ‘pump and leak’ system. This dynamic model achieves a fine-tuning of the 

internal solute pool by counterbalanced uptake and efflux mediated by two independent 

systems. Previous results already suggested the existence of a strictly regulated fine-tuning 

mechanism including uptake and efflux systems to balance the internal solute 

concentration accurately (Grammann et al., 2002; Touzé et al., 2001; Booth et al., 2007). 

Grammann et al. (2002) proposed the existence of such an efflux system for ectoine in 

Halomonas elongata, since the deletion of the respective uptake system led to significant 

excretion of ectoine. Touzé et al. (2001) identified the protein BspA (a homolog of MscS 

channels), which was proposed to be required to maintain the internal glycine betaine pool 

during osmoadaptation in high-salt media containing this osmoprotectant. However, they 
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assumed BspA to be rather a regulator of a betaine efflux channel involved in controlling 

the intracellular level of betaine. While several uptake systems (‘pump’) for compatible 

solutes are known (Wood, 1999; Peter et al., 1998; Morbach and Krämer, 2005a) the 

nature of efflux systems (‘leak’) likely to be involved in fine-tuning of the internal solute 

concentration was up to now unknown.  

In this work evidence is provided for the first time that the MS channel YggB of C. 

glutamicum is the responsible efflux system involved in the fine-tuning mechanism of the 

internal betaine pool. In the case of C. glutamicum the preferred compatible solute betaine 

is accumulated by the uptake carrier BetP to compensate an osmotic gradient (Krämer and 

Morbach, 2004). Overexpression of yggB-His reduced the ability of the cells to accumulate 

betaine under hyperosmotic conditions resulting in a much lower steady-state betaine 

concentration compared to wild type cells (Fig. 3.15). Visualization of net betaine efflux 

during the steady state level of osmotic compensation revealed a strongly increased betaine 

efflux also upon moderate expression of yggB with and without His-tag (Fig. 3.16). 

Consequently, a small but significant portion of betaine efflux mediated by YggB was 

missing in the yggB deletion compared to the wild type. Residual betaine efflux in the 

∆yggB mutant can be explained by the exchange of equal amounts of betaine by the carrier 

BetP itself.  

In addition to the switch from unidirectional uptake to an exchange of betaine 

molecules BetP was previously shown to become downregulated upon osmotic 

compensation (Botzenhardt et al., 2004). This downregulation was verified for BetP 

activity in wild type cells under the conditions used here (Fig. 3.18). However, 

overexpression of yggB at moderate or yggB-His at highly elevated level reduced 

downregulation of BetP activity to different extents. Instead, BetP seemed to compensate 

the elevated outward flux of betaine via YggB by on-going betaine uptake which allows a 

comparable steady state concentration (at least in the strain expressing untagged yggB from 

a plasmid) as reached by wild type and the ∆yggB mutant. The expected further decrease 

of BetP activity upon yggB deletion was probably too small to be detected in the kind of 

experiment used in the current study. Nevertheless, a tight regulation of betaine uptake and 

efflux activity represented by the uptake carrier BetP and the MS channel YggB was 

demonstrated.  

The perfect cooperation of an active uptake carrier, like BetP, and a passive efflux 

channel, like YggB, allows precise fine-tuning of the internal betaine concentration in a 

very sensitive manner. Taken together, all three models (downregulation of the uptake 
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carrier, switch to a substrate exchanging state of the uptake carrier, and the pump and leak 

model, respectively) were shown to be involved in the osmotic adaptation of C. 

glutamicum (Fig. 4.1; the shown model was simplified since an involvement of LcoP and 

EctP cannot be completely excluded).  

Further evidence supporting the pump and leak model was provided by the results obtained 

by patch clamp analysis. Under hypoosmotic conditions MS channels normally respond to 

drastic increases of membrane tension. Accordingly, the question arises if the membrane 

stretch caused by small fluctuations of the osmotic gradient during the steady state 

situation of betaine accumulation would be sufficient to activate the YggB channel. In 

order to answer this question the results of patch clamp analysis were used to calculate the 

concentration gradient required to open the channel. Based on the tension necessary to 

open the channel (40 - 100 mm Hg) the corresponding osmotic gradient can be calculated 

using the equation c = ρgh/RT, where ρ is density of Hg (13.6 g/cm3), g (981 cm/s2), and h 

the height of Hg column (cm), leading to a value of 2.2 - 5.4 mOsm/l. For an alternative 

calculation the Van’t Hoffs law ∆Π = RT∆c was used to calculate the intracellular 

osmolarity change ∆c (Osm) that would cause swelling of a bacterial cell, stretch the cell 

membrane and cause an increase in membrane tension (Martinac, 2007). The membrane 

tension γ in a uniformly curved spheroplast patch sufficient to activate MS channels can be 

estimated by using Laplace’s law γ = pd/4 (Hamill and Martinac, 2001), where d is the 

diameter of the patch. Assuming d = 1 µm the pressure sufficient to activate YggB 

channels in spheroplast patches of 40 - 100 mm Hg corresponds to a membrane tension of 

roughly ~ 1.5 - 3.5 mN/m. An average volume of a bacterial cell of 0.4 µm3 (Heldal et al., 

1994) and a diameter of about 0.9 µm (approximates the diameter of the spheroplast patch) 

was assumed. Consequently, the magnitude of osmotic stress that would cause membrane 

tension of ~ 1.5 – 3.5 mN/m corresponds to a change in osmolarity of ~ 2.5 - 5.5 mOsm/l 

(Martinac, personal communication).  

The results obtained by these two different calculations match perfectly and 

demonstrate that even small concentration differences of about 5 mM betaine across the 

membrane are sufficient to open the MS channel YggB. Variation of the internal betaine 

concentration to such a small extent is easily accomplished by an active BetP system, since 

BetP is able to change the internal betaine concentrations by several 100 mM within short 

time (Botzenhardt et al., 2004; Morbach and Krämer, 2005b). Consequently, the functional 

interplay of betaine uptake (via BetP) and betaine efflux (via YggB) is required to adjust 
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Fig. 4.1:  Pump and leak model. 
Increase in external osmolality leads to cell shrinkage. To maintain cell turgor 
compatible solutes, here e.g. betaine, are accumulated until the osmotic gradient 
is compensated. Fine-tuning of the steady state betaine concentration is ensured 
by a sensitively balanced uptake (pump) and efflux (leak) of betaine. This 
regulation is mediated in C. glutamicum by the active betaine uptake carrier BetP 
and the passive MS channel YggB. Shown is a simplified model as involvement of 
LcoP and EctP cannot be excluded. 
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betaine

BetP YggB

betaine
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the internal betaine concentration in an extremely sensitive manner to achieve a perfectly 

balanced osmotic gradient. 

A further evidence for a functional connection between BetP and YggB was given 

by the effects caused by expression of truncated yggB derivatives. The decreased ability to 

accumulate certain amounts of betaine seems to be caused by a combination of two effects. 

One is the highly increased betaine efflux via truncated versions of YggB that cannot be 

compensated by BetP anymore. At least upon osmotic stress, including osmotic down- and 

upshift, truncations of the C-terminal domain of YggB seem to activate the channel 

resulting in free efflux of betaine. The resulting effect is most likely a reduced BetP 

activity caused by the decreased membrane potential in the relevant strains. This is 

consistent with the observation that continuous efflux of glycine betaine decreased the 

membrane potential which stayed low as long as the efflux of betaine continued (Ruffert et 

al., 1997). The observed decrease in the electrical potential is probably due to a leak of 

charged molecules, presumably protons, released together with betaine through the efflux 

channel under conditions of channel opening. The decreased membrane potential, the 

driving force of the betaine uptake carrier BetP, together with a strongly increased betaine 

efflux largely abolishes betaine accumulation. Consequently, no osmotic compensation 

was possible in these mutants (especially ∆110-His and ∆247-His).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast to the disability of some YggB truncation mutants to handle severe osmotic 

stress conditions caused by osmotic down- and upshifts, the same strains were able to grow 
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under high salt conditions, although some strains had a delayed onset of growth and a 

slightly diminished growth rate directly correlated with the external salt concentration (Fig. 

3.20). Interestingly, under these conditions other mutants than YggB ∆247-His, namely 

∆110-His and YggB-His, were more severely impaired than under severe hyperosmotic 

conditions subsequent to an osmotic downshift. Consequently, the conditions of a severe 

osmotic downshift followed by an immediate upshift have to be treated separately from the 

conditions of growth in high osmolality medium that were also used for the glutamate 

excretion experiments (discussed later). Under the latter conditions the YggB ∆110-His 

mutant was shown to excrete glutamate specifically since no leakiness for any other 

substrate was observed (see section 3.5.5). Taken together, the function of YggB as MS 

channel upon hypoosmotic conditions and as possible system responsible for glutamate 

excretion should be accounted separately (especially regarding the specificity of the 

channel under these two different conditions). Also, the role of YggB’s C-terminal domain 

might depend on the external conditions and the corresponding function of the protein 

under these conditions. 

 

 

4.4 Involvement of YggB in glutamate production 

Besides its function in the regulation of osmotic shifts, YggB of C. glutamicum was 

proposed to be involved in the export of glutamate. This assumption was based on the 

results obtained by Nakamura et al. (2007) in the strain Brevibacterium lactofermentum 

ATCC13869 that is closely related to C. glutamicum ATCC13032 used in this work. 

Deletion of about half of the C-terminal domain of YggB downstream Val419 upon 

spontaneous insertion of a transposon resulted in constitutive glutamate excretion without 

any further trigger. This deletion corresponds to the ∆110-His mutant used in this work. 

Similar to the published results a permanent glutamate production was shown for this 

mutant in the organism used in the current study. In contrast, deletion of yggB reduced 

glutamate production down to about 30 % upon all triggers used (Table 3.4), indicating a 

major contribution of YggB to glutamate production. However, at least one further protein 

is supposed to be involved in the export of glutamate responsible for the residual glutamate 

excretion (Nakamura et al., 2007).  

Glutamate excretion rates of all strains used in this work are summarized in table 7.3 in the 

supplement. 
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Complementation of the yggB deletion phenotype by plasmid-encoded expression 

of yggB led to a normal glutamate production behavior which requires one of the 

treatments inducing glutamate production. The addition of a 6xHis-tag to the C-terminal 

end of the protein greatly increased the level of membrane integrated YggB protein. The 

corresponding strain excreted glutamate constitutively without further induction. However, 

using this strain without induction of gene expression by IPTG, a normal glutamate 

excretion rate comparable to the complementation strain and no ‘leakiness’ for glutamate 

was observed. Consequently, we argue that continuous glutamate excretion of the YggB-

His strain (expression of the plasmid-encoded yggB-His gene induced by 25 µM IPTG) 

was caused by a dramatically increased protein level of YggB-His and not by the addition 

of the C-terminal His-tag interfering with the function of the C-terminal domain.  

With respect to the C-terminal domain, truncated mutants of YggB had different 

effects on glutamate production. Consistent with the results concerning its function as MS 

channel the ∆132-His mutant mediated no glutamate excretion. Both results indicate that 

truncation of 132 AA results in a permanently inactive and therefore non-functional 

channel. While the ∆247-His mutant was strongly affected under osmotic stress conditions 

(osmotic down- and upshift), hardly able to accumulate betaine, the conditions used for 

glutamate production did not affect this mutant in a comparable way. Consequently, 

spontaneous glutamate excretion was negligible. However, for this mutant as for all other 

strains, the detected amount of excreted glutamate especially without treatment to induce 

glutamate production did probably not reflect the real extent of glutamate excretion. 

Previous publications indicate that competing glutamate uptake is active simultaneously 

(Krämer et al., 1990a, b; Trötschel et al., 2003) which would mask possible low level 

excretion of glutamate. The most significantly impaired ∆110-His mutant excreted 

glutamate continuously without induction. Surprisingly, this glutamate excretion seemed to 

be quite specific as no other molecules were found to be released under these conditions. 

On the contrary, under osmotic stress conditions the ∆110-His mutant seems to be 

transiently open allowing the unspecific release of solutes and ions, as indicated by the 

strongly decreased membrane potential. A possible explanation for the observed preferred 

glutamate excretion might be the high intracellular glutamate concentration of 100 - 150 

mM (Gutmann et al., 1992). However, this high internal glutamate pool does not explain 

the spontaneous but still specific excretion of glutamate by some mutants without 

induction compared to the more unspecific efflux upon osmotic downshift. Consequently, 

two different mechanisms or conformations of the YggB protein responsible for 
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mechanosensitive efflux on the one hand and glutamate excretion on the other might be 

considered. 

A main focus of this work was the question if YggB is in fact the glutamate export 

system or whether it is a regulator of another so far unknown export carrier. Several 

physiological parameters, like change in osmolality and pH value, had an influence on 

glutamate production by C. glutamicum. As described previously (Lambert et al., 1995) a 

shift in osmolality during on-going glutamate production changes the amount of excreted 

glutamate. Consistent with the function of a MS channel a shift towards lower osmolality 

(hypoosmotic conditions) resulted in increased glutamate production. However, the same 

effect was observed in the yggB deletion mutant (Fig. 3.23), indicating a sensor for osmotic 

alterations and a transport system different from YggB under these conditions. Since the 

presence of another MS channel (Nottebrock et al., 2003) and also of another minor 

glutamate exporter (Nakamura et al., 2007) was proposed, the existence of an additional 

protein responsible for both functions is conceivable.  

All previously obtained results could not exclude that YggB may harbor the 

function of a regulator involved in activation of an unknown glutamate export system. The 

residual glutamate production in the yggB deletion mutant might be triggered by the ‘real’ 

glutamate exporter which is just less active in the absence of YggB. However, attempts to 

identify other glutamate export systems did not succeed. The C. glutamicum genes 

Cgl0063, Cgl0590, and Cgl2211, which were supposed to be candidates for alternative 

export systems, are not involved in glutamate production.  

Interesting results to discriminate between the two possible functions of YggB in 

the export of glutamate were provided by the heterologous expression of different variants 

of mscS and of the mscS/CtyggB fusion, respectively. Already the presence of MscS in the 

yggB deletion strain triggered an increased glutamate excretion. Additional presence of the 

C-terminal domain of YggB fused to MscS further enhanced the ability of the cells to 

produce glutamate (Fig. 3.30). In this case the C-terminal domain of C. glutamicum YggB 

fused to E. coli MscS had a significant impact on glutamate excretion while its truncation 

had not such a strong effect in the native YggB protein. Consequently, the importance of 

the C-terminal domain seems to be somehow dependent of the nature of the core protein 

(N-terminal part including the channel domain). The partial complementation of the ∆yggB 

phenotype by expression of the genes mscS (E.coli) and the fused gene mscS/CtyggB 

suggested that the produced glutamate actually passed through the pore formed by YggB, 
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or MscS in this case, since the N-terminal part of YggB and MscS are highly homologous 

and are therefore assumed to form a similar pore.  

In patch clamp analysis it was shown that glutamate is able to pass the pore formed 

by YggB subunits. In order to elucidate if glutamate also passes through YggB under 

glutamate productive conditions the model system using heterologous expression of mscS 

and mscS/CtyggB, respectively, was further modified. For E. coli MscS several loss-of-

function (LOF)-mutants resulting in an inactive channel were described (Nomura et al., 

2006; Miller et al., 2003). These mutations abolish the ability of MscS to prevent cell lysis 

upon osmotic downshift. Furthermore, no channel activity could be detected in patch 

clamp analysis of the respective mutants.  

Introduction of LOF-mutations into mscS as well as mscS/CtyggB, expressed in the 

yggB deletion strain, led to a complete loss of glutamate excretion triggered by the native 

gene products (Fig. 3.31). In E. coli the LOF-mutations A51N(TM1)/F68N(TM2) and 

I37N(TM1)/L86N(TM2) of MscS are located at the cytoplasmic and periplasmic ends of 

the transmembrane domains, respectively, and impair the MscS function almost entirely 

(Fig. 4.2). The localization of the LOF-mutations indicates that a similar degree of lipid-

protein interaction at both ends of TM1 and TM2 is important for proper MscS function. 

Unbalanced interactions between the two ends of TM1 and TM2 with the membrane 

surrounding result in severe loss of function (Nomura et al., 2006). Consequently, the 

disability of these mutants to mediate glutamate efflux in C. glutamicum might be due to 

an impaired protein-membrane interaction. The ability of MS channels to transduce 

increasing membrane tension into a conformational change allowing the efflux of solutes is 

supposed not to work properly in these mutants. Related to the glutamate excretion of C. 

glutamicum this result indicates that alterations in the membrane (tension) are directly 

correlated with the excretion of glutamate. An impaired sensing of these alterations might 

abolish glutamate excretion at least by MscS. 

Presence of the MscS-His L109S gain-of-function (GOF) mutant in the C. 

glutamicum ∆yggB strain led to permanent glutamate excretion. GOF-mutants in E. coli 

MscS cause severe problems for the cell since they open easily or even randomly. An E. 

coli mutant with a MscS L109S mutation was strongly impaired concerning growth, 

survival of an osmotic downshift, and susceptibility for different antibiotics (Miller et al., 

2003). Since highly active channels cause severe problems for the cell, the expression level 

of mscS L109S in E. coli was very low. Indeed in patch clamp analysis of MscS L109S in 

E. coli MscS-like channels were shown based on the conductance and pressure threshold 
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Fig. 4.2:  3D model of C. glutamicum YggB compared to E. coli MscS. 
3 D structure of C. glutamicum YggB (N-terminal part of 286 AA) was modeled using Swiss 
Model (Arnold et al., 2006; Bordoli et al., 2009) based on the 3D crystal structure of E. coli 
MscS (Wang et al., 2008). Shown is the N-terminal part of both proteins harboring three 
transmembrane (TM) domains (E. coli MscS: TM1 (AA 21 - 57), TM2 (AA 68 - 91), and TM3 (AA 
96 - 127)). Positions of LOF- and GOF-mutations in MscS are indicated as well as (possibly) 
important glycine and alanine residues within the third TM of both proteins. 
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but in very low abundance (Miller et al., 2003). Consistent with the results in E. coli the 

expression level of mscS L109S in the C. glutamicum ∆yggB strain was also very low and 

resulted in a severe growth phenotype (Fig. 3.32), indicating that also in C. glutamicum the 

channel might be highly active. This high activity led to continuous excretion of glutamate 

without need of any of the common triggers used for the induction of glutamate production 

(Fig. 3.33). Leu109 is localized within the third transmembrane domain (residues 96 - 127) 

of MscS (Fig. 4.2), of which seven helices assemble the channel pore. A mutation within 

this pore region resulting in elevated channel activity strongly suggests that the efflux is 

mediated by the channel itself and not by another protein just regulated by the channel. 

Taken together with the results obtained with the E. coli mscS LOF-mutants 

expressed in C. glutamicum, strong evidence is provided that glutamate excretion by C. 

glutamicum can be mediated by the heterologously expressed E. coli mscS. This indicates 

that also the C. glutamicum homolog YggB is able to mediate glutamate excretion and is 

not just a regulator of another glutamate export system.    
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A pattern of glycine and alanine residues is conserved in the MscS-type family 

(Perozo and Rees, 2003). Four glycines Gly101, Gly104, Gly108 and Gly113 form 

interacting pairs with four alanines Ala98, Ala102, Ala106 and Ala110, proposed to be 

involved in gating of the channel (Fig. 4.2) (Edwards et al., 2005). The predicted TM3 of 

C. glutamicum YggB (putative residues 92 - 109) also harbors several glycines (Gly95, 

Gly108, Gly110) and alanines (Ala100, Ala103, Ala105, Ala106, Ala111) that at least 

partly might be involved in a similar opening mechanism (Fig. 4.2). Although the YggB 

sequence does not harbor exactly the same sequence pattern of a putative gate as E. coli 

MscS, the presence of several glycine and alanine residues indicates the formation of a 

similar pore mediating efflux. The Swiss Model workspace models 3D protein structures 

using experimentally determined structures of related family members as template (Arnold 

et al., 2006; Bordoli et al., 2009). The 3D structure of C. glutamicum YggB was modeled 

based on the known structure of E. coli MscS (Wang et al., 2008). The model shown in 

figure 4.2 reveals a highly similar structure of YggB compared to MscS. The structure of 

the TM3 of both proteins, forming the channel pore of the oligomere, displays especially 

high similarity. This similarity argues for the possibility of transfering the experimentally 

obtained data, using E. coli MscS, to C. glutamicum YggB.  

The hypothesis of MscS and YggB assembling a similar pore is also consistent with 

the results obtained via electrophysiological analysis where YggB was characterized as a 

channel with similar properties as E. coli MscS, however, with unique features.  

Taken together several arguments were provided to discriminate between YggB 

being the glutamate export system or a regulator. Comparison of the glutamate excretion 

by wild type and the yggB deletion strain under different conditions did not enable to 

discriminate between these two possible functions. However, several other results rather 

support the hypothesis of YggB being in fact the glutamate excretion system. In 

electrophysiological analysis YggB was proven to function as MS channel that allows the 

efflux of glutamate. Additionally, the YggB ∆110-His mutant showed a significantly 

changed betaine efflux and accumulation pattern under osmotic stress conditions (down- 

and upshift) and also distinct alteration of glutamate production indicating that these two 

functional effects are in fact caused by the same protein. The strongest arguments are 

provided by the results obtained with the LOF- and GOF-mutants of E. coli mscS. The 

effects of these mutants on the glutamate excretion mediated by the native MscS channel 

present in C. glutamicum (completely abolished or enhanced glutamate production, 
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respectively) strongly suggest that the MscS channel and accordingly also the structural 

homolog YggB mediates glutamate excretion. 

 

 

4.5 Function of YggB – current knowledge and future perspectives 

In the present work it was shown that the membrane protein YggB of C. glutamicum 

harbors three different functions: (a) YggB functions as MS channel involved in solute 

efflux of betaine and probably glutamate to prevent cell lysis upon osmotic downshift; (b) 

YggB is significantly involved in the fine-tuning of the steady state internal betaine 

concentration, accumulated under hyperosmotic conditions. Such an involvement of a MS 

channel in this mechanism was shown for the first time in this work, acting not just as an 

emergency valve but also in a very sensitive manner; (c) YggB is most likely also the 

excretion channel for glutamate under glutamate productive conditions. A possible 

connection of these three functions might be via the sensing properties of the MS channel 

which is able to detect changes of membrane tension. Glutamate production can be 

triggered by several treatments all changing the cell envelope. While addition of antibiotics 

or local anesthetics affects the cell wall directly, other treatments, such as biotin limitation, 

addition of Tween 60, or trehalose deficiency, alter the cell wall concerning its structure. 

These alterations might be detected by the MS channel YggB and transduced in some 

conformational change allowing glutamate excretion. A similar model was already 

proposed by Nakamura et al. (2007), however, this work provides further evidence 

supporting this hypothesis.  

Glutamate excretion triggered by a passive channel is in contrast to the previous 

assumption that ATP or a related high-energy metabolite is involved in the activity of 

glutamate export in C. glutamicum (Gutmann et al., 1992). A possible explanation for this 

discrepancy might be the regulation of ODHC activity by PknG via phosphorylation status 

of OdhI (Niebisch et al., 2006, Schultz et al., 2007). Both PknG (directly or indirectly) and 

YggB might be able to sense membrane alterations caused by different triggers of 

glutamate production, independently or even in a somehow connected way. While YggB is 

activated to trigger glutamate excretion, PknG (and Ppp) leads to a metabolic flux change 

towards glutamate production by downregulation of ODHC activity in an energy 

dependent manner. Consequently, glutamate overproduction would be the result of a 

combination of metabolic alteration towards efficient glutamate synthesis and the 

activation of a glutamate excretion system, possibly via cell wall alteration.  
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Fig. 4.3: Phenotypes of mutants harboring different YggB derivatives. 
Shown are the different YggB truncations used in this work and their phenotypes upon 
osmotic chanllenges and in glutamate excretion. 
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The elongated C-terminal domain of YggB is a unique feature of bacteria belonging 

to the family of Corynebacteria. As the involvement of YggB in the excretion of glutamate 

is a novel function possibly independent from its function as MS channel the C-terminal 

domain missing in most homologs of the MscS-type family was proposed to harbor an 

important function under glutamate productive conditions. However, truncations of 

different extent resulted in ambiguous effects on both functions of YggB, under osmotic 

stress (osmotic down- and upshift) on the one hand and in glutamate excretion on the other 

(Fig. 4.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deletion of the last 110 AA resulted in a highly active channel for compatible 

solutes upon osmotic down- and upshift as well as for glutamate. However, additional 

deletion of the fourth transmembrane domain (∆132) completely abolished the function of 

the YggB channel. One possible hypothesis to explain these effects might be the interplay 

of the periplasmic C-terminal end and the fourth transmembrane domain to regulate 

channel function. These parts of the protein might be involved in the transition between 

active and inactive state of the channel, ∆110 assembling a permanently active and ∆132 a 

permanently inactive channel. Surprisingly, further truncation of 247 AA resulted again in 

a functional channel. However, this channel seems to open more easily upon osmotic 

down- and upshift, indicating the lack of the proposed regulatory function of the C-

terminal domain. Switching between active and inactive state of the channel might be less 
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well regulated and therefore easier to achieve in the ∆247 mutant. However, without any 

trigger (osmotic down- and upshift or induction of glutamate production) the YggB ∆247 

subunits may form a closed channel. In general the protein does not seem to be fixed in 

either an active or an inactive conformation.  

Although unlikely, an additional effect of different protein levels has to be taken 

into account as explanation for the phenotypes of the YggB truncation mutants. Strong 

overexpression of yggB-His had a very pronounced effect on glutamate excretion which 

occurred permanently. Concerning its function upon osmotic up- and downshift it was 

more impervious than the truncated forms of YggB (∆110 and ∆247). Thus, an elevated 

protein level has a much stronger impact on glutamate excretion than on the ability of the 

cells to cope with osmotic stress situations.  

Taken together, the functions of YggB as MS channel upon osmotic challenge 

(hypo- as well as hyperosmotic stress) and as a glutamate excretion system, although 

mediated by the same channel protein, seem to be based on different activation 

mechanisms and have, at least partly, to be considered separately. In view of the present 

results the function of YggB as an excretion system for glutamate is assumed to be 

mediated through the same pore of the channel as solute efflux triggered by osmotic stress. 

However, dependent on the function as MS channel or glutamate excretion system, the 

channel might be either regulated differently, the pore opened in a different way, or maybe 

just to a different extent.  

 

In order to gain comprehensive understanding of YggB’s function in C. glutamicum further 

research is required in the future. The possible effect of the protein level was most obvious 

in the case of yggB-His overexpression. In order to completely exclude such an effect as 

reason for the phenotypes observed, gene expression of all yggB variants under the native 

promoter may be a proper tool. In order to further investigate physiological influences like 

the interesting effect of different pH values on glutamate production, constant pH 

conditions have to be guaranteed, e.g. by cultivation in a controlled fermenter. The ability 

of MS channels to sense external pH values was already shown for the MS channel of large 

conductance (MscL) of E. coli. Dependent on the pH the channel sensitivity to membrane 

tension is adjusted (Kloda et al., 2006). Different effects of pH changes on glutamate 

excretion possibly sensed by YggB in the wild type may account to a better understanding 

of YggB’s function in glutamate production by C. glutamicum.   
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Final confirmation that YggB is the glutamate excretion channel might be gained 

by an approved method to characterize transporters/carriers, like e.g. BetP, which includes 

protein purification followed by reconstitution into liposomes. This system guarantees 

strictly controlled conditions but requires that the protein is able to function independently 

in such an in vitro system. For YggB being a MS channel it might be a difficult task to 

simulate increasing membrane tension or the conditions of glutamate production in 

liposomes. Therefore, the patch clamp technique might be a better tool to further 

characterize YggB and also its truncated forms under controlled conditions. A possible 

regulatory role of the C-terminal domain could be revealed if the open probabilities of the 

different YggB truncations differ significantly in this type of analysis.  

Since the mechanism leading to glutamate production is a very complex process, 

the interplay of additional proteins involved may be assumed. Therefore, the identification 

of possible interaction partners of YggB is a further aim in the future. Interaction with e.g. 

PknG directly or via another unknown linker protein is conceivable. Identification of these 

proteins by cross-linking or pull down methods might provide a better understanding of the 

complex network leading to export activation and glutamate production in C. glutamicum. 

Interaction with other proteins is also a possible function of the additional C-terminal 

domain of YggB. In order to clarify the role of this domain, detailed analysis, e.g. via 

further mutations, is necessary. Additionally, crystallization and X-ray structure analysis 

might provide more information about the conformation and related functions of the C-

terminal domain. 
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5 Summary 

 

In this work the membrane protein YggB of Corynebacterium glutamicum was 

investigated with respect to its function under general osmotic stress conditions on the one 

hand and in the production of glutamate on the other. YggB was previously described to 

belong to the MscS-type family functioning as MS channel in the bacterial hypoosmotic 

stress response (Nottebrock et al., 2003). Recently, YggB was also connected to the 

glutamate export in C. glutamicum under glutamate productive conditions. Since C. 

glutamicum is used in the industrial production of amino acids, mainly glutamate, 

understanding of export mechanisms is of major interest. Deletion of yggB led to a drastic 

decrease in glutamate excretion while truncation of 110 AA, among other mutations, 

resulted in continuous glutamate excretion (Nakamura et al., 2007). Computer prediction 

proposed a fourth transmembrane segment within the unique C-terminal domain only 

present in close relatives of C. glutamicum. In this work the predicted topology of YggB 

was confirmed. Using an alkaline phosphatase – β galactosidase reporter cassette fused to 

different YggB constructs the localization of the C-terminal domain in the periplasmic 

space could be shown. As an approved method to characterize channel proteins the patch 

clamp technique was used in this work. Patch clamp analysis of E. coli giant spheroplasts 

expressing yggB clearly revealed the presence of a pressure-sensitive channel similar to the 

E. coli homolog MscS. However, clear functional differences between YggB and MscS 

were observed. YggB shows a lower conductance, does not inactivate rapidly, and displays 

a slight preference for cations over anions. Additional physiological characterization of 

YggB showed its involvement in glycine betaine as well as glutamate efflux upon osmotic 

downshift. Surprisingly, also an involvement of YggB in the hyperosmotic stress response 

of C. glutamicum was revealed. Uptake kinetics and energetic of betaine accumulation 

during osmotic compensation and under steady state conditions were performed to 

investigate the effects of yggB deletion and presence of different YggB derivatives, 

respectively, under hyperosmotic conditions. Overexpression of yggB or yggB-His led to a 

strongly increased betaine efflux while yggB deletion led to a slightly but significantly 

reduced betaine efflux. In a so called ‘pump and leak’ model solute uptake (via the active 

transporter BetP) and efflux (via the passive channel YggB) are functionally balanced. For 

the first time this work provides evidence that MS channels are key players in this response 

to hyperosmotic conditions.  
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Furthermore, the proposed function of YggB in the excretion of glutamate was confirmed 

in this work. Additionally, several C-terminal truncations were investigated due to their 

effect on glutamate production. Obviously, the integrity of the C-terminal domain has a 

strong effect on the inducibility of glutamate production. Taken together with the results 

obtained for the different truncations under varying osmotic conditions the C-terminal 

domain is proposed to harbor some regulatory function, mediating the switch between 

active and inactive state of the channel. However, this hypothesis is still highly speculative 

and has to be investigated further. One of the main questions to answer in this work was if 

YggB harbors the function of a glutamate excretion system or whether it is a regulator of 

another so far unknown glutamate exporter. Several arguments were found in favor for 

either one or the other hypothesis. The strongest argument is provided by heterologous 

expression of E. coli mscS and mscS/CtyggB, respectively, leading to elevated glutamate 

excretion in the C. glutamicum yggB deletion strain. Introduction of loss-of-function- and 

gain-of-function-mutations in mscS completely abolished or elevated, respectively, 

glutamate production in the yggB deletion, indicating that glutamate excretion is directly 

mediated by the E. coli MscS channel pore highly homologous to YggB concerning its 

structure. 

Taken together, this work provides strong evidence that glutamate excretion is triggered 

directly by the C. glutamicum MS channel YggB of the MscS-type family. Additionally, it 

was shown for the first time that YggB does not only act as emergency valve upon 

hypoosmotic stress but also in a very sensitive manner in the fine-tuning mechanism of 

internal solute concentration under hyperosmotic conditions.  
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7 Supplement 

 

 

Table 7.1:  Oligonucleotides used for amplification and deletion of respective genes 

Name Sequence 5’ – 3’ Reference 

yggB_orf_sense ATGATTTTAGGCGTACCCATTC this work 

yggB_orf_as CTAAGGGGTGGACGTCGG this work 

DelyggB_HindIII_sense GCGCGCAAGCTTCAATTGGCTTGCCGAACTC Nina Möker 

DelyggB_PstI_sense GCGCGCCTGCAGGAGCCAAGATTAGCGCTG Nina Möker 

DelyggB_PstI_as CGCGCGCTGCAGGACGCTGATTACAGACGTG Nina Möker 

DelyggB_XbaI_as CGCGCGTCTAGACCTGTGGAATGTCGTTAGG Nina Möker 

yggB-his_sense CCCGGGCATATGATTTTAGGCGTACCCATTC Nina Möker 

yggB-his_as CCCGGGAAGCTTAGGGGTGGACGTCGGCGCAAC Nina Möker 

yggB-delta110_as CCCGGGAAGCTTTTCCACAGTCATGACCTTAAATAG Nina Möker 

yggB-delta132_as CCCGGGAAGCTTGCGGACACGTCCGCCAAACG Nina Möker 

yggB-delta247_as CCCGGGAAGCTTAGTGGTTGCGCTGCCGTATTC Nina Möker 

yggB_phoA-lacZ_fw 

(SbfI) 

CAGCCTGCAGGATGATTTTAGGCGTACCCATTC this work 

yggB_phoA-lacZ_rv 

(ScaI) 

CAGAGTACTAGGGGTGGACGTCGGCGC this work 

yggBd110_phoA-lacZ_rv 

(ScaI) 

CAGAGTACTTGGTTCCACAGTCATGACC this work 

yggBd132_phoA-lacZ_rv 

(ScaI) 

CAGAGTACTCATGCGGACACGTCCG this work 

yggBd247_phoA-lacZ_rv 

(ScaI) 

CAGAGTACTTGTAGTGGTTGCGCTGCCG this work 

pQE-60 yggB_fw (NcoI) CAGCCATGGTTTTAGGCGTACCCATTC this work 

pQE-60 yggB_rv (BamHI) CAGGGATCCCTAAGGGGTGGACGTCGG this work 

pQE-60 yggB_d110_rv 

(BamHI) 

CAGGGATCCCTATGGTTCCACAGTCATGAC this work 

pQE-60 yggB_d132_rv 

(BamHI) 

CAGGGATCCCTACATGCGGACACGTCCGC this work 

pQE-60 yggB_d247_rv 

(BamHI) 

CAGGGATCCCTAGTAGTGGTTGCGCTGCC this work 

MscS fw (BamHI) CAGGGATCCATGGAAGATTTGAATGTTGTCG this work 

MscS rv (NotI) CAGGCGGCCGCTTACGCAGCTTTGTCTTCTTTC this work 

MscS-His rv (NotI) CAGGCGGCCGCCGCAGCTTTGTCTTCTTTCAC this work 

MscS-Fusion rv GTGTAAGGAATCAATGAGGGTTCCCGATGTCGCAGCT

TTGTCTTCTTTCAC 

this work 
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YggB-Fusion fw ACATCGGGAACCCTCATTGATTCCTTACAC this work 

YggB-Fusion rv (NotI) CAGGCGGCCGCCTAAGGGGTGGACGTCGG this work 

YggB-Fusion-His rv (NotI) CAGGCGGCCGCAGGGGTGGACGTCGGCG this work 

Cgl0590 Del_1 (EcoRI) GGGGAATTCGCGTTTTGAGCATGCCGCAG this work 

Cgl0590 Del_2 CTTATAAATTTGGAGTGTGAAGGTTATTGCGTGGGGCC

ACAAACAGCACCGC 

this work 

Cgl0590 Del_3 CACGCAATAACCTTCACACTCCAAATTTATAAGCCGGA

ACGGATCTTGCCAAC 

this work 

Cgl0590 Del_4 (EcoRI) GGGGAATTCCTTCGCCGGTGGGAAGCAC this work 

Cgl2211 Del_1 (EcoRI) GGGGAATTCGCTGCAGGTGTTGTAGCTGC this work 

Cgl2211 Del_2 CTTATAAATTTGGAGTGTGAAGGTTATTGCGTGCAGTA

CAGCGGCGACGCCG 

this work 

Cgl2211 Del_3 CACGCAATAACCTTCACACTCCAAATTTATAAGGTTAT

GTGTCAGATGCCTCCC 

this work 

Cgl2211 Del_4 (EcoRI) GGGGAATTCGTGCTGTGCCTGGGCACTG this work 

Cgl0590_fw (SalI) CAGGTCGACGTGCTTGATTTCTTAGCTGCG   

 

this work 

Cgl0590_rv (EcoRI) CAGGAATTCTTAGAGCAGCAAGAACAATATC  

 

this work 

Cgl0590-His_fw (NdeI) CAGCATATGGTGCTTGATTTCTTAGCTGCG   

 

this work 

Cgl0590-His_rv (HindIII) CAGAAGCTTGAGCAGCAAGAACAATATCTGC  

 

this work 

Cgl2211-His_fw (NdeI) CAGCATATGGTGAGCTTCCTTGTAGAAAATC  this work 

Cgl2211-His_rv (HindIII) 

 

CAGAAGCTTGATAAGTAGGAACAACAACG  this work 

 

 

 

  Table 7.2:  Oligonucleotides used for site-directed mutagenesis.  

Name Sequence 5’ – 3’ Reference 

mscS I37N_s CGGCACTCGCGACCATCATCGTTGG this work 

mscS I37N_as CCAACGATGATGTTCGCGAGTGCCG this work 

mscS A51N_s GATGATTTCCAACAACGTGAATCGCCTG this work 

mscS A51N_as CAGGCGATTCACGTTGTTGGAAATCATC this work 

mscS F68N_s CTGTTGCTGATAATCTTTCTGCATTAG this work 

mscS F68N_as CTAATGCAGAAAGATTATCAGCAACAG this work 

mscS L86N_s CTAATCGCTGCAAACGGACGCGTGGGTG this work 

mscS L86N_as CACCCACGCGTCCGTTTGCAGCGATTAG this work 

mscS V40D_s CGATCATCATCGATGGTTTGATTATCGCGC this work 
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                                 10        20        30        40        50        60   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  1   MILGVPIQYLLYSLWNWIVDTGFDVAIILVLAFLIPRIGRLAMRIIKRRVESAADADTTK  

E. coli MscS        1   -MEDLNVVDSINGAGSWLVAN--QALLLSYAVNIVAALAIIIVGLIIARMISNAVNRLMI  

 

                                 70        80        90       100       110       120   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  61  NQLAFAGVGVYIAQIVAFFMLAVSAMQAFG-FSLAGAAIPATIASA--AIGLGAQSIVAD  

E. coli MscS        58  SRKIDATVADFLSALVRYGIIAFTLIAALGRVGVQTASVIAVLGAAGLAVGLALQGSLSN  

 

                                130       140       150       160       170       180   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  118 FLAGFFILTEKQFGVGDWVRFEGNGIVVEGTVIEITMRATKIRTIAQETVIIPNSTAKVC  

E. coli MscS        118 LAAGVLLVMFRPFRAGEYVDLGG----VAGTVLSVQIFSTTMRTADGKIIVIPN--GKII  

 

                                190       200       210       220       230       240   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  178 INNSNNWSRAVVVIPIPMLGSENITDVIARSEAATRRALGQEKIAPEILGELDVHPATEV  

E. coli MscS        172 AGNIINFSREPVRRNEFIIGVAYDSDIDQVKQILTNIIQSEDRILKDRE-----------  

 

                                250       260       270       280       290       300   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  238 TPPTVVGMPWMVTMRFLVQVTAGNQWLVERAIRTEIISEFWEEYGSATTTSGTLIDSLHV  

E. coli MscS        220 -----------MTVRLNELGASSINFVVR----------VWSNSGDLQNVYWDVLERIKR  

 

                                310       320       330       340       350       360   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  298 EHEEPKTSLIDASPQALKEPKPEAAATVASLAASSNDDADNADASVINAGNPEKELDSDV  

E. coli MscS        260 EFD----------------------------------------AAGISFPYPQMDVNFKR  

 

                                370       380       390       400       410       420   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  358 LEQELSSEEPEETAKPDHSLRGFFRTDYYPNRWQKILSFGGRVRMSTSLLLGALLLLSLF  

E. coli MscS        280 VKEDKAA-----------------------------------------------------  

 

                                430       440       450       460       470       480   

                        ....|....|....|....|....|....|....|....|....|....|....|....| 

C. glutamicum YggB  418 KVMTVEPSENWQNSSGWLSPSTATSTAVTTSETSAPVSTPSMTVPTTVEETPTMESNVET  

E. coli MscS        286 ------------------------------------------------------------  

 

                                490       500       510       520       530           

                        ....|....|....|....|....|....|....|....|....|....|....|. 

C. glutamicum YggB  478 QQETSTPATATPQRADTIEPTEEATSQEETTASQTQSPAVEAPTAVQETVAPTSTP  

E. coli MscS        286 --------------------------------------------------------  

 

∆110

∆132

∆247

mscS V40D_as GCGCGATAATCAAACCATCGATGATGATCG this work 

mscS A106V_s GGTGCCGCAGGCTTAGTTGTTGGTCTGGCT this work 

mscS A106V_as AGCCAGACCAACAACTAAGCCTGCGGCACC this work 

mscS L109S_s CTTAGCTGTTGGTAGCGCTTTGCAGGGGTC this work 

mscS L109S_as GACCCCTGCAAAGCGCTACCAACAGCTAAG this work 

 

 

 

Fig. 7.1 Sequence comparison of C. glutamicum YggB and E. coli MscS. 
Sequence alignment of C. glutamicum YggB and E. coli MscS was performed as described earlier 
(Thompson et al., 1994). The localization of the (predicted) transmembrane domains is marked in 
red. Positions where C. glutamicum YggB was truncated are indicated. 
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Table 7.3: Glutamate excretion rates [µmol/(min g dm)] of C. glutamicum strains 
Glutamate excretion was induced by addition of 6 U/ml Penicillin G in the exponential growth 
phase. Plasmid-encoded gene expression was induced by addition of 25 µM IPTG if not otherwise 
stated.  
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