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Priv.-Doz. Dr. R. Bulla

Vorsitzender
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1 Introduction

Within the wide class of transition-metal oxides the strong correlation between elec-
trons leads to unusual (often technologically useful) electronic and magnetic properties
such as high-temperature superconductivity and colossal magnetoresistance. These
materials are denoted as correlated electron systems, because one electron strongly
influences the other ones. Since we are dealing with transition-metal oxides, these
compounds have incompletely filled d or f electron shells with narrow bands and the
electrons tend to localize. But in case of half-filled bands, these compounds are ex-
pected to be metals, but found experimentally to be insulators. It is often not possible
to use band-structure calculations to describe the electronic structure of correlated ma-
terials. The application of optical spectroscopy allows the investigation of the electronic
structure and the low-energetic excitations in transition-metal compounds. Further-
more, optical spectroscopy can be used to probe the coupling of the electronic structure
to the different degrees of freedom.

In this thesis we combined the usage of optical spectroscopy with the application of
cluster-model configuration-interaction calculations. We begin with a detailed descrip-
tion of a new program for doing cluster-model configuration-interaction calculations,
which was developed in the framework of this thesis. In many cases configuration-
interaction cluster-model calculations with full ionic multiplet structure, including
crystal-field effects and covalency within a local cluster model, provide a reasonable
description of the experimental results. This cluster-model configuration-interaction
calculation neglects the translational symmetry and treats the local on-site electron-
electron interactions explicitly. Due to the limited size of the cluster only materials with
no long-range interaction can be analyzed. Metallic or half-metallic behavior cannot
be described well. Typically, a cluster calculation starts with the Slater determinants
of the ground configuration and the application of the creation/annihilation algebra.
But the number of Slater determinants scales drastically with increasing cluster size.
Using the Racah-Wigner algebra [1–6] and the related Wigner-Eckart theorem we can
reduce the computational effort compared with the creation/annihilation algebra. This
becomes important, if the size of the calculated cluster is more and more increased,
e.g. for double-cluster calculations. The Wigner-Eckart theorem reduces the calcula-
tion of the matrix elements of a certain operator to the calculation of a reduced matrix
element and the multiplication with a Clebsch-Gordan coefficient. The knowledge of
Slater determinants is no longer necessary and the calculation effort scales with the
number of angular momenta being involved. In order to use the Racah-Wigner algebra
we have to represent the contributions to the Hamiltonian as spherical tensor opera-
tors. Expressions for the matrix elements of the on-site Coulomb and the spin-orbit
interactions within the Racah-Wigner algebra are given by Cowan [7]. In contrast to
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1 Introduction

previous publications [8, 9] we present a general expression for the matrix elements of
the crystal-field operator within the Racah-Wigner algebra, which is valid for arbitrary
configurations. The application of this algebra offers an elegant and accurate descrip-
tion of the electronic structure whereas the dependence of results of the cluster-model
calculation on the ionic multiplets is obvious. The crystal-field operator is treated
within the point-charge model, where the electrostatic field is described by the Ewald
sum formulation [10]. In addition to the crystal-field operator we give an expression
for the matrix elements of the covalency operator within the widely-used Slater-Koster
tight-binding approximation [11] using Sobel’man’s parentage scheme [12]. The ap-
plication of the Racah-Wigner algebra was not possible, because we were not able
to express the tight-binding operator as a spherical tensor operator. Although So-
bel’man’s parentage scheme is not as fast and elegant as the Racah-Wigner algebra,
we still do not need to know the Slater determinants and conserve the dependence of
the results of the cluster-model calculation on the ionic multiplet as well.

In the second part of the thesis, we begin with the analysis of the crystal-field exci-
tations of the transition-metal oxyhalide VOCl by using group theoretical as well as
cluster-model calculations.

The group of transition-metal oxyhalides consists of (at room-temperature) crystal-
lographically iso-structural compounds and shows rather strong electron localization,
resulting in (electrically) Mott-insulating properties. Within this system several elec-
tronic configurations and their interactions with the crystal lattice can be probed sys-
tematically.

In the following, we investigate the spin-lattice interaction in the multiferroic com-
pounds h-YMnO3 and MnWO4. We start with hexagonal YMnO3 and analyze the
phonon spectra and their dependence on Ga doping by using a Drude-Lorentz model.
Replacing Mn by Ga changes the orbital occupation (from d4 to d10) and the ionic
radius. Additionally, we can achieve a better understanding of the origin of ferro-
electricity in these hexagonal systems. Substituting Ga for Mn lowers also the Néel
temperature from TN = 72 K for YMnO3 to TN = 35 K for YMn0.7Ga0.3O3 [168].

In addition, we study the temperature dependence of the phonon spectra of the mono-
clinic compound MnWO4 by using a generalized Drude-Lorentz model. The spin-
lattice interaction in this compound plays an important role in the coupling between
antiferromagnetic and ferroelectric orders. Furthermore, we analyze the crystal-field
excitations, which are strongly suppressed due to the spin-selection rule.

The understanding of the exceptional optical nonlinearities of BiB3O6 requires a quan-
titative description of the lattice dynamics. We present a detailed investigation of the
linear optical response of BiB3O6 in the phonon range for different polarizations at T
= 20 K and 300 K. We analyze the data by using a generalized Drude-Lorentz model,
which allows us to obtain the frequency, the damping, the strength and the orientation
of the dipole moment of each phonon mode.

We end up with a detailed investigation of the antiferromagnetic metal CaCrO3.
Transition-metal oxides exhibit a quite general relation between magnetic order and
electrical conductivity: insulators usually exhibit antiferromagnetism, whereas ferro-
magnetism typically coexists with metallic conductivity. So observations of antifer-

2



romagnetic order in transition-metal oxides with metallic conductivity are of great
interest. Early electrical conductivity measurements [254, 256] show a metallic behav-
ior, whereas more recently measurements [252] indicate an insulating behavior. These
controversies are connected with the difficulty to prepare high-quality stoichiometric
materials and with the lack of large single crystals. In contrast to electrical resistivity
measurements, optical data can reveal the metallic properties of a polycrystalline metal
with insulating grain boundaries if the wavelengths are smaller than the typical grain
size.
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2 Calculating the Electronic Structure of a
Crystal

The strong electronic correlations in many transition-metal compounds with a par-
tially filled 3d shell cause the insulating behavior of this materials. Within the Zaanen-
Sawatzky-Allen scheme [13], these correlated systems are categorized into Mott-Hub-
bard (MH) and charge-transfer (CT) insulators.

The Mott-Hubbard theory [14] involves the d− d Coulomb and exchange interactions
and can be written as

H = −t
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni,↑nj,↓, (2.0.1)

where ni,↑ ≡ c†iσciσ represents the number operator and c†iσ creates (annihilates) an
electron on lattice site i with spin σ =↑, ↓. The first term describes the reduction of
the kinetic energy of an electron by changing its position with an energy gain t. The
second term represents the energy of double occupancy. The characteristic energy U
is hereby defined as the repulsive Coulomb energy of two electrons on the same lattice
site. The singly occupied sites will form the so-called lower Hubbard band (LHB), the
doubly occupied sites form the upper Hubbard band (UHB). The size of the hopping t
and the coordination number z determine the band width W . In case of a cubic system
the band width is given by W = 2zt. In the limit U/t → 0, the system is metallic,
because the LHB and UHB overlap and are half filled. In the other limit U/t→∞ the
system is an insulator (for half filled bands). The LHB and UHB are far away from each
other and the electrons are immobile because the energy for double occupancy is very
high. Within the insulating state and depending on the configuration (bond angles,
orbitals,. . . ) an antiferromagnetic arrangement of neighboring spins is favored, while
in the ferromagnetic case the virtual hopping is blocked by Pauli’s exclusion princi-
ple.1 Since the Mott-Hubbard model can be solved analytically only in one dimension,
numerical investigations in two and more dimensions contain several approximations:
The Coulomb interaction between the transition metal and its neighbored anions is
neglected. Here the charge-transfer energy ∆ = εp− εd, where εd denotes the energy of
the transition-metal d orbital and εp the energy of the ligand p orbital, has to be taken
into account. This energy does not depend on U but is related to the electronegativity
of the anion and the Madelung potential. Considering the charge-transfer energy, two
kinds of excitations are now possible: one electron can be transferred between two
transition metals, or one electron can be transferred from the ligand to a transition

1The antiferromagnetic arrangement is described by the Goodenough-Kanamori-Anderson rule [274–
276] for 180◦ superexchange.
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2 Calculating the Electronic Structure of a Crystal

Figure 2.1: Zaanen-Sawatzky-Allen scheme. Depending on the Coulomb repulsion U ,
the charge-transfer energy ∆, and the bandwidth W we get different kinds
of metallic and insulating states, where Wpd = 1

2
(Wp +Wd). In order to be

more illustrative, the hybridization in this picture is neglected. The green
line indicate the Fermi energy EF .

metal. Depending on which excitation is lower in energy, i.e. if U or ∆ is smaller, the
insulator is called Mott-Hubbard insulator or charge-transfer insulator.

The Zaanen-Sawatzky-Allen scheme, shown in Fig. 2.1, depends on the Hubbard U ,
the charge-transfer energy ∆ and a finite band width of the d and p bands. For ∆ < U
the electronic structure is dominated by the ligand band (charge-transfer type) and for
∆ > U by the 3d Hubbard band.

But even the Mott-Hubbard model, which includes the charge-transfer energy, is often
inadequate in describing the full behavior of the insulating transition-metal compounds.
It is important to take the charge, lattice, orbital and spin degrees of freedom into
account.

Thus, we have to consider a full multi-band theory, which includes not only the electron-
electron Coulomb repulsion. An often used calculation technique starts with a central
transition-metal cation surrounded by nearest-neighbor anions forming a cluster with
a purely ionic configuration. By using a configuration-interaction approach considering
configurations of the type dn, dn+1L, dn+2LL we take hybridization and covalency as
well as the d − d Coulomb interactions into account. Here L denotes a hole in the
ligand band. The on-site energies are parameterized with U and ∆ in the same way as
done in the Zaanen-Sawatzky-Allen scheme. Within this so-called cluster-model calcu-
lation the cluster can be expressed by a matrix consisting of several configurations of
the cluster and their mixing with each other. Diagonalising the so-called “Hamilton

6



matrix”, we get the energies and the corresponding eigenstates of the cluster. Using
the eigenstates, we can calculate the optical conductivity within the Kubo-Greenwood
model and compare the results with the optical data.

In the following sections we give a detailed description of the cluster-model calcula-
tion. We start with an introduction of the Hartree-Fock theory including some basic
assumptions which are valid for the cluster model as well. In the following, we describe
the principles of a configuration-interaction calculation and the determination of the
matrix elements of one- and two-particle operators. Before we describe the determi-
nation of the different parts of the Hamiltonian, we give a brief introduction to the
Racah-Wigner algebra. In addition, we present some useful expressions for the calcu-
lation of the matrix elements of tensor operators. The model Hamiltonian consists of
four parts: The Coulomb interaction, the crystal-field splitting, the spin-orbit coupling
and the covalency contribution. Furthermore, we present expressions for the matrix
elements of the Stark and the Zeeman operator. We end up with the determination of
the optical conductivity, the magnetic susceptibility and the phonon frequencies.

All expressions of this chapter are given in atomic units. So all energies are in rydbergs
(e2/2a0

∼= 13.6058 eV) and all lengths are measured in terms of the Bohr radius.
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2 Calculating the Electronic Structure of a Crystal

2.1 The Hartree-Fock Calculation

The calculation of the electronic structure of a crystal starts with the Hartree-Fock
calculation, which is an often used approximation for solving the Schrödinger equation
of a many-electron system. This section contains some fundamental principles, which
are valid not only for the pure Hartree-Fock calculation, but also for the cluster-model
calculation, which we use for the analysis of the optical spectra. The section, which
is adapted from [7], starts with a general introduction in the Hartree-Fock method
and its basic assumptions. In the following we present the self-consistent field pro-
cedure, which is required for solving the Hartree-Fock equations. At the end of the
section, we describe the determination of the radial wave functions by solving the radial
Schrödinger equation numerically, which become important for the determination of
several cluster-model calculation parameters such as the Slater integrals F k, Gk and
the spin-orbit coupling constant ζ.

The Schrödinger equation can be solved analytically only for pure two-body systems
like the hydrogen atom. For more general many-electron systems this is not possible.
But for the majority of the elements in the periodic table the motion of every electron
is coupled to the motion of all other electrons as well as to the nucleus. In particular,
we are interested in transition-metal compounds with strong electronic correlations
within the open 3d shell. The electronic structure of such systems can be calculated
only approximately.

2.1.1 Hartree-Fock Theory and Slater Determinants

The Hartree-Fock method [15] is a widely used approximation for non-correlated com-
pounds. By assuming that every electron moves in the potential created both by
the nucleus and by the average potential of all the other electrons, we reduces the
many-electron problem to the problem of solving a number of coupled single-electron
equations. The single-particle functions (orbitals, or spin orbitals) being involved in
this assumption describe the motion of the electron and do not depend explicitly on the
instantaneous motions of the other electrons. Only for one-electron systems the single-
particle functions are exact eigenfunctions of the full electronic Hamiltonian. However,
as long as we consider systems near their equilibrium, the Hartree-Fock theory provides
a good description of the electronic structure of these systems.
The Hartree-Fock theory was developed in order to solve a new variant of the elec-
tronic Schrödinger equation which was developed from the time-independent Schrö-
dinger equation by making use of the Born-Oppenheimer approximation [16]. In the
Born-Oppenheimer approximation the motions of the electrons are regarded as uncou-
pled from those of the nuclei because of the big difference in mass. Thus the “electronic”
Schrödinger equation is solved for fixed nuclear positions[

T̂e(r) + V̂eN(r,R) + V̂NN(R) + V̂ee(r)
]

Ψ(r,R) = EΨ(r,R). (2.1.1)

Here the symbol r denotes the electronic and the symbol R the nuclear degrees of free-

8



2.1 The Hartree-Fock Calculation

dom. T̂e represents the electronic kinetic energy, V̂eN the electron-nucleus interaction,
V̂NN the nuclei-nuclei interaction, and V̂ee(r) the electron-electron interaction. The
electronic energy eigenvalue E is a function of the chosen positions R of the nuclei.
Determine the energy for different nuclear positions we obtain the potential energy
surface: E(R).
If we assume that the electrons in a N -electron system do not interact with each other
(V̂ee = 0), then the Hamiltonian is separable, and the total electronic wave function
Ψ(r1, r2, . . . , rN) describing the motions of the electrons is the product of hydrogen
wave functions χ,

ΨHP (x1,x2, · · · ,xN) = χ1(x1)χ2(x2) · · ·χN(xN). (2.1.2)

which is known as a Hartree Product. Here, we introduced the so-called space-spin co-
ordinates x = {r, σ}, with σ representing the spin coordinate. Note, that this functional
form does not satisfy the antisymmetry principle, which states that a wave function
describing fermions should be antisymmetric with respect to the interchange of any set
of space-spin coordinates. The wave function ΨHP does not fulfill the antisymmetry
principle yet. To achieve this, the wave function can be rewritten as a so-called Slater
determinant [26]:

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) · · · χN(x1)
χ1(x2) χ2(x2) · · · χN(x2)

...
...

. . .
...

χ1(xN) χ2(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣∣ . (2.1.3)

The use of Slater determinants guarantees the adherence to the Pauli principle: the
determinant will vanish if any of the two orbitals are identical. A consequence of this
functional form is that the electrons cannot be distinguished because each electron is
associated with every orbital. Describing the electrons by a Slater determinant includes
the assumption that each electron moves independently of all the others except that
it feels the Coulomb repulsion due to the average positions of all electrons (and it also
experiences an “exchange” interaction due to anti-symmetrization).

2.1.2 Self-Consistent Field Technique

The electronic Hamiltonian contains one- and two-electron operators and the nuclear
repulsion term, which is constant for fixed nuclei:

H = −
n∑
i=1

(
1

2
∇2
i −

N∑
k=1

Zk
rik

)
+

n∑
j=1

∑
i<j

1

rij
+

N∑
l=1

∑
k<l

ZkZl
Rkl

. (2.1.4)

Here n represents the number of electrons, N the number of nuclei and Zi the nuclear
charges of nucleus i. In this decomposition, the two-electron operators are critical be-
cause they prevent a product ansatz for n > 1. To circumvent this problem, Hartree has
established an approximation technique that is known as the so-called self-consistent
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2 Calculating the Electronic Structure of a Crystal

field (SCF) technique: The basic idea starts with the assumption that all orbitals are
known and that we can determine the interaction of a single electron with all the other
electrons as a mean value from their potential field. In the next step we add these mean
values to the one-electron operators to obtain effective one-electron Hamiltonians

Heff(i) = −1

2
∇2
i −

N∑
k=1

Zk
rik

+
1

2

n∑
j=1
j 6=i

∫
χ∗j

1

rij
χj dVj. (2.1.5)

These Hamiltonians represents the sum of all effective one-electron Hamiltonian plus
the constant nuclear repulsion term:

Hel =
n∑
i=1

Heff(i) +
n∑
l=1

∑
k<l

ZkZl
Rkl

. (2.1.6)

We can start the self-consistent field technique if we use a product of orbitals as an
ansatz for the wave function. But the orbitals and the effective Hamiltonians depend on
each other: We need to know the orbitals to determine the effective Hamiltonians, but
we have to know the effective Hamiltonians to construct the orbitals. We can avoid this
problem by using an iterative solution: We need start-orbitals ϕ(0) to form effective
Hamiltonians Heff(1), whose eigenfunctions form the orbitals ϕ(1). These imply new
effective Hamiltonians Heff(2), etc. We continue this process until the potential and
the orbitals become self-consistent, which represents a good approximation for the
electronic wave function Ψel:

Ψel ≈
n∏
i=1

ϕ(i). (2.1.7)

The expectation value of the electronic energy is

E =

∫
Ψ∗elHel Ψel = 2

n/2∑
i=1

Hi +

n/2∑
j=1

∑
i<j

(2 Jij −Kij)

N/2∑
l=1

∑
k<l

ZkZl
Rkl

, (2.1.8)

in which Hi, Jij, and Kij are defined as

Hi =

∫
ϕ∗i

[
−1

2
∇2
i −

M∑
k=1

Zk
rik

]
ϕidV,

Jij =

∫∫
ϕ∗i (1)ϕ∗j(2)

1

rij
ϕi(1)ϕj(2)dV1dV2,

Kij =

∫∫
ϕ∗i (1)ϕ∗j(2)

1

rij
ϕj(1)ϕi(2)dV1dV2.

(2.1.9)

Note, that the self-consistent field procedure may converge to an electronically excited
state, depending on the choice of the initial orbitals.
By using the variation theorem we can avoid this problem [17]: “The expectation value
of the energy is always higher than or equal to the lowest energy eigenvalue.” Due to the

10



2.1 The Hartree-Fock Calculation

dependence of the energy expectation value on the orbitals, we use only those values
which do not change with minimal alterations of orbital values because these energy
values describe the electronic ground state. This extension of the Hartree technique is
known as the Hartree-Fock method.
The usage of molecular orbitals, which are defined as a linear combination of atomic
orbitals:

φi =
m∑
j=1

Cji · χj, (2.1.10)

leads to a reformulation of the Hartree-Fock method [20]. Here, the atomic orbitals χj
define a m-dimensional basis of functions which are defined at the beginning and remain
unchanged thereafter. The molecular orbitals’ coefficients are collected in a matrix C.
Roothaan’s ansatz limits the number of atomic orbitals and allows the application of
all tools of matrix algebra due to the usage of matrices and vectors. The so-called
Roothaan-Hall equations [20, 21] can be written in the form of a generalized eigenvalue
problem

FC = SCε, (2.1.11)

where F is the so-called Fock matrix, C is a matrix of coefficients, S is the overlap
matrix of the basis functions, and ε is the (diagonal, by convention) matrix of orbital
energies. In the case of an orthonormalized basis set, the overlap matrix S is reduced
to the identity matrix.

2.1.3 Radial Schrödinger Equation

Within the so-called central field approximation the effective ionic potential is spheri-
cally symmetric and depends only on the magnitude of r and not on the angles θ and
φ. Here the angular momentum L is classically a constant of motion. The orbital wave
function χ(x) then is an eigenfunction of L2 and Lz. Thus χ(x) is a function of r times
a spherical harmonics Ylm (times a spin function). It is convenient to write the radial
wave function with an explicit factor r−1, so that the total wave function χ(x) gets the
form

χi(x) =
1

r
Pni li(r)Yli,mli (θ, φ)σmsi (sz) ≡ |nilimlimsi〉. (2.1.12)

The radial wave function Pni li(r) ≡ Pi(r) is normalized to one
(∫∞

0
P ∗i (r)Pi(r)dr = 1

)
and fulfills the boundary condition Pi(r = 0) = Pi(r = ∞) = 0. The spherical
harmonics Yli,mli and the spin function σmsi (sz) in (2.1.12) can be exactly determined
and the remaining part of the Hartree-Fock calculation is the determination of the
radial wave functions Pi(r). Thus the radial Schrödinger equation has to be solved[
− d2

dr2
+
li(li + 1)

r2
− 2Z

r
+

q∑
j=1

(wj − δi,j)
∫ ∞

0

2

r>
P 2
j (r2)dr2 − (wi − 1)Ai(r)

]
Pi(r)

= εiPi(r) +

q∑
j=1
j 6=i

wj
[
δli ljεij +Bij(r)

]
Pj(r),

(2.1.13)

11



2 Calculating the Electronic Structure of a Crystal

in which

Ai(r) =
2li + 1

4li + 1

∑
k>0

(
li k li
0 0 0

)2 ∫ ∞
0

2rk<
rk+1
>

P 2
i (r2)dr2, (2.1.14)

and

Bij(r) =
1

2

∑
k

(
li k lj
0 0 0

)2 ∫ ∞
0

2rk<
rk+1
>

Pj(r2)Pi(r2)dr2. (2.1.15)

Here, Z is the charge of the nucleus, wi represents the number of electrons and εi the
binding energy of an electron in the subshell nili

2. In all these integrals, the terms
r< and r> represent the smaller and the greater value of r and r2. The set of q equa-
tions – one for each subshell ni li – are the Hartree-Fock equations [17–19] (HF) for
the spherically averaged atom. The first two terms in (2.1.13), −d2/dr2 + li(li + 1)/r2,
result from the variation of the kinetic energy and the third term refers to the nuclear
potential energy. The next term refers to the direct portion of the electron-electron
interactions; the terms involving Ai and Bij refer to the exchange portions. The terms
involving the Lagrangian multipliers εij express the orthogonality requirement. (In the
case of closed shells, i and j, Pi and Pj are automatically orthogonal and εij and εji
can be set to zero.) Solutions of the ith HF equation are gained by trial-and-error
adjustment of εi in order to find that value which results in a normalized solution Pi.

This leads to Koopmans’ theorem [22]: “The negative form of the eigenvalue εi of the
HF equation is equal to the configuration-averaged ionization energy of an electron in
subshell nili; in this case the orbitals of the ion are considered to be the same as those
of the atom.”

Since the ith HF equation involves the radial wave functions Pj of all other orbitals,
a set of N coupled integro-differential equations can be solved only by an iterative
procedure (if N > 1). Each iterative cycle consists of three steps:

1. We assume a set of trial functions Pj(r), 1 ≤ j ≤ N .

2. For each equation i, VH , Ai and Bij are computed, which results in an estimate
of εij. Here VH represents the Hartree energy [23] and is defined as

VH =

q∑
j=1

(wj − δi,j)
∫ ∞

0

2

r>
P 2
j (r2)dr2. (2.1.16)

3. We can solve the ith HF equation to obtain a new Pi(r).

Repeating these three steps we use a new set of trial functions each time, until the out-
put functions obtained in step (3) are identical with the functions assumed in step (1),
and all functions with a given l are mutually orthogonal, within the desired tolerances.
The output functions are then self-consistent with the trial input functions used in

2With the sign convention, εi is negative for bound electrons and positive for free electrons.

12



2.1 The Hartree-Fock Calculation

computing the central field in step (2), and so this procedure is called a self-consistent-
field (SCF) method. Appropriate trial input functions for the (m+ 1)th iteration cycle
can usually be obtained by using (normalized) linear combinations of the input and the
output functions from the preceding cycle:

P
(m+1)
i (input) = cP

(m)
i (output) + (1− c)P (m)

i (input). (2.1.17)

The value of c is chosen by trial and error procedure in order to reach the maximum
speed of convergence; usually this value is around 0.5, but it may be anywhere from
0.05 to 1.1.

The most straightforward method of finding a new output function Pi(r) in step (3)
cf. (2.1.13) is the following: As a result of steps (1) and (2) everything in (2.1.13) is
known with the exception of the desired function Pi(r) and the unknown parameter εi.
We start with the boundary condition

Pi(0) = 0, (2.1.18)

which is required to keep the electron density finite at r = 0. For small values of r, all
electron-electron terms in (2.1.13) are negligible compared with the kinetic and nuclear
terms. The differential equation is reduced to that of a hydrogenic atom, for which
Pi ∝ rli+1 for small values of r. Therefore we assume an arbitrary value a

(0)
0 of the

initial slope

a0 ≡
[
Pi(r)

rli+1

]
r→0

. (2.1.19)

If we begin with (2.1.18) and (2.1.19) and assume some value of εi, the numerical
integrations3 of the differential equation (2.1.13) up to a suitably large value of r
results in a particular integral P I(r) of the inhomogeneous differential equation. If we
start with the same starting conditions, the numerical integration of the homogenous
differential equation, obtained from (2.1.13) by setting all εij and Bij to zero, results

3A commonly used method for the numerical integration of differential equations was developed by
Numerov [24]: If the differential equation is written as y′′ = f(r)y+ g(r) and if y is already known
at the points rj and rj−1 on a mesh in which h = ri − ri−1 (all i), then the value of y at rj+1 can
be expressed as follows

Yj+1 = 2Yj − Yj−1 + h2

[
fjyj +

1
12

(gj+1 + 10gj + gj−1)
]
,

in which

Y = y

(
1− 1

12
h2f

)
.

Because of numerical instabilities the integration process starts from the two boundaries of the
wave function. The integration process starting at r = 0 with P (r) ∝ r(l+1) is called “outward”
integration. The other, starting at r = rmax with P (r) ∝ exp

[
−r(εi)1/2

]
, is called “inward”

integration. Theses two forms of integration are carried out only to a matching radius depending
on εi where the outward and inward integrations produce functions with both equal values and
equal slopes.

13



2 Calculating the Electronic Structure of a Crystal

in the function PH(r). Any integral of (2.1.13) which satisfies the above mentioned
equation (2.1.18) can be written as

Pi(r) = P I(r) + αPH(r). (2.1.20)

In this equation α is an appropriate constant, so that Pi satisfies the boundary condition

lim
r→∞

[Pi(r)] = 0 (2.1.21)

required for the wave function of any bound electron; the value of the “initial slope”
of Pi is

a0 = (1 + α)a
(0)
0 . (2.1.22)

The value of a0 and the norm of Pi(r) depend on the assumed value of εi. The parameter
εi was originally introduced as Lagrangian multiplier associated with the normaliza-
tion condition on Pi(r). It must be guaranteed that ‖Pi(r)‖ = 1. The additional
requirements that a0 must be positive and that all Pi(r) have (n − l − 1) nodes lead
to a unique integral Pi(r) of the HF equation (2.1.13), by analogy with the hydro-
genic result. The pure Hartree-Fock method shows several disadvantages which can be
avoided by using the Hartree-plus-statistical exchange approximation (HX) introduced
by Cowan [25]. The HX method is an approximation to the exact HF equations and
uses Hartree’s method for the self-interaction correction. The method is computation-
ally much simpler and completely free of iteration-instability problems. It requires no
starting parameter except an universal starting potential function. In order to approx-
imate the remainder of the HF exchange terms a modification of Slater’s ρ1/3 term is
used. The HX method gives results in rather good agreement with HF except for the
radial wave functions Pi(r) of the inner shells, which are unimportant for all purposes
except for the interaction with the nucleus.

One widely used program to do the Hartree-Fock calculation is the Cowan package
[7] based on the original Herman-Skillman program [27]. Determining the single-confi-
guration radial wave function for spherical symmetrized atoms can be done via several
homogeneous differential-equation approximations to the HF method with relativistic
corrections included.
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2.2 Configuration-Interaction Method

2.2 Configuration-Interaction Method

The following section gives an introduction to the configuration interaction method,
which is an essential element in the cluster-model configuration interaction calculation
used in this thesis. This section is partly taken from [28].

2.2.1 Configuration Interaction

Configuration Interaction (CI) is a method for solving the time-independent Schrödinger
equation by using matrix mechanics. The usage of the matrix formalism simplifies the
solution of the Schrödinger equation Hψ = Eψ by means of a computer.
In order to apply the matrix mechanics we have to define a vector space for the descrip-
tion of the problem. Within the Born- Oppenheimer approximation, we can neglect
the nuclei. In case of an arbitrary N -electron system, we can express the wave function
as a linear combination of all possible N -electron Slater determinants formed from a
complete set of orbitals (single- particle functions). By solving the Schrödinger equa-
tion by using the matrix formalism on a complete basis of N -electron functions, we
obtain all electronic eigenstates of the system. In case of a complete basis the electron
correlation function is exactly described in contrast to the density-functional theory
where only approximations are used. Within the configuration interaction method, we
write a N -electron basis function |Ψ〉, which is a eigenvector of the Hamiltonian H, as
substitutions or “excitations” of the Hartree-Fock “reference” determinant |Φ0〉, i.e.

|Ψ〉 = c0|Φ0〉+
∑
ra

cra|Φr
a〉+

∑
a<b,r<s

crsab|Φrs
ab〉+

∑
a<b<c,r<s<t

crstabc|Φrst
abc〉+ . . . , (2.2.1)

in which |Φr
a〉 represents the Slater determinant formed by replacing orbital a in |Φ0〉

with orbital r, etc. We can express every N -electron Slater determinant by the set of
N orbitals from which it is formed. This set of orbital occupancies is often referred to
as a configuration. The configuration interaction method may fail if the reference
configuration is not dominant.

If we solve the Schrödinger equation and use a given set of one- particle functions and
all possible N -electron basis functions, the configuration interaction procedure is called
“full CI” which corresponds to solving Schrödinger’s equation exactly within the space
spanned by the specified one-electron basis. If the one-electron basis is complete the
procedure is called a “complete CI” [35]. Caused by the vast number of N - electron
basis functions, a full CI can not be performed even with an incomplete one-electron
basis. Therefore, the configuration interaction space must be reduced whereas the
approximate CI wave function and its energy should be as close as possible to the
exact value. This reduction of the CI space is a central problem in the configuration
interaction theory: The most common approximation is the truncation of the CI space
expansion, “truncated CI”, according to the excitation level relative to the reference
state |Φ0〉 in (2.2.1). Wave functions including only those N -electron basis functions
which represent single (Φr

a) or double (Φrs
ab) excitations relative to the reference state
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2 Calculating the Electronic Structure of a Crystal

in (2.2.1). As long as the Hamilton operator includes only one- and two-electron
operators, only configurations singly and doubly excited can interact directly with the
reference configuration.

2.2.2 Correlation Energy

In order to estimate the quality of the configuration interaction method we can use
the fraction of the correlation energy which is recovered by the truncated CI. The
correlation energy is defined as

Ecorr = E0 − EHF , (2.2.2)

where EHF represents the Hartree-Fock limit and E0 the exact (non-relativistic) energy
of the system. The energy Ecorr will always be negative because the Hartree-Fock
energy is, due to the variational theorem, an upper bound to the exact energy. The
energy E0 can be calculated by performing a full CI within a complete one-electron basis
set. In case of an incomplete one-electron basis set, the correlation energy represents
the correlation energy of the given one-electron basis. Within the Hartree-Fock theory
the inter-electron repulsion is treated only in an averaged way.
The correlation energy consits of two parts: The “dynamical” correlation energy is the
energy recovered by fully allowing the electrons to avoid each other. The second part,
called the “non- dynamical”, or “static” correlation energy, re?ects the inadequacy of a
single reference in describing a given (molecular) state, and is due to nearly degenerate
states or rearrangement of electrons within partially ?lled shells.

2.2.3 Truncated Configuration Interaction

The CI expansion is typically truncated according to its excitation level. The structure
of the CI matrix with respect to its excitation level is given below [34]. |S〉, |D〉, |T 〉
and |Q〉 represent blocks of singly, doubly, triply, and quadruply excited determinants,
respectively. The Hamiltonian H is Hermitian; in case of exclusively real orbitals, the
Hamiltonian is also symmetric. Thus only the lower triangle of H is shown below

H =

〈Φ0|
〈S|
〈D|
〈T |
〈Q|

...



〈Φ0|H|Φ0〉 . . .
0 〈S|H|S〉 . . .

〈D|H|Φ0〉 〈D|H|S〉 〈D|H|D〉 . . .
0 〈T |H|S〉 〈T |H|D〉 〈T |H|T 〉 . . .
0 0 〈Q|H|D〉 〈Q|H|T 〉 〈Q|H|Q〉 . . .
...

...
...

...
...

. . .


. (2.2.3)

Due to Brillouin’s theorem [39] the matrix elements 〈S|H|Φ0〉 are zero, which is valid
when the reference function |Φ0〉 is obtained by the Hartree-Fock method4. Further-
more, the blocks 〈X|H|Y 〉 which are not necessarily zero may still be sparse; for ex-
ample, the matrix element 〈Φrs

ab|H|Φtuvw
cdef 〉 which belongs to the block 〈D|H|Q〉, will

4“Hartree-Fock guarantees that off-diagonal elements of the Fock matrix are zero. It turns out that
the matrix element between two Slater determinants which differ by one spin orbital is equal to an
off-diagonal element of the Fock matrix.”, see [30].
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2.2 Configuration-Interaction Method

be non-zero only if a and b are contained in the set {c, d, e, f} and if r and s are
contained in the set {t, u, v, w}. Double excitations make the largest contributions
to the CI wave function besides the reference state, since they interact directly with
the Hartree-Fock reference. Although singles, triples, etc. do not interact directly with
the reference state, they can still become part of the CI wave function (i.e. they have
non-zero coefficients) because they mix with the doubles, directly or indirectly.
The number of N -electron basis functions increases dramatically if the excitation level
is increased. So the CISDTQ method is limited to systems containing very few heavy
atoms. Full CI calculations are of course even more difficult to perform, so that in spite
of their importance as benchmarks, only few full CI energies using flexible one-electron
basis sets have been obtained. If spatial symmetry is ignored the dimension of the full
CI space with total spin S is computed by

DnN S =

(
n

N/2 + S

)(
n

N/2− S

)
, (2.2.4)

in which n denotes the number of orbitals and N the number of electrons.

In the often used frozen-core approximation the lowest-lying ionic orbitals (occupied
by the inner-shell electrons) are constrained to remain doubly-occupied in all configu-
rations. For the atoms ranging from Lithium to Neon the frozen core typically consists
of the 1s atomic orbital, while the frozen-core for those atoms ranging from Sodium
to Argon consists of the atomic orbitals 1s, 2s, 2px, 2py and 2pz. The inner-shell
electrons of an atom are less sensitive to their environment than the valence electrons.
Thus the error introduced by freezing the core orbitals is generally small. Applying the
frozen core approximation, we can decrease the number of configurations within the
configuration interaction method and reduce the computational effort to construct the
Hamiltonian. Truncating the CI space will introduce an error in the wave functions, in
the related energies and all other properties. Furthermore the CI energies are no longer
size extensive5 or size consistent6. The truncated configuration interaction method is
neither size extensive nor size consistent. Due to the lack of the property of size ex-
tensivity, the accuracy of a truncated configuration interaction calculation decrease
with increasing system size. In order to correct the CI energies Davidson suggests the
following correction [41]

∆EDC = ESD(1− c0), (2.2.5)

where ESD is the basis set correlation energy recovered by a CISD procedure and c0 is
the coefficient of the Hartree-Fock wave function in (2.2.1). This correction approxi-
mately accounts for the effects of “unlinked quadruple” excitations (i.e. simultaneous
pairs of double excitations).

5A calculation method is size extensive if the energy calculated thereby scales linearly with the
number of particles N .

6A method is called size consistent if there exists an energy ε = EA + EB which consists of two
well separated subsystems A and B. In contrast to the definition of size extensivity, which applies
at any geometry, the definition of size consistency applies only in the case of infinite separation.
Furthermore, size consistency usually implies correct dissociation into fragments, too.
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2 Calculating the Electronic Structure of a Crystal

2.3 Coupled Antisymmetrized Basis Functions

This section, which follows the explanations of Cowan [7], introduces several expressions
which are valid for the cluster-model calculation. We begin with the construction of the
wave functions used in the configuration interaction calculation and end up with the
principle determination of matrix elements of one- and two-electron operators. This is
important, because the usage of one- and two-electron operators avoids the complete
antisymmetrization of the wave functions. Without these fundamental considerations
we cannot calculate the Hamiltonian within the configuration interaction method. In
addition, the so-called “coefficients of fractional parentage”, which are defined in this
section, are an essential component of Sobel’man’s parentage scheme approximation
used in the determination of the tight-binding operator (see section “2.8 Hybridization
and Tight-Binding Approximation”).

2.3.1 Coefficients of Fractional Parentage

Basis wave functions for a N -electron atom are constructed from linear combinations of
products of N one-electron orbitals (2.1.12). If we do not couple the angular momenta
together, we can achieve antisymmetrized wave functions by forming determinantal
functions:

ψ =
1√
N !

∑
P

(−1)p
N∏
i=1

|nilimlimsi(rj)〉, (2.3.1)

in which the summation runs over all N ! permutations of the coordinate subscripts j,
and p is the parity of the permutation P . To guarantee a properly normalized function
the factor (N !)−1/2 is required.

To construct multiplet wave functions of a subshell nlw

|lw, α, L, S,ML,MS〉, (2.3.2)

with w denoting the number of electrons in the subshell nl, we have to couple the
angular momenta of the different orbitals according to some coupling scheme. Here
α distinguishes between multiplets with the same L and S quantum numbers, which
could be found for example within a 3d3 subshell, in which two multiplets with L = 2
and S = 1

2
exist. The quantum numbers ML and MS in (2.3.2) represents the mag-

netic quantum numbers corresponding to L and S respectively. The coupling of the
angular momenta is done with the aid of the Clebsch-Gordan (CG) coefficients. The
application of Clebsch-Gordan expansions to antisymmetrized product functions may
lead to normalization difficulties if two or more electrons are equivalent (nili = nklk).
We can avoid these difficulties by using appropriate linear combinations of coupled
simple-product functions which are not antisymmetrized. These combinations are in-
dependent of ML and MS, which are therefore dropped from notation. If |lw−1αLS〉
is an antisymmetric basis function for a subshell nlw−1 with w− 1 equivalent electrons
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and αLS indicating a multiplet within this subshell, and if7

|
(
lw−1αLS, l

)
LS〉 =

∑
MLml

CG
(
LlMLml;LML

) ∑
SLms

CG
(
SsMSms;SMS

)
× |lw−1αLS〉 |l〉

(2.3.3)

is a coupled but not antisymmetrized function, then a completely antisymmetric func-
tion |lwαLS〉 for subshell nlw can be written in terms of the coefficients of fractional
parentage8 (cfp) denoted by “

(
lw−1αLS|}lwαLS

)
”, which were introduced by Racah

[5]

|lwαLS〉 =
∑
αLS

|
(
lw−1αLS, l

)
LS〉

(
lw−1αLS|}lwαLS

)
. (2.3.4)

The coefficients of fractional parentage describe how the antisymmetric multiplet wave
function |lwαLS〉 of subshell nlw is constructed by the multiplet wave functions of sub-
shell nlw−1 by adding a further electron via angular momentum coupling.

Antisymmetric functions for an arbitrary subshell with w electrons are in principle
constructed by repeated application of (2.3.4), starting with w = 2. The terms αLS
are called parent terms for the terms αLS.

The coefficients of fractional parentage satisfy the relations [7]∑
αLS

(
lwαLS{|lw−1αLS

) (
lw−1αLS|}lwα′ LS

)
= δα,α′ , (2.3.5)

due to orthonormalization, and∑
αLS

[L, S]
(
lw−1αLS|}lwαLS

) (
lwαLS{|lw−1α′ LS

)
=

1

w
(4l + 3− w)

[
L, S

]
δα,α′ ,

(2.3.6)
which is useful for checking the correctness of the calculated values of the cfp. A
complete set of tables is given by Nielson and Koster [45].

2.3.2 Basis Functions within the Russell-Saunders-coupling scheme

The above presented procedure gives completely antisymmetrized wave functions for a
subshell with w equivalent electrons. But within the configuration-interaction calcu-
lation, we have to deal with configurations which contain different subshells. For an

7The expression |
(
lw−1αLS, l

)
LS〉 represents a multiplet wave function of subshell nlw with mul-

tiplet LS, which is constructed from the mutliplet wave function of subshell nlw−1, with multiplet
indicated by α L S, by adding a further electron with angular momentum l to this wave function.
The sums run on the one hand over the corresponding magnetic quantum number ML and MS

of the mutliplet α L S and on the other hand over the magnetic quantum numbers ml and ms of
the added electron. The CG expressions represent the Clebsch-Gordan coefficients, which describe
the adding of l to L and s to S respectively. Finally, the expression |l〉 is the single-electron wave
function of the added electron.

8Racah’s notation
([
lw−1αLS, l

]
αLS|}lwαLS

)
is redundant.
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2 Calculating the Electronic Structure of a Crystal

arbitrary electron configuration of q different subshells

n1l
w1
1 n2l

w2
2 · · ·nqlwqq ,

q∑
j=1

wj = N, (2.3.7)

completely coupled basis functions ψ can be constructed by multiple Clebsch-Gordan
expansions, using products of q multiplet functions (2.3.4), one function for each sub-
shell. For numerical calculations the LS (Russell-Saunders)-coupling scheme is often
used [43]

|ψ〉 = {[(lw1
1 α1L1S1, l

w2
2 α2L2S2) L2S2, l

w3
3 α3L3S3] L3S3, . . .}LqSqJqMq. (2.3.8)

The JJ coupling scheme or other coupling schemes may be sometimes physically more
appropriate. Transformation matrices describing the transition from one coupling
scheme to another can be found in [46]. The coupled function |ψ〉 in (2.3.8) is an-
tisymmetric with respect to interchange of electron coordinates within any subshell
nil

wi
i , but not with respect to the interchange of coordinates between two different sub-

shells. The latter type of antisymmetrization is added, similarly to (2.3.1) by summing
limited types of permutations. The completely antisymmetrized basis functions are of
the form

ψ =

[∏
j(w!)

N !

]1/2∑
P

(−1)pϕ(P ), (2.3.9)

in which the permutations P involve coordinate exchanges between two different sub-
shells only. Here ϕ is an antisymmetrized function of the type (2.3.1) or (2.3.4). The
prefactor [(

∏
j(w!))/(N !)]1/2 is required for normalization. Another more complicated

method for antisymmetrization is based on the aid of mixed-shell coefficients of frac-
tional parentage introduced by Armstrong [44], which must be seen as a generalization
of Racah’s coefficients of fractional parentage.

2.3.3 One- and Two-Electron Operators

For the evaluation of the Hamilton operator we do not need to know the basis wave
functions (2.3.9) themselves, but only the matrix elements 〈φ|Ô|φ′〉 of operators Ô that
are symmetric with regard to all electron coordinates. For matrix elements between
two basis functions |φ〉 and |φ〉 which belong to the same configuration, complications
due to the antisymmetrization permutations shown in (2.3.9) are reduced.

There are two types of operators which are relevant in the electronic structure calcu-
lation. The first type can be written as a sum of one-electron operators f̂(i)

OOne =
N∑
i=1

f̂(i), (2.3.10)

where f̂(i) acts only on the ith electron. These operators depend only on e.g. the posi-
tion or momentum of the ith electron, independent of the position or the momentum of
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2.3 Coupled Antisymmetrized Basis Functions

the other electrons. Examples for this kind of operator are the operator of the crystal
field or the operator of the dipole moment. The second type of operator is a sum of
two-electron operators

OTwo =
N∑
i=1

N∑
j>i

ĝ(i, j) ≡
∑
i<j

ĝ(i, j), (2.3.11)

in which ĝ(i, j) is an operator that involves the ith and jth electron only. The sum in
(2.3.11) runs over all unique pairs of electrons. An example of a two-electron operator
is the Coulomb interaction between two electrons.

The Slater-Condon rules [47, 48] allow the expression of matrix elements of these two
types of operators in terms of one- and two-electron integrals. The derivation of these
rules can be found in [34]. The results are expressed in terms of orbitals: The one-
electron integrals are written as

〈i|f̂ |j〉 =

∫
φ∗i (r1)f̂(r1)φj(r1)dr1 (2.3.12)

and the two-electron integrals as

〈ij|gi,j|kl〉 = 〈ij|kl〉 − 〈ij|lk〉, (2.3.13)

in which – assuming gi,j ≡ 1
r12

–

〈ij|kl〉 =

∫
φ∗i (r1)φ∗j(r2)

1

r12

φk(r1)φl(r2)dr1dr2. (2.3.14)

Before we can apply Slater’s rules, we have to arrange the two Slater determinants in
maximum coincidence. Due to the antisymmetry of the wave function, the switching
of two columns in a determinant introduces a minus sign. If we want to calculate
〈Φ1|Ĥ|Φ2〉 with

|Φ1〉 = |abcd〉
|Φ2〉 = |crds〉

(2.3.15)

we first have to interchange columns of |Φ1〉 or |Φ2〉 to make the two determinants look
as much alike as possible. Here, we rearrange |Φ2〉 as

|Φ2〉 = |crds〉 = −|crsd〉 = |srcd〉. (2.3.16)

After we have got the determinants in maximum coincidence, we can use the following
rules, taken from [34]:

1. Identical determinants:

|Φ1〉 ≡ |Φ2〉

〈Φ1|OOne|Φ2〉 =
∑
m

〈m|f̂ |m〉

〈Φ1|OTwo|Φ2〉 =
1

2

∑
m

∑
n

〈mn||mn〉.

(2.3.17)
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2 Calculating the Electronic Structure of a Crystal

2. Determinants that differ by one spin orbital:

|Φ1〉 = | · · ·mn · · · 〉
|Φ2〉 = | · · · pn · · · 〉
〈Φ1|OOne|Φ2〉 = 〈m|f̂ |p〉

〈Φ1|OTwo|Φ2〉 =
∑
n

〈mn||pn〉.

(2.3.18)

3. Determinants that differ by two spin orbitals:

|Φ1〉 = | · · ·mn · · · 〉
|Φ2〉 = | · · · pq · · · 〉
〈Φ1|OOne|Φ2〉 = 0

〈Φ1|OTwo|Φ2〉 = 〈mn||pq〉.

(2.3.19)

4. Determinants that differ by more than two spin orbitals:

|Φ1〉 = | · · ·mno · · · 〉
|Φ2〉 = | · · · pqr · · · 〉
〈Φ1|OOne|Φ2〉 = 0

〈Φ1|OTwo|Φ2〉 = 0.

(2.3.20)

Because of the antisymmetry of the basis functions ψ, the value of the matrix element

〈ψ|fi|ψ′〉 (2.3.21)

is independent of any electron coordinate ri. The value of the matrix element of fi is
the same as that of fj: In (2.3.21) the coordinates appear only as integration variables.
Changing the names of theses variables does not affect the value of the integral. Thus
changing the name of the integration variable ri to rj and simultaneously changing the
name of the variable rj to ri we obtain

〈ψ|fi|ψ〉 = 〈ψ′|fj|ψ′〉, (2.3.22)

in which ψ′ is identical with ψ except that the names of the variables ri and rj have
been interchanged. But because of the antisymmetry of ψ, ψ′ is just the negative of ψ.
It follows that

〈ψ|fi|ψ〉 = (−1)2〈ψ|fj|ψ〉 = 〈ψ|fj|ψ〉, (2.3.23)

and therefore, by using the equation (2.3.9), that

〈ψ|
∑
i

fi|ψ〉 = N〈ψ|fi|ψ〉 =

∏
k wk!

(N − 1)!

∑
P

∑
P ′

(−1)p+p
′〈ψ(P )|fN |ψ′(P

′)〉. (2.3.24)
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2.3 Coupled Antisymmetrized Basis Functions

For deriving the final expression we follow Cowan [7] and consider a fixed permutation
P . In the evaluation of the matrix element on the right-hand side of (2.3.24), inte-
gration over any coordinate ri other than rN will involve simple overlap integrals of
one-electron orbitals

〈njljmljmsj(i)|n′jl′jm′ljm
′
sj

(i)〉. (2.3.25)

Because of the orthonormality of these spin orbitals, (2.3.25) will be zero unless

njljmljmsj = n′jl
′
jm
′
lj
m′sj . (2.3.26)

The matrix element in (2.3.24) will be zero unless the permutation P ′ is such that

njlj = n′jl
′
j, (2.3.27)

i.e., unless ri occurs in the same subshell l
wj
j in both ψ(P ) and ψ′(P

′). Since such a
correspondence of subshells must hold for every coordinate i 6= N , it must be valid
as seen by a process of elimination also for i = N . But this means that the matrix
element in (2.3.24) will be zero unless P ′ ≡ P , because the permutations involved do
not include coordinate permutations within a subshell. Therefore

〈ψ|
∑
i

fi|ψ′〉 =

∏
k wk!

(N − 1)!

∑
P

〈ψ(P )|fN |ψ′(P )〉. (2.3.28)

Now those permutations will be considered for which the coordinate N occurs in the
subshell l

wj
j for some specific j; because of the nature of the permutation P , the co-

ordinate rN will always be the coordinate of the last (wjth) electron of the subshell.
With the position of this coordinate thus fixed the number of permutations in question
will be the number of permutations (N − 1)! of all coordinates other than rN , divided
by the numbers of unallowed permutations within each subshell:

(N − 1)!

w1!w2! · · · (wj − 1)! · · ·wq!
. (2.3.29)

Since all such permutations are of the same numerical value referring to the matrix
element in (2.3.28), the partial sum comprising these permutations can be expressed
by the following equation∏

k wk!

(N − 1)!
· (N − 1)!

w1!w2! · · · (wj − 1)! · · ·wq!
〈ψ(Pj)|fN |ψ′(Pj)〉 = wj〈ψ(Pj)|fN |ψ′(Pj)〉, (2.3.30)

in which Pj is any of these permutations, for which the coordinate rN is the last
coordinate of |lwjj 〉. Summing up the results contributed by each of these subshells we
get the following equation

〈ψ|
N∑
k=1

fk|ψ′〉 =

q∑
j=1

wj〈ψ(Pj)|fN |ψ′(Pj)〉 =

q∑
j=1

wj〈ψ|f(j)|ψ′〉, (2.3.31)
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2 Calculating the Electronic Structure of a Crystal

in which in the final expression ψ and ψ′ are coupled product functions with basic
unpermutated coordinate ordering, antisymmetric only with regard to coordinate in-
terchanges within each subshell. f(j) operates on the last electron coordinate of the jth
subshell. Similar expressions can be found for matrix elements of symmetric operators
between wave functions |ψ〉 and |ψ′〉 belonging to two different configurations:

〈ψ|
N∑
k=1

fk|ψ′〉 = (wσw
′
σ′)

1/2(−1)∆p〈ψ(Pσ)|fN |ψ′(Pσ′ )〉. (2.3.32)

Here σ and σ′ are subshell indices expressed by the following equation

wk − δkσ = w′k − δkσ′ , 1 ≤ k ≤ q. (2.3.33)

If no such σ and σ′ exist, then the matrix element is zero; integration over at least one
electron coordinate ri (i < N) involves an overlap integral 〈nl|n′l′〉 for which nl 6= n′l′

thus the integral is zero, due to the orthonormalization of the spin orbitals. The factor
∆p is the difference in parity of P and P ′ with

∆p = p− p′ =
q∑

j=σ+1

wj −
q∑

j=σ′+1

w′j. (2.3.34)

In (2.3.32) Pσ is any permutation for which rN is the last coordinate of lwσσ , and Pσ′ is

identical with Pσ except that rN is the final coordinate of l
w′
σ′

σ′ . (The single-configuration
result (2.3.31) applies if the special case σ = σ′ = j and wσ = w′σ′ except for the sum-
mation over j.)

For the two electron operator the final result for the single- configuration matrix element
is [7]

〈ψ|
∑
i<j

gij|ψ′〉 =

q∑
j=1

wj(wj − 1)

2
〈ψ|g(jj)|ψ′〉+

∑
i<j

wiwj
[
〈ψ|g(ij)|ψ′〉 − 〈ψ|g(ij)|ψ′(ex)〉

]
,

(2.3.35)
in which ψ and ψ′ are partially antisymmetrized, coupled functions with a basic un-
permutated coordinate ordering. Thus ψ′(ex) is the same as ψ′ with the exception that
the final electron coordinates of the ith and jth subshells are exchanged. g(jj) operates
on the last two electron coordinates of the jth subshell and g(ij) operates on the final
coordinates of the ith and jth subshells. The expression for the two-configuration cases
is [7]

〈ψ|
∑
i<j

gij|ψ′〉 =
∑
ρσρ′σ′

(−1)∆p

[
wρ (wσ − δρσ)w′ρ′ (w

′
σ′ − δρ′σ′)

]1/2
(1 + δρσδρ′σ′)

×
[
〈ψ(Pρσ)|gN−1,N |ψ′(Pρ′σ′ )〉 − (1− δρσ) (1− δρ′σ′) 〈ψ(Pρσ)|gN−1,N |ψ′(Pσ′ρ′ )〉

]
,

(2.3.36)
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in which ∆p is obtained by (2.3.34). The summation must consider all the indices of
the subshells ρσρ′σ′ which agree with the following equation

wk − δkρ − δkσ = w′k − δkρ′ − δkσ′ , 1 ≤ k ≤ q. (2.3.37)

The expression (2.3.36) is equivalent to that given by Fano [49]. He uses a different
phase convention and includes an additional factor il in each spin orbital. So his ex-

pression of the matrix elements differ by the factor (−1)(lρ′+lσ′−lρ−lσ)/2 from the above
equation (2.3.36). For ρ = ρ′ and σ = σ′ (2.3.36) reduces to the single-configuration
expression (2.3.35).

With the expressions (2.3.31), (2.3.32), (2.3.35) and (2.3.36) the matrix elements of
symmetric operators can be determined between not fully antisymmetrized wave func-
tions which are antisymmetric only with respect to the interchange of electron coordi-
nates within a given subshell.
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2 Calculating the Electronic Structure of a Crystal

2.4 Racah-Wigner Algebra

In this section, which based on Cowan [7], we give an introduction to the Racah-
Wigner algebra, which is used in the cluster-model calculation. The section starts with
a definition of a spherical tensor operator and the Wigner-Eckart theorem, which is an
essential element of the calculation technique used in this thesis. In the following, we
describe relations, which are required in the calculation of matrix elements of spherical
tensor operators.

The Racah-Wigner algebra [3–6, 52–54] provides notational and calculational simpli-
fications of great elegance, which are practically indispensable for the evaluation of
matrix elements between complex configurations. This algebra is concerned with the
evaluation of the angular part of a matrix element. It is particularly concerned with
the complications that arise from coupling the various angular momentum quantum
numbers. Determining the radial integrals is unaffected by angular momenta coupling.
Racah’s methods are strictly concerned with basis functions that have been antisym-
metrized (with respect to the electron-coordinate interchange) only within a subshell
of equivalent electrons, and this antisymmetrization is assumed to have been accom-
plished via the method of the coefficients of fractional parentage. Thus the Racah
formalism is to be applied only with matrix elements between functions ψ that are
simple products of single subshell functions like

q∏
i=1

|lwiαiLiSi〉. (2.4.1)

These are of the type (2.3.4), except that the angular momenta LiSi have been coupled
together according to some coupling scheme. In the calculations discussed in this thesis,
the above mentioned conditions have always been met.

2.4.1 Irreducible Tensor Operator

An irreducible tensor operator of rank k is defined by Racah [4] as an operator T (k)

whose 2k+ 1 components T
(k)
q (q = −k, . . . , k) satisfy the same commutation rule with

respect to the angular momentum J as the spherical harmonic operators Ykq. This
means that the tensor is transformed under a rotation of the coordinate axes in the
same way as one of the spherical harmonics Ylm(θ, φ):[

(Jx ± i Jy) , T (k)
q

]
= [(k ∓ q) (k ± q + 1)]1/2 T

(k)
q±1[

Jz, T
(k)
q

]
= q T kq .

(2.4.2)

For k = 1 we get the following relation

T
(1)
±1 =

∓1√
2

(Tx ± iTy) , T
(1)
0 = Tz. (2.4.3)
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2.4 Racah-Wigner Algebra

So J is a tensor operator of rank 1 with the components ±1√
2
J∓, Jz. For an operator

that does not have an effect on spins but only involves the spatial coordinates (r, θ, φ),

T
(k)
q must have the same angular form as Y q

k ; i.e. that

T (k)
q = Ak Y

q
k , (2.4.4)

in which Ak may be a function of r = |r| but it must be independent of θ, φ and q.

An example are the renormalized spherical harmonics

C(k)
q (θ, φ) =

√
4π

2k + 1
Y q
k (θ, φ). (2.4.5)

2.4.2 Wigner-Eckart Theorem

If a tensor operator T
(k)
q has an effect on a space that is spanned by a set of basis func-

tion |αjm〉 which are eigenfunctions of the operators J2 and Jz, with α representing
any quantities that are required to completely specify the basis function, then the ma-
trix elements of an irreducible tensor operator show the same dependence on (m, q,m′)
as the Clebsch-Gordan coefficients (CG) for the angular momentum coupling. This
result is known as the Wigner-Eckart theorem [1, 2]:

tjj′ := 〈αjm|T (k)
q |α′j′m′〉 =

1√
j
CG(j′km′q; jm)〈αj‖T (k)

q ‖α′j′〉

= (−1)−j
′+k−m

(
j′ k j
m′ q −m

)
〈αj‖T (k)

q ‖α′j′〉

= (−1)j−m
(

j k j′

−m q m′

)
〈αj‖T (k)

q ‖α′j′〉.

(2.4.6)

Here, the round brackets indicate the 3-j symbol, which is related to the Clebsch-
Gordan coefficients by (A.1.1). The expression “〈. . . ‖ ‖ . . .〉” represents the reduced
matrix element. In the last step in this equation the symmetry relation of the 3j
symbol [7] has been used, together with the fact that k is integer. The matrix element
tjj′ is zero, unless

m = q +m′ (2.4.7)

and unless j, q and j′ satisfy the triangle conditions (|j − j′| ≤ q ≤ j + j′). These two
conditions together constitute the matrix-element selection rules. The 3j symbol in
(2.4.6) only involves purely geometrical properties of the tensor operator. The physical

nature of the operator is contained in the reduced matrix element9 〈α j‖T (k)
q ‖α′ j′〉.

The reduced matrix element for the angular momentum operator J is given by

〈α j‖J (1)‖α′j′〉 = δα j,α′ j′
√
j(j + 1) (2j + 1). (2.4.8)

9Racah’s original phase conventions [3–6], used here, differ from those employed by Fano and Racah
[52]. Their conventions employ an additional factor il in the definition of Ylm and a corresponding
additional factor ik in the definition of C(k).
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2 Calculating the Electronic Structure of a Crystal

2.4.3 Matrix Elements of Tensor Operators

The calculation of the tensor matrix element is reduced to the determination of the
reduced matrix element. In the following some important identities for the calculation
of the reduced matrix element [4, 7] will be given.

The reduced matrix element of a tensor product V
(K)
Q consisting of two commutating

tensor operators T (k1) and W (k2),

V
(K)
Q ≡

[
T (k1) ×W (k2)

](K)

Q
≡
∑
q1q2

CG (k1k2q1q2;KQ)T (k1)
q1

W (k2)
q2

, (2.4.9)

with K = k1 + k2 and Q = q1 + q2, operating on different parts of a system, is defined
by

〈α1j1α2j2‖
[
T (k1) ×W (k2)

](K) ‖α′1j′1α′2j′2〉

= [j, j′, K]
1/2 〈α1 j1‖T (k1)‖α′1 j′1〉〈α2 j2‖W (k2)‖α′2 j′2〉


j1 j2 j
j′1 j′2 j′

k1 k2 K

 ,

(2.4.10)

in which [l1, l2, . . .] ≡ (2l1 + 1)(2l2 + 1) · · · . The expression in braces represents the 6-j
symbol (A.2.3).

If W (k2) is equal to the identity operator C
(0)
0 ≡ 1, we get the reduced matrix element

for a tensor operator T
(k)
q , which only has an effect on |α1j1m1〉,

〈α1j1α2j2‖T (k)‖α′1j′1α′2j′2〉 = δα2j2,α′2j
′
2
(−1)j1+j2+j′+k [j, j′]

1/2

{
j1 j2 j
j′ k j′1

}
× 〈α1j1‖T (k)‖α′1j′1〉.

(2.4.11)

If W (k) has only an effect on |α2j2m2〉, we obtain a similar expression for the reduced
matrix element

〈α1j1α2j2‖W (k)‖α′1j′1α′2j′2〉 = δα1j1,α′1j
′
1
(−1)j1+j′2+j+k [j, j′]

1/2

{
j1 j2 j
k j′ j′2

}
× 〈α2j2‖W (k)‖α′2j′2〉.

(2.4.12)

These two expressions simplify the evaluation of reduced matrix elements for coupled
basis functions in terms of reduced matrix elements for subspace functions.

Of particular importance is the following tensor product with k1 = k2 and K = 0. The
tensor product than is equivalent to a scalar product. As a consequence the matrix
element has the form

〈α1j1α2j2jm‖T (k) ·W (k)‖α′1j′1α′2j′2j′m′〉 = δjm,j′m′(−1)j
′
1+j2+j

{
j1 j2 j
j′2 j′1 k

}
× 〈α1j1‖T (k)‖α′1j′1〉〈α2j2‖W (k)‖α′2j′2〉.

(2.4.13)
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It is convenient to define a unit irreducible tensor operator uk, which has an effect on
the spatial coordinates and is normalized with regard to10

〈l‖u(k)‖l′〉 = 1 (2.4.14)

with l, k and, l′ satisfying the triangle relations. An example valid for l+ k+ l′ even is

u(k)
q =

C
(k)
q

〈l|C(k)|l′〉
. (2.4.15)

Another example for k = 1 is

u(1)
q =

J
(1)
q

〈l|J (1)|l′〉
. (2.4.16)

For a subshell lw of equivalent electrons, we define a symmetric unit tensor operator

U (k) ≡
w∑
i=1

u
(k)
i . (2.4.17)

The reduced matrix element of this operator U (k) can be calculated from

〈lwαLS‖U (k)‖lwα′L′S ′〉 = δS,S′ w (−1)l+L+k [L,L′]
1/2
∑
αLS

(−1)L
{

l k l
L L L′

}
×
(
lwαLS{|lw−1αLS

) (
lw−1αLS|}lwα′L′S ′

)
,

(2.4.18)

with “(. . . |} . . .)” denoting the cfp. This matrix element is zero, unless 0 ≤ k ≤ 2l and
unless L, k, and, L′ satisfy the triangle relations. The matrix element is also symmetric

〈lwα′L′S ′‖U (k)‖lwαLS〉 = (−1)L
′−L〈lwαLS‖U (k)‖lwα′L′S ′〉. (2.4.19)

2.4.4 Unit Double Tensor Operator

If we want to evaluate matrix elements of the spin-orbit operator l(1) · s(1) for functions
|lwαLS〉 it is rather unsatisfactory to separate L from S when α, L, and S are inherently
linked together. In order to be able to consider mathematically distinct reduced matrix
elements, it is convenient to define a double tensor operator of rank (k, κ), which
behaves as an irreducible tensor operator of rank k with respect to L and as tensor of
rank κ with respect to S. For the spin-orbit operator the unit double tensor

v(k1) ≡ u(k) · s(1) (2.4.20)

is important. In analogy to (2.4.17) we can define a symmetric unit double tensor for
a subshell lw of w equivalent electrons as follows:

V (k1) ≡
w∑
i=1

v
(k1)
i =

w∑
i=1

u
(k)
i s

(1)
i . (2.4.21)

10This is a generalization of the u(k) defined by Racah [4], eq. (58), which he defined only for l = l′.
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The reduced matrix element of this tensor is given by the equation

〈lwαLS‖V (k1)‖lwα′L′S ′〉 =

√
3

2
w (−1)l+L+k [L,L′, S, S ′]

1/2
∑
αLS

(−1)L+S+S+3/2

×
{

l l k
L L′ L

}{
s s 1
S S ′ S

}
×
(
lwαLS{|lw−1αLS

) (
lw−1αLS|}lwα′L′S ′

)
.

(2.4.22)

The matrix element is non-zero only for 0 ≤ k ≤ 2l; L, k and, L′ as well as S, 1 and,
S ′ must satisfy the triangle relations.

30



2.5 Coulomb Interaction

2.5 Coulomb Interaction

In this section, we will apply the knowledge of the previous sections and calculate
the first part of the Hamiltonian. The Coulomb interaction describe the electrostatic
interaction between the electrons. We present Cowan’s expressions [7] for the various
parts of the Coulomb interaction within the Racah-Wigner algebra, which makes it
easier to derive closed algebraic expressions for the Coulomb interaction between basis
functions of the general configurations. Here, all expressions are formulated within the
Russell-Saunders coupling scheme.

2.5.1 Coulomb Operator

The description of the Coulomb operator begins with the interaction between two
electrons: The evaluation of the matrix element of the Coulomb interaction starts
with a multipole expansion of e2/r12, which reduces the calculation of (2l+ 1)4 matrix
elements (these are 625 for d electrons) to (l + 1) parameters. Using the spherical
harmonic addition theorem we find the equation

e2

r12

= e2

∞∑
k=0

rk<
rk+1
>

Pk(cos ω) = e2

∞∑
k=0

rk<
rk+1
>

k∑
q=−k

(−1)qC
(k)
−q (θ1, φ1)C(k)

q (θ2, φ2), (2.5.1)

in which r< and r> are respectively the lesser and greater value of the distances r1

and r2, i.e., the distance which the electrons have from the nucleus. Here C
(k)
q are the

renormalized spherical harmonics (2.4.5).

This kind of expansion can be done only in the case of electrons which are located
at the same ion. The expression for electrons located on two different ions is given
in section “2.9 Exchange Interactions”. The matrix element of (2.5.1) between two
two-electron product functions can be expressed as

〈ij| e
2

r12

|tu〉 = δmsi ,mstδmsj ,msu

∞∑
k=0

Rk(ij, tu)

×
k∑

q=−k

δq,mlt−mli δq,mlj−mlu (−1)qck(limi, ltmt)c
k(ljmj, lumu),

(2.5.2)

in which the first two δ-factors result from the summation over spin variables, and

Rk(ij, tu) =

∫ ∞
0

∫ ∞
0

e2rk<
rk+1
>

P ∗i (r1)P ∗j (r2)Pt(r1)Pu(r2)dr1dr2 (2.5.3)

are the radial integrals, with “ij” and “tu” representing the corresponding quantum
numbers nili, njlj . . .. The expression ck marks the Gaunt coefficients [55]. In some
special cases this matrix element expression (2.5.2) can be simplified as follows:
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2.5.2 Slater Integrals

The direct contribution (i ≡ t, j ≡ u) (2.5.2) can be rewritten as

〈ij| e
2

r12

|ij〉 =
∞∑
k=0

F k(ij)ck(limi, limi)c
k(ljmj, ljmj), (2.5.4)

with

F k(ij) ≡ Rk(ij, ij) =

∫ ∞
0

∫ ∞
0

e2rk<
rk+1
>

|Pi(r1)|2|Pj(r2)|2dr1dr2. (2.5.5)

The Gaunt coefficients ck are non-zero only for 0 ≤ k ≤ min(2li, 2lj). So the summa-
tion in (2.5.4) can be restricted to these values of k.

The exchange contributions (i ≡ u, j ≡ t) can be expressed by

− 〈ij| e
2

r12

|ji〉 = −δmsi ,msj
∞∑
k=0

Gk(ij)|ck(ljmj, ljmj)|2, (2.5.6)

in which

Gk(ij) ≡ Rk(ij, ji) =

∫ ∞
0

∫ ∞
0

e2rk<
rk+1
>

P ∗i (r1)P ∗j (r2)Pj(r1)Pi(r2)dr1dr2. (2.5.7)

The Gaunt selection rules restrict the values of k to k = |li − lj|, . . . (li + lj).

The radial integrals F k and Gk (generally called Rk) are also referred to as Slater
integrals [47]. These integrals11 are always positive and fulfill the following relations

F 0 > F 1 > F 2 > . . . > 0,

G0 > G1 > G2 > . . . > 0.
(2.5.10)

The numerical calculation of these integrals is difficult, because only a few of the most
important configuration-interactions can be included explicitly, and it is impractical
to include more than a very limited number. Thus it is useful to estimate the effect

11In order to avoid large denominators, which appear in the calculations of the matrix elements,
Condon and Shortley [50] have established the reduced radial integrals Fk and Gk which are
related to the radial F k and Gk integrals by the expression

Fk ≡
F k

Dk
and Gk ≡

Gk

Dk
, (2.5.8)

in which Dk are the least common denominators (for different mlimlj ) of the coefficients of the
corresponding F k, Gk. For d electrons: Dk = 441. Another definition of the Slater integrals is
given by Racah [4], the so-called Racah parameters, which (for d electrons) are related by the
expressions

A ≡ F 0 − 49
441

F 4, B ≡ 9
441

F 2 − 5
441

F 4, C ≡ 35
441

F 4 (2.5.9)

in order to simplify the appearance of the expressions for the matrix elements of the energy.
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2.5 Coulomb Interaction

of infinitely many small perturbations by using scaled-down theoretical values of the
single-configuration Coulomb integrals F k and Gk. This semiempirical correction has
qualitatively been justified by the theoretical investigations of Rajnak and Wybourne
[56–60]. Appropriate scaling factors range from about 0.7 or 0.8 for neutral atoms to
about 0.9 or 0.95 for highly ionized atoms.

The general calculation of the matrix elements of the Coulomb interaction is quite
complex because we have to distinguish between several cases:

1. Direct interaction between equivalent electrons12 in a subshell of an ion in a given
configuration.

2. Direct interaction between non-equivalent electrons in two subshells of an ion in
a given configuration.

3. Exchange interaction between non-equivalent electrons in two subshells of an ion
in a given configuration.

4. Direct and exchange interaction between non-equivalent electrons in two subshells
of an ion in two different configurations.

In all cases the Coulomb energy can be expressed with the aid of the radial Slater
integrals Fk (Rk

d) and Gk (Rk
e) as is shown by the relation:

〈ψ|
∑
i<j

e2

rij
|ψ′〉 =

∑
i<j

[∑
k

fkF
k +

∑
k

gkG
k

]
, (2.5.11)

with fk and gk representing the angular momenta parts. (Rk
d and Rk

e are needed in
case 4 and represent the generalization of the Slater integrals).

2.5.3 Direct Interaction between Equivalent Electrons

Case 1: In the Russell-Saunders coupling scheme, the Coulomb interaction is diagonal
in Jq and Mq and independent of Mq. Due to the invariance of the spin under the
Coulomb operator, the Coulomb operator has an effect only on L and not on S, and
the coupling (Lq Sq)Jq can be ignored by the determination of the matrix elements
which are independent of Jq and diagonal in Lq and Sq.
The calculation of the direct Coulomb interaction within a subshell njlj of a given
configuration can be accomplished by using the first term of the right-hand side of
(2.3.35). The resulting expression is∑

k

fdk (lj lj)F
k(lj lj) =

∑
k

δj
1

2
wj(wj − 1)〈lwjj αjLjSj|C(k)

m · C(k)
n |l

wj
j α

′
jL
′
jS
′
j〉F k(lj lj),

(2.5.12)

12One-electron orbitals having the same value of nl are called equivalent orbitals. Correspondingly,
electrons having the same values of nl are called equivalent electrons.
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2 Calculating the Electronic Structure of a Crystal

in which C
(k)
m ·C(k)

n is a scalar product of two tensor operators which can be evaluated
with the help of (2.4.13) and with δj defined as

δj ≡ δJq Mq ,J′q M′q

q∏
i=1

(
δLiSiLiSi,L′iS

′
iL
′
iS
′
i

)
×

q∏
i=1
i 6=j

(
δαi,α′i

)
. (2.5.13)

Rewriting (2.5.12) with (2.4.15) we finally achieve the expression for the angular mo-
mentum prefactor fk(lj lj) with k > 0

fk(lj lj) = δj
1

2
〈lj‖C(k)‖lj〉2

{
[Lj]

−1
∑
α′′ L′′

〈lwjj α′′L′′Sj‖U (k)‖lwjj αjLjSj〉

× 〈lwjj α′′L′′Sj‖U (k)‖lwjj α′jLjSj〉 − δαj ,α′j
wj(4lj + 2− wj)
(2lj + 1)(4lj + 1)

}
,

(2.5.14)

relative to the multiplet average. In the case of k = 0 we achieve for the angular
momentum prefactor the following expression:

f0(lj lj) = δj
1

2
[lj]

{
w2
j [lj]

−1 δαj ,α′j − δαj ,α′jwj [lj]
−1

}
. (2.5.15)

Within a set of equivalent electrons lwj the Coulomb interaction does not contribute
to the level structure if there are less than two electrons or less than two holes in the
subshell.

2.5.4 Direct Interaction between Non-Equivalent Electrons

Case 2: The direct Coulomb operator for non-equivalent electrons originates in the
second term of (2.3.35) and can be expressed as∑

i<j

wiwj〈ψ|
∑
k

e2rk<
rk+1
>

C
(k)
(m) · C

(k)
(n)|ψ

′〉 =
∑
i<j

∑
k

fk(li, lj)F
k(li, lj). (2.5.16)

The coefficient of the Slater integral F k is the angular matrix element

fk(li, lj) = 〈li‖C(k)‖li〉〈lj‖C(k)‖lj〉I(k)
ij , (2.5.17)

in which I
(k)
ij is defined as:

I
(k)
ij ≡ wiwj〈ψ‖u(k)

(m) · u
(k)
(n)‖ψ

′〉 = 〈ψ‖U (k)
(i) · U

(k)
(j) ‖ψ

′〉. (2.5.18)

In the last step of (2.5.18) the relation (2.4.17) is used. This operator only has an effect
on the angular momentum and therefore is diagonal in all spins, denoted by δ-factors

δJqMq ,J′qM
′
q

q∏
m=1

δSmSm,S′mS′m . (2.5.19)
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2.5 Coulomb Interaction

The operator describes the interaction between the ith and the jth subshell. All other
subshells should have the same quantum numbers denoted by δ-factors

δLj ,L′j

q∏
m=j+1

δαmLm,α′mL′mδLm,L′m . (2.5.20)

The remaining matrix element

〈(. . .Lj−1, Lj)Lj|U (k)
(i) · U

(k)
(j) |(. . .L

′
j−1, L

′
j)L
′
j〉 (2.5.21)

can be determined by using the uncoupling formulae (2.4.11) and (2.4.12). We start
with uncoupling Lj from Lj−1 by using (2.4.13). Then, if i < j − 1, we use (2.4.11)
(j− i− 1) times to successively uncouple Lj−1, Lj−2, . . . , Li+1. If i > 1, we use (2.4.12)
to uncouple Li from Li−1.

Finally we achieve [46]

I
(k)
ij = (−1)L′j−1+Lj+Lj

{
Lj−1 Lj Lj

L′j L′j−1 k

}
× 〈. . .Lj−1‖U (k)

(i) ‖ . . .L
′
j−1〉〈l

wj
j αjLjSj‖U (k)‖lwjj α′jL′jS ′j〉

= (−1)L′j−1+Lj+Lj

{
Lj−1 Lj Lj

L′j L′j−1 k

}
×

[
j−1∏

m=i+1

(−1)Lm−1+Lm+L′m+k [Lm,L
′
m]

1/2

{
Lm−1 Lm Lm

L′m k L′m−1

}]
× 〈. . .Li‖U (k)

(i) ‖ . . .L
′
i〉〈l

wj
j αjLjSj‖U (k)‖lwjj α′jL′jS ′j〉

= (−1)L′j−1+Lj+Lj

{
Lj−1 Lj Lj

L′j L′j−1 k

}
×

[
j−1∏

m=i+1

(−1)Lm−1+Lm+L′m+k [Lm,L
′
m]

1/2

{
Lm−1 Lm Lm

L′m k L′m−1

}]

×
[
δi,1 + (1− δi,1)(−1)Li−1+L′i+Li+k [Li,L

′
i]

1/2

{
Li−1 Li Li

k L′i L′i

}]
× 〈lwii αiLiSi‖U (k)‖lwii α′iL′iS ′i〉〈l

wj
j αjLjSj‖U (k)‖lwjj α′jL′jS ′j〉.

(2.5.22)
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2 Calculating the Electronic Structure of a Crystal

For k = 0 this expression can be reduced to

I
(0)
ij = δc,c′wiwj [li, lj]

1/2 , (2.5.23)

in which c and c′ represent the configurations between which I
(k)
ij is calculated. Inserting

this expression in (2.5.17) we get the equation

fk(li lj) = δc,c′wiwj. (2.5.24)

Thus the k = 0 terms in (2.5.17) contribute only to the averaged energy of all states
of the configuration Eav; they do not make any other contribution to the Hamiltonian
matrix elements, neither on nor off the diagonal. If either the subshell lwii or the subshell
l
wj
j is actually filled, then fk is zero for k > 0.

2.5.5 Exchange Interaction between Non-Equivalent Electrons

Case 3: Similar to (2.5.17) the exchange part for non-equivalent electrons has the form∑
i<j

∑
k

g′k(li lj)G
k(li lj). (2.5.25)

In order to determine the angular coefficient g′k analogous to (2.5.17) we use the fol-
lowing formula

g′k(li lj) = −1

2
〈li‖C(k)‖lj〉2

∑
r

(−1)r[r]

{
li li r
lj lj k

}
〈ψ|U (k)

(i) · U
(k)
(j) + 4V

(r1)
(i) · V

(r1)
(j) |ψ

′〉

= −1

2
〈li‖C(k)‖lj〉2

∑
r

(−1)r[r]

{
li li r
lj lj k

}
[I

(r)
ij + 4I

(r1)
ij ].

(2.5.26)

A detailed derivation of the above expression is given by Cowan [7].

In (2.5.26) I
(r)
ij is identical with the quantity (2.5.22) except that k is replaced by r.

This expression is still diagonal in all spins and in all other quantum numbers but not
for αiLi, αjLj, and Lm (i ≤ m ≤ j). The operator V

(r1)
(i) · V

(r1)
(j) is applied to spins as

well as to orbital momenta, and therefore I
(r1)
ij is diagonal only in quantum numbers

other than αiLiSi, αjLjSj, and LmSm (i ≤ m ≤ j). The determination of I
(r1)
ij is

analogous to I
(r)
ij but the uncoupling of spins as well as orbital momenta must be taken

into account. The final expression of I
(r1)
ij has the same form as (2.5.22). But for every

factor involving the orbital momenta a similar factor for the corresponding spins has
to be added and the reduced matrix elements are those of V (r1) instead of U (r). Thus
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2.5 Coulomb Interaction

the values of I
(r1)
ij can be formed by making use of the following formula:

I
(r1)
ij = (−1)L′j−1+S′j−1+Lj+Sj+Lj+Sj

{
Lj−1 Lj Lj

L′j L′j−1 r

}{
Sj−1 Sj Sj

S ′j S′j−1 1

}
×

[
j−1∏

m=i+1

(−1)Lm−1+Lm+L′m+r [Lm,L
′
m]

1/2

{
Lm−1 Lm Lm

L′m r L′m−1

}
(−1)Sm−1+Sm+S′m+1 [Sm,S

′
m]

1/2

{
Sm−1 Sm Sm

S′m 1 S′m−1

}]
×
[
δi,1 + (1− δi,1)(−1)Li−1+L′i+Li+r [Li,L

′
i]

1/2

{
Li−1 Li Li

r L′i L′i

}
× (−1)Si−1+S′i+Si+1 [Si,S

′
i]

1/2

{
Si−1 Si Si

1 S′i S ′i

}]
× 〈lwii αiLiSi‖V (r1)‖lwii α′iL′iS ′i〉〈l

wj
j αjLjSj‖V (r1)‖lwjj α′jL′jS ′j〉.

(2.5.27)

If either the subshell lwii or the subshell l
wj
j is filled, I(r) for r > 0 and I(r1) for all r will

become zero and (2.5.26) will be reduced to

g′k(li lj) = −δc,c′〈li‖C(k)‖lj〉2wiwj[li, lj]−1. (2.5.28)

In order to find the contribution of the exchange interaction to the Hamiltonian matrix
elements over and above Eav we have to subtract this value from (2.5.26). Because of
the disappearance of gk in the case of a filled subshell, the ij summation in (2.5.25)
need only run over unfilled shells.

2.5.6 Direct and Exchange Interaction between Non-Equivalent
Electrons

Case 4: The electron-electron Coulomb matrix elements are of the form

〈ψ|
∑
i<j

∑
k

e2rk<
rk+1
>

C
(k)
(m) · C

(k)
(n)|ψ

′〉 =
∑
ρσρ′σ′

∑
k

[
rkdR

k
d(lρlσ, lρ′lσ′) + rkeR

k
e(lρlσ, lρ′lσ′)

]
(2.5.29)

in which the radial integrals are defined as

Rk
d(li lj, l

′
i l
′
j) =

∫ ∞
0

∫ ∞
0

e2rk<
rk+1
>

P ∗i (r1)P ∗j (r2)Pi′(r1)Pj′(r2)dr1dr2, (2.5.30)

and

Rk
e(li lj, l

′
i l
′
j) ≡ Rk

d(li lj, l
′
j l
′
i) =

∫ ∞
0

∫ ∞
0

e2rk<
rk+1
>

P ∗i (r1)P ∗j (r2)Pj′(r1)Pi′(r2)dr1dr2.

(2.5.31)
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2 Calculating the Electronic Structure of a Crystal

Here Pi and Pj are radial functions for the bra configuration and Pi′ and Pj′ correspond
to the ket configuration. In contrast to the Slater integrals F k and Gk, the Rk integrals
are not necessarily positive. Analogous to the single configuration the factors rkd and rke
denote the angular coefficients of these radial integrals for the direct and exchange part.

The expressions for the rkd and rke coefficients can be found in Cowan’s textbook [7].
This kind of interactions is very small in most cases and therefore is neglected in this
thesis.

The CI energy perturbations and the configuration mixing are largest when the magni-
tude of the CI matrix elements is large compared with the energy difference between the
unperturbed levels. Consequently CI effects tend to be largest between configurations
whose differences in the center-of-gravity energies Eav are small, and/or with cases in
which the Coulomb matrix elements rk Rk(ij, i′j′) are large in magnitude. Large values
of Rk tend to occur particularly when ninj = ni′nj′ , because the various radial wave
functions then tend to have maximum overlap.

In order to keep the basis set manageable and small it is important that the Hamilton
operator has even parity, and so the CI matrix elements are zero, unless the bra and
ket functions have a common parity. Further, the Hamilton operator involves only
one- and two-electron operators and thus the interactions can occur only between two
configurations that differ at most in two orbitals. Furthermore, the matrix of the
Coulomb operator in the LS representation is diagonal in the quantum numbers LS.
Therefore non-zero Coulomb CI matrix elements exist only if both configuration have
some basis states indicated with LS in common. Thus the two configurations sp and
sf do not interact.
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2.6 Crystal Field Splitting

2.6 Crystal Field Splitting

In this section we describe the calculation of one of the most important part in the
Hamiltonian: The crystal-field operator describe the influence of the surrounding ions
on the energy levels of a given ion. We start with a general formulation of the elec-
trostatic potential and give a brief overview of the Ewald sum formulation, which is
essential in order to determine the crystal-field parameters Ak,m. In addition, we derive
an expression for the matrix elements of the crystal-field operator, which is valid for a
general configuration and not only for special cases [8].

2.6.1 Crystal-Field Theory and Ewald Sum Formulation

Crystal-field theory assumes that the ligands surrounding a given ion are fixed, non
overlapping and have a hard spherical charge distributions with a definite arrangement
(crystal structure). For the calculation of the electrostatic potential V (~r), the ions can
be replaced by point charges, located at Rj = (rj, θj, φj), and V (~r) can be expressed as

a series of spherical harmonics [61] C
(k)
m (θ, φ), where C

(k)
m (θ, φ) denotes the renormalized

spherical harmonics (2.4.5)

V (~r) =
N∑
j=1

∞∑
k=0

k∑
m=−k

Ak,mr
k
jC

(k)
m (θ, φ), (2.6.1)

where, rkj denotes the expectation value of the kth power of the radius of ion j. Due to
the parity of the spherical harmonics, we can restrict the sum over k to k ≤ 2lj, where
lj represents the angular momentum of the jth subshell. The crystal-field parameters
Ak,m are given by the Taylor expansion [62] in r of the Ewald sum [10] around r = 0,
with

Ak,m =
qj

Rk+1
j

√
4π

2k + 1
Y −mk (θj, φj), (2.6.2)

Before the matrix elements of the crystal field can be determined with the help of
the Racah-Wigner algebra, the crystal field-parameters Ak,m have to be known, which
contain all characteristics of the crystal. The calculation of the electrostatic potential V
is difficult because the sum in (2.6.1) does not converge. Therefore, the determination
of these parameters is done by means of the Ewald summation method. If the sum of
all charges in the unit cell is zero, then the potential can be rewritten as the sum of
two terms:

V (r) ≡ VRS(r) + VFS(r), (2.6.3)

in which VRS(r) represents the short-range term calculated in real space and VFS(r)
represents the long-range term calculated in Fourier space. VFS(r) should be finite for
all arguments (most notably r = 0). The difficulty of the problem is reduced to the
determination of the long-range part if we assume that the short-range part can be
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2 Calculating the Electronic Structure of a Crystal

done easily. Using the Fourier sum, we implicitly assume that the system under study
is periodic. The electrostatic potential (2.6.1) is then given by the equation [63]

V (r) =
∑
g 6=0

4π

Veg2
e−g

2/4G2+igr
∑
n

qne
−igan+

∑
l,n

qn
|l + an − r|

erfc(G|l+an−r|)−q1

r
erf(Gr),

(2.6.4)
lεT are lattice vectors of a translation lattice T , the expressions an represent the lattice
vectors of the unit cell, G is a parameter that determines the cut-off range of the real
space sum, and the so-called error function are given by

erf(z)=̇
2√
π

∫ z

0

e−t
2

dt, and erfc(z)=̇
2√
π

∫ ∞
z

e−t
2

dt = 1− erf(z), (2.6.5)

The two sums in (2.6.4) are absolutely convergent due to a Gaussian cut-off. Here
only the Ewald sum expansion around r = 0 is important. Thus we can use a Taylor
expansion of the last term in (2.6.4)

1

r
erf(Gr) =

2G√
π

(
1− (Gr)2

3
+

(Gr)4

10
− (Gr)6

42
+ . . .

)
. (2.6.6)

The prefactors Ak,m are the results of the Taylor expansion of the Ewald sum [62, 64]
around r = 0, with

Ak,m =
1√

k +m!
√
k −m!

(∂k−|m|z (−Sign[m]∂x + i∂y)
|m|)V (r, θ, φ)

∣∣∣
r=0

(2.6.7)

if k ≤ 6. An alternative calculation of the Ak,m parameters has been developed by
Huang [65].

2.6.2 Matrix Elements of the Crystal-Field Operator

The crystal-field operator acts only within a subshell j of a single configuration. The
matrix elements of the crystal-field operator can be calculated by applying the Wigner-
Eckart theorem

〈ψ|Vj(r)|ψ′〉 = 〈ψ|
2 lj∑
k=0

k∑
m=−k

Ajk,mr
k
jC

(k)
m (θφ)|ψ′〉

=

2 lj∑
k=0

k∑
m=−k

Ajk,m(−1)J−M

(
J k J′

−M m M′

)
〈βJ‖rkjC

(k)
j ‖β′J′〉,

(2.6.8)

where “〈. . . ‖rkjC
(k)
j ‖ . . .〉” represents the reduced matrix element and the expression in

big brackets the Wigner-3j symbol. The term βJ indicates the wave function (2.3.8)
without the magnetic quantum number M. For calculating the reduced matrix element
in (2.6.8), we can rewrite the reduced matrix element with Racah’s unit tensor:

〈βJ‖rkjC
(k)
j ‖β′J′〉 = 〈βJ‖U (k)

j ‖β′J′〉〈njlj‖rkjC
(k)
j ‖n′jl′j〉

≡ 〈βJ‖U (k)
j ‖β′J′〉 P

(k)
j,j′ .

(2.6.9)
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Applying the identity (2.4.11) to the unit-tensor matrix element we get the expression:

〈. . .LNSNJ‖U (k)
j ‖ . . .L′NS′NJ′〉 = δall spins(−1)LN+SN+J′+k [J, J′]

1/2

{
LN SN J

J′ k L′N

}
× 〈. . .LN‖U (k)

j ‖ . . .L′N〉,
(2.6.10)

which describes the uncoupling of LN from J. As the operator has an effect only on the
orbital momentum, the matrix will be diagonal in all spins (denoted by the δ-factor).
For the calculation of the matrix elements we can ignore all spin couplings. In order to
calculate the unit-tensor matrix element we have to apply (2.4.11) to (2.6.10) in order
to uncouple LN from LN . This has to be done (N − j) times if we successively want
to uncouple Li from Li (i = {j + 1, . . . , N}). And then finally (if j > 1) using (2.4.12)
to uncouple Lj from Lj−1. The result are δ-factors in all quantum numbers, αjLj and
Lj excepted. The remaining matrix element in (2.6.10) then is:

〈. . .LN‖U (k)
j ‖ . . .L′N〉 =

[
N∏

m=j+1

δαmLm,α′mL′m(−1)Lm−1+Lm+L′m+k

× [Lm,L
′
m]

1/2

{
Lm−1 Lm Lm

L′m k L′m−1

}]

×

[
δj1 + (1− δj1)

(
j−1∏
m=1

δαmLm,α′mL′m

)

× (−1)Lj−1+L′j+Lj+k
[
Lj,L

′
j

] 1
2

{
Lj−1 Lj Lj

k L′j L′j

}]
× 〈lwjj αjLjSj‖U (k)‖lwjj α′jL′jS ′j〉,

(2.6.11)

with w denoting the number of electrons in the jth subshell. Using (2.4.18), we can
calculate the matrix element of the unit tensor U (k).
The reduced matrix element P

(k)
j,j′ thus gets the form

P
(k)
j,j′ ≡ 〈njlj‖r

kC(k)‖n′jl′j〉 = 〈lj‖C(k)‖l′j〉
∫ ∞

0

Rnj ,lj(r) r
k Rn′j ,l

′
j
(r) dr

= (−1)lj
[
lj, l
′
j

]1/2( lj k l′j
0 0 0

)
×
∫ ∞

0

Rnj ,lj(r) r
k Rn′j ,l

′
j
(r) dr.

(2.6.12)

Here, Rnj ,lj(r) is the radial wave function of the jth atom with quantum numbers nj
and lj. The integral in (2.6.12) represents the expectation value of the kth power of
the ionic radius.
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2.7 Spin-Orbit Interaction

In solid-state physics the non-relativistic Schrödinger equation is only a first approx-
imation. Neglecting relativistic corrections would lead to doubly degenerate bands,
spin up and spin down, which can be split by a spin-dependent term in the Hamilto-
nian. The spin-orbit interaction describes the coupling between the angular momentum
and the electron spin and represents a relativistic correction to the Schrödinger equa-
tion. The description of compounds including rare earth elements with open d and f
shells requires the consideration of the spin-orbit interaction, because this interaction
is stronger than the crystal field splitting. In this section we describe the derivation of
the spin-orbit interaction and present Cowan’s expressions [7] for the matrix element
of the spin-orbit coupling for general configurations.

The energy of a magnetic dipole generated by the spin of an electron in a magnetic
field is

Vls = µBσB. (2.7.1)

Here the magnetic field B is excited by the moving nucleus. The problem for calculating
this energy is the determination of the magnetic field B. The intrinsic magnetic moment
of the electron is µBσ, if the electron is motionless. In this picture, the electron sees
nuclear charge the moving around the electron itself. Following Biot-Savart’s law the
magnetic field of the nucleus moving around the electron at the position of the electron
is expressed by:

B = −e
c

v × r

r3
. (2.7.2)

The electric field strength at a position r is E = e(r/r3). Thus the magnetic field can
be written as

B = −1

c
v × E. (2.7.3)

Replacing E in (2.7.3) by the force F, which is proportional to the gradient of the
potential V (r), the above equation (2.7.3) can be written as

B = − 1

ec
(v × r)

1

r

dV (r)

dr
. (2.7.4)

Introducing the angular momentum −l = mv × r we obtain the final equation for the
magnetic field

B = − 1

mecr

dV (r)

dr
l. (2.7.5)

But in this picture the nucleus moves. The transformation to the nuclear frame is
Lorentz invariant, because the moving particle is accelerated. This transformation was
done by Thomas [67] and adds a factor of 1/2, the so-called Thomas precession factor13.

13“An electric field with a component perpendicular to the electron velocity causes an additional ac-
celeration of the electron perpendicular to its instantaneous velocity, leading to a curved electron
trajectory. In essence, the electron moves in a rotating frame of reference, implying an additional
precession of the electron, called the Thomas precession.”, see [68]
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2.7 Spin-Orbit Interaction

Thus the final formula for the energy of the electron is

Vls = µBσBl =
µB

2mec

1

r

dV (r)

dr
(σ · l) = ξ(r)(s · l), (2.7.6)

with

ξ(r) =
1

2m2c2

1

r

dV (r)

dr
. (2.7.7)

Like the crystal-field operator, the spin-orbit operator acts only within a subshell of a
given configuration and the matrix element of this operator can be calculated within
the Racah-Wigner algebra. Here the tensor operator consists of the scalar product of
the two irreducible tensor operators l(1) and s(1). The reduced matrix element can be
written as follows

〈ψ |
N∑
j=1

ξj (r) l
(1)
j · s

(1)
j |ψ′〉 =

q∑
j=1

djξj. (2.7.8)

The radial integral ξl determines the size of the spin-orbit splitting:

ξj = ξnj lj =
α2

2

∫ ∞
0

1

r

(
dV j

dr

)
|Pnj lj(r)|2dr. (2.7.9)

The coefficient dj of the jth ion in the configuration can be expressed in terms of the
unit operator (2.4.16) and we get the equation

dj = wj〈lj‖l(1)‖lj〉〈ψ|u(1)
j · s

(1)
j |ψ′〉. (2.7.10)

In the Russell-Saunders coupling scheme, the matrix element (2.7.10) can be found
by applying the uncoupling relation (2.4.13) for scalar products. In addition to the
factor δJq ,Mq ,J′q ,M

′
q

the second matrix element in (2.7.10) is obtained by the procedure
described above. It has the form:

wj〈. . .(LqSq)Jq|u(1)
j · s

(1)
j | . . . (L′qS′q)J′q〉

= wj(−1)L′q+Sq+Jq

{
Lq Sq Jq
S′q L′q 1

}
〈. . .Lq‖u(1)

j ‖ . . .L′q〉〈. . .Sq‖s(1)
j ‖ . . .S′q〉

= (−1)L′q+Sq+Jq

{
Lq Sq Jq
S′q L′q 1

}
〈. . .LqSq‖V (11)

j ‖ . . .L′qS′q〉,

(2.7.11)

in which the symmetric double tensor (2.4.21) has been introduced to make the nota-
tion more compact. If j < q we successively uncouple LqSq, Lq−1Sq−1, . . . and, finally
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Lj+1Sj+1. If j > 1 we uncouple LjSj from Lj−1Sj−1. The final result then is

dj = δJq ,Mq ,J′q ,M
′
q

(∏
m 6=j

δαmLmSm,α′mL′mS′m

)(∏
m<j

δLm,Sm,L′m,S
′
m

)

× (−1)L′q+Sq+Jq

{
Lq Sq Jq
S′q L′q 1

}
×

[
q∏

m=j+1

(−1)Lm−1+Lm+L′m+1 [Lm,L
′
m]

1/2

{
Lm−1 Lm Lm

L′m 1 L′m−1

}
× (−1)Sm−1+Sm+S′m+1 [Sm,S

′
m]

1/2

{
Sm−1 Sm Sm

S′m 1 S′m−1

}]
×
[
δj1 + (1− δj1) (−1)Lj−1+L′j+Lj+1

[
Lj,L

′
j

]1/2{ Lj−1 Lj Lj

1 L′j L′j

}
× (−1)Sj−1+S′j+Sj+1

[
Sj,S

′
j

]1/2{ Sj−1 Sj Sj

1 S′j S ′j

}]
×
√
lj (lj + 1) (2lj + 1)〈lwjj αjLjSj‖V (11)‖lwjj α′jL′jS ′j〉.

(2.7.12)

The reduced matrix element of V (11) is zero for a closed subshell, so that dj is also zero.
The summation over j in (2.7.8) therefore needs to be carried out only with regard to
partially filled subshells, 1 ≤ wj ≤ 4lj + 1.
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2.8 Hybridization and Tight-Binding Approximation

In this section we consider the hybridization within the Slater-Koster tight-binding
approximation [11]. The hybridization describes the hopping of electrons between the
ions being involved in the cluster-model calculation and mixes the eigenstates of these
ions. This contribution describes also the interaction between two different configura-
tions within the configuration interaction calculation. Without this contribution, the
Hamilton matrix would be block diagonal. For the most transition-metal compounds,
the hybridization is only a small but often important contribution to the Hamiltonian.
We derived a new expression for the matrix elements of the tight-binding operator
within the Sobel’man’s parentage scheme approximation [12] valid for general configu-
rations. We begin with a general introduction in the tight-binding formalism and the
Slater-Koster approximation. In the following, we present Sharma’s method of calcu-
lating the so-called Slater-Koster coefficients and Harrison’s rules for determine the
hopping integrals. We end up with an introduction of Sobel’man’s parentage scheme
approximation and the derivation of the expression for the matrix elements of the
tight-binding operator.

2.8.1 Linear Combination of Atomic Orbitals (LCAO)

The contribution of hybridization is considered within the Slater-Koster tight-binding
approximation [11]. The tight-binding formalism is an extension of Bloch’s original
LCAO14 method [69], and can be directly derived from the density-functional theory
[70]. Let us consider a periodic lattice, in which the lattice vectors are denoted as Rm,
with a set of atoms i located at positions bi in each unit cell. Associated with each
atom is a set of atomic-like orbitals φiα, in which α denotes both the orbital and the
angular quantum numbers of the atomic state. In general, orbitals which are located
on different atoms are not orthogonal. In this case, we use Löwdin’s method [71] to
construct a set of orthogonal wave functions Ψiα,∫

Ψ∗iα (r−Rm − bi) Ψjβ (r−Rn − bj) d
3r = δi,jδm,n, (2.8.2)

which have symmetry properties similar to those of the corresponding φiα.

We can describe the system by a set of non-interacting single-particle wave func-
tions, which obey Fermi statistics, analogous to standard LCAO calculations and the
Hohenberg-Kohn-Sham density-functional theory (DFT) formalism [72, 73]. Following

14 Using the linear combination of atomic orbitals or LCAO method we can construct crystal wave
functions φ as a superposition of atomic orbitals χr

φ =
∑

r

crχr, (2.8.1)

each multiplied by a corresponding coefficient cr. By minimizing the total energy of the system,
we can determine an appropriate set of coefficients cr.
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Bloch’s theorem we can write these wave functions as

Ψ̃kiα = N−1/2
∑
n

eik·RnΨiα (r −Rn − bi) , (2.8.3)

in which k is the Bloch wavevector and N is the number of unit cells in the sum.
Diagonalizing the Hamiltonian H and using the basis functions (2.8.3) we obtain the
solution of Schrödinger’s equation for wavevector k. Within one of these blocks the
matrix elements can be written in the form

Hiα,jβ(k) =
∑
n

eik·Rn

∫
Ψ∗iα (r−Rn − bi) HΨjβ (r− bj) d

3r, (2.8.4)

in which the translation symmetry of the lattice is used to remove one of the sums
over the lattice vectors Rn. Given the Hamilton operator as a function of the wave
vector k, the band energy εn(k) is obtained by solving the single-particle Schrödinger
equation ∑

nj

Hiα,jβ(k)cnjβ(k) = εn(k)cniα(k), (2.8.5)

in which the cniα(k) are the expansion coefficients of the Löwdin functions, and n is
the band index.

2.8.2 Hopping Integrals

The HamiltonianH in (2.8.4) includes a single-particle potential, which may be written,
without any approximation, as

V (r) =
∑
nk

Vk (r−Rn − bk) , (2.8.6)

in which the potential Vk is centered on the kth atom and vanishes at a certain distance
from that atom. If we insert this expression and the wave function expansion (2.8.3)
into (2.8.4), then each term of the integral results from either the regions centered
around the two atomic-like wave functions Ψiα and Ψjβ, or from the regions centered
around the potential at bk. So these integrals can be classified into four categories:

1. If all regions are located on the same atom, we speak of an on-site integral.

2. If the potential is located at the same position as one of the wave functions, while
the other wave function is located at a different position, we speak of a two-center
integral.

3. If both the wave functions and the potential are all located at different sites, we
speak of a three-center integral.

4. If both wave functions come from the same site but the potential is on a different
site. This category represents a crystal-field correction to the on-site terms.
This category was not considered by Slater and Koster, but the formalism was
developed by Mercer and Chou [75] and Cohen [76].
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2.8.3 Slater-Koster Approximation

Following Slater and Koster [11], we regard the potentials Vk(r) as spherically sym-
metric. Therefore the wave functions Ψ and φ can be specified by the usual angular-
momentum quantum numbers. The on-site integrals only contribute to the diagonal
elements of the Hamiltonian. In the two-center approximation the integrals in (2.8.4)
depend only on the distance u between the two atoms, and the Hamiltonian has the
form

Hij
αβ(u) =

∫
Ψ∗iα(r− u)H2c Ψjβ(r)d3r, (2.8.7)

in which H2c is the two-center part of the Hamiltonian, i.e., the kinetic energy oper-
ator and a spherically symmetric potential centered on atom i or on atom j. These
terms depend on the orientation of u, on the distance between atoms (u = |u|), and
on the angular momenta contained in the quantum numbers α and β. If we restrict
the atomic orbitals φi to s, p, and d angular momenta, then each term of equation
(2.8.7) can be written in terms of 14 Slater-Koster parameters. Here these parameters
will be expressed by the form Habγ(u), in which a and b specify the angular momenta
of the orbitals (s, p, d, . . .); and γ = σ, π, δ specifies the component of the angular
momentum relative to the direction u. In the case of two identical atoms, four pairs
of Slater-Koster parameters are related by symmetry resulting in ten independent pa-
rameters. Note, that the matrix elements are short range, i.e. the integral (2.8.7) will
vanish if the wave functions Ψiα(r − u) and Ψjβ(r) do not overlap. The on-site and
two-center integrals Habγ(u) are chosen to reproduce the first-principles single-particle
band structure of the given crystal.

Mattheiss [77] modified this two-center tight-binding method in order to omit the
Löwdin transformation and used non-orthogonal orbitals. As a consequence the basis
functions (2.8.3) are replaced by the functions

φ̃kiα(r) = N−1/2
∑
n

eik·Rnφiα (r−Rn − bi) . (2.8.8)

Since these are no longer orthogonal, the problem of diagonalizing the Schrödinger
equation is solved by transforming it into a generalized eigenvalue equation

Hψ = εSψ. (2.8.9)

This equation involves the equation of the Hamiltonian matrix elements (2.8.4) with
Ψiα replaced by the corresponding φiα, and an overlap matrix

Siα,jβ(k) =
∑
n

eik·Rn

∫
φ∗iα(r−Rn − bi)φjβ(r− bj)d

3r. (2.8.10)

Since the matrix (2.8.10) does not include a Hamiltonian term, it can be exactly split
up into on-site terms and two-center terms, as can be shown by the following definition:

Sijαβ(k) =

∫
φ∗iα(r− u)φjβ(r)d3r, (2.8.11)
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Figure 2.2: The coordinate systems x, y, z at A and B (in which the ions are located)
are oriented parallel.

These terms show the same symmetry as the corresponding two-center Hamiltonian
matrix elements (2.8.7). These two-center terms can be parameterized into terms de-
noted as Sabγ in the same way as the corresponding Hamiltonian. This introduces
another 14 Slater-Koster parameters (ten if the atoms are identical) for systems de-
scribed in terms of s, p, and d orbitals. The use of this formalism with non-orthogonal
wave functions has two advantages: The most obvious advantage is that we obtain ad-
ditional parameters facilitate fitting band structures. The other advantage is connected
with the usage of atomic wave functions: The two-center Slater-Koster parameters in
equations (2.8.7) and (2.8.11) have a shorter range than the orthogonal wave functions
Ψ, usually only a few nearest-neighbor shells and the non-orthogonal matrix elements
depend only on the local environment of each atom.

2.8.4 Sharma’s Method

Determining the Slater-Koster prefactors of the Habγ(u) can be done for any angular
momentum number la, lb, and γ by using Sharma’s method [78]: The single-particle
matrix element of the Hamilton operator (2.8.7) – with quantum numbers li,mi, and
ion positions ri – can be expressed as

Hl1,m1,l2,m2(r1, r2) = 〈l1m1|H|l2m2〉, (2.8.12)

in which
|limi〉 = ui(r)Y mi

li
(θ, φ) (2.8.13)

is the single-particle wave function of ion i. Here the ui(r) represent the radial part
of orbital |limi〉, which is measured with respect to the coordinate system (xyz) which
has its origin at the ionic position ri. The orientation of the (xyz) system has been
assumed to be the same as that of the two ions A and B (see Fig. 2.2). In order to
orient the quantization axes of ion A and ion B antiparallel to each other and parallel
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2.8 Hybridization and Tight-Binding Approximation

to the distance vector pointing from the origin A at r1 to the origin B at r2 we make
use of the rotation groups and express the orbital |l1m1〉 at ion A as

|l1m1〉 =
∑
m′1

D
(l1)

m′1,m1
(α, β, γ)|l1m′1〉, (2.8.14)

in which D
(l1)

m′1,m1
(α, β, γ) denotes the rotation-group element. The Euler angles (α, β, γ)

define the rotation of the old coordinate system (xyz) into the new system (x′y′z′) where
the z′ axis is parallel to the distance vector pointing from the origin A at r1 to the
origin B at r2. Analogous to the relation shown above we find the following relation
for the orbitals located at ion B

|l2m2〉 =
∑
m′2

D
(l2)

m′2,m2
(α, β, γ)|l2m′2〉. (2.8.15)

Substitution of (2.8.14) and (2.8.15) in (2.8.12) provides the equation

Hl1,m1,l2,m2(r1, r2) =
∑
m′1,m

′
2

D
(l1)∗
m′1,m1

(α, β, γ)D
(l2)

m′2,m2
(α, β, γ)′〈l1m′1|H|l2m′2〉′. (2.8.16)

In the two-center approximation the following condition holds:

〈l1m′1|H|l2m′2〉 = 〈l1m′1|H|l2m′1〉δm′1,m′2 . (2.8.17)

Rewriting (2.8.16) with (2.8.17) we get the relation

Hsingle
l1,m1,l2,m2

=

min(li,lj)∑
m′1=0

(
2− δ0,m′1

)
J (l1,m1, l2,m2;m′1) 〈l1m′1|H|l2m′1〉. (2.8.18)

Here “J (l1,m1, l2,m2;m′1)” denotes the Slater-Koster coefficients and “〈l1m′1|H|l2m′1〉”
represents the two-center hopping integrals which can be determined by Harrison’s rules
or by fitting the two-center hopping integrals to first-principle band structure calcula-
tions. For example, the expression “〈11|H|21〉” represents the Vpdπ hopping integral.

2.8.5 Harrison’s Rules

For transition-metals and for transition-metal compounds the hopping integrals Vli,lj ,m
can be calculated by the general formula

Vli,lj ,m = ηli,lj ,m
~2
√
r2li−1
li

r
2lj−1
lj

mdli+lj+1
(2.8.19)

with

ηli,lj ,m =
(−1)lj+m+1

6π

(li + lj)!

2li+lj
(2li)!(2lj)!

li!lj!

√
(2li + 1)!(2lj + 1)!

(li +m)!(li −m)!(lj +m)!(lj −m)!
.

(2.8.20)

49



2 Calculating the Electronic Structure of a Crystal

The equations are derived by Harrison and Willis [80]. They are valid for arbitrary
angular momenta li and lj. In (2.8.19) the expression d represents the distance between
the two ions A and B. The ionic radii of the ions are denoted by rli and rlj , respectively.
In order to determine the hopping integrals we can use one of the following formulae
[79]:

Vssσ = −1.32
~2

md2
, (2.8.21)

Vspσ = 1.42
~2

md2
, (2.8.22)

Vppσ = 2.22
~2

md2
, (2.8.23)

Vppπ = −0.63
~2

md2
. (2.8.24)

2.8.6 Sobel’man’s Parentage-Scheme Approximation

The application of the Racah-Wigner algebra was not possible, because we were not
able to express the tight-binding operator as a spherical tensor operator. Although
Sobel’man’s parentage scheme [12] is not as fast and elegant as the Racah-Wigner
algebra we do not need to know the Slater determinants and conserve the ionic multiplet
dependence as well. The tight-binding operator describes transitions of the following
form

lm [α1L1S1] l′p [α2L2S2]LSMLMS → lm−1 [α′1L
′
1S
′
1] l′p+1 [α′2L

′
2S
′
2]L′S ′M ′

LM
′
S. (2.8.25)

Here, m and p are the number of electrons in subshell 1 and 2, αkLkSk indicate the
multiplet of subshell k = {1, 2}, L = L1 +L2 the total angular momentum, S = S1 +S2

the total spin and, ML and MS their corresponding magnetic quantum number. The
calculation of matrix elements for this transition is based on the reformulation of the
multiplet wave functions for the nlm and n′l′p+1 subshells in terms of (2.3.4). Following
Sobel’man [12] the matrix element of a symmetric single-particle operator F =

∑m
i=1 fi

which describes the transition (2.8.25) may be written as

〈lm [α1L1S1] l′p [α2L2S2]LSMLMS|F |lm−1 [α′1L
′
1S
′
1] l′p+1 [α′2L

′
2S
′
2]L′S ′M ′

LM
′
S〉

=
√
m(p+ 1) (−1)∆p

×
(
lm−1α′1L

′
1S
′
1|}lmα1L1S1

)
×
(
lpα2L2S2|}lp+1α′2L

′
2S2

)
× 〈lm−1 [α′1L

′
1S
′
1] l [α1L1S1] , l′p [α2L2S2]LSMLMS|fN |

lm−1 [α′1L
′
1S
′
1] , l′p [α2L2S2] l′ [α′2L

′
2S
′
2]L′S ′M ′

LM
′
S〉.

(2.8.26)

In Sobel’man’s expression (2.8.26), fm describes the application of the single particle
operator on the last (mth) coordinate. The matrix element in the last line of this equa-
tion includes the expression “lm−1 [α′1L

′
1S
′
1] l [α1L1S1]”, which describes the coupling of

a single electron, with angular momentum l, to the multiplet of subshell lm−1 indicated
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by α′1L
′
1S
′
1, which built up the multiplet α1L1S1 of the subshell lm. The expression

“l′p [α2L2S2] l′ [α′2L
′
2S
′
2]” represents the same procedure for the multiplet of subshell

lp+1. The factor
√
m(p+ 1) (−1)∆p arises from coordinate permutations. The factor

“∆p” is equal to p if we consider a system, consisting of only two subshells. But, in
the general case of q subshells

lw1
1 , . . . , lmi , . . . , l

p
j , . . . , l

wq
q → l

w′1
1 , . . . , lm−1

i , . . . , lp+1
j , . . . , l

w′q
q , (2.8.27)

where w′k = wk for all subshells except k = i and k = j, we have to use Cowan’s
expression [7] for ∆p

∆p ≡ p+

j−1∑
k=i+1

wk. (2.8.28)

Determining the tight-binding operator we rewrite (2.8.26) in terms of the single-
particle operator (2.8.18).

For the matrix element of the tight-binding operator we obtain

〈ψ|Htb|ψ′〉 = 〈. . . lmi αiLiSiLiSi . . . l
p
jαjLjSiLjSj . . . |Htb|

. . . l′m−1
i α′iL

′
iS
′
iL
′
iS
′
i . . . l

′p+1
j α′jL

′
jS
′
iL
′
jS
′
j . . .〉

=

L1∑
ML1

=−L1

S1∑
MS1

=−S1

. . .

Lk∑
MLk

=−Lk

Lk∑
MLk

=−Lk

Sk∑
MSk

=−Sk

Sk∑
MSk

=−Sk

. . .

L′1∑
M ′
L′1

=−L′1

S′1∑
M ′
S′1

=−S′1

. . .

L′t∑
M ′
L′t

=−L′t

L′t∑
M′

L′t
=−L′t

S′t∑
M ′
S′t

=−S′t

S′t∑
M′

S′t
=−S′t

. . .

√
m(p+ 1) (−1)∆p

(
lm−1α′iL

′
iS
′
i}|lmαiLiSi

) (
lpαjLjSi}|lp+1α′jL

′
jS
′
j

)
× CGTotal

× CG
(
L′i,M

′
Li
, li,mli , Li,MLi

)
CG

(
S ′i,M

′
Si
, 0.5,msi , Si,MSi

)
× CG

(
Lj,MLj , lj,mlj , L

′
j,M

′
Lj

)
CG

(
Sj,MSj , 0.5,msj , S

′
j,M

′
Sj

)
× δmsi ,msj
×Hsingle

limli ,lj mlj
,

(2.8.29)

in which

mli ≡
(
MLi −M ′

Li

)
, mlj ≡

(
M ′

Lj
−MLj

)
,

msi ≡
(
MSi −M ′

Si

)
, msj ≡

(
M ′

Sj
−MSj

)
.

(2.8.30)

The definition of these quantum numbers is justified by the Clebsch-Gordan coefficients
(CG), which are zero otherwise. The parameters k and t indicate that all summations
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2 Calculating the Electronic Structure of a Crystal

for 2 ≤ k ≤ q and 2 ≤ t ≤ q have to be inserted in (2.8.29). The appearance of the
δ-factor is caused by the fact that the tight-binding operator has no effect on the spin
quantum numbers.

The term CGTotal represents the total Clebsch-Gordan coefficient which couples all
angular momenta in the wave functions ψ and ψ′. It is defined as

CGTotal ≡CG
(
Lq,MLq,Sq,MSq, Jq,Mq

)
CG

(
L′q,M

′
L′q
,S′q,M

′
S′q
, J′q,M

′
q

)
×

q∏
i=2

[
CG

(
Li−1,MLi−1

, Li,MLi ,Li,MLi

)
× CG

(
Si−1,MSi−1

, Si,MSi ,Si,MSi

)
× CG

(
L′i−1,M

′
L′i−1

, L′i,M
′
L′i
,L′i,M

′
L′i

)
× CG

(
S′i−1,M

′
S′i−1

, S ′i,M
′
S′i
,S′i,M

′
S′i

)]
,

(2.8.31)

in which

L1 ≡ L1, L′1 ≡ L′1,

S1 ≡ S1, S′1 ≡ S ′1.
(2.8.32)

In order to save computation time we rewrite the matrix element (2.8.29) as follows:

〈ψ|Htb|ψ′〉 =

li∑
mi=−li

lj∑
mj=−lj

M(li,mi, lj,mj)×Hsingle
limi,ljmj

. (2.8.33)

Here M(li,mi, lj,mj) represents the matrix element in (2.8.29) with the last line

Hsingle
limi,ljmj

omitted. The matrix M(li,mi, lj,mj) depends on the quantum numbers

(li,mi, lj,mj) and the two configurations ψ and ψ′ involved. By calculating M only
once depending on the two configurations ψ and ψ′ we can reduce the time for the
calculation.

2.8.7 Racah-Wigner expression for the tight-binding operator

In contrast to the statements written above we find finally an expression for the tight-
binding operator within the Racah-Wigner algebra. We start with a formula similar
to those given by Arrio et al. [82]

Htb(li, lj) =

min(li,lj)∑
m′1=0

∞∑
t=0

t∑
q=−t

btq(li, lj,m
′
1)C(t)

q . (2.8.34)

In order to express the tight-binding operator within the Slater-Koster approximation
we have to determine the btq coefficients by setting Sharma’s expression for the Slater-
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2.8 Hybridization and Tight-Binding Approximation

Koster prefactors [78]

J(l1,m1, l2,m2,m
′
1) = (−1)m

′
1−m2

l1+l2∑
l=|l1−l2|

[√
(4π) · (2l + 1)

(
l1 l2 l
−m′1 m′1 0

)

×
(

l1 l2 l
−m1 m2 m1 −m2

)
Y t
m2−m1

(β, α)
]
,

(2.8.35)

equal to an expansion over spherical harmonics

J(l1,m1, l2,m2,m
′
1) =

l1+l2∑
t=|l1−l2|

t∑
q=−t

[
btq(li, lj,m

′
1) · ct(l1m1l2m2)

]
. (2.8.36)

Here, the expression

ct(l1m1l2m2) ≡ 〈l1m1|C(t)
m1−m2

|l2m2〉

=

(
4π√

(2k + 1)

)1/2 ∫ 2π

0

∫ π

0

Y ∗l1m1
(θ, φ)Y k

m1−m2
(θ, φ)Y l2

m2
(θ, φ) sin θdθdφ

= (−1)m1
√

(2l1 + 1)(2l2 + 1) ·
(
l1 t l2
0 0 0

)(
l1 t l2
−m1 m1 −m2 m2

)
,

(2.8.37)

denotes the Gaunt coefficients [55], which include strong selection rules due to the
3j-symbols being involved in (2.8.37). Thus, we can restrict the summation over t in
(2.8.34) to the range from |li − lj| to (li + lj). Solving (2.8.34) for the different values
of li, lj, and m′1 we get the btq coefficients which are tabulated in Appendix B.

In order to derive an expression for the matrix elements of the tight-binding operator,
which is valid for arbitrary configurations, we modify the formula for the dipole operator

〈ψ|rtC(t)
q |ψ′〉 → 〈ψ|btqC(t)

q |ψ′〉, (2.8.38)

and get the following expression for the matrix elements of the tight-binding operator15

〈ψ|Htb|ψ′〉 = 〈. . . lni αiLiSiLiSi . . . l
k
jαjLjSiLjSj . . . |Htb|

. . . l′n−1
i α′iL

′
iS
′
iL
′
iS
′
i . . . l

′k+1
j α′jL

′
jS
′
iL
′
jS
′
j . . .〉

=

min(li,lj)∑
m′1=0

l1+l2∑
t=|l1−l2|

t∑
q=−t

(−1)Jq−Mq

(
Jq t J′q
−Mq q M′

q

)
btq(li, lj,m

′
1) ·DLS

(2.8.39)

Here, we use Cowan’s expressions [7] for the reduced matrix elements of the dipole
operator

DLS ≡ D1 ·D2 ·D3 ·D4 ·D5 ·D6 ·D7 · P (t)
lilj
, (2.8.40)

15Due to the strong selection rules of the 3j-symbol, the matrix elements vanish for q 6= Mq −M′q.
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2 Calculating the Electronic Structure of a Crystal

and replace the factor P
(t)
lilj
≡ 〈nili|r(t)|njlj〉 by 1. The factor DLS consists of seven

factors, which describe cfp expansions, recouplings, and uncouplings. In the following
we will give a brief discussion of each factor.

The first factor D1 arises from coordinate permutations and is given by

D1 = (−1)∆p
√
n · k, (2.8.41)

with

∆p = k − 1 +

j−1∑
m=i+1

wm. (2.8.42)

The factor D2 describes an expansion over coefficient-of-fractional-parentage and is
defined by

D2 =
(
lni αiLiSi{|ln−1

i α′iL
′
iS
′
i

) (
lk−1
j αjLjSj|}lkjα′jL′jS ′j

)
. (2.8.43)

Note, the factor is unequal to 1 only for n > 2 and/or k > 2.

Additionally, we have to uncouple S from L and L′ and get a further factor

D3 = δSq ,S′q(−1)Lq+Sq+J′q+t
[
Jq, J

′
q

]1/2{ Lq Sq Jq
J′q t L′q

}
. (2.8.44)

If q > j we have to repeatedly uncouple Lq, Lq−1, . . ., Lj+1 and obtain the following
factor

D4 =

q∏
m=j+1

δαmLmSm,α′mL′mS′mδSmS′m(−1)Lm−1+Lm+L′m+t [Lm,L
′
m]

1/2

×
{

Lm−1 Lm Lm

L′m t L′m−1

}
.

(2.8.45)

If i > 1 we have to recouple from lwi−1
i−1

(
ln−1
i li

)
to
(
lwi−1
i−1 ln−1

i

)
li and get the following

factor

D5 =

(
i−1∏
m=1

δαmLmSm,α′mL′mS′mδLmSm,L′mS′m

)

× (−1)Li−1+L′i+li+Li [L′i, Li]
1/2

{
Li−1 L′i L′i
li Li Li

}
× (−1)Si−1+S′i+si+Si [S′i, Si]

1/2

{
Si−1 S ′i S′i
si Si Si

}
.

(2.8.46)

If i < (j − 1), we get an additional factor of the following form, which describes the
jump of li over each of the intervening subshells i < m < j

D6 =

(
j−1∏

m=i+1

δαmLmSm,α′mL′mS′m(−1)li+Lm+Lm−1+L′m [Lm−1,L
′
m]

1/2

{
li L′m−1 Lm−1

Lm Lm L′m

}

× (−1)si+Sm+Sm−1+S′m [Sm−1,S
′
m]

1/2

{
si S′m−1 Sm−1

Sm Sm S′m

})
.

(2.8.47)
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Finally, we have to recouple li once more and obtain

D7 =δSj ,S′j
(−1)S′j−1+S′j+Sj

[
Sj−1, S

′
j

]1/2{ S′j−1 S ′j Sj

Sj Sj−1 s

}

× (−1)Lj+lj+L
′
j
[
Lj−1, L

′
j,Lj,L

′
j

]1/2
Lj−1 L′j−1 li
Lj L′j lj
Lj L′j t

 .

(2.8.48)

Although Cowan’s result is rather complex, it provides a general, closed-form expres-
sion which can be perfectly used by the computer program.
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2 Calculating the Electronic Structure of a Crystal

2.9 Exchange Interactions

In this section we treat the “direct” Coulomb and exchange interaction between two
atomic shells at different sites. The usage of this mechanism offers the description of
magnetic ion systems with unquenched orbital momenta. Although this contribution
to the Hamiltonian is not considered in the analysis of the optical spectra, it continues
the explanation in section “2.5 Coulomb interaction”.

Following Levy [83], we can express the matrix element as

〈φ′a(1)φ′b(2)| − e2

rij
|φa(1)φb(2)〉. (2.9.1)

Although the operator e2/rij is a two-electron operator, it operates on two different
antisymmetrized sets of states. Therefore, with respect to each ion, the interatomic
exchange operator is a one-electron operator.

In order to evaluate the matrix elements we have to expand the orbitals about another
center; therefore we refer all wave functions to a common center and use the one-center
expansion

1

r12

=
∞∑
k=0

rk<
rk+1
>

C(k)(1) · C(k)(2), (2.9.2)

where

C(k)
q (i) =

√
4π

(2k + 1)
Ykq(Ωi) (2.9.3)

and r< is the lesser and r> the greater of r1 and r2.

If we assume that the expansion of 1/r12 is given in terms of operators referred to center
A, we have to reexpress the wave functions about center B, in terms of harmonics
referred to center A using the expression [84]

ψ(rib) = RnL(rib)YLM(Ωib) =
∞∑
l=0

L+l∑
λ=|L−l|

ν ′lλnL(ria, Rab) ([l] [λ] /4π)1/2

× V̄ (l L λ; 0 0 0)
[
Y [λ](Ωab)× Y [l](Ωia)

][L]

M

(2.9.4)

where

rib = ria −Rab,

ν ′lλnL(ria, Rab) ≡
1

π

∫ ∞
−∞

jλ(kRab)jl(kria)ψ̄(k)k2dk,
(2.9.5)

and

ψ̄(k) ≡ 4π

∫ ∞
0

RnL(rib)jL(krib)r
2
ibdrib. (2.9.6)
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2.9 Exchange Interactions

The jλ(kR) represent spherical Bessel functions, the spherical harmonics follow the
convention of Fano and Racah [52]. The V̄ symbols are related to the Wigner 3-j
symbols:

V̄ (j1j2j3;m1m2m3) = (−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)
. (2.9.7)

By using a rather lengthy recoupling [83], we can write the matrix element (2.9.1) as
follow:

〈φ′a(1)φ′b(2)|
l′a+la∑

k1=|l′a−la|

l′b+lb∑
k2=|l′b−lb|

k1+k2∑
Λ=|k1−k2|

−Γk1k2Λ (n′al
′
an
′
bl
′
b, nalanblb)

×
[
u[k1](1)× u[k2](2)× C [Λ](Ωab)

][0]
(

1

2
+ 2s1 · s2

)
|φa(1)φb(2)〉

(2.9.8)

where φa(i) ≡ |lαmα〉|12msα〉, and

Γk1k2Λ ≡(−1)la+l′b+
1
2

(k1+k2+Λ)(e/4π)2[k1][k2][Λ]([l′a][la][l
′
b][lb])

1/2

×
∞∑

k,l,l′=0

lb+l∑
λ=|lb−l|

l′b+l
′∑

λ′=|l′b−l′|

(−1)k[l][l′][λ][λ′]V̄ (l′alk; 000)V̄ (l′lak; 000)

× V̄ (lblλ; 000)V̄ (l′l′bλ
′; 000)V̄ (λλ′Λ; 000)

{
la l′a k1

l l′ k

}
Λ k2 k1

λ lb l
λ′ l′b l′


×
∫ ∞

0

∫ ∞
0

rk<
rk+1
>

Rn′al
′
a
(r1)ν ′lλnblb(r1, Rab)Rnala(r2)ν ′l′λ′n′bl′b(r2, Rab)r

2
1r

2
2dr1dr2.

(2.9.9)

Comparing this expression with Racah’s result for one center, we find that in contrast
to the one-center problem, where angular momentum is conserved and the product of
the two operators is a scalar invariant, the spherical harmonic in the triple product of
the two-center expansion requires that the irreducible products of these operators be
nonscalar. The radial integrals in the coefficient Γk1k2Λ correspond to the Slater Gk

integrals for one center.
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2 Calculating the Electronic Structure of a Crystal

2.10 External Fields

Up to now all contributions to the Hamiltonian H were considered without static
external fields, i.e., without a static external magnetic field or a static external electric
field. The external fields, especially the magnetic field, become relevant, if we calculate
observable like the magnetic susceptibility, and compare these with experimental data.
Starting from Cowan’s expressions [7] for the Stark and the Zeeman effect we derive
generalized equations for the matrix elements of the Stark and the magnetic-moment
operator, valid for arbitrary configurations.

2.10.1 Stark Effect

A uniform, static, external electric field E exerts forces on the nuclei and on the elec-
trons in the crystal that are mostly parallel and antiparallel to E, respectively. These
polarize the ions and produce non-zero electric dipole moments with magnitudes, which
are proportional in first order to the field strength. The degeneracy of the atomic levels
with respect to ML but not to the spin quantum number MS is removed. This effect
was first observed by Stark [85]. It is caused by the interaction between the ions and
the external field: Applying an external electric field E to the crystal adds a further
term – the so-called Stark term – to the Hamilton operator:

HStark = E
∑
i

e ri. (2.10.1)

In order to get the eigenvalues of this operator in rydbergs (e2/2a0), the strength of
the electric field E is measured in units of

e2

a2
0

= 5.1423 · 10−9 volts/cm. (2.10.2)

An additional factor 2 is thereby introduced on the right-hand side of (2.10.1).

To determine the matrix elements of this operator

〈ψ|HStark|ψ′〉 = 2 E 〈ψ|
∑
i

e ri|ψ′〉 (2.10.3)

we have to express the position vector r, which is a vector operator, as a tensor operator:
A vector operator V with vector components Vx, Vy, and Vz can be written as an
irreducible tensor operator T of rank one. The components are given by

T
(1)
1 = − 1√

2
(Vx + i Vy) ,

T
(1)
−1 =

1√
2

(Vx − i Vy) ,

T
(1)
0 = Vz.

(2.10.4)
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These three functions are proportional to the three spherical harmonics Y11, Y10 and
Y1−1. The normalization prefactors (−1/

√
2, 1/
√

2, 1) are chosen such that T
(1)
0 is

identical with Vz. So we can write the position vector r as an irreducible tensor operator
of rank one by using the renormalized spherical harmonics (2.4.5)

r(1) = rC(1). (2.10.5)

Thus we can apply the Wigner-Eckart theorem to calculate the matrix elements of the
Stark operator (2.10.3):

hqψ,ψ′ ≡ 〈ψ|H
q
Stark|ψ

′〉 = −2 Eq e
N∑
j=1

(−1)J−M

(
J 1 J′

−M q M′

)
〈βJ‖rjC(1)

j ‖β′J′〉,

(2.10.6)
with β = (α1L1S1L1S1 . . . αNLNSNLNSN).

Here the expression q = {−1, 0, 1} represents one of the components of the tensor op-
erator r(1). The matrix elements of the vector operator components can be determined
by using linear combinations of these tensor operator components h

(q)
ψ,ψ′ :

〈ψ|Vx|ψ′〉 = − 1√
2

(
h

(q=1)
ψ,ψ′ − h

(q=−1)
ψ,ψ′

)
,

〈ψ|Vy|ψ′〉 =
i√
2

(
h

(q=1)
ψ,ψ′ + h

(q=−1)
ψ,ψ′

)
,

〈ψ|Vz|ψ′〉 = h
(q=0)
ψ,ψ′ .

(2.10.7)

Due to the fact that an electric field has no effect on the spin quantum numbers,
the reduced matrix elements (2.10.6) can be determined analogous to the crystal-field
operator (2.6.8). We can rewrite the reduced matrix element (2.10.6) with Racah’s
unit tensor:

〈βJ‖rjC(1)
j ‖β′J′〉 = 〈βJ‖U (1)

j ‖β′J′〉〈njlj‖rjC
(1)
j ‖n′jl′j〉

≡ 〈βJ‖U (1)
j ‖β′J′〉 P

(1)
j,j′ .

(2.10.8)
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Applying the identity (2.4.11) to the matrix element of the unit tensor and using the
well known uncoupling procedure we get the following expression:

〈. . .LSJ‖U (1)
j ‖ . . .L′S′J′〉 = δall spins(−1)L+S+J′+1 [J, J′]

1/2

{
L S J

J′ 1 L′

}
×

[
N∏

m=j+1

δαmLm,α′mL′m(−1)Lm−1+Lm+L′m+1

× [Lm,L
′
m]

1/2

{
Lm−1 Lm Lm

L′m 1 L′m−1

}]

×

[
δj1 + (1− δj1)

(
j−1∏
m=1

δαmLm,α′mL′m

)

× (−1)Lj−1+L′j+Lj+1
[
Lj,L

′
j

] 1
2

{
Lj−1 Lj Lj

1 L′j L′j

}]
× 〈lwjj αjLjSj‖U (1)‖lwjj α′jL′jS ′j〉.

(2.10.9)

This expression is identical to the crystal-field expression for k = 1. The values of P
(1)
j,j′

are given by (2.6.12).

2.10.2 Zeeman Splitting

A uniform, static, external magnetic field interacts with the magnetic dipole moments
associated with the orbital angular momenta. In contrast to an electric field, the
magnetic field completely removes the degeneracy of the atomic levels with respect to
ML and MS. This effect was first observed by Zeeman [86]. The energy of interaction
of an ion with an external magnetic field B is

Hmag = −M ·B. (2.10.10)

Here the intrinsic magnetic moment M of an ion is given by

M = µB (L+ gs S) (2.10.11)

with the anomalous gyromagnetic ratio gs = 2.0023192 for the electron spin S and the
Bohr magneton

µB =
e2~
2mc

= 9.2741 · 10−21 erg/gauss = 4.2543 · 10−10 Ry/gauss. (2.10.12)

Due to the anomalous gyromagnetic ratio the magnetic moment M is not proportional
to the total angular momentum J = L + S. Thus the magnetic moment M – in
contrast to the total angular momentum J – is not a conserved property and does not
commutate with the zero-field Hamilton operator H0.
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The operator of the magnetic-moment (2.10.10) has to be added to the zero-field Hamil-
tonian H0. Here we consider only weak static magnetic fields with flux densities of 104

to 105 gauss. For stronger fields it is necessary to consider a quadratic Zeeman effect
[87], corresponding to diamagnetic effects16 proportional to B2.

The matrix elements of the magnetic-moment operator (2.10.10) can be determined
similarly to the case of the Stark operator. The magnetic-moment operator M consists
of two vector operators L and S of rank one. Thus we can write the matrix element of
(2.10.10) as

hqψ,ψ′ ≡ 〈ψ|H
q
mag|ψ′〉 = −Bq

N∑
j=1

(−1)J−M

(
J 1 J′

−M q M′

)
〈βJ‖L(1)

j + gsS
(1)
j ‖β′J′〉

= −Bq

N∑
j=1

(−1)J−M

(
J 1 J′

−M q M′

)
×
(
〈βJ‖L(1)

j ‖β′J′〉+ gs〈βJ‖S(1)
j ‖β′J′〉

)
(2.10.14)

with β = (α1L1S1L1S1 . . . αNLNSNLNSN).

Here the expression q = {−1, 0, 1} represents again one of the components of the tensor
operators L(1) and S(1). The matrix elements of the vector operator components can
be determined analogous to (2.10.7).

The reduced matrix element of the angular-momentum operator L(1) can be determined
by the well known uncoupling procedure similar to (2.10.9). Here Racah’s unit-tensor
operator is replaced by the angular-momentum operator L(1).

16The diamagnetic contribution can be written as

χLarmor = −α
2

8π
·
∑

j

〈r2
j 〉
a2

0

· 4πa3
0/3
v

, (2.10.13)

which is mostly a small correction and is therefore neglected in the thesis. Here α = e2/~e is the
fine-structure constant, a0 the Bohr radius, and v the specific volume of the ion. The summation
is over all electrons of the ion.
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Using (2.4.8) we get the following expression for the reduced matrix element

〈. . .LSJ‖L(1)
j ‖ . . .L′S′J′〉 = δall spins(−1)L+S+J′+1 [J, J′]

1/2

{
L S J

J′ 1 L′

}
×

[
N∏

m=j+1

δαmLm,α′mL′m(−1)Lm−1+Lm+L′m+1

× [Lm,L
′
m]

1/2

{
Lm−1 Lm Lm

L′m 1 L′m−1

}]

×

[
δj1 + (1− δj1)

(
j−1∏
m=1

δαmLm,α′mL′m

)

× (−1)Lj−1+L′j+Lj+1
[
Lj,L

′
j

] 1
2

{
Lj−1 Lj Lj

1 L′j L′j

}]
× δLj ,L′j

√
Lj(Lj + 1) (2Lj + 1).

(2.10.15)

The reduced matrix element of the spin operator S(1) can be written as

〈. . .LSJ‖S(1)
j ‖ . . .L′S′J′〉 = δall L(−1)L+S+J′+1 [J, J′]

1/2

{
L S J

1 J′ S′

}
×

[
N∏

m=j+1

δαmSm,α′mS′m(−1)Sm−1+Sm+S′m+1

× [Sm,S
′
m]

1/2

{
Sm−1 Sm Sm

S′m 1 S′m−1

}]

×

[
δj1 + (1− δj1)

(
j−1∏
m=1

δαmSm,α′mS′m

)

× (−1)Sj−1+S′j+Sj+1
[
Sj,S

′
j

] 1
2

{
Sj−1 Sj Sj

1 S′j S ′j

}]
× δSj ,S′j

√
Sj(Sj + 1) (2Sj + 1).

(2.10.16)
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2.11 Observable

In contrast to the previous sections, which describe exclusively the contributions to
the Hamilton operator H, this section illustrates the determination of the magnetic
susceptibility and the optical conductivity. By comparing these observables with mea-
sured data, we can estimate the quality of the calculation and optimize the calculation
parameters in order to get the best agreement. In the first part of this section, we
begin with a derivation of the response functions from the Maxwell equations and end
up with an expression for the optical conductivity within the Kubo-Greenwood theory.
In the second part, we derive expressions for the magnetic susceptibility. Subsequently,
we present expressions for the phonon frequencies using the dynamical matrix method.
This calculation technique is very sensitive to errors introduced by the uncertainties of
the calculation parameters. In addition, the determination of the phonon frequencies
requires a great computational effort which scales unpropitious with the size of the
cluster.

2.11.1 Response Functions and Optical Conductivity

The optical properties of solids are given by the response of the electrons and the nuclei
to a time-dependent electromagnetic perturbation caused by the incoming light. So the
calculation of these properties is reduced to the determination of a response function
which is either the complex dielectric function or the optical conductivity.

The propagation of electromagnetic waves within the crystal is described by Maxwell’s
equations in the presence of matter:

∇× E +
1

c

∂B

∂t
= 0,

∇ ·B = 0,

∇×H− 1

c

∂D

∂t
=

4π

c
jcond,

∇ ·D = 4πρext.

(2.11.1)

Here the crystal properties are considered by introducing the electric displacement D
and the magnetic induction17 B.
Within the linear approximation, which is valid for small electric and magnetic fields
but not for ferromagnets, the electric displacement D is connected to the electric field
E by the frequency-dependent dielectric constant ε1:

D = ε1(q, ω)E = (1 + 4π χe)E = E + 4πP, (2.11.3)

17The total current density j occurring in Maxwell’s equations (2.11.1) consists of two contributions:
jcond arise from the motion of free electrons within an electric field. jbound emerges from the
redistribution of bound charges:

j = jcond + jbound. (2.11.2)

Here we assume that there is no external current jext. The total charge density ρ has also two
components: An external charge ρext added from outside of the crystal (here ρext ≡ 0) and a
contribution ρpol due to the polarization.
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2 Calculating the Electronic Structure of a Crystal

in which χe represents the dielectric susceptibility and P = χeE the dipole moment
density (polarization)18. Similarly the permeability µ1 connects the magnetic field H
to the magnetic induction B:

B = µ1H = (1 + 4π χm)H = H + 4πM, (2.11.4)

with χm representing the magnetic susceptibility χm and M = χmH the magnetic mo-
ment density (magnetization)19. The magnetic susceptibility is typically four to five
orders of magnitude smaller (except for ferromagnetic materials) than the dielectric
susceptibility χe, which is of the order of unity. Hence the dia- and paramagnetic
properties can in general be neglected in comparison to the dielectric properties when
electromagnetic waves pass through the crystal. Therefore the assumptions of µ1 = 1
(χm = 0) and of the absence of magnetic losses in the crystal are justified.

In order to describe ε1 and σ1 by one complex function we start with the Maxwell
equations:

c · ∇ ×H =
∂D

∂t
+ 4πjcond, jcond = σ1 E, D = ε1 E

⇒ c · ∇ ×H =

(
ε1
∂

∂t
+ 4πσ1

)
E, ansatz : E = E0e

i(q·r−ωt), H = H0e
i(q·r−ωt)

⇒ i c · q×H(q, ω) = (−i ω ε1 + 4πσ1) E(q, ω) = −i ωε̂E.
(2.11.5)

In the last line we introduce the definition of the complex dielectric function ε̂:

ε̂(q, ω) ≡ ε1(q, ω) + i
4πσ1(q, ω)

ω
≡ ε1(q, ω) + i ε2(q, ω). (2.11.6)

The dielectric function can also be expressed by the complex index of refraction N̂(q, ω) =√
ε̂(q, ω) = n(q, ω) + iκ(q, ω).

ε1(q, ω) = n2(q, ω)− κ2(q, ω), ε2(q, ω) = 2n(q, ω)κ(q, ω). (2.11.7)

Here, n(q, ω) represents the index of refraction and κ(q, ω) the extinction coefficient.
Equivalent to the complex dielectric function we can define a complex optical conduc-
tivity σ̂(q, ω) ≡ σ1(q, ω) + i σ2(q, ω). These two complex functions are related by

ε̂(q, ω) = 1 + i
4π

ω
σ̂(q, ω). (2.11.8)

In the general case of an anisotropic medium, the dielectric function depends on the
direction of the electric field and has to be represented as a (3 × 3) tensor of rank 2

18For a positive dielectric susceptibility (χe > 0), E is reduced within matter (E = D−4πP), because
the external electric field is screened by the polarization (∇E 6= 0).

19For a positive magnetic susceptibility (χm > 0), B is enhanced, because the magnetic moments are
aligned parallel to the magnetic field.
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which is in case of non-magnetic materials (µ1 ≡ 0) symmetric). For a strong electric
field, the dielectric function depends also on the field strength. Therefore the calcula-
tion of the dielectric function discussed here is restricted to small electric fields.

We can neglect the q-dependence of the response functions because the wavelength
is much larger than the unit cell and the wave-vector dependence of the Fourier-
transformed fields is negligible: |q| ∝ 1/λ ≈ 0. Thus the q-dependence of the response
function can be dropped from notation.

As a consequence of the law of causality, the real and the imaginary part of a complex
response function G(ω) = G1(ω) + i G2(ω) are not independent of each other. The
relationship is called Kramers-Kronig relation [89, 90]:

G1(ω) =
1

π
P
∫ ∞
−∞

G2(ω′)

ω′ − ω
dω′

G2(ω) = − 1

π
P
∫ ∞
−∞

G1(ω′)

ω′ − ω
dω′

(2.11.9)

with P representing the Cauchy principle value. For the details of the Kramers-Kronig
realtions see section “3.1.2 Kramers-Kronig analysis”.

The optical conductivity can be described by the Kubo-Greenwood formula [91, 92]20:

σ1(ω) =
2π

~V ω
∑
mn

|〈ψn|ĵ|ψm〉|2

En − Em
. (2.11.10)

Here V represents the volume of the unit cell and ĵ the current operator in the tight-
binding model which can be written as [94]

ĵ = −ie
∑
αβ

(Rβ −Rα)〈ψm|Htb|ψn〉+ e2
∑
αβ

(Rβ −Rα)
[
(Rβ −Rα) ·A

]
〈ψm|Htb|ψn〉.

(2.11.11)
The second term is the approximate diamagnetic contribution [93] with constant ex-
ternal vector potential A. This contribution is only a small correction and will be
neglected. The determination of the current operator involves the tight-binding Hamil-
tonian which reduces the computational effort, because this Hamiltonian is in general
calculated before.

Another often used representation of the Kubo-Greenwood formula applies to the elec-
tron Green’s function [95]:

σ1(ω) =
2π

~V ω
Im

[
〈ψ0|ĵ†

1

ω + E0 + iγ −H
ĵ|ψ0〉

]
. (2.11.12)

20Here the optical conductivity is given in SI units, i.e., [σ(ω)] = Ω−1m−1.
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2 Calculating the Electronic Structure of a Crystal

Here |ψ0〉 is the ground state of the Hamiltonian H with energy E0. The expression γ is
a small (real) number (damping) introduced in the calculation to shift the poles of the
Green’s function into the complex plane. Introducing a complete basis,

∑
n |ψn〉〈ψn| =

1 and using the well-known (Dirac) identity

lim
γ→0

[
1

x+ iγ

]
= P

[
1

x

]
− iπδ(x), (2.11.13)

where P denotes the principle part and x a real number, we can rewrite (2.11.12) as

σ1(ω) =
2π

~V ω2

∑
n

|〈ψn|ĵ|ψ0〉|2δ (ω − (En − E0)) , (2.11.14)

in which |ψn〉 denotes the eigenvectors of the Hamiltonian H with eigenvalues En. In
practise, the δ-functions are smeared out by a finite damping γ. This can be described
by Lorentzians according to

δ(x)→ 1

π

γ

x2 + γ2
. (2.11.15)

Note, that for compounds with broken inversion symmetry at the transition-metal ion
site, we have to consider energetically higher lying configurations containing excited
p-states at the transiton-metal ion site. But due to the enormous computational effort,
we neglect these contributions and consider only the contributions from d-states, the
spin-orbit coupling and the charge-transfer excitations to the optical conductivity.

2.11.2 Magnetic Susceptibility

The (volume) magnetic susceptibility χm is the degree of magnetization of a material
in response to an applied magnetic field and is related to the real part of the magnetic
permeability µ̂ by the following equation:

µ1 = µ0 (1 + χm) . (2.11.16)

The magnetic susceptibility also is represented by a (3 × 3) tensor. The derivation
of the expression for the magnetic susceptibility starts with the free energy of an ion
which is given by

f = − 1

β
ln
[
Tr
(
e−β(H−M·B)

)]
, (2.11.17)

in which β = 1/kBT . In the following the component of the magnetization operator M
parallel to the magnetic field B is denoted by M . Differentiating the free energy f with
respect to the magnetic field B we get the following expression for the magnetization
m

m=̇〈M〉H−M ·B = − ∂f
∂B

= Tr
(
Me−β(H−M ·B)

)
/ Tr

(
e−β(H−M ·B)

)
. (2.11.18)

Differentiating again we achieve the expression for the initial magnetic susceptibility

χm =
∂m

∂B

∣∣∣
B=0

=

∫ β

0

dτ〈M(τ)M〉H, M(τ) = eτHMe−τH. (2.11.19)
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Here we have to consider the non-commutativity of M and H. In order to calculate
the magnetic susceptibility χm in (2.11.19), we use the complete eigenbasis {|n〉} of H
with H|n〉 = En|n〉. Here Z = Tr

(
e−βH

)
=
∑

n e
−βEn denotes the partition function.

Inserting the completeness relation
∑

n |n〉〈n| = 1 between the two magnetization
operators in (2.11.19), we get the spectral representation of the susceptibility [96]

χm =
1

Z

∑
m,n

|〈m|M |n〉|2 e
−βEm − e−βEn
En − Em

. (2.11.20)

Because of their different behavior we divide this expression for low temperatures into
two parts: In case of Em = En the expression (2.11.20) represents the Curie suscepti-
bility and can be expressed as [96]

χC =
β

Z

Em=En∑
m,n

|〈m|M |n〉|2 e−βEn . (2.11.21)

If Em 6= En the van Vleck susceptibility is given by the following formula [96]

χvV =
1

Z

Em 6=En∑
m,n

|〈m|M |n〉|2 e
−βEm − e−βEn
En − Em

. (2.11.22)

The van Vleck susceptibility only exists, because M does not commutate with H.

In order to calculate the molar magnetic susceptibility, measured in “emu/mol”, all
energies have to be measured in “erg” and the Bohr magneton in “emu G”

[χ] =
µ2
B

E
=
emu2G2

erg
=
emu2 (erg/cm3)

erg
= emu. (2.11.23)

We get the final expression by multiplying this ionic susceptibility with the Avogadro
number NA ≈ 6.022 · 1023mol−1.

2.11.3 Phonons

A phonon is a quantized mode of vibration with frequency ω. The possible phonon
frequencies in the crystal can be determined by the dynamical matrix method. Here
the phonons are represented byl harmonic oscillators: The equations of motion for the
nuclei are determined by the total energy Etotal(R) of the system. The nuclear coor-
dinates R are regarded as parameters, where Ri represents the coordinate and Mi the
mass of nucleus i.

If the nuclei are treated classically, the problem reduces to the (coupled) classical
equations of motion for each nuclear position Ri

Mi
∂2Ri

∂t2
= Fi(R) = − ∂

∂Ri

Etotal(R), (2.11.24)
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2 Calculating the Electronic Structure of a Crystal

in which Fi indicates the force on the nucleus i. At low temperature, it is useful to
write the expressions in terms of an expansion of the total energy Etotal(R) of the
crystal. Equilibrium positions {R0

i } = R0 are determined by the zero-force condition
on each nucleus,

Fi(R
0) = 0. (2.11.25)

Lattice dynamics are described by higher powers of displacements, the so-called dy-
namical matrix,

Ci,α;j,β =
∂2Etotal(R)

∂Ri,α∂Rj,β

, (2.11.26)

l in which α, β indicate cartesian components. Within the harmonic approximation
[97] the vibrational modes at frequency ω are described by displacements

uj(t) = Rj(t)−R0
j ≡ uje

iωt (2.11.27)

so that (2.11.24) can be rewritten as

− ω2Miui,α = −
∑
j,β

Ci,α;j,βuj,β. (2.11.28)

The full solution for all vibrational states is the set of independent oscillators. Solving
the classical equation

det

∣∣∣∣∣ 1√
MiMj

Ci,α;j,β − ω2

∣∣∣∣∣ = 0 (2.11.29)

we can determine the vibrational frequency ω of each oscillator. For a crystal, the
atomic displacement eigenvectors obey the Bloch theorem, i.e., the vibration of atom s
is classified by k and the translation vector Tn, and the displacements can be written
as

us,Tn = us(k)eik·Tn . (2.11.30)

Analogous to the electrons, inserting this expression into (2.11.29) decouples the equa-
tions at different k values with frequencies ωi,k whichl are solutions of the 3N × 3N
determinant equation21

det

∣∣∣∣ 1√
MsMs′

Cs,α;s′,α′(k)− ω2
i,k

∣∣∣∣ = 0, (2.11.31)

in which the reduced force constant for wave vector k is given by

Cs,α;s′,α′(k) =
∑
Tn

eik·Tn
∂2Etotal(R)

∂Rs,α(0)∂Rs′,α′(Tn)
,=

∂2Etotal(R)

∂us,α(k)∂us′,α′(k)
. (2.11.32)

The solutions of (2.11.31) form the so-called dispersion curves. These dispersion curves
are divided into three acoustic modes, with ω → 0 for k→ 0, and (3N−3) optic modes.

21N represents the total number of ions in the unit cell.
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The determination of the reduced force constant (2.11.32) requires the calculation of
the total energy as a function of the position of the nuclei, i.e., “frozen phonons”. The
numerical computation of the second derivative of a function f(x) depending on a set
of variables x = {x1, x2, . . . , xn} can be done by the following relation [99]:

∂2f(x)

∂xi∂xj
= lim

h→0

[
f(xi + h, xj + h)− f(xi + h, xj − h)

4h2

− f(xi − h, xj + h)− f(xi − h, xj − h)

4h2

]
.

(2.11.33)

Therefore the determination of the dynamical matrix requires (6N × 6N) calculations
of the total energy at each k point. This calculation effort can be reduced by making
use of the fact that the dynamical matrix is Hermitian. So only 6N

2
(1+6N) calculations

are necessary. The squares of the phonon frequencies are than given by the eigenvalues
of this dynamical matrix.
In case of negative eigenvalues the corresponding vibrational frequencies will be imag-
inary. This implies that the system is unstable with respect to a distortion which
corresponds with this eigenvalue. Note, that the first three vibrational frequencies at
the Γ point should be equal to zero because they correspond to the translation of the
lattice.
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2 Calculating the Electronic Structure of a Crystal

2.12 Numerical calculation

This section describes some details which are important in the numerical calculation
of the Hamilton operator and the above mentioned observables.

In the framework of this thesis a computer program has been written for the calculation
of the electronic structure. The program “e-structure” is predominantly written in
Fortran90 following [100] and contains the following programs/subroutines written by
other authors:

• The self-consistent Hartree-Fock program “Rcn36k” written by Cowan and cowork-
ers [7] is included in the program [101] and partially modified in order to fix some
bugs.

• The determination of the coefficients of the expansion of the Ewald sum is done
by the subroutine written by M. Haverkoort [62].

• Some “numerical recipies” routines [99].

The program was successfully compiled with the PathscaleTM Fortran Compiler 2.4
and the Intel Fortran Compiler (8.1 and 9.1) for Linux.

2.12.1 Lanczos algorithm

The Hamilton matrix in the configuration-interaction calculation has typically the size
of a few million matrix elements22. The diagonalization of this large matrix cannot be
done analytically. In optical spectroscopy we are interested in low-lying excitations.
These excitations are predominantly described by the lowest eigenstates. So we need
only the smallest eigenvalues and their corresponding eigenvectors. The determination
of these eigenvalues and eigenvectors of the Hamilton matrix can be done by the Lanc-
zos method [102]: The basic idea of the Lanczos method is that the Hamiltonian can
be transferred to a tridiagonal representation by using a appropriate basis transforma-
tion. The algorithm is carried out iteratively: First it is necessary to select an arbitrary
vector |φ0〉 in the Hilbert space of the model being studied. In order to determine the
ground-state energy of the model, the overlap between the actual ground state |ψ0〉 and
the initial state |φ0〉 has to be nonzero. If we know nothing about the ground state,
this requirement is usually easily satisfied by selecting an initial state with randomly
chosen coefficients in the basis. By applying the Hamiltonian H to the initial state we
can define a new vector. Subtracting the projection over |φ0〉, we obtain

|φ1〉 = H|φ0〉 −
〈φ0|H|φ0〉
〈φ0|φ0〉

|φ0〉, (2.12.1)

22For example, the calculation of a TiO6 cluster with one d electron on the Ti-site, requires the
diagonalization of matrix with a dimension of 77230.
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which satisfies 〈φ0|φ1〉 = 0. Now it is possible to construct a new state that is orthog-
onal to the previous two as

|φ2〉 = H|φ1〉 −
〈φ1|H|φ1〉
〈φ1|φ1〉

|φ1〉 −
〈φ1|φ1〉
〈φ0|φ0〉

|φ0〉. (2.12.2)

It can be shown that 〈φ0|φ2〉 = 〈φ0|φ1〉 = 0. This procedure can be generalized by
defining an orthogonal basis recursively as

|φn+1〉 = H|φn〉 − an|φn〉 − b2
n|φn−1〉, (2.12.3)

where n = 0, 1, 2, . . . , and the coefficients are given by

an =
〈φn|H|φn〉
〈φn|φn〉

, b2
n =

〈φn|φn〉
〈φn−1|φn−1〉

, (2.12.4)

supplemented by b0 = 0, |φ−1〉 = 0. In this basis the Hamilton matrix has the tridiag-
onal form

H =


a0 b1 0 0 . . .
b1 a1 b2 0 . . .
0 b2 a2 b3 . . .
0 0 b3 a3 . . .
...

...
...

...
. . .

 , (2.12.5)

as expected above. The matrix in this form can be diagonalized easily using standard
library subroutines. To diagonalize the matrix completely, a number of iterations equal
to the size of the Hilbert space is necessary. It can be proved that the eigenvalues are
approximate eigenvalues of the original Hamilton matrix H.

Note, that the information about the ground state of the problem can be obtained
already by a small number of iterations (typically of the order of 100 or less).

The Lanczos algorithm can be described as a systematic way to improve a given vari-
ational state that is used to represent the ground state of the system. The Hermitian
Lanczos algorithm is a simplified Arnoldi’s algorithm which is applied to the Her-
mitian matrix. It transforms the original matrix into a tridiagonal matrix which is
real and symmetric. The dependency of the Lanczos algorithm on small numerical
errors define the stability of the algorithm. For the Lanczos algorithm, the calculated
eigenvalues/vectors are good approximations to those of the original matrix. But the
orthogonality of the eigenvectors is quickly lost due to round-off errors. In some cases
this leads to eigenvalues of the resultant tridiagonal matrix which may not be approx-
imations to the original matrix. Therefore, the Lanczos algorithm is not very stable
and we require a modification of the Lanczos algorithm which find and remove those
“spurious” eigenvalues. Many implementations of the Lanczos algorithm restart after
a certain number of iterations. The implicitly restarted Lanczos method [105], which
is implemented in the ARPACK library [104, 106], is one of the most popular restarted
variations: The ARPACK library computes a few eigenvalues and the corresponding
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eigenvectors of a general (complex) n × n matrix A. (Depending on the properties
of the matrix A, the algorithm is called an “Implicitly Restarted Arnoldi Method”
or “Implicitly Restarted Lanczos Method”). For many standard problems, only the
action of the matrix on a vector is needed. Because of the Hermitian nature of the
Hamilton matrix only the upper tridiagonal part of the matrix has to be saved. The
ARPACK library requires only the action of the matrix on an arbitrary vector. So
only the non-zero matrix elements are relevant. The Hamilton matrix in the program
is stored as a list containing the x and the y position of the non-zero matrix element
and the element itself. This reduces the memory requirement to a few GB RAM.

2.12.2 LAPACK and BLAS

“The LAPACK (Linear Algebra Package) library is a collection of Fortran77 subrou-
tines for solving systems of simultaneous linear equations, least-squares solutions of
linear systems of equations, eigenvalue problems, and singular value problems.”, see
[107]. Routines for the associated matrix factorizations (LU, Cholesky, QR, SVD,
Schur, generalized Schur) are also included. All calculations can be done for real and
complex matrices, both in single and double precision.

“The BLAS (Basic Linear Algebra Subprograms) library is a collection of routines that
provide standard building blocks for performing basic vector and matrix operations.
The Level 1 BLAS perform scalar, vector, and vector-vector operations, the Level 2
BLAS perform matrix-vector operations, and the Level 3 BLAS perform matrix-matrix
operations.”, see [108].
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3 Fourier-Transform spectroscopy

In this section, we give a detailed description of the Fourier-Transform spectrometer,
which is used for the measurement of the reflectance and the transmittance of the
samples presented in this thesis.

The measurement of the infrared excitations described in this thesis, i.e. the measure-
ment of the reflectance and the transmittance of a sample, was done by using the
Fourier-transform spectrometer. In the following, we will divide the frequency range
we are interested in, into the far-infrared (FIR, 50 - 500 cm−1), mid-infrared (MIR,
500 - 5000 cm−1), near-infrared (NIR, 5000 - 12000 cm−1), visible-light (VIS, 12000
- 25000 cm−1) and ultraviolet-light (UV) region. The Fourier-transform spectroscopy
offers several advantages in comparison with a dispersive measurement. In this stan-
dard setup consisting out of a white-light source and a monochromator the reflectance
R(ω) and the transmittance T (ω) are determined frequency-wise. In contrast to this
technique, the Fourier-transform spectrometer collects the whole spectrum at once and
we can perform N independent measurements in the same time that the dispersive
technique needs to measure a whole spectrum consisting of N frequency intervals.
This Fellgett [109] or multiplex advantage will produce a gain of the order of

√
N in

the signal-to-noise ratio of the resulting spectrum. This is one of the most important
advantages of Fourier-transform spectroscopy, because a serious problem of infrared
spectroscopy, particularly at low frequencies, is intensity. The emission of the infrared
light sources, for example a black body source, decreases rapidly towards low frequen-
cies. In addition, the Fourier-transform spectroscopy allows the application of large
circular apertures, whereas the dispersive technique requires narrow slit apertures to
reach a given frequency resolution. This is the Jacquinot or throughput advantage.
In addition, the Fourier-transform spectrometer includes a HeNe laser as an internal
wavelength calibration standard (referred to as the Connes advantage).

A sketch of the the Fourier-transform spectrometer used in this thesis is shown in
Fig. 3.1. The light of a broad-band lamp1 is focused on an aperture wheel, which
controls the size of the light spot on the sample. Reflected by a parabolic mirror, a
parallel beam enters the Michelson interferometer [110]. Here the so-called beam split-
ter divides the light into two beams, one is reflected on a fixed mirror and the other
one on a moving mirror which introduces a time delay. This leads to constructive or
destructive interference when the two back-reflected parts of the beam interfere with
each other depending on the ratio of the lengths of both beams: Let L be the length
of the optical path between the fixed mirror and the beam splitter. At the begin of

1For the FIR range, we use the heat radiation from a quartz enclosure. A globar, typically a heated
piece of silicon carbide, is used for the MIR range. For the NIR range we use a tungsten lamp.
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Figure 3.1: A sketch of the Bruker IFS 66v/S Fourier-transform spectrometer.

the measurement process, the length of the optical path between the moving mirror
M1 and the beam splitter is equal to L. By moving mirror M1 we achieve an optical
retardation x, which leads to constructive interference for x = nλ (n εN) constructive
and to destructive interference for x = n + 1

2
λ. Measuring the intensity of the signal

at many discrete positions of the moving mirror, we get the so-called “interferogram”,
see Fig. 3.2 and Fig. 3.3.

Figure 3.2: The interferogram of a monochromatic light source.
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For a monochromatic light source (see Fig. 3.2) the intensity as a function of the mirror
position can be written as

I(x) = S(ν0) cos(2πν0x), (3.0.1)

in which ν0 = 1/λ represents the wave number and S(ν0) the intensity of the monochro-
matic spectral line at wave number ν0. For a polychromatic light source, the intensity
can be expressed as an integral over all possible wavelengths:

I(x) =

∫ ∞
0

S(ν) cos(2πνx)dν. (3.0.2)

The interferogram of a broad-band lamp is shown in Fig. 3.3. Here the interferogram
has only one position of maximum height, the so-called “white-light position”. At this
point the retardation x between the two beams in the interferometer is zero. Only
constructive interference takes place.

Figure 3.3: Interferogram of a polychromatic light source.

The frequency spectrum can be calculated by applying a Fourier transformation to the
interferogram:

f(x) = lim
p→∞

p∑
n=−p

cne
inωx, cn =

1

p

∫ p

−p
f(x)e

2π
p
nxdx. (3.0.3)

The measured interferogram is a discrete function because only a finite number of
mirror positions can be saved. So the variables x and ν are replaced by discrete nodes
n∆x and k∆ν. Here the distances between two nodes on the x and the ν axis are
related by the following expression:

∆ν =
1

N ·∆x
. (3.0.4)

This relation, the so-called “Rayleigh criterion”, defines the resolution of the spectrom-
eter: If we want to distinguish to frequencies with distance ∆ν we have to measure the
interferogram up to 1

N ·∆x . For example, to achieve a resolution of ∆ν = 0.1 cm−1 the
mirror has to move 6 cm.
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Now, the frequency spectra can be calculated by the following equation:

S(k ·∆ν) =
N−1∑
k=0

I(n ·∆x)ei2πnk/N . (3.0.5)

The position of the mirror is determined by measuring the interferogram of a laser
with well-known wavelength. The laser signal is detected by a diode after passing the
interferometer (Connes advantage). The diode measures only the laser signal because
its intensity is several orders of magnitudes stronger than the intensity of the white
light source2.
The sampling theorem3 states that unambiguous interpretation of the signal is possible
only when the spectrum outside the Nyquist bandwidth is zero. Otherwise frequencies
higher than the cut-off frequency are folded back, falsifying the resulting spectrum
(“aliasing”).

After leaving the interferometer the light passes through the polarizer (consisting of
polyethylene or BaF2) and is focused on the sample, which is located in a He-cooled
cryostat4. In contrast to transmittance measurements, we have to place for reflectivity
measurements an additional unit containing four mirrors into the spectrometer, which
enables measurements under quasi-normal incidence (11◦). At last, several mirrors fo-
cus the light coming from the sample onto the detector.

Depending on the frequency range we are interested in, we have to use different detec-
tors: We use semiconductor diodes for the near-infrared regime, the nitrogen-cooled
HgCdTe (“MCT”) semiconductor diode for the mid-infrared regime and a He-cooled
Bolometer for the far-infrared regime.

Besides the advantages of the Fourier-transform spectrometer we have to keep some
things in mind: As mentioned above, the resolution of the spectrometer is inversely
proportional to the length of the interferogram (N ·∆x). This implies, that we cannot
reach an infinite resolution, because we cannot measure an interferogram of infinite

2In between two minima of the diode signal the detector is triggered electronically, giving a higher
density of data points. This is needed to measure a broader range of frequencies.

3“The Nyquist-Shannon sampling theorem

fs ≥ 2 (fmax − fmin) (3.0.6)

states that perfect reconstruction of a signal is possible when the sampling frequency fs is greater
than twice the maximum frequency of the signal being sampled, or equivalently, that the Nyquist
frequency (νN = N

2 ∆ν = 1
2∆x) exceeds the bandwidth of the signal being sampled. If lower sampling

rates are used, the original signal’s information may not be completely recoverable from the sampled
signal.”, see [112].

4Temperatures between 8.5 and 780 K can be achieved. In order to avoid the formation of ice layers
at low temperatures, the pressure within the cryostat has to be less than 10−5 mbar. Because the
pressure within the spectrometer is roughly 10 mbar, the cryostat is separated from the rest of the
spectrometer by transparent windows made of polyethylene and potassium bromide (KBr) for the
FIR and MIR/NIR regime, respectively.
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length. Thus, we have to truncate the interferogram at a certain point, which in-
troduces the so-called “leakage effect”, described mathematically by multiplying the
interferogram with a so-called boxcar function. This function is equal to one for all x
positions of the measured interferogram and zero otherwise. The Fourier transform of
this product function can be calculated by using the convolution theorem [111]: The
Fourier transform of a product of two functions f1 and f2 is equal to the convolution of
the two Fourier transformed functions f̃1 and f̃2. The Fourier transform of the boxcar
function is the sinc function which leads to broad artifacts (side bands) in the spectrum.
We can partly remove this problem by multiplying the interferogram with a function,
which has a more favorable Fourier transform, which strongly fades out the side bands
of the interferogram. One of this so-called “apodization”5 or window functions is the
Blackman-Harris 3-term function:

w(n) = 0.42− 0.5 · cos

(
2nπ

M

)
+ 0.08 · cos

(
4nπ

M

)
, n = 0, . . . ,M (3.0.7)

which is used in all measurements. Here M represents the length of the interferogram.
The application of an apodization function leads to a broadening and a reduction of
the erroneous side peaks in the frequency spectrum. This effect is important only for
very sharp lines (compared to the frequency resolution), which can be found in spectra
of molecules. But the results presented in this work are not notably influenced by this
effect.

The digitalization of the interferogram leads to other problems: The spectrum is only
known at discrete frequency points, namely multiples of the fundamental frequency
given by the finite length of the interferogram and the discrete nature of the data
acquisition. This so-called “picket-fence effect” can be corrected by enlarging the er-
roneous by adding zeros at the end of the interferogram, i.e., we increase N in (3.0.4).
In contrast to other interpolation methods, this method has no effect on the line shape
of the frequency spectrum.

The Fourier transformation gives generally a complex spectrum S(ν) if the interfero-
gram is not symmetric around the white-light position. This asymmetry results from
the discrete structure that is in general not centered exactly at the white-light position
and the usage of electronic filters, which are necessary to avoid the aliasing effect. In
order to get a real frequency spectrum R(ν) we have to determine the phase φ of the
complex spectrum:

R(ν) = Re
[
S(ν)eiφ

]
, φ = arctan

[
Im[S(ν)]

Re[S(ν)]

]
. (3.0.8)

A fast determination of the phase factor is achieved by using the Mertz [113] method.

5Apodization literally means “removing the feet”.
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3 Fourier-Transform spectroscopy

To achieve finally the reflectance (transmittance) spectrum of the sample we have to
measure a reference spectrum SR(ν) (S0(ν)):

R(ν) =
SR(ν)

SAu(ν)
, T (ν) =

ST (ν)

S0(ν)
. (3.0.9)

In case of a reflectance measurement R(ν), SAu(ν) represents a single-channel spectrum
where the sample is replaced by a gold mirror. In case of a transmittance measurement
T (ν), a reference spectrum S0(ν) is needed, whereas the sample is removed.

In conclusion, Fourier spectroscopy is an excellent tool for the investigation of optical
properties of matter. It is fast and provides a very high accuracy.
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3.1 Determination of the response functions

3.1 Determination of the response functions

In most cases the interaction of a solid with an electromagnetic wave can be described
within the linear-response theory [114]. In order to determine the included response
functions from the measured reflectance we use two different methods in this thesis
which are described in the following.

3.1.1 Drude-Lorentz model

We start with the so-called normal Drude-Lorentz model [114] and fit the included
parameters to the experimental data: Within this model the charge carriers are treated
as quantum mechanical, damped, independent, harmonic oscillators which are excited
by the electric field6. In case of hexagonal and orthorhombic compounds, we can find
a set of axes (here, the crystallographic axes {a, b, c}) such that the real as well as the
imaginary part of the 3× 3 tensor of the dielectric function ε̂ have diagonal form. For
this crystal symmetries, we can express the matrix elements εi(ω) with i = {a,b, c} of
the dielectric function as

εi(ω) = ε∞i +
∑
j

ω2
p,j

ω2
0,j − ω2 − iγjω

. (3.1.1)

The expression depends on a set of parameters (ε∞, ω0,j, ωp,j, γj), which can be fitted
to experimental data. Here ω0,j, γj, and ωp,j denote the transverse eigenfrequency,
damping, and the “plasma frequency” of the jth oscillator. The sum in (3.1.1) runs over
all contributions to ε(ω). Due to the fact that it is not possible to include all excitations
we have to truncate the summation at a certain frequency and summarize all higher
frequency terms in a constant ε∞, which also contains the vacuum contribution equal
to 1. The plasma frequency ωp,j represents the maximum frequency which the charge
carriers in the crystal can follow and is given by the following expression:

ωp,j ≡
√

4πNe2

m
. (3.1.2)

Here e designates the electronic charge, m the effective band mass, and N the density
of electrons. Using the Fresnel formula for (quasi) normal incidence

R = |r̃(ω)|2 =

∣∣∣∣∣1−
√
ε̂(ω)

1 +
√
ε̂(ω)

∣∣∣∣∣
2

, (3.1.3)

in which r̃ = (1 − N̂(ω))/(1 + N̂(ω)) denotes the complex reflection coefficient and
N̂ the complex index of refraction, we can determine the reflectance and fit7 the pa-
rameter (ε∞, ω0,j, ωp,j, γj) to the experimental data. In addition, we can determine the

6The Drude response which describes metals as a classical gas of electrons can be derived from the
Kubo formula [91].

7All fits in this thesis using the normal Drude-Lorentz model have been performed using the program
RefFIT 1.2.56 by A. Kuz’menko (Département de Physique de la Matière Condensée, Université
de Genève, Switzerland).
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optical conductivity directly by using the relation (2.11.8). In sections “4.3 Spin-lattice
interactions in multiferroic MnWO4” and “4.4 Phonon modes of monoclinic BiB3O6”
we consider monoclinic compounds, where the tensor of the dielectric function includes
two non-diagonal matrix elements unequal to zero. In order to describe these com-
pounds as well, we use the procedure described by Kuz’menko et al. [188] and extend
the normal Drude-Lorentz to a generalized Drude-Lorentz model.
The Drude-Lorentz model can also be used to describe the magnetic permeability µ̂
which is represented by a complex tensor analogous to the dielectric function ε̂.

3.1.2 Kramers-Kronig analysis

In addition to the Drude-Lorentz model, we use the Kramers-Kronig relation (see sec-
tion “2.11.1 Response Functions and Optical Conductivity”) to determine the complex
response functions directly from the measured reflectance. In contrast to the Drude-
Lorentz model, the Kramers-Kronig analysis consider every detail of the experimental
data. We start with the polar form of the complex reflection coefficient r̃(ω):

r̃(ω) = |r(ω)|·ei φr(ω) =
n− 1 + ik

n+ 1 + ik
, ln [r̃(ω)] = ln|r(ω)|+iφr(ω), |r(ω)| =

√
R(ω).

(3.1.4)
For normal incidence the real ln|r(ω)| and the imaginary part φr(ω) of ln [r̃(ω)] are
connected by the Kramers-Kronig relation (2.11.9) and we can calculate the phase
φr(ω):

φr(ω0) = − 1

π
P
∫ ∞
−∞

ln|r(ω)|
ω2 − ω2

0

dω = −2ω0

π
P
∫ ∞

0

ln|r(ω)|
ω2 − ω2

0

dω. (3.1.5)

Here, the problem is that we do not know ln|r(ω)| for all frequencies between 0 and∞.
So we have to extrapolate R for example with a Drude-Lorentz fit. This has to be done
very carefully, because the Kramers-Kronig transformation (3.1.5) is very sensitive to
the extrapolation procedure. Especially, the Kramers-Kronig transformation requires
a smooth transition between the experimental data and the extrapolation function at
the first ωf and the last ωl measured data point. In addition, the numerical integration
in (3.1.5) is nontrivial. The problem with the singularity at ω = ω0 is removed by
subtracting ∫ ∞

0

ln|r(ω0)|
ω′2 − ω′20

dω′ = 0, (3.1.6)

from (3.1.5). This leads to the following expression:

φr(ω0) = −2ω0

π
P
∫ ∞

0

ln|r(ω)|
ω2 − ω2

0

dω = −2ω0

π
P
∫ ∞

0

ln|r(ω)| − ln|r(ω0)|
ω2 − ω2

0

dω. (3.1.7)

The integral in (3.1.7) can be divided into three parts:

φr(ω0) = −2ω0

π
P
∫ ∞

0

ln|r(ω)| − ln|r(ω0)|
ω2 − ω2

0

dω

= −2ω0

π
P
[∫ ω0−ε

0

. . . dω +

∫ ω0+ε

ω0−ε
. . . dω +

∫ ∞
ω0+ε

. . . dω

]
.

(3.1.8)
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The first integral can be calculated by the Simpson or the trapez rule. The second
integral can be evaluated by the usage of the l’Hospital rule

−2ω0

π
lim
ε→0

∫ ω0+ε

ω0−ε

ln|r(ω)| − ln|r(ω0)|
(ω − ω0)(ω + ω0)

dω = −2ω0

π

∫ ω0+ε

ω0−ε

d ln|r(ω)|
dω

∣∣
0

ω + ω0

dω

≈ − 1

π

d ln|r(ω)|
dω

∣∣∣∣∣
0

· 2ε,
(3.1.9)

which causes the dependence of the Kramers-Kronig transformation on the slope of the
extrapolation function at ωf and ωl. The determination of the third integral in (3.1.8)
is difficult because the numerical integration cannot be performed up to infinity. So
we have to truncate the integral at a certain value ω1 (cutoff frequency) and estimate

the remaining part. For ω → ∞ the reflectance R behaves like R(ω) = R(ω1)
(
ω1

ω

)4
.

So we have to determine the following integral [114]

− 2ω0

π

∫ ∞
ω1

ln

∣∣∣∣√R(ω1)
(
ω1

ω

)4

∣∣∣∣
ω2 − ω2

0

dω =
1

2
· 2

π
· ω0

ω1

· Φ
(

(ω0/ω1)2, 2,
1

2

)
. (3.1.10)

Here Φ represents the Lerch transcendent. As shown in Fig. 3.4 the cutoff frequency
has to be set at a sufficient high frequency to achieve a smooth transition to the ω4

behavior. The substraction of (3.1.6) introduces an error since we integrate only up to
the cutoff frequency ω1. We can annihilate this error by simply adding this term again
to (3.1.7)∫ ∞

0

ln|r(ω0)|
ω′2 − ω′20

dω′ =
1

π
· (ln|r(ω0)| − ln|r(ω1)|) · ln

(
ω1 + ω0

ω1 − ω0

)
. (3.1.11)

The phase angle φr is known modulo π. This is due to the fact that the sign of
√
R

is not fixed experimentally. However, the way the transform is made guarantees that
φr = 0 for ω = ∞. This implies that we have to use r̃ = (N̂ − 1)/(N̂ + 1) instead
of r̃ = (1 − N̂)/(1 + N̂), because this has a phase angle zero (not π) for Re(N̂) > 1,
Im(N̂) = 0. The latter condition is automatically satisfied in the high-frequency limit
of a physical response function.

We use the complex reflection coefficient to determine the complex index of refraction:

r̃ =
N̂ − 1

N̂ + 1
⇒ N̂ =

1 + r̃

1− r̃
. (3.1.12)

The response functions can be determined in the following way:

N̂2 = µ1ε̂, µ1 ≡ 1 (3.1.13)

⇒ σ̂ = − i ω
4π

(ε̂− 1) . (3.1.14)

In order to calculate the optical conductivity in “practical units”, we have to multiply
σ̂ by π

15
[115]: In cgs units the conductivity is expressed in [s−1].
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ω0 [cm−1] ωp [cm−1] γ [cm−1] S
0 300 1 -

100 200 5 4.000
280 200 20 0.510
300 400 5 1.778
600 700 1 1.361
650 30 3 0.002

11000 10000 1500 0.826
13000 10000 1500 0.592
15000 7000 1500 0.218

Table 3.1: Drude-Lorentz model parameter, where, S denotes the oscillator strength
S = ω2

p/ω
2
0.

If we write the standard formula for the optical conductivity σ1 in s−1, using frequencies
expressed in cm−1, we have to multiply the conductivity by a factor of (2π c)·102, where
c is the speed of light in m/s. In order to get the conductivity in SI units we have
to multiply the cgs conductivity by (10−2 4π ε0), where ε0 is the permittivity of free
space and the 10−2 prefactor is used to have the final conductivity in Ω−1 cm−1. In the
end the conductivity is written with frequencies in cm−1 and has to be multiplied by
(8π2ε0c) = 0.209585 Ω−1. Since (π/15) = 0.209439, this is a good approximation to
the exact value.

Figure 3.4: Comparison of Drude-Lorentz result and Kramers-Kronig transformation
and the dependence of the Kramers-Kronig transformation on the cutoff
frequency ω1.
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In order to compare the results of the Kramers-Kronig analysis with the Drude-Lorentz
model we construct a reflectance using the normal Drude-Lorentz model with nine
oscillators. The model parameters are shown in Tab. 3.1. Using (2.11.8) we can easily
calculate the optical conductivity. Applying the Kramers-Kronig transformation to
the reflectance between ωf = 30 cm−1 and ωl = 2000 cm−1 we determine the optical
conductivity as well. In contrast to real experimental data, we have no problems with
the transition between the reflectance data and the extrapolation function. As shown
in Fig. 3.4 we see an perfect description of the Drude-Lorentz results, for a sufficient
high cutoff frequency ω1 = 108 cm−1.
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In the following chapter we present the results of our optical measurements. The chap-
ter is divided into four parts. The first section reports about the crystal-field excitations
in the transition-metal oxyhalide VOCl. We investigate VOCl as a reference compound
for the local crystal-field excitations of 3d2 V3+ ions. The final aim is to distinguish be-
tween local crystal-field excitations and propagating orbital waves in compounds where
the exchange interactions are important. In the next section we describe the analysis of
the lattice dynamics and their dependence on Ga doping in the hexagonal multiferroic
compounds YMnO3 and YMn0.7Ga0.3O3, which provides a better understanding of the
origin of ferroelectricity in these hexagonal systems. In the following we present the
investigation of the spin-lattice interaction in the multiferroic, monoclinic compound
MnWO4, which plays an important role in the coupling between the antiferromagnetic
and the ferroelectric orders. The analysis of the lattice dynamics provides a better
understanding of this coupling. Furthermore we present a detailed study of the lattice
dynamics of the monoclinic compound BiB3O6, which is required for a quantitative
understanding of the nonlinear optical properties of this sample. In the last section we
investigate the anomalous antiferromagnetic metallic oxide CaCrO3, which shows an
exception of a quite general relation between magnetic order and electrical conductiv-
ity in transition-metal oxides: insulators usually exhibit antiferromagnetism, whereas
ferromagnetism typically coexists with metallic conductivity. So observations of anti-
ferromagnetic order in transition-metal oxides with metallic conductivity are of great
interest.

4.1 Crystal-Field Excitations in VOCl

In this section we analyze the crystal-field excitations in the orthorhombic transition-
metal oxyhalide VOCl by using group-theoretical considerations as well as cluster-
model calculations presented in the last sections. VOCl is used as a reference system
for YVO3 where orbital excitations were observed [116]. In YVO3, the collective Jahn-
Teller effect, i.e. the coupling to the lattice, as well as exchange interactions lead to an
interaction of orbitals on different sites [117, 118], which can result in coupled long-
range spin and orbital order. If the coupling to the lattice is dominant, the excitations
are well described by local crystal-field excitations [61, 119, 120]. These excitations
change the orbital occupation on a single site, i.e. the dispersion is negligible. In the
opposite case of dominant exchange interactions, one expects orbital waves (orbitons)
with a significant dispersion [121], which represents novel collective elementary excita-
tions. These orbitons are analogous to spin waves in a magnetically ordered state and
are expected to reveal the fundamental orbital interactions responsible for the interest-
ing physical properties. In order to distinguish between orbitons and local crystal-field
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excitations, it is necessary to compare the optical data of YVO3 with the expectations
for local crystal-field excitations of 3d2 V3+ ions. Motivated by the results of the analy-
sis of the sister compound TiOCl, where the orbital excitations are very well described
in terms of local crystal-field excitations [120, 122], we probe the absorption spectrum
of VOCl.

After a short overview of the transition-metal oxyhalides MOX we describe some group-
theoretical principles and the different selection rules caused by the dipole operator.
In the following, we present a detailed group theoretical analysis of the crystal-field ex-
citations of VOCl and compare the prediction with the experimental observations. In
the second part, we supplement the cluster-model calculations presented by Benckiser
[124] and give a detailed analysis of the eigenstates which are essential for the descrip-
tion of the experimental data.

The observation of challenging low-dimensional phenomena in TiOCl [120, 122] has
reattracted interest in the transition-metal oxyhalides MOX with M = {Sc, Ti, V, Cr,
Fe} and X = {Cl, Br}. The group of transition-metal oxyhalides consists of (at room-
temperature) crystallographically iso-structural compounds, which allows the system-
atically investigation of the interactions between the crystal lattice and the several
electronic configurations of the transition-metal. All oxyhalides show (electrically)
Mott-insulating properties caused by strong electron localization. Like all transition-
metal oxyhalides, VOCl crystallizes in an orthorhombic structure with space group
Pmmn (D13

2h) at 150 K [123], with one crystallographic V site. VOCl consists of
strongly distorted [V O4Cl2] octahedral units where the V3+ ions are coordinated by
four oxygen and two chlorine ions. The octahedral units are linked via edges along the
crystallographic b axis and via corners along the a axis, forming quasi-two-dimensional
bilayers in the ab plane. These planes are well separated from each other by two layers
of Cl ions [125, 126]. Recent neutron as well as synchrotron measurements show a
structural phase transition at TN ≈ 80 K [123], where the site symmetry on the V site
changes from C2v (295 K) to C2 (20 K).

VOCl is believed to exhibit (quasi) two-dimensional antiferromagnetic order below TN
(80 K) [127]. Fausti et al. [127] expect that the occupation of the dxy orbital leads to a
substantial direct exchange interaction between ions in different chains in VOCl, which
favors a two-dimensional antiferromagnetic order. (In TiOCl, the occupation of the
dy2−z2 orbital in the ground state forms quasi-1D S = 1/2 chains, which causes strong
direct exchange between neighboring Ti sites along the b axis and negligible coupling in
the other directions. By using a one-dimensional S = 1/2 Heisenberg model the mag-
netic susceptibility of TiOCl can be well described at high temperatures.) In contrast
to TiOCl, the magnetic susceptibility of VOCl is isotropic at high temperatures and
well described by a two-dimensional Heisenberg model for a square lattice. Wieden-
mann et al. [128] report of a phase transition to a two-dimensional antiferromagnet
at TN = 80 K (TN = 150 ± 5 K[129]). Previous optical and electrical measurements
have shown that VOCl is a semiconductor with a gap of ∼2 eV [129]. The resistivity
at room temperature is 5 · 107 Ωcm [129].
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Figure 4.1: Crystal structure of VOCl.

Single crystals of VOCl have been grown by the chemical-vapor transport technique
by T. Taetz and A. Möller.1 The purity of the crystals was checked by x-ray powder
diffraction.

Measuring the transmittance T (ω) we can determine weakly infrared-active excitations
below the gap of Mott-Hubbard insulators, where the reflectance is nearly constant and
featureless. Therefore, the transmittance can be approximate by [136]

T (ω) ≈ (1−R(ω))2 exp(−α(ω)d). (4.1.1)

Using the linear absorption coefficient α = 2ωκ/c we get a qualitative description of
the absorption

α(ω) ≈ − lnT (ω)/d+ 2 ln(1−R(ω))/d ≈ − lnT (ω)/d+ const. (4.1.2)

Neglecting the almost constant second term we can use −ln(T (ω))/d or also −ln(T (ω))
equivalently to α(ω) for the determination of weak orbital excitations.

The measured transmittance of VOCl at T = 20 K and T = 300 K for E ‖ a and
E ‖b is shown in Fig. 4.2. The features below 0.20 eV represent the upper part of the

1Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939 Cologne, Germany.
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phonon spectra whereas excitations above ∼1.5 eV indicate the beginning of the Mott-
Hubbard gap. The excitations between 0.95 eV and 1.2 eV correspond to spin-forbidden
transitions, which become weakly allowed by spin-orbit coupling or by the simultaneous
excitation of a magnon. In case of such spin-flip bands the coupling to the lattice is
only weak (the large width of spin-allowed excitations is attributed to vibronic Franck-
Condon sidebands, see below). Additionally, theses spin-flip bands often are very sharp
because the orbital occupation is unchanged. The room-temperature behavior above
1.4 eV agrees very well with the optical absorption measurements at 300 K reported
by Venien et al. [129].
Comparing the room-temperature (T = 300 K) with the low temperature spectra
(T = 20 K), we find remarkable differences. The positions of the excitations at 0.32 eV
(E ‖ a) and 0.38 eV (E ‖b) stay nearly unchanged for both temperatures. But, at
T = 20 K, the spectra show a step at 0.21 eV in both directions. The step is caused
probably by the structural transition, mentioned above. We will analyze this feature
later on. Furthermore, we find a similar behavior at 1.48 eV in the low temperature
regime, but the step is less pronounced. The different crystal-field excitations will be
analyzed in the following.

4.1.1 Group-Theoretical Considerations

In order to analyze the crystal-field excitations in this compound we make use of the
group theory, which plays a major role in the determination of the degeneracy and
the symmetry types of the electronic levels in the crystalline field. The full rotational
symmetry of the free atom includes an infinite number of symmetry operations,2 which
commute with the Hamiltonian. All rotations about any axis are symmetry operations
of the full rotation O(3) group. But the lower symmetry of the crystal field includes
only a finite number of rotations about finite angles, inversions and reflections. Within
the unit cell there are sets of points in which each member of the set has an identi-
cal environment. These points are designated as sites and the symmetry operations
associated with one of these points define a group (site group or point group3),
which is a sub-group4 of the full rotational O(3) group and is isomorphic to one of the
32 point groups permitted in crystal structures. Each member of the set shows the
complete symmetry of the appropriate site group.

2Improper rotations, inversion operations, mirror planes, and rotations build up the symmetry op-
erations which create the 32 crystal classes corresponding to the 32 point groups [130].

3The symmetry operations in the point groups leave at least one point in space unchanged justifying
the name “point group”. The operations included in space groups leave lines, planes, or polyhedra
unchanged [132].

4If all elements of a group H are also elements of a group G, the group H is called a sub-group
of G (H ⊆ G). The order of a group G is defined by the number g of elements of G. If g
exists, G is called a finite group. If there is no (finite) number g, G is called an infinite group.
Crystallographic site-symmetry groups are always finite [131].
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Figure 4.2: −ln(T (ω))/d of VOCl at a) 20 K and b) 295 K for E ‖ a and E ‖b.
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In the following we will present the definitions of several expressions, which we use
in the group-theoretical analysis. The following definitions are taken from [132]: A
representation of a group is defined by a set of non-zero square matrices which
multiply in the same way as the elements of the group. Furthermore, the order of the
matrices is called the dimension of the representation. If the symmetry operation R̂
is represented by the matrix D(R̂) then the trace of D(R̂) is called the character of
R̂ for that representation. The so-called character tables contain the characters
of the various representations for a group. The definition of the character is motivated
by the fact that the full matrices of a representation are often not needed, because the
character alone can provide sufficient information. The matrices which describe the
symmetry operation of a group can often be transformed to block matrices. A block
matrix is called a irreducible representation, if there exists no similarity transfor-
mation, which reduces the representation further. Note, that the number of irreducible
representations of a group is always equal to the number of classes. Additionally we
can write every reducible representation Γr of a group as a sum of irreducible ones Γi
of the same group:

Γr =
∑
i

NiΓi. (4.1.3)

Here Ni represents the number of times Γi appears in Γr and can be determined by
using the following expression:

Ni =
1

h

∑
X

n(X)χr(X)χi(X), (4.1.4)

where h indicates the order of the group, χr(X) and χi(X) represent the character of
the reducible Γr and irreducible representation Γi, respectively. The number of sym-
metry operations in the class is determined by n(X).5 If we lower the symmetry of a
point group to one of its subgroups we may find that the irreducible representations of
the point group are reducible representations of the subgroup. This has an important
consequence for the analysis of crystal-field excitations: If the eigenstates of a crystal
field are reducible representations of a crystal field of lower symmetry, a splitting of
these eigenstates occurs if we lower the symmetry.

In addition, we present five theorems which are useful in analyzing crystal-field excita-
tions, where the theorems are cited from [132]:

1. The number of non-equivalent irreducible representations of a group is equal to
the number of classes in that group.

2. The sum of the squares of the dimensions of all the non-equivalent irreducible
representations of a group is equal to the order of the group.

5The element P of a site-symmetry group is conjugated to the element Q of the same group, if
there exists another element X of the group such that P = X−1QX. The elements of a group
which are conjugated to each other form a so-called class, [131].
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4.1 Crystal-Field Excitations in VOCl

3. The sum of the squares of the absolute values of the characters in any irreducible
representation is equal to the order of the group.

4. The characters of two non-equivalent irreducible representations i and j satisfy∑
R̂

χ∗i (R̂)χj(R̂) = 0, (4.1.5)

where χi(R̂) and χj(R̂) are the characters of the symmetry operation R̂ in the
representations i and j, and where the sum runs over the h symmetry operations
of the group.

5. If the characters for some particular representation i satisfy∑
R̂

∣∣∣χi(R̂)
∣∣∣2 = h, (4.1.6)

then i is irreducible.

Combining theorem (3) and (4) we get the so-called Great Orthogonality The-
orem ∑

R̂

χ∗i (R̂)χj(R̂) = hδij, (4.1.7)

which is very useful in generating character tables. The different irreducible repre-
sentations are labelled after Bethe (Γ1, Γ2, . . .) and Mulliken (A1, A2, B1, . . .). In
Mulliken’s nomenclature the one-dimensional irreducible representations are denoted
with A if they are symmetric with respect to the principle symmetry axis Cn and B
otherwise. The subscripts 1 or 2 indicate the behavior under the symmetry opera-
tions σv. The representation A is called the “totally symmetric” representation, which
must always be present. Furthermore, we indicate two-fold degenerated irreducible
representations with the letter E while three-, four-, and five-dimensional irreducible
representations are labeled with T , G, H, respectively. The subscripts g (for gerade)
and u (for ungerade) indicate the behavior under inversion. By convention, the num-
ber within the first column of the character table represents the dimensionality of the
irreducible representation.

In addition to these group theoretical considerations we have to take some limiting
factors of optical spectroscopy into account: We approximate the measured optical
transitions by electric dipole transitions, because other multipole transitions are much
weaker. The electric quadrupole transitions for example are eight orders of magnitude
less probable than electric dipole transitions. An electric dipole transition is forbidden
if the matrix element 〈i|ε · p̂|f〉 of the dipole operator p̂ is zero. (Here, i indicates the
initial and f the final eigenstate). In order to determine the forbidden electric dipole
transitions, we can use group-theory: The transition between two eigenstates i and f
is forbidden, if the product of the irreducible representations describing the eigenstates
i and f do not contain the irreducible representation of the dipole operator.
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Furthermore, the dipole operator acts only on the angular momentum part of the wave
function. Thus, an optical transition with linearly polarized light cannot change the
spin (spin selection rule, ∆S = 0). This selection rule can be relaxed by taking
into account spin-orbit coupling, which can be responsible for the admixing of terms of
different spin multiplicity. Additionally, if we excite two spin-carrying modes simulta-
neously with total spin equal to zero, we can avoid the spin selection rule. For instance
a spin-forbidden orbital excitation may gain a finite spectral weight by the simulta-
neous excitation of a magnon, giving rise to a so-called magnon-exciton sideband
[138–140]. In case of a spin-forbidden excitation which energy is comparable with that
of a spin-allowed transition we find an increased strength [141] due to the so-called
“intensity stealing” where a spin-forbidden transition acquires intensity by “stealing”
from e.g. a spin-allowed or a charge-transfer band, if both excitation mix with each
other.

Within the Russel-Saunders coupling scheme, the matrix element of the dipole operator

pJ,J ′ = 〈αLSJM |p̂|α′L′S ′J ′M ′〉 (4.1.8)

is non-zero, if
∆J = J − J ′ = 0,±1, (4.1.9)

and
J = J ′ = 0 is not allowed, (4.1.10)

and
∆M = M −M ′ = 0,±1, (4.1.11)

is fulfilled. Here, ∆M = 0 indicates linear polarized and ∆M = ±1 circular (clockwise
(+1), counterclockwise (-1)) polarized light. The ∆J selection rule can be extended to
∆L = 0,±1, except for transitions from initial states with L = 0 to final states with
L = 0.

The dipole operator p̂ is a vector operator of the form p̂ = r C(1), where C(1) denotes
the renormalized spherical harmonic tensor operator (2.4.5) of rank 1. Thus, the parity
of the dipole operator is given by the parity of the spherical harmonics (−1)k. Here,
k ≡ 1, due to the dipole approximation. Hence, the dipole operator has odd parity, and
transitions occur only between states of opposite parity: If we consider a transition-
metal site with inversion symmetry, a d − d transition is forbidden within the dipole
approximation, because the matrix element of the dipole operator between the two d
wave functions vanishes due to the even parity of the 3d wave functions

〈even|odd|even〉 = 0. (4.1.12)

Hence, a d − d transitions do not contribute to the optical conductivity σ(ω). One
possibility to gain finite spectral weight is the simultaneous excitation of a phonon
that removes the center of inversion, in which case the parity selection rule does not
apply anymore. The absence of inversion symmetry allows a mixture of e.g. d and p
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4.1 Crystal-Field Excitations in VOCl

wave functions. In this case spin-allowed transitions are observed with intensities 100
times larger than spin-forbidden ones, but still a few orders of magnitude less intense
than fully allowed transitions, because the p−d mixing is smaller in the dynamic envi-
ronment than in the static one. In order to determine the orbital excitation energy, the
phonon energy, which in transition-metal compounds is of the order of 50 - 80 meV,
has to be subtracted from the experimentally observed peak position. In real samples,
inversion symmetry may additionally be broken by impurities or other lattice imper-
fections, e.g. oxygen non-stoichiometry. But the contribution is expected to be still
much smaller than the phonon-assisted one in the case of low impurity concentrations.
In addition, the parity selection rule may be violated by an external electric field which
mixes states of opposite parity via the Stark effect [142].

In case of a broken inversion symmetry at the transition-metal ion site, we have to take
energetically higher lying configurations at the transition-metal ion into accout. Here,
the ground state |ψ0〉 can be written as

|ψ0〉 = α|ψd〉+ β|ψp〉, (4.1.13)

where |ψd〉 and |ψp〉 represent wave functions with d-and p-character, respectively. Al-
though, the contributions of p-states to the ground state are small, i.e. β � α, these
p-states contribute decisively to the optical conductivity. For compounds with broken
inversion symmetry at the transition-metal ion site we have strong contributions from
transitions between p-and d-states at the transition-metal ion to the optical conduc-
tivity. In the following, we neglect the contributions of p-states at the transition-metal
site due to the enormous computational effort, and consider only the contributions
from the d-states, the spin-orbit coupling and the charge-transfer excitations to the
optical conductivity.

The dipole approximation implies a further selection rule: The dipole operator vanishes
if ∆l = l′ − l 6= ±1, where l and l′ denote the angular momenta of the initial and the
final eigenstate, respectively. This means that e.g. transitions from s to p are allowed,
but s to f are forbidden. But there exist several violations of this selection rule, e.g.
transitions between p2 − pg observed in PbI [142]. The violations arise as a result
of configuration interaction between pd and pg configurations. Furthermore, there is
another type of ∆l violations: The electric dipole operator is an one-electron operator,
and as a result transitions can theoretically occur only between two configurations that
differ in only one electron. Nevertheless, transitions such as s2 − dp are observed that
have the appearance of involving two-electron jumps – one jump with ∆l = ±1 and
another one with ∆l = ±2. The explanation lies again in configuration interaction
effects [48].

In VOCl all d−d excitations are allowed without the additional excitation of a phonon
because there is no inversion symmetry on the V sites. The lowest crystal-field d − d
excitations are located below the charge gap and above the phononic regime. In or-
der to investigate these excitations, we have to distinguish between d − d and other
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Figure 4.3: The Franck-Condon principle: a) The diagram shows a transition between
two states with the same nuclear separation. The horizontal position of a
parabola (potential) indicates the distance to the ligands after the lattice
has been allowed to relax in the particular orbital state. b) The vertical
transition B involves no nuclear movement and is allowed. c) + d) The
vibrational states of the upper electronic state have been added. The lines
within a parabola denote phonon excitations. The strongest overlap is
obtained for the level which is closest to where the vertical arrow cuts
through a parabola. Due to the dispersion of the phonons and due to
the contribution of phonons with different energies, the sharp subbands of
individual excited states are usually not resolved in a solid, yielding a single
broad band. The width and the line shape of an absorption band in σ(ω)
depends on the difference in bond length of the different orbital states.

excitations such as e.g. excitons which are measured simultaneously. In the case of
a sizable electron-phonon coupling the orbital excitations are dressed by vibrational
excitations. The combined vibrational-electronic excitation is called “vibron”. The
coupling to phonons give rise to a pronounced broadening. The underlying principle is
the Franck-Condon principle [143–146].

Due the uncertainty principle of quantum mechanics, high-energy transitions in solids
are very fast, i.e. crystal-field transitions take place in about 10−15 sec, which is much
faster than the time scale of nuclear motions of about 10−13 sec. Thus, the transition
is vertical in the corresponding energy diagram Fig. 4.3, reflecting that the lattice
cannot change during the transition. Therefore the positions of the nuclei can be
assumed to be unchanged during an electronic transitions. This has significant effects
upon the appearance of band spectra. As shown in Fig. 4.3 c) the transition from
the relaxed ground state to the second vibronic excited state (1) is the strongest. But
also the transitions to the (0), (2), (3) states may exhibit a finite probability, which is
determined by the overlap of the phonon wave functions at the initial and final state
(known as Franck-Condon factors). This results in several absorption lines for the
corresponding d − d transition, namely phononic side bands, in addition to the pure
electronic transition. In crystals several phonons (each with dispersion) may contribute
to the Franck-Condon process, which makes the absorption band rather structureless.

94



4.1 Crystal-Field Excitations in VOCl

Figure 4.4: Tanabe-Sugano diagram for a d2 configuration in a cubic environment [148]
with Racah parameters B = 9

441
F 2 − 5

441
F 4 = 886 cm−1, and C =

35
441

F 4 = 3916 cm−1. The parameter ∆ indicates the strength of the crystal
field in units of the Racah parameter B. The colors indicate the degree of
spin degeneracy: red (1-fold) and green (3-fold).

We are interested in the low-energetic excitations, which are determined by the lowest
eigenstates. In the following, we use a point-charge model picture where we neglect
spin-orbit coupling as well as the hybridization between the V ion and the surrounding
ligands. In addition, we assume that x ‖ a, y ‖b, and z ‖ c. The analysis of the crystal-
field excitations shown in Fig. 4.2 starts with the free V3+ ion, which has a 3d2 electronic
configuration. Without crystal field, the ground state is formed by the 3F multiplet
according to Hund’s rules. The 1D multiplet lies below the 3P and 1G terms. This
can be explained by the fact that the electrons in the 1G multiplet (L = 4) occupy
the same orbital and cannot avoid each other. Within the 3P multiplet the electrons
have to run more in the opposite direction around each other than in the 1D multiplet
giving rise to an increased potential energy. In order to identify the different absorption
lines shown in Fig. 4.2 with crystal-field excitations, i.e. transitions between crystal-
field eigenstates provided by the dipole operator, we have to distinguish between two
site symmetries on the V site: Within the room-temperature phase (T > 80 K) the
site symmetry is C2v [133], and C2 for the low-temperature phase (T < 80 K) [123].
The ground state in a crystal field with cubic symmetry is the nine-fold degenerate
3T1 level, see Fig.4.4. We start with the analysis of the crystal-field excitations in the
room-temperature regime: Lowering the site-symmetry from Oh to C2v, the cubic 3T1g

level splits into three distinct orbitals (3A2 + 3B1 + 3B2) [184], each showing three-fold
spin degeneracy,6 see Fig. 4.5.

6The crystal-field operator acts only on the angular momentum part of the wave function and cannot
remove the spin degeneracy.
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Figure 4.5: The splitting of the terms with increasing crystal-field strength for a) + c)
C2 (relevant for T < 80 K) and b) + d) C2v site symmetry (relevant for
T > 80 K). In c) and d) the energies are scaled to the crystal-field ground
states. The degree of degeneracy is indicated by the red (1-fold) and green
(3-fold) color. The calculation parameters used in this point-charge model
are F 2

V = 8.157 eV , F 4
V = 5.114 eV , 〈r2〉V = 0.467 Å2, and 〈r4〉V = 0.448 Å4.

As shown in Fig. 4.5 b) the crystal-field splitting is not strong enough to break Hund’s
first rule. But the crystal field mixes multiplets with the same spin. So the ground
state in VOCl at 300 K is given by the following linear combination of multiplet wave
functions with S = 1:

|ψgs
crystal field〉 = 0.9769 · |3F 〉 + 0.0232 · |3P 〉, (4.1.14)

in which |3F 〉 and |3P 〉 represent the 3F and 3P multiplet wave functions of the free
ion, respectively.
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4.1 Crystal-Field Excitations in VOCl

Figure 4.6: The splitting of the cubic ground state 3T1 by lowering the symmetry from
Oh to a) C2 (T < 80 K) and b) C2v (T > 80 K).

The contribution of the 3P multiplet to the ground state is quite small and so we will
neglect this multiplet in the further analysis. The other multiplets are irrelevant for
describing the ground state.

In order to identify the irreducible representations with the crystal-field eigenstates
shown on the right hand side of Fig. 4.5 a), we have to apply the symmetry operations
of the C2v point group, which are given in the character table Tab. 4.1, to the crystal-
field eigenstates |ψ〉.
Here, the C2(z) symmetry operation represents a 180◦ rotation around the z axis, which
is described by the rotation operator [149] D(α, β, γ) (with Euler angles α = 0, β = 0,
γ = π):

C2|ψ〉 = D(α, β, γ) |ψ〉 = ±|ψ〉. (4.1.15)

If C2|ψ〉 = +|ψ〉, the crystal-field eigenstate |ψ〉 corresponds to one of the A irreducible
representations. The opposite algebraic sign indicates the B1 or B2 irreducible repre-
sentation.

The other symmetry operations σv(xz) and σv(yz) represent reflections at the xz and yz
plane, respectively. The crystal-field eigenstates |ψ〉 = |J M〉, which are characterized

E C2(z) σv(xz) σv(yz) basis
A1 1 1 1 1 z, x2, y2, z2

A2 1 1 −1 −1 xy
B1 1 −1 1 −1 x, xz
B2 1 −1 −1 1 y, yz

Table 4.1: Character table for C2v point group.
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A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

Table 4.2: Multiplication table for the C2v point group.

by the total angular momentum J and the corresponding quantum magnetic number
M, transform under the symmetry operation σv(xz) as follows

σv|J M〉 = (−1)J−M|J −M〉. (4.1.16)

Applying the symmetry operations to the crystal-field eigenstates, we can identify the
irreducible representations as shown in Fig. 4.6, where the ground-state has predomi-
nantly xy character, i.e 3A2.

In case of the low-temperature regime, the identification of the crystal-field eigenstates
with the irreducible representations can be done analogously. The C2 point group is a
sub-group of C2v and we can use the C2v character table Tab. 4.1 for the C2 group if we
omit the σv(xz) and σv(yz) reflections. Furthermore, the irreducible representations
A1, A2, B1 and B2 lose their indices 1 and 2. As shown in Fig. 4.5 a), the strength
of the crystal-field splitting is comparable to the room-temperature regime and the
contribution of the 3P multiplet to the crystal-field ground state changes from 2.317 %
(295 K) to 2.143 % (20 K). Applying the C2 rotation to the crystal-field eigenstates,
we can identify the irreducible representations as shown in Fig. 4.6 a).

In order to find the forbidden dipole transitions, we have to determine the product of
the irreducible representations of the eigenstates which are involved in the transitions.
As mentioned above, these products must include the irreducible representation of the
dipole operator. The products of all irreducible representations in the C2v point group
are given in the multiplication table Tab. 4.2. The cartesian components of the dipole
operator are represented by the irreducible representations B1(x), B2(y), and A1(z)
as shown in Tab. 4.1. In the low-temperature regime, the z component of the dipole
operator is described by the A and the other components by the B irreducible repre-
sentation. The result of the group-theoretical analysis is shown in Tab. 4.3.

Comparing the theoretically predicted excitation energies with the experimental values,
see Fig. 4.2, we find a good agreement for the low-lying transitions, but the differences
between theory and experiment increase with increasing energy. This is caused on the
one hand by inaccuracies in the determination of the crystal structure, see below, and
on the other hand by the simple point-charge picture, where we neglect the hybridiza-
tion, which is important in the description of the higher-lying excitations. Thus, we
find a strong polarization dependence of the transitions, i.e. we should find several ex-
citations only in one polarization direction, within the room-temperature regime. But
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irreducible excitation dipole experimental
transitions representations energies [eV] components values [eV]

room-temperature regime (C2v site symmetry)
gs→ 1st A2 → B2 0.142 x -
gs→ 2nd A2 → B1 0.259 y 0.317
gs→ 3rd A2 → B2 0.368 x 0.379
gs→ 4th A2 → A2 0.480 z -
gs→ 5th A2 → A1 0.498 forbidden -
gs→ 6th A2 → B1 0.772 y -
gs→ 7th A2 → A1 1.451 forbidden -
gs→ 8th A2 → A2 1.476 z -
gs→ 9th A2 → B2 1.546 x -
gs→ 10th A2 → B1 1.662 y -

low-temperature regime (C2 site symmetry)
gs→ 1st A→ B 0.123 x, y -
gs→ 2rd A→ B 0.241 x, y 0.327
gs→ 3nd A→ B 0.386 x, y 0.387
gs→ 4th A→ A 0.486 z -
gs→ 5th A→ A 0.566 z -
gs→ 6th A→ B 0.862 x, y -
gs→ 7th A→ A 1.458 z -
gs→ 8th A→ A 1.471 z -
gs→ 9th A→ B 1.538 x, y -
gs→ 10th A→ B 1.652 x, y -

Table 4.3: Comparison of the results of the group-theoretical analysis and the exci-
tation energies of the point-charge model calculation. Here “gs” indicates
the ground state and “1st” (“2nd”, etc.) the first, (second) excited state,
respectively.

this is not observed in the optical data. For example, the transition at ∼1.65 eV is
observed for E ‖ a (E ‖x) and, within a few meV, for E ‖b (E ‖y), in contrast to the
group-theoretical result, which predicts this transition only for E ‖b.

In addition, the point-charge model predicts an excitation at 0.142 (0.123) eV, which
is probably related to the step in the low temperature spectra at 0.21 eV. (The step
vanishes at T = 300 K due to the temperature broadening of the peaks.) A possi-
ble explanation for the line shape of this excitation starts with the Franck-Condon
principle. (We restrict our explanation to E ‖b.) We assume, that we have two dif-
ferent excitations: The first one is at 0.21 eV and the other one at 0.32 eV. Within
the Franck-Condon picture, each parabola corresponds to a different orbital state and
represents the harmonic potential of the lattice. In case of the excitation at 0.21 eV,
we have a transition from one minimum of the harmonic potential to the other, which
causes a sharp absorption band, see Fig. 4.7 a). For the other transition, we may find
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Figure 4.7: The width and the line shape of an absorption band depends on the differ-
ence in bond length of the different orbital states. Small differences cause
a characteristic asymmetric line shape a), whereas large differences in the
bond length give rise to symmetric absorption bands b).

a, in relation to the lower lying potential, shifted second potential with a symmetric
form, see Fig. 4.7 b). Combining both peaks we may get the step line shape as found
in the experimental data.

Finally, we perform a point-charge analysis of the isostructural compound TiOCl, which
has the same space group as VOCl (Pmmn at 300 K [134]), and the same point group
symmetry at the Ti-site (C2v at 300 K [134]). The results are in good agreement with
the results reported by Rückamp [135]. As shown in Tab. 4.4, the results of the point-
charge model for TiOCl differ by a factor of 2 from the optical data [122]. Additionally,
we find, analogous to VOCl, a clear polarization dependence of the transitions and
a spin-forbidden transition at 0.384 eV. Furthermore, in TiOCl the ground state is
described by the A1 irreducible representation in contrast to VOCl where the ground
state is described by A2. In the end we find clear discrepancies between the results
of the point-charge analysis for TiOCl and VOCl and the optical data indicating the
important role of the hybridization in the description of the optical data of these
compounds.

irreducible excitation dipole experimental
transitions representations energies [eV] components values [eV] [122]

room-temperature regime (C2v site symmetry)
gs→ 1st A1 → B2 0.328 y 1.510
gs→ 2rd A1 → A2 0.384 forbidden -
gs→ 3nd A1 → B1 0.671 x 0.640
gs→ 4th A1 → A1 1.263 z -

Table 4.4: Results of the point-charge analysis for TiOCl. Here “gs” indicates the
ground state and “1st” (“2nd”, etc.) the first, (second) excited state, respec-
tively.
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4.1.2 Cluster-Model Calculations

In order to achieve a better description of the experimental data we have to include
further parts of the Hamiltonian, i.e. the spin-orbit coupling and the hybridization, and
perform a cluster-model calculation as described in the second chapter. As mentioned
in section “2.8 Hybridization and Tight-Binding Approximation”, the hybridization
mixes the eigenstates of the transition-metal ion and the surrounding ligands.7 The
resulting wave functions contain ionic wave functions of different sites.

The cluster used in the cluster-model calculation consists of a V ion with 3d2 elec-
tronic configuration and four oxygen (2p6) and two chlorine (3p6) ions around. The
cluster with this electronic configuration represents the ground configuration. Config-
urations containing a V ion with 3d3 electronic configuration and a hole on one of the
ligands form the single-excited configurations.8 Additionally, we denote configurations
including a further electron on the V site (3d4) and a further hole on the ligand sites
as “double-excited configurations”. Here, we have to distinguish between doubly oc-
cupied ligands with 2p4 (3p4) electronic configuration and two singly occupied ligand
sites {2p5, 2p5}, {2p5, 3p5}, and {3p5, 3p5}. Altogether we have 28 configurations, and
the size of the Hamilton matrix is 136665 × 136665. As mentioned in section “2.8
Hybridization and Tight-Binding Approximation”, the hybridization leads to an ad-
mixture of different configurations, which is described by the tight-binding operator.
But we forbid the hopping of electrons between ions, when the hopping path passes
through the central transition-metal ion because that has no physical meaning in the
two-center tight-binding approximation.

The Slater integrals F 2, F 4 as well as the crystal-field parameters 〈r2〉 and 〈r4〉 and the
spin-orbit coupling constant ζ used in the cluster-model calculation are determined by
a Hartree-Fock calculation as described in section “2.1 The Hartree-Fock Calculation”.
The calculated values are shown in Tab. 4.5, where the Slater integrals are reduced
to 80 % of the atomic values to include configuration-interaction as well as screening
effects. (The value of this screening factor is given by Cowan [7], but its value is not
unique. Therefore, we will analyze the dependence of the results of the cluster-model
calculation on the value of this screening factor, see below). Furthermore, we set the
ionic radius of the V-ion to rV = 0.934 Å according to Harrison’s theory. In addition,
we use rO = 4.41 Å for the ionic radii of the O ion. Note, that in Harrison’s theory
several effects are included which falsify the real value. The determination of the cor-
responding ionic radius rCl of the Cl ion is awkward because this value is not given
in Harrison’s theory. Therefore, we estimate the value for the Cl ion by extrapolating
Harrison’s values for Si, P, and S to Cl. We will analyze the dependence of the results
of the cluster-model calculation on this value at the end of this section. Furthermore,
the inclusion of the crystal-field as well as the spin-orbit splitting on the ligand site

7The ions surrounding the central transition-metal ion are called “ligands”.
8As mentioned in section “2.2.3 Truncated Configuration Interaction” we indicate with “single-

excited” (“double-excited”) configurations, where the occupation number of the central transition-
metal ion is increased by one (two) compared to the ground configuration.
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parameter d2 configuration d3 configuration d4 configuration
F 2
V 8.157 eV 7.226 eV 6.142 eV
F 4
V 5.114 eV 4.493 eV 3.778 eV

〈r2〉V 0.467 Å2 0.589 Å2 0.815 Å2

〈r4〉V 0.448 Å4 0.772 Å4 1.699 Å4

ζV 31.6 meV 26.5 meV 21.7 meV
〈r2〉Cl,3p5 - - -
ζCl,3p5 - - -
F 2
Cl,3p4 5.858 eV 5.858 eV 5.858 eV

〈r2〉Cl,3p4 - - -
ζCl,3p4 - - -
〈r2〉O,2p5 - - -
ζO,2p5 - - -
F 2
O,2p4 7.321 eV 7.321 eV 7.321 eV

〈r2〉O,2p4 - - -
ζO,2p4 - - -

Table 4.5: Parameters used in the cluster-model calculation for VOCl. The Slater
integrals are already scaled to 80 % of the atomic values.

involves a difficulty: The application of a Hartree-Fock calculation to a negative ion
(O−) is pretty awkward: The calculated radial wave functions of a negative ion include
a large inaccuracy. Therefore, we cannot determine the parameters 〈r2

O−〉 and ζO− ,
and we will neglect the crystal-field as well as spin-orbit splitting on the ligand sites
completely.

Another problem arises from the determination of the crystal structure [123]: By us-
ing neutron measurements the positions of the V ion cannot be determined exactly.
This causes an inaccuracy in the crystal-field splitting as well as in the contribution
of the hybridization, see “2.8 Hybridization and Tight-Binding Approximation”. The
hopping integrals scale with the distance between the ligands and the transition-metal
ion. Additionally, the Slater-Koster coefficients, which describe the relative orientation
of the orbitals being involved in the hopping process, depend strongly on the crystal
structure.

In contrast to the parameters described above, we cannot determine the values of the
charge-transfer energies ∆V−Cl and ∆V−O exactly. In order to find the best description
of the experimental data shown in Fig. 4.2 we analyze the dependencies of the results of
the cluster-model calculation on the values of these charge-transfer energies as shown in
Fig.4.8. Here, we set UV = 4.5 eV, UCl = UO = 5.0 eV, and rCl = 9.5 Å, rO = 4.41 Å. In
the following, the real part of the optical conductivity (denoted by σ1(ω)) is calculated
by using the Kubo-Greenwood formula (2.11.10), (2.11.14), (2.11.15) with damping γ
(2.11.15) set to ∼112 meV (900 cm−1). The polarization dependence of the optical
conductivity is determined by multiplying the matrix element of the current operator
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4.1 Crystal-Field Excitations in VOCl

ĵ, see (2.11.11), by cos(φ), where φ represents the angle between the dipole moment
vector and the cartesian unit vectors ex, ey, ez, respectively. Due to the Beer-Lambert
law [194]

α(ω) =
4π

c · n(ω)
σ(ω), (4.1.17)

where c denotes the speed of light, the calculated optical conductivity σ1(ω) is propor-
tional to the absorption α(ω), if we assume a constant real part of the refraction index
n(ω) ≡ const.

Note, that we do not include the admixture of energetically higher lying configurations
containing excited p-states at the V site. But, due to the broken inversion symmetry
in VOCl we have a relevant contribution of these p-states at the V site to the optical
conductivity. Thus, we will consider only the contributions from the d-states, the spin-
orbit coupling and the charge-transfer excitations to the optical conductivity.

As shown in Figs. 4.8 - 4.15 we find a strong dependence of the excitation energies on
the charge-transfer energy ∆V−O: By increasing ∆V−O from 2 eV to 8 eV we observe a
remarkable shift of the excitation energies between 0.5 eV and 1.0 eV towards smaller
energies. In addition, the excitation energies located in the spin-forbidden area are
pushed towards lower energies by increasing the charge-transfer energy ∆V−Cl. The
strong dependencies of the excitation energies on the values of the charge-transfer en-
ergies are caused by the fact that ∆V−Cl and ∆V−O describe the energetical distances
between the ground and the excited configurations. By reducing the values of these
parameters we increase the admixture of the different configurations. Additionally, this
shows the import role of hybridization in the description of the optical data.

We find the best description of the optical data for ∆V−Cl = 2 eV, see Fig.4.8 and
Fig. 4.9. Varying the charge-transfer energy ∆V−O from 2 eV to 8 eV we transfer spec-
tral weight from higher to lower energies and shift the excitations around 0.5 eV and
1.5 eV to slightly lower frequencies. Nevertheless, the excitations around 1.5 eV carry
to much spectral weight whereas the strengths of the excitations around 1.7 eV are to
small.9 Note, that the cluster-model calculation cannot describe the effect of intensity
stealing mentioned above. Additionally, the line shapes of the optical conductivity
depend on the value of the damping factor γ which is set to ∼112 meV (900 cm−1) for
all excitations and polarization directions. Using different values of the damping factor
γ for each excitation would increase the quality of the description remarkably.

In order to achieve a better description of the optical data, we will optimize other
calculation parameter such as the screening factor, the Hubbard UV , and the value of
the Cl-radius. In the following we set the charge-transfer energies to ∆V−Cl = 2 eV
and ∆V−O = 8 eV.

9The enhancement of the absorption above 1.5 eV is caused by interband transitions which cannot
be described by a cluster-model calculation including only one V-site.
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Figure 4.8: Dependence of the excitation energies on the charge-transfer energies ∆V−Cl
and ∆V−O at T = 20 K for E ‖ a and E ‖b. Here, the color indicates the
value of the charge-transfer energy ∆V−Cl whereas the values of the charge-
transfer energy ∆V−O are indicated by the symbols “•” (∆V−O = 2 eV),
“?” (∆V−O = 3 eV), “+” (∆V−O = 4 eV), “H” (∆V−O = 5 eV), “N” (∆V−O
= 6 eV), “�” (∆V−O = 7 eV), “×” (∆V−O = 8 eV). Calculation parameter:
UV = 4.5 eV, UCl = UO = 5.0 eV, rCl = 9.5 Å, rO = 4.41 Å, rV = 0.934 Å,
screening factor = 80 %.
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4.1 Crystal-Field Excitations in VOCl

Figure 4.9: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the charge-transfer energy ∆V−O for ∆V−Cl = 2 eV at T = 20 K for E ‖ a
and E ‖b. The optical conductivities are multiplied by a factor of 2.7 · 102.
Calculation parameter: UV = 4.5 eV, UCl = UO = 5.0 eV, rCl = 9.5 Å,
rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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Figure 4.10: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the charge-transfer energy ∆V−O for ∆V−Cl = 3 eV at T = 20 K for
E ‖ a and E ‖b. The optical conductivities are multiplied by a factor
of 2.7 · 102. Calculation parameter: UV = 4.5 eV, UCl = UO = 5.0 eV,
rCl = 9.5 Å, rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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4.1 Crystal-Field Excitations in VOCl

Figure 4.11: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the charge-transfer energy ∆V−O for ∆V−Cl = 4 eV at T = 20 K for
E ‖ a and E ‖b. The optical conductivities are multiplied by a factor
of 2.7 · 102. Calculation parameter: UV = 4.5 eV, UCl = UO = 5.0 eV,
rCl = 9.5 Å, rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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Figure 4.12: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the charge-transfer energy ∆V−O for ∆V−Cl = 5 eV at T = 20 K for
E ‖ a and E ‖b. The optical conductivities are multiplied by a factor
of 2.7 · 102. Calculation parameter: UV = 4.5 eV, UCl = UO = 5.0 eV,
rCl = 9.5 Å, rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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4.1 Crystal-Field Excitations in VOCl

Figure 4.13: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the charge-transfer energy ∆V−O for ∆V−Cl = 6 eV at T = 20 K for
E ‖ a and E ‖b. The optical conductivities are multiplied by a factor
of 2.7 · 102. Calculation parameter: UV = 4.5 eV, UCl = UO = 5.0 eV,
rCl = 9.5 Å, rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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Figure 4.14: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the charge-transfer energy ∆V−O for ∆V−Cl = 7 eV at T = 20 K for
E ‖ a and E ‖b. The optical conductivities are multiplied by a factor
of 2.7 · 102. Calculation parameter: UV = 4.5 eV, UCl = UO = 5.0 eV,
rCl = 9.5 Å, rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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Figure 4.15: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the charge-transfer energy ∆V−O for ∆V−Cl = 8 eV at T = 20 K for
E ‖ a and E ‖b. The optical conductivities are multiplied by a factor
of 2.7 · 102. Calculation parameter: UV = 4.5 eV, UCl = UO = 5.0 eV,
rCl = 9.5 Å, rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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We start with analyzing the dependence of the results of the cluster-model calculation
on the value of the Hubbard UV at the V site, as shown in Fig. 4.16: The excitation
energies below 2.0 eV are shifted towards lower energies with increasing UV except for
the excitation energies located at 1.35 eV, 1.7 eV, and 1.8 eV which are independent on
the value of UV . Additionally, by changing UV from 2 eV to 8 eV the spectral weight
of the optical conductivity for E ‖b is slightly increased. Especially, the excitations
around 1.5 eV show an enhancement of the spectral weight. For E ‖ a we find a similar
behavior except for excitations located below 0.5 eV which stay nearly unchanged with
increasing UV . But, by varying UV we cannot remove the strong direction dependence
of the optical conductivity below 0.5 eV which is not observed by optical spectroscopy.
We will set the value of UV to 3 eV for the further analysis.

Now, we will analyze the dependence of the results of the cluster-model calculation on
the value of the screening factor as shown in Fig. 4.17. By increasing the screening
factor from 50 % to 90 % we find a remarkable shift of all excitation energies. The
excitations below 0.5 eV are pushed to lower energies whereas the first excited state
stay nearly unchanged. Additionally, by reducing the screening factor from 90 % to
50 %, we shift the excitation energies above 0.5 eV to lower energies. Only the ex-
citations around 1.5 eV show a slightly contrary behavior. Furthermore, the optical
conductivity show a remarkable dependence on the screening factor as well. By in-
creasing the screening factor we transfer spectral weight from higher to lower energies.
The strong dependence of the cluster-model calculation on the value of the screening
factor is caused by the fact, that the screening factor reduces the values of all Slater
integrals, which are relevant for all configurations. Finally, the variation of the screen-
ing factor does not remove the strong direction dependence of the optical conductivity
above 1.0 eV. Thus, the variation of the screening factor does not lead to a appreciable
better description of the optical data and we will set the screening factor to 70 % for
the further analysis.

We continue the investigation by analyzing the dependence of the results of the cluster-
model calculation on the value of the ionic radius rCl of the Cl ion. Harrison gives no
value for this radius and we have to estimate the value by extrapolating Harrison’s
values for Si, P, and S to Cl as mentioned above. This procedure suggests a large value
of rCl = 9.5 Å. As shown in Fig. 4.18 the excitation energies as well as the optical
conductivity depend only slightly on the value of rCl. The excitation energies below
0.5 eV are nearly independent on this value, whereas the excitation energies above
1.0 eV show a more pronounced dependence on rCl. Most of these excitation energies
are pushed to higher energies with increasing rCl. Additionally, the features in the
optical conductivity at 1.5 eV are pushed to slightly lower energies with decreasing rCl.
Furthermore, we transfer spectral weight from higher to lower energies by varying the
radius of the Cl ion. But, we cannot remove the polarization dependence of the optical
conductivity which is not observed by the optical conductivity. We achieve the best
description of the optical data for rCl = 9.5 Å.
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Figure 4.16: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the value of the Hubbard UV at T = 20 K for E ‖ a and E ‖b. The
optical conductivities are multiplied by a factor of 2.7 · 102. Calculation
parameter: ∆V−Cl = 2 eV, ∆V−O = 8 eV, UCl = UO = 5.0 eV, rCl = 9.5 Å,
rO = 4.41 Å, rV = 0.934 Å, screening factor = 80 %.
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Figure 4.17: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on the screening factor at T = 20 K for E ‖ a and E ‖b. The optical
conductivities are multiplied by a factor of 2.7·102. Calculation parameter:
∆V−Cl = 2 eV, ∆V−O = 8 eV, UV = 3.0 eV, UCl = UO = 5.0 eV, rCl = 9.5 Å,
rO = 4.41 Å, rV = 0.934 Å.
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Figure 4.18: Dependence of the optical conductivity σ1(ω) and of the excitation energies
on rCl at T = 20 K for E ‖ a and E ‖b. The optical conductivities are
multiplied by a factor of 2.7 · 102. Calculation parameter: ∆V−Cl = 2 eV,
∆V−O = 8 eV, UV = 3.0 eV, UCl = UO = 5.0 eV, rO = 4.41 Å, rV = 0.934 Å,
screening factor = 70 %.
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Figure 4.19: Comparison between the measured absorption (grey and light grey color)
and the optical conductivity σ1(ω) (red color) of VOCl at T = 20 K
for E ‖ a and E ‖b. The optical conductivity is multiplied by a factor
of 3.2 · 102. The blue triangles represent the results of the cluster-model
calculation for T = 295 K done by Rückamp [124] by using the code XTLS
8 written by A. Tanaka (Hiroshima University, Japan). The red triangles
indicate the excitation energies of our cluster-model calculation.
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Summarizing the results of the analysis described above, we are not able to describe
the optical data of VOCl properly, which may also caused by the missing contributions
of the p-states to the optical conductivity. Although we investigate the dependence of
the cluster-model calculation on different calculation parameters we cannot identify the
relevant parameter(s) which prevent the accurate description of the experimental data.
As mentioned above, the optical conductivity depends strongly on the crystal structure.

In the following we continue the investigation of the crystal-field excitations in VOCl
for the low-temperature phase by using ∆V−Cl = 2 eV, ∆V−O = 8 eV, UV = 3.0 eV,
rCl = 9.5 Å and setting the screening factor to 70 %. Using these parameters we describe
the positions of the different excitations quite well and confirm roughly the results of
the cluster-model calculation done by Rückamp [124] for the room-temperature phase,
as shown in Fig. 4.19. In contrast to Rückamp we determine the positions of the exci-
tations above 1.5 eV. But, we find a remarkable polarization dependence of the optical
conductivity which is not observed by optical spectroscopy. Note, the enhancement of
the optical conductivity above ∼1.5 eV for both polarization directions indicates the
beginning of the charge-transfer band, which cannot be described by a single-cluster
calculation. Additionally, the strength of a spin-forbidden excitation is increased if
the energy of this excitation is comparable with that of a spin-allowed transition due
to the so-called “intensity stealing”. But this effect can not be described by a single-
site cluster-model calculations. Furthermore, we use only one value for the damping
factor for all excitations for both polarization directions, which hinder a accurate de-
scription of the line shape of the excitations as well. Note, that we do not consider the
admixture of energetically higher lying p-states at the V site to the optical conductivity.

In order to identify the different peaks we make use of the advantages of the calculation
technique: By using the Racah-Wigner algebra we can determine the contribution of
each configuration (multiplet) to the appropriate cluster-eigenstate by calculating the
square of the normalized eigenvector and add up all entries of the squared eigenvector
which belong to the corresponding configuration (multiplet). We will start the analysis
by looking at the contributions of the different configurations used in the cluster-model
calculation to the cluster-eigenstates. As shown in Tab. 4.6, the ground state contains
a remarkable contribution of the single-excited configurations indicating the important
role of the hybridization in this compound. Note, that the contribution of the ground
configuration to the different eigenstates does not exceed 50 %. In addition, even the
double-excited configurations are relevant for the description of this compound because
the contributions of the double-excited configurations to the different eigenstates vary
between 7.2 % and 22.4 %. Furhtermore, all eigenstates below 3.0 eV belong to crystal-
field excitations except the excitations between 2.20 eV and 2.30 eV which represent
charge-transfer excitations.
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Nr.: absolute excitation ground first second
energies [eV] energies [eV] configuration [%] order [%] order [%]

1 -7.2922 0.0000 40.9 48.8 10.3
2 -7.2918 0.0005 40.9 48.8 10.3
3 -7.2912 0.0010 40.9 48.8 10.3
4 -6.9255 0.3667 41.9 48.4 9.9
5 -6.9220 0.3702 41.9 48.2 9.8
6 -6.8307 0.4615 40.5 49.2 10.3
7 -6.8288 0.4634 40.6 49.4 10.3
8 -6.8285 0.4638 40.6 49.4 10.3
9 -6.1370 1.1552 40.4 48.8 10.9
10 -6.1229 1.1694 40.4 49.0 10.4
11 -6.0243 1.2679 49.6 43.0 7.2
12 -6.0167 1.2756 48.8 43.6 8.1
13 -5.8879 1.4043 45.0 47.2 7.9
14 -5.8810 1.4112 45.1 47.0 7.8
15 -5.8791 1.4131 45.1 47.2 7.8
16 -5.8022 1.4901 46.3 45.4 8.3
17 -5.7871 1.5051 49.5 43.4 7.6
18 -5.7842 1.5080 49.7 43.2 7.6
19 -5.7581 1.5342 44.3 46.8 9.3
20 -5.6491 1.6432 38.8 50.2 10.8
21 -5.5919 1.7003 38.0 50.8 11.3
22 -5.4554 1.8369 43.9 47.2 8.8
23 -5.4547 1.8375 43.9 47.2 8.8
24 -5.0259 2.2664 0.0 77.6 22.4
25 -5.0258 2.2664 0.0 77.6 22.4
26 -4.9975 2.2947 0.0 77.8 22.1
27 -4.9974 2.2948 0.0 77.8 22.1
28 -4.9652 2.3270 45.3 46.2 8.3
29 -4.9461 2.3462 43.5 47.6 9.0
30 -4.8598 2.4324 38.6 52.0 9.0
31 -4.8589 2.4334 38.6 52.0 9.0
32 -4.8574 2.4348 38.7 52.0 9.0

Table 4.6: Results of the cluster-model calculation for the low-temperature phase
(T < 80 K). Here, we assume that two energies belong to a degenerated
eigenstate if they differ by less than 0.2 meV. The last two columns repre-
sent the sum of all configurations of the appropriate excitation order. The
column “first order” represents the sum of all single-excited and the column
“second order”, the sum of all double-excited configurations. Discrepancy
from 100 % are caused by roundoff errors.
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excitation ground configuration single-excited configurations
energies multiplet contribution multiplet contribution
0.0000 3F 38.31 4F , 4P , 2H, 2G 25.37, 9.76, 5.94, 4.01
0.0005 3F 38.31 4F , 4P , 2H, 2G 25.39, 9.74, 5.93, 4.01
0.0010 3F 38.29 4F , 4P , 2H, 2G 25.38, 9.76, 5.96, 4.02
0.3667 3F 39.36 4F , 4P , 2H, 2G 24.86, 9.42, 6.08, 4.17
0.3702 3F 39.34 4F , 4P , 2H, 2G 24.64, 9.61, 6.11, 4.09
0.4615 3F 39.93 4F , 4P , 2H, 2G 31.58, 3.86, 5.16, 5.73
0.4634 3F 39.92 4F , 4P , 2H, 2G 31.36, 4.05, 5.16, 5.67
0.4638 3F 39.90 4F , 4P , 2H, 2G 31.28, 4.08, 5.22, 5.67
1.1552 1G, 1D 18.48, 21.26 2H, 2G, 2F , 2D2, 10.46, 12.85, 10.40, 10.39,

2P 3.02
1.1694 3F , 1G, 3.69, 3.90, 2H, 2G, 2F , 2D2, 10.50, 11.30, 8.96, 8.12,

1D 22.56 2P 6.67
1.2679 3F , 3P 46.51, 3.08 4F , 4P , 2H, 2G 18.87, 3.93, 7.33, 6.85
1.2756 3F 43.26 4F , 4P , 2H, 2G 17.56, 3.67, 7.62, 7.18
1.4043 3F 42.81 4F , 4P , 2H, 2G 25.82, 3.76, 6.35, 6.14
1.4112 3F 45.10 4F , 4P , 2H, 2G 27.36, 3.99, 6.20, 5.78
1.4131 3F 44.67 4F , 4P , 2H, 2G 27.12, 3.95, 6.23, 5.84
1.4901 3F , 1G, 31.11, 4.58, 4F , 2H, 2G, 2F , 13.24, 8.00, 8.98, 3.65,

1D 10.36 2D2, 2P 4.20, 3.49
1.5051 3F 48.43 4F , 2H, 2G 19.99, 7.51, 7.50
1.5080 3F 49.36 4F , 2H, 2G 20.39, 7.50, 7.34
1.5342 3F , 1G, 20.59, 7.38, 4F , 2H, 2G, 2F , 8.77, 8.61, 10.08, 5.42,

1D 16.08 2D2, 2P 5.82, 4.84
1.6432 1G, 1D 14.22, 22.35 2H, 2G, 2F , 2D2, 10.11, 16.66, 5.45, 5.09,

1D 22.56 2P 9.29
1.7003 1G, 1D 16.59, 21.26 2H, 2G, 2F , 2D2 10.06, 21.83, 5.20, 10.46
1.8369 3P 41.19 4F , 4P , 2F , 2D2 20.36, 9.65, 7.40, 5.31
1.8375 3P 40.96 4F , 4P , 2F , 2D2 20.26, 9.59, 7.37, 5.29
2.2664 - - 4F 77.41
2.2664 - - 4F 77.44
2.2947 - - 4F 77.67
2.2948 - - 4F 77.68

Table 4.7: Part I: Contributions in [%] of the different multiplets to the ground and the
excited state for the low-temperature phase (T < 80 K) for the energetically
low-lying eigenstates. Here, only those contributions are shown which are
greater than 3 %. For the sake of simplicity, we neglect the contributions
of multiplets in double-excited configurations. All multiplets of the single-
excited configurations are coupled with the 2P multiplet of the ligand hole,
which is dropped from notation.
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excitation ground configuration single-excited configurations
energies multiplet contribution multiplet contribution
2.3270 1G 44.44 2H, 2G, 2F , 2D2 19.66, 12.86, 7.70, 4.02
2.3461 1G, 1D 31.49, 11.39 2H, 2G, 2F , 2P 21.32, 10.87, 6.78, 3.27
2.4324 3F , 3P 3.19, 35.32 4F , 4P , 2F , 2D2, 26.64, 11.23, 5.85, 3.26,

1D 22.56 2P 3.32
2.4334 3F , 3P 3.19, 35.35 4F , 4P , 2F , 2D2, 26.69, 11.24, 5.86, 3.25,

1D 22.56 2P 3.33
2.4348 3F , 3P 3.15, 35.15 4F , 4P , 2F , 2D2, 26.42, 11.21, 5.87, 3.27,

1D 22.56 2P 3.34

Table 4.8: Part II: Contributions in [%] of the different multiplets to the ground and the
excited state for the low-temperature phase (T < 80 K) for the energetically
low-lying eigenstates. Here, only those contributions are shown which are
greater than 3 %. For the sake of simplicity, we neglect the contributions
of multiplets in double-excited configurations. All multiplets of the single-
excited configurations are coupled with the 2P multiplet of the ligand hole,
which is dropped from notation.

In order to deepen our investigation, we will look at the contributions of the different
ionic multiplets to the energetically low-lying cluster eigenstates: As shown in Tab. 4.7,
the ground state is predominantly formed by the 3F multiplet of the ground configu-
ration but contains a remarkable portion of the 4F multiplet of the single-excited V
ion with d3 electronic configuration as well.

For the energetically higher lying excitations below 1.0 eV the contributions of the
different multiplets of the different configurations show only a marginal variation. In
a simple one-particle picture, these crystal-field excitations represent intra t2g transi-
tions in good agreement with Ref. [116], see Fig. 4.4. The excitations at 1.1552 eV
and 1.1694 eV are formed predominantly by the 1D multiplet as suggested by the
Tanabe-Sugano diagram, see Fig. 4.4. The strong admixture of the 1G multiplet which
is actually much higher in energy is caused by the crystal-field operator which mixes
eigenstates with same spin. Additionally, these eigenstates have a different total spin
than the ground state. Thus, transitions between the ground state and this two states
are forbidden due to the spin selection rule. In principle, the spin-orbit coupling re-
moves this selection rule but in VOCl the strength of the spin-orbit coupling is less
than 31.6 meV leading to tiny features at roughly 1.2 eV in the optical data.

The eigenstates between 1.2 and 1.6 eV are formed predominantly by the 3F mul-
tiplet. In a simple one-particle picture, these excitations correspond to transitions
between the t2g and the eg level. Note, that due to the reduced point-group symmetry
on the V site, we find a reduced degree of degeneracy of the crystal-field eigenstates,
see Fig. 4.6. The eigenstates above 1.6 eV correspond to energetically higher lying
crystal-field eigenstates similar to those shown in the Tanabe-Sugano diagram Fig. 4.4.
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But, the eigenstates located between 2.20 eV and 2.30 eV represent charge-transfer
excitations which are formed predominantly by the 4F multiplet of the single-excited
configurations.

Summarizing our investigation of the crystal-field excitations in VOCl, we find a good
description of most of the positions of the different excitations in spite of inaccuracies
in the crystal structure. However, we cannot describe the strength and the polarization
dependence of the optical conductivity properly. But, we determine the contributions
of the different ionic multiplets to the cluster-eigenstates and identify the peaks with
charge-transfer and crystal-field excitations. Additionally, we describe several transi-
tions within a simple one-particle picture in good agreement with [116]. Furthermore,
we analyze the dependence of the results of the cluster-model calculation on the value
of several calculation parameters such as the charge-transfer energies ∆V−Cl and ∆V−O,
the screening factor, the Hubbard UV , and the value of the Cl-radius. However, we
cannot find a parameter-set describing the optical data correctly. Due to the limitation
of the cluster-model calculation being used in the description of the optical data, we
cannot describe the onset of the charge-transfer band. Additionally, the cluster-model
calculation cannot describe the effect of intensity stealing. Furthermore, as shown in
Tabs. 4.7 - 4.8, the hybridization in this compound play a dominant role. Therefore,
we expect that the hopping between two different V sites is not negligible resulting
in a remarkable contribution to the optical conductivity. Hence, we cannot ignore the
hopping between two V ions in the description of the optical data. In addition, the
cluster-model calculation does not consider the contributions of phonons or magnon-
sidebands as well as p-states at the V ion.

Finally, we will conclude the investigation of VOCl by comparing the results of the
cluster-model calculation presented above with crystal-field excitations in the isostruc-
tural compound TiOCl, which are investigated in great detail by Rückamp [135]. There-
fore, we perform a cluster-model calculation for TiOCl where the cluster consists of a Ti
ion with 3d1 electronic configuration and four oxygen (2p6) and two chlorine (3p6) ions
around. The calculation parameters used for the cluster-model calculation of TiOCl
are shown in Tab. 4.9 where we scale the Slater integrals to 90 % of the atomic values.

parameter 3d1 configuration 3d2 configuration 3d3 configuration
F 2
T i - 7.419 eV 6.102 eV
F 4
T i - 4.619 eV 3.750 eV

〈r2〉T i 0.534 Å2 0.690 Å2 1.000 Å2

〈r4〉T i 0.574 Å4 1.040 Å4 2.521 Å4

ζT i 24 meV 20 meV 15 meV
F 2
Cl,3p4 6.590 eV 6.590 eV 6.590 eV

F 2
O,2p4 8.236 eV 8.236 eV 8.236 eV

Table 4.9: Parameters used in the cluster-model calculation for TiOCl. The Slater
integrals are already scaled to 90 % of the atomic values.
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Additionally, we set the strength of the crystal-field splitting and the strength of the
spin-orbit splitting on ligand-site equal to zero. In addition, we set the Hubbard U at
the Ti site to UT i = 2 eV (UCl = UO = 5 eV) and set the charge-transfer energies to
∆T i−Cl = 2 eV and ∆T i−O = 8 eV. Furthermore, we use rO=4.41 Å and rCl=9.5 Å for
the ionic radii of the O and the Cl ion, respectively. In order to describe the positions
of the different excitations in the optical data of TiOCl properly, we use two different
values for the hopping integral pdσ (pdπ) depending on the ions being involved in the
hopping process. For hopping processes including the Ti as well as Cl ions we increase
the hopping integral pdσ (pdπ) by a factor of 1.469 compared to those between Ti and
O ions.

As shown in Fig. 4.20 we achieve a good description of the positions of the different
excitations in the optical data of TiOCl. Especially, we can describe the position of
the excitation at 1.5 eV for E ‖b quite well. But, we find a strong disagreement be-
tween the calculated optical conductivity and the experimental data which is caused
by several aspects. First of all, we include only one Ti ion in the cluster-model cal-
culation and neglect the exchange processes between different Ti sites. Therfore, we
cannot describe the onset of the charge-transfer band above 1.5 eV. Additionally, the
cluster-model calculation cannot describe the effect of intensity stealing as well as the
contributions of phonons or magnon-sidebands. Furthermore, we neglect the contribu-
tion of energetically higher lying p-states at the Ti ion to the optical conductivity which
are relevant for the description of the experimental data due to the broken inversion
symmetry at the Ti site.

By comparing the results of the cluster-model calculation with the results of the point-
charge model for TiOCl shown in Tab. 4.4 we can identify the energetically low lying
excited eigenstates with d-orbitals. In good agreement with Rückamp [135] we identify
the excitation at 1.5 eV with a transition between the ground state and the yz-orbital.
Additionally, we associate the excitation at 0.6 eV with a transition between the ground
state and the xz-orbital. Although we cannot determine the position of the symmetry-
forbidden transition in the optical data, we identify the first excited eigenstate with
the xy-orbtial. In order to estimate the contribution of the spin-orbit coupling to the
optical conductivity we repeat the cluster-model calculation described above and turn
off the spin-orbit coupling. As shown in Fig. 4.20, the spectral weight of the opti-
cal conductivity below 2.0 eV depends strongly on the spin-orbit coupling. Here, the
spin-orbit coupling leads to an enhancement of the spectral weight of the symmetry-
forbidden transition at 0.19 eV whereas the transitions at 0.6 eV and 1.5 eV do not
contribute to the optical conductivity in strong disagreement to the experimental data.

Summarizing our investigation, we can describe the positions of all excitations in the
optical data of TiOCl by using a cluster-model calculation as described in the sec-
ond chapter. Nevertheless, we are not able to describe the strength of the different
excitations in the optical conductivity.
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4.1 Crystal-Field Excitations in VOCl

Figure 4.20: Comparison between the measured absorption −ln(T (ω))/d (grey and
light grey lines) determined by Rückamp [135] and the calculated opti-
cal conductivity σ1(ω) (solid lines) of TiOCl for T = 295 K for E‖a (grey
color) and E‖b (light grey color). The optical conductivity is multiplied
by a factor of 1·106. The blue triangles represent the results of the cluster-
model calculation for T = 295 K done by Rückamp [135] by using the code
XTLS 8 written by A. Tanaka (Hiroshima University, Japan). The red tri-
angles indicate the excitation energies of our cluster-model calculation.

123



4 Measurements

4.2 Phonons in hexagonal YMnO3 and YMn0.7Ga0.3O3

In this section we describe the investigation of the spin-lattice interaction in the mul-
tiferroic, hexagonal compound YMnO3 and in the doped system YMn0.7Ga0.3O3. In
multiferroic compounds, there is a coupling between the static, electrical polarization
and the magnetization. By analyzing the lattice dynamics and their dependence on Ga
doping we investigate the influence of the magnetization on the dynamical polarization
and achieve a better understanding of the origin of ferroelectricity in these hexagonal
systems. Here, we present a detailed phonon analysis for several temperatures between
20 K and 295 K including a factor-group analysis. Furthermore, we compare our room-
temperature infrared data with Raman and infrared data as well as lattice-dynamical
calculations reported by Iliev et al. [152].

“Multiferroic” magnetoelectric manganites (RMnO3) shows fascinating novel phenom-
ena such as the coexistence of ferroelectric and magnetic order and the control of
polarization by external and internal magnetic fields. Additionally, multiferroic com-
pounds shows phase diagram with cascades of magnetic and ferroelectric phase transi-
tions upon changing temperature or magnetic fields [150, 151]. The coupling strength
between electric polarization and magnetization can be controlled by an applied mag-
netic field and enables the control of dielectric properties. The observations of ferro-
electric and antiferromagnetic domains [153, 154], anomalies of the dielectric constant
at magnetic transitions [155], and the strong scattering of acoustic phonons off mag-
netic fluctuations found in thermal conductivity measurements [156] may caused by
the magnetoelectric coupling in YMnO3.

The RMnO3 compounds crystallize with orthorhombic (o-RMnO3) or hexagonal (h-
RMnO3) structure depending upon the ionic radius of the R ion.

• The orthorhombic o-RMnO3 with space group Pnma (C16
2h) [157, 158] contain

rare-earth elements with large ionic radii (R = La, Pr, Nd, Sm, Eu, Gd, Tb,
and Dy) [159]. These compounds show the colossal magnetoresistance effect,
i.e. a metal-insulator transition that changes the conductivity by many orders
of magnitude at the Curie temperature [160]. The Mn3+ ion is octahedrally co-
ordinated by O atoms. The octahedra form a corner-sharing three-dimensional
network. The appearance of ferroelectricity is caused by the existence of a gra-
dient of the magnetization (incommensurate helicoidal spin structure) leading to
a transverse polarization [161, 162]. The coexistence and strong coupling be-
tween ferroelectricity and incommensurate magnetism in o-RMnO3 is related to
Dzyaloshinskii-Moriya interactions [163]. In a traditional ferroelectric material
such as BaTiO3, the loss of inversion symmetry at TFE causes electric polarization
[164]. It is still a question wether such atomic displacements are relevant in this
class of spin-driven ferroelectric materials [163].

• The hexagonal phase (h-RMnO3) with noncentrosymmetric space group P63cm
(C3

6v) at room temperature is found for R ions with small ionic radii (R=Ho,
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Er, Tm, Yb, Lu, Y, and Sc) [165]. The Mn3+ ions form a triangular lattice
which has a

√
3 ×
√

3 superstructure (a trimerization of Mn ions). This leads
to the absence of centrosymmetry, which allows off-center displacements along
the polar (c) axis and thereby a spontaneous electric polarization10 [166]. The
hexagonal manganites form the class of “ferroelectromagnets” in which the fer-
roelectric and magnetic orders coexist at low temperatures. The investigation of
ferroelectromagnets and the analysis of the coupling between the two orders may
offer insights into the occurrence of ferroelectricity and magnetism in these ma-
terials. This coupling can result in the so-called “magnetoelectric effect”, where
the dielectric (magnetic) properties of the ferroelectromagnets may be altered by
the onset of the magnetic (electric) transition or by the application of a magnetic
(electric) field. The hexagonal h-RMnO3 present a high saturation polarization
[167] of P ∼ 5.5 µC/cm2. Although exchange interactions between the magnetic
Mn3+ ions are relatively strong with a Curie-Weiss temperature of around 700 K
[155], magnetic ordering in these materials occurs at a much lower temperature,
where the Néel temperature ranges from 70 K to 130 K [155] upon changing the
R ion. This is partly a consequence of the quasi-two-dimensional magnetic struc-
ture of h-RMnO3 where Mn spins form weakly coupled layers parallel to the ab
basal plane. Due to the large difference between the ferroelectric and spin order-
ing temperatures and the different origins of ferroelectricity and magnetism in
hexagonal manganites, the interplay between electric and magnetic phenomena
in these materials is not very strong.

Due to the intermediate ionic radius of Y, YMnO3 shows both crystal structures. The
orthorhombic structure can be stabilized by either low-temperature or high-pressure
synthesis or epitaxial thin film growth. Hexagonal h-YMnO3 has an A-type antifer-
romagnetic order (TN ∼ 72 K) [168] and reversible spontaneous electric polarization
(TFE ∼ 1000 K) [169, 170]. As shown in Fig. 4.21, the crystal structure of h-YMnO3

consists of [MnO5] trigonal bipyramids where each Mn3+ ion is surrounded by three
in-plane and two apical oxygen ions. The [MnO5] bipyramids are linked via corners to
form a triangular lattice in the ab plane, and adjacent layers are separated by layers of
Y3+ ions. The apical oxygen ions of the [MnO5] units also construct the antiprisms of
[YO6], and the planar oxygen ions of [MnO5] constitute the caps of the [YO6] antiprisms
as well.
The buckling and tilting of the [MnO5] bipyramids are important for the stabilization
of the ferroelectric state [171, 172]. The ferroelectric state is associated with displace-
ments of the oxygen ions that coordinate Y3+, which has formally a d0 state.11

10The linear magnetoelectric effect is forbidden by symmetry.
11The d0-ness rule is generally accepted in ferroelectricity: A ferroelectric displacement of the B

cation in ABO3 compounds is inhibited if the formal charge of the B ion does not correspond to
a d0 electron configuration due to the strong on-site Coulomb interaction between d electrons. In
contrast, the occupancy of transition-metal d electrons is crucial in the magnetic ordering. Thus
the simultaneous magnetic and ferroelectric ordering in RMnO3 seems to break the d0-ness rule.
It was suggested that the multiferroic property in RMnO3 is a result of the effective d0-ness along
the c axis [173, 174].
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Figure 4.21: Crystal structure of YMnO3 [166].

In the ferroelectric phase, hexagonal h-YMnO3 has a noncentrosymmetric P63cm (C6v)
structure at room temperature and the ferroelectric polarization appears along the
c axis. At TFE2 ' 1350 K [175] h-YMnO3 undergos a transition to paraelectric
P63/mmc (D4

6h) [175, 176]. Within the high-temperature hexagonal P63/mmc struc-
ture the Mn3+ ions in bipyramidal oxygen coordination form close-packed planes, which
are separated by Y3+ ions. The symmetry changes to P63cm by a cooperative rota-
tion of the bipyramidal axis from the c axis below a temperature Tt. Additionally,
the the mirror planes perpendicular to the c axis vanish. Using symmetry arguments,
T. Lonkai et al. [177] pointed out that two separate phase transitions are expected in
the transition from the high-temperature phase (P63/mmc) to the room-temperature
phase (P63cm). (The two possible symmetries for the intermediate phase, which is
stable between TFE1 ' 1100 K and TFE2 ' 1350 K [175], are P63cm (identical to the
room temperature structure) and P63/mcm.)

4.2.1 Ga Substitution

The replacement of Mn by Ga changes the orbital occupation (from d4 for Mn3+ to
d10 for Ga3+) and the ionic radius. YGaO3 is isostructural to YMnO3 [178] and by
analyzing the evolution of the structural parameters from YMnO3 to YGaO3 we ob-
tain a better understanding of the origin of ferroelectricity in these hexagonal systems.
Substituting Ga for Mn in single crystals of YMn1−xGaxO3 varies the different tran-
sition temperatures, and the spin-lattice interaction changes with increasing x. The
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Néel temperature TN decreases from 72 K for x = 0 to 65 K for x = 0.1 and to
35 K for x = 0.3. Also, the magnitude of the Curie-Weiss temperature TCW decreases
with increasing Ga concentration: TCW = −567 K for x = 0.0, −531 K for x = 0.3,
and −501 K for x = 0.5. The corresponding effective moments per Mn3+ ion are
4.93 µB for x = 0.0, 4.38 µB for x = 0.3, and 3.62 µB for x = 0.5 [168]. The ratio
of |TCW | to TN , an indication for the frustration in the magnetic structure, increases
upon doping [168]. In contrast to theoretical analysis [180] recent experimental studies
find an enhancement of the ferroelectric transition temperature TFE and the Mn-spin
reorientation temperature TSR with increasing Ga substitution [179]. The substitu-
tion of nonmagnetic Ga for Mn suppresses antiferromagnetic ordering by diluting the
magnetic system and leads to a strong enhancement of magnetocapacitance, which is
caused by the increased magnetic coupling between layers [168]. In ferroelectric anti-
ferromagnets, the coupling of the electric polarization P to the Néel order parameter
L, which is not strongly affected by Ga substitution, gives rise to an anomaly of the
dielectric susceptibility at the magnetic transition. Furthermore, the coupling of P to
the uniform magnetic field H along the c direction, which causes magnetocapacitance,
increases by two orders of magnitude upon 30 % Ga substitution [168]. The smaller
ionic radius of Ga and the filled dz2 orbital were expected to have a larger effect on
the local coordination around the Mn site. But a more pronounced alteration around
the Y site was observed [169]. The lattice parameter a decreases and c increases upon
Ga3+ substitution, which results in an elongation of the [YO6] antiprisms, where the Y
ions become more closely located near the barycenter. Due to the antiparallel displace-
ments of the [Y1O6] and [Y2O6] local dipoles the total polarization does not decrease
markedly. In contrast to smaller R ions, the substitution of Mn3+ by Ga3+ does not
increase the tilting and buckling [169].

4.2.2 Phonon Analysis

In order to understand the interplay of structural, magnetic, and ferroelectric properties
against Ga substitution we perform reflectivity measurements for T = 20 - 295 K in the
spectral range of 100-8000 cm−1 at quasinormal incidence. The spectra were measured
for different polarization angles on polished surfaces of YMnO3 and YMn0.7Ga0.3O3.
The reference measurements were done with in-situ Au evaporation. The variation of
the polarization angle was realized by rotating the polarizer.

YMnO3 and YMn0.7Ga0.3O3 crystals were grown by U. Adem and Th. Palstra12 using
a floating-zone furnace. The oxygen partial pressure was increased with increasing Ga
concentration in order to stabilize the molten zone. The crystals have a diameter of
5 mm and are a few cm long.

Assuming that a primitive unit cell contains r atoms, we divide the vibrational degrees
of freedom into 3r branches throughout the first Brillouin zone. The individual vibra-

12Solid State Chemistry Laboratory, Materials Science Center, University of Groningen, 9747 AG
Groningen, The Netherlands.
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tions along the branches are labeled with a linear momentum vector k. As mentioned
in section “2.11.3 Phonons” the dynamical matrix D(k) with dimension 3r×3r, which
is invariant under the primitive translations of the lattice, contains all information
about the vibrational displacements of all atoms in the crystal. Within the infrared
spectroscopy we can measure the branches only at the center of the Brillouin zone at
k = 0 — the so-called Γ-point, because the momenta of phonons excited by infrared
spectroscopy is very small. The energy of three of the 3r phonon branches, the so-
called acoustic modes, goes to zero as k → 0. These vibrations correspond to pure
translations of the crystal. The remaining 3r−3 branches represent the optical modes.
The observation of a phonon mode in infrared spectroscopy requires an inducible or al-
terable dipole moment, which changes under the influence of the electromagnetic wave.
Such a mode is called “infrared active”. In case of a vibrational mode which is
symmetric with respect to an inversion center, we find no change in the dipole moment
and the associated phonon mode is called “infrared inactive”.

A phonon mode is “Raman active”, if the mode is associated with a change in the
polarizability tensor. The vibrational movement of the atoms in a crystal affects the
ability of the nuclei to hold their electrons. This can result in a change in the polariz-
ability of the ion. In case of centrosymmetric crystals the Raman active modes are IR
inactive and vice versa, also called the rule of mutual exclusion.

The determination of the Γ-point phonon modes starts with the factor-group analy-
sis [181–184], developed by Bhagavantum and Venkatarayudu, in which the symmetry
properties of the crystal are determined by studying the effect of each symmetry oper-
ation in the factor group on each type of atom in the unit cell. The so-called factor
group of a space group describes the symmetry of a unit cell by separating out the
translations from the space group. The factor group is isomorphous with one of the
32 crystallographic point groups and assumes that all modes of a crystal can be de-
termined by considering only one unit cell. The factor groups differ, however, from
the point groups in several important ways [184]. (For example, within a factor group,
the rotational axes and the symmetry planes do not need to meet at a common point,
because there does not need to be a point within the unit cell that is left invariant
by all the symmetry operations.) The factor groups are normally labelled either by
the Schönflies symbol [185] in which the point group of the crystal class (e.g. C2v) is
given a numerical right superscript to designate the factor-group (e.g. C2

2v); or they
are labelled by the Hermann-Mauguin symbols [186] in which the crystal class symbol
(e.g. Pmm2) is modified to indicate explicitly the substitution of a screw axis or a
glide plane (e.g. Pmm21). The factor-group analysis is made by applying all of the
symmetry operations of the factor group to each atom in the unit cell. The obtained
representation can be reduced in order to determine the number of normal modes be-
longing to each irreducible representation. A detailed description of the factor-group
analysis can be found in [184].
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Wyckhoff Site Irreducible
atom notation symmetry representations
Y(1) 2(a) Cv

3v A1 + B1 + E1 + E2

Y(2) 4(b) C3 A1 + A2 + B1 + B2 + 2 E1 + 2 E2

Mn 6(c) Cv
s 2 A1 + A2 + 2 B1 + B2 + 3 E1 + 3 E2

O(1) 6(c) Cv
s 2 A1 + A2 + 2 B1 + B2 + 3 E1 + 3 E2

O(2) 6(c) Cv
s 2 A1 + A2 + 2 B1 + B2 + 3 E1 + 3 E2

O(3) 2(a) Cv
s A1 + B1 + E1 + E2

O(4) 4(b) C3 A1 + A2 + B1 + B2 + 2 E1 + 2 E2

Table 4.10: Atomic site symmetries and irreducible representations for the atoms in
hexagonal YMnO3 [152].

The factor-group analysis of the phonon modes in hexagonal YMnO3 starts with the
determination of the irreducible representations of the symmetry-equivalent positions
indicated by the Wyckoff symbols in the unit cell. The number of formula units per
unit cell is Z = 6 [152]. The site symmetries as well as the irreducible representation
of each atomic site are shown in Tab. 4.10.
Combining the irreducible representations of the atomic sites we find the following re-
ducible representation of the phonon modes of hexagonal YMnO3 at room temperature
with space group P63cm:13

Γtotal = 10A1 + 5A2 + 10B1 + 5B2 + 15E1 + 15E2. (4.2.1)

The group-theoretical analysis predicts that 9A1 and 14E1 are IR active, A1 for E ‖ c,
E1 for E ⊥ c. The Raman active modes are described by (9A1 + 14E1 + 15E2) and
the acoustical modes by (A1 + E1). Additionally, we have 20 (5A2 + 10B1 + 5B2)
silent phonon modes [152]. As mentioned in section “3.1.1 Drude-Lorentz model”, the
tensor of the dielectric function is diagonal, and therefore the diagonal matrix elements
represent the dielectric function in the a, b, and c direction, respectively

ε̂(ω) =

 εa(ω) 0 0
0 εb(ω) 0
0 0 εc(ω)

 . (4.2.2)

Due to the hexagonal symmetry, the phonon spectra for E ‖ a and E ‖ b are identical
and it is sufficient to distinguish between E ‖ c and E ⊥ c. Thus, we can describe the
linear dielectric response by two scalar functions εE‖c(ω) and εE⊥c(ω). These scalar
functions are determined by fitting the reflectivity R(ω) for E ‖ c and E ⊥ c, respec-
tively, using the Drude-Lorentz model.

As shown in Fig. 4.22 and Fig. 4.23 the fits yield a good description of the measured
reflectivity R(ω). The optical conductivity was determined by applying the Kramers-
Kronig transformation to R(ω), which was extrapolated using the Drude-Lorentz fit.

13YMnO3 and YMn0.7Ga0.3O3 have the same space group, because YMnO3 is isostructural to YGaO3.
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The dotted lines indicate the eigenfrequencies of the phonon modes used in the fits. The
fit parameters are listed in Tab. 4.12. In case of E ‖ c, where 9 A1 modes are expected,
we find 9 IR modes but require a further phonon mode at 751 cm−1 to describe the
phonon spectrum properly. (In Fig. 4.22 and Fig. 4.23 the phonon spectra for E ‖ c are
shown including fits consisting of 9 (red) and 10 (green) phonon modes, respectively.)
This mode is probably caused by the multi-phonon background which is supported by
its large width of γ=54.9 cm−1 (20 K). Note that the reflectivity is sensitive to such
weak contributions in particular in those frequency ranges where R(ω) is large. In case
of E ⊥ c, we find 14 phonon modes and one multi-phonon mode at ω0 = 770 cm−1

with γ = 352 cm−1 in good agreement with the number of phonon modes predicted by
the factor-group analysis. The phonon mode at 318 cm−1 shows a large damping value
(γ=32.6 cm−1) at 20 K but a high oscillator strength of S=0.3. Probably, this might
be a multi-phonon mode, too, and we have to take the tiny feature at 361 cm−1 into
account.

In order to investigate the changes in the phonon spectra between T = 20 K and
T = 295 K, we measured the spectra for both directions at several temperatures, as
shown in Fig. 4.24. The fit parameters relative to the low-temperature fits at T = 20 K
for all measured temperatures are shown in Figs. 4.26 - 4.28.

We find a small change in the phonon spectra for E ⊥ c around the Néel temperature
at T = 72 K, see Fig. 4.29. We find an enhancement of the reflectance for E ⊥ c
between 420 and 480 cm−1 with increasing temperature from 60 K to 80 K and a re-
duction from 80 K to 100 K. This might be caused by the scattering of O vibrations
on magnetic excitations.

Additionally, we find a reduction of the phonon eigenfrequencies with increasing tem-
perature, see Fig. 4.26.14 Most modes decrease by about 1-2 % from 20 K to 295 K.
However, the lowest peak at 160 (169) cm−1 for E ‖ c (E ⊥ c) shows an anoma-
lously large redshift of 6.1 (5.3) %. This could be an indication of a so-called soft
mode, which becomes weaker with increasing temperature and indicates a phase tran-
sition for ω0(T ) → 0. In order to estimate the temperature of the phase transition
roughly, we extrapolate the relative frequency of the 160 (169) cm−1 mode with a
quadratic polynomial, as shown in Fig. 4.30. In case of E ‖ c, we find a phase transi-

tion temperature at T
E‖c
trans = 1012 K which is very close to the ferroelectric transition

temperature TFE ∼ 1000 K. For E ⊥ c, the extrapolation predicts a phase transition
at TE⊥c

trans = 1648 K. The large difference between both directions is likely to be caused
by inaccuracies in the extrapolations. It is noteworthy that also the damping of the
lowest modes show a very strong temperature dependence, e.g. an increase by factor
of 5 for E ‖ c from 20 K to 295 K.

14The increase of less than 0.5 % of some eigenfrequencies with increasing temperature is caused
probably by inaccuracies in the related fits.
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Mode our IR Direction and sign of largest Calculated frequencies
symmetry data [cm−1] atomic displacements [152] [cm−1] [152]

A1 149 +z(Y1); -z(Y2) 147 (147)
A1 258 +z(Y1,Y2); -z(Mn) 222 (269)
A1 300 +x(Mn); z(O3) 299 (301)
A1 428 +z(O4,O3); -z(Mn) 423 (467)
A1 481 +x,y(O1,O2); -x,y(Mn) 492 (496)
E1 160 +x,y(Y2); -x,y(Y1) 158 (158)
E1 207 +x,y(O1,O2); -x,y(Y1,Y2) 212 (231)
E1 407 +x,y(O1); -x,y(O2) 410 (415)
E1 463 +x,y(O4,O3); -x,y(O2,O1,Mn) 459 (477)
E1 596 x,y(O3) 586 (589)

Table 4.11: Atomic displacements of several A1 and E1 phonon modes in h-YMnO3

at T = 295 K. The calculated frequencies in brackets represent the LO
frequencies, the other frequencies the TO frequencies.

In hexagonal YMnO3 the space group changes at the ferroelectric transition tempera-
ture TFE ∼ 1000 K [169] from P63cm to P63/mmc. Within the P63/mmc space group
only 6 phonon modes are allowed (3 for E ‖ c and 3 for E ⊥ c). Therefore, we expect
crucial changes in the phonon spectra above TFE.

In addition, we compare our room-temperature infrared data with Raman and in-
frared data as well as lattice-dynamical calculations15 reported by Iliev et al. [152],
see Tab. 4.13. The assignment of the modes of Iliev et al. [152] differs strongly from
our results (see below). This is probably due to the fact that they analyzed data of a
polycrystal, which does not provide any information on the polarization dependence.

In case of A1 modes, Iliev et al. found only four infrared-active and only seven Raman-
active modes, instead of 9 modes in our data. The factor-group analysis predicts that
all A1 phonon modes are both infrared and Raman active. The peaks at 258 cm−1,
428 cm−1, and 610 cm−1 are found in all results. The excitations at 149 cm−1 and
300 cm−1 are found within a few wave numbers in our infrared data and in the Raman
and calculation results of Iliev et al. but not in their infrared data. We find a peak at
231 cm−1 whereas their Raman data show a peak at 190 cm−1 and their calculation
predicts a peak at 204 cm−1 (TO), 216 cm−1 (LO). But, they report an E1 mode in
their infrared data at 238 cm−1 which is probably an A1 mode. Furthermore, they
found a peak in their infrared data at 398 cm−1 and in their calculation results at
388 cm−1 (TO), 398 cm−1 (LO), which has no analogon in our infrared data. Further
discrepancies can be found in Tab. 4.13.

15Iliev et al. [152] use a shell model, which describes the ionic interactions by sums of long-range
Coulomb potentials and short-range potentials in the Born-Mayer form. Furthermore, the ions are
replaced by point charges with charge Z. They are coupled with a force constant k to a massless
shell with charge Q around it.
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Iliev and collaborators found only six infrared-active and only four Raman-active E1

modes instead of 14 modes predicted by the factor-group analysis. The peaks at
207 cm−1, 243 cm−1, 296 cm−1, 377 cm−1, 407 cm−1, and 596 cm−1 are found within
a few wave numbers in all results. The excitation at 160 cm−1 corresponds very well
to the calculation result at 158 cm−1. The features at 257 cm−1, 311 cm−1, 361 cm−1,
416 cm−1, and 581 cm−1 in our measurements were not found by Iliev et al., which
might be caused by their large damping values at 295 K, see Tab. 4.12. They found
peaks at 632 cm−1 in their Raman and at 457 cm−1 in their infrared data, which we
do not find.

Although we find no overall agreement with the experimental results of Iliev et al.,
we can use the calculation results to identify the direction and the sign of the largest
atomic displacements of some phonon modes, see Tab. 4.11.

Additionally, the results of Iliev et al. suggest a classification of the different phonon
modes: The lowest modes are connected with vibrations including the Y ions, which
have the biggest mass of all ions in this compound. The next modes represent vibra-
tions containing Y and Mn ions, followed by vibrations with Mn and O ions. The
hardest modes include pure oxygen vibrations, due to their light mass.

Combining the results of Tab. 4.11 with the extrapolation of the soft mode for E ‖ c,
we can clearly identify the soft mode with the displacement of the Y ions along the c
axis. This indicates a connection between ferroelectricity and the displacements of the
Y ions along the c axis.
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Figure 4.22: Reflectivity R(ω), fit and optical conductivity (cyan color indicates loga-
rithmic scale) determined by the Kramers-Kronig analysis of YMnO3 at
T = 20 K for a) E ‖ c and b) E ⊥ c. The dotted lines indicate the
eigenfrequencies of the phonon modes.
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Figure 4.23: Reflectivity R(ω), fit and optical conductivity (cyan color indicates loga-
rithmic scale) determined by the Kramers-Kronig analysis of YMnO3 at
T = 295 K for a) E ‖ c and b) E ⊥ c. The dotted lines indicate the
eigenfrequencies of the phonon modes.
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E ‖ c E ⊥ c
ω0 [cm−1] ωp [cm−1] γ [cm−1] S ω0 [cm−1] ωp [cm−1] γ [cm−1] S

T = 20 K
160 159 2.5 0.982 169 115 3.8 0.463
235 387 6.7 2.710 211 264 2.0 1.570
262 301 5.9 1.320 257 716 5.4 7.810
306 362 5.1 1.400 264 268 7.1 1.040
431 271 13.0 0.394 298 241 2.4 0.651
481 826 5.6 2.950 301 196 4.3 0.424
552 707 10.2 1.640 318 174 32.6 0.300
572 361 9.9 0.399 363 255 16.7 0.493
611 128 7.0 0.044 377 547 2.2 2.110
∗751 89 54.9 0.014 408 148 7.2 0.131

419 289 4.1 0.476
481 77 14.2 0.026
584 78 21.8 0.018
596 83 6.6 0.020
∗770 319 352.0 0.171

T = 295 K
149 200 17.9 1.800 160 187 10.6 1.360
231 412 25.1 3.190 207 272 4.5 1.730
258 259 12.3 1.010 243 424 14.5 3.040
300 350 11.6 1.360 257 563 19.9 4.810
428 201 13.0 0.222 296 162 3.7 0.301
481 795 13.7 2.730 300 192 7.7 0.411
552 724 13.8 1.720 311 257 32.6 0.681
571 404 16.9 0.501 361 209 45.2 0.336
610 123 9.6 0.041 378 606 7.0 2.570
∗748 87 58.4 0.014 407 193 13.4 0.224

416 277 7.8 0.443
474 95 22.7 0.040
581 65 36.4 0.012
596 88 10.3 0.022
∗737 425 676.7 0.333

Table 4.12: Fit parameters for the reflectivity of YMnO3 at T = 20 K and T = 295 K.
Here, S = ω2

p/ω
2
0 represents the oscillator strength. The high-frequency

dielectric constant at T = 20 K (295 K) is: ε∞ = 5.2 (5.2) (E ‖ c), ε∞ = 5.0
(5.2) (E ⊥ c). The “*” indicates a multi-phonon mode.
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Figure 4.24: Reflectance of YMnO3 for a) E ‖ c and b) E ⊥ c.
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Figure 4.25: Optical conductivity σ1(ω) of YMnO3 for a) E ‖ c and b) E ⊥ c.
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Figure 4.26: Relative eigenfrequency ω0(T)/ω0(T=20 K) of YMnO3 for a) E ‖ c and
b) E ⊥ c.
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4.2 Phonons in hexagonal YMnO3 and YMn0.7Ga0.3O3

Figure 4.27: Relative plasma frequency ωp(T)/ωp(T=20 K) of YMnO3 for a) E ‖ c and
b) E ⊥ c.
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Figure 4.28: Relative damping γ(T)/γ(T=20 K) of YMnO3 for a) E ‖ c and b) E ⊥ c.
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Figure 4.29: Reflectance R(ω) and optical conductivity σ1(ω) of YMnO3 around the
Néel temperature TN = 72 K [168] for a) - b) E ‖ c and c) - d) E ⊥ c.
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Figure 4.30: Relative eigenfrequency of the lowest phonon mode of YMnO3 extrapo-
lated to higher temperatures for a) E ‖ c and b) E ⊥ c.
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Iliev [152] Iliev [152] Calc. Iliev [152]
Infrared Infrared Raman TO LO

A1 modes
149 - 148 147 147

- - 190 204 216
231 - - - -
258 265 257 222 269
300 - 297 299 301

- 398 - 388 398
428 428 433 423 467
481 - 459 492 496
552 - - - -
571 - - - -
610 612 - 588 601

- - 681 662 662
∗748 - - - -

E1 modes
- - - 117 118
- - - 147 149

160 - - 158 158
207 211 - 212 231
243 238 - 233 245
257 - - - -
296 281 - 250 337
300 308 - 353 367
311 - - - -
361 - - - -
377 - 376 390 403
407 - 408 410 415
416 - - - -

- 457 - 459 477
474 491 - 492 527

- - - 559 559
581 - - - -
596 - 596 586 589

- - 632 635 635
∗745 - - - -

Table 4.13: Comparison of the experimental values of the infrared A1 and E1 mode
frequencies in units of [cm−1] in hexagonal YMnO3 at T = 295 K with the
results of Iliev et al. [152] at T = 300 K.

143



4 Measurements

Figure 4.31: Infrared absorption spectrum of YMnO3 at T = 295 K reported by Iliev et
al. [152] between 200 and 700 cm−1.

4.2.3 Phonon Analysis of YMn0.7Ga0.3O3

The partial replacement of Mn by Ga leads to a shift of the eigenfrequencies of some
phonon modes. As shown in Fig. 4.32 and Fig. 4.33 the reflectivity R(ω) can be well
described by the Drude-Lorentz model. The fit parameters are listed in Tab. 4.14.
Applying the Kramers-Kronig transformation to R(ω), we get the optical conductiv-
ity. The dotted lines indicate the eigenfrequencies of the phonon modes used in the fits.

We can use the factor-group analysis to determine the number of phonon modes in
the isostructural compounds YMnO3 and YGaO3. The Ga-doped system represents a
mixture of YMnO3 and YGaO3 and we find additional Mn-Ga vibrations. In contrast
to pure Mn-Mn or Ga-Ga vibrations, the Mn-Ga vibrations have a dipole moment and
are infrared active. Therefore, we expect an enhanced number of phonon modes than
predicted by the factor-group analysis.

In case of E ‖ c, we find 11 phonon modes, see Fig. 4.32 and Fig. 4.33, but we require
a further mode at 707 cm−1 to describe the spectra properly. (Fig. 4.32 includes a fit
with 11 (red) and 12 (green) modes for E ‖ c.) This phonon mode is probably caused by
the multi-phonon background which is supported by its large width of γ=212.3 cm−1.
A very similar mode was necessary in case of YMnO3. For E ‖ c, the Ga substitution
in particular affects the distribution of spectral weight between 400 and 600 cm−1; at
lower frequencies the data are hardly affected. The changes are much more drastic for
E ⊥ c, see Fig. 4.39 and Fig. 4.40. At the same time, Ga substitution gives rise to an
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increase of the peak widths, this effect is particularly pronounced for E ⊥ c. This can
be seen clearly in Fig. 4.39 and Fig. 4.40.

In case of E ⊥ c, we find only 12 phonon modes and two multi-phonon modes, as shown
in Tab. 4.14. Due to its extremely small oscillator strength (S = 0.001) we can prob-
ably waive the multi-phonon mode at 245 cm−1. (In order to find all phonon modes,
we will compare the eigenfrequencies of the doped and the undoped system, see below.)

The phonon spectra of YMn0.7Ga0.3O3 as a function of temperature are shown in
Fig. 4.34 for both directions. We find no overall change in the spectra around the Néel
temperature TN = 32 K in both directions. As shown in Fig. 4.36 we find a reduction
of the phonon eigenfrequencies with increasing temperature. The lowest peak at 158
(163) cm−1 for E ‖ c (E ⊥ c) shows a strong shift of 5.2 (3.7) %, very similar to the
observation in YMnO3, although the effect is somewhat weaker here. Again, the lowest
mode for E ⊥ c shows a strong increase in damping with increasing temperature,
very similar to the case of YMnO3. The relative fit parameters for E ⊥ c shown in
Figs. 4.36 b) - 4.38 b) include a set of inaccuracies because several peaks cannot be
determined exactly. For example, the phonon mode at 322 cm−1 is part of the large
excitation between 290 cm−1 - 370 cm−1 and cannot be located exactly. Additionally,
as shown in Fig. 4.41, the peak at 165 cm−1 has only a very small spectral weight for
all temperatures and cannot be determined exactly.
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Figure 4.32: Reflectivity R(ω), fit and optical conductivity (cyan color indicates loga-
rithmic scale) of YMn0.7Ga0.3O3 at T = 20 K for a) E ‖ c and b) E ⊥ c.
The dotted lines indicate the eigenfrequencies of the phonon modes.
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Figure 4.33: Reflectivity R(ω), fit and optical conductivity (cyan color indicates loga-
rithmic scale) of YMn0.7Ga0.3O3 at T = 295 K for a) E ‖ c and b) E ⊥ c.
The dotted lines indicate the eigenfrequencies of the phonon modes.
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E ‖ c E ⊥ c
ω0 [cm−1] ωp [cm−1] γ [cm−1] S ω0 [cm−1] ωp [cm−1] γ [cm−1] S

T = 20 K
158 146 2.3 0.856 165 64 10.4 0.151
236 342 7.5 2.100 213 78 2.4 0.129
261 316 5.6 1.470 ∗245 8 300.0 0.001
305 351 6.6 1.320 272 364 15.0 1.790
341 149 33.3 0.190 281 382 8.6 1.860
426 198 20.9 0.217 306 434 15.9 2.010
469 457 13.3 0.951 322 457 35.4 2.020
485 606 8.1 1.560 344 514 30.5 2.230
529 128 12.5 0.058 378 419 6.3 1.230
568 795 7.7 1.960 421 262 9.2 0.389
612 43 10.6 0.005 474 14 5.8 0.001
∗707 185 212.3 0.068 583 31 11.7 0.003

598 87 10.1 0.021
∗746 301 176.4 0.163

T = 295 K
150 126 8.7 0.711 159 81 12.9 0.259
234 286 15.2 1.500 210 116 6.3 0.307
257 301 12.3 1.370 ∗241 7 313.1 0.001
301 338 11.5 1.260 265 383 36.2 2.090
331 139 36.4 0.177 277 369 19.5 1.770
425 170 19.2 0.161 303 370 25.3 1.490
465 337 18.4 0.523 320 390 39.4 1.490
485 630 14.7 1.690 342 479 43.6 1.960
523 121 17.5 0.053 375 408 12.5 1.180
568 850 13.2 2.240 415 214 12.6 0.265
612 42 13.8 0.005 468 12 12.6 0.001
∗674 257 317.3 0.146 580 28 17.2 0.002

595 76 16.0 0.016
∗775 103 60.2 0.018

Table 4.14: Fit parameters for the reflectivity of YMn0.7Ga0.3O3 at T = 20 K and
T = 295 K. Here, S = ω2

p/ω
2
0 represents the oscillator strength. The high-

frequency dielectric constant at T = 20 K (295 K) is: ε∞ = 5.0 (5.0) (E ‖ c),
ε∞ = 4.4 (4.2) (E ⊥ c). The “*” indicates a multi-phonon mode.
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Figure 4.34: Reflectance of YMn0.7Ga0.3O3 for a) E ‖ c and b) E ⊥ c.
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Figure 4.35: Optical conductivity σ1(ω) of YMn0.7Ga0.3O3 for a) E ‖ c and b) E ⊥ c.
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Figure 4.36: Relative eigenfrequency ω0(T)/ω0(T=20 K) of YMn0.7Ga0.3O3 for a) E ‖ c
and b) E ⊥ c.
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Figure 4.37: Relative plasma frequency ωp(T)/ωp(T=20 K) of YMn0.7Ga0.3O3 for
a) E ‖ c and b) E ⊥ c.
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Figure 4.38: Relative damping γ(T)/γ(T=20 K) of YMn0.7Ga0.3O3 for a) E ‖ c and
b) E ⊥ c.
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Figure 4.39: Comparison of the a) reflectance R(ω) and b) optical conductivity σ(ω)
of YMnO3 and YMn0.7Ga0.3O3 for E ‖ c at T = 20 K.
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Figure 4.40: Comparison of the a) reflectance R(ω) and b) optical conductivity σ(ω)
of YMnO3 and YMn0.7Ga0.3O3 for E ⊥ c at T = 20 K.
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Figure 4.41: Reflectance R(ω) and optical conductivity σ1(ω) of the lowest phonon
mode of a) - d) YMnO3 and e) - h) YMn0.7Ga0.3O3 for E ‖ c and E ⊥ c.
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E ‖ c E ⊥ c
phonon modes of phonon modes of phonon modes of phonon modes of

YMnO3 YMn0.7Ga0.3O3 YMnO3 YMn0.7Ga0.3O3

160 158 169 165
235 236 211 213
262 261 257 ∗245
306 305 264 272

- 341 298 281
431 426 301 306

- 469 318 322
481 485 363 344
552 529 377 378
572 568 408 -
611 612 419 421
∗751 ∗707 481 474

584 583
596 598
∗770 ∗746

Table 4.15: Comparison of the eigenfrequencies in units of [cm−1] of the phonon modes
used in the fits of YMnO3 and YMn0.7Ga0.3O3 at T = 20 K. The “*”
indicates a multi-phonon mode.

As shown in Fig. 4.39 and Fig. 4.40, the substitution of 30 % Ga leads to several
changes in the phonon spectra. A comparison of the eigenfrequencies of the relevant
phonon modes is shown in Tab. 4.15.

In case of E ‖ c, the substitution of 30 % Ga causes only small changes in the phonon
spectra, as shown in Fig. 4.39. The spectral weight as well as the eigenfrequencies of
the phonon modes below 400 cm−1 are nearly unchanged. As shown in Tab. 4.15, two
new phonon modes at 341 cm−1 and 469 cm−1 occur in YMn0.7Ga0.3O3. As mentioned
above, these modes are connected with Mn-Ga vibrations, which increase the total
number of phonon modes, in comparison to the prediction of the factor-group analysis.
The phonon mode at 552 cm−1 is probably shifted to 529 cm−1, which could be caused
by the larger mass of the Ga ion. All other eigenfrequencies agree within a few wave
numbers. Comparing the lowest mode of the doped and the undoped system, we find
a stronger shift in the undoped system with increasing temperature. As reported by
Adem [169], the Ga substitution changes the Y coordination, i.e. the YO6 antiprisms
elongate with Ga substitution because the c axis elongates due to the filling of the dz2
antibonding orbital. This suggests that the elongation of the YO6 antiprisms causes
the greater shift of the soft mode in the undoped system.

In case of E ⊥ c, we find drastic changes in the phonon spectra between the doped
and the undoped system, see Fig. 4.40. The phonon spectrum of the doped system
above 400 cm−1 shows only small differences with respect to the spectrum of YMnO3,
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whereas the eigenfrequencies as well as the spectral weight of the phonon modes below
400 cm−1 change remarkably. The peaks below 300 cm−1 lose spectral weight, which
is transferred to the excitations between 330 cm−1 and 370 cm−1.
The spectral weight of the lowest mode decreases drastically by a factor of 3 (S =
0.463 → S = 0.151) with doping, which is probably related to the elongation of the
YO6 antiprisms. This suggests that the displacements of the Y ion perpendicular to
the c axis become less pronounced.

As mentioned above, we do not find the expected number of phonon modes in the
doped system, which is caused probably by the tiny amplitude of some phonon modes.
By comparing the eigenfrequencies of the doped and the undoped system, we assume
that the analogon for the phonon mode at 408 cm−1 (YMnO3) is probably a part of the
shoulder of the feature at 421 cm−1. But we can neither estimate the eigenfrequency
nor the oscillator strength of this phonon mode. Additionally, the comparision of the
doped and the undoped system adumbrate, that the mode at 245 cm−1 in the doped
system is probably a real phonon mode in spite of the large damping value of γ ≈
300 cm−1, see Tab. 4.15.

In order to check the shift of the eigenfrequencies of the phonon modes between the
doped and the undoped system, we use the Teller-Redlich product rule [187]

Ω =

∏
i ω

Mn
i∏

i ω
Ga
i

=

(
mMn

mGa

)α/2
, (4.2.3)

where m denotes the ionic mass in YMnO3 and YMn0.7Ga0.3O3, respectively. The
expression ωi designates the eigenfrequency of the i-th mode and α gives the number
of distinct sites that have been substituted. The number of formula units per unit
cell is Z = 6, but we have only 30 % Ga. So, we use α = (1/3)*6 = 2. Due to the
right hand side of (4.2.3) we expect a shift of 2.3 % in the phonon eigenfrequencies.
Experimentally, we find a shift in the eigenfrequencies of 4.5 % for E ‖ c (where we
omit the modes of the doped system at 341 cm−1, 469 cm−1, and 707 cm−1), and 7.1 %
for E ⊥ c. In the last comparison, we omit the peaks at 257 cm−1, 408 cm−1, and
770 cm−1 of the undoped system, because we do not find all phonon modes in the
doped system for E ⊥ c. A better agreement between both sides of (4.2.3) is hindered
by disorder, because the substitution of Ga is not complete.
The substitution of 30 % Ga should shift all phonon modes to lower frequencies, which
corresponds to vibrations including Ga ions because of the bigger mass of Ga compared
with Mn. But, the Ga3+ substitution decreases the lattice parameter a, and increases
c [169] which leads to harder stretching vibrations (e.g. 596 cm−1 → 598 cm−1) for
E ⊥ c, due to the reduced space around the oxygen ions which are involved in these
vibrations.

In conclusion, we used optical spectroscopy to analyze the phonon spectra of the hexag-
onal ferroelectrics YMnO3 and YMn0.7Ga0.3O3 and achieve a good agreement with the
prediction of the factor-group analysis. In addition, we compared our results with the
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Raman scattering, infrared absorption and lattice-dynamical calculation results of Iliev
et al. [152]. In contrast to their results, we find most of all phonon modes predicted by
the factor-group analysis. Furthermore, we find a small change in the phonon spectra
of YMnO3 for E ⊥ c between 420 cm−1 and 480 cm−1 around the Néel temperature
TN , which may be caused by the scattering of O vibrations on magnetic excitations.
By comparing the behavior of the lowest phonon mode in the doped and the undoped
system, we can confirm the results of Adem et al. [169] concerning the change in the
coordination of the Y ion. Following Iliev et al. [152] we associate the lowest phonon
mode with displacements of the Y ions along the c axis, which indicate the important
role of the Y ions for the occurrence of ferroelectricity in YMnO3, whereas the Mn3+

ions have no influence due to the d0-ness rule.
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4.3 Spin-lattice interactions in multiferroic MnWO4

In this section we describe the investigation of the spin-lattice interaction in the multi-
ferroic, monoclinic compound MnWO4, which plays an important role in the coupling
between the antiferromagnetic and the ferroelectric order parameters. The analysis of
the lattice dynamics provides a better understanding of this coupling. We present a
detailed phonon analysis for several temperatures between 10 K and 295 K including
a factor-group analysis. In contrast to the previous section, where we use the con-
ventional Drude-Lorentz model, we apply here the so-called generalized Drude-Lorentz
model [188] because the low symmetry of this compound requires a further fit pa-
rameter, which describes the orientation of the phonon mode within the ac plane.
Furthermore we analyze the crystal-field excitations in this compound by using group-
theoretical as well as cluster-model calculations.

Figure 4.42: a) Crystal structure of MnWO4 [189]. b) Collinear magnetic structure in
AF1 and AF3 taken from K. Taniguchi et al. [190, 191]: The magnetic
moments lie in the ac plane and are canted to the a axis by about 35◦.
c) Elliptical spiral spin structure in AF2 taken from K. Taniguchi et al.
[190]: The basal plane of spiral is inclined to the ab plane.

MnWO4 (also known as the mineral huebnerite) is one of the multiferroic materials in
which the cycloidal spin structure induces ferroelectricity [190]. This material crystal-
lizes in a wolframite structure [192], which is monoclinic with space group P2/c (C4

2h)
(a = 4.830(1) Å, b = 5.7603(9) Å, c = 4.994(1) Å, β = 91.14(2)◦) [193]. Both Mn2+

and W6+ ions are coordinated by distorted octahedra of hexagonal close-packed oxygen
ions. The [MnO6] and [WO6] octahedra are aligned in zigzag chains along the c axis.
The structure is composed of alternate stacks of the manganese and tungsten layers
along the a axis.
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In this compound three-dimensional long-range antiferromagnetic order is realized, be-
cause the influence of the spins, which are further than the nearest neighbor one, cannot
be neglected. The magnetic unit cell, with magnetic space group Ac2/a [197], consists
of 16 crystallographic unit cells at 4.2 K [195]. MnWO4 with magnetic Mn2+ (S=5/2)
is known to be a moderately frustrated antiferromagnetic system. Its Curie-Weiss con-
stant θ is ∼ −75 K while magnetic order appears only below TN3 ∼ 13.5 K. Thus the
frustration parameter f(= −θ/TN3) is ∼ 5.6 [190, 198].

MnWO4 undergoes in contrast to other wolframites MWO4 (M = Fe, Co, Ni), which
show only one magnetic transition to a commensurate magnetic state with a propa-
gation vector k = (1/2, 0, 0), several magnetic phase transitions at ∼ 13.5 K (TN3),
∼ 12.7 K (TN2), and ∼ 7.5 K (TN1), related to three long-wavelength magnetic ordering
states, AF3, AF2, and AF1 [195]. According to neutron diffraction results [195] the
AF1 (T < TN1) is a commensurate, collinear, antiferromagnetic phase with propaga-
tion vector k = (±1/4, 1/2, 1/2). For TN1 < T < TN2 , Lautenschläger et al. [195]
associate AF2 with an incommensurate, elliptical spiral phase with propagation vector
k = (−0.214, 1/2, 0.457), whereas AF3 (TN2 < T < TN3) is an incommensurate-
collinear antiferromagnetic phase [195], with the same propagation vector as AF2.
Within AF1 and AF3, the magnetic moments are aligned collinearly in the ac plane,
forming an angle of about 35◦ with the a axis, whereas in AF2, an additional compo-
nent parallel to the b axis exists [195]. The AF2 phase shows an elliptically modulated
noncollinear spiral spin structure, see Fig. 4.43 a) [199] and Fig. 4.42 c). Here the basal
plane of the elliptical spiral contains the easy axis (see Fig. 4.42 b)) of magnetization
and the b axis. The magnetic structure in the AF3 phase has a collinear sinusoidal
structure (see Fig. 4.42 b) and Fig. 4.43 b) [199]), in which the magnetic moments
lying along the easy axis. The AF1 phase has a magnetic structure which is character-
ized by an up-up-down-down (↑↑↓↓) spin configuration along both the a and the c axes.

The phase transition from AF1 to AF2 is first order [199] which is suggested by the
discontinuous change in the electric polarization and the shape of the anomalies in
the dielectric constant and the specific heat at TN1 . This can be explained by the
discontinuous change in the propagation vector of the magnetic structures [195]. The
propagation vector of the AF2 and AF3 is the same, because the magnetic structures
differ only by the component of the magnetic moments in the direction of the b axis.
Therefore the TN2 transition is expected to be of second order.

The helical magnetic order and a strong spin-lattice coupling [200] lead to the loss of
inversion symmetry which explains qualitatively the appearance of ferroelectricity in
the AF2 phase. Heyer et al. [201] report of a finite value of the ferroelectric polar-
ization also in the low-temperature AF1 commensurate phase. A possible explanation
for this observation is given by Arkenbout et al. [199]: Below TN1 a small portion
of the ferroelectric AF2 phase still remains and preserves the polarization direction.
The coupling between antiferromagnetic and ferroelectric order parameters observed
in MnWO4 must be mediated by strong spin-lattice interactions. Polarity alone does
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Figure 4.43: Schematic illustration of types of magnetic structure taken from [199] with
a long wavelength. ~eij represents the unit vector connecting neighboring

sites i and j, and ~Si (~Sj) denotes the magnetic moment at site i (j).

not guarantee ferroelectricity. The loss of inversion symmetry within the AF2 phase is
caused by the noncollinear spiral magnetic structure with a cycloidal component itself.
Using symmetry considerations [199] we can express the relation between electric po-
larization P and magnetization M in systems with spiral magnetic structures by

~P ∝ γ~eij ×
(
~Si × ~Sj

)
, (4.3.1)

where γ represents a constant proportional to the spin-orbit coupling and to the su-
perexchange interactions and ~S is the magnetic moment. Furthermore, ~eij indicates
the unit vector connecting neighboring sites i and j. The vector is along the prop-

agation vector of the spiral structure, and
(
~Si × ~Sj

)
is parallel to the spin-rotation

axis. Expression (4.3.1) indicates that a finite electric polarization can appear when
the magnetic moments at sites i and j are coupled noncollinearly in a spiral manner,
and the spin rotation axis is not parallel to the propagation vector. The direction
of electric polarization is perpendicular to the spin rotation axis and to the propa-
gation vector of the spiral (see Fig. 4.43). By a changing the chirality of the spiral
we can reverse the direction of electric polarization. The net polarization is neither

induced by the collinear sinusoidal structure
[(
~Si × ~Sj

)
= 0; Fig. 4.43 b)

]
nor by the

screw spiral structure
[
~eij ‖

(
~Si × ~Sj

)
; Fig. 4.43 c)

]
. Following Katsura et al. [202]

the ferroelectricity in spiral spin systems is caused by the Aharonov-Casher [203] effect
or an inversed effect of Dzyloshinskii-Moriya interaction [204–206], which induces spin
current (or spin chirality) between noncollinear spins.
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Wyckhoff Site Irreducible
atom notation symmetry representations
Mn 2(f) C2 Ag + Au + 2 Bg + 2 Bu

W 2(e) C2 Ag + Au + 2 Bg + 2 Bu

O(1) 4(g) C1 3 Ag + 3 Au + 3 Bg + 3 Bu

O(2) 4(g) C1 3 Ag + 3 Au + 3 Bg + 3 Bu

Table 4.16: Atomic site symmetries [189] and irreducible representations for the atoms
in monoclinic MnWO4 with space group P2/c.

By applying a magnetic field the ferroelectric phase expands or shrinks, see Fig. 4.44,
where the shift of phase boundaries depends on the difference in the net magnetiza-
tion between the ferroelectric phase and neighboring paraelectric phases [199]. With
increasing difference, the phase boundary responds stronger to an applied magnetic
field. The comparison of the electric and magnetic phase diagrams clearly demon-
strates the strong interplay of the evolution of a cycloidal spiral phase and ferroelectric
order in MnWO4.

4.3.1 Phonon Analysis

In order to investigate the spin-lattice interaction, which plays an important role in
the coupling between antiferromagnetic and ferroelectric order parameters, we perform
reflectivity measurements at T = 10, 13, 20, 50, 100, 150, 200, 250, and 295 K in the
spectral range of 100-8000 cm−1 at quasinormal incidence. The spectra were measured
for different polarization angles on polished (010) and (100) surfaces of MnWO4. The
reference measurements were done using Au evaporation. The variation of the polar-
ization angle was realized by rotating the polarizer. The temperature of the sample
was measured with a second thermometer glued on the sample with no thermal contact
to the sample holder (cold finger). The crystal was grown by P. Becker and L. Bohatý.16

The determination of the phonon modes starts with the factor-group analysis [184],
which begins with the determination of the irreducible representations of the symmetry-
equivalent positions. These positions are indicated by the Wyckoff symbols in the unit
cell and the number of formula units per unit cell is Z = 2 [189]. The site symmetries
as well as the irreducible representations of each atomic site are shown in Tab. 4.16 for
T = 295 K. In the phonon analysis, we assume no structural phase transition between
10 K and 295 K. The magnetic phase transitions at TN1 , TN2 , and TN3 are not con-
nected with structural phase transitions [195].

16Institute of Crystallography, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany
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Figure 4.44: Magnetic and electric phase diagrams of MnWO4 taken from A. H. Arken-
bout et al. [199] with magnetic fields applied along the a) easy, b) b, and
c) hard axes. Closed circles, open circles, open triangles, and crosses rep-
resent the data obtained by the measurements of magnetization, specific
heat, dielectric constant, and pyroelectric current, respectively. Gray re-
gions indicate ferroelectric phases [199].
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Combining the irreducible representations we find the following reducible representa-
tion of the phonon modes for monoclinic MnWO4 at room temperature with space
group P2/c:

Γtotal = 8Ag + 8Au + 10Bg + 10Bu. (4.3.2)

Thus, the total number of optical branches is 33, while the acoustic branches are
Au + 2Bu [184]. As given by Rousseau [184], the Ag and Bg modes are Raman active,
and the Au and Bu modes are infrared active. Subtracting the acoustic modes, the
factor-group analysis predicts 15 infrared-active phonon modes

ΓIR = 7Au + 8Bu. (4.3.3)

This means that we expect seven infrared-active phonon modes for E ‖b, if we assume
y ‖ b, z ‖ c and x ⊥ c lying in the ac plane, where a, b and c are the crystallographic
axes. In addition, we predict eight infrared-active modes for polarization in the ac
plane. Furthermore there are 18 Raman-active phonon modes

ΓRaman = 8Ag + 10Bg. (4.3.4)

Here we have no silent modes, because the sum of infrared, Raman, and acoustic modes
is equal to the total number of all possible phonon modes in this compound.

In contrast to the previous section, we cannot use the conventional Drude-Lorentz
model to describe phonon modes within the ac plane, because the tensor of the di-
electric function is no longer diagonal in this monoclinic compound. The off-diagonal
matrix elements εxz and εzx, which should be identical for non-magnetic materials17

(µ1 ≡ 0), are not equal to zero. Thus, the tensor of the dielectric response has the
following form:

ε̂(ω) =

 εxx(ω) 0 εxz(ω)
0 εyy(ω) 0

εxz(ω) 0 εzz(ω)

 . (4.3.5)

The determination of the phonon modes in a monoclinic compound can be done analo-
gously to the procedure described by Kuz’menko et al. [188]: We decompose the tensor
(4.3.5) into a scalar εb along the b axis and a two-dimensional tensor εac within the
ac plane. Since the b axis is perpendicular to the ac plane, we can determine the Au
symmetry modes by measuring with the incident electric field E parallel to the b axis
(see Fig. 4.48 e) and Fig. 4.49 e)).

In order to determine the modes with Bu symmetry, we have to measure at least three
different polarization directions (with E ‖ ac plane, see Fig. 4.45), because the angle
between the a and the c axis deviates from 90◦ (see Fig. 4.46). Additionally, we assume
that the incident wave excites only TO vibrations inside the crystal [188].

17We will assume that the medium is nongyrotropic (it means, for example, that no magnetic field is
applied) and there is no spatial dispersion.
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Figure 4.45: Reflectance of MnWO4 (E ‖ ac) for four different polarization angles χ at
T = 10 K.

Reflectivity spectra at T = 10 K are shown for E ‖ ac in Figs. 4.48 a) - c) and for
E ‖b in Fig. 4.48 e). The phonon spectrum at T = 295 K is plotted in Fig. 4.49. The
scalar εb is described by the conventional Drude-Lorentz model, whereas the tensor ε̂ac
requires a generalized Drude-Lorentz model:

εb(ω) = εyy = ε∞b +
∑
i,A

ω2
p,i

ω2
0,i − ω2 − iγiω

,

ε̂ac(ω) =

(
εxx εxz
εxz εzz

)
= ε̂∞ac +

∑
i,B

ω2
p,i

ω2
0,i − ω2 − iγiω

×
(

cos2 θi sin θi cos θi
sin θi cos θi sin2 θi

)
.

(4.3.6)

Here, ε∞b and ε̂∞ac are the high-frequency dielectric constants, ω0,i is the transverse fre-
quency, ωp,i the plasma frequency, and γi the damping of the i-th oscillator, and θi (for
the Bu modes) the angle between the dipole moment and the x axis.

Due to the symmetry of the tensor ε̂ of the dielectric function, we can always find a set
of axes (a basis {x, y, z}) such that the real or the imaginary part of ε̂ have diagonal
form. In case of an orthorhombic crystal, the two sets of axes coincide and the basis is
related to the crystal structure, i.e. the crystallographic axes a, b, and c.18

18For an orthorhombic crystal, all optical constants (all matrix elements of ε̂) can be determined
experimentally using linearly polarized light parallel to the three crystallographic axes.
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4.3 Spin-lattice interactions in multiferroic MnWO4

Figure 4.46: Orientation of the crystallographic axes a and c as well as the cartesian
coordinate system and angle χ between the polarization direction and the
x axis.

In monoclinic crystals, only one axis of the tensor ε̂ is fixed with respect to the crystal-
lographic system of coordinates; the two other axes rotate in the perpendicular plane.
Due to the low symmetry, the orientation of the principal axes of ε̂ac depends on ω
and is different for Re{ε̂ac} and Im{ε̂ac}. The calculation of the rotation angles φRe
and φIm requires the diagonalization of Re{ε̂ac} and Im{ε̂ac} by two different rotation
matrices.

An example for the relationship between φIm, φRe, and θi is shown in Fig. 4.47. In the
case of some oscillators (e.g. ω0 = 753 cm−1 and ω0 = 765 cm−1, see below), φIm(ω0)
and θi are similar, but they may differ significantly for other modes.

Using the Fresnel equations [188] for normal incidence we obtain the reflectance for
E ‖b (Rb) and E ‖ ac (Rac):

Rb(ω) =

∣∣∣∣(1−
√
εb(ω)

)
·
(

1 +
√
εb(ω)

)−1
∣∣∣∣2 ,

Rac (ω, χ) =

∣∣∣∣((1̂−
√
ε̂ac(ω)

)
·
(

1̂ +
√
ε̂ac(ω)

)−1
)
·
(

cosχ
sinχ

)∣∣∣∣2 ,
(4.3.7)

in which 1̂ denotes the unity tensor and χ represents the angle between the polarization
direction and the x axis, as shown in Fig. 4.46. The “-1” exponent in the calculation
of Rac(ω, χ) implies calculation of the inverse matrix. Moreover, the calculation of
Rac(ω, χ) requires the determination of the square root of a tensor. Therefor, we ro-
tate ε̂ac(ω) to a diagonal form, then we take the square root for each matrix element,
and finally we rotate the resulting tensor back to its original basis.

The fit was carried out by the least-squares method. Minimization of χ2 was performed
by the Marquardt technique described in [99] with analytical calculation of the partial
derivatives of χ2 based on model parameters. All fits in this thesis using the gener-
alized Drude-Lorentz model have been performed applying the program Optpal 2.8
by Dirk van der Marel and coworkers19 with an extension for the generalized Drude-
Lorentz model developed in collaboration with Alexander Gössling [207]. As shown

19Département de Physique de la Matière Condensée, Université de Genève, Switzerland
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Figure 4.47: Rotation angles of the tensor of the dielectric function in MnWO4 at
T = 10 K. The rotation angles φRe (red) and φIm (green) are presented in
combination with the angles θi (black dots) for the different modes used
in the fits for E ‖ ac.

in Fig. 4.48 e) and Fig. 4.49 e), the fits yield a good description of the measured re-
flectance for E ‖ b. For E ‖ ac we were not able to achieve a good description between
600 and 800 cm−1. The fit parameters are listed in Tab. 4.17.

In case of E ‖ b, where 7 Au modes are expected, we find 7 strong IR modes. The
small feature at 231 cm−1 corresponds probably to a polarizer leakage.

We find a remarkably high phonon mode at 858 cm−1, which is unusual for a transition-
metal oxide including a heavy ion like W. In order to find an explanation for the oc-
currence of this high eigenfrequency, we compare the bond lengths of MnWO4 and
YMnO3: The Mn-O distances in MnWO4 range between 2.099 Å and 2.2272 Å [195],
whereas the Mn-O distances in YMnO3 are shorter (1.8653 Å - 2.0971 Å [166]). Com-
paring the distances between the oxygen and the heavy ion (W for MnWO4 and Y
for YMnO3), we find a remarkable difference: In contrast to YMnO3, where the Y-O
distances vary from 2.2102 Å to 2.4614 Å [166], we find shortened W-O distances in
MnWO4, which range between 1.794 Å and 2.1310 Å [195]. We think, that the short
W-O distance, with a bond length of 1.794 Å, causes the high-energy phonon mode at
858 cm−1.
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In case of E ‖ ac, where 8 Bu modes are expected, we require a further mode to
describe the phonon spectrum reasonably (see Figs. 4.48 a) - c), and Figs. 4.49 a) - c)).
Still we cannot achieve a good description between 600 and 800 cm−1, which is caused
probably by two-phonon contributions and a large multi-phonon background like in
YMnO3. Additionally, the reflectance is pretty high in this energy range and weak
features may have a significant influence on the reflectivity. The peak at 273 cm−1 is
the strongest mode and we describe the phonon spectrum below 600 cm−1 properly.
Due to the low crystal symmetry, the directions of the two principal dielectric axes in
the ac plane depend on the frequency, which precludes the straightforward application
of the Kramers-Kronig method to the ac plane reflectance data. Therefore, the com-
ponents of the tensor of the optical conductivity have been determined from (4.3.6)
using (2.11.8) (see Figs. 4.53 a) - c)). The off-diagonal component σxz may have any
sign, unlike the diagonal components σxx and σzz, which must be positive.

The temperature dependence of the phonon spectra for the different polarization direc-
tions is shown in Figs. 4.50 - 4.51. We find no qualitative change in the spectra between
the AF2, AF3, and the paramagnetic phase. (The measurement of the phonon spectra
within the AF1 could not be realized).

The temperature evolution of the eigenfrequencies of the Au and Bu modes is shown
in Fig. 4.55. There is no significant difference in the temperature dependence of the
eigenfrequencies of the low- and high-frequency Au as well as Bu modes. All modes
are monotonically hardening upon cooling down. The Au mode at 174 cm−1 shows
the strongest softening of all Au modes, whereas the Bu mode at 200 cm−1 shows a
shift of roughly 3 % between 10 K and 295 K. Furthermore, we find no remarkable
behavior in the other fit parameters (see Fig. 4.56 and Fig. 4.5720) and the reflectance
(see Fig. 4.54) between the AF2 (T = 10 K), AF3 (T = 13 K), and the paramagnetic
phase (T > 13 K) for both directions E ‖ ac and E ‖b.
In addition, in Fig. 4.58 the variation of the angle θi of each phonon mode is shown.
The phonon modes at 200 cm−1 and 242 cm−1 rotate clockwise with increasing tem-
perature. The angle changes from -19◦ (128◦) at 10 K to -35◦ (118◦) at 295 K. The
modes at 283 cm−1 and 454 cm−1 show the opposite behavior. The absolute change
between 10 K and 295 K is 6◦ and 11◦. We observe no irregularity in the variation of
the angle θi except for the mode at 242 cm−1 between 13 K and 20 K, which is caused
by the inaccuracy of the fit.

Hence, we conclude that the spin-lattice interaction is not strong enough to change the
phonon spectra markedly at the magnetic phase transitions.

20The small enhancement of the damping of the phonon mode at 242 cm−1 between 13 K and 20 K
is caused by inaccuracies in the fit.
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Figure 4.48: Reflectance of MnWO4 at T = 10 K for a) - d) E ‖ ac plane at different
polarization angles χ (black) and fit using (4.3.7) with 9 phonon modes
(green). e) Reflectivity at T = 10 K for E ‖b (black), fit using (4.3.7)
(red).
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Figure 4.49: Reflectance of MnWO4 at T = 295 K for a) - d) E ‖ ac plane at different
polarization angles χ (black) and fit using (4.3.7) with 9 phonon modes
(green). e) Reflectivity at T = 295 K for E ‖b (black), fit using (4.3.7)
(red).
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B modes A modes
ω0 ωp γ θ S ω0 ωp γ S

[cm−1] [cm−1] [cm−1] [◦] [cm−1] [cm−1] [cm−1]
139 299 0.6 22 4.659 174 338 1.1 3.790
200 393 1.1 -19 3.848 308 147 2.9 0.227
242 400 0.2 128 2.729 341 484 1.5 2.020
273 721 1.2 75 6.946 418 302 5.4 0.521
283 418 5.7 66 2.180 499 495 9.4 0.986
454 362 6.1 -8 0.638 662 720 11.7 1.180
551 1050 2.4 121 3.657 858 404 6.3 0.221
743 761 13.8 34 1.047
762 686 6.7 32 0.811

Table 4.17: Fit parameters for the reflectivity of MnWO4 at T = 10 K using (4.3.7).
Here, S = ω2

p/ω
2
0 denotes the oscillator strength. The high-frequency di-

electric constants at T = 10 K are: ε∞xx = 4.99, ε∞yy = 4.93, ε∞zz = 5.75, and
ε∞xz = 0.009.

B modes A modes
ω0 ωp γ θ S ω0 ωp γ S

[cm−1] [cm−1] [cm−1] [◦] [cm−1] [cm−1] [cm−1]
136 274 3.3 21 4.028 168 335 5.4 3.980
194 406 5.1 -35 4.389 306 135 6.0 0.195
238 374 1.1 118 2.469 340 481 4.2 2.000
270 733 14.9 72 7.316 415 288 12.0 0.482
276 336 4.5 72 1.483 496 505 21.6 1.040
451 284 11.7 3 0.397 660 722 21.9 1.200
550 1035 18.2 121 3.533 858 400 10.0 0.217
737 566 17.9 34 0.589
760 825 16.2 33 1.180

Table 4.18: Fit parameters for the reflectivity of MnWO4 at T = 295 K using (4.3.7).
Here, S = ω2

p/ω
2
0 denotes the oscillator strength. The high-frequency di-

electric constants at T = 10 K are: ε∞xx = 4.72, ε∞yy = 4.82, ε∞zz = 5.44, and
ε∞xz = 0.049.
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Figure 4.50: Temperature dependence of the reflectance of MnWO4 for E ‖b.
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Figure 4.51: Temperature dependence of the reflectance of MnWO4 (E ‖ ac) at
a) χ = 0◦ and b) χ = 30◦.
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Figure 4.52: Temperature dependence of the reflectance of MnWO4 (E ‖ ac) at
a) χ = 60◦ and b) χ = 90◦.
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Figure 4.53: Optical conductivity of MnWO4 at T = 10 K for a) - c) E ‖ ac and d)
E ‖b. The optical conductivity for E ‖b was determined by applying the
Kramers-Kronig transformation to the optical reflectance (black). The
dotted lines indicate the eigenfrequencies of the phonon modes used in
the fit. For E ‖ ac the components of the optical tensor σ̂ are shown,
which are determined from (4.3.6) using (2.11.8).
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Figure 4.54: Temperature dependence of the relative reflectance below 50 K of MnWO4

for a) E ‖ ac, χ = 0◦, b) E ‖ ac, χ = 30◦, c) E ‖ ac, χ = 60◦, d) E ‖ ac,
χ = 90◦, and e) E ‖b. The sharp features in the graphs are caused by
the large gradient of the reflectance at these frequencies, which leads to
numerical inaccuracies.
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Figure 4.55: Relative eigenfrequencies ω0(T)/ω0(T=10 K) of MnWO4 for a) E ‖ ac and
b) E ‖b. The insets show the temperature range below T = 50 K.
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Figure 4.56: Relative plasma frequencies ωp(T)/ωp(T=10 K) of MnWO4 for a) E ‖ ac
and b) E ‖b. The insets show the temperature range below T = 50 K.
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Figure 4.57: Relative damping γ(T)/γ(T=10 K) of MnWO4 for a) E ‖ ac and b) E ‖b.
The insets show the temperature range below T = 50 K.
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Figure 4.58: Absolute change of the angle θi of MnWO4 for E ‖ ac. The inset shows
the temperature range below T = 50 K.

In Fig. 4.59 a) and b) the components of the complex dielectric function (4.3.5) along
the b axis, εyy, and in the ac plane, (1/2)(εxx + εzz), are shown. The form of the latter
combination was chosen because the expression is invariant relative to the rotation of
the system of coordinates within the ac plane. Secondly, the form does not depend
on the angles θi and finally the expression would be equal to the dielectric function in
case of a cubic crystal. The maxima of Im[ε(ω)] determine the frequencies of the TO
modes. From a comparison of Fig. 4.59 a) and b) we come to the conclusion that on
average the Bu modes for E ‖ ac are significantly more intensive (have greater effective
charges) than the Au modes for E ‖b. Correspondingly, plasma frequencies and mode
strengths of the Bu modes are on average greater than those of the Au modes (see
Tab. 4.17).

Concluding our investigations of the phonons, we find all infrared-active phonon modes
predicted by the factor-group analysis. We describe the phonon spectra for E ‖ ac by
a generalized Drude-Lorentz model developed by Kuz’menko et al. [188], and for E ‖b
by the conventional Drude-Lorentz model. We find no significant change in the phonon
spectra between the AF2, AF3, and the paramagnetic phase.
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Figure 4.59: The frequency dependence of the real (red) and imaginary (blue) parts of
a) εyy and b) (1/2)(εxx + εzz).
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4.3.2 Cluster-Model Calculations

In order to deepen our investigation of the infrared excitations below the band gap, we
analyze the crystal-field excitations, similar to the procedure presented in section “4.1
Crystal-Field Excitations in VOCl”.

We perform transmittance measurements at T = 30 K and T = 295 K in the spectral
range of 2000 - 23000 cm−1 at normal incidence on two thin polished crystals. Note,
that we measure within the paramagnetic regime far away from the highest magnetic
ordering temperature 13.5 K. The spectra were measured for different polarization an-
gles on polished (010) and (100) surfaces of MnWO4. The variation of the polarization
angle was realized by rotating the polarizer. All measurements were performed using
linearly polarized light with the electric-field vector aligned parallel to the x, y, and z
axis, where we assume x ‖ a, y ‖b, and z ‖ c.

Figure 4.60: − ln(T (ω))/d of MnWO4 for E ‖x, E ‖y, and E ‖ z for T = 30 K (blue)
and T = 295 K (red).
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The transmittance at T = 30 K and T = 295 K for E ‖x, E ‖y, and E ‖ z is shown in
Fig. 4.60 a) - c) in good agreement with the results of Ejima et al. [208] and Nogami
et al. [209] who measured the absorption coefficient at room temperature. But, in
contrast to them we determine the polarization dependence of the transmittance be-
tween 0.3 eV and 2.8 eV completely and measured the transmittance for two different
temperatures. The values of the absorption coefficient given by Ejima et al. [208] were
measured with unpolarized light, whereas Nogami et al. [209] determine the value of
the absorption coefficient only for E ⊥ b.

The oscillations of the data below 1.0 eV shown in the inset of Fig. 4.60 b) correspond
to so-called Fabry-Perot fringes. These fringes result from multiple reflections at
both coplanar faces of the sample. The behavior above 2.5 eV describes the onset of
excitations across the gap. In the following, we are interested in the excitations around
2.25 eV.

In order to compare the results of the cluster-model calculation with the experimen-
tal data, we have to determine the optical conductivity from the transmittance mea-
surements. Therefore, we extrapolate the reflectance from 8000 cm−1 (∼1 eV) up to
24000 cm−1 (∼2.9 eV) by using the conventional Drude-Lorentz fit of MnWO4 for E ‖b,
presented in the last section. Using the relation between R(ω), T (ω), φ(ω), n(ω), and
k(ω) in Ref. [207] we can derive the following expressions21

φ(ω) =
−1 + 2R(ω)−R(ω)2 +

√
(1− 2R(ω) +R(ω)2)2 + 4R(ω)2T (ω)2

2R(ω)2T (ω)
,

k(ω) =
1

4πdω
ln

(
1

φ(ω)

)
,

n(ω) =
−1−R(ω)−

√
−k(ω)2 + 4R(ω) + 2k(ω)2R(ω)− k(ω)2R(ω)2

−1 +R(ω)
,

σ1(ω) = 4πε0ωc · 102 · n(ω) · k(ω),

(4.3.8)

which determine the optical conductivity. (ε0 indicates the vacuum permittivity). Here
φ(ω) represents an abbreviation φ(ω) = exp(−4πkd/λ) = exp(−αd), k(ω) the extinc-
tion coefficient22 and n(ω) the real part of the complex refraction index. The calculation
of the optical conductivity requires the determination of the thickness d of the sample.
The observation of fringes with a frequency distance of ∆ω allows the calculation of
the thickness by using the equation

d =
1

2 · n ·∆ω
, [d] in cm, if [∆ω] in cm−1. (4.3.9)

We obtain a thickness of d = 54 µm, where we set n ≡ n(ω = 2553 cm−1). Due to the
absence of fringes for E ‖x and E ‖ z we cannot determine the thickness of the crystal

21In order to get σ1(ω) in units of [Ω−1 m−1] the frequency ω has to be given in units of cm−1.
22Here, the thickness d of the sample has to be given in cm.
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Figure 4.61: a) The splitting of the 4G multiplet of the free Mn2+ ion with increas-
ing crystal-field strength within a point-charge model in MnWO4. The
energies are normalized to the ground state energy. Note, the crys-
tal eigenstates are 4-fold degenerate. The calculation parameters are
given as F 2

Mn2+ = 8.308 eV, F 4
Mn2+ = 5.161 eV, 〈r2〉Mn2+ = 0.450 Å2,

〈r4〉Mn2+ = 0.466 Å4. b) Tanabe-Sugano diagram for a d5 configuration
in a cubic environment [147] with Racah parameters B = 859 cm−1 and
C = 3848 cm−1. The parameter ∆ indicates the strength of the crystal
field in units of the Racah parameter B.

used for the transmittance measurements for E ‖x and E ‖ z. As shown in equation
(4.3.8) the absolute value of the optical conductivity scales linear with the thickness of
the sample. In the determination of the optical conductivity we set d = 54 µm for all
polarization directions.

In order to identify the excitations at about 2.25 eV, we start with the free Mn2+ ion
without crystal field. Here the five 3d electrons occupy the 6S ground state. The higher
lying multiplets are 4G, 4F , 4D, 4P , 2I, 2H, 2G1, 2G2, 2F1, 2F2, 2D1, 2D2, 2D3, 2P , 2S.
In the next step we include the effects of the crystal field within a point-charge model
using the structural data reported by Lautenschläger et al. [195]. Furthermore we
neglect the spin-orbit coupling as well as the hybridization. The 6S ground state, with
L = 0, is not degenerate concerning the angular momentum and therefore no crystal-
field splitting of this energy level occurs. In addition Hund’s first rule is not broken
and we have no mixing between different multiplets in the ground state, because there
is only one S = 5/2 multiplet. Therefore, all dipole transitions between the ground
state and the excited states are forbidden. The site symmetry at the Mn site is C2
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MnWO4 MnO
Nr. excited point-charge point-charge

state model model
1 2.60 (4) 2.57 (12)
2 2.62 (4)
3 2.64 (4)
4 2.75 (4) 2.76 (12)
5 2.77 (4)
6 2.78 (4)
7 2.80 (12) 2.80 (12)

Table 4.19: Comparison of energies in eV of the lowest crystal-field transitions within
a point-charge model below 3 eV in MnO and MnWO4 between the ground
state and the excited states. The values in brackets indicate the degree of
degeneracy.

[196]. Lowering the symmetry from Oh to C2, the 6A1g level, which shows six-fold spin
degeneracy, is not split. In addition, performing a group-theoretical analysis analogous
to the procedure described in section “4.1 Crystal-Field Excitations in VOCl” we find
no transition which is forbidden by symmetry arguments. As shown in Fig. 4.61 a)
the three lowest excited eigenstates belong to the cubic 4T1g state. Due to the reduced
site-symmetry (C2) at the Mn site in MnWO4 the cubic eigenstates show a further
splitting. The energetic higher lying excited eigenstates belong the the cubic 4T2g and
4A1g/

4Eg states, respectively.

Furthermore, as shown in Fig. 4.61 a) and Tab. 4.19, the pure crystal-field splitting
within a point-charge model without hybridization is very weak in MnWO4. In order to
appraise these results we compare the strength of the crystal-field splitting with crystal-
field transitions in MnO [210–217]. In the antiferromagnetic transition-metal monoxide
MnO (TN = 118 K) the Mn2+ ions are octahedrally coordinated by six O2− ions with
point-group symmetry Oh at the Mn site. The crystal structure of MnO at 295 K
is rocksalt (space group Fm3m) [218] with lattice parameter a = 4.4457(2) Å [219].
Within a single-particle picture, the eg and the t2g states in MnO are occupied with
electrons whose spins are aligned parallel to each other. Thus, all dipole transitions
between these crystal-field eigenstates are forbidden by the spin selection rule23. As
mentioned in section “4.1.1.Group-Theoretical Considerations” this selection rule can
be relaxed by taking into account spin-orbit coupling. Additionally, if we excite two
spin-carrying modes simultaneously with total spin equal to zero, we can avoid the
spin selection rule. For instance a spin-forbidden orbital excitation may gain a finite
spectral weight by the simultaneous excitation of a magnon, giving rise to a so-called
magnon-exciton sideband. We will discuss a possible contribution of this mechanism
to the optical conductivity at the end of this section.

23The exchange splitting between the crystal-field eigenstates of different spin directions is 4.5 eV
[220].
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Nr. excited [210] [211] [212] [216] [217] [226] [213] [214] [215]
state calc. calc. EELS EELS EELS EELS optic optic optic

1 2.01 2.31 2.13 2.2 2.2 2.16 2.03 2.1 1.97
2 2.56 2.93 2.4 2.9 2.8 2.86 2.55 2.6 2.51
3 2.94 2.82 2.97 2.95 2.94
4 2.95

Table 4.20: Comparison of energies in eV of the lowest crystal-field transitions below
3 eV in MnO between the ground state and the excited states.

As shown in Tab. 4.19, there are only small differences in the excitation energies be-
tween MnO and MnWO4. Furthermore, in MnO the levels show a higher degeneracy
(12 fold) than in MnWO4. This is caused by the high point-group symmetry (Oh)at the
Mn site in MnO where all Mn-O bonds have the same length (2.2229 Å). In MnWO4,
the bond lengths between the Mn2+ ion and the surrounding ligands varies between
2.0988 Å and 2.2717 Å. Therefore, we expect only small differences between the strength
of the crystal-field splitting in MnWO4 and MnO. Within the point-charge model we
find a splitting of 10Dq = 0.39 eV for MnO in contrast to MnWO4 where we find a
value of 10Dq = 0.36 eV if we assume a cubic point group symmetry around the Mn2+

ion. But, for MnO the strength of the crystal-field splitting between the eg and the
t2g states has been determined to be between 0.7 and 1.25 eV [211, 213–215, 220–224].
This discrepancy24 is caused by the inaccurancy of the point-charge model, which ne-
glects the hybridization as well as the spin-orbit coupling.

Comparing the excitation energies for MnO calculated within a point-charge model with
those determined by cluster calculations [210, 211], optical-absorption spectroscopy
(optic) [213–215] and electron-energy-loss spectroscopy (EELS) [212, 216, 217], see
Tab. 4.20, we find remarkable reductions of roughly 0.37 - 0.6 eV. The reduction may
be caused by the hybridization, which increases the strength of the effective crystal-
field and leads to a reduction of the energetic distance between the ground state and
the higher lying excited states, as shown in Fig. 4.61 b). The values of the lowest
crystal-field transitions in MnO are in good agreement with those reported for other
compounds including a Mn2+ ion such as Mn2SiO4 [227] (2.07 eV, 2.53 eV, 2.76 eV,
2.95 eV), ZnGa2S4:Mn2+ [228] (2.32 eV, 2.55 eV, 2.66 eV) and MnF2 [229] (2.38 eV,
2.95 eV, 3.10 eV). Therefore, we expect that the excitations around 2.2 eV observed
in MnWO4 belong also to crystal-field transitions similar to MnO. But in order to
describe these excitations, see Fig. 4.60, we have to take the spin-orbit coupling as well
as the hybridization into account by using the cluster-model calculation described in
the second chapter:

24Ghiringhelli et al. [225] report of a crystal-field splitting of only 0.5 eV and 1.0 eV depending on
the theory which is being used for the determination of the crystal-field splitting.
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parameter 3d5 configuration 3d6 configuration 3d7 configuration
F 2
dd (Mn) 8.750 eV 8.750 eV 8.750 eV
F 4
dd (Mn) 5.166 eV 5.166 eV 5.166 eV
〈r2〉Mn 0.452 Å2 0.452 Å2 0.452 Å2

〈r4〉Mn 0.475 Å4 0.475 Å4 0.475 Å4

ζMn 40.0 meV 40.0 meV 40.0 meV
〈r2〉O,2p5 0.000 Å2 0.000 Å2 0.000 Å2

ζO,2p5 0.0 meV 0.0 meV 0.0 meV
F 2
O,2p4 0.000 eV 0.000 eV 0.000 eV

〈r2〉O,2p4 0.000 Å2 0.000 Å2 0.000 Å2

ζO,2p4 0.0 meV 0.0 meV 0.0 meV

Table 4.21: Parameters used in the cluster-model calculation for MnWO4.

The cluster used in the cluster-model calculation for MnWO4 consists of a Mn ion
with 3d5 electronic configuration and six oxygen (2p6) ions around forming a distorted
octahedron. The single-excited configurations contain a Mn ion with (3d6) electronic
configuration and a hole on one of the oxygen ligands. The double-excited configura-
tions include a further electron on the Mn site (3d7) and a further hole on the ligand
sites. Here, we have to distinguish between doubly-occupied ligands with 2p4 configu-
ration and two singly occupied sites {2p5, 2p5}. Altogether we have 28 configurations,
and the size of the Hamilton matrix is 177156 × 177156. As mentioned in section
“4.1 Crystal-Field Excitations in VOCl”, the interaction between two different config-
urations is described by the tight-binding operator. If the hopping of electrons between
ions passes through the central transition-metal ion, we set the appropriate contribu-
tion of the tight-binding operator equal to zero and the involved configurations do not
interact with each other. Due to the similarities between MnO and MnWO4 mentioned
above, we use for the cluster-model calculation of MnWO4 the model parameters de-
scribed by van Elp et al. [210] for MnO which are shown in Tab. 4.21. Additionally,
we set the hopping integrals to pdσ = 1.3 eV, pdπ = -0.6 eV, ppσ = -0.55 eV, and
ppπ = 0.15 eV. In contrast to van Elp et al. [210] we set the Hubbard U at the Mn site to
UMn = 7.5 eV (UO = 0.0 eV) and reduce the charge-transfer energy to ∆Mn−O = 3.5 eV.

The results of the cluster-model calculation are shown in Fig. 4.62 where the real part
of the optical conductivity σ(ω) was calculated by using the Kubo-Greenwood formula
(2.11.10), with damping set to ∼112 meV (900 cm−1) for each excitation. The direc-
tion dependence of the optical conductivity was determined analogous to the procedure
presented in section “4.1 Crystal-Field Excitations in VOCl”. As shown in Fig. 4.62,
the green and dark yellow curves describe the positions of the transitions quite well
although we use only one set of calculation parameters for all valid configurations, i.e.
the parameters for the d5, the d6L, and the d7L2 configurations25 are the same, see
Tab. 4.21.

25The expression L represents a hole in the oxygen ligands.
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As shown in Fig. 4.62, the absolute value of the optical conductivity for E ‖y differ
by a factor of 2 from the values determined for E ‖x and E ‖ z. Note, that we do
not know the thickness of the sample used for the transmittance measurements for
E ‖x and E ‖ z exactly. As mentioned above, we set the thickness to d = 54 µm for
all polarization directions which may cause the difference in the absolute value of the
optical conductivity. Furthermore, the small differences in the line shape of the op-
tical conductivity are partially caused by using only one value for the damping for
all excitations. However, we cannot describe the polarization dependence of the exci-
tations between 2.1 eV and 2.5 eV which may caused by neglecting the contribution
of energetically higher lying p-states at the Mn site to the optical conductivity, see
section “4.1.2 Cluster-Model Calculations”. But, as indicated by the black triangles in
Fig. 4.62 c), we can describe the positions of all peaks.

We continue the analysis of the cluster-model calculation by making use of the ad-
vantages of the calculation technique: The usage of the Racah-Wigner algebra allows
a detailed analysis of the ground and the excited states depending on the angular
momenta. By determining the square of the normalized eigenvectors, we get the con-
tribution of each angular momentum, i.e. each multiplet, to the appropriate eigenstate.
We will start the analysis by looking at the contributions of the different configura-
tions, used in the cluster-model calculation, to the cluster eigenstates: As shown in
Tab. 4.22, the six-fold degenerate ground state is predominantly formed by the ground
configuration {3d5, 2p6, 2p6, 2p6, 2p6, 2p6, 2p6}. But, we find a remarkable contribu-
tion (23 %) of the single-excited configurations to the ground state. The contributions
of the double-excited configurations to the low-lying eigenstates are small and we can
neglect them in the further analysis.
As shown in Tab. 4.22 and Tab. 4.23 the ground state is predominantly formed by the
6S multiplet as suggested by the crystal-field analysis, mentioned above. As shown in
Tab. 4.23, the energetically higher lying eigenstates represent crystal-field excitations.
The excited states below 3 eV are formed predominantly by the 4G multiplet (in good
agreement with the results of the point-charge analysis) and contain a large contribution
(≈33 %) of single-excited configurations. Additionally, the eigenstates below 2.5 eV
show a remarkable admixture of the 4P multiplet which is caused by two facts: Within
a point-charge model the 4P multiplet is next to the 4G multiplet and the crystal-field
operator mixes multiplets which have the same spin. Comparing these eigenstates with
the results of the point-charge model shown in Fig. 4.61, we associate the eigenstates
below 2.5 eV with the cubic 4T1g state which shows a further splitting due to the
reduced point-group symmetry in MnWO4 at the Mn site. The excitations between
2.6 eV and 2.7 eV show an increased contribution of the 4G and of the energetically
higher lying multiplets with spin (3/2) but no admixture of the 4P multiplet. This
behavior is in good agreement with the results of the point-group analysis as well and
represents the cubic 4T2g state. Finally, the eigenstates between 2.7 eV and 3.0 eV
belong to the cubic 4A1g/

4Eg. This behavior is quite similar to the results reported for
MnO [210–217].
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Figure 4.62: Optical conductivity of MnWO4 determined from transmittance and re-
flectance measurement for a) E ‖x, b) E ‖y, and c) E ‖ z for T = 30 K
(blue) and T = 295 K (red). The calculated optical conductivity, mul-
tiplied by a factor of 3.5 · 104, is shown for two different values of the
damping factor: 900 cm−1 (green line) and 90 cm −1 (dark yellow line).
The black triangles indicate the calculated excitation energies shown in
Tab. 4.22.
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Nr.: absolute excitation ground first second
energies [eV] energies [eV] configuration [%] order [%] order [%]

1 -7.6023 (6) 0.0000 75.7 23.0 1.5
2 -5.3990 (2) 2.2033 64.3 33.4 2.1
3 -5.3988 (2) 2.2035 64.3 33.4 2.1
4 -5.3647 (2) 2.2375 64.3 33.4 2.0
5 -5.3645 (2) 2.2377 64.3 33.4 2.0
6 -5.3135 (2) 2.2888 64.5 33.2 2.0
7 -5.3132 (2) 2.2891 64.5 33.2 2.0
8 -5.0005 (2) 2.6018 64.3 33.4 2.1
9 -5.0000 (2) 2.6023 64.3 33.4 2.1
10 -4.9745 (2) 2.6277 64.2 33.6 2.0
11 -4.9736 (2) 2.6287 64.1 33.6 2.0
12 -4.9489 (2) 2.6534 64.4 33.4 2.0
13 -4.9484 (2) 2.6539 64.4 33.4 2.0
14 -4.8381 (2) 2.7641 65.8 32.2 1.7
15 -4.8378 (2) 2.7644 65.8 32.2 1.7
16 -4.8330 (2) 2.7693 65.8 32.0 1.7
17 -4.8327 (2) 2.7695 65.8 32.2 1.7
18 -4.8277 (4) 2.7746 65.8 32.0 1.7
19 -4.5040 (2) 3.0983 61.2 35.6 3.3

Table 4.22: Results of the cluster-model calculation for MnWO4 at T = 295 K. The
values in brackets indicate the degree of degeneracy. Here, we assume that
two energies belong to a degenerate eigenstate if they differ by less than
0.2 meV. The last two columns represent the sum of all configurations
of the appropriate excitation order. The column “first order” represents
the sum of all single-excited and the column “second order” the sum of
all double-excited configurations. Discrepancy from 100 % are caused by
roundoff errors.
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excitation multiplet contributions
energy [eV] Mn-ion [%]

0.0000 6S 75.71
2.2033 4G, 4P 40.86, 22.41
2.2035 4G, 4P 40.87, 22.41
2.2375 4G, 4P 41.94, 21.09
2.2377 4G, 4P 41.95, 21.09
2.2888 4G, 4P 42.15, 21.43
2.2891 4G, 4P 42.15, 21.44
2.6018 4G, 4F , 4D 54.93, 6.03, 3.27
2.6023 4G, 4F , 4D 54.88, 6.02, 3.30
2.6277 4G, 4F , 4D 54.79, 5.56, 3.72
2.6287 4G, 4F , 4D 54.71, 5.56, 3.79
2.6534 4G, 4F , 4D 56.18, 4.78, 3.37
2.6539 4G, 4F , 4D 56.15, 4.78, 3.39
2.7641 4G 65.66
2.7644 4G 65.69
2.7693 4G 65.31
2.7695 4G 65.34
2.7746 4G 65.21
3.0983 2I, 2H, 2F1, 2D1 27.20, 13.86, 9.71, 3.06, 6.19

Table 4.23: Contributions of the different multiplets of the ground configuration of
MnWO4 to the ground and the excited state for T = 295 K. Here, only
those contributions are shown which are greater than 2 %. Due to the sake
of simplicity we do not show the different contributions of the several total
angular momenta J = L+S, and the total spin S, see section “2.3.2 Basis
Functions within the Russell- Saunders-coupling scheme”.
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Nr.: absolute excitation ground first second
energies [eV] energies [eV] configuration [%] order [%] order [%]

1 -7.4540 (6) 0.0000 78.5 20.4 1.2
2 -5.2482 (2) 2.2058 68.0 30.0 1.5
3 -5.2477 (4) 2.2064 68.0 30.2 1.5
4 -5.2457 (4) 2.2083 67.9 30.2 1.5
5 -5.2442 (2) 2.2098 67.9 30.6 1.5
6 -4.8190 (2) 2.6350 68.0 30.0 1.5
7 -4.8151 (4) 2.6389 68.0 30.2 1.9
8 -4.8080 (6) 2.6460 67.9 30.4 1.7
9 -4.6319 (4) 2.8221 70.0 28.6 1.5
10 -4.6197 (8) 2.8344 69.9 28.8 1.5

Table 4.24: Results of the cluster-model calculation for MnO at T = 295 K below 3 eV.
The values in brackets indicate the degree of degeneracy. Here, we assume
that two energies belong to a degenerate eigenstate if they differ by less
than 0.2 meV. The last two columns represent the sum of all configurations
of the appropriate excitation order. The column “first order” represents
the sum of all single-excited and the column “second order” the sum of
all double-excited configurations. Discrepancy from 100 % are caused by
roundoff errors.

In order to classify the results of the cluster-model calculation for MnWO4 we per-
form a cluster-model calculation for MnO as well. The results for MnO are shown in
Tab. 4.24. Note, that in contrast to a previous cluster-model calculation done by van
Elp et al. [210] we include the spin-orbit coupling resulting in a further splitting of the
eigenstates see Tab. 4.25. Comparing the results for MnWO4 with those for MnO, we
find an enhanced degree of degeneracy for most of the eigenstates. This is caused by
the fact, that the point-group symmetry on the Mn site in MnWO4 is lower (C2) than
in MnO (Oh) resulting in a further splitting of the cubic 4T1g and the 4T2g eigenstates.
Additionally, we find that the contributions of the different configurations to the eigen-
states are similar to those for MnWO4, see Tab. 4.22. Especially, the admixture of
the single-excited configurations to the ground state is comparable to the behavior in
MnWO4.

In contrast to MnO we have no inversion symmetry in MnWO4 on the Mn site, thus par-
ity is not a good quantum number. Within a point-charge model all dipole-transitions
between the ground state and the higher lying eigenstates are forbidden due to the
spin selection rule, as mentioned above. But, the inclusion of spin-orbit coupling re-
moves the spin selection rule and we gain a finite spectral weight for the electric dipole
transitions.
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Nr.: with without
spin-orbit spin-orbit

1 0.0000 (6) 0.0000 (6)
2 2.2033 (2) 2.2033 (4)
3 2.2035 (2)
4 2.2375 (2) 2.2375 (4)
5 2.2377 (2)
6 2.2888 (2) 2.2888 (4)
7 2.2891 (2)
8 2.6018 (2) 2.6023 (4)
9 2.6023 (2)
10 2.6277 (2) 2.6279 (4)
11 2.6287 (2)
12 2.6534 (2) 2.6528 (4)
13 2.6539 (2)
14 2.7641 (2) 2.7641 (4)
15 2.7644 (2)
16 2.7693 (2) 2.7692 (4)
17 2.7695 (2)
18 2.7746 (4) 2.7743 (4)
19 3.0983 (2) 3.1030 (2)

Table 4.25: Results of the cluster-model calculation for MnWO4 at T = 295 K depend-
ing on the spin-orbit coupling. The values in brackets indicate the degree
of degeneracy. Here, we assume that two energies belong to a degenerate
eigenstate if they differ by less than 0.2 meV.

In order to estimate the role of the spin-orbit coupling we repeat the cluster-model cal-
culation described above and switch off the spin-orbit coupling. As shown in Tab. 4.25,
we increase the degree of degeneracy by neglecting the spin-orbit coupling. But if we
ignore the spin-orbit coupling the optical conductivity is equal to zero for all calculated
frequencies. Thus, the spin-orbit coupling is essential for the descripton of the optical
data. Additionally, we have no direct contribution of configuration-interaction effects
to the optical conductivity.

Due to the fact, that we cannot describe strength and polarization dependence exactly,
we cannot exclude contributions from simultaneous excitations of magnons. Tsuboi
et al. [230] report of a very small contribution of the magnon sidebands in MnF2 to
the absorption peak at roughly 520 nm representing the 6A1g →4 T1g(

4G) transition
in Mn2+ ions. Sell et al. [231] determine the oscillator strength of these transitions to
8.7 ·10−12-7.1 ·10−11. Therefore, we think that the simultaneous excitations of magnons
do not play an important role in the description of the optical conductivity in MnWO4.
Additionally, as mentioned in section “4.1 Crystal-Field Excitations in VOCl”, spin-
forbidden transitions can be quite strong if the energy of a spin-forbidden excitation is
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comparable with that of spin-allowed transitions [141]. The spin-forbidden transition
acquires intensity by “stealing” from e.g. a charge-transfer band (“intensity stealing”),
if both excitations mix with each other. Here, the enhancement of the optical conduc-
tivity above ∼2.5 eV indicates the beginning of the charge-transfer band, which cannot
be described by a single-cluster calculation. Furthermore, we neglect the contribution
of energetically higher lying p-states at the Mn ion to the optical conductivity which
are relevant for the description of the experimental data due to the broken inversion
symmetry at the Mn site.

Summarizing our investigation, we can describe the positions of all excitations in the
optical data by using a cluster-model calculation as described in the second chapter.
By analyzing the dependence of the eigenstates on the ionic multiplets, we associate
the features below 3 eV with crystal-field excitations similar to MnO, MnF2 [230, 231]
and MnCl2 (MnBr2) [232]. Although we can not exclude a significant contribution
of exchange processes between two Mn2+ ions to the measured optical conductivity
because we consider only one Mn2+ ion in our cluster-model calculation, we think
that we can neglect this mechanism due to the good agreement with other compounds
including a Mn2+ ion [210–217, 220–224, 227–232].
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4.4 Phonon modes of monoclinic BiB3O6

In this section we describe the phonon analysis of BiB3O6 by using the generalized
Drude-Lorentz model (4.3.6) presented in the previous section, and extend the results
reported in our paper [237]. By comparing our data with room-temperature Raman and
neutron data and first-principle calculations we can identify the fundamental phonon
modes and achieve a good agreement with the results of the factor-group analysis.

Bismuth triborate, BiB3O6, is a polar, non-ferroelectric compound with outstanding
nonlinear optical properties [233, 234]. The large optical nonlinearities open up a rich
field of applications for frequency conversion of laser light via χ(2) and χ(3) processes,
e.g. phase-matched second harmonic generation or optical parametric oscillation [235]
and stimulated Raman scattering [236].

Figure 4.63: Crystal structure of BiB3O6.

The exceptional optical nonlinearities of BiB3O6 have been attributed to the bonds of
the [BO3] units and to a lone-pair electron at the Bi ion [238]. Detailed studies of the
lattice dynamics are required for a quantitative description of these bonds. Neither
the bond-charge model26 [238, 239], nor an ab-initio band structure calculation [240]
yield a good description of these bonds. However, in both of these theories a strong
influence of the bismuth-oxygen group, especially of the lone electron pair of the triva-
lent bismuth, is assumed to play a dominant role. Thus a detailed analysis of the
lattice dynamics is required for a quantitative understanding of the nonlinear optical

26The bond-charge model regards a complex crystal as a combination of all constituent chemical
bonds. A so-called multibond crystal can be decomposed into single bonds according to the
chemical bonding structures of all involved atoms. Then, the physical properties of a crystal, i.e.
the linear and nonlinear optical properties, can be ascribed to contributions from all contained
chemical bonds.
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properties. Infrared (IR) and Raman studies of the phonons are so far only available
at room temperature [236, 241–244]. In particular, there is no polarization-dependent
infrared study, but a polarization analysis is essential for an accurate determination of
the phonon frequencies in monoclinic crystals [188].

Milky-colored, right-handed single crystals of BiB3O6 were grown by P. Becker and
L. Bohatý27 using the top-seeded growth technique [244, 245]. The crystal structure
with space group symmetry C2 (C3

2) (a = 7.116(2) Å, b = 4.993(2) Å, c = 6.508(3) Å,
β = 105.62(3)◦) consists of sheets of corner-sharing [BO3] and [BO4] units in a ratio
of 2:1, see Fig. 4.63. These sheets are separated by sheets of six-fold coordinated Bi
[246].

We performed reflectivity measurements [237] at T = 20 K and 300 K in the spectral
range of 50-2500 cm−1 at quasinormal incidence. The spectra were measured for differ-
ent polarization angles on polished (010) and (100) surfaces of BiB3O6. As a reference
we used an Au mirror. The variation of the polarization angle was realized by rotating
the polarizer.

The investigation of the phonon spectra starts with the factor-group analysis [184],
which yields the following irreducible representation for the space group C2,

Γtotal = 14A + 16B, (4.4.1)

with basis polynomials A = z and B = {x, y}. The three possible acoustic modes are
represented by the following irreducible representation:

Γacoustic = 1A + 2B. (4.4.2)

After subtraction of these three acoustic modes we obtain the IR-active modes:

ΓIR = [14A + 16B] − [1A + 2B] = [13A + 14B] . (4.4.3)

Due to the lack of a center of inversion, A and B modes are active both in Raman
[242, 243] and in infrared spectroscopy

ΓRaman = ΓIR = [13A + 14B] , (4.4.4)

and we have no silent modes.

27Institute of Crystallography, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany

197



4 Measurements

Figure 4.64: Reflectivity spectra of BiB3O6 at T = 300 K for 14 different angles.

Following the procedure described in the previous section, we decompose the tensor
(4.3.5) of the linear dielectric response into a scalar εb along the b axis and a two-
dimensional tensor ε̂ac within the ac plane. Note, that we assume y ‖b, z ‖ c, and
x ⊥ c lying in the ac plane, where a, b, and c are the crystallographic axes (see inset
of Fig. 4.65 a). Since the b axis is perpendicular to the ac plane, the A-symmetry
modes can be probed by measuring with the incident electric field E parallel to the b
axis (e.g. on a (100) surface). Determining the B-symmetry modes requires the anal-
ysis of at least three polarization directions (with E ‖ ac plane on a (010) surface, see
Fig. 4.64) because the angle between the a and the c axis deviates from 90◦.

Using (4.3.7) we find an excellent description of the measured reflectivity, as shown
in Fig. 4.65 and Fig. 4.66. In order to find phonon modes with smaller amplitude we
measure additionally the FIR range (ω < 700 cm−1) at T = 20 K. (The excitation
below 150 cm−1 in the 20 K data are related to an artefact of the measurement.) The
phonons extend up to almost 1500 cm−1 due to the small mass of the B ions. The fit
parameters are listed in Tab. 4.26 and Tab. 4.27. In order to fit the 20 K reflectivity
we use the fit parameters from the fit of the 300 K data above 700 cm−1. In case of
E ‖ b, where 13 A modes are expected, we find 11 strong infrared modes and a series
of weaker features. Most of the latter can be interpreted as multi-phonon excitations.
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Figure 4.65: a) - c) Reflectivity spectra of BiB3O6 at T = 300 K for E ‖ ac plane at
different polarization angles χ (black) and fits using (4.3.7) (green). d)
Reflectivity at T = 300 K for E ‖ b (black), fit using (3.1.1) (red).
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Figure 4.66: a) - c) Reflectivity spectra of BiB3O6 at T = 20 K for E ‖ ac plane at
different polarization angles χ (black) and fits using (4.3.7) (green). d)
Reflectivity at T = 20 K for E ‖ b (black), fit using (3.1.1) (red).
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Figure 4.67: Part of the reflectivity spectra of BiB3O6 at T = 20 K and T = 300 K for
a) E ‖ ac (for different polarization angles χ) and b) E ‖ b.
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B modes A modes
ω0 [cm−1] ωp [cm−1] γ [cm−1] θ [◦] S ω0 [cm−1] ωp [cm−1] γ [cm−1] S

133 306 12.6 145 5.304 168 71 6.9 0.177
144 144 23.4 139 0.994 203 164 5.5 0.649
168 276 0.6 85 2.695 367 151 7.0 0.170
191 110 16.5 70 0.331 393 93 4.4 0.056
313 35 8.6 -84 0.013 570 304 9.2 0.285
439 346 6.5 22 0.622 647 174 6.0 0.072
645 138 4.1 187 0.046 662 151 41.1 0.052
667 319 3.2 134 0.228 731 396 6.6 0.294
711 514 4.8 15 0.523 947 522 23.1 0.304
826 753 15.6 77 0.830 1062 256 20.0 0.058
940 448 12.1 6 0.227 1199 668 25.6 0.310
1095 415 11.5 111 0.143 1448 208 12.3 0.021
1187 792 9.7 16 0.445 ∗1484 129 30.3 0.008
∗1268 156 49.7 19 0.015
1363 1028 10.5 112 0.569
∗1400 314 21.4 117 0.050
∗1434 101 12.9 127 0.005
∗1486 169 19.4 121 0.013

Table 4.26: Fit parameters for the reflectivity of BiB3O6 at T = 300 K using (4.3.7).
Here, ω0 represents the transverse frequency, ωp the plasma frequency, γ
the damping, θ the angle between the dipole moment and the x axis (in
case of the B modes), and S = ω2

p/ω
2
0 denotes the oscillator strength. The

high-frequency dielectric constants at T = 300 K are: ε∞xx = 3.6, ε∞yy = 2.9,
ε∞zz = 3.2, and ε∞xz = -0.2. The four weak B modes at 1268, 1400, 1434, and
1486 cm−1 probably correspond to multi-phonon excitations.

The A phonon mode at 272 cm−1 is observed only in the 20 K data but not at 300 K,
which is caused by its very small oscillator strength (S=0.001). As shown in Fig. 4.67 b)
the A phonon modes at 168 cm−1 and 647 cm−1 at 300 K are shifted to slightly lower
frequencies with decreasing temperature, which is exceptionally, because the phonon
modes should become harder at 20 K. In case of the mode at 647 cm−1 we find a
reduction of 8 cm−1 after all. The other A modes show the expected reduction of the
eigenfrequencies with increasing temperature.

Comparing the fit parameters of the B phonon modes at 20 K and 300 K, we see a
small shift in the eigenfrequencies. All B phonon mode frequencies except the mode
at 639 cm−1 (20 K), see Fig. 4.67 a) become weaker at 300 K.

Before we will explain the remarkable negative shift in the phonon modes at 168 cm−1,
645 cm−1, and 647 cm−1, we have to distinguish between multi-phonon excitations
and fundamental phonon modes. Therefore, we compare our data with recent room-
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B modes A modes
ω0 [cm−1] ωp [cm−1] γ [cm−1] θ [◦] S ω0 [cm−1] ωp [cm−1] γ [cm−1] S

133 325 0.4 148 5.973 166 78 2.9 0.221
144 210 1.5 110 2.124 202 177 1.8 0.764
169 264 0.1 87 2.443 272 8 3.6 0.001
192 40 1.2 19 0.044 369 159 2.7 0.186
319 61 4.0 122 0.037 393 107 2.2 0.074
439 382 0.7 13 0.758 573 308 1.9 0.288
639 279 6.0 183 0.191 643 222 5.1 0.120
668 364 2.2 134 0.297 666 100 9.9 0.023
711 514 4.8 15 0.523 731 396 6.6 0.294
826 753 15.6 77 0.830 947 522 23.0 0.304
940 448 12.1 6 0.227 1062 256 20.0 0.058
1095 415 11.5 111 0.143 1199 668 25.6 0.310
1187 792 9.7 16 0.445 1448 208 12.3 0.021
∗1268 156 49.7 19 0.015 ∗1484 129 30.3 0.008
1363 1028 10.5 112 0.569
∗1400 314 21.4 117 0.050
∗1434 101 12.9 127 0.005
∗1486 169 19.4 121 0.013

Table 4.27: Fit parameters for the reflectivity of BiB3O6 at T = 20 K using (4.3.7).
Here, ω0 represents the transverse frequency, ωp the plasma frequency, γ
the damping, θ the angle between the dipole moment and the x axis (in
case of the B modes), and S = ω2

p/ω
2
0 denotes the oscillator strength. The

high-frequency dielectric constants at T = 20 K are: ε∞xx = 3.6, ε∞yy = 2.9,
ε∞zz = 3.2, and ε∞xz = -0.2. The four weak B modes at 1268, 1400, 1434, and
1486 cm−1 probably correspond to multi-phonon excitations.

temperature Raman data [236, 242, 243], neutron data [248], and first-principle cal-
culations [248, 249] (see Tab. 4.28 and Tab. 4.29). In the latter, the determination of
the phonon frequencies uses a numerical difference technique based on the calculation
of the electronic structure [248]. Here, we use the results reported in [248], which
show a better agreement with our results, whereas the values taken from [250] show
discrepances in the identification with A and B symmetry. For example, J. Yang [250]
associates the mode at 563 cm−1 (IR mode at 570 cm−1) with B symmetry, whereas
we and D. Kasprowicz et al. [243] identify this mode with A symmetry.

In case of E ‖ b the peaks at 168 and 202 cm−1 are found within a few wave numbers
in all results. The tiny feature at 272 cm−1 seems to be an overtone of the B mode28 at
133 cm−1, but the first-principle results give evidence for a fundamental phonon mode.
The excitation at 662 cm−1 was found in the Raman and in the first-principle data
at 688 cm−1. The Raman modes at 131 cm−1 and 442 cm−1 correspond to strongly

28Note that B ×B yields A symmetry.
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Kaminskii Hu [242] Kasprowicz Stein [248] Yang [248]
Infrared Raman [236] Raman Raman [243] Neutrons Calculation

A modes
- 131-135 - 135-148 - -

168 (166) 168 169 169 173 190 {139}
202 (202) 215 203 210-216 235 236 {261}

- (272) 268-270 271 270 286 261 {264}
367 (369) 374 368 365 - 371 {374}
393 (393) 394 394 394 - 403 {452}

- - 443 436-449 - -
570 (573) 583 574 570 - 602 {625}
647 (643) 647 652 647-661 - 640 {652}
662 (666) 664-665 - - - 688 {675}
731 (731) 758-759 736 739 - 748 {768}
947 (947) - 947 935 - 1020 {991}

- 988 - - - -
1062 (1062) 1073-1074 - 1101 - 1109 {1090}
1199 (1199) 1178-1180 1200 1186 - 1274 {1266}

- - - 1227-1247 - -
- 1285-1286 1294 1259-1265 - -

1448 (1448) 1454-1456 1452 1446-1454 - 1557 {1520}
1484 (1484) 1483-1485 1488 1477-1481 - -

Table 4.28: Comparison of the results for the A-symmetry phonon frequencies in units
of [cm−1] at T = 300 K. The values in brackets indicate the eigenfrequen-
cies at 20 K, whereas the values in curly brackets represent the calculated
frequencies taken from [250].

IR-active B modes and can be attributed to a polarizer leakage. All other IR-active
modes are found in Raman and first-principle data. Only the peak at 1484 cm−1 has no
first-principle equivalent. All together we found 14 phonon modes in our infrared data,
but the peak at 272 cm−1 is tiny. Therefore we interpret this feature as an overtone
of the strong B mode at 133 cm−1. If we neglect this excitation we end up with 13 A
modes, as expected.

In case of E ‖ ac, each phonon mode shows a different orientation θ of the dipole
moment. This produces complex patterns in Rac (χ) which cannot be described by a
conventional Drude-Lorentz model. We use 18 oscillators (see Table 4.26) to describe
Rac (χ), in contrast to the 14 B modes predicted. The use of four oscillators below
250 cm−1 is based on the 20 K data (see Fig. 4.66). We attribute the four modes
at 1268, 1400, 1434, and 1486 cm−1, which are found both in the Raman and in the
infrared data,29 to multi-phonon excitations due to their large values of the damping

29The transverse frequencies agree within a few wave numbers.
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Kaminskii Hu [242] Kasprowicz Stein [248] Yang [248]
Infrared Raman [236] Raman Raman [243] Neutrons Calculation

B modes
133 (133) 133 141 134 - 137 {142}
144 (144) 147-148 159 145 149 172 {157}
168 (169) 163-166 187 169 175 177 {190}
191 (192) 198-200 225 184 198 216 {238}
313 (319) 314 317 316 338 311 {310}

- 365-366 - 370 - -
- 391 - 394 - -

439 (439) 438-440 444 448 - 477 {563}
- 569-570 572 573 - -

645 (639) 645-646 - 643 - 641 {632}
667 (668) 664-665 684 668 - 675 {696}
711 (711) 712-720 733 740 - 741 {744}
826 (826) - 840 856 - 872 {847}
940 (940) 940 967 937 - 1002 {979}

1095 (1095) - 1100 1100 - 1157 {1139}
1187 (1187) - 1207 1184 - 1267 {1251}
∗1268 (1268) - 1245 - - -
1363 (1363) - - - - 1470 {1433}
∗1400 (1400) - 1415 1416 - -
∗1434 (1434) - 1472 1454 - -
∗1486 (1486) - 1500 1484 - -

Table 4.29: Comparison of the results for the B-symmetry phonon frequencies in units
of [cm−1] at T = 300 K. The values in brackets indicate the eigenfrequencies
at T = 20 K, whereas the values in curly brackets are taken from [250].

γ, their very weak amplitude, and their absence in the first-principle data.30 Weak
features may have a significant influence on the reflectivity if they are located on top
of a Reststrahlenband.

The Raman modes at 370, 394, and 573 cm−1 [243] correspond probably to IR-active
A modes. All other IR-active modes were found in Raman and first-principle results.
In case of the B modes the discrepancies between infrared and Raman data [242, 243]
are much larger than for the A modes because the transverse and longitudinal modes
mix for E ‖ ac. If we subtract the multi-phonon modes from our infrared data, we find
14 B phonon modes, as expected.
In order to explain the remarkable negative shift in the phonon modes at 168 cm−1,
645 cm−1 and 647 cm−1, we look at the change in the crystal structure between 20 K
and 300 K. As reported by W.-D. Stein [248] the a axis shrinks and the b and c axes

30The first-principle data predicts a peak at 1267 cm−1 but we attribute this excitation to the strong
peak 1187 cm−1 in our infrared data.
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elongate with increasing temperature. Here, the negative thermal expansion of the a
axis is caused by the strong temperature dependence of the angle between adjacent Bi
ions, whereas the distance between these ions is nearly constant [248]. Furthermore,
W.-D. Stein reports of a small rotation of the [BO4] tetrahedron around the b axis and
a tilting of the [BO3] triangles with increasing temperature. Additionally, the [BiO4]
units show a strong temperature dependence caused by a displacement of the Bi ions
against their oxygen environment.

J. Yang [250] associates the A mode at 139 cm−1, which corresponds probably with our
IR-active mode at 168 cm−1, with a translation of the borate units along the opposite
translational direction of the central Bi cations. The temperature dependence of the
displacement of the Bi ions may cause the unusual phonon shift. In addition, J. Yang
predicts, that the other remarkable A mode at 652 cm−1 (IR mode at 647 cm−1) and
the B mode at 632 cm−1 (IR mode at 645 cm−1), correspond to out-of-plane O-B-O
bendings in the [BO3]3− unit linked with two O-B-O twistings in the [BO4]5− unit.
(Due to the shared used oxygen atoms of the [BiO4]5−, [BO3]3−, and [BO4]5− units,
every vibrational mode of BiB3O6 represents a combined motion of at least two differ-
ent units.) Therefore, we assume, that the exceptional shift of these modes is caused
probably by the complex interplay of the different units.

In conclusion, we find all phonon modes predicted by the factor-group analysis and
distinguish between multi-phonon excitations and fundamental phonon by comparing
our results with recent room-temperature Raman data [236, 242, 243], neutron data
[248], and first-principle calculations. Furthermore, we give a possible explanation of
the unusual phonon mode shift at 168 cm−1 (A symmetry), 645 cm−1 (B symmetry)
and 647 cm−1 (A symmetry) with increasing temperature.
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4.5 CaCrO3, an antiferromagnetic metallic oxide

4.5.1 Introduction

Transition-metal oxides exhibit a quite general relation between magnetic order and
electrical conductivity [251]: insulators usually exhibit antiferromagnetism, whereas
ferromagnetism typically coexists with metallic conductivity. So observations of anti-
ferromagnetic order in transition-metal oxides with metallic conductivity are of great
interest. Here, we show that the perovskite CaCrO3 with orthorhombic space group
Pbnm is a three-dimensional transition-metal oxide with metallic conductivity, antifer-
romagnetic exchange interactions, and C-type antiferromagnetic order. The metallic
behavior has been established by means of optical spectroscopy, and the crystal struc-
ture, magnetic structure, and electronic structure have been studied in collaboration
with the groups of M. Braden31, D.I. Khomskii, and V.I.. Anisimov32 [264]. The sam-
ples were grown by M. Isobe.33

In the following we first will discuss the results obtained within this collaboration on
crystal growth, crystal and magnetic structure, and the electronic structure calcula-
tions. Then, we will focus on our optical study of CaCrO3.

Figure 4.68: Crystal and magnetic structure of CaCrO3.

31II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
32Institute of Metal Physics, 620041 Ekaterinburg GSP-170, Russia
33Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba

277-8581, Japan.
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Although other perovskites containing Cr4+ ions (CaCrO3, SrCrO3, and PbCrO3) were
already studied previously [252–257], the details of the crystal structure and the mag-
netic ordering are not known. Only very recently evidence for C-type antiferromagnetic
order was reported in multi-phase samples of SrCrO3 [257].

Regarding the electrical conductivity, the existing data are controversial. The electri-
cal conductivity reported in Refs. [254, 256] shows metallic behavior, whereas more
recent measurements [252] indicate insulating behavior (see Fig. 4.71). A similar con-
troversy exists also for SrCrO3: Due to the less distorted crystal structure the electric
conductivity [252] should show a more metallic behavior than in CaCrO3. But metallic
behavior was observed only under pressure [252]. These controversies are connected
with the difficulty to prepare high-quality stoichiometric materials and with the lack
of large single crystals.

Magnetization measurements [255] indicate a magnetic transition at 90 K (see Fig. 4.70)
in CaCrO3. Two electrons occupy the Cr 3d shell (S=1), rendering the material elec-
tronically similar to insulating RVO3 [258] (also 3d2) and to metallic (Ca/Sr)RuO3

[259]. CaCrO3 shows an unusually high transition-metal valence Cr4+, which may lead
to a small or even negative charge-transfer gap [260, 261], i.e. holes in the O band. In
CrO2 the negative charge-transfer gap leads to self-doping [262] and to the appearance
of a ferromagnetic metallic state. In contrast, the layered perovskite Sr2CrO4 is an
antiferromagnetic Mott-Hubbard insulator with a gap of about 0.2 eV [263].

4.5.2 Crystal Growth

Polycrystalline CaCrO3 [264] was prepared by M. Isobe by a solid state reaction of CaO
and CrO2 under 4 GPa at 1000◦ for 30 minutes. The obtained samples of stoichiometric
reactions always include a varying amount of the impurities of Cr2O3 and CaCr2O4.
This impurity problem has also been reported by Goodenough et al. [255]. These
impurities can be completely eliminated by a small excess of CaO (5-10%). Single-
crystalline grains of up to 0.1 mm diameter were obtained by this procedure as well.

4.5.3 Crystal and Magnetic Structure

Powder neutron measurements were performed by A.C. Komarek [266] and confirm the
close to perfect stoichiometry of the samples. The lattice parameters of CaCrO3 deter-
mined by synchrotron-radiation powder diffraction are shown in Fig. 4.69. For details
see [264]. At the magnetic ordering temperature, TN=90 K, all three orthorhombic
parameters show a step-like anomaly. In spite of the strong changes in the lattice con-
stants of up to 0.5% for c, there is no visible effect in the lattice volume. The Pbnm
structure is flattened, i.e. c shrinks and a and b elongate upon cooling. There is no
evidence for phase mixture apart very close to TN . Close inspection of the temper-
ature dependence suggests that this lattice flattening already starts at much higher
temperatures. As done in these experiments, all bond angles and distances can be
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Figure 4.69: a) Orthorhombic lattice parameters a, b, and c, scaled to the parameter

of a cubic perovskite: acub = a/
√

2, bcub = b/
√

2, and ccub = c/2 [264]. b)
Lattice volume V . Circles refer to synchrotron and triangles to neutron
diffraction results [264]. All measurements presented in this figure were
done by A.C. Komarek [266].

calculated from the structural information given by neutron powder and x-ray single-
crystal experiments. The results are given in Fig. 4.70. The GdFeO3-type structure
(space group Pbnm) emerges from the ideal perovskite structure by rotating the CrO6

octahedra around angle φ, and tilting around angle Θ [265]. These angles are nearly
constant between 3.5 and 300 K (Θ = 10.5◦ and φ = 8.2◦). The combination of tilt
and rotation yields two distinct O positions: apical O1 out-of-plane and O2 in the ab
plane. Following the flattening of the lattice at TN , we find an overall flattening of the
octahedron: The Cr-O1 (Cr-O2) distance shrinks (elongates) upon cooling. The com-
pression of the octahedron points to a temperature-driven redistribution amongst the
t2g orbitals, increasing the dxy occupation upon cooling into the magnetically ordered
state. In Ca2RuO4, which is electronically similar to CaCrO3, a similar flattening of the
octahedron has been observed. There, the flattening causes an orbital rearrangement
[267–269]. But the effects are about an order of magnitude larger than in CaCrO3.
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Figure 4.70: a) Magnetic susceptibility [264]. b) Cy-type ordered magnetic moment
in µB [264]. c) Magnetic (010)/(100) reflection at 3.5 K and calculated
profiles for Cx-, Cy- and Cz-type magnetic order [264]. d) Cr-O1 and Cr-
O2 bond lengths [264]. All data presented in this figure were obtained by
A.C. Komarek [266].34

Below TN=90 K two strong magnetic peaks emerge at (100) and (102)/(012), which can
be attributed to Cy-type antiferromagnetic order, see Fig. 4.70. In space group Pbnm,
the Cy-type order may couple with Fx and Gz components according to the irreducible
representation Γ2g [270]. The Fx component perfectly agrees with the observation
of weak ferromagnetism in the susceptibility, see Fig. 4.70 a). The observed ordered
moment of 1.2 µB at low temperature is much below the expected value for a S=1
moment.

34II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
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4.5.4 LSDA and LDA+U Calculations

The electronic band structure was analyzed by S.V. Streltsov35 and V.I. Anisimov
[264, 271] by performing ab-initio band structure calculations within the LSDA approx-
imation using the linear muffin-tin orbitals method [272]. The total energies of different
magnetic solutions were computed in order to determine the exchange constants. In
LSDA, CaCrO3 is metallic in all studied magnetic structures: ferromagnetic, anti-
ferromagnetic G-type (all nearest-neighbor (nn) spins antiparallel), antiferromagnetic
A (antiferromagnetically coupled ferromagnetic ab planes) and two antiferromagnetic
C-types with ferromagnetic chains running in different directions. The antiferromag-
netic C-type structure exhibits the lowest energy, in good agreement with experiment.
The calculated magnetic moment µ = 1.52µB/Cr overestimates the measured value
(µ = 1.2µB). The strong pd hybridization causes the reduction from the expected
value of 2 µB for a localized Cr4+ (S=1) ion. The exchange parameters indicate a
strong antiferromagnetic interaction between nn spins within the ab plane, J = 80 K.
The nn exchange along c is also antiferromagnetic with J ′ = 60 K, in contrast to ex-
periments which find a ferromagnetic arrangement in this direction. Its cause resides
in a remarkably strong antiferromagnetic nnn interaction along the diagonal, J ′′ =
33 K. Since J ′ < 4J ′′, the antiferromagnetic J ′ is overruled, yielding the C-type struc-
ture. Thus, the anisotropic magnetic structure develops due to strong and anisotropic
next-nearest-neighbor (nnn) interactions despite nearly isotropic nn interactions. The
structural anomalies at TN can be explained by the strong magnetoelastic coupling
caused by the subtle balance of the different interactions. The flattening of the octa-
hedron enhances the dxy occupation, thereby increasing J and decreasing J ′. Within
the LSDA approximation magnetic interactions are caused by the band magnetism
of itinerant electrons. So the strong pd hybridization causes the large diagonal cou-
pling parameters. In order to analyze the electronic correlations S.V. Streltsov and
V.I. Anisimov also performed a LSDA+U calculation [264, 273] with on-site Coulomb
interaction U = 3 eV and Hund’s rule coupling JH = 0.87 eV [262]. Here the ground
state is also C-type antiferromagnetic, but within this analysis CaCrO3 is an insulator
with a gap of Eg ∼ 0.5 eV. (In LSDA+U, Eg is often overestimated due to the static
approximation of the Coulomb correlations.) Here, one electron localizes in the xy or-
bital at each Cr site and provides the in-plane antiferromagnetic interaction, the second
electron occupies alternating 1/

√
2(xz + yz) and 1/

√
2(xz − yz) orbitals. This causes

a ferromagnetic interaction along c according to the Goodenough-Kanamori-Anderson
rules [274–276]. A similar state with G-type orbital order causing C-type magnetism
was reported in insulating YVO3 [258, 277]. The high-flux powder neutron diffraction
and SPODI36 data do not yield any evidence for orbital ordering.

35Institute of Metal Physics, S.Kovalevskoy St. 18, 620041 Ekaterinburg GSP-170, Russia.
36Powder neutron measurements were performed on the SPODI diffractometer at the FRM-II (λ =

1.548Å).
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Figure 4.71: Electrical resistivity ρ(T ) of CaCrO3: a) Polycrystal [264], b) single crystal
[256].

4.5.5 Resistivity

The electrical resistivity ρ(T ) was measured by an AC four-point method on a pellet
of polycrystalline CaCrO3 powder which was cold-pressed at 12.5 kbar. The resistivity
ρ(T ) has negative slope and a small value at 300 K (ρ(T = 300K) = 5 Ωcm, see
Fig. 4.71). In contrast to a semiconducting behavior ρ(T ) does not diverge towards
low temperature but tends to a finite value. The structural anomalies produce cracks
which cause the clear jump in the resistivity at TN . Weiher et al. [256] found a similar
jump close to 90 K in their metallic single crystals. Thus we suggest that the sample
exhibits a fully comparable magnetic transition and represents stoichiometric CaCrO3.
But ρ(T ) of polycrystalline CaCrO3 appears to be dominated by grain boundaries
causing the completely different resistivity behavior. Presumably, the high valence of
Cr4+ is not stable at the surface of a grain.

4.5.6 Optics on CaCrO3

In contrast to DC electrical resistivity measurements, optical data can reveal the metal-
lic properties of a polycrystalline sample with insulating grain boundaries. The light
excites free charge carries which respond to the external perturbation. For infrared
frequencies with wavelengths smaller than the typical grain size, no conducting path
through the entire sample is necessary.
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We will show, that CaCrO3 is a real 3D metal. We measured the infrared reflectivity
R(ω) of a cold-pressed pellet between 7 meV and 0.9 eV (56 - 7260 cm−1). The
reference measurement was done with in-situ Au evaporation. Determining the optical
reflectance involves some problems, due to the polycrystalline nature of the sample: If
the wavelength is much smaller than the typical grain size (∼ 20 µm) of the sample,
we see an averaged admixture of different directions Ra (parallel to the a direction), Rb

(parallel to the b direction), and Rc (parallel to the c direction). For the opposite case,
we have to take the insulting grain boundaries into account and use an effective medium
theory to describe the sample. Initially, we assume an isotropic sample and analyze
the optical reflectance R(ω). In a second step, we consider the problems mentioned
above.

Figure 4.72: A sketch of a) the optical reflectance R(ω) and b) the real part of the opti-
cal conductivity σ1(ω) of a metal (grey color, ω0 = 0 cm−1, ωp = 800 cm−1,
γ = 20.0 cm−1) and an insulator (cyan color, ω0 = 200 cm−1,
ωp = 800 cm−1, γ = 380.0 cm−1). Here, the Drude-Lorentz model pa-
rameters (ω0, ωp, γ) represent the eigenfrequency, the plasma frequency
ωp and the damping, respectively.
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Figure 4.73: The infrared reflectance R(ω) of polycrystalline CaCrO3 at different tem-
peratures.

As shown in Fig. 4.73, the infrared reflectivity R(ω) of CaCrO3 extrapolates to 1 for
ω → 0. The reflectance of a metal converges to 1 for ω → 0, whereas an insulator
shows a constant reflectance smaller than one for low frequencies, see Fig. 4.72. We
will describe this point in more detail later.

We will divide the analysis of the optical reflectance into three parts: In the first part,
we assume an isotropic behavior and wavelengths λ much smaller than the typical grain
size and use the conventional Drude-Lorentz model to describe the optical reflectance
and apply the Kramers-Kronig transformation to determine the optical conductivity.
In this case, σ(ω) is dominated by a strong peak at ∼2300 cm−1 (0.35 eV). We attribute
this peak to a transition from the lower (LHB) to the upper (UHB) Hubbard band,
similar to Sr2CrO4 [263]. This implies that correlations are important in CaCrO3. In
the second part, we still assume that the wavelength is smaller than the typical grain
size, but consider anisotropic behavior using a model discussed by Orenstein et al.
[280]. This analysis shows, that CaCrO3 is a real 3D metal. In the third part, we
assume that the wavelength is much larger than the grain size, and use an effective
medium theory to describe the behavior of the sample. We will show, that the effective
medium theory cannot describe the peak at ∼0.35 eV. In addition, we show that for
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a stack of metallic grains and insulating boundaries [278] with a length ratio of 1000:1
or larger, the deviation of R(ω) from the bulk value is significant only below the lower
limit of the experiment, 56 cm−1 (7 meV).

Isotropic case

In order to analyze the reflectivity R(ω), we first assume that the real part of the
optical conductivity σ1(ω) is isotropic, and that the wavelength is much smaller than
the typical grain size. In this case, we can derive σ1(ω) via a Kramers-Kronig analysis
of R(ω), which starts with an extrapolation of the reflectance data to lower and higher
frequencies. We use the Drude-Lorentz model to fit the reflectance between 56.5 cm−1

and 7260 cm−1 (∼ 7 - 900 meV). The fit is rather sensitive to high-energy contribu-
tions. However, the roughness of the polycrystalline sample prevents measurements at
higher frequencies, where the wavelength becomes comparable to the length scale of
the surface roughness. In order to estimate the sensitivity to the high-energy extrapo-
lation, we consider two different cases (see Fig. 4.74). In the first case, we estimated the
high-energy contributions by using the data of insulating layered Sr2CrO4, also with
Cr4+ in a d2 configuration and a Hubbard band at ∼8000 cm−1 (1 eV), as reported by
Matsuno et al. [263]. As shown in Fig. 4.74, we reduce the oscillator strength of the
Hubbard band at ∼8000 cm−1 (1 eV) because we assume that the Hubbard band in
CaCrO3 is shifted to ∼2800 cm−1 (0.35 eV).

In the second fit, we estimate the high-energy contribution by ε∞. In both cases, we use
four electronic peaks (at 0 cm−1, 148 cm−1, 1174 cm−1, and 3538 cm−1 for T = 20 K)
and four phonon peaks to describe the data in the measured frequency range. The fit
parameters are shown in Tab. 4.30 for several temperatures.

Figs. 4.75 - 4.77 show the four electronic peaks used in the Drude-Lorentz fit at 20 K,
110 K, and 295 K. The oscillator strength of the peak at 148 cm−1 increases between
20 K and 110 K with increasing temperature and decreases from 110 K to 295 K. This
is caused by the enhanced optical reflectance around TN , see below.

The phonon modes used in the fits represent an effective description of the phonons be-
cause, as shown in Fig. 4.73, the phonons are strongly screened by the itinerant charge
carriers and we cannot determine the eigenfrequencies and the oscillator strengths of
the phonon modes exactly.

Using the fits, we can extrapolate the optical reflectance and apply the Kramers-
Kronig transformation to determine the optical conductivity σ(ω). The results of
the Kramers-Kronig transformation are shown in Fig. 4.78 for different temperatures.
Fig. 4.73 and Fig. 4.78 clearly demonstrate that CaCrO3 is a metal with a moderate
conductivity σ1(ω) of the order of a few hundred to 1000 (Ωcm)−1. The frequency
dependence deviates strongly from a typical Drude behavior, as the spectral weight is
dominated by the peak37 at ∼2800 cm−1 (0.35 eV). In the fits, this behavior is described

37Comparing the results of the Kramers-Kronig transformation of the reflectance data with the optical
conductivity determined by the fit shown in Fig. 4.75 b), we see that the peak at ∼2800 cm−1
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Figure 4.74: a) The optical reflectance R(ω) at T = 20 K (black), fit1 using ε∞ = 9.35
(red) and fit2 (green) using five peaks at 8800, 15687, 17170, 22200, and
32600 cm−1 describing the behavior of Sr2CrO4 [263] at high frequencies
(ω > 8000 cm−1). b) Optical conductivity of Sr2CrO4 reported by Mat-
suno et al. [263] and fit (used in a)), where the oscillator strength of the
Hubbard band at ∼8000 cm−1 (1 eV) was reduced because of the shift of
the Hubbard band in CaCrO3 to ∼2800 cm−1 (0.35 eV).

predominantly by the last electronic peak, see Figs. 4.76 - 4.77, whereas at T = 20 K
we need two peaks to describe the peak, see Fig. 4.75.
As shown in Fig. 4.79, the reflectance as well as the optical conductivity show a maxi-
mum around TN , where the maximum in the optical conductivity is more pronounced
than in the reflectance. Comparing the values of the optical conductivity at 200 cm−1

for different temperatures, we find a difference of 433 (Ωcm)−1 between 100 K and
295 K, whereas the difference at 3450 cm−1 is only 164 (Ωcm)−1. In contrast to that,
the differences in the reflectance between the maximum and the minimum stay nearly
the same for all frequencies.

(0.35 eV) is not an artefact of the Kramers-Kronig analysis, because the peak is observed in both
data and shows a temperature dependence.
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ω0 [cm−1] ωp [cm−1] γ [cm−1] S
T = 20 K

0 2251 82.3 -
148 1596 162.7 117.000
227 135 3.8 0.355
269 929 44.9 12.000
350 1209 95.8 11.900
585 1084 82.4 3.430
1174 14579 5609.1 154.000
3538 8309 4409.6 5.5200

T = 110 K
0 1691 32.8 -

195 4745 469.9 590.000
224 533 59.0 5.690
298 1109 88.1 13.900
371 894 68.4 5.800
585 1104 77.9 3.570
991 6613 1705.5 44.500
3114 14494 5359.6 21.700

T = 295 K
0 1279 36.1 -

204 4100 651.0 403.000
271 1185 104.2 19.200
339 658 76.2 3.780
394 699 78.0 3.140
590 1126 100.2 3.640
845 1869 696.3 4.890
2617 16646 8347.1 40.500

Table 4.30: Drude-Lorentz model parameters for CaCrO3 at several temperatures.
Here, S denotes the oscillator strength S = ω2

p/ω
2
0. The high-frequency

dielectric constant is ε∞ = 9.35 for all temperatures.
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Figure 4.75: The four electronic peaks (blue) of the Drude-Lorentz fit (fit2, green)
compared with a) the experimental reflectivity data (black) and b) the
Kramers-Kronig analysis (black) at 20 K. Note, that individual contribu-
tions are additive in σ1(ω), but not in R(ω).
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Figure 4.76: The four electronic peaks (blue) of the Drude-Lorentz fit (fit2, green)
compared with a) the experimental reflectivity data (black) and b) the
Kramers-Kronig analysis (black) at 110 K.
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Figure 4.77: The four electronic peaks (blue) of the Drude-Lorentz fit (fit2, green)
compared with a) the experimental reflectivity data (black) and b) the
Kramers-Kronig analysis (black) at 295 K.
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4.5 CaCrO3, an antiferromagnetic metallic oxide

Figure 4.78: The optical conductivity σ1(ω) as derived from a Kramers-Kronig analysis
of R(ω) for a) the entire measured frequency range and b) the phonon
range. The data on the left side of the dashed line are extrapolated.
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Figure 4.79: a) Reflectance and b) optical conductivity σ1(ω) of CaCrO3 at 200 cm−1,
1000 cm−1, and 3450 cm−1 as a function of temperature.

Although σ1(ω) seems to be dominated by excitations with finite frequency, the in-
frared reflectance R(ω) clearly demonstrates the presence of free carriers. This agrees
with the magnetic susceptibility, which is very small above TN and shows only a small
temperature dependence indicating itinerant magnetism, see Fig. 4.70 a).38 In our
samples of CaCrO3, the typical grain size is of the order of 20 µm. Since a wavelength
of λ = 20 µm is equivalent to a photon energy of ∼500 cm−1 (0.06 eV), grain-size effects
can become important only much below ∼2800 cm−1 (0.35 eV) [278]. We assume, that
the peak at ∼2800 cm−1 (0.35 eV) is caused by excitations from the lower (LHB) to
the upper (UHB) Hubbard band, similar to insulating Sr2CrO4 with Cr4+ where this
excitation is observed at ∼8000 cm−1 (1.0 eV) [263]. Due to the high valence of Cr4+,
the Cr Hubbard bands shift down towards the fully occupied O-2p band, whereas the
pd hybridization between Cr and O bands pushes the LHB back upwards, reducing the
effective Coulomb repulsion Ueff and admixing O-2p states to the LHB and the UHB
in the same way as it was demonstrated for CrO2 [262]. The reduction of the spectral
weight of the LHB-UHB transition below TN at low frequencies (see Fig. 4.79) can
tentatively be explained by the fact, that the band width is smaller within the antifer-
romagnetic phase, which reduces the peak width and decreases the spectral weight at
low frequencies.

38As discussed below, the presence of insulating grain boundaries cannot explain the peak observed
at ∼2800 cm−1 (0.35 eV).
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Figure 4.80: A sketch of the Cr Hubbard bands of CaCrO3. The high valence of Cr4+,
shifts the Cr Hubbard bands down towards the fully occupied O-2p band.
In contrast to that the pd hybridization between Cr and O bands pushes
the LHB back upwards.

Applying the f-sum rule ∫ ∞
0

σ1(ω)dω =
ω2
pl

8
(4.5.1)

and integrating from 0 cm−1 to 8000 cm−1, we get the plasma frequency ωpl for different
temperatures. Using the expression

Neff = ω2
pl

ε0mV

e2
, (4.5.2)

in which m represents the free electron mass, e the elementary electronic charge, and
V the volume per Cr ion, we can determine the effective number of charge carriers
Neff per Cr ion, as shown in Fig. 4.81 a). Repeating this procedure for Sr2CrO4, we
determine the spectral weight of the LHB-UHB peak observed at 1.0 eV in Sr2CrO4

[263] at 290 K: Integrating the optical conductivity from 0 cm−1 to 13000 cm−1, we
find ωpl = 8865 cm−1. Using equation (4.5.2) we can determine the effective number
of charge carriers Neff per Cr ion in Sr2CrO4: Neff = 7.9 %. Comparing both results,
we find a good agreement between our data and the result for Sr2CrO4, giving strong
support to our interpretation of the peak at ∼2800 cm−1 (0.35 eV) as the transition
from the LHB to the UHB. The metallic behavior of CaCrO3 compared to insulating
Sr2CrO4 should be a consequence of the three-dimensional crystal structure inducing
larger band widths and thus smaller Ueff .

Additionally, we can estimate the free-carrier Drude contribution. But, at low temper-
atures, we cannot determine ωpl directly from the fit, due to the electronic oscillator
at 148 cm−1, which falsifies the Drude contribution. Therefore we carry out a Drude-
Lorentz fit with one Drude peak and two electronic peaks in the mid-infrared range,
but the error of this procedure is roughly more than 50 % at 20 K. The free-carrier
Drude contribution is shown in Fig. 4.81 b). The Drude contribution first decreases
with increasing temperature and has its minimum in the vicinity of TN . Above the
Néel temperature the Drude contribution increases.
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Figure 4.81: a) Effective number of charge carriers Neff per Cr ion for integration from
0 to different values of the plasma frequency ωpl. b) Effective number
NDrude of the Drude contribution.
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4.5 CaCrO3, an antiferromagnetic metallic oxide

ε⊥ ε‖
σab εab∞ ωabp [cm−1] γab [cm−1] σc εc∞ ωcp [cm−1] γc [cm−1]

545.3 2.4 8848 2393 0.2 16.7 0 0
0.2 25.4 0 0 689.7 5.1 14944 5398

100.3 9.0 4437 3280 1253.4 9.0 17961 4290
266.2 10.3 12454 9729 1327.1 9.4 18401 4253

Table 4.31: Parameters of the Orenstein model at T = 20 K for several values of
the optical conductivity within the ab plane and parallel to the c axis
(σ ≡ σ(ω = 0)).

Anisotropic case

If σ1(ω) is strongly anisotropic, R(ω) of a polycrystal represents an average over the
different orientations of the grains [280], and the Kramers-Kronig analysis may pro-
duce a peak at finite frequencies although the individual components show conventional
Drude behavior. In order to demonstrate that CaCrO3 is not a 2D metal, we study a
model discussed by Orenstein et al. for the layered cuprates [280], i.e. for an optically
uniaxial material with principal components of the dielectric tensor ε‖ and ε⊥, repre-
senting the c axis and ab plane, respectively. When the direction of propagation, in
this case parallel to the surface normal, n, is not parallel to c, there are two distinct
modes of propagation: the ordinary, o, and extraordinary, e, modes. The component
of the incident electric field Ei perpendicular to the nc plane couples to the o mode,
while the in-plane component launches the e mode. The effective dielectric functions
are ε0 = ε⊥ for the ordinary mode o and

εe =
ε⊥ ε‖

ε‖ cos2 θ + ε⊥ sin2 θ
(4.5.3)

for the extraordinary mode e. Here θ represents the angle between n and c.

We can model the optical conductivity σ(ω) of a quasi-2D metallic crystal with ε‖ = εab∞−
(ωabp )2/ω(ω+ iγab) and ε⊥ = εc∞− (ωcp)

2/ω(ω+ iγc), where εab,c∞ , ωab,cp , and γab,c are used
as fit parameters. For the ordinary mode o, σ(ω) has the Drude form. The extraor-
dinary mode also has the Drude form for θ = 0◦ or 90◦. We calculate an averaged
reflectance [280]

〈R〉 =
1

2

[
Ro +

∫ π/2

0

Re(θ) sin θdθ

]
(4.5.4)

with Re and Ro representing the reflectivities of the e and o modes, respectively, and
apply the Kramers-Kronig transformation to 〈R〉. Different parameter sets used in the
Orenstein model are shown in Tab. 4.31, whereas the fit results for different values of
the optical conductivity within the ab plane are given in Fig. 4.82.

As shown in Fig. 4.82, we compare different parameter sets of the Orenstein model.
In the first model we assume a 2D metal, where ε‖ shows insulating and ε⊥ metallic
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behavior. Using these assumptions we can describe the reflectance above 3000 cm−1

but fail in describing the low-energy range. In the second model we describe a 1D metal
by assuming metallic conductivity only parallel to the c axis and insulating behavior
within the ab plane. Within this model, we can describe the reflectance only above
2000 cm−1.

In order to achieve a better description we have to estimate the anisotropy of the
optical conductivity between both directions. As mentioned in the last section, we
can model the reflectance within an isotropic model. As shown in Fig. 4.82, we need
σab1 (ω = 0) ≈ 200 (Ωcm)−1 within the ab plane and an enhanced optical conductivity
parallel to the c axis. If we exchange both directions, we cannot describe the reflectance.

Therefore, we require a strong metallic behavior parallel to the c axis and a moderate
conductivity within the ab plane to obtain a reasonable description of R(ω). This
demonstrates, that CaCrO3 is a real 3D metal even in this anisotropic model.

As shown in Fig. 4.82 we achieve for the green fit (σab1 = 266 (Ωcm)−1) a good descrip-
tion of the optical data for all frequencies. Especially, the excitation at ∼2800 cm−1

(0.35 eV) is described without an additional mid-infrared excitation. But this sce-
nario requires a strong anisotropy (σab1 = 266 (Ωcm)−1, σc1 = 1327 (Ωcm)−1) which
is contrary to the results of the Wannier function projection procedure within the
LDA calculation. This procedure predicts that the nearest-neighbor hopping matrix
elements differ only by ∼ 10 % between the c axis and the ab plane, which renders
a pronounced anisotropy of σ1(ω) very unlikely. Hence we tentatively attribute the
peak at ∼2800 cm−1 (0.35 eV) to excitations from the lower to the upper Hubbard
band. In addition, the strong temperature dependence of this excitation prevents the
interpretation that this peak is an artefact of the anisotropic model.

Nevertheless, the results of the Orenstein model show that we cannot determine the
spectral weight of this excitation without measuring on a single crystal. Furthermore,
the LHB - UHB excitation should be anisotropic as well, because this peak represents
a transition between two different Cr sites: For the energetically lowest transition the
spins are aligned parallel to each other resulting in a stronger transition probability
along the c axis than within the ab plane, see [116].

Effective medium theory for large wavelengths

At the end of the section, we will try to describe the behavior of the sample within an
effective medium theory. Our aim is to model metallic grains which are separated by
insulating grain boundaries. For the sake of simplicity, we discuss a stack of alternating
layers in the form ABAB . . ., where the layer A corresponds to the metallic grains
of CaCrO3 and layer B to their insulating grain boundaries. We will still treat the
individual layers and the fields therein as homogeneous, but assume different local
dielectric functions ε̃A(ω) = εA+ εh and ε̃B(ω) = εB + εh within the layers. We are only
interested in the electromagnetic response along the stacking direction. The averaged
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Figure 4.82: Comparison of a) the reflectance and the optical conductivity b) within
the ab plane and c) parallel to the c axis for different parameters sets for
the Orenstein model.
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electric field E for the whole stack is given by [284]

E =
1

ε
D =

∑
j

xj
εj
D, j ∈ {A,B}, (4.5.5)

where D represents the displacement field, which is the same in both layers, and xj =
dj/d denotes the relative volume fraction. Here dj is the thickness of layer j and
dA + dB = d. Starting from this equation we can derive39 the following expressions

1

ε(ω)
=

xA
εA(ω) + εh(ω)

+
xB

εB(ω) + εh(ω)
, εh(ω) = ε∞ +

∑
i

ω2
p,i

ω2
0,i − ω2 − iγiω

,

⇒ ε(ω) =
(εA(ω) + εh(ω)) · (εB(ω) + εh(ω))

εh(ω) + xA · εB(ω) + xB · εA(ω)
,

(4.5.6)

assuming that the phonons and ε∞ are homogeneous, thus they are combined in
εh. But this homogeneous contribution “feels” the inhomogeneous local fields. The
model recovers the conventional Drude-Lorentz form if we either choose εA = εB or
xA = 1− xB = 0.

This model implies some difficulties: We do not know the dielectric functions εA(ω) and
εB(ω) exactly. We assume that the CaCrO3 crystallites in layer A are metallic and that
we can describe εA(ω) by a Drude peak (plus the homogeneous phonon contribution εh).
The B layers correspond to the insulating grain boundaries and we approximate the
related dielectric function εB by a single constant for all frequencies (plus the homoge-
neous phonon contribution εh). Additionally, we assume that the homogenous phonons
are described by the Drude-Lorentz fit described above, see Tab. 4.30. Furthermore,
we assume that the grain boundaries are thin compared to the grains xB � xA. In
the fit, we use a relative volume fraction of 99.9 % to 0.1 %. For a typical grain size of
20 µm, this corresponds to a grain boundary of 20 nm. The fit parameters are shown
in Tab. 4.32, and the corresponding fit is presented in Fig. 4.83.

As shown in Fig. 4.83, we achieve a good description of the reflectance, but find a clear
disagreement for low frequencies. In contrast to the isotropic analysis, the reflectance
extrapolates to a value smaller than one for ω → 0, since σDC along the stack equals 0.
Furthermore, we achieve a better description of the reflectance below 100 cm−1 within
the isotropic analysis. The thin insulating layer B prevents a metallic behavior of the
whole sample, although we assume metallic conductivity within the CaCrO3 grains,
see inset of Fig. 4.83 b). For a grain size of L = 20 µm the insulating layer should be
relevant for wavelength less than 500 cm−1, but the suppression in R(ω) only below
100 cm−1 and in σ1(ω) only far below the limits of our experiment (∼56 cm−1).

39For details of the derivation see [284].
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ω0 [cm−1] ωp [cm−1] γ [cm−1] S

εA(ω)
0 20736 10696.1 -

εh(ω)
226 483 677.1 4.57
260 672 31.4 6.66
343 1155 109.6 11.31
577 1361 161.6 5.57

Table 4.32: Parameters of the effective medium model for CaCrO3 at T = 20 K. Here,
S denotes the oscillator strength S = ω2

p/ω
2
0. The high-frequency dielec-

tric constant is: ε∞ = 5.61. The dielectric constant describing layer B is
εB(ω) = 3.00.

Furthermore, we see that the effective medium theory describe the reflectance R(ω)
very well without a peak in σ1(ω) at 0.35 eV. But, the premises of the theory are no
longer fulfilled: At this frequencies the wavelengths are much shorter than the typical
grain size.

Summarizing our investigation, we have shown that if we assume that the real part of
the optical conductivity is isotropic, and that the wavelength is much smaller than the
typical grain size, we can describe the optical properties for all measured frequencies.
Within this isotropic model, we attribute the peak at 350 meV to excitations from the
lower to the upper Hubbard band, similar to insulating Sr2CrO4 where this excitation
is observed at 1 eV. This implies that correlation effects are important in this com-
pound. In a second scenario, we describe the optical data by using a model presented
by Orenstein et al. [280] where the optical conductivity within the ab plane is much
smaller than parallel to the c axis. We can describe the reflectance as well for all mea-
sured frequencies but we obtain a reasonable description of R(ω) only for σ1(ω = 0) ≥
200 (Ωcm)−1 for each direction which clearly demonstrates the 3D metallic behavior of
CaCrO3. Furthermore, we achieve a good description even of the mid-infrared excita-
tion at ∼2800 cm−1 (0.35 eV) for σab1 = 266 (Ωcm)−1, σc1 = 1327 (Ωcm)−1. But this is
contrary to the results of the Wannier function projection procedure within the LDA
calculation, which predicts a much smaller difference between the optical conductivity
parallel the c axis and within the ab plane.

In addition, we have used an effective medium theory to describe the behavior of the
sample at low frequencies. We model metallic grains which are separated by insulating
grain boundaries and assume that the wavelength is much larger than the grain size.
We find significant differences between the effective medium theory and the isotropic
analysis only below 100 cm−1: Within the effective medium theory, the reflectance
extrapolates to a value smaller than one for ω → 0 whereas the reflectance extrapolates
to one within the isotropic model.
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Figure 4.83: Comparison between the effective medium model (red) and the results
of the isotropic analysis (green). The upper panel shows the reflectance,
whereas the optical conductivity is shown in the bottom panel. The op-
tical conductivity of the effective medium model (red) is determined by
applying equation (2.11.8) to (4.5.6).

230



4.5 CaCrO3, an antiferromagnetic metallic oxide

In conclusion CaCrO3 is an antiferromagnetic transition-metal oxide showing 3D metal-
lic behavior. The anisotropic C-type magnetic structure is explained by frustrating
nnn (diagonal) interactions. The magnetic interactions are caused by the strong pd
hybridization, which is a consequence of the high oxidation state associated with a
small or negative charge-transfer gap. The peak at 0.35 eV in σ1(ω) suggests that
electronic correlations are relevant in CaCrO3. A quantitative determination of the
spectral weight of this peak requires measurements on a single crystal.
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5 Conclusion

In this thesis we have investigated the low-energetic excitations in different highly cor-
related transition-metal oxides by means of optical spectroscopy. Additionally, we have
analyzed the electronic structure and the optical spectra of some transition-metal ox-
ides by using a cluster-model configuration-interaction calculation.

In the first part we gave a detailed description of the cluster-model calculation, which
was developed in the framework of this thesis. In many cases a cluster-model calculation
with full ionic multiplet structure, including crystal-field effects and covalency within
a local cluster-model, provides a reasonable description of the experimental results.
We have presented a general expression for the matrix elements of the crystal-field
operator using the Racah-Wigner algebra, where the wave functions are expressed as
coupled multiplet wave functions within a given angular momentum coupling scheme.
The knowledge of all possible Slater determinants is not necessary and the matrix el-
ements can be written as compact expressions computable with arbitrary accuracy.
Furthermore, we gave a general expression for the matrix elements of the tight-binding
operator within the Slater-Koster approximation. This expression was derived within
Sobel’man’s parentage scheme.

The second part describes the investigation of low-energetic excitations in several
transition-metal compounds. We have started with the analysis of crystal-field ex-
citations in VOCl by using group-theoretical considerations as well as cluster-model
calculations. VOCl is used as a reference system for YVO3 [116] where orbital exci-
tations were observed. In YVO3, orbitals on different sites interact with each other
[117, 118] via the collective Jahn-Teller effect, i.e. the coupling to the lattice, and via
exchange interactions. We have performed transmittance measurements at 20 K and
295 K and identified the crystal-field excitations by using the cluster-model calculation.

In the following we investigated two compounds being part of the class of multifer-
roic materials which have attracted increasing attention because of the coexistence of
ferroelectric and magnetic order. In order to study the spin-lattice interaction in the
hexagonal multiferroic compounds YMnO3 and YMn0.7Ga0.3O3 and their probable con-
tribution to the occurrence of ferroelectricity in these compounds, we have performed
a detailed temperature-dependent analysis of the phonon spectra between 20 K and
295 K including a factor-group analysis. By analyzing the lattice dynamics and the
dependence of the phonon spectra on Ga doping we investigated the influence of the
magnetization on the dynamical polarization and achieved a better understanding of
the origin of ferroelectricity. In case of YMnO3 we found all phonon modes predicted
by the factor-group analysis but required a further mode for each polarization direction
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to describe the phonon spectrum properly. The additional mode is probably caused
by the multi-phonon background. Furthermore we quantified the change of the fit
parameters with increasing temperature. Thereby we have found no change in the
phonon spectra around the antiferromagnetic ordering temperature TN . In addition,
we identified the lowest phonon mode as a soft mode. In case of the Ga doped system
we have found for E ‖ c more than the expected number of phonon modes, because the
system represents a mixture of YMnO3 and YGaO3 and we found additional Mn-Ga
vibrations. In contrast to pure Mn-Mn or Ga-Ga vibrations, the Mn-Ga vibrations
have a dipole moment and are infrared active. In case of E ⊥ c we find most of the
phonon modes predicted by the factor-group analysis and quantified the change of the
fit parameters with increasing temperature. We found no change in the fit parameters
around TN . Following Iliev et al. [152] we associated the lowest phonon mode with
displacements of the Y ions along the c axis which indicated the important role of the
Y ions for the occurrence of ferroelectricity in YMnO3, whereas the Mn3+ ions have
no influence due to the d0-ness rule. By comparing the behavior of the lowest phonon
mode in the doped and the undoped system we confirmed the results of Adem et al.
[169] concerning the elongation of the YO6 antiprisms and the reduction of the local
dipole moments associated with the Y ions.

In addition we have analyzed the spin-lattice interaction of a further multiferroic,
monoclinic compound MnWO4. The spin-lattice interaction plays an important role
in the coupling between the antiferromagnetic and the ferroelectric order parameters.
MnWO4 is one of the multiferroic materials in which the cycloidal spin structure in-
duces ferroelectricity [190]. According to Lautenschläger et al. [195] the compound
undergoes successive magnetic phase transitions at TN3 ∼ 13.5 K, TN2 ∼ 12.7 K, and
TN1 ∼ 7.5 K which are related to three magnetic ordering states, AF3, AF2, and AF1
where only the AF2 phase shows ferroelectricity. Here, the magnetic phase transitions
are not related with structural phase transitions. In order to achieve a better un-
derstanding of the coupling between the antiferromagnetic and the ferroelectric order
parameters we have performed a detailed analysis of the phonon spectra for different
temperatures between 10 K and 295 K including a factor-group analysis. The mono-
clinic symmetry of this compound requires for E ‖ ac the application of a generalized
Drude-Lorentz model developed by Kuz’menko et al. [188]. (For E ‖b we used the
conventional Drude-Lorentz model.) Within the ac plane we need an additional fit pa-
rameter to describe the angle between the dipole moment associated with the phonon
mode and the x axis. In order to apply the generalized Drude-Lorentz model we de-
veloped in collaboration with Alexander Gössling a new fit program for performing
the fit procedure where we have to fit at least three different polarization directions
(with E ‖ ac plane) to determine the orientation of each phonon mode within the ac
plane. We achieved a good description of the reflectance for E ‖ ac except between
600 and 800 cm−1, which is caused probably by a large multi-phonon background
like in YMnO3. Additionally, the reflectance is pretty high in this energy range and
weak features may have a significant influence on the reflectivity. We have found all
infrared-active phonon modes predicted by the factor-group analysis but require for
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E ‖ ac a further mode to describe the optical data properly. In addition we described
the change of the fit parameters with increasing temperature. We have found no qual-
itative change in the phonon spectra between the AF2, AF3, and the paramagnetic
phase. (The determination of the phonon modes within the AF1 phase could not be
realized.) The spin-lattice interaction within this compound is to weak too change
the phonon spectra remarkably. Additionally, we investigated the infrared excitations
below the band gap by performing transmittance measurements at 30 K and 295 K
and analyzed the spectra by using the cluster-model calculation presented in the first
part of this thesis. We achieved an excellent description of the optical data and iden-
tified all excitations. Furthermore we described the dependence of the results of the
cluster-model calculation on several calculation parameters.

In the following we have analyzed the phonon spectra of BiB3O6. The exceptional
optical nonlinearities of this compound have been attributed to the bonds of the [BO3]
units and to a lone-pair electron at the Bi ion [238]. In order to investigate the lattice
dynamics which are essential for a quantitative description of these bonds we performed
reflectance measurements at 20 K and 295 K. By using the generalized Drude-Lorentz
model and comparing our data with room-temperature Raman data [236, 242, 243],
neutron data [248], and first-principle calculations [248, 249] we identified the funda-
mental phonon modes and achieved a good agreement with the results of a factor-group
analysis. Furthermore, we gave a possible explanation for the unusual shift of the
phonon mode at 168 cm−1, 645 cm−1, and 647 cm−1 with increasing temperature: The
temperature dependence of the displacement of the Bi ions and the complex interplay of
the different [BiO4]5−, [BO3]3−, and [BO4]5− units may cause the unusual phonon shift.

At the end of the thesis, optical studies of the anomalous antiferromagnetic metallic ox-
ide CaCrO3 were presented. This metallic oxide shows an exception from the rule, that
in transition-metal oxides ferromagnetism typically coexists with metallic conductivity,
whereas insulators usually exhibit antiferromagnetism. Observations of antiferromag-
netic order in transition-metal oxides with metallic conductivity are of great interest.
In collaboration with the groups of M. Braden, D.I. Khomskii, and V.I. Anisimov we
have shown that the perovskite CaCrO3 with orthorhombic space group Pbnm is a
three-dimensional transition-metal oxide with metallic conductivity, antiferromagnetic
exchange interactions, and C-type antiferromagnetic order. In addition, we associated
the excitation at 0.35 eV with excitations from the lower to the upper Hubbard band,
similar to insulating Sr2CrO4. This implies that electronic correlations are important
in this compound.
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A Wigner n-j symbols

The application of Racah’s expressions for the matrix elements of tensor operators
in section “2.4 Racah-Wigner Algebra” requires the recoupling of different angular
momenta. The Wigner n-j symbols describe this recoupling process depending on the
number of the angular momenta being involved.

A.1 3-j symbol

The 3-j symbol is related to the well-known Clebsch-Gordan coefficients, which describe
the coupling of two quantum mechanical angular momenta J1 and J2 to a total angular
momentum J : (

J1 J2 J
m1 m2 −M

)
≡ (−1)J1−J2+M

√
2J + 1

〈J1 J2m1m2|J M〉. (A.1.1)

The resulting space has a (2J1 + 1)(2J2 + 1)-dimensional uncoupled basis

|J1m1〉|J2m2〉 ≡ |J1m1〉 ⊗ |J2m2〉, m1 = −J1, . . . J1, m2 = −J2, . . . J2. (A.1.2)

The 3-j symbol is an algebraic function of six arguments that may be defined by the
expression [7](

J1 J2 J3

m1 m2 m3

)
≡ δm1+m2+m3,0(−1)J1−J2−m3

×
[

(J1 + J2 − J3)! (J1 − J2 + J3)! (−J1 + J2 + J3)! (J1 −m1)! (J1 +m1)!

(J1 + J2 + J3 + 1)!

× (J2 −m2)! (J2 +m2)! (J3 −m3)! (J3 +m3)!

(J1 + J2 + J3 + 1)!

]1/2

×
∑
k

[
(−1)k

k! (J1 + J2 − J3 − k)! (J1 −m1 − k)! (J2 +m2 − k)!

× (−1)k

(J3 − J2 +m1 + k)! (J3 − J1 −m2 + k)!

]
,

(A.1.3)

in which the summation is finite, being over those integer values of k that satisfy

max (0, J2 − J3 −m1, J1 − J3 +m2) ≤ k ≤ min (J1 + J2 − J3, J1 −m1, J2 +m2) .
(A.1.4)

The function (A.1.3) is defined only for values of Ji and mi such that the arguments of
all factorials are non-negative integers. It follows that Ji and mi must both be either
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integer or half-integer, with Ji ≥ |mi| ≥ 0 (each i), that J1 +J2 +J3 and m1 +m2 +m3

must be integer, and that J1 − J2 −m3 is integer, so that the 3-j symbol is real. Also
the three Ji must satisfy the three inequalities

J1 + J2 ≥ J3,

J2 + J3 ≥ J1,

J3 + J1 ≥ J2.

(A.1.5)

These inequalities together with the integer-sum restriction are called the “triangle
relations”. (The symbol δ (J1J2J3) is +1 if the triangle relations are satisfied and zero
otherwise.)

A.2 6-j symbol

Let J be the total angular momentum of a system formed of three separate component
systems of angular momenta J1, J2, and J3, respectively:

J = J1 + J2 + J3. (A.2.1)

In the
∏3

i=1(2Ji + 1) dimensional space spanned by the vectors

|m1m2m3〉 =
3∏
i=1

|Jimi〉 (A.2.2)

the following couplings lead to two different basis systems:

1. |(J1 J2) J12 J3 J M〉 : J1 + J2 = J12, J12 + J3 = J .

2. |(J2 J3) J23 J1 J M〉 : J2 + J3 = J23, J23 + J1 = J .

Figure A.2.1: Tetrahedron associated with the 6-j symbol.

We can pass from one system to the other by a certain unitary transformation. This
transformation is described by a function of six arguments, the so-called 6-j symbol

238



A.3 9-j symbol

that may be defined by the expression [53, 285]{
J1 J2 J12

J3 J J23

}
= ∆ (J1, J2, J12) ∆ (J1, J, J23) ∆ (J3, J, J12)

×
∑
k

[
(−1)k(k + 1)!

(k − J1 − J2 − J12)! (k − J1 − J − J23)! (k − J3 − J2 − J23)! (k − J3 − J − J12)!

× 1

(J1 + J2 + J3 + J − k)! (J2 + J12 + J + J23 − l)! (J12 + J1 + J23 + J3 − k)!

]
,

(A.2.3)

in which

∆(a, b, c) =

[
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!

]1/2

. (A.2.4)

The 6-j symbol is related to Racah’s W coefficient [54]

W (J1 J2 J J3; J12 J23) = (−1)J1+J2+J3+J

{
J1 J2 J12

J3 J J23

}
. (A.2.5)

The 6-j symbol is considered to be zero unless the argument of each factorial in (A.2.3)
and (A.2.4) is a non-negative integer. This means that each of the arguments of the 6-j
symbol must be a non-negative integer or half-integer, and that all four of the triangle
relations

δ (J1J2J12) , δ (J1JJ23) , δ (J3J2J23) , δ (J3JJ12) (A.2.6)

must be satisfied. The summation in (A.2.3) is finite and covers integer values of k in
the range

max (J1 + J2 + J12, J1 + J + J23, J3 + J2 + J23, J3 + J + J12)

≤ k ≤ min (J1 + J2 + J3 + J, J2 + J12 + J + J23, J12 + J1 + J23 + J3) . (A.2.7)

The recoupling of even more than three angular momenta can be described by the 6-j
symbol. But in the special case of four angular momenta, we use the 9-j symbol for
simplification.

A.3 9-j symbol

For a system with total angular momentum J which consists of four subsystems with
respective angular momenta J1, J2, J3, and J4, we have

J = J1 + J2 + J3 + J4. (A.3.1)

In the
∏4

i=1(2Ji + 1) dimensional space spanned by the vectors

|m1m2m3m4〉 =
4∏
i=1

|Jimi〉 (A.3.2)

the following couplings lead to two different basis systems:
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A Wigner n-j symbols

1. |(J1 J2) J12 (J3 J4) J34 J M〉 : J1 + J2 = J12, J3 + J4 = J34, J12 + J34 = J.

2. |(J1 J3) J13 (J2 J4) J24 J M〉 : J1 + J3 = J13, J2 + J4 = J24, J13 + J24 = J.

The transformation between these two different basis systems is described by the 9-j
symbol, which is defined as [53, 285]


j11 j12 j13

j21 j22 j23

j31 j32 j33

 =
∑
j

(−1)2j (2j + 1)

{
j11 j12 j13

j32 j33 j

}

×
{
j12 j22 j32

j21 j j23

} {
j13 j23 j33

j j11 j12

}
,

(A.3.3)

in which the sum runs over all integer values of j with

max (|j11 − j33|, |j32 − j21|, |j12 − j23|) ≤ j ≤ min (j11 + j33, j32 − j21, j12 − j23) .
(A.3.4)

From the properties of the 6-j symbol it follows that the 9-j symbol is zero unless the
arguments in each row and in each column satisfy the triangle relations.

The 9-j symbol is related to Fano’s X coefficient [149]
j11 j12 j13

j21 j22 j23

j31 j32 j33

 = X(j11j12j13, j21j22j23, j31j32j33). (A.3.5)

Higher-order 3n-j symbols can be defined, though not uniquely – there being two es-
sentially different 12-j symbols, five different 15-j symbols, and eighteen different 18-j
symbols [286].
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B Expansion coefficients for tight-binding
operator

The btq(li, lj,m
′
1) expansion coefficients used in (2.8.36) are given in terms of the Eule-

rian anlges
α = arctan [y/x] (B.0.1)

and
β = arccos

[
z/(
√
x2 + y2 + z2)

]
, (B.0.2)

where x, y, and z indicate the components of the vector connecting the ith and the jth
ion. Note, that within the angle representation the btq coefficients for li > lj are equal
to the btq coefficients for li < lj).

(l1l2m
′
1) t q btq

ssσ 0 0 1

spσ 1 (−1)
√

3
2
eiα sin(β)

1 0
√

3 cos(β)

1 1 −
√

3
2
e−iα sin(β)

sdσ 2 (−2) 1
2

√
15
2
e2iα sin2(β)

2 (−1)
√

15
2
eiα cos(β) sin(β)

2 0 1
4

√
5(3 cos(2β) + 1)

2 1 −
√

15
2
e−iα cos(β) sin(β)

2 2 1
2

√
15
2
e−2iα sin2(β)

sfσ 3 (−3) 1
4

√
35e3iα sin3(β)

3 (−2) 1
2

√
105
2
e2iα cos(β) sin2(β)

3 (−1) 1
8

√
21eiα(5 cos(2β) + 3) sin(β)

3 0 1
8

√
7(3 cos(β) + 5 cos(3β))

3 1 −1
8

√
21e−iα(5 cos(2β) + 3) sin(β)

3 2 1
2

√
105
2
e−2iα cos(β) sin2(β)

3 3 −1
4

√
35e−3iα sin3(β)

Table B.1: Part I

241



B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

sgσ 4 (−4) 3
8

√
35
2
e4iα sin4(β)

4 (−3) 3
4

√
35e3iα cos(β) sin3(β)

4 (−2) 3
8

√
5
2
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) 3
16

√
5eiα(7 cos(2β) + 1) sin(2β)

4 0 3
64

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 3
16

√
5e−iα(7 cos(2β) + 1) sin(2β)

4 2 3
8

√
5
2
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 −3
4

√
35e−3iα cos(β) sin3(β)

4 4 3
8

√
35
2
e−4iα sin4(β)

shσ 5 (−5) 3
16

√
77e5iα sin5(β)

5 (−4) 3
8

√
385
2
e4iα cos(β) sin4(β)

5 (−3) 1
32

√
385e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) 1
8

√
1155

2
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) 1
8

√
165
2
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 1
8

√
11 cos(β) (63 cos4(β)− 70 cos2(β) + 15)

5 1 −1
8

√
165
2
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 1
8

√
1155

2
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 − 1
32

√
385e−3iα(9 cos(2β) + 7) sin3(β)

5 4 3
8

√
385
2
e−4iα cos(β) sin4(β)

5 5 − 3
16

√
77e−5iα sin5(β)

ppσ 0 0 1
3

2 (−2) 5e2iα sin2(β)

2
√

6

2 (−1) 5eiα cos(β) sin(β)√
6

2 0 5
12

(3 cos(2β) + 1)

2 1 −5e−iα cos(β) sin(β)√
6

2 2 5e−2iα sin2(β)

2
√

6

ppπ 0 0 2
3

2 (−2) −5e2iα sin2(β)

2
√

6

2 (−1) −5eiα cos(β) sin(β)√
6

2 0 5
6
− 5 cos2(β)

2

2 1 5e−iα cos(β) sin(β)√
6

2 2 −5e−2iα sin2(β)

2
√

6

Table B.2: Part II
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(l1l2m
′
1) t q btq

pdσ 1 (−1)
√

3
10
eiα sin(β)

1 0
√

3
5

cos(β)

1 1 −
√

3
10
e−iα sin(β)

3 (−3) 7e3iα sin3(β)

4
√

3

3 (−2) 7e2iα cos(β) sin2(β)

2
√

2

3 (−1) 7eiα(5 cos(2β)+3) sin(β)

8
√

5

3 0 7(3 cos(β)+5 cos(3β))

8
√

15

3 1 −7e−iα(5 cos(2β)+3) sin(β)

8
√

5

3 2 7e−2iα cos(β) sin2(β)

2
√

2

3 3 −7e−3iα sin3(β)

4
√

3

pdπ 1 (−1) 3eiα sin(β)√
10

1 0 3 cos(β)√
5

1 1 −3e−iα sin(β)√
10

3 (−3) −7
6
e3iα sin3(β)

3 (−2) −7e2iα cos(β) sin2(β)√
6

3 (−1) −7eiα(5 cos(2β)+3) sin(β)

4
√

15

3 0
7 cos(β)(3−5 cos2(β))

3
√

5

3 1 7e−iα(5 cos(2β)+3) sin(β)

4
√

15

3 2 −7e−2iα cos(β) sin2(β)√
6

3 3 7
6
e−3iα sin3(β)

pfσ 2 (−2) 5e2iα sin2(β)

2
√

14

2 (−1) 5eiα cos(β) sin(β)√
14

2 0 5(3 cos(2β)+1)

4
√

21

2 1 −5e−iα cos(β) sin(β)√
14

2 2 5e−2iα sin2(β)

2
√

14

4 (−4) 3
8

√
15
2
e4iα sin4(β)

4 (−3) 3
4

√
15e3iα cos(β) sin3(β)

4 (−2) 3
8

√
15
14
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) 3
16

√
15
7
eiα(7 cos(2β) + 1) sin(2β)

4 0 3
64

√
3
7
(20 cos(2β) + 35 cos(4β) + 9)

Table B.3: Part III
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(l1l2m
′
1) t q btq

4 1 − 3
16

√
15
7
e−iα(7 cos(2β) + 1) sin(2β)

4 2 3
8

√
15
14
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 −3
4

√
15e−3iα cos(β) sin3(β)

4 4 3
8

√
15
2
e−4iα sin4(β)

pfπ 2 (−2) 5e2iα sin2(β)√
21

2 (−1) 5eiα sin(2β)√
21

2 0 5(3 cos(2β)+1)

3
√

14

2 1 −5e−iα sin(2β)√
21

2 2 5e−2iα sin2(β)√
21

4 (−4) − 9
16

√
5e4iα sin4(β)

4 (−3) −9
4

√
5
2
e3iα cos(β) sin3(β)

4 (−2) − 9
16

√
5
7
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) − 9
16

√
5
14
eiα(7 cos(2β) + 1) sin(2β)

4 0 −9(20 cos(2β)+35 cos(4β)+9)

64
√

14

4 1 9
16

√
5
14
e−iα(7 cos(2β) + 1) sin(2β)

4 2 − 9
16

√
5
7
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 9
4

√
5
2
e−3iα cos(β) sin3(β)

4 4 − 9
16

√
5e−4iα sin4(β)

pgσ 3 (−3) 7
12

√
5
3
e3iα sin3(β)

3 (−2) 7
6

√
5
2
e2iα cos(β) sin2(β)

3 (−1) 7
24
eiα(5 cos(2β) + 3) sin(β)

3 0 7(3 cos(β)+5 cos(3β))

24
√

3

3 1 − 7
24
e−iα(5 cos(2β) + 3) sin(β)

3 2 7
6

√
5
2
e−2iα cos(β) sin2(β)

3 3 − 7
12

√
5
3
e−3iα sin3(β)

5 (−5) 11
16

√
7
3
e5iα sin5(β)

5 (−4) 11
8

√
35
6
e4iα cos(β) sin4(β)

5 (−3) 11
96

√
35
3
e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) 11
24

√
35
2
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

Table B.4: Part IV
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(l1l2m
′
1) t q btq

5 (−1) 11
24

√
5
2
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0
11 cos(β)(63 cos4(β)−70 cos2(β)+15)

24
√

3

5 1 −11
24

√
5
2
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 11
24

√
35
2
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 −11
96

√
35
3
e−3iα(9 cos(2β) + 7) sin3(β)

5 4 11
8

√
35
6
e−4iα cos(β) sin4(β)

5 5 −11
16

√
7
3
e−5iα sin5(β)

pgπ 3 (−3) 35e3iα sin3(β)

12
√

6

3 (−2) 35
12
e2iα cos(β) sin2(β)

3 (−1) 7
24

√
5
2
eiα(5 cos(2β) + 3) sin(β)

3 0 7
24

√
5
6
(3 cos(β) + 5 cos(3β))

3 1 − 7
24

√
5
2
e−iα(5 cos(2β) + 3) sin(β)

3 2 35
12
e−2iα cos(β) sin2(β)

3 3 −35e−3iα sin3(β)

12
√

6

5 (−5) −11
4

√
7
30
e5iα sin5(β)

5 (−4) −11
4

√
7
3
e4iα cos(β) sin4(β)

5 (−3) −11
24

√
7
6
e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) −11
12

√
7e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) −11
96
eiα(28 cos(2β) + 21 cos(4β) + 15) sin(β)

5 0 −11(30 cos(β)+35 cos(3β)+63 cos(5β))

96
√

30

5 1 11
96
e−iα(28 cos(2β) + 21 cos(4β) + 15) sin(β)

5 2 −11
12

√
7e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 11
24

√
7
6
e−3iα(9 cos(2β) + 7) sin3(β)

5 4 −11
4

√
7
3
e−4iα cos(β) sin4(β)

5 5 11
4

√
7
30
e−5iα sin5(β)

phσ 4 (−4) 3
8

√
105
22
e4iα sin4(β)

4 (−3) 3
4

√
105
11
e3iα cos(β) sin3(β)

4 (−2) 3
8

√
15
22
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) 3
16

√
15
11
eiα(7 cos(2β) + 1) sin(2β)

Table B.5: Part V
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(l1l2m
′
1) t q btq

4 0 3
64

√
3
11

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 3
16

√
15
11
e−iα(7 cos(2β) + 1) sin(2β)

4 2 3
8

√
15
22
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 −3
4

√
105
11
e−3iα cos(β) sin3(β)

4 4 3
8

√
105
22
e−4iα sin4(β)

6 (−6) 13
32

√
7e6iα sin6(β)

6 (−5) 13
16

√
21e5iα cos(β) sin5(β)

6 (−4) 13
32

√
21
22
e4iα(11 cos(2β) + 9) sin4(β)

6 (−3) 13
32

√
35
11
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) 13
32

√
35
11
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) 13
8

√
7
22
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)

512
√

33

6 1 −13
8

√
7
22
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 13
32

√
35
11
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 −13
32

√
35
11
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 13
32

√
21
22
e−4iα(11 cos(2β) + 9) sin4(β)

6 5 −13
16

√
21e−5iα cos(β) sin5(β)

6 6 13
32

√
7e−6iα sin6(β)

phπ 4 (−4) 9
4

√
7
22
e4iα sin4(β)

4 (−3) 9
2

√
7
11
e3iα cos(β) sin3(β)

4 (−2) 9e2iα(7 cos(2β)+5) sin2(β)

4
√

22

4 (−1) 9eiα(7 cos(2β)+1) sin(2β)

8
√

11

4 0 9(20 cos(2β)+35 cos(4β)+9)

32
√

55

4 1 −9e−iα(7 cos(2β)+1) sin(2β)

8
√

11

4 2 9e−2iα(7 cos(2β)+5) sin2(β)

4
√

22

4 3 −9
2

√
7
11
e−3iα cos(β) sin3(β)

4 4 9
4

√
7
22
e−4iα sin4(β)

6 (−6) −13
32

√
35
3
e6iα sin6(β)

6 (−5) −13
16

√
35e5iα cos(β) sin5(β)

Table B.6: Part VI
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(l1l2m
′
1) t q btq

6 (−4) −13
32

√
35
22
e4iα(11 cos(2β) + 9) sin4(β)

6 (−3) −65
32

√
7
33
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) −65
32

√
7
33
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) −13
8

√
35
66
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 −13
√

5
11

(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)

1536

6 1 13
8

√
35
66
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 −65
32

√
7
33
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 65
32

√
7
33
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 −13
32

√
35
22
e−4iα(11 cos(2β) + 9) sin4(β)

6 5 13
16

√
35e−5iα cos(β) sin5(β)

6 6 −13
32

√
35
3
e−6iα sin6(β)

ddσ 0 0 1
5

2 (−2) 1
2

√
3
2
e2iα sin2(β)

2 (−1)
√

3
2
eiα cos(β) sin(β)

2 0 1
4
(3 cos(2β) + 1)

2 1 −
√

3
2
e−iα cos(β) sin(β)

2 2 1
2

√
3
2
e−2iα sin2(β)

4 (−4) 9
8

√
7
10
e4iα sin4(β)

4 (−3) 9
4

√
7
5
e3iα cos(β) sin3(β)

4 (−2) 9e2iα(7 cos(2β)+5) sin2(β)

8
√

10

4 (−1) 9eiα(7 cos(2β)+1) sin(2β)

16
√

5

4 0 9
320

(20 cos(2β) + 35 cos(4β) + 9)

4 1 −9e−iα(7 cos(2β)+1) sin(2β)

16
√

5

4 2 9e−2iα(7 cos(2β)+5) sin2(β)

8
√

10

4 3 −9
4

√
7
5
e−3iα cos(β) sin3(β)

4 4 9
8

√
7
10
e−4iα sin4(β)

ddπ 0 0 2
5

2 (−2) 1
2

√
3
2
e2iα sin2(β)

2 (−1)
√

3
2
eiα cos(β) sin(β)

Table B.7: Part VII
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(l1l2m
′
1) t q btq

2 0 1
4
(3 cos(2β) + 1)

2 1 −
√

3
2
e−iα cos(β) sin(β)

2 2 1
2

√
3
2
e−2iα sin2(β)

4 (−4) −3
2

√
7
10
e4iα sin4(β)

4 (−3) −3
√

7
5
e3iα cos(β) sin3(β)

4 (−2) −3e2iα(7 cos2(β)−1) sin2(β)
√

10

4 (−1) −3eiα cos(β)(7 cos2(β)−3) sin(β)
√

5

4 0 − 3
80

(20 cos(2β) + 35 cos(4β) + 9)

4 1
3e−iα cos(β)(7 cos2(β)−3) sin(β)

√
5

4 2 −3e−2iα(7 cos2(β)−1) sin2(β)
√

10

4 3 3
√

7
5
e−3iα cos(β) sin3(β)

4 4 −3
2

√
7
10
e−4iα sin4(β)

ddδ 0 0 2
5

2 (−2) −
√

3
2
e2iα sin2(β)

2 (−1) −
√

6eiα cos(β) sin(β)
2 0 1− 3 cos2(β)

2 1
√

6e−iα cos(β) sin(β)

2 2 −
√

3
2
e−2iα sin2(β)

4 (−4) 3
8

√
7
10
e4iα sin4(β)

4 (−3) 3
4

√
7
5
e3iα cos(β) sin3(β)

4 (−2) 3e2iα(7 cos(2β)+5) sin2(β)

8
√

10

4 (−1) 3eiα(7 cos(2β)+1) sin(2β)

16
√

5

4 0 3
320

(20 cos(2β) + 35 cos(4β) + 9)

4 1 −3e−iα(7 cos(2β)+1) sin(2β)

16
√

5

4 2 3e−2iα(7 cos(2β)+5) sin2(β)

8
√

10

4 3 −3
4

√
7
5
e−3iα cos(β) sin3(β)

4 4 3
8

√
7
10
e−4iα sin4(β)

dfσ 1 (−1) 3eiα sin(β)√
70

1 0 3 cos(β)√
35

1 1 −3e−iα sin(β)√
70

Table B.8: Part VIII
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(l1l2m
′
1) t q btq

3 (−3) 1
4

√
7e3iα sin3(β)

3 (−2) 1
2

√
21
2
e2iα cos(β) sin2(β)

3 (−1) 1
8

√
21
5
eiα(5 cos(2β) + 3) sin(β)

3 0 1
8

√
7
5
(3 cos(β) + 5 cos(3β))

3 1 −1
8

√
21
5
e−iα(5 cos(2β) + 3) sin(β)

3 2 1
2

√
21
2
e−2iα cos(β) sin2(β)

3 3 −1
4

√
7e−3iα sin3(β)

5 (−5) 33e5iα sin5(β)

16
√

5

5 (−4) 33e4iα cos(β) sin4(β)

8
√

2

5 (−3) 11
32
e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) 11
8

√
3
2
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) 11
8

√
3
14
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 11(30 cos(β)+35 cos(3β)+63 cos(5β))

128
√

35

5 1 −11
8

√
3
14
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 11
8

√
3
2
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 −11
32
e−3iα(9 cos(2β) + 7) sin3(β)

5 4 33e−4iα cos(β) sin4(β)

8
√

2

5 5 −33e−5iα sin5(β)

16
√

5

dfπ 1 (−1) 4eiα sin(β)√
35

1 0 4
√

2
35

cos(β)

1 1 −4e−iα sin(β)√
35

3 (−3) 1
4

√
7
2
e3iα sin3(β)

3 (−2) 1
4

√
21e2iα cos(β) sin2(β)

3 (−1) 1
8

√
21
10
eiα(5 cos(2β) + 3) sin(β)

3 0 1
8

√
7
10

(3 cos(β) + 5 cos(3β))

3 1 −1
8

√
21
10
e−iα(5 cos(2β) + 3) sin(β)

3 2 1
4

√
21e−2iα cos(β) sin2(β)

3 3 −1
4

√
7
2
e−3iα sin3(β)

5 (−5) −33e5iα sin5(β)

8
√

10

5 (−4) −33
8
e4iα cos(β) sin4(β)

Table B.9: Part IX
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

5 (−3) −11e3iα(9 cos(2β)+7) sin3(β)

16
√

2

5 (−2) −11
8

√
3e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) −11
8

√
3
7
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 −11(30 cos(β)+35 cos(3β)+63 cos(5β))

64
√

70

5 1 11
8

√
3
7
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 −11
8

√
3e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 11e−3iα(9 cos(2β)+7) sin3(β)

16
√

2

5 4 −33
8
e−4iα cos(β) sin4(β)

5 5 33e−5iα sin5(β)

8
√

10

dfδ 1 (−1)
√

2
7
eiα sin(β)

1 0 2 cos(β)√
7

1 1 −
√

2
7
e−iα sin(β)

3 (−3) −1
4

√
35e3iα sin3(β)

3 (−2) −1
2

√
105
2
e2iα cos(β) sin2(β)

3 (−1) −1
8

√
21eiα(5 cos(2β) + 3) sin(β)

3 0 −1
8

√
7(3 cos(β) + 5 cos(3β))

3 1 1
8

√
21e−iα(5 cos(2β) + 3) sin(β)

3 2 −1
2

√
105
2
e−2iα cos(β) sin2(β)

3 3 1
4

√
35e−3iα sin3(β)

5 (−5) 33
80
e5iα sin5(β)

5 (−4) 33e4iα cos(β) sin4(β)

8
√

10

5 (−3) 11e3iα(9 cos(2β)+7) sin3(β)

32
√

5

5 (−2) 11
8

√
3
10
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) 11
8

√
3
70
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 11(30 cos(β)+35 cos(3β)+63 cos(5β))

640
√

7

5 1 −11
8

√
3
70
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 11
8

√
3
10
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 −11e−3iα(9 cos(2β)+7) sin3(β)

32
√

5

5 4 33e−4iα cos(β) sin4(β)

8
√

10

5 5 −33
80
e−5iα sin5(β)

dgσ 2 (−2) 1
2

√
5
6
e2iα sin2(β)

2 (−1)
√

5
6
eiα cos(β) sin(β)

Table B.10: Part X
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(l1l2m
′
1) t q btq

2 0 1
12

√
5(3 cos(2β) + 1)

2 1 −
√

5
6
e−iα cos(β) sin(β)

2 2 1
2

√
5
6
e−2iα sin2(β)

4 (−4) 3
8

√
7
2
e4iα sin4(β)

4 (−3) 3
4

√
7e3iα cos(β) sin3(β)

4 (−2) 3e2iα(7 cos(2β)+5) sin2(β)

8
√

2

4 (−1) 3
16
eiα(7 cos(2β) + 1) sin(2β)

4 0 3(20 cos(2β)+35 cos(4β)+9)

64
√

5

4 1 − 3
16
e−iα(7 cos(2β) + 1) sin(2β)

4 2 3e−2iα(7 cos(2β)+5) sin2(β)

8
√

2

4 3 −3
4

√
7e−3iα cos(β) sin3(β)

4 4 3
8

√
7
2
e−4iα sin4(β)

6 (−6) 13
32

√
77
15
e6iα sin6(β)

6 (−5) 13
16

√
77
5
e5iα cos(β) sin5(β)

6 (−4) 13
32

√
7
10
e4iα(11 cos(2β) + 9) sin4(β)

6 (−3) 13
32

√
7
3
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) 13
32

√
7
3
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) 13
8

√
7
30
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)

1536
√

5

6 1 −13
8

√
7
30
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 13
32

√
7
3
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 −13
32

√
7
3
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 13
32

√
7
10
e−4iα(11 cos(2β) + 9) sin4(β)

6 5 −13
16

√
77
5
e−5iα cos(β) sin5(β)

6 6 13
32

√
77
15
e−6iα sin6(β)

dgπ 2 (−2) 5
6
e2iα sin2(β)

2 (−1) 5
3
eiα cos(β) sin(β)

2 0 5(3 cos(2β)+1)

6
√

6

2 1 −5
3
e−iα cos(β) sin(β)

2 2 5
6
e−2iα sin2(β)

4 (−4) 3
16

√
21
5
e4iα sin4(β)

Table B.11: Part XI
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

4 (−3) 3
4

√
21
10
e3iα cos(β) sin3(β)

4 (−2) 3
16

√
3
5
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) 3
16

√
3
10
eiα(7 cos(2β) + 1) sin(2β)

4 0 3
320

√
3
2
(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 3
16

√
3
10
e−iα(7 cos(2β) + 1) sin(2β)

4 2 3
16

√
3
5
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 −3
4

√
21
10
e−3iα cos(β) sin3(β)

4 4 3
16

√
21
5
e−4iα sin4(β)

6 (−6) −13
60

√
77
2
e6iα sin6(β)

6 (−5) −13
10

√
77
6
e5iα cos(β) sin5(β)

6 (−4) −13
40

√
7
3
e4iα(11 cos(2β) + 9) sin4(β)

6 (−3) −13
12

√
7
10
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) −13
96

√
7
10
e2iα(60 cos(2β) + 33 cos(4β) + 35) sin2(β)

6 (−1) −13
30

√
7eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 −13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)

960
√

6

6 1 13
30

√
7e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 −13
96

√
7
10
e−2iα(60 cos(2β) + 33 cos(4β) + 35) sin2(β)

6 3 13
12

√
7
10
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 −13
40

√
7
3
e−4iα(11 cos(2β) + 9) sin4(β)

6 5 13
10

√
77
6
e−5iα cos(β) sin5(β)

6 6 −13
60

√
77
2
e−6iα sin6(β)

dgδ 2 (−2) 5e2iα sin2(β)

6
√

2

2 (−1) 5eiα cos(β) sin(β)

3
√

2

2 0 5(3 cos(2β)+1)

12
√

3

2 1 −5e−iα cos(β) sin(β)

3
√

2

2 2 5e−2iα sin2(β)

6
√

2

4 (−4) −9
8

√
21
10
e4iα sin4(β)

4 (−3) −9
4

√
21
5
e3iα cos(β) sin3(β)

4 (−2) −9
8

√
3
10
e2iα(7 cos(2β) + 5) sin2(β)

Table B.12: Part XII

252



(l1l2m
′
1) t q btq

4 (−1) − 9
16

√
3
5
eiα(7 cos(2β) + 1) sin(2β)

4 0 − 9
320

√
3(20 cos(2β) + 35 cos(4β) + 9)

4 1 9
16

√
3
5
e−iα(7 cos(2β) + 1) sin(2β)

4 2 −9
8

√
3
10
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 9
4

√
21
5
e−3iα cos(β) sin3(β)

4 4 −9
8

√
21
10
e−4iα sin4(β)

6 (−6) 13
240

√
77e6iα sin6(β)

6 (−5) 13
40

√
77
3
e5iα cos(β) sin5(β)

6 (−4) 13
80

√
7
6
e4iα(11 cos(2β) + 9) sin4(β)

6 (−3) 13
48

√
7
5
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) 13
48

√
7
5
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) 13
60

√
7
2
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)

3840
√

3

6 1 −13
60

√
7
2
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 13
48

√
7
5
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 −13
48

√
7
5
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 13
80

√
7
6
e−4iα(11 cos(2β) + 9) sin4(β)

6 5 −13
40

√
77
3
e−5iα cos(β) sin5(β)

6 6 13
240

√
77e−6iα sin6(β)

dhσ 3 (−3) 7e3iα sin3(β)

4
√

11

3 (−2) 7
2

√
3
22
e2iα cos(β) sin2(β)

3 (−1) 7
8

√
3
55
eiα(5 cos(2β) + 3) sin(β)

3 0 7(3 cos(β)+5 cos(3β))

8
√

55

3 1 −7
8

√
3
55
e−iα(5 cos(2β) + 3) sin(β)

3 2 7
2

√
3
22
e−2iα cos(β) sin2(β)

3 3 −7e−3iα sin3(β)

4
√

11

5 (−5) 3
16

√
77
5
e5iα sin5(β)

5 (−4) 3
8

√
77
2
e4iα cos(β) sin4(β)

5 (−3) 1
32

√
77e3iα(9 cos(2β) + 7) sin3(β)

Table B.13: Part XIII
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

5 (−2) 1
8

√
231
2
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) 1
8

√
33
2
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 1
128

√
11
5

(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 −1
8

√
33
2
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 1
8

√
231
2
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 − 1
32

√
77e−3iα(9 cos(2β) + 7) sin3(β)

5 4 3
8

√
77
2
e−4iα cos(β) sin4(β)

5 5 − 3
16

√
77
5
e−5iα sin5(β)

7 (−7) 3
32

√
195
2
e7iα sin7(β)

7 (−6) 3
32

√
1365e6iα cos(β) sin6(β)

7 (−5) 3
64

√
105
2
e5iα(13 cos(2β) + 11) sin5(β)

7 (−4) 3
32

√
105
2
e4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 (−3) 3
32

√
105
22
e3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 (−2) 3
32

√
105
11
e2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 (−1) 3
32

√
35
22
eiα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5) sin(β)

7 0
3
√

5
11

(175 cos(β)+189 cos(3β)+231 cos(5β)+429 cos(7β))

1024

7 1 − 3
32

√
35
22
e−iα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5)

sin(β)

7 2 3
32

√
105
11
e−2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 3 − 3
32

√
105
22
e−3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 4 3
32

√
105
2
e−4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 5 − 3
64

√
105
2
e−5iα(13 cos(2β) + 11) sin5(β)

7 6 3
32

√
1365e−6iα cos(β) sin6(β)

7 7 − 3
32

√
195
2
e−7iα sin7(β)

dhπ 3 (−3) 7e3iα sin3(β)√
55

3 (−2) 7
√

6
55
e2iα cos(β) sin2(β)

3 (−1) 7
10

√
3
11
eiα(5 cos(2β) + 3) sin(β)

3 0 7(3 cos(β)+5 cos(3β))

10
√

11

3 1 − 7
10

√
3
11
e−iα(5 cos(2β) + 3) sin(β)

Table B.14: Part XIV
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(l1l2m
′
1) t q btq

3 2 7
√

6
55
e−2iα cos(β) sin2(β)

3 3 −7e−3iα sin3(β)√
55

5 (−5) 3
80

√
77e5iα sin5(β)

5 (−4) 3
8

√
77
10
e4iα cos(β) sin4(β)

5 (−3) 1
32

√
77
5
e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) 1
8

√
231
10
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) 1
8

√
33
10
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 1
640

√
11(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 −1
8

√
33
10
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 1
8

√
231
10
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 − 1
32

√
77
5
e−3iα(9 cos(2β) + 7) sin3(β)

5 4 3
8

√
77
10
e−4iα cos(β) sin4(β)

5 5 − 3
80

√
77e−5iα sin5(β)

7 (−7) − 5
16

√
39
2
e7iα sin7(β)

7 (−6) − 5
16

√
273e6iα cos(β) sin6(β)

7 (−5) − 5
32

√
21
2
e5iα(13 cos(2β) + 11) sin5(β)

7 (−4) − 5
16

√
21
2
e4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 (−3) − 5
16

√
21
22
e3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 (−2) − 5
16

√
21
11
e2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 (−1) − 5
16

√
7
22
eiα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5) sin(β)

7 0 −5(175 cos(β)+189 cos(3β)+231 cos(5β)+429 cos(7β))

512
√

11

7 1 5
16

√
7
22
e−iα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5) sin(β)

7 2 − 5
16

√
21
11
e−2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 3 5
16

√
21
22
e−3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 4 − 5
16

√
21
2
e−4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 5 5
32

√
21
2
e−5iα(13 cos(2β) + 11) sin5(β)

7 6 − 5
16

√
273e−6iα cos(β) sin6(β)

7 7 5
16

√
39
2
e−7iα sin7(β)

dhδ 3 (−3) 7
4

√
7
55
e3iα sin3(β)

Table B.15: Part XV
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

3 (−2) 7
2

√
21
110
e2iα cos(β) sin2(β)

3 (−1) 7
40

√
21
11
eiα(5 cos(2β) + 3) sin(β)

3 0 7
40

√
7
11

(3 cos(β) + 5 cos(3β))

3 1 − 7
40

√
21
11
e−iα(5 cos(2β) + 3) sin(β)

3 2 7
2

√
21
110
e−2iα cos(β) sin2(β)

3 3 −7
4

√
7
55
e−3iα sin3(β)

5 (−5) −21
40

√
11e5iα sin5(β)

5 (−4) −21
4

√
11
10
e4iα cos(β) sin4(β)

5 (−3) − 7
16

√
11
5
e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) −7
4

√
33
10
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) −1
4

√
231
10
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 − 1
320

√
77(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 1
4

√
231
10
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 −7
4

√
33
10
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 7
16

√
11
5
e−3iα(9 cos(2β) + 7) sin3(β)

5 4 −21
4

√
11
10
e−4iα cos(β) sin4(β)

5 5 21
40

√
11e−5iα sin5(β)

7 (−7) 5
16

√
39
14
e7iα sin7(β)

7 (−6) 5
16

√
39e6iα cos(β) sin6(β)

7 (−5) 5
32

√
3
2
e5iα(13 cos(2β) + 11) sin5(β)

7 (−4) 5
16

√
3
2
e4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 (−3) 5
16

√
3
22
e3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 (−2) 5
16

√
3
11
e2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 (−1)
5eiα(429 cos6(β)−495 cos4(β)+135 cos2(β)−5) sin(β)

16
√

22

7 0 5(175 cos(β)+189 cos(3β)+231 cos(5β)+429 cos(7β))

512
√

77

7 1 −5e−iα(429 cos6(β)−495 cos4(β)+135 cos2(β)−5) sin(β)

16
√

22

7 2 5
16

√
3
11
e−2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 3 − 5
16

√
3
22
e−3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 4 5
16

√
3
2
e−4iα cos(β)(13 cos(2β) + 7) sin4(β)
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(l1l2m
′
1) t q btq

7 5 − 5
32

√
3
2
e−5iα(13 cos(2β) + 11) sin5(β)

7 6 5
16

√
39e−6iα cos(β) sin6(β)

7 7 − 5
16

√
39
14
e−7iα sin7(β)

ffσ 0 0 1
7

2 (−2) 5
14

√
3
2
e2iα sin2(β)

2 (−1) 5
7

√
3
2
eiα cos(β) sin(β)

2 0 5
28

(3 cos(2β) + 1)

2 1 −5
7

√
3
2
e−iα cos(β) sin(β)

2 2 5
14

√
3
2
e−2iα sin2(β)

4 (−4) 9
8

√
5
14
e4iα sin4(β)

4 (−3) 9
4

√
5
7
e3iα cos(β) sin3(β)

4 (−2) 9
56

√
5
2
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) 9
112

√
5eiα(7 cos(2β) + 1) sin(2β)

4 0 9
448

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 9
112

√
5e−iα(7 cos(2β) + 1) sin(2β)

4 2 9
56

√
5
2
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 −9
4

√
5
7
e−3iα cos(β) sin3(β)

4 4 9
8

√
5
14
e−4iα sin4(β)

6 (−6) 13
32

√
33
7
e6iα sin6(β)

6 (−5) 39
16

√
11
7
e5iα cos(β) sin5(β)

6 (−4) 39e4iα(11 cos(2β)+9) sin4(β)

32
√

14

6 (−3) 13
32

√
15
7
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) 13
32

√
15
7
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) 13
8

√
3
14
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
3584

6 1 −13
8

√
3
14
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 13
32

√
15
7
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 −13
32

√
15
7
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 39e−4iα(11 cos(2β)+9) sin4(β)

32
√

14

6 5 −39
16

√
11
7
e−5iα cos(β) sin5(β)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

6 6 13
32

√
33
7
e−6iα sin6(β)

ffπ 0 0 2
7

2 (−2) 15
28

√
3
2
e2iα sin2(β)

2 (−1) 15
14

√
3
2
eiα cos(β) sin(β)

2 0 15
56

(3 cos(2β) + 1)

2 1 −15
14

√
3
2
e−iα cos(β) sin(β)

2 2 15
28

√
3
2
e−2iα sin2(β)

4 (−4) 3
8

√
5
14
e4iα sin4(β)

4 (−3) 3
4

√
5
7
e3iα cos(β) sin3(β)

4 (−2) 3
56

√
5
2
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) 3
112

√
5eiα(7 cos(2β) + 1) sin(2β)

4 0 3
448

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 3
112

√
5e−iα(7 cos(2β) + 1) sin(2β)

4 2 3
56

√
5
2
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 −3
4

√
5
7
e−3iα cos(β) sin3(β)

4 4 3
8

√
5
14
e−4iα sin4(β)

6 (−6) −39
64

√
33
7
e6iα sin6(β)

6 (−5) −117
32

√
11
7
e5iα cos(β) sin5(β)

6 (−4) −117e4iα(11 cos(2β)+9) sin4(β)

64
√

14

6 (−3) −39
64

√
15
7
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) −39
64

√
15
7
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) −39
16

√
3
14
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 −39(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
7168

6 1 39
16

√
3
14
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 −39
64

√
15
7
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 39
64

√
15
7
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 −117e−4iα(11 cos(2β)+9) sin4(β)

64
√

14

6 5 117
32

√
11
7
e−5iα cos(β) sin5(β)

6 6 −39
64

√
33
7
e−6iα sin6(β)

ffδ 0 0 2
7
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(l1l2m
′
1) t q btq

2 (−2) 0
2 (−1) 0
2 0 0
2 1 0
2 2 0

4 (−4) −3
8

√
35
2
e4iα sin4(β)

4 (−3) −3
4

√
35e3iα cos(β) sin3(β)

4 (−2) −3
8

√
5
2
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) − 3
16

√
5eiα(7 cos(2β) + 1) sin(2β)

4 0 − 3
64

(20 cos(2β) + 35 cos(4β) + 9)

4 1 3
16

√
5e−iα(7 cos(2β) + 1) sin(2β)

4 2 −3
8

√
5
2
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 3
4

√
35e−3iα cos(β) sin3(β)

4 4 −3
8

√
35
2
e−4iα sin4(β)

6 (−6) 39
160

√
33
7
e6iα sin6(β)

6 (−5) 117
80

√
11
7
e5iα cos(β) sin5(β)

6 (−4) 117e4iα(11 cos(2β)+9) sin4(β)

160
√

14

6 (−3) 39
32

√
3
35
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) 39
32

√
3
35
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) 39
40

√
3
14
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 39
560

(231 cos6(β)− 315 cos4(β) + 105 cos2(β)− 5)

6 1 −39
40

√
3
14
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 39
32

√
3
35
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 −39
32

√
3
35
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 117e−4iα(11 cos(2β)+9) sin4(β)

160
√

14

6 5 −117
80

√
11
7
e−5iα cos(β) sin5(β)

6 6 39
160

√
33
7
e−6iα sin6(β)

ffφ 0 0 2
7

2 (−2) −25
28

√
3
2
e2iα sin2(β)

2 (−1) −25
14

√
3
2
eiα cos(β) sin(β)

2 0 −25
56

(3 cos(2β) + 1)

2 1 25
14

√
3
2
e−iα cos(β) sin(β)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

2 2 −25
28

√
3
2
e−2iα sin2(β)

4 (−4) 9
8

√
5
14
e4iα sin4(β)

4 (−3) 9
4

√
5
7
e3iα cos(β) sin3(β)

4 (−2) 9
56

√
5
2
e2iα(7 cos(2β) + 5) sin2(β)

4 (−1) 9
112

√
5eiα(7 cos(2β) + 1) sin(2β)

4 0 9
448

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 9
112

√
5e−iα(7 cos(2β) + 1) sin(2β)

4 2 9
56

√
5
2
e−2iα(7 cos(2β) + 5) sin2(β)

4 3 −9
4

√
5
7
e−3iα cos(β) sin3(β)

4 4 9
8

√
5
14
e−4iα sin4(β)

6 (−6) − 13
320

√
33
7
e6iα sin6(β)

6 (−5) − 39
160

√
11
7
e5iα cos(β) sin5(β)

6 (−4) −39e4iα(11 cos(2β)+9) sin4(β)

320
√

14

6 (−3) −13
64

√
3
35
e3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 (−2) −13
64

√
3
35
e2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 (−1) −13
80

√
3
14
eiα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 0 −13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
35840

6 1 13
80

√
3
14
e−iα cos(β) (33 cos4(β)− 30 cos2(β) + 5) sin(β)

6 2 −13
64

√
3
35
e−2iα (33 cos4(β)− 18 cos2(β) + 1) sin2(β)

6 3 13
64

√
3
35
e−3iα cos(β)(11 cos(2β) + 5) sin3(β)

6 4 −39e−4iα(11 cos(2β)+9) sin4(β)

320
√

14

6 5 39
160

√
11
7
e−5iα cos(β) sin5(β)

6 6 − 13
320

√
33
7
e−6iα sin6(β)

fgσ 1 (−1) eiα sin(β)√
14

1 0 cos(β)√
7

1 1 − e−iα sin(β)√
14

3 (−3) 1
12

√
35e3iα sin3(β)

3 (−2) 1
2

√
35
6
e2iα cos(β) sin2(β)

3 (−1) 1
8

√
7
3
eiα(5 cos(2β) + 3) sin(β)

3 0 1
24

√
7(3 cos(β) + 5 cos(3β))
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(l1l2m
′
1) t q btq

3 1 −1
8

√
7
3
e−iα(5 cos(2β) + 3) sin(β)

3 2 1
2

√
35
6
e−2iα cos(β) sin2(β)

3 3 − 1
12

√
35e−3iα sin3(β)

5 (−5) 11
16
e5iα sin5(β)

5 (−4) 11
8

√
5
2
e4iα cos(β) sin4(β)

5 (−3) 11
96

√
5e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) 11
8

√
5
6
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) 11
8

√
5
42
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 11(30 cos(β)+35 cos(3β)+63 cos(5β))

384
√

7

5 1 −11
8

√
5
42
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 11
8

√
5
6
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 −11
96

√
5e−3iα(9 cos(2β) + 7) sin3(β)

5 4 11
8

√
5
2
e−4iα cos(β) sin4(β)

5 5 −11
16
e−5iα sin5(β)

7 (−7) 5
32

√
429
14
e7iα sin7(β)

7 (−6) 5
32

√
429e6iα cos(β) sin6(β)

7 (−5) 5
64

√
33
2
e5iα(13 cos(2β) + 11) sin5(β)

7 (−4) 5
32

√
33
2
e4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 (−3) 5
32

√
3
2
e3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 (−2) 5
32

√
3e2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 (−1)
5eiα(429 cos6(β)−495 cos4(β)+135 cos2(β)−5) sin(β)

32
√

2

7 0
5 cos(β)(429 cos6(β)−693 cos4(β)+315 cos2(β)−35)

16
√

7

7 1 −5e−iα(429 cos6(β)−495 cos4(β)+135 cos2(β)−5) sin(β)

32
√

2

7 2 5
32

√
3e−2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 3 − 5
32

√
3
2
e−3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 4 5
32

√
33
2
e−4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 5 − 5
64

√
33
2
e−5iα(13 cos(2β) + 11) sin5(β)

7 6 5
32

√
429e−6iα cos(β) sin6(β)

7 7 − 5
32

√
429
14
e−7iα sin7(β)

fgπ 1 (−1) 1
2

√
15
14
eiα sin(β)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

1 0 1
2

√
15
7

cos(β)

1 1 −1
2

√
15
14
e−iα sin(β)

3 (−3) 5
12

√
7
3
e3iα sin3(β)

3 (−2) 5
6

√
7
2
e2iα cos(β) sin2(β)

3 (−1) 1
24

√
35eiα(5 cos(2β) + 3) sin(β)

3 0 1
24

√
35
3

(3 cos(β) + 5 cos(3β))

3 1 − 1
24

√
35e−iα(5 cos(2β) + 3) sin(β)

3 2 5
6

√
7
2
e−2iα cos(β) sin2(β)

3 3 − 5
12

√
7
3
e−3iα sin3(β)

5 (−5) 11e5iα sin5(β)

32
√

15

5 (−4) 11e4iα cos(β) sin4(β)

16
√

6

5 (−3) 11e3iα(9 cos(2β)+7) sin3(β)

192
√

3

5 (−2) 11e2iα cos(β)(3 cos(2β)+1) sin2(β)

48
√

2

5 (−1)
11eiα(21 cos4(β)−14 cos2(β)+1) sin(β)

48
√

14

5 0 11(30 cos(β)+35 cos(3β)+63 cos(5β))

768
√

105

5 1 −11e−iα(21 cos4(β)−14 cos2(β)+1) sin(β)

48
√

14

5 2 11e−2iα cos(β)(3 cos(2β)+1) sin2(β)

48
√

2

5 3 −11e−3iα(9 cos(2β)+7) sin3(β)

192
√

3

5 4 11e−4iα cos(β) sin4(β)

16
√

6

5 5 −11e−5iα sin5(β)

32
√

15

7 (−7) − 3
16

√
715
14
e7iα sin7(β)

7 (−6) − 3
16

√
715e6iα cos(β) sin6(β)

7 (−5) − 3
32

√
55
2
e5iα(13 cos(2β) + 11) sin5(β)

7 (−4) − 3
16

√
55
2
e4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 (−3) − 3
16

√
5
2
e3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 (−2) − 3
16

√
5e2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 (−1) − 1
16

√
15
2
eiα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5) sin(β)

7 0 −1
8

√
15
7

cos(β) (429 cos6(β)− 693 cos4(β) + 315 cos2(β)− 35)

7 1 1
16

√
15
2
e−iα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5) sin(β)

7 2 − 3
16

√
5e−2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)
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(l1l2m
′
1) t q btq

7 3 3
16

√
5
2
e−3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 4 − 3
16

√
55
2
e−4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 5 3
32

√
55
2
e−5iα(13 cos(2β) + 11) sin5(β)

7 6 − 3
16

√
715e−6iα cos(β) sin6(β)

7 7 3
16

√
715
14
e−7iα sin7(β)

fgδ 1 (−1)
√

3
14
eiα sin(β)

1 0
√

3
7

cos(β)

1 1 −
√

3
14
e−iα sin(β)

3 (−3) − 1
12

√
35
3
e3iα sin3(β)

3 (−2) −1
6

√
35
2
e2iα cos(β) sin2(β)

3 (−1) − 1
24

√
7eiα(5 cos(2β) + 3) sin(β)

3 0 − 1
24

√
7
3
(3 cos(β) + 5 cos(3β))

3 1 1
24

√
7e−iα(5 cos(2β) + 3) sin(β)

3 2 −1
6

√
35
2
e−2iα cos(β) sin2(β)

3 3 1
12

√
35
3
e−3iα sin3(β)

5 (−5) −11e5iα sin5(β)

4
√

3

5 (−4) −11
2

√
5
6
e4iα cos(β) sin4(β)

5 (−3) −11
24

√
5
3
e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) −11
6

√
5
2
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) −11
6

√
5
14
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 −11(30 cos(β)+35 cos(3β)+63 cos(5β))

96
√

21

5 1 11
6

√
5
14
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 −11
6

√
5
2
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 11
24

√
5
3
e−3iα(9 cos(2β) + 7) sin3(β)

5 4 −11
2

√
5
6
e−4iα cos(β) sin4(β)

5 5 11e−5iα sin5(β)

4
√

3

7 (−7) 3
16

√
143
14
e7iα sin7(β)

7 (−6) 3
16

√
143e6iα cos(β) sin6(β)

7 (−5) 3
32

√
11
2
e5iα(13 cos(2β) + 11) sin5(β)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

7 (−4) 3
16

√
11
2
e4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 (−3)
3e3iα(143 cos4(β)−66 cos2(β)+3) sin3(β)

16
√

2

7 (−2) 3
16
e2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 (−1) 1
16

√
3
2
eiα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5) sin(β)

7 0 1
8

√
3
7

cos(β) (429 cos6(β)− 693 cos4(β) + 315 cos2(β)− 35)

7 1 − 1
16

√
3
2
e−iα (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5)

sin(β)
7 2 3

16
e−2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 3 −3e−3iα(143 cos4(β)−66 cos2(β)+3) sin3(β)

16
√

2

7 4 3
16

√
11
2
e−4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 5 − 3
32

√
11
2
e−5iα(13 cos(2β) + 11) sin5(β)

7 6 3
16

√
143e−6iα cos(β) sin6(β)

7 7 − 3
16

√
143
14
e−7iα sin7(β)

fgφ 1 (−1) eiα sin(β)

2
√

2

1 0 cos(β)
2

1 1 − e−iα sin(β)

2
√

2

3 (−3) − 7
12

√
5e3iα sin3(β)

3 (−2) −7
2

√
5
6
e2iα cos(β) sin2(β)

3 (−1) −7eiα(5 cos(2β)+3) sin(β)

8
√

3

3 0 − 7
24

(3 cos(β) + 5 cos(3β))

3 1 7e−iα(5 cos(2β)+3) sin(β)

8
√

3

3 2 −7
2

√
5
6
e−2iα cos(β) sin2(β)

3 3 7
12

√
5e−3iα sin3(β)

5 (−5) 11
32

√
7e5iα sin5(β)

5 (−4) 11
16

√
35
2
e4iα cos(β) sin4(β)

5 (−3) 11
192

√
35e3iα(9 cos(2β) + 7) sin3(β)

5 (−2) 11
16

√
35
6
e2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 (−1) 11
16

√
5
6
eiα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 0 11
768

(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 −11
16

√
5
6
e−iα (21 cos4(β)− 14 cos2(β) + 1) sin(β)

5 2 11
16

√
35
6
e−2iα cos(β)(3 cos(2β) + 1) sin2(β)

5 3 − 11
192

√
35e−3iα(9 cos(2β) + 7) sin3(β)
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(l1l2m
′
1) t q btq

5 4 11
16

√
35
2
e−4iα cos(β) sin4(β)

5 5 −11
32

√
7e−5iα sin5(β)

7 (−7) − 1
112

√
429
2
e7iα sin7(β)

7 (−6) − 1
16

√
429
7
e6iα cos(β) sin6(β)

7 (−5) − 1
32

√
33
14
e5iα(13 cos(2β) + 11) sin5(β)

7 (−4) − 1
16

√
33
14
e4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 (−3) − 1
16

√
3
14
e3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 (−2) − 1
16

√
3
7
e2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 (−1) − eiα(429 cos6(β)−495 cos4(β)+135 cos2(β)−5) sin(β)

16
√

14

7 0 1
56

(−429 cos7(β) + 693 cos5(β)− 315 cos3(β) + 35 cos(β))

7 1
e−iα(429 cos6(β)−495 cos4(β)+135 cos2(β)−5) sin(β)

16
√

14

7 2 − 1
16

√
3
7
e−2iα cos(β) (143 cos4(β)− 110 cos2(β) + 15) sin2(β)

7 3 1
16

√
3
14
e−3iα (143 cos4(β)− 66 cos2(β) + 3) sin3(β)

7 4 − 1
16

√
33
14
e−4iα cos(β)(13 cos(2β) + 7) sin4(β)

7 5 1
32

√
33
14
e−5iα(13 cos(2β) + 11) sin5(β)

7 6 − 1
16

√
429
7
e−6iα cos(β) sin6(β)

7 7 1
112

√
429
2
e−7iα sin7(β)

ggσ 0 0 1
9

2 (−2) 5e2iα sin2(β)

6
√

6

2 (−1) 5eiα sin(2β)

6
√

6

2 0 5
36

(3 cos(2β) + 1)

2 1 −5e−iα sin(2β)

6
√

6

2 2 5e−2iα sin2(β)

6
√

6

4 (−4) 1
8

√
35
2
e4iα sin4(β)

4 (−3) 1
4

√
35e3iα sin3(β) cos(β)

4 (−2) 1
8

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) 1
16

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 1
64

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 1
16

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 1
8

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

4 3 −1
4

√
35e−3iα sin3(β) cos(β)

4 4 1
8

√
35
2
e−4iα sin4(β)

6 (−6) 13
96

√
77
3
e6iα sin6(β)

6 (−5) 13
48

√
77e5iα sin5(β) cos(β)

6 (−4) 13
96

√
7
2
e4iα sin4(β)(11 cos(2β) + 9)

6 (−3) 13
96

√
35
3
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) 13
96

√
35
3
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) 13
24

√
7
6
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
4608

6 1 −13
24

√
7
6
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 13
96

√
35
3
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 −13
96

√
35
3
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 13
96

√
7
2
e−4iα sin4(β)(11 cos(2β) + 9)

6 5 −13
48

√
77e−5iα sin5(β) cos(β)

6 6 13
96

√
77
3
e−6iα sin6(β)

8 (−8) 17
384

√
715
2
e8iα sin8(β)

8 (−7) 17
96

√
715
2
e7iα sin7(β) cos(β)

8 (−6) 17
384

√
143
3
e6iα sin6(β)(15 cos(2β) + 13)

8 (−5) 17
192

√
1001

2
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) 17
192

√
77
2
e4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 (−3) 17
96

√
385
6
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2) 17
192

√
35e2iα sin2(β) (143 cos6(β)− 143 cos4(β) + 33

cos2(β)− 1)

8 (−1) 17eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

6144
√

2

8 0
17(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)

1152

8 1 −17e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

6144
√

2

8 2 17
192

√
35e−2iα sin2(β) (143 cos6(β)− 143 cos4(β)

+33 cos2(β)− 1)
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(l1l2m
′
1) t q btq

8 3 −17
96

√
385
6
e−3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 4 17
192

√
77
2
e−4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 5 − 17
192

√
1001

2
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6 17
384

√
143
3
e−6iα sin6(β)(15 cos(2β) + 13)

8 7 −17
96

√
715
2
e−7iα sin7(β) cos(β)

8 8 17
384

√
715
2
e−8iα sin8(β)

ggπ 0 0 2
9

2 (−2) 17e2iα sin2(β)

12
√

6

2 (−1) 17eiα sin(β) cos(β)

6
√

6

2 0 17
72

(3 cos(2β) + 1)

2 1 −17e−iα sin(β) cos(β)

6
√

6

2 2 17e−2iα sin2(β)

12
√

6

4 (−4) 1
8

√
35
2
e4iα sin4(β)

4 (−3) 1
4

√
35e3iα sin3(β) cos(β)

4 (−2) 1
8

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) 1
16

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 1
64

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 1
16

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 1
8

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 −1
4

√
35e−3iα sin3(β) cos(β)

4 4 1
8

√
35
2
e−4iα sin4(β)

6 (−6) − 13
960

√
77
3
e6iα sin6(β)

6 (−5) − 13
480

√
77e5iα sin5(β) cos(β)

6 (−4) − 13
960

√
7
2
e4iα sin4(β)(11 cos(2β) + 9)

6 (−3) − 13
192

√
7
15
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) − 13
192

√
7
15
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) − 13
240

√
7
6
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 −13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
46080

6 1 13
240

√
7
6
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

6 2 − 13
192

√
7
15
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 13
192

√
7
15
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 − 13
960

√
7
2
e−4iα sin4(β)(11 cos(2β) + 9)

6 5 13
480

√
77e−5iα sin5(β) cos(β)

6 6 − 13
960

√
77
3
e−6iα sin6(β)

8 (−8) −17
48

√
143
10
e8iα sin8(β)

8 (−7) −17
12

√
143
10
e7iα sin7(β) cos(β)

8 (−6) − 17
240

√
143
3
e6iα sin6(β)(15 cos(2β) + 13)

8 (−5) − 17
120

√
1001

2
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) − 17
120

√
77
2
e4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 (−3) −17
96

√
77
30
e3iα sin3(β) cos(β)(52 cos(2β) + 39 cos(4β) + 37)

8 (−2) −17
24

√
7
5
e2iα sin2(β) (143 cos6(β)− 143 cos4(β)

+33 cos2(β)− 1)

8 (−1) −17eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

3840
√

2

8 0 − 17
720

(6435 cos8(β)− 12012 cos6(β) + 6930 cos4(β)− 1260
cos2(β) + 35)

8 1 17e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

3840
√

2

8 2 −17
24

√
7
5
e−2iα sin2(β) (143 cos6(β)− 143 cos4(β)

+33 cos2(β)− 1)

8 3 17
96

√
77
30
e−3iα sin3(β) cos(β)(52 cos(2β) + 39 cos(4β) + 37)

8 4 − 17
120

√
77
2
e−4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 5 17
120

√
1001

2
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6 − 17
240

√
143
3
e−6iα sin6(β)(15 cos(2β) + 13)

8 7 17
12

√
143
10
e−7iα sin7(β) cos(β)

8 8 −17
48

√
143
10
e−8iα sin8(β)

ggδ 0 0 2
9

2 (−2) 1
3

√
2
3
e2iα sin2(β)

2 (−1) 1
3

√
2
3
eiα sin(2β)

2 0 1
9
(3 cos(2β) + 1)
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(l1l2m
′
1) t q btq

2 1 −1
3

√
2
3
e−iα sin(2β)

2 2 1
3

√
2
3
e−2iα sin2(β)

4 (−4) −11
72

√
35
2
e4iα sin4(β)

4 (−3) −11
36

√
35e3iα sin3(β) cos(β)

4 (−2) −11
72

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) − 11
144

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 − 11
576

(20 cos(2β) + 35 cos(4β) + 9)

4 1 11
144

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 −11
72

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 11
36

√
35e−3iα sin3(β) cos(β)

4 4 −11
72

√
35
2
e−4iα sin4(β)

6 (−6) −143
480

√
77
3
e6iα sin6(β)

6 (−5) −143
240

√
77e5iα sin5(β) cos(β)

6 (−4) −143
480

√
7
2
e4iα sin4(β)(11 cos(2β) + 9)

6 (−3) −143
96

√
7
15
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) −143
96

√
7
15
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) −143
120

√
7
6
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 −143
720

(231 cos6(β)− 315 cos4(β) + 105 cos2(β)− 5)

6 1 143
120

√
7
6
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 −143
96

√
7
15
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 143
96

√
7
15
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 −143
480

√
7
2
e−4iα sin4(β)(11 cos(2β) + 9)

6 5 143
240

√
77e−5iα sin5(β) cos(β)

6 6 −143
480

√
77
3
e−6iα sin6(β)

8 (−8) 17
96

√
143
10
e8iα sin8(β)

8 (−7) 17
24

√
143
10
e7iα sin7(β) cos(β)

8 (−6) 17
480

√
143
3
e6iα sin6(β)(15 cos(2β) + 13)

8 (−5) 17
240

√
1001

2
e5iα sin5(β) cos(β)(5 cos(2β) + 3)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

8 (−4) 17
240

√
77
2
e4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 (−3) 17
24

√
77
30
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2) 17
48

√
7
5
e2iα sin2(β) (143 cos6(β)− 143 cos4(β) + 33 cos2(β)− 1)

8 (−1) 17eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

7680
√

2

8 0
17(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)

1440

8 1 −17e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

7680
√

2

8 2 17
48

√
7
5
e−2iα sin2(β) (143 cos6(β)− 143 cos4(β) + 33 cos2(β)− 1)

8 3 −17
24

√
77
30
e−3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 4 17
240

√
77
2
e−4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 5 − 17
240

√
1001

2
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6 17
480

√
143
3
e−6iα sin6(β)(15 cos(2β) + 13)

8 7 −17
24

√
143
10
e−7iα sin7(β) cos(β)

8 8 17
96

√
143
10
e−8iα sin8(β)

ggφ 0 0 2
9

2 (−2) −7e2iα sin2(β)

12
√

6

2 (−1) −7eiα sin(β) cos(β)

6
√

6

2 0 − 7
72

(3 cos(2β) + 1)

2 1 7e−iα sin(β) cos(β)

6
√

6

2 2 −7e−2iα sin2(β)

12
√

6

4 (−4) − 7
24

√
35
2
e4iα sin4(β)

4 (−3) − 7
12

√
35e3iα sin3(β) cos(β)

4 (−2) − 7
24

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) − 7
48

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 − 7
192

(20 cos(2β) + 35 cos(4β) + 9)

4 1 7
48

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 − 7
24

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 7
12

√
35e−3iα sin3(β) cos(β)

4 4 − 7
24

√
35
2
e−4iα sin4(β)

6 (−6) 221
960

√
77
3
e6iα sin6(β)

Table B.30: Part XXX

270



(l1l2m
′
1) t q btq

6 (−5) 221
480

√
77e5iα sin5(β) cos(β)

6 (−4) 221
960

√
7
2
e4iα sin4(β)(11 cos(2β) + 9)

6 (−3) 221
192

√
7
15
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) 221
192

√
7
15
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) 221
240

√
7
6
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 221(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
46080

6 1 −221
240

√
7
6
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 221
192

√
7
15
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 −221
192

√
7
15
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 221
960

√
7
2
e−4iα sin4(β)(11 cos(2β) + 9)

6 5 −221
480

√
77e−5iα sin5(β) cos(β)

6 6 221
960

√
77
3
e−6iα sin6(β)

8 (−8) − 17
336

√
143
10
e8iα sin8(β)

8 (−7) −17
84

√
143
10
e7iα sin7(β) cos(β)

8 (−6) − 17
840

√
143
3
e6iα sin6(β) (15 cos2(β)− 1)

8 (−5) − 17
120

√
143
14
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) − 17
120

√
11
14
e4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 (−3) −17
96

√
11
210
e3iα sin3(β) cos(β)(52 cos(2β) + 39 cos(4β) + 37)

8 (−2) −17e2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)
24
√

35

8 (−1) −17eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

26880
√

2

8 0 −17(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)
5040

8 1 17e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

26880
√

2

8 2 −17e−2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)
24
√

35

8 3 17
96

√
11
210
e−3iα sin3(β) cos(β)(52 cos(2β) + 39 cos(4β) + 37)

8 4 − 17
120

√
11
14
e−4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 5 17
120

√
143
14
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6 − 17
840

√
143
3
e−6iα sin6(β) (15 cos2(β)− 1)

8 7 17
84

√
143
10
e−7iα sin7(β) cos(β)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

8 8 − 17
336

√
143
10
e−8iα sin8(β)

ggγ 0 0 2
9

2 (−2) −7e2iα sin2(β)

3
√

6

2 (−1) −7eiα sin(2β)

3
√

6

2 0 7
9
− 7 cos2(β)

3

2 1 7e−iα sin(2β)

3
√

6

2 2 −7e−2iα sin2(β)

3
√

6

4 (−4) 7
36

√
35
2
e4iα sin4(β)

4 (−3) 7
18

√
35e3iα sin3(β) cos(β)

4 (−2) 7
36

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) 7
72

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 7
288

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 7
72

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 7
36

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 − 7
18

√
35e−3iα sin3(β) cos(β)

4 4 7
36

√
35
2
e−4iα sin4(β)

6 (−6) − 13
240

√
77
3
e6iα sin6(β)

6 (−5) − 13
120

√
77e5iα sin5(β) cos(β)

6 (−4) − 13
240

√
7
2
e4iα sin4(β)(11 cos(2β) + 9)

6 (−3) −13
48

√
7
15
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) −13
48

√
7
15
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) −13
60

√
7
6
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 − 13
360

(231 cos6(β)− 315 cos4(β) + 105 cos2(β)− 5)

6 1 13
60

√
7
6
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 −13
48

√
7
15
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 13
48

√
7
15
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 − 13
240

√
7
2
e−4iα sin4(β)(11 cos(2β) + 9)

6 5 13
120

√
77e−5iα sin5(β) cos(β)

6 6 − 13
240

√
77
3
e−6iα sin6(β)

8 (−8)
17
√

143
10
e8iα sin8(β)

2688

8 (−7) 17
672

√
143
10
e7iα sin7(β) cos(β)
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(l1l2m
′
1) t q btq

8 (−6)
17
√

143
3
e6iα sin6(β)(15 cos2(β)−1)

6720

8 (−5) 17
960

√
143
14
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) 17
960

√
11
14
e4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 (−3) 17
96

√
11
210
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2)
17e2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)

192
√

35

8 (−1) 17eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

215040
√

2

8 0
17(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)

40320

8 1 −17e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

215040
√

2

8 2
17e−2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)

192
√

35

8 3 −17
96

√
11
210
e−3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 4 17
960

√
11
14
e−4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 5 − 17
960

√
143
14
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6
17
√

143
3
e−6iα sin6(β)(15 cos2(β)−1)

6720

8 7 − 17
672

√
143
10
e−7iα sin7(β) cos(β)

8 8
17
√

143
10
e−8iα sin8(β)

2688

ghσ 1 (−1) eiα sin(β)√
22

1 0 cos(β)√
11

1 1 − e−iα sin(β)√
22

3 (−3) 7
12

√
5
11
e3iα sin3(β)

3 (−2) 7
2

√
5
66
e2iα sin2(β) cos(β)

3 (−1) 7eiα sin(β)(5 cos(2β)+3)

8
√

33

3 0 7(3 cos(β)+5 cos(3β))

24
√

11

3 1 −7e−iα sin(β)(5 cos(2β)+3)

8
√

33

3 2 7
2

√
5
66
e−2iα sin2(β) cos(β)

3 3 − 7
12

√
5
11
e−3iα sin3(β)

5 (−5) 1
16

√
77e5iα sin5(β)

5 (−4) 1
8

√
385
2
e4iα sin4(β) cos(β)

5 (−3) 1
96

√
385e3iα sin3(β)(9 cos(2β) + 7)

5 (−2) 1
8

√
385
6
e2iα sin2(β) cos(β)(3 cos(2β) + 1)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

5 (−1) 1
8

√
55
6
eiα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 0 1
384

√
11(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 −1
8

√
55
6
e−iα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 2 1
8

√
385
6
e−2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 3 − 1
96

√
385e−3iα sin3(β)(9 cos(2β) + 7)

5 4 1
8

√
385
2
e−4iα sin4(β) cos(β)

5 5 − 1
16

√
77e−5iα sin5(β)

7 (−7) 5
32

√
39
2
e7iα sin7(β)

7 (−6) 5
32

√
273e6iα sin6(β) cos(β)

7 (−5) 5
64

√
21
2
e5iα sin5(β)(13 cos(2β) + 11)

7 (−4) 5
32

√
21
2
e4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 (−3) 5
32

√
21
22
e3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 (−2) 5
32

√
21
11
e2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 (−1) 5
32

√
7
22
eiα sin(β) (429 cos6(β)− 495 cos4(β) + 135 cos2(β)− 5)

7 0 5(175 cos(β)+189 cos(3β)+231 cos(5β)+429 cos(7β))

1024
√

11

7 1 − 5
32

√
7
22
e−iα sin(β) (429 cos6(β)− 495 cos4(β) + 135 cos2(β)

−5)

7 2 5
32

√
21
11
e−2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 3 − 5
32

√
21
22
e−3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 4 5
32

√
21
2
e−4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 5 − 5
64

√
21
2
e−5iα sin5(β)(13 cos(2β) + 11)

7 6 5
32

√
273e−6iα sin6(β) cos(β)

7 7 − 5
32

√
39
2
e−7iα sin7(β)

9 (−9) 19
768

√
1105e9iα sin9(β)

9 (−8) 19
128

√
1105

2
e8iα sin8(β) cos(β)

9 (−7) 19
512

√
65e7iα sin7(β)(17 cos(2β) + 15)

9 (−6) 19
64

√
65
3
e6iα sin6(β) cos(β) (17 cos2(β)− 3)

9 (−5) 19
128

√
13e5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 (−4) 19
64

√
455
2
e4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 (−3) 19
128

√
35
3
e3iα sin3(β) (221 cos6(β)− 195 cos4(β) + 39 cos2(β)− 1)
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(l1l2m
′
1) t q btq

9 (−2) 19
64

√
5e2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β) + 91 cos2(β)

−7)

9 (−1) 19
128

√
5
22
eiα sin(β) (2431 cos8(β)− 4004 cos6(β) + 2002 cos4(β)

9 (−1) −308 cos2(β) + 7)

9 0 19(4410 cos(β)+11(420 cos(3β)+13(36 cos(5β)+45 cos(7β)+85 cos(9β))))

98304
√

11

9 1 − 19
128

√
5
22
e−iα sin(β) (2431 cos8(β)− 4004 cos6(β)

+2002 cos4(β)− 308 cos2(β) + 7)

9 2 19
64

√
5e−2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β)

+91 cos2(β)− 7)

9 3 − 19
128

√
35
3
e−3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 4 19
64

√
455
2
e−4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 5 − 19
128

√
13e−5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 6 19
64

√
65
3
e−6iα sin6(β) cos(β) (17 cos2(β)− 3)

9 7 − 19
512

√
65e−7iα sin7(β)(17 cos(2β) + 15)

9 8 19
128

√
1105

2
e−8iα sin8(β) cos(β)

9 9 − 19
768

√
1105e−9iα sin9(β)

ghπ 1 (−1) 4
5

√
3
11
eiα sin(β)

1 0 4
5

√
6
11

cos(β)

1 1 −4
5

√
3
11
e−iα sin(β)

3 (−3) 133e3iα sin3(β)

12
√

330

3 (−2) 133e2iα sin2(β) cos(β)

12
√

55

3 (−1) 133eiα sin(β)(5 cos(2β)+3)

120
√

22

3 0 133(3 cos(β)+5 cos(3β))

120
√

66

3 1 −133e−iα sin(β)(5 cos(2β)+3)

120
√

22

3 2 133e−2iα sin2(β) cos(β)

12
√

55

3 3 −133e−3iα sin3(β)

12
√

330

5 (−5) 1
8

√
77
6
e5iα sin5(β)

5 (−4) 1
8

√
385
3
e4iα sin4(β) cos(β)

5 (−3) 1
48

√
385
6
e3iα sin3(β)(9 cos(2β) + 7)

5 (−2) 1
24

√
385e2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 (−1) 1
24

√
55eiα sin(β) (21 cos4(β)− 14 cos2(β) + 1)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

5 0 1
192

√
11
6

(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 − 1
24

√
55e−iα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 2 1
24

√
385e−2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 3 − 1
48

√
385
6
e−3iα sin3(β)(9 cos(2β) + 7)

5 4 1
8

√
385
3
e−4iα sin4(β) cos(β)

5 5 −1
8

√
77
6
e−5iα sin5(β)

7 (−7) − 3
64

√
13e7iα sin7(β)

7 (−6) − 3
32

√
91
2
e6iα sin6(β) cos(β)

7 (−5) − 3
64

√
7e5iα sin5(β) (13 cos2(β)− 1)

7 (−4) − 3
64

√
7e4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 (−3) − 3
64

√
7
11
e3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 (−2) − 3
32

√
7
22
e2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 (−1) − 1
64

√
21
11
eiα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 0 −
√

3
22

(175 cos(β)+189 cos(3β)+231 cos(5β)+429 cos(7β))

1024

7 1 1
64

√
21
11
e−iα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 2 − 3
32

√
7
22
e−2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 3 3
64

√
7
11
e−3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 4 − 3
64

√
7e−4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 5 3
64

√
7e−5iα sin5(β) (13 cos2(β)− 1)

7 6 − 3
32

√
91
2
e−6iα sin6(β) cos(β)

7 7 3
64

√
13e−7iα sin7(β)

9 (−9) − 19
192

√
1105

6
e9iα sin9(β)

9 (−8) −19
64

√
1105

3
e8iα sin8(β) cos(β)

9 (−7) −19
64

√
65
6
e7iα sin7(β) (17 cos2(β)− 1)

9 (−6) −19
96

√
65
2
e6iα sin6(β) cos(β)(17 cos(2β) + 11)

9 (−5) −19
32

√
13
6
e5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 (−4) −19
32

√
455
3
e4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)
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(l1l2m
′
1) t q btq

9 (−3) −19
96

√
35
2
e3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 (−2) −19
16

√
5
6
e2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β)

+91 cos2(β)− 7)

9 (−1) −19
64

√
5
33
eiα sin(β) (2431 cos8(β)− 4004 cos6(β)

+2002 cos4(β)− 308 cos2(β) + 7)

9 0 −19(4410 cos(β)+11(420 cos(3β)+13(36 cos(5β)+45 cos(7β)+85 cos(9β))))

24576
√

66

9 1 19
64

√
5
33
e−iα sin(β) (2431 cos8(β)− 4004 cos6(β) + 2002 cos4(β)

−308 cos2(β) + 7)

9 2 −19
16

√
5
6
e−2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β)

+91 cos2(β)− 7)

9 3 19
96

√
35
2
e−3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 4 −19
32

√
455
3
e−4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 5 19
32

√
13
6
e−5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 6 −19
96

√
65
2
e−6iα sin6(β) cos(β)(17 cos(2β) + 11)

9 7 19
64

√
65
6
e−7iα sin7(β) (17 cos2(β)− 1)

9 8 −19
64

√
1105

3
e−8iα sin8(β) cos(β)

9 9 19
192

√
1105

6
e−9iα sin9(β)

ghδ 1 (−1) 1
5

√
42
11
eiα sin(β)

1 0 2
5

√
21
11

cos(β)

1 1 −1
5

√
42
11
e−iα sin(β)

3 (−3) 7
12

√
7

165
e3iα sin3(β)

3 (−2) 7
6

√
7

110
e2iα sin2(β) cos(β)

3 (−1) 7
120

√
7
11
eiα sin(β)(5 cos(2β) + 3)

3 0 7
120

√
7
33

(3 cos(β) + 5 cos(3β))

3 1 − 7
120

√
7
11
e−iα sin(β)(5 cos(2β) + 3)

3 2 7
6

√
7

110
e−2iα sin2(β) cos(β)

3 3 − 7
12

√
7

165
e−3iα sin3(β)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

5 (−5) − 7
16

√
11
3
e5iα sin5(β)

5 (−4) −7
8

√
55
6
e4iα sin4(β) cos(β)

5 (−3) − 7
96

√
55
3
e3iα sin3(β)(9 cos(2β) + 7)

5 (−2) − 7
24

√
55
2
e2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 (−1) − 1
24

√
385
2
eiα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 0 − 1
384

√
77
3

(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 1
24

√
385
2
e−iα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 2 − 7
24

√
55
2
e−2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 3 7
96

√
55
3
e−3iα sin3(β)(9 cos(2β) + 7)

5 4 −7
8

√
55
6
e−4iα sin4(β) cos(β)

5 5 7
16

√
11
3
e−5iα sin5(β)

7 (−7) −3
2

√
13
14
e7iα sin7(β)

7 (−6) −3
2

√
13e6iα sin6(β) cos(β)

7 (−5) −3e5iα sin5(β)(13 cos(2β)+11)

4
√

2

7 (−4) −3e4iα sin4(β) cos(β)(13 cos2(β)−3)√
2

7 (−3) −3e3iα sin3(β)(143 cos4(β)−66 cos2(β)+3)
2
√

22

7 (−2) −3e2iα sin2(β) cos(β)(143 cos4(β)−110 cos2(β)+15)
2
√

11

7 (−1) −1
2

√
3
22
eiα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 0
√

3
77

cos(β) (−429 cos6(β) + 693 cos4(β)− 315 cos2(β) + 35)

7 1 1
2

√
3
22
e−iα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 2 −3e−2iα sin2(β) cos(β)(143 cos4(β)−110 cos2(β)+15)
2
√

11

7 3
3e−3iα sin3(β)(143 cos4(β)−66 cos2(β)+3)

2
√

22

7 4 −3e−4iα sin4(β) cos(β)(13 cos2(β)−3)√
2

7 5 3e−5iα sin5(β)(13 cos(2β)+11)

4
√

2

7 6 −3
2

√
13e−6iα sin6(β) cos(β)

7 7 3
2

√
13
14
e−7iα sin7(β)

9 (−9) 19
192

√
1105
21
e9iα sin9(β)
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(l1l2m
′
1) t q btq

9 (−8) 19
32

√
1105
42
e8iα sin8(β) cos(β)

9 (−7) 19
64

√
65
21
e7iα sin7(β) (17 cos2(β)− 1)

9 (−6) 19
96

√
65
7
e6iα sin6(β) cos(β)(17 cos(2β) + 11)

9 (−5) 19
32

√
13
21
e5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 (−4) 19
16

√
65
6
e4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 (−3) 19
96

√
5e3iα sin3(β) (221 cos6(β)− 195 cos4(β) + 39 cos2(β)− 1)

9 (−2) 19
16

√
5
21
e2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β)

+91 cos2(β)− 7)

9 (−1) 19
32

√
5

462
eiα sin(β) (2431 cos8(β)− 4004 cos6(β) + 2002 cos4(β)

−308 cos2(β) + 7)

9 0 19(4410 cos(β)+11(420 cos(3β)+13(36 cos(5β)+45 cos(7β)+85 cos(9β))))

24576
√

231

9 1 −19
32

√
5

462
e−iα sin(β) (2431 cos8(β)− 4004 cos6(β)

+2002 cos4(β)− 308 cos2(β) + 7)

9 2 19
16

√
5
21
e−2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β)

+91 cos2(β)− 7)

9 3 −19
96

√
5e−3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 4 19
16

√
65
6
e−4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 5 −19
32

√
13
21
e−5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 6 19
96

√
65
7
e−6iα sin6(β) cos(β)(17 cos(2β) + 11)

9 7 −19
64

√
65
21
e−7iα sin7(β) (17 cos2(β)− 1)

9 8 19
32

√
1105
42
e−8iα sin8(β) cos(β)

9 9 − 19
192

√
1105
21
e−9iα sin9(β)

ghφ 1 (−1) 4
5

√
2
11
eiα sin(β)

1 0 8 cos(β)

5
√

11

1 1 −4
5

√
2
11
e−iα sin(β)

3 (−3) −49e3iα sin3(β)

12
√

55

3 (−2) −49e2iα sin2(β) cos(β)

2
√

330

3 (−1) −49eiα sin(β)(5 cos(2β)+3)

40
√

33

3 0 −49(3 cos(β)+5 cos(3β))

120
√

11

3 1 49e−iα sin(β)(5 cos(2β)+3)

40
√

33

Table B.39: Part XXXXIX

279



B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

3 2 −49e−2iα sin2(β) cos(β)

2
√

330

3 3 49e−3iα sin3(β)

12
√

55

5 (−5) −1
8

√
77e5iα sin5(β)

5 (−4) −1
4

√
385
2
e4iα sin4(β) cos(β)

5 (−3) − 1
48

√
385e3iα sin3(β)(9 cos(2β) + 7)

5 (−2) −1
4

√
385
6
e2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 (−1) −1
4

√
55
6
eiα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 0 − 1
192

√
11(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 1
4

√
55
6
e−iα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 2 −1
4

√
385
6
e−2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 3 1
48

√
385e−3iα sin3(β)(9 cos(2β) + 7)

5 4 −1
4

√
385
2
e−4iα sin4(β) cos(β)

5 5 1
8

√
77e−5iα sin5(β)

7 (−7) 19
64

√
39
2
e7iα sin7(β)

7 (−6) 19
64

√
273e6iα sin6(β) cos(β)

7 (−5) 19
64

√
21
2
e5iα sin5(β) (13 cos2(β)− 1)

7 (−4) 19
64

√
21
2
e4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 (−3) 19
64

√
21
22
e3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 (−2) 19
64

√
21
11
e2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 (−1) 19
64

√
7
22
eiα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 0 19(175 cos(β)+189 cos(3β)+231 cos(5β)+429 cos(7β))

2048
√

11

7 1 −19
64

√
7
22
e−iα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 2 19
64

√
21
11
e−2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 3 −19
64

√
21
22
e−3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 4 19
64

√
21
2
e−4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 5 −19
64

√
21
2
e−5iα sin5(β) (13 cos2(β)− 1)

7 6 19
64

√
273e−6iα sin6(β) cos(β)

7 7 −19
64

√
39
2
e−7iα sin7(β)

9 (−9) −19
√

1105e9iα sin9(β)
2688
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(l1l2m
′
1) t q btq

9 (−8) − 19
448

√
1105

2
e8iα sin8(β) cos(β)

9 (−7) − 19
896

√
65e7iα sin7(β) (17 cos2(β)− 1)

9 (−6) − 19
448

√
65
3
e6iα sin6(β) cos(β)(17 cos(2β) + 11)

9 (−5) − 19
448

√
13e5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 (−4) −19
32

√
65
14
e4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 (−3) −19
64

√
5
21
e3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 (−2) − 19
224

√
5e2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β)

+91 cos2(β)− 7)

9 (−1) − 19
448

√
5
22
eiα sin(β) (2431 cos8(β)− 4004 cos6(β) + 2002 cos4(β)

−308 cos2(β) + 7)

9 0 −19(4410 cos(β)+11(420 cos(3β)+13(36 cos(5β)+45 cos(7β)+85 cos(9β))))

344064
√

11

9 1 19
448

√
5
22
e−iα sin(β) (2431 cos8(β)− 4004 cos6(β) + 2002 cos4(β)

−308 cos2(β) + 7)

9 2 − 19
224

√
5e−2iα sin2(β) cos(β) (221 cos6(β)− 273 cos4(β)

+91 cos2(β)− 7)

9 3 19
64

√
5
21
e−3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 4 −19
32

√
65
14
e−4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 5 19
448

√
13e−5iα sin5(β) (85 cos4(β)− 30 cos2(β) + 1)

9 6 − 19
448

√
65
3
e−6iα sin6(β) cos(β)(17 cos(2β) + 11)

9 7 19
896

√
65e−7iα sin7(β) (17 cos2(β)− 1)

9 8 − 19
448

√
1105

2
e−8iα sin8(β) cos(β)

9 9 19
√

1105e−9iα sin9(β)
2688

ghγ 1 (−1) 3
5

√
2
11
eiα sin(β)

1 0 6 cos(β)

5
√

11

1 1 −3
5

√
2
11
e−iα sin(β)

3 (−3) −49e3iα sin3(β)

6
√

55

3 (−2) −49e2iα sin2(β) cos(β)√
330

3 (−1) −49eiα sin(β)(5 cos(2β)+3)

20
√

33

3 0
49 cos(β)(3−5 cos2(β))

15
√

11

3 1 49e−iα sin(β)(5 cos(2β)+3)

20
√

33

3 2 −49e−2iα sin2(β) cos(β)√
330
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

3 3 49e−3iα sin3(β)

6
√

55

5 (−5) 1
8

√
77e5iα sin5(β)

5 (−4) 1
4

√
385
2
e4iα sin4(β) cos(β)

5 (−3) 1
48

√
385e3iα sin3(β)(9 cos(2β) + 7)

5 (−2) 1
4

√
385
6
e2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 (−1) 1
4

√
55
6
eiα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 0 1
192

√
11(30 cos(β) + 35 cos(3β) + 63 cos(5β))

5 1 −1
4

√
55
6
e−iα sin(β) (21 cos4(β)− 14 cos2(β) + 1)

5 2 1
4

√
385
6
e−2iα sin2(β) cos(β)(3 cos(2β) + 1)

5 3 − 1
48

√
385e−3iα sin3(β)(9 cos(2β) + 7)

5 4 1
4

√
385
2
e−4iα sin4(β) cos(β)

5 5 −1
8

√
77e−5iα sin5(β)

7 (−7) − 3
32

√
39
2
e7iα sin7(β)

7 (−6) − 3
32

√
273e6iα sin6(β) cos(β)

7 (−5) − 3
64

√
21
2
e5iα sin5(β)(13 cos(2β) + 11)

7 (−4) − 3
32

√
21
2
e4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 (−3) − 3
32

√
21
22
e3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 (−2) − 3
32

√
21
11
e2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 (−1) − 3
32

√
7
22
eiα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 0 −3(175 cos(β)+189 cos(3β)+231 cos(5β)+429 cos(7β))

1024
√

11

7 1 3
32

√
7
22
e−iα sin(β) (429 cos6(β)− 495 cos4(β)

+135 cos2(β)− 5)

7 2 − 3
32

√
21
11
e−2iα sin2(β) cos(β) (143 cos4(β)− 110 cos2(β) + 15)

7 3 3
32

√
21
22
e−3iα sin3(β) (143 cos4(β)− 66 cos2(β) + 3)

7 4 − 3
32

√
21
2
e−4iα sin4(β) cos(β)(13 cos(2β) + 7)

7 5 3
64

√
21
2
e−5iα sin5(β)(13 cos(2β) + 11)

7 6 − 3
32

√
273e−6iα sin6(β) cos(β)

7 7 3
32

√
39
2
e−7iα sin7(β)

9 (−9) 19
√

1105e9iα sin9(β)
16128

9 (−8)
19
√

1105
2
e8iα sin8(β) cos(β)

2688
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(l1l2m
′
1) t q btq

9 (−7)
19
√

65e7iα sin7(β)(17 cos2(β)−1)
5376

9 (−6)
19
√

65
3
e6iα sin6(β) cos(β)(17 cos(2β)+11)

2688

9 (−5)
19
√

13e5iα sin5(β)(85 cos4(β)−30 cos2(β)+1)
2688

9 (−4) 19
192

√
65
14
e4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 (−3) 19
384

√
5
21
e3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 (−2)
19
√

5e2iα sin2(β) cos(β)(221 cos6(β)−273 cos4(β)+91 cos2(β)−7)
1344

9 (−1)
19
√

5
22
eiα sin(β)(2431 cos8(β)−4004 cos6(β)+2002 cos4(β)−308 cos2(β)+7)

2688

9 0 19(4410 cos(β)+11(420 cos(3β)+13(36 cos(5β)+45 cos(7β)+85 cos(9β))))

2064384
√

11

9 1 −19
√

5
22
e−iα sin(β)(2431 cos8(β)−4004 cos6(β)+2002 cos4(β)−308 cos2(β)+7)

2688

9 2
19
√

5e−2iα sin2(β) cos(β)(221 cos6(β)−273 cos4(β)+91 cos2(β)−7)
1344

9 3 − 19
384

√
5
21
e−3iα sin3(β) (221 cos6(β)− 195 cos4(β)

+39 cos2(β)− 1)

9 4 19
192

√
65
14
e−4iα sin4(β) cos(β) (17 cos4(β)− 10 cos2(β) + 1)

9 5 −19
√

13e−5iα sin5(β)(85 cos4(β)−30 cos2(β)+1)
2688

9 6
19
√

65
3
e−6iα sin6(β) cos(β)(17 cos(2β)+11)

2688

9 7 −19
√

65e−7iα sin7(β)(17 cos2(β)−1)
5376

9 8
19
√

1105
2
e−8iα sin8(β) cos(β)

2688

9 9 −19
√

1105e−9iα sin9(β)
16128

hhσ 0 0 1
11

2 (−2) 5
22

√
3
2
e2iα sin2(β)

2 (−1) 5
22

√
3
2
eiα sin(2β)

2 0 5
44

(3 cos(2β) + 1)

2 1 − 5
22

√
3
2
e−iα sin(2β)

2 2 5
22

√
3
2
e−2iα sin2(β)

4 (−4) 9
88

√
35
2
e4iα sin4(β)

4 (−3) 9
44

√
35e3iα sin3(β) cos(β)

4 (−2) 9
88

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) 9
176

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 9
704

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 9
176

√
5e−iα sin(2β)(7 cos(2β) + 1)
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

4 2 9
88

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 − 9
44

√
35e−3iα sin3(β) cos(β)

4 4 9
88

√
35
2
e−4iα sin4(β)

6 (−6) 13
32

√
21
11
e6iα sin6(β)

6 (−5) 39
16

√
7
11
e5iα sin5(β) cos(β)

6 (−4) 39
352

√
7
2
e4iα sin4(β)(11 cos(2β) + 9)

6 (−3) 13
352

√
105e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) 13
352

√
105e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) 13
88

√
21
2
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 13(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
5632

6 1 −13
88

√
21
2
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 13
352

√
105e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 − 13
352

√
105e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 39
352

√
7
2
e−4iα sin4(β)(11 cos(2β) + 9)

6 5 −39
16

√
7
11
e−5iα sin5(β) cos(β)

6 6 13
32

√
21
11
e−6iα sin6(β)

8 (−8) 51
128

√
65
22
e8iα sin8(β)

8 (−7) 51
32

√
65
22
e7iα sin7(β) cos(β)

8 (−6) 17
64

√
39
11
e6iα sin6(β) (15 cos2(β)− 1)

8 (−5) 51
64

√
91
22
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) 51
64

√
7
22
e4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 (−3) 17
32

√
105
22
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2) 51
704

√
35e2iα sin2(β) (143 cos6(β)− 143 cos4(β)

+33 cos2(β)− 1)

8 (−1) 51eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

22528
√

2

8 0
17(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)

1408

8 1 −51e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

22528
√

2

8 2 51
704

√
35e−2iα sin2(β) (143 cos6(β)− 143 cos4(β)

+33 cos2(β)− 1)

8 3 −17
32

√
105
22
e−3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 4 51
64

√
7
22
e−4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)
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(l1l2m
′
1) t q btq

8 5 −51
64

√
91
22
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6 17
64

√
39
11
e−6iα sin6(β) (15 cos2(β)− 1)

8 7 −51
32

√
65
22
e−7iα sin7(β) cos(β)

8 8 51
128

√
65
22
e−8iα sin8(β)

10 (−10) 21
512

√
4199
11
e10iα sin10(β)

10 (−9) 21
256

√
20995

11
e9iα sin9(β) cos(β)

10 (−8) 21
512

√
1105
22
e8iα sin8(β)(19 cos(2β) + 17)

10 (−7) 21
512

√
3315
11
e7iα sin7(β) cos(β)(19 cos(2β) + 13)

10 (−6) 21
512

√
195
11
e6iα sin6(β) (323 cos4(β)− 102 cos2(β) + 3)

10 (−5) 21
128

√
39
11
e5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 (−4) 21
128

√
195
22
e4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)

10 (−3) 21
128

√
195
11
e3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 (−2) 21
256

√
15
22
e2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 (−1) 21
128

√
5
22
eiα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)

10 0
21(46189 cos10(β)−109395 cos8(β)+90090 cos6(β)−30030 cos4(β)+3465 cos2(β))

2816

−1323
2816

10 1 − 21
128

√
5
22
e−iα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)

10 2 21
256

√
15
22
e−2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 3 − 21
128

√
195
11
e−3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 4 21
128

√
195
22
e−4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)

10 5 − 21
128

√
39
11
e−5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 6 21
512

√
195
11
e−6iα sin6(β) (323 cos4(β)− 102 cos2(β) + 3)

10 7 − 21
512

√
3315
11
e−7iα sin7(β) cos(β)(19 cos(2β) + 13)

Table B.45: Part XLV

285



B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

10 8 21
512

√
1105
22
e−8iα sin8(β)(19 cos(2β) + 17)

10 9 − 21
256

√
20995

11
e−9iα sin9(β) cos(β)

10 10 21
512

√
4199
11
e−10iα sin10(β)

hhπ 0 0 2
11

2 (−2) 9
22

√
3
2
e2iα sin2(β)

2 (−1) 9
22

√
3
2
eiα sin(2β)

2 0 9
44

(3 cos(2β) + 1)

2 1 − 9
22

√
3
2
e−iα sin(2β)

2 2 9
22

√
3
2
e−2iα sin2(β)

4 (−4) 3
22

√
35
2
e4iα sin4(β)

4 (−3) 3
11

√
35e3iα sin3(β) cos(β)

4 (−2) 3
22

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) 3
44

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 3
176

(20 cos(2β) + 35 cos(4β) + 9)

4 1 − 3
44

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 3
22

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 − 3
11

√
35e−3iα sin3(β) cos(β)

4 4 3
22

√
35
2
e−4iα sin4(β)

6 (−6) 39
160

√
21
11
e6iα sin6(β)

6 (−5) 117
80

√
7
11
e5iα sin5(β) cos(β)

6 (−4)
117
√

7
2
e4iα sin4(β)(11 cos(2β)+9)

1760

6 (−3) 39
352

√
21
5
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) 39
352

√
21
5
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) 39
440

√
21
2
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 39
880

(231 cos6(β)− 315 cos4(β) + 105 cos2(β)− 5)

6 1 − 39
440

√
21
2
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 39
352

√
21
5
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 − 39
352

√
21
5
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4
117
√

7
2
e−4iα sin4(β)(11 cos(2β)+9)

1760

6 5 −117
80

√
7
11
e−5iα sin5(β) cos(β)
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′
1) t q btq

6 6 39
160

√
21
11
e−6iα sin6(β)

8 (−8) −51
64

√
13
110
e8iα sin8(β)

8 (−7) −51
16

√
13
110
e7iα sin7(β) cos(β)

8 (−6) − 17
320

√
39
11
e6iα sin6(β)(15 cos(2β) + 13)

8 (−5) − 51
160

√
91
22
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) − 51
160

√
7
22
e4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 (−3) −17
16

√
21
110
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2) − 51
352

√
7
5
e2iα sin2(β) (143 cos6(β)− 143 cos4(β)

+33 cos2(β)− 1)

8 (−1) −51eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

56320
√

2

8 0 −17(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)
3520

8 1 51e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

56320
√

2

8 2 − 51
352

√
7
5
e−2iα sin2(β) (143 cos6(β)− 143 cos4(β)

+33 cos2(β)− 1)

8 3 17
16

√
21
110
e−3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 4 − 51
160

√
7
22
e−4iα sin4(β) (65 cos4(β)− 26 cos2(β) + 1)

8 5 51
160

√
91
22
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6 − 17
320

√
39
11
e−6iα sin6(β)(15 cos(2β) + 13)

8 7 51
16

√
13
110
e−7iα sin7(β) cos(β)

8 8 −51
64

√
13
110
e−8iα sin8(β)

10 (−10) − 35
512

√
4199
11
e10iα sin10(β)

10 (−9) − 35
256

√
20995

11
e9iα sin9(β) cos(β)

10 (−8) − 35
512

√
1105
22
e8iα sin8(β)(19 cos(2β) + 17)

10 (−7) − 35
512

√
3315
11
e7iα sin7(β) cos(β)(19 cos(2β) + 13)

10 (−6) − 35
512

√
195
11
e6iα sin6(β) (323 cos4(β)− 102 cos2(β) + 3)

10 (−5) − 35
128

√
39
11
e5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 (−4) − 35
128

√
195
22
e4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)

Table B.47: Part XLVII
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

10 (−3) − 35
128

√
195
11
e3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 (−2) − 35
256

√
15
22
e2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 (−1) − 35
128

√
5
22
eiα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)

10 0 −35(46189 cos10(β)−109395 cos8(β)+90090 cos6(β)−30030 cos4(β)+3465 cos2(β))
2816

+2205
2816

10 1 35
128

√
5
22
e−iα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)

10 2 − 35
256

√
15
22
e−2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 3 35
128

√
195
11
e−3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 4 − 35
128

√
195
22
e−4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)

10 5 35
128

√
39
11
e−5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 6 − 35
512

√
195
11
e−6iα sin6(β) (323 cos4(β)− 102 cos2(β) + 3)

10 7 35
512

√
3315
11
e−7iα sin7(β) cos(β)(19 cos(2β) + 13)

10 8 − 35
512

√
1105
22
e−8iα sin8(β)(19 cos(2β) + 17)

10 9 35
256

√
20995

11
e−9iα sin9(β) cos(β)

10 10 − 35
512

√
4199
11
e−10iα sin10(β)

hhδ 0 0 2
11

2 (−2) 3
11

√
3
2
e2iα sin2(β)

2 (−1) 3
11

√
6eiα sin(β) cos(β)

2 0 3
22

(3 cos(2β) + 1)

2 1 − 3
11

√
6e−iα sin(β) cos(β)

2 2 3
11

√
3
2
e−2iα sin2(β)

4 (−4) − 3
88

√
35
2
e4iα sin4(β)

4 (−3) − 3
44

√
35e3iα sin3(β) cos(β)

4 (−2) − 3
88

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) − 3
176

√
5eiα sin(2β)(7 cos(2β) + 1)
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4 0 − 3
704

(20 cos(2β) + 35 cos(4β) + 9)

4 1 3
176

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 − 3
88

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 3
44

√
35e−3iα sin3(β) cos(β)

4 4 − 3
88

√
35
2
e−4iα sin4(β)

6 (−6) −117
160

√
21
11
e6iα sin6(β)

6 (−5) −351
80

√
7
11
e5iα sin5(β) cos(β)

6 (−4) −351
√

7
2
e4iα sin4(β)(11 cos(2β)+9)

1760

6 (−3) −117
352

√
21
5
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) −117
352

√
21
5
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) −117
440

√
21
2
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 −117
880

(231 cos6(β)− 315 cos4(β) + 105 cos2(β)− 5)

6 1 117
440

√
21
2
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 −117
352

√
21
5
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 117
352

√
21
5
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 −351
√

7
2
e−4iα sin4(β)(11 cos(2β)+9)

1760

6 5 351
80

√
7
11
e−5iα sin5(β) cos(β)

6 6 −117
160

√
21
11
e−6iα sin6(β)

8 (−8) −867
224

√
13
110
e8iα sin8(β)

8 (−7) −867
56

√
13
110
e7iα sin7(β) cos(β)

8 (−6) −289
560

√
39
11
e6iα sin6(β) (15 cos2(β)− 1)

8 (−5) −867
80

√
13
154
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) −867e4iα sin4(β)(65 cos4(β)−26 cos2(β)+1)
80
√

154

8 (−3) −289
8

√
3

770
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2) −867e2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)
176
√

35

8 (−1) −867eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

197120
√

2

8 0 −289(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)
12320

8 1 867e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

197120
√

2

8 2 −867e−2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)
176
√

35
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

8 3 289
8

√
3

770
e−3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 4 −867e−4iα sin4(β)(65 cos4(β)−26 cos2(β)+1)
80
√

154

8 5 867
80

√
13
154
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6 −289
560

√
39
11
e−6iα sin6(β) (15 cos2(β)− 1)

8 7 867
56

√
13
110
e−7iα sin7(β) cos(β)

8 8 −867
224

√
13
110
e−8iα sin8(β)

10 (−10) 5
128

√
4199
11
e10iα sin10(β)

10 (−9) 5
64

√
20995

11
e9iα sin9(β) cos(β)

10 (−8) 5
64

√
1105
22
e8iα sin8(β) (19 cos2(β)− 1)

10 (−7) 5
64

√
3315
11
e7iα sin7(β) cos(β) (19 cos2(β)− 3)

10 (−6) 5
128

√
195
11
e6iα sin6(β) (323 cos4(β)− 102 cos2(β) + 3)

10 (−5) 5
32

√
39
11
e5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 (−4) 5
32

√
195
22
e4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)

10 (−3) 5
32

√
195
11
e3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 (−2) 5
64

√
15
22
e2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 (−1) 5
32

√
5
22
eiα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)
10 0 5

704
(46189 cos10(β)− 109395 cos8(β) + 90090 cos6(β)

−30030 cos4(β) + 3465 cos2(β)− 63)

10 1 − 5
32

√
5
22
e−iα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)

10 2 5
64

√
15
22
e−2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 3 − 5
32

√
195
11
e−3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 4 5
32

√
195
22
e−4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)
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′
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10 5 − 5
32

√
39
11
e−5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 6 5
128

√
195
11
e−6iα sin6(β) (323 cos4(β)− 102 cos2(β) + 3)

10 7 − 5
64

√
3315
11
e−7iα sin7(β) cos(β) (19 cos2(β)− 3)

10 8 5
64

√
1105
22
e−8iα sin8(β) (19 cos2(β)− 1)

10 9 − 5
64

√
20995

11
e−9iα sin9(β) cos(β)

10 10 5
128

√
4199
11
e−10iα sin10(β)

hhφ 0 0 2
11

2 (−2) 1
22

√
3
2
e2iα sin2(β)

2 (−1) 1
22

√
3
2
eiα sin(2β)

2 0 1
44

(3 cos(2β) + 1)

2 1 − 1
22

√
3
2
e−iα sin(2β)

2 2 1
22

√
3
2
e−2iα sin2(β)

4 (−4) − 9
44

√
35
2
e4iα sin4(β)

4 (−3) − 9
22

√
35e3iα sin3(β) cos(β)

4 (−2) − 9
44

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) − 9
88

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 − 9
352

(20 cos(2β) + 35 cos(4β) + 9)

4 1 9
88

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 − 9
44

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 9
22

√
35e−3iα sin3(β) cos(β)

4 4 − 9
44

√
35
2
e−4iα sin4(β)

6 (−6) −377
640

√
21
11
e6iα sin6(β)

6 (−5) −1131
320

√
7
11
e5iα sin5(β) cos(β)

6 (−4) −1131
√

7
2
e4iα sin4(β)(11 cos(2β)+9)

7040

6 (−3) −377
√

21
5
e3iα sin3(β) cos(β)(11 cos(2β)+5)

1408

6 (−2) −377
√

21
5
e2iα sin2(β)(33 cos4(β)−18 cos2(β)+1)

1408

6 (−1) −377
√

21
2
eiα sin(β) cos(β)(33 cos4(β)−30 cos2(β)+5)

1760

6 0 −377(231 cos6(β)−315 cos4(β)+105 cos2(β)−5)
3520

6 1
377
√

21
2
e−iα sin(β) cos(β)(33 cos4(β)−30 cos2(β)+5)

1760
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B Expansion coefficients for tight-binding operator

(l1l2m
′
1) t q btq

6 2 −377
√

21
5
e−2iα sin2(β)(33 cos4(β)−18 cos2(β)+1)

1408

6 3
377
√

21
5
e−3iα sin3(β) cos(β)(11 cos(2β)+5)

1408

6 4 −1131
√

7
2
e−4iα sin4(β)(11 cos(2β)+9)

7040

6 5 1131
320

√
7
11
e−5iα sin5(β) cos(β)

6 6 −377
640

√
21
11
e−6iα sin6(β)

8 (−8) 3723
896

√
13
110
e8iα sin8(β)

8 (−7) 3723
224

√
13
110
e7iα sin7(β) cos(β)

8 (−6)
1241
√

39
11
e6iα sin6(β)(15 cos(2β)+13)

4480

8 (−5) 3723
320

√
13
154
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4)
3723e4iα sin4(β)(65 cos4(β)−26 cos2(β)+1)

320
√

154

8 (−3) 1241
32

√
3

770
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2)
3723e2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)

704
√

35

8 (−1) 3723eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

788480
√

2

8 0
1241(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)

49280

8 1 −3723e−iα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

788480
√

2

8 2
3723e−2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)

704
√

35

8 3 −1241
32

√
3

770
e−3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 4
3723e−4iα sin4(β)(65 cos4(β)−26 cos2(β)+1)

320
√

154

8 5 −3723
320

√
13
154
e−5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 6
1241
√

39
11
e−6iα sin6(β)(15 cos(2β)+13)

4480

8 7 −3723
224

√
13
110
e−7iα sin7(β) cos(β)

8 8 3723
896

√
13
110
e−8iα sin8(β)

10 (−10) −15
√

4199
11

e10iα sin10(β)

1024

10 (−9) − 15
512

√
20995

11
e9iα sin9(β) cos(β)

10 (−8) − 15
512

√
1105
22
e8iα sin8(β) (19 cos2(β)− 1)

10 (−7) − 15
512

√
3315
11
e7iα sin7(β) cos(β) (19 cos2(β)− 3)

10 (−6) −15
√

195
11
e6iα sin6(β)(323 cos4(β)−102 cos2(β)+3)

1024
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10 (−5) − 15
256

√
39
11
e5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 (−4) − 15
256

√
195
22
e4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)

10 (−3) − 15
256

√
195
11
e3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 (−2) − 15
512

√
15
22
e2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 (−1) − 15
256

√
5
22
eiα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)

10 0 −15(46189 cos10(β)−109395 cos8(β)+90090 cos6(β)−30030 cos4(β)+3465 cos2(β))
5632

+ 945
5632

10 1 15
256

√
5
22
e−iα sin(β) cos(β) (4199 cos8(β)− 7956 cos6(β)

+4914 cos4(β)− 1092 cos2(β) + 63)

10 2 − 15
512

√
15
22
e−2iα sin2(β) (4199 cos8(β)− 6188 cos6(β)

+2730 cos4(β)− 364 cos2(β) + 7)

10 3 15
256

√
195
11
e−3iα sin3(β) cos(β) (323 cos6(β)− 357 cos4(β)

+105 cos2(β)− 7)

10 4 − 15
256

√
195
22
e−4iα sin4(β) (323 cos6(β)− 255 cos4(β)

+45 cos2(β)− 1)

10 5 15
256

√
39
11
e−5iα sin5(β) cos(β) (323 cos4(β)− 170 cos2(β) + 15)

10 6 −15
√

195
11
e−6iα sin6(β)(323 cos4(β)−102 cos2(β)+3)

1024

10 7 15
512

√
3315
11
e−7iα sin7(β) cos(β) (19 cos2(β)− 3)

10 8 − 15
512

√
1105
22
e−8iα sin8(β) (19 cos2(β)− 1)

10 9 15
512

√
20995

11
e−9iα sin9(β) cos(β)

10 10 −15
√

4199
11

e−10iα sin10(β)

1024

hhγ 0 0 2
11

2 (−2) − 3
11

√
3
2
e2iα sin2(β)

2 (−1) − 3
11

√
6eiα sin(β) cos(β)

2 0 − 3
22

(3 cos(2β) + 1)

2 1 3
11

√
6e−iα sin(β) cos(β)

2 2 − 3
11

√
3
2
e−2iα sin2(β)
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B Expansion coefficients for tight-binding operator
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′
1) t q btq

4 (−4) − 9
44

√
35
2
e4iα sin4(β)

4 (−3) − 9
22

√
35e3iα sin3(β) cos(β)

4 (−2) − 9
44

√
5
2
e2iα sin2(β)(7 cos(2β) + 5)

4 (−1) − 9
88

√
5eiα sin(2β)(7 cos(2β) + 1)

4 0 − 9
352

(20 cos(2β) + 35 cos(4β) + 9)

4 1 9
88

√
5e−iα sin(2β)(7 cos(2β) + 1)

4 2 − 9
44

√
5
2
e−2iα sin2(β)(7 cos(2β) + 5)

4 3 9
22

√
35e−3iα sin3(β) cos(β)

4 4 − 9
44

√
35
2
e−4iα sin4(β)

6 (−6) 39
40

√
21
11
e6iα sin6(β)

6 (−5) 117
20

√
7
11
e5iα sin5(β) cos(β)

6 (−4) 117
440

√
7
2
e4iα sin4(β)(11 cos(2β) + 9)

6 (−3) 39
88

√
21
5
e3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 (−2) 39
88

√
21
5
e2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 (−1) 39
110

√
21
2
eiα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 0 39(105 cos(2β)+126 cos(4β)+231 cos(6β)+50)
7040

6 1 − 39
110

√
21
2
e−iα sin(β) cos(β) (33 cos4(β)− 30 cos2(β) + 5)

6 2 39
88

√
21
5
e−2iα sin2(β) (33 cos4(β)− 18 cos2(β) + 1)

6 3 −39
88

√
21
5
e−3iα sin3(β) cos(β)(11 cos(2β) + 5)

6 4 117
440

√
7
2
e−4iα sin4(β)(11 cos(2β) + 9)

6 5 −117
20

√
7
11
e−5iα sin5(β) cos(β)

6 6 39
40

√
21
11
e−6iα sin6(β)

8 (−8) −1581
896

√
13
110
e8iα sin8(β)

8 (−7) −1581
224

√
13
110
e7iα sin7(β) cos(β)

8 (−6) −527
√

39
11
e6iα sin6(β)(15 cos(2β)+13)

4480

8 (−5) −1581
320

√
13
154
e5iα sin5(β) cos(β)(5 cos(2β) + 3)

8 (−4) −1581e4iα sin4(β)(65 cos4(β)−26 cos2(β)+1)
320
√

154

8 (−3) −527
32

√
3

770
e3iα sin3(β) cos(β) (39 cos4(β)− 26 cos2(β) + 3)

8 (−2) −1581e2iα sin2(β)(143 cos6(β)−143 cos4(β)+33 cos2(β)−1)
704
√

35
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8 (−1) −1581eiα sin(2β)(869 cos(2β)+286 cos(4β)+715 cos(6β)+178)

788480
√

2

8 0 −527(6435 cos8(β)−12012 cos6(β)+6930 cos4(β)−1260 cos2(β)+35)
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B Expansion coefficients for tight-binding operator
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Abstract

The thesis is divided into two parts. The first part describes the development of a
new program for doing cluster-model configuration-interaction calculations within the
Racah-Wigner algebra, which enables a highly accurate analysis of the optical spec-
tra of transition-metal oxides. The application of the Racah-Wigner algebra and the
related Wigner-Eckart theorem reduces the computational effort compared with the
creation/annihilation algebra and makes the knowledge of the Slater determinants no
longer necessary. The advantages of the Racah-Wigner algebra becomes becomes im-
portant, if the size of the calculated cluster is more and more increased, e.g. for double-
cluster calculations because the number of Slater determinants scales drastically with
increasing cluster size. Furthermore we can analyze the dependence of the results of
the cluster model calculation on the ionic multiplets. In order to use the Racah-Wigner
algebra one has to represent the contributions to the Hamiltonian as spherical tensor
operators. A general expression for the matrix elements of the crystal-field operator
within the Racah-Wigner algebra was derived, which is valid for arbitrary configura-
tions. In addition to the crystal-field operator we give a general expression for the
matrix elements of the covalency operator within the widely-used Slater-Koster tight-
binding approximation using Sobel’man’s parentage scheme. Although this description
is not as fast and elegant as the Racah-Wigner algebra, we do not need to know the
Slater determinants and conserve the ionic multiplet dependence as well. Furthermore,
the program enables the investigation of the 4s shell and the ligand crystal-field split-
ting contribution to the optical spectra. The optical conductivity is calculated within
the Kubo-Greenwood model.
The second part includes the investigation of energetically low-lying excitations in
several transition-metal compounds. We start with the analysis of crystal-field excita-
tions in the transition-metal oxyhalide VOCl and perform a detailed group-theoretical
analysis combined with a full multiplet cluster-model configuration-interaction. In
the following a detailed temperature-dependent analysis of the phonon spectra of the
hexagonal multiferroic compounds YMnO3 and YMn0.7Ga0.3O3 was done in order to
investigate the spin-lattice interaction and their probable contribution to the occur-
rence of ferroelectricity in combination with antiferromagnetism in these compounds.
Furthermore, the spin-lattice interaction in the monoclinic multiferroic MnWO4 was
analyzed, by means of a generalized Drude-LLorentz model. Subsequently, a detailed
phonon analysis of the monoclinic BiB3O6 was done, due to the outstanding nonlinear
optical properties of this compound. At the end of the thesis optical studies of the
anomalous antiferromagnetic metallic oxide CaCrO3 were presented. This metallic ox-
ide shows an exception from the rule, that in transition-metal oxides ferromagnetism
typically coexists with metallic conductivity, whereas insulators usually exhibit anti-
ferromagnetism.
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Zusammenfassung

Die vorliegende Doktorarbeit ist in zwei Teil gegliedert. Im ersten Teil wird die Entwick-
lung eines neuen Programmes zur Cluster-Rechnung im Rahmen der Racah-Wigner
Algebra beschrieben, welches eine sehr genaue Analyse der optischen Spektren von
Übergangsmetalloxiden erlaubt. Die Verwendung der Racah-Wigner Algebra und dem
damit verbundenen Wigner-Eckart Theorem reduziert – im Vergleich mit der An-
wendung der Erzeuger/Vernichter Algebra – den erforderlichen Rechenaufwand. Die
Abhängigkeit der Ergebnisse von den ionischen Multipletts wird dabei ersichtlich. Des
weiteren ist die Kenntnis der einzelnen Slater Determinanten nicht mehr länger er-
forderlich, welches umso wichtiger wird, je größer der berechnete Cluster ist, z.B.
bei Doppel-Cluster Rechnungen, da hierbei die Anzahl der Slater Determinanten sehr
ungünstig mit der Größe des Cluster skaliert. Um nun die Racah-Wigner Algebra an-
wenden zu können, muß man jeden Beitrag des Hamilton Operators als sphärischen
Tensor Operator ausdrücken. Im Rahmen der Doktorarbeit wurde ein allgemeiner Aus-
druck für die Matrixelemente des Kristallfeld-Operators innerhalb der Racah-Wigner
Algebra hergeleitet, welcher für beliebige Konfigurationen gültig ist. Des weiteren wur-
de ein Ausdruck für den Kovalenz-Operator innerhalb der weit verbreiteten Slater-
Koster Näherung erarbeitet, wobei Sobel’mans Parentage-Scheme benutzt wurde. Ob-
wohl diese Beschreibung nicht so schnell und elegant wie die Racah-Wigner Algebra
ist, erfordert sie keine Slater Determinanten und erhält die Abhängigkeit der Ergeb-
nisse von den ionischen Multipletts. Der zweite Teil der Arbeit behandelt die Un-
tersuchung von energetisch tiefliegenden Anregungen verschiedener Übergangsmetall-
Verbindungen. Hierbei findet das im Rahmen dieser Arbeit entwickelte Programm
Verwendung, da es die Untersuchung der Einflüsse der 4s Schale und der Liganden-
Kristallfeld-Aufspaltung auf die optischen Spektren erlaubt. Die optische Leitfähigkeit
wird hierbei im Rahmen des Kubo-Greenwood Modells berechnet. Es wird mit der
Analyse von Kristallfeld-Anregungen in VOCl begonnen, im Zuge derer eine detaillierte
gruppentheoretische Analyse verbunden mit einer Cluster-Rechnung durchgeführt wur-
de. Daran anschließend folgt eine Vorstellung der temperaturabhängigen Analyse der
Phononenspektren von hexagonalem YMnO3 und YMn0.7Ga0.3O3, um die Spin-Gitter
Wechselwirkung und ihre mögliche Beteiligung an dem Auftreten von Ferroelektrizität
und Antiferromagnetismus in diesen Substanzen zu untersuchen. Des weiteren wird die
Spin-Gitter Wechselwirkung in der monoklinischen, multiferroischen Substanz MnWO4

mit Hilfe eines verallgemeinerten Drude-Lorentz Modells analysiert. Daran anschlie-
ßend wird, aufgrund der besonderen optischen Eigenschaften, eine Analyse der Pho-
nonen von monoklinischem BiB3O6 vorgestellt. Abschließend folgt die Untersuchung
des anormalen, antiferromagnetischen Metalloxids CaCrO3, welches eine Ausnahme
der Regel darstellt, nach der in Übergangsmetalloxiden Ferromagnetismus mit metal-
lischer Leitfähigkeit und Antiferromagnetismus mit isolierendem Verhalten korreliert.
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