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View of Cologne in the Sixteenth Century. – From a copper plate in
the “Theatrum Geographicum” of Petrus Bertius (1565–1629).
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Transition-metal compounds show a wealth of intriguing properties
such as superconductivity, piezoelectricity, giant magnetoresistance,
spin and metal-insulator transitions, which are governed by the inter-
play of charge, spin, and orbital degrees of freedom. The knowledge of
their electronic structure is crucial for understanding and predicting
the fascinating properties of these often strongly correlated materials.
In this thesis x-ray absorption spectroscopy including x-ray magnetic
circular dichroism is combined with theoretical calculations to invest-
igate the orbital occupation and orbital ordering of La4Ru2O10, which
shows a 4d orbital-ordering transition with spin-gap opening due to
spin-singlet formation, and of Ca2RuO4 for which the orbital occupa-
tion across phase transitions have been studied. The valence state, spin
state and orbital moment has been studied for Ca3Co2O6, which have
peculiar step-wise jumps in the magnetization, and in Ca3CoRhO6
and Ca3FeRhO6. For LaMn0.5Co0.5O3 the valence, spin state, mag-
netic alignment, and magnetocrystalline anisotropy was investigated.

Die Ladungs-, Spin- und orbitalen Freiheitsgrade sind verantwortlich
für den vielfältigen Eigenschaften von Übermetallverbindungen; dazu
zählen Supraleitung, Ferroelektrizität, Riesenmagnetwiderstand, Spin-
und Metall-Isolator-Übergänge. Die Kenntnis der elektronischen Struk-
tur ist essentiell für das Verständnis und die Vorhersage der fazinie-
renden Eigenschaften, die diese hochkorrelierten Materialien zeigen.
In dieser Arbeit wurde die Röntgenabsorptionsspektrosopie einschließ-
lich magnetischem Röntgenzirklardichroismus mit numerischen Rech-
nungen kombiniert, um die orbitale Besetzung und orbitale Ordnung
zu untersuchen in La4Ru2O10, das einen 4d-Orbitalübergang mit Öff-
nung einer Spinlücke durch Bildung eines Spin-Singulets zeigt, und
in Ca2RuO4, bei dem die Änderung der orbitalen Besetzung bei Pha-
senübergängen studiert wurde. Die Valenz- und Spinzustände und die
orbitalen Besetzungen von Ca3Co2O6, das ungewöhnliche Sprünge in
der Magnetisierung zeigt, und von Ca3CoRhO6 und Ca3FeRhO6 wur-
den untersucht. Bei LaMn0.5Co0.5O3 wurde die Valenz, Spinzustand,
magnetische Kopplung zwischen Mn und Co und die magnetokristal-
line Anisotropie erforscht.
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This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

— William Shakespeare, 1564–1616

Preface

Transition-metal compounds show legions of stunning proper-
ties – both macroscopically and microscopically – such as giant

magnetorestance, superconductivity, charge- and spin-density waves,
metal-insulator transitions, spin-state transitions. But, unfortunately,
correlated systems are difficult to describe; neither a purly local nor
a simple band picture work. However, a detailed knowledge about
the electronic structure is needed to understand and possibly also pre-
dict material properties. In this thesis we concentrate on a group of
transition-metal oxides, showing a variety of interesting properties and
focus especially on the valence state, spin and orbital physics as well as
on spin-orbit coupling. These have been studied using x-ray absorption
spectroscopy and using numerical calculations. X-ray absorption spec-
troscopy (XAS) in conjunction with configuration-interaction cluster
calculation and density-functional theory calculation provides a means
to access information about the properties coming from the interplay
of charge, orbital, and spin states in transition-metal compounds.

More about the exciting properties exhibited transition-metal com-
pounds and a primer into ab initio techniques and especially about
density-functional theory is given in Chapter 1. In the succeeding
Chapter 2, the generation of x-rays in synchrotrons and the basis of
x-ray absorption spectroscopy are covered, including the useful sum
rules which allow the extraction of quantitative data from spectra
without needing complicated calculations. In order to understand the
orbital occupation depending on the crystal symmetry and the ions
surrounding the atom of interest, the ligand-field theory plays a major
role. It is also the basis for the configuration-interation (CI) cluster
calculation, which has been used to calculate the absorption spectra.
Both ligand-field theory and CI cluster calculations are covered in
Chapter 3. Hereafter, the result of our studies is presented.
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Using XAS combined with calculations, the valence, spin and orbital
state of the quasi one-dimensional cobaltates Ca3Co2O6 (Chapter 4)
have been ascertained and the unusually large orbital moment and mag-
netocrystalline anisotropy explained. For LaMn0.5Co0.5O3 (Chapter 5)
the magnetic alignment, valence and spin state, and a large orbital
could be determined; model calculations point to the presence of a
large magnetocrystalline anisotropy and nontrivial temperature depend-
ence of the susceptibility. For the one-dimensional Ca3CoRhO6 and
of Ca3FeRhO6 (Chapter 6) the valence and spin states, and a large
orbital moment could be determined; the active role of the spin-orbit
coupling explains the strong magnetocrystalline anisotropy and Ising-
like magnetism of Ca3CoRhO6. The quasi two-dimensional La4Ru2O10
(Chapter 7) shows a rare 4d orbital-ordering transition with spin-gap
formation for which no spin-state transition is present but an orbital-
induced spin-singlet formation. In Chapter 8 the orbital occupation
of Ca2RuO4 was studied in the antiferromagnetic, the paramagnetic
insulating, and the paramagnetic metallic phase.

A summary in English is given in Chapter 9 and in German in
Chapter 10. More about spherical harmonics can be found in Appendix A
and details of the transition-metal–ligand hybridization in Appendix B.
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Let all things be done decently and in order.
— I Corinthians
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Dictum sapienti sat est. A sentence is enough for a sens-
ible man. — Plautus, c. 250-184 BC

Abbreviations

Commonly used appreviations only. See also list of used symbols in
the following section.

AF Antiferromagnet, antiferromagnetic
BESSY Berliner Elektronenspeicherring-Gesellschaft für Synchro-

tronstrahlung (synchrotron facility in Berlin, Germany)
CFS Crystal-field splitting
CI Configuration interaction
DFT Density-functional theory
DFG Deutsche Forschungsgemeinschaft (German funding agency)
DOS Density of states
ESRF European Synchrotron Radiation Facility (in Grenoble,

France)
FM Ferromagnet, ferromagnetic
HS High-spin state
IS Intermediate-spin state
LDA Local-density approximation, sometimes also Local spin-

density approximation
LDA+U Local-density approximation with a Hubbard U term
LS Low-spin state
LSDA Local spin-density approximation
MIT Metal-insulator transition
NM Nonmagnetic
NSRRC National Synchrotron Radiation Research Center (in Hsin-

chu, Taiwan)
TM Transition metal (ion)
SFB Sonderforschungsbereich (“Collaborative Research Centres”,

funded by DFG)
XAS X-ray absorption spectorscopy
XMCD X-ray magnetic circular dichroism
XTLS Name of a CI code by A. Tanaka, pronounce “crystals”
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I know of only one rule: style cannot be too clear, too
simple. — Stendhal, 1783–1842

Used symbols

Symbols of common physical constants can be found in Appendix E

∂nx = ∂n

∂xn n-th partial derivation in x
dn

dxn n-th total derivation in x
δn

δxn n-th functional derivation in x
x denotes a hole (missing electron), e.g. n number of holes

or L a hole in the ligand
10Dq,∆CF crystal-field splitting between t2g and eg in Oh symmetry
∆ Charge-transfer energy; as prefix: difference
D3d, D3h trigonal point symmetry with horizonal or diagonal

reflection plane
D4h tetragonal point symmetry
d1, dxy, . . . denotes the symmetry of a d orbital (see Appendix A)
eg Mulliken symbol denoting a doubly degenerated state
~ Planck constant h over 2π
Hex (super-)exchange field
i imaginary unit, i2 = −1
J total moment J = S +L, denotes either the operator Ĵ2

or its eigenvalue ~2J(J + 1)
J̃ effective moment, often the moment restricted to the t2g

subshell
Jex exchange constant, either per bond or per cluster
Jz moment J projected to a quantization axis (here: z axis);

the eigenvalue of the operator Ĵz is denoted as ~Jz or
~mJz ; denotes also the exchange constant Jex in a certain
direction

L, L̃, Lz orbital moment (cf. J)
Oh octahedral point symmetry (cubic)
µB Bohr magneton
M Magnetization, usually in units of µB
Ψ an N -particle wave function
ψ, φ a single-particle wave function
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ψi, φi the i-th single-particle wave function, the i-th orbital
px, . . . denotes the symmetry of a p orbital (see Appendix A)
σ the spin, here restricted to σ ∈ {− 1

2 ,
1
2} and often

denoted as ↓ and ↑
S, S̃, Sz orbital moment (cf. J)
t2g Mulliken symbol denoting a triply degenerated state
Tc critical temperature; here, mostly Curie temperature

(TC), but also Néel temperature (TN ) or “jump” tem-
perature of a superconducture

Udd Coulomb repulsion between two same-site d electrons,
usually denotes the screened (or effective) U

Y ml spherical harmonics
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such wholesome returns of conjectures out of such trifling
investment of fact. — Mark Twain, 1835–1910
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Transition-metal compounds play a major role in the material-
science industry, only rivaled by the semiconductor industry. For

the industry the magnetic properties are of most interest – be it in
form magnetic layers for hard discs, reading heads for hard discs (using
the giant magnetoresistance) or nonvolatile magnetic storage (MRAM).
Other uses include the superconductivity for powerlines or for magnets
used to inductively heat pipes for power stations such that they can
be bend. Also for the basic research, transition-metal compounds play
a major role: they account for a large part of the solid-state physics
but also beyond; in molecular nanotechnology they are represented by
single-magnetic molecules [1] and they are also essential for several
organic molecules such as the iron ion in haemoglobin. The ubiquitous
availability of some of the transition metals (such as iron) combined
with their peculiar electronic properties make transition metals that
interesting. Their often unpaired spin together with electrons which
are on the verge between tightly bound and freely roaming, and the
possibility of numerous valence states allows for the large charge, spin,
and orbital degrees of freedom. These in turn are the reason for
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the multifarious properties. While the transition-metal alloys and
intermetallic compounds have various important properties, the most
fascinating properties are shown by the oxides. Similarly to carbon-
based organic materials, the number of transition-metal compounds
and especially of oxides is virtually unlimited.

In the remaining of this chapter, we first take a short tour through
the properties shown by transition-metal oxides. This is followed by an
introduction into density-functional theory, the Hubbard model, and
LDA+U.

1.1 The rich physical properties of transition-metal oxides

The transition-metal oxides exhibit legions of stunning features, some
of which are barely understood. They have conductivities ranging from
good metals to strong insulators (of Mott--Hubbard, charge-transfer
or band type) and often show metal–insulator transitions; they can be
ferro-, ferri-, antiferro-, para-, or diamagnetic. The magnetic as well as
the spin and orbital states can change upon temperature, pressure, field,
or doping. They show effects such as giant magnetoresistance (GMR),
(high-temperature) superconductivity, multiferroicity (ferroelectricity,
ferroelasticity, piecoelectricity), spin and charge density waves. Some
of these effects only occur at interfaces or surfaces or are modified
by those. In the following, we highlight some materials and their
properties, which show how vibrant the research of transition-metal
oxides.

Last year’s Nobel Prize in Physics [2], awarded to Albert Fert [3]and
Peter Grünberg [4], honours the discovery of the GMR effect just twenty
years after its discovery and after already several years of wide-spread
use in devices. Hereby magnetic multilayers, where ferromagnetic and
nonmagnetic metals are stacked on each other, show a drastic change of
electric resistivity upon applying a magnetic field. The layers (initially
of iron–chromium–iron) are grown such that the ferromagnetic layers
are antiferromagneticly coupled; thus up-spin and down-spin electrons
scatter at the interfaces. However, in a magnetic field all ferromagnetic
layers are aligned and thus the scattering for one spin channel is reduced
as is the resistivity.

Superconductivity (SC), i.e. the drop of the electric resistivity to
zero and formation of a perfect diamagnet (Meißner--Ochsenfeld effect,
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found 1933), is known since the beginning of last century. However, only
with the discovery of the so-called high-temperature superconductors
in 1986 in BaxLa5−xCu5O5(3−y) [5], the route to superconductors
with critical temperatures reachable by cheap liquid nitrogen (boiling
point 77.36 K) was opened. High-temperature superconductors, which
are typically cuprates, are so far not fully understood theoretically.
Sr2RuO4 is one of the few no copper containing, transition-metal-oxide
superconductors and this year even an iron-based SC (fluorine-doped
LaOFeAs) was found [6]. Additionally, in superconducting cuprates, the
existence of a real-space stripe structure is debated; they were reported
in neutron-scattering studies and predicted theoretically, however, both
results have not been universally accepted. Furthermore, doped nickel
oxides and Nd-doped La2−xSrxCuO4 are believed to have stripes. (See
Ref. 7, references there in and Refs. 8 and 9.)

A prime example for different spin-states and transitions between
those are cobaltates. Cobalt is typically either divalent (2+, 3d7) or
trivalent (3+, 3d6). For trivalent Co there are three spin states possible:
a high-spin state following Hund’s rules with S = 2 (5 up, 1 down
spin), a low-spin state with S = 0 with all electrons paired which
happens if the octahedral-splitting between the three lower-lying t2g
and the two higher eg orbitals is large, and even an intermediate spin
case with S = 1. An example for spin-state transitions is LaCoO3,
which has a nonmagnetic low-temperature ground state and becomes
gradually paramagnetic with increasing temperature (and over 500
K it becomes metallic); in the 1960s this was interpreted as gradual
population of a high-spin excited state starting from a low-spin ground
state. Starting from 1996 [10] studies suggested that the excited state
is a intermediate-spin state instead, which was ten years later rebutted
and the initial picture was re-established based on an x-ray absorption
study (see Ref. [11] and citations therein). However, as one might have
expected, this result has not settled spin-state issue until today (see
e.g. Ref. 12 of 2008, which again suggests an intermediate state). The
following materials have been studied in this thesis.

The Ising-like one-dimensional cobaltate Ca3Co2O6 shows step-like
jumps in the magnetization, whereas the iso-structural Ca3CoRhO6 has
a single jump at high field and Ca3FeRhO6 is a three-dimensional anti-
ferromagnet; using XAS plus calculations, the valence and spin states
were determined and the explain the large orbital moment explained
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(see Chapters 4 and 6). Upon manganese doping the above mentioned
LaCoO3 becomes ferromagnetic with a Curie temperature of about
240 K for LaMn0.5Co0.5O3; our study (see Chapter 5) not only reveals
their charge and spin state, but also the sizable orbital moment which
together with model calculations suggests a strong magnetocrystalline
anisotropy and a nontrivial temperature dependence of the magnetic
susceptibility.

The series Ca2−xSrxRuO4 shows a rich phase diagram, ranging from
the superconducting metallic Sr2RuO4 via metamagnetic compounds
to antiferromagnetic paramagnets for x < 0.2; Ca2RuO4 itself becomes
first paramagnetic and then metallic, which is accompanied by strong
orbital occupation changes (see Chapter 8). The importance of orbital
physics can also be seen for La4Ru2O10, which exhibits a rare 4d
orbital ordering transition and spin-gap formation; the orbital physics
drives the formation of spin-singlet dimers in this S = 1 system (see
Chapter 7).

1.1.1 Theoretical methods

The electronic structure of transition-metal oxides is, maybe not sur-
prisingly, complex and thus it is challenging to calculate and under-
stand the properties . In theoretical physics, the problem has been
attacked from two sides: On one hand using ab initio calculations
which are based on (effectively) single-particle approximations such
as Hartree--Fock or density-functional theory (DFT) and on the other
hand using models which contain only very few particles and interac-
tions, but which describe the important physics of interest such as
the Hubbard or Anderson impurity model [13–15]. Both approaches
have made tremendous progress in the last decades (cf. Table 1.1).
(The much increased computational power also helped a lot, though
the progress in understanding and the invention of clever approxim-
ations was more important.1) Besides the intrinsic improvements of
the theories – such as using improved functionals in density-functional
theory (from LDA to GGA to meta-GGA to hybrid-functionals and

“If given the choice between the computers of today together with the physical concepts1

of the 1970s or the computers of the 1970s along with current concepts, I’d choose the
latter.” (Quip by James R. Chelikowsky in 2000 and often cited by Marvin L. Cohen.)
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optimal effective potentials, from collinear to noncollinear magnetism,
from DFT to density-matrix functional theory, etc.) – one finds more
and more combinations with either many-body perturbation theory or
model-Hamilton approaches, yielding methods such as LDA+U, DFT-
based GW and Bethe--Salpeter calculations but also the dynamical-
mean-field theory (DMFT) which is often based on DFT calculations
(LDA+DMFT).

With regards to experiments, the model descriptions help with under-
standing and qualitatively predicting results whereas the ab-initio based
calculations allow a quantitative comparison, but give sometimes less
insight. The band structure stemming from calculations is widely used
and provides useful information, which can be compared with experi-
ment, especially with photoemission spectroscopy (PES) in terms of
band gap, density of states (DOS) and (via angle-resolved photoemis-
sion) with the band structure itself. However, there are plenty of issues
with this approach. By construction one cannot expect that the DFT
band structure has anything to do with the real system, although it
often gives a good description. Additionally, many transition-metal
oxides are insulating but in DFT calculations they are metallic (this
can be cured using LDA+U or LDA+DMFT). Furthermore and fun-
damentally, in experiment one removes a fully interacting electron
from the system, which is influenced by the remaining system while
being emitted; in the calculation one assumes that its energy matches
the ground-state DOS/band structure. The GW method describes
PES spectra in principle correctly, however, most calculations miss
terms needed to describe multiplet states. Fortunately, a comparison of
DFT, DFT+U or DMFT calculated DOS with PES is often meaningful,
though one has to be careful with the interpretation.

For x-ray absorption spectroscopy (XAS) one excites a core electron
into the valence band, which matches in an independent particle picture
of a simple transition into the unoccupied DOS. However, contrary to
PES where one can use the sudden approximation, the created hole and
the excited electron strongly interact with another. Therefore, a spec-
trum calculated by shifting the unoccupied DOS by the core-hole energy
is often qualitatively wrong. The spectrum can be properly calculated
ab initio using time-dependent density function theory and Bethe--Sal-
peter equation (see e.g. Ref. 16–17), however, this is computationally
expensive and does not completely reproduce the fine structure (which
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is of more interest than the absolute energy position). Therefore, we
use the computationally much simpler configuration-interaction cluster
calculation, which includes the full multiplet structure and reproduces
the spectra well. While this technique is not fully ab initio (though
most parameters come from ab-initio calculations, though some fit-
ting to the experiment is done), it contains the essential and for the
experiment relvant physics; more about this technique can be found in
Chapter 3.

Table 1.1 A short history about progress in solid-state calculations, compiled by M.
Cohen [18].

1920s Quantum Mechanics Atomic Spectra Sharp; Solid State Spectra
Broad

1930s Fermi’s Atomic Pseudopotentials; Thomas-Fermi Model; Dirac’s
DFT; Hartree, Hartree-Fock

1940s ‘Dilemma’ of Band Structure Calculations (localized core states and
itinerant valence states); Orthogonalized Plane Wave (OPW) of Her-
ring; Augmented Plane Waves (APW) by Slater

1950s Applications of OPW and APW; Results Were Marginal; OPW →
Pseudopotentials (computers improve)

1960s Empirical Pseudopotential Method (EPM); Planewaves and Optical
Data; Strong Experimental-Theoretical Collaborations; Importance
of Critical Points, Photoemission; Spectroscopy, and Transferability
Realized; Electronic/Optical Problem Basically Solved!

1970s EPM Applications to Many Crystals; Electronic Charge Densit-
ies; Bonding and Self-Consistency; Supercells; Surfaces, Interfaces
and Localized Configurations; Semiempirical ‘Xα’-Type Methods;
ε(q, ω); (large mainframe computers)

1980s Total Energy Approach [Structural, Mechanical, Vibrational, Super-
conducting, High Pressure, other Ground State Properties]; Ab Initio
Pseudopotentials plus DFT

1980s and 1990s Excited States, ‘GW’ Method, Quantum Monte Carlo, Real Space
Methods, Excitonic Effects, Car-Parrinello Molecular Dynamics

1990–present The Standard Model Emerges with Applications to Complex Mater-
ials, Nanocrystals and Nanostructures, Molecules, Superconductors,
Optical and Photoemission Experiments (parallel machines, powerful
workstations and ‘canned’ programs)

1.1.2 Experimental progress
But also on the experimental side, there was a tremendous progress
over the decades. This begins with the sample quality, which has con-
tinuously improved over the years; this includes the invention of mirror
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furnaces which help to obtain single crystals but also the advances in
growing epitaxial thin films. For magnetization measurements inven-
tion of the SQUID (invented 1964), which contains superconducting
loops [transition-metal compound!] with Josephson junctions, helped
as much as the other advances in resistivity, optical or neutron measure-
ments. For the soft x-ray spectroscopic methods, the progress in the gen-
eration of x-rays and in particular the development of synchrotrons (see
next chapter) boosted the brilliance and made polarization-dependent
measurements more feasible. Using valence-band and core-level (x-ray)
photoemission (PES, XPS) the electronic structure of material can be
studied and directly compared with GW calculations and with the dens-
ity of states (DOS) or with the band structures (using angular-resolved
PES, ARPES) from DMFT, DFT, or even tight-binding calculation.
Using spin-polarized PES one can also obtain information about spin-
orbit coupling. Of prime interest for this thesis is the x-ray absorption
spectroscopy, which is contrary to PES a charge-neutral excitation.
Here, a core electron is excited into the valence band; typically one
measures in transition-metal (TM) compounds 2p→ 3d (or 4d) excit-
ations for the TM ion (TM-L2,3 edge) and 1s→ 2p for oxygen (O-K
edge). Due to the created core hole the excitation is excitonic (thus
local) and, as the energy difference for 2p → 3d is highly element
specific, the edges of different TM ions can be measured separately.
The excitation is dipole allowed and sensitive to the detailed electronic
structure of valence shell, which allows to obtain the valence, spin and
orbital information. More about this in the next chapter. Note that
due to averaging over all sites (consisting of the same element) x-ray
absorption spectroscopy is unable to measure certain kinds of orbital
ordering, in this case techniques such as x-ray resonant diffraction
should be used.

An interesting development is optical lattices, which are a result of
the research on Bose--Einstein condensates and have a potential applic-
ation in quantum computing. In optical lattices, counterpropagating
laser beams create a periodic potential in which neutral atoms can be
trapped via the Stark shift; these grids of atoms can be one, two, or
three dimensional. Optical lattices are also an ideal test bed to study
model solids: The atoms for a perfect crystal without defects and by
tuning the laser one can tune between more atomistic atoms having
little overlap with other atoms and strongly overlapping wavefunctions.
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This allows to study the intermediate range systems which are neither
fully localized nor metallic and match thus strongly correlated “normal”
solids, in which this parameter tuning can only be done via doping or
pressure.

1.1.3 Further reading

An introduction into the world of strongly correlated materials and
their calculation can be found in several articles such as the review
article by Imada, Fujimori and Tokura [19], but also in articles by
Tokura and Nagaosa [20] and Khomskii and Sawatzky [21]; in the book
by Fulde [22], in the book by Fazekas [23], in the review articles by
Pavarini, Yamasaki, Nuss, and Andersen [24], and by Katsnelson et al.
(more about half metals, but good overview about techniques) [25], and
legions of other books and articles. Some more general introduction
about magnetism and the experimental and theoretical techniques can
be found in the books of the IFF Spring Schools [26–27]; for ab-initio
calculations beyond LDA see Refs. 28 and 29.

We now continue with a primer into density-functional theory, fol-
lowed by the Hubbard model and LDA+U. More about configuration
interaction can be found in the ligand-field theory chapter (Chapter 3).

1.2 Density-functional theory (DFT)

1.2.1 Schrödinger equation

In order to describe the transition-metal compounds – or any kind of
other molecule or solid – one “merely” needs to solve the Schrödinger
equation; the stationary Schrödinger equation of a system with N
electrons and Nn nuclei is given by

HΨ(r) = [T + V (R, r)]Ψ(r) = EΨ(r), (1.1)

where r denotes the electron and R the nuclear coordinates. Assuming
that the mass of the nuclei M is infinite, the kinetic energy operator
of the electrons is given by
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T = − ~2

2me

N∑
i=1
∇2
i (1.2)

and the potential, consisting of electron–nuclei and electron–electron
interaction, is given by

V = −
N∑
i=1

Nn∑
j=1

1
4πε0

Zje
2

|ri −Rj |
+ 1

2

N∑
j=1,i6=j

1
4πε0

e2

|ri − rj |
. (1.3)

Ignoring relativistic effects to which also the important spin–orbit
coupling counts, solving this is enough to describe the system. However,
the following quote of Paul Dirac, who shared the Nobel Prize in physics
for 1933 with Erwin Schrödinger, still holds. In 1929 he wrote the
following in an article titled “Quantum Mechanics of Many-Electron
Systems” [30], which is frequently quoted.

The general theory of quantum mechanics is now almost com-
plete, the imperfections that still remain being in connection
with the exact fitting of the theory with relativity ideas. These
give rise to difficulties only when high-speed particles are involved,
and are therefore of no importance in consideration of atomic
and molecular structure and ordinary chemical reactions, in
which it is, indeed, usually sufficiently accurate if one neglects
relativity variations of mass with velocity and assumes only
Coulomb forces between the various electrons and atomic nuclei.
The underlying physical laws necessary for the mathematical
theory of a large part of physics and the whole of chemistry are
thus completely known, and the difficulty is only that the exact
application of these laws leads to equations too complicated
to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the mean features
of complex atomic systems without too much computation.
This is unfortunately still true; essentially, the only calculable sys-

tems are single particles in a potential, be it that potential is an external
field, a nucleus or the effective field created by other electrons. This
technique is used for Hartree--Fock calculations (cf. Section 3.5), but
also in density functional theory, on which we concentrate now.
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1.2.2 Hohenberg--Kohn theorem

Density functional theory is based on two clever ideas. It is known
that, knowing the Hamilton operator, we can in principle calculate the
wavefunction which gives us access to all expectation values and, by
integrating the square modulus of the wavefunction over all coordinates
but one, we can easily obtain the electron density. Hohenberg and Kohn
[31] have now shown that one can take the reverse route and reconstruct
in principle the potential (up to a constant) from the ground-state
density alone; this means that the density n(r) contains the same
information as the wavefunction Ψ(r1, . . . , rN ), which depends on the
coordinates of all N electrons. For wavefunctions, we know that the
Rayleigh--Ritz principle applies: Be Ψ the ground-state wavefunction
to a Hamiltonian H and be Ψ̃ any other normalized wavefunction; we
then know that

E0 = 〈Ψ|H|Ψ〉 ≤ 〈Ψ̃|H|Ψ̃〉. (1.4)

Thus one can obtain the ground-state wavefunction in principle by
plugging in all possible trial wavefunctions and looking for the minimal
energy. (In practice one starts with some guess and calculates the trial
wavefunctions iteratively [self-consistent field (SCF) method].) This
technique is used in Hartree--Fock. Using the density, the energy can
be written as (unknown) functional of the density as follows

E[n] = FHK[n] +
∫
V (r)n(r) d3r, (1.5)

where V is the so-called external potential of the system (potential
nuclei, external fields). It is important to note that F is a functional
which is universal, i.e. it is system independent and only depends on
the kind of interaction (here, the Coulomb interaction), and all system
dependence is in the second term. If one now minimizes the above
energy functional, one obtains the ground-state energy and density.

1.2.3 Kohn--Sham formalism

The next step was the Kohn--Sham formalism [32], which shows a
practical route. First, Kohn and Sham showed that one can construct
a Hamiltonian describing a noninteracting system such that it has the
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same density as the original interacting system. Then they derived an
approximation for the energy functional which allows to use this scheme:
the local-density approximation, which became hugely important in
solid-state physics, and via improved functionals (GGAs [generalized-
gradient approximation] and beyond) also in chemistry. The Kohn--
Sham Schrödinger equation of the auxiliary system is given by(

− ~2

2m∇
2 + vKS(r)

)
φi(r) = εiφi(r), (1.6)

where summing the square moduli of the lowest N eigenstates yields the
density of the fully interacting system and summing the eigenenergies
of φi yields the energy of the noninteracting system; the energy of the
interacting system is given by

E[n] = T [n] +W [n] +
∫
n(r)V (r) d3r

= TKS[n] + 1
4πε0

e2

2

∫ ∫
n(r)n(r ′)
|r − r′|

d3r d3r′

+
∫
n(r)V (r) d3r + Exc[n]. (1.7)

Here, the second term is the direct, or Hartree, term and the last term
is the so-called exchange-correlation (xc) energy functional, defined as

Exc[n] = FHK[n]− 1
4πε0

e2

2

∫ ∫
n(r)n(r ′)
|r − r′|

d3r d3r′−TKS[n]. (1.8)

The exchange-correlation potential is then given by

vxc[n](r) := δExc[n]
δn(r) . (1.9)

and the potential in the Kohn--Sham equation is finally

VKS(r) = V (r) + 1
4πε0

e2
∫

n(r ′)
|r − r′|

d3r′ + vxc(r). (1.10)

Before we can use this in practice, one needs still to find an approxima-
tion for Exc[n]; the first and still one of the most important approxim-
ations is the local density approximation (LDA) published in the same
article of Kohn and Sham:
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ELDA
xc [n] :=

∫
n(r)εuni(n(r)) d3r, (1.11)

where εuni denotes the exchange-correlation energy per particle of a
uniform electron gas with the density n; there exists several essentially
identical versions of εuni, coming from parameterizations of quantum
Monte Carlo calculations or from simple estimates by Wigner.

In principle the electron density itself is enough to treat magnetism;
however, lacking a suitable functional, one treats the spin-up and spin-
down density separately. The density n and the magnetization density
m are then given by

n(r) = n↑(r) + n↓(r)
m(r) = n↑(r)− n↓(r). (1.12)

In the local-density approximation, the functional for these calcula-
tions is called local spin-density approximation (LSDA) but sometimes
“LDA” is used as umbrella name for both spin polarized and unpolar-
ized calculations. An overview about spin-polarized DFT calculations
can be found for instance in Ref. 33; more about noncollinear magnet-
ism can be found, e.g., in Refs. 34 and 35.

1.2.4 LDA and beyond

The density-functional theory gives in principle the exact result (if
we knew the true exchange-correlation functional). And for the homo-
geneous electron gas LDA is exact – including all electron–electron
interactions present there. Another advantage of DFT using LDA or
GGA functional is the relatively cheap computational effort, which is
cheaper than for instance Hartree--Fock. Compared with the latter, the
DFT functionals contain an approximation for the electron correlation
(which Hartree--Fock lacks) but not the exact exchange term (which
Hartree--Fock has). (One can use the exact exchange term in DFT but
the results do not improve consistently as the correlation term is not
known exactly enough and non-exact-exchange functionals rely on the
cancellation of errors.) The result is the band gaps in Hartree--Fock
are overestimated while in density functional theory the gap is often
too small (insulating materials have no calculated band gap and are
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thus metallic); an empirical solution is to mix both potentials, yielding
so-called hybrid functionals. Another related problem of many DFT
functionals is that an electron can interact with itself (self-interaction
error) – contrary to Hartree--Fock; this causes especially problems for
localized electrons in strongly correlated materials (valence d electrons
in transition-metals). This can be fixed using a self-interaction correc-
tion (SIC) [36](which is unfortunately basis dependent and scales one
over the system size; one thus needs to use a local [Wannier] basis). For
strongly correlated systems one often also goes beyond normal DFT by
including a Hubbard-like U term (for certain Kohn--Sham orbitals only,
e.g. the valence d electrons) in the potential and by approximately
substracting the Coulomb interaction, which is already present in the
functional (typically LDA or GGA); another way is to use the DFT
result as starting point for the dynamic mean-field theory.

Note that essentially only the density of the noninteracting system
matches the interacting one; the energies and energy differences of the
Kohn--Sham system have no meaning according to the theory. One
can still use the band structure and calculated density of states to
compare with experiment (PES, ARPES; optical or photoemission
band gap); while this often works it also fails frequently especially for
Mott insulators but also for other materials where correlation plays a
role. For the optical band gap and other charge-neutral excitations, one
has to go beyond the ground-state DFT: The time-dependent density
functional theory (TDDFT) [37]describes these in principle exact, in
practise the exact functional (the exchange-correlation kernel) is also
not known. (An alternative to TDDFT in terms of the many-body
perturbation theory is the Bethe--Salpeter equation.) For non-charge-
neutral excitations one should use Green function based methods such
as GW (G stands for the Green function and W for the screened
Coulomb interaction). (Also the CI cluster program used for calculating
the XAS spectra in this thesis is able to calculate XPS spectra using
Green functions.)

A short and simple but more rigorous introduction about DFT and
TDDFT can be found in my diploma thesis [38]and more extensively
in Kohn’s Nobel lecture [39], the lecture notes by Perdew and Kurth
[40], Burke’s ABC of DFT [41], or in the book of Richard Martin [42].
For TDDFT, see the textbook by Marques al [43]. For many-body
techniques see the book by Mahan [44]or by Fetter and Walecka [45].
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An overview about TDDFT, GW and Bethe--Salpeter can be found in
the review article by Onida, Reining and Rubio [46]. For GW , LDA+U,
DFT+SIC and OEP (optimal-effective potential) methods for strongly
correlated materials see Ref. 28, and for LDA+U see also the following
section.

1.2.5 The Hubbard model and LDA+U

As written above, the (known) density functionals show deficits for
strongly correlated materials; these usually contain transition-metal
(or rare-earth) ions with partially filled d (or f) shells. For an orbital-
independent potential – such as generated by LDA – one then obtains
partially filled d bands, metallic electronic structure and itinerant d
electrons, whereas d electrons are usually well-localized. In (Mott--
Hubbard) insulators the localized d electrons are separated into two
subbands, called lower and upper Hubbard band. One solution is the
self-interaction correction (SIC), which reproduces the localized nature
of the d electrons but whose one-electron energies are usually in strong
disagreement with spectroscopic data [28, 47]. In Hartree--Fock [48]the
self-interaction term cancels exactly and thus Mott insulators are prop-
erly described. However, the Coulomb interaction is unscreened in
Hartree--Fock – the “bare” Coulomb interaction parameter U is thus
rather large (15–20 eV) while in a solid it is only about 8 or less [49–50].
Consequently, also the Hartree--Fock gap is usually more than 2–3 times
too large [48]. The screening problem is addressed rigorously by going
to the GW approximation [51–52], however, while the method has been
applied successfully to real systems, more complex systems have not
been feasible due to their high computational demands. Additionally,
the response function used in pratical applications [53] is calculated
from DFT energy bands and wavefunctions, which is an insufficient
starting point for strongly correlated materials.

In the following LDA+U [28, 54–57] is described where the non-
local and energy-dependent self-energy is approximated by a frequency
independent but non-local screened Coulomb potential. A similar
approximation has been successfully used in a model Hamiltonian
approach [58–59](see also Chapter 3).
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1.2.6 The Hubbard Model
The Hubbard model was introduced essentially simultaneously by
Gutzwiller [60], Hubbard [61–64], and Kanamori [65] and is a simple
model which describes two competing tendencies: The kinetic energy
(electron hopping) wants to delocalize the electrons into itinerant
(Bloch) states, leading to a metal. The electron-electron interaction
(approximately on-site Coulomb interaction) wants to localize the
electrons on site, driving the system into a Mott insulator. (See
Fazekas [23] for a more detailed description and a historic account.)
The one-band Hubbard model Hamiltonian is given by

H = −t
∑
〈ij〉

∑
σ

(c†iσcjσ + c†jσciσ) + U
∑
i

ni↑ni↓, (1.13)

where i and j are lattice site indices and c†iσ creates an electron in the
Wannier state φ(r − Ri) with spin σ. The first term describes the
kinetic energy (the hopping from site to site) while the second term
describes the Coulomb repulsion between electrons sharing the same
orbital; the Hubbard U is defined as

U =
∫

d3r1

∫
d3r2 |φ(r1 −Rj)|2

1
4πε0

e2

|r1 − r2|
|φ(r2 −Rj)|2.

(1.14)

Note that contrary to this Hubbard on-site interaction, the real Cou-
lomb interaction is long ranged and contains lots of intersite terms.

There are two limiting cases: U = 0 with noninteracting band
electrons and t = 0 where the system decomposes into a set of insulated
atoms, which is equivalent to U/t = ∞. In a band picture, the t is
equivalent to the band width W . The effects of different U/W values is
shown in fig. 1.1; the quasiparticle peak shown there is important for
Kondo physics and can be reproduced numerically using DMFT. In the
following we are not interested in the quasiparticle peak. For U � t
the band splits in a lower and an upper Hubbard band (LHB, UHB );
note that contrary to valence and conduction band of a semiconductor,
the very existing of the UHB depends on the occupation of the LHB. If
U/t changes with temperature, pressure, doping, or applied field, the
system may change from a insulating Mott--Hubbard insulator into a
metal (or vice versa).
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Fig. 1.1 Density of states of electrons in a solid as func-
tion of the local Coulomb interaction, where U is the inter-
action energy and W the bandwidth of the noninteracting
electrons. (a) For independent electrons, one obtains a
half ellipse, filled up to the Fermi energy EF . (b) For
weakly correlated systems the DOS still resembles the free
electrons. (c) In strongly correlated materials one finds
a characteristic three-peak structure: the two Hubbard
bands and a quasiparticle peak near the Fermi level. (d)
The Mott--Hubbard insulating state where the electron
interaction are strong enough to suppress the quasiparticle
peak, whose weight is transferred to the Hubbard bands.
(Figure after Ref. 66.)

At exactly half filling, the large-U effective Hamiltonian is the well-
known antiferromagnetic Heisenberg model

H = −1
2
∑
i,j

JijSi · Sj . (1.15)

A note of warning: Different publications use different conventions
with regards to the sum (e.g. by leaving the 1

2 out) and to the sign of J .
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Fig. 1.2 (a) Mott--Hubbard insulator the gap (activa-
tion enery) ∆gap is approximately U − W . (b) If there
are ligand 2p bands between the lower and upper Hub-
bard band, the gap is smaller than U −W and one has a
charge-transfer insulator.

In the Heisenberg model we have J = 4t2/U which is the n = 1 case of
the t− J model. (If one wants to go beyond the uniaxial anisotropy of
the Heisenberg model, one can also include the Dzyaloshinskii--Moriya
interaction, − 1

2
∑
i,j Dij · (Si×Sj), which we will ignore in this thesis.)

In case of the transition-metal (TM) compounds the direct exchange
between d orbitals of different TM ions is often unlikely; in this case
the hopping can happen via the anions in the crystals such as the
oxygen ions. This concept goes back to Anderson [67] and is called
superexchange. Hereby an electron hops from the oxygen to one
transition-metal ion, leaving a hole which can be filled by an electron
from another transtion-metal ion. Depending on the details and espe-
cially on the TM–O–TM binding angle this interaction can be ferro-
or antiferromagnetic [68].

In the Mott--Hubbard insulators the gap is given by the splitting
of the transition-metal valence band into two bands (such as in V2O3
or LaTiO3). However, in other materials such as La2CuO4 the gap is
determined by excitations of transitions from the oxygen 2p band into
upper Hubbard band, as here the filled oxygen 2p band lies energy
wise between the LHB and UHB (see fig. 1.2). Such a system is then
called a charge-transfer insulator [69–70].
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1.2.7 LDA+U

In the LDA+U method, there are two kinds of electrons: for the
valence d electrons, for which the Coulomb interaction should be taken
into account, a Hubbard-like 1

2
∑
i6=j ninj term (with the d orbital

occupation ni) as in Hartree--Fock (mean-field) approximation is used,
while for the other electrons are treated in normal LDA. In order to
prevent double counting, UN(N − 1)/2 is substracted. The LDA+U
energy functional is then given by

E = ELDA − UN(N − 1)/2 + 1
2U
∑
i6=j

ninj , (1.16)

where exchange and the asphericity have been ignored. For the Kohn--
Sham eigenenergies this gives

εi = ∂E

∂n
= εLDA + U(1

2 − ni), (1.17)

i.e. for filled orbitals the energy is U/2 lower and for unoccupied
orbitals U/2 higher, which reproduces qualitatively the lower and
upper Hubbard band (LHB, UHB) and thus explains the physics of
Mott--Hubbard insulators. In order to do a proper definition, one
needs to define a more general orbital basis set, include the direct
and exchange Coulomb interactions, and identify the region in space
where the atomic characteristics of an atom have mostly survived. One
obtains then the following single-particle Hamiltonian

H = HLSDA +
∑
m,m′

|inlmσ〉V σmm′〈inlm′σ| (1.18)

where i is the site index, nlm the atomic like quantum numbers and
σ the spin quantum number. Vee is the screened Coulomb interaction
between nl electrons and is given by

V σmm′ =
∑
{m}

[
〈m,m′′|Vee|m′,m′′′〉n−σn′′m′′′

+ (〈m,m′′|Vee|m′,m′′′〉 − 〈m,m′′|Vee|m′′′,m′〉)nσm′′m′′′
]

− U
(
N − 1

2

)
+ J

(
Nσ − 1

2

)
. (1.19)
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The matrix elements can be expressed in spherical harmonics and
effective Slater integrals F k [71] as

〈m,m′′|Vee|m′,m′′′〉 =
2l∑
k=0

ak(m,m′,m′′,m′′′)F k, (1.20)

with

ak(m,m′,m′′,m′′′) = 4π
2k + 1

k∑
q=−k

〈lm|Y qk |lm
′〉〈lm′′|Y qk

∗|lm′′′〉.

(1.21)

For d electrons one needs F 0, F 2 and F 4 (which can also be expressed
in Racah parameters, cf. Eq. (3.34)). These can also be expressed in
Coulomb U and Stoner J parameters as U = F 0 and J = (F 2 +F 4)/14
where F 2/F 4 is approximately 0.625 for 3d elements [72–73]. The
values for U can be regarded as parameter taken from either core-
level PES measurements or be fitted to the band gap, but one can also
calculate its value in DFT. In many cases the exact value of parameters
(beyond a certain threshold) has only marginal influence on the result
(except for the band gap). By presetting the density matrix nσmm′
one can explore metastable solutions for orbital occupation and orbital
ordering, and by comparing the differences in such obtained total
energies, one can extract crystal-field parameters from the calculation.

Besides using the LDA (or LDSA) functional as starting point for
the U correction, one can also use other functionals such as a GGA
functional; however, estimating the double-counting term is then more
difficult.
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Grau, teurer Freund, ist alle Theorie
Und grün des Lebens goldner Baum.
All theory, dear friend, is grey, but the golden tree of
actual life springs ever green.

— Johann Wolfgang von Goethe, 1749–1832
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In classical mechanics and every day live, measuring implies to de-
termine the intrinsic state (or ground state) of an object (such

as the length of an object or its mass) directly. However, in many
cases something else is of interest: the response of the system to a
perturbation; a classical, macroscopic example would be the ductility
of a material. For microscopic objects, which are governed by quantum
mechanics, any measurement influences the system and measuring
the ground state itself is impossible. Knowing the ground state of a
quantum mechanical system is thus in principle of little use. Yet many
properties can be understood from the ground state, which is also
both conceptually simpler and easier to calculate. Thus the measured
response to a perturbation is used to understand the ground state,
which in turn helps to understand and predict the response to other
perturbations.

For atoms, molecules and solids the electrons are of main interest;
the nuclei can often be regarded as stationary (Born--Oppenheimer
approximation) or reacting only slowly (adiabatically) to the changes of
the electron density. A natural way to probe the electronic structure is
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to use electromagnetic radiation. Using x-ray absorption spectroscopy
(XAS), one is able to obtain information about the charge, orbital
and spin state. Their interplay determines the interesting electronic
and magnetic properties in strongly correlated sytems. Combined with
configuration-interaction cluster calculations (see next chapter), XAS
also provides information about low-energy excitations. To probe the
valence shell of transition-metals locally (excitonic), one needs to create
a core hole and, therefore, light of the energy of several hundreds of
electronvolts (order of nanometres, petaherz, a million wavenumbers).
Such light can be conveniently created using synchrotron radiation,
which we cover first. Afterwards, we give an introduction into x-ray
absorption spectroscopy including linear and circular dichroism and
XAS sum rules.

2.1 Synchrotron radiation and other X-ray sources

2.1.1 An historical introduction

If a charged particle such as an electron is deflected or accelerated,
electromagnetic radiation is emitted. This phenomenon is known as
bremsstrahlung (deceleration radiation) and has been discovered by
Nikola Tesla (1856–1943) while performing high-frequency experiments
in the 1890s with high-voltage vacuum tubes including Crookes tubes
[1–2]. X-rays themselves were discovered by Wilhelm Conrad Röntgen
in November 1895 in Würzburg [3]. X-ray tubes remain the primary
source for X-rays (or Röntgen rays as they were also called) though
another technique supervened in the 1930s: cyclotron radiation and
later synchrotron radiation. In cyclotrons, high-energy physicists were
studying collisions of subatomic particles; these were accelerated using
a fixed-frequency electric field in a homogeneous, constant magnetic
field, which causes the particles to stay in circular orbits. The emitted
electromagnetic radiation, called cyclotron radiation, was an unwanted,
energy-loosing side effect. When the velocity and thus the energy of
the electrons is increased, relativistic effects become dominant and
bright X-rays are emitted: the synchrotron radiation. The effect was
discovered in 1946 by Elder, Gurewitch, Langmuir, and Pollock [4]. In
synchrotrons (fig. 2.1) [5], both the strength of the magnetic field and
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Fig. 2.1 (color online) Aerial view of the storage rings of the National Synchrotron
Radiation Research Center (NSRRC) in Hsinchu, Taiwan (top left); of the Berliner
Elektrontronenspeichering Gesellschaft für Synchrotronstrahlung (BESSY) in Berlin, Ger-
many (bottom left); and of the European Synchrotron Radiation Facility (ESRF) in
Grenoble, France (right). Photos taken from http://lightsources.org/; copyright (respectively) © NSRRC;
www.euroluftbild.de / BESSY; and ESRF.

the frequency of the electric field are ramped up synchronously during
the acceleration of the electrons. As cyclotrons before, synchrotrons
were used for high-energy physics such as Betatron at the Lawrence
Berkeley National Laboratory, which began operating in 1954; the
unwanted X-ray radiation was only used parasitically. Much later in
the 1970s the first synchrotron dedicated to X-rays generation was
build. Modern synchrotron facilities consist of two rings: the actual
synchrotron ring, which is used to accelerate the electrons, and the
storage ring, in which the relativistic electrons are injected, after
having reached the final velocity. In the storage ring the electrons orbit
with constant energy/velocity. Synchrotrons are classified into three
generations, depending how the electrons are deflected to obtain the
X-ray radiation.

http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
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Fig. 2.2 (color online) X-ray spectrum
produced with a bending magnet: The flux
rises slowly up to the photon energy Ec
and then falls off quickly. Taken from http
://lightsources.org/; © University of California Berke-
ley/Advanced Light Source.

The principle of the first genera-
tion of works as described above:
The relativistic electron beam is
deflected by a so-called bending
magnet (or dipole magnet); this
produces horizontally polarized
photons of essentially all energies
up to a maximal energy Ec after
which the flux dies off quickly
(see fig. 2.2). Interestingly, the
photon beam is not everywhere
horizontally polarized: slightly
below and above the plane formed
by the orbiting electrons the light
has a circular component. The
second generation of synchrotrons
simply increases the number of
photons by not deflecting the elec-
trons once but deflecting it later-
ally several times by an array of
magnets such that the electron wiggles through the field and produce
a brighter spectrum. The device doing so is called wiggler; it usually
consists of permanent magnets arranged in a Halbach array and is
inserted in a straight section of the storage ring (thus it is known as
insertion device).

The next step, leading to the undulators which are the insertion
devices of the third-generation synchrotrons, is to arrange the dipole
magnets such that the light produced for each deflection interferes with
another to produce a very bright photon beam for a given frequency
One big advantage of undulators besides the brilliance is that all
polarizations – horizontal, vertical, left and right circular – can be
easily produced.

The successor of synchrotrons will be the free electron laser (FEL);
while the first small FELs are already operating, larger ones are only
under construction (2008). Over the years not only the intensity (or
more precisely the brilliance) increased by several orders of magnitude,
but also the beam stability, energy resolution, experimental techniques

http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
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and theoretical understanding improved. The absorption spectra in this
thesis were taken either at bending-magnet or at undulator beamlines.
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2.1.2 Brilliance

The important parameter to measure the quality of X-rays is the
brilliance [5]; foremost it contains the intensity (at a given energy),
i.e. the number of emitted photons (of a certain energy) per time
interval (typically, per second). But other parameters are also of
importance such as the collimation of the beam, i.e. how much it
spreads out horizontally and vertically while propagating (measured in
milliradians), or the source area (in millimetres). The spectral shape
of the emitted radiation depends on the type of source and might be
completely smooth or have peaks at certain energies; therefore the
brilliance is given in an energy interval with a (band)width of 0.1%
around the chosen energy. Thus the brilliance B is defined as

http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
http://lightsources.org/
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[
B(E0)

]
=

∫ E0+∆E/2
E0−∆E/2 NPhotons(E) dE

tAαhorizαvert

 = 1
s ·mrad2 ·mm2 ,

(2.1)

with the bandwidth ∆E = 0.1% · E0 = 0.001 · E0. The advancement
of X-ray light sources and a comparison with every-day lightsources
can be found in fig. 2.3.

2.2 Experimental

In principle, absorption measurements are simple: One first measures
the intensity (flux) without (or in front of) the sample I0(ν) and
once after the sample I(r, ν); knowing the thickness r0, the frequency-
dependent absorption coefficient µ(ν) can be easily computed:

I(r, ν) = I0(ν)e−µ(ν)r ⇒ µ(ν) = −r0 ln[I(r0, ν)/I0(ν)]. (2.2)

These transmission measurements work well for hard x-rays, which are
bulk sensitive. However, using soft X-rays, the light will be already
absorbed after few nanometres, making the measurement difficult. For-
tunately, one can use also secondary effects for the measurements,
namely the relaxation of the excited electrons. The simplest process
is that the electron relaxes and the surplus energy is again emitted
as light (fluorescence), which can then be picked up by a detector.
Fluorescence yield is bulk sensitive and works rather well for dilute
samples and thin layers, however, for thick, concentrated samples the
spectrum gets serverely distorted due to the so-called ‘self-absorption
effect’ [7–9]. Fluorescence yield can be used for the K edge of carbon,
oxygen and fluorine for which the self-absorption effect is small, but it
is not negligible for the transition-metal L edges.

There is yet another process: autoionization. Hereby an electron
relaxes into the created core hole and with the gained energy another
electron is emitted (cf. Auger--Meitner effect, internal photoeffect).
However, not all electrons simply escape from the solid but they scatter
inelastically, leading to the emission of myriads of secondary electrons of
the solid; that way numerous other electrons (which much lower kinetic
energy) are emitted. Thus another way to measure the absorption is
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by simply measuring all emitted electrons (total electron yield, TEY).
The simplest way of doing so is by measuring the sample current (drain
current). For TEY in a simple model, one has [10]

Y = A

∫ ∞
0

e−x/(λ cos θ)dx/(λ cos θ)e−x/d = Ad/(d+ λ cos θ), (2.3)

where A is the number of electrons produced per photon, θ the incidence
angle of the x-rays, λ die absorption length and d the escape depth
of the electrons. For λ ≈ d there are significant saturation effects,
while they are negligible for λ � d, which is approximately the case.
However, the total-electron-yield method has another drawback: Due
to the emission of electrons, the sample charges unless it is conducting
enough that the drain current provides enough electrons. And the
escape depth of electrons is much smaller than for photons; roughly
only the top 30 to 50 Å are probed. Fortunately, most transition-metal
compounds are conducting enough to be measurable.

But since the probing depth is limited, the sample must be clean.
Thus, the measurements are performed in ultra-high vacuum (pressures
around 10−10 mbar) and one needs to get rid of the ‘dirt’ (absorbed
water, oxygen, carbon dioxide, etc.) on the sample surface. The latter
can be done by cleaving the sample in vacuo, i.e. by cutting the sample
with a cleaving knive or for layered materials by simply breaking off a
post glued to the top of the sample. The dependence on the quality of
the vacuum can be seen by the average time it takes until the sample is
covered by a monolayer of atoms [11]: At a pressure of p = 10−6 mbar it
takes about one second (tmono = 1 s) until the sample is covered by one
monolayer (nmono = 1); by contrast, at 10−11 mbar it takes about 24
hours for one monolayer to form (tmono = nmono

√
2πMmolarRT/pNA

with gas constant R, Avogadro number NA and molar mass Mmolar).
As trivia I want to add that water is most difficult to pump, which
makes it difficult to reach 10−10 mbar; the solution is to heat the whole
chamber to around 130 °C while pumping for a day. To do so, the
chamber is laced with heating tapes and then packed with aluminium
foil.

More about X-ray experiments can be found in the book by Als-
Nielson and McMorrow [5] while for X-ray absorption the publications
by Frank de Groot [12–15]and the articles in the “Theo Thole Memorial
Issue” [16] provide a good starting point.
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The specta shown in this thesis are where recorded in total electron
yield at the L2,3 edges of 3d and 4d transition-metal ions.

2.3 X-ray absorption and XAS sum rules

For X-ray absorption spectra an analysis hierarchy exists. The direct
approach is to qualitatively extract information from the data itself
by looking at their shape and their energy position (by using the
knowledge provided via previously taken spectra and from theory).
The next step is to use sum rules to extract quantitative information
from the spectra, while the third step is to simulate the spectra and
– when the calculated spectra match the experiment – to use the
result of the calculations. Simulating the spectra confronts one with
the problem which method is best and which parameters need to be
chosen; the theoretical spectra shown in this thesis have been simulated
using configuration-interaction cluster calculations, which is described
in the next chapter. But also the sum rules are not without pitfalls
as the conditions for which they were derived are not always fulfilled
(see below). Nevertheless, sum rules provide effortless insight into a
spectrum and thus in the properties of a material. As throughout this
thesis, we concentrate on the transitions of electrons from the filled 2p
orbitals to the partially filled d orbitals of transition-metal ions.

2.3.1 Isotropic x-ray absorption spectroscopy
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Fig. 2.4 (color online) X-
ray absorption scheme for
2p to d excitations.

In X-ray absorption spectroscopy [12–15, 17]
light in the x-ray range (approximately 10 to
0.01 nanometres, one hundred eV to tens of
keV) is used to excite strongly bound electrons
belonging to deep states to weakly bound valence
states. In our case, 2p transition-metal elec-
trons are excited into the valence band or more
precisely in the partially filled d orbitals of this
transition-metal ion. These transitions lie in
the soft x-ray range of several hundreds of elec-
tron volts.2 The main peaks in the spectrum are
labelled in XAS as follows: A letter denotes the
shell (main quantum number) from which the
electrons stem; the shells are named for historic
reasons K (n = 1), L (n = 2) etc. For a given
shell, the peaks are numbered through, starting
from the lowest core-hole subshell. L1 is thus
the transition from 2s and not well pronounced.
L2 and L3 stem from 2p electrons; this shell is
split into two levels with J = 3/2 and J = 1/2
due to the spin-orbit coupling of the 2p state.

The transition from the 2p shell into the d shell is dipole allowed
and the transition probability Ti→f follows Fermi’s golden rule,

Ti→f = 2π
~
|Mif |2ρf with Mif = 〈Ψ|e~εr |Ψ〉, (2.4)

where Mif is the transition matrix element, ρf the density of final
states; ~εer is the dipole operator with e being the elementary charge
and ~ε (with ε2 = 1) the polarization of the light. That the transition is
dipole allowed immediately implies strong intensities and, due to the
dipole-selection rules3 and the multiplet structure, a high sensitivity
to the symmetry of the initial state, including the charge, spin, and
orbital state.

In a simple picture (fig. 2.4) one excites electrons from the spin-
orbit split 2p states into the d shell, which probes the unoccupied
density of states of the ion. However, this simple picture completely

A conversion table for wavelengths and energies is given Appendix C.2

∆l = ±1, ∆j = 0,±1, ∆ml = 0,±1, ∆ms = 0, ∆L = 0,±1, ∆S = 0, ∆J = 0,±1.3
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neglects the electron interaction (especially the influence of the core
hole). That multiplet effects are important can be seen by comparing
L3 and L2 edges: In the simple picture their shape should be identical
and the ratio should be 2:1. Experimental spectra show that this is
usually not the case.

The energy position of the absorption edge is strongly element
specific, and its exact position and shape depends on the local electron
structure and thus on the valence, spin state and point symmetry.
Thus, one can measure for instance in LaMnCoO3 (cf. Chapter 5) the
cobalt (Co-L2,3) and the manganese ions (Mn-L2,3 edges) separately.
However, if there are two different sites of the same element, one
measures only the sum of the single-site spectra, which reduces the
extractable information (cf. Ca3Co2O6 in Chapter 4). In some cases,
the L absorption edge also overlaps with the K edge of oxygen or
the M edge of other ions. (But not for compounds measured for this
thesis.) As mentioned above, the exact energy position also depends on
the valence: An increase of the valence of the metal ion by one results
in a shift of the L2,3 XAS spectra to higher energies by 1 eV or more
[18]; this shift is a final state effect. By comparing the spectrum of a
studied compound with reference spectra of compounds with known
valence, the valence of the studied compound can be determined; this
effect has been used for several of the studied compounds in this thesis.
The spectral shape contains information about the number of hole
and the local symmetry; unfortunately, this information is usually not
directly accessible due to the complexity of the multiplet structure.
However, in some cases one easily sees that, e.g., there are no holes in
the t2g orbitals (cf. Figure 6.1). In other cases, one needs to simulate
the spectra to understand for instance the influence of the symmetry
(cf. Figure 6.2). Note that for the branching ratio a sum rule exists
[19–21]which gives access to the spin-orbit operator in the valence state,
which is however only rarely used and requires that the L3 and L2
manifolds are well separated.

2.3.2 x-ray linear dichroism and sum rules

Using linearly polarized light with a single crystalline sample, one
can only excite orbitals with a component in field direction (assuming
dipole approximation); e.g. if the light is polarized in z direction
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(electric field of the light parallel to z) then only electrons in pz but
not px or py orbitals are excited.4 These electrons can only be excited
into (empty or partially filled) orbitals which have a component in the
same (e.g. z) directions (here: dyz, dzx and d3z2−r2 but not dxy or
dx2−y2). The transition intensity now depends on the occupation of the
final state (i.e. the number of holes in the d orbitals which are dipole
allowed for the given polarization of the light). In stead of orbitals, one
can also think in terms of electron density and multipole moments.

Fig. 2.5 Linear dichroism in La1.85Sr0.15CuO4 with Cu 3d9,
which has a hole only in the dx2−y2 orbital. Spectra by C. T.
Chen et al. [22]. Reprinted with permission. Copyright 1992 by the American
Physical Society.

Thus, absorption spectra taken with differently polarized light reveal
information about the orbital occupation; the difference between spec-
tra, taken with a different linear polarization, is called linear dichroism,
which comes from Greek dikhroos (di- “twice” + khros “colour”). An
illustrative example is the layered superconductor La1.85Sr0.15CuO4
(LSCO), which contains a Cu2+ ions with 3d9 configuration; the copper
ion is octahedrally surrounded by oxygens, with a tetragonal distortion
such that the out-of-plane axis is longer. One can therefore expect
that the dx2−y2 orbital which points in plane towards the oxygens is
highest in energy and thus unoccupied. This is indeed what one can
see in the XAS spectra of Figure 2.5.

For the notation and the relation of these real orbitals to spherical harmonics, see4

Appendix A.
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Carra et al. derived sum rules for the linear dichroism, which can
be used to determine the expectation value of quadrupolar operators
[23].

2.3.3 Sum rules for x-ray magnetic circular dichroism

Using circularly polarized light, the excitations are spin-selective; assum-
ing that the spins are parallel/antiparallel aligned to the direction of
the light (Poynting vector), the difference (dichroic) spectrum shows
the difference between up- and down-spin occupation and gives thus
information about the magnetic properties. Contrary to the linear
dichroism, no single-crystalline sample are needed, but all spins have
to be aligned to the magnetic field; thus the x-ray magnetic circular
dichroism (XMCD) is primarily suitable for ferromagnets but also para-
magnets can be measured [24]. If the external magnetic field is not
strong enough to align all spins, one has to be careful with the analysis
and especially with using the following sum rules.

For the orbital moment, Thole et al. [25] derived the sum rule

〈Lz〉 = 2 l(l + 1)
c(c+ 1)− l(l + 1)− 2nholes

×
∫

edge [µ+(E)− µ−(E)] dE∫
edge [µ+(E) + µ+(E) + µz(E)] dE

, (2.5)

where µ− and µ+ denote the spectrum for, respectively, left- and
right-circularly polarized light (for a Poynting vector along z), µz for
z polarized light, l the state subshell (here, dn, i.e. l = 2), c is the
core-hole subshell (c = 1 for p), and nholes the number of holes. It is
µ+(E) + µ−(E) + µz(E) ≈ 3

2 [µ+(E) + µ−(E)]; the equation can then
also be written as

〈Lz〉 = −2

∫
L2,3

∆µ(E) dE
3/2

∫
L2,3

[µ+(E) + µ−(E)]dE
nholes, (2.6)

with ∆µ = µ+ − µ−.
Carra et al. [26] have derived another sum rule to determine the

spin 〈Sz〉 and the magnetic-dipole moment 〈Tz〉,
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∫
j+

∆µdE − [(c+ 1)/c]
∫
j−

∆µ∫
j++j− [µ+(E) + µ−(E) + µz(E)] dE

= l(l + 1)− 2− c(c+ 1)
3cnholes

〈Sz〉 (2.7)

+ l(l + 1)[l(l + 1) + 2c(c+ 1) + 4]− 3(c− 1)2(c+ 2)2

6cl(l + 1)nholes
〈Tz〉,

where j± = c± 1/2; which can be simplified for our case to

2〈Sz〉+ 7〈Tz〉 = 3
∫
L3

∆µdE − 2
∫
L2

∆µdE
3/2

∫
L2,3

(µ+(E) + µ−(E)) dE
nholes. (2.8)

In order to use either sum rules one needs to estimate the denominator,
i.e. the volume of the spectrum. XAS spectra show a constant offset
plus a so-call edge jump (the “background” is higher after an edge than
before); as the interactions regarded for the sum rules do not include
these, one needs to substract the background before applying the sum
rule. Using the ratio between the orbital and the spin moment avoids
this problem. For the spin-sum rule one needs to integrate over the
L3 and L2 edge separately; this assumes that j± are good quantum
numbers, which is especially for the early transition-metal ions not the
case. (A note of warning: While for, e.g., Mn-L23 spectra splitting the
edges is already visually difficult, also for visually well-split edges the
j± might be not a good quantum number [27].) Additionally, there is
the magnetic dipole moment, which might not be a small number [28]:
While octahedral symmetry it can usually be neglected, in trigonal
symmetry it can become relevant [27].
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For nonmetallic solids with rather localized valence electrons, most
of the properties can be described by concentrating on a few

electrons. This is the case for nonmetallic transition-metal oxides and
for soft x-ray absorption spectroscopy as the excitation is excitonic
and thus local; here, only the valence d electrons are of interest (plus
the 2p electrons and hybridizing electrons from the ligands) – all other
electrons are enter only as effective potential. One successful numerical
technique is the a configuration-interaction (CI) cluster calculation
which is essentially restricted on the valence electrons. In this chapter
we will look first at the crystal-field and ligand-field theory, which
provides by itself a means to understand orbital ordering and spin
states. The configuration-interaction cluster calculation is covered
next, which makes use of the ligand-field theory.

3.1 Crystal-field and ligand-field theory
The crystal-field theory (CFT) is a purely electrostatic model which
goes back to the 1930s and was developed by Bethe [1]and Van Vleck
(Ref. 2 and references therein). Hereby, a crystal is not regarded as
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a whole but a site it chosen and only the electrostatic influence of
the neighbors, regarded as point charges, on the outer shell of the
chosen atom is studied. The ligand-field theory (LFT) goes beyond
by including the bonding in the coordination complexes. A good
introduction into this theory can be found in the book of Schläfer
and Gliemann [3], but also in the books of Ballhausen [4], of Sugano,
Tanabe and Kamimura [5], of Griffith [6], of Figgis and Hitchman [7],
of Gerloch and Slade [8], and less readable but very detailed in the
book Abragam and Bleaney [9]. Several inorganic/physical chemistry
books have also a section about symmetry and hybridization (see e.g.
Ref. 10); additionally, some knowledge about symmetries is useful, but
note that only point-group symmetries matter for this theory (see, e.g.,
11–12). Finally, since the starting point is a free ion, atomic-physics
books provide some basis (e.g. 13–16). In the following we loosely
follow the book of Schläfer and Gliemann.

For the case of the Russell--Saunders (or LS) coupling, we denote
a state by the symbol 2S+1LJ ; hereby M = 2S + 1 denotes the spin
multiplicity, for L = 0, 1, 2, . . . the letters S, P,D, F,G,H, . . . are used
and J is the total angular momentum; the Russell--Saunders coupling
is a rather good approximation for light elements and assumes that
the total momenta S, L and J yield good quantum numbers and
that the following is true: L =

∑
i l, S =

∑
i si and J = L + S (i.e.

J ∈ {L+ S,L+ S − 1, . . . , |L− S|}), where si and li are respectively
the spin and angular momentum of a single electron. (For an in-depth
description, see the book by Slater [14, Chap. 10].)

As an example, we take Cr3+ which has 3 electron in the 3d orbitals.
For the spin there are two possibilities, namely S = 1/2 with ↑↑↓
(M = 2, doublet) and S = 3/2 with ↑↑↑ (M = 4, quartet). For
the angular momentum, there are in principle the 4 values for the
total momentum possible for ↑↑↑, viz. L = 0, 1, 2, 3. However, as the
wavefunction must be antisymmetric under interchange of two electrons,
only L = 1 and L = 3 are allowed. This leaves us in case of the quartet
with 4F and 4P . In case of the doublet the following configurations
are possible: 2P , a 2D, b 2D, 2F ,2G and 2H (note that 2D appears
twice).

The number of possible configurations can be rather large; for d
electrons there are 10 [= 2(2l+ 1)] possibilities to place an atom. Thus
for n electrons in a d subshell (dn) there are

(2(2l+1)
n

)
=
(10
n

)
possibilities,
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where
(
k
n

)
= k!/[k!(n − k)!] (k ≥ n ≥ 0, otherwise = 0) denotes the

binominal coefficient. Thus, d1 and d9 have 10 configurations, d2 and
d8 have 45, d3 and d7 have 120, d4 and d6 have 210, and d5 has 252.

3.2 The model

In this section we use atomic units in order to make the equations
simpler (cf. Appendix E). As mentioned above, in the ligand-field
theory one is interested in the electrons which can be assigned to the
partially filled subshell of a central ion (e.g. the 3d or 4d subshells
of a transition-metal ion). Hereby the assumption is made that the
electrostatic potential of the core and the ligands, i.e. the exchange
forces between electrons of the central ion and the ligands can be
neglected. The Hamiltonian of N electrons in an subshell can be
written as

H =
N∑
i=1

(
−1

2∇
2
i −

Z∗

ri

)
+ 1

2

N∑
i=1

N∑
j=1
i6=j

1
rij

+
N∑
i=1

V (ri) +
N∑
i=1

HSO(i),

(3.1)

where − 1
2∇

2
i is the kinetic energy of the ith electron, −Z∗/ri the

potential energy of the ith electron, Z∗ is the effective charge of the
core (roughly: nuclear charge minus charge of filled shells), 1/rij
is the electron–electron interaction of two electrons in the partially
filled subshell; V (ri) denotes the Coulomb interaction between the
ith electron and all the ligands, and HSO(i) is the spin–orbit coupling
energy. This Schrödinger equation is too difficult to be solved exactly.
One starts by solving the following independent-particle Schrödinger
equation

H0,0Φ =
N∑
i=1

(
−1

2∇
2
i −

Z∗

ri

)
Φ = NεndΦ. (3.2)

Here, the Φ are antisymmetrized products of one-electron d functions
which are all degenerate and belong to a state of the electron configur-
ation (nd)N with the energy εnd, where εnd is the energy of a single
nd electron moving in the effective potential around the core. The
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remaining terms of Eq. (3.1) can be regarded as perturbation operator.
One can distinguish three cases:

− The weak crystal field, which has the following order in energy:
electron–electron interaction > crystal field > spin-orbit coupling,

− the strong crystal field with crystal field > electron–electron inter-
action > spin–orbit coupling, and

− the strong spin–orbit coupling case with spin-orbit coupling >
crystal field > electron–electron interaction.

Unfortunately, in the 3d transition-metal compounds, the electron–
electron interaction and the crystal-field are of comparable size.

The ligand-field can be calculated as follows. Let ρ(R) denote the
charge density of all ligands (but excluding the electron density of the
ion of interest), where R denotes the coordinate relative to the central
ion; then the crystal-field potential is given by

V (r) =
∫

ρ(R)
|R − r |

d3R. (3.3)

We now expand 1/|R−r | in spherical harmonics Y ml (cf. Appendix A
and e.g. [17, pp. 369ff.])

V (r) =
∞∑
l=0

l∑
m=−l

4π
2l + 1Y

m
l (θ, φ)

∫
ρ(R)

rl<
rl+1
>

Y m∗l (θ, φ) d3R, (3.4)

where r< = min(R, r) and r> = max(R, r). Since for r > R the
integrand is negligible (in our model, the ligand electron density is
vanishingly small near the electrons of the central ion), we have r< = r
and r> = R and thus

V (r) = V (r, θ, φ) =
∞∑
l=0

l∑
m=−l

Aml r
l Y ml (θ, φ) (3.5)

with

Aml = 4π
2l + 1

∫ 1
Rl+1 ρ(R)Y m∗l (θ, φ) d3R. (3.6)
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At the first sight V (r) contains an infinite series and is thus impossible
to solve, fortunately only few terms play a role in the ligand-field
theory.

First, if the charge distribution ρ has a particular (point) symmetry,
also V needs to have it; i.e. V has to be invariant under all symmetry
operations of the to ρ associated symmetry group. (This is generally
true.)

Secondly, in the ligand-field theory, V appears as perturbation
operator where the wavefunctions are one-electron functions φn,l,m =
Rn,l(r)Y ml (θ, φ) and thus

〈φn,l,m|Aµλ r
λ Y µλ |φn,l,m′〉 = Aµλ〈Rn,l|r

λ|Rn, l〉〈Y ml |Y
µ
λ |Y

m′

l 〉. (3.7)

Where 〈Y ml |Y
µ
λ |Y m

′

l 〉 vanishes unless the following conditions are met
[18](we assume here that the electrons come from the same subshell)5:

− λ ≤ 2l, for d electrons thus: λ ≤ 4

− λ is even

Hence, the potential for d electrons in the approximation of ligand-
field theory only consists of

V (r) = A0
0 r

0Y 0
0 +

2∑
µ=−2

Aµ2 r
2Y µ2 +

4∑
µ=−4

Aµ4 r
4Y m4 ; (3.8)

this can be rewritten by defining Bml = (2l + 1)/4π Aml 〈rl〉 and Cml =
4π/(2l + 1)Y ml as

V (r) = B0
0 C

0
0 +

2∑
µ=−2

Bµ2 C
µ
2 +

4∑
µ=−4

Bµ4 C
µ
4 . (3.9)

Above potentials [Eq. (3.8) and (3.8)] hold true for all symmetries.
For octahedral symmetry (Schönflies: Oh; Hermann-Mauguin: m3m,
cf. fig. B.1) the potential must be invariant under all symmetry
operations of the Oh point group. The z axis is a C4 axis, i.e. the
potential must be invariant under rotations of φ′ = φ+ π/2. The only

For 〈φn,l,m|Aµλ|φn,l′m′ 〉 the integrals are nonzero only when (a) |l− l′| ≤ λ ≤ |l+ l′| and5

(b) l + l′ + λ are even.
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φ dependence is in the exponential exp(imφ) (cf. Appendix A) and
thus Aml with m = 0,±4, . . . are possible. This reduces the potential
to
VOh

(r) = A0
0Y

0
0 +A0

2r
2Y 0

2 + r4(A−4
4 Y −4

4 +A0
4Y

0
4 +A4

4Y
4
4 ). (3.10)

If one now reflects the coordinate system about the zx plane, i.e.
(x′, y′, z′) = (x,−y, z) and sees how the remaining spherical harmonics
in Cartesian coordinates (see Appendix A) transform. One then finds
σzxY

±
4 = Y ∓4

4 and thus A4
4 = A−4

4 . If one does now a rotation of the
coordinate system C3(x′ = y, y′ = z, z′ = x) one finds that A0

2 must be
zero as for instance for 3z2 − r2 = 2z2 − x2 − y2 the coefficient before
the z is different from the one before x and y. This gives the following
potential

VOh
(x, y, z) = A0

0Y
0
0 +

√
9

4π r
4 r−4

× [A0
4

√
1
64(3x4 + 3y4 + 8z4 + 6x2y2 − 24x2z2 − 24y2z2)

+A4
4

√
35
128(2x4 − 12x2y2 + 2y2)]. (3.11)

If one sets the coefficients for y4 the same, i.e.

3A0
4
√

1/64 + 2A4
4
√

35/128 = 8A0
4
√

1/64 (3.12)

or A4
4 =

√
5/14A0

4, one obtains

VOh
(r) = A0

0r
0Y 0

0 +A0
4r

4[Y 0
4 +

√
5/14(Y 4

4 + Y −4
4 )]. (3.13)

In the ionic ligand-field theory the charge distribution can be often
approximated by the change distribution of the individual ligands
assuming point charges or point dipoles [3, pp. 329ff.]. However, this
does not work reliably; for this thesis the ionic part of the crystal
field has usually been obtained using the total-energy differences of
constrained LDA+U calculations or also from the center of gravity
of partial density of state coming from LDA+U (or LDA/GGA) cal-
culations. For the hybridization part, i.e. the hopping between the
transition-metal d and the ligand oxygen p orbitals, the Vpdσ and Vpdπ
values following to Harrison’s rules have been used (sometimes the
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uniformly scaled). The matrix elements themselves have been construc-
ted following Slater and Koster and can be found in Appendix B. For
lower symmetries the program hybrid has been used which applies the
procedure by Slater and Koster and Harrison’s rules for any symmetry;
the program is available from the author’s homepage.

3.3 Description of d1 systems

We start with d1 which is conceptually and numerically simpler as no
electron–electron interactions are present (besides the effective Hamilto-
nian of the ligand field); for simplicity we assume for now that also the
spin–orbit coupling is small enough to be ignored, which is approxim-
ately valid for (early) 3d transition metals. The Schrödinger equation
of the unperturbed system is then

H0,0ψ = (−∇2 − Z∗/r)ψ = E0,0ψ = εndψ (3.14)

and the perturbation is given by H ′ = −V (r). The solutions for
Eq. (3.14) are the ten wavefunctions

φm := ψn,2,m,σ = Rn,2(r)Y m1 (θ, φ)χσ, m = −2,−1, 0, 1, 2,
(3.15)

where χσ denotes the spin with σ = ± 1
2 or σ ∈ {α, β}. As the potential

is radial, the system has spherical symmetry and gives a 2D term. The
energy changes are given by the roots ε of the secular determinant
|H ′ − diag(ε)| = 0 or slightly more verbosely written∣∣∣∣(H ′i,α;jα H ′i,α;jβ

H ′i,β;jα H ′i,β;jβ

)
− diag(ε)

∣∣∣∣ = 0, (3.16)

where H ′i,σ;jσ′ = 〈φi,σ|H ′|φj,σ′〉 and diag(ε) is a matrix with ε on the
diagonal and zero elsewhere. Since H ′ does not operate on the spin,
we have H ′i,α;jα = H ′i,β;jβ = H ′i,j and H ′iα;jβ = H ′iβ;jα = 0.

3.3.1 Octahedral (Oh) field

By symmetry considerations one knows that in an octahedral field the
fivefold (orbitally) degenerate D term splits into a doubly degenerate
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Eg term6 and a three-fold degenerate T2g state. An appropriate basis
is

Eg

{
φ1 = ψn,2,0 = eag = d3z2−r2Rn,2

φ2 = 1√
2 (ψn,2,2 + ψn,2,−2) = ebg = dx2−y2Rn,2

T2g


φ3 = − i√

2 (ψn,2,2 − ψn,2,−2) = t02g = dxyRn,2

φ4 = i√
2 (ψn,2,1 + ψn,2,−1) = t+2g = dyzRn,2

φ5 = − 1√
2 (ψn,2,1 − ψn,2,−1) = t−2g = dzxRn,2

. (3.17)

We can now write down the matrix elements Hi,j = 〈φi|H|φj〉. The
off-diagonal terms which connect Eg states with T2g vanish as {eag , ebg}
and {t02g, t±2g} belong to different irreducible representations of the
symmetry group of H ′. Furthermore, the other off-diagonal elements
vanish since φi and φj , belonging to the irreducible representation
of H ′, transform as different columns of the representation matrices.
Thus the matrix is

H ′Oh
=


H1,1 0 0 0 0

0 H2,2 0 0 0
0 0 H3,3 0 0
0 0 0 H4,4 0
0 0 0 0 H5,5

 , (3.18)

for which the roots of the scular matrix are simply εi = Hi,i. Further-
more, the symmetry tells us that the energy of the Eg and, respectively,
of the T2g states is the same. One can now plug in the definition of
H ′, abbreviate 〈rl〉 = 〈Rn,2(r)|rl|Rn,2〉 and calculate the integrals over
three spherical harmonics explicitly. The result is then

We use the Mulliken symbols [19–22]throughout; they are related to the Bethe symbols6

[1, 23]as follows. Mulliken A1 = Bethe Γ1 (degeneracy: 1), A2 = Γ2 (1), E = Γ3 (2),
T1 = Γ4 (3), T2 = Γ5 (3). Mulliken symbols: A denotes a state which is symmetric and
B one which is antisymmetric with respect to the principal Cn axis. The subscripts 1
and 2 (for A and B) denote, respectively, no sign change (1) or a sign change (2) upon
rotation about the center of the atom; g (gerade, symmetric) and u (ungerade, anti-
symmetric) denote, respectively, no sign change (g) or a sign change (u) upon inversion
through the center of the atom. Prime (′) and double prime (′′) denote symmetry (′)
and antisymmetry (′′) with respect to a horizontal symmetry plane σh. (σ stands for
Spiegelebene [mirror plane].)
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ε(Eg) = − 1
2
√
π
〈r0〉A0

0 − 6 1
14
√
π
〈r4〉A0

4

ε(T2g) = − 1
2
√
π
〈r0〉A0

0 + 4 1
14
√
π
〈r4〉A0

4. (3.19)

The crystal-field splitting betwixt the Eg and the T2g states is thus
given by ∆ = 10Dq = E(Eg)− E(T2g) = −10/(14

√
π)A0

4 with ∆ > 0.
Thus, the potential in Eq. (3.13) can be written as

VOh
(r) = −A0

0〈r0〉Y 0
0 −

7
√
π

5 ∆ 〈r4〉[Y 0
4 +

√
5/14(Y 4

4 + Y −4
4 )].(3.20)

or, using Bml := Aml 〈rl〉 and Cml (θ, φ) =
√

4π/(2k + 1)Y ml (θ, φ), as

VOh
(r) = − 1

2
√
π
B0

0C
0
0 + 21

10∆[C0
4 +

√
5/14(C4

4 + C−4
4 )]

= − 1
2
√
π
B0

0C
0
0 + 21Dq[C0

4 +
√

5/14(C4
4 + C−4

4 )] (3.21)

In cubic symmetry (with eight ligands), A(cube)
0,0 = 4

3A
(oct)
0,0 andA(cube)

4,0 =
− 8

9A
(oct)
4,0 . And for a tetrahedron (Td) A(tetr)

0,0 = 2
3A

(oct)
0,0 and A

(tetr)
4,0 =

− 4
9A

(oct)
4,0 .

3.3.2 Tetragonal (D4h) symmetry

In tetragonal symmetry, the octahedral Eg states split into two nonde-
generate states, namely B1g and A1g, and the triply degenerate octa-
hedral T2g state splits into a doubly degenerate Eg and a nondegenerate
B2g state. We continue to use the same basis {φi} [cf. Eq. (3.17)] as
before; the fivefold orbitally degenerate D term now splits into three
nondegenerate terms A1g (φ1, d3z2−r2), B1g (φ2, dx2−y2), B2g (φ3, dxy)
and a doubly degenerated Eg term (φ4/dyz and φ5/dzx). The matrix
is again diagonal. In total, one obtains the following energies
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ε(B1g) = ε0,oct. + ε0,D4h + 6Dq + 2Ds−Dt

= ε0,D4h + 3
5∆ + 1

2∆eg

ε(A1g) = ε0,oct. + ε0,D4h + 6Dq − 2Ds− 6Dt

= ε0,D4h + 3
5∆− 1

2∆eg

ε(B2g) = ε0,oct. + ε0,D4h − 4Dq + 2Ds−Dt

= ε0,D4h −
2
5∆ + 1

2∆t2g

ε(Eg) = ε0,oct. + ε0,D4h − 4Dq −Ds+ 4Dt

= ε0,D4h −
2
5∆− 1

2∆t2g
(3.22)

and the following potential

V (r) = B0
0C

0
0 − 7DsC0

2 + 21(Dq −Dt)C0
4 + 21Dq

√
5
14(C4

4 + C−4
4 ).

(3.23)

Note: With this definition, 10Dq is the difference between the B1g
(dx2−y2) and the B2g (dxy) state and not the weighted difference
between the B1g/A1g (Oh: Eg) and the B2g/Eg (Oh: T2g) states;
the same is true for the potential shown below for the orthorhombic
symmetry.

3.3.3 Orthorhombic (D2h) symmetry

In orthorhombic (D2h; mmm) symmetry, the tetragonal Eg state splits
further, additionally the Hamilton operator no longer diagonal for the
basis φi as the φ1 (d3z2−r2) and φ2 (dx2−y2) states are mixed by the
mixing parameter Dv. The states are given by [24]
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ε(B1g) = ε0,oct. + ε0,D4h + 6Dq + 2Ds− 7
2Dt+ 1

2
√

Γ

ε(A1g) = ε0,oct. + ε0,D4h + 6Dq + 2Ds− 7
2Dt−

1
2
√

Γ

ε(B2g(xy)) = ε0,oct. + ε0,D4h − 4Dq + 2Ds−Dt

= ε0,D4h −
2
5∆ + 1

2∆t2g

ε(B2g(zx)) = ε0,oct. + ε0,D4h − 4Dq +Ds+ 4Dt+Du

= ε0,D4h −
2
5∆− 1

2∆t2g + 1
2∆eg (3.24)

ε(B2g(yz)) = ε0,oct. + ε0,D4h − 4Dq +Ds+ 4Dt−Du

= ε0,D4h −
2
5∆− 1

2∆t2g −
1
2∆eg (3.25)

with
Γ = (4Ds+ 5Dt)2 + (2Dv)2. (3.26)

The potential is then given by

V (r) = B0
0C

0
0 +

(
1
2
√

6Du− 2
√

2Dv
)

(C2
2 + C−2

2 ) + 21(Dq −Dt)C0
4

+
(

32
5Du+ 6

5Dv
)

(C2
4 + C−2

4 )

+ 21
√

514Dq(C4
4 + C−4

4 ). (3.27)

3.3.4 Trigonal (D3d) symmetry

In the trigonal symmetry D3d (3m) exist a dihedral/diagonal mir-
rorplane. There are several possibilities to align the triangles (see
fig. 3.1).

Contrary to the above symmetries, Oh, D4h, and D2h, a basis of
spherical harmonics is also useful; we use the notation dl := Y l2 in the
following. In a trigonal symmetry, the following terms exist: An Eg

(“Eσg ”, here denoted as E(h)
g , h for high in energy) doublet consisting of
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(a) (b) (c)

Fig. 3.1 In trigonal symmetry, one has the choice for orientating the transition-metal–
ligand complex.

d±1 (dzx, dyz) orbitals, another doubly degenerate Eg (“Eπg ”, E(l)
g , l for

low) term consisting of d±2 (dxy, dx2−y2), and an A1g term consisting
of the d0 (d3z2−r2) orbital [4, 8, 24–25].

In the week-field case (Dσ and Dτ small, i.e. no mixing between
the two Eg terms), the energies are then given by

ε(E(h)
g ) = ε0 + 6Dq + 2Dσ −Dτ

= ε0 + 3
5∆12 −

1
5∆02

ε(E(l)
g ) = ε0 − 4Dq −Dσ + 4Dτ

= ε0 −
2
5∆12 −

1
5∆02

ε(A1g) = ε0 − 4Dq − 2Dσ − 6Dτ

= ε0 −
2
5∆12 + 4

5∆02, (3.28)

where the splitting is either parameterized by ∆12 = ε(E(h)
g )− ε(E(l)

g )
[splitting between the higher-lying E(h)

g d±1 states and E(l)
g (d±2)] and

∆02 = ε(A1g)− ε(E(l)
g ), or, classically, by Dσ and Dτ (see Ballhausen

[4]). In the general case, there is a mixing Vmix between the two Eg
states and the Hamiltonian is no longer diagonal. For the two Eg states
one thus has the following Hamiltonians
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Heg = ε0 +Dq + 1
2Dσ + 3

2Dτ

+
(

5Dq + 5
6Dτ −

1
2Dσ

√
2Dσ − 5

3
√

2Dτ
√

2Dσ − 5
3
√

2Dτ −5Dq − 5
6Dτ + 1

2Dσ

)
or alternatively

Heg =
(
E

(h)
g Vmix

Vmix E
(l)
g

)
. (3.29)

Diagonalizing the Hamiltonian and inserting the definitions for ∆02
and ∆12 yields

ε(E(h)
g ) = ε0 +Dq + 1

2Dσ + 3
2Dτ +

√
Γeg

= ε0 + 1
2

(
E(1)
g + E(2)

g +
√

(E(1)
g − E(2)

g )2 + 4Vmix

)
= ε0 + 1

10(∆12 + 5
√

∆2
12 + 4V 2

mix)− 1
5∆02

ε(E(l)
g ) = ε0 +Dq + 1

2Dσ + 3
2Dτ −

√
Γeg

= ε0 + 1
2

(
E(1)
g + E(2)

g −
√

(E(1)
g − E(2)

g )2 + 4Vmix

)
= ε0 + 1

10(∆12 − 5
√

∆2
12 + 4V 2

mix)− 1
5∆02

ε(A1g) = ε0 − 4Dq − 2Dσ − 6Dτ

= ε0 −
2
5∆12 + 4

5∆02 (3.30)

with Γeg
= 25Dq2 + 1

4 (3Dσ−5Dτ)2 +Dq( 25
3 Dτ−5Dσ). The potential

is then given by

VD3d
= B0

0C
0
0 +B0

2C
0
2 +B0

4C
0
4 +B3

4(C3
4 − C−3

4 ). (3.31)

That the other coefficients Bml vanish, comes from the three-fold axis
along z; the φ dependence of spherical harmonics is eimφ and thus the
invariance of the potential under symmetry operations is only fulfilled
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for m = 0,±3. For the alignment of the trigonal prism as shown in
Figure 3.1(a), one obtains the following parameters:

B0
2 = −7Dσ = ε(A1g)− ε(E(l)

g )− 2
√

2Vmix

= 1
2

(
2∆02 −∆12 − 4

√
2Vmix +

√
∆2

12 + 5Vmix

)
B0

4 = −14(Dq + 3
2Dτ) = 1

5 [9ε(A1g)− 2ε(E(l)
g )− 7ε(E(h)

g )] + 2
√

2Vmix

= 1
10

(
18∆02 − 9∆12 + 20

√
2Vmix − 5

√
∆2

12 + 5Vmix

)
B3

4 = −14
√

10
7 Dq =

√
7
5 [
√

2
(
ε(E(l)

g − ε(E(h)
g )

)
− Vmix]

= −
√

7
5

(
Vmix +

√
2(∆2

12 + 5Vmix)
)
. (3.32)

If one rotates the triangles about the z axis by, respectively, 90◦ or 180◦,
the parameters change as follows: For 90◦ [Figure 3.1(b)] B3

4 becomes
purely imaginary (B3,(90◦)

4 = iB3,(0◦)
4 ) and for 180◦ [Figure 3.1(c)] B3

4
becomes positive (B3,(180◦)

4 = −B3,(0◦)
4 ).

3.4 Description of dN systems

We assume again that the spin–orbit operator might be neglected. The
noninteracting Hamiltonian is now H =

∑N
i=1(− 1

2∇
2
i −Z∗/ri) and the

energy is E = Nεnd; the perturbation operator now also includes the
electron–electron interaction

∑
i<j 1/ri,j . For an in-depth description

including all d2 to d9 configurations, see Ref. [3].
The wavefunctions are constructed from Slater determinants and a

term described by 2S+1L can be described by a wavefunction Ψ(L,ML, S,MS).
For a d2 system one finds the following terms and associated energies
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∆E(1S) = A+ 14B + 7C
∆E(1D) = A− 3B + 2C
∆E(1G) = A+ 4B + 2C
∆E(3P ) = A+ 7B
∆E(3F ) = A− 8B (3.33)

whereA,B,C are Racah parameters [26–27], which can also be expressed
in Slater integrals [28–29]

A = F0 − 49F4 = F 0 − 1
9F

4 = F 0 − 49
441F

4 (3.34)

B = F2 − 5F4 = 1
49F

2 − 5
441F

4 = 9
441F

2 − 5
441F

4 (3.35)

C = 35F4 = 35
441F

4 = 5
63F

4. (3.36)

Numerical values for the Slater integrals can be obtained from atomic
Hartree--Fock calculations [13–14]such as Cowan’s rcn [30]. Note that
Hartree--Fock overestimates the Slater integrals slightly and for F0
often much.7

The states listed above split in ligand fields; for an octahedral field
one obtains the states

1S →1 A1g
1D →1 Eg ⊕ 1T 2g
1G→1 A1g ⊕ 1Eg ⊕ 1T 1g + 1T 2g
3P →3 T1g
3F →3 A2g ⊕ 3T 1g ⊕ 3T 2g (3.37)

The term-diagrams in dependence of the crystal-field splitting can be
shown in form of Tanabe-Sugano diagrams; all possible dn depending

Cf. [13, p.464] and references therein: “Appropriate scale range from about 0.7 to7

0.8 for neutral atoms to about 0.9 or 0.95 for highly ionized atoms”. The problem is
that using configuration interaction (CI), only a limited number of CI can be included
explicitly; trying to tackle this perturbatively is hampered by slow convergence [31–32].
This empirical correction has been justified quantitatively [33–34].
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on an octahedral crystal-field splitting can be found in the book by
Sugano, Tanabe and Kamimura [5]; for lower lower symmetries they
can be found in the book by König and Kremer [35].

3.5 Configuration-interaction calculations
Configuration interaction (CI) is a post-Hartree--Fock linear variation
method, which takes correlations into account. Usually, CI is used as
an all-electron method and is thus computationally quite expensive.
By contrast, the CI cluster calculations, used for calculating the X-ray
absorption spectra in this thesis, are restricted to the valence electrons
(d shell) plus the hybridizing/binding ligand oxygens (effectively 10
electrons) and the 2p core states involved in the XAS, which makes the
calculations fast but no longer fully ab initio; but more to this later.

Hartree--Fock, on which CI is based, is a variational technique using
antisymmetrized products one-electron wavefunctions to solve vari-
ationally a Schrödinger equation. The wavefunction ψ(r1, . . . , rN ) is
constructed from a Slater determinant of the one-electron wavefunc-
tions φi(r) as follows

φ(r1, . . . , rN ) =

∣∣∣∣∣∣∣
φ1(r1) · · · φ1(rN )

...
. . .

...
φN (r1) · · · φN (rN )

∣∣∣∣∣∣∣ . (3.38)

The Hartree--Fock Hamiltonian for N electrons and nuclei indexed by
α is given by

H =
N∑
i=1

[
−1

2∇
2
i −

∑
α

Zα
riα

]
+
∑
j=1
j<i

[2Jj(ri)−Kj(i)], (3.39)

where the first term is the kinetic energy and the potential produced
by the nuclei (often called external potential); the second term J is
the Coulomb operator and the third one, K, the exchange operator.
The last two form together the Fock operator. It is

Jj(r)ψ(r) = ψ(r)
∫
|φj(r ′)|2

1
|r ′ − r |

d3r′

Kj(ri)ψ(r) = φj(r)
∫
φ∗j (r′)ψ(r′)
|r ′ − r |

d3r′. (3.40)
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According to the Rayleigh--Ritz principle, the true energy E0 of a sys-
tem described by a Hamiltonian H is always lower than (or equally low
as) the expection value of 〈Ψ|H|Ψ〉 where Ψ is an arbitrary normalized
wave function; this principle is used in Hartree--Fock calculations (as in
the density-functional calculations). The equation Eq. (3.39) equation
is solved iteratively (self-consistent field method).

The advantage of Hartree--Fock is that it is self-interaction free (the
term is present in both J and −K can cancels thus; this is a problem
of many DFT functionals), it is also systematically improvable. On
the negative side is the relative big computational demand (compared
with e.g. LDA calculations) and that correlation effects are neglected;
to cure the latter issue, post-Hartree--Fock techniques such as Møller-
Plesset (MP) perturbation theory, multi-configurational self-consistent
field, configuration interaction have been derived. (Another alternative
is density-functional theory using LDA, GGA, meta-GGA, or hybrid
functionals.)

In the configuration interaction method [36]excited Slater configura-
tions are included as well. Hartree--Fock already yields, by construction,
the best single Slater-determinant wavefunction, thus one needs to go
to multi-determinant trial functions to improve the result. In the fol-
lowing, S denotes singly, D doubly, and T triply excited determinants,
measured relative to the HF configuration. The CI wavefunction can
be then written as

ΨCI = a0ΦSCF +
∑
S

aSΦS +
∑
D

aDΦD +
∑
T

aTΦT · · · =
∑
i

aiΦi,

(3.41)

where ΦSCF is the best Hartree--Fock (single-determinant) wavefunction.
The CI wavefunction has to be minimized under the constraint that
the wavefunction remains normalized. (See, e.g., Ref. 36 for more on
quantum chemistry methods including CI, MP, truncated CI, direct
CI, etc.)

3.6 Configuration-interaction cluster calculation

For calculating x-ray absorption spectra at transition-metal L edges,
it suffices to take only few electrons into account, namely the valence
d electrons and the 2p electrons. For the details of the spectra the
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multiplet structure plays a major role whereas the exact absolute
energy of the spectrum is of lesser interest. (At least for calculations,
experimentally the relative energy position can be used to the determine
the valence and is thus of importance.) Therefore, the idea is to
describe the d (and 2p) electrons well using multi-Slater determinants,
but approximate the rest of the ion by an effective potential.

The input file in the CI cluster calculation program thus consists of

− the (ionic) crystal-field potential, i.e. the coefficients of the expan-
sion in spherical harmonics,

− a similar term for the hybridization with the ligand oxygens (see
Appendix B), also expanded in spherical harmonics,

− the Slater parameters F 2 and F 4 to describe the d electrons and the
F 2, G1 and G2 parameters describing the 2p electrons of created
the core hole,

− the spin-orbit coupling parameter ξ (also written als ζ) for the d
and for the 2p states,

− the charge-transfer energy ∆, and

− the on-site Coulomb U for the d orbitals and for d–2p.

The Slater parameters and the spin-orbit coupling can be obtained
from Hartree--Fock calculations (here, the rcn by Cowan has been
used [30]); the Slater parameters have typically reduced to 80% as the
calculated value is too large [13, p.464]. The hybridization values are
based on Harrison’s rule following the description by Slater and Koster
(see Appendix B), and the ionic crystal-field has been obtained from
either constrained LDA+U calculations or from the center-of-gravity
of the partial density of states.

When calculated with hybridization, several configurations8 have to
be taken into account:

Ψ = αn|dn〉+ αn+1|dn+1L〉+ αn+2|dn+2L2〉+ · · · , (3.42)

One should not confuse “configuration” here. In configuration interaction one uses8

a linear combination of configuration-state functions (CSF), whereas with respect to
hybridization one talks about the electron configuration. The CI cluster calculations
always use many CSF, but for ionic calculations only one electronic configuration.
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where L denotes a ligand whole and
∑
i α

2
i = 1.

3.7 References

[1] H. Bethe, Termaufspaltung in Kristallen, Annalen der Physik
395, 133 (1929). DOI: 10.1002/andp.19293950202. .

[2] J. H. V. Vleck, Quantum mechanics-the key to understanding
magnetism, Review of Modern Physics 50, 181 (1978). DOI:
10.1103/RevModPhys.50.181.

[3] H. L. Schläfer and G. Gliemann, Basic principles of ligand field
theory. (Wiley, London, 1969).

[4] C. J. Ballhausen, Introduction to Ligand Field Theory. (McGraw-
Hill, New York, 1962).

[5] S. Sugano, Y. Tanabe, and H. Kamimura, Multiplets of
transition-metal ions in crystals. (Academic Press, New York,
1970).

[6] J. S. Griffith, The theory of transition-metal ions. (Cambridge
University Press, Cambridge, 1971).

[7] B. N. Figgis and M. A. Hitchman, Ligand Field Theory and
Its Applications. (Wiley-VCH, New York, 2000). ISBN:
9780471317760.

[8] M. Gerloch and R. C. Slade, Ligand-field parameters. (Cam-
bridge Univ. Press, London, 1973). ISBN: 0521201373.

[9] A. Abragam and B. Bleaney, Electron paramagnetic resonance
of transition ions. (Clarendon, Oxford, 1970a). ISBN:
0198512503.

[10] P. Atkins and J. de Paula, Atkins’ Physical Chemistry. (Oxford
University Press, Oxford, 2006).

[11] M. El-Batanouny and F. Wooten, Symmetry and Condensed
Matter Physics. (Cambridge University Press, Cambridge,
2008).

[12] P. W. M. Jacobs, Group Theory with Applications in Chem-
ical Physics. (Cambridge University Press, Cambridge, 2005).
ISBN: 0521642507.

[13] R. D. Cowan, The theory of atomic structure and spectra. (Uni-
versity of California, Berkeley, 1981).

[14] J. C. Slater, Quantum Theory of Atomic Structure. (McGraw-
Hill, New York, 1960).

http://dx.doi.org/10.1002/andp.19293950202
http://dx.doi.org/10.1002/andp.19293950202
http://dx.doi.org/10.1002/andp.19293950202
http://dx.doi.org/10.1002/andp.19293950202
http://dx.doi.org/10.1103/RevModPhys.50.181
http://dx.doi.org/10.1103/RevModPhys.50.181
http://dx.doi.org/10.1103/RevModPhys.50.181
http://dx.doi.org/10.1103/RevModPhys.50.181
http://dx.doi.org/10.1103/RevModPhys.50.181
http://www.worldcat.org/search?q=kw:9780471317760
http://www.worldcat.org/search?q=kw:0521201373
http://www.worldcat.org/search?q=kw:0198512503
http://www.worldcat.org/search?q=kw:0521642507


1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

88 88

88 88

Chapter 3: Ligand-Field Theory and Cluster Calculations

62

[15] G. Czycholl, Theoretische Festkörperphysik. (Springer, Ber-
lin, 2008). ISBN: 9783540747895. doi:10.1007/978-3-540
-74790-1. See also the script by Müller-Hartmann, Theoret-
ische Festkörperphysik, http://www.thp.uni-koeln.de/thphysik
/fkp2.ps.gz.

[16] B. Bransden and C. Joachain, Physics of atoms and molecules.
(Prentice, New York, 2003). ISBN: 058235692X.

[17] H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry.
(Wiley, London, 1938).

[18] J. A. Gaunt, The triplets of helium, Philosophical Transactions
of the Royal Society of London, Series A 228, 151 (1929). DOI:
10.1098/rsta.1929.0004.

[19] R. S. Mulliken, Electronic structures of polyatomic molecules
and valence. vi. on the method of molecular orbitals, The
Journal of Chemical Physics 3, 375 (1935a). DOI: 10.1063
/1.1749683.

[20] R. S. Mulliken, Electronic structures of polyatomic molecules.
vii. ammonia and water type molecules and their derivatives,
The Journal of Chemical Physics 3, 506 (1935b). DOI: 10
.1063/1.1749715.

[21] R. S. Mulliken, Electronic structures of polyatomic molecules.
ix. methane, ethane, ethylene, acetylene, The Journal of Chem-
ical Physics 3, 517 (1935c). DOI: 10.1063/1.1749717.

[22] R. S. Mulliken, Electronic structures of molecules xii. elec-
troaffinity and molecular orbitals, polyatomic applications, The
Journal of Chemical Physics 3, 386 (1935d). DOI: 10.1063/1
.1749732.

[23] H. Bethe, Zur Theorie des Zeemaneffektes an den Salzen der
seltenen Erden, Zeitschrift für Physik 60, 218 (1930). DOI: 10
.1007/BF01339827.

[24] M. W. Haverkort, Ph.D. thesis, Universität zu Köln, (2005).
arXiv:cond-mat/0505214

[25] J. L. M. Gerloch, G. G. Phillips, and P. N. Quested, Magnetic
properties of trigonally distorted octahedral iron(ii) complexes,
Journal of the Chemical Society A 1970, 1941 (1970). DOI:
10.1039/J19700001941.

[26] G. Racah, Theory of complex spectra. ii, Physical Review 62,
438 (1942). DOI: 10.1103/PhysRev.62.438.

http://www.worldcat.org/search?q=kw:9783540747895
http://dx.doi.org/10.1007/978-3-540-74790-1
http://dx.doi.org/10.1007/978-3-540-74790-1
http://dx.doi.org/10.1007/978-3-540-74790-1
http://dx.doi.org/10.1007/978-3-540-74790-1
http://dx.doi.org/10.1007/978-3-540-74790-1
http://dx.doi.org/10.1007/978-3-540-74790-1
http://dx.doi.org/10.1007/978-3-540-74790-1
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.thp.uni-koeln.de/thphysik/fkp2.ps.gz
http://www.worldcat.org/search?q=kw:058235692X
http://dx.doi.org/10.1098/rsta.1929.0004
http://dx.doi.org/10.1098/rsta.1929.0004
http://dx.doi.org/10.1098/rsta.1929.0004
http://dx.doi.org/10.1098/rsta.1929.0004
http://dx.doi.org/10.1098/rsta.1929.0004
http://dx.doi.org/10.1063/1.1749683
http://dx.doi.org/10.1063/1.1749683
http://dx.doi.org/10.1063/1.1749683
http://dx.doi.org/10.1063/1.1749683
http://dx.doi.org/10.1063/1.1749715
http://dx.doi.org/10.1063/1.1749715
http://dx.doi.org/10.1063/1.1749715
http://dx.doi.org/10.1063/1.1749715
http://dx.doi.org/10.1063/1.1749717
http://dx.doi.org/10.1063/1.1749717
http://dx.doi.org/10.1063/1.1749717
http://dx.doi.org/10.1063/1.1749717
http://dx.doi.org/10.1063/1.1749732
http://dx.doi.org/10.1063/1.1749732
http://dx.doi.org/10.1063/1.1749732
http://dx.doi.org/10.1063/1.1749732
http://dx.doi.org/10.1007/BF01339827
http://dx.doi.org/10.1007/BF01339827
http://dx.doi.org/10.1007/BF01339827
http://arXiv.org/abs/cond-mat/0505214
http://arXiv.org/abs/cond-mat/0505214
http://arXiv.org/abs/cond-mat/0505214
http://arXiv.org/abs/cond-mat/0505214
http://dx.doi.org/10.1039/J19700001941
http://dx.doi.org/10.1039/J19700001941
http://dx.doi.org/10.1039/J19700001941
http://dx.doi.org/10.1103/PhysRev.62.438
http://dx.doi.org/10.1103/PhysRev.62.438
http://dx.doi.org/10.1103/PhysRev.62.438
http://dx.doi.org/10.1103/PhysRev.62.438
http://dx.doi.org/10.1103/PhysRev.62.438


1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

89 89

89 89

3.7 References

63

[27] G. Racah, Theory of complex spectra. iii, Physical Review 63,
367 (1943). DOI: 10.1103/PhysRev.63.367.

[28] J. C. Slater, The theory of complex spectra, Physical Review 34,
1293 (1929). DOI: 10.1103/PhysRev.34.1293.

[29] G. H. Shortley, The theory of complex spectra, Physical Review
40, 185 (1932). DOI: 10.1103/PhysRev.40.185.

[30] Cowan’s [13]rcn program can be obtained from ftp://aphysics
.lanl.gov/pub/cowan/. For the documentation see http://www
.ucd.ie/speclab/Cowandocs/ and http://www-troja.fjfi.cvut.cz/
˜ladi/ncowan/cowread.html.

[31] J. C. Morrison and K. Rajnak, Many-body calculations for the
heavy atoms, Physical Review A 4, 536 (1971). DOI: 10.1103
/PhysRevA.4.536.

[32] J. C. Morrison, Effect of core polarization upon the f − f inter-
actions of rare-earth and actinide ions, Physical Review A 6,
643 (1972). DOI: 10.1103/PhysRevA.6.643.

[33] K. Rajnak and B. G. Wybourne, Configuration interaction
effects in ln configurations, Physical Review 132, 280 (1963).
DOI: 10.1103/PhysRev.132.280.

[34] B. G. Wybourne, Generalization of the “Linear Theory” of
configuration interaction, Physical Review 137, A364 (1965).
DOI: 10.1103/PhysRev.137.A364.

[35] E. König and S. Kremer, Ligand field energy diagrams. (Plenum
Press, New York, 1977). ISBN: 0306309467.

[36] F. Jensen, Introduction to Computational Chemistry. (Wiley,
Chichester, 1999). ISBN: 047198425.

http://dx.doi.org/10.1103/PhysRev.63.367
http://dx.doi.org/10.1103/PhysRev.63.367
http://dx.doi.org/10.1103/PhysRev.63.367
http://dx.doi.org/10.1103/PhysRev.63.367
http://dx.doi.org/10.1103/PhysRev.63.367
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1103/PhysRev.34.1293
http://dx.doi.org/10.1103/PhysRev.40.185
http://dx.doi.org/10.1103/PhysRev.40.185
http://dx.doi.org/10.1103/PhysRev.40.185
http://dx.doi.org/10.1103/PhysRev.40.185
http://dx.doi.org/10.1103/PhysRev.40.185
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
ftp://aphysics.lanl.gov/pub/cowan/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www.ucd.ie/speclab/Cowandocs/
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://www-troja.fjfi.cvut.cz/CCC:7:126 ladi/ncowan/cowread.html
http://dx.doi.org/10.1103/PhysRevA.4.536
http://dx.doi.org/10.1103/PhysRevA.4.536
http://dx.doi.org/10.1103/PhysRevA.4.536
http://dx.doi.org/10.1103/PhysRevA.4.536
http://dx.doi.org/10.1103/PhysRevA.4.536
http://dx.doi.org/10.1103/PhysRevA.6.643
http://dx.doi.org/10.1103/PhysRevA.6.643
http://dx.doi.org/10.1103/PhysRevA.6.643
http://dx.doi.org/10.1103/PhysRevA.6.643
http://dx.doi.org/10.1103/PhysRevA.6.643
http://dx.doi.org/10.1103/PhysRev.132.280
http://dx.doi.org/10.1103/PhysRev.132.280
http://dx.doi.org/10.1103/PhysRev.132.280
http://dx.doi.org/10.1103/PhysRev.132.280
http://dx.doi.org/10.1103/PhysRev.132.280
http://dx.doi.org/10.1103/PhysRev.137.A364
http://dx.doi.org/10.1103/PhysRev.137.A364
http://dx.doi.org/10.1103/PhysRev.137.A364
http://dx.doi.org/10.1103/PhysRev.137.A364
http://dx.doi.org/10.1103/PhysRev.137.A364
http://www.worldcat.org/search?q=kw:047198425


1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

90 90

90 90

64



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

91 91

91 91

65

4 Valence, spin, and orbital state of Co
ions in one-dimensional Ca3Co2O6

Results published as: Tobias Burnus, Zhiwei Hu, Maurits W. Haverkort, Júlio C.
Cezar, Delphine Flahaut, Vincent Hardy, Antoine Maignan, Nicholas B. Brookes,
Arata Tanaka, Hui-Huang Hsieh, Hong-Ji Lin, Chien-Te Chen, and L. Hao Tjeng
Physical Review B 74, 245111 (2006).
DOI: 10.1103/PhysRevB.74.245111 OAI: arXiv:cond-mat/0611545

The one-dimensional Ca3Co2O6 has attracted great interest in
recent years due to the observation of the stair-step jumps in

the magnetization at regular intervals of the applied magnetic field [1–
9]. The rhombohedral structure of this compound consists of [Co2O6]∞
chains running along the c axis of the hexagonal unit cell [10]. In each
chain, CoO6 octahedra alternate with CoO6 trigonal prisms. The
magnetism is Ising-like and directed along the Co chains with large
magnetic moments of 4.8µB per formula unit [11–12]. The intra-chain
coupling is ferromagnetic with a spin-freeze at TSF = 7 K and the chains
couple antiferromagneticly with a Néel temperature of TN = 25K [11].

Based on density-functional-theory calculations, Vidya et al. claimed
a low-spin (LS) Co4+

oct and a high-spin (HS) Co2+
trig state for Ca3Co2O6

[13]. However, other experimental and theoretical works have proposed
a Co3+ valence state at both the octahedral and trigonal Co sites, with
the Cooct LS (S = 0) and the Cotrig HS (S = 2) state [14–18]. The
Ising character of the magnetism is also subject of discussion. Dai and
Whangbo et al. found from their band structure calculations that the
spin-orbit-inactive d0 orbital lies lowest of all Cotrig crystal-field levels
[17, 19], and had to invoke excited states in their attempt to explain
the Ising magnetism. Wu et al. [18], on the other hand, calculated
that it is the spin-orbit-active d2 orbital which lies lowest, giving a
very different picture for the Ising magnetism.

In this chapter we have applied soft-x-ray absorption spectroscopy
(XAS) and magnetic circular dichroism (XMCD) at the Co-L2,3 edges
to resolve the Co valence, spin and orbital state issue in Ca3Co2O6.
We have also carried out detailed configuration-interaction cluster

http://dx.doi.org/10.1103/PhysRevB.74.245111
http://dx.doi.org/10.1103/PhysRevB.74.245111
http://dx.doi.org/10.1103/PhysRevB.74.245111
http://dx.doi.org/10.1103/PhysRevB.74.245111
http://dx.doi.org/10.1103/PhysRevB.74.245111
http://arXiv.org/abs/cond-mat/0611545
http://arXiv.org/abs/cond-mat/0611545
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calculations to analyze the spectra. We found that the Co ions are all
in the 3+ state, that the Cooct are non-magnetic, and that the Co3+

trig
carry a 1.7µB orbital moment. We clarify the orbital occupation issue
and the origin of the Ising magnetism.

The Ca3Co2O6 single crystals were grown by heating a mixture of
Ca3Co4O9 and K2CO3 in a weight ratio of 1:7 at 950 °C for 50 h in
an alumina crucible in air. The cooling was performed in two steps,
first down to 930 ◦C at a rate of 10 ◦C/h and then down to room
temperature at 100 °C/h [8]. The Co-L2,3 XAS spectra of Ca3Co2O6
and of CoO and EuCoO3 (Ref. 20) as references were recorded at
the Dragon beamline of the National Synchrotron Radiation Research
Center (NSRRC) in Taiwan with an energy resolution of 0.3 eV. The
first sharp peak at 777 eV of photon energy at the Co-L3 edge of
CoO was used for energy calibration, which enabled us to achieve
better than 0.05 eV accuracy in the relative energy alignment. The
XMCD spectra were collected at the ID08 beamline of the European
Synchrotron Radiation Facility (ESRF) in Grenoble with a resolution
of 0.25 eV and a degree of circular polarization close to 100% in a
magnetic field of 5.5 Tesla with the sample kept at approximately 15–
20 K, using a dedicated superconducting magnet setup from Oxford
Instruments. The Poynting vector of the photons and the magnetic field
were both parallel to the c axis. The single-domain Ca3Co2O6 crystal
used for the XMCD experiment was needle-shaped with a dimension
of 0.2× 0.2× 10 mm3 for a× b× c. Clean sample areas were obtained
by cleaving the crystals in situ in chambers with base pressures in the
low 10−10 mbar range. The Co L2,3 spectra were recorded using the
total-electron-yield method (TEY).

Figure 4.1 shows the Co-L2,3 XAS spectrum of Ca3Co2O6 together
with that of CoO and EuCoO3. CoO serves here as a 2+ reference and
EuCoO3 as a LS 3+ reference [20]. One can see first of all that the
2+ spectrum (CoO) contains peaks which are 2 or more eV lower in
energy than the main peak of the 3+ spectrum (EuCoO3). It is well
known that x-ray absorption spectra at the transition-metal L2,3 edges
are highly sensitive to the valence state. An increase of the valence
of the metal ion by one results in a shift of the L2,3 XAS spectra to
higher energies by 1 eV or more [21]. This shift is due to a final state
effect in the x-ray absorption process. The energy difference between a
3dn (3d7 for Co2+) and a 3dn−1 (3d6 for Co3+) configuration is ∆E =
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Fig. 4.1 Co-L2,3 XAS spectra of Ca3Co2O6, CoO, and EuCoO3.

E(2p63dn−1 → 2p53dn) − E(2p63dn → 2p53dn+1) ≈ Upd − Udd ≈ 1–
2 eV, where Udd is the Coulomb repulsion energy between two 3d
electrons and Upd the one between a 3d electron and the 2p core hole.

One can observe from fig. 4.1 that the Ca3Co2O6 spectrum has no
features at the low-energy side, which otherwise could have indicated
the presence of Co2+ species like in CoO. Instead, the spectrum has a
much closer resemblance to that of Co3+, like in EuCoO3. This means
that one can safely rule out the Co2+/Co4+ scenario [13]. In other
words, the XAS experiment reveals unambiguously that both the Cooct
and the Cotrig ions are in the 3+ valence state. This result supports
the analysis of the Co 2p core-level x-ray photoemission spectra [15]and
band-structure calculations [16, 18].

In order to resolve the spin-state issue, we now resort to XMCD.
The top part (a) of fig. 4.2 depicts Co-L2,3 XAS spectra taken with
circularly polarized light with the photon spin parallel (solid line, µ+)
and antiparallel (dashed line, µ−) aligned to the magnetic field. The
quantization axis z has been chosen to be parallel to the c axis, which
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Fig. 4.2 (color online) (a) Measured soft-x-ray
absorption spectra with parallel (µ+, solid line)
and antiparallel (µ−, dashed line) alignment
between photon spin and magnetic field, together
with the difference spectrum (µ+ − µ−, dash-
dotted); (b) Simulated sum spectra assuming a
doubly occupied d2 orbital for the Cotrig and low-
spin (LS) Cooct ions; (c) and (d) Contribution of
the Cotrig and Cooct ions to the simulated sum spec-
tra.

is the easy magnetization axis [3]. One can clearly observe large differ-
ences between the spectra using these two alignments. The difference
spectrum, i.e. the XMCD spectrum, is also shown (dash-dotted line,
µ+ − µ−). Using the well-known XMCD sum rule developed by Thole
et al. [22],

Lz = 4
3

∫
[µ+(E)− µ−(E)] dE∫
[µ+(E) + µ−(E)] dE

(10−Ne), (4.1)
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where Ne is the number of the Co d electrons, we can extract directly
the orbital (Lz) contribution to the magnetic moment without the
need to do detailed modeling. Assuming an average Co 3d occupation
number of about Ne = 6.5 electrons (estimated for a HS Co3+ oxide
[23] and also to be justified below by cluster calculations) we find a
value of 1.2µB for the Lz, which is a very large number indicating that
the ground state is strongly spin-orbit active.

To extract more detailed information concerning the spin and orbital
states from the Co L2,3 XAS spectra, we have carried out simulations
for the XMCD spectra using the well-proved configuration-interaction
(CI) cluster model [24–26]. The method uses for each Co site a CoO6
cluster which includes the full atomic multiplet theory and the local
effects of the solid. It accounts for the intra-atomic 3d–3d and 2p–3d
Coulomb interactions, the atomic 2p and 3d spin-orbit couplings, the O
2p–Co 3d hybridization, and the proper local crystal-field parameters.
In the configuration-interaction cluster calculation we describe the
ground state by the configurations

Ψ = α6|d6〉+ α7|d7L〉+ α8|d8L2〉+ α9|d9L3〉, (4.2)

where L denotes a ligand hole and
∑9
i=6 α

2
i = 1 [27–28]. The transition-

metal electron occupation is then given by

Ne = 6α2
6 + 7α2

7 + 8α2
8 + 9α2

9. (4.3)

The simulations have been carried out using the program xtls 8.3
[24].

In octahedral symmetry the 3d orbitals split up in the well-known
eg and t2g levels; the splitting is given by 10Dq. In a trigonal prismatic
environment, however, it is found that the x2 − y2 is degenerate with
the xy, and the yz with zx orbital [17–18]. In the presence of the
spin-orbit coupling, it is then better to use the complex orbitals d0,
d2/d−2, and d1/d−1. Band structure calculations indicate that the
d1/d−1 band is split off from the d0 and d2/d−2 bands by about 1 eV,
while the d0 and d2/d−2 bands are almost degenerate [17–18]. Critical
for the magnetism and for the line shape of the simulated spectra
are the crystal field parameter 10Dq for the CooctO6 cluster and the
crystal field parameter for the splitting between the nearly degenerate
d0 and d2 orbitals of the CotrigO6 cluster. 10Dq needs to be critically
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tuned since this is set to determine whether Cooct–O6 cluster is in
the LS or HS state [29]. The trigonal prism crystal field has also to
be fine tuned since it determines whether the d2 or the d0 lies lowest,
and thus the magnitude of the orbital moment and strength of the
magnetocrystalline anisotropy as we will show below. Tuning of these
parameters will be done by establishing which of the simulated spectra
reproduce the experimentally observed ones.

As a starting point, we make the assumption that the Cooct ion is
in the LS state, based on the observation that the average Cooct-O
bond length of 1.916 Å in this material [10] is shorter than the 1.925 Å
in LaCoO3 at 5 K, which is known to be LS [30]. With such a short
length, the Co ion is subjected to a large enough 10Dq, sufficient to
stabilize the non-magnetic LS state [29–30] for Co3+

oct ions in Ca3Co2O6.
With this starting point, the magnetism and the XMCD signal have
to originate from the Cotrig ions. This is quite plausible since with the
extremely large Cotrig–O average bond length of 2.062 Å[10], which
is much larger than 1.961 Å for LaCoO3 at 1000 K [30], one can
expect that the crystal field is small enough to stabilize the HS state
[29]. Based on the observation that the orbital contribution to the
magnetic moment is extremely large, we take the d2 ansatz for the
Cotrig and not the d0. In the CI calculation, the parameters for the
multipole part of the Coulomb interactions were given by the Hartree-
Fock values, while the monopole parts (Udd, Upd) were estimated
from photoemission experiments on Co3+ materials [31]. The one-
electron parameters such as the O 2p–Co 3d charge-transfer energies
and integrals were estimated from band-structure results [17–19]. The
charge-transfer energy is given by ∆ = E(d6)− E(d7L) = 1.5 eV, the
d–d Coulomb repulsion by Udd = 5.5 eV and of p–d of the excited Co
by Upd = 7.0 eV; the Slater integrals have been reduced to 80% of their
Hartree-Fock value. An exchange field of Hex = 3 meV has been used.
For the Cotrig ions the ionic crystal splittings are ∆Eionic

d1/d2
= 0.9 eV

and ∆Eionic
d0/d2

= 0.05 eV taken from band-structure calculation [18]; the
hybridization is V hyb

d1
= 1.88 eV, V hyb

d0
= 1.28 eV, and V hyb

d2
= 1.25 eV.

For Cooct ions pdσ = −1.44 eV and pdπ = 0.63 eV was used. With
this set of parameters we have found a LS–HS transition for Cooct at
10Dq = 0.65 eV. Here we used 10Dq = 0.8 eV, based on band-structure
calculation, which is the same value as for EuCoO3 known as a LS
Co3+ oxide [20].
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The results of these simulations are given by curves (b) in fig. 4.2,
together with a break-down into the separate contributions of the
Cotrig (curves c) and Cooct (curves d) ions. One can clearly observe
that the simulations (curves b) reproduce the experimental spectra
quite well. All major and minor peaks in the individual experimental
XAS (µ+, µ−) and XMCD (µ+ − µ−) spectra (curves a) are present
in the simulations (curves b). It is almost needless to remark that
the entire simulated XMCD signal is coming from the HS Cotrig ions
(curves c), since we started with a nonmagnetic LS Cooct (curves d).
In the simulation, we find Sz = 1.8µB and Lz = 1.7µB , giving a total
magnetic moment of 2Sz+Lz = 5.3µB per formula unit. Due to strong
hybridization between Co 3d and O 2p, the 3d occupation numbers
of the Cotrig ions and the Cooct are 6.3 and 6.8, respectively, giving
on average 6.5 electrons as used for the sum rules. The calculated
total moment from the simulation compares reasonably well with the
4.8µB value from direct magnetization measurements [6, 12]. Yet, the
simulated Lz value (1.7µB) is appreciably larger than the one derived
from the experiment using the XMCD sum rule (1.2µB). However,
looking more closely at the simulated and experimental XMCD spectra,
we can clearly see that the XMCD spectra have very similar line shapes
and that the distinction is mainly in the amplitude, i.e. a matter of
scaling. This indicates that the discrepancy in the Lz determination
might be caused by the fact that the sample is not fully magnetized
in our experiment. According to magnetization measurements one can
only achieve 90% of the saturation magnetization at 5.5 T [12]. In
addition, slight misalignment of the sample together with the high
magnetocrystalline anisotropy may account for some further reduction
of the experimental value.

Having established that the d2/LS scenario for the Cotrig/Cooct
ions explains well the experimental spectra, we now investigate the
sensitivity of our analysis. For this we change the ansatz for the Cotrig
ion: we now put the d0 orbital to be energetically lower than the d2
[32]. The result is shown in fig. 4.3, in which the simulated XMCD
spectrum (b) is compared with the experimental one (a). One can
unambiguously recognize large discrepancies in the line shapes, not
only in the L3 region (777–785 eV), where the simulated XMCD signal
has much less amplitude, but also in the L2 (792–797 eV), where
now an XMCD signal is calculated while it is practically absent in



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

98 98

98 98

Chapter 4: Valence, spin, and orbital state of Co ions in Ca3Co2O6

72

775 780 785 790 795 800

(b)

(a)

Simulation
Co

trig
(d

0
)+Co

oct
(LS)

 

In
te

n
s
it
y 

(a
rb

. 
u
n
it
s
)

Photon energy (ev)

Experiment

Fig. 4.3 (color online) (a) Measured soft-x-ray magnetic
circular dichroism spectrum (XMCD, µ+ − µ−); (b) Sim-
ulated XMCD spectrum assuming a doubly occupied d0
orbital for the Cotrig and low-spin (LS) Cooct ions.

the experiment. Using the XMCD sum rule [22], we can relate these
discrepancies also directly to the fact that the d0 ansatz essentially
does not carry an orbital moment.
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Fig. 4.4 (color online) Total-energy level diagram for the Cotrig ion as a
function of the exchange field Hex along the z direction (c axis, solid lines)
and along the x direction (perpendicular to the c axis, dashed lines), with
(left panel) the d2 and (right panel) the d0 orbital doubly occupied.

The success of the cluster method for the analysis of both the high-
energy spectroscopies and the ground-state magnetic moments provides
confidence for its use to investigate the magnetocrystalline anisotropy
in this material. We have calculated the total energy of the CotrigO6
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cluster as a function of the exchange field Hex, directed either along
the z axis (the c axis or the one-dimensional chain) or along the x
axis (perpendicular to the c axis). The results for the d2 ansatz are
plotted in the left panel of fig. 4.4. It is evident that the lowest
state gains energy when Hex is along z and very little to nothing for
Hex along x. This demonstrates directly that the magnetocrystalline
anisotropy should be large and directed along the z, consistent with
the experimental observation that the magnetization parallel to c is
almost sixfold of the one perpendicular c (at 12 K and 5.5 T) [3] and
with the Ising nature of the magnetism. We note that the lowest curve
in the figure shows an energy gain with a rate twice that of Hex (along
z), meaning that Sz is close to 2µB which in turn is consistent with
the HS (S = 2) nature of the Cotrig ion.

We have also analyzed the magnetocrystalline anisotropy of the
CotrigO6 cluster using the d0 ansatz. The right panel of fig. 4.4 reveals
that the total energy decreases for both directions of Hex, but now with
the important distinction that the energy for Hex along x is always
lower than for Hex along z. This implies that the easy-magnetization
axis should be perpendicular to the z axis, which is not consistent with
the experimental facts. Also this contradiction thus effectively falsifies
the d0 ansatz [17, 19].

To conclude, using soft x-ray absorption spectroscopy and the mag-
netic circular dichroism therein at the Co-L2,3 edges we have exper-
imentally determined that both Co ions in Ca3Co2O6 are 3+, with
the Cotrig ion in the high-spin state and the Cooct in the nonmagnetic
state. The Cotrig ion carries an anomalously large orbital moment of
1.7µB which we have been able to relate to the double occupation of
the d2 orbital. In addition, the detailed analysis of the spectral line
shapes together with that of the magnetocrystalline anisotropy firmly
establishes that the d2 orbital lies lowest in energy [18] and not the
d0 [17, 19]This in turn also demonstrates that a proper incorporation
of the spin-orbit interaction is required for the ab-initio calculation of
the delicate electronic structure of this material.
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5 Local electronic structure and mag-
netic properties of LaMn0.5Co0.5O3
studied by x-ray absorption and mag-
netic circular dichroism spectroscopy

Results published in: Tobias Burnus, Zhiwei Hu, Hui-Huang Hsieh, V. L. Joseph
Joly, P. A. Joy, Maurits W. Haverkort, Hua Wu, Arata Tanaka, Hong-Ji Lin,
Chien-Te Chen, and L. Hao Tjeng
Physical Review B 77, 125124 (2008).
DOI: 10.1103/PhysRevB.77.125124 OAI: arXiv:0709.3243

The manganites continue to attract considerable attention from the
solid state physics and chemistry community over the last five

decades because of their spectacular material properties [1–4]. The
parent compound LaMnO3 is an A-type antiferromagnetic insulator
with orthorhombic perovskite crystal structure. Replacing La by Sr,
Ca or Ba results in multifarious electronic and magnetic properties
including the transformation into a ferromagnetic state accompanied
by a metal-insulator transition and the occurrence of colossal mag-
netoresistance [5–6]. Substitution of the magnetic Mn ions by Co
also yields ferromagnetism in the LaMn1−xCoxO3 series. The Curie
temperature reaches a maximum for x = 0.5 (TC = 220–240 K) [7–
11]. This should be contrasted with the end member of this series,
namely the rhombohedral LaCoO3, which is a nonmagnetic insulator
at low temperatures, showing yet the well-known spin-state transition
at higher temperatures which by itself is subject of five decades of
intensive study [7, 9, 12].

Explaining the appearance of ferromagnetism in the manganites by
Co substitution is, however, not a trivial issue. Assuming that ordering
of the Co and Mn ions had not been achieved for the x = 0.5 composi-
tion, Goodenough et al. concluded early on that the ferromagnetism
is generated by Mn3+–O–Mn3+ superexchange interactions [7]. On
the other hand, later magnetic susceptibility and Mn NMR studies
suggested that it is the exchange interaction involving the ordering of
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Co2+–Mn4+ transition-metal ions which causes the ferromagnetism in
LaMn0.5Co0.5O3 [8–9, 13–17].

Only few high-energy spectroscopic studies are reported for the
Co substituted manganites. Using soft-x-ray absorption spectroscopy
(XAS), Park et al. found in their low Co compositions that the Co
ions are divalent, favoring a Mn3+–Mn4+ double-exchange mechanism
for the ferromagnetism [18]. Extrapolating this Co divalent result to
the x = 0.5 composition would provide support to the suggestion that
the ferromagnetism therein is caused by the Co2+–Mn4+ exchange
interaction. However, no XAS data have been reported so far for this
x = 0.5 composition. Using K-edge XAS, Toulemonde et al. revealed
that the Co ion is also divalent in their hole doped and Co substituted
manganite [19]. Yet, these results for the low Co limit have been
questioned by van Elp, who claimed that the Co ions should be in the
intermediate-spin trivalent state rather than in the high-spin divalent
state [20].

Further discussion is also raised by the work of Joy and coworkers [21–
22], who have synthesized two different single phases of LaMn0.5Co0.5O3
and inferred from a combination of magnetic susceptibility and x-ray
photoelectron spectroscopy measurements that the phase with the
higher TC contains high-spin Mn3+ and low-spin Co3+ ions, while
the lower TC phase has Co2+ and Mn4+. Very recently, however,
long-range charge ordering has been observed in neutron diffraction
experiments by Bull et al. [23] and Troyanchuk et al. [24] on the
high-TC phase, pointing towards the Co2+–Mn4+ scenario. Also, the
most recent magnetic susceptibility and K-edge XAS data by Kyômen
et al. favor the presence of essentially Co2+–Mn4+ at low temperatures
[25]. The issue of Mn/Co ordering including the possible coexistence
of ordered and disordered regions remains one of the important topics
[11, 26–27]. Interesting is that the magnetization of polycrystalline
samples of LaCo0.5Mn0.5O3 does not saturate in magnetic fields up to
7 T [16], and that there are indications for a large magnetic anisotropy
[24].

On the theoretical side, not much work has been carried out so
far. A relatively early band-structure study by Yang et al. on the
LaMn0.5Co0.5O3 system predicted a half-metallic behavior with a mag-
netic moment of 3.01µB for Mn and 0.54µB for Co ions, suggesting
Mn3+–Co3+ valence states [28]. This study, however, was performed
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before the existence of the charge-ordered crystal structure was repor-
ted [23–24].

Here, we present our experimental study of the local electronic
structure of LaMn0.5Co0.5O3 both for the high- and low-TC phases
using the element-specific XAS and x-ray magnetic circular dichroism
(XMCD) at the Co-L2,3 and Mn-L2,3 edges, i.e., transitions from the
2p core to the 3d valence orbitals. Our objective is not only to establish
the valence and spin states of the Co and Mn ions but also to investigate
the possible presence of an orbital moment associated with a Co2+

ion, in which case the material should have a large magnetocrystalline
anisotropy and a nontrivial temperature dependence of its magnetic
susceptibility.

In XAS and XMCD we make use of the fact that the Coulomb
interaction of the 2p core hole with the 3d electrons is much larger than
the 3d band width, so that the absorption process is strongly excitonic
and therefore well understood in terms of atomiclike transitions to
multiplet-split final states [29–31]. Unique to soft-x-ray absorption is
that the dipole selection rules are very effective in determining which
of the 2p53dn+1 final states can be reached and with what intensity,
starting from a particular 2p63dn initial state (n = 7 for Co2+, n = 6
for Co3+, n = 4 for Mn3+, and n = 3 for Mn4+). This makes the
technique an extremely sensitive local probe, ideal to study the valence
[32–33] and spin [12, 34–38] character as well as the orbital contribution
to the magnetic moment [39–41] of the ground or initial state.

The two single-phase LaMn0.5Co0.5O3 polycrystalline samples were
synthesized as described previously [21–22, 42] and the single phase
nature of the two phases (low-TC phase and high-TC phase) were
confirmed by temperature dependent magnetization measurements.
These measurements showed a single sharp magnetic transition at
TC = 225 K (called high-TC phase) for the sample synthesized at 700
◦C and a sharp transition at TC = 150 K (called low-TC phase) for
the sample synthesized at 1300 ◦C. On the other hand, more than one
magnetic transition or broad magnetic transitions were observed for
samples synthesized at other temperatures indicating their mixed phase
behavior, as described in Ref. 42. The magnetization at 5 K in a field of
5 T is 50.4 emu/g for the high-TC phase and 42.4 emu/g for the low-TC
phase. The Co- and Mn-L2,3 XAS and XMCD spectra were recorded at
the Dragon beamline of the National Synchrotron Radiation Research
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Center (NSRRC) in Taiwan with an energy resolution of 0.25 eV. The
sharp peak at 777.8 eV of the Co-L3 edge of single crystalline CoO
and at 640 eV of the Mn-L3 of single crystalline MnO were used for
energy calibration. The isotropic XAS spectra were measured at room
temperature, whereas the XMCD spectra at both the Co-L2,3 and the
Mn-L2,3 edges were measured at 135 K in a 1 T magnetic field with
approximately 80% circularly polarized light. The magnetic field makes
an angle of 30◦ with respect to the Poynting vector of the soft x-rays.
The spectra were recorded using the total electron yield method (by
measuring the sample drain current) in a chamber with a base pressure
of 2× 10−10 mbar. Clean sample areas were obtained by cleaving the
polycrystals in situ.
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Fig. 5.1 Co-L2,3 XAS spectra of (a) LaCoO3 as a Co3+

reference, of the LaMn0.5Co0.5O3 samples with (b) TC =
150 K and (c) TC = 225 K, and (d) of CoO as a Co2+

reference.
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Fig. 5.2 (color online) Co-L2,3 XAS spectra of (a) the LaMn0.5Co0.5O3
samples with TC = 225 K (solid curve) and TC = 150 K (dashed curve),
their difference (dotted curve), and (b) of LaCoO3 as Co3+ reference.

Figure 5.1 shows the Co-L2,3 XAS spectra of LaMn0.5Co0.5O3 for
both the high-TC [curve (c)] and the low-TC phase [curve (b)]. The
spectra were taken at room temperature. For comparison, the spectrum
of LaCoO3 in the low-temperature nonmagnetic state [curve (a)] is
included as a low-spin trivalent Co reference and also of CoO (curve
d) as a divalent Co reference. The spectra are dominated by the Co 2p
core-hole spin-orbit coupling which splits the spectrum roughly in two
parts, namely the L3 (hν ≈ 777–780 eV) and L2 (hν ≈ 793–796 eV)
white lines regions. The line shape of the spectrum depends strongly
on the multiplet structure given by the Co 3d–3d and 2p–3d Coulomb
and exchange interactions, as well as by the local crystal fields and the
hybridization with the O 2p ligands.

Important is that XAS spectra are highly sensitive to the valence
state: an increase of the valence state of the metal ion by one causes a
shift of the XAS L2,3 spectra by one or more eV toward higher energies
[32–33]. This shift is due to a final state effect in the x-ray absorption
process. The energy difference between a 3dn (3d7 for Co2+) and a
3dn−1 (3d6 for Co3+) configuration is ∆E = E(2p63dn−1→2p53dn)−
E(2p63dn→2p53dn+1) ≈ Upd−Udd ≈ 1–2 eV, where Udd is the Coulomb
repulsion energy between two 3d electrons and Upd the one between a 3d
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electron and the 2p core hole. In fig. 5.1 we see a shift of the center of
gravity of the L3 white line to higher photon energies by approximately
1.5 eV in going from CoO to LaCoO3. The energy position and the
spectral shape of the high-TC phase of LaMn0.5Co0.5O3 is very similar
to that of CoO, indicating an essentially divalent state of the Co ions.

While the spectral features of the low-TC phase of LaMn0.5Co0.5O3
are also very similar to those of CoO and the high-TC phase as far as
the low-energy side of the L3 white line is concerned, this is no longer
true for the high-energy side. The spectral weight at about 780 eV is
increased when one compares the high-TC with the low-TC phase, and
this increase is revealed more clearly by curves (a) of fig. 5.2. It is
natural to associate this increase with the presence of Co3+ species
since the LaCoO3 spectrum has its main peak also at 780 eV. In order
to verify this in a more quantitative manner, we rescaled the spectrum
of the high-TC phase with respect to that of the low-TC phase and
calculate their difference. We find that a rescaling factor of about
0.8 results in a difference spectrum (dotted curve of fig. 5.2) which
resembles very much the spectrum of LaCoO3. This in turn may be
taken as an indication that the low-TC phase has about 20% of its
Co ions in the low-spin trivalent state. This result contradicts the
reports in Refs. 21 and 22 which suggested that it was the high-TC
sample which contained trivalent Co ions. The different result coming
from the x-ray photoemission (XPS) study [22] could be due to the
following reason: Unlike XAS in which the multiplet structure of the
Co-L2,3 spectra is very characteristic for the Co valence, the XPS yields
rather broad and featureless Co 2p core-level spectra with very little
distinction between Co2+ and Co3+. To use XPS core-level shifts to
determine the valence state of insulating materials is also not so straight
forward due to the fact that the chemical potential with respect to
the valence or conduction band edges is not well defined. The present
finding of the presence of low-spin Co3+ species naturally explains why
the low-TC sample has less than the optimal TC : the nonmagnetic ions
suppress strongly the spin-spin coupling between neighboring metal
ions.

Figure 5.3 shows the room temperature Mn-L2,3 XAS spectra of the
low-TC LaMn0.5Co0.5O3 [curve (a)] and the high-TC LaMn0.5Co0.5O3
[curve (b)] together with LaMnO3 as a trivalent Mn reference [curve
(c)] and MnO as a divalent Mn reference [curve (d)]. Again we see
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Fig. 5.3 Mn-L2,3 XAS spectra of the LaMn0.5Co0.5O3 sample
with (a) TC = 150 K and (b) TC = 225 K together with (c)
SrMnO3 (Mn4+, taken from Ref. 43), (d) LaMnO3 (Mn3+) and
(e) MnO (Mn2+) for comparison.

a gradual shift of the center of gravity of the L3 white line to higher
energies from MnO to LaMnO3 and further to SrMnO3, reflecting
the increase of the Mn valence state from 2+ via 3+ to 4+. The
Mn-L2,3 spectrum of the high-TC LaMn0.5Co0.5O3 samples is similar
to that of SrMnO3 and LaMn0.5Ni0.5O3 [44], in which a Ni2+/Mn4+

valence state was found. The Mn-L2,3 XAS spectrum thus reveals an
essentially Mn4+ state in the high-TC LaMn0.5Co0.5O3, consistent with
the observation of the Co2+ valence in the Co-L2,3 XAS spectra above,
i.e. fulfilling the charge balance requirement.



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

112 112

112 112

Chapter 5: Electronic and magnetic properties of LaMn0.5Co0.5O3

86

640 645 650 655 660

LaMn0.5Co0.5O3

 Tc = 150 K

 Tc = 225 K, × 0.8

 Difference

LaMnO
3
 × 0.2

Mn-L2

Mn-L3

 

 

In
te
ns

ity

Photon Energy (eV)

a

b

Fig. 5.4 (color online) Mn-L2,3 XAS spectra of (a) the two LaMn0.5Co0.5O3
samples with TC = 150 K (dashed curve), TC = 225 K (solid curve) and
their difference (dotted curve), and (b) LaMnO3 (Mn3+) for comparison.

To investigate whether the presence of Co3+ species in the low-TC
LaMn0.5Co0.5O3 is also accompanied by the occurrence of Mn3+ ions
as charge compensation, we have carried out a similar analysis as for
the Co spectra. Figure 5.4 shows the low-TC spectrum (dashed curve)
and the high-TC one (solid curve) rescaled to 80% of low TC . Their
difference spectrum is shown as the dotted curve. We find that the line
shape resembles very much that of the high-TC sample itself, suggesting
that most of the Mn in the low-TC sample are also tetravalent. This
in turn would imply that the low-TC sample has to have excess of
oxygen to account for the presence of the Co3+ species. Nevertheless, a
closer look reveals that the energy position of the difference spectrum
lies between that of the Mn4+ and the Mn3+ spectra, and that the
valley at 641–642 eV, at which energy a typical Mn3+ system like
LaMnO3 has its maximum, is not so deep. This suggests that in the
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low-TC sample, there are also some Mn3+ ions or strongly hybridized
Mn3+ and Mn4+ ions. Such a charge compensation for the Co3+ could
indicate that the ordering of the Mn and Co ions is less than perfect, so
that the dislocated Co ions in the Mn4+ positions would have smaller
metal-oxygen distances, leading to the stabilization of the low-spin
trivalent state of the Co.

Having established the valences of the Co and Mn ions, we now
focus our attention on their magnetic properties. In the top panel (a)
of fig. 5.5, we present the XMCD spectra at the Co-L2,3 edges of the
high-TC LaMn0.5Co0.5O3 taken at 135 K. The spectra µ+ (solid curve)
and µ− (dashed curve) stand, respectively, for parallel and antiparallel
alignments between the photon spin and the magnetic field. One can
clearly observe large differences between the two spectra with the
different alignments. The difference spectrum, ∆µ = µ+ − µ−, i.e. the
XMCD spectrum, is also shown (dotted curve). In the bottom panel
(b) of fig. 5.5 we show the XMCD spectra at the Mn-L2,3 edges. Also
here we can observe a large XMCD signal. It is important to note that
the XMCD is largely negative at both the Co and the Mn L3 edges,
indicating that the Co2+ and Mn4+ ions are aligned ferromagnetically.

Very interesting about the XMCD at the Co-L2,3 edges is that it
is almost zero at the L2 while it is largely negative at the L3. This is
a direct indication that the orbital contribution (Lz, morb) to the Co
magnetic moment must be large. In making this statement, we effect-
ively used the XMCD sum rule derived by Thole et al. [39], in which
the ratio between the energy-integrated XMCD signal and the energy-
integrated isotropic spectra gives a direct value for Lz. Nevertheless,
for a quantitative analysis it is preferred to extract experimentally
the Lz/Sz ratio by making use of an approximate XMCD sum rule
developed by Carra et al. [45] for the spin contribution (2Sz, mspin)
to the magnetic moment. This is more reliable than extracting the
individual values for Lz and Sz since one no longer needs to make
corrections for an incomplete magnetization, due to, for example, pos-
sible strong magnetocrystalline anisotropy in a polycrystalline material.
The sum rules of Thole et al. [39] and Carra et al. [45] give for the
morb/mspin or Lz/2Sz,
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Fig. 5.5 (color online) Co-L2,3 (a) and Mn-L2,3
(b) spectra of LaMn0.5Co0.5O3 taken with circu-
larly polarized x-rays at 135 K. The photon spin
was aligned parallel (µ+, solid) and antiparallel
(µ−, dashed) to the 1 T magnetic field, respect-
ively; the difference spectra is shown as dotted
curve. Top: measured spectra. Bottom: simu-
lated spectra.
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morb

mspin
= Lz

2Sz + 7Tz

= 2
3

∫
L3

∆µ(E) dE +
∫
L2

∆µ(E) dE∫
L3

∆µ(E) dE − 2
∫
L2

∆µ(E) dE
, (5.1)

where Tz denotes the magnetic dipole moment. This Tz for ions in
octahedral symmetry is a small number and negligible compared to
Sz [46–47]. Using this equation, we extract morb/mspin = 0.47 out
of our Co-L2,3 XMCD spectrum. This is a large value and is in
fact close to the value of 0.57 for CoO [49], a compound well known
for the important role of the spin-orbit interaction for its magnetic
and structural properties [50–59]. The unquenched orbital moment is
closely related to the open t2g shell of the 3d7 configuration [60–61].

Applying the sum rules for the Mn-L2,3 XMCD spectra, we obtain
morb/mspin = 0.09. This means that the orbital moment for the
Mn4+ ions is nearly quenched. Indeed, for the 3d3 configuration in the
Mn4+ compounds, the majority t2g shell is fully occupied and thus a
practically quenched orbital moment is to be expected.

To critically check our findings concerning the local electronic struc-
ture of the Co and Mn ions, we will explicitly simulate the experimental
XMCD spectra using the configuration interaction cluster model [29–
31]. The method uses a CoO6 and MnO6 cluster, respectively, which
includes the full atomic multiplet theory and the local effects of the
solid. It accounts for the intra-atomic 3d–3d and 2p–3d Coulomb
interactions, the atomic 2p and 3d spin-orbit couplings, the oxygen
2p–3d hybridization, and local crystal field parameters. Parameters
for the multipole part of the Coulomb interactions were given by the
Hartree-Fock values [29], while the monopole parts (Udd, Upd) as well
as the oxygen 2p–3d charge transfer energies were determined from
photoemission experiments on typical Co2+ and Mn4+ compounds [62].
The one-electron parameters such as the oxygen 2p–3d and oxygen
2p–oxygen 2p transfer integrals were extracted from band-structure
calculations [63] within the local-density approximation (LDA) using
the low-temperature crystal structure of the high-TC phase [24]. The
simulations have been carried out using the xtls 8.3 program [29]
with the parameters given in Ref. 64.

Important for the local electronic structure of the Co2+ ion is its local
t2g crystal field scheme. This together with the spin-orbit interaction
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determines to a large extent its magnetic properties. To extract the
crystal field parameters needed as input for the cluster model, we have
performed constrained LDA+U calculations [63] without the spin-orbit
interaction. We find that the zx+ xy orbital lies lowest, while the yz
is located 22 meV and the zx − xy 27 meV higher. Here, we made
use of local coordinates in which the z direction is along the long
Co–O bond (2.078 Å), the y along the second-longest bond (2.026 Å),
and the x along the short bond (1.997 Å). The cluster model finds
the easy axis of the magnetization to lie in the yz direction with a
single-ion anisotropy energy of about 0.5–1.5 meV, i.e., larger than
can be achieved by the applied magnetic field. Since we are dealing
with a polycrystalline sample, the sum of spectra taken with the light
coming from all directions has to be calculated; we approximated this
by summing two calculated spectra: one for light with the Poynting
vector along the yz axis and one with the Poynting vector perpendicular
to this. The exchange field direction is kept along the yz in both cases.

Fig. 5.6 Local coordinate system

In good approximation the local symmetry of of the octrahedron is
orthorhombicD2h, which allows one to use the crystal-field as defined in
Section 3.3.3; the used local coordinate system can be seen in fig. 5.6;
the bond lengths are Co–Ox = 1.997 Å, Co–Oy = 2.026 Å, and Co–
Oz = 2.078 Å. If one now creates a crystal-field, one-electron energy
diagram, see fig. 5.7, using the crystal-field splittings from the LDA
calculation, one sees that usual D2h splittings. Note, however, that
the lowest two states are mixed. The eigenenergies of these states are

E(3x2 − r2) = 3
5∆CF + 1

2∆eg

E(x2 − y2) = 3
5∆CF −

1
2∆eg

E(zx− xy) = −2
5∆CF + ∆3
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Fig. 5.7 Crystal-field spitting

E(zy) = −2
5∆CF + ∆2

E(zx+ xy) = −2
5∆CF + ∆1, (5.2)

where ∆21 = ∆2 − ∆1 = 22 meV and ∆31 = 27 meV according to
LDA+U.

The results of the cluster model calculations are included in fig. 5.5,
in the top panel (a) for the Co L2,3 edges and the bottom panel (b) for
the Mn. One can see that the line shapes of the experimental Co and
Mn spectra are well explained by the simulations: all the characteristic
features are reproduced. We would like to remark that the experimental
XMCD spectra (dotted curves) are in general about 30% smaller than
the simulated XMCD spectra (dotted curves). This is due to the fact
that the experimental spectra were not corrected for the incomplete
degree of circular polarization (≈80%) of the beamline, nor for the fact
that magnetic field makes an angle of 30◦ with respect to the Poynting
vector of the light, nor for the reduction of the magnetization at 135 K
at which the sample was measured – compared to the calculation which
were done at 0 K. From these simulations we thus can safely conclude
that our interpretation for the Co and Mn valences and magnetic
moments is sound.

Our finding of a large orbital contribution to the Co magnetic
moment has important implications for the interpretation of the mag-
netic susceptibility data. In most of the studies published so far, one
tried to extract magnetic quantum numbers from the magnetic suscept-
ibility data using the Curie or Curie-Weiss law by finding a temperature
region in which the inverse of the magnetic susceptibility is linear with
temperature. One usually takes the high temperature region. We will
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Fig. 5.8 Energy level diagram of the Co2+ ion (left panel) in a
cubic field depending on the strength of the exchange field Hex,
(middle panel) the effect of lowering the symmetry [∆eg = 4∆t2g =
4(Ezx−xy,yz −Ezx+xy)], and (right panel) the low-symmetry energy
splitting depending on Hex.

show below that this standard procedure will not provide the magnetic
quantum numbers relevant for the ground state of this material.

The fact that the 3d spin-orbit interaction in this Co material is
“active” has as a consequence that the energy difference between the
ground state and the first excited state will be of the order of the
spin-orbit splitting ζ, which is about 66 meV for the Co2+ ion. We
have illustrated this in fig. 5.8 which shows the energy level diagram
of the Co2+ ion, both in cubic symmetry (left panel) and in the low-
temperature and ferromagnetic state of the LaMn0.5Co0.5O3 system
(right panel) where we have used the crystal field scheme as described
above.

To demonstrate the consequences of the presence of such a set of
low lying excited states, we calculated the magnetic susceptibility χ of
the Co2+ in cubic symmetry for an applied magnetic field of 0.01 T
and without an exchange field. The results are presented in fig. 5.9
where we depict also the (apparent) effective magnetic moment µeff
[µ2

eff is defined here as 3kB divided by the temperature derivative of
1/χ(T )] and the (apparent) Weiss temperature Θ [Θ is defined here
as the intercept of the tangent to the 1/χ(T ) curve with the abscissa].
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One can clearly observe that 1/χ(T ) is not linear with temperature
for temperatures between TC = 225 K and roughly 800 K. Only
for temperatures higher than 800 K, one can find a Curie-Weiss-like
behavior, but then the (apparent) Weiss temperature has nothing to do
with magnetic correlations since they were not included in this single
ion calculations. Instead, the (apparent) Weiss temperature merely
reflects the fact that the first excited states are thermally populated.
This means in turn that one cannot directly extract the relevant ground
state quantum numbers from the high temperature region.

In principle, one could hope to find a Curie-Weiss behavior by focus-
ing on the very low temperature region only, e.g., below 50 K, but
there one has to take into account that there is a very large van Vleck
contribution to the magnetic susceptibility due to the fact that the first
excited states are lying very close, i.e., in the range of the spin-orbit
splitting. The extrapolation to T = 0 K would then give the real
value for µeff of the ground state. In the case of LaMn0.5Co0.5O3, how-
ever, the presence of ferromagnetism, which already sets in at 225 K,
will completely dominate the magnetic susceptibility and thus hinder
the determination of µeff of the ground state using this procedure.
Obviously, one can determine in principle the magnetic moments in a
ferromagnet from the saturation magnetization, but apparently this is
the issue for LaMn0.5Co0.5O3 where one is debating about the import-
ance of Mn/Co disorder and its relationship to reduced magnetizations
and less than optimal Curie temperatures.

Another often used “magnetic” technique to determine the moments
in this ferromagnetic material is neutron scattering. Troyanchuk et al.
found a mean value of 2.5µB per formula unit (LaCo0.5Mn0.5O3) [24].
The authors claimed that this is in good agreement with the Co2+–
Mn4+ scenario. Indeed, assuming spin-only moments as is generally
done (but which is not correct as shown above), one would already
expect 3µB for a Co2+ ion and 3µB for a Mn4+ ion, totaling to 6µB , i.e.
3µB/f.u., which is somewhat larger than the experimental finding and
which can be understood consistently if one assumes that the Co–Mn
ordering in their sample is not perfect. It is important to note that
the low-spin Co3+–Mn3+ scenario can be ruled out since this yields
only 2µB/f.u., i.e., too low to explain the experiment. Nevertheless,
a Co3+–Mn3+ scenario in which the Co3+ ion is in the intermediate
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Fig. 5.9 Calculated inverse susceptibility for a single Co2+ ion in
a cubic crystal field; (top inset) the (apparent) effective moment µeff
and (bottom inset) the (apparent) Weiss temperature Θ as defined
in the text.

(S = 1) or high spin state (S = 2) cannot be excluded on the basis of
the moments measured by the neutrons alone [12, 38].

Our cluster model calculations based on the XAS and XMCD spectra
reveal that the Co2+ ion has mspin = 2.12µB and morb = 0.99µB and
that the Mn4+ has mspin = 2.84µB and morb = 0.02µB, totaling to
2.99µB/f.u. This is not inconsistent with the magnetization results of
Asai et al. [16], if we make an extrapolation to higher magnetic fields
as to estimate the saturated total moment. Our result is larger than
the neutron results, but also not inconsistent if one is willing to accept
that there is an appreciable amount of Co–Mn disorder in the neutron
sample. Crucial is that our XAS and XMCD spectra rule out all the
Co3+–Mn3+ scenarios: (1) our Co L2,3 spectra give a positive match
with those of Co2+ compounds, while they do not fit those of low-spin
Co3+ and high-spin Co3+ compounds [12, 38]; (2) our Mn L2,3 spectra
are very similar to those of Mn4+ compounds, and very dissimilar to
those of Mn3+.

To summarize, we have utilized an element-specific spectroscopic
technique, namely, soft-x-ray absorption and magnetic circular dichro-
ism spectroscopy, to unravel the local electronic structure of LaMn0.5Co0.5O3
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system. We have firmly established the high-spin Co2+–Mn4+ scenario.
We have found a very large orbital contribution to the Co magnetic
moment, implying a nontrivial temperature dependence for the mag-
netic susceptibility. We also have revealed that samples with lower
Curie temperatures contain low-spin nonmagnetic Co3+ ions.
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6 X-ray absorption and x-ray magnetic
dichroism study on Ca3CoRhO6 and
Ca3FeRhO6

Results published in: T. Burnus, Z. Hu, Hua Wu, J. C. Cezar, S. Niitaka, H.
Takagi, C. F. Chang, N. B. Brookes, H.-J. Lin, L. Y. Jang, A. Tanaka, K. S.
Liang, C. T. Chen, L. H. Tjeng, Physical Review B 77, 205111 (2008).
DOI: 10.1103/PhysRevB.77.205111 OAI: arXiv:0803.0293

1 Introduction

The quasi one-dimensional transition-metal oxides Ca3ABO6 (A =
Fe, Co, Ni, . . . ; B = Co, Rh, Ir, . . . ) have attracted a lot of

interest in recent years because of their unique electronic and magnetic
properties [1–13]. The structure of Ca3ABO6 contains one-dimensional
(1D) chains consisting of alternating face-sharing AO6 trigonal prisms
and BO6 octahedra. Each chain is surrounded by six parallel neigh-
boring chains forming a triangular lattice in the basal plane. Peculiar
magnetic and electronic behaviors are expected to be related to geomet-
ric frustration in such a triangle lattice with antiferromagnetic (AFM)
interchain interaction and Ising-like ferromagnetic (FM) intrachain
coupling. Ca3Co2O6, which realizes such a situation, shows stair-step
jumps in the magnetization at regular intervals of the applied mag-
netic field of Ms/3, suggesting ferrimagnetic spin alignment. It has a
saturation magnetization of Ms = 4.8µB per formula unit at around 4
T [14]. Studies on the temperature and magnetic-field dependence of
the characteristic spin-relaxation time suggest quantum tunneling of
the magnetization similar to single-molecular magnets [15]. An applied
magnetic field induces a large negative magnetoresistance, apparently
not related to the three-dimensional magnetic ordering [11]. Band-
structure calculations using the local-spin-density approximation plus
Hubbard U (LSDA+U) predicted that the Co3+ ion at the trigonal site,
being in the high-spin (HS) state (S = 2), has a giant orbital moment
of 1.57µB due to the occupation of minority-spin d2 orbital, while the
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Co3+ ion at the octahedral site is in the low-spin (LS) state (S = 0)
[16]. An x-ray absorption and magnetic circular dichroism study at the
Co-L2,3 edge has confirmed this prediction [17]. Both studies explain
well the Ising nature of the magnetism of Ca3Co2O6.

Ca3CoRhO6 and Ca3FeRhO6 have the same crystal structure as
Ca3Co2O6, but different magnetic and electronic properties: Neutron
diffraction and magnetization measurements also indicated intrachain-
FM and interchain-AFM interactions in Ca3CoRhO6 like in Ca3Co2O6
[7]. In contrast, susceptibility data on Ca3FeRhO6 reveal a single trans-
ition into a three-dimensional AFM [5, 18]. Although Ca3CoRhO6
has a similar magnetic structure as Ca3Co2O6, it exhibits considerable
differences in the characteristic temperatures in the magnetic susceptib-
ility. The high-temperature limit of the magnetic susceptibility shows
a Curie-Weiss behavior with a positive Weiss temperature of 150 K for
Ca3CoRhO6 [5], while 30 K was found for Ca3Co2O6 [2–3]. The meas-
ured magnetic susceptibility undergoes two transitions at Tc1 = 90 K
and Tc2 = 25 K for Ca3CoRhO6, and at Tc1 = 24 K and Tc2 = 12 K for
Ca3Co2O6 [3, 5, 7–8, 12, 18], which were attributed to FM-intrachain
and AFM-interchain coupling, respectively. In contrast, Ca3FeRhO6
has an AFM ordering below TN = 12 K [5, 18–19]. Unlike Ca3Co2O6,
there is only one plateau at 4 T and no saturation even at 18 T in the
magnetization of Ca3CoRhO6 at 70 K [7]. A partially disordered state
in Ca3CoRhO6 has been inferred by the previous work of Niitaka et
al. [8]

In order to understand the contrasting magnetic properties of Ca3CoRhO6
and Ca3FeRhO6, and, particularly, the type and origin of the intrachain
magnetic coupling of these quasi 1D systems, the valence, spin, and
orbital states have to be clarified. However, these issues have been con-
tradictorily discussed in previous theoretical and experimental studies.
The general-gradient-approximated (GGA) density-functional band
calculations [20] suggest a Co3+/Rh3+ state in Ca3CoRhO6, while
LSDA+U calculations with inclusion of the spin-orbit coupling favor a
Co2+/Rh4+ state and, again, a giant orbital moment due to the occu-
pation of minority-spin d0 and d2 orbitals [21]. Neutron diffraction
experiments on Ca3CoRhO6 [8, 22] suggest the Co3+/Rh3+ state. How-
ever, based on the magnetic susceptibility [5] and x-ray photoemission
spectroscopy [23] the Co2+/Rh4+ state was proposed. For Ca3FeRhO6,
the Fe2+/Rh4+ state was suggested in a magnetic susceptibility study
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[5], whereas Mössbauer spectroscopy indicates a Fe3+ state [19], and
thus Rh3+.

In order to settle the above issues, in this chapter we first clarify the
valence state of the Rh, Co, and Fe ions in Ca3CoRhO6 and Ca3FeRhO6
using x-ray absorption spectroscopy (XAS) at the L2,3 edges of Rh,
Co, and Fe. We reveal a valence state of Co2+/Rh4+ in Ca3CoRhO6
and of Fe3+/Rh3+ in Ca3FeRhO6. Then, we investigate the orbital
occupation and magnetic properties using x-ray magnetic circular
dichroism (XMCD) experiments at the Co-L2,3 edge of Ca3CoRhO6.
We find a minority-spin d0d2 occupation for the HS Co2+ ground state
and, thus, a giant orbital moment of about 1.7µB. As will be seen
below, our results account well for the previous experiments.

2 Experimental
Polycrystalline samples were synthesized by a solid-state reaction and
characterized by x-ray diffraction to be single phase [5]. The Rh-L2,3
XAS spectra were measured at the NSRRC 15B beamline in Taiwan,
which is equipped with a double-Si(111) crystal monochromator for
photon energies above 2 keV. The photon-energy resolution at the
Rh-L2,3 edge (hν ≈ 3000–3150 eV) was set to 0.6 eV. The Fe-L2,3
XAS spectrum of Ca3FeRhO6 was measured at the NSRRC Dragon
beamline with a photon-energy resolution of 0.25 eV. The main peak at
709 eV of the Fe-L3 edge of single crystalline Fe2O3 was used for energy
calibration. The Co-L2,3 XAS and XMCD spectra of Ca3CoRhO6
were recorded at the ID8 beamline of ESRF in Grenoble with a photon-
energy resolution of 0.2 eV. The sharp peak at 777.8 eV of the Co-L3
edge of single crystalline CoO was used for energy calibration. The
Co-L2,3 XMCD spectra were recorded in a magnetic field of 5.5 T; the
photons were close to fully circularly polarized. The sample pellets
were cleaved in situ in order to obtain a clean surface. The pressure
was below 5 × 10−10 mbar during the measurements. All data were
recorded in total-electron-yield mode. The Rh-L2,3 and Fe-L2,3 XAS
spectra were measured at room temperature and the Co-L2,3 XAS and
XMCD spectra at 50 K.

3 XAS and valence state
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Fig. 6.1 The Rh-L2,3 XAS spectra of Ca3CoRhO6 and Ca3FeRhO6 and
a schematic energy level diagram for Rh3+ 4d6 and Rh4+ 4d5 configura-
tions in octahedral symmetry.

We first concentrate on the valence of the rhodium ions in both
studied compounds. For 4d transition-metal oxides, the XAS spectrum
at the L2,3 edge reflects basically the unoccupied t2g- and eg-related
peaks in the Oh symmetry. This is due to the larger band-like character
and the stronger crystal-field interaction of the 4d states as well as due
to the weaker intra-atomic interactions as compared with 3d transition-
metal oxides, where intra-atomic multiplet interactions are dominant
[24–25]. The intra-atomic multiplet and spin-orbit interactions in 4d
elements only modify the relative intensity of the t2g- and eg-related
peaks. Figure 6.1 shows the XAS spectra at the Rh-L2,3 edges of
Ca3FeRhO6 (dashed line) and Ca3CoRhO6 (solid line). The Rh-L2,3
spectrum shows a simple, single-peaked structure at both Rh-L2 and
Rh-L3 edges for Ca3FeRhO6, while an additional low-energy shoulder
is observed for Ca3CoRhO6. Furthermore, the peak in the Ca3CoRhO6
spectrum is shifted by 0.8 eV to higher energies compared to that of
the Ca3FeRhO6.

The single-peaked spectral structure for Ca3FeRhO6 indicates Rh3+

(4d6) with completely filled t2g orbitals, i.e. only transitions from the
2p core levels to the eg states are possible. The results are in agreement
with Mössbauer spectroscopy [19]. The shift to higher energies from
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Ca3FeRhO6 to Ca3CoRhO6 reflects the increase in the Rh valence from
Rh3+ to Rh4+ as we can learn from previous studies on 4d transition-
metal compounds [24–27]. Furthermore, for Ca3CoRhO6 the spectrum
shows a weak low-energy shoulder, which is weaker at the Rh-L2 edge
than at the Rh-L3 edge. This shoulder can be attributed to transitions
from the 2p core levels to the t2g state, reflecting a 4d5 configuration
with one hole at the t2g state. Such spectral features were found
earlier for Ru3+ in Ru(NH4)3Cl6 [24, 28]. Detailed calculations reveal
that the multiplet and spin-orbit interactions suppress the t2g-related
peak at the L2 edge for a 4d5 configuration [24–27]. Thus, we find a
Rh4+ (4d5) state for Ca3CoRhO6. Having determined a Rh3+ state in
Ca3FeRhO6 and a Rh4+ state in Ca3CoRhO6, we turn to the Fe-L2,3
and the Co-L2,3 XAS spectra to further confirm the Fe3+ state and
the Co2+ state, as expected for charge balance.

Figure 6.2 shows the experimental Fe-L2,3 XAS spectra of (g) Ca3FeRhO6,
along with those of (a) single crystalline Fe2O3 as a Fe3+ reference
and of (j) FeO, taken from Ref. 29, as a Fe2+ reference. Addition-
ally, calculated spectra for different symmetries using purely ionic (i.e.
without Fe 3d–O 2p hybridization) crystal-field multiplet calculations
[24, 30–32] are shown. It is well known that an increase of the valence
state of the 3d transition-metal ion by one causes a shift of the XAS
L2,3 spectra by about one eV towards higher energies [33–35]. The
main peak of the Fe L3 structure of the Ca3FeRhO6 lies 0.8 eV above
the main peak of the divalent reference FeO and only slightly lower in
energy than the one of Fe2O3 (Fe3+). This indicates trivalent iron ions
in Ca3FeRhO6. The slightly lower energy shift of Ca3FeRhO6 relative
to Fe2O3 can be attributed to the weak trigonal crystal field in the
former as compared an octahedral field in the later, as we will show
below.

The experimental spectra of the reference compounds, curve (a)
for Fe2O3 and curve (j) for FeO, can be well understood using the
multiplet calculations. For Fe2O3 we find a good simulation taking a
Fe3+ ion in an octahedral symmetry with a t2g–eg splitting of 1.6 eV,
which is depicted in curve (b) in Fig. 2. For FeO, a good match with
the experiment can be found for the Fe2+ in an octahedral environment
with a splitting of 0.9 eV, see curve (i). The weaker crystal field in
FeO, compared with Fe2O3, is consistent due to its larger Fe–O bond
length.
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Fig. 6.2 (color online) Experimental XAS spectra at the Fe-
L2,3 edge of (a) Fe2O3 (Fe3+), (g) Ca3FeRhO6, and (j) FeO
(Fe2+), taken from Park [29], together with simulated spectra
(b, c) in Oh, (d) spherical, and (e, f) D3h symmetry for Fe3+

and simulated spectra in (h) D3h and (i) Oh symmetry for
Fe2+. The simulated spectra have been broadend by a Gaussian
with a half width at half maximum (HWHM) of 0.2 eV and
Lorentzian with HWHM 0.3 eV.

In order to understand the experimental Fe L2,3 spectrum of Ca3FeRhO6,
we first return to the Fe2O3 spectrum. When we reduce the t2g–eg
splitting from 1.6 eV (curve b) via 1.0 eV (curve c) to 0.0 eV (curve
d), we observe that the the low-energy shoulder becomes washed out,
while the high-energy shoulder becomes more pronounced [30]. Going
further to a trigonal crystal field, the high-energy shoulder looses its
intensity as shown in curve (e) for a splitting of 0.9 eV between d±1
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(dyz/dzx) and d0/d±2 (d3z2−r2/dxy/dx2−y2). The experimental Fe-L2,3
XAS spectrum of Ca3FeRhO6 in fig. 6.2(g) can be well reproduced
with this trigonal crystal field of 0.9 eV and in addition a mixing para-
meter Vmix = 0.4 eV, which mixes the d±2 with the d∓1 orbitals; the
result for this Fe with the 3d5 high-spin configuration is presented in
curve (f).

We note that curve (f) has been generated with the Fe in the trivalent
state. As a check, we have also tried to fit the experimental spectrum of
Ca3FeRhO6 using a divalent Fe ansatz. However, the simulation does
not match, as is illustrated in curve (h), in which we have used the same
trigonal crystal field splitting of 0.9 eV and mixing parameter of 0.4
eV. To conclude, the Fe-L2,3 and Rh-L2,3 XAS spectra of Ca3FeRhO6
firmly establish the Fe3+/Rh3+ scenario.

For the Ca3CoRhO6 system, the Rh-L2,3 XAS spectra suggest that
the Rh ions are tetravalent, implying that the Co ions should be divalent.
To confirm this Co2+/Rh4+ scenario we have to study explicitly the
valence of the Co ion. fig. 6.3 shows the Co-L2,3 XAS spectra of
Ca3CoRhO6 together with CoO as a Co2+ and Ca3Co2O6 as a Co3+

reference [17]. Again we see a shift to higher energies from CoO to
Ca3Co2O6 by about one eV. The Ca3CoRhO6 spectrum lies at the
same energy position as the CoO spectrum confirming the Co2+/Rh4+

scenario [21] and ruling out the Co3+/Rh3+ scenario [20]. The res-
ult is fully consistent with the above finding from the Rh-L2,3 edge
of Ca3CoRhO6 and in agreement with previous results from x-ray
photoemission spectroscopy [23].

4 XMCD and orbital occupation/moment

After determining the valence states of Rh, Fe, and Co ions we turn
our attention to the orbital occupation and magnetic properties of
the Co2+ ion at the trigonal-prism site. This is motivated by the
consideration that Co2+ ions may have a large orbital moment [36],
whose size depends on details of the crystal field, while the high-spin
Fe3+ (3d5) and low-spin Rh3+ (4d6) ions in Ca3FeRhO6 have a closed
subshell without orbital degrees of freedom and thus no orbital moment.

In trigonal-prism symmetry the 3d orbitals are split into d±1, d0, and
d±2 states, see fig. 6.4. In terms of one-electron levels, the d±1 orbitals
lie highest in energy, while the lower lying d0, and d±2 usually are
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Fig. 6.3 The Co-L2,3 spectra of (a) Ca3Co2O6
(Co3+), (b) CoO (Co2+), and (c) Ca3CoRhO6.
The simulated spectra of high-spin Co2+ (3d7) in
trigonal prismatic symmetry are shown in (d) for
a d0d2 and in (e) for a d2d−2 minority-spin orbital
occupation.

nearly degenerate. For a Co3+ d6 system, it is a priori not obvious from
band structure calculations to say which of these low lying orbitals gets
occupied. Details, such as the inclusion of the spin-orbit interaction,
can become crucial. Indeed, for Ca3Co2O6, it was found from LDA+U
calculations [16] and confirmed by XMCD measurements [17] that the
spin-orbit interaction is crucial to stabilize the occupation of the d2
orbital, thereby giving rise to giant orbital moments and Ising-type
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up spins. (a) The d0d2 minority-spin occupation allows for a large
orbital magnetic moment, whereas (b) for d2d−2 the orbital moment
vanishes.

magnetism. For a Co2+ d7 ion, however, the situation is quite different.
As we will explain below, the double occupation of the d0d2 orbitals is
energetically much more favored than that of the d2d−2: the energy
difference could be of order 1 eV while the d0 and d±2 by themselves
could be degenerate on a one-electron level. The consequences are
straightforward: the double occupation of d0d2, see fig. 6.4(a), should
lead to a large orbital moment of 2µB (neglecting covalent effects) and
Ising type of magnetism with the magnetization direction fixed along
the chains [7, 21]. In contrast, the d2d−2, see fig. 6.4(b), would have
given a quenched orbital moment.

In order to experimentally establish that the Co2+ ion has the d0d2
configuration, we have performed an XMCD study at the Co-L2,3 edges
of Ca3CoRhO6. Fig. fig. 6.5 shows the Co-L2,3 XMCD spectrum
of Ca3CoRhO6 taken at 50 K under 5.5 T. The spectra were taken,
respectively, with the photon spin parallel (µ+, dotted curve) and
antiparallel (µ−, solid curve) to the magnetic field. One can clearly
observe large differences between the two spectra with the different
alignments. Their difference, µ+−µ−, is the XMCD spectrum (dashed
curve). An important feature of XMCD experiments is that there are
sum rules, developed by Thole and Carra et al. [37–38], to determine
the ratio between the orbital (morb = Lz) and spin (mspin = 2Sz)
contributions to the magnetic moment, namely

morb

mspin
= 2

3
∆L3 + ∆L2

∆L3 − 2∆L2
, (6.1)
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Fig. 6.5 (color online) (a) Measured soft x-ray absorption spec-
tra with parallel (µ+, dotted curve) and antiparallel (µ−, solid
curve) alignment between photon spin and magnetic field, together
with their difference (XMCD) spectrum (µ+ − µ−, dashed curve);
simulated XMCD spectra for (b) d0d2 and (c) d2d−2 minority-spin
occupation of the high-spin Co2+.

here, ∆L3 and ∆L2 are the energy integrals of the L3 and L2 XMCD
intensity. The advantage of these sum rules is that one needs not
to do any simulations of the spectra to obtain the desired quantum
numbers. In our particular case, we can immediately recognize the
presence of a large orbital moment in fig. 6.5(a), since there is a
large net (negative) integrated XMCD spectral weight. Using Eq. (6.1)
we find morb/mspin = 0.63. Since the Co2+ ion is quite ionic, mspin
is very close to the expected ionic value of 3µB. For example, our
LDA+U calculations yield 2.72µB for the Co2+ ion (2.64µB for LDA)
and Whangbo et al. obtained 2.71µB from GGA calculations [20].
Using a value of 2.7µB for the spin moment, we estimate morb = 1.7µB ,
in nice agreement with our LDA+U result of 1.69µB, for the d0d2
minority-spin orbital occupation [21].

To critically check our experimental and previous LDA+U results
[21] regarding the d0d2 orbital occupation and the giant orbital moment,
we explicitly simulate the experimental XMCD spectra using a charge-
transfer configuration-interaction cluster calculation [31, 39], which
includes not only the full atomic multiplet theory and the local effects
of the solid, but also the oxygen 2p–cobalt 3d hybridization. The results
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Fig. 6.6 (color online) Top panel: Occupation number
of the d0, d2, and d−2 orbitals as function of the d0–d±2
splitting ∆02 [fig. 6.4(b)]. Middle panel: Orbital and spin
moments (morb and mspin) as function of ∆02. Bottom
panel: J(J+1), L(L+1), and S(S+1) as function of ∆02.

of the calculated Co-L2,3 XAS and XMCD spectra are presented in
figs. 6.3(d) and 6.5(b), respectively. We can clearly observe that
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d0 d2 d−2

Fig. 6.7 (color online) Electron distribution of the d0, 2 and
d−2 orbitals.

the simulations reproduce the experimental spectra very well. The
parameters [40] used are those which indeed give the d0d2 orbital
occupation for the ground state. The magnetic quantum numbers found
are morb = 1.65µB and mspin = 2.46µB, yielding morb/mspin = 0.67
and a total Co magnetic moment of 4.11µB. With the Rh in the
S = 1/2 tetravalent state, the total magnetic moment per formula unit
should be around 5µB. This is not inconsistent with the results of
the high-field magnetization study by Niitaka et al. [7]: they found a
total moment of 4.05µB , but there the saturation of the magnetization
has not yet been reached even under 18.7 Tesla. This can now be
understood since the magnetocrystalline anisotropy, associated with
the active spin-orbit coupling, is extremely strong and makes it difficult
to fully magnetize a powder sample as was used in their study.

We also have simulated the spectra for the d2d−2 scenario. These
are depicted in fig. 6.3(e) for the XAS and fig. 6.5(c) for the XMCD.
It is obvious that the experimental spectra are not reproduced. The
simulated line shapes are very different from the experimental ones and
the integral of the simulated XMCD spectrum yields a vanishing orbital
moment. We therefore can safely conclude that the ground state of this
material is not d2d−2. For completeness we mention that the magnetic
quantum numbers found for this d2d−2 ansatz are morb = 0.20µB and
mspin = 2.86µB, yielding morb/mspin = 0.07 and a total Co magnetic
moment of 3.06µB .

5 Stability of the d0d2 state
Having established that the ground state of Ca3CoRhO6 has the Co2+

d7 ion in the doubly occupied d0d2 orbital configuration and not in
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the d2d−2, it is interesting to study its stability in more detail. As
already mentioned above, for a Co3+ d6 ion, the d0 and d±2 states can
be energetically very close to each other. For a Co2+ d7 ion, however,
the d0d2 and d2d−2 states are very much different in energy. This is
illustrated in the top panel of fig. 6.6, in which we have calculated the
occupation numbers of the d0, d2, and d−2 orbitals as a function of ∆02,
the one-electron level splitting between the d0 and d±2 orbitals. The
d0d2 ground state which gives the best simulation to the experimental
XAS and XMCD spectra was obtained with ∆02 ≈ 0.4 eV. We can
observe that the d0d2 situation is quite stable for a wide range of
∆02 values, certainly up to 0.8 eV. With a transition region between
∆02 = 0.8–1.2 eV, we find a stable d2d−2 situation only for ∆02 values
larger than 1.2 eV. (For the d2d−2 simulations above we have used
∆02 = 1.4 eV.) This is a very large number indeed, and it can be traced
back to the multiplet character of the on-site Coulomb interactions:
an occupation of d2d−2 means a much stronger overlap of the electron
clouds as compared to the case for a d0d2; this can be seen in fig. 6.7
where the electron distribution of these orbitals is shown. This results
in a higher repulsion energy, which is not a small quantity in view of
the atomic-like values of the F 2 and F 4 Slater integrals determining
the multiplet splitting [31, 41].

In the middle panel of fig. 6.6 we also show the expectation values
for morb and mspin when varying ∆02. Again we clearly observe that
the large orbital-moment situation is quite stable. To quench the
orbital moment one would need much higher ∆02 values. Important
is that the spin state does not change here. Bottom panel of fig. 6.6
demonstrates that the high-spin state of the Co2+ ion is not affected
by ∆02: the expectation value 〈S2〉 remains constant throughout at a
value consistent with an essentially S = 3/2 state. Obviously, the L2

and J2 quantum numbers are strongly affected by ∆02.

6 Conclusion

To summarize, the Rh-L2,3, Co-L2,3 and Fe-L2,3 XAS measurements
indicate Co2+/Rh4+ in Ca3CoRhO6 and Fe3+/Rh3+ in Ca3FeRhO6.
The magnetic properties of Ca3FeRhO6 are relatively simple as both
the HS Fe3+ and LS Rh3+ ions have a closed subshell and thus no
orbital degrees of freedom and no orbital moment. The weak intrachain
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AFM coupling between the HS Fe ions can be understood in terms of
the normal superexchange via the intermediate non-magnetic O–Rh–O
complex. For Ca3CoRhO6, the combined experimental and theoretical
study of the Co-L2,3 XAS and XMCD spectra reveals a giant orbital
moment of about 1.7µB. This large orbital moment is connected
with the minority-spin d0d2 occupation for HS Co2+ (3d7) ions in
the peculiar trigonal prismatic coordination. The high FM ordering
temperature in Ca3CoRhO6, compared with that of Ca3Co2O6, can be
attributed to the distinct octahedral sites (which mediate the Co–Co
magnetic coupling): the magnetic Rh4+ ion (S = 1/2) in the former
and the nonmagnetic Co3+ ion (S = 0) in the latter.
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7 Orbitally driven spin-singlet dimeriz-
ation in S = 1 La4Ru2O10

Results published in: Hua Wu, Zhiwei Hu, Tobias Burnus, Jonathan D. Denlinger,
Peter G. Khalifah, David G. Mandrus, Ling-Yun Jang, Hui-Huang Hsieh, Arata
Tanaka, Keng S. Liang, Jim W. Allen, Robert J. Cava, Daniel I. Khomskii, and
L. Hao Tjeng
Physical Review Letters 96, 256402 (2006).
DOI: 10.1103/PhysRevLett.96.256402 OAI: arXiv:cond-mat/0606445

One of the most intriguing aspects of transition-metal materials
is the wide variety and richness of their physical properties [1].

Although conceptually clean and beautiful, theoretical simplifications
in terms of a Heisenberg model or a single-band Hubbard model turn
out to be inadequate [2]. It now becomes more and more clear that
a full identification of the relevant orbital and spin degrees of free-
dom of the ions involved is needed to understand, for instance, the
colossal magnetoresistance behavior in the manganates [3–7], magnet-
ization reversals, and metal-insulator transitions in early transition-
metal oxides [8–12], as well as the formation of spin gaps in non-one-
dimensional S = 1

2 systems [13–16].
Very recently Khalifah et al. [17] synthesized the semiconducting

quasi two-dimensional La4Ru2O10 compound and discovered that this
system undergoes a strong first-order structural transition at Ts =
160 K (see fig. 7.1), accompanied by a rare 4d orbital ordering and
spin-gap opening. Their interpretation of these phenomena was that
the Ru4+ ion transforms from the usual t32g↑t12g↓ low-spin state with
S = 1 to an t22g↑t

2
2g↓ “ultralow” spin state with S = 0, caused by a

sufficiently strong crystal-field splitting (CFS) of the Ru-4d t2g levels
due to the lattice distortion below Ts.

However, already soon after that, it was also hypothesized by Khali-
fah et al., based on unpublished standard band-structure calculations,
that a chemical bond may be formed associated with the orbital order-
ing. Here, we report on an x-ray absorption spectroscopy (XAS) study
in which we reveal that the Ru4+ ions remain in the S = 1 spin state

http://dx.doi.org/10.1103/PhysRevLett.96.256402
http://dx.doi.org/10.1103/PhysRevLett.96.256402
http://dx.doi.org/10.1103/PhysRevLett.96.256402
http://dx.doi.org/10.1103/PhysRevLett.96.256402
http://dx.doi.org/10.1103/PhysRevLett.96.256402
http://arXiv.org/abs/cond-mat/0606445
http://arXiv.org/abs/cond-mat/0606445
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Fig. 7.1 (color online) The main block of the low-
temperature (20 K) triclinic crystal structure of La4Ru2O10
shown in the crystallographic ab plane: the two-
dimensional Ru–O network consisting of distorted RuO6
octahedra extends along the c axis (not shown, pointing
into paper plane) and b axis with corrugation. The Ru–O
bond lengths are marked in units of Å, and those out of the
ab plane (not shown) are 2.046 and 2.057 Å for Ru1, and
2.046 and 2.082 Å for Ru2. The spin-singlet dimers are
marked by black solid bars. The local orthogonal coordin-
ate system (xyz) is used in our band calculations with z
parallel to c and y (x) along the short (long) Ru1–Ru2 dir-
ection. The high-temperature monoclinic structure (not
shown) above Ts = 160 K has equal Ru–Ru distances along
the x and y directions: Ru1 and Ru2 are equivalent.

across Ts. This directly points to the possibility that La4Ru2O10 is in
fact a novel system in which the spin-gap opening is due to a singlet-
dimer formation in a non-one-dimensional and S > 1

2 material. We
find using local-spin-density approximation + Hubbard U (LSDA + U)
band-structure calculations that the distinct orbital ordering involves
a significant anisotropy of the antiferromagnetic exchange couplings,
indicating indeed the formation of Ru (S = 1)–Ru (S = 1) singlet
dimers.

Floating zone crystals were grown in a NEC SC-M15HD image
furnace using rods with a 1:1 or 4:5 ratio of La:Ru which had been
prereacted and sintered in air at 1250 °C. A small (1–2 atm) over-
pressure of oxygen aided the growth, and the power was dynamically
increased during the run to compensate for absorption by the copious
amounts of evaporated Ru. Sizeable crystals could only be obtained
using seed crystals. X-ray diffraction confirmed both the macroscopic
phase purity and the universal presence of two twin domains. The
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XAS measurements were performed at the Taiwan NSRRC 15B beam
line, equipped with a double-Si(111)-crystal monochromator, deliver-
ing photons from 2 keV and up. The spectra were recorded using the
total-electron-yield method in a chamber with a base pressure in the
low 10−10 mbar range. Clean sample areas were obtained by cleaving
the crystals in situ. The photon-energy resolution at the Ru-L2,3 edges
(hν ≈ 2.9 keV) was set at 0.6 eV. Strong polarization-dependent O-K
XAS spectra [18] verify the high sample quality.
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Fig. 7.2 (color online) (a) Experimental Ru-L2,3 XAS spectra of La4Ru2O10 measured
at 220 and 110 K, i.e., above and below Ts = 160 K. (b) Theoretical simulations for the
Ru4+ ion in the S = 1 high-temperature phase at 220 K, S = 1 low-temperature phase
at 110 K, and S = 0. The inset shows O-K spectra measured at 200 and 85 K from
[18].

The top curves of fig. 7.2 depict the Ru-L2,3 XAS spectra of La4Ru2O10
taken at 220 K (solid line) and 110 K (dashed line). The spectral-line
shapes depend strongly on the multiplet structure given by the Ru-4d–
4d and -2p–4d Coulomb and exchange interactions, as well as by the
local CFS and the hybridization with the O 2p ligands. Unique to XAS
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is that the dipole selection rules are very effective in determining which
of the 2p54dn+1 final states can be reached and with what intensity,
starting from a particular 2p64dn initial state (n = 4 for Ru4+) [19–20].
This makes the technique extremely sensitive to the quantum numbers
of the initial state [21–22].

The essence of the Ru-L2,3 XAS spectra in fig. 7.2 is that there is
only a very small change across Ts, suggesting that the local electronic
and spin state of the Ru4+ ion in the high-temperature (HT) and
low-temperature (LT) phases are quite similar. This seems surprising
in view of the fact that we observed considerable modifications in the
O-K XAS spectra in going from 200 K ( solid line) to 85 K (dashed
line) as shown in the inset of fig. 7.2 [18]. Since these O-K spectra are
known to be sensitive to band-structure effects [19], their modifications
are fully consistent with the strong changes in the crystal structure
as seen in neutron diffraction [17], confirming the good quality of our
samples.

To extract quantitative information on the CFS and spin state from
the Ru spectra, we have performed simulations using the successful
configuration-interaction cluster model [19–20, 23]. The calculations
have been carried out for a RuO6 cluster in the proper HT and LT local
coordination using the XTLS 8.3 program [23]. Parameters for the
multipole part of the Coulomb interactions were set standardly at 80%
of the Hartree-Fock values [23], while the monopole parts (Udd, Upd)
were taken from Ca2RuO4 [24–26]. The O 2p–Ru 4d charge-transfer
energy was estimated from LDA calculations (see below), and the O 2p–
Ru 4d transfer integrals and their distance dependence from Harrison’s
relations [27]. The local CFS parameters are to be determined from
the comparison between the simulations and the experimental spectra.

The bottom curves of fig. 7.2 show the simulations for both the HT
and LT phases. We found optimal fits (solid and dashed lines) if the Ru
4d xz orbital is set at about 100–150 meV (HT) and 200–300 meV (LT)
lower in energy than the essentially degenerate (within 50 meV) yz
and xy orbitals [28]. These numbers refer to total energies calculated
including the CFS and covalency but without spin-orbit interaction.
Important is that the cluster calculation indeed finds the S = 1 state
for both the HT and LT phases, which is a direct consequence of the
fact that in both phases the xz orbital is essentially doubly occupied
while the yz and xy are each singly occupied. We also have carried



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

153 153

153 153

127

out calculations for the Ru ion in the artificial S = 0 state by changing
the CFS parameter such that the xz orbital lies above the degenerate
yz and xy orbitals [28]. As shown in fig. 7.2, the simulated spectrum
disagrees with the experiment. So we can rule out that the spin-gap
opening is due to a local spin-state transition [17].

To confirm our XAS-derived conclusions and, more importantly,
to get in-depth understanding of the nature of the spin-gap state
below Ts, we performed systematic LDA and LSDA + U band-structure
calculations [29], by using the full-potential augmented-plane-waves
plus local-orbital method [30]. We took the neutron crystal structure
data at 20 K and 298 K [17]. The muffin-tin sphere radii are chosen
to be 2.8, 2.0, and 1.5 Bohr for La, Ru, and O atoms, respectively.
U = 3 eV and Hund’s rule exchange JH = 0.5 eV (Ueff = 2.5 eV) are
used for Ru 4d electrons, which are common for ruthenates [24–25,
31–32].
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Fig. 7.3 (color online) LDA density of states of the Ru 4d orbitals in the
high-temperature (HT, upper panel) and low-temperature (LT, middle and
lower panels) phases. The insets show a close-up of the t2g (xy, xz, and yz)
states in the vicinity of the Fermi level set at 0 eV.
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Figure 7.3 shows the Ru 4d density of states (DOS) calculated using
the LDA for the nonmagnetic (NM) state. The inset shows a close-
up of the t2g levels and a calculation of the first moments supports
the XAS analysis: for both the HT and LT phases, the xz orbital
lies lowest and the splitting ∆′CF between the higher lying yz and xy
orbitals is less than 50 meV. It is the magnitude of this ∆′CF relative
to JH which determines the spin state of the Ru4+ ion. To make a
crude estimate: the SCF = 1 state (xz↑↓yz↑xy↑) carries the Hund’s
stabilization energy of 3JH , whereas the SCF = 0 state (xz↑↓yz↑↓) has
a total stabilization energy of 2JH plus ∆′CF. Assuming that 0.5 eV is
a reasonable estimate for JH , one must expect that a ∆′CF of 0.05 eV is
far from sufficient to obtain the SCF = 0 state. Obviously this is what
the XAS experiments have revealed. Moreover, our LDA calculations
also find that the ferromagnetic (FM) as well as the antiferromagnetic
(AF) solution are more stable than the NM one, giving further support
that the SCF = 0 is unfavorable. This was also found recently by LDA
calculations of Eyert et al. [33].

Table 7.1 LSDA + U results for the total energy (per formula unit and relative
to the lowest solution) and band gap in the low-temperature phase of La4Ru2O10,
calculated for the nonmagnetic (NM), ferromagnetic (FM), and three types of
antiferromagnetic (AF) solutions. The exchange constants are found to be Jx =
1.5 meV, Jy = 65.5 meV, and Jz = 4.5 meV.

State Exchange Energy (meV) Gap (eV)

NM · · · 775 · · ·
FM Jx + Jy + 2Jz 152 · · ·
AFxyz −Jx − Jy − 2Jz 0 0.5
AFxy −Jx − Jy + 2Jz 18 0.3
AFyz Jx − Jy − 2Jz 3 0.4

The LDA results as shown in fig. 7.3 predict a metallic state for
both the HT and LT phases, and this is in strong disagreement with
the observed semiconducting behavior with a gap of about 0.3 eV
[17]. One should note, however, that the Fermi level is located in a
narrow Ru t2g band with no more than 1.5 eV width. This signals
that modest electron correlation effects at the Ru sites will already
be able to turn this material into a Mott insulator.We therefore set
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Fig. 7.4 Density of states (DOS) of the La4Ru2O10 in the antiferromagnetic low-
temperature phase calculated using LSDA +U. (a) Total DOS per formula unit, the 4d
states of the two inequivalent Ru4+ ions, and the 2p states of all the ten oxygens; (b)
orbitally resolved 4d states of Ru1 and (c) of Ru2. The solid (dashed) curves denote
the up(down)-spin channels.

out to do LSDA+U calculations for the LT phase and found that a
band gap of about 0.5 eV is indeed opened in the Ru t2g band as can
be seen from fig. 7.4(a). Within the LSDA+U mean-field approach,
the lowest state of this insulator is AF and is labeled as AFxyz in
table 7.1 to indicate the AF alignment with the nearest neighbors
along the x, y, and z directions (fig. 7.1). The Ru4+ spin moment
inside the muffin-tin sphere is about 1.2µB , confirming the XAS result
that the spin state is S = 1 but not S = 0.

It is important to look now at the orbital character of the AFxyz
solution. Figures 7.4(b) and 7.4(c) show the orbitally resolved DOS
of the AF aligned Ru1 and Ru2 ions. One can clearly see for each of
the ions that the xy and yz orbitals (with the spins parallel) are singly
occupied while the xz are doubly occupied. This double occupation
is due to the Ru–O bonds being elongated along the x direction, see
fig. 7.1. We thus find an orbital ordered state which is different from
the originally proposed doubly occupied xy and xz (S = 0) state [17].

As a result, the half-filled xy and yz orbitals are magnetically act-
ive. To explain the formation of the spin gap in the LT phase, it is
crucial to identify the relevant exchange interactions in this system.
We therefore have calculated other magnetic configurations: the FM
and two more types of AF solutions, namely AFxy and AFyz. The
2×La4Ru2O10 unit cell is used for all solutions, except for AFyz where
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the 4× La4Ru2O10 unit cell is taken with the doubling along the b dir-
ection (see fig. 7.1).We also studied the NM solution, and confirmed
that this is much higher in energy than the AFxyz, by 775 meV per
formula unit (table 7.1). The NM solution is metallic, the FM half-
metallic, and all AF insulating. The Ru4+ spin moment is 1.2± 0.1µB
for all magnetic solutions.

The relative energies of the different magnetic states allow us to
estimate the exchange constants Jx, Jy, and Jz along the x, y, and z
directions (fig. 7.1), respectively. With the FM being 130–150 meV
higher in energy than the AF solutions, we thus have very large AF
exchange interactions in this system. As listed in table 7.1, we find
Jx = 1.5 meV, Jy = 65.5 meV, and Jz = 4.5 meV. The significant
anisotropy is related to the fact that both the xy and yz orbitals
contribute to the exchange coupling along the y direction having the
short Ru–O–Ru distance, while only the xy or yz orbital contributes to
the x or z direction, respectively, having the long Ru–O–Ru distance.
Hence we can consider the LT phase of La4Ru2O10 as practically
consisting of strongly coupled Ru–Ru dimers with weak interdimer
coupling, or at most as two-leg ladders with Jrung = Jy = 65.5 meV
and Jleg = Jz = 4.5 meV, with weak interladder coupling of 1.5 meV.
Those rather well isolated Ru–Ru dimers or rungs will have the singlet
ground state [34]. This explains naturally the appearance of a spin
gap in the LT phase, which, according to our calculations, should be
about 60 meV, in reasonable agreement with the measured value of
40 meV [17]. The dimer character of the spin gap seems also to agree
with the results of the single-crystal neutron scattering [35].

To summarize, XAS measurements revealed that the Ru4+ ions in
La4Ru2O10 remain in the S = 1 spin state across the structural phase
transition and spin-gap formation. LSDA+U calculations provided
support for this finding and identified the distinct orbital ordering
accompanying the structural transition. Crucial is that with LSDA + U
we were able to estimate the intersite antiferromagnetic exchange
interactions and found them to be highly anisotropic. This brought us
to the conclusion that the spin-gap opening is due to the formation
of Ru–Ru singlet dimers. Such a transition is rather unusual since
La4Ru2O10 is a two-dimensional S = 1 system; it is largely driven by
orbital ordering which amplifies the importance of orbital physics in
correlated systems.



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

157 157

157 157

131

1 References

[1] M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator trans-
itions, Review of Modern Physics 70, 1039 (1998). DOI: 10
.1103/RevModPhys.70.1039.

[2] Y. Tokura and N. Nagaosa, Orbital physics in transition-metal
oxides, Science 288, 462 (2000). DOI: 10.1126/science.288
.5465.462.

[3] A. P. Ramirez, Colossal magnetoresistance, Journal of Physics:
Condensed Matter 9, 8171 (1997). DOI: 10.1088/0953-8984/9
/39/005.

[4] D. I. Khomskii and G. A. Sawatzky, Interplay between spin,
charge and orbital degrees of freedom in magnetic oxides, Solid
State Communications 102, 87 (1997). DOI: 10.1016/S0038
-1098(96)00717-X.

[5] T. Mizokawa and A. Fujimori, Unrestricted Hartree-Fock study
of transition-metal oxides: Spin and orbital ordering in perovskite-
type lattice, Physical Review B 51, 12880 (1995). DOI: 10.1103
/PhysRevB.51.12880.

[6] T. Mizokawa and A. Fujimori, Electronic structure and orbital
ordering in perovskite-type 3d transition-metal oxides studied by
Hartree-Fock band-structure calculations, Physical Review B 54,
5368 (1996). DOI: 10.1103/PhysRevB.54.5368.

[7] T. Mizokawa and A. Fujimori, Spin, charge, and orbital ordering
in mn perovskite oxides studied by model Hartree-Fock calcula-
tions, Physical Review B 56, R493 (1997). DOI: http://link
.aps.org/abstract/PRB/v56/pR493.

[8] Y. Ren, T. T. M. Palstra, D. I. Khomskii, E. Pellegrin, A. A.
Nugroho, A. A. Menovsky, and G. A. Sawatzky, Temperature-
induced magnetization reversal in a YVO3 single crystal, Nature
(London) 396, 441 (1998). DOI: 10.1038/24802.

[9] G. R. Blake, T. T. M. Palstra, Y. Ren, A. A. Nugroho, and
A. A. Menovsky, Transition between orbital orderings in YVO3,
Physical Review Letters 87, 245501 (2001). DOI: 10.1103
/PhysRevLett.87.245501.

http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1126/science.288.5465.462
http://dx.doi.org/10.1088/0953-8984/9/39/005
http://dx.doi.org/10.1088/0953-8984/9/39/005
http://dx.doi.org/10.1088/0953-8984/9/39/005
http://dx.doi.org/10.1088/0953-8984/9/39/005
http://dx.doi.org/10.1088/0953-8984/9/39/005
http://dx.doi.org/10.1088/0953-8984/9/39/005
http://dx.doi.org/10.1088/0953-8984/9/39/005
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1016/S0038-1098(96)00717-X
http://dx.doi.org/10.1103/PhysRevB.51.12880
http://dx.doi.org/10.1103/PhysRevB.51.12880
http://dx.doi.org/10.1103/PhysRevB.51.12880
http://dx.doi.org/10.1103/PhysRevB.51.12880
http://dx.doi.org/10.1103/PhysRevB.51.12880
http://dx.doi.org/10.1103/PhysRevB.54.5368
http://dx.doi.org/10.1103/PhysRevB.54.5368
http://dx.doi.org/10.1103/PhysRevB.54.5368
http://dx.doi.org/10.1103/PhysRevB.54.5368
http://dx.doi.org/10.1103/PhysRevB.54.5368
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/http://link.aps.org/abstract/PRB/v56/pR493
http://dx.doi.org/10.1038/24802
http://dx.doi.org/10.1038/24802
http://dx.doi.org/10.1038/24802
http://dx.doi.org/10.1103/PhysRevLett.87.245501
http://dx.doi.org/10.1103/PhysRevLett.87.245501
http://dx.doi.org/10.1103/PhysRevLett.87.245501
http://dx.doi.org/10.1103/PhysRevLett.87.245501
http://dx.doi.org/10.1103/PhysRevLett.87.245501


1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

158 158

158 158

Chapter 7:

132

[10] C. Ulrich, G. Khaliullin, J. Sirker, M. Reehuis, M. Ohl, S. Miy-
asaka, Y. Tokura, and B. Keimer, Magnetic neutron scattering
study of YVO3: Evidence for an orbital peierls state, Physical
Review Letters 91, 257202 (2003). DOI: 10.1103/PhysRevLett
.91.257202.

[11] J.-H. Park, L. H. Tjeng, A. Tanaka, J. W. Allen, C. T. Chen, P.
Metcalf, J. M. Honig, F. M. F. de Groot, and G. A. Sawatzky,
Spin and orbital occupation and phase transitions in V2O3,
Physical Review B 61, 11506 (2000). DOI: 10.1103/PhysRevB
.61.11506.

[12] M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Strelt-
sov, M. A. Korotin, V. I. Anisimov, H. H. Hsieh, H.-J. Lin, C. T.
Chen, D. I. Khomskii, and L. H. Tjeng, Orbital-assisted metal-
insulator transition in VO2, Physical Review Letters 95, 196404
(2005). DOI: 10.1103/PhysRevLett.95.196404.

[13] M. Isobe, E. Ninomiya, A. N. Vasil’ev, and Y. Ueda, Novel
phase transition in spin-1/2 linear chain systems: NaTiSi2O6
and LiTiSi2O6, Journal of the Physical Society of Japan 71,
1423 (2002). DOI: 10.1143/JPSJ.71.1423.

[14] P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H.
Chen, R. M. Ibberson, Y. Koyama, Y.-S. Hor, V. Kiryukhin, and
S.-W. Cheong, Formation of isomorphic Ir3+ and Ir4+ octamers
and spin dimerization in the spinel CuIr2S4, Nature (London)
416, 155 (2002). DOI: 10.1038/416155a.

[15] M. Schmidt, W. R. II, P. G. Radaelli, K. Refson, N. M. Harrison,
and S. W. Cheong, Spin singlet formation in MgTi2O4: Evid-
ence of a helical dimerization pattern, Physical Review Letters
92, 056402 (2004). DOI: 10.1103/PhysRevLett.92.056402.

[16] D. I. Khomskii and T. Mizokawa, Orbitally induced peierls state
in spinels, Physical Review Letters 94, 156402 (2005). DOI:
10.1103/PhysRevLett.94.156402.

[17] P. Khalifah, R. Osborn, Q. Huang, H. W. Zandbergen, R. Jin,
Y. Liu, D. Mandrus, and R. J. Cava, Orbital ordering transition
in La4Ru2O10, Science 297, 2237 (2002). DOI: 10.1126/science
.1075556.

[18] J. D. Denlinger (to be published).

http://dx.doi.org/10.1103/PhysRevLett.91.257202
http://dx.doi.org/10.1103/PhysRevLett.91.257202
http://dx.doi.org/10.1103/PhysRevLett.91.257202
http://dx.doi.org/10.1103/PhysRevLett.91.257202
http://dx.doi.org/10.1103/PhysRevLett.91.257202
http://dx.doi.org/10.1103/PhysRevB.61.11506
http://dx.doi.org/10.1103/PhysRevB.61.11506
http://dx.doi.org/10.1103/PhysRevB.61.11506
http://dx.doi.org/10.1103/PhysRevB.61.11506
http://dx.doi.org/10.1103/PhysRevB.61.11506
http://dx.doi.org/10.1103/PhysRevLett.95.196404
http://dx.doi.org/10.1103/PhysRevLett.95.196404
http://dx.doi.org/10.1103/PhysRevLett.95.196404
http://dx.doi.org/10.1103/PhysRevLett.95.196404
http://dx.doi.org/10.1103/PhysRevLett.95.196404
http://dx.doi.org/10.1143/JPSJ.71.1423
http://dx.doi.org/10.1143/JPSJ.71.1423
http://dx.doi.org/10.1143/JPSJ.71.1423
http://dx.doi.org/10.1143/JPSJ.71.1423
http://dx.doi.org/10.1143/JPSJ.71.1423
http://dx.doi.org/10.1038/416155a
http://dx.doi.org/10.1038/416155a
http://dx.doi.org/10.1038/416155a
http://dx.doi.org/10.1103/PhysRevLett.92.056402
http://dx.doi.org/10.1103/PhysRevLett.92.056402
http://dx.doi.org/10.1103/PhysRevLett.92.056402
http://dx.doi.org/10.1103/PhysRevLett.92.056402
http://dx.doi.org/10.1103/PhysRevLett.92.056402
http://dx.doi.org/10.1103/PhysRevLett.94.156402
http://dx.doi.org/10.1103/PhysRevLett.94.156402
http://dx.doi.org/10.1103/PhysRevLett.94.156402
http://dx.doi.org/10.1103/PhysRevLett.94.156402
http://dx.doi.org/10.1103/PhysRevLett.94.156402
http://dx.doi.org/10.1126/science.1075556
http://dx.doi.org/10.1126/science.1075556
http://dx.doi.org/10.1126/science.1075556
http://dx.doi.org/10.1126/science.1075556


1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

159 159

159 159

133

[19] F. M. F. de Groot, X-ray absorption and dichroism of transition
metals and their compounds, Journal of Electron Spectroscopy
and Related Phenomena 67, 529 (1994). DOI: 10.1016/0368
-2048(93)02041-J.

[20] See the “Theo Thole Memorial Issue”, Journal of Electron Spec-
troscopy and Related Phenomena 86, 1 (1997). DOI: 10.1016
/S0368-2048(97)00039-X.

[21] Z. Hu, H. von Lips, M. S. Golden, J. Fink, G. Kaindl, F. M. F. de
Groot, S. Ebbinghaus, and A. Reller, Multiplet effects in the Ru-
L2,3 x-ray-absorption spectra of Ru(IV) and Ru(V) compounds,
Physical Review B 61, 5262 (2000). DOI: 10.1103/PhysRevB
.61.5262.

[22] Z. Hu, H. Wu, M. W. Haverkort, H. H. Hsieh, H.-J. Lin, T.
Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T.
Chen, and L. H. Tjeng, Different look at the spin state of Co3+

ions in a CoO5 pyramidal coordination, Physical Review Letters
92, 207402 (2004). DOI: 10.1103/PhysRevLett.92.207402.

[23] A. Tanaka and T. Jo, Resonant 3d, 3p and 3s photoemission
in transition metal oxides predicted at 2p threshold, Journal of
the Physical Society of Japan 63, 2788 (1994). DOI: 10.1143
/JPSJ.63.2788.

[24] T. Mizokawa, L. H. Tjeng, G. A. Sawatzky, G. Ghiringhelli,
O. Tjernberg, N. B. Brookes, H. Fukazawa, S. Nakatsuji, and
Y. Maeno, Spin-orbit coupling in the Mott insulator Ca2RuO4,
Physical Review Letters 87, 077202 (2001). DOI: 10.1103
/PhysRevLett.87.077202.

[25] T. Mizokawa, L. H. Tjeng, H.-J. Lin, C. T. Chen, S. Schuppler,
S. Nakatsuji, H. Fukazawa, and Y. Maeno, Orbital state and
metal-insulator transition in Ca2−xSrxRuO4 (x = 0.0 and 0.09)
studied by x-ray absorption spectroscopy, Physical Review B 69,
132410 (2004). DOI: 10.1103/PhysRevB.69.132410.

[26] Both La4Ru2O10 and Ca2RuO4 are two dimensional and have
almost the same octahedral 〈Ru4+–O〉 bond lengths and similar
t2g bandwidths of about 1.5 eV.

[27] W. A. Harrison, Electronic Structure and the Properties of
Solids: The Physics of the Chemical Bond. (Dover, New York,
1989). ISBN: 0486660214.

http://dx.doi.org/10.1016/0368-2048(93)02041-J
http://dx.doi.org/10.1016/0368-2048(93)02041-J
http://dx.doi.org/10.1016/0368-2048(93)02041-J
http://dx.doi.org/10.1016/0368-2048(93)02041-J
http://dx.doi.org/10.1016/0368-2048(93)02041-J
http://dx.doi.org/10.1016/0368-2048(93)02041-J
http://dx.doi.org/10.1016/0368-2048(93)02041-J
http://dx.doi.org/10.1016/S0368-2048(97)00039-X
http://dx.doi.org/10.1016/S0368-2048(97)00039-X
http://dx.doi.org/10.1016/S0368-2048(97)00039-X
http://dx.doi.org/10.1016/S0368-2048(97)00039-X
http://dx.doi.org/10.1016/S0368-2048(97)00039-X
http://dx.doi.org/10.1016/S0368-2048(97)00039-X
http://dx.doi.org/10.1016/S0368-2048(97)00039-X
http://dx.doi.org/10.1103/PhysRevB.61.5262
http://dx.doi.org/10.1103/PhysRevB.61.5262
http://dx.doi.org/10.1103/PhysRevB.61.5262
http://dx.doi.org/10.1103/PhysRevB.61.5262
http://dx.doi.org/10.1103/PhysRevB.61.5262
http://dx.doi.org/10.1103/PhysRevLett.92.207402
http://dx.doi.org/10.1103/PhysRevLett.92.207402
http://dx.doi.org/10.1103/PhysRevLett.92.207402
http://dx.doi.org/10.1103/PhysRevLett.92.207402
http://dx.doi.org/10.1103/PhysRevLett.92.207402
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1143/JPSJ.63.2788
http://dx.doi.org/10.1103/PhysRevLett.87.077202
http://dx.doi.org/10.1103/PhysRevLett.87.077202
http://dx.doi.org/10.1103/PhysRevLett.87.077202
http://dx.doi.org/10.1103/PhysRevLett.87.077202
http://dx.doi.org/10.1103/PhysRevLett.87.077202
http://dx.doi.org/10.1103/PhysRevB.69.132410
http://dx.doi.org/10.1103/PhysRevB.69.132410
http://dx.doi.org/10.1103/PhysRevB.69.132410
http://dx.doi.org/10.1103/PhysRevB.69.132410
http://dx.doi.org/10.1103/PhysRevB.69.132410
http://www.worldcat.org/search?q=kw:0486660214


1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

160 160

160 160

Chapter 7:

134

[28] Parameters for RuO6 cluster [eV]: Udd = 3.0, Ucd = 2.0, ∆ =
2.0, pdσ = −2.1 for 2.01 Å, 10Dq = 1.9, Dt = 0.04, Du = 0.04,
Dv = 0.00, ζ = 60% of Hartree-Fock value; Ds = −0.03 (S = 1,
HT), −0.06 (S = 1, LT), +0.90 (S = 0, LT).

[29] V. I. Anisimov, I. V. Solovyev, M. A. Korotin, M. T. Czyżyk,
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8 Ca2–xSrxRuO4

The measurements and calculations have been performed together with Zhiwei
Hu. The experiments have been done at NSRRC in collaboration with T. T. Tran
and T. Mizokawa and with support of Hui-Huang Hsieh (Chung Cheng Institute
of Technology, National Defense University), Ling-Yun Jang (NSRRC), and Keng
S. Liang (NSRRC), and at BESSY with Frank Schäfers and Marcel Mertin. The
samples were prepared by Satoru Nakatsuji and Yoshiteru Maeno. The results
were discussed with Maurits W. Haverkort and L. Hao Tjeng. The spectra were
calculated using the xtls program of Arata Tanaka.

The class of Ca2–xSrxRuO4 systems shows a rich phase diagram [1–
8]. The most prominent member is the Sr2RuO4, which becomes

superconducting at 0.93 K [9–10]. Sr2RuO4 contains of layers of octa-
hedra and its structure (space group I4/mmm) closely resembles the
original high-Tc superconductors; it is probably a triplet paired super-
conductor [9–10] and the pairing mechanism is believed to be at least
partially of magnetic origin [11–16]. The other end member of this
series is the antiferromagnetic Mott insulator Ca2RuO4 [3–5, 7, 17–19].

As fig. 8.1 shows, the I4/mmm structure retains for x = 2 down
to x = 1.5. Then the unit cell is doubled with space group I41/acd;
going from x = 1.5 to x = 0.5 the octahedra rotate about the c axis
up to 12.8◦ for x = 0.5; while the compounds remain paramagnetic
metals in this region, there is a critical enhancement of susceptibility
towards x = 0.5 [5]. For x < 0.5 the octahedra start to tilt (T phase).
For 0.2 < x < 0.5 Ca2–xSrxRuO4 exhibits metamagnetic and near
x = 0.5 even an almost ferromagnetic state [1, 5, 20–21]. For x < 0.2
the tilts are ordered into the spacegroup Pbca with a maximal tilt at
low temperature near 12◦. Ca2–xSrxRuO4 is metallic for x > 0.2 and
for high temperatures. For x < 0.2 an insulating phase appears; the
associated metal-insulator transition-temperature rises for smaller x,
reaching TMI = 260 K for x = 0. At low temperatures the insulating
phase is antiferromagnetic. Note that Sr has only a larger ionic radius
as Ca but the same valence.
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Fig. 8.1 (color online) Phase diagram of Ca2–xSrxRuO4, including the different struc-
tural and magnetic phases; the only nonmetallic phase is the antiferromagnetic S-Pbca.
The L- and S-Pbca denote, respectively, elongated and compressed octahedra. Figure
taken from Steffens [22]; the phase diagram has been taken from Fried et al. [1]. (Reprinted
with permission. Copyright 2001 by the American Physical Society.)

8.1 Ca2RuO4

In Ca2RuO4 the ruthenium ion is tetravalent (4d4) and due to the
large t2g–eg crystal-field splitting, all four electrons are in the t2g
subshell; the spin state is thus S = 1. At low temperature (11 K), the
octahedra is flat (compressed) with an in-plane Ru–O distances of 2.02
Å and an out-of-plane (apical) distance of 1.97 Å. When increasing
the temperature the apical/in-plane distance ratio changes gradually;
at room temperature the octahedron is almost regular (1.99 Å) while
for 400 K it is elongated (in plane 1.95 Å, apical 2.04 Å) [3–4]. This
structural change is associated with magnetic and electronic changes.
Below the Néel temperature of TN ≈ 110 K the calcium ruthenate
is an antiferromagnetic insulator with magnetization in b direction
[4]; between 110 K and 360 K it is a paramagnetic insulator. It
then undergoes a metal-insulator transition to become a paramagnetic
metal for temperatures above 360 K. Ca4RuO4 has an optical gap of
Egap = 0.5 eV [23], which is ten times as big as one naïvely expects
from the metal-insulator temperature, i.e. Egap ≈ kBTMIT. This is
simliar to V2O3, VO2, and Ti2O3, where the gap is also one order
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of magnetude larger than kBTMIT [24–25]. There the metal-insulator
transition is accompanied by dramatic changes of the spin and orbital
structure, which one can therefore also expect for Ca2RuO4. In the
Hubbard model, it depends on the ratio between electron repulsion U
and band width W whether a material is a Mott insulator or a metal.
However, the effective U and W depend in turn strongly on the spin
and orbital structure.

8.1.1 Orbital occupation

The temperature-dependent structural changes are accompanied by
large changes in the orbital occupation. These changes have indeed be
found in a x-ray absorption study at the oxygen K edge of Ca2RuO4
[26–27]. However, extracting the orbital occupation of the Ru 4d from
the O-K edge is a rather indirect method and there are discussions in
literature about these numbers and their accuracy [26–28].

We therefore performed XAS measurements at the Ru-L2,3 edge.
These were done at the Taiwan NSRRC 15B beam line, equipped with
a double-Si(111)-crystal monochromator, delivering photons from 2
keV and up. Additionally, we performed a temperature-dependence
measurement at the KMC-1 beamline at BESSY. The spectra were
recorded using the total-electron-yield method in a chamber with a
base pressure in the low 10−10 mbar range. Clean sample areas were
obtained by cleaving the crystals in situ. The photon-energy resolution
at the Ru-L2,3 edges (hν ≈ 2.9 keV) was set at 0.6 eV.

Figure 8.2 shows the Ru-L2,3 spectra measured with the electric
field E polarized perpendicular to the c axis (dashed curve) and almost
parallel to the c axis9 (solid curve). The difference between the two
directions, the linear dichroism, reduces going from 78 K to 300 K
and then reverses for 380 K. At 78 K the octahedra are flat, therefore
one expects that the xy is occupied and lower in energy than the yz
and zx orbitals. If one looks at the first peak (A) at both L3 and
L2 edge, one sees that the E||c one is higher and thus contains more

The sample surface is perpendicular to the c axis (easy cleavage plane as calcium ruthen-9

ate is layered). In order to measures E||c, the x-rays hit the sample at grazing incidence
(70◦); for consistency, the same angle is used for E ⊥ c. To do so, the sample is mounted
on a wedge. As the intensity is proportional to cos2, the measurement has an error of
about cos2 20◦ ≈ 10 %.



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

164 164

164 164

Chapter 8: Ca2–xSrxRuO4

138

holes as expected. (The first peak (A) can be associated with the t2g
orbitals and the second, larger peak (B) with the eg orbitals; note that
the presence multiplets, a mixing of states due to spin-orbit coupling,
and ligand hybridization reduce the simplicity of the analysis.) For
room temperature (295 K) the octahedra are almost regular, which can
also be seen in the spectra. And for the metallic 380 K the octahedra
are elongated and the E ⊥ c peak is now higher, indicating a hole in
xy. The less pronounced peak can be attributed to the less localized
electrons in the metallic state.
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295 K

380 K
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Energy (eV)

Ru-L2
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Fig. 8.2 (color online) Ru-L2,3 XAS spectra of Ca2RuO4 taken with the
electric field parallel (solid curve) and perpendicular (dashed curve) to the c
axis in the antiferromagnetic insulating phase at 78 K, in the paramagnetic
insulating phase at 295 K, and in the metallic paramagnetic phase at 380
K.

Besides the detailed spectra in all three phases (antiferromagnetic
insulating, paramagnetic insulating, and paramagnetic metallic), the
temperature dependence of the spectra is useful. The most prominent
change when changing the temperature is the peak (A) of the L3 edge
for light polarized along the c axis (cf. fig. 8.2). We have monitored
the detailed temperature depencence of peak A across the three phases
at BESSY. The result is shown in fig. 8.3, where the curve is given
by the height of the first peak normalized by the height of the second.
One sees a gradual change with a small jump at the Néel temperature,
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and around the metal-insulator transition at 380 K a big jump occurs
and a hysteresis is recognizable. The gradual change below TMIT is
typical for correlated insulators with active-spin orbit coupling [29].

Using resonant x-ray diffraction an additional phase was observed
at 260 K, which has been attributed to orbital ordering [30]. While the
ordering itself cannot be measured in XAS due to the averaging over all
Ru sites, one may expect a change of the orbital occupation and thus in
the XAS spectra upon the appearance of the orbital ordering. However,
in fig. 8.2 the lineshape around 260 K shows no particularities.

The spectra above (figs. 8.2 and 8.3) and the result of previous
O-K edge XAS study [26–27] show dramatic changes of the orbtial
occupation while the changes in the crystal structure are comparably
small. Especially large are the changes in the orbital occupation across
the metal-insulator transition. (See also table 8.1 in the following
section.)
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Fig. 8.3 (color online) Temperature-dependence of the Ru-L3 edge; the
curve shows the ratio of the first peak of the L3 edge divided by the main
peak for light polarized in c direction.

The gradual change of the orbital occupation, visible in the change of
of the ratio curve of fig. 8.3, could indicate that the spin-orbit coupling
in Ca2RuO4 plays a role. If one compares the CI cluster calculation with
and without spin-orbit coupling (see fig. 8.5), one sees that without
spin-orbit coupling the relative intensity of the E ⊥ c spectrum at
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the L3 edge is strongly suppressed and peak (A) at the L2 edge is
enhanced. Only with spin-obrit coupling the experimental spectra
can be reproduced. This result is in line with Mizokawa et al. [26]:
They showed using spin-resolved circularly polarized photoemission
spectroscopy that a substantial orbital angular moment is induced and
estimated 〈

∑
i l
i
x · six〉 ≈ −0.28, which is comparable to the value of

CoO where an orbital moment of about 1µB was found.10 This result
is in line with our configuration-interaction cluster calculations, but in
contrast to DFT calculations which show that for the band structure
the spin-orbit coupling does not seem to play an important role [31].

8.1.2 Calculation

We used configuration-interaction cluster calculations to simulated the
XAS spectra (fig. 8.2); the preliminarly simulated spectra are shown
in fig. 8.4, which match the experimental spectra quite well. (See
Note 32 for the used parameters.) From the calculations, the orbital
occupation numbers can be extracted, see table 8.1; the numbers
match the expectations from the crystal structure.

8.2 Ca1.91Sr0.91RuO4

Upon substitution of calcium by strontium, the metal-insulator trans-
ition temperature decreases quickly whereas the Néel temperature
decreases much slower. For x = 0.09 both transitions occur approxim-
ately simultaneously at T = 155 K. If one compares the XAS spectra of
Ca1.91Sr0.09RuO4 (fig. 8.6) at 78 K with those of Ca2RuO4 (fig. 8.2),
one sees that the spectra lie between the 78 K and 295 K spectra of
Ca2RuO4. And the room-temperature spectrum of x = 0.09 resembles
the 380 K spectrum of Ca2RuO4.

Preliminary results of us show for the metallic Sr2RuO4 similary high values for 〈
∑

i l
i
x ·10

six〉. These spin-resolved measurements where done at ID8 at the ESRF together with
Nicholas Brookes; however, the count rates was rather low and thus the result has a
rather large error bar and is not reliable.
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Fig. 8.4 (color online) Simulated Ru-L2,3 XAS spectra of Ca2RuO4 for
the antiferromagnetic (78 K), paramagnetic insulating (295 K), and the
paramagnetic metallic phase (380 K).
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Fig. 8.5 (color online) Simulated Ru-L2,3 XAS spectra of Ca2RuO4 for the
antiferromagnetic (78 K) phase including and without spin-orbit coupling.

8.3 The effective moment J̃ problem

In Ca2RuO4 the ruthenium ion is formally (i.e. ignoring hybridization)
4+ and is therefore in a 4d4 state. Assuming non-distorted octahedral
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Table 8.1 Hole occupations as determined via configuration-interaction
cluster calculation from the experimental Ru-L2.3 XAS for Ca2RuO4.

Hole occupation xy yz zx
Antiferromagnetic insulating, 78 K 0.34 0.84 0.84
Paramagnetic insulating, 295 K 0.45 0.79 0.79
Paramagnetic metal, 380 K 0.83 0.58 0.59
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Fig. 8.6 (color online) Ru-L2,3 XAS spectra of Ca1.91Sr0.09RuO4 taken
with the electric field parallel (solid curve) and perpendicular (dashed curve)
to the c axis in the antiferromagnetic insulating phase at 78 K and in the
metallic paramagnetic phase at 300 K.

symmetry (Oh, m3m), the states split into the doubly degenerated,
higher-lying eg (Γ3) and the triply degenerated, lower-lying t2g (Γ5)
states. As the crystal-field splitting between the t2g and eg levels is
large in the 4d transition metal Ru, it suffices to only regard to the t2g
subshell. Within the t2g one has the same matrix elements as in the
L = 1 state of p orbitals and thus one can define an effective orbital
moment L̃ by projecting L on the t2g manifold, i.e. 〈L〉t2g = αL̃, where
α depends on the detailed structure of the t2g and is here α = −1
[33].11 The spin-orbit splitting is given by HSO = λ

(
〈L〉t2g · S

)
=

The α = −1 is valid for a t2g (Γ5) triplet originating in a D term and can be understood11

as follows. d1 = −(dzx + idyz)/
√

2. As the px, py , pz transform under O like dyz , dzx,
dxy [33, pp 632ff], one can replace dzx + idyz by py + ipx. It is px = −(p1 − p−1)/

√
2
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αλ(L̃ · S) = λ̃(L̃ · S) [33, pp 832ff]. In our case, we thus have L̃ = 1,
S = 1 and λ̃ = −λ. As the subshell is more than half filled, one
expects J = |L+ S|. However, as the sign of λ̃ is reversed, one needs
to calculate J̃ = |L̃− S| = 0, which means that the ground state is a
singlet and a singlet is nonmagnetic.

This contrasts with an ordered moment of 1.3µB (aligned along the
b axis) as determined by Braden et al. using neutrons [4]. Susceptib-
ility measurements (figs. 8.7 and 8.8) by Cao et al. [34] determined
a Néel temperature TN of 110 K and a relatively low saturation mag-
netization of Msat ≈ 0.4µB/Ru using a magnetic field of up to 30 T
(at 5 K). (For Ru S = 1 one would expect Msat ≈ 2µB/Ru.) Above
TN the susceptibility M/H is “unusual, almost linear with increasing
T” [34]; a Curie-Weiss fit yields an unrealistic effective moment of
about 4µB/Ru – much higher than ≈ 2.8µB/Ru expected for Ru4+

with S = 1. Also according to the magnetisation measurement the
moment lies in the a-b plane. Regarding the susceptibility data, one
should, however, be careful with the interpretation: If a material has
a large magnetocrystalline anisotropy, as in this case, the Curie--Weiss
law gives misleading results (see Chapter 5 and Ref. 35). (Additionally,
as on can see in fig. 8.8 the saturation magnetization can usually not
be reached for antiferromagnets.)

Fig. 8.7 Magnetic sus-
ceptibility along two prin-
cipal directions for single-
crystal Ca2RuO4. The inset
shows the susceptibility of
Sr2RuO4; note the much
smaller susceptibility scale
than for Ca2RuO4. Figure
taken from Cao et al. [34].
Reprinted with permission. Copy-
right 1997 by the American Physical
Society.

and py = i(p1 + p−1)/
√

2 and thus d1
_=−(py + ipx)/

√
2 = −ip−1, i.e. d1 corresponds to

p−1. (Hereby is d1 = Y 1
2 and p1 = Y 1

1 .)
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Fig. 8.8 (a) Magnetization versus applied field along the in-plane direction for two tem-
peratures. The inset shows comparable data for the [110] direction. The break in M vs
H at 3.5 T for T = 105 K is probably a spin reorientation transition. (b) Very high field
M(H) showing a hysteretic metamagnetic transition at about 9 T. The magnetization by
H = 30 T is well below the value (≈ 1.4–1.8µB/Ru) expected for the S = 1 4d4 configur-
ation for Ru4+. Figure taken from Cao et al. [34]. Reprinted with permission. Copyright 1997 by the
American Physical Society.

8.3.1 In octahedral symmetry
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Fig. 8.9 (a) Energy-level diagram showing the splitting of the lowest 9 states in octa-
hedral symmetry with the spin-orbit coupling (SOC) ζ (relative to the Hartree--Fock
value). The nine-fold degenerated state splits into a singlet, triplet and quintet. (b) The
levels are further split using an exchange-field Hex.

In octahedral symmetry without spin-orbit coupling and without any
external magnetic B or internal exchange field Hex, the ground state is
nine-fold degenerated. If the spin-orbit coupling is turned on, the states
split [see fig. 8.9(a)] three states – a singlet ground state and a triplet
and quintet excited state. The degeneracy of the latter states can
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be seen when an exchange field is applied (fig. 8.9(b)). Figure 8.10
depicts the lowest nine isotropic XAS spectra with spin-orbit coupling
but without exchange field; here, the triplet is 99.9 meV higher in
energy than the ground state. This energy difference of about 100 meV
(≈ 1160 K) is rather large compared with e.g. the Néel temperature
of TN = 110 K (≈ 9.5 eV) and while the exchange-field reduces the
energy gap between singlet and triplet, it still remains relatively large.

For the configuration-interaction cluster calculation, the following settings have
been used: ∆CF = 1.6eV, U4d4d = 5eV, U4d2p = 4 eV, ∆ = 0, tpp = 0.7 eV, Slater-
integral reduction to 70% of their Hartree-Fock value, Hybridization Veg = 4.37 eV and
Vt2g = 2.38 eV (115% of Harrison’s rule). Broadening: ΓLorenz = 0.4, ΓGauss: 0.7 at the
L3 and 0.5 at the L2 edge. )
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L2

E1 = 0.00000 eV
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Fig. 8.10 (color online) Calculated lowest nive spectra in octaheral symmetry (∆CF =
1.6 eV) with spin-orbit coupling and without exchange field. One obtains one spectrum
for the singlet, three identical ones for the a triplet, and five identicial a quintet.

8.3.2 In tetragonal symmetry
If one now changes the c/a ratio, the octahedron is in tetragonal
symmetry (D4h, 4mm), the t2g state splits into a doubly degenerated



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

172 172

172 172

Chapter 8: Ca2–xSrxRuO4

146

eg state and as non-degenerate b2g state. Figure 8.11 shows the energy-
level diagram in dependence of the ∆t2g splitting; rather arbitrarily
the ∆eg splitting has been chosen as ∆eg = 3∆t2g. As the calculation
shows, also a tetragonal distrotion does not help to reduce the gap
significantly.

However, already a relative small exchange field is able to generate a
magnetic moment in the singlet ground state as one can see in fig. 8.12
(cf. also Ref. 36); the increase in moment is accompanied by an orbital
occpuation change from 1.68 to 1.77 for xy and a decrease of yz/zx
from 1.22 to 1.18 in going from Hex = 0 to 100 meV, at the same
time the energy distance between the ground-state singlet and the
first excited state increases from 64 to 117 meV. The calculation has
been done in D4h symmetry with the 77 K parameters shown in Note
32. Hereby the exchange-field is a simplistic approach to include the
intersite interaction. The proper way is to take band formation into
account; this can be mimicked by doing multi-site cluster calculations.
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Fig. 8.11 Energy-level diagram depending on the tetragonal dis-
tortion ∆t2g with ∆eg = 3∆t2g and an exchange field of 15 meV.

8.4 Conclusion

We have shown that the ruthenium orbital occupation of Ca2RuO4
changes strongly with temperature, especially across the metal-insulator
transition; large changes could also be observed for Ca1.91Sr0.09RuO4.
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Fig. 8.12 (color online) Spin and orbital
moment, and magnetization |Mz | = 2Sz + Lz of
the ground state in dependence of the exchange
field.

The changes in the orbital (and spin) correlations in turn are respons-
ible for the large gap compared with the comparibly small metal-
insulator transition temperature. The temperature dependence shows
magnetostriction effects, which indicate that spin-orbit coupling is
active. The cluster-calculation is able to nicely reproduce the spectra,
however, the issue that the lowest state in the calculation is a nonmag-
netic singlet state whereas Ca2RuO4 is an antiferromagnet is not fully
solved, even though that through an exchange field the ground state
becomes magnetic. The effects of band formation should be included
and multi-cluster calculation should be done to further investigate
this issue, which might also help to understand the metamagnetism in
Ca2−xSrxRuO4.
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All good things must come to an end. — Proverb

9 Summary

Properties of transition-metal compounds are governed by the
interplay of charge, spin, and orbital degrees of freedom and show

a wealth of intriguing properties. To understand the underlying physics,
the detailed electronic structure needs to be known and understood.
For this thesis, 3d and 4d transition-metal oxides were studied, using
x-ray absorption spectroscopy (XAS) combined with calculations, to
improve their understanding of the valence, spin, and orbital physics.
The following result were obtained.

The valence, spin, and orbital state of the Co ions in the one-
dimensional cobaltate Ca3Co2O6 were investigated using x-ray absorp-
tion and x-ray magnetic circular dichroism at the Co-L2,3 edges. The
Co ions at both the octahedral Cooct and trigonal Cotrig sites are found
to be in a 3+ state. From the analysis of the dichroism we established a
low-spin state for the Cooct and a high-spin state with an anomalously
large orbital moment of 1.7µB at the Co3+

trig ions. This large orbital
moment along the c-axis chain and the unusually large magnetocrys-
talline anisotropy can be traced back to the double occupancy of the
d2 orbital in trigonal crystal field.

Ca3CoRhO6 and Ca3FeRhO6 have the same crystal structure as
Ca3Co2O6; while Ca3CoRhO6 also has ferromagnetic intrachain coup-
ling, Ca3FeRhO6 is antiferromagnetic. Using XAS at the Rh-L2,3,
Co-L2,3, and Fe-L2,3 edges, we find a valence state of Co2+/Rh4+ in
Ca3CoRhO6 and of Fe3+/Rh3+ in Ca3FeRhO6. X-ray magnetic circu-
lar dichroism spectroscopy at the Co-L2,3 edge of Ca3CoRhO6 reveals
a giant orbital moment of about 1.7µB, which can be attributed to
the occupation of the minority-spin d0d2 orbital state of the high-spin
Co2+ (3d7) ions in trigonal prismatic coordination. This active role of
the spin-orbit coupling explains the strong magnetocrystalline aniso-
tropy and Ising-like magnetism of Ca3CoRhO6. Thus as in Ca3Co2O6
the orbital occupation maximizes the orbital moment by only occupy-
ing one of the d2/d−2 orbitals. However, the details are different as
Ca3CoRhO6 has one extra minority spin electron and the stability of
the d0d2 configuration over the d2d−2 is largely increased due to the
electron–electron interaction.
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Another cobaltate, the ferromagnetic LaMn0.5Co0.5O3, was studied:
We found a high-spin Co2+-Mn4+ valence state for samples with the
optimal Curie temperature. We discovered that samples with lower
Curie temperatures contain low-spin nonmagnetic Co3+ ions. Using
soft-x-ray magnetic circular dichroism, we established that the Co2+

and Mn4+ ions are ferromagnetically aligned. We also revealed that the
Co2+ ions have a large orbital moment: morb/mspin ≈ 0.47. Together
with model calculations, this suggests the presence of a large mag-
netocrystalline anisotropy in the material and predicts a nontrivial
temperature dependence for the magnetic susceptibility.

Besides cobaltates, also ruthenates were investigated. For Ca2RuO4
we have shown that the ruthenium orbital occupation changes strongly
with temperature, especially across the metal-insulator transition; large
changes could also be observed for Ca1.91Sr0.09RuO4. The changes in
the orbital (and spin) correlations in turn are responsible for the large
gap compared with the comparibly small metal-insulator transition
temperature. The temperature dependence shows magnetostriction
effects, which indicate that spin-orbit coupling is active. The cluster-
calculation is able to nicely reproduce the spectra, however, there
remains the issue that the lowest state in the calculation is a nonmag-
netic singlet state and only with an exchange field a magnetic moment
is present.

Orbital-occupation changes play also a major role for the properties
of La4Ru2O10. Using x-ray absorption spectroscopy at the Ru-L2,3 edge
we revealed that the Ru4+ ions remain in the S = 1 spin state across
the rare 4d-orbital ordering transition and spin-gap formation. We
identify a distinct orbital ordering with a significant anisotropy of the
antiferromagnetic exchange couplings. We conclude that La4Ru2O10
appears to be a novel material in which the orbital physics drives
the formation of spin-singlet dimers in a quasi-two-dimensional S = 1
system.

The determination of the correct crystal field and the hybridization is
essential for the configuration-interaction cluster calculations and thus
for all the results presented here (cf. Appendix B for the hybridization
calculations).
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Es irrt der Mensch, so lang er strebt.
— Johann Wolfgang von Goethe, 1749–1832

10 Zusammenfassung

Die Ladungs-, Spin- und orbitalen Freiheitsgrade sind verantwort-
lich für den vielfältigen Eigenschaften der Übergangsmetallver-

bindungen. Um die zugrunde liegende Physik zu verstehen, muß die
genaue elektronische Struktur bekannt und verstanden sein. In dieser
Arbeit wurden 3d- und 4d-Übergangsmetalloxide mittels Röntgenab-
sorptionspektroskopie (XAS) und numerischen Rechnungen untersucht,
um deren Ladungs-, Spin- und orbitale Physik besser zu verstehen.
Folgende Ergebnise wurden dabei erzielt.

Valenz-, Spin- und orbitale Zustände der Cobaltionen im eindimen-
sionalen Cobaltat Ca3Co2O6 wurden mittels Röntgenabsorptionspek-
troskopie und magnetischem Röntgenzirkulardichroismus an den Co-
L2,3-Kanten untersucht. Sowohl die Cobaltionen an den trigonalen
(Cotrig) als auch die an den oktahedralen (Cooct) Gitterplätzen haben
eine Oxidationszahl von 3+. Durch Analyse des Dichroismus wurde
ein niedriger Spinzustand für das Cooct und ein hoher Spinzustand für
Cotrig bestimmt, wobei letzteres Ion ein ungewöhnlich großes orbitales
Moment von 1,7µB aufweist. Dieses ist entlang der c-Achse orientiert
und zeigt ein ungewöhnlich große magnetische Kristallanisotropie; dies
kann auf die doppelte Besetzung der d2-Orbitale im trigonalen Feld
zurückgeführt werden.

Ca3CoRhO6 und Ca3FeRhO6 besitzen dieselbe Kristallstruktur wie
Ca3Co2O6, wobei ersteres ebenfalls eine ferromagnetische Kopplung ent-
lang der Cobaltkette zeigt wohingegen Ca3FeRhO6 ein Antiferromagnet
ist. Mittels XAS an den Rh-L2,3-, Co-L2,3- und Fe-L2,3-Kanten konnte
die Valenzzustände Co2+/Rh4+ für Ca3CoRhO6 bzw. Fe3+/Rh3+ für
Ca3FeRhO6 bestimmt werden. Die Zirkulardichroismus-Messungen
an den Co-L2,3-Kanten ergeben ein riesiges orbitales Moment von
1,7µB , welches zurückführbar ist auf die doppelte Besetzung der d0d−2
Minoritätsspin-Orbitale des trigonalen Co2+ (3d7), welches im Hoch-
spinzustand ist. Die aktive Rolle des Spin-Bahnkopplung erklärt die
starke magnetische Kristallanisotropie und den Isingartigen Magnetis-
mus in Ca3CoRhO6. Somit wird wie in Ca3Co2O6 das orbitale Moment
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durch die orbitale Besetzung maximiert, wobei Ca3CoRhO6 ein zusätz-
liches Minoritätsspin-Elektron besitzt und durch die Elektron-Elektron-
Wechselwirkung die Stabilität des d0d2 stark erhöht gegenüber einer
d2d−2 Besetzung ist.

Als weiteres Cobaltat wurde das ferromagnetische LaMn0.5Co0.5O3
untersucht; hierbei wurde für Proben mit optimaler Curie-Temperatur
ein hoher Co Spinzustand mit Co2+-Mn4+ gefunden. Es zeigte sich,
daß Proben mit niedriger Curie-Temperatur nichtmagnetische Co3+
im niedrigen Spinzustand enhielten. Mittels magnetischem Zirkulardich-
roismus wurde festgestellt, daß die Co2+ und Mn2+ ferromagnetisch
ausgerichtet sind. Weiterhin zeigte sich, daß die Co+3-Ionen ein gro-
ßes orbitales Moment besitzen, da morb/mspin ≈ 0.47. Zusammen mit
Modellrechnungen weist dies auf eine große magnetische Kristallaniso-
tropie hin und auf eine nicht triviale Temperaraturabhängigkeit der
magnetischen Suszeptibilität.

Neben den Cobaltverbindungen wurden auch Ruthenate untersucht.
Für Ca2RuO4 zeigte es sich, daß eine starke Temperaturabhängigkeit
der orbitalen Besetzung der Rutheniumionen, insbesondere beim Metall-
Isolatorübergang; ähnlich große Änderungen wurden bei Ca1.91Sr0.09RuO4
gefunden. Die Änderungen in den orbitalen (und Spin)korrelationen
sind ihrerseits für die im Vergleich zur Metall-Isolator-Übergangstem-
peratur große Bandlücke verantwortlich. Die Temperaturabhängigkeit
zeigt Magnetostriktionseffekte, die auf eine aktive Spin-Bahnwechselwir-
kung hindeuten. Die Klusterrechnungen12 reproduzieren die Spektren
gut, allerdings bleibt als Problem, daß der Grundzustand ein nicht
magnetisches Singulet ist und nur mittels des Austauschfeldes ein
magnetisches Moment vorhanden ist.

Orbitale Besetzungsänderungen spielen auch eine große Rolle bei
den Eigenschaften von La4Ru2O10. Mittels Röntgenabsorptionsspektro-
pie an der Ru-L2,3-Kante konnte gezeigt werden, daß die Ru4+-Ionen
während des seltenen 4d-orbitalen Ordnungsübergangs mit Spinlücken-
formation im S = 1-Zustand bleiben, wobei wir eine ausgeprägte orbi-
tale Ordnung mit beträchtlicher Anisotropie der antiferromagnetischen
Austauschkopplung feststellen konnten. Somit scheint La4Ru2O10 ein
neuartiges Material zu sein, in dem die orbitale Physik zur Bildung von

Das Wort Kluster, verwandt mit dem englischen „Cluster“ und mit Klunt und Klump,12

gibt es tatsächlich im Norddeutschen und ist in den Wörterbüchern von Adelung,
Grimm, Mensing und Mackensen nachgewiesen. Beispiel: Ein Kluster Heidelbeeren.



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

183 183

183 183

157

Spinsingulet-Dimeren in einem quasi zweidimensionalen S = 1-System
führt.

Die Bestimmung des richtigen Kristallfeld- und Hybridisierungspara-
meter ist essentiel für die Konfigurationsinteractions-Klusterrechnungen
und somit für die in dieser Arbeit gezeigten Ergebnisse (vgl. Anhang B
zur Bestimmung der Hybridisierungsparameter).
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Mathematics is an experimental science, and definitions
do not come first, but later on.

— Oliver Heaviside, 1850–1925

A Spherical harmonics

Spherical harmonics (sometimes also called surface harmonics)
play a major role in quantum mechanics. In this chapter we first

introduce the Legendre polynomials, then we show some properties
of spherical harmonics and list the lowest ones explicitly. Thereafter,
linear combinations yielding real functions are given.

A.1 Legendre polynomials

Legendre polynomials,13 also known as Legendre functions of the first
kind, Legendre coefficients or zonal harmonics, are solutions to the
Legendre differential equation, namely

(1− x2) d2y

dx2 − 2xdy
dx + n(n+ 1)y = 0 (A.1)

or rewritten
d

dx

(
(1− x2) dy

dx

)
+ n(n+ 1) = 0. (A.2)

The Legendre polynomial Pn(z) can be defined as contour integral,

Pn(z) = 1
2πi

∮
(1− 2tz)−1/2 + t−n−1 dt. (A.3)

The Rodrigues representation provides the formula

Pn(z) = 1
2nn!

dn(z2 − 1)n

dzn . (A.4)

The Legendre polynomials satisfy the orthonormality relation∫ 1

−1
Pn(z)Pm(z) dz = 2δnm

2n+ 1 . (A.5)

See also (Bronstěın, 2003, Arfken, 1985, Weisstein, 2006a and Abramowitz, 1984).13
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The Legendre differential equation can be enhanced to give the associ-
ated Legendre differential equation, namely

d
dx

(
(1− x2) dy

dx

)
+
(
l(l + 1)− m2

1− x2

)
y = 0 (A.6)

or rewritten

(1− x2) d2y

dx2 − 2xdy
dx +

(
l(l + 1)− m2

1− x2

)
y = 0. (A.7)

The solutions Pml (x) are called associated Legendre polynomials for
integer l and associated Legendre functions of the first kind for non-
integer l. The complete solution is y = C1P

m
l (x) + C2Q

m
l (x) where

Qml (x) is a Legendre function of the second kind.
We are only interested in the associated Legendre polynomials, which

are given for l being a positive integer and m = 0, 1, 2, . . . as

Pml (x) = (−1)m(1−x2)m/2 dm

dxmPl(x) = (−1)m

2ll!
(1−x2)2/m dl+m

dxl+m
(x2−1)l.
(A.8)

For negative m, the associated Legendre polynomials are defined by

P−ml (x) = (−1)m (l −m)!
(l +m)!P

m
l (x), (A.9)

note, however, that some authors omit the Condon-Shortley phase
(−1)m. The associated Legendre polynomials also fulfil an orthonor-
mality relation.

A.2 Spherical harmonics

The spherical harmonics are the angular portion of the solution to
Laplace’s equation in spherical coordinates where azimuthal symmetry
is not present.14 Spherical harmonics satisfy the spherical harmonic
differential equation, which is given by the angular part of Laplace’s
equation in spherical coordinates.

The spherical harmonic is defined as

See (Weisstein, 2006b) and citations given in previous footnote.14
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Y ml (θ, φ) :=

√
2l + 1

4π
(l −m)!
(l +m)!P

m
l (cos θ)eimφ, (A.10)

where θ is the polar coordinate with θ ∈ [0, π] and φ is the azimuthal
(longitudinal) coordinate with φ ∈ [0, 2π]. Spherical harmonics fulfil
the orthonormality relation; i.e.∫
Y ml (θ, φ)Y m

′

l′ (θ, φ) dΩ =
∫ 2π

0

∫ π

0
Y ml (θ, φ)Y m

′

l′ (θ, φ) sin θ dθdφ = δll′δmm′ ,

(A.11)

where Y denotes the complex conjugated. Spherical harmonics obey

Y −ll (θ, φ) = 1
2ll!

sinl θ e−ilφ,

Y 0
l (θ, φ) =

√
2l + 1

4π Pl(cos θ),

Y −ml (θ, φ) = (−1)mY ml (θ, φ).

Integrals of the spherical harmonics are given by∫ 2π

0

∫ π

0
Y m1
l1

(θ, φ)Y m2
l2

(θ, φ)Y m3
l3

(θ, φ) sin θ dθ dφ

=
√

(2l1 + 1)(2l2 + 1)(2l3 + 1)
4π

(
l1 l2 l3

0 0 0

)(
l1 l2 l3

m1 m2 m3

)
,

where
(
l1 l2 l3
m1 m2 m3

)
is a Wigner 3j symbol.

A.3 Explicit values for spherical harmonics

We list in the following some explicit functions for the lowest spherical
harmonics.

Y 0
0

1
2
√
π

Y 0
1

1
2

√
3
π cos θ



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

188 188

188 188

Appendix A: Spherical harmonics

162

Y ±1
1 ∓ 1

2

√
3

2π sin θe±iφ

Y 0
2

1
4

√
5
π (3 cos2 θ − 1)

Y ±1
2 ∓ 1

2

√
15
2π cos θ sin θe±iφ

Y ±2
2

1
4

√
15
2π sin2 θe±2iφ

Y 0
3

1
4

√
7
π (5 cos3 θ − 3 cos θ)

Y ±1
3 ∓ 1

8

√
21
π (5 cos2 θ − 1) sin θe±iφ

Y ±2
3

1
4

√
105
2π cos θ sin2 θe±2iφ

Y ±3
3 ∓ 1

8

√
35
π sin3 θe±3iφ

Y 0
4

3
16
√
π

(35 cos4 θ − 30 cos2 θ + 3)

Y ±1
4 ∓ 3

8

√
5
π cos θ sin θ (7 cos2 θ + 3)e±iφ

Y ±2
4

3
8

√
5

2π sin2 θ (7 cos θ − 1)e±2iφ

Y ±3
4 ∓ 3

8

√
35
π cos θ sin3 θ e±3iφ

Y ±4
4

3
16

√
35
2π sin4 θ e±4iφ

In Cartesian coordinates we have

e±imφ =
(

x± iy√
x2 + y2

)m
,

θ = sin−1

√ x2 + y2

x2 + y2 + z2


= cos−1

(
z√

x2 + y2 + z2

)
and hence

Y 0
0

1
2

1√
π

Y 0
1

1
2

√
3
π

z√
x2+y2+z2
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Y ±1
1 ∓ 1

2

√
3

2π
x±iy√

x2+y2+z2

Y 0
2

1
4

√
5
π

(
3z2

x2+y2+z2 − 1
)

Y ±1
2 ∓ 1

2

√
15
2π

z(x±iy)
x2+y2+z2

Y ±2
2

1
4

√
15
2π

(x±iy)2

x2+y2+z2

Y 0
3

1
4

√
7
π

z√
x2+y2+z2

( 5z2

x2+y2+z2 − 3)

Y ±1
3 ∓ 1

8

√
21
π

(
5z2

x2+y2+z2 − 1
)

x±iy√
x2+y2+z2

Y ±2
3

1
4

√
105
2π

z(x±iy)2

(x2+y2+z2)3/2

Y ±3
3 ∓ 1

8

√
35
π

(x±iy)3

(x2+y2+z2)3/2

Y 0
4

3
16
√
π

(
35z4

(x2+y2+z2)2 − 30z2

x2+y2+z2 + 3
)

Y ±1
4 ∓ 3

8

√
5
π

z(x±iy)
x2+y2+z2

(
7z2

x2+y2+z2 + 3
)

Y ±2
4

3
8

√
5

2π
(x±iy)2

x2+y2+z2

(
7z

x2+y2+z2 − 1
)

Y ±3
4 ∓ 3

8

√
35
π

z(x±iy)3

(x2+y2+z2)2

Y ±4
4

3
16

√
35
2π

(x±iy)4

(x2+y2+z2)2

Note that
√
x2 + y2 + z2 = r.

A.4 Real combinations of spherical harmonics

More convenient that the complex spherical harmonics are the following
linear combinations which are real functions; additionally, they form a
good basis in octahedral point symmetry.

s Y 0
0

1
2

1√
π

1
2

1√
π

pz Y 0
1

1
2

√
3
π cos θ 1

2

√
3
π
z
r

px − 1√
2 (Y 1

1 − Y −1
1 ) 1

2

√
3
π sin θ cosφ 1

2

√
3
π
x
r

py
i√
2 (Y 1

1 + Y −1
1 ) 1

2

√
3
π sin θ sinφ 1

2

√
3
π
y
r
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d3z2−r2 Y 0
2

1
4

√
5
π (3 cos2 θ − 1) 1

4

√
5
π

3z2−r2

r2

dzx − 1√
2 (Y 1

2 − Y −1
2 ) 1

2

√
15
π sin 2θ cosφ 1

2

√
15
π
zx
r2

dyz
i√
2 (Y 1

2 + Y −1
2 ) 1

2

√
15
π sin 2θ sinφ 1

2

√
15
π
yz
r2

dxy − i√
2 (Y 2

2 − Y −2
2 ) 1

4

√
15
π sin2 θ sin 2φ 1

4

√
15
π
xy
r2

dx2−y2
1√
2 (Y 2

2 + Y −2
2 ) 1

4

√
15
π sin2 θ cos 2φ 1

4

√
15
π
x2−y2

r2

f5z3−3zr2 Y 0
3

1
4

√
7

2π (5 cos3 θ − 3 cos θ) 1
4

√
7
π

5z3−3zr2

r3

f5xz2−xr2 − 1√
2 (Y 1

3 − Y −1
3 ) 1

16

√
21
2π (5 sin 3θ + sin θ) cosφ 1

4

√
21
2π

5xz2−xr2

r3

f5yz2−yr2
i√
2 (Y 1

3 + Y −1
3 ) 1

8

√
21
2π (5 cos 2θ + 3) sin θ sinφ 1

4

√
21
2π

5yz2−yr2

r3

fxyz
−i√

2 (Y 2
3 − Y −2

3 ) 1
4

√
105
π cos θ sin2 θ sin 2φ 1

8

√
105
π

xyz
r3

f(x2−y2)z
1√
2 (Y 2

3 + Y −2
3 ) 1

4

√
105
π cos θ sin2 θ cos 2φ 1

4

√
105
π

(x2−y2)z
r3

fx3−3xy2
−1√

2 (Y 3
3 − Y −3

3 ) 1
4

√
35
2π sin3 θ cos 3φ

√
35
2π

x3−3xy2

r3

fy3−3x2y
i√
2 (Y 3

3 + Y −3
3 ) 1

4

√
35
2π sin3 θ sin 3φ

√
35
2π

y3−x2y
r3
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Fig. A.1 Real combinations of spherical-harmonics (part one).
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Fig. A.2 Real combinations of spherical-harmonics (part two).
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The theoretical oriented scientist cannot be envied, because
nature, i.e. the experiment, is a relentless and not very
friendly judge of his work. In the best case scenario it
only says “maybe” to a theory, but never “yes” and in
most cases “no”. If an experiment agrees with theory it
means “perhaps” for the latter. If it does not agree it
means “no”. Almost any theory will experience a “no”
at one point in time – most theories very soon after they
have been developed. — Albert Einstein, 1879–1955

B Hybridization

As written in Chapter 3, the hybridization of the transition-metal
d states with the surrounding ions (the ligands) is in some cases

quite important. In this section we construct the hybridization Hamilto-
nians explicitly for different symmetries. Note that on the author’s
homepage the Fortran program hybrid is available, which does the
following calculations numerically for any symmetry and which also
produces the coefficients to be used with Tanaka’s xtls program [1].

The total Hamiltonian consists of the static Coulomb field of all the
ions in the crystal at the site of the transition-metal ion of interest, and
of the hopping between the transition-metal ion and ligands plus of
the oxygen–oxygen hybridization; one obtains in total a Hamiltonian
as follows:

H :=
(

ionic crystal field of TM TM–ligand hybridization
ligand–TM hybridization ligand–ligand hybridization

)
.

=
(
H1,1 H1,2

H2,1 H2,2

)
(B.1)

At H1,1 one has the ionic crystal field; if one only takes the d electrons
into account – as we will do in this chapter –, one usually makes H1,1
tracefree (i.e. the mean energy of the d orbitals is zero). In octa-
hedral (also called cubic; Schönflies: Oh; Hermann-Mauguin: m3m)
symmetry15 the ionic part has the following form16

For point groups, see e.g. http://www.phys.ncl.ac.uk/staff/njpg/symmetry/. See also15

Section 3.3.1.
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HOh
1,1 :=



dxy dyz dzx dx2−y2 d3z2−r2

dxy −4Dq 0 0 0 0
dyz 0 −4Dq 0 0 0
dzx 0 0 −4Dq 0 0
dx2−y2 0 0 0 6Dq 0
d3z2−r2 0 0 0 0 6Dq

,
(B.2)

where 10Dq = ∆3,5 is the splitting between the t2g (Γ5) and eg (Γ3)
states. The H2,2 describes the ligand (i.e. the oxygens), consisting of
the energy offset compared to the transition metal (i.e. trH1,1), the
charge transfer energy ∆, and the hybridization between oxygen atoms
(Vppσ, Vppπ).

To determine the transition-metal–ligand hybridization we use the
equations by J. C. Slater and G. F. Koster [2]; see also in the book of
Harrison [3] and for f and g orbitals in the article by Sharma [4]. These
contain the Slater--Koster parameters Vpdσ and Vpdπ, which can be
either approximated using W. A. Harrison’s rules [3]or, more reliably,
come out of tight-binding fits to ab-inito band-structure calculations.
The Slater–Koster equations are based on direction cosins. We choose
the transition–metal ion as origin and use the vector (lx̂,mŷ, nẑ),
where x̂, ŷ and ẑ are unit vectors, we can reach any ligand; note that
equations assume that l2 +m2 + n2 = 1.

B.1 Octahedral symmetry

We are now ready to to do an actual calculation. We use the following
labelling: first oxygen OI is at (l = −1,m = 0, n = 0), second at (1, 0, 0)
etc. (see Fig. B.1 for the complete set). For px–dxy hybridization one
finds Ex,xy =

√
3l2mVpdσ+m(1−2l2)Vpdπ (see Ref. 2 and Section B.6).

Thus only for ligands III and IV we obtain a nonvanishing energy,
namely EIII

x,xy = −Vpdπ and EIV
x,xy = Vpdπ. To obtain Ey,yz and Ez,zx

one simply permutes Ex,xy, i.e. (x, l) → (y,m) → (z, n) → (x, l) etc.
For the other equations, see Slater--Koster’s article [2] or Section B.6.

We have choose the following order: xy, yz, zx, x2 − y2 and 3z2 − r2. In the literature16

one finds also yz, zx, xy, x2−y2 and 3z2−r2, and other permutations as there is unfor-
tunately no unique natural order; this makes quick comparing of different publications
difficult. Fortunately, the final result is independent of this choise.
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x

z y
TM OIIOI

OVI

OV

OIII

OIV

Fig. B.1 Used coordinate system. TM denotes the
transition-metal ion, the O the surrounding ligands.

Continuing this tedious work, we get the following matrix

HOh
1,2 = (HOh

2,1 )†

=



dxy dyz dzx dx2−y2 d3z2−r2

OI: px 0 0 0 − 1
2
√

3Vpdσ 1
2Vpdσ

OI: py −Vpdπ 0 0 0 0
OI: pz 0 0 −Vpdπ 0 0
OII: px 0 0 0 1

2
√

3Vpdσ − 1
2Vpdσ

OII: py Vpdπ 0 0 0 0
OII: pz 0 0 Vpdπ 0 0
OIII: px −Vpdπ 0 0 0 0
OIII: py 0 0 0 1

2
√

3Vpdσ 1
2Vpdσ

OIII: pz 0 −Vpdπ 0 0 0
OIV: px Vpdπ 0 0 0 0
OIV: py 0 0 0 − 1

2
√

3Vpdσ − 1
2Vpdσ

OIV: pz 0 Vpdπ 0 0 0
OV: px 0 0 −Vpdπ 0 0
OV: py 0 −Vpdπ 0 0 0
OV: pz 0 0 0 0 −Vpdσ
OVI: px 0 0 Vpdπ 0 0
OVI: py 0 Vpdπ 0 0 0
OVI: pz 0 0 0 0 Vpdσ



.



1 .95 .9 .85 .8 .75 .7 .6 .5 .4 .3 .2 .1 0

198 198

198 198

Appendix B: Hybridization

172

Next, we would like to split the 5× 18 matrix H1,2 into a 5× 5 matrix
of binding orbitals and a 13×5 nonbinding null space. This we do with
a unitary transformation U , which leaves H1,1 invariant but transforms
H1,2 = H†2,1 (and inevitably H2,2); in addition, U should make the
5× 5 matrix as diagonal as possible. For the transition-metal–ligand
hybridization part of the matrix H̃ = U†HU , we obtain

H̃2,1 = H̃†1,2

=



dxy dyz dzx dx2−y2 d3z2−r2

Ldxy 2Vpdπ 0 0 0 0
Ldyz 0 2Vpdπ 0 0 0
Ldzx 0 2Vpdπ 0 0
Ldx2−y2 0 0 0 −

√
3Vpdσ 0

Ld3z2−r2 0 0 0 0 −
√

3Vpdσ

,

where Vpdσ < 0 is the distance-dependent σ-binding and Vpdπ the
π-binding hybridization. One sees immediately that in octahedral
symmetry the eg (Γ3) orbital are purly σ bound whereas the t2g (Γ5)
are π bound. Using the vectors |dxy〉 = |Ldxy〉 = (1, 0, 0, 0, 0) etc., one
can write this as the known

Vxy := 〈dxy|H1,2|dxy〉 = 2Vpdπ,
Vyz := 〈dyz|H1,2|dyz〉 = 2Vpdπ,
Vzy := 〈dzx|H1,2|dzx〉 = 2Vpdπ,

Vx2−y2 := 〈dx2−y2 |H1,2|dx2−y2〉 = −
√

3Vpdσ,

V3z2−r2 := 〈d3z2−r2 |H1,2|d3z2−r2〉 = −
√

3Vpdσ. (B.3)

B.2 Tetragonal and orthorhombic symmetry
Fortunately, it is trivial to modify the matrix H1,2 for tetragonal (D4h;
4mm) and orthorhombic (D2h; mmm) point symmetry. We start with
the orthorhombic symmetry. Here, we need to replace the universal
Vpdσ by Vpdσ,x, Vpdσ,y and Vpdσ,z as the bond lengths are different in
the x, y and z direction; analogously for Vpdπ. The new H1,2 has now
the following form
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HD2h
1,2 = (HD2h

2,1 )†

=



dxy dyz dzx dx2−y2 d3z2−r2

OI: px 0 0 0 − 1
2
√

3Vpdσ,x 1
2Vpdσ,x

OI: py −Vpdπ,x 0 0 0 0
OI: pz 0 0 −Vpdπ,x 0 0
OII: px 0 0 0 1

2
√

3Vpdσ,x − 1
2Vpdσ,x

OII: py Vpdπ,x 0 0 0 0
OII: pz 0 0 Vpdπ,x 0 0
OIII: px −Vpdπ,y 0 0 0 0
OIII: py 0 0 0 1

2
√

3Vpdσ,y 1
2Vpdσ,y

OIII: pz 0 −Vpdπ,y 0 0 0
OIV: px Vpdπ,y 0 0 0 0
OIV: py 0 0 0 − 1

2
√

3Vpdσ,y − 1
2Vpdσ,y

OIV: pz 0 Vpdπ,y 0 0 0
OV: px 0 0 −Vpdπ,z 0 0
OV: py 0 −Vpdπ,z 0 0 0
OV: pz 0 0 0 0 −Vpdσ,z
OVI: px 0 0 Vpdπ,z 0 0
OVI: py 0 Vpdπ,z 0 0 0
OVI: pz 0 0 0 0 Vpdσ,z



.

After a lengthier calculation (or few seconds of Mathematica crunching)
one obtains

Vxy =
√

2(V 2
pdπ,x + V 2

pdπ,y),

Vyz =
√

2(V 2
pdπ,y + V 2

pdπ,z),

Vzy =
√

2(V 2
pdπ,z + V 2

pdπ,x),

Vx2−y2 =
√

3
2(V 2

pdσ,x + V 2
pdσ,y)
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V3z2−r2 =
√

2

 V 2
pdσ,z√

V 2
pdσ,z + V 2

pdσ,xV
2
pdσ,y/(V 2

pdσ,x + V 2
pdσ,y)

(B.4)

+
V 2
pdσ,xV

2
pdσ,y√

(V 2
pdσ,x + V 2

pdσ,y)[V 2
pdσ,yV

2
pdσ,z + V 2

pdσ,x(V 2
pdσ,yV

2
pdσ,z)]

 ,

plus a mixing term

〈Ldx2−y2 |H̃|d3z2−r2〉 =
−V 2

pdσ,x + V 2
pdσ,y√

2(V 2
pdσ,x + V 2

pdσ,y)
.

Note that while H is hermitian, H1,2 = H†2,1 are triangular matrices
due to the particular choice of finding the bonding and antibonding
ligand orbitals (QR decomposition and finding the null space via single-
value decomposition [5]); in order to have a symmetric H1,2 matrix,
which is needed when using the equations in Section B.5, one needs to
use of a rotation matrix R with

R2,2 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cosφ sinφ
0 0 0 − sinφ cosφ

 , (B.5)

R1,1 being a identity matrix and R1,2 = R2,1 a null matrix.
For tetragonal symmetry (D4h) the mixing term vanishes, and Vxy

and Vx2−y2 simplify to their octahedral form. The complicated V 2
3z2−r2

term simplifies to

V3z2−r2 =
2V 2

pdσ,z√
2V 2

pdσ,z + V 2
pdσ,x/y

+
V 4
pdσ,x/y√

V 6
pdσ,x/y + 2V 4

pdσ,x/yV
2
pdσ,z

.

(B.6)

If all Vpdσ and Vpdπ are equal, one obtains as expected the result for
an octahedral field as derived above.
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B.3 Trigonal symmetry

We now have a look at trigonal (D3d, 3m) symmetry. (For hexagonal
symmetry, D3h or 6m2, see next section.) Here, we have to start
constructing a completely new matrix. We place again the transition-
metal ion at the origin. The absolute value of z component of the
vector to the ligands be c and the component in the x-y plane be a. We
require as usual that the distances between transition-metal ion and
each ligand is one, i.e. 1 = a2 + c2. For the first ligand (see Fig. B.2)
we obtain in-plane 1

2
√

3 = cos 30◦ = x/a and 1
2 = sin 30◦ = y/a, where

30◦ is half of the triangular angle 180◦/3 = 60◦. Contrary to octahedral
or tetrahedral symmetry, there is no natural choice for the coordinates.
In the following, the following coordinates are used:

OI :
(
−
√

3
2 a,

1
2a, − c

)
,

OII :
(
−
√

3
2 a, − 1

2a, c
)
,

OIII :
(√3

2 a,
1
2a, − c

)
,

OIV :
(√3

2 a, − 1
2a, c

)
,

OV :
(

0, − a, − c
)
,

OVI :
(

0, a, c
)
.

Fig. B.2 Trigonal symmetry (D3d, 3m) – used coordinate system
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As the equations are too long to print them in a matrix, we now
write them down ligand by ligand. We start with the fifth and sixth
ligand as there the equations are easier; we have (l,m, n) = (0,∓a,∓c),
respectively, and thus

V V/VI
x,xy = ∓aVpdπ

V V/VI
x,yz = 0

V V/VI
x,zx = ∓cVpdπ

V
V/VI
x,x2−y2 = 0

V
V/VI
x,3z2−r2 = 0

V V/VI
y,xy = 0

V V/VI
y,yz =

√
3a2(∓c)Vpdσ ∓ c(1− 2a2)Vpdπ

V V/VI
y,zx = 0

V
V/VI
y,x2−y2 = 1

2
√

3(∓a)(−a2)Vpdσ ± a(1− a2)Vpdπ

V
V/VI
y,3z2−r2 = ∓a(c2 − 1

2a
2)Vpdσ ∓ ac2Vpdπ

V V/VI
z,xy = 0

V V/VI
z,yz =

√
3c2(∓a)Vpdσ ∓ a(1− 2n2)Vpdπ

V V/VI
z,zx = 0

V
V/VI
z,x2−y2 = 1

2
√

3(∓c)(−a2)Vpdσ ± c(−a2)Vpdπ

V
V/VI
z,3z2−r2 = ∓c(c2 − 1

2a
2)Vpdσ +

√
3(∓c)a2Vpdπ

We now continue with the first and second atom, i.e. (l,m, n) =
(− 1

2
√

3a,± 1
2a,∓c), respectively, and therefore
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V I,II
x,xy =

√
3(3

4a
2)(±1

2a)Vpdσ + (±1
2a)[1− 2(3

4a
2)]Vpdπ

V I,II
x,yz =

√
3(−
√

3
2 a)(±1

2a)(∓c)Vpdσ − 2(−
√

3
2 a)(±1

2a)(∓c)Vpdπ

V I,II
x,zx =

√
3(3

4a
2)(∓c)Vpdσ ∓ c[1− 2(3

4a
2)]Vpdπ

V I,II
x,x2−y2 = 1

2
√

3(−
√

3
2 a)(3

4a
2 − 1

4a
2)Vpdσ + (−

√
3

2 a)(1− 3
4a

2 + 1
4a

2)Vpdπ

V I,II
x,3z2−r2 = (−

√
3

2 a)[c2 − 1
2(3

4a
2 − 1

4a
2)]Vpdσ −

√
3(−
√

3
2 a)c2Vpdπ

V I,II
y,xy =

√
3(1

4a
2)(−

√
3

2 a)Vpdσ + (−
√

3
2 a)[1− 2(1

4)a2]Vpdπ

V I,II
x,yz =

√
3(1

4a
2)(∓c)Vpdσ ∓ c[1− 2(1

4a
2)]Vpdπ

V I,II
y,zx =

√
3(±1

2a)(−
√

3
2 a)(∓c)Vpdσ − 2(−

√
3

2 a)(∓1
2a)(∓c)Vpdπ

V I,II
y,x2−y2 = 1

2
√

3(∓1
2a)(3

4a
2 − 1

4a
2)Vpdσ ±

1
2a(1 + 3

4a
2 − 1

4a
2)Vpdπ

V I,II
y,3z2−r2 = ∓1

2a[c2 − 1
2(3

4a
2 + 1

2a
2)]Vpdσ +

√
3(∓1

2a)c2Vpdπ

V I,II
z,xy =

√
3(−
√

3
2 a)(∓1

2a)(∓c)Vpdσ − 2(−
√

3
2 a)(∓1

2a)(∓c)Vpdπ

V I,II
z,yz =

√
3c2(∓1

2a)Vpdσ ∓
1
2a(1− 2c2)Vpdπ

V I,II
z,zx =

√
3c2(−

√
3

2 a)Vpdσ −
√

3
2 a(1− 2c2)Vpdπ

V I,II
z,x2−y2 = 1

2
√

3(∓c)(3
4a

2 − 1
4a

2)Vpdσ ± c(
3
4a

2 − 1
4a

2)Vpdπ

V I,II
z,3z2−r2 = ∓c[c2 − 1

2(3
4a

2 − 1
4a

2)]Vpdσ +
√

3(∓c)(3
4a

2 − 1
4a

2)Vpdπ

The same procedure has to be done for the third and fourth atom.
Unfortunately, the resulting matrix was to complex to be solved analyt-
ically. Please use the hybrid program to calculate the hybridization
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and make sure that the resulting Hamiltonian is compatible with your
ionic Hamiltonian (compare the used matrix elements and their sign).

B.4 Hexagonal symmetry

For hexagonal (D3h, 6m2) symmetry the procedure is alike; this sym-
metry is equation wise very similar to trigonal symmetry, except
tat we have here a horizontal mirror plane whereas D3d had a diag-
onal/dihedral reflection plane. Please use also for this symmetry the
hybrid program.

B.5 In a spherical harmonic basis

The Hamiltonian can be expanded in spherical harmonics (see Refs.
6 and 7, and Chapter 3); the crystalline electric field (CEF) is given
by VCEF =

∑
i Zie

2/|Ri − r |, where Zi is the valence state and Ri

the coordinate of the i-th anion, and r denotes the position of the d
electrons of the transition-metal ion of interest. The CEF coefficients
are then given by

Aml = 〈ψ|VCEF|ψ〉 (B.7)

with Ψn,l,m = Rn,l(r)Y ml (θ, φ). We can now expanded the potential
in spherical harmonics,

VCEF =
∑
i

Ze2

Ri

∞∑
l=0

l∑
m=−l

4π
2l + 1

(
r

Ri

)l
Y ml (θi, φi)Y ml ∗ (θi, φi).

(B.8)

Using 〈rl〉 =
∫∞

0 rk|R3d|2 r2 dr, Cml = 4π/(2l + 1)Y ml , and Bml =
(2l+ 1)/4π Aml 〈r〉 (cf. Section 3.2), the potentialfor d orbitals is given
by

V (r) = B0
0 C

0
0 +

2∑
µ=−2

Bµ2 C
µ
2 +

4∑
µ=−4

Bµ4 C
m
4 . (B.9)

The coefficients Bml can be obtained from a Hamiltonian in a basis
of real d obitals ({dxy, dzx, . . .}) using the following equations [8].
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B0
0 = 1

5(Vx2−y2 + Vxy + Vzx + Vyz + V3z2−r2)

B0
2 = 1

2(−2Vx2−y2 − 2Vxy + Vzx + Vyz + 2V3z2−r2)

B1
2 = 1

2[
√

6(iVxy,zx − Vxy,yz − Vzx,x2−y2 − iVyz,x2−y12 + iVyz,3z2−r2)

−
√

2Vzx,z2−r2 ]

B2
2 = 1

4[4
√

2(iVxy,3z2−r2 − Vx2−y2,3z2−r2) +
√

6[Vzx − Vyz − 2iVyz,zx]]

B0
4 = 3

10(Vx2−y2 + Vxy − 4Vzx − 4yz + 6V3z2−r2)

B1
4 = 3

10
√

5(−iVxy,zx + Vxy,yz + Vzx,x2−y2

− 2
√

3Vzx,3z2−r2 + iVyz,x2−y2 + 2i
√

3Vyz,3z2−r2)

B2
4 = 3

10
√

10(
√

3Vx2−y2,3z2−r2 − i
√

3Vxy,z2 + Vzx − Vyz − 2iVyz,zx)

B3
4 = 3

10
√

35(iVxy,zx + Vxy,yz − Vzx,x2−y2 + iVyz,x2−y2)

B4
4 = 3

20
√

70(Vx2−y2 − Vxy − 2iVxy,x2−y2),

where the not shown coefficients can be obtained via the relation
B−ml = (−1)m(Bml )∗.

These expansion applies to both the ionic crystal field and to the tran-
stion metal–ligand hybridization. For the latter, the author’s hybrid
program can be used, which numerically obtains these parameters for
any symmetry. The expansion parameters are then used as input for
the configuration-interaction cluster calculation (e.g. Tanaka’s xtls
program).

B.6 Two-center integrals by Slater and Koster

In this small section we only list the Slater-Koster integrals two-center
approximation as published by Slater and Koster [2], which can also be
found in Harrison’s book [3]; a general formula and a table for f and
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g orbitals can be found in Sharma’s article [4]. The vector between
two ions is (lx̂,mŷ, nẑ), where x̂, ŷ and ẑ are unit vectors; note that
equations assume that l2 + m2 + n2 = 1. Using cyclic permutations,
(x, l)→ (y,m)→ (z, n), the missing integrals can be created.

Es,s = Vssσ

Es,x = lVspσ
Ex,x = l2Vppσ + (1− l2)Vppπ
Ex,y = lmVppσ − lmVppπ
Ex,z = lnVppσ − lnVppπ
Es,xy =

√
3lmVsdσ

Es,x2−y2 = 1
2
√

3(l2 −m2)Vsdσ
Es,3z2−r2 = [n2 − 1

2 (l2 +m2)]vsdσ
Ex,xy =

√
3l2mVpdσ +m(1− 2l2)Vpdπ

Ex,yz =
√

3lmnVpdσ − 2lmnVpdπ
Ex,zx =

√
3l2nVpdσ + n(1− 2l2)Vpdπ

Ex,x2−y2 = 1
2
√

3l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ
Ey,x2−y2 = 1

2
√

3m(l2 −m2)Vpdσ −m(1 + l2 −m2)Vpdπ
Ez,x2−y2 = 1

2
√

3n(l2 −m2)Vpdσ − n(l2 −m2)Vpdπ
Ex,3z2−r2 = l[n2 − 1

2 (l2 +m2)]Vpdσ −
√

3ln2Vpdπ
Ey,3z2−r2 = m[n2 − 1

2 (l2 +m2)]Vpdσ −
√

3mn2Vpdπ
Ez,3z2−r2 = n[n2 − 1

2 (l2 +m2)]Vpdσ +
√

3n(l2 +m2)Vpdπ
Exy,xy = 3l2m2Vddσ + (l2 +m2 − 4l2m2)Vddπ

+(n2 + l2m2)Vddδ
Exy,yz = 3lm2nVddσ + ln(1− 4m2)Vddπ

+ln(m2 − 1)Vddδ
Exy,zx = 3l2mnVddσ +mn(1− 4l2)Vddπ

+mn(l2 − 1)Vddδ
Exy,x2−y2 = 3

2 lm(l2 −m2)Vddσ + 2lm(m2 − l2)Vddπ
+ 1

2 lm(l2 −m2)Vddδ
Eyz,x2−y2 = 3

2mn(l2 −m2)Vddσ −mn[1 + 2(l2 −m2)]Vddπ
+mn[1 + 1

2 (l2 −m2)]Vddδ
Ezx,x2−y2 = 3

2nl(l
2 −m2)Vddσ + nl[1− 2(l2 −m2)]Vddπ

−nl[1− 1
2 (l2 −m2)]Vddδ

Exy,3z2−r2 =
√

3lm[n2 − 1
2 (l2 +m2)]Vddσ − 2

√
3lmn2Vddπ
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+ 1
2
√

3lm(1 + n2)Vddδ
Eyz,3z2−r2 =

√
3mn[n2 − 1

2 (l2 +m2)]Vddσ
+
√

3mn(l2 +m2 − n2)Vddπ
− 1

2
√

3mn(l2 +m2)Vddδ
Ezx,3z2−r2 =

√
3ln[n2 − 1

2 (l2 +m2)]Vddσ
+
√

3ln(l2 +m2 − n2)Vddπ
− 1

2
√

3ln(l2 +m2)Vddδ
Ex2−y2,x2−y2 = 3

4 (l2 −m2)2Vddσ + [l2 +m2 − (l2 −m2)2]Vddπ
+[n2 + 1

4 (l2 −m2)2]Vddδ
Ex2−y2,3z2−r2 = 1

2
√

3(l2 −m2)[n2 − 1
2 (l2 +m2)]Vddσ

+
√

3n2(m2 − l2)Vddπ
+ 1

4
√

3(1 + n2)(l2 −m2)Vddδ
E3z2−r2,3z2−r2 = [n2 − 1

2 (l2 +m2)]2Vddσ + 3n2(l2 +m2)Vddπ
+ 3

4 (l2 +m2)2Vddδ
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If your experiment needs statistics, you ought to have
done a better experiment.

— Ernest Rutherford, 1871–1937

C Energy conversion

Several units exists in which energy can be expressed. The SI
unit is Joule (J), but for our purpose the SI accepted energy

unit electron volt (eV) gives better manageable numbers. They are
related by E[J] = eE[eV], where the elementary charge is given by
e = 1.602 176 53(14) × 10−19J. (Constants taken from Ref. 1.) In
atomic units, many equations loose their constants and thus atomic
units are often preferred; their energy unit is Hartree (Eh, htr, Htr),
1Eh = 2Ryd = 27.211 3845(23)eV = 1 e2/4πε0a0, where Ryd denotes
the unit Rydberg (1Ryd = R∞hc).

Analogously, the following units can be regarded as energy after
multiplication by a constant. For the temperature T this is done via
the Boltzmann constant E = kBT , kB = 8.617 343(15)× 10−5eV K−1,
whereas the Bohr magneton µB = 5.788 381 804(39) × 10−5eV T−1 is
used for the magnetic field B. The frequency ν (in Hz), wavelength λ
(in m) and wavenumber λ−1 (in inverse m) are related to the energy
via the Planck constant h = 4.135 667 43(35)× 10−15eV s as E = hν =
hc/λ = hcλ−1.

Thus 1eV = 11 604K = 17275T = 8065.54cm−1 = 1.23µm =
241.79THz = 36.749mHtr = 73.498mRyd.
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Whatever Nature has in store for mankind, unpleasant
as it may be, men must accept, for ignorance is never
better than knowledge. — Enrico Fermi, 1901–1954

D Magnetization and susceptibility

The magnetization M of a material in response to an applied magnetic
field H is given by M = χH , where the proportionality factor χ is the
magnetic volume susceptibility (also written as χm or χv). Both M and
H are measured in units of amperes per metre and thus χ is unitless.
The magnetization is also often given in units of Bohr magneton (µB =
e~/2me) per volume. The magnetic induction or magnetic flux density
B, measured in Tesla, is given by B = µ0(H + M ) = µ0(1 + χ)H =
µ0µrH = µH , where µ is the magnetic permeability; the magnetic
constant µ0 = 4π × 10−7N · A−2 is the permeability of the vacuum.
Materials are classified by their susceptibility as paramagnetic if χ > 0
(field is strengthened by the material) and as diamagnetic if −1 ≤ χ < 0
(field is weakened); in the superconducting state χ = −1 (perfect
diamagnet).

The susceptibility is given by the tensor

χij = Mi

Hj
(D.1)

and is frequency dependent; throughout the whole thesis only the diag-
onal in a non-oscillating (DC) field is considered. For a paramagnetic
material the magnetization is given in a simplified model (Curie’s law)
as M = CB/T where T is the absolute temperature in kelvins and C is
the material specific Curie constant. This can be enhanced to describe
the behaviour of a ferro- or antiferromagnet above the, respectively,
Curie or Néel temperature by replacing T by T − Θ where Θ is the
Curie--Weiss temperature; Θ is vanishing for a paramagnet, negative
for an antiferromagnet and positive for a ferromagnet.

The starting point for Curie’s Law is a set of identical ions with
angular moment J (see, e.g., Ashcroft/Mermin [1]) which gives for the
magnetization of N ions in volume V

M = −N
V

dF
dH = N

V
g(J, L, S)µBJBJ

(
JH

kBT
g(HLS)µB

)
, (D.2)
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where F is the free energy, g the Landé g factor

g = 3
2 + 1

2
S(S + 1)− L(L+ 1)

J(J + 1) (D.3)

and the Brillouin function BJ is given by

BJ(x) = 2J + 1
2J coth

(
2J + 1

2J x

)
− 1

2J coth
(

1
2J x

)
= J + 1

3J x+O(x3); (D.4)

in the last step, BJ(x) has been expanded for small x. In the low-field,
high-temperature limit, i.e. g(J, L, S)µBH � kBT , the small-x limit
of Brillouin function can be used and the susceptibility simplifies to
the following form of Curie’s Law

χ = N

V

(gµB)2

3
J(J + 1)
kBT

= N

V

p2µ2
B

3kBT
= N

V

µ2
eff

3kBT
, (D.5)

where we have defined in the last two terms the effective Bohr magneton
number p and the effective moment µeff . Replacing – as above – the
T by T − Θ extends this equation to ferro- and antiferromagnets.
Note, however, that there are several cases where using Eq. (D.5) gives
misleading (‘wrong’) results as can be seen in fig. 5.9 of Chapter 5.

If one has calculated, e.g. using configuration-interaction cluster
calculation, the expectation values 〈Ŝz〉 = ~Sz and 〈L̂z〉 = ~Lz (or
alternatively L̂x/Ŝy or . . . ), the magnetization is given by

Mz(T ) = −
∑
i

fi(T )(L(i)
z + 2S(i)

z )µB/V (D.6)

where the sum runs over the all states and fi is the Boltzmann distri-
bution

fi(T ) = 1
Z

e−Ei/kBT , Z =
∑
i

e−Ei/kBT (D.7)

and Z is called partition sum. To compare this number with lit-
erature, we convert it to emu per mole (EMU = electromagnetic
unit), where throughout this thesis emu ≡ cm−3 is used. In the cgs
system (centimetre-gauss-second), the field H has the unit Oersted
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(Oe = s
√

g/cm), the magnetic induction B the unit Gauss (G =
s
√

g/cm) with 1T = 104G, µ0 = 1; thus the magnetization has the
unit emu ·G/cm3. Consequently, the susceptibility χv is given in units
emu ·G/cm3Oe = 1. Often the magnetization is given per mass: the
magnetization is then given in m3/kg (SI) or emu/g (cgs); or it is given
per molar mass as m3/mol (SI) respectively emu/mol (cgs). Therefore,
in order to obtain the magnetization in emu per mole (or emu Gauss
per mole and Oersted) one has to calculate

χ = M

H
=
−
∑
i fi(T )(L(i)

z + 2S(i)
z )µB

HTesla

NA
10 , (D.8)

with the Avogadro number NA = 6.022 141 79(30) × 1023mol−1 and
Bohr magneton µB = 927.400 915(23) × 10−26J T−1; the 1

10 comes
from the Tesla to Gauss conversion. If you happen to have a magnetic
field in electronvolt, you need to divide it by Bohr magneton µB =
5.788 381 7555(79) × 10−5eV T−1 (1/µB ≈ 17.276T/meV) to obtain
Tesla.

D.1 References

[1] N. W. Ashcroft and N. D. Mermin, Solid State Physics. (Holt,
Rinehart and Winston, New York, 1976). ISBN: 0030839939.
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Nature, and Nature’s laws lay hid in night.
God said, Let Newton be! and all was light.

— Alexander Pope, 1688–1744

E Units and fundamental constants

E.1 Units

The International System of Units, universally abbreviated SI (from
the French Le Système International d’Unités) covers all areas of

physics, it widely used and standardized (ISO 1000, DIN 1301) and is
the only legal unit in the EU (ECC directives 80/181 and 89/617). But
SI units have two disadvantages: The numbers for typical observables
of atoms are usually tiny and one has to carry a lot of constants through
the calculation. Therefore other unit systems have been devised.

There exist several primers about SI units, for instance at the Bureau
International des Poids et Mesures (http://www.bipm.org/ ) or at the
physics page of the NIST [1].

E.1.1 Atomic Units
When using atomic units (a. u.), the Planck constant is 2π (~ = 1) and
those constants are one: electron mass (me = 1; atomic unit of mass),
elementary charge (e = 1; atomic unit of charge) and the Bohr radius
(1 = a0 = 4πε0~2/mee

2; atomic unit of length). Therefore the electric
constant has to be ε0 = 1/4π and since α = e2/4πε0~c ≈ 1/137, the
vacuum speed of light is c = 1/α. The energy is measured in hartree
(EH = e2/4πε0a0 = α2mec

2 = 1) and the atomic unit of time is
~/EH = 1.

E.2 ‘Convenient units’
This is not a official system of units since the problem defines what
is convenient. The advantage is that one can use all SI units and
replace only a few by a different frame of reference; typically these
are length and energy. The length is then measured in Ångströms
(1Å = 10−10m) and the energy in electron volts (1eV = 1e J/C). One

http://www.bipm.org/ 
http://www.bipm.org/ 
http://www.bipm.org/ 
http://www.bipm.org/ 
http://www.bipm.org/ 
http://www.bipm.org/ 
http://www.bipm.org/ 
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may also choose to measure the mass in electron volts using this relation:
E = mc2 ⇒ m = E/c2. See Appendix C for the relation of electron
volts to temperature, magnetic field, wavelength and frequency.

E.3 Fundamental constants

Taken from the ‘NIST Reference on Constants, Units, and Uncertainty’
[1].

Table E.1 Fundamental constants

Quantity Symbol Value Unit
speed of light in vacuum c, c0 299 792 458 m s−1

magnetic constant µ0 4π × 10−7N A−2

= 12.566 370 614 . . .× 10−7 F m−1

electric constant 1/µ0c
2 ε0 8.854 187 817 . . .× 10−12 F m−1

Newtonian constant of
gravitation

G 6.674 28(67)× 10−11 m3 kg−1 s−2

Planck constant h 6.626 068 96(33) · 10−34 J s
h/2π ~ 1.054 571 628(53)× 10−34 J s
elementary charge e 1.602 176 487(40)× 10−19 C
magnetic flux quantum h/2e Φ0 2.067 833 667(52)× 10−15 Wb
conductance quantum 2e2/h G0 7.748 091 7004(53)× 10−5 S
electron mass me 9.109 382 15(45)× 10−31 kg
proton mass mp 1.672 621 637(83)× 10−27 kg
proton-electron mass ratio mp/me 1 836.152 672 47(80)
fine-structure constant
e2/4πεh~c

α 7.297 352 5376(50)× 10−3

inverse fine-structure constant α−1 137.035 999 679(94)
Rydberg constant αmec/2h R∞ 10 973 731.568 527(73) m−1

Avogadro constant NA, L 6.022 141 79(30)× 1023 mol−1

Faraday constant NAe F 96 485.3399(24) C mol−1

molar gas constant R 8.314 472(15) J mol−1K−1

Boltzmann constant R/NA k 1.380 6504(24)× 10−23 J K−1

Stefan-Boltzmann constant
(π2/60)k4/~3c2 σ 5.670 400(40)× 10−8 W m−2 K−4
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Table E.2 Non-SI units excepted for use with the SI

Quantity Symbol Value Unit
electron volt: (e/C) J eV 1.602 176 487(40)× 10−19 J
(unified) atomic mass unit
1u = mu = 1

12m(12C) u 1.660 538 782(83)× 10−27 kg
= 10−3kg mol−1/NA

Atomic units

− a. u. of charge: elementary charge: e = 1.602 176 462(63)× 10−19C
− a. u. of mass: electron mass: me = 9.109 381 88(72)× 10−31kg
− a. u. of action: reduced Planck constant: ~ = h/2π = 1.054 571 596(82)×

10−34

− a. u. unit of length: Bohr radius (bohr): a0 = 0.529 177 2083(19)×
10−10m

− a. u. of energy, Hartree energy (hartree, Ha): Eh = e2/4πε0a0 =
2R∞ = α2mec

2 = 4.359 743 81(34)× 10−18J
− a. u. of time: ~/Eh = 2.418 884 326 500(18)× 10−17s
− a. u. of force: Eh/a0 = 8.238 721 81(64)× 10−8N
− a. u. of velocity: a0Eh/~ = αc = 2.187 691 2529(80)× 106m s−1

− a. u. of momentum: ~/a0 = 1.992 851 51.16)× 1024kg m s−1

− a. u. of current: eEh/~ = 6.623 617 53(26)× 10−3A
− a. u. of charge density: e/a3

0 = 1.081 202 285(43)× 1012C m−3

− a. u. of electric potential: Eh/e = 27.211 3834(11)V
− a. u. of electric field: Eh/ea0 = 5.142 206 24(20)× 1011V m−1

− a. u. of electric field gradient: Eh/ea
2
0 = 9.717 361 53(39)×1021V m−2

− a. u. of electric dipole moment: ea0 = 8.478 352 67(33)× 10−30C m
− a. u. of electric quadrupole moment: ea2

0 = 4.486 551 00(18) ×
10−40C m2

− a. u. of electric polarizability: e2a2
0/Eh = 1.648 777 251(18) ×

10−41C2 m2 J−1

E.4 References
[1] B. N. Taylor and P. J. Mohr, NIST Reference on Con-

stants, Units, and Uncertainty (2003), http://physics.nist.gov
/cuu/index.html Based on ‘2002 CODATA recommended val-
ues’.
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It was beautiful and simple as all truly great swindles are.
— O. Henry, 1862–1910
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