
An Efficient Implementation of Second
Quantization-Based Many-Body Methods

for Electrons and its Application to
Coupled-Cluster with Arbitrary

Excitation Level

I n a u g u r a l - D i s s e r t a t i o n

zur

Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln

vorgelegt von

Anna Engels-Putzka

geb. Engels

aus Siegburg

Köln

2009

Berichterstatter: Prof. Dr. M. Dolg

Prof. Dr. U. Deiters

Tag der mündlichen Prüfung: 19.01.2010

Contents

Kurzzusammenfassung v

Abstract vii

1. Introduction 1
1.1. Motivation . 1

1.2. Scope of the Thesis . 3

1.3. Technical Remarks . 4

2. Theory 7
2.1. Foundations . 7

2.1.1. The Electronic Schrödinger Equation 7

2.1.2. The Hartree–Fock Method . 8

2.1.3. Electron Correlation . 9

2.1.4. Size Consistency and Size Extensivity 12

2.2. Coupled-Cluster Theory . 13

2.2.1. Second Quantization . 13

2.2.2. Single-Reference Coupled-Cluster 15

2.2.3. Multi-Reference Coupled-Cluster 18

3. Implementation Overview 23
3.1. Formula Generation . 25

3.1.1. Overview . 25

3.1.2. Algebraic Methods . 27

3.1.3. Diagrams . 27

3.1.4. Automatization . 29

3.1.5. Exploiting Index Symmetry . 30

3.1.6. Examples . 30

3.2. Equation Solving . 31

3.2.1. Preparation . 32

3.2.2. Numerical Methods . 32

3.2.3. Summary . 33

i

Contents

4. Term Simplification 35
4.1. Problem Description . 35

4.2. Algebraic Approach . 36

4.2.1. Term Representation . 36

4.2.2. Order Relation . 40

4.2.3. Simplification Algorithm . 42

4.2.4. Implementation . 45

4.2.5. Discussion . 45

4.3. Graph-Based Approach . 47

4.3.1. Representation of Terms as Graphs 48

4.3.2. Graph Comparison Algorithm . 50

4.3.3. Discussion . 58

5. Tensor Contraction 61
5.1. Tensor Structure . 61

5.2. Possible Approaches . 62

5.2.1. Explicit Loops . 62

5.2.2. Vectorization . 64

5.3. Actual Implementation . 67

5.3.1. Tensor Representation . 67

5.3.2. Indices and Iterators . 69

5.3.3. Contraction Procedure . 80

5.3.4. Tensor Addressing . 82

5.3.5. Further Optimizations . 85

5.3.6. Performance Analysis . 86

6. Conclusion and Outlook 89
6.1. Conclusion . 89

6.2. Outlook . 90

6.2.1. Optimization . 90

6.2.2. Generalizations . 90

6.2.3. Applications . 91

A. Proof of the BCH Formula 93

B. Example Program 95

C. Generated Formulas 101
C.1. CCSDTQ Amplitude Equations . 101

C.2. Expectation Values . 103

ii

Contents

List of Abbreviations 109

List of Figures 111

List of Tables 113

List of Listings 115

List of Algorithms 117

Bibliography 119

Acknowledgments 125

iii

Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit ausgewählten Aspekten einer effizienten Implemen-

tierung von Vielelektronen-Methoden, die im Formalismus der zweiten Quantisierung

ausgedrückt werden können. Insbesondere wird die Coupled-Cluster-Methode (mit

beliebigem Anregungsgrad) betrachtet. Diese Methode wird heute vielfach angewen-

det, insbesondere für genaue Rechnungen an kleinen und mittelgroßen Molekülen.

Sie beruht auf einer nichtlinearen Parametrisierung der Wellenfunktion, was ihre Im-

plementierung verhältnismäßig kompliziert macht.

Da der Rechenaufwandmit der Systemgröße stark ansteigt, ist es wichtig, die Imple-

mentierung möglichst effizient zu gestalten. Dies gilt insbesondere, wenn höhere An-

regungen berücksichtigt werden sollen als in der Standardmethode CCSD (Coupled-

Cluster mit Ein- und Zweifachanregungen). Das in dieser Arbeit beschriebene Pro-

gramm enthält keine prinzipielle Einschränkung an den Anregungsgrad und soll zu-

künftig auch auf Multireferenzmethoden erweitert werden.

Nach einem Überblick über die relevante Theorie und die Struktur des Programms

werden zwei Programmteile vertieft behandelt. Der erste ist Bestandteil einer automa-

tischen Formelgenerierung und ermöglicht es, äquivalente Terme in Formeln zu erken-

nen und diese dadurch zu vereinfachen. Der verwendete Algorithmus beruht auf der

Interpretation algebraischer Ausdrücke als Graphen. Die automatische Formelgene-

rierung kann auf beliebige Operatorausdrücke in zweiter Quantisierung angewendet

werden.

Im Fall von Coupled-Cluster müssen die so erzeugten Gleichungen iterativ gelöst

werden, daher ist die Auswertung der darin auftretenden Terme entscheidend für die

Effizienz des Programms. Diese Auswertung kann auf eine Folge von Tensorkontrak-

tionen zurückgeführt werden. Ein zentraler Teil des Programms und dieser Arbeit

ist die Implementierung einer generischen Tensorkontraktion. Diese wird dadurch

erschwert, dass die auftretenden Tensoren in der Regel eine komplizierte Struktur

haben. Der hier verfolgte Ansatz besteht darin, jede Kontraktion auf eine Reihe von

Matrixmultiplikationen zurückzuführen, da diese Operationen auf modernen Rech-

nern besonders schnell ausgeführt werden können. Dies erfordert aber eine vorherige

Umspeicherung der Tensoreinträge. Die Optimierung dieses Schrittes wird ausführ-

lich diskutiert.

Erste Tests zeigen, dass das hier beschriebene Programm mindestens so schnell ist

wie das effizienteste bisher bekannte allgemeine Coupled-Cluster-Programm, und die

Relation verbessert sich für größere Systeme zugunsten unseres Programms, da dann

v

Kurzzusammenfassung

die Matrixmultiplikation der dominierende Schritt ist.

Am Ende der Arbeit wird ein Ausblick auf mögliche Weiterentwicklungen gegeben.

Optimierungspotential bietet insbesondere die Vorbereitung der Gleichungen (Fak-

torisierung) vor der eigentlichen Auswertung. Dieses wird im Vergleichsprogramm

schon teilweise genutzt.

vi

Abstract

This thesis deals with selected aspects of a new implementation of many-body meth-

ods which can be formulated in the framework of second quantization, in particu-

lar the coupled-cluster (CC) method with arbitrary excitation level. Coupled-cluster

is one of the most successful and widely used quantum chemical methods for accu-

rate calculations on small to medium-sized molecules. Since it employs a nonlinear

parametrization of the wave function, its implementation is rather difficult, in partic-

ular if higher (i.e. more than double) excitations are to be included. The latter is neces-

sary to obtain highly accurate results and also as a prerequisite for the generalization

to multi-reference cases.

The implementation described here has a twofold focus. One is on generality and

flexibility regarding the method to be implemented, the other is on efficiency. To

achieve flexibility, it is useful to have a machinery which automatically derives work-

ing equations for a given method. We realize this by applying techniques of second

quantization. This work treats in particular the last step of this procedure, namely the

simplification of the resulting equations by the identification of equivalent terms. The

algorithm used here is based on the interpretation of algebraic terms as graphs.

The derived CC equations then have to be solved iteratively. The efficiency of the

program is mainly determined by the evaluation of the occurring expressions, which

has to be done in each iteration step. The evaluation is split up in a sequence of tensor

contractions. Their generic implementation is complicated by the particular structure

of the involved tensors. We reduce each contraction to a sequence of matrix multipli-

cations, which requires a previous data rearranging. But since matrix multiplication

is the most efficient operation on modern computers, this additional effort pays off.

Preliminary tests show that our program is at least as fast as the most efficient gen-

eral coupled-cluster implementation so far, and the relation is expected to improve for

calculations with larger basis sets where the matrix multiplication becomes the time-

determining step.

Finally, we give an outlook to possible further developments. In particular, the

preparation of the equations before the actual evaluation (factorization) offers much

potential for optimizations which we do not exploit at the moment, in contrast to the

programwith which we compare, which employs at least a partial optimization at this

point.

vii

1. Introduction

1.1. Motivation

The main objective of nonrelativistic quantum chemistry is to calculate observable

properties of chemical entities, e.g. molecules or solids, by approximately solving

the electronic Schrödinger equation. Although most applications of chemical inter-

est involve rather large systems, it is also desirable to have highly accurate methods

applicable to small or medium-sized molecules only. For obtaining accurate results, it

is in particular necessary to take into account the electron correlation.

We restrict our attention here to wave function-based correlation methods. The

wave function is usually expanded in a set of (many-particle) basis functions. These,

in turn, are (linear combinations of) anti-symmetrized products of one-particle (i.e.

depending on the coordinates of one electron) basis functions (orbitals). While the

one-particle basis set in practical calculations is necessarily finite, and thus incom-

plete, it is in principle possible to calculate the exact many-particle solution within a

given one-particle basis by the so-called full configuration-interaction (FCI) method (see

2.1.3.2). But in practice, FCI calculations are infeasible for all but very small molecules,

since their cost grows exponentially with the size of the system. Therefore, further

approximations are necessary. The quality of an approximation is determined by the

subset of the FCI space (complete many-particle basis) in which the wave function is

expanded, by the number of independent parameters it contains, and by the way these

parameters are optimized.

So far, one of the most successful schemes for applying such approximations in a

systematic way is the hierarchy of coupled-cluster (CC) methods, which employs an

exponential ansatz for the wave function, in contrast to the linear parametrization in

CI. For reviews on coupled-cluster theory and applications see e.g. [1–5]. A brief ac-

count will be given in section 2.2.

Coupled-cluster was first developed in the context of nuclear physics [6,7], and later

transferred to quantum chemistry by Čı́žek and Paldus [8–10] who also applied it to

simple model systems. First practical implementations of coupled-cluster with only

double excitations (CCD) or single and double excitations (CCSD) were reported by

Bartlett and Purvis [11, 12] and Pople and coworkers [13].

In order to obtain very accurate results, higher excitations have to be included.

Therefore, successively implementations treating up to five-fold excitations appeared,

e.g. [14–17]. But while CCSD can nowadays be routinely applied to large classes of

1

1. Introduction

molecules, the steep scaling of the computational cost with the system size limits

the applicability for higher excitations. Therefore, many schemes have been devel-

oped to approximately include higher excitation effects. The most popular one is

CCSD(T) [18], which yields satisfactory results in many cases. However, there are

certain classes of applications where it fails, including excited states, radicals, or the

description of potential energy surfaces for dissociations.

The main problem is that in these cases the reference function (usually a single de-

terminant) which is used as a starting point for coupled-cluster is not a reasonable

approximation any more. The qualitatively correct description of the wave function

then requires a multi-reference ansatz. In principle, this could be compensated by in-

cluding sufficiently high excitations, but this would lead to unreasonably high costs.

One possible solution for this is to take not all, but only the most important higher

excitations, leading to a “multi-reference coupled-cluster method based on the single-

reference formalism” [19]. There are many variants of this method, for a recent review

see [20]. But none of these is fully satisfactory, so it is still desirable to have a genuine

multi-reference CC formalism. Unfortunately, in contrast to the linear configuration

interaction ansatz, the generalization of coupled-cluster to the multi-reference case is

not straightforward. As a consequence, many different MRCC methods have been

developed, and each has its advantages and disadvantages. The basic problems and

some of these approaches will be discussed in chapter 2.

There have been other attempts to modify the single-reference CC ansatz in order

to model multi-reference situations. For excited states, linear response (LR) methods

[21–24] or equation-of-motion (EOM) CC (see [25] for a comprehensive description

and [26] for a recent review) can be applied. Another approach is the method of mo-

ments for coupled-cluster (MMCC) [27], of which numerous variants exist. All these

methods have in common that they can be used to calculate corrections to the SRCC

energy or certain properties, e.g. excitation energies, but do not yield wave functions.

The computational costs of real multi-reference methods are rather high and depend

in most cases not only on the size of the one-particle basis and the excitation level,

but also on the number of references and active electrons. Thus their applicability

is usually limited to rather small systems. Nevertheless, it is worthwhile to reduce

these costs as much as possible – in the limits of a given method – by an efficient

implementation.

The practical implementation of many multi-reference methods brings about the

need to deal with (selected) higher excitations, namely if excitations from one reference

are interpreted with respect to another reference. So the treatment of high excitations

can be seen as a prerequisite for the implementation of these multi-reference methods.

While there are many efficient implementations for coupled-cluster with fixedmaxi-

mal excitation level, in particular CCSD [28–36], only few attempts have been made so

far to efficiently implement coupled-cluster with arbitrary excitation level or MRCC

2

1.2. Scope of the Thesis

methods. One example is the “Tensor Contraction Engine” (TCE) developed by Hi-

rata and coworkers [37, 38] and its successor SMITH (“symbolic manipulation inter-

preter for theoretical chemistry”) [39, 40]. Both can be used for various methods. The

most efficient coupled-cluster implementation for arbitrary excitations so far is (to our

knowledge) that by Kállay and Surján [41]. They also implemented MRCC based on

the single-reference formalism [42].

The key for an efficient implementation is the optimal use of the available processor

capacity. To reach this is not trivial, since during the last years, the clock frequency

of the processors has increased much faster than the memory bandwidth, so the main

problem is to access the data to be processed. This can be optimized by a consecutive

storage of data and by exploiting the memory hierarchy of registers, processor caches,

and main memory. However, in the case of coupled-cluster the data is not given nat-

urally in a way that it can be easily processed. In particular, the same data sets have

to be used several times in different order, so that there is no optimal way of storing

them.

The time-determining step of any coupled-cluster calculation can be reduced to a

sequence of tensor contractions. In view of the last paragraph, it is beneficial to re-

formulate these as vectorized operations, e.g. matrix multiplications. For these op-

erations highly optimized implementations are available, which are adapted to the

respective processor architecture. Due to cache effects, the most efficient operation is

matrix–matrix multiplication, in particular for larger matrices.

This reformulation requires a previous rearrangement of the data, but this additional

effort is compensated by the gain in efficiency through using matrix multiplications.

1.2. Scope of the Thesis

The goal of this thesis is to describe selected aspects of the coupled-cluster implemen-

tation developed in our group. It is intended to be used primarily for calculations with

the MRexpT method of M. Hanrath [43]. A pilot implementation which can treat this

and other multi-reference methods exists and has been successfully applied to several

test systems [44–49]. Our aim is to have not only a pilot or test implementation, but a

competitive program in the area of general coupled-cluster implementations. So our

main focus – after, of course, correctness of the results – is on efficiency. But we are also

interested in a high degree of flexibility, so that large parts of the program can be used

for different methods. So far, we have implemented SRCCwith (in principle) arbitrary

excitation level.

After briefly reviewing theoretical concepts, in particular single- andmulti-reference

coupled-cluster methods, in chapter 2, we discuss general issues concerning the imple-

mentation in chapter 3. In particular, the different parts of our program are described.

Roughly, the implementation consists of three steps:

3

1. Introduction

1. Derivation of working equations

2. Preparation of the equations for evaluation

3. Evaluation and solution of the equation system

The second point is not subject of this thesis and will only be briefly touched. The

other two are explicated in some more detail. In the following, one aspect of each is

discussed at length.

First, in chapter 4 we deal with the term simplification used to minimize the num-

ber of terms in the coupled-cluster equations, which is the last step in the first part.

After describing the problem, we discuss two different approaches to its solution: a

purely algebraic one and a graph-based algorithm. The latter one is used in the actual

program, since it is more generally applicable.

The topic of chapter 5 is the tensor contraction used in the evaluation of the equa-

tions. As indicated in the previous section, this is a central part of the whole imple-

mentation, since it mainly determines the efficiency. We implemented an algorithm

based on matrix–matrix multiplication, at the expense of a rather complex data rear-

ranging step. This is necessary because of the particular structure of the tensors occur-

ring in coupled-cluster calculations. This structure is explained, as well as alternative

approaches to the contraction problem, before we come to our actual implementation

in 5.3. In that section we discuss in particular the addressing structures used to access

tensor entries during the rearranging process. Since this part is particularly critical for

the efficiency of the program, we put much effort into its optimization.

In the last chapter, we summarize our results and give an outlook to possible future

developments.

1.3. Technical Remarks

Our coupled-cluster program is written in C++. Using an object oriented program-

ming language allows for a rather high level of abstraction, and many mathematical

objects (e.g. tensors, matrices, groups, permutations) are directly represented as ob-

jects in the program. Moreover, by using polymorphism (templates, virtual functions)

the program can be made flexible. For example, we make extensive use of data con-

tainers from the STL (Standard Template Library, see e.g. [50]), in particular vector
and map. (Here and in the following, if class names or other pieces of code are used

in the text, they are written in typewriter font.) On the other hand, C++ offers

enough freedom for writing an efficient program by using e.g. pointers and bit opera-

tions.

For the matrix multiplication, we use the standard routine dgemm (double-precision

general matrix–matrix multiplication) from the BLAS (Basic Linear Algebra Subpro-

4

1.3. Technical Remarks

grams) library. This yields the optimal performance, independent of the specific pro-

cessor architecture (if a different processor is used, only the library has to be exchanged).

To illustrate the (static) class relations of important parts of the program, we use

UML diagrams. UML (Unified Modeling Language, see [51]) is a very powerful tool,

not only for depicting class structures, but also for supporting the design process. A

simple example to illustrate the usage of UML is shown in figure 1.1.

Inheritance, "is a"

Aggregation

Class

Template

Vehicle

Car Bike

Wheel

Driver

4 2

Symbol ExplanationExample

Composition
(life cycle dependence)

(no life cycle dependence)
"has a"

Figure 1.1.: Usage of UML symbols. The “arrows” are to be read from left to right (in

the legend). Examples: “A car is a vehicle.” “A car has a wheel.” (Which is

an integral part of the car.) “A car has a driver.” (Which exists independent

of the car.)

Other graphics which are used to illustrate program structures or algorithms do not

follow a uniform convention and are explained where needed.

5

2. Theory

2.1. Foundations

2.1.1. The Electronic Schr ödinger Equation

Our starting point is the (time-independent) Schrödinger equation

ĤΨ = EΨ (2.1)

which describes stationary states of (nonrelativistic) quantum mechanical systems.

Here Ĥ is the Hamiltonian, Ψ the wave function and E the energy. For a molecule,

Ĥ has the following form (in atomic units):

Ĥ =
∑

I

(

−
1

2mI

∆I

)

+
∑

i

(

−
1

2
∆i −

∑

I

ZI

riI

)

+
∑

i<j

1

rij

+
∑

I<J

ZIZJ

rIJ

(2.2)

where the indices I and J run over the nuclei, i and j are electron indices, mI is the

mass and ZI the charge of nucleus I , rij is the distance between electrons i and j, rIJ

that between nuclei I and J , and riI the distance between electron i and nucleus I .

In the following we assume the Born–Oppenheimer approximation to hold, that

means we treat the nuclei – which are much heavier than the electrons and therefore

move much slower – as fixed and consider only the electronic Schrödinger equation

ĤelΨel = EelΨel (2.3)

with

Ĥel =
∑

i

(

−
1

2
∆i −

∑

I

ZI

riI

)

+
∑

i<j

1

rij

+
∑

I<J

ZIZJ

rIJ

(2.4)

=
∑

i

ĥ(i) +
∑

i<j

ĝ(i, j) + ĥnuc (2.5)

The one-electron operator ĥ contains the kinetic energy and the electron-nuclear inter-

action. The last term is treated as a constant, since the electronic Hamiltonian contains

the coordinates of the nuclei only as parameters. The values of the electronic energy

Eel for all possible positions of the nuclei form the potential energy hypersurface (PES)

7

2. Theory

of the molecule. In the following we drop the subscript el, since we only deal with the

electronic problem.

The wave function Ψ depends explicitly on the coordinates of all electrons, i.e. their

positions ri and their spins. Besides being a solution of (2.3), Ψ has to fulfill another

important criterion, namely the Pauli principle. This states that two identical fermions

(in particular two electrons) may not occupy the same quantum state (therefore it is

also known as the exclusion principle). The mathematical formulation of this is that Ψ

has to be antisymmetric with respect to permutations of the electrons (so in particular

it vanishes if two of them have the same coordinates).

Other properties of Ψ follow directly from it being a solution of (2.3), i.e. an eigen-

function of Ĥ . Since commuting operators have the same eigenfunctions, Ψ also has

to be an eigenfunction of all operators that commute with the Hamiltoniana. Since the

nonrelativistic Hamiltonian does not depend on the electron spins, it commutes with

the total spin operator Ŝ2, and therefore Ψ is an eigenfunction of Ŝ2, too (such a func-

tion is briefly called a spin eigenfunction). If the molecule has a nontrivial symmetry

group (point group), Ĥ commutes with all operators contained in this group and Ψ is

also an eigenfunction of them.

Because of the electron-electron interaction (i.e. the two-particle operators ĝ(i, j))

contained in the Hamiltonian, the Schrödinger equation (2.3) can not be solved exactly

for many-electron systems. When approximate solutions are constructed, it is desir-

able to conserve as many of the symmetry properties of the exact wave function as

possible, but – except for the Pauli principle – this is often difficult to achieve.

2.1.2. The Hartree–Fock Method

If the Hamiltonian of a system can be written as a sum of one-electron operators, the

corresponding wave function is a product of one-electron functions (orbitals) φi:

Ψ(x1, . . . ,xn) =
n∏

i=1

φi(xi), (2.6)

where xi is the vector containing the coordinates (position and spin) of electron i. This

motivates the wave function ansatz for the Hartree–Fock (HF) method. To account for

the Pauli principle, the product has to be antisymmetrized, forming a so called Slater

determinant:

Φ(x1, . . . ,xn) = 1√
n!

∑

P̂∈Sn

sgn (P̂)P̂
n∏

i=1

φi(xi) (2.7)

aĤ as defined in (2.5) is obviously invariant under permutations of the electrons, i.e. it commutes

with all permutation operators P̂ ∈ Sn, where n is the number of electrons. It follows that Ψ is an

eigenfunction of all these P̂ . But a priori each eigenvalue could be 1 or −1, so that the Pauli principle

is really an additional requirement.

8

2.1. Foundations

where the permutation operator P̂ permutes the electrons and sgn(P̂) denotes the par-

ity of the permutation. The prefactor 1√
n!

ensures that Φ is normalized, provided that

the orbitals are orthonormal.

The orbitals φi are determined by applying the variation principle, i.e. by minimiz-

ing the energy expectation value 〈Φ|Ĥ|Φ〉 (with the full Hamiltonian Ĥ) subject to the

constraint of orthonormality. This leads to the Hartree–Fock equation

f̂φi = ǫiφi (2.8)

The Fock operator f̂ is an effective one-electron operator which contains the one-

electron part of the Hamiltonian, while the two-electron part is replaced by an effective

potential (Fock potential). The eigenvalues ǫi of f̂ are called orbital energies. Since f̂

depends on the orbitals φi, equation (2.8) has to be solved iteratively. There are several

possibilities how to do this. For molecules a common approach is to expand the φi,

which are then called molecular orbitals (MOs), in a basis of atomic orbitals (AOs) χj :

φi =
∑

j

Cijχj (2.9)

The expansion coefficients Cij are then the variational parameters and the Hartree–

Fock equation can be transformed into a matrix equation (Roothaan equation).

2.1.3. Electron Correlation

In statistics, correlation (roughly) means the deviation of two random variables from

being independent. The probability distributions of electrons in a molecule are cer-

tainly correlated in this sense, but in quantum chemistry, electron correlation is de-

fined a bit differently. Here, the correlation energy is the difference between the exact

nonrelativistic energy (i.e. FCI in the basis set limit) and the Hartree–Fock energy (also

in a complete basis):

Ecorr = E − EHF (2.10)

(Since HF is a variational method, the correlation energy is always negative.) This dif-

fers from the mathematical definition, since also in the HF model the electrons are not

completely independent. The HF wave function fulfills the Pauli principle, therefore

electrons with the same spin can never be at the same place (this is sometimes referred

to as Pauli or Fermi correlation). What is neglected in the HF approximation is the

Coulomb correlation, i.e. the coupling of the movements of the electrons due to their

electrostatic interaction. To include this, we have to go beyond HF, e.g. by approxi-

mating the wave function as a linear combination of several Slater determinants.

Here we have to distinguish two cases: For many systems HF is a reasonable ap-

proximation, that means the correlation energy makes up only a small fraction of the

total energy and the other (possibly many) determinants make small contributions to

9

2. Theory

the total wave function. This is often referred to as dynamical correlation. In contrast,

there are situations in which two or more determinants are (almost) equally impor-

tant. This is called static correlation, and systems where static correlation is important

are often termedmulti-reference systems. To get a good approximate wave function in

this case, both statical and dynamical correlation effects have to be taken into account.

2.1.3.1. Multi-configuration Self-consistent Field Method

One way to treat static correlation is provided by the multi-configuration self-consis-

tent field (MCSCF) method. Instead of a single determinant, the wave function is set

up as a linear combination of several (important) determinants, and the expansion

coefficients are optimized together with the orbitals, which makes this method con-

siderably more complicated than Hartree–Fock. A special case is the complete active

space SCF, where the set of determinants is constructed by distributing electrons in all

possible ways within a (suitably chosen) set of active orbitals.

2.1.3.2. Configuration Interaction

In contrast to MCSCF, the configuration interaction (CI) method is usually used to de-

scribe dynamical correlation effects. The wave function here is also a linear combi-

nation of determinants, which is usually much longer than in MCSCF calculations.

But then only the expansion coefficients are optimized while the orbitals, obtained e.g.

from a HF calculation, are kept fixed.

If |Φ0〉 is the HF determinant, the CI wave function is a linear combination of |Φ0〉

and determinants which are obtained from |Φ0〉 by replacing one or more of the oc-

cupied orbitals by unoccupied orbitals (this process commonly is referred to as ex-

citation, although it does not necessarily correspond to a physical excitation; a more

accurate term would be substitution):

ΨCI = c0|Φ0〉 +
∑

α∈Q
cα|α〉 = c0|Φ0〉 +

∑

α∈Q
cατ̂α|Φ0〉 (2.11)

whereQ is the chosen set of excited determinants and the τ̂α are excitation operators.

Usually, the excited determinants are classified by their excitation degree (i.e. the num-

ber of exchanged orbitals) and all excitations up to a given degree are included in the

expansion (2.11). For example, in the CISD method all single and double excitations

are taken. Let O be the set of orbitals occupied in |Φ0〉 and V the set of unoccupied

(virtual) orbitals. If we denote by Φa
i the determinant where the orbital i ∈ O has been

replaced by a ∈ V, and analogously for higher excitations, the CISD wave function

can be written as

ΨCISD = c0|Φ0〉 +
∑

i∈O
a∈V

ca
i |Φ

a
i 〉 +

∑

i,j∈O
a,b∈V

cab
ij |Φ

ab
ij 〉 (2.12)

10

2.1. Foundations

If all excitations up to the level which is equal to the number n of electrons are

included, the FCI wave function is obtained. The number of determinants in the ex-

pansion is then
(
m
n

)
, where m = |O|+ |V| is the number of orbitals. Since this binomial

coefficient increases rapidly with growing m and n (i.e. system size), FCI is only feasi-

ble for small systems (up to about ten electrons) and limited basis sets.

The coefficients cα are obtained byminimizing the energy expectation value 〈Ψ|Ĥ|Ψ〉

over all wave functions of the form (2.11). So CI is also a variational method. The CI

energy is then given as

ECI =
〈ΨCI|Ĥ|ΨCI〉

〈ΨCI|ΨCI〉
(2.13)

It can be shown that the minimization is equivalent to solving the eigenvalue problem

Hc = ECIc (2.14)

where the vector c contains the coefficients and H is the Hamilton matrix with entries

Hαβ = 〈Φα|Ĥ|Φβ〉 , {Φα} basis.

The CI ansatz can be rather easily generalized to the multi-reference case by includ-

ing excitations up to a given level not only from one determinant, but from all deter-

minants which are important for the qualitative description of the system (i.e. have a

large coefficient in the wave function expansion). We denote the set of reference deter-

minants by P and defineQi(µ) as the set of all determinants reached by at most i-fold

excitations from the determinant µ. If we set

Q =

l⋃

i=1

⋃

µ∈P
Qi(µ) rP (2.15)

where l is the chosen maximal excitation level (e.g. l = 2 for MRCISD), we can write

the multi-reference CI wave function as

ΨMRCI =
∑

µ∈P
cµ|µ〉 +

∑

α∈Q
cα|α〉. (2.16)

The distinction between reference and excited determinants is somewhat artificial in

this expression, but we want to use the notation later. Note that we do not have a

representation analogous to the last part of (2.11) here. Since the union in (2.15) is not

disjoint, there is usually no unique reference determinant from which an excited de-

terminant is generated. This is no serious problem here (because the expansion is lin-

ear), but will be an important point later in the discussion of multi-reference coupled-

cluster.

11

2. Theory

2.1.4. Size Consistency and Size Extensivity

We briefly discuss these two concepts to establish our terminology, since the terms are

used differently in the literature (e.g. what we call size consistency is referred to as

size extensivity in [52], while in [53] it is the other way round). For a more detailed

discussion, in particular in the context of coupled-cluster , see e.g. [1, 43, 54, 55].

According to the convention we adopt here (following Pople et al. [56]), the notion

of size consistency refers to the treatment of non-interacting systems. For a size consis-

tent method, the energy of a system consisting of non-interacting subsystems is equal

to the sum of the energies of the subsystems. This means if we have two systems A

and B which do not interact (this is equivalent to saying that the Hamiltonian of the

combined system AB can be written as the sum of the Hamiltonians of the two sys-

tems: ĤAB = ĤA + ĤB), then for a size consistent method EAB = EA + EB holds

(additive separability of the energy). This property follows if the wave function for

such systems is multiplicatively separable, but this is not a necessary condition. Some

authors [57, 58] extend the term consistency to require also the correct description of

the dissociation of a molecule into fragments (asymptotic consistency).

Size extensivity implies the correct scaling of the energy (or other extensive proper-

ties) with the system size and is related to statistical properties of the parameters of the

method (connectivity). For the correlation energy of a system consisting of N identical

subsystems it can be expressed as

lim
N→∞

Ecorr(N)

N
= c > 0.

The term size extensivity was introduced by Bartlett [11, 59] while the property itself

had been studied earlier in the context of perturbation theory [60, 61].

Truncated configuration interaction methods (single- as well as multi-reference) are

neither size consistent nor size extensive. This means in particular that their accu-

racy deteriorates with increasing system size. One of the major advantages of the

(single-reference) coupled-cluster method described in the next section is that it is size

consistent (provided the reference has this property) and size extensive.

12

2.2. Coupled-Cluster Theory

2.2. Coupled-Cluster Theory

2.2.1. Second Quantization

We briefly recall some facts and definitions, mainly to introduce the notations. More

details can be found e.g. in references [1, 52, 53].

2.2.1.1. Basic Definitions

The formalism of second quantization starts from a set of spin orbitals {φp} and uses

so called annihilation and creation operators which are defined by their effect on de-

terminants built from these orbitals:

âp|φpφq . . . φs〉 = |φq . . . φs〉 (annihilation of an electron)

â†p|φq . . . φs〉 = |φpφq . . . φs〉 (creation of an electron)

The creation operator is the adjoint of the corresponding annihilation operator and

vice versa. The operators fulfill the following anticommutation relations:

âpâq + âqâp = 0 (2.17)

â†pâ
†
q + â†qâ

†
p = 0 (2.18)

â†pâq + âqâ
†
p = δpq. (2.19)

A string of annihilation and creation operators is said to be in normal order if all an-

nihilation operators stand to the right of all creation operators. This is useful for the

evaluation of matrix elements, since annihilation operators yield zero when applied to

the vacuum state.

2.2.1.2. Particle-Hole Formalism

For coupled-cluster theory it is useful to redefine the notion of normal order with re-

spect to a reference determinant |Φ0〉which is then also called the Fermi vacuum. The

orbitals occupied in |Φ0〉 are called hole or occupied orbitals and denoted by the in-

dices i, j, k, . . . For them the meaning of annihilation and creation is reversed, i.e. âi is

considered as a creation operator (because when acting on |Φ0〉 it removes an electron

and therefore creates a hole) while â†i is now an annihilation operator (it annihilates a

hole). For the orbitals not occupied in |Φ0〉 we use the indices a, b, c, . . . and they are

referred to as particle or virtual orbitals. Like in 2.1.3.2, we denote the sets of these

orbitals byO andV, respectively.

13

2. Theory

We define the substitution operators τ̂i,a = â†aâi or, more generally,

τ̂i1i2...,a1a2... = â†a1
â†a2

. . . âi2
âi1

with iν ∈ O and aν ∈ V. They have the property that they commute with each other

as long asO ∩V = ∅ holds.

If a string of second-quantized operators is normal-ordered according with respect

to |Φ0〉we denote this by curly brackets {}. Within these brackets, all operators exactly

anticommute.

2.2.1.3. Wick’s Theorem

With the help of Wick’s theorem we can write an operator string as a sum of normal-

ordered strings more easily than by using only the anticommutator relations. In order

to formulate the theorem we first define the contraction of two second-quantized op-

erators:

ÂB̂ = ÂB̂ − {ÂB̂} (2.20)

There are only two possible combinations of annihilation and creation operators for

which this contraction is not zero, namely

â†i âj = δij and âaâ
†
b = δab. (2.21)

Now Wick’s theorem states that a string of annihilation and creation operators is

equal to the sum of all contracted normal-ordered products that can be built from

these operators. Schematically, this can be written as:

ÂB̂Ĉ . . . X̂Ŷ Ẑ = {ÂB̂Ĉ . . . X̂Ŷ Ẑ} +
∑

single
contractions

{ÂB̂Ĉ . . . X̂Ŷ Ẑ}

+
∑

double
contractions

{ÂB̂ĈD̂. . . X̂Ŷ Ẑ} + . . . +
∑

(fully contracted terms).

The notation here is taken from [1], for the original formulation and proof see [62].

There is also a version of the theorem for a product of two strings which are already

normal-ordered:

{ÂB̂Ĉ . . .}{X̂Ŷ Ẑ . . .} = {ÂB̂Ĉ . . . X̂Ŷ Ẑ . . .} +
∑

single
contractions

{ÂB̂Ĉ . . .X̂Ŷ Ẑ . . .}

+
∑

double
contractions

{ÂB̂Ĉ. . .X̂Ŷ Ẑ} + . . . +
∑

(fully contracted terms).

14

2.2. Coupled-Cluster Theory

The crucial point here is that contractions within a normal-ordered factor do not have

to be considered. This can be generalized to products with more than two factors and

also to products where only some factors are already normal-ordered.

Helgaker et al. [52] and Harris et al. [53,63] use different strategies for the evaluation

of matrix elements in second quantization which do not rely on any kind of normal

order.

2.2.1.4. Hamilton Operator

The molecular electronic Hamiltonian can be written in second quantization as

Ĥ =
∑

pq

〈p|ĥ|q〉â†pâq + 1
4

∑

pqrs

vpq
rs

â†pâ
†
qâsâr. (2.22)

Here,

vpq
rs

=
〈
pq
∣
∣ r−1

12

∣
∣ rs
〉
−
〈
pq
∣
∣ r−1

12

∣
∣ sr
〉

(2.23)

are anti-antisymmetrized two-electron integrals (the antisymmetry holds within the

two pairs of indices, i.e. vpq
rs

= −vqp
rs

= −vpq
sr

= vqp
sr
). The horizontal bar indicates the

symmetry between the index pairs, since we have vpq
rs

= vrs
pq

(for real orbitals).

The normal-ordered form of the Hamiltonian is given by

ĤN = Ĥ − 〈Φ0|Ĥ|Φ0〉 = F̂N + V̂N =
∑

pq

fp
q

{
â†pâq

}
+ 1

4

∑

pqrs

vpq
rs

{
â†pâ

†
qâsâr

}
, (2.24)

where fp
q

= 〈p|ĥ|q〉 +
∑

i v
pi
qi

are the matrix elements of the Fock operator. Analogous

to the two-electron integrals, they have the symmetry fp
q

= fq
p
. ĤN may be considered

as a “pure” correlation operator and is therefore especially suitable for coupled-cluster

theory.

2.2.2. Single-Reference Coupled-Cluster

2.2.2.1. The Exponential Ansatz

The coupled-cluster wave function is given by

|Ψ〉 = eT̂ |Φ0〉 (2.25)

where |Φ0〉 is a reference determinant (usually the Hartree–Fock wave function) and T̂

is the so called cluster operator. This exponential ansatz can be justified by the intro-

duction of cluster functions into the HF wave function which account for the electron

correlation (see [1]). The cluster operator is an excitation operator which replaces occu-

pied by virtual orbitals. It is usually partitioned according to the level of the excitation:

T̂ = T̂1 + T̂2 + . . . + T̂n with

15

2. Theory

T̂k = 1
(k!)2

∑

i1...ik
a1...ak

t
a1...ak

i1...ik
â†a1

. . . â†ak
âik

. . . âi1
= 1

(k!)2

∑

i1...ik
a1...ak

t
a1...ak

i1...ik
τ̂i1...ik,a1...ak

. (2.26)

The highest possible excitation level n is the number of (spin) orbitals occupied in |Φ0〉,

i.e. the number of electrons in the system under consideration. The parameters t
a1...ak

i1...ik
are called amplitudes. They have to be determined in a way that the Schrödinger

equation

ĤNeT̂ |Φ0〉 = Ecorr|Φ0〉 (2.27)

is satisfied. It practice of course not the full equation can be solved, but only its restric-

tion to a proper subspace.

2.2.2.2. Coupled-Cluster Equations

To get equations from which the energy and the amplitudes may be determined, the

Schrödinger equation (2.27) is projected onto the reference determinant |Φ0〉 and all de-

terminants |Φ
a1...ak

i1...ik
〉which can be generated from |Φ0〉 by the application of the cluster

operator. This leads to as many equations as there are unknowns to be determined,

since the number of projections onto excited determinants matches the number of am-

plitudes and the projection onto the reference yields an additional equation for the

energy:

〈

Φ0

∣
∣
∣ ĤNeT̂ Φ0

〉

= Ecorr

〈

Φ0

∣
∣
∣ eT̂ Φ0

〉

= Ecorr (2.28)
〈

Φ
a1...ak

i1...ik

∣
∣
∣ ĤNeT̂ Φ0

〉

= Ecorr

〈

Φ
a1...ak

i1...ik

∣
∣
∣ eT̂ Φ0

〉

. (2.29)

The last equality in 2.28 holds because of the intermediate normalization

〈

Φ0

∣
∣
∣ eT̂ Φ0

〉

= 1.

If the full cluster operator is used, coupled-cluster is equivalent to full CI, but with

nonlinear equations for the amplitudes. Since this is intractable, the cluster operator

has to be truncated. Most common is the truncation at a certain excitation level. For

example, the inclusion of only single and double excitations (T̂ = T̂1 + T̂2) leads to the

CCSD method.

Usually, before the projection the equation is multiplied from the left by e−T̂ in order

to decouple the energy equation from the amplitude equations. This is the so-called

similarity transformed or linked form of the coupled-cluster equations:

〈

Φ0

∣
∣
∣ e−T̂ ĤNeT̂ Φ0

〉

= Ecorr 〈Φ0 |Φ0〉 = Ecorr (2.30)
〈

Φ
a1...ak

i1...ik

∣
∣
∣ e−T̂ ĤNeT̂ Φ0

〉

= Ecorr

〈

Φ
a1...ak

i1...ik

∣
∣
∣Φ0

〉

= 0. (2.31)

16

2.2. Coupled-Cluster Theory

It can be shown that both sets of equations are equivalent under certain conditions

on the excitations included in T̂ , e.g. if all excitations up to a given level are included.

Besides the decoupling, the linked form has another advantage in that the evalua-

tion of the left hand side is simplified by employing the so called Baker–Campbell–

Hausdorff (BCH) expansion, which expresses the similarity transformation of an op-

erator by the exponential of another operator in terms of nested commutators:

exp
(
−B̂

)
Â exp

(
B̂
)

=
∞∑

n=0

1

n!

[
Â, B̂

](n)

= Â +
[
Â, B̂

]
+ 1

2

[[
Â, B̂

]
, B̂
]
+ 1

3!

[[[
Â, B̂

]
, B̂
]
, B̂
]
+ . . . (2.32)

A proof of this formula is given in appendix A. In the case of coupled-cluster , i.e.

Â = Ĥ and B̂ = T̂ , the series can be truncated after the fourth commutator [1, 53].

The reason for this is that the Hamiltonian we are dealing with, being a two-particle

operator, has at most four free indices which can be “shared” with a cluster operator.

If two operators do not have an index in common they commute, and so at latest the

fifth commutator in (2.32) yields zero.

The evaluation of expressions like those on the left hand side of (2.28)–(2.31) will be

discussed in the next chapters. Here we give only the result for the simplest case.

2.2.2.3. The CC Energy

The coupled-cluster energy can be expressed explicitly in terms of amplitudes and

integrals:

Ecorr = 〈Φ0|ĤN T̂Φ0〉 + 1
2 〈Φ0|ĤN T̂ 2Φ0〉

=
∑

ia

f i
a
tai + 1

4

∑

ijab

vij
ab

tab
ij + 1

2

∑

ijab

vij
ab

tai t
b
j . (2.33)

Although it contains only amplitudes of T̂1 and T̂2, this equation is valid for arbi-

trary excitation levels, since higher than double excitations can not interact with |Φ0〉

through ĤN .

2.2.2.4. Spin and the Parametrization of the Cluster Operator

If the cluster operator is defined as in (2.26), the CCwave function can in general not be

expected to be a spin eigenfunction, since the substitution operators τ̂ do not commute

with Ŝ2, i.e. they may change the total spin. To avoid this problem, it is possible to

define spin averaged substitution operators Êp1p2...,q1q2..., e.g. Êp,q = â†qâp+â†q̄âp̄, where

pν and qν are spatial orbitals and the bar denotes β spin. Then the cluster operators can

be written in terms of these operators, e.g. T̂1 =
∑

ia tai Êi,a, T̂2 = 1
2

∑

ijab tab
ij Êi,aÊj,b

(see for example [36, 52, 64–66]). This ansatz, however, leads to other problems when

17

2. Theory

applied to an open-shell reference function. Either, the substitutions do not span the

space of spin eigenfunctions, or they have to be defined with overlapping orbital sets

for annihilators and creators. The latter leads to a non-commuting set of operators,

which makes their handling much more difficult (in the usual derivation of the CC

working equations, the commutativity of the cluster operators is essential).

2.2.3. Multi-Reference Coupled-Cluster

The generalization of the coupled-cluster ansatz to the multi-reference case is not

straightforward and there are many different approaches to the problem, of which

we discuss a few in the following. Before, we discuss some of the principal difficulties.

2.2.3.1. General Considerations

One of the main problems is the ambiguity in the generation of excited determinants

mentioned already in the discussion of MRCI (see 2.1.3.2). The set union in (2.15)

makes only sense for “global” objects like determinants. In contrast to CI, which can

be formulated in terms of excitation operators as well as in terms of determinants

(compare (2.11)), CC relies on the representation in terms of excitation operators. This

is due to the exponential ansatz, the argument of the exponential function consists

of excitation operators and their coefficients. But these operators are “local” in the

sense that they are always defined with respect to a particular reference determinant.

Therefore the exponential ansatz can not be readily transferred to the multi-reference

case.

Another major issue in setting up an MRCC ansatz is to retain the property of being

size extensive (connected). Since this is a rather subtle point we do not discuss it

further here.

2.2.3.2. Multi-Reference Ansatz Based on the Single-Reference For malism
(SRMRCC)

The previous problems are avoided if the single-reference formalism is kept and only

the cluster operator is modified to model a multi-reference situation. This ansatz was

introduced by Oliphant and Adamowicz for the case of two reference determinants

differing by a double excitation [19] and later generalized. It requires the choice of a

formal reference (Fermi vacuum) |µ0〉 from the reference space, with respect to which

all excitations are defined. The cluster operator is then constructed in such a way that

its application to |µ0〉 generates all determinants which would appear in a correspond-

ing MRCI wave function, i.e. all excitations (up to a given level) from all references.

This corresponds to doing a “normal” coupled-cluster calculation where the higher

excitations are incomplete (the highest excitation level is the base excitation level plus

the highest excitation between the formal Fermi vacuum and any other reference).

18

2.2. Coupled-Cluster Theory

This method inherits many desirable properties from SRCC, in particular size ex-

tensivity. But it is not a genuine MRCC method. The main problem with it is that the

choice of a formal reference introduces a certain arbitrariness and causes an imbalance

in the wave function. It can also lead to a breaking of spin or spatial symmetry, in

particular if there are two or more references with (almost) equal weight.

2.2.3.3. State-Universal Ansatz

The first genuine multi-reference coupled-cluster methods were the valence-universal

or Fock space ansatz (VUMRCC or FSMRCC) [67–69] and the state-universal or Hilbert

space ansatz (SUMRCC) [70]. We describe here only the latter, since it is the starting

point for the MRexpT ansatz discussed below (section 2.2.3.4).

The SUMRCC ansatz was developed by Jeziorski and Monkhorst. It starts from an

operator Ω̂, called wave operator, which maps a model (i.e. reference) space P to a

set of exact solutions of the Schrödinger equation. This operator is determined by the

equation

ĤΩ̂ = Ω̂ĤΩ̂. (2.34)

Making the ansatz

Ω̂ =
∑

µ∈P
eT̂µ |µ〉〈µ|, (2.35)

where T̂µ is a reference-specific cluster operator, leads to the following expression for

the wave function:

|Ψλ〉 =
∑

µ∈P
cλµeT̂µ |µ〉. (2.36)

The reference coefficients cλµ can be obtained by diagonalizing the effective Hamilto-

nian P̂ ĤΩ̂ in the reference space (here P̂ is the projector onto the reference space). To

determine the amplitudes which define the T̂µ it is necessary to consider at the same

time as many states |Ψλ〉 as there are references (hence the term state-universal), since

the amplitudes for the different references are independent and taking into account

only one state would lead to an underdetermined problem. Explicit equations for the

amplitudes can be derived from equation (2.34) by applying both sides to |Ψλ〉 and

projecting onto the orthogonal complement of P.

The original method of Jeziorski and Monkhorst is connected (and therefore size

extensive) only in case of a complete model space. Later the ansatz has been gener-

alized to general (incomplete) model spaces [71, 72]. The main problems of SUMRCC

are the occurrence of intruder states and the exceedingly high computational effort

introduced by state-universality. Since usually one is only interested in one particular

state, several attempts have been made to modify the ansatz in a way that it becomes

state-specific.

19

2. Theory

2.2.3.4. Multi-Reference Exponential Wave Function Ansatz (MRexp T)

The key idea of this ansatz [43] is to reduce the number of parameters (compared to

SUMRCC) by introducing a determinant based amplitude indexing (in contrast to the

excitation based indexing usually employed in coupled-cluster theory). The ansatz for

the wave function is

|Ψ〉 =
∑

µ∈P
cµeT̂µ |µ〉 (2.37)

with

T̂µ = φ(cµ)
∑

τ̂µ∈Tµ

tτ̂µ|µ〉τ̂µ. (2.38)

Here φ(cµ) = e− arg(cµ) is a phase compensation factor andTµ denotes the set of all ex-

citations to be applied to |µ〉 (e.g. all excitations up to a given level, where excitations

to other references are excluded). So the cluster operators are still reference-specific,

but the amplitudes are not all independent. Since they are labeled by τ̂µ|µ〉, i.e. the

result of an excitation applied to the reference |µ〉, the same amplitude can occur in

several cluster operators, if the corresponding determinant can be reached from differ-

ent references. Since the determinants are only fixed up to sign, the rule t−|β〉 = −t|β〉
has to be applied.

The wave function (2.37) is inserted into the Schrödinger equation and projections

onto all determinants from the reference space P and from the spaceQ =
⋃

µ∈PQ(µ),

where Q(µ) =
⋃

τ̂µ∈Tµ
τ̂µ|µ〉 is the set of excited determinants reached from µ, are

applied. This yields a system of as many equations as there are amplitudes and refer-

ence coefficients. These equations are nonlinear in the amplitudes, but linear in the cµ.

However, since the energy is also unknown, another equation is needed to match the

number of variables. This can be obtained by fixing the norm of the reference wave

function, e.g.
∑

µ∈P
|cµ|

2 = 1. (2.39)

MRexpT is size consistent [43], but not rigorously size extensive. However, it has been

shown to be core extensive [73], which means that it scales correctly with the number

of inactive electrons, which usually grows faster than the number of active electrons.

2.2.3.5. Other State-Specific Variants of SUMRCC

Another possibility to solve the redundancy problem is to define the wave function

|Ψ〉 = Ω̂
∑

µ

cµ|µ〉

with Ω̂ as in (2.35), insert it into the Schrödinger equation and then introduce suffi-

ciency conditions by manipulating the projected equations in an appropriate manner.

20

2.2. Coupled-Cluster Theory

This can be done in different ways, leading to different methods. One of these meth-

ods was developed by Mukherjee and coworkers (MkMRCC) [74, 75], another one is

Brillouin–Wigner coupled-cluster (BWCC) [76–79]. In contrast to MkMRCC, BWCC is

not size extensive, but a size extensivity correction has been developed [80]. These and

related methods have been recently analyzed by Kong [81]. A numerical comparison,

also with SUMRCC, was carried out by Evangelista et al. [82].

21

3. Implementation Overview

The coupled-cluster equations (2.31) have to be solved numerically, and this requires

the numerical evaluation of the expressions on the left hand side of these equations.

For this task, there are different ways to implement it. Many pilot implementations

which aim at dealingwith higher excitations ormulti-reference approaches [82–85] use

a technique which is also commonly used in (full) CI programs [86–88]. The cluster

operator is applied recursively to the reference determinant, and then the necessary

matrix elements of the Hamiltonian with these excited determinants are calculated.

This method is, however, not very efficient, in particular its complexity does not

have the correct scaling with the number of orbitals. The main reason for this is that

the evaluation of matrix elements is to a large extent redundant. It can as well be done

in an abstract way, i.e. independent of the specific system and the values of the in-

volved quantities, and therefore does not have to be repeated in each calculation (and

each iteration within one calculation). So for an efficient implementation the equations

are first cast into a more explicit form (like that given in (2.33) for the energy) which

contains only the amplitudes appearing in the cluster operator (i.e. the unknowns to

be determined), the integrals characterizing the system under consideration, and el-

ementary operations. This transformation requires several steps which are described

briefly in section 3.1.

The main elements of this type of implementation are shown in figure 3.1. The

crucial step with respect to efficiency is the evaluation of the generated expressions.

These expressions contain terms like
∑

ia

f i
a
tai or

∑

iab

vAi
ab

tBi tab
IJ . Here I, J, A, B are the

indices which label the excited determinant on which the equation is projected (see

2.2.2.2). They are called external indices. In general, all these terms have the form

∑

i1...ik

N∏

n=1

X
I
(n)
1 ...I

(n)
Kn

,i
(n)
1 ...i

(n)
kn

(3.1)

with i
(n)
j ∈ {i1, . . . , ik} and I

(n)
j ∈ {I1, . . . , IK} (a given set of external indices). In the

following, summation indices are always lower case letters, while upper case letters

denote external indices.

In principle, the evaluation of such terms is a straightforward task – it requires only

addition and multiplication –, but doing it efficiently is a not trivial at all, in particular

if the involved tensors have a complicated structure. As a first step, the formal scaling

23

3. Implementation Overview

can be reduced by splitting up multiple summations and defining suitable so called

intermediates, e.g.
∑

iab

vAi
ab

tBi tab
IJ =

∑

i

tBi
∑

ab

vAi
ab

tab
IJ

︸ ︷︷ ︸

XAB
IJ,i

=
∑

i

tBi XAB
IJ,i = ZAB

IJ .

While the first expression here has a formal scaling of O(n7), where n is the number

of orbitals (since there are three summed and four external indices), the second one

consists of two steps where each is O(n5). In general, the coupled-cluster equations

are rewritten in a formwhere in each step only two factors are multiplied (contracted).

This transformation is commonly referred to as factorization (see e.g. [16, 41], in [37]

this step is called “strength reduction”). Finding the optimal factorization is a compli-

cated problem which is beyond the scope of this thesis.

The evaluation of the resulting binary contractions is treated in chapter 5, so we will

not explicate it further at this point.

system
(molecule)

formula generation

(point group,
symmetry data

number of orbitals
in irreps)

explicit equations

factorization

term evaluation
(contraction)

(MC/CAS)SCF
calculation

excitation level)

method
(abstract equations,

integrals

data

program parts

operation
list

Figure 3.1.: Schematic representation of a coupled-cluster implementation

24

3.1. Formula Generation

3.1. Formula Generation

3.1.1. Overview

Since the procedure is not only applicable to coupled-cluster equations, we consider

here a more general situation. We start with the Fermi vacuum expectation value of

an operator which can be expressed in terms of strings of second quantized operators.

The aim is to generate an expression which contains only operator parameters (e.g.

amplitudes and integrals) and constants and which is as simple (i.e. short) as possible.

To reach this, a number of steps are performed. Figure 3.2 shows an overview together

with an example. Listing 3.1 contains a piece of code which generates the CCSD equa-

tions [89]. In the following, line numbers refer to this.

excitation level)

method
(abstract equations, E = 〈Φ0|e−T̂ ĤeT̂Φ0〉

flat expression
(sum of products
of operators)

E = 〈Φ0|(ĤT̂1 + ĤT̂2 + 1

2
ĤT̂ 2

1)Φ0〉

explicit equations E =
∑

ia

fiat
a
i + 1

4

∑

ijab

〈ij||ab〉tab
ij + 1

2

∑

ijab

〈ij||ab〉tai t
b
j

expression in
second quantization

E =
∑

pqia

fpqt
a
i 〈Φ0|{â†pâq}{â†aâi}|Φ0〉

+1

4

∑

pqrsia

〈pq||rs〉tai 〈Φ0|{â
†
pâ

†
qârâs}{â

†
aâi}|Φ0〉 + . . .

contracted terms
E =

∑

pqia

fpqt
a
i δpaδqi + 1

4

∑

pqrsijab

〈pq||rs〉tab
ij δpaδqbδriδsj

+1

2

∑

pqrsijab

〈pq||rs〉tai t
b
jδpaδqbδriδsj

algebraic operations

translation

“Fast Wick” module

simplification

exampledataprogram part/functions

Figure 3.2.: Steps of the formula generation procedure

25

3. Implementation Overview

Listing 3.1: Generation of the CCSD equations

1 const int clusterLevel = 2;
2 const int projectionLevel = 2;
3
4 CompoundOperator_Expression TT; //cluster operator
5 for (int i=1 ; i<=clusterLevel ; ++i)
6 TT += T(i);
7 CompoundOperator_Expression HN = FN + VN; //Hamiltonian
8 CompoundOperator_Expression I=A(0); //identity operator
9
10 for (int i=0 ; i<=projectionLevel ; ++i)
11 {
12 //---
13 //Specification of term/method
14 CompoundOperator_Expression expr(FV(A(-i)*exp(-TT)*HN*exp(TT)));

// CC
15 //CompoundOperator_Expression expr(FV(A(-i)*HN*(I+TT))); // CI
16 //---
17 CompoundOperator_Product_Sum flatExpr(expr);
18 TensorSymbols_ACOperators_Sum<SQIndex,

ACOperator_Product_NOP_FV<SQIndex> > nopfs(flatExpr);
19 TensorSymbols_Kroneckers_Sum<SQIndex, true>

expanded(expandFastWick(nopfs));
20 TermGraph_Sum tgs(expanded);
21 TensorSymbols_Sum<SQIndex, true> simplified(tgs);
22 }

In detail, the steps are:

1. High Level Algebra (line 12)

If present, exponential series have to be evaluated (up to a certain degree), ei-

ther directly or by invoking the BCH expansion (2.32). Then products of sums

of operators are distributed to get an expression which is a sum of products of

operators. Rank considerations can be used to reduce the number of terms at an

early stage [89].

2. Translation (line 13)

The “high level” operators have to be transformed into their second quantized

representation, e.g.

Ĥ =
∑

pq

fp
q
â†pâq + 1

4

∑

pqrs

vpq
rs

â†pâ
†
qârâs, T̂1 =

∑

ia

tai â
†
aâi, T̂2 = 1

4

∑

ijab

tab
ij â†aâ

†
bâj âi.

26

3.1. Formula Generation

3. Evaluation of matrix elements in second quantization (line 14)

For this there are several possibilities, which are discussed below (sections 3.1.2–

3.1.5):

• Transformation of the operator string into a sum of normal-ordered ones by

using anticommutator relations or Wick’s theorem

• Diagrams

• Consideration of equivalence classes of permutations

4. Simplification (line 15/16)

In most cases the result of step 3 contains redundant terms, i.e. terms which can

be collected by exploiting index symmetries (compare 3.1.2, 3.1.5 and chapter 4).

3.1.2. Algebraic Methods for the Evaluation of Matrix Element s

In order to evaluate a matrix element of the form 〈Φ|ÂΦ0〉, where Â is a string of an-

nihilation and creation operators, Â may be transformed into a sum of operators each

of which is normal-ordered with respect to |Φ0〉. Then all summands which contain at

least one annihilator produce zero when applied to |Φ0〉.

In principle this could be achieved by the direct application of the anticommutator

rules (2.17)–(2.19), but this is very inefficient. Since every interchange of an annihilator

with a creator produces two new terms, the number of summands grows very rapidly,

while at the end only few of them yield a non-vanishing result.

One possibility to reduce the number of terms is to use Wick’s theorem (see 2.2.1.3).

We only have to keep the fully contracted terms, since all other terms have at least one

operator on their right which yields zero when applied to |Φ0〉. But even then there

are still too many terms. For a string of 2n operators there are n!
∏n

k=1(2k − 1) fully

contracted strings which can be produced from it. Of course many of these are zero,

but there are still a lot of terms left with much redundancy among them. That means

that there are terms which are in fact equal, but look different because of the naming

of their indices.

3.1.3. Diagrams

Matrix elements of operators in second quantization can also be evaluated – without

explicit manipulations of creation and annihilation operators – by diagrammatic tech-

niques. Several sorts of diagrams are used in physics and theoretical chemistry, most

of which are some sort of Feynman diagrams. A formalism based on Goldstone dia-

grams [61] which is particularly suitable for coupled-cluster and many-body pertur-

bation theory has been introduced by Kucharski and Bartlett [90]. Here we only want

27

3. Implementation Overview

to sketch briefly the ideas of this method and give some examples. A more detailed

introduction can be found in [1] or [53].

The starting point is the representation of indices (i.e. orbitals) occurring in opera-

tors or determinants by (vertical) lines where the direction of the line indicates whether

it stands for a hole or a particle index. These lines can then be joined according to cer-

tain rules to form matrix elements. In the last step, the diagrams are translated into

explicit formulas, including the correct coefficient and sign. This requires a rather

complex set of rules, which we do not want to discuss here. Instead, we show some

examples.

The matrix element 1
2 〈Φ0|ĤT̂ 2

1 Φ0〉 corresponds to the diagram

Here the dashed line (“interaction line”) denotes the two-electron part V̂ of the Hamil-

tonian (the one-electron part yields a vanishing matrix element in this case), while the

lower ends of the “loops” correspond to the two T̂1 operators. The solid lines stand for

hole (downward) and particle (upward) indices, respectively. The analogous diagram

with T̂ 2
1 replaced by T̂2 would look like this:

We now get explicit expressions by assigning appropriate index labels to the hole and

particle lines and writing down the corresponding quantities:

1
2 〈Φ0|ĤT̂ 2

1 Φ0〉 = 1
2

∑

ijab

vij
ab

tai t
b
j

〈Φ0|ĤT̂2Φ0〉 = 1
4

∑

ijab

vij
ab

tab
ij

Sometimes more than one diagram is needed to represent a matrix element, e.g.

〈Φ0|Â2V̂ T̂1Φ0〉 = + =
[∑

i t
A
i vIJ

Bi

]

A +
[∑

a taJv Ia
AB

]

A.

The operator Â2 generates two-fold excited determinants from 〈Φ0|. The external in-

dices correspond to the lines with open ends, and the subscript Ameans that the term

is antisymmetrized with respect to the external indices.

28

3.1. Formula Generation

3.1.4. Automatization

While the explicit equations of the standard CCSD method are well known and com-

parably short, the formulas become long and more complex for increasing excitation

level. Therefore it would be very difficult – or even impossible – to derive these by

hand. Moreover, it is desirable to have an automatized equation generation proce-

dure if one is interested in variants or generalizations of the standard coupled-cluster

methods.

Several approaches to this task exist and have been implemented by various groups.

Most of them are based on some sort of diagrams, but there are also purely algebraic

ones. We want to give a brief survey here. Some of the mentioned work has also been

discussed by Hirata in his review [91].

An algebraic approach based on the unitary group formalism has been pursued

by Li and Paldus in the derivation of their spin-adapted open-shell coupled-cluster

method [65]. Hirata and Bartlett [85] as well as Olsen [84] use the formalism of spin

strings and the anti-commutation rules for elementary operators in second quantiza-

tion to derive coupled-cluster equations in an automatized way.

The first program using Wick’s theorem was SQSYM (“second quantization sym-

bol manipulator”) by Janssen and Schaefer [92]. Later this ansatz was adopted by

Jankowski and Jeziorski [93], Nooijen and Lotrich [94], Berente et al. [95] and by Hi-

rata in the framework of the TCE [37]. The latter two implementations reduce the

number of terms produced when applying Wick’s theorem by erasing unnecessary

terms as early as possible.

Automatic generation of diagrams has first been used in the context of perturbation

theory [96–98]. One of the first diagram generation algorithms for coupled-cluster was

implemented by Harris [99] using the computer algebra system Maple. The coupled-

cluster implementations with arbitrary excitation level by Kállay and Surján [41] and

by Lyakh, Ivanov, andAdamowicz [100] both use the type of diagrams discussed in the

previous section. To make them accessible for automatic procession, Kállay and Surján

represent diagrams by strings of 13 integer numbers while Lyakh et al. use matrix-like

structures. A more general approach is pursued by Bochevarov and Sherrill [101],

who developed an algorithm which can handle arbitrary second-quantized expres-

sions. Within their program, diagrams are written as strings of symbols. The symbolic

algebra program SMITH by Shiozaki et al. [39] also uses Goldstone diagrams, which

are in this case treated as objects directly, i.e. without the introduction of an auxiliary

structure. It is also rather general and can treat e.g. CC-R12 methods.

29

3. Implementation Overview

3.1.5. Exploiting Index Symmetry

3.1.5.1. Term Generation

One reason for the inefficiency of the evaluation procedure using Wick’s theorem is

that it only deals with strings of annihilation and creations operators, ignoring the

prefactors (amplitudes and integrals). Starting from this observation M. Hanrath de-

veloped an algorithmwhich directly reduces the number of generated terms by taking

into account the index symmetry of the prefactors . This is done by subdividing the

possible index permutations into equivalence classes [102]. The contractions are given

as in (2.21). That means that the resulting expressions contain Kronecker deltas which

have to be resolved in a subsequent step.

3.1.5.2. Term Simplification

If the coupled-cluster equations (2.31) are evaluated using the BCH expansion, i.e. the

expressions contain only connected terms, the formulas resulting from the algorithm

sketched in the previous section are completely reduced. But if the unlinked form is

used, or in other, more complicated cases, some (disconnected) terms remain which

are redundant. In these cases a subsequent simplification of the resulting equations is

necessary in order to obtain efficient working equations. This problem is discussed at

length in chapter 4. Finally, we use a graphical representation of terms which has some

similarities with the diagrams in 3.1.3 but is not equivalent. The main difference is that

we use the graphs only for the identification of equivalent terms. The coefficients and

signs are handled separately, which makes the back-translation into formulas much

easier. Another difference shows up if a term contains more than one interaction.

The Feynman-type diagrams respect the order of the operators, but the resulting term

usually does not depend on this order. Our graphs do not distinguish terms which

differ just in the order of the interactions. Finally, our approach is very general, i.e. not

restricted to special term structures. The types of operators we can treat are fixed, but

could easily be extended. In contrast, while the diagrams themselves are also quite

flexible, their computational representations, e.g. those used in [41] and [100], are

much more restrictive.

3.1.6. Examples

In line 14 of listing 3.1 we could replace the expression for CC by other expressions.

For example (compare line 15), inserting A(-i)*HN*(I+TT), where I is the identity

operator, into the Fermi vacuum expectation value FV() yields equations for the CI

method. We can also introduce new operators, like the adjoint of the cluster operators

or interaction operators of higher rank (e.g. three-particle operators). In principle we

can insert arbitrary sums and products of operators which can be expressed in terms

30

3.2. Equation Solving

Table 3.1.: Explicit expressions for one operator product in different projections

i Explicit expression for FV(A(-i)*VN*T(1)*T(1))

0 −1
1 · [tbi t

a
jv

ij
ab

]A

1 −2
1 · [tbIt

a
i v

Ai
ab

]A + −2
1 · [tAi tajv

Ia
ij

]A

2 −1
1 · [tbIt

a
JvAB

ab
]A + −2

1 · [tAJ tai v
Ia
Bi

]A + 2
1 · [taJ tAi vIa

Bi
]A +−1

1 · [tBi tAj vIJ
ij

]A

3 −2
1 · [tAJ taKv Ia

BC
]A + −2

1 · [tBKtAi vIJ
Ci

]A

4 −1
1 · [tBKtALv IJ

CD
]A

Table 3.2.: Explicit expressions for the Fermi vacuum expectation values of different

operators (WN is a three-body potential and T(-1) is the adjoint of T(1))

Operator X Explicit expression for FV(X)

exp-TT*WN*expTT
1
36 · [tabc

ijkwabc
ijk

]A + 1
4 · [tci t

ab
jkw

abc
ijk

]A + −1
6 · [tci t

b
jt

a
kw

abc
ijk

]A

HN*HN [f i
a
f i

a
]A + 1

4 · [vij
ab

vij
ab

]A

VN*VN*VN
1
8 · [vij

kl
vij
ab

vkl
ab

]A + 1
8 · [vij

ab
vij
cd

vab
cd

]A + [vij
ab

vic
kb

vjk
ac

]A

FN*VN*(T(1)+T(2))
−1
1 · [f i

a
tbjv

ib
ja

]A + −1
2 · [f i

a
tbcijv

ja
bc

]A + −1
2 · [f i

a
tab
jkv

ib
jk

]A

T(-1)*HN*T(1)
−1
1 · [f i

j
taj t

i
a]A + [fa

b
tai t

i
b]A + −1

1 · [taj t
i
bv

ia
jb

]A

of elementary annihilation and creation operators. Some examples are given in tables

3.1 and 3.2, for longer expressions see appendix C.

3.2. Equation Solving

The coupled-cluster equations in their explicit form constitute a nonlinear (but poly-

nomial) equation system for the amplitudes which has to be solved numerically. Dif-

ferent possibilities to do this are briefly discussed in 3.2.2. In any case, an iterative

procedure is necessary which means that the expressions occurring in the equations

have to be evaluated several times. This is the main reason why it is important to do

this evaluation efficiently.

31

3. Implementation Overview

3.2.1. Preparation

Before we can start to solve the equations, the input data has to be prepared. First,

we have to determine our basis functions (MOs), usually by an SCF calculation (in the

multi-reference case, this would be an MCSCF or CASSCF calculation, but we focus

here on the single-reference case), and the integrals constructed from them. The SCF

calculation also defines the reference determinant, and with it the partitioning of the

orbitals into occupied and unoccupied (virtual) ones. The output of this calculation

further contains information about the symmetry properties of the system, in particu-

lar, which orbitals belong to which irreducible representation. From this data, a table

is constructed in which the orbitals are ordered according to the properties occupa-

tion status, irreducible representation, and spin (α or β). Our present implementation

is based on spin orbitals. We start with a set of spatial orbitals and the correspond-

ing integrals, then we construct two spin orbitals from each spatial orbital and adapt

the integrals accordingly. In addition, the two-electron integrals are antisymmetrized

according to equation (2.23). Another transformation is necessary because due to the

use of the normal-orderedHamiltonian (see 2.2.1.4) not the plain one-electron integrals

〈p|ĥ|q〉, but the Fock matrix elements fp
q
appear in the explicit equationsa. Finally, the

integrals are arranged in different tensors, each with a fixed pattern of occupied and

virtual indices.

Also the amplitudes have to be prepared, at least memory for them has to be re-

served. In most single-reference calculations it is possible to set all amplitudes to zero

in the beginning, while in more complicated cases a reasonable initial guess (e.g. from

a CI calculation) is useful for the calculation to converge to the desired state.

3.2.2. Numerical Methods

There are several ways to solve the coupled-cluster equations numerically, which differ

in their applicability (e.g. numerical stability) and efficiency (convergence behavior).

If we use the linked form of the CC equations, it is sufficient to consider the ampli-

tude equations (2.31). If we introduce the amplitude vector t and set

Aα(t) :=
〈

α
∣
∣
∣ e−T̂ ĤNeT̂

∣
∣
∣Φ0

〉

, (3.2)

where α stands for any excited determinant, the equations can be written in vector

form as

A(t) = 0. (3.3)

In principle this can be solved iteratively by applying the standardNewtonmethod for

vector-valued functions. But this is not very efficient, since it requires in each iteration

aIf matrix elements for two determinants are evaluated using the Slater–Condon rules, an analogous

summation – restricted to the orbitals occupied in both determinants – has to be carried out each

time.

32

3.2. Equation Solving

step the inversion of the Jacobian matrix (or at least the solution of a linear equation

system) to calculate the correction ∆t to the amplitudes (see e.g. [52]).

Another approach is to write the equation (3.3) as a fixed point equation by isolating

the amplitude corresponding to the determinant which determines the projection:

Aα(t) = 0 ⇔ Dαtα = Ãα(t)

where for α = Φ
a1...ak

i1...ik
the coefficient Dα is given as

k∑

j=1
f

ij
ij
−

k∑

j=1
f

aj

aj
. For CCSD, this

is carried out explicitly in [1]. This kind of equations can be solved iteratively by

choosing a starting vector t
(0) and then setting in each step t

(n+1)
α = Ãα(t(n))/Dα un-

til self-consistency is reached. But this would require the evaluation of the modified

expressions Ãα(t), which is rather inconvenient due to the missing amplitude tα in

some summations. Therefore, in practice one rewrites the equations again, leading to

an iteration scheme t
(n+1) = t

(n) + ∆t
(n) with ∆t

(n)
α = Aα(t(n))/Dα, and stops if the

norm of the residual vector A is sufficiently small. This procedure is equivalent to

a quasi-Newton method where the Jacobian matrix is approximated by keeping only

the diagonal elements [52]. In our present implementation we use this method. The

convergence is usually rather slow, but it can be improved by using the DIIS (“direct

inversion in the iterative subspace”) scheme [29,52, 103].

3.2.3. Summary

Assuming that explicit equations have been derived, a (single-reference) CC calcula-

tion in our implementation consists of the following steps (the order of steps 3 and 4/5

is interchangeable):

1. Get reference determinant, orbital properties, and MO integrals from an SCF

calculation and subsequent MO transformation.

2. Construct orbital table.

3. Factorize equations and determine sequence of contractions (orbital table is used

for cost calculation).

4. Construct spin orbital integrals and Fock matrix elements.

5. Choose initial values for amplitudes and construct tensors needed for evaluation

(amplitudes, integrals, residuals).

6. Calculate residuals by evaluating the contractions given by 3.

7. Determine the residual norm and check for convergence (norm less than a given

threshold).

33

3. Implementation Overview

8. If the calculation is not converged: Update the amplitudes, set the residuals to

zero and go back to step 6.

9. Else: Calculate the energy (and the final amplitudes, if desired).

The code of an exemplary program which does such a calculation is shown in ap-

pendix B.

34

4. Term Simplification

4.1. Problem Description

For this section a term is an object that can be written in the form (3.1), i.e. a sum over

products of certain objects, where all products have the same structure. Each factor

in the products can have several indices, and the summation ranges over all or some

of these indices. We apply the same convention regarding the indices as in chapter 3.

If we do not write the sigma sign explicitly summation over all lower case indices is

assumed implicitly. In our cases, each summed index appears twice in a term while an

external index is used only once.

Now, as an additional complication, the indices can have different types and each

factor has a specific index structure. This means that the indices are divided into groups

and have a certain pattern of types. In particular, the factors can have different num-

bers of indices. Moreover, the tensors which the factors represent can have symmetry

properties with respect to certain index operations. In the following sections we will

specify the kinds of objects we consider and their respective symmetries.

We consider two terms as being equivalent if their numerical evaluation yields – po-

tentially up to sign – the same result for all possible values of the involved objects. But

this definition is not very useful, we need criteria for equivalence which refer directly

to the structure of the term.

Examples
Anticipating the specialization in the next section, we use terms containing (coupled-

cluster) amplitudes and two-electron integrals as examples. In some cases the equiva-

lence is rather obvious, like for the terms

vij
ab

tai t
b
j and vij

ab
tbjt

a
i or vij

ab
tAi tab

Ij and vij
ab

tAj tab
Ii ,

in others it is not. Consider the three terms

vik
cd

vjl
ab

tckt
d
l t

ab
ij , vik

ab
vjl
cd

tckt
d
l t

ab
ij , and vik

ad
vjl
cb

tckt
d
l t

ab
ij .

They look very similar at first glance, but it is not easy to decide whether they are

really equivalent (by close inspection it can be seen that the first two are equivalent,

but the third is not equivalent to the others).

35

4. Term Simplification

In general, the following operations transform a term into an equivalent one:

T1 Changing the order of the factors

T2 Renaming summation indices

T3 Exploitation of index symmetries within one factor, e.g.

• Symmetry with respect to the exchange of index groups

• (Anti-)symmetry with respect to permutations of indices within one group

At this point it should already be clear that the combination of these different transfor-

mations can lead to a huge number of equivalent terms, whichmakes the identification

of all redundant terms in a long equation into a (potentially) very difficult task. Thus

it is very desirable to have an automatized procedure for it.

4.2. Algebraic Approach

The main idea of this approach is to define a (arbitrary) total ordera on the set of terms.

Then there is a unique smallest element in every equivalence class, since the number of

equivalent terms – as large as it may be – is always finite as long as the set of possible

indices is finite. The algorithm checks for each term if it can be transformed into one

which is smaller with respect to this order and this process is iterated until no more

changes are possible.

4.2.1. Term Representation

The factors in the terms we consider here can have the following types

• operator parameters, like the amplitudes of the cluster operators (t) or of the

corresponding deexcitation operators

• one- or two-electron integrals (fp
q
, vpq

rs
)

• strings of second quantized operators, usually in normal order

• permutators containing external (i.e. not summed) indices.

aBy this we mean a relation that is analogous to the familiar < relation for real numbers, in the sense

that it is transitive (i.e. if a < b and b < c then also a < c holds) and for every two elements a, b one

of the relations a < b, b < a or a = b holds. A total order is sometimes also called a linear order, since

the elements of a set with a total order can be arranged in a linear sequence according to relations

between them.

36

4.2. Algebraic Approach

product

factor factor factor

group group group group group

index index index index index index index index index

Figure 4.1.: Structure visualization for a general term

Permutators (which could also be called partial antisymmetrizators) are used to col-

lect terms with a similar structure in an equation (the coupled-cluster amplitude equa-

tions are antisymmetric with respect to permutations of external indices of the same

type). Consider for example the term tAi vIJ
Bi
. It is antisymmetric with respect to I and J

(because the integral v is), but not with respect to A and B. Its antisymmetrized form

is
[
tAi vIJ

Bi

]

A = P̂−(A|B)tAi vIJ
Bi

= tAi vIJ
Bi

− tBi vIJ
Ai

.

The permutator P̂−(A|B) is just a more explicit way of writing the antisymmetrization.

A general permutator is defined as follows:

P̂−(I1,1 . . . I1,n1
|I2,1 . . . I2,n2

| . . . |Im,1 . . . Im,nm
) =

∑

[σ]∈Q

sgn(σ)σ (4.1)

where Q is the quotient of the Symmetric Group Sn (n = n1 + . . . + nm) by the direct

product of subgroups Sn1
×. . .×Snm

and sgn(σ) is the parity of the permutation σ ∈ Sn.

This means we sum over all permutations of I1,1, . . . , Im,nm
which do not contain any

permutation within one group, multiplied by the appropriate sign.

P̂− does not depend on the order of the groups or the arguments within one group,

i.e. they can be permuted arbitrarily. Two different permutators commute if the sets

of indices which they contain are disjoint (otherwise they do not commute in general).

In our applications this is always the case since in every term there are at most two

permutators, one with particle indices and one with hole indices.

For the naming of indices we employ the same conventions as in chapter 2: p, q, r, s

are general indices, while hole indices are denoted by i, j, . . . and particle indices by

a, b, The same applies for upper case letters.

The general structure of a term can be represented by a tree as shown in Figure 4.1,

an example is given in Figure 4.2.

37

4. Term Simplification

*

P <||> t

first second left right lower upper

C B A a C I J K A B a

Figure 4.2.: Structure of the term P̂−(C|BA)
∑

a

f a
C

tABa
IJK . In the visualization, the same

symbol is used for one- and two-electron integrals.

Now we can specify the transformations summarized under point (T3) in the previ-

ous section:

(a) Integrals are symmetric (hermitian) with respect to the interchange of bra and

ket (upper and lower) indices.

(b) Amplitudes and two-electron integrals are antisymmetric with respect to permu-

tations within one index group.

(c) Operators within a normal-ordered string anticommute.

(d) Indices within a permutator may be exchanged according to the symmetry prop-

erties described above.

The general structure of the factors can be depicted (in UML style, although this does

not correspond to actual classes in the program) as follows:

38

4.2. Algebraic Approach

That means, each entity consists of one or more index groups within which we have

antisymmetry with respect to index permutations. The parameter hermitian2 indi-

cates the symmetry in the case that there are two groups (factors with more than two

groups do not occur here). For example, integrals consist of two groups and are sym-

metric with respect to the interchange of them. An amplitude also has two groups, but

there is no symmetry between them. A normal-ordered string of operators is just one

group (the operators are identified with their indices).

The ambiguities that are due to symmetry properties can be resolved by defining

a standard ordering of indices and terms, which will be explained in detail later (see

4.2.2). Therefore terms which only differ in this way are considered equal and the

canonical representation is the one which is smallest with respect to the ordering.

But there is one more possibility, namely the renaming of indices. Here we have to

distinguish between summed and external indices:

• Summation indices can be renamed arbitrarily as long as they are distinguish-

able.

• External indices may only be renamed if the term contains a permutator. Only

indices already present within the term may be used and the renaming has to be

compatible with the structure of the permutator.

Terms differing only by the naming of indices are called equivalent. (It is easy to see

that this defines an equivalence relation in the mathematical sense.)

Examples
The terms

∑

ijab

vij
ab

tai tbCjK and
∑

ijab

tCa
Ki tbjv

ij
ab

look quite different at first glance, but they

can be transformed into each other through the following steps:

∑

ijab

vij
ab

tai tbCjK
T1
=
∑

ijab

tbCjK tai v
ij
ab

T3(b)
= −

∑

ijab

tbCKj tai v
ij
ab

T3(b)
=

∑

ijab

tCb
Kj tai v

ij
ab

i↔j
=
∑

ijab

tCb
Ki t

a
jv

ji
ab

a↔b
=
∑

ijab

tCa
Ki tbjv

ji
ba

T3(b)
=

∑

ijab

tCa
Ki tbjv

ij
ab

Another example illustrates the number of equivalent terms possible, we have:

∑

ijkabc

tai tbj tckv
jk
ab

{
â†câi

}
= −

∑

ijkabc

tai tbj tckv
ik
ab

{
â†câj

}

=
∑

ijkabc

tai tbj tckv
ik
bc

{
â†aâj

}
= −

∑

ijkabc

tai tbj tckv
ij
bc

{
â†aâk

}

=
∑

ijkabc

tai tbj tckv
ij
ac

{
â†bâk

}
= −

∑

ijkabc

tai tbj tckv
jk
ac

{
â†bâi

}

39

4. Term Simplification

In contrast, for example the term
∑

ijkabc

tai tbj tckv
ij
ab

{
â†câk

}
, although looking similar, is not

equivalent to the others.

4.2.2. Order Relation

4.2.2.1. Definition

To define a total order on the set of terms we first have to order their building blocks,

starting with the smallest elements, namely the indices. For them the following rules

apply:

1. External indices are smaller than summed indices.

2. Hole indices are smaller than particle indices and these are smaller than general

indices.

3. Within one type the indices are ordered alphabetically.

From now onwe assume the indices within one group to be ordered according to these

rules. For symmetric factors (integrals) the groups are ordered lexicographically.

Now we come to the ordering of the factors for which the following criteria are

employed:

1. The different kinds of factors get a priority, e.g. amplitudes are smaller than

integrals and operators.

2. Among factors of the same kind, those with more indices come first.

3. If the total number of indices is equal, the number of external indices is taken

into account.

4. If this is also equal, the further procedure depends on the nature of the factor:

Operator Strings In this case no special considerations are necessary, the strings

are ordered lexicographically.

Amplitudes The problem when comparing two amplitudes is that on each am-

plitude there are two groups of indices (upper and lower) and one has to

decide which one is to be considered first. This is resolved in the follow-

ing way: If for one argument the upper indices are smaller than the lower

ones, the upper indices are compared first, only in the case that for both

arguments the lower indices are smaller, these are compared first. This pro-

cedure is illustrated in figure 4.3.

40

4.2. Algebraic Approach

Integrals In principle the same procedure as for amplitudes is used, with up-

per/lower indices replaced by left/right ones, respectively. But since in

this case the two index groups can be exchanged and we assume them to be

ordered, the second case never applies.

Permutators The order of the permutators is not relevant, so we define it arbi-

trarily. If there are two of them in one term, then one contains only particle

indices and the other only hole indices. If their structure is the same, then

the one with hole indices is defined to be smaller.

u1 < u2?

l2 < l1?

u2 < l2?

noyes

no yes

yes

u2 < u1?

no

yes no

yes no

l1 < l2?

yes no

l1 < l2?

yes

no

t1 < t2 t2 < t1

yes
no

u1 < u2?

u1 < l1?

Figure 4.3.: Procedure to determine whether for two different amplitudes t1 = (u1, l1)

and t2 = (u2, l2) the relation t1 < t2 or t2 < t1 holds.

Terms are now ordered first by their type, where type includes the number and

structure of the factors as well as the number and distribution of external indices. This

has to be done for the sake of completeness, although terms of different types can

never be equivalent. Moreover, the order is used when equal terms are collected in the

end.

The interesting point for our simplification is the order among terms of the same

type. This is defined by lexicographical comparison of the factors according to the

rules specified under point 4 above.

41

4. Term Simplification

4.2.2.2. Transitivity

For an order relation to be well defined it has to fulfill the transitivity rule, i.e. if a is

smaller than b and b is smaller than c, also a has to be smaller than c. For our definitions

this is more or less obvious, except for the amplitude order.

Before starting the formal proof we want to comment briefly on the definition and

illustrate it by an example. Of course things would be much easier if we decided

to take into account primarily one index group (either upper or lower) and look at

the other only if the first groups are equal. But this would introduce an unwanted

arbitrariness. Consider for example the three amplitudes t1 = tAB
ij , t2 = tDa

Ik and

t3 = tCb
Jl . Ordering by upper or lower indices only, we would get t1 < t3 < t2 or

t2 < t3 < t1, respectively, while our order yields t1 < t2 < t3. To see this, look at t1 and

t2 first. We have to compare the upper indices, since there are two external indices for

t1. On the other hand, t2 has only one external index and therefore we have t1 < t2.

Next we consider t2 and t3. There is one external index in every group, so we have to

look at the lower indices, and since I < J it follows that t2 < t3.

The proof that our order is indeed transitive cannot be built on formal arguments

alone, it uses special properties of the coupled cluster amplitudes (in particular the

fact that the lower indices are always holes and the upper ones are particles).

For this we write the amplitudes as pairs consisting of the groups of upper and

lower indices: ti = (ui, li). We assume now that we have three amplitudes t1, t2, t3 of

the same degree and with the same number of external indices (otherwise transitivity

is obvious) so that t1 < t2 and t2 < t3. We want to show t1 < t3. As a first step we

observe that this is clearly fulfilled if for both comparisons in the assumption the same

indices (upper or lower) are used, because then the same indices are also used for the

comparison of t1 and t3. This is the case if either li < ui for all i (then always the lower

indices are used) or if ui < li for at least two amplitudes (then always the upper indices

are used). So the only interesting case is that we have ui < li for exactly one amplitude

ti. But this implies that ui contains more external indices than li, since in general hole

indices are smaller than particle indices. Since we assume that the total number of

external indices is the same for all amplitudes, it follows that ui also contains more

external indices than uj for i 6= j. Therefore we have ti < tj for i 6= j, which for i 6= 1

is a contradiction to our assumptions and for i = 1 proves the claim.

4.2.3. Simplification Algorithm

A rough sketch of the procedure is given in algorithm 1, now we want to explain its

steps in some detail (see also figure 4.4).

First we have to distinguish two cases: If the term under consideration contains

one or more permutators, the following applies to all indices. Otherwise, the external

indices are fixed and only summed indices may be changed.

42

4.2. Algebraic Approach

Algorithm 1: Term simplification

Input: Term

Output: Term in canonical form

foreach index group do
mark group as blocked;

foreach index do

if index not minimal then
check if index can be replaced by smaller one;

if possible then
rename indices;

end

end

end

end

Now we consider a product with several factors, each of which is one of the entities

described above. For the first factor, the indices are set to the smallest values possible,

and if the same indices occur in other factors as well, these are renamed accordingly.

Then the indices of the other factors are optimized successively. More precisely, not

the factors themselves are considered but the index groups. For each index group the

procedure is as follows: For the first index it is checked whether it has the smallest

value within its type. If this is not the case, it is tried out if it can be replaced by this

smallest index. In most cases this index has been used before in other groups, then

the exchange is only possible if it can be compensated within the groups that were

already optimized (by exploiting the antisymmetry properties of amplitudes, integrals

and operator strings or by interchanging amplitudes of the same type). If this is not

the case the test is repeated with next larger index and this is iterated until a valid

index is found or the original index is reached. For the following indices the iteration

is started with the successor of the last used index of the same type.

To one case we have to pay special attention, namely to the permutators. Here we

have not only the antisymmetry property within the index groups, but we may also

interchange different groups. For our purpose now we can restrict to groups of the

same size. The interchange is easy if both groups have only one element, otherwise

several pairs of indices have to be changed. For each of them the same test as before

has to be performed.

Example
We want to demonstrate how the algorithm works with a simple example, namely the

term
∑

iklcd

tcdkl tAi vId
kl
, which is equivalent to

∑

ijkab

tab
ij tAk vIa

ij
. The successive index changes

are shown in the following table:

43

4. Term Simplification

i and i0 in
this permutator?

yes
no

Group part of
permutator?

no yes

Group (anti-)
symmetric?

no yes

i summed?

no
yes

i > i0?

no
yes

in a blocked
group?

i or i0

yes

no

Go to (next)
blocked group.

or end.
Go to next index

this group?
i and i0 in

yes
no

no

yes

i0 → i0 + 1
Exchange i and i0

not allowed.

no
yes

Exchange i ↔ i0

i0 → i0 + 1

Permutator?

no

yes

Another
group blocked?

allowed?
Exchange of groups

Figure 4.4.: Illustration of the optimization procedure for one index group. Here i de-

notes an arbitrary index, i0 the optimal index at the present position. The

case that an index exchange can be compensated by interchanging ampli-

tudes is not shown.

44

4.2. Algebraic Approach

step group index minimal? operation result

1 kl k no k ↔ i
∑

iklcd

tcdil tAk vId
il

2 l no l ↔ j
∑

ijkcd

tcdij tAk vId
ij

3 cd c no c ↔ a
∑

ijkad

tad
ij tAk vId

ij

4 d no d ↔ b
∑

ijkab

tab
ij tAk vIb

ij

5 k k yes
∑

ijkab

tab
ij tAk vIb

ij

6 Ib b no b ↔ a
∑

ijkab

tab
ij tAk vIa

ij

7 ij i yes
∑

ijkab

tab
ij tAk vIa

ij

8 i yes
∑

ijkab

tab
ij tAk vIa

ij

External indices are not listed since there is no permutator present. In the fifth step, the

index k is not the absolute minimum, but it can not be exchanged with i or j because

they are blocked.

4.2.4. Implementation

The representation of terms in the program closely resembles the illustration given in

figure 4.1. An expression, i.e. a linear combination of terms, corresponds to a tree, and

each term is a subtree. There is a general class Node and derived from it are special

classes representing the different objects within a term, the arithmetic operations (ad-

dition and multiplication), and rational numbers (which occur as prefactors of terms).

Each node contains a pointer to the node above it (“parent”), which is zero if the node

is the root node, and a list of its “children”. So it is possible to move within the tree in

different directions: upward, downward, and horizontally among the children of one

parent node. While some functions, which affect the tree as a whole or are indepen-

dent of the node type, are only implemented in the base class, for many operations we

make use of virtual functions. That means that the same operation can have different

effects on different types of nodes. Many functions are called recursively for the chil-

dren, until they reach the point where they take effect. So we do not need to know in

advance which type of node is at which position in the tree.

4.2.5. Discussion

We want to discuss briefly under which conditions this algorithm yields the same

canonical form for all equivalent terms. It is rather clear that each step transforms

45

4. Term Simplification

a given term into an equivalent one which is smaller with respect to the order defined

above. So for the algorithm to work, the following statement has to be true: If a term is

not the minimal element in its equivalence class, then there is always an allowed index

renaming which makes it smaller.

There are, however, cases where this condition is not fulfilled, as the following ex-

ample shows. Consider the term

tai tbjv
ic
kb

vjk
ac

(I)

which is (internally) ordered since with respect to the lexicographical order described

in 4.2.2 the first integral is smaller than the second. This term is not minimal, since it

is equivalent to

tai tbjv
ik
bc

vjc
ka

(II)

which is obviously smaller (since k as a hole index is smaller than the particle

index c). To transform (I) into (II) we have to interchange i with j and a with b, which

yields tbj tai v
jc
ka

vik
bc
, and then order the factors. But the algorithm in its present form

would not do this, since it does not allow for the interchange of integrals in the index-

renaming step. The interchange of b in vic
kb

(which is the first non-minimal index in (I))

with a is not allowed, since it requires also the interchange of i and j and this would

make the first group in the integral – which has already been optimized is is therefore

blocked – larger.

But if we restrict our considerations to standard coupled cluster equations, there are

certain constraints which reduce the number of possible index constellations drasti-

cally:

C1 There is only one integral, and each summation index has to appear in this inte-

gral.

C2 There are at most four summation indices, two of each type.

C3 If there are two summation indices of the same type, they belong to the same

group in the integral.

C4 All equivalent terms which are internally ordered have the same index structure.

Under these conditions we can show that the algorithm yields the desired result. As-

sume that an index p in a given position is not optimal, and denote the optimal index

by p0. Because of C4, p and p0 have the same type. If p0 has not appeared in the term

before, it is clear that p can be replaced by p0. The case the p0 has been used before

can not occur, since either the current position is on an amplitude, then p0 can not be

the optimal index in this position if it already present on another amplitude, or the

current position is on an integral, and p0 also has to occur on the integral (C1) in the

same group as p (C3). In the second case there are two possibilities: If p stands before

46

4.3. Graph-Based Approach

p0, the term is not internally ordered. If p0 stands before p, p0 can not be the optimal

index in the position of p. So in any case we get a contradiction.

But we are also interested in more general cases, for example in expressions like the

wave function varianceb where two integrals per term occur. Considering the above

example, one could think of modifications solving this problem, e.g. a different order-

ing relying primarily on the index structure and only after that on a lexicographical or-

dering. But there is no guarantee that this would help in all cases, e.g. in those where

deexcitation operators are present, as for example in gradient calculations. It seems

that it is very difficult – or maybe even impossible – to construct an algorithm which

transforms such general terms into a canonical representative. Most implementations

mentioned in 3.1.4 as well as an algorithm similar to ours, which was developed by

Wladyslawski and Nooijen [105], are also restricted to terms with one integral. In the

formula generation part of the TCE, canonicalization is used as a first step, while for

problematic cases a more elaborate comparison procedure is used [37].

As we wanted to have a program which is as generally applicable as possible, we

decided to take a completely different approach.

4.3. Graph-Based Approach

The key observation from which we start here is that the term equivalence can be

seen as a topological problem. We have seen in the previous section that the main

difficulty in identifying equivalent terms is the arbitrariness in the summation index

labels, since it is very hard – sometimes even impossible – to find a canonical form

for them. Therefore it is natural to ask what the relevant information carried by these

index labels is, and it turns out that it can be reduced to two points:

• Each index has a type, in our case particle or hole.

• Summed indices are distinguished by the fact that they appear twice in a term, in

different factors, and so each summed index defines a connection between two

factors.

The terms we consider here are slightly different from those in the previous section.

We concentrate on the simplification of the final equations (as delivered by our con-

traction routine described in 3.1.5), therefore the terms do not contain operators any

more. We also do not take into account the permutators explicitly. We can assume here

that the external indices are always in the same fixed order. Under this condition the

permutators are not relevant for the equivalence problem, as will become clear later.

So we are left with two types of factors, namely amplitudes and integrals.

bThis is defined as 〈Ψ|Ĥ2|Ψ〉−〈Ψ|Ĥ|Ψ〉
2
and can be used as a criterion for the quality of an approximate

wave function [104].

47

4. Term Simplification

4.3.1. Representation of Terms as Graphs

4.3.1.1. General Considerations

In mathematics, a (undirected) graph is defined as a pair (V,E) where V is a set of

vertices (or nodes) and E a set of edges (or connections). Each edge is given by a

pair of vertices. The second observation above suggests to represent terms as graphs

where (summed) indices correspond to edges, while it is less clear what the nodes of

this graph should be. At first glance, as noted before, summed indices connect factors.

Then the graph corresponding to the term vIa
Bi

tAi taJ would look like this:

t t

v

i a

But each factor has two distinct groups of indices, coming from annihilation and cre-

ation operators, respectively. While for amplitudes (at least those of the usual cluster

operator) the group an index belongs to is determined by its type, this is not the case

for integrals. On the other hand, indices within one group are exchangeable due to the

antisymmetry properties of the corresponding tensors, hence it does not make sense

to distinguish between them in the representation of a term. Therefore we decided to

take index groups as nodes (figure 4.5(a)). Finally, the external indices can not be ig-

nored completely. They also form two groups, so we need two additional nodes (figure

4.5(b)). Since we assume the terms to be antisymmetric with respect to the exchange of

external indices of the same type – here the permutators are implicitly present – these

nodes have the same properties as the other ones. To sum up: To represent the kind

of terms we are considering here, we need three types of nodes, namely amplitude in-

dex groups, integral index groups, and external index groups, and two types of edges,

corresponding to particle and hole indices, respectively. Each index is represented by

one edge, the distinction between summed and external indices is given by the types

of nodes the edge connects. This classification makes our problem somewhat differ-

ent from those of classical graph theory, where all vertices and edges are in principle

equal. Therefore we can not apply one of the known standard algorithms to test the

equivalence of graphs.

For the figures in this section showing graphs the following conventions apply: The

factors are depicted as rectangles (amplitudes) or ovals (integrals). The actual nodes

(index groups) are circles connected to the factors they belong to by black lines. Index

groups not connected to a factor are external. The number of the index group is written

in the circle. The edges of the graph are drawn as blue or red lines for hole and particle

indices, respectively.

48

4.3. Graph-Based Approach

11

t t t t

vv

0

1

0

0

1 0

1

10

0

0

1

A J

i a i a

IB

(a) (b)

Figure 4.5.: Construction of the graph for the term vIa
Bi

tAi taJ .

4.3.1.2. Realization in the Program

There are several different data structures by which a graph can be represented:

1. A list containing the nodes and for each node a list of nodes with which it is

connected (or, equivalently, a list of the edges ending in this node)

2. The set of edges (for each edge the two end nodes are given)

3. An ordered list of nodes and a connectivity matrix where the entry with indices

i, j is 1 if node i is connected to node j and 0 otherwise

For our purposes the second possibility is the most appropriate. So for us a graph

is basically a set of connections (edges), where each connection contains the following

data: start node, end node, and type (particle or hole). Although our graphs are not

directed, we have to (formally) distinguish start and end node. The roles are deter-

mined by ordering the nodes. A connection always runs from the smaller to the larger

node. The nodes, called FactorSockets here, contain the following information:

• Type of the factor, this can be “hermitian tensor” (e.g. integral), “non-hermitian

tensor” (e.g. amplitude), or “external”

• Identifier (name) of the factor, e.g. t for an amplitude

• Structure of the factor, i.e. number and sizes of index groups

49

4. Term Simplification

• Number of the factor, i.e. position among all factors of the same type and

structure

• Number of the index group within the factor

• Position of the index within the group

Since in several places during the graph comparison algorithmdescribed below only

part of this data is needed, we did not put it all into one class. Instead, the informa-

tion is stored in a hierarchy of different classes, which are shown in figure 4.6. The

last point is not part of the node specification used for the comparison of graphs, but

it is necessary to identify connections uniquely and to determine the sign of the term

represented by the graph. Figure 4.7 shows the graph from figure 4.5 with its fac-

tor labels. These are to be read as follows: First, the FactorKey is given (in the in-

ner parentheses). The first number codes the FactorType (0: HermitianTensor,
1: NonHermitianTensor), then the structure is shown (each number within the

square brackets is the size of an index group), and finally the name of the factor. In

addition to the FactorKey, the number nth, which is part of FactorKey2, is printed
to distinguish between different factors with the same key (in the example, there are

two t amplitudes with the same structure).

As another example, we consider the terms vij
ab

tAi tab
Ij and vij

ab
tAj tab

Ii , which are quite

obviously equivalent. The corresponding graphs are shown in Figure 4.8. To illustrate

the correspondence between terms and graphs, we have added labels for the factors

and connections again. If we disregard these labels, the two graphs look exactly the

same. This is because the way the graph is printed does not reflect directly how it was

defined. The algorithm which does the graph layoutc [107] already yields a sort of

canonicalization.

4.3.2. Graph Comparison Algorithm

4.3.2.1. Overview

We start from an expression as delivered by the evaluation procedure described in

3.1.5. The simplification of such an expression with our graph-based algorithm in

principle consists of the following steps, which will be explained in more detail below:

1. Convert each term of the expression into a graph and store it together with the

corresponding coefficient.

2. Determine fingerprints of all graphs.

3. Test graphs with the same fingerprint for equivalence and add coefficients of

equivalent graphs.

4. Convert the reduced set of graphs and coefficients into an expression again.

cWe use the tool dot which is part of the Graphviz package [106].

50

4.3. Graph-Based Approach

FactorSocket

+iiGroup: int

FactorKey3

+iGroup: int

FactorKey2

+nth: int

FactorKey

+type: FactorType

+structure: vector<int>

+id: string

Connection

+factorSocket1: FactorSocket

+factorSocket2: FactorSocket

+pht: ParticleHoleType

2

1

TermGraph

-_connections: ConnectionSet

-_originalTerm: TensorSymbols_Kroneckers

ConnectionKey

+factor1: FactorKey

+factor2: FactorKey

+pht: ParticleHoleType

TermFingerprint

-_factorCount: map<FactorKey,int>

-_connectionCount: map<ConnectionKey,int>

n

1

2

1

n

1

n

1

Figure 4.6.: UML diagram for graph components

51

4. Term Simplification

 0

 0

 1 ((0, [2, 2],v), nth=0)

 1

 1

 0

((1, [1, 1],t), nth=0)

 1

 0

((1, [1, 1],t), nth=1)

Figure 4.7.: Example graph including factor labels

 0

 1 1

 1

 0

 0

 1 0

ba

tAi tab
Ij

〈ij||ab〉

A

i j

I
 0

 1 1

 1

 0

 0

 1 0

A

j i

I

a b

tAj

〈ij||ab〉

tab
Ii

Figure 4.8.: Graphs for two equivalent terms with index labels

52

4.3. Graph-Based Approach

The second step is necessary since the explicit comparison of graphs (see 4.3.2.4) is

rather time-consuming. The pre-selection by fingerprints avoids explicit comparisons

of graphs which are easily seen to be non-equivalent.

In practice, for efficiency reasons all steps except the last are carried out termwise.

So, after the fingerprint of a term has been determined, it is first checked if this finger-

print has occurred before. If there has been no term with the same fingerprint so far,

the term is just stored, together with this fingerprint and the corresponding coefficient.

Otherwise, it is checked for each term with the same fingerprint if it is equivalent to

the current one in a recursive procedure (see 4.3.2.4). If an equivalent term is found,

the coefficient of the current term – multiplied by −1 where necessary – is added to

the stored coefficient. Otherwise, the term is stored as before. In the end we have

a collection of inequivalent terms with corresponding coefficients, which can then be

converted to a formula again. The whole procedure is summarized in Algorithm 2.

Algorithm 2: Graph-based simplification

Input: Expression

foreach Term do
construct Graph g;

determine Fingerprint;
if new Fingerprint then

store Graph and Coefficient to GraphList
else

foreach Graph h in GraphList do
if recursiveTest(g,h,start pos) then

determine sign;

add coefficient times sign to stored coefficient;

end

end

end

end

4.3.2.2. Definition of Equivalence

First we want to discuss briefly how the concept of term equivalence (see 4.1) can be

transferred to our graphs. Of course we want the result to be the same in the end,

therefore we start with the following definition:

Definition 4.1. Two graphs are called equivalent if they represent equivalent terms.

But this is not very useful, we need criteria to check graphs for equivalence, similar

to the term transformations listed in section 4.1. The index renaming (T2) does not

53

4. Term Simplification

appear here. Still, we have two different comparison methods for graphs reflecting

different kinds of term transformations, but they are grouped differently: Instead of

distinguishing permutations of the factors and operations on one factor, we consider

the index groups as primary units (since they are the nodes of our graphs).

First, we need a notion for graphs which are “nearly equal”, but not identical.

Definition 4.2. Two Graphs G1 and G2 are called strictly equivalent if there exists a

bijective mapping from the set of connections of G1 to the set of connections of G2

which maps each connection to an equivalent one.

Connections are equivalent if they have the same type and their start and end nodes

are equal if the index position is disregarded.

That means strictly equivalent graphs are identical up to the order of the indices

within the groups and the order of the connections. Since the order of the connections

is only amatter of the internal representation of a graph, this property basically reflects

the antisymmetry of the corresponding tensors. In particular it implies equivalence.

In practice, when checking for strict equivalence it is sufficient to map the connections

representing summed indices, if the total number of connections has been compared

before, which is sensible anyway for efficiency reasons. Terms which only differ in the

naming of their summation indices (operation T2) or the order of indices within the

groups lead to strictly equivalent graphs by definition. Since the positions of factors

and groups are used to identify nodes, the other operations listed in section 4.1 can

also be seen in the graph representation. Both are realized as permutations of nodes.

Definition 4.3. A permutation of the nodes of a graph is admissible if it interchanges

the index groups of a factor of hermitian tensor type (“Bra-Ket permutation”) or per-

mutes the positions of factors with the same FactorKey (“factor permutation”).

A general admissible permutation contains both kinds of operations, but in practice

we apply them separately. Using this definition we can state the following

Criterion for Equivalence:

Two Graphs G1 and G2 are equivalent iff there is an admissible permutation of the

nodes of G1 such that the resulting graph is strictly equivalent to G2.

4.3.2.3. Fingerprints

For the construction of the fingerprint each node is reduced to its FactorKey contain-

ing the basic data of the factor (type and structure) as shown in Figure 4.6. Similarly,

a ConnectionKey is defined for each edge. It consists of the FactorKeys of start

and end node and the type of the connection. The fingerprint now contains a list in

which each FactorKey appearing in the corresponding graph is stored together with

54

4.3. Graph-Based Approach

a number indicating how often it appears (factorCount), and a similar list for the

ConnectionKeys (connectionCount). These classes are also shown in figure 4.6.

It is obvious that graphs with different fingerprints can not be equivalent.

4.3.2.4. Explicit Comparison

Graphs with the same fingerprint are compared by a recursive algorithm. Since this is

a central part of the whole simplification procedure, we show the code for this function

explicitly in Listing 4.1. It is a member function of the class DistinctTermGraphs
which consists essentially of a list of TermGraphs together with their corresponding

coefficients. The graphs in the list represent different equivalence classes with the same

fingerprint.

The recursion parameter (map<FactorKey, int>::const_iterator i) is a

position in the factorCount of the corresponding fingerprint. If this is maximal,

i.e. there are no entries left, the recursion base is reached (line 3). Then it is checked for

every entry in the list (iterator j, line 5) whether the graphs are strictly equivalent.

If a matching graph is found, the coefficients of the current graph (multiplied by the

appropriate sign, see 4.3.2.5) is added to the stored coefficient (line 9). Otherwise, the

function returns false (line 12), which means that the tested term belongs to a new

equivalence class. Then the graph and its coefficient are added to the list (not shown

in the code).

If the recursion is not finished, the current graph is modified by permutations which

are admissible in the sense of definition 4.3. First (line 16), a factor permutation is car-

ried out among all factors with the FactorKey determined by i. The number of these

factors is given by i->second. If the FactorKey represents a hermitian tensor, an

additional “Bra-Ket permutation” on the corresponding factors are performed. Since

for each factor there are only two possibilities (interchange or not), the possible combi-

nations of these permutations can be represented by bit patterns (line 18). For j=0, no
Bra-Ket interchange takes place. After the application of the permutation(s), the func-

tion is called again for the next FactorKey (line 21 or 25). In this way, all possible

combinations of permutations are tried out until a matching graph is found or there is

no possibility left.

4.3.2.5. Sign Determination

The sign with which the coefficient of a term is multiplied before being added to the

“old” coefficient is determined as the signum of the permutationmapping the nodes of

the corresponding graph to those of the reference graph with which it was compared.

Since the connections are ordered based on the ordering of the nodes described above,

differences between the two graphs can only be due to permutations within index

groups, so this sign rule reflects the antisymmetry properties of the involved tensors.

55

4. Term Simplification

Another possible sign change is due to the permutation of external indices. This

applies to all terms in an equivalence class and is taken into account when the graph

is converted into an algebraic expression again.

Listing 4.1: Recursive graph comparison

1 bool DistinctTermGraphs::recursiveFactorPermutations(const
TermGraph & tg, const map<FactorKey, int> & factorCount,
map<FactorKey, int>::const_iterator i, const RationalNumber & rn)

2 {
3 if(i==factorCount.end()) //recursion base
4 {
5 for(iterator j=begin(); j!=end(); ++j)
6 if(j->first.strictEqv(tg)) ///matching term found
7 {
8 // determine permutation (lineUp)
9 j->second += RationalNumber(lineUp.parity()) * rn;
10 return true;
11 }
12 return false;
13 }
14 for(Permutator p(i->second); p.valid(); ++p)
15 {
16 TermGraph h(tg.applyFactorPermutation(i->first, p));
17 if(i->first.type==HermitianTensorType) //bra/ket symmetry
18 for(int j=0; j<(1 << i->second); ++j) //permutations
19 {
20 TermGraph hh(h.applyBraKetPermutation(i->first, j));
21 if(recursiveFactorPermutations(hh, factorCount,

++map<FactorKey, int>::const_iterator(i), rn))
22 return true; //matching term found
23 }
24 else
25 if(recursiveFactorPermutations(h, factorCount,

++map<FactorKey, int>::const_iterator(i), rn))
26 return true; ///matching term found
27 }
28 return false;
29 }

4.3.2.6. Examples

The two graphs in Figure 4.8 look identical, which means essentially that they are

strictly equivalent in the sense of Definition 4.2, since they only differ (possibly) in

56

4.3. Graph-Based Approach

the numeration of indices within groups, which is not visible in the figure. Figure 4.9

shows an example of two graphs which are equivalent. They are not strictly equivalent

since the two amplitudes have to be interchanged to achieve congruence. Here we

have included the factor labels to make this visible. In the following figures we do not

show them to save space.

 0

 0 0

((0, [2, 2],v), nth=0)

 1

 1

 0

((1, [1, 1],t), nth=0) ((1, [1, 1],t), nth=1)

 1

 1

 0

 0 0

((0, [2, 2],v), nth=0)

 1

 1

 0

((1, [1, 1],t), nth=0)

 1

 1

((1, [1, 1],t), nth=1)

Figure 4.9.: Graphs with the same fingerprint which are equivalent but not strictly

equivalent

The two graphs in Figure 4.10 have the same fingerprint, since they both contain two

T1 amplitudes and one two-electron integral and have the same types of connections.

But they are not equivalent, because in the left graph the integral is connected to both

amplitudes, and in the right graph only to one.

 0

 0

 0

 1

 1

 1

 1

 0

 0

 0

 0

 1

 1

 1

 0

 1

Figure 4.10.: Non-equivalent graphs which have the same fingerprint: vIa
Ai

tBi taJ and

vIa
Ai

tai t
B
J

57

4. Term Simplification

In this case the non-equivalence could also be seen easily from the algebraic expres-

sions, since the second term is disconnected. But also in the non-obvious case from 4.1

the graphs clearly show the different structure of the terms (figure 4.11).

 0

 1 1

 1

 0

 0

 1

 1

 0 0

 0

 1 1

 1

 0 0

 0

 1

 1

 0

Figure 4.11.: Non-equivalent graphs which have the same fingerprint: vik
ab

vjl
cd

tckt
d
l t

ab
ij

and vik
ad

vjl
cb

tckt
d
l t

ab
ij

4.3.3. Discussion

The simplification procedure described in this section relies on a rather sophisticated

data structure used to represent algebraic terms as graphs. The algorithm itself is in

turn conceptually simpler than the algebraic approach in section 4.2. Moreover, it is

more generally applicable, since it does not need assumptions on the term structure,

e.g. the number of integrals. At the moment, the types of factors that can be treated are

restricted to one- and two-electron integrals (f and v, respectively) and amplitudes of

the cluster operator (t). But this list could easily be extended, since the algorithm does

not make use of special properties of these tensors, except that there are two groups of

indices on the integrals.

To show the effect of the simplification, we list in table 4.1 the number of terms

before and after the simplification for some expressions containing deexcitation oper-

ators. These are more complicated than the usual CC equations. Some of the resulting

formulas are shown in appendix C.2.

The efficiency of our simplification algorithm could certainly be improved, but since

it is not time critical for coupled-cluster calculations, we did not investigate this fur-

ther.

58

4.3. Graph-Based Approach

Table 4.1.: Term numbers before and after simplification for expressions

〈Φ0| exp (T̂).X̂ exp (T̂)|Φ0〉, where T̂ = T̂1 + T̂2 and the exponential

series is evaluated up to order n.

term numbers

X̂ n before simpl. after simpl.

Ĥ 1 28 18

2 1150 319

3 112394 6132

Ĥ2 1 650 215

2 98181 9410

59

5. Tensor Contraction

The tensor contraction module of our program package is designed to be rather gen-

erally applicable, so it can not only be used to evaluate equations of coupled-cluster

or similar methods. We only assume that we have objects which are described by a set

of indices. These indices can be plain numbers or have additional structure. Our main

purpose, however, is the case where the indices represent orbitals and the tensors are

amplitudes (of the cluster operator or other operators), integrals (which could also be

seen as amplitudes of the Hamilton operator), and objects constructed from them by

contraction (intermediates and residuals as defined in chapter 3). For simplicity we

will refer to this setup as the “coupled-cluster case” in the following, although it is not

limited to that particular method.

The main problem in the (efficient) implementation of a tensor contraction proce-

dure for the evaluation of coupled-cluster equations is the complicated structure of

these tensors. This structure – which will be discussed in more detail in section 5.1

– leads to a conflict between memory usage and simple access to the tensor entries.

Therefore, when we describe our implementation in section 5.3, we put special em-

phasis on the structures used to represent tensors, to iterate over them and to address

individual tensor entries. Before we do this, we discuss different approaches to the

contraction problem in general in section 5.2.

5.1. Tensor Structure

If the coupled-cluster equations are derived in terms of spin orbitals, the amplitudes

have the property that they are antisymmetric with respect to the permutation of in-

dices belonging to the same type of operators, i.e. annihilators or creators (in the usual

notation this corresponds to lower and upper indices, e.g. we have tab
ij = −tab

ji =

−tbaij = tbaji). To avoid the storage of redundant data, the indices within one such group

are usually restricted to be in ascending order. Similar properties hold for the two-

electron integrals, which are antisymmetrized as described in 2.2.1.4, and the residuals.

The symmetry properties of the intermediates resulting from contractions of the input

tensors depend on the factors from which they are constructed and on the contraction

pattern.

61

5. Tensor Contraction

Besides this “internal” symmetry, additional “external” restrictions can be imposed

on the indices:

1. If the system (e.g. the molecule) under consideration has a nontrivial symmetry

group (in case of molecules this is a point group), also the expression for its

(correlation) energy is invariant under these symmetry operations. To exploit

this property, only symmetry-conserving excitations are included in the cluster

operator. This means that the product of the irreducible representations of the

creation operators must be equal to the product of the irreducible representations

of the annihilation operators:

⊗

a

Γa =
⊗

i

Γi (5.1)

2. If spin orbitals are used in coupled-cluster, the resulting wave function can – in

the general open shell case – not be expected to be a spin eigenfunction. But at

least the desired spin projection – i.e. the expectation value of Ŝz – can be en-

forced by including only those excitations where the sum of the spin projections

of all creation operators minus the sum of the spin projections of all annihilation

operators is zero.

The same restrictions apply to the integrals and in principle also to the intermediates.

The latter is not completely obvious and will be discussed in section 5.3.

Both types of restrictions together make a “compressed” representation of tensors

– i.e. one which contains only non-redundant entries – rather difficult. While the

antisymmetry leads to a “triangular” form, the external restrictions cause sparseness

in the sense that certain entries are zero. Or, to avoid storing zeros, certain index

combinations have to be excluded, but there is no simple rule which ones. And to

evaluate a complicated condition (or, in fact, any “if” condition) each time a tensor

entry is accessed is prohibitive for efficient operations.

5.2. Possible Approaches

There are several ways to realize a tensor contraction in a computer program, which

vary in their implementational complexity, efficiency, and applicability.

5.2.1. Explicit Loops

If a contraction is given in the form

∑

i1,...,ik

XI1...Im,i1...ik
YIm+1...In,i1...ik

62

5.2. Possible Approaches

(compare equation (3.1), here the product contains only two factors) it is in principle

straightforward to write down the corresponding code. The basic structure is shown

in algorithm 3. The foreach loops there would in fact be replaced by several loops

over the individual indices (summed and non-summed, respectively).

Algorithm 3: Straightforward tensor contraction algorithm

Data: Tensor t1, Tensor t2, Tensor t3 initialized to 0

Result: Tensor t3
foreach entry of t3 do

foreach summed index do

for j=1,2 do

construct index i(j) from entry and summed index;

end

entry += t1[i
(1)] ∗ t2[i

(2)];
end

end

This approach, however, brings about several problems. First, the loops needed

vary from contraction to contraction. To avoid writing separate code for each type

of contraction (which would severely limit the applicability), there are basically two

possibilities:

1. Use generic loops or an abstract iterator

2. Generate specialized code in an automated way.

The first method is convenient, but inefficient. The main disadvantage is that for each

multiplication three tensor entries (first factor, second factor, and result) are needed

and the addressing for these - which is expensive if the tensors are stored in a com-

pressed form - takes place within the innermost loop. Moreover, it is difficult to exploit

information about the particular structure of the tensors.

While the tensor addressing can be done efficiently in the second approach by using

an incremental addressing scheme, the drawback remains that the contraction is per-

formed as a sequence of single multiplications. Such a code can be rather efficient for

small tensors, but for larger problems a good performance can only be reached with

vectorized operations. Another problem is that for higher excitations the number of

possible contraction types grows rapidly, and also the code for one contraction can

become very long.

63

5. Tensor Contraction

5.2.2. Vectorization

A tensor contraction can be cast into the form of a matrix multiplication by defining

super-indices consisting of all indices that are summed or non-summed, respectively,

like in the following example: The contraction

ZIJKL =
∑

ij

XIJijYKLij (5.2)

can be written as

ZĨK̃ =
∑

ĩ

XĨ ĩYK̃ĩ =
∑

ĩ

XĨ ĩY
T
ĩK̃

= XY T (5.3)

where Ĩ = (IJ), K̃ = (KL), ĩ = (ij).

However, this leads to several practical problems. First, for thematrixmultiplication

to be efficient, the matrix entries have to be stored in the right order (row-wise or

column-wise, depending on the implementation). In any case, the summed indices

have to be those that vary most rapidly. But the same tensor (e.g. the T2 amplitudes) is

used in different contractions and not always the same indices are contracted, so this

requirement is difficult to fulfill. Basically there are two possibilities:

1. Store each tensor in different ways corresponding to different contraction

patterns.

2. Store each tensor only once and rearrange the entries temporarily for each

contraction.

The first approach is clearly more efficient regarding calculation time, but it is only

practicable under certain limiting conditions. First, of course all occurring contraction

patterns have to be known in advance. Second, the needed storage space has to be

affordable, so there should not be too many tensors and storage forms and the indi-

vidual tensors must not be too large. Since number and size of tensors grow strongly

for higher excitations, this is infeasible for our purposes.

Besides the order of the indices, there is an additional complication. If the tensors are

stored in a compressed way taking into account the restrictions described above, they

can not be interpreted as matrices directly. For in a matrix, row and column (super-)

index have to be independent. In particular there can be no order relation between

them. Hence, if there is an index group where some indices are contracted and some

others are not, the inequality restriction in this group has to be (partly) abandoned.

This increases the size of the matrix compared to the tensor and causes some matrix

entries to be zero.

If we consider the example above (equations (5.2) and (5.3)) and assume that all

tensors are totally antisymmetric (i.e. for instance for X we assume I < J < i < j) and

all indices run from 1 to some number n, then each tensor has the size
(
n
4

)
(since here

64

5.2. Possible Approaches

all tensors have four indices). Now for the matrices we are only left with restrictions

between two indices each, e.g. I < J and i < j, while there is no relation between e.g.

I and i. So the size of the matrices corresponding to X , Y and Z is
(
n
2

)2
which is much

larger than
(
n
4

)
a. While all entries where a row index is equal to a column index (e.g.

I = i) are zero, each entry where all indices are different appears (up to sign) several

times in the matrix (in this example four times). The sign of an entry is the parity

of the permutation bringing the indices into the correct (ascending) order. We would

like to emphasize that this increase in size affects only the memory requirements. The

number of multiplications needed stays the same as for the “direct” contraction. The

number of zeros due to antisymmetry is in practice not very large. We found e.g.

fractions of 6 − 10% for CCSDT.

For external restrictions, the problem is that the criteria depend on the values of all

indices and thus cannot be evaluated for row or column indices alone. So the indices

run without restrictions on their symmetry properties, and all matrix entries where the

combination of row and column indices does not fulfill the symmetry requirements are

zero. But in contrast to the zero entries caused by antisymmetry, these zeros occur in

blocks, if the entries are arranged in a smart way. This can be exploited to make the

contraction more efficient, as will be discussed later (see 5.3.3).

5.2.2.1. Matrix–Vector Multiplication

In the implementation by Kállay and Surján [41] amplitudes are treated differently

from integrals and intermediates. While on amplitudes there are only two sorts of

indices, namely summed and external (i.e. those determined by the projection), the

other tensors can have a third sort of indices, namely those that will be summed in a

subsequent contraction. Only the latter and the summed are used as matrix indices,

so each integral or intermediate corresponds to a collection of matrices, labeled by

external indices. All loops over external indices are carried out explicitly. The ampli-

tudes having the right external indices are then arranged into a vector indexed by the

summed indices. The innermost operation hence is a matrix-vector multiplication.

For us, this procedure has two drawbacks. First, the multiplication of a matrix with

a vector (which can of course be seen as a special case of matrix–matrix multiplication)

does not have the optimal efficiency (the best case would be the multiplication of two

square matrices). This is illustrated by table 5.1. In the limit of large matrices, dgemm
is about a factor of 14 faster than dgemv. Second, the assumptions about the index

structure of amplitudes and intermediates are somewhat restrictive. For the sake of

generality we prefer to treat all tensors equally.

aIn the limit for large n the factor is six, but for smaller n it is larger (up to 36 for n = 4). Of course other

cases are less dramatic, for example for two indices the factor ranges between two and four. But this

is still not negligible, and if more than one index group is split in this way, the factors become even

larger.

65

5. Tensor Contraction

Table 5.1.: Performance (in MFLOPS per second) of matrix–vector (dgemv) and

matrix–matrix (dgemm) multiplication routines from the mkl 10.2 library on

a Core 2 Duo 3 GHz processor (single core used). “size” is the dimension of

the (square) matrices and the vector.

size dgemv dgemm

4 369 352

7 952 923

10 1701 1931

14 2688 3145

22 3846 4202

32 5814 6667

45 3906 3623

71 2033 5102

100 2358 5500

141 2890 6584

224 3185 11115

316 3597 8557

447 3356 6380

707 3522 6093

1000 909 8929

1414 745 10097

2236 733 10275

3162 706 10218

5.2.2.2. Matrix Multiplication after Rearranging

In order to perform a matrix–matrix multiplication as the innermost step in the con-

traction process, it is necessary to restore the data contained in the tensors to be con-

tracted in a suitable way, as discussed above. In particular, the tensors, which are

stored in the smallest possible form, are partly “unpacked” by releasing some of the

restrictions. The increase in size is minimized by contracting tensors blockwise, where

the indices in each block have fixed symmetry properties (see 5.3.3 for details).

The rearranging is a rather complicated process, but it scales only as O(N2), where

N is the matrix dimension (square matrices assumed), compared to O(N3) for the

matrix multiplication. So for large tensors the matrix multiplication will eventually

dominate the total contraction time, but it is hard to get to this point because it has

a relatively small prefactor. Moreover, the blockwise processing leads of course to

smaller matrices. The goal of our implementation is to get the prefactor for the rear-

66

5.3. Actual Implementation

ranging step as small as possible.

A similar strategy has been pursued by Hirata in the development of the TCE [37].

This program contains a code generator which produces specialized code for each type

of contraction. All tensors are processed in blocks (called tiles there), which can be

defined e.g. by symmetry properties. Each tile is rearranged (if necessary) during the

contraction, and then a matrix–matrix multiplication is performed.

5.3. Actual Implementation

In this section we start from a rather general setup, but in the course of the discus-

sion several details are only given for the coupled-cluster case. We also use this as an

example to illustrate important points.

5.3.1. Tensor Representation

A central idea of the tensor representation in our program is to separate information

needed in different steps as far as possible. In particular, the entries of a tensor are

separated from the structural information. Following this idea, a tensor is constructed

in three steps. The relevant classes and their relations are shown in figure 5.1.

First, there is a so called SymbolicTensor, which is a quite immediate adap-

tion of the symbols coming from the formula generation part of the program, but is

more general in several respects. The latter consist basically of an identifier – distin-

guishing between amplitudes, one- and two-electron integrals – and two vectors of

indices corresponding to annihilators and creators in the original operators, respec-

tively. The indices carry – besides the operator type – the information whether they

are summed or external and whether they are hole or particle indices, i.e. correspond-

ing to occupied or virtual orbitals, and a number differentiating indices of the same

type. This unique identification is important for the contraction procedure, since the

indices to be contracted are determined as those indices which are common to two

tensors. Within the tensor contraction part of the program the indices are just inte-

ger numbers, the properties mentioned above are coded in this number by a separate

TensorIndexInterpretation class. This is done to have a simple structure and

to make this module usable for different applications. For example, the information

about the operator type is only needed if spin orbitals are used, since it determines the

sign with which the spin projection of this orbital is to be multiplied (see 5.3.2.4). Also,

the index types are not denoted as hole and particle here, but represented by numbers,

so in principle there could be more (or less) than two types.

Another difference to the formula generation module is that now not only ampli-

tudes and integrals have to be represented, but also intermediates, and thus it is not

enough to have two groups of indices. To handle such structures we introduced the

67

5. Tensor Contraction

Tensor

-_p: shared_ptr<vector<ValueType> >

TensorInfo:class
ValueType:class

TensorFrame

#_info: TensorInfo

TensorInfo:class

SymbolicTensor

#_tis: TensorIndexSections

TensorIndexSections

TensorIndexSection

TensorIndex

#_idx: TensorIndexType

#_tii: const TensorIndexInterpretation *

TensorIndexInterpretation

n

1

+n

+1

Figure 5.1.: UML diagram for classes related to tensor representation

68

5.3. Actual Implementation

class TensorIndexSections. It derives from vector<TensorIndexSection>.
Each TensorIndexSection represents an index group and can contain one or

several indices. Usually, the indices in one section are of the same type, but this is not

enforced by the data structure. A SymbolicTensor object contains an instance of

TensorIndexSections and has some additional member functions like addition

and multiplication (contraction). It is assumed that the tensor represented by the

SymbolicTensor is antisymmetric with respect to permutations of indices within

each section.

While the SymbolicTensor carries only basic structural information about the ten-

sor, e.g. its dimension and symmetry properties, the class TensorFrame derived

from it, which is constructed in the second step, contains additional data allowing,

among other things, to determine the actual size of the tensor. This data, like the point

group or the number of orbitals in each irreducible representation, is collected in a

TensorInfo class.

Finally, the Tensor class derived from TensorFrame contains the actual entries.

For this we use the vector class from the STL which allows an efficient access to

arbitrary entries by index. For efficiency reasons (to avoid copying), the Tensor class

does not contain this vector itself, but a shared pointer to it. The structures needed to

find a particular entry, defined by a certain index combination, in the tensor are not

part of the tensor itself but are built when they are first needed and then cached (see

5.3.4).

5.3.2. Indices and Iterators

5.3.2.1. Index Representation

The indices used to identify particular orbitals and whose combinations identify the

tensor entries – not to be confused with the indices described above which describe

the structure of a tensor – should be simple integers for efficiency reasons, since they

appear in the innermost part of the contraction procedure. On the other hand, each

index has to carry a lot of information, e.g. for coupled-cluster whether the orbital is

occupied or virtual, which irreducible representation it belongs to and – in the case of

spin orbitals – which spin projection it has. Therefore we introduced table classes (e.g.

SpinSpatialMOTable_IrrepSzIdx for spin orbitals) which can interpret integer

numbers as structured indices. Depending on the context (i.e. which information is

needed) different tables with different numbers of hierarchy levels can be used. In

the case of coupled-cluster there are three or four levels, depending on which type of

orbitals is used. The first one is the occupation status (labeled oav for occupied/ac-

tive/virtual). The next levels are the irreducible representation (abbreviated irrep)
and (only in the case of spin orbitals) the spin projection sz. The last one is the position
of the index among all with the same properties (idx). A small example (ten occupied

69

5. Tensor Contraction

and four virtual spin orbitals) is shown in table 5.2.

Table 5.2.: Example for hierarchical index orbital table. Here, flatIdx numbers all

orbitals, starting with the occupied ones. The value of oav is 0 for occupied

orbitals and 2 for virtual orbitals (active orbitals, which are not present in

the example, would have oav=1).

level
flatIdx 0 1 2 3

oav irrep sz idx

0 0 0 0 0
1 0 0 0 1
2 0 0 0 2
3 0 0 1 0
4 0 0 1 1
5 0 0 1 2
6 0 1 0 0
7 0 1 1 0
8 0 2 0 0
9 0 2 1 0
10 2 0 0 0
11 2 0 1 0
12 2 2 0 0
13 2 2 1 0

We want to be able to generate all possible index combinations for a tensor, i.e. it-

erate over its entries, in a systematic manner. For example it is reasonable to change

the symmetry classes the indices belong to as seldom as possible, as we will see later.

Therefore we need an iterator which is aware of the particular hierarchical index struc-

ture. At the same time, all information which is related to the current state (i.e. which

changes in the course of the iteration) should be separated from the actual iterator. To

implement this we introduced a class SuperIteratorIndex (see listing 5.1 for the

declaration). The length of a SuperIteratorIndex is the original number of indices

times the number of hierarchy levels. So for a tensor with n indices and l levels we

have n · l entries, where the first n correspond to the outermost level, the next n to the

second, and so on. The last n entries contain the full indices including all levels.

As an example, consider a tensorwith four indices i, j, a, b and the orbitals from table

5.2. Then each of the three vectors contained in the SuperIteratorIndex (lines 9–

11 in listing 5.1) has 16 entries. The idx vector for the tensor element with flat indices

70

5.3. Actual Implementation

1, 5, 10, 13 would look like this:

[0 0 2 2
︸ ︷︷ ︸

oav

0 0 10 12
︸ ︷︷ ︸

irrep

0 3 10 13
︸ ︷︷ ︸

sz

1 5 10 13
︸ ︷︷ ︸

idx

]

The oav level is included here, although at this level no real iteration takes place,

since there is only one allowed value for each index (see below). At the outer levels,

each index is replaced by the first (flat) index with the same values up to this level.

For example, 5 is replaced by 3 in the sz group, since 3 is the smallest index of an

occupied orbital which belongs to the same representation (0) as orbital 5 and has the

same spin projection (1). This way of representing a hierarchical index is more efficient

(for iteration) than storing the actual values for each level as given in the table.

Listing 5.1: Class declaration for SuperIteratorIndex

1 class SuperIteratorIndex {
2 public:
3 SuperIteratorIndex(unsigned int size);
4
5 bool operator < (const SuperIteratorIndex & sii) const;

//compares only idx
6
7 void set(const SuperIteratorIndex & sii); //copy values

efficiently
8
9 vector<int> idx; // actual index (to be iterated)
10 vector<char> valid;
11 vector<char> outerSmaller; // flag if outer level satisfies "<"

restriction
12 bool valid0; // this is active iff idx.size()==0 (tensors of

rank 0) to guarantee a single iteration step
13 };

5.3.2.2. Iteration Procedure

The incrementation of a SuperIteratorIndex, i.e. finding the next valid index com-

bination, is quite complicated. Of course it would be simple to write a corresponding

loop structure for a given tensor. But since there are many different possible tensor

structures, we would need many different sets of loops, which is impractical. For a

generic incrementation, and a recursive “trial and error” procedure is necessary.

For each index, i.e. each entry in the SuperIteratorIndex, there is a separate

iterator (AtomicIterator, see listing 5.2), and all these iterators are collected in a

71

5. Tensor Contraction

SuperIterator. The iteration is split up into two functions, which are both mem-

bers of AtomicIterator. The first, inc, does the actual incrementation, and reset
is used to correct the indices following the last incremented one in accordance with all

restrictions. Their code is given in listings 5.3 and 5.4. The functions call each other

(lines 12 and 33, respectively), and themselves (lines 18 and 31, respectively) recur-

sively.

We do not want to discuss the procedure in all details here, but explain how it works

in principle and why it is complicated.

We apply the convention that the last index is the fastest running one. Hence, if a

SuperIterator has to increment its corresponding index, it first tries to increment

the last entry. If this does not work, the index before it is incremented, and so on until

the first index is reached. Each time a new index is incremented (after an “overflow” of

the previous) all subsequent indices are reset to appropriate start values. The function

inc returns the position of the outermost incremented index, which is given by the

element _this of the corresponding AtomicIterator (5.2, line 33). If none of the

indices can be incremented any more, the SuperIteratorIndex index is marked as

invalid (5.3, line 22, or 5.4, line 3; if the reset is successful, the index is validated again

in line 37). The incrementation itself is done by the index table classes (5.3, line 4, and

5.4, lines 12 and 26), since only they know what the next index at the corresponding

level is.

If there are several hierarchy levels, the current index is not incremented to its max-

imal possible value, but only up to the point where the next higher level would be

affected. In the example above, the combination (1,5) in the occupied indices is not

followed by (1,6), since this would change irrep and sz of the second index, but by

(2,3). For further examples see table 5.3 and listing 5.5. The different iteration patterns

are also illustrated in figure 5.2.

Now we have to take into account the antisymmetry properties of our tensors. To

store only non-redundant entries, we require the indices within one index group to be

in ascending order. To implement this property for hierarchically structured indices is

not completely trivial. The strict inequality relation applies only to the complete in-

dices, i.e. at the innermost level. At outer levels, succeeding indices can also be equal.

On the other hand, if the restriction is already strictly fulfilled at some level, all follow-

ing inner levels are completely free, since the index order is dominated by outer levels.

So the possible values for one index entry depend on the values of several other entries,

and this has to be taken into account in the incrementation process (5.3, lines 10/11,

5.4, lines 4–11 and 28/29). The basic property whether an index is bound to another

index by an inequality restriction is part of the iterator (element _left, see line 34 in

listing 5.2), while the information about the fulfillment of this restriction at outer lev-

els – which can change during the iteration – is stored in the SuperIteratorIndex
(outerSmaller, line 11 in listing 5.1). Both values together determine whether an

index in a specific situation is restricted or not.

72

5.3. Actual Implementation

Listing 5.2: Class declaration for AtomicIterator

1 class AtomicIterator : public SubIterator {
2 public:
3 AtomicIterator();
4
5 // returns true if SubIterator is valid
6 // considers this SubIterator only (==> quick)
7 virtual bool valid(const SuperIteratorIndex &) const;
8
9 // returns true if SubIterator is valid
10 // starts at inner loop, runs outwards, stops at "outermost"

(inclusive)
11 virtual bool deepValid(const SuperIteratorIndex &, SubIterator *

outermost) const;
12
13 // returns position of outermost changed index, -1 if no further

iteration possible
14 // starts at inner loop, runs outwards, stops at "outermost"

(inclusive) and "innermost" (inclusive) in case of reset
15 virtual int inc(SuperIteratorIndex &, SubIterator * innermost,

SubIterator * outermost);
16
17 // returns true if SubIterator contains a valid step
18 // starts at outer loop, runs inwards, stops at "innermost"

(inclusive)
19 virtual bool reset(SuperIteratorIndex &, SubIterator * innermost);
20
21 bool boundToOuter(const SuperIteratorIndex &) const; //true if

this loop is restricted by value of next outer loop
22 // ...
23 friend class SuperIterator;
24
25 protected:
26 int _hLevel; // hierarchy level, (N-1) = innermost
27 bool _applyTriangleRestriction; // actually ensure "<" restriction
28 const RestrictionPredicate * _restriction;
29
30 // state dependent variables are stored in SuperIteratorIndex
31 // variable locations are stored as array positions within

SuperIteratorIndex
32 // e.g. _left=3 ==> SuperIteratorIndex[3].idx is left index
33 int _this; // position of state dep. variables of this iterator
34 int _left; // left index if triangle restricted, else -1
35 int _nextInnerLevel, _nextOuterLevel; // corresponding index at

next inner/outer level, -1 if no inner/outer level exists
36 const FlatIndex2HierarchicalIndex2 * _hTab;
37 };

73

5. Tensor Contraction

ii

j

normal
j

blockwise

Figure 5.2.: Illustration of “normal” and blockwise (i.e. respecting hierarchy levels)

iteration for two indices.

Listing 5.3: Incrementation function of AtomicIterator

1 int AtomicIterator::inc(SuperIteratorIndex & sii, SubIterator *
innermost, SubIterator * outermost)

2 {
3 next:
4 if (_hTab->inc(sii.idx[_this], _hLevel)) //increment current

index
5 {
6 if (_restriction && !(*_restriction)(&sii.idx[_this]))
7 goto next;
8 if (!_nextInner)
9 return _this;
10 if (_left>=0 && _nextInnerLevel>=0) //update outerSmaller if

necessary
11 sii.outerSmaller[_nextInnerLevel] = sii.outerSmaller[_this]

|| (sii.idx[_left]<sii.idx[_this]);
12 if (_nextInner->reset(sii, innermost)) //reset subsequent

indices
13 return _this;
14 else
15 goto next;
16 }
17 int pos = 0;
18 if (this!=outermost && _nextOuter && (pos=_nextOuter->inc(sii,

innermost, outermost))>=0) //increment next outer index
19 return pos;
20 else //incrementation failed, invalidate index
21 {
22 sii.valid[_this] = false;
23 return -1;
24 }
25 }

74

5.3. Actual Implementation

Listing 5.4: Reset function of AtomicIterator

1 bool AtomicIterator::reset(SuperIteratorIndex & sii, SubIterator *
innermost)

2 {
3 sii.valid[_this] = false;
4 if (_left>=0 && _applyTriangleRestriction) // check if

triangle restriction applies
5 {
6 if (sii.outerSmaller[_this])
7 sii.idx[_this] = sii.idx[_nextOuterLevel]; // ==> no

triangle restriction
8 else
9 { // no further outer level or "=" at outer level ==> triangle

restriction applies
10 sii.idx[_this] = sii.idx[_left];
11 if (_nextInnerLevel<0) // if innermost level: "<" applies,

else: "<=" applies
12 if (!_hTab->inc(sii.idx[_this], _hLevel)) // check if

valid
13 return false;
14 }
15 }
16 else
17 {
18 if (_nextOuterLevel>=0) // check if not outermost
19 sii.idx[_this] = sii.idx[_nextOuterLevel];
20 else
21 sii.idx[_this] = _hTab->begin();
22 }
23 Next:
24 if (_restriction)
25 while (!(*_restriction)(&sii.idx[_this]))
26 if (!_hTab->inc(sii.idx[_this], _hLevel))
27 return false;
28 if (_left>=0 && _nextInnerLevel>=0)
29 sii.outerSmaller[_nextInnerLevel] = sii.outerSmaller[_this] ||

(sii.idx[_left]<sii.idx[_this]);
30 if (_nextInner)
31 if (!_nextInner->reset(sii, innermost)) // check if inner

iteration possible
32 {
33 if (inc(sii, innermost, this)>=0)
34 goto Next;
35 return false;
36 }
37 sii.valid[_this] = true;
38 return true;
39 }

75

5. Tensor Contraction

In addition to this “internal” antisymmetry constraint there can be “external” re-

strictions. In the coupled-cluster case for example, not all combinations of irreducible

representations or spin projections are admissible. This will be discussed in detail in

sections 5.3.2.3 and 5.3.2.4. The constraint that some indices run over occupied and

some over virtual orbitals is also treated as an external restriction.

Since our iterators should be rather generally applicable, we implemented a struc-

ture which allows for arbitrary external restrictions: Each iterator can contain a so

called RestrictionPredicate which imposes a constraint on the corresponding

index or on several indices. If an index is changed, the RestrictionPredicate at

this position (if there is one) is evaluated (5.3, line 6, 5.4, lines 24/25). If this confirms

that the current index combination is valid, the incrementation is successful, otherwise

the next value is tested.

Table 5.3.: Different iteration patterns for two indices i, j ∈ {0, 1, 2, 3}. In the “block

iteration” case there are only two hierarchy levels for simplicity, where the

outer level is defined by assigning the indices 0, 1 to one class and 2, 3 to

another. The “symmetry” restriction requires that the classes of i and j are

equal, while “triangle” means that the restriction i < j is applied.

normal iteration blockwise iteration

flat index unrestricted triangle unrestricted symmetry sym. + triang.

i j i j i j i j i j

0 0 0 0 1 0 0 0 0 0 1

1 0 1 0 2 0 1 0 1 2 3

2 0 2 0 3 1 0 1 0

3 0 3 1 2 1 1 1 1

4 1 0 1 3 0 2 2 2

5 1 1 2 3 0 3 2 3

6 1 2 1 2 3 2

7 1 3 1 3 3 3

8 2 0 2 0

9 2 1 2 1

10 2 2 3 0

11 2 3 3 1

12 3 0 2 2

13 3 1 2 3

14 3 2 3 2

15 3 3 3 3

76

5.3. Actual Implementation

The effects of different restrictions for a simple example (two indices) are shown

in table 5.3. In the case with four levels described above, each of the indices of the

outermost level carries a RestrictionPredicate defining the occupation status of

the corresponding orbital. These restrictions ensure that the particular index struc-

ture of each tensor is respected while we can use the same type of iterator for all

of them. The other restrictions (regarding irreducible representations and spin pro-

jections, respectively) affect all indices of the corresponding level. The respective

RestrictionPredicate is located at the last index of that level.

The index table as well as the RestrictionPredicates are contained in the

TensorInfo classes, so that a tensor contains all necessary data to construct an iter-

ator for its entries.

5.3.2.3. Dealing with Point Group Symmetry

In implementations of correlation methods it is common to treat only subgroups of

D2h, i.e. the six point groups C1, C2, Cs, C2v, C2h, and D2h, since for these, the symme-

try condition takes a much simpler form. For all other groups, the additional imple-

mentational effort would be very high, compared to a rather small gain in efficiency.

Since D2h contains only elements of order two, all irreducible representations of the

groups above are one-dimensional and the characters can only be±1. Under these con-

ditions, the requirement (5.1) is equivalent to saying that the product of the irreducible

representations of all involved orbitals has to be the totally symmetric irreducible rep-

resentation.

This condition applies also to intermediates, which can be seen as follows: Consider

the contraction of two tensors which both fulfill the condition that the product irre-

ducible representation is totally symmetric. Then the product of all irreducible rep-

resentations from both factors is also totally symmetric. Since every summed index

occurs twice and the product of an irreducible representation with itself is (in the con-

sidered case) always totally symmetric, the representations corresponding to summed

indices can be crossed out and the remaining product is still totally symmetric.

Within our program, irreducible representations are identified with integer num-

bers, where 0 corresponds to the totally symmetric one, and the others are numbered

arbitrarily. For each group a precalculated multiplication table is stored, so that the

direct product of two irreducible representations can be evaluated efficiently. For an

index combination to be valid, the total product should yield 0.

77

5. Tensor Contraction

5.3.2.4. Enforcing Spin Projections

For an excitation operator to conserve the expectation value of Ŝz the following condi-

tion has to be fulfilled:
n∑

ν=1

Sz(aν) −
n∑

ν=1

Sz(iν) = 0,

where aν are the creator and iν the annihilator indices, or shorter:
∑2n

ν=1 ǫνSz(pν) = 0

with ǫν = ±1. We now assume this condition to hold for all amplitudes and integrals

and consider an intermediate tensor constructed from two such quantities by contrac-

tion. We have the two conditions

2n∑

ν=1

ǫνSz(pν) = 0 (5.4)

2m∑

µ=1

ǫµSz(qµ) = 0. (5.5)

Now we assume that the last s indices are contracted, i.e. we have a bijection

π : {2n − s + 1, . . . , 2n} → {2m − s + 1, . . . , 2m}

such that pν = qπ(ν). If we solve (5.4) and (5.5) for the terms belonging to the contracted

indices and combine the two equations, it follows that

2n−s∑

ν=1

ǫνSz(pν) = ±
2m−s∑

µ=1

ǫµSz(qµ)

or equivalently
2n−s∑

ν=1

ǫνSz(pν) +
2m−s∑

µ=1

ǫ′µSz(qµ) = 0

where

ǫ′µ =

{

−ǫµ if ǫν = ǫπ(ν) for ν = 2n − s + 1, . . . , 2n

ǫµ if ǫν = −ǫπ(ν) for ν = 2n − s + 1, . . . , 2n

So with appropriately defined signs ǫ we can apply the same condition for all tensors.

If there is no contracted index, the sign for the indices of the intermediate are chosen

such that indices of the same type (particle or hole) get the same sign.

In the actual implementation we replace the Sz values ±1
2 by 1 and 0, i.e. we shift

them by 1
2 . Therefore we have to modify the condition slightly, namely

2n∑

ν=1

ǫνSz(pν) =
1

2

2n∑

ν=1

ǫν .

78

Listing 5.5: Usage example for tensor classes and iterator

1 int main()
2 {
3 //... (initializing MO table etc.)
4 TensorIndexInterpretation_SE_AC tII;
5
6 SymbolicTensor st(TensorIndexSections(tII, "i-j-,a+b+"));
7 cout << "st=" << st << endl;
8 SpinOrbital_OAV_TensorInfo info(table, &pg,

st.tensorIndexSections());
9 cout << "Info: " << info << endl;
10
11 TensorFrame<SpinOrbital_OAV_TensorInfo> tf(st, info);
12 Tensor<SpinOrbital_OAV_TensorInfo, double> t(tf);
13
14 IndexView iView;
15 boost::shared_ptr<SuperIterator> sIter(tf.getIterator());
16 for (SuperIteratorIndex sIdx(sIter->begin()) ;

sIter->valid(sIdx) ; sIter->inc(sIdx))
17 cout << iView(sIdx) << endl;
18 }
19
20 //Output:
21 st={[[S_0_0-, S_0_1-], [S_2_0+, S_2_1+]]}
22 Info: SpinOrbital_OAV_TensorInfo,
23 Restrictions:
24 OAV, value=0, pos=0
25 OAV, value=0, pos=1
26 OAV, value=2, pos=2
27 OAV, value=2, pos=3
28 Irrep, pos=7
29 Sz, ac= (-1 -1 1 1), pos=11
30
31 [0 0 10 10 0 0 10 10 0 0 10 10 0 1 10 11]
32 [0 0 10 10 0 0 10 10 0 0 10 10 0 1 10 12]
33 [0 0 10 10 0 0 10 10 0 0 10 10 0 1 10 13]
34 [0 0 10 10 0 0 10 10 0 0 10 10 0 1 11 12]
35 [0 0 10 10 0 0 10 10 0 0 10 10 0 1 11 13]
36 [0 0 10 10 0 0 10 10 0 0 10 10 0 1 12 13]
37 [0 0 10 10 0 0 10 10 0 0 10 10 0 2 10 11]
38 [0 0 10 10 0 0 10 10 0 0 10 10 0 2 10 12]
39 [0 0 10 10 0 0 10 10 0 0 10 10 0 2 10 13]
40 [0 0 10 10 0 0 10 10 0 0 10 10 0 2 11 12]
41 [0 0 10 10 0 0 10 10 0 0 10 10 0 2 11 13]
42 [0 0 10 10 0 0 10 10 0 0 10 10 0 2 12 13]
43 [0 0 10 10 0 0 10 10 0 0 10 10 1 2 10 11]
44 //... (630 entries)
45 [0 0 10 10 8 8 20 20 8 9 20 23 8 9 22 23]
46 [0 0 10 10 8 8 20 20 8 9 20 23 8 9 22 24]
47 [0 0 10 10 8 8 20 20 8 9 20 23 8 9 22 25]

5. Tensor Contraction

5.3.2.5. Usage Example

Listing 5.5 illustrates the usage of the structures introduced so far. The initialization

of the point group (pg) and orbital table (table) is not shown. Next, we have to

fix a TensorIndexInterpretation (line 4). The suffix _SE_AC indicates that each

index contains – in addition to its number and type – the information whether it is

summed or external and whether it belongs to an annihilation or creation operator.

The SymbolicTensor (st, line 6) determines the structure of the considered tensor.

Here we have two hole indices (i, j) coming from annihilator (shown by the minus

sign) and two particle indices (a, b) coming from creators. The comma groups the

indices, so we assume i < j and a < b.

Next, the TensorInfo object is constructed from this structure together with pg
and table (line 8). From this data the RestrictionPredicates for the iterator

(line 15) are determined. They are shown in lines 24–29. A sample of the indices

resulting from the iteration (line 16) is given in lines 31–47.

5.3.3. Contraction Procedure

As a first step, the contraction of two tensors is carried out at the symbolic level. That

means the indices which the tensors have in common are identified and the structure

of the resulting tensor is determined. In principle this is given by concatenating the

non-contracted indices of the two factors. But if external indices are present, they

are collected in two groups, one for hole and one for particle indices. This enforces

antisymmetry of the resulting tensor with respect to permutations of external indices,

which is what we want to have at the end. Of course the antisymmetrization could

also be done afterwards, but it is more efficient to do it in each contraction step, since

the intermediates to be stored are smaller. After that, the result tensor is constructed

and initialized with zero entries, and all auxiliary structures needed for the contraction

are created.

As discussed in 5.2.2, we want to use matrix multiplications to carry out the con-

traction of two tensors. The straightforward way to do so would be to convert both

tensors into matrices, where the contracted indices form a super-index for the columns

and the non-contracted are used for labeling the rows (for the second factor it should

be the other way round, but we assume this matrix to be transposedb), multiply them,

and then restore the resulting matrix into a tensor. We have already seen some prob-

lems related to this step, in particular the fact that these matrices would contain a lot

of zero entries for two reasons:

bThis does not only spare the distinction between the two factors, but is also advantageous for the

matrix multiplication. If the second matrix is not given in transposed form, the dgemm routine does

the transposition itself in many cases for efficiency reasons.

80

5.3. Actual Implementation

1. The antisymmetry properties of the original tensors cause matrix entries to be

zero when index groups are split, i.e. some indices of the group are contracted

and some are not.

2. If there are external restrictions, matrix entries whose indices do not fulfill them

are zero. This can be the spin and symmetry restrictions described before, but

also other restrictions affecting more than one index.

While the first problem is inevitable in our situation, the second can be circumvented

in many cases, as indicated in 5.2.2.2. We make the assumption that each external

restriction only takes effect within one index level and that there is no restriction at the

innermost level. This is of course fulfilled in the coupled-cluster case. Because of the

way our tensors and iterators are constructed, the second sort of zeros then occurs in

blocks. So it is a rather obvious idea to also do the contraction blockwise and leave

out the zero blocks. So what we actually do is the following (see algorithm 4): First we

iterate over the blocks of the first tensor, convert each of them into a matrix and store

these matrices. Then we do the block iteration and conversion for the second tensor,

and each block is – directly after the conversion – multiplied with all blocks which

have the same sequence of contracted indices, and the result is written to the result

tensor.

Algorithm 4: Tensor contraction using blockwise matrix multiplication

Data: Tensor t1, Tensor t2, Tensor t3 initialized to 0

Result: Tensor t3
foreach block of t1 do

convert block to matrix and store result;

foreach block of t2 do
convert block to matrix;

foreach matching block from t1 do
multiply matrices;

write result to t3;
end

end

end

Now we want to describe the iteration and conversion process in some more detail.

For the separate iteration over the blocks and the entries in the block we define so-

called IteratorSections, that are restrictions of the full iterator. The first section

comprises all index levels except the last, the second one is for the innermost index

level. For the result, there is no iteration over blocks. Instead, the start index for the

block is composed from the non-contracted indices of the factor blocks. The conversion

81

5. Tensor Contraction

itself is equal in both directions, expect for the last step, where in the first case the

tensor entry is written to the matrix and in the second case the matrix entry is added

to the corresponding tensor entry. In both cases the transferred value is first multiplied

by the appropriate sign.

If there are split index groups, we do not have a one-to-one correspondence between

tensor and matrix entries. Besides the fact that the matrix contains more zeros, each

tensor entry appears several times in the matrix, partly with altered sign. Now we

have two possibilities. Either we iterate over the tensor and determine all positions in

the matrix where this entry has to be put (or which contribute to this entry), together

with the corresponding sign. Alternatively, we iterate over the matrix and determine

for each entry the corresponding tensor entry and sign. The second approach is easier

to implement, since the index for the tensor entry and the sign are given by just sorting

the indices within each group. If two or more indices are equal, the entry is zero. How

the tensor entry for a given index is found will be discussed in the next subsection.

5.3.4. Tensor Addressing

To access a particular tensor entry, its address, i.e. its position in the vector, has to be

determined from the indices defining the entry. For this purpose the block structure

of the tensor can also be exploited. The address is calculated in two steps as a block

offset (starting address for the block) plus the position of the entry within the block.

The whole procedure is shown schematically in figure 5.3.

A block is defined by specifying for each index its value up to the prelast level. That

means within the block the indices are only allowed to vary at the innermost level.

Because of the restrictions discussed above, the set of allowed index combinations

here is “sparse”. In particular the next valid combination can not be easily determined

from a given one. But since there are usually few blocks compared to the number of

entries, all index combinations starting a block can be stored explicitly in a map. This
data structure allows to find an arbitrary index combination efficiently. The address

offset for a block is simply the sum of the sizes of all blocks before it. Together with

the offset additional data needed for addressing within the block is stored.

The remaining part of the addressing takes place in the innermost part of the con-

traction procedure, therefore its efficiency is very important. In particular it is desir-

able to avoid repeating the complete addressing for each index combination. Instead

we would like to have an update function which recalculates only that part of the

address which corresponds to the indices last changed during the iteration.

Within a block, each index runs through a connected range of values, i.e. the index

space does not contain any “holes”, which makes the addressing in principle simple.

If there were no further relations between the indices, the address for a given index

combination could be easily calculated: Given indices i1, . . . , in with ik ∈ {1, . . . , mk}

82

5.3. Actual Implementation

the address is
n∑

k=1

ik ·
n∏

j=k+1

mj .

Now we have the additional complication of antisymmetry in some indices. But

between the different index groups there is no relation and so an analogous formula

applies to them. The index values ik are replaced by “group indices”, and the multipli-

ers m are now group sizes instead of index ranges. These multipliers are determined

together with the block offsets (the block size is the product of the group sizes).

map<SuperIteratorIndexBlock, int *>

IJi,
AB

J

addr n+offset=

offset
α

...

...

β

ab

b

a

B

A

j

i

J

I

i

I

·α ·β

+

a

b

B

A

Nested Pointer Lists

Figure 5.3.: Schematic overview of the tensor address calculation

The addressing within such a group is more complicated. If we assume the indices

to be in ascending order, the address could still be calculated explicitly, although the

corresponding formulas become increasingly complex when the number of indices

grows. But we want to use the addressing also in the context of matrix–tensor conver-

sion, and there we can not make this assumption. If one part of an index group belongs

to the contracted indices and the other one not, the inequality relation between these

indices is lost. The straightforward solution to this would be to first sort the indices

and then do the addressing, but this is very inefficient. On the one hand, the sorting

83

5. Tensor Contraction

becomes rather expensive for larger index groups, since its complexity is O(n log n) if

n is the group length. On the other hand, the whole procedure has to be repeated for

each matrix entry, although most of the time during the iteration only a small part of

the indices changes.

Another possibility is to precalculate a table where for each possible index combi-

nation the corresponding address and the sign the entry has to be multiplied by are

stored. Such tables can be constructed in a way that the information which indices

have been changed since the last access can be exploited to minimize the access cost.

The interesting point is now to find all index combinations which occur during a spe-

cific matrix–tensor conversion. Starting from a valid index combination for the tensor,

all matrix entries contributing to this tensor entry correspond to index combinations

which are related to the given one by a permutation. But not all permutations are al-

lowed. Firstly, the index groups are of course conserved. Restricting our attention now

to one index group, we start with a sequence i1 < i2 < . . . < in of indices in ascend-

ing order. Now we divide this into two parts, namely contracted and non-contracted

indices, corresponding to rows and columns of the matrix. Let k be the number of

non-contracted indices. Since within the parts we can still assume the indices to be

ordered, we do not need to perform permutations among i1, . . . , ik or ik+1, . . . , in. So

the set of permutations we need is given by the quotient Sn/(Sk ×Sn−k), i.e. the group

of all permutations of n elements modulo the product of the two subgroups corre-

sponding to permutations within the parts. This quotient is not a group in general

and its elements are strictly speaking not permutations but equivalence classes of per-

mutations. But by requiring the indices to be in ascending order within each part we

can define a canonical set of representatives. The number of elements of the quotient

is
(
n
k

)
= n!

k!(n−k)! , compared to n! for the full permutation group. But now we have

an additional complication. Since we are within one particular block, each index is

restricted to a certain subset of all indices. Although this restriction does not only con-

sist of the irreducible representation, we refer to it briefly as the symmetry type of the

index. Since the symmetry types are also fixed for the matrix, we have to restrict the

permutations to indices with the same symmetry type. If all indices in the considered

group have the same type, this does of course not change anything. In the other ex-

treme case, where all types are different, we do not need any permutation at all. In all

other cases we have to first determine the permutations for each subset of indices with

the same symmetry type. That means we take the corresponding subgroup of Sn and

form a quotient set as above. This is only nontrivial if there are indices of this type in

both parts, i.e. contracted and non-contracted. The total set of permutations is then the

direct product of the permutation sets for all symmetry types occurring in the given

index group. The direct product here is to be understood in the sense that every factor

acts on a different set of indices, and these sets form a partition of the index group,

so the product is a permutation of all indices in the group. This set of permutations

84

5.3. Actual Implementation

determines the structure of the table in which the addresses have to be stored.

Precalculated address tables are only useful if they can be generated and evaluated

efficiently. The initialization of such a table proceeds in two steps. First, a nested struc-

ture of pointers is set up. It consists of several “levels”, where each level corresponds

to an index position and contains as many entries as there are possible index values

at this position (given the values at the positions before). For all but the last index,

each entry is a pointer to the first entry of the next level. At the innermost level, the

addresses have to be stored. For this we have to do two things:

1. Loop over all index combinations (for this group) occurring in the tensor and

increment the address accordingly.

2. Loop over the corresponding set of permutations (determined as described

above), store the current address and the parity of the permutation in the table

entry belonging to the permuted set of indices.

Both could be done by generic iterators, but this would not be efficient. Writing the

loops and the permutations out explicitly requires to have a separate initialization

function for each type of table. The loop parameters (start and end indices) for the

iteration over the tensor can also vary, but they are given as arguments to the function.

Although for small index groups there are not many different table types, their number

grows rapidly with increasing size of the index groups. And since we want to be able

to deal with high excitations, we did not want to restrict the number of indices in

one group from the beginning. Hence it would be impractical to write all necessary

functions by hand, so we decided to use automatic code generation for these functions.

This offers a convenient way of writing a large number of functions with a common

interface, which have the same general structure but differ in some details, like the

number of loops.

The quite complicated step of finding the correct set of permutations is carried out

during the code generation, i.e. before running the actual main program. The problem

which remains at runtime of the latter is to choose the correct function and to call it

with the right arguments.

5.3.5. Further Optimizations

Most of the time during the iteration only the last indices change. Since our generic

iterators are not of optimal efficiency, it is beneficial to code one or several of the in-

nermost loops explicitly. Here we have to differentiate several cases, depending on

which indices are coupled by inequality relations. We decided to take at most three

explicit loops to keep the number of cases manageable. While the index structure is

handled by defining different functions, the index ranges are given to these functions

as arguments.

85

5. Tensor Contraction

Although the generation of the addressing tables and related structures is already

quite efficient, it still takes a non-negligible amount of time. But it is not necessary to

generate new tables for every contraction. Each table depends only on the structure of

one index group, and the same structures usually appear several times in a sequence

of contractions. Therefore it is useful to store all generated tables for later reuse. Al-

though a single table is rather small, the collection of all tables can become large. To

limit the amount of memory it takes, we implemented a cache structure which deletes

entries if a predefined size is exceeded.

Since a coupled-cluster calculation requires an iterative procedure where the same

contractions are performed in each iteration (onlywith different entries), there are even

more possibilities for reuse. Not only addressing tables, but also other administrative

structures can be stored during the first iteration and reused later.

5.3.6. Performance Analysis

So far we did only some preliminary tests to check the performance of our program. In

table 5.4 we compare the timings for a single CC iteration published by Kállay with the

time our program needs to carry out all the contractions needed for this iteration on

similar machines. Since we could not use exactly the same ones, we scaled our times

appropriately. We observe that the relative performance of our program is better for

Table 5.4.: Calculation times for a single CC iteration

CPU time/min

system method basis (size) ours ref.

H2O CCSDTQ cc-pVDZ (24) 5 6.8a

Butadiene CCSDT cc-pVTZ (204) 1000 3024b

ataken from ref. [42], calculation done on Athlon 800 MHz
btaken from www.mrcc.hu, calculation done on Pentium IV 3.4 GHz

the larger calculation, as can be expected comparing the performance of matrix–matrix

and matrix–vector multiplication (see table 5.1).

In addition, we did a CCSD calculation on the system 4H2O with a cc-pVDZ basis

(96 basis functions). For this calculation (11 iterations), the MOLPRO program [108]

needs 9.58 s, while the corresponding contractions in our program take 80.46 s. These

figures can not be compared directly, since MOLPRO uses spatial orbitals and spin-

averaged excitation operators (see section 2.2.2.4) and thus has a much lower number

of parameters (220288 amplitudes compared to 920248, which gives a ratio of about

4.18). Since the time for a CCSD calculation should scale with the number of ampli-

tudes to the power of 3
2 , we multiplied the time for the MOLPRO calculation by the

86

5.3. Actual Implementation

Table 5.5.: Operation statistics for conversions

tensor →matrix matrix→ tensor

number of operations 2.936e+09 1.781e+09

CPU time/s 14.13 8.07

operations per s 2.079e+08 2.208e+08

amplitude ratio to the power of 3
2 to estimate the time the calculation with spin orbitals

would have taken. The result is 81.56 s, which is of the same order of magnitude as

our observed time.

For this example, we also analyzed the performance of the contraction part in some

more detail. Table 5.5 shows the CPU time in relation to the number of operations

for the rearranging steps (conversion from tensor to matrix and vice versa). The CPU

time for the matrix multiplication (dgemm) is 42.73 s, which makes up 53.1% of total

CPU time. This is a rather good value, taking into account that in a previous version

of the implementation the total computation time was completely dominated by the

conversions. For larger matrices (i.e. larger molecules or basis sets) the proportion for

the matrix multiplication is expected to increase, since this is an O(N3) step while the

conversion scales only as O(N2).

Considering the performance in terms of floating point operations (FLOPS) per sec-

ond, we have 8515.61 MFLOPS/s for the dgemm part and 4522.25 MFLOPS/s in total.

This is to be compared to the dgemm peak performance of 11 GFLOPS/s. Thus we

have reached – for this system – an overall efficiency of 41% of this peak performance.

This is a very reasonable result for the implementation of a generic tensor contraction

for antisymmetric, externally restricted tensors.

87

6. Conclusion and Outlook

6.1. Conclusion

We have presented a new implementation of the coupled-cluster method achieving

both flexibility and efficiency. Flexibility here means on the one hand that there is no

conceptual limitation of the excitation level included in the cluster operator, and on

the other hand, that not only standard coupled-cluster expressions can be evaluated

by ourmachinery. This is achieved by an automatized derivation of working equations

and by a generic tensor contraction procedure. Our program could be immediately ap-

plied to methods like CI or CEPA or variants of CC, and with some modifications also

to other methods which can be formulated in terms of second quantization. The pro-

gram has a modular structure making it relatively easy to exchange method-specific

parts.

The first part – the formula generation – is very general. A combination of an al-

gebraic operator evaluation – using an extension of Wick’s theorem – with a graph-

based simplification algorithm makes it possible to evaluate also complicated second-

quantized expressions in a reasonable time.

The latter part – the tensor contraction – is central for an efficient implementation.

For a program aiming at generality it is of course not possible to optimize the con-

traction procedure for every type of contraction separately, so a generic contraction

function is necessary. Our approach to reduce the contraction step to a sequence of

matrix multiplications has several advantages: First, the (time-critical) multiplication

step is independent of the structure of the involved tensors, all are brought to the

same basic form. Second, for this step we can use a standard library which is highly

optimized and adapted to the actual processor architecture. Finally, by performing

conversion and matrix multiplication blockwise, we can effectively exploit symmetry

properties of the tensors. The price for this is a rather complex rearrangement step,

but by an optimized addressing of tensor entries and several other improvements we

also achieved a high efficiency in this part. For some cases (e.g. calculations with high

excitations and small basis set) it is still the time-determining step, but for larger basis

sets the matrix multiplication dominates, and so the relative performance (compared

to programs which do not use matrix multiplications) is better in the latter case.

89

6. Conclusion and Outlook

6.2. Outlook

There are several directions in which the present implementation can be extended or

improved. In addition, we want to indicate some interesting possible applications of

our program.

6.2.1. Optimization

While we assume that the optimization potential within the tensor contraction is large-

ly exhausted, the step before – which determines the contractions to be carried out –

offers several possibilities for further improvements. Besides the factorization briefly

mentioned in chapter 3, which determines the order of the factors in one term, it is

also possible to factor out common factors from different terms. By such transforma-

tions, many expensive multiplications can be saved, while the cost of possible extra

additions is negligible. The combination of both types of factorizations leads to a very

complicated optimization problem, but even a non-optimal solution could lead to sig-

nificant savings in the computational time for the subsequent calculation.

In addition, when the set of contractions to be performed has been determined,

some further manipulations can be applied. For example, the amount of memory

needed during the calculation may depend on the order in which certain contractions

are done. Moreover, some of the rearrangement steps could be avoided if the indices

which determine the structure of an intermediate (contraction result) are arranged in

a way which is suitable for the next contraction using this as a factor.

In the long term, also a parallelization of the implementation, in particular the tensor

contraction, would be interesting.

6.2.2. Generalizations

Our next goal is of course to implement multi-reference methods, in particular SR-

MRCC and MRexpT, which requires some additional considerations. Being able to

treat high excitations is a necessary prerequisite, but now these excitations (more pre-

cisely: those which are higher than the base excitation level of the respective calcula-

tion) are subject to constraints, which have to be handled appropriately. In the case

of SRMRCC the overall procedure is the same as in the single-reference case, and the

additional excitations appear in the cluster operator as well as in the projections. That

means that constraints have to be taken into account for summed and external indices.

For MRexpT this is a bit different. Since the cluster operators are reference specific,

their maximal excitation level is always equal to the base excitation level. The pro-

jections, however, are global, so here the excitations, when given with respect to one

particular reference, can be higher than the base excitation level.

90

6.2. Outlook

For applications to closed-shell systems it would be advantageous to have an im-

plementation based on spin-averaged excitation operators. In this case the symmetry

properties of integrals and amplitudes are different, but the basic machinery of tensor

contractions could be used as before.

6.2.3. Applications

For multi-reference methods there are of course many possible applications. But it is

also interesting to do SRCC calculations with high excitations, for example as bench-

marks for cheaper methods. By combining our program with the implementation

of the incremental scheme developed in our group [109] also calculations on larger

molecules could be made feasible.

Besides the calculation of correlation energies, we plan to apply our program for the

calculation of (approximations to) the variance of single- and multi-reference wave

functions. In particular it would be interesting to investigate to what extent approx-

imate expressions for the variance can serve as a measure for the quality of a wave

function.

91

A. Proof of the BCH Formula

The proof below follows [110], but is rewritten in terms of operators (instead of ele-

ments on an arbitrary Lie algebra). First we need some notation: Let Â be an operator,

then we define two new operators L̂
Â
and R̂

Â
as the left and right multiplication with

Â, respectively. The commutator of two operators can then be expressed as follows:

[
Â, B̂

]
= ÂB̂ − B̂Â = R̂

B̂
Â − L̂

B̂
Â.

Now we can state the claim:

exp
(
−B̂

)
Â exp

(
B̂
)

=
∞∑

n=0

1

n!

(
R̂

B̂
− L̂

B̂

)n
Â (A.1)

Proof: We start from the right hand side and invoke the binomial theorem (this is

possible since the operators L̂
B̂
and R̂

B̂
commute):

∞∑

n=0

1

n!

(
R̂

B̂
− L̂

B̂

)n
Â =

∞∑

n=0

1

n!

n∑

k=0

n!

k!(n − k)!
R̂k

B̂

(
−L̂

B̂

)n−k
Â

=
∞∑

n=0

∑

k+l=n

1

k!l!

(
−B̂

)l
ÂB̂k

=

(∞∑

l=0

1

l!
(−B̂)l

)

Â

(∞∑

k=0

1

k!
B̂k

)

= exp
(
−B̂

)
Â exp

(
B̂
)

The right hand side of equation (A.1) can be written more explicitly in terms of com-

mutators, yielding the last expression in equation (2.32):

∞∑

n=0

1

n!

(
R̂

B̂
− L̂

B̂

)n
Â = Â +

[
Â, B̂

]
+ 1

2

[[
Â, B̂

]
, B̂
]
+ 1

3!

[[[
Â, B̂

]
, B̂
]
, B̂
]
+ . . .

93

B. Example Program

We show here the code of an example program which does a CCSD calculation for

H2O.

1 #include "SQCompoundOperators/CompoundOperator_Product_Sum.H"
2 #include "SQCompoundOperators/CCOperators.H"
3 #include "SQStaticTerms/TensorSymbols_Sum.H"
4 #include "SQStaticTerms/ACOperator_Product_NOP_FV.H"
5 #include "SQTermSimplification/TermGraph_Sum.H"
6 #include "SQIndex/SQIndex.H"
7 #include "SQFastWick/expandFastWick.H"
8 #include "Factorization3/Graph_Setup.H"
9 #include "Factorization3/Graph_Factorize.H"
10 #include "ContractionProgram/Program.H"
11
12 #include "InterfaceStoney/StoneyFile.H"
13 #include "InterfaceStoney/

OneElectronOperatorRepresentation_const_iterator.H"
14 #include "InterfaceStoney/

TwoElectronOperatorRepresentation_const_iterator.H"
15 #include "PointGroupSymmetry/PointGroup.H"
16 #include "SpinSpatialMolecularOrbital/

SpinSpatialMOTable_OAVIrrepSzIdx.H"
17 #include "SpinSpatialMolecularOrbital/SpinSpatialMO_IrrepSzIdx.H"
18 #include "OrbitalProduct/SlaterDeterminant.H"
19 #include "Tensor/IntegralInitializer.H"
20
21 #include "Tensor2/TensorIndexInterpretation_SE_AC.H"
22 #include "Tensor2/SymbolicTensor.H"
23 #include "Tensor2/BlockContraction.H"
24 #include "Tensor2/SpinOrbital_OAV_TensorInfo.H"
25 #include "Tensor2/GlobalCaching.H"
26 #include "EvaluationData3.H"
27 #include "ProgramEvaluator.H"
28
29 #include <iostream>
30 #include <sstream>
31 #include <vector>
32

95

B. Example Program

33 using namespace std;
34 using namespace QOL::SQFastWick;
35 using namespace QOL::SQStaticTerms;
36 using namespace QOL::SQTermSimplification;
37 using namespace QOL::SQCompoundOperators;
38 using namespace QOL::SQCompoundOperators::CCOperators;
39 using namespace QOL::Factorization3;
40 using namespace QOL::Tensor2;
41 using namespace QOL::InterfaceStoney;
42 using namespace QOL::PointGroupSymmetry;
43 using namespace QOL::SpinSpatialMolecularOrbital;
44 using namespace QOL::ContractionProgram;
45 using namespace QOL::SQEquationDrivenFactorizedContraction;
46 using namespace QOL::SQEquationDrivenFactorizedContraction3;
47 using QOL::OrbitalProduct::SlaterDeterminant;
48
49 typedef QOL::Tensor2::GlobalCaching _GlobalCaching;
50
51 int main()
52 {
53 //basic definitions
54 typedef QOL::Tensor::TensorStructure_HI<

SpinSpatialMOTable_OAVIrrepSzIdx,4> TensorStructure;
55 typedef QOL::Tensor::TensorStructure_HI<

SpinSpatialMOTable_IrrepSzIdx,3> TensorStructure_Int;
56 typedef TensorStructure_CS<SpatialMOTable_IrrepIdx,2>

TensorStructure_spatial;
57
58 const int nIter=50; //max. number of iterations
59 const int clusterLevel = 2;
60 const int projectionLevel = 2;
61 const double t_conv=1e-10; //convergence threshold for amplitudes

(2-norm)
62
63 //preparation I (equations)
64
65 //formula generation
66 CompoundOperator_Expression TT;
67 for (int i=1 ; i<=clusterLevel ; ++i)
68 TT += T(i);
69 CompoundOperator_Expression HN = FN + VN;
70 vector<pair<TermGraph_Sum, int> > targets;
71 for (int i=0 ; i<=projectionLevel ; ++i)
72 {
73 CompoundOperator_Expression expr(FV(A(-i)*exp(-TT)*HN*exp(TT)));

// CC

96

74 CompoundOperator_Product_Sum flatExpr(expr);
75 TensorSymbols_ACOperators_Sum<SQIndex, ACOperator_Product_NOP_FV<

SQIndex> > nopfs(flatExpr);
76 TensorSymbols_Kroneckers_Sum<SQIndex, true> expanded(

expandFastWick(nopfs));
77 TermGraph_Sum tgs(expanded);
78 TensorSymbols_Sum<SQIndex, true> simplified(tgs);
79 targets.push_back(make_pair(tgs, i));
80 }
81
82 //factorization
83 TensorIndexInterpretation_SE_AC tII;
84 Graph_Setup g1(targets, tII);
85 Graph_Factorize g2(g1);
86 g2.setSigns();
87 g2.collectExternal();
88 g2.optimize();
89 //generate contraction program
90 Program p(g2, tII);
91
92 //------------------------------------
93 //preparation II (integrals etc.)
94
95 StoneyFile stoney("fort.31"); //contains orbital information and

integrals
96 PointGroup<abelian> pg(stoney.pointGroup());
97 //tables
98 SpatialMOTable_IrrepIdx tab_spatial(stoney.orbitalsPerIrrep());
99 SpinSpatialMOTable_IrrepSzIdx tab0(stoney.orbitalsPerIrrep());
100
101 string s("(0a- 0a+ 1a- 1a+ 2a- 2a+ 0b- 0b+ 0c- 0c+)"); //

reference determinant for H2O
102 istringstream iss(s);
103 MOBasisInfo<SpinSpatialMO_IrrepSzIdx> info0(tab0, pg);
104 SlaterDeterminant<SpinSpatialMO_IrrepSzIdx> ref(iss, info0);
105 SpinSpatialMOTable_OAVIrrepSzIdx table(tab0, ref.v());
106
107 //IndexRanges
108 TensorStructure_spatial::IndexRange ir_spatial(tab_spatial, pg);
109 TensorStructure_Int::IndexRange ir0(tab0, pg);
110 TensorStructure::IndexRange ir(table, pg);
111 //read integrals
112 IntegralInitializer<OneElectronOperatorRepresentation_const_iterator

> init1(stoney,&tab_spatial);
113 IntegralInitializer<TwoElectronOperatorRepresentation_const_iterator

> init2(stoney,&tab_spatial);

97

B. Example Program

114
115 TensorStructure_spatial::SymbolicTensor sti1("a;b",true);
116 TensorStructure_spatial::SymbolicTensor sti2("ab;cd",true);
117
118 QOL::Tensor::Tensor<double,TensorStructure_spatial> oneElInt(sti1,&

ir_spatial,init1);
119 QOL::Tensor::Tensor<double,TensorStructure_spatial> twoElInt(sti2,&

ir_spatial,init2);
120 OneElectronIntegrals<double,TensorStructure_Int> oei(&ir0,oneElInt);
121 AntisymmetricTwoElectronIntegrals<double,TensorStructure_Int> atei(&

ir0,twoElInt);
122
123 //old integral containers
124 OneElectronIntegralContainer<double,TensorStructure> oeic(&ir,oei,

atei);
125 TwoElectronIntegralContainer<double,TensorStructure> teic(&ir,atei);
126 //new integral container
127 SpinOrbital_OAV_TensorInfo info(table, &pg, TensorIndexSections());
128 IntegralContainer<SpinOrbital_OAV_TensorInfo, double> ic(tII, info,

oeic, teic);
129 //----------------------------------
130 //Evaluation
131
132 ZeroInitializer<double> zi;
133 EvaluationData3<SpinOrbital_OAV_TensorInfo, double> ed(ic, tII, info

, clusterLevel, projectionLevel, zi);
134
135 const size_t maxStorage1 = 300*(1 << 20);
136 const size_t maxStorage2 = 300*(1 << 20);
137 _GlobalCaching globalCaching(table.table(), _GlobalCaching::

DefaultCaching, maxStorage1, maxStorage2);
138 PerformanceStatistics performanceStatistics;
139 BlockContraction<SpinOrbital_OAV_TensorInfo> bc(globalCaching,

performanceStatistics, true);
140 ProgramEvaluator<SpinOrbital_OAV_TensorInfo,double> pEv(ed, bc);
141
142 double residualNorm2 = 0;
143 for (int n=0 ; n<nIter ; ++n) //iteration
144 {
145 pEv.calcResiduals(p);
146 pEv.updateAmplitudes();
147 //calc residual norm
148 residualNorm2 = 0;
149 for (unsigned int j=1 ; j<ed.residuals.size() ; ++j)
150 {
151 boost::shared_ptr<SuperIterator> sIter(ed.residuals[j].

98

getIterator());
152 int n=0;
153 for (SuperIteratorIndex sIdx(sIter->begin()) ; sIter->valid(

sIdx) ; sIter->inc(sIdx), ++n)
154 {
155 double h = ed.residuals[j].p()[n];
156 residualNorm2 += h*h;
157 }
158 }
159 cout << "E_corr: " << ed.residuals[0] << " residual norm: " <<

sqrt(residualNorm2)<< endl;
160 ed.clearResidual();
161 if (n>0 && sqrt(residualNorm2)<t_conv)
162 break;
163 }
164 return 0;
165 }

99

C. Generated Formulas

C.1. CCSDTQ Amplitude Equations

Wegive here the explicit expressions for the four types of projections (singles to quadru-

ples) onto excited determinants for the CCSDTQ method.

〈Φ0|Â
†
1 exp(−1

1 · T̂1 + −1
1 · T̂2 + −1

1 · T̂3 + −1
1 · T̂4)(F̂ + V̂) exp(T̂1 + T̂2 + T̂3 + T̂4)|Φ0〉

= [f I
A

]A + −1
1 · [fI

i
tAi]A + [fA

a
taI]A + [f i

a
tAa
Ii]A + [tai v

Ia
Ai

]A + 1
2 · [tab

Iiv
Ai
ab

]A + −1
2 · [tAa

ij vIa
ij

]A

+1
4 · [tAab

Iij vij
ab

]A + −1
1 · [f i

a
taI t

A
i]A + −1

1 · [tbIt
a
i v

Ai
ab

]A + 1
2 · [tbIt

Aa
ij vij

ab
]A + −1

1 · [tAi tajv
Ia
ij

]A

+−1
2 · [tAi tab

Ijv
ij
ab

]A + −1
1 · [tbi t

Aa
Ij vij

ab
]A + [tbIt

A
i tajv

ij
ab

]A

〈Φ0|Â
†
2 exp(−1

1 · T̂1 + −1
1 · T̂2 + −1

1 · T̂3 + −1
1 · T̂4)(F̂ + V̂) exp(T̂1 + T̂2 + T̂3 + T̂4)|Φ0〉

= [v IJ
AB

]A + [fI
i
tAB
Ji]A + [fB

a
tAa
IJ]A + [f i

a
tABa
IJi]A + [taJv Ia

AB
]A + [tAi vIJ

Bi
]A + 1

2 · [tab
IJvAB

ab
]A

+−1
1 · [tAa

Ji vIa
Bi

]A + 1
2 · [tAB

ij vIJ
ij

]A + 1
2 · [tAab

IJi vBi
ab

]A + 1
2 · [tABa

Jij vIa
ij

]A + 1
4 · [tABab

IJij vij
ab

]A

+[f i
a
taI t

AB
Ji]A + −1

1 · [f i
a
tBi tAa

IJ]A + −1
2 · [tbIt

a
JvAB

ab
]A + [tbIt

Aa
Ji vBi

ab
]A + −1

2 · [tbIt
ABa
Jij vij

ab
]A

+[taJ tAi vIa
Bi

]A + 1
2 · [taJ tAB

ij vIa
ij

]A + 1
2 · [tAi tab

IJvBi
ab

]A + −1
2 · [tBi tAj vIJ

ij
]A + [tBi tAa

Jj vIa
ij

]A

+−1
2 · [tBi tAab

IJj vij
ab

]A + −1
1 · [tai t

AB
Jj vIa

ij
]A +[tbi t

Aa
IJ vBi

ab
]A + −1

1 · [tbi t
ABa
IJj vij

ab
]A + −1

2 · [tBb
IJ tAa

ij vij
ab

]A

+1
4 · [tab

IJ tAB
ij vij

ab
]A + −1

2 · [tAB
Ii tab

Jjv
ij
ab

]A + 1
2 · [tBb

Ii tAa
Jj vij

ab
]A + −1

2 · [tbIt
a
J tAi vBi

ab
]A

+−1
4 · [tbIt

a
J tAB

ij vij
ab

]A + −1
1 · [tbIt

B
i tAa

Jj vij
ab

]A + [tbIt
a
i t

AB
Jj vij

ab
]A + −1

2 · [taJ tBi tAj vIa
ij

]A

+−1
4 · [tBi tAj tab

IJvij
ab

]A + −1
1 · [tBi tbjt

Aa
IJ vij

ab
]A + 1

4 · [tbIt
a
J tBi tAj vij

ab
]A

〈Φ0|Â
†
3 exp(−1

1 · T̂1 + −1
1 · T̂2 + −1

1 · T̂3 + −1
1 · T̂4)(F̂ + V̂) exp(T̂1 + T̂2 + T̂3 + T̂4)|Φ0〉

= −1
1 ·[fI

i
tABC
JKi]A+[fC

a
tABa
IJK]A+[f i

a
tABCa
IJKi]A+ −1

1 ·[tAa
JKv Ia

BC
]A+[tAB

Ki vIJ
Ci

]A+ 1
2 ·[t

Aab
IJKvBC

ab
]A

+[tABa
JKi v

Ia
Ci

]A + 1
2 · [tABC

Kij vIJ
ij

]A + 1
2 · [tABab

IJKiv
Ci
ab

]A + −1
2 · [tABCa

JKij vIa
ij

]A + −1
1 · [f i

a
taI t

ABC
JKi]A

+−1
1 · [f i

a
tCi tABa

IJK]A + [f i
a
tCa
IJ tAB

Ki]A + [tbIt
Aa
JKvBC

ab
]A + −1

1 · [tbIt
ABa
JKi v

Ci
ab

]A + 1
2 · [t

b
It

ABCa
JKij vij

ab
]A

+[taJ tAB
Ki vIa

Ci
]A+ 1

2 · [t
a
J tABC

Kij vIa
ij

]A+ −1
1 · [tBi tAa

JKvIa
Ci

]A+ 1
2 · [t

B
i tAab

IJKvCi
ab

]A+ −1
1 · [tCi tAB

Kj vIJ
ij

]A

+−1
1 ·[tCi tABa

JKj v
Ia
ij

]A+ −1
2 ·[tCi tABab

IJKjv
ij
ab

]A+[tai t
ABC
JKj vIa

ij
]A+[tbi t

ABa
IJKvCi

ab
]A+ −1

1 ·[tbi t
ABCa
IJKj vij

ab
]A

101

C. Generated Formulas

+−1
1 · [tBb

IJ tAa
Kiv

Ci
ab

]A + −1
2 · [tCb

IJ tABa
Kij vij

ab
]A + 1

2 · [tab
IJ tAB

Ki vCi
ab

]A + 1
4 · [tab

IJ tABC
Kij vij

ab
]A

+1
2 · [tBC

Ii tAab
JKjv

ij
ab

]A + −1
1 · [tCb

Ii tABa
JKj v

ij
ab

]A + 1
2 · [tab

Ii t
ABC
JKj vij

ab
]A + −1

2 · [tCa
JKtAB

ij vIa
ij

]A

+[tBC
Ji tAa

Kjv
Ia
ij

]A + 1
4 · [tBC

ij tAab
IJKvij

ab
]A + −1

2 · [tCb
ij tABa

IJKvij
ab

]A + −1
2 · [tbIt

a
J tAB

Ki vCi
ab

]A

+−1
4 · [tbIt

a
J tABC

Kij vij
ab

]A + [tbIt
B
i tAa

JKvCi
ab

]A + [tbIt
C
i tABa

JKj v
ij
ab

]A + −1
1 · [tbIt

a
i t

ABC
JKj vij

ab
]A

+1
2 · [tbIt

Ca
JKtAB

ij vij
ab

]A + −1
1 · [tbIt

BC
Ji tAa

Kjv
ij
ab

]A + −1
1 · [taJ tCi tAB

Kj vIa
ij

]A + 1
2 · [tCi tBj tAa

JKvIa
ij

]A

+−1
4 · [tCi tBj tAab

IJKvij
ab

]A + −1
1 · [tCi tbjt

ABa
IJKvij

ab
]A + [tCi tBb

IJ tAa
Kjv

ij
ab

]A + −1
2 · [tCi tab

IJ tAB
Kj vij

ab
]A

+−1
1 · [tbi t

Ca
IJ tAB

Kj vij
ab

]A + 1
2 · [tbIt

a
J tCi tAB

Kj vij
ab

]A + −1
2 · [tbIt

C
i tBj tAa

JKvij
ab

]A

〈Φ0|Â
†
4 exp(−1

1 · T̂1 + −1
1 · T̂2 + −1

1 · T̂3 + −1
1 · T̂4)(F̂ + V̂) exp(T̂1 + T̂2 + T̂3 + T̂4)|Φ0〉

= [fI
i
tABCD
JKLi]A + [fD

a
tABCa
IJKL]A + [tABa

JKLv Ia
CD

]A + [tABC
KLi vIJ

Di
]A + 1

2 · [tABab
IJKLvCD

ab
]A

+−1
1 · [tABCa

JKLi vIa
Di

]A+ 1
2 · [t

ABCD
KLij vIJ

ij
]A+[f i

a
taI t

ABCD
JKLi]A+ −1

1 · [f i
a
tDi tABCa

IJKL]A+[f i
a
tDa
IJ tABC

KLi]A

+−1
1 ·[f i

a
tCD
Ii tABa

JKL]A+−1
1 ·[tbIt

ABa
JKLvCD

ab
]A+[tbIt

ABCa
JKLi vDi

ab
]A+[taJ tABC

KLi vIa
Di

]A+1
2 ·[t

a
J tABCD

KLij vIa
ij

]A

+[tCi tABa
JKLvIa

Di
]A+1

2 ·[t
C
i tABab

IJKLvDi
ab

]A+−1
1 ·[tDi tABC

KLj vIJ
ij

]A+[tDi tABCa
JKLj vIa

ij
]A+−1

1 ·[tai t
ABCD
JKLj vIa

ij
]A

+[tbi t
ABCa
IJKL vDi

ab
]A + −1

2 · [tBb
IJ tAa

KLvCD
ab

]A + −1
1 · [tCb

IJ tABa
KLi v

Di
ab

]A + −1
2 · [tDb

IJ tABCa
KLij vij

ab
]A

+1
2 · [tab

IJ tABC
KLi vDi

ab
]A + 1

4 · [tab
IJ tABCD

KLij vij
ab

]A + −1
2 · [tBC

Ii tAab
JKLvDi

ab
]A + −1

2 · [tCD
Ii tABab

JKLjv
ij
ab

]A

+[tCb
Ii tABa

JKLvDi
ab

]A + [tDb
Ii tABCa

JKLj vij
ab

]A + −1
2 · [tab

Ii t
ABCD
JKLj vij

ab
]A + −1

1 · [tCa
JKtAB

Li vIa
Di

]A

+1
2 ·[t

Da
JKtABC

Lij vIa
ij

]A+[tCD
Ji tABa

KLjv
Ia
ij

]A+[tDa
Ji tABC

KLj vIa
ij

]A+−1
2 ·[tCD

Ki tAB
Lj vIJ

ij
]A+1

2 ·[t
CD
ij tABa

JKLvIa
ij

]A

+1
4 · [tCD

ij tABab
IJKLvij

ab
]A + −1

2 · [tDb
ij tABCa

IJKL vij
ab

]A + −1
2 · [tCDb

IJKtABa
Lij vij

ab
]A + −1

4 · [tDab
IJKtABC

Lij vij
ab

]A

+−1
2 · [tBCD

IJi tAab
KLjv

ij
ab

]A+ −1
2 · [tCDb

IJi tABa
KLjv

ij
ab

]A+ −1
2 · [tbIt

a
J tABC

KLi vDi
ab

]A+ −1
4 · [tbIt

a
J tABCD

KLij vij
ab

]A

+−1
1 · [tbIt

C
i tABa

JKLvDi
ab

]A + −1
1 · [tbIt

D
i tABCa

JKLj vij
ab

]A + [tbIt
a
i t

ABCD
JKLj vij

ab
]A + [tbIt

Ca
JKtAB

Li vDi
ab

]A

+−1
2 ·[tbIt

Da
JKtABC

Lij vij
ab

]A+−1
1 ·[tbIt

CD
Ji tABa

KLjv
ij
ab

]A+−1
1 ·[tbIt

Da
Ji tABC

KLj vij
ab

]A+−1
2 ·[tbIt

CD
ij tABa

JKLvij
ab

]A

+−1
1 · [taJ tDi tABC

KLj vIa
ij

]A+ −1
2 · [taJ tCD

Ki tAB
Lj vIa

ij
]A+ −1

2 · [tCi tBb
IJ tAa

KLvDi
ab

]A+ −1
2 · [tDi tCj tABa

JKLvIa
ij

]A

+−1
4 · [tDi tCj tABab

IJKLvij
ab

]A + −1
1 · [tDi tbjt

ABCa
IJKL vij

ab
]A + [tDi tCb

IJ tABa
KLjv

ij
ab

]A + −1
2 · [tDi tab

IJ tABC
KLj vij

ab
]A

+1
2 · [tDi tBC

Ij tAab
JKLvij

ab
]A + −1

1 · [tDi tCb
Ij tABa

JKLvij
ab

]A + [tDi tCa
JKtAB

Lj vIa
ij

]A + −1
1 · [tbi t

Da
IJ tABC

KLj vij
ab

]A

+[tbi t
CD
Ij tABa

JKLvij
ab

]A + −1
4 · [tDb

IJ tCa
KLtAB

ij vij
ab

]A + [tDb
IJ tBC

Ki tAa
Lj vij

ab
]A + −1

4 · [tab
IJ tCD

Ki tAB
Lj vij

ab
]A

+1
2 ·[t

b
It

a
J tDi tABC

KLj vij
ab

]A+ 1
4 ·[t

b
It

a
J tCD

Ki tAB
Lj vij

ab
]A+ 1

2 ·[t
b
It

D
i tCj tABa

JKLvij
ab

]A+−1
1 ·[tbIt

D
i tCa

JKtAB
Lj vij

ab
]A

+1
4 · [tDi tCj tBb

IJ tAa
KLvij

ab
]A

102

C.2. Expectation Values

C.2. Expectation Values

In expressions of the type 〈Φ0| exp (T̂).X̂ exp (T̂)|Φ0〉 there is no algebraic termination

like for the BCH expansion. Therefore we have to specify up to which order the expo-

nential series is evaluated. We give the results (expanded operator expressions and ex-

plicit formulas) for first and second order with X̂ = Ĥ and for first order with X̂ = Ĥ2.

〈Φ0| exp
1...1

(T̂ †
1 + T̂ †

2)(V̂ + F̂) exp
1...1

(T̂1 + T̂2)|Φ0〉

= 〈Φ0|(F̂ + V̂ + T̂ †
2 V̂ + T̂ †

1 F̂ + T̂ †
1 V̂ + F̂ T̂1 + V̂ T̂1 + V̂ T̂2 + T̂ †

2 F̂ T̂1 + T̂ †
2 F̂ T̂2 + T̂ †

2 V̂ T̂1

+T̂ †
2 V̂ T̂2 + T̂ †

1 F̂ T̂1 + T̂ †
1 F̂ T̂2 + T̂ †

1 V̂ T̂1 + T̂ †
1 V̂ T̂2)|Φ0〉

= [f i
a
tai]A+[f i

a
tia]A+ 1

4 ·[t
ab
ij vij

ab
]A+ 1

4 ·[t
ij
abv

ij
ab

]A+−1
1 ·[f i

j
taj t

i
a]A+−1

2 ·[f i
j
tab
jkt

ik
ab]A+[f i

a
tbjt

ij
ab]A

+[f i
a
tjbt

ab
ij]A + [fa

b
tai t

i
b]A + 1

2 · [f
a
b
tac
ij tijbc]A + −1

1 · [taj t
i
bv

ia
jb

]A + 1
2 · [t

a
j t

ij
bcv

ia
bc

]A + 1
2 · [t

b
kt

ij
abv

ij
ka

]A

+1
2 · [tibt

ab
jkv

ia
jk

]A + 1
2 · [tjctab

ij vic
ab

]A + 1
8 · [tab

ij tijcdv
ab
cd

]A + −1
1 · [tac

jkt
ik
bcv

ia
jb

]A + 1
8 · [tab

kl t
ij
abv

ij
kl

]A

〈Φ0| exp
1...2

(T̂ †
1 + T̂ †

2)(V̂ + F̂) exp
1...2

(T̂1 + T̂2)|Φ0〉

= 〈Φ0|(F̂ + V̂ + T̂ †
2 V̂ + T̂ †

1 F̂ + T̂ †
1 V̂ + 1

2 · (T̂ †
1)

2
1 V̂ + F̂ T̂1 + V̂ T̂1 + 1

2 · V̂ (T̂1)
2
1 + V̂ T̂2

+T̂ †
2 F̂ T̂1 + 1

2 · T̂ †
2 F̂ (T̂1)

2
1 + T̂ †

2 F̂ T̂2 + T̂ †
2 V̂ T̂1 + 1

2 · T̂ †
2 V̂ (T̂1)

2
1 + T̂ †

2 V̂ T̂2 + 1
2 · T̂ †

2 V̂ (T̂2)
2
1

+1
4 · (T̂ †

2)
2
1 F̂ (T̂2)

2
1 + 1

4 · (T̂ †
2)

2
1 V̂ (T̂1)

2
1 + 1

2 · (T̂ †
2)

2
1 V̂ T̂2 + 1

4 · (T̂ †
2)

2
1 V̂ (T̂2)

2
1 + T̂ †

1 F̂ T̂1

+1
2 ·T̂

†
1 F̂ (T̂1)

2
1 +T̂ †

1 F̂ T̂2+T̂ †
1 V̂ T̂1+ 1

2 ·T̂
†
1 V̂ (T̂1)

2
1 +T̂ †

1 V̂ T̂2+ 1
2 ·(T̂

†
1)

2
1 F̂ T̂1+ 1

4 ·(T̂
†
1)

2
1 F̂ (T̂1)

2
1

+1
2 · (T̂ †

1)
2
1 F̂ T̂2 + 1

2 · (T̂ †
1)

2
1 V̂ T̂1 + 1

4 · (T̂ †
1)

2
1 V̂ (T̂1)

2
1 + 1

2 · (T̂ †
1)

2
1 V̂ T̂2 + 1

4 · (T̂ †
1)

2
1 V̂ (T̂2)

2
1

+1
2 · T̂

†
2 T̂ †

1 F̂ (T̂1)
2
1 + T̂ †

2 T̂ †
1 F̂ T̂2 + 1

2 · T̂
†
2 T̂ †

1 F̂ (T̂2)
2
1 + T̂ †

2 T̂ †
1 V̂ T̂1 + 1

2 · T̂
†
2 T̂ †

1 V̂ (T̂1)
2
1 + T̂ †

2 T̂ †
1 V̂ T̂2

+1
2 · T̂

†
2 T̂ †

1 V̂ (T̂2)
2
1 + T̂ †

2 F̂ T̂1T̂2 + T̂ †
2 V̂ T̂1T̂2 + 1

2 · (T̂
†
2)

2
1 F̂ T̂1T̂2 + 1

2 · (T̂
†
2)

2
1 V̂ T̂1T̂2 + T̂ †

1 V̂ T̂1T̂2

+1
2 · (T̂ †

1)
2
1 F̂ T̂1T̂2 + 1

2 · (T̂ †
1)

2
1 V̂ T̂1T̂2 + T̂ †

2 T̂ †
1 F̂ T̂1T̂2 + T̂ †

2 T̂ †
1 V̂ T̂1T̂2)|Φ0〉

= [f i
a
tai]A + [f i

a
tia]A + 1

4 · [tab
ij vij

ab
]A + 1

4 · [tijabv
ij
ab

]A + −1
1 · [f i

j
taj t

i
a]A + −1

2 · [f i
j
tab
jkt

ik
ab]A

+[f i
a
tbjt

ij
ab]A + [f i

a
tjbt

ab
ij]A + [fa

b
tai t

i
b]A + 1

2 · [fa
b
tac
ij tijbc]A + −1

2 · [tbi t
a
jv

ij
ab

]A + −1
1 · [taj t

i
bv

ia
jb

]A

+1
2 · [taj t

ij
bcv

ia
bc

]A + 1
2 · [tbkt

ij
abv

ij
ka

]A + −1
2 · [tjatibv

ij
ab

]A + 1
2 · [tibt

ab
jkv

ia
jk

]A + 1
2 · [tjctab

ij vic
ab

]A

+1
8 · [tab

ij tijcdv
ab
cd

]A + −1
1 · [tac

jkt
ik
bcv

ia
jb

]A + 1
8 · [tab

kl t
ij
abv

ij
kl

]A + [f i
j
tbjt

a
kt

ik
ab]A + −1

1 · [f i
j
tiat

k
b t

ab
jk]A

+[f i
a
tai t

b
jt

j
b]A + 1

4 · [f i
a
tai t

bc
jkt

jk
bc]A + −1

1 · [f i
a
tbi t

a
j t

j
b]A + −1

2 · [f i
a
tbi t

ac
jkt

jk
bc]A + −1

2 · [f i
a
taj t

bc
ikt

jk
bc]A

+[f i
a
tbjt

i
at

j
b]A + −1

1 · [f i
a
tbjt

j
atib]A + [f i

a
tbjt

ac
ik tjkbc]A + 1

4 · [f i
a
tiat

bc
jkt

jk
bc]A + −1

2 · [f i
a
tjatbcjkt

ik
bc]A

103

C. Generated Formulas

+−1
2 · [f i

a
tibt

bc
jkt

jk
ac]A + [f i

a
tjbt

bc
jkt

ik
ac]A + −1

1 · [fa
b
tci t

a
j t

ij
bc]A + [fa

b
tibt

j
ctac

ij]A + [tai t
b
jt

j
cv

ic
ab

]A

+−1
4 · [tbi t

a
j t

ij
cdv

ab
cd

]A + −1
1 · [tbi t

k
c t

ac
jkv

ij
ab

]A + −1
2 · [tbi t

ad
jktjkcdvic

ab
]A + 1

2 · [tci t
k
c t

ab
jkv

ij
ab

]A

+1
4 · [t

d
i t

ab
jkt

jk
cdvic

ab
]A + −1

1 · [taj t
c
kt

ik
bcv

ia
jb

]A + [taj t
i
bt

j
cv

ia
bc

]A + 1
2 · [t

a
j t

bc
klt

il
bcv

ia
jk

]A + −1
1 · [tbjt

a
kt

i
bv

ia
jk

]A

+[tbjt
ad
ik tjkcdvic

ab
]A + −1

1 · [tbjt
ac
kl t

il
bcv

ia
jk

]A + [tcjt
a
kt

ik
bcv

ia
jb

]A + −1
2 · [tdj t

ab
ik tjkcdvic

ab
]A + 1

4 · [takt
b
l t

ij
abv

ij
kl

]A

+−1
1 ·[tbkt

j
atibv

ij
ka

]A+−1
2 ·[tbkt

k
c t

ac
ij vij

ab
]A+−1

1 ·[tckt
i
bt

jk
acv

ij
ab

]A+−1
2 ·[tckt

k
b t

ij
acv

ij
ab

]A+ 1
2 ·[t

c
kt

i
ct

jk
abv

ij
ab

]A

+1
4 ·[t

c
kt

k
c t

ab
ij vij

ab
]A+ 1

4 ·[t
c
kt

k
c t

ij
abv

ij
ab

]A+ 1
4 ·[t

a
l t

bc
jkt

il
bcv

ia
jk

]A+ −1
2 ·[tbl t

ac
jkt

il
bcv

ia
jk

]A+ 1
2 ·[t

i
at

bc
klt

jl
bcv

ij
ka

]A

+−1
4 · [tjatibt

ab
klv

ij
kl

]A+ 1
4 · [t

l
at

bc
klt

ij
bcv

ij
ka

]A+ −1
1 · [tibt

k
c t

ac
jkv

ia
jb

]A+ −1
1 · [tibt

bc
klt

jl
acv

ij
ka

]A+[tkb t
i
ct

ac
jkv

ia
jb

]A

+−1
2 · [tlbt

bc
klt

ij
acv

ij
ka

]A+ 1
4 · [t

i
ct

j
dt

ab
ij vab

cd
]A+ −1

2 · [tict
ad
jktjkbdvia

bc
]A+[tjctad

jktikbdv
ia
bc

]A+ 1
4 · [t

i
dt

ad
jktjkbc via

bc
]A

+−1
2 · [tjdt

ad
jktikbcv

ia
bc

]A + 1
16 · [tab

ij tcdkl t
kl
cdv

ij
ab

]A + −1
4 · [tac

ij tbdkl t
kl
cdv

ij
ab

]A + 1
16 · [tcdij tab

kl t
kl
cdv

ij
ab

]A

+1
2 · [tbdik tac

jl t
kl
cdv

ij
ab

]A + −1
4 · [tcdik tab

jl t
kl
cdv

ij
ab

]A + 1
16 · [tcdkl t

ij
abt

kl
cdv

ij
ab

]A + 1
4 · [tcdkl t

jk
abt

il
cdv

ij
ab

]A

+ 1
16 · [tcdkl t

kl
abt

ij
cdv

ij
ab

]A + −1
4 · [tcdkl t

ij
actkl

bdv
ij
ab

]A + −1
2 · [tcdkl t

jk
actilbdv

ij
ab

]A + −1
1 · [f i

j
taj t

b
kt

i
at

k
b]A

+−1
4 · [f i

j
taj t

i
at

bc
klt

kl
bc]A + 1

2 · [f i
j
taj t

k
at

bc
klt

il
bc]A + [f i

j
tbjt

a
kt

i
at

k
b]A + 1

2 · [f i
j
tbjt

i
at

ac
kl t

kl
bc]A

+−1
1 · [f i

j
tbjt

k
at

ac
kl t

il
bc]A + 1

2 · [f i
j
takt

i
at

bc
jl t

kl
bc]A + −1

2 · [f i
j
takt

k
at

bc
jl t

il
bc]A + −1

1 · [f i
j
tbkt

i
at

ac
jl t

kl
bc]A

+[f i
j
tbkt

k
at

ac
jl t

il
bc]A + 1

2 · [f i
j
tal t

k
at

bc
jkt

il
bc]A + −1

1 · [f i
j
tbl t

k
at

ac
jkt

il
bc]A + −1

8 · [f i
j
tab
jkt

cd
lmtikabt

lm
cd]A

+1
2 · [f

i
j
tbdjkt

ac
lmtikabt

lm
cd]A + −1

8 · [f i
j
tcdjkt

ab
lmtikabt

lm
cd]A + −1

4 · [f i
j
tab
jmtcdkl t

ik
abt

lm
cd]A +[f i

j
tac
jmtbdkl t

ik
abt

lm
cd]A

+−1
4 · [f i

j
tcdjmtab

kl t
ik
abt

lm
cd]A + 1

2 · [f i
a
tai t

j
bt

k
c t

bc
jk]A + −1

1 · [f i
a
tbi t

j
bt

k
c t

ac
jk]A + −1

1 · [f i
a
taj t

j
bt

k
c t

bc
ik]A

+1
2 ·[f

i
a
tbjt

c
kt

i
at

jk
bc]A+[f i

a
tbjt

c
kt

j
bt

ik
ac]A+[f i

a
tbjt

j
bt

k
c t

ac
ik]A+ 1

4 ·[f
i
a
tbjt

cd
kl t

ij
abt

kl
cd]A+−1

2 ·[f i
a
tbjt

cd
kl t

ik
abt

jl
cd]A

+−1
2 · [f i

a
tbjt

cd
kl t

jl
abt

ik
cd]A + 1

4 · [f i
a
tbjt

cd
kl t

kl
abt

ij
cd]A + −1

2 · [f i
a
tbjt

cd
kl t

ij
actkl

bd]A + [f i
a
tbjt

cd
kl t

ik
act

jl
bd]A

+−1
1 ·[f i

a
tbjt

cd
kl t

jl
adt

ik
bc]A+1

2 ·[f
i
a
tbjt

cd
kl t

kl
adt

ij
bc]A+[f i

a
tcjt

b
kt

j
atikbc]A+[f i

a
tcjt

b
kt

i
bt

jk
ac]A+−1

1 ·[f i
a
tcjt

b
kt

j
bt

ik
ac]A

+−1
1 · [f i

a
tcjt

j
bt

k
c t

ab
ik]A + 1

4 · [f i
a
tjbt

ab
ij tcdkl t

kl
cd]A + −1

2 · [f i
a
tjbt

ac
ij tbdkl t

kl
cd]A + 1

2 · [f i
a
tjbt

bc
ij t

ad
kl t

kl
cd]A

+1
4 · [f i

a
tjbt

cd
ij tab

kl t
kl
cd]A + 1

2 · [f i
a
tjbt

ab
il tcdjkt

kl
cd]A + −1

1 · [f i
a
tjbt

ac
il tbdjkt

kl
cd]A + [f i

a
tjbt

bc
il t

ad
jktkl

cd]A

+1
2 · [f i

a
tjbt

cd
il tab

jkt
kl
cd]A + [fa

b
tai t

c
jt

i
bt

j
c]A + 1

4 · [fa
b
tai t

i
bt

cd
jkt

jk
cd]A + −1

2 · [fa
b
tai t

i
ct

cd
jkt

jk
bd]A

+−1
1 · [fa

b
tci t

a
j t

i
bt

j
c]A + −1

2 · [fa
b
tci t

i
bt

ad
jktjkcd]A + 1

2 · [fa
b
tci t

i
ct

ad
jktjkbd]A + −1

2 · [fa
b
tdi t

i
ct

ac
jkt

jk
bd]A

+−1
2 · [fa

b
taj t

i
bt

cd
ik tjkcd]A + [fa

b
taj t

i
ct

cd
ik tjkbd]A + [fa

b
tcjt

i
bt

ad
ik tjkcd]A + −1

1 · [fa
b
tcjt

i
ct

ad
ik tjkbd]A

+[fa
b
tdj t

i
ct

ac
ik tjkbd]A + 1

8 · [fa
b
tac
ij tde

kl t
ij
bct

kl
de]A + 1

4 · [fa
b
tae
ij tcdkl t

ij
bct

kl
de]A + −1

4 · [fa
b
tceij tad

kl t
ij
bct

kl
de]A

+1
8 · [fa

b
tde
ij tac

kl t
ij
bct

kl
de]A + −1

2 · [fa
b
tac
ik tde

jl t
ij
bct

kl
de]A + [fa

b
tceiktad

jl tijbct
kl
de]A + −1

2 · [tbi t
a
j t

i
ct

j
dv

ab
cd

]A

104

C.2. Expectation Values

+−1
1 · [tbi t

j
ctkdt

ad
jkvic

ab
]A + 1

2 · [tbi t
i
dt

ae
jkt

jk
cevab

cd
]A + −1

4 · [tbi t
i
et

ae
jkt

jk
cdvab

cd
]A + 1

2 · [tdi t
j
ctkdt

ab
jkv

ic
ab

]A

+−1
4 · [tei t

i
dt

ab
jkt

jk
cevab

cd
]A + 1

8 · [tei t
i
et

ab
jkt

jk
cdvab

cd
]A + −1

1 · [taj t
c
kt

i
bt

k
cv

ia
jb

]A + [taj t
c
kt

k
b t

i
cv

ia
jb

]A

+[taj t
d
kt

j
ctikbdv

ia
bc

]A + −1
2 · [taj t

d
kt

j
dt

ik
bcv

ia
bc

]A + [taj t
i
bt

l
ct

bc
klv

ia
jk

]A + −1
4 · [taj t

i
bt

cd
kl t

kl
cdv

ia
jb

]A

+1
2 · [taj t

k
b t

cd
kl t

il
cdv

ia
jb

]A + 1
2 · [taj t

i
ct

cd
kl t

kl
bdv

ia
jb

]A + −1
1 · [taj t

k
c t

cd
kl t

il
bdv

ia
jb

]A + 1
8 · [taj t

de
kl t

ij
bct

kl
dev

ia
bc

]A

+−1
4 · [taj t

de
kl t

ik
bct

jl
dev

ia
bc

]A + −1
4 · [taj t

de
kl t

jl
bct

ik
dev

ia
bc

]A + 1
8 · [t

a
j t

de
kl t

kl
bct

ij
dev

ia
bc

]A + −1
2 · [taj t

de
kl t

ij
bdt

kl
cev

ia
bc

]A

+[taj t
de
kl t

ik
bdt

jl
cev

ia
bc

]A + −1
1 · [tbjt

i
bt

l
ct

ac
klv

ia
jk

]A + [tbjt
j
ctkdt

ad
ik vic

ab
]A + −1

1 · [tbjt
k
c t

j
dt

ad
ik vic

ab
]A

+−1
1 · [tbjt

i
dt

ae
ik tjkcevab

cd
]A + 1

2 · [tbjt
i
et

ae
ik tjkcdvab

cd
]A + [tcjt

a
kt

i
bt

k
cv

ia
jb

]A + −1
1 · [tcjt

a
kt

k
b t

i
cv

ia
jb

]A

+[tcjt
i
bt

l
ct

ab
klv

ia
jk

]A + 1
2 · [tcjt

i
bt

ad
kl t

kl
cdv

ia
jb

]A + −1
1 · [tcjt

k
b t

ad
kl t

il
cdv

ia
jb

]A + −1
2 · [tcjt

i
ct

ad
kl t

kl
bdv

ia
jb

]A

+[tcjt
k
c t

ad
kl t

il
bdv

ia
jb

]A + [tdj t
a
kt

i
ct

jk
bdvia

bc
]A + −1

1 · [tdj t
a
kt

j
ctikbdv

ia
bc

]A + −1
2 · [tdj t

a
kt

i
dt

jk
bc via

bc
]A

+1
2 · [tdj t

a
kt

j
dt

ik
bcv

ia
bc

]A + 1
2 · [tdj t

i
ct

ac
kl t

kl
bdv

ia
jb

]A + −1
2 · [tdj t

j
ctkdt

ab
ikvic

ab
]A + 1

2 · [tdj t
k
c t

j
dt

ab
ikvic

ab
]A

+−1
1 · [tdj t

k
c t

ac
kl t

il
bdv

ia
jb

]A + −1
4 · [tdj t

ae
kl t

ij
bct

kl
dev

ia
bc

]A + 1
2 · [tdj t

ae
kl t

ik
bct

jl
dev

ia
bc

]A + 1
2 · [tdj t

ae
kl t

jl
bct

ik
dev

ia
bc

]A

+−1
4 · [tdj t

ae
kl t

kl
bct

ij
dev

ia
bc

]A + 1
2 · [t

d
j t

ae
kl t

ij
bdt

kl
cev

ia
bc

]A + −1
1 · [tdj t

ae
kl t

ik
bdt

jl
cev

ia
bc

]A + −1
2 · [tdj t

ae
kl t

ij
bet

kl
cdv

ia
bc

]A

+[tdj t
ae
kl t

ik
bet

jl
cdv

ia
bc

]A + 1
2 · [tejt

i
dt

ab
ik tjkcevab

cd
]A + −1

4 · [tejt
i
et

ab
ik tjkcdvab

cd
]A + −1

2 · [takt
b
l t

j
atibv

ij
kl

]A

+1
2 · [takt

i
at

bc
lmtjmbc vij

kl
]A + 1

4 · [takt
m
a tbclmtijbcv

ij
kl

]A + 1
2 · [takt

i
bt

cd
jl t

kl
cdv

ia
jb

]A + −1
2 · [takt

k
b t

cd
jl t

il
cdv

ia
jb

]A

+−1
1 · [takt

i
ct

cd
jl t

kl
bdv

ia
jb

]A + [takt
k
c t

cd
jl t

il
bdv

ia
jb

]A + −1
1 · [tbkt

c
l t

i
bt

jl
acv

ij
ka

]A + −1
2 · [tbkt

c
l t

l
bt

ij
acv

ij
ka

]A

+−1
1 · [tbkt

i
at

ac
lmtjmbc vij

kl
]A+ −1

2 · [tbkt
m
a tac

lmtijbcv
ij
kl

]A+ 1
8 · [t

b
kt

cd
lmtijabt

lm
cd v ij

ka
]A+ 1

2 · [t
b
kt

cd
lmtjlabt

im
cd v ij

ka
]A

+1
8 ·[t

b
kt

cd
lmtlmab tijcdv

ij
ka

]A+−1
4 ·[tbkt

cd
lmtijactlmbd v ij

ka
]A+−1

1 ·[tbkt
cd
lmtjlactimbd v ij

ka
]A+ 1

4 ·[t
b
kt

cd
lmtlmad tijbcv

ij
ka

]A

+−1
1 · [tckt

b
l t

i
at

jl
bcv

ij
ka

]A + −1
2 · [tckt

b
l t

l
at

ij
bcv

ij
ka

]A + [tckt
b
l t

i
bt

jl
acv

ij
ka

]A + 1
2 · [tckt

b
l t

l
bt

ij
acv

ij
ka

]A

+1
8 · [tckt

d
l t

ij
abt

kl
cdv

ij
ab

]A + 1
2 · [tckt

d
l t

jk
abt

il
cdv

ij
ab

]A + 1
8 · [tckt

d
l t

kl
abt

ij
cdv

ij
ab

]A + −1
2 · [tckt

d
l t

ij
actkl

bdv
ij
ab

]A

+−1
2 · [tckt

d
l t

jk
actilbdv

ij
ab

]A + 1
2 · [tckt

d
l t

jk
adt

il
bcv

ij
ab

]A + −1
1 · [tckt

i
bt

ad
jl tkl

cdv
ia
jb

]A + [tckt
k
b t

ad
jl tilcdv

ia
jb

]A

+[tckt
i
ct

ad
jl tkl

bdv
ia
jb

]A + −1
1 · [tckt

k
c t

ad
jl tilbdv

ia
jb

]A + −1
1 · [tdkt

i
ct

ac
jl t

kl
bdv

ia
jb

]A + [tdkt
k
c t

ac
jl t

il
bdv

ia
jb

]A

+1
2 · [tal t

i
bt

l
ct

bc
jkv

ia
jk

]A + 1
2 · [tal t

k
b t

cd
jkt

il
cdv

ia
jb

]A + −1
1 · [tal t

k
c t

cd
jkt

il
bdv

ia
jb

]A + −1
2 · [tbl t

i
bt

l
ct

ac
jkv

ia
jk

]A

+−1
4 ·[tbl t

cd
kmtijabt

lm
cd v ij

ka
]A+−1

2 ·[tbl t
cd
kmtimab tjlcdv

ij
ka

]A+−1
2 ·[tbl t

cd
kmtjlabt

im
cd v ij

ka
]A+−1

4 ·[tbl t
cd
kmtlmab tijcdv

ij
ka

]A

+1
2 · [t

b
l t

cd
kmtijactlmbd v ij

ka
]A+[tbl t

cd
kmtjlactimbd v ij

ka
]A+ −1

1 · [tbl t
cd
kmtimad tjlbcv

ij
ka

]A+ −1
2 · [tbl t

cd
kmtlmad tijbcv

ij
ka

]A

+1
2 · [tcl t

i
bt

l
ct

ab
jkv

ia
jk

]A + −1
1 · [tcl t

k
b t

ad
jktilcdv

ia
jb

]A + [tcl t
k
c t

ad
jktilbdv

ia
jb

]A + −1
1 · [tdl t

k
c t

ac
jkt

il
bdv

ia
jb

]A

+1
4 · [t

a
mtiat

bc
klt

jm
bc vij

kl
]A + 1

8 · [t
a
mtma tbcklt

ij
bcv

ij
kl

]A + −1
2 · [tbmtiat

ac
kl t

jm
bc vij

kl
]A + −1

4 · [tbmtma tac
kl t

ij
bcv

ij
kl

]A

105

C. Generated Formulas

+1
8 · [t

i
bt

ab
jkt

cd
lmtlmcd via

jk
]A + −1

4 · [tibt
ac
jkt

bd
lmtlmcd via

jk
]A + 1

4 · [t
i
bt

bc
jkt

ad
lmtlmcd via

jk
]A + 1

8 · [t
i
bt

cd
jkt

ab
lmtlmcd via

jk
]A

+[tibt
bd
jl t

ac
kmtlmcd via

jk
]A + −1

2 · [tibt
cd
jl t

ab
kmtlmcd via

jk
]A + −1

4 · [tlbt
ab
jkt

cd
lmtimcd via

jk
]A + 1

2 · [t
l
bt

ac
jkt

bd
lmtimcd via

jk
]A

+−1
2 ·[tlbt

bc
jkt

ad
lmtimcd via

jk
]A+−1

4 ·[tlbt
cd
jkt

ab
lmtimcd via

jk
]A+−1

2 ·[tlbt
ab
jmtcdkl t

im
cd via

jk
]A+−1

1 ·[tlbt
ad
jmtbcklt

im
cd via

jk
]A

+[tlbt
bd
jmtac

kl t
im
cd via

jk
]A + −1

2 · [tlbt
cd
jmtab

kl t
im
cd via

jk
]A + 1

8 · [tjctab
ij tde

kl t
kl
dev

ic
ab

]A + −1
2 · [tjctad

ij tbeklt
kl
dev

ic
ab

]A

+1
8 · [tjctde

ij tab
kl t

kl
dev

ic
ab

]A + 1
4 · [tjctab

il tde
jkt

kl
dev

ic
ab

]A + −1
1 · [tjctad

il tbejkt
kl
dev

ic
ab

]A + 1
4 · [tjctde

il tab
jkt

kl
dev

ic
ab

]A

+1
8 · [tkc t

l
dt

ab
ij tcdklv

ij
ab

]A + 1
2 · [tkc t

l
dt

ad
ij tbcklv

ij
ab

]A + 1
8 · [tkc t

l
dt

cd
ij tab

klv
ij
ab

]A + −1
2 · [tkc t

l
dt

bc
ikt

ad
jl vij

ab
]A

+1
2 · [tkc t

l
dt

bd
ik tac

jl v
ij
ab

]A + −1
2 · [tkc t

l
dt

cd
ik tab

jl v
ij
ab

]A + −1
4 · [tjdt

ab
ij tde

kl t
kl
cev

ic
ab

]A + 1
2 · [tjdt

ad
ij tbeklt

kl
cev

ic
ab

]A

+−1
2 · [tjdt

ae
ij tbdkl t

kl
cev

ic
ab

]A + −1
4 · [tjdt

de
ij tab

kl t
kl
cev

ic
ab

]A + −1
2 · [tjdt

ab
il tde

jkt
kl
cev

ic
ab

]A + [tjdt
ad
il tbejkt

kl
cev

ic
ab

]A

+−1
1 ·[tjdt

ae
il tbdjkt

kl
cev

ic
ab

]A+−1
2 ·[tjdt

de
il tab

jkt
kl
cev

ic
ab

]A+ 1
32 ·[t

ab
ij tefkl t

ij
cdt

kl
efvab

cd
]A+−1

8 ·[tbeij t
af
kl tijcetkl

dfvab
cd

]A

+−1
8 ·[tbfij tae

kl t
ij
cdt

kl
efvab

cd
]A+ 1

8 ·[t
bf
ij tae

kl t
ij
cetkl

dfvab
cd

]A+ 1
32 ·[t

ef
ij tab

kl t
ij
cdt

kl
efvab

cd
]A+−1

8 ·[tefij tab
kl t

ij
cetkl

dfvab
cd

]A

+1
2 · [t

be
ikt

af
jl tijcetkl

dfvab
cd

]A+ 1
4 · [t

bf
ik tae

jl t
ij
cdt

kl
efvab

cd
]A+ −1

8 · [tefik tab
jl t

ij
cdt

kl
efvab

cd
]A+ 1

4 · [t
ef
ik tab

jl t
ij
cetkl

dfvab
cd

]A

+−1
4 ·[tac

jkt
de
lmtikbct

lm
de via

jb
]A+1

2 ·[t
ad
jktcelmtlmbe tikcdv

ia
jb

]A+−1
2 ·[tae

jkt
cd
lmtikbct

lm
de via

jb
]A+−1

4 ·[tae
jkt

cd
lmtlmbe tikcdv

ia
jb

]A

+−1
4 ·[tcdjkt

ae
lmtlmbe tikcdv

ia
jb

]A+1
2 ·[t

ce
jkt

ad
lmtikbct

lm
de via

jb
]A+−1

4 ·[tde
jkt

ac
lmtikbct

lm
de via

jb
]A+−1

2 ·[tde
jkt

ac
lmtlmbe tikcdv

ia
jb

]A

+−1
2 ·[tac

jmtde
kl t

ik
bct

lm
de via

jb
]A+−1

1 ·[tac
jmtde

kl t
lm
be tikcdv

ia
jb

]A+[tad
jmtceklt

ik
bct

lm
de via

jb
]A+−1

2 ·[tae
jmtcdkl t

lm
be tikcdv

ia
jb

]A

+−1
1 ·[tcdjmtae

kl t
ik
bct

lm
de via

jb
]A+−1

2 ·[tcdjmtae
kl t

lm
be tikcdv

ia
jb

]A+[tcejmtad
kl t

lm
be tikcdv

ia
jb

]A+−1
2 ·[tde

jmtac
kl t

ik
bct

lm
de via

jb
]A

+ 1
32 · [tab

kl t
cd
mntijabt

mn
cd vij

kl
]A + −1

8 · [tac
kl t

bd
mntijabt

mn
cd vij

kl
]A + −1

4 · [tac
kl t

bd
mntjmab tincdv

ij
kl

]A

+ 1
32 · [tcdkl t

ab
mntijabt

mn
cd vij

kl
]A + 1

8 · [tcdkl t
ab
mntjmab tincdv

ij
kl

]A + −1
8 · [tab

kmtcdlntijabt
mn
cd vij

kl
]A

+−1
8 ·[tab

kmtcdlntjmab tincdv
ij
kl

]A+1
4 ·[t

bd
kmtac

lntijabt
mn
cd vij

kl
]A+1

2 ·[t
bd
kmtac

lntjmab tincdv
ij
kl

]A+−1
8 ·[tcdkmtab

lntjmab tincdv
ij
kl

]A

〈Φ0| exp
1...1

(T̂ †
1 + T̂ †

2)(V̂ + F̂)(V̂ + F̂) exp
1...1

(T̂1 + T̂2)|Φ0〉

= 〈Φ0|((F̂)
2
1 + (V̂)

2
1 + T̂ †

2 (F̂)
2
1 + T̂ †

2 (V̂)
2
1 + T̂ †

1 (F̂)
2
1 + T̂ †

1 (V̂)
2
1 + F̂ V̂ + (F̂)

2
1 T̂1 + (F̂)

2
1 T̂2

+V̂ F̂ + (V̂)
2
1 T̂1 + (V̂)

2
1 T̂2 + T̂ †

2 F̂ V̂ + T̂ †
2 (F̂)

2
1 T̂1 + T̂ †

2 (F̂)
2
1 T̂2 + T̂ †

2 V̂ F̂ + T̂ †
2 (V̂)

2
1 T̂1

+T̂ †
2 (V̂)

2
1 T̂2 + T̂ †

1 F̂ V̂ + T̂ †
1 (F̂)

2
1 T̂1 + T̂ †

1 (F̂)
2
1 T̂2 + T̂ †

1 V̂ F̂ + T̂ †
1 (V̂)

2
1 T̂1 + T̂ †

1 (V̂)
2
1 T̂2 + F̂ V̂ T̂1

+F̂ V̂ T̂2 + V̂ F̂ T̂1 + V̂ F̂ T̂2 + T̂ †
2 F̂ V̂ T̂1 + T̂ †

2 F̂ V̂ T̂2 + T̂ †
2 V̂ F̂ T̂1 + T̂ †

2 V̂ F̂ T̂2 + T̂ †
1 F̂ V̂ T̂1

+T̂ †
1 F̂ V̂ T̂2 + T̂ †

1 V̂ F̂ T̂1 + T̂ †
1 V̂ F̂ T̂2)|Φ0〉

= [f i
a
f i

a
]A + 1

4 · [vij
ab

vij
ab

]A + −1
1 · [f i

j
f i

a
taj]A + −1

1 · [f i
j
fj

a
tia]A + −1

2 · [f i
j
tab
jkv

ik
ab

]A

106

C.2. Expectation Values

+−1
2 · [f i

j
tikabv

jk
ab

]A + [f i
a
fj

b
tab
ij]A + [f i

a
fj

b
tijab]A + [f i

a
fa

b
tbi]A + [f i

a
fa

b
tib]A

+[f i
a
tbjv

ij
ab

]A + −1
1 · [f i

a
tbjv

ib
ja

]A + [f i
a
tjbv

ij
ab

]A + −1
1 · [f i

a
tjbv

ib
ja

]A + −1
2 · [f i

a
tbcijv

ja
bc

]A

+−1
2 · [f i

a
tab
jkv

ib
jk

]A + −1
2 · [f i

a
tjkabv

ib
jk

]A + −1
2 · [f i

a
tijbcv

ja
bc

]A + 1
2 · [fa

b
tac
ij vij

bc
]A + 1

2 · [fa
b
tijbcv

ij
ac

]A

+1
2 · [tcjv

ij
ab

vic
ab

]A + −1
2 · [takv

ij
kb

vij
ab

]A + 1
2 · [tibv

ia
jk

vjk
ab

]A + 1
2 · [tjcv

ij
ab

vic
ab

]A + 1
8 · [tcdij vij

ab
vab
cd

]A

+[tac
jkv

ij
ab

vic
kb

]A + 1
8 · [tab

klv
ij
kl

vij
ab

]A + 1
8 · [tijabv

ij
kl

vkl
ab

]A + −1
1 · [tikbcv

ia
jb

vjk
ac

]A + 1
8 · [tijcdv

ij
ab

vab
cd

]A

+−1
1 · [f i

j
f i

a
tkb t

ab
jk]A +[f i

j
fj

k
takt

i
a]A + 1

2 · [f
i
j
fj

k
tab
kl t

il
ab]A + −1

1 · [f i
j
fj

a
tbkt

ik
ab]A + 1

2 · [f
i
j
fk

l
tab
jl t

ik
ab]A

+2
1 · [f

i
j
fk

a
tbjt

ik
ab]A + 2

1 · [f
i
j
fk

a
tibt

ab
jk]A + −2

1 · [f i
j
fa

b
taj t

i
b]A + −2

1 · [f i
j
fa

b
tac
jkt

ik
bc]A + [f i

j
taj t

k
bv

ib
ka

]A

+[f i
j
taj t

ik
bcv

ka
bc

]A + −1
2 · [f i

j
tbjt

kl
abv

ia
kl

]A + [f i
j
takt

i
bv

ja
kb

]A + −1
2 · [f i

j
takt

ik
bcv

ja
bc

]A + −1
1 · [f i

j
tbl t

ik
abv

jk
la

]A

+−1
2 ·[f i

j
tibt

ab
klv

ja
kl

]A+−1
1 ·[f i

j
tkb t

ab
jl v

il
ka

]A+[f i
j
tict

ab
jkv

kc
ab

]A+−1
2 ·[f i

j
tkc t

ab
jkv

ic
ab

]A+−1
2 ·[f i

j
tab
jkt

ik
cdv

ab
cd

]A

+2
1 ·[f

i
j
tac
jl t

ik
bcv

ka
lb

]A+[f i
j
tac
jl t

kl
bcv

ib
ka

]A+−1
4 ·[f i

j
tab
jmtkl

abv
im
kl

]A+[f i
j
tac
kl t

il
bcv

ja
kb

]A+−1
4 ·[f i

j
tab
lmtikabv

jk
lm

]A

+[f i
a
f i

a
tbjt

j
b]A + 1

4 · [f
i
a
f i

a
tbcjkt

jk
bc]A + −1

1 · [f i
a
f i

b
taj t

j
b]A + −1

2 · [f i
a
f i

b
tac
jkt

jk
bc]A + −1

1 · [f i
a
fj

a
tbi t

j
b]A

+−1
2 · [f i

a
fj

a
tbcikt

jk
bc]A + 2

1 · [f i
a
fj

b
tbjt

i
a]A + 2

1 · [f i
a
fj

b
tbcjkt

ik
ac]A + [f i

a
fa

b
tcjt

ij
bc]A + [f i

a
fa

b
tjctbcij]A

+2
1 · [f

i
a
fb

c
tbjt

ij
ac]A+ 2

1 · [f
i
a
fb

c
tjctab

ij]A+ 1
2 · [f

i
a
tai t

jk
bc vjk

bc
]A+ −1

1 · [f i
a
tbi t

j
cv

jb
ac

]A+ 1
2 · [f

i
a
tci t

jk
bc vjk

ab
]A

+−1
1 · [f i

a
tbjt

i
cv

jc
ab

]A + [f i
a
tbjt

j
cv

ib
ac

]A + [f i
a
tbjt

j
cv

ic
ab

]A + 1
2 · [f i

a
tbjt

ij
cdv

ab
cd

]A + −1
1 · [f i

a
takt

j
bv

ij
kb

]A

+1
2 · [f i

a
takt

jk
bc vij

bc
]A + −1

1 · [f i
a
tbkt

j
av

ik
jb

]A + [f i
a
tbkt

j
bv

ij
ka

]A + [f i
a
tbkt

j
bv

ik
ja

]A + −2
1 · [f i

a
tbkt

ij
acv

jb
kc

]A

+−1
1 ·[f i

a
tbkt

jk
acv

ic
jb

]A+−1
1 ·[f i

a
tckt

ij
bcv

ja
kb

]A+[f i
a
tckt

jk
bc vij

ab
]A+−1

1 ·[f i
a
tckt

jk
bc vib

ja
]A+ 1

2 ·[f
i
a
tbl t

jk
abv

il
jk

]A

+1
2 ·[f

i
a
tiat

bc
jkv

jk
bc

]A+ 1
2 ·[f

i
a
tkat

bc
jkv

ij
bc

]A+ 1
2 ·[f

i
a
tjbt

ab
klv

ij
kl

]A+ 1
2 ·[f

i
a
tict

bc
jkv

jk
ab

]A+−2
1 ·[f i

a
tjctab

ikvjb
kc

]A

+−1
1 ·[f i

a
tjctbcikv

jb
ka

]A+−1
1 ·[f i

a
tkc t

ab
jkv

ib
jc

]A+[f i
a
tkc t

bc
jkv

ij
ab

]A+−1
1 ·[f i

a
tkc t

bc
jkv

ib
ja

]A+ 1
2 ·[f

i
a
tjdt

bc
ijv

ad
bc

]A

+[f i
a
tab
ik tjkcdvjb

cd
]A+−1

1 ·[f i
a
tbdiktjkcdvjb

ac
]A+[f i

a
tac
il tjkbc vjk

lb
]A+−1

4 ·[f i
a
tbcil t

jk
bc vjk

la
]A+−1

4 ·[f i
a
tab
jkt

jk
cdvib

cd
]A

+[f i
a
tbcjkt

ik
adv

jd
bc

]A + −1
4 · [f i

a
tbcjkt

jk
adv

id
bc

]A + −1
1 · [f i

a
tbdjkt

ik
cdv

jc
ab

]A + 1
2 · [f i

a
tbdjkt

jk
cdvib

ac
]A

+1
2 · [f i

a
tbdjkt

jk
cdvic

ab
]A + −1

1 · [f i
a
tac
kl t

jl
bcv

ij
kb

]A + [f i
a
tbcklt

ij
acv

jb
kl

]A + −1
1 · [f i

a
tbcklt

jl
acv

ik
jb

]A

+−1
4 · [f i

a
tbcklt

ij
bcv

ja
kl

]A + 1
2 · [f i

a
tbcklt

jl
bcv

ij
ka

]A + 1
2 · [f i

a
tbcklt

jl
bcv

ik
ja

]A + [fa
b
fa

c
tci t

i
b]A

+1
2 · [fa

b
fa

c
tcdij tijbd]A + 1

2 · [fa
b
fc

d
tac
ij tijbd]A + −1

1 · [fa
b
taj t

i
cv

ib
jc

]A + 1
2 · [fa

b
taj t

ij
cdv

ib
cd

]A

+−1
1 · [fa

b
tcjt

i
bv

ic
ja

]A + [fa
b
tcjt

ij
bdv

ic
ad

]A + −1
1 · [fa

b
takt

ij
bcv

ij
kc

]A + 1
2 · [fa

b
tckt

ij
bcv

ij
ka

]A

+−1
1 · [fa

b
tibt

ac
jkv

ic
jk

]A+ 1
2 · [f

a
b
tjbt

cd
ij via

cd
]A+ 1

2 · [f
a
b
tict

ac
jkv

ib
jk

]A+[fa
b
tjdt

ac
ij vid

bc
]A+ 1

4 · [f
a
b
tac
ij tijdev

bc
de

]A

+1
4 · [fa

b
tcdij tijbev

ae
cd

]A + −2
1 · [fa

b
tac
jkt

ik
bdv

ic
jd

]A + −1
1 · [fa

b
tad
jktikcdv

ib
jc

]A + −1
1 · [fa

b
tcdjkt

ik
bdv

ic
ja

]A

107

C. Generated Formulas

+1
2 · [fa

b
tac
kl t

ij
bcv

ij
kl

]A + 1
2 · [tai t

jk
cdvic

ab
vjk

bd
]A + −1

2 · [tdi t
j
cv

ic
ab

vjd
ab

]A + 1
4 · [tdi t

jk
cdvic

ab
vjk
ab

]A

+−1
1 ·[taj t

k
cv

ij
ab

vik
bc

]A+ −1
2 ·[tcjt

k
cv

ij
ab

vik
ab

]A+[tcjt
ik
bdv

ia
jb

vkc
ad

]A+ 1
2 ·[t

d
j t

j
cv

ic
ab

vid
ab

]A+ 1
4 ·[t

e
jt

ij
cdv

ie
ab

vab
cd

]A

+−1
1 ·[takt

j
cv

ij
kb

vic
ab

]A+ 1
2 ·[t

a
kt

k
cv

ij
ab

vij
bc

]A+−1
2 ·[takt

il
bcv

ia
jk

vjl
bc

]A+−1
4 ·[takt

ij
cdv

ij
kb

vab
cd

]A+[takt
jk
cdvij

bd
vic
ab

]A

+[tbkt
i
cv

ia
jk

vjb
ac

]A +[tckt
i
bv

ia
jb

vjc
ka

]A + 1
4 · [t

c
kt

k
cv

ij
ab

vij
ab

]A + −1
1 · [tckt

il
bcv

ia
jk

vjl
ab

]A + −1
1 · [tckt

ik
bdv

ia
jb

vjc
ad

]A

+−1
2 ·[tdkt

ij
bcv

ia
bc

vjd
ka

]A+ 1
2 ·[t

d
kt

jk
cdvij

ab
vic
ab

]A+−1
2 ·[tal t

i
bv

ia
jk

vjk
lb

]A+ 1
4 ·[t

a
l t

ij
bcv

ij
kl

vka
bc

]A+[tal t
ik
bcv

ia
jb

vjk
lc

]A

+1
4 · [tal t

il
bcv

ia
jk

vjk
bc

]A + 1
2 · [tbl t

i
bv

ia
jk

vjk
la

]A + −1
2 · [tbl t

ij
acv

ij
ka

vkb
lc

]A + −1
1 · [tcl t

ik
bcv

ia
jb

vjk
la

]A

+1
2 · [tcl t

il
bcv

ia
jk

vjk
ab

]A + 1
4 · [tbmtijabv

ij
kl

v kl
ma

]A + 1
2 · [tibt

cd
jkv

ia
jb

vka
cd

]A + 1
2 · [tibt

ac
klv

ia
jb

vjc
kl

]A

+1
4 · [t

i
bt

ab
lmvia

jk
vjk
lm

]A+[tict
ab
klv

ia
jk

vjb
lc

]A+[tict
bc
klv

ia
jk

vjb
la

]A+ 1
4 · [t

j
ctde

ij vic
ab

vab
de

]A+ −1
1 · [tjctad

ik vic
ab

vjd
kb

]A

+1
4 · [tjctab

klv
ij
kl

vic
ab

]A + −1
1 · [tkc t

ad
jkvic

ab
vid
jb

]A + 1
2 · [tkc t

ab
jl v

ij
ab

vik
lc

]A + −1
1 · [tkc t

ac
jl v

ij
ab

vik
lb

]A

+1
4 · [tlct

ab
klv

ij
kc

vij
ab

]A + −1
2 · [tlct

ac
klv

ij
kb

vij
ab

]A + 1
4 · [tidt

bc
jkv

ia
jk

vad
bc

]A + −1
2 · [tkdt

ac
ij vij

ab
vkc
bd

]A

+1
4 · [tkdt

cd
ij vij

ab
vkc
ab

]A + −1
1 · [tkdt

ac
jkv

ij
ab

vic
bd

]A + 1
2 · [tkdt

cd
jkv

ij
ab

vic
ab

]A + 1
4 · [tad

ij tkl
cdv

ij
ab

vkl
bc

]A

+ 1
16 · [tcdij tkl

cdv
ij
ab

vkl
ab

]A + 1
16 · [tefij tijcdv

ab
cd

vab
ef

]A + [tad
ik tjkcevic

ab
vjd

be
]A + −1

2 · [tde
ik tjkcevic

ab
vjd
ab

]A

+1
2 · [tad

il tjkcdvic
ab

vjk
lb

]A + −1
2 · [tab

jkt
il
cdv

ia
jk

vlb
cd

]A + −1
2 · [tad

jktjkcevic
ab

vid
be

]A + −1
2 · [tae

jkt
ik
cdv

ie
jb

vab
cd

]A

+1
2 · [tbdjkt

il
cdv

ia
jk

vlb
ac

]A + −1
2 · [tcdjkt

ik
bev

ia
jb

vae
cd

]A + 1
4 · [tde

jkt
ik
bcv

ia
bc

vja
de

]A + 1
4 · [tde

jkt
jk
cevic

ab
vid
ab

]A

+−1
4 · [tab

jl t
kl
cdv

ij
ab

vik
cd

]A + [tac
jl t

ik
bdv

ia
jb

vkc
ld

]A + −1
1 · [tad

jl tkl
cdv

ij
ab

vik
bc

]A + [tcdjl t
ik
bdv

ia
jb

vkc
la

]A

+−1
4 · [tcdjl t

kl
cdv

ij
ab

vik
ab

]A + 1
8 · [tab

kl t
ij
cdv

ij
kl

vab
cd

]A + −1
2 · [tab

kl t
il
cdv

ia
jk

vjb
cd

]A + 1
2 · [tab

kl t
jl
cdv

ij
kd

vic
ab

]A

+ 1
16 · [tab

kl t
kl
cdv

ij
ab

vij
cd

]A + [tac
kl t

il
bdv

ia
jb

vjc
kd

]A + −1
1 · [tad

kl t
jl
cdv

ij
kb

vic
ab

]A + 1
4 · [tad

kl t
kl
cdv

ij
ab

vij
bc

]A

+−1
2 ·[tbcklt

ij
adv

ij
ka

vld
bc

]A+[tbdkl t
il
cdv

ia
jk

vjb
ac

]A+1
8 ·[t

cd
kl t

ij
abv

ij
ab

vkl
cd

]A+[tcdkl t
il
bdv

ia
jb

vjc
ka

]A+ 1
16 ·[t

cd
kl t

kl
cdv

ij
ab

vij
ab

]A

+−1
1 · [tac

kmtilbcv
ia
jk

v jl
mb

]A + 1
2 · [tbckmtilbcv

ia
jk

v jl
ma

]A + 1
2 · [tac

lmtijbcv
ij
kl

vka
mb

]A + −1
2 · [tac

lmtikbcv
ia
jb

vjk
lm

]A

+−1
2 · [tac

lmtimbc via
jk

vjk
lb

]A + 1
4 · [tbclmtijacv

ij
ka

vkb
lm

]A + 1
4 · [tbclmtimbc via

jk
vjk

la
]A + 1

16 · [tab
mntijabv

ij
kl

v kl
mn

]A

108

List of Abbreviations

CAS complete active space

BCH Baker–Campbell–Hausdorff (expansion)

BWCC Brillouin–Wigner coupled-cluster (method)

CC coupled-cluster (method)

CCSD coupled-cluster method with singles and doubles

CCSD(T) coupled-cluster method with singles and doubles and a perturbative

triples correction

CI configuration interaction (method)

EOM equation-of-motion

FCI full configuration interaction (method)

HF Hartree–Fock (method)

LR linear response

MCSCF multi-configuration self-consistent field (method)

MkMRCC multi-reference coupled-cluster method of Mukherjee et al.

MO molecular orbital

MR multi-reference

MRexpT multi-reference exponential wave function (ansatz)

PES potential energy surface

Q quadruples (quadruple excitations)

SCF self-consistent field (method)

SR single-reference

SRMRCC multi-reference coupled-cluster based on the single-reference

formalism

STL standard template library (for C++)

SUMRCC state-universal multi-reference coupled-cluster (method)

T triples (triple excitations)

TCE Tensor Contraction Engine

UML unified modeling language

VUMRCC valence-universal multi-reference coupled-cluster (method)

109

List of Figures

1.1. Usage of UML symbols . 5

3.1. Schematic representation of a coupled-cluster implementation 24

3.2. Steps of the formula generation procedure 25

4.1. Structure visualization for a general term 37

4.2. Structure of the term P̂−(C|BA)
∑

a

f a
C

tABa
IJK 38

4.3. Procedure to determine the order of two different amplitudes 41

4.4. Illustration of the optimization procedure for one index group 44

4.5. Construction of the graph for the term vIa
Bi

tAi taJ 49

4.6. UML diagram for graph components . 51

4.7. Example graph including factor labels . 52

4.8. Graphs for two equivalent terms with index labels 52

4.9. Graphs with the same fingerprint which are equivalent but not strictly

equivalent . 57

4.10. Non-equivalent graphs which have the same fingerprint 57

4.11. Non-equivalent graphs which have the same fingerprint 58

5.1. UML diagram for classes related to tensor representation 68

5.2. Illustration of “normal” and blockwise iteration for two indices 74

5.3. Schematic overview of the tensor address calculation 83

111

List of Tables

3.1. Explicit expressions for one operator product in different projections . . 31

3.2. Explicit expressions for the Fermi vacuum expectation values of

different operators . 31

4.1. Term numbers before and after simplification 59

5.1. Performance of matrix–vector (dgemv) and matrix–matrix (dgemm)
multiplication routines . 66

5.2. Example for hierarchical index orbital table 70

5.3. Different iteration patterns for two indices 76

5.4. Calculation times for a single CC iteration 86

5.5. Operation statistics for conversions . 87

113

List of Listings

3.1. Generation of the CCSD equations . 26

4.1. Recursive graph comparison . 56

5.1. Class declaration for SuperIteratorIndex 71

5.2. Class declaration for AtomicIterator 73

5.3. Incrementation function of AtomicIterator 74

5.4. Reset function of AtomicIterator . 75

5.5. Usage example for tensor classes and iterator 79

115

List of Algorithms

1. Term simplification . 43

2. Graph-based simplification . 53

3. Straightforward tensor contraction algorithm 63

4. Tensor contraction using blockwise matrix multiplication 81

117

Bibliography

[1] T. D. Crawford, H. F. Schaefer III, Rev. Comput. Chem. 14, 33 (2000).

[2] R. J. Bartlett, J. Phys. Chem. 93, 1697 (1989).

[3] O. Christiansen, Theor. Chem. Acc. 116, 106 (2006).

[4] R. J. Bartlett, M. Musiał, Rev. Mod. Phys. 79, 291 (2007).

[5] T. Helgaker, W. Klopper, D. P. Tew, Mol. Phys. 106, 2107 (2008).

[6] F. Coester, Nucl. Phys. 7, 421 (1958).

[7] F. Coester, H. Kümmel, Nucl. Phys. 17, 477 (1960).

[8] J. Čı́žek, J. Chem. Phys. 45, 4256 (1966).

[9] J. Čı́žek, Adv. Chem. Phys. 14, 35 (1969).

[10] J. Čı́žek, J. Paldus, Int. J. Quantum Chem. 5, 359 (1971).

[11] R. J. Bartlett, G. D. Purvis III, Int. J. Quantum Chem. 14, 561 (1978).

[12] G. D. Purvis III, R. J. Bartlett, J. Chem. Phys. 76, 1910 (1982).

[13] J. A. Pople, R. Krishnan, H. B. Schlegel, J. S. Binkley, Int. J. Quantum Chem. 14,

545 (1978).

[14] J. Noga, R. J. Bartlett, J. Chem. Phys. 86, 7041 (1987).

[15] G. E. Scuseria, H. F. Schaefer III, Chem. Phys. Lett. 152, 382 (1988).

[16] S. A. Kucharski, R. J. Bartlett, Theor. Chim. Acta 80, 387 (1991).

[17] M. Musiał, S. A. Kucharski, R. J. Bartlett, Chem. Phys. Lett. 320, 542 (2000).

[18] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem. Phys. Lett.

157, 479 (1989).

[19] N. Oliphant, L. Adamowicz, J. Chem. Phys. 94, 1229 (1991).

[20] V. V. Ivanov, D. I. Lyakh, L. Adamowicz, Phys. Chem. Chem. Phys. 11, 2355

(2009).

119

Bibliography

[21] H. J. Monkhorst, Int. J. Quantum Chem. Symp. 11, 421 (1977).

[22] D. Mukherjee, P. K. Mukherjee, Chem. Phys. 39, 325 (1979).

[23] H. Koch, P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).

[24] O. Christiansen, P. Jørgensen, C. Hättig, Int. J. Quantum Chem. 68, 1 (1998).

[25] J. F. Stanton, R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).

[26] A. I. Krylov, Annu. Rev. Phys. Chem. 59, 433 (2008).

[27] K. Kowalski, P. Piecuch, J. Chem. Phys. 113, 18 (2000).

[28] G. D. Purvis III, R. J. Bartlett, J. Chem. Phys. 75, 1284 (1981).

[29] G. E. Scuseria, T. J. Lee, H. F. Schaefer III, Chem. Phys. Lett. 130, 236 (1986).

[30] G. E. Scuseria, A. C. Scheiner, T. J. Lee, J. E. Rice, H. F. Schaefer III, J. Chem. Phys.

86, 2881 (1987).

[31] T. J. Lee, J. E. Rice, Chem. Phys. Lett. 150, 406 (1988).

[32] G. E. Scuseria, C. L. Janssen, H. F. Schaefer III, J. Chem. Phys. 89, 7382 (1988).

[33] G. E. Scuseria, H. F. Schaefer III, J. Chem. Phys. 90, 3700 (1989).

[34] J. F. Stanton, J. Gauss, J. D. Watts, R. J. Bartlett, J. Chem. Phys. 94, 4334 (1991).

[35] C. Hampel, K. A. Peterson, H.-J. Werner, Chem. Phys. Lett. 190, 1 (1992).

[36] P. J. Knowles, C. Hampel, H.-J. Werner, J. Chem. Phys. 99, 5219 (1993).

[37] S. Hirata, J. Phys. Chem. A 107, 9887 (2003).

[38] A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella,

D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C. Lam,

Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, A. Sibiryakov, Mol.

Phys. 104, 211 (2006).

[39] T. Shiozaki, M. Kamiya, S. Hirata, E. F. Valeev, Phys. Chem. Chem. Phys. 10, 3358

(2008).

[40] T. Shiozaki, M. Kamiya, S. Hirata, E. F. Valeev, J. Chem. Phys. 129, 071101 (2008).

[41] M. Kállay, P. R. Surján, J. Chem. Phys. 115, 2945 (2001).

[42] M. Kállay, P. G. Szalay, P. R. Surján, J. Chem. Phys. 117, 980 (2002).

120

Bibliography

[43] M. Hanrath, J. Chem. Phys. 123, 84102 (2005).

[44] M. Hanrath, Chem. Phys. Lett. 420, 426 (2006).

[45] M. Hanrath, J. Chem. Phys. 128, 154118 (2008).

[46] M. Hanrath, Mol. Phys. 106, 1949 (2008).

[47] M. Hanrath, A. Engels-Putzka, Mol. Phys. 107, 143 (2009).

[48] A. Engels-Putzka, M. Hanrath, Theor. Chem. Acc. 122, 197 (2009).

[49] A. Engels-Putzka, M. Hanrath, Journal of Molecular Structure: THEOCHEM

902, 59 (2009).

[50] Silicon Graphics, Standard Template Library Programmer’s Guide,

URL http://www.sgi.com/tech/stl/.

[51] Object Management Group, Unified Modeling Language,

URL http://www.uml.org/.

[52] T. Helgaker, P. Jørgensen, J. Olsen, Modern Electronic Structure Theory, first. Ed.,

Wiley (2000).

[53] F. E. Harris, H. J. Monkhorst, D. L. Freeman, Algebraic and Diagrammatic Methods

in Many-Fermion Theory, Oxford University Press (1992).

[54] M. Nooijen, K. R. Shamasundar, D. Mukherjee, Mol. Phys. 103, 2277 (2005).

[55] M. Hanrath, Chem. Phys. 356, 31 (2009).

[56] J. A. Pople, J. S. Binkley, R. Seeger, Int. J. Quantum Chem. Symp. 10, 1 (1976).

[57] W. Duch, G. H. F. Diercksen, J. Chem. Phys. 101, 3018 (1994).

[58] P. R. Taylor, Lecture Notes on Quantum Chemistry 64, 125 (1994).

[59] R. J. Bartlett, Ann. Rev. Phys. Chem. 32, 359 (1981).

[60] K. A. Brueckner, Phys. Rev. 100, 36 (1955).

[61] J. Goldstone, Proc. Roy. Soc. A 239, 267 (1956).

[62] G. C. Wick, Phys. Rev. 80, 268 (1950).

[63] F. E. Harris, B. Jeziorski, H. J. Monkhorst, Phys. Rev. A 23, 1632 (1981).

[64] B. Jeziorski, J. Paldus, J. Chem. Phys. 88, 5673 (1988).

121

http://www.sgi.com/tech/stl/
http://www.uml.org/

Bibliography

[65] X. Li, J. Paldus, J. Chem. Phys. 101, 8812 (1994).

[66] M. Nooijen, J. Chem. Phys. 104, 2638 (1996).

[67] D. Mukherjee, R. K. Moitra, A. Mukhopadhyay, Mol. Phys. 30, 1861 (1975).

[68] D. Mukherjee, R. K. Moitra, A. Mukhopadhyay, Mol. Phys. 33, 955 (1977).

[69] I. Lindgren, Int. J. Quantum Chem. Symp. 12, 33 (1978).

[70] B. Jeziorski, H. J. Monkhorst, Phys. Rev. A 24, 1668 (1981).

[71] X. Li, J. Paldus, J. Chem. Phys. 119, 5320 (2003).

[72] X. Li, J. Paldus, J. Chem. Phys. 119, 5346 (2003).

[73] M. Hanrath, Theor. Chem. Acc. 121, 187 (2008).

[74] U. S. Mahapatra, B. Datta, D. Mukherjee, Mol. Phys. 94, 157 (1998).

[75] U. S. Mahapatra, B. Datta, D. Mukherjee, J. Chem. Phys. 110, 6171 (1999).

[76] J. Mášik, I. Hubač, Adv. Quantum Chem. 31, 75 (1999).

[77] J. Mášik, I. Hubač, P. Mach, J. Chem. Phys. 108, 6571 (1998).

[78] J. Pittner, J. Chem. Phys. 118, 10876 (2003).

[79] J. Pittner, X. Z. Li, J. Paldus, Mol. Phys. 103, 2239 (2005).

[80] I. Hubač, J. Pittner, P. Carsky, J. Chem. Phys. 112, 8779 (2000).

[81] L. Kong, Int. J. Quant. Chem. 109, 441 (2008).

[82] F. A. Evangelista, W. D. Allen, H. F. Schaefer III, J. Chem. Phys. 125, 154113

(2006).

[83] M. Kállay, P. R. Surján, J. Chem. Phys. 113, 1359 (2000).

[84] J. Olsen, J. Chem. Phys. 113, 7140 (2000).

[85] S. Hirata, R. J. Bartlett, Chem. Phys. Lett. 321, 216 (2000).

[86] P. J. Knowles, N. C. Handy, Chem. Phys. Lett. 111, 315 (1984).

[87] J. Olsen, B. O. Roos, P. Jørgensen, H. J. A. Jensen, J. Chem. Phys. 89, 2185 (1988).

[88] P. J. Knowles, Chem. Phys. Lett. 155, 513 (1989).

[89] M. Hanrath, personal communication.

122

Bibliography

[90] S. A. Kucharski, R. J. Bartlett, Adv. Quantum Chem. 18, 281 (1986).

[91] S. Hirata, Theor. Chem. Acc. 116, 2 (2006).

[92] C. L. Janssen, H. F. Schaefer III, Theor. Chim. Acta 79, 1 (1991).

[93] P. Jankowski, B. Jeziorski, J. Chem. Phys. 111, 1857 (1999).

[94] M. Nooijen, V. Lotrich, J. Mol. Struct. THEOCHEM 547, 253 (2001).

[95] I. Berente, P. G. Szalay, J. Gauss, J. Chem. Phys. 117, 7872 (2002).

[96] J. Paldus, H. C. Wong, Comput. Phys. Commun. 6, 1 (1973).

[97] J. Paldus, H. C. Wong, Comput. Phys. Commun. 6, 9 (1973).

[98] U. Kaldor, J. Comp. Phys. 20, 432 (1976).

[99] F. E. Harris, Int. J. Quantum Chem. 75, 593 (1999).

[100] D. I. Lyakh, V. V. Ivanov, L. Adamowicz, J. Chem. Phys. 122, 24108 (2005).

[101] A. D. Bochevarov, C. D. Sherrill, J. Chem. Phys. 121, 3374 (2004).

[102] M. Hanrath, personal communication.

[103] P. Pulay, Chem. Phys. Lett. 73, 393 (1980).

[104] M. Hanrath, Chem. Phys. Lett. 466, 240 (2008).

[105] M. Wladyslawski, M. Nooijen, Adv. Quantum Chem. 49, 1 (2005).

[106] E. R. Gansner, S. C. North, Software - Practice and Experience 30, 1203 (1999),

see also www.graphviz.org.

[107] E. R. Gansner, E. Koutsofios, S. C. North, K. Vo, IEEE Transactions on Software

Engineering 19, 214 (1993).

[108] H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schütz, et al., MOLPRO,

a package of ab initio programs designed by H.-J. Werner and P. J. Knowles version 2006,

Tech. Rport, University of Birmingham (2006).

[109] J. Friedrich, M. Hanrath, M. Dolg, J. Chem. Phys. 126, 154110 (2007).

[110] N. Bourbaki, Lie Groups and Lie Algebras, Springer.

123

Acknowledgments

The work embodied in this thesis has been carried out at the Institute for Theoretical

Chemistry under the supervision of Prof. Dr. Michael Dolg and scientific guidance of

Dr. Michael Hanrath. I want to express my gratitude towards them and all the other

persons who helped me in some way to finish this thesis.

I am very grateful to Prof. Dolg for giving me the opportunity to do my PhD in his

group and for providing an excellent working environment. I have also many reasons

to thank Dr. Hanrath, who initiated the project this work is a part of. He introduced

me to the interesting subject of (multi-reference) coupled-cluster theory – in particu-

lar his MRexpT ansatz – and to programming in C++. I also learned a lot from him

about Theoretical Chemistry and computers in general, the way computers work and

how to write an efficient program. We had many fruitful discussions and he patiently

answered my questions. Finally, he also read several versions of my manuscript and

made valuable suggestions. I would also like to thank Prof. U. Deiters for accepting to

review this thesis, despite its very theoretical nature.

Furthermore, I thank all my present and former colleagues at the Institute for Theo-

retical Chemistry for accepting me as a colleague and for the very good atmosphere in

our group. In particular I would like to thank my “office-mates” Dr. Joachim Friedrich

and Jonas Wiebke for sharing with me the ups and dows of scientific work, for inter-

esting discussions, for encouragement and for helping me with the debugging of some

of my programs (special thanks to J.F. for helping me getting started). J.W. also read

parts of this thesis and made helpful comments.

I am also grateful to the people who introduced me to the subject of Theoretical

Chemistry during my studies at Bonn University.

Part of this work was supported by the Deutsche Forschungsgemeinschaft through

a research grant to M. Hanrath (HA 5116/1-1), which I gratefully acknowledge.

I feel deep gratitude towards my parents, who always supported me and encour-

aged me to follow my interests. Last but not least I thank my husband Jens Putzka

for his practical and emotional support, for his interest in my work and willingness

to discuss it with me, and for carefully (and critically) reading several versions of this

thesis. Without him, the last years certainly would have been much more difficult for

me.

125

Erkl ärung

Ich versichere, dass ich die vonmir vorgelegte Dissertation selbständig angefertigt, die

benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit –

einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken im Wortlaut

oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich

gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Univer-

sität zur Prüfung vorgelegen hat; dass sie noch nicht veröffentlicht worden ist sowie,

dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht

vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt.

Die von mir vorgelegte Dissertation ist von Prof. Dr. M. Dolg betreut worden.

	Kurzzusammenfassung
	Abstract
	Introduction
	Motivation
	Scope of the Thesis
	Technical Remarks

	Theory
	Foundations
	The Electronic Schrödinger Equation
	The Hartree–Fock Method
	Electron Correlation
	Size Consistency and Size Extensivity

	Coupled-Cluster Theory
	Second Quantization
	Single-Reference Coupled-Cluster
	Multi-Reference Coupled-Cluster

	Implementation Overview
	Formula Generation
	Overview
	Algebraic Methods
	Diagrams
	Automatization
	Exploiting Index Symmetry
	Examples

	Equation Solving
	Preparation
	Numerical Methods
	Summary

	Term Simplification
	Problem Description
	Algebraic Approach
	Term Representation
	Order Relation
	Simplification Algorithm
	Implementation
	Discussion

	Graph-Based Approach
	Representation of Terms as Graphs
	Graph Comparison Algorithm
	Discussion

	Tensor Contraction
	Tensor Structure
	Possible Approaches
	Explicit Loops
	Vectorization

	Actual Implementation
	Tensor Representation
	Indices and Iterators
	Contraction Procedure
	Tensor Addressing
	Further Optimizations
	Performance Analysis

	Conclusion and Outlook
	Conclusion
	Outlook
	Optimization
	Generalizations
	Applications

	Proof of the BCH Formula
	Example Program
	Generated Formulas
	CCSDTQ Amplitude Equations
	Expectation Values

	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Bibliography
	Acknowledgments

