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I. Zusammenfassung 
 
Das nukleoid-strukturierende Protein H-NS ist eines der häufigsten DNA bindenden 

Proteine in Enterobacteriaceae. H-NS spielt eine Schlüsselrolle in der Organisation 

des bakteriellen Chromosoms und in der Regulation von Genaktivität. Als Repressor 

der Transkription reguliert H-NS in Escherichia coli die Aktivität von etwa 5 % des 

Genoms. Dabei reguliert es Genexpression in Antwort auf verschiedene 

Umweltsignale. H-NS wirkt dabei als globaler Repressor, indem es an spezifische 

DNA-Sequenzen bindet, woraufhin sich stabile Nukleoproteinkomplexe und H-

NS-DNA-H-NS-Brücken ausbilden, welche die Transkriptionsinitiation verhindern 

können. Der H-NS-vermittelten Repression kann durch spezifische 

Transkriptionsfaktoren entgegengewirkt werden. Dieses Prinzip wurde bereits für 

mehrere H-NS-reprimierte Genloci gezeigt, z. B. für das bgl-Operon in E. coli, das als 

modellhaft für den Mechanismus der Repression durch H-NS gilt. Am bgl-Operon 

kann der LuxR-Typ-Transkriptionsfaktor BglJ die Repression durch H-NS aufheben, 

wobei der Antirepressoreffekt von BglJ abhängig ist von RcsB. RcsB ist der 

Antwortregulator des Rcs-Signaltransduktionssystems, das durch Membranstress 

aktiviert wird und zahlreiche zelluläre Prozesse in Enterobacteriaceae reguliert. 

BglJ ist ein Trasnkriptionsfaktor vom LuxR-Typ und ist gemeinsam mit YjjQ in 

einem Operon kodiert. Frühere Analysen in einem Two-Hybrid-System ließen darauf 

schließen, dass RcsB sowohl mit BglJ als auch mit YjjQ interagieren kann. In der 

vorliegenden Studie wurde die Interaktion von RcsB mit BglJ und YjjQ mittels Co-

Immunopräzipitation-Experimenten untersucht, die zeigten, dass RcsB eindeutig mit 

BglJ und weniger eindeutig mit YjjQ interagiert. Eine Analyse der Proteinstabilität 

von BglJ legte die Vermutung nahe, dass BglJ ein Substrat der Protease Lon und einer 

zweiten, unbekannten Protease ist. Die Vermutung, dass das Heterodimer BglJ-RcsB 

an eine Bindestelle in der Promotorregion des bgl-Operons bindet, wurde durch eine 

Analyse von Linker-Insertions-Mutanten der vermuteten Bindestelle unterstützt. 

Bindestudien mithilfe von DNA-Gelretardationsversuchen zeigten, dass die Bindung 

von RcsB an ein bekanntes Zielgen (osmC) durch die Anwesenheit von H-NS 

stimuliert wurde, während eine Bindung von BglJ-RcsB an die vermutete Zielsequenz 

am bgl-Operon in diesen Ansätzen nicht bestätigt werden konnte, da die Aufreinigung 

von BglJ-Protein misslang.  
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Desweiteren zeigten DNA-Microarray-Experimente, dass konstitutive Expression von 

BglJ zu einer signifikant höheren Transkription von Genen führte, die an zellulären 

Prozessen wie Säureresistenz, Stressantwort und Eisentransport beteiligt sind, sowie 

von Genen für Proteine der inneren und der äußeren Zellmembran. Diese Ergebnisse 

deuten auf eine globale Rolle von BglJ hin. 

Zusammengefasst zeigen die Ergebnisse dieser Studie, dass BglJ und RcsB 

Heterodimere bilden können, welche die Repression des bgl-Operons durch H-NS 

aufheben können. Darüber hinaus wird deutlich, dass BglJ-RcsB eine wichtige Rolle 

als globaler Genregulator spielt. 
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I. Summary 
 
The nucleoid-structuring protein H-NS is one of the most abundant DNA-binding 

protein in Enterobacteriaceae. H-NS plays a crucial role in the organization of the 

bacterial chromosome and in gene regulation. In E. coli H-NS regulates 

approximately 5% of genome by mostly acting as a transcriptional repressor. H-NS 

regulates gene expression in response to various environmental stimuli. H-NS act as a 

global transcriptional repressor by binding to specific sites followed by forming 

nucleoprotein complexes and DNA-H-NS-DNA bridges which prevent transcription 

initiation. H-NS mediated repression can be antagonized by specific transcription 

factors. This was shown for several H-NS repressed loci including the silent bgl 

operon in E. coli, which is a model system for studying H-NS mediated repression. 

Silencing of bgl is relieved by the LuxR-type transcription factor BglJ. This anti-

silencing effect of BglJ is RcsB dependent. RcsB is a response regulator of a 

membrane stress induced Rcs signal transduction system which regulates various 

cellular processes in Enterobacteriaceae.  

BglJ is a LuxR-type transcriptional regulator encoded in an operon with YjjQ. 

Previous two-hybrid analysis suggested that RcsB interacts with BglJ and also with 

YjjQ. In this present study the interaction of RcsB with BglJ and YjjQ was analyzed 

by Co-immunoprecipitation studies, which showed that RcsB interacts well with BglJ 

and weaker with YjjQ. Analysis of BglJ protein stability suggests that it is a target of 

Lon protease target and a second protease. Binding of BglJ-RcsB to a proposed 

putative RcsB/BglJ heterodimer binding site in the bgl regulatory region was 

supported by linker insertion mutant analysis in the putative binding site. Binding 

analyses by DNA shift assays indicate that binding of RcsB to a known target gene 

(osmC) at which act as homodimer is stimulated by H-NS, while binding analyses of 

BglJ-RcsB to its putative binding site in bgl could not yet be confirmed by DNA shift 

assays, as BglJ protein purification failed.   In addition, DNA microarray experiments 

showed that constitutive expression of BglJ causes a significant increase in genes 

involved in acid resistance, stress response, iron transport, inner and outer membrane 

proteins suggesting a wide spread role of BglJ. 

Taken together, the data support the model that RcsB forms a heterodimer with BglJ, 

that the RcsB-BglJ heterodimer antagonizes H-NS in bgl, and that it RcsB-BglJ plays 

an important role in global gene regulation.  
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II. Introduction 
 
The genomic DNA in bacteria is associated with a class of DNA binding proteins 

referred as “Nucleoid-associated proteins” (NAP`s). The nucleoid-associated proteins 

play a crucial architectural role in the organization and compaction of the bacterial 

chromatin. E. coli consists of at least 12 distinct types of such proteins and each has 

its own characteristic expression pattern and DNA- binding preferences (Azam and 

Ishihama, 1999). The bacterial histone-like nucleoid structuring protein (H-NS) is one 

of the most abundant nucleoid-associated proteins found approximately 20000 copies 

per genome equivalent (Falconi et al., 1988). H-NS is highly pleiotropic and best 

characterized as a global repressor of transcription in Gram-negative bacteria 

(Dorman, 2009). Many transcriptional regulators have been shown to act as H-NS 

antagonists by disrupting the nucleoprotein complex. BglJ is one of such 

transcriptional regulator which counteracts H-NS mediated repression. Here in this 

present study, we showed the interaction of the BglJ with another transcription factor 

RcsB and the anti-repression of RcsB/BglJ heterodimer in H-NS repressed bgl 

operon. 

 

1. H-NS, a nucleoid-associated protein 

H-NS is a small basic protein of approximately of 15.6 kDa size, which is widespread 

in gram negative bacteria (Bertin et al., 2001; Tendeng and Bertin, 2003; Azam T.A et 

al., 1999; Falconi et al., 1988). It was first identified as a heat stable, low molecular 

weight DNA-binding factor in E. coli (Cukier-Kahn et al., 1972; Jacquet et al., 1971). 

Genomic and proteomic studies have shown that H-NS affects approximately 5% of 

the E. coli genes (Hommais et al., 2001). H-NS regulates gene expression in response 

to various environmental stimuli like temperature, osmolarity, acidic conditions and 

growth phase (White-Ziegler and Davis, 2009; Corbett et al., 2007; Amit et al., 2003; 

Dorman, 2009; Atlung and Ingmer, 1997). It was discovered recently that H-NS plays 

an important role in silencing horizontally acquired genes, including Pathogenicity 

Island encoding important virulence factors in Escherichia coli and Salmonella 

enterica (Grainger et al., 2006; Lucchini et al., 2006; Navarre et al., 2006; Navarre et 

al., 2007; Oshima et al., 2006; Wade et al., 2007).  Increasing evidences also shows 
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that H-NS is involved in the regulation of bacterial biofilm formation (Gerstel and 

Romling, 2003; Vallet et al., 2004; Belik et al., 2008; Dalai et al., 2009).  

2. H-NS mediated repression 

H-NS is a pleiotropic regulator and mostly acts as a transcriptional repressor (White-

Ziegler and Davis, 2009; Dame, 2005; Corbett et al., 2007) and (Dorman, 2007). The 

H-NS protein is 137 amino acids in length and has three domains (Fig. 1a). The amino 

terminal domain extending up to residue 65 is required for dimerization of H-NS; the 

carboxy terminal domain beginning at the residue 90 of the proteins has DNA binding 

activity. Both, the C and N terminal domains are connected by a highly flexible linker 

domain. This linker is required in formation of higher order oligomers of the protein. 

Dimerization, oligomerization and nucleic acid binding are crucial to the biological 

activity of H-NS (Dorman et al., 1999; Badaut et al., 2002; Esposito et al., 2002; 

Bloch et al., 2003).  

H-NS preferentially binds to AT-rich and intrinsically curved sequences, which are 

commonly associated with promoters (Yamada et al., 1990; Yamada et al., 1991; 

Bracco et al., 1989; Jauregui et al., 2003). DNA foot printing and chip-on-chip studies 

have shown that H-NS binds to the AT-rich portions of the genomes of Salmonella 

typhimurium (Lucchini et al., 2006; Navarre et al., 2006) and E. coli (Grainger et al., 

2006; Oshima et al., 2006). Only recently, a consensus sequence for H-NS was 

characterized (Bouffartigues et al., 2007; Lang et al., 2007; Dole et al., 2004; 

Nagarajavel et al., 2007). Repression of transcription by H-NS has been studied in 

detail at few promoters. These studies let to the following model; repression by H-NS 

is mediated by specific binding of the H-NS dimer to consensus sequence motifs 

which are also called nucleation sites. Then H-NS oligomerizes along the DNA and 

also forms DNA-H-NS-DNA bridges (Dorman and Kane, 2009). Formation of such 

complexes by H-NS results in DNA looping in which H-NA zips the two double 

strands that flank the promoter together. H-NS nucleoprotein complex formation may 

prevent binding of RNA polymerase or trap RNA polymerase at the promoter 

(Oshima et al., 2006; Noom et al., 2007; Dorman, 2007; Dame et al., 2006; Shin et al., 

2005). The latter was shown in case of the P1 promoter of rrnB (rRNA encoding 

operon) and the hdeAB promoter (Shin et al., 2005). 



Introduction                                    
                              
                              

6

For this promoter it was shown that H-NS binds to high affinity ‘nucleation sites’ and 

then interaction of H-NS dimers creates a nucleoprotein complex trapping RNA 

polymerase at the promoter (Fig 1b) (Rimsky et al., 2001; Rimsky, 2004; Dorman, 

2004; Bouffartigues et al., 2007; Dame et al., 2006).  

      
        

 
    
Fig 1. H-NS repression and antagonism of a DNA–H-NS–DNA bridge. a) The domain structure of 
H-NS is shown schematically. The numbers indicate the amino acid residues. N and C refer to N and 
C-terminal end of H-NS. The dimerization, linker and nucleic acid binding domains are indicated. (b) 
Transcription repression and anti-silencing. In the upper portion, the H-NS protein is shown cross 
linking two segments of DNA to form a repression loop at a bacterial promoter. RNA polymerase is 
trapped at the promoter and is unable to transcribe the gene that is the target of repression. In the lower 
part of the figure, the VirB regulatory protein binds to its recognition site, represented by the Box 1 and 
Box 2 motifs. DNA wrapping around the VirB dimer undermines the DNA–H-NS–DNA bridge and 
displaces H-NS. This liberates RNA polymerase from the repression complex and transcription of the 
target gene can commence (Dorman and Kane, 2009). 
 

3. Anti-silencing of H-NS repression 

H-NS mediated silencing can be relieved by the binding of specific transcription 

factors that disrupt or change the structure of the repressing nucleoprotein complex. 

Temperature-dependent alteration of the DNA structure and other changes in the 

physiological conditions that affect the DNA structure and DNA supercoiling at 
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specific loci can also relieve silencing by H-NS (Dorman, 2004; Navarre et al., 2007; 

Schroder and Wagner, 2002). Furthermore, repression by binding of H-NS within 

transcription units can be affected by the transcription activity (Nagarajavel et al., 

2007). Many types of DNA-binding proteins can counter-act H-NS mediated 

silencing, as shown recently (Fang and Rimsky, 2008; Stoebel et al., 2008). The MarR 

family of transcriptional regulator SlyA counters H-NS mediated repression of the 

hemolysin gene hlyE in E. coli (Westermark et al., 2000; Lithgow et al., 2007). The 

LysR family regulator LeuO counteracts H-NS-mediated repression of specific loci in 

Salmonella enterica and in E. coli (Chen et al., 2005; Fernandez-Mora et al., 2004;  

Madhusudan et al., 2005; Stratmann et al., 2008). The regulatory protein TraJ counter-

acts H-NS repression of the tra genes in the F-plasmid of E. coli (Will and Frost, 

2006),. Ler, a homolog of H-NS encoded by LEE (Locus of Enterocyte Effacement) 

pathogenicity island in EHEC (enterohemorrhagic E. coli) EPEC (Enteropathogenic 

E.coli) antagonizes the H-NS repression (Torres et al., 2008; Williamson and Free, 

2005). ToxT, an AraC like transcription factor antagonizes H-NS mediated silencing 

at the ctx and tcpA promoters in Vibrio cholarae (Nye et al., 2000; Yu and DiRita, 

2002). Other nucleoid-associated protein can also antagonize H-NS repression, the 

heat unstable nucleoid protein (HU) can compete with H-NS for the same binding 

sites in the promoter region of the test DNA (pSFV1) (van et al., 2004). Similarly, Fis 

protein (factor for inversion stimulation) has been reported to antagonize H-NS 

repression at rRNA promoter (Schneider et al., 2003). Our group is more focused on 

studying the mechanism of H-NS mediated repression using bgl operon as a model. 

 

4. bgl operon 
 
The bgl operon encodes gene products necessary for the uptake and fermentation of 

aryl D-glucosides like arbutin and salicin. The bgl operon consists of six genes 

namely bglG, bglF, bglB, bglH, bglI and bglK (Fig 2). Two Rho-independent 

transcriptional terminators, t1 and t2, flank the first gene of the operon, which encodes 

an antiterminator, BglG (Prasad and Schaefler, 1974; Schaefler and Maas, 1967;   

Mahadevan and Wright, 1987; Schnetz et al., 1987; Schnetz and Rak, 1988).  
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Figure 2. The E. coli bgl operon. Scheme showing the bgl operon with the promoter (Pbgl), the CRP 
binding site (CRP), the Rho independent terminators (t1 and t2) and the structural genes bglG,B,F,H,I 
and K (bglG, transcriptional antiterminator, BglB, phospho β-glucosidase, bglF, EII permease, bglH, 
outer membrane porin, bglI xylanase, bglK, isomerase). The H-NS binding sites in URE (upstream 
regulatory element) and DRE (downstream reualtory element) are indicated with vertical hatched bars. 
 
The bgl operon is present in three of the four phylogenetic groups of E. coli including 

commensals and pathogens, and in all strains examined the bgl operon is silenced by 

H-NS (Sankar et al., 2009). Interestingly, in uropathogenic and septicemic isolates 

silencing of bgl is less strict. In E. coli K12 wild type, the bgl operon is 

transcriptionally repressed (~100-fold) by the histone-like nucleoid associated protein. 

So far, no laboratory conditions has been established for the activation of bgl operon 

(Schnetz, 1995; Higgins et al., 1988; Dole et al., 2004; Nagarajavel et al., 2007). H-

NS binds to the upstream regulatory element (URE) located immediately upstream of 

the cAMP receptor protein (CRP)-dependent promoter and within a downstream 

regulatory element (DRE) +600 to +700 bp downstream of the transcription start site 

(Schnetz, 1995), (Dole et al., 2004) and mediates the silencing of the operon. H-NS 

mediated repression is relieved by the transcriptional regulators LeuO and BglJ, both 

of which presumably bind to the URE and counteract H-NS mediated repression 

(Ueguchi et al., 1998; Madhusudan et al., 2005). Recently, it was discovered in the lab 

that anti-silencing of the bgl operon by BglJ requires RcsB (Paukner, 2007). RcsB is 

the response regulator of the Rcs signaling system (see below). Two-hybrid analysis 

suggest that BglJ and RcsB form heterodimers (unpublished data of the lab).  

In addition to BglJ and LeuO, various spontaneous mutations, which map close to the 

CRP-dependent promoter, including the deletion of an AT-rich regulatory region 

upstream of the promoter, integration of insertion elements, and point mutations that 

improve the CRP-binding site relieve silencing, presumably by disrupting the 

repressing nucleoprotein complex formed by H-NS (Schnetz and Rak, 1992; Mukerji 

and Mahadevan, 1997). Once activated, transcription from the bgl promoter initiates 

constitutively. However, the operon is still regulated substrate specifically. In the 

absence of inducer, the majority of transcripts terminate prematurely at one of the two 

rho-independent terminators within the operon, whereas, in the presence of substrate, 
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transcription proceeds through both terminators to the ends of the operon (Schnetz 

and Rak, 1988; Amster-Choder, 2005).  

5. Rcs two-component system 
 
In prokaryotes, two-component systems (TCS) are widespread signal transduction 

devices that enable the bacteria to elicit an adaptive response to environmental 

stimuli, mainly through changes in gene expression. The Rcs phosphorelay is a 

complex, two-component system originally identified in E. coli as a regulator of the 

expression of cps operon, encoding the proteins required for the production of 

capsular polysaccharide colonic acid (Gottesman et al., 1985). The Rcs system is a 

membrane stress response signalling device exclusively found in enterobacteriaceae 

family (Conter et al., 2002; Erickson and Detweiler, 2006; Kaldalu et al., 2004; Sailer 

et al., 2003; Ebel et al., 1997; Ize et al., 2004; Parker et al., 1992; Shiba et al., 2004; 

Laubacher and Ades, 2008). Unlike other TCS, the Rcs system is composed of three 

proteins (Fig. 1). RcsC is an inner membrane located hybrid sensor kinase with a 

conserved histidine kinase domain (H) and a receiver domain (D). The second protein, 

RcsD, consists of a histidine phosphotransfer domain (Hpt) but lacking a histidine 

domain (Fig 3). RcsB, the response regulator consists of a conserved N-terminal 

receiver domain and a C-terminal DNA binding helix-turn helix domain.  

Upon sensing of an environmental signal, the conserved histidine in the kinase 

domain (H) of RcsC is phosphorylated by an autophosphorylation event and the 

phosphoryl group is transferred to the RcsC receiver domain (D). The phosphoryl 

group is then transferred to the conserved histidine in the Hpt domain of RcsD and 

finally to the receiver domain of RcsB. The phosphorylated RcsB regulates the target 

genes as a homodimer and also can form heterodimer with an auxiliary protein, RcsA, 

and regulate target genes. Transcriptome analyses suggest that up to 2.5% of the E. 

coli genome might be regulated by the Rcs system (Ferrieres and Clarke, 2003); 

Hagiwara et al., 2003). The Rcs system regulates the transcription of wide range of 

genes, including those encode the exopolysacharide synthesis operon (cps and 

yjbEFGH  (Gottesman et al., 1985; Ferrieres et al., 2007), the cell division genes (ftsA 

and ftsZ, (Carballes et al., 1999) osmoregulated genes (osmB,  (Boulanger et al., 

2005); osmC,  (Davalos-Garcia et al., 2001), flagellar biosynthesis genes (flhDC, 

(Francez-Charlot et al., 2003), stress response sigma factor σS ( rprA, (Majdalani et 
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al., 2002), curli synthesis operon (csgDEFG, (Vianney et al., 2005), and genes 

involved in biofilm formation (bdm, (Francez-Charlot et al., 2005).  

 

 
Fig 3. Model of signal transduction pathway for Rcs signal transduction system. The Rcs proteins 
RcsB,C,D with RcsF is shown. The kinase domain with conserved histidine (H) and receiver domain 
(D) with conserved aspartate and the phosphorylation process is shown. The jagged arrows indicate 
signals coming from outside the cell. The lipid biosynthesis protein (Rfa) is shown. The RcsB 
homodimer target genes and RcsB/RcsA heterominer target genes are shown. The + and – signs 
indicate positive and negative regulations respectively. P stands for phosphorylated form of the 
particular protein, in this case RcsB. The RcsB binding partners RcsA, BglJ and YjjQ are shown. The 
helix-turn helix motif is also mentioned. The black dots represent the H-NS regulated genes.    
 

6. yjjQ-bglJ operon 
 
The yjjP-yjjQ-bglJ operon is present in the enterobacterial species E. coli (including 

the Shigella spp.) and S. enterica. The yjjQ and bglJ genes are arranged in tandem 

with overlapping open reading frames. They belong to LuxR-type family of 

transcription factors with a typical DNA-binding helix-turn-helix (HTH) motif in the 

C-terminal domain (Fig 4). The This operon is repressed by the global regulator H-NS 

and the repression is counteracted by the LsyR-type transcriptional regulator LeuO 

(Chen et al., 2005; Madhusudan et al., 2005; Stratmann et al., 2008). The disruption if 

yjjQ by a transposon insertion resulted in attenuation of virulence in avian pathogenic 

E. coli (APEC) (Li et al., 2005). 
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Fig 4. Organization of the yjjP-yjjQ-bglJ locus. The operon mapping at 99 min of the E. coli K-12 
genome in between yjjB (encoding a conserved inner membrane protein) and fhuF (encoding a ferric 
iron reductase protein). The yjjQ and bglJ genes encode LuxR-type transcription factors. A yjjQ::Tn5 
insertion mutation attenuates the virulence of APEC (Li et al., 2005), while mini-Tn10 insertions 
upstream of bglJ, causing the constitutive expression of bglJ, relieve the silencing of the bgl operon by 
H-NS in E. coli K-12 (Giel et al., 1996; Madhusudan et al., 2005). The yjjP gene encodes a membrane 
protein of unknown function (Daley et al., 2005). (Figure from Stratmann et al., 2008). 
 
The yjjQ mutants were negatively selected in a genome-wide screen for Salmonella 

genes required for long-term systemic infection of the mouse (Lawley et al., 2006). A 

constitutively expressing bglJ (due to mini-Tn10 insertion) in E. coli K-12 have 

shown to de-repress H-NS regulated bgl operon (Giel et al., 1996). BglJ forms 

heterodimer with another transcriptional regulator RcsB and de-represses H-NS 

regulated bgl operon in E. coli (This study and unpublished data). The RcsB/BglJ 

heterodimer also counteract the repression of H-NS and activate the leuO (Schnetz K, 

unpublished data).  

 

7. Aim of the thesis 

The aim of the study is to understand the mechanism of anti-repression of H-NS 

regulated bgl operon silencing by the transcriptional factor BglJ and its dependence 

on RcsB. Firstly, heterodimerization of BglJ and RcsB was analyzed by Co-

immunoprecipitation. These experiments included analyses of YjjQ, which is encoded 

with BglJ in one operon. Here we showed that the newly identified Lux-R type 

transcriptional regulators, BglJ and YjjQ interact with RcsB, the response regulator of 

Rcs signaling system. Secondly, the binding of RcsB-BglJ to the bgl URE was 

analyzed and a putative binding site for RcsB-BglJ was mapped. I also showed the 

binding of RcsB-BglJ may require H-NS as a necessary factor. 
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III. Results 
 

1. Interaction of RcsB with BglJ and YjjQ 
 
Two-hybrid analyses had demonstrated that RcsB and BglJ interact. The first part of 

the present study focused on showing the interaction of RcsB with BglJ and YjjQ, 

respectively through biochemical analysis. To confirm the interaction I performed 

Co-immunoprecipitation assays. In a first step the expression of C-terminally epitope 

tagged BglJ and RcsB variants were tested. Then BglJ-Flag and RcsB-HA were co-

expressed and the interaction was analyzed by immunoprecipitation with an HA 

specific antibody. Similarly, the interaction of RcsB and YjjQ was analyzed. 

 

1.1 Expression of epitope tagged proteins 
 
For the expression of epitope tagged BglJ protein, the bglJ gene was cloned into a set 

of plasmids which carry the inducible Ptac promoter followed by a multiple cloning 

site and a sequence encoding either a Myc-tag, a FLAG-tag, or a HA-tag (Fig 5). For 

efficient translation the plasmids carry the extended Shine-Dalgarno sequence 

SDgene10 derived from phage T7 gene 10 to which the bglJ and yjjQ genes were fused. 

Upstream of the tac promoter maps the lacIq gene. Low and high copy variants of 

these vectors were used for cloning of the bglJ and yjjQ gene with a fusion of a tag 

sequences at the 3’ end (Fig 5). 
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Fig 5.  Plasmids for expression of C-terminal Flag/Myc/HA tagged BglJ and YjjQ proteins and 
HA-tagged RcsB protein. Schematic representation of plasmids for expression of C-terminally tagged 
BglJ, YjjQ, and RcsB variants (a,b). The plasmids carry a lacIq gene followed by the IPTG inducible 
tac promoter, a strong phage T7 gene Shine-Dalgarno sequence and a multiple cloning site for cloning 
of bglJ and yjjQ fusions with a tag (Flag/Myc or HA) at the 3`end. The low copy plasmids (a) carry a 
p15A origin and a kanamycin resistance gene. The high copy plasmids (b) carry a pMB1 origin and 
ampicillin resistance marker. (a) The low copy plasmids pKES169, pKES183, and pKES182 were used 
for cloning and pKES169 was used as empty control vector in expression studies. Similarly, high copy 
plasmids pKES171, pKES184, and pKES185 were used for cloning of the high copy vectors for 
expression of tagged bglJ and yjjQ. Plasmid pKES171 was used as control plasmid in expression 
studies. For expression of RcsB and its mutants high copy number similar plasmids were used which 
carry rcsB with its native Shine-Dalgarno fused to a HA-epitope encoding sequence at their 3’ end 
(Paukner A, 2007). The plasmid numbers and encoded genes are schematically represented and the 
cloning is documented in laboratory database. 
 

The expression and solubility of the BglJ-HA, BglJ-FLAG, and BglJ-Myc from these 

plasmids was tested by Western blots (Fig 6). The expression of the BglJ-FLAG and 

BglJ-Myc tagged fusion proteins was marginally higher when directed by the high 

copy plasmid variant than low copy variants (Fig 6a and c). However, in the soluble 
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fraction of a cell free protein extract BglJ-FLAG and BglJ-Myc tagged protein levels 

showed no significant difference between the low and high copy plasmid variants 

than the low copy variants (Fig 6b and d). The expression of the HA tagged BglJ 

fusion protein was weaker than that of the FLAG or Myc tagged BglJ protein (Fig 6e 

and f). Similarly, The expression of YjjQ-FLAG, Myc and HA tagged fusion proteins 

was higher in the high copy plasmid variants (Fig 6a, b and c). The soluble fraction of 

a cell free protein extract YjjQ-FLAG and YjjQ-Myc tagged protein levels were high 

and showed no significant difference between the low and high copy plasmid 

variants. The YjjQ-HA tagged protein levels were weaker in low and high copy 

variants than FLAG and Myc tagged variants (Fig. 6b, d and f). 
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Fig 6. Expression of FLAG/Myc/HA tagged BglJ/YjjQ and HA-tagged RcsB proteins. For 
expression analyses of plasmids encoding the tagged variants of BglJ, YjjQ, and HA were transformed 
into E. coli strain S3377 carrying deletions of the yjjQ-bglJ and rcsB genes. Transformants were grown 
at 37°C in LB with antibiotics to OD600=0.3 and protein expression was induced for 2 hours with 
1mM IPTG. For analysis of induction samples from uninduced (U) and induced (I) cultures were 
resolved on 12% SDS-PAGE and analyzed by Western blotting. Rat-anti HA and anti-rat 
alexaflour®680 antibodies were used for HA tagged proteins. Mouse-anti FLAG and mouse-anti-Myc 
antibodies with anti-mouse alexaflour®680 antibodies were used for FLAG and Myc tag proteins. For 
analysis of the solubility of the proteins a cell free protein lysate (L) was loaded next to the samples of 
induced cultures (I). Each lane was loaded with 0.05OD600 cells. The blots were visualized on an 
Odyssey infrared imaging scanner. Low copy plasmids used were BglJ-FLAG (pKERV10), BglJ-Myc 
(pKERV13), BglJ-HA (pKERV9), YjjQ-FLAG (pKERV6), YjjQ-Myc (pKERV8), and YjjQ-HA 
(pKES179.), High copy plasmids used were BglJ-FLAG (pKERV14), BglJ-Myc (pKERV15), BglJ-
HA (pKERV12), YjjQ-FLAG (pKERV2), YjjQ-Myc (pKERV4), YjjQ-HA (pKES181) RcsB-HA 
(pKEAP38), RcsBD56N-HA (pKEAP44), and RcsBD56E-HA (pKEAP43) (See Materials and methods 
V.4). The ~27 kDa BglJ and 28 kDa YjjQ proteins with the respective epitope tags are indicated by an 
arrow. 
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For expression of HA tagged RcsB and its mutants RcsBD56E and RcsBD56N high copy 

plasmids of similar structure were used, which carry rcsB and its mutants with their 

native Shine-Dalgarno sequence (Fig 5). Upon induction the expression of RcsB and 

its mutants RcsBD56E and RcsBD56N was similar (Fig 6g). Western analysis of the 

soluble fraction of cell free extract showed the wild type RcsB levels were higher 

than the levels of its mutants (Fig 6 h).  

Based on the observed protein yields in the lysates, I decided to use low copy 

plasmids expressing BglJ-FLAG (pKERV10) and YjjQ-FLAG (pKERV06). For co-

expression of RcsB, I used the high copy plasmid pKEAP38, encoding C-terminal 

HA tagged RcsB, and plasmids pKEAP43 and pKEAP44 encoding rcsBD56E -HA and 

rcsBD56N -HA, respectively.  

 

 
 

Fig 6. Expression of FLAG/Myc/HA tagged BglJ/YjjQ and HA-tagged RcsB proteins continued. 
The ~25 kDa HA-tagged RcsB and mutant proteins are indicated by an arrow. 
 

1.2 Phenotype analysis 

The functionality of the C-terminal FLAG/HA/Myc tagged BglJ and HA-tagged 

RcsB and their mutant was checked with a phenotype assay. In E. coli K12 utilization 

of β-glucosides like arbutin and salicin requires the expression of the bgl operon. 

Wild type E. coli are phenotypically Bgl- due to H-NS silencing. An E. coli strain 

S2828 which carries a mini transposon insertion within the yjjQ-bglJ operon causing 

constitutive expression of BglJ (S2822) in addition to a rcsB gene deletion (Paukner, 

2007) is transformed with RcsB and the mutants and plated on a BTB salicin plates. 

Similarly, the C-terminal FLAG/HA/Myc tagged BglJ was tested in E. coli S524, 

which is phenotypically Bgl-. The plates were incubated at 37ºC, for β-glucoside 
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utilization. The strain carrying plasmid control remained Bgl- and the strain carrying 

RcsB and mutants showed Bgl+ phenotype after 1 day of incubation (Fig 7).  

 

 

 

 

 

 

 

 

 
 
 
 
 
                         
 
 
 
 
Fig 7. Bgl phenotype assay with BTB salicin plates for β-glucoside utilization.  E. coli strain S2828 
(S524 rcsB::mTn10tet yjjQ/bglJ-Y6:: mTn10cm) was complemented with RcsB-HA (pKEAP38), 
RcsBD56E-HA (pKEAP43), RcsBD56N-HA (pKEAP44) and a vector control (pKEAP22). The plasmids 
coding for C-terminal HA/FLAG/Myc tagged BglJ (pKERV09, pKERV10, pKERV13) and vector 
control (pKES169) were transformed into E. coli S524 strain and plated on a BTB salicin plate. The 
plates were incubated at 37ºC for one day. The Bgl- phenotype was shown in blue background and the 
Bgl+ phenotype was shown in yellow background. 
 

1.3 Interaction of RcsB with BglJ 
 
The interaction of RcsB with BglJ was carried out by co-immunoprecipitation. An E. 

coli strain S3377 (ΔrcsB::SpecR Δ(yjjP-bglJ)::KD3cmR) carrying deletions of the 

yjjQ-bglJ and rcsB genes was transformed with the two plasmids encoding RcsB-HA 

(pKEAP38) and BglJ-FLAG (pKERV10). As controls, single transformants with only 

one of the plasmids and the non-transformed strain were used. Cells were grown to 

early exponential phase (OD600=0.3) and then protein expression was induced with 

1mM IPTG for 2 hours. The cell lysate was prepared by sonication and 200µg of the 

total protein was used for the immunoprecipitation assay.  

The interaction between RcsB-HA and BglJ-FLAG was determined by co-

immunoprecipitation of cell lysates with rabbit anti-HA IgG antibody in conjunction 

with protein-A sepharose (see Materials and Methods.14). The lysates and the 

strain plasmids genotype/description phenotype 

S2822 pKEAP22  yjjQ/bglJ-Y6::mTn10cm + 
S2828 pKEAP22  S2822 rcsB::mTn10tet - 
S2828 pKEAP22 Vector control - 
S2828 pKEAP38 RcsB-HA + 
S2828 pKEAP43 RcsBD56E-HA + 
S2828 pKEAP44 RcsBD56N-HA + 
S524 pKES169 Vector control - 
S524 pKERV09 bglJ-HA + 
S524 pKERV10 bglJ-FLAG + 
S524 pKERV13 bglJ-MYC + 
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precipitates were separated on 12% SDS-gels and analyzed by a Western blot. The 

Western blot was developed using rat-anti HA and anti-rat alexaflour@680 antibodies 

for HA tagged proteins. Mouse-anti FLAG and anti-mouse alexaflour@800 antibodies 

were used for FLAG tagged proteins. The lysate (expression control) showed that all 

the proteins were expressed (Fig 8a, lane 1-4). The co-immunoprecipitate with rabbit 

anti-HA IgG showed the presence of BglJ-FLAG with RcsB-HA when both proteins 

were co-expressed (Fig 8a, lane 8). BglJ-FLAG was not detected in the precipitate, 

when it was expressed alone (Fig 8a, lane 7). The controls were as expected, no bands 

were visible in the lysate and precipitate of the non-transformed bacteria (Fig 8a, lane 

1 and 5), and RcsB-HA was expressed and immunoprecipitated when it was 

expressed alone (Fig 8a, lanes 2 and 6). These data show that RcsB-HA protein and 

BglJ-FLAG interact specifically. The protein ratio of RcsB-HA and BglJ-FLAG in 

the lysate and the immunoprecipitate remained the same, indicating that the 

interaction is efficient.  

Similarly, I performed co-immunoprecipitation of BglJ-FLAG with a mutant 

RcsBD56E-HA protein (Fig 5). The multi-component Rcs phosphorelay signaling 

pathway absolutely requires its response regulator RcsB to regulate all its target 

genes. The mutant variant RcsBD56E, with the conserved aspartate residue at position 

56 replaced by a glutamate residue, was isolated during a mutation analysis (Gupte et 

al., 1997). The mutated aspartate residue is conserved within the receiver domain of 

the family of bacterial response regulator proteins (Parkinson and Kofoid, 1992) and 

has been shown to be the site of phosphorylation in several response regulators 

(Keener and Kustu, 1988; Klose et al., 1993). The RcsBD56E variant mimics the 

phosphorylated form of the protein and activates the transcription of capsular 

polysaccharide (cps) genes constitutively (Stout, 1994). This mutant variant showed 

similar activity like the wild type when tested for heterodimer formation with BglJ 

using a bacterial two-hybrid system (unpublished lab data). So, we were interested to 

test the relevance of the variant in the in vitro analysis. In the co-immunoprecipitation 

assay with rabbit anti-HA IgG antibody BglJ-FLAG protein was co-precipitated with 

RcsBD56E-HA demonstrating interaction of RcsBD56E and BglJ proteins. Comparison 

of the protein ratio of RcsBD56E and BglJ in the lysate and precipitate indicates that 

the co-immunoprecipitation of BglJ with RcsBD56E was less efficient than with wild-

type RcsB. However, this experiment was performed only once.  
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In addition, I performed a co-immunoprecipitation assay of BglJ-FLAG with 

RcsBD56N (Fig 5). RcsBD56N is a mutant in which the conserved aspartate residue at 

position 56 was replaced by an aspargine residue. This mutation mimics the non-

phosphorylated form of RcsB protein which might be inactive as transcriptional 

regulator (Gupte et al., 1997). No co-precipitation of BglJ-FLAG protein with 

RcsBD56N-HA was observed when precipitated with rabbit anti-HA IgG antibody. 

This indicates a lower stability of the BglJ-FLAG and RcsBD56N interaction. 

However, this experiment was performed only once and expression of the protein was 

poor. Also, the results contradict results of two-hybrid analyses performed previously 

in the lab (unpublished lab data).  
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1.4 RcsB interaction with YjjQ 
 
As for interaction of RcsB with YjjQ by co-immunoprecipitation, the same protocol 

was used. E. coli strain S3377 (ΔyjjP-yjjQ-bglJ), ΔrcsB) was transformed with two 

plasmids encoding RcsB-HA (pKEAP38) and YjjQ-FLAG (pKERV6). As controls, 

Fig 8. Interaction of RcsB, RcsBD56E, 
and RcsBD56N with BglJ analyzed by 
co-immunoprecipitation. 
Transformants of E .coli strain S3377 
(ΔrcsB, Δ(yjjP-yjjQ-bglJ) with plasmids 
expressing C-terminal HA tagged RcsB 

and BglJ-FLAG. Cell lysates were 
prepared after induction of protein 
expression with 1mM IPTG for 2hrs at 
37°C. 200µg of the total protein from 
the lysates expressing neither of the 
proteins (S3377), RcsB-HA or BglJ-
FLAG alone, are both proteins were 
precipitated with rabbit-anti-HA IgG 
antibody in conjunction with protein-A 
sepharose. The precipitates and the 
lysate were separated on a 12% SDS gel 
and blotted for Western analysis. The 
Western blot was analyzed using rat-anti 
HA and anti-rat alexaflour@680 
antibodies (red color) for HA tagged 
proteins. Mouse-anti-FLAG and anti-
mouse alexaflour@800 antibodies (green 
color) were used for FLAG tagged 
proteins. The blot was developed using 
an Odyssey scanner at 700 and 800nm 
channels. (a) immunoprecipitation of 
RcsB-HA (pKEAP38, high copy) with 
BglJ-FLAG (pKERV10, low copy), (b) 
RcsBD56E-HA (pKEAP43, high copy) 
with BglJ-FLAG, (c) RcsBD56N-HA 
(pKEAP44, high copy) with BglJ-FLAG 
(see Materials and methods. 6). RcsB 
and BglJ protein are indicated by an 
arrow.
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single transformants with only one of the plasmids and the non-transformed strain 

were used. The cell lysates were immunoprecipitated with Rabbit anti-HA IgG 

antibody in conjunction with protein-A sepharose and the lysates and precipitates 

were analyzed by western blotting using tag specific antibodies (see Materials and 

Methods14). The lysate (expression control) showed that all the proteins were 

expressed (Fig 9a, lanes 1-4). The co-immunoprecipitate with Rabbit-anti-HA IgG 

showed the presence of YjjQ-FLAG with RcsB-HA when both the proteins were co-

expressed (Fig 9a, lane 8). As expected, YjjQ-FLAG was not detectable in the 

precipitate, when it was expressed alone (Fig 9a, lane 7). Similarly, in the lysate and 

precipitates of the non-transformed strain no proteins were visible (Fig 9a.5). RcsB-

HA was expressed and immunoprecipitated when it was expressed alone (Fig 9a, 

lanes 2 and 6). These data show that RcsB-HA protein and YjjQ-FLAG interact 

specifically. A 3.2 fold higher precipitation of BglJ protein than YjjQ indicates that 

BglJ interacts stronger than YjjQ with RcsB (The BglJ and YjjQ values obtained 

from band intensities which were normalized to RcsB). This result also supports the 

bacterial-two hybrid data which suggested that the interaction of RcsB with BglJ is 

stronger than with YjjQ (unpublished data of the group). 

In addition, I performed co-immunoprecipitation of YjjQ-FLAG with the mutant 

proteins RcsBD56E-HA and RcsBD56N-HA. YjjQ-FLAG co-precipitated with the D56E 

mutant and the protein ratio was similar to the wild type indicating that the mutation 

has no significant effect in interaction with YjjQ protein. In contrast, no precipitation 

of YjjQ-FLAG with RcsBD56N-HA with rabbit anti-HA IgG antibody was observed. 

This indicates that the affinity of YjjQ-FLAG to the mutant RcsBD56N which mimics 

the non-phosphorylated (i.e inactive) form of RcsB is lower. The co-

immunoprecipitation experiments of YjjQ-FLAG with wild-type and mutant RcsB-

HA protein was performed only once, but the results are in agreement with two-

hybrid analyses performed earlier. In the two-hybrid analysis interaction of YjjQ with 

wild-type RcsB or with RcsBD56E was significantly more efficient than with RcsBD56N 

(unpublished lab data).   
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Fig 9.  Interaction of YjjQ with RcsB, 
RcsBD56E, and RcsBD56N analyzed by co-
immunoprecipitation. For co-
immunoprecipitation cell lysates were 
prepared of transformants of E .coli strain 
S3377 (ΔrcsB, ΔyjjP-yjjQ-bglJ) with 
plasmids expressing C-terminal tagged 
RcsB-HA and YjjQ-FLAG. Tested were 
the non-transformed strain expressing 
neither of the proteins and transformants 
expressing RcsB-HA or YjjQ alone, are 
both proteins. Cultures were grown in LB 
with antibiotics and protein expression 
was induced with 1mM IPTG for 2hrs at 
37°C. 200µg of the total protein from the 
lysates were immunoprecipitated with 
Rabbit-anti-HA IgG antibody in 
conjunction with protein-A sepharose. 
The precipitates and the lysate were 
separated on a 12% SDS gel and blotted 
for Western analysis. The Western blot 
was analyzed using rat-anti HA and anti-
rat alexaflour@680 antibodies (red color) 
for HA tagged proteins. Mouse-anti-
FLAG and anti-mouse alexaflour@800 
antibodies (green color) were used for 
FLAG tagged proteins. The blot was 
developed using an Odyssey scanner at 
700 and 800nm channels. Co-
Immunoprecipitation of YjjQ-FLAG 
(pKERV6) with (a) RcsB-HA  
(pKEAP38), (b) RcsBD56E-HA 
(pKEAP43) and (c) RcsBD56N-HA 
(pKEAP44).RcsB and YjjQ protein are 
indicated by an arrow. 
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2. RcsB-BglJ heterodimer binding to the bgl regulatory region 
 
A transposon-mutagenesis screen for identifying factors which are required for 

activation of the bgl operon by BglJ identified the response regulator RcsB as a 

cofactor (Paukner, 2007). Further it was shown by two-hybrid analysis that RcsB and 

BglJ form heterodimers (unpublished data of the lab). Heterodimerization of RcsB 

and BglJ was substantiated in this thesis by co-immunoprecipitation analysis (Results 

chapter 1). As BglJ requires RcsB for activation (or rather de-repression) of the bgl 

operon, RcsB/BglJ heterodimers may bind to the bgl regulatory region and prevents 

repression of bgl by H-NS. This hypothesis is further supported by the identification 

of sequence motif which is very similar to one half-site of the consensus binding 

sequence of RcsA/RcsB heterodimers (Paukner, 2007) (and see below). The aim of 

the experiments described in this chapter was to characterize whether RcsB/BglJ 

heterodimers bind to the bgl regulatory region. 

 

2.1 Linker insertion mutants of a putative RcsB/BglJ binding site in the bgl 
regulatory region 
 
The response regulator RcsB regulates transcription by binding as a homodimer or as 

a RcsB-RcsA heterodimer (Stout and Gottesman, 1990) and see introduction). 

Consensus binding sequences for RcsB homodimers and RcsB-RcsA heterodimers 

were determined from various mutagenesis experiments in enterobacteriaceae family 

members (Ebel et al., 1997; Wehland et al., 1999). The RcsAB heterodimer binds to a 

specific sequence “TaAGaatatTCctA” called RcsAB box is located 70 to 100 base 

pairs upstream to the transcriptional start site. The RcsB homodimer binding 

sequence “GAAgaAtAACctgC” is located immediately upstream to the -35 regions, 

requiring interaction with RNA polymerase to stabilize the binding (Wehland and 

Bernhard, 2000; Sturny et al., 2003). Interestingly, Paukner, A. identified a sequence 

motif in the upstream of bgl regulatory region matching half of the RcsAB consensus 

sequence. The motif maps between positions -90 to -96bp upstream of transcription 

start site (Fig 10). This motif may represent a binding site of RcsB-BglJ heterodimer 

in the bgl regulatory region.  
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Fig 10. Putative RcsB/BglJ heterodimer binding site in bgl regulatory region. Schematic 
representation of bgl promoter region. The bgl promoter -10 and -35 sequence motifs are underlined. 
The CAP binding site is marked in bold. The transcription start site is indicated by an arrow with +1 
number. Inverted arrows denote bgl operon transcriptional terminator t1 and inverted repeat pho-IR, 
respectively. The half matching consensus sequence (putative RcsB/BglJ box) is marked in bold. The 
RcsAB box consensus sequence (Wehland M et.al. 2000) is given below the putative RcsB-BglJ 
binding site.  
 

The relevance of this putative RcsB-BglJ binding site was tested using a collection of 

plasmids carrying linker insertions in the upstream bgl regulatory region. With this 

collection of plasmids it was tested which linker insertions within the bgl upstream 

regulatory region abrogates activation of the bgl promoter by RcsB-BglJ. To measure 

the bgl promoter activity, the plasmids carry a lacZ reporter gene fused 3’ to the first 

gene of the operon, bglG (Caramel and Schnetz, 1998). All plasmids with linker 

insertions carry in addition a single base-pair exchange within the regulatory region 

(creating an EcoRI-site used for construction of the linker insertion mutants). This 

mutation does not affect repression of bgl by H-NS (Caramel and Schnetz, 1998), and 

see below). The 6 bp MunI linker insertion map at different positions within the 

putative binding site, and also between the putative binding site and the promoter 

region, and upstream of the putative binding site (Fig 11). The bgl promoter activity 

was analyzed by β-galactosidase assay in strain S541 (Δbgl ΔlacZ) and a derivative of 

a strain which constitutively expresses BglJ (strain S3910). As expected, the β-

galactosidase activity of the control plasmid (pFMAC20) was low in the wild-type, 

and the activity was approximately 88 fold higher in the strain which constitutively 

expresses BglJ (Fig11). In the rcsB (strain S3912) background constitutive expression 

of BglJ caused no activation confirming that activation of bgl by BglJ requires RcsB 

(Fig11). The β-galactosidase activity directed by plasmids with MunI linker insertion 

was similar to the control plasmid when analyzed in the wild type strain (Fig11). In 

strain S3910 constitutively expressing BglJ, β-galactosidase expression directed by 
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plasmids carrying MunI linker insertion at positions -80, -88, -97, -99, -101, -103 and 

-123 were similar to the wild type strain (Fig11). These results demonstrate that 

mutations within the putative binding site and between the putative biding site and the 

promoter region prevent the activation by BglJ. In addition, a linker insertion 

upstream of the binding site at position -123 prevents activation by BglJ. These 

results suggest that BglJ-RcsB heterodimer bind to the putative RcsB-BglJ binding 

site within the bgl regulatory region. 

 

 

 
Fig 11. Mapping of a putative RcsB/BglJ binding site by linker insertion mutants in the bgl 
regulatory region. a) Schematic representation of plasmid constructs carrying the bgl regulatory 
region including the bglG gene followed by a lacZ reporter fusion. The CRP binding site, bgl 
terminator t1, bglG gene, and lacZ are indicated. The sequence matching half of the RcsAB consensus 
sequence is underlined and the RcsAB consensus sequence is given below. The vertical lines with the 
numbers represent the positions where 6 bp MunI linker were inserted. b) The β-galactosidase activity 
obtained from the plasmids expressed in strain S541 (Δbgl ΔlacZ) and strain S3910 constitutively 
expressing BglJ. The control plasmid (pFMAC20) carries the native bgl regulatory region with a single 
base pair exchange creating an EcoRI site and the β-galactosidase activity obtained in rcsB deletion 
(S3912 (ΔrcsB::specR yjjQ/bglJ-Y6::mTn10cm) is also shown. The asterisk highlights linker insertion 
mutants which are not activated by RcsB/BglJ (assayperformed by Kathleen plumber, Lab technician).  
 

2.2 Bacterial one-hybrid system for DNA-binding specificity  
 
To study the RcsB/BglJ heterodimer binding to the putative binding site within the 

bgl regulatory region, I adapted a bacterial-two hybrid system for determining the 

DNA binding specificity of transcription factors created by Ann Hochschild (Dove 

and Hochschild, 2004; Dove, 2003; Dove et al., 1997; Hochschild and Dove, 1998). 



Results 
 

 
 

26

In this approach, one of the protein domains to be tested (the bait) is fused to a 

sequence specific DNA-binding protein, and the other protein under investigation 

(prey) is fused to a subunit of the bacterial RNA polymerase (RNAP). The 

bacteriophage λ (λcI) is used as the DNA-binding protein, whereas the α subunit is 

used for fusion to RNA polymerase. Compatible plasmids expressing λcI and α 

subunit fusion protein are introduced into a suitable strain of E. coli, which contains a 

test promoter that drives the expression of a linked reporter gene. The test promoter 

consists of the lac core promoter and OL2 binding sites for λcI (Dove and 

Hochschild, 2004). The lacZ gene used as a reporter, whose activity can be easily 

measures by a colorimetric β-galactosidase assay. When induced, expression of the 

λcI fusion protein gene results in the binding of the corresponding λcI fusion protein 

to OL2. The expression of α fusion gene leads to the assembly of the resulting α 

fusion protein into RNA polymerase. Interaction between the DNA-bound λcI fusion 

protein and the assembled α fusion protein stabilizes the binding of RNAP to the test 

promoter, thus activating transcription of the reporter gene lacZ (Fig12). 

 

  
Fig 12. Principle of Ann Hochshild`s Bacterial Two-Hybrid system. Contact between the two 
protein domains X and Y are fused respectively to the α- N-terminal domain and to λcI activates the 
transcription from the lacZ reporter gene. The λcI binding site (OL2) positioned 62bp upstream from 
the transcription start site. The -10 and -35 regions are depicted in black boxes. The lac promoter 
drives the expression of lacZ reporter gene which can be measured by lacZ assay was indicated. 
 
 

I utilized the system and modified it to a bacterial-one hybrid system for 

determining the DNA-binding specificity similar to bacterial one-hybrid system 

shown by (Meng et al., 2005). In this system the transcription factor RcsB was fused 

to α subunit of RNA polymerase and the interacting partner BglJ was over expressed 
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through a plasmid. The system was cloned with BglJ fusion to α subunit of RNA 

polymerase vice versa also. The restriction sites in the reporter were modified to 

replace the OL2 binding site containing DNA fragment with bgl regulatory fragment. 

In theory, upon induction, α fusion RcsB protein forms heterodimer with BglJ 

protein, and the heterodimer binds to the bgl regulatory region. This should lead to 

the recruitment and stabilized binding of RNA polymerase to the promoter and thus 

activation of the lacZ reporter gene (Fig 13).  

                         

     
Fig 13. Principle of Bacterial one-Hybrid system.  (a)The transcription factor (RcsB) was fused to 
the α- N-terminal domain and BglJ was over expressed through a plasmid. (b) The transcription factor 
(BglJ) was fused to the α- N-terminal domain and RcsB was over expressed through a plasmid The λcI 
binding site (OL2) positioned 62bp upstream from the transcription start site was replaced by bgl 
regulatory region RcsB/BglJ heterodimer as expected to be bind to the bgl regulatory region leads to 
RNAP recruitment. This activates the transcription from the lacZ reporter gene.. The -10 and -35 
regions are depicted in black boxes. The lac promoter drives the expression of lacZ reporter gene 
which can be measured by lacZ assay was indicated. 
 

2.2.1 Testing bacterial one-hybrid system 
 
To test the bacterial one-hybrid system, I constructed a plasmid (pKERV45) carrying 

a test promoter, Plac which consists of a λ operator (OL2) positioned 62 base pairs 

upstream from the transcription start site (Fig 14a). The plasmid also carries a 

a) 

b) 
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modified restriction site for attB site integration in to the E. coli chromosome. The 

upstream of the promoter also maps lacIq gene. The OL2 fragment was positioned 

between two restriction sites for replacement purposes. The plasmid was integrated 

into E. coli strain (S4911) carrying a deletion of bgl and lacZ genes. The control 

plasmids (see Materials and methods Table 3) were transformed into E. coli (S4911) 

and LacZ assay was performed (Fig 14b). The positive control plasmids expressing 

λcI-β831-1057 fusion with α-σ70D581G, gave approximately 3 fold higher activity than the 

negative controls. The negative control plasmids were expressing either α fusion or 

λcI fusions, which are not able to interact with RNA polymerase. 

 

 
Fig 14.  Testing bacterial one-hybrid system.  (a)The plasmid (pKERV45) carrying the OL2 binding 
site for λcI protein was integrated in to E. coli (S541). The Plac promoter, lacIq gene and terminator 
(T1) and lacZ reporter gene are indicated. The transcription start site is mentioned by an arrow. The 
OL2 flanking restriction site bglII and XbaI are mentioned (b) The lacZ assay of positive control (A) 
with plasmids expressing λcI-β831-1057 and α-σ70D581G and the negative controls (B, C, D) with λcI-β831-

1057, α fusion, λcI with λcI-β831-1057and λcI with α fusion. The ON cultures were induced with 0µM, 
20µM and 200µM IPTG and mid-exponential cultures at OD600 =0.5 were used for the assay. 
 

2.2.2 Analysis of putative binding site 
 
To check the RcsB/BglJ heterodimer binding in the bgl regulatory region, I replaced 

the OL2 binding sites with bgl regulatory region carrying the putative RcsB/BglJ 

binding site. Since the orientation of heterodimer binding is unknown, the plasmids 

were constructed carrying the putative box in both direct and inverse complement 

orientations (Fig 15).  
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Fig 15. Plasmids and constructs used in Bacterial one-Hybrid system. The plasmids carry a lacIq 
gene and terminator (T1) and Plac promoter with a lacZ reporter fusion. a) The control plasmid 
(pKERV46) carrys OL2 fragment positioned 62 upstream from the transcription start site. b) The 
plasmids (pkERV47 to pKERV52) carrys of bgl regulatory fragment from position -108 to -79 (direct 
orientation) c) The plasmids (pkERV53 to pKERV59)consist of bgl regulatory fragment from position 
-120 to -87 (reverse orientation). 
 
 
Briefly, the plasmid pKERV47 consists of bgl fragment from position -108 to -87 in a 

direct orientation and plasmids pKERV48 to pKERV52 were constructed with each 

plasmid carrying an additional 2 bp to the upstream region, to cover one helical turn 

(approximately 10.5 base pairs). Similarly the Plasmids, pKERV53 to pKERV59 

were constructed with plasmids carrying bgl fragment in an inverse orientation from 

position -120 to -87 (pKERV47 to pKERV59 (Fig 16) (See materials and methods 6). 
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Fig 16. Plasmids and constructs used in Bacterial one-Hybrid system. In the scheme, the -10 and -
35 promoter regions are shown as small black boxes and the transcription start site is shown by an 
arrow. Structure of the bgl regulatory region including the putative RcsB/BglJ box, shown as 
grey/white box. The white part represents the half matching RcsAB consensus sequence. The CRP 
binding sites is also indicated (top); Sequence of the bgl regulatory region including the putative 
RcsB/BglJ box sis shown. The numbers  and asterisk indicate linker insertion mutants which are not 
activated by BglJ. All the plasmids carry a lacIq gene and terminator (T1) and Plac promoter with a 
lacZ reporter fusion. The plasmids (pkERV47 to pKERV52) consist of bgl regulatory fragment from 
position -108 to -79 (direct orientation) and the plasmids (pkERV53 to pKERV59) carrys bgl 
regulatory fragment from position -120 to -87(inverse complement orientation). 
 
   
The plasmids carrying RcsB/BglJ binding site (pKERV47 to pKERV59 (pSC101, cm 

ori) were transformed into E. coli strain S4160 which carries deletions of rcsB and 

bglJ genes. The three compatible plasmids expressing α-RcsB fusion protein 

(pKERV18), plasmid expressing BglJ (pKETS01) and plasmids carrying RcsB/BglJ 

putative site were co-transformed into E. coli (strain S4160). As a control the plasmid 

which carries OL2 binding site (pKERV46) used. The β-galactosidase activity from 

the empty strain expressing bgl fragment carrying plasmids and strain expressing α 

fusion RcsB and BglJ are shown in figure 17.  
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Fig 17.  β-galactosidase assay from Strain S4160. The plasmids carrying bgl regulatory fragment 
(pKERV47 to pKERV59), plasmids expressing α fusion RcsB (pKERV18) and plasmid expressing 
BglJ (pKETS01) were transformed into S4160. Only transformant with empty plasmid (caryying Ol2 
binding site vector (pKERV46) used as control. The strains were grown in LB medium with 0µM, 
20µM and 200mM IPTG at 37ºC and 0.5 OD600 cells were used for β-galactosidase activity. Plasmid 
pKERV46 to pKERV52 carries bgl regulatory fragments in direct orientation (-108 to -77) (a). 
Similarly plasmids pKERV53 to pKERV59 carries bgl regulatory fragments in inverse orientation (-
120 to -87) (b) (See Materials and methods 11). 
 

The plasmids which carry the putative RcsB/BglJ binding site in direct orientation (-

108 to -77) (pKERV47 to pKERV52) showed similar or higher activity in empty 

strain than the strain expressing RcsB and BglJ (Fig 17a). The plasmids carrying the 
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putative RcsB/BglJ binding site in inverse orientation (-120 to -87) (pKERV53 to 

pKERV59) showed 2 fold higher activity than the empty strain (Fig 17b).  

 
To test weather the two fold increase in activity was due to the effect of RcsB and 

BglJ proteins. The Selected plasmids (activity > 2 fold) were co-transformed into E. 

coli strain S4160 with the empty vector (α vector) and the -galactosidase activity 

was measured (Fig 18). The activity obtained from strain expressing empty vector 

were similar to strain expressing RcsB and BglJ. The 2 fold difference which was 

observed earlier in the empty strain (Fig 17b) was lost. We do not understand the loss 

of activity in the control. The basal level of expression in empty strain is too high and 

due to this basal level expression this system cannot be used to estimate the effect of 

the RcsB and BglJ protein in the induced conditions.  

 

           
Fig 18. The β-galactosidase activity in S4160 strain with empty vector (pBRα). Each plasmid 
grown in strain with empty vector (a) and strain expressing RcsB and BglJ (b) were compared. The 
strain was grown in LB medium with 0µM, 20µM and 200mM IPTG at 37ºC and 0.5 OD600 cells 
were used for β-galactosidase activity.  
 

2.3 Protein purification and Electrophoretic Mobility Shift Assay (EMSA) 
 
The experiments described above were approaches to detect in vivo binding of RcsB-

BglJ to the putative RcsB-BglJ binding site in the bgl regulatory region. In parallel, 

binding of RcsB-BglJ heterodimer to the putative binding site was to be characterized 

by electrophoretic mobility shift assays (EMSA) in vitro.  
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2.3.1 Expression of Epitope tagged proteins 
 
Since the expression levels of C-terminal HA tagged RcsB mutants were weaker (See 

result 1) and other C-terminal tagged vectors caused problem in expression of RcsB 

proteins (unpublished lab data), I decided to construct an N-terminal fusion proteins. I 

used N-term strep-tagged fusion proteins of RcsB and BglJ protein for the 

purification. The rcsB and bglJ genes, respectively, were cloned into plasmids 

pKERV29 and pKERV30, which carry the inducible Ptac promoter followed by a 

sequence encoding the Strep-tag (WSHPQFEK, (Schmidt and Skerra, 1994; Schmidt 

et al., 1996; Korndorfer and Skerra, 2002). For efficient translation of the Strep-

tagged proteins the plasmids carry the strong Shine-Dalgarno sequence derived from 

phage T7 gene10. Upstream of the tac promoter maps the lacIq gene. Low and high 

copy variants of these vectors were cloned (Fig 19). In addition, the rcsB mutants 

D56E and D56N as well as yjjQ were also cloned into these plasmid (Fig 19). The 

expression and solubility of the Strep-tagged RcsB, RcsBD56E, RcsBD56N and BglJ 

proteins encoded by these plasmids was tested by Western blots (Fig 20 and 21).  

 

 

 

Fig 19. Plasmids for expression of N-terminally Strep-tagged RcsB, RcsBD56E, RcsBD56N, BglJ and 
YjjQ proteins. Schematic representation of plasmids encoding N-terminally Strep-tagged BglJ,YjjQ 
and RcsB variants (a,b). The low copy plasmids (a) carry a p15A origin of replicartion and kanamycin 
resistance marker (neo). The high copy plasmids (b) carry a pMB1 origin (a high copy variant) and 
ampicillin resistance marker (bla). The bgl and rcsB genes were cloned under an IPTG inducible tac 
promoter. All the genes were constructed with a strep fusion tag at the 5`end. Plasmids pKERV29 and 
pKERV30 are the parent plasmids which carry the strep-tag fused to the gene10 Shine Dalgarno 
sequence followed by NcoI and XbaI sites for cloning.  
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The plasmids were transformed into strain S3377 (ΔyjjP-yjjQ-bglJ), ΔrcsB) carrying 

deletions of rcsB and bglJ genes.  The cells were grown to OD600=0.3 and protein 

synthesis was induced with 1mM IPTG for 2 hours at 37ºC (RcsBD56E was grown at 

28ºC for better protein production). The expression and solubility of the induced 

cultures were checked on coomassie gels and confirmed by western blotting. The 

expression of the strep-tagged RcsB and its mutants was better when encoded by high 

copy plasmids (Fig 20c) than by low copy variants (Fig 20a). But the solubility of the 

RcsB and its mutants were better in low copy plasmids (Fig 21a) than a high copy 

variant (Fig 21.c). The expression of the Strep-tagged BglJ protein showed no 

significant difference between a low copy (Fig 20b) and a high copy variant (Fig 

20d). The solubility of Strep-tagged BglJ protein was marginally better when encoded 

by the high copy plasmid than the low copy plasmid (Fig 21 d and b), but expression 

of BglJ was weaker than expression of RcsB. Expression of  YjjQ expression was 

marginally higher when encoded by the high copy than by the low copy plasmid (Fig 

21b and d). No significant difference in the level of protein production was seen in un 

induced and induced cultures (Fig 20 b and d). 
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Fig 20. Expression of N-terminal strep tagged RcsB, RcsBD56E, RcsBD56N, BglJ and YjjQ from 
high and low copy variants. High and low copy plasmids encoding Strep-tagged RcsB, BglJ and 
YjjQ were used to transform into E. coli strain S3377 (ΔyjjP-yjjQ-bglJ) and ΔrcsB genes. Cultures 
were grown at 37°C and protein expression was induced with 1mM IPTG for 2 hours. The expression 
of the protein was analyzed from the uninduec (U) and induced cells (I). The cells were resolved on 
15% SDS-PAGE and analyzed by western blotting using anti-Strep-HRP conjugated antibody. Each 
lane was loaded with the equivalent of 0.05OD600 cells. Low copy plasmids (a, b) RcsB (pKERV34), 
RcsB-D56E (pKERV35), RcsB-D56N (pKERV43), BglJ (pKERV36), YjjQ (pKERV44). High copy 
plasmids (c,d) RcsB (pKERV31), RcsB-D56E (pKERV32), RcsB-D56N (pKERV41), BglJ 
(pKERV33), and YjjQ (pKERV42). The ~25 kDa RcsB, ~27 kDa BglJ and ~28 kDa YjjQ Strep- 
tagged proteins are indicated by an arrow. 
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Fig 21. Expression for solubility of N-terminal strep tagged RcsB, RcsBD56E, RcsBD56N, BglJ and 
YjjQ from high and low copy variants. High and low copy plasmids encoding Strep-tagged RcsB, 
BglJ and YjjQ were used to transform into E. coli strain S3377 (ΔyjjP-yjjQ-bglJ) and ΔrcsB genes. 
Cultures were grown at 37°C and protein expression was induced with 1mM IPTG for 2 hours. The 
expression of the protein was analyzed from the induced cells (I). Cell free protein lysates (L) were 
prepared for checking the solubility of the protein. The cells were resolved on 15% SDS-PAGE and 
analyzed by western blotting using anti-Strep-HRP conjugated antibody. Each lane was loaded with 
the equivalent of 0.05OD600 cells. Low copy plasmids (a, b) RcsB (pKERV34), RcsB-D56E 
(pKERV35), RcsB-D56N (pKERV43), BglJ (pKERV36), YjjQ (pKERV44). High copy plasmids (c,d) 
RcsB (pKERV31), RcsB-D56E (pKERV32), RcsB-D56N (pKERV41), BglJ (pKERV33), and YjjQ 
(pKERV42). The ~25 kDa RcsB, ~27 kDa BglJ and ~28 kDa YjjQ Strep- tagged proteins are indicated 
by an arrow. 
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2.3.2 Strep-tag protein purification 
 
Since the protein solubility levels of RcsB and its mutants were better in the low copy 

plasmids (See Fig 20 and 21), I used low copy variants of strep-tagged RcsB 

(pKERV34), RcsBD56E (pKERV35) and RcsBD56N (pKERV43) respectively for the 

protein purification. The plasmids were used to transform E. coli strain S3377 (ΔyjjP-

yjjQ-bglJ), ΔrcsB). The cells were grown to OD600=0.3 and protein synthesis was 

induced with 1mM IPTG for 2 hours at 37ºC (RcsBD56E was grown at 28ºC for better 

protein production). The cells harvested from 1 liter of IPTG induced culture were 

lysed, and the Strep-tagged RcsB wild-type and mutants proteins were purified using 

a Strep-Tactin® Superflow® Cartridge H-PR, (IBA, Germany) (see Material and 

Methods.15) using FPLC (Fig 22). The protein fractions were checked on 15% PAGE 

and the purest protein fractions were dialyzed. The Strep-tactin affinity column 

purified RcsB (fraction 21, 0.6mg/ml, buffer), RcsBD56E (fraction 20, 0.5mg/ml) and 

RcsBD56N (fraction 22, 0.4mg/ml) proteins (Fig26 to 29) were directly used for EMSA 

studies. 
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Fig 22. Strep-tactin affinity purification of N-terminally Strep-tagged RcsB, RcsBD56E and 
RcsBD56N proteins using ÄKTA-FPLC a) Purification of Strep-RcsB (encoded by pKERV34), b) 
RcsBD56E (pKERV35), and c) RcsBD56N (pKERV43). Left panel: Coomassie gel with aliquots 
equivalent to 0.05 OD600 cells of the uninduced (U) and induced (I) clutures, the lysate (L), and the 10 
µl of fractions (numbers) collected after elution with Desthiobiotin. Right: Elution profile of the 
purification with a 1ml Strep-Tactin® Superflow® Cartridge H-PR (IBA, Germany) using an ÄKTA-
FPLC (GE Healthcare Lifesciences, Freiburg). Indicated are the fractions and the UV 280nm. M is 
prestained protein marker (MBI fermentas). The ~ 25kDa Strep-tagged RcsB and mutant proteins are 
indicated by an arrows. 
 

The purification of N-terminal strep-tagged BglJ protein using strep-tactin affinity 

column yielded very little protein (Fig 24). The purification could neither be achieved 

with the low copy plasmid nor with the high copy plasmid encoding Strep-BglJ. The 

expression of strep tagged BglJ fusion proteins was tested at different temperatures 

(28ºC and 37ºC) resulted in either reduced protein levels. The BglJ protein 

solubilization using mild non-ionic detergents like TritonX-100 and Nonidet P-40 

(Sigma) did not result in high yield protein purification. 
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Fig 23. Strep-tactin affinity purification of Strep-BglJ protein using AKTA-FPLC. Purification of 
N-terminally strep-tagged BglJ protein encoded by low copy plasmid pKERV36 (a) and high copy 
plasmid pKERV33 (b) was unsuccessfull. Aliquots equivalent to 0.05 OD600 cells of uninduced (U), 
induced (I) cultures and of the lysate (L) were separated by SDS-PAGE along with 20 µl of fractions 
(numbers indicated) collected after elution with desthiobiotin. M: prestained marker (MBI Fermentas).  
 

2.3.3 BglJ protein purification 
 
Purification of N-terminally Strep-tagged BglJ was not successful. As C-terminally 

FLAG-tagged BglJ which was used in the co-immunoprecipitation experiments was 

soluble, BglJ-FLAG was purified using a FLAG affinity column. To purify the C-

terminal FLAG tagged BglJ protein, strain S3377 (Δ(yjjP-yjjQ-bglJ), ΔrcsB) was 

transformed with plasmids pKERV10 (low copy) and pKERV14 (high copy) 

encoding C-terminally FLAG tagged BglJ. Expression of the bglJ-FLAG gene was 

induced with 1mM IPTG for 2 hours at 37ºC. Bacteria harvested from 1 liter of IPTG 

induced culture were lysed and purified using an FLAG affinity column (EZview Red 

ANTI-FLAG M2 affinity gel, Sigma). The eluted protein was dialyzed and the yield 

and purification was confirmed by SDS-PAGE followed by Coomassie staining and 

western blotting with mouse anti-FLAG/anti-mouse alexaflour® 680 antibodies (See 

materials and methods 13) (Fig 24). The partially purified protein was directly used 

for EMSA assays. The high copy variant expressing BglJ protein showed more 
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protein in insoluble fractions, (Fig 24.b lane p) suggesting over production of the BglJ 

protein might be accumulated as insoluble protein aggregate. 

 

 

 

Fig 24.  Affinity purification of BglJ-Flag protein. C-terminally FLAG tagged BglJ was purified 
from cells transformed with the low copy plasmid pKERV10 (a) or the high copy plasmid pKERV14 
(b), which both code for BglJ-FLAG. Left panel: Coomassie gel with aliquots equivalent to 0.05 OD600 
cells of the uninduced (U) and induced (I) clutures, the lysate (L), pellet (P) and the 10 µl of fractions 
(numbers) of wash (W) and elution (E) loaded. The 27kDa BglJ protein was indicated by an arrow. 
 

2.3.3 Electrophoretic mobility shift assay (EMSA) 
 
To characterize whether RcsB/BglJ heterodimer binds to the bgl regulatory region by 

an in vitro assay, DNA electrophoretic mobility shift assays (EMSA) were performed. 

Briefly, a DNA fragment of the bgl regulatory region which encompasses the putative 

RcsB/BglJ binding site was incubated with increasing concentrations of purified Strep 

tagged RcsB, RcsBD56E and RcsBD56N proteins in the presence and absence of 

partially purified BglJ-FLAG protein. In addition, it was tested whether the H-NS 

protein affects binding of RcsB and RcsB-BglJ heterodimers. The protein-DNA 

complex was separated on 8% non-denaturing polyacrylamide gel and shifts were 

visualized by ethidium bromide staining. As controls a lacZ fragment which is not 

bound by RcsB and an osmC fragment which contains RcsB binding site were 
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included. The schematic presentations of the DNA fragments used in this assay are 

shown in Fig 25.  

 

For the EMSA studies, a small 131bp bgl regulatory fragment from position -191 to -

60 which encompasses the putative RcsB/BglJ binding site was used (Fig 25a). A 

larger bgl fragment from position -191 to +27 which encompasses the putative 

RcsB/BglJ binding site and core bgl promoter region was also used (Fig 29). A 241 bp 

fragment of the osmotically inducible osmC gene, which is repressed by H-NS 

(Bouvier et al., 1998) and positively regulated by RcsB (Sturny et al., 2003), 

(Davalos-Garcia et al., 2001) was used as a positive control (Fig 25b). As a non-

specific negative control, a 287 bp lacZ fragment was used (Fig 25c). The negative 

control lacZ fragment is the largest of the all four fragments to exclude effects of 

unspecific DNA binding which are usually more pronounced for larger fragments.  

 

                
 
Fig 25. DNA fragments used for EMSA analysis.  The fragments used for binding analyses are 
schematically shown. In all schemes, the -10 and -35 promoter regions are shown as small black boxes 
and the transcription start site is shown by an arrow. a) structure of the bgl regulatory region including 
the putative RcsB/BglJ box, shown as grey/white box. The white part represents the half matching 
RcsAB consensus sequence. The CRP binding sites is also indicated: The smaller 131bp bg frgment 
and larger bgl fragment are shown. The oligos used for amplification are mentioned; b) structure of the 
osmC regulatory region including the RcsB box. P’osmC represents the RcsB regulated osmC 
promoter1 (osmCP1)c) structure of the lac promoter lacZ region with the DNA fragment used as 
negative control indicated. 
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At first, an EMSA was carried out by incubating the bgl and lacZ DNA fragments 

with increasing concentration of purified strep-tagged RcsB, RcsBD56E and RcsBD56N 

proteins. In the EMSA experiments the fragments were added at a final concentration 

of 15ng per assay (see materials and methods 17). The RcsB and the mutants did not 

shift bgl fragment (Fig 26). Even the positive control fragment osmC was not shifted 

by RcsB and its mutants.    

 

 
 

Fig 26.  EMSA shift assay with purified RcsB and mutants. EMSA shift assay with purified RcsB 
(a), RcsBD56E (b) and RcsBD56N (c) proteins using bgl, osmC and lacZ DNA fragments. The RcsB and 
mutant proteins were added with the indicated final concentration to the fragment mixture and 
incubated for 20 minutes at 30ºC temperature. M is size standard (gene ruler, MBI fermentas). The 
protein-DNA complex is resolved on a 8% non-denaturing polyacrylamide gel and stained with 
ethidium bromide (0.5µg/ml) for 20 minutes. The DNA fragments (bgl 131bp), (osmC 241) and lacZ 
(147bp) are indicated by arrows.  
 

An unsuccessful attempt to show the direct binding of RcsB to osmC by DNA shift 

assay was reported earlier (Davalos-Garcia et al., 2001). It was proposed that the 

affinity of binding is too low to obtain a stable complex during the Electrophoretic 

migration. We speculated that an additional cofactor might be required to establish a 

stable interaction of the protein to the target DNA.  

 
The binding of H-NS to the bgl region was shown previously form our group (Dole et 

al., 2004) and we tried to analyze H-NS as a possible cofactor for the interaction of 

RcsB with it target genes. To check the effect of H-NS on the binding, I incubated the 

DNA fragments with increasing concentration of H-NS. As expected, the osmC 

fragments disappeared with increasing concentration of H-NS and at 1.2 µM H-NS it 

was completely shifted (Fig 27 lane d). H-NS also shifted the bgl fragment very 

effectively at the same concentration (Fig 27 lane d). Binding of H-NS in EMSA is 

usually detected by the disappearance of the unbound fragment and by the formation 
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of a shifted complex which appears as a smear due to oligomer complex formation of 

H-NS at the DNA 

     

    

 

Fig 27. EMSA shift assay with purified H-NS protein using bgl, osmC, and lacZ DNA fragments. H-
NS was added with the indicated final concentration to the fragment mixture and incubated for 20 
minutes at 30ºC temperature. M is size standard (gene ruler, MBI fermentas). The protein-DNA 
complex is resolved on a 8% non-denaturing polyacrylaminde gel and stained with Ethidium bromide 
(0.5 µg/ml) for 20 minutes. The DNA fragments (bgl 131bp), osmC (241bp) and lacZ (287bp) are 
indicated by arrows.  
 

In the next assay, we used increasing concentration of H-NS (0, 0.2, 0.4 and 0.8µM) 

and titrated against purified RcsB and mutant proteins. The RcsB protein showed a 

weaker shift in osmC fragment in the presence of H-NS at 0.4µM concentration (Fig 

28.a (a-d). The 0.4µM H-NS concentration was not sufficient enough to shift the 

osmC fragment by alone (See Fig 27 b). The osmC shift was effective in the 0.8µM 

H-NS (Fig 28.a (f-h). Similar effects were seen with RcsBD56E protein (Fig 28.b (a-

h). The RcsBD56N protein could able to shift osmC fragment only at 0.8µM 

concentration of H-NS (Fig 28.c (f-h). The lower concentrations of H-NS did not 

have any significant effect on shifting omsC or bgl fragment (Fig 28 a, c and e).  
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 Fig 28. Effect of H-NS in RcsB and mutants binding. EMSA shifts in the presence of H-NS with 
RcsB (a,b), RcsBD56E (c,d) and RcsBD56N (e,f) is shown. H-NS and RcsB were added with the indicated 
final concentration to the fragment mixture and incubated for 20 minutes at 30ºC temperature. M is 
size standard (gene ruler, MBI fermentas). The protein-DNA complex is resolved on a 8% non-
denaturing polyacrylaminde gel and stained with Ethidium bromide (0.5 µg/ml) for 20 minutes. The 
DNA fragments (bgl 131bp), osmC (241bp) and lacZ (287bp) are indicated by arrows 
 

Finally, I performed EMSA assays using the same conditions in the presence and 

absence of partially purified BglJ-FLAG tagged protein. A constant amount of 
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partially purified BglJ protein (2µl) was used throughout the assay. The H-NS 

concentration was reduced to 0.6µM (since at 0.8µM concentration the protein-DNA 

complex sticks in the wells (Fig 28b, d and f). This suggests either the protein to 

DNA ratio is higher or the protein-DNA complex was too big for the gel. Here I used 

a 218bp bgl fragment which encompasses RcsB/BglJ putative site and core bgl 

promoter region (Fig 25a). The effect of the BglJ protein in shifting bgl fragment in 

the presence of H-NS (Fig 29.a (b-e) were inconclusive. Similar results were also 

observed with RcsBD56E and BglJ proteins in the presence of H-NS (Fig 29b (lane b - 

d). Since the BglJ protein purification was limiting, we cannot come to any 

conclusion about the effect of BglJ in the presence of RcsB and H-NS. Moreover this 

experiment was carried out only once.  

 

     

 

     
 
Fig 29. Effect of BglJ and H-NS in RcsB and mutants binding EMSA shifts in the presence of BglJ 
and H-NS with RcsB (a,b) and RcsBD56E (c,d) are shown. H-NS and RcsB were added with the 
indicated final concentration to the fragment mixture and incubated for 20 minutes at 30ºC 
temperature. M is size standard (gene ruler, MBI fermentas). The protein-DNA complex is resolved on 
a 8% non-denaturing polyacrylaminde gel and stained with Ethidium bromide (0.5 µg/ml) for 20 
minutes. The DNA fragments (bgl 131bp), osmC (241bp) and lacZ (287bp) are indicated by arrows. 
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3. BglJ, a protease target in E. coli 
 
The LuxR type transcription regulator BglJ, forms weak homodimer and strong 

heterodimer with RcsB. It has also been shown that the BglJ protein acts as antagonist 

(anti-silencer) of bgl operon silencing by H-NS, and that this is RcsB dependent 

(Paukner, 2007); unpublished data). The response regulator RcsB forms a 

heterodimer with the less stable auxiliary protein RcsA to activate transcription of 

capsule synthesis (cps) in E. coli and of other genes (Stout and Gottesman, 1990). 

Expression of the rcsA gene is also repressed by H-NS (Sledjeski and Gottesman, 

1995). In addition, RcsA is rapidly degraded by Lon protease, and genetic data 

suggest that RcsA is stabilized by its interaction with RcsB (Gottesman and Stout, 

1991; Torres-Cabassa and Gottesman, 1987; Dierksen et al., 1994; Stout et al., 1991).  

Later it was shown that RcsA in addition is a substrate of HslUV Protease (Kuo et al., 

2004). Since BglJ is also forming a heterodimer with RcsB, I tested the possibility 

that BglJ is a target of proteases. This hypothesis is supported by the protein 

expression analyses, where BglJ protein expression was minimal and over expression 

of the protein leads to probable aggregation. To address the question a protein 

stability assay was performed using BglJ-FLAG protein in E. coli wild type and Lon 

protease mutants. 

 
3.1 BglJ protein stability 
 
To check the stability of BglJ protein, a low copy plasmid (pKERV10) coding for 

bglJ was used to transform E. coli wild type, a lon mutant, a rcsB mutant, and a lon 

rcsB double mutant. The cells were grown till OD600 reached 0.5 and then expression 

was induced with 1mM IPTG for 30 minutes at 37ºC. Aliquots were taken before 

induction (at (t = -30) and after 30 minutes of induction (at t = 0) before addition of 

chloromphenicol (200µg/ml) to stop protein synthesis. Then aliquots were taken 10 

minutes, 30 minutes and 60 minutes after chloramphenicol addition. The protein 

samples were resolved on 15% SDS-PAGE and analyzed further with Western blot 

using mouse anti-FLAG/anti mouse alexaflour® 680 antibodies (Fig 31). 

Quantification of the Western blot suggests that the BglJ protein is less stable in the 

wild type cells as compared to the lon mutant strain. In the wild type 60 minutes after 

chloramphenicol addition (at t = 60) only 20% of the protein was detectable as 
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compared to t=0. In comparison in the lon mutant 60% of the protein remained at 

t = 60. This suggests that BglJ is a Lon protease target. The BglJ protein stability was 

rather similar in the wild type and in the rcsB mutant. Interestingly, BglJ was unstable 

in the rcsB lon double mutant (20%). These results indicate that the interaction of 

BglJ with RcsB has little effect on BglJ stability. The fact that BglJ is unstable in the 

lon rcsB double mutant indicates that another protease in addition to Lon degrades 

BglJ and that this degradation is inhibited by the interaction of BglJ with RcsB in the 

lon mutant. Recently, it has been shown that the ClpYQ (HslUV) protease acts as a 

secondary protease, which in addition to lon, targets RcsA (Kuo et al., 2004). 

 

       

     

Fig 30. BglJ protein stability. (a) The stability of BglJ 
was analyzed in transformants of E. coli wild type 
(S541), lon mutant (S1553), rcsB mutant (S3278), and 
rcsB lon double mutant (S3895) with plasmid 
pKERV10 coding for bglJ under control of the IPTG 
inducible tac promoter. Cells were grown to 
exponential phase and protein expression was induced 
with 1mM IPTG. Then the protein synthesis was 
stopped by addition of chloromphenicol (200 µg/ml). 
Aliquots of the cells were harvested at t = 0 before 
chloromphenicol addition and 10, 30 and 60 minutes 
after chloromphenicol addition. For quantification the 
intensity of the BglJ signal at t = 0 (measured from 
Odyssey V.1.2 software) was set as 100 percent and the 
t = 10, t = 30 and t = 60 values are plotted. The graph is 
the average of 3 replications. (b,c) Western blots 
analysis of BglJ-FLAG protein using Mouse anti-
FLAG and anti-mouse alexaflour@680 antibodies. The 
27 kDa BglJ protein is indicated by an arrow. 
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4. Microarray 
 
To identify genes in Escherichia coli regulated by the transcription factors BglJ and 

YjjQ, three different E. coli K12 strains were used, in which BglJ, YjjQ or as a 

control no protein was expressed. After induction of expression, RNA was isolated 

and used in a microarray analysis with Affymetrix Gene Chip E.coli Genome 2.0 

array performed in Cologne Center for Genomics (CCG), Univeristy of Cologne, 

Germany. 

E. coli strain S3922 (ΔyjjP-yjjQ-bglJ):: KD3cm) carrying deletions of yjjQ and BglJ 

was transformed with plasmids expressing BglJ (pKERV16), YjjQ (pKERV 17) 

genes under control of IPTG inducible tac promoter. The empty vector (pKES169) 

was used as a control. The cells were grown to mid stationary phase till OD600 

reached 0.3 (30 minutes) and induced with 1mM IPTG. The cells were grown till 

OD600 reached 0.5 (additional 30 minutes) and immediately harvested for RNA 

isolation using Qiagen RNAeasy kit. The RNA quality and concentration was 

checked with Nanodrop spectrophotometer (Nanaodrop ND-1000). For each strain 5 

independent biological replicates of RNA was prepared for microarray analysis using 

Affymetrix GeneChip E.coli Genome 2.0 Array. The integrity of the RNA was 

analyzed on 6% Urea/acrylamide gel (Fig 31). The Microarray results are yet to be 

validated to confirm the results and avoid false positive results by real-time PCR. 

 

                  

 
Fig 31. RNA preparation used in microarray analysis. RNA preparation from an E. coli strain 
(S3922 (MG1655 rph+ Δ (yjjP-yjjQ-bglJ):: KD3cm expressing BglJ (a), YjjQ (b) and control plasmid 
(c) was shown. A minimum 5 independent set of RNA was prepared for affymetrix Genechip E. coli 
Genome2.0 array. 1µg of purified RNA was separated in 6% Urea/acrylamide gel and stained with 
ethidium bromide (0.5µg/ml) for 10 minutes. 

 
Though the microarray data are yet to be validated, the raw data from the array was 

analyzed based on the properties of the genes and only the significantly regulated 
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genes were shown in table1. As expected the bglJ gene was highly up regulated (2297 

fold). Interestingly, the LysR-type transcriptional regulator LeuO, which antagonize 

H-NS repression was also highly up regulated (111 fold). Several inner and outer 

membrane proteins and structural proteins were positively regulated. The rhs 

elements form the Rhs super family with an unknown function was highly up 

regulated. Recently, rhsA had been shown to play a role in group 2 capsular 

polysaccharide biosynthesis (McNulty et al., 2006). Genes involved in iron transport 

were also regulated. Similarly, a significant down regulation in genes involved in acid 

resistance system is seen. The genes involved in stress response and 

oxidation/reduction system are also negatively regulated. Some non-coding small 

RNA are up and down regulated.  The significant regulation of genes involved in 

various processes suggesting a wider role of BglJ protein other than activation of bgl 

operon. 

 

Table1. Most significantly up or down regulated genes by BglJ protein  

Gene                   Gene products Fold change 
   
Transcriptional regulators 
bglJ transcriptional regulator +2297 
leuO regulator of leucine operon leuabcd 111 
tdcA regulator of tdcabcdefg operon  -12 
gadW regulator of glutamate acid resistance gene -8 
gadX regulator of glutamate acid resistance gene -5 
caiF regulator of caitabcde operon -6 
yhiF response regaltor of decarboxylate transport system -7 
   
Inner and Outer membrane proteins  
yiaB hypothetical inner membrane protein +161 
yiaA hypothetical inner membrane protein +75 
yibG hypothetical inner membrane protein +60 
yibJ hypothetical inner membrane protein +57 
ycbS outer membrane protein +10 
ybfC outer membrane protein +25 
ompN outer membrane protein +17 
Slp outer membrane protein -12 
yigG inner membrane protein +43 
yigF inner membrane protein +19 
ybfB inner membrane protein +56 
ygiZ inner membrane protein +48 
yhiP inner membrane protein -11 
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Iron uptake  
fhuA ferricchrome outer membrane transporter +10 
fhuF ferricchrome reductase +9 
Fes ferric eneterobactin esterase +4 
fepC iron enterobactin atp binding protein +3 
fepB iron enterobactin trasnporter binding protein +3 
   
Structural genes  
ycbQ fimbrial like protein +34 
ycbR pilin protein +18 
yadN adhesion protein +8 
   
Rhs elements  
rhsB rhs element core protein +48 
rhsA capsular polysaccharide biosynthesis and metabolism +37 
rhsC rhs element core protein +31 
   
Acid resistance system  
gadA glutamate decarboxylase isoenzyme (gad) -30 
gadB glutamate decarboxylase isoenzyme  -27 
gadE transcriptional activator of gad system -17 
gadC glutamate gaba-antiporter -13 
   
hdeA acid resistance protein chaperone -21 
hdeB acid resistance protein chaperone -14 
hdeD acid resistance protein chaperone -9 
   
Stress response (σs)  
osmY osmotically inducible periplasmic protein -4.5 
osmE osmotically inducible periplasmic protein -2.5 
osmF osmotically inducible periplasmic protein -2.5 
   
Transporters  
yhiD mg2+ transporter -13 
yhiP peptide transporter -11 
yhiU multidrug resistance efflux transporter -7 
   
Oxidation/reduction system  
ydhY ferridoxin like protein -14 
ydhV predicted oxidoreductase protein -11 
hyaB hydrogenase subunit -13 
hyaC hydrogenase subunit -11 
hyaD hydrogenase subunit -6 
  -5 
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Small regulatory RNA 
micC porin regulating RNA +5 
glmY regulator of amino-sugar metabolism +4 
rhyB regulator of iron homeostasis +3 
csrB regulator of csrA(global pleiotropic regulator) -4 
gadY activator of glutamate acid resistance genes -3 
dsrA activator of rpoS regulator of hns -3 
 
Table1. The affymetrix microarray of BglJ protein. The plasmid expressing BglJ (pKERV16) under 
the IPTG inducible tac promoter was grown till 0.3 OD600 and induced with 1mM IPTG for additional 
30 minutes. The RNA was isolated and the gene expression analysis was carried out using Affymetrix 
Gene chip E. coli Genome 2.0 array. The empty vector (pKES169) was used as a control. For each 
strain 5 independent biological replicates of RNA was prepared. The genes which are significantly 
regulated by BglJ protein (BglJ vs control genes) are shown in table1. 
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IV. Discussion 
 
The nucleoid associated protein H-NS acts as a global transcriptional repressor 

controlling approximately 5% of all genes in E. coli and other enterobacteriaceae (see 

introduction). Repression by H-NS can be relieved by binding of specific transcription 

factors and by alteration in the DNA structure (Stoebel et al., 2008).One model 

system for repression by H-NS is the E. coli bgl operon, which is effectively repressed 

by H-NS (Dole et al., 2004; Madhusudan et al., 2005; Nagarajavel et al., 2007). This 

repression can be relieved by the LuxR-type transcription factor BglJ. De-repression 

by BglJ requires the response regulator and LuxR-type transcription factor RcsB. In 

addition, it was shown by a bacterial two-hybrid system that BglJ and RcsB form 

heterodimers (unpublished lab data). Therefore, it seemed plausible that BglJ-RcsB 

heterodimers bind to the regulatory region of the bgl operon and antagonize 

repression by H-NS. In this Thesis heterodimer formation of BglJ with RcsB was 

confirmed by Co-immuno precipitation analysis. Additional, protein stability analysis 

suggests that BglJ is a target of Lon and another protease. Furthermore, binding of the 

BglJ-RcsB dimer to the bgl regulatory region is supported by the analysis of linker 

insertion mutants within and close to a putative BglJ-RcsB binding site. In addition, 

binding was tested in vitro by electrophoretic mobility shift assays using purified 

RcsB and a protein fraction enriched for BglJ, and by other approaches. The DNA 

shift assays which included a control fragment (osmC) known to be bound by RcsB 

homodimers suggest that binding of RcsB requires a minimum amount of H-NS, 

indicating that H-NS might act as a cofactor. Binding of RcsB-BglJ to the bgl 

fragment was not conclusive most likely because purification of BglJ was of limited 

success. Taken together, the results of this experiments support a model that H-NS act 

as a cofactor increasing the affinity of RcsB/RcsB homodimers (for RcsB regulated 

loci) and also for RcsB/BglJ heterodimers (for bgl) which leads to de-repression of the 

bgl operon. 

 

1. RcsB interaction with BglJ and YjjQ 
 
The co-immunoprecipitation demonstrated efficient interaction of BglJ with the wild 

type RcsB. Similar results were obtained from the interaction analysis of YjjQ with 

wild type RcsB protein. Interaction of YjjQ with RcsB was 3.2 fold less efficient than 
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interaction of BglJ with RcsB. This result is also well supported form the data 

obtained from the bacterial two-hybrid system. YjjQ was included in these analyses as 

it is encoded in an operon with BglJ. In addition co-immunoprecipitation of BglJ and 

YjjQ were performed, with RcsB mutants carrying exchanged in the conserved 

Aspartate phosphorylation site. For BglJ these results are contradictory to results 

obtained with an in vivo bacterial two-hybrid system. In the two-hybrid system, 

interaction of RcsB mutant proteins with BglJ showed no significant difference than 

the wild type. On the other hand, YjjQ showed a stronger interaction with RcsBD56E 

than the wild type. The RcsBD56N mutant showed the weakest interaction with YjjQ. A 

possible explanation for the difference in the interaction levels of RcsB and its 

mutants with BglJ and YjjQ could be attributed to the poor expression of the BglJ and 

YjjQ, respectively (fig 6). Due to the poor protein levels, it is possible that not enough 

proteins were available to form a complex with RcsB. In addition, RcsB forms a 

strong homodimer. If the RcsBD56E forms stronger homodimer, one can imagine that 

most of the proteins would be used in homodimer formation and less protein would be 

available for heterodimerization with BglJ or YjjQ.  

As far as our present knowledge the phosphorylation site RcsB proteins was never 

tested biochemically. RcsB has a conserved aspartate residue at position 56, which  is 

assumed to be the phosphorylation site by analogy to other response two-component 

system regulators like CheY (chemotaxis protein), NtrC (nitrogen regulatory protein) 

and VirG (conjugation protein in Agrobacterium tumefaciens) in which the 

corresponding aspartate residue was shown to be the site of phosphorylation (Bourret 

et al., 1990; Keener and Kustu, 1988; Klose et al., 1993; Jin et al., 1990). In addition, 

genetic data support that D56 is the phosphorylation site; the change of aspartate to 

glutamate (D56E) leads to constitutive activation of cps gene, and aspartate to 

asparagine (D56N) results leads to failure to activate the cps gene (Stout, 1994). An in 

depth analysis of phosphorylation of RcsB should be done through mass spectrometry 

analysis. The binding affinity of RcsB and the mutant proteins to the interaction 

partners could be analyzed by techniques like Surface Plasmon Resonance (SPR) to 

get an idea about the role of phosphorylation status in the interaction. 
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2. De-repression of the bgl operon by BglJ-RcsB might require H-NS as a 
cofactor 
 
The identification of a 7 bp sequence motif in the upstream bgl regulatory region 

matching half of the RcsAB consensus sequence suggested a RcsB/BglJ binding site 

in the bgl regulatory region (Paukner, 2007). Here, linker insertion mutants were used 

to analyze whether the integrity of this putative binding site is required for activation 

by BglJ/RcsB.  In the E. coli strain S541 (bgl lacZ) the wild type bgl promoter is 

repressed by H-NS, while its activity increased approximately 88 fold when BglJ was 

expressed which shows de-repression by BglJ (Fig 12b). This de-repression was 

abolished in the rcsB deletion, which shows that the de-repression of BglJ is RcsB 

dependent. Linker insertion in the putative binding site and between the putative 

binding site and promoter region abolished the activation by BglJ/RcsB. In addition, a 

linker insertion upstream of the binding site also interfered with activation by BglJ-

RcsB. These results supported our hypothesis that the BglJ/RcsB heterodimer binds to 

the bgl regulatory region to antagonize H-NS repression. 

 
To support the hypothesis that BglJ/RcsB heterodimers bind to putative site in bgl, I 

tried many biochemical approaches including Chromatin immunoprecipitation 

(CHIP), electrophoretic mobility shift assay (EMSA) using cell lysates and a modified 

protocol of co-immunoprecipitation which includes addition of the bgl regulatory 

fragment in the lysates followed by a precipitation with HA specific antibodies. All 

these experiments yielded mostly non-specific interactions and the results were 

inconclusive. Another genetic approach, based on a bacterial one-hybrid system for 

determining the DNA-binding specificity of transcription factors was also not 

convincing. The controls showed a 3 fold increase in activation (Fig 14b). The 

bacterial one-hybrid system expressing RcsB/BglJ putative binding site plasmids 

(direct and inverse orientation), showed a 2 fold increase in the activity in plasmids 

carrying putative binding site in inverse orientation (pKERV53 to pKERV56) (Fig 

17b) but this effect was not observed in same strain expressing empty vector control 

(Fig 18). We could not understand the difference. Moreover the high basal level 

expression makes it difficult to analyze the induction effects (See Results 2.2). 

In the parallel approach, electrophoretic mobility shift assay (EMSA) with purified 

RcsB and RcsB mutant proteins shifted neither the bgl fragment nor the osmC 
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fragments (with the latter being used as a control as it is known to be bound by RcsB 

homodimers). At this point we were not sure weather this is due to loss of protein 

function or activity or due to technical error. But it should be considered that in the 

literature in vitro binding of RcsB to its target genes like osmC and fts (cell division 

gene) was also problematic (see for example (Davalos-Garcia et al., 2001)). 

Moreover, RcsB binding to its target gene by electrophoretic DNA shift assay has not 

been demonstrated so far. Binding site analysis were successful only with DNAse I 

footprinting for RcsB target genes (Sturny et al., 2003). Interestingly, DNA shift 

assays of RcsB with its auxiliary protein RcsA has been shown for several RcsB/RcsA 

target genes (Kelm et al., 1997; Francez-Charlot et al., 2003; Wehland et al., 1999; 

Wehland and Bernhard, 2000). It is reported that LuxR, a transcriptional activator of 

Vibrio fischeri which shares the same family of response regulators like RcsB is 

unable to bind to its target genes alone (Stevens et al., 1994). It is not clear why 

binding cannot be established by DNA shift assays. 

It could be possible that the affinity of binding is too low to obtain a stable 

complex during the electrophoretic migration. Another possibility is that an additional 

cofactor is required to establish a stable interaction of the RcsB/BglJ proteins to the 

target DNA. Both bgl and osmC are repressed by H-NS (Schnetz, 1995; Dole et al., 

2004; Gutierrez and Devedjian, 1991)., and, as expected, bgl and osmC fragments 

were shifted with purified H-NS protein (Fig 27). Therefore, I tested whether H-NS 

acts as a co-factor for binding of RcsB to osmC and RcsB-BglJ to bgl. Upon 

incubation of the DNA fragments with purified H-NS and RcsB proteins the osmC 

fragment was effectively shifted. The concentrations of H-NS and RcsB proteins used 

were insufficient to shift osmC and bgl fragments alone (fig 28). This indicated that 

H-NS acts as a co-factor of RcsB binding, which could be validated by shift assays 

with fragments carrying mutations of the RcsB binding site. To my knowledge this is 

the first time that the direct binding of RcsB to the osmC promoter region is shown. In 

addition, no significant difference in the shift of the osmC fragment by RcsB was 

observed for the wild type RcsB or its D56 mutants (fig 28). 

Based on these results, one may assume that a limited amount of H-NS is required for 

enhancing the affinity of RcsB or by increasing the stability of interaction by forming 

H-NS-RcsB-DNA complex. The transcriptional repressor H-NS has been shown to 

positively activate tra gens which encode products required for conjugative transfer 
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like F-like plasmids. H-NS has been shown to bind directly along with another global 

regulator Lrp (Leucine response regulatory protein) and activates the transcription 

(Starcic-Erjavec et al., 2003). Though the specificity of binding was not high as Lrp 

and the mechanism by which the H-NS and Lrp enhances the tra promoter activity 

remains elusive. A transcriptional regulator slyA¸ has been shown to relieve H-NS 

mediated repression of a heamolysin gene hlyE in E. coli (Westermark et al., 2000; 

Lithgow et al., 2007). The shifts using purified H-NS and RcsB proteins along with 

constant amount of partially purified BglJ protein were not conclusive. This could be 

due to the problem with the homogeneity of the partially purified BglJ protein The 

BglJ protein might not be sufficient enough to contribute to the DNA-protein 

complex.  

 
3. Lon protease targets BglJ 
 
The BglJ protein stability experiment (Fig 30) showed that BglJ is targeted by Lon 

protease. It has been shown that many LuxR-type transcriptional regulators like LuxR 

regulator in V. fischeri, PpuR transcription factor in P. aeruginosa, TraR and RcsA in 

E.coli are degraded by Lon protease and many of them involved in pathogenicity 

(Manukhov et al., 2006; Bertani and Venturi, 2004; Stout et al., 1991; Zhu and 

Winans, 2001). The stability of BglJ in the wild type and rcsB mutant is similarly low, 

indicating that the presence of RcsB has no effect on the stability of BglJ. This result 

contradicts a hypothesis that interaction of BglJ with RcsB increases the stability of 

the BglJ protein, since heterodimer formation might prevent the protein form 

degradation by Lon protease. Presently, it is not know weather phosphorylated RcsB 

(which can be tested with the mutant RcsBD56E) could have had an increased effect on 

the stability of the BglJ protein. In addition, instability of BglJ in the rcsB lon double 

mutant suggests that another protease is involved in the degradation of BglJ, and that 

in this case RcsB has an affect on BglJ stability. In bacteria, regulated degradation is 

carried out mainly by two major ATP-dependent proteases, Lon and Clp (Baker and 

Sauer, 2006; Striebel et al., 2009). It has been recently shown that the additional 

ClpYQ (HslUV) protease acts as a secondary protease in addition to Lon in the 

degradation of RcsA (Kuo et al., 2004). Therefore, ClpYQ could be the secondary 

protease which degrades BglJ, which has to be experimentally analyzed. 
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One interesting aspect that remains unclear is how BglJ activity and its proteolysis are 

controlled. BglJ was initially identified as an activator of the bgl operon. The results 

of the microarray and additional data obtained in the lab revealed that BglJ is a global 

RcsB dependent regulator. This is also further supported by a fact that the over 

expression of BglJ results in a growth defects (unpublished lab data). The microarray 

showed significant regulation of genes involved in acid resistance and stress response 

along with structural proteins, inner and outer membrane proteins. The significant 

regulation of the potential candidates suggests a widespread role of BglJ protein.   

 
4. Model 
 
Based on the results, one can propose a model for anti-silencing of the H-NS 

repressed bgl operon by transcriptional factors RcsB and BglJ. In this model, it is 

assumed that a limited amount of H-NS is required as a cofactor for RcsB/BglJ 

binding to its binding site in bgl. The presence of H-NS might enhance the affinity of 

binding or increase the stability of the interaction by binding to the RcsB/BglJ 

heterodimer. It is also possible that binding of H-NS to the DNA causes a 

conformational change in the RcsB/BglJ site, which could facilitate binding of the 

RcsB/BglJ heterodimer. Binding of RcsB/BglJ heterodimer may prevent the H-NS 

nucleoprotein formation and DNA-HNS-DNA bridging, and thus prevent inhibition of 

RNA polymerase by H-NS. In addition, direct interaction of BglJ-RcsB with RNA 

polymerase may by important for activation, as linker insertions in between the 

putative BglJ/RcsB binding site and the promoter prevent activation.  

 

  
 
Fig32. Model of anti-silencing of H-NS repressed bgl operon by transcriptional factors RcsB and 
BglJ. a) The H-NS mediated repression of bgl operon shows the binding of H-NS (red) to the Upstream 
and downstream regulatory element. (b) A minimum amount of H-NS is bound with RcsB/BglJ 
prevents the formation of nucleoprotein complex and DNA-H-NS-DNA bridging. 
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V.  Materials and methods 
 

1. Media and agar plates 
 
LB (1000ml) 
Bacto Trypton   10g 
Yeast Extract     5g 
NaCl         5g 
For LB plates add 15g Bacto Agar (1.5%) 
 
SOB (1000ml) 
Bacto Tryptone   20g 
Bacto Yeast Extract       5g 
NaCl                          0.5g  
2M KCl          1.25ml 
 

 Adjust the pH to 7.0 with NaOH 
After autoclaving just before use add 10ml 1M MgCl

2  

 

SOC (1000ml) 
Add 19.8ml 20% Glucose to 1000ml SOB 
 
20 x M9 
Na

2
HPO

4 
x 2 H

2
O          140 g  

KH
2
PO

4                   
60 g

 
 

NH
4
Cl               20 g 

Make up the volume to 1000ml with sterile H2O 
 
M9 Medium (prepare from sterile solutions) 
20 x M9           50 ml  
0.1 M CaCl

2                                        
1 ml  

1 M MgSO
4                                         

1 ml  

1 mM FeCl
3               

0.5 ml  

 
Add carbon source 1% final concentration:  
20 % Glucose            50 ml  
or 80 % Glycerol              12.5 ml  
 
If required:  
1 mg/ml Vitamin B1             1 ml  
4 mg/ml amino acids             5 ml  
10% casamino acids            66 ml  
Make up the volume to 1000ml with H2O 
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M9-plates  
For M9 plates add 15g Bacto Agar (1.5%) with 900ml H2O 
Add, sterile  

20 x M9                       50 ml  
0.1 M CaCl

2                                        
1 ml  

1 M MgSO
4                                         

1 ml  

1 mM FeCl
3                                    

0.5 ml  

Carbon source: 1 % final concentration  
 

Add, if required:  
1 mg/ml Vitamin B1             1 ml  
4 mg/ml amino acids             5 ml  
10% casamino acids            66 ml 
 
Bromthymol blue plates (BTB-plates)  
Bacto Agar    15g 
Yeast-Extract      1g 
Trypton      1g 
NaCl       5g 
H

2
O          900 ml 

Autoclave at 121ºC for 20minutes 
 
Add sterile:  
1 M MgSO4              1 ml 
0,1 M CaCl2              1 ml 
Vitamin B1             1 ml   
(stock solution 1mg/ml, filter sterilize)  
FeCl3 1mM           0,5 ml 
10% (w/v) Casaminoacids   20 ml 
Sugar             50 ml  
(e.g. 10 % Salicin, 20% Lactose, etc.)  
BTB stock solution 10 ml   
(2% bromthymol blue in 50% EtOH, 0,1N NaOH)  
 
Antibiotics if required.  
The medium should be turquoise,  
if medium is green add NaOH, if it is blue add HCl 

 

 

 

 



Materials and methods 
 
 
 

 

60

2. Antibiotics, sugars, Amino acids 

Antibiotics 

Name Stock solution Final conc. 
ampicillin 50mg/ml in 50 % EtOH 50 μg/ml 

chloramphenicol 30 mg/ml in Ethanol 15 μg/ml 
kanamycin 10 mg/ml in water 25 μg/ml 
rifampicin 100mg/ml in Methanol 100μg/ml 

spectinomycin 50 mg/ml in 30% EtOH 50μg/ml 
tetracyclin 5mg/ml in 70 % Ethanol 12 μg/ml 

 Sugars 

Name Stock solution Final conc. 
Glucose 20% 1% 
Glycerol 80% 1% 
Salicin 10% 0.5% 

Casamino acids  

Final conc. 10% in H
2
O  

Dissolve by heating and filter through Schleicher & Schuell folded filters, then 
autoclave. 
 

3. Buffers TEN Buffer 
20mM Tris.Hcl (pH7.5) 
1mM EDTA 
50mM NaCl 
 
1X Laemmli Buffer 
62.5mM Tris.Hcl (pH6.8) 
2% SDS 
10% Glycerol 
0.05% Bromophenol blue 
5% β-mercaptoethanol 
 
Z-Buffer (β-galactosidase assay) 
100mM Na-phosphate pH 7.0 
10mM KCl 
1mM MgSO4 
100µg/ml chloramphenicol) 
 
EMSA Binding Buffer 
20mM Tris-HCl pH 7.5 
100mM KCl 
2mM DTT  
10% glycerol 
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EMSA loading dye (6X) 
10 mM Tris-HCl pH 7.6 
0.03% bromophenol blue 
0.03% xylene cyanol FF 
60% glycerol 
60 mM EDTA)  
 
10x TBE (1Liter) 
20 ml of 0.5 M EDTA pH 8.0 
27.5 g boric acid 
54 g Tris base 
800 mL H2O 
 
Buffer A (FPLC) 
50mM Tris-HCl pH 8.0 
100mM KCl 
1mM EDTA 
 
Buffer B (FPLC) 
50mM Tris-HCl pH 8.0 
100mM KCl 
1mM EDTA 
2.5mM D-Desthiobiotin 
 
Buffer R (FPLC) 
50mM Tris-HCl pH 8.0 
100mM KCl 
1mM EDTA 
1mM HABA 
 
Dialysis Buffer 
20mM Tris-HCl pH7.5 
100mM KCl 
2mM DTT 
10% Glycerol 
1mM PMSF 

 
 
4. Standard microbiology techniques 
 
Standard Molecular Biology applications like restriction enzyme digestions, ligations 

and other enzymatic reactions, PCR amplification, plasmid purification, auto-

radiography were performed as described in Sambrook and Russell, 2001 or current 

protocols (Ausubel FM, 2005) or according to the manufacturer’s instructions. 
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5. Bacterial strains 

The bacterial strains used in this study and their description are listed in table2 

Table 2: E. coli K12 strains used in this study 

Name Relevant genotype or structurea Source 
CSH50 =S49 (bgl° Δ(lac-pro) ara thi  (Miller, 1972) 

S103 DH5α F- araD139 Δ(argF-lac)U169 deoC1 flb5301 
relA1 rpsL150 ptsF25 rbsR 

Lab collection 

S524 CSH50 ΔlacZ-Y217 (gpt-pro)+ (Dole et al., 2002) 

S541 CSH50 (=S539) bgl-AC11 lacZ-Y217  (Dole et al., 2004) 

S1553 =S541 sulA3 lon proC+ Lab collection 

S2176 =S524 yjjQ/bglJ-Y6::mTn10cm  Lab collection 

S2822 =S524 (S2817 yjjQ/bglJ-Y6::mTn10cm) Lab collection 

S2828 =S524 (S2822 rcsB::mTn10tet-2828) Lab collection 

S3278 =S541 ΔrcsB::SpecR   Lab collection 

S3377 =S541 ΔrcsB::SpecR Δ�yjjP-bglJ)::KD3cmR S783/S676, pKD3c 

S3895 = S541 sulA3 lon proC+ ΔrcsB::SpecR S1553 x T4TG7b 

S3922 =(MG1655 rph+ Δ(yjjP-yjjQ-bglJ)::KD3-cm) S3839/pKD46c 

S4160 =S541 ΔrcsB::SpecR  Δ(yjjP-bglJ)::KD3frt S3377/pCP20c 

S4191 = S541 attB::(SpecR lacIq rrnB-T1 OL2 Plac lacZ)  X pKERV45 

 
a: The relevant genotype of the strains (which are all CSH50 derivatives) refers to the bgl, lac. All the 
strains were checked with PCR /restriction digestion and sequencing. The confirmed strains were 
stored (1.5ml of overnight culture mixed with 50µl DMSO (Dimethyl sulfoxide) at -80ºC. Detailed 
description of all the strains used was documented in lab records. 
b: Construction of strains by transduction using T4GT7 is explained in materials and methods (V.6) 
and integration of plasmids into the attB site of chromosome was done as described (Diederich et al., 
1992) (see materials and methods).  
c: The chromosomal deletion of rcsB, bglJ allele was constructed according to (Datsenko and Wanner, 
2000) and is explained in detail in material and methods (V.6). ΔyjjP-yjjQ-YjjQ::camR

 
refers to the 

replacement of the chromosomal yjjPQJ gene by a chloromphenicol resistance gene cassette, which 
was amplified from plasmid pKD3. 

 
6. Plasmids 
 
Large scale preparations of plasmid DNAs were performed using the plasmid 

maxiprep/midiprep kit (Promega) according to manufacturer's instructions. A list of 

plasmids used in the study, with brief descriptions is given in the Table 2. Details of 

the plasmid constructions are documented in the lab records and sequences are 

compiled in Vector NTI (Invitrogen).  
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The plasmids used in the study were derivatives of pMB1, pSC101 or – derivatives ( 

pMB1). The origin of each of the plasmids is also listed. The pMB1-derivatives carry 

the p15A origin of replication and the λ phage attachment site attP, to allow λ 

integrase mediated recombination insertion into the attB site of the E.coli 

chromosome (Diederich et al., 1992). The pSC101 derivatives used in the study carry 

the chloramphenicol resistance gene (cat), the repA gene and a lacIq
 
gene-lacUV5 or 

tac promoter cassette, followed by a multiple cloning site. The tac promoter is flanked 

by two operators for efficient repression by the lac repressor (LacI). The plasmids 

pKK177-3 has a 322 based origin of replication (pMB1), ampicillin resistance gene 

(bla) and two strong Rho independent transcriptional terminators rrnB-T1 and T2 

(Brosius and Holy, 1984). 

The plasmids used in this study and their description are listed in table3 

Table 3: Plasmids used in this study 

Plasmid Relevant structure/description/resistancea Source 
pCP20 FLP recombinae, temperature sensitive, amp Datsenko KA, 2000 

pKD3 Template plasmid for gene deletion, cm Datsenko KA, 2000 

pKD4 Template plasmid for gene deletion, kan Datsenko KA, 2000 

pKD46 λ red recombinase, temperature sensitive, amp Datsenko KA, 2000 

pLDR8 λ repressor, cI-857; int under control of λ PR, pSC101 rep-ts kan Diederich L 1992 

pFDX733 Wt bgl operon kan Schnetz K (1987) 

pFDY127 lacIq Ptac bglG, pBR amp Lab Collection 

pFDY167 bglP t1 bglG lacZ, p15A kan Caramel.A  (1998) 

pKETS01 lacIq Ptac bglJ, p15A kan Lab collection 

pKEAP22 lacIq Ptac, pBR amp Lab Collection 

pKEAP38 lacIq Ptac rcsB-HA, pBR amp Lab collection 

pKEAP43 lacIq Ptac rcsBD56E-HA, pBR amp Lab collection 

pKEAP44 lacIq Ptac rcsBD56N-HA in pBR amp Lab collection 

pKES169 lacIq Ptac SD10 C-term-HA, p15A kan Lab collection 

pKES171 lacIq Ptac SD10 C-term-HA, pBR amp Lab collection 

pKES179 lacIq Ptac SD10 yjjQ-HA, p15A kan This study 

pKES181 lacIq Ptac SD10 yjjQ-HA, pBR amp This study 

pKES182 lacIq Ptac SD10 FLAG, p15A kan This study 

pKES183 lacIq Ptac SD10 Myc p15A kan This study 

pKES184 lacIq Ptac SD10 C-term-FLAG, pBR amp This study 

pKES185 lacIq Ptac SD10 C-term-Myc, pBR amp This study 

pKETS01 lacIq Ptac BglJ,  p15A kan Lab collection 
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pFMAC20 bglPo t1 bglG lacZ, p15A kanR (SalI site at 249 bp upstream to 
CAP and single bp exchange (EcoRI) in URE 

Caramel A, 1998 

2-hybrid lacUV5 α-σ 70 D581G ,  amp (positive control) Hochschild A, 1999 

2-hybrid lacUV5 α ,  amp (negative control) Hochschild A, 1999

2-hybrid lacUV5 λcI- β831-1057, p15A cm (negative control) Hochschild A, 1999

2-hybrid lacUV5 λcI, p15A cm (negative control) Hochschild A, 1999

pKERV02 lacIq Ptac SD10 yjjQ-FLAG, pBR amp This study 

pKERV04 lacIq Ptac SD10 yjjQ-Myc, pBR amp This study 

pKERV06 lacIq Ptac SD10 yjjQ-FLAG, p15A kan This study 

pKERV08 lacIq Ptac SD10 yjjQ-Myc, p15A kan This study 

pKERV09 lacIq Ptac SD10 bglJ-HA, p15A kan This study 

pKERV10 lacIq Ptac SD10 bglJ-FLAG, p15A kan This study 

pKERV12 lacIq Ptac SD10 bglJ-HA, pBr amp This study 

pKERV13 lacIq Ptac SD10 bglJ-Myc, p15A kan This study 

pKERV14 lacIq Ptac SD10 bglJ-FLAG, pBR amp This study 

pKERV15 lacIq Ptac SD10 bglJ-Myc, pBR amp This study 

pKERV16 lacIq Ptac bglJ, pMB1 kan This work 

pKERV17 lacIq Ptac yjjQ, pMB1 kan This work 

pKERV18 PlacUV5 α-rcsB, pKK amp This work 

pKERV31 lacIq Ptac strep-rcsB, pKK amp This work 

pKERV32 lacIq Ptac strep-rcsBD56E, pKK amp This work 

pKERV33 lacIq Ptac strep-bglJ, pKK amp This work 

pKERV34 lacIq Ptac strep-rcsB, p15A kan This work 

pKERV35 lacIq Ptac strep-rcsBD56E, p15A kan This work 

pKERV36 lacIq Ptac strep-bglJ, p15A kan This work 

pKERV41 lacIq Ptac strep-rcsBD56N, pKK amp This work 

pKERV42 lacIq Ptac strep-yjjQ, pKK amp This work 

pKERV43 lacIq Ptac strep-rcsBD56N, p15A kan This work 

pKERV44 lacIq Ptac strep-yjjQ, p15A kan This work 

pKERV45 lacIq rrnBT1 OL2 Plac lacZ, pAYC kan,cm This work 

pKERV46 lacIq rrnBT1 OL2 Plac lacZ, pSC101 cm This work 

pKERV47 lacIq rrnBT1 BglJ-RcsB box (-108 to -87) Plac lacZ, pSC101cm This work 

pKERV48 lacIq rrnBT1 BglJ-RcsB box (-108 to -85) Plac lacZ, pSC101cm This work 

pKERV49 lacIq rrnBT1 BglJ-RcsB box (-108 to -83) Plac lacZ, pSC101cm This work 

pKERV50 lacIq rrnBT1 BglJ-RcsB box (-108 to -81) Plac lacZ, pSC101cm This work 

pKERV51 lacIq rrnBT1 BglJ-RcsB box (-108 to -79) Plac lacZ, pSC101cm This work 

pKERV52 lacIq rrnBT1 BglJ-RcsB box (-108 to -77) Plac lacZ, pSC101cm This work 

pKERV53 lacIq rrnBT1 BglJ-RcsB box (-108 to -87) Plac lacZ, pSC101cm This work 

pKERV54 lacIq rrnBT1 BglJ-RcsB box (-110 to -87) Plac lacZ, pSC101cm This work 



Materials and methods 
 
 
 

 

65

pKERV55 lacIq rrnBT1 BglJ-RcsB box (-112 to -87) Plac lacZ, pSC101cm This work 

pKERV56 lacIq rrnBT1 BglJ-RcsB box (-114 to -87) Plac lacZ, pSC101cm This work 

pKERV57 lacIq rrnBT1 BglJ-RcsB box (-116 to -87) Plac lacZ, pSC101cm This work 

pKERV58 lacIq rrnBT1 BglJ-RcsB box (-118 to -87) Plac lacZ, pSC101cm This work 

pKERV59 lacIq rrnBT1 BglJ-RcsB box (-120 to -87) Plac lacZ, pSC101cm This work 

 
All the plasmids mentioned here were cloned by digestion of the vectors and the fragments with 
corresponding restriction enzymes and gel purified using Qiagen gel purification kit. The ligated 
fragments were transformed into E. coli DH5α (S103) strain and the plasmids were confirmed by PCR 
amplification and restriction digestion followed by sequencing analysis. The correct plasmids were 
prepared in large scale using maxiprep/midiprep kit (Promega) according to manufacturer's 
instructions. The plasmids were stored at 4ºC. 
a: plasmids which carry a pMB1 (p15A) origin of replication and kanamycin, spectinomycin resistance 
markers also harbor the attP site for integration into the chromosome according to (Diederich et al., 
1992). Plasmids carrying origin of replication carry an ampicillin resistance marker. Detailed 
description of the plasmid construction is documented in lab records and the sequences are compiled in 
the lab Vector NTI (Invitrogen) database. 
 

7. DNA sequencing  

DNA sequencing was done with the Big dye terminator cycle sequencing kit (version 

1.1, ABI prism) according to manufactures instruction and using automated DNA 

sequencer (The Cologne Center for Genomics, (CCG) Institute for Genetics, 

University of Köln). For sequencing the reaction was carried out in a total volume of 

10μl with 1μl of big dye sequencing mix. Nucleotide sequence alignments were 

performed using the Vector NTI program (Invitrogen). 

 
8. Deletion of genes according to Datsenko and Wanner 
 
Deletion of genes was done according to Datsenko and Wanner (2000). This system is 

based on the λ Red based recombination between linear DNA fragment and the 

chromosomal gene. The basic strategy is to replace the chromosomal sequence with a 

selectable antibiotic resistance gene that is generated by PCR and by using primers 

with 30 to 50 nt homology extensions of the gene to be deleted. Briefly, the cells were 

transformed with temperature sensitive plasmid (pKD46) which has λ red system 

under the control of inducible arabinose promoter. The PCR product for deletion of a 

target gene was generated using primers carrying homology to the target 

chromosomal region and to antibiotic resistance cassettes of plasmids pKD3 and 

pKD4. This PCR generates a fragment carrying the chloramphenicol or kanamycin  
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resistance genes, flanked by a short homology to upstream and downstream sequences 

of the target gene. In addition, the resistance genes are flanked by FRT sites, which 

allow the deletion of the resistance gene by the Flp recombinase after gene 

replacement. 100ng of the gel purified PCR products were used to electro-transform 

cells harboring the helper plasmid (pKD46) expressing λ red recombinase. Competent 

cells were prepared from cultures grown in LB 10 mM L-Arabinose for induction of λ 

red-recombinase. The recombinants were selected at 37°C on LB chloramphenicol or 

kanamycin plates, respectively. The loss of the helper plasmid was confirmed by 

sensitivity to ampicillin and the deletion of the target gene was confirmed by PCR. 

Two independent colonies were stored in the laboratory strain collection and used in 

further experiments. 

9. Transduction with phage T4GT7 (Wilson et al., 1979) 

 

T4-Topagar  

6g Bacto-Agar (Difco)  

10g Bacto-Tryptone (Difco)  

8g NaCl  

2g Tri-Natriumcitrate-Dihydrate  

3g Glucose  

add 1l H2O  

The technique is based on generalized transduction, which makes use of the 

bacteriophage T4GT7 to transfer DNA between bacteria. Briefly, 100μl of the 

overnight culture to be transduced was incubated with 10μl, 5μl, and 2μl of T4GT7 

lysate prepared from the cells which had the DNA of interest (Donor strain). The 

incubation was carried out for 20 minutes at room temperature and 100μl was plated 

on respective selection plates. The transductants were restreaked at least three to four 

times to get rid of the contaminating phages and the transfer of the gene was verified 

by PCR. 
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10. Integration of plasmids into the attB site of the E. coli chromosome 
 
Integration of plasmids into the chromosome was done as described (Diederich et al., 

1992). Briefly, integrations of originless circularized DNA fragments, containing the 

attB sequence and the spectinomycin cassette are catalyzed by the integrase expressed 

from a temperature sensitive plasmid with kanamycin resistance gene (pLDR8). The 

integrants are selected at 42°C, which inhibits the replication of the plasmid. The 

integrants are screened for Kanamycin sensitivity to ensure the loss of the plasmid. 

The strain S541 or its derivatives were first transformed with a temperature sensitive 

plasmid (pLDR8) expressing the integrase, and the transformants were selected at 

28°C on LB kanamycin plates. Plasmids carrying the λ attP site, the gene lacZ fusion 

of interest and the spectinomycin resistance cassette were digested with BamHI (or 

BglII). The origin-less fragment was gel purified and eluted using the Qiagen gel 

extraction kit. 10ng of the origin less fragment was religated and half of the religation 

was used to transform competent cells of S541/pLDR8. At 37°C the integrase gene is 

expressed, which promotes recombination between the λ attB and attP sites resulting 

in integration of the DNA fragment. The transformants were selected at 42°C on LB 

spectinomycin plates to select for the integrase catalyzed integration of the DNA 

fragment into attB. In addition, at 42°C replication of the temperature sensitive 

plasmid pLDR8 stops. The colonies were analyzed for kanamycin sensitivity (loss of 

pLDR8) and the integration was verified by PCR using the primers mentioned below 

(primer sequences documented in lab records). Two independent integrants were 

selected for use in further experiments.  

 

S93/S164: to test the attB/P`-side  
S95/S96: to test the attP/B`-side  
S95/S164: to see integrations of dimers  

 

11. -galactosidase assays 
 
The β-galactosidase activity measurement was carried out essentially as described 

(Miller, 1972), with only minor modifications. Briefly, strains were grown overnight 

in 3ml LB with appropriate antibiotics and IPTG (0µM, 20mM 200µM). The 

subcultures were made in fresh 8mlLB an OD
600 

of 0.15-0.2. The cultures were grown 
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to an OD
600 

of approximately 0.5 before harvesting. Three different dilutions of 

culture were made in duplicates in Z-buffer in a final volume of 1ml on ice. The cells 

were permeablized by addition of 10μl of 0.1% SDS and 20 μl of chloroform. The 

dilutions were preincubated at 28°C for 10 minutes followed by addition of 200 μl of 

ONPG (4mg/ml in 0.1M phosphate buffer pH 7.0). The assay was stopped by the 

addition of 0.5ml 1M Na
2
CO

3.
and centrifuged. The OD

420 
was measured and the β-

galactosidase activity was calculated as described below. The enzyme assays were 

performed at least three times from independent strains or transformants and the 

standard deviation was less than 10% unless otherwise indicated. 

 

 

Miller units = 

 
 

12. Preparation of competent cells and transformation (CaCl2 method) 
 
For transformation, the strain of interest was streaked on to a LB plate with suitable 

antibiotic resistance. A single colony was picked and inoculated overnight in 3ml LB 

medium with suitable antibiotics and at appropriate temperature. The overnight cells 

were inoculated in 50ml LB with suitable antibiotics to an OD600=0.05 and grown till 

OD reaches 0.3. The cells were harvested on ice and transferred to prechilled tubes. 

The cells were centrifuged at 3000 rpm for 10minutes at 4ºC. The pellets were 

resuspended in 25ml of ice cold 0.1M CaCl2 and incubated on ice for 20minutes. The 

cells were pelleted again by centrifugation at 3000 rpm for 10 minutes at 4ºC. The 

resulting pellet was resuspended in 2ml of ice cold 0.1M CaCl2 and the cells were 

competent for transformation. For transformation 1-50ng of plasmid DNA or 10µl of 

ligation reaction was made up to 50µl in TEN buffer and mixed with 100µl of 

competent cells. The cells were incubated on ice for 20 minutes followed by heat 

shock at 42ºC for 2 min and additional 10minutes incubation in ice. The competent 

cells were transferred to 1ml LB medium and incubated for 1hour at 37ºC. 100µl of 

the culture was plated on suitable selection plates and incubated overnight at 37ºC. 

 
 

 OD420 x dilution factor x 1000  

      OD600 x time (minutes) 
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13. SDS-PAGE and Immunoblotting 
 
For the analysis of protein expression by SDS-PAGE and immunoblotting, the 

overnight cultures carrying respective plasmids were inoculated in 100ml LB with 

suitable antibiotics to an OD600=0.05 and the cells were grown till OD reached 0.3. 

The protein expression was induced with 1mM IPTG for 2 hours at 37ºC. In general, 

500µl of the cultures (uninduced and induced) were pelleted by centrifugation at 

13000 rpm for 5 minutes at room temperature and resuspended in 1x Laemmli buffer 

to a final concentration of 0.05OD600 cells per 10µl of Laemmli buffer. 10µl  (0.05 

OD) of cells were separated on 12% or 15% sodium dodecyl sulfate polyacrylamide 

gel electrophoresis (SDS-PAGE) using a SE260 mighty small vertical gel 

electrophoresis unit (GE Health care). The gels were blotted onto a 0.45µM pore size 

poly vinylidene difluoride (PVDF) membrane (GE Healthcare) using a TE70 semidry 

blotting apparatus (GE Healthcare). The blot was handled using standard western 

blotting protocol (Gallagher et al., 2004). Briefly, for the Westernblotting of the 

RcsB-HA tagged proteins, a rat-anti-HA immunoglobulin G (IgG) primary antibody 

(1mg/ml, Sigma) at 1:2000 dilution followed by anti-HA alexaflour®680nm 

secondary IgG antibody (2mg/ml, Molecular probes) at 1:2000 dilution were used. A 

mouse-anti-FLAG primary IgG antibody (5mg/ml, Sigma) at 1:5000 dilution followed 

by anti-mouse alexaflour®680nm secondary IgG antibody (1mg/ml, Li-Cor) at 

1:10000 dilution were used for BglJ-FLAG tagged proteins. Finally the blots were 

visualized using Odyssey imaging system (Li-cor Biosciences) at 700 and 800nm 

channels and the peak intensity was quantified using Odyssey V1.2 software. The 

same protocol was followed for Immunoblotting analysis of RcsB-HA and YjjQ-

FLAG tagged protein. 

 
14. Co-immunoprecipitation  
 
The following protocol was used for co-immunoprecipitation study of RcsB with BglJ 

and RcsB with YjjQ in E. coli (S3377) ΔrcsB ΔPQJ). The plasmids expressing RcsB 

(pKAP38), RcsBD56E (pKEAP43) and RcsBD56N
 (pKEAP44) were transformed into E. 

coli (S3377) with and with out BglJ (pKERV10). A single colony from each 

transformation was picked and inoculated overnight in 3ml LB with suitable 
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antibiotics at 37ºC. The overnight cultures were inoculated in 100ml LB with suitable 

antibiotics to an OD600=0.05 and grown till OD reached 0.3. The protein expression 

was induced with 1mM IPTG for 2 hours at 37ºC. An aliquot of uninduced cells kept 

as controls for SDS-PAGE. (Induction of protein expressions was checked on SDS-

PAGE before proceeding to co-immunoprecipitation) The cells were harvested on ice 

and pelleted by centrifugation at 8000 rpm for 15 minutes at 4ºC (Sorvall, SLA1500). 

The cell pellet was washed once with 10ml lysis buffer (See materials and methods 

V.1) and pelleted down again. The resulting pellet was resuspended in 1ml of lysis 

buffer (pre-chilled). The cells were lysed by sonication at 30% duty cycle, 5 output, 6 

to 8 repeats of 10 second pulse with 1minute rest, till the lysate become translucent 

(Branson sonifier 250 Classic, 3mm micro tip). The samples were kept on ice 

throughout sonication. The lysate was cleared at 13000 rpm for 15minutes at 4ºC and 

the supernatant was transferred into a pre chilled 1ml eppendorf tube. The total 

protein in the lysate was estimated by BCA (Bicinchoninic acid) protein assay 

(Pierce). For co-immunoprecipitation, 200µg of lysate was made up to 950µl with 

lysis buffer in a 2ml eppendorf tube for proper mixing. 5µl of rabbit anti-HA IgG 

antibody (0.6mg/ml, Sigma) was added to the lysates and the samples were incubated 

for 4 hours in the cold room (4ºC) in a tube rotator. In parallel Protein-A sepharose 

beads (Protein-A sepharoseTM CL-4B, 100mg/ml, GE healthcare) were prepared at 

100mg/ml concentration by mixing the slurry in water for 30min followed by 

incubation in lysis buffer for 2 hours in the cold room in a tube rotator. 

For immunoprecipitation 50µl of Protein-A sepharose beads were added to the lysate-

antibody complex and incubated for further 2 hours in the cold room in the tube 

rotator. The protein-antibody-bead complex was pelleted down at low speed at 2000 

rpm for 2min at 4ºC. The unbound supernatant was carefully removed (precipitation 

control) which was analyzed on SDS-PAGE. The beads were washed with 1ml lysis 

buffer by incubating for 5 min on tube rotator in the cold room and pelleted again. 

The washing was repeated 3 times and the residual buffer was removed with 7G 

needle or 0.57mm capillary tips. The beads were mixed with 50µl laemmli buffer and 

boiled at 95ºC followed by centrifugation at 13000 rpm for 5min at room temperature. 

The supernatant (immunoprecipitate) was loaded along with lysate on 12% SDS-

PAGE and analyzed by Immunoblotting (See Materials and methods VI.13). Similarly 
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for the co-immunoprecipitation analysis of RcsB with YjjQ, same protocol was 

followed except BglJ-FLAG tagged plasmid was replaced by a low copy plasmid 

expressing a C-terminal HA tagged YjjQ. 

 
15. Strep-tag protein purification 
 
For the purification of Strep tagged proteins, E. coli strain S3377 (ΔrcsB ΔPQJ) 

transformed with plasmid encoding RcsB was grown in 1liter LBkan at 37ºC (28ºC for 

RcsB D56E). The cells were induced at 0.3 OD600 with 1mM IPTG for 2 hours. 

Aliquots were taken before and after induction for checking expression. The protein 

expression was always checked before FPLC purification. After 2hrs of induction 

with IPTG, cells were harvested on ice. Cells were centrifuged at 5000 rpm for 15min 

at 4°C (Sorvall, SLC6000). The cell pellet was washed with 25ml buffer A and 

pelleted down again. Finally the cell pellet was resuspended in 10ml buffer A and 

centrifuged at 4000 rpm for 30min at 4°C (Eppendorf, table top). The cell pellet was 

stored at -80°C till use. The pellet was resuspended in 10ml buffer A and lysed by 

EmulsiFlex-C5 (Avestin, Europe GmbH) for 5min under high pressure (10000-15000 

psi). The lysate was cleared by Ultra centrifugation (Beckman TL100 Optimax Ultra-

centrifuge, MLS50 Swing out rotor) at 20000 rpm at 4°C for 30min. The cleared 

lysate of ~10ml was transferred to a 15ml tube.  

The ÄKTA system pumps were washed with buffer A and B ( 20ml) respectively. A 

Strep-tactin superflow column (1ml, Strep-Tactin® Superflow® cartridge H-PR) was 

equilibrated with 10 column volumes of bufferA. 10ml of filtered lysate was injected 

through 10ml super loop. The column was washed with 20 column volume of buffer 

A and the protein was eluted in 500µl fractions with BufferB containing 2.5mM D-

desthiobiotin. The fractions were separated on 15% SDS-PAGE, and stained with 

Coomassie blue at room temperature. The protein concentration of the purest fractions 

were measured by Bradford (Biorad Protein assay) and dialyzed using a  Float-A-

lyzer with a 5kDa cutoff (Spectra/Por® Float-A-Lyzer® G2, Spectrum labs) with 4 

changes of dialysis buffer for every 60 minutes in cold room. The dialyzed fractions 

were aliquoted and stored at -80°C. For regeneration, the column was washed with 

10CV buffer A, followed by 15 column volume of buffer R containing 1mM HABA 

(2-[4'-hydroxy-benzeneazo] benzoic acid). The red colored isomer forms a complex at 
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the biotin-binding site of strep-tactin. The color change of the column bed to red color 

indicates completion of regeneration. HABA is removed by washing with 40 column 

volume of buffer A, till the column color turns to white, which is the indication of 

column is ready for use again. 

 
16. FLAG-tag protein purification  
 
For the FLAG tagged protein purification, an E. coli strain (S3377 ΔrcsB ΔPQJ) 

expressing BglJ plasmid was grown in 1liter LBkan at 37ºC. The cells were induced at 

0.3 OD600 with 1mM IPTG for 2 hours. Aliquots were taken before and after 

induction for checking expression (the protein expression was always checked before 

purification). After 2 hrs induction with IPTG, the cells were harvested on ice and 

centrifuged at 5000 rpm for 15min at 4°C (Sorvall, SLC6000). The cell pellet was 

washed with 25ml buffer A and pelleted down again. Finally the cell pellet was 

resuspended in 10ml buffer A and and centrifuged at 4000 rpm for 30min at 4°C 

(Eppendorf, table top). The pellet was resuspended in 8ml buffer A and lysed by 

EmulsiFlex-C5 (Avestin, Europe GmbH) for 5 min under high pressure (10000-15000 

psi). The lysate was cleared by Ultra centrifugation (Beckman TL100 Optimax Ultra-

centrifuge, MLS50 Swing out rotor) at 20000 rpm for 30min at 4°C. 1ml of the 

cleared lysate was mixed with 100µl of FLAG beads (Sigma, EZview Red ANTI-

FLAG M2 affinity gel) for 3 hours in cold room. The tube was centrifuged at 

1000rpm for 1min at 4°C and unbound was collected (should not exceed 2000rpm). 

The beads were washed 3 times with 500µl of buffer B (The beads were transferred 

into a new tube during each wash) and centrifuged at 1000rpm for 1min at 4°C. The 

Strep-tagged protein elution, 100µl of buffer A containing 300µg FLAG peptide 

(Sigma) was incubated for 2hours at cold room in a tube rotator. The tube was 

centrifuged at 1000rpm for 1minute at 4°C followed by 1 minutes spin at maximum 

speed. The purified elute was checked on 15% SDS-PAGE and confirmed by western 

blotting using mouse anti-FLAG/anti-mouse alexaflour® 680nm antibody. The 

purified elute was dialyzed using a  Float-A-lyzer with a 5kDa cutoff (Spectra/Por® 

Float-A-Lyzer® G2, Spectrum labs) with 4 changes of dialysis buffer for every 60 

minutes in cold room. The dialyzed fractions were aliquoted and stored at -80°C. 
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17. Electrophoretic mobility shift assay (EMSA) 
 

For the mobility shift assay, the DNA fragments (bgl, osmC, lacZ) were PCR 

amplified and gel purified. The concentration of each DNA fragment was adjusted to 

30ng/µl. The DNA fragments were diluted in EMSA binding buffer and 15ng of DNA 

fragment was used per assay (All three DNA fragments were used for every assay). 

The DNA fragments were incubated with increasing concentration of purified H-NS 

(0µM to 1.6µM) and RcsB proteins (0µM to 1µM) with constant amount of partially 

purified BglJ protein (2µl). The 10µl EMSA reaction volume to (usually 2µl DNA 

fragments are mixed with (upto 8µl) protein mix and final volume is made up to 10µl 

with binding buffer). The reaction mix was incubated at 30ºC for 20minutes in heating 

block. The protein DNA complex was separated on 8% (29:1) non-denaturing 

polyacrylamide gel which was pre run for 20 minutes in 0.5x TBE. Each well was 

loaded with 6µl of 0.5x DNA loading dye for visualization. The 10µl of the EMSA 

reaction mix was loaded along the side walls of the well. The reaction mix displaces 

the dye and settles down at the bottom of the well. The gel was run at 200V for 

approximately 90 minutes in 0.5x TBE in cold room. The gel was stained with 

ethidium bromide (0.5µg/ml) for 20 minutes at room temperature. 
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