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Abstract 

Genetic recombination plays an important role in shaping genome variation.  It enhances 

haplotype diversity, helps to maintain genome integrity and ensures the proper segregation of the 

chromosomes.  While participating in DNA rearrangement, recombination is not an “independent 

player”. It is tightly connected and influenced by other genomic features, such as nucleotide 

diversity. A correlation   between nucleotide diversity and recombination rate was observed in the 

human genome, as well as in the genomes of other organisms (Arabidopsis, Drosophila, etc). The 

traditional view that selection has contributed to shape this pattern was questioned by the view 

that it may solely be due to a mutagenic effect. Extensive analysis of the data from dbSNP and 

broad scale recombination maps revealed a high degree of uncertainty in the inferred correlation 

coefficients.  One goal of this study was to re-assess the magnitude and disentangle the possible 

reasons for this observation. The results show that there is no evidence for a presence of strong 

correlation between nucleotide diversity and recombination rate. In fact, the observed effect can 

be due to insufficient data or poor data quality in earlier studies. Analysis of the more recent data 

shows that the correlation between diversity and recombination may be due to sequence 

composition, such as sequence composition. While looking at the fine scale it became clear that 

recombination hotspots are very ephemeral structures, which do not have influence on long-term 

molecular evolution. Only detailed experimental studies can reveal, whether the apparent 

correlation between diversity and recombination rate has a causal connection. 

In order to obtain high resolution recombination rates, a single sperm typing approach was 

applied to 2.5 Mb sequence consisting of four Encode regions on human chromosome 11. The 

regions were selected not on the basis of classical linkage studies, but in unbiased fashion.  The 

outcome revealed a cross over rate of 0.12 cM/Mb, which was much lower compared to the 

expected 1.875 cM/Mb according to high resolution recombination maps. We confirm an 

increased gene conversion rate compared to cross over. Out of 10 recombinants, 7 had conversion 

haplotypes.  We assume that such a low cross over rate can be due to the individual or sex-

specific variation. Our data did not support genetic characteristics known to be associated with 

gene conversion or recombination in general. For instance, identified conversion tracts did not 

have a high GC content. No association between converted or cross over regions and a 13-mer 

degenerate motif (predicted to be associated with recombination hotspots) was observed. The 
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observed CpG fraction was so low compared to the expected, that the possible explanation could 

be a extensive methylation of the converted regions. Finally, we hypothesize, that there is a 

difference in regulation mechanism as well as in frequency of double-strand breaks resolved as 

conversion events in short and long tract conversions. The frequency of the breaks can also be a 

reason to differentiate hotspots-associated conversions and the ones occurring in coding regions.           
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Kurzzusammenfassung 

Genetische Rekombination spielt eine tragende Rolle in der Gestaltung der Genom-Variation. Sie 

fördert die Haplotyp-Diversität, unterstützt die Aufrechterhaltung der Genom-Integrität und stellt 

eine korrekte Segregation der Chromosomen sicher. Trotz ihrer tragenden Rolle in der 

Reorganisation von DNA-Sequenzen, ist Rekombination keine unabhängige evolutionäre Kraft. 

Sie steht im Wechselspiel mit anderen genomischen Merkmalen, und wird zum Beispiel von der 

Nukleotid-Diversität  beeinflusst. Die Korrelation zwischen Nukleotid-Diversität  und 

Rekombinationsrate wurde in den letzten Jahren im menschlichen Genom, aber auch in den 

Genomen anderer Spezies, wie zum Beispiel Arabidopsis oder Drosophila, beobachtet. Die 

traditionelle Sichtweise, dass natürliche Selektion diese Korrelation mitbeinflusst hat, wird durch 

die Ansicht, dass dies alleinig auf den „mutagenischen Effekt“ zurückzuführen sei, in Frage 

gestellt. Eine umfangreiche Analyse von dbSNP-Daten und grob-skalierte Rekombinationskarten 

offenbarten eine grosse Unsicherheit in der Richtigkeit der gewonnenen 

Korrelationskoeffizienten. Ein Ziel dieser Arbeit war es, die Stärke der Korrelation neu 

abzuschätzen und  mögliche Gründe für diese Beobachtung aufzudecken. Die Resultate der 

Studie konnten keine  starke Korrelation nachweisen.  Der beobachtete Effekt kann durch 

unzureichende Daten oder  die niedrige Datenqualität in früheren Studien  erklärt werden. Die 

Analyse neuerer Datensätze zeigt, dass die Korrelation zwischen Diversität und Rekombination 

eventuell auf  die DNA-Sequenz-Zusammensetzung zurückzuführen ist.  In Fein-Skala 

Untersuchungen zeigte sich außerdem, dass  Rekombinationshotspots sehr  kurzlebige 

Erscheinungen sind, und deshalb  keinen Einfluss auf die langfristige molekulare Evolution 

haben. Nur durch detaillierte experimentelle Studien kann diese Korrelationsfrage besser 

ergründet werden. 

Um Rekombinationsraten in einer hohen Auflösung zu bestimmen wurde der Spermien-

Typisierungs-Ansatz auf Sequenzen einer Gesamtlänge von 2.5Mb  bestehend aus vier Encode-

Regionen des menschlichen Chromosoms 11 angewendet. Die Regionen wurden zufällig 

ausgewählt  ohne auf klassische Linkagestudien zurückzugreifen. Als Ergebnis zeigt sich eine  

Crossing-Over-Rate von  0.12 cM/Mb, die im Vergleich zu den erwarteten 1.875 cM/Mb sehr 

niedrig ist. Es konnte eine im Vergleich zur Cross-Over Rate erhöhte Genkonversionsrate 

bestätigt werden.  Von zehn Rekombinanten weisen sieben Konversionshaplotypen auf. Die im 

Ganzen niedrige Crossing-Over-Rate ist möglicherweise auf  individuelle oder  sex-spezifische 



Kurzzusammenfassung 

4 

Variation zurückzuführen.  Unsere Daten konnten genetische Merkmale, die im Allgemeinen mit 

Genkonversion oder Rekombination assoziiert werden, nicht bestätigen; zum Beispiel zeigten die 

identifizierten Genkonversions-Regionen keinen hohen GC-Anteil auf. Zudem konnte keine 

Assoziation zwischen Genkonversions- beziehungsweise Rekombinations-Regionen mit einem 

degenerierten 13-mer-Motiv, dass für Rekombinationshotspots vorhergesagt wurde, bestätigt 

werden. Der beobachtete CpG-Anteil war im Vergleich zur Erwartung so gering, dass die 

Möglichkeit einer beträchtlichen Methylation der konvertierten Regionen in Frage kommt. Zum 

Abschluss stellen wir die Hypothese auf, dass es einen Unterschied in den 

Regulationsmechanismen und in der Häufigkeit der Doppelstrangbrüche gibt, der sich als 

Konversions-Ereigniss in kurzen und langen Konversionen widerspiegelt. Die Frequenz der 

Doppelstrangbrüche kann eine Möglichkeit darstellen, hotspot-assoziierte Konversionen von 

jenen in kodierenden Regionen zu unterscheiden. 
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1. Introduction 

1.1 Processes influencing variation of the human genome 

Genetic variability, in a way, measures how much the trait or the genotype will tend to vary in a 

population (Burt, 2000). The presence of variability in a population is an important factor in a 

number of fundamental biological processes, such as shaping biodiversity, evolutionary 

development of a population and susceptibility to diseases (Wills and Christopher, 1980). The 

role of variability for biodiversity can be seen in successful adaptation to environmental 

conditions and, thus, contributes to success in avoiding extinction. Variability also plays a crucial 

role in evolution: it stimulates individual responses to environmental stresses and can lead to 

survival of the fittest variants because of natural selection. Genetic variability has become one of 

the factors contributing to an increased interest in “personalized medicine” since it underlies 

differential susceptibility to diseases and sensitivity to toxins or drugs (Burt, 2000).  

There are a few known sources of genetic variability in a population. One of them is genetic 

recombination. Recombination is also variable in frequency and location and thus, it can be 

selected for to increase fitness, because more recombination leads to more variability; this 

increased genetic variability makes it easier for a particular population to handle changes (Burt, 

2000). Genetic mutations are the main source of genetic variability within a population. 

Mutations can have positive, negative or neutral effects on fitness (Wills and Christopher, 1980). 

Natural selection can propagate mutation-induced variability through the population if the 

mutation is beneficial or its effect will be hidden if the mutation is deleterious. The excess of 

deleterious mutations is typically observed in smaller populations with reduced variability levels 

(Wills and Christopher, 1980). 

Other sources contributing directly or indirectly to genetic variability include immigration, 

emigration and translocation. When an individual moves in or out of a population, genetic 

variability in the next generation will increase if it reproduces (Linhart et al. 2003). Polyploidy in 

sexual organisms provides yet another source; it allows more recombination during meiosis and, 

therefore, leads to more genetic variability in the offspring. 
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In asexual organisms with limited sources of variability, diffused centromeres can become one, 

since they allow the chromatids to split apart in variety of ways and assists chromosome 

fragmentation and polyploidy to create more variability (Linhart et al. 2003). 

In this study, specific attention will be given to genetic recombination as a source of genetic 

variability.  

1.2 Genetic recombination, forms and definition 

Genetic recombination is the transmission-genetic process by which chromosomes are broken 

and then rejoined to form a new genetic combination, different from the original (Brooker, 1999). 

A major type of genetic recombination is homologous recombination, which is an essential 

feature of all sexual organisms. It occurs between DNA segments homologous to each other. This 

process enhances genetic diversity, helps to maintain genome integrity (when genome is capable 

of multiplication, variation and heredity) and ensures the proper segregation of chromosomes. 

Another type is site-specific recombination, where non-homologous segments are recombined at 

the specific sites. This type of recombination happens within genes that encode antibody 

polypeptides and also occurs when certain viruses integrate their genomes into host cell DNA. 

The third type of recombination is known as transposition. Small segments of DNA called 

transposons can move themselves to multiple locations within the host’s chromosomal DNA 

(Brooker, 1999). 

It should be noted that a number of other genetic exchanges do not fall into any of the above 

classes, and are named illegitimate recombination or recombination without homology (Brooker, 

1999). 

 1.3 Cross over 

Chromosomal crossover (or crossing over) is the exchange of genetic material between 

homologous chromosomes during prophase I of meiosis, in a process called synapsis. Synapsis 

begins before the synaptonemal complex develops, and is not completed until near the end of 

prophase I. Crossover usually occurs when matching regions on matching chromosomes break 

and then reconnect to the other chromosome. The result of this process is an exchange of genes, 

called genetic recombination. Chromosomal crossovers also occur in asexual organisms and in 

somatic cells, since they are important in some forms of DNA repair (Li and Heyer, 2008). 
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1.4 Importance of meiotic recombination 

In most eukaryotes, a cell carries two copies of each gene, each referred to as an allele. Each 

parent passes on one allele to each offspring. An individual gamete inherits a complete haploid 

complement of alleles on chromosomes that are independently selected from each pair of 

chromatids lined up on the metaphase plate. Without recombination, all alleles for those genes 

linked together on the same chromosome would be inherited together. Meiotic recombination 

allows a more independent selection between the two alleles that occupy the positions of single 

genes, as recombination shuffles the allele content between homologous chromosomes (Brooker, 

1999). 

Meiotic recombination is one of the fundamental biological mechanisms leading to exchange of 

genetic material between homologous chromosomes. During meiosis, this process is also 

associated with a few important cellular functions such as the formation of the synaptonemal 

complex and proper chromosome segregation (Padhukasahasram et al. 2006). The role of meiotic 

recombination in evolutionary biology is to produce novel allelic combinations to increase 

genetic diversity within a population.  

To understand the variation of the recombination rate is one of the goals in association mapping 

and evolutionary inference studies in particular, and in molecular biology in general. 

(Padhukasahasram et al. 2006).  

 

1.5 Mechanism of the homologous recombination 

The most famous central model of the molecular steps occurring during homologous 

recombination was proposed by R. Holliday in 1964. It is based on studies of Ustilago maydis (a 

simple eukaryote) and explains both cross over and gene conversion events (Brooker, 1999).  

At the beginning of the process (Fig.1) two homologous chromosomes are aligned with each 

other. During the first step a break occurs at the identical sites in one strand of both parental 

chromosomes. During the second step the strands invade the opposite helices and base pair with 

the complementary strands. In the third step this event is followed by the covalent linkage of 
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DNA to create a Holliday junction (a structure, which incorporates four strands of DNA, two of 

each homologous chromosomes).  

As shown in step six (Fig.1), the cross in the Holliday junction can migrate in a lateral direction. 

As it does so, a DNA strand in one helix is being swapped for the DNA strand in the other helix. 

This process is called branch migration, because the branch connecting the two double helices 

migrates laterally. Since the DNA sequences in the homologous chromosomes are similar but not 

identical, the swapping of the DNA strands during branch migration may produce regions in the 

double stranded DNA called heteroduplexes. A heteroduplex is a DNA double helix that contains 

mismatches. Their occurrence is explained by the fact that the DNA strands come from 

homologous chromosomes and their sequence is not perfectly complementary. 

The next step (step 7 in Fig.1) is isomerization, during which the Holliday structure may make an 

180º turn.  The two structures existing in this step are structural isomers of each other (chemically 

identical except for the location of certain segments). The final steps of the recombination 

processes are called resolution, since they involve the breakage and rejoining of two DNA strands 

to create separate chromosomes. In other words, the entangled DNA strands become resolved 

into two separate structures. Resolution can occur in two ways (step 8, Fig.1). The first way is 

without isomerization (8b, Fig.1). The breakage could occur at the same strands that were broken 

in the first step. In this case at the resolution, the strands are rejoined to produce a non-

recombinant pair of chromosomes. The second way is with isomerization, and then the resolution 

phase can involve breakage of the two DNA strands that were not broken before in the first step. 

In this case, the rejoining of the corresponding strands produces two recombinant chromosomes 

(step 8a, Fig.1). The original Holliday model was based on the results of observed cross over 

events in fungi where the products of meiosis are contained in the same single ascus (the sexual 

spore-bearing cell produced in ascomycete fungi). Nevertheless, molecular research in many 

other organisms has supported the central tenets of the Holliday model (Brooker, 1999). 
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Fig.1. The Holliday model for the homologous recombination from Brooker RJ(1999); 8a - 
the resolution of the Holliday complex into cross over product; 8b – the resolution of the 
Holliday complex into a non-recombinant heteroduplex.   
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1.6 Recombination rate variation and hotspots  

The rate of meiotic recombination (i.e., crossing over) in humans varies on different physical 

scales (Lynn et al. 2004). While the broad-scale rates are relatively similar across populations and 

possibly across species (Serre et al. 2005, Ptak et al. 2005), on the fine scale, the situation is 

different: most cross over events tend to be concentrated into 1-2 kb regions named 

“recombination hotspots”. In addition to this, “cold spots” or regions of low recombination rate 

have also been noted (Petes 2001). Crossover initiation sites can be distributed randomly 

throughout the genome, but the rate of initiation at particular sites can be significantly higher at 

some genomic regions compared to others (Arnheim et al. 2003). 

There is much evidence that shows variation of hotspots within a population through time 

(Jeffreys et al. 2005), as well as a lack of hotspot conservation between human and chimpanzees 

(Wall et al. 2005, Ptak et al. 2005). There are a few reasons why it is important to understand the 

mechanistic underpinning of hotspots (Petes 2001). One such reason is to understand the 

recombination initiating mechanism, which requires knowledge of factors regulating both 

hotspots and cold spots. Other reasons include: the number of recombination events per 

chromosome is relevant to the accuracy of chromosome segregation; distribution of exchanges 

influences the probability of assembling new configurations of physically linked genes during 

evolution and, finally, understanding hotspots and cold spots will assist in understanding other 

DNA-related processes affected by chromosome context, e.g., transcription and replication (Petes 

2001). 

 

1.7 Hotspot detection 

There are a few approaches developed to infer recombination rates and map genomic hotspots. 

Two approaches have gained particular popularity: estimates can be obtained either indirectly 

through examining patterns of marker association (linkage disequilibrium), established through 

population dynamic processes, or directly through labor-intensive screening of millions of sperm 

for recombinant DNA molecules within relatively short genomic intervals (Webb et al. 2008).  
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1.7.1 Linkage maps based on pedigree data 

Constructing a linkage map is one of the common approaches to obtain recombination rates. The 

cross over events are inferred from the transmission patterns of polymorphic markers in a large 

pedigree or in extensive crosses (Coop and Przeworski, 2007). The rates of genetic exchange 

between markers are converted into a linkage map by use of a function that takes into account a 

model of cross over interference. To obtain the cross over rates, it is necessary to compare the 

genetic map with the physical one. This approach is widely used to characterize variation among 

individuals, but, since it relies on estimates of recombination from transmitted chromosomes, this 

method misses half of the cross over events that occur in meiosis or those any gametes that are 

selected against (Coop and Przeworski, 2007).   

1.7.2 Linkage Disequilibrium in recombination mapping 

This approache utilizes a population genetic model to relate the patterns found in a current 

polymorphism sample to the historical rate of recombination (McVean et al. 2004). The estimates 

of historic rates encompass thousands of meioses of the sample’s history, so the rate is estimated 

as an average of male and female rates over time (Coop 2005).  

Recent studies identified considerable variation of linkage disequilibrium across the human 

genome (Gabriel et al. 2002; Phillips et al. 2003, Arnheim et al. 2003), which reflects variation in 

the underlying recombination rate (Reich et al. 2002; Wang et al. 2002a and b; Innan et al. 2003; 

Phillips et al. 2003). There is a certain correlation between uneven recombination rate distribution 

and existence of LD blocks in certain genomic areas, although not all LD blocks can be explained 

by recombination variation (Arnheim et al. 2003). Recombination maps available by 2002-2003 

were very inaccurate for intervals smaller than 1 cM (Kong et al. 2002; Weber 2002). This 

inaccuracy complicated revealing to what extent LD variation is determined by variation in 

recombination. Recently, the International HapMap project has mapped the LD landscape on a  

kilobase level fo the entire genome. The data allowed detection of the global recombination 

landscape at high resolution by using coalescent analyses and observed haplotypes were 

explained through in silico reconstruction with variable recombination rates (Webb et al. 2008). 

These studies revealed approximately  33 thousand putative cross over hotspots, their distribution 

and population-specific activity, as well as provided data on motifs possibly associated with them 

(Altshuler et.al., 2005). 
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1.7.3 Sperm typing analyses 

A sperm-typing approach allows direct observation of cross over events in male individuals and 

produces a uniquely detailed picture of the current recombination rate at a finer-scale (Coop 

2005). Sperm typing enabled for the first time to measure human recombination fractions in a 

single individual (male), because the large number of sperm available from a single donor 

permits a high level of accuracy to be achieved (Arnheim et al. 2003). In contrast to LD hotspot 

mapping, few human recombination hotspots have been directly characterized in sperm and the 

obtained data does not completely explain whether linkage disequilibrium data predicts genuine 

hotspots accurately, or correctly determines their historical activity (Webb et al. 2008). Due to 

Webb et al data (2008) up to date sperm typing covered approximately 0.6 Mb of the human 

genome. One major goal was the identification of hotspots with special focus on the MHC region, 

where approximately seven hotspots were characterized (Jeffreys et al. 2000, Jeffreys and 

Neumann 2002, Kauppi et al. 2005). In contrast, the entire chromosome 1 contains only eight 

hotspots (Jeffreys et al. 2000, Jeffreys et al. 2005). These studies revealed additional phenomena 

such as variation in hotspot activity between different male individuals, as well as polymorphic 

sites driving activity of the hotspot (Neumann, Jeffreys 2006). In most cases, hotspots obtained 

by sperm typing and linkage disequilibrium hotspots are in good concordance (Webb et al. 2008). 

 

 1.8 Hotspots evolution 

The availability of high-resolution approaches mentioned above allowed the characterization of 

hotspots as ephemeral structures that are quick to evolve within a single population and even 

between individuals of the same population. There is experimental evidence for differences in 

recombination activity in the CAP10 genomic region between African ancestral and European 

and Asian populations (Clark et al. 2007). Sperm typing showed different intensities in the 

MSTM 1a hotspot in 26 male individuals (Neumann and Jeffreys 2006). The difference between 

female and male rates should also be noted (Coop and Przeworski, 2007). One of the possible 

explanations for a hotspot’s quick development could be the presence of a certain motif, 

polymorphic site or other “control element” (modifier) that can be associated with the hotspot. 

The loss of such an element (e.g., during DNA repair) can potentially result in further decrease of 

recombination activity within the region.  
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1.9 Meiotic gene conversion 

Homologous gene conversion is considered as a poorly characterized form of recombination 

(Gay et al. 2007), a non-reciprocal process acting on short lengths of DNA, where genetic 

material from one parental chromosome is incorporated into an alternate chromosome during 

meiotic exchange (Szostak et al. 1983). Cross over events are believed to include gene 

conversion tracts as well, which can not be detected by current population-based methods. 

Therefore, initially the term gene conversion defined events not accompanied by cross over (Gay 

et al. 2007).  Gene conversion in the human genome is believed to be up to 15 times as frequent 

as cross overs (Jeffreys and May 2004). These events are difficult to track because of the short 

length of DNA transferred – with an average size of approximately 350 bp – which represents a 

difficulty in marker selection. When the close association between cross overs and gene 

conversion events was revealed, some of the characterized hotspots with higher polymorphism 

levels were investigated for conversion activity (Jeffreys and May 2004). The results revealed the 

more active the hotpot was the more conversion events were observed. 

1.10 Association of recombination with other genomic features 

The extent to which adaptive evolution shaped the recent evolutionary history in humans is much 

debated (Spencer et al. 2006). However, adaptive evolution is expected to leave its footprint in 

the patterns of genetic variation. In regions of high recombination, the footprint is expected to be 

smaller, since recombination moves a beneficial mutation onto different genetic backgrounds 

allowing linked diversity to occur. Therefore, the observed positive correlation between 

nucleotide diversity and recombination rate suggests that many loci were or still are the targets of 

adaptive evolution (Spencer et al. 2006).  

In 1992, Aquadro and Begun explained the presence of a correlation between nucleotide diversity 

and recombination rate in Drosophila by positive selection (hitchhiking) acting on certain regions 

in the genome. In 1998, M. Nachman observed a correlation between diversity and recombination 

at certain coding loci in humans. Selection (background or hitchhiking) was proposed as the 

possible explanation for this phenomenon. In 2002, Lercher and Hurst noticed a correlation at the 

genome-wide scale. They also observed a correlation between human-mouse divergence and 

recombination rate. They revealed that the correlation holds not only for coding regions or 

control elements, but across the entire genome. Thus, they assumed that increased diversity in the 
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regions of higher recombination can be due to higher mutation rates. Based on these data the 

neutral hypothesis was proposed stating that recombination can be mutagenic.  

In 2003, the new human, as well as the chimpanzee data supported the neutral explanation 

(Hellmann et al, 2003). The correlation between nucleotide diversity and recombination rate was 

observed within the human population, as well as the correlation between human-chimpanzee 

(human-macaque) divergence and recombination rate. They showed that regions with less 

recombination have reduced divergence to chimpanzee and baboon; diversity levels within these 

regions are also lower. This observation suggested an association between recombination and 

mutation and supported the neutral explanation for the presence of the positive correlation. 

In 2005, with the availability of diversity and recombination data from different human deep-

sequencing projects (HapMap and Encode), the presence of the correlation between nucleotide 

diversity and recombination rates was confirmed on the broad (megabase) scale, but since 

recombination rates were known to change rapidly on the finer sclale, they became better 

predictors of diversity than divergence (Hellmann et al. 2005). Recombination, diversity and 

divergence were found to be correlated with such genomic features as GC and CpG content, as 

well as with gene expression and gene density. As a result of that study, 12 parameters were 

investigated and confirmed to be correlated with both diversity (divergence) and recombination 

rates. Association with these features appeared to be a better explanation, rather than 

mutagenicity of recombination. 

In 2006, the association between genomic features was confirmed (Spencer et al. 2006). 

Recombination was shown to influence genetic diversity at the hotspot level, since both diversity 

and recombination were positively correlated with sequence composition. This fact was used to 

explain the broad-scale association as well. However, the hotspots were confirmed to have no 

influence on the substitution rate, since they are ephemeral on an evolutionary time scale and 

have little influence on broader scale patterns of base composition and long-term molecular 

evolution (Spencer et al. 2006).    
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1.11 Technological limitations and future perspectives of the recombination analysis 

One of the most important and obvious limitations of sperm typing is sex specificity: sperm 

typing measures recombination only in males, whereas haplotypes in human populations are the 

products of recombination events happening in both sexes (Arnheim et al, 2003). Although 

making conclusions about haplotype formation based only on male autosomes is still accepted, it 

is necessary to keep in mind that recombination rate in females is, on average, higher (Arnheim et 

al, 2003; Ptak et al, 2005). Moreover, there is substantial sex-dependent regional genomic 

variation. Thus, in the mouse, one of the MHC hotspots was identified only in female individuals 

(Isobe et al, 2002). These types of data are not available in humans, because to date, it is not 

possible to isolate female gametes in sufficient amounts to conduct a high-resolution study at the 

same level as in sperm cells (Arnheim et al., 2003). 

Another possible limitation is the formation of a new haplotype by gene conversion that can be 

cross over-associated or not (Arnheim et al, 2003). Technical limitations of the sperm-typing 

methods should be taken into account as well. The most important requirement is the presence of 

heterozygous polymorphic markers (at least two flanking the region of interest). As a condition 

for future recombination analysis, deeper sequencing and mapping of polymorphic markers to 

infer population and individual specific Linkage Disequilibrium patterns and, thus, recombination 

rates, is needed. 

 Also, most of the hotspots characterized experimentally are located within MHC, PAR-1, beta-

globin and other highly recombining areas. All together, they belong to approximately 0.6 % of 

the genome. How representative these regions are remains unknown (Arnheim et al. 2003). 

Clearly, high-resolution recombination analysis should be performed in an unbiased fashion on 

different chromosomal segments. Choosing regions based on classical linkage studies can be 

misleading since most of predicted hotspots may not be found due to individual specific variation    

(Arnheim et al. 2003). 

1.12 The aims of the study 

The general aim of this study is to estimate on both fine and broad scale to what extent 

recombination influences genetic variation patterns. The broad scale analysis consisted of 
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investigating the presence or absence of a positive correlation between nucleotide diversity and 

recombination rate, based on public whole genome SNP data and available recombination maps. 

The primary goal of the fine scale analysis is to experimentally obtain recombination rates for 

certain genomic regions not so well known for their high recombination rates, compare them with 

population broad-scale rates from public databases (DeCode, Marshfield, Genethon), also 

compare with the finer scale rates, especially at the locations of potential “super” hotspots (like 

MHC, PAR-1 or beta-globin) and see if these estimates, obtained in an unbiased fashion, can 

correlate with diversity and other features of genome composition. 

Theoretical and experimental approaches were expected to provide better insights into the field of 

recombination and evolution of hotspots and gene conversion.  

 

1.13 Experimental regions of  interest 

Encode regions on chromosome 11 were selected as experimental targets. Encode is an 

abbreviation for Encyclopedia Of DNA Elements, another human genome consortium, started in 

September 2003 to carry out a project to identify all functional elements in the human genome 

sequence. The pilot phase tested and compared existing methods to rigorously analyze a defined 

portion of the human genome sequence (1%).  For this purpose, certain regions in the human 

genome were picked randomly or manually. As our regions of interest, we chose four Encode 

regions on chromosome 11. The primary reason was the variation in fine scale and broad scale 

recombination rates among those regions. Also, the variation of the base composition, gene 

density, and location of the regions on the chromosome was taken into account.    
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2. Materials and Methods 

2.1 Material: 

The sperm samples for trials and experiments were provided by a single male donor of European 

origin.         

Sperm collection 

Semen sample was collected into 14 ml BD falcon and divided into several aliquots: for genomic 

DNA preparation and for fluorescent activated cytometry sorting (FACS) procedure.  

 

2.2 Experimental methods 

Salt extraction of Genomic DNA 

Genomic DNA was extracted from bulk sperm cells using standard salt extraction method 

(Aljanabi and Martinez, 1997).  

500 μl of homogenizing (HOM) buffer (80 mM EDTA, 100 mM Tris and 0.5% SDS) were added 

to 50 μl of the sperm sample and incubated at 55º C for at least 3 hours.  

Then the sample was mixed gently with 500 μl of sodium chloride solution (4.5 Molar) and 300 

μl Chloroform and mixed gently for 15 min; spun for 10 minutes at 1000 rpm. 

After centrifugation the upper phase (850 μl) was transferred into a new tube and mixed carefully 

with 595 μl of pure Isopropanol (0.7 volume); immediately spun for 10 minutes at 13000 rpm. 

After that the supernatant was removed. The sediment was diluted in 0.5 ml 70% Ethanol, 

incubated for 5 minutes and spun for 10 minutes at 13000 rpm. After the removal of supernatant 

the previous step was repeated. After another removal of supernatant the pellet was dried and 

dissolved in 10 μl of TE buffer.        

DNA concentration was determined using NanoDrop® ND-1000 spectrophotometer. 

The sample was diluted and used for PCR to identify heterozygous markers 
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Sperm sorting and lysis 

Prior sorting semen aliquots were diluted with PBS buffer (1:1) stained with Hoechst 

fluorochrome (5 μl of dye per 1 ml of the sample) and incubated for 1 hour at 35 ºC (Shapiro, 

2003). 

Single human sperm were sorted by flow cytometry using FACSVantage SE Cell Sorter ( sperm 

sorting profiles are described in chapter 3.1) into 96-well plates containing 2.5 μl of freshly-

prepared lysis solution (described in  Jiang et al. 2005). 

Lysis solution 

For 1 ml total volume: 100 μl DTT (1M stock), 400 μl KOH (1M stock), 20-10 μl EDTA (stock 

either 0.5 or 1 M) and 480-490 μl H2O (depending on EDTA concentration: 0.5 or 1 M).  

 

After sorting cells were incubated for 10 min at 65 ºC and then the lyses was stopped by adding 

3.5 μl of neutralization buffer (Jiang et al. 2005). 

Neutralization buffer 

Stop solution from REPLI-g mini-kit for whole genome amplification (Qiagen Inc.). The recipe is 

not available. 

After neutralization, the cells were frozen at -20 ºC overnight or immediately continued with 

whole genome amplification.  

Whole genome amplification (WGA) 

WGA was accomplished with REPLI-g screening kit according to the manufacture’s manual 

(Qiagen Inc.). DNA was amplified using Multiple Displacement Amplification. Blank lysis 

(water sample) was used as a negative control. 

The sample was lysed and the DNA was denatured by incubating in the Buffer SB1 at 65 ºC. 

After the denaturating was stopped by cooling the solution down to the room temperature, Buffer 

SB2 and DNA polymerase Phi29 were added to the reaction. The isothermal amplification 

reaction of total 40 μl for 16 hours at 30 ºC and then terminated for 10 min at 65 ºC. Amplified 
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DNA products were then stored at -20 ºC. 2-fold dilutions were used for allele screening 

(SNPstream) or allele amplification (confirmation of the recombinant haplotypes). 

Selection of the markers 

The major prerequisite for marker selection was heterozygosity for the particular donor. Initial 

preference of microsatellites was abandoned after inability to observe both single alleles in equal 

quantities in a set of 30 sperms. SNPs were selected as markers also due to a well-known fact that 

majority of them are biallelic (Petkovski et al. 2005). 

Prior to marker selection the four Encode regions were divided into 5 or 9 (depending on the size 

of the region) 100 kb intervals. The preference for the length of the interval was based on 

assumption that the regions have intermediate recombination rate of 10-8 recombination events 

per bp and the following calculation: 

 For 1000 sperm cells: 10-8 *1000 = 10-5 events per bp. In order to recover at least 1 

recombination event between adjacent SNPs, markers should be roughly located 105 bp or 100 kb 

away from each other.  

As soon as the intervals were confirmed, all SNPs residing in intermediate zones of 5-7 kb 

between the intervals were downloaded from HapMap database. The preference was given to the 

SNPs with high allele frequency (close to 0.5:0.5 ratio) in the American Utah population of 

European origin (CEU) to increase the possibility to identify heterozygous markers.   

Development of marker loci 

The primers for 500 bp loci with allele of interest in the middle were developed using Primer3 

program, ordered from Sigma-Aldrich, the loci were amplified by polymerase chain reaction. 

Amplification of the marker loci 

PCR was run using Qiagen Multiplex PCR Kit and 10 ng of high quality bulk sperm DNA. The 

total reaction of 10 μl containing 5 μl of Qiagen Multiplex PCR Master Mix with HotStarTaq 

DNA Polymerase and a unique PCR buffer containing the novel synthetic Factor MP (which 

stabilizes specifically bound primers and enables efficient extension of all primers in the reaction 

without optimization Ref: Qiagen Inc), 0.5 μl of forward and reverse primers, 1μl of bulk sperm 
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DNA and 3 μl of ddH2O. The reaction was run on Peltier Thermal Cycler (DNA Engine Tetrad2, 

BRB-Langertechnik GmbH) under the following cycling conditions: 

Initial denaturation – 5 min at 96 ºC 

30 cycles: 

 Denaturation: 30 sec at 95 ºC 

 Annealing: 45 sec at 50-70 ºC according to the Tm of the primer 

 Elongation: 1 min at 72 ºC 

Final elongation: 5 min at 72 ºC 

The PCR products were immediately run on 1% agarose gels containing EtBr and visually 

inspected for products under the UV light.  

 

Purification of the PCR product 

Before sequencing the PCR products were purified by Exonuclease I and Shrimp Alkaline 

Phosphatase. The clean up was conducted using the kit ExoSAP-IT (Affymetrix / USB). 

ExoSAP-IT was added directly to the PCR product and incubated at 37 °C for 15 min. After PCR 

treatment, ExoSAP-IT was inactivated simply by heating to 80°C for  

15 min. 

DNA sequencing 

The DNA products were sequenced directly, using the same primers as for PCR. Samples for 

both marker and haplotype confirmation were sequenced at the sequencing service facility of 

Cologne Center for Genomics at the Institute for Genetics, Cologne in an Applied Biosystems 

3730 capillary DNA analyzer. 

Sequencing reaction was performed using Big Dye Terminator Sequencing Kit version 3.1 (ABI, 

Applied Biosystems, Foster City USA) according to the manufacturer protocol in a total volume 

of 10 μL : 
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10 μM sequencing primer – 0.5 μl   

10-30 ng purified PCR product 

Sequencing Buffer  - 2 μl 

Big Dye Terminator – 2 μl 

ddH2O to 10 μl final volume 

The reactions were run in a GeneAmp PCR System 9700 (ABI, Applied Biosystems) 

thermocycler under the following conditions: 

Initial denaturation: 1 min at 96 ºC 

40 cycles: 

 Denaturation: 10 sec. at 96 ºC 

 Annealing: 15 sec at 50 ºC 

 Elongation: 4 min at 60 ºC 

Final elongation: 5 min at 72 ºC 

Reactions were stored at 12 ºC. Prior to capillary analysis 10 μl of ddH2O was added to every 

sample (total 20 μl volume). The output trace files were analyzed with FinchTV software.                                     

Haplotype screen 

The initial haplotype screen over 2.5 Mb total of 4 Encode regions flanked by 48 SNP markers (2 

SNPs per locus, total 25 loci of interest) was performed by using 48 GenomeLab SNPstream 

(Beckman Coulter, California, USA) at Cologne Center for Genomics. All materials (SNP ware 

reagent kits, mastermixes, etc) and services (primer development, software) were provided by 

Beckman Coulter, Inc.  

After confirmation of the heterozygous markers, primers were developed and ordered. 
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After whole genome amplification cells were diluted 1:8 and 1µl of the dilution (20-100 ng of the 

amplificon) were used for the SNPstream screen. The samples were placed in 384-well plates. 

Total of 1536 single cells were analyzed. 

Principle of SNPstream 

Using the SNPstream system (Beckman Coulter), multiplex genotyping can be performed in a 

384-well microtiter plate format (Syvänen, 2005). SNPs with the same nucleotide variation are 

combined into multiplex reactions with 12 - 48 SNPs per reaction. Thus, up to 48 SNPs can be 

genotyped in 384 samples to generate a maximum of 18,400 genotypes on a single plate. 

Following multiplex PCR, the remaining primers and dNTPs are inactivated enzymatically by 

Exonuclease I and shrimp alkaline phosphatase treatment. Cyclic minisequencing reactions are 

performed in solution using primers with 5’-Tag sequences and fluorescent ddNTPs, labelled 

with Tamra for one allele and Fluorescein for the other (Bell et al. 2002). The minisequencing 

reaction products are captured by hybridisation to complementary Tag-sequence immobilised on 

thebottom of 384-well glass plates.  

The fluorescent nucleotides incorporated into the primers are detected using the CCD camera of 

the SNPstream system (Bell et al. 2002). The fluorescence signals from each sample are extracted 

from the images and displayed in a scatter plot where three clusters define a homozygous or a 

heterozygous genotype for each sample (Fig. 37, Appendix). 

 

 

SNPstream procedure  

The first stage of SNPstream analysis consisted of 48-plex PCR reaction for every sample 

provided with 96 unique primers per every reaction. PCR conditions: 

Initial denaturation: 1 min at 94 ºC 

39 cycles: 

 Denaturation: 30 sec. at 94 ºC 
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 Annealing: 30 sec at 55 ºC 

 Elongation: 1 min at 72 ºC 

4 ºC final hold temperature 

Following PCR each sample was treated with 3 μl of SBE clean up reagent (USB, Inc), 

consisting of Endonuclease 1 and Shrimp Alkaline Phosphatase mixture. Then the 384-well 

plates were sealed with Microseal A film and incubated on PTC-225 Tetrad at 37 ºC for 30 min. 

A final incubation at 100 ºC ensured complete inactivation of the enzymes. 

 

The second stage consisted of single base primer extension. The primers were developed and 

ordered together with multiplex PCR primers. Special extension mastermix was provided by 

Beckman Coulter. 7 μl of the mastermix were added to every sample. Then the plates were sealed 

and thermal cycled according to the following protocol: 

Initial denaturation: 3 min at 96 ºC 

45 cycles: 

 Denaturation: 20 sec. at 94 ºC 

 Annealing: 11 sec at 40 ºC 

4 ºC final hold temperature 

After the extension step, 48-plex SNPware plates were washed with Wash Buffer 1 (diluted in 

1:20 in ddH2O). 

The third stage was hybridization. 10 μl of hybridization solution (SNPware hybridization, 

Beckman Coulter) were added to each well. The SNPware plates were sealed and incubated at 42 

ºC for two hours at close to 100% humidity. During this time extension products were hybridized 

to specific microarray spots on the bottom of the plate with specific tags. After the incubation, the 

plates were washed with Wash buffer 2 and dried by inverting in a Beckman Coulter TJ-25 



Materials and methods 

27 

centrofuge and spinning at 1000 x g for 3 minutes. The SNPware plates were then imaged on the 

SNPstream Imager for duration of 7 minutes. 

The forth stage was to capture data from SNPware plate by the Run Manager software module 

and transfer as raw images to the image application (Syvänen 2005). The image software module 

analyzed the images from the each well and determined the positions of the microarray spots to 

assess individual spot quality and extract their average intensity values. These data were 

uploaded to the SNPstream database and then combined with the sample set up data (Syvänen 

2005). The GetGenos/QC review converted the numbers and sample position data into scatter 

plots, which were then automatically separated into statistical genotype clusters (Fig. 37, 

Appendix). Genotype clusters passing user-definable quality parameters were accepted and the 

genotypes were exported into a result file generated by the Report module. 

Allele confirmation 

Samples showing the recombinant haplotype were assessed and additional markers were selected 

to confirm them. The main criterion for these markers was heterozygosity condition and location 

as close to the initial marker as possible. 

Primers for initial and nested PCR were developed with Primer3 software and ordered from 

Sigma-Aldrich. The loci containing allele of interest in the middle were 500 bp long for first PCR 

and 250 for the nested. 

The products of whole genome amplification were diluted 1:2 and 1 μl (5-10 ng) were used for 

amplification of the marker loci. 

PCR was run using Qiagen Multiplex PCR Kit and 10 ng of high quality bulk sperm DNA. The 

total reaction of 10 μl containing 5 μl of Qiagen Multiplex PCR Master Mix with HotStarTaq 

DNA Polymerase and a unique PCR buffer containing the novel synthetic Factor MP (which 

stabilizes specifically bound primers and enables efficient extension of all primers in the reaction 

without optimization Ref: Qiagen Inc), 0.5 μl of forward and reverse primers (10 μM – 0.5 ml), 1 

μl of single sperm DNA and 3 μl of ddH2O. The reaction was run on Peltier Thermal Cycler 

(DNA Engine Tetrad2, BRB-Langertechnik GmbH) under the following cycling conditions: 
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Initial denaturation – 5 min at 96 ºC 

30 cycles: 

 Denaturation: 30 sec at 95 ºC 

 Annealing: 45 sec at 50-70 ºC according to the Tm of the primer 

 Elongation: 1 min at 72 ºC 

Final elongation: 5 min at 72 ºC 

The PCR products were immediately run on the 1% agarose gels containing EtBr and visually 

inspected for products under the UV light.  

In case of product absence on the gel, a nested PCR was performed using ordered nested primers.  

The total reaction consisted of 10 μl containing 5 μl of Qiagen Multiplex PCR Master Mix, 

forward and reverse primers (10 μM – 0.5 mL), 1 μl of single sperm DNA and 3 μl of ddH2O.  

The reaction was run on Peltier Thermal Cycler (DNA Engine Tetrad2, BRB-Langertechnik 

GmbH) under the following cycling conditions: 

Initial denaturation – 5 min at 96 ºC 

30 cycles: 

 Denaturation: 30 sec at 95 ºC 

 Annealing: 45 sec at 50-70 ºC according to the Tm of the primer 

 Elongation: 1 min at 72 ºC 

Final elongation: 5 min at 72 ºC 

The PCR products were immediately run on 1% agarose gels containing EtBr and visually 

inspected for products under the UV light.  

Purification of the PCR products and DNA sequencing were conducted the same way as 

descriped on page 23. 
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Buffers 

HOM (homogenizing buffer)   160 mM Sucrose 

      80 mM EDTA (ph 8.0) 

      100 mM Tris (ph 8.0) 

      0.5 % SDS 

      0.10 mg/ml Proteinase K    

   

10x PBS (phosphate buffered saline)  1.3 M NaCl 

      70 mM Na2HPO4 

      30 mM NaH2PO4  

      pH 7.2 

         

TAE (tris/acentic acid/EDTA) buffer  40 mM Tris, ph 8.5 

      2 mM EDTA 

      0.114 % glacial acetic acid 

TE (tris/ EDTA)    10 mM Tris – HCl 

      2 mM EDTA 
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2.2. Theoretical methods 

Correlation between nucleotide diversity and recombination rate 

9.4 Million human SNPs were extracted from SNPdb (for the years 1998, 1999, 2000, 2001, 

2002, 2003, 2004) at NCBI and analyzed according to their entry date, validation status, 

chromosomal location and compared their genomic positions with available recombination maps 

(Dib et al., 1996; Yu et al., 2001; and Kong et al., 2002). Recombination rates are given for bins 

of 1MB. Therefore, this bin size was used to determine SNP density by accumulating the number 

of SNPs within each bin. Heterozygosity was estimated from SNP density and average sample 

size within each bin (Watterson's estimate of theta, Waterson, 1975):  

      

Where S is a number of the segregating sites and n is a sample size 

Displaying obtained data 

Conversion and cross over data, as well as data on 13-mer degenerate motif and core motif 

(Myers et al, 2008) were displayed as custom annotation tracks in the UCSC genome browser 

(https://cgwb.nci.nih.gov/goldenPath/help/customTrack.html). All files were organized in “BED” 

format and displayed either as BED lines (conversion tracts and motif) or as BED wiggle (fine 

scale recombination rates from International HapMap Consortium, 2003 and 2005). 

SNP density (for four Encode regions) was expressed as an average number of SNPs in a one or 

fifty kb sequence. 

The CG content percentage of the conversion tracts was calculated as: 

[ (G+C)/(A+T+G+C)] ×100 

 Expected and observed CpG fraction was calculated for conversion tracts as well. 
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3. Results  

3. 1 Recombination and variability in public data 

To investigate the presence of a correlation between variation data and recombination, human 

SNPs (bulk genome-wide data, year 1999-2004, roughly 9.4 million) were downloaded from 

dbSNP and analyzed according to entry date, validation status and chromosomal location. They 

were also compared to genomic positions with available recombination maps from Genethon 

(Dib et al. 1996), deCode (Kong et al. 2002) and Marshfield Center (Yu et al. 2001).  

First, SNP density for the two sets of SNPs was plotted against recombination rate (deCode, sex-

average, 2002). The first set contained all available SNPs from SNPdb, the second contained the 

set of SNPs with a defined validation status (Fig.6). 

 

Fig.6. Scatterplot of recombination rate (deCode) and SNP density based on data from 
SNPdb, build 124 (2004). Correlation coefficient for all SNPs is r = 0.15 and, for validated SNPs, 
r = 0.28. The red and the blue lines indicate the regression lines for the two data sets.  

 

In the case of whole genome bulk data, the correlation coefficient between SNP density and 

recombination rate was r = 0.15. When only validated SNPs (those, for which the validation 

status in the database was higher or equal to 2; validated SNPs have annotated experimental 

evidence, which confirms that the particular SNP is not a sequencing error) are considered, the 

observed correlation became stronger (r = 0.28). However, the picture changed when a different 

measure of variability was compared to the recombination map. Heterozygosity (SNP density 

corrected by the sample size) plotted against the recombination map revealed either weaker 
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correlation (r = 0.14) compared to SNP density in the case of validated SNPs, or even negative 

correlation when bulk data (all SNPs with available sample size) were considered. Thus, these 

data did not support the initial expectation that positive correlation would be present independent 

of the quality and quantity of the SNP sets. The possible explanation for this observation is higher 

sample size of SNPs in the higher recombining regions of functional interest (e.g., major 

histocompatibility complex – MHC). In such regions of increased diversity and recombination 

rate, correlation coefficient (based on data up to 2004) was strongly positive, whereas the 

strength of correlation on the genome-wide scale was weakly positive or negative due to 

incomplete sampling in non-functional genomic regions.    

 

 

Fig. 7. Scatterplot of the recombination rate (deCode) and heterozygosity based on data from 
SNPdb, build 124 (2004). Correlation coefficient for all SNPs is r = -0.03 and for validated SNPs 
r = 0.14. The red and the blue lines indicate the regression lines for the two data sets.  

 

The strength of correlation varied on both broad- and fine-scale levels. The correlation coefficient 

varied greatly when SNP density, as well as recombination rate was plotted for each chromosome 

separately (Fig.8). 
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Fig.8. Correlation coefficient between SNP density and recombination rate for each 
chromosome  (SNPdb, build 124 and deCode recombination map). 

 

Again, there was no consistency between the bulk SNPs coefficient and the coefficient calculated 

for validated SNPs. Coefficients were in agreement only for chromosomes 3 and Y. Chromosome 

9 shows a good example of sampling bias due to the discrepancy of correlation coefficients for 

two different data sets  (Fig.8). Correlation is strongly positive for validated SNPs and negative 

for all available SNPs (SNPdb, build 124) on the chromosome.  

The magnitude of correlation between SNP density and recombination rate changed across years 

as well (Fig. 9). SNP data from 1998 and 1999 were scarce and did not uniformly cover the entire 

genome. Starting from 2000, the accumulation of SNPs was accompanied by a decrease in the 

correlation coefficient, which could be due to the availability of higher resolution recombination 

maps, while resolution of SNPs lagged behind. With additional sequencing data from 2003 and 

2004, the correlation coefficient increased. Another reason for the coefficient decline could be the 

change in sample size (number of chromosome investigated per SNP). From 1998 up to 2002 the 

sample size per SNP has increased, but the correlation coefficient seemed to decline.  

X  Y 
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Fig.9. Correlation Coefficient between nucleotide density and recombination rate across 
seven years, all SNPs from SNPdb, build 124 (2004). 

 

The strength of correlation between SNP density and recombination rate also depends on the 

recombination map. Fig.10 shows how the magnitude of correlation varied with the different 

recombination data while SNP density remained the same. Up to 2004 both precision and 

resolution of these maps were of low quality (Genethon, DeCode and Marshfield genetic maps 

were estimated from pedigree studies with resolution at the CentiMorgan scale from 1 to 2 MB, 

although recombination rates are known to vary at the kilobase scale – Spencer et al., 2006) and, 

thus, their reliability is questionable. 
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Fig.10. Correlation coefficient plotted for different recombination maps across the years 

 

Data available from 2005 and later, after the HapMap project had started, provided a better 

resolution and a larger sample size and was assumed to give better insights into the observed 

correlations. The plot of SNP density and fine scale recombination rates from Phase 1 of the 

HapMap project revealed a negative correlation between the SNP density and recombination map 

(McVean et al 2004; Fig.11).  

Generation of additional HapMap data sets (Phase 1 and 2) starting from 2006 provided new 

insights into the correlation between SNP density and recombination rate. Fig.11 shows the 

correlation between SNP density and recombination rate on chromosome 11; the extracted data is 

from 2008. The correlation coefficient is markedly weak (r =0.029) and when compared to the 

plot with correlation magnitude for chromosome 11 across the years, the decrease in correlation 

strength is obvious. Similar observations for 1998 – 2002 in correlation magnitude leads to the 

hypothesis that generation of new data are accompanied with decrease in coefficient strength.  
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These observations of correlation strength discrepancy in 1998-2002 compared to the period of 

2002-2004 can raise a question of what is a “true signal” and whether strong positive correlation 

was indeed observed or was this observation due to incomplete data?   

According to the higher resolution data, such a correlation decrease with arrival of a new dataset 

can again indicate that incomplete sampling and prevalence of SNPs from functional highly 

recombining regions was the possible reason to observe strong positive correlation on the 

genome-wide scale.  

Recombination data used in this analysis were obtained mainly from broad-scale maps (Dib et al. 

1996, Yu et al. 2001, Kong et al. 2002) based on population genetic data, which were scarce at 

the beginning of the century.  Although the current data set from HapMap is of much better 

resolution, the highest possible resolution can only be achieved by direct experiments. The 

experimental approach of single-sperm typing was modified according to available facilities and 

conducted to study current individual (not population-wide) cross over rates. Sperm typing was 

performed for four Encode regions on chromosome 11. The following chapter demonstrates why 

chromosome 11 and four Encode regions were selected to investigate cross over and gene 

conversion rates.  

 



Results 

37 

 

Fig.11. Correlation between SNP density and recombination rate. Both SNPs and 
recombination rates were obtained from HapMap (A haplotype map of human genome, 2005). 
The correlation coefficient r = -0.094. Recombination rates come from finer scale data (per base 
pair)  

 

Fig.12. Correlation between SNP density and recombination rate for chromosome 11 
(Conrad et al., 2006). The correlation coefficient r = 0.029. Recombination rates come from 
broad scale data (centiMorgan per Megabase).  
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3.2 Specificity of sperm sorting on FACSVantage SE Cell Sorter 

In sorting experiments, purity, yield, sorting speed, and count accuracy must be balanced 

depending on the desired outcome. The critical point for sperm sorting on a typical 

FACSVantage SE system is to setup an appropriate drop-delay.  

The drop-delay is the time it takes for a cell to travel between the laser intersection point down to 

the end of the liquid jet before the jet breaks off in droplets (breakoff distance, Fig.13). At the 

laser intersection point, the optical cell parameters are measured. If the cell fulfills the sorting 

criteria, a voltage pulse is generated after the drop-delay and applied to the liquid jet during the 

separation of the droplet from the liquid jet. Thus, the droplet containing the cell is charged and 

ready for deflection in a static electric field generated by two deflection plates. If the drop delay 

setting is incorrect, droplets are charged at the wrong time and the sorter deflects empty droplets 

or droplets with erroneous cells at great precision. To set up the desired drop-delay, a sample 

with fluorescent beads is run through the sorter. This configuration is called “AccuDrop” and it is 

indispensable for single cell sorting.  A sorting window is set in such a way that all beads are 

included and sorted to the deflected droplet stream. A fluorescence emission filter is moved in 

front of the video camera to block the laser light (the camera is attached under the deflection 

plates to illuminate the deflected and un-deflected droplet stream). On the monitor one or two 

fluorescence spots can be visualized from the fluorescent beads inside the droplets. With the right 

drop-delay setting no fluorescence should be detected in the un-deflected droplet stream. By 

watching the monitor and adjusting the drop-delay setting up or down, an optimal value for the 

drop-delay can be found. The fluorescence spot from the deflected droplet stream should be as 

bright as possible and other spots as dark as possible. As an example, the AccuDrop method is 

sufficient for sorting of embryonic cells (Shapiro, 2003).  

Sperm cells require a better optimized drop-delay setting due to certain morphological 

peculiarities.  The tail position (straight or curled) and smooth shape of the cell change the fixed 

speed necessary to cover the break off distance, even with the AccuDrop method. Also, they tend 

to form clumps and often arrive too close together to be individually sorted. In this case, droplets 

containing particles are aborted and replaced by empty droplets in the plate well (Shapiro, 2003). 

The optimal drop-delay option can be determined by performing a Drop Delay Profile (Table 1). 

For this procedure, a specified number of droplets (for instance, 20) are sorted onto a microscope 

slide at different drop-delay settings. This procedure requires the use of a fluorescent microscope 
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and the pre-staining of sperm with Hoechst flourochrome. It begins with the lowest drop-delay 

from the bead sorting and this value is increased at each iteration by as low as 0.1 drops (Table 

1).  The setting that provides the highest sperm count is the optimal drop-delay setting. 

 

 

 

 

Fig 13. The sketch of a sorting nozzle (Shapiro 2003). 
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Table 1. Example of a drop delay profile in a sperm sorting experiment using FACSVantage 

SE sorting system. 

 drop-

delay  

-0.3 -0.2 -0.1 AccuDrop 

measurement*

19.1 

+0.1 +0.2 +0.3 +0.4 +0.5 

Sperm 

cells 

count 

- 1 5 10 11 19 19 20 20 

* - optimal setting determined by AccuDrop method for the particular experiment prior profile 

start.  

 

 

3.3 Estimation of the cross over rate: 

According to the hotspot detection strategy by single-sperm analysis (Arnheim et al., 2003): if a 

pair of markers flanking the interval of interest is 1 Mb in size, then 1% of sperm are expected to 

have a recombinant haplotype for these two markers, assuming that recombination rate is 

average.  

Expected cross over rate in all four regions. Considering the length of every interval flanked 

by two markers in this study (all Encode region were divided into intervals of 100kb) and the 

sample size of sperm (1000 single cells), 0.1% of sperm are expected to have recombinant 

haplotypes within every interval. In all four Encode regions (2.5 Mb long), 25 recombinant 

haplotypes are expected in total if 1000 sperm cells are typed. 

Expected cross over rate per region. According to theoretical expectation based on the 

assumption that the average rate is 1 cM/Mb (Arnheim et al., 2003), 0.1% of cells are expected to 

have recombinant haplotypes per every 100 kb interval. Three out of four Encode regions 

(ENr332, ENm003, ENr312) 0.5 Mb long will be expected to have 0.5% of recombinant 

haplotypes. In the sample of 1000 sperm, each of these three regions is expected to have five 



Results 

41 

recombinants. ENm009, which is 1 Mb long, is expected to have 10 recombinants. According to 

the population data expectation (LD-based, deCode map, UCSC browser), the average 

recombination rates per region are 1.95 (ENm009), 0.9 (ENr332), 1 (ENm003) and 2.5 (ENr312) 

cM/Mb. Fig. 14 shows the comparison of the expected (LD-based, broad scale) with the observed 

(experimental) cross over events. 

Observed cross over rate in four regions. In this study, only three cross over events were 

identified experimentally, which makes the cross over rate (considering the total sample of 1000 

cells) 0.3% per 2.5 Mb. For every 1 Mb of these 2.5 Mb, the rate is 0.12 %. Thus, the final 

estimate is 0.12 cM/Mb.  
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Fig. 14. Expected (from population data from DeCode map) versus observed (experimental) 
number of cross over events per Encode region. Knowing the average recombination rates per 
Encode region (deCode map, UCSC browser) 1.95, 0.9, 1 and 2.5 cM/Mb, the numbers of  
expected cross over events per region were calculated as 19, 4, 5 and 12, respectively. Observed 
number of cross over events were 2 in ENm009 and 1 in ENr312. The expected amount of cross 
overs is shown in blue and observed amount is in red.  
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3.4 Annotation of the ENCODE regions 

3.4.1 Chromosome 11 at a glance 

Human chromosome 11 (HSA11) represents approximately 4.4% of the human genome (Taylor 

et al, 2006). Being average in size, it is one of the most gene-rich chromosomes: there are 

approximately 11.6 genes per megabase. This ranks the HSA11 as the fourth highest in gene 

number among the human chromosomes, after 1, 2 and 19 (Taylor et al. 2006).  The recent high-

resolution sequencing data from HSA11 (Taylor et al. 2006) is in concordance with existing 

physical and genetic maps (Genethon, deCODE and Marshfield). Available recombination data 

reflected the linear relationship between recombination rate and physical distance (Taylor et al. 

2006). Analysis of the broad-scale (Fig.15, deCODE, sex-averaged) recombination data revealed 

variation from 0 to 4.7 cM/Mb, with the maximum concentrated at 11q, the most telomeric 

region. Overall, in HSA11 there are only ten 1 Mb long regions (deCode sex-average: 130 Mb of 

the chromosome split into 1 Mb regions, for which recombination data are available) showing a 

recombination rate exceeding 2.5 cM/Mb. These regions either have an 11q telomeric location or 

are distributed along 11p (Fig.15B) 

The fine-scale rate (A haplotype map of human genome, 2005) varies from 0 to 89.5 cM/Mb. The 

hotspot map is in general concordance with the broad-scale data: uniform distribution on 11p and 

telomeric location on 11q, with the “highest peaks” on 11p (Fig.15A). 

Genes, apart from recombination, are not uniformly distributed. The majority of coding genes, 

including the olfactory cluster, are concentrated on the 11p telomeric or 11q centromeric parts of 

the chromosome. The gene catalogue consists of 1,524 potentially active protein-coding genes 

and 765 pseudogenes (Taylor et al. 2006). The gene coverage of the chromosome is 

approximately 47%, whereas exon coverage is only 2.7%. More than 50% of the genes (805) 

have two or more splice variants. Also, most of these genes contain CpG islands (Taylor et al. 

2006). The study of correlation between the presence of a CpG island and the number of variant 

transcripts for a gene revealed a significant correlation: 70% of genes with CpG islands have two 

or more variants (Taylor et al. 2006).   

HAS 11 has the largest olfactory receptor gene clusters (approximately 166 genes). All human 

chromosomes except for 20 and Y contain olfactory receptor genes, but HSA11 is by far the 
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richest in these clusters (Taylor et al. 2006). Most of them are concentrated in 11p near the 

telomere and 11q near the centromere, where a concentration of coding sequence is observed. 

Diversity rates also vary along the chromosome. SNP density of 4 SNPs per 1 kb and larger is 

found on the 11q centromere and the 11p telomere with the highest rates within these blocks. 

Diversity distribution is in positive correlation with the recombination rate distribution along 11p 

on the broad scale (Taylor et al. 2006), except for two “hot” regions (in terms of recombination 

and diversity): On 11q recombination rates were higher near the telomere, SNP density was 

higher near the 11p telomere and 11q centromere, with the highest gene density in the same 

regions (Fig. 15C). SNP density, presented by dbSNP, reflects the SNP density of HapMap SNPs 

with European origin.  

Tajima’s D estimate distinguishes between DNA evolving randomly (“neutrally” if D = 0) versus 

one evolving under a non-random process, e.g., balancing selection or population decline if D > 

0, and either positive or purifying selection, or population expansion if D < 0. Over all HSA 11 

Tajima’s D tended to remain positive with a maximum value of 3 and a minimum of -2.5 (Fig. 

15E).  There are ten regions (larger than 500 kb), where Tajima’s D had a negative value; six of 

them lie on 11q, and four others are on 11p. The question of significance of Tajima’s D, obtained 

from UCSC genome browser without coalescent simulations, remains open. In UCSC Tajima’s D 

estimates were calculated based on Assembly 2004 of human genome, whereas SNP density and 

recombination data came from Assembly 2006. In addition Tajima’s D values do not reveal any 

particular force shaping variation patterns in certain genomic regions. Both positive and negative 

values mean that either a certain type of selection is acting on the genome or population structure 

forms the pattern.   

Chromosome 11 contains five Encode regions: two of which are on 11p, closer to the telomere 

and three are on 11q. In this study, four of these Encode regions are considered in detail. 

 

 

 



Results 

44 

 

Fig.15. Overview of the Chromosome 11 from UCSC browser. A. International HapMap Consortium fine scale recombination rates, 
(Altshuler et al., 2005);  B. deCode recombination rates, sex-average; C. The genes from UCSC; D. SNP density for the American Utah 
population of the European origin, E. Tajima’s D estimate for the European population (2004 Assembly); F. location of the Encode 
regions along the chromosome are indicated.
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3.4.2  ENm009 

ENm009, the largest of all Encode regions, is 1 Mb long (Fig. 16F). This region contains 

hemoglobin Beta gene, which encodes one of the best studied proteins in the human genome 

(Taylor et al. 2006). There were several reasons to include this region into the sperm typing 

screen. Besides telomeric location, this region displays variation in the recombination rate (A 

haplotype map of human genome, 2005). It has a higher SNP density than the other chosen 

regions.  Furthermore, the gene density is higher compared to other Encode regions. ENm009 is 

located on the above mentioned 11p with high gene and pseudogene density compared to the 

other parts of the chromosome. Fifty percent of genes in ENm009 belong to olfactory receptor 

gene clusters and are short in length (one exon). The rest consists of hemoglobin family 

members, tripartite motif (TRIM) family members and others. 

The broad-scale recombination rates are 1.8 and 2.1 cM/Mb in its 5’ and 3’ parts (Fig.15B). The 

high-resolution recombination rates (A haplotype map of human genome, 2005) range from 

almost 0 to 46.8 cM/Mb or, on a base pair scale of resolution, even up to 75.5 cM/Mb. The 

hotspot map is quite dense, presenting increased amounts of hotspots interrupted by relatively 

short coldspot “valleys”. 

Another genomic feature - the SNP density – varies greatly in the region. The mean value of the 

SNP density was calculated per 50 kb and per 1 kb with variance for all regions. For the 

ENm009, the average SNP density along the entire region was 2.59 SNPs per 1 kb and 129.625 

per 50kb with the variance 2707.23. The variance of SNP density within this region is the highest 

compared to the other three regions. One of the reasons could be the high density of pseudogenes 

in the this region. Particularly, 24 genes from olfactory clusters are pseudogenes (Zheng and 

Gerstain, 2006) The SNP density per 50 kb varied from 49 up to 199 in ENm009. 

HapMap polymorphism data confirmed dbSNP data in terms of variation distribution: it was not 

even, but formed clusters or polymorphic “blocks”. However, according to the HapMap data, 

higher rates are at the ends of the region rather than in the middle.  

With respect to other nucleotide properties, the estimated GC content, with 38.2 %, content is low 

compared to all other regions. 
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Tajima’s D estimate is mainly positive, except at the end of the region in the centromeric 

direction. In some parts of the ENm009 the estimate was higher than 2, indicating the possibility 

of balancing selection or population decline. 

 

Fig.16. Overview of the ENm009 region from UCSC browser. International HapMap 
Consortium fine-scale rates (Altshuler et al 2005) are in grey; deCode recombination rates, sex-
average; the genes from UCSC; SNP density for the American Utah population of the European 
origin (CEU); Tajima’s D estimate for the European population (2004 Assembly) and the current 
Encode region are indicated. 
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3.4.3 ENr332 

ENr332 is an Encode region of standard size (0.5 Mb), chosen by the Encode project due to its 

non-exonic conservation level (15.9%) and gene density (2.9%) (fig. 16). We have selected this 

region because of its relative low recombination rate (compared to ENm009). The region is 

remarkable for its chromosomal position as well: it is the only Encode region on HSA11 located 

near the centromere.  

Among the genes located in this region, there are members of the integral membrane protein 

family, members of the Neurexin family, brain-enriched nucleotide exchange factor, members of 

the serine/threonine protein kinase family, a gene encoding Menin, a putative tumor suppressor 

among others. Gene density in ENr332 is highly variable. 

Moreover, the recombination rate is also highly variable. The broad-scale rate is 0.9 cM/Mb, 

which is below average. The fine scale rates varied from 0 to 23.2 cM/Mb. The hotspot map 

consisted of two “superhot” (above 10 cM/Mb) and approximately four hotspots, all of them 

interrupted by vast coldspot “valleys”. 

The average SNP density was calculated per 50 kb and per 1 kb. The mean value for the 50 kb 

intervals is 51.8 SNPs with a variance of 189.16. The SNP density per 1 kb is 1.715 with a 

variance of 0.9785. The SNP number in 50 kb intervals varies from 33 up to 69 SNPs, which is 

considerably less compared to ENm009 maximum (199). 

There are 12 genes in this region per region, but interestingly, each of them has at least three 

splice variants.  

The CG content estimated for the region is the highest among all four regions in this study: 

53.2%. The prediction is that there would be a higher conversion rate in this region.    

Furthermore, the estimate of Tajima’s D was variable in this region as well. Half of the region 

had positive values up to 3, indicating either balancing selection or population decline.  The other 

half had low positive values (1 – 1.5) interrupted by two “valleys” with negative values of 20 kb 

each in coding sequence, indicating possibility of positive or purifying selection acting on the loci 

or population expansion.  
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Fig.16. Overview of the ENr332 region from UCSC browser. International HapMap 
Consortium fine-scale rates (Altshuler et al., 2005) are in grey, deCode recombination rates, sex-
average, the genes from UCSC, SNP density for the American Utah population of the European 
origin (CEU), Tajima’s D estimate for the European population (2004 Assembly) and the current 
Encode region are indicated. 

 

3.4.4 ENm003 

ENm003 is anothe Encode region on chromosome 11 (Fig.17) and it was picked manually 

because of the apolipoprotein cluster family. The region is of interest for this study due to the 

lower recombination rates (below 1.5 cM/Mb) and its telomeric location. 

Average in size (0.5 Mb), it has the physical position on 11q23.3 near the telomere. Compared to 

other Encode regions, this region has only nine genes. Among them, there is the BUD 13 human 

homolog, the apolipoprotein gene family and KIAA0999, which is Serine/threonine-protein 

kinase gene expressed in human fetal brain. Most of these genes contain more than one transcript 

variant. 

Roughly 200 kb at the proximal end of ENm003 contain coding sequence.  
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The recombination rate is low and not uniformly distributed. The broad-scale rate ranged from 

0.9 to 2.1 cM/Mb (deCode sex-average). The fine-scale rate varied from 0.02 up to 47.7 cM/Mb 

(HapMap fine-scale rates, phase 1 and 2, 2006). The hotspot map is represented by three 

immense hotspots interrupted by vast coldspots “valleys”, most of which are localized at the 

proximal end of  ENm003. 

As for the SNP density, the mean value was 75.7 SNPs per 50 kb with a variance of 491.61. At 

the fine-scale, the average density was 2.28 SNPs per 1 kb with a variance of 2.12. The number 

of SNPs per 50 kb intervals varied from 27 up to 190, which is the reason for the high variance 

value.   

Tajima’s D had a low value within this region compared to other regions. Half of the region had a 

low positive value (proximal direction), whereas the other half had a slightly negative value, 

indicating the possibility of positive or purifying selection or the population expansion. It is one 

of the few relatively large (230 kb) regions that showed negative D values. The first 20 kb of this 

negative “valley” was also characterized by a very low SNP density – another indication of  

selection (hitchhiking can reduce the variability in the region). 

The GC content for the region is 43.8%, which is lower than the expected value (above 50%) for 

conversion-biased activity, but which is close to human average of 41 %. 
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Fig.17. Overview of the ENm003 region from UCSC browser. International HapMap Consortium fine-scale rates (Altshuler et al., 
2005), deCode recombination rates, sex-average, the genes from UCSC , SNP density for the American Utah population of the European 
origin (CEU), Tajima’s D estimate for the European population (May 2004 Assembly) and the current Encode regions are indicated.
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3.4.5 ENr312  

ENr312 is the most distal of the four Encode regions on chromosome 11, located on 11q25 close 

to the telomere (Fig. 18). It was picked by Encyclopedia of DNA Elements due to its low non-

exonic conservation (13.5%) and gene density of 0.3%. For this study, the region was chosen due 

its telomeric location and increased recombination rates. The size of the region is 0.5 Mb. 

The lowest observed gene density of the region – only 2 genes are there – can be explained by the 

heterochromatic position of the region.  

The recombination rates were variable. The broad-scale rates were above average: 2.7 cM/Mb. 

The fine-scale rates (HapMap fine-scale rates, phase 1 and 2, 2006) varied greatly from 0.01 to 

44.3 cM/Mb. The hotspot map was very intense, and the coldspot “valleys” were not so frequent. 

Approximately five “superhotspots” lay within the region. Some of these hotspots were longer 

than 4 kb.  

The SNP density mean value was 103 SNPs per 50 kb with a considerable variance of 839.4. The 

SNP number per 50 kb varied from 63 to 161 SNPs, which is higher than in ENr332 and 

ENm003 but still lower than in ENm009. The fine-scale data  (HapMap fine scale rates, phase 1 

and 2, 2006) had an average SNP density of 2.614 per 1 kb and a variance of 3.0745. 

The CG content for the region did not exceed the 50% level (43.9%).  

Tajima’s D was estimated and had considerably positive values (from 1.5 to 3), indicating 

balancing selection or population decline. 
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Fig.19. Overview of the ENr312 region from UCSC browser. International HapMap 
Consortium fine scale rates (Altshuler et al., 2005) are in grey, deCode recombination rates, sex-
average, the genes from UCSC), the genes from UCSC, SNP density for the American Utah 
population of the European origin (CEU), Tajima’s D estimate for the European population (2004 
Assembly) and the current Encode regions are indicated. 

 

3.5 Haplotype screen 

Approximately 1000 single genomes were screened with markers flanking 100 kb intervals 

within four Encode regions on chromosome 11 covering in total a non-consecutive 2.5 Mb 

(Fig.20).  Analysis of theses genomes revealed two types of “reference” haplotypes (further 

referred to as “black” and “white”) present in most of the cells (except for 10 recombinants) 

based on allele associations. These haplotypes were constructed, first, for each Encode region and 

then for all regions per every genome. Figure 21 shows allele affiliation with a particular 

haplotype for ENm009 along with distribution of major/minor alleles between haplotypes. Figure 

20 presents a general picture of the “reference” haplotypes for all four Encode regions compared 

with recombinant haplotypes (which deviated from the “reference” showing the exchange of one 

or more alleles between the haplotypes).  
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Fig 20. Overview of the haplotypes. The circles represent markers flanking 100kb intervals for 
the genotyping screen. Two reference haplotypes are shown in black and white. Recombinant 
haplotypes are combinations of black and white either as a “one-site exchange” (conversions) or 
haplotype “switch” (cross over).  

 

 

 

Fig. 21. Allele affiliation with two haplotypes for ENm009 with distribution of major/minor 
alleles between these haplotypes.  
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3.5 .1 “Reference” haplotypes 

The markers selected for the genotype screen for which the donor was heterozygous were 

HapMap annotated SNPs with calculated allele frequencies close to 0.5:0.5 ratios of distribution 

within the population. However, based on genotyped individuals, each allele was assigned as 

major or minor for a certain population. In this study, since the sperm donor was of European 

origin, only CEU (Utah residents with Northern and Western European ancestry from the CEPH 

collection) allele frequencies of markers were taken into consideration.  

There is no strict definition that one of the reference haplotypes was “common” or consists only 

of major alleles and the other was “rare” (has only minor alleles). Allele affiliation showed that 

both “reference” haplotypes were a mixture of both allele types with some tendency (bias) (Fig. 

21., Fig. 34, 35, 36 Appendix). Analysis of allele combinations present in both haplotypes 

showed prevalence of major alleles in the “black” haplotype. This fact is especially clear in 

ENm009 (Fig. 21): seven out of nine. In other regions, on average three out of five alleles were 

major ones in the “black” haplotypes. 

 

3.5.2 Recombinant haplotypes 

Based on the comparison with the two prevalent “reference” haplotypes, recombinants were 

obtained. The criteria to treat the haplotype as a “recombinant” were either one site exchange 

within one of the “reference” haplotypes (e.g., when a certain marker in a single genome showed 

the presence of “white” allele in the “black” haplotype or “black” allele in the “white” 

haplotype), or switch from one of the “reference” haplotypes to the other within the same single 

genome (e.g., in one sperm having the “black “ haplotype from the beginning until a certain 

marker, then starting from the next position, only alleles of “white” haplotype are present) . The 

former case was considered as a gene conversion event, the latter as a cross over. 

Using a “single-sperm recombination detection strategy”, ten recombination events in total were 

obtained and later confirmed by additional markers. The confirmation consisted of finding one or 

more markers heterozygous for the male donor of the project. These markers had to confirm the 

“switch” (in case of cross over) or “one-site exchange” (gene conversion) of the haplotype at the 

particular position in the recombinant candidate. 
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The confirmation markers were chosen such that they were no more than 2-3 kb (or closer – 

depending on the presence of heterozygous SNP) away from the initial screening marker.  

For gene conversion, we also estimated the tract length. The region upstream and downstream 

from the screening marker was investigated for heterozygous SNPs in the recombinant candidate 

genome. All heterozygotes found were analyzed according to allele affiliation and compared to 

“reference” haplotypes in other sperm cells. The distance between two or more heterozygotes 

showing allele affiliation different from the expected “reference” haplotype was defined as a 

minimum conversion tract. The distance between the markers showing “recombinant” allele 

affiliation and markers showing “reference” allele affiliation was not considered, since the exact 

position of conversion start/end is impossible to identify by genotyping.  

Out of ten recombinant candidates, three were identified as cross over events (Fig.20) and six as 

gene conversion within the four Encode regions. The seventh conversion event was discovered 

during the confirmation process for one of the cross over candidates in the ENm009 region. The 

position of the conversion tract was 66 kb distal to ENm009.   

All recombinant haplotypes found had only one event per single genome. However, each of the 

mentioned Encode regions had at least one cross over or gene conversion event among the 

thousand typed sperm cells. 

 

3.5.3 Cross over and gene conversion events within and near ENm 009 

According to the haplotype map, ENm009 is the only region with two cross over events and one 

identified gene conversion outside of the region. Cross over events were detected in between 

markers seven and eight in one single sperm and between markers eight and nine for another 

sperm. In total, these are two 100kb intervals most distal within ENm009. To confirm the 

recombinant haplotype shown by marker nine, another pair of informative markers (SNPs) were 

chosen 50 kb distal to this Encode region. These markers have confirmed the recombinant 

haplotype within ENm009 and helped to identify a gene conversion event in a third sperm cell.  

The two cross over events were located in the region of increased recombination rate at both 

broad- and fine-scale (Fig. 22). The broad-scale rate for these two 100 kb intervals with cross 
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over is 2.1 cM/Mb and can be classified as an above average rate. On the fine-scale there were 

five “super” hotspots within these 200kb. The upper bound was 46.871 cM/Mb for cross over site 

two and about 11 cM/Mb for cross over site one. The observed cross overs might have occurred 

within these hotspots. 

At the same time, this Encode region is densely packed with genes; the majority of them belongs 

to the olfactory receptor family. Within the area where the cross overs were identified in the first 

sperm cell, there were three olfactory receptor members and two members of the tripartite motif 

(TRIM) cluster. The TRIM family members have a few splice variants each and they cluster 

within 200kb at the end of the ENm009 covering partially or completely the recombination 

hotspot provided by the fine-scale map. Both events identified in the two cells could have 

occurred within this area.  

It has been already described that SNP density varies significantly along the region: from 49 up 

to 199 SNPs per 50 kb with the variance 2707.23. 

Since the two observed cross over events occurred within the last two 100kb intervals of the 

region (Fig.22, purple part of the “haplotype” line for the first and second sperm cells), the mean 

and the variance were calculated for these intervals as well. Within the first cross over interval, 

the average SNP density is 3.456 SNPs per 1 kb with a variance of 5.32. The second cross over 

interval had the lower average density of 2.349 SNPs per 1kb and a variance of 2.349. Both these 

intervals did not show any significant increase in SNP density either in general or where 

(according to the Hapmap, phase 1 and 2, 2006) the hotspots were located. Therefore, the 

increase in SNP density was not observed concomitantly with the increase HapMap 

recombination rate.  
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Fig.22. Cross over and gene conversion within ENm009. Conversion event (green) 67 kb outside of ENm009); two cross over 
haplotypes in the last two 100 kb intervals: the putative cross over are painted in purple, initial two non-recombinant haplotypes are in red 
and blue; distribution of degenerate motif associated with recombination hotspots, International HapMap Consortium fine scale rates 
(Altshuler et al., 2005) are in grey, deCode recombination rates, sex-average (dense mode), the genes from UCSC (pack mode), the genes 
from UCSC, SNP density for the American Utah population of the European origin (CEU), Tajima’s D estimate for the European 
population (2004 Assembly) and the current Encode region are indicated. 
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Tajima’s D values within these regions were mostly positive (above 1.5), with a negative non-

significant value (-0.2) along 1.5 kb just at the distal end of the region within the hotspot of 

intensity 46.871 cM/Mb, indicating either a balancing selection or population decline. 

ENm009 was screened for the presence of the extended family of motifs based around the 

degenerate 13-mer CCNCCNTNNCCNC, which was shown to recruit cross over events to at 

least 40% of all human hotspots (Myers et al. 2008). The expected association between the motif 

accumulation and hotpots location (HapMap fine-scale rates, phase 1 and 2, 2006) was not 

observed. Out of 43 total motif hits for this region only 16 (37%) appeared within last two 100 kb 

intervals where the experimental cross over events were identified. Considering that these two 

intervals are only 20% of entire ENm009, the amount of hits is quite high. There is a cluster of 

these motifs on the border between the first and the second intervals near the recombination 

hotspot of 7.343 cM/Mb (HapMap fine-scale rates, phase 1 and 2, 2006). 

ENm009 was also screened for the presence of the core motif, CCTCCCTNNCCAC (Myers et al. 

2008). Only one hit of this motif was identified at the beginning of the region, 700kb away from 

the first cross over interval (Fig 23). 
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Fig.23. Common sequence motif in ENm009. Two cross over haplotypes in the last two 100 kb 
intervals in blue and red, the putative cross over are painted in purple, initial two non-
recombinant haplotypes are in red and blue; one hit of common sequence motif associated with 
recombination hotspots, International HapMap Consortium fine scale rates (Altshuler 2005) are 
in grey, deCode recombination rates, sex-average, the genes from UCSC, the genes from UCSC, 
SNP density for the American Utah population of the European origin (CEU), Tajima’s D 
estimate for the European population (2004 Assembly) and the current Encode region are 
indicated. 

 

The conversion event was identified 66.89 kb distal to the end of ENm009. The estimated 

minimum tract length between two adjacent SNPs showing a converted haplotype is 2095 bp 

(table 1), which is by far, larger than the estimated average conversion length of 55 to 300 bp 

(Jeffreys and May, 2004). 

It was located within the longest of the five splice variants of the TRIM5 gene: tripartite motif 

protein TRIM5 isoform, which localizes to cytoplasmic bodies and whose function has not been 

identified. The conversion was positioned within the second intron of the transcript (fig. 24). At 

the same time, the conversion tract is 378 bp downstream from OR52N2, a very short gene of 

less than 1 kb with a single coding exon. The gene is a member of the olfactory family coding for 

one of the olfactory receptors. The SNP density within the tract was 4.5 SNPs per 1 kb. The 

average decode recombination estimate was 2.1 cM/Mb. Tajima’s D value was positive, below 

1.5. The conversion tract was investigated for CG content and expected/observed fraction of CpG 
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dinucletides. The GC content for the tract was 37.3%, which is quite low especially when 

considering that conversion tracts are hypothesized to be CG biased. 

The CpG observed fraction was 0.0057 compared to expected 0.035.   

 

Fig.24. Conversion event outside of ENm009. The identified conversion tract (in green); 
deCode recombination rates, sex-average, the genes from UCSC, the genes from UCSC, SNP 
density for the American Utah population of the European origin (CEU), Tajima’s D estimate for 
the European population (2004 Assembly) are indicated. 

 

 

3.5.4 Conversion events in ENr332 

In the centromeric ENr332 region, three gene conversion events were identified. Two of them 

were 8223 bp away from each other and a third one was more than 100kb away from the first 

two. All of the events resided in the regions of reduced recombination rate. The first two were 

within 0.9 cM/Mb on the broad-scale (deCode map) and from 0.2 up to 0.4 cM/Mb on the fine-

scale (HapMap fine scale rates, phase 1 and 2, 2006); the third was within 0.9cM/Mb and 0.314 

cM/Mb, respectively (Fig. 25). 

 The first gene conversion event had a length between two identified markers of 3104 bp and was 

located in the second intron of NRXN2, neurexin 2 isoform alpha-1 precursor gene, which 

belongs to a family of proteins that function in the vertebrate nervous system as cell adhesion 

molecules and receptors. NRXN2 has two splice variants (Fig.25). 
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Fig.25. Gene conversion within ENr332. Conversion events are in red, green and blue; 
distribution of degenerate motif associated with recombination hotspots, International HapMap 
Consortium fine scale rates (Altshuler et al., 2005) are in grey, deCode recombination rates, sex-
average, the genes from UCSC, the genes from UCSC, SNP density for the American Utah 
population of the European origin (CEU), Tajima’s D estimate for the European population (2004 
Assembly) and the current Encode region are indicated. 

 

 The second conversion event was 1136 bp long (distance between two adjacent markers) and 

was located in the seventh intron of RASGRP2, a RAS guanyl releasing protein 2, a brain-

enriched nucleotide exchanged factor that contains an N-terminal GEF domain, 2 tandem repeats 

of EF-hand calcium-binding motifs, and a C-terminal diacylglycerol/phorbol ester-binding 

domain. This protein can activate small GTPases, including RAS and RAP1/RAS3 ( Fig.26) 
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Fig.26. Two gene conversion events within ENr332. Conversion tracts are in red, green; 
distribution of the degenerate motif associated with recombination hotspots, International 
HapMap Consortium fine scale rates (Altshuler et al., 2005) are in grey, deCode recombination 
rates, sex-average, the genes from UCSC, the genes from UCSC, SNP density for the American 
Utah population of the European origin (CEU), Tajima’s D estimate for the European population 
(2004 Assembly) and the current Encode region are indicated. 

 

The third conversion event was located within the MAP4K2 gene, mitogen-activated protein 

kinase, covering the seventh intron and eighth exon.  The protein encoded by this gene is a 

member of the serine/threonine protein kinase family. This kinase can be activated by TNF-alpha, 

and has been shown to specifically activate MAP kinases. It was the only conversion covering a 

coding sequence. It is potentially the shortest when compared to the other conversions: 470 bp 

between the two adjacent markers (Fig.27). 

The average SNP density was low compared to the other regions as well: 1.715 SNPs per 1 kb 

with a variance of 0.9785 for the entire region. All three conversion tracts were located within 

regions having on average 1 SNP per 1 kb (A haplotype map of human genome, 2005). To 

determine the minimum length of the third conversion tract, the tract was sequenced to find 

heterozygous markers.   

The Tajima’s D value within conversion tracts was positive, but not significant (below 1). 

Interestingly, the first two and the third conversions are separated by a 100 kb interval, which 
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contains a 30 kb region of negative Tajima’s D values (above - 1.5). Thus far, there has been no 

indication that this region is a candidate for a selective sweep.  

 

 

  

 

Fig.27. Third gene conversion tract within ENr332. Conversion tract is in blue; distribution of 
degenerate motif associated with recombination hotspots, International HapMap Consortium fine 
scale rates (Altshuler et al., 2005) are in grey; deCode recombination rates, sex-average; the 
genes from UCSC, the genes from UCSC, SNP density for the American Utah population of the 
European origin (CEU), Tajima’s D estimate for the European population (2004 Assembly) and 
the current Encode region are indicated. 

 

The ENr332 region was also screened for the presence of a common sequence degenerate motif 

and the core motif associated with the hotspots. Again, the distribution of the degenerate motif 

hits was uniform, unassociated with the few hotspots present in this region, according to the fine- 

scale map (A haplotype map of human genome, 2005). Although the ENr332 average 

recombination rate was low compared to the other three Encode regions, 122 degenerate motif 

hits were detected – the highest number of the motifs identified among all four Encode regions. 
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The first two conversion tracts had at least one motif hit within the tracts and the third one had a 

motif hit 50 bp outside of the tract.  

Moreover, the ENr332 region had the highest number of the core motif hits among other the 

regions (four hits). All of them were outside of conversion tracts and one was located within a 

100kb interval separating the first two and the third (Fig. 28). 

 

Fig.28. Common sequence motif associated with hotspots in ENr332. Conversion events are 
in red, green and blue; distribution of the common motif associated with recombination hotspots, 
International HapMap Consortium fine scale rates (Altshuler et al., 2005) are in grey, deCode 
recombination rates, sex-average, the genes from UCSC, the genes from UCSC, SNP density for 
the American Utah population of the European origin (CEU), Tajima’s D estimate for the 
European population (2004 Assembly) and the current Encode region are indicated. 

 

Among all conversion events, the three identified within this region had the highest GC content. 

Within the first conversion tract, GC content was 56%, within the second 42%, and within the 

third 62%, which is significantly high. One of the possible explanations for the highest CG rate in 

the third conversion is that the first two are located in introns, whereas the third is in the intron 

and the exon.  

The CpG observed fraction for the tracts was on average from three to eight fold lower than the 

expected (Table 2).      
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3.5.5 Conversion tracts in ENm003 

The three conversion tracts found within this region represent the most intriguing finding among 

all the others. In three sperm cells, these events were presumably initiated or terminated within 

the same site, which was 1.5 kb away from the BUD13 Homo sapiens homolog transcription 

termination site. For the shortest tract, two markers identified a “converted” pattern relative to the 

other haplotypes. For the middle tract, three markers identified such a pattern and five markers in 

the long tract. Starting from the long tract, the sizes of the tracts were 9599 bp, 3580 bp and 1996 

bp, respectively (Fig 29). 

 

 

  

Fig.29.Gene conversion events in ENm003. Conversion events are in red, green and blue (full 
mode); distribution of degenerate motif associated with recombination hotspots (dense mode), 
International HapMap Consortium fine scale rates (Altshuler et al., 2005) are in grey (full mode), 
deCode recombination rates, sex-average (dense mode), the genes from UCSC (pack mode), the 
genes from UCSC (pack mode), SNP density for the American Utah population of the European 
origin (CEU), Tajima’s D estimate for the European population (2004 Assembly) and the current 
Encode region are indicated. 
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The recombination rates provided by maps of different resolution yielded different estimates for 

the region where the conversions were: 2.1 cM/Mb according to the broad-scale (deCode map), 

which is an average rate, and 0.115 cM/Mb according to the fine-scale map (HapMap fine scale 

rates, phase 1 and 2, 2006), which identifies cold spot “valley” within this area. 

The SNP density was 2.28 SNP per 1 kb with a variance of 2.12, which is also in line with the 

low recombination rate observation. The number of SNPs per 50 kb within this region was 87. 

Tajima’s D was positive (below 1) in part of the region and negative (down to -2) in the other 

part, which can indicate positive selection or population expansion. 

The region was also screened for the presence of degenerate and core motifs associated with the 

hotspots. Sixty-five total hits were identified for the degenerate motif. Clustering was not 

observed as in previous cases. Although the conversions were detected in the area with very low 

recombination rate (A haplotype map of human genome, 2005), there were four motif hits within 

the long tract. For the core motif there was only one hit per ENm003 and it was outside of the 

conversion tracts (Fig.30). 

 

Fig.30. Common sequence motif in ENr332. Conversion events are in red, green and blue; 
distribution of common motif associated with recombination hotspots, International HapMap 
Consortium fine scale rates (Altshuler et al., 2005) are in grey, deCode recombination rates, sex-
average, the genes from UCSC, the genes from UCSC, SNP density for the American Utah 
population of the European origin (CEU), Tajima’s D estimate for the European population (2004 
Assembly) and the current Encode region are indicated. 
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The CG content within these conversions was 44%, 40% and 38% for the long, middle-size and 

short, respectively. There was no evidence that these tracts are CG biased. 

The CpG observed fraction in all the tracts was on average three to five fold lower compared to 

the observed (table 2). 

The increased conversion rate within this site can indicate the presence of individual conversion 

hotspot. The distribution of haplotypes (Fig. 35, appendix) shows presence of major allele in the 

the haplotype with minor allele prevalence.   

3.5.6 Cross over ENr312 

The third cross over haplotype was identified in ENr312. The event occurred within the first 100 

kb interval (Fig. 31).  

 

 

 

Fig.31. Cross over event in ENr312. Cross over haplotype in the first 100 kb interval, the 
putative cross over are painted in purple, initial two non-recombinant haplotypes are in red and 
blue; distribution of degenerate motif associated with recombination hotspots, International 
HapMap Consortium fine scale rates (Altshuler et al., 2005) are in grey, deCode recombination 
rates, sex-average, the genes from UCSC, the genes from UCSC, SNP density for the American 
Utah population of the European origin (CEU), Tajima’s D estimate for the European population 
(2004 Assembly) and the current Encode region are indicated. 
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The recombination rates from available maps are quite high within this region: 2.7cM/Mb broad- 

scale (deCode map) and from 0.0116 up to 44.301 cM/Mb on the fine-scale (HapMap fine scale 

rates, phase 1 and 2, 2006). The interval had no coding sequence, but a HNT gene starts right 

outside the boundary of this interval.  

The SNP density in this first 100kb interval was 2.62 SNPs per 1 kb with a variance of 2.462.  

The average number of SNPs per 50 kb was 94.  

Tajima’s D value was considerably positive (above 1.5), indicating balancing selection or 

population decline. 

Although the region presented high variation in the recombination rate, only 47 hits for the 

degenerate motif associated with the hotspots were detected. Twenty-five percent (12) of these 

motifs were identified within the first 100kb interval showing a cross over pattern. The 

distribution was uniform without association to any particular hotspot.  

Three core motif hits were identified for this region. One of them was located in the first cross 

over interval (Fig.32). 

 

.  

Fig.32.Common sequence motif in ENr312. Cross over haplotype in the first 100 kb interval, 
distribution of the common sequence motif associated with recombination hotspots, International 
HapMap Consortium fine scale rates (Altshuler et al., 2005) are in grey, deCode recombination 
rates, sex-average, the genes from UCSC, the genes from UCSC, SNP density for the American 
Utah population of the European origin (CEU), Tajima’s D estimate for the European population 
(2004 Assembly) and the current Encode region are indicated.
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Table 2.      Summary of identified conversion tracts and genomic features 

 

Encode 
region 

Minimum 
length 

(between 
2 adjacent 
markers), 

bp 

Beginning 
position 

End position Locus specific 
location 

GC 
content 
(within 

each 
tract) 

% 

CpG fraction 
(within each tract) 

Average 
SNP density (per kb) 

#SNP 
per 50 

kb 

      observed expected mean variance  
Near 

ENm009 
2095 5799485 5801580 Second intron 

Trim5 
37.3 0.0056 0.0334 2.47 2.349 91 

ENr332 3104 64243595 64246699 second intron of 
NRXN2 

57.9 0.016 0.0802 1.715 0.9785 41 

ENr332 1136 64254922 64256058 7th intron of 
RASGRP2 

43.4 0.0121 0.045 1.715 0.9785 35 

ENr332 470 64325109 64325579 7th intron and 8th 
exon  MAP4K2 

63.3 0.029 0.0942 1.715 0.9785 33 

ENm003 9599 116112851 116122450 1.5 kb away from 
BUD13  

44.9 0.0097 0.0483 2.28 2.12 87 

ENm003 3580 116118870 116122450 1.5 kb away from 
BUD13 

41.3 0.0107 0.0409 2.28 2.12 87 

ENm003 1996 116120454 116122450 1.5 kb away from 
BUD13 

39 0.0079 0.0366 2.28 2.12 87 
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4. Discussion 

4.1 Analysis of correlation between SNP density and recombination rate in the human 
genome 

Our analysis of SNP data sets available from 1998 and different broad-scale recombination maps 

revealed the presence of weak positive correlation between SNP density and recombination rate 

and negative correlation between heterozygosity and recombination rate, which can be explained 

by limited amount of validated SNPs with defined sample size used to calculate the correlation 

coefficient.  The cause of the correlation is highly debated and uncertain. Yet another uncertainty 

is the magnitude of the correlation, due to the high variation that is observed. The correlation 

depends largely upon the amount and quality of SNP data, as well as the quality of the 

recombination maps. The analyzed data can be divided into two groups. 

First is the data from early years (1998-2004). This period is characterized by a sparse amount of 

publicly available SNPs in 1998-2001, intense accumulation of SNPs in databases (e.g., dbSNP) 

in 2002-2004 and low resolution recombination maps (genetic maps from pedigree studies). 

Second is the data from later years (2004-2007), which has better annotation of polymorphic 

alleles and a higher resolution of recombination. 

In the early years, despite the quality of SNP data, there is a strong positive correlation between 

SNP density and recombination rate, especially using the data from 2000-2001. The magnitude of 

correlation decreases with the arrival of new data sets with larger sample sizes. One possible 

explanation is that SNPs with rare alleles are abundant in the genome, but can be detected only in 

large samples.  Another reason that could influence the fluctuation of the correlation is the quality 

of the recombination maps. Although SNP data varied greatly from year to year, the 

recombination sources remained the same: broad scale and low resolution. For the SNP data from 

2006 and 2008, a better resolution quality map was used (HapMap), which showed slightly 

negative or slightly positive (in the case of chromosome 11) correlation. In other words, high 

resolution and fine scale data demonstrate no correlation. This observation supports the 

hypothesis from Spencer et al. 2006 showing that recombination influences genetic diversity at 

the hotspot level, since both diversity and recombination were positively correlated with sequence 

composition.. Positive correlation can be observed with the broad scale data, but is very weak or 

absent at a finer scale, as well as in cases when correlation was calculated for the separate 

chromosomes. The broad scale association between diversity and recombination can be explained 
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by the fact that both genomic features (diversity and recombination) are associated with base 

composition (such as GC content) and, thus, correlate with each other through base composition 

biases. Fine scale recombination events are known to cluster into narrow hotspots. They evolve 

fast and according to the hotspot paradox, “die” fast on the evolutionary scale (Spencer et al. 

2006). Thus, they cannot influence the substitution rate and do not change long-term molecular 

evolution.  

 

4.2 Analysis of experimental cross over data 

The experimental aim of this study was to estimate the cross over rate in four Encode regions on 

human chromosome 11 by high resolution sperm typing and compare the results with those from 

LD-based maps. The regions were selected by their chromosomal positions (telomeric, 

centromeric) and predicted recombination rate (high, low). All Encode regions were divided into 

100 kb intervals with informative SNP markers flanking each interval. 24 SNP markers were 

genotyped at each locus, determining the phase of each of the two markers and categorizing it as 

having a recombinant or non-recombinant haplotype.  

One of the intriguing findings regarding our experimental observations is the lower cross over 

rate identified in all four Encode regions (0.12 cM/Mb), in contrast to the expected 1.875 cM/Mb 

(deCode sex-averaged).  

A few studies (Cullen et al. 2002, Clark et al. 2007) reported decreased estimates by an order of 

magnitude for cross overs detected by sperm typing, in contrast to rates from patterns of linkage 

disequilibrium (LD).  

One explanation of this phenomenon could be the significant individual variation in the 

recombination rates (Coop and Przeworski, 2007). Some sperm typing reports (Jeffreys and 

Neumann 2002, Carrington and Cullen, 2004) have demonstrated variation in fine scale rates, as 

well as in the intensities of individual hotspots. According to this assumption, our observation 

could be the individual genomic characteristic of a particular donor. The size of the entire 

screened area (2.5 Mb) and location of separate Encode regions are ambiguous factors for this 

hypothesis. The entire area is large enough to show both differences and similarities in 

experimental rates compared with LD data.   
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Another explanation could be sex-specific differences in recombination rates. Males have been 

confirmed to have lower cross over rates compared to females (Coop and Przeworski, 2007). To 

test this hypothesis, we obtained the average male-specific rate from the deCode recombination 

map for the four Encode regions (1.9 cM/Mb), which appeared to be even higher compared to the 

sex-average (1.875 cM/Mb) for the same Encode regions. However, the distribution of the male 

cross over rates is uneven, from 0 cM/Mb in the centromeric regions to 3.0 and 4.7 cM/Mb in the 

telomeric regions, when looking across chromosome 11. Such a distribution supports the 

hypothesis that females have higher cross over rates in centromeric regions and lower rates in 

telomeric regions, whereas the converse is true for males. Our data is in line with this hypothesis, 

since three experimentally obtained cross over events were detected in telomeric regions on both 

chromosome arms. In the centromeric ENr332 and ENm003, only gene conversions were 

identified.   

The lower recombination rate 0.12 cM/Mb compared to the expected theoretical rate 2.5 cM/Mb 

(based on the assumption that at least 1 % of recombinants are expected in 1 Mb, see chapter 3.3) 

can partially be explained by the relatively small sample size; 1000 cells did not produce a 

resolution high enough to detect fine-scale rates, although the markers were spaced to identify at 

least 1% of recombinant haplotypes per 1 Mb. In case both conversion and cross over events are 

considered the rate is 0.4 cM/Mb. 

What, then, is considered as a “recombination rate”? Is it the initiation of the double strand break 

(DSB), or the resolution of the Holliday structure and number of cross over events that actually 

form? The current hypothesis (Kauppi, Jeffreys and Keeney, 2004) is that meiotic cells make a 

large excess of DSBs relative to the number of cross overs that actually form. Since every DSB 

must be repaired, this means all excess breaks must be processed and be resolved in a non-cross 

over configuration (such as gene conversion). Thus, local variation in crossover frequency could 

reflect not only variation in DSB frequency, but also variation in how probable it is that a DSB 

will give rise to a cross over instead of non-cross over outcome (Kauppi, Jeffreys and Keeney, 

2004). 
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4.3 Analysis of gene conversion events 

Since the initial aim of this study was to obtain experimental cross over rates and compare them 

with diversity levels, the identification an excess of gene conversion events in recombinant 

haplotypes was quite surprising. Nevertheless, all conversion events were confirmed with at least 

two heterozygous markers. The conversion minimum tract length was estimated as the distance 

between two adjacent SNPs which have the converted haplotype. 

Another finding is that conversion events outnumber cross overs by two-fold. This is especially 

interesting when considering conversion events that were identified around markers flanking 

100kb intervals. For our purposes, we considered only those conversions for which at least two 

informative markers were identified to confirm the event as a conversion. According to our 

observations, heterozygous alleles are more rare compared to non-heterozygous SNPs; as such, 

only confirmed conversions with an average length larger than 300 bp were considered in this 

study. The mean length of conversion events was calculated before as 55-290 bp (Jeffreys and 

May, 2004). It is likely that in our study most of the events are missed due to the unavailability of 

markers to confirm them. In addition, the data of all conversion events within a 100kb interval are 

missing as well; therefore, conversion rates can be only calculated for the small fraction (25-30 

kb per region), where markers were placed. 

The regulation of gene conversion length is another controversial aspect. It remains unknown 

whether short–tract gene conversion and long-tract gene conversion arise by distinct mechanisms 

in mammalian cells. Only in one of the studies did the Rad51 paralog Rad51C show itself to be 

involved in the control of homologous recombination (Innen et. al, 2006). In the absence of 

Rad51C in hamster cells, gene conversion seemed to be biased for long tracts. The authors 

proposed a hypothesis that long conversion tracts (at least in the cells they studied) are the 

products of a distinct mechanism of a repair synthesis (such as recombination dependent 

replication in E. coli), whereas the short tracts were the outcome of conventional gene 

conversion. 

Nevertheless, the difference between cross over and conversion frequency is in agreement with 

current observations within the recombination hotspots. Sperm typing of “super” hotspots 

revealed increased conversion rates when compared to cross over intensity at an average ratio of 

10:1 (Jeffreys and May, 2004).  A plausible explanation for the data could be that conversion and 
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cross over are initiated at the same sites. From this perspective, it is possible to consider gene 

conversion as a way of Holliday structure resolution at the sites where the exchange of alleles is 

not favorable, but still some information transfer to increase allele variability is required. These 

sites primarily include coding sequences, which have to maintain peptide conservation, and 

where linkage distortion could lead to undesirable consequences. All of the conversion events 

identified in this study are either intergenic (as in case of conversions in ENm003) or located in 

the introns of genes. 

The contribution of gene conversion to formation of local haplotype patterns is considered to be 

more significant than the reciprocal recombination contribution (Jeffreys and May, 2004).     

 Yet another reason to favor gene conversion over crossover could be a shorter conversion tract 

transmitted from one DNA molecule to another. However, our results do not agree with this, 

since most of identified tracts longer than 1 kb. One reason for this disagreement could be our 

consideration of only a limited number of conversions that were confirmed by heterozygous 

markers. Thus, the data are more in line with our observations. At present, there have been only a 

limited number of gene conversion long tracts reported (Losekoot et al, 1997), and they come 

from rare germline inversions or double recombination events. In light of this, the conversion 

tract of almost 10kb long, which was identified in the ENm003 region, is a candidate for a double 

recombination event, although no direct evidence was found to confirm the double recombination 

between flanking markers specific for this tract.    

The average conversion tract length identified was 1.5 kb (with the upper bound of almost 10 kb 

and the lower below 500 bp), which means that our data exceeds by at least a 1 kb  the current 

experimental observations of other sperm typing investigators. The explanation for this 

phenomenon could lie in the following: other investigators attempted to look at conversion 

activity inside hotpots and, thus, concentrated specifically on observations within 1-2 kb 

intervals. Our analysis covers 2.5 Mb of chromosome 11 in total and we did not target specific 

hotspots, but one of the goals of this study was to track the conversion length identified only at 

the sites of first set of markers spaced 100 kb from each other. One of the reasons why converted 

tracts are shorter in the hotspots is because of high recombination initiation frequency within 

“super” hotspots, converted regions become smaller as a hotspot evolves. Consequently, nearly 

conserved coding sequences where non-frequent resolution of the recombination initiation will 
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favor information transmission from one allele to the other, rather than the breakage of linkage 

association and rejoining between molecules -- the conversion tract could be large enough to 

contribute sufficiently to some degree of allele diversity.  

At a broad scale, recombination rates are known to increase with gene density due to the 

proposed association between recombination and transcription (Petes, 2001). On a finer scale, LD 

studies have shown that hotspots and coding sequences do not prefer to share the same location 

sites (Coop and Przeworski, 2007): the rates decrease near the genes. Besides the fact that 

population data can be influenced by selection and, thus, are ambiguous to interpret, another 

explanation could be that broad scale rates count only recombination initiation sites without 

resolution of Holliday structures. Therefore, the increased conversion rate accompanying cross 

over events can significantly increase the rate near coding sequences and influence the broad 

scale estimates. 

Another reason for increased gene conversion rates compared to cross over rates could be the 

distorted transmission ratio (Webb et. al., 2008) of haplotypes. The over transmission of 

haplotypes is not surprising: it was previously shown in a few human and mouse hotspots 

(Jeffreys et al., 2005). Our results could be considered as support for this theory in the sense that 

we revealed the prevalence of one haplotype over the other. First, analysis of the two reference 

haplotypes revealed that one of them (“black”, Fig. 21) consisted primarily of major alleles of 

heterozygous markers used for initial screening to detect cross over and conversion events. Thus, 

the other haplotype consisted primarily of minor alleles. Interestingly, five out of seven sperm 

cells with indentified conversion events had a “white” haplotype with a “black” allele transmitted 

as a ”one-site exchange”, whereas only two had the “black” haplotype with a transmitted “white” 

allele. Also, in all three sperm cells with cross over events, the prevailing haplotype was the 

“white” one.  

Such a distortion could lend credence to the existing variation in cross over events between 

males. Such prevalence of one allele over the other could result from transmission of information 

from one allele to the other more frequently compared to cross over. In the context of our data, 

this means that the “black” haplotype could be suppressed, with systematic over-transmission of 

markers into cross over progeny (Webb et. al., 2008).   
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One reason for the segregating distortion observed is the subtle disparity between haplotypes in 

the recombination initiation rates (Webb et. al., 2008). Alternatively, subtle mismatch repair 

biases could lead to biased gene conversion in cross overs. The alternative explanation could 

reflect why so many “black”/major alleles are transmitted onto “white” haplotypes in the 

identified conversion tracts.  

Another aspect is whether gene conversion is GC biased or not. According to Galtier (2003), gene 

conversion is GC biased not only in humans, but also in amphibians and birds. This is connected 

to fact that GC→AT mutations are more frequent than AT→GC mutations. We investigated GC 

content within all identified conversion tracts. Except for the shortest tract in ENr332, there was 

no significant increase in the GC content. The longer conversion apparently had lower GC 

content, whereas in some shorter tracts, GC content was up to 53%. In the shortest tract, GC 

content had the highest rate at 62%. Since it is located in the MAP4K2, which covers both an 

intron and an exon, and as Galtier reported, he used histone genes for GC content comparisons, 

the fact that this conversion tract covers the coding sequence in contrast to other tracts could have 

contributed to the increase in CG content. Half of the identified tract was found in the exon.  

CpG dinucleotide expected and observed fractions were also investigated for all conversion 

tracts. The observed fraction was always (table1) lower when compared to the expected. Since 

CpG islands are known to be concentrated in the upstream regions of genes and to be anti-

correlated with DNA methylation, we hypothesize that a decrease in CpG dinucleotides could be 

associated with extensive methylation of the DNA region where the conversion tracts are. 

However, two studies contradict our hypothesis. Hoegstrand and Boehme (1999a) detected gene 

conversion in the major histocompatibility complex genes, which were associated with CpG-rich 

regions. Matyasek et al. (2003) found increased gene conversion in under-methylated DNA 

regions in Nicotiana rustica. 

Although we observed very few cross over events, they were identified in the regions with a 

density of more than four SNPs per 1 kb (ENm009, ENr312). In contrast, conversion events were 

found in the regions with lower SNP density (2-3 SNPs per kb). Most of the converted tracts were 

intergenic or in introns – close to coding sequence with expected decrease of SNP density. Based 

on the scarse amount of data, there is little can be said about correlation between SNP density and 

recombination rates. 
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We were also unable to find any association between conversions or crossovers and a common 

sequence associated motif; neither a common motif family, nor a specific core motif, which is 

very rare in our considered Encode regions (maximum four).   

 

Summary of the results 

We demonstrated that the positive correlation between SNP density and recombination rate 

observed with broad scale data is the result of an association of both features with base 

composition, in contrast to the observation that with respect to fine scale data, this correlation is 

close to zero. 

The low experimental cross over rate is either due to sex specific variation or due to individual 

variation in a particular donor. 

The cross over rate can reflect the variation of the cross over initiation that can be later resolved 

into reciprocal and non-reciprocal outcomes. Based on this assumption, our rate estimate could 

very well exceed 0.12 cM/Mb if conversion events are also taken into account. 

We confirm the higher number of gene conversion events compared to cross overs (seven versus 

three). These conversion events were identified at the sites of marker location. The 100kb 

intervals are not taken into consideration as well as those conversion events which were 

impossible to confirm with other heterozygous markers. Thus, the ratio between conversion and 

cross over should be much higher for conversions. 

The segregation distortion could be the reason for the higher transmission of major alleles from 

one of the haplotypes (“black” Fig. 20) to be transmitted to the “white” haplotype, with greater 

prevalence for minor alleles.  

The identified conversion tracts are not CG biased, except a single tract with the size below 

500bp. Underrepresentation of CpG islands within the conversion tracts could be suggestive of  

extensive DNA methylation within these regions, but as of yet, this is mostly conjecture as at this 

point, no other studies have either confirmed or refuted such a hypothesis. 
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Lastly, we observed neither a correlation between the SNP density, nor an association with 

common sequence motifs defining hotspots. 

 

 

Implication of the study 

The theoretical and experimental results in the context of current knowledge regarding the 

correlation between nucleotide diversity and recombination rates, and in the context of 

recombination and gene conversion activity provides better insights into the inherent variation of 

the genomic landscape. 

Outlook 

1. Theoretical approach: to study the association of diversity and recombination with base 

composition. 

2. Experimental approach: to avoid individual bias in cross over and gene conversion; 

another donor of the same origin (European) must be genotyped to confirm the obtained 

results. For differences in cross over and gene conversion at a population level, donors 

from different populations (non-european) must be genotyped.    
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Appendix 
Table 1. Haplotype screening loci for SNPstream analysis 
 

Region Marker ID Major 
Allele 

Minor 
Allele 

Forward primer Reverse primer Single base 
extension primer 

ENm009 Rs 10836571 G A cccttgaggacttcgagaga cacatgaagacttccctcct gcgcccttcttcgagaga 
ENm009 Rs12273277 G A gttccattacctcgcgggcg ttacgaggacatcgactga aaattttggagttcgcgcg 
ENm009 Rs 7933046 A G aactcggagtaccccgagc cggtcaagcactccgaaa gacttgatcccccaagag 
ENm009 Rs 7120612 A G tttgaaagcactcccatatac caaggaggacttcgcgcgc agcctgagtactacgactg 
ENm009 Rs 2855039 G A cggattgattacggcgagat agctagaagacatcgcccga cgcggatgacttctcagta 
ENm009 Rs 4462380 A G aaaccatgaggattggcctg tgcaagaggacctgttgactg aaggttacgacaacgttg 
ENm009 Rs 435810 A G gtccacgtcattcgtcagtca tcattgcatacttcgcctgagg ctccgattacggactccag 
ENm009 Rs2047459 A G acctgttgactaccgtattcg aaatggcctactctggactca atgcatgagacatggacga 
ENm009 Rs 12787013 A G cttgactacttcgagagagca actgacatgaacgatcagtac cgtacagtacagtccagta 
ENm009 Rs 2133266 A C ggatagcgtactatcgagaga agtcagtatagcagacacagt ttgcactgcattcccagtgc 
ENm009 Rs 1083658 T A gctgacgtgagcccagtgcc caagtgccgatgatccgatga tgacctatcgagagatgca 
ENm009 Rs 1433917 T C gctccagaatactaccgtaac aaacttcaagtcgggaattcag cgatcatgactgcagtcgt 
ENm009 Rs 11035066 C T cagtgacgtcttgcaccagt aagctcctcgattgacgatgca gcagtcattatcagtctcg 
ENm009 Rs 2499948 C T gccagtaccatacttgcaac cgtagcagtcgatgcagtccc cgtgcacttcgggaactt 
ENm009 Rs 2011051 C A tctacgatgcgggtactccga ccagacgtgaactacccgtg cagtagccaaactatcac 
ENm009 Rs 2723375 A G aacgtgacggtgccagtcgt tgacgtacgctacgtatcagcc cacacatccgtagcagttt 
ENm009 Rs 11821912 A T gacgtagcgttcccgtcacag cagtgaccgtagcgatgacag tcacgtgtttcagtgatcg 
ENm009 Rs 11038414 A T acatccgccgacttgacccga tgtggatatccagtccgtgga aacgtgacagtgccgtga 
ENm003 Rs 10790152 A G agagatgattggccgttgcag cgtgccacagtgcgtgcgtgt cgtgcagtaaaccgtgac 
ENm003 Rs 17518841 G A gcctagcgtcgatgcccgtg ggtgactccgtgcagtgcgtg tatatgtgacgtgacttgc 
ENm003 Rs 675 T A ccagtgacgccagtgaacgt cacagtgccgtgtgtacacgtg ttgatgcgactgatgccgt 
ENm003 Rs 10502221 C T cacgtgacgtgtgcacccgga cgcctgagtcacactggtggc accgtgatccgatgatga 
ENm003 Rs 11216267 C T gatgcagatcccgtgacacag ggagtccgtcgcttgctggcc cgtaggtgtccgttggag 
ENm003 Rs 7116825 A C ggcagtcgcacgtgcgccccg cacgtgacgtgttgcagtgcg tatataacttgcgtgacgt 
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ENm003 Rs 1145196 A G atgacgtgacccgtgaccgtg gtgacgctgattcgtgaccgat cgatcagttccgtagcca 
ENm003 Rs 1263055 T C gaccacgtactccagtgtatga cgatgcacagtgccgatgccc ttgtgacttgcagtgccac 
ENm003 Rs 6589582 C A ccgcgctgacctgaggacgttt tctcacttgacccgtgcgtgttg atgaccgttcttcagtggc 
ENm003 Rs 5678626 A G agagttgtccacttccgatgaa cgtagcaaatggtagacgttaa cgatgagacgtgaaagg 
ENr332 Rs 11601686 C T gtgcacgtgaaccgtggcgtg tatgctcgtgacgtggtcaaaa cgtgaacgacttccgttac 
ENr332 Rs 11231816 G A caacacactgcacaggtgccc cgacgtgaccacgttgacata cgtgactgaccgtacgtg 
ENr332 Rs 500531 T G cgtgactagcccacagagatga gatcactgaacgtcccgtgaac ttcaacacagtgagagcct 
ENr332 Rs 10897526 T C gccactgactcacgtgtgcttac agtgcccgttaactataccacgt ccgtgactgtgtttccacga 
ENr332 Rs 618006 T C tagtgcacgagacacttggtgca ttgtgcacccggtgcactgaccc cccaccactctgtgactga 
ENr332 Rs 1601686 C T gcttaacgtgaaccacttgatag tgtcatcatatcaggtgcccctg acacgtgcattgcatagttc 
ENr332 Rs 4930423 T C gcacttccacggtgtatagcggc cactgtgcatagctccgtgcac cggggtgactagtctgcaa 
ENr332 Rs 7124676 A G cttgtgacatgactcccggtaag tgtgcaactagcgcgctgactta gtgcaacgtcccgtgaatg 
ENr332 Rs 2666559 A C gcattgtgccaacccgtgggct aactggataccgtgtacgtactt acgtaacgtagcgtacgta 
ENr332 Rs 660543 A G cgtgactagtcgccgtgacgtg cacccaaactggtgcccgtgtc accgtgaacccgtgatagc 
ENr312 Rs 1628402 G A ccagtgaccaccagtgaaaatg tgatgcaatgccgttatagcact ccgtgaatgcatgcatgctg
ENr312 Rs 11222584 G C cactggcgtgaccagttgtggt cggtgaccgtgacgtgacgtgt atgccgtggaactgacctg 
ENr312 Rs 10894402 G T gtgtgtgaccccccacaccata cactggcctgaacgcgtagcc ttattatgagtcgcgcggg 
ENr312 Rs 10894420 G A cgtgttgttgaaaacgtgttgtg cgtgagttgtgaacgtggcctgt gtggtgaccgtgagcctat 
ENr312 Rs 704629 A G gactgattgcgcgtagccagtt ccatgagcccgtaaagtgctgtc tagccccgtcctaggccca 
ENr312 Rs 1113928 G A gcgtgatcgaacagtgaattag ttatagaagtgccacatgatgaa atatgcagatagcaccaca 
ENr312 Rs 1241896 C T atctggatgcgctggcatgaaa tagcctgagagccagtagagag ccacgtgaaaccgtgaga 
ENr312 Rs 10791148 A G gactttggtgtccgtgctgattg tagatgatgatagtcccgtgatga ccgtgatcccgtgatggct 
ENr312 Rs 7121221 G A cagtggtgaccgcagtcgtgc ctgtcacgtgaacaccaggtgc tgatccagttgcgtgaccgt 
ENr312 Rs 2658873 G A atgaccgtgacccagtgacca ggtttaccgtgaccggtgatccg ccgtgttaccgtgagtggtt 
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Table 2. Confirmation SNPs for cross over and gene conversion events (with recombinant haplotype) 
 

Region Event Marker 
position 

Major 
Allele 

Minor 
Allele 

Forward primer Reverse primer Nested forward primer 

ENm009 Cross over 5611969 A G cgtttgagggtttcgatgccc accgtgatagcgatgatgtcgt caccgtgatgcgtgagtcg 
ENm009 Cross over 5604295 A G cagtgatgctaccgtttgacca agtgctgtcaccccgtggtacc cccgtgagctatgtgatccg 
ENm009 Cross over 5728880 T C gcatatgacatgcgtgacgtcg acccataagtgatatattacg cgtactgccagcgttgccga 
ENm009 Cross over 5733786 A G ggttaccagtagttgaccagtt tgaccagtggcccacatgaa agagcctaaccatgtgaaat 
ENm009 Conversion 5799485 G A atgccgatgaccagtgaccgt aaccagtgaaagaacttgga ccagtggcaaacctgtggg 
ENm009 Conversion 5801580 G A tttttattgagcctgccaaaatt accatgatcccgtgattcacg acacgtccgtgatggaata 
ENr332 Conversion 64243595 T G tacgtgtctactgtgaagaaa tacactgagctaacctgagtt ccaactggactgacttataa 
ENr332 Conversion 64246699 G A ttcagtcgtagtcgatgatacc acctcgtgagcggatgatag gaattgcgatccctagccgt 
ENr332 Conversion 64254922 A G tccgatcagtgagagcgtgt cccatgatgcggcacaccagt cgtagccgtgatcggatgcg 
ENr332 Conversion 64256058 T C ccagtgccagtgcccgatgc cagtgaattgcggtaggattgt cggtaccgtgagcgtaggc 
ENr332 Conversion 64325109 A G cagtgggaccgcgctaggtc acgtggcgcgtgcggtcgggt ggtgccacgtgcacagtgg 
ENr332 Conversion 64325579 G A cggtgaccgcgtgaccgctg cggtgaccagtcgtaggcgt cgtagccagtgaaaccacctg 
ENm003 Conversion 116122450 A C gtagccagtaggtgaccgtga ctgagcccgtgaggcttgaa ccgtgctgctaaaaaaccgtg 
ENm003 Conversion 116120454 G A cgcgtaggcgtccggtaggc acacgtagacgcgtggccc cacacgatgaccccggctga 
ENm003 Conversion 116118870 A G ttcgcgccgtgagaaatgcgc cgcatcgtgataacacgacca attgcgtcgaccgtaggcccc 
ENm003 Conversion 116115657 G A acacgtcggtacgatgcgtgg acacacccgtttgatgcccc ctcgagcgtagaatatgcgttt 
ENm003 Conversion 116113369 C T agagatgcgtccgtgagccc acacagtagacgccgtagcg accagtgagaccgtgagctcg 
ENm003 Conversion 116112851 A G attacgtagaggtgccgtgag ggctgacacaggcgtagcagt ccgtagagtgagagtggttgaa 
ENr312 Cross over 130605008 G A gagcgtgccgctggcgccc tatatgagcatattccagtgaa acacgtgacctccgtgagaaa 
ENr312 Cross over 130606132 A T cggatgagcaacgatgtcgt acacgtcgtgaggctttgag ccgtaggagacgctgaggatgt
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Table 3. Confiramtion SNPs (with non-recombinant haplotype) 
 
Region Event Marker 

position 
Major 
Allele 

Minor 
Allele 

Forward primer Reverse primer Nested forward primer 

ENm009 Cross over 5475554 A G cagtgttcacgtgaccagtga gacagtgctgaccgtgatgc ttgatccgtagcaccagtga 
ENm009 Cross over 5485494 G A ggcagtttgacacacactgg tatgcgtgatccgatgttgagc accagtgatccgtgagggc 
ENm009 Cross over 5799485 A G gatgcggtgcggatggcgc taccagtagacgatggcccc accagtaggcgtgcgtagg 
ENm009 Conversion 5798932 C T acgatgagcgtagccgtagcg gagaggttgagcgtgagcc acacgatagatcgctgagca 
ENr332 Conversion 64242485 G A tgacacacggcaacgctgagc aactcgatgctccgtagcttc accatgacgtcgctgacccc 
ENr332 Conversion 64247135 A G ccatgcgtcgatgccccagatg tccgtcgacgctaggaccgt cagctgcgctacgatagcag 
ENr332 Conversion 64254003 T C cgctaagtggccatatatgcgtc ccatgtagcgccgtaccgtg aacgtggacaggttaccacga 
ENr332 Conversion 64256178 A G acactaagaacagtgcgaaa acacgatagagcgctagcgt aacacgatgcaaacacagtga 
ENr332 Conversion 64325036 G A cgtgcactagagctcgctgag ggcagttaccatgaatactg cagtagcccttgacgttgacc 
ENr332 Conversion 64325690 A G cgtgaccgtacacacactgg acacggaccaaattggatg aacctgatgcgctgacgttgaa 
ENm003 Conversion 116120364 A G gcgtactgacagtcgtcgctagc ctgacgtactagcgattttac actgacgtgacaatcgctagcg 
ENm003 Conversion 116119354 G A atgaggcgatcgatgatcggatg cagttcggatcgatggcgt ggtggccgatgaaccacattg 
ENm003 Conversion 116117359 A G cgtagcggtcgctagagcgtttga tatgcgatgctagcgatttga acctgagcgattcgtgacgtga 
ENm003 Conversion 116112803 G C agctgacgcgtgacgtcgaa tatgcgtgatcgagcggaaa aacgaacaccaaacttggccac 
ENr312 Cross over 130727143 G C atcgagatgcacgatagacaga cgatcggatcgctaggccaa taggcgtagccgatcgaccttt 
ENr312 Cross over 130729798 A G ggtcgctgaccaggctggatta atatgatgcgtgagacgatg agcgtgagaagcgcgcgaaaa 
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Fig. 34. Allele affiliation with two haplotypes for ENr332 with distribution of major/minor alleles between these haplotypes    
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Fig. 35. Allele affiliation with two haplotypes for ENm003 with distribution of major/minor alleles between these haplotypes 
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Fig. 36. Allele affiliation with two haplotypes for ENr312 with distribution of major/minor alleles between these haplotypes 
(confirmation alleles come on top in the loci where recombinant haplotype was detected). 
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Fig. 37. An example of the SNPstream scatterplot in GenGenos/QC review format with fluorescent signals on the vertical axis and 
fluorescent signal ratios on the horizontal axis. Three clusters represent three genotypes of the sample (Syvänen 2005). 
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Fig.38. FinchTV representation of alleles in bulk sperm (A) and single sperm samples (B, C) 
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List of abbreviations 

bp – base pair 

cM/Mb – centiMorgan per Megabase 

CpG – phosphodiester bond between the cytosine and guanine 

ddH2O – biodistilled water 

ddNTP – dideoxynucleotide 

dNTP - deoxyribonucleotide 

DNA - Deoxyribonucleic acid 

DSB – double strand break 

DTT - Dithiothreitol 

EDTA – ethylenediamine – tetraacetic acid disodium salt 

EtBr – ethidium bromide 

h - hours 

kb – kilo base 

KOH - potassium hydroxide 

LD – linkage disequllibrium  

M - molar 

Mb – megabase 

mM – milli Molar 

min – minutes 

ng - nanogram 
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PBS - phosphate buffered saline 

PCR – polymerase chain reaction 

rpm – rotation per minute 

SDS – sodium dodecyl sulfate  

sec – seconds 

TE – tris EDTA buffer 

Tm – melting temperature 

μl – micro liter 

% - percentage 
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