The teleost taar family of olfactory receptors:

From rapidly evolving receptor genes to ligand-induced behavior

Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

> vorgelegt von Ashiq Hussain aus Jampur, Pakistan

> > Köln 2010

Berichterstatter: Prof. Dr. Sigrun I. Korsching Prof. Dr. Jens C. Brüning

Tag der mündlichen Prüfung: 23 November, 2010

ERKLÄRUNG

Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen in der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von den unten angegebenen Teilpublikationen – noch nicht veröffentlicht worden ist, sowie dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Sigrun. I. Korsching betreut worden.

Köln, den 04. Nov, 2010

Teilpublikationen:

Hussain, A., Saraiva, L.R., Korsching, S.I. (2009)c Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc. Natl. Acad. Sci. USA. 106(11):4313-4318

Faculty of 1000 Biology: evaluations for Hussain A et al. Proc Natl Acad Sci U S A 2009 Mar 17,106 (11):4313-8

To my parents

I. Acknowledgement

This study was conducted in the system neurobiology laboratory of Prof. Dr. Sigrun I. Korsching at the Institute for Genetics, University of Cologne, Germany. This research was supported by the generous grant from the International Graduate School of Genetics and Functional Genomics (IGSGFG) at the Institute for Genetics.

Foremost, I pay my sincere gratitude to Prof. Dr. Sigrun I. Korsching for being a great mentor. I am very thankful to her for the support, advices and trust she bestowed on me. I learnt from her the meanings of patience, coordination, candidness and how to tackle daily life of a science laboratory. I am very contented that I had the opportunity to spend ~4 years in learning, from culture to science, at her laboratory.

I will extend my acknowledgement to Prof. Dr. Jens C. Brüning and to Prof. Dr. Matthias Hammerschmidt for accepting to be in my thesis committee, for their interest in my research work, and for kindly serving as my thesis referees.

I greatly appreciate Dr. Stephen D. Liberles at Harvard Medical School for our successful collaboration and for inviting me to work in his lab for the identification of ligands for Trace Amine-associated Receptors (TAARs). I am also very thankful to David Ferrero, who reproduced the TAAR ligands results and did the HPLC analysis, Jamie K. Lemon for her help regarding methodological aspects of ligands identification assays, and Wayne Korzan for his technical advices in establishing the behavioral assay. Many thanks to Prof. Ansgar Büschges and Dr. Matthias Gruhn for providing room for establishing behavior assay facility and for their technical help in WINANALYZE motion tracking software.

I was humbled and honored for being accepted in the class of 2006 of graduate school. My family has a special bond of love and respect for Germany. I am the 3rd generation of my family to serve and study in Germany and I am obliged to this country for providing me the opportunity to learn and to the German people for being so civil and supportive. Many thanks are to Dr Isabell Witt, Brigitte Wilcken-Bergmann, Cathy Joergens and Joanna Majczak for their support in all walks of life at graduate school.

I was fortunate to have cooperative and ambitious lab fellows like Dr. Luis R. Saraiva, Dr. Yuichiro Oka and Dr YenYen Kewan to whom I indebt a great deal of valuable feedback and collaborations. Sincere thanks to Mehmet Saltürk for taking care of all lab equipments, fish room, computers and experimental material supplies.

I am in lack of words to thank my father who envision for the education of his children and migrated to a big city for this sole purpose. I am greatly thankful to him for financially and morally supporting me in my life. A great deal of thanks to my mother for taking care of the family, for staying awake with us during exams nights and for her all great sacrifices that she made with my father for their children's education.

Very special thanks to my wife Sofia Lyngemark Hussain for being a loving, supportive, caring and understanding life companion. I am thankful to her for understanding and accepting me to work in lab during weekends, for moral support in stressful experimental times (c-Fos and behavioral assays), for staying by herself while I attended international conferences and for all great things that she did for me. Thank you.

This page was intentionally left blank.

II. TABLE OF CONTENTS

I. ACKNOWLEDGEMENT	5
II. TABLE OF CONTENTS	7
III. LIST OF FIGURES	12
IV. LIST OF TABLES	
V. LIST OF SUPPLEMENTARY TABLES	
VI. ABSTRACT	14
ZUSAMMENFASSUNG	
CHAPTER 1	
VII. INTRODUCTION	
1. OLFACTORY SYSTEM	
1.1. Mammalian olfactory system	20
1.2. Zebrafish olfactory system	22
1.3. OLFACTORY SENSORY NEURON (OSNS)	24
1.3.1. Ciliated olfactory sensory neurons	24
1.3.2. Microvillous olfactory sensory neurons	25
1.3.3. Crypt sensory neurons	25
1.4. OLFACTORY RECEPTOR GENE FAMILY REPERTOIRE	26
1.4.1. Odorant receptor family (OR)	
1.4.2. Trace amine-associated receptor family (TAAR)	
1.4.3. Vomeronasal receptors family type1 (V1R)	

1.4.4. Vomeronasal receptors family type2 (V2R)
1.4.5. Formyl peptide receptor family (FPR)
1.5. OLFACTORY SIGNALING TRANSDUCTION
1.6. LIGANDS FOR OLFACTORY RECEPTORS
1.7. FISH BEHAVIOR
1.8. ZEBRAFISH AS A MODEL ORGANISM
CHAPTER 2
VIII. RESULTS
1. PHYLOGENOMICS, SELECTION PRESSURE, INTRON DYNAMICS AND CELLULAR EXPRESSION OF TAARS
1.1. TAAR genes encompass monophyletic origin distinct from aminergic GPCRs45
1.2. Rapid evolution of TAAR gene as a recurrent species-specific expansions in teleost46
1.3. TAAR genes are an evolutionary young family50
1.4. TAAR family is characterized by distinctive consensus motifs, despite the overall heterogeneity
1.5. Genomic arrangement of teleost TAAR genes pinpoints the evolutionary origin of class III
1.6. Gene duplication rate and gene divergence are much higher in teleost compared with mammalian species, suggesting a teleost- restricted rapid evolution of taar genes
1.7. Strong local positive selection in teleost taar genes is masked by global negative selection
1.8. Dynamic loss and gain of introns restricted to the class III of neoteleost taar genes. 60
1.9. Most taar genes are expressed in sparse olfactory sensory neurons
2. LIGANDS FOR ZEBRAFISH TAARS

2.1. DrTAAR13c recognize volatile diamines	65
2.2. DrTAAR13c activation requires at least 2 amino groups	68
2.3. DrTAAR13c is activated by polyamines	70
2.4. DrTAAR13c recognizes natural activators	71
3. BEHAVIORAL RESPONSE OF ZEBRAFISH TO DIAMINES	73
3.1. Zebrafish does not show specific behavior for water, a mock stimulus	74
3.2. Food induce attractive behavior in adult zebrafish	76
3.3. Diamines induce avoidance behavior in adult zebrafish	77
3.4. Zebrafish aversive behavior towards diamines is concentration dependent	81
4. DIAMINES ACTIVATE A SPARSE SUBSET OF OLFACTORY SENSORY NEUROI IN ZEBRAFISH OLFACTORY EPITHELIUM	
CHAPTER 3	87
IX. DISCUSSION	88
CHAPTER 4	94
X. MATERIAL AND METHODS	95
1. EXPERIMENTAL MATERIALS	95
1.1. Animals	95
1.2. Chemicals suppliers	95
1.3. Plastic ware	96
1.4. Preparation of solutions	96
1.5. Laboratory equipment	96
1.6. Nucleotides	97
1.7. Bacterial strain	97

1.8. Enzymes	97
1.9. Plasmids and vectors/properties	97
1.10. Primary antibodies	97
1.11. Secondary antibodies	98
1.12. Dyes, substrates, embedding media and counter stains	98
1.12.1. Alkaline phosphatase substrates	98
1.12.2. Horseradish peroxidase substrates	98
1.12.3. Embedding media	98
1.12.4. Dyes and counterstains	
1.13. Oligonucleotide primers	98
2. MOLECULAR BIOLOGICAL TECHNIQUES	101
2.1. Isolation, purification and quantification of DNA and RNA	
2.1.1. Isolation of genomic DNA	
2.1.2. Genomic DNA PCR	
2.1.3. Quantitation of DNA and RNA	
2.1.4. Agarose gel electrophoresis	102
2.1.5. Isolation of DNA fragments from PCR products or agarose gels	102
2.1.6. Ligation of DNA fragments and PCR products	102
2.1.7. Subcloning of DNA fragments by electroporation	103
2.1.8. Subcloning of DNA fragments by DH5α chemically competent E. coli	103
2.1.9. Colony PCR for identification of positive clones and determination of insert	length
2.1.10. Small scale plasmid DNA preparation (Miniprep)	
2.1.11. Phenol/chloroform extraction	
2.1.12. Ethanol precipitation	
2.1.13. Restriction enzyme digestion of DNA	105
2.1.14. Preparation of glycerol stocks	105
2.1.15. Sequencing of DNA	105
3. HISTOLOGICAL STUDIES	105
3.1. Preparation of cover slips	105
3.2. Tissue preparation and sectioning	106
3.3. Cryosectioning	106

3.4. Immunohistochemistry (IHC)	
3.5. In Situ Hybridization (ISH)1	06
3.6. Labeling of RNA using Digoxigenin, Biotin or Fluorescent in vitro transcription 1	07
3.7. In situ hybridization on sections of olfactory epithelia1	07
4. CELL CULTURE AND CRE-SEAP FUNCTIONAL ASSAYS USING HEK 293 CELLS	08
5. BEHAVIORAL ASSAY 1	09
6. DATA MINING1	10
6.1. TAARs	10
6.2. Phylogenetic analysis1	10
6.3. dN/dS analysis1	11
CHAPTER 5 1	12
XI.REFERENCES 1	13
XII.SUPPLEMENTARY INFORMATION1	22
XIII. APPENDIX	54
Abbreviations1	54

III. List of figures

Fig. 1. Schematic representation of mouse olfactory systems	22	
g. 2. General Organization of zebrafish fish olfactory system		
Fig. 3. Number of olfactory receptor gene in different species	30	
Fig. 4. The mouse olfactory signal transduction cascade	37	
Fig. 5.Phylogenetic tree of TAAR family members and estimated minimal evolutionary a	age	
	.47	
Fig. 6. Phylogenetic tree of the taar genes	48	
Fig. 7. The estimated minimal evolutionary age of TAAR subfamilies and genes	50	
Fig. 8. Amino acid sequence conservation in the fish taar gene repertoire	51	
Fig. 9. Subclass-specific amino acid sequence conservation	52	
Fig. 10. Correlation of phylogenetic distance with physical distance in 2 zebrafish geno	mic	
clusters	53	
Fig. 11. Maximal divergence within rodent and pufferfish subfamilies	55	
Fig. 12. Evolutionary distances and selective pressure on taar genes	57	
Fig. 13. A representation of site-by-site selective pressure for 3 TAAR sequences	58	
Fig. 14. Intron dynamics in class III neoteleost taar genes	60	
Fig. 15. Expression of taar genes in the zebrafish olfactory epithelium (OE)	62	
Fig. 16. Radial distribution of 4 TAAR genes	63	
Fig. 17. CRE-SEAP assay for 95 chemicals show activity for diamines and polyamines	65	
Fig. 18. CRE-SEAP concentration dependance activity induced by exposure	of	
DrTAAR13c to diamines	66	
Fig. 19. Chemical structures and EC50 values of ligands identified for DrTAAR13c	67	
Fig. 20. DrTAAR13c is exclusively activated by diamines (cadaverine)	68	
Fig. 21. DrTAAR13c show activity for different dilutions of rotten fish homogenate	69	
Fig. 22. HPLC analysis of rotten fish extract	70	
Fig. 23. Behavioral assay setup	71	
Fig. 24. Behavioral response of zebrafish to water	72	
Fig. 25. Behavioral response of zebrafish to fish-food	73	
Fig. 26. Behavioral response of zebrafish to cadaverine	74	
Fig. 27.The center-of-gravity differences for post vs. pre stimulus for the behavi	oral	
analysis	76	

Fig. 28.The dose-response of zebrafish to diamines	77
Fig. 29. c-Fos immunostaining of stimulus exposed zebrafish olfactory epithelium	
Fig. 30.Average number of c-Fos labeled cells/lamella in stimulus exposed ze	ebrafish
olfactory epithelium	80
Fig. 31. Dose-response analysis for cadaverine and diaminoheptane	81
Fig. 32. Summary graph for Ligand binding, c-Fos and behavioral assay	82

IV. List of Tables

Table.1 Mammalian olfactory organs and their respective receptors with possible ligan	lds21
Table.2 Number of taar genes and subfamilies in all species analyzed	45
Table.3 Primer sequences for cloning TAAR genes	94
Table.4 Primer sequences for in situ hybridization probe	95

V. List of Supplementary Tables

Supplementary Table.1 List of all taar and out-group genes	115
Supplementary Table.2 Global dN/dS values of TAAR subfamilies	138
Supplementary Table.3 Number of positively and negatively selected sites in	1 TAAR
subfamilies	138
Sementary Table.4 Selective pressures in Danio rerio odorant receptor genes	139
Supplementary Table.5 List of chemicals used in Cre-SEAP assay	139

VI. Abstract

Trace amine-associated receptors (TAARs) have recently been shown to function as olfactory receptors in mammals. In this current study, the taar gene family has been delineated in jawless, cartilaginous, and bony fish (zero, 2, and >100 genes, respectively). I conclude that the *taar* genes are evolutionary much younger than the related OR and ORA/V1R olfactory receptor families, which are present already in lamprey, a jawless vertebrate. The 2 cartilaginous fish genes appear to be ancestral for 2 taar classes, each with mammalian and bony fish (teleost) representatives. Unexpectedly, a whole new clade, class III, of taar genes originated even later, within the teleost lineage. Taar genes from all 3 classes are expressed in subsets of zebrafish olfactory receptor neurons, supporting their function as olfactory receptors. The highly conserved TAAR1 (shark, mammalian, and teleost orthologs) is not expressed in the olfactory epithelium and may constitute the sole remnant of a primordial, non olfactory function of this family. Class III comprises three-fourths of all teleost *taar* genes and is characterized by the complete loss of the aminergic ligand-binding motif, stringently conserved in all 25 genes of the other 2 classes. Two independent intron gains in class III taar genes represent extraordinary evolutionary dynamics, considering the virtual absence of intron gains during vertebrate evolution. The dN/dS analysis suggests both minimal global negative selection and an unparalleled degree of local positive selection as another hallmark of class III genes. The accelerated evolution of class III teleost taar genes conceivably might mark the birth of another olfactory receptor gene family.

Ligands have only been identified for a handful of olfactory receptors of mammals and insects, while only a single teleost olfactory receptor have been deorphanized, a member of the OlfC family, OlfCa. Zebrafish TAAR olfactory receptors of classI are good candidates for having amines as possible ligands, due to the presence of the aminergic ligand binding motifs. This study identifies diamines as specific ligands for a taar receptor, DrTAAR13c. These diamines activate a sparse subset of olfactory sensory neurons, as indicated by c-Fos expression in olfactory epithelium. Diamines, putrescine and cadaverine, are foul-smelling aliphatic polycations that occur naturally as a result of bacterial decarboxylation of amino acids lysine and arginine, respectively. The concentration of diamines in their environment is correlated to the degree of putrefication.

In the behavioral assay, zebrafish exposed to even low concentration of diamines show dramatic, quantifiable aversion, while it shows attraction towards food stimulus and no response for water. The ligand spectrum of TAAR13c closely parallels the behavioral effectiveness of these diamines. This data is consistent with the existence of a defined neuronal microcircuit that elicits a characteristic behavior upon activation of a single olfactory receptor, a novum in the vertebrate sense of smell.

Zusammenfassung

Seit kürzerer Zeit hat sich herausgestellt, dass trace amine-associated receptors (TAARs) bei Säugetieren als Geruchsrezeptoren dienen. Die Familie der TAAR-Gene wird in der vorliegenden Studie für kieferlose Fische, Knorpel- und Knochenfische beschrieben (respektive Null, zwei und über 100 Gene). Es wird gefolgert, dass die TAAR-Gene evolutionär wesentlich jünger sind, als die verwandten Familien der OR und ORA/V1R Geruchsrezeptoren, welche bereits beim Neunauge, einem kieferlosen Wirbeltier vorkommen. Die zwei Taar-Genklassen mit Vertretern bei Säugetieren und Knochenfischen (Teleostei) scheinen jeweils von einem der beiden TAAR-Gene der Mit der Knorpelfische abzustammen. Klasse III der TAAR-Gene entsteht unerwarteterweise noch eine völlig neue Klade in der Linie der Teleosten. TAAR-Gene aller drei Klassen werden in Untergruppen olfaktorischer Rezeptorzellen des Zebrabärblings exprimiert, was ihre Funktion als olfaktorische Rezeptoren bekräftigt. Das stark konservierte TAAR1-Gen (Orthologe bei Haien, Säugetieren und Knochenfischen) wird nicht im olfaktorischem Epithelium exprimiert und kann daher einen letzten Vertreter dieser Familie darstellen, bei dem die ursprüngliche nicht-olfaktorische Funktion erhalten blieb. Die Klasse III enthält dreiviertel aller TAAR-Gene der Teleostei und ist durch den völligen Verlust der aminergen Ligandenbindungsstelle gekennzeichnet, welche bei allen 25 Genen in den anderen beiden Klassen durchgehend erhalten blieb. Zwei unabhängige Intron-Einschübe bei TAAR-Genen der Klasse III stellen eine aussergewöhnliche evolutionäre Dynamik dar, wenn die fast völlige Abwesenheit von Intron-Einschüben während der Evolution der Wirbeltiere in Betracht gezogen wird. Eine dN/dS Analyse legt eine minimale generelle negative Selektion als auch einen beispiellosen Grad lokaler positiver Selektion als weitere Merkmale der Klasse III Gene nahe. Die beschleunigte Evolution der Klasse III TAAR-Gene bei den Teleostei kann als Kennzeichen für die Geburt einer weiteren Famile olfaktorischer Rezeptorgene betrachtet werden.

Liganden wurden bisher nur für einige wenige olfaktorische Rezeptoren bei Säugetieren und Insekten gefunden, während dies bei den Knochenfischen nur für einen einzigen olfaktorischen Rezeptor der OlfC Familie gelang (OlfCa). Die olfaktorischen TAAR-Rezeptoren des Zebrabärblings aus Klasse I und II sind aufgrund des konservierten aminergen Ligandenbindungsmotifs gute Kandidaten dafür, Amine als Liganden haben. Die vorliegende Studie identifiziert Diamine als spezifische Liganden eines TAAR-Rezeptors (DrTAAR13c). Diese Diamine aktivieren eine geringe Anzahl olfaktorischer Rezeptorneuronen, die durch c-Fos Expression im olfaktorischen Epithelium identifiziert werden. Die Diamine Putreszin und Kadaverin sind faulig riechende, aliphatische Polykationen, die bei der Dekarboxylierung von Lysin und Arginin durch Bakterien auf natürliche Weise entstehen. Die Konzentration dieser Diamine in der Umgebung korreliert mit dem Grad der Verwesung. Im Verhaltensversuch zeigten Zebrabärblinge, die nur geringen Konzentrationen von Diaminen ausgesetzt worden waren, bereits ein deutliches aversives Verhalten, wohingegen ein Nahrungsstimulus anziehend wirkte, und Wasserzugabe keine Reaktion hervorrief. Interessanterweise ist die Ligandenspezifität des TAAR13c Rezeptors sehr ähnlich zur Wirksamkeit derselben Liganden in den Verhaltensversuchen. Diese Ergebnisse könnten auf die Existenz eines definierten neuronalen Mikroschaltkreises hinweisen, welcher durch Aktivierung eines einzigen Typs olfaktorischer Rezeptoren ein bestimmtes Verhalten auslöst, was für den Geruchssinn der Wirbeltiere ein Novum darstellt.

CHAPTER 1 INTRODUCTION

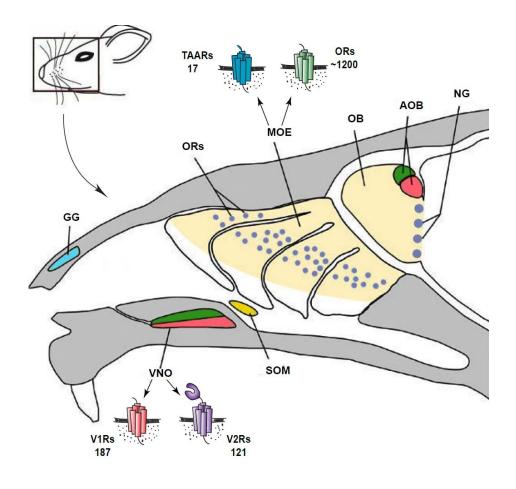
VII. INTRODUCTION

Animals in their natural milieu are surrounded by odors. These odors are rich source of information, and are perceived by sophisticated olfactory systems, that have evolved over time. The sense of smell helps species to localize prey, evade predators, explore food and recognize viable mates. In humans, memoirs, thoughts, emotions, and associations are more readily reached through the sense of smell than through any other channel. This suggests that olfactory processing is imperative and may differ fundamentally from processing in other sensory modalities. The molecular age in olfaction initiated in 1991 with the significant discovery of a large, multigene family of olfactory receptors in rat by Linda Buck and Richard Axel (Buck and Axel, 1991). The first cloned olfactory epithelium. This Nobel Prize worthy pioneering discovery, together with availability of modern techniques and numerous completely sequenced genomes opened the way to characterize the gene families of olfactory receptors through exhaustive computational data mining in different species genome as well as by *in vitro* biology.

1. Olfactory system

The generalized initial point of olfactory system is the nose that contains the olfactory epithelium (O.E). The O.E contains olfactory sensory neurons (OSNs) that express olfactory receptor molecules (ORs) on their apical surfaces. The number of OR genes varies according to the species e.g. 388 in human, 155 in zebrafish and 1063 in mice (Nei et al., 2008). The olfactory system perceives myriad of odorants and translates the primary input into diverse odor perception. The primary event in olfactory perception is the recognition of odorants by odorant receptors (ORs), this may occur by diffusion or by the binding of the odorant to odorant binding proteins (OBPs) first, that lead to docking at the respective odorant receptor. One odorants receptor (OR) can bind to odorant of same or different chemical structures. Odorant receptors (ORs) that bind to the same types of odorants unite in the olfactory bulb and form glomeruli. The odorant information is then passed through the olfactory bulb (OB) to the olfactory cortex, in due course reaching the higher cortical areas involved in odour determination, as well as limbic areas supposedly mediating the emotional and physiological effects of odours (Kapur and Haberly, 1998)

.Odorants are perceived and encoded by different combinations of olfactory receptors (Malnic et al., 1999). In the nose, neurons expressing the same OR are scattered throughout olfactory epithelium (Vassar et al., 1993), however, in the olfactory bulb their axons converge at a specific glomeruli, where they form synapses with mitral and tufted relay neurons of olfactory bulb (Mombaerts et al., 1996; Ressler et al., 1994). This results in a rather stereotyped spatial map in which inputs from different ORs are targeted to different glomeruli. An odorant's receptor code is represented in the olfactory epithelium by a dispersed ensemble of neurons and in the bulb by a specific combination of glomeruli (Mori et al., 1999).


1.1. Mammalian olfactory system

Contrary to the fish, many terrestrial vertebrates, including rodents, have up to five main discrete and segregated olfactory systems, including a main olfactory system, which detects volatile odorants and a vomeronasal (accessory olfactory) system, which detects pheromones (Buck, 2000; Mombaerts, 2004). Recently, it has become obvious that there is functional overlap between the main olfactory epithelium and the vomeronasal organ. Certain pheromones activate neurons in the main olfactory system, and this activity has been found necessary for pheromone dependent behaviors (Mandiyan et al., 2005; Restrepo et al., 2004; Spehr et al., 2006b). Likewise, some general odorants categorized as non-pheromones activate the accessory olfactory system and modulate behavior in the absence of a functional main olfactory system (Sam et al., 2001; Trinh and Storm, 2003). In mammals, the olfactory information is processed through anatomically separated neural pathways. Volatile odorants are perceived by a large repertoire of olfactory receptors (ORs) expressed on the cilia and dendritic knob of the ciliated olfactory sensory neurons (OSNs) in the olfactory epithelium (OE), that project their axons to the main olfactory bulb (OB). Two additional receptor families (V1R, V2R) appear to detect pheromones and are expressed by microvillous sensory neurons in the vomeronasal organ that induce hormonal and behavioral responses through the accessory olfactory bulb (AOB). The axons from the accessory olfactory bulb project towards the amygdala and hypothalamus that are involved in aggression and mating behavior (Hasen and Gammie, 2009).

Organ	Receptors	Ligands
MOE	ORs, TAARs, GC-D	general odors, MHC class I peptides volatile amines, CO ₂ (bicarbonate)
VNO	V1Rs,V2Rs, FPRs	volatile pheromones, MHC class I peptides, formyl peptides
GG	TAARs, V2r83	alarm pheromones
SO	ORs	general odors

Table.1. Mammalian olfactory organs and their respective receptors with possible ligands

A third mammalian organ, the septal organ of Masera (S-O), also contains sensory neurons ((Kaluza et al., 2004; Tian and Ma, 2004) that express odor receptors (Table.1). The S.O was recently shown to perceive multiple volatile odorants that are also detected by the main olfactory epithelium (Grosmaitre et al., 2007; Ma et al., 2003).Interestingly, a subset of OSNs from both the SO and the main olfactory epithelium may respond to mechanical pressure and thus may report changes in air pressure induced by sniffing (Grosmaitre et al., 2007). Recently, another mammalian organ named the Grueneberg ganglion (GG) was found to subserve olfaction (Fleischer et al., 2006; Fleischer et al., 2007). The Grueneberg ganglion (GG) located in the vestibule of the anterior nasal cavity is considered as an olfactory organ based on the presence of the olfactory marker protein (OMP), expression of V2R and TAARs olfactory receptors and olfactory neurons axonal projection to the olfactory bulb (Fleischer et al., 2007). These neurons are activated by volatile alarm pheromones and are required for the freezing behavior in mice, indicating a role in pheromonal signaling (Brechbuhl et al., 2008).

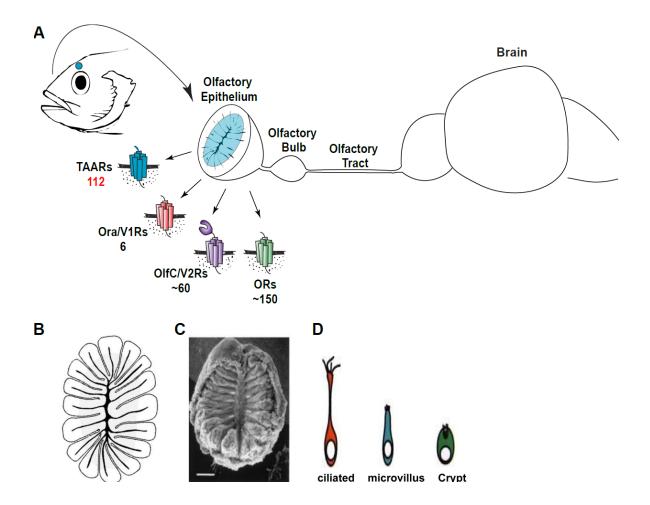


Fig. 1. Schematic representation of mouse olfactory systems. Main olfactory epithelium (MOE), olfactory bulb(OB), accessory olfactory Bulb(AOB),Grueneberg ganglion (GG), Vomeronasal organ (VNO), septal organ of Masera, guanylyl cyclase D (GCD), necklace glomeruli (NG), trace amine associated receptors (TAARs), olfactory receptors (ORs),vomeronasal receptors type1(V1Rs), vomeronasal receptors type2(V2Rs).

1.2. Zebrafish olfactory system

Zebrafish is equipped with only one olfactory system, the main olfactory system that contains a single olfactory epithelium as first site of odor perception. The olfactory epithelium has two distinguished areas: central sensory area and peripheral non-sensory area. The sensory area contains 3 types of olfactory sensory neurons (OSNs) called ciliated, microvillous and crypt OSNs that project their axons to the OB (Hansen and Zielinski, 2005). Ciliated, crypt and microvillous OSNs can be labeled with OMP, S100 and TRPC2 neural markers respectively (Germana et al., 2004; Sato et al., 2005). Ciliated

OSNs express odorant receptors (ORs) and trace amine associated receptors (TAARs), crypt OSNs may express a vomeronasal receptor type1 (V1Rs, also called ORAs in zebrafish) (Hansen and Zielinski, 2005; Saraiva and Korsching, 2007) and Microvillous OSNs express vomeronasal receptors type2 (V2Rs, also called OlfCs in zebrafish (Alioto and Ngai, 2006). Mitral and tufted cells of the OB synapse with incoming axons from OE and transfer the signals to the olfactory cortex. These three types of OSNs show several different properties with respect to their morphology, relative position in the OE, and molecular expression(Yoshihara, 2009).

Fig. 2. General Organization of zebrafish fish olfactory system. (A) spatial organization of the olfactory system and four olfactory receptor families expressed in the olfactory epithelium. (*B*) Schematic representation of a horizontal cross-section through an olfactory rosette. (*C*) Scanning electron micrograph of an olfactory rosette of an adult zebrafish. (D) Types of OSNs expressed in olfactory epithelium. Numerous tiny hair-like cilia protrude from the dendrites of ciliated olfactory receptor cells and house the different olfactory G protein-coupled receptors. (SEM courtesy Prof. Sigrun I. Korsching).

1.3. Olfactory sensory neuron (OSNs)

The olfactory epithelium of fish contains three types of morphologically distinguished and functional olfactory sensory neurons (OSNs): Ciliated, Microvillous and Crypt. The three types of OSNs show different properties with respect to their morphology, relative position in the OE, and molecular expression. Zebrafish is equipped with only one olfactory organ that expresses all three types of olfactory sensory neurons (Korsching, 2009).The relationships among cell morphology, molecular signatures, and axonal terminations of different OSNs suggest that the two segregated neural pathways are responsible for coding and processing of different types of odor information in the zebrafish olfactory system (Miyasaka et al., 2005).

1.3.1. Ciliated olfactory sensory neurons

Ciliated sensory neurons with their somata rooted in the deep layer of the olfactory epithelium, have long dendrites (Fig. 2d) and express ORs and possibly TAARs in the zebrafish olfactory epithelium, the main sensory organ in teleosts (Hansen et al., 2004; Speca et al., 1999). Volatile odorants are perceived by a large repertoire of odorant receptors (ORs) sparsely expressed in the OE and the information is transmitted to the main olfactory bulb (OB). The signal transduction of ciliated OSN uses cyclic nucleotidegated channel A2 subunit, and olfactory marker protein (Friedrich and Korsching, 1998; Hansen et al., 2003; Sato et al., 2005). Ciliated OSNs project their axons mostly to the dorsal and medial regions of the OB, whereas the microvillous OSNs project their axons to the lateral region of the olfactory bulb (Sato et al., 2005). The LOT is involved in the perception of amino acids (von Rekowski and Zippel, 1993) that induce feeding behavior (Hamdani et al., 2001), whereas the mMOT is involved in the perception of alarm reaction (Hamdani et al., 2000). The axons of ciliated OSN, which bind the same odors synapse with mitral cells, to form glomeruli in the medial and ventral regions of olfactory bulb. Transgenic fish labeled with molecular cell markers, OMP for ciliated OSN have been generated in recent years (Sato et al., 2005).

1.3.2. Microvillous olfactory sensory neurons

Microvillous OSNs are located in the apical layer of olfactory epithelium of teleosts and express OlfCs (mammalian V2R-type receptors homologue) and transient receptor potential channel C2 (TRPC2) (Hansen et al., 2004; Morita and Finger, 1998). Microvillous OSNs have short dendrites that possess microvilli for stimulus detection (Fig. 2d). In mammals Microvillous OSNs express vomeronasal receptors2 (V2R) in the vomeronasal organ. Pheromones (olfactory cues capable of inducing stereotypical social and sexual behaviors among conspecifics) are perceived mostly by V2R receptors expressed by microvillous OSN that project their axons to the accessory OB. The lateral region of the OB is innervated by the microvillous OSNs (Hamdani et al., 2002; Hansen et al., 2003). In zebrafish, Microvillous neurons are also involved in perception of amino acids and nucleotides (Friedrich and Korsching, 1998; Hansen et al., 2003) and probably project through the LOT that elicits feeding behavior (Sato et al., 2005).

1.3.3. Crypt sensory neurons

Crypt cells (CCs), a third type of OSN located in the OE of actinopterigians (ray-finned fishes) and some other vertebrates (Hansen and Finger, 2000), were described in teleosts in 1998 (Hansen and Finger, 2000; Morita and Finger, 1998). Crypt cells are absent in both sarcopterigians (lobe-finned fishes), tetrapods and in American alligator (A. mississippiensis) (Hansen, 2007; Hansen and Finger, 2000). Crypt cells have a typical morphology, clearly distinguished from that of common olfactory receptor neurons (ORNs). Crypt cells are ovoid cells and with a crypt-like apical invagination where cilia protrude, as their exceptional characteristic (Fig. 2d). Crypt cells are located in the upper third of the OE and scattered along the olfactory lamellae (Catania et al., 2003; Ferrando et al., 2006; Hansen et al., 2003). Their presence and distribution in fishes seem to vary from specimen to specimen and from season to season, suggesting a certain variability and feedback control of the expression of the CN population (Hamdani el and Doving, 2006; Hansen and Finger, 2000). Although the precise function of crypt ORNs in olfactory pathways is still tentative, it has been shown in crucian carp (Carassius carassius), that their axons project through the lateral bundle of the medial olfactory tract (IMOT), which mediates reproductive behavior (Weltzien et al., 2003), to a central region in the ventral olfactory bulb (Hamdani el and Doving, 2006), whose neurons are triggered by pheromones (Lastein et al., 2006).

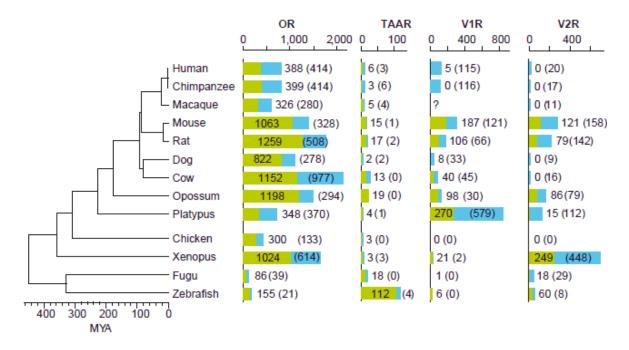
1.4. Olfactory receptor gene family repertoire

The discovery of olfactory receptors (Buck and Axel, 1991) opened a new age for molecular study of GPCRs. So for, five olfactory receptor gene families, all of them G protein-coupled receptors, have been identified and characterized in mammals(Liberles et al., 2009; Riviere et al., 2009), while for teleost have four olfactory receptor gene families have been described up to now (Korsching, 2009). They include the odorant receptors (OR), vomeronasal receptor (V1R/ORA and V2R/OlfC), formyl peptide receptor (FPRs, found only in mammals) and trace amine-associated receptors (TAARs). The number of identified olfactory receptors expanded rapidly by data-mining due to the availability of complete genome of several model organisms, not only in rodents but also in other mammals, amphibians, fish and birds. Olfactory GPCRs families involved in perception of pheromones were identified (Belluscio et al., 1999; Dulac and Axel, 1995). Recently a new class of GPCRs named trace amine-associated receptors (TAARs) was recognized in rodents (Liberles and Buck, 2006), zebrafish and other species (Berghard and Dryer, 1998; Gloriam et al., 2005). Olfactory receptor gene families vary between species considering that each species have their own characteristic set of chemical signals that are important for survival and reproduction. The remarkable species-specific and ambiance related discriminatory capacity of the chemosensory system is directly linked to the diversity of the olfactory receptor gene families (Dryer, 2000). ORs, FPRs and TAARs belong to the classA (rhodopsin-like) GPCRs, with short extracellular N- terminal ligand binding domain and short cytosolic C-terminal domain. V1Rs are also considered closed to classA. Although ORs and V1Rs do not share considerable sequence homology, both are Class-(rhodopsin-like) GPCRs. Widespread features among ORs and V1Rs include an intronless coding region, exclusively monogenic (Rodriguez et al., 1999) and monoallelic (Roppolo et al., 2007) expression, a scattered and mainly clustered chromosomal organization (Del Punta et al., 2002), and a sparsely distributed tissue expression pattern consistent with the 'one neuron - one (or a few) receptor(s)' hypothesis (Feinstein et al., 2004).V2Rs belong to classC, which is structurally close to

the metabotropic glutamate receptor, with an additional large N-terminal extracellular domain (Feinstein and Mombaerts, 2004).

Human can perceive a vast number of volatile chemicals yet human are considered to have a poor sense of smell compared to the other animals like rodents, dogs and snake. Humans have about 350 functional odorant receptors (Niimura and Nei, 2003) much less than the ~1000-1200 in the mouse and rat genomes, respectively (Young et al., 2003; Zhang et al., 2004b). In fish the numbers are several fold smaller, ranging from 86 to 155 putatively functional OR genes in fugu and zebrafish, respectively (Nei et al., 2008). There are more ORs than all other known GPCRs combined that make ORs one of the largest gene families known so far (Dryer, 2000). In rats, OR comprise about 6% of their total functional genes, emphasizing the importance of olfaction to the species. The olfactory repertoire of teleost fish is smaller in size (OR, ORA), comparable (olfC), or even larger (TAAR) than the corresponding mammalian gene repertoires (Dryer, 2000; Nei et al., 2008). Despite smaller repertoire size, teleost OR and ORA families show higher divergence than their mammalian counterpart (Korsching, 2009). Olfactory receptors families are evolutionary dynamic that is evident with positive selection in teleost ORs. However, it is still not evident whether the putatively selected amino acid changes are correlated with a novel gain of function. The ora genes are subject to strong negative selection, and in fact are being conserved among all teleost species investigated. A small subset of "olfactory" genes may have other non-olfactory functions, in addition to or instead of a primary olfactory role. The highly conserved TAAR1 (shark, mammalian, and teleost orthologs) is not expressed in the olfactory epithelium of zebrafish and mouse and may represent the sole remnant of a primordial, non-olfactory function of this family (Liberles and Buck, 2006). Human OR, hOR17-4, is expressed in the nose as well as in the testis, responding to the chemical bourgeonal, thus allowing sperm to undergo chemotaxis to find the egg cell (Spehr et al., 2006a).

Evolution history of olfactory gene families in several species revealed that gene gain and loss is fundamental and had major significance in defining the current total number of genes in these families (Young and Trask, 2002). High species specificity and rapid evolution are characteristics of olfactory receptor gene families. Local gene duplication is the most probable cause of gene birth. The duplicate genes can follow many evolutionary


trajectories. If the new gene is functionally redundant, one of the copies may be removed from the functional repertoire by inactivating mutation. In contrast, if the new copy acquires mutations that allow it to recognize a novel, useful odorant molecule, then it is likely that natural selection will favor the retention of the new, modified sequence. Species-specific expansion and loss of genes and even whole subfamilies is a persistent phenomenon in the mammalian receptor families (Grus et al., 2005; Lane et al., 2004; Zhang et al., 2004a). The rate of nucleotide substitution (dN/dS) induces diverse selective pressure. Nucleotide substitutions in genes, coding for proteins, can be either synonymous (no change in the amino acid or non-synonymous (changes in the amino acid), and this ratio of the rate of non-synonymous substitutions (dN) to the rate of synonymous substitutions (dS), can be used as an indicator of selective pressure acting on a protein-coding gene (Bielawski et al., 2000; Yang and Bielawski, 2000). Higher rates of non-synonymous to synonymous substitutions are a signature of positive selection. Usually, most non-synonymous changes are expected to be eliminated by purifying selection, but under certain conditions Darwinian selection may lead to their preservation. Conversely, if changes in the sequence eliminate useful ligand-recognition patterns, they would be subject to "negative or purifying selection", i.e. the numbers of synonymous substitutions would be more frequent than the non-synonymous ones, as is observed for genes in general. The incidence of positive selection in the genome is generally associated with transcription factors and some receptor families, including olfactory receptors (Bustamante et al., 2005), although the frequency of positive selection is conflict-ridden (Studer et al., 2008). Ratio of synonymous and non-synonymous substitutions may provide information about the degree of selective pressure. Numerous studies have found support for amino acid signatures of positive selection on the olfactory receptors in mammal and fish species (Hughes and Hughes, 1993). However, it remains unclear whether the putatively selected amino acid changes are linked with a novel gain of function.

1.4.1. Odorant receptor family (OR)

Olfactory receptors are members of a large family of seven-transmembrane (TM)-domain G-protein coupled receptors (GPCRs), comprising about 6% of their total functional genes in rat, emphasizing the importance of olfaction to the species. ORs are small (~1 kb),

intronless and are expressed in the ciliated neurons, in a monogenic pattern i.e. a particular olfactory sensory neuron expresses only one OR (Buck and Axel, 1991; Mombaerts, 2004; Sato et al., 2007). The TM regions are connected by three extracellular and intracellular loops, with an extracellular amino-terminus and an intracellular carboxyterminus. Olfactory receptors possess highly conserved motifs, hyper variable protein regions are also found in the third, fourth and fifth TM region (Trabanino et al., 2004). MAYDRYVAIC is the highly conserved amino acid motifs within and across species located at TM3 end (Liu et al., 2003). OR genes occur in clusters in vertebrate genomes (Niimura and Nei, 2003). Despite this fact, the evolutionary dynamic nature of this family is characterized by rapid expansion, gene duplication, extensive gene loss via pseudogenization, and diversifying selection (Alioto and Ngai, 2005; Young and Trask, 2002). Since the cloning of the first rodent OR genes in 1991, ORs have been isolated from C. elegans, drosophila, lamprey, teleosts, amphibian, avian and humans (Nei et al., 2008). Vertebrate ORs contain introns and sequence identity between vertebrates and invertebrates are very low (Dahanukar et al., 2005). ORs of C.elegans share only ~10% sequence identity with vertebrate OR genes. This leads to the question whether nonvertebrate and vertebrate OR genes derive from a common ancestor (Gaillard et al., 2004). Vertebrates can detect and discriminate higher number of different volatile chemicals than the number of ORs encoded in the genome. This perception is achieved through a mechanism known as the 'combinatorial receptor code' i.e. one odour molecule can be recognized by several ORs, and one olfactory receptor can recognize several odour molecules (Malnic et al., 1999).

The evolutionary origin of Zebrafish dates back to the most common ancestor of teleost and tetrapods as evident by the comparison of teleost fish, amphibian, and mammalian OR repertoires (Alioto and Ngai, 2005; Niimura and Nei, 2005). Some OR genes even go back to the common ancestor of jawed and jawless fish (Freitag et al., 1999). The zebrafish OR repertoire is several folds larger than that of two pufferfish species, which have less than 50 OR genes (Alioto and Ngai, 2005; Niimura and Nei, 2005). Interestingly, teleost OR genes do show signs of positive selection, although the evolutionary rate of teleost is slow compared to tetrapods (Alioto and Ngai, 2005). Many Teleost ORs are located in clusters in the genome although some genes are sparsely present (Alioto and Ngai, 2005). Within the gene clusters, subfamilies are largely contiguous and subfamily members usually exhibit the same transcriptional orientation, suggesting tandem duplication as a mechanism of gene expansion.

Fig. 3. Numbers of olfactory receptor genes in different species. The green and blue bars represent the numbers of functional (intact) genes and pseudogenes (disrupted genes), respectively. The numbers next to each bar represent the number of functional genes and the number of pseudogenes, which is shown in parentheses. A question mark indicates that data are unavailable. ORs, odorant receptors; TAARs, trace amine associated receptors; V1R, Vomeronasal receptors type1; V2R, Vomeronasal receptors type2.

1.4.2. Trace amine-associated receptor family (TAAR)

In addition to ORs, olfactory system also contains other chemosensory receptors to detect chemical stimuli. TAARs were identified in 2001 (Borowsky et al., 2001).Trace amine associated receptors (TAARs) are close relatives of G protein-coupled aminergic neurotransmitter receptors as dopamine and serotonine receptors and recognize derivatives of the classical monoamines such as ß-phenylethylamine, octopamine, tryptamine, and tyramine (Lindemann and Hoener, 2005). Initially, TAARs have been considered neurotransmitter receptors as well, based on the expression and effects of some family members in the central nervous system (Lindemann and Hoener, 2005). However, recently, Liberles and Buck (Liberles and Buck, 2006) reported for several

mammalian taar genes, some of whom they could deorphanize, the expression in olfactory sensory neurons. Thus, the taar genes joined a growing number of GPCR families that serve as olfactory receptors (Liberles and Buck, 2006). Surprisingly, the fish taar gene repertoire appeared to be much larger than the mammalian repertoire (Gloriam et al., 2005), whereas the opposite holds true for the other olfactory receptor families. After the cloning of the first TAAR receptors in mammals (Borowsky et al., 2001), TAAR genes have been found in genomes from lower vertebrate species (Gloriam et al., 2005). The first study evaluating teleost taar genes (Gloriam et al., 2005) made use of very incomplete databases, and thus many of its conclusions, including the size of the family, the phylogenetic reconstruction, the genomic location, the frequency of pseudogenes, the absence of introns, and the suggested nomenclature are now outdated. Still valid are its observations that the *taar* gene family exhibits rapid evolution and correspondingly remarkably species-specific repertoires. A follow-up study confirmed these observations using a more complete data set (Hashiguchi and Nishida 2007), double the number of taar genes found in stickleback (Hashiguchi and Nishida, 2007). The selective pressure acting on teleost taar genes takes the form of positive selection, of which incidences have been observed in the OR, V1R, and V2R families. Currently, taar gene repertoires have been established for fugu, stickleback, medaka, and zebrafish. Fugu has the smallest repertoire, less than 20 genes, followed by medaka with 25 genes, stickleback with 49 genes, and zebrafish with 109 genes (Hashiguchi and Nishida, 2007).

Taar genes occur in a single cluster in tetrapods, evidence of a genesis from local gene duplications, possibly via illegitimate crossover during meiotic recombination. In teleosts, *taar genes* form two large clusters (Hashiguchi and Nishida, 2007), presumably resulting from the whole genome duplication occurring early in the teleost lineage (Nakatani et al., 2007). Additionally, several isolated genes and small groups are found; however, due to the still unfinished genome build in zebrafish, this may not be the final distribution. The most recent common ancestor of tetrapods and teleosts (of lobe-finned and ray-finned fishes) presumably already had a small cluster of *taar genes*. Whereas all mammalian and all zebrafish *taar genes* are monoexonic, an intron was found in many medaka, fugu, and stickleback genes (Hashiguchi and Nishida, 2007), consistent with an intron gain early in the evolution of neoteleosts, i.e., relatively late in vertebrate evolution. This is rather remarkable since several whole genome scanning studies found very little evidence for

any intron gains during all of vertebrate evolution (Coulombe-Huntington and Majewski, 2007) and may be related to the apparently low selective pressure in the *taar* gene family. TAAR genes were shown to co-express $G\alpha$ Olf, suggesting that they are expressed at least in ciliated neurons (Liberles and Buck, 2006). In this thesis I have analyzed both the scope and the evolutionary history of the TAAR gene family in fish. Natural ligands identified for mouse TAARs have been detected in mouse urine which is known to be a major source of social cues (Liberles and Buck, 2006). Therefore, it has been suggested that TAARs may be highly relevant for social communication and individual recognition.

1.4.3. Vomeronasal receptors family type1 (V1R)

Vomeronasal receptor family is expressed in the accessory olfactory organs named Vomeronasal organ. The vomeronasal organ is a tubular crescent shape paired structure located separately from the nasal cavity. The vomeronasal sensory neurons are formed in the olfactory placode along with other sensory olfaction neurons. Vomeronasal receptors in vomeronasal sensory epithelium are lining an elongated cavity (lumen) inside the bone capsule which encloses the organ. The only way of access for stimulus in VNO is a thin duct that opens onto the floor of the nasal cavity inside the nostril ((Dulac, 2000). The vomeronasal receptors are GPCRs and are often referred to as pheromone receptors since vomeronasal receptors have been tied to detecting pheromones. The axons of vomeronasal receptors transducer signals through accessory olfactory bulbs (AOB) to olfactory Amygdala. There have been two types of Vomeronasal receptors, each found in distinct regions: V1R, located on the apical compartment; V2R located on the basal compartment of the VNO (Buck, 2000; Dulac, 2000).

Mammalian V1Rs are homologues of teleost ORA family. Telesost ORA family belongs to classA GPCRs, hence named odorant receptors A (ORA). ORA in teleost are expressed in the main olfactory epithelium as teleost lack vomeronasal organ. ORA receptors have short N-terminal and high sequence diversity sequence diversity in transmembrane domains. V1R display a 1 kilobase, intronless genomic structure (Buck and Axel, 1991), while teleost homolog ora genes have introns in two of six genes (Saraiva and Korsching, 2007). Ora genes have been the most recent of the four teleost olfactory receptor families (ORs, TAAR, ORA, OlfC) .The first member of this family was uncovered in 2005 (Pfister

and Rodriguez, 2005). The teleost ORA receptor gene family is relatively small with only 6 members compared to over 100 genes in the corresponding rodent V1R gene family. Ora genes form a monophyletic clade, supporting their identification as a single family separate from the other chemosensory receptor families. Ora genes have been identified already in the lamprey (Saraiva and Korsching, 2007). Orthologues (closest homologs between species) are more closely related to each other than any paralog Ora genes (closest homologs within species), indicating that all six family members are evolutionarily much older than the speciation events in the teleost lineage. Noticeably, ora genes are highly conserved among all teleost species analyzed so far, such that individual orthologs for all six genes can be detected in all five teleost species analyzed so far (bar a single gene loss in the pufferfish genus) (Saraiva and Korsching, 2007). ora genes show no evidence for positive selection, in contrast to the other olfactory receptor families including the mammalian V1R family ((Saraiva and Korsching, 2007). Contrary to the other olfactory receptors families, ORA genes do not occur in cluster in teleost genome, four of the six ora genes are arranged in closely linked gene pairs across all fish species studied. 2-heptanone, a putative pheromone, was identified as a ligand for one member of the V1R family (V1Rb2) (Boschat et al., 2002), but no follow-up studies have been done with this ligand. V1R genes are linked to reproductive behavior (Del Punta et al., 2002). All six ora genes are expressed specifically in the olfactory organ of zebrafish, in sparse cells within the sensory surface (Saraiva and Korsching, 2007), consistent with the expectation for olfactory receptors and similar to the expression of the tetrapod subclade V1R.Taken together, the high conservation of the ora gene repertoire across teleosts, in striking contrast to the frequent species-specific expansions observed in tetrapods, especially mammalian V1Rs, possibly reflects a major shift in gene regulation as well as gene function upon the transition to tetrapods. Humans have five intact V1R genes. It has been argued that although these five V1R genes have an open reading frame, they are not functional because a calcium channel gene (TRPC2) that is essential in the signal transduction pathway of the mouse VNO has become a pseudo gene in the lineage that leads to hominoids and Old world monkeys (Liman and Innan, 2003) However, at least one of the five V1R genes is expressed in the human olfactory mucosa ((Rodriguez et al., 2000). A recent study suggests that that these five genes can activate an OR-like signal transduction pathway in a heterologous expression system. It is therefore possible that the products of these genes function as pheromone or olfactory receptors. Adult humans do

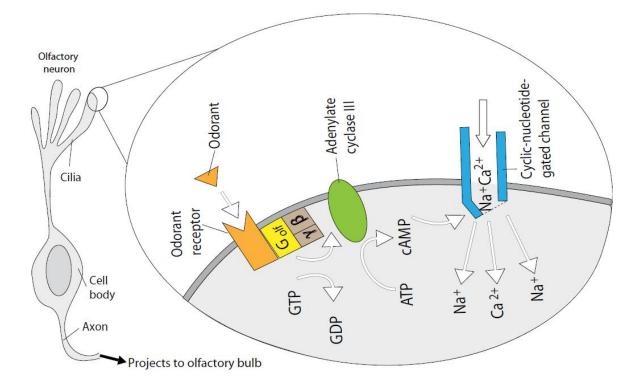
not have a VNO but seem to be sensitive to pheromones (Shepherd, 2006). Another interesting observation is that chicken (Gallus gallus) have no functional or non-functional V1R and V2R genes(Grus and Zhang, 2008), while dog (Canis familiaris) have no functional V2R genes(Grus and Zhang, 2008), although birds use pheromones for mate choice and other behaviors (Bonadonna et al., 2009; Caro and Balthazart; Hirao et al., 2009; Zhang et al.). It is possible that some OR genes in the MOE are able to detect pheromones, as in humans (Keller et al., 2007).

1.4.4. Vomeronasal receptors family type2 (V2R)

Mammalian V2Rs are homologues of teleost OlfC. Teleost OlfC receptors belong to the class C metobotropic glutamate GPCRs, like the mammalian V2Rs. Humans do not have any functional V2R genes. OlfC are distinguished by their long extracellular NH2 terminals which are thought to be the binding domain for pheromones. The V2R genes in mammals are species specific and meticulous specificity has led to the loss of this family in several mammalian species (Young and Trask, 2007). Number of V2R genes varies from 0 (human, chimpanzee, macaque, dog and cow) to 121 (mouse) (Nei et al., 2008). All olfC subfamilies are present in zebrafish, but not in neoteleosts, and many indicate the species-specific gene expansions in zebrafish. OlfC repertoire size varies several folds between teleost species but stays in parallels range of mammalian homologue V2R. Zebrafish has the largest repertoire of all teleost OlfC repertoires (Alioto and Ngai, 2006; Hashiguchi and Nishida, 2006). Local gene duplication has also played a large role in the evolution of the OlfC family, as suggested by the arrangement of most OlfC genes in clusters of phylogenetically related genes (Alioto and Ngai, 2006; Hashiguchi and Nishida, 2006) .OlfC, unlike the other three olfactory receptor gene families, are not monophyletic. The three distinct clades fall together under the olfC heading (Alioto and Ngai, 2006). OlfC genes exhibit five conserved intron/exon borders that result in six exons in a characteristic short-short-long-short-short-long arrangement (Alioto and Ngai, 2006). Metabotropic glutamate receptors do not show these intron/exon borders. Negative selection is observed at distal ligand binding sites in OIfC and there is no evidence of positive selection (Alioto and Ngai, 2006). Although currently no ligands are known for any member of the largest group of OlfC genes (group 1), modeling suggests that many of them have amino acids as ligands like the one well investigated OIfC member from one of the small groups, OlfC a1 (Luu et al., 2004). Thus, OlfC receptors may constitute the molecular basis to explain odor response studies, which predict many independent receptors for amino acids (Fuss and Korsching, 2001). V2R gene family has undergone an even more marked decline than the V1R gene family, with no functional genes remaining in the cow, dog, human, and chimpanzee or macaque genomes. Such decline demonstrates that V2Rs are no longer important for these species, either because other receptor families now detect pheromones or because pheromone-mediated signaling is now of lesser importance (Liman, 2006). By contrast, the large number of functional V2R genes and species-specific V2R gene family expansions in the mouse, rat and opossum genomes probably contribute to the ability of these species to detect large repertoires of pheromones (Young and Trask, 2007).

1.4.5. Formyl peptide receptor family (FPR)

FPRs are a new family of olfactory GPCRs in the vomeronasal organ, so for found in the mammalian species. FPRs are also expressed in the immune system, where they are believed to stimulate chemotaxis to sites of infection upon recognition of their ligands, such as formylated peptides from bacteria or mitochondria (Yang et al., 2002). FPRs are characterized by monogenic transcription and their expression patterns are remarkably similar to those of V1Rs and V2Rs. FPRs were reported to be expressed in diverse tissues (Migeotte et al., 2006; Panaro et al., 2006). Most recently, it has been shown that out of the seven murine FPR subtypes, some are predominantly expressed in a highly dispersed, small subset of neurons that bind with $G\alpha_{i2}$ or $G\alpha_{o}$, in the VNO. Most recently FPRs have been identified as olfactory receptors expressed in the vomeronasal organ of mouse (Liberles et al., 2009; Riviere et al., 2009). Phylogenetic analyses indicate that genes encoding vomeronasal organ FPRs evolved recently in the rodent lineage, raising the possibility that these receptors impart a novel chemosensory function to rodents.


1.5. Olfactory signaling transduction

Olfactory perception is mediated by large, diverse family of G-protein-coupled receptors in both vertebrates and invertebrates. In the vertebrate zebrafish, 328 olfactory receptors have been discovered that are involved in olfaction (the detection of volatile compounds).

At the most basic level, the olfactory system in any animal must allow the brain to discern which olfactory receptors have encountered odorant at any given time. In mammals, olfaction is accomplished by approximately 1,000 diverse olfactory receptor genes (Mombaerts et al., 1996). Brain can determine which set of olfactory receptors are activated by identifying excited neurons, as each neuron expresses only one receptor. Mammalian olfactory neurons appear to use the same machinery for transducing signals from its odorant receptor molecules. The cell bodies of the set of neurons expressing a given olfactory receptor are distributed in specific zones of olfactory epithelium and intermingle with neurons expressing different receptors, but their projections converge to discrete loci in the olfactory bulb called glomeruli (Mombaerts et al., 1996). Thus, the brain could in principle determine which receptors have been activated by examining the spatial pattern of activity in the olfactory bulb; individual odorants are associated with specific spatial patterns. The *adaptation* of odorants is thought to derive from at least two different physiological mechanisms. First, the interaction of an odorant receptor with its ligand may be followed by inactivation, or *desensitization*, of the receptor due to phosphorylation of the receptor by a protein kinase. Second, the olfactory neuron may adapt to different concentrations of an odorant by adjusting the sensitivity of its cyclic nucleotide gated ion channels to cAMP, an effect conceptually analogous to light adaptation in the visual system, where light sensitivity is adjusted to match the intensity of light in the environment.

Olfactory signaling transduction is GTP-dependent, suggesting that olfactory transduction, like visual transduction, proceeds via a G protein-coupled mechanism. Olfactory receptors activate Golfa, Gs α -like G protein (Jones and Reed, 1989) upon perception of ligand. Golf-mediated activation of adenylate cyclase III then raises intracellular cAMP levels, causing a cyclic-nucleotide-gated channel to open (Fig. 4). The influx of cations through this channel ultimately leads to the formation of an action potential, which allows the primary neuron to signal to the brain. The axonal projections of the olfactory sensory neurons converge on defined glomeruli in the olfactory bulb. Olfactory receptors themselves play an instructive role in axon guidance and same olfactory perception and axon targeting (Belluscio et al., 1998; Wang et al., 1998).

Additional signal transduction cascades activated by odor binding include inositol 1,4,5trisphosphate (IP3), cyclic GMP, and carbon monoxide, but their roles in transduction is not considered primary and is not currently understood completely. IP3 is also known as a second messenger and is involved in transmission of chemical signal (hormone, neurotransmitters, growth factors, Beta-adrenergic receptor agonists) received by the cell, to various signaling networks within the cell. IP3 is known to play a crucial role in initiating and broadcasting of chemical messages; however, the exact mechanism of how IP3 relates to the subsequent element in its signaling pathway, the calcium wave, remains highly controversial. Two essential signaling pathways have been identified that involve the intracellular signaling generation of IP3. The first signaling pathway is commenced by cytosolic soluble proteins PLC (Phospholipase-C). Neurotransmitters and hormones bind to GPCR and both the heterotrimeric G-AlphaQ/11, and G-Beta Gamma subunits regulate the function of PLC-Beta (Szlufcik et al., 2006). Release of second messengers DAG (1, 2-Diacylglycerol) and IP3 activation takes place as a results of the hydrolysis of PIP2 (Phosphatidylinositol-4, 5-Bisphosphate). ERK1/2 (Extracellular Signal Regulated Kinase-1/2) signaling pathway resulting in transcription factor activation and cell survival are activated by DAG, a physiological activator of PKC (Protein Kinase-C). The second IP3 signaling pathway is initiated by an enzyme PI3K (Phosphoinositide 3-Kinase) involved in phosphorylation of inositol lipids. The enzyme PI3K is also involved in generation of two signaling molecules, PIP2 (Phosphatidylinositol 3, 4-Bisphosphate) and PIP3 (Phosphatidylinositol 3, 4, 5-Trisphosphate). PI3K is activated by CD19, a co-receptor complex in B-cells. IP3, generated by PIP2 plays a vital role in the organization of cellular and physiological processes including fertilization, apoptosis, cell-division, cell proliferation, development, learning, memory and behavior (Futatsugi et al., 2005).

Fig. 4. the mouse olfactory signal transduction cascade. Odorant binding to the olfactory receptor is thought to activate G protein's GTP-coupled α -subunit, G α olf. Activated G α olf then dissociates from G β r and activates adenylate cyclase III, leading to an increase in the intracellular cAMP concentration. The increased cAMP leads to the opening of cyclic nucleotide gated cations channels, causing a depolarization that leads to the influx of cations and generation of action potentials in the sensory axon and the transmission of signals to the olfactory bulb.

1.6. Ligands for olfactory receptors

Olfactory receptor gene families vary between species. This lead to the hypothesis that olfactory receptor within the species may have their own characteristic set of chemical signals that are important for their survival and reproduction in a specific environment. Odorants/ligands for olfactory receptors are typically small organic molecules of less than 400 Da and can vary in size, shape, functional groups and charge (Malnic et al., 1999). Odorants include a set of various aliphatic acids, aldehydes, alcohols, ketones, esters and

amines; chemicals with aromatic, alicyclic, polycyclic or heterocyclic ring structures; and numerous substituted and combinations of these chemicals. Odorants generally bind to several receptors with diverse affinities and individual receptors generally bind more than one odorant (Buck, 2000; Kajiya et al., 2001), except some highly specific and unique receptors i.e. pheromones receptors (Friedrich and Korsching, 1998; Kajiya et al., 2001). The olfactory receptor genes are regard as the first centre of olfactory information processing. However, only few olfactory receptors genes are deorphanized in mammals ((Luu et al., 2004). The identification of ligand is a complex task due to the inefficient heterologous expression system for many olfactory receptors. Mammalians and to some extent teleost olfactory receptors GPCR including OR, TAAR, V1R, and V2R genes are expressed in a monogenic fashion (a particular receptor neuron expresses only a single gene from a single receptor family (Liberles and Buck, 2006; Mombaerts, 2004; Sato et al., 2007). The neurons expressing the same olfactory receptor converge into a single glomerulus in the olfactory bulb. Both genetic and imaging studies confers that each receptor gene designate a separate input channel of the olfactory system and the olfactory bulb comprises a receptotopic map of odor sensitivities, an odor map ((Friedrich and Korsching, 1998; Fuss and Korsching, 2001; Sato et al., 2005; Sato et al., 2007). In teleost, the only olfactory receptor with identified ligands is a member of the OlfC family, OlfCa1 (Alioto and Ngai, 2006). Interestingly, the optimal ligands for the goldfish receptor are basic amino acids, whereas the zebrafish receptor reacts most strongly to acidic amino acids. Odorant receptors expressed in heterologous cells couple to Goolf that leads to odorant-induced increases in cAMP. The increases in cAMP can be monitored using a reporter gene assay (Liberles and Buck, 2006).

1.7. Fish behavior

Behavior is the function of the nervous system that biology seeks to explain and it is the initiation point of a biological investigation. Karl von Frisch (1941) first established that when the European minnow (*Phoxinus phoxinus*), a fresh water fish, is killed by a predator, damage to the skin releases an alarm substance ("Schreckstoff", or scary stuff) that elicits a fear reaction in conspecifics. Fish conspecifics run randomly as they first detect the "scary stuff", and then they form a close school and retreat from the smell source. Initially, it was speculated that this reaction would be common among schooling

fishes (i.e zebrafish), as the combined defensive behavior would be most effective. The study for alarm reaction stayed confined to Ostariophysi until it was demonstrated that a similar alarm reaction in two darters species (Etheostoma exile and E. nigrum). The alarm reaction behavior study was later observed in Percidae, and recently in the gobies Brachygobius sabanus, Asterropteryx semipunctatus and for a sculpin. Large part of fish olfactory behavior has been restricted to Ostariophysan and Percid fish. Unfortunately, the chemistry of fish alarm pheromones is not well studied and no pure pheromone of fish has been isolated for detailed chemical analysis. It is demonstrated, however, that the pheromones of a species can be perceived by another species with alarm pheromone system, providing assumption that mechanism of alarm pheromone detection may be rather similar among species. The presence of an alarm system presents in species is an evolutionary dilemma and not yet fully discovered and understood. Fish does not release alarm substances if they just are stressed and threatened by predator, but mechanical damage to the skin releases the pheromone. Specialized alarm substance cells (ASCs, club cells), sensitive to minor mechanical damage, were identified in majority of fish skin. No other functions for these cells have been known yet. Several alarm substances have been examined for fish species, but details are restricted to the Ostariophysi and the Percidae. The alarm chemicals released from ASCs as a result of mechanical damage can induce fear response in conspecifics as well as in other species. Inter-specific alarm responses may be explained by phylogenetic relations of different species, which provide a selective advantage to avoid a common predator. Alarm reaction can vary from species to species based on their environment and experience and concentration of pheromone. The evolution of alarm system development is inadequately understood in fish. Odor signals are perceived and processed with high specificity by receptors. Fish ciliated neurons generally perceive bile acids, steroids and polyamines via ORs and TAARs, respectively, while microvillous olfactory receptor neurons generally perceive amino acids and nucleotides. Crypt cells of a have been shown to detect amino acids (Schmachtenberg, 2006; Vielma et al., 2008), although electrophysiological studies (Lastein et al., 2006) and backtracing experiments . A response to steroids by crypt cells in the olfactory bulb of crucian carp was shown (Hamdani el and Doving, 2006). In summary, the receptotopic map of fish olfactory bulb provides an opportunity to study functionally segregated responses of all olfactory receptor neurons to different stimuli. Odor responses in lateral, medial, and ventral glomeruli of zebrafish are measurable

(Friedrich and Korsching, 1998) and because of its small and semi-transparent olfactory, bulb zebrafish is suitable model to study the odor responses of all three olfactory receptor neuron populations simultaneously and possibly identify a spatial map of olfactory neural network. More recently, behavioral response of bees showing ability to discriminate the category of symmetrical images from that of asymmetrical ones and that of sequentially identifying pairs of 'same' objects from that of 'different' objects, even across modalities (Giurfa et al., 2001) paved the way for in-depth understanding of neurophysiological investigation on how the bee brain achieves that. In olfaction, complex behaviors such as how hamsters sense which over-mark is on top of another (Johnston and Bhorade, 1998) or the ability of dog able to find out the direction of a trail has been done very rarely. Most of the olfactory behavior research has focused on the relatively simple olfactory tasks of odor detection and discrimination.

There is a growing support for the differences in behavioral response among zebrafish populations. Strain and dose-dependent differences in perception of ethanol exposure was observed among EK, AB TU strains of zebrafish (Carvan et al., 2004; Loucks and Carvan, 2004). Polyamines have been identified as attractant olfactory cues in gold fish (Rolen et al., 2003) and are suggested to have a receptor-mediated transduction pathway, distinct from those used by amino acids or bile salts (Michel et al., 2003). Most importantly, behavioral results are reliant on degree of experimental interpretation, and this is perhaps the most difficult aspect to validate a behavior experiment.

1.8. Zebrafish as a model organism

Zebrafish are small tropical fish native to Southeast Asia. A unique combination of genetic and experimental embryologic advantages makes them ideal biological studies. Zebrafish is well apt for forward genetics because of large clutch size and relatively short generation time. The zebrafish lays hundreds of eggs at weekly intervals and these eggs are externally fertilized and can be biologically manipulated for large scale mutant screens. The nervous system of zebrafish is relatively less complex and is high similar to that of higher vertebrates. The olfactory bulb (OB) of zebrafish contains only ~80 glomeruli, compared to ~1800 in rodents (Baier and Korsching, 1994; Baier et al., 1994). The optical transparency and physical accessibility of zebrafish embryos make them an ideal system

to maximally utilize the advantages of transgenic animals, expressing fluorescent proteins such as green fluorescent protein (GFP). Axon guidance mechanisms can be studied in zebrafish during early development, by combining transgenesis with the use of GFP. It is also shown that axons dynamic behavior can be visualized in living embryos.

AIMS

Amines are basic olfactory cues for teleost in aquatic environment. The initial aim of this study was the identification and characterization of the complete repertoire of the trace amine-associated receptors (TAARs) family in lower vertebrates, which were expected to be good candidates for mediating amine detection in teleosts. This was carried out by use of extensive multidisciplinary approaches of *in silico* and *in vitro* biology, and resulted in fascinating answers about evolutionary history, intron dynamics, selection pressure and cellular localization of TAARs (Hussain et al., PNAS 2009).

So far all of teleost olfactory receptors are "orphans" (their ligands are not known) except one member of the OlfC family. Therefore our second objective was the identification of ligands for TAAR receptors. We could deorphanize a TAAR receptor that responds to aliphatic diamines and have characterized its chemical selectivity with respect to chain length and functional groups. Intriguingly we observed a clear behavioral response of zebrafish to these specific ligands with a similar chemical selectivity to that of the receptor itself. To investigate whether activation of this single TAAR receptor could be sufficient to generate the observed behavior we have characterized the activation of olfactory sensory neurons by the same ligands.

The results are consistent with the existence of at least two olfactory receptors for diamines, each of which may be sufficient to elicit a characteristic innate behavior upon activation by an ecologically relevant stimulus.

CHAPTER 2 RESULTS

VIII. RESULTS

1. Phylogenomics, selection pressure, intron dynamics and cellular expression of TAARs

1.1. TAAR genes encompass monophyletic origin distinct from aminergic GPCRs

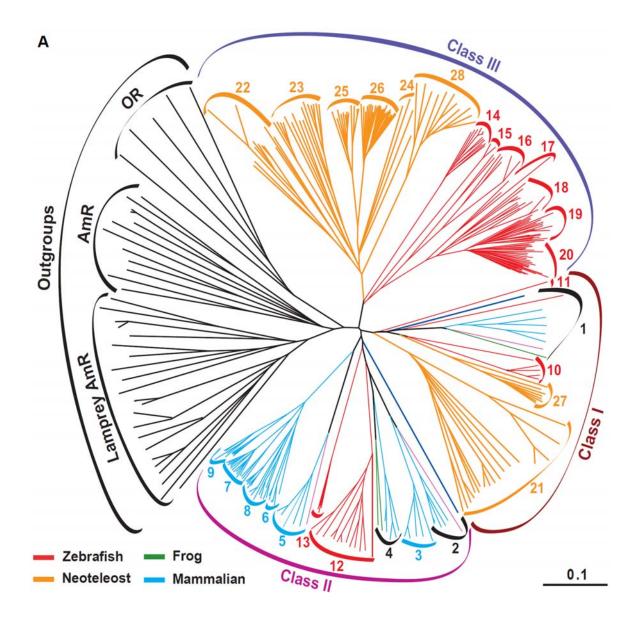
Complete *taar* gene repertoire of 5 teleost fish species, a shark, frog, chicken, 4 placental, and 1 marsupial mammalian species (Table.2) was retrieved by using a recursive data mining search strategy including TblastN followed by BlastP algorithm, in protein and nucleotide databases of NCBI and Ensemble (see Methods for details). All retrieved *taar* genes were extensively analyzed by sequence alignment and were identified by the presence of eminent GPCRs and TAAR motifs. These genes were subdivided into 28 different subfamilies (Table.2, Supplementary Table1). Subfamilies 1 to 9 correspond to previously identified TAARs, with mostly mammalian members, whereas subfamilies 10 to 28 are fish-specific. The subfamilies segregate into 3 major clades (Fig. 5), which were designated into 3 classes in analogy to corresponding subdivisions in the odorant receptor (OR) gene family (Niimura and Nei, 2005). Class I (TAAR1, 10-11, 21, 27) contains mostly teleost genes, class II (TAAR 2-9, 12-13) comprises mostly tetrapod genes, and class III is restricted to teleosts (TAAR14-20, 22-26, 28), Class I (TAAR1, 10-11, 21, 27) and class II (TAAR2-9, 12-13) contain both tetrapod and teleost genes, but class III is restricted to teleosts (TAAR14-20, 22-26, 28).

All *taar* genes identified form a monophyletic group, clearly distinct from their close relatives, the aminergic neurotransmitter receptors (Fig. 5). The TAAR gene family also segregates with maximal bootstrap values from the ORs, which are less closely related, but belong to the same major family of GPCRs, the rhodopsin type GPCRs (Fredriksson et al., 2003). The appropriate choice of out-groups was especially accentuated in relevance to the proper delineation of the TAAR gene family. Representatives from all major aminergic receptor subtypes (cholinergic, dopaminergic, histaminergic, noradrenergic, and serotinergic receptors) were included in the phylogenetic analysis to avoid spurious results. The classical aminergic neurotransmitter receptors are relatively

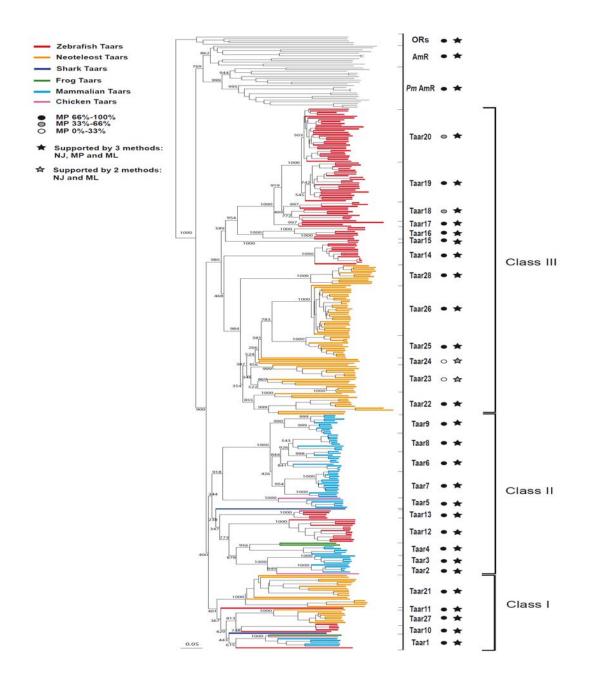
Species	Subfamilies		Number of taar genes	
	Number	Name	Intact (Class I, II & III)	Pseudo
Zebrafish	12	1, 10-20	112 (7, 18, 87)	4
Stickleback	7	21-27	48 (4, 0, 44)	0
Medaka	4	21-24	25 (6, 0, 19)	1
Opossum	7	1-6, 9	19 (1, 18, 0)	0
Takifugu rubripes	4	21, 22, 27, 28	18 (7, 0, 11)	0
Tetraodon nigroviridis	4	21, 22, 27, 28	18 (9, 0, 9)	0
Rat	9	1-9	17 (1, 16, 0)	2
Mouse	9	1-9	15 (1, 14, 0)	1
Cow	9	1-9	13 (1, 12, 0)	0
Human	6	1, 2, 5, 6, 8, 9	6 (1, 5, 0)	3
Frog	2	1, 4	3 (1, 2, 0)	0
Chicken	3	1, 2, 5	3 (1, 2, 0)	0
Elephant shark	2	1, 2	2 (1, 1, 0)	0
Sea lamprey	0	-	0	0

close neighbors in the phylogenetic tree, but constitute a rather diverse group by themselves.

Table.2. Number of taar genes and subfamilies in all species analyzed. First column, name of species; second column, number of subfamilies per species; third column, subfamily names, e.g., 10-20 means TAAR10 to TAAR20; fourth column, number of intact *taar* genes per species, numbers for each class given in parentheses; fifth column, number of pseudogenes.


1.2. Rapid evolution of TAAR gene as a recurrent species-specific expansions in teleost

The teleost *taar* gene repertoires range from 112 for zebrafish (plus 4 pseudogenes) down to several fold smaller repertoires (stickleback 48, medaka 25, pufferfish each 18 genes). Mammalian families just reach minimal fish family size, while avian and amphibian families are minuscule, with only 3 genes each (Tables.2, Supplementary Table.1). Most


of these differences are caused by massive recent gene expansions in teleosts that led to 30 members within a single zebrafish-specific subfamily, TAAR20, and 28 genes in the stickleback-specific subfamily TAAR26. All but one zebrafish and one neoteleost TAAR subfamily (DrTAAR11 and TAAR24, respectively) have undergone recent gene duplications. In mammals gene expansions are less frequent and also much smaller those in teleosts (maximally to six genes, opossum *taar9*). No recent gene expansions were found for *taar* genes 1, 2, 3 and 5. No recent gene duplications have been observed in an amphibian (*Xenopus tropicalis*) nor in an avian species (*Gallus gallus*).

Individual teleost TAAR genes (except TAAR1) rarely possess any orthologs. Thirteen of nineteen subfamilies are restricted to a single species each (TAAR10-20, zebrafish; TAAR25-26, stickleback). Only two subfamilies contain genes from all four neoteleost species examined (TAAR21-22) and none are shared between zebrafish and neoteleosts, (Supplementary Tables 1). Even in the case of subfamilies containing orthologs, a gene expansion may occur in one species but not another, e.g. TAAR27 has expanded to seven genes in tetraodon, but remains a single gene in both stickleback and fugu (Supplementary Table.1). Thus most gene duplications have occurred rather recently, after the divergence of the teleost and neoteleost species analyzed here (Fig. 5), indeed even after the two pufferfish species diverged about 20-30 million years ago (Van de Peer, 2004).

In contrast, orthologs are readily identifiable between all mammalian species analyzed. Orthologs for all nine previously identified mammalian *taar* subfamilies are uncovered in another mammalian species, *Bos taurus* (Table.1, Supplementary Tables 1). In humans, all nine subfamilies are represented by one member each, three of them by pseudogenes (TAAR3, 4, and 7). Thus, *Homo sapiens* has a typical mammalian TAAR repertoire. Seven of the nine subfamilies (TAAR1-6, 9) are detected also in opossum, a marsupial mammal, i.e. should be present already in the MRCA of marsupials (Murphy et al., 2007) and modern mammals. Although very small, the amphibian and avian *taar* gene repertoires are not located at the base of the sarcopterygian tree and clearly belong to different mammalian subfamilies. Thus gene losses appear to have shaped the avian and amphibian gene families.

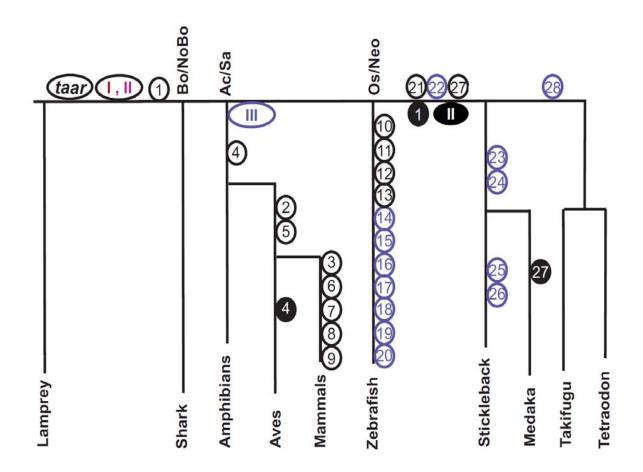

Fig. 5. Phylogenetic tree of TAAR family members and estimated minimal evolutionary age. (*A*) Radial tree of teleost and tetrapod TAARs, species groups are color-coded. We analyzed 5 teleost genomes (*Danio rerio*, zebrafish; *Gasterosteus aculeatus*, 3-spined stickleback; *Oryzias latipes*, medaka; *Takifugu rubripes*, fugu; *Tetraodon nigroviridis*, tetraodon), 5 mammalian genomes (*Monodelphis domestica*, opossum; *Bos taurus*, cow; *Mus musculus*, mouse; *Rattus norvegicus*; rat, *Homosapiens*, human), avian (*Gallus gallus*, chicken), amphibian (*Xenopus tropicalis*, clawed frog), lamprey (*Petromyzon marinus*), and elephant shark (*Callorhinchus milii*) genome. Zebrafish and mouse aminergic neurotransmitter receptors were used as outgroup together with a selection of ORs. (Scale bar, 10% divergence.) For accession numbers and/or gene Ids, see Supplementary Table 1.

Fig. 6. Phylogenetic tree of the *taar* genes. The cladogram shown here corresponds to the unrooted tree in Fig. 5. The tree is constructed by using the neighbor-joining algorithm; bootstrap support at major nodes is indicated by numbers (1,000 cycles). All subfamilies are supported by all 3 tree algorithms used (neighbor joining; maximum parsimony, 100 bootstraps; maximum likelihood), except subfamilies 23 and 24 (supported by 2 methods). Red lines represent zebrafish *taar* genes; orange lines, neoteleost *taar* genes; dark blue, cartilaginous fish *taar* genes; green, amphibian *taar* genes; light-blue, mammalian *taar* genes; and black represents the outgroup (OR, odorant receptors; AmR, aminergic receptors; PmAmR, *Petromyzon marinus* (sea lamprey) aminergic receptors). Note the segregation in 3 clades, class I to III.

1.3. TAAR genes are an evolutionary young family

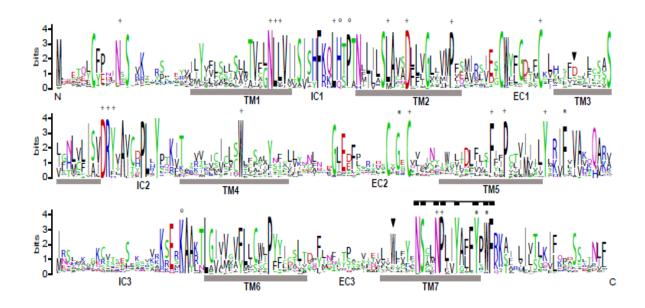

TAAR1 orthologs occur in both tetrapods and teleosts (Fig. 7), i.e., TAAR1 ought to have been present already in the most recent common ancestor (MRCA) of both lineages and is older than the actinopterygian/sarcopterygian split. To determine the evolutionary origin of the *taar* gene family, all currently available sequence information for cartilaginous fish and jawless fish were searched. Two taar genes, both with a perfectly conserved TAAR specific fingerprint motif (Lindemann and Hoener, 2005), were uncovered in the elephant shark, one of them an ortholog of TAAR1 (Fig. 5). Cartilaginous fish are considered basal to all jawed vertebrates (Venkatesh et al., 2001), so TAAR1 was present already in the MRCA of bony fish and cartilaginous fish and may be the ancestral member of class I. All tetrapod species analyzed contain a TAAR1 ortholog, as does the avian genome examined here. Interestingly, no orthologs for TAAR1 could be found in any of the neoteleost species analyzed, i.e., this ancestral gene appears to have been lost in neoteleosts. The other shark gene exhibits a basal location in class II (Fig. 5) and may thus correspond most to the ancestral class II taar gene. Despite an extensive search, no taar genes were uncovered in the genome of a jawless vertebrate (sea lamprey). Thus, the *taar* gene family appears to have originated in the MRCA of cartilaginous and bony fish as a pair of genes that later expanded into class I and II genes. No shark representative of class III was found, consistent with a later evolutionary origin of this class, after the segregation of the tetrapod from the ray-finned bony fish lineage.

Fig. 7. The estimated minimal evolutionary age of TAAR subfamilies and genes. Open circles represent the gene gain events in each lineage, and filled circles represent the gene loss events. Inside each circle is the name of the respective gene or subfamilies. Emergence of the *taar* gene family and of the 3 classes of *taar* genes is indicated by ovals. The major phylogenetic transitions are indicated: bo/nobo, bony fish/cartilaginous fish; ac/sa, actinopterygian/sarcopterygian split, i.e., between the ray-finned bony fish (teleosts) and the lobe-finned fish giving rise to tetrapods; os/neo, ostariophysii/ neoteleostei segregation between less derived (zebrafish) and more modern fish (medaka, stickleback, pufferfish). The maximum-parsimony principle was followed, thus gene gains are depicted at the last possible stage before additional gains would become necessary for explanation but may in fact have occurred earlier. A gene gain implies preceding gene duplication on the same branch of the species tree that gave rise to the new subfamily.

1.4. TAAR family is characterized by distinctive consensus motifs, despite the overall heterogeneity.

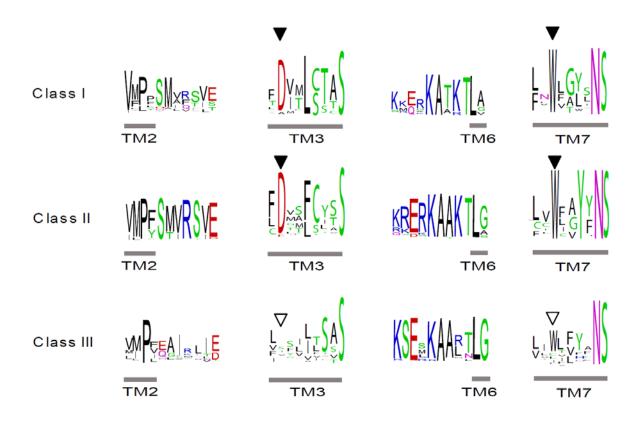

Taar genes frequently show low identity values_30% in pair wise comparisons. The retention of consensus motifs was analyzed to obtain a second line of evidence for proper delineation of the *taar* gene family. Of 48 amino acid positions absolutely conserved between human and rodent TAARs (1), the vast majority (41aa) are highly conserved in fish TAARs. Besides general GPCR motifs many TAAR-specific motifs are in these groups that are not present even in the closely related aminergic receptors (Fig. 8).

Fig. 8. Amino acid sequence conservation in the fish *taar* gene repertoire. Sequence logo representation of the alignment of all 223 fish full-length TAAR sequences, the height of the 1-letter amino acid code in the logo reflects the degree of conservation. Sequence logos were generated as described (32). TM, transmembrane region; IC, intracellular loop; EC, extracellular loop; plus signs, broadly conserved in rhodopsin type GPCRs; circles, conserved in some rhodopsin type GPCRs but not in aminergic receptors; asterisks, conserved in TAARs but not in other rhodopsin type GPCRs. Two triangles in TM 3 and TM 7 depict the aminergic ligand motif, filled rectangle motif in TM 7, the characteristic fingerprint for TAARs.

The characteristic TAAR fingerprint motif, described to be 100% sensitive and specific for mammalian TAARs (1), is strikingly conserved in all fish *taar* genes analyzed (Fig. 8). In contrast, 2 of the TAAR-specific amino acids from this motif are absent in the lamprey

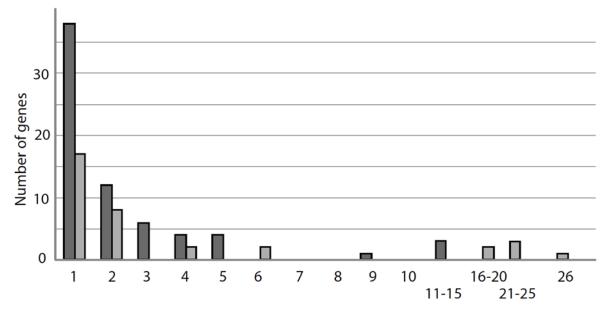

receptors, and 2 others are only weakly conserved, further delineating the TAAR receptors from the group of aminergic receptors in general and from the lamprey aminergic receptor family in particular. As expected, amphibian and avian TAAR sequences share the great majority of conserved motifs as outlined above, supporting their assignment as *taar* genes. Some motifs distinguish the 3 classes of TAARs from one another, including the aminergic ligand motif (Huang, 2003), which is highly conserved in class I and II, but absent from all but one class III *taar* genes (Fig. 9).

Fig. 9. Subclass-specific amino acid sequence conservation. Conservation is displayed as a sequence logo. Four motifs are shown (end of TM2, start of TM3, preceding TM6, and start of TM7, respectively) that distinguish among the 3 classes of TAARs. TM3 and TM7contain the 2 amino acids (filled triangle) constituting the aminergic ligand motif (1). Note the absence of the motif (open triangle) in class III genes.

1.5. Genomic arrangement of teleost TAAR genes pinpoints the evolutionary origin of class III.

Mammalian *taar* genes are found without exception in a single cluster in the genome (11). All newly identified mammalian, avian, and amphibian taar genes conform to this previously described pattern (Supplementary Table.1). In contrast, teleost taar genes are found in 2 large clusters and a few solitary genes (chromosomal allocation for zebrafish and medaka, large scaffolds for stickleback). Within the clusters, genes are organized mostly in accordance to phylogenetic relationship (Fig. 10), consistent with a genesis of the clusters by recurrent local gene duplication. A few exceptions to the colinearity of phylogenetic relationship and genomic location do occur (Supplementary Table.1), possibly caused by recent genomic rearrangements involving these genes. Interestingly, taar1 gene is always located at one end of the cluster in tetrapod and avian species, consistent with an asymmetric process being responsible for at least some of the repeated gene duplications. Average intergenic distance is 7.9 0.5 kb (mean SEM, n 97) in the zebrafish gene clusters, with exception of a large intervening region at approximately the same relative position in both clusters (Supplementary Table.1). This similarity in cluster structure is consistent with the 2 clusters resulting from the whole genome duplication known to have occurred in early teleosts (12). Indeed, the cluster positions for zebrafish and medaka are syntenic not only within and between species, but also to the human cluster (see Supplementary Table.1) (12, 13). Class III taar genes are found in both genomic clusters and consequently, class III appears to be older than the whole genome duplication observed in early teleost evolution (Nakatani et al., 2007). Because, on the other hand, class III is restricted to teleosts, it appears to have originated shortly after the segregation of the teleost and tetrapod lineages.

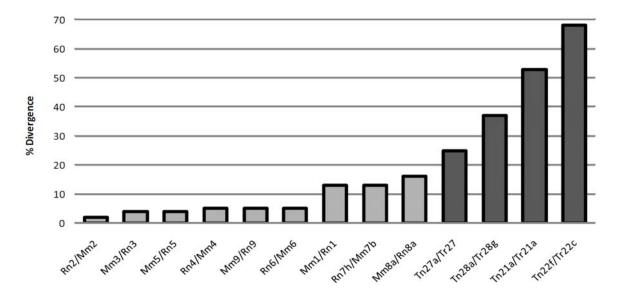


Fig. 10. Correlation of phylogenetic distance with physical distance in 2 zebrafish genomic clusters. For each gene within the clusters on chromosome 10 (dark gray bars) and chromosome 20 (light gray bars), the paralog with the highest homology was determined, and its position relative to the first gene was expressed as ordinal value, e.g., a value of 1 indicates a direct neighbor (most frequent case), and a value of 2 indicates 1 additional gene situated between the gene and its closest relative. Phylogenetic neighbors outside of the cluster occur only in 2 cases.

1.6. Gene duplication rate and gene divergence are much higher in teleost compared with mammalian species, suggesting a teleost- restricted rapid evolution of taar genes.

The teleost TAAR repertoires range from 112, 48, 25, to 18 genes (zebrafish, stickleback, medaka, and pufferfish, respectively), whereas mammalian families just reach minimal fish family size, and avian and amphibian families are minuscule, with only 3 genes each (see Table.2 and Supplementary Table.1). Most of these differences are caused by massive recent gene expansions in teleosts that led to 30 members within a single zebrafish-specific subfamily, TAAR20, and 28 genes in the stickleback- specific subfamily TAAR26. Only TAAR11 and TAAR24 have not undergone recent gene duplications. In contrast, mammalian gene expansions are less frequent, and also much smaller, maximally to 6 genes in opossum TAAR9. No recent gene expansions were found for TAAR1, 2, 3, and 5. No recent gene duplications have been observed in amphibian and

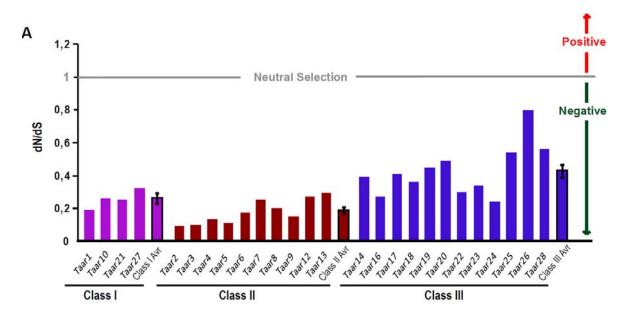

avian species (Fig. 5). Individual teleost TAAR genes rarely possess any orthologs. Thirteen of 19 subfamilies are restricted to a single species each, i.e., all gene duplications giving rise to these genes appear to have occurred after the respective species diverged from the other 4 (Fig. 6). Only 2 subfamilies contain genes from all 4 neoteleost species examined, and none contain genes from zebrafish and neoteleosts (see Table 2). Even in the case of subfamilies containing orthologs, a gene expansion may occur in one species but not another, e.g., TAAR27 has expanded to 7 genes in tetraodon but remains a single gene in both stickleback and fugu (see Table S2). Thus, most gene duplications have occurred rather recently, after the divergence of the teleost and neoteleost species analyzed here (Fig. 6) and many even after the 2 pufferfish species diverged 20-30 million years ago (Van de Peer, 2004). In contrast, orthologs are readily identifiable between all mammalian species analyzed. We uncovered bovine orthologs for all 9 previously identified mammalian taar subfamilies (Table. 2 and Supplementary Table.1). In humans, all 9 subfamilies are represented by 1 member each, albeit 3 of them by pseudogenes (Table.2). Seven of the 9 subfamilies are detected also in opossum, a marsupial mammal (Table.2), i.e., should be present already in the MRCA of marsupials (Murphy et al., 2007) and modern mammals. Although very small, with 3 genes each, the amphibian and avian taar gene repertoires are not located at the base of the tetrapod tree and clearly belong to different mammalian subfamilies. Thus, gene losses appear to have shaped the avian and amphibian gene families. We selected a mammalian and a fish species pair with approximately equal evolutionary distance for an initial comparison of evolutionary rates. Rat and mouse diverged 23 million years ago (Springer et al., 2003), very similar to the 18-30 million years given for Tetraodon nigroviridis and Takifugu rubripes (Van de Peer, 2004). For both pairs of species, many orthologs or ortholog subfamilies are observed. Differences between orthologs accumulate only after the separation of the respective species, thus larger divergence in 1 pair of species indicates a faster evolutionary rate. The maximal ortholog divergence is, without exception, higher for pufferfish than for rodent pairwise comparisons, maximally 68% for pufferfish, but only 16% for the rodents (Fig. 11). These data suggest a faster evolutionary rate in bony fish compared with tetrapods.

Fig. 11. Maximal divergence within rodent and pufferfish subfamilies. Maximal divergence between ortholog genes in rat *vs.* mouse and tetraodon vs. fugu comparison. Maximal divergence within the same subfamilies (paralog divergence) is also indicated. Values are based on amino acid comparisons and ordered by size. Note that even the largest value for rodent comparisons is below the smallest value for pufferfish comparisons.

1.7. Strong local positive selection in teleost taar genes is masked by global negative selection.

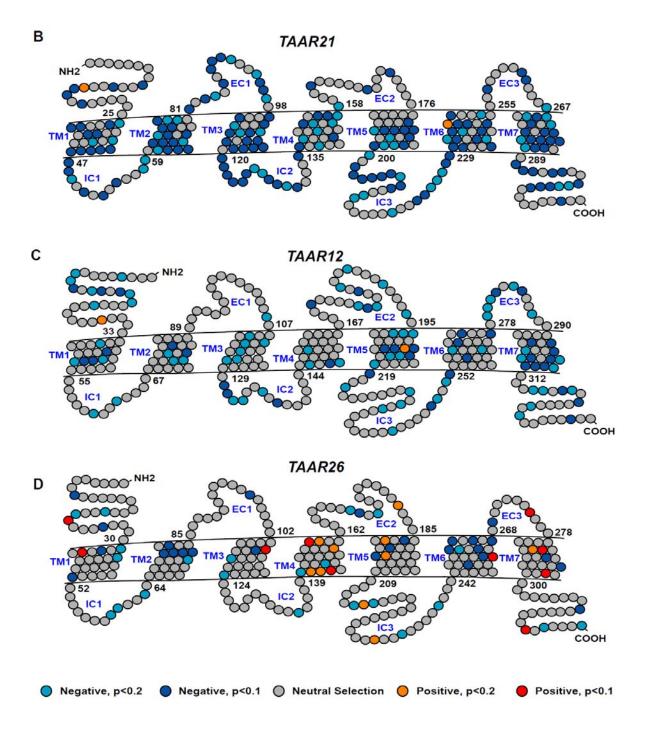

To better understand the evolutionary dynamics of the *taar* genes, the selective pressure on these genes was analyzed using both global and local analysis of substitution rates in synonymous vs. nonsynonymous base positions. The global dN/dS values calculated for each of the ortholog groups show that all of the gene groups are under negative selection (Fig. 12 and Supplementary Table.2), but the extent varies considerably, from 0.09 (pronounced negative selection) up to 0.8 (close to neutral selection). The average dN/dS value for the teleost-restricted class III is by far the highest, more than double the value for class II *taar* genes and significantly different from both class I and class II values (Fig. 12). The relaxed negative selection observed especially for class III TAAR subfamilies may result from an overall pronounced negative selection masking positive selection at some sites. To clarify this point, we analyzed the dN/dS values for each individual codon position for all genes of a particular *taar* subfamily. As predicted by the analysis of the previously calculated global dN/dS values, negatively selected sites were found without exception throughout all of the *taar* gene families, with some preponderance in the transmembrane regions (Fig. 12). Consistent with the results of the global analysis, class III *taar* genes contain only approximately half as many negatively selected sites as the other 2 classes (Supplementary Table.1).

Fig. 12. Evolutionary distances and selective pressure on *taar* genes. (*A*) dN/dS ratios of the TAAR ortholog groups in which this analysis was possible (more than 2 genes per group). Genes are arranged by class, the class average is indicated by background shading.

Excitingly, the site-by-site analysis suggested a significant number of sites under positive Darwinian selection that were masked by the predominance of negative selection in the global analysis. Although there are few such sites in class I and II *taar* genes (0–2 sites per gene), several genes in class III show much higher values of up to 20 sites per gene (Fig. 13 and Supplementary Table.3). The values for class I and II *taar* genes are comparable with those reported for other olfactory receptor gene families (1–2 sites), (Alioto and Ngai, 2005; Alioto and Ngai, 2006). The analysis was repeated for zebrafish OR genes (Niimura and Nei, 2005) using the identical algorithm and obtained a range of 0–5 sites, on average 1 site per gene (see Table S5). To the best of our knowledge, the much larger number of such sites in class III *taar* genes is without precedent in olfactory receptor gene families. We conclude that the teleost-restricted class III, which is evolutionary much younger than class I and class II, is likely to have undergone extensive

positive selection. The more rapid evolution of class III has resulted in massive expansion of gene families beyond that observed in the older classes I and II.

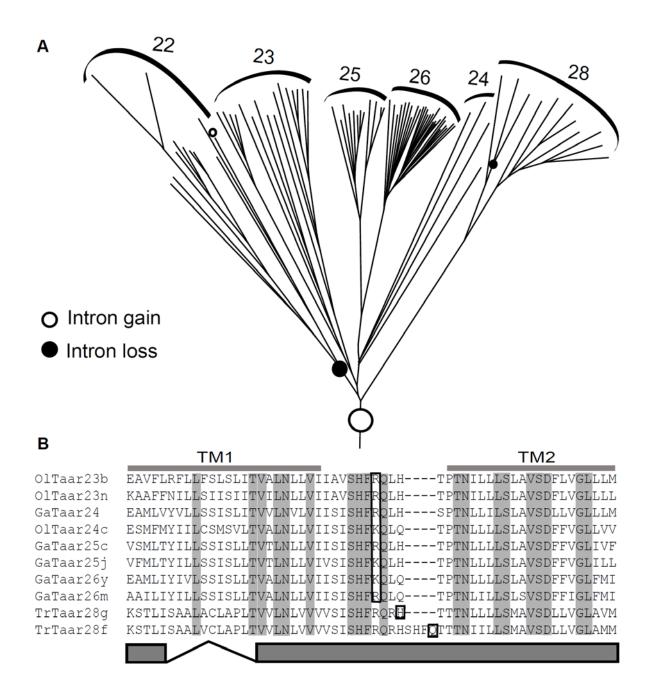


Fig. 13. (*B*, *C* and *D*) A representation of site-by-site selective pressure is shown for 3 TAAR sequences. (negative selection in light blue, P_{-} 0.2 or blue, P_{-} 0.1, neutral selection in gray, positive selection in orange, P_{-} 0.2, and red, P_{-} 0.1). (*B*) Results for

TAAR21, a class I subfamily, which includes ortholog genes of all 4 neoteleost species. (C) Results for TAAR12, a zebrafish specific classII subfamily. (*D*) Results for stickleback-specific TAAR26, a class III subfamily.

1.8. Dynamic loss and gain of introns restricted to the class III of neoteleost taar genes.

Generally taar genes are monoexonic, like the related ORs (Hashiguchi and Nishida, 2007). We report that, without exception, all class I, class II, and class III zebrafish taar genes are monoexonic. However, from class III, all taar genes of neoteleost subfamilies 23–26 and some genes from subfamily 28 contain an intron between TM1 and TM2 (Fig. 14). The intron is rather short, in the range of 76 to 373 nucleotide, with an average value of 155 nucleotide. Homologies between introns parallel those of the corresponding coding regions. The intron/exon border is strictly conserved (OI taar23d and Tr taar28f show a slightly extended first exon), consistent with a single phylogenetic event early in the neoteleost lineage subsequent to the segregation from the more basal ostariophysan fish (Fig. 14). Consequently, the most parsimonious explanation for the absence of this intron in subfamily 22 and some genes of subfamily 28 is a secondary loss, which must have happened at least 2 times independently. The intron loss in subfamily 28 occurred very late, after the segregation of the 2 pufferfish species (Fig. 14), indicative of the unusually high intron dynamics in the *taar* gene family compared with the tiny average frequency of intron losses after the divergence of fugu and tetraodon (Loh et al., 2007). Another intron gain is predicted in an individual stickleback gene (Ga taar22a, class III), but not in its pufferfish or medaka orthologs, i.e., late in the neoteleost evolution (Fig. 14). It is caused by insertion of a short repeat that leads to the expansion of a short, conserved poly CV stretch (see Fig. 8) into much of TM4. In total, at least 4 independent intron gain/loss events have occurred after the neoteleosts emerged. Because genome-wide searches so far have failed to identify a single intron gain in vertebrates (Loh et al., 2007), the 2 gain events documented here appear to be an extremely rare case and may be related to the selection for divergence of class III taar genes.

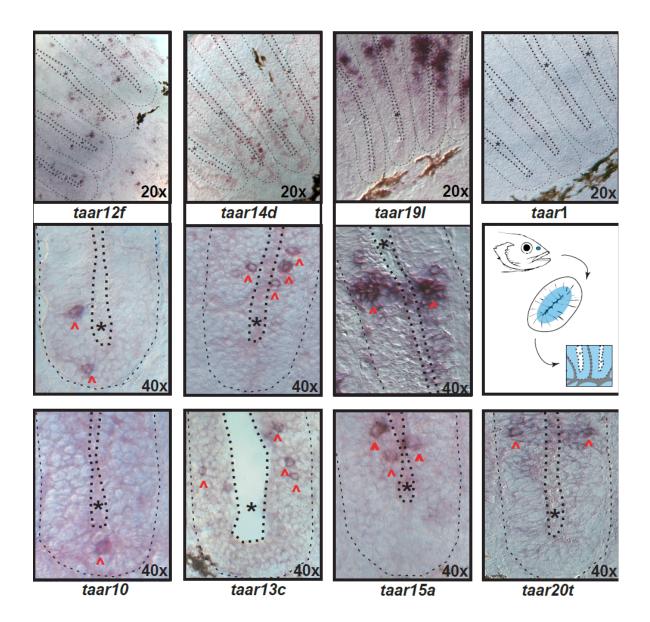
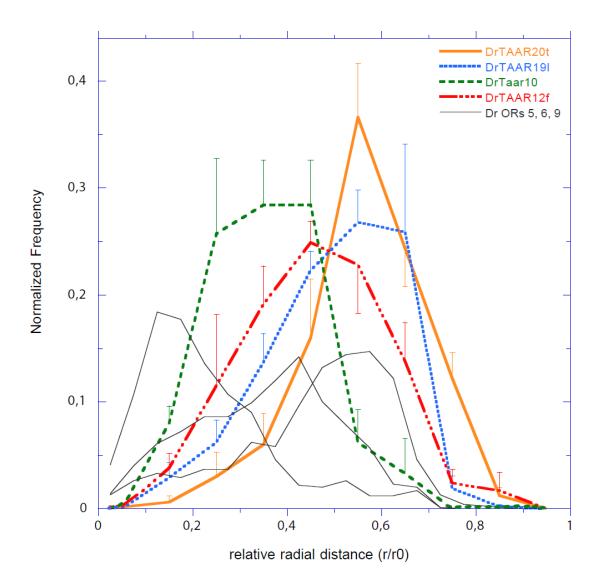


Fig. 14. Intron dynamics in class III neoteleost *taar* genes. (*A*) By using maximum parsimony, predictions for all independent events of intron gain or loss are depicted in the phylogenetic tree detail. (*B*) A representative subset of *taar* genes sharing an early intron gain exhibits a strictly conserved intron/ exon border (boxed). The intron interrupts a loop between TM 1 and TM 2.


1.9. Most taar genes are expressed in sparse olfactory sensory neurons.

The rapid evolution and positive selection observed in the *taar* gene family in teleosts are consistent with expectations for olfactory receptor genes (Alioto and Ngai, 2005), because efficient adaptation to changing environmental stimuli may require high evolutionary rates. Another requirement for olfactory receptor genes is an expression in the olfactory epithelium. This was analyzed by in situ hybridization using a representative subset of 8 *taar* genes from all 3 classes (class I, TAAR1, 10; class II, 12f, 13c; class III, 14d, 15a, 19I, 20t). Probes were chosen to minimize cross-reactivity with related *taar* genes as far as possible. All genes tested were expressed in the adult zebrafish olfactory epithelium (Fig. 15), except TAAR1. Labeled cells were sparsely distributed within the sensory area of the olfactory epithelium. A higher density of labeled cells for genes in TAAR19I and 20t (Fig. 15) is presumably caused by unavoidable cross-reactivity in these large and highly homologous subfamilies. No expression was observed in the outer, non-sensory ring of the nasal epithelium.

Within the sensory surface individual *taar* genes are expressed in overlapping, but clearly distinct, concentric expression domains (Fig. 16). *Taar* genes 19I and 20t occupy the most distal positions, with peak expression frequencies rather close to the border between sensory and non-sensory epithelium, and show a correspondingly skewed distribution, whereas *taar* genes 10 and 12f show more medial and more symmetrical radial distributions (Fig. 15, Fig. 16). These spatial patterns are reminiscent of the ring-like expression domains observed for zebrafish ORs (Saraiva and Korsching, 2007; Sato et al., 2005; Weth et al., 1996). Thus, the spatial expression patterns observed for TAARs support an expression in olfactory sensory neurons, consistent with an expression of most or all *taar* genes in these neurons. Furthermore, the frequency of labeled cells [10–50 per section, without *taar (Loh et al., 2007; Weth et al., 1996)* is within the range observed for ORs and the V1R-related ORAs (Saraiva and Korsching, 2007; Weth et al., 1996).

Fig. 15. Expression of *taar* genes in the zebrafish olfactory epithelium (OE). A schematic representation shows the approximate position of the olfactory epithelium in the zebrafish, the morphology of a horizontal section (lamellae are cut perpendicular to their flat face) and finally an enlargement of 2 lamellae. The central blue-colored area in the lamellae indicates the location of the sensory neuroepithelium (see ref. 20); gray areas and thin dotted line, basal lamina; black dots and asterisk, lumen. In situ hybridization was performed in horizontal sections with antisense RNA probes. The top row depicts the sensory region of several lamellae, whereas the other 2 rows show enlargements of 1 lamella, corresponding approximately to one-half of the schematical representation (*Center Right*). Red arrowheads point to labeled neurons, other symbols as above. *Taar* genes 10, 12f, 13c, 14d, and 15a are expressed in sparse cells, whereas *taar* 19I and 20t label a somewhat larger subset of cells within the sensory surface, probably because of cross hybridization in the large and closely related subfamilies *taar* 19 and *taar* 20.

Fig. 16. Radial distribution of 4 TAAR genes. Positions of cells expressing particular TAAR genes were identified in horizontal sections of olfactory epithelia in the microscope and manually marked on printouts. Relative radial distance (*r*/*r*0) of labeled cells was measured for each lamella separately as distance from the nadir of the sensory layer, closest to the median raphe, divided by the total length of the corresponding lamella. For each section, a histogram of the radial distribution was calculated for 10 equidistant bins, frequency values obtained for each bin were normalized and averaged for several sections. Values given represent mean _ SEM. Thick lines, TAAR genes; thin black lines, reference curves from left to right (peak values) for OR genes *zor6*, *zor9*, and *zor5*, respectively (data taken from ref. 2). Note the skewness of histogram curves for TAAR12f, 19I, 20t, similar to the skewness observed for *z*OR6 and *z*OR5. Peaks for TAAR distribution are found medially and distally, similar to the proximally, medially, and distally centered distributions described for ORs.

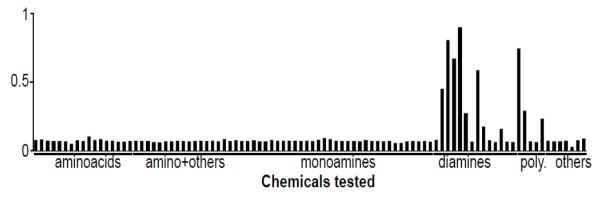
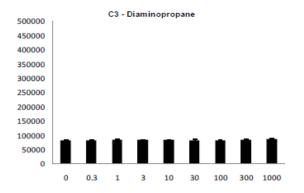
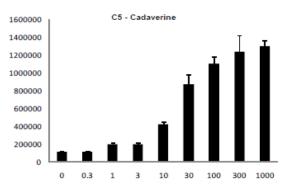
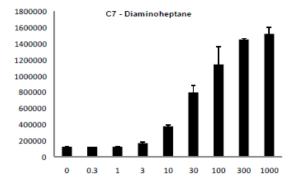
2. Ligands for zebrafish TAARs

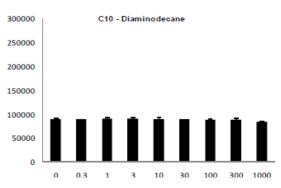
Ligands have only been identified for a handful of olfactory receptors of mammals (Krautwurst et al., 1998; Liberles and Buck, 2006; Mombaerts, 2004; Spehr et al., 2003) and insects (Asahina et al., 2008; Dahanukar et al., 2005; Ditzen et al., 2008; Syed and Leal, 2009). While only a single teleost olfactory receptor have been deorphanized, a member of the OlfC family, OlfC a1 (Alioto and Ngai, 2006). Therefore, an immense capacity of research exists for the identification of ligands for teleost olfactory receptors. Zebrafish TAAR family is a good candidate for deorphanization because aminergic ligand binding motifs, predictive of amine ligands, were found conserved in all of 25 TAAR genes of class I and II (Fig. 9). Technically, the identification of specific ligands for olfactory receptors is difficult because of the inefficient heterologous system, complexity of the task and species specific rapid evolution of genes repertoire. However, some recent modifications in the heterologous assays (Durocher et al., 2000; Liberles and Buck, 2006) make identification of olfactory ligands an amenable task.

2.1. DrTAAR13c recognize volatile diamines

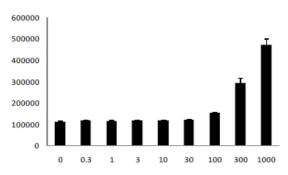
Zebrafish TAARs genes were embedded with an amino-terminal addition of the first 20 amino acids of bovine rhodopsin (a 'rho tag') and were cloned in pcDNA3.1 vector (Liberles and Buck, 2006). The rho-tag modification helps the cell-surface expression of some odorant receptors in HEK293 cells (Krautwurst et al., 1998). TAARs were cotransfected in HEK293 cells with the cAMP reporter gene CRE-SEAP. CRE (cyclic AMP response element) is a pivotal target in many signaling pathways. An elevation of intracellular cAMP in response to activation of receptor by ligand binding is known to trigger protein kinase A, which translocates in the nucleus to phosphorylate CRE binding protein (CREB) transcription factors. CREB binds to CRE elements on the gene reporter to dose-dependently induce the translation of SEAP (Durocher et al., 2000; Montminy, 1997). The activity elicited by potential ligands applied (10μ M) on HEK293 cells transfected with taar gene and reporter CRE-SEAP plasmid was assayed for SEAP activity using the fluorigenic SEAP substrate 4-methylumbelliferyl phosphate (MUP) (Clipstone and Crabtree, 1992; Liberles and Buck, 2006) (see methods for detail).

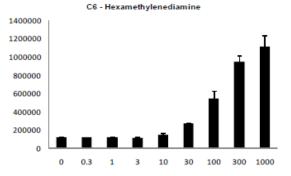
To identify the specific ligands for zebrafish olfactory receptors TAARs, 95 different chemicals (Supplementary Table.5) were used in the heterologous functional assay (Clipstone and Crabtree, 1992; Liberles and Buck, 2006). The chemicals used were mostly monoamines, diamines and polyamines but also included amino acids, mono and di-alcohols and few other compounds (see Supplementary Table. 5 for details). Eleven different zebrafish taar genes (DrTAAR1, 10, 11, 12f, 13a, 13b, 13c, 13d, 15a, 16c, 20t1) belonging to all three classes (classI, II and III) were examined. One olfactory receptor DrTAAR13c was activated exclusively by diamines and some polyamines (Fig. 17). The four other TAAR13 subfamily members (DrTAAR13a, DrTAAR13b, DrTAAR13d and DrTAAR13e) did not respond to diamines or any of the other chemicals examined.


Fig.17. CRE-SEAP assay for 95 chemicals show activity for diamines and polyamines.

The diamines of various carbon chain length ranging from C3 to C10 (1,3 diaminopropane; 1,4 Putrescine; 1,5 Cadaverine; 1,6 Hexamethylenediamine; 1,7 Diaminoheptane; 1,8 Diaminooctane and 1,10 Diaminodecane) were tested in CRE-SEAP heterologous system. DrTAAR13c showed activity for diamines with carbon chain length four to eight albeit with different affinity (Fig. 18), but did not respond to short (diaminopropane) and very long (diaminodecane) aliphatic diamines. A dose response curve (0-1000 μ M diamines) was determine to estimate the half maximal effective concentration (EC50) of these newly identified ligands (Fig. 18). The individual experiments were performed in triplicate and up to 7 independent experiments were done per stimulus.





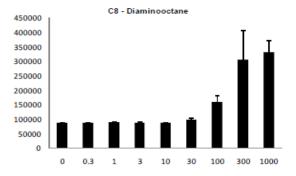
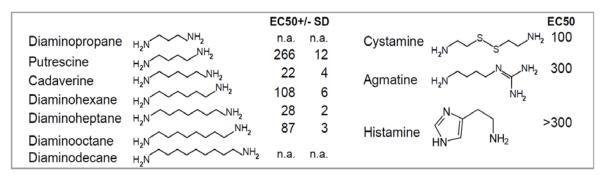
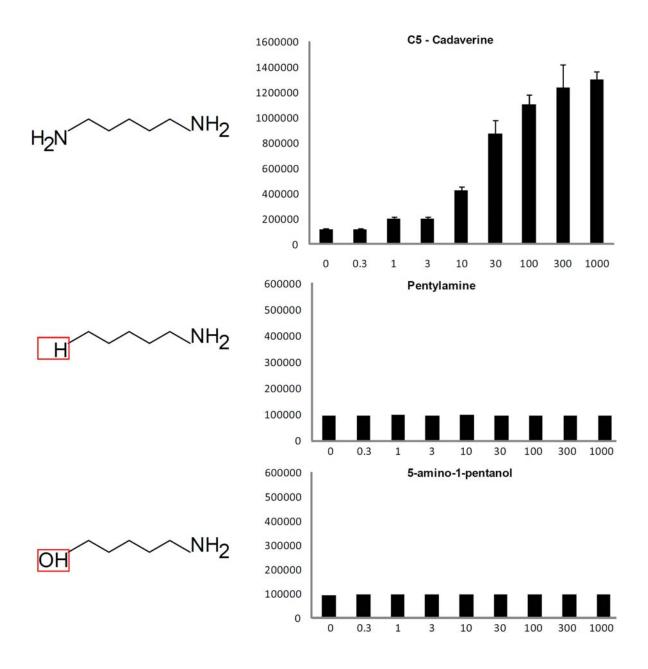


Fig.18. CRE-SEAP concentration dependence activity induced by exposure of DrTAARs13c to diamines. X-axis shows the concentration of chemicals (μ M), Y-axis shows the level of CRE-SEAP activity (arbitrary units). (Data reproduced by David Ferrero, Harvard Medical School USA).

C4 - Putrescine

The dose response assay shows that a lower stimulus concentration is required for CRE-SEAP activity elicited by cadaverine (EC50=22+/-4) and diaminoheptane (EC50= 28+/-2), while a higher stimulus concentration is required for putrescine (EC50= 266+/-12), diaminohexane (EC50= 108+/-6) and diaminooctane (EC50= 87+/-3). A high stimulus concentration was also required for Cysteamine (EC50= 100), agmatine (EC50= 300) and histamine (EC50= >300) activity (Fig. 19).




Fig. 19. Chemical structures and EC50 values (µM) of ligands identified for DrTAAR13c.

This data shows that DrTAAR13c can be activated by diamines of specific carbon chain lengths. Both smaller, diaminopropane, and longer, diaminodecane, carbon chain length diamines are not effective. Interestingly odd numbered carbon chain length diamines (cadaverine, diaminoheptane) are more effective that even numbered carbon chain length diamines diamines (putrescine, hexamethylenediamine and diaminoctane).

2.2. DrTAAR13c activation requires at least 2 amino groups

Cadaverine is a 5-carbon diamine and is one of the potent activators of DrTAAR13c olfactory receptor (fig18, 19). To examine which molecular features of this ligand are required for activation of DrTAAR13, I tested CRE-SEAP activity of monoamines, monoalcohols, and amino-alcohols, initially at 10μ M concentration. No activity of DrTAAR13 was observed at this concentration. The stimulus concentration of pentylamine, a 5-carbon monoamine, and 5-amino 1-pentanol, a 5-carbon monoalcohols, was gradually increased to 1000μ M, but DrTAAR13c did not show any signal of activation also at this high concentration (Fig. 20). This suggests that DrTAAR13c is a receptor for

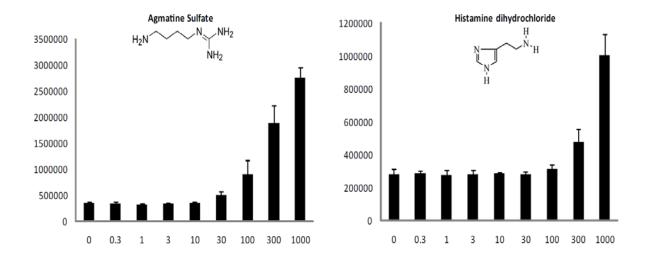

diamines and two remote positive charges (amino groups) are required for activation of DrTAAR13c. Olfactory receptor sites for diamines are highly specific for polyamines and not for structurally related compounds (Rolen et al., 2003).

Fig. 20. DrTAAR13c is exclusively activated by diamines (cadaverine in the above figurer). No activity is shown for monoamines (pentylamine) and monoalcohols (5-amino-1-pentanol).

2.3. DrTAAR13c is activated by polyamines

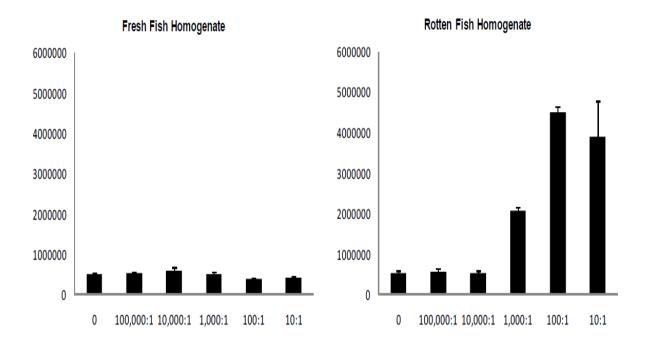
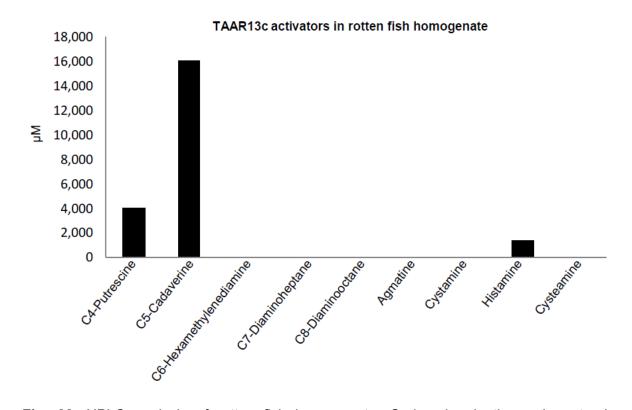

A standard concentration (10μ M) of polyamines (Agmatine Sulfate, Spermidine, Spermine, Adenine and Histamine dihydrochloride) was tested in CRE-SEAP assay. No activity was elicited by any of these polyamines on DrTAAR13c. The concentration of these polyamines was increased to 1000 µM and CRE-SEAP activity elicited by Agmatine Sulfate, Spermidine, and Histamine dihydrochloride was observed (Fig. 21). The EC50 for Agmatine Sulfate induced activity was high (300μ M) while the EC50 for Histamine dihydrochloride was even higher (> 300μ M) compared to diamines (Fig. 19). The mechanism by which an increase in polyamine level leads to increase in olfactory sensitivity is still not clear. The possible explanation could be that in addition to having an independent receptor DrTAAR13c for diamines in zebrafish that does not recognize structurally relevant odorants (Fig. 20), there are also possibly relatively independent olfactory receptor sites among the polyamines themselves that recognize different polyamines with different affinity.

Fig. 21. DrTAAR13c is activated by polyamines at higher concentration. No activity is shown for monoamines (pentylamine) and monoalcohols (5-amino-1-pentanol).


2.4. DrTAAR13c recognizes natural activators

Putrescine and cadaverine are foul-smelling compounds that occur naturally as bacterial decarboxylation products of amino acids, lysine and arginine, respectively (Molenaar et al., 1993; Pessione et al., 2005; Vidal-Carou, 2005). In aquatic environment cadaverine may be generated as a result of putrefication of the dead fish over a period of time. To validate this supposition, I tested both fresh and rotten fish homogenate in CRE-SEAP assay of DRTAAR13c. Freshly prepared zebrafish homogenates were applied at different dilutions (100.000:1 - 10:1), no activity of DrTAAR13c was observed at any dilution. Next, zebrafish homogenate was left to rot in 1X PBS for 1 week, and then applied at different dilutions (100.000:1 - 10:1) in CRE-SEAP assay. Notably, DrTAAR13c show a higher response for rotten zebrafish homogenate (Fig. 21). The activity of taar gene increases with increased rotten fish dilutions but to a certain threshold. Probably, cadaverine was generated in the rotten fish homogenate bacterial decarboxylation over a period of 1 week.

Fig. 21. DrTAAR13c show activity for different dilutions of 1 week old rotten fish homogenate (right panel). No activity was observed for fresh fish homogenate. (Data kindly provided by our collaborator David Ferrero, Harvard medical school, USA).

The HPLC purification of the rotten zebrafish homogenate was carried out to verify the possible cadaverine development. The HPLC analysis shows that cadaverine is the most abundant diamines found in rotten zebrafish homogenate, with smaller quantities of putrescine and histamine also present (Fig. 22). Thus the activation of DrTAAR13c by rotten fish homogenate is mainly caused by cadaverine.

Fig. 22. HPLC analysis of rotten fish homogenate. Cadaverine is the main natural activator of DrTAAR13c as indicated by HPLC analysis. (HPLC analysis was carried out by our collaborator David Ferrero at Harvard Medical School, USA)

3. Behavioral response of zebrafish to diamines

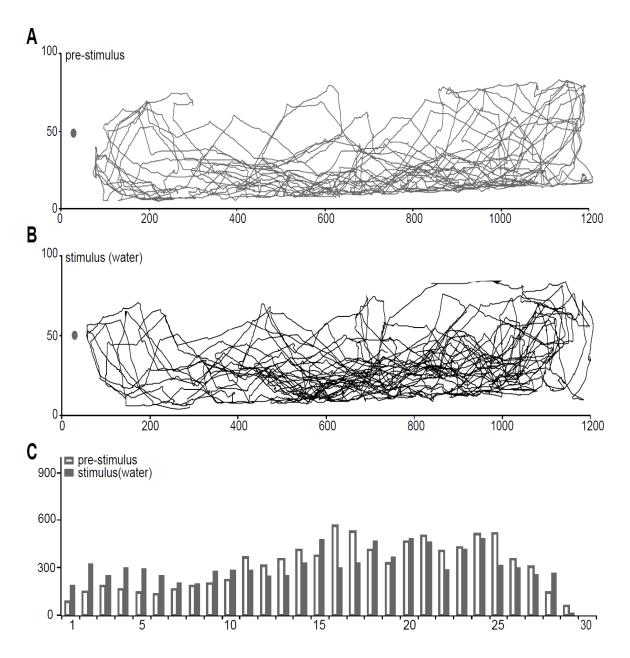

Diamines (putrescine and cadaverine) are naturally occurring aliphatic polycations in the aquatic environment with their concentrations correlated to the degree of decomposition of certain aquatic animals (Mietz and Karmas, 1978). Since diamines concentrations vary with degradation, and they are distributed ubiquitously, teleosts are likely to encounter them in an aquatic environment and may sense them as signal of danger. A previous investigation tested putrescine as a possible olfactory stimulus in zebrafish, but the results was negative (Fuss and Korsching, 2001). The identification of putrescine and cadaverine as a ligand for zebrafish olfactory receptor (Fig. 18) and the existence of cadaverine in natural environment released from the dead conspecifics, as observed in the rotten zebrafish homogenate (Fig. 22), leads to the speculation that cadaverine may act as a physiological source that may signal danger (Pinel et al., 1981) and is perceived by one or many olfactory receptor(s). How does the zebrafish behave when it encounters the diamines in its aquatic environment? A behavioral assay was established to answer this question. Zebrafish was placed in an odorless, transparent glass tank $(100^{\times}10^{\times}20 \text{ cm})$ extensively cleaned under deionizer running water (Fig. 23). Fish was allowed to acclimatize in 9 liters of fresh clean water for 45 minutes to 1 hour. The behavioral assay was performed in two stages; the pre-stimulus stage where no stimulus was applied and post-stimulus stage where stimulus was present (see methods for details). Fish movements were recorded by high definition (HD) video camera mounted above the behavioral tank (Fig. 23). The movies were analyzed by WINANALYZE automatic motion tracker to obtain the zebrafish movement tracks and coordinates (see methods for detail). Over 15 adult zebrafish were used in the behavioral assays. 6 random adult zebrafish (3 male and 3 female) with average motility were used to perform an analysis of chain length dependency of odor induced behavior. The behavioral assay was conducted in maximum silence in a dedicated room.

Fig. 23. Behavioral assay setup. (right picture): Complete behavioral assay with glass tank, stimulus application setup (gray box) and high definition video camera for recording zebrafish movement. (left picture): Fish tank ($100^{\times} 10^{\times} 20$ cm) with stimulus application tube on right side.

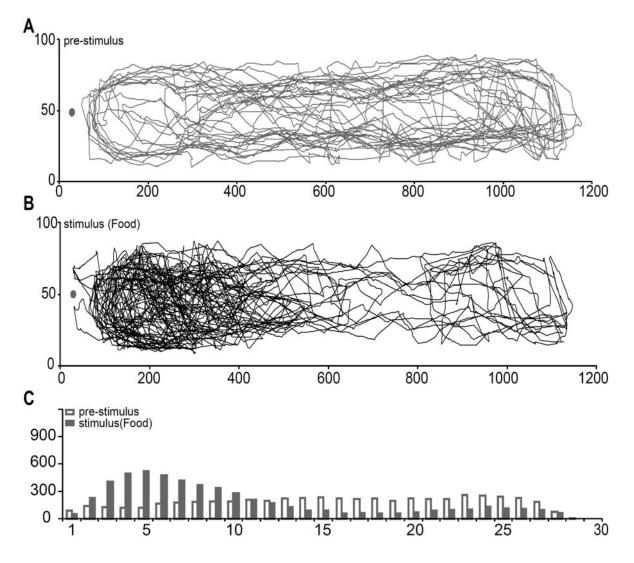
3.1. Zebrafish does not show specific behavior for water, a mock stimulus.

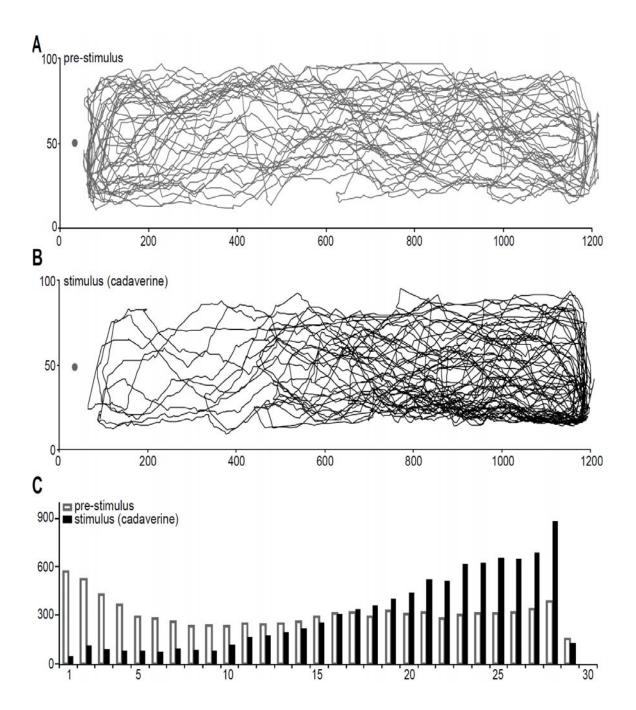
Zebrafish swims freely without any explicit preference for any area of the behavioral tank (Fig. 24A) in pre-stimulus condition. When freely swimming zebrafish encounter mock stimulus, water, in the post-stimulus stage, they do not show any specific behavioral response of attraction, avoidance or freezing (Fig. 24B). Thus I could conclude that no olfactory behavior is induced by non-olfactory components. The swimming pattern of zebrafish stays the same as pre-stimulus. The quantification of zebrafish movement tracks obtained by WINANALYZE show the presence of zebrafish all over the tank in pre and post-stimulus stages, without any reproducible inclination for a preferred place in the behavioral tank (Fig. 24C). While there were sometimes slight differences in the swimming patter, these differences were not reproducible and thus represent most likely the inherent variability of zebrafish swimming pattern. The results were same for all 6 zebrafish tested in the behavioral assay under the same conditions.

Fig. 24. Behavioral response of zebrafish to water. Tracks represent the motion of the zebrafish. The x-axis shows the length of behavioral tank (pixels), y-axis shows the width of the tank (pixels). The gray filled circle on the left-centre of the tank shows application point of stimulus. (A) pre-stimulus stage (no stimulus applied), the tracks show that zebrafish is moving freely all over the tank. (B) Water was applied as mock stimulus. No obvious difference was observed in pre and post stimulus tracks. (C) Quantification of pre-stimulus (empty bars) and post-stimulus (filled bars) tracks. Distance of zebrafish to site of stimulus application was measured. Data shown as histogram with 30 bin intervals of 40 pixels each. Y-axis shows the total time that the fish spends at that position, given as number of video frame. No recognizable preference behavior was observed and fish movement is equally present all over the tank in pre and post-stimulus stages.

3.2. Food induce attractive behavior in adult zebrafish

As before, zebrafish swims without preference in the pre-stimulus stage, mostly in an elongated circular pathway (Fig. 25A). When fish food extract was applied as a stimulus, zebrafish moved quickly towards the food within the first minute of the post-stimulus stage, an indication of olfactory stimulus, and investigates the stimulus by swimming upwards to the stimulus application points. Zebrafish prefers to stay there and spend $>^{3}/_{4}$ of the post-stimulus time near the application area (Fig. 25B). Analysis of the tracks shows the preference of zebrafish for food stimulus (Fig. 25C).




Fig. 25. Behavioral response of zebrafish to fish-food. (A) Zebrafish movement tracks in pre-stimulus state (no stimulus applied). The tracks show that fish is moving freely all over

the tank. (B) Zebrafish movement tracks in the post-stimulus state (fish food applied). Zebrafish shows clear attraction towards the stimulus. (C) Quantification of pre-stimulus (empty bars) and post-stimulus (filled bars) tracks. As expected, no specific behavior was observed in pre-stimulus and strong attraction towards the food stimulus is noted.

3.3. Diamines induce avoidance behavior in adult zebrafish

As expected, Zebrafish swim without any place preference in the tank during pre-stimulus stage (Fig. 26A). When 200µl of 1mM cadaverine solution in water was applied, fish moved slowly from its present position to the stimulus for investigation. Within seconds, fish swims back towards the opposite corner of the tank and stays there for a longer period of time (Fig. 26B). Zebrafish significantly shows such aversive behavior towards cadaverine, with rare forays into it, presumably for investigation purposes (Fig. 26B). Some events of freezing behavior were also observed (data not shown(Egan et al., 2009; Levin et al., 2007; Maximino et al., 2010). Zebrafish spends most of the post-stimulus time away from the stimulus application point as indicated by quantification of pre- (empty gray bars) and post-stimulus (dark bars) positions (Fig. 26C).

Zebrafish, generally portray an innate shoaling behavior, which commences soon after hatching (Engeszer et al., 2007; Whitlock, 2006). Shoaling behavior can increase the ability of an individual zebrafish to detect and avoid predators (Spence et al., 2008). A similar innate behavior expressed by zebrafish is "predator inspection behavior", when an individual fish briefly leaves a shoal to approach a predator. These two traits are partly genetically determined in zebrafish (Wright et al., 2003). Putrescine and cadaverine are toxic products of dead animal's putrefaction (Molenaar et al., 1993; Pessione et al., 2005; Vidal-Carou, 2005). The initial movement of the zebrafish towards cadaverine and other diamines is a form of "innate predator inspection behavior". Zebrafish quickly leaves that vicinity upon sensing the danger portrayed by toxic smell of cadaverine and other diamines. The robust physiological aversive response to diamines (putrescine to diaminooctane) is possibly due to zebrafish's well-developed corticosteroid stress axis (Alsop and Vijayan, 2009).

Fig. 26. Behavioral response of zebrafish towards cadaverine. (A) Zebrafish movement tracks in the pre-stimulus state. No specific behavior was observed. (B) Zebrafish movement tracks in post-stimulus state (cadaverine applied). Zebrafish investigate the stimulus as indicated by few track near application point (filled gray circle in the left-centre of the behavioral tank). There is a clear avoidance from the application point after initial investigation as shown by dense track on opposite side of application point. (C) Quantification of pre-stimulus (empty bars) and post-stimulus behavior (filled bars) also exhibit a strong avoidance in post-stimulus state.

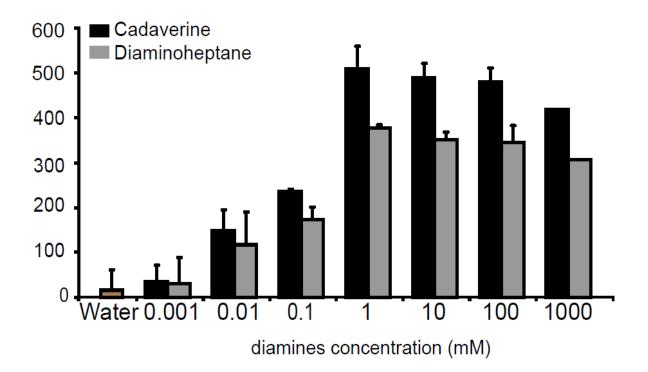

In a series of zebrafish behavioral assays, each stimulus including diamines (diaminopropane, putrescine. cadaverine. diaminohexane, diaminoheptane, diaminooctane and diaminodecane) and two control stimulus (fish-food and water) was tested 6 times separately in the behavioral assay. 6 different adult zebrafish (3 males, 3 females) from Ab/Tü strain were used. The distance of zebrafish from the stimulus application point in pre-stimulus and post-stimulus stages was measured for each of this one stimulus - one zebrafish behavioral assays. The difference of post-stimulus distance minus pre-stimulus distance was taken as main activity position of zebrafish. No behavioral response was observed for water while zebrafish showed clear attraction towards food. Diaminopropane and diaminodecane also do not produce considerable behavioral response, their response spectrum fall into the range of behavioral response shown for water (Fig. 27). Significant aversive behavior was observed for putrescine, cadaverine, hexamethylenediamine, diaminoheptane and diaminooctane (Fig. 27). Periods of freezing behavior ((Jesuthasan and Mathuru, 2008; Speedie and Gerlai, 2008) and increase bottom dwelling (Egan et al., 2009; Maximino et al., 2010) were also observed, mostly for putrescine and cadaverine. Surprisingly, the aversive response for cadaverine was higher than other diamines, similar to high receptors activity by cadaverine in CRE-SEAP assay (Fig. 18).

Fig. 27. summary graph of the average position of zebrafish in the behavioral tank. The xaxis contains bar graph for average of 6 experiments for each stimulus. A name of the stimulus is given above their respective bar. Y-axis contains values for the average position of the zebrafish in the behavioral assay based on the difference of post-stimulus distance minus pre-stimulus distance from the application point. Positive values represent avoidance and negative values represent attraction. No behavioral response was observed for water, diaminopropane and diaminodecane. Zebrafish shows attraction towards food. A strong avoidance behavior was observed for diamines (putrescine to diaminoctane).

3.4. Zebrafish aversive behavior towards diamines is concentration dependent

The intensity of avoidance behavior in response to diamines increases with the increased concentration of diamines. In a series of dose response experiments, cadaverine and diaminoheptane was applied as stimulus with a concentration range of 0.001-1000 mM, on 3 different adult zebrafish (male and female). Zebrafish exposed to even low concentration of these diamines show dramatic, measurable aversion (Fig. 28). There is a gradual increase in receptor sensitivity with increased concentration of diamines until it reaches a sustainable threshold with slight decrease afterwards (Fig. 28). The minor decrease in avoidance behavior could be due to possible deterioration of olfactory epithelium in response to higher concentration of diamines.

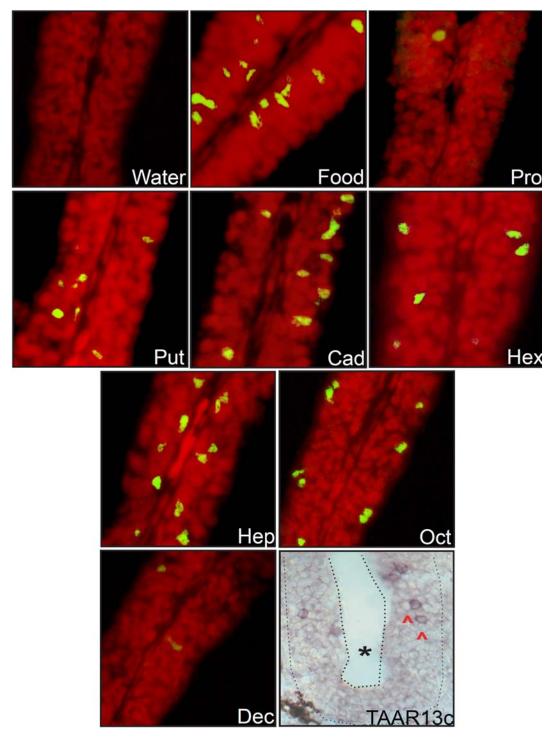


Fig. 28. The dose-response of zebrafish to cadaverine (dark bars) and diaminoheptane (gray bars). X-axis shows the concentration of stimulus applied and y-axis shows avoidance activity.

4. Diamines activate a sparse subset of olfactory sensory neurons in zebrafish olfactory epithelium

There is a stimulating possibility that the zebrafish behavior in response to diamines is induced by activation of DrTAAR13c, although there are many levels of olfactory signal processing between the receptor and the behavior that needs to be understood. As a first step to bridge the gap, activation of olfactory sensory neurons (OSNs) in the olfactory epithelium of zebrafish exposed to diamines with carbon chain length ranging between 3 to 10 (diaminopropane, putrescine, cadaverine, diaminohexane, diaminoheptane, diaminoctane, diaminodecane) and control stimulus (water, food) was analyzed by c-Fos immunostaining. All zebrafish were exposed to 5mM of diaminopropane-cadaverine and 2mM of diaminohexane-diaminodecane under the same conditions. Zebrafish exposed to accumulation of c-Fos antigen in OSNs. c-Fos is a member of immediate early gene (IEG) family of transcription factors and is a neural activity marker of external stimuli, such as metabolic stress, neuronal activation and cellular trauma. c-Fos immunostaining is useful indicators of cellular activation including the identification of neurons activated by specific ligands and correlated changes in behavioral or physiological states.

The c-Fos immunostaining of olfactory sensory neurons measured for water, food and a series of aliphatic diamines shows that beyond putrescine (n=4) and cadaverine (n=5), olfactory sensory neurons (OSNs) are also significantly activated by somewhat longer carbon chain length diamines (n=6, 7, 8), but negligibly by shorter or much longer diamines (n=3, 10, respectively). The very few olfactory sensory neurons (OSNs) activated by water are possibly due to stress induced while transferring the fish into experimental setup. An increased number of olfactory sensory neurons (OSNs) were activated by food. The c-Fos labeled olfactory sensory neurons (OSNs) are sparsely distributed in a pattern similar to expression of *taar* genes in the olfactory epithelium of zebrafish (Fig. 29).

Fig. 29. c-Fos immunostaining of OSNs in the olfactory epithelium of zebrafish exposed to stimulus. OSNs are sparsely labeled for diamines (putrescine-diaminodecane). No or very few OSN was labeled for water while negligible numbers of OSNs were labeled for diaminopropane and diaminodecane. In-situ hybridization of DrTAAR13c shows sparsely labeled TAARs in the olfactory epithelium (bottom right panel), similar to c-Fos immunostaining.

The quantification of the c-Fos immunostained cells expressed in the olfactory epithelium exposed to water, food and diamines illustrates that cadaverine and diaminoheptane have the highest number of labeled OSNs while putrescine, diaminohexane and diaminooctane have relatively lower number of labeled OSNs (Fig. 30). Numbers of labeled cells in response to mock stimulus water are scant. Diaminopropane and diaminodenace have negligible number of labeled cells. Intriguingly, the chain length dependency of the c-Fos labeling (Fig. 30) closely parallels to that of the receptor activation both with respect to maximal signal size and EC50 estimates (Fig. 19).

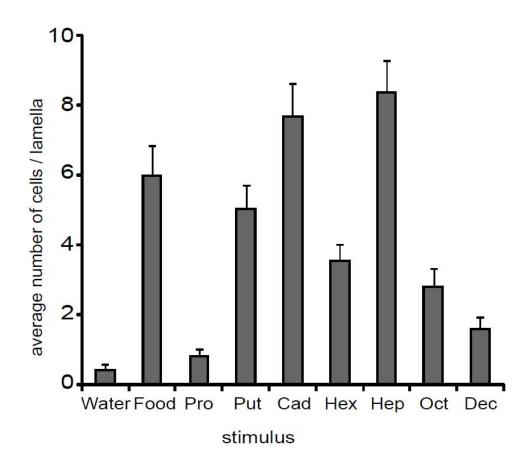


Fig. 30. Average number of c-Fos labeled cells/lamella in stimulus exposed zebrafish olfactory epithelium.

The dose response analysis of OSNs expression in response to cadaverine (0.05 - 5mM) and diaminoheptane (0.02 - 2mM) shows that number of c-Fos labeled OSNs do not increase with increased in stimulus concentration (Fig. 31). In fact, the number of c-Fos

labeled OSNs slightly decreases with increase stimulus concentration, possibly due to deterioration of olfactory epithelium.

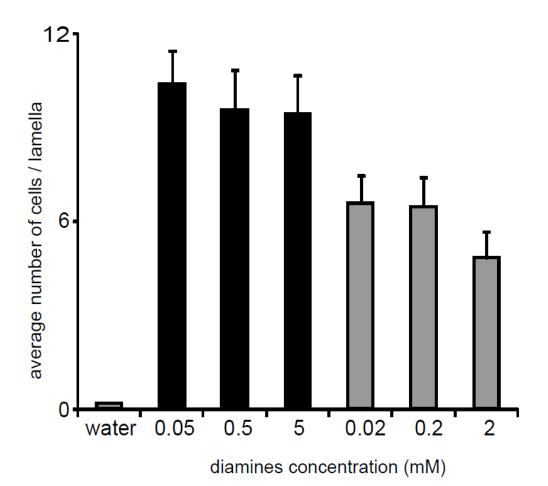
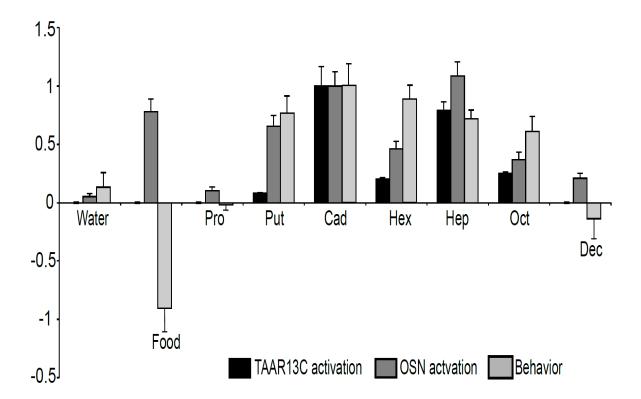



Fig. 31. dose-response analysis for cadaverine (black bars) and diaminoheptane (gray bars).

DrTAAR13c exhibit significant activity for odd numbered carbon chain length diamines (cadaverine and diaminoheptane) in CRE-SEAP heterologous system, similarly cadaverine and diaminoheptane activate higher number of OSNs in c-Fos immunostaining and also show strong behavioral phenomenon. Relatively lower activity was observed for even numbered carbon-chain length diamines (putrescine, hexamethylenediamine and diaminoctane) in the above given assays (Fig. 32). This leads to the possible hypothesis that DrTAAR13c is a receptor for odd numbered carbon chain diamines (C5, C7) and probably there is another receptors for perception of even number carbon chain diamines (C4, C6, C8).

Fig. 32. Summary graph for Ligand efficiency, c-Fos and behavioral assay. The odors are indicated below the x-axis. Y-axis represents the activity values. Values are normalized to cadaverine responses. For the ligand efficiency the inverse of the Ec50 was used(a lower EC value equals a high efficiency). The activity of DrTAAR13c is higher for odd numbered carbon-chain length diamines (cadaverine and diaminoheptane) and lowers for even numbered carbon-chain length diamines (Putrescine, diaminohexane and diaminooctane).

IX. Discussion

TAARs, unlike the other 3 families of olfactory receptor genes (OR, V1R, V2R), have not undergone major radiation in mammals. Initial aim of this study was to define the characteristic properties of the family responsible for the extensive ramification observed in teleosts. Currently, rather completely sequenced genomes are available for several teleost species, and this study takes advantage of this large improvement in data bank quality to establish the complete *taar* gene repertoire in 5 teleost fish species. Previous estimates of family size have been either too low (Gloriam et al., 2005), presumably because of incomplete databases or too high because of inadequate delineation of the taar gene family from the related aminergic neurotransmitter receptors (Hashiguchi and Nishida, 2005). In our experience, it is necessary to include representatives from all major aminergic receptor families to obtain a proper delineation of the *taar* gene family, which is supported by the presence of the characteristic TAAR fingerprint motif (Lindemann and Hoener, 2005). In this analysis, all lamprey receptors previously considered TAARs (Hashiguchi and Nishida, 2005) clearly segregate with teleost and tetrapod aminergic receptors and not with teleost or tetrapod taar genes. Despite an extensive search, no further lamprey taar genes were found. Consequently, the origin of the TAAR family appears to be more recent than previously thought. The discovery of shark taar genes allows us to place the origin within the MRCA of cartilaginous and bony fish. Unexpectedly, the major clade of taar genes, class III, emerged even later, within the teleost lineage of bony fishes, i.e., after the segregation from the tetrapod lineage. This clade shows several exceptional properties that stand out from class I and II taar genes (and, incidentally, from all other known olfactory receptor gene families). Class III contains three-fourths of all teleost *taar* genes and exhibits no evidence of gene loss, in contrast to the loss of class II and TAAR1 in neoteleosts.

A hallmark of class III *taar* genes is the strong positive selection suggested by the unusually high dN/dS ratios observed in this clade. Three species-specific subfamilies of class III show dN/dS ratios _1 at many individual sites, 10-fold above the maximal number determined for class I and II genes, which are comparable with ORs and V2R-like OlfC genes in this respect (Alioto and Ngai, 2005; Alioto and Ngai, 2006). Not a single positively selected site was found in another group of olfactory receptor genes, the V1R-

like ORAs (Saraiva and Korsching, 2007). Positive selection is a rare event genome wide (Bakewell et al., 2007); thus, its large frequency in class III taar genes high above that found in other olfactory receptor genes is very significant. A high dN/dS ratio is usually taken as evidence for a selective pressure on sequence divergence. However, because of several confounding influences, among them saturation of mutations and nucleotide bias, calculated dN/dS ratios may not accurately reflect the factual selective pressure. Nevertheless, with the possible exception of very closely (90% amino acid homology; (Yokoyama et al., 2008)) or very distantly related genes, high dN/dS ratios appear to be a reliable indicator of positive selection (see refs. 23 and 25). The average homology for groups of taar genes analyzed here was nearly always in the range between 90% and 60%, predominantly _80%. Thus, the dN/dS ratios _1 obtained for several class III taar genes appear likely to reflect positive Darwinian selection. Once ligands become available for class III TAARs, it will be informative to directly examine the adaptive value of the divergence observed in class III taar genes. For ORs, positive selection has been argued as a mechanism to maximize the odor space recognizable by the receptor repertoire. The likely presence of extensive positive selection in the teleost taar gene family supports a role as olfactory receptor genes.

Two independent intron gains and 2 independent intron losses, all exclusively in the neoteleost *taar* genes of class III, underscore an evolutionary dynamics unprecedented for olfactory receptors (Niimura and Nei, 2005) and beyond. Although there has been some controversy surrounding intron gains in higher eukaryotes (Carmel et al., 2007), it is now commonly thought that very few, if any, intron gains occurred during vertebrate evolution (Coulombe-Huntington and Majewski, 2007; Loh et al., 2007). Thus, the independent gain of 2 introns in a single subclade of a single gene family constitutes an extraordinary finding. Intron retainment may be favored by the selective pressure toward divergence as evidenced by dN/dS ratios _1. Taken together, the accelerated evolution of class III teleost taar genes conceivably might mark the birth of another olfactory receptor gene family.

Teleost *taar* genes from all 3 classes are expressed in generally sparse olfactory receptor neurons. The frequency of expression appears to lie in the range of that described for ORs (Weth et al., 1996) and would be consistent with monogenic expression, which

already has been demonstrated for mammalian TAARs (Liberles and Buck, 2006). The mostly intermediate position of labeled neurons in the apical-basal dimension of each lamella is consistent with an expression in ciliated receptor neurons (Sato et al., 2005), which again would be analogous to the mammalian situation. TAARs are expressed in ring-like domains similar to those described for teleost ORs ((Weth et al., 1996), possibly suggesting some similarity in regulation of expression of ORs and TAARs. The ligands of teleost TAARs from class I and class II may include amines (Liberles and Buck, 2006; Lindemann et al., 2005) for mammalian TAARs, consistent with the presence of the aminergic ligand motif (9) and the detection of amines by the fish olfactory system (Rolen et al., 2003). A comprehensive analysis of ligand spectra for a representative subset of taar genes will be required to obtain a robust understanding of olfactory representation of the amine group of odors at the peripheral level. The absence of the aminergic ligand motif in class III genes suggests an evolutionary shift in ligands, away from amines, for this largest class of teleost TAARs. An understanding to what extent the rapid evolution of class III taar genes may enable rapid adaptation to changing ecologies both within and between species will have to await the identification of ligands for these receptors. The genesis of class III appears to be already the second shift in function in the evolution of the TAAR family. The earlier shift occurred during the genesis of the class I and class II genes, because the most ancient of all extant *taar* genes found in teleosts and tetrapods, TAAR1, is not an olfactory receptor and not detected in either zebrafish or mouse olfactory epithelium (Liberles and Buck, 2006). Thus, the TAAR family appears to have begun its existence with a function different from the one currently emphasized.

The olfactory receptors of teleosts including zebrafish are orphans (without known ligands) except one member of OlfC, OlfCa1 (Alioto and Ngai, 2006). OlfCa1 perceives amino acids with different affinity in a heterologous expression system. It is also possible that most OlfC receptors will turn out to bind amino acids, since they share a predicted amino acid-binding motif (Alioto and Ngai, 2006). Polyamines have been recognized as olfactory stimuli for an actinopterygii, goldfish *Carassius auratus* (Rolen et al., 2003). Interestingly, the optimal ligands for the goldfish receptor are basic amino acids, whereas the zebrafish receptor perceive most strongly to acidic amino acids. The ligands response spectrum for few mammalian olfactory receptors is known (Krautwurst et al., 1998; Liberles et al., 2009). Although there is an observation for relaxed specificity of

ligand i.e., structurally related compounds can excite a particular receptor, yet there can be drastic differences based on the physicochemical nature of the ligands i.e TAARs recognize hydrophobic, volatile amines. Teleost and tetrapod V1R and V2R could in principle have similar sets of ligands, because their ligands are expected to be hydrophilic and are transported through mucosa. However, the available data do not hold up in favor of this hypothesis.

DrTAAR13c responded specifically to diamines in a ligand spectra of 95 different chemicals including amino acids, amino + structurally related compounds, monoamines, diamines, polyamines and others (see Supplementary Table. 5 for details). The four other members of the TAAR13 subfamily did not respond to diamines or any of the other chemicals possibly because every olfactory receptor has its specific set of ligands that that can activate it. High activity of DrTAAR13c was observed for cadaverine and diaminoheptane (odd number diamines) and relatively low activity was observed for putrescine, diaminohexane and diaminoctane (even numbered diamines) suggesting that DrTAAR13c is receptor for cadaverine and diaminoheptane (odd number diamines) and possibly there is also another receptors for putrescine, diaminohexane and diaminoctane (even numbered diamines). No response was observed for compounds similar to diamines like monoalcohols and monoamines. This advocates that the ligand binding pocket of DrTAAR 13c require two remote positive charges for activation. Putrescine and cadaverine are bacterial decarboxylation products of amino acids. A physiologically natural source of diamine odors might be dead conspecifics, whose presence presumably would signal danger. Indeed, rotten but not fresh fish extract does activate TAAR13c (Fig. 22) and a HPLC purification of the extract from rotten zebrafish shows cadaverine as most abundant diamine, with smaller quantities of putrescine and histamine also present. Polyamines usually induce activation of DrTAAR13c at a higher concentration. There is evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. The mechanism by which an increase in polyamine level leads to increase in olfactory sensitivity is still not clear. A possible explanation could involve action of polyamines on ion channels. This strengthen the idea that cadaverine may be perceived as an indicator of danger and plays a major role in avoiding the predator in the aquatic environment.

Behavior is delicate both in the form of conducting the experiment and also for concluding the results (Bally-Cuif, 2006). The main concerns of this study were to design a suitable behavioral assay, conduct behavioral experiments and demonstrate that the results are a valid measure of the behavior under consideration. Behavior study needs adequate controls, in order to ensure that the results are not due to unrelated artefacts (Bally-Cuif, 2006; Ninkovic and Bally-Cuif, 2006). A minor difference in the experimental set-up can generate different results. Precision of measurement is required to determine the specific behavior. In this behavioral assay, a great care was devoted to avoid all possible artefects including outside disturbance (visual or auditory), acclimatization stress, temperature variations, water impurity and general handling of the zebrafish. Behavior can vary according to time of day at which it is performed especially mating and feeding behavior. All behavior experiments in this study were carried out at the same time of days. Food and water were used as controls in this study.

Zebrafish moved freely in all parts of the tank but did not show any response to water (control) in pre and post-stimulus while showed a strong attraction to food (control) and spent approximately ³/₄ of the post-stimulus time near application point. This shows the stability of olfactory assay in a sense that behavioral response of zebrafish is induced by olfactory stimuli only. No behavioral response was observed for diaminopropane and diaminodecane, similar to no activity shown by DrTAAR13c for diaminopropane and diaminodecane in CRE-SEAP heterologous system. Significant avoidance behavior was observed for C4-C8 diamines (putrescine, cadaverine, diaminohexane, diaminoheptane and diaminoctane) although avoidance was higher for cadaverine (Fig. 27) similar to high activity of DrTAAR13c for cadaverine in heterologous system (Fig 18, 19). This leads to the assumption that DrTAAR13c may be the possible olfactory receptor involved in perception and generating behavioral response to putrescine and cadaverine. A knockout of DrTAAR13c will give a solid answer of this assumption.

One more evidence in this regards comes from c-Fos immunostaining of the OSNs. No activation of OSNs was observed for water, diaminopropane and diaminodecane while putrescine (n=4) and cadaverine (n=5), and somewhat longer carbon chain length diamines (n=6, 7, 8) showed activation of OSNs (Fig. 29). Intriguingly, the chain length dependency of the c-Fos labeling closely parallels that of the receptor activation both with

respect to maximal signal size and EC50 estimates (Fig. 18, 19). The ligand spectrum of the DrTAAR13 olfactory receptor closely parallels the behavioral effectiveness of these diamines. The chain length dependence of the behavioral response is highly similar to that of receptor and olfactory sensory neuron activation. The behavioral response to cadaverine may be fully explained by a singular TAAR receptor, whereas the behavioral response to putrescine appears to be predominantly via another, so far unidentified receptor. This data is consistent with the existence of a defined neuronal circuit in vertebrates that elicits a characteristic innate behavior upon activation of a single olfactory receptor by an ecologically relevant stimulus.

CHAPTER 4 MATERIALS and METHODS

X. MATERIAL AND METHODS

1. Experimental Materials

1.1. Animals

Wild-type zebrafish of the Ab/Tü strain (mix between the Oregon and Tubingen strains) were used for insitu hybridization, c-Fos immunostaining and for behavioral assay. Adult zebrafish (Danio rerio) were kept in an aquaria filled with a one-to-one mixture of desalted water and tap water. Zebrafish were kept in groups, at a day/night rhythm of 14/10 hours at a water temperature of 28°C and fed daily with dry flake foods and brine shrimp (artemia; Brustmann, Oestrich-Winkel).

In order to bring out controlled reproductivity, selected females and males fish were put into the same tank separated by transparent wall, a day before mating. Early in the following morning, fish were then put in another tank without separation, to mate freely. Fertilized eggs were collected. Zebrafish embryos and larvae were kept in petri dishes at a density of about 50 embryos/petri dish in embryo medium (E3: 5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 MgSO4, Methylenblue 5-10%) at 28°C without feeding for the first five days of post fertilization (dpf).The embryos were then raised and collected at 24h intervals for histological and immunohistochemical processing. Embryos fixed at a stage older than 24 h postfertilization (hpf) were raised in 2 mM 1-phenyl-2-thiourea (PTU) in embryo medium after the epiboly stage (about 12 h) to prevent pigmentation. The embryonic and larval stages used for all investigations reported here ranged between one and 21 days postfertilization (dpf).

1.2. Chemicals suppliers

Chemicals used for this TAARs study were from Amersham Pharmacia Biotech (Freiburg), Applichem (Darmstadt), Ambion (Austin, USA), JTBaker supplied by Fisher Scientific (Schwerte), Biozym (Hessisch Oldendorf), Calbiochem (Darmstadt), GIBCO/Invitrogen (Karlsruhe), Clontech (USA), Difco (Detroit, USA), Fluka (Neu-Ulm), Merck (Darmstadt), Molecular Probes (Leiden, NL), Roth (Karlsruhe), Serva (Heidelberg) and from Sigma (Deisenhofen).

1.3. Plastic ware

The disposable plastic ware like 15 ml and 50 ml Falcon tubes, 6-, 24-, 48-, 96-well plates, petridishes in various sizes were from BD or Castor, purchased from Fisher Scientific or BD biosciences. 0.2 ml PCR tubes and sterile pipette tips were from M_P supplied by Fisher Scientific. Sterile pipette tips were also purchased from ratiolabs and nerbe plus (Germany). Gloves (white and blue) were purchased VWR (Germany). Non-sterile pipette tips were supplied by LaFontaine (Forst/Bruchsal) and Labomedic (Bonn).

1.4. Preparation of solutions

Solutions were prepared with distilled water from milli-Q (Millipore). Solutions were autoclaved for 20 min at 121 bar or filter sterilized (0.2-0.45 µm pore diameter). Glassware was autoclaved and oven baked for 2 h at 180°C. For RNA-work, solutions and water were treated with 0.1% diethylpyrocarbonate (DEPC), shaked vigorously and mixed for about 20 min on a magnetic stirrer (IKAMAG-RET) to bring the DEPC into solution. The solutions were then autoclaved to remove any trace of DEPC. Tris buffers cannot be treated with DEPC because it reacts with primary amines. DEPC decomposes rapidly into CO2 and ethanol in the presence of Tris buffers. Therefore, Tris buffers were prepared by using water that has been treated with DEPC first. Most of the standard stock solutions like EDTA, Tris, TAE, TBE, TE, PBS, SDS, SSC, NaOAc, and culture media like LB and SOC were prepared as described in (Sambrook J 1989).

1.5. Laboratory equipment

General lab equipments were used for the molecular and cell biology techniques, including – balances, centrifuges, electrophoresis equipment, electroporation pulser, heating blocks and plates, hybridization and incubation ovens, micropipettes, PCR and gradient thermocyclers, pH meter, shakers, sterile hood, UV transilluminator, vortexes and waterbaths. Fresh frozen sections were obtained using the Cryostat CM 1900, Leica. A Nikon SMZ-U binocular microscope equipped with Nikon CoolPix 950 digital camera attached was used to document whole mount images. A Zeiss AxioVert microscope with an attached Diagnostic Instruments Spot-RT camera was used to document non-fluorescent images. A fluorescent microscope Zeiss Axioplan I Imaging equipped with Apotome and HRm AxioCam (Zeiss, Germany) was used to document fluorescent images of tissue in sections.

1.6. Nucleotides

Nucleotides for PCR, in situ-PCR, reverse transcription, and for in vitro transcription were purchased from Invitrogen Life Technologies (Karlsruhe).

1.7. Bacterial strain

Escherichia coli XL1 Blue MRF' (Stratagene, Heidelberg) bacterial strain was used for DNA amplification. CERTOMAT BS-1 from B.Braun biotech international (Germany) was used to inoculate bacteria @ 37C⁰.

1.8. Enzymes

Restriction enzymes used were either from New England Biolabs (Schwalbach, Taunus) or from Amersham Pharmacia Biotech (Freiburg). T3, T7, and SP6 RNA Polymerase, T4 DNA Polymerase, Taq DNA Polymerase, Expand High Fidelity Taq Polymerase, Expand Long Template Taq Polymerase, T4 DNA ligase, were purchased from Roche Biochemicals (Mannheim). Reverse Transcriptase Superscript II was purchased from Invitrogen Life Technologies (Karlsruhe) or from Bioline (Luckenwalde). RNase-free DNase RQ1 was from Promega (Mannheim), RNaseA and Proteinase K was purchased from Sigma or Roche Biochemicals (Mannheim).

1.9. Plasmids and vectors/properties

The plasmids used were the following: pGEM-T, Promega 3 kb; B/W; T vector; ampicillin resistance pBluescript II KS(+) ,Stratagene, 2.96 kb; B/W; ampicillin resistance ,pDrive , Qiagen; 3.85 kb; B/W; ampicillin and kanamycin resistance B/W: blue/white selection possibleDescription

1.10. Primary antibodies

1:200 c-Fos (K-25) rabbit polyclonal (Santa Cruz), 1:500 Anti-DIG sheep Fab fragment coupled with alkaline phospatase, Roche, 1:500-1000 Anti-Flu sheep Fab fragment coupled with alkaline phospatase, Roche, 1:500-1000.

1.11. Secondary antibodies

Donkey Y-rabbit, Alexa Fluor 488 coupled, Molecular Probes, 1:200 Donkey Y-rabbit, Alexa Fluor 594 coupled, Molecular Probes, 1:200

1.12. Dyes, substrates, embedding media and counter stains

1.12.1. Alkaline phosphatase substrates

NBT/BCIP (Roche Biochemicals) blue/violet chromogenic precipitate, HNPP/Fast Red (Roche Biochemicals) red chromogenic and fluorescent precipitate.

1.12.2. Horseradish peroxidase substrates

Diaminobenzidine (DAB) (Roche Biochemicals) brown chromogenic precipitate Alexa Fluor 488 and 594 tyramide from the TSA kit with HRP-Streptavidine (Molecular Probes, Invitrogen detection technologies).

1.12.3. Embedding media

Vectamount (Vector) embedding medium for chromogenic substrates Vectashield (Vector) embedding medium for fluorescent substrates and dyes; good bleaching retardant.

1.12.4. Dyes and counterstains

Vectashield contains DAPI that is used as counterstaining for the nuclei.

1.13. Oligonucleotide primers

Oligonucleotide primers were purchased from Invitrogen Life Technologies. The primers were delivered or dissolved at a standard concentration of 100 mM. Working dilutions were prepared at a concentration of 10 mM and stored at -20°C. Primers were used for different purposes like sequencing, cloning, and for preparation of in situprobes, by addition of T3-RNA Polymerase binding site (TATTAACCCTCACTAAAGGGAA). All used primers are listed below:

Primer name	Primer sequences
DrTaar1-Fw	ATGGATCTCTGTTATGAGGCG
DrTaar1-Rev	GATGTAGAAGGAAAACACAGAGGTG
DrTaar10-Fw	ATGGACCTAAGCAATTCA
DrTaar10-Rev	TACCATCGCAAATCCAACAA
DrTaar11-Fw	TCAGAGTCATCAGTGGTCTGC
DrTaar11-Rv	TCCAACAAAAGTTTGGATTTATCTC
DrTaar12f-Fw	ATGAAGCCTTCAAATGAGAC
DrTaar12f-Rev	GTCACAAATGGCCCAGTACC
DrTaar12I-Fw	TGACTTCAAATGAGACTCAAACTG
DrTaar12I-RV	TCAAGGTGCTTGAGTTACCAAA
DrTAAR13c-Fw	ATGGATTTATCATCACAAG
DrTAAR13c-Rev	AACTGACCACAAGGCATTGAA
DrTaar14d-Fw	ATGAATCTTACAGCAGTGA
DrTaar14d-Rev	AATGGCAAAACACACTGCTG
DrTaar14e-Fw	CAGCAGTGAACCAAACTGATATG
DrTaar14e-Rv	TCACATTCATCAGCGAGGAG
DrTaar15a-Fw	ATGGAATTTCAAGAGC
DrTaar15a-Rev	TGGTGCAATAAATGTAACTATTAAGTC
DrTaar16c-Fw	TGGACAATCGATCACTCCAG
DrTaar16c-Rv	CATGTGTGCTTCTGGGAACA
DrTaar17b-Fw	ATGAAAGGACAGAAAGGAGA
DrTaar17b-Rv	TCATGAATTATTTGTAAAA
DrTaar18a-Fw	ATGAAAGGACAGAAAGGAGA
DrTaar18a-Rv	TCATGAATTATCTTTAAAA
DrTaar19I-Fw	ATGAAAGGACGGAAAGGAGAGC
DrTaar19I-Rev	ACACATGTCTGTTCTGTTTGAAGTG
DrTaar19p-Fw	ATGAAAGGACAGAAAGGAGAA
DrTaar19p-Rv	TTACAGTTCATGTACTGTAAA
DrTaar20c1-Fw	GAAAGGACAGAAAGGAGAGCA
DrTaar20c1-Rv	TCAGAGAGGACGCAAAGTGA

Table.3 Primer sequences for cloning TAAR genes

ATGAAAGGACAGAAAGGAG

Rev CTCTCCATAACATTCATCTGTTCC

Table.4 Primer sequences for in situ hybridization probe

Primer name	Primer sequences
DrTaar1-Fw	ATGGATCTCTGTTATGAGGCG
DrTaar1-Rev	GATGTAGAAGGAAAACACAGAGGTG
DrTaar10-Fw	ATGGACCTAAGCAATTCA
DrTaar10-Rev	TACCATCGCAAATCCAACAA
DrTaar12f-Fw	ATGAAGCCTTCAAATGAGAC
DrTaar12f-Rev	GTCACAAATGGCCCAGTACC
DrTAAR13c-Fw	ATGGATTTATCATCACAAG
DrTAAR13c-Rev	AACTGACCACAAGGCATTGAA
DrTaar14d-Fw	ATGAATCTTACAGCAGTGA
DrTaar14d-Rev	AATGGCAAAACACACTGCTG
DrTaar15a-Fw	ATGGAATTTCAAGAGC
DrTaar15a-Rev	TGGTGCAATAAATGTAACTATTAAGTC
DrTaar19I-Fw	ATGAAAGGACGGAAAGGAGAGC
DrTaar19I-Rev	ACACATGTCTGTTCTGTTTGAAGTG
DrTaar20t-Fw	ATGAAAGGACAGAAAGGAG
DrTaar20t-Rev	CTCTCCATAACATTCATCTGTTCC

Forward and reverse primers are shown, the latter only with their gene-specific sequence (a T3-specific promoter site is added in 5' position). PCR was performed using the following conditions: 5 min at 96°C, followed by 35 cycles of 30 sec at 96°C, 30 sec at Tm (°C), and 60 sec at 72°C, and a final extension of 10 min at 72°C. Tm was 60°C for Taar1, Taar10, Taar12f, Taar19I and Taar20t; 50°C for Taar13c, Taar14d and Taar15a. The templates for the RNA probes were amplified from the cloned DNA using the same forward primers as above and reverse primers with the described T3 promoter site (TATTAACCCTCACTAAAGGGAA) attached to their 5' end.

2. Molecular biological techniques

Standard molecular biology techniques such as genomic DNA extraction, PCR, Colony PCR, DNA amplification by small and large scale plasmid DNA preparations, quantification of DNA and RNA, agarose gel electrophoresis, restriction enzyme digestion, isolation of DNA fragments, ethanol precipitations, filling up reactions of 3' and 5' overhangs, dephosphorylation of 5'ends, ligation of DNA fragments, preparation and transformation of competent cells were essentially performed as described in (Sambrook J 1989).

2.1. Isolation, purification and quantification of DNA and RNA

2.1.1. Isolation of genomic DNA

Genomic DNA from the whole adult zebrafish was isolated according to Hogan et al., 1986. Adult zebrafish were decapitated and internal organs were removed. The tissue was frozen in liquid 91 nitrogen and pulverized. After addition of lysis buffer (0.1 M Tris/HCl, 0.2 M NaCl, 5 mM EDTA, 0.2% w/v SDS, pH 8.5) and proteinase K (150 μ g/ml) the tissue was incubated under continuous rotation at 55°C overnight. Undissolved material was pelleted. After a phenol/chloroform extraction the DNA was precipitated using 1/10 volume of 3 M NaOAc (pH5.2) and 2 volumes of 100% ethanol. The DNA was washed two times with 70% ethanol, dried and dissolved in 100-500 μ l H2O overnight at 4°C.

2.1.2. Genomic DNA PCR

Genomic PCR was carried out using 0.5 ug of genomic DNA. Genomic PCR for TAAR genes was carried out under these conditions.

Which means an initial denaturing step of five minutes at 96 C^0 followed by 40 cycles of 94 C^0 for 1minute, **48** C^0 for 1minute and **72** C^0 for 1minute and 30 seconds minutes and then a final extension at 72oC for 10 minutes.

2.1.3. Quantitation of DNA and RNA

The concentration of DNA and RNA in solution was estimated using agarose gel electrophoresis by comparing the intensity of the bands of interest with the 1 kb band of a 10kb ladder (DNA-Hyperladder, Bioline) of known concentration. RNA samples were denatured in 50% formamide for 3 min at 100°C before loading.

2.1.4. Agarose gel electrophoresis

DNA and RNA were loaded on 1% agarose gels containing 0.5 µg/ml ethidium bromide in 1 x TAE Buffer and run at 5-10 V/cm. Genomic DNA, was loaded on low concentration agarose gels (1%) gel and run slowly (1-2 V/cm) to ensure better separation and to avoid smearing the DNA. The loading dye used was purchased from Bioline. The DNAHyperLadder I (Bioline) was used for estimation of molecular weight.

2.1.5. Isolation of DNA fragments from PCR products or agarose gels

DNA fragments were isolated from agarose gels according to the manufacturer's instructions. In general QIAquick Gel Extraction Kit (Qiagen), QIAquick PCR Purification Kit (Qiagen) or Roche High Pure PCR Product Purification Kit (Roche Biochemicals) was used. All these kits make use of a column filled with a silica-gel membrane. DNA adsorbs to the silica-membrane in the presence of high salt while contaminants pass through the column. Impurities are washed away and the pure DNA is eluted with Tris buffer (low salt condition).

2.1.6. Ligation of DNA fragments and PCR products

Ligation reactions were used to combine vector and insert DNA. For this purpose purified insert DNA was ligated to dephosphorylated vector DNA using T4 DNA ligase (Roche Biochemicals) according to (Sambrook J 1989) et al., 1989 and the supplier's instructions. PCR products (1-4 μ I) were ligated directly after amplification into the pBluescript II SK+ (Stratagene), pDrive (Qiagen) or pGEM-T (Promega) vector according to the manufacturer's instructions.

2.1.7. Subcloning of DNA fragments by electroporation

For electroporation the bacterial suspension of XL1 Blue strain was thawed on ice, mixed with 1-2 μ I of ligation mixture and after a 1 min incubation at room temperature transformed using 1 mm cuvettes and the GenePulser from BioRad at E=18 kV/cm, C=25 μ F, R=200 W. After transformation 1 ml of pre-warmed LB medium was added to the bacteria and they were incubated for 1 h at 37°C before plating on ampicillin (50 μ g/ml) and tetracyclin (150 μ g/ml) plates. In cases where blue-white selection was possible X-gal (800 μ g/ml) and IPTG (0.5 mM) were added to the plates. The bacteria were grown on agar plates overnight at 37°C.

2.1.8. Subcloning of DNA fragments by DH5α chemically competent E. coli

DH5 α Chemically Competent E. coli is an effective method of subcloning mostly used in this study. The ligation reaction was briefly centrifuged and place on wet ice. The tube of DH5 α cells was also thaw on ice.DH5 α cells were gently mixed with pipette were made aliquot 50 or 100µl .1 to 5 µl (1-10 ng DNA) of ligation reaction was added directly into the competent cells and mix by tapping gently. Vials were incubated on ice for 30 minutes. Then vials were heat-shock for exactly 20 seconds in the 37°C and were placed on ice for 2 minutes.1Ml pre warmed Lb medium was added to each vial. Vials were shaked at 37°C for exactly 1 hour at 225 rpm in a shaking incubator. 100µl of media from each vial was spread on labeled LB agar plates. Plates were inverted and incubated at 37°C overnight.

2.1.9. Colony PCR for identification of positive clones and determination of insert length

Single bacterial colonies were picked and inoculated in LB medium containing the appropriate antibiotic in 96 well multititer plates. The bacteria were grown for one to three hours in an orbital rotator at 37°C. Five µl of bacterial suspension was used as a template in a PCR reaction. All PCR reactions were carried out in a final volume of 20 µl containing 1 x PCR buffer, 1.25 mM MgCl2, 10 pmoles of each primer, 0.1 mM of each dNTP, 1 U of Taq DNA polymerase (from Roche Biochemicals). Generally M13 primers or other vector primers like T3 and T7 primers were used. Clones that were positive in the PCR were used to inoculate 3 ml of LB medium. DNA was extracted using the small-scale preparation of DNA protocol and digested to confirm the positive result of the PCR. Single clones were then subjected to sequence analysis.

2.1.10. Small scale plasmid DNA preparation (Miniprep)

In cases where the recombinant E. coli clones had to be identified, plasmid DNA was isolated in small scale. Single colonies of interest were inoculated into LB-medium (10 g Tryptone, 5 g Yeast extract, 10 g NaCl; pH 7.0) containing the appropriate antibiotics (ampicillin [100 µg/ml], tetracycline HCl [50 µg/ml], or kanamycin [50 µg/ml]) in a volume of 3 ml and grown in an orbital shaker (~300 rpm) at 37°C overnight. In general, a miniprep kit (either from Qiagen or from Sigma) was used for this purpose. The plasmid purification protocols are based on a modified alkaline lysis procedure (Birnboim and Doly, 1979) followed by binding of plasmid DNA to an anion-exchange resin under appropriate low-salt and pH conditions. RNA, proteins, and low-molecular-weight impurities are removed by a medium-salt wash. Plasmid DNA is eluted in a high-salt buffer and then concentrated and desalted by isopropanol precipitation.

2.1.11. Phenol/chloroform extraction

Reaction mixtures that had a smaller volume than 200 μ l were adjusted to this volume using H2O and phenol-chloroform extracted using an equal volume of phenol-chloroformisoamylalcohol (PCI = 25:24:1). This mixture was vortexed and centrifuged for 1 min. The aqueous phase was carefully transferred to a new reaction tube and extracted again using 92 200 μ l of PCI. The aqueous phase was then extracted using 200 μ l chloroform. The aqueous phase was then ethanol precipitated as described in the next section.

2.1.12. Ethanol precipitation

DNA was precipitated using 0.3 M sodium acetate and two to three volumes of ice-cold absolute ethanol. RNA was precipitated using 0.8 M lithium chloride and 2.5 volumes of icecold absolute ethanol. Precipitation was allowed at -20°C for 30 min or at -80°C for 10 min. After centrifugation at maximum speed for 30 min in case of DNA and 20 min in case of RNA at 4°C, the pellets were washed with 70% ethanol air-dried and re-suspended in the appropriate buffer.

2.1.13. Restriction enzyme digestion of DNA

Digestions for characterization of plasmid DNA were performed using about 200 ng of plasmid in 1 x restriction enzyme digestion buffer and 6 U of restriction enzyme in a total volume of 20 μ l. Digestion mixtures were incubated for 1-2 h at the appropriate temperatures for each enzyme as suggested by the manufacturer.

2.1.14. Preparation of glycerol stocks

Glycerol stocks were prepared by adding 150 μ l of sterile glycerol to 850 μ l bacterial culture, vortexing to ensure even dispersion of the glycerol and freezing in liquid nitrogen. Afterwards, tubes were transferred to -80°C for long-term storage.

2.1.15. Sequencing of DNA

DNA sequencing was carried at the core facility of the Institute of Genetics by Rita Lange on an ABI Prism 3730 DNA Analyzer (Applied Biosystems, USA). For each cycle sequencing reaction, the following reagents were added into each tube: 2 I of BigDye terminator premix (ABI Prism), 3.2pmol primer, 100ng of purified plasmid DNA and autoclaved distilled water to a final volume of 10 I. Then, the mixture was mixed and briefly spun down. The sequencing profile used was as follows: 40 cycles at 950C for 20 sec, 500C for 15 sec and 600C for 4 min. The samples were ethanol precipitated and dried thoroughly. The dried samples were stored at -20°C in the dark until they were electrophoresed. Sequence analysis was carried out using BLAST (Basic Local Alignment Search Tool), accessed through the Internet (http://www.ncbi.nlm.nih.gov/). Alignments of the sequences with several closely related genes were carried out subsequently.

3. Histological studies

3.1. Preparation of cover slips

Cover slips were treated with Repel Silane (Amersham Pharmacia Biotech) to inhibit the binding of antibodies and probes to them. Cover slips were dipped into Repel Silane, acetone and absolute ethanol for 5 sec each and air-dried in a dust-free place on the back of a microtiter plate that was used as a rack.

3.2. Tissue preparation and sectioning

Adult zebrafish were decapitated with a sharp scalpel. The head was put immediately in a petridish containing ice-cold PBS, pH 7.4. Barbels attached with lips, olfactory epithelia, olfactory bulbs, whole brains, gills, hearts and livers were dissected out.

3.3. Cryosectioning

For cryostat sectioning, tissues were put in TissueTek (MILES, Elkhart, Indiana, USA), oriented and frozen at -20°C. Olfactory epithelia were sectioned at 10 μ m. Sections were mounted on coated Superfrost plus slides and dried for 3 h at 55°C. Sections were used immediately, since it was found that storage impaired the signals in the in situ hybridization.

3.4. Immunohistochemistry (IHC)

3.4.1 Antibody Staining on Fresh Frozen Cryostat Sections

Sections were fixed in 4% PFA for 10-20 min at room temperature (or alternatively overnight at 4oC) and washed three times for 10 min each in PBS 1x (pH 7.5). Tissue in the slides was then dried by incubation in aceton for 15 min at -20oC. The slides were washed 3 x for 5 min in PBST (PBS + 0.1% triton-100). Blocking was done in 5% normal goat serum (NGS) in PBST for at least one hour at room temperature. The tissue was then incubated with the primary antibodies (c-Fos) in 5% NGS in PBST overnight at 4°C (or alternatively at room temperature for 2 hours). After extensive washing in PBST (3 x 10 min), the sections were incubated with the correspondent coupled Alexa-488 or -594 secondary antibodies in PBST for 2 hours at room temperature. The sections were mounted and embedded in Vectashield (Vector).

3.5. In Situ Hybridization (ISH)

In situ hybridization to cellular RNA was used to determine the cellular localization of specific TAAR genes within complex cell populations and tissues. Various methods were used for different purposes.

3.6. Labeling of RNA using Digoxigenin, Biotin or Fluorescent in vitro transcription

A range of probes can be used for the detection of mRNA in situ hybridization experiments. However, in vitro transcribed riboprobes are the best choice on tissue sections (Cox, 1984). These probes are single-stranded and may span hundreds of nucleotides, which results in specific antisense probes with high detection sensitivity. Moreover, in vitro transcription allows the synthesis of ideal control probes, as the sense probes have identical length and G + C content, defining similar properties of hybridization compared to the antisense probes. After synthesis of the probes they were not hydrolyzed into smaller pieces, as this treatment leads to elevated background signals. Sense and antisense RNA probes labeled with digoxigenin (DIG)-, fluorescein- or biotin-labeled UTP were generated by in vitro transcription according to the manufacturer's instructions (RocheBiochemicals). Before beginning the transcription reaction, the template DNA was generated either by PCR using insert specific primers that contained the T3 polymerase promoter sequence or by linearization with a restriction enzyme. For the latter, T7 or SP6 polymerase promoter sequences in the vector backbone were utilized for transctiption. The template DNA was then purified using a PCR purification kit (Qiagen). The labeling reaction was performed in a total volume of 20-40 µl. About 200-500 ng (for PCR template) or about 1000ng (for linearized plasmid template) of plasmid was used for labeling. Transcription buffer and DIG-, fluorescein- or biotin-labeling mixture were added to a final concentration of 1 x. 4 U of RNA polymerase (T3, T7 or SP6) and 20 U of RNAse inhibitor (Roche Biochemicals) were also added. The reaction was incubated at 38°C for 2 hours and terminated by addition of 2 µl of EDTA (200 mM, pH 8.0). The RNA transcript was ethanol precipitated and analyzed for size and integrity using agarose gel electrophoresis. Labeling efficiency was estimated using DIG quantification teststrips (Roche Biochemicals).

3.7. In situ hybridization on sections of olfactory epithelia

Sections (10 µm) were fixed in 4% paraformaldehyde for 10 min at room temperature. Hybridizations were performed overnight at 60°C using standard protocols as previously described (Weth et al., 1996). Anti-DIG primary antibody coupled to alkaline phosphatase (Roche Molecular Biochemicals) and NBT-BCIP (Roche Molecular Biochemicals) was used for signal detection.

4. Cell culture and CRE-SEAP functional assays using HEK 293 cells

A high-throughput assay to monitor the function of TAARs was used. The activated TAARs couple to cAMP pathways in HEK-293 cells, presumably through endogenous Gas present in these cells. This allowed monitoring TAAR function using a cAMPdependent reporter gene, CRE-SEAP, which contains secreted alkaline phosphatase (SEAP) downstream of five tandem cAMP response elements (CRE). Zebrafish TAAR genes embedded with an amino-terminal addition of the first 20 amino acids of bovine rhodopsin (a 'rho tag'), a modification that facilitates the cell-surface expression of some odorant receptors in HEK293 cells (Krautwurst et al., 1998) were used in CRE-SEAP assay. 11 zebrafish TAAR genes including DrTAAR1, 10, 11, 12f, 13a, 13b, 13c, 13d, 15a, 16c, 20t1 were examined for 95 different chemicals separately (Fig. 16). TAARs were cotransfected in HEK293 cells using lipofectamine. HEK293 cells were grown in Minimum Essential Medium (MEM) supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 µg/ml streptomycin at 37°C in a humidified 7% CO₂ incubator. cells were split by adding 3.5ml Trypsin/EDTA solution (cover bottom of flask) an incubate at 39°C for 5 min. Cells were to 50ml conical tube containing 21.5ml DMEM+ (500mL DMEM + 5mL Penincilin-Streptomycin+25mL Fetal Bovine Serum (all from GIBCO company). Cells containg tubes were spin tube at 1,000 rpm for 5 min at 4°C and medium was aspireated and resuspended supernatant in 1ml DMEM+ (using 1 ml pipette) and 19ml DMEM was added to re-suspension. 20µl dye (Trypan blue) was added in 20 µl of cells to be counted. Cells were counted and dilute to 250,000 cells / 1mL = 50,000 cells / 200ul (per well) using the following formula:

Count = total of 4 red boxes (16 squares on each)/2 Count * 10000 = cells/1ml _ split by 1000 = x cells/1 μ l 50,000/ x cells = x μ l of cells to add per 200 μ L DMEM+ per well or alternatively: 3,000,000/ x cells = x μ l of cells to add per 12 mL DMEM+ per plate (60 wells)

200 μ l cell dilution was added to 96-well plate as needed for assay (Each plate fills 60 wells, borders filled with PBS, that is 60 wells x 200 μ l = total 12 mL of DMEM⁺ + 3,000,000 cells) and incubated O/N at 39°C. Remaining cells were split (20ml total per flask) for further use as under:2:1 dilution for 2 days growth (10mL cells+10mL DMEM+),

5:1 dilution for 3 days growth (4mL cells+16mL DMEM+), 10:1 dilution for 4-5 days growth (2mL cells+18mL DMEM+). Co-transfection was performed the next day. Co-transfection mix consisted of 20 ng plasmid with receptor (stock is at 20 ng/ul) +20 ng Cre-SEAP plasmid (stock is at 250 ng/ul) + 9 ul DMEM+1 ul PLUS reagent, that makes total volume of 10ul per well. The mixture was let sit @ RT for 15 min. After 15 minutes 50 ul DMEM was added per well+10 ul of Lipofectamine (25 xs concentrated). Mix was left to stay for 3 hours. If lipofectamine stays with the cells for more than 5 hours, they die. After 3 hours 70 ul media was aspirated from the wells and 200 ul of DMEM with initial dilutions of 10uM ligands per well was added. Imaging was performed the3rd day. Plates were plastic wrapped and incubated @ 68C⁰ for 2 hours. Plates were cooled down at RT.120 ul of 0.1M MUP(4-methylumbelliferyl phosphate) + 10 mL 2M Diethanolamine Bicarbonate pH10, adjust pH with dry ice buffer was added in each plate. cyclic AMP accumulation data and CRE-SEAP-reporter gene assay data was acquired at 1, 5 and 20 minutes after adding buffer, by Envision2 plate reader.

5. Behavioral assay

The behavioral assay was performed in a glass tank (Fig. 22) with dimension of $(100_{x}10_{x}20 \text{ cm})$. The total water capacity of behavioral tank was 18 liters. Tank was half filled (9 liters) with clean, desalted water from fish room. The temperature of the water was maintained at 28 C⁰. Adult zebrafish 8 months - 1 year old were used in behavioral experiments. A single zebrafish was put into the tank water and was given 45 minutes to 1 hour for acclimatization in the tank. The stimulus was applied through a glass pipette attached to the tank. There was a barrier between the tank and application of stimulus site to avoid visual influence on the experiments. The activity of the zebrafish was monitored by HD video camera (Fig. 22) that captured video at 30 frames/seconds. A room was dedicated for behavioral experiments and maximum silence was provided. A stimulus with stock concentration of 1mM was used in each experiment, except water and food. Each behavioral experiment was carried out in two stages. First pre-stimulus stage, in which no stimulus was applied to the fish and fish activity was recorder for 5 minutes in water. Generally zebrafish is an active fish and moves freely in water. In the next stage of post stimulus (that started with the 6th minute), a stimulus was applied through the glass pipette, avoiding complete visibility of the researcher to the fish. The video camera keeps recording the post-stimulus activity. The total experiment consisting of 5 minutes prestimulus and 5-minutes post-stimulus was recorded in a single video shot. The 10 minutes movie of fish behavioral movement was analyzed by WINANALYZE tracking software (http://www.winanalyze.com). WINANALYZE uses a virtual tracker to make tracks of fish movements (Fig. 23a, b) in addition to providing coordinates of fish moments in pixels. The data obtained from WINANALYZE was analyzed using multiple algorithms.

6. Data Mining

6.1. TAARs

All annotated TAAR sequences were compiled and used as query in TblastN searches in the NCBI and Ensembl databanks. Additionally blastP searches were performed in the NCBI databanks and automated ortholog prediction was used in the Ensembl databank (Hubbard et al., 2007). For shark, lamprey and zebrafish, also EST databanks were searched, in addition, for elephant shark WGS sequences with 1.4 fold genomic coverage were analyzed. Search was recursive until no new candidates were found. Validation of candidates as proper taar genes required: a) position within the TAAR clade in the phylogenetic analysis; b) application of the BLASTP algorithm in the NCBI nonredundant database should result in confirmed TAARs as first hits; c) presence of typical TAAR family motifs; d) CDS length between 800 and 1300 amino acids; e) presence of seven trans-membrane domains (regions assignment according to conserved position as described in (Lindemann et al., 2005; Lindemann and Hoener, 2005). For the accession numbers of the taar genes see (Hussain et al., 2009).

6.2. Phylogenetic analysis

MAFFT, version 5.8 (http://align.bmr.kyushu-u.ac.jp/ mafft/online/server/)6.3, was used for multiple protein alignments using the E-INS-i strategy with the default parameters. Phylogenetic trees were constructed by using neighbor joining (NJ), maximum parsimony (MP), and maximum likelihood (ML) methods (30, 31). Subclades within the taar gene family were determined from the tree as the largest clades that fulfilled 2 criteria: the clade had _70% bootstrap support in the NJ analysis (except the closely related families 18–20), was supported in the MP and ML, and all members within the clade had at least 40% protein identity to each other (except taar23 and 24, which cannot be resolved well and

have to be considered provisional). Twenty-eight such subclades or subfamilies were identified, comprising both previously uncharacterized subfamilies and genes from previously known subfamilies.

6.3. dN/dS analysis

The global dN/dS ratios for the full-length ORF of the 223 fish TAARs receptor coding sequences were determined by using the Single Likelihood Ancestor Counting (SLAC) package (http://www.datamonkey.org), which implements the Suzuki-Gojobori method (Suzuki and Gojobori, 1999). The nucleotide alignments were manually edited to match the amino acid alignment used in the phylogenetic trees and sequence logo. To make inferences about selective pressure (positive and negative selection) on individual codons (sites) within the coding sequence of the teleost fish TAARs genes, the Single Likelihood Ancestor Counting (SLAC) package (http://www.datamonkey.org), which implements the Suzuki-Gojobori method (Suzuki and Gojobori, 1999), was used. The algorithm is briefly outlined. First, a best-fitting nucleotide substitution model was automatically selected by fitting several such substitution models to both the data and a neighbor-joining tree generated from the alignment described above. Taking the obtained substitution rates and branch lengths as constant, a codon model was employed to fit to the data and a global dN/dS ratio was calculated. Then a codon by codon reconstruction of the ancestral sequences was performed using maximum likelihood. Afterwards the expected normalized (ES) and observed numbers (EN) of synonymous (NS) and non-synonymous (NN) substitutions were calculated for each non-constant site. dN = NN/EN and dS =NS/ES were then computed, and if dN < dS (negative selection) or dN > dS (positive selection), a pvalue derived from a two-tailed extended binomial distribution was used to assess significance. Tests on simulated data (S.L.K. Pond and S.D.W. Frost, methods available at http://www.datamonkey.org) show that p values equal or smaller than 0.1 identify nearly all true positives with a false positive rate generally below the nominal p value; for actual data, the number of true positives at a given false positive rate is lower. In the present study, two thresholds for significance (0.1 and 0.2) were taken into account in order to identify residues potentially involved in odorant-binding activities.

XI.REFERENCES

- Alioto TS, Ngai J. 2005. The odorant receptor repertoire of teleost fish. BMC Genomics 6(173):173.
- Alioto TS, Ngai J. 2006. The repertoire of olfactory C family G protein-coupled receptors in zebrafish: candidate chemosensory receptors for amino acids. BMC Genomics 7:309.
- Alsop D, Vijayan MM. 2009. Molecular programming of the corticosteroid stress axis during zebrafish development. Comp Biochem Physiol A Mol Integr Physiol 153(1):49-54.
- Asahina K, Pavlenkovich V, Vosshall LB. 2008. The survival advantage of olfaction in a competitive environment. Curr Biol 18(15):1153-1155.
- Baier H, Korsching S. 1994. Olfactory glomeruli in the zebrafish form an invariant pattern and are identifiable across animals. J Neurosci 14(1):219-230.
- Baier H, Rotter S, Korsching S. 1994. Connectional topography in the zebrafish olfactory system: random positions but regular spacing of sensory neurons projecting to an individual glomerulus. Proc Natl Acad Sci U S A 91(24):11646-11650.
- Bakewell MA, Shi P, Zhang J. 2007. More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci U S A 104(18):7489-7494.
- Bally-Cuif L. 2006. Teleosts: simple organisms? Complex behavior. Zebrafish 3(2):127-130.
- Belluscio L, Gold GH, Nemes A, Axel R. 1998. Mice deficient in G(olf) are anosmic. Neuron 20(1):69-81.
- Belluscio L, Koentges G, Axel R, Dulac C. 1999. A map of pheromone receptor activation in the mammalian brain. Cell 97(2):209-220.
- Berghard A, Dryer L. 1998. A novel family of ancient vertebrate odorant receptors. J Neurobiol 37(3):383-392.
- Bielawski JP, Dunn KA, Yang Z. 2000. Rates of nucleotide substitution and mammalian nuclear gene evolution. Approximate and maximum-likelihood methods lead to different conclusions. Genetics 156(3):1299-1308.
- Bonadonna F, Caro SP, de LBM. 2009. Olfactory sex recognition investigated in Antarctic prions. PLoS One 4(1):e4148.
- Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C. 2001. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98(16):8966-8971.
- Boschat C, Pelofi C, Randin O, Roppolo D, Luscher C, Broillet MC, Rodriguez I. 2002. Pheromone Detection Mediated by a V1r Vomeronasal Receptor. Nat Neurosci 5(12):1261-1262.
- Brechbuhl J, Klaey M, Broillet MC. 2008. Grueneberg ganglion cells mediate alarm pheromone detection in mice. Science 321(5892):1092-1095.
- Buck L, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65(1):175-187.
- Buck LB. 2000. The molecular architecture of odor and pheromone sensing in mammals. Cell 100(6):611-618.
- Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, Civello D, Adams MD,

Cargill M, Clark AG. 2005. Natural selection on protein-coding genes in the human genome. Nature 437(7062):1153-1157.

- Carmel L, Wolf YI, Rogozin IB, Koonin EV. 2007. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 10:10.
- Caro SP, Balthazart J. Pheromones in birds: myth or reality? J Comp Physiol A Neuroethol Sens Neural Behav Physiol.
- Carvan MJ, 3rd, Loucks E, Weber DN, Williams FE. 2004. Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26(6):757-768.
- Catania S, Germana A, Laura R, Gonzalez-Martinez T, Ciriaco E, Vega JA. 2003. The crypt neurons in the olfactory epithelium of the adult zebrafish express TrkA-like immunoreactivity. Neurosci Lett 350(1):5-8.
- Clipstone NA, Crabtree GR. 1992. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357(6380):695-697.
- Coulombe-Huntington J, Majewski J. 2007. Characterization of intron loss events in mammals. Genome Res 17(1):23-32.
- Dahanukar A, Hallem EA, Carlson JR. 2005. Insect chemoreception. Curr Opin Neurobiol 15(4):423-430.
- Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ, Ogawa S, Zufall F, Mombaerts P. 2002. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419(6902):70-74.
- Ditzen M, Pellegrino M, Vosshall LB. 2008. Insect odorant receptors are molecular targets of the insect repellent DEET. Science 319(5871):1838-1842.
- Dryer L. 2000. Evolution of odorant receptors. Bioessays 22(9):803-810.
- Dulac C. 2000. Sensory coding of pheromone signals in mammals. Curr Opin Neurobiol 10(4):511-518.
- Dulac C, Axel R. 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83(2):195-206.
- Durocher Y, Perret S, Thibaudeau E, Gaumond MH, Kamen A, Stocco R, Abramovitz M. 2000. A reporter gene assay for high-throughput screening of G-protein-coupled receptors stably or transiently expressed in HEK293 EBNA cells grown in suspension culture. Anal Biochem 284(2):316-326.
- Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV. 2009. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205(1):38-44.
- Engeszer RE, Barbiano LA, Ryan MJ, Parichy DM. 2007. Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav 74(5):1269-1275.
- Feinstein P, Bozza T, Rodriguez I, Vassalli A, Mombaerts P. 2004. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2 adrenergic receptor. Cell 117(6):833-846.
- Feinstein P, Mombaerts P. 2004. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117(6):817-831.
- Ferrando S, Bottaro M, Gallus L, Girosi L, Vacchi M, Tagliafierro G. 2006. Observations of crypt neuron-like cells in the olfactory epithelium of a cartilaginous fish. Neurosci Lett 403(3):280-282.
- Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H. 2006. Olfactory receptors and signalling elements in the Grueneberg ganglion. J Neurochem 98(2):543-554.
- Fleischer J, Schwarzenbacher K, Breer H. 2007. Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem Senses 32(6):623-631.

- Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. 2003. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63(6):1256-1272.
- Freitag J, Beck A, Ludwig G, von Buchholtz L, Breer H. 1999. On the origin of the olfactory receptor family: receptor genes of the jawless fish (Lampetra fluviatilis). Gene 226(2):165-174.
- Friedrich RW, Korsching SI. 1998. Chemotopic, Combinatorial, and Noncombinatorial Odorant Representations in the Olfactory Bulb Revealed Using a Voltage-Sensitive Axon Tracer. J Neurosci 18(23):9977-9988.
- Fuss SH, Korsching SI. 2001. Odorant feature detection: activity mapping of structure response relationships in the zebrafish olfactory bulb. J Neurosci 21(21):8396-8407.
- Futatsugi A, Nakamura T, Yamada MK, Ebisui E, Nakamura K, Uchida K, Kitaguchi T, Takahashi-Iwanaga H, Noda T, Aruga J, Mikoshiba K. 2005. IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309(5744):2232-2234.
- Gaillard I, Rouquier S, Giorgi D. 2004. Olfactory receptors. Cell Mol Life Sci 61(4):456-469.
- Germana A, Montalbano G, Laura R, Ciriaco E, del Valle ME, Vega JA. 2004. S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish. Neurosci Lett 371(2-3):196-198.
- Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV. 2001. The concepts of 'sameness' and 'difference' in an insect. Nature 410(6831):930-933.
- Gloriam DE, Bjarnadottir TK, Yan YL, Postlethwait JH, Schioth HB, Fredriksson R. 2005. The repertoire of trace amine G-protein-coupled receptors: large expansion in zebrafish. Mol Phylogenet Evol 35(2):470-482.
- Grosmaitre X, Santarelli LC, Tan J, Luo M, Ma M. 2007. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat Neurosci 10(3):348-354.
- Grus WE, Shi P, Zhang YP, Zhang J. 2005. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci U S A 102(16):5767-5772.
- Grus WE, Zhang J. 2008. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol Biol Evol 25(8):1593-1601.
- Hamdani EH, Alexander G, Doving KB. 2001. Projection of sensory neurons with microvilli to the lateral olfactory tract indicates their participation in feeding behaviour in crucian carp. Chem Senses 26(9):1139-1144.
- Hamdani EH, Stabell OB, Alexander G, Doving KB. 2000. Alarm reaction in the crucian carp is mediated by the medial bundle of the medial olfactory tract. Chem Senses 25(1):103-109.
- Hamdani el H, Doving KB. 2006. Specific projection of the sensory crypt cells in the olfactory system in crucian carp, Carassius carassius. Chem Senses 31(1):63-67.
- Hamdani J, Moes AJ, Amighi K. 2002. Development and evaluation of prolonged release pellets obtained by the melt pelletization process. Int J Pharm 245(1-2):167-177.
- Hansen A. 2007. Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis. BMC Neurosci 8:64.

- Hansen A, Anderson KT, Finger TE. 2004. Differential distribution of olfactory receptor neurons in goldfish: structural and molecular correlates. J Comp Neurol 477(4):347-359.
- Hansen A, Finger TE. 2000. Phyletic distribution of crypt-type olfactory receptor neurons in fishes. Brain Behav Evol 55(2):100-110.
- Hansen A, Rolen SH, Anderson K, Morita Y, Caprio J, Finger TE. 2003. Correlation between olfactory receptor cell type and function in the channel catfish. J Neurosci 23(28):9328-9339.
- Hansen A, Zielinski BS. 2005. Diversity in the olfactory epithelium of bony fishes: development, lamellar arrangement, sensory neuron cell types and transduction components. J Neurocytol 34(3-5):183-208.
- Hasen NS, Gammie SC. 2009. Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8(7):639-649.
- Hashiguchi Y, Nishida M. 2005. Evolution of Vomeronasal-Type Odorant Receptor Genes in the Zebrafish Genome. Gene 362:19-28. Epub 2005 Oct 2014.
- Hashiguchi Y, Nishida M. 2006. Evolution and origin of vomeronasal-type odorant receptor gene repertoire in fishes. BMC Evol Biol 6(76):76.
- Hashiguchi Y, Nishida M. 2007. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24(9):2099-2107.
- Hirao A, Aoyama M, Sugita S. 2009. The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behav Processes 80(2):115-120.
- Huang ES. 2003. Construction of a sequence motif characteristic of aminergic G proteincoupled receptors. Protein Sci 12(7):1360-1367.
- Hubbard TJ, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y, Clarke L, Coates G, Cunningham F, Cutts T, Down T, Dyer SC, Fitzgerald S, Fernandez-Banet J, Graf S, Haider S, Hammond M, Herrero J, Holland R, Howe K, Johnson N, Kahari A, Keefe D, Kokocinski F, Kulesha E, Lawson D, Longden I, Melsopp C, Megy K, Meidl P, Ouverdin B, Parker A, Prlic A, Rice S, Rios D, Schuster M, Sealy I, Severin J, Slater G, Smedley D, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wood M, Cox T, Curwen V, Durbin R, Fernandez-Suarez XM, Flicek P, Kasprzyk A, Proctor G, Searle S, Smith J, Ureta-Vidal A, Birney E. 2007. Ensembl 2007. Nucleic Acids Res 35(Database issue):D610-617.
- Hughes AL, Hughes MK. 1993. Adaptive evolution in the rat olfactory receptor gene family. J Mol Evol 36(3):249-254.
- Hussain A, Saraiva LR, Korsching SI. 2009. Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc Natl Acad Sci U S A 106(11):4313-4318.
- Jesuthasan SJ, Mathuru AS. 2008. The alarm response in zebrafish: innate fear in a vertebrate genetic model. J Neurogenet 22(3):211-228.
- Johnston RE, Bhorade A. 1998. Perception of scent over-marks by golden hamsters (Mesocricetus auratus): novel mechanisms for determining which individual's mark is on top. J Comp Psychol 112(3):230-243.
- Jones DT, Reed RR. 1989. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244(4906):790-795.
- Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K. 2001. Molecular bases of odor discrimination: Reconstitution of olfactory receptors that recognize overlapping sets of odorants. J Neurosci 21(16):6018-6025.

- Kaluza JF, Gussing F, Bohm S, Breer H, Strotmann J. 2004. Olfactory receptors in the mouse septal organ. J Neurosci Res 76(4):442-452.
- Kapur A, Haberly LB. 1998. Duration of NMDA-dependent synaptic potentiation in piriform cortex in vivo is increased after epileptiform bursting. J Neurophysiol 80(4):1623-1629.
- Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H. 2007. Genetic variation in a human odorant receptor alters odour perception. Nature 449(7161):468-472.
- Korsching S. 2009. The molecular evolution of teleost olfactory receptor gene families. Results Probl Cell Differ 47:37-55.
- Krautwurst D, Yau KW, Reed RR. 1998. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95(7):917-926.
- Lane RP, Young J, Newman T, Trask BJ. 2004. Species specificity in rodent pheromone receptor repertoires. Genome Res 14(4):603-608.
- Lastein S, Hamdani el H, Doving KB. 2006. Gender distinction in neural discrimination of sex pheromones in the olfactory bulb of crucian carp, Carassius carassius. Chem Senses 31(1):69-77.
- Levin ED, Bencan Z, Cerutti DT. 2007. Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90(1):54-58.
- Liberles SD, Buck LB. 2006. A second class of chemosensory receptors in the olfactory epithelium. Nature 442(7103):645-650.
- Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL, Siltberg-Liberles J, Liberles DA, Buck LB. 2009. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc Natl Acad Sci U S A 106(24):9842-9847.
- Liman ER. 2006. Use it or lose it: molecular evolution of sensory signaling in primates. Pflugers Arch 453(2):125-131.
- Liman ER, Innan H. 2003. Relaxed selective pressure on an essential component of pheromone transduction in primate evolution. Proc Natl Acad Sci U S A 100(6):3328-3332.
- Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC. 2005. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85(3):372-385.
- Lindemann L, Hoener MC. 2005. A renaissance in trace amines inspired by a novel GPCR family. Trends Pharmacol Sci 26(5):274-281.
- Liu AH, Zhang X, Stolovitzky GA, Califano A, Firestein SJ. 2003. Motif-based construction of a functional map for mammalian olfactory receptors. Genomics 81(5):443-456.
- Loh YH, Brenner S, Venkatesh B. 2007. Investigation of Loss and Gain of Introns in the Compact Genomes of Pufferfishes (fugu and Tetraodon). Mol Biol Evol 17:17.
- Loucks E, Carvan MJ, 3rd. 2004. Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol Teratol 26(6):745-755.
- Luu P, Acher F, Bertrand HO, Fan J, Ngai J. 2004. Molecular determinants of ligand selectivity in a vertebrate odorant receptor. J Neurosci 24(45):10128-10137.
- Ma M, Grosmaitre X, Iwema CL, Baker H, Greer CA, Shepherd GM. 2003. Olfactory signal transduction in the mouse septal organ. J Neurosci 23(1):317-324.
- Malnic B, Hirono J, Sato T, Buck LB. 1999. Combinatorial receptor codes for odors. Cell 96(5):713-723.
- Mandiyan VS, Coats JK, Shah NM. 2005. Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8(12):1660-1662.
- Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A, Jr. 2010. Measuring anxiety in zebrafish: a critical review. Behav Brain Res 214(2):157-171.

- Michel WC, Sanderson MJ, Olson JK, Lipschitz DL. 2003. Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system. J Exp Biol 206(Pt 10):1697-1706.
- Mietz JL, Karmas E. 1978. Polyamine and histamine content of rockfish, salmon, lobster, and shrimp as an indicator of decomposition. JAOAC.
- Migeotte I, Communi D, Parmentier M. 2006. Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev 17(6):501-519.
- Miyasaka N, Sato Y, Yoshihara Y. 2005. Axon guidance of olfactory sensory neurons in zebrafish. Chem Senses 30 Suppl 1:i92-93.
- Molenaar D, Bosscher JS, ten Brink B, Driessen AJ, Konings WN. 1993. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 175(10):2864-2870.
- Mombaerts P. 2004. Genes and ligands for odorant, vomeronasal and taste receptors. Nat Rev Neurosci 5(4):263-278.
- Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A, Mendelsohn M, Edmondson J, Axel R. 1996. Visualizing an olfactory sensory map. Cell 87(4):675-686.
- Montminy M. 1997. Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807-822.
- Mori K, Nagao H, Yoshihara Y. 1999. The olfactory bulb: coding and processing of odor molecule information. Science 286(5440):711-715.
- Morita Y, Finger TE. 1998. Differential projections of ciliated and microvillous olfactory receptor cells in the catfish, Ictalurus punctatus. J Comp Neurol 398(4):539-550.
- Murphy WJ, Pringle TH, Crider TA, Springer MS, Miller W. 2007. Using genomic data to unravel the root of the placental mammal phylogeny. Genome Res 17(4):413-421.
- Nakatani Y, Takeda H, Kohara Y, Morishita S. 2007. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17(9):1254-1265.
- Nei M, Niimura Y, Nozawa M. 2008. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9(12):951-963.
- Niimura Y, Nei M. 2003. Evolution of olfactory receptor genes in the human genome. Proc Natl Acad Sci U S A 100(21):12235-12240.
- Niimura Y, Nei M. 2005. Evolutionary Dynamics of Olfactory Receptor Genes in Fishes and Tetrapods. Proc Natl Acad Sci U S A 102(17):6039-6044. Epub 2005 Apr 6011.
- Ninkovic J, Bally-Cuif L. 2006. The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods 39(3):262-274.
- Panaro MA, Acquafredda A, Sisto M, Lisi S, Maffione AB, Mitolo V. 2006. Biological role of the N-formyl peptide receptors. Immunopharmacol Immunotoxicol 28(1):103-127.
- Pessione E, Mazzoli R, Giuffrida MG, Lamberti C, Garcia-Moruno E, Barello C, Conti A, Giunta C. 2005. A proteomic approach to studying biogenic amine producing lactic acid bacteria. Proteomics 5(3):687-698.
- Pfister P, Rodriguez I. 2005. Olfactory Expression of a Single and Highly Variable V1r Pheromone Receptor-Like Gene in Fish Species. Proc Natl Acad Sci U S A 102(15):5489-5494. Epub 2005 Apr 5484.
- Pinel JP, Gorzalka BB, Ladak F. 1981. Cadaverine and putrescine initiate the burial of dead conspecifics by rats. Physiol Behav 27(5):819-824.

- Ressler KJ, Sullivan SL, Buck LB. 1994. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79(7):1245-1255.
- Restrepo D, Arellano J, Oliva AM, Schaefer ML, Lin W. 2004. Emerging views on the distinct but related roles of the main and accessory olfactory systems in responsiveness to chemosensory signals in mice. Horm Behav 46(3):247-256.
- Riviere S, Challet L, Fluegge D, Spehr M, Rodriguez I. 2009. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459(7246):574-577.
- Rodriguez I, Feinstein P, Mombaerts P. 1999. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97(2):199-208.
- Rodriguez I, Greer CA, Mok MY, Mombaerts P. 2000. A putative pheromone receptor gene expressed in human olfactory mucosa. Nat Genet 26(1):18-19.
- Rolen SH, Sorensen PW, Mattson D, Caprio J. 2003. Polyamines as olfactory stimuli in the goldfish Carassius auratus. J Exp Biol 206(Pt 10):1683-1696.
- Roppolo D, Vollery S, Kan CD, Luscher C, Broillet MC, Rodriguez I. 2007. Gene cluster lock after pheromone receptor gene choice. EMBO J 26(14):3423-3430.
- Sam M, Vora S, Malnic B, Ma W, Novotny MV, Buck LB. 2001. Neuropharmacology. Odorants may arouse instinctive behaviours. Nature 412(6843):142.
- Saraiva LR, Korsching SI. 2007. A novel olfactory receptor gene family in teleost fish. Genome Res 17(10):1448-1457.
- Sato Y, Miyasaka N, Yoshihara Y. 2005. Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish. J Neurosci 25(20):4889-4897.
- Sato Y, Miyasaka N, Yoshihara Y. 2007. Hierarchical regulation of odorant receptor gene choice and subsequent axonal projection of olfactory sensory neurons in zebrafish. J Neurosci 27(7):1606-1615.
- Schmachtenberg O. 2006. Histological and electrophysiological properties of crypt cells from the olfactory epithelium of the marine teleost Trachurus symmetricus. J Comp Neurol 495(1):113-121.
- Shepherd GM. 2006. Smell images and the flavour system in the human brain. Nature 444(7117):316-321.
- Speca DJ, Lin DM, Sorensen PW, Isacoff EY, Ngai J, Dittman AH. 1999. Functional identification of a goldfish odorant receptor. Neuron 23(3):487-498.
- Speedie N, Gerlai R. 2008. Alarm substance induced behavioral responses in zebrafish (Danio rerio). Behav Brain Res 188(1):168-177.
- Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H. 2003. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299(5615):2054-2058.
- Spehr M, Schwane K, Riffell JA, Zimmer RK, Hatt H. 2006a. Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol Cell Endocrinol 250(1-2):128-136.
- Spehr M, Spehr J, Ukhanov K, Kelliher KR, Leinders-Zufall T, Zufall F. 2006b. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell Mol Life Sci 63(13):1476-1484.
- Spence R, Gerlach G, Lawrence C, Smith C. 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83(1):13-34.
- Springer MS, Murphy WJ, Eizirik E, O'Brien SJ. 2003. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci U S A 100(3):1056-1061.

- Studer RA, Penel S, Duret L, Robinson-Rechavi M. 2008. Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Res 18(9):1393-1402.
- Suzuki Y, Gojobori T. 1999. A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16(10):1315-1328.
- Syed Z, Leal WS. 2009. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc Natl Acad Sci U S A 106(44):18803-18808.
- Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H. 2006. Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 98(1):1-14.
- Tian H, Ma M. 2004. Molecular organization of the olfactory septal organ. J Neurosci 24(38):8383-8390.
- Trabanino RJ, Hall SE, Vaidehi N, Floriano WB, Kam VW, Goddard WA, 3rd. 2004. First principles predictions of the structure and function of g-protein-coupled receptors: validation for bovine rhodopsin. Biophys J 86(4):1904-1921.
- Trinh K, Storm DR. 2003. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat Neurosci 6(5):519-525.
- Van de Peer Y. 2004. Tetraodon genome confirms Takifugu findings: most fish are ancient polyploids. Genome Biol 5(12):250.
- Vassar R, Ngai J, Axel R. 1993. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74(2):309-318.
- Venkatesh B, Erdmann MV, Brenner S. 2001. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc Natl Acad Sci U S A 98(20):11382-11387.
- Vidal-Carou SP-Sn-CSB-CMTV-NsMC. 2005. Amino acid-decarboxylase activity of bacteria isolated from ice-preserved anchovies. Eur Food Res Technol. p 312–315.
- Vielma A, Ardiles A, Delgado L, Schmachtenberg O. 2008. The elusive crypt olfactory receptor neuron: evidence for its stimulation by amino acids and cAMP pathway agonists. J Exp Biol 211(Pt 15):2417-2422.
- von Rekowski C, Zippel HP. 1993. In goldfish the qualitative discriminative ability for odors rapidly returns after bilateral nerve axotomy and lateral olfactory tract transection. Brain Res 618(2):338-340.
- Wang F, Nemes A, Mendelsohn M, Axel R. 1998. Odorant receptors govern the formation of a precise topographic map. Cell 93(1):47-60.
- Weltzien FA, Hoglund E, Hamdani el H, Doving KB. 2003. Does the lateral bundle of the medial olfactory tract mediate reproductive behavior in male crucian carp? Chem Senses 28(4):293-300.
- Weth F, Nadler W, Korsching S. 1996. Nested expression domains for odorant receptors in zebrafish olfactory epithelium. Proc Natl Acad Sci U S A 93(23):13321-13326.
- Whitlock KE. 2006. The sense of scents: olfactory behaviors in the zebrafish. Zebrafish 3(2):203-213.
- Wright D, Rimmer LB, Pritchard VL, Krause J, Butlin RK. 2003. Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Naturwissenschaften 90(8):374-377.
- Yang D, Chen Q, Gertz B, He R, Phulsuksombati M, Ye RD, Oppenheim JJ. 2002. Human dendritic cells express functional formyl peptide receptor-like-2 (FPRL2) throughout maturation. J Leukoc Biol 72(3):598-607.
- Yang Z, Bielawski JP. 2000. Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496-503.

- Yokoyama S, Tada T, Zhang H, Britt L. 2008. Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci U S A 105(36):13480-13485.
- Yoshihara Y. 2009. Molecular genetic dissection of the zebrafish olfactory system. Results Probl Cell Differ 47:97-120.
- Young JM, Shykind BM, Lane RP, Tonnes-Priddy L, Ross JA, Walker M, Williams EM, Trask BJ. 2003. Odorant receptor expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression levels. Genome Biol 4(11):R71.
- Young JM, Trask BJ. 2002. The sense of smell: genomics of vertebrate odorant receptors. Hum Mol Genet 11(10):1153-1160.
- Young JM, Trask BJ. 2007. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet 23(5):212-215.
- Zhang JX, Wei W, Zhang JH, Yang WH. Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chem Senses 35(5):375-382.
- Zhang X, Rodriguez I, Mombaerts P, Firestein S. 2004a. Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics 83(5):802-811.
- Zhang Z, Burch PE, Cooney AJ, Lanz RB, Pereira FA, Wu J, Gibbs RA, Weinstock G, Wheeler DA. 2004b. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res 14(4):580-590.

XII.SUPPLEMENTARY INFORMATION

Gene Name Synony Chromos Location Accession **EST** ms ome number Dr_Taar1 20 54463291-ENSDART000000 OE & zTA1b 54464289 60779 Brain Dr_Taar10 20 54426459-ENSDART000000 54427487 14396 OE Dr Taar10a 20 54432894-ENSDART000000 60795 OE 54433904 ENSDART000000 Dr_Taar10b 20 54453770-60783 OE 54454780 ENSDART000000 Dr_Taar10c 20 54436728-Embry 54437738 60791 0 Dr Taar10d 20 54445152-ENSDART000000 60787 OE 54446162 Dr_Taar11 20 54458998-ENSDART000000 zTA1a OE 54459981 07567 Dr_Taar12a 20 46086903-Brain & OE 46088501 Dr_Taar12b 20 54490233-ENSDART000000 Brain zTA69 54491246 60770 & OE Dr_Taar12c 20 54486762-ENSDART000000 Brain & OE 54487778 60773 Dr_Taar12d 20 46067894-Brain zTA71 46068859 & OE 20 OE & Dr Taar12e 54530232-ENSDART000000 54531245 60758 Brain Dr Taar12f 20 54517187-ENSDART000000 OE & zTA72 54518200 60763 Brain

Supplementary Table.1 - List of all taar and outgroup genes

Dr_Taar12g		20	54522272-	ENSDART000000	OE &
			54523282	37777	Brain
Dr_Taar12h		20	54538161-	ENSDART000000	Brain
			54539195	60754	& OE
Dr_Taar12i		20	54477413-	ENSDART000000	
			54478435	60778	OE
Dr_Taar12j		20	54545123-	ENSDART000000	Brain
			54546145	60750	& OE
Dr_Taar12k		20	216108-217142		OE &
	zTA73				Brain
Dr_Taar12l		20	14367272-	ENSDART000000	
			14368479	64810	OE
Dr_Taar12m		15	2549861-	ENSDART000000	
			2551166	63348	OE
Dr_Taar13a		10	54414291 -		
			54415313		Brain
Dr_Taar13b		20	54407350-	ENSDART000000	
	zTA64		54408375	60799	Brain
Dr_Taar13c		20	54388665-	ENSDART000000	
	zTA65		54389690	60803	Brain
Dr_Taar13d		20	54399225-	ENSDART000000	Embry
			54400250	60800	o
Dr_Taar13e		20	54414300-	ENSDART000000	
	zTA66		54419192	60797	Brain
Dr_Taar14a		20	54353917-	ENSDART000000	Embry
			54354879	60806	o
Dr_Taar14b		20	54893962-	ENSDART000000	
			54894948	60716	OE
Dr_Taar14c		7	77815446-	ENSDART000000	
			77818549	73522	OE
Dr_Taar14d		20	54881175-	ENSDART000000	
	zTA70		54882161	60717	OE

Dr_Taar14e		20	54858946-	ENSDART000000	
			54859932	60724	OE
Dr_Taar14f		20	54876107-	ENSDART000000	
			54877093	60719	OE
Dr_Taar14g		20	54864008-	ENSDART000000	
			54871387	60720	OE
Dr_Taar14h		20	54339800-	ENSDART000000	
			54340762	60811	OE
Dr_Taar14i		20	54335864-	ENSDART000000	
	zTA68		54336823	38379	OE
Dr_Taar14j		20	54330227-	ENSDART000000	
			54331189	60815	OE
Dr_Taar14k		20	54350249-	ENSDART000000	
	zTA67		54351205	60808	OE
Dr_Taar14l		20	54345473-	ENSDART000000	
			54346429	60810	OE
Dr_Taar15a		20	54836241-	ENSDART000000	Brain
			54837227	74482	& OE
Dr_Taar15b		20	54383896-	ENSDART000000	Embry
			54384882	60804	0
Dr_Taar16a		10	45611149-	ENSDART000000	
			45612353	76403	OE
Dr_Taar16b		10	45607700-	ENSDART000000	Brain
			45606742	76404	& OE
Dr_Taar16c		13	291485-292459		Brain
	zTA63				& OE
Dr_Taar16d		13	625049-626563	ENSDART000000	OE &
				82178	Brain
Dr_Taar16e		13	633903-639694	ENSDART000000	Brain
	zTA62			82164	& OE
Dr_Taar16f		10	45630716-		Brain
	zTA36		45629785		& OE

Dr_Taar16g		10	45635543-	ENSDART000000	Brain
	zTA35		45634495	76382	& OE
Dr_Taar17a		10	45616694-		Brain
	zTA48		45617728		& OE
Dr_Taar17b		10	45624185-	ENSDART000000	OE &
	zTA47		45626594	62763	Brain
Dr_Taar17c		10	45625665-		Brain
	zTA49		45626648		& OE
Dr_Taar18a		10	45541637-	ENSDART000000	
			45542587	30565	OE
Dr_Taar18b		10	45575185 -	ENSDART000000	OE &
			45574090	85892	Brain
Dr_Taar18c		10	45571055-		OE &
			45569948		Brain
Dr_Taar18d		10	45549056-	ENSDART000000	Brain
	zTa28		45550027	85900	& OE
Dr_Taar18e		10	45554908-		OE &
			45553862		Brain
Dr_Taar18f		10	45561824-	ENSDART000000	Brain
	zTA61		45560848	76422	& OE
Dr_Taar18g		10	45545167-		Brain
	zTA27		45546210		& OE
Dr_Taar18h		10	45579595-		Brain
	zTA18		45580647		& OE
Dr_Taar18i		10	45596234-	ENSDART000000	Brain
	zTA19		45597303	49070	& OE
Dr_Taar18j		10	45601887-		Brain
	zTA20		45602876		& OE
Dr_Taar18k		10	45601833-		OE &
			45602894		Brain
Dr_Taar19a		10	46047546-	ENSDART000000	OE &
			46048523	62707	Brain

Dr_Taar19b		10	46083909-		Brain
			46085495		& OE
Dr_Taar19c		10	46091169-	ENSDART000000	Brain
	zTA54		46092376	43020	& OE
Dr_Taar19d		10	46078311-	ENSDART000000	Brain
	zTA34		46079177	32932	& OE
Dr_Taar19e		10	46052727-	ENSDART000000	OE &
			46053710	76331	Brain
Dr_Taar19f		10	46066316-		OE &
	zTA59		46067266		Brain
Dr_Taar19g		10	46072194-		Brain
	zTA33		46073195		& OE
Dr_Taar19h		10	45994749-	ENSDART000000	Brain
	zTA50		45995753	80193	& OE
Dr_Taar19i		10	46041846-	ENSDART000000	Brain
	zTA31		46042847	62696	& OE
Dr_Taar19j		10	46036393-		Brain
			46037382		& OE
Dr_Taar19k		10	45652022-	ENSDART000000	OE &
			45652966	62720	Brain
Dr_Taar19I		10	45647528-	ENSDART000000	OE &
	zTA32		45648568	40322	Brain
Dr_Taar19m		10	46000405-		Brain
			46001397		& OE
Dr_Taar19n		10	46010425-	ENSDART000000	
			46011423	62709	OE
Dr_Taar19o		10	45987464-	ENSDART000000	OE &
	zTA51		45988465	76348	Brain
Dr_Taar19p		13	12610683-	ENSDART000000	
			12612441	80187	OE
Dr_Taar19q		10	46032382-	ENSDART000000	OE &
	zTA29		46037292	54504	Brain

Dr_Taar19r		10	45670389-	ENSDART000000	OE &
			45671369	58034	Brain
Dr_Taar19s		10	45656679-		Brain
	zTA30		45657737		& OE
Dr_Taar19t		10	45660522-		Brain
			45661511		& OE
Dr_Taar19u		10	45677535-		
	zTA16		45678581		Brain
Dr_Taar19v		10	45677589-		
			45678581	-	Brain
Dr_Taar20a		10	45350191-		Brain
	zTA44		45351246		& OE
Dr_Taar20a1		10	45491713-		Brain
	zTA23		45492579		& OE
Dr_Taar20b		10	45356183-	ENSDART000000	OE &
	zTA39		45357130	62778	Brain
Dr_Taar20b1		10	45479796-		Brain
	zTA21		45480845		& OE
Dr_Taar20c		10	45397017-	ENSDART000000	OE &
	zTA45		45398036	76430	Brain
Dr_Taar20c1		10	45487291-		OE &
			45486336		Brain
Dr_Taar20d		10	45405137-	ENSDART000000	Brain
	zTA40		45406132	85912	& OE
Dr_Taar20d1		10	45497808-		Brain
			45496853		& OE
Dr_Taar20e		10	45406138-		Brain
	zTA38		45405150		& OE
Dr_Taar20f		10	45369137-	ENSDART000000	Brain
	zTA41		45370150	46136	& OE
Dr_Taar20g		10	45377510-	ENSDART000000	OE &
			45378535	41600	Brain

Dr_Taar20h		10	45366005-		OE &
			45365017		Brain
Dr_Taar20i		10	45383272-		Brain
	zTA43		45384324		& OE
Dr_Taar20j		10	45432992-		Brain
	zTA53		45433981		& OE
Dr_Taar20k		10	45516089-		OE &
	zTA25		45517060		Brain
Dr_Taar20I		10	45423213-		Brain
	zTA57		45424205		& OE
Dr_Taar20m		10	45525456-		Brain
	zTA24		45526454		& OE
Dr_Taar20n		10	45428757-		Brain
			45427769		& OE
Dr_Taar20o		10	45471587-		Brain
	zTA42		45472636		& OE
Dr_Taar20p		10	45466633-		Brain
	zTA90+		45465645		& OE
Dr_Taar20q		10	45460333-		Brain
	zTA91+		45461919		& OE
Dr_Taar20r		10	45438081-	ENSDART000000	Brain
	zTA37		45447488	22615	& OE
Dr_Taar20s		10	45532540-		Brain
			45531552		& OE
Dr_Taar20t		10	45419797-	ENSDART000000	OE &
	zTA56		45420783	38407	Brain
Dr_Taar20u		10	45414238-	ENSDART000000	Brain
	zTA55		45415200	85907	& OE
Dr_Taar20v			BC093335		OE &
					Brain
Dr_Taar20w		10	45437982-		Brain
	zTA46		45438977		& OE

Dr_Taar20x		10	45507567-		OE &
	zTa26		45508559		Brain
Dr_Taar20y		10	45502431-		Brain
	zTA22		45501443		& OE
Dr_Taar20z		10	45501436-		Brain
	zTA52		45502485		& OE
Ga_Taar21a		groupXVIII	806192-807403	ENSGACT000000	
				05640	
Ga_Taar21b		groupXVIII	849378-850334	ENSGACT000000	
				05649	
Ga_Taar21c		groupXVIII	864851-865838	ENSGACT000000	
				05661	
Ga_Taar22a		groupIX	13760495-	ENSGACT000000	
			13761558	24727	
Ga_Taar22b		group-l	22436982_2243		
			6003		
Ga_Taar23		groupXVI	15950422-	ENSGACT000000	
			15951745	10786	
Ga_Taar24		groupXV	16483483-	ENSGACT000000	
			16485039	11049	
Ga_Taar25a		groupXVI	17108838_1710		
			7707		
Ga_Taar25b		groupXVI	16450671-	ENSGACT000000	
			16452078	10998	
Ga_Taar25c		groupXVI	16978741-	ENSGACT000000	
			16979885	11316	
Ga_Taar25d		groupXVI	16460421-	ENSGACT000000	
			16461727	11007	
Ga_Taar25e		groupXVI	16467898-	ENSGACT000000	
			16469661	11022	
Ga_Taar25f		groupXVI	16974284-	ENSGACT000000	

		16975596	11311
Ga_Taar25g	groupXVI	16946301-	ENSGACT000000
		16948367	11304
Ga_Taar25h	scaffold_3	867705-869195	ENSGACT000000
	7		01187
Ga_Taar25i	scaffold_3	830907-832333	ENSGACT000000
	7		01173
Ga_Taar25j	scaffold_3	845277-846439	ENSGACT000000
	7		01174
Ga_Taar25k	scaffold_3	852505-855055	ENSGACT000000
	7		01178
Ga_Taar25l	scaffold_3	880733-881869	ENSGACT000000
	7		01195
Ga_Taar26a	scaffold_1	51365:52762:-1	
	60		
Ga_Taar26a1	groupXVI	16966117-	ENSGACT000000
		16967188	11310
Ga_Taar26b	scaffold_3	1893790-	ENSGACT000000
	7	1894994	01272
Ga_Taar26b1	scaffold_3	815923-817008	ENSGACT000000
	7		01171
Ga_Taar26c	scaffold_1	94133:95530:-1	
	60:		
Ga_Taar26d	scaffold_3	1868618-	ENSGACT000000
	7	1869815	01270
Ga_Taar26e	groupXVI	17043139_1704	
		2020	
Ga_Taar26f	groupXVI	17028081-	ENSGACT000000
		17029718	11318
Ga_Taar26g	groupXVI	17077068_1707	
		5993	
Ga_Taar26h	groupXVI	4734246_47353	

		68	
Ga_Taar26i	groupXVI	4761489_47626	
		19	
Ga_Taar26j	groupXVI	4753832-	ENSGACT000000
		4754968	02929
Ga_Taar26k	groupXVI	4855585-	ENSGACT000000
		4856789	02944
Ga_Taar26I	groupXVI	4814442-	ENSGACT000000
		4815533	02940
Ga_Taar26m	scaffold_3	1878555:187995	
	7	2:-1	
Ga_Taar26n	scaffold_5	1059527-	ENSGACT000000
	6	1060737	02821
Ga_Taar26o	groupXVI	17164416_1716	
		5546	
Ga_Taar26p	scaffold_1	139282:140697:	
	60	1	
Ga_Taar26q	groupXVI	17057147-	ENSGACT000000
		17058154	11320
Ga_Taar26r	groupXVI	17085255:17086	
		652:1	
Ga_Taar26s	groupXVI	17095712_1709	
		4581	
Ga_Taar26t	groupXVI	17020491_1702	
		1620	
Ga_Taar26u	groupXVI	17003486_1700	
		4615	
Ga_Taar26v	groupXVI	17175154_1717	
		6284	
Ga_Taar26w	groupXVI	17119616:17121	
		019:-1	
Ga_Taar26x	groupXVI	17065776-	ENSGACT000000

		17066988	11323
Ga_Taar26y	groupXVI	17151885-	ENSGACT000000
		17152878	11329
Ga_Taar26z	groupXVI	16449795_1644	
		8676	
Ga_Taar27	groupl	27258576-	ENSGACT000000
		27269505	20298
Ol_Taar21a	24	10175766-	ENSORLT000000
		10176731	19540
Ol_Taar21b	24	10072258-	ENSORLT000000
		10074154	19531
OI_Taar21c	24	10186887-	ENSORLT000000
		10187888	19546
OI_Taar21d	24	10194348-	ENSORLT000000
		10195725	19549
Ol_Taar21e	24	10204903-	ENSORLT000000
		10205901	19555
Ol_Taar21f	24	10166806-	ENSORLT000000
		10167735	19535
OI_Taar22	2	30183414-	ENSORLT000000
		30184613	07813
OI_Taar23a	Scaffold69	13484-14893	
	1		
Ol_Taar23b	21	15078821-	ENSORLT000000
		15080029	17413
Ol_Taar23c	scaffold69	7458-8583	ENSORLT000000
	1		23953
Ol_Taar23d	scaffold36	1585-2740	ENSORLT000000
	20		23739
Ol_Taar23e	scaffold45	1771-2903	ENSORLT000000
	35		24697

OI_Taar23f	21	15066726-	ENSORLT000000	
		15068348	17409	
OI_Taar23g	21	30824724-	ENSORLT000000	
		30825926	22830	
Ol_Taar23h	21	15113170-	ENSORLT000000	
		15114295	17425	
Ol_Taar23i	21	15246610-		
		15248028		
Ol_Taar23j	scaffold22	3196-4302	ENSORLT000000	
	46		23320	
Ol_Taar23k	21	15257320_1525		
		6218		
OI_Taar23I	21	15276889_1527		
		5788		
OI_Taar23m	21	15334359_1533		
		3269		
Ol_Taar23n	21	15312452-	ENSORLT000000	
		15313546	17451	
Ol_Taar23o	21	15083894-	ENSORLT000000	
		15085278	17421	
Ol_Taar24a	21	30838329-	ENSORLT000000	
		30840233	22832	
Ol_Taar24b	21	30845621-	ENSORLT000000	
		30846947	22836	
OI_Taar24c	21	30862260-	ENSORLT000000	
		30863356	22838	
Md_Taar1	2	407115274-	ENSMODT000000	
		407116293	30995	
Md_Taar2	2	407094705-	ENSMODT000000	
		407095724	22248	
Md_Taar3	2	407041839-	ENSMODT000000	

		407042870	30996	
Md_Taar4a	2	407018009-		
		407016930		
Md_Taar4b	2	407016970-	ENSMODT000000	
		407029879	30998	
Md_Taar5	2	406983915-	ENSMODT000000	
		406984946	22251	
Md_Taar6a	2	406873483-		
		406875111		
Md_Taar6b	2	406878994-	ENSMODT000000	
		406880013	31001	
Md_Taar6c	2	406861305-	ENSMODT000000	
		406862345	22260	
Md_Taar6d	2	406967819-	ENSMODT000000	
		406968859	30999	
Md_Taar6e	2	406933774-	ENSMODT000000	
		406934850	31000	
Md_Taar6f	2	406909541-	ENSMODT000000	
		406910617	22259	
Md_Taar9	2	406713166-	ENSMODT000000	
		406729709	22262	
Md_Taar9a	2	406798654-	ENSMODT000000	
		406799547	22263	
Md_Taar9b	2	406818556-	ENSMODT000000	
		406819593	31002	
Md_Taar9c	2	406834315-		
		406835976		
Md_Taar9d	2	406852655-		
		406854316		
Md_Taar9e	2	406777770-	ENSMODT000000	
		406778840	22265	
Md_Taar9f	2	406728666-		

		406729746	
Tr_Taar21a	scaffold_2 286	7867-8688	SINFRUT0000013 1749
Tr_Taar21b	scaffold_2 618	2998-3949	SINFRUT0000018 1393
Tr_Taar21c	scaffold_3 75	193436-194398	SINFRUT0000015 0779
Tr_Taar21d	scaffold_2 286	2710-3675	SINFRUT0000015 0777
Tr_Taar21e	scaffold_6 82	7142-8116	SINFRUT0000018 1172
Tr_Taar21f	scaffold_6 82	15028-15969	SINFRUT0000017 5284
Tr_Taar22a	scaffold_3 049	7460-8444	SINFRUT0000016 8032
Tr_Taar22b	scaffold_3 6	1263458- 1264444	SINFRUT0000017 4634
Tr_Taar22c	scaffold_6 2	988428-989300	SINFRUT0000017 1815
Tr_Taar27	scaffold_1 44	4933-5793	SINFRUT0000017 9744
Tr_Taar28a	scaffold_2 971	155-950	
Tr_Taar28b	scaffold_5 473	768-1529	SINFRUT0000018 1876
Tr_Taar28c	scaffold_3 47	234123-233001	SINFRUT0000017 8656
Tr_Taar28d	scaffold_5 5	384-1178	SINFRUT0000018 3354
Tr_Taar28e	scaffold_3 47	223711-222590	

Tr_Taar28f	scaffold_7 591	430-1508	SINFRUT0000018 0900
Tr_Taar28g	scaffold 3	183483-182389	
II_Iaai2og	_	103403-102309	
	47		
Tr_Taar28h	scaffold_3	190927-189849	
	47		
Tn_Taar21a	14	830088-830960	GSTENT00035509
			001
Tn_Taar21b	14	869461-878434	GSTENT00035507
			001
Tn_Taar21c	Un_rando	124477975-	GSTENT00011223
	m	124478871	001
Tn_Taar22a	3	2466479-	
		2465399	
Tn_Taar22b	3	2461859-	
		2460719	
Tn_Taar22c	3	2455140-	
		2454359	
Tn_Taar22d	3	2457239-	
		2456279	
Tn_Taar22e	3	2468939-	GSTENT00015819
		2467919	001
Tn_Taar22f	18	5142103-	GSTENT00035829
		5142852	001
Tn_Taar27a	Un_rando	126873732-	GSTENT00011732
	m	126874616	001
Tn_Taar27b	Un_rando	126880750-	GSTENT00011734
	m	126881709	001
Tn_Taar27c	Un_rando	126905659-	GSTENT00011735
	m	126906669	001
Tn_Taar27d	Un_rando	42642638-	GSTENT00009214

	m	42643618	001
Tn_Taar27e	Un_rando	113714467-	GSTENT00009350
	m	113715447	001
Tn_Taar27f	Un_rando	105520168-	GSTENT00007835
	m	105521166	001
Tn_Taar28a	Un_rando	45834268-	GSTENT00013017
	m	45835045	001
Tn_Taar28b	Un_rando	117442902-	GSTENT00009988
	m	117443705	001
Tn_Taar28c	Un_rando	91619317-	GSTENT00005517
	m	91620063	001
RnTaar1	1	22045364-	ENSRNOT000000
		22046362	21510
RnTaar2	1	22027912-	ENSRNOT000000
		22028907	35424
RnTaar3	1	22018606-	ENSRNOT000000
		22019634	35539
RnTaar4	1	22008118-	ENSRNOT000000
		22009161	47810
RnTaar5	1	21996992-	ENSRNOT000000
		21998005	61209
RnTaar6	1	21984658-	ENSRNOT000000
		21985695	21529
RnTaar7a	1	21977118-	ENSRNOT000000
		21978194	21545
RnTaar7b	1	21967019-	ENSRNOT000000
		21968095	21559
RnTaar7c	1	21955553-	ENSRNOT000000
		21956629	50763
RnTaar7d	1	21934361-	ENSRNOT000000
		21935437	51416

RnTaar7e	1	21926752-	ENSRNOT000000	
		21927828	46379	
RnTaar7g	1	21912398-	ENSRNOT000000	
		21913474	44271	
RnTaar7h	1	21898531-	ENSRNOT000000	
		21899607	43436	
RnTaar8a	1	21857801-	ENSRNOT000000	
		21858925	44098	
RnTaar8b	1	21829913-	ENSRNOT000000	
		21830947	45563	
RnTaar8c	1	21814634-	ENSRNOT000000	
		21815668	43157	
RnTaar9	1	21799696-	ENSRNOT000000	
		21800742	38523	
Mm_Taar1	10	23609822-	ENSMUST000000	
		23610820	51532	
Mm_Taar2	10	23630004-	ENSMUST000000	
		23630999	79134	
Mm_Taar3	10	23638974-	ENSMUST000000	
		23640005	45152	
Mm_Taar4	10	23649910-	ENSMUST000000	
		23650953	92660	
Mm_Taar5	10	23660122-	ENSMUST000000	
		23661135	92659	
Mm_Taar6	10	23674025-	ENSMUST000000	
		23675062	57080	
Mm_Taar7a	10	23681821-	ENSMUST000000	
		23682897	78532	
Mm_Taar7b	10	23689355-	ENSMUST000000	
		23690431	92658	
Mm_Taar7d	10	23716638-	ENSMUST000000	

		23717714	92657
Mm_Taar7e	10	23727030-	ENSMUST000000
		23728106	92656
Mm_Taar7f	10	23738926-	ENSMUST000000
		23740002	71691
Mm_Taar8a	10	23765916-	ENSMUST000000
		23766950	51133
Mm_Taar8b	10	23780676-	ENSMUST000000
		23781710	92655
Mm_Taar8c	10	23790294-	ENSMUST000000
		23791328	92654
Mm_Taar9	10	23797904-	ENSMUST000000
		23798950	41180
Bt_Taar1	9	63844020-	
		63845624	
Bt_Taar2	9	63821486-	
		63823081	
Bt_Taar3	9	63810823-	
		63812451	
Bt_Taar4	9	63796757-	
		63802538	
Bt_Taar5	9	63790900-	ENSBTAT0000001
		63791913	0332
Bt_Taar6a	Un	263025242-	ENSBTAT0000004
		263026315	7909
Bt_Taar6b	9	63472554-	ENSBTAT0000004
		63473591	6084
Bt_Taar7a	Un	293821629-	ENSBTAT000003
		293822690	9034
Bt_Taar7b	9	63416496-	ENSBTAT000003
		63417569	7774

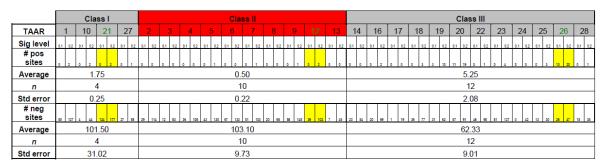
Bt_Taar7c	9	63450500-	ENSBTAT0000001
		63452136	1316
Bt_Taar8a	9	63492912-	ENSBTAT000002
		63493937	0857
Bt_Taar8b	Un	262942450-	ENSBTAT0000000
		262943484	8724
Bt_Taar9	9	63508158-	ENSBTAT0000000
		63508949	4932
Hs_Taar1	6	133007816-	ENsT0000027521
		133008835	6
Hs_Taar2	6	132979982-	ENsT0000036793
		132987107	1
Hs_Taar5	6	132951505-	ENsT0000025803
		132952518	4
Hs_Taar6	6	132933205-	ENsT0000036793
		132934182	4
Hs_Taar8	6	132915525-	ENsT0000027520
		132916553	0
Hs_Taar9	6	132901120-	ENsT0000034064
		132902168	0
Xt_Taar1	scaffold_1	2058717-	ENSXETT0000000
	72	2059793	0206
Xt_Taar4a	scaffold_1	2081286-	ENSXETT0000000
	72	2082349	0188
Xt_Taar4b	scaffold_1	2072396-	ENSXETT0000000
	72	2073450	0192
Gg_Taar1	3	58772958-	ENSGALT000000
		58773950	22674
Gg_Taar2	3	58790520-	ENSGALT000000

			58791542	19656
Gg_Taar5		3	58802258-	ENSGALT000000
			58803280	22676
Cm_Taar1		WGS		AAVX01005735
Cm_Taar2*		WGS		AAVX01045569
Outgroups:				
Aminergic R.tors:				
Dr_serotonin R. 2B	Htr2b			DQ864496
Dr_histamine R. H2	hrh2			NM_001045338
Dr_ dopamine R.				
D2a	drd2a			NM_183068
Mm_histamine R.				NM_133849
H3	Hrh3			
Mm_dopamine R. 3	Drd3			NM_007877
Mm_serotonin R.				NM_008314
5A	Htr5a			
Mm_dopamine R.				NM_010076
D1A	Drd1a			
Mm_adrenergic R.				NM_007419
beta 1	Adrb1			
Rn_serotonin R. 2A	Htr2a			NM_017254
Rn_histamine R. H				NM_012965
2	Hrh2			
Rn_dopamine R.				NM_017140
D3	Drd3			
Rn_adrenergic R.				NM_012492
beta 2	Adrb2			
OR:				
Dr_OR131		15	29704040 -	ENSDART000001
			29705023	00030

Dr_OR22	15	29659462-	ENSDART000000
		29660635	09390
Mm_OR121	17	37888801-	ENSMUST000000
		37889766	74555
Mm_OR446	6	42877232-	ENSMUST000001
		42878158	01461
Rn_ORi15	10	60267950-	ENSRNOT000000
		60268897	40777
Lamprey AmR:			
Contig11088:617:22 78			GENSCAN000000 71721
Contig11088:12981: 14642			GENSCAN000001 45282
Contig1988:18760:2 0379			GENSCAN000000 86194
Contig1988:36280:3 7854			GENSCAN000000 80186
Contig25386:1986:3 629:			GENSCAN000001 00832
Contig2410:15193:1 6920			GENSCAN000000 68085
Contig32780:2648:4 291			GENSCAN000000 07566
Contig29539:762:23 93			GENSCAN000000 93854

GENSCAN000000 10072
GENSCAN000001 42135
GENSCAN000000 98663
GENSCAN000000 77187
GENSCAN000000 91849
GENSCAN000001 14105
GENSCAN000001 48282
GENSCAN000001 48281
GENSCAN000000 30920
GENSCAN000000 87423 GENSCAN000000

supercontig:PMAR3			01971	
:				
Contig6110:8321:99				
70				
supercontig:PMAR3				
Contig17881:4845:6			GENSCAN000000	
429			18535	
Contig32699:8482:9			GENSCAN000000	
981			16801	
Contig17881:15313:			GENSCAN000001	
16914			29481	
Contig6569:1523:31			GENSCAN000001	
33			44047	
Pseudo genes:				
Zebrafish:				
		243399754-		
	1	243399774		
	13	351799-352842		
		45965163-		
	20	45966302		
		36614089-		
	10	36614794		
Medaka:				
		5425949-	ENSORLT000000	
	7	5488965	03004	
Mouse:				


	Taar7c_	
	P	AY702333
Human:		
	TAAR3_	
	P	<u>AF112461</u>
	TAAR4_	
	Р	NG_004855
	TAAR7_	
	Р	NG_004854
Rat:		
	TAAR7i	
	_P	AY702324
	TAAR7f	
	_P	AY702323

Supplementary Table.2-Global dN/dS values of TAAR subfamilies

	Classi				ClassII							Classill														
TAAR	1	10	21	27	2	3	4	5	6	7	8	9		13	14	16	17	18	19	20	22	23	24	25	26	28
dN/dS	0.19	0.25	0.25	0.32	0.09	0.10	0.13	0.11	0.17	0.25	0.20	0.15	0.27	0.29	0.39	0.27	0.41	0.35	0.45	0.49	0.30	0.34	0.24	0.54	0.80	0.56
Average		0.	26			0.18				0.43																
n			4			10									1	2										
Std Error		0.	.03			0.02				0.04																

Global dN/dS values are shown for each TAAR subfamiliy. For each class of *taar* genes the average global value, *n*, and standard error are shown.

Supplementary Table.3-Number of positively and negatively selected sites in TAAR subfamilies

Numbers of positively and negatively selected sites are given for each TAAR subfamily. For each class of taar genes the average number of positively and negatively selected sites, *n*, and standard error are shown.

Supplementary Table.4-Selective pressures in Danio rerio odorant receptor genes

Global dN/dS values	of OR s	subfami	lies			_]						
OR subfamily	OR5	OR6	OR7	OR8	OR10	OR15	OR21							
dN/dS	0.16	0.26	0.3	0.34	0.34	0.27	0.29							
Number of positively	and ne	gativel	y select	ed sites	in OR su	lbfamilies								
OR subfamiy	0	R5	0	R6	0	R7	0	R8	OF	210	OF	215	OF	21
Significant Level	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2	0.1	0.2
# pos. sites	0	0	0	0	0	1	0	0	0	1	1	1	2	5
# neg. sites	0	19	1	3	7	27	6	29	84	131	178	218	77	138

Supplementary Table.5-List of chemicals used in CRE-SEAP assay

	Chemical name	SEAP	no	Fold	chemical	chemical
		value	liga	activat	group	group 2
		1mM	nd	ion		
1	4-(Dimethylamino) Butyric	307,081	275,	1.1	amino acid	amino acid
	acid		338			
2	4-Aminobenzoic Acid in	324,424	277,	1.2	amino acid	amino acid
	DMSO		859			
3	B-Alanine	425,128	414,	1.0	amino acid	amino acid
			248			
4	GABA	415,263	414,	1.0	amino acid	amino acid
			248			
5	L-Arginine	274,351	277,	1.0	amino acid	amino acid
	monohydrochloride in		124			
	DMSO					
6	L-Aspartic Acid in DMSO	264,884	277,	1.0	amino acid	amino acid
			124			
7	L-Glutamic Acid, non	203,826	277,	0.7	amino acid	amino acid
	animal source in DMSO		124			
8	L-Histidine	275,802	257,	1.1	amino acid	amino acid
	monohydrochloride		336			
	monohidrate in DMSO					
9	L-Isoleucine in DMSO	245,754	242,	1.0	amino acid	amino acid
			253			
1	L-Leucine in DMSO	350,535	242,	1.4	amino acid	amino acid

0			253			
1	L-Lysine	304,949	277,	1.1	amino acid	amino acid
1	monohydrochloride in		124			
	DMSO					
1	L-Methionine in DMSO	335,008	277,	1.2	amino acid	amino acid
2			124			
1	L-Phenilalanine in DMSO	249,879	242,	1.0	amino acid	amino acid
3			253			
1	L-Serine in DMSO	283,249	277,	1.0	amino acid	amino acid
4			124			
1	L-Threonine in DMSO	255,710	277,	0.9	amino acid	amino acid
5			124			
1	L-Tryptophan in DMSO	229,970	242,	0.9	amino acid	amino acid
6			253			
1	L-Valine in DMSO	275,409	277,	1.0	amino acid	amino acid
7			124			
1	N,N-Dimethylglycine	288,118	277,	1.0	amino acid	amino acid
8	Hydrochloride		859			
1	Taurine	273,491	269,	1.0	amino acid	amino acid
9			064			
2	1-Dimethylamino-2-	278,489	275,	1.0	aminoalcoho	aminoalcohol
0	propanol		338		I	and related
2	2-(dimethylamino)	243,316	269,	0.9	aminothiol	aminoalcohol
1	Ethanethiol		064			and related
2	3-(Dimethylamino)	223,186	257,	0.9	aminoketone	aminoalcohol
2	Propiophenone		336			and related
	Hydrochloride					
2	3,4-	273,312	277,	1.0	aminoether	aminoalcohol
3	Dimethoxyphenethylamin		859			and related
	е					
2	3-Methoxy Tyramine	270,488	277,	1.0	amino	aminoalcohol
4			859		alcohol	and related

2	4-	286,848	275,	1.0	aminoether	aminoalcohol
5	methoxyphenethylamine		338			and related
2	5 amino 1 pentanol	94,835	93,3	1.0	aminoalcoho	aminoalcohol
6			05		I	and related
2	Amino-2-propanol	275,103	279,	1.0	aminoalcoho	aminoalcohol
7			704		I	and related
2	Cysteamine	2,360,00	279,	8.4	aminothiol	aminoalcohol
8	Hydrochloride	0	704			and related
2	Ethanolamine	412,669	400,	1.0	aminoalcoho	aminoalcohol
9			880		I	and related
3	N,N-dimethylethanol	276,240	277,	1.0	aminoalcoho	aminoalcohol
0	amine		859		I	and related
3	Octopamine	285,799	277,	1.0	aminoalcoho	aminoalcohol
1	Hydrochloride		859		I	and related
3	Tyramine Hydrochloride	267,373	279,	1.0	aminoalcoho	aminoalcohol
2			704		I	and related
3	2-Aminopentane	496,100	414,	1.2	monoamine,	monoamine,
3			248		primary	primary
3	2-Methylbutylamine	283,920	279,	1.0	monoamine,	monoamine,
4			704		primary	primary
3	3-	299,257	279,	1.1	monoamine,	monoamine,
5	(Methylthio)Propylamine		704		primary	primary
3	A-Naphthylamine in	563,713	269,	2.1	monoamine,	monoamine,
6	DMSO		064		primary	primary
3	Aniline Hydrochloride	271,096	269,	1.0	monoamine,	monoamine,
7			064		primary	primary
3	Benzylamine	436,400	414,	1.1	monoamine,	monoamine,
8			248		primary	primary
3	Butylamine	398,114	414,	1.0	monoamine,	monoamine,
9			248		primary	primary
4	Cyclohexylamine	268,475	277,	1.0	monoamine,	monoamine,
0			859		primary	primary

4	Cyclopentylamine	281,335	257,	1.1	monoamine,	monoamine,
1			336		primary	primary
4	Ethylamine	413,958	400,	1.0	monoamine,	monoamine,
2			880		primary	primary
4	Hexilamine in DMSO	420,966	400,	1.1	monoamine,	monoamine,
3			880		primary	primary
4	Isoamylamine	414,478	400,	1.0	monoamine,	monoamine,
4			880		primary	primary
4	Isobutylamine	416,687	400,	1.0	monoamine,	monoamine,
5			880		primary	primary
4	Isopropylamine	401,681	400,	1.0	monoamine,	monoamine,
6			880		primary	primary
4	Methylamine	419,458	408,	1.0	monoamine,	monoamine,
7			279		primary	primary
4	Pentylamine	94,996	95,3	1.0	monoamine,	monoamine,
8			67		primary	primary
4	Phenethylamine	317,468	279,	1.1	monoamine,	monoamine,
9			704		primary	primary
5	Quinaldine in DMSO	407,048	257,	1.6	monoamine,	monoamine,
0			336		primary	primary
5	Quinoline	321,201	269,	1.2	monoamine,	monoamine,
1			064		primary	primary
5	1-Methylindole in DMSO	416,355	408,	1.0	monoamine,	monoamine
2			279		tertiary	other than
						primary
5	1-Methylpiperidine	410,745	408,	1.0	monoamine,	monoamine
3			279		tertiary	other than
						primary
5	1-Methylpyrolidine	406,224	408,	1.0	monoamine,	monoamine
4			279		tertiary	other than
						primary
5	Dibutylamine in DMSO	409,128	414,	1.0	monoamine,	monoamine

5			248		secondary	other	than
						primary	
5	Dimethylamine	394,756	414,	1.0	monoamine,	monoamir	ne
6			248		secondary	other	than
						primary	
5	Indole in DMSO	436,595	400,	1.1	monoamine,	monoamir	ne
7			880		secondary	other	than
						primary	
5	N,N-Dimethyl Benzyl	276,309	275,	1.0	monoamine,	monoamir	ne
8	Amine		338		tertiary	other	than
						primary	
5	N,N-Dimethyl Isopropyl	273,902	275,	1.0	monoamine,	monoamir	ne
9	amine		338		tertiary	other	than
						primary	
6	N,N-Dimethyl-1-	262,680	275,	1.0	monoamine,	monoamir	ne
0	naphthylamine		338		tertiary	other	than
	in DMSO					primary	
6	N,N-Dimethylaniline	277,248	275,	1.0	monoamine,	monoamir	ne
1			338		tertiary	other	than
						primary	
6	N,N-	330,924	414,	0.8	monoamine,	monoamir	ne
2	Dimethylcyclohexylamine		248		tertiary	other	than
	in DMSO					primary	
6	N,N-	225,268	275,	0.8	monoamine,	monoamir	ne
3	Dimethylphenethylamine		338		tertiary	other	than
	in DMSO					primary	
6	Piperidine	251,228	257,	1.0	monoamine,	monoamir	ne
4			336		secondary	other	than
						primary	
6	Pyrrolidine	403,929	408,	1.0	monoamine,	monoamir	ne
5			279		secondary	other	than
						primary	
6	Tetramethyl Ammonium	266,490	277,	1.0	monoamine,	monoamir	ne

6	Chloride		859		quarternary	other	than
						primary	
6	Trimethylamine, 25 wt. %	281,159	279,	1.0	monoamine,	monoamir	ne
7	in water		704		tertiary	other	than
						primary	
6	1-(2-Aminoethyl)	254,720	269,	0.9	diamine,	diamine,	
8	Pyrrolidine		064		aliphatic,	aliphatic,	
					cyclic	cyclic	
6	Ethylene Diamine	455,323	400,	1.1	diamine,	diamine,	
9			880		aliphatic,	aliphatic,	
					linear	linear	
7	1,4-Diaminobutane	2,570,00	408,	6.3	diamine,	diamine,	
0	Dihydrochloride aka	0	279		aliphatic,	aliphatic,	
	Putrescine				linear	linear	
7	Cadaverine	4,500,00	400,	11.2	diamine,	diamine,	
1	Dihydrochloride	0	880		aliphatic,	aliphatic,	
					linear	linear	
7	Hexamethylene diamine	1,112,70	118,	9.4	diamine,	diamine,	
2		6	895		aliphatic,	aliphatic,	
					linear	linear	
7	1-7 Diaminoheptane	1,520,00	121,	12.5	diamine,	diamine,	
3		0	267		aliphatic,	aliphatic,	
					linear	linear	
7	1-8 Diaminooctane	332,091	87,0	3.8	diamine,	diamine,	
4			18		aliphatic,	aliphatic,	
					linear	linear	
7	1-10 Diaminodecane	83,980	90,1	0.9	diamine,	diamine,	
5			63		aliphatic,	aliphatic,	
					linear	linear	
7	Cystamine	3,390,00	414,	8.2	diamine,	diamine,	
6	dihydrochloride	0	248		aliphatic,	aliphatic,	
					linear	linear	
7	Tetramethyl-1,4-Butane	641,268	257,	2.5	diamine,	diamine,	

7	Diamine		336		aliphatic,	aliphatic,
					linear	linear
7	2,5-Dimethylpyrazine	283,890	269,	1.1	diamine,	diamine,
8			064		aromatic	aromatic
7	5-aminoindole	248,875	277,	0.9	diamine,	diamine,
9	Hydrochloride		859		aromatic	aromatic
8	5-methoxytryptamine in	619,821	275,	2.3	diamine,	diamine,
0	DMSO		338		aromatic	aromatic
8	Gramine in DMSO	253,653	269,	0.9	diamine,	diamine,
1			064		aromatic	aromatic
8	Tryptamine in DMSO	368,280	408,	0.9	diamine,	diamine,
2			279		aromatic	aromatic
8	Agmatine Sulfate	2,900,00	279,	10.4	polyamine,	polyamine,
3		0	704		aliphatic,	aliphatic,
					linear	linear
8	Spermidine	1,050,00	257,	4.1	polyamine,	polyamine,
4		0	336		aliphatic,	aliphatic,
					linear	linear
8	Spermine	234,868	242,	1.0	polyamine,	polyamine,
5			253		aliphatic,	aliphatic,
					linear	linear
8	Adenine in DMSO	235,872	257,	0.9	polyamine,	polyamine,
6			336		aromatic	aromatic
8	Histamine	911,958	279,	3.3	polyamine,	polyamine,
7	Dihydrochloride		704		aromatic	aromatic
8	1-5 pentanediole	265,532	257,	1.0	alcohol	other
8			336			
8	Creatinine Hydrochloride	262,294	269,	1.0	amide	other
9			064			
9	Ethyl Butyrate (not	401,026	408,	1.0	ester	other
0	amine)		279			
9	Hexanal (not amine)	419,765	408,	1.0	aldehyde	other

1			279			
9	Riboflavin in DMSO	98,452	242,	0.4	riboflavin	other
2			253			
9	Sucrose	257,931	242,	1.1	sugar	other
3			253			
9	Uracil in DMSO	302,560	242,	1.2	amide	other
4			253			

XIII. Appendix

Abbreviations

Ab/Tü	mix of the Oregon and Tubingen strains
Actinopterygii:	ray finned fish
AOB:	accessory olfactory bulb
AC:	Adenylyl cyclase
BSA:	bovine serum albumine
Bp:	base pairs
cDNA:	complementary DNA
CRE:	cyclic response element
DAB:	diaminobenzidine
DEPC:	diethylpyrocarbonate
DIG:	digoxigenin
Dpf:	days post fertilization
DNA:	desoxynucleic acid
Dr:	Danio rerio (zebrafish)
DNTP.	desoxynucleotide phosphate
EDTA:	ethylenediaminetetraacetic acid
GG	Grueneberg ganglion
GPCR	G protein-coupled receptor
HRP.	horse radish peroxidase
Kb:	kilo base
LOT:	lateral olfactory tract
M:	molar
mM:	millimolar
MCS	multiple cloning site
µg:	microgram
min:	minutes
MOB:	main olfactory bulb
MOE:	main olfactory epithelium
MOT:	medial olfactory tract
MYA	million years ago
Ng:	nanogram
NGS:	normal goat serum
OC:	olfactory cortex
OE:	olfactory epithelium
OB:	olfactory bulb
OBP:	odorant binding proteins
OMP:	olfactory marker protein
OR:	olfactory receptor
OSN:	olfactory sensory neuron
PBS:	phosphate buffered saline
PCR:	polymerase chain reaction
PFA:	paraformaldehyde
RNA:	ribonucleic acid
RT:	room temperature

Sarcopterygii: SEAP: SO: SSC: TAARs: TE: TM: V1R: V1R: V2R: VNO: VR: VSN:	secreted alkaline phosphate septal organ sodium citrate Trace Amine-Associated Receptors tris-EDTA Trans-membrane vomeronasal receptors type 1 vomeronasal receptors type 2 vomeronasal organ vomeronasal receptor vomeronasal sensory neurons
VSN: X-Gal:	vomeronasal sensory neurons 5-Bromo-4-chlor-3-indoyl-D-galactopyranosid
	, , , , , , , , , , , , , , , , , , , ,

ASHIQ HUSSAIN

zameenzad@gmail.com Institute for Genetics, University of Cologne, Germany

EDUCATION	2006 -Present:	Ph.D (Molecular and System Neurobiology) International Graduate School of Genetics and Functional Genomics (IGS-GFG), Institute for Genetics, University of Cologne, Germany
	2006	M.Phil (Molecular Biology) Grade: A (summa cum laude, Gold Medalist) National Centre of Excellence in Molecular Biology (NCEMB), Punjab University, Pakistan
	2004	B.Sc (Hons.) (Molecular Genetics) Grade: A (magna cum laude (CGPA 3.73 / 4)) Department of Plant Breeding and Genetics, University of Agriculture (UAF), Faisalabad. Pakistan
	2000	Higher Secondary School Certificate (HSCC) Grade: B+ Board of Intermediate and Secondary Education, D.G.Khan, Pakistan
	1996	Secondary School Certificate (SCC) Grade: A+ (with high distinction) Board of Intermediate and Secondary Education, D.G.Khan, Pakistan
DISTINCTIONS AND AWARDS	PhD	IGSGFG Fellowship , Institute for Genetics, University of Cologne, Germany
	M.Phil	Gold Medal , TOP Position holder of the state, (2004-06). Capital Award , by Governor of the state, (2004-06).
	ICCS Prize	Young Scientist Award, International Centre of Chemical Sciences, (<u>www.iccs.edu</u>), 2006.

RESEARCH EXPERIENCE	2006-Present	 University of Cologne, Germany Molecular and Systems Neurobiology lab, Inst. for Genetics. <u>Projects</u> (1)-Phylogenomics, Cellular Localization and ligand identification of Trace Amine Associated Receptors (TAARs) in <i>Danio rerio</i>. (2) Behavioral response of <i>Danio rerio</i> to polyamines. (3) Radial distribution pattern of TAARs in olfactory epithelium of <i>Danio rerio</i>.
	2008	Harvard University, USA Liberles lab, Harvard Medical School. <u>Project:</u> Identification of ligands for Trace Amine Associated Receptors (TAARs)
	2007	University of Cologne, Germany Microarrays and Population Genetics lab, Inst. for Genetics.
	2007	University of Cologne, Germany Population Genetics /Bioinformatics lab, Inst. for Genetics.
	2007	University of Cologne, Germany Cell Genetics lab, Inst. For Genetics.
	2006	University of Cologne, Germany Molecular and Systems Neurobiology lab, Inst. for Genetics.
	2006	Institute for Infocom Research, Singapore Immunoinformatics Group, Knowledge Discovery Department.
	2004-2006	University of Punjab, Lahore, Pakistan National Centre of Excellence in Molecular Biology. M.Phil thesis: " <i>Insilico</i> study of pathogenicity and human gastric colonization of <i>Helicobacter pylori</i> ."
	2004	Institute for Agriculture and Biology, Pakistan Mutation Breeding Division.
	2001-2004	University of Agriculture, Faisalabad, Pakistan Department of Genetics.
PROFESSIONAL AFFILIATIONS	Society for Neuros European Chemore	cience (SFN) eception Research Organization (ECRO)

PUBLICATIONS	Peer reviewed publications		
	 Hussain, A., Saraiva, L.R., Korsching, S.I. (2009) Positive Darwinian selection and the birth of an olfactory receptor clade in teleosts. Proc. Natl. Acad. Sci. USA. 106(11):4313-4318 Faculty of 1000 Biology: evaluations for Hussain A et al <i>Proc Natl Acad Sci U S A</i> 2009 Mar 17,106 (11):4313-8 		
	Hussain, A., Saraiva, L.R., Ferrero D., Liberles S.D., Korsching, S.I. (2010) A singular olfactory receptor for polyamines. (<i>in preparation</i>)		
	Abstracts		
	Hussain, A and Saraiva LR, Ferrero D, Liberles SD and Korsching, S.I. (2010) Smell of death elicit evasive behavior in zebrafish, Congress of European Chemosensory Research Organization (ECRO), France		
	Hussain, A and Korsching, S.I. (2009) A novel clad of trace amine associated olfactory receptors, Society for Neuroscience (SFN), Chicago. USA		
	Hussain, A., Saraiva, L.R., and Korsching, S.I. (2009) Zebrafish trace amine associated receptors, Neurovision 5, Ruhr-University Bochum, Germany		
	Hussain, A., Saraiva, L.R., and Korsching, S.I. (2009) Positive Darwinian selection and the birth of an olfactory receptor clad in teleost fish. 12 th Göttingen meeting, 25-29 March, Göttingen, Germany		
	Hussain, A., Saraiva, L.R., and Korsching, S.I. (2008) Strong positive selection and high intron dynamics in teleost taar genes. Congress of European Chemosensory Research Organization (ECRO), Slovenia		

Köln, den 04. Nov, 2010