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vorgelegt von

Matthias Meng

aus Sangerhausen



Gutachter Prof. Dr. P. Littelmann, Universität zu Köln (Betreuer)
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Kurzzusammenfassung

Wir beschreiben für Lie-Algebren vom Typ A und C einen expliziten Kristall-
morphismus zwischen Nakajima Monomen und Monomen, die eine Realisierung
von kristallinen Basen von endlich dimensionalen irreduziblen Moduln der
quantisierten universell einhüllenden Algebra bilden. Dieser Morphismus liefert
eine Verbindung zwischen beliebigen Nakajima Monomen und Nakashima Ka-
shiwara Tableaux, welche zu einer Übersetzung zwischen Nakajima Monomen
und dem Wege-Modell von Littelmann führt. Außerdem definieren wir als eine
Anwendung unserer Ergebnisse ein ”Insertion scheme” für Nakajima Monome,
das kompatibel mit dem ”Insertion scheme” für Tableaux ist.

Abstract

We describe an explicit crystal morphism between Nakajima monomials and
monomials which give a realization of crystal bases for finite dimensional irre-
ducible modules over the quantized enveloping algebra for Lie algebras of type
A and C. This morphism provides a connection between arbitrary Nakajima
monomials and Nakashima Kashiwara tableaux. This yields a translation of
Nakajima monomials to the Littelmann path model. Furthermore, as an ap-
plication of our results we define an insertion scheme for Nakajima monomials
compatible to the insertion scheme for tableaux.
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Introduction

Crystal basis theory for integrable modules over quantum groups as introduced
by Kashiwara [4] leads to a combinatorial interpretation of those modules in
terms of crystals themselves, and furthermore their various models. Let us list
some of those models which will play a role in the present thesis:

1. semistandard Young tableaux and reversed Young tableaux, satisfying
certain conditions, for classical Lie algebras by Kashiwara and Nakashima
[6], and Kim and Shin [7] (see also Kang, Kim, and Shin in [2] and [3]),
respectively,

2. Young walls for affine Lie algebras by Kang, Kim, and Lee [1],

3. monomials for Kac-Moody algebras discovered by Nakajima [11], and
generalized by Kashiwara [5],

4. the path model for symmetrizable Kac-Moody algebras introduced by
Littelmann [10].

Let us be more precise about the monomial and the path model. Defining
a t-analog of q-characters Nakajima [11] introduced a set of monomials M in
certain variables Yi(k), and discovered a crystal structure on certain subsets of
M. Kashiwara [5] generalized this, in that he defined a crystal structure on M,
and proved that the connected component containing a highest weight mono-
mial of integral weight λ is isomorphic to the crystal basis B(λ) of irreducible
highest weight modules.
Kang, Kim, and Shin [2], [3] considered specific highest weight monomials
Mλ ∈ M of weight λ and gave an explicit description of their connected
components M(λ). Furthermore, they exhibited a connection between those
and reversed Young tableaux.
As a generalization of Young tableaux Littelmann [9] considered paths (mod-
ulo reparametrization) on the real form of the weight lattice and defined the
so-called root operators acting on those paths. With these operators the set of
paths Π becomes a crystal, and every Young tableau can easily be considered
as such a path [10].

In this thesis we describe a translation between the monomial and the path
model. That is, we map an arbitrary monomial, not necessarily contained in
someM(λ), to a path in Π such that our mapping yields a crystal morphism.
For example, if the underlying Lie algebra is of type A1 a possible definition
of such a map is quite obvious: each monomial M ∈ M is of the form M =
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Y1(i1)y(i1) · · ·Y1(ik)
y(ik) where k ∈ N, i1, . . . , ik ∈ Z and i1 < . . . < ik, and

y(ij) ∈ Z. To a fixed monomial M we associate the path πM = πy(ik)Λ1
∗ . . . ∗

πy(i1)Λ1
, where πλ(t) = tλ is the path connecting the origin to λ.

Example. Consider the monomial M = Y1(2)−1Y1(1)2:

π
−α1 −Λ1 0 Λ1 α1

| | | | |M=Y1(2)−1Y1(1)2 ←→ oo ++

↓ f̃1 ↓ f̃1

f̃1(π)
−α1 −Λ1 0 Λ1 α1

| | | | |f̃1M=Y1(2)−2Y1(1)1 ←→ oo ''

Note that, even for type A2, to find such a mapping is by far less obvious.

Example. For g of type A2 we have f̃1(Y1(2)−1Y1(1)2) = Y1(2)−2Y1(1)Y2(1).
Adopting the (obvious) construction in type A1, we would associate the path π
displayed on the left:

· α1

·
α1+α2

·

·

α2

wwoooo
00

f̃1→ · α1

·
α1+α2

·

·

α2

wwoooo
ggOOOO

77oooo

After applying f̃1, observe that f̃1(π) has a linear part different from any fun-
damental root direction. That is, f̃1(π) does not coincide with the path we
would associate to the monomial f̃1(M) in the same manner.

By generalizing the results of [2] and [3] in type A and C to arbitrary mono-
mials in M, we determine the structure of the crystal graph associated to the
connected component of an arbitrary, not necessarily highest weight, mono-
mial in M. More precise, we give a crystal morphism between the set M and
the set of tableaux which give realizations of B(λ), and consequently, due to
Littelmann [10], we can associate a path to those tableaux. Our crystal mor-
phism compresses an arbitrary Nakajima monomial M ∈M into one which lies
in a connected component M(λ), with integral dominant weight λ depending
on M .
In a first step we describe a crystal isomorphism between the Nakajima mono-
mials and certain matrices, namely Matn+1×Z(Z≥0) in the An-case and
Mat2n×Z(Z≥0) in type Cn. This bijection allows us to define the compression
of a monomial by compressing its associated matrix as follows: For simplicity
let M denote the matrix associated to an arbitrary monomial M ∈ M lying
in some a priori unknown connected component of M. We give an algorithm
which decomposes M into a sum M = M1 + M2, such that M1 corresponds
to a monomial in some M(µ1). Then, we move every column of M2 one step
to the left and denote by M (1) the sum of M1 and the altered counterpart of
M2. Our procedure allows an iteration yielding a sequence of matrices M (i).
Since M has just finitely many nonzero columns, it is guaranteed that after a
finite number of steps our iteration becomes stationary and we obtain a matrix
M (k) corresponding to a monomial that lies in someM(µk). We call M (k) the
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compressed version of M . Our algorithm respects the crystal structure, that
is we prove:

Main Theorem. Let g be of type A or C, and let M ∈ M be a Nakajima
monomial. Denote by M (k) its compressed version. Then, the map

κ : M →
⋃
λ

M(λ)

M 7→ M (k)

is a morphism of crystals. In particular, the connected component of M is
isomorphic to the connected component of κ(M).

Due to [2] and [3] we can assign a tableau S(N) to each N ∈ M(λ). Conse-
quently, our Main Theorem gives:

Corollary. Let g be of type A or C, and let M ∈M be a Nakajima monomial.
The mapping sending M to the tableau S(κ(M)) yields a crystal morphism.

Note that, in view of [10] we obtain a translation of Nakajima monomials into
Littelmann paths.

Example. Consider the monomial M = Y1(2)Y1(1)2, and the path obtained
via our construction. Observe that our assignment commutes with the crystal
operator f̃1, as illustrated in the following pictures.

M=Y1(2)Y1(1)2
f̃1→ Y1(2)−2Y1(1)Y2(1)

↓ ↓

· α1

·
α1+α2

·

·

α2

ggOOOO
77oooo

77oooo
�� f̃1→ · α1

·
α1+α2

·

·

α2

ggOOOO
ggOOOO

77oooo
��

As another application of our compression and the Corollary we define an in-
sertion scheme for Nakajima monomials compatible with the insertion scheme
of reversed tableaux described in [8]. More precise, let M1 and M2 be two
matrices which correspond to arbitrary monomials in M. Then, we consider
the matrix M1∗M2 = (M2,0,M1) with a suitable zero-matrix 0 and apply our
compression procedure to M1 ∗M2. Following the convention that M1 ∗M2

interchangebly denotes the matrix and its associated monomial, we obtain
κ(M1 ∗M2) ∈

⋃
λM(λ) and the tensor product rule of crystals yields

Theorem. Let g be of type A or C, and let M be the set of Nakajima mono-
mials. Then, the map

M⊗M →
⋃
λ

M(λ)

M1 ⊗M2 7→ κ(M1 ∗M2)
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is a morphism of crystals. In particular, the connected component of M1⊗M2

is isomorphic to the connected component of κ(M1 ∗M2).
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Chapter 1

Nakajima monomials

In this chapter we define the Nakajima monomials and their crystal structure.
Let g be an arbitrary symmetrizable Kac-Moody Lie algebra with weight lat-
tice P and I an index set such that αi ∈ P for i ∈ I are the simple roots.
Let further hi ∈ P ∗ be the simple coroots and (·, ·) : P × P → Q a bilinear

symmetric form. For i ∈ I and λ ∈ P set 〈hi, λ〉 := 2(αi,λ)
(αi,αi)

.

For i ∈ I and n ∈ Z we consider monomials in the variables Yi(n). That means
we obtain the set of Nakajima monomials M as follows

M :=

{ ∏
i∈I,n∈Z

Yi(n)yi(n); yi(n) ∈ Z vanish except finitely many (i, n)

}
.

In order to define the crystal structure on M we take some integers c =
(cij)i 6=j∈I ⊂ Z such that cij + cji = 1 and consider the monomials

Ai(n) := Yi(n)Yi(n+ 1)
∏
j 6=i

Yj(n+ cji)
〈hj ,αi〉.

Let now M be an arbitrary monomial in M and i ∈ I. Then we set:

wt(M) =
∑
i

(
∑
n
yi(n))Λi,

ϕi(M) = max{
∑
k≤n

yi(k);n ∈ Z},

εi(M) = max{−
∑
k>n

yi(k);n ∈ Z},

where Λi ∈ P are the fundamental weights, that means 〈hj ,Λi〉 = δi,j . To
define the operators ẽi and f̃i we consider the values

nf = min{n;ϕi(M) =
∑
k≤n

yi(k)}

= min{n; εi(M) = −
∑
k>n

yi(k)},

ne = max{n;ϕi(M) =
∑
k≤n

yi(k)}

= max{n; εi(M) = −
∑
k>n

yi(k)}
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and set

f̃i(M) =

{
0 if ϕi(M) = 0,

Ai(nf )−1M if ϕi(M) > 0,

ẽi(M) =

{
0 if εi(M) = 0,

Ai(ne)M if εi(M) > 0.

Proposition 1.1 [5] With the maps wt, ϕi, εi, f̃i and ẽi thus defined, M be-
comes a semi-normal crystal.

We denote this crystal by Mc because the crystal structure of M depends on
the choice of c. On the other hand one can easily see that the isomorphism
class of the crystal Mc does not depend on this choice.
From now on, for simplicity, we choose c = (cij)i 6=j∈I as follows:

cij =

{
0 if i > j,

1 else.

Now we recall the following result of Kashiwara.

Proposition 1.2 [5] Let M be a monomial of weight λ with ẽi(M) = 0 for
all i ∈ I. Then the connected component of M containing M is isomorphic to
B(λ).

The aim of this thesis is to give such an isomorphism explicitly for not neces-
sarily highest weight monomials. In the first part we define this isomorphism
for Lie algebras of type A. In the second part we generalize this to type C.
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Chapter 2

Type A

2.1 Compression of Nakajima monomials in type A

Henceforth we consider a Lie algebra g of type An. In this case we have the
fundamental weights Λ1, . . . ,Λn and we get an orthogonal basis β1, . . . , βn+1

with β1 = Λ1, βi = Λi − Λi−1 for 2 ≤ i ≤ n and βn+1 = −Λn. Moreover the
simple roots are given by αi = βi − βi+1. Thus we compute

Ai(j) = Yi(j)Yi(j + 1)Yi−1(j + 1)−1Yi+1(j)−1.

For i ∈ {1, . . . , n+ 1} and j ∈ Z we introduce some specific monomials which
will be of special interest to us:

Xi(j) := Yi−1(j + 1)−1Yi(j),

where we set Yn+1(j) = 1 = Y0(j) for all j ∈ Z.
With this notation we observe:

Ai(j) = Xi(j)Xi+1(j)−1.

Let us shortly recall the monomial realization of the crystal bases B(λ) given
in [2]:

Proposition 2.1 [2] Let λ =
n∑
k=1

akΛk be a dominant integral weight and

consider M1 = Y1(1)a1Y2(1)a2 . . . Yn(1)an as highest weight monomial. Then
the connected component M1(λ) of M containing M1 is characterized as the
set of monomials of the form

M =
∏

i∈{1,...,n+1}
j∈{1,...,n}

Xi(j)
mij

with

(i)
n+1∑
i=1

mij = aj+1 + . . .+ an for j = 1, . . . , n,

(ii)
n+1∑
k=i

mk,j ≤
n+1∑
k=i+1

mk,j−1 for j = 2, . . . , n+ 1 and i = 1, . . . , n+ 1.
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For s ∈ Z we also consider the following shifted highest weight monomials of
weight λ

Ms = Y1(s)a1Y2(s)a2 . . . Yn(s)an .

As an immediate consequence of Proposition 2.1 we obtain their connected
component Ms(λ) by the set of monomials of the form

M =
∏

i∈{1,...,n+1}
j∈{s,...,s+n−1}

Xi(j)
mij

satisfying condition (i) for j = s, s+1, . . . , s+n−1 and (ii) for i = 1, . . . , n+1
and j = s+ 1, . . . , s+ n.

Our aim is to compress an arbitrary monomial into the form of those inMs(λ)
for a suitable λ ∈ P and s ∈ Z such that the crystal structure is preserved.
As a first step we write an monomial in M as a product of Xi(j)‘s. Thus we
show that M is generated by the variables Xi(j). That means we consider M
as a group with the multiplication of monomials as binary operation. Let M be
the free abelian monoid generated by the set {Xi(j), i ∈ {1, . . . , n+1}, j ∈ Z},
with the same operation and we define an ideal J ⊂M by

J = 〈
n+1∏
k=1

Xk(j + i− k), for i = 1, . . . , n+ 1 and j ∈ Z〉M.

The quotient M/J becomes a group since we obtain the inverse of Xi(j) by
n+1∏
k=i+1

Xk(j − k + i)
i−1∏
k=1

Xk(j + i− k). Moreover we get

Proposition 2.2 Sending Xi(j) onto Yi(j)Yi−1(j + 1)−1 yields a group iso-
morphism and therefore we get

M ∼= M/J.

Proof: In order to show surjectivity letM be of the formM =
∏

i∈I,j∈Z
Yi(j)

yi(j).

First we write every Yi−1(j + 1)−1Yi(j) that already occurs in M as Xi(j).
Then we consider the other Yi(j)

yi(j)‘s in M . There are two possible cases:
1. case: yi(j) > 0. Then we write

Yi(j) =
i−1∏
k=0

Yk(j + i− k)−1
i∏

k=1

Yk(j + i− k)

=
i∏

k=1

Xk(j + i− k).

Therefore we get

Yi(j)
yi(j) =

i∏
k=1

Xk(j + i− k)yi(j).

2. case: yi(j) < 0. In this case we get
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Yi(j)
−1 =

n∏
k=i

Yk(j − (k − i))−1
n+1∏
k=i+1

Yk(j − (k − i))

=
n+1∏
k=i+1

Xk(j − k + i).

Hence we have

Yi(j)
yi(j) =

n+1∏
k=i+1

Xk(j − k + i)−yi(j).

These equations imply

Yi(j)
−1Yi−1(j + 1) =

n+1∏
k=i+1

Xk(j − k + i)
i−1∏
k=1

Xk(j + i− k)

and hence with the definition of J we have injectivity.
2

Let now M ∈ M be an arbitrary monomial. Due to Proposition 2.1 we can
write M as a product of Xi(j)‘s. That means we find mij ∈ Z≥0 such that

M =
∏

i∈{1,...,n+1},j∈Z

Xi(j)
mij .

Writing M in this way is obviously not unique. But we can fix a reduced no-
tation [mi,j ] and associate this matrix. Let us define the reduced notation on
the level of matrices.

LetM = mij be an arbitrary matrix in Matn+1×Z(Z≥0), where Matn+1×Z(Z≥0)
is the set of matrices with infinitely many columns but just finitely many dif-
ferent from zero. Then we get the reduced form [M ] of M by applying the
following rule:

(A1) For every i ∈ {1, . . . , n+ 1} we search for j ∈ Z such that

mi+s,j−s 6= 0 for all s = −i+ 1,−i+ 2, . . . ,−1, 0, 1, . . . , n− i,

then we decrease these entries by

min{mi+s,j−s; s = −i+ 1,−i+ 2, . . . ,−1, 0, 1, . . . , n− i}.

Denote by [M ] the matrix obtained from M by applying this rule.

From now on we associate a matrix to a monomial in the following way: We
write every Yi(j)

yi(j) as a product of Xk(l)‘s as in Proposition 2.1 and get a
corresponding matrix M = mij . Then we apply (A1) and obtain [M ]. We
define an equivalence relation on Matn+1×Z(Z≥0) by

M ∼ N iff [M ] = [N ]

and consider the quotient

Matn+1×Z(Z≥0)/ ∼ .
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Now it is obvious that two matrices M ∼ N correspond to the same mono-
mial and therefore we get a well defined map by sending a monomial to the
associated matrix [M ] as above. Moreover we obtain

Proposition 2.3 There exists a bijection between M and Matn+1×Z(Z≥0)/ ∼.

Example 2.1 For g of type A4 we consider the monomial

M = Y1(4)−1Y3(1)Y1(3)−1Y4(1)−1Y2(0)2Y3(2)2.

Due to Proposition 2.1 we write:

Y1(4)−1 = X2(3)X3(2)X4(1)X5(0),

Y3(1) = X3(1)X2(2)X1(1),

Y1(3)−1 = X2(2)X3(1)X4(0)X5(−1),

Y4(1)−1 = X5(0),

Y2(0)2 = X2(0)2X1(1)2,

Y3(2)2 = X3(2)2X2(3)2X1(4)2.

That means we obtain the associated reduced matrix by
0 0 2 0 1 2

0 2 0 2 3 0

0 0 2 3 0 0

0 1 1 0 0 0

1 2 0 0 0 0


(A1)
=


0 2 0 0 1

2 0 1 2 0

0 1 2 0 0

0 0 0 0 0

1 0 0 0 0

 = [M ],

where we always only consider the finite part of the matrix which is different
from zero.

Since we want this bijection to become a crystal morphism we need to define
a crystal structure on Matn+1×Z(Z≥0)/ ∼ which coincides with the structure
on M under our bijection.

Let M = (mij) i=1,...,n+1
j∈Z

⊂ Z≥0 be a (n+ 1)× Z-matrix.

Set

wt(M) =
n+1∑
i=1

(
∑
j∈Z

mij)βi,

ϕi(M) = max {
∑
j≤k

mij −
∑
j<k

mi+1,j ; k ∈ Z},

εi(M) = − min {
∑
j>k

mij −
∑
j≥k

mi+1,j ; k ∈ Z}.

If ϕi(M) = 0 we set f̃i(M) = 0. Otherwise let k ∈ Z be minimal such that

ϕi(M) =
∑
j≤k

mij −
∑
j<k

mi+1,j .

Note that, this k exists because M has just finitely many columns different
from zero.
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We define f̃i(M) as the matrix we get from M by increasing (resp. decreas-
ing) mi+1,k (resp. mi,k) by one. Formally spoken we get f̃i(M) = m̂s,j from
M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(i, k), (i+ 1, k)},
mi,k − 1 if (s, j) = (i, k),

mi+1,k + 1 if (s, j) = (i+ 1, k).

Similarly, we can define the operator ẽi :
If εi(M) = 0 we set ẽi(M) = 0.
For εi(M) 6= 0 let p ∈ Z be maximal such that

εi(M) = −(
∑
j>p

mij −
∑
j≥p

mi+1,j).

Then we obtain ẽi(M) = m̂s,j from M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(i, p), (i+ 1, p)} ,

mi,p + 1 if (s, j) = (i, p),

mi+1,p − 1 if (s, j) = (i+ 1, p).

It is easy to see that these maps are well defined and that Matn+1×Z(Z≥0)/ ∼
along with wt, ϕi, εi, f̃i and ẽi becomes a semi-normal crystal.
Now we can prove:

Proposition 2.4 The bijection

Ψ : M → Matn+1×Z(Z≥0)/ ∼
M =

∏
i∈{1,...,n+1},j∈Z

Xi(j)
mij 7→ [mij ]

is a crystal isomorphism.

Proof: We have to verify that for every M ∈M and i ∈ I the following holds:

wt(M) = wt(Ψ(M)),

ϕi(M) = ϕi(Ψ(M)),

εi(M) = εi(Ψ(M)),

Ψ(f̃i(M)) = f̃i(Ψ(M)),

Ψ(ẽi(M)) = ẽi(Ψ(M)).

So let M =
∏

s∈I,t∈Z
Ys(t)

ys(t) ∈ M be arbitrary and Ψ(M) ∈ Matn+1×Z(Z≥0)

its corresponding reduced matrix. Now we show that

wt(M) = wt(Ψ(M)).

Assume we write M as a product of Xs(t)‘s by writing every factor Ys(t)
ys(t)

as in Proposition 2.1 with corresponding matrix ms,t. Now it suffices to show
that wt(M) coincides with wt(ms,t) because it is obvious that wt is invariant
under (A1). So we get

11



wt(M) =
∑
s

(
∑
t
ys(t))Λs

since Λs = β1 + . . .+ βs, =
∑
s

(
∑
t
ys(t))β1 + . . .+ βs

=
∑
s

(
∑
t

(
∑
j≤s

ys(t))︸ ︷︷ ︸
=mst

)βs

=
∑
s

(
∑
t
mst)βs

since wt is invariant under (A1), = wt(Ψ(M)).

The same computations work for ϕi and εi.

Now we show that Ψ commutes with f̃i:
Let nf be minimal such that ϕi(M) =

∑
t≤nf

ys(t). Then we get f̃i(M) =

Ai(nf )−1M . Due to the choice of nf we know that nf is minimal such that

ϕi(M) = ϕi(Ψ(M)) =
∑
j≤nf

mij −
∑
j<nf

mi+1,j .

That means we decrease (resp. increase) mi,nf
(resp. mi+1,nf

) by one in
Ψ(M).
But since Ai(nf )−1 = Xi(nf )−1Xi+1(nf ) it follows that f̃i(Ψ(M)) is a corre-
sponding matrix of f̃i(M). It remains to show that f̃i(Ψ(M)) = [f̃i(Ψ(M))].
Assume we had to apply (A1) only after having operated with f̃i but not
before. That means we get a full diagonal mi+1+s,nf−s 6= 0 for all s =
−i + 1,−i + 2, . . . ,−1, 0, 1, . . . , n − i after having increased mi+1,nf

by one.
But due to the choice of nf we have mi,nf+1 < mi+1,nf

since otherwise∑
j≤nf

mij −
∑
j<nf

mi+1,j would not be maximal. Therefore increasing mi+1,nf

doesn‘t cause any new (A1) application and

Ψ(f̃i(M)) = f̃i(Ψ(M)).

The same arguments hold for ẽi which finishes our proof.
2

Now we define the set of matrices such that the corresponding monomials give
a realization of the crystal bases B(λ).

Definition 2.1 Define N ⊂ Matn+1×Z(Z≥0) as the set of matrices whose re-
duced forms have only zero-entries out of an (n + 1) × n-submatrix M =
(mij) i=1,...,n+1

j=0,...,n−1
with the following properties:

(i) mij ∈ Z≥0 for i = 1, . . . , n+ 1 and j = 0, . . . , n− 1.

(ii)
n+1∑
k=i

mk,j ≤
n+1∑
k=i+1

mk,j−1 for i = 1, . . . , n+ 1 and j = 1, . . . , n− 1,

where we set
n+1∑
k=i+1

mk,j−1 = 0 for i = n+ 1.

12



Due to Proposition 2.1 the associated monomials of matrices in N can be con-
sidered as elements in Ms(λ) for a suitable λ ∈ P and s ∈ Z. Hence instead
of a crystal morphism between M and

⋃
λ∈P,s∈ZMs(λ) which we originally

intended to find, we just need a morphism from Matn+1×Z(Z≥0)/ ∼ to N/ ∼.
The idea is to compress the matrices. More precisely we move entries into the
next column to the left such that the crystal structure is preserved. We do
this by decomposing our matrix M = M1 +M2 with M1 ∈ N according to the
following rule:

The lower decomposition rule:
Let M = [M ] = mij ∈ Matn+1×Z(Z≥0) be a reduced version of an arbitrary
matrix. Let k ∈ Z be minimal and l ∈ Z be maximal such that mij = 0 for all
j < l, j > k and i ∈ {1, . . . , n+ 1} . That means the finite part of M which is
different from zero is an (n+ 1)× (l − k + 1)-matrix over Z≥0. For simplicity
we set p = l − k and renumber the columns by 0, . . . , p. We also assume that
p ≥ n− 1, otherwise we fill the matrix with zero-entries on the right side.
We search for M1 ∈ N such that

M = M1 +M2.

We explain how to compute M1 = m
(1)
ij out of M = mi,j recursively:

For i = 1, . . . , n+ 1 we set m
(1)
i,0 := mi,0.

Then, for each j from 1 to p we do the following:
For i = n+ 1 to i = 1 we compare∑

k≥i+1

m
(1)
k,j−1 with mi,j +

∑
k≥p+1

m
(1)
k,j

and if
∑

k≥i+1

m
(1)
k,j−1 < mi,j +

∑
k≥p+1

m
(1)
k,j then we set

m
(1)
i,j :=

∑
k≥i+1

m
(1)
k,j−1 −

∑
k≥i+1

m
(1)
k,j .

Otherwise, namely if
∑

k≥i+1

m
(1)
k,j−1 ≥ mi,j +

∑
k≥p+1

m
(1)
k,j , we set

m
(1)
i,j = mi,j .

This way we get M1 and set

M2 := M −M1.

By construction it is obvious that M1 satisfies condition (i) and (ii) of Defi-
nition 2.1.1 but it remains to show that M1 has at most n columns different
from zero such that we can guarantee that M1 ∈ N. For that we show

Lemma 2.1 Let [M ] = (mij) i=1,...,n+1
j=0,...l−1

∈ Matn+1×l(Z≥0) be a reduced matrix

without zero columns which satisfies condition (ii) of Definition 2.1.1.
Then we have

l ≤ n.
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Proof: Since
n+1∑
k=i+1

mk,0 = 0 for i = n + 1 condition (ii) yields mn+1,1 = 0.

Again by condition (ii) we obtain 0 = mn+1,1 ≥ mn,2 +mn+1,2 and therefore
mn,2 = mn+1,2 = 0. In general condition (ii) provides

n+1∑
k=n+2−j

mk,j = 0.

That means in particular that mi,n = 0 for all i = 2, . . . , n + 1 and mi,j = 0
for all i ∈ I and j ≥ n+ 1.
It remains to show that m1,n = 0.

Assume m1,n 6= 0. Since
n+1∑

k=n+2−j
mk,j = 0 this implies m1+t,n−t ≥ m1,n for all

t = 1, . . . , n. That means we can apply (A1) which is a contradiction to M
being in reduced form and hence

m1,n = 0.

2

Example 2.2 For g of type A4 we consider the matrix

M = (mi,j) i=1,...,5
j=0,...,4

=


0 2 0 0 1

2 0 1 2 0

0 1 2 0 0

0 0 0 0 0

1 0 0 0 0

 .

Until we reach the entry m3,2 we always get
∑

k≥i+1

m
(1)
k,j−1 ≥ mi,j +

∑
k≥p+1

m
(1)
k,j

and set m
(1)
i,j := mi,j, but at m3,2 we have

∑
k≥4

m
(1)
k,1 = 0 < 2 =

∑
k≥4

m
(1)
k,2 +m3,2.

Therefore we set m
(1)
3,2 :=

∑
k≥4

m
(1)
k,1 −

∑
k≥4

m
(1)
k,2 = 0.

The same happens once more at m2,3 and hence

M1 =


0 2 0 0 1

2 0 1 0 0

0 1 0 0 0

0 0 0 0 0

1 0 0 0 0

 ∈ N.

Moreover we obtain

M2 =


0 0 0 0 1

0 0 0 2 0

0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

 .
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Now we can define our desired map:

Φ : Matn+1×Z(Z≥0)/ ∼ → N/ ∼
mij 7→ nij ,

where the matrix nij is computed in the following way:

Let M be the reduced version of an arbitrary matrix in Matn+1×Z(Z≥0). Then
we consider the lower decomposition of M :

M = M1 +M2

with M1 ∈ N.
Then we move every entry of M2 one column to the left and denote the new

M2 by M
(1)
2 . Now we set M (1) := M1 +M

(1)
2 and if M (1) ∈ N we are done and

set
M (1) =: N = nij .

If M (1) /∈ N we consider the lower decomposition of [M (1)] and do the same
again. This iteration yields a sequence of matrices M (i). Since M has just
finitely many columns different from zero there exists a k ∈ N such that the
iteration becomes stationary with M (k) ∈ N and we set:

M (k) =: N = nij .

Let us now combine Φ and Ψ to obtain the compression map κ from the set
of arbitrary monomials into the set of monomials which give a realization of
the crystal bases B(λ):

κ := Ψ−1 ◦ Φ ◦Ψ : M →
⋃

λ∈P,s∈Z
Ms(λ).

Before we prove that this map is a crystal morphism we continue our example:

Example 2.3 As above, let g be of type A4 and take the monomial

M = Y1(4)−1Y3(1)Y1(3)−1Y4(1)−1Y2(0)2Y3(2)2.

We have already seen that M corresponds to the reduced version matrix
0 2 0 0 1

2 0 1 2 0

0 1 2 0 0

0 0 0 0 0

1 0 0 0 0

 .

We obtained the lower decomposition of M by:
0 2 0 0 1

2 0 1 2 0

0 1 2 0 0

0 0 0 0 0

1 0 0 0 0

 =


0 2 0 0 0

2 0 1 0 0

0 1 0 0 0

0 0 0 0 0

1 0 0 0 0

+


0 0 0 0 1

0 0 0 2 0

0 0 2 0 0

0 0 0 0 0

0 0 0 0 0
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and therefore

M (1) =


0 2 0 1

2 0 3 0

0 3 0 0

0 0 0 0

1 0 0 0


Since M (1) /∈ N we decompose [M (1)] = M (1) and get

M (2) =


0 2 0 1

2 2 1 0

2 1 0 0

0 0 0 0

1 0 0 0

 ∈ N

Now we apply Ψ−1 and receive the monomial

N = Ψ(−1)(M (2)) = X1(1)2X1(3)X2(0)2X2(1)X3(0)2X3(1)X5(0)

= Y1(3)Y2(0)2Y1(2)−2Y3(0)2Y3(1)Y4(1)−1.

Due to Proposition 2.1 we get: N ∈M0(4Λ2 + Λ4).

Theorem 2.1 Let g be of type A. Then, the map

κ : M →
⋃

λ∈P,s∈Z
Ms(λ)

M 7→ (Ψ−1 ◦ Φ ◦Ψ)(M)

defined as above is a morphism of crystals.

Proof: We have already seen that Ψ is a crystal morphism therefore we limit
the proof to Φ and get the claim by composition. Since Φ is successively
defined it suffices to show that sending a reduced version matrix M to M (1)

preserves the crystal structure. So we take such a matrix M = mij and its

lower decomposition M = M1 +M2 with M1 = m
(1)
ij and M2 = m

(2)
ij .

By definition we obtain

(M (1))ij = m
(1)
ij +m

(2)
i,j+1.

Now we have to show the following for i ∈ I:

(i) wt(M) = wt(M (1)),

(ii) ϕi(M) = ϕi(M
(1)),

(iii) εi(M) = εi(M
(1))

and that computing M (1) interchanges with the Kashiwara operators, namely
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(iv) (f̃i(M))(1) = f̃i(M
(1)),

(v) (ẽi(M))(1) = ẽi(M
(1)).

Since
∑
j∈Z

mij doesn‘t change it is obvious that wt is invariant under this con-

struction.
We prove (ii) and (iv) simultaneously and (iii) and (v) follow in an analogous
manner. For simplicity we set M (1) =: N = nij .
We know that

ϕi(M) = max{
∑
j≤k

mij −
∑
j<k

mi+1,j ; k ∈ Z}.

Assume ϕi(M) 6= 0 and let k ∈ Z be minimal such that

ϕi(M) =
∑
j≤k

mij −
∑
j<k

mi+1,j .

Now assume ϕi(M) < ϕi(N).

That is only possible if there exists p ∈ Z such that m
(2)
i,p+1 > m

(2)
i+1,p.

Otherwise
∑
j≤p

nij −
∑
j<p

ni+1,j is equal to or smaller than
∑
j≤p

mij −
∑
j<p

mi+1,j .

Due to lower decomposition this implies

(2.1) m
(2)
i,p+1 ≤ mi,p+1 −m(1)

i+1,p

and since M = M1 +M2,

(2.2) m
(2)
i+1,p = mi+1,p −m(1)

i+1,p.

Now we compute

∑
j≤p

nij −
∑
j<p

ni+1,j =
∑
j≤p

m
(1)
i,j +m

(2)
i,j+1 − (

∑
j<p

m
(1)
i+1,j +m

(2)
i+1,j+1)

=
∑
j<p

m
(1)
i,j +m

(2)
i,j+1 +m

(1)
i,p +m

(2)
i,p+1

−(
∑

j<p−1
m

(1)
i+1,j +m

(2)
i+1,j+1 +m

(1)
i+1,p−1 +m

(2)
i+1,p)

(2.1)

≤
∑
j<p

m
(1)
i,j +m

(2)
i,j+1 +m

(1)
i,p +mi,p+1 −m(1)

i+1,p

−(
∑

j<p−1
m

(1)
i+1,j +m

(2)
i+1,j+1 +m

(1)
i+1,p−1 +m

(2)
i+1,p)

(2.2)
=

∑
j<p

m
(1)
i,j +m

(2)
i,j+1 +m

(1)
i,p +mi,p+1 −m(1)

i+1,p

−(
∑

j<p−1
m

(1)
i+1,j +m

(2)
i+1,j+1

+m
(1)
i+1,p−1 +mi+1,p −m(1)

i+1,p)

=
∑

j≤p+1
mij −

∑
j<p+1

mi+1,j .

But due to the choice of k we have

ϕi(M) ≥
∑
j≤p+1

mij −
∑
j<p+1

mi+1,j
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and hence
ϕi(M) ≥ ϕi(N).

Now suppose ϕi(N) < ϕi(M).
It is obvious that

∑
j≤k

nij−
∑
j<k

ni+1,j becomes smaller than
∑
j≤k

mij−
∑
j<k

mi+1,j

if and only if:

0 6= m
(2)
i+1,k > m

(2)
i,k .

Moreover the choice of k again implies that

m
(1)
i+1,k ≤ mi+1,k < mi,k.

That means we have the following situation in M1:∑
l≥i+1

m
(1)
l,k =

∑
l>i+1

m
(1)
l,k−1

and therefore
m

(2)
i,k = mi,k −m

(1)
i+1,k−1.

With this equation we compute:∑
j≤k−1

nij −
∑

j<k−1

ni+1,j =
∑

j≤k−1

m
(1)
i,j +m

(2)
i,j+1 − (

∑
j<k−1

m
(1)
i+1,j +m

(2)
i+1,j+1)

=
∑

j<k−2

m
(1)
i,j +m

(2)
i,j+1 +m

(1)
i,k−1 +m

(2)
i,k

−(
∑

j<k−2

m
(1)
i+1,j +m

(2)
i+1,j+1+

m
(1)
i+1,k−2 +m

(2)
i+1,k−1)

=
∑

j<k−2

m
(1)
i,j +m

(2)
i,j+1 +m

(1)
i,k−1 +mi,k −m

(1)
i+1,k−1

−(
∑

j<k−2

m
(1)
i+1,j +m

(2)
i+1,j+1 +m

(1)
i+1,k−2

+mi+1,k−1 −m
(1)
i+1,k−1)

=
∑

j<k−2

m
(1)
i,j +m

(2)
i,j+1 +m

(1)
i,k−1 +mi,k

−(
∑

j<k−2

m
(1)
i+1,j +m

(2)
i+1,j+1 +m

(1)
i+1,k−2

+mi+1,k−1)

=
∑
j≤k

mij −
∑
j<k

mi+1,j .

Hence
ϕi(N) ≥ ϕi(M).

Furthermore these computations also show that we obtain ϕi(N) either by∑
j≤k

nij −
∑
j<k

ni+1,j

or as in the last case by ∑
j≤k−1

nij −
∑
j<k−1

ni+1,j
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and that k (resp. k − 1) is minimal with this property.

That means that we obtain f̃i(N) by operating on ni,k or on ni,k−1.
So assume we operate on ni,k and consider the lower decomposition of f̃i(M).
In this case we know that mi,k > mi+1,k−1 and the same in N . That means
ni,k > ni+1,k−1.
Hence

m
(1)
i,k > m

(1)
i+1,k−1.

That implies ∑
j≥i+2

m
(1)
j,k−1 >

∑
j≥i+1

m
(1)
j,k

and in particular

m
(2)
i+1,k = 0.

Therefore we get m
(1)
i+1,k increased by one in the lower decomposition of f̃i(M).

Moreover we know that

m
(1)
i+1,k = mi+1,k ≥ mi,k+1.

That means
m

(2)
i,k+1 = 0

and increasing m
(1)
i+1,k by one doesn‘t change the decomposition of the k+ 1-st

column.
Hence

(f̃i(M))(1) = f̃i(N).

Same arguments show that m
(2)
i+1,k is increased by one if we operate on ni,k−1

and we also get
(f̃i(M))(1) = f̃i(N).

2

For M ∈M we set B(M) to be the connected component of M in M.

Corollary 2.1 For M ∈ M and Φ(Ψ(M)) =: ni,j ∈ N we consider s ∈ Z
maximal such that ni,j = 0 for all j < s and i ∈ {1, . . . , n + 1}. Furthermore
for k = 1, . . . , n+ 1 we define the values:

ak :=
∑

i∈{1,...,n+1}

ni,k+s−1 −
∑

i∈{1,...,n+1}

ni,k+s ≥ 0.

Then we have

κ(M) ∈Ms(
n∑
k=1

akΛk)

and hence by restriction

κ|B(M) : B(M) → Ms(
n∑
k=1

akΛk)

is a crystal isomorphism.

19



2.2 Monomials and A-Tableaux

In this section we give an application of the compression defined in Section
2.1. In their framework about the correspondence between Young walls and
Young tableaux, Kim and Shin [7] gave another realization of the crystal bases
B(λ) in the sense of reversed Young tableaux. Moreover Kang, Kim and
Shin [2] constructed a crystal morphism between the monomials inM1(λ) for
dominant integral weights λ and those reversed tableaux. By combining this
with the crystal morphism κ defined in Section 2.1 we can generalize their
morphism to arbitrary monomials in M.

Definition 2.2 (i) We define a reversed Young diagram to be a collection
of boxes in rightjustified rows with a weakly decreasing number of boxes
in each row from bottom to top.

(ii) We define a (reversed) tableau by a reversed Young diagram filled with
positive integers.

(iii) A (reversed) tableau S is called a (reversed) semistandard tableau if the
entries in S are weakly increasing from left to right in each row and
strictly increasing from top to bottom in each column.

For a dominant integral weight λ we define S(λ) to be the set of all (reversed)
semistandard tableaux of shape λ with entries 1, . . . , n + 1, which gives a re-
alization of the crystal bases B(λ) [7].

Let M ∈ M1(λ) be a monomial and mij the associated reduced matrix in
N. We define the tableau S(M) to be the semistandard reversed tableau with
mij-many i entries in j-th row.
Then we get

Proposition 2.5 [2] The map

Ω : M1(λ) → S(λ)

M 7→ S(M)

is a crystal isomorphism.

It is obvious how to generalize this morphism toMs(λ). Let M ∈Ms(λ) be a
monomial and mij the associated reduced matrix in N. In this case we define
S(M) to be the semistandard reversed tableaux with mij-many i entries in
the j − s+ 1-st row and get the morphism

Ω :
⋃

λ∈P,s∈Z
Ms(λ) →

⋃
λ∈P

S(λ)

M 7→ S(M).

The combination of this morphism with the compression map κ yields:

Corollary 2.2 The map

Ω ◦ κ : M →
⋃
λ∈P

S(λ)

is a crystal morphism.
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Example 2.4 For g of type A4 we consider and the monomial

M = Y1(4)−1Y3(1)Y1(3)−1Y4(1)−1Y2(0)2Y3(2)2.

We have already seen that

κ(M) = N = X1(1)2X1(3)X2(0)2X2(1)X3(0)2X3(1)X5(0),

with the corresponding reduced matrix
0 2 0 1

2 2 1 0

2 1 0 0

0 0 0 0

1 0 0 0

 .

Therefore we assign the following semistandard reversed Young tableau

S(M) =

1
2

1 1 2 2 3
2 2 3 3 5

.

2.3 Insertion scheme for monomials in type A

In this section, as another application of the compression given in Section 2.1,
we define a bumping rule for Nakajima monomials. That means we consider
the crystal tensor product of two monomials M1 and M2 and search for a
monomial N ∈

⋃
λ∈P,s∈ZMs(λ) such that the connected component of M1 ⊗

M2 is isomorphic to the connected component of N . Moreover we will see that
this bumping is compatible with the reversed bumping for reversed tableaux
(given in [8]).
Before we define the monomial bumping we recall the tensor product rule for
crystals B1 and B2:
The set B1⊗B2 := {b1⊗b2; b1 ∈ B1 and b2 ∈ B2} becomes a crystal by setting

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max{εi(b1), εi(b2) + 〈hi, wt(b1)〉},
ϕi(b1 ⊗ b2) = max{ϕi(b1) + 〈hi, wt(b2)〉 , ϕi(b2)},

f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 if ϕi(b1) ≤ εi(b2),

ẽi(b1 ⊗ b2) =

{
b1 ⊗ ẽib2 if ϕi(b1) < εi(b2),

ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2).

Let now M1 and M2 be reduced matrices of monomials in M. In order to use
the compression procedure we associate a matrix M1 ∗M2 ∈ Matn+1×Z(Z≥0)
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to the tensor product M1 ⊗M2 in the following way:

M1 ⊗M2 7→



0

0

M2
... M1

0

0


=: M1 ∗M2,

where again M1 and M2 stand for their finite parts different from zero.
With the crystal structure on Matn+1×Z(Z≥0)/ ∼ we can show:

Proposition 2.6 The map

Matn+1×Z(Z≥0)/ ∼ ⊗ Matn+1×Z(Z≥0)/ ∼ → Matn+1×Z(Z≥0)/ ∼
M1 ⊗M2 7→ M1 ∗M2

is a crystal morphism.

Proof: Let M1 and M2 be matrices as above and after possible renumbering
we set M1 = (m1

i,j) i=1,...,n+1
j=1,...,l

and M2 = (m2
i,j) i=1,...,n+1

j=1,...,t
. For simplicity we write

M1 ∗M2 =: M = mi,j .
Since M1 and M2 are reduced we get by definition that M1 ∗M2 is a reduced
matrix without any (A1) application.
We have to show that wt, ϕi and εi are invariant under this map and that it
commutes with f̃i and ẽi. We observe directly from the definition that

wt(M1 ⊗M2) = wt(M1 ∗M2).

For i ∈ I we show that

ϕi(M1 ⊗M2) = ϕi(M1 ∗M2).

In order to do this we distinguish the two cases ϕi(M1) > εi(M2) and ϕi(M1) ≤
εi(M). At first we assume ϕi(M1) > εi(M2) and take k minimal such that

ϕi(M1) =
∑
j≤k

m1
i,j −m1

i+1,j−1.
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This implies

ϕi(M1 ∗M2) =
∑

j≤k+t+1

mi,j −mi+1,j−1.

=
∑
j≤k

m1
i,j −m1

i+1,j−1

+
∑
j
m2
i,j −

∑
j
m2
i+1,j

since 〈hi,Λj〉 = δi,j , = ϕi(M1) +
∑
j
m2
i,j 〈hi,Λi − Λi−1〉

+
∑
j
m2
i+1,j 〈hi,Λi+1 − Λi〉

= ϕi(M1) +
∑
j
m2
i,j 〈hi, βi〉

+
∑
j
m2
i+1,j 〈hi, βi+1〉

= ϕi(M1)

+

〈
hi,
∑
j
m2
i,j βi +

∑
j
m2
i+1,j βi+1

〉

〈hi, βj〉 = 0 for j 6= i, i+ 1, = ϕi(M1) +

〈
hi,
∑
i

(
∑
j
m2
i,j)βi

〉
= ϕi(M1) + 〈hi, wt(M2)〉

since ϕi(M1) > εi(M2), = ϕi(M1 ⊗M2).

Moreover these computations also show: If ϕi(M1) > εi(M2), then k is minimal
with

ϕi(M1 ∗M2) = ϕi(M) =
∑
j≤k

mi,j −
∑
j<k

mi+1,j

and hence
f̃i(M1 ∗M2) = f̃iM1 ∗M2.

Due to the tensor product rule we also observe

f̃i(M1 ⊗M2) = f̃iM1 ⊗M2,

which implies that the map interchanges with f̃i in this case.

Let now ϕi(M1) ≤ εi(M2). This yields directly ϕi(M1 ∗ M2) = ϕi(M2) =
ϕi(M1 ⊗M2) and again f̃i(M1 ∗M2) = M1 ∗ f̃iM2.
Same arguments hold for εi and ẽi.

2

With this interpretation of the crystal tensor product of monomials we are
able to give the definition of bumping for Nakjima monomials. Let M1 and
M2 be monomials in M then we define M1 →M2 as the result of the following
compositions of crystal morphisms:

M×M → Matn+1×Z(Z≥0)/ ∼ Φ→ N/ ∼ →
⋃

λ∈P,s∈Z
Ms(λ)

(M1,M2) 7→ Ψ(M1) ∗Ψ(M2)
Φ7→ N 7→ Ψ−1(N).
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In other words we set

M1 →M2 := Ψ−1(Φ(Ψ(M1) ∗Ψ(M2))).

With Proposition 2.6 and Theorem 2.1 we observe

Theorem 2.2 Let g be of type A. Then, the map

M⊗M →
⋃

λ∈P,s∈Z
Ms(λ)

M1 ⊗M2 7→ M1 →M2

defined as above is a morphism of crystals.

Now we notice that the monomial bumping coincides with the tableaux bump-
ing defined in [8]. More precisely, if we take M1,M2 ∈M we have two possi-
bilities to associate a reversed tableaux to their tensor product M1 ⊗M2.
The first one is to take the monomial bumping M1 → M2 and to consider
the tableaux S(M1 → M2) in the sense of Corollary 2.2. On the other hand
we compute S(M1) and S(M2) and apply the reversed bumping rule given by
Kim and Shin [7], [8], namely S(M1) → S(M2). Corollary 2.2 and Theorem
2.2 imply

S(M1 →M2) = S(M1)→ S(M2).

In order to put this result in concrete terms we consider the following

Example 2.5 Let g be of type A3, say g = sl4, and take

M1 = Y1(2)−1Y3(1)Y2(1)Y2(2)−1,

M2 = Y2(3)−2Y3(2)−1Y1(1)3Y1(3).

As in section 2 we assign the matrix to M1 by

Y1(2)−1 = X2(1)X3(0)X4(−1),

Y3(1) = X3(1)X2(2)X1(3),

Y2(1) = X2(1)X1(2),

Y2(2)−1 = X3(1)X4(0).

Therefore

M1 ↔


0 0 0 1 1

0 0 2 1 0

0 1 2 0 0

1 1 0 0 0

 (A1)
=


0 0 1

1 1 0

1 0 0

0 0 0

 .

Since this reduced matrix lies in N we don‘t need any compression and get the
following corresponding tableau

S(M1) =
1
2

2 3
.

24



For M2 we write:

Y2(3)−2 = X3(2)2X4(1)2,

Y3(2)−1 = X4(2),

Y1(1)3 = X1(1)3,

Y1(3) = X1(3).

Hence

M2 ↔


3 0 1

0 0 0

0 2 0

2 1 0

 .

One step of compression yields

M
(1)
1 =


3 0 1

0 0 0

0 2 0

3 0 0

↔ S(M2) =
1

3 3
1 1 1 4 4 4

.

Due to the reversed bumping rule in [8] we get

S(M1)→ S(M2) =
1
2

2 3
→

1
3 3

1 1 1 4 4 4
=

1 2
3 3

1 1 1 4 4
.

On the other hand we observe for the monomial bumping

M1 ∗M2 =



0

0

M2
... M1

0

0


=


3 0 1 0 0 0 1

0 0 0 0 1 1 0

0 2 0 0 1 0 0

2 1 0 0 0 0 0


and by compression we get

(M1 ∗M2)(3) =


3 0 1 1

0 0 2 0

0 2 0 0

3 0 0 0

 (A1)
=


3 0 1

0 0 1

0 1 0

2 0 0

 .

Hence we get the expected equation:

S(M1 →M2) =
1 2
3 3

1 1 1 4 4
= S(M1)→ S(M2).
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Chapter 3

Type C

3.1 Compression of Nakajima monomials in type C

In this section we will define the compression of Nakajima monomials for a
Lie algebra g of type Cn. We shortly recall the basic setting of g. Let P be
the weight lattice of g and β1, . . . , βn the orthogonal basis of P . Let further
I = {1, . . . , n} be the index set for the simple roots given by αi = βi − βi+1

for i = 1, . . . , n− 1 and αn = 2βn. Moreover we get the fundamental weights
by Λi = β1 + . . .+ βi and therefore βi = Λi − Λi−1. Then we compute for all
i 6= n and j ∈ I:

〈hj , αi〉 =


2 if i = j,

−1 if j = i− 1 or j = i+ 1,

0 else

and

〈hj , αn〉 =


2 if j = n,

−2 if j = n− 1,

0 else.

As in the An-case we set

cij =

{
0 if i > j,

1 else.

With this notation we obtain for j ∈ Z

Ai(j) =

{
Yi(j)Yi+1(j)−1Yi(j + 1)Yi−1(j + 1)−1 if i 6= n,

Yn(j)Yn(j + 1)Yn−1(j + 1)−2 if i = n.

Let B = {1, . . . , n, 1̄, . . . n̄} then we define a total order on B by

1 ≺ 2 ≺ . . . ≺ n ≺ n ≺ . . . ≺ 2 ≺ 1.

For i ∈ I and j ∈ Z we consider the variables defined in [3]:

Xi(j) := Yi−1(j + 1)−1Yi(j),

Xi(j) := Yi−1(j + n− i+ 1)Yi(j + n− i+ 1)−1.
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With these variables we have for i 6= n :

Ai(j) = Xi+1(j)−1Xi(j),

Ai(j) = Xi+1(j − n+ i)Xi(j − n+ i)−1

and
An(j) = Xn(j)Xn(j)−1.

Furthermore it is easy to see that for i = 1, . . . , n and some p− q = n− i the
following equation holds

Xi(p)Xi(q) = Xi+1(p)Xi+1(q).

This equation will be important later when we define the equivalence relation
on matrices because it involves more options to write an arbitrary monomial
as a product of Xi(j)‘s and Xi(j)‘s.
As in Chapter 2 we recall the characterization of M1(λ) with a dominant
integral weight λ for Lie algebras of type Cn given in [3]:

Proposition 3.1 [3] Let λ = a1Λ1 + . . . + anΛn. Then the connected com-
ponent M1(λ) containing the maximal vector

M1 = Y1(1)a1 · · ·Yn(1)an

is characterized as the set of monomials

M = Xt1,1(1) · · ·Xt1,k1
(1) · · ·Xtn,1(n) · · ·Xtn,kn

(n)

satisfying the following conditions:

(i) kj = aj + . . .+ an for all j = 1, . . . , n,

(ii) tj,1 � tj,2 � . . . � tj,kj for all j = 1, . . . , n,

(iii) for each j = 2, . . . , n and l = 1, . . . , kj , tj−1,l � tj,l.

For s ∈ Z we also consider the shifted highest weight monomials of weight λ

Ms = Y1(s)a1Y2(s)a2 . . . Yn(s)an .

As an immediate consequence of Proposition 3.1 we obtain their connected
component Ms(λ) by the set of monomials of the form

M = Xt1,1(s) · · ·Xt1,k1
(s) · · ·Xtn,1(s+ n− 1) · · ·Xtn,kn

(s+ n− 1)

satisfying condition (i), (ii) and (iii).

We will see later on that these conditions translate into the notation of matrices
exactly the same way as in the An-case. In order to use similar constructions
as in Chapter 2 we show that M is generated by the elements Xi(j) and Xi(j).
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That means we define M to be the free abelian monoid generated by the set
{Xi(j), Xi(j), i = 1, . . . , n, j ∈ Z}. We further define an ideal J ⊂M by

J := 〈
i∏

k=1

Xk(j + i− k)Xk(j − n+ k − 1),

i∏
k=1

Xk(j − i+ k)Xk(j + n+ 1− k), i = 1, . . . , n, j ∈ Z〉M.

Hence the quotient M/J becomes a group with

Xi(j)
−1 =

i−1∏
k=1

Xk(j + i− k)
i∏

k=1

Xk(j − n+ k − 1)

and

Xi(j)
−1 =

i−1∏
k=1

Xk(j − i+ k)
i∏

k=1

Xk(j + n+ 1− k).

This gives rise to an analog of Proposition 2.2.

Proposition 3.2 We have
M ∼= M/J.

Proof: We consider the map that identifies Xi(j) with Yi(j)Yi−1(j+1)−1 and
Xi(j) with Yi−1(j + n − i + 1)Yi(j + n − i + 1)−1. Let M =

∏
i∈I,j∈Z

Yi(j)
yi(j)

be a monomial in M. In order to show surjectivity we consider again each
Yi(j)

yi(j) separately and distinguish two cases:
1. case: yi(j) > 0, then we write

Yi(j) =
i−1∏
k=0

Yk(j + i− k)−1
i∏

k=1

Yk(j + i− k)

=
i∏

k=1

Xk(j + i− k).

Therefore we get

Yi(j)
yi(j) =

i∏
k=1

Xk(j + i− k)yi(j).

2. case: yi(j) < 0, then we set

Yi(j)
−1 =

i∏
k=1

Xk(j − n+ k − 1)

and hence

Yi(j)
yi(j) =

i∏
k=1

Xk(j − n+ k − 1)−yi(j).

With these equations we compute

Xi(j)
−1 = Yi(j)

−1Yi−1(j + 1) =
i−1∏
k=1

Xk(j + i− k)
i∏

k=1

Xk(j − n+ k − 1)
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and
Xi(j)

−1 = Yi−1(j + n− i+ 1)−1Yi(j + n− i+ 1)

=
i−1∏
k=1

Xk(j − i+ k)
i∏

k=1

Xk(j + n+ 1− k),

which implies injectivity.
2

Remark 3.1 The equation

Xi(p)Xi(q) = Xi+1(p)Xi+1(q)

for p− q = n− i, also holds in M/J.

Due to Proposition 3.2 we can write an arbitrary M ∈ M as a product of
Xi(j)‘s and Xi(j)‘s. More precisely, there exist mij ∈ Z≥0 such that

M =
∏

i∈B,j∈Z
Xi(j)

mij .

In other words, we can associate a matrix mi,j to each M ∈ M, where i ∈
{1, . . . , n, 1̄, . . . n̄} and j ∈ Z. That means we obtain a matrix in Mat2n×Z(Z≥0).
As in the An-case these are matrices with just finitely many non zero columns
and we number the rows by 1, . . . , n, n̄, . . . 1̄ instead of 1, . . . , 2n.
In order to get a bijection between the monomials and those matrices we need
to fix the matrix notation. Consider M ∈ Mat2n×Z(Z≥0) with M = mi,j .
Then the definition of J and Remark 3.1 allow us to apply the following rules
without changing the underlying monomial:

(C1) For a pair p, q with p− q = n− b with

mb,p 6= 0 and mb,q 6= 0

we decrease mb,p and mb,q by min{mb,p,mb,q} and increase mb+1,p and
mb+1,q by min{mb,p,mb,q}.

(C2) For a pair p, q with p− q = n− b+ 1 with

mb,p 6= 0 and mb,q 6= 0w

we decrease mb,p and mb,q by min{mb,p,mb,q} and increase mb−1,p and
mb−1,q by min{mb,p,mb,q}.

Moreover we have an analog of rule (A1):

(C3) For every i ∈ {1, . . . , n} and k ∈ Z with

mi−s,k+s 6= 0 for all s = 0, 1, . . . , i− 1

and

mi−s,k−n+i−1−s 6= 0 for all s = 0, 1, . . . , i− 1
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we decrease all these entries by

min{mi−s,k+s,mi−s,k−n+i−1−s; 0, 1, . . . , i− 1}.

We call such a collection a generalized diagonal at mi,k and this proce-
dure a cancellation at mi,k.

We can also insert some generalized diagonals to get longer ones:

(C4) For every i ∈ {1, . . . , n} and k ∈ Z with

mi,k 6= 0

and

mi−s,k−n+i−1−s 6= 0 for all s = 0, 1, . . . , i− 1

we increase the entries mi−s,k+s for all s = 1, . . . , i− 1 by

min{mi,k,mi−s,k−n+i−1−s; 0, 1, . . . , i− 1}

and apply (C3) to get a longer cancellation at mi,k.

For every i ∈ {1, . . . , n} and k ∈ Z with

mi,k−n+i−1 6= 0

and

mi−s,k+s 6= 0 for all s = 0, 1, . . . , i− 1

we increase the entries mi−s,k−n+i−1−s for all s = 1, . . . , i− 1 by

min{mi−s,k+s,mi,k−n+i−1; 0, 1, . . . , i− 1}

and apply (C3) to get a longer cancellation at mi,k.

We use the rules (C1)-(C4) to get reduced versions of the matrices associated
to monomials in M. We explain what we mean by reduced in this case:
Let mi,j ∈ Mat2n×Z(Z≥0) be a matrix corresponding to a monomial M ∈M:

M =
∏

i∈B,j∈Z
Xi(j)

mij .

We search for [mi,j ] such that

(i)
∑

i∈B,j∈Z
[mij ] = min{

∑
i∈B,j∈Z

nij ;
∏

i∈B,j∈Z
Xi(j)

mij =
∏

i∈B,j∈Z
Xi(j)

nij},

(ii) there are no pairs p, q with p− q = n− b+ 1 such that

[mb,p] 6= 0 and [mb,q] 6= 0.
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We use the rules (C1)-(C4) stepwise to obtain [mij ] from mij as follows:

Let j be minimal such that mi,k = 0 for all i ∈ B and k > j. Then we start at
mn,j and apply (C1)-(C2) to all the other entries if this yields an application
of (C3)-(C4) to mn,j . This means we try to get some cancellation at this entry.
After that we go left to the next entry in this row and do the same.
Once we have done this with the whole row we go to the upper one and apply
the same procedure until we reach m1,1.
At the end we apply (C2) to guarantee the desired condition (ii).

Example 3.1 For g of type C3 we consider the monomial

M = Y1(0)Y1(2)Y1(1)−1Y1(5)−1Y1(3)−1Y1(4)−2Y2(0)Y2(3)Y2(5)−2Y3(0)Y3(4).

Due to Proposition 3.1 we write

Y1(0) = X1(0),

Y1(2) = X1(2),

Y1(1)−1 = X1(−2),

Y1(5)−1 = X1(2),

Y1(3)−1 = X1(0),

Y1(4)−2 = X1(1)2,

Y2(0) = X2(0)X1(1),

Y2(3) = X2(3)X1(4),

Y2(5)−2 = X2(3)2X1(2)2,

Y3(0) = X3(0)X2(1)X1(2),

Y3(4) = X3(4)X2(5)X1(6)

and assign the matrix

(mi,j) i=1,2,3,3,2,1
j=−2,−1,0,1,...,6

=



0 0 1 1 2 0 1 0 1

0 0 1 1 0 1 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0 0

1 0 1 2 3 0 0 0 0


.

We observe that we get no (C3) or (C4) for m3,j. That means we go to i = 2
and get a generalized diagonal at m2,5. After applying cancellation we obtain
the new martix by 

0 0 1 1 2 0 1 0 0

0 0 1 1 0 1 0 0 0

0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

1 0 1 2 2 0 0 0 0


.
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The next entry we have to consider is m2,4 and after insertion at m1,5 and
application of (C1) we also get a generalized diagonal at m2,4 and hence

0 0 1 1 2 0 0

0 0 1 1 0 1 0

0 0 1 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 1 0

1 0 1 1 2 0 0


,

where we omit the zero-columns. In the next step we apply (C1) to m1,0 and
insert a generalized diagonal at m1,0 to get a cancellation at m2,0, which yields
the reduced version matrix

1 0 2 0 0

1 1 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 1 0

1 1 2 0 0


= [mi,j ].

With this notation we define an equivalence relation on Mat2n×Z(Z≥0):

mi,j ∼ ni,j iff [mi,j ] = [ni,j ].

We consider the quotient

Mat2n×Z(Z≥0)/ ∼ .

It is obvious that two matrices which lie in the same equivalence class corre-
spond to the same monomial and vice versa. Hence by sending a monomial
onto its reduced matrix we get

Proposition 3.3 There exists a bijection between M and Mat2n×Z(Z≥0)/ ∼.

In order to get a morphism of crystals we endow Mat2n×Z(Z≥0)/ ∼ with a
crystal structure by defining it on the reduced representatives.

Let M = mi,j ∈ Mat2n×Z(Z≥0) be a reduced matrix. Then we set

wt(M) =

n∑
i=1

(∑
j∈Z

(mij −mi,j)
)
βi.

For i 6= n we put

ϕi(M) = max {
∑
j≤k

mij +mi+1,j−n+i −
∑
j<k

mi+1,j +mi,j−n+i ; k ∈ Z},

εi(M) = − min {
∑
j>k

mij +mi+1,j−n+i −
∑
j≥k

mi+1,j +mi,j−n+i ; k ∈ Z}
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and
ϕn(M) = max {

∑
j≤k

mn,j −
∑
j<k

mn,j ; k ∈ Z},

εn(M) = − min {
∑
j>k

mn,j −
∑
j≥k

mn,j ; k ∈ Z}.

If ϕi(M) = 0 we set f̃i(M) = 0 for all i ∈ I.
Let now ϕi(M) 6= 0 then we define the Kashiwara operator f̃i for i 6= n:
Let k be minimal such that

ϕi(M) =
∑
j≤k

mij +mi+1,j−n+i −
∑
j<k

mi+1,j +mi,j−n+i.

Then we distinguish the following two cases:

1. case: mi+1,k−n+i = 0.

Then we set f̃i(M) as the matrix we get from M by increasing (resp. decreas-
ing) mi+1,k (resp. mi,k) by one. Formally spoken we obtain f̃i(M) = m̂s,j

from M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(i, k), (i+ 1, k)},
mi,k − 1 if (s, j) = (i, k),

mi+1,k + 1 if (s, j) = (i+ 1, k).

2. case: mi+1,k−n+i 6= 0.

Then we define f̃i(M) as the matrix we get from M by increasing (resp.
decreasing) mi,k−n+i (resp. mi+1,k−n+i) by one. That means we obtain

f̃i(M) = m̂s,j from M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(i, k − n+ i), (i+ 1, k − n+ i)},
mi+1,k−n+i − 1 if (s, j) = (i+ 1, k − n+ i),

mi,k−n+i + 1 if (s, j) = (i, k − n+ i).

Now we give the definition of f̃n(M) for ϕn(M) 6= 0:
Let k be minimal such that

ϕn(M) =
∑
j≤k

mn,j −
∑
j<k

mn,j .

Then we set f̃n(M) as the matrix we get from M by increasing (resp. decreas-
ing) mn,k (resp. mn,k) by one. More precisely we obtain f̃n(M) = m̂s,j from
M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(n, k), (n, k)},
mn,k − 1 if (s, j) = (n, k),

mn,k + 1 if (s, j) = (n, k).

If εi(M) = 0 we set ẽi(M) = 0.
For εi(M) 6= 0 let p be maximal such that

εi(M) = −(
∑
j>p

mij +mi+1,j−n+i −
∑
j≥p

mi+1,j +mi,j−n+i).
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Then we distinguish the following two cases to define ẽi(M) for i 6= n:

1. case: mi+1,p−n+i 6= 0.
Then we set ẽi(M) as the matrix we get from M by increasing (resp. decreas-
ing) mi,p (resp. mi+1,p) by one. Formally spoken we observe ẽi(M) = m̂s,j

from M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(i, p), (i+ 1, p)},
mi,p + 1 if (s, j) = (i, p),

mi+1,p − 1 if (s, j) = (i+ 1, p).

2. case: mi+1,p−n+i = 0.
Then we define ẽi(M) as the matrix we get from M by increasing (resp.
decreasing) mi+1,p−n+i (resp. mi,p−n+i) by one. That means we obtain
ẽi(M) = m̂s,j from M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(i, p− n+ i), (i+ 1, p− n+ i)},
mi+1,p−n+i + 1 if (s, j) = (i+ 1, p− n+ i),

mi,p−n+i − 1 if (s, j) = (i, p− n+ i).

Let p be maximal such that

εn(M) = −(
∑
j>p

mn,j −
∑
j≥p

mn,j).

Then we set ẽn(M) as the matrix we get from M by decreasing (resp. increas-
ing) mn,p (resp. mn,p) by one. Formally spoken we obtain ẽn(M) = m̂s,j from
M = ms,j by

m̂s,j =


ms,j if (s, j) /∈ {(n, p), (n, p)},
mn,p + 1 if (s, j) = (n, p),

mn,p − 1 if (s, j) = (n, p).

Easy computations show that Mat2n×Z(Z≥0)/ ∼ along with the maps wt, ϕi, εi, f̃i
and ẽi becomes a semi-normal crystal. As in section 2 we prove that this crys-
tal structure coincides with the structure on M under the above bijection.

Proposition 3.4 The bijection

Ψ : M → Mat2n×Z(Z≥0)/ ∼
M =

∏
i∈B,j∈Z

Xi(j)
mij 7→ [mij ]

is a crystal isomorphism.

Proof: It is easy to verify that wt, εi and ϕi are invariant under Ψ especially
because they are invariant under the application of (C1)-(C4). It remains to
show that Ψ commutes with the crystal operators f̃i and ẽi. Let M ∈M be a
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monomial with associated matrix [ml,j ]. Due to the crystal structure defined
on the matrices it follows almost directly that for all i ∈ I

f̃i(M) =
∏

l∈B,j∈Z
Xl(j)

f̃i([mlj ])

and the same for ẽi.
Therefore it suffices to verify that

f̃i([mlj ]) = [f̃i([mlj ])]

and
ẽi([mlj ]) = [ẽi([mlj ])].

Since this can be proved analogously we just give the proof for f̃i.
For simplicity we denote [ml,j ] by ml,j and for i 6= n let k be minimal such
that

ϕi(M) =
∑
j≤k

mij +mi+1,j−n+i −
∑
j<k

mi+1,j +mi,j−n+i.

First we look at the case mi+1,k−n+i = 0. That means we get f̃i(ml,j) by
increasing mi+1,k and decreasing mi,k each by one. Let us assume that the
increase of mi+1,k induces a longer or new cancellation. But this yields

mi+1,k = 0 and mi,k−n+i = 0

and together with the choice of k this implies

mi,k+1 = 0 and mi+1,k−n+i+1 = 0.

Since mi,k+1 = 0 and mi,k−n+i = 0, the increase doesn‘t provide any gen-
eralized diagonal at mi+s,k+1−s for positive s, without insertion. But those
insertions would have been done before we operate with f̃i because ml,j is in
reduced form.
It is still possible that we get a new generalized diagonal by (C4) at mi+1,k

itself. But we get no diagonal mi+1−s,k+s 6= 0 for s = 0, . . . , i since mi,k+1 = 0.
Furthermore we can‘t increase this entry by applying (C1) because otherwise
we could have applied (C4) at mi,k+1 before.
The second possibility to apply (C4) at mi+1,k needs mi+1−s,k−n+i−s 6= 0 for
all s = 0, . . . , i. In particular we get mi−s,k−n−1+i−s 6= 0 for all s = 0, . . . , i−1
and mi,k 6= 0 which implies an application of (C4) at mi,k before operating.
This is again a contradiction to the fact that mi,j is reduced.
Moreover since mi+1,k−n+i = 0 we can not apply (C1) to the increased mi+1,k.

Overall we have seen that operating with f̃i preserves the reduced version in
this case.
Similar arguments hold for the case mi+1,k−n+i 6= 0 .

2

Now we translate the characterizing conditions of the monomials that give a
realization of the crystal bases, given in Proposition 3.1, into the language of
matrices. We will recognize that those are the same conditions as in Chapter
2. From this observation one can deduce that similar constructions yield our
desired morphism.
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Definition 3.1 Define N ⊂ Mat2n×Z(Z≥0) as the set of matrices whose re-
duced versions have only zero-entries out of a 2n× n-submatrix
M = (mij) i=1,...,n,n,...,1

j=0,...,n−1

satisfying the following properties:

(i) mij ∈ Z≥0 for i = 1, . . . , n, n, . . . , 1 and j = 0, . . . , n− 1,

(ii)
∑
k≥i

mk,j ≤
∑
k>i

mk,j−1 for i = 1, . . . , n, n, . . . , 1 and j = 1, . . . , n− 1,

where we set
∑
k>i

mk,j−1 = 0 for i = 1.

Due to the crystal structure and the equivalence relation above we observe
the following remark which helps us to guarantee that operating interchanges
with lower decomposition later. Moreover it implies that N and hence also N
are stable under application of ẽi and f̃i.

Remark 3.2 Let mi,j be a reduced version of a matrix in Mat2n×Z(Z≥0) and
i ∈ I.

(i) If f̃i acts on mi,k then mi,k > mi+1,k−1,

(i) if ẽi acts on mi+1,p then mi+1,p > mi,p+1,

where we set i+ 1 = i− 1 if i ∈ {n, . . . , 2} and n+ 1 = n.

As mentioned above we also use the lower decomposition rule for the later
constructions. Therefore we need an C-analog of Lemma 2.1.

Lemma 3.1 Let [M ] = (mij) i=1,...,n,n,...,1
j=0,...,l−1

∈ Mat2n×l(Z≥0) be a reduced matrix

without zero columns which satisfies condition (ii) of Definition 3.1.
Then we have

l ≤ n.

Proof: Assume l > n and consider a special collection of elements in
B = {1, . . . , n, n̄, . . . 1̄}:

For k = 1, . . . , n+ 1 let ik ∈ B be maximal such that mik,k 6= 0.

This collection exists because there are no zero columns and l > n. Further-
more condition (ii) of Definition 3.1 implies

in+1 ≺ in ≺ . . . ≺ i2 ≺ i1.

That means there exists at least one pair p, q ∈ {1, . . . , n+ 1} with p > q such
that

ip ∈ {1, . . . , n} and iq = ip.

Let p be minimal with this property. The minimality of p yields

p− q ≤ n− ip + 1.

We assume p− q < n− ip + 1, namely p− q = n− ip + 1− j for some j ∈ N.
Let us consider the number of elements between ip and iq:

|{ip, ip−1, . . . , iq+1, iq}| = n− ip − j + 2.
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Since
(n− ip − j + 2) + (ip − 1) = n− j + 1 < n+ 1

there is another pair p̂, q̂ with p̂ > p > q̂ such that ip̂ ∈ {1, . . . , n} and iq̂ = ip̂.
If we consider p̂ minimal with this property one gets

p̂− q̂ ≤ n− ip̂ + 1.

If we assume p̂ − q̂ < n − ip̂ + 1 we can use the same arguments as above.
This way we can inductively conclude that there has to be such a pair with
p− q = n− ip + 1 which is a contradiction to mi,j being reduced and therefore
l ≤ n.

2

Let us define the C-analog of the map Φ given in Section 2.1.

Φ : Mat2n×Z(Z≥0)/ ∼ → N/ ∼
mij 7→ nij ,

where we compute nij as follows:

Let M be a reduced version matrix in Mat2n×Z(Z≥0)/ ∼. Then we consider
the lower decomposition of M :

M = M1 +M2,

with M1 = m
(1)
i,j , M2 = m

(2)
i,j and M1 ∈ N. We use exactly the same decompo-

sition as in Section 2.1 with 2n rows instead of n + 1. Then we move every

entry of M2 one column to the left and denote this matrix by M
(1)
2 and set

M (1) := M1 +M
(1)
2 .

Then we decompose [M (1)] and proceed the same way until the iteration be-

comes stationary and we reach M (k) = m
(k)
i,j ∈ N. Then set

ni,j = N := M (k).

Before we show that this map has the desired properties we state another
lemma which will be useful for the proof of the main theorem.

Lemma 3.2 Let M = M1 + M2 be the lower decomposition of a matrix in

reduced form with M1 = m
(1)
i,j and M2 = m

(2)
i,j . Then there exists no pair p, q

with p− q = n− i such that

m
(1)
i,p 6= 0 and m

(2)

i,q
6= 0.

Proof: Due to the lower decomposition rule we obtain M1 ∈ N and since M is
reduced it‘s obvious that M1 is reduced. Now one can use the same arguments
as used in the proof of Lemma 3.1.

2

We define the compression map κ again as the following composition

κ := Ψ−1 ◦ Φ ◦Ψ

and show
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Theorem 3.1 Let g be of type C. Then, the map

κ : M →
⋃

λ∈P,s∈Z
Ms(λ)

M 7→ (Ψ−1 ◦ Φ ◦Ψ)(M)

defined as above is a morphism of crystals.

Proof: We limit ourselves to prove that sending a reduced matrix M onto
M (1) thus defined preserves the crystal structure. This implies inductively that
Φ and hence Ψ−1 ◦ Φ ◦ Ψ are crystal morphisms. So consider M = ml,j the

reduced form of an arbitrary matrix in Mat2n×Z(Z≥0) and ml,j = m
(1)
l,j +m

(2)
l,j

its lower decomposition. For an i ∈ I we have to show:

(i) wt(M) = wt(M (1)),

(ii) ϕi(M) = ϕi(M
(1)),

(iii) εi(M) = εi(M
(1))

and that computing M (1) commutes with the Kashiwara operators namely

(iv) (f̃i(M))(1) = f̃i(M
(1)),

(v) (ẽi(M))(1) = ẽi(M
(1)).

We confine ourselves to prove (ii) and (iv) because the rest follows analogously.

Rather we just show (ii) and get (iv) from the An-case. Set N = M1 + M
(1)
2

with N = nl,j and let k be minimal such that

ϕi(M) =
∑
j≤k

mij +mi+1,j−n+i −
∑
j<k

mi+1,j +mi,j−n+i.

In the first step we show ϕi(M) ≤ ϕi(N).
For simplicity we introduce some notation:
For i ∈ I, l ∈ Z and a matrix M = mi,j we set

pi,l(M) :=
∑
j≤l

mi,j +mi+1,j−n+i −
∑
j<l

mi+1,j +mi,j−n+i.

First of all we look at the case mi+1,k−n+i = 0. That yields mi,k 6= 0 and
furthermore Remark 3.2 says mi,k > mi+1,k−1. The fact that M is reduced
also implies mi,k−n+i−1 = 0. We show that either

pi,k(N) = pi,k(M) = ϕi(M)

or
pi,k−1(N) = pi,k(M) = ϕi(M).

Let us assume that pi,k(N) < pi,k(M). The first case that could yield this is∑
j≤k

ni,j −
∑
j<k

ni+1,j <
∑
j≤k

mi,j −
∑
j<k

mi+1,j .
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But the computation in the proof of Theorem 2.1 shows that in this case we
obtain ∑

j≤k
mi,j −

∑
j<k

mi+1,j =
∑
j≤k−1

ni,j −
∑
j<k−1

mi+1,j

and since mi+1,k−n+i = 0,mi,k−n+i−1 = 0 we get

ϕi(M) = pi,k−1(N).

The other possibility to get pi,k(N) < pi,k(M) is∑
j≤k

ni,j −
∑
j<k

ni+1,j =
∑
j≤k

mi,j −
∑
j<k

mi+1,j

and ∑
j≤k

ni+1,j−n+i −
∑
j<k

ni,j−n+i <
∑
j≤k

mi+1,j−n+i −
∑
j<k

mi,j−n+i.

The first equation implies 0 6= m
(1)
i,k > m

(1)
i+1,k−1 and the inequation yields

0 6= m
(2)

i,k−n+i
> m

(2)

i+1,k−n+i+1
.

But the existence of 0 6= m
(1)
i,k and 0 6= m

(2)

i,k−n+i
provides a contradiction to

Lemma 3.2.

Now we consider the case mi+1,k−n+i 6= 0. Since M is reduced we get

mi+1,k = 0 and in particular m
(2)
i+1,k = 0. Therefore the only chance to have

pi,k(N) < pi,k(M) is m
(1)
i,k 6= 0 and 0 6= m

(2)

i,k−n+i
> m

(2)

i+1,k−n+i+1
, which is

again a contradiction to Lemma 3.2.
Overall we get

ϕi(M) ≤ ϕi(N).

It remains to show:
ϕi(M) ≥ ϕi(N).

Suppose ϕi(M) < ϕi(N), that means there is a t ∈ Z with

pi,t(N) > ϕi(M).

We distinguish the same cases as above. At first we assume∑
j≤t

ni,j −
∑
j<t

ni+1,j >
∑
j≤t

mi,j −
∑
j<t

mi+1,j .

That is only possible if m
(2)
i,t+1 > m

(2)
i+1,t. In particular we obtain mi,t+1 6= 0 and

hence mi,p−n+i = 0. From the An-case we know that the following inequation
holds in this case∑

j≤t
ni,j −

∑
j<t

ni+1,j ≤
∑
j≤t+1

mi,j −
∑
j<t+1

mi+1,j .

Combining this with mi,p−n+i = 0 and pi,t(N) > ϕi(M) we see

pi,t+1(M) > ϕi(M),
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which is a contradiction to the choice of k.
Now suppose that∑

j≤t
ni+1,j−n+i −

∑
j<t

ni,j−n+i >
∑
j≤t

mi+1,j−n+i −
∑
j<t

mi,j−n+i.

That means 0 6= m
(2)

i+1,t−n+i+1
> m

(2)

i,t−n+i
and the An-case implies again∑

j≤t
ni,j−n+i −

∑
j<t

ni,j−n+i ≤
∑
j≤t+1

mi,j−n+i −
∑
j<t+1

mi,j−n+i.

If mi,p+1 = 0 we obtain the same contradiction as in the above case. So we

assume mi,p+1 6= 0. But in order to get pi,t(N) > ϕi(M) we need m
(1)
i,p+1 6= 0

because otherwise
pi,t(N) ≤ pi,t+1(M) ≤ ϕi(M).

But m
(1)
i,p+1 6= 0 and m

(2)

i+1,t−n+i+1
6= 0 provide a contradiction to Lemma 3.2.

Hence
ϕi(M) ≥ ϕi(N).

Moreover these arguments also show that either k or k − 1 is minimal such
that either

ϕi(N) = pi,k(N)

or
ϕi(N) = pi,k−1(N).

Finally Remark 3.2 and the An-case imply (iv) which finishes our proof.
2

Example 3.2 For n = 3 we reconsider Example 3.1 namely the monomial

M = Y1(0)Y1(2)Y1(1)−1Y1(5)−1Y1(3)−1Y1(4)−2Y2(0)Y2(3)Y2(5)−2Y3(0)Y3(4).

We have already seen that we can write M as

M = X1(0)X1(2)X1(−2)X1(2)X1(0)X1(1)2X2(0)X1(1)X2(3)X1(4)X2(3)2

X1(2)2X3(0)X2(1)X1(2)X3(4)X2(5)X1(6)

with reduced version matrix

[mi,j ] =



1 0 2 0 0

1 1 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 1 0

1 1 2 0 0


.
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We observe its lower decomposition by

1 0 2 0 0

1 1 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 1 0

1 1 2 0 0


=



1 0 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0


+



0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 1 0

0 1 2 0 0


and therefore

[mi,j ]
(1) =



1 1 1 0

1 1 1 0

1 0 0 1

0 0 0 0

0 0 1 0

2 2 0 0


= [[mi,j ]

(1)].

One further step yields the desired matrix in N:

Φ(Ψ(M)) =



1 1 1

1 2 0

1 0 1

0 0 0

0 1 0

4 0 0


and by application of Ψ−1 we get the monomial

N = X1(0)X1(1)X1(2)X2(0)X2(1)2X2(2)X2(0)X3(0)4

= Y1(0)Y2(0)Y2(1)2Y1(3)−1Y3(1)−4Y2(1)4 ∈M0(3Λ1 + 2Λ2 + 2Λ3).

Let B(M) be the connected component of M ∈M.

Corollary 3.1 For M ∈ M and Φ(Ψ(M)) =: ni,j ∈ N we consider s ∈ Z
maximal such that ni,j = 0 for all j < s and i ∈ {1, . . . , n, n, . . . 1} = B.
Furthermore for k = 1, . . . , n we define the values:

ak :=
∑
i∈B

ni,k+s−1 −
∑
i∈B

ni,k+s ≥ 0.

Then we have

κ(M) ∈Ms(
n∑
k=1

akΛk)

and by restricting our morphism to the connected component we get that

κ|B(M) : B(M) → Ms(
n∑
k=1

akΛk)

is a crystal isomorphism.
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3.2 Monomials and C-Tableaux

Kim and Shin [7] also gave a realization of the crystal bases in the sense of
reversed Young tableaux for Lie algebras of type C. In this case they obtained
S(λ) as the set of all semistandard reversed Young tableaux of shape λ with
entries 1, . . . , n, n, . . . , 1 satisfying some conditions (for details see [7]). More-
over Kang, Kim and Shin [3] constructed a morphism between M1(λ) and
those tableaux for g of type Cn. This is similar to the one in Section 2.2 and
can also be generalized to a crystal morphism between arbitrary monomials
and tableaux in S(λ) via compression.

Let M be inM1(λ) for an integral dominant weight λ and mi,j its associated
reduced matrix. For i ∈ B we define again S(M) to be the reversed tableaux
with mi,j many i‘s in the j-th row. We will say that there is an i(p) if there
exists an entry i in the p-th row of the tableaux. In order to get a tableaux
that satisfies the condition of S(λ) we have to apply the following rules which
are due to [3]:

(al-1) For each a = 1, . . . , n− 1, if there is a pair (a(p), a(q)) such that p− q <
n− a and either a(p) and a(q) lie in the same column or a(q) lies in the
left hand side of a(p).
Then replace (a(p), a(q)) with (a+ 1(p), a+ 1(q)).
If there are several such pairs then we begin with the rightmost a(p) and
leftmost a(q).

(al-2) For each b = n, . . . , 2, if there is a pair (b(p), b(q)) such that p − q =
n− b+ 1 and b(q) lies in the right hand side of b(p).
Then replace (b(p), b(q)) with (b− 1(p), b− 1(q)).
If there are several such pairs then we begin with the leftmost b(p) and
rightmost b(q).

Let us denote by [S(M)] the reversed tableaux we obtain from S(M) by ap-
plying those rules. Then we can state the following

Proposition 3.5 [3] The map

Ω : M1(λ) → S(λ)

M 7→ [S(M)]

is a crystal isomorphism.

As in the An-case we continue this morphism to Ms(λ). Let M ∈ Ms(λ) be
a monomial and mij the associated reduced matrix in N. We set S(M) to be
the semistandard reversed tableaux with mij-many i entries in the j− s+ 1-st
row and get the morphism

Ω :
⋃

λ∈P,s∈Z
Ms(λ) →

⋃
λ∈P

S(λ)

M 7→ [S(M)].

If we combine this result with Theorem 3.1 we get a morphism between Naka-
jima monomials and tableaux:
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Corollary 3.2 The map

Ω ◦ κ : M →
⋃
λ∈P

S(λ)

is a crystal morphism.

Let us consider an example:

Example 3.3 For g of type C3 consider the monomial

M = Y2(2)2Y2(1)−1Y3(0)Y1(0)Y3(3)−1.

Via compression we get Φ(Ψ(M)) by

1 0 1 0

1 1 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0


.

This yields the following tableau:

S(κ(M)) =
1

2 3
1 2 3 2 1

(al-1)
=

2
3 3

1 2 3 3 2
= [S(κ(M))] ∈ S(λ).

3.3 Insertion scheme for monomials in type C

In this section we define a C-analogue of the bumping rule for Nakajima
monomials given in Section 2.3. Let M1,M2 ∈ Mat2n×Z(Z≥0) be two reduced
version matrices of monomials in M. As in the An-case we need to associate a
matrix M1 ∗M2 ∈ Mat2n×Z(Z≥0) to M1⊗M2. In order to assure that M1 ∗M2

is in reduced form we need more zero columns between M1 and M2 in this
case. Namely we insert n zero-columns and define

M1 ∗M2 =



0 . . . 0

0 0

M2
...

... M1

0 0

0 . . . 0


∈ Mat2n×Z(Z≥0).

With the tensor product rule and the same arguments as in Proposition 2.6
we observe:

Proposition 3.6 The map

Mat2n×Z(Z≥0)/ ∼ ⊗ Mat2n×Z(Z≥0)/ ∼ → Mat2n×Z(Z≥0)/ ∼
M1 ⊗M2 7→ M1 ∗M2

is a crystal morphism.
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Furthermore for M1,M2 ∈ M we can define the bumping M2 → M1 via
compression analogously to the An-case:

M1 →M2 := Ψ−1(Φ(Ψ(M1) ∗Ψ(M2))),

where Ψ is the crystal isomorphism between M and Mat2n×Z(Z≥0)/ ∼ and
Φ : Mat2n×Z(Z≥0)/ ∼→ N/ ∼ the matrix compression. Theorem 3.1 and
Proposition 3.6 imply

Theorem 3.2 Let g be of type C. Then, the map

M⊗M →
⋃

λ∈P,s∈Z
Ms(λ)

M1 ⊗M2 7→ M1 →M2

is a crystal morphism.

Kim and Shin [7],[8] also defined a bumping rule for reversed tableaux in
type C. Therefore it is natural to compare [S(M1 → M2)] and [S(M1)] →
[S(M2)] as in Section 2.3, where [S(M1 →M2)], [S(M1)] and [S(M2)] are the
corresponding tableaux in

⋃
λ

S(λ) due to Corollary 3.2. Theorem 3.2 together

with Corollary 3.2 imply again

[S(M1 →M2)] = [S(M1)]→ [S(M2)].

Example 3.4 For g of type C3 we compute the bumping of the two monomials

M1 = Y3(0)Y3(2)Y2(1)Y2(3)−2Y1(3)Y1(2)−1

and
M2 = Y2(2)2Y2(1)−1Y3(0)Y1(0)Y3(3)−1.

At first we consider the monomial bumping M1 → M2 and its associated
tableau [S(M1 → M2)]. Afterwards we compute the tableaux bumping of
[S(M1)] and [S(M2)], namely [S(M1)] → [S(M2)]. Then we will obtain the
expected equation

[S(M1 →M2)] = [S(M1)]→ [S(M2)].

We compute the reduced version matrices of M1 and M2 by

Ψ(M2) =



1 0 0 1

0 0 2 0

1 0 0 0

0 0 1 0

0 1 0 0

0 0 1 0


,Ψ(M1) =



0 0 0

0 2 0

1 0 1

0 0 0

0 1 0

2 0 0


.
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Therefore we have to apply the compression map Φ to the matrix

M1 ∗M2 =



0 . . . 0

0 0

Ψ(M2)
...

... Ψ(M1)

0 0

0 . . . 0



=



1 0 0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0 2 0

1 0 0 0 0 0 0 1 0 1

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 2 0 0


.

We apply the compression stepwise and get

(M1 ∗M2)(1) =



1 0 1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 2 0 0

1 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 2 0 0 0


= [(M1 ∗M2)(1)],

(M1 ∗M2)(2) =



1 0 1 0 0 0 0 0 0 0

0 2 0 0 0 0 0 2 0 0

1 0 0 0 0 0 1 0 1 0

0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 2 0 0 0


= [(M1 ∗M2)(2)],

(M1 ∗M2)(3) =



1 0 1 0 0 0 0

1 1 0 0 0 2 0

1 0 0 0 1 0 1

0 1 0 0 0 0 0

1 0 0 0 0 1 0

1 0 0 0 2 0 0


= [(M1 ∗M2)(3)],
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(M1 ∗M2)(4) =



1 0 1 0 0 0 0

1 1 0 0 2 0 0

1 0 0 1 0 1 0

0 1 0 0 0 0 0

1 0 0 0 1 0 0

1 0 0 2 0 0 0


= [(M1 ∗M2)(4)],

(M1 ∗M2)(5) =



1 0 1 0 0

1 1 0 2 0

1 0 1 0 1

0 1 0 0 0

1 0 0 1 0

1 0 2 0 0


⇒ [(M1 ∗M2)(5)] =



1 0 2 0 0

1 1 0 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 1 0

1 1 2 0 0


,

(M1 ∗M2)(6) =



1 1 1 0

1 1 1 0

1 0 0 1

0 0 0 0

0 0 1 0

2 2 0 0


= [(M1 ∗M2)(6)]

and finally

(M1 ∗M2)(7) =



1 1 1

1 2 0

1 0 1

0 0 0

0 1 0

4 0 0


= [(M1 ∗M2)(7)] ∈ N.

Hence we observe the corresponding reversed tableau

S(M1 →M2) =
1 3

1 2 2 2
1 2 3 1 1 1 1

(al-1)
=

2 3
1 2 3 2

1 2 3 3 1 1 1
∈ S(3Λ1 + 2Λ2 + 2Λ3).

On the other hand we assign the tableaux to M1 and M2 separately:

[S(M1)] =
3

2 2 2
3 1 1

and [S(M2)] =
2

3 3
1 2 3 3 2

.
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By applying the reversed bumping rule for tableaux we get

[S(M1)]→ [S(M2)] =
3

2 2 2
3 1 1

→
2

3 3
1 2 3 3 2

=
2 3

1 2 3 2
1 2 3 3 1 1 1

= [S(M1 →M2)].
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