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1 Introduction

Existence and efficiency of equilibria in markets with asymmetric information

have been studied in great depth ever since the seminal Akerlof (1970) article.

Whether asymmetric information per se has a strong impact on market equilib-

ria thereby crucially depends on whether the asymmetry of information pertains

to private or, as in Akerlof (1970), common values. When values are private,

that is when the payoff that the uninformed party receives from a given contract

does not depend on the other party’s private information, competitive equilib-

ria exist and are efficient under fairly mild assumptions.1 However, in markets

with common values, a competitive equilibrium might not exist at all. This is

the result in the famous Rothschild and Stiglitz (1976) model on competitive

insurance markets with adverse selection. Rothschild and Stiglitz (1976) show

that when insurers offer contracts to consumers that have private information

about their risk type which is payoff-relevant for a given insurance contract,

an equilibrium in pure strategies might fail to exist: If the share of low risks

is high, a profitable pooling contract would be preferred by both high and low

risk types over the candidate separating, zero-profit-making Rothschild-Stiglitz

(RS) contracts. However, a pooling contract cannot be tendered in equilibrium

as insurers would try to cream skim low risks.

This equilibrium nonexistence result is not merely a theoretical oddity. In fact,

equilibrium nonexistence is sometimes brought forward as an efficiency reason

for regulation of insurance markets, notably social insurance. However, equilib-

rium inexistence itself is not a sensible reason to call for regulation: It cannot

1 See Pouyet, Salanié, and Salanié (2008). An earlier work with more restrictive assumptions
is Fagart (1996).
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be determined whether regulation, resulting in a particular market allocation,

improves efficiency in a market where it is not even clear what the market allo-

cation is without regulation. Rather, the equilibrium inexistence result points

out that it is necessary to examine whether the RS model is the correct model to

describe behavior in insurance markets and consequently to think of alternative

models. Whether adverse selection provides an efficiency reason for regulation

might then be determined based on equilibrium properties in these alternative

models.

Not surprisingly, the Rothschild and Stiglitz (1976) result has spurred exten-

sive research. In chapter 2, the nonexistence problem and ensuing debate is

reviewed in more detail. In terms of the resulting market allocation, the con-

tributions following RS can with a few exceptions be classified in two broad

categories: Models that yield the RS allocation, even for the case in which

there is no equilibrium in the original RS model, and models that yield the

so-called Wilson-Miyazaki-Spence (WMS) allocation. The crucial difference be-

tween these allocations is that the RS allocation is only second-best efficient if

an equilibrium exists in the original RS model, whereas the WMS allocation

is generally second-best efficient. Thus, there is an efficiency reason for reg-

ulation due to adverse selection if insurance markets are considered correctly

captured in models of the first, but not the second class. However, although

several modifications to the RS model have been brought forward, there is still

no generally agreed upon solution. This is because proposed solutions either

lack sound game-theoretic foundation, introduce somewhat arbitrary changes

to the RS model or impose exogenous constraints. Chapters 3 and 4 therefore

propose solutions to the RS puzzle that tackle these problems.

The third chapter introduces a dynamic model that allows insurers to with-

draw contracts in reaction to their competitors.2 This is the logic suggested in

2 The model in this chapter is joint work with Achim Wambach. An earlier version was
presented at the following conferences: 36th Conference of the European Association for

Research in Industrial Economics (Ljubljana, Slowenia, 2009), XIV. Spring Meeting of

Young Economists (Istanbul, Turkey, 2009), 24th Annual Meeting of the European Eco-

nomic Assocation (Barcelona, Spain, 2009), Annual Meeting of the European Group of

Risk and Insurance Economists (Bergen, Norway, 2009), Annual Meeting of the German
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Wilson (1977)’s “anticipatory equilibrium concept” that, in spite of departing

from Nash equilibrium, to date is one of the most appealed to solutions. In our

model an equilibrium with the WMS allocation always exists, thus providing a

game-theoretic foundation for the Wilson (1977) equilibrium. However, jointly

profit-making contracts can as well be sustained in equilibrium. We then allow

for entry and show that the WMS allocation is the unique equilibrium allocation

under entry.

In the fourth chapter we endogenize insurer capital: Instead of being assumed

to be exogenously endowed with large financial assets as in the RS model, in-

surers can choose their level of capital and consequently go insolvent.3 With

this endogenous insolvency risk, an equilibrium with the WMS allocation always

exists. Interestingly, solvency regulation might have unintended consequences

as strong capital requirements impede the existence of a second-best efficient

equilibrium.

Whereas the consequences of asymmetric information on competition in insur-

ance markets with adverse selection have thus been thoroughly analyzed, little

is known about the impact of asymmetric information on oligopoly behavior.4

In the fifth chapter we therefore depart from the assumption of competition and

analyze the impact of asymmetric information on the ability of insurance firms

to collude.5 As insurance markets tend to be highly concentrated and there

have been several antitrust cases, notably the recent German case in which 17

insurers for industrial insurance were fined € 140 million in 2010 on the grounds

of collusive behavior, an analysis of factors that influence collusion in insurance

markets seems warranted.6 It is shown that asymmetric information destabi-

Economic Association (Magdeburg, Germany, 2009).
3 The model in this chapter is joint work with Achim Wambach. An earlier version of

the model was presented at the following conferences: 10th Econometric Society World

Congress (Shanghai, China, 2010), 25th Annual Meeting of the European Economic Asso-

cation (Glasgow, UK, 2010), World Risk and Insurance Economics Conference (Singapore,
2010), Annual Meeting of the German Association for insurance science (Düsseldorf, Ger-
many, 2010).

4 An exception is Olivella and Vera-Hernández (2007) in which horizontally differentiated
health plans are considered.

5 The model in this chaper is joint work with Alexander Rasch.
6 According to Buzzacchi and Valletti (2005), concentration indices for the top 5 insurance

companies in non-life business in Europe range from 27 % in Germany to 89% in Finland.
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lizes collusion, however, this is not a result of asymmetric information per se,

but stems from the common value property of the market. Thus, on a general

note, we identify a new factor that destabilizes collusion: payoff-relevant private

information.



2 Competitive Insurance

Markets with Adverse

Selection

This chapter lays out the Rothschild-Stiglitz model and discusses the literature

on existence of a pure strategy equilibrium. Besides the Rothschild-Stiglitz con-

tracts, the Wilson-Miyazaki-Spence contracts are introduced.

2.1 The Rothschild-Stiglitz model

In their seminal work on competition in adverse selection insurance markets,

Rothschild and Stiglitz (1976) (hereafter RS) analyze the market by defining a

particular notion of equilibrium. In this section, we spell out the game behind

the analysis in RS. While RS consider single contract offers by firms, we allow

insurers to offer contract menus. Consider the following game:

There is a continuum of individuals with mass 1. Each individual faces two possi-

ble states of nature: In state 1, no loss occurs and the endowment is w01, in state

2 a loss occurs and the endowment is w02 with w01 > w02 > 0. There are two

types of individuals, an individual may be a high risk type (H) with loss proba-

bility pH , or a low-risk type (L) with loss probability pL, with 0 < pL < pH < 1.

Insurance is provided by firms in the set F := {1, ..., f, ...n}. Firms do not

know, ex ante, any individual’s type. If an individual buys insurance, then the

endowment ω0 = (w01, w02) is traded for another state-contingent endowment
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ω = (w1, w2), we say the individual buys insurance contract ω. The set of fea-

sible contracts, Ω, is given by Ω := {(w1, w2) |(w1 ≥ w2 > 0} where w1 < w2 is

ruled out for moral hazard considerations.

The expected utility of a J-type individual, J ∈ {H,L} from chosing a contract

ω ∈ Ω is abbreviated by uJ(ω) := (1− pJ)v(w1) + pJv(w2) where v is a strictly

increasing, twice continuously differentiable and strictly concave von Neumann-

Morgenstern utility function. Note that, since consumers only differ in risk, the

single-crossing property holds naturally as (1−pL)v′(w1)
pLv′(w2)

> (1−pH)v′(w1)
pHv′(w2)

.7

The RS model is a screening game, i.e. the timing is the following:

Stage 0: The risk type of each individual is chosen by nature. Each individ-

ual has a chance of γ, 0 < γ < 1 to be a H-type, and of (1−γ) to be a L-type.

Stage 1: Each firm f ∈ F offers a finite set of contracts Ωf ⊂ Ω.

Stage 2: Individuals choose an insurance contract among offered contracts.8

In this game, the only candidate equilibrium contracts are separating and sep-

arately zero-profit making. In particular, candidate equilibrium contracts are

such that the high risk type is fully insured at her fair premium, and the low

risk type is partially insured at her respective fair premium such that contracts

are incentive compatible. These contracts are the famous Rothschild-Stiglitz

contracts, shown below in Figure 2.1. The straight lines correspond to the H-

type and L-type fair insurance contracts with the dashed one indicating the fair

insurance contracts for an average risk.

The intuition why an equilibrium in pure strategies, if it exists, yields the RS al-

7 Wambach (2000), Smart (2000) and Villeneuve (2003) introduce an additional dimension
of asymmetric information by assuming that consumers furthermore differ in wealth/risk
aversion. With two dimensions of asymmetric information, the single crossing property
may be violated. Wambach (2000), Smart (2000) and Villeneuve (2003) all consider single
contract offers and show that due to violation of single crossing there might be contracts
with positive profits offered in equilibrium. However, Snow (2009) argues that this is
simply a consequence of restricting insurer strategies to single contract offers as contracts
with positive profits cannot be tendered in equilibrium when contract menus can be offered.

8 Insurance purchase is exclusive, i.e. a consumer is assumed to buy at most one insurance
contract at one firm.
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w2

w1

uL

uH

ωH
RS

ωL
RS

Figure 2.1: RS contracts

location, is the following: Pooling cannot be an equilibrium, as for any possible

pooling contract that yields nonnegative profits on the whole population, a prof-

itable deviation exists in either attracting all customers, if profits on each type

in the pooling contract are positive, or cream-skimming low risks, if high risks

are cross-subsidized. In a separating equilibrium, competition always drives the

H-type contract to but not beyond the full insurance contract at the fair H-type

premium, where cross-subsidization is again not possible due to cream-skimming

deviations. Finally, competition drives the L-type contract to the contract that,

yielding zero profits, is the best possible contract for L-types given the incen-

tive compatibility constraint on H-types. Note that the RS contracts can be

obtained as the solution to the following maximization problem:

max
ωL,ωH

uL(ωL)

s.t.

uH(ωH) ≥ uH(ωL)

(1− pH)(w01 − wH
1 ) + pH(w02 − wH

2 ) ≥ 0

(1− pL)(w01 − wL
1 ) + pL(w02 − wL

2 ) ≥ 0

i.e. L-type utility is maximized subject to incentive compatibility for theH-type
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and constraints specifying that each contract is separately zero profit-making.

From the above maximization problem, it is easy to see that RS contracts are

independent of the shares of risk types in the population. Then, an equilibrium

in pure strategies with the RS allocation might not exist for the following rea-

son: If the share of H-types is low, there are profitable pooling contracts or

(cross-subsidizing) contract menus that are preferred by both risk types over

their respective RS contracts. However, pooling, or a cross-subsidizing con-

tract menu cannot be tendered in equilibrium as cream-skimming would occur.

Hence, an equilibrium in pure strategies might fail to exist if the share of high

risk types is low.

In Figure 2.1, the RS contracts can be overturned by a simple pooling deviation.

Note that even if there is no pooling contract that is profitable and preferred

by both risk types, still a cross-subsidizing contract menu can be profitable and

preferred to the RS contracts, i.e. the equilibrium inexistence problem is aggra-

vated when firms offer contract menus as in our specification instead of single

contracts as in the original RS model. Furthermore, from the above discussion

it is also clear that RS contracts are not necessarily second-best efficient: If

there exists a profitable deviation overturning the RS contracts, the resulting

allocation would be more efficient than the RS allocation.9 We can summarize

the above results as follows:

Result 2.1 (Rothschild-Stiglitz) Any equilibrium in pure strategies yields

the RS allocation. However, an equilibrium in pure strategies fails to exist if

the share of high risk types is low. Furthermore, the RS allocation is not gener-

ally second-best efficient.

9 A second-best efficient allocation is Pareto efficient among those that satisfy self-selection
conditions and resource constraints, see Crocker and Snow (1985). The resource constraint
here translates to nonnegative profits on the whole population.
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2.2 The equilibrium nonexistence debate

From the review of the Rothschild-Stiglitz model, we have established that an

equilibrium in pure strategies might not exist. In an application on their gen-

eral existence theorem of mixed-strategy equilibria in discontinuous games, Das-

gupta and Maskin (1986) prove existence of a mixed-strategy equilibrium in the

Rothschild-Stiglitz model and partially characterize the equilibrium: H-types

are always fully insured, and firms mix between jointly zero-profit making con-

tract menus.10 However, although mixed strategies are a meaningful concept

in several economic environments, an equilibrium in mixed strategies in the in-

surance market does not seem particularly appealing: For any contract menu

offered with some probability, once it is offered, competitors would want to

change their own contracts. Then it is not clear why insurers should only act

simultaneously and not be allowed to react to their competitors contract offers

once these are observed; or, put differently, this raises the question of when

and how often insurers are allowed to modify contracts and thus react to their

competitors.

In consequence, rather than settling on a mixed-strategy equilibrium, it seems

sensible to rethink models of competition in adverse selection insurance markets.

Early works by Wilson (1977) and Riley (1979) map the idea of a reaction to

competitors by modifying the equilibrium concept to include expectations about

competitor behavior. Instead of modifying the equilibrium concept, a second

vein of research explicitly models dynamic insurance market interactions (Hell-

wig 1987; Engers and Fernandez 1987; Jaynes 1978; Asheim and Nilssen 1996;

Ania, Tröger, and Wambach 2002). A third strand takes a different approach

and does not include dynamics, but changes the contract or insurer character-

istics (Inderst and Wambach 2001; Faynzilberg 2006; Picard 2009). Below, we

10 For the screening version of Spence (1973)’s signalling model of education that exhibits a
similar structure as the RS model, Rosenthal and Weiss (1984) derive an equilibrium in
mixed strategies. A somewhat unsatisfying characteristic of equilibrium is that although
there is no profitable deviation for existing firms in the market, an entrant can earn positive
expected profits.
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will discuss these contributions in more detail.11

2.2.1 Modification of the equilibrium concept

Wilson (1977) proposes the “anticipatory equilibrium” concept, or E2 equilib-

rium. In this concept, an expectation rule is imposed such that “each firm

assumes that any policy will be immediately withdrawn which becomes un-

profitable after that firm makes its own policy offer”. Wilson (1977) considers

single contract offers and shows that the anticipatory equilibrium concept leads

to a pooling allocation in which low risk utility is maximized subject to an

overall zero-profit condition, the so-called Wilson pooling contract. This pool-

ing contract is tendered in equilibrium as with the above expectation rule, if a

cream-skimming deviation is attempted, the Wilson contract would be assumed

to be withdrawn such that the deviator expects all types to choose the deviating

contract, which in turn renders it unprofitable.

Miyazaki (1977) and Spence (1978) extend the analysis to contract menus and

show that the anticipatory equilibrium concept results in an allocation with sep-

arating, cross-subsidizing, jointly zero-profit making contracts that are second-

best efficient, the Wilson-Miyazaki-Spence (WMS) contracts. Formally, consider

the following maximization problem:

max
ωL,ωH

uL(ωL)

s.t.

uH(ωH) ≥ uH(ωL)

uH(ωH) ≥ uH(ωH
RS)

γH [(1− pH)(w01 − wH
1 ) + pH(w02 − wH

2 )]+

(1− γH)[(1− pL)(w01 − wL
1 ) + pL(w02 − wL

2 )] ≥ 0

where ωH
RS denotes the H-type RS contract. The above maximization problem

11 In this review, we discuss literature that in the spirit of RS uses noncooperative game-
theoretic methods and do not consider cooperative concepts as e.g. Lacker and Weinberg
(1999) or RS economies in general-equilibrium frameworks as e.g. in Dubey and Geanako-
plos (2002) or Bisin and Gottardi (2006).
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has a unique solution.12

Definition 2.1 The unique solution to the above maximization problem are the

Wilson-Miyazaki-Spence contracts, denoted by ωH
WMS and ωL

WMS.

Hence, the WMS contracts are obtained by maximizing U -type utility subject

to an overall zero profit condition allowing for cross-subsidization. Note that

this implies that the WMS contracts are second-best efficient.

Remark 2.1 (Crocker and Snow 1985) The WMS contracts are second-best

efficient.

When the second constraint on H-type utility is binding, the WMS contracts

correspond to the RS contracts. Note that since in the RS model there is no

equilibrium if RS contracts can be overturned by a profitable deviating menu,

an equilibrium exists in the RS model exactly when the WMS contracts coincide

with the RS contracts, i.e. an equilibrium with the RS allocation exists if and

only if the RS contracts are second-best efficient. When the second constraint

on H-type utility is not binding, WMS contracts are such that the fully-insured

H-types are subsidized by the partially insured L-types. The WMS contracts

in this case are shown below in Figure 2.2. The dotted curve gives all L-types

contracts that combined with a full insurance contract that lies on the same H-

type indifference curve as the L-type contract jointly yield zero-profits if taken

out by the whole population. Among these L-type contracts, the WMS L-type

contract then is the contract that maximizes L-type utility.

At the heart of Wilson (1977)’s anticipatory equilibrium is the notion that con-

tracts, if unprofitable, will be withdrawn. In Riley (1979)’s “reactive equilib-

rium” concept, instead of contract withdrawal, insurers expect competitors to

make new contract offers, i.e. react by adding contracts. To be precise, “a set

of offers is a reactive equilibrium if, for any additional offer which generates an

expected gain to the agent making the offer, there is another which yields a gain

to a second agent and losses to the first...”. It is easy to see that the reactive

12 See e.g. Asheim and Nilssen (1996).
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w2

w1

uL
uH

ωL
WMS

ωH
WMS

ωH
RS

ωL
RS

Figure 2.2: WMS contracts

equilibrium concept yields the RS allocation: For any profitable deviation on

the RS contracts with a pooling contract or contract menu, the expectation

rule implies that firms anticipate the addition of a cream-skimming contract by

another competitor, rendering the deviation unprofitable.

2.2.2 Dynamic market interaction

The notion that insurance markets are more dynamic than in the RS model has

been, instead of imposing expectation rules, translated to explicitly modelling

dynamic insurance market interactions between firms. Engers and Fernandez

(1987), besides generalizing Riley (1979)’s reactive equilibrium notion, provide a

game-theoretic foundation for the reactive equilibrium with the following game:

First, insurers set contracts. After observation of competitors’ offers, firms may

repeatedly add new contracts to their existing offers such that there is no ex-

ogenously determined last mover. If no more contracts are added, consumers

choose contracts. This implements the Riley logic such that an equilibrium with

the RS allocation exists as again cream-skimming on deviations renders any de-

viation unprofitable. However, with the same logic, different allocations than

RS can be sustained as equilibrium allocations.
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In Hellwig (1987), instead of adding contracts, insurers may decide to not fulfill a

contract. In particular, firms first offer a single contract, consumers then choose

their insurance contract in the second stage, and insurers can in a third stage

decide not to fulfill the contract already chosen by a consumer. Note that, since

insurers offer single contracts, this type of contract withdrawal corresponds to

exit from the market. Hellwig (1987) shows that the Wilson pooling contract

corresponds to a stable equilibrium of this three-stage game, as cream-skimming

would lead insurers to exit the market. However, when allowing for contract

menus and individual contract withdrawal, the WMS contracts do not consti-

tute equilibrium contracts in Hellwig (1987)’s game as any firm would have an

incentive to withdraw the high risk contract.

Whereas the above contributions add stages to the game in which insurers can

revise their set of contract offers, Jaynes (1978) relaxes the assumption that

contracts are exclusive and considers firm interaction in the form of sharing

information. Jaynes (1978) argues that this leads to some firms offering the

Wilson pooling contract which share information among them, and some firms

offer contracts at the fair H-type premium rate who do not share information.

Hellwig (1988) translates the idea into the following game: First, firms offer con-

tracts and can attach an exclusivity condition on it. Then, consumers choose

combinations of contracts. In the third stage, insurers decide what customer

information to share with which insurers, and in the fourth stage firms receive

information and decide on enforcing exclusivity conditions.13 Hellwig (1988)

shows that since insurers in the last stages can strategically condition infor-

mation sharing and enforcement of exclusivity conditions on stage 1 offers, the

equilibrium proposed in Jaynes (1978) corresponds to a sequentiel equilibrium

of the game and cannot be upset by a cream-skimming offer: High risks would

prefer to supplement their insurance purchase by this cream-skimming offer,

rendering it unprofitable. As the firm offering this cream-skimming contract

would not receive information from other firms, it could not enforce exclusivity

13 Ales and Maziero (2009) and Attar, Mariotti, and Salanié (2010) consider non-exclusive
contracting in RS environments without information sharing. In both models, a pure
strategy equilibrium may fail to exist.
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conditions to prevent high risks from taking the contract.

In Asheim and Nilssen (1996), insurers can renegotiate contracts with their own

customers on a nondiscriminatory basis. Asheim and Nilssen (1996) show that

WMS is the unique equilibrium allocation for the following reason: a cream-

skimming contract that by construction of WMS contracts lies outside the ef-

ficiency region, would be renegotiated to an efficient contract that yields high

risks higher utility than their respective WMS contract, even if all high risk types

choose this contract. Then, high risks would choose the deviating contract, ren-

dering it unprofitable. Note that the overall result depends on the assumption

that insurers cannot renegotiate contracts individually, which seems unrealistic

once consumers have chosen an insurance contract.

In a methodically different approach, Ania, Tröger, and Wambach (2002) model

dynamics in insurance markets using evolutionary game theory. Insurers do

not have perfect knowledge about the market and imitate successful behavior,

i.e. they copy the most profitable contract on the market and in addition, they

experiment with their own contracts. RS contracts are the long run outcome of

the evolutionary game if insurers experiment only locally. This is because even

if a pooling contract is preferred, the RS contracts cannot be destabilized by

small changes in contracts, whereas pooling contracts can.

2.2.3 Changes to contract or insurer characteristics

Instead of introducing additional stages to the RS game to model dynamics,

another strand of literature modifies the assumptions about insurer character-

istics or initial contracts offered. In Inderst and Wambach (2001), insurers face

capacity constraints such that the amount of offered contracts at an insurer is

limited and consumers might be rationed. When consumers have search costs,

the risk of being rationed and thus to incur search costs can lead to the ’wrong’

type of consumers turning up at insurers. In particular, consider a pooling devi-

ation on RS contracts: As the gain in utility at this deviating contract is higher
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for high risk types due to the single-crossing property, for search cost sufficiently

but not too high only high risks would choose the deviating contract, rendering

it unprofitable. Thus, capacity constraints sustain an equilibrium with the RS

allocation.14

Instead of capacity constraints, in an unpublished working paper Faynzilberg

(2006) assumes that the financial resources of insurers are exogenously limited.

Then, the expected utility that a customer receives from a contract might not

correspond to the expected utility derived from the parameters of the contract

as the insurer, due to lack of financial resources, might not be able to fulfill

the contract. The analysis in Faynzilberg (2006) suggests that this leads to an

equilibrium with the WMS allocation if the financial constraint is severe: Since

high risk type utility from the WMS contract is lowered if the contract is not

cross-subsidized by low risks, a cream-skimming deviation might be attractive

to high risks as well.

In a recent working paper, in contrast to the two previous works that impose

exogenous constraints on insurers, Picard (2009) endogenizes the contract struc-

ture by lifting the assumption that insurance contracts are nonparticipating. In

particular, insurers may choose to offer contracts in which customers share the

profits or losses of the insurer. Fully participating contracts are implemented

in a mutual. Picard (2009) shows that this sustains the WMS allocation in

equilibrium as a cream-skimming deviation imposes losses on the high risk type

WMS contract such that high risks as well prefer the deviating contract.15

Note that all three models share the feature that the actual expected utility

that customers receive from a contract at an insurer is modified and customers

take this into account when choosing an insurance contract.

14 Guerrieri, Shimer, and Wright (2010) combine adverse selection with competitive search
theory. Principals post terms of trade, privately informed agents direct their search, and
principals and agents are then matched bilaterally. An equilibrium exists in an RS-type
application as with bilateral matching, a pooling offer to attract a cross-section of types is
less attractive to good types for the following reason: the more agents search an offer, the
less likely is a match. Now it is exactly the good types that are discouraged from searching
as their outside option, the separating contract, is higher. Note that this works similarly
to the above discussed capacity constraints.

15 Picard (2009) also analyzes the n-type case and thereby shows coexistence of mutuals and
stock insurers.
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2.2.4 Synthesis

Even more than 30 years after its first publication, the RS result that an equi-

librium in pure strategies might not exist in a competitive insurance market

with adverse selection is still puzzling. To solve the problem, besides early work

on modifications of the equilibrium concept, research has either introduced dy-

namics into the RS model or modified assumptions about insurer or contract

characteristics. In each of these different strands of research, there are models

that yield the RS allocation, as well as models that yield the WMS allocation.

The RS allocation has the feature intuitively associated with competition that

each contract is separately zero-profit making; yet it is not generally second-

best efficient. The WMS allocation is second-best efficient, however precisely

because it is second-best efficient it requires cross-subsidization in equilibrium,

which seems counterintuitive in a competitive market. This highlights again the

crucial issue that is at the core of the original equilibrium nonexistence result:

competition and efficiency do not necessarily go hand in hand in this market.

In extensions of the RS model these different allocations can be sustained in

equilibrium as, put broadly, RS contracts cannot be overturned if a deviation

on all risks is rendered unprofitable because a deviator ends up with high risks,

and the WMS allocation can be sustained if a deviator can not offer contracts

such that only low risks are attracted.

However, although the review shows that extensive research has been conducted

to settle the equilibrium nonexistence problem, the debate is still open as there

is no generally agreed upon solution. This stems from several reasons: Firstly,

one of the most appealed to solutions, the Wilson concept, lacks sound game-

theoretic foundation. Another issue is that some modifications to the RS model

seem rather arbitrary: In e.g. Asheim and Nilssen (1996), it is not clear why

when insurers can renegotiate, they cannot renegotiate on an individual basis.

A related criticism is that with the exception of Picard (2009) who endogenizes

contract characteristics, models impose exogenous constraints: In e.g. Inderst

and Wambach (2001), the RS allocation is sustained as firms are assumed to be
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capacity constrained, however if insurers were to choose their capacity, limited

capacity would not be the outcome of the generalized game.

In light of the above discussion, the following two chapters aim to close the RS

debate by providing solutions that address these problems: Chapter 3 provides

a game-theoretic foundation for the Wilson concept. Chapter 4 considers an

endogenous framework in which insurers can choose their capital level.





3 A Game-Theoretic Foundation

for the Wilson Equilibrium

This chapter extends the RS model in the spirit of Wilson (1977)’s “anticipatory

equilibrium” by introducing an additional stage in which initial contracts can

be withdrawn repeatedly after observation of competitors’ contract offers. We

show that an equilibrium always exists where consumers obtain their respective

Wilson-Miyazaki-Spence (WMS) contract. Jointly profit-making contracts can

also be sustained as equilibrium contracts. However, the WMS allocation is the

unique equilibrium allocation under entry.

3.1 Introduction

To date, one of the most appealed to solutions to the RS equilibrium nonex-

istence problem is still the Wilson anticipatory equilibrium concept. However

surprisingly, despite its appeal the Wilson concept has never been formally mod-

elled, i.e. although some research on the equilibrium inexistence problem yields

the WMS allocation, the mechanisms in these models are quite different from

the idea of withdrawing contracts in reaction to competitors.

The present chapter spells out the idea behind the Wilson “anticipatory equi-

librium concept” by introducing an additional stage into the RS model in which

firms can withdraw individual contracts (repeatedly) before consumers make

their choice but after observing the contract offers of competitors. We show

that an equilibrium always exists where every consumer obtains her respec-

tive WMS contract. Intuitively, the possibility of contract withdrawal prevents
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cream-skimming deviations that upset the WMS contracts in the original RS

set-up. However, to sustain the WMS equilibrium, not only the WMS, but also

a continuum of low risk contracts as well as the RS contracts have to be on offer

as latent contracts. The reason is that the possibility to withdraw contracts

allows for sophisticated deviating strategies that are prevented by latent con-

tracts that, off the equilibrium path, attract low risks away from such possible

deviations.16

We show moreover that, besides the WMS contracts, profit-making contracts

can also be enforced as equilibrium contracts as the possibility to retract con-

tracts provides firms with adequate threat points. More generally, contract

withdrawal leads to a multiplicity of equilibrium allocations. This multiplicity

remains if, instead of only considering contract withdrawal, we allow for the

addition of contracts in the second stage. We then extend the game to allow for

entry as would be expected in a model of a competitive market. Then, positive

profits cannot be sustained in equilibrium. More strongly, the WMS equilibrium

is generically unique under entry.

There is a small literature where contract withdrawal is added to a market with

adverse selection. This literature differs from the present work in that while

we allow the withdrawal of individual contracts to model the logic behind the

Wilson equilibrium, contract withdrawal in the literature so far implies exit

from the market, i.e. only complete contracts withdrawal. Hellwig (1987), as

discussed in chapter 2, only considers exit and the WMS equilibrium cannot

be sustained when insurers offer contract menus and can withdraw individual

contracts in his game in which the offered contract can be withdrawn after

insurees choose. A study with a similar timing structure as ours is Netzer and

Scheuer (2008). In a model of moral hazard without commitment, Netzer and

Scheuer (2008) model competition after unobservable effort choice such that

16 Latent contracts are not new in adverse selection environments. Attar, Mariotti, and
Salanie (2009) model nonexclusive competition in an adverse selection market. In their
model, infinitely many contracts need to be issued as latent contracts to sustain the equi-
librium allocation as well.
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firms offer contract menus and can, after observation of competitor’s offers,

decide to exit the market before consumers choose contracts. Again, contrary

to our model, the restriction to exit does not allow to withdraw individual

loss-making contracts. This is not a minor point but relates to a more general

problem: why should a firm in a competitive market offer a loss-making contract.

We show that, even when individual contracts can be withdrawn, firms may offer

loss-making contracts in a competitive market.

3.2 The model

The set-up closely follows Rothschild and Stiglitz (1976) and Wilson (1977):

There is a continuum of individuals with mass 1. Each individual faces two possi-

ble states of nature: In state 1, no loss occurs and the endowment is w01, in state

2 a loss occurs and the endowment is w02 with w01 > w02 > 0. There are two

types of individuals, an individual may be a high risk type (H) with loss proba-

bility pH , or a low-risk type (L) with loss probability pL, with 0 < pL < pH < 1.

Insurance is provided by firms in the set F := {1, ..., f, ...n}. Firms do not know,

ex ante, any individual’s type. If an individual buys insurance, then the initial

endowment ω0 = (w01, w02) is traded for another state-contingent endowment

ω = (w1, w2); we say the individual buys insurance contract ω. The set of fea-

sible contracts, Ω, is given by Ω := {(w1, w2) |w1 ≥ w2 > 0} where w1 < w2 is

ruled out for moral hazard considerations.

The expected utility of a J-type individual, J ∈ {H,L} from chosing a contract

ω ∈ Ω is abbreviated by uJ(ω) := (1− pJ)v(w1) + pJv(w2) where v is a strictly

increasing, twice continuously differentiable and strictly concave von Neumann-

Morgenstern utility function.

The timing of the game is as follows: First, firms set contracts simultaneously

and observe their competitors’ contract offers. Then, firms can withdraw con-

tracts potentially repeatedly for several rounds whereby firms observe their

competitors remaining contract offers after each round. Contract withdrawal

is possible as long as at least one contract was withdrawn by any firm in the
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previous round. After contract withdrawal ends, consumers make their contract

choice. Formally, the game proceeds as follows:

Stage 0: The risk type of each individual is chosen by nature. Each individ-

ual has a chance of γ, 0 < γ < 1 to be a H-type, and of (1−γ) to be a L-type.

Stage 1: Each firm f ∈ F offers a set of contracts Ωf
1 ⊂ Ω. The offered sets

are observed by all firms before the beginning of the next stage.

Stage 2: Stage 2 consists of t = 1, 2, ... rounds. In each round t, each firm

f ∈ F can withdraw a set from its remaining contracts. After each round,

firms observe the remaining contract offers of all firms. Denote by Ωf
2,t firm

f ’s contract set on offer at the end of t. For notational convenience, we de-

note Ωf
1 := Ωf

2,0. If, for any t, Ωf
2,t = Ωf

2,t−1 for all f ∈ F , this stage ends.

Denote the final round in stage 2 by t̂, i.e. Ωf

2,t̂
= Ωf

2,t̂−1
for all f ∈ F .

Stage 3: Individuals choose among the remaining contracts
⋃
F

Ωf

2,t̂
or remain

uninsured.

Before proceeding, let us discuss the difference of our setup to Rothschild-Stiglitz

and how this implements the Wilson concept: The Rothschild-Stiglitz game cor-

responds to stages 0, 1 and 3. In this reduced game, a pooling contract or more

generally cross-subsidizing contracts cannot be sustained as equilibrium con-

tracts as insurers would always try to cream skim low risks. In Wilson’s “antici-

patory equilibrium” concept, such cream skimming deviations are not profitable

because the expectation rule is that cross-subsidized contracts at non-deviating

insurers would be withdrawn since they become unprofitable after introduction

of the cream-skimming contract. We implement this concept by adding stage

2. However, when instead of imposing an expectation rule, firms are explic-

itly allowed to withdraw contracts after observation of competitor’s contract

offers, for the Wilson reasoning to hold in a game with contract menus contract
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withdrawal has to end endogenously as in our model specification: with fixed

withdrawal rounds, as e.g. only one round of contract withdrawals, a single firm

would always be able to profitably deviate by withdrawing a cross-subsidized

contract in the last round.

When stage 2 ends after round t̂ and contract ωf
j ∈ Ωf

2,t̂
is taken out by a mass

of individuals λf
j among which the share of H-types is σf

j , then the expected

profit of firm f ∈ F is:

πf =

∫

Ωf

2,t̂

λf
j

[
(w01 − wf

j,1)− (pHσf
j + pL(1− σf

j ))(w
f
j,2 − w02 + w01 − wf

j,1)
]
dω

As we did not restrict the sets of contract offers in stage 1 to be finite, stage

2 does not necessarily end. For t → +∞, we specify that firms make zero

(expected) profits. Let us stress that it is solely out of simplicity that we do not

restrict the set of feasible contracts Ω and hence do not assume contract offers

to be finite such that stage 2 does not necessarily end. All our results hold if

instead of Ω as defined above we would consider a discrete contract grid and

thus a finite number of stage 1 contract offers.

3.3 Equilibrium with WMS allocation

We will show that the WMS allocation can be sustained as equilibrium alloca-

tion, however, in order to prevent such deviations, latent contracts have to be

offered alongside the WMS contracts to support the WMS equilibrium.

Proposition 3.1 There exists a symmetric equilibrium where every individual

obtains her respective WMS contract in stage 3.

Proof See Appendix. �

Consider the following firm strategy: In stage 1, firms offer the WMS contracts

and additionally the RS contracts as well as a continuum of contracts that lie
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on the L-type fair insurance line and give the L-type a lower expected utility

than her WMS contract but higher expected utility than her RS contract. We

name this continuum of contracts ’LR contracts’. These contracts are shown in

Figure 3.1.

w2

w1

w02

w01

LR contracts

uH

ωL
WMS

ωH
WMS

ωH
RS

ωL
RS

Figure 3.1: Contracts on offer in equilibrium

Then, in stage 2, after each round t, each firm computes the hypothetical profit

it would make if stage 2 ended after round t and, if it makes a loss, withdraws

the loss-making contract(s), but does not withdraw any contracts if it makes

zero expected profits.

This strategy supports the WMS allocation for the following reasoning: A simple

cream-skimming deviation is prevented by withdrawing WMS contracts as they

become unprofitable. Similarly, as stage 2 ends endogenously, a deviation that

involves the withdrawal of theH-type WMS contract in some round is prevented

as all other firms withdraw the loss-making H-type WMS contract subsequently.

Furthermore, a deviation aimed at forcing firms to withdrawWMS contracts and

making a positive profit on e.g. a pooling contract is prevented by withdrawing

those contracts from the LR contracts that would be taken up by H-types and

hence be loss-making, but leaving exactly those that would not be taken up

by H-types but only by L-types and hence cream-skim the L-types from any

deviating contract (menu). This type of deviation and the reaction according
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to the equilibrium strategy is shown in Figure 3.2. Finally, the RS contracts

always remain on offer since they are separately zero profit making.

w2

w1

w02

w01

deviating contract menu

WMS contracts will be withdrawn

contracts withdrawn if deviator with-
draws cream-skimming contract

Figure 3.2: Reaction to a deviation

In this equilibrium, latent contracts are offered: the RS contracts and the LR

contracts. A standard criticism of latent contracts is that they are loss-making

off the equilibrium path. Note that this is not the case here: If, off the equi-

librium path, latent contracts would be the best available contracts on offer for

some type, they would either not be loss-making, or they would be withdrawn

such that they cannot be chosen in stage 3. In particular, either the LR con-

tracts are taken up only by low risks, or, potentially in more than one round,

withdrawn. The other latent contracts, the RS contracts, will never be with-

drawn, however, they are zero-profit making anyway.

The above Proposition provides an existence result for an equilibrium with an

allocation that yields zero expected profits and is second-best efficient. How-

ever, this is not the unique equilibrium allocation. In the next section it will be

shown that there also exist equilibria where firms share positive profits.
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3.4 Equilibrium with positive profits

To show that equilibria exist in which firms share positive profits, we will first

concentrate on a simple case: Consider the full insurance contract that extracts

all consumer surplus from H-types. We denote this contract by ωP . Now as

ωP just leaves H-types indifferent between purchasing insurance and remaining

uninsured, ωP will not be taken up by L-types, but it yields a per (H-type)

customer profit equal to the H-type risk premium and hence, as 0 < γ, strictly

positive profits overall. Note that, if the share of H-types is sufficiently high,

ωP corresponds to the monopoly allocation.

Proposition 3.2 The profit-making full insurance contract ωP can be sustained

as equilibrium contract in a symmetric equilibrium for any number of firms in

the market.

Proof See Appendix. �

The possibility to withdraw contracts allows firms to coordinate on a profit-

making allocation: Consider offering ωP and the set of contracts from the equi-

librium strategy in Proof of Proposition 1, i.e. the WMS and RS contracts

and LR contracts. If only those contracts are observed, all contracts different

from ωP are withdrawn sequentially in stage 2. In particular, firms first have to

withdraw the H-type WMS and RS contracts first such that there is no pooling

deviation on any of those contracts. After that, all remaining contracts differ-

ent from ωP are withdrawn since they are loss-making if taken out by both risk

types. Initial contract offers and the equilibrium contract are shown in Figure

3.3.

Then, if any deviating, stand-alone profit-making contracts are observed, the

WMS (and all other initial contracts) are not withdrawn. This intuition works

as it is credible for firms not to withdraw the WMS contracts and make zero

profits on WMS contracts when they observe deviation. It is credible because

any profitable deviation from ωP implies that if WMS, RS and LR contracts are

withdrawn, insurers make zero expected profits, hence, it is sequentionally ra-
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w2

w1

w02

w01

initial contract offers

contracts withdrawn in first round on
equilibrium path

contracts withdrawn
in second round
on equilibrium path

ωP

uH

uH

Figure 3.3: profit-making allocation

tional not to withdraw the WMS, RS and LR contracts and make zero expected

profits on WMS contracts. Again, as was the logic in the Proof of Proposition

1, attempting a deviation by initially offering a cream-skimming deviation such

that WMS contracts have to been withdrawn is prevented by the offer of RS

and LR contracts.17

From the above intuition it is also clear why we consider the case in which

the final allocation corresponds to a single contract only taken up by H-types:

Any deviation on this contract leads to zero expected profits for the remain-

ing firms. This is not necessarily the case for a contract menu, as each contract

might be separately profit-making (or similarly a pooling contract without cross-

subsidization). Then a deviator might only deviate on one contract/risk type,

leaving firms with a positive profit on the other contract/risk type such that the

threat of not withdrawing the WMS contracts is not credible.

However, although we have concentrated on a particular equilibrium allocation

in Proposition 2, with the above logic it is simple to show that any pooling

contract that involves cross-subsidization and lies below the H-type indifference

curve through theH-type WMS contract as well as any profit-making separating

17 Note that, as discussed in section 2, the possibility to sustain positive profits in equilibrium
does not stem from the fact that stage 2 is potentially infinite.
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contract menu that yields nonpositive profits on one risk type can be supported

as equilibrium allocation using strategies analogous to those that support the

equilibrium allocation from Proposition 2. Similarly, it is easy to show that the

RS contracts can also be supported as equilibrium contracts.

Furthermore, note that even in the case of a contract menu with separately

profit-making contracts, this contract menu might be supported as the equilib-

rium allocation in an asymmetric equilibrium of the following form: In stage

1, one firm offers intermediate contracts that yield positive and in particular

more than 1/nth of the profit of each contract from the menu separately, but

less than 1/nth of total profits from the menu. All other firms follow the strat-

egy described previously. If there is no deviation, then all contracts except the

profit-making contract menu will be withdrawn, and this is sequentially ratio-

nal for all firms, even for the firm offering the intermediate contracts, as the

intermediate contracts yield less than 1/nth of total profits from the contract

menu. If a deviation ’below’ intermediate contracts is observed, the intermedi-

ate contracts will not be withdrawn, and this is again sequentially rational, as

intermediate profits yield more than 1/nth of the profit of each contract from

the menu separately.18

3.5 Riley extension

So far, we have only considered contract withdrawal in stage 2 in the spirit of

Wilson. However, if contracts can be withdrawn, it seems plausible to enlarge

the action space and allow for also offering new contracts in stage 2 to add

the dynamic proposed in Riley’s reactive equilibrium. In a survey, Riley (2001)

conjectures that in a game where firms are allowed to either add or drop offers

in the second stage “both the Wilson and reactive equilibria are a Nash equi-

librium of this new game”. Consider the game with the following modification:

18 Note that, with an analoguous contract set to the LR contracts, a deviation on the inter-
mediate contracts can easily be prevented as well.
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Stage 2’: Stage 2 consists of t = 1, 2, ... rounds. In each round t, each firm

f ∈ F can withdraw a set from its remaining contracts and add any set of

contracts to the remaining contract. After each round, firms observe the con-

tract offers of all firms. Again, denote by Ωf
2,t firm f ’s contract set on offer

at the end of t. If, for any t, Ωf
2,t = Ωf

2,t−1 ∀ f ∈ F , this stage ends.

We will now argue that this extension of the action space does not eliminate

equilibrium allocations, in particular profit-making equilibria can still be sus-

tained.

Proposition 3.3 Any equilibrium allocation of the original game can be sup-

ported as an equilibrium allocation in the extended game that allows for addi-

tional contract offers in stage 2.

Proof See Appendix. �

To see why, pick an equilibrium in the original game with the corresponding

equilibrium strategy of firms. Then, consider that firms have the same strategy,

with the addition that whenever they observe any new contract offer by any

other firm in stage 2, round t, then in round t + 1 they add the complete

set of contracts offered in stage 1 in the equilibrium strategy. That way, if,

e.g. in a profit-making equilibrium, after WMS, RS and LR contracts have

been withdrawn, a firm attempts to make a profit by offering a contract that

profitably attracts the whole population, this strategy replicates, in round t+1,

any possible configuration of contract offers at the end of stage 1 in the original

game. However, then there is no profitable deviation since it was an equilibrium

in the original game. This result allows us to formally confirm Riley (2001)’s

conjecture:

Corollary 3.1 In the game in which contracts can be withdrawn and added

in stage 2, both the WMS and RS allocation can be sustained as equilibrium

allocations.
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3.6 Entry

We will now allow for entry in any round in stage 2. In particular, entry takes

the following form: There are m ≥ 2 potential entrants. A potential entrant can

decide in which round t to enter in stage 2 as long as in t − 1 there was either

entry or some contract withdrawn as otherwise stage 2 would end after t − 1,

and then to offer a set of contracts. Once an entrant has offered a nonempty

set of contracts in some round t, he can, as incumbents, withdraw contracts

from the offered contracts in subsequent rounds. We specify that if an entrant

is indifferent between entering the market or not, the entrant enters. Formally,

the game proceeds as follows:

Stage 2′′: Stage 2′′ consists of t = 1, 2, ... rounds. There is a set of entrants

E := {1, ..., f, ...m} with m ≥ 2. As long as firm f ∈ E does not enter, we

say that f offers Ωf
2,t = ∅ in round t. In any round t for which Ωf

2,t 6= Ωf
2,t−1

for some f ∈ F ∪ E, any f ∈ E with Ωf
2,j = ∅ for all j = 1, .., t − 1 can

decide on entering the market and offer a set of contracts Ωf
2,t ∈ P(Ω) \ ∅

in t. We denote the round in which f ∈ E enters by t̄f . In each round t,

each firm f ∈ F ∪ E can withdraw a set from its remaining contracts. After

each round, firms observe the contract offers of all firms. Denote by Ωf
2,t firm

f ’s contract set on offer at the end of t. If, for any t, Ωf
2,t = Ωf

2,t−1 for all

f ∈ F ∪ E, this stage ends. Define t̂ by Ωf

2,t̂
= Ωf

2,t̂−1
for all f ∈ F ∪ E.

Stage 3”: Individuals choose among the contracts
⋃

F∪E

Ωf

2,t̂
.

Now under entry, an equilibrium with the WMS allocation still always exists.

More strongly, it is generically unique:

Proposition 3.4 In the game with entry, an equilibrium with the WMS allo-

cation exists and is generically unique.

Proof See Appendix. �



A game-theoretic foundation for the Wilson equilibrium 31

The proof proceeds in two steps. First, it is shown that an equilibrium with

the WMS allocation always exists. In the second step, it is shown that any

equilibrium yields the WMS allocation.

The reasoning why an equilibrium with the WMS allocation always exists is

very similar to the one for existence of WMS equilibrium without entry: As-

sume that firms initially on the market follow the strategy specified in proof of

Proposition 1, i.e. they offer the WMS, RS and LR contracts in stage 1 and, in

case they would make a loss if stage 2 were to end after round t− 1, they with-

draw the loss-making contracts in round t and do not withdraw any contract if

they make zero expected profits. The strategy of any entrant is the following:

If, after any round t − 1, incumbent firms (firms initially on the market and

previous entrants) would either make zero or positive profits if stage 2 ended

after round t − 1, then the entrant enters the market in t. If incumbent firms

make zero expected profits on WMS contracts, then the entrant offers WMS,

RS and LR contracts in t, otherwise, the entrant offers the largest contract set

that maximizes her expected profit given the contract offers of incumbents at

the end of t− 1. The entrant’s strategy in all subsequent rounds is the same as

that of initial firms. This constitutes an equilibrium with the WMS allocation

since any entrant cannot profitably deviate from the WMS contracts: Firstly,

some entrant will have to enter in t = 1 as otherwise stage 2 ends. Secondly, as

incumbent firms offer WMS, RS and LR contracts, there is no profitable devia-

tion as shown in proof of Proposition 1.

For the second step, assume on the contrary that an equilibrium exists that

yields an allocation that differs from WMS. Since it is an equilibrium, it yields

nonnegative profits to all firms. Then, independent of whether it is (an) ini-

tial firm(s) or (an) entrant(s) that serve customers, since the allocation is not

WMS, at least one entrant can profitably deviate by waiting to enter until the

last round and, in the last round, offering a slightly better contract menu at-

tracting all customers. Note that, as the deviating contract menu attracts all

types, i.e. yields a utility for both types at least as high as that on the contracts

that would have been the best on offer without the deviation, then there are
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no latent contracts by incumbents (firms active in stage 1 or previous entrants)

that can prevent this deviation.

Note that, although entry implies additional contract offers in stage 2, there

is a subtle difference to allowing additional contract offers by incumbent firms:

The situation under entry is asymmetric in the sense that, if there are positive

profits to be made, a firm can enter without the possibility of incumbent firms

to punish additional contract offers by own new contract offers.

3.7 Conclusion

We modify the seminal Rothschild and Stiglitz (1976) insurance model in the

spirit of Wilson (1977)’s “anticipatory equilibrium” concept by introducing an

additional stage in which firms can withdraw contracts (repeatedly) after ob-

servation of competitor’s contract offers. It is shown that an equilibrium always

exists where consumers obtain their respective Wilson- Miyazaki-Spence (WMS)

contract, i.e. second-best efficiency can be achieved for any share of high-risk

types in the population. However, contrary to intuition the game-theoretic anal-

ysis of the Wilson concept is not that straightforward: Latent contracts have to

be offered alongside the WMS contracts for the Wilson logic to work as contract

withdrawal allows for complex deviating strategies. Furthermore, equilibria ex-

ist in which firms share positive profits. When, besides contract withdrawal,

additional contracts can be offered in stage 2, all equilibrium allocations in the

game without adding contracts can be supported as equilibrium allocations in

the extended game. In particular, as suggested by Riley (2001), both the WMS

and RS allocations are equilibrium allocations in the extended game. However,

if there is entry in the second stage, the WMS equilibrium is generically unique.

The WMS equilibrium, both in the game with and without entry, is sustained

by the offer of latent contracts. There are mainly two arguments against the

possibility to offer latent contracts: The first one is that they might make losses

off the equilibrium path, and the second one that they lead to a multiplicity of
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equilibrium allocations.19 Note that the criticism does not apply here: latent

contracts either yield nonnegative profits, or will be withdrawn off the equi-

librium path. Furthermore, in the game with entry latent contracts are also

required to sustain the equilibrium allocation, however the equilibrium alloca-

tion is generically unique.

In this market, (non-linear) Bertrand competition is not sufficient to establish

outcomes that would be associated with a competitive market, namely that

firms make zero expected profits. To obtain zero profits, potential entry is

required. However, interestingly, cross-subsidization prevails in equilibrium al-

though there is entry.

3.8 Appendix

Proof of Proposition 1.

Let ΩWMS :=
{
ωH
WMS, ω

L
WMS

}
denote the set of WMS contracts, ΩRS :=

{
ωH
RS, ω

L
RS

}
denote the set of RS contracts and

ΩLR :=
{
ω ∈ Ω

∣∣uL(ω) < uL(ωL
WMS), u

L(ω) > uL(ωL
RS)

and (1− pL)(w01 − w1) + pL(w02 − w2) = 0
}

the continuum of contracts that lie on the L-type fair insurance line and yield

an L-type a higher expected utility than her RS contract but lower expected

utility than her WMS contract.

Let Ω1 := (Ω1
1, ...Ω

n
1 ), Ω2,t := (Ω1

2,t, ...,Ω
n
2,t) and let ht = (Ω1,Ω2,1, ...,Ω2,t−1)

denote the history in the beginning of round t. Furthermore, ∆2,t :=
⋃
F

Ωf
2,t.

We denote by ω̄J
2,t the contract such that

ω̄J
2,t ∈ arg max

ω∈∆2,t

uJ(ω)

and
w̄J

2 ≥ w̃J
2 ∀ ω̃J ∈ arg max

ω∈∆2,t

uJ(ω)

19 Criticism of latent contracts is e.g. reviewed in Attar, Mariotti, and Salanie (2009).
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Let k̄J denote the number of firms offering ω̄J
2,t at the end of t, i.e. K̄J :={

f ∈ F | ω̄J
2,t ∈ Ωf

2,t

}
and k̄J := |K̄J |.

The strategy of a consumer of type J is to choose ω̄J
2,t̂

at firm f ∈ K̄J with

probability 1/k̄J .

A strategy of a firm f specifies a set of contracts in stage 1, and in stage 2,

round t, a map from the history to a set of remaining contracts of firm f at the

end of t in stage 2, i.e. αf
t : ht 7−→ Ωf

2,t.

We denote the hypothetical profit of firm f if stage 2 would end after t− 1 by

πf (Ω2,t−1) := γH [(1− pH)(w01− w̄H
1 )+ pH(w02− w̄H

2 )](1/k̄
H)1IΩf

2,t−1

(ω̄H
2,t−1)+

(1− γH)[(1− pL)(w01 − w̄L
1 ) + pL(w02 − w̄L

2 )](1/k̄
L)1IΩf

2,t−1

(ω̄L
2,t−1)

where 1I is an indicator function. Similarly, we denote by

πf,J(Ω2,t−1) = γH [(1− pH)(w01 − w̄J
1 ) + pH(w02 − w̄J

2 )](1/k̄
J)1IΩf

2,t−1

(ω̄J
2,t−1)

the hypothetical profits on J-types respectively. Finally, let

A :=
{
f ∈ F

∣∣∣Ωf
1 ⊆ ΩWMS ∪ ΩRS ∪ ΩLR

}
.

We propose that a possible equilibrium strategy of firms is the following: In

stage 1, firm f ∈ F offers Ωf
1 = ΩWMS ∪ ΩRS ∪ ΩLR. In stage 2, round t the

strategy of firm f specifies

αf
t (ht) =





Ωf
2,t−1 if πf (Ω2,t−1) = 0;

Ωf
2,t−1 \

{
Ω̂H

2,t−1

}
if πf (Ω2,t−1) < 0 and πf,L(Ω2,t−1) ≥ 0;

Ωf
2,t−1 \

{
ω̄L
2,t−1

}
if πf (Ω2,t−1) < 0 and πf,H(Ω2,t−1) ≥ 0;

Ωf
2,t−1 \

{
ω̄H
2,t−1, ω̄

L
2,t−1

}
if πf (Ω2,t−1) < 0 and

πf,L(Ω2,t−1), π
f,H(Ω2,t−1) < 0;

Ω̄f
2,t if πf (Ω2,t−1) > 0.
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where

Ω̂H
2,t−1 :=

{
ω ∈ Ωf

2,t−1 \ {ΩRS} such that if Ωj
2,t−1 = {ω} ∀j ∈ A,

then ω = ω̄H
2,t−1 and πf,H(Ω2,t−1) < 0

}

i.e. if firm f makes losses on H-types, it withdraws any contract that, if all

firms that in stage 1 offered the contracts according to equilibrium strategy (or

less contracts) only offered this one contract, would attract the H-types and be

loss-making. Furthermore, Ω̄f
2,t denotes the largest set of contracts such that for

Ωj
2,t = Ωj

2,t−1 ∀j ∈ F \ {f}, then πf (Ω2,t) is maximal.

If all firms follow the above strategy, no firm withdraws any contract in t = 1

and stage 2 ends after t = 1, firms make zero expected profit and a customer of

type J receives her J-type WMS contract.

It remains to show that there is no profitable deviation. We will proceed in two

steps: First, we show that a deviator serves some H-types. In a second step, we

show that if the deviator serves some H-types, she cannot be making a strictly

positive profit.

Consider firm f̄ that offers Ωf̄
1 in stage 1 and has a strategy α̂f̄ : ht 7−→ Ωf̄

2,t in

stage 2. Let Ωf

2,t̂
be the final set of contract offers of firm f , i.e. Ωf

2,t̂
= Ωf

2,t̂−1
∀

f ∈ F . Then it must be that πf (Ω2,t̂−1) ≥ 0 ∀ f ∈ F \
{
f̄
}
as otherwise a firm

f ∈ F \
{
f̄
}
would withdraw a nonempty set of contracts in t̂ and t̂ would not

be the last round in stage 2.

Now assume πf̄ (Ω2,t̂) > 0. As πf (Ω2,t̂−1) ≥ 0 ∀ f ∈ F \
{
f̄
}
, we will show

that w̄H
2,t̂

∈ Ωf̄

2,t̂
: Since πf̄ (Ω2,t̂) > 0, f̄ serves some customers. To show that it

cannot be possible that f̄ serves only L-types, assume on the contrary that f̄

only serves L-types. If L-types prefer an insurance contract to remaining unin-

sured, than H-types prefer to be insured as well. As f̄ only serves L-types, then

at least one firm f ∈ F \
{
f̄
}
serves H-types and the share of L-types among

customers at f is less than 1− γ. There are three possible cases:

Case 1 : ω̄H
2,t̂

= ωH
WMS. Now any firm f ∈ F \

{
f̄
}
that serves H-types with

ωH
WMS and has a share of L-types among customers that is less than 1− γ does
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not make a nonnegative profit.20 This contradicts πf (Ω2,t̂−1) ≥ 0 ∀ f ∈ F \
{
f̄
}
.

Case 2 : ω̄H
2,t̂

∈ ΩLR. Any contract ω ∈ ΩLR if taken up by some H-types is

loss-making, independent of whether it is also taken up by some L-types. This

contradicts πf (Ω
2,t̂) ≥ 0 ∀ f ∈ F \

{
f̄
}
.

Case 3 : ω̄H
2,t̂

= ωH
RS. From the strategy of all f ∈ F \

{
f̄
}
, both RS contracts will

never be withdrawn, i.e. the L-type contract is still on offer when ω̄H
2,t̂

= ωH
RS.

Then, there is no contract that f̄ can offer attracting L-types and making a

positive profit, which is a contradiction.

Hence, ω̄H
2,t̂

∈ Ωf̄

2,t̂
. We will now show that if ω̄H

2,t̂
∈ Ωf̄

2,t̂
, f̄ cannot be making

a positive profit. First, note that, the RS contracts are always, i.e. in any t,

offered by each firm f ∈ F \
{
f̄
}
. Then, it follows that uH(ω̄H

2,t̂
) ≥ uH(ωH

RS).

There are again three possible cases:

Case 1 : uH(ω̄H
2,t̂
) ≥ uH(ωH

WMS). Then, ωL
WMS will not have been withdrawn

by any firm f ∈ F \
{
f̄
}
. As ωL

WMS is on offer from firms f ∈ F \
{
f̄
}
, by

construction of the WMS contracts, πf̄ (Ω2,t̂) ≤ 0 for the cases that f̄ only serves

H-types or both types.

Case 2 : uH(ω̄H
2,t̂
) < uH(ωH

WMS) and ω̄L
2,t̂

∈ WCS. Hence, both WMS contracts

are not on offer at any firm f ∈ F \
{
f̄
}
and any firm f ∈ F \

{
f̄
}
does not serve

L-types since it does not offer any contract w ∈ WCS. However, by construction

of the WMS contracts, there is no incentive compatible menu of contracts with

w̄L
2,t̂

∈ WCS that is profit-making, hence πf̄ (Ω
2,t̂) < 0.

Case 3 : uH(ω̄H
2,t̂
) < uH(ωH

WMS) and ω̄L
2,t̂

/∈ ΩCS. If ω̄H
2,t̂

∈ ΩLR or , then

πf̄ (Ω2,t̂) < 0. If ω̄H
2,t̂

/∈ ΩLR, then from the strategy of any firm f ∈ F \
{
f̄
}
,

ω̄L
2,t̂

∈ Ωf

2,t̂
∀ f ∈ F \

{
f̄
}
. Then, πf̄ (Ω2,t̂) ≤ 0.

Hence, πf̄ (Ω2,t̂) ≤ 0 which is a contradiction.

Proof of Proposition 2.

Let ΩP := {ωP}. Again, the strategy of a consumer of type J is to choose ω̄J
2,t̂

at firm f ∈ K̄J with probability 1/k̄J . Let ΩWH :=
{
ω ∈ Ω

∣∣uH(ω) < uH(ωP )
}

20 This is because firm f ∈ F \
{
f̄
}
at best serves some L-types with ωL

WMS , however, since
the share of L-types is less than 1− γ, this is loss-making.
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and let

B :=
{
f ∈ F

∣∣∣Ωf
1 ⊆ ΩP ∪ ΩWMS ∪ ΩRS ∪ ΩLR ∪ ΩWH

}
.

We claim that a possible equilibrium strategy of firms is the following: In stage

1, firm f ∈ F sets Ωf
1 = ΩP ∪ ΩWMS ∪ ΩRS ∪ ΩLR. In stage 2, round t the

strategy of firm f specifies

βf
t (ht) =





Ωf
2,t−1 \

{
ωH
RS, ω

H
WMS

}
if πf (Ω2,t−1) = 0 and B = F ;

Ωf
2,t−1 if πf (Ω2,t−1) = 0 and B 6= F ;

Ωf
2,t−1 \

{
Ω̂H

2,t−1

}
if πf (Ω2,t) < 0 and πf,L(Ω2,t−1) ≥ 0;

Ωf
2,t−1 \

{
ω̄L
2,t−1

}
if πf (Ω2,t−1) < 0 and πf,H(Ω2,t−1) ≥ 0;

Ωf
2,t−1 \

{
ω̄H
2,t−1, ω̄

L
2,t−1

}
if πf (Ω2,t−1) < 0 and

πf,L(Ω2,t−1), π
f,H(Ω2,t−1) < 0;

Ω̄f
2,t if πf (Ω2,t−1) > 0.

Ω̂H
2,t−1 :=

{
ω ∈ Ωf

2,t−1 \ {ΩRS} such that if Ωj
2,t−1 = {ω} ∀j ∈ B,

then ω = ω̄H
2,t−1 and πf,H(Ω2,t−1) < 0

}

i.e. if firm f makes losses on H-types, it withdraws any contract that, if all

firms that in stage 1 offered the contracts according to equilibrium strategy (or

less contracts) only offered this one contract, would attract the H-types and be

loss-making. Furthermore, Ω̄f
2,t denotes the largest set of contracts such that for

Ωj
2,t = Ωj

2,t−1 ∀j ∈ F \ {f}, then πf (Ω2,t) is maximal.

The strategy thus specifies that if, after stage 1, there is no contract ω with

ω /∈ {ΩP ∪ ΩWMS ∪ ΩRS ∪ ΩLR ∪ ΩWH} on offer, then the WMS, RS and LR

contracts will be sequentially withdrawn, however, if a contract ω with

ω /∈ {ΩP ∪ ΩWMS ∪ ΩRS ∪ ΩLR ∪ ΩWH} is observed after stage 1, the WMS

contracts will not be withdrawn (if the firm’s hypothetical expected profit is

zero) and the strategy is the same as the stategy in proof of Proposition 1.

If all firms follow the above strategy, then all firms withdraw the H-type WMS
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contract and the H-type RS contracts in t = 1 and the L-type WMS and RS

contracts as well as LR contracts in t = 2. Stage 2 ends after t = 3, firms share

the profit on ωP , H-type customers buy ωP and L-types remain uninsured.

It remains to show that there is no profitable deviation. First, note that, since

firms share the profit from the single contract ωP , any deviation yielding a

higher profit than 1/nth of the profit from ωP necessarily yields zero expected

profits to nondeviating firms as they do not serve any customer. Then, it is

sequentially rational not to withdraw the WMS contracts as prescribed by the

equilibrium strategy.

The rest of the proof proceeds along the same lines as proof of Proposition 1

and is therefore omitted.21

Proof of Proposition 3.

Fix an equilibrium in the original game. In this equilibrium, the equilibrium

strategy of firm f ∈ F specifies a contract offer Ωf
1 in stage 1 and in stage 2,

round t a withdrawal strategy χf
t (ht) specifying remaining contract offers in the

end of t. Note that, we neither assume that equilibrium strategies are symmetric

nor put any restrictions on stage 2 strategies.

In the extended game, a strategy specifies a contract offer in stage 1, and map

from the history ht to a contract offer in stage 2, round t.

Then consider the following strategy in the extended game: Firm f ∈ F offers

Ωf
1 in stage 1. In stage 2, round t the strategy specifies

χ̄f
t (ht) =





χf
t (ht) if Ωj

2,t−1 ⊆ Ωj
2,t−2 ∀j ∈ F ;

Ω̃f
t if Ωj

2,t−1 ⊆ Ωj
2,t−2 ∀j ∈ F \ f and there exists a contract

ω ∈ Ωf
2,t−1 with ω /∈ Ωf

2,t−2;

Ωf
1 otherwise.

where for notational simplicity, we denote stage 1 as round t = 0 and let Ωj
2,−1 =

∅ ∀j ∈ F and Ω̃f is a set of contracts such that for Ωj
2,t = Ωj

2,t−1 ∀j ∈ F \ {f},

21 Note that, in particular a deviation aiming at offering the H-type WMS or RS contract
as a pooling contract is covered by proof of Proposition 1.
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then πf (Ω2,t) is maximal. Note that, in this case Ω̃ does not need to be the

largest set such that the profit is maximal as if there are some contracts with-

drawn or added in t, f can add contracts in t+ 1.

This strategy implies that firms have the same strategy as in the original game,

however, whenever a firm f observes another firm j adding contracts in the

previous round, then f replicates contract offers after stage 1 as it throws all

stage 1 contracts on the market.

Now firstly, this strategy yields the same equilibrium allocation as in the origi-

nal game as on the equilibrium path, each firm f ∈ F takes the same action in

stage 1 and in all rounds of stage 2 as on the corresponding equilibrium path in

the original game.

It remains to show that there is no profitable deviation. A profitable deviation

here means a deviation such that profits are higher than in equilibrium in the

original game. Assume a firm f̄ offers Ω̂f̄
1 in stage 1 and has a strategy that

specifies some χ̂f̄
t : ht 7−→ Ωf̄

2,t in stage 2 and makes a profit that is strictly

higher than in the equilibrium in the original game. Firstly, note that this im-

plies that stage 2 ends in some t. We need to distinguish 4 cases:

Case 1: Ω̂f̄
1 6= Ωf̄

1 and χ̂f̄
t (ht) = χ̄f̄

t (ht). This implies that no contract will be

added by any firm f ∈ F in any round in stage 2. However, then either it

involves the same allocation and same profits for all firms as in the equilibrium

in the original game, or χf (ht) cannot have been part of an equilibrium strategy

in the original game for some f ∈ F .

Case 2: Ω̂f̄
1 = Ωf̄

1 , χ̂
f̄
t (ht) 6= χ̄f̄

t (ht) and f̄ does not add any contract in any t.

Again, this implies that no contract will be added by any firm f ∈ F in any

round in stage 2. As in Case 1, then either it involves the same allocation and

same profits for all firms as in the equilibrium in the original game, or χf (ht)

cannot have been part of an equilibrium strategy in the original game for some

f ∈ F .

Case 3: Ω̂f̄
1 = Ωf̄

1 , χ̂
f̄
t (ht) 6= χ̄f̄

t (ht) and f̄ adds at least one contract in some

t. Assume first that a contract will only be added by f̄ in at most one round

t and let t̃ denote this round. Then, the strategy of firms f ∈ F \ f̄ specifies
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that Ωf

t̃+1
= Ωf

1 ∀f ∈ F \ f̄ . However, then, for t ≥ t̃ + 1 this replicates either

Case 1 or 2 above. Now assume that f̄ adds contracts in more than one round

t. Let ť denote the last round in which a contract will be added by f̄ . Again,

the strategy of firms f ∈ F \ f̄ specifies that Ωf

ť+1
= Ωf

1 ∀f ∈ F \ f̄ . However,

then, this again replicates either Case 1 or 2 above.

Case 4: Ω̂f̄
1 6= Ωf̄

1 and χ̂f̄
t (ht) 6= χ̄f̄

t (ht). We can transform this case in the

following way: Instead of Ω̂f̄
1 6= Ωf̄

1 , let Ω̂
f̄
1 = Ωf̄

1 and f̄ either adds or withdraws

some contract in stage 2, round 1 and plays χ̂f̄
t (ht) thereafter. However, then,

this falls under one of the above cases.

Proof of Proposition 4.

We will proceed in two steps: First, we show that an equilibrium with the WMS

allocation always exists. In the second step, we show that any equilibrium yields

the WMS allocation.

For the first part, again, the strategy of a consumer of type J is to choose ω̄J
2,t̂

at firm f ∈ K̄J with probability 1/k̄J .

For any t, let ΩFE
2,t := (Ω1

2,t, ...,Ω
n
2,t...,Ω

n+m
2,t ) denote the observed contract of-

fers of all firms, that is initial firms and (potential) entrants. We denote

initial contract offers of all firms that are on the market in t by ΩFE
1,t :=

(Ω1
1, ...,Ω

n
1 ,Ω

n+1
2,t̄n+1 , ...,Ω

n+k
2,t̄n+k) where t̄n+i < t ∀i = 1, ..., k and denote by Mt

the set of firms on the market in t. We can then denote the history in t by

hFE
t = (ΩFE

1,t ,Ω
FE
2,1 , ...,Ω

FE
2,t−1).

A strategy of a firm f ∈ F specifies a set of contracts in stage 1, and in stage

2, round t, a map from the history to a set of remaining contracts of firm f at

the end of t in stage 2, i.e. αf
t : hFE

t 7−→ Ωf
2,t.

We propose that the equilibrium strategy of any firm f ∈ F specifies the follow-

ing: In stage 1, firm f ∈ F offers Ω1
f = ΩWMS ∪ΩRS ∪ΩLR. In stage 2, round t

the strategy of firm f is
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αf
t (h

FE
t ) =





Ωf
2,t−1 if πf (ΩFE

2,t−1) = 0;

Ωf
2,t−1 \

{
Ω̂H

2,t−1

}
if πf (ΩFE

2,t−1) < 0 and πf,L(Ω2,t−1) ≥ 0;

Ωf
2,t−1 \

{
ω̄L
2,t−1

}
if πf (ΩFE

2,t−1) < 0 and πf,H(Ω2,t−1) ≥ 0;

Ωf
2,t−1 \

{
ω̄H
2,t−1, ω̄

L
2,t−1

}
if πf (ΩFE

2,t−1) < 0 and

πf,L(ΩFE
2,t−1), π

f,H(ΩFE
2,t−1) < 0;

Ω̄f
2,t if πf (ΩFE

2,t−1) > 0.

Ω̂H
2,t−1 :=

{
ω ∈ Ωf

2,t−1 \ {ΩRS} such that if Ωj
2,t−1 = {ω} ∀j ∈ C,

then ω = ω̄H
2,t−1 and πf,H(Ω2,t−1) < 0

}

with C :=
{
f ∈ Mt

∣∣∣Ωf
1 ,Ω

f

t̄f
⊆ ΩWMS ∪ ΩRS ∪ ΩLR

}
.

and Ω̄f
2,t denotes the largest set of contracts such that for Ωj

2,t = Ωj
2,t−1 for all j ∈

F ∪ E \ {f}, then πf (Ω2,t) is maximal.

The strategy of an entrant f ∈ E in stage 2, round t specifies the following: As

long as f has not entered, the strategy consists of a map from the history in t to a

decision to enter the market in round t, i.e. θft : hFE
t 7−→ η ∈ {entry, noentry}.

When f enters in t, i.e. θft (h
FE
t ) = entry, the strategy specifies a map from the

history to a set of contract offers Ωf
t , γ

f
t : hFE

t 7−→ Ωf
2,t. For all subsequent

rounds t, the strategy specifies a map from the history to a set of remaining

contracts of firm f at the end of t i.e. φf
t : hFE

t 7−→ Ωf
2,t.

We propose that a possible equilibrium strategy of an entrant f ∈ E specifies

the following:

θft (h
FE
t ) =





entry if πj(ΩFE
2,t−1) ≥ 0 ∀j ∈ F ∪ E \ f ;

noentry otherwise.

γf
t (h

FE
t ) =





ΩWMS ∪ ΩRS ∪ ΩLR if πj(ΩFE
2,t̄f−1

) = 0 for all j ∈ F ∪ E \ f and

C = Mt;

Ω̄f otherwise.
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where Ω̄f denotes the largest set of contracts such that for Ωj

2,t̄f
= Ωj

2,t̄f−1
∀j ∈

F ∪ E \ f , then πf (Ω2,t) is maximal and lastly,

φf
t (h

FE
t ) = αf

t (h
FE
t ).

If all initial firms and entrants follow the above respective strategies, no initial

firm withdraws any contract in t = 1 and all entrants enter in t = 1, no firm

withdraws any contract in t = 2 and stage 2 ends after t = 2, firms make zero

expected profit and a customer of type J receives her J-type WMS contract.

It remains to show that there is no profitable deviation. Firstly, note that, for

the same reasoning as in proof of Proposition 1, no initial firm can deviate prof-

itably. Then, assume that an entrant f̄ in t̄f̄ offers Ωf̄

t̄f̄
and has a withdrawal

strategy φ̂f̄
t and assume that f̄ makes a strictly positive profit. By the strategy

of all firms f ∈ F ∪E \ f̄ , it follows that t̄f̄ ≤ 2. Then, however, independent of

whether t̄f̄ = 1 or t̄f̄ = 2, from the strategy of all firms f ∈ F ∪E \ f̄ it follows

that round t̄f̄ is equivalent to stage 1 in the game without entry. The rest of

the proof corresponds to the proof of Proposition 1.

For the second part of the proof, assume that an equilibrium exists that yields

an allocation different from WMS, i.e. (w̄H
2,t̂
, w̄L

2,t̂
) 6= (ωH

WMS, ω
L
WMS, ). Since it

is an equilibrium, each firms f ∈ F ∪ E makes a nonnegative expected profit.

Since we specified that if an entrant is indifferent between entering the market

or not, the entrant enters, nonnegative expected profits imply that all firms

f ∈ E enter in some round t < t̂.

Now since (w̄H
2,t̂
, w̄L

2,t̂
) 6= (ωH

WMS, ω
L
WMS, ) there exist contracts ω̂

H , ω̂L such that

uH(ω̂H) ≥ uH(w̄H
2,t̂
), uH(ω̂H) ≤ uH(ω̂L), uL(ω̂L) > uL(w̄H

2,t̂
) and for firm f̂

offering Ωf̂ =
{
ω̂H , ω̂L

}
and attracting the whole population, πf̂ > 0 and

πf̂ ≥
∑
F∪E

πj. As πf̂ ≥
∑
F∪E

πj, an entrant can profitably deviate by waiting

to enter the market until t̂ and offer ω̂H , ω̂L in t̂. Note that this entry cannot

be prevented by firms as uL(ω̂L) > uL(w̄H
2,t̂
), i.e. there exists no contract that

cream skims low risks from uL(ω̂L).



4 Endogenous Capital in the

Rothschild-Stiglitz Model

We endogenize upfront capital of insurers in the RS model. Under limited li-

ability, low upfront capital gives rise to an endogenous insolvency risk. This

introduces an externality among customers of an insurer such that an equilib-

rium with the WMS allocation always exists. In this market, solvency regulation

might have unintended consequences: If the required solvency capital is too high,

an equilibrium with a second-best efficient allocation fails to exist.

4.1 Introduction

We propose a basic extension to the RS model to solve the equilibrium existence

problem: Instead of being exogenously endowed with sufficiently high assets as

in RS, insurers choose the level of upfront capital before entering the market

stage. Now under limited liability, low upfront capital gives rise to an endoge-

nous insolvency risk as, depending on contract offers and the distribution of

risk types over the contracts of an insurer, there might not be sufficient assets

to fulfill claims, as in Faynzilberg (2006).22 Generally speaking, this introduces

22 Insolvency has been analyzed in insurance markets without adverse selection. Doherty and
Schlesinger (1990) analyze insurance demand under an exogenous insolvency risk and show
that less than full insurance will be purchased at the actuarially fair premium if default
is total, however, if default is partial, overinsurance might occur and there is generally no
monotonic relationship between default payout rate and insurance coverage. Agarwal and
Ligon (1998) introduce an exogenous default risk into the RS model when consumers have
CARA preferences and apply the Wilson anticipatory equilibrium concept. Comparing
the situation with and without default risk, Agarwal and Ligon (1998) find that high risks
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an externality among customers of a firm as an individual’s expected utility

now does not only depend on contract parameters but also on the distribu-

tion of risk types over the contracts of an insurer. This externality guarantees

equilibrium existence - we show that with capital choice under limited liability,

an equilibrium in pure strategies that yields the second-best efficient Wilson-

Miyazaki-Spence (WMS) allocation always exists. The equilibrium is sustained

as cream-skimming offers aimed at attracting low risk types lead to a deterio-

ration of high risks’ WMS contract due to insolvency when upfront capital is

low. High risks then prefer to choose the deviating contract as well, rendering

the deviation unprofitable. Now in terms of the strategic capital choice of firms,

putting in more capital is not profitable for an insurer as this only increases in-

centives of competitors to cream skim low risks away from this insurer. Hence,

an equilibrium with low upfront capital and the WMS allocation always exists.

One implication of our analysis is that solvency regulation might have unin-

tended consequences: If imposed capital requirements are too strict, a second-

best efficient equilibrium fails to exist.

4.2 The model

There is a continuum of individuals of mass 1 in the market, representing a large

population of consumers. Each individual faces two possible states of nature:

In state 1 no loss occurs and the endowment is w0, in state 2 a loss occurs

and the endowment is w0 − L with w0 > w0 − L > 0. There are 2 types of

individuals, an individual may be a high risk type (H) with loss probability pH ,

or a low-risk type (L) with loss probability pL, with 0 < pL < pH < 1. Indi-

viduals have a twice continuously differentiable strictly concave von Neumann-

Morgenstern utility function v(w). Insurance is provided by firms in the set

F := {1, ..., f, ...m}. Firms are risk neutral and do not know, ex ante, any indi-

vidual’s type.

might be better of with default risk if the Wilson equilibrium changes from separating (no
default) to pooling (default).
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The timing of the market interaction follows RS, i.e. insurers offer contracts

first, then insurees choose. The difference to RS is that while RS assume in-

surers to be exogenously endowed with sufficiently high capital, insurers in this

model choose the level of upfront capital before entering the market stage. Firms

will be subject to limited liability, i.e. if a loss occurs and the insurer does not

have enough assets, full indemnity payment might not be possible. Formally,

the timing of the game is as follows:

Stage 0: The risk type of each individual is chosen by nature. Each individual

has a chance of γ, 0 < γ < 1 to be a H-type, and of (1− γ) to be a L-type.

Stage 1: Each firm f ∈ F decides on the level of its upfront capital Kf .

There are nonnegative opportunity costs to holding capital.23

Stage 2: Each firm f ∈ F offers a finite set of contracts Ωf =
{
ωf
1 , ω

f
2 , ..., ω

f
k

}

where a contract ωf
l = (P f

l , I
f
l ) ∈ Ωf specifies a premium P f

l and an indem-

nity Ifl .
24

Stage 3: Individuals choose their insurance contract.25

Stage 4: Losses are realized.

Stage 5: Insurance firms pay out indemnities. If total claims Cf at firm f

are less than total assets Af , the insurance firm fully settles claims. If to-

tal claims Cf exceed total assets Af , then the insurance firm pays out the

assets and defaults on the remaining claims. The ex ante known insolvency

rules specify proportional payout, i.e. a customer at firm f who has bought

contract ωf
g and has realized a loss receives a fraction βf = Af/Cf of her

indemnity claim Ifg .
26

23 Equilibrium existence does not depend on whether opportunity costs of capital are zero
or positive.

24 Each firm cannot offer more than k contracts. We restrict the set of possible contract
offers to Ω := {(P, I)|I ≤ L} where I > L is ruled out for moral hazard considerations.
In this chapter, we change notation for insurance contracts as the analysis of insolvency
is more straightforward when contract paramaters are explicitly expressed as premia and
indemnity payments.

25 An individual can only sign one contract with one firm, i.e. we consider exclusive con-
tracting.

26 We will discuss the effects of alternative insolvency rules in Section 3.
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For expositional convenience, we will henceforth call the subgame starting with

firms’ contract offers in stage 2 the ‘market game’.

Firm assets are comprised of two components: upfront capital and premium

income. When upfront capital is low, depending on the offered contracts and

distribution of agents across the contracts, insolvency might occur. However,

insolvency also determines an agent’s expected utility from chosing a contract

at a specific insurer. Formally, let λf
i denote the mass of individuals taking out

contract ωf
i ∈ Ωf and let σf

i denote the share of high risks in λf
i . Then the

expected utility of a J-type individual J ∈ {H,L} from choosing the contract

ωf
i ∈ Ωf , λ

f
i > 0 is

uJ(ωf
i , β

f ) := (1− pJ)v(w0 − P f
i ) + pJv(w0 − P f

i − L+min
{
1, βf

}
Ifi )

where
βf =

Kf +
∑k

i=1 λ
f
i P

f
i∑k

i=1 λ
f
i (p

Hσf
i + pL(1− σf

i ))I
f
i

.27

Firms expected profits are given by

πf = max

{
0,

k∑

i=1

λf
i (P

f
i − (pHσf

i + pL(1− σf
i ))I

f
i )

}
.

In the RS model, firms are assumed to be exogenously endowed with sufficient

capital such that insolvency does not occur. The expected utility derived from

a contract then depends solely on the contract parameters. With a slight abuse

of notation, we denote expected utility of a J-type individual from contract wl

in the RS setting with large capital holdings by:

uJ(ωl) := (1− pJ)v(w0 − Pl) + pJv(w0 − Pl − L+ Il).

27 i.e. we evoke the law of large numbers to identify the average indemnity at a contract with
the expected indemnity of a customer randomly drawn at the contract. This representation
of expected utility is valid as long as it is not the case that λf

i = 0 ∀i. Note that, if λf
i = 0

∀i, the expected utility of a customer choosing any contract at firm f is less than her
expected utility from remaining uninsured.
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4.3 Equilibrium with WMS allocation

4.3.1 Market game with no upfront capital

Endogenous insolvency risk will play a key role in the analysis. To analyze the

effect of endogenous insolvency on the expected utility of consumers, we will for

now assume that no firm holds upfront capital, i.e. Kf = 0 ∀f ∈ F . This is

similar to the situation discussed by Faynzilberg (2006). As our approach and

modeling differ, we will derive the results in detail.

Under this assumption, suppose that firm f offers only the H-type WMS con-

tract ωH
WMS and attracts all H-types. Then this firm would go insolvent with

final assets of γPωH
WMS

and final claims of γpHIωH
WMS

= γpHL. Thus every in-

sured with a loss obtains PωH
WMS

/pH , so the expected utility of a customer of

firm f is:

uH(ωH
WMS, β

f ) = (1− pH)v(w0 − PωH
WMS

) + pHv(w0 − L+
(1− pH)

pH
PωH

WMS
)

Endogenous insolvency in this case lowers the indemnity such that the (H-type)

customer’s indifference curve shifts vertically downward to the point where it

crosses the H-type fair insurance line. To see this, note that, due to insolvency,

the insurer makes exactly zero profits as he pays out the assets and defaults on

the remaining claims; however, the customer always has to pay the premium.

The resulting expected utility is lower than that of the H-type RS contract as

there is no full insurance. This deterioration of the contract is illustrated in

Figure 4.1. We can now state our first result.

Proposition 4.1 Let Kf = 0 ∀f ∈ F . Then there exists a symmetric equi-

librium in the market game where every individual of type J obtains contract

ωJ
WMS in stage 3 and no insurer goes insolvent.

Proof See Appendix. �

The intuition behind Proposition 1 works as follows: As high risks are cross-

subsidized and the WMS contracts maximize low risk utility subject to overall
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w2

w1

uH(ωH
WMS , β

f )

uH(ωH
WMS)

ωH
WMS

Figure 4.1: Contract deterioration with endogenous insolvency risk if a firm
has no upfront capital and only attracts high risk types which buy
ωH
WMS

non-negative profits, a deviation has to aim at cream-skimming low risks. That

is an insurer offers a contract in the set ΩCS as shown in Figure 4.2. In the RS

model, this deviation is profitable as high risk’s expected utility is not affected by

cream-skimming. Here however, due to endogenous insolvency risk, a deviation

aimed at cream skimming low risks leads to a contract deterioration for high

risks.28 When they correctly anticipate this contract deterioration, high risks

prefer the deviating contract as well, at least as long as the deviator makes a

profit and does not go insolvent. However, this implies that the deviator will go

insolvent, which renders a deviation unprofitable.

Remark: The result of Proposition 1 does not depend on the particular in-

solvency rule. Instead of the proportional insolvency rule where each customer

receives the same share of her indemnity claim, consider e.g. ex post efficient

rationing: if a loss occurs, each customer experiences the same loss independent

28 In Picard (2009), sharing profits or losses in e.g. a mutual creates an analogous externality.
In Picard (2009) the realized contract for the high risks moves along the diagonal rather
than vertically. This is due as in his case those high risks who do not have a loss have to
pay for those who experience a loss. A similar general logic also applies in Kosfeld and
von Siemens (2009). In a labor market context, Kosfeld and von Siemens (2009) assume
that high productivity workers prefer to be pooled with their own type.
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w2

w1

uH(ωH
WMS , β

f )

ΩCS

ωH
WMS

Figure 4.2: Cream-skimming and WMS insurer insolvency

of risk type, and thus it is ex post efficient to distribute assets equally among

claimants. Now the expected utility of an H-type from his respective WMS

contract when there is insolvency is never higher with ex post efficient rationing

than with proportional rationing: Either there are only high risk claimants, then

there is no difference, or there are also low risk claimants, but then high risks

are worse of as under proportional rationing they have a higher indemnity claim

and thus payout. As contract deterioration for high risks is the crucial part

that guarantees equilibrium existence, ex post efficient rationing would thus not

affect our results.

Next it is shown that the equilibrium allocation in the market game is unique

if Kf = 0 ∀f ∈ F .

Proposition 4.2 Let Kf = 0 ∀f ∈ F . Any equilibrium of the market game

yields the WMS allocation.

Proof See Appendix. �

The intuition for this result is the following: Suppose an equilibrium exists

with an allocation that is different from WMS. This allocation either involves

nonnegative profits or some insurers go insolvent. In the first case, there is

always a profitable deviating contract menu. In the second case, the allocation
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can be translated to an allocation without insolvency yielding any consumer

the same expected utility and yielding firms zero profits. However, then there

always exists a profitable deviating contract menu as well.

4.3.2 Endogenous capital

So far in the analyis we assumed that capital endowment is exogenous and in

particular that firms do not own any assets. Now we are ready to analyze the

complete game with upfront capital choice.

Proposition 4.3 In the complete game with endogenous capital, an equilibrium

always exists in which Kf = 0 ∀ f ∈ F , every individual of type J obtains

contract ωJ
WMS in stage 3 and no insurer goes insolvent.

Proof See Appendix. �

From Propositions 1 and 2 we know that if firms do not hold any capital, an

equilibrium with the WMS allocation exists and is generically unique. Now

consider the following strategy: firm f sets zero upfront capital in stage 1. If

firm f observes that all firms set zero capital, then f offers the WMS contracts

in stage 2. If a firm j 6= f chooses a nonzero amount of capital, f still offers

WMS contracts. If every firm follows this strategy, a deviator who chooses a

different level of capital cannot make a positive profit for exactly the reasoning

laid out in Proposition 1: Since high risks’ WMS contracts would deteriorate if

the deviator tries to cream skim low risks, high risks would choose the deviat-

ing contract offer, rendering it unprofitable. This reasoning holds as every firm

except possibly the deviator does not hold any upfront capital.

Remark: We consider upfront capital choice but do not model the possibility

to recapitalize ex post if claims exceed assets. However, note that, for the same

reasoning that makes it unattractive for an insurer to put in upfront capital, an

insurer does not have any incentive to commit to a recapitalization policy.



Endogenous capital in the Rothschild-Stiglitz model 51

4.4 Solvency regulation

Insurance markets are subject to regulation. While regulation traditionally tar-

geted the product level directly, e.g. via regulation of premia, liberalisation in

the 1970’s triggered a shift towards solvency requirements as the main regulatory

tool. Solvency regulation itself saw a change from volume-based to risk-based

solvency requirements in most major regulatory jurisdictions since the 1990’s,

more recently in Europe with Solvency II underway.29 Although the aim of

Solvency II is to ensure risk management that better fits an individual insurer’s

risk, practitioners argue that it will increase solvency capital requirements for

most lines of business.30

The economic effects of solvency regulation have so far only been analyzed in

insurance markets without adverse selection. Rees, Gravelle, and Wambach

(1999) show that there is no efficiency rationale for solvency regulation when

consumers are fully informed about the insurer’s insolvency risk such that the

role of regulation should consist in providing information rather than imposing

capital requirements. However, when there is asymmetric information, we will

show that if solvency capital requirements are too strong, regulation may actu-

ally impede the existence of a second-best efficient equilibrium.

For the analysis, assume that solvency regulation requires each firm to hold a

minimum capital K∗ at the beginning of stage 1. Let K̂ be implicitly defined

by

(1− pH)v(w0 − PωH
WMS

) + pHv(w0 − L+
K̂

γpH
+

(1− pH)

pH
PωH

WMS
) = uH(ωLCS)

where ωLCS = (PLCS, ILCS) is the unique contract that satisfies

PLCS = pLILCS

uL(ωLCS) = uL(ωL
WMS),

29 See e.g. Eling and Holzmuller (2008).
30 In a recent Economist article, an analyst at JPmorgan claimed that “the rules could

increase the amount of capital that insurers need to hold by as much as 75 %”.
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i.e. in the set of cream skimming contracts that contract which is worst for a

high risk type when there is no insolvency. This is illustrated in Figure 4.3.

w2

w1

ωLCS

ΩCS

uH(ωH
LCS)

Figure 4.3: Contract deterioration if a firm has capital K̂ and only attracts
high risk types which buy ωH

WMS

Corollary 4.1 When solvency regulation requires firms to hold capital K∗ > K̂,

an equilibrium with the WMS allocation fails to exist.

Proof See Appendix. �

When firms hold sufficiently large upfront capital, the high risk type WMS

contract does not deteriorate strongly when there is a cream-skimming devia-

tion. Hence, high risks might not opt for the deviating contract such that there

are profitable deviations attracting only low risks. This impedes the existence

of an equilibrium in pure strategies with the WMS allocation. Although we

have concentrated on the WMS allocation, from standard reasoning it is easy

to show that there is no equilibrium yielding a second-best efficient allocation.

Thus, if there is adverse selection, ensuring solvency via regulation is not a

good consumer protection policy as the externality from contracting disappears

if solvency capital is too high.
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4.5 Conclusion

To address the equilibrium non-existence result in competitive insurance mar-

kets with asymmetric information, we modify the Rothschild and Stiglitz (1976)

model by allowing insurers to decide on the level of upfront capital and possi-

bly go insolvent. This introduces an externality among the customers of a firm

that guarantees equilibrium existence: An equilibrium with the second-best

efficient Wilson-Miyazaki-Spence allocation always exists. In such a market,

cream-skimming becomes unattractive as an insurer trying to attract low risks

has to fear attracting high risks as well since the high risks’ contract at another

insurer deteriorates if low risks do not buy from that particular insurer. When

insurers choose the level of their upfront capital, this externality is present be-

cause any insurer will opt for a low amount of capital simply because putting

in more capital only increases the incentive of competitors to engage in cream

skimming. Interestingly, solvency regulation aiming at minimizing insolvency

risk leads to unintended consequences: If imposed solvency capital requirements

are too strong, the externality from contracting disappears and there is no equi-

librium with a second-best efficient allocation.

4.6 Appendix

Proof of Proposition 1.

We claim that a possible equilibrium strategy of firms is to offer both WMS

contracts each. For the case that all firms f ∈ F offer
{
ωH
WMS, ω

L
WMS

}
, the

strategy of a J-type individual specifies to choose ωJ
WMS at firm f ∈ F with

probability 1/k. Then no individual has an incentive to deviate, as no insolvency

occurs and all are served with the best possible contract on offer. It remains to

show that there is no profitable firm deviation. Consider the case that all firms

follow the above strategy apart from firm f̄ which offers Ωf̄ =
{
ωf̄
1 , ω

f̄
2 , ..., ω

f̄
k

}
.

We will proceed in two steps. We will first show that there is no profitable
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deviation if f̄ does not offer a cream-skimming contract. We will then show

that f̄ offering a cream-skimming contract cannot be a profitable deviation

either.

Assume that f̄ is making a strictly positive profit.

For the first part, assume that Ωf̄ ∩ ΩCS = ∅ where ΩCS is defined as follows

ΩCS :=
{
ω ∈ Ω|uL(ω) ≥ uL(ωL

WMS) and uH(ω) ≤ uH(ωL
WMS)

}

i.e. ΩCS is the cream-skimming region with respect to the WMS contracts as

displayed in Figure 3.31 There are two possible cases:

Case 1 : There exists a contract ω ∈ Ωf̄ such that uL(ω) > uL(ωL
WMS). Since

Ωf̄ ∩ΩCS = ∅, this implies that uH(ω) > uH(ωH
WMS) as well. Then, both L- and

H-types would choose the deviating contract offer.32 However, by construction

of the WMS contracts, there is no contract (set) preferred by both types to the

WMS contracts that is profitable.

Case 2 : There does not exist a contract ω ∈ Ωf̄ such that uL(ω) > uL(ωL
WMS).

Then, no L-type chooses a contract offer of the deviator. As no L-type deviates,

no WMS insurer goes insolvent. However, then either uH(ω) < uH(ωH
WMS), i.e.

there is no customer at f̄ or uH(ω) ≥ uH(ωH
WMS) and some H-types choose the

deviating contract. However, in this latter case, as no L-type deviates, f̄ would

not be making a strictly positive profit.

Now, the more interesting part, assume that Ωf̄ ∩ ΩCS 6= ∅. We will consider

three cases.

Case 1: WMS insurers do not sell any contract.

As Ωf̄∩ΩCS 6= ∅, each type prefers taking a contract at f̄ to remaining uninsured.

However, since Ωf̄ ∩ΩCS 6= ∅ and Ωf̄ 6=
{
ωH
WMS, ω

L
WMS

}
, by construction of the

WMS contracts f̄ cannot be making a strictly positive profit when attracting

the whole population.

31 Note that ΩCS includes ωL
WMS and contracts that, under solvency, give the L-types the

same expected utility as ωL
WMS .

32 Note that, as uH(ωH
WMS) ≥ uH(ωH

WMS , β) and uL(ωL
WMS) ≥ uL(ωL

WMS , β), this is true
irrespective of WMS insurer insolvency, i.e. for any possible β of WMS insurers.
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Case 2: WMS insurers sell contracts and there is no insolvency.

As Ωf̄ ∩ΩCS 6= ∅, there exists a contract ωf̄
i such that uL(ωf̄

i ) ≥ uL(ωL
WMS) and

uH(ωf̄
i ) ≤ uH(ωH

WMS). Then some L-types deviate from ωL
WMS. It follows that

either WMS insurers make losses, which is ruled out by assumption, or some

H-types deviate as well. For some H-types to deviate as well, a contract ωf̄
j

such that uH(ωf̄
j ) ≥ uH(ωH

WMS) has to exist. However, by construction of the

WMS contracts, there is no profitable contract set preferred by both types to

the WMS contracts, hence f̄ does not make strictly positive profit.

Case 3: Some WMS insurers go insolvent with positive proability.

As Ωf̄ ∩ ΩCS 6= ∅, there exists a contract ωf̄
i such that uL(ωf̄

i ) ≥ uL(ωL
WMS)

and uH(ωf̄
i ) ≤ uH(ωH

WMS). Now as uL(ωf̄
i ) ≥ uL(ωL

WMS) ≥ uL(ωL
WMS, β) for

any β ≤ 1, it is optimal for an L-type to choose the deviating offer if uL(ωf̄
i ) >

uL(ωL
WMS, β) and it is optimal to either choose the deviating offer or the L-type

WMS contract if uL(ωf̄
i ) = uL(ωL

WMS, 1). We define the consumer strategy such

that the deviating contract offer is chosen. Hence, all L-types deviate. As all

L-types deviate, the H-type WMS contract at WMS insurers deteriorates such

that ∀f ∈ F̂

uH(ωH
WMS, β

f ) = (1−pH)v(w−PωH
WMS

)+pHv(w−L+
(1− pH)

pH
PωH

WMS
) < uH(ωH

RS).

As uH(ωH
WMS, β

f ) < uH(ωH
RS) ∀f ∈ F̂ , it follows that uH(ωf̄

i ) ≥ uH(ωH
WMS, β

f ),

∀f ∈ F̂ by construction of the WMS contracts: The WMS contracts maxi-

mize L-type utility. Hence when they do not coincide with the RS contracts,

uL(ωL
WMS) > uL(ωL

RS). As u
H(ωH

RS) = uH(ωL
RS) and using that H-type indiffer-

ence curves are less steep than L-type indifference curves in the two-states wealth

space, this implies that uH(ωf̄
i ) ≥ uH(ωH

RS) and thus uH(ωf̄
i ) ≥ uH(ωH

WMS, β
f )

∀f ∈ F̂ . Then all H-types would choose the deviating offer.33 However, since

all types deviate, this contradicts the assumption that some WMS insurers go

insolvent.

33 Note that expected utility for H-types at a WMS insurer would even be lower if some or
all take out the L-type WMS contract.
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Proof of Proposition 2.

Suppose that an equilibrium exists that does not yield the WMS allocation.

From the set of equilibrium contracts, select A =
{
ω̄H , ω̄L

}
with34

ω̄H ∈ arg max
ω
j
i∈

⋃
Ωf

uH(ωj
i , β̄

j)

ω̄L ∈ arg max
ω
j
i∈

⋃
Ωf

uL(ωj
i , β̄

j)

and Iω̄H ≥ Iω̃H ∀ ω̃H ∈ arg max
ω
j
i∈

⋃
Ωf

uH(ωj
i , β̄

j)

Iω̄L ≥ Iω̃L ∀ ω̃L ∈ arg max
ω
j
i∈

⋃
Ωf

uL(ωj
i , β̄

j)

j, k ∈ F and ω̄H 6= ωH
WMS and ω̄L 6= ωL

WMS. From the set of equilibrium

contracts, we select the H-type and L-type contracts that have the highest

indemnity. These are precisely the contracts that yield insurers the highest per

contract profit. We distinguish 2 cases:

Case 1: All insurers make nonnegative profits if the allocation is A.

Now as insurers make nonnegative profits, β̄j = 1∀j ∈ F and uJ(ω̄J , β̄) =

uJ(ω̄J). As ω̄H 6= ωH
WMS and ω̄L 6= ωL

WMS, there exist contracts ω̂H , ω̂L such

that uH(ω̂H) ≥ uH(ω̄H), uH(ω̂H) ≤ uH(ω̂L), uL(ω̂L) > uL(ω̄L) and for firm

f̂ offering Ωf̂ =
{
ω̂H , ω̂L

}
and attracting the whole population, πf̂ > 0 and

πf̂ ≥
∑

F πj. As πf̂ > 0, a deviating insurer offering ω̂H , ω̂L would not go

insolvent and all types would choose their respective deviating offer. Hence,

there is a profitable deviation and A cannot be an equilibrium allocation.

Case 2: Some insurers go insolvent if the allocation is A.

As some insurers make negative profits, there is insolvency. Now since A are

equilibrium contracts and customers take insolvency into account, i.e. they

maximize expected utility with insolvency, A can be converted to a contract

set B =
{
ω̌H , ω̌L

}
without insolvency providing individuals the same expected

utility and yielding zero expected profit for insurers with Iω̌H = β̄jIj
ω̄H and

Iω̌L = β̄kIk
ω̄L . Now we can apply the reasoning from Case 1 above to show that

34 It might well be the case that ω̄H and ω̄L coincide.



Endogenous capital in the Rothschild-Stiglitz model 57

there is a profitable deviation.

Proof of Proposition 3.

We claim that a possible equilibrium strategy is the following: Firm f sets

K = 0 in stage 0. In stage 1, if Kj = 0 ∀j ∈ F , firm f sets both WMS con-

tracts. If Kf > 0 and Kj = 0 ∀j 6= f , then firm f sets the RS contracts. If

K l > 0, l 6= f and Kj = 0 ∀j 6= l, firm f sets both WMS contracts.35 For

the case that all firms f ∈ F offer
{
ωH
WMS, ω

L
WMS

}
in stage 2, the strategy of a

J-type individual specifies to choose ωJ
WMS at firm f ∈ F with probability 1/k.

Then no individual has an incentive to deviate, as no insolvency occurs and all

are served with the best possible contract on offer. Firms make zero expected

profits. It remains to show that there is no profitable firm deviation. Consider

the case that all firms follow the above strategy apart from firm f̄ which sets

K f̄ ≥ 0 and offers Ωf̄ =
{
ωf̄
1 , ω

f̄
2 , ..., ω

f̄
k

}
.

Now, as all firms f ∈ F \ f̄ set both WMS contracts each, a profitable deviation

has to involve cream-skimming, as shown in proof of Proposition 1. However, as

also Kf = 0 ∀f ∈ F \ f̄ , cream-skimming is not profitable for f̄ for any K f̄ ≥ 0

following the reasoning laid out in proof of Proposition 1. Hence, there is no

profitable deviation.

Proof of Corollary 1.

Let required upfront capital be K∗ > K̂ for any firm operating in the market

and assume an equilibrium exists that yields the WMS allocation. Then, there

is at least one insurer who offers both WMS contracts, hereafter called a WMS

insurer, sells contracts to both risk types and does not go insolvent.

Now consider contract ω̄ ∈ ΩCS with uL(ω̄) > uL(ωL
WMS) and

uH(ω̄) < (1− pH)v(w0 − PωH
WMS

) + pHv(w0 − L+
K∗

γpH
+

(1− pH)

pH
PωH

WMS
)

35 A complete specification of the strategy includes the contract sets by firm f if two or more
firms choose Kj > 0 at stage 1. As this is not required for the existence proof, we do not
specify the strategy further.
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i.e. contract ω̄ is preferred by L-types over their respective WMS contract even

without WMS insurer insolvency but not preferred by H-types over their re-

spective WMS contract even if there is WMS insurer insolvency. As K∗ > K̂,

such a contract exists. Now consider a firm offering ω̄. As uL(ω̄) > uL(ωL
WMS),

all L-types prefer ω̄ to their respective WMS contract at the WMS insurer. As

uH(ω̄) < (1−pH)v(w0−PωH
WMS

)+pHv(w0−L+ K∗

γpH
+ (1−pH)

pH
PωH

WMS
), all H-types

at the WMS insurer prefer to be insured with the WMS insurer and would not

choose ω̄. A firm offering ω̄ would thus attract L-types and make a positive

expected profit. However, then the WMS insurer does not sell contracts to both

risk types, which is a contradiction.



5 Asymmetric Information and

Collusive Stability

We compare the stability of collusive agreements in adverse selection insurance

markets under symmetric and asymmetric information. We show that asym-

metric information weakly destabilizes collusion. This is not a consequence of

asymmetric information per se, but of the common value characteristic of this

market. We furthermore analyze the effect of consumer information about their

risk type on collusive stability. Generally, there is a non-monotonous relation-

ship between consumer information and collusive stability under asymmetric

information.

5.1 Introduction

Although a large theoretical literature is devoted to the study of competition in

insurance markets under averse selection, the literature on oligopoly models is

scarce.36 Therefore, in this chapter, we depart from the assumption of compe-

tition and analyze the ability of insurance firms to engage in collusive behavior.

In particular, we analyze whether asymmetric information impacts collusive sta-

bility, i.e. whether collusion is more or less stable in adverse selection insurance

markets under symmetric or asymmetric information. There are several inter-

pretations for the comparative statics that we consider: the first one is across

insurance markets, i.e. asymmetric information might be less important in some

36 An exception is Olivella and Vera-Hernández (2007) in which horizontally differentiated
health plans are considered.
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markets, as e.g. risk types are strongly correlated with (collectible) observables,

but that it is more prevalent in other insurance markets. Another interpretation

might be the introduction of a data collection or information technique in a par-

ticular market such that asymmetric information is lessened. An example are

genetic tests, which can be requested by insurers depending on the regulatory

environment.

To analyze the impact of asymmetric information on collusive stability, an in-

finitely repeated version of the Rothschild and Stiglitz (1976) model is consid-

ered. Under symmetric information, the analysis mirrors analysis of a standard

Bertrand market, with the only exception that insurers offer nonlinear contract

menus. However, under asymmetric information, deviation incentives and thus

the stability of collusion depend on the shares of risk types in the population: If

there are only a few high risk type, perfect collusion implies that high risks are

cross-subsidized as firms want to extract a large surplus from the large share of

low risks. Then, a deviator does not deviate on the complete set of collusive

contracts, but only cream-skims low risks, thereby earning higher than total

collusive profits which destabilizes collusion.

This effect can be particularly pronounced if there are consumers that do not

have precise information abour their risk type. We show that collusion is desta-

bilized under asymmetric information if there are only a few consumers informed

about their risk type, even if the share of high risks is relatively high. Gener-

ally, the impact of information about risk type on collusive stability is non-

monotonous.

On a general note, we thus contribute to the theory of collusion in terms of

providing a new factor that destabilizes collusion: common values in asymmet-

ric information markets.37 Note that it is not asymmetric information per se

that destabilizes collusion: In a standard private value asymmetric information

case à la Maskin and Riley (1984), asymmetric information does not destabilize

37 Furthermore, note that in contrast to previous work on asymmetry of information in the
context of collusion in which the asymmetric information is between colluding firms, either
in the form of moral hazard (Green and Porter, 1984) or adverse selection (Athey, Bagwell,
and Sanchirico, 2004), we consider firm-symmetric asymmetric information.
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collusion, as although collusive profits are always lower due to incentive compat-

ibility, relative deviation incentives are not affected by private value asymmetric

information. That is because under private values each type at worst yields zero

profits, but there is never cross-subsidization.

Interestingly, in the insurance literature, the term collusion is generally not

used to describe collusive practices in the sense of sustaining above Nash profits

through cooperation in an infinite horizon setting, but to describe fraudulent

behavior of a coalition of insurees and service providers vis-à-vis the insurer.38

The lack of collusion models is striking as insurance markets has seen quite a

few cases of cartel behavior over the past years. For example, the German mar-

ket for industrial insurance was cartelized by a group of 17 companies.39 The

German Antitrust Authority looked into the market in 2002 and 2003 to find

evidence that the insurance companies had been colluding since 1999. The firms

had come to the agreement to, among others, stop competing with respect to

prices as well as terms and conditions.40 The firms as well as 23 representatives

involved were found guilty and fined an amount of around € 140 million, the

companies as well as their representatives ultimately accepted to pay this fine in

2010.41 Another example is the well known so-called liability crisis that hit the

insurance market in the mid-1980s and is often associated with collusive activ-

ity.42 This crisis was characterized by a sharp increase in insurance premiums,

cancellations of policies and massive withdrawal of insurers from some lines.43

Attornies general in 19 states in the US filed charges against several insurance

companies which faced claims to have been involved in “a ‘global conspiracy’ to

limit or exclude certain types of liability coverage in an effort to cut competition,

38 See e.g. Alger and Ma (2003) and Bourgeon, Picard, and Pouyet (2008). To our knowledge,
the only study besides ours on collusion between insurers is Kesternich and Schumacher
(2009), in which the focus is on stability of pooling under symmetric information.

39 The following is based on Bundeskartellamt (2010) (Bundeskartellamt, 2010, Fallbericht:
Ende des OLG-Verfahrens wegen der Bußgelder gegen Industrieversicherer).

40 Another aspect had been the improvement of the communication among cartel members.
41 Note that insurance markets are however exempt from competition law in several ways:

there is e.g. a block exemption in European competition law allowing insurers to share
information.

42 See, e.g. Angoff (1988).
43 See Winter (1991).
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increase prices, and make those who purchase policies pay more for less”.44

Furthermore, Chiappori, Jullien, Salanié, and Salanié (2006) analyze French

automobile insurance and point out that a deeper data analysis suggests that

profits are higher for contracts with higher coverage, which is contrary to pre-

dictions of competitive models. We now turn to the model.

5.2 The model

Consider a discrete time setting, t = 1, 2, ...,∞. In each period t, a continuum

of individuals of mass 1, representing a large population of consumers, enters

the market. Each individual faces two possible states of nature: In state 1 no

loss occurs and the endowment is w0, in state 2 a loss occurs and the endowment

is w0 − l with w0 > w0 − L > 0. There are 2 types of individuals, an individual

may be a high risk type (H) with loss probability pH , or a low-risk type (L)

with loss probability pL, with 0 < pL < pH < 1. Individuals have a twice

continuously differentiable strictly concave von Neumann Morgenstern utility

function v(w). Individuals purchase insurance for one period and then exit the

market. Insurance is provided by risk neutral firms in the set F := {1, 2}, the

firms’ common discount factor is δ ∈ (0, 1).

The stage game in each period t is the static game underlying the analysis in

Rothschild and Stiglitz (1976) with contract menus: First, the risk type of each

individual is chosen by nature. Each individual has a chance of γ, 0 < γ < 1 to

be a H-type, and of (1−γ) to be a L-type. Then, each firm f ∈ F can offer a set

of contracts Ωf from the set of possible contract offers Ω := {(P, I)|I + P ≤ L}

where a contract (P, I) specifies a premium P and a net indemnity I.45 Finally,

consumers choose an insurance contract. We denote

w1(P ) = w0 − P

w2(I) = w0 − l + I

44 See Reske (1993).
45 I +P > L is ruled out for moral hazard considerations. In this chapter, we define I as the

net indemnity as this facilitates the analysis of optimal contracts lateron.
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Expected utility of customer J ∈ {L,H} from contract (P, I) is

uJ(P, I) = (1− pJ)v(w1(P )) + pJv(w2(I))

We will consider two informational settings: Symmetric information and asym-

metric information, i.e. firms do not know, ex ante, any individual’s type in any

period t.

To illustrate the results we use an example throughout the paper. In the exam-

ple, v(w) = ln(w), pH = 1/4, pL = 1/8, l = 1 and w0 = 4.

5.3 Analysis

We will analyze the necessary and sufficient conditions for collusion at maximal

profits. We consider grim trigger strategies as defined by Friedman (1971), i.e.

the strategy specifies that after a deviation firms revert to the Nash equilibrium

of the static game for all subsequent periods.46 Let πD denote deviation profits,

πC the per period profit of a firm from collusion and πN the profit from Nash

play in the static game. Then, collusion is stable if

πC

1− δ
≥ πD +

δπN

1− δ

i.e. if the discounted profits from collusion are higher than the profits from a

one shot deviation followed by discounted profits from the punishment phase.

Solving for δ gives the critical discount factor δ̄ such that for δ ≥ δ̄ collusion is

stable:

δ̄ :=
πD − πC

πD − πN

In the following, we will derive the respective profits for all three cases.

46 We will show below that this corresponds to an optimal penal code.
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Punishment profits

As discussed in chapter 2, an equilibrium in pure strategies might not exist. If

a (Nash-)equilibrium in pure strategies exists, firms offer the separately zero-

profit making RS contracts. However, even if an equilibrium in pure strategies

fails to exist, Dasgupta and Maskin (1986) have shown that an equilibrium in

mixed strategies always exists. In particular, firms mix between jointly zero-

profit contract menus such that the equilibrium in mixed strategies yields zero

expected profits to firms. Since we analyze collusion, we are not interested in

the exact characterization of potential punishment contracts, we only note that

a Nash equilibrium in the one stage game exists that yields zero expected profits

to firms.

Remark 5.1 For any share of high risk types in the population, a Nash equilib-

rium exists in the static game. Firms earn zero expected profits in equilibrium.

In chapter 2 we discussed that mixed strategies might not be the best description

of insurance markets. In this chapter we refer to Dasgupta and Maskin (1986)

merely out of simplicity: The relevant aspect is that an equilibrium exists that

yields zero profits. Since the extensions of the RS model as well yield equilibria

with zero profits, we use the simplest possible version to describe the market.

Note furthermore that, since the Nash equilibrium in the static game yields zero

expected profits, grim-trigger strategies correspond to an optimal penal code.

Collusive profits

Since we want to analyse perfect collusion, i.e. collusion at maximal profits, let

us review the monopoly solution. Under symmetric information, a monopolist

fully insures each type such that they are indifferent to not purchasing insurance,

i.e. the monopolist’s profit per customer is just that customer’s risk premium.

Formally, total monopoly profits are

πM
S = γrH + (1− γ)rL
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where rJ is implicitly defined by

v(w0 − pJ l − rJ) = uJ(0, 0)

Note that, contrary to standard monopoly models, first-best profit is not neces-

sarily increasing in type as the risk premium first increases but then decreases

in risk type. Monopoly contracts are shown below in Figure 5.1.

w2

w1

w0 − l

w0

uL

uH

ωL
M,s

ωH
M,s

Figure 5.1: Monopoly contracts under symmetric information

Stiglitz (1977) gives the first characterization of the monopoly solution under

asymmetric information. For analytical simplicity, we use the approach in Szalay

(2008) and let insurers offer utility contracts. Therefore, let vL1 ≡ v(w1(P
L))

and vL2 ≡ v(w2(I
L)) and so forth where (PL, IL) is the contract intended for the

L-type. We denote by v01 ≡ v(w) and v02 ≡ v(w − l) state-contingent utility in

case of no insurance. Furthermore z ≡ v−1 is the inverse of v.47 A monopolistic

insurer solves the following maximization problem:

max
vL
1
,vL

2
,vH

1
,vH

2

γ(w − pH l − (1− pH)z(v1)
H − pHz(vH2 ))+

(1− γ)(w − pLl − (1− pL)z(vL1 − pLz(vL2 ))

47 The inverse exists as v(w) is strictly increasing, z′ > 0 and z′′ > 0 from concavity of v.
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s.t.

(1− pH)vH1 + pHvH2 ≥ (1− pH)vL1 + pHvL2

(1− pL)vL1 + pLvL2 ≥ (1− pL)vH1 + pLvH2

(1− pH)vH1 + pHvH2 ≥ (1− pH)v01 + pHv02

(1− pL)vL1 + pLvL2 ≥ (1− pH)v01 + pHv02

Monopoly contracts are separating and high-risk types are always fully insured,

however low-risk types might not receive insurance at all. With the indirect

utility approach, Szalay (2008) shows that optimal contracts, whenever both

types receive insurance, are characterized by

v∗H1 = v∗H2

1

v′(z(v∗H2 ))
=

1− γ

γ

pL(1− pL)

pH − pL

[
1

v′(z(v∗L1 ))
−

1

v′(z(v∗L2 ))

]

and that dv∗H1
dγ

=
dv∗H2
dγ

< 0

What is more interesting for the analysis of collusion is that a monopolist might

make losses on the H-type insurance contract. This is the case if the optimal

menu specifies that the H-type utility is larger than H-type utility from the

respective zero-profit making Rothschild-Stiglitz contract. For this to occur,

types have to be sufficiently distinct such that the optimal L-type contract for

γ = 0 yields an H-type a higher utility than the H-type Rothschild-Stiglitz

contract:

Assumption 5.1 pH − pL > rL/l.

Under Assumption 1, we can use the first order conditions and binding con-

straints to determine the share ofH-types such that the optimalH-type contract

corresponds to the H-type full insurance zero profit-making Rothschild-Stiglitz

contract when both types buy insurance. This is the case for γ = γ̂ with



Asymmetric information and collusive stability 67

γ̂

1− γ̂
=

pL(1− pL)

pH − pL

[
z′(c(v(w − pH l)))− z′(a(c(v(w − pH l))))

z′(v(w − pH l))

]

where
a(x) ≡ v02 +

1− pL

pL
(v01 − x)

c(x) ≡
pH

pH − pL
uL(v0)−

pL

pH − pL
x

Then, since
dv∗H

2

dγ
< 0, the H-type contract will yield losses to the monopolist

for all γ < γ̂. From concavity of v, γ̂ < 1 always holds and 0 < γ̂ follows from

Assumption 1.

That even a monopolist might have to incur losses on a type is a result of the

common value characteristic of this market: For a given contract, the profit

from that contract depends on the type who takes up the contract, which is not

the case in standard private value models of asymmetric information. Now if

the share of low risks is high such that the monopolist tries to extract a large

profit from these low risks, the corresponding incentive compatible high risk

contract is loss-making. Monopoly contracts under asymmetric information for

γ < γ̂ are shown below in Figure 5.2.

w2

w1

w0 − l

w0

uL

uH

ωL
M,as

ωH
M,as

Figure 5.2: Monopoly contracts under asymmetric information for γ < γ̂
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Furthermore, monopoly profits per risk type under symmetric and asymmetric

information are shown in Figure 5.3 the example in which γ̂ = 0.15920. The

thick (thin) solid line corresponds to the profit on H-types under asymmetric

(symmetric) information, and the thick dashed (thin dashed) line corresponds

to profit on L-types uner asymmetric (symmetric) information.
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γ
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Figure 5.3: Monopoly profits per risk type under symmetric and asymmetric
information

Deviation profits

Under symmetric information, since collusive contracts are such that each con-

tract is separately profit-making for any γ ∈ [0, 1], a deviator would slightly

undercut each monopoly contract separately and earn monopoly profits by de-

viating. Hence, as in the standard Bertrand case, we have πD
s (γ) = 2πC

s (γ) for

all γ ∈ [0, 1].

Now under asymmetric information, as long as a monopolist makes profits on all

offered contracts separately, i.e. if γ ≥ γ̂, a deviator would again slightly under-

cut each contract separately and earn monopoly profits by deviating. However,

if γ < γ̂, since a monopolist has to incur losses on high-risk types, a deviator

would not deviate on all collusive contracts, but instead only cream skim low
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risks, earning higher than total collusive profits in the deviation period. We

thus have πD
as(γ) = 2πC

as(γ) for all γ ∈ [γ̂, 1] and πD
as(γ) = πL

M,as > 2πC
as(γ) for

all γ ∈ [0, γ̂) where πL
M,as denotes monopoly profits on low risk types.

Stability of collusion

Since under symmetric information πD
s (γ) = 2πC

s (γ) for all γ ∈ [0, 1] and pun-

ishment profits are zero, it follows that collusion at maximal profits can be sus-

tained as a subgame perfect equilibrium for allγ ∈ [0, 1] if and only if δ ∈ [1/2, 1].

Note that this is true irrespective of whether it is a high or low risk that yields

higher profit to a monopolist, i.e. has a higher risk premium.

Under asymmetric information, since πD
as(γ) = 2πC

as(γ) for all γ ∈ [γ̂, 1] and

πD
as(γ) = πL

M,as > 2πC
as(γ) for all γ ∈ [0, γ̂) and punishment profits are as well

zero, it follows that collusion at maximal profits can be sustained as a sub-

game perfect equilibrium for all γ ∈ [γ̂, 1] if and only if δ ∈ (1/2, 1) and for all

γ ∈ [0, γ̂) if and only if δ ∈ [δ̂, 1] with δ̂ > 1/2. This establishes our first result:

Proposition 5.1 Collusion under asymmetric information is weakly less stable

than collusion under symmetric information.

Proof Follows immediately from comparison of the critical discount factors.�

Let us stress again that it is not asymmetric information and thus incentive

compatibility constraints per se that destabilizes collusion, but common values

combined with asymmetric information: Both in private and common value con-

texts, asymmetric information lowers monopoly and thus profits from perfect

collusion. However, only under common values asymmetric information changes

deviation incentives: Cross-subsidization occurs in perfect collusion, and thus

the ratio between deviation and collusive profits increases under common val-

ues, whereas under private values profit from every type is nonnegative such

that relative deviation incentives are not affected.48

48 Although we consider the particular example of an insurance market, the above logic can
easily be extended to other common value markets.
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So far, we only consider a two-type distribution. Chade and Schlee (2008)

characterize the monopoly solution in adverse selection insurance markets for

an arbitrary type set Θ ⊂ (0, 1) and a general cumulative distribution function

on it. Chade and Schlee (2008) show that, as for the two-type case, monotonicity

holds, i.e. indemnity and premium increase in risk type, the highest risk type

receives full coverage, there is no pooling at the top, and if there is exclusion,

then it is low risks that are excluded. From analogous reasoning as in the two-

type case, as incentive compatibility has to hold for the optimal menu, if the

distribution function on the type set specifies that the mass of low enough risk

types is sufficiently high, some of the highest risk types will be cross-subsidized

in the optimal menu. Then, our reasoning holds that collusion under asymmetric

information is (weakly) less stable.

Hence, access to information means good news for the insurance companies not

just because this yields overall higher profits under collusion, but also because

it stabilizes the collusive agreement.

5.4 Consumer information and collusive

stability

So far, we have assumed that consumers are perfectly informed about their risk

type. However, not all consumers might have that information. In this section,

we will analyze the impact of consumer information about their risk type on

collusive stability. A simple example is the health insurance and related markets

with the recent availability of genetic tests. With genetic tests, customers have

a higher precision of information about their risk type. We will analyze whether

collusion is more or less stable when the share of informed customers, i.e. in the

example customers that have genetic information available, increases. To this

end, consider the following change in the stage game:

There is a continuum of individuals of mass 1, representing a large population

of consumers. There are three types of customers, as before H,L but also U .
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Type U customers do not know whether they are high or low risk. The share of

uninformed U -types in the population is denoted by β, as before γ is the share

of H-types among the (1 − β) informed customers. Furthermore, γ is also the

probability of a U -type to be a high risk. The loss probability of U is therefore

given by pU = γpH + (1− γ)pL. As in the baseline case in which all customers

are informed, there is no possibility to signal either risk type or informational

status. We also abstract from endogenous information acquisition, i.e. we will

not analyze whether U -types have an incentive to acquire information. Rather,

we assume that the share of informed customers is exogenously given and does

not depend on available insurance contracts.49

Punishment profits

As for the two-type case, a Nash equilibrium in pure strategies might not exist.

If it exists, in analogy to the Rothschild-Stiglitz equilibrium, H-types are fully

insured at their fair premium, and U - and L-types are partially insured at

their respective fair premiums such that contracts are incentive compatible such

that firms make zero expected profits. An equilibrium in pure strategies might

not exist as, depending on the share of informed customers and the share of

high risks in the population, there might be e.g. profitable pooling devations

attracting U - and L-types, H- and U -types or even all 3 types. However, as

in the two-type case, we can appeal to Dasgupta and Maskin (1986) to argue

that an equilibrium in mixed strategies exists and that mixing is necessarily

between jointly zero-profit making contract menus. Thus a Nash equilibrium

always exists and yields zero-expected profits to firms.

Collusive profits

Under symmetric information, analogous to the two-type case, the monopolist

offers each type a contract that extracts their risk premium. Total collusive

profits are then

49 For an analysis of incentives to acquire information and welfare consequences, see e.g.
Doherty and Thistle (1996).
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πM
S = β(γrH + (1− γ)rL) + (1− β)rU

where rU is implicitly defined by

v(w0 − (γpH + (1− γ)pL)L− rU) = uU(ω0)

Note that, ∂πM
S

∂β
= (γrH + (1− γ)rL)− rU

i.e. since r is concave in risk type, a monopolist does not necessarily prefer

informed customers.

Let us turn to asymmetric information. We will consider the case of full asym-

metric information, i.e. insurers do not know risk types, and insurers as well

do not know whether a customer is informed or not, i.e. they do not know

informational status. A monopolistic insurer solves the following maximization

problem:

max
vL
1
,vL

2
,vH

1
,vH

2
,vU

1
,vU

2

(1− β)
[
w − pU l − (1− pU)z(vU1 )− pUz(vU2 )

]
+

β
[
γ(w − pH l − (1− pH)z(vH1 )− pHz(vH2 )+

(1− γ)(w − pLl − (1− pL)z(vL1 )− pLz(vL2 ))

s.t.

(1− pj)vj1 + pjvj2 ≥ (1− pj)vj
′

1 + pjvj
′

2 ∀j, j′ ∈ {L,U,H}

(1− pj)vL1 + pjvj2 ≥ (1− pj)v01 + pjv02 ∀j ∈ {L,U,H}

As this maximization problem can be analyzed as a standard problem, we will

assume that the participation constraint of the L-type, and incentive constraints

for the U -type with respect to the L-type contract and the H-type with respect

to the U -type contract bind and that all other constraints are slack. We can

rewrite the L-type participation constraint as

vL2 = s(vL1 ) ≡ v02 +
1− pL

pL
(v01 − vL1 ) (5.1)



Asymmetric information and collusive stability 73

Similarly, the U -type incentive constraint can be transformed to

vU2 = t(vL1 , v
U
1 ) ≡ v02 +

1− pL

pL
(v01 − vL1 ) +

1− pU

pU
(vL1 − vU1 ) (5.2)

Finally, the H-type incentive constraint can be written as

vH2 = k(vL1 , v
U
1 , v

H
1 ) ≡ t(vL1 , v

U
1 ) +

1− pH

pH
(vU1 − vH1 ) (5.3)

We can now rewrite the monopolist’s maximization problem as the following

reduced unconstrained problem:

max
vL
1
,vH

1
,vU

1

(1− β)
[
w − pU l − (1− pU)z(vU1 )− pUz(t(vL1 , v

U
1 ))
]
+

β
[
γ(w − pH l − (1− pH)z(vH1 )− pHz(k(vL1 , v

U
1 , v

H
1 )))+

(1− γ)(w − pLl − (1− pL)z(vL1 )− pLz(s(vL1 )))

Then, whenever all three types buy insurance, optimal contracts are character-

ized by:

v∗H1 = v∗H2 (5.4)

γ
1

v′(z(v∗H2 ))
=

(1− β)

β

(1− pU)pU

pH − pU

[
1

v′(z(v∗U1 ))
−

1

v′(z(v∗U2 ))

]
(5.5)

γ
pH

pU
1

v′(z(v∗H2 ))
+

(1− β)

β

1

v′(z(v∗U2 ))
= (1− γ)

(1− pL)pL

pU − pL

[
1

v′(z(v∗L1 ))
−

1

v′(z(v∗L2 ))

]

(5.6)

and (5.1)-(5.3). An example for the optimal contracts is shown below in Figure

5.4. Note that in Figure 5.4 the optimal H-type contract is such that H-types

are cross-subsidized. As cross-subsidization drives our results on collusive stabil-

ity, we want to analyze when cross-subsidization occurs if there are uninformed

consumers and how cross-subsidization changes with the share in uninformed

consumers. Let us first consider the extreme cases of either perfect or no con-

sumer information. First assume β = 1, i.e. there are only informed customers.

This corresponds to the two-type case analyzed in the previous section and there
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Figure 5.4: Monopoly contracts when all three types buy insurance

is cross-subsidization of H-types if γ < γ̂. We let γ̂ ≡ γ̂(1). Now consider β = 0,

i.e. there are only uninformed customers. The optimal contract is pinned down

by

v∗U1 = v∗U2

v∗U1 = (γpH + (1− γ)pL)v02 + (1− (γpH + (1− γ)pL))v01

Then, as the share of H-types in the whole population impacts the slope of

U -type indifference curves, we can determine the share of H-types such that the

optimal U -type contract for β = 0 corresponds to theH-type Rothschild-Stiglitz

contract. This share is denoted as γ̂(0) and given by

γ̂(0) ≡
uL(0, 0)− v(w − pH l)

(pH − pL)(v01 − v02)

Note that γ̂(0) < 1 due to concavity of v. Note also that, under Assumption 1,

uL(0, 0)− v(w − pH l) > 0 and hence γ̂(0) > 0. Now since

dv∗U1
dγ

∣∣∣∣β=0 =
dv∗U1
dγ

∣∣
β=0 = (pL − pH)(v01 − v02) < 0

increasing β at β = 0 implies that H-types will be cross-subsidized for β greater

but sufficiently close to 0 if γ < γ̂(0). This is because if there are only a few
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high risk types, the optimal U -type contract is still close to the U -type contract

for β = 0 such that the corresponding incentive compatible H-type contract is

loss-making. In our example, γ̂(0) = 0.795 such that even for a relatively large

share of H-types in the overall population there is cross-subsidization if there

are only a few informed customers.

In a similar manner, when all three types buy insurance, we can determine a

critical γ(β) such that the optimal H-type contract corresponds to the H-type

Rothschild-Stiglitz contract, denoted by γ̂(β). From (5.3) and (5.4), define

v∗U1

∣∣∣∣v∗H1 =v(w−pH l) =
pU

pH − pU
(pH(v02 +

1− pL

pL
v01)− v(w − pH l)−

pH(pU − pL)

pUpL
v∗L1 )

≡ f γ̂(v∗L1 ) (5.7)

and tγ̂(v∗L1 ) ≡ t(v∗L1 , f γ̂(v∗L1 )) (5.8)

Then, rewriting (5.5) and (5.6), γ̂(β) (and v∗L1 ) is implicitly given by the solution

to the following system of equations:

pU = γ̂(β)pH + (1− γ̂(β))pL

γ̂(β)z′(v(w − pH l)) =
(1− β)

β

(1− pU)pU

pH − pU
[
z′(f γ̂(v∗L1 ))− z′(tγ̂(v∗L1 ))

]

γ̂(β)

1− γ̂(β)

pH

pU
z′(v(w − pH l)) +

(1− β)

β(1− γ̂)
z′(tγ̂(v∗L1 )) =

(1− pL)pL

pU − pL
[
z′(v∗L1 )− z′(s(v∗L1 ))

]

and (5.7)-(5.8). The above equations give the critical share of high risks in the

population for a given share of informed customers when parameters are such

that all three types buy insurance. Note that, if β is small and γ large, optimal

contracts will be such that L-types do not receive insurance, however, under

Assumption 1 H-types will be cross-subsidized for small values of β even if L-

types do not receive insurance. Thus, even if not all three types buy insurance,

there is a critical share of high risks such that there is cross-subsidization. With

a slight abuse of notation, we will denote this critical share for every 0 < β < 1

by γ̂(β). We illustrate γ̂(β) for our example derived from numerical analysis in

Figure 5.5.
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Figure 5.5: γ̂(β).

From the previous section γ̂(1) = 0.15920. Note that γ̂(β) decreases in β. This

is because for low values of β, U -types are important for profit-maximization

and hence if optimal contracts are such that there is (hypothetical) cross-

subsidization for β = 0, then if there are only a few informed types there

will be cross-subsidization even if the share of high risks is fairly high. With an

increase in informed consumers, the shares of high and low risks are increasingly

important such that now for cross-subsidization to occur, the share of high risks

needs to be lowered in order for the monopolist to be willing to cross-subsidize

them to extract profit from low risks.

Deviation profits

Under symmetric information, as each contract from perfect collusion is sepa-

rately profit-making for any (γ, β) ∈ [0, 1]2, as in the two-type case a deviator

would slightly undercut each monopoly contract separately and earn monopoly

profits by deviating. Hence, independent of the share of informed customers,

we have πD
s (γ, β) = 2πC

s (γ, β) for all (γ, β) ∈ [0, 1]2.

Under asymmetric information, a deviator only offers those contracts that yield

positive profits and does not offer cross-subsidized contracts. Since from the
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above analysis at least H-types might be cross subsidized for some (γ, β) ∈

[0, 1]2, there exist (γ, β) ∈ [0, 1]2 such that πD
as(γ, β) > 2πC

as(γ, β). We also

have πD
as(γ, 0) = 2πC

as(γ, 0) for all γ ∈ [0, 1] and, for β̂ sufficiently close to

0, πD
as(γ, β̂) > 2πC

as(γ, β̂) for γ < γ̂(0). Furthermore, from the previous section,

πD
as(γ, 1) = 2πC

as(γ, 1) for all γ ∈ [γ̂, 1] and πD
as(γ, 1) > 2πC

as(γ, 1) for all γ ∈ [0, γ̂).

Stability of collusion

Since under symmetric information πD
s (γ, β) = 2πC

s (γ, β) for all (γ, β) ∈ [0, 1]2

and punishment profits are zero, it follows that collusion at maximal profits can

be sustained as a subgame perfect equilibrium for all (γ, β) ∈ [0, 1]2 if and only

if δ ∈ [1/2, 1].

Under asymmetric information, if β = 0, collusion at maximal profits can be sus-

tained as a subgame perfect equilibrium for all γ ∈ [0, 1] if and only if δ ∈ [1/2, 1].

Now for β̂ sufficiently close to 0, collusion at maximal profits can be sustained

as a subgame perfect equilibrium for all γ ∈ [γ̂(0), 1] if and only if δ ∈ [1/2, 1]

and for all γ ∈ [0, γ̂(0)) if and only if δ ∈ (δ̃, 1) with δ̃ > 1/2. Combining the last

two results, we have that a marginal increase in β from no informed consumers

to some informed consumers always destabilizes collusion as long as γ < γ̂(0).

For other values of β, the impact of an increase of β on collusive stability is

nonmonotonous. We will discuss δ̄(β) for different γ for our example.

First consider γ = 0.1. Figure 5.6 shows δ̄(β) obtained from numerical analysis

for γ = 0.1. For low values of β, δ̄(β) increases as the loss on H-types increases

since the monopolist wants to extract a large surplus from U -types. Further-

more, for low values of β, the L-type does not receive insurance. For higher

values of β, H-types are still cross-subsidized, but the overall loss on them de-

creases such that δ̄(β) decreases slightly. For even higher values of β, since γ is

low, now for profit maximization the profit from L-types become increasingly

important such that now H-types are increasingly cross-subsidized to extract

profits from L-types instead of U -types and δ̄(β) increases again.

Now consider γ = 0.15. Figure 5.7 shows δ̄(β) obtained from numerical analysis

for this case. The analysis for low and intermediate values of β is the same
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Figure 5.6: δ̄(β) for γ = 0.1

as for γ = 0.1. However, for higher values of β, the critical discount factor

now decreases. This is because as the share of high risks is sufficiently high,

profit-maximization requires that although there is still cross-subsidization of

high risks, it decreases in the share of informed consumers.
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Figure 5.7: δ̄(β) for γ = 0.15

The last examples is an even higher share of high risks with γ = 0.2. Figure
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5.8 shows δ̄(β) obtained from numerical analysis for this case. Now as the

share of high risks is substantial, high risks will not be cross-subsidized any

more if uninformed consumers become unimportant as now profit-maximization

requires a large surplus to be extracted from high risks.
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Figure 5.8: δ̄(β) for γ = 0.2

We can summarize our results in the following proposition:

Proposition 5.2 Consumer information about risk type does not affect collu-

sive stability under symmetric information. Under asymmetric information,

the impact of information on collusive stability is nonmonotonous. If there are

only uninformed consumers and the share of high risks is not too high, some

information about risk type always destabilizes collusion.

Proof Follows immediately from comparison of the critical discount factors.�

We have analyzed the impact of consumer information on collusive stability

under the assumption that insurers neither know risk type of informed con-

sumers, nor know whether a consumer is informed, i.e. insurers cannot observe

informational status. Note that, if e.g. in the case of genetic tests, insurers

know whether a test has been taken or not, the analysis is similar to the two-

type from the previous section as uninformed consumers would always obtain
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the profit-making contract that extracts their risk premium and the adverse

selection problem remains only for informed types.

5.5 Demand shocks: Volatile risk composition

In the last section, we considered the impact of different demand conditions

in terms of the share of consumers that have precise information about their

risk type on collusive stability. We will now consider an insurance market in

which consumers are again perfectly informed about their risk type, however,

there might be intertemporal shocks to demand in the form of a volatile risk

composition of customers.

Consider the following change in the model: There are again only two types of

customers, H-types and L-types. In each period, with probability σ the share

of high risks in period t is γ̄, and with probability 1 − σ, the share is γ
¯
with

0 ≤ γ
¯
< γ̄ ≤ 1.50 We assume that σ is common knowledge. Furthermore,

in the beginning of each period before setting contracts, all firms observe the

realization of γ.51 There are no deviation incentives for an individual firm, if

πC(γ)+
δ

1− δ
(σπC(γ̄)+(1−σ)πC(γ

¯
)) ≥ πD(γ) ⇔ δ ≥

1

1 +
σπC(γ̄)+(1−σ)πC(γ

¯
)

πD(γ)−πC(γ)

=: δ̄(γ)

We start again with symmetric information. Under symmetric information,

since for all γ each collusive contract is separately profit-making, deviation profit

always equals total collusive profits. Then deviation incentives only depend on

the ratio between the period collusive profit and the average collusive profit.

For γ
¯
= γ̄, δ̄s(γ

¯
) = δ̄s(γ̄) =

1
2
. Now fix γ

¯
and consider an increase in γ̄:

sgn

(
∂δ̄s(γ̄)

∂γ̄

)
= sgn

(
∂πC

s (γ̄)

∂γ̄

)
∀γ̄ ∈ [γ

¯
, 1]

and

50 Hence, the demand shocks are iid and we do not consider correlation of demand shocks.
51 We thus model demand shocks in the spirit of Rotemberg and Saloner (1986) and do not

introduce imperfect monitoring as in Green and Porter (1984).
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sgn

(
∂δ̄s(γ

¯
)

∂γ̄

)
= −sgn

(
∂πC

s (γ̄)

∂γ̄

)
∀γ̄ ∈ [γ

¯
, 1]

It follows that for πC(0) < πC(1) which is equivalent to rL < rH ,

δ̄s(γ
¯
) <

1

2
< δ̄s(γ̄) for 0 ≤ γ

¯
< γ̄ ≤ 1.

Note that this corresponds to the destabilizing demand boom effect in Rotem-

berg and Saloner (1986) and the subsequent literature: If πC(0) < πC(1), then

a high share of high risk types implies high demand as they have the larger

risk premium. From analogical reasoning, it follows that for πC(0) > πC(1),

δ̄s(γ
¯
) > 1

2
> δ̄s(γ̄) for 0 ≤ γ

¯
< γ̄ ≤ 1.

We now turn to the asymmetric information setting. Under asymmetric infor-

mation, deviation profits might be higher than total collusive profits leading to

a higher critical discount factor, as shown in section 3. We will refer to this as

the cream-skimming effect. What is however more relevant for the analysis of

volatile risk type shares is that collusive profits first decrease and then increase

in the share of high risks. Let πM
as denote monopoly profits under asymmetric

information. Note that πM
as is continuously differentiable w.r.t γ.

Lemma 5.1 ∂πM
as/∂γ < 0 ∀γ < γ̌ and ∂πM

as/∂γ > 0 ∀γ > γ̌ with γ̂ < γ̌ < γ̃

where γ̃ is the share of high risks such that for γ ≥ γ̃, ωL
M,as = (0, 0).

Proof See Appendix. �

Figure 5.9 shows monopoly profits under symmetric and asymmetric informa-

tion. In our example, γ̂ ≈ 0.15920, γ̌ ≈ 0.16496 and γ̃ ≈ 0.19032. As collusive

profits first decrease and then increase in the share of high risks and because

the cream-skimming effect might be relevant, the analysis for the asymmetric

information setting depends on which parameter ranges γ
¯
and γ̄ are drawn from.

We will discuss basic cases and assume that πC(0) < πC(1).
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Figure 5.9: Monopoly and deviation profits under symmetric and asymmetric
information.

Case 1 : γ̃ < γ
¯
< γ̄

This is the case in which, under asymmetric information, in both demand states

low risks will not receive insurance. Collusive and deviation contracts coincide

and ∂πM
as/∂γ = rH > rH − rL = ∂πM

s /∂γ. Then, from analogous reasoning as

above under symmetric information, it follows that δ̄as(γ
¯
) < δ̄as(γ̄) and

δ̄as(γ
¯
) < δ̄s(γ

¯
) < δ̄s(γ̄) < δ̄as(γ̄) for γ̃ < γ

¯
< γ̄ ≤ 1.

Here, the standard demand boom effect is at work both for symmetric and asym-

metric information, however, although absolute profits are lower under asym-

metric information, the relative demand boom effect is stronger under asym-

metric information as low risks do not receive insurance anyways.

Case 2: γ
¯
< γ̄ < γ̌

Contrary to Case 1, now for both possible realizations of γ the share of low risks

is high and the cream-skimming effect can occur. What is interesting is that

under asymmetric information there exist γ
¯
and γ̄ such that δ̄as(γ̄) < δ̄as(γ

¯
).

This is particularly easy to see when γ
¯
< γ̂ and γ̂ < γ̄ as firstly collusive profits
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decrease in γ and secondly there is no cream-skimmming effect on δ̄as(γ̄), but

on δ̄as(γ
¯
). This is interesting as although γ̄ implies a higher share of consumers

with a higher willingness to pay, colluding firms and consequently a deviator

cannot exploit the overall higher willingness to pay due to asymmetric infor-

mation and actually realize a low profit such that the critical discount factor is

lower.

Case 3: γ
¯
< γ̌ < γ̄

In this case, collusive profits monotonically decrease in the region where γ
¯
is

drawn from and monotonically increase in the region where γ̄ is drawn from.

Assume first that γ̂ < γ
¯
such that the cream-skimming effect is not present.

Since collusive profits decrease for γ < γ̌ and increase for γ > γ̌, for a γ
¯

there exist a γ̄ such that πC
as(γ

¯
) = πC

as(γ̄) = σπC
as(γ̄) + (1 − σ)πC

as(γ
¯
) and thus

δ̄as(γ
¯
) = δ̄as(γ̄) = 1/2. Then, since under symmetric information, δ̄s(γ

¯
) < 1

2
<

δ̄s(γ̄) for 0 ≤ γ
¯
< γ̄ ≤ 1, there exist γ

¯
and γ̄ such that

δ̄s(γ
¯
) < δ̄as(γ

¯
) S δ̄as(γ̄) < δ̄s(γ̄)

i.e. the highest critical discount factor pertains to symmetric information. Now

consider γ
¯
< γ̂ such that the cream-skimming effect destabilizing collusion under

asymmetric information is present for γ
¯
6= 0. However, assume for the moment

that γ
¯
= 0. Then, from an analogical reasoning as above and since πC(0) <

πC(1), there exists a γ̄0 < 1 such that πC
as(0) = πC

as(γ̄0) and thus δ̄as(0) =

δ̄as(γ̄0) = 1/2. Then although

sgn

(
∂δ̄as(γ̄0)

∂γ
¯

)
= −sgn

(
∂πC

as(γ
¯
)

∂γ
¯

)
> 0 ∀γ

¯
∈ [0, γ̌)

and

sgn

(
∂δ̄s(γ

¯
)

∂γ
¯

)
= sgn

[
A
∂πD

as(γ
¯
)

∂γ
¯

−
∂πC

as(γ
¯
)

∂γ
¯

[A+ (1− σ)(πD
as(γ

¯
)− πC

as(γ
¯
))]

]

> 0 ∀γ
¯
∈ [0, γ̂)
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i.e. although under asymmetric information both critical discount factors in-

crease in γ
¯
, as long as γ

¯
is sufficiently close to 0, it holds that δ̄s(γ

¯
) < δ̄as(γ

¯
) ⋚

δ̄as(γ̄0) < δ̄s(γ̄). Hence, although the cream-skimming effect destabilizing col-

lusion under asymmetric information, for certain parameter ranges the demand

boom effect under symmetric information dominates such that the highest crit-

ical discount factor pertains to symmetric information.
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Figure 5.10: γ
¯
= 0.02, σ = 1/4.

Figure 5.10 shows for γ
¯
= 0.02 where the cream-skimming effect is present the

critical discount factors for γ̄ ≥ 0.02. The solid black (grey) curve depicts δ̄(γ̄)

under asymmetric (symmetric) information, and the dotted black (grey) curve

depicts δ̄(γ
¯
) under asymmetric (symmetric) information. As was shown, the

critical discount factors under symmetric information monotonically increase

respectively decrease. Furthermore, it can be seen that for a range of γ̄ > γ̌,

the highest critical discount factor is δ̄s(γ̄). This requires in particular for γ̄

to be sufficiently but not too high as otherwise the demand boom effect under

asymmetric information would dominate. Note also that Case 2 is illustrated,

as δ̄as(γ̄) < δ̄as(γ
¯
) for γ̄ sufficiently close to γ̌.
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We can now summarize our findings. First, when the risk composition is volatile

over time, collusion under asymmetric information is not always less stable than

collusion under symmetric information:

Proposition 5.3 If the risk composition is volatile, collusion under asymmetric

information might be more stable than collusion under symmetric information.

Proof Follows immediately from comparison of the critical discount factors.�

Note that this result is a consequence of asymmetric information per se and does

not, contrary to the result with a constant risk composition, pertain to common

values: Due to asymmetric information, collusive profits are nonmonotonous

in the share of high risk types. Then under asymmetric information a change

in the share of risk types might not change collusive profits strongly such that

collusion is more stable.

We can furthermore relate our results to the literature on whether collusion

breaks down in boom or bust phases. We will thereby define a boom phase by

a period with a high share of costumers with high willingness to pay, i.e. if

rH > rL, a boom phase is a period with high γ.

Proposition 5.4 Under asymmetric information, collusion might break down

(require prices to be lowered) in bust phases.

Proof Follows immediately from comparison of the critical discount factors.�

The second result is interesting as we analyze a Rotemberg and Saloner (1986)

set-up which does not involve any imperfect monitoring of competitors’ actions.

The result follows again from asymmetric information as although a higher

share of customers with a higher willingness to pay would increase profits under

symmetric information, incentive compatibility constraints prevent firms from

exploiting the demand boom under asymmetric information such that collusive

and consequently deviating profits are higher when the share of customers with

a higher willingness to pay is low.
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5.6 Conclusion

We study the ability of firms to sustain collusive agreements in insurance mar-

kets with adverse selection. In particular, we analyze whether collusion is more

stable under symmetric or asymmetric information. It is shown that asymmetric

information destabilizes collusive agreements, however this is not a consequence

of asymmetric information per se but due to the fact that the customers’ pri-

vate information about risk types impacts an insurers profit from a particular

contract: Since even a monopolist might want to cross-subsidize high risks a

deviator can earn higher than total collusive profits which destabilizes collu-

sive agreements. In terms of the industrial organization literature, we can thus

contribute a new factor that destabilizes collusion: pay-off relevant private in-

formation.

Furthermore, we show that the impact of consumer information about risk type

has a nonmonotonous effect on collusive stability. This is an interesting result

as more consumer information about market parameters is typically assumed to

deter collusion.

In this chapter, we only analyze the market with two respectively three cus-

tomer types and consider the extreme cases of either complete symmetric or

asymmetric information. One extension would be to conduct the analysis for

more general type distributions. Furthermore, an interesting extension would

be to consider a model where instead of either symmetric or asymmetric infor-

mation firms receive a signal about a customer’s risk type with varying precision

such that more detailed comparative statics results can be derived.
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5.7 Appendix

Proof of Lemma 1.

From the envelope theorem, we have:

∂πM
AS(γ)/∂γ = (w − pH l − (1− pH)z(v∗H1 (γ))− pHz(v∗H2 (γ)))

− (w − pLl − (1− pL)z(v∗L1 (γ))− pLz(v∗L2 (γ))) (5.9)

Rewriting (15) by substituting:

v∗L2 = v02 +
1− pL

pL
(v01 − v∗L1 ) ≡ a(v∗L1 ) (5.10)

v∗H1 = v∗H2 = pH(v02 +
1− pL

pL
(v01) +

pL − pH

pLpH
v∗L1 ) ≡ k(v∗L1 ) (5.11)

from (2) and the binding constraints, we get

∂πM
AS(γ)/∂γ = (w − pH l − z(k(v∗L1 (γ))))−

(w − pLl − (1− pL)z(v∗L1 (γ))− pLz(a(v∗L1 (γ))) (5.12)

Substituting (19) and (20) into (3), we have:

z′(k(v∗L1 ))−
1− γ

γ

pL(1− pL)

pH − pL
(z′(v∗L1 )− z′(a(v∗L1 )) = 0 ≡ F (γ, v∗L1 ) (5.13)

Then, from the implicit function theorem:

∂v∗L1 /∂γ = −
∂F (γ, v∗L1 )/∂γ

∂F (γ, v∗L1 )/∂v∗L1
(5.14)

with

∂F (γ, v∗L1 )/∂v∗L1 = z′′(k(v∗L1 ))
pH(pL − pH)

pLpH
−

1− γ

γ

pL(1− pL)

pH − pL
(z′′(v∗L1 ) + z′′(a(v∗L1 ))(

1− pL

pL
)) < 0 (5.15)

and
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∂F (γ, v∗L1 )/∂γ =

pL(1−pL)
pH−pL

(z′(v∗L1 )− z′(a(v∗L1 ))

γ2
> 0 (5.16)

It follows, as long as both types buy insurance, that

∂v∗L1 /∂γ > 0

Since
∂k(v∗L1 )/∂γ =

pL − pH

pL
< 0

we have ∂(w − pH l − z(k(v∗L1 (γ))))/∂γ > 0

as long as both types buy insurance. Furthermore, since

∂a(v∗L1 )/∂γ = −
1− pL

pL
< 0

we have

∂(w − pLl − (1− pL)z(v∗L1 (γ))− pLz(a(v∗L1 (γ)))/∂γ =

(∂v∗L1 /∂γ)(1− pL)(z′(a(v∗L1 ))− z′(v∗L1 )) < 0 (5.17)

as long as both types buy insurance. Now, as already shown in Stiglitz (1977),

there exists a γ̃ such that for γ < γ̃ L-types do not buy insurance. With our

approach, γ̃ is given by

γ̃

1− γ̃
=

pL(1− pL)

pH − pL

[
z′(c(v(w − pH l − rH)))− z′(a(c(v(w − pH l − rH))))

z′(v(w − pH l − rH))

]

(5.18)

Note that γ̃ > γ̂. Furthermore, we have ∂πM
AS(γ)/∂γ = rH ∀ γ ∈ [γ̃, 1]. Then,

since (w−pH l−z(k(v∗L1 (γ)))) < 0 for all γ < γ̂ and (w−pLl−(1−pL)z(v∗L1 (γ))−

pLz(a(v∗L1 (γ))) > 0∀ γ ∈ [0, γ̃), combining the above results gives

∂πM
AS/∂γ < 0 ∀γ < γ̌

∂πM
AS/∂γ > 0 ∀γ > γ̌

with γ̂ < γ̌ < γ̃.
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