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Kurzzusammenfassung. Wir berechnen den erwarteten Grad eines zufällig
gewählten Elements in einer Basis von Gewichtsvektoren eines beliebigen
Demazure Moduls von ŝl2 durch Induktion über Demazures Charakterformel.
Entlang unseres Argumentationsweges erhalten wir einen neuen Beweis für
Sandersons Dimensionsformel für diese Demazure Moduln. Zusätzlich berech-
nen wir die Kovarianz der vollen Gewichtsverteilung in Level 1 Demazure
Moduln von ŝl2. Der Schwerpunkt liegt dabei auf der Berechnung der Var-
ianz der Gradverteilung. Die Kenntniss der Kovarianz erlaubt es uns, das
schwache Gesetz der großen Zahlen mittels Chebyshevs Ungleichung zu be-
weisen. Wir führen zwei Beweise für unsere Resultate bezüglich Level 1
Demazure Moduln, der Erste durch Induktion über Demazures Charakter-
formel, der Zweite mittels Quantum Analysis und der Tatsache, dass die
Charaktere von Level 1 Demazure Moduln in Verbindung zu Macdonald und
Rogers–Szegő Polynomen stehen.

Abstract. We compute the expected degree of a randomly chosen element
in a basis of weight vectors of an arbitrary Demazure module of ŝl2 by
induction along Demazure’s character formula. Along those lines we obtain
a new proof of Sanderson’s dimension formula for these Demazure modules.
Furthermore, we compute the covariance of the full weight distribution in
level 1 Demazure modules of ŝl2. The crucial step is to compute the variance
of the degree distribution. The knowledge of the covariance allows us to prove
the weak law of large numbers for the degree and full weight distribution
using Chebyshev’s inequality. We give two proofs of our results concerning
level 1 Demazure modules, one by induction along Demazure’s character
formula, and one by using quantum calculus and the fact that the characters
of level 1 Demazure modules are related to Macdonald and Rogers–Szegő
polynomials.
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1. Introduction, organization, and notation

1.1. Introduction. The traditional way to study the dimensions of weight
spaces of a given representation is by means of their generating function,
the character. While the character comprehends all weight multiplicities,
it may be difficult to extract meaningful information from it. For example,
the characters of irreducible representations of semisimple Lie algebras are
explicitly given by Weyl’s character formula. But to estimate weight mul-
tiplicities in representations with a large highest weight, more meaningful
information can possibly be obtained from the fact that for N → ∞ the
weight distribution of V (Nλ) converges weakly to an absolutely continuous
measure with piecewise polynomial density. Similarly, given the character of
a representation, one can immediately write down the character of its tensor
powers TN (V ), namely chTN (V ) = (chV )N . To extract meaningful informa-
tion, one could interpret this probabilistically as a convolution product of
measures, saying that weights in tensor powers are distributed like sums of
independent random variables, identically distributed according to the weight
distribution of V . Then, by the central limit theorem and careful analysis,
one can derive statistical information and estimates of weight multiplicities
in large tensor powers [34].

In this thesis, we take a probabilistic point of view on weight multiplicities
in Demazure modules of the affine Lie algebra ŝl2. The weight distributions of
those Demazure modules are discrete measures on the plane. Some examples
are shown in Figure 11.

Even though initially studied for semisimple Lie algebras [1, 6], Demazure
modules in our context are most interesting in the case of Kac–Moody algebras
of affine or indefinite type [21, 27, 28], as they provide an exhaustion of the
infinite dimensional integrable highest weight modules by finite dimensional
vector spaces. The characters of Demazure modules are in principle explicitly
known by Demazure’s character formula. Yet, the recursive and non-positive
nature of the latter makes it hard to extract explicit meaningful information
about individual weight multiplicities, asymptotics of weight multiplicities,
or overall features of the weight distribution. Other character formulas for
Demazure modules exist, e.g. [11, 13, 15, 22, 23, 24, 31, 33]. As these express
Demazure characters in terms of functions which are themselves subject to
current research, it is again not obvious how to extract the above mentioned
information from them.

For affine Kac–Moody algebras, certain specializations of Demazure char-
acters have been extensively and successfully studied, the so-called real
characters, i.e., characters of the underlying semisimple Lie algebra. The
main statement is known as the factorization phenomenon, and says that

1The software used to produce most of the figures in this thesis is available at https:
//sourceforge.net/projects/demazure.

https://sourceforge.net/projects/demazure
https://sourceforge.net/projects/demazure
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Figure 1. Weight distribution of VwN,0(10Λ0) for N =
1, . . . , 8. The horizontal axis corresponds to the finite weight,
the vertical axis to the degree. Light gray corresponds to the
weight multiplicity 1, black to the maximal occurring weight
multiplicity in a given Demazure module.

these specialized versions allow a product decomposition ([12, 30] and many
others). When formulated in probabilistic terms, the product decomposition
translates into a convolution product decomposition of the corresponding
weight distribution. Hence they can be studied by a great number of basic
and advanced techniques, such as the law of large numbers and the central
limit theorem for independent identically distributed random variables, large
deviations techniques, and the method of stationary phase [34]. Unfortu-
nately, the factorization phenomenon and all those tools only apply to the
real characters. Specializing to the real characters means that all degree
information contained in the Demazure modules is lost, i.e., any two weights
are identified if they differ only by a multiple of the null root δ. In prob-
abilistic terms, one only studies a marginal distribution of the full weight
distribution, which we will call the finite weight distribution.

The study of the full weight distribution should start with the deter-
mination of its most basic statistical quantities, the expected value and
the covariance matrix. We compute the expected value of the full weight
distribution for all Demazure modules of the affine Kac–Moody algebra ŝl2,
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N = 0

N = 1 N = 2

N = 3 N = 4

N = 5 N = 6

N = 7 N = 8

N = 17 N = 18

Figure 2. Degree distribution of VwN,0(Λ0) for N =
0, 1, . . . , 8; 17, 18. Each picture displays degree 0, the degree
of the highest weight, on the left, and the maximal occurring
degree in the given Demazure module on the right.

and continue this investigation by computing the covariance matrix of the
full weight distribution for its level 1 Demazure modules. This is enough
to obtain the weak law of large numbers as a corollary, to our knowledge
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the first result to give an idea about the overall weight distribution in large
Demazure modules.

The key problem is to understand the other important marginal distribu-
tion, the degree distribution, which seems to have escaped attention so far.
This is especially surprising since it corresponds to the basic specialization
of Demazure characters, and in the case of infinite dimensional integrable
highest weight modules the basic specialization yields Macdonald’s identities
for Dedekind’s η-function [16, §12.2]. Some examples of degree distributions
associated to Demazure modules are shown in Figure 2 and 3. In fact, al-
though the pictures suggest that the central limit theorem holds, what makes
its analysis particularly difficult is that the factorization phenomenon does
not occur in this situation, i.e, the degree distribution does not decompose
as a convolution product.

Let us elaborate on the main results presented in this thesis. First, note
that almost all main results are initially formulated and proven for Demazure
modules indexed by elements in the affine Weyl group W aff . Nevertheless,
it is possible to extend and formulate them in terms of Demazure modules
indexed by elements in the extended affine Weyl group W̃ aff . Let us do this
here for reasons of brevity, that is to avoid case considerations. Denote the
non-trivial automorphism of the Dynkin diagram of ŝl2 by σ, and the scaling
element (giving the degree of weights) by d.

Now, the expected value of the overall weight distribution of a Demazure
module is fully described by the individual expected values of the (marginal)
finite weight and degree distribution, respectively. Due to the factorization
phenomenon and Weyl group symmetry the expected value of the former can
easily be determined. Therefore we are only concerned about the expected
value of the latter.

Theorem (Expected degree, Cf. Theorem 2.2.2). Let Λ = mΛ0 + nΛ1 be
a dominant integral weight, N ≥ 1, and j ∈ {0, 1}. Denote by µ(σsj)N the
weight distribution of V(σsj)N (Λ). Consider −d ∈ h as a function on h∗.
Choose a basis of weight vectors in the Demazure modules V(σs0)N (Λ) and
V(σs1)N (Λ). Then the expected degrees of a randomly chosen basis element
are given by the following formulas, respectively.

Eµ
(σs0)N

[−d] =
2(N − 1)m(m+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)

12(m+ n+ 1)

+
⌊
N − 1

2

⌋
n

2
+
⌊
N

2

⌋
m

2
,

Eµ
(σs1)N

[−d] =
2(N − 1)n(n+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)

12(m+ n+ 1)

+
⌈
N − 1

2

⌉
m

2
+
⌈
N

2

⌉
n

2
.
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N = 0

N = 1 N = 2

N = 3 N = 4

N = 5

Figure 3. Degree distribution of VwN,0(10Λ0) for N =
0, . . . , 5. Again, each individual picture displays degree 0,
the degree of the highest weight, on the left, and the maximal
occurring degree in the given Demazure module on the right.

This theorem already allows us to derive asymptotic statements when
the parameters become large. For example, one can compute the maximal
occurring degree Bm,n

N,j in V(σsj)N (Λ) (Cf. Lemma 2.3.4) and obtain:

Corollary (Limit ratio, Cf. Corollary 2.3.5). Let Λ = mΛ0 + nΛ1 be a
dominant integral weight and j ∈ {0, 1}. Consider −d ∈ h as a function on
h∗. Then the limit ratio of the expected and maximal degree in V(σsj)N (Λ),
as N tends to infinity, is given by

lim
N→∞

Eµ
(σsj)N

[−d]

Bm,n
N,j

=
m+ n+ 2

3(m+ n+ 1)
.
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Now, for level 1 Demazure modules of ŝl2, i.e., with highest weight being
equal to Λ0 or Λ1, we compute the variance of the degree distribution, the
covariance matrix of the full weight distribution, and prove the weak law of
large numbers.

Theorem (Variance of the degree, Cf. Theorem 3.4.5 and Corollary 3.4.7).
Let µ(σs0)N and µ(σs1)N be the weight distributions of the Demazure modules
V(σs0)N (Λ0) and V(σs1)N (Λ1), respectively. Consider −d ∈ h as a function on
h∗. Then,

Varµ
(σs0)N

(−d) =
N(N − 1)(2N + 5)

96
,

and

Varµ
(σs1)N

(−d) =
N(N − 1)(2N + 5)

96
+
N

4
.

The information gathered so far allows us to determine the covariance
matrix of the full weight distribution.

Theorem (Covariance of the weight distribution, Cf. Theorem 4.2.1). Let
µ(σs0)N and µ(σs1)N be the weight distributions of the Demazure modules
V(σs0)N (Λ0) and V(σs1)N (Λ1), respectively. Consider −d, α∨1 ∈ h as functions
on h∗. The covariance matrix of −d and α∨1 with respect to µ(σs0)N is given
by (

N(N−1)(2N+5)
96 0
0 N

)
,

and the covariance matrix of −d and α∨1 with respect to µ(σs1)N is(
N(N−1)(2N+5)

96 + N
4 0

0 N

)
.

The covariance matrix can be visualized by the covariance ellipse (see §4.2
for details). In Figure 4 the covariance ellipses have been centered at the
expected weight.

Finally, we are able to prove the weak law of large numbers using Cheby-
shev’s inequality (see Lemma 4.3.1 or [4, (5.32)]).

Theorem (Weak law of large numbers, Cf. Theorem 4.3.3). Let µ(σs0)N

and µ(σs1)N be the weight distributions of the Demazure modules V(σs0)N (Λ0)
and V(σs1)N (Λ1), respectively, and let µ̄(σs0)N , µ̄(σs1)N be their normalizations.
Consider −d, α∨1 ∈ h as functions on h∗. Then, for j ∈ {0, 1} we have(

D(bN2/4c+jdN/2e)−1

)
∗ (−d)∗µ̄(σsj)N

w−→ δ 1
2
,

and consequently(
D(N−1,(bN2/4c+jdN/2e)−1)

)
∗ (α∨1 ,−d)∗µ̄(σsj)N

w−→ δ(0, 1
2

).
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In view of the limit ratio of the expected and maximal degree, as stated
for an arbitrary Demazure module in the above corollary, we conjecture the
following:

Conjecture (Cf. Conjecture 4.3.4). Let Λ = mΛ0 + nΛ1 be a dominant
integral weight and j ∈ {0, 1}. Denote by Bm,n

N,j the maximal occurring
degree in V(σsj)N (Λ), by µ(σsj)N its weight distribution, and by µ̄(σsj)N its
normalization. Consider −d, α∨1 ∈ h as functions on h∗. Then,

(D(Bm,nN,j )−1)∗(−d)∗µ̄(σsj)N
w−→ δ m+n+2

3(m+n+1)
,

and consequently

(D(((m+n)N)−1,(Bm,nN,j )−1))∗(α
∨
1 ,−d)∗µ̄(σsj)N

w−→ δ“
0, m+n+2

3(m+n+1)

”.
See Figure 5 for an illustration of the weak law of large numbers, and

likewise Figure 6 for the conjecture.
Let me close by mentioning that even though we prefer a probabilistic

language, our results concerning the degree distribution can equivalently be
phrased as follows: Let chVw(Λ) be the character of a Demazure module Vw(Λ)
of ŝl2. We compute the Taylor expansion at 0 ∈ h of the basic specialization
of chVw(Λ) up to order 1 when Λ is arbitrary, and its Taylor expansion up to
order 2 when Λ is of level 1 (see §4.1).

1.2. Organization. This thesis is organized as follows:
In §2, we calculate the expected degree of a weight in (arbitrary) Demazure

modules by induction on the number of Demazure operators in Demazure’s
character formula. The actual induction follows a snake-like pattern (Figure 8
and 9). Our strategy dictates that we must express the expected degree of
a weight in a given Demazure module in terms of statistical information
about the weight distribution of the previous Demazure module. It turns
out that this involves not only the expected value, but also a second moment
(Lemma 2.1.6). For this reason, we cannot apply an induction argument
at this point. By what appears to be a coincidence to us, the necessary
second moment can be expressed purely in terms of the variance of the finite
weight (Lemma 2.1.7). This variance is known by [30] (see Lemma 2.1.8),
thereby yielding a recurrence relation Lemma 2.1.9 and consequently an
explicit formula Theorem 2.2.1. We conclude this section by some asymptotic
statements in §2.3.

In §3 we give two proofs of our main result Theorem 3.4.3 on the variance
of the degree of weights in level 1 Demazure modules. The first proof is by
induction along Demazure’s character formula §3.1–§3.4. In §3.1, we show
that one recursion step in Demazure’s character formula expresses the second
moment of the degree distribution of a given Demazure module in terms of
the third moments of the weight distribution of a smaller Demazure module
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1
1 1 1
1 2 1
2 3 2

1 3 5 3 1
1 5 7 5 1
2 6 9 6 2
3 9 11 9 3
4 10 14 10 4

1 5 13 16 13 5 1
1 7 14 18 14 7 1
2 8 16 19 16 8 2
2 9 16 20 16 9 2
3 10 18 20 18 10 3
3 10 16 19 16 10 3
4 10 16 18 16 10 4

1 4 10 14 16 14 10 4 1
1 5 9 13 14 13 9 5 1
1 4 8 10 11 10 8 4 1
1 4 7 9 9 9 7 4 1
1 3 5 6 7 6 5 3 1
1 3 4 5 5 5 4 3 1
1 2 3 3 3 3 3 2 1
1 2 2 2 2 2 2 2 1
1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Figure 4. Weight distribution of V(σs0)N (Λ0) for N = 10
(indicated by numbers) and N = 20, 30, 40 (indicated by
shades of gray). See §4.2 for the definition of the covariance
ellipses included in the figure.

(Lemma 3.1.1). We try to express these third moments in terms of the
(known) third moments of the distribution of the finite weight, but succeed
not quite (Corollary 3.1.6). In §3.2, we show that the weight multiplicities
are symmetric in each string of weights differing only by a multiple of δ
(Lemma 3.2.1). We use this in §3.3 to show that the covariance between
two specific quadratic functions vanishes (Corollary 3.3.4). This allows us to
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1 1

1 1
Figure 5. Degree distribution of VwN (Λ0) for N =
10, 20, 50, 1000. Theorem 4.3.3 states that this distribution
converges weakly to δ 1

2
as N →∞.

1 1

1 1
Figure 6. Degree distribution of VwN (50Λ0) for N =
4, 10, 20, 100. Conjecture 4.3.4 asserts that this distribution
converges weakly to δ 51

156
as N →∞.
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explicitly compute the previously problematic third moments (Lemma 3.3.5).
This yields an explicit recurrence relation, stated in §3.4, for the second
moment of the degree distribution (Lemma 3.4.2), which is easy to solve and
culminates in the determination of the variance of the degree distribution
Theorem 3.4.3. The second proof in §3.5 exploits a relation between (level
1) Demazure characters, Macdonald polynomials, and Rogers–Szegő polyno-
mials, i.e., generating functions of Gaussian polynomials. This allows us to
obtain our main result Theorem 3.4.3 again, this time by quantum calculus
(Theorem 3.5.4).

The following section §4 contains applications: In §4.1 our results from
§2 and §3 are expressed in terms of the basic specialization of Demazure
characters. In §4.2 we complement our result on the variance of the degree
distribution in level 1 Demazure modules by determining the full covariance
matrix (Theorem 4.2.1). In §4.3 we deduce the weak law of large numbers for
weight distributions in level 1 Demazure modules Theorem 4.3.3 and assert
the immediate Conjecture 4.3.4 for arbitrary Demazure modules.

We conclude in §5 with an outlook on further questions to be discussed.

1.3. Notation. For general notation about Kac–Moody algebras we mostly
follow [16]. Let h be a 3-dimensional complex vector space and α∨0 , α

∨
1 ∈ h,

α0, α1 ∈ h∗ a realization of the generalized Cartan matrix A =
(

2 −2
−2 2

)
. Let

ŝl2 = g(A) be the associated affine Lie algebra. We denote the canonical
pairing between h∗ and h by 〈α, h〉 = α(h). Choose d ∈ h such that 〈α0, d〉 = 1
and 〈α1, d〉 = 0. Such an element d is called a scaling element. The degree of
λ ∈ h∗ is defined as 〈λ, d〉. The set {α∨0 , α∨1 , d} is a basis of h. Let {Λ0,Λ1, δ}
be the corresponding dual basis of h∗. Then δ = α0 + α1, and Λ0, Λ1 are
called fundamental weights.

Integrable highest weight modules of ŝl2 are parametrized up to isomor-
phism by dominant integral weights

Λ = mΛ0 + nΛ1 + cδ

for m,n ∈ N and c ∈ C. We denote the integrable highest weight module
corresponding to Λ by V (Λ). As a change in c simply corresponds to the
choice of a different scaling element d ∈ h, it is customary to suppose c = 0
and only consider dominant integral weights of the form Λ = mΛ0 + nΛ1,
which we do from now on.

Let K = α∨0 + α∨1 be the canonical central element. The level of a
weight λ ∈ h∗ is defined as 〈λ,K〉. If λ = mΛ0 + nΛ1, then its level is
〈λ,K〉 = m+ n. Hence the dominant integral weights of level 1 (which we
will consider exclusively in §3) are exactly the fundamental weights Λ0, Λ1.

A weight λ ∈ h∗ is said to occur in a given integrable highest weight
module V (Λ) if the weight space V (Λ)λ is nontrivial. The set of weights
occuring in V (Λ) is contained in the (affine) lattice

Γ = Λ + Zα0 + Zα1.
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−α1

−α0
−δ

Λ

Figure 7. The (affine) lattice Γ.

We define coordinates a, b on Γ by

λ = Λ− a(λ)α0 − b(λ)α1

for all λ ∈ Γ. Note that a, b depend on Λ. In Figure 4, each matrix component
resp. pixel represents a point in Γ. The highest weight Λ is located at the
apex of the parabola. The other elements of Γ are arranged as shown in
Figure 7. We write Γj = Λj + Zα0 + Zα1 for j ∈ {0, 1} to refer to the two
lattices corresponding to the fundamental weights.

For j ∈ {0, 1} define the simple reflections sj : h∗ → h∗ by

sj(λ) = λ− 〈λ, α∨j 〉αj .

The Weyl group W aff of ŝl2 is by definition the subgroup of GL(h∗) generated
by s0 and s1. All elements of W aff have the form

wN,0 = · · · s0s1s0︸ ︷︷ ︸
N factors

or wN,1 = · · · s1s0s1︸ ︷︷ ︸
N factors

for N ≥ 0.
Let n+ ⊂ ŝl2 be the sum of the positive root spaces. For w ∈W aff and Λ

a dominant integral weight, define the Demazure module Vw(Λ) to be the
(h⊕ n+)-module generated by V (Λ)wΛ. Demazure’s character formula for
Kac–Moody algebras [21, 27, 28] allows the computation of the character of
Vw(Λ) by an iterated application of certain operators on the monomial eΛ as
follows. Associated with a simple reflection sj we define the operator Dj to
act on monomials eλ, λ ∈ Γ, by

Dje
λ =

〈λ,α∨j 〉∑
i=0

eλ−iαj .
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Here we use the conventions that
−1∑
i=0

ai = 0, and
k∑
i=0

ai = −a−1 − . . .− ak+1

for k < −1. Note that this is natural in the sense that Gauss’s summation
formula

∑k
i=0 i = k(k+1)

2 extends to all k ∈ Z, as does the identity
∑k

i=0 1 =
k + 1. Now, Demazure’s character formula states that

chVwN,0 (Λ) = · · ·D0D1D0︸ ︷︷ ︸
N factors

eΛ, and chVwN,1 (Λ) = · · ·D1D0D1︸ ︷︷ ︸
N factors

eΛ.

As Vw(Λ) is in particular an h-module, it has a weight space decomposition

Vw(Λ) =
⊕
λ∈h∗

Vw(Λ)λ.

Let Measc(Γ) denote the set of measures on Γ with compact (hence finite)
support. We define the weight distribution of VwN,j (Λ) to be

µN,j =
∑
λ∈h∗

dim(Vw(Λ)λ) · δλ ∈ Measc(Γ).

Note that the dependence on Λ is important, but only implicit in the notation.
Given Λ, the space Meas±c (Γ) of signed measures on Γ with compact

support is isomorphic to the Z-module generated by {eλ : λ ∈ Γ} via the
mapping δλ 7→ eλ. The Demazure operators D0, D1 act on the latter hence
via this isomorphism on the former by

Djδλ =
〈λ,α∨j 〉∑
i=0

δλ−iαj

for j ∈ {0, 1} and λ ∈ Γ. Demazure’s character formula now becomes

µN,0 = · · ·D0D1D0︸ ︷︷ ︸
N factors

δΛ, and µN,1 = · · ·D1D0D1︸ ︷︷ ︸
N factors

δΛ.

Consider elements of h as functions on h∗. We refer to the push-forward
measure (−d)∗µN,j as the degree distribution, and to (α∨1 )∗µN,j as the distri-
bution of the finite weight of VwN,j (Λ). Note that in terms of the coordinates
a, b we have

−d = a and α∨1 =

{
−2(a− b) if N is even,
−2(a− b) + 1 if N is odd.

as functions on h∗. Hence the degree distribution is a∗µN,j , and the distribu-
tion of the finite weight is (a− b)∗µN,j up to translation and scaling.

Let us introduce the extended affine Weyl group W̃ aff . Let Σ be the
automorphism group of the Dynkin diagram of ŝl2, then W̃ aff = Σ nW aff .
Note that Σ = 〈σ〉 and σ2 = 1 in the case of ŝl2. The element σ maps Λ =
mΛ0+nΛ1 to σ(Λ) = nΛ0+mΛ1 and the lattice Γ to σ(Γ) = σ(Λ)+Zα0+Zα1
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via σ(Λ + xα0 + yα1) = σ(Λ) + yα0 + xα1. The Demazure operators Dw

with w ∈W aff extend to Demazure operators indexed by elements in W̃ aff

by Dσe
λ = eσ(λ) and Dσδλ = δσ(λ), respectively.

Recall that the expected value of a function f : Γ→ R with respect to a
nonzero measure µ ∈ Measc(Γ) is

Eµ[f ] =
1

µ(Γ)

∑
λ∈Γ

µ({λ})f(λ).

The covariance of two functions f and g is

Covµ(f, g) = Eµ[(f − Eµ[f ])(g − Eµ[g])],

and the variance of f is Varµ(f) = Covµ(f, f).
Let N be the non-negative integers {0, 1, 2, . . .}, and denote the parity of

an integer N by

πN =

{
0 if N is even,
1 if N is odd.

The following notations will be used in §3.2 and §3.5. Let q be a variable.
For a ∈ C(q), N ∈ N, and k ∈ {0, . . . , N} let

(a; q)k =
k−1∏
i=0

(1− aqi) and
[
N

k

]
q

=
(q; q)N

(q; q)k(q; q)N−k
.

Note that
[
N
k

]
q
∈ C[q] is a polynomial in q for every N and k, a Gaussian

polynomial. For general facts about those we refer to [2] and [17].
We continue by defining the Macdonald polynomials [25], see also [26,

Chapter VI]. Let Λ be the ring of symmetric functions. For a partition
λ, let pλ denote the corresponding product of power sums and mλ the
corresponding monomial symmetric function. Let q and t be variables. On
Λ⊗Z Q(q, t) consider the nondegenerate symmetric bilinear form determined
by imposing

(pλ, pµ) = δλµ
∏
r≥1

(rmrr!)
∏
i≥1

1− qλi
1− tλi

,

where mr is the multiplicity of the part r in λ, and δλµ is the Kronecker
symbol. Let ≤ denote the dominance ordering on partitions. Then there
are unique Pλ ∈ Λ ⊗Z Q(q, t) parametrized by all partitions, such that
Pλ = mλ +

∑
µ<λ uλµmµ for some uλµ ∈ Q(q, t), and that (Pλ, Pµ) =

0 whenever λ 6= µ [25, Theorem 2.3]. These symmetric functions are
called Macdonald polynomials. We denote the bivariate image of Pλ by
Pλ(z1, z2; q, t) ∈ Q(q, t)[z1, z2]S2 . We will only need the specializations
Pλ(z, z−1; q, 0) ∈ Q[z±1, q±1].
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2. Expected degree of weights

2.1. Lemmata. For this section we fix a dominant integral weight Λ =
mΛ0 + nΛ1, and the lattice Γ = Λ + Zα0 + Zα1. Define coordinates a, b on
Γ such that λ = Λ− a(λ)α0 − b(λ)α1 for all λ ∈ Γ. With these coordinates

〈 , α∨0 〉 = m− 2(a− b), and(2.1.1)

〈 , α∨1 〉 = n+ 2(a− b).(2.1.2)

We start by gathering information about the operation of the Demazure
operators associated with simple reflections on measures in Measc(Γ).

Lemma 2.1.1. Let µ ∈ Measc(Γ). Then ED0µ[a− b] = m
2 and ED1µ[a− b] =

−n
2 .2

Proof. Let us first compute ED0µ[a− b] = m
2 . With µ =

∑
λ∈Γ pλδλ we have

D0µ(Γ) · ED0µ[a− b] =
∑
λ∈Γ

pλ

〈λ,α∨0 〉∑
i=0

(a− b)(λ− iα0)

=
∑
λ∈Γ

pλ

〈λ,α∨0 〉∑
i=0

((a− b)(λ) + i)

=
∑
λ∈Γ

pλ · (〈λ, α∨0 〉+ 1)((a− b)(λ) +
1
2
〈λ, α∨0 〉)

(2.1.1)
=
∑
λ∈Γ

pλ · (〈λ, α∨0 〉+ 1) · m
2

= D0µ(Γ) · m
2
.

The last equation holds since each λ ∈ Γ produces exactly 〈λ, α∨0 〉 + 1
successors via the operation of D0 on δλ. To verify ED1µ[a− b] = −n

2 , one
pursues the same computation. �

We want to prove Theorem 2.2.1 by induction on the length N of the
Weyl group element w. To that end we investigate how certain expected
values change under the operation of the Demazure operators D0, D1.

Lemma 2.1.2. Let µ ∈ Measc(Γ) and k ≥ 0. Then

ED1µ[ak] =
µ(Γ)
D1µ(Γ)

Eµ[ak(n+ 1 + 2(a− b))], and

ED0µ[bk] =
µ(Γ)
D0µ(Γ)

Eµ[bk(m+ 1− 2(a− b))].

2Of course, we have to assume that D0µ(Γ) 6= 0 and D1µ(Γ) 6= 0, respectively, which
we silently do here and in future similar situations.
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Proof. Let µ =
∑

λ∈Γ pλδλ. Then

D1µ(Γ) · ED1µ[ak] =
∑
λ∈Γ

pλ

〈λ,α∨1 〉∑
i=0

ak(λ− iα1)

=
∑
λ∈Γ

pλ

〈λ,α∨1 〉∑
i=0

ak(λ)

=
∑
λ∈Γ

pλ · (〈λ, α∨1 〉+ 1) · ak(λ)

=
∑
λ∈Γ

pλ · (n+ 2(a− b)(λ) + 1) · ak(λ)

= µ(Γ) · Eµ[ak(n+ 1 + 2(a− b))].

The computation is analogous for ED0µ[bk]. �

By setting k = 0 in Lemma 2.1.2 we obtain:

Corollary 2.1.3. Let µ ∈ Measc(Γ). Then, the total mass of D0µ and D1µ
is given by

D0µ(Γ) = µ(Γ)(m+ 1− 2 Eµ[a− b]), and

D1µ(Γ) = µ(Γ)(n+ 1 + 2 Eµ[a− b]).

Resolving those equations for the weight distribution µw we derive the
following dimension formulas for the Demazure module Vw(Λ).

Corollary 2.1.4. Let N ≥ 0. Then the following dimension formulas hold:

µN,0(Γ) =

{
1 N = 0
(m+ 1)(m+ n+ 1)N−1 N ≥ 1,

µN,1(Γ) =

{
1 N = 0
(n+ 1)(m+ n+ 1)N−1 N ≥ 1.

Proof. We restrict to the Weyl group elements starting in s0, for the argumen-
tation in the other case is similar. For N = 0 one has µ0,0(Γ) = δΛ(Γ) = 1,
and if N = 1, then µ1,0(Γ) = D0δΛ(Γ) = 〈Λ, α∨0 〉+ 1 = m+ 1. We proceed
by induction on N ≥ 2.

µN,0(Γ) =

{
D1µN−1,0(Γ) if N even,
D0µN−1,0(Γ) if N odd

=

{
µN−1,0(Γ)(n+ 1 + 2 ED0µN−2,0

[a− b]) if N even,
µN−1,0(Γ)(m+ 1− 2 ED1µN−2,0

[a− b]) if N odd

=

{
µN−1,0(Γ)(n+ 1 +m) if N even,
µN−1,0(Γ)(m+ 1 + n) if N odd.
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The second equation follows from Corollary 2.1.3 and the third by replacing
the expected values by their actual values computed in Lemma 2.1.1. Hence
by induction µN,0(Γ) = (m+ 1)(m+ n+ 1)N−1. �

Remark 2.1.5. Corollary 2.1.4 is Sanderson’s dimension formula [29, Theo-
rem 1]. Her original proof uses the path model for highest weight representa-
tions of Kac–Moody algebras.

If we consider two consecutive applications of Demazure operators as-
sociated with simple reflections, Lemma 2.1.2 for k = 1 can be stated as
follows.

Lemma 2.1.6. Let µ ∈ Measc(Γ). Then we have the following equations:

ED1D0µ[a] =
D0µ(Γ)
D1D0µ(Γ)

(
(m+ n+ 1) ED0µ[a] + 2 CovD0µ(a, a− b)

)
, and

ED0D1µ[b] =
D1µ(Γ)
D0D1µ(Γ)

(
(m+ n+ 1) ED1µ[b]− 2 CovD1µ(b, a− b)

)
.

Proof. We prove the first assertion, the second being analogous. From
Lemma 2.1.2 we obtain ED1D0µ[a] = D0µ(Γ)

D1D0µ(Γ) ED0µ[a(n+ 1 + 2(a− b))]. As
ED0µ[a− b] = m

2 by Lemma 2.1.1, the second factor of the right-hand side is

ED0µ[a(n+ 1 + 2(a− b))] = ED0µ[a(n+ 1)] + 2 ED0µ[a(a− b)]
= (n+ 1) ED0µ[a] + 2 ED0µ[a− b] ED0µ[a]

+ 2 CovD0µ(a, a− b)
= (m+ n+ 1) ED0µ[a] + 2 CovD0µ(a, a− b). �

Note that Lemma 2.1.6 is not a recurrence relation for the expected degree,
as covariances of the previous distribution are involved.

Lemma 2.1.7. Let µ ∈ Measc(Γ). Then

CovD0µ(a, a− b) = VarD0µ(a− b) and CovD0µ(b, a− b) = 0,

CovD1µ(a, a− b) = 0 and CovD1µ(b, a− b) = −VarD1µ(a− b).

Proof. Let us first treat CovD0µ(a − b, b) = 0. Indeed CovD0µ(a − b, b) =
ED0µ[(a− b)b]− ED0µ[a− b] ED0µ[b] and with µ =

∑
λ∈Γ pλδλ we have

D0µ(Γ) · ED0µ[(a− b)b] =
∑
λ∈Γ

pλ

〈λ,α∨0 〉∑
i=0

(a− b)(λ− iα0) · b(λ− iα0)

=
∑
λ∈Γ

pλ · b(λ)
〈λ,α∨0 〉∑
i=0

((a− b)(λ) + i)

(2.1.1)
=
∑
λ∈Γ

pλ · b(λ) · (〈λ, α∨0 〉+ 1) · m
2
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=
m

2

∑
λ∈Γ

pλ

〈λ,α∨0 〉∑
i=0

b(λ− iα0)

= ED0µ[a− b] ·D0µ(Γ) · ED0µ[b].

For the last equation see Lemma 2.1.1. The same argument shows that
CovD1µ(a, a − b) = 0. The remaining claims follow from the bilinearity of
the covariance. To be precise,

CovD0µ(a, a− b) = CovD0µ((a− b) + b, a− b)
= CovD0µ(a− b, a− b) + CovD0µ(b, a− b)
= CovD0µ(a− b, a− b).

The computation of CovD1µ(b, a− b) is essentially the same. �

The variances appearing in Lemma 2.1.7 can be computed via Sanderson’s
formula [30, Theorem 1] for the real character of the Demazure module
Vw(Λ).

Lemma 2.1.8. For N ≥ 1 we have

VarµN,0(a− b) =
m(m+ 2) + (N − 1)(m+ n)(m+ n+ 2)

12
, and

VarµN,1(a− b) =
n(n+ 2) + (N − 1)(m+ n)(m+ n+ 2)

12
.

Proof. We only compute µN,0, the computation for µN,1 being analogous.
Let q be a variable. For k ≥ 0 we define the q-integer [k]q =

∑k−1
i=0 q

i.
Sanderson’s formula [30, Theorem 1] for the real character of VwN,0(Λ) states
that∑

λ∈Γ

dim(VwN,0(Λ)λ)q(a−b)(λ) = q−(m+n)bN/2c[m+ 1]q[m+ n+ 1]N−1
q .

For k ≥ 0 we define δ[k] =
∑k−1

i=0 δi ∈ Measc(Z). The linear map C[q, q−1]→
MeasCc (Z) given by qk 7→ δk is an isomorphism of algebras, the multiplication
of measures being convolution. This isomorphism maps [k]q to δ[k] and hence∑

λ∈Γ

dim(VwN,0(Λ)λ)δ(a−b)(λ) = δ−(m+n)bN/2c ∗ δ[m+1] ∗ δ
∗(N−1)
[m+n+1].

The measure on the left-hand side is by definition the push-forward measure
(a− b)∗µ. By straightforward computation Var(δ[k]) = 1

k

∑k−1
i=0

(
i− k−1

2

)2
=

(k−1)(k+1)
12 . Hence

VarµN,0(a− b) = Var((a− b)∗µ)

= Var
(
δ−(m+n)bN/2c ∗ δ[m+1] ∗ δ

∗(N−1)
[m+n+1]

)
= Var(δ[m+1]) + (N − 1) Var(δ[m+n+1])

=
m(m+ 2)

12
+ (N − 1)

(m+ n)(m+ n+ 2)
12

. �
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Combining Lemma 2.1.6, Lemma 2.1.7, and Lemma 2.1.8, we finally obtain
recurrence relations.

Lemma 2.1.9 (Recurrence relation). Let N ≥ 2. Then the following recur-
rence relations hold:

EµN,0 [a] =
µN−1,0(Γ)
µN,0(Γ)

(
(m+ n+ 1) EµN−1,0 [a](2.1.3)

+
m(m+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6

)
if N even,

EµN,0 [b] =
µN−1,0(Γ)
µN,0(Γ)

(
(m+ n+ 1) EµN−1,0 [b](2.1.4)

+
m(m+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6

)
if N odd,

EµN,1 [b] =
µN−1,1(Γ)
µN,1(Γ)

(
(m+ n+ 1) EµN−1,1 [b](2.1.5)

+
n(n+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6

)
if N even,

EµN,1 [a] =
µN−1,1(Γ)
µN,1(Γ)

(
(m+ n+ 1) EµN−1,1 [a](2.1.6)

+
n(n+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6

)
if N odd.

Proof. The equations follow immediately by replacing the covariance in
Lemma 2.1.6 with the variance as computed in Lemma 2.1.7. Subsequently,
substitute this variance by its value as computed in Lemma 2.1.8. Depending
on the parity of N one has to keep track during this procedure of the leftmost
simple reflection in the Weyl group element wN,j defining the measure
µN,j = µwN,j . �

2.2. Main theorems. Our recurrence relations from Lemma 2.1.9 allow us
to prove:

Theorem 2.2.1 (Expected degree). Let Λ = mΛ0 + nΛ1 be a dominant
integral weight and N ≥ 1. Choose a basis of weight vectors in the Demazure
modules VwN,0(Λ) and VwN,1(Λ). Then the expected degrees of a randomly
chosen basis element are given by the following formulas, respectively.

EµN,0 [a] =
2(N − 1)m(m+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)

12(m+ n+ 1)

(2.2.1)

+
⌊
N − 1

2

⌋
m+ n

2
+
m

2
,
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EµN,1 [a] =
2(N − 1)n(n+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)

12(m+ n+ 1)

(2.2.2)

+
⌊
N

2

⌋
m+ n

2
.

Proof. We start by showing (2.2.1). One directly sees that Eµ1,0 [a] = m
2 . By

Corollary 2.1.4 we have µN−1,0(Γ)
µN,0(Γ) = 1

m+n+1 for N ≥ 2. Hence by (2.1.3) and
(2.1.4) we have

(2.2.3) EµN,0 [a] = EµN−1,0 [a] +
m(m+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6(m+ n+ 1)

for even N ≥ 2, and

(2.2.4) EµN,0 [b] = EµN−1,0 [b] +
m(m+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6(m+ n+ 1)

for odd N ≥ 2. By Lemma 2.1.1 we have

(2.2.5) EµN,0 [b] = EµN,0 [a] +
n

2

for even N ≥ 2, and

(2.2.6) EµN,0 [a] = EµN,0 [b] +
m

2

for odd N ≥ 2. In order to recursively compute EµN,0 [a] from Eµ1,0 [a] = m
2 we

must apply – in this order – (2.2.3), (2.2.5), (2.2.4) and (2.2.6) periodically
to compute Eµ2,0 [a], Eµ2,0 [b], Eµ3,0 [b], Eµ3,0 [a] etc. The reader is referred to
Figure 8 for an illustration of these recursion steps. The contributions from
(2.2.3) and (2.2.4) add up to

N∑
i=2

m(m+ 2) + (i− 2)(m+ n)(m+ n+ 2)
6(m+ n+ 1)

which is the first summand of (2.2.1) by Gauss’s summation formula. The
contributions from (2.2.5) and (2.2.6) add up to

⌊
N−1

2

⌋
n+m

2 , which is the
second summand of (2.2.1). The third summand is the initial value of the
recursion, Eµ1,0 [a] = m

2 .
The proof of (2.2.2) is similar. Here we deduce

(2.2.7) EµN,1 [b] = EµN−1,1 [b] +
n(n+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6(m+ n+ 1)

for even N ≥ 2, and

(2.2.8) EµN,1 [a] = EµN−1,1 [a] +
n(n+ 2) + (N − 2)(m+ n)(m+ n+ 2)

6(m+ n+ 1)
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N wN,0 EµN,0 [a] EµN,0 [b]
1 s0

m
2 0
↓ (2.2.3)

2 s1s0 ∗ (2.2.5)−→ ∗
↓ (2.2.4)

3 s0s1s0 ∗ (2.2.6)←− ∗
↓ (2.2.3)

4 s1s0s1s0 ∗ (2.2.5)−→ ∗
↓ (2.2.4)

Figure 8. Recursion steps for EµN,0 [a].

N wN,1 EµN,1 [a] EµN,1 [b]
1 s1 0 n

2
↓ (2.2.7)

2 s0s1 ∗ (2.2.9)←− ∗
↓ (2.2.8)

3 s1s0s1 ∗ (2.2.10)−→ ∗
↓ (2.2.7)

4 s0s1s0s1 ∗ (2.2.9)←− ∗
↓ (2.2.8)

Figure 9. Recursion steps for EµN,1 [a].

for odd N ≥ 2 from (2.1.5) and (2.1.6), respectively. From Lemma 2.1.1 we
get

(2.2.9) EµN,1 [a] = EµN,1 [b] +
m

2
for even N ≥ 2 and

(2.2.10) EµN,1 [b] = EµN,1 [a] +
n

2
for odd N ≥ 2. Now, starting from Eµ1,1 [b] = n

2 we recursively compute
Eµ2,1 [b], Eµ2,1 [a], Eµ3,1 [a], Eµ3,1 [b] etc. by periodic application – again in this
order – of (2.2.7), (2.2.9), (2.2.8), and (2.2.10), as illustrated in Figure 9.
The first summand of (2.2.2) collects the contributions of the applications of
(2.2.7) and (2.2.8). The second summand collects both the initial value and
the contributions of the applications of (2.2.9) and (2.2.10). �
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It remains to extend Theorem 2.2.1 to the case of Demazure modules
indexed by elements in the extended affine Weyl group W̃ aff . Recall from
§1.3 that σ denotes the non-trivial automorphism of the Dynkin diagram of
ŝl2.

Theorem 2.2.2. Let Λ = mΛ0 + nΛ1 be a dominant integral weight, N ≥ 1,
and j ∈ {0, 1}. Denote by µ(σsj)N the weight distribution of V(σsj)N (Λ).
Consider −d ∈ h as a function on h∗. Choose a basis of weight vectors in
the Demazure modules V(σs0)N (Λ) and V(σs1)N (Λ). Then the expected degrees
of a randomly chosen basis element are given by the following formulas,
respectively.

Eµ
(σs0)N

[−d] =
2(N − 1)m(m+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)

12(m+ n+ 1)

+
⌊
N − 1

2

⌋
n

2
+
⌊
N

2

⌋
m

2
,

Eµ
(σs1)N

[−d] =
2(N − 1)n(n+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)

12(m+ n+ 1)

+
⌈
N − 1

2

⌉
m

2
+
⌈
N

2

⌉
n

2
.

Proof. Let us first treat V(σs0)N (Λ). We have (σs0)N = σ(N mod 2)wN,0. If N
is even, the expected degree is given by EµN,0 [a], and a slight modification
of (2.2.1) in Theorem 2.2.1 immediately proves the claim. If N is odd, note
that σs0 = s1σ implies σwN,0 = wN,1σ. Since VwN,1σ(Λ) = VwN,1(σ(Λ)) we
now have to consider the weight distribution µN,1 of VwN,1(σ(Λ)) which is
supported on the lattice Γ′ = σ(Λ) + Zα0 + Zα1. Therefore the claimed
formula follows from the second part, that is (2.2.2), of Theorem 2.2.1, now
applied with the highest weight σ(Λ) = nΛ0 + mΛ1. For the Demazure
module V(σs1)N (Λ) the situation is completely analogous. Here one notes
that (σs1)N = σ(N mod 2)wN,1 and σwN,1 = wN,0σ. The interesting case is
again for N odd. Now one has to consider the weight distribution µN,0 of
VwN,0(σ(Λ)) to compute the expected degree of a randomly chosen basis
weight vector in V(σs1)N (Λ). �

Note 2.2.3. The linearity of the expected value and Lemma 2.1.1 easily allow
the reformulation of Theorem 2.2.1 in terms of the coordinate b. Likewise, if
one regards the automorphism σ as a function on h∗ (by exchanging Λ0 and
Λ1, and acting trivially on δ) one can rephrase Theorem 2.2.2 in terms of
the coordinate −d ◦ σ = b.

2.3. Asymptotic statements. From Theorem 2.2.1 we can immediately
derive asymptotic statements when the parameters N,m or n become large.
First, we compute the maximal occurring degree in a given Demazure module
for comparison with the expected degree.
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Lemma 2.3.1 (Cf. [16, (6.5.2), (6.5.3)]). Let Λ = mΛ0 +nΛ1 be a dominant
integral weight and N ≥ 0. The highest degree of a weight is

Am,nN,0 =
⌈
N

2

⌉
m+ (m+ n)

(⌈
N

2

⌉
− 1
)⌈

N

2

⌉
in VwN,0(Λ), and

Am,nN,1 =
⌊
N

2

⌋
(m+ 2n) + (m+ n)

(⌊
N

2

⌋
− 1
)⌊

N

2

⌋
in VwN,1(Λ).

Proof. By an easy induction on even N , one proves that the coefficients of
wN,0Λ = Λ − xα0 − yα1 satisfy x =

∑N/2−1
i=0 (m + 2i(m + n)) and x − y =

−N
2 (m+n). As the operator D1 preserves the degree we have Am,nN−1,0 = Am,nN,0 .

Hence replacing N
2 with

⌈
N
2

⌉
extends the formula to all N , thereby implying

the lemma in the case of VwN,0(Λ). Note that the proof in the case of VwN,1(Λ)
is completely analogous if one starts with Λ′ = s1Λ = Λ− nα1 instead. This
first step introduces the 2n and switches the dN2 e to bN2 c in the formula
claimed above. �

Now, let us start with the case when the length of the Weyl group element,
that is N , tends to infinity.

Corollary 2.3.2 (Limit ratio). Let Λ = mΛ0 + nΛ1 be a dominant integral
weight and j ∈ {0, 1}. Then the limit ratio of the expected and maximal
degree in VwN,j (Λ), as N tends to infinity, is given by

lim
N→∞

EµN,j [a]
Am,nN,j

=
m+ n+ 2

3(m+ n+ 1)
.

Similar asymptotic statements hold with respect to the coefficients of the
fundamental weights Λ0,Λ1, i.e. m and n, respectively.

Corollary 2.3.3. Let N ≥ 1 and j ∈ {0, 1}. Then the limit ratios of the
expected and maximal degree in VwN,j (mΛ0 +nΛ1), as m or n tend to infinity,
are given by

EµN,0 [a]
Am,nN,0

→


N2−N+6dN2 e

12dN2 e
2 (m→∞, n fixed)

N2−3N−4+6dN2 e
12dN2 e(dN2 e−1) (n→∞, m fixed),

and

EµN,1 [a]
Am,nN,1

→


N2−3N+2+6bN2 c

12bN2 c
2 (m→∞, n fixed)

N2−N+6bN2 c
12bN2 c(bN2 c+1) (n→∞, m fixed).

From Theorem 2.2.2 we can derive similar asymptotic statements in the
extended affine Weyl group case. First let us compute the maximal occurring
degree.
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Lemma 2.3.4. Let Λ = mΛ0 + nΛ1 be a dominant integral weight and
N ≥ 0. Consider the Demazure modules V(σs0)N (Λ) and V(σs1)N (Λ). The
highest degree of a weight is

Bm,n
N,0 =

⌊
N

2

⌋
m+ (m+ n)

⌊
N − 1

2

⌋⌊
N

2

⌋
in V(σs0)N (Λ), and

Bm,n
N,1 =

⌈
N

2

⌉
n+ (m+ n)

⌊
N

2

⌋⌈
N

2

⌉
in V(σs1)N (Λ).

Proof. Both claims can be derived from Lemma 2.3.1 and we will demonstrate
this in the case of the Demazure module V(σs0)N (Λ). Note that (σs0)N = wN,0
if N is even, and equals wN,1σ when N is odd, and σ(Λ) = nΛ0 +mΛ1. By
Lemma 2.3.1 the maximal degree of a weight in VwN,0(Λ) is dN/2em+ (m+
n)(dN/2e−1)dN/2e, and is equal to bN/2c(n+2m)+(m+n)(bN/2c−1)bN/2c
in VwN,1(σ(Λ)). The formula claimed above for V(σs0)N (Λ) unifies those case
considerations. �

As expected, for the Demazure modules V(σs0)N (Λ) and V(σs1)N (Λ) one
obtains the same limit ratio for large N as in Corollary 2.3.2. Let us state it
here for the sake of completeness.

Corollary 2.3.5 (Limit ratio). Let Λ = mΛ0 + nΛ1 be a dominant integral
weight and j ∈ {0, 1}. Consider −d ∈ h as a function on h∗. Then the
limit ratio of the expected and maximal degree in V(σsj)N (Λ), as N tends to
infinity, is given by

lim
N→∞

Eµ
(σsj)N

[−d]

Bm,n
N,j

=
m+ n+ 2

3(m+ n+ 1)
.

However, the limit ratios with respect to the coefficients of the fundamental
weights Λ0 and Λ1 are slightly different.

Corollary 2.3.6. Let N ≥ 1 and j ∈ {0, 1}. Consider −d ∈ h as a
function on h∗. Then the limit ratios of the expected and maximal degree in
V(σsj)N (mΛ0 + nΛ1), as m or n tend to infinity, are given by

Eµ
(σs0)N

[−d]

Bm,n
N,0

→


N2−N+6bN2 c

12bN2 cdN2 e
(m→∞, n fixed)

N2−3N−4+6dN2 e
12bN2 c(dN2 e−1) (n→∞, m fixed),

and
Eµ

(σs1)N
[−d]

Bm,n
N,1

→


N2−3N+2+6bN2 c

12bN2 cdN2 e
(m→∞, n fixed)

N2−N+6dN2 e
12dN2 e(bN2 c+1) (n→∞, m fixed).
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3. Variance of the degree of weights

Let us abbreviate the Weyl group elements wN,0 = · · · s0s1s0 by wN , as
from now on these will be the elements we will mostly discuss. Analogously
we abbreviate the weight distribution µN,0 of a Demazure module VwN (Λ)
by µN .

3.1. Technical results. We start with some immediate generalizations of
results in §2.1.

Lemma 3.1.1 (generalized Lemma 2.1.6). Let Λ = mΛ0 + nΛ1 and Γ =
Λ + Zα0 + Zα1. Then, for any µ ∈ Measc(Γ) and k ≥ 0 we have

ED1D0µ[ak] =
D0µ(Γ)
D1D0µ(Γ)

(
(m+ n+ 1) ED0µ[ak] + 2 CovD0µ(ak, a− b)

)
,

ED0D1µ[bk] =
D1µ(Γ)
D0D1µ(Γ)

(
(m+ n+ 1) ED1µ[bk]− 2 CovD1µ(bk, a− b)

)
.

Lemma 3.1.2 (partially generalized Lemma 2.1.7). Let Λ = mΛ0 + nΛ1

and Γ = Λ + Zα0 + Zα1. Then, for any µ ∈ Measc(Γ) and k ≥ 0 we have

CovD0µ(bk, a− b) = 0 and CovD1µ(ak, a− b) = 0.

We want to use Lemma 3.1.1 to inductively compute the variance of the
degree distribution (Theorem 3.4.3). This corresponds to the case where
Doµ (resp. D1µ) is the weight distribution of the Demazure module VwN (Λ0)
and k = 2. Then the summands CovD0µ(ak, a− b) and CovD1µ(bk, a− b) in
Lemma 3.1.1 are third moments of the weight distribution, so we cannot
suppose them known by induction. We can express them differently as
follows:

Lemma 3.1.3. Let Λ = mΛ0 +nΛ1 and Γ = Λ + Zα0 + Zα1. Then, for any
µ ∈ Measc(Γ) we have

CovD0µ(a2, a− b) = CovD0µ((a− b)2, a− b) + 2 VarD0µ(a− b) ED0µ[b]

+ 2 CovD0µ(b, (a− b)2),

CovD1µ(b2, a− b) = CovD1µ((a− b)2, a− b)− 2 VarD1µ(a− b) ED1µ[a]

− 2 CovD1µ(a, (a− b)2).

Proof. We will only discuss the formula for CovD0µ(a2, a−b) since the second
part is completely analogous. First write a2 = (a− b)2 + 2ab− b2 and note
that CovD0µ(b2, a− b) = 0 by Lemma 3.1.2. Consequently,

CovD0µ(a2, a− b) = CovD0µ((a− b)2, a− b) + 2 CovD0µ(ab, a− b).
By definition

CovD0µ(ab, a− b) = ED0µ[ab(a− b)]− ED0µ[ab] · ED0µ[a− b].
Now

ED0µ[ab(a− b)] = ED0µ[((a− b) + b)b(a− b)]
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= ED0µ[(a− b)2b] + ED0µ[b2(a− b)]
(Lemma 3.1.2) = ED0µ[(a− b)2b] + ED0µ[b2] · ED0µ[a− b],

and

ED0µ[ab] · ED0µ[a− b] = ED0µ[((a− b) + b)b] ED0µ[a− b]
= (ED0µ[(a− b)b] + ED0µ[b2]) · ED0µ[a− b]

(Lemma 3.1.2) = (ED0µ[a− b] · ED0µ[b] + ED0µ[b2]) · ED0µ[a− b]
= ED0µ[a− b]2 · ED0µ[b] + ED0µ[b2] · ED0µ[a− b].

Subtracting the two expressions yields

CovD0µ(ab, a− b) = ED0µ[(a− b)2 · b]− ED0µ[a− b]2 · ED0µ[b]

= VarD0µ(a− b) ED0µ[b] + CovD0µ(b, (a− b)2). �

Lemma 3.1.3 reveals that, in the case of the weight distribution µN of the
Demazure module VwN (Λ0), the quantities in question are partially given
by higher moments of the finite weight distribution (a − b)∗µN and the
expected value of the degree distribution. These are known by [30] and
Theorem 2.2.1, respectively. The main part of the proof of Theorem 3.4.3 is
therefore concerned with the computation of the a priori unknown quantities
CovµN (b, (a−b)2) and CovµN (a, (a−b)2) whenN is odd and even, respectively.
Let us first recollect the quantities we claim to know so far.

Let B(N, 1
2) denote the binomial distribution on R for N trials with

success probability 1
2 , and let X = idR. Recall that

EB(N, 1
2

)[X] =
N

2
,(3.1.1)

and its first central moments are

k EB(N, 1
2

)[(X − EB(N, 1
2

)[X])k]

2 N
4(3.1.2)

3 0(3.1.3)

4 N(3N−2)
16 .(3.1.4)

The main result in [30] implies that if µN is the weight distribution of the
Demazure module VwN (Λ0), then

(3.1.5)
(
a− b+

⌊
N
2

⌋)
∗ µN = 2NB(N, 1

2).

Lemma 3.1.4. Let µN be the weight distribution of the Demazure module
VwN (Λ0). Then,

EµN [a− b] =
πN
2
,

EµN [b] =
(N − 1)(N + 2)

8
if N is odd,
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EµN [a] =
N(N + 1)

8
if N is even,

VarµN (a− b) =
N

4
, and

CovµN ((a− b)2, a− b) =
NπN

4
.

Proof. The first three assertions are immediate from Lemma 2.1.1 and Theo-
rem 2.2.1, respectively. The variance VarµN (a− b) equals the second central
moment of the binomial distribution and is hence given by (3.1.2). Finally,
by definition

CovµN ((a− b)2, a− b) = EµN [(a− b)3]− EµN [(a− b)2] EµN [a− b],
and by Equation 3.1.3

0 = EµN [(a− b− EµN [a− b])3]

= EµN [(a− b)3] + 2 EµN [a− b]3 − 3 EµN [(a− b)2] EµN [a− b]

= CovµN ((a− b)2, a− b) + 2 · πN
8
− 2

(
N

4
+
πN
4

)
πN
2

= CovµN ((a− b)2, a− b)− NπN
4

. �

Lemma 3.1.3 and Lemma 3.1.4 imply:

Corollary 3.1.5. Let µN be the weight distribution of the Demazure module
VwN (Λ0). Then,

CovµN (a2, a− b) =
N(N2 +N + 2)

16
+ 2 CovµN (b, (a− b)2) for odd N,

CovµN (b2, a− b) = −N
2(N + 1)

16
− 2 CovµN (a, (a− b)2) for even N.

Note that µN (Γ0) = dimVwN (Λ0) = 2N . Consequently Corollary 3.1.5
implies the following specialization of Lemma 3.1.1.

Corollary 3.1.6. Let µN be the weight distribution of the Demazure module
VwN (Λ0) and k ≥ 2. Then, for N odd

EµN+1 [a2] = EµN [a2] +
N(N2 +N + 2)

16
+ 2 CovµN (b, (a− b)2),

and for N even

EµN+1 [b2] = EµN [b2] +
N2(N + 1)

16
+ 2 CovµN (a, (a− b)2).

In §3.2 and §3.3 we deal with the computation of CovµN (b, (a− b)2) and
CovµN (a, (a − b)2), respectively. We identify Γ0 with Z2 by means of the
coordinates a, b. This endows Γ0 with a Z-module structure. The covariance
CovµN (·, (a−b)2) is a linear form on the symmetric algebra Sym((Γ0⊗ZR)∗).
We use a symmetry property of the Demazure module VwN (Λ0) described
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in §3.2 to compute elements in its kernel. It turns out, that those elements
involve higher moments of the finite weight distribution and (multiples of)
the linear forms b, a ∈ (Γ0 ⊗Z R)∗, respectively. See Corollary 3.3.4 for the
precise statement. Let us first describe the mentioned symmetry property.

3.2. Palindromicity of the string functions.

Lemma 3.2.1. Let λ ∈ Γ0 = Λ0 + Zα0 + Zα1 and q be a variable. For even
N , the string function

pλ,N (q) =
∑

µ∈λ+Zδ

dimVwN (Λ0)µ · qa(µ)

satisfies

pλ,N (q) = pλ,N (q−1) · q
1
4
N2+(a−b)2(λ).

In other words,

dimVwN (Λ0)λ = dimVwN (Λ0)λ−( 1
4
N2+(a−b)2(λ)−2a(λ))δ.

For odd N , the string function

pλ,N (q) =
∑

µ∈λ+Zδ

dimVwN (Λ0)µ · qb(µ)

satisfies

pλ,N (q) = pλ,N (q−1) · q
1
4

(N2−1)+(a−b)2(λ)−(a−b)(λ).

In other words,

dimVwN (Λ0)λ = dimVwN (Λ0)λ−( 1
4

(N2−1)+(a−b)2(λ)−(a−b)(λ)−2b(λ))δ.

The palindromicity of the string functions can be derived from the fact that
Demazure characters are related to Macdonald polynomials [31, Theorem
6 and Theorem 7], which in turn are related to Rogers–Szegő polynomials,
i.e. generating functions of Gaussian polynomials [13, (3.4)]. That is, those
statements combined show that the string functions are (translated) Gaussian
polynomials.

Proof. Recall the definition of the Gaussian polynomials
[
N
k

]
q

and the spe-
cialized bivariate Macdonald polynomials Pλ(z, z−1; q, 0) from §1.3.

By [31, Theorem 6 and Theorem 7]

(3.2.1) chVwN,πN (ΛπN ) = eΛ0−b 1
4
N2cδ · Pλ(e

1
2
α1 , e−

1
2
α1 ; eδ, 0).

Furthermore, by [13, (3.4)]

(3.2.2) Pλ(z, z−1; q, 0) =
N∑
k=0

[
N

k

]
q

z2k−N .
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Combining (3.2.1) and (3.2.2) we obtain

chVwN,πN (ΛπN ) = eΛ0 · e−b
1
4
N2cδ ·

N∑
k=0

[
N

k

]
eδ
e(2k−N) 1

2
α1 .(3.2.3)

This translates the verification of the palindromicity of the string functions
into quantum calculus. That is, consider a fixed λ ∈ Γ0, and let k =⌊
N
2

⌋
+ (a− b)(λ) ∈ {0, . . . , N} and q = eδ. Then (3.2.3) yields the relations

pλ,N (q) = qb
1
4
N2c ·

[
N

k

]
q−1

, and(3.2.4)

pλ,N (q−1) = q−b
1
4
N2c ·

[
N

k

]
q

.(3.2.5)

Now, for k ∈ {0, . . . , N} by [17, p. 19] we have[
N

k

]
q

= qk(N−k) ·
[
N

k

]
q−1

.(3.2.6)

Hence, by (3.2.4)–(3.2.6) we obtain for N even

pλ,N (q) = q
1
4
N2 ·

[
N

k

]
q−1

= q
1
4
N2 ·

(
q−

1
4
N2+(a−b)2(λ) ·

[
N

k

]
q

)

= q(a−b)2(λ) ·
[
N

k

]
q

= q
1
4
N2+(a−b)2(λ) · pλ,N (q−1).

Note that in the second step, for our choice of k depending on the weight λ,

k(N − k) =
(

1
2
N + (a− b)(λ)

)(
N − 1

2
N − (a− b)(λ)

)
=

1
4
N2 − (a− b)2(λ).

For N odd the equations (3.2.4)–(3.2.6) yield

pλ,N (q) = q
1
4

(N2−1) ·
[
N

k

]
q−1

= q
1
4

(N2−1) ·

(
q−

1
4

(N2−1)+(a−b)2(λ)−(a−b)(λ) ·
[
N

k

]
q

)

= q(a−b)2(λ)−(a−b)(λ) ·
[
N

k

]
q

= q
1
4

(N2−1)+(a−b)2(λ)−(a−b)(λ) · pλ,N (q−1).
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Note that in the second step, again for our specific k,

k(N − k) =
(

1
2

(N − 1) + (a− b)(λ)
)(

N − 1
2

(N − 1)− (a− b)(λ)
)

=
1
4

(N2 − 1)− (a− b)2(λ) + (a− b)(λ).

The explicit interpretations of the two symmetries in terms of weight multi-
plicities are immediate. �

3.3. The stretching trick. The following two propositions follow directly
from the definitions.

Proposition 3.3.1. Let µ ∈ Meas(R2). Let X,Y : R2 → R be the projec-
tion on the first and second component, respectively. Let q : R2 → R2 be
given by q(x, y) = (x2, y). Then

Covµ(X2, Y ) = Covq∗µ(X,Y ).

By saying that s : R2 → R2 is a reflection at H1 along H2 we mean that
H1 is the 1-eigen space and H2 is the (−1)-eigen space of s. A measure
µ ∈ Meas(R2) is said to be symmetric with respect to s if s∗µ = µ.

Proposition 3.3.2. Let X,Y : R2 → R be the projection on the first and
second component, respectively. Let µ ∈ Meas(R2) be symmetric at {Y = 0}
along {X = 0}. Then Covµ(X,Y ) = 0.

Now we are ready to exploit the symmetry of the string functions associated
with the Demazure module VwN (Λ0).

Lemma 3.3.3. Let µN be the weight distribution of the Demazure module
VwN (Λ0) supported on the lattice Γ0 = Λ0 + Zα0 + Zα1. Define coordinates
X,Y : Γ0 → Z as follows: If N is odd, let

X = a− b− 1
2

and Y = b− N2 − 2
8

.

If N is even, let

X = a− b and Y = a− N2

8
.

Let q : Γ0 → Γ0 such that X(q(λ)) = X(λ)2 and Y (q(λ)) = Y (λ) for all
λ ∈ Γ0. Then

Covq∗µN (X − 2Y,X) = 0.

While reading the proof, see Figure 10 and 11 for an illustration.

Proof. If N is odd, then by Lemma 3.2.1 the strings in µN are symmetric
around

b =
1
2

(
1
4

(N2 − 1) + (a− b)2 − (a− b)
)
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a− b

a

−3 0 3

0
1

4

9

1
1 1 1
1 2 1
2 3 2

1 2 3 2 1
1 3 3 3 1
1 2 3 2 1
1 2 2 2 1
1 1 1 1 1

1 1 1 1 1 1 1

Figure 10. Weight distribution µ6 of Vw6(Λ0) and the
parabola of the string symmetry points.

a− b

a

0 1 4 9

0
1

4

9

1
1 2
2 2
3 4
3 4 2
3 6 2
3 4 2
2 4 2
1 2 2
1 2 2 2

Figure 11. Stretched weight distribution q∗µ6 of Vw6(Λ0)
and the line of the string symmetry points.

=
1
2

(
1
4

(N2 − 1) + (a− b− 1
2

)2 − 1
4

)
=

1
8

(N2 − 2) +
1
2

(a− b− 1
2

)2.
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In other words, they are symmetric around Y = 1
2X

2. If N is even, then by
Lemma 3.2.1 the strings in µN are symmetric around

a =
1
2

(
1
4
N2 + (a− b)2

)
=

1
8
N2 +

1
2

(a− b)2.

In other words, they are symmetric around Y = 1
2X

2. In both cases,
the string midpoints in µN are (x, 1

2x
2) in coordinates X,Y , so the string

midpoints in q∗µN are (x2, 1
2x

2). Hence q∗µN is symmetric at {X − 2Y = 0}
along {X=0}. The lemma follows by Proposition 3.3.2. �

By formulating Lemma 3.3.3 in terms of the weight distribution of VwN (Λ0)
via Proposition 3.3.1 we obtain:

Corollary 3.3.4. Let µN be the weight distribution of the Demazure module
VwN (Λ0). If N is odd, then

CovµN ((a− b)2 − (a− b)− 2b, (a− b)2 − (a− b)) = 0.

If N is even, then

CovµN ((a− b)2 − 2a, (a− b)2) = 0.

Consequently we can now determine the values of CovµN (·, (a− b)2) at b
and a respectively:

Lemma 3.3.5. Let µN be the weight distribution of the Demazure module
VwN (Λ0). Then,

CovµN (b, (a− b)2) =
N(N − 1)

16
if N is odd,

CovµN (a, (a− b)2) =
N(N − 1)

16
if N is even.

Proof. By Corollary 3.3.4 we obtain for odd N

CovµN (b, (a− b)2) =
1
2
(

VarµN ((a− b)2)− 2 CovµN ((a− b)2, a− b)

+ VarµN (a− b) + 2 CovµN (b, a− b)
)
,

and for even N

CovµN (a, (a− b)2) =
1
2

CovµN ((a− b)2, (a− b)2).

We know the values on the right-hand sides of those equations. Let us
recollect them. If N is odd, we know by Lemma 3.1.2 and Lemma 3.1.4 that

CovµN (b, a− b) = 0,

CovµN ((a− b)2, a− b) =
N

4
, and

VarµN (a− b) =
N

4
.
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From (3.1.1)–(3.1.4) one can derive that for any N we have

VarµN ((a− b)2) =
N(N − 1) + 2NπN

8
(3.3.1)

=

{
N(N−1)

8 if N is even,
N(N+1)

8 if N is odd.

Now, Equation 3.3.1 immediately proves the claim in the even case. Finally,
for N odd

CovµN (b, (a− b)2) =
1
2

(
N(N + 1)

8
− 2

N

4
+
N

4
− 2 · 0

)
=
N(N − 1)

16
. �

By means of Lemma 3.3.5, we can describe recurrence relations in order to
compute the variance of the degree distribution. We do this in the following
section.

3.4. Variance of the degree distribution. Due to Corollary 3.1.6 and
Lemma 3.3.5 the following recurrence relations are immediate.

Lemma 3.4.1 (Recurrence relations). Let µN be the weight distribution of
the Demazure module VwN (Λ0). Then,

EµN+1 [a2] = EµN [a2] +
N2(N + 3)

16
if N is odd,

EµN+1 [b2] = EµN [b2] +
N(N2 + 3N − 2)

16
if N is even.

In order to resolve the recurrence relations, we need to switch between the
coordinates a and b depending on the parity of N . Therefore, the following
version of Lemma 3.4.1 is more practical.

Lemma 3.4.2 (Modified recurrence relations). Let µN be the weight distri-
bution of the Demazure module VwN (Λ0). Then,

EµN+1 [a2] = EµN [b2] +
N(N + 2)(N + 3)

16
if N is odd,

EµN+1 [b2] = EµN [a2] +
N(N + 1)(N + 2)

16
if N is even.

Proof. Write a2 − b2 = (a− b)(a+ b) and consider

CovµN (a− b, a+ b) = EµN [a2 − b2]− EµN [a− b] EµN [a+ b].

For odd N we obtain

EµN [a2] = EµN [b2] + CovµN (a− b, a) + CovµN (a− b, b)
+ EµN [a− b] EµN [a+ b]

= EµN [b2] +
N

4
+ 0 +

1
2

(
1
2

+ 2
(N − 1)(N + 2)

8

)
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= EµN [b2] +
N(N + 3)

8
by Lemma 3.1.4 and Lemma 2.1.7, and hence

EµN+1 [a2] = EµN [b2] +
N(N + 3)

8
+
N2(N + 3)

16

= EµN [b2] +
N(N + 2)(N + 3)

16
.

For even N one similarly derives

EµN [b2] = EµN [a2] +
N

4
,

and consequently

EµN+1 [b2] = EµN [a2] +
N

4
+
N(N2 + 3N − 2)

16

= EµN [a2] +
N(N + 1)(N + 2)

16
. �

The (modified) recurrence relations plus some additional case considera-
tions give:

Theorem 3.4.3 (Variance of the degree distribution). Let µN be the weight
distribution of the Demazure module VwN (Λ0) and denote the parity of N by
πN . Then, for N ≥ 1 we have

VarµN (a) =
N(N − 1)(2N + 5)

96
+ πN ·

N

4
,

VarµN (b) =
N(N − 1)(2N + 5)

96
+ πN+1 ·

N

4
.

Proof. Solving the modified recurrence relations in Lemma 3.4.2 yields

EµN [a2] =
1
16

N
2
−1∑

i=0

2i(2i+ 1)(2i+ 2) +
1
16

N
2
−1∑

j=0

(2t+ 1)(2t+ 3)(2t+ 4)

=
N(3N3 + 10N2 + 9N − 10)

192
for even N , and

EµN [b2] =
1
16

N−1
2∑
i=0

2i(2i+ 1)(2i+ 2) +
1
16

N−3
2∑
j=0

(2t+ 1)(2t+ 3)(2t+ 4)

=
(N − 1)(3N3 + 13N2 + 10N − 12)

192
for odd N . Hence, for even N we get

VarµN (a) = EµN [a2]− EµN [a]2
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=
N(3N3 + 10N2 + 9N − 10)

192
−
(
N(N + 1)

8

)2

(3.4.1)

=
N(N − 1)(2N + 5)

96
.

Similarly, for odd N ,

VarµN (b) = EµN [b2]− EµN [b]2

=
(N − 1)(3N3 + 13N2 + 10N − 12)

192
−
(

(N − 1)(N + 2)
8

)2

(3.4.2)

=
N(N − 1)(2N + 5)

96
. �

It remains to compute VarµN (a) for odd N , and VarµN (b) for even N . Now,
for all N ≥ 1, the bilinearity of the covariance yields

VarµN (a− b) = VarµN (a)− 2 CovµN (a, b) + VarµN (b).(3.4.3)

Our Lemma 2.1.7 allows us to substitute CovµN (a, b) as follows. For N odd
we have

CovµN (a, b) = VarµN (a)−VarµN (a− b),(3.4.4)

and for N even

CovµN (a, b) = VarµN (b)−VarµN (a− b).(3.4.5)

The equations (3.4.3)–(3.4.5) and our previous computations yield

VarµN (a) = VarµN (b) + VarµN (a− b)

=
N(N − 1)(2N + 5)

96
+ VarµN (a− b)

for N odd, and likewise

VarµN (b) = VarµN (a) + VarµN (a− b)

=
N(N − 1)(2N + 5)

96
+ VarµN (a− b)

for N even. Note that VarµN (a − b) = N
4 for all N ≥ 1 by Lemma 2.1.8

which finishes the proof.

Note 3.4.4. The single summands in (3.4.1) and (3.4.2) are quartics but
their highest order terms cancel, leading to a cubic variance. This fact will
allow us to prove the weak law of large numbers in §4.3.

We extend Theorem 3.4.3 to Demazure modules indexed by elements in
the extended affine Weyl group W̃ aff as we have done it for the expected
degree in Theorem 2.2.2. Recall from §1.3 that σ denotes the non-trivial
automorphism of the Dynkin diagram of ŝl2, and note that σ induces a
bijection σ : Γ0 → Γ1 of the weight lattices of V (Λ0) and V (Λ1) via σ(Λ0 +
xα0 + yα1) = Λ1 + yα0 +xα1. The weight distribution µ(σs0)N of V(σs0)N (Λ0)
is supported on Γ0 if N is even and on σ(Γ0) = Γ1 if N is odd. The bijection
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σ gives σ∗µwN = µσwN and σ−1
∗ µσwN = µwN . Recall the definition of the

scaling element d from §1.3, and note that 〈−d, λ〉 is the (−α0)-coefficient of
λ for λ ∈ Γ0 and λ ∈ Γ1.

Theorem 3.4.5. Let µ(σs0)N be the weight distribution of the Demazure
module V(σs0)N (Λ0). Consider −d ∈ h as a function on h∗. Then,

Varµ
(σs0)N

(−d) =
N(N − 1)(2N + 5)

96
.

Proof. Note that V(σs0)N (Λ0) ⊂ V (ΛπN ). Hence its weight distribution
µ(σs0)N ∈ Measc(ΓπN ) is supported on ΓπN . Denote by a0, b0 and a1, b1 the
coefficients of −α0 and −α1 in Γ0 and Γ1 respectively. Then,

Varµ
(σs0)N

(−d) = Varµ
(σs0)N

(aπN )

= Varµ
σ(πN )wN

(aπN )

= VarσπN∗ µwN
(aπN )

= VarµN (aπN ◦ σ
πN )

=

{
VarµN (a0) if N is even,
VarµN (b0) if N is odd,

=
N(N − 1)(2N + 5)

96
by Theorem 3.4.3. �

Based on Theorem 3.4.3 and 3.4.5 we can derive formulas for the Demazure
module VwN,1(Λ1), finishing the computation of the variance of the degree
distribution for level one Demazure modules.

Corollary 3.4.6. Let µN,1 be the weight distribution of the Demazure module
VwN,1(Λ1) and denote the parity of N by πN . Then, for N ≥ 1 we have

VarµN,1(a) =
N(N − 1)(2N + 5)

96
+ πN+1 ·

N

4
,

VarµN,1(b) =
N(N − 1)(2N + 5)

96
+ πN ·

N

4
.

Proof. Let us only treat VarµN,1(a), as the argumentation for the coordi-
nate b is completely analogous. If N is odd, VwN,1(Λ1) = V(σs0)N (Λ0),
i.e., VarµN,1(a) = Varµ

(σs0)N
(−d) and Theorem 3.4.5 applies. If N is even,

we write VwN,1(Λ1) = VwN,1σσ(Λ1) = VσwN,0(Λ0) and hence VarµN,1(a) =
VarµN,0(b) since the automorphism σ interchanges the coordinates referring
to the (−α0)- and (−α1)-coefficient, respectively. Therefore, Theorem 3.4.3
finishes the proof. �

Again, we can extend Corollary 3.4.6 to Demazure modules indexed by
elements in the extended affine Weyl group W̃ aff .
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Corollary 3.4.7. Let µ(σs1)N be the weight distribution of the Demazure
module V(σs1)N (Λ1). Consider −d ∈ h as a function on h∗. Then,

Varµ
(σs1)N

(−d) =
N(N − 1)(2N + 5)

96
+
N

4
.

Note 3.4.8 (Cf. Note 2.2.3). In the extended affine Weyl group case the
function −d on h∗ always gives the coefficient of −α0. If one regards the
automorphism σ as a function on h∗ (by exchanging Λ0 and Λ1, and acting
trivially on δ) one can rephrase Theorem 3.4.5 and Corollary 3.4.7 easily in
terms of the coordinate −d ◦ σ which refers to the (−α1)-coefficient. Then,
as expected, the values in the two statements simply interchange.

3.5. Computing the variance by quantum calculus. Sanderson [31]
for type A and Ion [15] in the general case showed that characters of level 1
Demazure modules are related to Macdonald polynomials [25]. The latter are
related to Rogers–Szegő polynomials, i.e., generating functions of Gaussian
polynomials (see e.g. [13] for the connection). The knowledge of total mass,
expected value, and covariance of a weight distribution is equivalent to the
knowledge of the Taylor expansion of the corresponding character up to order
2. Hence, by studying derivatives of Gaussian polynomials, we have a second
way of calculating the covariance matrix of Demazure modules in level 1.

Recall the definition of the Gaussian polynomials from §1.3.

Lemma 3.5.1. Let N ∈ N and k ∈ {0, . . . , N}. The Taylor expansion of[
N
k

]
q

at q = 1 is[
N

k

]
q

=
(
N

k

)
·
(

1 +
k(N − k)

2
(q − 1)

+
k(N − k)(3Nk − 3k2 +N − 5)

24
(q − 1)2 + · · ·

)
.

Proof. Let q̃ = q − 1 be the local coordinate at 1. For rational functions
A,B ∈ C(q) we write A ∼ B if A and B have the same pole order at 1, and
the first 3 nonzero coefficients in their Laurent expansion at 1 coincide. Then

(q; q)k = (1 + q̃; 1 + q̃)k

=
k∏
i=1

(
1− (1 + q̃)i

)
∼

k∏
i=1

(
1−

(
1 + iq̃ +

(
i

2

)
q̃2 +

(
i

3

)
q̃3

))

=
k∏
i=1

(
−iq̃ − i(i− 1)

2
q̃2 − i(i− 1)(i− 2)

6
q̃3

)

= (−1)kk!q̃k
k∏
i=1

(
1 +

i− 1
2

q̃ +
(i− 1)(i− 2)

6
q̃2

)
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∼ (−1)kk!q̃k
(
1 + p1(k)q̃ + p2(k)q̃2

)
,

where

p1(k) =
k∑
i=1

i− 1
2

=
k(k − 1)

4

and

p2(k) =
k∑
i=1

(i− 1)(i− 2)
6

+
k−1∑
i=1

k∑
j=i+1

(i− 1)(j − 1)
4

=
k(k − 1)(k − 2)(9k + 13)

288
.

Hence[
N

k

]
q

=
(q; q)N

(q; q)k(q; q)N−k

∼
(
N

k

)
1 + p1(N)q̃ + p2(N)q̃2

(1 + p1(k)q̃ + p2(k)q̃2)(1 + p1(N − k)q̃ + p2(N − k)q̃2)

∼
(
N

k

)
·
(
1 + p1(N)q̃ + p2(N)q̃2

)
·
(
1− p1(k)q̃ +

(
p1(k)2 − p2(k)

)
q̃2
)

·
(
1− p1(N − k)q̃ +

(
p1(N − k)2 − p2(N − k)

)
q̃2
)
.

We have

p1(k)2 − p2(k) =
k(k − 1)(9k2 − 13k + 26)

288
.

Expanding the product we obtain[
N

k

]
q

∼
(
N

k

)
·
(

1 +
k(N − k)

2
q̃ +

k(N − k)(3Nk − 3k2 +N − 5)
24

q̃2

)
. �

For N ∈ N, the N -th Rogers–Szegő polynomial HN (z, q) ∈ C[z, q] is
defined by

HN (z, q) =
N∑
k=0

[
N

k

]
q

zk.

Proposition 3.5.2. Let N ∈ N. The Taylor expansion of HN (z, q) at
z = q = 1 is

HN (z, q)
2N

= 1 +
N

2
(z − 1) +

N(N − 1)
8

(q − 1) +
N(N − 1)

8
(z − 1)2

+
N2(N − 1)

16
(z − 1)(q − 1)

+
N(N − 1)(N − 2)(3N + 7)

384
(q − 1)2 + · · · .
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Proof. As HN (1, q) =
∑N

k=0

[
N
k

]
q
, the value and the partial derivatives ∂

∂q

and ∂2

∂q2 can be computed by summation from Lemma 3.5.1. The partial

derivatives ∂
∂z and ∂2

∂z2 can be computed from the fact that HN (z, 1) =
(1 + z)N . For the mixed partial derivative, let q̃ = q − 1 and z̃ = z − 1 be
the local coordinates at (1, 1), and note that

HN (z, q) =
N∑
k=0

[
N

k

]
q

(1 + z̃)k

=
N∑
k=0

(
N

k

)
·
(

1 +
k(N − k)

2
q̃ + · · ·

)
· (1 + kz̃ + · · · ) ,

the q̃z̃-coefficient of which is
N∑
k=0

(
N

k

)
k2(N − k)

2
= 2N · N

2(N − 1)
16

. �

Recall the definition of the specialized bivariate Macdonald polynomials
Pλ(z, z−1; q, 0) from §1.3.

Proposition 3.5.3. Let λ = (λ1, λ2) be a partition and N = λ1 − λ2. Then
the Taylor expansion of Pλ(z, z−1; q, 0) at z = q = 1 is

Pλ(z, z−1; q, 0)
2N

= 1 +
N(N − 1)

8
(q − 1) +

N

2
(z − 1)2

+
N(N − 1)(N − 2)(3N + 7)

384
(q − 1)2 + · · · .

Proof. If λ = (λ1, λ2) is a partition and N = λ1 − λ2, then

(3.5.1) Pλ(z, z−1; q, 0) =
N∑
k=0

[
N

k

]
q

z2k−N = HN (z2, q)z−N

by [13, (3.4)].3 The result follows from Proposition 3.5.2 by change of
variables. �

Theorem 3.5.4. Let N ∈ N, and let µ = µ(σs0)N be the weight distribution
of V(σs0)N (Λ0). Consider −d, α∨1 ∈ h as functions on h∗. Then,

µ(h∗) = 2N ,

Eµ[−d] =
N2 +N − 2πN

8
,

Eµ[α∨1 ] = 0,

Varµ(−d) =
N(N − 1)(2N + 5)

96
,

3Hikami considers homogeneous Rogers–Szegő and Macdonald polynomials. Our state-
ment follows by evaluating at (z, z−1).
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Varµ(α∨1 ) = N,

Covµ(−d, α∨1 ) = 0.

Proof. By [31, Theorem 6 and Theorem 7] we have that

Pλ(e
1
2
α1 , e−

1
2
α1 ; eδ, 0) = eb

1
4
N2cδ−Λ0 · chVwN,πN (ΛπN )

= eb
1
4
N2cδ−Λ0 · chV

(σs0)N
(Λ0)

(3.5.2)

for all N ≥ 0.4

If µ is a measure on Z2, we denote its generating function by

fµ(z, q) =
1

µ(Z2)

∑
k,l∈Z

µ({(k, l)}) · zkql = Eµ[zXqY ],

where X and Y are the canonical coordinates on Z2. Then fµ(1, 1) = 1 and
it is immediately verified that

∂

∂z
fµ(z, q)

∣∣∣∣
z=q=1

= Eµ[X],(3.5.3)

∂2

∂z2
fµ(z, q)

∣∣∣∣
z=q=1

= Varµ(X) + Eµ[X](Eµ[X]− 1)(3.5.4)

and analogously for ∂
∂q , and

∂2

∂z∂q
fµ(z, q)

∣∣∣∣
z=q=1

= Covµ(X,Y ) + Eµ[X] Eµ[Y ].(3.5.5)

Note that generally

∂

∂q
f(q−1)

∣∣∣∣
q=1

= −f ′(1) and
∂2

∂q2
f(q−1)

∣∣∣∣
q=1

= f ′′(1) + 2f ′(1).

Then (3.5.2) in our new notation states that for µ = µ(σs0)N we have

f(α∨1 ,−d)∗µ(z, q) =
qb

1
4
N2cPλ(z, z−1; q−1, 0)

2N
.

Hence it follows from Proposition 3.5.3 that

Eµ[α∨1 ] =
∂

∂z

qb
1
4
N2cPλ(z, z−1; q−1, 0)

2N

∣∣∣∣∣
z=q=1

= 0,

4There seems to be a missprint in [31]. Namely, the specialization should be at q = eδ,
not q = e−δ. The factor e−Λ0 does not occur in her paper, as she implicitly restricts
characters to Cα∨1 ⊕Cd ⊂ h, and e−Λ0 = 1 on Cα∨1 ⊕Cd.
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Eµ[−d] =
∂

∂q

qb
1
4
N2cPλ(z, z−1; q−1, 0)

2N

∣∣∣∣∣
z=q=1

=
⌊
N2

4

⌋
− N(N − 1)

8

=
N2 +N − 2πN

8
.

Similarly

Varµ(α∨1 ) = Varµ(α∨1 ) + Eµ[α∨1 ](Eµ[α∨1 ]− 1)

=
∂2

∂z2

qb
1
4
N2cPλ(z, z−1; q−1, 0)

2N

∣∣∣∣∣
z=q=1

= N.

From

Varµ(−d) + Eµ[−d](Eµ[−d]− 1)

=
∂2

∂q2

qb
1
4
N2cPλ(z, z−1; q−1, 0)

2N

∣∣∣∣∣
z=q=1

=
⌊
N2

4

⌋(⌊
N2

4

⌋
− 1
)
− 2

⌊
N2

4

⌋
N(N − 1)

8

+
N(N − 1)(N − 2)(3N + 7)

192
+ 2

N(N − 1)
8

it follows that
Varµ(−d) =

N(N − 1)(2N + 5)
96

.

Finally

Covµ(d, α∨1 ) = Covµ(−d, α∨1 ) + Eµ[−d] Eµ[α∨1 ]

=
∂2

∂z∂q

qb
1
4
N2cPλ(z, z−1; q−1, 0)

2N

∣∣∣∣∣
z=q=1

= 0. �

Similarly one proves:

Theorem 3.5.5. Let N ∈ N, and let µ = µ(σs1)N be the weight distribution
of V(σs1)N (Λ1). Consider −d, α∨1 ∈ h as functions on h∗. Then,

µ(h∗) = 2N ,

Eµ[−d] =
N2 +N + 2πN

8
,

Eµ[α∨1 ] = 0,

Varµ(−d) =
N(N − 1)(2N + 5)

96
+
N

4
,
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Varµ(α∨1 ) = N,

Covµ(−d, α∨1 ) = 0.

Note that while we find it convenient to work with [31], the connection
between Demazure characters and Gaussian polynomials was earlier described
by Kuniba et al. [22].
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4. Implications and conclusions

4.1. Basic specialization of Demazure characters. By the basic spe-
cialization of a function on h, we mean its restriction to the space Cd
generated by the scaling element d. Consider the coordinate q on Cd which
is the restriction of e−α0 (or equivalently of e−δ with δ = α0 + α1) to Cd.
Then, for a Demazure module Vw(Λ) the basic specialization of its character

chVw(Λ) =
∑
λ∈h∗

dim(Vw(Λ)λ) · eλ

is
fw =

∑
λ∈h∗

dim(Vw(Λ)λ) · qa(λ).

In the following we consider fw = fw(q) as a polynomial in q, so fw(1) means
the evaluation at q = 1, i.e., at 0 ∈ h. Similarly, f ′(q) = d

dqf(q). (Cf. [16,
§§1.5, 10.8, and 12.2].)

Corollary 4.1.1. Let Λ = mΛ0 + nΛ1 be a dominant integral weight and
j ∈ {0, 1}. Let fN,j(q) ∈ C[q] be the basic specialization of chVwN,j (Λ). Then

(4.1.1) fN,j(1) =

{
(m+ 1)(m+ n+ 1)N−1 if j = 0,
(n+ 1)(m+ n+ 1)N−1 if j = 1.

Furthermore,

f ′N,0(1) =
(

2(N − 1)m(m+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)
12(m+ n+ 1)

(4.1.2)

+
⌊
N − 1

2

⌋
m+ n

2
+
m

2

)
· (m+ 1)(m+ n+ 1)N−1,

and

f ′N,1(1) =
(

2(N − 1)n(n+ 2) + (N − 1)(N − 2)(m+ n)(m+ n+ 2)
12(m+ n+ 1)

(4.1.3)

+
⌊
N

2

⌋
m+ n

2

)
· (n+ 1)(m+ n+ 1)N−1.

Proof. Equation (4.1.1) is clear since fN,j(1) = dim(VwN,j (Λ)) and these
dimensions are determined in Corollary 2.1.4 (Cf. [29, Theorem 1]).

If µ is a measure on Z, we denote its generating function by

fµ(q) =
1

µ(Z)

∑
k∈Z

µ({k}) · qk = Eµ[qX ],

where X = idZ is the canonical coordinate on Z. Then fµ(1) = 1 and as in
(3.5.3) it is immediately verified that

f ′µ(1) = Eµ[X].(4.1.4)
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Hence

f ′N,j(1) = fN,j(1) · f ′a∗µN,j (1)

= dim(VwN,j (Λ)) · EµN,j [a]

which verifies (4.1.2) and (4.1.3) through Theorem 2.2.1. �

For level 1 Demazure modules we have:

Corollary 4.1.2. Let fN (q) ∈ C[q] be the basic specialization of chVwN,0 (Λ0).
Then

(4.1.5) fN (1) = 2N .

If N is even, then

f ′N (1) =
2NN(N + 1)

8
,(4.1.6)

f ′′N (1) =
2NN(N − 2)(3N2 + 16N + 17)

192
.(4.1.7)

If N is odd, then

f ′N (1) =
2N (N2 +N + 2)

8
,(4.1.8)

f ′′N (1) =
2N (N − 1)(3N3 + 13N2 + 10N + 36)

192
.(4.1.9)

Proof. Equation (4.1.5) is clear since fN (1) = dim(VwN,0(Λ0)) = 2N .
Again, we denote the generating function of a measure µ on Z by

fµ(q) =
1

µ(Z)

∑
k∈Z

µ({k}) · qk = Eµ[qX ],

where X = idZ is the canonical coordinate on Z. By definition, fµ(1) = 1
and as in (3.5.3), (3.5.5) and (4.1.4) it is immediately verified that

f ′µ(1) = Eµ[X],(4.1.10)

f ′′µ(1) = Varµ(X) + Eµ[X](Eµ[X]− 1).(4.1.11)

Suppose that N is even. Then EµN,0 [a] = 1
8N(N + 1) by Theorem 2.2.1

and VarµN,0(a) = 1
96N(N − 1)(2N + 5) by Theorem 3.4.3. Hence

f ′N (1) = 2Nf ′a∗µN,0(1)

= 2N EµN,0 [a]

=
2NN(N + 1)

8
and

f ′′N (1) = 2Nf ′′a∗µN,0(1)
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= 2N
(
VarµN,0(a) + EµN,0 [a](EµN,0 [a]− 1)

)
=

2NN(N − 2)(3N2 + 16N + 17)
192

,

so we have verified (4.1.6) and (4.1.7).
The verification of (4.1.8) and (4.1.9) for odd N is similar. For this

case we use EµN,0 [a] = 1
8(N2 +N + 2) by Theorem 2.2.1 and VarµN,0(a) =

1
96N(N − 1)(2N + 5) + 1

4N by Theorem 4.2.1. �

In the same fashion one proves:

Corollary 4.1.3. Let fN (q) ∈ C[q] be the basic specialization of chVwN,1 (Λ1).
Then

(4.1.12) fN (1) = 2N .

If N is even, then

f ′N (1) =
2NN(N + 1)

8
,(4.1.13)

f ′′N (1) =
2NN(3N3 + 10N2 − 15N + 14)

192
.(4.1.14)

If N is odd, then

f ′N (1) =
2N (N2 +N − 2)

8
,(4.1.15)

f ′′N (1) =
2N (N − 1)(3N3 + 13N2 − 14N − 60)

192
.(4.1.16)

4.2. Covariance of the weight distribution. For a distribution µ ∈
Measc(Z2) and coordinates X,Y : Z2 → Z we define the covariance matrix
of X and Y with respect to µ to be the 2× 2 matrix(

Covµ(X,X) Covµ(X,Y )
Covµ(Y,X) Covµ(Y, Y )

)
.

Note that the covariance matrix is symmetric.

Theorem 4.2.1 (Covariance of the weight distribution). Let µ(σs0)N and
µ(σs1)N be the weight distributions of the Demazure modules V(σs0)N (Λ0) and
V(σs1)N (Λ1), respectively. Consider −d, α∨1 ∈ h as functions on h∗. The
covariance matrix of −d and α∨1 with respect to µ(σs0)N is given by(

N(N−1)(2N+5)
96 0
0 N

)
,

and the covariance matrix of −d and α∨1 with respect to µ(σs1)N is(
N(N−1)(2N+5)

96 + N
4 0

0 N

)
.
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Proof. We just have to recollect the facts we have proven so far. Theorem 3.5.4
gives a complete overview of the data one needs in the case of V(σs0)N (Λ0).
For V(σs1)N (Λ1) one has to make use of its analog, Theorem 3.5.5. �

For visualization purposes, it is convenient to represent the covariance
matrix by the associated covariance ellipse, defined as follows: Let µ
be a measure on R2 with nondegenerate covariance matrix C. Then the
covariance ellipse of µ is

Sµ = {x ∈ R2 : xtC−1x = 1}.

Some statistical quantities can be easily read off Sµ. For example, if ϕ :
R2 → R is a linear form, then the standard deviation of ϕ with respect to µ
is

Varµ(ϕ)1/2 = max
x∈Sµ

ϕ(x).

In particular, the level line ϕ−1({1}) is tangential to Sµ if, and only if,
Varµ(ϕ) = 1. Similarly, let ϕ,ψ : R2 → R be nonzero linear forms. Let dϕ
be the diameter of Sµ with endpoints

arg max
x∈Sµ

ϕ(x) and arg min
x∈Sµ

ϕ(x),

and analogously for ψ. Then Covµ(ϕ,ψ) = 0 if, and only if, dϕ and dψ are
conjugate diameters of Sµ. In Figure 4, the covariance ellipses have been
translated to be centered at the expected weight.

For example, for the Demazure module VwN (Λ0) when N is even, Theo-
rem 4.2.1 gives that the a-diameter of the covariance ellipse (i.e., the height
of the ellipses in Figure 4) is

2
√

VarµN (a) = 2

√
N(N − 1)(2N + 5)

96
.

When we divide this diameter by the maximal value of a as computed in
Lemma 2.3.1, we obtain that the relative height of the covariance ellipse is√

(N − 1)(2N + 5)
6N3

.

This converges to 0 as N →∞, illustrating our weak law of large numbers
(Theorem 4.3.3).

4.3. Law of large numbers. Recall the following useful basic lemma in
probability theory (see e.g. [4, (5.32)]).

Lemma 4.3.1 (Chebyshev’s inequality). Let P be a probability distribution
on R with finite expected value and variance. Then, for any k > 0

P (R \ (E[P ]− k
√

Var(P ),E[P ] + k
√

Var(P ))) ≤ 1
k2
.
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We write νN
w−→ ν if the sequence of measures νN converges weakly to ν

as N → ∞. We will use the following abstract version of the weak law of
large numbers.

Lemma 4.3.2 (Weak law of large numbers). Let PN be a sequence of
probability distributions on R such that

E[PN ]→ c ∈ R and Var(PN )→ 0.

Then,

PN
w−→ δc.

This version of the weak law of large numbers can be derived from Cheby-
chev’s inequality in the usual way:

Proof. We need to prove for any ε > 0 that PN ([c− ε, c+ ε])→ 1 as N →∞.
Choose N ′ ∈ N such that |c− E[PN ]| < ε

2 for all N ≥ N ′. Then, for such N

PN ([c− ε, c+ ε]) = 1− PN (R \ (c− ε, c+ ε))

≥ 1− PN (R \ (E[PN ]− ε

2
,E[PN ] +

ε

2
))

≥ 1− 4 Var(PN )
ε2

−→ 1 as N →∞.

The last inequality follows from Lemma 4.3.1 with k = ε

2
√

Var(PN )
. This

proves the claim since by definition of a probability measure 1 ≥ PN ([c −
ε, c+ ε]). �

If µ is a nonzero measure, denote by µ̄ the probability measure on R
obtained by normalizing µ with its total mass. For c ∈ R, let Dc : R→ R
denote the corresponding dilation operator, given by Dc(x) = cx. Similarly,
for c ∈ R2, let Dc : R2 → R2 denote the operator given by Dc(x) =
(c1x1, c2x2).

Theorem 4.3.3 (Weak law of large numbers). Let µ(σs0)N and µ(σs1)N be the
weight distributions of the Demazure modules V(σs0)N (Λ0) and V(σs1)N (Λ1), re-
spectively, and let µ̄(σs0)N , µ̄(σs1)N be their normalizations. Consider −d, α∨1 ∈
h as functions on h∗. Then, for j ∈ {0, 1} we have(

D(bN2/4c+jdN/2e)−1

)
∗ (−d)∗µ̄(σsj)N

w−→ δ 1
2
,

and consequently(
D(N−1,(bN2/4c+jdN/2e)−1)

)
∗ (α∨1 ,−d)∗µ̄(σsj)N

w−→ δ(0, 1
2

).

See Figure 5 for an illustration.

Proof. Because of similarity let us only treat the weight distribution of
V(σs0)N (Λ0). For the first assertion denote PN =

(
DbN2/4c−1

)
∗ (−d)∗µ̄(σs0)N .

By Theorem 2.2.2 and Theorem 3.4.5

E[PN ] =
1
2
N(N + 1)

N2
and Var(PN ) =

1
6
N(N − 1)(2N + 5)

N4
.
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Now apply Lemma 4.3.2. The second part follows likewise. That is, [30,
Theorem 1] implies that (α∨1 )∗µ̄(σs0)N is the binomial distribution with
success probability 1

2 centered at 0 and dilated by 2. Therefore, for QN =
(DN−1)∗(α∨1 )∗µ̄(σs0)N we have

E[QN ] = 0 and Var(QN )
(3.1.2)

=
1
N
. �

In view of the limit ratio of the expected and maximal degree stated
in Corollary 2.3.5, it is tempting to conjecture that the weak law of large
numbers also holds for the normalized degree distribution associated to
a Demazure module V(σsj)N (Λ), j ∈ {0, 1}, with arbitrary highest weight
Λ = mΛ0 + nΛ1.

Conjecture 4.3.4. Let Λ = mΛ0 + nΛ1 be a dominant integral weight and
j ∈ {0, 1}. Denote by Bm,n

N,j the maximal occurring degree in V(σsj)N (Λ), by
µ(σsj)N its weight distribution, and by µ̄(σsj)N its normalization. Consider
−d, α∨1 ∈ h as functions on h∗. Then,

(D(Bm,nN,j )−1)∗(−d)∗µ̄(σsj)N
w−→ δ m+n+2

3(m+n+1)
,

and consequently

(D(((m+n)N)−1,(Bm,nN,j )−1))∗(α
∨
1 ,−d)∗µ̄(σsj)N

w−→ δ“
0, m+n+2

3(m+n+1)

”.
See Figure 6 for an illustration.
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5. Further questions

According to Chebyshev’s inequality, any sequence of probability mea-
sures individually dilated by a factor greater than their standard deviation
converges weakly to the singular Dirac distribution. Consequently, the next
interesting step is to determine the limiting distribution of the degree distri-
butions of V(σs0)N (Λ0) when each of them is dilated by its standard deviation.
Although each individual degree distribution is not distributed like the sum
of independent identically distributed (i.i.d.) random variables, Figure 5 is
a glimpse of Gaussian normal distributedness centered at 1

2 in the case of
Λ = Λ0.

Furthermore, it is immediate to ask about possible generalizations of our
results. One possible direction is to consider level 1 Demazure modules of
higher rank Kac–Moody algebras (including types different from A). Our
second approach in §3.5 is based on quantum calculus and the fact that
Demazure characters are related to Macdonald and Rogers–Szegő polynomials
(see [11, 13, 15, 22, 25, 31]). The connection between those polynomials is
valid for level 1 Demazure modules in the higher rank cases, described via
q-multinomial coefficients. Even though the computations will become more
complicated, it should be possible to generalize our second approach this
way.

Another possible generalization is to study the weight distribution in
Demazure modules of higher level. A first step towards this would be to
prove or disprove Conjecture 4.3.4. Combining terminology introduced in
[32] and results obtained in [9, 10] one can deduce a graded character formula
for higher level Demazure modules of ŝl2 based on q-supernomials, i.e., finite
sums of specific products of Gaussian polynomials. Therefore, in view of
our second approach via quantum calculus, a proof of the stated conjecture
seems immediate via the computation of Taylor expansions of q-supernomials.
Another possible approach could be [33, Theorem 1.2] where Shimozono
proves a type A higher level generalization of a graded character formula
for Demazure characters stated in [23, Theorem 5] (see also [24]). Note that
those graded character formulas are expressed in terms of Kostka–Foulkes
polynomials (level 1) and a generalization of Kostka polynomials (higher
level), and Schur functions. There is a connection between Kostka–Foulkes
polynomials and Gaussian polynomials (see e.g. [8, Theorem 8.7] and [18,
Exercise 7.C]). Again, in view of our second approach via quantum calculus,
it seems reasonable to investigate further if and how one can derive statistical
data about the higher level Demazure modules from those graded versions
of their characters.

Once enough statistical data has been gathered (such as limiting distri-
butions) one could try to to establish asymptotic formulæ for the weight
multiplicities in Demazure modules. Tate and Zelditch have applied this
procedure successfully to the weight distributions associated to tensor powers
of irreducible representations [34]. Those weight distributions are distributed
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like i.i.d. random variables. This enables them to apply the i.i.d. version
of the central limit theorem, large deviations techniques, and the method
of stationary phase (see e.g. [3, 7], and [14] for the terminology) to derive
statistical data and (pointwise) asymptotic formulæ for the weight multiplic-
ities inside those tensor powers. Adapting the line of questioning in [34] to
the context of Demazure modules, it is interesting to determine whether one
can derive asympotic formulæ for the weight multiplicities of weights in the
central limit region (that is, where one deviates O(one standard deviation)
from the expected value). This seems reasonable under the hypothesis that
one can prove Gaussian distributedness as described above. To our knowledge
though, we are in a nonstandard setting. The degree distribution associated
to Demazure modules is not distributed like the sum of i.i.d. random vari-
ables. Therefore, the usual central limit theorem and resulting asymptotic
expansions do not apply. Even more ambitious is the question whether large
deviation techniques can be applied to the degree and consequently weight
distributions of Demazure modules.

In view of [19] (which has been continued in [20]) there is another inter-
esting aspect coming up. Following [19] we can associate a Duistermaat–
Heckman measure to the Demazure module VwN,0(Λ0) (and likewise to
VwN,1(Λ1) which we omit here) via

DHN =
∑

C⊂[1,wN,0]

(ΦC)∗(λ∆C
).

To explain the notation: we denote by C a maximal chain of Weyl group
elements (in the Bruhat order) in the interval [1, wN,0] ⊂ W aff , ∆C is an N -
simplex associated to the maximal chain C, λ∆C

is Lebesgue measure on that
simplex and (ΦC)∗ denotes the push-forward of that Lebesgue measure via
an affine-linear map ΦC mapping the simplex ∆C to h∗R. The Duistermaat–
Heckman measure DHN is supported on the convex hull Conv([1, wN,0].Λ0) ⊂
Γ0⊗Z R. Here Γ0 is endowed with a Z-module structure by its identification
with Z2 via the coordinates a, b. Let a denote the degree coordinate on
Γ0 and Γ0 ⊗Z R. It is interesting to contrast the distributions a∗µwN,0 and
a∗DHN with each other. Having the degree distribution and the weak law of
large numbers Theorem 4.3.3 in mind, one expects the normalized measure
a∗DHN to tend weakly to the Dirac distribution δ1/2 when scaled to the
fixed support [0, 1]. Note that there is a discrete version of the measure DHN

resulting from [5], which has to be taken into account. That is, Knutson
originally defines the simplices ∆C in [19] in terms of the symplectic structure
and Morse decompositions of the symplectic manifold he considers. In the
setting of a coadjoint orbit one can show that those geometrically defined
simplices coincide with the (maximal) simplices defined combinatorially by
Dehy [5].

Let us also mention that [11] and [22] seem to be a good place to start
in order to find physical applications of our results. They exhibit that
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one-dimensional configuration sums in solvable lattice models in statistical
mechanics are closely related to Demazure characters.
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nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor
Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestim-
mungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte
Dissertation ist von Prof. Dr. Littelmann betreut worden.

Nachfolgend genannte Teilpublikationen liegen vor:

(1) Thomas Bliem und Stavros Kousidis, Expected degree of weights in
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