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Abstract 

The formation and maintenance of physical and functional barriers allows organisms to 

compartmentalize tissues, restrict the movement of cells, ions and small solutes as well as 

allows for terrestrial living. The main aim of this thesis was to examine if cell autonomous 

insulin/IGF-1 signaling regulates barrier formation/function in mammals, specifically the 

epidermal skin barrier as well as the vascular barrier. Mammalian epidermis is a multilayered 

stratified epithelium serving as a protective barrier against external insults and dehydration. 

Two compartments contribute to epidermal barrier function: (i) the outermost stratum 

corneum consisting of corneocytes embedded in a crosslinked matrix of mostly lipids and (ii) 

intercellular tight junctions present in the uppermost viable Stratum granulosum. Vascular 

barrier property on the other hand is largely dependent on functional intercellular junctions 

such as tight and adherens junctions that seal of the paracellular space between endothelial 

cells. 

Using Cre-loxP technology, the cell autonomous role of insulin receptors (IR)/IGF-1 receptors 

(IGF-1R) in the formation of epidermal barrier and maintenance of vascular barrier were analysed 

in mice with epidermal- and adult vascular endothelial-specific inactivation of both receptors 

(dkoepi-/- and dkoveinduc-/-). Dkoepi-/- mice showed transepidermal water loss and lethality within two 

days after birth, implying compromised epidermal barrier formation. Analysis of outside-in 

barrier formation using dye exclusion assays showed a strongly delayed acquisition of embryonic 

epidermal barrier in dkoepi-/- mice compared to control mice, suggesting impaired formation of the 

stratum corneum. This was accompanied by altered corneocyte morphology and a reduction in the 

level of free ceramides in combination with an accumulation of precursor ceramides (GlcCers) in 

the stratum corneum of dkoepi-/- mice as well as a small reduction in monomeric filaggrin. 

Analysis of the insight-out barrier did not reveal any consistent differences yet, despite small 

differences in tight junctional protein expression. Thus, epidermal Insulin/IGF-1 signaling is 

essential for epidermal barrier formation by regulation proper formation of the stratum corneum. 

Temporal inactivation of IR and IGF-1R in adult vascular endothelial cells did not result in any 

obvious morphological alterations in the vasculature in a range of tissues. Injection of tracer 

molecules with different molecular size followed by whole mount analysis of the retina or skin 

sections did not reveal any obvious vascular leakage or abnormal vascular patterning. Thus, 

vascular endothelial IR/IGF-1R signaling does not seem to regulate vascular integrity under 

steady state conditions. An important caveat in these experiments was the observation that the 

inactivation of the IGF-1R was variable and that loss of over 90% of IGF-1R is insufficient to 

disturb vascular integrity.  
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Zusammenfassung 

Die Ausbildung und Aufrechterhaltung von physikalischen und funktionellen Barrieren erlaubt 

Organismen Gewebe in Kompartimente zu unterteilen, die Bewegungsfähigkeit von Zellen, Ionen und 

kleine gelöste Substanzen einzuschränken und sichert so die Überlebensfähigkeit im terrestrischen 

Leben. Das Hauptziel dieser Arbeit war herauszufinden, ob Zell autonome Insulin/IGF- Signalisierung 

Barriereausbildung und Funktion in Säugetieren, insbesondere die epidermale Hautbarriere und 

vaskuläre Barriere, reguliert. 

Die Epidermis von Säugetieren repräsentiert ein geschichtetes Epithel, welches als schützende 

Barriere gegen äußere Einflüsse und Dehydrierung wirkt. Zwei Kompartimente tragen zur 

epidermalen Barrierefunktion bei: (i) das äußerste stratum corneum besteht aus Korneozyten, welche 

in eine vernetzte Matrix aus Lipiden eingebettet sind und (ii) intrazelluläre Verschlusskontakte (zonula 

occludens, tight junction), welche sich in dem obersten Stratum granulosum befinden. Vaskuläre 

Barriereeigenschaften sind größtenteils abhängig von funktionellen intrazellulären Kontaktstellen wie 

tight  und adheres junctions, welche den parazellulären Raum zweichen Endothelzellen versiegeln. 

Durch Nutzung der Cre-loxP Technology wurde die Rolle des Insulinrezeptors (IR) sowie des IGF-1 

Rezeptors (IGF-1R) in der Ausbildung der epidermalen Barriere und Aufrechterhaltung von 

vaskulären Barrieren in Mäusen mittels epidermal-spezifischer sowie vaskulärer endothelial-

spezifischer Inaktivierung von beiden Rezeptoren (dkoepi-/- und dkoveinduc-/-) analysiert. Dkoepi-/- Mäuse 

wiesen einen transepidermalen Wasserverlust auf und starben zwei Tage nach der Geburt, was auf eine 

beeinträchtigte epidermale Barrierefunktion hindeutet. 

Analyse von Einwärtsbarriereausbildung durch Gebrauch von Farbstoff-Penetrations Versuchen 

wiesen  eine verspätete Ausbildung der epidermalen Barriere in dkoepi-/- im Vergleich zu 

Kontrollmäusen auf, welches auf eine beeinträchtigte Formation des stratum corneums  hindeutet. 

Diese Beobachtung wurde unterstützt durch veränderte Korneozyten Morphologie und einer 

Reduktion bezüglich des Gehalts von freien Ceramiden in Kombination mit einer Akkumulierung von 

Vorläufer Cermaiden (GlcCers) im Stratum Corneum von dkoepi-/- Mäusen sowie einer Reduktion 

monomerischen Filaggrins. Analyse der Auswärtsbarriere zeigten keine konsistenten Unterschiede 

zwischen Kontroll Mäusen und Mutanten, bis auf geringe Unterschiede bezüglich der Expression des 

tight juncion Strukturproteins Claudin 1. Insgesamt wurde gezeigt, dass epidermale Insulin/ IGF-1 

Signalisierung essentiell für die Ausbildung der epidermalen Barriere durch die Regulation der 

Bildung des Stratum Corneums ist. 

Temporelle Inaktivierung des IR und IGF-1R in adulten vaskulären Endothelzellen resultierte in 

keiner offensichtlichen morphologischen Veränderung in den Blutgefäßen im Bereich von Geweben. 

Injektion von Tracer Molekülen von unterschiedlicher Molekulargröße gefolgt von Retina Analysen 

konnten keine vaskuläre Durchlässigkeit oder abnormale vaskuläre Ordnung bestätigen. 

Folglich scheint vaskulär endotheliales IR/ IGF-1R Signalisierung keine Rolle in der Regulierung der 

vaskulären Intaktheit unter Gleichgewichtsbedingungen zu besitzen.  
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   1 Introduction 

1.1 In vivo barriers and their functional importance 

In multicellular organisms, certain tissues must be separated from each other and protected 

against the outside environment. Continuous epithelial and endothelial sheets accomplish this by 

providing cellular borders that cover the external and internal surfaces of the body. 

Ultrastructural visualization reveals the complexes between adjoining cells in these sheets as 

gap junctions, desmosomes, adherence junctions (AJs) and tight junctions (TJs). These 

intercellular complexes act in concert to selectively control the influx and efflux of molecules 

and particles through their protective shield. The epidermis which separates the body from the 

outside milieu acts as a barrier constructed via piled up stacks of differentiated keratinocytes. 

The intercellular junctional complexes between the flattened keratinocytes and the components 

of the cornified layer of the epidermis shape the barrier function of skin. Therefore, skin is a 

semipermeable epithelium with multiple functions including, protection against entry of 

infectious or toxic substances, barrier against dangerous solar UV irradiation and most 

importantly it prevents the escape of body moisture and heat (Reviewed by Candi et al., 2005).  

The vascular barrier function on the other hand depends on a single sheet of endothelial cells 

lined next to each other and joint together by specific intercellular adhesion complexes (Fig.1). 

The vascular barrier is almost a one way barrier which controls the efflux of solutes and 

molecules out of the blood into underlying tissues (Turksen and Troy, 2004). 

1.2 Endothelial barriers 

1.2.1 Adherens junctions, tight junctions and desmosomes 

An essential property of vascular endothelial cells is their assembly into a physical and ion- and 

size-selective barrier. According to ultrastructural observations it has been shown that 

endothelial cells have specialized junctional regions that are comparable to AJs/TJs in epithelial 

cells; however, whereas in most epithelia TJs are concentrated at the more apical side of the 

intercellular cleft, in the endothelium TJs are frequently intermingled with AJs all the way along 

the cleft. Furthermore, in contrast to epithelial cells, endothelial cells lack desmosomes (Fig.1) 

(Reviewed by Dejana, 2004). 

Another difference of the vascular barrier system compared to epithelial barriers is the presence 

of vascular fenestrations in different tissues such as skin and choroids which provides a 

differential permeability preference based on the size parameter of the diffused molecules 

(Takada and Hattori 1972, Maxwell and Pease, 1956). In contrast to fenestrated endothelial cells 

in the choroid and skin vasculature, the TJs in the blood brain barrier tightly regulate the 

transpass of ions and molecules to the extravascular brain tissue (Nitta et al., 2003). 

1.2.2 Retina and Blood-Retinal-Barrier  

                                                                                                                                  Introduction 
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Retina is a transparent neural tissue positioned between the vitreous body and the retinal 

pigmented epithelium and consists of multiple layers; the nerve fiber layer, ganglion cell layer, 

inner plexiform layer, inner nuclear layer, outer plexiform layer, outer nuclear layer, and the 

outer segments of rods and cones. Central retinal artery and the choroidal blood vessels provide  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

85% and 15% of retinal blood supply. In the human retina, four main branches arise from the 

central retinal artery to supply three capillary plexuses: the radial peripapillary in nerve fibre 

layer, the inner capillary in ganglion cell layer, and the outer capillary networks in junction of 

inner nuclear and outer plexiform layers. The mouse counterparts of retinal vessels are primary 

plexus, inner or superficial and outer deeper plexus (Fig.2A) (Reviewed by Erickson et al., 

2007).   TJs in retinal pigment epithelium (RPE) and the blood vessels of the retina form the 

outer and inner barriers of the blood-retinal-barrier (BRB) respectively. The BRB is similar to 

the blood brain barrier in that it serves as a size and charge selective barrier that regulates the 

local environment of the neural retina. As with TJs elsewhere, RPE cells express tight junctional 

proteins, occludin-1, cldns, and ZO-1 (Williams and Rizzolo, 1997; Tserentsoodol et al., 1998) 

and control the flow of solutes and fluid from the surrounding fenestrated capillaries of the 

choriocapillaris into the outer retina (outer retinal barrier) and the retinal vessels directly restrict 

diffusion from the vessel lumen into the retinal parenchyma (inner retinal barrier) (Fig.2B) 

(Shakib and Cunha-Vaz, 1966).  

Although permeability of BBB or BRB is controlled by the biochemical and biophysical 

properties of microvascular endothelial cells, the vascular barrier function in CNS is generally 

the outcome of interactions of endothelial cells with the basement membrane and bordering glial 

Figure 1: The organization of TJs in simple epithelium, stratified epithelia and endothelial cells. (A) 

Tissues with simple epithelia have TJs in the most apical pole of the cells. (B)TJs in the stratified epithelium 

of the skin are positioned in the mid-granular layer of the skin. (C) Endothelial TJs are located apically but 

they tend to be intermingled with AJs.  

A 

C 
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cells, such as microglia and astrocytes, which together with neurons and perivascular pericytes 

constitute the neurovascular unit (NVU) (Fig.2C) which is an essential assembly in the vascular 

barrier function of CNS. Among other cell types in NVU, pericytes are believed to closely 

contribute to the integrity of neural vascular barrier as they share the same basement membrane 

with the endothelial cells and cover 22 to 32% of the capillary surface. Pericyte positioning on 

the microvessel and the coverage amount varies between different microvessel types which 

seems to correlate with the degree of tightness of the endothelial junctions (Reviewed by 

Cardoso et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   1.3 Epidermal skin barrier  

Figure 2: (A) H&E showing different cell types in retinal section. (B) Scheme showing the neural 

and vascular network in normal retinal cross section. Arrowhead: radial peripapillary and 

underlying inner capillary networks, arrow: outer capillary network. These networks build the inner 

BRB. Open arrow: The choroids supply nutrients to the outer retina. Diffusion into the retina is 

controlled by the retinal pigmented epithelium (RPE). RPE layer forms the outer BRB (C) Scheme of 

neurovascular unit assembly. Endothelial cells are covered by a basement membrane (shown in blue) 

and surrounded by different cell types; pericytes, astrocytic endfoot, neurons and microglial. Part B and 

part C are adapted from Erickson et al., 2007 and Cardoso et al., 2010 respectively. 

A 

C 

B 

Radial peripapillary and 
inner capillary networks 

Outer capillary 
network  

Choroids  

RPE layer 
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1.3.1 Adherens junctions, tight junctions and desmosomes 

The competency of epidermal barrier depends at least on proper function of three major 

components: the cornified envelope and lipid lamellar sheets in the cornified layer and 

intercellular AJ/TJ complexes in the upper granular layer. Based on dye penetration assays on 

mouse skin using lucifer yellow and toluidine blue, cornified layer forms the outside-in barrier 

(Hardman et al., 1998; Jennemann et al., 2007; Epp et al., 2007). The AJ formation in the 

epidermis leads to proper TJ assembly in the epidermis and TJs are engaged in the formation of 

inside-out barrier, as TJs in granular layer restrict the diffusion of subcutaneously injected biotin 

to the cornified layer (Furuse et al., 2002; Tunggal et al., 2005). In the epidermis 

hemidesmosomes are restricted to the basal layer, whereas desmosomes are found in all layers 

of the epidermis (Getsios et al., 2004). 

1.3.2 Stratum corneum 

Cornified envelope replaces the plasma membrane of cells in the cornified layer and comprises 

a series of crosslinked protein components which ultimately result in the formation of a highly 

resilient corneocytes. The corneocytes are therefore very resistant to boiling in solutions 

containing detergent and reducing reagents. Interconnected corneocytes by corneodesmosomal 

components and intercorneocyte lipid stcks together form the stratum corneum (Rice et al., 

2003). 

1.3.3 Acquisition of outside-in epidermal barrier in mouse 

Analysis of embryonic mouse skin using dye penetration assay with toluidine blue has 

determined that the development of such a barrier happens late in gestational period. Indeed 

Harman et al., (1998) identified the start points of barrier acquisition as sites which blocked dye 

penetration in late embryonic E16 skin at distinct initiation sites. The barrier acquisition in 

mouse follows a highly patterned order during development with the emergence of initial 

barrier-competent start sites in the back skin and then on cranial site and nostrils which 

gradually spreads in the form of moving fronts to the front skin over 1-2 days of development 

depending on the mouse strain.  

Skin barrier development happens concurrently with the component deposition, maturation and 

thickening of the cornified layer. Mature (26 kDa) FLG would not account for barrier 

acquisition as despite the presence of the profilaggrin and 2X-FLG intermediates, monomeric 

FLG was detected only in post-barrier (17 day) epidermis. Since loricrin as one of the last 

components to be incorporated into the cornified envelope, has constant expression during the 

last stages of barrier acquisition and due to its overlapping redistribution to the cornified cell 

membranes during barrier development, it is possible that cornified envelope maturation 

correlates with acquisition of barrier function (Harman et al., 1998).  

1.4 Molecular components of barriers  

                                                                                                                                  Introduction 
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1.4.1 TJs, AJs and desmosomes  

In simple epithelia which consist of a single layer of polarized cells, TJs are the most apical 

structure of the apical complex demarcating the border between apical and basolateral 

membrane domains. However in stratifying epithelia of the mammalian epidermis functional 

TJs occur only in the upper viable part of the granular layer. The intercellular membrane space 

of TJs is almost completely obliterated, hence their alternative name zonulae occludens. AJs are 

positioned immediately below TJs and characterized by two apposing membranes, which are 

separated by ~20 nM, that run parallel over a distance of 0.2-0.5 mm (Reviewd by Niessen, 

2007, Michels et al., 2009a).  

A combination of transmembrane and cytoplasmic proteins constitutes both the AJs, TJs and 

desmosomes. These components can be categorized into three general categories: (i) structural 

proteins necessary for initiation of the junctions, (ii) plaque proteins associated with the 

cytoskeleton, and (iii) signaling/polarity proteins. The nectin-afadin and cadherin-catenin 

complexes are building components of AJs where nectin and cadherin are transmembrane 

proteins and afadin and catenin are cytoplasmic proteins, the latter two proteins can interact 

with actin cytoskeleton thereby linking the AJs to cytoskeleton (reviewed by Niessen, 2007). 

Desmosomes are formed by adhesion receptors belonging to the cadherin super family i.e. 

desmogleins and desmocollins. Desmosomes link intermediate filament cytoskeleton to the 

plasma membrane (Nathke et al., 1994).  

Single-pass membrane proteins such as junctional adhesion molecules (JAM), and four-pass 

transmembrane domains such as cldns and occludin together with cytoplasmic proteins of ZO 

family and cingulin are involved in the connection of TJs to the actin cytoskeleton. These 

scaffolding proteins recruit several signaling proteins and transcription factors to the TJ sites 

(Fig.3). More than 40 proteins, including transmembrane, scaffolding and signaling proteins, 

have been found to be associated with TJs and form multimeric protein complexes to receive 

and send regulatory signals (González-Mariscal et al., 2003).  

1.4.1.1Claudin proteins 

Cldns are Transmembrane proteins, with MW of 20–27 kDa that appear to constitute the 

ultrastructural TJ strands. Transfection of cldn-1 and -2 into cultured fibroblasts resulted in the 

formation of a network of typical tight junctional strands as evidenced by freeze-fracture analysis 

(Furuse et al., 1998b). Subsequent research has expanded the member number of this multigene 

family in mouse and human to 24 genes. Differential expression has been described for cldns, 

suggesting their tissue specific function. For instance cldn-1 deficient mice die rapidly due to 

accelerated epidermal water loss and show poorly  developed TJs in their epidermis, indicating  
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that cldn-1 is the crucial barrier type cldn in the epidermis and is required for the maintenance 

of the inside-out barrier in mammalian epidermis. In addition to cldn-1 other cldn proteins 

including cldns-4 -5 -6 -7 -11 and -12 are also found to be expressed in the epidermis, although 

the role of each cldn in the maintenance of epidermal barrier property is not clear (Furuse et al., 

2002). 

On the other hand, cldn-1 and -5 are associated with maintenance of normal BBB function 

(Vorbrodt and Dobrogowska, 2003) and appear to be important in angiogenesis and in disease 

processes with disturbed vascular permeability. Indeed cldn-5 knockout mice are characterized 

by a size-selective loosening of TJs in BBB against small molecules (<800 Daltons) but not 

larger molecules showing that cldn-5 regulates size selectivity of the BBB (Nitta et al., 2003). 

1.4.1.2 Occludin 

Occludin as the first TJ transmembrane molecule discovered is a protein with MW of 

approximately 65 kDa (Furuse et al., 1993). Occludin deficiency in mice did not exhibit an 

evident alteration in epidermal barrier function although the vascular barrier function in these 

mice was not determined, nevertheless, the mice exhibited several different phenotypes, such as 

growth retardation, male sterility, gastritis and mineral deposits in the brain, suggesting vascular 

barrier impairment in CNS (Saitou et al., 2000). Occludin shows a highly consistent expression 

in cerebral endothelium and reveals staining in distinct continuous pattern along the cell 

margins in CNS endothelium, while it is almost sparsely distributed in non-neural endothelium 

Figure3: Schematic representation of the basic structural transmembrane and cytoplasmic 

components of tight junctions. Cldns and occludin are 4-pass proteins while JAM-1 is single-

pass. Each cytoplasmic protein, ZO-1 or ZO-2 is important for clustering of cldns and occludin, 

resulting in the formation of tight junctional strands. The role of the other scaffolding proteins (ZO-

3/MAGI/MUP1) is less clear. The ZOs and cingulin can provide a direct link to the actin 

cytoskeleton (adapted from Niessen, 2007). 
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(Hawkins and Davis, 2005). Tricellulin is another TJ protein identified with structural similarity 

to occludin. Unlike other TJ proteins, tricellulin is enriched only at tricellular TJs, where it 

enforces the barrier function of epithelial cell sheets (Ikenouchi et al., 2005). 

1.4.1.3 Junctional adhesion molecules (JAMs). 

The 40-kDa, IgG-like JAM family proteins are the third group of transmembrane receptors 

found at tight junctions. The JAM family comprises JAM-1, JAM-2, and JAM-3, also 

designated as JAM-A, JAM-B and JAM-C, respectively. In the form of single-pass proteins, 

JAMs have a large extracellular domain that mediates homophilic and probably also 

heterophilic interactions in the tight junctional region but do not induce the formation of TJ 

strands when expressed in fibroblasts. Cell type specificity seems to govern cellular tendency in 

expressing different JAM members.  For example, JAM-1 is predominantly expressed in 

epithelial cells while epithelia do not express other related JAMs (-2 and -3) and lymphatic cells 

express only JAM-1 and -2. On the other hand all JAM family proteins (-1, -2 and -3) are 

present in various endothelial cells, where they appear to differentially regulate paracellular 

permeability. Brain endothelial cells express only JAM-1 but not JAM-2 which together with 

JAM-1 expression in epithelia implies a putative function in TJ formation or function (Aurrand-

Lions et al., 2001).  

However, expression of JAMs is not exclusively restricted to cells with TJs but also other cells 

such as circulating monocytes, neutrophils, lymphocytes, and platelets, as well as dendritic cells 

also express JAMs thereby contributing to their transendothelial migration (reviewed by Ebnet 

et al., 2004) 

1.4.1.4 Zonula occludens (ZO) proteins  

Scaffolding zonula occludens or ZO proteins are cytoplasmic phosphoproteins that associate 

with the cytoplasmic side of TJs and provide a link between TJs and the actin cytoskeleton. 

Importantly as so far no direct interactions have been identified between occludins, cldns and 

JAMs, cytoplasmic binding partners must fulfil this scaffolding function. ZO proteins (ZO-1, 

ZO-2, and ZO-3) belong to the membrane-associated guanylate kinase-like homologs family 

and are characterized by three N-terminal PDZ domains, an SH3 domain followed by the GUK 

domain. The multiple binding domains in ZO-1 have scaffolding function, with the PDZ-1 

region binding to the cldn, the PDZ-2 domain binding to ZO-2, and the SH3-GuK region 

binding to both the occludin and the adherens junction proteins afadin and cadherin via α-

catenin. The C-terminus of ZO molecules can associate with actin which provides a direct link 

with the cytoskeleton (reviewed by Niessen, 2007). ZO-1, a phosphoprotein with MW 220-kDa 

and broad expression in most endothelial and epithelial cells is localized to tight junctions via its 

actin-binding domain and despite its expression in cell types without TJ formation, no TJ exists 

without ZO-1 therefore immunostaining for ZO-1 reflects maturation status of TJs. In addition, 
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ZO-1can also directly interact with JAMs and form homodimers or heterodimers with either 

ZO-2 or ZO-3. Very much like ZO-1, ZO-2 associates with transmembranous proteins of the TJ 

and transcription factors, and it is localized in the nucleus during stress and proliferation. It is 

not only considered as an extremely important structural protein, but also a nuclear factor 

affecting gene expression and blocking cell cycle progression (Niessen, 2007).  

1.4.1.5 Cadherin/catenin adhesion complex 

Classical cadherins were the first family of adhesion molecules found in the adherens junction 

and include type I, single-pass transmembrane glycoproteins that mediate Ca2+-dependent 

intercellular adhesion. Specific adhesion function is conferred by the cadherin ectodomain, 

which engages an identical molecule on the surface of an opposing cell, thereby called 

“homophilic” interaction; whereas the cadherin cytoplasmic domain mediates key structural and 

signaling activities required for adhesion through its association with three distinct cytoplasmic 

proteins known as catenins. β-catenin (or the highly homologous γ-catenin/plakoglobin) are 

arm-repeat proteins (Michels et al., 2009a-b). 

Calcium is key factor to allow homophilic interaction between E-cadherin molecules and crystal 

structures of ectodomain regions containing multiple EC domains show that the connections 

between successive domains are rigidified by Ca2+ coordination (Reviewed by Shapiro and 

Weis, 2009). In cultured keratinocytes, increased extracellular calcium levels stimulate 

formation of adherens junctions, causing both cytoskeletal reorganization and complexing of 

junctional proteins such as E-cadherin and α-catenin. Actin polymerization and formation of 

filopodia are among the earliest responses to raised extracellular Ca2+ leading to keratinocytes 

differentiation (Vasioukhin et al., 2000). 

Three major cytoplasmic partners of E-cadherin are α-catenin, β-catenin, and plakoglobin (also 

known as γ-catenin). The cytoplasmic region of E-, N-, and P-cadherins bind to β-catenin or 

plakoglobin, which in turn binds to α-catenin. The high level of sequence identity in the 

cadherin cytoplasmic region suggests that all classical cadherins interact with the catenins in 

this fashion. α-Catenin has a number of binding partners, including actin. In addition, p120 

catenin, which belongs to a subfamily of armadillo proteins, interacts with juxtamembrane 

fragment of the cadherin cytoplasmic domain (Reviewed by Shapiro and Weis, 2009; Niessen 

and Gottardi, 2008). 

1.4.2 Regulation of TJs/AJs by the polarity complex aPKC/Par3/Par6 

Several proteins regulating epithelial cell polarity have been characterized at TJs and AJs. One 

such complex is ternary aPKC/Par3/Par6 complex which was initially identified in a genetic 

screen searching for mutations that disrupted polarization of the Caenorhabditis elegans zygote 

(Tanentzapf and Tepass, 2003). Functional interference with any of these proteins affects 
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paracellular permeability, indicating their importance in the assembly of functional TJs 

(Anderson et al., 2004; Shin et al., 2006; Chen and Macara, 2005).  

      The Par complex is potentially capable of regulating AJ formation in endothelial cells. This 

relies on direct interaction of Par-3 and Par-6 with VE-cadherin. Among other types of cadherin 

molecules, this binding in only possible for VE-cadherin as P- N- and E-cadherin lack the PDZ 

domain required for interaction with Par proteins. This association might account for the distinct 

type of cell polarity pattern which is seen in endothelial cells. This interaction is suggestive of a 

uniquely localized aPKC-free Par-3, Par-6 protein complex at AJs via direct binding of both Par 

proteins with VE-cadherin which does not appear to cause polarization (Iden et al., 2006).  

1.4.2.1 Genomic structure and protein isoforms of mouse Par-3 

According to the available online genomic data, the mammalian homologue of C. elegans Par-3 

gene, ASIP (atypical PKC isotype-specific interacting protein) which was initially characterized 

by Izumi and colleagues (1998), is mapped to the distal end of the mouse chromosome 8 in 

chromatid region E2. The full-length mouse Par-3 transcript comprises 25 known coding exons 

(Fig.4A) and yields a 180 kDa protein of 1337 amino acids which consists of three domains, 

CR1 in the NH2-terminal domain, CR2 in the middle and a CR3 domain in the COOH-terminal 

(variant3, Pubmed ID, NM_033620.1). There are also other splice variants present in mouse 

tissues and cells which have the molecular weight of 150 and 100 kDa and result from 

termination of transcription in exons 19 and putative 15b of the full length gene respectively. 

The 180 kDa isoform appears to be the most abundant variant during embryonic development 

and in mouse brain whereas in heart and kidney the usual isoform is the 150 kDa variant 

(Fig.4B) (Izumi, et al., 1998; Lin et al., 2000). However Duncan and colleagues (2005) have 

reported the presence of additional transcripts for Par-3 in mouse oocyte and fertilized eggs 

which had not been characterized earlier and are supposedly originated via utilizing an 

alternative start codon which maps to exon 4 of the full length gene. The novel isoforms consist 

of 13 and 21 exons resulting in proteins with corresponding molecular weights of 73/76 kDa, 

(variant 2, Pubmed ID NM_001013580.2) and 133/135 kDa (variant1, Pubmed ID, 

NM_001013581.2) respectively. (Duncan et al., 2005).  

   1.4.2.2 Protein domains and interaction partners of mouse Par-3 

       Par-3 CR1 domain in the N-terminal region, is an oligomerization domain required for Par3 

self-oligomerization as in yeast two-hybrid system the full length Drosophila homolog of the 

Par3, Bazooka, was able to bind to the mammalian CR1 domain. This interaction is direct and 

has been further validated using in vitro translation system (Benton and St.Johnston, 2003). The 

CR2 domain comprises 3 PDZ domains, PDZ-1, PDZ-2 and PZD-3. The PDZ1 domain is 

interacting partner for another polarity protein, Par-6 (Johansson et al., 2000; Ebnet et a.l, 2001) 

as well as for integral Ig-like cell-cell adhesion molecules, JAM-1, -2 and -3, nectin-1 and 
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nectin-3 (Ebnet et al., 2003; Takekuni et al., 2003). Par3 is expressed by endothelial cells in 

most tissues such as the tongue and the heart endothelium where its association with JAMs is 

proposed to anchor the PAR-3/aPKC/PAR-6 complex to TJs (Ebnet et al., 2003). Besides 

mediating role in cell polarity and TJ formation, it is shown recently that the N-terminal 

dimerization and PDZ1 domains of Par-3 bind to dynein light intermediate chain 2 that results 

in the proper centrosome orientation during cell migration via local regulation of MT dynamic 

(Schmoranzer et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      The PDZ2 domain of Par-3 shows high affinity to phosphoinositides (PIPs) and this binding is 

critical for the its localization to cell membrane in MDCK cells, interestingly the same study 

revealed direct binding of the PIP Phosphatase, PTEN, to the juxtaposing PDZ3 domain of 

Par-3 which could facilitate quick hydrolysis of PIP3 by nearby PTEN (Wu et al., 2007). 

Later it was demonstrated that localization of the PTEN to cell-cell junctions is essential for 

the polarization of mammalian epithelial cells in vitro. As polarized distribution of PIP-2 and 

PIP-3 lipids is important determinant of cell polarity, Par-3 appears to function as a gate 

Figure 4: (A) Genomic structure of PAR-3. Exons, represented as boxes, are numbered and drawn to 

scale. White fraction of box in exons 1 and 25 shows 5´and 3´UTR regions. (B) Diagrams of different 

possible Par-3 proteins isoforms. All possible protein isoforms are drawn under their respective coding 

exon in the genome. Two Par-3 start codons and three stop codons exist. The first start codon is situated in 

exon 1 and second one in exon 4. In total six isoforms are possible. The N-terminal region with CR-1 

domain, three PDZ domains and the aPKC binding site is shown. The PDZ domains but not CR-1 and aPKC 

domains are present in all isoforms. 

A 
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keeper to maintain the phosphoinositide concentration gradient in polarized cells and therefore 

guide the polarity cues (Feng et al., 2008).  

The CR3 domain contains aPKC binding site, inside which there is a region with two highly 

conserved serine residues (827 and 829). Par-3/aPKC association leads to Par-3 Ser827 

phosphorylation by aPKC resulting in its detachment from aPKC that is observed during the 

initial phase of tight junction formation and is believed to be a critical step in epithelial 

polarization in mammalian cells (Izumi et al., 1998; Hirose et al., 2002; . Nagai-Tamai et al., 

2002). The carboxy-terminal region of Par-3 contains a direct binding site for the Rac 

exchange factor Tiam1. Par-3 binding with Tiam-1 is speculated to either inhibit Tiam1 

activity or sequester Tiam1 to a region of the cell where it is not accessible to Rac. 

Nevertheless, this binding is essential for tight junction assembly in simple epithelial cells via 

inhibition of Rac by Tiam1 in TJ sites (chen and Macara, 2005). Overall, Par-3 appears to 

nucleate the recruitment of the Par complex proteins to TJs via binding to JAM molecules and 

is required for assembly and function of TJs. 

1.4.3 The stratum corneum: protein and lipid barrier 

Constant regeneration of the skin requires stem cells with almost unlimited mitotic potential in 

the basal layer which are subject to a complex series of differentiation scenarios during their 

upward journey towards the skin surface. Final differentiation outcome for keratinocytes in 

the suprabasal layer is the formation of the cornified envelope (CE). The CE formation is 

dependent on the expression of certain type of keratins in the suprabasal layer of the 

epidermis. This happens concomitant with extensive protein-protein and lipid-protein 

crosslinking activities mediated by transglutaminase enzymes that catalyze the formation of 

protein-protein epsilon-(gamma-glutamyl) lysine cross-links in ascending, differentiating 

keratinocytes. Crosslinking activity will culminate in the formation of a firm insoluble CE 

structure in epidermal surface. CE is composed of flattened cage like lipid coated structures 

containing keratin intermediate filaments, called corneocyte envelopes. Concerted with 

synthesis, deposition and crosslinking of CE proteins, the granular layer keratinocytes produce 

a diverse spectrum of specialized lipids that accumulate in vesicles entitled lamellar bodies. 

The lamellar bodies will finally fuse with the apical membrane of the topmost keratinocytes in 

the granular layer and exocytose their lipid content into the interface between the granular and 

cornified layers. The excreted lipids are crosslinked to the exterior face of the CE and also 

form the extracellular lipid sheets that surround the dead corneocytes. The corneocyte 

interconnection to each other and to the granulocytes via corneodesmosomal proteins in 

combination with extracellular lipid lamellae forms the functional barrier of the cornified 

envelope. The dead corneocytes will be peeled off in a process called desquamation or 
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shedding of the cornified cells in the most exterior zone of the skin (Reviewed by Candi et al., 

2005; Kalinin and Kajava, 2002; Sandhoff, 2010).  

1.4.3.1 Protein components of the cornified envelope  

There are a growing number of proteins which are being identified as components of the CE. 

The key proteins incorporated into CEs are Loricrin, Involucrin, Periplakin, Envoplakin, 

Small Proline-Rich proteins (SPRs), trichohyalin and late cornified envelope proteins (LCE). 

CE proteins have several shared features such as having highly basic isoelectric charge but 

each one show a distinctly unusual amino acid composition compared to the others. On the 

other hand, filaggrin-bound keratin intermediate filaments composed of keratin-1 and -10, and 

corneodesmosomal proteins such as desmoplakin are minor CE components (Steinert and 

Marekov, 1999). The majority of the CE structural proteins are encoded by a gene cluster 

region called the Epidermal Differentiation Complex (EDC) on human chromosome 1q21 

(Marenholz et al., 2001) and mouse chromosome 3 (Moseley and Seldin, 1989). Most of the 

genes within this region show similarity in their genomic structure and amino acid sequence. 

For instance loricrin, involucrin and SPRs show peptide sequence homology in their N- and 

C-terminal domains with enrichment of conserved Gln AND Lys residues. Additionally the 

exonal structure of involucrin, loricrin, most of SPR genes and LCE genes is similar. These 

genes comprise two exons with a single intron and the entire open reading frame is located in 

exon 2. The mentioned similarities have resulted in hypothesis that the genes within EDC 

region have diverged from a single ancestral gene by gene duplication. Subsequently the 

genes have evolved their unique characteristics through further gene duplications and DNA 

base change events (Backendorf and Hohl, 1992; Gibbs et al., 1993).  

1.4.3.2 Filaggrin gene and protein structure in humans and mouse 

Filaggrin or ‘filament-aggregating protein’ was first coined in 1981 to represent a class of 

structural protein isolated from the stratum corneum (Steinert et al., 1981). Human 

profilaggrin is encoded by the FLG gene within the EDC region on chromosome 1q21. The 

FLG gene comprises three exons and two introns (Presland et al., 1992; Markova et al., 

1993). Exon 1 is noncoding and protein translation starts within exon 2, while the bulk of 

profilaggrin protein is encoded by the large third exon (~12.5 kb). Human profilaggrin is a 

histidine-rich protein with MW of ~400 kDa which comprises between 10 and 12 tandemly 

oriented filaggrin repeats, which are flanked on both sides by two partial filaggrin repeats and 

by N- and C-terminal domains. Human filaggrin repeats are identical in size having 324 

amino acids and contain a short linker domain that is cleaved during conversion of the 

profilaggrin into active monomeric filaggrin (Gan et al., 1990; McKinley-Grant et al., 1989; 

Presland et al., 1992).  
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Mouse flg gene is located on chromosome 3 within EDC region and comprises two types of 

repeating units, type A and type B which are dispersed within gene sequence. In total 20 FLG 

repeats have been reported including 9 type A repeats and 11 type B repeats. Type A repeats 

(765 bps) encode 255 amino acids, whereas type B repeats (750 bps) encode peptides 

containing 250 amino acids (Rothnagel et al., 1994; Rothnagel and Steinert, 1990). Mouse 

profilaggrin is a short-lived large protein with MW >300 kDa consisting of multiple tandem 

repeats separated by a short 7-10 amino acid linker peptide (Dale et al., 1994). 

1.4.3.3 Filaggrin expression, function and processing 

       Profilaggrin is initially synthesized as a highly phosphorylated insoluble proprotein and is 

accumulated in keratohyalin granules in granular layer of epidermis. The early 

phosphorylation appears to prevent its premature binding to keratin filaments. The insoluble 

nature of the proprotein might facilitate its packing into keratohyalin granules. During 

cornification it is proteolytically cleaved in linker sites and dephosphorylated to release 

individual filaggrin monomers. Mouse monomeric FLG is ~26 kDa in size and is responsible 

for binding to intermediate keratin fibrils and aggregating them to keratin bundles in the 

cornified layer. The aggregation function of FLG would provide a model causing shape 

change of cornified keratinocytes from ellipsoid to flattened morphology. Altogether CE 

proteins, keratins and filaggrin contribute approximately 80-90% to dry mass of the 

epidermis. Furthermore, highly histidine-rich composition of FLG plays a key role in 

hydration of the skin, as processing of FLG into a mixture of hygroscopic compounds and 

their derivatives, such as pyrrolidone carboxylic acid (PCA), results in providing the natural 

moisturising factor (NMF) for the skin (Review by Candi et al., 2005). A novel role for FLG 

is protection against UV light; which comes from a study showing that mice deficient in a 

Caspase-14, a protease involved in proteolytic degradation of FLG resulted in increased 

sensitivity to UV damage (Denecker et al., 2007). 

Processing of profilaggrin to FLG occurs in several steps. It initiates with excision of the N-

terminus happening concurrently with processing of the poly-filaggrin sequence, first into 2-4 

filaggrin repeat intermediates and finally into mature (monomeric) FLG. Several 

endoproteases are known to engage profilaggrin processing, including calpain I (µ-calpain), a 

chymotrypsinlike enzyme, PEP1, furin or a related proprotein convertase (with specific 

involvement in cleavage of the N-terminus from profilaggrin), matriptase (MT-SP1), and the 

serine protease prostatin (CAP1/Prss8). Caspase-14 can cleave profilaggrin within the N-

terminal portion as well inside each filaggrin domain. Caspase-14 is specially important 

during final step in filaggrin degradation to free amino acids within the stratum corneum 

(Reviewed by Presland, 2009). 

       1.4.4 Lipid components of the cornified envelope  
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Barrier function of the cornified layer is conferred by conducive function of previously 

described proteins as well as lipid components including cholesterol, free fatty acids and 

ceramides. Major class of lipids in CE formation are ceramides, accounting for over 50% of 

the CE lipids. CE ceramides exist either as free unbound lipids in the extracellular lipid 

lamellae or lipids covalently crosslinked to proteins on the exterior face of the cornified 

envelope specially involucrin. Ceramides belong to the class of sphingolipids and display the 

greatest molecular heterogeneity in terms of sphingoid base and fatty acid composition. They 

are composed of a sphingoid base, sphingosine, phytosphingosine or 6-hydroxysphingosine 

which is N-acylated by a long-chain fatty acid. The lipids components of the extracellular 

matrix are synthesized by keratinocytes in the strata spinosum and granulosum and packed 

into disk-like, lipid membrane structures within specialized vesicles, called lamellar bodies. 

Lamellar bodies exocytose their content to the cell surface shortly before the keratinocytes 

transform into dead corneocytes. 

      Esterification of the ω-hydroxy group of ceramides with very long chain allows their covalent 

crosslinking to other lipids or CE proteins; as a result, they are either bound to long chain fatty 

acids, especially linoleic acid, or to glutamate residues of cornified envelope proteins 

(Sandhoff, 2010). 

       As precursor for epidermal ω-hydroxy ceramides and other lipids, epidermis also contains 

lower concentrations of corresponding ω-hydroxy glucosylceramides (GlcCers) which are 

also referred to as probarrier lipids. As a major step in the production of epidermal ceramides 

and in a process of extracellular lipid modification, free and protein bound ω-hydroxy 

GlcCers are degraded to ω-hydroxy ceramides. This conversion is mediated by β-

glucocerebrosidase (β-GlcCerase) and inactivation of either β-GlcCerase or its activator 

protein Prosaposin (pSAP) in the epidermis results in disturbed epidermal permeability barrier 

formation and reduced epidermal ceramide content (Doering et al., 1999-a, 1999-b).  

  1.5 The insulin-like growth factor (IGF) system 

1.5.1.1 IGF-1R and IGF-2R receptors and IGF binding proteins (IGFBPs)  

The evolutionarily conserved IGF system is involved in regulation of growth, proliferation 

and survival. The system operates through polypeptides; 1) IGF-1, IGF-2 and insulin, 2) the 

IGF binding proteins; 1-6, 3) the receptors; IGF-1R, IR, hybrid IR/IGF-1R, IGF-2R; and 4) 

IGFBP-proteases: IGF-1, IGF-2 and insulin polypeptides are highly homologous showing 

derivation from a common ancestral precursor hormone (Daughaday and Rotwein, 1989), 

(Reviewed by Denley et al., 2005; Rajpathak et al., 2009). IGF-I is predominantly synthesised 

in the liver and delivered to target tissues via systemic circulation (endocrine secretion), but 

based on its local production in most tissues, paracrine/autocrine signaling manner is also 
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possible (Abbas et al., 2008). IGF-I has also been suggested to have a role in glucose and lipid 

metabolism by promoting peripheral uptake of glucose and protecting against insulin 

resistance (reviewed by Rajpathak et al., 2009).  

IGF-2 is a close relative of IGF-1 and according to both murine models and humans plays 

important roles during prenatal life by regulating the normal foetal growth and development 

(Chao and Amore, 2008). Systemically circulating IGF-2 is maintained in humans throughout 

life and is actually the predominant IGF in adult humans, the levels being 5-10-fold higher 

than IGF-1 (Frystyk, 2004). IGF-2 signal transmission occurs through binding to IGF-IR, with 

as high affinity as to its own receptor IGF-2R, and also through the IR isoform A to which it 

binds with equal affinity as insulin (Denley et al., 2004). For long time the assumed role for 

IGF-2R was modulation of IGF-2 bioavailability by internalizing and targeting IGF-2 for 

lysosomal degradation (Ellis et al., 1996); however, studies on endothelial progenitor cells 

from umbilical cord blood showed endothelial progenitor cells to have a high expression of 

IGF-2R, where IGF-2 and IGF-2R contributed in vasculogenesis at ischemic or tumour sites 

(Maeng et al., 2009).  

The level of free IGFs in the circulation is regulated by IGF-binding proteins (IGFBP) 1-6, 

mainly IGFBP-3, acting as IGF depot in the blood. IGFBPs control IGF bioavailability by 

forming complexes with IGFs, thereby extend their metabolic half-life and modulate the direct 

binding of IGFs to their receptors. IGFBP-3 as the most common IGFBP forms a ternary 

complex of 150 kDa together with each of IGF and the acid-labile subunit (ALS). In vivo the 

majority of IGF-1 and IGF-2 polypeptide pool is bound to IGFBPs and only less than 1% is 

free and bioactive (Frystyk, 2004). The IGF-1-IGFBP-3 complex extends the IGF-1 half-life 

in serum from 10 minutes to 12-15 hours by preventing IGF-I proteolysis (Rajpathak et al., 

2009).  

      1.5.1.2 Insulin 

Insulin is a key regulator of glucose metabolism by regulating glucose uptake and production 

and is also involved in other metabolic reactions such as lipolysis and protein synthesis. 

Insulin secretion from β-cells in the pancreas is stimulated by high blood glucose and amino 

acids. The central given function of activated insulin receptor is promoting glucose uptake in 

adipose tissue and skeletal muscles via translocation of the insulin responsive glucose 

transporter (GLUT4) to the cell surface (Saltiel and Kahn, 2001). In the circulation insulin is 

free, i.e. not bound to binding proteins which enables it to act quickly. Unlike IGFs, blood 

insulin level is prone to changes induced by glucose uptake, with high postprandial peaks in 

response to meals and low levels between meals and during the night (Frystyk, 2004). 
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   1.5.1.3 Structural homology of insulin receptor and IGF-1 receptor 

   The heterotetrameric membrane glycoproteins, insulin receptor (IR) and IGF‐1 receptor 

(IGF‐1R) belong to the tyrosine kinase family and show 84% homology in the β‐subunit of 

tyrosine kinase domains. Unlike other receptor tyrosine kinases, which are activated by ligand 

dimerization, IR and IGF‐1R are already dimerized at the cell surface as a tetramer composed 

of two disulphide‐linked αβ‐dimers, where each αβ‐dimer consists of an extracellular α‐subunit 

and a transmembrane β‐subunit (Ullrich et al., 1986). The extracellular α‐subunits of the IR 

and IGF‐IR contain six structural domains, of which ligand-binding determinants have been 

localized to the L1, cysteine-rich and L2 domains and to the C-terminal peptide sequence. 

β‐subunits as intracellular domains of the receptor are the parts which are tyrosine 

phosphorylated and subsequently transduce the signal (Benyoucef et al., 2007). 

   1.5.1.4 Hybrid insulin receptor/IGF-1 receptor 

   Given the close homology between IR and IGF-1R, in tissues with normal expression of each 

single receptor, hybrid IR/IGF-1R receptors (HR) are known to form by random assembly of 

receptor hemidimers consisting of one IR αβ-dimer and one IGF-1R αβ-dimer (Moxham et 

al., 1989; Soos and Siddle, 1989). Hybrid receptors have been demonstrated in many tissues 

Figure 5: Schematic representation of the IGF system. The IGF system consists of the receptors 

(IGF-1R, two IR isoforms, IGF-1R:IR hybrids and IGF-2R), the peptides (IGF-I, IGF-II and 

insulin) and six high affinity IGFBPs. IGFs circulate mainly in an IGF:IGFBP-3:ALS complex. 

Release of IGFs from IGFBPs occurs upon IGFBP proteolysis or extracellular matrix (ECM) 

binding. IGFBPs can also act independently of IGF entering the cell via as yet undefined receptors. 

IGF-2R modulates the bioavailability of IGF-II (adapted from Denley et al., 2005). 
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including skeletal muscle, adipose tissue, placenta, breast cancer cells and osteoblasts. 

(Reviewed by Arnqvist, 2008; Frasca et al., 2008). Studies carried out with purified hybrid 

receptors suggest that these receptors mostly bind IGF-1, while they bind insulin with a much 

lower affinity (Soos et al., 1993; Pandini et al., 1999) although their roles in cellular responses 

remain unclear and present a challenge to IGF/insulin researchers (Fig.6). 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.1.5 Activation of receptors and signaling pathways 

First step in the initiation of biological effects of insulin, IGF-1 and IGF-2, is binding to their 

receptors, IGF-1R, IR or hybrid IR/IGF-1R. The putative ligand binding pockets are located 

in the cysteine rich portion of the extracellular α subunits whereas the β subunit contains 

tyrosine kinase domain, ATP and substrate binding pockets and autophosphorylation sites (De 

Meyts and Whittaker, 2002).  

Insulin/IGF-1 ligand binding will cause a conformational change in the receptor structure 

which will bring the receptor domains close together and initiate autophosphorylation of 

several tyrosine residues on the β-subunits. IGF-1R and IR demonstrate overlap in directing 

downstream signaling events, the critical nodes being IRS proteins 1-4, phosphatidylinositol 

3-kinase (PI3K) and Akt in the PI3K-pathway which is generally considered to be responsible 

for most of the metabolic effects, and Erk 1/2 in the Ras mitogen-activated protein kinase 

(MAPK) pathway which in cooperation with the PI3K-pathway control mitogenic and 

differentiation responses (Taniguchi et al., 2006).  

The downstream Akt pathway is activated by mTOR to ensure both a reasonable level of 

nutrients and a positive signal for cell growth and division. The binding of IGF-1 to its 

tyrosine kinase receptor (IGF-1R) results in the recruitment of the PI3 kinase (PI3K) to the 

plasma membrane and its activation. PI3K, in turn, phosphorylates the phosphoinositides, 

increasing the concentration of PIP3 at the plasma membrane. Increased PIP3 activates PDK1 

Figure 6: Schematic representation of hybrid receptors. In cells and tissues expressing both IR 

and IGF-1R, IR hemireceptors may heterodimerize with IGF-1R hemi-receptors, leading to the 

formation of hybrid IR/IGF-1Rs (HRs), which bind IGF-1 and IGF-2 with high affinity and insulin 

with a much lower affinity (adapted from Frasca et al., 2008). 
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and mTORC2 (PDK2). The resultant phosphorylation of Akt on Thr308 by PDK1, and on 

Ser473 by mTORC2, respectively, leads to the full activation of Akt. Akt then phosphorylates 

several cellular proteins, including FOXO transcription factors, BAD, MDM2, and GSK3α/β 

to facilitate cell survival and cell cycle entry. The IGF-1/ Akt pathway regulates mTORC1 

through Akt phosphorylation of TSC2 on multiple sites; this inhibits the TSC2 GTPase 

activity, resulting in the activation of Rheb and mTORC1. This coordination of IGF1/ Akt and 

mTOR pathways enables the activation of mTOR that in turn promotes cell growth in 

response to the stimulation of growth factors, including insulin and IGF-1 (Reviewed by Feng 

and Levine, 2010). Therefore IR/IGF-1R signaling will result in the regulation of cell 

metabolism, proliferation, and survival (Baserga and Hongo, 1997; Pollak, 2008), depending 

on cell type (Fig.7).  

1.5.2 Insulin signaling in diabetes and gene knockout models for IR/IGF-1R  

      In pathological condition of diabetes mellitus type 2, insulin insensitivity occurs which is due 

to decreased insulin receptor signaling and leads to abrogated glucose take up in insulin target 

tissues resulting in increased circulating glucose or hyperglycemia (Clauser, 1994). 

Mice lacking insulin receptors are born with normal visible parameters but develop early 

postnatal diabetes and die of ketoacidosis (Accili et al., 1996). On the other hand inherited 

mutations nullifying the human IR gene, result in severe intra-uterine growth retardation, 

failure to thrive, and hypoglycemia which indicates that insulin receptor also promotes 

embryonic growth (Reviewed by Kitamura et al., 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: scheme showing IR/IGF-1R signaling pathway. Insulin/IGF-1 ligand binding to the 

IR/IGF-1R leads to autophosphorylation on different tyrosines in the kinase domain, followed by 

recruitment of IRS-1 and PI3K activation. This interaction leads to recruitment and activation of 

phosphoinositide dependent kinase-1 (PDK1) and AKT/protein kinase B via phosphatidylinositol 

3, 4, 5-triphosphate (PIP3) production. Another pathway activated through IRS-1 signaling is the 

MAPK pathway. Downstream molecules in IR/IGF-1R axis have diverse roles in promoting 

growth, proliferation, differentiation and protection against apoptosis. 
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The knowledge about mammalian IGF-1R in development was obtained from analysing the 

IGF-1R null mice. IGF-1R knockout mice have 45% of the size of their wild type siblings at 

birth and die shortly after birth due to severe organ hypoplasia (Liu et al., 1993). Cultured 

IGF-1R-/- fibroblasts showed slower growth compared to wild-type fibroblasts and were not 

able to proliferate under anchorage-independent conditions (Sell et al., 1993). Together with 

IR, skeletal muscle also shows abundant expression of IGF-IR that can enhance muscle 

glucose uptake via mobilisation of GLUT-4. Inactivation of IGF-IR in skeletal muscle in mice 

causes severe insulin resistance and type 2 diabetes at an early age, implicating an important 

function for IGF-I in glucose homeostasis (Fernandez et al., 2001).  

1.6 Regulation of endothelial function by Insulin/IGF-1 signaling and in Diabetes 

1.6.1 Role of IR and IGF-1R signaling in endothelial cells 

Endothelial insulin and IGF-1 signaling pathways alone do not appear to play an essential role 

in the normal development of retinal vasculature and vascular barrier function under steady 

state homeostasis conditions. In vivo inactivation of mouse IR or IGF-1R genes had no major 

consequences on vascular development or glucose homeostasis under basal conditions (Vicent 

et al., 2003). However, early postnatal hypoxia stimulation to induce artificial retinal 

neovascularization in mice with either endothelial specific inactivation of IR or IGF-1R 

resulted in 57% and 34% reduction of neovascularization areas respectively (Kondo et al., 

2003). This is suggestive of the central role of insulin and IGF-1 signaling under challenging 

hypoxia conditions. In contrast to the stimulatory effect of IGF-1 signaling in the development 

of retinopathy in mice (Kondo et al., 2003), human preterm infants born with low levels of 

IGF-1 in their serum show a higher risk of developing retinopathy of prematurity (ROP), a 

hypoxia induced pathological neovascularization in retina (Heidary et al., 2009). Intraocular 

overexpression of IGF-1 ligand in transgenic mouse models contributed to accumulation of 

VEGF and BRB breakdown, marked by increased vessel paracellular permeability to mannitol 

(182 Da) and HRP (44 kDa) (Haurigot et al., 2009). IGFBP-3 as key regulator of IGF-1 

activity is seen to be significantly increased in neovascular tufts of the OIR retina, suggesting 

the local regulatory functions of IGFBP-3 in the retina (Lofqvist et al., 2009).  

Angiogenesis response in healing skin wounds that leads to the formation of new blood 

vessels in the wound bed is driven by hypoxia (Wattel et al., 1990). Wound healing procedure 

is significantly impaired in diabetic wounds resulting in decreased time of closure. Following 

the role described for IGF-1 signaling in retinal neovascularization and vascular leakage, it is 

an open question if disturbed insulin/IGF-1 signaling in endothelial cells can underlie the 

defective wound healing response seen in diabetic patients.    

1.6.2 Blood-retinal-barrier breakdown in diabetes 
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Increased vascular permeability associated with angiogenesis underlies the pathology of 

diabetic retinopathy (DR) in type 1 diabetic patients. DR is a late onset complication of 

diabetes and is the major cause of vision loss in the working age population in developed 

countries. On the other hand excessive edema due to the breakdown of the BRB is the main 

event involved in the pathogenesis of diabetic macular edema (DME) seen in type 2 diabetic 

patients (Reviewed by Simó et al., 2010). Despite reported increase of intraocular IGF-I levels 

in diabetic patients, the induction switch for such IGF-1 elevation and the source of IGF-I 

production is not clear (Haurigot et al., 2009). Nevertheless, studies with systemically infused 

small molecular weight tracers have shown leaky interendothelial cell tight junctions in retinal 

vessels of diabeteic rats and dogs (Wallow and Engerman, 1977; Ishibashi et al., 1980) 

indicating uncontrolled fluid diffusion through disrupted endothelial TJs in diabetic 

retinopathy.  

The development of DR is hypothesized to be at least in part driven via elevated intraocular 

VEGF expression. VEGF induced vascular permeability is accompanied with rapid 

phosphorylation of the intracellular tail of VE-cadherin leading to its endocytosis and 

disruption of the endothelial barrier function (Gavard and Gutkind, 2006). 

Elevated MMP-mediated proteolytic degradation of endothelial type VE-cadherin and 

reduction in its transcript levels is seen in retinal vessels of streptozotocin-induced diabetic 

rats which was coincident with increase in retinal vascular leakiness (Navaratna et al., 2007). 

Similar to interrupted VE-cadherin expression and processing, reduction in cadherin-5 is 

presumably another landmark of leaky endothelial junctions in DR (Davidson et al., 2000).  

Occludin as an integral TJ protein is reportedly target for deregulation in retinal vessels from 

DR. For instance, rats with STZ-induced chronic diabetes represented decreased occludin 

content and immunostaining at cell junctions parallel with increased BRB permeability 

(Harhaj et al., 2006). Similar change in occludin content was also recapitulated in vitro by 

VEGF treatment of bovine retinal endothelial cells. VEGF mediated reduction in occludin 

level depends on urokinase plasminogen activator suggestive of increased extracellular 

proteolytic activity contributing to occludin degradation and probably vascular barrier 

breakdown (Harhaj et al., 2006). Affirmatively in vivo immunohistochemical analysis has 

shown inverse relationship between occludin immunoreactivity signal and the degree of 

vascular permeability in the retina of STZ-induced diabetic rats or in non-diabetic rats with 

intravitreal VEGF-injection (Barber and Antonetti, 2003). However the authors reported no 

change in immunoreactivity signal for cldn-5 which is the main cldn type present in 

endothelial intercellular junctions. Therefore changes in occludin content, phosphorylation 

and localization accompanied by alterations in barrier properties seen in DR substantiates the 

key role of occludin in the maintenance of BRB.  
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In addition to impaired cell-cell junctions, abnormal transendothelial vesicular transport 

(Hofman et al., 1999) and endothelial cell apoptosis (Mizutani et al. 1996; Joussen et al., 

2001) have also been shown to underlie increased retinal vascular permeability in DR. It is 

possible that endothelial cell death would be the key disturbance accounting for major retinal 

vascular leakage in diabetes as suppression of endothelial apoptosis is presented as a potent 

approach to prevent BRB breakdown in STZ-induced diabetic rats (Joussen et al., 2003). 

      1.7 Role of insulin/IGF-1 signaling in the skin 

       Keratinocytes of human skin express both insulin and IGF-1 receptors, but they do not 

synthesize IGF-1 or insulin ligands (Barreca et al., 1992; Tavakkol et al., 1992). Dermal 

fibroblasts could support the proliferation of keratinocytes in the epidermis by secreting IGF-1 

and insulin (Barreca et al., 1992; Tavakkol et al., 1992). Epidermal inactivation of mouse IR 

showed a very subtle reduction in skin thickness while IGF-1R gene deletion resulted in an 

obviously thinner epidermis. Both type of these knockout mice were viable while deletion of 

both epidermal IR and IGF-1R genes resulted in translucent and shiny skin culminating in 

early prenatal lethality within few hours after birth (Stachelscheid et al., 2008). However the 

underlying reason leading to lethality in these mice awaited clarification.  

      Consistently, inactivation of IGF-1R signaling components such as IGF-1R, IGF-1 and/or 

IGF-2 (Liu et al. 1993), Insulin receptor substrate 1 (IRS1) (Sadagurski et al., 2007) or both of 

the downstream kinases AKT1 and AKT2 (Peng et al., 2003) in mice each resulted in a 

disturbed epidermal stratification, generating hypomorphic epidermis although the exact 

downstream regulators in the pathway are yet unclear. 

      As an expected role for a growth factor, transgenic mice with overexpression of either IGF-1 

or IGF-2 in the basal layer of epidermis, represented epidermal hyperplasia, hyperkeratosis 

and squamous papillomas (Bol et al., 1997; DiGiovanni et al., 2000; Bennett et al., 2003). 

This observation could link IGF-1R signaling in skin to carcinogenesis. 
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Aims of this study  

The overall goal of this thesis was to analyze the role of cell autonomous insulin/IGF-1 signaling 

in the regulation of in vivo barriers with a focus on vascular endothelial and epidermal skin barrier 

function.  

 

Specifically, the following specific aims were addressed: 

 

1. To determine the cause underlying early prenatal lethality of dkoepi-/- mice 

2. Does the loss of epidermal IGF-1R and IR affect epidermal outside-in and inside-out barrier 

formation? 

3. Which molecular components of the outside-in and inside-out barriers are perturbed in the 

absence of epidermal insulin and IGF-1 signaling? 

4. Does IR/IGF-1R signaling regulate vascular barrier function in the adult retinal vasculature?  

5. Generate a tissue specific inactivation mouse model for the polarity protein Par3, a downstream 

component of IR/IGF-1R, which regulates tight junctional barrier formation in vitro.  

 

To this end we generated either epidermal specific knockouts for IR and IGF-1R, using K14-Cre 

mice, as well as inducible vascular endothelial specific knockouts for IR and IGF-1R, using 

Tie2CreERT2 and analysed barrier function.  
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Figure 8: Increased transepidermal water loss in dkoepid-/- mice. (A) Average TEWL measurements ± S.D. 

of Ctrl (n=7) and dko (n=5). For each mouse, 15 highest steadfast values were measured and then all mouse 

values were pooled. (B) Total distribution of the 15 highest TEWL values ± S.D. per mouse of either control 

(Ctrl) or dkoep-/- mice. (*) indicates P value summary of F test to compare variances.  

2.1.1 Increased levels of epidermal water loss in epidermal deficient IR/IGF-1R mice 

Inactivation of both the insulin receptor (IR) and IGF-1R receptor (IGF-1R) in the epidermis of 

mice (dkoepi-/-) using Cre-loxp technology with Cre driven by the K14-promotor resulted in 

perinatal lethality within the first day after birth. These mice were born with a thin and translucent 

skin that is slightly shiny compared to control mice (Stachelscheid et al., 2008). This suggested 

that the skin barrier might be compromised in the absence of epidermal IR/IGF-1R signaling. To 

directly test if newborn dkoepi-/- mice showed increased loss of water compared to their control 

siblings, transepidermal water loss (TEWL) measurements were performed. An approximately 

two-fold increase in water loss was observed in dkoepi-/- in comparison with control mice (Fig.8), 

which suggests that dehydration is the primary cause of lethality in dkoepi-/- mice.  

 

 

 

 

 

 

 

 

 

 

  

 
 
 
 
 
 
 
2.1.2 Insulin/IGF-1 signaling might be essential for competent inside-out epidermal 

barrier formation 

To examine if increased inside-out permeability of the skin also contributed to the observed water 

loss in dkoepi-/- mice, newborn mice were dermally injected with amine reactive biotin and its 

diffusion across different layers of the epidermis was assessed. Biotin diffusion is normally only 

observed only up till the stratum granulosum, the layer that contains the functional tight junctions 

and thereby restrict diffusion into the stratum corneum (Furuse et al., 2002; Tunggal et al., 2005). 

As expected, in many areas in our control mice biotin staining was observed only in the viable 

layers of the epidermis with a sharp demarcation where the tight junctions were, visualized by 

ZO1 (Fig.9A, arrows). However, in a few positions biotin staining was observed above the tight 

A B 
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 Figure 9: Assessment of the inside-out barrier function in ctrl and dkoepi-/- mice (A) Biotin 

diffusion assays. (A) Biotin was injected subcutaneously under back skin. Biotin in cryo sections 

was detected with Alexa-488 conjugated Streptavidin. Marked by yellow arrows, ZO-1 

immunostaining demarks the site of tight junctions in the granular layer. (B) Cldn-1 

immunostaining in the epidermis of Ctrl and dko mice. C. Western blot shows the levels of Cldn-1 

in Ctrl and EDKO mice.  Bar= 20 µm. 

 

junctions (Fig.9A, arrow head). This suggested that the skin barrier of control mice was slightly 

compromised in these sections, perhaps due to scratching of mice. In sections examined of dkoepi-/- 

mice very little staining was visible in the epidermis, suggesting that within these sections little 

biotin had diffused into the epidermis as compared to those of control where biotin staining 

revealed an intercellular distribution in the viable layers of the epidermis (Fig.9A). Although 

some faint biotin staining was positive above the tight junctions in the granular layer, it was 

unclear if this was specific or not. Overall, the result made the experiment hard to interpret and 

will require a repetition of the experiment and further functional analysis if the inside-out barrier 

was perturbed upon loss of IR/IGF-1R.   

 To examine if loss of IR/IGF-1R in the epidermis alters the localization of claudin-1, a tight 

junctional membrane component that contributes to tight junctional strand formation and is crucial 

for skin barrier function (Furuse et al., 2002), immunofluorescence analysis was conducted.  All 

suprabasal layers showed staining at sites of cell-cell contacts with no obvious difference between 

control and dkoepi-/- mice (Fig.9B).  In addition, WB analysis of epidermal lysates did not reveal 

any difference in cldn-1 protein expression (Fig.9C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.3 Insulin and IGF-1 signaling regulate outside-in epidermal barrier formation 
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In order to investigate the integrity of the outside-in barrier in dkoepi-/- mice, toluidine blue dye 

penetration assay were done on E16.5-18.5 embryos and P0 mice (Hardman et al., 1998). Control 

E16.5 mice showed penetration of toluidine blue at the ventral side whereas only patched staining 

was observed at the dorsal or back skin, indicating partial acquisition of barrier (Fig.10A). One 

day later, E17.5, the back skin was completely impermeable to toluidine blue indicating a 

functional outside-in barrier, whereas the ventral side now showed a partial penetration. At E18.5 

almost all of the skin of control mice was impermeable to toluidine blue except for some ventral 

patches. Newborn control mice showed no staining for toluidine blue indicating a fully developed 

outside-in barrier. Such a gradual developmental acquisition of the outside-in barrier has been 

reported previously (hardman et al., 1998: Tunggal et al., 2005). In contrast, no functional 

outside-in barrier could be observed at E16.5 dkoepi-/- embryos, as shown by complete penetration 

of toluidine blue (Fig.10A). In E17.5 dkoepi-/- embryos were almost completely penetrated by 

toluidine blue with the exception of very small patches at the back skin, suggesting an impaired 

and strongly delayed formation of the epidermal barrier. This was further confirmed in E18.5 dko 

embryos in which the complete ventral and a significant part of the back skin were still stained by 

toluidine blue. However, newborn dkoepi-/- mice were impermeable to the dye with exception for 

small spots near the whisker follicles and randomly distributed over the body (Fig.10A). To 

confirm proper outside-in epidermal barrier formation in P0, as shown by complete toluidine blue 

exclusion in dkoepi-/- mice, lucifer yellow (LY) penetration was tested through the back skin of the 

viable mice which differs from toluidine blue procedure where the skin is not fixed in LY 

protocol. In both control and dkoepi-/- mice, lucifer yellow was arrested in the superficial layers of 

stratum corneum and did not show penetration to deeper epidermal layers (Fig.10B). Overall 

these experiments indicates a strongly delayed formation of the functional outside-in barrier, 

suggesting either a developmental delay in the formation of a fully functional stratum corneum or 

an impaired formation of the stratum corneum that later is partially restored by compensatory 

mechanisms.   

2.1.4 Abnormality in corneocyte morphology and size in dkoepi-/- mice 

Delayed outside-in barrier formation in dkoepi-/- mice indicated disturbance in stratum corneum 

function. Therefore, corneocytes, as major constituents of SC, were isolated from the E18.5 

embryos, newborns and adult IGF-1Repi-/- mice for microscopic analyses in order to reveal any 

abnormality in shape and size. Based on microscopic morphology, corneocytes from age matched 

ctrl and dko groups in E18.5 and P0 were similar in size and roundness (Fig.11A). Due to the fact 

that dkoepi-/- mice showed early prenatal lethality, it was not possible to analyse the adult 

corneocytes; therefore, based on the previous description by Stachelscheid and coworkers (2008), 

IGF-1Repi-/- mice demonstrated thinner epidermis compared to IRepi-/- mice, which indicated that 

IGF-1 signaling played a more critical role in epidermal morphogenesis. Therefore, adult IGF- 

                                                                                                                                  Results 



 26

Figure 10: Delayed outside-in epidermal barrier formation in dkoepi-/- mice. (A) Embryos in 

gestational ages E16.5, 17.5 and 18.5 and in newborn mice (P0) were fixed with methanol and stained 

with toluidine blue. (B) The penetration of LY dye in the epidermis of P0 mice is shown for control 

and DKO mice on cryo sections. Samples were counterstained with Phalloidin to visualize actin 

cytoskeleton. Bar=20 µm. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1Repi-/- corneocytes were analysed. Interestingly isolated IGF-1Repi-/- corneocytes were more 

heterogenous in shape compared to that of control ones (Fig.11B), showing the importance of 

IGF-1 signaling in corneocyte production in adult skin. In order to quantify any variation in 

corneocyte appearance between ctrl and dko mice, two important features of corneocytes, i.e., size 

and circularity indices were investigated. Objects with circularity index closer to 1 are more 

circular and hence reflecting the extent of the compactness of an object. Embryonic dkoepi-/- E18.5 

corneocytes were smaller (Fig.12A) and less circular (Fig.12B) compared to those of their control 

littermate corneocytes. 
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B, circularity 
 

Figure 11: Microscopic view of the corneocytes isolated from E18.5 embryos, P0 and adult wild type 

and IGF1Repi-/-knockout mice. Corneocytes were isolated from the ears following SDS-DTT boiling 

protocol and resuspending in Tris/EDTA buffer for imaging by light microscope. Bar= 30 µm.  
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In P0 corneocytes while there was not highly significant difference in circularity index between 

the experimental samples (Fig.13B), there was significant variation in the size of corneocytes as 

Figure 12: Corneocyte area and circularity index in Ctrl and dkoepi-/- E18.5 embryos. (A) Left, 

distribution of size index. For each mouse 100 corneocytes were analysed by area function of ImageJ 

software. Right, the measured values for two control and two dkoepi-/- mice are pooled. Results are means ± 

S.D (B) Left, distribution of circularity index. For each mouse 100 corneocytes were analysed by circularity 

function of ImageJ software. Right, the measured values for two control and two dkoepi-/- mice are pooled. 

Results are means ± S.  (*) indicates P value summary of F test to compare variances.  
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A, size 
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B, circularity 
 

dkoepi-/- samples were bigger and showed a high level of heterogeneity in size distribution 

compared to controls (Fig.13A). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corneocytes isolated from adult IGF-1Repi-/- mice showed no difference in circularity index 

compared to those of control samples (Fig.14B) but they were larger and provided a broad 

distribution in size distribution, hence considered to be heterogeneous in respect with size values 

(Fig.14A).  

 

2.1.5 Aberrant profilaggrin to filaggrin processing in dkoepi-/- mice  

Following documentation of the disturbances in outside-in and corneocyte envelopes in knockout 

mice, it was decided to evaluate the expression of the late differentiation markers, filaggrin, 

loricrin and involucrine by WB analysis and immunolocalization.  

There were no obvious differences in the expression levels of loricrin, involucrin (Fig.15A) and 

filaggrin (Fig.15B) in the epidermis of E18.5 control and dkoepi-/- embryos (Stachelscheidt et al., 

2008).  However, protein levels of the final processed form of monomeric 26 kDa filaggrin was 

dramatically reduced in dkoepi-/- E18.5 and P0 epidermis (Fig.15B). The reduction of filaggrin was 

very striking as this monomeric form is essential for collapsing keratin bundles in the epidermis 

Figure 13: Corneocyte area and circularity index in Ctrl and dkoepi-/- P0 embryos.  (A) Left, distribution 

of size index. For each mouse 100 corneocytes were analysed by area function of ImageJ software. Right, 

the measured values for two control and two dkoepi-/- mice are pooled. Results are means ± S.D (B) Left, 

distribution of circularity index. For each mouse 100 corneocytes were analysed by circularity function of 

ImageJ software. Right, the measured values for two control and two dkoepi-/- mice are pooled. Results are 

means ± S.  (*) indicates P value summary of F test to compare variances. 

                                                                                                                                  Results 



 29

A, size 
 

Si
ze

 (a
rb

itr
ar

y 
un

its
) 

 Si
ze

 (a
rb

itr
ar

y 
un

its
) 

 

B, circularity 
 

C
ir

cu
la

ri
ty

 (a
rb

itr
ar

y 
un

its
) 

 

C
ir

cu
la

ri
ty

 (a
rb

itr
ar

y 
un

its
) 

 

(Lynley and Dale, 1983), suggesting that failure in epidermal filament aggregation could 

contribute to the major barrier defect observed in dkoepi-/- mice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Caspase-14 has been identified as an important protease involved in filaggrin processing 

(Denecker et al., 2007). Due to the reduction of monomeric filaggrin in dkoepi-/- mice, the question 

was raised to see if abnormal filaggrin processing in dkoepi-/- mice was caused by altered Casp-14 

expression or activation. No change was seen in the levels of the non-active (33 kDa form) and 

activated Casp-14 (p10/p20 isoforms) in E18.5 epidermal samples (Fig.15C). This data implies 

that IR/IGF-1R signaling does not regulate the expression of Casp-14 in mouse epidermis and 

aberrant filaggrin processing in dkoepi-/- mice was not caused by impaired Casp-14 activation. 

Therefore other filaggrin-processing proteases may be responsible to adverse affect occurring in 

dkoepi-/- epidermis. 

 

 

 

Figure14: Corneocyte area and circularity index in Ctrl and IGF-1Repi-/- adult mice. (A) 

Left, distribution of size index. For each mouse 100 corneocytes were analysed by area 

function of ImageJ software. Right, the measured values for two control and two IGF-1Repi-/- 

mice are pooled. Results are means ± S.D (B) Left, distribution of circularity index. For each 

mouse 100 corneocytes were analysed by circularity function of ImageJ software. Right, the 

measured values for two control and two IGF-1Repi-/- mice are pooled. Results are means ± S. 

ns: not significant. (*) indicates P value summary of F test to compare variances. 
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To check whether deletion of IR/IGF-1R in the epidermis affected the localization of terminal 

differentiation markers filaggrin, loricrin, involucrin and casp-14, immunofluorescence was 

performed using corresponding antibodies. 

p 10 
p 20 

casp-14 

Figure 15: Expression levels of loricrin, involucrin, filaggrin and casp-14 in the 

epidermis of ctrl and dkoepi-/- mice. (A) Expression of loricrin and involucrin in the 

epidermis of ctrl and dkoepi-/- E18.5 and P0 mice. (B) Expression and processing of 

profilaggrin to filaggrin in E18.5 and P0 epidermis. Asterisks mark the final cleaved 

filaggrin monomer. (C) Expression of non-active (33 kDa) and active (11, 17 kDa) 

casp-14 in E18.5 epidermis. Actin is loading control. 
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Filaggrin signal was detected in the epidermis in E17.5 and there was no discernible difference in 

the punctuate labelling of the epidermal keratohyalin granules in the granular layer of the 

epidermis which harbour the precursor proprotein profilaggrin. The apparent reduction in the 

stained granular stacks is due to the thinner epidermal formation in the dkoepi-/- mice. The increase 

in the intensity of the filaggrin signal from E17.5 to P0 is overlapping with the epidermal barrier 

function recovery which was shown with toluidine blue dye penetration assay (Fig.16).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For casp-14, a staining pattern similar to filaggrin was observed. Except in E16.5, positive 

cytoplasmic diffuse signal was seen in the epidermis of control and dkoepi-/- mice. Similar to 

filaggrin staining in the corresponding embryonic age E18.5, casp-14 revealed punctuate 

cytoplasmic staining in the epidermis of both dkoepi-/- and control samples. This data suggested 

Ctrl Ctrl dkoepi-/- dkoepi-/- 

filaggrin 
 

casp-14 

E-16.5 

E-17.5 

E-18.5 

Figure 16: Immunolocalization of filaggrin and casp-14 in the epidermis of E16.5, 17.5, 18.5 and 

P0 control and dkoepi-/- mice. Paraffin sections were counterstained with DAPI to distinguish the nuclei 

following immunolabelling with respective antibodies. Dashed line marks the basal layer. Bar= 20 µm. 
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casp-14 localization in keratohyalin granules which was converted again to cytoplasmic labelling 

in newborn P0 mice and extended to lower spinous layer as well, while filaggrin staining was 

mainly restricted to keratohyalin granules in granular layer (Fig.16).  

Both control and dkoepi-/- mice provided a very similar immunofluorescence signal for loricrin, a 

major crosslinked epidermal protein which accounts for up to 60%-80% of total protein 

composition of the cornified envelop (Steinert and Marekov, 1995) in both ctrl and dkoepi-/- mice 

for all the time points. Together with WB results shown for loricrin (Fig.15A), insulin/IGF-1 

signaling is not likely to be required for loricrin expression in the epidermis (Fig.17). Involucrin 

staining was seen in the granular layer and showed a similar pattern during E17.5, E18.5 and 

newborn epidermis but was absent from dkoepi-/- epidermis in E16.5 stage which might be linked 

to severe epidermal barrier abnormality in dkoepi-/- mice (Fig.17). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ctrl dkoepi-/- dkoepi-/- 
loricrin involucrin 

Ctrl 

E-16.5 

E-17.5 

E-18.5 

Figure 17: Immunolocalization of loricrin and involucrin in the epidermis of E16.5, 17.5, 18.5 

and P0 control and dkoepi-/- mice. Paraffin sections were counterstained with DAPI to distinguish 

the nuclei following immunolabelling with respective antibodies. Dashed line marks the basal 

layer. Bar= 20 µm. 
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2.1.6 Reduced epidermal ceramides in dkoepi-/- mice 

Owing to the observed clear delay in the outside-in barrier formation demonstrated with toluidine 

blue penetration in dkoepi-/- mice and high amount of epidermal water loss observed in newborn 

dkoepi-/- mice, question was raised if Insulin/IGF-1 signaling regulated lipid composition of the 

outer epidermis. Therefore, unbound free extractable lipids from stratum corneum of control, 

IRepi-/- and dkoepi-/- mice were analysed by Thin Layer Chromatography (TLC). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As dkoepi-/- mice had a thinner epidermis compared to control mice, less lipid could be extracted 

from their epidermis, thus in order to obtain an equal loading amount of 2.6 mg, the stratum 

corneum extracts of three dkoepi-/- mice were pooled together.  There was an obvious reduction in 

Figure 18: Analysis of free extractable epidermal lipids by TLC. (A) TLC of crude epidermal extracts. The 

levels of Cer (C24/C26 NS), Cer (C16/C18 NS) and Cer (NP) are significantly reduced in the dkoepi-/- samples. 

For the control and IRepi-/- mice samples from every single mouse were loaded. Dkoepi-/- samples represent 

pooled lipid extracts from 3 mice (B) The quantification of the various ceramides. Data are represented as 

means ± S.D. of 6 control, 4 IRepi-/-, and 2 DKO replicates. 

dkoepi-/-    IRepi-/-       Ctrl        Ctrl         Ctrl        Ctrl 

A 
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the intensity of the lipid bands for ceramides, Cer(C24/C26 NS), Cer(C16/C18 NS) and Cer(NP) 

in the stratum corneum of newborn dkoepi-/- mice (Fig.18A) compared to those of IRepi-/- and 

control mice. IRepi-/- mice also exhibited a mild reduction in the amount of Cer (C24/C26 NS), Cer 

(C16/C18 NS) ceramides.  

According to the statistical quantification of total extracted cornified layer ceramides there is 

almost 40% reduction in the amount of Cer(C16/C18 NS) and two fold reduction in the levels of 

Cer(C24/C26 NS) in dkoepi-/- mice compared to those of control animals (Fig18B). 

Levels of glucosylceramides (GlcCers), the so called pro-barrier lipids, which are considered to 

function as key component of the epidermal lipid barrier (Jennemann et al., 2007), were elevated 

in dkoepi-/- mice compared to those of control mice. This data may reflect a defect in ceramide 

procressing in these mice as GlcCers are considered to be the major source for ceramide 

production in mouse epidermis (Doering et al., 2002). 

Dkoepi-/- mice provided critical reduction in the levels of epidermal ceramides. Corneocytes are 

surrounded by a cornified cell envelope made up of proteins, mainly loricrin and involucrin. 

Specially involucrin in the corneocytes is a known to covalently bind to the hydroxyceramide 

lipid molecules (Candi et al., 2005). As demonstrated previously by WB analysis, the reduced 

ceramide levels did not influence involucrin expression in the dkoepi-/- epidermis in P0 (Fig.15A). 

This means that involucrin expression or stability is not dependent on proper ceramide deposition 

in the epidermis. 

2.1.7 Impairment of tight junctions in cultured IGF-1R-/- keratinocytes  

Abnormal diffusion of subcutaneously injected biotin above the granular layer to the cornified 

layer in dkoepi-/- mice followed with exceedingly high amounts of epidermal water loss in these 

mice provided critical evidence about malfunction of epidermal tight junctions in vivo.  

To further assess whether IGF-1R regulates tight junctional barrier formation, the in vitro Ca2+ 

switch model was used to analyse barrier formation in primary keratinocytes isolated from control 

and IGF-1R-/- epidermis. These cells are normally cultured under low Ca2+ conditions to prevent 

terminal differentiation. Increase of Ca2+ in the medium does not only trigger differentiation, but 

also induces intercellular junction formation and stratification by allowing the Ca2+ dependent 

engagement of cadherins (Michels et al., 2009a-b). 

The measurement of transepithelial electrical resistance (TER) allows following the proper tight 

junction-mediated sealing of the paracellular space over time, thus assessing TJ function. 

Whereas control keratinocytes successfully elevated the levels of TER after Ca2+ switch, IGF-1R-/- 

keratinocytes showed an almost 50% reduction in TER, suggesting impairment of TJ function TJ 

(Fig.19B).  
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2.1.8 Normal recruitment of  β β β β-catenin and ZO-1 to cell-cell junctions in IGF-1R-/- 

keratinocytes 

To test whether the observed reduction in TER was due to impairment of intercellular junction 

formation, immunolocalization of the adherens junction component β-catenin was analyzed. 48 h 

after Ca2+ switch both control and IGF-1R-/- keratinocytes recruited β-catenin to sites of 

intercellular contacts, suggesting normal formation of adherens junctions. In addition, ZO-1, a key 

component of TJs, was normally recruited to sites of intercellular contacts 48 h after Ca2+ switch, 

a time point that marks the onset of TER formation, indicating TJ formation. Thus, IGF-1R does 

not seem to affect TJ function by regulating ZO-1 localization (Fig.20). 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19: Impaired in vitro barrier formation in IGF-1R-/- keratinocytes. (A) Schematic drawing of 

experimental setup. Keratinocytes were plated on porous filter inserts and electrical resistance of trans epithelia 

was measured using an automated Ohm meter. (B) Trans-epithelial resistance (TER) measurement of control and 

IGF-1R-/- keratinocytes. Values represent ± S.D. of 2 controls and 2 knockout cell line replicates.  
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Figure 20: Adherens junction and tight junction formation in IGF-1R -/- keratinocytes (A) 

Immunofluorescence analysis of adherens junction (β-catenin) and tight junction (ZO-1) 

components. Keratinocytes were differentiated in high Ca2+ for the 48 h. Bar= 20 µm. 
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2.1.9 Impaired cldn-1 expression in differentiated IGF-1R-/- keratinocytes 

Cldn-1 is a critical component of the epidermal barrier (Furuse et al., 2002).  To assess whether 

alterations in cldn-1 levels are responsible for the observed impairment of barrier formation, WB 

analysis was conducted. Ca2+-induced differentiation caused increase in the levels of cldn-1 in 

control cells whilst in IGF-1R-/- cells there was no such increase to levels similar to control cells 

24 h after calcium. Even prolonged differentiation of IGF-1R-/- keratinocytes for 72 h did not 

induce increase in cldn-1 levels similar to control cells (Fig.21A,B), while the levels of ZO-1 were 

apparently unchanged (Fig.21A), indicating that IGF-1 signaling is regulating cldn-1 expression 

in cultured murine keratinocytes.  

To ask whether this regulation occurred on the level of transcription, RT-PCR analysis was 

performed to measure cldn-1 transcript levels. Semi-quantitative RT-PCR with cldn-1 specific 

primers was performed on 0 h and 48 h differentiated control and IGF-1R-/-cells. According to the 

band intensity on the gels at 48 h time points, there was clear reduction in transcript levels for 

knockout cells compared to those of controls. This data corresponds closely with that of TER 

analysis and provides further evidence that IGF-1 signaling is required for regulation of cldn-1 

expression (Fig.21D).   

β-catenin levels did not differ within 24 h following differentiation in control and knockout 

keratinocytes which complied with immunofluorescence results (Fig.21C).   

2.2.1 Preparation of dkoveinduc-/- mice to study vascular barrier property 

The observed deformities in epidermal barrier property for dkoepi-/- mice supported the idea that 

insulin/IGF-1 signaling are potential regulators of both the outside-in and inside-out epidermal 

barrier functions. Also in vitro, IGF-1 signaling regulates TJs in stratifying epithelia at least via 

controlling the expression of cldn-1 in differentiating keratinocytes. Hence to examine if 

insulin/IGF-1 signaling could similarly regulate the vascular barrier function mediated by 

endothelial cells, double knockout mice, termed vascular endothelial double knockout  (dkoveinduc-/- 

for IRve-/-/ IGF-1Rve-/-) having both vascular endothelial cell–specific deletion of the insulin 

receptor (VENIRKO) and IGF-1 receptor (VENIFARKO) were obtained using tamoxifen induced 

Cre-recombinase mediated deletion in adults, in which regulatory elements of Tie2 promoter 

drove Cre expression (Fig.22). 
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Figure 21: Impaired cldn-1 expression in differentiated IGF1R-/- keratinocytes. (A) Impairment in the cldn-1 

but not ΖΟ−1 levels in Ca2+ differentiated IGF1R-/- keratinocytes. Protein levels in 0, 24, 48 and 72 h 

differentiation time points are shown. (B) The quantification of the WB signal for cldn-1 shows the change in its 

expression within described time points. Signals for cldn-1 in each group were normalized to intensity of actin 

band signal. (C) No difference in β-catenin expression between control and IGF1R-/- keratinocytes during 24 h 

differentiation. (D) Lower cldn-1 transcript levels in 48 h differentiated IGF-1R-/- keratinocytes compared to 

control shown by RT-PCR in 30 and 40 amplification cycles. GAPDH is loading control.  
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lox-p site 

Figure 23: Deletion efficiency for IR/IGF-1R genes in dkove-/- mice by PCR. (A) Mice no. 2, 5 and 6 

show complete deletion of IGF-1R gene. Mice 4, 7, 10 and 11 show less effective deletion of IGF-1R gene. 

Consistently high level of IR deletion in all mice carrying the Tie2-CreERT2 is detected. Mouse no. 3 does 

not carry the transgene. (B) The position of primers for deletion screening by PCR is illustrated 

schematically. 

 

 

Figure 22: Schematic illustration of the crossing and feeding to obtain dkoveinduc-/- mice.  

Deletion is achieved in adults via continuous feeding with tamoxifen for 5-6 weeks. 
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2.2.2 Variation in IGF-1R gene deletion after feeding with tamoxifen 

In order to obtain dkoveinduc-/- mice with deleted IR/IGF-1R genes, adult 4 weeks old mice carrying 

the Tie2-CreERT2 transgene were fed with a tamoxifen diet for 5-6 weeks following recommended 

procedure (Forde et al., 2002) after which the deletion efficiency for both IR and IGF-1R genes 

was determined by PCR primers spanning the floxed genomic region (Fig.23B) for each gene, 

using DNA template obtained from the heart as it provided a better estimation of the deletion 

efficiency compared to other DNA resources from the same mouse.  

Among dkoveinduc-/- mice fed for equal time points with tamoxifen diet, there was variation in the 

extent of the deletion for IGF-1R allele; on the other hand deletion for IR allele was consistently 

complete for all the mice examined in the experiments (Fig.23A).  

2.2.3 Viability and survival not affected in dkoveinduc-/- mice 

To investigate if deletion of both IR/IGF-1R genes in endothelial cells had any effect on the 

survival of dkoveinduc-/- mice, the viability of the mice was followed for 4 months after termination 

of tamoxifen feeding. dkoveinduc-/- mice survived into adulthood comparably similar to control 

littermates and did not show any lethality or abnormality in macroscopic parameters like weight 

and height (data not shown).  

Histological analysis by of different tissues in VEDKO mice by Hematoxylin and Eosin (H&E) 

staining showed no abnormality compared to control mice (Fig.24).    

2.2.4 Intact retinal vascular barrier integrity in the absence of IR/IGF-1R signaling 

To check if endothelial-specific deletion of IR/IGF-1R genes had any effect on retinal vascular 

barrier property, the dkoveinduc-/- mice were either perfused cardiacally or injected systemically with 

tracers of different molecular sizes i.e., 2000 kDa FITC-dextran or 443 Daltons amine reactive 

biotin (see 2-1-2) respectively.  

Retina wholemount samples from all dextran and biotin infused mice were analysed to visualize 

the primary plexus, inner deeper plexus and outer deeper plexus in both dkoveinduc-/- and control 

mice. According to the vascular segregation pattern visualized by FITC-dextran in different 

vascular levels of retina, there was no obvious difference in the branching and vascular 

morphology or density in all studied retinas for control and knockout groups (Fig.25B). High 

vascular competency to retain relatively bigger dextran tracer in control and knockout groups was 

indicative of apparently intact vascular barrier (Fig.25B). Biotin detection in retinal paraffin 

sections allowed visualizing the extensive leakage in choroidal blood vessels (Fig.25C) that are 

porous vessels with vascular fenestrations (Bernstein and Hollenberg, 1965). Vessels of the 

primary plexus showed certain amounts of leakiness in both control and dkoveinduc-/- mice which 

should not be interpreted as abnormal and could be accounted for by the fact that the vasculature 

in these layer form extensive ramification and branching into deeper retina to form the inner 

plexuses which is erroneously reflected as leaky.  
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On the other hand according to normal histological staining (Fig.24A) and tracer perfusion results 

(Fig.25B, C) there was no indication of pathological oxygen-induced retinopathy (OIR) 

phenotype, a vasoproliferative  condition characterized by the growth of tortuous and leaky 

vessels that form tuft-like structures towards the vitreous (Chen and Smith, 2007).  The vascular 

retentiveness to the smaller 443 Daltons tracer in the retinal vasculature of the studied mice led to 

the conclusion that ablation of endothelial IR/IGF-1R genes does not cause any alteration in 

retinal vascular barrier function of adult mice (Fig.25C), although the full deletion of both genes 

in dkoveinduc-/- could not be fully certified using other techniques such as RT-PCR, 

immunofluorescence or WB.   
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Figure 24: H&E staining of different tissues in dkoveinduc-/- and control mice. (A) Retina; ganglion cell layer 

(GCL), inner nuclear layer (INL), outer nuclear layer (ONL) inner plexiform and outer plexiform layers (IPL and 

OPL). PE is pigmented epithelium. (B) lung, (C) skin, (D) aorta. Bar= 20 µm. 
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Figure 25: Normal retinal vascular barrier integrity in dkoveinduc-/- mice. (A) Panel depicts various types of 

vessels in the longitudinal retinal section. (B) Normal retention of 2000 kDa FITC-dextran in three different 

retinal vessel types in dkoveinduc-/- and control mice. (C) Normal retention of biotin shown in flatmounted retinal 

quarter and retinal paraffin sections. Different types of retinal vessels are marked. Bar=100 µm. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.2.5 Isolation of primary lung endothelial cells 

As vascular permeability in the CNS is controlled by the biochemical properties of  the 

neurovascular unit (NVU) (Cardoso et al., 2010); therefore in dkoveinduc-/- mice, any disturbance in 

permeability sealing function of endothelial cells could be disguised by compensatory functions of 

the cells in the NVU conformation. 

    Ctrl 
 
 
 
 
 
 
 
 
 
 
dkoveinduc-/- 

outer deeper plexus    inner deeper plexus         primary plexus 

Ctrl 
 
 
 
 
 
 
 
dkoveinduc-/- 

flatmout                         paraffin 

choroids vasculature 
 
outer deeper plexus 
 
 
inner deeper plexus 
 primary plexus 

 

B A 

C 

FITC-dextran, 2000 kDa 

biotin, 443 Daltons 

                                                                                                                                  Results 



 42

Figure 26: Monolayer growth of freshly isolated primary lung endothelial cells. Endothelial cells 

were isolated from lung tissue homogenates using PECAM-1 conjugated beads and grown on plastic 

dishes. Bar=10 µm. 

Subsequently to understand the role of insulin/IGF-1 signaling in the endothelial barrier function 

via TER measurements as was described previously for the keratinocytes, primary endothelial 

cells were isolated from the lungs of 3 weeks old adult mice (Fig.26) using PECAM-1 antibody 

conjugated beads to obtain IRendo fl/fl/ IGF-1Rendo fl/fl endothelial cells in an effort to convert these 

cells to dko cells using a TAT-Cre recombinase (Peitz et al., 2002) in vitro.  
 

 
 
 
 
 
 
 
 
 
 
 
 
2.2.6 Generation of double knockout IR-/- / IGF-1R-/- primary endothelial cells  

In order to obtain dko endothelial cells, primary endothelial cells in passage 1 were treated with 

either 2µm 4-OHT or different concentrations of a purified cell permeable Cre-recombinase 

(HTNC) protein which can potently ablate floxed genes in cultured cells (Peitz et al., 2002). 

In transgenic Tie2-CreERT2 cells, translocalization of CreERT2 protein from cytoplasm to nucleus 

requires binding of tamoxifen (TA) or its derivative 4-hydroxytamoxifen (4-OHT) to ERT2 

domain which does not tend to bind to endogenous estrogens. This binding will carry the 

recombinase from cytoplasm into nucleus which finally drives gene deletion (Feil et al., 1996).  

Based on PCR results, even prolonged 4-OHT treatment for 4 days did not cause any deletion of 

the target genes (Fig.27A); whereas, both IR and IGF-1R genes were effectively excised by 

overnight HTNC treatment. As a result while IR gene showed highly efficient deletion already at 

625nM concentrations of HTNC, IGF-1R gene required 5µm concentration of the recombinase to 

show complete deletion (Fig.27A). These observations exhibited a nice overlap with deletion 

efficiency for both genes in vivo, where excision was induced by tamoxifen inducible Cre 

(Fig.23A) and IGF-1R gene showed variable levels of deletion in different mice while IR gene 

was effectively deleted in all mice.  

The cellular toxicity induced by applying micromolar concentrations of HTNC necessitated 

intermission of one week and further passaging of cultured cells to achieve recovery and 

propagation. Unfortunately endothelial cells in passage 2 showed restoration of the floxed IGF-1R 

allele which obstructed further usage of the cells for the planed experiments indicating that not all 

HTNC treated cells were completely deleted for IGF-1R gene and growth advantage of such cells 

caused outnumbering effect over IGF-1R-/- cells (Fig.27B). 
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Figure 27: PCR showing deletion of IR and IGF-1R genes in cultured endothelial cells treated 

with HTNC and 4-OHT. (A) IGF-1R gene requires higher levels of HTNC for proper deletion 

compared to IR gene. Lack of gene deletion in cells treated for the indicated time points with 4-OHT. 

(B) Restoration of the floxed IGF-1R allele in HTNC treated dko endothelial cells in passage 2. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.3 Generating a conditional knockout mouse for PAR-3 gene  

Double epidermal IR/IGF-1R gene inactivation highly implicated alteration of tight junction 

function both in vivo and in vitro. Therefore, mouse PAR-3 gene was targeted as a downstream 

candidate for regulation via IGF-1 signaling in the mouse epidermis using homologous 

recombination to replace the PAR-3 genomic DNA sequence with a lox-p flanked fragment of the 

same region. 

2.3.1 Detection of PAR-3 transcripts in primary mouse keratinocytes by RT-PCR 

Multiple spliced variants of PAR-3 are found in mammalian cell lines and tissues (Gao et al., 

2002). All of the known splice variants were shown to arise from a single start codon located in 

the CR1 domain of the protein (Fig.28B) and a knockout mouse model was generated based on 

the assumption of a unique start codon (Hirose et al., 2006), while later a novel start codon was 

identified by Duncan and colleagues (2005), as they showed the existence of transcripts in mouse 

oocyte arising from a second start codon located in exon number 4. Therefore, the expression of 

A 

B 
HTNC       -         +         +         +        +         +        wt 
passage     0         0          1         2        3         4         -     

floxed 
wt 
 
∆∆∆∆    

               Ctrl                  HTNC                                         4-OHT (2µm)              

625nM   1.25µM   2.5µM   5µM    vehicle    1day     2days    3days     4days 

floxed 
 

∆∆∆∆    

floxed 
 

∆∆∆∆    

IGF1R 

IR 

                                                                                                                                  Results 



 44

Figure 28: Detection of various start and stop codon sites for PAR-3 transcripts in cultured mouse 

keratinocytes by RT-PCR. (A) The relative position of primers on the genome used for RT-PCR analysis. 

The exons and introns are not drawn to scale. Exons are drawn as solid vertical bars. (B) Protein domain 

organization of various translated PAR-3 transcripts and the respective site of the primers for RT-PCR with 

their number is shown. (C) RT-PCR products of PAR-3 using assigned primers. All start and stop sites are 

amplified. Product size; 1-2: 590 bps, 4-5: 747 bps, 4-6: 495 bps, 7-8: 521 bps, 3-2: 198 bps. 

 

all possible transcripts in mouse cultured keratinocytes was evaluated by RT-PCR initially using 

primers specific for the 5´UTR region of the transcript derived from exon 4, exon 1 and 3´UTR 

site specific primers to identify all possible transcripts (Fig.28). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Using different primer sets, all previously known start and stop codon sequences were amplified. 

A faint band with expected size of 198 bp was amplified using primers 9 and 10 suggesting the 

expression of the novel transcript with second ATG utilization in cultured keratinocytes (Fig 

28C). According to RT-PCR data, the second start site provided lesser abundance compared to the 

first start site, implying limited use of this transcript by translational complex in keratinocytes. 
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Figure 29: Diagram of PAR-3 genomic organization, targeting strategy and PAR-3exon4 flox targeting 

construct. (A) Exons are shown as vertical bars with relatively close ratio to their corresponding genomic 

size. Two start sites are marked with red arrows. (B) Respective position of the restriction sites, selection 

cassettes, probes for southern blot screening (pink and blue bars) and lox-p sites (black triangles) are 

illustrated. (C) PAR-3exon4flox plasmid used for homologous recombination in embryonic stem cells. 

Restriction sites, FRT and lox-P sites, homology arms and the vector backbone fragments are shown. (D) 

Agarose gel showing the linear PAR-3exon4 flox vector (lane-1, 16611 bps) digested with NotI next to a non-

digested supercoiled construct (lane-2). 
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Figure 30: PCR to identify ES cell clones with correctly targeted PAR-3exon4. (A) Picture 

showing the orientation of the primers used for each PCR and their respective product size. (B) 

Marked with asterisks, clones H12 and H1 show bands of expected sizes for both left and right 

PCRs. Clone D12 was not a correctly targeted clone according to left arm PCR. 

 

2.3.2 Generation of a targeting plasmid for mouse PAR-3 gene  

Mouse par3 gene consists of  25 known exons and as mentioned before two transcription start 

sites have been characterized for the gene, the first one in exon1 and second one in exon4 

(Fig.29A). We planned to produce a conditional knockout mouse which will cause timed and/or 

tissue specific deletion of the exon4 which allows (i) production of a truncated protein via a 

premature stop codon due to frame shift in exon5 provided that the first start codon is used (ii) 

removal of the second start codon in exon4 leading to no production of PAR3 mRNA transcripts 

given the usage of the second start codon (Fig.29B). The resulting targeting construct was ~ 16.6 

kb and was linearized on NotI site just before short homology arm. Linearized construct was used 

for electroporating the ES cells (Fig.29C and Fig.29D). 

2.3.3 Production of PAR-3exon4 flox/+ embryonic stem cells 

PCR and Southern blot analysis using site specific primers and probes were used to identify the 

correctly targeted ES cell clones for blastocyst injection. PCR using primers spanning the NeoR 

cassette, 5´ FRT and lox-p sites and 5´upstream left arm of homology with product size of 4.3 kb 

and primers to amplify 3´ lox-p site and 3´downstream right homology arm with product size of 

5.6 kb, showed two ES clones with correctly targeted Par3 allele. The clones H1 and H12 were 

identified as promising clones for generating chimeric males and were further validated for 

correct recombination via southern blotting (Fig.30).  

Southern blot using the probes for left and right homology arms using KpnI and XbaI restriction 

enzymes validated PCR results for two selected clones, H12 and H1. A blot with probe for NeoR 

site further supported the single integration event of the plasmid arms in homologous genomic site 

as both the mentioned clones were showing a single band with expected size of approximately 9 

kb for KpnI digest (Fig.31).  
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Figure 31: Southern blot confirmation of correct Par3exon4 targeting in ES cell clones. 

(A) Radiolabeled probe to distinguish wt (7.4 kb) and floxed (9.5 kb) alleles for the left 

arm of homology using KpnI digest. (B) Probe to distinguish wt (8 kb) and floxed (6.8 kb) 

alleles for the right arm of homology using XbaI digest. (C) NeoR-specific probe to detect 

single integration of the targeting fragment using KpnI digest. 

 

Figure 32:  Deletion-competent lox-p sites in ES cell clones selected for generating knockout PAR-3 

mouse. PCR using primers in 5´and 3´flanking regions of left and right lox-p sites shows deletion band in both 

selected clones only in the presence of HTNC. 

 
  
  
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

2.3.4 Production of PAR-3exon4 -/+ embryonic stem cells 

In order to functionally scrutinize the ability of the lox-p sites in mediating the excision of the 

exon 4 in selected clones at the presence of the Cre recombinase, the cell permeable Cre 

recombinase (HTNC) was applied to test cultured ES cells. Subsequently, a deletion PCR was 

performed on genomic DNA following Cre treatment to distinguish between wt (1.9 kb), floxed (4 

kb) and deleted (1.5 kb) alleles (Fig.32). Both selected clones provided a deletion band of the 

expected size below wild type band upon HTNC treatment but floxed allele was not amplified, 

may be due to preference of Taq-polymerase in amplifying shorter fragments while using the 

same primers. 
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Figure 33:  Chimeric PAR-3exon4 flox/+ males obtained from injecting the selected ES cells. 

Chimeric males are distinguished by typical patchy coat color and were crossed with wt C57/Black6 

females for germline transmission. 

2.3.5 Generation of chimeric mPAR-3exon4 flox/+ males 

The selected clones were injected into 60 hosting CB-20 blastocysts and were implanted to 

psuedo-pregnant foster-mothers to obtain chimeric offspring. In total 11 males were born (Fig.33) 

of which 5 had chimeric skin patch ratio of above 50% and were used in crossing with 

C57/Black6 females to obtain transmitted floxed allele in the offspring which required to be 

checked by both PCR and Southern blot. In sum, 1000 pups were born and analyzed by PCR to 

detect transmission of the floxed allele to the progeny and even 2 mice with black coat color were 

born; all of which were wild type. A better alternative is to obtain new targeted clones using low 

passage ES cells for blastocyst injection to increase the chance of having highly chimeric males. 
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3 Discussion 

The mammalian vascular barrier mainly regulates the one-way movement of blood cells and 

molecules across the vascular lumen. On the other hand epidermis is a largely two-way barrier; an 

organ with lifelong self-renewal capacity, providing a stratified epithelium that functions as a 

barrier to separate the organism from the environment and external pathological factors and protect 

it against dehydration. Studies on animal models of skin diseases and inherited skin disorders in 

humans generally support the notion that barrier function depends on a differentiation process that 

on the one hand results in coordinated protein and lipid deposition in stratum corneum and on the 

other the formation of functional tight junctions in the granular layer of the epidermis (Tsuruta et 

al., 2002). Vascular barrier formation is dependent on the formation of adjacently positioned, 

adhesive barrier units, the endothelial cells that are generally sealed in their intercellular junctions 

by adhesive AJ and TJ complexes (Dejana, 2004). 

In this thesis we addressed the role of cell autonomous insulin/IGF-1 signaling in skin barrier 

formation and function and in endothelial barrier function. Epidermal specific inactivation of both 

the insulin receptor (IR) and IGF-1 receptor (dkoepi-/-) resulted in perinatal death (Stachelscheid et 

al., 2008). Here we show that dkoepi-/- have increased transepidermal water loss when compared to 

control mice, resulting in severe dehydration and early neonatal lethality. Defective barrier 

formation was associated with a strong delay in functional outside-in barrier formation during 

embryogenesis as assessed by toluidine blue assays, altered appearance of cornified envelopes as 

well as abnormal ceramide content of intercorneocyte lipids in the stratum corneum. In addition, 

preliminary results suggest that processing of filaggrin, an important barrier protein, might be 

perturbed. In contrast, our initial analysis with subcutaneously injected tracer did not reveal any 

obvious defects in tight junctions although this requires more detailed analysis. In line with these 

findings, global gene expression data (Stachelscheid and Niessen, unpublished results) revealed 

major changes in expression of a range of proteins involved in regulating both the structural as well 

as the epidermal immune barrier (Table-1).  

In contrast no obvious defects in vascular integrity could be observed when insulin receptor and 

IGF-1R receptor were deleted in adult vascular endothelial cells using an inducible Tie2-Cre 

system. This could either be due to the fact that endothelial insulin/IGF-1 signaling does not 

regulate vascular function under steady state conditions and that they only play a role in restoring 

vascular function after this has been disturbed, e.g. by induction of hypoxia or wounding. On the 

other hand, the results showed that inactivation of especially IGF-1R gene was highly variable 

ranging from over 90% of deletion to less than 10% and may have therefore been insufficient to 

observe a functional difference. In conclusion, the work presented in this thesis shows that 

Insulin/IGF-1 signaling are crucial cell autonomous regulators of epidermal barrier formation and 

function in the skin. 
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3.1 Insulin/IGF-1 signaling in epidermal barrier morphogenesis 

The results presented in thesis showed that absence of insulin and IGF-1 signaling resulted in 

prenatal death due to defective epidermal water barrier function, thereby introducing insulin/IGF-1 

signaling as key regulator of mouse EPB formation. The prenatal lethality observed in dkoepi-/- mice 

is similar to several other mouse models with epidermis-specific inactivation of enzymes involved 

in protein and lipid modification such as CAP-1/Prss8, Alox-12b, β-glucocerebrosidase, 

glucosyltransferase (Ugcg) and stearoyl-Coenzyme A desaturase 1 (SCD-1) (Leyvraz et al., 2005; 

Epp et al., 2007; Hanely et al., 1997; Jennemann et al., 2007; Binczek et al., 2007). Basically the 

observed delay of epidermal barrier formation during embryogenesis in dkoepi-/- mice is a hallmark 

of most of the aforementioned knockout mice. The late recovery in barrier acquisition in 

exemplified mutant mice indicates that compensatory mechanisms are activated in the course of 

morphogenesis in order to fulfill establishing a proper barrier before transition from humid in utero 

environment to dry desiccating conditions after birth. We observed apparent success of such 

compensatory efforts in the skin of the P0 dkoepi-/- mice by almost complete exclusion of LY and 

toluidine blue (Fig.34).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Characterization of the genes responsible for barrier recovery in our dkoepi-/- mice requires analysis 

of several candidate genes which have been identified to be important in the proper establishment 

of the epidermal barrier. The late recovery in epidermal outside-in barrier of dkoepi-/-mice compared 

to control embryos, as shown by partial toluidine blue exclusion in E18.5 back skin, implicates 

upregulation of transcription factors between E16 until birth in these mice. These proteins are 

probably responsible for over production of protein or lipid components of the stratum corneum. 

The transcription factors such as Kruppel-like factor 4 (Klf4), Grainy head like-3 and AP-2 gamma 

Figure 34: Delayed outside-in barrier formation in dkoepi-/- embryos: Control mice show barrier 

acquisition in a constant rate between E16 and E18.5. Dkoepi-/- embryos exhibit delayed initiation, 

much reduced rate of barrier acquisition and late recovery of barrier function around embryonic 

stage E19. 

Embryonic development stage 
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(Segre et al., 1999; Ting et al., 2005; Guttormsen et al., 2008) are required for proper EPB 

acquisition and would be interesting to analyze their expression in dkoepi-/- epidermis.  

In support of such compensatory efforts, the transcript levels for several structural proteins with 

late recruitment to SC belonging to Sprr, LCE and keratin protein families were found to be 

upregulated (Table-1).  

To analyze the SC components with known essential roles in EPB formation, we analyzed the free 

extractable ceramides and corneocytes from dkoepi-/-. Significant deviation in the levels of long 

chain ceramides (Cer(C16/18 NS) and Cer(C24/26 NS)) was observed compared to control mice. 

This finding was invaluable as insulin/IGF-1 signaling, with known essential roles in mammalian 

development, was demonstrated in our work as central regulator of EPB formation via at least in 

part, regulating lipid metabolism in developing epidermis. The microarray data showed an overlap 

with altered lipid metabolism, as several key enzymes in ceramide synthesis and modification were 

affected (Table-1). One striking finding on ceramide profile of dkoepi-/- mice was the high level of 

accumulated glucosylceramides (GlcCers). GlcCers are major precursors for ceramide production 

in the in CE (Doering et al., 2002), therefore are considered as probarrier lipids. The accumulated 

GlcCers in dkoepi-/- mice would possibly be outlined in two ways (i) GlcCers are produced normally 

but could not be converted into ceramides, (ii) GlcCers are overproduced by keratinocytes as a 

compensatory reaction to increase ceramide production. Based on non-confirmed microarray data it 

appears that the second explanation is reasonable, as the levels of the GlcCer converting enzyme 

(Ugcg) was higher in dkoepi-/- epidermis.  

Insightful analysis of the production and conversion of various ceramide molecules in dkoepi-/- mice 

demands analyzing the lipid content and mRNA transcript levels of key ceramide metabolizing 

enzymes (Table-1) of SC in late embryonic stage, e.g. E18. This gestational time point represents 

the time point during which GlcCers decline and their respective ceramides rise. This is reflected 

by increase in the levels of Cer(NS) and Cer(NP) by 25% and 440% respectively compared with 

earlier gestational time points which occurs parallel to decrease in the levels of their corresponding 

GlcCers indicating conversion of GlcCers to their respective ceramide types in the epidermis 

(Doering et al., 2002). Regardless of their critical role in epidermal water barrier development, we 

did no analyze the protein bound ceramides of the dkoepi-/- mice. The gradual rise in the levels of 

ceramide types is also reported for protein bound ceramides of the epidermis (Doering et al., 2002) 

and we expect alteration in such corneocyte bound ceramids in dkoepi-/- mice as well. The analysis 

of these ceramide types will be conducted and requires release of ester linked epidermal lipids by 

alkaline hydrolysis and TLC analysis (Doering et al., 2002).  

Despite the delay seen in barrier acquisition for dkoepi-/- mice, the late recovery followed a normal 

pattern reported in barrier development (Hardman et al., 1998). Normal expression of terminal 

differentiation markers such as involucrin, a protein marker of early differentiation normally 
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expressed in the upper spinous layers (Eckert et al., 1993), and loricrin, a marker of late 

differentiation (Mehrel et al., 1990) indicated normal development of upper spinous and granular 

layers of epidermis in P0 dkoepi-/-mice. Irrespective of their apparently normal epidermal 

differentiation, corneocytes from dkoepi-/- mice and adult IGF-1Repi-/- mice, showed alteration in 

shape and interestingly FLG processing appeared to be impaired in dkoepi-/- mice.  

Proper CE assembly is essential in skin barrier development, as transglutaminase-1 deficient mice 

that lack confirmed envelopes, suffer from water loss, resulting in neonatal lethality (Matsuki et al., 

1998). Alterations in corneocyte shape and resistance have also been described in various mouse 

models with defective skin barrier formation, ranging from irregularly shaped corneocytes in 

Prss8epid-/- mice to fragile corneocytes envelopes in Alox-12epid-/- mice (Leyvarez et al., 2005;  Epp 

et al., 2007). Corneocyte phenotype in dkoepi-/- mice resembled more that of Prss8epid-/- deficient 

mic. CAP1/Prss8 activates ENaC in epithelial cells and is known to be responsible for ENaC-

mediated sodium current across the cells (Planès et al., 2010). Prss8epid-/- mice demonstrated 

impaired epidermal water barrier function, accompanied with defective FLG processing, reduced 

levels of protein bound ceramides and abnormality in corneocyte and outside-in barrier. 

Our dkoepi-/- mice share some skin abnormality features with Prss8epi-/- mice including defective 

outward and perhaps a defective inward barrier, morphological change of corneocytes and FLG 

processing. However, the epidermis in Prss8epi-/- mice was much thicker than the dkoepi-/- mice; 

presenting thin epidermis with low stratification as a factor which could account for less efficient 

barrier function in dkoepi-/- mice.  

In light of the fact that filaggrin monomers are capable of binding and collapsing keratin filaments 

in the corneocyte (Lynley and Dale, 1983); therefore, defective monomeric FLG production could 

serve as one potential explanation for the abnormal corneocyte phenotype of dkoepi-/- mice. An 

informative assay to demonstrate the integrity of the corneocytes in dkoepi-/- mice is ultrasound 

treatment and assessment of their resistance by microscopic analysis. Nevertheless it appears that 

proper deposition of the lipid matrix in CE and FLG processing are coupled and mutually depend 

on each other. For example, mice with a targeted disruption of Alox-12b, an enzyme involved in 

fatty acid modification, showed a disturbed fatty acid composition of epidermal ceramides leading 

to neonatal death caused by water loss which was accompanied by absence of FLG (Epp et al., 

2007). On the other hand, epidermal inactivation of the transmembrane serine protease, 

Matriptase/MT-SP1, which is known to process profilaggrin and produce FLG; lead to FLG loss 

together with the perturbation of lipid matrix formation. Therefore the judgment on whether 

impaired lipid production in dkoepi-/- is merely due to loss of insulin/IGF-1 signaling and not FGL 

production is impossible at this point.  

An interesting finding with relevance to the small reduction in FLG production in dkoepi-/- mice 

which needs further validation, was almost 3 fold upregulation of a serine protease inhibitor, 
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Serpinb2 and downregulation of Tmprss4 (a family member of CAP-1/Prss8 protein). The family 

of serine protease inhibitors (SERPINs) genes comprises approximately 40 members. Serpins 

inhibit their target proteases by covalent binding leading to conformational change of the protease 

and thus abrogation of the function. Some previous studies on host-pathogen interactions have 

demonstrated that serpins are most likely responsible for protecting the host from bacterial 

proteases (Kaiserman et al., 2006). However new insights have revealed serpins to contribute in the 

reinforcement of the poorly developed epidermal cornified layer (Geng et al., 2006; Sevilla et al., 

2007). Serpinb2 might potentially contribute to vitalizing the epidermal barrier of our dkoepi-/- mice 

by reducing desquamation rate which is facilitated by the degradation of corneodesmosome 

proteins (Guerrin et al.,1998; Simon et al., 2001). On the other hand proteases involved in 

profilaggrin processing might be inhibited by Serpin activation in the dkoepi-/- mice. Tmprss4 was 

recently shown to induce invasion and epithelial–mesenchymal transition (Kim et al., 2010). Low 

Tmprss4 transcript levels in dkoepi-/- mice as shown by microarray data requires further validation 

by more quantitative techniques and would possibly shed new insights on the identification of new 

protease engaging profilaggrin processing.  

The abnormal corneocyte phenotype in the IGF-1Repi-/- mice implies perturbation in protein 

components of CE. Therefore it is planned to investigate if adult IGF-1Repi-/- mice show reduced 

amounts of FLG similar to P0 mice. The results of this experiment might enable us to determine if 

FLG processing is regulated by IGF-1 signaling. 

Caspase-14 was characterized as a protease involved in filaggrin processing; therefore its 

expression and cleavage to release functional isoforms in dkoepi-/- epidermis was investigated. We 

looked for any regulatory effect of insulin/IGF-1R signaling on casp-14 expression and to 

investigate if reduced FLG in dkoepi-/- epidermis was due to reduction in active casp-14 levels. 

Casp-14 deficient mice are sensitive to UV irradiation and represent abnormal degradation of 

FLG to smaller 15-20 kDa fragments (Denecker et al., 2007). The normal levels of non-active and 

active casp-14 in the epidermis of dkoepi-/- mice suggests that insulin/IGF-1 signaling does not 

regulate the expression of casp-14 in the epidermis and probably this protease is not responsible 

for the observed impairment of FLG processing in dkoepi-/- mice.  

In order to investigate proper epidermal inside-out barrier, intraderaml biotin injection and cldn-1 

immunolocalization were performed. There was indication for biotin diffusion in some areas of 

the epidermis above the granular layer to SC which was not conclusive and needs repetition of the 

experiment. In addition, TER assays did not show consistent differences between control and 

IGF-1R keratinocytes. On the other hand, normal cldn-1 signal was observed at cell-cell contacts 

in all suprabasal layers of the epidemris, indicating relatively normal assembly of TJs.  

Cldn-1 WB also showed no difference in epidermal expression between experimental and control 

samples. Based on observed accelerated epidermal water loss and apparently normal epidermal 
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TJs, it is not possible in this point to make firm conclusions on integrity of TJs in dkoepi-/- 

epidermis. However, abrogation of cldn-1 expression and inconsistently lower TER values seen in 

differentiating IGF-1R-/- keratinocytes implies regulation of TJs by IGF-1R mediated signaling in 

stratifying epithelia. In particular, the regulation of cldn-1 by IGF-1 signaling highlights 

requirement for in depth analysis of the downstream pathways.   

 
UniGene                                                   Gene name                                                        Fold change                   Affymetrix Probe Set ID 

  

Cornified envelope components 

Sprr2f                                                     small proline-rich protein 2F                                   203.84                            1449833_at 

Sprr2i                                                     small proline-rich protein 2I                                    165.72                            1422963_at 

Sprr2d                                                    small proline-rich protein 2D                                   14.09                              1420771_at 

Sprr1b                                                    small proline-rich protein 1B                                   11.54                              1422672_at 

Sprr2k                                                    small proline-rich protein 2K                                   10.21                              1422425_at 

Sprr2h                                                    small proline-rich protein 2H                                   5.87                                1422240_s_at 

Lce3b                                                     late cornified envelope 3B                                       157.42                            1456001_at 

Krt2-6a                                                   keratin complex 2, basic, gene 6a                           18.96                               1422783_a_at 

Krt6a                                                      keratin 6A                                                                20.49                              1427700_x_at 

Krt1-16                                                   keratin complex 1, acidic, gene 16                          13.71                             1448932_at 

Krt2-6a                                                   keratin complex 2, basic, gene 6a                            9.86                               1422784_at 

Krt2-6b                                                   keratin complex 2, basic, gene 6b                            8.2                                 1422588_at 

Krt36                                                      keratin 36                                                                  2.48                               1427751_a_at 

Krt17                                                      keratin 17                                                                  1.6                                 1423227_at 

 

Ceramide metabolism   

Ugcg                                                     UDP-glucose ceramide glucosyltransferase     2.42, 2.31, 1.98    1421269_at, 1421268_at, 1435133_at                                        

Psap                                               prosaposin                                                  -1.55,-1.69                     1421813_a_at, 1415687_a_at                                                                          

Acer3                                                    alkaline ceramidase 3                                              -1.51                                1438435_at 

Cerk                                                      ceramide kinase                                                       -1.76                                1434034_at 

Scd1                                                      stearoyl-Coenzyme A desaturase 1                         -7.78                                1415964_at 

Alox12e                                                arachidonate lipoxygenase, epidermal                     -2.16                                1426039_a_at 

Alox5ap                                                arachidonate 5-lipoxygenase activating protein      -2.28                                1452016_at 

Alox12                                                  arachidonate 12-lipoxygenase                                 -2.69                                1422699_at 

 

Epithelial host defense proteins 

Defb3                                                   defensin beta 3                                                        14070.49                           1421806_at 

Defb1                                                   defensin beta 1                                                           2.71                                1419491_at 

Ptgs2                                                    prostaglandin-endoperoxide synthase 2                 19.54, 8.89                         1417262_at, 1417263_at 

Ptges or mPGES-1                               prostaglandin E synthase                                        3.62, 2.54                          1439747_at, 1449449_at 

 
Corneosome stability  

Serpinb2                                             serine (or cysteine) proteinase inhibitor, clade B       2.95                                 1419082_at 

Ctss                                                     cathepsin S                                                                -3.29                                 1448591_at 

Tmprss4                                              transmembrane protease, serine 4                             -1.61                                 1426302_at 

 

Table 1: List of genes derived from the gene expression analysis with relevance to epidermal 

differentiation and function 
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3.2 Insulin/IGF1 signaling in vascular barrier function 

Largely normal retinal vascular barrier integrity in dkoveinduc-/- mice indicated that insulin/IGF-1 

signaling may not play a role in vascular barrier function under steady state vascular conditions. 

However variable efficiency of the Cre mediated deletion for IGF-1R gene in adult dkoveinduc-/- mice 

prevented conclusive demonstration if insulin/IGF-1 signaling is dispensable for the maintenance 

of retinal vascular integrity. As knockout mice carrying a constitutively expressed Tie2Cre line 

provided a better deletion outcome for both genes (Kondo et al., 2003), such transgenic mouse line 

which is described to show deletion of the floxed genes exclusively in the endothelial cells would 

be the line of choice to cross with the IR/IGF1Rflox/flox mice to obtain dkoveinduc-/- mice (Pandelakis 

et al., 2001). If the mice obtained from these crossings are viable an interesting analysis is to 

evaluate the vascular barrier integrity in challenging hypoxia-induced conditions of oxygen 

induced retinopathy (OIR) assay.  This assay is conducted exclusively on newborn mice and allows 

understanding the specific role of insulin/IGF1 receptors in either oxygen-induced vasoobliteration 

phase or vascular leakage promoting neovascularization phase (Smith et al., 1994). 

The angiogenic stimuli driving the vascular reestablishment in the wounded skin are mediated by 

hypoxia induction in the wound site which is very similar to hypoxia conditions of OIR (Wattel et 

al., 1990). Thus another highly relevant model to understand the role of insulin/IGF-1 signaling in 

angiogenesis and vascular barrier function is analysing the skin wound healing response in the 

dkoveinduc-/- mice which could provide information about the role of vascular IGF-1 signaling in non-

healing diabetic wounds. This experiment is at the moment ongoing using dkoveinduc-/- mice. A 

common microvascular-specific ocular disease in diabetes with late onset, directly related to 

globally imbalanced IR/IGF-1R signaling is diabetic retinopathy. Understanding the role of these 

signaling pathways would potentially contribute to the development of appropriate treatments set to 

adjust the activity levels of both pathways to normality.   

3.3 Setbacks and prospects of the Par3exon4flox mouse project 

Although in this project we did not obtain mice with germline transmission of the targeted Par-3 

allele, but two chimeric males successfully generated two pups with a distinct black coat color. 

This indicated fertilization of the female oocytes with sperms derived from injected ES cells. 

Southern blot and PCR analyses showed that both mice carried the wild type allele. Setting 

extensive crossings with high number of wild type females for the two promising chimeric males 

did not result in germline transmission. This indicated the low contribution of the injected ES cells 

in the blastocysts to spermatogenesis procedure in the chimeric fathers. Currently another 

transfection attempt with the targeting construct has been undertaken using ES cells with low 

passage and high germline transmission potential.  
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With respect to the crucial role described for Par-3 protein in cell polarity determination and the 

formation and function of TJs (Hirose et al., 2002), following generation of the Par3exon4flox mouse, 

crossings between Par3exon4flox and either K14-Cre or Tie2-Cre mice will be performed. Par-3ve-/- 

and Par-3epi-/- knockout mouse models will enable us to answer important questions on the role of 

Par-3 in epidermal morphogenesis and barrier acquisition in epidermis and the vascular system. 
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4 Materials and Methods 

4.1 Mice 

4.1.1 Insulin receptor and IGF-1 receptor floxed mice 

The generation and genotyping of the insulin receptor floxed, IGF-1 receptor floxed and the K14-

Cre mice and deletion screening by PCR have been described (Bruning et al., 1998; Hafner et al., 

2004).  

4.1.2 Generation of PAR-3exon4 flox/+ mouse  

The Par-3 targeting construct was prepared by PCR amplification of the left 3.7 kb and right 5 kb 

flanking regions of PAR-3exon4 gene which after subcloning were inserted into their respective 

restriction sites in pEasyflox plasmid as final targeting construct. Briefly, exon 4 and its flanking 

5´and 3´ region (637 bps PCR product) was inserted into 5´-AscI/MfeI-3´ sites, the short arm was 

inserted into 5´-NotI/AvrII-3´ sites before the first lox-p and Neo site and the long arm was 

inserted between the second lox-p site and Tymidine Kinase selection cassette in 5´-XhoI/PmeI-3´ 

restriction sites. The Par-3 targeting construct was linearized by NotI digestion, yielding a 16611 

bps plasmid. The NotI-linearized plasmid was subsequently used for electroporation in cultured 

embryonic stems (ES) cells 

Gene targeting was performed in 129/C57Black 6 hybrid ES line, V6.5. For transfection, 1x107 

ES cells were transfected with 50 µg DNA. Approximately 9 days after transfection, G418-

resistant, Ganciclovir-sensitive colonies were picked and expanded on 96-well tissue culture 

dishes. Genomic DNA was extracted from each clone and analysed by Southern blot and PCR 

analysis. The selected ES cell clones were subsequently expanded and transfected in vitro with 

Cre recombinase (HTNC) to check the efficiency of the lox-P sites in mediating neo-exon4 

deletion by PCR using sense “for-sapar3-1” and anti-sense “3-floxedpar3 in LA”primers to 

distinguish between wild type (2 kb) and deleted (1470 bps) alleles. Recovery, microinjection and 

transfer of 3.5 day p.c. embryos were performed according to standard procedures. Chimeric 

animals (50-65% chimerism based on coat color) were bred with female C57Black 6 background. 

The list of all the primers for genotype determination as well as deletion and long-range cloning 

PCRs are provided in Table-2. 

4.1.3 Feeding with tamoxifen diet  

Adult (three weeks-old mice), the Tie2CreERT2/+ IR/IGF-1Rfl/fl mice and the Tie2CreERT2+/+ IR/IGF-

1Rfl/fl littermates, were fed for 5-6 weeks with free access to a chow containing 0.4 mg tamoxifen 

per kg of food (Forde et al., 2002).  

4.2 Molecular DNA techniques 

4.2.1 DNA Ligation 
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For ligation of specific inserts into plasmids, the T4 ligase and its corresponding buffer 

(Fermentas) were used. The ligation was done overnight at 16°C. Insert DNA and vector DNA 

were ligated in a relation of 3:1. 

4.2.2 DNA Digestion and de-phosphorylation of DNA fragments 

All DNA modifying enzymes (i.e. restriction enzymes, T4 DNA ligase, calf intestinal phosphatase 

(CIP), Klenow fragment polymerase) were purchased from New England Biolabs and used 

according to the manufacturer’s protocol. 

4.2.3 Recombinant DNA techniques 

The following standard recombinant DNA techniques were performed as described in Sambrook 

and colleagues (1989), or according to the manufacturer’s instructions: restriction digestion, T4 

DNA ligation, dephosphorylation of DNA fragments, agarose gel electrophoresis and elution of 

DNA fragments, phenol/chloroform extraction and ethanol precipitation. DNA sequencing and 

oligo synthesis was performed by the service of the Eurofins MWG (Ebersberg-Germany) and 

sequences were analysed using the gENTLE sequence analysis software (Magnus Manske, 

Cologne). 

4.2.4 Polymerase Chain Reaction (PCR) 

For several cloning strategies PCR were performed to amplify DNA fragments. The Expand High 

Fidelity PCR System (Roche) was used at a concentration of 2.6 U/reaction in combination with 

0.25 µM of both sense and antisense primers, 0.25 mM dNTP mix, 1x reaction buffer and 10 ng 

plasmid DNA as template in 25 µl reaction volume. The template DNA was denatured at 95°C for 

2 min followed by 35 rounds of amplification each consisting of 1 min at 95°C, 1 min at the 

appropriate annealing temperature, and 1 min per kb length of the amplified DNA fragment at 

72°C for elongation. Based on the number of specific nucleotides in the primer, the following 

formula was used to estimate the melting temperature of primers: Tm=2(A+T)+4(G+C). 

For genotyping and deletion PCRs, REDTaq ReadyMix PCR kit with MgCl2 (Sigma) was used 

with primers noted in Table-2. 

4.2.5 Southern Blot 

DNA samples were digested with restriction enzymes and run for 24-30 h at 25 V on 0.8% 

agarose. Southern blotting was carried out by standard capillary methods (Sambrook et al.,  1989) 

onto Hybond-N (GE Healthcare). After DNA transfer, the membrane was incubated at 80°C for 1 

h to fix the DNA permanently to the membrane. 5´, 3´and Neo probes were amplified by PCR, run 

in 0.8% agarose gel and extracted using the QIAquick gel extraction kit. Radioactive labelling 

was performed applying 50-100 ng of DNA. The probes were labeled with [α32P]-dCTP 

(Amersham Pharmacia Biotech) using the Ladderman™ Labelling Kit (Takara) and purified using 

ProbeQuant™ G-50 Micro Columns (GE Healthcare). 
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The membrane was pre-hybridized in QuickHyb hybridization solution (Stratagene) at 65°C for 

60 min. For hybridization of the DNA fragments, the radiolabelled probe was added and 

incubated at 65°C overnight. After washing the blot in wash buffer (2X SSC) the DNA fragments 

were visualized with the x-ray film (Kodak Biomax MS). 

4.2.6 Bacterial Transformation 

The E.coli strain DH5α was cultured as described elsewhere (Sambrook et al., 1989). For 

transformation and production of chemically competent DH5α, the method of Hanahan was 

applied (Hanahan, 1983). 

 

4.3 Molecular RNA techniques 

4.3.1 RNA isolation from cells 

Isolation of RNA from cultured keratinocytes was achieved using RNeasy mini kit (Quiagen) 

according to the manufacturer´s instructions. 

4.3.2 cDNA synthesis 

For first strand cDNA synthesis of RNA, random primers in combination with Superscript II 

Reverse transcriptase (Invitrogen) were used according to the manufacturer’s protocol. 

4.3.3 Semi-quantitative RT-PCR 

Semi-quantitative RT-PCR was performed using REDTaq ReadyMix. 1 µl of synthesized 

cDNA per reaction was used as template under either 30 or 40 cycles of PCR amplification. 

 

4.4 Barrier function assays for epidermis and keratinocytes 

4.4.1 Measurement of transepidermal water loss  

Transepidermal Water Loss (TEWL) of 1-day-old mice was measured using a Tewameter TM-

300 (Courage and Khazaka) equipped with a small-diameter (3 mm) probe and measurements 

were digitally recorded via a MPA5 mulitprobe adapter. Measurements were performed on belly 

skin until there was no fluctuation in values and were continued for 10 seconds after reaching a 

constant plateue. Only values obtained from the stabilized late readouts were used for statistical 

quantifications. 

4.4.2 Lucifer yellow assay  

For penetration assays, backs of newborn mice were immersed in 1mM lucifer yellow solution for 

1 h after which the mice were killed (Koch et al, 2000). Frozen sections were counterstained with 

Phalloidin/DAPI and penetration of the dye was assessed by immunofluorescence microscopy. 

4.4.3 Toluidine blue assay  

Toluidine blue dye staining of embryos was carried out as described (Koch et al, 2000). 

Developmental stages of mice were determined by assuming that fertilization occurred in the 
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middle of the dark cycle the day before plugs were identified. Embryos were incubated for 1 min 

in 25, 50, and 75% methanol in PBS, followed by 1-min incubation in 100% methanol, and a 

descending series of incubations in 75, 50, and 25% methanol in PBS for 1 min. Embryos were 

then washed in PBS for 1 min and stained with 0.1% toluidine blue for 10 min. After staining, 

embryos were embedded in agarose and photographed using Olympus E-620 digital camera. 

Images were processed with Adobe Photoshop. 

4.4.4 Inside-out barrier assay with sulfo-NHS-Biotin 

TJ permeability assay using surface biotinylation technique was performed as described before 

(Furuse et al., 2002). 50 µl of 10 mg/ml EZ-Link™ Sulfo-NHS-Biotin (MW, 443 Daltons) in PBS 

containing 1 mM CaCl2 was injected into the dermis on the back of the Ctrl and dkoepi-/- newborns. 

After 30 min incubation, the skin biopsies were taken out, embedded in tissue-tec solution and 

frozen on dry ice. About 5 µm-thick frozen sections were used for immunofluorescence analysis.  

4.4.5 Transepithelial resistance measurement  

5x105 keratinocytes were plated on collagen 1 coated polycarbonate filter inserts (pore size 0.4 

µm, Millipore) in a 24 well format. One day after plating, junction and barrier formation was 

induced by Ca2+ switch and electrical resistance was measured at indicated time points by using 

the automated ohmmeter (cellZscope) from nanoAnalytics (Münster-Germany). 

4.5 Retinal vascular barrier assay 

4.5.1 Perfusion with 2000 kDa FITC-dextran 

Dkove-/- and control mice were perfused with 200 µl of a 50 mg/ml solution of 2000 kDa FITC-

dextran (sigma) prepared in PBS via left cardiac ventricule. After 5 min of perfusion, the eyes 

were extracted, fixed overnight in PFA and cornea was cut out under a stereomicroscope with a 

pair of spring scissors.  

4.5.2 Systemic infusion with sulfo-NHS-Biotin 

The experimental mice were intravenously injected with 100 µl of biotin (Cyanagen, Italy) 

solution (50 mg/ml in PBS) using a G-30 needle. The tracer was allowed to circulate for 10 min, 

after which, the mice were sacrificed and the eyes were fixed in 4% PFA overnight.  

4.5.3 Preparation of retinal wholemounts 

Using fine scissors, the retinas were separated from sclera and four radial incisions were made in 

3, 6, 9 and 12 o’clock positions. Retinas were flattened using fine brush tips with Internal 

Limiting Membrane (ILM) facing upward in Gelvatol and covered by round cover slips. The 

cover slips were sealed with nail polish the next day to prevent tissue drying. The imaging and 

photo acquisition was performed with a fluorescent camera. 

4.6 Sample preparation and immunoblots analysis 

4.6.1 Separation of the epidermis from dermis  
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Epidermis was separated from the dermis by floating skin biopsies, epidermis side up, in a 0.5 M 

Ammonium thiocyanate (NH4SCN) solution prepared in phosphate buffer, (0,1M Na2HPO4, 0,1M 

KH2PO4, pH6.8) for 20 min on ice. Epidermis was either snap frozen in liquid nitrogen or 

immediately processed for protein isolation. 

4.6.2 Immunoblot analysis of primary keratinocytes and epidermis  

Cultured keratinocytes were lysed in NP40 buffer (1% NP40, 0.1% SDS, 0.5% sodium 

deoxycholate, 150 mM NaCl, 50 mM Tris-HCl pH7.4). After 10 min incubation on ice, the cells 

were harvested with a cell scraper and transferred to a reagent tube. Lysates were cleared by 

centrifugation at 13000 rpm for 10 min at 4°C. Protein concentrations were determined using 

Bradford assay (Biorad). Lysates were diluted in Laemmli buffer, heated for 5 min at 95°C and 50 

µg of total protein was separated by SDS-PAGE on either 7% or 4-12% precast gels (NuPage 

system) and transferred to nitrocellulose according standard blotting procedures. Membranes were 

blocked with 5% non fat dry milk (Haerschle) in TBS-T (0.1% Tween 20, 137 mM NaCl, 20 mM 

Tris-HCl pH7.5) and incubated with the primary antibody diluted in blocking solution overnight 

at 4°C. After wash steps in TBS-T, the membranes were incubated with the appropriate 

horseradish peroxidase-coupled secondary antibody. Immunoreactive proteins were detected by 

enhanced chemiluminescence using either the SuperSignal West Pico or SuperSignal West Femto 

kit (Pierce). 

Frozen epidermal splits were thawed and homogenized in 2 ml Eppendorf tubes by Retsch Mixer 

Mill MM 400 (Düsseldorf, Germany) using little steel balls for 3 min. Epidermal samples were 

lysed with Urea buffer (100 mM NaH2PO4, , 8 M Urea, 10 mM Tris-HCl pH 8) and spun down to 

obtain a cleared supernatant. All other protein assays were similar to keratinocytes except the 

samples were not denatured by heating to avoid covalent modification of peptides in the presence 

of Urea. For filaggrin immunoblots, native 4-16% polyacrylamide gels (Invitrogen) were run with 

SDS-PAGE. 

4.6.3 Quantification of immunoblot bands with ImageJ  

Quantification of the bands was performed by selecting the area, mean gray value and integrated 

density functions of the ImageJ software on a grayscale picture. To obtain the relative signal 

intensity for each test sample band, the intensity values were divided to their respective β-actin 

band values.  

4.7 Immunofluorescence techniques 

4.7.1 Paraffin embedding of experimental tissues 

Freshly isolated tissue samples, were washed quickly in ice cold PBS and fixed in 4% PFA 

overnight at 4°C. After dehydration, tissues were paraffin embedded and stored at room 

temperature until use. Paraffin embedded samples were cut into 5-6µm thick sections and dried 

overnight on glass slides at 37°C. 
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Eyes were fixed overnight in Methacarn fixative solution composed of 60% methanol, 30% 1,1,1-

trichlorethane (TCE), 10% acetic acid, followed by dehydration procedure. Fixed samples were 

first incubated with RAS-paraffin No.3 (1 x 2 h 60°C), then RAS-paraffin No.6 (overnight 60°C) 

and were finally embedded in RAS-paraffin No.9.  

4.7.2 Immunofluorescence analysis of keratinocytes and tissue sections 

Keratinocytes were plated in 24 well plates on collagen coated glass cover slips. Differentiation 

was induced by switching from low Ca2+ medium (50 µM) to medium containing 1.8 mM Ca2+ for 

the indicated time points. Cells were washed with PBS and fixed for 10 min either with ice cold 

methanol, 4% PFA/PBS or acetone, respectively depending on the antibody used in the 

experiment. 4% PFA/PBS fixed cells were permeabilized by 5 min incubation with 0.5% Triton 

X-100/PBS. After 3 rinses in PBS, unspecific binding sites were blocked with 1% BSA/PBS for 

30 min. All antibodies (see Table-3) were diluted in blocking solution and incubated overnight at 

4°C, followed by 3 washes in blocking solution for each 5 min. After washing, cover slips were 

incubated with appropriate secondary antibodies coupled to either Alexa 488 or Alexa 594 (see 

Table-4). Nuclei were counterstained with either DAPI or propidium iodide. Cover slips were 

mounted with gelvatol on microscope slides (VWR).  

Frozen sections were analysed similar to keratinocytes but paraffin sections were 

deparaffinized, rehydrated in ethanol series and washed twice in PBS. Afterwards the samples 

were unmasked using the antigen retrieval buffer A (EMS) in Retriever (PickCell 

Laboratories, Netherlands).  

Photos were taken with a NIKON Eclipse E800 microscope equipped with a NIKON DMZ1200 

camera or an Olympus IX81 microscope with the digital camera cool snapTM HQ2 

(photometrics). Photos were stored with the software Softworx 3.6.1 (Applied Precision) and 

pictures were processed with Adobe Photoshop and ImageJ. 

4.7.3 Immunofluorescent labelling of biotin in retinal wholemounts 

The retinas were removed and fixed for 10 min in ice-cold acetone followed by two washes in 

PBS for 20 min. The samples were blocked for 2 h in blocking buffer (20% normal goat serum 

with 0.05% TWEEN 20). After 2 washes with PBS, samples were incubated for 1 h with Alexa 

fluor 488-conjugated Streptavidin, supplemented with 0.2% fish skin gelatine and 0.1% TWEEN 

20 in PBS.  After two washes with PBS and 10 min post fixation step in PFA, the retinas were 

flatmounted on glass slides as mentioned above. 

 

4.8 Primary keratinocyte and endothelial cell culture 

4.8.1 Isolation and culture of primary keratinocytes 
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The experiments described were performed with primary keratinocytes isolated from K14Cre/+; 

IGF-1Rfl/fl (IGF-1R-/-) and IGF-1Rfl/fl (ctrl) mice. All experiments were done under sterile 

conditions.  

Epidermis of newborn pups was separated from dermis by overnight trypsin digestion and 

subsequent mechanical stripping. Epidermis was chopped into peaces and agitated in low Ca2+ (50 

µM) keratinocyte medium at 37°C for 1 h. Cell suspension was plated on collagen type 1 coated 

dishes (0.03 mg/ml) in co-culture with a J2 3T3 fibroblast feeder layer.  

Keratinocyte cell culture medium 

     - DMEM (FAD)-medium (Growth medium for keratinocytes) 

- Insulin5 µg/ml 

- Chelated FCS 10% 

- L-glutamine2 mM 

- Cholera toxin 10-10 M 

- Hydrocortisone 0.4 µg/ml 

- Epidermal growth factor 10 ng/ml 

- Penicillin (100 units/ml) and streptomycin (100 µg/ml)  

PBS: Dulbecco´s phosphate buffered saline without calcium and magnesium 

Trypsin: 1x trypsin/ EDTA, 0.05 % (w/v)  

4.8.2 Splitting 

In order to split the cells, growth medium was removed and the cells were washed twice with PBS 

and trypsinized for approximately 10 min at 37 °C. Trypsin was inactivated by adding 3 fold 

amount of complete medium. The suspension was transferred into a 15 ml falcon and centrifuged 

at 800 rpm for 5 min. The supernatant was discarded and cells were resuspended in required 

volume of growth medium and plated on newly coated 6 cm dishes. 

4.8.3 Differentiation and induction by Ca2+ switch 

Confluent keratinocytes were differentiated by raising calcium level from 50 µM to 1.8 mM and 

subsequent incubation for indicated time points.  

4.8.4 Mouse Lung Endothelial Cells (MLECs) isolation  

For endothelial cell isolation, lungs from either Tie2CreERT2/+ IR/IGF-1Rfl/fl or Tie2CreERT2+/+ 

IR/IGF-1Rfl/fl were aseptically removed and homogenized by a combination of mechanical and 

enzymatic digestion with sharp blades and type 1 collagenase. Collagenase treatment of the 

minced tissue was conducted with gentle agitation at 37°C for 30 min. The single cells were 

subject to two rounds of positive selection using PECAM-1 conjugated dynabeads before plating 

and later in passage-0 after reaching confluency. Endothelial cells in all steps were grown on 

plastic dishes coated with gelatine (0.1% v/v) /fibronectin (10 µg/ml) /collagen (10 µg/ml). Wash 

and splitting steps were similar to keratinocytes. 
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Endothelial cell culture medium 

The growth medium was purchased from Promocell (Heidelberg-Germany) with following 

composition: 

- DMEM medium 

- Heparin 90 µg/ml 

- Fetal Calf Serum 0.02 ml/ml 

- Hydrocortisone 1 µg/ml 

- 10 ng/ml epidermal growth factor (EGF) 

- Endothelial Cell Growth Supplement 0.004 ml/ml 

- Penicillin (100 units/ml) and streptomycin (100 µg/ml)  

- Epidermal Growth Factor (recombinant human) 0.1 ng/ml 

- Basic Fibroblast Growth Factor (recombinant human) 1 ng/ml 

4.8.5 HTNC treatment of primary endothelial cells  

4x105 primary endothelial cells were grown in a 10 cm dish and allowed to attach to the plate. 

HTNC protein at 5 µM in a 1:1 mixture of DMEM/PBS (without FCS and other additives) was 

sterilized with syringe-attached filters and diluted serially to obtain two fold dilution series. After 

overnight incubation, the cells were washed twice with PBS and fresh medium was added.  

4.8.6 Tamoxifen treatment of primary endothelial cells 

48 mM stock solution of 4-Hydroxy-Tamoxifen (OHT) was prepared by dissolving and vortexing 

5 mg of OHT in 296 µl of 100% EtOH. This stock was further diluted to make a working stock of 

4 mM solution in 100% EtOH. Finally, the cells were treated with 2 µM OHT in growth medium 

overnight. 

4.9 Corneocyte and lipid analysis 

4.9.1 Cornified envelope preparations 

The ears from mice were excised and heated for 10 min in cornified envelope extraction buffer: 

0.1 mM Tris (pH 8) and 20 mM DTT, 5 mM EDTA, 2% SDS (Hohl et al., 1991) at 96°C, 

cornified envelopes were collected by centrifugation and were resuspended in TE buffer (10 mM 

Tris, 1 mM EDTA) and analyzed by phase-contrast microscopy (Olympus CKX41 microscope).  

4.9.2 Analysis of corneocytes by ImageJ 

The area and circularity indices of the photographed corneocytes were measured using area and 

circularity functions of the ImageJ software after defining a scale bar with equal size for ctrl and 

dkoepi-/- mice. In total, 100 corneocytes were analyzed for each mouse and the data were analyzed 

by statistical software GraphPad Prism 5. 

4.9.3 Lipid extraction and analysis 
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Epidermal free lipids were extracted from 3 mg of dry stratum corneum of different newborn 

skins. The lipid were analysed by thin layer chromatography using a solution containing 

chloroform/methanol/glacial acetic acid 190:9:1 (v/v/v) in the Lipidomics facility of the 

University of Cologne.  

4.9.4 Ceramide nomenclature legend  

Sphingoid bases: 

S = Sphingosine 

P = Phytosphingosine 

H = 6-Hydroxysphingosine 

Fatty acids: 

N = not hydroxylated 

A = α-hydroxylated 

O = ω-hydroxylated 

E = esterified with linoleic acid 

 

 

Table-2: List of primers and their respective PCR products 

Primer ID Sense primer Antisense primer Product 
Cldn1sense 

antisense 

TCTACGAGGGACTGTGGATG TCAGATTCAGCAAGGAGTCG Cldn-1 RT-PCR 

600bp5'/1kb3 TCCCTCAGGCTTCATCCGCAA CTTCAGCTTTGCAGGTGCACG IGF-1R wt/flox typing 

IR5´/IR3´ CTGAATAGCTGAGACCACAG GATGTGCACCCCATGTCG IR wt/flox typing 

IGF-1R Del 5' 

1kb3 

TTATGCCTCCTCTCTTCATC CTTCAGCTTTGCAGGTGCACG IGF-1R deletion PCR 

forinsulInt-5 

revInsulInt-3 

ACGCCTACACATCACATGCATATG CCTCCTGAATAGCTGAGACCACAG IR deletion PCR 

5 floxedpar3 in 

int/ 3-floxedpar3 

in la 

GCCCTGTGTGAGCATTACTG 

 

TCCCTGGAACTGAGGAAGAC 

 

Par-3 wt/flox typing 

K14-2202snew 

CreSL2as 

GATGAAAGCCAAGGGGAATG 

 

CATCACTCGTTGCATCGACC 

 

K-14 Cre transgene typing 

SC1_for  

SC3_rev 

GTCCAATTTACTGACCGTACAC 

 

CTGTCACTTGGTCGTGGCAGC 

 

Tie2creERT2 transgene 

typing 

3probe5-par3 

3probe3-par3 

TAGCAGCATGGGAAGTAAATG 

 

GACAATCTGAGCTCATGTTAC 

 

Par-3 exon4, 3´probe 

Scai-5-5-1-560 

Scai-5-3-1-560 

TCAGGAGATTCTGATCCCAC 

 

AAAGGGGAGAACAGGACAC 

 

Par-3 exon4, 5´probe 

Par-3, Primer 1 

Par-3, Primer 2 
CCTGCGTACAGTCTCCCGGC 

 

AGCTGTCGTGGACCAGCGGGT 

 

Par-3, 1st ATG site  

in exon 1 

Par-3, Primer 3 

Par-3, Primer 2 
CGCGACAGGTAGAAGCATCCATC 

 

AGCTGTCGTGGACCAGCGGGT 

 

Par-3, 2nd  ATG site 

in exon 4 
Par-3, Primer 4 CACCGCCCTCGGCCACGAATC TTGCCGTAGACGCTGTATCCG Stop site for Par-3 variant 3 
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Par-3, Primer 5   

Par-3, Primer 4 

Par-3, Primer 6 
CACCGCCCTCGGCCACGAATC 

 

GGCTTTGTGCACACAAGGCAG 

 

Stop site for Par-3 variant 1 

Par-3, Primer 7 

Par-3, Primer 8 
GGGAGCCCTGCTGCACCTGAG 

 

GTCCATAAGTCCCAGGACATG 

 

Stop site for Par-3 variant 2 

GAPDH for 

GAPDH rev 

TGCCCCCATGTTTGTGATG  

 

TGTGGTCATGAGCCCTTCC  

 

GAPDH RT-PCR 

for-sapar3-1 

3-floxedpar3 in la 

GCCCTGGCTATCCTGAAACT 

 

TCCCTGGAACTGAGGAAGAC 

 

Par-3 deletion PCR 

5-kpn-f6-431 

R2.3 neo63 

AATAGTAACCACCCTGGACC 

 

TCCAGACTGCCTTGGGAAAA 

 

Par-3 ES cell screening of 

Short arm-Neo- 4.3 kb 

Forloxp-la 

3probe3-par3 

 

GCTATACGAAGTTATAAGCTTAAG

C 

 

GACAATCTGAGCTCATGTTAC 

 

Par-3 ES cell screening of 

Long arm-3´Loxp- 5.63 kb 

5saparnoti-2 

3sapardavr 
GCGGCCGCTGTATGGCTCTGACTT

GAAGACAACAAC 

 

CCTAGGATCCGATTGAATTCAGAT

CTTTAGAC 

Par-3 short arm 3.7 kb PCR 

5flpardAsc 

3flpardmfe 

 

GGCGCGCCTTCAATCCCACATGAT

AGGA 

 

CAATTGGATCCATCAGAAGATCAT

ACT 

 

Par-3 floxed exon4 PCR, 622 

pbs 

5lapardXhoi 

3lapardpme 

 

CTCGAGGATATCGTGTTTTGAAAT

GATAATATATCAG 

 

GTTTAAACCTAGGGAAGAGTGCAA

TTCTC 

 

Par-3 long arm 5 kb PCR 

ForNeoprobe553 

RevNeoprobe553 

TGAATGAACTGCAGGACGAGGCA ATTGCTGAAGAGCTTGGCGGC Neo probe for southern blot 

 

Table-3: Primary antibodies  

Antigene Source Working 
dilution 

Catalog 
number 

company 

Filaggrin Rabbit WB:1/1000 

IF: 1/500 

PRB-417P Convance 

Loricrin Rabbit WB:1/1000 

IF: 1/500 

PRB-145P Convance 

Involucrin Rabbit WB:1/1000 

IF: 1/500 

PRB-140C Convance 

Casp-14 Rabbit WB:1/2000 

IF: 1/1000 

 From 

P.Vandenabeele 

Ghent-Belgium 

Cldn-1 Rabbit WB:1/1000 

IF: 1/500 

51-9000 

 

Zymed 

ZO-1 Rabbit WB:1/1000 

IF: 1/500 

61-7300 

 

Zymed 

β-catenin Rabbit WB:1/1000 RMA-12741. Epitomics 
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IF: 1/500 Lot:Yf060402r 

PECAM-1 Rat Coating 

Dynabeads:1/1000 

553708 BD Pharmingen 

Actin 

 

Mouse WB 1/10000  C4, 
Sigma Aldrich 

 

Table-4: Secondary antibodies  

Antigene Source Working 

dilution 

Catalog 

number 

company 

Alexafluor 488 

anti-rabbit 

Goat IF 1/500 A21206 Molecular 

Probes 

Alexafluor 488 

Streptavidin 

 IF 1/500 S32354 Molecular 

Probes 

Phalloidin 

TRITC 

Amanita 

Phalloides 

IF 1/500 P-1951 Sigma 

Anti-Rat IgG 

Dynabeads 

Sheep  11035 Invitrogen 

IgG-HRP      

anti-rabbit 

Goat WB 1/5000  BioRad 

IgG-HRP anti-

mouse 

Goat WB 1/5000  BioRad 

Alexafluor 594 

anti-rabbit 

Donkey IF 1/500 A21207 Invitrogen 

 

5 Abbreviations 

BSA bovine serum albumin 

Bp base pairs 

BRB blood retinal barrier 

C carbon atom 

°C degree Celsius 

CAP channel-activating serine protease 

cDNA complementary DNA 

CE cornified envelope 

Cer Ceramide 

Cre site specific recombinase from phage P1(causes recombination) 
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DAPI 4`6-Diamidino-2-phenylindol 

DKO double knockout 

DNA deoxyribonucleic acid 

DMSO dimethylsulfoxide 

DR diabetic retinopathy 

E embryonic day 

ECL enhanced chemiluminescence 

EDTA ethylene diamine tetra acetic acid 

EGF epidermal growth factor 

ENaC epithelial sodium channel 

ERT estrogen receptor  

EtOH ethanol 

FCS fetal calf serum 

Fig figure 

FLG filaggrin  

floxed/lox lox P flanked 

Foxo1 forkhead-O transcription factor 1 

GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase 

GlcCer Glucosylated ceramide 

GTP Guanosintriphosphat 

HTNC His-Tat-NLS-Cre 

g gram 

h hours 

H&E hematoxylin/eosin 

HRP horse radish peroxidase 

Hz hertz 

IF immunofluorescent 

IGF-1 insulin-like growth factor 1 

IGF-1R insulin-like growth factor 1receptor 

IR insulin receptor 

K keratin 

Kb Kilo base 

kDa kilo Dalton 

KO knockout 

LCE late cornified envelope  

LY lucifer yellow 
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mg milligram 

min minute 

µl micro liter 

ml Milliliter: 

µm micro molar 

mM millimolar 

mRNA messenger RNA 

n nano 

NeoR Neomycin resistance 

NGS normal goat serum 

NVU neurovascular unit 

OIR oxygen-induced retinopathy  

P postnatal day 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PI3K phosphatidylinositol 3 kinase 

PIP2 phosphatidylinositol (4,5) biphosphate 

PIP3 phosphatidylinositol (3,4,5) triphosphate 

PFA paraformaldehyde 

PMSF phenylmethylsulphonylfluorid 

Prss8 protease serine S1 family member 8  

RAS-paraffin Richard-Allan Scientific paraffin 

Rac1 Ras-related C3 botulinum toxin substrate 1 

RNA ribonucleic acid 

RNase ribonuclease 

ROP retinopathy of prematurity 

RT real time 

rpm rounds per minute 

SC stratum corneum 

SDS sodium dodecyl sulphate 

Sprr Small prolie rich protein 

TBS tris buffered saline 

TE Tris-EDTA buffered  

TEWL transepidermal water loss  

            Tie2 Tyrosine kinase with immunoglobulin and epidermal growth factor homology 
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domains-2 

Tween polyoxethylene-sorbitan-monolaureate 

U unit 

vs. versus 

v/v volume/volume 

w/v weight per volume 

WB western blot  
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