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Abstract 
 

Classical cadherins mediate Ca2+-dependent intercellular adhesion and are 

essential for tissue morphogenesis and maintenance. They are key components of 

adherens junctions (AJs). In vitro studies in simple epithelial cells indicated an 

essential role for E-cadherin not only in the formation of AJs but also other 

intercellular contacts, such as desmosomes and tight junctions. In contrast, in vivo 

tissue specific knockout studies did not reveal a necessity of E-cadherin in the 

formation of intercellular junctions, raising the question if classical cadherins are 

necessary or if other classical cadherins can compensate for the loss of E-

cadherin. Therefore, the aim of this thesis was to ask how E-cadherin regulates 

tight junctions and if E-cadherin has a specific function in the formation of tight 

junctions. In addition, the question was asked if classical cadherin function is 

necessary for the formation of other intercellular contacts, such as desmosomes.  

Using primary keratinocytes as a model for de novo junction formation, it was 

found that loss of E-cadherin prevents the formation of a functional tight junctional 

barrier. Surprisingly, the basic assembly of tight junctions was not affected, 

suggesting that E-cadherin regulates a late step in the formation of a functional 

barrier. One pathway through which E-cadherin may regulate the functional barrier 

is by controlling expression levels of the barrier promoting claudin-14. However, 

knockdown of claudin-14 is insufficient to reduce barrier function, suggestion that 

other mechanisms contribute to E-cadherin controlled barrier function.  

Loss of E-cadherin in combination with knock down of the only other epidermal 

classical cadherin, P-cadherin, resulted in an almost complete loss of intercellular 

contacts showing that classical cadherins are crucial for desmosome formation.  

Re-expression of either E- or P-cadherin can rescue not only desmosome 

formation but also tight junction function, showing that levels but not specific 

classical cadherin expression is crucial for the functional formation of intercellular 

junctions. 

E-cadherin is a tumor suppressor and found to be down regulated in many tumors. 

In this thesis it was found that loss of E-cadherin in primary keratinocytes is 

insufficient to enhance migration and proliferation, suggesting that in cancer cells 

E-cadherin interacts with other, E-cadherin independent pathways in the regulation 

of growth and migration. 



 IV

Zusammenfassung 
 

Klassische Cadherine sind Calcium abhängige Zelladhäsionsmoleküle und ein 

wichtiger Bestandteil der zonula adherens. Funktionale Studien zeigten eine 

wichtige Rolle für E-Cadherin bei der Initiierung und Erhaltung von Zell-Zell 

Adhäsion in einfachen Epithelien. Dabei hing nicht nur die Bildung von zonula 

adherens, sondern auch die von Desmosomen und zonula occludens von der 

funktionalen Aktivität von E-Cadherin ab. Im Gegensatz dazu war die Ausbildung 

von Desmosomen in der Epidermis nicht von E-Cadherin abhängig. Nur die 

Barrierefunktion der zonula occludens im stratum granulosum der Epidermis war 

nach genetischer Inaktivierung von E-Cadherin beeinträchtigt. Dies führte zur 

Frage, ob E-Cadherin für die Bildung epidermaler Desmosomen entbehrlich ist und 

wie die spezifische Regulation von epidermalen zonula occludens stattfindet. 

Mithilfe primärer Maus Keratinozyten konnte in dieser Arbeit gezeigt werden dass 

E-Cadherin für die Bildung epidermaler Desmosomen entbehrlich ist, was auf eine 

funktionale Kompensation durch P-Cadherin zurück zuführen ist. Entweder E- oder 

P-Cadherin Expression wurde benötigt, um die Bildung von Desmosomen in 

primären Keratinozyten auszulösen. 

Obwohl zonula occludens in Abwesenheit von E-cadherin strukturell vorhanden 

sind, konnte gezeigt werden dass diese Strukturen keine funktionelle Barriere 

bilden. Expression von entweder E- oder P-cadherin war erforderlich um eine 

funktionale Barriere in primären Maus Keratinozyten zu bilden. Die klassischen 

Cadherine E- und P-Cadherin zeigen funktionelle Redundanz bei sowohl 

Desmosomenbildung als auch bei der Bildung einer funktionalen zonula occludens 

Barriere.  

Neben der Regulation von Zelladhäsion spielt E-cadherin eine wichtige Rolle bei 

der Regulation anderer zellulärer Prozesse wie Proliferation und Migration. E-

cadherin gilt als Tumorsupressor und seine Expression ist in einer Reihe von 

Tumoren vermindert. Diese Arbeit zeigt das E-cadherin kein direkter Regulator der 

Keratinozyten Proliferation und Migration ist. Daher erscheint es wahrscheinlich, 

dass E-cadherin diese zellulären Prozesse im Zusammenspiel mit anderen, E-

cadherin unabhängigen, Mechanismen reguliert. 
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                                                                                                                 Introduction 

1. Introduction 

Physical cohesion between cells is an essential requirement for the formation and 

maintenance of complex tissues and organs and is provided by adhesive protein 

complexes that form intercellular junctions. These intercellular junctions must be 

tightly regulated not only during morphogenesis but, depending on the 

physiological requirements and cellular functions of a tissue, also during tissue 

homeostasis. Different types of intercellular junctions serve distinct functions. 

Adherens junctions and desmosomes are primarily involved in physical cohesion 

whereas tight junctions serve as paracellular and membrane diffusion barriers. Gap 

junctions form channels between cells and thereby allowing intercellular 

communication of small solutes (fig. 1).  

This study mainly addresses the role of adherens junctions, and more specifically 

its cell adhesion receptors, the classical cadherins in the regulation of not only 

adherens junctions but also desmosomes and tight junctions as well as their 

requirement in epidermal barrier formation by using loss of function approaches in 

primary mouse keratinocytes. 

 

Figure 1: Intercellular junctions in simple epithelia. 
Left: Schematic representation of intercellular junction complexes in polarized simple epithelia. 

Right: Electron micrograph showing intercellular ultrastructures. Mv: Microvilli; TJ:tight junction; AJ: 

adherens junction; DS: desmosome. Taken from (Tsukita, Furuse et al. 2001) 
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1.1 Adherens Junctions 

As the name implies, adherens junctions are intercellular adhesive structures that 

mediate physical cohesion between cells. First identified in 1963, the adherens 

junctions were characterized by electron microscopy as part of a tripartite complex 

in simple epithelia (Farquhar and Palade 1963) (fig. 1). On the ultrastructural level, 

adherens junctions appear as parallel membranes separated by an intercellular 

space of ~ 20 nm. Together with the apical localized tight junctions and the more 

basally found desmosomes, this tripartite structure was called the apical junctional 

complex. As predicted at the time based on their ultrastructural appearance, it is 

now widely accepted that adherens junctions are crucial for providing adhesion 

between cells and thereby establish physical integrity of tissues. They are 

dynamically regulated structures that serve as coordinating signaling platforms that 

regulate the actin cytoskeleton, signaling complexes and polarity cues, thereby 

regulating directly and indirectly cell shape and a variety of cellular processes. 

Adherens junctions consist of transmembrane adhesion receptors of the classical 

cadherin and nectin family which bind and recruit cytoplasmic scaffold and 

signaling molecules via their cytoplasmic domain. Among these recruited factors, 

actin binding proteins provide either direct or indirect connections to the actin 

cytoskeleton. In the following paragraphs, I will describe the molecular composition 

of the adherens junction as well as several mechanisms of their regulation. 

 

1.1.1 Classical cadherins 

Classical cadherins are type I transmembrane proteins that belong to the cadherin 

super family of Ca2+ dependent adhesion molecules, which are characterized by a 

Ca2+ binding extracellular motive, the so called cadherin repeat (EC). The number 

of extracellular repeats varies between family members, ranging form 4 to 34. 

Classical cadherins have 5 extracellular repeats which mediate homophilic 

interaction between cadherins of adjacent cells in a Ca2+ dependent manner. The 

EC1 domain plays a crucial role in adhesive bond formation as well as in mediating 

binding specificity. In addition to trans interaction between cells, the cadherin 

extracellular domain is capable to interact in cis laterally in the membrane resulting 

in cadherin dimers that are thought to represent the basic adhesive units (Brieher, 

Yap et al. 1996).  
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The most prominent members of the classical cadherin sub family are E(pithelial)-

cadherin, N(euronal)-cadherin and P(lacental)-cadherin. Although initially named 

after the tissue where they were discovered, they show a broader expression 

pattern. Homophilic binding of differentially expressed cadherins was thought to be 

the basic driving force behind cellular sorting and segregation processes, for 

example in mesoderm induction, where a switch from E- to N-cadherin induces 

segregation from the ectoderm. Similarly, E- to N-cadherin switch is observed in 

many carcinomas and is this is likely to be a key step in tumor progression leading 

to invasiveness. However, other studies report that classical cadherins are able to 

interact also in a heterophilic fashion, suggesting that the molecular mechanisms 

that drive sorting processes are not that simple (Niessen and Gumbiner 2002).  

 

1.1.2 Catenins 

The cadherin cytoplasmic domain forms a basic complex with catenins, and this 

interaction is crucial for full adhesive capacity. The Ch1 domain in the 

juxtamembrane position interacts with p120ctn. The more distal, c-terminal Ch2 

domain interacts with the armadillo repeat protein β-catenin, which in turn recruits 

the actin binding protein α-catenin. Thereby, dynamic, indirect association with the 

actin cytoskeleton is achieved. In the following, the different catenins and their role 

in the adherens junctions are discussed. 

 

1.1.2.1 p120ctn 

p120ctn binding to the cadherin has emerged as a critical regulation of the 

cadherin cell surface stability (Xiao, Oas et al. 2007). Loss of p120ctn results in 

increased cadherin turnover by regulating access to the endocytotic machinery 

(Reynolds 2007). p120 comprises 10 armadillo repeats that are crucial for the 

interaction with the cadherin (fig. 3). Regulation of cadherin dynamics at the cell 

surface occurs via intensive tyrosine and serine/threonin phosphorylation 

(Fukumoto, Shintani et al. 2008). In addition to its regulatory function in the 

cadherin core complex, p120ctn can translocate to the nucleus and regulates gene 

expression through binding to the transcription factor kaiso. Furthermore p120ctn 

turned out to mediate the regulation of Rho family GTPases upon cadherin 
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engagement. In particular, RhoA becomes inhibited by binding to p120ctn, 

whereas Rac is activated by a less understood mechanism (Anastasiadis 2007). 

 

1.1.2.2 β-catenin 

β-catenin binds to the distal region of the cadherin cytoplasmic domain and this 

interaction serves several functions. It protects the cadherin cytodomain from 

degradation, promotes cadherin trafficking from the ER to the plasma membrane, 

and recruits α-catenin to the core complex. In addition to these functions that all 

affect adhesive capacity of the adherens junction, β-catenin mediates gene 

regulation as a signal transducer in the wnt signaling pathway which plays crucial 

roles in several developmental processes. In the absence of wnts, cytosolic β-

catenin that is not bound to the cadherin gets phosphorylated by the APC complex, 

thereby targeting it to ubiquitinylation and proteasomal degradation. Extracellular 

wnt signals inhibit the APC complex, allowing β-catenin to shuttle to the nucleus 

where it acts as a transcriptional cofactor by binding to TCF/Lef transcription 

factors, resulting in activation of wnt responsive genes (Nelson and Nusse 2004). 

 

1.1.2.3 α-catenin 

The actin binding protein α-catenin is indirectly associated with the cadherin via 

binding to β-catenin. Loss of α-catenin results in reduced adhesion, although the 

cadherin β-catenin complex is still present at the cell surface. Since pull down 

experiments showed simultaneous precipitation of β-catenin and actin together 

with α-catenin, it was believed for a long time and led to a textbook model that the 

cadherin core complex is directly connected to the actin cytoskeleton (fig 2, left). 

However, studies showed that α-catenin exists in a monomeric state that interacts 

with β-catenin, and a dimeric state that interacts with actin, and these distinct 

interactions were shown to be mutually exclusive. Thus, no stable connection 

between the actin cytoskeleton and the cadherin core complex could be 

demonstrated in vitro, suggesting that cadherin mediated actin regulation is much 

more dynamic than previously believed (Drees, Pokutta et al. 2005; Yamada, 

Pokutta et al. 2005) (fig. 2, right). 
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Figure 2: Schematic presentation of the cadherin core complex. 
Textbook model versus newer model for how the cadherin complex interacts with actin. In the text 

book model (old) the cadherin complex was directly bound to actin via α-catenin. Recent data 

indicate that binding of α-catenin to either β-catenin or actin is mutually exclusive, resulting in a 

much more dynamic view on actin regulation by classical cadherins (new). In this model, actin 

binding either takes place in the vicinity of adherens junctions through dynamic exchange of α-

catenin and binding is through other actin-binding proteins that link α-catenin to actin. 

1.1.3 The nectin/afadin system 

The nectin/afadin system represents another basic adhesive unit of the adherens 

junction. The nectin family belongs to the IgG-like super family of intercellular 

adhesion receptors and consists of 4 nectin variants (nectin 1-4) together with the 

closely related nectin like molecules (NECL1-5). Initially identified as receptors for 

α-herpes and polio viruses, they were later implicated in the regulation of 

intercellular adhesion. Nectins form lateral homo- or heterodimer and are capable 

to engage in either hetero or homophilic adhesion with other nectins, which is, in 

contrast to the cadherins, independent of Ca2+ (Takai, Miyoshi et al. 2008). 

They consist of an extracellular domain comprising three IgG-like loops, and a 

transmembrane domain and a cytoplasmic domain with a c-terminal PDZ binding 

motif. The actin binding protein afadin interacts with its PDZ domain and this links 

the nectin directly to the actin cytoskeleton. Blocking of nectin functions interferes 
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with cadherin mediated adhesion in vitro, suggesting that nectins might represent a 

first scaffold in the formation of adherens junctions. On the other hand, adherens 

junction formation is Ca2+ dependent, showing the requirement for cadherin 

engagement and suggesting a more cooperative mechanism of both complexes in 

the formation of adherens junctions. This could be mediated by direct interaction of 

the complexes since afadin binds directly to α-catenin and p120 catenin. However, 

the exact mechanism of such a regulation is not known. 

 

 
Figure 3: Overview of the domain structures and protein interaction binding sites of 
adherens junction components. 
Domain structure of the adherens junction core components. Bars indicate sites of protein 

interaction. IG, immunoglobulin-like domain; Dil, dilute domain; EC, cadherin extracellular repeat; 

PDZ, PSD95/Dlg/ZO-1 domain; RA, Ras association domain; FHA, Forkhead associated domain; 

VH, vinculin homology domain and PR, proline-rich domain. 

 

1.1.4 Regulation adherens junctions  

Adherens junctions are tightly regulated during morphogenetic processes in 

development and tissue growth and maintenance. Especially classical cadherins 
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play a key role in the dynamic regulation of intercellular contacts during processes 

that involve cell rearrangements, like cell sorting, epithelial to mesenchymal 

transition (EMT) and migration (Gumbiner 2005). 

Regulation of the adherens junctions occur on multiple levels ranging from gene 

expression via alterations of core complex components by post translational 

modification to regulation of cell surface expression by either trafficking or cleavage 

(fig. 4). A short overview of the various mechanisms is given in the following 

chapters. 

 

1.1.4.1 Regulation of gene expression 

Epithelial to mesenchymal transition (EMT) is a reversible developmental process 

in which cells lose their epithelial characteristics and gain mesenchymal properties. 

Hallmarks of EMT are loss of polarity and of adherens junctions concomitant with 

cytoskeletal rearrangements and increased cell motility. A key feature of EMT is 

the loss of E-cadherin. This process is also thought to reversibly occur during 

cancer progression when cells gain migratory and invasive properties. Signals that 

induce EMT upregulate transcriptional repressors of different families, for example 

Snail, which bind to the promoter of E-cadherin and several other key epithelial 

markers, thereby resulting in reversible silencing of these promoters (Peinado, 

Olmeda et al. 2007). Importantly, downregulation of E-cadherin is crucial to gain 

migratory/invasive properties. Epigenetic changes, such as promoter methylation, 

result in long-term silencing of gene expression. The best known adherens junction 

component for which this occurs is E-cadherin. The promoter of E-cadherin is 

silenced by CpG methylation in a range of cancers (Berx, Nollet et al. 1998). 

 

1.1.4.2 Regulation of interactions in the core AJ complexes by phosphorylation 

Adherens junction assembly/disassembly and maintenance is directly influenced 

by phosphorylation-dependent alterations in the interactions between the core 

complex components of the cadherin and nectin adhesion complexes. This may 

occur directly at adherens junctions since both kinases and phosphatases are 

associated with core components. In general, serine/threonine phosphorylation is 

considered to strengthen adherens junctions whereas tyrosine kinase activity is 

often associated with disassembly of junctions. However, several examples exist 
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where increased tyrosine kinase activity promotes adherens junctions (McLachlan 

and Yap 2007). Phosphorylation of cadherin core complex components alters the 

affinity of the different core complex components for each other. The cadherin 

binds β-catenin while passing through the endoplasmic reticulum. Serine/threonine 

phosphorylation of the cadherin cytoplasmic domain or the C-terminus of β-catenin 

further increases the affinity of this already strong interaction, thus strengthening 

adhesion and AJ formation/maintenance (Daugherty and Gottardi 2007). Tyrosine 

phosphorylation of β-catenin, however, lowers the affinity for either the cadherin or 

α-catenin, thus promoting disassembly of adherens junctions. 

 

1.1.4.3 Regulation through alterations in cytoskeletal dynamics. 

As the ultra structure reveals adherens junctions are closely connected to the actin 

cytoskeleton and regulate actin dynamics at sites of cell–cell contacts. Vice versa, 

actin rearrangements are crucial for the formation of adherens junctions. The Rho 

and Rap subfamilies of the Ras super family of small GTPases, key coordinators of 

cytoskeletal activity, have emerged as important regulators of dynamic cell–cell 

adhesion and adherens junction formation and maintenance (Braga and Yap 

2005). Vice versa, cadherin or nectin engagement can control the activity of 

members of these small GTPase subfamilies, suggesting a close reciprocal 

relationship. Early AJ formation is driven by lamellipodia that are formed by 

localized Rac activity at sites of initial cell–cell contacts. This controls actin 

dynamics through actin filament nucleators such as the Arp2/3 complex. Cadherin 

engagement then directly activates Rac1 at sites of forming cell–cell contacts 

thereby establishing a positive reinforcing loop that enlarges the contact size 

between cells. Expansion of contacts requires Rho-regulated actomyosin 

contractions resulting in compaction of the intercellular contacts (Nelson 2008). 

Cadherin binding itself recruits different myosins and thereby further promote 

adherens junction stabilization. However, actomyosin contractions also drive local 

dissociation of adherens junctions.  
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1.1.4.4 The Regulation of cell surface transport and endocytosis of adherens 

junction components 

Transport of components to and removal from the cell surface through the vesicle 

transport machinery are dynamic processes that cells use to regulate adherens 

junctions. After protein synthesis, cadherin/β-catenin complexes are delivered to 

different destinations at the cell surface. For example, in simple epithelia E-

cadherin is sorted to the basolateral membrane, which is essential for the 

establishment and maintenance of basolateral polarity. Control of cadherin 

exocytosis occurs on three levels (Delva and Kowalczyk 2009). First, the cadherin 

cytodomain encodes sorting signals to direct the cadherin to the correct membrane 

compartment. The most consistent one is a dileucine motif in E-cadherin that 

targets E-cadherin to basolateral membranes. Second, the cadherin–catenin 

complex travels along microtubules that may target specific cell surface 

localizations. Third, specific protein assemblies clustered on the cell surface may 

specify vesicle fusion. The best example is the so-called exocyst complex. This 

complex regulates cell surface expression of Drosophila cadherin and is localized 

to the apical junctional complex. 

Endocytosis of cadherins has also emerged as a crucial regulatory step in the 

maintenance and stability of adherens junctions. Cadherins have two main 

destinations upon endocytosis: the lysosomal degradation pathway and recycling 

to the cell surface. Although lysosomal degradation likely contributes to 

disassembly of adherens junctions, several lines of evidence indicate that dynamic 

cadherin recycling is crucial not only for dynamic cell rearrangements but also 

essential for maintaining adherens junction stability (Wirtz-Peitz and Zallen 2009). 

How the decision is made between sending cadherin to the lysosomal 

compartment versus recycling is at present not clear. Nevertheless, since p120ctn 

is crucial for cell surface stability of cadherins, mechanisms that lower the 

interaction of p120 with the cadherin are likely to promote endocytosis. Although it 

is at present unclear if endocytosis of nectins regulates adherens junctions, nectin 

activity appears important in the regulation of cadherin endocytosis. 
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1.1.4.5 Regulation by cleavage of adherens junction components 

Both nectins and cadherins are subject to cleavage at defined sites by different 

proteases resulting in a permanent loss of full-length adhesive molecules from the 

cell surface. In a first step, the extracellular domains of cadherins and nectins are 

cleaved close to the membrane resulting in release of the extracellular domain, a 

process called ectodomain shedding (Reiss, Ludwig et al. 2006). Subsequently, 

the cytoplasmic domains can be cleaved by other proteases, such as caspases 

and presenilin. This cleavage also generates several novel cadherin and nectin 

fragments that may have biological functions by themselves. For example, the 

cadherin extracellular domain itself promotes cell motility in development and in 

cancer cells. Although at present unclear if the released cadherin cytoplasmic 

domain has a physiological relevant function, several reports have shown that it 

can inhibit the activity of certain transcription factors by retaining them in the 

cytoplasm. Other reports have shown that the cytoplasmic domain translocates to 

the nucleus where it binds deoxyribonucleic acid (DNA). 

 

 
Figure 4: Cadherin regulation. 
Different mechanisms regulate adherens junction formation and maintenance. Adherens junctions 

are regulated on multiple levels ranging from regulation of gene expression, trafficking to 

posttranslational modification and proteolytic cleavage. 
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1.2 Desmosomes 

Desmosomes also form intercellular adhesive structures but unlike adherens 

junctions that link to the actin cytoskeleton, these junctions anchor the intermediate 

filament cytoskeleton to the plasmamembrane. In polarized simple epithelial cells 

desmosomes localize to the lateral membrane and appear ultrastructurally as 

electron dense plaque. On the cytoplasmic site an outer dens plaque (ODP) and 

an inner dense plaque (IDP) can be distinguished. Between the two plasma 

membranes of adjacent cells, the trans-interacting cadherin domains appear as an 

electron dense midline. 

Like adherens junctions, they are formed by adhesion receptors belonging to the 

cadherin super family. Two subfamilies have been identified: desmogleins and 

desmocollins. Similar to classical cadherins, they have five extracellular cadherin 

repeats that mediate Ca2+ dependent adhesion between cells. 

Desmogleins and Desmocollins cooperate to form an adhesive interface. The 

cytodomains of both family members bind to the armadillo family member 

plakoglobin and to plakophillins. Plakoglobin, also referred to as γ-catenin, 

preferentially associates with desmosomal cadherins but can also interact with 

classical cadherins, where it substitutes for β-catenin by occupying its binding site  

(Nathke, Hinck et al. 1994). 

Desmoplakin, a member of the plakin protein family, binds to plakoglobin and 

bridges the desmosomal complex to the intermediate filament system. Plakophillins 

offer a more complex repertoire of interactions. Like plakoglobin, they bind to 

desmoplakin but can also interact with intermediate filaments directly. Lateral 

interactions among the armadillo proteins in the desmosome increase the stability 

and adhesive strength of the structure. Overall, desmosomes are tightly connected 

to the intermediate filaments, providing firm adhesion and physical integrity to 

tissues. This is highlighted by the findings that mutations in desmosomal 

components often result in tissue fragility, like blistering diseases in the skin (Green 

and Simpson 2007). 
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Figure 5: Schematic drawing of the molecular composition of desmosomes superimposed 
on a desmsosomal ultrastructure. 
Dsg: Desmoglein, Dsc: Desmocollin, Pg:Plakoglobin, PKP; Plakophilin, DP: Desmoplakin, IF: 

intermediate filaments. Taken from (Green and Simpson 2007) 

 

1.3 Tight Junctions 

The third and most apically located intercellular junctional structure in the tripartite 

complex described by Farquhar and Palade are tight junctions. In thin section 

electron microscopy tight junctions appear as close intercellular contacts where the 

two opposing membranes come in such close proximity that the extracellular space 

almost seems obliterated. These contacts resemble the so called kissing points 

that have been described on the ultrastructural level for tight junctions in simple 

epithelia (Farquhar and Palade 1963). The formation of a network of 

ultrastructurally discernible interconnected strands which can be detected by 

freeze fracture replica electron microscopy are considered to form the basis of the 

seal of tight junctions (Staehelin, Mukherjee et al. 1969). 

Relative to adherens junctions and desmosomes, tight junctions are most apical 

localized in simple epithelia (Farquhar and Palade 1963). Tight junctions form an 

ion and size-selective diffusion barrier and are the main regulators of paracellular 

permeability. In simple, polarized epithelia they are found at the border of the 

apical and baso-lateral membrane domains, which differ in their protein and lipid 

composition. In addition to restricting paracellular diffusion by having a “gate 

function”, tight junctions are also thought to restrict intermixing of constituents of 

 12
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the two different membrane domains, which is referred to as its “fence function” 

(Anderson, Van Itallie et al. 2004). Like adherens junctions and desmosomes, tight 

junctions consist of protein complexes comprising transmembrane adhesion 

receptors and cytoplasmic scaffold that are linked to the cytoskeleton. 

 

1.3.1 Transmembrane components of the tight junction 

Three types of structural transmembrane components are enriched at the tight 

junctions and have the potential to mediate cell adhesion: the IgG like family of 

junctional adhesion molecules and the claudin and occludin families. Although not 

homologous in sequence, occludin and claudins share a topology with four 

transmembrane domains and two extracellular repeats (Schneeberger and Lynch 

2004).  

Claudins are critical for not only tight junction strand formation, but also for 

providing ion and size- selective permeability properties of the tight (Van Itallie, 

Rahner et al. 2001). The claudin family comprises at least 24 members in the 

human genome, where as 21 have been identified in mice. They all show tissue 

specific expression patterns. Claudins engage in either homophilic or heterophilic 

interaction across opposing membranes as well as laterally in the same cell. Thus, 

depending on the amount of claudin isoforms that are expressed and their relative 

expression levels, the claudin composition determines barrier properties of the tight 

junction and enables this protein family to account for the different barrier 

requirements of different tissues. 

The function of occludin at the tight junction is less clear. Occludin was the 

transmembrane protein that was identified to specifically localize to the tight 

junction (Furuse, Hirase et al. 1993). Overexpression or mutations in occludin 

affected TER in vitro (Balda, Whitney et al. 1996). However, it appeared 

dispensable for the ultrastructural strand formation and for the establishment of a 

paracellular diffusion barrier in vivo. Nevertheless, occludin deficient mice revealed 

several phenotypes such as growth retardation, mineral deposits in the brain, male 

sterility and gastritis, which may implicates barrier regulation (Saitou, Furuse et al. 

2000). 

Tricellulin, an occludin related molecule, was shown to enrich at tricellular junctions 

in simple epithelia and to contribute to barrier function at these specialized sites 



                                                                                                                 Introduction 

 14

(Ikenouchi, Furuse et al. 2005). Both molecules share a MARVEL transmembrane 

domain which is thought to mediate their preferential accumulation in cholesterol 

rich membrane micro domains. Based on this structural feature, very recently 

another protein belonging to this family, MarvelD3, was discovered by bioinformatic 

approaches and was shown to specifically localize to the tight junctions and to 

have partially overlapping functions with occludin and tricellulin, thus defining the 

occludin family as tight junction associated MARVEL proteins (TAMP) (Raleigh, 

Marchiando et al.). 

Junctional adhesion molecules (JAM) represent another type of adhesion receptors 

at the tight junction. They belong to the family of IgG like adhesion molecules and 

engage both in homophilic and heterophilic adhesion. Unlike claudins, they do not 

induce ultrastructural strand formation when expressed in fibroblasts and there 

expression is not confined to cell types that form tight junctions. They have been 

implicated in the regulation of migration and polarity (Ebnet, Suzuki et al. 2004). 

 

1.3.2 Cytoplasmic scaffold proteins at the tight junction 

An important group of tight junction scaffold molecules are the zonula occludens 

(ZO) proteins. These proteins belong to the membrane associated guanylate 

kinase-like homologs and are characterized by three N-terminal PDZ domains, an 

SH3 domain and a guanylate kinase domain (GUK). The first PDZ domains interact 

with claudins and the GUK domain with occludin. The C-terminus interacts with 

actin, thereby linking the tight junction transmembrane components to the actin 

cytoskeleton. The second PDZ domain was shown to mediate homo- and hetero 

dimerization of ZO proteins and the third PDZ domains interacts with Jam-1 

(Ebnet, Schulz et al. 2000). ZO-1 and ZO-2, but not ZO-3, were shown to be 

crucial for the formation of claudin based strands and for the establishment of a 

tight junctional barrier, and this was dependent on the first PDZ domain. (Umeda, 

Ikenouchi et al. 2006). ZO-1 represents one direct link between tight junctions and 

adherens junctions since it can also interact with α-catenin (Rajasekaran, Hojo et 

al. 1996).  

Several other PDZ domain containing proteins, such as MUPP1 and MAGI proteins 

are associated with the tight junction cytosolic plaque and can directly interact with 

one or more of the tight junctional transmembrane components (Schneeberger and 
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Lynch 2004). It is at present unclear if these molecules are directly involved in the 

formation of the tight junctions or serve a more regulatory function. 

Cingulin, a non-PDZ tight junctional plaque protein, interacts with ZOs, JAMs and 

actin as well as myosin. As such, this protein may be a regulator of tight junctional 

dynamics during actomyosin contraction (Clayburgh, Barrett et al. 2005). 

 

1.3.3 Signaling and polarity complexes at the tight junction 

At the interface of two distinct membrane domains in simple epithelia, tight 

junctions serve as a spatial landmark which recruits protein complexes that are 

essential for the formation of apico-basal polarity. Ternary polarity complexes like 

the Par3/Par6/aPKC and the Cumbs/Pals/Patj complexes localize to the tight 

junction and are required for epithelial polarity. Many studies highlight the close 

interrelationship between intercellular junction formation and the formation of 

apico-basal polarity in simple epithelia. Adherens junctions and tight junctions 

might cooperate in the process of epithelial polarization, since JAM-1 and nectins 

have been reported to recruit Par3 to the apical junction complex which might 

represent an initial step in the setup of epithelial polarity (Ebnet, Suzuki et al. 2001; 

Takekuni, Ikeda et al. 2003). On the other hand, functional interference with the 

polarity complexes affects paracellular permeability, indicating a role of these 

complexes in the structural formation of the tight junction and pointing out a 

concerted action of junction formation and polarization in simple epithelia 

(Anderson, Van Itallie et al. 2004). 
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Figure 6: Schematic representation of the basic structural components of the tight junctions. 
ZO-1 or ZO-2 is important for clustering of claudins and occludin. The role of other scaffolding 

proteins (ZO-3/MAGI/MUPP1) is less clear. The ZOs and cingulin can provide a direct link to the 

actin cytoskeleton. Taken from (Niessen 2007). 

 

1.4 Regulation of Rho family GTPases by intercellular junctions. 

The Rho family belongs to the Ras superfamily of small GTPases. These GTPases 

switch between a GDP bound inactive state and a GTP bound active state. This 

transition is regulated by proteins that interact with the small GTPase which do 

either enhance its GTPase activity (GTPase activating protein, Gap), or do 

facilitate the exchange of GDP for GTP (Guanidine nucleotide exchange factor, 

Gef). In the GTP bound form the small GTPases specifically interacts with 

downstream effector molecules that then mediate various cellular responses by 

having multiple signaling outputs. In addition, small GTPases can be activated by 

several upstream signaling events. Thus, small GTPases serve as signal 

integrators that are controlled by tight spatio-temporal regulation. 

RhoA family GTPases emerged as critical regulators of the actin cytoskeleton, 

thereby directly affecting cell shape and migration. Their most intensively studied 

members are RhoA, Rac and cdc42, which have been shown to organize distinct 

actin structures in vitro. Rac1 is an activator of Arp2/3 mediated actin assembly 

and induces lamellipodia formation, whereas RhoA is thought to act in actin 
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nucleation responsible for the formation of stress fibers. Cdc42 stimulates filopodia 

assembly (Etienne-Manneville and Hall 2002). Intense crosstalk between Rho 

family GTPases and intercellular junction formation has been reported in simple 

epithelia.  

For instance, both cadherin and nectin engagement activate Rac1 and Cdc42, 

which in turn is required for proper organization of the cortical actin cytoskeleton. 

RhoA can either be activated or inhibited upon cadherin engagement depending on 

the cell type that was used in the study. In addition, Rac inhibits E-cadherin 

endocytosis, thereby affecting junction stability and remodeling. Cadherin mediated 

regulation of Rho GTPases was shown to be mainly mediated by p120ctn, 

although alternative pathways implicating PI3K have been discussed (Gavard, 

Lambert et al. 2004; Anastasiadis 2007). 

Similarly, the formation of macromolecular complexes at the tight junction by ZO-1 

and Jam localization affect Rho and cdc42 activation (Miyoshi and Takai 2008). In 

addition, properly compartmentalized regulation of Rho family GTPases is 

important for tight junction homeostasis since overexpression of either dominant 

active or negative variants of each Rho family GTPase disrupts tight junctions in 

vitro (Jou, Schneeberger et al. 1998). Both Rac and Cdc42 directly interact with the 

Par complex  and thereby regulate epithelial polarity and tight junction function 

(Suzuki and Ohno 2006). 

Conflicting results regarding activation or inhibition of specific GTPases come from 

studies using different cell types, thus, GTPase regulation might be highly cell 

context dependent (Braga and Yap 2005).  

 

1.5 Intercellular junctions in the epidermis 

The epidermis of the skin is a multilayered epithelium that serves as the outermost 

barrier to the environment. Its function is to establish protective barriers against 

invading pathogens and chemical or physical assaults as well as to prevent 

dehydration by trans epidermal water loss. The epidermis is a continuously self 

renewing tissue that is composed of mitotically active keratinocytes in the 

innermost basal layer that enter a program of terminal differentiation in order to 

form more differentiated suprabasal layers. Upon detachment from the basement 

membrane the cells withdraw from the cell cycle and enter the spinous layer, 
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thereby assembling a durable cytoskeletal framework that provides mechanical 

integrity. By entering the granular layer, the cells flatten and are characterized by 

accumulation of keratin macrofibrils and lipid containing lamellar bodies. Finally, in 

the outermost stratum corneum, structural proteins of the so called corneocytes are 

irreversibly crosslinked by transglutaminases. Lipids that extrude from the lamellar 

bodies seal the extracellular space around the corneocytes, thereby creating an 

insoluble meshwork that results in the formation of an epidermal barrier (Segre 

2003).  

Throughout the process of epidermal differentiation, intercellular junctions are 

maintained and actively remodelled to provide physical integrity to the tissue. In the 

following, the different types of intercellular adhesive structures in the epidermis 

and the localization of their structural components and functions in the epidermis 

will be discussed. 

 

1.5.1 Adherens junctions in the epidermis 

Two classical cadherins, E- and P-cadherin are expressed in the epidermis. While 

E-cadherin is expressed in all layers of the epidermis, P-cadherin expression is 

confined to the basal layer. P120ctn, β-catenin and α-catenin are associated with 

E-cadherin in all viable layers of the epidermis. Thus, functional adherens junctions 

are maintained during epidermal homeostasis in all viable layers. Conditional 

ablation of adherens junction components did not only affect mechanical stability of 

the epidermis and their appendages, but also signaling mechanisms that affect 

differentiation, proliferation and inflammation.  

Loss of E-cadherin results in hair loss due to impaired adhesion, but also altered 

epidermal differentiation (Young, Boussadia et al. 2003; Tinkle, Lechler et al. 2004; 

Anastasiadis 2007). Loss of P-cadherin did not cause any obvious skin phenotype 

(Radice, Ferreira-Cornwell et al. 1997). However, mutations in human P-cadherin 

are associated with hair disorder and with ectodermal displasia (Sprecher, 

Bergman et al. 2001; Kjaer, Hansen et al. 2005).  

Epidermal deletion of the cadherin associated catenins revealed overlapping and 

specific functions in mice. Knock out of α-catenin resulted in loss of adherens 

junctions, reduced desmosome formation, hyperproliferation and altered growth 

factor signaling (Vasioukhin, Bauer et al. 2001). Loss of p120ctn reduced adherens 
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junction but also activated an inflammatory responses, which was independent of 

its cadherin complex function but linked to increased NF-kB signalling in 

keratinocytes (Perez-Moreno, Davis et al. 2006). (Perez-Moreno, Davis et al. 

2006). Ablation of β-catenin in the epidermis highlighted its importance in the Wnt 

signalling pathway during hair morphogenesis and stem cell regulation. No 

differences in intercellular adhesion were observed which is likely explained by the 

replacement of β-catenin by plakoglobin in the cadherin complex (Huelsken, Vogel 

et al. 2001). Taken together, the results indicate that adherens junction 

components may couple structural integrity to intracellular signalling events. 

 

1.5.2 Desmosomes in the epidermis 

Structural desmosomes can be found in all layers of the epidermis, thereby 

providing firm adhesion to the tissue. However, appearance and size of the 

desmosomes vary between the different layers. Smaller, less organized 

desmosomes in cells of the basal layer are replaced by larger, more electron 

dense desmosomes in the suprabasal layers. Also the composition of desmosomal 

constituents varies between the layers. Desmoglein 1 and Desmocollin 1 

expression increases in the more differentiated suprabasal layers and show only 

little expression in the basal layer. Desmocollin 2, 3 and Desmoglein 3 show 

opposite expression patterns with high expression in the basal layer and 

decreasing expression in the suprabasal layers (Green and Simpson 2007). 

Desmoglein 4 is concentrated in the granular and cornified layer whereas 

desmoglein 2 is only observed in the basal layer. The importance of epidermal 

desmosomes in the maintenance of epidermal tissue stability is highlighted by 

findings that ablation or mutation in desmosomal components is often associated 

with blistering diseases (Green and Simpson 2007). 

 

1.5.3 Tight junctions in the epidermis 

Ultrastructurally discernable tight junctions can only be found in the granular layer 

of the epidermis and tracer penetration assays confirmed this layer as a site of a 

functional permeability barrier (Proksch, Brandner et al. 2008). Tight junction 

molecular key components like claudin-1 and ZO-1 are expressed in all viable 
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layers of the epidermis, whereas claudin-4 and Occludin show specific localization 

to the membrane of the granular layer (Brandner 2009). 

For a long time it was assumed that the lipid envelop of the stratum corneum was 

sufficient to provide a structural barrier to the epidermis. However, conditional 

deletion of claudin-1 in the epidermis of mice resulted in death due to trans 

epidermal water loss. This revealed for the first time a requirement for functional 

tight junctions in the epidermis to maintain inside-out barrier function (Furuse, Hata 

et al. 2002). 

 

Figure 7: Expression of structural components of desmosomes, adherens junctions (AJ) and 
tight junctions (TJ) in the different layers of the epidermis, 
Ultrastructural adherens junctions and desmosomes are found in all viable layers of the epidermis, 

whereas ultrastructural tight junctions are only found in the stratum granulosum. 

BA: stratum basale; SP: stratum spinosum; GR: stratum granulosum; CO: stratum corneum 

Dsg: Desmosglein; Dsc: Desmocollin; cad: cadherin; ZO-1: zonula occludens 1; Cldn (claudin), 

Occl: occludin. Taken from (Green and Simpson 2007)), modified. 

 

1.6 Cadherin mediated regulation of intercellular junctions and barrier 

formation 

Classical cadherins have been implicated not only in the formation and regulation 

of adherens junctions, but also in the formation of other types of intercellular 

junctions, such as desmosomes and tight junctions. E-cadherin was thought to be 

specifically required for the formation of intercellular junctions in simple epithelia 

(Gumbiner, Stevenson et al. 1988), whereas cooperative roles for E- and P-

cadherin were suggested in stratifying epithelia (Lewis, Jensen et al. 1994).  In vivo 

epidermal deletion of α-catenin confirmed the requirement for adherens junctions 
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in epidermal desmosome formation, since these structures were largely reduced in 

numbers (Vasioukhin, Bauer et al. 2001). Whereas P-cadherin appeared to be 

dispensable for epidermal junction formation in vivo (Radice, Ferreira-Cornwell et 

al. 1997), only tight junctions were affected upon epidermal deletion of E-cadherin 

(Vasioukhin, Bauer et al. 2001; Tunggal, Helfrich et al. 2005). 

Epidermal deletion of E-cadherin in the epidermis resulted in perinatal death due to 

trans epidermal waterloss, which closely resembled the phenotype of the claudin-1 

deficient epidermis (Tunggal, Helfrich et al. 2005). Interestingly, the structural 

formation of tight junction was not completely disturbed. Occludin, claudin-4 and 

ZO-1 still localized to the cell surface as judged by immunofluorescence, albeit with 

changed staining patterns for the latter two molecules. More importantly, tight 

junction like structures could still be detected in electron microscopy, suggesting 

that E-cadherin is not required for their initial structural formation in the first place, 

but may regulates maturation at later stages. Intercellular cohesion was unaffected 

in E-cadherin deficient epidermis, since no blistering or fragility could be detected. 

This was explained by upregulation of P-cadherin in the basal layer and the 

formation of ultrastructurally normal desmosomes which might have been 

reinforced by upregulation of desmosomal components. Taken together, E-

cadherin appeared dispensable for epidermal cohesion and junction formation and 

turned out to be a critical regulator of epidermal tight junctions by regulating the 

specific incorporation of claudins in an adhesion independent manner. Indeed, the 

mislocalization of the tight junction regulators Rac and phosphorylated aPKC in E-

cadherin deficient epidermis suggested that E-cadherin regulates epidermal tight 

junctions by proper recruitment or activation of tight junction regulatory molecules 

that then might mediate claudin incorporation and thereby barrier formation 

(Tunggal, Helfrich et al. 2005). The results raise the question whether classical 

cadherins are indeed required for epidermal desmosome and tight junction 

formation, and whether there are specific or overlapping functions of E- and P-

cadherin. Furthermore, since conditional ablation techniques were used, it remains 

unclear whether classical cadherins regulate de novo junction formation in 

keratinocytes, a question which is difficult to address in vivo. 
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1.7 Regulation of growth and migration by classical cadherins 

Especially E-cadherin was implicated in the regulation of various cellular processes 

like proliferation and migration. In simple epithelia, cadherin engagement and 

subsequent formation of intercellular contacts restricts proliferation, a phenomenon 

called contact inhibition of proliferation (Perrais, Chen et al. 2007) (Liu, Jia et al.; St 

Croix, Sheehan et al. 1998).  

Control of cell motility is crucial for tissue integrity and morphogenesis. Epithelial 

cells undergoing epithelial to mesenchymal transition during organogenesis 

disassemble intercellular contacts and are characterized by a marked down 

regulation of E-cadherin, mediated by the repression of gene expression via the 

transcription factor snail (Cano, Perez-Moreno et al. 2000; Peinado, Olmeda et al. 

2007). Similarly, E-cadherin is mutated in a variety of human cancers, and down 

regulation occurs during invasive tumor progression, again accompanied by 

acquisition of a mesenchymal phenotype and increased motility (Batlle, Sancho et 

al. 2000). Thus, E-cadherin is considered to act as a tumor suppressor and as a 

determinant of epithelial cell shape. Combined epithelial deletion of E-cadherin and 

p53 resulted in accelerated development of invasive mammary tumors (Derksen, 

Liu et al. 2006). However it remains unclear whether loss of E-cadherin is primarily 

causing enhanced migration or whether this occurs in cooperation with other 

oncogenic mutations. 

 

1.8 Aims of this thesis 

In vitro studies in simple epithelial cells indicated an essential role for E-cadherin 

not only in the formation of AJs but also other intercellular contacts, such as 

desmosomes and tight junctions. In contrast, in vivo tissue specific knockout 

studies did not reveal a necessity of E-cadherin in the formation of intercellular 

junctions, raising the question if classical cadherins are necessary or if other 

classical cadherins can compensate for the loss of E-cadherin in the formation of 

other junctions. Previous work in the laboratory had revealed that in vivo loss of E-

cadherin in a stratifying epithelium, the epidermis, resulted in loss of tight junctional 

function but not desmosomes. Since in vivo P-cadherin expression but not 

localization was upregulated, this may potentially compensate for E-cadherin in 

desmosome assembly. Alternatively, these results may suggest that cadherins are 
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dispensable for desmosome formation. In addition, in cancer cells loss of E-

cadherin alters the growth and invasive properties of cells but in vivo studies 

suggested that loss of E-cadherin in non-transformed tissues do not affect these 

functions. 

 

The overall aim of this thesis was to address the roles of classical cadherins in 

intercellular junction and barrier formation, and migration. Isolated keratinocytes 

from control and epidermal specific E-cadherin knockout mice provided a unique 

model system to study the consequences of cadherin loss in primary epithelial 

cells. Switching keratinocytes from low Ca2+ conditions to high Ca2+ conditions 

activates cadherin-dependent intercellular adhesion and enables de novo 

intercellular junction formation. This allows one to follow the kinetics of junction 

formation and function. In addition, one can compare growth and migration 

properties under cadherin adhesion non-permissive or permissive conditions.  

 

Specifically, the following questions were asked: 

 

1. Is there a requirement of classical cadherins in keratinocyte de novo 

desmosome formation and are there specific or overlapping functions for  E- 

or P-cadherin? 

2. Is the regulation of tight junctions a specific function of E-cadherin? 

3. How does E-cadherin regulate tight junctions and thus epidermal barrier 

function?  

4. How does loss of E-cadherin affect growth and migration properties of 

primary epithelial cells? 
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2. Results 

In order to address these questions, primary mouse keratinocytes are utilized as a 

model system since de novo junction formation is difficult to assess in vivo but can 

be controlled in vitro. The so called Ca2+ switch protocol allows for precise 

induction of intercellular contact formation and enables to follow their kinetics. 

A combined approach of conditional gene deletion and shRNA mediated silencing 

is used to address the specific roles of E- and P-cadherin, respectively. 

Furthermore, gene delivery by lentiviral transduction of keratinocytes allows testing 

for the significance of potential candidate molecules or protein domains that are 

involved in the regulation of epidermal desmosome and barrier formation. 

 

 

2.1 Classical cadherins are required for intercellular junction formation in 

primary mouse keratinocytes 

2.1.1 Isolation of E-cadherin negative primary mouse keratinocytes 

Primary mouse keratinocytes were isolated as described in materials and methods. 

Keratinocytes derived from mice of the genotype K14Cre-Ecadfl/+, K14Cre-Ecad-/+ 

or Ecadfl/fl and Ecadfl/- were used as control (Ctr), whereas keratinocytes isolated 

from K14Cre-E-cadfl/fl and K14Cre-Ecadfl/- were termed E-cadherin negative   

(Ecad-/-). Western blot analysis confirmed that E-cadherin protein expression is 

indeed absent in Ecad-/- keratinocytes (fig. 8). In phase contrast microscopy, no 

morphological difference was observed between Ecad-/- and control keratinocytes 

when cells were cultured in low Ca2+ concentration (50 μM) (fig. 2-1). This is not 

unexpected since under these conditions cadherins cannot engage in intercellular 

adhesion.    
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Figure 8: Keratinocytes isolated from K14Cre-Ecad fl/fl mice are deficient for E-cadherin. 
(A) Phase contrast images of Control and Ecad-/- keratinocytes cultured under low Ca2+ condition 

(50 µM). Bar = 25 µm. (B) Western blot analysis of total cell lysates using anti-E-cadherin antibody. 

Actin was used as loading control. 

 

2.1.2 Adherens junctions form in the absence of E-cadherin 

To address the role of E-cadherin in intercellular epidermal junction formation, 

kinetics of adherens junction formation was analyzed in primary Ecad-/- 

keratinocytes. Control and Ecad-/- keratinocytes were subjected to a Ca2+-switch by 

replacing the medium containing 50 μM (low Ca2+) with medium containing 1.8 mM 

Ca2+ (high Ca2+ medium). The Ca2+-switch not only induces differentiation of 

keratinocytes but also allows the formation of intercellular junctions. Using 

imunofluoresence microscopy this allows examining the subcellular localization of 

adherens junction and desmosomal components and examining their recruitment 

to sites of cell-cell contact. 

In both control and Ecad-/- keratinocytes, membrane staining was observed for β-

catenin 2 hours after Ca2+-switch and membrane staining was even more intense 

after 48 hours in high Ca2+, suggesting that initiation of adherens junction formation 

takes place with similar kinetics in the absence of E-cadherin (fig. 9A). Since all 

classical cadherins can interact with the catenins it was examined if P-cadherin 

was responsible for the observed recruitment of β-catenin. Even though 

recruitment of P-cadherin to sites of intercellular contacts was observed 2 hours 

after Ca2+-switch in both control and Ecad-/- keratinocytes, staining was more 

intense in the absence of E-cadherin. Both control and Ecad-/- keratinocytes 

displayed similar recruitment of P-cadherin 48h after Ca2+-switch.  

Epidermal deletion of E-cadherin resulted in upregulation of P-cadherin in the basal 

layer of the epidermis. To test whether P-cadherin expression was altered in Ecad-

/- keratinocytes, protein levels of P-cadherin as well as its associated catenins were 
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assessed by western blot analysis. Indeed, similar to in vivo situation, P-cadherin 

was up regulated in undifferentiated keratinocytes and 2h after Ca2+ switch in Ecad-

/- when compared to controls, may reflecting an attempt to compensate for the loss 

of E-cadherin (fig.9B). Similar expression levels for control and Ecad-/- 

keratinocytes were observed 48h after Ca2+ switch, showing that P-cadherin is 

expressed in differentiated keratinocytes in vitro. In both control and Ecad-/- 

keratinocytes P-cadherin expression increased with longer Ca2+ induced 

differentiation periods, in contrast to the in vivo situation where expression of P-

cadherin is confined to basal, undifferentiated keratinocytes (Tunggal, Helfrich et 

al. 2005). 

α-catenin and β-catenin are known to be stabilized when associated with classical 

cadherins in the adherens junction complex, thus reflecting indirectly classical 

cadherin protein levels. Western blot analysis of control and Ecad-/- keratinocytes 

revealed a down regulation of these two proteins at all observed time points of 

differentiation, suggesting that despite the upregulation of P-cadherin overall 

classical cadherin levels are reduced in the absence of E-cadherin. Expression of 

p120ctn, which expression levels have been shown to be independent of classical 

cadherin levels, was unchanged (fig. 9B).  

These results show that adherens junctions are assembled in the absence of E-

cadherin, most likely because P-cadherin was upregulated. 

 

 
Figure 9: Adherens junction formation upon loss of E-cadherin. 

(A) Immunofluorescence analysis of adherens junction components P-cadherin and β-catenin 

Bar=15 µm. (B) Western blot analysis of total cell lysates for adherens junction proteins. Cells were 

differentiated in high Ca2+ for the indicated time points.  
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2.1.3 Delay in desmosome formation in the absence of E-cadherin 

In vivo loss of epidermal cadherins did not show an obvious change in number and 

appearance of desmosomes in newborn skin. However, it is not possible to follow 

the kinetics of desmosome formation in vivo. To examine if membrane recruitment 

of desmosomal components, used to assess desmosome formation, is altered by 

the loss of E-cadherin the localization and expression of desmoglein 3 and 

plakoglobin were analyzed (fig. 10A). Interestingly, whereas control keratinocytes 

were able to recruit these desmosomal components to the cell surface after 2 

hours of Ca2+ stimulation, no membrane localization was observed in E-cadherin 

deficient keratinocytes at this time point, suggesting a delay in desmosome 

formation. However, membrane localization of these components was 

indistinguishable between E-cad-/- and control keratinocytes after 48 hours, 

indicating that desmosomes can form in E-cadherin deficient keratinocytes, albeit 

with a delay in kinetics. Indeed, thin section electron microscopy analysis revealed 

the presence of desmosomes in the absence of E-cadherin, which were 

ultrastructurally indistinguishable from control cells when differentiated for 48 

hours, showing that E-cadherin is dispensable for desmosome formation in vivo 

(Tunggal et al., 2005) and in vitro in primary keratinocytes (Michels, Buchta et al. 

2009)(fig. 11C).  

To asses whether the observed delay in desmosomal protein recruitment was 

caused by alterations in desmosomal component expression, western blot analysis 

was performed (fig. 10B). No obvious difference was found in plakoglobin 

expression 2 hours after Ca2+ switch, suggesting that its absence form intercellular 

junctions at this timepoint was not caused by differences in the expression of this 

protein. In both control and Ecad-/- keratinocytes, expression of desmoglein 1 and 2 

was only detectable 48 hours after Ca2+ switch, indicating that other desmosomal 

cadherins mediate desmosome formation at initial phases of junction formation. 
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Figure 10: Desmsome formation upon loss of E-cadherin. 
(A) Immuno fluorescence analysis of the desmosomal components desmoglein 3 and plakoglobin. 

Bar=15 µm. (B) Western blot analysis of total cell lysates for desmosomal proteins desmosglein 1/2 

and plakoglobin. Cells were differentiated in high Ca2+ for the indicated time points. 

 

2.1.4 Impaired adherens junction and desmosome formation in the absence 
of both E- and P-cadherin 

Since desmosomes formed in the absence of E-cadherin, the question arises 

whether there is a requirement for classical cadherins in desmosome formation, or 

whether there is a specific role of P-cadherin in the initiation of desmosome 

formation. 

To address the role of P-cadherin in adherens junction and desmosome formation, 

its expression was silenced in either control keratinocytes (Pcadkd) to asses its 

specific function, or in E-cadherin deficient keratinocytes (Ecad-/-/Pcadkd) to asses 

classical cadherin requirements. This was achieved by using lentiviral delivery of 

small hairpin RNA (shRNA) which was directed against the 5´ untranslated region 

of the P-cadherin mRNA. 

Two independent clones of Ecad-/-/Pcadkd keratinocytes were derived which 

differed in their efficiency to silence P-cadherin. Those clones are referred to as 

Ecad-/-/Pcadkd-h, and Ecad-/-/Pcadkd-l for the higher and lesser efficient knock 

downs, respectively. Efficiency of P-cadherin silencing was verified by western blot 

analysis and revealed more than 95% reduction of expression for Ecad-/-Pcadkd-h 

and about 80% for Ecad-/-Pcadkd-l and Pcadkd clones (fig. 11B). 

Immunofluorescence localization of β-catenin and desmoplakin was chosen to 

examine the formation of adherens junctions and desmosomes, respectively. 

Pcadkd keratinocytes displayed junctional recruitment of these markers 48 hours 

after Ca2+ switch, suggesting that adherens junction and desmosomes can form 
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upon reduction of P-cadherin protein levels. In E-cad-/-Pcadkd-h, β-catenin and 

desmoplakin were lost from the membrane, indicating impairment of adherens 

junctions and desmosomes (fig. 11A). 

In addition, in phase contrast microscopy the cells appeared to be rounded up and 

did not align their membranes, suggesting that intercellular contact formation is 

largely impaired. Interestingly, E-cad-/-Pcadkd-l keratinocytes did show some 

recruitment of β-catenin and desmoplakin. However the staining appeared to be 

less intense and more punctuate in appearance when compared to controls, 

suggesting impaired or delayed junctional maturation (fig. 11A). 

To further characterize the presence or absence of desmosomes on the ultra 

structural level, thin section electron microscopy on differentiated keratinocytes 

was performed in collaboration with Willhelm Bloch (Deutsche Sport Hochschule, 

Köln). In both control and Ecad-/- keratinocytes ultra structurally normal 

desmosomes were found, whereas no desmosome like structures could be 

observed in E-cad-/-Pcadkd-h keratinocytes (fig. 11C). Instead, very few intercellular 

structures were found which lacked the typical desmosomal plaque structure. 

These structures showed closely aligned membranes that in morphology rather 

resembled tight junctions than desmosome like features.  

To test whether the lack of desmosomes was caused by downregulation of 

desmosomal components, western blot analysis of desmoglein 3 and plakoglobin 

was performed. No gross differences in the expression of these proteins were 

found in keratinocytes that were differentiated for 48 hours. 

The data shows that classical cadherins are required for keratinocyte adherens 

junction and desmosome formation (Michels, Buchta et al. 2009). 
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Figure 11: Impaired adherens junction and desmosome formation in the absence of classical 
cadherins. 
(A) Immunofluorescence and phase contrast analysis of keratinocytes either deficient for E-

cadherin, P-cadherin or both. Junction formation was induced 48h prior to fixation. Bars: 

Immunofluorescence: 15 µm, phase contrast= 50 µM. (B) Western blot analysis for the indicated 

proteins on keratinocytes that were differentiated for 48h. (C) Ultrastructural analysis of intercellular 

contacts using thin section electron microscopy. Keratinocytes were differentiated for 48h. 

Bar=100nm. ntc: non targeting shRNA control.  

 

2.1.5 Desmosome formation in primary mouse keratinocytes depends on 
classical cadherin levels 

Loss of either E-cadherin or P-cadherin is insufficient to interfere with desmosome 

formation. This raises the question if E- and P-cadherin have overlapping functions 

and thus levels of classical cadherins are crucial for desmosome formation or if 

desmosome assembly requires a specific function for both E- and P-cadherin. To 

assess this question, either E- or P-cadherin were lentivirally re expressed in the 

Ecad-/-Pcadkd-h cells and asked if this could rescue the cell surface recruitment of 

desmosomal proteins like desmoplakin. After transduction of Ecad-/-Pcadkd-h 

keratinocytes with either E-cadherin, P-cadherin or GFP, transgene expression 

was analyzed by western blot analysis and intercellular junction formation was 

assessed by Immunofluorescence microscopy. Both cadherins were expressed 
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and showed a specific signal at the cell surface after induction of intercellular 

junction formation by Ca2+-switch (fig. 12A). In addition, β-catenin was stabilized at 

the protein level and recruited to the membrane in both E- and P-cadherin re 

expressing cells, showing the successful restoration of adherens junctions (fig. 

12B). Furthermore, the desmosomal components desmoplakin and plakophilin 3 

were recruited to sites of cell-cell contact, showing that desmosome formation was 

restored by the re- expression of either E- or P-cadherin, confirming the notion that 

both E- and P-cadherin redundantly initiate adherens junction and desmosome 

formation in a protein level dependant manner. 

The question arose how classical cadherins regulate the formation of epidermal 

desmosomes. One possible mechanism could involve a requirement for catenin 

recruitment to sites of intercellular contacts. To test this hypothesis, a chimeric 

protein in which the E-cadherin extracellular repeats were replaced by the 

interleukin 2 receptor ectodomain (IL2R-tail) was expressed in Ecad-/-Pcadkd-h 

keratinocytes. This chimeric protein has no adhesive activity and was shown to be 

able to recruit the cadherin cytoplasmic binding partners to the plasma membrane  

and reverse growth and migration/invasion properties induced by the loss of E-

cadherin (Gottardi, Wong et al. 2001; Wong and Gumbiner 2003). Upon expression 

of Il2R-tail in Ecad-/-Pcadkd-h keratinocytes, β-catenin expression levels were 

stabilized to the same levels as in the cells that re express E- or P-cadherin and, 

more importantly, recruited to the cell surface (fig.12). However, no restoration of 

desmosomes was observed, indicating that β-catenin recruitment is not sufficient to 

induce desmosome formation. Moreover, these results suggest a requirement for 

adhesive engagement of classical cadherins in the formation of desmosomes. 

Unfortunately, a construct encoding a chimeric protein in which the β-catenin 

binding domain was replaced by α-catenin, previously shown to rescue cadherin 

adhesive activity (Gottardi, Wong et al. 2001), was not properly expressed despite 

multiple attempts. This made it impossible to directly test this hypothesis.  
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Figure 12: Both E- and P-cadherin, but not the Ecad cytodomain rescue desmosome 
formation in Ecad-/-Pcadkd-h keratinocytes. 

(A) Immunolocalization of β-catenin, desmoplakin and plakophilin 3 on keratinocytes 48 hours after 

Ca2+ switch. Bar=15µm (B) Western blot analysis of the indicated proteins on keratinocyte lysates 

48 hours after Ca2+ switch. 
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2.2 In vitro barrier formation is impaired in E-cadherin deficient primary 

mouse keratinocytes 

Mice with an E-cadherin deficient epidermis died shortly after birth due to trans 

epidermal water loss, which was caused by functional impairment of epidermal 

tight junctions (Tunggal, Helfrich et al. 2005). This raises the question on how E-

cadherin regulates epidermal tight junctions. The analysis of the molecular 

requirement for E-cadherin in epidermal de novo tight junction formation requires a 

system where intercellular junction formation can be controlled. Therefore, the 

ability of E-cadherin deficient primary keratinocytes to form tight junctions and to 

establish an epidermal barrier was analyzed. 

 

2.2.1 Recruitment of TJ proteins is not affected in E-cadherin deficient 
keratinocytes 

E-cadherin deficient epidermis displayed defects in the subcellular localization of 

tight junction components claudin-1 and ZO-1, may causing functional impairment 

of the in vivo junctions. Thus, E-cadherin might regulate tight junction formation by 

the proper incorporation of tight junction key components (Tunggal, Helfrich et al. 

2005). To test whether E-cadherin is required for proper incorporation of tight 

junction key components, Immunofluorescence analysis was performed on control 

and Ecad-/- keratinocytes that were differentiated for 48 hours in high Ca2+. 

Interestingly, the tight junction components claudin-1, claudin-4, occludin and ZO-1 

were recruited to sites of intercellular contacts in control as well as Ecad-/- 

keratinocytes, suggesting that E-cadherin is dispensable for their proper 

localization to sites of intercellular contacts in vitro (fig. 13). 

Tricellulin, a recently discovered TJ component, which was shown to be specifically 

enriched at tricellular junctions in simple epithelia, was shown to be relevant for the 

formation of TER in simple epithelia (Ikenouchi, Furuse et al. 2005). To test 

whether this tight junction component was affected in the absence of E-cadherin, 

its localization was analyzed. With the rabbit polyclonal serum that was used in the 

study, a signal at intercellular contacts was observed, albeit with no enrichment at 

tricellular junctions, suggesting that the specific localization to tricellular contacts 

might be tissue dependent. Both control and Ecad-/- keratinocytes showed 
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junctional recruitment in this staining, suggesting that tricellulin localization is not 

affected in the absence of E-cadherin (fig.13).  

The data suggests that tight junctions form in the absence of E-cadherin. 

 

 
Figure 13: Tight Junction key components localize to the cell surface in Ecad-/- keratinocytes. 
Immunofluorescence analysis of tight junction key components in control and Ecad-/- keratinocytes. 

Keratinocytes were differentiated for 48h prior to fixation. Bar=15 µm. 

 

2.2.2 Ultrastructural Tight Junctions form in the absence of E-cadherin. 

Since loss of E-cadherin did not obviously alter the recruitment of tight junctional 

components to sites of intercellular contacts, the ultrastructural appearance was 

assessed in more detail. Thin section electron microscopy revealed the presence 

of intercellular contacts in which the inter membrane space was almost completely 

obliterated in control as well as Ecad-/- keratinocytes (fig. 14A). These contacts 

resemble the so called kissing points that have been described on the 

ultrastructural level for tight junctions in simple epithelia (Farquhar and Palade 

1963). Furthermore, freeze fracture replica electron microscopy analysis revealed 

the presence of TJ strand networks in the absence of E-cadherin (fig.14A). More 

importantly, quantification of the strands did not reveal any difference in strand 

numbers between controls and Ecad-/- cells (fig. 14D). In addition, no significant 

differences could also be detected in strand morphology as judged by the number 

of continuous versus particle type of strand category (fig. 14B) or as straight versus 

curved type of strands (fig. 14C). The number of strand breaks can reflect 

ultrastructural instability. However, no significant differences were found when 

Ecad-/- keratinocytes when compared to controls (fig. 14E).  
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The only parameter that showed a difference was the spatial extension width of the 

network which reflects the overall spatial separation distance of individual parallel 

strands. This parameter was significantly reduced in Ecad-/- keratinocytes, 

reflecting a spatial compaction of the strand network (fig. 14F). However, the 

functional significance of this parameter is unclear at present.  

Taken together, the data show that the ultrastructural formation of TJs as assessed 

by electron microscopy does take place in the absence of E-cadherin, showing that 

E-cadherin is dispensable for structural tight junction formation in vitro. 

 

Figure 14: Tight Junction ultra structure in primary mouse keratinocytes. 
(A) Thin section and freeze fracture electron micrographs of keratinocytes that were differentiated 

for 72h in high Ca2+. (B) Quantification of continuous and particle type strands. (C) Quantification of 

straight and curved type strands. (D) Quantification of strand number. (E) Quantification of strand 

breaks. (F) Quantification of network extension width. 
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2.2.3 No in vitro barrier in E-cadherin deficient keratinocytes 

The ultrastructural formation of keratinocyte tight junctions in the abscence of E-

cadherin suggests that their is no requirement for E-cadherin in epidermal tight 

junction formation. E-cadherin negative epidermis displayed tight junction like 

structures despite their inability to form an epidermal barrier, showing that E-

cadherin was required for tight junction function in vivo.  

To test whether E-cadherin regulates tight junction function in vitro and whether the 

observed tight junction ultrastructures were functional, the capacity of E-cadherin 

negative keratinocyte to form a tight junctional barrier was analyzed. 

Tight junctional barrier function was assessed using trans epithelial resistance 

measurement (TER). This assay measures para cellular diffusion of ions which is 

monitored as electrical resistance, and is thereby assessing ionic barrier properties 

of the tight junctions. Control and E-cadherin deficient keratinocytes were plated on 

filter inserts in a confluent manner. Under low Ca2+ condition, the TER that was 

measured did not differ from those of cell free filter inserts, showing that 

keratinocytes without intercellular contacts do not form electrical resistance. When 

intercellular junction formation was induced by switching to high Ca2+, control 

keratinocytes did build up TER over time to values that ranged from 400-700 

Ohm*cm² within 48 to 72 hours, showing that primary keratinocytes form a tight 

junctional barrier subsequent to intercellular contact formation (fig. 15B). 

Interestingly, despite their ability to form structural tight junctions, E-cadherin 

deficient keratinocytes showed only minor increase in TER, showing impairment of 

their capacity to form a tight junctional ion barrier (fig. 15B). 

To assess how loss of E-cadherin affects the size specific tight junctional barrier 

properties, paracellular diffusion of fluorescently labelled dextran of different 

molecular weight (3kD or 40 kD) was measured. Two hours after tracer application, 

the fluorescent signal in the basal compartment was measured to detect the 

paracellular diffusion of the tracer. The amount of tracer in the basal compartment 

was significantly higher in E-cadherin-/- keratinocytes compared to control for both 

the 3kD and the 40kD dextran, indicating increased paracellular leakage (fig.15 C 

and D). Thus, the tight junctional size barrier is leaky for both small and large 

molecular weight tracers in the absence of E-cadherin. Taken together, the results 

show that loss of E-cadherin severally impaires the tight junctional barrier in 

primary keratinocytes. 
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Figure 15: Impaired in vitro barrier formation in E-cadherin deficient keratinocytes. 
(A) Schematic drawing of experimental setup. Keratinocytes were plated on porous filter inserts and 

trans epithelial resistance was measured using an Ohm meter. (B) Trans epithelial resistence (TER) 

measurement of Control and Ecad-/- keratinocytes. (C) Paracellular flux assay using 3 kD FITC-

labelled dextran. (D) Paracellular flux assay using 40 kD FITC-labelled dextran. 

 

2.2.4 Normal barrier formation upon knock down of P-cadherin in primary 
keratinocytes 

Since Ecad-/- keratinocytes failed to form a functional barrier in vitro, we next asked 

whether there is a specific requirement of E-cadherin, or whether E-cadherin and 

P-cadherin cooperatively regulate barrier formation. To address a potential role for 

P-cadherin in TJ regulation, PCadkd as well as Ecad-/-Pcadkd-h keratinocytes were 

analyzed in TER and paracellular diffusion experiments.  

Pcadkd keratinocytes were able to form TER in an extend that was comparable to 

control keratinocytes, suggesting normal tight junctional ion barrier function upon 

reduction of P-cadherin expression (fig. 16A). In addition, the ability to restrict 

paracellular diffusion as judged by paracellular diffusion of tracer molecules was 

unchanged in these cells when compared to controls (fig. 16B).  
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Both ionic and size barrier capacities were further reduced and similar to 

background levels in Ecad-/-Pcadkd-h keratinocytes when compared to Ecad-/- 

keratinocytes. This was expected since these cells only form very few intercellular 

junctions and thus have increased paracellular space caused by the absence of 

intercellular junctions (fig. 16A and B).  

The result either suggests that tight junction formation is a specific function of E-

cadherin that does not involve P-cadherin or that the reduction in overall classical 

cadherin levels by P-cadherin knock down was not sufficient to cause barrier 

impairment. 

 

Figure 16: Trans epithelial resistance and paracellular permeability in the absence of either 
E-cadherin, P-cadherin or both. 
(A) TER measurement of Ctrl, Pcadkd, Ecad-/- and Ecad-/-Pcadkd-h keratinocytes. (B) Paracellular flux 

assay using FITC-3kD dextran as a tracer. Cells were differentiated in high Ca2+ for 72 hours before 

the tracers were added.   

 

2.2.5 Re-expression of either E-cadherin or P-cadherin rescues barrier 
formation 

To ask whether there is a specific regulation of tight junctions by E-cadherin or 

whether both classical cadherins redundantly regulate barrier formation, rescue 

experiments were performed by expressing either E-cadherin or P-cadherin in 

Ecad-/- keratinocytes. 

Full length cDNAs encoding E- or P-cadherin were cloned into a lentiviral 

expression vector to allow for lentiviral transduction of primary keratinocytes. 
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Transgene expression for both cDNAs was verified by westernblot analysis (fig. 

17G and H). Interestingly, Ecad-/- keratinocytes that were transduced with either E- 

or P-cadherin, but not GFP, restored the capacity of E-cadherin negative 

keratinocytes to induce TER over time (fig. 17A and B) as well as to restrict 

paracellular diffusion for both 3kD (fig. 17C and D) and 40kD dextran (fig. 17E and 

F).  

The results show that there is no specific requirement for either E- or P-cadherin 

but instead show functional redundancy and that the level for classical cadherin 

expression determines the capacity to form a functional tight junctional barrier. 
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Figure 17: Both re expression of E-cadherin and over expression of P-cadherin rescued 
barrier formation in Ecad-/- keratinocytes. 
(A and B) TER measurement of lentivirally transduced keratinocytes expressing either E-cadherin 

(A) or P-cadherin (B). (C and D) Paracellular flux assay using 3kD FITC-dextran as tracer on cells 

expressing either E-cadherin (C) or P-cadherin (D). (E and F) Paracellular flux assay using 40kD 

FITC-dextran as a tracer on cells expressing either E-cadherin (E) or P-cadherin (F). (G and H) 

Western blot of cells used in barrier measurements showing expression of the transgenes. GFP 

was used as control. 
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2.2.6 Expression of the E-cadherin cytoplasmic tail interferes with adhesion  

To understand the molecular requirement for classical cadherins in regulation of 

barrier function, we asked whether cadherin dependent regulation of the epidermal 

barrier is mediated through recruitment of its cytoplasmic binding partners 

independent of its adhesive function. Therefore, the previously described IL2R-tail 

construct was lentivirally expressed in Ecad-/- keratinocytes to examine if this would 

restore tight junction barrier formation. No restoration of barrier formation was 

observed in keratinocytes expressing the IL2R-tail fusion protein. Instead, a further 

decrease of TER (fig. 18A) and increase in paracellular tracer diffusion (fig. 18B) 

were observed. Furthermore, the IL2R-tail expressing keratinocytes appeared 

more undifferentiated as judged by phase contrast microscopy, suggesting 

disturbed intercellular contact formation (fig. 18C). Thus, the IL2R-tail construct 

appeared to act as dominant negative towards classical cadherin mediated 

adhesion.  

 

Figure 18: Impaired junction formation upon expression of the chimeric IL2R-tail protein in 
Ecad-/--keratinocytes. 
(A) TER measurement of control, Ecad-/--GFP and Ecad-/--IL2R-tail keratinocytes. (B) Paracellular 

flux assay using 3kD FITC-dextran on keratinocytes that were differentiated for 72h. (C) Phase 

contrast images of keratinocytes that were differentiated for 72h. (D) Western blot using anti E-

cadherin cytoplasmic tail antibody showing expression of the IL2R-tail trans gene. 
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2.2.7 No Rescue of barrier formation by overexpression of aPKC 

Epidermal deletion of E-cadherin resulted in altered recruitment of phosphorylated 

aPKCλ (Tunggal, Helfrich et al. 2005). aPKCλ is, together with Par3 and Par6, part 

of a conserved complex which was shown to be essential for a variety of cellular 

polarization processes (Lin, Edwards et al. 2000). Interestingly, formation of TER in 

primary keratinocytes was shown to depend on aPKCλ activity as peptides acting 

as pseudosubstrates abolished barrier formation in vitro. This was not 

accompanied by loss of tight junction key components from intercellular junctions 

as judged by immunofluorescence, similar to the E-cadherin negative situation 

(Helfrich, Schmitz et al. 2007). 

To test whether aPKCλ is involved in E-cadherin mediated regulation of tight 

junction function, its expression was analyzed by westernblot analysis in Ecad-/- 

keratinocytes. In addition, since aPKC might be regulated by its phosphorylation, 

phospho-aPKC levels were assessed by using phospho-specific antibodies 

directed against its phosphorylated serines 555 and 565. Using these antibodies 

no change in either total protein expression or phospho-aPKC levels were 

observed (fig. 19A).  

Overexpression of aPKC increased TER in primary mouse keratinocytes (Helfrich, 

Schmitz et al. 2007), perhaps by enhancing its activity at the junction. To test 

whether over expression of aPKCλ can restore barrier formation in the absence of 

E-cadherin, a GFPaPKCλ fusion protein was cloned into a lentiviral expression 

vector. Transgene expression was confirmed by western blot (fig. 19B). However, 

no restoration of barrier formation was observed either in TER or paracellular flux 

assays (fig. 19C and D). Thus, overexpression of aPKCλ is not sufficient to restore 

barrier formation in primary keratinocytes that are deficient for E-cadherin. 

Since membrane recruitment of aPKCλ might be required to mediate regulation of 

tight junctions, attempts were undertaken to express a membrane tagged version 

of aPKC by fusing it to a CAAX domain. Unfortunately, the construct was not 

expressed upon transduction of primary keratinocytes, thus no conclusion can be 

made about the role of aPKC membrane recruitment in epidermal barrier 

formation. 
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Figure 19: Overexpression of GFP-aPKC does not rescue barrier formation in Ecad-/- 

keratinocytes.  
(A) Western blot analysis of aPKC expression and phosphorylation. (B) Western blot analysis of 

aPKC expression of lentivirally transduced keratinocytes. (C) TER measurement of lentivirally 

transduced keratinocytes. (D) Paracellular flux assay using 3kD FITC-dextran as a tracer. 

 

2.2.8 Decreased Rac activity in Ecad-/- keratinocytes 

In E-cadherin deficient epidermis, Rac1 localization was lost from the membrane 

(Tunggal, Helfrich et al. 2005). A critical role for Rac activity in the regulation of in 

vitro keratinocyte barrier formation was demonstrated to be mediated via its 

exchange factor Tiam1 (Mertens, Rygiel et al. 2005). In addition, Rac is known to 

be directly activated upon E-cadherin engagement in simple epithelia (Noren, 

Niessen et al. 2001). 

To test whether E-cadherin regulates Rac1 activation levels in primary 

keratinocytes, pull down assays using the Pak-Crib effector domain were 

performed on control and E-cad-/- keratinocytes to assess levels of the active GTP-

bound Rac1 upon induction of differentiation and the formation of intercellular 
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junctions. In the absence of E-cadherin a reduced Rac activation was observed at 

different time points after cells were allowed to form intercellular junctions. 

Whereas control keratinocytes showed a strong increase in Rac activation 1 hour 

after induction of junction formation, no increase in Rac activation was observed in 

Ecad-/- keratinocytes (fig. 20A and B). Assays performed at later stages of 

differentiation revealed reduced Rac activity levels 48 hours after Ca2+-switch, a 

time point that correlates with the onset of TER formation in control keratinocytes 

(fig. 20A and B). Thus, E-cadherin regulates Rac activity levels in primary 

keratinocytes. 

To test whether the decreased Rac levels are responsible for barrier dysfunction in 

Ecad-/- keratinocytes, a dominant active Rac1 construct (mycRacL61) was cloned 

into a lentiviral expression vector and expressed in these cells by lentiviral 

transduction. However, no rescue of barrier formation was observed upon 

expression of this construct, suggesting that constitutively activated Rac is not able 

to induce barrier formation in the absence of E-cadherin (fig. 20B). Previous 

studies reported that ectopic expression of either dominant active or dominant 

negative mutants of Rho GTPases impairs tight junction formation and function. 

Thus, specific activity levels of Rac might be required for barrier formation (Jou, 

Schneeberger et al. 1998). 
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Figure 20: Decreased Rac activity in Ecad-/- keratinocytes. 
(A) Rac activity assay of Control and Ecad-/- keratinocytes at different time points after induction of 

junction formation. (B) Densitometric quantification of Rac activity. (C) TER measurement of 

Control, Ecad-/--GFP and Ecad-/--mycRacL61 keratinocytes. (D) Western blot analysis using myc-tag 

antibody to detect transgene expression in lentivirally transduced keratinocytes. 
 

2.2.9 No obvious alterations in actin cytoskeletal architecture in the absence 
of E-cadherin 

Both adherens junctions and tight junctions connect to and regulate the actin 

cytoskeleton. Conversely, proper organization of cortical actin is crucial for junction 

formation and polarity (Miyoshi and Takai 2008). Rac is known to regulate actin 

polimerization. Since Rac activity was reduced in Ecad-/- keratinocytes, alterations 

in cortical actin structures might be responsible for barrier dysfunction in Ecad-/- 

keratinocytes. Phalloidin was used to visualize filamentous actin structures in 
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keratinocytes in which junction formation was initiated by Ca2+ switch. In low Ca2+ 

conditions control and Ecad-/- keratinocytes displayed stress fibres but little 

enrichment of cortical actin structures. Two hours after induction of junction 

formation, both control and E-cadherin deficient keratinocytes recruited actin to 

sites of intercellular contacts. 48 hours after Ca2+ switch, control as well as Ecad-/- 

keratinocytes showed largely reduced numbers of stress fibers and accumulation 

of actin at the membrane (fig. 21). The results suggest that actin organization at 

sites of intercellular contacts is mostly unaffected by the loss of E-cadherin in 

primary keratinocytes. 

 

Figure 21: F-actin organization in the absence of E-cadherin. 
Phalloidin-FITC staining to visualize F-actin in control and Ecad-/- keratinocytes that were 

differentiated in high Ca2+ medium for the indicated time points Bar=15 µm. 

 

2.2.10 Inhibition of Myosin-ATPase, but not PI3-kinase affects barrier 
formation in primary keratinocytes 

Phosphoinositide 3 kinases (PI3-kinase) are enzymes that phosphorylate the 3 

hydroxyl group of the phosphatidylinositol (Hawkins, Anderson et al. 2006). E-

cadherin mediated activation of PI3-kinase was suggested to regulate Rac activity. 

Furthermore, PI3-kinase can directly associate with tight junction key components 

(Woo, Ching et al. 1999). To test whether PI3-kinase activity is required for 
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epidermal tight junction barrier formation, its activity was inhibited by Wortmannin 

application. Surprisingly, no effect on barrier formation was observed when control 

keratinocytes were treated with different concentrations of Wortmannin, suggesting 

that E-cadherin mediated barrier formation does not occur via activation of PI3-

kinase signaling (fig. 22A) (Michels, Aghdam et al. 2009). 

Actomyosin contraction has been shown to be important for not only junctional 

remodeling but also for specific regulation of TJ permeability. Especially the 

phosphorylation of myosin by myosin light chain kinase (MLCK) has been shown to 

specifically affect paracellular permeability, since constitutively active MLCK led to 

increased paracellular permeability by increasing myosin light chain 

phosphorylation (Shen, Black et al. 2006). 

Actomyosin contraction can be inhibited by using Blebbistatin, a specific inhibitor of 

myosin ATPase activity. To test whether actomyosin contraction is critical for 

keratinocyte barrier formation, control keratinocytes were treated with Blebbistatin 

at different concentrations. Analysis of barrier formation of the Blebbistatin treated 

cells revealed a dose dependent decrease in TER, suggesting that indeed 

actomyosin contraction is critical for barrier formation (fig. 22B).  

Analysis of filamentous actin in Blebbistatin treated cells revealed a dose 

dependent disruption of cortical actin structures, suggesting that impairment of 

barrier formation was may caused by structural deregulation of the junctions, thus 

not resembling the Ecad-/- phenotype (fig. 22C). 
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Figure 22: Impact of PI3K and myosin ATPase on keratinocyte barrier formation. 
(A) Effect of Wortmannin on keratinocyte barrier formation. Inhibitor was added to the differentiation 

medium at the indicated concentrations. (B) Effect of Blebbistatin on keratinocyte barrier formation. 

(C) Actin staining on Blebbistatin treated keratinocytes. DMSO was used as vehicle control. 
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2.3 E-cadherin regulates claudin-14 expression in vivo and in vitro 

The size and charge selectivity and permeability of tight junctions is determined by 

the relative expression and composition of claudin isoforms that are incorporated 

into the tight junction selas (Will, Fromm et al. 2008). Thus, alterations in claudin 

expression potentially affect tight junction barrier properties. 

2.3.1 Claudin-14 is down regulated in the absence of E-cadherin 

In order to test whether the tight junctional barrier impairment in E-cadherin-/- 

keratinocytes was caused by alteration in claudin isoform expression, a RT-PCR 

expression profiling was conducted using keratinocytes that were cultured in high 

Ca2+ medium for 48h. RT-PCR was performed on epidermal cDNA from control 

mice to verify their specificity. Signals were detected for claudin 1, 4, 8, 14 and 23 

(fig. 23A).  
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Figure 23: Claudin-14 expression is downregulated in the absence of E-cadherin. 
(A) RT-PCR using primers specific for different claudin isoforms on control epidermal cDNA. 

GAPDH was used as input control. (B) Semi-quantitative RT-PCR on control and Ecad-/-

keratinocyte cDNA using different amount of amplification cycles. (C and D)  Quantitative Real time 

PCR using claudin-14 specific primers on keratinocyte cDNA (C) and epidermis cDNA (D). 

 

Semi-quantitative RT-PCR on control keratinocyte cDNA revealed a signal after 25 

rounds of amplification for claudin-1, 4 and 7, which represent the most abundant 

claudin isoforms in the mouse epidermis. Claudin-12, which showed an early 

detectable signal using keratinocyte cDNA, was not found to be expressed in 

epidermal cDNA, suggesting that claudin expression profiles might differ between 

in vitro and in vivo conditions. Late amplification signals after 40 rounds of 

amplification were detected for claudin-2, 3, 5, 6, 8 and 9 (fig.23B) and a similar 

sensitivity in transcript detection was observed in the E-cadherin-/- cDNA, indicating 

unaltered RNA expression for these claudins.  

In contrast, claudin-14 showed a consistent down regulation in the absence of E-

cadherin. To verify the result, quantitative real time PCR was utilized to measure 

claudin-14 expression in the presence or absence of E-cadherin more 

quantitatively. Ecad-/- keratinocyte cDNA again showed a significant 

downregulation of the claudin-14 transcript (fig.23C), indicating that E-cadherin is 

involved in the regulation of its gene expression. In addition, since claudin-14 

promotes barrier formation, it represents a potential candidate to mediate E-

cadherin dependent regulation of tight junction function (Wattenhofer, Reymond et 

al. 2005). In this case, downregulation of claudin-14 in the absence of E-cadherin 

should also occur in vivo. Indeed, reduced transcript levels were detected in E-

cadherin deficient epidermal cDNA when compared to control epidermal cDNA, 

suggesting that E-cadherin regulates claudin-14 expression in vivo (fig. 23D). 
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Since antibodies against mouse claudin-14 are not commercially available, it could 

not be tested whether claudin-14 protein levels were indeed reduced in the 

absence of E-cadherin. 

 

2.3.2 Partial knock down of claudin-14 does not affect barrier formation in 
mouse keratinocytes 

The reduced expression of claudin-14 RNA in E-cadherin-/- keratinocytes raises the 

question whether this caused the observed barrier defect. If so, the prediction 

would be that inactivation of claudin-14 in keratinocytes would disturb tight junction 

function. To address this question, we lentivirally knocked down claudin expression 

in control keratinocytes and checked whether barrier formation was affected. 5 

different shRNA clones were used, however, none of them achieved a knock down 

efficiency that exceeded 50% reduction of transcript level when compared to 

control shRNA transduced keratinocytes (fig. 24B). No reduction in barrier 

formation was observed over time in any of the keratinocytes when claudin-14 

knock down keratinocytes were assayed in TER measurements, suggesting that 

the degree of knockdown that was achieved did not affect barrier formation in 

control keratinocytes (fig.24A). Since an almost complete loss of barrier formation 

in Ecad-/- keratinocytes correlates with a 70% reduction of claudin-14 expression, 

the result suggests that either the down regulation of claudin-14 is not causal to the 

barrier phenotype in the absence of E-cadherin, or the barrier requires a more 

extensive reduction of claudin-14 expression than the 50% that was maximally 

achieved in these experiments. Alternatively, loss of claudin-14 alone is insufficient 

to disturb epidermal barrier formation and other not yet identified factors are 

deregulated in the absence of E-cadherin that cause barrier dysfunction in 

cooperation with loss of claudin-14 expression.  
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Figure 24: Knockdown of claudin-14 in primary keratinocytes. 
(A) TER measurement on control keratinocytes that have been lentivirally transduced with different 

shRNA clones targeted against claudin-14. (B) Quantitative real time PCR to assess the efficiency 

of claudin-14 silencing in the respective ShRNA clones.  

2.3.3 No restoration of barrier function upon expression of human claudin-14 
in Ecad-/- keratinocytes 

If reduced claudin-14 expression alone is responsible for the dysfunctional tight 

junctions in Ecad-/- keratinocytes, increased expression of claudin-14 to levels 

comparable to control should restore barrier formation in these cells. In order to 

test this hypothesis, human claudin-14 (hCl14) was cloned into a lentiviral 

expression vector. After transduction of Ecad-/- keratinocytes, transgene expression 

was verified by westernblot and Immunofluorescence (fig. 25B and C). 

However, no restoration of TER was observed in hCl14 transduced keratinocytes 

(fig. 25A). Instead, a slight reduction in barrier formation was monitored. In order to 

characterize the proper localization of the transgene, immuno fluorescence staining 

using antibodies against hCl14 was performed in co staining with the TJ marker 

ZO-1. hCl14 was found at intercellular contacts, however, large accumulation of 

vesicles stained positive in the transduced cells, maybe caused by massive over 

expression and insufficient membrane targeting of the construct (fig. 25B). In 

addition, the ZO-1 staining pattern of the largely flattened, supra basal 

keratinocytes was lost in claudin-14 transduced keratinocytes, indicating 

impairment of tight junction formation. More fine tuned regulation of claudin-14 

expression might be required in order to solve the problem of over expression 

artefacts, since massive vesicle accumulation might sequester important 

cytoplasmic binding partners away form the junctional complex and thereby 

causing impairment of the TJ barrier. 
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Figure 25: Over expression of human claudin-14 does not rescue barrier formation. 
(A) TER measurement of Ecad-/- keratinocytes expressing human claudin-14. GFP was used as a 

control. (B) Immuno fluorescence analysis of ZO-1 and hCl14 in hCl14 transduced Ecad-/- 

keratinocytes. (C) Western blot analysis using hCl14 antibody to confirm transgene expression. 
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2.4 E-cadherin is dispensable for mouse keratinocyte migration and 

proliferation 

To ask whether E-cadherin directly regulates proliferation and migration properties 

of primary mouse keratinocytes, proliferation and migration was analyzed in the 

presence or absence of E-cadherin in vitro. 

 

2.4.1 Proliferation and proliferative potential not affected in the absence of E-
cadherin 

Primary keratinocytes were cultured under low Ca2+ condition to prevent terminal 

differentiation, thereby preserving their proliferative capacity. However, no 

intercellular contacts form under these conditions. Switching to high Ca2+ medium 

allows for intercellular junction formation, but also triggers terminal differentiation, 

which will ultimately result in growth arrest of keratinocytes. 

In vitro growth of control and Ecad-/- keratinocytes was indirectly assessed using a 

viability assay which is based on ATP detection. Cells were plated and samples 

were taken after different time points to measure ATP as an indirect read out for 

cell number. No difference was observed between control and Ecad-/- keratinocytes 

(fig. 26A).  

To asses the proliferative potential, colony formation assays were performed. 

Single cell plating and quantification of colony formation allows distinguishing 

between abortive colonies, which were founded by transient amplifying cells and 

which stop growing after a limited amount fo cell cycles, and non-abortive colonies 

of high proliferative potential, which display unlimited growth and therefore allow 

further expansion of the colony (fig. 26C). Colony size was measured and, after 

sorting the individual colonies for size in ascending order, blotted as a curve to 

reveal the size distribution profile of the entire colony population (fig. 26D). Abortive 

colonies appear in this diagram as a low slope phase representing similar sized 

colonies which cover about 85% of the overall colonies in control keratinocytes, 

whereas non-abortive colonies of high proliferative potential appear as a high slope 

phase of bigger colonies that spread over a wider size range and cover about 15% 

of the overall colonies in both control and Ecad-/- keratinocytes. Thus, colony size 

and relative proportion of highly proliferative clones is unaffected upon loss of E-



                                                                                                                        Results 

cadherin in primary keratinocytes, suggesting that E-cadherin does not regulate 

proliferative potential. 

To asses proliferation more directly and to also include situations were intercellular 

junctions are formed, BrdU incorporation assays were performed using either 

undifferentiated keratinocytes, or differentiated keratinocytes that have been 

subjected to high Ca2+ for either 24 hours or 48 hours. No difference in the amount 

of incorporated BrdU was observed for all conditions, suggesting that loss of E-

cadherin does not affect keratinocyte proliferation in vitro (fig. 26B). 

Taken together the results show that loss of E-cadherin does not directly affect 

keratinocyte migration. 

 

Figure 26: Growth and proliferative potential is not altered in Ecad-/- keratinocytes. 
(A) ATP detection based viability assay to indirectly assess growth of control and Ecad-/- 

keratinocytes. (B) BrdU incorporation assay. Cells were either undifferentiated, or pre differentiated 

for the indicated time points. (C) Colony forming assay, plates were stained with crystal violet to 

visualize colonies. (D) Quantification of colony sizes and presentation in size distribution plot. 

 

2.4.2 Keratinocyte migration is not affected upon loss of E-cadherin 

To analyze the impact of E-cadherin in keratinocyte migration, control and Ecad-/- 

keratinocytes were monitored using time lapse microscopy, and migration was 

quantified using the tracking function of the Olympus CellR software. Trajectory 

was measured as the length of the migration pathway for each individual cell, and 
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the overall distance between start point and endpoint of migration was measured 

which reads out directionality of movement.  Experiments using single cells in low 

Ca2+ conditions showed that E-cadherin deficient keratinocytes have the capacity 

to migrate in a random fashion which is comparable to control keratinocytes in both 

trajectory and distance (fig. 27A). 

To test whether E-cadherin regulates keratinocyte migration when intercellular 

junctions are established, junction formation was induced by prior incubation in 

high Ca2+ medium. Migration was then analyzed in differentiating keratinocytes by 

performing in vitro wound healing experiments using the scratch method. Under 

these conditions, the cells appeared to migrate in a directed manner to close the 

gap. The closure rates of E-cadherin deficient keratinocytes showed no difference 

when compared to controls, indicating that the loss of E-cadherin is insufficient to 

induce alterations in keratinocyte migration, even in the presence of intercellular 

junctions. Although Ecad-/- keratinocytes appeared less differentiated than controls 

in high Ca2+ condition, they assembled into a stratified sheet and closed the 

scratch in a directed manner. 

Taken together, the data do not implicate E-cadherin as a major regulator of 

keratinocyte migration. 
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Figure 27: Keratinocyte migration is not affected by the loss of E-cadherin. 
(A) Trajectory length and start to end point distance of single cells that were migrating in low Ca2+ 

conditions for 18 hours. (B) Phase contrast images of keratinocytes that were pre differentiated for 

2h before scratch assay. Time points indicate hours after scratch. Bar=50 µm. (C and D) 

Quantification of scratch assays which were differentiated for either 2 hours (C) or 24 hours (D) 

prior to scratch. Cell free area was measured at indicated time points and closure rates were 

calculated from independent experiments. 
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3. Discussion 

Classical cadherins have been implicated not only in the formation and regulation 

of adherens junctions, but also in the formation of other types of intercellular 

junctions, such as desmosomes and tight junctions. In vitro studies in simple 

epithelial cells indicated a specific role for E-cadherin was thought to be specifically 

in the formation of intercellular junctions (Gumbiner, Stevenson et al. 1988), 

whereas cooperative roles for E- and P-cadherin were suggested in keratinocytes 

(Lewis, Jensen et al. 1994).  In vivo epidermal deletion of α-catenin resulted in loss 

of adherens junctions and a reduction in desmosomes, thus partially confirming in 

vitro results. (Vasioukhin, Bauer et al. 2001). However, junctions appeared normal 

upon in vivo deletion of E-cadherin either in the thyroid gland (Cali, Zannini et al. 

2007) or mammary gland (Boussadia, Kutsch et al. 2002) or P-cadherin deletion 

(Radice, Ferreira-Cornwell et al. 1997), whereasonly tight junctions were affected 

upon epidermal deletion of E-cadherin (Vasioukhin, Bauer et al. 2001; Tunggal, 

Helfrich et al. 2005). These results raised the question whether classical cadherins 

are required for desmosome and tight junction formation, and whether there are 

specific or overlapping functions of E- and P-cadherin in epidermal junction 

formation. Primary keratinocytes allow one to ask if classical cadherins are 

required for de novo intercellular junction formation, a process, a question that is 

impossible to address in vivo.  The results in this thesis show unequivocally that 

classical cadherins are crucial not only for adherens junction but also desmosome 

and tight junction formation. This is regulated not by a specific function of either E- 

or P-cadherin but, instead, is directly dependent on classical cadherin levels. 

Interestingly, the results indicate that classical cadherins regulate desmosomes 

and tight junctions on different levels. Whereas loss of E-cadherin alone already 

impairs tight junction function but not assembly, perhaps by regulating specific 

claudin expression levels, an almost complete loss of cadherins is required to 

interfere with desmosome formation and membrane recruitment.  
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3.1 Desmsome formation in primary keratinocytes depends on classical 

cadherin expression levels 

Upon Ca2+ induced junction formation in primary keratinocytes, E-cadherin was not 

required for de novo formation of adherens junctions and desmosomes. However, 

analysis of initial kinetics of desmosomal protein recruitment revealed that 

desmosome formation was delayed in the absence of E-cadherin (Michels, Buchta 

et al. 2009). Interestingly, adherens junctions formed with similar kinetics in Ecad-/- 

keratinocytes when compared to controls, showing that initial regulation of 

desmosomes, but not adherens junctions was affected. Consistent with in vivo 

findings, P-cadherin was upregulated at initial, but not later stages of 

differentiation, suggesting that compensation for the loss of E-cadherin takes place 

at early time points of differentiation, allowing for adherens junction formation. 

Since desmosomal protein expression of plakoglobin was unaffected at early time 

points of differentiation in the absence of E-cadherin, a delay of membrane 

recruitment of these components is likely to cause the delay in desmosome 

formation. However, other desmosomal components like desmocollins need to be 

analyzed to test whether delayed desmosome formation might be explained by 

altered expression of desmosomal components. 

The question remains, whether increased P-cadherin expression compensates for 

the loss of E-cadherin, or whether P-cadherin has a specific role in epidermal de 

novo desmosome formation. When P-cadherin was knocked down in E-cadherin 

negative keratinocytes (Ecad-/-Pcadkd-h), adherens junction and desmosome 

formation was impaired, showing that P-cadherin was sufficient to mediate the 

formation of these junctions. No desmosomes, but very few intercellular adhesive 

structures were found in these cells, which closely aligned membranes resembled 

tight junctions rather then desmosomes. Further ultrastructural analysis is required, 

like immuno-gold labeling approaches, to determine the molecular basis of these 

structures. Silencing of P-cadherin expression in control keratinocytes (Pcadkd) did 

not abolish desmosome formation in primary keratinocytes, indicating that 

desmosome formation does not specifically require P-cadherin. Indeed, both re 

expression of E-cadherin and P-cadherin rescued desmosome formation in double 

deficient keratinocytes, showing that both classical cadherins initiate adherens 

junction and desmosome formation in a redundant manner and that either E- or P-

cadherin is required (Tinkle, Pasolli et al. 2008; Michels, Buchta et al. 2009).  
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This raises the question on how classical cadherins regulate desmosome 

formation. Double deficient keratinocytes were able to express the desmosomal 

proteins desmoglein 1, 2 and 3 as well as plakoglobin and plakophilin (Michels, 

Buchta et al. 2009) (Diploma thesis Thomas Buchta, 2009), suggesting that 

impaired desmosome formation was not caused by a downregulation of these 

components. The possibility remains that expression or stabilization of other 

desmosomal components was affected, e.g. desmocollins. Alternatively, classical 

cadherins could potentially mediate membrane recruitment of structural 

desmosomal components via its cytoplasmic domain, thereby facilitating the 

formation of desmosomes. Plakoglobin, which associates with both desmosomal 

and classical cadherins has been proposed to play a key role in cadherin mediated 

initiation of desmosome formation (Lewis, Wahl et al. 1997). In this study, a 

chimeric molecule bearing the E-cadherin extra cellular domain fused to 

plakoglobin was able to rescue desmosome formation in a cadherin deficient 

epidermoid carcinoma cell line. On the contrary, plakoglobin deficient keratinocytes 

displayed substantial amounts of desmosomal structures that were defective in 

their intermediate filament anchorage, suggesting that plakoglobin is not required 

for initial desmosomal cadherin trans interaction (Acehan, Petzold et al. 2008).  

Recruitment of the cadherin cytoplasmic binding partners was not sufficient to 

induce desmosome formation since expression of a chimeric molecule where the 

adhesive extracellular domain was replaced by the interleukin 2 receptor was not 

able to rescue junction formation in the double deficient cells. The expression of 

the classical cadherin extracellular domain lacking the cytoplasmic tail could give 

an answer to the question whether cadherin adhesive engagement would be 

sufficient for desmosome formation. 

The question remains why desmosomal cadherins require classical cadherins to 

form desmosomes despite their intrinsic capacity to bind in a Ca2+ dependent 

manner. One requirement for adhesive trans-interaction is stable expression on the 

cell surface. Thus, regulation of cell surface stability of desmosomal components 

remains a potential mechanism by which classical cadherins regulate desmosome 

formation, eventually by modulating signaling pathways. E-cadherin was found to 

interact with EGF-receptor and other receptor tyrosine kinases via its extracellular 

domain, thereby decreasing receptor mobility and ligand affinity (Acehan, Petzold 

et al. 2008). In addition, cell surface recruitment of desmoglein 2 was shown to be 
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promoted by pharmaceutical EGF-receptor inhibition (Klessner, Desai et al. 2009). 

Indeed, pharmaceutical inhibition of the EGF-receptor rescued desmosome 

formation in Ecad-/-/Pcadkd-h keratinocytes as assessed by desmoglein 3 

localization (Thomas Buchta, Diploma thesis), suggesting that classical cadherins 

mediate desmosomal protein trafficking by regulating EGF-R activity. Further 

analysis of adherens junction and desmosomal component phosphorylation is 

required to test whether desmosomal protein trafficking is directly regulated by 

classical cadherin mediated regulation of EGF-R activity. 

 

3.2 The Role of classical cadherins in epidermal barrier formation 

Upon deletion of E-cadherin in the epidermis, tight junction barrier function was 

impaired, resulting in death of mice due to trans epidermal water loss (Tunggal, 

Helfrich et al. 2005), raising the question how E-cadherin regulates tight junctions. 

 

3.2.1 E-cadherin is not required for structural tight junction formation in 
primary keratinocytes 

In vivo epidermal deletion of E-cadherin resulted in mislocalization of claudin-1 in 

the granular layer of the epidermis, eventually causing barrier impairment. 

However, epidermal tight junction like structures were still present in these mice, 

raising the question whether E-cadherin is dispensable for the structural formation 

of tight junctions, or whether it regulates its function by mediating incorporation of 

specific tight junction key components (Tunggal, Helfrich et al. 2005). 

In contrast to the in vivo situation, localization of claudin-1, 4, ZO-1 and occludin 

was detected at sites of intercellular contacts that did not differ from control cells, 

suggesting that E-cadherin is dispensable for the recruitment of these components 

in vitro. Furthermore, the ultrastructural analysis using thin section electron 

microscopy and freeze fracture analysis indeed revealed the presence of structural 

tight junctions in the absence of E-cadherin, showing that E-cadherin is 

dispensable for their structural formation. Importantly, quantification of tight junction 

strands did not reveal any differences in strand numbers or strand fragility. Instead, 

spatial compaction of the strand network was affected, a phenomenon which has 

not been described so far to our knowledge and which biological significance 

remains unclear. Potentially, since tight junction proteins preferentially assemble in 
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cholesterol and sphingolipid rich membrane micro domains (Nusrat, Parkos et al. 

2000), the compaction might reflect alterations in membrane micro domain 

architecture. 

The finding that structural tight junction formation is not affected in E-cadherin 

negative keratinocytes contrasts findings in simple epithelia, where E-cadherin was 

shown to be required for the recruitment of tight junction key components during 

intercellular contact formation (Gumbiner, Stevenson et al. 1988; Capaldo and 

Macara 2007). A likely explanation for these differences might be that E-cadherin is 

the only type I classical cadherin in MDCK cells, whereas two type I classical 

cadherins, E- and P-cadherin, are expressed in keratinocytes. 

This might also account for the discrepancy regarding claudin-1 localization 

between the in vivo and in vitro situation, which might be explained by the finding 

that P-cadherin is expressed in vitro throughout differentiation, whereas it is 

confined to the basal layer in vivo, leading to a loss of adherens junctions in 

suprabasal layers. This would imply that P-cadherin can compensate for the loss of 

E-cadherin regarding the structural formation of tight junctions in vitro. However, 

tight junction like structures were found in Ecad-/-Pcadkd-h keratinocytes, the 

possibility remains that in keratinocytes tight junctions can structurally form 

independently of classical cadherins.  

 

3.2.2 E-cadherin is required for epidermal barrier formation 

Analysis of tight junction function by TER revealed barrier impairment of the tight 

junctions in the absence of E-cadherin, showing increased ion permeability. 

Furthermore, size specific tracer diffusion assays showed increased permeability 

for both 3kD and 40kD non-ionic dextran tracers in the absence of E-cadherin. 

Thus, increased permeability appears to involve non ionic molecules and is not 

restricted to certain molecular weights.  

In conclusion, the ultrastructural tight junctions that were present in Ecad-/- 

keratinocytes failed to function as an epidermal barrier, showing that E-cadherin 

regulates tight junction function not only in vivo, but also in vitro and that the latter 

regulation occurs independently of structural tight junction formation. Furthermore, 

it shows that the formation of a structural tight junction network is not sufficient for 
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epidermal tight junctional sealing and that an E-cadherin dependent regulation is 

required to trigger barrier formation. 

Several molecular mechanisms could mediate this regulation. Post translational 

modification of tight junction proteins could be involved, e.g. phosphorylation. Many 

tight junction proteins are subject to phosphorylation which can generally affect 

paracellular permeability. For instance, tyrosine phosphorylation of ZO proteins 

and occludin can occur under conditions that both favour tight junction formation 

(Van Itallie, Balda et al. 1995; Tsukamoto and Nigam 1999) or occur during loss of 

barrier formation in conditions like oxidative stress (Oldstone, Nerenberg et al. 

1991; Rao, Basuroy et al. 2002; Basuroy, Sheth et al. 2003). Likewise, claudin 

phosphorylation can result in either increase or decrease of permeability. Claudin-1 

phosphorylation was implicated in barrier function since mutation of the potential 

MAPK phosphorylation site Threonin 203 resulted in decreased TER in endothelial 

cells (Fujibe, Chiba et al. 2004).  Phosphorylation of claudin-4 at tyrosin 208 

increased paracellular permeability by attenuating its association with ZO-1 

(Tanaka, Kamata et al. 2005). In addition, serine 195 of claudin-4 was identified as 

a substrate for aPKC and this regulated barrier formation in human keratinocytes 

(Aono and Hirai 2008). Indeed, inhibition of aPKC by pseudo substrate application 

did abolish TER but did not affect tight junction component localization, reminiscent 

of E-cadherin deficient keratinocytes (Helfrich, Schmitz et al. 2007). Considering 

the mislocalization of phosphorylated aPKC in E-cadherin negative epidermis, it is 

tempting to speculate that E-cadherin mediates barrier formation by regulating 

aPKC at the tight junction. However, whereas overexpression of aPKC enhanced 

barrier formation in the study by Helfrich et. al, no rescue was obstained by 

overexpressing aPKC in Ecad-/- keratinocytes. If E-cadherin acts upstream by 

either recruiting or activating aPKC, increase of aPKCλ protein levels might not be 

sufficient. Attempts to test the requirement of aPKC membrane recruitment by 

expressing a membrane tagged aPKCcaax fusion protein failed due to lack of 

expression in keratinocytes.  

Rac1, an upstream activator of aPKC, was implicated in epidermal tight junction 

formation by regulating the Par complex (Mertens, Rygiel et al. 2005) and was 

found to be mislocalized in E-cadherin negative epidermis. Since E-cadherin is 

known to activate Rac1 in simple epithelia, these results favour the hypothesis that 

E-cadherin regulates tight junction via a Rac1-aPKC activation pathway. Indeed, 
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Ecad-/- keratinocytes displayed reduced Rac activity, showing that E-cadherin 

activates Rac1 in primary keratinocytes. However, expression of a constitutively 

active mutant RacL61 did not rescue barrier formation. This might be due to the 

fact that Rho family GTPases need fine tuned regulation at intercellular junctions, 

since either constitutively active or negative mutants interfere with tight junction 

formation (Jou, Schneeberger et al. 1998).  

PI3-kinase was proposed as a candidate to mediate cadherin dependent regulation 

of Rac1 (Kovacs, Ali et al. 2002), since it directly associates with E-cadherin and 

can by itself activate Rac1 (Reif, Nobes et al. 1996). In addition, PI3-kinase can 

associate with ZO-1 and affect tight junctional sealing (Woo, Ching et al. 1999). 

Potential influence of PI3-kinase on epidermal barrier formation was assessed by 

inhibiting its activity with Wortmannin. Interestingly, no impairment of barrier 

formation was observed, suggesting that, at least in stratifying keratinocytes, PI3-

kinase is not involved in epidermal barrier regulation. 

Rac1 is a regulator of the actin cytoskeleton and tight junction function depends on 

proper actin organization (Miyoshi and Takai 2008). However, phalloidin staining 

did not show any alterations in cortical actin recruitment in the absence of E-

cadherin, suggesting that tight junctions might be properly linked to the actin 

cytoskeleton. However, this method does not provide insights into possible 

changes in actin dynamics which could also influence tight junction function. 

Dynamic regulation of actinomyosin contraction has been implicated in the 

physiological regulation of tight junction permeability (Turner 2006). Especially 

phosphorylation of non muscle myosin II by myosin light chain kinase has been 

proposed to affect tight junction function via regulation of actinomyosin contractility 

(Shen, Black et al. 2006). To address the relevance of actinomyosin contraction, 

myosin ATPase activity was inhibited by Blebbistatin application. A dose 

dependent impairment of barrier function was observed, which was accompanied 

by severe disruption of the actin cytoskeleton. Interestingly, when Blebbistatin was 

applied at similar concentrations to wild type MDCK cells, no effect on TER was 

observed, whereas Blebbistatin treatment of ZO-1 knock down MDCK cells 

resulted in an increase in TER (Van Itallie, Fanning et al. 2009). This suggests 

tissue specific differences in the role of myosin in the regulation of tight junctions 

and indicates that proper actinomyosin contractility is critical during epidermal 

barrier formation in keratinocytes.  
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Taken together the data shows that E-cadherin is dispensable for structural tight 

junction formation, but required for the regulation of epidermal barrier formation by 

a not yet defined mechanism. 

 

3.2.3 Keratinocyte barrier formation depends on classical cadherin levels 

An important question remains whether there is a specific requirement for E-

cadherin in tight junctional barrier formation. Despite the upregulation of P-cadherin 

no barrier formed in the absence of E-cadherin, suggesting a specific function for 

E-cadherin. Alternatively, a reduction in overall classical cadherin levels, as judged 

by β-catenin expression levels, might be responsible if barrier formation is 

dependent on classical cadherin levels. Silencing of P-cadherin in control 

keratinocytes did not result in major impairment of tight junction function, showing 

that E-cadherin, which did not upregulate upon P-cadherin silencing, is sufficient 

for barrier formation and arguing for a specific role of E-cadherin. However, re-

expression of E-cadherin as well as over expression of P-cadherin in Ecad-/- 

keratinocytes rescued barrier function, showing that both molecules have the 

capacity to initiate barrier formation in a redundant manner. In addition, it suggests 

a requirement for classical cadherin levels. However, the possibility remains that 

regulation of tight junction function is specific function for both E- and P-cadherin. 

Other classical cadherins like N-cadherin need to be tested to verify whether 

functional regulation of tight junctions is indeed a common function of the  classical 

cadherin family.  

E-cadherin negative epidermis displayed normal intercellular adhesion and Ecad-/- 

keratinocytes are able to form desmosomes as well as structural tight junctions, 

suggesting that E-cadherin mediates barrier regulation via signalling, rather than 

providing physical cohesion. Thus, E-cadherin mediated tight junction regulation 

might be independent of its adhesive activity. The requirement for E-cadherin 

extracellular domain and whether recruitment of cytoplasmic binding partners is 

sufficient for barrier regulation was addressed by expression of the previously 

desribed IL2R-tail chimeric molecule. However, further increase of paracellular 

permeability was observed. In addition, phase contrast microscopy suggested 

impairment of intercellular contact formation, hinting at dominant negative effects of 

the construct towards cadherin mediated adhesion. 
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Taken together, either E- or P-cadherin is required for epidermal barrier formation, 

and cadherin levels that exceed the requirement for adherens junction and 

desmosome formation are needed for functional initiation of barrier formation, 

suggesting an overall requirement for classical cadherin levels in epidermal tight 

junction barrier formation. 

 

3.2.4 E-cadherin regulates claudin-14 expression  

Claudins mediate size and charge selectivity of the tight junction and several 

claudin isoforms can associate in a homophilic and heterophilic manner within a 

tight junction strand, thus determining permeability properties (Hewitt, Agarwal et 

al. 2006). Therefore, regulation of claudin gene expression might be a potential 

mechanism by which tight junctions are regulated. Indeed, a recent paper 

demonstrated that claudin-5 expression, critical for endothelial barrier formation, 

was directly dependent on VE-cadherin expression, showing that classical 

cadherins can directly take part in gene regulation (Taddei, Giampietro et al. 2008).  

The question whether E-cadherin participates in claudin regulation in an epidermal 

system was addressed by RT-PCR profiling of the different claudin variants. Only 

claudin-14 was consistently down regulated in the absence of E-cadherin in vivo 

and in vitro, showing that E-cadherin can take part in regulation of tight junction 

protein expression and presenting a potential mechanism how E-cadherin might 

regulate tight junctions. 

Mutations in the claudin-14 gene result in the nonsyndromic deafness DFNB29 in 

human, highlighting the importance of tight junctions in the hearing process 

(Wilcox, Burton et al. 2001). Claudin-14 knock out mice suffer from hearing loss 

and serve as a model for studies on DFNB29 related diseases (Ben-Yosef, 

Belyantseva et al. 2003). However, these mice are viable and don’t show any 

obvious skin phenotype, suggestive for an intact epidermal barrier. Since a 

complete knock out was analyzed in the study, compensation by other claudins 

could have taken place in these mice, since altered claudin isoform expression has 

been demonstrated upon deletion of claudin-9 and claudin-14 (Elkouby-Naor, 

Abassi et al. 2008). Importantly, claudin-14 was shown to assemble into functional 

strands when expressed in fibroblasts, resulting in formation of a paracellular 

barrier (Wattenhofer, Reymond et al. 2005). Thus, down regulation of claudin-14 
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might contribute to increased paracellular permeability in Ecad epidermis and 

keratinocytes. The question of the physiological relevance of claudin-14 in 

epidermal barrier formation was addressed by silencing its expression in control 

keratinocytes. ShRNA mediated silencing of claudin-14 up to 50% did not affect  

barrier formation, suggesting that either claudin-14 is dispensable for barrier 

formation, or that reminiscent claudin-14 protein was still sufficient to induce barrier 

formation. Claudin-1 expression was used as a control and was not affected in the 

different knock down clones. However, other claudins must be profiled to test 

whether compensation occurs via upregulation of other claudins. 

-/- 

A causal role of claudin-14 down regulation in the barrier dysfunction Ecad  

keratinocytes would predict that ectopic expression of claudin-14 in these cells 

would restore the tight junction barrier. However, no rescue of barrier formation 

was observed upon overexpression of human claudin-14. Instead, cell shape, level 

of stratification and ZO-1 localization was affected in hCl-14 expressing cells, 

which perhaps was caused by overexpression and thereby resulted in disturbance 

of tight junction homeostasis.  

-/-

Taken together, the downregulation of claudin-14 messenger RNA in the absence 

of E-cadherin suggests that E-cadherin can exhibit gene regulatory function in the 

epidermis. The precise relevance of claudin-14 in barrier function remains elusive, 

and better knock down efficiencies are needed in order to clarify its function. In 

addition, selection for lower claudin-14 expression levels might avoid 

overexpression artefacts in claudin-14 rescue experiments and might clarify 

whether claudin-14 downregulation is causing barrier dysfunction in the absence of 

E-cadherin. 
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Figure 28: Model and working hypotheses.  
Classical cadherin might regulate desmosome and tight junctional barrier formation on different 

levels. 

 

3.3 E-cadherin does not regulate keratinocyte proliferation and migration 

Growth and proliferation analysis as well as the analysis of the proliferative 

potential did not show any impairment of these processes in the absence of E-

cadherin. This was true for both low and high Ca2+ conditions, suggesting that E-

cadherin is not a critical regulator of keratinocyte proliferation. 

Migration analysis revealed that E-cadherin deficient keratinocytes do not show 

any changes in their capacity to migrate. The results show that loss of E-cadherin 

is not sufficient to cause any changes in the migratory properties of the 

keratinocytes, suggesting that it is not critically involved in their regulation. 

The analysis of P-cadherin knock down keratinocytes is required to show whether 

compensation by P-cadherin upregulation occurs, or whether classical cadherins 

are dispensable for keratinocyte growth regulation. 

The results show that loss of E-cadherin is not sufficient to induce an invasive 

phenotype in primary keratinocytes, suggesting that other mechanisms participate 

upon loss of E-cadherin in cancer cells. 
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4. Material and Methods 

 

4.1 Cell Culture and lentiviral transduction 

4.1.1 Isolation and culture of primary keratinocytes 

Epidermis of newborn pubs was separated from dermis by overnight trypsin 

digestion and subsequent mechanical stripping. Epidermis was chopped into 

peaces and agitated in low Ca2+ (50 µM) keratinocyte medium at 37 degree for 1 

hour. Cell suspension was plated on collagen type 1 coated dishes (0.03 mg/ml) in 

co-culture with a J2 3T3 fibroblast feeder layer. All experiments were performed on 

collagen type 1 coated dishes. 

 

Keratinocyte cell culture medium 

DMEM (FAD)-medium (Growth medium for keratinocytes) 

- 10 %    FCS, chelated 

- 0.4 μg/ml    hydrocortisone 

- 5 μg/ml    insulin 

- 10 ng/ml    epidermal growth factor (EGF) 

- 10-10 M    cholera toxin 

- 100 units/ml   penicillin and 100 μg/ml streptomycin 

- 2 mM    L-glutamine 

PBS: Dulbecco´s phosphate buffered saline without calcium and magnesium 

Trypsin: 1x trypsin/ EDTA 0.05 % (w/v) 

 

4.1.2 Splitting 

In order to split the cells growth medium was removed and the cells were washed 

twice with PBS and trypsinized for approximately 10 min at 37 °C. Trypsin activity 

was disabled by adding 3 fold amount of DMEM medium. The suspension was 

transferred into a 15 ml falcon and centrifuged at 800 rpm for 5 min. The 

supernatant was discarded and cells were resuspended in required volume of 

growth medium and plated on newly coated 6 cm dishes. 
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4.1.3 Differentiation and induction of intercellular contact formation by Ca2+ 
switch 

Confluent keratinocytes were differentiated by raising calcium level from 50 µM to 

1.8 mM and subsequent incubation for indicated time points. 
 

4.1.4 Production of lentivirus and lentiviral transduction 

Lentivirus for transgene expression was produced by lipofectamin 2000 

(Invitrogen) mediated co-transfection of TLA-HEK293T (Invitrogen) packaging cells 

with pCMVlenti lentiviral expression vector (gift from AG peifer, Bonn) and 

ViraPower packaging plasmid mix (Invitrogen). Transfection was performed 

according to the manufactures instructions.  Packaging cells were cultured in 

keratinocyte growth medium and virus containing supernatant was collected for 3 

subsequent days after transfection. Transduction was achieved by overnight 

incubation of primary keratinocytes in virus containing supernatant. Polybrene 

(5µg/ml) was added to enhance transduction efficiency. 

 

4.1.5 Lentiviral gene silencing by shRNA transduction 

Lentiviral Particles containing either specific shRNA sequences or non targeting 

control sequence (ntc) were purchased from sigma. Virus containing solution was 

added to keratinocytes medium. 48 hours after transduction, cells were selected by 

culturing in puromycin containing growth medium (1µg/ml). 

 

shRNA sequences: 

Silencing of mouse P-cadherin (NM_007665.1-3014s1c1):  

CCGGCCTGGTACATTTCTCTGACATCTCGAGATGTCAGAGAAATGTACCAGGT

TTTG 

Silencing of mouse claudin-14 (NM_019500.3-1295s1c1): 

Sh1: 

CCGGGACCAATGATGGATGTGGGAACTCGAGTTCCCACATCCATCATTGGTC

TTTTTG 
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Sh2: 

CCGGACGAATGACGTGGTGCAGAATCTCGAGATTCTGCACCACGTCATTCGT

TTTTTG 

Sh3: 

CCGGACAGGCTGAATGACTACGTGTCTCGAGACACGTAGTCATTCAGCCTGT

TTTTTG 

Sh4: 

CCGGCCCAGTGGCATGAAGTTTGAACTCGAGTTCAAACTTCATGCCACTGGG

TTTTTG 

Sh5: 

CCGGCCGGAGCTACCACCACGGCTACTCGAGTAGCCGTGGTGGTAGCTCCG

GTTTTTG 

 

4.2 Protein Analysis 

 

4.2.1 Immunoblot analysis of primary keratinocytes 

Cultured keratinocytes were lysed in NP40 buffer (1% NP40, 0.1% SDS, 0.5% 

deoxycholate, 150 mM NaCL, 50 mM Tris pH7.4). After 10 min of incubation on ice 

the cells were harvested with a cell scraper and transferred to a reagent tube. 

Lysates were cleared by centrifugation at 13000 rpm for 10 min at 4°C. Protein 

concentrations were determined using Bradford assay (Biorad). Lysates were 

diluted in Laemmli buffer and proteins were separated by SDS PAGE on either 7% 

or 4-12% precast gels (NuPage system) and transferred to nitrocellulose according 

standard blotting procedures. Membranes were blocked with 5% non fat dry milk 

(Haerschle) in TBS-T (0.1% Tween 20, 137 mM NaCl, 20 mM Tris pH 7.5) and 

incubated with the primary antibody diluted in blocking solution over night at 4°C. 

After 3 times washing in blocking solution, the membranes were incubated with the 

appropriate horseradish peroxidase coupled secondary antibody. Immunoreactive 

proteins were detected by enhanced chemiluminescence using either the 

SuperSignal West Pico or SuperSignal West Femto kit (Pierce). 
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4.2.2 Immunofluorescence analysis of keratinocytes 

Keratinocytes were plated in 24 well plates on glass collagen coated coverslips. 

Differentiation was induced by switching from low calcium medium (50 µM) to 

medium containing 1.8 mM calcium for the indicated timepoints. Cells were 

washed with PBS and fixed for 10 min with ice cold methanol, 4 % PFA/PBS or 

acetone, depending on the antibody used in the experiment. 4% PFA/PBS fixed 

cells were permeabilized by 5 min incubation with 0.5% Triton X-100/PBS. After 3 

rinses in PBS, unspecific binding sites were blocked with 1%BSA/PBS for 30 min. 

All antibodies were diluted in blocking solution and incubated for 1 hour at room 

temperature, followed by 3 washes in blocking solution for each 5 minutes. After 

washing, coverslips were incubated with approbriate secondary antibodies coupled 

to either Alexa 488 or Alexa 594. Nuclei were counterstained with either DAPI or 

propidium iodide. Coverslips were mounted with gelvatol on microscope slides 

(VWR).  An Olympus IX71 microscope in a Deltavision system was used for 

analysis (Precision Instruments). Images were taken using a Coolsnap HQ2 

Camera and processed with Adobe Photoshop. 

 

4.2.3 Rac GTPase activity assay 

Keratinocytes were lysed in NP40 buffer containing biotinylated PAK-CRIB peptide 

(0.025 mg/ml). All steps were performed at 4°C. Lysates were rotated for 45 

minutes and cleared by centrifugation at 13000 rpm for 10 minutes. After spinning, 

total lysate samples were taken, and 30 ml of streptavidin agarose was added to 

bind biotinylated PAK-CRIB/RacGTP complexes. After 30 minutes incubation, 

beads were pelleted by centrifugation at 6000 rpm for 30 seconds. The 

supernatant was removed and pellet was washed 3 times in lysisbuffer (w/o NP40). 

Pellet was collected in Laemmli buffer and heated to 95°C for 5 min followed by 

SDS-PAGE and immunoblot analysis. Blots were densitometrically quantified by 

using ImageJ software. 
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4.2.4 Antibodies and antisera 

 

4.2.4.1 Primary antibodies 

Antigen host Workin dilution clone number Company/Lab 

β-catenin 

monoclonal 
mouse 

WB 1:500 

IF 1:100 
14 BD Transduction labs 

Desmoglein ½ 

monoclonal 
mouse 

WB 1:500 

IF 1:100 
 progen 

Desmoglein 3 

monoclonal 
mouse WB 1:500 AK18 MBL 

Desmoplakin 

polyclonal 
rabbit 

WB 1:5000 

IF 1:50 
 Gift from Kathy green lab

E-cadherin 

monoclonal 
mouse WB 1:2000 C20820 BD Transduction labs 

p120ctn 

monoclonal 
mouse 

WB 1:1000 

IF 1:100 
Clone 98 BD Transduction labs 

Plakoglobin 

monoclonal 
mouse 

WB 1:100 

IF 1:5 
PG 5.1 Progen 

Plakophilin 3 

monoclonal 
mouse 

WB 1:1000 

IF undiluted 
310.9.1 Progen 

Claudin-1 

polyclonal 
rabbit IF 1:200  Zymed 

Claudin-4 

polyclonal 
rabbit IF 1:200  Zymed 

Occludin 

polyclonal 
rabbit IF 1:25  Zymed 

ZO-1 

polyclonal 
rabbit IF 1:100  Zymed 

Rac1 

monoclonal 
mouse WB: 1:1000 23A8 Sigma 

Actin 

monoclonal 
mouse WB: 1:20000 C4 MP Biomedicals 

Human Claudin 14 

polyclonal 
goat 

IF undiluted 

WB 1:10 
 Abcam 
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P-cadherin 

monoclonal 
rat 

WB 1:10 

IF undiluted 
PCD-1 Hybridoma supernatant 

Tricellulin 

polyclonal 
rabbit IF undiluted   

aPKCλ 

monoclonal 
mouse WB 1:250  BD Transduction labs 

p-aPKCλ 

polyclonal 
rabbit WB 1:250  Cell signaling 

 

4.2.4.2 Secondary antibodies 

Antigen host 
Workin 
dilution 

Company/Lab 

Alexa fluor 488 

anti‐mouse 
goat IF 1:500 Molecular probes 

Alexa fluor 488 

anti‐rabbit 
goat IF 1:500 Invitrogen 

Alexa fluor 594 

anti‐ rabbit 
donkey IF 1:500 Molecular probes 

Alexa fluor 594 

anti‐ rat 
donkey IF 1:500 Molecular probes 

Alexa fluor 594 

anti‐ mouse 
goat IF 1:500 Molecular probes 

IgG‐HRP 

anti‐rabbit 
goat WB: 1:5000 BioRad 

IgG‐HRP 

anti‐mouse 
goat WB: 1:5000 BioRad 

IgG‐HRP 

anti‐rat 
goat WB: 1:1000 DaKo 
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4.3 Barrier assays  

 

4.3.1 Trans epithelial resistance measurement (TER) 

500 000 Keratinocytes were plated on collagen 1 coated polycarbonate filter 

inserts (pore size 0.4 µm, Millipore) in a 24 well format. On day 1 after plating, 

junction and barrier formation was induced by Ca2+ switch and electrical resistance 

was measured at indicated time points by using the Millicell TER measurement 

system (Millipore). 

 

4.3.2 Paracellular diffusion of nonionic tracers 

500 000 Keratinocytes were plated on collagen 1 coated polycarbonate filter 

inserts (pore size 0.4 µm, Millipore) in a 24 well format. 72 hour after Ca2+ switch, 

the medium in the apical compartment was replaced by medium containing either 

FITC-Dextran 3kD (0.2 mg/ml) or FITC-Dextran 40kD (0.2 mg/ml) (Molecular 

Probes). After 2 hours incubation, 100 µl samples were taken from the basal 

compartment and fluorescence intensity was measured by using a Victor3 1420 

multilabel counter (Perkin Elmer). 

 

4.4 Electron microscopy 

 

4.4.1 Thin section transmission electron microscopy 

Thin section electron microscopy was performed by the laboratory of Willhelm 

Bloch (Deutsche Sporthochschule Köln). In brief, keratinocytes were plated on 

collagen coated foil and were cultured for 48h in medium containing 1.8 mM Ca2+ 

to allow for the establishment of intercellular junctions and incubated with biotin-

dextran (0.2 mg/ml) for 10 minutes. Cells were fixed in 0.1M PBS containing 4 % 

PFA and subsequently rinsed in 0.1 M PBS. Afterwards preparations were 

postfixed with 2% osmium tetraoxide in 0.1 M PBS for 2 hours at 4 °C. Before 

embedding in araldite (Ciba-Geigy, Basel, Switzerland) the cells were dehydrated 

in a graded series of ethanol. Ultrathin sections (60 nm) were mounted on formvar-
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coated copper grids, stained with 0.2% uranyl acetate and lead citrate, and then 

examined using a Zeiss (Jena, Germany) EM 902 A electron microscope. 

 

4.4.2 Freeze fracture electron microscopy 

Freeze fracture analysis of tight junction strands was performed by Susanne Krug 

in the laboratory of Michael Fromm (Charité, Berlin). In brief, keratinocytes were 

plated on filter inserts in a confluent manner and differentiated for 72 hours in high 

Ca2+. Samples were fixed in Glutaraldehye/PBS for 1 hour. Prior to freeze fracture, 

samples were stepwise dehydrated with first 10% glycerol and then 30% glycerol 

for each 30 minutes. After detachment of the cells from the filter with a scalpel, 

samples were transferred into the closable freeze fracture container, which was 

then frozen by Freon 22. The frozen container was then inserted into the pre-

cooled freeze fracture apparatus, where the container was opened under vacuum 

conditions (2*10-7 Torr, -100°C), leading to fracture of the epithelium. For contrast 

enhancement, fractured samples were evaporated with platinum and carbon and 

transferred to a copper grid for electron microscopy anaylsis. 

Images were taken with a Zeiss 902 electron microscope and pictures were 

analysed using the iTEM software(Olympus).  

 

4.5 Molecular cloning 

 

4.5.1 Bacterial Transformation 

The E.coli strain DH5α was cultured as described in Sambrook et al,, 1989. For 

transformation and production of chemically competent DH5α, the method of 

Hanahan was applied (Hanahan 1983).  

 

4.5.2 Recombinant DNA techniques 

The following recombinant standard DNA techniques were performed as described 

in Sambrook et al., 1989, or according to the manufacturers instructions: restriction 

digestion, T4 DNA ligation, dephosphorylation of DNA fragments, agarose gel 
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electrophoresis and elution of DNA fragments, phenol/chloroform extraction and 

ethanol precipitation. All DNA modifying enzymes (i.e. restriction enzymes, T4 DNA 

ligase, calf intestinal phosphatase, Klenow fragment polymerase) were purchased 

from New England Biolabs. DNA sequencing was performed by the service 

laboratory of the CMMC (Center for Molecular Medicine Cologne) and sequences 

were analysed using the gENTLE sequence analysis software (Magnus Manske, 

Cologne). 

 

4.5.3 Polymerase Chain Reaction (PCR) 

For several cloning strategies polymerase chain reactions were performed to 

amplify DNA fragments. The Pfu DNA polymerase (Stratagene) was used at a 

concentration of 0.1 U/µl in combination with 0.25 µM of both sense and antisense 

primers (MWG-Eurofin), 0.25 mM dNTP mix (Roche), 1x reaction buffer 

(stratagene) and 10 ng plasmid DNA as template in 50 µl reaction volume. The 

template DNA was denatured at 95°C for 2 min followed by 35 rounds of 

amplification each consisting of 1 min at 95°C, 1 min at the appropriate annealing 

temperature, and 2 min per kb length of the amplified DNA fragment at 72°C for 

elongation. Based on the number of specific nucleotides in the primer, the following 

formula was used to estimate the melting temperature of primers: 

Tm=2(A+T)+4(G+C). 

 

4.5.4 Constructs and cloning strategies 

All constructs were cloned into pCMVlenti vector which was kindly provided by 

Alexander Pfeifer (Bonn) and described in (Pfeifer, Kessler et al. 2001). The vector 

was provided as pCMVlenti-GFP. For all cloning strategies, GFP insert was 

removed by BamH I/Sal I digestion.  

 

pCMVlenti-Ecad 

mouse E-cadherin cDNA was sub-cloned from pBatem-E-cadherin by Bgl II/NrU I 

digestion. Both pCMVlenti vector backbone and E-cadherin insert were subjected 

to 5`overhang fill in reaction by using klenow polymerase and subjected to blunt 

end ligation. The correctness of insert orientation and sequence was confirmed by 

DNA sequencing. 
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pCMVlenti-Pcad 

P-cadherin cDNA was subcloned from pCDNA3 by Hind III/Xba I digestion, 

followed by Klenow polymerase fill in reaction to generate blunt ends. The purified 

insert was ligated into the pCMVlenti vector backbone. Correctness of sequence 

and orientation was confirmed by sequencing. 

 

pCMVlenti-IL2Rtail 

IL2Rtail was subcloned from pCMV-IL2Rtail by Nhe I/Xba I digestion, followed by 

klenow fill in reaction to generate blunt ends. The purified insert was ligated into 

the pCMVlenti vector backbone. Correctness of sequence and orientation was 

confirmed by sequencing. 

 

pCMVlenti-eGFP-aPKCλ 

eGFP-aPKCiota was amplified by PCR thereby introducing BamH I and Sal I 

restriction sites at the 5` and 3` termini, respectively. After purification of the PCR 

product and digestion with BamH I and Sal I, the insert was ligated into the BamH 

I/Sal I digested pCMVlenti. The correctness of the sequence was confirmed by 

sequencing. 

 

pCMVlenti-mycRacL61 

The mycRacL61 was subcloned from a pCS2+ vector by BamH I/Xho I digestion. 

After insert purification, mycRacL61 was directly ligated into the BamH I/Sal I 

digested pCMVlenti vector by compatible end ligation. The correctness of the 

sequence was confirmed by sequencing. 

 

pCMVlenti-hCl14 

Human claudin-14 cDNA was amplified by PCR from pLOX-Myc-GFP-claudin-14 

thereby introducing BamH I and Sal I restriction sites at the 5` and 3` termini, 

respectively. After purification of the PCR product and digestion with BamH I and 

Sal I, the insert was ligated into the BamH I/Sal I digested pCMVlenti. The 

correctness of the sequence was confirmed by sequencing. 
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4.6. Reverse transcription and Real time PCR 

 

4.6.1 RNA isolation from tissues and cells 

Isolation of RNA from epidermis and cultured keratinocytes was achieved by using 

RNeasy mini kit (Quiagen) according to the manufacturers instructions.  

 

4.6.2 cDNA synthesis 

For first strand cDNA synthesis of RNA, random primers in combination with 

Superscript II Reverse transcriptase (Invitrogen) was used according to the 

manufacturer’s protocol.  

 

4.6.3 Semi-quantitative RT-PCR 

Semi-quantitative RT-PCR was performed using REDTaq Readymix. 1µl of cDNA 

synthesis per reaction was used as Template and either 20, 25 or 30 cycles of 

amplification were chosen. 

 

4.6.4 Quantitative real time PCR 

Quantitative Real time PCR was performed in 96 well format using Power 

SYBRGREEN PCR mastermix (Applied Biosystems) with 1µl of cDNA synthesis 

reaction as template in 50µl reaction volumes.  Measurements were performed in a 

StepOne plus Real time PCR cycler system and results were analysed using the 

the StepOne analysis software (Applied Biosystems). 

 

4.6.5 RT-PCR primer list 

Gene Accession Sense primer Antisense Primer 

Cldn1 NM_016674 TCTACGAGGGACTGTGGATG TCAGATTCAGCAAGGAGTCG 

Cldn2 NM_016675 GGCTGTTAGGCACATCCAT TGGCACCAACATAGGAACTC 

Cldn3 NM_009902 AAGCCGAATGGACAAAGAA CTGGCAAGTAGCTGCAGTG 

Cldn4  NM_009903 CGCTACTCTTGCCATTACG ACTCAGCACACCATGACTTG 
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Cldn5  NM_013805 GTGGAACGCTCAGATTTCAT TGGACATTAAGGCAGCATCT 

Cldn6 NM_018777 CATTACATGGCCTGCTATTC CACATAATTCTTGGTGGGATATT 

Cldn7 NM_016887 AGGGTCTGCTCTGGTCCTT GTACGCAGCTTTGCTTTCA 

Cldn8 NM_018778 GCCGGAATCATCTTCTTCAT CATCCACCAGTGGGTTGTAG 

Cldn9 NM_020293 GTCACACTTTGAGCGTCCC CCTCTTATCCAGTCCCGAAG 

Cldn10 NM_021386 CCCAGAATGGGCTACACATA CCTTCTCCGCCTTGATACTT 

Cldn11 NM_008770 TCTGGTTTCCTGTATGTGCC CGTACAGCGAGTAGCCAAAG 

Cldn12 NM_022890 GTCCTCTCCTTTCTGGCAAC ATGTCGATTTCAATGGCAGA 

Cldn13 NM_020504 TAGTGTTGGCCTTCTGATGC AGCCAAGCAATGGGTTAAAG 

Cldn14 NM_019500 GCTCCTAGGCTTCCTGCTTA CTGGTAGATGCCTGTGCTGT 

Cldn15 NM_021719 CAGCTTCGGTAAATATGCCA CAGTGGGACAAGAAATGGTG 

Cldn16  NM_053241 GCCATATTCTCCACTGGGTT AGTCATCAGCGTTCACCATC 

Cldn17 NM_181490 TCGTTCTGATTCCAGTGTCC TCCTCCAAGTTCTCGCTTCT 

Cldn18 NM_019815 GACCGTTCAGACCAGGTACA GCGATGCACATCATCACTC 

Cldn19 NM_153105 ACCAGAATGAGGACCAGGAT TCCTTCAGCAAATACGTTGG 

Cldn23 NM_027998 TGTGCTTGAGGGAGAAGAAA TGGCAGAAGTTCAAGTCACC 

Tricellulin NM_019500 CTCCTTTTTTTCCAGAAACG ACATCATTCTGAAAACCGGC 

GAPDH NM_008084 TGCCCCCATGTTTGTGATG TGTGGTCATGAGCCCTTCC 

 

4.7 Cell migration analysis 

 

4.7.1 Single cell random migration 

30 000 keratinocytes were plated on collagen coated six well plate and monitored 

over time using phase contrast time lapse microscopy. Images were taken every 

15 min in standard tissue culture conditions (5% Co2, 32°C, 60% humidity) using 

an Olympus OBS CCD FV2T camera on an IX81 Olympus microscope. Single cell 

migration was analyzed over an 18 hour period using the tracking function of the 

CellR software package (Olympus). 
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4.7.2 Scratch assay 

Keratinocytes were plated in a confluent manner on collagen coated six well plates 

and differentiated for the indicated time points. Scratching was performed by a 

gentle stroke with a 200 µl pipette tip. Two hours before scratch, keratinocytes 

were treated with Mitomycin C (4µg/ml) to induce proliferation arrest. Images were 

taken every 15 min in standard tissue culture conditions (5% Co2, 32°C, 60% 

humidity) using an Olympus OBS CCD FV2T camera on an IX81 Olympus 

microscope. Scratch closure was quantified by measuring the decrease of cell free 

scratch area over time using the CellR software measurement tools (Olympus). 

 

4.8 Analysis of growth and proliferative potential 

4.8.1 Cell viability assay 

To indirectly assess growth, ATP detection based cell viability was measured in 

subsequent days after plating. 10 000 keratinocytes were plated in 96 well format. 

Up to 5 days after plating, ATP content was measured using the Cell titer Glo 

(Promega) luminescent viability assay according to the manufacturers instructions. 

Readings were taken by colorimetric measurement using a Victor3 1420 multilabel 

counter (Perkin Elmer). 

 

4.8.2 BrdU incorporation assay 

BrdU incorporation was measured by using the colorimetric Cell Proliferation 

ELISA, BrdU from Roche. 5000 Keratinocytes were plated in a 96 well format. 1 

Day after plating, cells were pulse labelled with BrdU for 3 hours. Measurements 

were taken according to the manufacturers instructions. 

 

4.8.3 Colony forming assay  

4000 keratinocytes were plated on collagen coated six wells in co culture with a 

J23T3 feeder layer. Cells were fixed with 1% PFA for 15 min and subsequently 

stained for 1 h with 0.05% crystal violet in PBS. Images of the plates were taken 

and colony size was measured using ImageJ software. 
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5. Abrreviations 
 
AJ    adherens junction / zonula adherens 

 

BSA          bovine serum albumin 

 

°C              degree Celsius 

 

cDNA         complementary DNA 

 

DAPI                              4′,6-Diamidino-2-phenylindol 

 

DNA                               deoxyribonucleic acid 

 

Dsc                                desmocollin 

 

Dsg                                desmoglein 

 

EC                               classical cadherin extracellular repeat 

 

E-Cad                            E-cadherin 

 

EDTA                             ethylenediaminetetraacetic acid 

 

EGF                                epidermal growth factor 

 

EGFR                             epidermal growth factor receptor 

 

ER    endoplasmic reticulum 

 

EMT    epithelial-mesenchymal transition 

 

Fig                                  figure 
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GFP     green fluorescent protein 

 

h                                     hours 

 

HRP                              horse radish peroxidase 

 

IDP                                inner dense plaque 

 

IL2R-tail                         interleukin 2 receptor-E-cadherin-tail 

 

IF                                   intermediate filament 

 

JAM    junctional adhesion molecule 

 

kD                                kilo Dalton 

 

KO                                 knock-out 

 

mg                                 milligram 

 

min                                minutes 

 

μl                                   microliter 

 

ml                                  milliliter 

 

μM     micromolar 

 

mM     millimolar 

 

ntc    non targeting shRNA control 

 

ODP     outer dense plaque 
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PAGE    polyacrylamide gel electrophoresis 

 

PBS     phosphate buffered saline 

 

P-cad     P-cadherin 

 

PCR     polymerase chain reaction 

 

PFA     paraformaldehyde 

 

PMSF    phenylmethylsulphonylfluorid 

 

RNA    ribonucleic acid 

 

rpm     rounds per minute 

 

SDS     sodium dodecyl sulphate 

 

sec     seconds 

 

TBS     tris buffered saline 

 

TER    trans epithelial resistance 

 

TJ    tight junction 

 

VH     vinculin homolog  

 

v/v     volume by volume 

 

w/v     weight by volume 
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