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  Summary 

Summary 

Placenta growth factor (PlGF), a member of the vascular endothelial growth factor 

(VEGF) protein family, is a critical regulator of vascular growth during processes of 

tissue remodelling including tissue repair and carcinogenesis. As reported for VEGF-A, 

the PlGF gene gives raise to different protein isoforms by mRNA splicing, which differ 

primarily in the presence or absence of a carboxyl-terminal domain, rich in basic amino 

acids (so called heparin-binding domain). The most abundantly expressed isoforms are 

PlGF-1 (lacking the heparin-binding domain) and PlGF-2 (expressing the heparin-

binding domain). Whereas in recent years the heparin-binding domain of VEGF-A165, the 

major VEGF-A isoform that shares 46% amino acid sequence identity with PlGF-2, has 

emerged as essential domain for VEGF-A function, up to date little is known about the 

functional relevance of this domain present in PlGF-2. The aim of this project was to 

investigate the functional impact of the heparin-binding domain for PlGF-mediated 

activities. 

rhPlGF-1 and rhPlGF-2 were synthesized in HEK293 cells and used to perform 

differential structural and functional in vitro and in vivo bioassays. Analysis of protease 

sensitivity revealed that rhPlGF-2 is a target of the serine protease plasmin. Western-

blot analysis and MALDI-TOF-mass-spectrometry of plasmin-digested rhPlGF-2 

fragments identified a specific plasmin cleavage site (Lys118-Met119) resulting in loss of 

the C-terminal domain comprising the heparin-binding domain encoded by exon 6 and a 

short stretch of eight amino acids encoded by exon 7. The biological relevance of 

proteolytic cleavage of rhPlGF was corroborated by identifying a rhPlGF-2 cleavage 

fragment in non-healing, poorly vascularized human skin wounds, that was consistent 

with plasmin mediated cleavage. To characterize the functional consequences of 

plasmin-mediated cleavage of rhPlGF-2, a truncated form of rhPlGF (PlGFStop) was 

generated, representing the plasmin-resistant N-terminal fragment (Leu1-Lys118). 

Chemotaxis and endothelial cell sprouting analysis revealed striking differences among 

the PlGF isoforms. Whereas rhPlGF-2 induced a robust chemotactic and endothelial cell 

sprouting response on HUVE and porcine endothelial cells stably transfected with 

Neuropilin-1 (PAE/Nrp-1), the activity of rhPlGF-1, plasmin processed rhPlGF-2 and the 

rhPlGFStop mutant was significantly attenuated. Furthermore, the induction of a 

vascularized granulation tissue in wounds of impaired healing diabetic mice could be 

significantly stimulated by topical application of rhPlGF-2, whereas application of 

rhPlGF-1 or rhPlGFStop showed weak effects. These findings indicate that the heparin-

binding domain of PlGF-2 stimulates endothelial cell functions in vitro and promotes 

angiogenesis in vivo. To unravel the underlying molecular mechanisms for the increased 
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biological potency of PlGF-2, binding to diverse extracellular matrix components and the 

VEGFR-1 co-receptor Nrp-1 as well as signalling pathways were investigated. 

Surface Plasmon Resonance spectroscopy demonstrated a high affinity of rhPlGF-2, but 

unexpectedly also of rhPlGF-1 for several glycosaminoglycanes (heparin, heparan 

sulphate and chondroitin sulphate). These findings indicate that the binding capacity of 

PlGF to the selected glycosaminoglycanes is dependent on the amino acids encoded by 

exon 7, which is present in both isoforms. The heparin-binding domain present 

exclusively in PlGF-2 appears not to be essential for binding of the investigated GAGs. 

rhPlGF-2 revealed a moderate binding to Nrp-1, which was significantly increased in the 

presence of heparin. The absence of the entire C-terminal domain encoded by exon 6 

and 7 (represented by the rhPlGFStop mutant) resulted in complete loss of any tested 

binding capacity. Activation of VEGFR-1 appears to be independent of the C-terminal 

domain, because all isoforms rhPlGF-2 and rhPlGFStop resulted in an activation of 

VEGFR-1 and its downstream targets Akt and Erk-1/-2. Analysis of signalling pathways 

in endothelial cells suggested that increased rhPlGF-2-induced cellular responses were 

in part mediated by increased activation of tyrosine kinases FAK (focal adhesion kinase) 

and Src family kinases. In addition, activation of both kinases was enhanced by Nrp-1 

overexpression and exposure of endothelial cells to collagen I.  

Collectively, our findings propose novel functions of the heparin-binding domain of PlGF-

2 and of the C-terminal domain of PlGF-1 and indicate that plasmin-mediated proteolysis 

is a major switch to control PlGF-mediated angiogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

 



  Zusammenfassung 

Zusammenfassung 

Der plazentale Wachstumsfaktor (PlGF), ein Mitglied der Familie der vaskulären 

endothelialen Wachstumsfaktoren (VEGF), ist bekannt als wichtiger Mediator für die 

Regulation des Gefäßwachstums während des Gewebeumbaus. Dies gilt in 

besonderem Maße für die Hautregeneration und Karzinogenese. Ähnlich wie für VEGF-

A gezeigt, wird die Expression von PlGF durch alternatives mRNA Splicing eines plgf-

Gens reguliert, und führt zur Bildung von verschiedenen Proteinisoformen. Diese 

unterscheiden sich maßgeblich durch alternative Expression einer stark basischen 

Domäne am Carboxylende des Proteins (Heparin-bindende Domäne). Bei den am 

häufigsten exprimierten Isoformen handelt es sich um PlGF-1 (ohne Heparin-bindende 

Domäne) und PlGF-2 (mit Heparin-bindender Domäne).  

Die Funktion der Heparin-bindenden Domäne von VEGF-A165 war in den letzten Jahren 

Forschungsgegenstand zahlreicher Untersuchungen, durch deren Ergebnisse die 

essentielle Rolle der Heparin-bindenden Domäne für die Aktivität von VEGF-A165 gezeigt 

werden konnte. Die Funktion der Heparin-bindenden Domäne von PlGF-2 hingegen 

blieb trotz hoher Sequenzhomologie zu VEGF-A165 (46%) bis heute weitgehend 

ungeklärt. Um die strukturellen und funktionellen Unterschiede zwischen rhPlGF-1 und 

rhPlGF-2 näher zu untersuchen, wurden diese Isoformen in HEK293 Zellen exprimiert 

und in verschiedenen in vitro und in vivo Experimenten charakterisiert. Untersuchungen 

der Proteasesensitivität von rhPlGF-2 ergaben, dass PlGF ein Zielprotein der 

Serinprotease Plasmin ist. Die daraus resultierende C-terminale Fragmentierung wurde 

mit Hilfe von Western Blot und MALDI-TOF-Massenspektroskopischer Analyse 

untersucht. Neben mehreren Schnittstellen innerhalb der Heparin-bindenden Domäne, 

konnte Lys118-Met119 als die am weitesten N-terminal gelegene spezifische 

Plasminschnittstelle identifiziert werden. Um die funktionellen Konsequenzen dieser 

proteolytischen Prozessierung von rhPlGF-2 näher zu untersuchen, wurde eine 

verkürzte Form von rhPlGF (PlGFStop) generiert, welche den plasminresistenten, N-

terminalen Bereich von PlGF umfasst (Leu1-Lys118). Vergleichende Untersuchungen von 

rhPlGF-1, rhPlGF-2 und rhPlGFStop bezüglich ihrer chemotaktischen Aktivität und ihrer 

Fähigkeit eine Gefäßaussprossung zu fördern, zeigten signifikante Unterschiede 

zwischen den einzelnen PlGF Isoformen auf. 

Während rhPlGF-2 eine deutliche chemotaktische Antwort in HUVE Zellen und 

Neurpilin-1-transfizierten Endothelzellen aus der Aorta des Schweins hervorrief und die 

Ausbildung von gefäßähnlichen Strukturen induzierte, zeigten sowohl rhPlGF-1, 

Plasmin-prozessiertes rhPlGF-2 als auch die mutierte Form rhPlGFStop eine klar 

verminderte Aktivität. Weiterhin förderte die topische Applikation von rhPlGF-2 in 
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Wunden von diabetischen Mäusen mit verzögerter Wundheilung eine signifikante 

Zunahme an vaskularisiertem Granulationsgewebe. Im Gegensatz dazu, wiesen rhPlGF-

1 und rhPlGFStop nur geringe Effekte auf. Zusammenfassend konnten die Ergebnisse 

eine klare Funktionalität der Heparin-bindenden Domäne von rhPlGF-2 aufzeigen, zum 

einen durch die Stimulation endothelialer Zellfunktionen in vitro  und zum anderen durch 

angiogenesefördernde Effekte in vivo. 

Um die zugrunde liegenden Mechanismen für die gesteigerte Bioaktivität von PlGF-2 zu 

identifizieren, wurde sowohl die Bindung der unterschiedlichen PlGF Isoformen an 

verschiedene Komponenten der extrazellulären Matrix und an den Korezeptor Nrp-1 

gemessen, als auch mögliche Signaltransduktionswege untersucht. Mit Hilfe von 

Surface Plasmon Resonance Spektroskopie wurde gezeigt, dass sowohl rhPlGF-2 als 

auch – unerwarteter Weise rhPlGF-1 - eine starke Affinität für verschiedene untersuchte 

Glykosaminoglykane (GAGs) aufweisen (Heparin, Heparansulfat, Chondroitinsulfat). 

Diese Ergebnisse lassen vermuten, dass die Interaktion zwischen PlGF und den 

untersuchten GAGs hauptsächlich durch die von Exon 7 codierten Aminosäuren 

vermittelt wird, welche in beiden Isoformen expremiert werden. Die Heparin-bindenden 

Domäne in PlGF-2 scheint nicht essentiell für eine Bindung an die untersuchten GAGs 

zu sein. Zusätzlich konnte eine moderate Bindung von rhPlGF-2 an Nrp-1 gemessen 

werden, die jedoch in Anwesenheit von Heparin signifikant um den Faktor 100 verstärkt 

wurde.  

Das Fehlen der C-terminalen Domäne (kodiert von Exon 6 und 7) in rhPlGFStop führte 

zu einem vollständigen Verlust der Bindungskapazität in allen durchgeführten 

Messungen. Diese C-terminale Verkürzung des Proteins scheint jedoch keinen 

maßgeblichen Einfluss auf die Bindung an den VEGFR-1 zu haben. Nach Stimulation 

mit rhPlGFStop oder rhPlGF-2 zeigten sowohl VEGFR-1, als auch die nachgeschalteten 

Signalproteine Akt und Erk-1/-2 eine vergleichbare Phosphorylierung. Eine 

weiterführende Analyse möglicher Signaltransduktionswege in Endothelzellen lässt 

darauf schließen, dass die durch rhPlGF-2 induzierte verstärkte endotheliale Zellaktivität 

teilweise durch eine Aktivierung der Tyrosinkinasen FAK (focal adhesion kinase) und Src 

vermittelt sein könnte. Zusätzlich konnte eine verstärkte Phosphorylierung dieser 

Kinasen bei Nrp-1 Überexpression und Collagen I Exposition beobachtet werden. 

Zusammenfassend konnten in dieser Arbeit neue Funktionen der Heparin-bindenden 

Domäne von PlGF-2 und der C-terminalen Domäne von PlGF-1 aufgezeigt werden. Die 

Ergebnisse legen die Vermutung nahe, dass die durch Plasmin vermittelte, C-terminale 

Proteolyse eine Schüsselkomponente für die durch PlGF induzierte Angiogenese 

darstellt. 
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1 Introduction 

1.1 Cellular and molecular mechanisms of vascular growth 

1.1.1 Vasculogenesis and angiogenesis 

Two distinct processes that partly overlap and complement one another accomplish the 

formation of a vascular network. Vasculogenesis mainly describes the formation of a 

primitive vascular network during embryonic development. Arising from mesodermal stem 

cells, angioblasts migrate to the place of blood vessel formation, differentiate into endothelial 

cells (Fig 1a), and form lumen-containing vascular network (Drake 2000, Risau 1995). 

During early development, vessel formation occurs in extra-embryonic as well as in intra-

embryonic tissue (Ferguson 2005). Later on, angioblasts migrate to the developing organs, 

assemble, and form vascular tubes (Coffin 1991, Ash 2000). As cell migration is essential for 

vessel development, guidance has to be ensured by a highly regulated pattern of growth 

factors and other regulatory proteins in time and space (Hiratsuka 2005, Shoji 2003, 

Tomanek 2006). 

 

                
Figure 1: Blood vessel growth in development and disease. (a) Blood vessels are formed by 
two mechanisms that complement each other: vasculogenesis and angiogenesis. Both processes 
are critical for the development of the embryonic vasculature. In adult physiology (e.g. wound 
healing) and under pathological conditions (e.g. tumorigenesis) remodelling of vessels mainly 
involves angiogenesis but may be supported by vasculogenesis. Vasculogenesis involves the 
coalescence of endothelial precursors (angioblasts) into loose chords. These cells differentiate into 
endothelia to form tubes and a primitive network. Angiogenesis involves sprouting and branching of 
new vessels from pre-existing ones. (b) To stabilize vessel structure, pericytes are recruited to 
newly formed vessels. (Modified: Harvey, Academic Press, 1999) 

a) b) 
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In contrast to vasculogenesis, during angiogenesis new vessels are not formed de novo 

but by sprouting and branching from pre-existing vessels (Fig 1a). Angiogenesis takes 

place during development to enlarge the primary and primitive network formed by 

vasculogenesis as well as under physiological and pathological conditions in adult beings. 

Under physiological conditions, the proliferation rate of endothelial cells is low and 

angiogenesis is observed only in female reproduction tract and during skin regeneration. 

As endothelial cells are in a quiescent state under normal conditions, they have to be 

activated and re-programmed during early stages of angiogenesis (Folkman 2006). 

Induced by hypoxia and the transcription factors Hypoxia Inducible Factor-1α (HIF-1α), 

HIF-2α und HIF-3α, endothelial cells and other cell types are activated and start to express 

a subset of angiogenic growth factors such as Vascular Endothelial Growth Factor-A  

(VEGF-A), Hepatocyte Growth Factor (HGF), Platelet Derived Growth Factor (PDGF), 

among others. This release results in endothelial cell proliferation and directed migration, 

recruitment of endothelial progenitor cells and their interaction with provisional and 

interstitial extracellular matrices (Cheresh 2008). In addition, these factors recruit pericytes 

and leukocytes to promote formation and stabilization of mature vessels (Harris 2002, 

Elson 2001, Vincent 2000) (Fig 1b). 

In order to promote directed migration to areas of newly forming vessels, endothelial cells 

from existing vessels lose their cell-cell contacts resulting in increased migration and an 

increased vascular permeability (Potter 2005). This permeability further supports 

recruitment of cells from the circulation, but is also essential to provide a provisional matrix 

formed by plasma-derived proteins leaking out of the blood to promote migration and 

invasion. To allow endothelial cell invasion into this provisional matrix, activated 

endothelial cells express a specific subset of integrins and proteases to recognize 

substrate molecules and degrade the basal membrane and components of the 

extracellular matrix, respectively.   

 

During vascular growth, a precise architecture is essential to ensure adequate supply of 

oxygen and nutrients. The outgrowing vascular sprout is guided by a single specialized 

endothelial cell, unique by tip structures with potential functions in guidance and migration 

(Marin-Padilla, 1985). These tip cells are highly polarized and form multiple extensions 

and dynamic filopodia (Ruhrberg 2002) to sense guiding cues in their surroundings and to 

migrate to these cues (Fig 2). High levels of VEGFR-2 are localized to tip cell filopodia, 

and tip cells maintain their active migratory phenotype in respond to VEGF gradients. They 

are followed by stalk cells, which form vacuoles to generate lumen and exhibit a 

proliferative state to prolong the newly formed vessel (Gerhardt 2003). Once the new 

vessel is formed endothelial cells become quiescent, form tight junctions and make 
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contact to recruited pericytes and therefore stabilize and mature the vessel.       
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Figure 2: Vascular sprouting. Induced by a VEGF-A gradient, specialized tip cells guide the 
expanding sprout by exploring the environment for gradients of guiding cues. It is followed by 
proliferating stalk cells, which form the sprout and generate lumen. Once covered with pericytes, 
endothelial cells become quiescent and strengthen their cell-cell contacts.  
 
The Delta-like4 (Dll4)-Notch pathway has been identified as regulator to determine tip cell 

and stalk cell fate. Using different experimental models, several groups were able to 

demonstrate, that blockage of Dll4 activity by pharmacological inhibitors or heterozygous 

genetic inactivation resulted in an increase of vascular density due to an increase in tip cell 

number and vascular sprouts. On the contrary, increased Notch activity led to a decreased 

vascular density due to a reduced number of tip cells (Hellstrom 2007, Lobov 2007, 

Siekmann 2007, Suchting 2007). The Dll4-Notch pathway appears to be closely connected 

to VEGF–VEGFR-2 signalling, which upregulates the expression of Dll4 in tip cells. High 

levels of Dll4 in the tip cell are able to activate Notch1 in the adjacent stalk cells, causing 

suppression of the tip cell phenotype. In addition, Notch inactivation through deletion of 

Dll4 has been shown to result in a reduction of VEGFR-1 levels (Hellstrom 2007, Suchting 

2007). Notch signalling may therefore block tip cell formation by regulating the levels of 

VEGFR-1. Its activity as a decoy receptor therefore may antagonize VEGFR-2 function 

(Waltenberger 1994). Indeed, disruption of soluble VEGFR-1 (s-Flt1) levels increased 

sprout bifurcation and filopodia numbers relative to wild type vessels (Cappell 2009). 

 
1.1.2 The role of growth factors in angiogenesis 

Due to a high metabolic demand for nutrients and oxygen in skin during tissue repair after 

injury, angiogenesis is very active and pushed by pro-angiogenic factors secreted by 

keratinocytes and other skin cell types. In contrast to this, cutaneous vessels are 

quiescent and obtain their required oxygen from vasculature located in the dermis. The 
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balance among pro- and anti-angiogenic factors is disturbed in several cutaneous 

diseases like psoriasis, rosacea, different tumor types, and photo-damage, in which pro-

angiogenic factors are upregulated by hypoxia, inflammatory cytokine-derived signals, or 

mutation, resulting in pathological angiogenesis (Malhotra 1989, Velasco 2002, Streit 

2003, Yano 2003). 

Among pro-angiogenic factors, angiopoietins, fibroblast growth factor (FGF), transforming 

growth factor-β (TGF-β), and the members of the VEGF family play key roles in the 

regulation of angiogenesis as well as lymph-angiogenesis (Folkman 1987, Keck 1989, 

Yang 1990, Suri 1996). 

VEGF-A, the most prominent member of the VEGF family acts as a potent mitogen, 

chemoattractant and survival factor for endothelial cells and strongly increases vessel 

permeability (Dvorak 1995, Yuan 1996, Gerber 1998, Asahara 1999, Yamashita 2000). 

Constitutively expressed at low levels in skin, VEGF expression is upregulated under 

physiological or pathological conditions connected to angiogenesis by – among other 

stimuli – hypoxia. VEGF-A gradients have been described as one of the key component 

for tip cell formation and vascular sprouting (Gerhardt 2003). 

Angiopoietins have been identified as endothelial specific growth factors. Especially 

Angiopoeitin-1 (Ang-1) appears to play an essential role in angiogenesis and has an 

additive effect on VEGF activity. Involved in the interaction between endothelial cells and 

pericytes, it maintains vessel stability and protects endothelial cells from apoptosis via 

binding to its tyrosine kinase receptor Tie-2 (Suri 1996, Wong 1997, Papapetropoulos 

2000). As its counterpart, Ang-2 is highly upregulated at sites of active angiogenesis to 

destabilize existing vessels and thereby allows endothelial cell migration and vascular 

sprouting (Maisonpierre 1997).   

Among the large family of fibroblast growth factors (FGF), FGF-1 and especially FGF-2 

(basic FGF) are implicated in angiogenesis (Friesel 1995). During wound healing, both 

isoforms are synthesized by a variety of cell types, including inflammatory cells, 

endothelial cells, and dermal fibroblasts (Schweigerer 1987, Kandel 1991, Blotnick 1994). 

During the early phase of healing, they promote endothelial cell proliferation and 

differentiation (Kanda 1996) and enable their migration by upregulation of the urokinase-

type plasminogen activator (uPA) (Gualandris 1995). At later stages, FGF-2 has been 

demonstrated to induce αVβ3 integrin expression on endothelial cells to further facilitate 

their migration (Sepp 1994).  

Due to its strong and multipotent effects, TGF-β is one of the most important modulators of 

angiogenesis during wound healing by regulation of cellular proliferation, migration, 

capillary tubule formation, deposition of extracellular matrix and upregulation of integrin 

expression (Yang 1990, Enenstein 1992, Kingsley 1994, Collo 1999). As TGF-β is also 
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involved in granulation tissue formation and was shown to increase growth factor release 

from dermal fibroblasts (Kim 2001, Trompezinski 2000), the strong response for 

angiogenesis may be – in part – caused by other factors.  

 

1.1.2.1 The VEGF family and its receptors 

VEGF is one of the most prominent factors for the regulation of embryonic vasculogenesis 

and adult angiogenesis (Ferrara 1997, Neufeld 1999, Ferrara 2003). It was discovered in 

tumor cells of guinea pigs as a factor to regulate vascular permeability and endothelial 

cell-specific mitogen (VPF, vascular permeability factor) (Dvorak 1979, Senger 1983, 

Ferrara 1989). Knockout studies in transgenic mice revealed its essential role for 

embryonic vasculogenesis. Homozygous as well as heterozygous deletion of the VEGF-A 

allele resulted in embryonic lethality at embryonic day (E) 9.5-10.5 and E 11-12 

respectively, due to severe defects in vascular and cardiovascular development (Ferrara 

1996, Carmeliet 1996). 

Structurally, the VEGF family members belong to the VEGF/PDGF super-gene family, 

among which a cysteine knot motive of eight cysteine residues is conserved. Two of these 

cysteines generate intermolecular cross-linked disulfide bonds and are responsible for 

dimerization (Muller 1997), whereas the remaining six cysteines form intramolecular 

disulfide bonds and three loop structures (Wiesmann 1997). Up to date, the VEGF family 

includes VEGF-A, PlGF (placenta growth factor), VEGF-B, VEGF-C, VEGF-D, VEGF-E 

and svVEGF (snake venom VEGF). The molecular and biological functions of each ligand 

have been well characterized.  

One of the characteristics of the members of this protein family is, that their expression is 

regulated by alternative mRNA splicing of a single gene and therefore results in different 

isoforms with modified binding properties and biological activities due to the presence or 

absence of a heparin-binding domain (Fig 3).  
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Figure 3: Schematic overview on VEGF-A and PlGF isoforms. Alternative exon splicing results in 
the generation of several isoforms of VEGF-A and PlGF. Differential expression of a highly basic heparin-
binding domain (exon6/7 in blue for VEGF; exon 6 in red for PlGF) regulates matrix binding capacity and co-
receptor recruitment. (Modified: Takahashi, Clinical Science 2005). 

 
1.1.2.2 The Vascular Endothelial Growth Factor (VEGF-A) 

In human, the VEGF-A gene (6p21.3) (Vincenti 1996) is organized into eight exons (Houck 

1991, Tischer 1991) and differential splicing results in expression of at least nine secreted 

isoforms: VEGF-A121, VEGF-A145, VEGF-A148, VEGF-A162, VEGF-A165, VEGF-A165b, VEGF-

A183, VEGF-A189 and VEGF-A206 (Bates 2002, Lange 2003; Fig. 3). VEGF-A is expressed 

in endothelial cells, macrophages, activated T-cells and a variety of other cell types 

(Freeman 1995, Ferrara 1997, Melter 2000), but mechanisms that are responsible for the 

regulation of isoform levels are unknown so far. Predominantly, these cells secrete VEGF-

A121, VEGF-A165 and VEGF-A189. The isoforms differ in their binding capability to heparin, 

heparan sulphate and other components of the extracellular matrix due to alternative 

expression of two highly basic domains coded by exon 6 and 7 (heparin-binding domain) 

and therefore are regulated in their extracellular localization. VEGF-A121 is lacking these 

domains and freely diffusible, whereas the most prominent isoform VEGF-A165 additionally 

expresses exon 7 and owns an increased binding capacity. This binding strength is further 

amplified by the expression of exon 6 and 7 in VEGF-A189, which is completely 
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sequestered in the extracellular matrix upon secretion (Ferrara 1989, Keck 1989, Leung 

1989, Ferrara 1997). The heparin-binding domain appears to be essential to provide 

spatial restricted stimulatory cues by gradient formation to initiate vascular branching. Mice 

expressing exclusively VEGF-A120 (murine VEGF is shorter by one amino acid) die shortly 

after birth, exhibit a specific decrease in capillary branch formation and suffer from severe 

defects in retinal vascular outgrowth and pattering. VEGF-A164 mice are healthy and 

normal, and retinal angiogenesis is not affected. Mice expressing exclusively VEGF-A188 

have a normal venular outgrow but exhibit an impaired arterial development in retinas, 

dwarfism and other defects (Carmeliet 1999, Maes 2002, Ruhrberg 2002, Stalmans 2002). 

These results underline the distinct roles of the different VEGF-A isoforms for vascular 

patterning and arterial development, although VEGF-A164 occupies a central role for 

vascular development. 

Besides formation of tissue gradients caused by differential binding strength, anchorage in 

the extracellular matrix provides a possibility for storage of growth factors. From this depot, 

they can be released by proteolytic cleavage of the heparin-binding domain. It has been 

shown for VEGF-A165, that proteases like plasmin, urokinase and matrix 

metalloproteinases are able to process VEGF-A165 resulting in the loss of the heparin-

binding domain and release of bioactive VEGF-A core-fragments (Plouet 1997, Lee 2005, 

Roth 2006). Several publications dealing with this topic have demonstrated that proteolytic 

processing may result in a decrease of VEGF-A165 isoform-specific biological activity (Keyt 

1996, Lauer 2000, Lee 2005, Roth 2006). In addition to its capability to bind to matrix 

molecules, heparin-binding isoforms are able to bind and recruit co-receptors (Soker 

1998).  

 

The biological activities of VEGF-A (in special VEGF-A165) are various and mostly 

mediated by the activation of VEGFR-2 (Waltenberger 1994). As one of the most 

important players for developmental angiogenesis and haematopoiesis, it ensures 

survival, proliferation, differentiation and migration/chemotaxis of precursor cells (Gerber 

2002, Kubo 2003, Schattenman 2004) and regulates the formation of a proper vessel 

network by gradient formation and tip cell guidance of sprouting vessels (Ruhrberg 2002, 

Gerhardt 2003). In adult stages, VEGF-A and its receptors are upregulated in a variety of 

pathological processes and therefore are targets of several clinical studies. They play a 

major role in tumor angiogenesis, diabetic retinopathy, and progression of rheumatoid 

arthritis (Carmeliet 2001, Luttun 2002, Zhao 2004). Furthermore, VEGF-A plays an 

essential role in physiological and pathological wound healing (Lauer 2000, Roth 2006). 

VEGF-A induces vascular leakage, vessel vasodilatation and recruitment of myeloid cells 

to induce inflammation (Senger 1983, Ku 1993, Broxmeyer 1995, Dvorak 1995), 
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underlining that a balance of VEGF-A, its receptors and regulators are essential under 

physiological and pathological conditions, postnatally. 

Expressed at low levels during skin homeostasis, the expression of the VEGF-A gene is 

increased in areas of hypoxia that are characterized by active angiogenesis. Hypoxia 

induces VEGF-A expression by stabilization of HIF-1α, which in turn is able to form a 

transcriptional complex with the nuclear HIF-1β subunit and to bind to specific VEGF-A 

enhancer elements to increase VEGF-A expression (Ikeda 1995, Stein 1995, Pugh 2003). 

Additionally, VEGF-mRNA stability is increased under hypoxic conditions. This is achieved 

by several proteins binding to the 3`untranslated region of the VEGF mRNA and thus 

protects it from degradation (Levy 1998, Onesto 2004). Beside hypoxia, several growth 

factors such as PDGF-BB (Finkenzeller 1997), KGF (Keratinocyte Growth Factor), EGF 

(Epidermal Growth Factor), (Frank 1995), FGF-4 (Deroanne 1997), TGF-β (Pertovaara 

1995), IGF-1 (Insulin Growth Factor; Goad 1996), interleukin-1β and interleukin-6 (Li 1995; 

Cohen 1996) might be involved in VEGF-A expression.  

Immunohistological and in situ hybridization analysis identified epidermal keratinocytes 

and infiltrating macrophages as the principal VEGF-A source during skin repair, but in vitro 

analysis revealed that also platelets, neutrophils, fibroblasts and mast cells might provide 

additional VEGF-A sources during wound angiogenesis (Brown 1992, Fukumura 1998; 

Kishimoto 2000). During skin repair VEGF-A activity is involved in a variety of processes, 

including vascular permeability, recruitment of inflammatory cells to the site of injury, 

migration and proliferation of resident endothelial cells as well as recruitment of bone 

marrow derived endothelial precursor cells (Brown 1992; Nissen 1998; Galiano 2004; 

Weis and Cheresh, 2005). Its role during tissue repair was first demonstrated in diabetic 

mice that are characterized by an impaired angiogenesis and healing response. These 

mice exhibited a significant decrease in VEGF-A mRNA and intracellular VEGF-A protein 

level during the repair process (Frank 1995). These data therefore provided a causative 

link between decreased VEGF-A activity, impaired wound angiogenesis and delayed 

healing. In addition, VEGF neutralizing antibodies caused a striking reduction in wound 

angiogenesis, fluid accumulation, and granulation tissue formation in the pig (Howdieshell 

2001). Recently, cell-specific ablation of VEGF-A expression in the epidermis supported 

an important role of epidermal-derived VEGF-A for wound closure (Rossiter 2004). 

Together, these data provide substantial evidence that VEGF-A activity is a crucial 

regulator of wound repair in skin. 
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1.1.2.3  The Placenta Growth Factor (PlGF) 

Placenta growth factor (PlGF) was discovered in early 1990 by Maglione et al. in human 

placental tissue where the PlGF gene (14q24.3) is highly expressed (Maglione 1991), but 

expression can also be detected in a variety of other tissues (Persico 1999). As VEGF-A, 

PlGF is secreted as an N-glycosylated, anti-parallel homodimer but it also forms 

heterodimers with other family members to change or fine-tune angiogenic signals 

(DiSalvo 1995; Cao 1996a). VEGF-A/PlGF heterodimers bind to the VEGFR-2 or to the 

VEGFR-1/VEGFR-2 heterodimer receptor complex (Autiero 2003). 

Although PlGF only shares 46% sequence identity to VEGF-A, both proteins exhibit a 

related structure (Iyer 2001). Similar to VEGF-A, the expression of the human PlGF gene 

gives rise to different secreted isoforms by alternative mRNA splicing which differ in their 

binding properties and biological activities due to the presence or absence of a basic 

heparin-binding domain. Up to the present, four isoforms have been identified: PlGF-1 

(PlGF131), PlGF-2 (PlGF152), PlGF-3 (PlGF203), and PlGF-4 (PlGF224) (Maglione 1993, Cao 

1997, Yang 2003; Fig 3). PlGF-2, the most abundant isoform expressed in human and the 

only isoform expressed in the mouse, is able to bind to heparin and other molecules of the 

extracellular matrix (Hauser 1993, Mamluk 2002) as well as to the co-receptors Neuropilin-

1 and -2. This binding is predicted to be highly dependent on the expression of a basic 

heparin-binding domain coded by exon 6 (Migdal 1998, Gluzman-Poltorak 2000, Mamluk 

2002). This idea was supported as PlGF-1, in which this exon is spliced, failed to bind to 

heparin-sepharose and only slightly competed with PlGF-2 for the binding to Nrp-1. 

Interestingly, the same authors demonstrated that synthetic peptides of the heparin-

binding domain (exon 6) as well as of the sequence of exon 7 are able to compete with 

PlGF-2 for its binding to Nrp-1 (Migdal 1998). The exact role of the heparin-binding domain 

for the interaction between PlGF and Nrp-1 therefore remains to be elucidated. PlGF-3 is 

identical to PlGF-1, but additionally exhibit a 72 amino acids sequence inserted between 

exon 4 and 5. The sequence of PlGF-4 reflects that of PlGF-3, but it accessorily expresses 

the heparin-binding domain coded by exon 6 and therefore might have similar extracellular 

matrix binding properties as PlGF-2 (Cao 1997, Yang 2003). The function and biological 

activity of PlGF-3 and -4 remain to be investigated.  

 

The biological relevance of PlGF for angiogenesis was demonstrated by classical loss or 

gain of function studies. Carmeliet et al. demonstrated in a complete knock-out mouse 

(PlGF-/-), that loss of PlGF resulted in impaired postnatal plasma extravasion, 

angiogenesis and collateral growth during wound healing, ischemia, inflammation and 

cancer, whereas embryonic angiogenesis was not affected (Carmeliet 2001). Furthermore, 

this group demonstrated that the absence of PlGF reduced vascular leakage induced by 
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skin wounding, allergens, and neurogenic inflammation. These findings suggest that 

inhibition of PlGF might be an attractive tool to reduce vascular leakage in various 

diseases (Luttun 2002). In contrast, overexpression of PlGF in skin under the control of the 

keratin-14 promoter (K14-PlGF) led to enhanced branched and enlarged vessels in skin 

(Odorisio 2002). Moreover, ear microvasculature of transgenic mice was characterized by 

neo-angiogenesis-associated phenomena, such as collateral vessel emission, 

intussusceptions and numerous varicosities resembling the glomeruloid bodies as 

described in VEGF-A-induced and tumor-associated angiogenesis (Sundberg 2001).  

 

As seen for VEGF-A, PlGF expression is low during skin homeostasis and strongly 

upregulated in the angiogenic phase of wound healing, temporally overlapping with VEGF-

A expression. It is induced by EGF, TGF-α, TGF-β and interleukin-6 and is expressed in 

both migrating keratinocytes and the endothelial cells of small blood vessels within the 

wound bed (Failla 2000). PlGF was found to strongly induce directed migration of VEGFR-

1 expressing cells, particularly endothelial cells and monocytes/macrophages, and to 

potentiate VEGF-A activity, in vitro and in vivo (Park 1994; Clauss 1996). In addition to 

local effects on pre-existing endothelial cells, PlGF is capable to recruit and mobilize 

VEGFR-1+ haematopoietic precursor cells from the bone marrow (Hattori 2002) to promote 

healing progression during wound healing. In later phases of healing, PlGF promotes 

vessel maturation by recruitment of smooth muscle cells/pericytes (Ishida 2001, Luttun 

2002) and acts as a survival factor for endothelial cells and macrophages (Adini 2002).  

With respect to pathological angiogenesis, PlGF is expressed by melanoma cells and in 

tissue specimen of both primary and metastatic tumors in culture (Graeven 2000, Lacal 

2000). VEGFR-1, Neuropilin-1 and Neuropilin-2 are also transcribed by cultured 

melanoma cells and treatment with PlGF induces tumor cell proliferation, indicating that 

PlGF might contribute to melanoma growth through an autocrine mechanism (Lacal 2000). 

Expression of PlGF and VEGFR-1 appears to be essential for tumor angiogenesis and 

tumorgrowth. In α2-integrin knock out mice, VEGFR-1 expression is significantly 

upregulated on microvascular endothelial cells in the tumor microenvironment when 

challenged with B16F12 melanoma cells, resulting in a significant increase in tumor 

angiogenesis and growth compared to wild type mice. Interestingly, B16F12 cells exhibit a 

strong expression of PlGF, but low levels of VEGF-A. Contrary, when challenged with 

Lewis lung carcinoma cells (LLC; low levels of PlGF, high levels of VEGF-A), no α2β1 

integrin dependent differences were observed. Transfection of LLC with PlGF restored 

these differences and increases tumor angiogenesis and growth (Zhang 2008). 

In addition, PlGF is upregulated in acute cutaneous inflammation. Overexpression of PlGF 

in the skin of transgenic mice is able to elicit an increased and prolonged inflammatory 
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reaction when treated with a sensitizing agent. This reaction is less intense and shorter in 

PlGF-deficient mice compared to wild-type mice (Oura 2003). These findings indicate that 

PlGF plays a role in inducing the inflammation-associated vascular response. 

Although being dispensable for the formation of a primary vascular network and fetal 

angiogenesis (Carmeliet 2001), PlGF has a strong impact on physiological and 

pathological angiogenesis in adult. Different mechanisms may be involved: PlGF may 

induce signal transduction on its own by activation of VEGFR-1, resulting in a variety of 

cellular responses (as described above) as well as in the expression of a large set proteins 

including growth factors, receptors and proteases (Autiero 2003). These signals may be 

even enhanced by recruitment of co-receptors. Another possibility is that PlGF may 

increase VEGF-A mediated activities by displacing VEGF from VEGFR-1, making it 

available to activate VEGFR-2 (Hiratsuka 1998, Fong 1999). Recent reports also indicate, 

that activation of VEGFR-1 by PlGF binding is able to trans-phosphorylate the VEGFR-2 

receptor, resulting in an amplified VEGF-A activity (Autiero 2003). Besides its homodimeric 

activities, several publications report on VEGF-A/PlGF heterodimer biological activity 

(DiSalvo 1995; Cao 1996a). In vivo evidence indicated that VEGF-A/PlGF heterodimers 

induce vascularization in a corneal micro pocket assay and stimulate myocardial 

angiogenesis to an extent comparable to that of VEGF-A (Cao 1996b, Autiero 2003). By 

the formation of VEGFR-1/VEGFR-2 heterodimeric receptors (Autiero 2003) and/or 

differential recruitment of co-receptors depending on the isoform configuration in the 

heterodimer, the VEGF-A-mediated activity may be further driven. 

 

 
1.1.2.4 VEGF receptors and Neuropilin 

To promote angiogenesis and/or lymph-angiogenesis, the members of the expanding 

VEGF family act through one or more VEGF-tyrosine kinase transmembrane receptors 

(VEGFR; Ferrara 2003). These RTKs (receptor tyrosine kinase) belong to the same 

subclass of receptors as receptors for PDGFs and fibroblast growth factors (FGFs). Up to 

date, three VEGF receptors have been identified (named VEGFR-1, VEGFR-2, VEGFR-

3), which share sequence homology and structural features (Shibuya 1990, Alitalo 2002). 

Approximately 750 amino acids form an extracellular domain, which is organized into 

seven immunoglobulin (Ig)-like folds. It is followed by a single membrane spanning helix, a 

juxtamembrane domain, a split tyrosine-kinase domain interrupted by a 70-amino-acid 

kinase insert and a C-terminal tail. The isoforms of VEGF-A are able to bind VEGFR-1 and 

VEGFR-2 to mediate their angiogenic activities, whereas PlGF-1 and PlGF-2 bind to 

VEGFR-1, exclusively. 

In addition to the VEGFRs, heparin-binding domain-expressing family members are able 

to recruit co-receptors of the Neuropilin family (Nrp) (Fig 4). 
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Figure 4: Schematic representation of interactions between VEGF family members and their 
receptors. Complex network of interactions of VEGF family members with transmembrane and 
soluble VEGFR-1, VEGFR-2, and Nrp. Interaction between receptor and ligand may be enhanced 
by heparan sulphate-proteoglycans (HSPG). (Modified: Olsson, Nature Reviews 2006). 
 

1.1.2.4.1 VEGFR-1 

The VEGFR-1 (Flt-1; Fms-like-tyrosine-kinase-receptor-1) functions as receptor for VEGF-

A, -B, and PlGF. Its role has been discussed controversially for a long time. The affinity of 

VEGF-A to VERGR-1 is approximately one magnitude higher than its affinity to VEGFR-2 

(de Vries 1992, Terman 1992, Sawano 1996), but VEGFR-1 auto-phosphorylation is 

barely detectable in response to VEGF-A (de Vries 1992). Its essential role for embryonic 

angiogenesis has been demonstrated by formation of unorganized vasculature and 

endothelial overgrowth in VEGFR-1 deficient mice, resulting in embryonic lethality (Fong 

1999). Interestingly, its tyrosine kinase activity appears to be uninvolved in these defects 

as mice lacking the tyrosine kinase domain (VEGFR-1 TK-/-) were healthy and developed 

almost normal vessels (Hiratsuka 1998). This raised the theory, that VEGFR-1 may act as 

a “decoy”-receptor. By trapping VEGF-A and therefore preventing binding to VEGFR-2, it 

may weaken VEGF-A mediated angiogenic signals (Hiratsuka 1998, Fong 1999). 

Nevertheless, macrophages in these mice exhibit a defective migratory responsiveness for 
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VEGF-A.  

VEGF-A and PlGF exhibit overlapping binding-interfaces to immunoglobulin (Ig)-like 

domain 2 of VEGFR-1 (Christinger 2004, Errico 2004) but in contrast to VEGF-A, PlGF-

glycosylation (Asn84) participates in PlGF binding to VEGFR-1. Interestingly, not all amino 

acids located in the ligand interface of VEGFR-1 are identical for PlGF and VEGF-A 

(Wiesmann 1997, Iyer 2001). The affinity of VEGFR-1 for VEGF-A (KD, 1–20 pM) is higher 

than that for PlGF-1 and -2 (KD, about 200 pM) (de Vries 1992, Terman 1992, 

Waltenberger 1994, Sawano 1996, Yamazaki 2006). Similar to VEGFR-2, immunoglobulin 

(Ig)-like domains 4-7 are involved in receptor dimerization and activation (Shinkai 1997, 

Tanaka 1997). 

Activation of VEGFR-1 by either PlGF or VEGF-A induces tyrosine phosphorylation in the 

tyrosine kinase domain of VEGFR-1. Even though VEGF-A165 increases VEGFR-1 

phosphorylation, it appears not to alter gene expression in cells. In contrast, PlGF induced 

phosphorylation results in up- or downregulation of the expression of more than 50 target 

genes. These genes include receptors, protease inhibitors, and transcription factors 

involved in proliferation (Ets2, Map4k4, Fst, Jak2, Egr1), apoptosis (Birc2) or angiogenesis 

(Nrp2, Angptl4, Dcn, Flt1) (Autiero 2003). Furthermore, it appears to mediate vascular 

permeability, cell survival, and migration in response to VEGF-A and PlGF (For review see 

Shibuja 2006) 

The downstream signalling of VEGFR-1 to mediate biological activities and distinct gene 

expression is not completely understood, mainly due to the mild biological activity of this 

receptor in culture. Several auto-phosphorylation sites in VEGFR-1 have been identified at 

Tyr1169, Tyr1213, Tyr1242, Tyr1309 Tyr1327, and Tyr1333 by analysis of point mutations 

(Cunningham 1995; Sawano 1997, Ito 2001). Tyr1213 exhibits the highest degree of auto-

phosphorylation in response to VEGF-A, and appears to be involved in a variety of 

signalling pathways (Fig 5). In addition, Tyr1309 is activated exclusively by PlGF. Its role 

and induced signal transduction remains to be elucidated (Autiero 2003). These 

phosphorylation sites serve as binding sites for SH2 domain-binding proteins (identified by 

two-hybrid analysis) and have been shown to activate the downstream targets PLC-γ 

(phospholipase C-γ), SHP-2 (Src-homology-2-domain-containing PTP2), Grb-2 (growth-

factor-receptor-bound-2), PI3K (Phosphatidyl-inositol-3-kinase, p85 subunit), Nck and Crk 

in response to VEGF-A (Cunningham 1997, Igarashi 1998, Ito 1998, Ito 2001; Fig 5).  
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Figure 5: Schematic overview of phosphorylation sites of VEGFR-1 and intracellular 
mediators Binding of SH2 domain containing signal transduction molecules to different 
phosphorylated tyrosine residues in intracellular domains of homodimeric VEGFR-1. Positions of 
the tyrosine residues are indicated by amino acid numbers and by an encircled Y. Auto-
phosphorylation sites are indicated by an encircled P. Ps in yellow circles represent major 
phosphorylation sites. (Modified: Matsumoto, Science, 2001). 
 

Activation of VEGFR-1 by PlGF was demonstrated to induce a variety of signal 

transduction pathways to promote angiogenesis and wound healing. In monocytes, the 

activation of PI3K and its downstream targets Akt and Erk-1/-2 has been demonstrated to 

be involved in PlGF mediated chemotaxis. This activation was clearly reduced by 

corresponding inhibitors as well as function blocking antibodies against VEGFR-1 

(Tchaikovski 2008). Furthermore, VEGFR-1 was demonstrated to be directly linked to FAK 

signalling. Lesslie and colleagues identified the family of Src-kinases as linker between 

VEGF-A mediated VEGFR-1 signalling and integrin signalling, resulting in specific 

activation of FAK and p130Cas (Lesslie 2004).   

During collateral growth, VEGF-A and PlGF have been demonstrated to activate vascular 

smooth muscle cell (VSMC) proliferation by activation of VEGFR-1 and induction of the 

MAPK-cascade (Parenti 2002). In addition, VEGFR-1 mediates tube formation and 
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survival of endothelial cells when activated by PlGF (Cai 2003). These cellular activities 

appear to be - at least in part – dependent on a prolonged activation of PI3K signalling und 

an increase in Bcl-2 expression. 

 

1.1.2.4.2 Neuropilin 

To modulate the activities transduced via either VEGFR-1 or -2, the heparin-binding 

isoforms of the VEGF family are able to recruit co-receptors. Originally identified as a co-

receptor for class 3 semaphorines to promote axonal guidance in Xenopus laevis 

(Fujisawa 1995), the members of the Neuropilin (Nrp) family have been demonstrated to 

increase angiogenic signalling induced by VEGF and its family members by enhancing 

VEGFR mediated activities (Klagsbrun 2002). Nrp-1 and -2 are transmembrane 

glycoproteins of 923 and 926 amino acids (130-140 kDa) respectively, and share a similar 

domain structure as well as an overall amino acid homology of 44% (Chen H 1997). Its 

large extracellular domain contains two CUB [complement binding factors C1s/C1r, Uegf, 

BMP1 (bone morphogenetic protein 1)] (a1/a2) domains, two factor V/VIII homology 

(b1/b2) domains (Takagi S 1991) and a MAM (meprin, A5 antigen, receptor tyrosine 

phosphatase µ) domain responsible for receptor dimerization. It crosses membrane with a 

single transmembrane domain and owns a short cytoplasmic tail without any enzymatic 

activity.  
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Figure 6: Structural model of Nrp interaction to VEGF-A165 or PlGF-2. Model represents the 
interactions at the core of the ligand-binding interface (b1/b2). The heparin-binding domain of 
VEGF-A165 and PlGF-2 directly interacts with the b1 domain via the terminal residues, encoded by 
exon 8/7, and also couples heparin and Nrp binding. (Modified: Vander Kooi, PNAS, 2007) 
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The three amino acids closest to the C-terminus constitute the SEA domain (Ser-Glu-Ala), 

a PDZ domain-binding motif to mediate association with NIP1 (neuropilin interacting 

protein-1) (Cai 1999). 

The binding of VEGF family members to Nrp-1 was predicted to be highly dependent on 

the expression of the heparin-binding domain as seen for VEGF-A165 and PlGF-2, and to 

be enhanced by heparin (Soker 1995, Migdal 1998). Surprisingly, recent publication 

identified VEGF-A121 as a binding partner for Nrp-1 (Pan 2007a). Among others, the 

authors identified the amino acids coded by exon 8 (DKPRR) of VEGF-A as the critical 

determinant for a direct binding to Nrp-1 and confirmed an interaction independent of the 

heparin-binding domain. This interaction of VEGF-A121 and Nrp-1 revealed an affinity, 

which was comparable to that of VEGF-A165 (KD values of 120 and 220 nM for VEGF-A165 

and VEGF-A121, respectively) (Pan 2007a). Interestingly, the sequence coded by exon 7 of 

PlGF (GDAVPRR), which is common to all isoforms, reveals striking similarities to exon 8 

in VEGF-A. Although this peptide was found to compete with the binding of PlGF-2 to Nrp-

1 in cross-linking experiments (Migdal 1998), a function for exon 7 of PlGF for the binding 

to Nrp-1 was rarely discussed in the last years. These findings raise the possibility that all 

PlGF isoforms might bind to Nrp-1. Nevertheless, critical determinants for interaction 

between PlGF and Nrp-1 remain to be elucidated. 

The direct binding site of VEGF-A and PlGF is located in the b1/b2 domain of Nrp-1, as 

revealed by domain specific binding experiments (Mamluk 2002). This binding of either 

VEGF-A165 or PlGF-2 has been demonstrated to be further enhanced in the presence of 

heparin. As heparin is bound directly via the b1/b2 domain, it was concluded that heparin 

is a critical component for the regulation of VEGF-A165 and PlGF-2 interaction with Nrp1. 

The presence of a heparin-binding domain seems to be involved in Nrp-1 binding and – of 

more importance – appears to be crucial for its activity as co-receptor (Vander Kooi 2007). 

To promote optimal interaction of VEGF-A165 or PlGF-2 with Nrp-1, a 22- saccharide 

fragment or a 24 monosaccharide is required, respectively (Mamluk 2002, Robinson 

2006). The ligand bound heparin-induced dimer of b1/b2 domain likely works in concert 

with the MAM domain in orienting Nrp to activate VEGF receptors (Vander Kooi 2007). In 

conclusion, these data strongly argue for a general binding capacity for Nrp-1 binding 

among VEGF-A and PlGF isoforms. Nevertheless, Nrp-1 recruitment to the VEGFRs 

appears to be highly dependent on the presence of the heparin-binding domain and 

binding of heparin or other GAGs. According to this model, the recent finding that Nrp-1 

itself can be heparan sulphate or chondroitin sulphate modified on a serine between the 

b2 and the MAM domains suggests a self-organized active Nrp subform (Shintani 2006).  

Several experimental settings have confirmed the role of Nrp-1 as an enhancer of VEGF-

A165 or PlGF-2 induced activities by co-activation of either VEGFR-1 or -2 to promote 
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cellular responses (Murga 2005, Becker 2005), but exact mechanisms remain to be 

elucidated. Recent publications demonstrated a direct role of Nrp-1 in VEGF-A induced 

phosphorylation of p130Cas and endothelial cell migration (Evans 2011). Furthermore, Nrp-

1 was shown to interact directly with integrins to promote its internalization and rapid 

recycling and therefore migration (Valdembri 2009). 

Its essential role for vessel formation during development was demonstrated by 

overexpression of Nrp-1 in mice. Beside abnormalities of the nervous system, these mice 

exhibited an excessive capillary outgrowth, haemorrhages, and malformed hearts 

(Kitsuwaka T 1995). On the contrary, homozygous deletion of Nrp-1 (Nrp-1-/-) resulted in 

embryonic lethality between E 10 and E 13.5 due to a defective vascular development 

(Kawasaki 1999, Takashima 2002). Furthermore, Nrp-1 contributes to tumor growth, as 

induction of Nrp-1 expression in tumor cells in vivo resulted in larger and more 

vascularized tumors (Miao 2000). Strong evidence point to a role of Nrp-1 in cell migration, 

adhesion and morphogenesis in response to VEGF-A, as neutralizing antibodies that 

specifically prevent VEGF-A binding to Nrp-1 blocked endothelial cell sprouting and neo-

vascularization in vitro (Pan 2007b). Interestingly this treatment also prevented pericyte 

recruitment, suggesting a role of Nrp-1 in maturation and stabilization of new vessels. In 

addition, Nrp-1 appears to be involved in tip cell guidance in newly sprouting vessels. 

Analysis of vascularization in the developing hindbrain of Nrp-1−/− mice revealed, that tip 

cell filopodia remain associated with radial glia in the subventricular zone of the hindbrain 

and fail to move laterally across this region, forming characteristic tufts (Gerhard 2004). 

These findings indicate that Nrp-1 may not be essential for endothelial cell migration, or for 

elaboration of the cellular migratory apparatus, but rather for determining the trajectories of 

migrating cells, similar to its path-finding and homing role in neuronal patterning. 

 
 
1.1.3 The role of the extracellular matrix for angiogenesis 

The extracellular matrix is critical for all aspects of vascular biology. It includes the 

interstitial matrix and the basement membrane, and has to be adjusted to cellular 

requirements as it regulates intracellular communication as well as cell’s motile behaviour. 

Although gradients of cytokines or other agonists are essential to drive chemotactic 

migration, such directed motility is dependent on endothelial cell adhesion to extracellular 

matrix. Furthermore, it appears that some extracellular matrix molecules involved in 

sprouting angiogenesis are capable to support haptotactic migration by themselves 

(Dejana 1985, Senger 2002). In this context, interstitial collagen has been demonstrated to 

be highly effective in promoting haptotactic migration in vitro. Thus, sprouting endothelial 

cells may migrate in response to both chemotactic gradients of angiogenic cytokines and 

haptotactic gradients of extracellular matrix molecules (Senger 1996, Senger 2002). 
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Beside migration, extracellular matrix molecules support endothelial cell proliferation and 

survival, which is highly dependent on adhesion through integrins (Meredith 1997, 

Giancotti 1999). 

During wound healing, fibroblasts deposit a complex provisional wound matrix consisting 

of glycosaminoglycans, proteoglycans, collagen III, thrombospondin, fibronectin, and 

vitronectin, which promote migration, endothelial tube formation and vessel growth (Eming 

2007). The cellular response to these molecules is mediated by a specific set of cellular 

adhesion molecules (integrins), resulting in cytoskeleton re-organization and outside-in 

signalling (Midwood 2004). During vascular morphogenesis, endothelial cells have to 

organize themselves into multi-cellular structures. In this context, the extracellular matrix 

serves as an elastic 3D scaffold in which individual endothelial cells and clusters of 

endothelial cells can transduce mechanical forces to other endothelial cells at a 

considerable distance. Thus, by generating mechanical, contractile forces within the 

extracellular matrix, endothelial cells are able to establish tension-based guidance 

pathways that allow them to form interconnected cords. These guidance pathways provide 

a mechanism for endothelial cells to organize into cords at a distance without the initial 

requirement of cell-cell contact (Vernon 1995, Davis 1996). In addition to mechanical 

force, components of the extracellular matrix have an important signalling function on 

cellular shape and contractility: in vitro experiments on endothelial cells revealed a drastic 

effect of collagen I on its morphogenesis. Added to confluent monolayer, cells started to 

form solid cords and matured into tubes with hollow lumens (Montesano 1983, Davis 

1996). 

 

Blood vessel endothelial cells are anchored to the basement membrane, a dense 

polymeric sheet that is crucial for the proper function of blood vessels. It is known that 

removal of some of the major components of the basement membrane results in leakiness 

of the vessels (Poschl 2004). The major constituents of this polymer structure are 

laminins, nidogens, collagen IV, the heparan sulphate proteoglycan perlecan, and other 

macromolecules. In addition, basement membranes often contain collagen XV/XVIII and 

fibronectin. The main collagens expressed in small vessels are collagen IV, XV, and XVIII. 

Additional collagens are localized in smooth muscle layer around larger vessel, e.g. 

collagen VIII, XII, and XIV. Networks consisting of polymerized laminins and collagen IV 

act as a primary scaffold around which the rest of the basement membrane constitutes. 

Linker proteins such as nidogens interconnect both networks (for review see Yurchenco 

2004).  

The major laminin isoforms in vascular endothelial basement membranes are laminin 411 

and laminin 551 (for review see Hallmann 2005). Loss the of laminin α4 chain in knockout 
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mice revealed a general delay in basement membrane formation and a weakening of the 

capillary basement membrane, resulting in haemorrhages (Thyboll 2002). Due to 

embryonic lethality of laminin α5 knockout mice, its role for angiogenesis remains open. 

Beside their structural role, laminins are involved in processes as cell migration, 

differentiation, and proliferation (Colognato 2000, Li 2006).  

Perlecan is a multi-domain proteoglycan that interacts with almost all of the other 

components in the basement membrane and therefore stabilizes its structure. Interaction 

is predominantly mediated by heparan sulphate side chains that are attached to domains I 

and V (for review see Knox 2006). This GAG chains are also important to sequester and 

store growth factor such as FGF-2.  

During neo-angiogenesis, new vessels sprout out of existing vessels and grow along a 

growth factor gradient. To mediate this outgrowth, endothelial cells have to degrade the 

basement membrane and the surrounding extracellular matrix by expression of proteases, 

mainly metalloproteases, serine- and cysteine-proteases (for review see Roy 2006). Since 

endothelial cells are in continuous contact with the matrix, it is not surprising that the 

interaction with different molecules either supports or inhibits the cells (i.e. in cell migration 

or cell proliferation). This can be viewed as a balanced system that both forms new blood 

vessels and prevents overgrowth.  

 

1.1.3.1 The role of integrins 

Beside on growth factor stimulation, angiogenesis is highly dependent on outside-in 

signalling mediated by integrins. These heterodimeric transmembrane cell-surface 

receptors specifically bind to components of the extracellular matrix and therefore link it to 

the intracellular cytoskeleton. Composed of one α and one β subunit, subunit assembly is 

responsible for substrate specificity and resulting cellular behaviour. Integrins have a 

major impact on cellular functions such as survival, cell-cycle progression, substrate 

adhesion and cell migration. As angiogenesis is strongly dependent on components of the 

extracellular matrix, involvement of integrins during vascular remodelling and development 

is not surprising. On quiescent endothelial cells, integrins α1β1, α2β1, α3β1, α5β1, α6β1, α6β4, 

and αvβ5 are expressed (Stupack 2002) and mediate the attachment to laminins, 

collagens, fibronectin or vitronectin. This expression profile changes with induction of 

angiogenesis, and integrin expression is adapted to interact with proteins of the provisional 

matrix by upregulation of α1β1, α1β2, α6β1 and αvβ3 (Stupack 2002; Lee 2006) to promote 

endothelial cell migration. In addition, binding of collagen I to α1β1 and α2β1 provokes 

endothelial cell morphogenesis and formation of cord-like structures (Senger 1997, 

Whelan 2003). Upregulation of α1β1 and α2β1 in part appears to be dependent on VEGF-A. 

Furthermore, these integrins have been shown to be directly involved in VEGF-A induced 
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angiogenic activity, as antibodies that block α1 and α2 substantially inhibited VEGF-A 

induced angiogenesis without affecting the pre-existing vasculature (Senger 1997). 

Overlapping with a change of integrin expression pattern, activated endothelial cells 

secrete a set of proteases to degrade the basement membrane and components of the 

extracellular matrix to promote vascular sprouting (for review see Roy 2006). Caused by 

the degradation of the basement membrane, endothelial cells are exposed to underlying 

interstitial collagens. This exposure results in α1β1 and α2β1 integrin activation and the cells 

start to invade the extracellular matrix. Integrin activation results in a marked induction of 

actin polymerization, this process contributes to the formation of prominent stress fibres, 

endothelial cell contractility, and initiation of capillary morphogenesis. The degradation of 

extracellular matrix molecules also results in the exposure of matricryptic sites to 

endothelial cell adhesion receptors (Davis 2000). One of the critical matricryptic sites 

present in e.g. fibronectin, collagens and vitronectin is Arg-Gly-Asp (RGD) (Ruoslahti 

1996, Newby 2008, Astrof S 2009). The RGD motive can bind to α5β1 and αvβ3/αvβ5 

integrins and thus has an impact on endothelial cell adhesion, migration, proliferation, 

survival and cell–cell interactions during angiogenesis (Ramjaun 2009). Requirement of 

αvβ3 for angiogenesis was demonstrated by its inhibition by either function blocking 

antibodies or cyclic RGD-peptides. This inhibition selectively induced apoptosis of 

activated endothelial cells (Brooks 1994a; Brooks 1994b). 

 

1.1.3.2 Growth factor-matrix interactions 

The role of interaction between growth factors and molecules of the extracellular matrix 

has a strong impact on inflammation, vascular morphogenesis and remodelling during 

wound healing. For VEGF and many other growth factors, matrix-binding properties are 

regulated by alternative splicing and generation of isoforms with distinct affinities for 

specific extracellular matrix molecules and an altered diffusability. Expression of a varied 

isoform subset allows a spatially regulated activity. Beside regulation of isoform 

expression, matrix bound isoforms can be released by proteases expressed by 

inflammatory cells and subsequent proteolytic processing. Taking VEGF-A as an example, 

plasmin and a subset of MMPs can cleave the C-terminal region of the protein to release a 

bioactive growth factor from its anchorage site in the extracellular matrix (Lee 2005). By 

this release, levels of soluble and matrix bound VEGF-A are modulated, which has been 

demonstrated to have an impact on either increased vessel size or sprouting 

angiogenesis. This was confirmed by experiments using engineered VEGF-A forms. 

VEGF-A113, mimicking the soluble, processed VEGF-A induced a vascular network with 

low density and poor branching, whereas a mutant VEGF-A, resistant to plasmin or MMP 

cleavage resulted in thin and highly branched vessels (Lee 2005). Although the exact 
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mechanisms remain to be elucidated, differential activity among soluble and bound VEGF-

A on endothelial cell response appear to involve VEGFR-2 clustering, increased receptor 

internalization and alteration of downstream phosphorylation kinetics (Chen 2010).  

Beside storage, release and regulation of bioavailability, binding to matrix molecules has 

been demonstrated to be essential for the activation or inhibition of certain growth factors. 

The association of TGF-β to thrombospondin-1 (TSP-1) is pivotal for its physiological 

relevant activation (Young 2004). On the contrary, binding of VEGF-A to TSP-1 inhibits its 

activity (Greenway 2007). 

 

1.1.4 The role of cell-cell communication 

To induce angiogenesis and restore skin homeostasis after injury, a variety of structures 

have to be re-organized to promote processes such as cellular re-programming and 

differentiation or migration and proliferation. In this context, cell-cell contacts are essential, 

as they trigger intracellular responses either to maintain homeostasis or – by disturbance 

of interaction or alteration of surface receptor expression – to induce specific cellular 

activities. 

During blood vessel homeostasis, two types of specialized endothelial junctional 

complexes maintain the barrier function of endothelial cells. Tight junctions are organized 

by claudins, occludins, and junctional adhesion molecules, whereas adherens junctions 

are organized by catenins and cadherins, mainly VE-cadherin (Dejana 2009). Together, 

the extracellular associations of these complexes and their intracellular linkage to the 

cytoskeleton maintain and actively regulate the vascular barrier (Dejana E 2008). Induced 

by inflammatory stimuli, an enhanced vascular permeability by untightening junctional 

complexes enables an increased deposition of provisional matrix by leakage from the 

blood and infiltration of leukocytes into the tissue. Disruption of barrier function was shown 

to be induced by VEGF-A mediated clatrin-dependent internalization of VE-cadherin 

(Gavard 2006). Besides an increasing permeability, loosening of cell-cell junctions is a 

prerequisite for cells to migrate (Potter 2005). Furthermore, VEGF-A signalling drives the 

turnover of focal adhesions and re-organization of the cytoskeleton resulting in a loss of 

cell polarity and induction of proliferation. Changed in their cellular features and molecular 

expression pattern, these activated endothelial cells are enabled to infiltrate into the tissue 

to form new vascular sprouts. 

 
To stabilize the newly formed sprout, its maturation by direct interaction between 

endothelial cells and pericytes is essential. Pericytes are recruited to the vessel by PDGF-

B (Hoch 2003), which in binding to the PDGFR-β induces the proliferation of pericytes and 

their migration along the nascent vessel (Hellstrom 1999). PDGF-B in turn is secreted by 



Introduction   

 

                                                                       22 

tip cells (Gerhardt 2003) and localized to the growing vessel’s wall by binding to heparan 

sulphate proteoglycans (Abramsson 2007). Between the two cell types, cell-cell contacts 

are established, which allow communication between the cells (Armulik 2005). As single 

pericytes often interact with several endothelial cells through these contacts, they may 

integrate and coordinate adjacent endothelial cell responses (Armulik 2005). 

 

1.2 Tissue repair and regeneration 

Tissue repair and/or regeneration following injury ensure the survival of a variety of 

organisms. The optimal process to handle tissue defects is regeneration, as it represents a 

replacement of lost or damaged tissue with an exact copy, such that both morphology and 

functionality are completely restored. Although it can be found in all organisms, the 

capability for regeneration decreases with the grade of evolutionary development of 

organisms. In mammals, the capability for regeneration is restricted to a few tissues like 

liver, bones, and nerve cells. A variety of stem cells can be found in adult that can 

differentiate in various cell types, and are under intense investigation as they may help to 

develop therapies and regenerate injured or lost tissue.  

In contrast to regeneration, repair is the more common mechanism to correct tissue 

defects. Although it restores the direct defects and in part the main function of the injured 

tissue, a complete restoration of function and shape is not achieved (an example is scar 

formation in skin in mammals). Interestingly, injured embryos heal scar less, which in turn 

means that wound healing of mammals in embryonic stages reflects regeneration rather 

than repair.  

 

1.2.1 Skin morphology 

The functions of skin are various but it mainly protects the inner organs from the 

surrounding environment. Beside protection from mechanical, chemical and UV-damage, 

and its role in thermoregulation, it mainly acts as a barrier to regulate water loss and to 

protect from microorganisms. Besides passively protecting from pathogens, it hosts 

components of the humoral, cellular and complement immune response. Furthermore, it 

also acts as a sense organ and mediates mechanical, thermal, chemical and pain 

impulses.  
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Figure 7: Schematic composition of human skin (©Terese Winslow, 2008) 
 

Adult skin consists of two tissue layers, a keratinized stratified epidermis, and an 

underlying thick layer of collagen-rich dermal connective tissue providing support and 

nourishment, both separated by a basal membrane (Fig 7). The dermis ensures reversible 

flexibility and tensile strength by a dense network of collagen fibers and other components 

of the extracellular matrix. In addition, these molecules prevent water loss due to their 

negative charge (Rook`s Textbook of Dermatology, 2008). Although derived from the 

epidermis, appendages like hairs and glands project deep into the dermal layer. Besides a 

dense network of capillaries and lymph vessels to ensure supply of both layers with 

nutrients, nerve endings, several cell types like fibroblasts and cells of the immune system 

(lymphocytes, macrophages, and mast cells) are located in the dermis. 

The epidermis functions as the actual barrier of the organism to the environment and 

undergoes a constant flow of proliferation, differentiation, and desquamation. To ensure 

constant renewal and turnover of the epidermis (Koster 2008), the keratinocytes of the 

epidermis are affected by an intense regeneration activity in which epidermal stem cell 

division mainly takes place in the stratum basal, located above the basal membrane. 

Mitosis results in two daughter cells from which one keeps its stem cell characteristics and 

stays resident, whereas the other migrates through the layers of the epidermis to reach 

final differentiation. Entering the stratum spinosum, keratinocytes increase volume of 



Introduction   

 

                                                                       24 

cytoplasm and amount of organelles (rough endoplasmatic reticulum, ribosomes and 

mitochondria) suggesting an intensive synthesis activity. These cells produce keratin, an 

intermediate filament, which polymerizes and aggregates into bundles (Smack 1994). In 

the stratum granulosum, keratinocytes show keratohyalin granulae embodying e.g. 

filaggrin and loricrin (Fuchs 1990, 1993) and nuclei and organelles start to regress. 

Reaching the stratum corneum keratinocytes obtain terminal differentiation and become 

apoptotic. Due to dehydration, secretion of lipids into the extracellular space and formation 

of a keratin filled cornified envelope, the flattened and dead keratinocytes form a barrier to 

prevent water loss (Smack 1994, Proksch 2008). As in skin a homeostatic flow of 

proliferation, differentiation, and desquamation of dead cells takes place, epidermis is 

renewed constantly within around 30 days. In addition to keratinocytes, sensory Merkel 

cells, melanocytes and Langerhans cells, a subset of dendritic cells are present in the 

epidermis whereas vasculature is absent. 

 
1.3.2 Phases of cutaneous tissue repair 

Restoration of tissue integrity and homeostasis following injury is a fundamental property 

of all organisms. Although wound healing processes take place in many human tissues, 

only epithelia have the potency for a complete regeneration. 

Wound healing is a highly dynamic process and involves a complex interaction among 

extracellular matrix molecules, soluble mediators and various resident or recruited cell 

types. The involved processes follow defined, partially overlapping phases: haemostasis, 

inflammation, tissue formation and tissue maturation (Fig 8) (Martin 1997, Singer 1999, 

Gurtner 2008). All these phases exert specific contributions on blood vessel growth and 

remodelling, and a well-defined chronology of wound phases is crucial for optimal repair 

and restoration of a functional vasculature (Eming 2007). 
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Figure 8: Phases of cutaneous wound healing. Following tissue injury, epithelial and/or 
endothelial cells release inflammatory mediators that initiate the coagulation cascade, which 
triggers blood clot formation. This is followed by an inflammatory and proliferative phase, during 
which leukocytes are recruited, activated, and induced to proliferate by chemokines and growth 
factors. The activated leukocytes secrete pro-inflammatory cytokines. Stimulated epithelial cells, 
endothelial cells, and myofibroblasts produce MMPs, which disrupt the basement membrane, and 
additional cytokines and chemokines that recruit and activate neutrophils, macrophages, T-cells, B-
cells, and eosinophils. The activated macrophages and neutrophils phagocyte tissue debris, dead 
cells and invading organisms. Shortly after the initial inflammatory phase, myofibroblasts produce 
extracellular matrix components, and endothelial cells form new blood vessels. In the subsequent 
remodelling and maturation phase, the activated myofibroblasts stimulate wound contraction. 
Collagen fibers also become more organized, blood vessels are restored to normal levels, and scar 
tissue is eliminated (Modified: Wynn, Clin Invest, 2007). 
 

1.3.2.1 Haemostasis  

As a primary response to injury of epidermis, dermis, and blood vessels, the clotting 

cascade is initiated to stop bleeding. Vasoconstriction of the injured blood vessels is 

induced by pro-inflammatory factors such as prostaglandins released from ruptured cell 

membranes to minimize bleeding. Platelets that got in contact with collagen start to form 

aggregates and release further pro-inflammatory factors, resulting in vessel vasodilatation 

and increased permeability to promote the re-location of plasma cells and growth factors 

into the wound site. By cross-linkage of fibrin and fibronectin, a fibrin clot is formed that 

serves as a structural support and provides a matrix for cell migration (Midwood 2004, 
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Nguyen 2009; Fig 8).  

 

1.3.2.2 Inflammation 

Attracted by chemokines, polymorphonuclear neutrophils (PMNs) enter the wound site by 

transmigration across the endothelial cell wall of blood capillaries, activated by pro-

inflammatory cytokines such as interleukin-1β, TGF-α and interferon-γ in the early phase 

of inflammation within 1 hour (de la Torre 2008, Eming 2007). The primary function of 

recruited neutrophils is to kill bacteria by the release of free radicals (respiratory burst) 

(Greenhalgh 1998, Muller 2003). They clear the wound site by phagocytosis of debris and 

bacteria, and break down damaged tissue by release of proteases (Martin 2005). In 

addition, neutrophils have been identified as an important source for pro-angiogenic 

factors, including VEGF-A and interleukin-8 (Li 2003a/b, Ancelin 2004, Ohki 2005; 

Schruefer 2006). Mouse models for ischemia and wound healing identified PMNs as an 

important source of these factors crucial for wound angiogenesis (Ancelin 2004; Ohki 

2005). The number of PMNs is further increased by vasoactive mediators released by 

tissue resident mast cells (Weller 2006, Eming 2007) Once activated, neutrophils release 

chemokines and cytokines that in turn activate tissue resident immune cells (Dearman 

2000), keratinocytes and fibroblasts (Hubner 1996). In addition, other leukocytes such as 

T-helper cells enter the wound area and secrete cytokines to induce T-cell proliferation. 

This cytokine release further increases the inflammation and enhances macrophage 

activity (Dealey 1999, Santorro 2005). Monocytes from the blood are attracted to the 

wound site by highly regulated gradients of growth factors secreted by platelets 1-1.5 days 

post wounding and mature into macrophages (Eming 2007). Besides their immunological 

function as antigen presenting cells and phagocytosis during wound repair, macrophages 

are thought to play an integral role in a successful outcome of the healing response. They 

synthesize numerous potent growth factors such as TGF-β, TGF-α, bFGF, PDGF and 

VEGF-A, which promote angiogenesis, cell proliferation and the synthesis of extracellular 

matrix molecules by resident skin cells (Deodhar 1997, Mercandetti 2005, Moklovan 2005, 

Santorro 2005, Swirski 2009).  

As inflammation declines, macrophages and neutrophils are removed by lymph vessels or 

undergo apoptosis and the amount of inflammatory factors decreases, indicating a change 

from the inflammation phase to the proliferation phase. Although essential for a proper 

healing response, a prolongation of inflammation may lead to tissue damage and chronic 

non-healing wounds (Midwood 2004, de la Torre 2006). 
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1.3.2.3 Proliferative phase 

Concomitantly with late inflammation, the proliferative phase starts between day 2 and 3 

post wounding by infiltration of fibroblasts and endothelial cells. As a first step of the 

proliferation phase (2-5 days after wounding), fibroblasts migrate from the uninjured 

cutaneous tissue into the wound site using the fibrin cross-linking fibers as a substrate and 

start to proliferate. (Stadelmann 1998, Romo 2005, de la Torre 2006). By deposition of 

extracellular matrix components they provide a provisional matrix consisting of fibronectin, 

collagen, glycosaminoglycans, elastin, glycoproteins and proteoglycans, which facilitates 

cell migration and serves as a depot for growth factors (Lorenz 2003, Romo 2005).  

Simultaneously with fibroblasts, endothelial cells from uninjured blood vessels and 

endothelial stem cells infiltrate the wound area, attracted by fibronectin and chemotactic 

growth factors released by macrophages and others, to form new blood vessels 

(angiogenesis) and to supply nutrients and oxygen to the healing tissue. Migration, 

proliferation, and angiogenesis are ensured by secretion of proteases such as 

collagenases, plasminogen activator and MMPs by endothelial cells. As new vessels are 

established and oxygenation rate is normalized, macrophages stop producing angiogenic 

factors and endothelial cell proliferation decreases. (Greenhalgh 1998, Stadelmann 1998, 

Lansdown 2001, Romo 2005, de la Torre 2006).  

By infiltration of a variety of cell types into the wound site, matrix deposition and formation 

of new blood vessels a rudimentary and provisional tissue is formed, and grows until the 

wound bed is covered. This granulation tissue varies from uninjured tissue by its high cell 

number and extracellular matrix composition and it is replaced in the late phases of 

healing. 

With begin of granulation tissue formation the basis for re-epithelialization is created, and 

epithelial cells migrate into the wound area in order to re-establish a barrier between 

wound and environment (Romo 2005). The main cells responsible for re- epithelialization 

are basal keratinocytes and cells from dermal appendages such as hair follicles, sweat 

glands and sebaceous glands (DiPietro 2003). Migration of keratinocytes is stimulated by 

lack of contact inhibition and chemicals such as nitric oxide released in the wound site 

(Witte 2002). As migration is induced, cells dissolve their desmosomes and 

hemidesmosomes, and integrins are re-located from the intermediate filaments to the actin 

filaments to allow migration. Interaction of integrins with the extracellular matrix further 

stimulates keratinocytes to proliferate. Keratinocytes migrate as a sheet and new epithelial 

cells must proliferate at the wound edges to provide sufficient cells for the advancing 

epithelial tip (Deodhar 1997). Once the wound is covered, proliferation and migration are 

stopped by contact inhibition. Cells start to secrete components of the basement 

membrane and re-establish desmosomes and hemidesmosomes (Lorenz 2003, Santoro 
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2005). 

Re-epithelialization is supported by contraction of the wound and is pushed by 

myofibroblasts (Eichler 2005). They migrate to the wound edges, form connections to the 

extracellular matrix and attach to each other by desmosomes. Wound edges are pulled 

together by actin contraction (Deodhar 1997, Mirastschijski 2004). As wound healing 

proceeds and the provisional matrix is exchanged, myofibroblasts stop contraction and 

commit apoptosis. These events trigger the onset of the maturation stage of wound 

healing. 

 

1.3.2.4 Tissue maturation  

Tissue maturation starts, when homeostasis between collagen production and break down 

by secreted proteases is achieved, and may last more than a year (Greenhalgh 1998). 

During maturation, collagen type III, which is laid down predominantly during the 

proliferation phase, is degraded and replaced by collagen type I (Dealey 1999), which is 

re-arranged, cross-linked and aligned along tension lines (Lorenz 2003) to increase tensile 

strength. As cell activity and metabolism decrease, the need for nutrients and oxygen 

declines, and blood vessels partly regress (Greenhalgh 1998). There are several 

hypotheses for mechanisms, that might contribute to vascular regression at the wound 

site: first by a decrease in the expression of growth factors crucial for endothelial cell 

survival; second by the increased expression of angiogenic inhibitors (Polverini 1995; 

Streit 2000) or third by the transition from a provisional extracellular matrix consisting of 

highly pro-angiogenic molecules such as vitronectin, fibronectin and fibrin to a permanent 

collagenous extracellular matrix. The latter assumption is supported by recent studies in 

mice deficient for the collagen receptor α2β1-integrin, which showed a prolonged and 

increased angiogenic response during cutaneous repair (Eming 2007, Zweers 2007, 

Grenache 2007). Remaining vessels mature by recruitment of pericytes and the network 

re-organizes by pruning. (Braiman-Wiksman 2007). Both endothelial cells and pericytes 

assemble the novel basement membrane, containing laminins, fibronectin, nidogen-1, and 

perlecan (Stratman 2009). Basement membrane synthesis is accompanied by a change of 

integrin expression profile in both cell types and contributes to the regulation of the 

vessel’s diameter. In addition, the release of protease inhibitors by vascular cells stabilizes 

the basement membrane: endothelial cells secrete the soluble tissue inhibitor of 

metalloproteinase-2 (TIMP-2) while pericytes secrete TIMP-3, which becomes 

sequestered in the basal membrane due to heparin-binding motifs (Saunders 2006). 
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1.3.3 Conditions of disturbed wound healing 

During wound healing, all involved processes are transient and highly synchronized and a 

tight control of all mediators is essential to orchestrate the behaviour of the various cell 

types for a normal healing. Disturbance of this normal progression may result in chronic, 

non-healing wounds. These chronic wounds are rather frequent with 3-4% of people older 

than 60 years concerned (Tredget 2009), and case numbers are expected to increase due 

to a progressive demographic development. To date, no efficient treatment for disturbed 

wound healing is available, thus therapy and care cause immense costs to the health care 

system (Walmsley 2002). 

Reasons for impaired wound healing are various, but mainly are based on tissue ischemia, 

venous insufficiency, diabetes or pressure (Nwomeh 1998). Resulting hypoxia promotes 

apoptosis of affected tissue and recruitment of macrophages, which in turn secrete 

neutrophil chemoattractants and pro-inflammatory substances (Eming 2007). Extensive 

amounts of proteases such as MMPs, neutrophil-derived elastase and plasmin are 

released by neutrophils and other inflammatory cells located at the wound site (Nwomeh 

1998, Lauer 2000). During normal wound healing, these proteases are highly regulated by 

inhibitors and restricted in their activity in time and space. Dysregulated proteases damage 

tissue resident cells, degrade extracellular matrix components or process growth factors 

essential for healing and therefore disturb normal healing progression and further increase 

the inflammatory response (Menke 2007). 

 

1.3.4 The db/db-mouse as a model for disturbed wound healing 

In order to analyse the role of PlGF for angiogenesis during cutaneous wound healing, the 

diabetic mouse C57BLKS/J-m+/+ Leprdb (db/db mouse) was used as a model for disturbed 

wound healing. In these mice, the leptin receptor expression is disrupted by deletion of a 

single base in the db gene locus (coding for the leptin receptor), resulting in a truncated 

receptor partially lacking the intracellular domain. Upon ligand binding, signal transduction 

is inhibited. Carrying this mutation homozygously, mice develop diabetes and suffer from 

an adipose, hyperglycaemic and hyperinsulinemic phenotype beginning at 4 weeks of age 

(Coleman 1982). 

Interestingly, these diabetic mice exhibit an impaired healing response upon wounding, 

characterized by attenuated inflammatory and proliferative response, and decreased in 

granulation tissue formation, re-epithelialization, and vascularization (Frank 2000, Goova 

2001). The reasons for a disturbance in wound healing are not completely understood, but 

it appears that direct effects caused by the defective leptin receptor, as well as indirect 

effects caused by pathomechanisms due to hyperglycaemia are responsible. As a direct 

effect of missing leptin-induced signal transduction, promotion of angiogenesis is disturbed 
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and endothelial cells, keratinocytes, T-lymphocytes and haematopoietic precursor cells 

lack its proliferative stimulus (Sierra-Honigmann 1998, Fantuzzi 2000, Frank 2000). 

Furthermore, fibroblasts are less migrative in these mice (Lerman 2003) which may 

contribute the decrease in granulation tissue formation and maturation.  

Caused by hyperglycaemia, the expression of several growth factors such as KGF, VEGF-

A, Ang-2, MIP-2, and MCP-1 essential for normal healing is misregulated, resulting in for 

example prolonged persistence of neutrophils and macrophages (Werner 1994, Frank 

1995, Wetzler 2000, Benjamin 2001, Kämpfer 2001, Ozawa 2001).  

A variety of these alterations, directly or indirectly involve VEGF-A-mediated effects on 

angiogenesis during wound healing. The overall level of VEGF-A mRNA and protein is 

markedly decreased in db/db mice. As KGF is one of the inducers of VEGF-A expression, 

VEGF-A downregulation appears to be, at least in part, reasonable. Furthermore it has 

been shown, that a disturbed intracellular vesicle trafficking decreases VEGF-A levels 

(Werner 1994, Frank 1995, Ozawa 2001). VEGF`s bioactivity is further diminished by 

enhanced expression of several proteases, demonstrated to proteolytically process the 

heparin-binding domain of VEGF-A. This degradation results in a reduced activity and 

disturbed anchorage to the extracellular matrix (Lauer 2000, Goova 2001, Lee 2005, Chen 

2010).  

Similar to VEGF-A, PlGF has been reported to be dysregulated in diabetes as 

demonstrated in streptozotocin-induced diabetes, a model of type 1 diabetes. Normally 

expressed at high levels during cutaneous wound healing, PlGF expression is markedly 

reduced by five fold (mRNA level: 2.82 ± 0.43 in diabetics versus 14.85 ± 0.33 in healthy 

mice) at day 3 in these mice (Cianfarani 2006). In contrast, diabetic mice overexpressing 

PlGF in the skin displayed an accelerated healing process compared with diabetic wild-

type littermates. Moreover, diabetic wound treatment with an adenoviral vector expressing 

the human PlGF gene significantly accelerated the healing process, as compared to 

wounds treated with a control vector. PlGF gene transfer improved granulation tissue 

formation, maturation and vascularization, as well as the local recruitment of 

monocytes/macrophages. As PlGF markedly increases the expression of other growth 

factors such as PDGF, FGF-2 and VEGF-A, the positive effects of PlGF may be further 

enhanced. In addition, PlGF treatment induced migration of cultured dermal fibroblasts 

underlining a direct role in acceleration granulation tissue maturation (Cianfarani 2006). As 

during wound healing the upregulation of PlGF temporarily coincides with that of VEGF-A 

(Brown 1992, Failla 2000) and as PlGF is able to potentiate VEGF-A mediated pro-

angiogenic activities (Carmeliet P 2001), these two factors may have a synergistic activity 

during the repair process. Therefore, both growth factors are interesting therapeutic 

targets. VEGF-A treatment results in an improved re-epithelialization of diabetic wounds 
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associated with enhanced vessel formation (Deodato 2002, Romano Di Peppe 2002, 

Galiano 2004). However, exogenous administration of VEGF-A induces sustained 

vascular leakage and promotes the formation of disorganized blood vessels, as well as 

malformed and poorly functional lymphatic vessels (Carmeliet 2000, Nagy 2002). In 

contrast, PlGF treatment resulted in a normal and homogenous vessel distribution, and 

promotes vessel stabilization and maturation by recruitment of pericytes and may 

therefore be favourable for therapeutic use. Furthermore, it has a strong impact on 

granulation tissue formation and maturation and therefore promotes an increase of quality 

of wound healing. Whether these effects are direct or indirect by increased expression of 

pro-angiogenic growth factors and/or pushing VEGF-A activity has to be further 

investigated
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Objectives 

PlGF has been demonstrated to have a major impact on physiological as well as on 

pathological angiogenesis. As a member of the VEGF family, PlGF shares a variety of 

structural attributes and pro-angiogenic activities with VEGF-A. Similarly to VEGF-A, 

PlGF is regulated by mRNA splicing resulting in the expression of alternative protein 

isoforms that mainly differ in the presence or absence of a C-terminal heparin-binding 

domain. The exact role of this domain for the regulation of PlGF-mediated activities is 

unknown. Functional analysis of the heparin-binding domain in VEGF-A have clearly 

underlined its essential role to mediate pro-angiogenic activities. These observations 

raised the hypothesis, whether the presence of the heparin-binding domain (either 

regulated by alternative mRNA splicing or proteolytic processing) provides a principle 

mechanism to regulate the activity of VEGF-family members. The specific function of the 

heparin-binding domain of PlGF remains to be elucidated and is the objective of the 

present study. 

 

The specific aims of this study are: 

 

1) To analyse the role of proteolytic processing for the regulation of PlGF mediated 

activities. In this context, the protease sensitivity of PlGF-1 and PlGF-2 will be 

analysed, and involved proteases have to be identified. Assuming a regulation by 

C-terminal cleavage, the identification of cleavage sites provides the possibility to 

generate truncated PlGF isoform and to analyse the functional consequence of this 

degradation.  

 

2) Determine the functional relevance of the heparin-binding domain of PlGF. For this 

purpose PlGF-1 and PlGF-2, as well as a truncated form of PlGF (lacking the C-

terminus) will be expressed in HEK293 cells. A direct comparison of the diverse 

isoforms will help to identify functional differences as well as altered biological 

activities due to the presence/absence of the heparin-binding domain. 

 

a) The binding capacity of the PlGF-isoforms to GAGs and Nrp-1 will be tested using 

Surface Plasmon Resonance spectroscopy. 

 

b) The functional relevance of the C-terminal domain will be assessed by analysis of 

the in vitro chemotactic activity and endothelial cell sprouting capability of PlGF-

isoforms on endothelial cells 
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c) The functional impact of the PlGF C-terminal domain in vivo will be determined by 

studying the angiogenic effect of PlGF-isoforms in a diabetic mouse model of 

impaired wound healing 
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2 Results 

2.1 PlGF is proteolytically processed by plasmin  

Expressed in the liver as a pro-enzyme, plasmin is locally activated during normal wound 

healing to promote cellular infiltration into the provisional extracellular matrix and 

therefore facilitates processes as angiogenesis. Under non-healing conditions plasmin 

and other proteases are misregulated, resulting in its increased activation. Under these 

conditions, VEGF-A165 has been demonstrated to be proteolytically processed resulting 

in the loss of its heparin-binding domain and a marked reduction of its pro-angiogenic 

activity (Lauer 2000, Roth 2006). Due to high structural and sequential homology among 

VEGF-A and PlGF, this form of regulation might be a general mechanism of regulation in 

the VEGF-family. To analyse the sensitivity of rhPlGF-1 and -2 for plasmin-mediated 

proteolytic processing, both isoforms were incubated with the serine protease plasmin 

and samples were subjected to SDS-PAGE and silver-staining. Incubation of rhPlGF-2 

(46 kDa as dimer) in presence of plasmin resulted in its degradation and formation of a 

cleavage product of approximately 32 kDa under non-reducing conditions (Fig 9a). 

Consistent with this data, the rhPlGF-2 monomer exhibited an electrophoretic mobility 

shift from 23 kDa to approximately 16 kDa under reducing conditions (Fig 9b). Due to 

this consistence, retention of cleavage fragments bound by disulfide bonds is excluded. 

This 16 kDa core-fragment was not subjected to further degradation and retained its 

stability over 4 hours of incubation. No small cleavage products were detectable, arguing 

for more than one cleavage sites. Fragmentation of rhPlGF-2 was prevented by the 

specific plasmin-inhibitor α2-antiplasmin (Fig 9c). This excluded weak protein stability as 

a reason for degradation, and confirmed plasmin specific digestion. 

Interestingly, incubation of rhPlGF-1, which has a molecular weight of 17 kDa under 

reducing conditions with plasmin, resulted in a mobility shift of approximately 1-2 kDa 

(Fig 9d) and formation of a core-fragment identical in size to plasmin processed PlGF-2 

under reducing conditions. rhPlGF-1 and rhPlGF-2 are identical in sequence except the 

C-terminal heparin-binding domain. The formation of plasmin-resistant core-fragments 

with identical molecular weight, therefore strongly argued for a degradation of the C-

terminus of the protein, N-terminal of the heparin-binding domain.  

To further support the idea that proteolytic processing of rhPlGF-2 by plasmin results in 

a C-terminal cleavage and loss of the heparin-binding domain, an antibody detecting the 

N-terminus was used to analyse the concentration-dependent degradation of rhPlGF-2. 
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Figure 9: PlGF is proteolytically processed by plasmin. (a-d) silver-stain: rhPlGF-1 and 
rhPlGF-2 (expressed in Sf9 cells; 500 ng/lane) were incubated with plasmin (0.02 U/mL) and α2-
antiplasmin (AP; 0.4 U/mL) for different periods of time, as indicated. (e) Western blot: rhPlGF-2 
(200 ng/lane) was incubated with decreasing concentrations of plasmin (as indicated) for 30 
minutes and was detected by a PlGF-specific antibody (raised against the N-terminus of the 
protein). SDS-Page was performed under (a) non-reducing and (b-e) reducing conditions. 
 

Western blot analysis confirmed C-terminal cleavage and N-terminal core-fragment 

formation (Fig 9e), which strongly indicated a processing of the heparin-binding domain. 

Furthermore, a decrease in plasmin concentration resulted in the generation of an 

intermediate fragment with an electrophoretic mobility of approximately 19 kDa, arguing 

for at least one additional cleavage site within the heparin-binding domain. Due to the 

formation of intermediate products, this successive C-terminal processing appeared to 

start at the C-terminus or at least within the heparin-binding domain. 

 

2.2 Expression and purification of rhPlGF isoforms in HEK293 cells 

For the synthesis of rhPlGF isoforms, the cDNA of human PlGF-1 and PlGF-2 from 

placenta, was cloned into the eukaryotic expression vector pCEP V149 and expressed in 

HEK293 cells. Both isoforms are flanked by an N-terminal 6x his-tag and a C-terminal 2x 

strep-tag, which were necessary for the purification and the identification of the plasmin 

cleavage sites (Fig 10a). To enable cleavage of the C-terminal strep-tag in the PlGF 

protein, the vector sequence carries the recognition site for FactorXa cleavage, which 

permits specific removal of the tag after purification. In addition, the same sequence was 

inserted at the 5`-end of the DNA-sequence of PlGF by primer design, prior to cloning 

into the vector. Unexpectedly, FactorXa cleavage revealed, that PlGF is sensitive for 

FactorXa processing within its protein sequence. As the step-tag is well established and 
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known to lack an unspecific reactivity, functionality of rhPlGF-1 and PlGF-2 was further 

analysed without cleavage of the tags. Besides the wild type forms of rhPlGF-1 and -2, a 

truncated PlGF isoform which mimics the plasmin processed PlGF was generated by 

insertion of a stop-codon C-terminal of Lys118, which corresponds to the plasmin 

cleavage site closest to the N-terminus identified by LC/MSMS analysis (see 2.3). To 

avoid cleavage with FactorXa, the expression vector V19 was used. This vector is 

identical to pCEP V143 but lacks the C-terminal 2x strep-tag (Fig 10a). As sensitivity of 

wild type isoforms for FactorXa was unexpected during cloning of PlGFStop, rhPlGF-1 

and rhPlGF-2 differ by expression of the strep-tag.  

Analysis of eluted protein fractions by SDS-PAGE and coomassie stain revealed high 

purity (Fig 10b). Due to expression in a eukaryotic cell line and differential glycosylation 

as compared to expression in insect cells, all expressed rhPlGF isoforms shifted to a 

higher molecular weight.  
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Figure 10: Expression and purification of rhPlGF isoforms. (a) hPlGF-1, hPlGF-2 and mutant 
PlGFStop cDNA was cloned into the eukaryotic expression vectors pCEP V143 (rhPlGF-1 and -2; 
N-terminal his-tag, C-terminal strep-tag) and pCEP V19 (rhPlGFStop; N-terminal his-Tag). 
Recombinant proteins were purified from supernatant via streptavidin- (rhPlGF-1 and -2) and Ni-
NTA-sepharose columns (rhPlGFStop). (b) Samples were subjected to SDS-PAGE under 
reducing (R) and non-reducing (NR) conditions, and stained with coomassie. 

 

Reducing conditions revealed a monomeric electrophoretic mobility of approximately 39 

kDa for rhPlGF-2, 35 kDa for rhPlGF-1 and 34 kDa for rhPlGFStop. All PlGF isoforms 

were dimerized properly as demonstrated under non-reducing conditions (Fig 10b) and 

only a minimal portion of protein was secreted in its monomeric form. Identity of protein 

b) 

a) 
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bands was confirmed by mass spectroscopy. Purification resulted in a high yield of at 

least several hundred micrograms per litre of conditioned medium (Fig 10b). 

 
2.3  Identification of plasmin cleavage sites in PlGF 

To identify the plasmin cleavage sites in PlGF, his-tagged rhPlGF-2 expressed in 

HEK293 cells was incubated with low concentrations of plasmin for 5 (0.04 U/ml) and 30 

minutes (0.008 U/ml, specificity control) and subsequently bound to Ni-NTA-sepharose 

beats. The supernatant containing the C-terminal cleavage fragments was subjected to 

LC-MS/MS analysis. 

Five different cleavage sites were identified within rhPlGF-2, located exclusively in the C-

terminal region of the protein (Fig 11; Table 1). The cleavage site closest to the N-

terminus was located between amino acids Lys118 and Met119, which proves the 

hypothesis that the heparin-binding domain is cleaved of the core-fragment. It does not 

affect major structural properties as inter- or intramolecular disulfide-bonds and no 

glycosylation site was affected. Besides, the heparin-binding domain appears to be a 

target of intense proteolytic processing and to be degraded completely.  
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Figure 11: Identification of plasmin cleavage sites in rhPlGF-2 by LC-MS/MS. 25 µg of 
rhPlGF-2 were incubated with plasmin (0.04 U/mL, 5 minutes and 0.0008 U/mL 30 minutes). LC-
MS/MS analysis identified Lys118/Met119 as cleavage site closest to the N-terminus. Additionally, 
the heparin-binding domain is cleaved at position Lys127/Gly128, Lys131/Arg132, Arg134/Glu135 and 
Lys136/Gln137. The heparin-binding site in PlGF-2 is illustrated in red, basic amino acids are 
underlined. The plasmin cleavage site of VEGF-A165 is aligned with the plasmin cleavage site 
within the PlGF proteins. 
 

In addition to formation of a stable N-terminal core-fragment (visualized by western blot 

in 2.1) bearing the cysteine-knot motive and VEGFR-1 binding sites, degradation 

resulted in the release of six fragments, which were identified in both samples with high 
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confidence and incidence. They reflect plasmin cleavage between amino acids 

Lys127/Gly128, Lys131/Arg132, Arg134/Glu135 and Lys136/Gln137. All cleavage sites are in line 

with the consensus cleavage site of plasmin, and cleaved C-terminally of basic amino 

acids. The relative frequency of identified fragments was equal, only one fragment was 

rarely detected (135-151: EKQRPTDCHLCGDAVPR). Therefore, one might conclude 

that cleavage at Arg134/Glu135 is not preferred by plasmin. In addition, the fragment 

Gly128-Lys136 was detected solely in the sample incubated in 0.008 U/mL for 30 minutes.   

Furthermore, all fragments which comprise the sequence of exon 7 (CGDAVPRR) are 

shortened by the last C-terminal amino acid (Arg152). For all fragments the absolute 

deviation between the expected and identified molecular weight was less than 0.09 Da 

(Table 1).  

Interestingly, alignment of the amino acid sequence of rPlGF-2 with the sequence of 

hVEGF-A165 revealed high similarities in amino acid composition around the plasmin 

cleavage site closest to the N-terminus with respect to their chemical properties. Besides 

the structural similarities of PlGF and VEGF-A in general, this underlines the possibility 

for a general mechanism of regulation by proteolytic processing by plasmin in this family.  

 

Table 1: Absolute deviation between expected and found molecular weight of identified 
peptide fragments after PlGF-2 digestion with plasmin. 

 
Fragment Relative 

frequency 
Measured 
m/z (Th) 

Found 
MW (Da) 

Expected 
MW (Da) 

Absolute 
deviation (Da) 

Fragment sequence 

119-127 +++ 599.38 1196.75 1196.69 0.06 MKPERRRPK 

128-151 
 

128-136 

+++ 
 

+++ 

698.14 
 

571.87 

2788.53 
 

1141.73 

2788.45 
 

1141.69 

0.09 
 

0.04 

GRGKRRREKQRPTDCHLCGDAVPR  

GRGKRRREK * 

132-151 +++ 797.77 2390.3 2390.21 0.09 RRREKQRPTDCHLCGDAVPR  

135-151 + 641.66 1921.96 1921.9 0.06 EKQRPTDCHLCGDAVPR  

137-151 +++ 833.43 1664.84 1664.77 0.07 QRPTDCHLCGDAVPR 

* Fragment detected in sample incubated in 0.008 U/mL for 30 minutes 
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2.4 PlGF-2 is degraded in exudates obtained from non-healing 

human wounds 

To investigate the physiological relevance of the observed proteolytic sensitivity of 

rhPlGF in the context of wound healing, the concentration of PlGF in exudates obtained 

from normal healing or non-healing human wounds was measured and the integrity of 

rhPlGF-2 in these exudates was analysed. Wound exudate is the interstitial fluid of 

wounded tissue and contains numerous soluble mediators, extracellular matrix 

molecules, proteases and their inhibitors. Therefore, wound exudate is a liquid biopsy 

that reflects the metabolic condition of the wound and has been proven to be useful for 

identification of factors involved in skin physiology and pathology (Lauer 2000, 

Stechmiller 2006, Eming 2007). The level of endogenous PlGF during wound healing 

was measured by ELISA (Fig 12a). In all exudates analysed, the concentration of PlGF 

was significantly increased (at least 30-fold) as compared to the mean concentration of 

plasma serum levels of 26.43 pg/mL, arguing for local expression in the wound area. 

During all phases of normal wound healing high levels of PlGF were detected without 

significant differences during healing progression. Average concentrations determined 

were 734.6 pg/mL on day 2, 1046 pg/mL on day 7 and 1130 pg/mL on day 14. Under 

non-healing conditions, the expression of PlGF appears to be upregulated. In exudates 

obtained from non-healing wounds, the PlGF concentration was clearly increased with 

an average concentration of 1776 pg/mL (Fig 12a), but did not reach significance. As 

PlGF concentrations are too low to be detected by immuno-blotting and ELISA detects 

total human PlGF protein, neither isoform expression nor potential proteolytic processing 

of PlGF can be analysed directly with these methods. 
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Figure 12: Locally synthesized PlGF in non-healing human wounds is a target of 
proteolytic degradation. (a) Protein levels of PlGF in exudates obtained from normal healing 
and non-healing human wounds were quantified by ELISA and compared to serum levels (serum 
n=15, normal healing day 2 n=10, day 7 n=5, day 14 n=7, non-healing n=7). (b) rhPlGF-2 (200 
ng/lane; expressed in Sf9 cells) was incubated with or without plasmin (0.02U/mL) or wound 
exudates obtained from healing or non-healing human wounds as indicated. Samples were 
subjected to SDS-PAGE under reducing conditions, and detected by a PlGF-specific antibody 
(raised against the N-terminus of the protein). 
 
 

a) b) 
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To analyse the integrity of rhPlGF in wound environment, rhPlGF-2 was incubated in 

wound exudates obtained from normal healing or non-healing human wounds (Fig 12b).  

As revealed by western blot analysis, rhPlGF-2 maintained its stability when incubated in 

exudates obtained from normal healing wounds. The protein migrated with an 

approximate molecular weight of 23 kDa without formation of cleavage products. By 

contrast, when incubated in exudates obtained from non-healing wounds, rhPlGF-2 

underwent a gradual degradation resulting in the formation of a core-fragment of an 

approximate molecular weight of 16 kDa. This fragment appeared to be resistant to 

further degradation. At early time points, two intermediate cleavage products with an 

electrophoretic motility of 21 and 18 kDa became visible, reflecting a cleavage within the 

heparin-binding domain. With increasing time, these intermediate cleavage products 

disappeared and rhPlGF-2 was degraded to the protease-resistant core-fragment. These 

data strongly underline the results from the LC-MS/MS analysis (Fig 11) and plasmin 

specific western blot analysis (Fig 9e). The cleavage site at position Lys118/Met119 may 

be consistent with formation protease resistant core-fragment of 16 kDa identified (Fig 

12b). These experiments confirm that a regulation by proteolytic processing by plasmin 

in this protein family might be possible in vivo. Nevertheless, proteolytic sensitivity of 

PlGF for other proteases upregulated under non-healing conditions (MMPs, neutrophil 

elastase, etc.) cannot be excluded. 

 
2.5 Site directed mutagenesis at Lysine118 does not improve stability 

of rhPlGF in response to plasmin 

In the proteolytic milieu of non-healing wounds, protease-resistant VEGF-A165 has been 

demonstrated to improve the angiogenic response and to promote healing progression. 

Based on the finding, that mutation of one plasmin cleavage site in VEGF-A165 

(Arg110→Pro110) markedly prevented plasmin-mediated degradation of its heparin-binding 

domain, although four plasmin cleavage sites were identified in this domain (Lauer 

2000), we generated two mutant forms of rhPlGF-2 and analysed its stability by western 

blot. Targeting the plasmin cleavage site located closest to the N-terminus, we used site 

directed mutagenesis to exchange lysine at position 118 to either alanine or proline. 

Alanine was chosen as it lacks a large or charged side chain that may interfere with 

structure and folding of the heparin-binding domain. In addition, lysine was exchange by 

proline as this mutation resulted in an overall stabilization of VEGF-A165 and completely 

prevented not only cleavage at Arg110/Ala111 but also cleavage of further sites located C-

terminal of the mutated cleavage site.  

Mutated proteins expressed in HEK293 cells were purified via their C-terminal strep-tag. 

Whereas rhPlGF-2lys-pro was expressed at a high level, which was comparable to rhPlGF-

1, rhPlGF-2 and rhPlGF-Stop, the yield for rhPlGF-2lys-ala was quite low (Fig 13a). To 
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analyse protein integrity upon incubation with plasmin, rhPlGF-2lys-pro and rhPlGF-2lys-ala 

were incubated with decreasing protease concentrations and results were compared to 

rhPlGF-2 wild type protein. As depicted in Figure 13b, mutation of the plasmin cleavage 

site closest to the N-terminus did not prevent degradation by plasmin. When incubated 

with 0.02 U/mL plasmin, both mutant proteins were degraded to a core-fragment with a 

comparable electrophoretic mobility as observed for PlGF-2.   
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Figure 13: Site-directed mutagenesis of Lysine118 does not rescue PlGF degradation by 
plasmin. Using site-directed mutagenesis, the cleavage site closest to the N-terminus of rhPlGF-
2 was mutated by exchange of Lys118 to either proline or alanine. (a) Mutated proteins rhPlGF-2lys-

pro and rhPlGF-2lys-ala were expressed in HEK293 cells and purified via its strep-tag. (b) To 
analyse protein integrity in response to plasmin, rhPlGF-2, rhPlGF-2lys-pro and rhPlGF-2lys-ala (300 
ng/lane) were incubated with decreasing concentrations of plasmin (as indicated, 30 minutes). 
Samples were subjected to SDS-PAGE under reducing conditions and detected by (a) coomassie 
stain or (b) western blotting using a PlGF-specific antibody. 
 

No degradation products of rhPlGF-2lys-pro were detectable by a further decrease of the 

plasmin concentration, which is in line with results obtained from rhPlGF-2. Interestingly, 

rhPlGF-2lys-ala is completely degraded to the core-fragment at both concentrations of 

plasmin (Fig 13b). Therefore, exchange of Lys118 to Ala118 appears to enhance sensitivity 

for plasmin within the heparin-binding domain. Nevertheless, site directed mutagenesis 

at Lys118 did not improve integrity of rhPlGF-2 with respect to proteolytic processing by 

plasmin. Therefore, mutant proteins were not further analysed. 

 

2.6 Binding properties of PlGF 

To determine the role of the heparin-binding domain for the interaction between PlGF 

and glycosaminoglycans (GAGs), Surface Plasmon Resonance-analysis (SPR) was 

performed in collaboration with Manuel Koch (Medical faculty, Institute of Biochemistry II, 

University of Cologne). The kinetics of this interaction were analysed by determination of 

the association rate constant ka and the dissociation constant kd to determine the KD-

value mathematically. 

Different concentrations of either rhPlGF-1, -2 and rhPlGFStop were used as soluble 

analyte (10, 30, 100 and 300 nM in Fig 14a,b, 300nM in Fig 14c) and were monitored by 

a) b) 
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measurement of the variation in the plasmon resonance angle as function of time, and 

described as response units (RU).  
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Figure 14: Binding of rhPlGF-1, rhPlGF-2, and rhPlGF-Stop to heparin, heparan sulphate 

and chondroitin sulphate measured by Surface Plasmon Resonance spectroscopy. 
Glycosaminoglycans (as indicated) were immobilized on BIAcore SA-chips, and binding 
sensorgrams were recorded for (a) rhPlGF-1, (b) rhPlGF-2 and (c) rhPlGF-Stop as soluble 
analyte. Different concentrations of (a,b) rhPlGF-1 or rhPlGF-2 (10, 30, 100 and 300 nM) or (c) 
rhPlGFStop (300 nM) were monitored by measuring the variation in the plasmon resonance angle 
as function of time and described as response units (RU). The background signal was subtracted 
from each curve (strep-control); the curves are shown in ascending order depending on their 
analyte’s concentration. Fittings and overlay plots were done with the BIAevaluation software 4.1. 
The black lines represent the fitted curves. The average of KD-values determined at different 
analyte concentrations is presented in tables below the curves.  
 
The GAGs heparin, heparan sulphate, and chondroitin sulphate were immobilized on 

SA-chips, and the binding to rhPlGF-1, rhPlGF-2, and rhPlGFStop were analysed by 

calculation of the KD-value. Unexpectedly, rhPlGF-1 and rhPlGF-2 both exhibited a 

strong and comparable, specific binding capacity to all GAGs tested.  

KD-values for binding to heparin revealed a strong binding to rhPlGF-1 and rhPlGF-2 

with KD= 5.4 * 10-9 M, and KD = 1.5 * 10-9 M, respectively (Fig 14a,b). Although the 

interaction of rhPlGF-2 to heparin was approximately 3.5 fold increased, as compared to 

the binding strength of rhPlGF-1 to heparin, the difference among the two isoforms was 

expected to be more pronounced, due to the expression of the heparin-binding domain. 

Similarly, the binding of rhPlGF-2 to heparan sulphate with a KD = 1.5 * 10-9 M was only 

two fold increased as compared to rhPlGF-1 binding to heparan sulphate with a KD-value 

of KD = 3.9 * 10-9 M (Fig 14a,b). In contrast to this results it was published, that rhPlGF-1 

a) b) c) 
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was unable to bind heparin on a heparin-sepharose column, which was interpreted to be 

dependent on a lack of the highly basic heparin-binding domain (Hauser 1993, Park 

1994).  

The binding of both isoforms to chondroitin sulphate was almost equal. KD-values of KD = 

3.3 * 10-9 M and KD = 2.1 *10-9 M for rhPlGF-1 and rhPlGF-2, respectively revealed a 

negligible 1.5 fold increase in binding strength with regard to the presence of the 

heparin-binding domain (Fig 14a,b). As in strep-control no unspecific interaction to any 

of the tested GAGs was measured, the expression of the C-terminal strep-tag of rhPlGF-

1 and -2 may not be responsible for the comparable binding strength among isoforms. 

Interestingly, rhPlGFStop as soluble analyte did not interact with the tested GAGs (Fig 

14c). As it is shortened by only 13 amino acids (MKPERCGDAVPRR) as compared to 

rhPlGF-1, the interaction appeared to be highly dependent on this sequence. 

Experiments performed clearly confirmed specific binding of both rhPlGF-1 and rhPlGF-

2 to heparin, heparan sulphate, and chondroitin sulphate. Although the binding strength 

to the analysed GAGs was slightly increased for rhPlGF-2, the presence of the heparin-

binding domain appeared not to be crucial for binding, but to enhance interaction. To 

analyse kinetics of the interaction in detail, additional experiments would be necessary.  

 

The heparin-binding domain was predicted to be a crucial characteristic of PlGF-2 and 

VEGF-A165 to bind to heparin as well as for their interaction to Nrp-1, but detailed 

analysis is missing for PlGF isoforms so far. The recruitment of Nrp-1 to VEGFR-1 to 

enhance signalling, displays one mechanism that may be differently regulated by 

expression of the heparin-binding domain. The binding of rhPlGF-1, rhPlGF-2 and 

rhPlGFStop to Nrp-1 therefore was analysed, without or in presence of unfractionated 

heparin. The different PlGF isoforms were immobilized on a CM5-chip, and binding to 

rhNrp-1 as soluble analyte was measured at different concentrations of rhNrp-1. 

In the absence of heparin, rhPlGF-2 revealed a relatively weak binding to Nrp-1, with an 

average KD-value of KD = 1.25 * 10-6 M (Fig 15a). As it was reported, that the binding of 

PlGF-2 to Nrp-1 was clearly enhanced in the presence of heparin (Migdal 1998), 100 nM 

of rhNrp-1 was pre-incubated with increasing concentrations of unfractionated heparin 

prior to measurement of binding to rhPlGF-2. Analysis revealed a strongly enhanced 

binding strength between rhPlGF-2 and rhNrp-1 in presence of heparin. Overlapping 

with an increase of the heparin concentration, a successive increase of the binding 

strength between rhPlGF-2 was observed, which was reflected by KD-values KD = 1.1 * 

10-8 M and KD = 9.0 * 10-9 M at concentration of 0.1 µg /mL and 100 µg/mL heparin, 

respectively, as compared to KD = 1.14 * 10-6 M without heparin (Fig 15b).  
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Figure 15: Binding of rhPlGF-2 or rhPlGFStop to rhNrp-1 measured by Surface Plasmon 

Resonance spectroscopy. The PlGF isoforms (a,b) rhPlGF-2 or (c) rhPlGF-Stop were 
immobilized on BIAcore CM5-chips and binding sensorgrams were recorded for soluble rhNrp-1 
as soluble analyte. Different concentrations of (a,c) soluble rhNrp-1 (1, 3, 10, 30, 100, 300 nM on 
rhPlGF-2, 300 nM on rhPlGFStop) or (b) 100 nM rhNrp-1, pre-incubated with different 
concentrations of unfractionated heparin (as indicated) and monitored by measuring the variation 
in the plasmon resonance angle as function of time and described as response units (RU). The 
background signal was subtracted from each curve; the curves are shown in ascending order 
depending on their analyte’s concentration. Fittings and overlay plots were performed using the 
BIAevaluation software 4.1. The black lines represent the fitted curves. Average of KD-values is 
presented in tables below the curves.  

 

In conclusion, concentrations higher than 1 µg/mL heparin did not significantly increase 

the binding strength. Nevertheless, even low concentrations of 0.1 µg/mL heparin 

strongly enhanced the interaction between ligand and receptor by approximately 100 

fold, as compared to conditions in which heparin is absent. This enhancing effect of 

heparin for the interaction between PlGF-2 and Nrp-1 was described by Migdal and co-

workers, using a different method. Analysed by cross-linking experiments, heparin 

largely increased complex-formation of 125I-PlGF-2 with Nrp-1 (Migdal 1998). 

Interestingly, measurements for the interaction between PlGFStop and Nrp-1 revealed 

no detectable interaction, in neither presence nor absence of heparin (Fig 15c). These 

data strongly supported the hypothesis, that the C-terminus of PlGF may be pivotal for 

its general binding capacity. Unfortunately, results for rhPlGF-1 are lacking so far, and 

a) 

b) 

c) 
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the measurement for the interaction between rhPlGF-1 and Nrp-1 has to be repeated.  

To understand the mechanisms that may be promote binding of PlGF to GAGs, 3D 

structure of dimeric hPlGF (amino acid 1-117) and hVEGF-A (amino acid 9-109), 

obtained from NCBI structure data base were analysed. As depicted in Figure 16a, 

several charged amino acids are exposed to the surface of the PlGF core-fragment 

dimer. As displayed in blue, basic amino acids form a highly basic pattern on the surface 

of the dimer, which might contribute to GAG-binding.  

 

NH2

NH2

NH2 NH2

COOH

COOH

COOH

COOH

 
Figure 16: 3D-model of homodimeric hPlGF and hVEGF-A. 3D-calotte-model of hPlGF (amino 
acids 1-117; PDB ID 1FZV) and hVEGF-A (amino acids 9-109; PDB ID 1VPF), colour-coded for 
potential GAG binding sites. Blue and red indicate negative and positive charged patches on the 
surface of growth factor, respectively 

 

As 3D structure of full-length hPlGF-1 and hPlGF-2 were not available, this model shows 

the PlGF sequence of the core-protein coded by exon 1-5. It is therefore identical to 

rhPlGFStop and lacks the heparin- binding domain as well as the sequence coded by 

exon 7. As the C-terminal domain of PlGF, which has been demonstrated to be crucial 

for GAG and Nrp-1 interaction is not displayed, the basic amino acids of the core-

fragment may support GAG or Nrp-1 binding, but solely are not sufficient to promote 

binding, as demonstrated in Figure 14c.  

The comparison of the surface pattern of charged amino acids in core-fragment of 

hPlGF and VEGF-A revealed high similarities (Fig 16a,b). This may explain overlapping 

receptor- and GAG-binding interfaces among PlGF and VEGF-A. In the central portion of 

hPlGF, the density of clustered basic amino acids is clearly increased as compared to 

hVEGF-A (boxed in Fig 16a,b), which may contribute to an altered binding profile. A 

detailed biochemical analysis to determine amino acids within hPlGF, that participate in 

either GAG binding or interaction to Nrp-1 would be an interesting topic and would help 

to understand regulatory mechanisms in PlGF-mediated activities.  

 

COOH 

a) b) 

PlGF1-117 

VEGF-A9-109 
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2.7 Chemotactic activity of PlGF on endothelial cells 

To analyse the functional role of the heparin-binding domain for PlGF-mediated 

activities, the chemotactic activity of rhPlGF on endothelial cells was analysed in the 

Boyden chamber assay. The co-receptor Neuropilin-1 is known to be involved in the 

chemotactic or chemorepellant response of different cell types. As recruitment of Nrp-1 

to the VEGFRs by VEGF-A or PlGF to enhance its signals is predicted to be dependent 

on the heparin-binding domain, an increased expression of this co-receptor may be 

supportive to analyse the heparin-binding domain for PlGF mediated activity. Therefore, 

porcine aortic endothelial cells (PAE), stable transfected with the neuropilin-1 receptor 

(PAE/Nrp-1) or untransfected cells (PAE) were analysed (Fig 17a).  

Nrp-1 transfected PAE cells treated with rhPlGF-2 expressed in insect cells exhibited an 

about 3-4 fold higher chemotactic response as compared to cells treated with rhPlGF-1 

or vehicle treated control cells (Fig 17a). Pre-incubation of rhPlGF-2 with plasmin 

resulted in a dramatic loss of its chemotactic activity. This loss of activity was partly 

rescued by α2-antiplasmin – which is a specific inhibitor for plasmin. Both, rhPlGF-1 and 

rhPlGF-2 were not able to significantly induce chemotaxis in untransfected cells lacking 

Nrp-1 expression (Fig 17a,d), underlining the essential of Nrp-1 for chemotaxis in 

endothelial cells. 

To test, if the different rhPlGF wild type variants and the rhPlGFStop mutant expressed 

in HEK293 cells are functional, the chemotaxis assay was repeated in PAE/Nrp-1 cells 

(Fig 17b). About 2-3 times more of the rhPlGF-2 stimulated cells were able to migrate 

towards the stimulus as observed for vehicle treated control or rhPlGF-1 treated cells. 

Additionally, the rhPlGFStop mutant mimicked the results of plasmin-processed rhPlGF-

2, resulting in a dramatic loss of its chemotactic activity, underlining the role of the 

heparin-binding domain for chemotaxis. 

To analyse the chemotactic activity of PlGF on physiological relevant cells, the Boyden 

chamber assay was repeated using HUVE cells. Again, rhPlGF-2 revealed a strong 

activity comparable to the results obtained from the PAE/Nrp-1 cells, whereas 

rhPlGFStop had no chemotactic activity on HUVE cells (Fig 17c). 

Altogether, this data strongly indicates that the heparin-binding domain regulates the 

activity of PlGF through binding to Nrp-1 and that its activity is regulated by plasmin-

mediated proteolytic cleavage.  
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Figure 17: Chemotactic activity of rhPlGF-2 on endothelial cells is increased by the 
heparin-binding domain. (a) PAE and PAE/Nrp-1 were seeded on a collagen I coated (10 
µg/mL) polycarbonate filter (8 µm pore size) and incubated for 4.5 h. Stimulation conditions: 
positive control (Ham`s F12 + 10% FCS), vehicle treated control (negative control: Ham`s F12 + 
0.1% FCS), rhPlGF-1 and rhPlGF-2 (100 ng/mL, expressed Sf9), rhPlGF-2 pre-incubated with 
0.02 U/mL plasmin and rhPlGF-2 pre-incubated with plasmin and/or antiplasmin (AP). (b) 
PAE/Nrp1 or (c) HUVE cells seeded onto collagen I coated polycarbonate filter and stimulated 
with different PlGF isoforms (100ng/mL, expressed in HEK293 cells). 100 ng/mL rhVEGF165 was 
used as positive control. (d) Cell lysate of Nrp-1-transfected and untransfected PAE cells were 
subjected to SDS-Page. Expression of Nrp-1 was detected by western blotting and a specific 
antibody directed against Nrp-1. Experiments were performed in triplicates and repeated in at 
least three independent experiments. Significance: * ≤ 0.05; ** ≤ 0.01. 
 

 

2.8 The heparin-binding domain of PlGF-2 promotes vascular 

sprouting in vitro 

PlGF is known to promote vascular sprouting if overexpressed in murine skin (Odorisio 

2002), but the role of the PlGF heparin-binding domain in tip cell formation and vessel 

sprouting remains open. 

To investigate the impact of the heparin-binding domain of PlGF on angiogenic 

sprouting, a 3D spheroid assay was performed using rhPlGF-1, rhPlGF-2, and 

rhPlGFStop for stimulation (Fig 18a). Spheroids treated with medium only were markedly 

reduced in their competence to sprout, as revealed by analysis of the cumulative 

sprouting length as well as in the number of sprouts per spheroid (Fig 18b,c). 

Furthermore, these spheroids appeared to be less stable. 

 

 

 



  Results 

                                                                       49 

  

PlGF-1 PlGF-2 PlGFStop

VEGF165 neg. control

 
Figure 18: PlGF isoforms induce sprouting in a 3D-spheroid assay. (a) HUVE cells were 
allowed to develop spheroids and seeded into 500 µL collagen type I solution per well (24-well 
plate, 50 spheroids/well; 2 mg/mL collagen I). After gel polymerisation, 200 µL EGM-2 (without 
supplements; 40 ng/mL of various PlGF isoforms, 5 ng/mL VEGF-A165 as positive control, or 
basal EGM-2 as negative control) were added onto the gel and incubated for 24h. (b) Cumulative 
sprout length and (c) number of sprouts/spheroid were analysed (10 spheroids/condition; 20x 
magnification; ImageJ software). Significance was calculated out of three independent 
experiments; * ≤ 0.05, ** ≤ 0.01.  
 

In contrast, all rhPlGF isoforms increased the cumulative sprouting length as well as the 

number of sprouts per spheroid over control levels. The heparin-binding isoform rhPlGF-

2 significantly increased the cumulative sprouting length compared to rhPlGF-1 and 

rhPlGFStop (Fig 18b). Thus, sprout induction and outgrowth appeared to be largely 

enhanced by the heparin-binding domain. Nevertheless, the PlGF core-protein alone 

(rhPlGFStop) clearly promotes sprouting as compared to untreated control. 

Interestingly, the number of sprouts per spheroid induced by rhPlGF-2 was clearly 

increased compared to heparin-binding domain-lacking isoforms, although this increase 

was not significant. Spheroids treated with rhPlGF-2 reached sprout numbers 

comparable to rhVEGF-A165 treated ones, which is known to induce vascular sprouting. 

In conclusion, these results argue for an increased sprout induction in dependence of 

the heparin-binding domain. As all PlGF-treated spheroids were more stable compared 

to untreated control, PlGF might act as a survival factor for endothelial cells, 

independently of the heparin-binding domain.  

a) 

b) c) 
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2.9 The heparin-binding domain of rhPlGF-2 promotes deposition of 

granulation tissue in wounds of diabetic mice 

To analyse the role of the heparin-binding domain of PlGF during tissue repair with focus 

on angiogenesis, we evaluated the wound healing response in diabetic mice locally 

treated with repetitive application of the different rhPlGF isoforms. These mice suffer 

from an impaired healing response due to the lack of a functional leptin receptor. 

Because of a delay in wound healing processes, this mouse model allows a more 

detailed analysis of treatment response on single phases of healing as e.g. granulation 

tissue formation or angiogenesis. 

Mice were wounded on the back skin and treated with either PBS (vehicle control), 

rhPlGF-1, rhPlGF-2 or rhPlGFStop with 1 µg/day for up to seven days. Wounds were 

harvested at day 10 or 14 post wounding. Sections were stained with 

haematoxylin/eosin (H&E) or were analysed immunohistologically (for detailed 

information on the parameters for analysis of morphometric parameters see 4.5.4.1). 

The most obvious difference in PlGF isoform mediated activities was observed by 

analysis of the area of granulation tissue (Fig 19a,b). H&E stained sections 

demonstrated a robust and significant increase in granulation tissue formation in day 10 

and day 14 wounds treated with rhPlGF-2, as compared to the heparin-binding domain 

lacking PlGF isoforms (Fig 19b). Treatment with either rhPlGF-1 or rhPlGFStop resulted 

in the formation of granulation tissue that occupied an area that was slightly increased 

as compared to vehicle treated control wounds. All day 10 wounds (either treated with 

vehicle control or rhPlGF isoforms) were completely re- epithelialized and closed, as 

reflected by analysis of the length of epithelial tongue (Fig 19a,c). Being complement to 

the width of the wound set by biopsy punch (6 mm) at day 10, length of epithelial tongue 

decreases at day 14 due to wound contraction (Fig 19c).   
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Figure 19: Topical application of rhPlGF-2 accelerates granulation tissue formation in 
diabetic mice. (a) Representative H&E staining of wound tissues day 14 post injury. Repetitive 
application of rhPlGF-2 significantly accelerated granulation tissue formation in diabetic mice 
compared to rhPlGF-1, rhPlGFStop (1 µg per day for a period of 7 days) or vehicle treated 
control. All wounds were covered by a hyper-proliferative and closed epithelium. (b-d) 
Morphometric analysis of wound tissue at day 10 and day 14 post injury. (b) Area of granulation 
tissue (c) length of epithelial tongue (d) distance between ends of panniculus carnosus. At each 
time point and for each condition four wounds from four different mice were analysed; Boxed area 
in the left panel represents photograph at higher magnification in the right panel; dashed line 
indicates granulation tissue; e  epidermis, gt  granulation tissue, sft  subcutaneous fat tissue, 
white asterix indicate blood vessel; scale bar as indicated. 
 

c) b) d) 

a) 
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As analysis was not performed at earlier time points, a statement for an accelerated 

wound closure rate in response to the heparin-binding domain bearing PlGF isoform 

cannot be made. Measurement of the distance between the ends of panniculus 

carnosus revealed no significant differences among PlGF isoforms or vehicle treated 

control (Fig 19a,d).  

 

2.10 The heparin-binding domain of rhPlGF-2 increases wound 

angiogenesis  

As one phenotype of db/db mice is a decreased formation of granulation tissue, rhPlGF-

2 appears to improve the wound healing response in diabetic mice. Granulation tissue is 

known to be essential for wound angiogenesis and quality of wound healing, therefore 

we analysed, if rhPlGF treatment – in dependence of the presence of a heparin-binding 

domain - may improve angiogenesis under conditions of disturbed wound healing. 

To analyse the angiogenic response upon differential PlGF isoform treatment 

qualitatively and quantitatively, cryo-sections from day 10 and day 14 wounds were 

stained immunohistologically. Double staining for CD31, a marker for vascular structures 

and endothelial cells and desmin, a marker for perivascular cells, was performed and 

quantified in a semi-quantitative manner. Representative images of wound tissue of day 

10 and 14 post wounding are shown in Figure 20a whereas quantification is summarized 

in Figure 20b-g.  

As depicted in Figure 20a, the vascular response during granulation tissue formation 

was less intense in vehicle treated control wounds as compared to wounds treated with 

the PlGF-isoforms at day 10 post wounding, although not significant. Among the 

isoforms, treatment with rhPlGF-2 appeared to increase vessel number and to improve 

an equal vessel distribution as compared to rhPlGF-1 and rhPlGFStop. Although 

rhPlGFStop treated wounds revealed a comparable degree of CD31-positive structures, 

vessels appeared to be unorganized and distribution seems to be disturbed (Fig 20a). In 

addition, the desmin-positive area within the granulation tissue is increased upon PlGF 

treatment. Whereas the desmin-positive area is only slightly increased in wounds treated 

with the short PlGF isoforms as compared to vehicle control, PlGF-2 clearly promoted 

the recruitment of desmin-positive cells. With progression of wound healing, the 

differences in the vascular response to the PlGF isoforms became more obvious in day 

14 wounds (Fig 20a). Most of the vascular structures observed in rhPlGF-2 treated 

wounds were covered with pericytes, which might contribute to vessel stabilization. In 

contrast, vessels appeared to regress in day 14 wounds, when treated with either 

rhPlGF-1, rhPlGFStop or vehicle treated control. These vessels revealed a poor 

coverage with pericytes, which may be reasonable for regression (Fig 20a)  
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Figure 20: The heparin-binding domain of PlGF promotes vessel coverage by recruitment 
of perivascular cells. (a) Immunohistochemical staining of cryo-sections from day 14 wounds 
treated with rhPlGF-1, rhPlGF-2, rhPlGFStop (1µg/mL per day for up to 7 days), or vesicle treated 
controls, as indicated. (b) Morphometric quantification of the (b,d) CD31 or desmin positive 
stained area as percentage of the area of granulation tissue, day 10 and day 14 post injury. (c,e) 
CD31 or desmin positive stained area as total values within granulation tissue, day 10 and day 14 
post injury. (f) Coverage of vessels with pericytes analysed as percentage of CD31/desmin 
double stained area. (g) Area of granulation tissue. For each condition and time point, at least 
four wounds from four different mice were analysed. Dotted line indicates epidermal-dermal 
junction; e, epidermis; scale bar 100 µm. 
 

Quantitative analysis of vessel infiltration into the wound site and its coverage with 

pericytes, was performed as measurement of CD31- and desmin-positive area in relation 

to the area of granulation tissue (Fig 20b,d) and as total values within the granulation 

tissue (Fig 20c,e).  

Interestingly, in day 10 wounds all of the PlGF isoforms increased the angiogenic 

response with respect to vehicle treated control, when analysing the CD31-positive 

stained area in relation to the area of granulation tissue, although not reaching 

significance (Fig 20b,c). PlGF in general therefore appeared to promote vessel 

infiltration, independently of the heparin-binding domain.  

By contrast, analysis of angiogenesis in day 14 wounds revealed significant differences 

in the percentage of CD31-positive area for the various treatments. Whereas vessels 

appeared to regress in wounds treated with rhPlGF-1, rhPlGFStop and vehicle control, 

the percentage of CD31 positive staining remained elevated in rhPlGF-2 treated 

wounds. rhPlGF-2 treated wounds were significantly more vascularized than wound 

receiving other treatment options (Fig 20b,c). Analysis of the desmin-positive stained 

area revealed a significantly enhanced recruitment of pericytes by rhPlGF-2 in 

b) 

c) 

d) 

e) 

f) 

g) 
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comparison to the two short PlGF forms or vehicle control at day 10, which therefore 

might be a heparin-binding domain dependent effect (Fig 20d,e). This difference was 

even more pronounced at day 14 post wounding. A possible explanation for the rhPlGF-

2 induced vessel persistence might be a function as survival factor or the observed 

recruitment of pericytes, but this has to be analysed in detail. 

Vessel stabilisation and/or maturation by recruitment of pericytes therefore might be 

reasonable for the persistent detection of CD31 positive structures in wounds treated 

with rhPlGF-2, whereas vessels induced by rhPlGF-1 or rhPlGFStop seemed to regress 

in later phase of wound healing, as reflected by day 14 wounds. This hypothesis was 

underlined by analysis of CD31/desmin double positive stained areas (Fig 20f). The 

percentage of structures positive for both CD31 and desmin was clearly increased by 

rhPlGF-2 at day 10 post wounding, and reached an even higher level by day 14. In 

contrast, rhPlGF-1 and rhPlGFStop failed to increase this percentage and pericyte 

covered structures only reached levels of vehicle treated controls. 
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2.11 Heparin-binding domain dependent signalling involved in PlGF 

mediated migration/chemotaxis 

As the PlGF isoforms were active and revealed functional differences in their bioactivity 

in vitro (Boyden chamber assay, spheroid assay), in vivo (granulation tissue 

formation/angiogenesis during wound healing) and in their binding properties (Surface 

Plasmon Resonance spectroscopy), the next step was to analyse the heparin-binding 

domain mediated signalling pathways.  

 
migration/chemotaxis

PI3K

ErkAkt

Ser 473

PI3K-pathway

Integrin

Src

Tyr 416

Src

Tyr 416

Tyr 1213

Neuropilin-1

VEGFR-1

HSPG

FAK-pathway

Tyr 576/577

Rac-1Rac-1

Tyr 165

FAK

Tyr 397

p130Cas
GTP

VEGFR-1

Neuropilin-1

HSPG

 
Figure 21: Model for PlGF mediated migration and chemotaxis. (a) Phosphoinositid-3-Kinase 
(PI3K) activation as well as (b) focal adhesion kinase (FAK) activation might be attractive 
processes to analyse the function of PlGF and its heparin-binding domain for migration and 
chemotaxis. Both are known to be important for the re-organization of the cytoskeleton and focal-
adhesion turnover. (a) In monocytes, the activation of PI3K and its downstream targets was 
demonstrated to be involved in PlGF mediated chemotaxis. PI3K-inhibitors, as well as function 
blocking antibodies against VEGFR-1 reduced this activation (Tchaikovski 2008). (b) Direct 
linkage of VEGFR-1 signalling to integrin induced activation of FAK might be involved in PlGF 
mediated signalling. FAK activation is known to be involved in cellular migration and formation of 
lamellopodia and filopodia by activation of the downstream molecule p130Cas (Playford 2004). 
Lesslie and colleagues identified the family of Src kinases as link between VEGF-A mediated 
VEGFR-1 signalling and integrin signalling, resulting in specific activation of FAK, p130Cas 
(Lesslie 2004) and the small GTPase Rac-1 (Playford 2004). Activation of PI3K as well as FAK 
may be further enhanced by Nrp-1, acting as co-receptor for VEGFR-1. Recent publications 
demonstrated a direct role of Nrp-1 in VEGF-A-induced phosphorylation of p130Cas and 
endothelial cell migration (Evans 2011). Furthermore, Nrp-1 was shown to directly interact with 
integrins to promote integrin internalization and recycling, resulting in cell migration (Valdembri 
2009).  
 
 

a) b) 
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According to the literature, PlGF induced migratory signals might be mediated via 

activation of two main signalling cascades: either by activation of VEGFR-1 signalling 

and activation of phosphoinositide 3-kinase (PI3K) (Fig 21a), or by regulation of the focal 

adhesion kinase (FAK) and activation of its effectors via (co-)activation of integrins 

and/or VEGFR-1 (Fig 21b). These signals might be enhanced by co-receptors as 

heparan sulphate-proteoglycans (HSPGs) or Nrp-1, and can be distinguished by distinct 

downstream signalling proteins. 

 

2.11.1 Activation of Akt and Erk-1/2 by PlGF-2 is independent from its 

heparin binding domain  

To analyse, whether the activation of PI3K and its downstream targets is involved in the 

heparin-binding domain mediated migratory and chemotactic response to PlGF in 

endothelial cells, serum-starved HUVE cells or PAE/Nrp-1 cells were stimulated with 

either rhPlGF-2 or the mutant rhPlGFStop and the phosphorylation pattern of VEGFR-1 

(Tyr1213), Akt (Ser473) and Erk-1/-2 (Thr202/Tyr204) was analysed. Additionally, the 

involvement of PI3K in PlGF downstream signalling was tested by use of wortmannin, 

which inhibits the activation of PI3K/Akt. 

Western blot analysis revealed activation of all tested kinases in HUVE cells upon 

stimulation with rhPlGF-2 or rhPlGFStop, and therefore confirmed that rhPlGF proteins 

expressed in HEK293 cells were functional and able to induce signal transduction. Both 

PlGF forms strongly activated VEGFR-1 phosphorylation at Tyr1213 after 5 minutes and 

the signal was sustained for at least 30 minutes, even though a slight decrease in 

intensity was observed upon treatment with rhPlGFStop (Fig 22a). Equal loading is 

demonstrated by Akt and Erk-1/2 loading control, as all samples were subjected to the 

same SDS-gel. Independent of the presence of the heparin-binding domain, rhPlGF-2 

and rhPlGFStop strongly increased phosphorylation of both Erk-1 and Erk-2 after 5 

minutes, as compared to the negative and the positive control (rhVEGF-A165) which is in 

line with an early activation with VEGFR-1. Signal intensity decreased to basal levels at 

later time points (Fig 22a).  

Phosphorylation of Akt after 5 minutes of stimulation was markedly increased when cells 

were treated with either rhPlGF-2 or rhPlGFStop, as compared to the negative control. 

The signal strength was similar to the rhVEGF-A165 treated positive control. After 20 and 

30 minutes of stimulation with either rhPlGF-2 or rhPlGFStop phosphorylation decreased 

to basal levels (Fig 22a).  

As the chemotactic response of PAE/Nrp-1 cells toward rhPlGF-2 was significantly 

increased as compared towards rhPlGFStop (Fig 17a,b), the role of Nrp-1 

overexpression for heparin-binding domain mediated PlGF signal transduction was 
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analysed. Similarly as seen for stimulation of HUVE cells, both isoforms increased the 

phosphorylation of Erk-1 and Erk-2 at 5 and 20 minutes of stimulation as compared to 

the untreated control (Fig 22b). Signal intensity was not altered among isoforms, and 

declined after 30 minutes. Analysis of Akt phosphorylation at Ser473 revealed a delayed 

onset of activation in PAE/Nrp-1 cells as compared to HUVE cells. Slightly increasing 

after 5 minutes of stimulation, PlGF treatment significantly enhanced and prolonged 

phosphorylation at 20 and 30 minutes (Fig 22c). In addition, pre-incubation with the 

PI3K-inhibitor wortmannin indicated an involvement of PI3K in PlGF-mediated signalling, 

as the phosphorylation of its downstream target Akt was decreased upon wortmannin-

treatment (Fig 22c). Observed effects were heparin-binding domain independent, as the 

phosphorylation intensity was not altered among isoforms.  
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Figure 22: Akt and Erk-1/2 are activated by rhPlGF but not differential regulated by the 
heparin-binding domain. Western blot analysis of PI3K signal transduction in (a) HUVE cells or 
(b,c) PAE/Nrp-1 cells stimulated with 100 ng/mL rhPlGF-2 or rhPlGFStop. 50 ng/mL rhVEGF-A165 
and starvation medium were used as positive and negative control, respectively. Samples were 
subjected to SDS-PAGE under reducing conditions and detected by specific antibodies. 
Phosphorylation of PI3K and downstream targets was analysed by antibodies directed against (a) 
phospho VEGFR-1 (Tyr1213), (a,b) phospho Erk1/2 (Thr202/Tyr204), total Erk1/2, (a,c) phospho-Akt 
(Ser473) and total Akt. (c) Involvement of PI3K was investigated by inhibition of Akt 
phosphorylation by wortmannin (200nM). 
 

Analysis of the activation of PI3K and its downstream targets indicated that PlGF is able 

to activate the tested kinases independently of its heparin-binding domain. PI3K 

therefore might be involved in PlGF mediated migration, but appears not to be 

responsible for the differences found in the chemotactic activity. Both forms were able to 

induce VEGFR-1, Erk-1/-2 and Akt phosphorylation to a comparable or even higher level 

as observed for rhVEGF-A165. Involvement of PI3K was demonstrated indirectly, by the 

use of the PI3K-inhibitor wortmannin and the observed reduced phosphorylation of Akt. 

Interestingly, overexpression of Nrp-1 on PAE/Nrp-1 cells appears to increase signal 

strength and duration of phosphorylation of Erk-1/-2 and Akt as compared to HUVE cells 

(Fig 22b,c). Nevertheless, its overexpression did not alter the phosphorylation profile due 

a) b) 

c) 
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to the presence of the heparin-binding domain in rhPlGF-2 treated samples. Thus, 

binding to Nrp-1 appears not to be directly involved in a heparin-binding domain induced 

activation of PI3K and its downstream targets in this context. 

 

2.11.2 Increase of pro-angiogenic response induced by rhPlGF-2 might 

be mediated by the focal adhesion kinase  

FAK mediated activation and signalling to induce chemotaxis is quite complex due to a 

variety of possibly involved receptors and interacting adapters, kinases and 

phosphatases that might participate in signal transduction.  

To analyse the possible role of FAK regulation in PlGF induced signalling and migration, 

the level of FAK phosphorylation at Tyr576/577 was examined in HUVE cells. These sites 

are phosphorylated upon binding of members of the Src family of protein tyrosine 

kinases to FAK (Schaller MD 1994, Calalb MB 1995). As interaction of integrins with 

components of the extracellular matrix may have a strong impact on FAK activation, 

cells were seeded on either fibronectin- or collagen I-coated cell-culture dishes prior to 

stimulation. 

Independent of differential coating, rhPlGF-2 and rhPlGFStop both increased FAK 

phosphorylation at early time points as compared to control, without apparent 

differences in signal strength among the two stimuli (Fig 23a). Similarly, phosphorylation 

of downstream targets Src and p130Cas was activated to a comparable degree by both 

isoforms. Both, rhPlGF-2 and rhPlGFStop increased and sustained phosphorylation of 

the Src kinase on Tyr416 as compared to the negative control when cells were seeded on 

collagen I (Fig 23a).   

Downstream of FAK, the activation of the multimer adapter protein p130Cas was analysed 

by its phosphorylation at Tyr165, which has been demonstrated to be dependent on both, 

activation of FAK and Src. Independent of the heparin-binding domain, both isoforms 

increased phosphorylation on fibronectin at early time points (5 and 15 minutes), but 

signal intensity was comparable to control samples after 30 minutes (Fig 23 a). When 

HUVE cells were seeded on collagen I coated cell-culture dishes, phosphorylation was 

equal between control and stimulus. (Fig 23a). As these were preliminary results, 

experiment has to be repeated to confirm the results. 

 

Overall, both forms only slightly increased phosphorylation of the tested proteins in 

HUVE cells at early time points, and revealed no major differences due to presence of 

the heparin-binding domain. In this cell system, integrin activation by coating with 

specific adhesion substrates appeared to play a minor role.  

Although Nrp-1 is known to be expressed by HUVE cells, its expression level might be 
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too low to have a major impact on activation of the FAK. To address this question, the 

PlGF mediated signal transduction in Nrp-1 transfected PAE cells (PAE/Nrp-1) was 

analysed and compared to signalling taking place in untransfected PAE cells (Fig. 23b).  

Indeed, Nrp-1 transfected cells grown on cell-culture treated dishes, revealed a clear 

and time-dependent increase in FAK phosphorylation upon stimulation with rhPlGF-2. 

The phosphorylation was dramatically decreased compared to control sample after 5 

minutes, but phosphorylation strongly increased after 15 minutes and climaxed after 30 

minutes. In contrast, stimulation with rhPlGFStop resulted in a slight increase in FAK 

phosphorylation over control and a sustained intensity at all time points (Fig. 23b, upper 

panel). By contrast, overall phosphorylation was markedly reduced in untransfected PAE 

cells.   
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Figure 23: FAK activation is regulated by rhPlGF-2 and its heparin-binding domain under 

conditions of increased Nrp-1 expression. Western blot analysis of FAK signalling in (a) 
HUVE cells or (b-d) PAE/Nrp-1 cells stimulated with 100 ng/mL rhPlGF-2 or rhPlGFStop. 50 
ng/mL rhVEGF-A165 and starvation medium were used as positive and negative control, 
respectively. Samples were subjected to SDS-PAGE under reducing conditions and kinase 
activation was detected by specific antibodies. Phosphorylation of FAK and its downstream 
targets was analysed by antibodies directed against (a-c) phospho-FAK (Tyr576/577), (a,c) 
phospho-p130Cas (Tyr165), (a,c) phospho-Src (Tyr416); β-actin was used as loading control. Cell 
culture dishes were coated with either collagen I or fibronectin, as indicated. (d) To detect levels 
of activated Rac-1 in PAE/Nrp-1, a Rac-1 pull-down assay was performed using Pak-crib as bait. 

a) b) 

c) 

d) 
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Although rhPlGF-2 induced a time-dependent increase in phosphorylation, signal 

intensity was very low, and maximal phosphorylation after 30 minutes did not exceed 

control levels. rhPlGFStop was not able to increase phosphorylation (Fig. 23b, lower 

panel). As overexpression of Nrp-1 in PAE cells clearly increased rhPlGF-2 mediated 

FAK phosphorylation as compared to rhPlGFStop, the heparin-binding domain in co-

operation with Nrp-1 might be a critical component in PlGF-2 induced migratory signals. 

As Nrp-1 expression altered FAK phosphorylation in response to the PlGF-2-dependent 

presence of the heparin-binding domain, PAE/Nrp-1 cells were used to analyse 

phosphorylation of FAK, Src and p130Cas upon stimulation with rhPlGF-2 or rhPlGFStop 

on collagen I coated dishes (Fig 23c). When cells were stimulated on collagen I, the 

phosphorylation pattern markedly differed among the isoforms. Following stimulation 

with rhPlGF-2, FAK phosphorylation increased in a time-dependent manner and 

climaxed at 30 minutes. In contrast, PlGFStop failed to induce phosphorylation at 5 and 

15 minutes and only slightly activated FAK at 30 minutes of stimulation. Results obtained 

for phosphorylation of Src-family members revealed a similar pattern to FAK 

phosphorylation among cells stimulated with rhPlGF-2. The increase of phosphorylation 

was time-dependent, and resulted in a maximum intensity after 30 minutes. Stimulation 

with rhPlGFStop induced Src phosphorylation only after 5 minutes, whereas prolonged 

incubation had no pronounced effect. Phosphorylation of p130Cas was induced by both 

isoforms, and climaxed at 30 minutes. Induction by rhPlGF-2 resulted in a clear increase 

in signal intensity over time. In general, signals induced by rhPlGFStop were weaker, 

and a clear induction only became obvious after 30 minutes of stimulation. Interestingly, 

the control sample revealed a high base level for all analysed phospho-proteins, which 

has to be analysed in detail (Fig 23c). Analysis has to be repeated to confirm the results. 

Activation of the small GTPase Rac-1 by p130Cas has been demonstrated to be one of 

the multiple mechanisms to mediate chemotactic signals upon phosphorylation of 

p130Cas (Burridge K 2004). To measure the rate of Rac-1 activation, a pull-down assay 

using PAK-Crip, a peptide of a binding partner of activated Rac-1 was performed. 

Indeed, rhPlGF-2 was able to activate Rac-1 to a comparable degree as observed upon 

rhVEGF-A165 stimulation, which serves as a positive control (Fig 23c). rhPlGF-2 

activated Rac-1 in a time-dependent manner, starting at 15 minutes of incubation, 

climaxing at 60 minutes and decreasing after 120 minutes. No signal was detectable for 

the negative control. As the rhPlGFStop was not tested yet, these preliminary results 

may not clarify the role of the heparin-binding domain for PlGF mediated chemotactic 

responses, but strongly argue for its involvement in a PlGF-mediated chemotactic 

response.  

 



Results   

 

                                                                       62 

For a PlGF mediated regulation of the FAK and its downstream effectors, the presence 

of the heparin-binding domain as well as an overexpression of Nrp-1 appeared to be 

crucial. Whereas both isoforms induced activation of FAK, Src and p130Cas with 

comparable strength in HUVE cells, rhPlGF-2 markedly increased signal intensity as 

compared to rhPlGFStop in PAE/Nrp-1 cells. 
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3 Discussion 

The focus of this project was to evaluate the role of the heparin-binding domain of PlGF-

2 in the regulation of PlGF-mediated biological activities, with regard to angiogenesis 

during wound healing. As confirmed by western blot and mass-spectrometric analysis, 

PlGF is a target of proteolytic processing by the serine protease plasmin. The resulting 

loss of the C-terminus markedly reduced PlGF-2 mediated activities in vitro and in vivo. 

As truncation of PlGF-2 evoked a comparable, reduced cellular response as compared 

to the short isoform PlGF-1, proteolytic processing appears to constitute a second 

mechanism of regulation for PlGF-mediated activities, besides alternative mRNA 

splicing. 

 

3.1 Proteolytic processing of PlGF by plasmin results in the loss of 

the heparin-binding domain 

Similar as observed for VEGF-A, the expression of the PlGF gene gives rise to different 

isoforms that are mainly distinguished by the presence or absence of a basic heparin-

binding domain in the C-terminal region of the protein. This domain has been proposed 

to be involved in the binding of heparin/heparan sulphate and in the interaction with the 

co-receptor Nrp-1 to regulate cellular activities (Migdal 1998), but a detailed analysis 

remained to be elucidated. 

In this project, we demonstrated that proteolytic processing of rhPlGF-2 might provide a 

second mechanism of regulation of PlGF-mediated bioactivity by cleavage of the 

heparin-binding domain. As under chronic non-healing wound conditions a highly 

proteolytic milieu and excessive processing of growth factors may be responsible for a 

disturbed wound angiogenesis (Eming 2007), we analysed the protease sensitivity of 

PlGF with regard to the serine protease plasmin. Incubation of rhPlGF-2 with plasmin 

resulted in a C-terminal degradation and in formation of a stable core fragment, which 

was resistant to further processing. Analysis of the cleavage fragments by LC-MS/MS 

analysis revealed multiple cleavage sites within the heparin-binding domain and the 

sequence of exon 7, finally resulting in the loss of the heparin-binding domain by 

cleavage between Lys118 and Met119. This cleavage appeared to be successive from the 

C-terminus, as we detected intermediate cleavage product by western blot analysis, 

using an antibody directed against the N-terminus of PlGF. All but one fragment (Gly128-

Lys137) were detected in both samples analysed by LC-MSMS. This fragment was not 

generated by unspecific cleavage but it rather appeared to be an intermediate cleavage 

product, as it revealed additional sites in its sequence. To investigate the kinetics of 

PlGF-2 by plasmin, a detailed analysis would be necessary, but this was not in focus of 

this project. As the heparin-binding domain was completely degraded by plasmin, an 

inhibitory effect of fragments of the heparin-binding domain by competitive binding to 
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receptors may therefore be excluded.  

As the cleavage site closest to the N-terminus is located within exon 5, processing by 

plasmin might affect all PlGF isoforms. In line with this hypothesis, we were able to 

demonstrate, that plasmin also cleaves rhPlGF-1 in exon 5, which resulted in the loss of 

a sequence, which is mainly coded by exon 7. The stable N-terminal core-fragment 

formed upon final cleavage at Lys118/Met119 in both isoforms retained its basal 

structural features such as intra- and intermolecular disulfide bonds, and glycosylation 

sites.  

Interestingly, this regulation of activity appears to be highly consistent among VEGF-

family members. Besides high structural similarities and a comparable regulation by 

alternative splicing, the activity of VEGF-A165 has been demonstrated to be regulated by 

plasmin-mediated proteolytic processing, resulting in the loss of the heparin-binding 

domain and formation of a plasmin-resistant core-fragment (Lauer 2002). This truncated 

form of VEGF-A exhibited a markedly reduced angiogenic activity (Roth 2006). Similarly 

to PlGF, the VEGF-A165-cleavage site closest to the N-terminus is located in exon 5 and 

therefore common to all VEGF-A isoforms. Furthermore, this site revealed a high 

compliance in its amino acid composition to the one identified in PlGF, with regard to 

their chemical properties (KDR110A111R in VEGF-A versus REK118M119K in PlGF).  

Regulation of activity by proteolytic processing and cleavage of the heparin-binding 

domain therefore might provide a common mechanism within the VEGF-family. As the 

heparin-binding domain is predicted to enhance PlGF-mediated activities by gradient 

formation or recruitment of co-receptors, plasmin-mediated cleavage demonstrates a 

second form of regulation besides alternative splicing. 

 
3.2 PlGF is upregulated during skin repair and proteolytically 

processed in exudates obtained from non-healing wounds 

PlGF expression has been reported to be upregulated during wound healing in mouse 

and human, as compared to expression levels in non-wounded skin (Failla 2000, 

Cianfarani 2005). In line with this data, we demonstrated an increase of PlGF protein 

level in exudates obtained from healing human wounds. As this level is strongly 

increased in comparison to serum levels, the rise of PlGF can be attributed to a local 

expression. The PlGF-protein level in non-healing wounds was increased as compared 

to all time points analysed for normal healing progression, although this difference was 

not statistically significant. Similar differences were observed for the protein level of 

VEGF-A in human wounds, where an upregulation in non-healing wounds was detected 

as compared to healing ones (Lauer 2000). These observations may indicate an 

upregulation in expression to compensate the decrease in growth factor activity due to 

proteolytic processing. The relevance of proteolytic processing of PlGF in the non-

healing wound in vivo was demonstrated by western blot analysis. Similarly as observed 
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for VEGF-A165, PlGF-2 retained its structural integrity in exudates obtained from wounds 

with normal healing progression, whereas it was degraded in exudates obtained from 

non-healing human wounds, which reflects a dysregulated protease activity (Roth 2006). 

Although not analysed in detail, this processing of PlGF-2 appeared to be plasmin-

dependent, as the degradation pattern could be reproduced in vitro using human 

plasmin. However, to address the role of plasmin in the degradation of PlGF in detail, the 

integrity of PlGF-2 in wound exudates has to be analysed by the use of specific inhibitors 

for plasmin. As several proteases are upregulated under conditions of impaired wound 

healing, they might contribute to a degradation of PlGF. Possible interesting candidates 

would be neutrophil elastase or the family of MMPs, whose activity is highly upregulated 

under these conditions (Nwomeh 1998). Furthermore, a subset of MMPs was shown to 

degrade VEGF-A in a comparable manner as demonstrated for plasmin, resulting in a 

markedly reduced binding capacity to matrix components and distinct angiogenic activity 

(Lee 2005).  

Taken together these data confirm the relevance of PlGF-degradation in vivo, and 

strongly argue for the possibility of a common mechanism of proteolytic processing in 

the VEGF family.  

 

To overcome negative effects of proteolytic processing, the generation of a plasmin-

resistant form of PlGF-2 would be beneficial. As demonstrated for VEGF-A165, such a 

mutant retains its stability in the proteolytic milieu of non-healing wounds and promotes 

wound angiogenesis (Lauer 2002, Roth 2006). The generation of a mutant, plasmin 

resistant form of PlGF-2 to improve stability may be complicated, as plasmin generates 

multiple cleavage sites within the heparin-binding domain. Both mutant forms of PlGF-2 

(rhPlGF-2lys-pro and rhPlGF-2lys-ala) generated by site directed mutagenesis at Lys118 did 

not prevent the degradation of the heparin-binding domain, as observed for mutation of 

the corresponding site in VEGF-A165 (Lauer 2002). A different presentation of plasmin 

cleavage sites within the heparin-binding domain might be the reason. To achieve 

plasmin resistance, the exchange of a variety of basic amino acids or amino acid sets 

has to be tested. The mutation of a set of basic residues comprises the risk, that this 

domain partly could lose its specific pattern of basic amino acids and therefore its 

binding capacity to certain molecules. In addition, extensive mutagenesis might affect 

folding and interface presentation within the heparin-binding domain. 
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3.3 The binding of PlGF isoforms to GAGs is mediated by the C-

terminal domain encoded by exon 6 and 7 

By use of Surface Plasmon Resonance spectroscopy, the C-terminal domain of rhPlGF-

1 and PlGF-2 was clearly identified as a critical component for the binding to heparin, 

heparan sulphate, and chondroitin sulphate. Interestingly, this interaction appeared not 

to be solely dependent on the expression of the heparin-binding domain encoded by 

exon 6, but to a high degree on the sequence encoded by exon 7. As rhPlGF-1 revealed 

a binding strength, which was in average only 2-3 fold less intense as compared to 

rhPlGF-2, the heparin-binding domain seemed to have an enhancing effect, rather than 

an exclusive role for GAG-interaction. The results for rhPlGF-1 were surprising, as it was 

predicted to be unable to bind to heparin due to the lack of the heparin-binding domain. 

Two groups demonstrated that in contrast to PlGF-2, PlGF-1 is not able to bind to 

heparin-sepharose (Hauser 1993, Park 1994). Although SPR analysis provides the more 

sensitive method, binding experiments to heparin-Sepharose should be repeated, 

following the authors protocol.  

rhPlGFStop, which lacks the heparin-binding domain as well as the sequence encoded 

by exon 7 was unable to bind to any of the tested GAGs. As it is identical to rhPlGF-1 

apart from 13 C-terminal amino acids, this observation further highlighted the role of the 

sequence encoded by exon 7. In addition, its inability to bind to the tested GAGs proved 

that the core-fragment does not participate in a direct interaction. As the sequence 

lacking in rhPlGFStop is short and consists of only four basic amino acid residues, an 

analysis of critical amino acids could be performed easily by site-directed mutagenesis. 

The high similarities in the binding strength among rhPlGF-1 and rhPlGF-2 were 

surprising, as the differential isoform expression was thought to play an essential role in 

extracellular patterning, similar as observed for VEGF-A. Upon secretion, the VEGF-A 

isoforms have been demonstrated to have a differential diffusability, which appears to be 

crucial for the establishment of a gradient and vascular patterning (Carmeliet 1999, 

Maes 2002, Ruhrberg 2002, Stalmans 2002, Gerhardt 2003). Whereas VEGF-A188 was 

sequestered directly upon secretion, VEGF-A121 is predicted to have no GAG-binding 

capacity and to be freely diffusible. VEGF-A165 has an intermediate binding capacity.  

Our results appear to argue against a formation of a clear gradient among the isoforms, 

as at least rhPlGF-1 and rhPlGF-2 revealed a comparable binding strength for the tested 

GAGs. Nevertheless, we cannot rule out a differential binding to other GAGs. Therefore, 

analysis of additional GAGs might be an interesting topic, as a potential difference in the 

binding strength among the isoforms might help to identify areas of local and distinct 

sequestration.  

Our results identified the sequence coded by exon 7 as a critical determinant for an 

interaction between PlGF and the tested GAGs. The heparin-binding domain of rhPlGF-

2 appears to enhance this interaction, but not to be the exclusive binding-interface.  
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3.4 Heparin enhances the interaction between Nrp-1 and PlGF-2 

As plasmin processing markedly affected the binding capacity of both, rhPlGF-1 and 

rhPlGF-2 to GAGs, the binding of the various PlGF forms to the co-receptor Nrp-1 was 

assessed. We measured a moderate binding strength between rhPlGF-2 and Nrp-1 by 

Surface Plasmon Resonance spectroscopy, which was largely enhanced in the 

presence of heparin. These data are in line with results obtained from cross-linking 

experiments (Migdal 1998). In contrast to rhPlGF-2, rhPlGFStop did not show any 

binding to Nrp-1, which again underlines the essential role of the C-terminus for the 

binding capacity of PlGF. Unfortunately, a precise characterization of the binding of 

rhPlGF-1 to Nrp-1 is not existent, as the measured binding curves in our experiments 

had a bad resolution. Therefore, the measurements have to be repeated. While 

predicted not to bind to Nrp-1, several evidences argue for a binding of rhPlGF-1 to this 

co-receptor. First, VEGF-A121 the VEGF-A isoform lacking the heparin-binding domain 

was recently shown to bind directly to Nrp-1 in a heparin-independent fashion. The last 

C-terminal amino acids coded by exon 8 appeared to be the critical components, as this 

interaction was largely competed by Tuftsin, a synthetic tetrapeptide, which is very 

similar to the C-terminus of VEGF-A and PlGF. In addition, VEGF-A165b, which expresses 

the heparin-binding domain but an alternative C-terminal end, is unable to interact with 

Nrp-1 (Cebe Suarez 2006, Pan 2007a, Vander Kooi 2007). Second, Migdal and co-

workers analysed the binding of PlGF to Nrp-1 by cross-linking experiments on HUVE 

cells, as mentioned above. Although they awarded PlGF-1 a minor role in Nrp-1 binding, 

they observed that PlGF-1 slightly competes with 125I-PlGF-2 for the binding to Nrp-1 on 

HUVE cells (Migdal 1998). As these experiments were performed in a cellular system, 

this method may not control all aspects for a proper binding and is less sensitive as 

compared to SPR spectroscopy. In addition, the same group demonstrated an essential 

role of the PlGF heparin-binding domain as well as of the sequence encoded by exon 7. 

By generation of synthetic peptides, corresponding to either the first 15 amino acids of 

exon 6 (heparin-binding domain) or exon 7, they largely inhibited the binding of 125I-

PlGF-2 to Nrp-1. To clearly confirm a direct interaction between PlGF-1 and Nrp-1, our 

SPR-measurements have to be repeated. 

The major question in this context is how the heparin-binding domain differentially 

regulates the biological function of PlGF-2. Vander Kooi and co-workers established a 

model to explain the role of the heparin-binding domain for the interaction between 

VEGF-A165, Nrp-1, and the VEGFRs, which may be partially adaptive for PlGF-2. At least 

two factors likely contribute to the critical role of the heparin-binding domain of VEGF-A 

and are required for heparin binding. First, the heparin-binding domain may be pivotal to 

extend the C-terminal Nrp-binding region from the VEGF-A core-protein sufficiently, to 
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allow unencumbered access to the Nrp-1 dimer. Second, the heparin-binding domain 

provides an additional binding-interface for heparin and supports the interaction between 

heparin and Nrp-1. The length of the saccharide-chain appears to be crucial for the 

binding strength, as an optimal chain length of 22 and 24 monosaccharide units of 

heparin have been demonstrated to optimize the binding between VEGF-A165 or PlGF-2 

to Nrp-1, respectively (Mamluk 2002). The heparin-binding domain of VEGF-A165 

therefore might serve as a prolonged and continuous GAG-binding interface as 

compared to VEGF-A121, which then is sufficient to recruit Nrp-1 to the VEGFRs (Vander 

Kooi 2007). For VEGF-A, Nrp-1 and VEGFR-2 this hypothesis has been proven. In 

dependence of the heparin-binding domain, the complex of VEGF-A165/heparin/Nrp-1 

was able to cluster with VEGFR-2. This complex largely enhanced the interaction 

between the receptors and the ligand and resulted in an increased phosphorylation of 

VEGFR-2. Nrp-1-bound VEGF-A121 failed to induce this complex (Pan 2007a). 

Combined binding studies with VEGFR-1, Nrp-1 and PlGF-1 or PlGF-2 would be needed 

to confirm a similar mechanism of Nrp-1 recruitment to VEGFR-1, mediated by PlGF-2 

and its heparin-binding domain. 

For a detailed structural analysis, the crystal structure of PlGF-1 and -2 would be helpful, 

but up to date only 3D-models of the core-protein are available for PlGF and VEGF-A. 

This strongly argues for the possibility, that the C-terminus is flexible and therefore may 

exhibit a low degree of tertiary structure, which does not allow crystallization. This might 

account for the high accessibility for proteases within the heparin-binding domain. Both 

3D-models of the core-protein reveal highly basic patches of amino acids at the surface 

of the core-fragments. These patches may be supportive for an interaction of PlGF with 

GAGs or Nrp-1. However, our experiments investigating the interaction between 

rhPlGFStop and GAGs or Nrp-1 reveal, that these basic regions alone are not sufficient 

due to the lack of the C-terminus.  

Our findings strongly indicate, that the interaction of PlGF-2 with Nrp-1 is mediated by its 

C-terminal domain and significant enhanced in the presence of heparin. The observed 

inability of rhPlGFStop to bind to Nrp-1 strongly suggests that a reduction of PlGF-2 

activity after plasmin digestion is caused by loss of its Nrp-1 binding capacity. 

 

3.5 The mechanisms of PlGF-mediated activities 

To analyse the direct role of the heparin-binding domain for PlGF-induced cellular 

function, the chemotactic activity, as well as the capacity to induce sprouting of 

endothelial cells was assessed by a direct comparison of the different forms of PlGF. In 

both in vitro assays performed, rhPlGF-2 significantly increased the cellular response, as 

compared to PlGF forms that lack the heparin-binding domain encoded by exon 6. 
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According to the literature, the PlGF-induced cellular responses may be mediated by 

several mechanisms, that may in part be regulated by alternative expression of the 

heparin-binding domain or its proteolytic degradation: by activation of the VEGFR-1, by 

recruitment of the co-receptor Nrp-1 to VEGFR-1, by induction of signal transduction via 

Nrp-1 alone or by linkage of the VEGFR-1 system to integrin signalling. 
 

3.5.1 VEGFR-1 is activated independently of the C-terminal domain of 

PlGF encoded by exon 6 and 7 

The role of VEGFR-1 for the recruitment of several cell types has been demonstrated by 

gene-deletion experiments, in which cells defective for VEGFR-1 or ligand failed to be 

recruited in response to VEGF-A165 or PlGF-2 (Park 1994, Clauss 1996, Ishida 2001, 

Hattori 2002, Luttun 2002). VEGFR-1 is therefore believed to be directly involved in 

migration of endothelial cells, monocytes and macrophages as well as pericytes and 

precursor cells derived from the bone marrow. Exact mechanisms are unknown, but this 

recruitment appears to be highly dependent on the expression of Nrp-1, as its gene 

silencing by siRNA completely abolished cellular recruitment in response to VEGF-A165 

(Zacchigna 2008). VEGFR-1 is therefore believed to work in concert with Nrp-1 rather 

than to promote directed migration solely. This hypothesis is supported by the fact, that 

the various isoforms of VEGF-A induce distinct cellular responses due to differential 

expression of the heparin-binding domain, although the binding to VEGFR-1 appears to 

be not affected by this domain.  

 

Similarly to VEGF-A, the minimal interface of PlGF that mediates the binding to the 

VEGFR-1 was identified by crystallization of Ig-like domains-2 and -3 of VEGFR-1 in 

interaction with PlGF and by detailed mutagenesis experiments. All critical amino acids 

involved in a direct interaction to VEGFR-1 are located in the core-protein of PlGF 

encoded by exon 1-5 (Christinger 2004, Errico 2004). Different to VEGF-A, glycosylation 

at Asn84 appears to be critical for the PlGF-binding to the VEGFR-1. A role of the 

heparin-binding domain for the direct interaction to VEGFR-1 was not analysed on the 

structural level so far, but as PlGF-1 and PlGF-2 reveal a comparable binding strength to 

VEGFR-1 independent of the heparin-binding domain (Yamazaki 2006), it appears not to 

influence the binding by direct interaction. Due to the fact, that all critical determinants 

for the interaction between PlGF and VEGFR-1 are located within the core-protein of 

PlGF, it is likely, that proteolytic processing of PlGF-2 or expression of PlGF-1 (lacking 

the heparin-binding domain) will not largely affect binding and activation of VEGFR-1, 

but cannot completely excluded. 

In line with these predictions, both rhPlGFStop and rhPlGF-2 activated VEGFR-1 by 

phosphorylation at Tyr1213 to a comparable degree, which is thought to be the main site 

for phosphorylation upon ligand binding (Autiero 2003). Receptor-activation as well as 
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activation of the downstream targets Akt and Erk-1/-2 revealed no differences, therefore 

this signal transduction cascade may not be reasonable for the significant increased 

cellular responses observed upon stimulation with rhPlGF-2. As Akt and Erk-1/-2 have 

been demonstrated to be involved in monocyte migration upon activation of VEGFR-1 

(Tchaikovski 2008), they might have a role in induction of an increased general motility 

(Fig 24), rather than being involved in signal transduction for directed migration.  

The idea, that VEGFR-1 activation alone may not be responsible for the increased 

cellular response induced by PlGF-2 and its heparin-binding domain is supported by the 

data obtained from in vitro experiments. Neither rhPlGF-1 nor rhPlGF-2 was able to 

induce a significant chemotactic response on PAE cells, which solely express the 

VEGFR-1 and lack Nrp-1 expression. Although PlGF is known to induce the recruitment 

of several cell types that express VEGFR-1 (as mentioned above), this expression alone 

appears to be not sufficient to mediate the chemotactic effect of PlGF-2.  

Analysis of the potency to induce endothelial sprouting revealed that all isoforms 

increased the cumulative sprouting length as compared to the negative control. 

Furthermore, all PlGF isoforms appeared to stabilize the spheroid. This effect seems to 

be, at least in part independent of the heparin-binding domain. This phenomenon may 

be explained by activity as a survival factor, which might be induced by VEGFR-1 

signalling alone (Adini 2002, Cai 2003). Nevertheless, the clear increase in the 

cumulative sprouting length and the sprout number in response to rhPlGF-2 cannot be 

explained by VEGFR-1 signalling alone. 

To clearly eliminate a role of the heparin-binding domain for the induction of a distinct 

signalling via VEGFR-1 alone, a screen on all phosphorylation sites of VEGFR-1 would 

be necessary. 
 

3.5.2 Nrp-1 expression is important for PlGF-2 mediated chemotaxis 

and endothelial sprouting 

The role of Nrp-1 for angiogenesis is undisputable, as homozygous deletion as well as 

overexpression resulted in severe vascular defects (Kitsuwaka T 1995, Kawasaki 1999, 

Takashima 2002). Strong evidence points to a role of Nrp-1 in cell migration, adhesion 

and morphogenesis in response to VEGF-A, as neutralizing antibodies that specifically 

prevent VEGF-A binding to Nrp-1, blocked endothelial cell sprouting and neo-

vascularization in vitro (Pan 2007a). Nrp-1 was demonstrated to bind different VEGF-A 

isoforms independently of the heparin-binding domain, but its recruitment and clustering 

with the VEGFRs appears to be mediated by ligands bearing a heparin-binding domain 

in a GAG-dependent fashion (Pan 2007a, Vander Kooi 2007).  

In line with these findings, we observed a significant increase in the chemotactic 

response induced by rhPlGF-2 in Nrp-1/PAE cells, whereas untransfected PAE cells 

failed to respond to rhPlGF-2. Expression of VEGFR-1 solely therefore appears to be not 
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sufficient to induce a chemotactic response. Furthermore, we clearly identified the 

heparin-binding domain as a critical determinant for the induction of chemotaxis on 

endothelial cells, as both isoforms lacking the heparin-binding domain failed to induce 

directed migration. Although an involvement of Nrp-1 in rhPlGF-2 induced chemotaxis is 

demonstrated by loss of the migratory response in untransfected PAE cells, inhibitory 

antibodies should prove its role on PAE/Nrp-1 cells.  

These results were confirmed by analysis on HUVE cells, which are known express both 

receptors. Whereas rhPlGF-2 induced a robust chemotactic response, a lack of the 

heparin-binding domain appears to largely inhibit chemotaxis. Interestingly, Migdal and 

co-workers directly compared the chemotactic response of PlGF-1 and PlGF-2 on HUVE 

cells in the Boyden chamber assay, which did not reveal clear differences among the 

two isoforms (Migdal 1998). Although a comparable experimental setting was utilised, 

the authors used collagen IV to coat the porous membranes, whereas the cells were 

exposed to collagen I in the experiments presented here. Of more importance, the 

authors did not detect VEGFR-1 expression on HUVE cells in cross-linking experiments. 

It is known, that primary HUVE cells lose their ability to express VEGFR-1 with 

increasing passage number, and therefore a lack of VEGFR-1 may be reasonable for a 

failure of an induction of migration on that account (Shibuya 2001). 

Besides its migratory effects, Nrp-1 was demonstrated to be involved in VEGF-A165- and 

VEGF-A121-induced vascular sprouting (Pan 2007a). Although VEGF-A121 was less 

effective in sprout induction, both isoforms induced tubular outgrowth in a Nrp-1 

dependent fashion, as it was markedly reduced by an inhibitory Nrp-1-antibody. This 

antibody had no effect on spouting induced by a truncated form of VEGF-A (VEGF-A109). 

As VEGF-A109 is unable to bind Nrp-1, sprouting appears to be induced, at least in part, 

independent of Nrp-1. Interestingly, these data exactly reflect our results obtained from 

spheroids, stimulated with rhPlGF-1, rhPlGF-2, and rhPlGFStop: a clearly increased 

sprout number in spheroids stimulated with rhPlGF-2 and a reduced, but comparable 

sprouting in rhPlGF-1 and rhPlGFStop stimulated spheroids. Although a direct role of 

Nrp-1 has to be analysed by use of inhibitory antibodies, it is likely that the observed 

increase in sprout number is induced by a heparin-binding domain mediated bridging of 

Nrp-1 and VEGFR-1. This hypothesis has to be confirmed by either co-

immunoprecipitation of VEGFR-1 and Nrp-1 and/or an altered phosphorylation of 

VEGFR-1 upon stimulation with PlGF-2 or PlGF-1/PlGFStop. 

 
Besides acting as a direct co-receptor, which is bridged to the VEGFRs in a heparin-

binding domain-/GAG-dependent fashion, Nrp-1 is predicted to induce cellular 

responses independent of, or in parallel with the VEGFRs. Such activation of Nrp-1 

induced signalling might be induced independently of the heparin-binding domain. Wang 

et al. demonstrated, that EGF can induce migration of endothelial cells expressing a 
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fusion protein consisting of the extracellular domain of EGFR (epidermal growth factor 

receptor) fused to the transmembrane and intracellular domain of Nrp-1. This induction 

of migration appeared to involve activation of the PI3K/Akt axis (Wang 2003). To 

analyse, if this is a possible mechanism, by which PlGF-2 might differentially induce the 

observed chemotactic response on endothelial cells, we stimulated PAE/Nrp-1 cells with 

either rhPlGF-2 or rhPlGFStop and analysed the phosphorylation of Akt by western blot 

analysis. Both forms clearly induced Akt phosphorylation to a comparable degree. As 

Akt phosphorylation was inhibited by wortmannin, it appears to be PI3K-dependent. 

rhPlGFStop is not able to bind to Nrp-1, therefore the observed phosphorylation may not 

be caused by Nrp-1 mediated signalling. Nevertheless, we cannot rule out, that other 

signalling cascades might be directly activated by Nrp-1 upon ligand binding. To analyse 

a role of Nrp-1 signalling independently of VEGFR-1, the use of inhibitory antibodies to 

prevent VEGFR-1 activation may help to identify possible signal transduction targets of 

Nrp-1. 

Our results clearly support the essential role of Nrp-1 in rhPlGF-2 induced chemotaxis 

and sprout induction. As the lack of the heparin-binding domain significantly attenuated 

this cellular response, it appears to be highly regulated by alternative splicing as well as 

plasmin-dependent processing.  

 

3.5.3 The heparin-binding domain of PlGF-2 modulates potential 

integrin-mediated activation of downstream kinases 

Integrins are known to be crucial surface molecules, which are essential for adhesion 

and migration by binding to components of the extracellular matrix and intracellular re-

organization of the cytoskeleton. Lesslie and colleagues observed a possible 

mechanism, by which VEGF-A165 specifically induced chemotaxis of a human carcinoma 

cell line by activation of FAK and its downstream target p130Cas. They identified the 

family of Src-kinases as linker between VEGF-A mediated VEGFR-1 signalling and 

integrin signalling (Lesslie 2006). As p130Cas activation requires integrin-mediated FAK 

phosphorylation at Tyr397 as well as Src-induced FAK phosphorylation at Tyr576/577, it 

appears to be highly dependent on both pathways. 

In line with these results, we observed a slight activation of FAK, Src-family kinases and 

p130Cas upon PlGF stimulation of HUVE cells. This induction of phosphorylation 

appeared to be independent of the heparin-binding domain, as these effectors revealed 

a comparable phosphorylation pattern upon stimulation with either rhPlGF-2 or 

rhPlGFStop. Interestingly, in PAE/Nrp-1 cells rhPlGF-2 clearly increased FAK 

phosphorylation as compared to rhPlGFStop, whereas this phosphorylation was 

markedly decreased in untransfected PAE cells. In conclusion, Nrp-1 may enhance the 
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rhPlGF-2 induced phosphorylation in a heparin-binding domain-dependent fashion, 

whereas rhPlGFStop induces a weak phosphorylation by solely activating VEGFR-1. 

Similar to FAK phosphorylation, rhPlGF-2 increased activation of p130Cas and Src family 

kinases, as compared to rhPlGFStop. These differences among the isoforms were even 

more pronounced, when cells were seeded on collagen I, underlining the role of integrin 

activation. Based on these findings, a co-activation of integrin-mediated signalling and 

rhPlGF-2 induced VEGFR-1/Nrp-1 signal transduction may be responsible for the 

observed increase in chemotaxis. The involvement of integrin-mediated signalling has to 

be proven by specific antibodies. Although the results of FAK-mediated directed 

migration in response of rhPlGF-2 have to be verified and compared to rhPlGF-1, this 

mechanism may provide a reasonable explanation for a distinct heparin-binding domain 

mediated in vitro activity of PlGF-2. 

Upon activation, VEGFR-1 has been demonstrated to interact with a variety of SH-2 

adapter proteins such as Grb2, Crk, and Nck. As these adapters are able to bind and 

trans-phosphorylate FAK (for review see Playford 2004, Mitra 2006), the collaboration 

between PlGF-2 induced VEGFR-1/Nrp-1 signalling and integrin mediated signals may 

be changed or fine-tune to promote differential cellular responses such as tube-

formation. Detailed analysis on VEGFR-1 phosphorylation and activation of adapter-

kinases will help to identify exact mechanisms of interaction of these two pathways. 

Our data indicates a collaboration of integrin- and VEGFR-1/Nrp-1-mediated signal 

transduction to promote PlGF-2 induced chemotaxis. This assumption is supported by 

an increased activation of FAK and downstream kinases induced PlGF-2 and its 

heparin-binding domain. 

 

3.6 rhPlGF-2 increases wound angiogenesis and promotes 

granulation tissue formation in diabetic mice 

In diabetes, numerous aspects of the normal wound healing response are impaired and 

include dysfunction in the inflammatory response, a reduced granulation tissue 

formation, and impaired angiogenesis. In part, a dysregulation of proteases may be 

responsible. To investigate the role of either alternative mRNA splicing or proteolytic 

processing for the in vivo activity of PlGF to promote angiogenesis during wound 

healing, we topically applicated the different PlGF forms onto the wound bed and 

wounds were analysed microscopically at day 10 and day 14 post wounding.  

Results obtained by H&E-staining and immunohistochemical staining clearly 

demonstrated, that rhPlGF-2 treatment improves granulation tissue formation and 

angiogenesis in diabetic mice. As rhPlGF-1 and rhPlGFStop induced a significantly 

reduced response in these parameters, the observed effects appear to be heparin-
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binding domain dependent and to be regulated by alternative splicing as well as 

proteolytic processing. Nevertheless, both isoforms slightly increased granulation tissue 

formation and angiogenesis, as compared to vehicle treated controls. Cianfarani et al. 

obtained comparable results in streptozotocin-induced diabetic mice. The authors 

observed an accelerated wound closure rate, a slight increase in granulation tissue and 

an improved angiogenic response by either transgenic overexpression of PlGF-1 in the 

skin (K14 promoter) or adenoviral transfer of PlGF-1 to the wound site (Cianfarani 2006). 

A direct comparison of the results is difficult, as streptozotocin-induced diabetic mice 

appear to have a retarded healing response as observed in our diabetic mice. Whereas 

in their model wounds were not closed before day 16, in our diabetic mice all wounds 

were already closed at day 10. As we did not analyse the effect of PlGF-treatment 

before day 10, we cannot conclude on an accelerated closure response. Therefore, 

analysis has to be performed at earlier time points. By analysis of granulation tissue 

formation and maturation, the authors observed an increase in area as well as in 

cellularity in adenoviral treated mice. The granulation tissue appeared to be more mature 

in response to PlGF-1, revealed a high degree of collagen content, and was highly 

populated with fibroblasts and monocytes/macrophages. As recruitment of VEGFR-1+ 

cells is known to be induced by PlGF, these results appear to be a direct effect of PlGF 

treatment (Park 1994; Clauss 1996, Hattori 2002). Similarly, we observed a slight but not 

significant increase in granulation tissue formation in wounds treated with either rhPlGF-

1 or rhPlGFStop. As corresponding stainings are under investigation at the moment we 

can just speculate, but a PlGF induced recruitment of VEGFR+ fibroblasts and 

monocytes/macrophages to the wound site appears to be reasonable. This cell 

recruitment seems to be further increased by rhPlGF-2. A heparin-binding domain 

mediated mechanism therefore appears to be responsible for the significant increase in 

granulation tissue and might include Nrp-1 signalling. 

In streptozotocin-induced diabetic mice, adenoviral PlGF-1 treatment significantly 

improved vascularization of granulation tissue and vessel coverage with 

pericytes/smooth muscle cells at day 7 post wounding. This data might coincide with our 

results, although we analysed vascularization of granulation tissue at later time points. At 

day 10 post wounding, we observed a slightly increased vessel density in rhPlGF-1 and 

rhPlGFStop treated wounds as compared to vehicle treated controls, which is even more 

pronounced in rhPlGF-2 treated wound. These differences among isoforms become 

even more obvious at day 14 post wounding. Interestingly, the vessel density of rhPlGF-

2 treated wounds remains stable between day 10 and day 14, whereas vessels in 

rhPlGF-1 or rhPlGFStop treated wounds and control wounds appear to regress. The 

significant differences in vessel density between PlGF-1 treatment and vehicle control at 
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day 7, observed by Cianfarani et al., might be adapted by vessel regression at later time 

points. To underline this hypothesis, we have to analyse vessel density in earlier phases 

of healing progression. 

The increased persistence of vasculature observed in rhPlGF-2 treated wounds as 

compared to rhPlGF-1, rhPlGFStop or vehicle control, especially at day 14, may have 

several reasons. The most obvious one is the significant increase in perivascular cells. 

These VEGFR-1+ cells are known to be recruited in response to PlGF (Carmeliet 2001). 

In line, we observed a slight increase in the desmin positive area in rhPlGF-1 and 

rhPlGFStop treated wounds at day 10. As this recruitment was significantly enhanced by 

rhPlGF-2, a heparin-binding domain dependent mechanism appears to be reasonable. 

As this recruitment resulted in augmented vessel coverage with pericytes, rhPlGF-2 

might promote vessel stabilization and maturation. A second mechanism might be the 

induction of anti-apoptotic gene expression in endothelial cells (Adini 2002). Adini and 

colleagues have demonstrated, that mPlGF-2 induced survivin expression on endothelial 

cells during tumor formation, and therefore promoted endothelial cell survival rather than 

vessel formation. An additive effect of both mechanisms might be conceivable. Analysis 

of the gene-expression profile among the different PlGF-forms therefore might be in 

interesting topic.  

Our findings clearly demonstrate that rhPlGF-2 promotes angiogenesis and formation of 

granulation tissue. As treatment with either rhPlGF-1 or rhPlGFStop revealed a 

significant reduced response, the PlGF mediated activities appear to be regulated by 

alternative splicing as well as proteolytic processing. The involvement of Nrp-1 and/or 

and altered gene-expression in response to the heparin-binding domain of PlGF remains 

to be elucidated. 

 

3.7 Model for PlGF-induced signal transduction 

The findings of this study clearly demonstrate that the heparin-binding domain of PlGF-2 

stimulates endothelial cell functions in vitro and promotes angiogenesis and granulation 

tissue formation in vivo. The model presented in Figure 24 provides a possible 

mechanism, by which PlGF-2 might mediate its chemotactic activity.  

 

Supported by western blot analysis (Fig 22a), binding and activation of VEGFR-1 

appears to be independent of the heparin-binding domain or the sequence encoded by 

exon 7 (Fig 24a), as demonstrated by rhPlGFStop (core-fragment) induced receptor-

phosphorylation. This binding resulted in the activation of the PI3K/Akt axis, which may 

promote increased random migration, but failed to induce directionality, as observed for 

rhPlGF-1 and rhPlGFStop in the Boyden chamber assay. In contrast, rhPlGF-2 

increased chemotaxis in an Nrp-1-dependent fashion. Reasonable might be VEGFR-
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1/Nrp-1 clustering. For complex formation, the heparin-binding domain of PlGF-2 as 
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Figure 24: Model for heparin-binding domain dependent or independent induction of 
endothelial cell activity in response of PlGF. (a) Independent of the C-terminal heparin-binding 
domain and the sequence encoded by exon 7, the PlGF core-protein can bind and activate the 
VEGFR-1. This interaction results in activation of the PI3K/Akt axis to promote random migration. 
(b) In contrast, PlGF-2 promotes clustering of VEGFR-1 and Nrp-1 in dependence of its heparin-
binding domain and the presence of GAGs. This altered VEGFR-1 activation supports the 
interaction of VEGFR-1- and integrin-induced signal transduction to promote FAK 
phosphorylation. The collaboration between integrins and VEGFR-1/Nrp-1/GAG/PlGF-2 is 
mediated by SH-2-domain adapter kinases such as Src-kinases, which induce distinct FAK 
phosphorylation. FAK activation initiates a defined downstream signalling pathway and directed 
motility. (c) PlGF-1 has the capability to bind to GAGs, activate VEGFR-1 and probably interacts 
with Nrp-1, but it appears that these interactions are not sufficient to promote chemotaxis and 
sprouting. Potentially, the absence of the heparin-binding domain prevents VEGFR-1/Nrp-1/GAG 
clustering. A possible function of PlGF-1 binding to Nrp-1 or GAGs remains to be elucidated.  

 

well as GAGs are essential to bridge these two receptors. In turn, enhanced or altered 

VEGFR-1 phosphorylation activates certain SH-2-domain adapter-kinases such as Src 

(Fig 23c). These kinases work in concert with activated integrins to promote a distinct 

FAK phosphorylation pattern and induction of cytoskeletal re-organization and directed 

motility (Fig 24b). 

PlGF-1 has the capability to interact with VEGFR-1, GAGs and probably with Nrp-1 (Fig 
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24c), but it appears, that this binding is not sufficient to promote chemotaxis or 

endothelial sprouting. Potentially, the absence of the heparin-binding domain prevents 

VEGFR-1/Nrp-1/GAG clustering, similarly as observed for VEGF-A121 (Pan 2007, Vander 

Kooi 2007). The function of its GAG-binding- and predicted Nrp-binding-capacity 

remains to be elucidated. Signal transduction mediated via Nrp-1 cannot be excluded. 

This model of a linked VEGR-1/integrin- mediated signal transduction may be adaptive 

for other cellular responses triggered by PlGF-2, such as tubulogenesis. Induced by 

differential GAG-binding, VEGFR-1/Nrp-1 clustering upon PlGF-2 binding might result in 

a change in SH-2-domain adapter-protein activation such as Grb-2 or Nck (see Figure 

5). In collaboration with activated integrins, this might promote an altered FAK 

phosphorylation pattern and a varied cellular response. 
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4 Methods 

4.1 Material 

4.1.1 Equipment 

 

Bacterial shaker (Ceromat R) Braun, Melsungen, Germany 

Cell Inkubator (HERAcell 150i) Thermo Fisher Scientific Inc., Waltham, USA 

Centrifuges:  

Eppendorf 5424 Eppendorf, Hamburg, Germany 

Eppendorf 5415R Eppendorf, Hamburg, Germany 

  

Cryostat (Cryocut 180) Leica, Heidelberg, Germany 

Cryostat (Microm HM 560) Thermo Fisher Scientific Inc., Waltham, USA 

DNA-gelelectrophoresis chamber PEQLAB Biotechnologie, Erlangen, Germany 

Film-developer (Curix60) Agfa, Cologne, Germany 

ELISA plate reader (Victor3) PerkinElmer, Waltham, MA, USA 

Magnetic stirrer Ikamag Janke & Kunkel, Staufen, Germany 

  

Microscope:  

Light microscope (DM 4000B) Leica Camera AG, Solms, Germany 

Light microscope (Eclipse TS100) Nikon, Melville, NY, USA 

Fluorescense microscope Nicon (A1) Nikon, Melville, NY, USA 

  

PCR-Thermocycler (T-3000) Biometra, Düsseldorf, Germany 

Photometer (Biophotometer) Eppendorf, Hamburg, Germany 

Plate shaker (KS250basic) Janke & Kunkel, Staufen, Germany 

Power supply (Feather Volt 500) Stratagene, Heidelberg, Germany 

Razor Wella, Darmstadt, Germany  

Weighing machine (Adventurer) OHAUS, USA 

Special accuracy weighing machine (explorer) OHAUS, USA 

SDS-gel electrophoresis chamber (Xcell 

SureLock™ Mini-Cell & Blotting module) 

Invitrogen Ltd., Paisley, UK 

Thermomixer (compact) Eppendorf, Hamburg, Germany 

UV-visualizer (Eagle Eye) Stratagene, Heidelberg, Germany 

Vortex-mixer (Vortex genie 2) Scientific Industries, USA 

Water bath Julabo, Seelbach, Germany 

Work bench (Safe 2000) Thermo Fisher Scientific Inc., Waltham, MA 

USA 
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4.1.2 Cell culture material, media and supplements 

Materials for cell culture were supplied from Greiner (Solingen) und Renner (Dannstadt) 

 

Penicillin/Streptomycin Biochrom, Berlin, Germany 

DMEM (Dulbecco´s modified Eagle´s Medium) Gibco, Eggenstein, Germany 

EGM-2 (Endothelial cell growth medium 

+supplements) 

Lonza, Basel, Switzerland 

Ham`s F12 PAA Laboratories, Austria 

Ham`s F12/DMEM GlutaMAX Invitrogen Ltd., Paisley, UK 

PBS (phosphate buffered saline w/o Ca2+) PAA Laboratories, Austria 

FCS (Fetal calf serum) PAA Laboratories, Austria 

L-Glutamin Biochrom, Berlin, Germany 

Trypsin Gibco, Eggenstein, Germany 

Methyl cellulose Sigma-Aldrich, USA 

Collagen type I (rat tail) BD Biosciences, Heidelberg, Germany 

Fibronectin (human) BD Biosciences, Heidelberg, Germany 

PVDF membranes (8 µm pore size) Millipore Corporation, Billerica, USA 

Puromycin Invitrogen Ltd., Paisley, UK 

  

Escherichia coli-Culture:  

Agar Life Technologies, Eggenstein, Germany 

Ampicillin Sigma-Aldrich, USA 

Hefeextrakt Life Technologies, Eggenstein, Germany 

Pepton Life Technologies, Eggenstein, Germany 

 
 

 

4.1.3 Chemicals, proteins and enzymes 

All chemicals had analytical grade and were supplied from Sigma-Aldrich (USA), Roth 

(Karlsruhe), Merck (Darmstadt), Riedel de Haen (Seelze) or Life Technologies 

(Eggenstein). Other materials, chemicals and systems were supplied from: 

  

SDS-electrophoresis und protein detektion:  

BCA Protein Assay Reagent Kit Pierce Protein Research Products, Thermo 

Scientific 

Bromphenolblue Merck, Darmstadt, Germany 

Western Lightning Chemiluminsecence 

Reagent 

Perkin Elmer, USA 
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Molecularweight-standards:  

SeeBlue Plus2 pre-stained Invitrogen Ltd., Paisley, UK 

Page Ruler pre-stained  Fermentas GmbH, St. Leon-Rot, Germany 

  

Tween 20 Merck, Darmstadt, Germany 

QuantikinePlGF-Elisa R & D Systems, Wiesbaden, Germany 

SilverQuest silver-staining Kit Invitrogen Ltd., Paisley, UK 

  

Membranes and films:  

Hybond C Extra Amersham, Braunschweig, Germany 

Immobilon-p (PVDF)  Millipore Corporation, Billerica, USA 

Hyperfilm ECL Amersham, Braunschweig, Germany 

  

Nucleic-acid isolation and Purification  

Quiaex II (Gelextraction Kit) Qiagen, Hilden, Germany 

Qiaprep Spin Miniprep Kit Qiagen, Hilden, Germany 

Qiaprep Plasmid Midiprep Kit  Qiagen, Hilden, Germany 

PCR-purification kit Qiagen, Hilden, Germany 

peqGOLD 50 bp DNA ladder Peq lab, Erlangen, Germany 

peqGOLD 1 kb DNA ladder Peq lab, Erlangen, Germany 

Proteinase K Peq lab, Erlangen, Germany 

  

Immunohistochemistry:  

Haematoxylin Thermo Shandon, USA 

Polysine glas slides Menzel Gläser, Braunschweig, Germany 

  

Proteinpurification:  

Strep-Tactin Superflow sepharose IGA BioTAGnology, USA 

Ni-NTA fastflow  GE Healthcare, Fairfield, CT, USA 

Gelatine sepharose GE Healthcare, Fairfield, CT, USA 

Dialysis tubes GE Healthcare, Fairfield, CT, USA 

FuGene HD transfection reagent Roche, F. Hoffmann-La Roche Ltd, Basel, 

Switzerland 

Streptavidin-Agarose Novagen/Merck KGaA, Darmstadt, Germany 

  

Proteins, enzymes and GAGs:  

Recombinant human PlGF-1 and PlGF-2 Reliatech, Braunschweig, Germany 

Plasmin (human plasma) Merk, Darmstadt, Germany 

α2-antiplasmin (human plasma) Sigma-Aldrich, USA 
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recombinant human VEGF-A165 Reliatech, Braunschweig, Germany 

recombinant human Nrp-1 R & D Systems, Wiesbaden, Germany 

Heparin Sigma-Aldrich, USA 

Heparan sulphate Celsius, Ohio, USA 

Chondroitin sulphate Sigma-Aldrich, USA 

PAK-CRIB-peptid  Kindly provided by Prof. C. Niessen 

Taq-DNA-polymerase Bio-budget Technologies, Krefeld, Germany 

Nhe I Fermentas GmbH, St. Leon-Rot, Germany 

Bam HI Fermentas GmbH, St. Leon-Rot, Germany 

Calf intestine alkaline phosphatase Fermentas GmbH, St. Leon-Rot, Germany 

T4-ligase Fermentas GmbH, St. Leon-Rot, Germany 

PMSF Sigma-Aldrich, USA 

Mammalian protease inhibitor cocktail Sigma-Aldrich, USA 

PhosStop phosphatase inhibitor cocktail Roche, F. Hoffmann-La Roche Ltd, Basel, 

Switzerland 

  

Other systems and chemicals  

Agarose Life Technologies, Eggenstein, Germany 

QuickChange II XL Side-directed mutagenesis 

Kit 

Stratagene, Heidelberg, Germany 

Quickdiff staining kit DADE Behring, USA 

Synthetic olignonucleotides MWG-Biotech, Ebersberg, Germany 

TOPO TA Cloning Kit Invitrogen Ltd., Paisley, UK 

  

Chemicals used for mouse experiments  

Keatnest S (25mg/ml) Park Davies, USA 

Rompun 2% Bayer, Leverkusen, Germany 

Bepanthen Roche  Roche, Eppstein, Germany 

Biopsy punches (5-8 mm) Stiefel, Offenbach, Germany 

  

Dokumentation of mouse-experiments:  

Dental Eye mit Diafilm von Kodak Olympus, Japan 

Sony Digicam DSC-707 Sony, Japan 
 

 

 

 



  Materials and Methods 

                                                                       83 

4.1.4  Antibodies 

Primary antibodies 

Name Source Company Dilution 

Western blot    

hPlGF (reducing, AA1-20) rabbit (polyclonal) Reliatech, Braunschweig 1:150 

hPlGF (non-reducing) rabbit (polyclonal) Reliatech, Braunschweig 1:150 

total hFlt-1 (clone BK302, 

AA1251-1338) 

mouse (monoclonal) Upstate technologies 1:1000 

p-hFlt-1 (Tyr1213) rabbit (polyclonal) Upstate technologies 1:1000 

p-FAK (Tyr 676/577) rabbit (polyclonal) Cell signalling technology 1:1000 

total PI3K (p85) rabbit (polycolnal) Cell signalling technology 1:1000 

p-PI3K (p55 Tyr 199/p85 Tyr 

458) 

rabbit (polyclonal) Cell signalling technology 1:1000 

p-Src family (Tyr 416) rabbit (monoclonal) Cell signalling technology 1:1000 

p-P130Cas (Tyr 165) rabbit (polyclonal) Cell signalling technology 1:1000 

total AKT rabbit (polyclonal) Cell signalling technology 1:1000 

p-Akt (Ser473) rabbit (polyclonal) Cell signalling technology 1:1000 

total Erk1/2 rabbit (polyclonal) Cell signalling technology 1:1000 

p-Erk1/2 (Thr202/Tyr204) rabbit (monoclonal) Cell signalling technology 1:1000 

β-actin mouse (monoclonal) Santa Cruz biotechnology 1:1000 

total hRac1 (Klon 23A8) mouse (monoclonal) Sigma-Aldrich, USA 1:500 

hNrp1 (A12) mouse (monoclonal) Santa Cruz biotechnology 1:1000 

    

Immunohistochemnistry    

CD31/PCAM-1 Rat (monoclonal) BD Biosciences, Heidelberg, 

Germany 

1:1000 

desmin Mouse (moncolnal) Dako, Glostrup, Denmark 1:1000 

 

Secondary antibodies 

Name Source Company Dilution 

Western blot    

swine-α-rabbit HRP swine (polyclonal) Dako, Glostrup, Denmark 1:1000 

rabbit-α-mouse HRP rabbit (polyclonal) Dako, Glostrup, Denmark 1:1000 

    

Immunohistochemistry    

goat-α-rat Alexa594 goat (polyclonal) Invitrogen Ltd, Paisley, UK 1:500 

goat-α-mouse Alexa488 Goat (polyclonal) Invitrogen Ltd, Paisley, UK 1:500 
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4.1.5 Vector maps 

4.1.5.1 pCEP 

                                             D722 
       5` A GCT CGT TTA GTG AAC CGT CAG ATC TCT AGA AGC TGG GTA CCT TAA GGC GCC AGC  

          3` TGA TCA AGC TTC TGC CTG CCG CCT GCC TGC CTG CCA CTG AGG GTT CCC AGC ACC  

 
                                                                          BM 40 signal sequence 
          ATG AGG GCC TGG ATC TTC TTT CTC CTT TGC CTG GCC GGG AGG GCT CTG GCA GCC  

          TAC TCC CGG ACC TAG AAG AAA GAG GAA ACG GAC CGG CCC TCC CGA GAC CGT CGG  

 

                                             8xHIS-tag 
          CCG CTA GAG GGC AGC GGC CAT CAC CAT CAC CAC CAT CAT CAT AGC AGC GGC CTG  

          GGC GAT CTC CCG TCG CCG GTA GTG GTA GTG GTG GTA GTA GTA TCG TCG CCG GAC  

                                                              Nhe I 
                                                                  I                                       replaced by PCR-insert 
          GTG CCG CGC GGC AGC GCT AGC ATG GCG CGC CCG TAC GCC GAC GCG GCC GCT CGA  

          CAC GGC GCG CCG TCG CGA TCG TAC CGC GCG GGC ATG CGG CTG CGC CGG CGA GCT  

                                                        Bam HI 
                                                            I                                                                                   Strep-tag 
          GGC CGG CAA GGC CGG ATC CAT CGA AGG GCG CAG CGC TTG GAG CCA CCC TCA GTT 

          CCG GCC GTT CCG GCC TAG GTA GCT TCC CGC GTC GCG AAC CTC GGT GGG AGT CAA  

 

                                                                      Strep-tag 
          CGA GAA AGG TGG AGG TTC CGG AGG TGG ATC TGG AGG TGG TTC ATG GAG CCA CCC  

          GCT CTT TCC ACC TCC AAG GCC TCC ACC TAG ACC TCC ACC AAG TAC CTC GGT GGG  

 

                            *__ 

          ACA GTT CGA AAA ATA A 3` 

          TGT CAA GCT TTT TAT T 5` 

 

 

 

                     

 

 

 

The empty vectors pCEP V19 and pCEP V149 were generated and kindly provided by Manuel 

Koch (Medical faculty, Institute of Biochemistry II, University of Cologne) 

pCEP V19/V149 

9700 bp 
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4.1.5.2 pCR II TOPO 

R P r o d u c t A  

 
                       M13 reverse primer                                                                   Sp6 Promoter 

       5` CAG GAA ACA GCT ATG ACC ATG ATT ACG CCA AGC TAT TTA GGT GAC ACT ATA GAA 

       3` GTC CTT TGT CGA TAC TGG TAC TAA TGC GGT TCG ATA AAT CCA CTG TGA TAT CTT 

 
                                                           Nsi I  Hind III                Kpn I        Sac I BamH I   Spe I 
                                                              I        I                             I                I     I                I  
          TAC TCA AGC TAT GCA TCA AGC TTG GTA CCG AGC TCG GAT CCA CTA GTA ACG GCC 

          ATG AGT TCG ATA CGT AGT TCG AAC CAT GGC TCG AGC CTA GGT GAT CAT TGC CGG 
  
                                         BstX I  EcoR I                                                                   EcoR I                    EcoR V 
                                              I           I                                                                             I                                 I 
          GCC AGT GTG CTG GAA TTC GCC CTT    PCR-     AAG GGC GAA TTC TGC AGA TAT 

          CGG TCA CAC GAC CTT AAG CGG GAA   product   TTC CCG CTT AAG ACG TCT ATA 

 

                                      BstX I       Not I          Xho I                   Nsi I  Xba I                Apa I 
                                           I              I                I                              I   I                           I 
          CCA TCA CAC TGG CGG CCG CTC GAG CAT GCA TCT AGA GGG CCC AAT TCG CCC TAT 

          GGT AGT GTG ACC GCC GGC GAG CTC GTA CGT AGA TCT CCC GGG TTA AGC GGG ATA 

 

                     T7 Promoter                              M13 (-20) Forward Primer 
          AGT GAG TCG TAT TAC AAT TCA CTG GCC GTC GTT TTA CAA CGT CGT GAC TGG GAA 3` 

          TCA CTC AGC ATA ATG TTA AGT GAC CGG CAG CAA AAT GTT GCA GCA CTG ACC CTT 5` 
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4.1.6 Oligonucletides 

name  sequence 

PlGF fw 5`GCAGCTAGCGCAGACGGGAGGCTGCCTGCTGTGCCCCCCCAGCAG 

PlGF-2 rev 5´CAGGGATCCCCTCCGGGGAACAGCATCGCCGCACAGGTG 

PlGF-1 rev 5´CAGGGATCCCCTCCGGGGAACAGCATCGCC 

PlGFStop rev 5`TGCGGATCCCTACTACTTCTCCCGCAGAGGCCGGCATTCG 

PlGFmutPro fw 5`TGCCGGCCTCTGCGGGAGCCTATGAAGCCGGAAAGG 

PlGFmutPro rev 5`CCTTTCCGGCTTCATCGGCTCCCGCAGAGGCCGGCA 

PlGFmutAla fw 5`TGCCGGCCTCTGCGGGAGGCGATGAAGCCGGAAAGG 

PlGFmutAla rev 5`CCTTTCCGGCTTCATCGCCTCCCGCAGAGGCCGGCA 

D722 5`AGCTCGTTTAGTGAACCGTCAG  

M13(-20) fw 5`GTAAAACGACGGCCAG 

M13 rev  5` CAGTATCGACAAAGGAC 

 

4.2 Cell culture and media 

4.2.1 Bacterial cell culture 

Cultivation of E.coli was performed under selective conditions. For selection of 

recombinant bacteria, the LB-broth was supplemented with ampicillin at a final 

concentration of 0.1 mg/mL. For preparation of agar plates 1.5% Agar-Agar was added 

to the medium. Liquid cultures of bacteria were incubated in LB-medium supplemented 

with ampicillin and grown overnight at 37°C, shaking. Bacteria grown on agar plates 

were incubated at 37°C for 16-18 hours. Clones on agar plates were stored 4°C for short 

periods. 

 

4.2.1.1 Competent bacteria 

To transform E.coli, bacteria were induced to be competent for DNA-uptake by CaCl2 

(Cohen et al., 1972). 2 mL of bacteria suspension of an overnight culture were cultured 

in 100 mL LB-medium resulting in an OD600 of 0.03-0.04, grown at 37°C on an orbital 

shaker (300 rmp) to reach an OD600 of 0.3-0.4, and then incubated on ice for 15 minutes. 

Cells were harvested by centrifugation (5 minutes at 3000g, 4°C), and the cell pellet was 

resuspended in 30 mL RF I solution, incubated on ice for 15-30 minutes and collected by 

centrifugation. The cell pellet was then resuspended in 8 mL cold RF II and for 15 

minutes incubated on ice. Cells were aliquoted and snap-frozen in liquid nitrogen, and 

stored at -80°C.  

 

RF I: 100mM RbCL, 50 mM MnCl2, 30 mM KAC, 10 mM CaCl2, 15% Glycerine 

RF II: 10 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 15% Glycerine 
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4.2.1.2 Preparation of Escherichia coli frozen stocks 

For long-term storage of recombinant E.coli clones, 1 mL of the bacteria culture was 

harvested by centrifugation, the supernatant was discarded and the pellet was 

resuspended in 2xpYT containing 50% Glycine (w/v). The stocks were stored at -80°C. 

 

4.2.1.3 Escherichia coli strains 

E. coli strain Genotype 

DH5α 

 

F- φ80lacZ∆M15 ∆(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk-, mk+) 
galphoA supE44 λ- thi-1 gyrA96 relA1 

XL10-Gold® TetR ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 
gyrA96 relA1 lac Hte [F´ proAB lacIqZ∆M15 Tn10 (TetR) Amy CamR]a 

 

 

4.2.1.4 Media 

LB (Luria Broth) medium and agar: 1% peptone, 0.5% yeast extract, 1% NaCl, (optional 1.5% 

select agar 

SOC medium: 0.5% yeast extract, 2% peptone, 10mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, 20 mM glucose 

2x YT medium: 1.6% tryptone, 1% yeast extract, 0,5% NaCl 

Antibiotics: Ampicillin (0.1 mg/mL) 

 

4.2.2 Eukaryotic cell culture 

All work with eukaryotic cells was performed under sterile conditions and all used 

solutions were autoclaved or sterile filtered prior to use, to avoid bacterial contamination. 

All media or solutions were brought to room temperature or 37°C before use. Cells were 

cultured at 37°C, 5% CO2 and 60% humidity. 

 

4.2.2.1 Cultivation of Human Umbilical Vein Endothelial cells (HUVE-

cells) 

Primary human endothelial cells isolated from the umbilical vein are a pooled batch from 

three different donors (Lonza). Cells were cultured in EGM-2 medium (supplemented 

with 2% fetal calf serum (FCS), several growth factors, 1% glutamine, and 100 U/mL 

Penicillin/Streptomycin) in 10 cm cell culture treated culture dishes. 

HUVE cells were detached with 0.1% (w/v) Trypsin/0.002% (w/v) EDTA at 70-90% 

confluency and splitted in an adequate manner. To minimize the rate of differentiated 

cells, all experiments were performed using cells below passage 5. Experimental cells 

were starved 12 hours before starting the experiment. Starvation medium was EGM-2 

medium supplemented with 1% FCS without supplemental growth factors. 
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4.2.2.2 Cultivation of Porcine Aortic Endothelial (PAE) cells 

PAE cells are immortalized endothelial cells, originally isolated from porcine aorta. 

Besides wild-type cells, stably transfected PAE cells with human Nrp-1 (PAE/Nrp) were 

used. These cells were cultured in Ham`s F12 medium supplemented with 10% FCS, 

1% glutamine and 100 U/mL Penicillin/Streptomycin in 10 cm cell culture treated dishes. 

A 70-90% confluency, cells were splitted 1:4. Experimental cells were starved 12 hours 

before starting the experiment using serum-free Ham`s F12. 

PAE and PAE/Nrp-1 cells were kindly provided by Prof Dr. Michael Klagsbrun, Boston. 

 

4.2.2.3 Cultivation HEK293 Ebna cells 

HEK293 Ebna is an immortalized cell line originally derived from human embryonic 

kidney cells. These cells additionally carry the Ebna gene, that allows an increased 

transient expression rate when transfected with an adequate expression vector. 

Untransfected cells were cultivated in standard medium (DMEM supplemented with 10% 

FCS, 1% glutamine and 100 U/mL Penicillin/Streptomycin) at 37°C in 75 cm2 cell culture 

treated flasks. The cells were transfected using FuGene HD to express recombinant 

protein. Transfected cells were cultured in GlutaMAXTM in cell culture flasks coated with 

30 µg/mL collagen I during collection of supernatant to promote an efficient adhesion of 

the cells. Depending on the method of protein purification, the medium was 

supplemented with FCS (strep-tag) or cells were cultured serum-free (his-tag) under 

serum-free conditions. For the selection of positive clones, the antibiotic puromycin was 

added to the medium. 

HEK293 Ebna cells were kindly provided by Prof. Dr. Manuel Koch (Institute for 

Biochemistry, University of Cologne). 

 

4.2.2.4 Mycoplasma test 

To detect mycoplasma, in a regular time lag a mycoplasma test was performed at 

regular intervals. For detection, several thousand cells were cultured for 2 days in 

chamber slides, washed, and fixed for 20 minutes at room temperature (methanol/glacial 

acetic acid 3:1). For staining, cells were incubated in DAPI-solution (1 µg/mL) at room 

temperature for 15 minutes. In case of contamination with Mycoplasma, cells show – 

beside their own fluorescent nucleus – fluorescent “dots” within the cytoplasm. 
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4.2.3 Cell culture based assays 

4.2.3.1 Chemotactic activity in the Boyden chamber assay 

A modified Boyden chamber assay was used to analyse the chemotactic potency of a 

certain molecule or protein. 

Two chambers divided by a porous membrane (Nucleopore, 8 µm pore size) were filled 

with a potentially chemoattractant molecule on the one side of the membrane, and cells 

are seeded on the other side. By this setup a gradient is created, that might induce 

directed migration (chemotaxis) of the cells through the membrane towards the 

maximum of concentration. 

To create optimal conditions for migration, the membrane was coated with collagen I 

(BD, rat tail, 30 µg/mL) at 4°C overnight. For each condition, 200 µl of starvation medium 

supplemented with or without different PlGF-forms (100 ng/mL) were filled into the lower 

chamber and sealed with the coated membrane by assembling of the Boyden chamber. 

Complete-medium was used as positive control. 2.5x105 starved cells were seeded in 

starvation medium into the upper chamber and incubated for 4.5 hours at 37°C. 

After incubation, the membranes were collected and cells on the upper side were 

removed to exclude cells that had not migrated through the pores by directed migration. 

Afterwards, the membrane was stained with a variant of Romanowski staining (Quickdiff, 

DADE Behring) and analysed by light-microscopy. For this, 10 randomly chosen pictures 

at 10x-magnification were taken and cells were counted using ImageJ. All experiments 

were performed under identical conditions and at least in triplicates. Statistical analyses 

were performed with help of GraphPadPrism5 software.  

 

4.2.3.2 3D-spheroid-sprouting assay 

To analyse the competence of a growth factor to induce endothelial sprouting, spheroid 

were pre-formed and embedded into collagen I gels. For spheroid formation, HUVE cells 

were detached, counted, and seeded in 100 µL 20% methylcellulose/80% growth 

medium into a 96-roundbottom plate (NUNC, untreated plate). After 24 hours of 

incubation at 37°C, spheroids were harvested and 50 spheroids/gel were seeded into 

500 µL of a non-polymerized collagen I gel (2 mg/mL) in 24-well plates. After 

polymerization, 100 µL rhPlGF in starvation medium was pipetted onto the gel at a final 

concentration of 40 ng/mL. rhVEGF-A165 with a final concentration of 5 ng/mL served as 

positive control. After 24 hours incubation at 37°C, 10 randomly chosen spheroids were 

analysed for each condition at 20-fold magnification using a Nikon bright field 

microscope. Cumulative sprouting length and number of sprouts/spheroid was measured 

using ImageJ. Statistical analysis was performed using GraphPadPrism5. 
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4.2.3.3 Sample preparation for analysis of cell signalling by western 

blotting 

Cells were seeded in appropriate number into cell-culture dishes and grown to 70% 

confluency in adequate supplemented medium under optimal cell culture conditions. In 

case of matrix-based experiments, plates were coated with either collagen type I (rat tail) 

or human fibronectin (10 µg/mL each) for 3 hours at 37°C. Afterwards, cells were starved 

overnight in serum- and supplement-free medium (0.5% FCS for HUVE cells). Cells 

were washed with PBS and stimulated with 100 ng/mL rhPlGF-variants at 37°C, for 

times as indicated. Unsupplemented medium served as a negative control. Cells were 

lysed in RIPA-buffer supplemented with various protease inhibitors and phosphatase 

inhibitors, and the lysate was incubated with shaking for 1 hour at 4°C. The sample was 

pre-cleared by centrifugation at maximum speed for 10 minutes at 4°C, and 

concentration was determined by BCA-assay to ensure equal loading on SDS-gel. 

 

RIPA buffer: 50 mM Tris/HCl (pH 7.4), 1% NP-40, 0.25% Na-deoxycholate, 150 mM NaCl, 1 mM   

                     EDTA, 1 mM PMSF, 1µg/mL Aprotinin, 1µg/mL Leupeptin , 1µg/mL Pepstatin, 1 mM  

                     Na3VO4, 1 mM NaF, 1 tablet PhosphoStop/10 mL RIPA-buffer 

 

4.2.3.4 Rac-1 pull-down 

The Rac-1 pull-down-assay was performed, to determine the amount of activated, GTP-

bound Rac-1. All used solutions used were cooled down on ice. Starved PAE/Nrp-1 

were stimulated as described above, washed in PBS, and lysed in 700 µL Rac-1-lysis-

buffer. After constant rotation at 4°C for 45 minutes, supernatant was pre-cleared by 

centrifugation at 4°C, 50 µL supernatant was taken for analysis of total-Rac-1 and 30 µL 

streptavidin-coupled agarose beats were added to the remaining sample. The sample 

was incubated for additional 45 minutes at 4°C under rotation, to allow interaction 

between the biotin-motif and streptavidin-beats. The beats were collected by 

centrifugation and washed with 1 mL Rac-1-lysis-buffer three times. After evolvement of 

all liquid, agarose-beats were resuspended with 20 µL sample-buffer and heated at 95°C 

for 10 minutes. By determination of the protein content in the corresponding total-Rac-1 

sample by BCA-assay, the volume of the pull-down samples were normalized and 

subjected to SDS-PAGE and western blotting. 

 

Rac-1-lysis buffer: 50mM Tris-HCl, pH 7,4; 100mM NaCl; 10mM MgCl2, 1% NP-40, PMSF      

                                (1:100), Mammalian protease inhibitor cocktail (100); prior to cell lysis, 2 µL  

                                PAK-CRIB-peptide for each sample was added to the lysis buffer  
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4.3 Molecular biological methods 

4.3.1 Polymerase-chain-reaction (PCR) 

The polymerase-chain reaction is a method to amplify specific DNA sequences 

selectively, that are restricted by binding of two primers to a DNA-matrix (Mullis 1987). 

Primers have to hybridize to one of the strand in 5`-3` direction and flank the sequence 

of interest. During this work, PCR was used to amplify PlGF cDNA from placental total 

RNA (kindly provided by Prof. Dr. Manuel Koch). As resulting PCR products were used 

for cloning, primers for the different PlGF forms included a sequence with restriction 

sites for the restriction enzymes Nhe I and Bam HI. Additionally, the forward primer 

includes a sequence that allows a proteolytic cleavage of the N-terminal his-tag after 

protein expression by FactorXa. 

Reaction: 

ddH2O 39.5 µL 

dNTP (10 mM)      1 µL 

Taq buffer (10x)      5 µL 

forward primer (10 µM)      1 µL 

backward primer (10 µM)      1 µL 

cDNA      1 µL 

Taq-polymerase (1 U/µL)   0.5 µL 
Reaction was incubated in a thermo block using the following conditions: 

 

PCR-program: 

Initial denaturation 94°C   2 min  

denaturation 94°C   30 s  

annealing 65°C   30 s 35 cycles 

elongation 72°C   1.5 min  

final elongation 72°C   5 min  

 

PlGF primers: 

PlGF forward (common to all PlGF forms) 

5` GCA GCT AGC  GCA GAC GGG AGG CTG CCT GCT GTG CCC CCC CAG CAG 3` 

                NheI                  FaktorXa 

 

PlGF reverse  

PlGF-1 

5´CAG GGA TCC CCT CCG GGG AAC AGC ATC GCC 3´ 

             BamHI 
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PlGF-2 

5´CAG GGA TCC CCT CCG GGG AAC AGC ATC GCC GCA CAG GTG 3´ 

              BamHI  

     

PlGFStop 

5`TGC GGA TCC CTA CTA CTT CTC CCG CAG AGG CCG GCA TTC G 3`  

              BamHI      2xstop 
 

4.3.2 Quantification of nucleic acid 

DNA has an absorption maximum at 260 nm, and it is possible to calculate the 

concentration of nucleic acid by measurement of the absorption in a UV-spectral 

photometer. An absorption of 1 at 260 nm reflects a concentration of 50 µg/mL double 

strand DNA. As proteins have their absorptions maximum at 280 nm, the quotient 

absorption260/absorption280 can be used to assess the purity of the DNA-sample. The 

purity of a DNA-sample should have a value between 1.8 and 2.0. As a test for quality, 

several dilutions of the sample were separated on an agarose-gel, and where visualized 

and analysed by UV-light. 

 

4.3.3 Gelelectrophoresis of nucleic acids 

To dissolve and/or purify isolated DNA, a native, horizontal gel electrophoresis was 

performed using 1-2% agarose gels. TE buffer was used as gel- and running buffer. The 

agarose was boiled in TE buffer, supplemented with 1 µg/mL ethidium bromide, and 

filled into the electrophoresis chamber. After polymerization, the gel was covered with 

running buffer, and samples diluted in 5x Bromphenolblue sample buffer-solution at a 

final concentration of 0.001% and loaded into the gel pockets. Electrophoresis was 

performed at 100 V and resulting DNA-bands were visualized by UV-light. 

 

TE-buffer: 10mM Tris (pH8 with HCl), 1mM EDTA 

5x Bromphenolblue (0.001%): 30% Glycerine in 50 mM EDTA  

 

4.3.4 Gel extraction of nucleic acids 

To purify specific DNA-bands out of a DNA solution, the sample was separated on an 

agarose-gel, the DNA-band was cut out of the gel and the gel-slice was purified using 

the QIAEX II Gel Extraction Kit (Qiagen, Hilden) following the manufacturer’s 

instructions. This method is required after restriction of a PCR-product or a vector for 

following cloning, to remove cleaved nucleotides or DNA-fragments. 
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4.3.5 Cloning of DNA-fragments 

Cloning of DNA-fragments into bacterial vectors provides one of the most essential tools 

in biology. It allows the expression of foreign or artificial proteins in bacterial or 

eukaryotic cells and therefore is either used to produce and purify large amounts of the 

protein of interest or force cells to produce a protein and directly analyse its effect on 

cellular processes. During this work expression-vectors were produced carrying the 

sequence of human PlGF forms, to purify recombinant proteins from transfected 

HEK293 Ebna cells 

 

4.3.5.1 Restriction of DNA-fragments 

To selectively clone a DNA-fragment into a vector both – vector and DNA-fragments 

have to react with endonucleases (type II), which create specific complementary 

cohesive ends on the digested DNA. These restriction enzymes have specific 

recognition sites for restriction and produce “blunt” or “cohesive” ends. If vector and 

DNA-fragment are restricted in the same way, this allows a site directed ligation of the 

fragment into the vector (see 4.3.5.2). In this work, all fragments and vectors were 

restricted with Nhe I and Bam HI, which create cohesive ends. 

Recognition sites: 

Nhe I Bam HI 

5`GCT AGC3` 5`GGA TCC3` 

3`CGA TCG5` 3`CCT AGG5` 
 

The restriction sites were chosen, as insertion at this sites in the multiple cloning site of 

the vector are “in frame” and allows a correct protein expression of the vector sequence 

(signal peptide and tags) and fragment. 

As both enzymes use the same buffer system, double digestion of the PCR-fragments 

and the expression vectors (pCEP V19 and pCEP V146; see 4.1.5.1) were performed: 

Restriction reaction 

DNA (PCR product or vector, approximately 5 µg) 10 µL 

ddH2O 34 µL 

Tango buffer (10x)   5 µL 

Bam HI (10U/µL)   2 µL 

Nhe I (10U/µL)   2 µL 

 
The reaction was incubated at 37°C for 6 hours followed by heating to 85°C for 20 

minutes to heat-inactivate the restriction enzymes. The restricted vector-DNA was 

analysed on an agarose-gel.  
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4.3.5.2 Ligation of restricted DNA-fragments 

After restriction, the vector-DNA was incubated with 1U of calf intestine alkaline 

phosphatase for 2 hours at 37°C. This phosphatase dephosphorylates 5`-ends of 

linearized vectors and is used to avoid spontaneous auto-ligation. The reaction was 

heat-inactivated at 85°C, and the sample was purified by gel extraction prior to ligation. 

For the ligation of the PCR-fragment into the vector, a molar ratio of 1:3 of vector to 

insert was used. The amount of insert DNA was calculated by the formula: 

 

(ngvector x kbinsert) / (kbvector x molar ratiovektor/insert) = nginsert 

 

For standard ligation, 200 ng of vector-DNA were used.  

Ligation reaction: 

Vector DNA (200 ng)            x µL 

calculated ng insert-DNA            x µL 

T4-Ligase buffer, 10x            2 µL 

T4-Ligase (5 U/µl)            2 µL 

ddH2O Up to 20 µL 

 
The reaction was incubated at 16°C overnight and heat-inactivated for 20 min at 60°C. 

 

4.3.5.3 Transformation of competent E.coli with vector-DNA and 

identification of recombinant clones 

Heat-shock transformation was used to transform the competent E.coli strain DH5α. 5-

10 µl ligation reaction were carefully mixed with 100 µL bacteria suspension and 

incubated for 20 minutes on ice. To induce a heat-shock, Cells were incubated at 42°C 

for 2 minutes and cooled down on ice. 900 µL pre-warmed LB-medium was added, and 

cell suspension was incubated for 1 hour at 37°C with shaking. Afterwards, transformed 

bacteria were plated on LBAmp-plates and incubated overnight at 37°C for selection.  

Only transformed bacteria are able to grow on LBAmp-plates. Single colonies were picked 

from the plates and transferred to 2 mL liquid LBAmp, grown overnight with shaking for 

the selection of positive clones (see 4.3.5.5).  
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4.3.5.4 TOPO TA cloning 

For TOPO TA cloning a kit from Invitrogen was used. This system provides a high-

efficient cloning strategy for direct insertion of a Taq-polymerase amplified PCR product. 

Taq polymerase adds a single deoxy-adenosine to the 3`end of PCR products, whereas 

the linearized provided vector (pCR®II-TOPO®) has a 3`thymidine overhang. The 

provided topoisomerase I is covalently bound to the vector and is therefore able to ligate 

the unrestricted PCR product directly into the vector. Cloning was performed by following 

the manufacturer’s instructions. Identification of positive clones was performed as 

described above. 

 

4.3.5.5 Isolation of Plasmid-DNA from E.coli 

Plasmid preparations were performed to identify positive clones after bacterial 

transformation and to confirm a proper ligation of the insert the vector. Low scale 

plasmid preparations were performed using the Plasmid mini prep Kit, for large scale 

preparations the Plasmid midi prep kit was used (Qiagen, Hilden, Germany) following 

the manufacturer’s instructions.  

 

4.3.6 Site-directed mutagenesis 

To produce rhPlGF-variants with a mutated the plasmin cleavage site, the 

QuickChange®II XL Site-Directed Mutagenesis Kit (Stratagene) was used. To facilitate 

the cloning procedure, pCR®II-TOPO® carrying the PlGF-2 sequence were used for 

mutagenesis. The principle of this method is the use of a mutagenic primer directed 

replication of both plasmid strands and therefore results in the insertion or deletion of a 

mutation into the newly replicated plasmid. To eliminate parental DNA, the product was 

treated with the endonuclease Dpn I. Mutated, complementary primers were generated 

by flanking the desired mutation with at least 15 correct bases at each site. 

 

Original PlGF-2 

5` TGC GAA TGC CGG CCT CTG CGG GAG AAG ATG AAG CCG GAA AGG AGG 3` 

      C      E      C      R       P      L       R      E      K      M      K      P       E      R      R    

 

PlGF-2 mutPro 

5` TGC GAA TGC CGG CCT CTG CGG GAG CCG ATG AAG CCG GAA AGG AGG 3` 

       C      E      C      R       P      L       R      E      P       M     K       P      E       R      R     
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PlGF-2 mutPro forward 

                 5` TGC CGG CCT CTG CGG GAG CCG ATG AAG CCG GAA AGG 3` 

PlGF-2 mutPro reverse 

                 5` CCT TTC CGG CTT CAT CGG CTC CCG CAG AGG CCG GCA 3` 
 

 

PlGF-2 mutAla 

5` TGC GAA TGC CGG CCT CTG CGG GAG GCG ATG AAG CCG GAA AGG AGA 3` 

       C      E      C      R       P      L      R       E      A       M      K      P      E       R      R     
  

PlGF-2 mutAla forward 

                 5` TGC CGG CCT CTG CGG GAG GCG ATG AAG CCG GAA AGG 3` 

PlGF-2 mutAla reverse 

                 5` CCT TTC CGG CTT CAT CGC CTC CCG CAG AGG CCG GCA 3` 
 

The resulting mutated Plasmids were transformed into XL10-gold (high efficiency). All 

preparations followed the manufacturer’s instructions. 

 

4.3.7 DNA sequencing 

To ensure correct ligation of the PCR-insert into the vector in accordance with the 

vector`s reading frame, and to exclude nucleotide exchanges, plasmids isolated from 

positive clones where sequenced in a service laboratory. For sequencing, either the 

PlGF specific reverse primer (see 4.3.1) or the vector specific forward primer D722 

(pCEP4 V143 and pCEP4V19) was used. Analysis of ligation into pCR®II-TOPO® and 

site directed mutagenesis was performed by the use of standard M13 primers. The 

obtained sequence was analysed by alignment with the expected DNA sequence using 

ChromasLite and VectorNTI software. 

 

pCEP forward primer D722: 

5` AGC TCG TTT AGT GAA CCG TCA G 3` 
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4.4 Biochemical methods 

4.4.1 Colorimetric quantification of total protein 

To quantify the total protein concentration in a solution, the BCA (bicinchroninic acid) 

assay from Pierce® was used. It was mainly used to determine the protein concentration 

in cell lysate to ensure equal loading prior gel electrophoresis and immuno-blotting. It 

combines the reduction of Cu2+ to Cu1+ by protein in alkaline medium with the 

colorimetric detection of the cuprous cation by bicinchroninic acid. 

Procedure was performed according to the manufacturer`s manual, and protein 

concentration was determined using a BSA-standard-curve. 

 

4.4.2 Quantification of PlGF by ELISA (Enzyme-linked immuno-sorbent 

assay) 

To determine the concentrations of human PlGF forms in different solutions (human 

samples, cell culture supernatants, protein purifications) a Quantikine-sandwich ELISA 

System (R&D Systems, Wiesbaden, Germany), following the manufacturer’s manual.  

 

4.4.3 Sodiumdodecyl-sulphate-polyacrylamide-gelelectrophoresis 

(SDS-PAGE) 

SDS-PAGE was performed following a modified protocol of Laemmli (1970). Samples 

were resolved in adequate amounts of LDS-sample buffer, which contained 20% β-

mercapto-ethanol for reduced samples and heated for 10 minutes to 95°C. Thereafter, 

the samples were resolved on a 4-12% reducing Bis-Tris pre-cast SDS-PAGE gel 

(NuPAGE® Novex®, Invitrogen) and electrophoresis was performed at 200 V for around 

45 minutes in the Xcell SureLock® Mini-Cell system. MES buffer was used as running 

buffer. Upon protein separation, the gels were either stained directly by coomassie- or 

silver-staining, or transferred to a PVDF-membrane to detect immuno-reactive products. 

 

4x-LDS-sample buffer (pH 8.5): 100 mM Tris HCl, 140 mM Tris base, 2% LDS, 10% Glycerol, 

0.5 mM EDTA, 0.2 mM SERVA Blue G250, 0,2 mM Phenol Red 

MES buffer (pH 7.3): 2.5 mM MES, 2.5 mM Tris base, 0.005% SDS, 0.005 mM EDTA 
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4.4.4 Silver-staining  

Silver staining of SDS-PAGE gels provides an easy and very sensitive method to detect 

low concentrations of proteins. This method was used to detect cleavage products of 

PlGF after plasmin digestion, as specific antibodies for the C-terminal part of PlGF are 

not available. The staining was performed following the manufacturer’s instructions 

(SilverQuest, Invitrogen).  

 

4.4.5 Coomassie-brilliant blue staining 

Coomassie-brilliant-blue G-250 staining is another method to stain protein gels directly, 

with sensitivity of >0.3 µg. It was mainly used to test supernatants of HEK293 cells for 

protein expression and to verify the sample purity after recombinant protein purification.  

Gels were stained by 30-60 minutes of incubation in coomassie-brilliant-blue solution on 

an orbital shaker. Gels were washed briefly in H2O and unspecific background was 

removed overnight in destaining solution. As this dye unspecifically binds to the basic 

side chains of amino acids, gel resolved protein bands retain the colour after destaining. 

 

Coomassie staining solution: 0.01% Coomassie blue R-250, 50% MeOH, 5% acetic acid 

Destaining solution: 10% MeOH, 10% acetic acid 

 

4.4.6 Protein-transfer and immunodetection 

To detect immuno-reactive products proteins were immobilized by western blot transfer 

to a PVDF membrane (Immobilon-P, Millipore) using a tank blot system (SureLock 

System and Tank blot module, Invitrogen). All components were soaked with transfer-

buffer (Invitrogen) and arranged air bubble-free between the graphite plates of the 

blotting module in the following order: 

cathode 

2 transfer sponges 

4 pieces of Whatman paper 

SDS-PAGE-gel 

PVDF-membrane 

4 pieces of Whatman paper 

2 transfer sponges 

anode 

 
The PVDF membrane was activated with methanol for 5 minutes, washed with water 

and incubated in transfer buffer for 5 minutes before use. The transfer was performed for 

1.25 hours at 30 V. As test for successful transfer and equal loading of the samples, the 
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membrane was stained with PonceauS. 

To detect immuno-reactive products by binding of specific antibodies, the membrane 

was incubated in 5% dry milk in tris-buffered-saline, supplemented with Tween20 (TBS-

T) for 45 minutes to block unspecific binding sites, followed by incubation with the 

primary antibody for either 1.5 hours at room temperature or overnight at 4°C. After 

washing the membrane with TBS-T, the membrane was incubated with a HRP 

conjugated secondary antibody and washed again. Detection was performed using the 

enhanced chemiluminescence western blot detection system (Amersham Bioscience 

Europe GmbH), following the manufacturer’s manual. Chemiluminescence was detected 

by exposing the membrane to an x-ray film. 

 

Transfer buffer (pH 7,2): 25 mM Bicine, 25 mM Bis-Tris (base free), 1 mM EDTA 

Tris-buffered saline (TBS) (pH 7.6): 0.5M Tris base, 1.5 M NaCl (optional for TBS-T: 

0.05%Tween-20)  

 

4.4.7 Generation of recombinant PlGF-proteins 

4.4.7.1 Transfection of HEK293 cells 

Transfection of the eukaryotic cell line HEK293 was performed using the transfection 

reagent FugeneHD (Roche), following the supplier`s recommendations. 

For each transfection 1x106 cells/well were seeded on a collagen I coated 6-well plate 

(Nunc) and incubated at 37°C until reaching a confluency of around 60-80%. 2 µg of the 

Plasmid-DNA to be transfected was incubated with varying volume of FugeneHD (3-10 

µL) in 100 µL serum-free DMEM for 15 minutes at room temperature and pipetted to the 

cells. After 24 hours at 37°C, the cells were washed, and successfully transfected cells 

were selected in GlutaMAXTM by addition of puromycin (2 µg/mL). Positive clones were 

expanded in triple-flasks. Depending on the method of protein purification cells were 

incubated in medium with or without FCS. Supernatant was collected every second day 

for up to 2 weeks, filtered and stored at -80°C until purification. 

 

4.4.7.2 Sample preparation for protein purification 

Independently of the method of purification, PMSF (1 mM) was added to the thawed cell 

culture supernatants to avoid proteolytic degradation of the recombinant proteins at a 

final concentration of 25 mM. Prior to purification of his-tagged proteins, NaH2PO4 (pH 

9.5) and Tween-20 with final concentrations of 12.5 mM and 0.005% respectively, were 

added to the supernatant to create an alkaline solution. Supernatant was filtered 

(Schleicher and Schuell) and subjected to gravity flow. To pre-clear the cell culture 

supernatant, a gelatine-sepharose (GE healthcare) column was used. For tag-specific 
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purification, either Ni-sepharose (his-tagged proteins) or Strep-tactin (for strep-tagged 

proteins) was used, as specified below. All purification steps are performed at 4°C. 

Sample preparation and protein purification were performed using a protocol, which was 

kindly provided by Prof. Dr. Manuel Koch. 

 

4.4.7.3 Strep-Tactin®affinity chromatography protein purification 

The Strep-tag purification is based on the highly selective binding of an engineered 

Streptavidin (Strep-Tactin; IBA-go), to Strep-tag II fusion protein under physiological 

conditions and was used to purify PlGF-1 and PlGF-2. 

Before adding the cell supernatant to the Strep-Tactin columns (normally 2 mL Strep-

Tactin matrix/2 L supernatant), the matrix was equilibrated with one column volume (CV) 

washing buffer by gravity flow. After the supernatant has entered the column (4°C), it 

was washed 5 times with 1 CV. Bound strep-tag fusion protein was eluted in 6 steps 

using 0.5 CV elution buffer. Protein content and purity was visualized by Coomassie 

staining. Positive fraction were pooled and dialysed against 5 L PBS overnight at 4°C. 

For regeneration of the matrix, 3 times 5 CV regeneration buffer was subjected to the 

column followed by two washing steps with 4 CV of washing buffer. The resign was 

overlaid with 2 mL washing buffer and stored at 4°C. 

 

Washing buffer: 100 mM Tris-HCl pH8, 150 mM NaCl, 1 mM EDTA 

Elution buffer: 100 mM Tris-HCl pH8, 150 mM NaCl, 1 mM EDTA, 2.5 mM desthiobiotin 

Regeneration buffer: 100 mM Tris-HCl pH8, 150 mM NaCl, 1 mM EDTA, 1mM HABA 

 

4.4.7.4 Immobilized metal ion affinity chromatography 

Immobilized metal ion affinity chromatography (IMAC) exploits the interaction between 

chelated transition metal ions and side-chains of certain amino acids, mainly histidine, 

on proteins. In general, Ni2+ is the preferred metal ion for purification of his-tagged 

proteins. Ni-Sepharose 6 Fast Flow (Amersham Pharmacia Biotech) was used for 

purification. 

After loading of the Ni-Sepharose 6 Fast Flow onto the column (2 mL matrix/2 L 

supernatant), it was washed and equilibrated with 3 CV sterile deionised H2O and 

binding buffer, respectively. The supernatant was applied to the column overnight at 

4°C. The resign was washed with 10 CV binding buffer, followed by a stepwise elution 

by increasing concentrations of imidazole in binding buffer. 

Protein content and purity of the eluted his-tag fusion protein was visualized by 

Coomassie-brilliant-blue staining. Positive fraction were pooled and dialysed against 5 L 

PBS overnight at 4°C. 
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For regeneration, the resign was washed with 30 CV sterile deionised H2O and 30 CV 

binding buffer, and regenerated by 5 CV of a 100 mM Imidazole solution. Resign was 

overlaid with 2 mL binding buffer and stored at 4°C 

 

Binding buffer: 20 mM Tris, 300 mM NaCl (pH8) 

Elution buffer: 20 mM Tris, 300 mM NaCl, Imidazole (serial dilutions from 250 mM to 10 mM) 

 

4.4.8 Surface Plasmon Resonance (SPR) Spectroscopy 

To analyse the binding capacity of different PlGF forms to glycosaminoglycans (GAGs) 

and the interaction between PlGF and Nrp-1, the SPR-Spectrometer BIAcore 2000 from 

BIAcore was used. All pre-tests, couplings to the SA-chips and measurements were 

performed at room temperature. Before any measurement or coupling, the system was 

equilibrated with running or coupling buffer to get a constant baseline. The first flow 

chamber of every chip was used as a reference. BIAcore measurements were 

performed by Dr. Daniela Zwolanek, Biochemistry II, Medical Faculty, University 

Cologne. 

 

4.4.8.1 Determination of PlGF/GAG-interaction 

Surface Plasmon Resonance spectroscopy was performed using a BIAcore 2000 

(BIAcore AB) system, in collaboration with Prof. Dr. Manuel Koch. Measurement of 

protein-GAG interactions were carried out following well-established procedures (Ricard-

Blum et al., 2004). Briefly, heparan sulphate (Celsius), chondroitin sulphate (Sigma-

Aldrich) or heparin (Sigma-Aldrich) was biotinylated in a stoichometric ratio of 1:10 with 

biotin/LC-hydrazide (Pierce) following the manufacturers recommendations. Biotinylated 

GAG chains were diluted in HEPES running buffer and immobilized on a streptavidin 

coated sensor chip (SA-Chip, BIAcore) at a flow rate of 5 µl/min, until an immobilization 

of ~500 RU was reached. Experiments were carried out using serial dilutions (300 nM, 

100 nM, 30 nM, 10 nM and 3 nM) of rhPlGF-1, -2 and rhPlGFStop diluted in running 

buffer. The analyte was passed over the sensor chip with a constant flow rate of 30 

µl/min for 300 sec, dissociation was measured over 500 sec. Fittings of the data, overlay 

plots and calculation of KD-values were done with BIAevaluation software 4.1 estimating 

a 1:1 model 

 

HEPES running-buffer (pH 7,4): 20 mM HEPES, 150 mM NaCl, 2 mM CaCl2 (degassed and    

                                                      filter-sterilized), 0.005% (v/v) P20 
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4.4.8.2 Determination of PlGF/Nrp-1 interaction 

Experiments were run on a BIAcore 2000 using a CM5 sensor surface. First, the chip 

was activated by use of EDC/NHS and coupling buffer in a ratio of 1:1 as activating 

reagents. The degree of coupling was set to approximately 1500 resonance units (RU). 

Remaining reactive groups were inactivated with ethanolamine, and rPlGF-1, rhPlGF-2, 

and rhPlGFStop were coupled on chip surface at a flow rate of 5µl/min. The following 

binding experiments with rhNrp-1 as soluble analyte were performed at a flow rate of 30 

µL/min and with concentrations ranging from 1 to 300 nM rhNrp-1 in HEPES running 

buffer. The analyte was passed over the sensor chip with a constant flow rate of 30 

µl/min for 300 sec, dissociation was measured over 500 sec. Between different 

experimental cycles, the bound proteins were washed from the sensor surface with 2 M 

NaCl in running buffer. In a second experimental setting, 100 nM rhNrp-1 was pre-

incubated with increasing concentrations of unfractionated heparin (0-100 µg/mL) prior 

to analysis. Fittings of the data, overlay plots and calculation of KD-values were done 

with BIAevaluation software 4.1 estimating a 1:1 model. 

 

HEPES running-buffer (pH 7,4): 20 mM HEPES, 150 mM NaCl, 2 mM CaCl2 (degassed and  

                                                      filter-sterilized), 0.005% (v/v) P20 

Coupling buffer (pH 5); 25 mM NaAC (pH 5 with acetic acid) 

 

4.4.9  Analysis of the plasmin cleavage sites in PlGF 

4.4.9.1 Digestion of PlGF-protein by plasmin 

To examine, whether PlGF is a target of the serine protease plasmin, 600 ng of rhPlGF-

1 and -2 were incubated with 0.02 U/mL of plasmin for defined periods of at 37°C. The 

reaction was stopped by the addition of sample buffer and heating to 95°C. Afterwards, 

samples were subjected to SDS-gel electrophoresis and silver-staining (see 2.4.4). 

For western blot analysis, 200 ng of rhPlGF-2 (Reliatech) were incubated with 0.02-

0.00002 U/mL of plasmin in plasmin buffer for 30 minutes at 37°C. Reaction was 

stopped by the addition of Laemmli-sample buffer and heating to 95°C. To detect 

immuno-reactive cleavage products western blotting was performed using a primary 

rabbit anti-PlGF antibody, directed against the first 20 N-terminal amino acids. The 

primary antibody was recognized by HRP-labelled swine anti-rabbit secondary antibody.  

 

Plasmin-buffer: 50mM Tris/HCl (pH 8) 
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4.4.9.2 Mass spectrometric analysis for identification of the PlGF 

cleavage site 

4.4.9.2.1 Sample preparation 

rhPlGF-2 expressed in HEK293 cells (25 µg in 200 µL plasmin buffer) was incubated 

with 40 µL Ni-sepharose beats for 15 minutes at room temperature to bind to the N-

terminal 6x-his-tag, followed by incubation in 80 µL plasmin (final concentrations: 0.04 or 

0.008 U/mL in plasmin buffer) for 5 or 30 minutes at 37°C, respectively. Conditions were 

chosen to ensure specificity. Beats were collected by centrifugation for 5 minutes at 

13.500 rpm and 4°C, and the supernatants were analysed by LC-MS/MS, as described 

below. 

 

4.4.9.2.2 LC-MS/MS of plasmin-cleaved PlGF 

Liquid chromatography (LC)-MS data were acquired on a Q-TofII quadrupole-TOF mass 

spectrometer (Micromass, Manchester, United Kingdom) equipped with a Z spray 

source. Samples were introduced by an Ultimate Nano-LC system (LC Packings, 

Amsterdam, The Netherlands) equipped with the Famos autosampler and the Switchos 

column-switching module. The column setup comprises a 0.3-mm-by-1-mm trapping 

column and a 0.075-by-150-mm analytical column, both packed with 3 µm Atlantis dC18 

(Waters). Samples were diluted 1:10 in 0.1% TFA. A total of 10 µl was injected onto the 

trap column and desalted for 1 min with 0.1% TFA and a flow rate of 10 µl/min. The 10 

port valve switched the trap column into the analytical flowpath, and peptides were 

eluted onto the analytical column by using a gradient of 2% acetonitrile (ACN) in 

0.1% FA to 40% ACN in 0.1% FA over 65 min and a column flow rate of ca. 200 nl/min, 

resulting from a 1:1,000 split of the 200 µl/min flow delivered by the pump. The 

electrospray ionization (ESI) interface comprised an uncoated 10 µm i.d PicoTip spray 

emitter (New Objective) linked to the HPLC flowpath using a 7 µl dead volume stainless 

steel union mounted onto the PicoTip holder assembly (New Objective). Stable 

nanospray was established by the application of 1.7 to 2.4 kV to the stainless steel 

union. The data-dependent acquisition of MS and tandem MS (MS/MS) spectra was 

controlled by the Masslynx  4.0. Survey scans of 1.4 s covered the range from m/z 400 

to 1,400. Doubly and triply charged ions rising above a given threshold were selected for 

MS/MS experiments. In MS/MS mode, the mass range from m/z 40 to 1,400 was 

scanned in 1.4 s, and 4 scans were added up for each experiment. Micromass-formatted 

peak lists were generated from the raw data by using the Proteinlynx software module. 

A database search using a local installation of MASCOT 1.9 and a custom database 

containing the sequence of recombinant PIGF-2 was used for a fast identification of 

PIGF-2 derived peptides. No enzyme specificity was used for the database search. 
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Since it was expected, that the sequence stretch of interest contains a pair of oxidised 

cysteines, cysteine oxidation was allowed as optional modification. Results reported by 

the search engine were verified by manual inspection of the deconvo. 

 

4.4.9.3 Human wound exudates  

Wound exudates analysed were obtained from patients in the dermatologic clinic, 

presenting with non-healing chronic ulcera crura due to venous insufficiency or from 

patients with normally healing cutaneous wounds (excisional wounds of the lower leg 

awaiting wound closure by secondary intention). To accumulate the exudate, the wound 

was covered with a semi-permeable polyurethane film (Hyalofilm, Hartmann, Heidelberg, 

Germany) for a maximum of 8 hours.  A maximum of 1 mL exudate per wound was 

usually obtained.  Following exudate collection fluids were centrifuged (10 min, 13,000 x 

g, 4°C) to remove insoluble material, and supernatants were frozen at -80°C until use. 

 

4.4.9.3.1 Incubation of PlGF-protein in human wound exudate 

To analyse the stability of the wild-type isoform PlGF -2, it was incubated in wound fluids 

obtained from patients with healing or non-healing (chronic) wounds. 

200 ng rhPlGF (Reliatech) were incubated with 3 µL wound exudate in a total volume of 

20 µL at 37°C (time as indicated). Reaction was stopped by addition of reducing sample 

buffer and heating at 95°C. Immuno-reactive products were detected by western blotting 

using a PlGF-specific primary (rabbit anti-human PlGF, 1:1000; Reliatech) and a HRP-

conjugated secondary antibody (swine anti-rabbit-HRP, 1:1000; DAKO). 

 

4.5 Mice 

4.5.1 Mouse strain 

C57BLKS/J-m+/+Leprdb (db/db) mice were obtained from The Jackson Laboratory (Bar 

Harbor, Maine, USA) and caged individually under standard pathogen-free conditions in 

the animal care facility of the CMMC, Cologne. Male mice were 10-12 weeks of age at 

the start of the experiments.  

  

4.5.2 Isolation of genomic tail DNA 

To verify the genotype of the experimental db/db mice, genomic DNA was isolated out of 

tail tissue obtained from three-week-old mice. Therefore, 0.5 cm tail tissue was lysed in 

500 µL lysis buffer, supplemented with 10 µL Proteinase K (20 mg/mL) and incubated 

with shaking at 55°C over night. The Lysate was centrifuged for 8 minutes at 14000rpm 

and the supernatant was mixed with 1000 µL ethanol. To wash the precipitate, it was 
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transferred into 750 µL of 70% ethanol, and incubated for 5 minutes. Subsequently, the 

DNA was dried by air for 15 minutes, and dissolved in 150 µL TE-buffer with constant 

shaking at 50°C overnight. To identify the exact genotype, 3 µL of the resulting DNA-

solution were used to perform PCR.  

To verify the genotype, the PCR-product was restricted with RSA I. Primers are chosen 

to amplify a part of genomic DNA, which carries the point mutation responsible for a shift 

in the reading frame. This shift causes the loss of the splicing site at the exon/intron 

border of exon 12 but in addition causes formation of a RSA I restriction site. It therefore 

enables a clear identification of the mutation by restriction analysis   

 

Lysis Buffer: 50 mM Tris (pH 7.8), 50 mM EDTA, 100 mM NaCl, 5 mM Spermidin, 2% SDS 
TE-buffer: 10mM Tris (pH8 with HCl), 1mM EDTA 

 

4.5.3 Genotyping protocol 

PCR-program: 

initial denaturation 95°C     5 min  

denaturation 95°C   30 s  

annealing 52°C   30 s 35 cycles 

elongation 72°C   30 s  

final elongation 72°C     5 min  
 

Primer for genotyping PCR 

forward 5´-AGAACGGACACTCTTTGAAGTCTC-3´ 

backward 5´-CATTCAAACCATAGTTTAGGTTTGTGT-3´ 
 

4.5.4 Excisional wounding and PlGF treatment in diabetic mice 

To analyse the role of PlGF and its heparin-binding domain for wound healing and 

angiogenesis in vivo two independent wound healing experiments were performed and 

tissue was harvested at day 10 and day 14 post wounding. In total 6 mice per condition 

and time point were analysed. Mice were anesthetized under Ketanest/Rompun 

(Ketanest S, Park Davies GmbH, Karlsruhe, Germany/Rompun 2%, Bayer, Leverkusen, 

Germany). The animals’ backs were shaved and four full-thickness punch-biopsy 

wounds with a diameter of 6 mm and 5 mm apart from each other were created. 

Immediately after wounding and for the following 7 days, wounds were treated by topical 

application of 1 µg/wound of rhPlGF-1, rhPlGF-2 or rhPlGFStop in a total volume of 5 

µL, or PBS as a vehicle control. Solution was allowed to adsorb for at least 1 hour before 

the animal was placed back into its cage. Wound closure was monitored by photographs 
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taken daily during the time of healing and analysed using the Imaging Software Lucia G 

4.80 (Dental Eye, Olympus, Japan; Imaging Software Lucia G 4.80, Laboratory Imaging 

Ltd., Prague, Czech Republic). Animals were sacrificed and wound tissues were 

harvested 10 and 14 days after wounding. Wound tissue was excised and the wound 

area bisected in caudocranial direction and the tissue was either fixed overnight in 4% 

paraformaldehyde in phosphate buffered saline (PBS), or embedded in OCT compound 

(Tissue Tek, Miles, IN), immediately frozen in liquid nitrogen, and stored at -80 °C. 

Histological analysis was performed on serial sections (14-18 µm cryo-sections) from the 

central portion of the wound. 

 

4.5.4.1 Haematoxylin/eosin staining on paraffin embedded sections 

For paraffin sections, wounds were fixed in formalin, embedded in paraffin and cut into 6 

µm sections, and were stained with haematoxylin/ eosin (H&E). H&E is commonly used 

in histology for overview sections. Eosin stains eosinophilic structures like cytoplasm and 

protein pink, and erythrocytes red. Haematoxylin stains basophilic structures such as 

nucleic acids blue to purple. Sectioning and staining was performed according to 

established standard protocols at the histology core facility of the dermatology 

compartment of the University Hospital of Cologne. 

 

4.5.4.1.1 Morphometric analysis of H&E stained sections 

For the quantification of classical wound parameters (amount of granulation tissue, 

distance between the ends of panniculus carnosus, length of epithelial tongue), serial 

images of the entire wound area were taken using a Nikon eclipse E800 fluorescence 

microscope, and assembled in Adobe Photoshop CS5 (Adobe, Dublin, Ireland). Using 

the image analysis program ImageJ (Wayne Rasband, National Institute of Mental 

Health, Bethesda, MD, USA), the parameters were analysed. 
 

distance between ends of panniculus carnosus

length of neoepithelium

area of granulation tissue

 
Figure 25: Wound analysis by determination of characteristic parameters. 
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4.5.4.2 Staining for CD31 and desmin on cryo-sections 

For cryosections, wounds were embedded in OCT compound (TissueTek) and frozen. 

15 µm thick sections were fixed in cold acetone and used for immunohistochemistry. 

Wound sections were blocked in 10% normal goat serum and probed with antibodies 

directed against desmin (DAKO Glostrup, Denmark, 1:1000 in 1% BSA), a marker for 

pericytes, and CD31 (BD Pharmingen, 1:1000 in 1% BSA), a marker for endothelial 

cells. Primary antibodies were detected with Alexa Flour® 488 or 594 coupled secondary 

antibodies (Invitrogen, 1:500 in 1% BSA), and nuclei of cells were stained with DAPI (1 

µg/mL). 

 

4.5.4.2.1 Quantification of wound angiogenesis on CD31 and desmin stained 

sections 

For the quantification of classical wound parameters (amount of granulation tissue, 

distance between the ends of panniculus carnosus, length of epithelial tongue), serial 

images of the entire wound area were taken using a Nikon eclipse E800 fluorescence 

microscope, and assembled in Adobe Photoshop CS5 (Adobe, Dublin, Ireland). Using 

the image analysis program ImageJ (Wayne Rasband, National Institute of Mental 

Health, Bethesda, MD, USA), the channels were split, regions exhibiting a positive signal 

were selected manually via the thresholding tool, and the area was determined. The 

desmin- and CD31-positive areas were analysed as percentage to the overall area of 

granulation tissue and as total positive stained area within the granulation tissue. 

Measurements were performed several times. 

 

4.6 Statistical analysis 

Data is presented as mean ± SEM. A p value < 0.05 was considered significant. 

Statistical analyses were performed using GraphPad Prism 5 (GraphPad Software Inc., 

La Jolla, CA, USA. Significance was analysed using unpaired Student’s t-test for 

Gaussian distribution. 
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.6 Abbreviations 

% percentage 

°C degree Celsius 

Akt „proteinkinase B“ 

Amp Ampicillin 

Ang „Angiopoeitin“ 

BCA bicinchroninic acid 

Birc2 „baculoviral IAP repeat-containing 2“ 

BMP1 „bone morphogenetic protein” 1 

BSA bovine serum albumin 

CD31 „Cluster of Differentiation“ 31 

CRIB „Cdc42-/Rac1-interactive binding-motive” 

Crk „tyrosine –protein kinase Crk“ 

C-terminal   carboxyl-terminal 

CUB „complement binding factors C1s/C1r, Uegf, BMP1” 

CV column volume 

d dermis 

Da dalton 

DAPI 4,6-diamidino-2-phenylindol 

db/db mouse diabetic mouse 

Dcn decorin 

ddH2O double destilled water 

Dll4 „Delta-like4” 

DMEM „Dulbeccos Modified Eagle Medium“ 

DNA desoxyribonucleic acid 

e epidermis 

E embryonic day 

dNTP desoxyribonucleotide triphosphat 

ECL „enhanced chemiluminescence“ 

EDTA Ethylenediaminetetraacetic acid 

EGF/EGFR „Epidermal Growth Factor“/„Epidermal Growth Factor“-

Receptor 

ELISA Enzyme-Linked Immuno-Sorbent Assay 

ERK „extracellular-signal regulated kinase“ 

Ets2 „E26 avian leukemia oncogene 2“ 

FAK „focal adhesion kinase” 

FCS fetal calf serum 

FGF „Fibroblast Growth Factor“ 

Flt1 „Fms-like-tyrosine-kinase-receptor”-1 (VEGFR-1) 



Abbreviations   

 

 

Fst „Follistatin” 

g gram 

GAG glycosaminoglycan 

Grb-2 „growth-factor-receptor-bound”-2 

gt  granulation tissue 

GTP guanosintriphosphate 

h hour 

H&E Haematoxylin & Eosin 

HEK „human embryonic kidney" 

HGF „Hepatocyte Growth Factor” 

HIF „Hypoxia Inducible Factor” 

HRP „horse radish peroxidase“ 

HSPG heparan sulphate proteoglycans 

HUVE „Human Umbilical Vein Endothelial” cells 

Ig immunoglobulin 

IGF „Insulin-like Growth Factor“ 

IgG Immunglobulin G 

Jak2 „Janus kinase 2“ 

K14 promoter keratin-14 promoter 

ka association rate constant 

kb kilo basepair 

kd dissociation constant 

kDa kilodalton 

KGF Keratinocyte Growth Factor 

L liter 

LC-MS/MS Liquid chromatography tandem mass spectroscopy 

LLC „Lewis lung carcinoma” cells 

M mol/liter (molar) 

MAM  „meprin, A5 antigen, receptor tyrosine phosphatase µ“ 

MAPK „mitogen-activated proteinkinase“ 

MCP „monocyte chemoattractant protein“  

MES 2-(N-morpholino)ethanesulfonic acid 

mg milligram 

MIP „Macrophage inflammatory protein“ 

mL milliliter 

min minute 

MMP „Matrixmetalloproteinase” 

MW molecular weight 

ng nanogram 



  Abbreviations 

 

NIP1 „neuropilin interacting protein-1” 

nm nanometer 

Nrp-1 „Neuropilin”-1 

N-terminal amino-terminal 

p130Cas „p130 Crk/associated substrate” 

PAE „porcine aortic endothelial” cells 

PAGE polyacrylamide-gelelectrophoresis 

PAK „p21-activated kinase“ 

PBS phosphate-buffered saline 

p.c. „panniculus carnosus“   

PCR polymerase chain reaction 

PDGFR  „Platelet Derived Growth Factor Receptor“ 

pg picogram 

pH  p(otential of) h(ydrogen) 

PI3K „Phosphatidylinositol-3-kinase“ 

PLC-γ „Phospholipase C-γ“ 

PlGF „Placenta Growth Factor“ 

PlGFStop mutant „Placenta Growth Factor (1-118) “ 

PMSF phenylmethylsulfonylfluoride 

PMN polymorphonuclear neutrophils 

PVDF polyvinylidene fluoride 

Rac „Ras-likeC3“ 

rh recombinant human 

rpm rounds per minute 

RTK receptor tyrosine kinase 

RU response units 

SDS sodiumdodecylsulphate 

sec second 

SEM standard error of mean 

Sft subcutaneous fat tissue 

SH-2 „Src-homology-2-domain“ 

SHP-2  „Src-homology-2-domain-containing PTP2“ 

SPR Surface Plasmon Resonance 

Src  „tyrosine-protein kinase Src” 

Taq Thermus aquaticus DNA polymerase 

TBST Tris-buffered saline + Tween 20 

TGF „Transforming Growth Factor“ 

Tie-2 „Angiopoietin-1 receptor“ 

TIMP „Tissue inhibitor of metalloproteinase“ 
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Tris Tris(hydroxymethyl)aminoethan 

TSP „Thrombospondin“ 

Tween Polyoxyethylen-(20)-sorbitanmonolaurat 

U units 

uPA „urokinase-type plasminogen activator“ 

VEGFR  „Vascular Endothelial Growth Factor receptor“ 

VSMC „vascular smooth muscle cell 

w/v weight per volume 

µg microgram 

µl microliter 

µm micrometer 
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