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Abbreviations and symbols

A Absorbance
Aa Amino acids
Amp Ampicillin
AP Alkaline phosphatase
APS Ammoniumperoxodisulfate
A. tumefaciens Agrobacterium tumefaciens
ATP Adenosine-5´-triphosphate
bp Basepair
BSA Bovine serum albumin
cDNA Complementary DANN
Ci Curie
Col0 Arabidopsis thaliana L., ecotype Columbia 0
C-terminal Carboxy-terminal
Da Dalton
DMF Dimethylformamide
DMSO Dimethylsulfoxide
DNA Deoxyribonucleic acid
E.coli Escherichia coli
EDTA Ethylendiaminetetraacetate
Etbr Ethidiumbromide
EtOH Ethanol
FITC Fluorescein-Isothiocyanate
g Gram
Gm Gentamycin
GUS β-Glucuronidase
HAc Acetic acid
h Hour
hrs Hours
HEPES N-(2-Hydroxyethyl)piperazine-N´-(2-ethansulfonic acid)
HPLC High-performance liquid chromatography
KAc Potassiumacetate
kb Kilobase
kDa Kilodalton
l Liter
M Molar
mA Milliampere
MeOH Methanol
Mes 2-(N-Morpholino)ethansulfonic acid
mg Milligram
min Minute
ml Milliliter
mM Millimolar
mRNA Messenger RNA
MOPS 3´-(Morpholino)propanesulfonic acid
NaAc Sodiumacetate
Nr Number
N-terminal Amino-terminal
o/n Over night
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1 Introduction

In the course of their development, higher plants constantly coordinate the formation and

growth of organs in response to environmental cues. By definition, the directional bending

during growth of organs with respect to a bending inducing stimulus, is termed tropic growth

or plant tropism. Multiple environmental parameters direct tropic growth of organs.

Depending on the nature of the stimulus, one speaks of phototropism (bending in response to

light), hydrotropism (bending in response to water), thigmotropism (bending in response to

touch), gravitropism (bending in response to gravity) and several more. While most of these

stimuli vary during a plant life, the gravitational force on earth remains normally constant.

Gravity directs the growth of shoots upward (negative gravitropism), where light can be

used for photosynthesis, and the growth of main roots downward (positive gravitropism),

where the plant is anchored in soil for uptake of water and mineral ions needed for growth and

development. In the natural environment, root growth in response to gravity can often not be

retained. Thus, main roots, growing towards the center of the earth, may deviate from their

direction of growth in response to water and nutrient supply, or encountering an obstacle. In

that case, other tropic stimuli would cause the root to bend away from its perceived gravity

vector until nutrient and water supply are reached or the object is bypassed. Subsequently

roots would bend and again resume growth along the gravity vector. Plants therefore have to

remain capable of perceiving the gravity stimulus and responding to it throughout their

lifetime.

1.1 Root gravitropism

Growth along the gravity vector or bending in response to the gravity stimulus involves the

perception of the gravity vector orientation, the formation of a signal at the site of perception

and the transmission of the signal to the site of root bending, where differential growth is

induced.

Roots grow by cell division in the apical root meristem and cell elongation in the

elongation zone basal to the root meristem (Fig. 1). Growth by elongation occurs in spiral

movements (circumnutations) and is responsible for directing the growth of roots along the
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gravity vector (Buer et al., 2000; Johnsson, 1997; Simmons et al., 1995). In vertically

growing roots, the maximum rate of cell elongation is found in a zone, termed the central

elongation zone (CEZ) with a growth rate of three times more than in the region apical to the

CEZ, defined as the distal elongation zone (DEZ) (Ishikawa and Evans, 1993).

When in vitro grown roots are gravistimulated, by rotating the agar plates to a certain angle

from the vertical, root curvature is initiated and roots start to bend until the root tip is again

aligned towards the gravitational vector, i.e. center of the earth. Bending commences in the

DEZ and is the result of inhibition of elongation in DEZ and CEZ on the lower half, as well as

initiation of cell elongation in the DEZ on the upper half of the gravistimulated root (Mullen

et al., 1998). As root bending proceeds, the region of curvature shifts towards the root base.

Before reaching the vertical, root growth often slightly overshoots and requires transient

backward bending for vertical alignment (Barlow and Rathfelder, 1985; Pilet and Ney, 1981).

Fig. 1: Different sites in the root are responsible for gravity perception and root bending. Roots grow by
cell division in the root meristem and cell elongation in the elongation zone (EZ). Changes in gravity vector
orientation are perceived in columella cells of the root cap. Gravity induced root curvature occurs by differential
cell elongation in the distal and central elongation zone (DEZ and CEZ, respectively).
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Perception of the gravity stimulus

Perception of the gravity stimulus is generally attributed to the root cap (Sack, 1991).

Removal of the whole cap (Juniper et al., 1966) or small portions of the cap (Blancaflor et al.,

1998; Kodera and Sato, 2001; Konings, 1968; Tsugeki and Fedoroff, 1999; Younis, 1954)

lead to complete or partial loss of the gravitropic response. Specific elimination of single cells

or groups of cells of the Arabidopsis root cap by laser ablation revealed that gravity

perception occurs only in a part of the root cap, the columella cells Fig. 1) (Blancaflor et al.,

1998). Characteristically, the columella tissue of the Arabidopsis root tip consists of a single

story of columella initial cells, followed by three horizontal stories (S1, S2 and S3) and four

vertical files of columella cells (see also Fig. 5) (according to Blancaflor et al., 1998).

Columella cells exhibit structural polarity: A basally located nucleus, an apically located

peripheral ER membrane system, and starch filled amyloplasts. Due to their density,

amyloplasts sediment, according to the normal gravitation on earth, to the bottom of the cell,

where they are thought to provide positional information by exerting pressure on the

endomembrane system (Sack, 1997). When the direction of gravistimulation changes,

amyloplast sedimentation to the new apparent bottom of the cell occurs within 5 min. This has

been proposed to be the first event in gravity perception (starch-statolith hypothesis)

(reviewed in Kiss, 2000). Supporting evidence for this hypothesis comes from the observation

that changes in starch content, due to physiological treatments (Sack, 1991) as well as starch

deficient or starchless mutants (Fitzelle and Kiss, 2001; Kiss et al., 1996; MacCleery and

Kiss, 1999), result in defects of amyloplast sedimentation and a decreased gravitropic

response. Displacement of amyloplasts by high gradient magnetic fields, on the other hand,

can cause root curvature (Kuznetsov and Hasenstein, 1997). Interestingly, the velocity of

amyloplast sedimentation differs within the cells of the columella tissue with amyloplast

sedimentation being faster in cells of the central columella files, as opposed to cells of

flanking files. Specific laser ablations and subsequent determination of presentation time (i.e.

the minimum time of gravistimulation required for the initiation of bending) revealed that

indeed, cells of central columella files, especially from story S2, are more important for

gravitropism, than cells of flanking columella files (Blancaflor et al., 1998).

Related to the starch-statolith hypothesis, is the idea that substances or organelles other

than amyloplasts may sediment in response to gravity. These might include crystals, such as

BaSO4 found to be involved in gravity perception in rhizoids of the alga Chara, or even the
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cellular protoplast itself (Staves, 1997). The force of gravity may also be sensed at cellular

membranes or by cytoskeletal interactions (Sack, 1997). In addition, it was proposed, that the

root cap was not the only site of gravity perception. Rapid changes in proton flux in the upper

half of the DEZ were detected after gravistimulation, raising the possibility that there was a

second and independent site of gravity perception located in this region (Behrens et al., 1985;

Evans and Ishikawa, 1997; Monshausen et al., 1996).

Signal transmission from gravity perceiving cells to the elongation zone

Root bending in response to perception of a gravity stimulus requires signal transmission

from the site of gravity perception to the growth response zone. Several factors are proposed

to be involved in this process including changes in pH, electric currents, cytosolic free

calcium and auxin. These factors can induce the differential elongation of cells in the DEZ

either directly or indirectly by activating other signaling mechanisms.

Amongst the earliest events, proposed to be involved in gravity induced signal

transduction, are changes in pH, which were observed, both at the site of gravity perception,

in root columella cells and the site of root bending, in the DEZ. Alkalinisation of cytosolic pH

in columella S2 cells occurs within seconds after gravistimulation of Arabidopsis seedlings

(Fasano et al., 2001; Scott and Allen, 1999). Measurements of cell wall pH, on the other hand,

revealed a decrease of apoplastic pH in the entire columella tissue, as well as in the DEZ

along the upper half of the gravistimulated root (Fasano et al., 2001). Moreover, when

changes in root cap pH were induced by localized treatments with buffers or microinjection of

caged protons, gravitropic root bending was affected (Fasano et al., 2001; Scott and Allen,

1999). The changes in pH could partially also account for alterations in membrane potential

and electric currents observed after gravistimulation. Enhanced currents seen on the upper

side of the DEZ of gravistimulated maize root tips was previously reported to be carried by

protons (Collings et al., 1992). On the other hand, gravity induced transient changes in

membrane potential on upper and lower halves of gravistimulated Lepidium sativum root cap

cells could be the result of changes in H+-ATPase mediated proton transport across the plasma

membrane (Behrens et al., 1985). The plasma membrane H+-ATPase was shown to be

primarily responsible for generating the membrane potential in plant cells (Assmann and

Haubrick, 1996; Briskin, 1990).



Introduction

5

Another second messenger involved in signal transmission during root gravitropism might

be calcium. Alterations in cytosolic free calcium concentrations in statocytes, at the site of

gravity perception, could so far not be detected (Legue et al., 1997, S. Gilroy, personal

communication). However, indirect evidence proposes a role for calcium in gravity induced

signal transduction. Columella cells contain high concentrations of the Ca2+ binding protein

calmodulin and their amyloplasts contain high calcium levels. Inhibitors of Ca2+-ATPases and

calmodulin activity, as well as calcium chelators were shown to prevent gravitropic curvature

(reviewed in Sinclair and Trewavas, 1997). Furthermore, rapid induction of calcium

movement towards the lower half of gravistimulated maize root tips was reported (Bjorkman

and Cleland, 1991; Lee and Evans, 1985).

The substance, most extensively discussed to be involved in signal transduction during

root gravitropism is the plant hormone auxin. Already before the first isolation of plant

hormones, experiments on phototropic curvature of grass coleoptiles led to the assumption,

that a chemical substance might promote differential growth during tropic responses (Darwin

and Darwin, 1881). Later, modification of early phototropic and gravitropic experiments

confirmed the existance and growth promoting nature of the substance, now termed auxin

(Went, 1928). Combining ideas from independent observations of N. Cholodny and F. Went,

the Cholodny-Went hypothesis was formulated: “Growth curvatures, induced by external

factors, are due to an unequal distribution of auxin between the two sides of a curving organ.

In the tropisms induced by light and gravity the unequal auxin distribution is brought about by

a transverse polarization of the cells, which results in lateral transport of the auxin” (Firn et

al., 2000; Went and Thiemann, 1937).

Auxin accumulation on one side of the shoot induces cell elongation. Because roots are

more sensitive to auxin than are shoots, concentrations of auxin that promote the growth of

shoots inhibit the growth of roots. According to the Cholodny-Went hypothesis, root

curvature is therefore thought to be the result of auxin induced inhibition of cell elongation on

the lower half of the gravistimulated root. This theory, although around as dogma for almost a

century, has been challenged in the light of results inconsistent with the original concept

(reviewed in Evans and Ishikawa, 1997; Firn et al., 2000). Mainly it has been claimed, that

auxin gradients are not present in many instances of tropic curvature, and that these gradients

do not occur with the rapidity required for a regulatory involvement of auxin. Furthermore,
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roots treated with high auxin concentrations, that should mask internal gradients of auxin,

remained capable of gravitropic curvature (Ishikawa and Evans, 1993).

On the other hand, there is strong evidence, that supports the involvement of auxin

gradients in differential cell elongation during root curvature: Redistribution of radio-labeled

IAA in root tips of gravistimulated maize roots (Young et al., 1990), and differential

expression of auxin responsive promoter fusions to the ß-glucuronidase gene, such as SAUR-

GUS, AtIAA2-GUS and DR5-GUS, on the lower half of gravistimulated roots provide

evidence for an auxin asymmetry during root curvature (Li et al., 1991; Luschnig et al., 1998;

Rashotte et al., 2001). Moreover, inhibitors of polar auxin transport also inhibit root

gravitropism (Rashotte et al., 2000) and several mutants with either defects in proteins

mediating polar auxin transport (aux1, Atpin2, Atpin3) or putative defects in the regulation of

polar auxin transport (rcn1, axr1, axr3, arg1) also display agravitropic root growth (Friml et

al., 2002b and reviewed in Firn et al., 2000; Muday, 2001)).

1.2 Auxin transport in roots

Apart from tropic responses, auxin is thought to regulate many aspects of plant growth and

development, including the formation of primary and lateral shoots and roots, and the

differentiation of vascular tissue and embryo development (reviewed in Gilroy and Trewavas,

2001). The cellular mechanisms by which a simple molecule like auxin exerts such

pleiotropic effects are not known, yet a main aspect in the regulation of these diverse

processes seems to be the response of cells and tissues to different auxin concentrations.

Concentration gradients are thought to be established in the course of auxin transport, when

auxin from shoot and leave apices, the main sites of synthesis, is transported to the base of the

root and further down to the root apex (reviewed in Jones, 1998).

Two main pathways of auxin transport within the root are described: A fast and non polar

transport, coupled with the transport of assimilates (e.g. sugars) in the phloem and a slower,

directional, polar transport pathway in different tissues of the root. While non polar auxin

transport includes the transport of physiologically inactive auxin conjugates, polar auxin

transport is restricted to the cell to cell transport of free, and therefore active, auxins. The

most abundant naturally occurring auxin is indole-3-acetic acid (IAA). Both pathways may be
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directly or indirectly linked (Cambridge and Morris, 1996), however, polar auxin transport is

thought to be the main developmentally relevant auxin transport (Lomax et al., 1995). Auxin

measurements revealed two distinct directions of polar auxin transport in the root (Fig. 2a)

(Rashotte et al., 2000): (i) The transport of auxin from the base of the root to the apex of the

root in the vascular tissue (acropetal auxin transport) and (ii) the backward transport of auxin

from the apex of the root to the base through the outermost epidermal and cortical tissues

(basipetal auxin transport).

The cell-to-cell transport of the auxin IAA was postulated to occur through specific carrier

proteins or complexes of proteins, that regulate the flux of auxin into and out of the cell. The

direction of auxin flow was proposed to be determined by the efflux carrier and its polar

localisation at the site of auxin exit (Rubery and Sheldrake, 1974). The chemiosmotic model

for polar auxin transport (Fig. 2b) proposes the entry of non-charged, protonated IAA (HIAA)

from the acidic apoplast via diffusion or more efficiently via energized uptake by specific

influx carriers into the cell (Goldsmith, 1977; Morris et al., 1991). Because of the more basic

pH in the cytosol IAA is deprotonated (IAA-), and, due to its negative charge and thus poor

membrane permeability, trapped within the cell. Consequently, IAA- can only leave the cell

through the action of auxin efflux carriers (Raven, 1975; Rubery and Sheldrake, 1974).

Efflux mediated auxin transport can be distinguished from influx mediated auxin transport

(i) by the application of inhibitors, that specifically impair either auxin efflux or auxin influx

carrier activity, or (ii) in assays, that determine the transport of synthetic auxins, that are only

substrates for one type of carrier. Synthetic auxins used for auxin transport measurements are

1-naphthylacetic acid (1-NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D), that are

exclusively transported through activity of auxin efflux and auxin influx carriers, respectively

((Delbarre et al., 1996)).

Inhibitors of auxin transport

The most prominent inhibitors of auxin efflux carrier activity are the phytotropins 1-

naphthylphtalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA). NPA and TIBA were

shown to influence many plant growth and developmental processes that are thought to be

controlled by polar auxin transport, including embryo development (Hadfi et al., 1998),



Introduction

8

vascular tissue formation (Mattsson et al., 1999), lateral root initiation (Reed et al., 1998) and

meristem pattern formation (Sabatini et al., 1999). Both phototropic and gravitropic curvature

of organs are nearly completely abolished upon application of these auxin efflux blockers (Li

et al., 1991; Rashotte et al., 2001).

The molecular mechanisms by which NPA and TIBA block polar auxin transport are not

precisely known. NPA was originally thought to act on a separate, not yet identified, NPA

binding protein (NBP). NBP was controversially described as a peripheral (Cox and Muday,

1994) or integral (Bernasconi et al., 1996) membrane protein. New evidence suggests that

NPA and TIBA act by blocking actin dependent vesicle cycling between the plasma

membrane and an internal membrane compartment (Geldner et al., 2001; Gil et al., 2001).

This cycling is also blocked by application of brefeldin A (BFA), an inhibitor of Golgi vesicle

secretion (Geldner et al., 2001). BFA is therefore another candidate for inhibition of efflux

mediated polar auxin transport (Delbarre et al., 1998; Geldner et al., 2001; Morris and

Robinson, 1998).

Recently, a novel class of specific inhibitors of auxin influx carriers was described with the

common feature to perturb the accumulation of 2,4-D in cultured tobacco suspension cells

(Imhoff et al., 2000). Two of these compounds, 1-naphthoxyacetic acid (1-NOA) and 3-

chloro-4-hydroxyphenylacetic acid (CHPAA) were shown to disrupt root gravitropism. In

contrast to 1-NOA, CHPAA exhibited in addition to blocking activity at lower concentration

(<10µM) auxin like activity at higher concentrations (>10µM) (Parry et al., 2001).
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Fig.2: Polar auxin transport in roots and the localization of AtPIN auxin efflux carrier proteins. (a)
Arrows indicate direction of acropetal (ac) and basipetal (ba) auxin transport polarities. (b) Chemiosmotic model
of polar auxin transport: Protonated IAA (IAAH) enters the cell by diffusion and import via influx carriers
(yellow). In the cell IAA is deprotonated (IAA-) and can only leave the cell via efflux carriers (green). Arrows
indicate direction of auxin flow (adapted from Jones, 1998). (c) Approximate localization of AtPIN proteins
(PIN1-PIN4) in the Arabidopsis root apex.

Polar auxin transport proteins

Proteins specifically involved in auxin influx or efflux have been identified and mutant plants

with defects in genes encoding for these proteins were characterized. The AUX1 protein is

thought to mediate auxin influx, while proteins of the AtPIN family are proposed to be

involved in auxin efflux. Immunolocalization of the AUX1 and some of the AtPIN proteins

revealed their often polar and very specific distribution along the supposed route of acropetal

and basipetal auxin transport, in accordance with previous hypotheses (Fig. 2c) (Friml et al.,

2002a; Friml et al., 2002b; Gälweiler et al., 1998; Müller et al., 1998; Swarup et al., 2001)

Some of the mutants with defects in these genes display agravitropic phenotypes.

The Arabidopsis AUX1 gene encodes a transmembrane protein that shares homology with

transporters of plant amino acid permeases, and appears to play a role in auxin influx (Bennett

et al., 1996). A disruption of the AUX1 gene causes resistance to auxin and ethylene, and
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affects root gravitropism in Arabidopsis seedlings (Bennett et al., 1996). Agravitropic root

growth is compensated by application of the membrane permeable auxin 1-NAA, but not by

influx carrier dependent 2,4-D (Marchant et al., 1999). The root growth characteristics of

aux1 can be phenocopied by treating WT seedlings with the auxin influx carrier inhibitors 1-

NOA and CHPAA (Parry et al., 2001). Immunolocalization of HA-tagged AUX1 protein in

roots of transgenic Arabidopsis seedlings revealed a polar localization of the protein at the

basal end of protophloem cells, as well as a non polar localization in cells of columella S2, the

pLRC and epidermis (Swarup et al., 2001).

Proteins encoded by the Arabidopsis PIN gene family consist of 10-12 putative

transmembrane segments, and exhibit similarity to bacterial transporters (reviewed in Palme

and Galweiler, 1999). Functional assays with AtPIN2, also known as EIR1, AGR1 or WAV6

(Chen et al., 2001; Luschnig et al., 1998; Müller et al., 1998; Utsuno et al., 1998) in yeast

suggested auxin carrier activity for the AtPIN2 protein (Chen et al., 1998b; Luschnig et al.,

1998). Measurements of auxin transport revealed impaired basipetal auxin transport in roots

of the Atpin2 and stems of the Atpin1 mutant (Okada et al., 1991; Rashotte et al., 2000). The

different phenotypes displayed by the Atpin1, Atpin2, Atpin3 and Atpin4 mutants can be

phenocopied by treatment of WT seedlings with inhibitors of auxin efflux (Friml et al.,

2002a; Friml et al., 2002b; Fukaki et al., 1998; Gälweiler et al., 1998; Rashotte et al., 2000).

In Arabidopsis the PIN gene family consists of eight members. Six members of this family

were cloned and are currently studied in detail. Most striking is the distinct and mostly polar

localization pattern of the different AtPIN proteins and their regulated distribution in different

organs and various tissues of the Arabidopsis plant. While AtPIN1, AtPIN2, AtPIN3 and

AtPIN4 are all expressed in roots, only the Atpin2 mutant displays severe defects in root

gravitropism.

The first AtPIN gene cloned was AtPIN1 (Gälweiler et al., 1998). Roots of Atpin1 mutant

plants display normal gravitropic growth. Antibodies, raised against a portion of AtPIN1,

revealed the polar localization of the protein at the apical end of phloem cells, basal to the

root meristem (J. Friml, personal communication). Other members of the AtPIN gene family

were isolated in library screens using probes of AtPIN1 (Friml et al., 2002a; Friml et al.,

2002b; Müller et al., 1998). The Atpin2 mutant, exhibits reduced sensitivity to auxin and

ethylene and displays severe defects in root gravitropism (Friml et al., 2002a; Friml et al.,

2002b; Müller et al., 1998). Unlike described for aux1, application of auxin does not result in
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rescue of the Atpin2 mutant phenotype (A. Müller, personal communication). The AtPIN2

protein was found to be polarly localized at the basal end of LRC (P. Wolff, personal

communication), epidermis and cortex cells in Arabidopsis roots (Müller et al., 1998).

In addition to a reduction in phototropic and gravitropic curvature of hypocotyls, the

Atpin3 mutant displays a delay in gravitropic curvature of roots (Friml et al., 2002b, M.

Evans, personal communication). In roots, the AtPIN3 protein was shown to be expressed in

S1 and S2 cells of the columella tissue. In vertically grown roots, AtPIN3 is non polarly

localized in the plasma membrane of S1 and S2 cells, but is polarly relocated to the lateral

side of these cells upon gravistimulation (Friml et al., 2002b).

Regulation of AtPIN proteins

The precise mechanisms for the regulation of AtPIN activity are not known and proteins

directly interacting with a member of the AtPIN family have not yet been identified. There is,

however, evidence for a regulation of AtPIN activity at the level of gene transcription, as well

as at the level of post translational protein targeting to the plasma membrane.

Northern blot experiments with an AtPIN2 specific probe revealed, that application of 1-

NAA causes induction of AtPIN2 gene expression in Arabidopsis roots (A. Müller, personal

communication). In situ hybridization experiments with an AtPIN4 specific probe indicated,

that in roots of Atpin1 mutant plants, expression of AtPIN4 expands to tissues, where WT

plants normally do not express AtPIN4 (J. Friml, personal communication). AtPIN gene

expression might therefore directly or indirectly be influenced by auxin transport and auxin

levels in the plant.

AtPIN activity is also regulated by posttranslational protein trafficking and its (polar)

localization in the plasma membrane. In embryos of the gnom mutant, vesicle trafficking is

disturbed and polarity of AtPIN1 localization is lost (Steinmann et al., 1999). GNOM was

found to encode a protein, demonstrated to have guanine nucleotide exchange activity for

ARF GTPases (Steinmann et al., 1999). These small GTPases are known to play a role in the

control of vesicle trafficking between the Golgi apparatus and the plasma membrane and are

required for polar localization of auxin efflux carrier proteins (Steinmann et al., 1999).

Localization of AtPIN proteins in the plasma membrane was recently found to reflect a
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dynamic process of protein cycling between the plasma membrane and an endomembrane

compartment (Geldner et al., 2001). BFA treatment abolishes this cycling process and leads to

intracellular accumulation of AtPIN proteins, as shown for AtPIN1, AtPIN2 and AtPIN3

(Friml et al., 2002b; Geldner et al., 2001, 2002, P. Wolff, personal communication). Both,

directed membrane targeting and cycling of AtPIN proteins are dependent on the actin

cytoskeleton (Geldner et al., 2001).
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1.3 Aim of the work

The work presented here includes two distantly related projects:

1) The first project deals with the investigation of auxin flows during root gravitropism.

Therefore, transgenic Arabidopsis lines carrying the DR5-GFP construct as an in vivo reporter

for cellular auxin levels, were generated. Auxin levels, as represented by GFP expression

were analyzed in seedling roots before and after change of gravity vector orientation. Genetic

and pharmacological analyses were used to identify the role of efflux- and influx mediated

polar auxin transport pathways on gravity induced changes in relative auxin levels and the

rate of root curvature.

2) The second project deals with the establishment of the split-ubiquitin-system (USPS)

for protein interaction as a system to find interaction partners for the AtPIN1 membrane

protein. At the beginning of this work, USPS had neither been used for the analysis of protein

interaction between membrane proteins of plants nor been employed for screening purposes

before. In the first step the potential to monitor the interaction of plant proteins should

therefore be analyzed by testing known interaction partners. The next step involved the

establishment of the AtPIN1 protein as a bait in this system. The last step required the

construction and cloning of a cDNA library from plant tissues in a USPS vector and the

screening of this library with the AtPIN1 bait.
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2 Materials and methods

2.1 Materials

2.1.1 Plants

Arabidopsis thaliana L. Cultivar Col0

Arabidopsis thaliana suspension culture Cultivar Col0

Arabidopsis thaliana L., Atpin2/eir1-1 Cultivar Col0 (Roman et al., 1995)

2.1.2 Bacteria

E. coli DH10B F-mcrA∆(mrr-hsdRMS-

mcrBC)φ80dlacZ∆M15lacX∆74deoRrecA1endA

1araD139∆(ara, leu)7697galUgalKλ-rpsLnupG

A. tumefaciens GV3013 C58C1, RifR,GmR (Koncz and Schell,

1986)

2.1.3 Yeasts

JD53 MATα, his3-∆200, leu2-3 112, lys2-801, trp1∆63,

ura3-52
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2.1.4 Plasmids

Plasmids used for the generation of constructs described in this thesis are listed below:

pS2-46 contained DR5 element (kindly provided by T.

Guilfoyle) (Ulmasov et al., 1997a). ampR

pCAT contained CaMV35S terminator sequence (kindly

provided by C. Maas). ampR

pGFP-JH contained GFP5-ER sequence (kindly provided

by G. Jach) (Haseloff et al., 1997). ampR

pgj280 contained GFP-LT sequence (kindly provided by

G. Jach) (G. Jach, unpublished data). ampR

pS001 plant binary vector (kindly provided by B. Reiss)

(B. Reiss, unpublished data). ampR, sulfR

pPINc23 contained AtPIN1 cDNA sequence (kindly

provided by L. Gälweiler) (Gälweiler et al.,

1998). ampR

pCub-R-URA contained pMET-Cub-R-URA sequence (kindly

provided by N. Johnsson) (Dunnwald et al.,

1999). ampR, his

pNub
* contained pCu and Nub, or Nuba sequences (Nub

*)

(kindly provided by N. Johnsson) (Dunnwald et

al., 1999). ampR, trp

pGAD424 contained the ADH terminator sequence

(commercially available). ampR

pRS314 yeast ARS/CEN plasmid (Sikorski and Hieter,

1989). ampR, trp

pGAP1 contained the GAP1 cDNA sequence (kindly

provided by A. Molendijk) (A. Molendijk,

personal communication). ampR

pARAC5* contained the ARAC5-WT, ARAC5-G15V or

ARAC5-T20N cDNA sequences (ARAC5*)

(kindly provided by A. Molendijk) (A.

Molendijk, personal communication). ampR
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pNub-SSS1 contained the SSS1 sequence (kindly provided by

N. Johnsson). ampR, trp

pNub-TPI1 contained the TPI1 sequence (kindly provided by

N. Johnsson). ampR, trp

2.1.5 Synthetic oligonucleotides

The following synthetic oligonucleotides (primers) were derived from Invitrogen.

Oligonucleotides Sequence

s2-46up ggaattcgtcgacggtatcgcag

s2-46lo tgtaattgtaattgtaaatag

PIN-U99A gctctagaattcagatgattacggcggcggact

PIN-L1948B taactagtcgacccaccacctagacccaagagaatgtag

PIN-U581C gctctagaattcatgatctccgagcagtttcca

PIN-L1540D ggactagtcgacccaatgccgaataaactggag

CUP-U1 tctccccgcggcgagctctggacgatcccattaccgacattt

NUIha-L1 ccgccggtcgacggatcccgggcggcgcgccagcgtaatctggaacatcgtatgggtagaatt

ccttgtcttgat

ADH1tU1 tcccccgggcccgcggccgcagatctatgaatcgtagat

ADH1tL1 tcccccgggtacctcgcttatttagaagtgtcaacaac

GAP16U1 gctctagaattcatgatgactaaaggcggaggt

GAP16L1255 taactagtcgacccgtcgctagtgcttgagctcaa

ARAC5U199 gcccgggatcctgagtgcttcgaggtttataaag

ARAC5L766 gcgctcgaggtcgactcacaagaacacgcagcggtt

CUP-U595 aattctacccatacgatgttccaga

ADH-L689 gtgaacttgcggggttttttcagtat



Materials and methods

17

2.1.6 Antibodies

anti-AtPIN1 rabbit polyclonal antibody (Gälweiler et al., 1998)

goat anti-rabbit IgG horse radish peroxidase conjugated antibody

2.1.7 Enzymes

If not indicated otherwise, enzymes used for experiments in this thesis were obtained from

Roche and New England Biolabs.

2.1.8 Chemicals and radiochemicals

If not indicated otherwise, chemicals and radiochemicals used for experiments in this thesis

were obtained from Amersham Buchler GmbH & Co KG, J.T. Baker Chemicals, BioRad,

Difco Laboratories, Fluka, Merck AG, Serva Feinbiochemica GmbH & Co, Sigma Chemie

GmbH.

2.1.9 Other materials

Parafilm M American National Can.

mRNA Purification Kit Amersham Pharmacia Biotech

Hybond N Amersham Pharmacia Biotech

Buchler Flacon tubes Becter

Reaction tubes Eppendorf

Petridishes Greiner GmbH

Pipette tips Greiner GmbH

Gibco BRL SUPERSCRIPT cDNA kit Invitrogen

Autoradiofilm XOMAT AR Kodak

Sterile filtration units Millipore

PicoGreen reagent Molecular Probes

Qiagen Gel Extraction kit Qiagen
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Plasmid Isolation Midi kit Qiagen

Plasmid Isolation Maxi kit Qiagen

RNeasy Maxi kit Qiagen

Whatman 3MM paper Whatman

2.1.10 Media for plants

Media were diluted in 1l H2O.

AM Agar 2.297g MS basal salt medium, 10g sucrose,

pH=6, 10 g agar agar.

AM Agarose 2.297g MS basal salt medium, 10g sucrose,

pH=6, 8 g agarose.

When required, antibiotics were supplemented to the following final concentration:

Claforan 300 mg/l

Sulfonamide   10 mg/l

2.1.11 Media for bacteria

Media were diluted in 1l H2O. For solid media 15 g of agar agar was added.

LB medium (Sambrook ) 5g yeast extract, 10g trypton, 10g N, pH=7.5.

SOC medium (Sambrook) 5g yeast extract, 20g trypton, 20 mM glucose,

0.5g NaCl, 2.5 mM CaCl, pH=7.5.

YEB medium 10g yeast extract, 10g peptone, 5g NaCl.

When required, antibiotics were supplemented to the following final concentration:

Ampicillin 100 mg/l

Carbenicillin 100 mg/l

Gentamycin   10 mg/l

Rifampicin 100 mg/l
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2.1.12 Media for yeasts

Media were diluted in 1l H2O. For solid media 20 g of agar agar was added.

YPD medium 10 g yeast extract, 20 g peptone, 20 g glucose.

SD medium 6.7 g nitrogen base without amino acids, pH=5.8,

20 mg L-adenine hemisulfate, 20 mg L-histidine-

HCl monohydrate, 100 mg L-leucine, 20 mg L-

tryptophane, 20 mg L-uracil, 30 mg L-

isoleucine, 150 mg L-valine, 20 mg L-arginine,

30 mg L-lysine, 20 mg L-methionine, 50 mg L-

phenylalanine, 20 mg L-threonine, 30 mg L-

tyrosine.

The amino acids histidine and tryptophane were omitted from SD media, when selection of

yeast cells that had acquired prototrophy for these amino acids (due to transformation events)

was required. Furthermore, in the course of USPS growth assays, SD medium lacking uracil

(ura- medium) or containing 5´-FOA (1 g/l) (FOA+ medium) were prepared. For increased

gene expression from the methionine repressible promoter, methionine was omitted from SD

media. For increased gene expression from the copper inducible promoter, 100 µM CuSO4

was added to the medium.

2.1.13 Microscopes

Fluorescence microscope: Leica MZ12 with mercury HBO 50 W/Ac lamp

and FITC filter

Confocal laser scanning microscope: Leica DMIRBE, TCS4D, with digital imaging

processing. A 530+/-15nm band pass filter for

FITC specific detection and a 580 nm band pass

filter for propidium iodide and autofluorescence

detection.
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2.1.14 Computer programs

UNIX version 8

DNA star software package Lasergene

Image Quant 4 Molecular Dynamics

Adobe Photoshop 6.0 Adobe

Diskus Carl H. Hilgers

Powerpoint 8.0 Microsoft

2.2 Methods

2.2.1 Cloning strategies

Cloning strategies performed in the course of this thesis are described below. Plasmids and

primers used for cloning procedures are listed in 2.1.4 and 2.1.5.

Generation of pDR5-GFP

The DR5 promoter was amplified by PCR from pS2-46 using the primers pS2-46up and pS2-

46lo. The resulting DR5 PCR product was cleaved EcoRI/BamHI and introduced into pS001

using these restriction sites. The CaMV35S transcriptional terminator was excised

XbaI/HindIII and introduced downstream of the DR5 promoter into pS001 using these

restriction sites. The resulting plasmid was termed pDR5pApS001.

The GFP sequence used for the pDR5-GFP construct was generated by excision of an

MscI/SfuI fragment of GFP-LT from pgj280 and introduction of this fragment into MscI/SfuI

cleaved pGFP-JH. The resulting plasmid was termed pGFP-LT-ER and contained the GFP

sequence GFP-LT-ER. GFP-LT-ER was excised from pGFP-LT-ER by digestion with

BamHI/XbaI and introduced into pDR5pApS001 using these restriction sites. The resulting

plasmid was termed pDR5-GFP (see also 3.1.1, Fig. 3).
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Generation of pGAP1-Cub

GAP1 was ampilfied by PCR from pGAP1 using the primers GAP16U1 and GAP16L1255.

The resulting GAP1 PCR product was cleaved EcoRI/SalI and introduced into pCub-R-URA.

The resulting plasmid was termed pGAP1-Cub see also (see also 3.8.1, Fig.12).

Generation of pNubm and pNubam

Sequences for the pCU copper inducible promoter and the Nub fragment were jointly

amplified by PCR from pNub using the primers CUP-U1 and NUIha-L1. As a result of the

design of the NUIha-L1 primer sequence, the amplified PCR fragment, termed Nubm,

contained sequences for pCU, Nub, the HA epitope and a polylinker downstream of the HA

sequence. The polylinker contained recognition sites for the restriction endonucleases AscI,

SmaI, BamHI and SalI. Nubm was digested SacI/SalI and introduced into pRS314 using these

restriction sites. Furthermore, the ADH transcriptional terminator sequence was amplified by

PCR from pGAD424 using the primers ADH1tU1 and ADH1tL1. As a result of the design of

the ADH1tU1 primer sequence, the amplified PCR product, termed ADHm contained a

polylinker site upstream of the ADH terminator sequence. This polylinker site contained

recognition sites for the restriction endonucleases ApaI, NotI and BglII. ADHm was digested

ApaI/KpnI and introduced downstream of Nubm into pRS314 using these restriction sites. The

resulting plasmid was termed pNubm and differed from the original pNub construct that had

frequently been used in USPS, by the addition of a transcriptional terminator sequence, a

sequence for the HA epitope and an extensive polylinker site, that later allowed the

introduction of many different control genes, as well as the SalI/NotI digested cDNA from

plant tissues. pNubam was generated by replacement of the Nub fragment in pNubm by Nuba

using the restriction enzymes SacI/SalI. Nuba had been amplified by PCR from pNuba using the

primers CUB-U1 and NUIha-L1.
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Generation of pNubm-ARAC5, pNubm-ARAC5-G15V, pNubm-ARAC5-T20N, and pNubam-

ARAC5-G15V

ARAC5, ARAC5-G15V and ARAC5-T20N were amplified by PCR from the corresponding

pARAC5* plasmids. PCR fragments of ARAC5, ARAC5-G15V and ARAC5-T20N were

digested BamHI/SalI and introduced into pNubm using these restriction sites. The resulting

plasmids were termed pNubm-ARAC5, pNubm-ARAC5-G15V and pNubm-ARAC5-T20N,

respectively (see also 3.8.1, Fig.12). pNuba-ARAC5-G15V was generated by excision of

ARAC5-G15V from pNubm-ARAC5-G15V and introduction into pNubam using the restriction

sites BamHI/SalI.

Generation of pAtPIN1-Cub, pAtPI-Cub and pAtI-Cub

AtPIN1, AtPI1 and AtI1 were amplified by PCR from pPINc23 using the primer combinations

PIN-U99A/PIN-L1948B, PIN-U99A/PIN-L1540D and PIN-U581C/PINL1540D, respectively.

The amplified PCR fragments AtPIN1, AtPI1 and AtI1 (see also 3.7.2, Fig.14) were digested

BamHI/SalI and introduced into pCub-R-URA using these restriction sites. The resulting

plasmids were termed pAtPIN1-Cub, pAtPI-Cub and pAtI-Cub.

Generation of pNubm-SSS1 and pNubam-SSS1

SSS1 was excised BamHI/SalI from pNub-SSS1 and introduced into pNubm and pNubm using

these restriction sites. The resulting plasmids were termed pNubm-SSS1 and pNubam-SSS1.

Generation of pNubm-TPI1 and pNubam-TPI1

TPI1 was excised BamHI/SalI from pNub-TPI1 and introduced into pNubm and pNubm using

these restriction sites. The resulting plasmids were termed pNubm-TPI1 and pNubam-TPI1.
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2.2.2 Construction and cloning of a cDNA library in pNubm

Isolation of total RNA

Tissues from Arabidopsis suspension culture cells, aerial parts of 4-6 weeks old greenhouse

plants and roots of 4-6 weeks old in vitro grown plants were homogenized in liquid nitrogen,

using mortar and pistil. Total RNA from homogenized tissues was isolated using the Quiagen

Rneasy® Maxi Kit. The procedure of total RNA isolation involved the lysis of cells in

denaturing guanidine isothiocyanate containing buffer and the application of the cell lysate to

RNeasy columns. Total RNA binds to a silica-gel-based membrane in these columns and is

finally eluted under low salt conditions. Isolation procedure was performed according to

supplier´s recommendation. The concentration and purity of the isolated total RNA was

determined by measuring the absorbance at 260nm and 280nm in a spectrophotometer. An

absorbance of 1 U at 260 nm corresponds to 40 µg/ml RNA when RNA is diluted in water.

Pure RNA has an A260/A280 ratio of 1.8-2.1. RNA quality was further investigated by

application of 3 µg of each RNA sample was mixed with an RNA loading buffer (33% w/v

formamide, 8% v/v FA, 0,1% w/v xylene, cyanol, 0,1 % w/v bromphenol blue, 0,1 mg/ml

ethidium bromide, running buffer), dnatured at 65°C and applied to a denaturing agarose gel

(1,2% w/v agarose, 100 mM MOPS, 5 mM NaAc, 1mM EDTA). Electrophoresis was

performed at 5 V/cm using 1x FA gel running buffer (100 mM MOPS, 5 mM NaAc, 1 mM

EDTA, pH=7, 12,3 M FA, DEPC treated water). RNA ladder (Boehringer) was used to

estimate size of RNA fragments. After electrophoresis, RNA was visualized on a

transilluminator under UV light (254 nm). Distinct bands representing ribosomal RNA

indicated, that the RNA was not degraded. The yield of total RNA obtained from 800 mg

fresh weight of each starting material, Arabidopsis suspension culture, aerial parts of

Arabidopsis plants and roots of Arabidopsis plants, was 600 µg, 624 µg and 250 µg,

respectively. Total RNA of root tissues was repeated three times and a total of 600 µg total

RNA from this tissue was obtained.

Isolation of mRNA

For rapid affinity-purification of mRNA from total RNA, prepacked oligo(dT)-cellulose spun

columns, from Amersham Pharmacia Biotech, were used. 500µg of total RNA from each
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starting material (Arabidopsis suspension culture, aerial parts of Arabidopsis plants and roots

of Arabidopsis plants) were united and used for the isolation of mRNA. The technique of

mRNA isolation by oligo(dT)-cellulose spun columns is based on binding of poly(a)+ RNA

(mRNA) to the oligo(dT) matrix under high salt conditions and elution of mRNA from the

columns under low salt conditions. The isolated mRNA was glycogen precipitated and

resuspended in 15 µl water. All steps in the mRNA isolation precedure were performed

according to supplier´s recommendations. The concentration and purity of the isolated total

RNA was determined by measuring the absorbance at 260nm and 280nm in a

spectrophotometer (see also isolation of total RNA). 11 µg of mRNA were isolated from a

total of 1500 µg of total RNA.

cDNA synthesis

cDNA synthesis was performed using the GIBCO BRL SUPERSCRIPTTM Plasmid System

for cDNA Synthesis. This kit results in the generation of cDNA with cohesive ends for SalI

ligation at the 5´-end and cohesive ends for NotI ligation at the 3´-end, thereby allowing the

directional cloning of cDNA fragments. The cDNA synthesis procedure was performed

according to supplier´s recommendation. The basic principle of the synthesis procedure is

outlined below. 6 µg of mRNA were used for cDNA synthesis.

For the synthesis of the 1st cDNA strand, oligo(dT) NotI primer adapters were hybridised

to the 3´-poly(a)+ tail of the mRNA. These primers provided a substrate for the polymerase

activity of the SUPERSCRIPT II reverse transcriptase (RT), the enzyme catalysing 1st strand

DNA synthesis from the mRNA template. The amount of SUPERSCRIPT II RT added to the

reaction depended on the amount of mRNA material used (200 U/µg of mRNA).

Before the 2nd strand cDNA synthesis, 15 µCi α32PdCTP were added to the reaction mix

to mark the cDNA for subsequent determination of fragment size. The 2nd strand synthesis

was catalyzed by E. coli DNA polymerase I in combination with  E. coli RNase H and  E. coli

DNA ligase. Subsequent addition of T4 DNA polymerase resulted in blunt-end cDNA

fragments. SalI adaptors are ligated to the cDNA by T4-DNA Ligase. The SalI adaptors are

short duplex oligomers that are blunt ended at one terminus and contain a 4-base 5´-extension

for ligation with SalI cohesive ends at the other terminus. Directionality of the cDNA was
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achieved by NotI digestion of the adaptor ligated cDNA, resulting in cDNA fragments with

cohesive ends for SalI at the 5´- and cohesive ends for NotI at the 3´-end.

The NotI digested cDNA was extracted by phenol/chlorophorm and precipitated with 7,5

M NH4 OAc. To estimate the size range of cDNA fragments, an aliquot of the 32P-labelled

cDNA was applied on an agarose gel. After equilibration of the gel in 7% TCA, the gel was

air dried and exposed to a XOMAT KODAK film. The majority of cDNA fragments was

found at a size ranging from 0,7-2,2 kb.

Size fractionation of cDNA fragments

Size fractionation of cDNA prior to vector ligation was performed according to the GIBCO

SUPERSCRIPT protocol. Instead of GIBCO columns, CLONTECH CHROMA SPIN™

columns were used. The CHROMA SPIN™ purification method is based on size-exclusion

chromatography. Small molecules are retained in the pores of the column resin and large

molecules are allowed to pass through. Different fractions of progressively smaller cDNA

fragments were therefore collected upon elution of cDNA from the columns. An aliquot of

each fraction was applied to an agarose gel. After equilibration of the gel in 7% TCA, the gel

was air dried and exposed to a XOMAT KODAK film. Fractions containing larger cDNA

fragments (>500 bp) were selected and fractions containing smaller cDNA fragments (<500

bp) and residual adaptors were discarded.

Quantitation of cDNA concentration by PicoGreen® Reagent

Three cDNA fractions containing cDNA fragments larger than 500 bp were selected by size

fractionation. The amount of cDNA present in these fractions was determined using the

Molecular Probes PicoGreen dsDNA quantification reagent. PicoGreen becomes highly

fluorescent when bound to double stranded DNA and allows the detection of as little as

250 pg/ml of dsDNA. PicoGreen Reagent was therefore added to λ DNA standards at

different concentrations (250 pg/ml, 2,5 ng/ml, and 25 ng/ml) and to the aliquots of the cDNA

fractions. Fluorescence of standards and cDNA samples was determined in a fluorometer at

an excitation of 485 nm and an emission at 525 nm. Known concentrations of DNA standards
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and fluorescence emission, allowed the determination of cDNA concentration from known

cDNA fluorescence emission. cDNA fractions were therefore found to contain a total of 200

ng cDNA.

Ligation and cloning of the cDNA to the pNubm vector

After over night digestion of pNubm with NotI and SalI, vector DNA was precipitated by

PEG/NaAc. Test ligations of 50ng pNubm with a 10 ng of a 1,1kb fragment revealed good

ligation efficiency of fragment to vector and low background of relegated vector at 50 ng

vector/ligation in a 20 µl reaction volume. The proportion of vector to DNA was therefore

kept and upscaled for the ligation of cDNA to pNubm. In total 100 ng of cDNA were ligated to

500 ng of pNubm. Ligation was performed at 4° C for 4 days. After ligation, the reaction mix

was phenol/chlorophorm extracted and NH4OAc precipitated. The purified DNA was ligated

into freshly prepared DH10B E. coli competent cells. Transformed E. coli cells were plated on

ampicillin containing LB agar plates and incubated at 37°C over night. Colonies were

scratched from the plates, inocculated in 5 l of LB medium and immediately used for the

isolation of plasmid DNA using the Plasmid Isolation Giga kit from Qiagen.

2.2.3 Methods for the analysis of nucleic acids

Methods for the analysis of nucleic acids, that were exclusively performed in the course of

cDNA library construction and cloning are described in 2.2.2. All other methods for the

analysis of nucleic acids are depicted below.

Small scale plasmid isolation from E. coli

Small scale plasmid isolation from E.coli was performed by alkaline lysis according to

Sambrook and Fritsch, 1998.



Materials and methods

27

Large scale plasmid isolation from E. coli

The Plasmid Isolation Midi kit for midi preparations from Qiagen was generally used for the

isolation of plasmid DNA in the range of 50-100 µg of DNA/preparation. For the isolation of

plasmid DNA from E. coli cells transformed with the cDNA library, the Plasmid Isolation

Giga kit for giga preparations from Qiagen was used. This kit allows the isolation from large

bacterial culture volumes and results in yields of plasmid DNA in the range of 5-10 g.

Isolation procedure was performed according to manufacturer´s protocol. The amount of

plasmid DNA obtained from the isolation procedure was evaluated by determination of light

absorbance at 260nm in a spectrophotometer.

PCR amplification

A PCR reaction mix of 100 µl contained DNA template (100 ng), 0.8 µl 25 mM dNTPs, 5 µl

of each primer of a primer pair ([primer]=10 pmol/µl), 10 µl of 10x buffer (provided by

manufacturer) and 1µl Taq polymerase. The PCR reaction was performed by incubation of the

PCR reaction mix at three temperatures corresponding to the denaturing, annealing and

extension steps in each cycle of amplification. In a typical reaction the DNA was denatured at

95°C, the primers annealed at 40-60°, and the extension was processed at 72°C. 30-40

amplification cycles were used.

DNA cleavage by digestion with restriction endonucleases

For the digestion of DNA with restriction endonucleases, buffers supplied by manufacturers

were used. Cleavage of DNA was performed at recommended optimal temperatures, usually

at 37°C. 5-10 U of enzyme were used. Digestion of plasmid DNA was performed for 1-3 hrs,

while digestion of PCR fragments was performed o/n. Enzyme reactions were stopped by heat

inactivation of restriction enzymes upon transfer of the restriction mix to 65° for 20 min.
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DNA dephosphorylation

In order to prevent religation of cleaved vector DNA, 5´-phosphate groups at cleaved ends of

plasmid DNA were enzymatically removed. Dephosphorylation was performed by addition of

1-2 U of alkaline phosphatase to the restriction digest mix for 20 min. Phosphatase activity

was inhibited by heat inactivation upon transfer of the reaction mix to 65°C for 20 min.

Purification of PCR products

After PCR reactions or after enzymatic cleavage of PCR fragments, PCR products were

purified using a PEG/NaAc precipitation procedure. Equal amounts of DNA solution and

PEG/NaAc solution (26% vol/vol PEG 6000, 6,5 mM MgCl2, 0,6 M NaAc, pH=6,7) were

mixed and incubated at R.T. for 10-15 min. DNA was precipitated by centrifugation for 5

min, twice washed with absolute ethanol and left to air dry for 10-15 min. DNA was

resuspended in desired volume of water.

Purification of plasmids

After enzymatic digestion of plasmid DNA, cleaved plasmids were purified from enzymes

and small DNA fragments by PEG/NaAc extraction (according to the protocol for purification

of PCR products) or by isolation from agarose gels. For the latter procedure, the Quiagen gel

extraction kit was used. Procedure was performed according to supplier´s recommendations.

Purification of DNA by phenol/chloroform extraction

Equal volumes of DNA and phenol/chloroform/isoamyl alcohol (25:24:1) were mixed,

vortexed and centrifuged. The upper, aqueous phase was carefully removed and transferred to

a fresh reaction tube. This extraction procedure was repeated with chloroform/isoamyl alcohol

(24:1). DNA in the aqueous phase was precipitated by addition of 10% v/v 7,5 M NH4OAc

and 2.5% v/v absolute ethanol at –20° C. After precipitation, salt from the DNA pellet was

removed by a washing step in 70% ethanol.
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DNA ligation

To ligate DNA fragments with linearized vectors, 1-2 U of T4 DNA-Ligase were used.

Typically the amount of fragment mixed with plasmid in the ligation mix was at a ratio of 3:1.

For ligation of fragments into binary vectors and for ligation of cDNA to the pNubm vector,

the ratio of fragment to plasmid was changed to 10:1 and 1:5, respectively. Ligation was

performed in a small volume (5-20 µl), typically at 16°C o/n. Ligation of cleaved PCR

fragments was performed at 4°C for 2-3 days. This procedure resulted in higher ligation

efficiency and was applied also for the ligation of cDNA fragments to the pNubm vector.

Separation of DNA fragments by agarose gel electrophoresis

DNA fragments were mixed with DNA loading buffer (8% w/v sucrose, 1 mM EDTA, 0,02%

w/v SDS, 0,005% w/v bromphenol blue, 0,05 % w/v xylene cyanol) and analyzed by agarose

gel electrophoresis. The agarose concentration depended on the size of fragments to be

resolved ((Sambrook and Fritsch, 1998)). Electrophoresis was performed at 5 V/cm using

TBE buffer (90 mM Tris/Cl (pH=8,3), 90 mM boric acid, 2,5 mM EDTA, 100 µg/l EtBr). 1kb

ladder DNA size marker was used to estimate the size of DNA fragments. After

electrophoresis, DNA was visualized on a transilluminator under UV light (254 nm).

2.2.4 Methods for the analysis of proteins

Protein extraction from yeast cells

Yeast cells were grown to OD600nm=1,5 at 30°C and harvested by centrifugation for 10 min at

RT. After decanting the supernatant, the pellet was resuspended in 300µl lysis buffer (50mM

Hepes pH 7,5; 150 mM NaCl; 5 mM EDTA; 1% Triton X-100; 1:40 2M NEM). The lysate

was transferred to a reaction tube containing 200µl of glass beads and 2,5 µM PMSF. To

break the cells the suspension was repeatedly vortexed and cooled. After centrifugation, 50 µl

of the supernatant were transferred to a reaction tube containing 100 µl 2x SDS loading buffer

(10% glycerol; 3% SDS; 3% β-mercaptoehtanol; 0,3% bromophenol blue; 1 mM PMSF). 5 µl

of the supernatant were used for determination of protein concentration. After determination
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of protein concentration, the protein extracts were either directly loaded on a polyacrylamide

gel, or stored at –20°C. Before gel loading, membrane proteins were denatured at 45°C for

30 min and soluble proteins were denatured at 95°C for 10min.

Determination of protein concentration

200 µl of 5x Bradford solution (BioRad) were mixed with the protein sample to a final

volume of 1 ml. After 5 min incubation at R.T., the absorption of the color complex was

measured at 595 nm in a spectrophotometer. The protein concentration was estimated with the

help of a standard curve made with BSA (Bradford, 1976).

Separation of proteins in SDS polyacrylamide gels

The electrophoresis of protein extracts was performed in a 10% polyacrylamide running gel

(4 ml rotiphorese 30 containing 30% acrylamide and 0,8%bisacrylamide, 3ml 1,5 M Tris/Cl,

pH=8,8, 120µl 10% SDS; 600 µl glycerol, 40 µl APS). The separation gel mix was prepared,

degassed and the polymerisation started by the addition of 80 µl TEMED. The stacking gel

(1,25 ml rotiphorese 30 containing 30% acrylamide and 0,8% bisacrylamide, 2,5 ml 0,5 M

Tris/Cl, pH=6,8; 100 µl SDS, 40 µl APS, 20 µl TEMED, 6,15 ml H20) was prepared similarly

and loaded on top of the separation gel. Before loading, samples were mixed with loading

buffer and denatured. Electrophoresis was performed at a steady current of 10 mA while the

samples were in the stacking gel and at 20 mA once the samples reached the running gel.

Western blot

After SDS polyacrylamide electrophoresis, proteins were transferred to a polyvinylidene

difluoride membrane (PVDF membrane) (Millipore). The PVDF membrane and gel were

wetted in methanol, washed with water and twice equilibrated in transfer buffer (24.24 g

Tris/Cl, 12.36 g boric acid) for 15 min. The gel was placed adjacent to the PVDF membrane

and pressed between sheets of 3MM paper and pads on the transfer cassette in the following
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order starting from the side of the cathode: pad, 3MM paper, gel, membrane, 3MM paper,

pad. The assembled transfer cassette was placed vertically into the electrophoresis tank and

filled with transfer buffer. Electrophoresis was performed at 20 V o/n (with agitation).

Ponceau staining

After completion of the transfer, the PVDF membrane was washed in water and stained for

10 min in Ponceau staining solution (0.2% v/v Ponceau, 3% v/v Trichloroacetic acid). The

stain was removed with several washes in water with a few drops of NaOH.

Immunostaining of Western blots

The membrane with the transferred proteins was incubated in TN buffer (10 mM Tris/Cl,

pH=7.5, 150 mM NaCl) with blocking buffer (TN buffer; 3,5% milk powder) for 30 min. The

binding of the anti-AtPIN1 antibody was done at a dilution of 1:10,000 in blocking buffer for

90 to 120 min at R.T. Unbound antibodies were removed by washing with TN buffer with

0.05% NP40, 5x for 5min. After addition of the secondary antibody (anti-rabbit antibody

coupled to alkaline phosphatase, raised in goat) at a dilution of 1:15,000 in blocking buffer,

the membrane was incubated for 60-90 min at R.T. Subsequently, the membrane was washed

5 x with TN buffer containing 0.05% NP40 and once with TN buffer (without detergent). The

membrane was then incubated in chemi-luminescent solution (50 µl NBT, 37.5 µl BCIP in

10 ml of TN buffer) and exposed to X-ray film XOMAT AR 5.

2.2.5 Methods for the cultivation and transformation of bacteria

Preparation of electrocompetent E. coli cells

A single colony of E. coli DH10B cells was inocculated into 50 ml of LB medium and

incubated o/n at 37°C with continuous shaking. 10 ml of the o/n culture were diluted in 500

ml of fresh LB medium, and incubated at 18°C to OD600=0.4. Cells were harvested by

centrifugation for 15min, at 4ºC and resuspended in 500 ml ice-cold water. This washing step
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was repeated twice with 250 and 50 ml of ice-cold water, respectively. The supernatant was

discarded and cells were gently resuspended in 800 µl 7% DMSO. The samples were

aliquoted in 60 µl portions, snap frozen in liquid nitrogen and stored at -70°C.

Electroporation of E. coli cells

DNA was added to an aliquot of thawed electrocompetent cells and transferred to an

electroporation cuvette. The electroporator was set to 25 µF, 2,5 kV and 200 Ω. A single

electroporation pulse was given and 0.8 ml of SOC medium immediately added. After

incubation at 37ºC for 1 h, cells were plated on selective LB medium and incubated o/n at

37ºC. Transformed colonies were isolated.

Preparation of electrocompetent A. tumefaciens

A single colony of A. tumefaciens was inoculated into 16 ml of YEB medium and grown o/n

at 28°C. The o/n culture was used to inoculate 400 ml of YEB medium and grown to

A600nm=0.5. Cells were harvested by centrifugation and successively resuspended in 200 ml,

100 ml and 10 ml of ice-cold 1 mM Hepes (pH=7.5). Finally cells were resuspended in 800 µl

of 1 mM Hepes (pH=7.5) and 10% v/v glycerol, aliquoted and either directly used for

transformation or frozen at –70°C.

Electroporation of A. tumefaciens cells

An aliquot of frozen electrocompetent A. tumefaciens was thawed on ice and mixed with 1 µl

of ligation mix. The electroporator was set to 25 µF, 2,5 kV and 200 Ω. A single

electroporation pulse was given and 0.8 ml of YEB medium immediately added. After

incubation at 28°C for 2 hrs, cells are plated on selective YEB medium and incubated for 2 d

at 28°C. Transformed colonies were isolated.
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2.2.6 Methods for the cultivation and transformation of yeasts

Yeast transformation and co-transformation

A single yeast colony was resuspended in YPDA liquid medium and incubated o/n at 30ºC.

30 ml of o/n culture were then inoculated in 300 ml YPDA liquid medium and incubated for

about 3 hrs at 30ºC until an OD600nm=0.7 was reached. Yeast cells were harvested by

centrifugation. The pellet was washed in 150 ml of sterile water and immediately centrifuged

at RT. The resulting pellet was resuspended in 2 ml of LiAc buffer (100 mM LiAc, pH=7.5)

and aliquoted (100 µl/aliquot). For the transformation of yeast cells, 10µl of sheared and

denatured salmon sperm DNA (2mg/ml) and plasmid DNA (0.5 µg/transformation) were

added to an aliquot of competent yeast cells. For a yeast transformation, only one type of

plasmid DNA was added/aliquot, while for a yeast co-transformation two types of plasmid

DNA (e.g. bait and prey vector) were added/aliquot. After addition of 600 µl transformation

buffer (100 mM LiAc, pH=7.5, 40% v/v PEG 3350, 1 mM EDTA, pH=8, 10 mM Tris/Cl,

pH=8) the suspension was incubated at RT for 20-60 min. 70 µl DMSO were added and the

suspension was heat shocked for 10 min at 42°C. After centrifugation, the cells were

resuspended in 100 µl of TE buffer (1 mM EDTA, 10 mM Tris/Cl, pH=8). The transformed

yeast cells were plated on selective SD plates and incubated at 30ºC for 2 d.

Analysis of yeast growth phenotypes

Single colonies from yeast strains carrying different plasmids or plasmid combinations were

picked and incubated in selective liquid SD medium for 2 d. Yeast cells within the liquid

medium were then counted using a counting chamber and diluted to 105, 104, 103 and 102

cells/3.8 µl of liquid medium. 3.8 µl of each dilution were dropped onto selective SD plates

supplemented with FOA (FOA+) or lacking uracil (ura-) and incubated at 30°C for 2 d.
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2.2.7 Methods for the cultivation and transformation of plants

Transformation of Arabidopsis WTand eir1-1 plants

Agrobacterium clones carrying pDR5-GFP were grown in 2 ml of YEB medium with

gentamycin (10 mg/l), kanamycin (100 mg/l) and rifampicin (100 mg/l) o/n at 28°C. A.

tumefaciens cultures were 20x diluted and further cultivated for 12-14 hrs. Before

transformation Silwet L-77 (500 µl/l) and 5% sucrose were added to the A. tumefaciens

culture. Arabidopsis WT and eir1-1 plants were grown under greenhouse conditions at a

density of 8 plants/pot (9 cm diameter). The first emerged floral bolts were cut off to

encourage growth of multiple secondary bolts. Transformation was performed 5-10 days after

clipping. The plants were dipped for 30 s into A. tumefaciens culture and covered with a

plastic dome for 24 hrs to maintain high humidity.

In vitro selection of transformed Arabidopsis WT and eir1-1 plants

Seeds of transformed Arabidopsis and eir1-1 plants were surface sterilized by addition of 5%

w/v calcium hypochloride and 0.1 % v/v Triton X-100. After washing the seeds 3x in sterile

water, seeds were dried under the flow hood for 2 d. Seeds were plated on AM agar plates

containing 10 mg/l sulfonamide for selection of transgenic plants and 300 mg/l Claforan to

prevent growth of residual Agrobacteria, that might not have been killed in the sterilization

procedure. After vernalization of seeds for 3 d at 4°C in the dark, plates were transferred to

climate chambers and kept at a 16 hrs day and 8 hrs night rhythm. Transgenic T1 plants were

selected and transferred to the greenhouse.

Preparation of seedlings for microscopy

Sterile seeds were sown on AM agar medium. After vernalisation in the dark for 3 days at

4°C, plates were transferred to climate chambers were seeds were germinated and grown at a

16 hrs day and 8 hrs night rhythm. 12 hrs before microscopic analyses or gravistimulation,

seedlings were transferred to microscope slides covered with a thin layer (1 mm) of AM

medium containing 0.8 % agarose, and supplemented with auxins and auxin transport
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inhibitors, respectively. Seedlings on microscope slides were gravistimulated by rotating the

stage to 135 °. For better resolution of cellular borders, seedlings were stained with 10 µM

propidium iodide prior to analysis by CLS microscopy.

Measurement of root curvature

Kinetic measurements of root gravitropic curvature were performed in the group of M. Evans

(Ohio/USA) by using automated root image analysis software (Mullen et al., 1998).

Evaluation of IAA content in root tips of Arabidopsis WT and eir1-1 seedlings

Measurements of IAA content in root tips of Arabidopsis WT and eir1-1 seedlings were

performed in the group of G. Sandberg (Umea/Sweden). Free IAA was measured in the first 1

mm of root tips of Arabidopsis WT and eir 1-1 seedlings by gas chromatography and mass

spectrometry (Friml et al., 2002a).
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3 Results

In order to understand the role of polar auxin transport during root gravitropism auxin

changes at cellular resolution in living tissues were visualized. The synthetic auxin responsive

promoter DR5 was therefore linked to GFP in a transcriptional fusion construct. Transgenic

Arabidopsis plants harboring pDR5-GFP were generated and used for studies on gravitropic

root growth. After a short description of the pDR5-GFP construct and the characterization of

transgenic Arabidopsis lines expressing DR5-GFP, the distribution of GFP fluorescence in

root tips of Arabidopsis before and after gravistimulation is reported. Subsequently, the effect

of pharmacological treatments with auxins and inhibitors of polar auxin transport on changes

in the pattern of DR5-GFP expression and the rate of root curvature is described. The use of

the split-ubiquitin-system for the search for interaction partners of the AtPIN1 protein is

reported in 3.8.

3.1 Generation of transgenic DR5-GFP Arabidopsis plants

3.1.1 The pDR5-GFP construct

For the generation of the pDR5-GFP transcriptional fusion construct, an ER-targeted GFP

variant was constructed and cloned in combination with the DR5 auxin responsive promoter

into the plant binary vector pS001 (see also Materials and Methods).

To obtain a suitable GFP reporter, in a first cloning step, a 450 bp DNA sequence of the

ER targeted GFP variant, mGFP5-ER (Haseloff et al., 1997), was excised MscI/SfuI and

replaced by a 450 bp MscI/SfuI flanked DNA sequence from another GFP variant, GFP-LT

(Materials and Methods) (Jach et al., unpublished results). The DNA sequence of the newly

generated GFP variant, GFP-LT-ER, was a combination of DNA sequences coding for

chromophore and folding mutations characteristic for GFP-LT and sequences coding for ER

target- (basic chitinase ER target signal) and ER retention signals (KDEL ER retention

signal), characteristic for mGFP5-ER. In a second cloning step, the synthetic DR5 auxin

responsive promoter (Ulmasov et al., 1997), consisting of the DR5 auxin response element

and a CaMV35S minimal promoter, together with a TMV leader sequence were amplified by
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PCR and introduced into the plant binary vector pS001 (Reiss et al., unpublished data). The

CaMV35SpA transcription terminating sequence was further added resulting in

pDR5pApS001. For the final construction of the pDR5-GFP transcriptional fusion, GFP-LT-

ER was introduced between the DR5 auxin responsive promoter and the CaMV35S terminator

of pDR5pApS001 (Fig. 3). GUS was inserted into pDR5pApS001 as a control (data not

shown).

Fig. 3: Schematic diagram of pDR5-GFP. DR5: DR5 auxin response element, 35S: CaMV35S minimal
promoter, TMV: TMV leader sequence, ER target: coding sequence of ER basic chitinase target signal, GFP-LT:
coding sequence of GFP, KDEL: coding sequence of KDEL ER-retention signal, CaMV35SpA: CaMV35S
transcriptional terminator. Start and Stop mark beginning and end of GFP reporter sequence, respectively. Arrow
indicates direction of gene transcription. Restriction sites relevant for the construction of pDR5pApS001 are
indicated.

3.1.2 Analysis of Arabidopsis DR5-GFP plants

Selection of transgenic Arabidopsis DR5-GFP plants

Arabidopsis plants were transformed with the pDR5-GFP construct (T0 plants) and first

transgenic offspring, termed T1 was selected (see Materials and Methods). Subsequently, the

T2 progeny of eight independent T1 lines, DR5-GFP 1-8, was analyzed for single or multiple

loci T-DNA insertions by segregation analysis (Tab. 1). According to Mendelian rules a ratio

of three antibiotic resistant to one antibiotic sensitive seedlings is characteristic for a single

locus insertion. Homozygous plants for all DR5-GFP T-DNA single locus insertion lines

were selected by segregation analysis in the T3 generation.
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Independent T2 lines Ratio sulfR/sulfS Lines with a single locus insertion
DR5-GFP 1 23/1 -
DR5-GFP 2 3/1 +
DR5-GFP 3 3/1 +
DR5-GFP 4 21/1 -
DR5-GFP 5 3/1 +
DR5-GFP 6 5/1 +
DR5-GFP 7 4/1 +
DR5-GFP 8 3/1 +

Tab. 1: Selection of transgenic Arabidopsis lines that contain a single locus insertion for the pDR5-GFP T-
DNA. DR5-GFP 1-8: T2 generation of 8 DR5-GFP lines derived from independent transformation events in T0.
Ratio sulfR/sulfS: 150 seeds of each DR5-GFP line were germinated on medium supplemented with the antibiotic
sulfonamide. Single locus insert lines (+) vs. multiple locus insert lines (-) were selected by an approximate 3:1
segregation for sulfonamide resistant (sulfR) vs. sulfonamide sensitive (sulfS) seedlings. Slight deviations from a
strict 3:1 segregation are the result of limited sample size.

DR5-GFP expression in transgenic Arabidopsis plants

To determine the sites of DR5-GFP expression (in the absence of exogenous auxin) one-

week-old seedlings and three to four weeks old plants were analyzed by fluorescence

microscopy. In seedlings strong GFP signals were found in the root tip (Fig. 4h, see also 3.2),

at the site of adventitious root initiation (data not shown), and at the margins of cotyledons

(Fig. 4e). In addition to GFP expression in root tips of main and adventitious roots, as well as

cotyledon margins, adult plants exhibited localized strong fluorescence in tips of lateral roots

(data not shown), tips of primary and cauline leaves (Fig. 4d), dormant lateral buds (Fig. 4c),

the seed funiculus (Fig. 4a) and guard cells of the upper leave side (Fig. 4b). Weaker GFP

signals were often found in the vasculature of roots and hypocotyls (Fig.4 f,g). No qualitative

difference in GFP expression pattern of lines DR5-GFP 1 to 8 was observed, although DR5-

GFP lines 1, 4, 5, 6, and 7 exhibited stronger GFP fluorescence than lines 2, 3, and 8. The

stronger GFP expressing lines DR5-GFP 5, 6 and 7 were used for further experiments. GFP

signals were comparable to staining patterns obtained with DR5-GUS control plants (data not

shown).
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Induction of DR5-GFP expression by exogenous auxin application

The DR5 auxin response element is known to respond to active auxins at concentrations

between 10-8 and 10-5 M (Ulmasov et al., 1997). To test the auxin sensitivity of the DR5-GFP

reporter, one week old seedlings were incubated with 10-8, 10-7, 10-6, 10-5 and 10-4 M IAA for

twelve hours and analyzed by fluorescence microscopy. GFP induction in all organs of the

seedling was already evident in treatments with 10-7 M IAA but fluorescence intensity seemed

to increase with auxin concentrations up to 10-5 M. No apparent difference in GFP intensity of

seedlings treated with 10-5 and 10-4 M IAA was observed. Auxin induction of DR5-GFP

seedlings is depicted in Fig. 4 e-l.

As a derivative of an early auxin response element, activation of DR5 occurs within 5

minutes after auxin application (Ulmasov et al., 1997b). GFP fluorescence, however, is only

visible once enough GFP molecules have accumulated. The lag time between GFP gene

expression and detectable fluorescence depends on many factors, such as promoter strength

(and in this case also local auxin concentration for induction of DR5), rate of GFP folding,

fluorescence intensity of a given GFP variant, and accumulation of sufficient GFP molecules

to reach a detectable threshold. To determine the lag time of DR5-GFP, one week old DR5-

GFP seedlings were treated with 5 µM IAA by incubation in liquid medium. DR5-GFP

expression was then analyzed in time intervals of 30 min using fluorescence microscopy. GFP

induction was first detected in roots and started one hour after auxin treatment. Induction in

all organs of the seedling was complete after 1.5-2.5 hours (data not shown). In comparison to

DR5-GFP, DR5-GUS control plants revealed similar sensitivity to exogenous auxin

applications with complete staining of the seedlings upon induction with 10-7 M IAA and a

slightly shorter lag time of 1-1.5 hours (data not shown).

Evaluation of GFP stability in DR5-GFP seedlings

GFP is known to be a very stable reporter protein and, once produced, was shown to be

fluorescent for many days (Deichsel et al., 1999). In order to analyze GFP stability in DR5-

GFP seedlings, DR5-GFP expression was induced by exogenous auxin application and GFP

fluorescence was analyzed after auxin depletion. One week old DR5-GFP seedlings were

therefore incubated in liquid medium containing 5 µM IAA. After 2.5 hours some seedlings
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were removed from the medium and analyzed by fluorescence microscopy. Auxin induced

DR5-GFP expression was complete in the entire seedling. Remaining seedlings were

transferred to auxin free medium and incubated for two, four, eight and twelve hours before

microscopy. During the first eight hours seedlings were transferred to fresh auxin free

medium every one hour. However, even after twelve hours of washing, the tissues of the

seedlings that had been induced by exogenous auxin were still fluorescent (data not shown).

Fig.4: GFP fluorescence pattern of transgenic DR5-GFP plants. Fluorescence microscopy images of GFP
signals in 4-6 weeks old Arabidopsis plants (a-d) and in 1 week old seedlings before (e-h), and after application
of 1 µM IAA (i-l). GFP signals found in the seed funiculus, in guard cell of the upper leave side, in lateral buds
and in tips of cauline leaves are depicted in a, b, c and d, respectively. Apical parts of roots, basal parts of roots,
hypocotyls and cotyledons of DR5-GFP seedlings are depicted before (e, f, g, and h, respectively) and after
application of auxin (i, j, k, and l).
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3.2 DR5-GFP expression during root gravitropism

In order to analyze the effect of gravity on GFP signal distribution in the Arabidopsis root tip

DR5-GFP seedlings were grown for five days on vertically oriented AM agar plates.

Seedlings were then transferred to microscope slides that were covered with a thin layer of

AM agarose and again placed vertical with roots aligned along the gravity vector for twelve

hours. For gravistimulation microscope slides were rotated 135° from the vertical. Seedlings

remained on agarose covered microscope slides during microscopy. DR5-GFP expression

pattern in the root tip of live seedlings was analyzed using confocal laser scanning (CLS)

microscopy.

DR5-GFP expression in the Arabidopsis root tip of vertically grown roots

The Arabidopsis root has a radial organization with concentric cell layers of epidermis, cortex

and endodermis encircling the vascular system of the stele (from outside to inside). A

longitudinal section of the root apex (schematically depicted in Fig. 5a) revealed the tissues of

the root meristem, that contain epidermis, cortex, endodermis and columella initials and

display stem cell activity. All initials encircle a group of four non-dividing central cells,

termed the quiescent center (QC). Epidermis and columella initials give rise to the root cap.

The root cap consists of three horizontal stories (S1, S2, S3) and four vertical files of

columella cells surrounded by the cells of the distal and proximal lateral root cap (dLRC,

pLRC) (according to Blancaflor et al., 1998).

In order to facilitate the determination of cell identity in the root apex, cell walls were

stained with propidium iodide (see Materials and Methods) before CLS microscopy. In

vertically grown roots of six-day-old DR5-GFP seedlings, GFP fluorescence appeared very

localized in QC, columella initial and mature columella cells S1, S2 and S3 (Fig. 5b).
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DR5-GFP expression in the Arabidopsis root tip of gravistimulated roots

Upon 135° gravistimulation first changes in GFP signal distribution were visible after one and

a half hours. Adjacent to columella S2, fluorescent signals started to appear asymmetrically in

cells of the dLRC, on the lower half of the gravistimulated root (Fig. 5c). Slightly later also

dLRC cells adjacent to columella S1 and S3 became fluorescent. Three hours after

gravistimulation the entire LRC was asymmetrically stained on the lower half of the root (Fig.

5d). No GFP signals were found in the elongation zone (data not shown). Longer

gravistimulation (for up to twelve hours) as well as a continuous gravity stimulus obtained by

rotating the plate further (for up to 24 hours) resulted in an increase of GFP signal intensity in

the LRC of the lower half of the root. However, extension of fluorescence pattern to other

tissues (e.g. to epidermal cells) was not observed (data not shown). To exclude the possibility

that after gravistimulation cells in the elongation zone were not anymore sensitive to auxin

induction of the DR5 element, roots were gravistimulated for five hours and subsequently

treated with 5 µM IAA for another 2 hours. Microscopic analysis revealed that DR5-GFP

expression was induced in the elongation zone at the site of root bending (data not shown).

Previous experiments showed that there was a lag time of at least one and a half hours

between DR5-GFP expression and visible GFP fluorescence. Gravistimulation experiments

for periods shorter than one and a half hours were therefore performed such, that the plates

were rotated to 135° for five, 15 and 30 min, respectively, and subsequently back-rotated to

the vertical for three hours to allow GFP accumulation. It was found that a stimulus of 15 min

was enough to induce DR5-GFP expression in dLRC cells adjacent to columella S2 and S3

(data not shown). Therefore, auxin accumulation (as represented by the DR5-GFP reporter) in

the dLRC and pLRC cells on the lower half of the gravistimulated root was induced shortly

after gravistimulation.
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Fig. 5: Changes in gravity vector orientation induce asymmetric DR5-GFP expression in LRC cells. a)
Schematic representation of the Arabidopsis root apex. The colour code labels different tissues (top to bottom:
stele, pericycle, endodermis, cortex/endodermis initial, cortex, epidermis, proximal LRC, distal LRC, QC,
columella initial, columella). b) CLS microscopy images of GFP signals in quiescent center, columella initials
and columella of vertically grown roots. c) After 1.5 hrs of gravistimulation GFP signals expand from columella
S2 to lower half of LRC resulting in complete staining of LRC after 3 hrs (d). Scale bars represent 20 µm.

3.3 The effect of exogenous auxin application on DR5-GFP expression during root

gravitropism

To investigate the effect of gravity induced changes of polar auxin transport on the

distribution of exogenously applied auxins, DR5-GFP seedlings were treated with IAA, 1-

NAA and 2,4-D. These auxins are known for their different cell-to-cell transport

characteristica, with IAA being a substrate for both efflux and influx carriers, while 1-NAA

and 2,4-D are substrates exclusively for efflux- and influx carriers, respectively (see 1.2).

Analogous to experiments described in 3.2, five day old seedlings were grown on vertically

oriented AM agar plates and subsequently transferred to agarose covered microscope slides.

For auxin treatments described below, the agar covering the microscope slides was

supplemented with IAA, 1-NAA, and 2,4-D, respectively. Microscope slides were kept in

vertical position for twelve hours and either used for the analyses of vertically grown

seedlings or gravistimulated by rotation to 135° for five or 24 hours. DR5-GFP expression in

root tips was analyzed by CLS microscopy.



Results

44

3.3.1 Effect of IAA

In the presence of 1 µM IAA, GFP fluorescence was observed in QC, columella initials and

columella cells with additional strong signals in the entire lateral root cap and epidermis of

vertically grown roots (Fig. 6a). After gravistimulation for five hours a slight asymmetry in

signal distribution was observed. GFP signal intensity in the dLRC, adjacent to columella S2

and S3 increased on the lower half of the gravistimulated root, while intensity decreased on

the upper half (Fig. 6b). After longer gravistimulation for 24 hours this effect was more

pronounced, but no asymmetry in signals of the pLRC was observed (Fig. 6c).

3.3.2 Effect of 1-NAA

Vertically grown roots treated with 1 µM 1-NAA were fluorescent in QC, columella initial

and mature columella cells. Similar to IAA treated roots, LRC and epidermis were stained,

although fluorescence intensity in epidermis as well as pLRC cells was less bright for 1-NAA

compared to IAA treatments (Fig. 7d). Identical GFP fluorescence pattern in vertical roots

were obtained when roots were treated with a combination of 1 µM IAA and 10 µM 1-NOA,

an inhibitor of influx carrier mediated polar auxin transport (data not shown). After

gravistimulation for 5 hours, asymmetry in signal distribution was observed with signal decay

in dLRC on the upper and signal increase in dLRC on the lower half of the root (Fig. 6e).

After 24 hours of gravistimulation asymmetric signal distribution was clearly evident with

fluorescence distribution almost entirely confined to dLRC, pLRC, and epidermis on the

lower half of the root (Fig. 6f). Interestingly, under these conditions GFP fluorescence was

also observed on the lower half of the root in epidermal cells of the elongation zone at the site

of root bending (Fig. 7).

3.3.3 Effect of 2,4-D

Roots kept on 1 µM 2,4-D displayed GFP fluorescence in virtually all tissues of the root tip

(Fig. 6g). Identical GFP fluorescence pattern in vertical grown roots were obtained when roots

were treated with a combination of 1 µM IAA and 10 µM NPA, an inhibitor of efflux carrier

mediated polar auxin transport (data not shown). Gravistimulation for five and 24 hours did
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not result in change of staining pattern. Signal intensity remained equally strong on both

halves of the gravistimulated root tip (Fig. 6 h, i).

Fig. 6: Asymmetric GFP signals are observed in gravistimulated roots even under continuous auxin
supply. CLS microscopy images of GFP signals in roots grown on 1 µM IAA, 1 µM 1-NAA, and 1 µM 2,4-D
before (a, d, g), and after 5 hrs (b, e, h), and 24 hrs (c, f, i) of  gravistimulation, respectively. Images are aligned
with root tips to the vertical for better comparison; note that lower half of gravistimulated roots is at the right
hand side (b, c, e, f, h, i). Scale bar represents 20 µm.
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Application of IAA, 1-NAA and 2,4-D caused clear differences in accumulation and

redistribution of auxin (as represented by DR5-GFP expression) before and after

gravistimulation, respectively. Under continuous auxin supply only roots grown on IAA and

1-NAA, both substrates for the auxin efflux carrier, were capable of establishing auxin

asymmetry in response to gravity.

Fig. 7: Asymmetric GFP signal distribution is observed in epidermal cells of gravistimulated roots grown
on 1-NAA. CLS microscopy image of GFP signal in roots treated with 1 µM 1-NAA and gravistimulated for 24
hrs. Scale bar represents 20 µm.

3.4 The effect of exogenous auxin application on gravity induced root curvature

To correlate gravity induced changes in GFP signal distribution of auxin treated roots with

root bending, kinetic measurements of root curvature were performed (see 2.2.7). Similar to

experiments described in 3.3, roots were transferred to medium containing 1 µM of IAA, 1-

NAA or 2,4-D twelve hours before gravistimulation. When roots were gravistimulated,

initiation of root bending in the elongation zone was followed and the angle of root curvature

was determined at different timepoints (Fig. 8). The strongest downward curvature was

observed in roots treated with 1-NAA. After 20 hrs of gravistimulation in the presence of 1-

NAA roots still bent to about 56 % compared to untreated control roots. Gravitropic curvature

of IAA treated roots was close to zero despite a slight but significant downward curvature.

Roots grown on 2,4-D showed no or even tenuous negative gravitropic curvature.
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Taken together results described in 3.3 and 3.4, the strongest root curvature and the most

prominent difference in gravity induced auxin distribution on the upper and the lower half of

the root (as represented by DR5-GFP expression) was observed for roots grown in the

presence of 1-NAA. Roots grown in the presence of IAA displayed an asymmetry in auxin

distribution in dLRC cells of gravistimulated roots, but not in pLRC cells and showed a strong

reduction in gravitropic curvature. 2,4-D treated roots did not reveal a difference between

auxin distribution on lower and upper half of gravistimulated roots and also did not exhibit a

curvature response. The extent of auxin asymmetry in the root tip therefore correlated with the

degree of root curvature.

Fig. 8: Disruption of root gravitropism by application of auxin and auxin transport inhibitors correlates
with altered DR5-GFP expression patterns. a) Total curvature 5 hrs and 20 hrs (black and grey bars,
respectively) after stimulation at 135 °. Values represent means ± SE, n = 7-10 for all treatments. b) Example
kinetics of curvature in the apical 300 µm of roots treated as indicated.

3.5 The effect of auxin transport inhibitors on DR5-GFP expression during root

gravitropism

To further asses the contribution of auxin efflux and influx carriers to auxin flux during

gravitropic root growth, seedlings were treated with inhibitors of polar auxin transport that

specifically block auxin transport via efflux and influx carriers. Seedlings were treated as

described in 3.3. Agarose covering microscope slides was supplemented with NPA, TIBA,

and BFA, inhibitors of auxin efflux and 1-NOA, an inhibitor of auxin influx. DR5-GFP

expression in root tips was analysed by CLS microscopy.
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3.5.1 Effect of NPA and TIBA

Treatment with 10 µM NPA resulted in altered GFP expression pattern in the root apex of

vertically grown roots (Fig. 9a). GFP fluorescence appeared in QC, columella initials and

columella S1 cells, but extended from these cells into initials of epidermis, endodermis and

vasculature. Staining in columella cells S2 and S3 was less intense in the outermost vertical

files. Compared to control roots, that were not grown on auxin transport inhibitors, NPA

treatment resulted in an enlarged and slightly upward shifted area of GFP signal distribution.

A similar pattern was observed when roots were treated with 10 µM of the auxin transport

inhibitor TIBA (data not shown). Gravistimulation for either 5 (data not shown) or 24 hours

resulted in staining patterns identical to those observed in vertically grown, NPA treated

roots. (Fig 9b). Thus, no asymmetric signal distribution occurred.

3.5.2 Effect of BFA

DR5-GFP expression pattern of roots grown vertically on 20 µM BFA was similar to

untreated control roots (Fig. 9c). Only a small portion (2-5%) of roots displayed additional

GFP signals in initials of epidermis, endodermis and vascular cells, an effect similar, but less

pronounced, to that observed for NPA treatments (data not shown). After gravistimulation for

5 (data not shown) or 24 hours there was no change in GFP signal distribution and no signal

asymmetry was detected (Fig. 9d).

3.5.3 Effect of 1-NOA

In the presence of 20 and 50 µM 1-NOA DR5-GFP expression pattern in vertically grown

roots was nearly identical to that observed in root tips of vertically grown control roots with

GFP signals in QC, columella initials and mature columella cells (Fig. 9e, g). However,

fluorescence intensity was slightly stronger in QC cells, compared to a more evenly

distributed fluorescence intensity in root tips of seedlings that were not treated with 1-NOA.

Gravistimulation for 5 hours resulted in asymmetric signal distribution in the LRC on the

lower half of the gravistimulated root (data not shown). Fluorescence intensity was weaker

than in controls. After 24 hours of gravistimulation signal asymmetry was more pronounced
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and bright fluorescence was observed in cells of the dLRC, adjacent to columella S2 and S3

(Fig. 9f, 9h). There was no significant difference in signal pattern for the different

concentrations of 1-NOA. Interestingly, unlike in 24 hours stimulated control roots, the strong

asymmetrically distributed staining pattern was restricted to the dLRC and did not extend to

the pLRC.

Thus, the auxin efflux carrier blockers NPA, TIBA and BFA completely inhibited

asymmetric auxin accumulation (as reflected by DR5-GFP expression) on the lower half of

the gravistimulated root. In the presence of the auxin influx carrier blocker 1-NOA, on the

other hand, auxin was asymmetrically distributed to the dLRC but not to the pLRC.
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Fig. 9: Auxin transport inhibitors influence DR5-GFP expression. CLS microscopy images of GFP signal in
roots grown on 10 µM NPA, 20 µM BFA, 10 µM and 50 µM 1-NOA before (a, c, e, g), and after 24 hrs (b, d, f,
h) of gravistimulation. Images are aligned with root tips to the vertical for better comparison; note that lower half
of gravistimulated roots is at the right hand side (b, d, f, h). Scale bar represents 20 µm.
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3.6 The effect of auxin transport inhibitors on gravity induced root curvature

Analogous to auxin treated roots in 3.4, the angle of root curvature was also determined for

roots treated with inhibitors of polar auxin transport. Seedlings were transferred to medium

containing either 10 µM NPA, 20 µM BFA or 10 and 50 µM 1-NOA. The angles of curvature

after 5 and 20 hrs of gravistimulation are depicted in Fig 8a. Treatments with NPA and BFA

resulted in comparable and strong reduction of root bending with angles of curvature of only

17-25% compared to untreated controls. Treatments with 10 µM 1-NOA also resulted in a

reduction of root bending, however less pronounced. In the presence of 50 µM 1-NOA

gravitropic root bending was almost completely abolished.

Taken together results reported in 3.5 and 3.6, inhibitors of auxin efflux carrier activity

therefore resulted in inhibition of asymmetric auxin accumulation (as reflected by DR5-GFP

expression) in LRC cells on the lower half of gravistimulated roots, as well as in a strong

reduction of root bending. The auxin influx carrier inhibitor 1-NOA, on the other hand, led to

inhibition of asymmetric auxin accumulation in the pLRC, but not the dLRC. Interestingly

higher concentrations of 1-NOA nearly eliminated root bending, while asymmetric auxin

distribution to the dLRC on the lower half of the root still occurred.

3.7 DR5-GFP expression in the root tip of the eir1-1 mutant

It was shown that inhibition of auxin efflux prevents asymmetric GFP signal distribution in

the LRC after gravistimulation. Another approach for the investigation of gravity induced

regulation of polar auxin transport, was the analysis of DR5-GFP expression in mutants with

defects in polar auxin transport. Therefore the mutant eir1-1 was transformed with the pDR5-

GFP construct. eir1-1, allelic to Atpin2, agr1 and wav6 (see also 1.2.), displays a strong

agravitropic phenotype and is a null mutant for the putative auxin efflux carrier AtPIN2.

AtPIN2 was shown to be localized in pLRC, cortex and epidermis, predominantly at the basal

side of the cell.

T1 eir1-1 plants, transgenic for the DR5-GFP T-DNA were selected and T2 progeny

seedlings were used for further analyses. One-week-old seedlings were transferred to agarose

covered microscope slides and vertically aligned along the gravity vector. 12 hrs later
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(agravitropic root growth was clearly visible) GFP expression was analyzed using CLS

microscopy. Fluorescence pattern in the root tip was found to be enlarged with strong GFP

signals not only in QC, columella initials and columella cells, but also in the dLRC (Fig. 10b).

A slight asymmetry of the GFP signal on one half of the root was observed but, due to

agravitropic root growth, could not be correlated with the direction of the gravity vector. In

addition, free IAA levels were measured in the first mm of eir1-1 mutant root tips by mass

spectrometry. When these were compared to wild type, mutant root tips contained a 2.5 times

higher level of auxin (Fig. 10b) correlating with enhanced DR5-GFP expression in the mutant

root cap.

Figure 10: Eir1-1 mutants have substantially elevated auxin levels in the root tip. a) Levels of free IAA of
young seedlings determined by mass spectrometry. For each line data were sampled from 10 measurements in
two different experiments and are represented as means and SD. b) Auxin biosensor signal reveals increased
auxin levels in LRC of eir1-1 mutant root tip. Scale bar represents 20 µm.
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3.8 Identification of AtPIN1 interaction partners with the split-ubiquitin-system

With the aim to screen for proteins, that interact with AtPIN1, a plant cDNA library was

constructed and introduced into a yeast expression vector. For detection of proteins interacting

with AtPIN1, the split ubiquitin system, also called USPS (ubiquitin/split/protein/sensor), was

used (Johnsson and Varshavsky, 1994a; Johnsson and Varshavsky, 1994b).

The USPS is based on the ability of N-terminal and C-terminal halves of ubiquitin (Nub and

Cub), to assemble into a functional ubiquitin moiety. Proteins of interest are tested for

interaction, by linking one protein to the Nub- and the other protein to the Cub fragment. If the

proteins interact or come into close proximity to each other, Nub and Cub fragments

reconstitute a functional ubiquitin protein. Reassembly of the ubiquitin halves is detected

through the action of ubiquitin specific proteases (UBPs), that cleave off a reporter, that has

been attached to the C-terminus of the Cub fragment (Fig. 11). UBPs are present in the cytosol

and the nucleus of all eukaryotic cells and recognize only the reconstituted ubiquitin, but not

its separate halves.

Similar to the yeast two hybrid technique, the USPS employs live yeast cells for the

analysis of protein interaction. In contrast to the yeast two hybrid system, USPS allows the

detection of protein interaction in various cellular compartments, provided that Nub and Cub

are attached to parts of the protein which localize to the cyto- or nucleoplasm, where UBPs

are present. Thus interaction of proteins at the plasma membrane, at the translocation pore of

the ER, as well as in the cyto- and nucleoplasm of the cell have been reported (Dünnwald et

al., 1999; Johnsson and Varshavsky, 1994a; Stagljar et al., 1998; Wittke et al., 1999; Wittke

Wittke et al., 2000).

In order to get familiar with the USPS, the interactions of plant proteins, that had been

proven to interact in the yeast two hybrid system and in a co-immuno-precipitation assay,

were demonstrated with the USPS. Subsequently, the AtPIN1 gene was introduced into a

USPS Cub bait vector and used to establish the ideal conditions for the screening procedure.

Finally, a cDNA library from plant tissues was generated and introduced into a USPS Nub

prey vector. In a test trial, this library was screened for putative interaction partners of

AtPIN1.
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Figure 11: Schematic diagram for the basic mechanism of the split-ubiquitin-system. When protein 1 fused
to the Nub fragment interacts with protein 2 fused to the Cub fragment and the R-URA reporter enzyme, a
functional ubiquitin (Ub) protein forms. Reconstitution of Ub is detected by cleavage and degradation of the R-
URA enzyme.

3.8.1 The use of USPS to detect the interaction of plant proteins

The Arabidopsis proteins ARAC5, a small Rho GTPase, and RhoGAP1 (GAP1), a

corresponding GTPase activating protein, were used to demonstrate the possibility of

detecting protein interactions using the USPS technique. ARAC5, like most other Rho

GTPases, is anchored to the plasma membrane by its C-terminal isoprenyl moiety (reviewed

in Valster et al., 2000.). In its active form, ARAC5 is bound to GTP, while in its inactive form

it is bound to GDP. The single amino acid exchanges G15V and T20N in the ARAC5 protein

sequence are predicted to result in a constitutively active (ARAC5-G15V) and a constitutively

inactive form (ARAC5-T20N) of ARAC5, respectively (Zerial and Huber, 1995). GAP1 is a

cytosolic protein and binds specifically to the GTP-bound form of ARAC5 (reviewed in

Valster et al., 2000).

Using a co-immuno-precipitation assay, GST-GAP1 was shown to interact with

recombinant GFP-ARAC5-G15V but not with GFP-ARAC5-WT as present in transgenic

plant extracts. It is likely that GFP-ARAC5 WT in these experiments was largely in the GDP-

bound form due to intrinsic hydrolysis occurring during the extraction and precipitation

procedure, indicating that GAP1 does not bind the GDP bound form of ARAC5 (A.

Molendijk, personal communication). In the yeast two hybrid system various GAP1 isoforms

have been shown to interact with constitutively active ARAC GTPases (Borg et al., 1999; Wu
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et al., 2000). GAP1 specifically co-immuno-precipitates with constitutively active, but not

with constitutively inactive ARAC GTPases as expressed in bacteria, confirming a specific

interaction between GTP-bound ARAC and GAP1 (Wu et al., 2000). Interestingly, yeast two

hybrid srceens also revealed an interaction between RLK kinases, interactors that normally

only bind the active form of ARAC5, and ARAC5 WT, indicating that internal GDP/GTP

exchange factors of yeast cells can activate WT ARAC5 (A. Molendijk, personal

communication). For the investigation of ARAC5 and GAP1 interaction in the USPS, a fusion

of GAP1 to the Cub fragment and a reporter enzyme was used as a bait, while the fusion of the

Nub fragment to the ARAC5 protein was used as a prey.

The USPS GAP1 bait vector

The USPS bait construct (pCub) was based on the pRS313 ARS/CEN plasmid (see also 2.2.1).

It contained a yeast promoter, repressible by methionine (pMET), the DNA sequence of the

Cub fragment and the DNA sequence of the reporter protein (R-URA). The GAP1 cDNA was

introduced between pMET and Cub, maintaining the DNA reading frame of Cub-R-URA. The

resulting plasmid was termed pGAP1-Cub (Fig. 12a).

The USPS ARAC5 prey vector

In order to obtain a USPS prey construct, that would be suitable for the introduction of a

cDNA library and the subsequent library sreening, the original USPS prey construct was

modified (see also 2.2.1). The modified USPS prey construct (pNubm) contained a yeast

promoter, inducible by Cu2+ (pCU) and the DNA sequence of the Nub fragment, as well as the

DNA sequence of the HA-epitope, an extensive multiple cloning site, and the yeast ADH

transcriptional terminator (ADHpA). pNubm was based on the ARS/CEN plasmid pRS314 (see

also 2.2.1). The cDNAs of ARAC5, ARAC5-G15V and ARAC5-T20N were introduced

between the HA-epitope sequence and the ADHpA following the Nub-HA reading frame. The

resulting plasmids were termed pNubm-ARAC5, pNubm-ARAC5-G15V, and pNubm-ARAC5-

T20N (Fig. 12b).
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Fig. 12: Schematic diagram of pGAP1-Cub and pNubm-ARAC5*. a) pGAP1-Cub contains a methionine
repressible promoter (pMET), the GAP1 cDNA sequence and the sequences coding for the Cub fragment and the
R-URA reporter enzyme. b) pNubm-ARAC5* contains a Cu2+ inducible promoter (pCu), sequences coding for the
Nub fragment (Nub) and an HA epitop (HA), cDNA sequences of ARAC5 or mutants of ARAC5 (summarized by
ARAC5*) and an ADH transcriptional terminator (ADHpA). Start and Stop mark beginning and end of sequence
coding for the translational fusion protein, respectively. Arrows indicate direction of gene transcription.
Restriction sites relevant for the construction pGAP1-Cub and pNubm-ARAC5*are indicated.

Test for interaction of GAP1-Cub and Nub-ARAC5

Yeast cells were cotransformed with the pGAP1-Cub construct and with pNubm, pNubm-

ARAC5, pNubm-ARAC5-G15V or pNubm-ARAC5-T20N, respectively. Cleavage of the R-URA

reporter served as a read out in the USPS interaction assay.

The R-URA reporter is a slightly modified derivative of the enzyme orithidine-5´-

phosphate-decarboxylase, involved in the synthesis of the amino acid uracil. In contrast to the

naturally occurring uracil synthesising enzyme (URA), R-URA contains an additional

arginine residue (R) at its N-terminus. When linked to the Cub fragment, R-URA is active and

allows the growth of yeasts on medium lacking uracil (ura-). Cleavage of R-URA due to

protein interaction, however, results in rapid degradation of the enzyme, caused by the

arginine residue at the now free N-terminus (N-end rule, reviewed in Varshavsky, 1997).

Consequently, the ability of yeasts to grow on ura- medium is lost. The interaction dependent

growth phenotype of yeasts is mirror imaged, when ura- medium is replaced by medium

containing the prototoxin 5-FOA (FOA+). R-URA degrades 5-FOA to 5-fluorouracil, which is

toxic for the cell. The rapid degradation of R-URA due to protein interaction, on the other
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hand, allows the cells to grow on 5-FOA (FOAR) (Johnsson and Varshavsky, 1994b). Protein

interaction therefore results in the ability of yeasts to grow on FOA+ and the inability of

yeasts to grow on ura- medium.

Double transformants of yeasts expressing the GAP1-Cub-R-URA fusion and different Nub-

ARAC5 fusions, were applied in droplets of three dilutions (105, 104, and 103 cells/droplet) to

ura- and FOA+ plates. After incubation at 30°C for two days, the growth phenotypes of the

yeast double transformants were determined (growth assays) (Fig. 13). Yeast cells harbouring

the GAP1-Cub fusion protein in combination with the empty vector revealed the typical

growth pattern for lack of protein interaction in the USPS system: Growth of yeasts on ura-

medium and no growth on FOA+ medium. A similar growth pattern was obtained for cells

expressing the GAP1-Cub fusion protein together with the Nub-ARAC5-T20N fusion protein.

Interaction of GAP1 with ARAC5-G15V and to a lesser extent also with WT ARAC5, on the

other hand, was reflected by growth of yeasts on FOA+ and no growth on ura- plates. The

USPS system therefore revealed the interaction between GAP1 and ARAC5-G15V, but not

between GAP1 and ARAC5-T20N, confirming results obtained in previous studies with other

methods.

Fig. 13: Growth assays on ura- (a) and FOA+ (b) revealed interaction between GAP1 and ARAC5 and
GAP1 and ARAC5-G15V. Yeast cells co-expressing the GAP1-Cub fusion protein together with ARAC5 WT
(1), ARAC5-T20N (2), ARAC5-G15V (3) as fusions to Nub, and Nub expressed from the empty pNubm vector (4)
were applied in three different dilutions (105, 104, and 103 cells/droplet) on selective media.
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3.8.2 The establishment of AtPIN1-Cub as a bait in USPS

The AtPIN1 protein contains a hydrophilic loop in the middle, flanked by five to six

transmembrane segments at the N- and C- terminus (Gälweiler et al., 1998). A possible model

for the topology of AtPIN1 is depicted in Fig 14. The orientation of the AtPIN1 protein in the

membrane and the spatial orientation of the transmembrane domains, however, are not yet

known.

Fig. 14: Putative topology of the AtPIN1 protein. 5 transmembrane segments at N-terminus (NH3
+) and C-

terminus (COO-) of the AtPIN1 are predicted to flank a hydrophilic loop. Arrows termed PIN, PI and I indicate
parts of the AtPIN1 protein that are expressed in fusions to Cub from the constructs pAtPIN1-Cub, pAtPI1-Cub and
pAtI1-Cub, respectively.

The USPS AtPIN1 bait vector

The cDNA of AtPIN1 was inserted into the pCub bait vector and the resulting plasmid was

termed pAtPIN1-Cub (see also 2.2.1). In addition, two different truncated sequences of the

AtPIN1 cDNA were cloned into the bait vector: (i) The DNA sequence encoding the N-

terminal transmembrane domains and the hydrophilic loop of AtPIN1, resulting in the

plasmid pAtPI1-Cub and (ii) the DNA sequence encoding the hydrophilic loop of AtPIN1,

resulting in the plasmid pAtI1-Cub (Fig. 14) (see also 2.2.1).

Yeast cells were co-transformed with the bait plasmids pAtPIN1-Cub, pAtPI1-Cub, and

pAtI1-Cub in combination with the empty prey vector pNubm. Expression of the protein-Cub

fusions was analysed in a Westernblot with protein extracts from yeast cells (Fig. 15). For
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detection of the fusion proteins the anti-AtPIN1 antibody, which recognizes the hydrophilic

loop of AtPIN1, was used (Gälweiler et al., 1998). AtPIN1-Cub, AtPI1-Cub and AtI1-Cub

fusion proteins were detected at the estimated size of 115 kDa, 100 kDa and 82 kDa,

respectively.

Fig. 15: AtPIN1 and truncated versions of AtPIN1 are expressed as fusions to Cub. Western blot of yeast
protein extracts: Expression of AtPIN1 (4), AtPI (3) and AtI (2) as translational fusion proteins with Cub-R-URA,
1) AtPIN1 control protein.

Establishment of optimal screening conditions for the AtPIN1-Cub bait

Screening a cDNA library with the AtPIN1 bait was planned to be performed on FOA+ plates.

Interaction of a protein derived from a cDNA clone and AtPIN1 would be detected by the

ability of yeasts to grow on FOA+ (due to R-URA reporter cleavage). The amount of R-URA

reporter expressed from the translational fusion of a bait construct, such as pAtPIN1-Cub is

crucial for the detection of protein interaction during the screening process. Prior to the

screening procedure, yeast cells harbouring the bait construct therefore have to be tested for

the relative amount of R-URA in the cell: (i) Enough R-URA enzyme has to be produced in

order to repress growth of yeasts on FOA, a prerequisite for subsequent screening for FOAR

yeasts. (ii) Too much R-URA enzyme, on the other hand, might mask putative interaction

between proteins, i.e. if a substantially greater amount of bait compared to prey is present,

there will always be a portion of R-URA enzyme that is not cleaved and therefore degrades

FOA to the toxic 5-fluorouracil. Regulation of promoter strength in the pCub construct allows

the optimal adjustments of the bait expression level.
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The promoter of the pCub construct is most active without addition of methionine to the

yeast growth medium and is repressed by the addition of methionine in a concentration

dependent manner. Yeast cells harbouring the pAtPIN1-Cub, pAtPI1-Cub, and pAtI1-Cub

constructs were therefore streaked on FOA plates without or with methionine (10, 15, 70 µM)

and incubated at 30° C for 2 days. Growth assays revealed, that while plates containing

methionine still allowed the growth of yeast cells (data not shown), plates without methionine

led to complete repression of yeast growth (Fig. 16). As expected, control streaks on ura-

plates without or with methionine (10, 15, 70 µM) displayed opposite growth phenotypes,

with growth of yeasts only in the absence of methionine (Fig. 16). pAtPIN1-Cub, pAtPI1-Cub,

and pAtI1-Cub constructs therefore required full promoter strength in order to prevent yeast

growth on FOA+ and downregulation of R-URA expression was not necessary. In the

following experiments only pAtPIN1-Cub, carrying the entire AtPIN1 cDNA was used as a

bait. pAtPI1-Cub and pAtI1-Cub were used as control plasmids, since a putative interaction

partner was isolated using the hydrophilic loop of AtPIN1 in a bait construct of the yeast two

hybrid system (L. Gälweiler, personal communication).

Fig. 16:Growth phenotypes of yeasts carrying pAtPIN1-Cub, pAtPI1-Cub, and pAtI1-Cub constructs reflect
expression of R-URA reporter. Growth assays on ura- and FOA+ medium without addition of methionine
reveal growth phenotypes of pAtPIN1-Cub (PIN), pAtPI1-Cub (PI), and pAtI1-Cub (I). Yeast cells were applied in
three different dilutions (105, 104, and 103 cells/droplet).

To further test the AtPIN1-Cub bait in the USPS, the interaction of yeast proteins with

AtPIN1, as well as the interaction of ARAC5 with AtPIN1 was tested. The S. cerevisiae genes

TPI1 and SSS1 were cloned into the pNubm vector and the resulting plasmids were termed

pNubm-TPI1 and pNubm-SSS1. TPI1 encodes the cytosolic enzyme triosephosphate-isomerase

and SSS1 encodes a protein that is part of a protein complex that forms an aqueous channel
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through which polypetides are translocated across the ER membrane (Dünnwald et al., 1999).

In addition, the Nub fragment in the constructs pNubm-TPI1, pNubm-SSS1 and pNubm-ARAC5

was replaced by a mutated Nuba fragment, resulting in plasmids termed pNubam-TPI1, pNubam-

SSS1 and pNubam-ARAC5. Instead of an isoleucine at position 13 of the Nub fragment, Nuba

contains an alanine, which leads to reduction of Nuba affinity to the Cub fragment. Nuba and Cub

only associate, when the proteins linked to these fragments form a stable protein complex.

Unlike WT Nub, Nuba therefore does not allow the detection of transient interaction of proteins

(Johnsson and Varshawsky, 1994a).

Yeast cells were co-transformed with the prey constructs pNubm-TPI1, pNubm-SSS1,

pNubm-ARAC5, pNubam-TPI1, pNubam-SSS1 and pNubam-ARAC5 in combination with the bait

construct pAtPIN1-Cub. Yeast cells transformed with bait and prey constructs were applied in

droplets of three dilutions (105, 104, and 103 cells/droplet) to FOA+ plates. After incubation at

30°C for two days, the growth phenotypes of the different yeast double transformants were

determined (Fig. 17a). Resistance to FOA revealed the interaction of AtPIN1 with SSS1,

when SSS1 was expressed as a fusion to the WT Nub fragment. This is not surprising, since

membrane targeting of AtPIN1 requires the transition of the protein through the ER

translocation pore. The Nub-SSS1 fusion protein was demonstrated to form a functional

complex at the ER translocation pore in yeast cells and interaction with SSS1 was previously

observed for other membrane proteins (M. Dünnwald and N. Johnsson, personal

communication). Interaction of AtPIN1 with SSS1 as detected in the USPS could therefore be

the reflection of close proximity of the proteins during the translocation process. This

interpretation is supported by the fact, that interaction between AtPIN1 and SSS1 is lost,

when SSS1 is linked to the Nuba fragment, which does not allow detection of transient

interactions. A control assay revealed the interaction of GAP1-Cub and the Nuba-ARAC5-

G15V fusion, demonstrating the functionality of Nuba (data not shown). No interaction was

detected between AtPIN1 and ARAC5 or TPI1.

Gene expression from the prey constructs can be up-regulated by addition of Cu2+ to the

medium. Such an up-regulation would be favourable for strongly expressed baits or very low

level expressed preys. Both cases would mask protein interaction due to a surplus of bait and

therefore uncleaved R-URA reporter molecules. Apart from the regulation of bait expression,

also regulation of prey expression was investigated. Growth assays on Cu2+ containing

medium were performed for yeast double transformants containing the AtPIN1 bait and the
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ARAC5, TPI1 and SSS1 prey constructs as fusions to either Nub or Nuba (17b). Growth of

yeasts revealed interaction between AtPIN1 and SSS1, when SSS1 was linked to Nub. In

addition, slight interaction was observed for AtPIN1 and TPI1, when TPI1 was linked to Nub.

No interaction was observed for ARAC5 and all Nuba linked prey proteins. Slight interaction

between AtPIN1 and TPI1 under Cu2+ induction might indicate an unspecific association of

Cub and Nub fragments due to high levels of TPI1 prey in the cell. Indeed, high levels of TPI1

protein were detected in protein extracts of Cu2+ treated yeast cells (data not shown).

Fig. 17:AtPIN1 interacts with SSS1 on medium without copper and with SSS1 and TIM1 on medium with
copper. Growth assays on FOA+ medium without (a) and with addition of copper (b). Yeast cells were co-
transformed with AtPIN1-Cub and with Nubm (8), Nubm-SSS1 (7), Nubm-TIM1 (6), Nubm-ARAC5 (5), Nubam (4),
Nubam-SSS1 (3), Nubam-TIM1 (2), and Nubam-ARAC5 (1). Yeast cells were applied in three different dilutions
(105, 104, and 103 cells/droplet).

These analyses showed that i) AtPIN1 could be used as a bait in USPS if the bait promoter

was fully active, i.e. on medium without methionine. ii) FOAR upon interaction of AtPIN1

and SSS1 linked to Nub indicated, that transient interaction or close proximity of AtPIN1 to

another protein could be detected by USPS. iii) Because of the low expression level of the

AtPIN1 bait upregulation of prey genes was not required. Therefore we set out for a USPS

library screen without addition of methionine and Cu2+.



Results

63

3.8.3 The construction and cloning of a plant cDNA library for USPS

The construction of the cDNA library involved the isolation of total RNA and subsequently

messenger RNA (mRNA) from plant tissues, the reverse transcription of the mRNA into copy

DNA (cDNA) and the ligation of the cDNA into the pNubm vector (for details see Materials

and Methods). Total RNA was separately isolated from the following Arabidopsis thaliana

tissues and organs: Suspension culture cells, aerial parts of 4-6 weeks old greenhouse plants

and roots of 4 weeks old in vitro cultured plants. Equal amounts (in grams) of total RNA from

each source were mixed and used for the isolation of mRNA. The mRNA was transcribed into

cDNA using the GIBCO BRL SUPERSCRIPTTM Plasmid System. This system results in

cDNA with a NotI restriction site at the 3´ end and cohesive ends for SalI at the 5´ end. After

digestion with NotI and separation of the cDNA from linker fragments (size fractionation), the

cDNA was ligated to pNubm.

The ligated cDNA library was cloned in E. coli cells and positive transformants were

selected. Transformation of E.coli with the cDNA library yielded 3x106 independent clones

with a background of 0.39% religated emtpy vector. In order to preserve the primary

transformations, bacterial colonies were aliquoted with 40,000-80,000 clones/aliquot. Each

aliquot was separately used for the generation of glycerol stocks and the isolation of plasmid

DNA. The size of the cloned cDNA fragments ranged between 0.5-1.2 kb. Sequence analyses

of 30 clones from the library revealed no redundance. One third of the cDNA sequences were

in frame fusions with Nub-HA (data not shown).

3.8.4 A small scale screen for interaction partners of AtPIN1

Since it was not clear, how many putative positive interaction partners would be obtained

from the screening procedure of the cDNA library with the AtPIN1 bait, a test trial for the

screening procedure was performed. Yeast cells containing the pAtPIN1-Cub bait construct

were transformed with 50,000 independent clones of the pNubm cDNA library. Transformed

yeast cells were plated on FOA+ plates and incubated at 30°C for 3-5 days. Out of 5000

transformed yeast colonies (as evaluated from the transformation efficiency) 10 colonies

displayed FOAR. All of the 10 colonies exhibited growth on FOA+ and no growth on ura-

plates (data not shown). cDNA inserts of these clones were amplified by PCR and sequences
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of the PCR products were analysed. All of the genes were full length with additional

sequences at the 5´ untranslated region. The size of the PCR products ranged from 300-1000

bp. Start codons were in frame with Nub-HA (data not shown). Blast searches in the

Arabidopsis thaliana data base revealed, that 7 out of 10 clones were identical to a gene that

encodes a glycine rich protein of Arabidopsis (384 bp coding region) and 3 out of 10 clones

were identical to a gene that encodes an Arabidopsis protein of unknown function (669 bp

coding region). The small scale screening procedure therefore led to the isolation of two

putative interaction partners of AtPIN1.



Discussion

65

4 Discussion

Roots respond to gravity by directional growth toward the center of the earth. Changes in

orientation of the gravity vector induce root curvature, eventually resulting in realignment of

the root tip to along the new gravity vector. Root curvature is the result of a series of events,

including gravity perception, signal formation in gravity perceptive cells and transmission of

the signal to the growth response zone where root bending occurrs. Auxin has been proposed

to control differential cell elongation during root curvature by inhibiting cell elongation at the

site of accumulation (Cholodny-Went hypothesis).

Despite correlative evidence for an asymmetric auxin distribution following

gravistimulation, little is known about the cell to cell movement of auxin in this process.

Recently gravity induced relocation of the AtPIN3 auxin efflux carrier component in

columella cells of the Arabidopsis root tip provided new evidence for an important role of

lateral polar auxin transport (Friml et al., 2002b). Furthermore, results from different types of

experiments suggested that also basipetal auxin transport was essential for a gravitropic

response (Rashotte et al., 2000; Young et al., 1990; Young et al., 1996). What are the

contributions of these distinct polar auxin transport mechanisms in the establishment of an

auxin asymmetry? Is one single transport mechanism required before the other can occur, e.g.

does basipetal auxin transport depend on lateral auxin transport? Or do they act independently

of each other, by allowing simultaneous lateral auxin transport processes along different

regions of the gravistimulated root and in addition basipetal auxin transport to the basis of the

root? What are the contributions of efflux and influx carriers to gravity induced auxin

redistribution, considering that mutations in genes for either of them caused defects in

gravitropic root growth? To start to address these questions and analyze gravity induced auxin

flux on a cellular level, we generated a DR5-GFP fusion construct and employed it as an

auxin biosensor in live cells of Arabidopsis roots.
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4.1 DR5-GFP as an auxin biosensor

Choosing a GFP variant for the DR5-GFP construct

GFP emits green fluorescence upon excitation with blue or UV light. It is widely used for its

unique properties of being an easily detectable in vivo reporter protein that does not require

exogenous substrates or cofactors. GFP fluorescence can be detected at cellular and even

subcellular levels within the tissue. Despite these advantages over other reporter proteins,

GFP fluorescence detection depends on the accumulation of a certain number of GFP

molecules within the cell. As a result the GFP reporter is generally less sensitive than

enzymatic reporters (such as GUS or luciferase) that are capable of amplifying a signal by

enzymatic activity of just a few reporter molecules. It is therefore important to choose a GFP

variant that best meets all requirements for the given task.

Since the first cloning of GFP cDNA from the jellyfish Aequorea victoria (Prasher et al.,

1992), many modifications have been made to the original DNA sequence. One of the most

important was the change of codon usage in a region that was shown to be incorrectly spliced

in plants (Haseloff et al., 1997). On the basis of this modified GFP (mGFP), other mutations

were introduced and fall within two categories: i) Mutations within the chromophore region

S65-Y66-G67, resulting in altered spectral properties and ii) mutations outside the

chromophore region, leading to faster protein folding and better protein solubility. Both types

of mutations contribute to higher sensitivity of the GFP reporter with respect to mGFP.

For the DR5-GFP transcriptional fusion construct, we chose to target GFP to the ER. DR5-

GUS expression indicated that high expression levels of DR5-GFP could be expected in very

localized regions, such as the Arabidopsis root tip (Rashotte et al., 2001; Sabatini et al.,

1999). It was reported that compartmentalization of GFP counteracts mildly toxic effects that

were observed upon high levels of GFP expression (Haseloff and Amos, 1995). In addition,

restriction of GFP to a defined subcellular compartment could lead more quickly to the

accumulation of a detectable amount of GFP molecules, thereby increasing the sensitivity of

the DR5-GFP reporter. Extensive studies on expression levels and fluorescence intensities of

many GFP variants in different subcellular compartments (such as cytoplasm, vacuole, ER,

plasma membrane, mitochondria) revealed, that for ER and plasma membrane targeting best

results were obtained with GFP-LT (G. Jach , personal communication). On the amino acid-
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but not the nucleotide level GFP-LT is identical to EGFP, commercially available from

CLONTECH (G. Jach, personal communication). It differs from mGFP in two amino acid

exchanges: i) S65T in the chromophore region, conferring better excitation with blue than UV

light and ii) F64L outside the chromophore region, improving GFP folding. It is worth noting,

that GFP variants containing the S65C chromophore mutation, that results in comparable

spectral properties, are not suitable when targeted to ER and plasma membrane. The oxidative

state of cysteine most probably leads to loss of fluorescence in these compartments (G. Jach,

personal communication).

A common feature of all GFP variants is the fact, that chromophore and folding mutations

lie, flanked by the restriction sites MscI and SfuI, within a 450 bp region of the 720 bp

complete GFP sequence. GFPs with different properties, even GFPs with altered emission

spectra such as YFP, CFP or BFP, can therefore be exchanged for each other by simple

replacement of the inner MscI/SfuI DNA sequence. Using this strategy, a new and strongly

fluorescent ER targeted GFP was generated by replacement of the MscI/SfuI flanked DNA

sequence of mGFP5-ER (Haseloff et al., 1997) by the characteristic MscI/SfuI DNA sequence

of GFP-LT. The GFP-LT-ER DNA sequence was then employed for the construction of the

pDR5-GFP auxin inducible reporter construct and the subsequent generation of transgenic

DR5-GFP Arabidopsis lines.

Relating DR5-GFP expression to endogenous auxin levels of the plant

DR5-GUS fusions were shown to be auxin inducible in transient expression studies with

carrot protoplasts (Ulmasov et al., 1997a) as well as in stably transformed tobacco and

Arabidopsis plants (Friml et al., 2002a; Mattsson et al., 1999; Sabatini et al., 1999; Ulmasov

et al., 1997a). DR5-GUS was induced in a concentration dependent manner by only active

auxins and `auxin maxima´ as depicted by the DR5-GUS element were shown to correlate

with direct auxin measurements in Arabidopsis roots (Sabatini et al., 1999).

The results that were obtained with the DR5-GFP reporter were comparable to what was

previously reported for GUS. Similar to DR5-GUS, DR5-GFP was shown to be induced by

exogenously applied IAA in a concentration dependent manner in all tissues of the

Arabidopsis seedling. Similar concentrations of exogenously applied IAA were required for
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both DR5-GFP and DR5-GUS expression, indicating that the GFP reporter in this fusion was

not less sensitive than GUS. A strong GFP signal was also found in the root tip of Arabidopsis

seedlings. In addition, localized GFP signals were detected at the site of lateral and

adventitious root initiation, dormant lateral buds and tips of leaves, correlating with sites of

elevated auxin levels in these tissues, as previously postulated from bioassays and auxin

measurements (Davies, 1995).

However, the reflection of endogenous auxin concentrations is an indirect one and even

though DR5 seemed to be inducible in all tissues of the Arabidopsis seedling, it cannot be

excluded that signalling pathways required for DR5-GFP expression may change under

certain physiological conditions. Also, DR5-GFP expression labelled sites of the plant where

the concentration of endogenous auxin passed the threshold that is required for detectable

induction of the DR5 promoter. Above this threshold, however, even gradients of relative

auxin levels were to a certain extent reflected by different intensities of GFP fluorescence.

Another factor that has to be considered, is the nature of the GFP reporter: (i) the time needed

for chromophore formation as well as (ii) the time required for GFP degradation. Therefore,

changes in auxin distribution could only be detected with a certain delay and detection was

most probably restricted to changes that resulted in elevated auxin levels at sites, where

previous auxin concentrations were too low to lead to GFP fluorescence. Observation of

signal decay faster than the average time of GFP stability, on the other hand, had to be

attributed to increased proteolysis in these cells.

Nevertheless, the DR5-GFP biosensor is an excellent tool for studying the involvement of

auxin during gravitropic root growth. Low basal activity, no tissue preference for inducibility,

and detection in live cells on a single cell level offer possibilities in the analysis of auxin

changes, that other methods cannot fulfill. Thus, bioassays and auxin measurements by mass

spectrometry detect auxin changes in tissues or even organs, but not on a cellular level. Also

promoter-GUS fusions require tissue disruptive histochemical analyses with the additional

disadvantage that signals can often not be related to single cells due to dye diffusion.

Furthermore only the GFP reporter allows optical sectioning of plant organs by CLS

microscopy to identify staining patterns in tissues underneath the surface layers. An advantage

that became obvious in the analysis of auxin treated root tips: Only optical sectioning revealed

that IAA, 1-NAA and 2,4-D resulted in different DR5 induction patterns. An effect, that had

never been observed before. Therefore, keeping in mind the limitations of the DR5-GFP
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reporter, changes in fluorescence patterns will be treated as indirect evidence for changes in

auxin accumulation in the following discussion of experimental results.

4.2 Gravity induced asymmetric auxin accumulation in the LRC

Root tips of vertically grown DR5-GFP roots displayed strong fluorescent signals in the cells

of the QC, columella initials and mature columella. An auxin `maximum´ in this region was

previously reported for DR5-GUS and was found to correlate with direct auxin measurements

(Sabatini et al., 1999; Swarup et al., 2001). Elevated auxin levels in these cells could be due

to an AUX1 mediated import of auxin from the root vasculature into protophloem cells of the

proximal root meristem (Swarup et al., 2001). Alternatively, an auxin `maximum´ in the root

tip could be the result of an independent site for auxin biosynthesis in the root meristem (K.

Ljung, personal communication). Subsequent auxin flux into QC and columella cells of the

root tip could then be mediated by the AtPIN4 efflux carrier protein, that was shown to be

expressed in the distal root meristem (Friml et al., 2002a).

Changes in GFP signal distribution were observed, when roots were gravistimulated by

rotating the plates 135° from the vertical. Apart from GFP fluorescence in QC, columella

initial and mature columella cells, signals started to appear in dLRC cells adjacent to

columella S2 and S3 on the lower half of the gravistimulated root. As gravistimulation

persisted, the entire LRC displayed GFP fluroescence on its lower half. This chronological

appearance of GFP signals in the cells of the LRC gave the impression of an auxin

`movement´, implicating auxin transport from columella cells to cells of the dLRC and further

on to cells of the pLRC. Interestingly, the AtPIN3 auxin efflux carrier protein was shown to

be located in columella S2 in an apolar fashion, but was demonstrated to relocate laterally

upon gravistimulation (Friml et al., 2002b). Gravity induced lateral auxin transport from

columella S2 to the cells of the dLRC via AtPIN3 is therefore likely.

Further basipetal auxin transport from dLRC to pLRC could be mediated by auxin influx

and efflux carrier proteins, AUX1 and AtPIN2, respectively. Both proteins were shown to be

expressed in cells of the pLRC, with AtPIN2 being polarly localized at the basal end of LRC

cells (Müller et al., 1998, P. Wolff personal communication). Longer gravistimulation (for up

to 24 hrs) led to an increase in fluorescence intensity in the LRC, but additional signals in
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epidermis or other tissues of the distal and central elongation zone (DEZ, CEZ), where AUX1

and AtPIN2 are also expressed, were not observed. This was in contrast to earlier results

obtained with radiolabelled IAA (IAA*) and promoter-GUS fusions, such as SAUR-GUS and

AtIAA-GUS, where gravity induced asymmetric auxin distribution on the lower half of the

root was detected, but IAA* or GUS staining patterns extended to the elongation zone at the

site of root bending (Li et al., 1991; Luschnig et al., 1998; Rashotte et al., 2001; Young et al.,

1990). Similar experiments with the DR5-GUS reporter, however, revealed GUS staining

patterns exclusively in the LRC and not in the epidermis of the elongation zone (Rashotte et

al., 2001, P. Wolff personal communication), identical to what was observed for DR5-GFP.

Therefore either (i) there was no transport of auxin to the elongation zone and retardation of

cell elongation at the site of root bending was due to other (auxin induced) signals, such as

e.g. calcium, or (ii) auxin transport to the elongation zone occurred, but auxin levels in this

region were below DR5-GFP (and DR5-GUS) detection. The latter explanation seems to be

more likely, because in the presence of exogenous 1-NAA application, gravity induced

asymmetric GFP staining of epidermal cells was actually observed in the root elongation

zone.

In order to demonstrate auxin as a signal linking gravity perception and curvature response

earlier time periods in the range of 5 min, the time when amyloplasts sediment (MacCleery

and Kiss, 1999), and approximately 20 min, the average latent period of manually rotated

Arabidopsis roots before gravitropic curvature is first detectable (Mullen et al., 2000), were

investigated. The GFP reporter, however, was shown to exhibit a lag time of at least one and a

half hours between GFP gene expression and detection of GFP fluroescence. Roots were

therefore exposed to short-term gravistimulation and subsequently rotated back to the vertical

for 3 hrs. This allowed detection of asymmetric signal distribution after 15 min of stimulation

(data not shown).

When root bending was complete (after around 24 hours), asymmetric GFP fluorescence in

the LRC on one half of the root faded within a few hours. This suggests increased protein

degradation in the ER of these cells, since GFP has been reported to be stable for several days

(Deichsel et al., 1999) In addition, signal decrease indicates decay of auxin levels after

establishment of the new position in the gravitational field. Interestingly, when root bending

seemed to be complete, in some cases, staining of the LRC on the other side, opposite to the

previously applied gravity stimulus was observed (data not shown). In these cases CLS
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microscopy revealed, that root tips seemed to have oriented away from the new gravity vector

in a way, that suggested a kind of `surplus bending´ of the root. This was in accordance with

previous reports, in which roots were described to undergo root bending by first curving to an

angle that was larger than the original angle used for gravistimulation and consequently had to

`correct´ this angle, by an additional slight backward bending (Ishikawa and Evans, 1993).

GFP signals appearing on the LRC side opposite to the direction of the previously applied

gravity vector, could be a reflection of auxin induced backward bending before final growth

along the new gravity vector.

4.3 The role of polar auxin transport in gravity induced asymmetric auxin

accumulation

Two lines of evidence previously showed the importance of polar auxin transport during root

gravitropism: (i) the analysis of the agravitropic Atpin2/eir1-1 and aux1 mutant phenotypes,

as well as (ii) the observation, that inhibitors of polar auxin transport resulted in abolishment

of gravitropic root growth (see also 1.2). Investigation of DR5-GFP expression pattern in the

Atpin2/eir1-1 mutant background as well as auxin efflux and influx blocker treatments

demonstrated impaired auxin flux and allowed the identification of the cells to which auxin

transport was hindered. Further analysis of DR5-GFP expression in roots treated with auxin

and data of root curvature kinetics, revealed the different contributions of efflux and influx

mediated auxin transport during root gravitropism.

The importance of auxin efflux

Treatments with NPA and TIBA resulted in altered `auxin maxima´ in vertically grown roots.

GFP distribution shifted towards the base of the root, with a signal decrease in cells of the

columella S2 and S3 and additional appearance of signals in endodermis, cortex and vascular

initials. A similar pattern was observed with DR5-GUS upon NPA treatment (Sabatini et al.,

1999), as well as in the background of the Atpin4 mutant (Friml et al., 2002a). BFA, an

inhibitor of vesicle trafficking, that was shown to prevent polar localization of auxin efflux

carrier protein AtPIN1 and other membrane proteins (Geldner et al., 2001), had a similar,

however less pronounced, effect on fluorescence pattern in vertically grown roots. This shift
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in GFP distribution could be due to an inhibition of AtPIN4 dependent auxin flux from the

proximal to the distal root meristem, leading to auxin depletion in the distal most root apex.

When roots grown on NPA, TIBA and BFA were gravistimulated, no shift in fluorescence

pattern was observed, even after 20 hrs of gravistimulation, and root curvature was strongly

reduced. As expected, these substances effected auxin efflux in all parts of the root and

inhibited the transport of auxin into the distal root meristem, as well as the transport of auxin

from columella cells to the cells of the dLRC.

A different fluorescence pattern was found in the background of the Atpin2/eir1-1 mutant.

AtPIN2 was shown to be localized on the basal side of the plasma membrane in cells of the

pLRC, as well as in epidermis and cortex cells of the root elongation zone (Refs, see also 1.2).

Loss of AtPIN2 activity led to defects in basipetal auxin transport and agravitropic root

growth (Chen et al., 1998a; Luschnig et al., 1998; Müller et al., 1998; Rashotte et al., 2000;

Utsuno et al., 1998). Indeed, GFP distribution in the root apex of these mutants, was found

not only in QC, columella initials and mature columella cells, but also in the cells of the

dLRC on both sides of the root axis, indicating impaired auxin transport from dLRC to pLRC

cells. Accumulation of auxin in dLRC of the entire root cylinder indicates that there is a

constant and even lateral flow of auxin from columella cells to the dLRC, which in the case of

pin2/eir1-1 mutants cannot be compensated by efficient basipetal transport from this region.

Elevated levels of free IAA in root tips of Atpin2/eir1-1 seedlings compared to WT plants

correlated with the enlarged DR5-GFP expression pattern.

Further evidence for the efflux mediated auxin transport in response to gravity came from

experiments with auxin treated, gravistimulated roots. 1-NAA, 2,4-D and IAA, substrates for

either efflux or influx carriers or both, were exogenously applied to roots and GFP

fluorescence pattern was investigated before and after gravistimulation. Signal distribution for

these auxins in vertically grown roots was different, with 2,4-D causing GFP expression in

virtually all tissues of the root tip, and IAA and 1-NAA leading to selective staining of dLRC

and pLRC, as well as the epidermis cell layer. These variations in staining pattern were due to

different transport characteristica of these auxins and not to different sensitivity of the DR5

element, as could be shown by combined treatments of auxins and auxin transport inhibitors.

Gravistimulation under continuous supply of auxin revealed, that fluorescence patterns in 2,4-

D treated roots remained identical to 2,4-D treated vertical controls, while GFP distribution in

1-NAA treatments and to a lesser extent in IAA treatments, shifted to the lower half on the
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gravistimulated roots. Root curvature experiments demonstrated that the extent of auxin

asymmetry in these experiments correlated with the degree of root bending: (i) Roots grown

on 1-NAA displayed asymmetric auxin distribution in the entire LRC and elongation zone

and exhibited strong gravitropic bending, while (ii) roots grown on 2,4-D displayed no and

(iii) roots kept on IAA only reduced auxin asymmetry and root bending. Hence, gravity

induced auxin transport to the lower half of the root was not confined to endogenous auxin,

but also occured for exogenously applied auxins, provided the auxin was a substrate for the

efflux carrier. Furthermore these results suggest, that root curvature does not depend on

absolute auxin levels at one half of the root, but rather on the proportion of auxin levels on the

upper to that on the lower half of the root.

The importance of auxin influx

Not only mutants with defects in auxin efflux carrier activity, but also a mutant with defect in

auxin influx carrier activity (aux1) exhibits agravitropic pheontypes (Bennett et al., 1996).

The effect of 1-NOA, an inhibitor of auxin influx, on DR5-GFP expression and root

gravitropism was tested. In vertically grown roots treated with 1-NOA, GFP expression

pattern was nearly identical to that of untreated controls, except for an increase in

fluorescence intensity of signals in the QC and columella initials. Increased auxin levels in

cells of the QC and columella initials, could be due to impaired auxin influx from these cells

into cells of columella S1, where AUX1 was shown to be located (Swarup et al., 2001).

Upon gravistimulation, root curvature at the application of 50 µM 1-NOA was almost

completely abolished. Under this and also lower concentratios of 1-NOA, strong asymmetric

signal distribution in the cells of the dLRC was detected after 24 hrs. Cells of the pLRC were

not stained at all. Fainter signals in dLRC compared to untreated controls 5 hrs after

gravistimulation were observed and might be due to decreased auxin levels in columella cells,

as a consequence of reduced acropetal AUX1 mediated auxin transport (data not shown).

High concentration of auxin in the dLRC 24 hrs after gravistimulation indicates, that influx

carrier activity is not needed for a lateral auxin transport from columella cells to the dLRC.

Further, basipetal auxin transport from the dLRC to the pLRC, however, does require auxin

influx carrier activity, correlating with AUX1 localization in pLRC cells (Swarup et al.,

2001).



Discussion

74

Results obtained with the DR5-GFP auxin biosensor showed that, as proposed by the

Cholodny-Went hypothesis, gravity induced root curvature does indeed go along with an

auxin accumulation on the lower half of the gravistimulated root. Gravity induced auxin flow

on the lower half of the root occurs in the root tip and involves efflux mediated lateral auxin

transport in cells of the root columella and efflux as well as influx dependent basipetal auxin

transport in LRC and epidermis cells. The transport of auxin from columella to dLRC cells

might be mediated by relocation of AtPIN3 auxin efflux carrier protein in columella cells and

loss of AtPIN3 activity was shown to result in a delay of graviresponse (Friml et al., 2002b,

M. Evans, personal communication). Other members of the AtPIN protein family, recently

shown to be located in the root tip (I. Paponov, personal communication), may additionally be

involved in the fine tuning of this process.

Basipetal auxin transport from dLRC to pLRC is dependent on activity of the AtPIN2

auxin efflux carrier protein and supported by activity of auxin influx carrier, possibly AUX1.

Localisation of AtPIN2 and AUX1 proteins in the pLRC suggests, that the accmulation of

auxin in the dLRC of the Atpin2/eir1-1 mutant and in 1-NOA treated roots was the result of

block of auxin transport in these cells. Moreover localisation of AtPIN2 and AUX1 in

epidermis cells of the elongation zone indicates, that auxin flow from the pLRC to the site of

root bending is also mediated by these proteins. DR5-GFP expression revealed auxin flux to

the elongation zone only at elevated auxin levels, in the presence of 1-NAA.

Analysis of the Atpin2/eir1-1 mutant as well as root curvature measurements of 1-NOA

treated roots together with other data recent data (Rashotte et al., 2000) revealed, that

functional basipetal auxin transport is required for root gravitropism. But in addition, these

results demonstrate that basipetal auxin transport is dependent on lateral auxin redistribution

in the root tip, as could be seen from (i) the flux of auxin to the dLRC and subsequently to the

pLRC of gravistimulated roots, (ii) the inhibition of this flux in the presence of NPA

application and (iii) the accumulation of auxin in the dLRC upon inhibition of basipetal auxin

transport.
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4.4 A preliminary model for Arabidopsis root gravitropism and its regulation

According to the current view on gravity induced root curvature, physically distinct regions

within the Arabidopsis root participate in sensing of and responding to a gravity stimulus.

Thus, columella cells at the root apex were shown to be primarily involved in gravity

perception, while cells in the root elongation zone were found to perform the bending

response. The work presented here, provides strong evidence, that gravity induced flows of

auxin from columella cells to the elongation zone serve as the messenger that connects the

sites of gravity perception and growth response. So how can this information be combined

with existing data on the regulation of gravity perception and induction of root curvature?

Gravity induced flow of auxin along the lower half of the root was shown to commence in

dLRC cells and proceed through the entire LRC to the elongation zone. Auxin signals in

dLRC cells were first observed in cells adjacent to columella S2, indicating that export of

auxin following gravistimulation initiated from S2 cells. The importance of root columella

cells for gravity perception and early signal formation was demonstrated before, when laser

ablation of columella cells was shown to inhibit root curvature (Blancaflor et al., 1998).

Ablation of defined groups of cells revealed that among other stories, removal of columella

S2 resulted in strongest reduction of root curvature. Moreover, the auxin efflux carrier protein

AtPIN3 is located in cells of columella S2 and was demonstrated to relocate laterally upon

gravistimulation. This lateral relocation corresponds with the observed flow of auxin to the

dLRC and the fact, that this flow is efflux carrier dependent

But how is the regulation of subcellular localization of AtPIN3 connected with the

positional information provided by amyloplast sedimentation? It has been proposed that

sedimentation of statoliths is either directly sensed by membrane structures within the cell, or

indirectly via interaction with the cytoskeleton (reviewed in Chen et al., 1999). Recently it

was discussed that statolith sedimentation locally disrupts the actin cytoskeleton, which leads

to changes in tensions that act on receptors in different plasma membrane regions (Yoder et

al., 2001). A receptor protein perceiving the gravity stimulus has not been identified.

However, stretch sensitive receptors, such as stretch activated ion channels or receptors

triggering the activation of the H+-ATPase could be imagined to be involved in this process.

In fact, an increase of apoplastic- and a decrease of cytoplasmic pH in columella cells was

reported to occur two minutes after gravistimulation (Fasano et al., 2001; Scott and Allen,
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1999). Such changes in pH could directly or indirectly effect AtPIN3 activity. The

mechanisms for a pH mediated regulation are not known but might involve pH dependent

control of endo- and exocytosis, as has been reported to occur in animal cells (Cosson et al.,

1989; Gluck et al., 1982). Membrane localization of AtPIN3 and other AtPIN proteins was

shown to be controlled by highly dynamic vesicle trafficking, involving endo- and exocytosis

processes (Geldner et al., 2001) This is particularly interesting in the context of gravity

induced change of AtPIN3 relocation and implies that dynamic cycling allows a tight control

of direction and velocity of AtPIN3 protein targeting and consequently the direction of auxin

flow.

Once auxin flow from columella cells to dLRC cells was induced, auxin was transported

from dLRC to proximal LRC cells and further to the elongation zone. This basipetal transport

of auxin required auxin influx as well as auxin efflux carrier activity, possibly mediated by

AUX1 and AtPIN2, respectively. Basipetal auxin transport was demonstrated to be essential

for root gravitropism (Rashotte et al., 2000) and was shown to be influenced by reversible

protein phosphorylation events (Rashotte et al., 2001). Thus, mutants with defects in RCN1, a

regulatory subunit of the protein phosphatase 2A (PP2A), displayed agravitropic root growth

and an increased rate of basipetal auxin transport (Deruere et al., 1999; Rashotte et al., 2001).

DR5-GUS expression in rcn1 mutants revealed, that unlike WT plants, rcn1 mutants do not

exhibit asymmetric auxin distribution along the lower half of gravistimulated roots. Increased

basipetal auxin transport was proposed to be responsible for this effect, by preventing

asymmetric auxin accumulation due to immediate removal of auxin from this region. Data

presented in this thesis allow to raise an alternative explanation for this observation: Impaired

lateral auxin transport possibly by inhibition of AtPIN3 activity/relocation might in fact

(additionally) be responsible for loss of asymmetric auxin accumulation in gravistimulated

rcn1 roots. Other evidence for the regulation of polar auxin transport by protein

phosphorylation and dephosphorylation events has come from the analysis of plants

overexpressing the serine threonine protein kinase PID. 35S-PID plants exhibit severe defects

in the root meristem. and roots of hemizygous 35S-PID seedlings display agravitropic

phenotypes (Christensen et al., 2000). Moreover, the broad spectrum kinase inhibitor

staurosporine was shown to inhibit auxin efflux (Delbarre et al., 1998).

Evidence for another possible regulatory mechanism acting on AtPIN proteins, came from

the analysis of agravitropic axr1 mutants. The AXR1 protein is related to the N-terminal half
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of the ubiquitin activating enzyme E1 and is thought to be involved in the auxin induced

degradation of repressors of the auxin response. The analyses of WT and axr1 plants carrying

a translational fusion of the entire AtPIN2 genomic coding region fused to the amino terminus

of the ß-glucuronidase reporter gene revealed auxin dependent changes in expression pattern.

While in WT seedlings, the construct was unstable in response to changes in auxin

homeostasis (Sieberer et al., 2000), the construct became stabilized in the axr1 background.

Proteolytic degradation of AtPIN2 via activation of AXR1 could therefore be essential for the

establishment of an auxin gradient in response to the gravitropic stimulus.

Finally, the question remains, as to how asymmetric auxin distribution mediates

differential growth in the elongation zone. In roots, increased auxin levels are known to

decrease cell elongation (Ishikawa and Evans, 1993). Auxin accumulation in DEZ and CEZ

along the lower half of the root might therefore inhibit root growth in this region.

Measurements on root curvature, however, revealed, that in addition to inhibition of cell

elongation in DEZ and CEZ on the lower half of the root, initiation of cell elongation in DEZ

on the upper half of the root occurs during root curvature (Mullen et al., 1998). The initiation

of cell elongation in this region could possibly be the result of gravity induced decreased

auxin levels on the upper flank of the root. Lower auxin concentrations promote cell

elongation in roots, by acting on gene expression and inducing ionic and metabolic changes

that stimulate growth and loosen the cell wall (reviewed in Cosgrove, 1997). Decrease of

fluorescence activity on the upper half of gravistimulated roots in the presence of 1-NAA

indicated a gravity induced decrease of relative auxin levels on the upper half of the root.

Alternatively other signaling mechanisms might be involved in the induction of cell

elongation in this region. Thus, calcium oscillations were observed in the elongation zone

during gravitropic root growth and application of calcium in the DEZ was shown to promote

root curvature (Bjorkman and Cleland, 1991; Ishikawa and Evans, 1992; Lee and Evans,

1985). Evidence suggests, that calcium and auxin signaling processes must be tightly linked,

since root gravitropism is inactivated upon the application of calcium chelators, as well as

upon inhibition of polar auxin transport (Bjorkman and Cleland, 1991; Rashotte et al., 2000).

Similarly gravity induced changes in electric currents along the site of root elongation, that

were proposed to be the reflection of proton movements (Behrens et al., 1985), might either

activate auxin gradients or in turn be activated by auxin gradients.
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4.5 The split-ubiquitin-system as a method to find interaction partners of AtPIN1

An important aspect of differential regulation of polar auxin transport lies in the

understanding of AtPIN protein regulation. The identification of proteins that interact with

AtPIN proteins is therefore of specific interest. Candidates for AtPIN protein interaction may

include (plasma membrane) proteins that participate in the formation of an efflux carrier

complex, proteins that link AtPIN1 to the cytoskeleton and regulate AtPIN protein cycling

and (polar) localization, and regulatory proteins, that are part of the cellular signaling

network. Interactions may be stable and result in the formation of multi-protein complexes, or

transient, as could be expected for an interaction with regulatory proteins.

The split-ubiquitin-system (USPS) was used as a technique for searching interaction

partners of AtPIN1. Unlike the yeast two hybrid system, that has been successfully used for

the isolation of binding partners, screening with the USPS is not limited to the analysis of

soluble proteins or soluble domains of membrane proteins. This is of particular interest in the

case of AtPIN proteins, since N- and C- terminal membrane spanning domains, but not the

hydrophilic loop, are highly conserved among members of the AtPIN familiy (Friml et al.,

2002a; Friml et al., 2002b; Gälweiler et al., 1998; Müller et al., 1998). A common mechanism

for AtPIN regulation might therefore act on these domains.

In a three step approach the screening of a cDNA library with the AtPIN1 bait was

prepared: (i) The interaction of two plant proteins, the membrane associated small GTPase

ARAC5 and the cytosolic GTPase activating protein GAP1 was demonstrated with the USPS

technique. (ii) The AtPIN1 gene was cloned into a USPS bait vector and AtPIN1 protein

expression and possible unspecific interaction with ARAC5 and yeast control proteins was

tested. (iii) A cDNA library was constructed, introduced into a USPS prey vector and an

aliquot of this library was screened for interaction partners of AtPIN1.

As a reporter for detection of protein interaction, the R-URA enzyme was used. R-URA

was attached to the C-terminus of the bait-Cub construct. Protein interaction, as demonstrated

between GAP1 and ARAC5, led to cleavage and degradation of the R-URA enzyme and

resulted in the ability of yeasts to grow on FOA+. The growth phenotype on FOA+ was

opposite to that what we obtained on ura- medium, thereby allowing the investigation of R-

URA enzyme activity by two physiologically distinct mechanisms. When bait constructs,

such as GAP1-Cub and AtPIN1-Cub were co-expressed with the WT Nub fragment (from the
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empty pNubm vector) in yeast cells, no protein interaction was detected. This was in contrast

to results obtained with the transcriptional activator PLV, another reporter used in USPS, that

detected the association of Cub with WT Nub fragments independent of protein-protein

contacts (Stagljar et al., 1998, N. Johnsson, personal communication). Detection of protein

interaction by R-URA therefore was more stringent than detection by PLV and allowed the

use of WT Nub fragment for the screening procedure.

Besides the detection of stable protein interactions, the WT Nub fragment was reported to

detect transient (short lived) protein interactions and close spatial proximity of proteins

(Johnsson and Varshavsky, 1994a). The Nuba fragment, mutated for decreased affinity to Cub,

on the other hand, exclusively reveals the stable interaction between proteins (Johnsson and

Varshavsky, 1994a). This was also observed when AtPIN1 interaction with other proteins,

such as ARAC5 and the yeast proteins SSS1 and TPI1 was tested. When fused to the Nuba

fragment, none of the proteins revealed interaction with AtPIN1. When linked to the WT Nub

fragment, on the other hand, interaction between AtPIN1 and SSS1, a protein of the ER

translocation pore in yeasts, was observed.

The interaction between AtPIN1 and SSS1 possibly revealed the spatial proximity of the

proteins during AtPIN1 translocation across the ER membrane. In plant cells, AtPIN1 is

targeted via the ER to the plasma membrane and the transport of AtPIN1 to the ER would

also be expected in yeast. If and how many AtPIN1 proteins then actually reach the plasma

membrane of yeast cells is not known. Attempts to analyze AtPIN1 localization in yeasts

included the expression of an AtPIN1-GFP fusion in the pCub construct (data not shown).

GFP fluorescence, however, could not be detected, which might have been the result of low

expression level of AtPIN1-GFP. Immunolocalization experiments of yeasts with the anti-

AtPIN1 antibody may help to identify the site of AtPIN1 localization in yeast.

For screening of AtPIN1 interaction partners, a cDNA library from tissues of Arabidopsis

whole plants and suspension culture cells, where AtPIN1 was known to be expressed (Friml et

al., 2002a; Gälweiler et al., 1998, L. Gälweiler, personal communication), was generated. The

cDNA library was cloned into the pNubm vector as a fusion to DNA sequences encoding for

the Nub fragment and an HA-epitope. The HA epitope was introduced into the prey vector in

order to facilitate subsequent biochemical analyses of protein interaction between AtPIN1 and

putative candidates that would be identified in the screening procedure.
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Prior to the screening of the cDNA library with the AtPIN1 bait, gene expression from

bait and prey promoters was regulated. This is essential, since the USPS readout depends on

the proportion of cleaved and uncleaved reporter enzyme in the cell. The ideal case would be,

if there was no cleaved R-URA reporter in the absence of protein interaction and no

uncleaved reporter in the presence of protein interaction. Since reporter cleavage depends on

the interaction of bait and prey proteins, the amount of bait and prey in the cell influences the

proportion of cleaved and uncleaved reporter enzyme: (i) An excess of bait molecules

compared to prey molecules results in uncleaved R-URA reporter, despite protein interaction

and prevents detection of protein interaction. (ii) An excess of prey molecules compared to

bait molecules, on the other hand, is generally less disturbing, but may lead to detection of

unspecific protein interaction (i.e. detection of close proximity due to saturation of the cell

with Nub molecules). It is therefore important to adjust the amount of bait and thus R-URA

reporter in the cell: (i) Enough R-URA molecules have to be produced in order to confer

sensitivity of yeast cells to FOA in the absence of protein interaction. (ii) The amount of R-

URA enzyme, however, should not be too high in order to allow detection of protein

interaction. Since the promoter of the bait constructs is repressible by methionine, yeast cells

harboring AtPIN1 and GAP1 baits were grown on medium containing different

concentrations of methionine. The highest possible concentration of methionine (i.e. the

strongest repression of the bait promoter) that still allowed the growth of yeasts on ura-

medium, but that prevented growth of yeasts on FOA+ medium, was selected for use during

the interaction/screening growth assay. In the case of AtPIN1, protein expression was low and

required full promoter strength (i.e. growth in the absence of methionine). In the case of

GAP1, protein expression was slightly higher, than in the case of AtPIN1 and required

addition of 25 µM methionine to the medium (data not shown). Concerning expression of the

prey constructs, up-regulation of prey gene expression by addition of Cu2+ is only necessary,

if the expression of bait genes is very high. This was not the case for AtPIN1 and GAP1 and

growth assays with these baits were therefore performed on medium without addition of Cu2+.

In order to get an idea for the amount of putative interaction partners obtained in the

screening of a cDNA library with the AtPIN1 bait, a test trial for the screening procedure was

performed. The test trial involved the transformation of yeast cells, that contained the AtPIN1

bait, with an aliquot of the cDNA library in the prey construct. Selection of 5,000 transformed

yeasts on FOA+ led to the isolation of two different putative interaction partners of AtPIN1.

This was more than ten times more than what was reported for a USPS screen for interaction
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partners of yeast transcription factors using a genomic library of yeasts (Laser et al., 2000).

Screening a larger amount of transformed yeast cells, e.g. 50,000-100,000 as was reported for

other screens (Laser et al., 2000) with AtPIN1 would therefore approximately yield 20-40

different FOAR clones. Taking further into consideration that an upscale of the yeast screen

would involve the use of the entire plant cDNA library, the isolation of more than 40 different

clones can be expected.

Blast search of the Arabidopsis data base revealed that from the two different clones

isolated in the pre-screening procedure, one contained a gene, encoding an Arabidopsis

protein of unknown function and the other contained a gene, encoding an Arabidopsis protein

of the family of glycine rich proteins. This gene was represented seven times among the

FOAR clones.

The existence of glycine rich proteins (GRPs) has been reported for a number of species

from bacteria, animals and plants (reviewed in Sachetto-Martins et al., 2000). The common

feature among all different GRPs is the presence of glycine repeat domains which organize

into loops and may constitute the basis for protein-protein interactions or for subcellular

compartment association. The function of GRPs is not yet known, but their diversity in

structure, gene expression pattern and subcellular protein localization indicates that GRPs

represent a diverse and not necessarily related set of proteins (reviewed in Sachetto-Martins et

al., 2000). Among the multiple functions in which GRPs of plants were proposed to be

involved, the following are particularly interesting in the light of a putative interaction with

AtPIN1: (i) Some GRPs were found to be cell wall attached, where they are proposed to act as

ligand attachment regions. Interaction of AtGRP-3 with a cell wall associated kinase was

recently demonstrated (Park et al., 2001). (ii) Other reports suggest a role of GRPs as linkers

between the cell wall and the intercellular compartment by mediating membrane-cytoskeleton

or membrane-cell wall interconnection (Marty et al., 1996; Sachetto-Martins et al., 2000).

These GRPs were also suggested to be involved in vesicle trafficking and internal cellular

transport due to their amino acid similarity to animal vesicle associated membrane proteins

(Archer et al., 1990; Marty et al., 1996). However, a role for GRP-AtPIN1 interaction during

these processes is speculative.
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4.6 Perspectives

The work presented in this thesis, describes the use of the DR5-GFP auxin response reporter

for the in vivo detection of relative auxin levels during gravitropic root growth of Arabidopsis

roots. The gravity induced cell-to-cell flow of auxin along the lower half of the root was

reported. Pharmacological and genetic analyses allowed the correlation of auxin flow with

root curvature, as well as the identification of influx- and efflux carrier dependent auxin

transport pathways. To analyze the contribution of different AtPIN proteins to gravity induced

auxin transport, the expression pattern of DR5-GFP in the Atpin2/eir1-1 mutant was

investigated. Analogous to this experiment, investigation of DR5-GFP expression during root

gravitropism of Atpin3 and Atpin4 mutants will be of interest. AtPIN3 and AtPIN4 proteins

are expressed in the Arabidopsis root tip, and the Atpin3 mutant was shown to exhibit a

delayed graviresponse. Crosses of DR5-GFP plants with Atpin3 and Atpin4 mutant plants

have already been performed in the course of this thesis.

Furthermore, DR5-GFP plants and crosses of DR5-GFP plants with Atpin mutants

represent a useful tool for pharmacological studies on the regulation of polar auxin transport.

In this context, the relation between calcium and auxin flows during root gravitropism will be

investigated by application of calcium chelators and release of caged calcium and the

subsequent analysis of DR5-GFP expression. Similarly, the influence of phosphorylation and

dephosphorylation events on polar auxin transport during root gravitropism will be analyzed

by testing the effect of different phosphatase and kinase inhibitors on the cell-to-cell auxin

flow in roots. Furthermore, treatment of DR5-GFP plants with drugs that interfere with AtPIN

protein localization, such as inhibitors of vesicle trafficking and actin destabilizing agents,

promises to shed light on the involvement of protein dynamics and mobility on auxin

transport. Parallel immuno-localization experiments of AtPIN proteins would allow a

correlation between changes in protein localization and alterations in auxin distribution. The

utilization of DR5-GFP plants is manyfold and not restricted to the analysis of relative auxin

levels in roots. In vivo analyses of auxin changes during gravi- and phototropic curvature of

hypocotyls, as well as the analyses of relative auxin levels in various organs of mutant plants

with defects in auxin sensitivity or polar auxin transport, are already in progress.

A different approach for the investigation of AtPIN regulation involves the isolation of

interaction partners of AtPIN proteins. In this report the screening of a plant cDNA library for
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interaction partners of AtPIN1 using the split-ubiquitin-technique for detection of protein

interaction was described. In a first approach, an aliquot of the cDNA library was screened

with the AtPIN1 bait, and led to the isolation of two different putative interaction partners, a

protein of unknown function and a glycine rich protein. The specificity of the interaction of

AtPIN1 with both proteins in the USPS has further to be confirmed by testing (i) a possible

interaction of the putative interactors with other bait proteins, (ii) the interaction of AtPIN1

with the putative interacting proteins, when these proteins are fused to the Nuba instead of the

Nub fragment, and (iii) the interaction of AtPIN1 with the putative interacting proteins, when

Nub and Cub fragments of the fusion proteins are exchanged. If these additional tests validate a

true interaction in USPS, other methods for the verification of this interaction, such as a co-

immunoprecipitation assays, have to be employed. Finally, a screening for interaction partners

of AtPIN1 and possibly also other AtPIN proteins with the entire cDNA library should result

in the isolation of further putative interacting candidates.
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8 Abstract

Gravitropism plays a major role in orienting plant organs. Root growth corresponding to the

gravity vector is the result of gravity perception, signal formation and transmission from

sensory cells to the growth response zone. Differential cell elongation at the site of root

growth has been proposed to be controlled by the plant hormone auxin. The auxin

transporting cells, however, were not identified. Here, the generation of DR5-GFP-LT-ER, an

in vivo auxin response reporter is described. Relative auxin levels, as depicted by GFP-LT-ER

fluorescence, were monitored at cellular resolution in the Arabidopsis root apex. The

symmetric auxin signal in quiescent center, columella initial and columella cells, was shown

to asymmetrically redistribute to the lateral root cap following change of gravity vector

orientation. The lateral transport of auxin from columella to lateral root cap cells depends on

auxin efflux carrier activity, while the basipetal transport of auxin from lateral root cap to the

elongation zone requires both, efflux and influx carrier activity. The efflux activity depends in

part on the regulation of AtPIN proteins, putative auxin efflux carriers. The split-ubiquitin-

system was used for the screening of interaction partners of AtPIN1. After validation of the

split-ubiquitin-system, a cDNA library of plant tissues was cloned into a split-ubiquitin prey

vector. AtPIN1 was used to screen an aliquot of the cDNA library for putative interaction

partners. An Arabidopsis protein of unknown function and an Arabidopsis glycine rich

protein were isolated from this screen. Specific interaction of these proteins with AtPIN1 has

yet to be confirmed.
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9 Zusammenfassung

Pflanzen können durch Wachstumskrümmung ihre Organe in eine bestimmte Richtung zur

Erdbeschleunigung ausrichten (Gravitropismus). Die Signalkette, die von der Aufnahme des

Schwerkraftreizes in Columellazellen der Wurzelspitze bis zur Umsetzung der

Wachstumsbewegung in der Elongationszone stattfindet, ist erst in Ansätzen bekannt. Es wird

vermutet, dass die endogene und gerichtete Verteilung des Pflanzenhormons Auxin das

differenzielle Wachstum in der Elongationszone steuert. Die Auxin-transportierenden Zellen

sind jedoch nicht bekannt. In dieser Arbeit wurden relative Mengen an endogenem Auxin in

Wurzeln mit Hilfe des DR5-GFP Reporterkonstruktes in vivo und mit zellulärer Auflösung

nachgewiesen. Bei Änderung des Schwerkraftreizes wurde gezeigt, dass ein zuerst

symmetrisch verteiltes Auxinsignal in Zellen des ruhenden Zentrums und Columellazellen,

nun asymmetrisch zu Zellen der Wurzelhaube entlang der Wurzelunterseite wandert. Es

wurde gezeigt, dass der laterale Auxinfluss von Columellazellen zu Zellen der distalen

Wurzelhaube Effluxcarrier-vermittelt ist, während der basipetale Auxinfluss von Zellen der

distalen Wurzelhaube zu Zellen der proximalen Wurzelhaube und weiter zur Elongationszone

Efflux- und Influxcarrier benötigt. Die Regulation des Efflux-gesteuerten Auxintransportes ist

zum Teil von der Aktivität der AtPIN Proteine abhängig. Das Split-Ubiquitin-System wurde

daher eingesetzt um Interaktionspartner von AtPIN1 in einer cDNA Expressionsbibliothek zu

finden. Nachdem die Interaktion zwischen Pflanzenproteinen mit Hilfe des Split-Ubiquitin-

Systems bestätigt wurde, wurde eine cDNA Bank aus pflanzlichem Gewebe in einen Split-

Ubiquitin-Vektor kloniert. Ein Teil dieser cDNA Bank wurde verwendet um mit einer

AtPIN1 Sonde mögliche Interaktionspartner zu identifizieren. Dabei konnten ein Arabidopsis

Protein mit unbekannter Funktion und ein Glycin-reiches Protein isoliert werden. Die

spezifische Interaktion dieser Proteine mit AtPIN1 wird überprüft werden müssen.
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10 Ausführliche Zusammenfassung

Pflanzen können durch Wachstumskrümmung ihre Organe in eine bestimmte Richtung zur

Erdbeschleunigung ausrichten (Gravitropismus). Wenn die Lage von Wurzeln in Richtung des

Schwerkraftvektors verändert wird, erfolgt eine Krümmung der Wurzel. Die zugrunde

liegende Signalkette ist erst in Ansätzen bekannt. Sie beginnt mit der Aufnahme des

Schwerkraftreizes in den statholitenhaltigen Zellen der Wurzelhaube (Calyptra) und endet in

einer Wachstumsbewegung, die in der Elongationszone der Wurzel stattfindet. Seit langem

wird das Pflanzenhormon Auxin als Botenstoff für das differentielle Wachstum im Bereich

der Wurzelkrümmung vermutet. Die genaue Richtung des Auxinflusses und die Identität der

Zellen, durch welche dieser Fluß stattfindet, sind jedoch nicht bekannt.

In dieser Arbeit wurden transgene Arabidopsis Pflanzenlinien hergestellt, die ein

Reporterkonstrukt enthalten, das aus dem durch Auxin indizierbaren Promotor DR5 und dem

Gen des grün fluoreszierenden Proteins, GFP, besteht (DR5-GFP). Aufgrund seiner

Fluoreszenz ist eine Detektion von GFP in lebenden Zellen möglich. GFP wurde mit einer

Signalsequenz versehen, welche für die Akkumulation von GFP-Molekülen im

Endoplasmatischen Retikulum der Zelle sorgt und so die Intensität des Fluoreszenzsignals

verstärkt. Es wurde gezeigt, dass DR5-GFP durch Zugabe von aktiven Auxinen ab einer

Konzentration von 0,1 µM in fast allen Geweben des Arabidopsiskeimlings induzierbar ist

und dass diese Induktion 90 Minuten nach Auxinzugabe erstmals mikroskopisch

nachgewiesen werden kann. Des weiteren zeigten Auxin-unbehandelte Keimlinge und adulte

Pflanzen GFP Signale an Stellen, für welche endogen erhöhte Auxinkonzentrationen entweder

schon gemessen wurden oder aufgrund von Wachstumsversuchen postuliert wurden.

DR5-GFP Pflanzen wurden verwendet, um relative Konzentrationen von endogenem Auxin

während des gravitropen Wurzelwachstums von Arabidopsis Keimlingen in vivo und mit

zellulärer Auflösung zu bestimmen. In vertikal gewachsenen Wurzeln wurden GFP-Signale in

Zellen des ruhenden Zentrums, in Columella-Initialen und in adulten Columellazellen der

Wurzelspitze nachgewiesen. Nach veränderter Gravistimulierung der Wurzeln durch Rotation

der Keimlinge in einem Winkel von 135° zum Schwerkraftvektor, konnte eine Änderung der

GFP-Verteilung festgestellt werden. GFP-Signale begannen zuerst in an der Wurzelunterseite

aufzutauchen und zwar in an Columellazellen angrenzenden Zellen der Wurzelhaube.

Schließlich waren Signale in der gesamten Wurzelhaube an der Wurzelunterseite zu sehen.
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Das chronologische Erscheinen von GFP-Signalen war ein Hinweis auf das Schwerkraft-

induzierte Entstehen eines Auxinflusses an der Wurzelunterseite.

Um die Beteiligung von Influx- und Efflux-gesteuertem Auxintransport an dem Schwerkraft-

induzierten Auxintransport zu untersuchen, wurden pharmakologische und genetische Studien

durchgeführt. Dabei wurden DR5-GFP Pflanzen mit Inhibitoren, welche spezifisch den

Influx- oder Efflux-gesteuerten Auxintransport inhibieren, behandelt. Des weiteren wurden

synthetische Auxine, die ausschließlich von Auxin Influx- oder Auxinefflux Carriern

transportiert werden, zu DR5-GFP Pflanzen zugegeben. Die Wirkung dieser Substanzen auf

die Kinetik der Wurzelkrümmung sowie auf die Verteilung des GFP Signals vor und während

der Wurzelkrümmung wurde untersucht. In einem weiteren Versuch wurde die agravitrope

Auxintransportmutante Atpin2/eir1-1 mit dem DR5-GFP Konstrukt transformiert. Die GFP-

Verteilung in Keimlingen der Atpin2/eir1-1 Mutante wurde analysiert. Diese Versuche

zeigten, dass die Wurzelkrümmung immer mit einem Auxintransport von Columellazellen zu

Zellen der Wurzelhaube und Elongationszone an der Wurzelunterseite einhergeht. Der laterale

Auxintransport von Columellazellen zu Zellen der distalen Wurzelhaube ist dabei

ausschließlich Effluxcarrier vermittelt. Der basipetale Auxintransport von Zellen der distalen

Wurzelhaube zu Zellen der proximalen Wurzelhaube und weiter zu Zellen der

Elongationszone ist dagegen sowohl Efflux- als auch Influxcarrier vermittlelt.

Die Kontrolle des Efflux-gesteuerten Auxintransportes ist noch weitgehend unbekannt. Es ist

aber wahrscheinlich, dass eine Regulation von AtPIN Proteinen, putativen Effluxcarriern,

einen Einfluss auf den Efflux von Auxin hat. Die Identifizierung von Proteinen, die mit

AtPIN Proteinen interagieren, ist daher von besonderem Interesse. Das Split-Ubiquitin-

System wurde eingesetzt, um Interaktionspartner des AtPIN1 Proteins in einer Expressions-

cDNA Bibliothek zu finden. Ein Teil dieser Bibliothek wurde verwendet um mit einer

AtPIN1 Sonde mögliche Proteininteraktionspartner zu identifizieren. Dabei wurden zwei

Proteine, die möglicherweise mit AtPIN1 interagieren, isoliert. Es handelt sich dabei um ein

Protein von unbekannter Funktion und ein Protein der Familie von Glycin-reichen-Proteinen.

Die spezifische Interaktion dieser Proteine mit AtPIN1 wird überprüft werden müssen.
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