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Summary 

 

Chapter one 

 

Plants have evolved a sophisticated innate immune system that is composed of 

multiple layers. The integration of signals derived from these layers constitutes a crucial 

prerequisite for efficient defence. Resistance (R) proteins serve as direct or indirect 

recognition receptors for pathogen-derived isolate-specific effector proteins. Members of the 

superfamily of WRKY transcription factors regulate plant responses towards pathogens 

either as activators or repressors. The barley (Hordeum vulgare) R protein MLA confers 

resistance towards the powdery mildew Blumeria gramins f. sp. hordeii. MLA physically 

interacts through its N-terminal coiled coil (CC) domain with the transcriptional repressors 

HvWRKY1 and HvWRKY2 in an effector-dependent manner. This effector-stimulated 

interaction provides a mechanistic model how plants can integrate defence-related signals 

from different recognition layers and thereby modulate expression of defence-associated 

genes. Arabidopsis thaliana lacks a functional homologue of MLA and is susceptible towards 

the powdery mildew Golovinomyces orontii. Similar to barley, mutations of the functional 

homologues of HvWRKY1 and HvWRKY2, namely AtWRKY18 and AtWRKY40, in 

Arabidopsis confer resistance towards G. orontii.  

 

In this work I analyzed structural and functional conservation between the 

transcriptional repressors from barley (HvWRKY1 and HvWRKY2) and their homologues in 

Arabidopsis (AtWRKY18 and AtWRKY40). My results revealed that AtWRKY18 and 

AtWRKY40 can associate via a conserved C-terminal motif with selective R-gene encoded 

proteins. Identification of the previously characterized R protein HRT, as putative interactor of 

AtWRKY18 and AtWRKY40, provides a suitable model for further studies.  

 

In addition, genetic studies using the Atwrky18 AtwrkyY40 double mutant identified 

differential requirements for the defence-related genes EDS1, CYP81F2, PEN2, PEN1 and 

PAD3 in pre- and post-invasive resistance towards G. orontii. The results support the central 

role of EDS1 in plant immunity and indicate a novel PEN2-independened function for 

CYP81F2 in post-invasive resistance. 



The solution structure of the MLA CC domain was used as a basis to further 

investigate MLA-dependent associations with HvWRKY1 and HvWRKY2. The crystal 

structure predicts homo-dimerization of the receptor in vivo. Analysis of structure-guided 

targeted amino acid substitution variants of MLA in yeast provided the first evidence for 

receptor self-association in vivo. 

 

 

Chapter two 

 

Members of the Glucan Synthase-Like (GSL) family are believed to be involved in the 

synthesis of the cell wall component callose in specialized locations throughout the plant. I 

identified two members of the Arabidopsis GSL gene family, GSL8 and GSL10, that are 

independently required for male gametophyte development and plant growth. Analysis of 

gsl8 and gsl10 mutant pollen during development revealed specific malfunctions associated 

with asymmetric microspore division. GSL8 and GSL10 are not essential for normal 

microspore growth and polarity, but have a novel role in entry of microspores into mitosis. 

Impaired function of GSL10 also leads to perturbation of microspore division symmetry, 

irregular callose deposition and failure of generative cell engulfment by the vegetative cell 

cytoplasm. Silencing of GSL8 or GSL10 in transgenic lines expressing gene-specific dsRNAi 

constructs resulted in a dwarfed growth habit, thereby revealing additional and independent 

wild-type gene functions for normal plant growth. 

 

 

 

 

 

 

 

 



Zusammenfassung 

 

Kapitel eins 

 

Pflanzen haben ein differenziertes immanentes Immunsystem entwickelt, welches 

sich aus mehreren Ebenen zusammensetzt. Die Integration von Signalen, die diesen 

unterschiedlichen Ebenen entstammen, stellt eine entscheidende Voraussetzung für die 

Effizienz der pflanzlichen Abwehr dar.   Resistenzproteine (R Proteine) fungieren als direkte 

oder indirekte Erkennungsrezeptoren für Pathogen-abgeleitete isolat-spezifische 

Effektorproteine. Mitglieder der Superfamilie von WRKY Transkriptionsfaktoren regulieren die 

pflanzliche Immunantwort entweder als Aktivatoren oder Repressoren. Das Gerste (Hordeum 

vulgare) R Protein MLA vermittelt Resistenz gegenüber dem Mehltaupilz Blumeria gramins f. 

sp. hordeii. MLA interagiert physikalisch und effektorabhängig durch seine N-terminale 

Coiled-coil (CC) Domäne mit den transkriptionellen Repressoren HvWRKY1 und HvWRKY2. 

Diese effektorstimulierte Interaktion bietet ein mechanistisches Modell, aus dem abgeleitet 

werden kann, wie Pflanzen abwehrverwandte Signale aus unterschiedlichen Ebenen der 

Pathogenerkennung integrieren und dadurch die Expression Abwehr-assozierter Gene 

abstimmen können. Arabidopsis thaliana besitzt kein funktionales MLA Homolog und ist 

anfällig gegenüber dem Mehltaupilz Golovinomyces orontii. Ähnlich wie im Gerstesystem 

vermittelt die gleichzeitige Mutation der funktionalen Homologen von HvWRKY1 und 

HvWRKY2, namentlich AtWRKY18 und AtWRKY40, in Arabidopsis Resistenz gegenüber G. 

orontii. 

 

In der vorliegenden Arbeit wurde die strukturelle und funktionelle Konservierung 

zwischen den transkriptionellen Repressoren aus Gerste (HvWRKY1 und HvWRKY2) und 

ihren Homologen aus Arabidopsis (AtWRKY18 und AtWRKY40) untersucht. Die Ergebnisse 

verdeutlichen, dass AtWRKY18 und AtWRKY40 - ähnlich wie ihre funktionellen Homologe 

aus Gerste - in der Lage sind, durch ein C-terminales Motiv mit bestimmten R Gen-codierten 

Proteinen zu assoziieren. Die Identifikation des bereits charakterisierten R Proteins HRT als 

putativen Interaktionspartner von AtWRKY18 und AtWRKY40 stellt ein geeignetes Modell für 

weitere Untersuchungen dar. 

 



In einer ergänzenden genetischen Studie konnten unterschiedliche Erfordernisse für 

die der Pflanzenabwehr zugeordneten Gene EDS1, CYP81F2, PEN2, PEN1 und PAD3, in 

der prä- und post-invasiven Resistenz von Arabidopsis Atwrky18 Atwrky40 Doppelmutanten, 

gegenüber dem Mehltaupilz G. oronii, identifiziert werden. Die Ergebnisse bestätigen die 

zentrale Funktion von EDS1 in der pflanzlichen Immunität und deuten auf eine bislang 

unbekannte, PEN2 unabhängige Funktion von CYP81F2 hin. 

 

Die Raumstruktur der MLA CC Domäne wurde als Grundlage zur weiterführenden 

Analyse der MLA-abhängigen Interaktion mit HvWRKY1 und HvWRKY2 genutzt. Die 

Kristallstruktur deutet auf eine Homo-Dimerisierung des Rezeptors in vivo hin. Erste 

Hinweise für eine Selbstassoziation von MLA in vivo erbrachte die Analyse von gerichteten, 

von der Kristallstruktur abgeleiteten Aminosäureaustausch-Varianten des Rezeptors in Hefe.  

 

 

Kapitel zwei  

 

Es wird angenommen, dass Mitglieder der Familie der Glucan Synthase-Like (GSL) Proteine 

an der Synthese der Zellwandkomponente Callose in spezifischen Zellkompartimenten 

innerhalb der Pflanze beteiligt sind. Innerhalb meiner Arbeit habe ich zwei Mitglieder der GSL 

Genfamilie identifiziert, GSL8 und GSL10, die unabhängig voneinander für die Entwicklung 

des männlichen Gametophyten sowie für das Pflanzenwachstum benötigt werden. Die 

Analyse der Pollenentwicklung in gsl8 und gsl10 Mutanten ließ spezifische Defekte im 

Kontext der asymmetrischen Zellteilung der Microsporen erkennen. GSL8 und GSL10 sind 

für das normale Mikrosporenwachstum oder deren Zellpolarität nicht essentiell, haben aber 

eine bisher unbekannte Rolle für den Eintritt der Mikrospore in die Mitose. Die 

Beeinträchtigung der Funktion von GSL10 führt zu Störung der Teilungssymmetrie, 

irregulärer Calloseablagerung und fehlerhafter Umschließung der generativen Zelle durch 

das Cytoplasma der vegetativen Zelle. Beeinträchtigung der Transkription von GSL8 und 

GSL10 in transgenen Linien mittels genspezifischer dsRNAi Konstrukte führte zum Auftreten 

von Zwergwuchs bei den entsprechenden Pflanzen. Dieser Befund zeigt zusätzliche 

unabhängige Genfunktionen von GSL8 und GSL10 für das vegetative Wachstum auf. 
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CC domain (1.2.7) is based on Maekawa et al. (under review in Cell Host & Mircobe). 
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1.1 Introduction 
 
As in mammals, plants have to combat a large variety of different pathogens and pests such 

as viruses, bacteria, fungi, oomycetes and insects throughout their life cycle (Dangl and 

Jones, 2001). This plethora of invading microbes represents a wide range of different life 

styles and infection strategies.   Pathogenic bacteria employ natural openings e.g. stomata 

and hydathodes, or wound sites to enter the plant tissue and proliferate in the apoplast. 

Some biotrophic fungi and oomycetes invaginate feeding structures (haustoria) into the 

plasma membrane of their living host cell. Necrotrophy instead is associated with the feeding 

of the pathogen on dead plant tissue (Jones and Dangl, 2006). Despite this, disease is a 

rather rare case in nature. In fact, most plant species are resistant towards a wide range of 

potential pathogens (Nürnberger et al., 2004). This is accomplished because plants have 

evolved a sophisticated multi-layered immune system to sense microbial invaders and to 

mount appropriate defence responses (Jones and Dangl, 2006).  However, the underlying 

mechanisms that enable plants to integrate signals from different defence layers, including 

extra- and intracellular perception, transcriptional reprogramming and the delivery of anti-

microbial compounds, in order to restrict a specific pathogen are still poorly understood. 

 

 

1.1.1  Non-host resistance 
 

The phenomena that a plant species is resistant towards all genetic variants of a 

pathogen species is termed “species” or “non-host” resistance (NHR) and defines the 

pathogen as non-adapted (Lipka et al., 2008). Infrequent changes in the host range of 

phytopathogens indicate the integrity of this species immunity (Heath, 2000). The durability 

of NHR is believed to be the consequence of several successive layers that comprise 

constitutive plant barriers and inducible host reactions (Thordal-Christensen, 2003; 

Nürnberger and Lipka, 2005).  

 

Activation of defence responses essentially requires perception of the potential pathogen 

by the host and the ability to differentiate “self” from “non-self”. Therefore, plants possess a 

surveillance system of pattern recognition receptors (PRRs). PRRs residing at the plasma 

membrane usually consist of an extracellular ligand-binding-domain, often comprising 

leucine-rich repeats (LRR), a single trans-membrane domain and an inter-cellular 

serine/theronine kinase-signalling domain. Such PRRs were termed receptor-like kinases 

(RLKs). In the model plant Arabidopsis thaliana (Arabidopsis; At) genome 610 RLKs and 56 

receptor-like proteins (RLPs), which are of similar structure but lack the kinase domain, have 
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been identified (Bittel and Robatzek, 2007). PRRs perceive so called microbe-associated 

molecular patterns (MAMPs), which constitute highly conserved molecular signatures, that 

identify whole classes of microbes but are absent from the host (Boller and Felix, 2009). 

Currently, the best characterized PRR/MAMP pair in plants is the Arabidopsis Flagellin 

Sensing 2 (FLS2) receptor that recognizes a 22 amino acid epitope (flg22) from bacterial 

flagellin (Felix et al., 1999; Gómez-Gómez and Boller, 2000). The role of FLS2 in plant 

defence is underpinned by the observation that fls2 mutant plants exhibit enhanced disease 

susceptibility towards bacterial infections (Zipfel et al., 2004). Elongation Factor-Tu Receptor 

(EFR) constitutes another PRR described in the literature to mount defence responses upon 

recognition of the epitope elf18 from bacterial EF-Tu (Zipfel et al., 2006). Chitin, the major 

component of fungal cell walls, is known as an elicitor of plant defence since many years 

(Boller, 1995). More recent publications show that the RLK CERK1 is essential for the chitin 

response in Arabidopsis (Petutschnig et al., 2010).  

 

Generally, MAMP-triggered activation of PRRs induces rapid ion fluxes across the 

plasma membrane, the generation of reactive oxygen species (ROS), nitric oxide (NO) and 

ethylene, as well as the subsequent synthesis of antimicrobial compounds and the deposition 

of callose (Zipfel and Felix, 2005; Bittel and Robatzek, 2007). Signalling from the activated 

receptor to downstream components often involves MAPK cascades (Asai et al., 2002; 

Menke et al., 2005; Zipfel and Felix, 2005; Suarez-Rodriguez et al., 2007). The signal 

transduction culminates in transcriptional reprogramming of defence-related genes that 

frequently involve the action of WRKY-type transcription factors (Asai et al., 2002; Zipfel et 

al., 2004; Andreasson et al., 2005; Journot-Catalino et al., 2006; Xu et al., 2006; Shen et al., 

2007). Successful growth inhibition of a potential pathogen by these processes, initiating 

from PRR activation, is termed MAMP-trigged immunity (MTI).  

 

Epidermal waxes and carbohydrate-rich cell walls display complex designs, which 

constitute the first physical barrier for invading pathogens (Sarkar et al., 2009). Many 

haustoria-forming fungal parasites cross this barrier by penetrating the cell wall. Plants 

respond to such entry attempts by a rearrangement of their actin cytoskeleton followed by 

redistribution of secretory-pathway organelles towards the site of fungal host cell entry 

(Schmelzer, 2002; Takemoto et al., 2003). This leads to the deposition of de novo 

synthesized cell wall components, such as cellulose, β-1,3-glucan (callose), pectins and 

phenolics in the paramural space (Aist, 1976). These local appositions are termed papilla 

and are thought to reinforce the cell wall in order to restrict the invading pathogen. Although 

phytopathogenic bacteria do not enter their host cell, cell wall remodelling in Arabidopsis 

occurs as well in response to bacterial pathogens, as in the interaction with non-adapted 
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Pseudomonas syringae (Ps) pv. phaseolicola (Lipka et al., 2008). Synthesis of papilla-

associated callose in Arabidopsis requires Glucan Synthase-Like (GSL) 5 (Jacobs et al., 

2003; Nishimura et al., 2003). In contrast to the intuitive assumption of fortification, gsl5 

mutants, that lack papilla-associated callose, are actually more resistance towards the 

adapted powdery mildew fungi Erysiphe cichoracearum and Golovinomyces orontii (Vogel 

and Somerville, 2000; Jacobs et al., 2003; Nishimura et al., 2003).   

   

Arabidopsis PEN (Penetration) gene products have been identified to limit the entry 

success of non-adapted powdery mildews like Blumeria gramins f. sp. hordei  (Bgh) and 

Erysiphe pisi (Collins et al., 2003; Lipka et al., 2005; Stein et al., 2006). Consistent with the 

reorganization of the secretory pathway, PEN1 was shown to encode a plasma membrane-

resident syntaxin that focally accumulates in papilla formed in response to non-adapted and 

adapted powdery mildews (Collins et al., 2003; Meyer et al., 2009). PEN1 assembles with 

SNAP33 and VAMP721/722 into a ternary SNARE (soluble N-ethylmalemide-sensitive 

attachment protein receptor) complex that is thought to tether vesicles containing unknown 

cargo to the plasma membrane (Kwon et al., 2008). Arabidopsis plants deficient in pen1 

exhibit enhanced entry of the non-adapted hemibiotrophic oomycete Phytophthora infestans 

and impaired basal resistance to the necrotrophic ascomycete Plectosphaerella cucumerina 

(Lipka et al., 2005; Stein et al., 2006). Since pen1 mutants still show GSL5-dependent 

callose deposition at fungal entry sites as well as in haustorial encasements, the coordination 

of the timely and localized delivery of defence-related compounds probably requires multiple 

pathways (Meyer et al., 2009).  

 

In fact, components of a second secretory pathway have been identified, including PEN2 

and PEN3, which are required for flg22-stimulated GSL5-mediated extracellular 

accumulation of callose in Arabidopsis seedlings (Clay et al., 2009). PEN2 encodes a 

glycoside hydrolase that, together with the plasma membraneresident ATP (adenosine 

triphosphate)-binding cassette (ABC) transporter PEN3, is part of an entry control 

mechanism that mediates broad spectrum anti-fungal defence (Lipka et al., 2005; Stein et al., 

2006). PEN2 localizes to peroxisomes that focally accumulate at incipient entry sites of 

Arabidopsis cells inoculated with the non-adapted barley (Hordeum vulgare; Hv) powdery 

mildew Bgh (Lipka et al., 2005). Recently, PEN2 was shown to act as an atypical myrosinase 

in the activation of 4-methoxyindol-3-ylmethylglucosinolate (4MI3G), a tryptophan-derived 

indol glucosinolate (Bednarek et al., 2009). Glucosinolates are sulfur-rich, anionic natural 

products that upon hydrolysis by endogenous myrosinases produce several different 

products (e.g., isothiocyanates, thiocyanates, and nitriles). The hydrolysis products have 

diverse biological activities, e.g., as defence compounds. For humans these compounds 
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function as cancer-preventing agents, biopesticides, and flavour compounds (Halkier and 

Gershenzon, 2006). The final step in 4MI3G biosynthesis is mediated by the P450 

monooxygenase CYP81F2 that converts indol-3-ylmethylglucosinolate (I3G) to 4MI3G. 

Consistently, cyp81f2 mutants, that lack 4MI3G, were found to be more susceptible to non-

adapted powdery mildew fungi (Bednarek et al., 2009). Generally, the activation of 

glucosinolates occurs through a tissue damage-trigger, which allows mixture of the 

compartmentalized enzyme with the substrate. This mechanism of glucosinolate generation 

is particularly effective against chewing herbivores (Halkier and Gershenzon, 2006). The 

glucosinolate-activation pathway described for PEN2 occurs in intact tissue, demonstrating 

its role in anti-microbial defence (Bednarek et al., 2009; Clay et al., 2009). These findings are 

further supported by several recent publications describing the activity of glucosinolates in 

plant microbial interactions (Consonni et al., 2010; Sanchez-Vallet et al., 2010; Schlaeppi et 

al., 2010).  

 

Beside glucosinolates, phytoalexins are antimicrobial secondary metabolites produced 

de novo by plants in response to biotic and abiotic stresses (Bailey and Mansfield, 1982). To 

date 44 phytoalexins have been isolated from cultivated and wild crucifers (Pedras et al., 

2010). The major phytoalexin of Arabidopsis is camalexin (3-thiazol-2-yl-indole). Camalexin 

formation is induced upon infection with biotrophic and necrotrophic pathogens, including 

bacteria, viruses, fungi and oomycetes (Glawischnig, 2007). The biosynthesis of camalexin 

originates, as is the case for 4MI3G, from tryptophan. The final step, the conversion of 

dihydro-camalexic acid to camalexin, is mediated by the P450 enzyme Phytoalexine 

Deficient 3 (Schuhegger et al., 2006). Analyses of pad3 mutants, which lack camalexin, 

indicate that accumulation of this phytoalexin contributes to disease resistance to some 

pathogens, whereas it has no effect on others (Kliebenstein, 2004; Ferrari et al., 2007). More 

recent publications implicate a sequential role for glucosinolates and camalexin in pathogen 

restriction (Bednarek et al., 2009; Schlaeppi et al., 2010). Based on these findings camalexin 

is thought to act later in defence, potentially after microbial host cell entry. 

 

To date, NHR is best characterized for the incompatible interaction of Arabidopsis with 

the non-adapted biotrophic mildew fungi Bgh and E. pisi. Mutant plants affected in pre-

invasive resistance, like pen1, pen2 and pen3 that exhibit enhanced entry-rates of these two 

non-adapted pathogens, are still resistant. This is due to a second post-invasive defence 

layer that contributes to NHR (Lipka et al., 2005). Post-invasive immunity is often associated 

with a localized cell death response at the site of infection. This very rapid and localized 

hypersensitive reaction (HR) of the host cell consequently interferes with the biotrophic 

lifestyle of these mildew fungi. Execution and control of this cell death reaction depends on 
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the lipase like proteins Enhanced Disease Susceptibility 1 (EDS1), Phytoalexin Deficient 4 

(PAD4) and Senescence-Associated Gene 101 (Lipka et al., 2008). Genetic and biochemical 

analysis revealed theses proteins to constitute a regulatory node that is essential for the 

activation of salicylic acid (SA) signalling and isolate-specific immunity mediated by a subset 

of resistance (R) proteins (Wiermer et al., 2005). SA-mediated defence responses are mainly 

effective against biotrophic pathogens, whereas jasmonic acid (JA)- or ethylene (ET)-

mediated responses are predominantly active against necrotrophs and herbivorous insects 

(Glazebrook, 2005). Crosstalk between these phytohormone signalling pathways is believed 

to fine tune defence responses towards encountered pathogens (Pieterse and Dicke, 2007). 

Single mutants in eds1, pad4 or sag101 are only marginal compromised in NHR towards Bgh 

and E. pisi. Combination of mutants affected in pre- and post-invasive resistance however 

act synergistically. This was demonstrated by the successful colonization by E. pisi of 

Arabidopsis pen2 pad4 sag101 triple mutants (Lipka et al., 2005). Therefore, NHR toward 

biotrophic powdery mildews is thought to act though two successive multi-component 

defence layers (Lipka et al., 2008). 

 

     

1.1.2  NBS-LRR receptor-mediated immunity 
 

Pathogens that successfully overcome non-host defence encounter an additional, 

basically intracellular, layer of the plant immune system, mainly operational through 

resistance (R) gene-encoded cultivar-specific immune receptors. R proteins perceive specific 

effector molecules delivered by the pathogen into the host cell mainly to increase their own 

fitness (Jones and Dangl, 2006). Such effector molecules were originally termed avirulence 

factors (Flor, 1971). Perception of an avirulence factor by its R protein counterpart results in 

the activation of a robust immune response leading to resistance. Such a host pathogen 

interaction is defined as incompatible and the pathogen is defined as avirulent. 

 

Intracellular R gene products generally belong to the class of NBS-LRR proteins. They 

were named after their central nucleotide binding site (NBS) and C-terminal LRR domains 

and constitute a subfamily of STAND (signal transduction ATPases with numerous domains) 

NTPases, found in archea, bacteria, fungi, plants and animals (Lelpe et al., 2004). Their NBS 

domains show homology to human APAF1 (Apoptotic Protease Activating Factor 1), the 

central component of the human apoptosome and its Caenorhabditis elegans ortholog CED4 

(Caenorhabitis elegans death 4;(van der Biezen and Jones, 1998). In plants, NBS-LRR 

proteins are subdivided into two classes based on their N-terminal domains. One class 

possesses an N-terminal Toll/Interleukin1 receptor (TIR) domain with homology to the 
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intercellular signalling domains of Drosophila Toll and mammalian Interleukin1 receptors 

(TIR-NBS-LRR), whereas the other contains a coiled-coil (CC) domain (Dangl and Jones, 

2001).  

 

R proteins perceive their cognate effectors either directly (Receptor Ligand Model) or 

indirectly by monitoring the integrity of their cellular targets (Rafiqi et al., 2009). Direct 

recognition was originally shown for the rice (oryza sativa; Os) CC-NB-LRR Pi-ta that confers 

resistance to the AvrPita effector from Magnaporthe grisea (Jia et al., 2000). In contrast, the 

Arabidopsis CC-NB-LRR protein RPS5 recognizes the degradation of the protein kinase 

PBS1 by the Ps effector protein HopAR1 (Shao et al., 2003), and modifications of the 

negative defence regulator RIN4 by the Ps effectors AvrRpm1, AvrB or AvrRpt2 are monitored by 

the  Arabidopsis R proteins RPM1 and RPS2 (Axtell and Staskawicz, 2003; Mackey et al., 

2003). Effector-mediated R protein activation induces a pattern of cellular responses 

(including an increase in cytosolic calcium, depolarisation of the plasma membrane, a 

localised ROS burst and NO production), that show significant overlap with those triggered 

by PRR activation (Nimchuk et al., 2003; Nürnberger et al., 2004). Effector recognition is 

prevalently associated with the death (HR) of the host cell. HR constitutes a significant cost 

for the plant. Therefore, it seems apparent that the mechanism underlying R protein 

activation must be tightly regulated. 

 

Forward genetic screens in Arabidopsis and tobacco identified components of the 

eukaryotic chaperon machinery as required for several R protein functions (Schulze-Lefert, 

2004). HSP90 (Heat Shock Protein 90) for example is required for resistance mediated by 

Arabidopsis RPM1 and tobacco N, and association of HSP90 with both receptors has been 

shown in planta (Hubert et al., 2003; Takahashi et al., 2003). The co-chaperon-like proteins 

RAR1 (Required for MLA12 Resistance) and SGT1 (Suppressor of the G2 allele of SKP1), 

which are essential for resistance mediated by some R proteins, can form complexes with 

HSP90 (Takahashi et al., 2003). SGT1 and HSP90 interact with barley MLA and positively 

affect receptor abundance (Bieri et al., 2004). RPM1 requires RAR1 and HSP90 for 

resistance against Ps, whereas HRT-mediated Turnip crinkle virus (TCV) resistance occurs 

independent of RAR1 and SGT1 (Austin et al., 2002; Hubert et al., 2003; Chandra-Shekara 

et al., 2004). More recently the ATPase CRT1 (Compromised Recognition of TCV) was 

shown to be required for HRT-mediated TCV resistance and to interact with several R 

proteins, including HRT (Kang et al., 2008).  Interestingly, CRT1 can associate with HSP90 

and overexpression experiments with wild-type and mutant forms of RCY1 suggest 

preferential association of CRT1 with immune receptors prior to their effector-triggered 

activation (Kang et al., 2010). The presence of R proteins in such multi-component 
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complexes might, apart from correct protein folding and stabilization, facilitate conformational 

changes required for their activation (Rafiqi et al., 2009). 

 

The NBS domain of plant R proteins has been proposed to function as a molecular 

switch. In this model, transition between the active and inactive conformation of the receptor 

is achieved by ADP/ATP exchange and subsequent hydrolysis of ATP. More precisely, the R 

protein is believed to exist in the absence of its cognate effector in an inactive, ADP bound 

state. The recognition event stimulates the exchange of ADP to ATP and adoption of the 

active conformation, associated with the release of its signalling potential. The ATPase 

function of the protein attenuates the signalling function and returns the protein to its inactive 

state (Takken et al., 2006). Consistent with this idea, the crystal structure of human APAF1 

revealed ADP bound to its nucleotide binding pocket and biochemical analysis implicate the 

ATPase activity in downstream signalling (Riedl et al., 2005). Nucleotide binding requires the 

conserved ATPase WALKER A (P-loop) motif and several R proteins, including I2, N, L6, 

RPS2 and RPS5, impaired in nucleotide binding by a P-loop mutation, are rendered inactive 

(Dinesh-Kumar et al., 2000; Tao et al., 2000; Tameling et al., 2002; Ade et al., 2007). 

Furthermore, some R proteins affected in ATP hydrolysis by a mutation in a second 

conserved motif (WALKER B), have been found to be auto-active (Tameling et al., 2002; Ade 

et al., 2007; van Ooijen et al., 2008). Thus, ATP binding rather than its hydrolysis is critical 

for receptor activity. CED4 was found to preferentially bind ATP (Yan et al., 2005) and the 

recently described octameric crystal structure of the CED4 apoptosome, together with in vitro 

studies, suggest CED4 activity to occur independent of ATP hydrolysis (Yan et al., 2005; Qi 

et al., 2010). Therefore, different mechanisms of R protein activation might as well exist in 

plants.  

 

CED4 forms an asymmetric dimer that adopts its octameric structure in a stimulus-

dependent manner (Yan et al., 2005; Qi et al., 2010). In plants, homomeric assemblies of R 

proteins have been reported e.g. for N and RPS5 (Mestre and Baulcombe, 2006; Ade et al., 

2007). The TIR-NBS-LRR immune receptor N confers resistance to tobacco mosaic virus 

(TMV) upon recognition of the p50 helicase domain of the TMV replicase protein (Erickson et 

al., 1999b; Erickson et al., 1999a). Transient expression of N in Nicotiana benthamiana 

followed by immunoprecipitation indicates receptor oligomerization in the presence of the 

elicitor. Inactive P-loop mutants of N are inhibited in elicitor-dependent oligomerization, 

whereas mutations in a second conserved motif, RNBS-A, did not affect N coprecipitation, 

but still impaired resistance (Mestre and Baulcombe, 2006). Previous studies described a 

contribution of SGT1 and EDS1 to N-mediated resistance (Peart et al., 2002a; Peart et al., 

2002b). Virus-induced gene silencing (VIGS) of EDS1 did not affect N oligomerization, 
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whereas in SGT1 silenced plants self-association was undetectable (Mestre and Baulcombe, 

2006). The authors concluded that oligomerzation of N is an early event in response to TMV, 

that occurs upstream of EDS1 and is not exclusively capable for resistance. 

 

Several genetic analyses show that mutation in the downstream component eds1 mainly 

interfere with resistance mediated by TIR-NB-LRR type R proteins, whereas most 

characterized CC-NB-LRR immune sensors depend on the plasma membrane-anchored 

protein NDR1 (Parker et al., 1996; Aarts et al., 1998; Feys et al., 2001). Despite this 

paradigm some exceptions have been reported. HRT encodes a CC-NB-LRR protein that 

inhibits the spread of TCV in an EDS1-dependent manner (Chandra-Shekara et al., 2004). A 

second example is RPW8. This atypical R protein requires EDS1 to confer broad spectrum 

powdery mildew resistance but lacks the NB-LRR domains (Xiao et al., 2001). EDS1 mutants 

are hypersusceptible to virulent pathogens, indicating a role in basal defence (Parker et al., 

1996). EDS1 and PAD4 are required equally for SA induction and their transcriptional 

activation is in turn stimulated by SA. This positive feedback loop is thought to be essential 

for defence amplification (Falk et al., 1999; Jirage et al., 1999; Feys et al., 2001). EDS1-

deficient plants are completely compromised in the initiation of HR-associated cell death, 

whereas PAD4 mutants develop cell death that, in many cases, is not capable to restrict 

pathogen growth (Feys et al., 2001). This suggests a more prominent role for EDS1 in 

accomplishing defence responses. However, the signal transduction pathway downstream of 

R protein activation is still poorly understood. 

 

 

1.1.3 MLA-mediated resistance 
 

The polymorphic barley MLA locus encodes allelic CC-NBS-LRR type immune receptors 

each recognizing a distinct isolate-specific effector of the pathogenic powdery mildew fungus 

Bgh (Seeholzer et al., 2010). To date more than 30 MLA resistance specificities have been 

reported. This locus, located on chromosome H1, encodes the largest number of known R 

proteins to Bgh (Jorgensen, 1994). The extreme functional diversification at this locus 

constitutes a good source for genetic analysis. 

       

MLA immune receptors share >90% sequence identity (Halterman et al., 2001; Shen et 

al., 2003; Halterman and Wise, 2004). Analysis of the nucleotide diversity of a MLA cDNA 

library, containing 23 receptor variants, identified 34 sites of positive selection, that were 

predominantly located in the LRR. The domain-restrictive nature of this positive selection site 

pattern implicates the LRR domain in effector recognition and moreover, suggests direct 
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recognition of the effector by MLA (Seeholzer et al., 2010). This is in agreement with 

previous experiments, using reciprocal domain swap chimeras of MLA1 and MLA6 that show 

distinct LRRs to mediate effector-specificity (Shen et al., 2003). Together theses data provide 

strong evidence for direct recognition of the cognate effectors through the polymorphic LRR 

domain encoded by allelic MLA variants. Resistance mediated by MLA is coincident with the 

appearance of an HR. The timing of HR initiation, mediated by MLA, was found to be 

variable between different alleles. MLA1 and MLA6 mount a quick cell death response at the 

stage of haustorium differentiation, whereas MLA3, MLA7 and MLA12 initiated HR much 

slower, at the stage of secondary hyphae elongation (Freialdenhoven et al., 1994; Boyd et 

al., 1995). On the other hand, MLA12 overexpression induces rapid effector-dependent 

defence responses (Shen et al., 2003). This suggests MLA steady state levels to be critical 

for effective defence and is further supported by the requirement of HSP90, RAR1 and SGT1 

for different MLA resistance specificities (Shen et al., 2003; Bieri et al., 2004). 

 

Cell-autonomous localisation studies, using fluorescent-tagged MLA10 identified the 

protein in the nucleus and in the cytosol. After inoculation with avirulent Bgh isolates, the 

nuclear pool of MLA10 was found to be enriched and similar results were observed by 

immuno-blot analyses with transgenic MLA1-HA plants. Nuclear exclusion of MLA10, by 

fusing the protein to a nuclear export signal, compromised resistance to Bgh, indicating a 

requirement of the nuclear MLA pool for defence (Shen et al., 2007). Nucleocytoplasmic 

localisation was reported for other immune receptors, like the TIR-NBS-LRR proteins RPS4 

and N (Burch-Smith et al., 2007; Wirthmueller et al., 2007). Nuclear accumulation of the TIR-

NB-LRR receptor N is required for HR initiation (Burch-Smith et al., 2007). The N receptor is 

thought to interfere with the transcriptional machinery by interaction with distinct members of 

the squamosa promoter-like (SPL) family of transcription factors (Shen and Schulze-Lefert, 

2007). Interestingly, another TIR-NB-LRR R protein, RRS1, possesses a C-terminal WRKY 

domain extention that is shared by all WRKY transcription factors and binds to a cis-

regulatory DNA element, termed W-box (Ülker and Somssich, 2004; Noutoshi et al., 2005). 

RSS1 interacts in the nucleus with its cognate effector PopP2 derived from the bacterial 

pathogen Ralstonia solanacearum, and a mutation in its WRKY domain results in conditional 

activation of defence responses and loss of W-box binding (Rushton et al., 2010). Beside 

RRS1, AtWRKY16 and AtWRKY19 belong to the same class of NBS-LRR-WRKY proteins. 

Therefore, these immune receptors may enable a mechanistic shortcut in effector-triggered 

R protein activation, leading to transcriptional reprogramming (Rushton et al., 2010). 

 

Yeast 2-hybrid experiments, using the highly invariant CC domain fragment (MLA1-46) of 

MLA, identified two sequence related WRKY transcription factors, HvWRKY1 and 
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HvWRKY2, as putative interactors of MLA. A combination of fluorescence lifetime imaging 

(FLIM) and Förster resonance energy transfer (FRET) confirmed the physical interaction of 

MLA10 with HvWRKY2 in the nucleus of living cells in an effector-dependent manner. 

HvWRKY1 and HvWRKY2 show rapid transient transcript activation in compatible and MLA-

specific incompatible interactions with Bgh as well as in response to flg22 treatment. 

Transcriptional knock-down of HvWRKY1 and HvWRKY2 enhanced resistance to Bgh, 

indicating that both WRKY factors function as repressors in MAMP-triggered immunity 

(Eckey et al., 2004; Shen et al., 2007). These findings suggest a model in which effector-

stimulated MLA receptors can interfere with WRKY repressor functions and thereby de-

repress MAMP-triggered immune responses. The resulting amplification of the immune 

response is thought to be sufficient for driving the host cell into suicidal death and to mediate 

resistance (Shen et al., 2007; Shen and Schulze-Lefert, 2007). 

 

 

1.1.4 WRKY transcription factors 
 

The superfamily of WRKY transcription factors consists of 74 members in Arabidopsis, 

109 in rice, 66 in papaya (Carica papaya) and 104 in poplar (Populs spp.), and represents 

one of the ten largest families of transcription factors in higher plants (Ülker and Somssich, 

2004; Eulgem and Somssich, 2007; Ross et al., 2007; Rushton et al., 2010).  

 

All WRKY factors share their characteristic DNA binding domain, called the WRKY 

domain. The WRKY domain is about 60 amino acid residues in length. It contains at the N-

terminus the almost invariant eponymous peptide signature WRKYGQK, whereas the C-

terminal part harbours an atypical zinc finger motif (either Cx4-5Cx22-23HxH or Cx7Cx23HxC). 

The first solution structure of a WRKY domain was reported by Yamasaki et al. (2005). The 

WRKY domain of AtWRKY4 consists of a four-stranded-β-sheet in which the zinc 

coordinating residues Cys/His form a zinc binding pocket and the WRKYGQK motif sticks out 

of the domain surface (Yamasaki et al., 2005). A second crystal structure using a longer 

fragment of AtWRKY1, revealed a similar structure containing an additional fifth β-sheet 

(Duan et al., 2007). Binding experiments using different WRKY factors defined the W-box 

(TTGACC/T) as the minimal consensus for DNA binding, whereas adjacent sequences might 

communicate binding site preferences (Rushton et al., 1996; Ciolkowski et al., 2008). W-

boxes are statistically overrepresented in the promoters of WRKY genes, indicating auto- 

and cross-regulation as important components in the WRKY network (Dong et al., 2003). 

Based on available data, it is thought that the WRKY motif binds the W-box by entering the 

mayor groove of the DNA (Yamasaki et al., 2005). So far however, neither the crystal 
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structure of a full length WRKY protein nor a WRKY domain co-crystal with its DNA-binding 

site has been reported. 

 

WRKY factors are engaged in many plant processes, including germination, senescence 

and response to abiotic stresses such as cold and drought (Rushton et al., 2010). Extensive 

studies over the past decade however have revealed that the major line of action of this 

transcription factors family is in regulating plant responses towards pathogens (Eulgem and 

Somssich, 2007; Pandey and Somssich, 2009). WRKY factors constitute a complex cross-

linked network that is crucial for regulation of the defence transcriptome. Some WRKY 

factors, like AtWRKY25 and AtWRKY33, can be phosphorylated via MPK4, indicating their 

role in early MAMP-triggered defence responses (Andreasson et al., 2005; Eulgem and 

Somssich, 2007). Transcript levels of PcWRKY1 the parsley ortholog of AtWRKY33, 

increases very rapidly and transiently upon MAMP treatment of cells. PcWRKY1 represses 

its transcription by binding to W-boxes in its own promoter, but positively stimulates PR1 

gene expression (Turck et al., 2004). AtWRKY33 is a positive regulator of resistance towards 

the necrotrophic fungi Alternaria brassiciciola and Botrytis cinerea (Zheng et al., 2006). 

Mutants compromised in AtWRKY33, in turn are more susceptible towards both pathogens 

and show reduced expression levels of the jasmonate-regulated defensin PDF1.2 (Zheng et 

al., 2006). AtWRKY70 was identified as a central component modulating the balance 

between SA and JA signalling and is required for RPS4-mediated resistance (Li et al., 2006; 

Knoth et al., 2007). Expression of AtWRKY70 depends on SA and at later time points on 

NPR1, whereas its early activation appears to be NPR1 independent (Li et al., 2004). NPR1 

regulates the expression of several other WRKY genes, including AtWRKY18, AtWRKY53 

and AtWRKY54 (Wang et al., 2008). AtWRKY53 exhibits dual functionality. AtWRKY53 

mutants show delayed disease symptom development upon infection with R. solanacearum, 

whereas they were more susceptible towards Ps (Murray et al., 2007; Hu et al., 2008). 

Additionally, some WRKY factors have been reported to exert redundant functions in 

defence. Loss-of-function mutants of AtWRKY11, for instance, are more resistant to virulent 

and avirulent Ps strains and this effect is enhanced in Atwrky11 Atwrky17 double mutant 

plants (Journot-Catalino et al., 2006). Several recent reports describe WRKY-dependent 

defence responses in other plants, thereby emphasizing the role of this transcription factor 

family in plant immunity. One should however mention that many of current reports, 

particularly those in rice, employ strong ectopic overexpressor lines to deduce WRKY 

functions in plant defence. More rigorous tests will be required in the future to determine 

whether these results can be verified under native conditions. 

 

 



14 
 

1.1.5 AtWRKY18 and AtWRKY40 in plant immunity 
 

WRKY factors are organized in three groups, based on the number of WRKY domains 

and the structure of their zinc finger motif. Group II members contain the Cx4-5Cx22-23HxH zinc 

finger motif and one WRKY domain. This group is further sub-divided based on their primary 

amino acid sequences (Eulgem et al., 2000). Members of subgroup IIa possess an N-

terminal leucine zipper motif and representatives of this subclade, e.g. HvWRKY1 and 

HvWRKY2, are engaged in homomeric associations in vivo (Eulgem et al., 2000; Shen et al., 

2007). The Arabidopsis group IIa consists of three members namely, AtWRKY18, 

AtWRKY40, and AtWRKY60 (Eulgem et al., 2000). Deletion studies identified the leucine 

zipper of these three WRKY factors to mediate both homo- and heteromeric-associations, 

indicating potential functional diversification via such interactions (Xu et al., 2006). Single 

mutants of these WRKY factors behaved almost similar to wild-type in response to different 

pathogens, although resistance towards Ps DC3000 was slightly increased in Atwrky18 

plants (Berger et al., 2006; Shen et al., 2007). A different study using the Atwrky18 mutant, 

however reported enhanced susceptibility in response to Ps maculicola (Wang et al., 2008). 

These different observations might result from different experimental procedures and/or Ps 

strains used for the analyses. 

 

Interestingly, Atwrky18 Atwrky40 double and Atwrky18 Atwrky40 Atwrky60 triple mutant 

plants are almost fully resistant towards the adapted powdery mildew G. orontii (Shen et al., 

2007). This indicates AtWRKY18 and AtWRKY40 to act redundantly as repressors of basal 

defence. Consistently, Atwrky18 Atwrky40 mutants showed enhanced resistance toward Ps 

DC3000 (Xu et al., 2006). Both transcription factors are thought to mediate transcriptional 

repression through different complex mechanisms. This is indicated by the observation that 

defence-related genes, including several members of the JAZ repressor family, were up-

regulated prior to infection, whereas other pathogen-responsive genes, such as EDS1, 

showed an exaggerated transcriptional activation post-infection. Moreover, transcriptional 

regulators constituted one of the largest groups of differentially regulated genes in the double 

mutant compared to the wild-type (Pandey et al., in press).  

 

AtWRKY40 binds to W-box containing regions in the promoters of EDS1 and JAZ8, 

suggesting that AtWRKY18 and AtWRKY40 may interfere with the balance of SA and JA 

signalling (Pandey et al., in press). This is supported by expression analysis of SA-induced 

PR1 and JA-regulated PDF1.2 in wild-type and Atwrky18 Atwrky40 mutants after infection 

with hemibiotrophic Ps DC3000 and the necrotrophic fungus B. cinerea (Xu et al., 2006). 

Atwrky18 Atwrky40 double mutants accumulate strongly elevated levels of camalexin after G. 
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orontii infection, and this difference might explain the enhanced pre-invasion resistance of 

the double mutant towards G. orontii (Pandey et al., in press). In sum these data suggest 

both WRKY factors to function in a feedback repression system that controls basal defence. 

Nevertheless, it remains still unclear how the observed alteration in the Atwrky18 Atwrky40 

mutant background contribute to G. oronii resistance. 
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1.1.6 Thesis aims 
 

The effector-dependent nuclear association of the immune sensor MLA with the WRKY 

class IIa transcriptional repressors HvWRKY1 and HvWRKY2 provides a mechanistic model 

how plants can integrate signals from different layers of their innate immune system (Shen et 

al., 2007). In chapter one I investigate the possible conservation of this mechanism between 

mono- and dicotyledonous plants by the identification of potential R protein clients of 

AtWRKY18 and AtWRKY40, the functional homologues of HvWRKY1 and HvWRKY2 in the 

model plant Arabidopsis thaliana. Furthermore, I analyze the molecular basis of G. orontii 

resistance in the Atwrky18 Atwky40 double mutant plant by testing the contribution of some 

key early signalling components, using a genetic approach. Based on the unpublished 

solution structure of the coiled-coil domain of MLA, initial studies regarding the homo-

dimerization of the receptor were performed (Maekawa et al., under review in Cell Host & 

Microbe). 

 

Arabidopsis cells that undergo death in response to host cell entry of non-adapted 

powdery mildew fungi deposit callose along their entire cell margins. These encasements 

were absent in glucose synthase-like (gsl5) mutant plants, which rather showed a punctate 

callose pattern of cells, reminiscent of plasmodesmata (Jacobs et al., 2003). The initial goal 

of my second project was to identify GSL proteins (encoded by 12 gene members in 

Arabidopsis) that contribute to these putative plasmodesmata-associated callose 

depositions. In the course of these studies unexpected observations encouraged me to 

pursue the function of two highly sequence-related GSL genes in the male gametophyte. 

Molecular components similarly, a member of the MLO protein family originally discovered in 

powdery mildew resistance, was recently reported to be involved in pollen tip reception 

(Kessler et al., 2010). These data provide interesting examples of how common molecular 

components can be integrated into distinct cellular response pathways here, plant defence 

and reproduction. It also reiterates recent studies linking development to defence (Kazan and 

Manners, 2009). The results of this project are presented in chapter two. 

 
 
 
 
 
 
 
 



17 
 

1.2 Results 
 

1.2.1 The conserved C-terminus of HvWRKY2 is the potential in vivo target of  
MLA 

 

Barley HvWRKY1 and HvWRKY2 are structurally related to Arabidopsis AtWRKY18 and 

AtWRKY40. Virus-induced gene silencing (VIGS) experiments suggest that both WRKY 

factors act as repressors in basal defence. The intercellular CC-NB-LRR type immune 

receptor mildew A (MLA) confers isolate specific resistance in barley towards the powdery 

mildew Blumeria graminis f. sp. hordii (BGH). Perception of its cognate BGH effector 

stimulates nuclear association of MLA with HvWRKY1 and WRKY2 (Shen et al., 2007). An 

N-terminal truncated fragment of barley HvWRKY2 (WRKY2178-319), still containing its DNA 

binding- (WRKY-domain) and C-terminal (CT) domain, was found by Shen et al. (2007) to be 

sufficient for association with the N-terminus of the MLA coiled-coil (CC) domain (MLA1-46) in 

yeast (see also Fig. 1.2). Sequence alignment analysis of HvWRKY1, HvWRKY2 and related 

Arabidopsis transcription factors AtWRKY18 and AtWRKY40 revealed strong conservation 

within the WRKY domain as well as in the CT region within and across both plant phyla 

(Shen et al., 2007; Fig. 1.1a). Clustering of conserved amino acids in the CT region(s) of 

related barley and Arabidopsis WRKY factors potentially indicate an evolutionary preserved 

function. 

 

Specific binding of WRKY factors to W-box containing DNA sequences is predicted to 

bury the WRKY domain deeply into the major groove of the DNA (Yamasaki et al., 2005; 

Duan et al., 2007). Thus, I hypothesized the CT domain to be sufficient for the association 

with MLA. To test this assumption I separately cloned the WRKY- and CT domain from 

HvWRKY2 (Fig. 1.1b). Fusions of HvWRKY2178-242 and HvWRKY2243-319 with the activation 

domain of B42 were co-expressed with MLA1-46 fused to the LexA DNA binding domain in 

yeast and tested for an interaction phenotype. Under induced conditions (for details see 

materials & methods) yeast growth (indicative for association between prey and bait 

constructs) was only detectable for transformants containing HvWRKY2243-319 but not 

HvWRKY2178-242 (Fig. 1.2a). Immuno-blot analysis using LexA and B42AD specific anti-sera 

detected all fusion proteins as being expressed at similar levels (Fig. 1.2b). Thus, the C-

terminal domain of HvWRKY2 is sufficient to associate with MLA1-46 in yeast. Furthermore 

these data implicate the conserved C-terminus of HvWRKY2 as the in vivo target of MLA. 
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Figure 1.1: Alignment analysis of barley HvWRKY1, HvWRKY2 and Arabidopsis AtWRKY18 and 
AtWRKY40 proteins. (a) Sequence alignment of the C-terminal half of barley HvWRKY1 and HvWRKY2 with 

Arabidopsis AtWRKY18 and AtWRKY40. High sequence conservation was found within the DNA binding domains 

(WRKY domain) and among the extreme C-termini (CT). (b) Construct design for yeast 2-hybrid interaction 

studies with MLA. The fragment HvWRKY2178-309, previously reported to be sufficient to interact with the MLA-CC 

domain, is indicated in red. Newly generated constructs of HvWRKY2, HvWRKY1 and of the two related 

Arabidopsis WRKY proteins AtWRKY18 and AtWRKY40 are indicated in black.    

 

 
Figure 1.2: The conserved C-terminus of HvWRKY2 is sufficient to 
interact with MLA1-46 in yeast. (a) Yeast 2-hybrid growth phenotypes 

indicating association of MLA1.46 with the extreme C-terminus of 

HvWRKY2 (WRKY2243-309) but not with the WRKY domain (WRKY2178-

242). (b) Accumulation of bait and prey fusion proteins in yeast. Log-phase 

growing yeast were used for total protein extraction. Equal amounts of 

protein were subjected to immuno-blot analysis using bait (LexA) and 

prey (B42AD) specific antibodies.   
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1.2.2 Association of AtWRKY18 and AtWRKY40 with the MLA-CC domain in 
yeast 

  
I found HvWRKY2-CT to be sufficient to associate with MLA1-46. Thus, the related 

Arabidopsis transcription factors AtWRKY18 and AtWRKY40 might as well possess coiled-

coil binding specificities among their conserved CTs. Therefore, I first tested whether 

AtWKY18-CT and AtWRKY40-CT were able to bind MLA1-46 in yeast. LexA DNA binding 

domain fusions with AtWRKY18164-309 (AtWRKY18-CT) and AtWRKY40237-303 (AtWRKY40-

CT) as well as with HvWRKY1260-353 (AtWRKY1-CT; Fig. 1.1b) were co-expressed with MLA1-

46 fused to the B42 activation domain and assayed for yeast-growth after 72h. Consistent 

with my results for HvWRKY2-CT, HvWRKY1-CT was found to associate (indicated by yeast 

growth) with MLA1-46 (Fig. 1.3a). Interestingly, AtWRKY18-CT and AtWRKY40-CT also 

showed a growth phenotype similar to HvWRKY1-CT, indicative for association with MLA1-46 

(Fig. 1.3a). Immuno-blot analysis using bait and prey specific anti-sera demonstrated that all 

fusion proteins accumulate (Fig. 1.3b). The capability of both Arabidopsis WRKY-CTs to 

associate with barley MLA1-46 might denote, together with their structural conservations, 

sustained functional competence(s) between barley and Arabidopsis WRKY factors. 

Currently the functional homologue of the R protein MLA in Arabidopsis remains elusive. 

Nevertheless, the Arabidopsis genome contains 62 putative CC-NBS-LRR R protein 

encoding genes (Meyers et al., 2003). Thus, it seems reasonable to assume that a specific 

sub-group of Arabidopsis CC domain possessing intracellular immune receptors, like barley 

MLA, can associate with AtWRKY18 and AtWRKY40 in vivo and thereby modulate defence 

responses.  

 

 
Figure 1.3: Association of the AtWRKY18 and AtWRKY40 C-
termini with MLA1-46 in yeast. (a) Yeast growth phenotypes indicating 

association of MLA1-46 with the conserved C-terminus of HvWRKY1 as 

well as with related AtWRKY18 and AtWRKY40. (b) Equal amounts of 

total protein extracts derived from log-phase growing yeast were 

subjected to immuno-blot analysis. Fusion proteins were detected by 

the use of specific anti-sera.  
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1.2.3 Identification of AtWRKY18 and AtWRKY40 interacting candidate CC 
domains encoded by NBS-LRR R genes from Arabidopsis 

 
To identify such putative interactors I aimed at cloning all coiled-coil domains from CC-

NBS-LRR proteins encoded by the Arabidopsis genome and subsequently test for 

association with AtWRKY18-CT and AtWRKY40-CT in a targeted yeast 2-hybrid approach. 

To reduce the number of candidates, I excluded genes with imperfect CC- predictions and 

putative pseudogenes (based on the program COILS: 

http://www.ch.embnet.org/software/COILS_form.html and Meyers et al., 2003). Out of the 45 

remaining CC-NBS-LRR candidate genes I successfully cloned 28 coiled-coil domains from 

the ecotype Columbia. Cloned candidate CC regions fused to the activation domain of B42 

were co-expressed in yeast, either with AtWRKY18-CT or AtWRKY40-CT LexA DNA binding 

domain fusions. Interactions were scored +, ++, or +++ according to the rate of growth under 

induction conditions after 72h (Tab.1). Among the 28 candidates the CC domains encoded 

by At1G51480, At1G59124 and At5G43730 exhibited the most prominent growth phenotypes 

upon co-expression with both WRKY-CTs. A similar phenotype was observed for the CC 

domain of At5G63020 upon co-expression only with AtWRKY18-CT. Moderate growth was 

detected after co-expression of the CC domains encoded by At3G14460, At4G10780, 

At5G43470 and At5G47250 with AtWRKY18-CT and AtWRKY40-CT, and for At5G66900 

only with AtWRKY18-CT. A weak interaction phenotype upon co-expression with 

AtWRKY18-CT and AtWRKY40-CT was observed for the coiled-coil domains of At1G62630 

and At1G63360. The CC domains encoded by At3G14470 and At5G04720 displayed weak 

interaction phenotypes only upon co-expression with AtWRKY40-CT (Tab. 1). 

 

A phylogenetic analysis of the candidate interacting CC domains, described above, 

revealed clustering into two groups. Representatives of the three strongest interacting 

candidates (At1G51480, At1G59124 and At5G43730) fell into both clusters (Fig. 1.4). 

Increasing sequence distance in this analysis was found to correlate with decreasing growth 

phenotypes in the yeast 2-hybrid screen. Interestingly, MLA-CC was found to cluster together 

with the CC domain encoded by rpp8 (15,4% identity) (Fig. 1.4). Among identified candidate 

loci, to date, only RPP8 has been shown to harbor an R gene mediating resistance 

specificity. In the ecotype Landsberg functional RPP8 is required for full resistance against 

the oomycete Hyaloperonospora arabidopsidis, whereas in the ecotypes C24 und Dijon17 

the corresponding genes RCY1 and HRT confer resistance against the viral pathogens 

cucumber mosaic virus and turnip crinkle virus, respectively (Cooley et al., 2000; Kachroo et 

al., 2000). So far no resistance specificity has been described for rpp8 in the ecotype 

Columbia. 

http://www.ch.embnet.org/software/COILS_form.html�
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Together these data suggest the existence of two distinct phylogenetic subgroups of CC 

domains that potentially can associate with AtWRKY18 and WRKY40 in vivo. Additionally, 

barley MLA-CC, which was found to be capable of associating with AtWRKY18 and 

AtWRKY40 in yeast, shares at least weak in silico homology with one of these subgroups. 

Further structural and functional information on CC domain-encoding NBS-LRR R genes 

may help to substantiate these findings. 
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Figure 1.4: Phylogenetic analysis of candidate AtWRKY18 and AtWRKY40 interacting CC domains of 
Arabidopsis R proteins. Amino acid sequences (1-120) of CC domains indentified as putative interactors of 

AtWRKY18 and AtWRKY40 in yeast were analyzed with clustalW. Yeast 2-hybrid growth rates (indicative of 

interaction intensity) with AtWRKY18 and AtWRKY40 were scored as + low, ++ medium and +++ strong, 

respectively. Clustering of CC sequences was found to correlate with yeast growth phenotypes in the presence of 

AtWRKY18 and AtWRKY40.  

 

 

1.2.4 Different yeast 2-hybrid interaction phenotypes of RPP8 family member 
CC domains with AtWRKY18 and AtWRKY40 indicate in vivo specificity 

 
Among my candidate interactors with AtWRKY18-CT and AtWRKY40-CT I found the CC 

domain of RPP8 (rpp8-CC). The RPP8 gene from ecotype Columbia is to date 

uncharacterized, whereas resistance specificities for this locus have been reported in other 

accessions. Thus it is conceivable that other members of the RPP8 family, which share at 

least 95% sequence identity with rpp8-CC (data not shown), as well can associate with 

AtWRKY18-CT and AtWRKY40-CT. To test this hypothesis I cloned the CC domains of 

functional R genes encoded by the RPP8 locus from the accessions Landsberg (Ler), 

Dijon17 (Di17) and C24. Fusions of RPP8-CC (Ler), HRT-CC (Di17) and RCY1-CC (C24) 

with the B42 activation domain were co-expressed with AtWRKY18-CT, AtWRKY40-CT as 

well as with HvWRKY1-CT fused to the LexA DNA binding domain in yeast. Equal amounts 

of co-expressing yeast were allowed to grow for 72h under induction conditions prior to 

analysis (Fig. 1.5a-b). For all three WRKY-CT domains the strongest growth phenotype was 

found with HRT-CC (Di17), whereas the growth phenotypes with RPP8-CC (Ler) and RCY1-

CC (C24) were weaker and resembled those of rpp8-CC (Col) (Fig2.5a, data for AtWRKY18-
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CT not shown). To exclude possible allelic variations among the different ecotypes at the 

AtWRKY18 and AtWRKY40 loci, the relevant genomic regions of Ler, Di17 and C24 were 

sequenced. No variations among the different ecotypes were found. Thus, minor changes 

within the amino acid sequences of CC domains encoded by the RPP8 locus in different 

accessions are likely the cause for the different association intensities with tested AtWRKY-

CTs in yeast. Together, these data suggest conserved association specificities among 

related Arabidopsis and barley AtWRKY-factors toward distinct CC domains of NBS-LRR R 

proteins. 

  

 
Figure 1.5: Preferential interaction of related Arabidopsis and 
barley WRKY factors with HRT-CC. (a) Yeast co-expressing 

different RPP8 loci-encoded CC domains together with 

Arabidopsis or related barley WRKY-CT constructs as indicated. 

Different growth phenotypes indicate preferential association of 

HRT-CC with the WRKY factors constructs. (b) Equal amounts of 

total protein extracts derived from log-phase grown yeast were 

subjected to immuno-blot analysis. Prey (B42AD) fusion proteins 

were detected with an HA specific antiserum (for accumulation of 

bait fusion proteins in yeast see fig. 2.4). 

  

 

 

HRT confers resistance against turnip crinkle virus (Kachroo et al., 2000) and this 

resistance requires, other than RPP8- and RCY1-mediated resistance specificities, functional 

EDS1 (Takahashi et al., 2002). In the context of the data recently published by Pandey et al. 

(in press) this result provides a link between AtWRKY18- and AtWRKY40-mediated 

transcriptional regulation and EDS1-dependent signalling in plant immunity. 
 

 

1.2.5 Post-invasive resistance towards Golovinomyces orontii in Atwrky18

 Atwrky40 double mutants is independent of pre-invasive defence but 
requires EDS1 and CYP81F2 

 
To further analyze the implicated role of functional EDS1 in the AtWRKY18 AtWRKY40-

mediated modulation of the basal defence (see above), I choose the compatible interaction 

of Arabidopsis with G.orontii as a model. In susceptible Arabidopsis wild-type plants 

AtWRKY18 and AtWRKY40 transcripts rapidly accumulate (~4h) after infection with adapted 
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G. orontii and show fungal entry rates of >83% 48 hours post infection (hpi). At later stages 

the fungus undergoes several rounds of asexual reproduction and subsequent re-infections 

to colonize the plant. In contrast, fungal entry rates in Atwrky18 Atwrky40 double mutants, 

which lack AtWRKY18 and AtWRKY40 transcripts, were significantly reduced to 35%. These 

plants show resistance at later stages (8 days post infection; dpi), since the fungus fails to 

colonize the plant (Pandey et al., in press). However, it remains elusive whether this late 

post-invasive resistance is dependent on decreased fungal entry efficiency and how EDS1 

might contribute to this.  

 

To answer these questions I crossed the Atwrky18 Atwrky40 genotype with Arabidopsis 

mutant variants, impaired in pre-invasive defence and eds1, to generate the appropriate 

triple mutants. 4 week old homozygous F3 plants were infected with G. orontii and assayed 

for host cell entry efficiency and fungal growth phenotypes 48 hours and 8 days post 

infection, respectively. Wild-type plants displayed fungal entry rates of ~90% whereas the 

host cell entry efficiency in Atwrky18 Atwrky40 mutants was significantly reduced to ~60% 

(Fig. 1.6a). Susceptibility in the wild-type was associated with successful fungal reproduction 

on the leaf surface 8 days post infection. However, resistant Atwrky18 Atwrky40 plants 

showed only occasional faint fungal sporulation at leaf margins (Fig. 1.6b). In contrast, all 

single mutants used for triple mutant generation (eds1, pen1, pen2, pad3 and cyp81f2), 

exhibited wild-type-like fungal entry rates (~90%) and colonization phenotypes (Fig. 1.6a-b). 

Triple mutants carrying either a mutation in pen2 or pad3 showed wild-type-like penetration 

rates but the fungus failed to reproduce on infected leaves at later stages (Fig. 1.6b). Thus, 

PEN2 and PAD3 functions seem to be required for limiting host cell entry but are dispensable 

in establishing Atwrky18 Atwrky40-dependent post-invasive resistance. In contrast, PEN1 

appears not to be required for limiting fungal host cell entry since Atwrky18 Atwrky40 pen1 

mutants displayed wrky18 wrky40-like fungal entry rates (~60%). At later infection stages, 

resistance was associated with the appearance of large necrotic leaf areas on Atwrky18 

Atwrky40 pen1 plants, whereas Atwrky18 Atwrky40 mutants showed only a few defined small 

necrotic leaf speckles (Fig. 1.6a-b). PEN1 syntaxin accumulates in papillae underneath 

fungal appressoria and papillae formation is delayed in pen1 mutants (Assaad et al., 2004). 

Therefore PEN1 contributes in some way to Atwrky18 Atwrky40-mediated resistance.  

 

Pandey et al. (in press) showed that AtWRKY40 binds to W-boxes in the 5` regulatory 

region of EDS1 in vivo. Interestingly, Atwrky18 Atwrky40 eds1 triple mutants appeared wild-

type-like at both time points assayed post infection, indicating a requirement for EDS1 in pre- 

and post-invasive powdery mildew resistance (Fig. 1.6a-b). 



25 
 

   
 
Figure 1.6: Leaf infection phenotypes of different mutants following infection with G. orontii.  

(a) Percentage of fungal host cell entry on 4-week old wild-type, Atwrky18 Atwrky40, and indicated single and 

triple mutants 48h post infection. Asterix t<0,005; based on students t-test  (b) Macroscopic infection phenotypes 

8 days post infection on 4-week old wild-type, Atwrky18 Atwrky40, single and corresponding triple mutants. Bar: 

1cm. 

 
Surprisingly, mutation of CYP81F2 rendered Atwrky18 Atwrky40 mutant plants as 

susceptible as wild-type with respect to both, pre- and post-invasive defences (Fig. 1.6a-b). 

CYP81F2 encodes a P450 monooxygenase that catalyses the conversion of indole-3-yl-

methyl glucosinolate (I3G) to 4-hydroxy-indole-3-yl-methyl glucosinolate (4MI3G). 4MI3G is 

activated by the atypical myrosinase PEN2 thereby inducing broad-spectrum anti-fungal 

defence (Bednarek et al., 2009). PAD3 (CYP71A13) catalyzes the final step in camalexin 

synthesis (Nafisi et al., 2007). These data therefore implicate both secondary metabolites, 

camalexin and 4MI3G, as components of Atwrky18 Atwrky40-mediated pre-invasive defence. 

Strikingly, different requirements for CYP81F2 and PEN2 in Atwrky18 Atwrky40-mediated 
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powdery mildew resistance further suggest the existence of a so far unknown function of 

CYP81F2. 

 
1.2.6 The MLA10-CC domain forms a homo-dimer 
 

Oligomerization of NBS domain-containing proteins, such as human APAF-1 and 

nematode CED-4, provide an established paradigm for the formation of signalling complexes. 

Similarly, some plant R proteins have been described to form homomeric assemblies prior to 

or post effector recognition (Mestre and Baulcombe, 2006; Ade et al., 2007; Danot et al., 

2009; Gutierrez et al., 2010). Studies on tobacco N (TNL), tomato Prf (novel N-terminal 

domain) and Arabidopsis RPS5 (CNL) provide evidence for their N-terminal domain-

mediated homo-oligomerization. However, both the structural basis for this as well as the 

relevance for ETI remains elusive. Recently our collaborator Jijie Chai (Beijing, China) solved 

the crystal structure of the invariant CC domain (residues 1-120) of barley MLA by Single-

wavelength Anomalous Diffraction (SAD) at a resolution of 2.0 Å (Maekawa et al.; under 

review in Cell Host & Microbe). The final atomic model comprises residues 6–120. As 

predicted from the primary sequence, the monomeric structure of the CC domain is mainly α-

helical and contains two long anti-parallel α-helices linked by a short loop (Fig. 1.7a-b), 

thereby forming a helix-loop-helix structure. No electron density was observed corresponding 

to the five residues 91-95 likely due to a disorder of this region in solution (Fig. 1.7a-b). In the 

crystals, two protomers of the CC domain pack symmetrically mainly through the interior-

lined residues in the CC monomer (Fig. 1.7a). Assembly of the CC domain dimer resembles 

two springs slammed together and such an intertwined packing arrangement gives rise to an 

extensive dimer interface, generating the burial of 7,950 Å2 surface area (Fig. 1.7a). This 

large buried surface area suggests that the CC domain dimer would be highly stable and 

likely intrinsically inseparable. 
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Figure 1.7: The MLA10 CC5-120domain forms a homo-dimer.  

(a) Ribbon diagram of the MLA10 CC domain; monomer top; dimer bottom. (b) Simplified topology of the CC 

dimer. (c) Amino acid sequence of MLA101-120. Blue tubes indicate areas with α-helical structure, a and d denote 

the position within the haptad repeat(s) of αI; the black frame highlights the EDV a conserved motif involved in 

intra-domain interactions. Taken from Markawa et al.; under review in Cell Host & Microbe. 
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A large portion of the two α-helices are involved in homo-dimerization of the CC domain. 

The helix α1 (residues 12-44) forms a parallel two-stranded coiled-coil fold in the dimer 

structure (Fig. 2.8a). Coiled-coil formation in the CC domain is primarily dependent on Ile12, 

Leu15, Leu19, Glu22, His26, Val29, Ile33, Leu36, Leu40, and Met43 from the heptad repeat 

sequences (Fig. 1.8a). These residues are located either at a or d (Fig. 1.7c) positions that 

make hydrophobic contacts with those from the other helix, which are characteristic of the 

interactions observed in other coiled-coil structures (Kohn et al., 1997). The ends of the 

coiled-coil slightly splay apart and, together with the N-terminal half of helix α2b and the C-

terminal third of helix α2a, form short antiparallel four-helix bundles (Fig. 1.8b). In total 20 

residues from both CC protomers form a network of van der Waals interactions within one 

helical bundle. Leu11, Leu15, Leu18, Phe99, Met103 and Ser106 from one monomer and 

Leu36, Glu39, Met43, Ser73, Ile76 and Val80 from the other one, that reside at the center of 

one helical bundle, constitute the core of hydrophobic interactions within one helix bundle 

(Fig. 1.8b). To further strengthen dimerization of the CC domain, the proximal C-terminal end 

of α2b makes tight hydrophobic contacts with the C-terminal end of α1a and the N-terminal 

end of α2a from the other CC monomer (Fig. 1.8c). In addition, the hydrogen bonds formed 

between Lys116 and His117 from the loop C-terminal to the helix α2a in one monomer and 

Asp59 and Asp62 in the other monomer contribute to CC domain dimerization, respectively 

(Fig. 1.8c). 
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Figure 1.8: Predicted hydrophobic contacts between the two MLA10 coiled-coil protomers. 

(a) Hydrophobic contacts within helix α1 of both protomers involves the residues I12, L15, L19, E22, H26, V29, 

I33, L36, L40 and M43 that locate at position a or d within the heptad repeat. (b) Core van der Waals interactions 

within a four helical bundle, consisting of ends of both helices α1 and helix α2a and helix α2b from different 

protomers. The contacts involve L11, l15, L18, F99, M103 andT106 form one- and L36, E39, M43, S73 and I76 

from the other monomer. (c) The hydrogen bonds formed between K116 and H117 from one- and D59 and D62 

from the other monomer contribute to the dimer formation. Taken from Markawa et al..; under review in Cell Host 

& Microbe. 
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1.2.7 MLA self-association in plants and yeast 
 

To study potential MLA self-association in planta, Dr. T. Maekawa (MPIPZ, Köln) 

generated stable transgenic barley plants co-expressing MLA1-HA and MLA1-Myc from 

single copy transgenic lines each expressing functional MLA1-HA or MLA1-Myc (Bieri et al., 

2004). By the use of total leaf protein extracts he could demonstrate co-immunoprecipitation 

(co-IP) of MLA1-HA and MLA1-Myc. Analysis of protein extracts prepared from co-

expressing plants at several time points post inoculation with Bgh indicate that self-

association of MLA1 is not the consequence of effector-triggered receptor activation, but 

rather to occur in naïve plants (Full experimental data, figures and methods are described in 

Maekawa et al.; under review in Cell Host & Microbe). To further investigate the role of the 

CC domain in MLA self-association, I employed the yeast 2-hybrid assay. For this, bait 

(LexA) and prey (B42AD) fusion constructs expressing full-length (FL) and truncated MLA10 

variants were generated. Co-expression of identical bait and prey fusion constructs revealed 

self-interactions of MLA101-225. No self-interactions were detected for MLA10 full-length, 

MLA101-523 and MLA101-46 (Fig. 1.9a). Protein analysis using bait (LexA) and prey (B42AD) 

specific anti-sera identified MLA101-225 and MLA101-46 fusion proteins. We failed to detect 

LexA-MLA101-523 and both MLA10FL fusion variants (Fig. 1.9b). Lack of detection of these 

proteins might reflect their instability or their accumulation below detection limit(s) in yeast. 

Irrespectively, theses data indicate MLA self-association in vivo. To gain further knowledge 

about the mechanistics of MLA self association MLA101-225 was used for further detailed 

analysis in yeast. 

 

 
Figure 1.9: MLA10 self associates in yeast.  

(a) Self-interaction of MLA. Yeast two hybrid results of bait 

fusions of the LexA DNA binding domain and prey fusions of 

the B42 activation domain with identically truncated MLA10 

variants. Yeast growth indicates interaction. (b) 

Accumulation of bait and prey fusion proteins in yeast. LexA 

DNA binding domain and B42 activation domain fused to 

identical MLA constructs were co-expressed in yeast. 

Overnight cultures were used for total protein extraction. 

Equal protein amounts were subjected to immuno-blot 

analysis using LexA (α-LexA) and B42 (α-B42AD) specific 

anti-sera.       
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1.2.8 Functional analysis of the MLA10 CC dimer interface by structure-guided 

mutagenesis 
 

To define the functional significance of the dimeric interface found in the MLA10-CC 

structure (Fig. 1.7 and 1.8) I took advantage of 17 available amino acid substitution variants. 

Each of theses variants targets an individual residue lining the interior between the 

protomers by a substitution to glutamic acid (Fig. 1.10a). Substitution of these residues is 

predicted to be thermodynamically unfavorable, possibly destabilizing the dimeric structure 

(corresponding MLA10 full-length clones were generated and kindly provided by Dr. T. 

Maekawa). For analysis identical MLA101-225 bait and prey constructs were co-expressed in 

yeast. Out of these 17 targeted single substitutions, three located in helix α1 (I33E, L36E, 

and M43E) resulted in loss of MLA101-225 self-interactions, whereas interactions were still 

detectable to varying degrees upon co-expression of eight other variants (L11E, L15E, L18E, 

L25E, V29E, V69E, L72E, and I76E; Fig. 1.10a). The colony growth phenotype of five 

substitutions (L19E, F23E, F99E, M103E, and L110E) could not be examined, due to auto-

activity of the bait constructs (yeast cells grew in the absence of prey on selective media; 

data not shown). Overall this data show that all amino acid substitutions tested weaken 

MLA101-225 self-association whilst only three variants in helix α1 disrupt this phenotype.  

 

MLA-mediated isolate-specific Bgh resistance is thought to involve nuclear association of 

the MLA-CC domain with the WRKY factors HvWRKY1 and HvWRKY2 (Shen et al., 2007). 

To improve our understanding of the MLA WRKY association in the context of MLA-CC 

homo-dimerization, I tested MLA101-225 substitution variants for altered association 

phenotype(s) with HvWRKY1-CT in yeast. Surprisingly, all MLA101-225 prey (B42AD) variants 

showed an impaired interaction phenotype with the HvWRKY1260-353 bait (LexA) fusion, 

except for L18E (Fig. 1.11a). Immuno-blot analysis with bait and prey specific antibodies 

indicated similar expression levels for all fusion proteins. Since Shen et al. (2007) previously 

showed that MLA101-46, representing helix α1, is required and sufficient for the MLA WRKY 

interaction, CC dimerization in general cannot be essential for the heteromeric association. 

Nevertheless, MLA self-association in vivo might regulate accessibility of helix α1 for the 

WRKY interaction. Dr. T. Maekawa used the transient single cell expression system in barley 

leaf epidermal cells to analyze the significance of the single amino acid substitution variants 

in MLA triggered immunity. He biolistically transformed barley epidermis cells with MLA10 

wild-type and substitution variant constructs. After inoculation with the Bgh A6 isolate 
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expressing cognate AvrA10 the frequency of fungal haustoria formation was estimated. 

 

 
Figure 1.10: Structure guided mutant analysis of MLA10 CC self association.  

(A) Single amino acid substitutions in the CC domain disrupt MLA10 CC homo-dimer formation in yeast. Amino 

acids indicated in the cartoon were substituted for glutamate. Amino acids 1-225 from all substitution mutants 

were cloned into yeast two-hybrid bait and prey vectors and co-expressed in yeast, respectively. aa auto-activity 

of yeast bait constructs (interaction phenotype could not be evaluated). Triangle indicates decreasing yeast 

concentrations. (B) Accumulation of bait and prey fusion proteins in yeast. LexA DNA binding domain and B42 

activation domain fused to identical MLA constructs were co-expressed in yeast. Overnight cultures were used for 

total protein extraction. Equal protein amounts were subjected to immuno-blot analysis using LexA (α-LexA) and 

B42 (α-B42AD) specific antisera.   

 
Notably, only the targeted substitution variant L18E as well as the naturally occurring variant 

G37R (Seeholzer et al., 2010) retained disease resistance activity (Full experimental data, 

figures and methods are described in Maekawa et al.; under review in Cell Host & Microbe). 

In summary, these data provide a link between CC dimerization, WRKY factors and MLA-

mediated disease resistance. 
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Figure 1.11: Analysis of the HvWRKY1-CT association with MLA10-CC amino acid substitution variants.  

(a) Single amino acid substitutions in the MLA10-CC domain compromise the association with HvWRKY1 in 

yeast. The C-terminus of HvWRKY1 fused to the LexA DNA binding domain was co-expressed with MLA101-225 

amino acid substitution variants fused to the B42 activation domain in yeast. Triangle indicates decreasing yeast 

concentrations.  (b) Accumulation of bait and prey fusion proteins in yeast. LexA DNA binding domain and B42 

activation domain fusion constructs (described above) were co-expressed in yeast. Overnight cultures were used 

for total protein extraction. Equal protein amounts were subjected to immuno-blot analysis using LexA (α-LexA) 

and B42 (α-B42AD) specific antisera.   
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1.3 Discussion 
 

1.3.1 Coiled-coil domain binding abilities are retained among the conserved C-
termini of related barley and Arabidopsis WRKY-factors 

 
The nuclear association of barley MLA with HvWRKY1 and HvWRKY2 provides a direct 

mechanistic link how distinct R protein-derived signals are integrated into the plants basal 

defence machinery. A truncated version of HvWRKY2 possessing its WRKY and CT 

domains was shown to be sufficient to associate with MLA (Shen et al., 2007). WRKY factors 

bind W-box containing DNA sequences through their WRKY domain (Eulgem et al., 1999) 

and combined crystal structure analysis and in silico modeling suggest this domain to be 

deeply buried into the major grove of the DNA (Yamasaki et al., 2005). The CT constitutes a 

short stretch (~40) of amino acids that is conserved among relatet HvWRKY1, HvWRKY2 

and AtWRKY18, AtWRKY40 transcription factors (Shen et al., 2007; Fig. 1.1). In this work I 

identified association of MLA with the CT but not with the WRKY domain thereby identifying 

the C-terminal structures of HvWRKY1 and HvWRKY2 as the potential in vivo targets of MLA 

(Fig. 1.2, Fig. 1.3). I further explored whether conservations in the amino acid sequence 

among the CT domains of related Arabidopsis WRKY factors 18 and 40 constitute a 

potentially preserved binding specificity.  A targeted yeast 2-hybrid experiment revealed 

association of both Arabidopsis WRKY factor CT domains with MLA (Fig 1.3). Thus, 

dicotyledonous AtWRKY18 and AtWRKY40 probably share a conserved binding specificity, 

among their so far functionally uncharacterized CT domains, with their related 

monocotyledonous barley WRKY factors 1 and 2. This result is supported by the work of 

Mangelsen et al. (2008), which indicates that structurally related WRKY factors from 

monocots and dicots share retained protein functional competences. Nevertheless, to date 

an Arabidopsis homologue of MLA has not been identified. 

 

In Atwrky18 Atwrky40 mutants the transcription of defence related genes is exaggerated 

in a pathogen-dependent manner (Xu et al., 2006; Shen et al., 2007; Pandey et al., in press), 

and these plants are resistant towards the adapted powdery mildew G. orontii. Therefore, 

both WRKY factors were thought to be part of a feedback repression system, similar to 

HvWRKY1 and HvWRKY2, in basal defence (Shen et al., 2007). In any case, a general 

direct repressor function of AtWRKY18 and AtWRKY40 seems rather unlikely, since 

Atwrky18 Atwrky40 plants do not constitutively express defence related genes (Shen et al., 

2007; Pandey et al., in press). The transient expression of defence responsive genes is the 

outcome of a complex interplay of distinct repressors and co-activators (Lopez-Maury et al., 

2008) and this is supported by the recent studies of Pandey et al. (in press). Moreover, 
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AtWRKY18 and AtWRKY40 might exert associations with other CC domains encoded by 

NBS-LRR R genes and thereby modulate defence responses towards pathogens other than 

G. orontii.          
 

 

1.3.2 AtWRKY18 and AtWRKY40 are competent to associate with distinct R 

gene encoded coiled-coil domains 
 

Since AtWRKY18 and AtWRKY40 can associate with the coiled-coil domain encoded by 

barley MLA in yeast, I further analyzed the association abilities of these WRKY factors with 

coiled-coil domains encoded by Arabidopsis R genes. A newly generated candidate library of 

28 CC domains was exemplary tested in yeast for association with AtWRKY18-CT and 

AtWRKY40-CT and 13 putative interactors identified (Tab. 1.1), which clustered into two 

phylogenetic subgroups, indicating the competence of AtWRKY18 and AtWRKY40 to 

associate with distinct structurally related R gene-encoded coiled-coil domains (Fig. 1.4). 

Previous MEME (Multiple Expectation Maximization for Motif Elicitation; Bailey and Elkan, 

1995) analysis of the CC domains encoded by Arabidopsis NBS-LRR genes identified twenty 

motifs, based on conserved sequence patterns. Two of these (motif 1 and 7) were found 

coincident with the CC pattern predicted by COILS (Meyers et al., 2003). Consistently, the 

two subgroups of putative interactors can be specified as possessing either motif 1 (bottom 

group in Fig. 1.4) or motif 7 (top group in Fig 1.4). Whether HvMLA possesses motif 1 could 

not be addressed, since the explicit definition of this motif was not available. Additionally, 

most members shared up to five other sequence patterns (described by Meyers et. al., 2003) 

in a subgroup-dependent manner. To date only the EDVID motif, which is highly conserved 

among CC domains of NBS-LRR proteins (including MLA, RX and HRT), has been 

functionally characterized (Rairdan et al., 2008). The EDVID motif of Resistance to potato 

virus X (RX) mediates intermolecular interactions that depend on its NB-ARC2 and LRR 

domains, whereas poorly conserved sequences at the N-terminus of the CC and flanking the 

EDVID motif mediate binding to the RanGTPase activating protein 2 (RanGAP 2) that is 

required for RX function (Sacco et al., 2007; Tameling and Baulcombe, 2007; Rairdan et al., 

2008). This latter observation suggests a large interacting surface rather than a short defined 

sequence motif for the intermolecular association with RanGAP 2 (Rairdan et al., 2008). 

 

Consistent with this, single amino acid substitution mutants within the CC of MLA10 were 

found to attenuate but not to inhibit the association with HvWRKY1 in yeast (Fig. 1.11; 

Maekawa et al., under review in Cell Host & Microbe). Similar to RX and RanGAP 2 the R 

proteins RPS2 and RPM1 interact with RIN4 in the absence of their cognate effectors (Boyes 
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et al., 1998; Axtell et al., 2001; Mackey et al., 2002; Sacco et al., 2007) and such pre-formed 

complexes are thought to function as recognition platforms for their cognate AVR proteins 

(Collier and Moffett, 2009). Different from these, the nuclear association between MLA10 and 

HvWRKY factors has been described as a post-recognition event, requiring activated MLA10 

(Shen et al., 2007). Furthermore, involvement of the EDVID motif in the association of CC 

domains with WRKY factors is rather unlikely, since the minimal fragment of MLA-CC (MLA1-

46), required to associate with HvWRKY1 and HvWRKY2, lacks this region (Shen et al., 2007; 

Fig. 1.2; Fig. 1.3). However, a contribution of the EDVID motif in the CC-WRKY association 

cannot be completely excluded, and further in vivo studies are required to shed light on the 

molecular basis of how WRKY factors can associate with R gene-encoded CC domains. 
 

 

1.3.3 Preferential association with HRT in yeast links AtWRKY18 and 
AtWRKY40 with EDS1-dependent Turnip crinkle virus resistance 

   
Among the loci encoding candidate CC domains only RPP8 (At5g43470; Tab. 1.1) has 

been described to harbor certain resistance specificities among three ecotypes different from 

the analyzed accession Columbia (McDowell et al., 1998; Cooley et al., 2000; Takahashi et 

al., 2002). Functional analysis of the promoter region of resistance-mediating RPP8 

(Landsberg), HRT (Di17), RCY1 (C24) and functionally uncharacterized Columbia RPP8 by 

Mohr et al. (2010) identified three conserved W-boxes matching the stringent consensus 

sequence TTGACT (Euglem et al., 2000). Mutations within these cis regulatory DNA 

elements, known to prevent WRKY factor binding (Du and Chen, 2000; Yu et al., 2001; Kim 

and Zhang, 2004), abolished almost completely RPP8 basal and pathogen-induced 

expression (Mohr et al., 2010). W-boxes in the promoter of parsley PcWRKY1 have been 

shown to be continously occupied by WRKY factor complexes, but their composition appears 

to be altered in a stimuli-dependent manner (Turck et al., 2004). Thus, regulation of basal 

and defence-induced responses through W-box containing sequences in the RPP8 locus 

maybe likely achieved through the action of different WRKY factors. Whether AtWRKY18 

and AtWRKY40 bind to W-box containing sequences in the promoter region of the PRR8 

locus remains to be determined. The limited information on the expression of RPP8 in 

Arabidopsis plants under various treatments is due to the fact that At5g43470 (RPP8) is not 

detected by any probe set on the Affymetrix 22k chip. 

 

The yeast 2-hybrid analyses, presented in this work, indicate specific association of 

AtWRKY18 and AtWRKY40 with HRT (the gene product encoded by At5g43470 in the 

ecotype Di17; Fig. 1.5). High selectivity for downstream targets can be seen as a prerequisite 
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for R proteins, encoded by At5g43470, to mediate resistance to such striking different 

pathogens as viruses (HRT and RCY1) and oomycetes (RPP8). Furthermore, this data are 

consistent with the preliminary observation that RPP8- mediated resistance toward H. 

arabidopsidis Emco5 is most likely achieved independently of AtWRKY18 and AtWRKY40 

(data not shown). 

 

The CC domains (amino acid residues 1-120) encoded by At5g43470, in the accessions 

Columbia, Landsberg, C24 and Di17, share a minimum of 95 % identity. High sequence 

conservation among CC domains was recently reported for the large allelic series of MLA 

immune receptors (Seeholzer et al., 2010). Functional studies of the MLA-CC domain 

indicate that already single amino acid substitution renders the MLA protein inactive 

(Maekawa et al., under review in Cell Host & Microbe) and similar results have been reported 

for RCY1 (Sekine et al., 2006). Further, single amino acid substitution variants of MLA10-CC 

strongly diminish the association with HvWRKY1 in yeast (Fig. 1.11). Together these data 

suggest a high degree of invariant functional constraints acting on R gene-encoded CC 

domains. In addition, this assumption is further supported by preferential binding of 

HvWRKY1 to HRT in yeast (Fig. 1.5). Sequencing analysis verified the C-termini of 

AtWRKY18 and AtWRKY40 to be absolutely conserved among the four relevant ecotypes. 

Therefore, the stronger association phenotype of AtWRKY18 and AtWRKY40 with the CC 

domain of HRT in yeast is likely to reflect in vivo specificity. 

  

HRT exhibits the only RPP8 locus-encoded R protein whose function is dependent on 

EDS1 (Chandra-Shekara et al., 2004). Interestingly, EDS1 was shown to be a direct target of 

AtWRKY40. EDS1 transcripts accumulate, after pathogen challenge, in the Atwrky18 

Atwrky40 mutant background to higher levels than in wild-type (Panday et al., 2010). Thus, 

putative de-repression of AtWRKY18 and AtWRKY40 by interaction with HRT might act on 

downstream components of TCV resistance, such as EDS1. The second RPP8 locus-

encoded viral resistance specificity, mediated by RCY1, was shown to be independent of 

EDS1 (Takahashi et al., 2002). Therefore, RCY1 resistance towards cucumber mosaic virus 

(CMV) employs a pathway different from EDS1. This might also explain why RCY1 

apparently seems not to associate with AtWRKY18 and AtWRKY40. EDS1 is required for 

HRT-mediated resistance to TCV and together with SA it is required for the induction of a HR 

at the site of viral infection (Chandra-Shekara et al., 2004; Venugopal et al., 2009). A 

member of the GHKL ATPase/kinase superfamily, CRT1, was shown to associate with HRT 

and other R proteins like Rx, RPS2 and SSI4 (Kang et al., 2008) and these interactions are 

disrupted when these proteins become activated (Kang et al., 2010). Mutation and silencing 

experiments revealed CRT1 to interfere with both, HRT-mediated HR and resistance. This 
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implicates CRT1 to function at an early point in HRT-mediated resistance before the branch 

leading to HR and pathogen restriction splits (Kang et al., 2008). In turn, these results 

suggest a later role for AtWRKY18 and AtWRKY40, acting in the EDS1-dependent branch of 

HRT-mediated viral immunity. Interestingly, high SA levels led to a PAD4-dependent up 

regulation of HRT expression and to the ability to overcome the repressive effect of RRT in 

TCV resistance (Chandra-Shekara et al., 2004).   

 

Another GHKL family member is the cytosolic molecular chaperon HSP90, which is 

required for resistance mediated by the R proteins N, RPS2, RPS4 and RPM1 (Hubert et al., 

2003; Takahashi et al., 2003; Liu et al., 2004b). HSP90 associates with RAR1 and SGT1b, 

which in turn are required for resistance specificities mediated by a variety of different R 

proteins, including barley MLA (Shen et al., 2003; Bieri et al., 2004; Liu et al., 2004a). 

Therefore such interactions were believed to be required for the formation of proper R 

protein-containing signalling complexes (Liu et al., 2004b) and CRT1 might act in the same 

way on HRT (Kang et al., 2008). HRT localizes to the plasma membrane (Jeong et al., 2010) 

and CRT1 was found in endosome-like vesicles suggesting a role for this subcellular 

compartment in R protein signalling and/or activation (Kang et al., 2010).  AtWRKY18 and 

AtWRKY40 were shown to localize mainly to the nucleus (Xu et al., 2006). Several studies 

have shown that activated R proteins, like MLA10, N and RPS4, can enter the nucleus (Shen 

and Schulze-Lefert, 2007) Therefore, HRT activation and potential translocation might 

depend on CRT1, whereas at least parts of the R protein-mediated downstream signalling 

probably depends on the nuclear association with AtWRKY18 and AtWRKY40. 

 

Another model is provided by the recent findings of (Shang et al., 2010). They show that 

rising ABA concentrations stimulate the association of AtWRKY40 with the cytosolic fraction 

of the chloroplast membrane-residing magnesium-protoporphyrin IX chelatase H subunit 

(CHLH/ABAR). Extrachloroplastic ABA levels increase up to five-fold in the interaction of 

tobacco with five different strains of tobacco mosaic virus (Whenham et al., 1985). A more 

recent study shows that mutants deficient in ABA sensing or synthesis were more 

susceptible towards the soil-borne oomycete pathogen Pythium irregulare and ABA levels 

were elevated after pathogen challenge in the wild-type (Adie et al., 2007). Together these 

data provide an intriguing though still highly speculative alternative model of how WRKY 

factors can associate with HRT outside of the nucleus. 

 

Notably, a still not fully characterized line of the Atwrky18 Atwrky40 mutant expressing 

barley HvWRKY1 under control of the 35S CaMV promoter is phenotypically more 

susceptible than the Atwrky18 Atwrky40 double mutant to both, G. orontii and TCV (data not 
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shown; Preedep Kachroo, personal communication). Detailed analysis of the contribution of 

AtWRKY18 and AtWRKY40 to HRT-mediated TCV resistance has to be part of future 

analysis and requires the generation of new, carefully selected, genetic material.  
 

 

1.3.4 EDS1 is required for Atwrky18 Atwrky40-mediated pre- and post-invasive 
G. orontii resistance 

  
I identified the R protein HRT as potential interaction partner of AtWRKY18 and 

AtWRKY40 (Fig. 2.5). This links both WRKY factors with EDS1-dependent TCV resistance. 

AtWRKY40 targets W-box containing sequences in the EDS1 promoter (Pandey et al., in 

press). A role of the immune regulator EDS1 in Atwrky18 Atwrky40-mediated resistance was 

substantiated by my analysis of newly generated Atwrky18 Atwrky40 eds1 triple mutants with 

respect to early (48h) and late (8d) infection phenotypes with G. orontii. Consistent with the 

previously reported role of EDS1 in basal defence against virulent (host-adapted) biotrophic 

and hemi-biotrophic pathogens (Falk et al., 1999; Feys et al., 2001; Lipka et al., 2005), eds1 

Atwrky18 Atwrky40 triple mutants were found to restore wild-type-like host cell entry rates 

(48 h) after pathogen challenge (Fig. 1.6a). EDS1 influences transcriptional reprogramming 

in Arabidopsis plants challenged with avirulent Pst DC3000 AvrRps4 (Bartsch et al., 2006) 

and such EDS1-dependent transcriptional reprogramming was shown to require pathogen-

induced enrichment of the nuclear pool of EDS1 (Garcia et al., 2010). Transcript levels of 

EDS1-dependent up-regulated genes like EDS1, PAD4 and FMO1 (Bartsch et al., 2006; 

García et al., 2010) were also found to be elevated at early time points (4-8 h) following G. 

orontii infection, in resistant Atwrky18 Atwrky40 plants compared to the susceptible wild-type 

(Pandey et al., in press). Therefore, it would be interesting to monitor EDS1 nuclear and 

cytoplasmic steady state levels in wild-type and Atwrky18 Atwrky40 mutants. Elevated EDS1 

transcript levels were found to be transient in the Atwrky18 Atwrky40 background and 

resembled those of the wild-type after 24 hpi (Pandey and Mann, 2000). Thus, transcriptional 

up-regulation of EDS1, prior to or coincident with the fungal penetration attempts in Atwrky18 

Atwrky40 mutants (Pandey et al., in press) is likely to contribute to Atwrky18 Atwrky40-

mediated pre-invasive resistance. 

 

At later infection stages (8 dpi) wild-type-like susceptibility was restored on Atwrky18 

Atwrky40 eds1 mutants infected with G.orontii (Fig. 1.6b) indicating an additional requirement 

for EDS1 in the establishment and/or maintenance of Atwrky18 Atwrky40-mediated 

resistance towards the adapted powdery mildew. These early and late EDS1-dependent 

responses might represent two different processes, since post-invasive resistance can be 
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separated from pre-invasive fungal host cell entry restriction in the Atwrky18 Atwrky40 

background (see below). EDS1 and its sequence-related interacting partner PAD4 act 

upstream of SA in basal defence as well as in ETI as part of a positive feedback loop, since 

SA can rescue defence gene activation in eds1 and pad4 mutants and induces EDS1 

expression (Vlot et al., 2009). AtWRKY18 and AtWRKY40 transcription levels were found to 

be induced in wild-type plants upon treatment with the endogenous phytohormone signalling 

molecules SA and methyl jasmonate (MeJA) as well as after treatment with the bacterial 

MAMP flg22 within 4 h (Pandey et al., in press). In contrast G. orontii-induced early 

accumulation of AtWRKY18 and AtWRKY40 transcripts were reported to be independent of 

isochorismate synthase 1 (Chandran et al., 2009), which is responsible for approximately 90 

% of the pathogen- and UV-induced host SA production (Wildermuth et al., 2001; Garcion et 

al., 2008). In contrast, accumulation of transcripts for both WRKY factors at later infection 

stages was found to be ICS1 dependent (Chandran et al., 2009). This may implicate the 

transcriptional induction of AtWRKY18 and AtWRKY40 to depend on differentially derived SA 

pools. Therefore, ICS2- and phenylalanine ammonia lyase (PAL)-derived SA (Garcion et al., 

2008)(Garcoin et al., 2008; Huang et al., 2010) might contribute to the early, ICS1-

independent, transcriptional activation of AtWRKY18 and AtWRKY40 in the G. orontii 

interaction. AtWRKY18 and AtWRKY40 positively affect JA signalling (Wang et al., 2008) 

and the study by Pandey et al. (in press) suggests AtWRKY18 and AtWRKY40 to affect JA 

signalling by partly suppressing the expression of JAZ repressors. Thus, in Atwrky18 

Atwrky40 pre- and post-invasive resistance towards G. orontii might be influenced through an 

altered balance in the SA and JA signalling pathways. This in turn could affect AtWRKY40-

regulated EDS1-dependent processes. Interestingly, EDS1 and SA were recently reported to 

fulfill redundant functions in HRT-mediated HR formation and PR1 expression (Venugopal et 

al., 2009). However, eds1 deficiency alone, in the Atwrky18 Atwrky40 background, is 

sufficient to restore both pre- and post-invasive wild-type-like susceptibility towards the 

adapted powdery mildew G. orontii.         

 

 

1.3.5 PEN1 contributes to post- but not to pre-invasive G. orontii resistance in 
Atwrky18 Atwrky40 mutant plants 

 
The plasma membrane-resident syntaxin PEN1 acts together with the adaptor protein 

SNAP33 and the endomembrane-anchored VAMP721/722 in a vesicle-mediated secretory 

defence pathway (Collins et al., 2003; Kwon et al., 2008). PEN1 focal accumulation in 

papillae, formed underneath fungal entry sites of adapted and non-adapted powdery mildews 

but not in papillae triggered by the entry attempts of other ascomycetes or the oomycete 
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pathogen H. arabidopsidis (Assaad et al., 2004; Bhat et al., 2005; Shimada et al., 2006; 

Meyer et al., 2009). Nevertheless, restriction of invasive growth by PEN1 has been shown, 

so far, only for the non-adapted powdery mildews Bgh and E. pisi (Collins et al., 2003; Lipka 

et al., 2005). Thus, the mechanism underlying PEN1-mediated pre-invasive resistance 

appears to be rather specific for powdery mildew. 

 

Since fungal entry-rates were unaffected in Atwrky18 Atwrky40 pen1 mutant plants (Fig. 

1.6a), Atwrky18 Atwrky40-mediated penetration resistance, most likely, utilizes a resistance 

pathway different from PEN1. However, at later infection stages (8 dpi) resistance in 

Atwrky18 Atwrky40 pen1 plants was associated with the appearance of large necrotic leaf 

areas that were absent in resistant Atwrky18 Atwrky40 plants (Fig. 1.6b). Although the 

papillary accumulation of PEN1 seems to be powdery mildew specific, post-invasive 

recruitment of PEN1 to haustorial encasements has been shown for other haustorium-

forming non-adapted pathogens (Meyer et al., 2009). Post-penetration resistance is often 

associated with the appearance of an HR at the side of infection. Consistent with this, 

infections of non-adapted Bgh and E. pisi under conditions that enable them to overcome 

pre-invasive resistance and progress to form haustoria strongly trigger this form of 

hypersensitive cell death. Posthaustorial powdery mildew resistance was show to depend on 

genes including EDS1, PAD4 and SAG101 (Lipka et al., 2005; Stein et al., 2006). EDS1 is 

required for the promotion of leaf cell death (Rusterucci et al., 2001) and contributes to basal 

defence and systemic resistance (Vlot et al., 2008; Attaran et al., 2009). NUT7 was shown to 

exert negative regulation of EDS1 signalling (Bartsch et al., 2006) and both genes were 

differentially expressed in naïve and infected Atwrky18 Atwrk40 mutant plants (Pandey et al., 

in press). Thus, the appearance of large necrotic areas in Atwrky18 Atwrky40 pen1 mutant 

plants might be the consequence of altered basal and/or systemic defence program(s). 

Currently, the molecular basis of PEN1 action in contributing to Atwrky18 Atwrky40-mediated 

resistance remains elusive. 

 

 

1.3.6 Atwrky18 Atwrky40-mediated pre-invasive resistance towards G. orontii 

requires CYP81F2, PEN2 and PAD3  
 

Beside the rather powdery mildew-specific function of PEN1 in anti-microbial defence, 

the atypical myrosinase PEN2 together with the P450 enzyme CYP81F2 mediate broad 

spectrum anti-fungal defence. This second pathway depends on the breakdown of the 

CYP81F2-derived secondary metabolite 4MI3G by PEN2 in order to restrict fungal entry 

(Lipka et al., 2005; Bednarek et al., 2009). The loss of penetration resistance in Atwrky18 
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Atwrky40 cyp81f2 and Atwrky18 Atwrky40 pen2 mutants implicates a requirement of 4MI3G 

synthesis and/or hydrolysis in wrky18 wrky40-mediated pre-invasive resistance. Consistent 

with this, 4MI3G levels were found to be elevated in Atwrky18 Atwrky40 mutant plants within 

hours post infection (Moritz Schön, personal communication). In pen2 mutants fungal entry-

rates and endogenous levels of the phytoalexin camalexin were elevated after infection with 

the non-adapted powdery mildews Bgh and E.pisi. However, in camalexin deficient pad3 

plants fungal entry-rates appeared wild-type-like. Therefore, 4MI3G hydrolysis and camalexin 

are thought to act sequentially in plant defence (Nürnberger and Lipka, 2005; Bednarek et 

al., 2009). Similar conclusions were drawn from Arabidopsis mutant studies employing the 

oomycete pathogen Phythophthora brassicae (Schlaeppi et al., 2010). Nevertheless, 

camalexin seems to be required for Atwrky18 Atwrky40-dependent fungal entry resistance, 

since the pad3 mutant restored wild-type-like fungal entry-rates in the Atwrky18 Atwky40 

background (Fig. 1.6a). Notably, already uninfected Atwrky18 Atwrky40 plants accumulate 

higher camalexin levels than the wild-type (Pandey et al., in press). Thus, deregulation in 

timing and magnitude of camalexin accumulation may at least in part be the molecular basis 

for the pre-invasive resistance observed in Atwrky18 Atwrky40 double mutants. 

 

The mutant analyses presented in this work provide genetic evidence for the requirement 

of the tryptophan-derived secondary metabolites, camalexin and 4MI3G, in Atwrky18 

Atwrky40-mediated G. orontii host cell-entry restriction. Microarray analysis identified the 

transcription factor MYC2 as a negative regulator of tryptophan and indole glucosinolate (IG) 

biosynthesis during JA signalling. MeJA treated myc2 plants accumulate higher amounts of 

4MI3G and increased transcript levels of MYB51 and PAD3 (Dombrecht et al., 2007). 

Furthermore, MYC2 positively affects JA biosynthesis and the expression of genes encoding 

JAZ proteins (Lorenzo et al., 2004; Chini et al., 2007; Dombrecht et al., 2007). JAZ 

repressors in turn have been shown to target the MYC2 transcription factor in a negative 

feedback loop (Chini et al., 2007). AtWRKY40 binds to W-box containing regions in the JAZ8 

promoter and transcripts of several JAZ family members accumulate in uninfected Atwrky18 

Atwrky40 mutants to higher levels than in wild-type. Notably, transcripts of ASA1, the rate-

limiting enzyme in tryptophan biosynthesis, also accumulate to higher amounts in naïve 

Atwrky18 Atwrky40 plants (Pandey et al., in press). Thus, stimulation of tryptophan-derived 

secondary metabolites through JAZ repressor-dependent inhibition of MYC2 might provide a 

testable working model by which enhanced fungal entry resistance in Atwrky18 Atwrky40 

mutant plants is achieved. 
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1.3.7 Post-invasive Atwrky18 Atwrky40-mediated G. orontii resistance 
elucidates a novel role of CYP81F2  
 

Host cell entry restriction during the interaction of G. orontii with Arabidopsis Atwrky18 

Atwrky40 mutants appears to be rather weak (~60 % of fungal spores still enter the host 

tissue). Therefore, this host defence mechanism is insufficient to explain the explicit post-

invasive resistance phenotype observed at later time points (8 dpi). Surprisingly, CYP81F2 

was found to be required for Atwrky18 Atwrky40-mediated post-invasive resistance (Fig. 

1.6b). Since Atwrky18 Atwrky40 pen2 triple mutants were unaffected in persistence of G. 

orontii growth inhibition, post-invasive resistance appears independent of PEN2 function(s). 

In turn this implicates a so far unknown role of CYP81F2 or its product 4MI3G in plant 

defence. PEN2-dependent 4MI3G breakdown products have been suggested as possible 

signalling molecules in flg22-triggered callose deposition (Clay et al., 2009). Nevertheless 

such a scenario would depend on a so far unknown PEN2 homologue in Atwrky18 Atwrky40-

mediated powdery mildew resistance. The Arabidopsis genome encodes seven PEN2-like 

family 1 glycosyl hydrolases. The PEN2-related enzyme PYK10 was shown to restrict 

colonization by the soil-bourne fungus Piriformospora indica (Sherameti et al., 2008). 

However, PYK10 is a root specific protein. Alternatively, CYP81F2 compartmentation and/or 

existence of additional substrates might facilitate PEN2-independent but CYP81F2-mediated 

resistance in Atwrky18 Atwrky40 double mutants. 

 
 
1.3.8 The MLA-CC domain forms a homo-dimer 
 

Self-association of NBS-LRR proteins, including their N-terminal and/or central NB-ARC 

domain, has been described in vertebrates (Danot et al., 2009; Qi et al., 2010). In plants, the 

immune sensors N, PRF and RPS5 have been implicated in forming homo-oligomers 

through self-association of their N-terminal domains (Mestre and Baulcombe, 2006; Ade et 

al., 2007; Gutierrez et al., 2010). The recently resolved crystal structure of the barley MLA 

CC domain identified this R protein as well to homo-dimerize through its N-terminal domain 

(Fig. 1.7b; Maekawa et al., under review in Cell Host & Microbe). The anti-parallel 

association of two MLA-CC monomers gives rise to a dimer with remarkable different 

electrostatic potentials for the opposing sides of the dimer (Maekawa et al., under review in 

Cell Host & Microbe). Interestingly, the “hinge” region between helix α1a and helix α1b, for 

which no electron density was found (Fig. 1.7), locates exactly opposite of the two most 

hydrophobic residues at the 3rd and 4th position within the EDVID motif (Rairdan et al. 

2008). A molecular flexibility (MD) simulation of the CC dimer shows that the flexibility of the 
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“hinge” leaves both EDVID motifs largely exposed on the same side of the dimer structure 

(Maekawa et al., under review in Cell Host & Microbe). The 3rd and 4th residues of the 

EDVID motif are orientated into the dimeric structure and V80, at the 4th position, contributes 

to the hydrophobic interactions within the four helix bundle, whereas the 1st, 2nd and 5th 

positions provide the negative charges at the surface (Maekawa et al., under review in Cell 

Host & Microbe). 

 

RPM1 confers resistance towards the bacterial pathogen Pseudomaonas syringae 

(Grant et al., 1995) and its CC domain shows 48,5 % sequence similarity and matching 

structural profiles to that of MLA (Maekawa et al., under review in Cell Host & Microbe). 

Maekawa et al. (under review in Cell Host & Microbe) therefore used the RPM1 CC domain 

for structural modeling. They identified the surface electrostatic properties to be conserved 

between both CC domains, especially in the region encompassing the EDVID motif. Thus, 

although not known for RPM1, these data indicate that a subset of CC domain-possessing 

NBS-LRR R proteins can form homo-dimers through their N-terminal domain. Beyond this, 

the data of Markawa et al. (under review in Cell Host & Microbe) suggest the “hinge” region 

together with the EDVID motif to connect inter- with intramolecular interactions within the 

MLA dimer, which could facilitate effector-triggered conformational changes, possibly 

allowing ATP loading to the central NB-ARC domain and/or subsequent interactions with 

downstream partners such as WRKY factors. 

 

Both yeast 2-hybrid and co-IP analysis confirmed the dimerization of MLA-CC (Fig.  1.9; 

Maekawa et al., under review in Cell Host & Microbe). The yeast studies further identified 

three amino acids (I33, L36 and M43) of MLA-CC that are required for dimerization (Fig. 

1.10). Maekawa et al. (under review in Cell Host & Microbe) showed in transient expression 

assays that the MLA10 wild-type CC domain alone is capable of inducing cell death, whereas 

the substitution variants I33E, L36E and M43E, which fail to dimerize, do not. Therefore the 

authors suggest the CC dimer as a module for cell death induction. So far several N-terminal 

TIR domains of NBS-LRR R proteins have been shown to induce effector-independent cell 

death (Frost et al., 2004; Swiderski et al., 2009). Recently, Krasileva et al. (2010) described 

that induction of HR by the TIR domain of RPP1 was dependent on the dimerization 

competence of its fusion partner GFP. MLA10 interacts through its CC domain located in 

helix α1 with the C-terminal domains of HvWRKY1 and HvWRKY2 upon effector stimulation 

(Shen et al., 2007; Fig. 1.2; Fig. 1.3). Both WRKY factors belong to a subgroup of WRKY 

transcription factors that can form homo- and hetero-dimers (Xu et al., 2006). Whether 

MLA10 interacts with these WRKY factors as a mono- or as a dimer remains to be tested. 

Helix α1, constituting the minimal portion of MLA10 required for WRKY interaction, did not 
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dimerize (Fig. 1.9) and was not sufficient to trigger cell death (Maekawa et al., under review 

in Cell Host and Microbe). In contrast to the self-association analysis of helix α1, all tested 

MLA-CC substitution variants retained reduced association abilities towards HvWRKY1 in 

yeast (Fig. 1.11). These retained weak associations might be promoted by the yeast system 

itself, perhaps by a yeast bridging protein that forces the interaction partners together. 

MLA10 helix α1 appears to expose the surface relevant for the interaction with the WRKY 

factor but most likely lacks the regulatory parts that control this interaction in vivo. In any 

case, the MLA10-CC variant L18E was identified as the only targeted substitution that 

retained a wild-type-like HvWRKY1 interaction phenotype and, together with the natural 

occurring variant G37R, wild-type-like resistance activity (Maekawa et al., under review in 

Cell Host and Microbe). Therefore, it is likely that effector triggered conformational changes 

of the MLA dimer induce proximity to distinct WRKY oligomers for induction of downstream 

signalling. 
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2.1 Introduction 
 

Callose is a linear 1,3-ß-glucan polymer with some 1,6 branches that is widespread in 

cell walls of higher plants (Stone and Clarke, 1992). Callose deposits are formed during 

normal plant growth and development in sporophytic tissues including root hairs and sieve 

plates of dormant phloem, at plasmodesmata and as a transitory component at the cell plate 

in dividing cells as well as in male and female gametophytes (Stone and Clarke, 1992; 

Samuels et al., 1995). Callose is also rapidly deposited in response to wounding or pathogen 

challenge (Stone and Clarke, 1992). 

 

Callose is an important structural component in male gametophyte development being 

deposited at several stages (Stone and Clarke, 1992; McCormick, 1993). Within the anther 

locule the pollen mother cells are surrounded by callose before entry into meiosis. Following 

meiosis callose is also deposited between the individual microspores during cytokinesis. This 

callose is important for exine patterning and is transient, being degraded to enable individual 

microspore release. The microspores then undergo an asymmetric division forming a large 

vegetative cell and a smaller generative cell, with callose forming a prominent, but transient 

cell wall that separates the two cells (Park and Twell, 2001). The generative cell migrates 

into the vegetative cytoplasm where it undergoes a further mitotic division to produce two 

sperm cells. After pollen germination the sperm cells are delivered to the ovule by the pollen 

tube in which callose forms a major component of the cell wall and the plugs that form along 

the length of the tube (Li et al., 1997; Ferguson et al., 1998; Nishikawa et al., 2005). 

 

The highly impermeable 1,3-β-glucan polymer is also found in yeast and filamentous 

fungi, where it represents a major component of the cell wall.  Formation of 1,3-β-glucan in 

Saccharomyces cerevisiae is dependent on the large partially functionally redundant and 

sequence-related FKS1/FKS2 genes that encode integral plasma membrane proteins that 

appear to serve as substrate-binding catalytic subunit in heteromeric callose synthase 

complexes (Patel et al., 1994; Mazur et al., 1995; Mazur and Baginsky, 1996; Schimoler-

O'Rourke et al., 2003). Homologs of fungal FKS genes are found in higher plants and 

compose a family of 12 glucan synthase-like (GSL) genes in Arabidopsis (Saxena and 

Brown, 2000; Woo et al., 2001).  Molecular and biochemical evidence supports a role for 

GSL proteins in callose synthesis (Cui et al., 2001; Woo et al., 2001; Ostergaard et al., 2002; 

Li et al., 2003; Brownfield et al., 2007) and recessive mutations in few tested Arabidopsis 

GSL genes abolish either specific developmentally regulated or stress-induced callose 

deposits (Jacobs et al., 2003; Nishimura et al., 2003; Dong et al., 2005; Enns et al., 2005; 

Nishikawa et al., 2005) indicating potential functional diversification. 



50 
 

GSL5/PMR4 has been shown to direct the synthesis of wound- and pathogen-inducible 

callose in sporophytic tissue (Jacobs et al., 2003; Dong et al., 2005). In pollen development, 

GSL5 acts together with GSL1 where it is required for the formation of the callose wall that 

separates the microspores of the tetrad (Enns et al., 2005). Absence of GSL5 and GSL1 

renders pollen infertile, demonstrating that the same gene family member can have unique 

as well as overlapping functions with another GSL family member in different biological 

processes. GSL2 acts during pollen development and is essential for the formation of the 

callose wall surrounding pollen mother cells (Dong et al., 2005) and also contributes to the 

callose deposited in the wall and plugs of the growing pollen tube (Nishikawa et al., 2005). 

 

To test the hypothesis that the proliferation of GSL genes across the Arabidopsis 

genome reflects functional diversification of family members, we isolated T-DNA insertion 

mutants of GSL genes whose biological functions are unknown. Our failure to recover 

homozygous mutant plants for two independent T-DNA insertion alleles for GSL8 (gsl8-1 and 

gsl8-2) and GSL10 (gsl10-1 and gsl10-2) and the observed pollen developmental defects in 

all mutants demonstrate essential male gametophytic functions for the respective wild-type 

genes. Moreover, transgenic lines expressing 35S promoter driven gene-specific dsRNAi 

constructs for GSL8 or GSL10 exhibited a dwarfed growth habit, thereby revealing dual and 

independent functions of both genes in gametophyte and sporophyte development. Our 

findings suggest for the first time that plant GSL family members might exert indirect 

regulatory functions through interactions with other proteins rather than through their catalytic 

activity alone. 
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2.2 Results 
 

2.2.1 GSL8 and GSL10 have a gametophytic function 
 

We isolated for each of the highly sequence-related AtGSL8 (At2g36850) and AtGSL10 

(At3g07160) Glucan Synthase-Like family members two independent T-DNA insertion lines 

(Fig. 2.1). T-DNA lines SALK 111094 and GABI 851C04 contain an insertion in the GSL8 

coding region close to its 5’ end and were named gsl8-1 and gsl8-2, respectively. T-DNA 

lines GABI 038F11 and GABI 054E08 contain an insertion in the GSL10 coding region and 

were named gsl10-1 and gsl10-2, respectively. DNA isolated from selfed progeny of the 

hemizygous T-DNA lines was examined by PCR analysis using T-DNA left border and gene-

specific PCR primers to identify homozygous insertion lines. We found among progeny of 

each of the four tested insertion lines only wild type or hemizygous T-DNA lines with a 

segregation ratio of about 1:1 (Tab. 2.1).  There were no recognizable morphological 

differences between wild type and hemizygous gsl8 or gsl10 plants. The absence of 

homozygous T-DNA containing progeny and the observed distorted segregation ratio of wild 

type and hemizygous T-DNA plants provided the first evidence that homozygous gsl8 and 

gsl10 mutants could not be recovered due to essential gametophytic functions of the 

respective wild-type genes. 

 

 
Figure 2.1: Scheme of GSL8 and GSL10 gene structures.  

Gene structures of (a) GSL8 and (b) GSL10. Black boxes represent exons and lines indicate introns. Triangles 

mark the T-DNA insertion sites of the indicated gsl8 and gsl10 mutant alleles. 

 

Table 2.1: T-DNA segregation in progeny of selfed GSL8/gsl8 and GSL10/gsl10 mutant lines. 

 T-DNA Line n plants tested % plants 
heterozygous 

% plants 
wild-type 

GSL8/gsl8-2 GK_851C04 76 63,2 36,8 
GSL8/gsl8-1 SALK_111094 72 54,2 45,8 

GSL10/gsl10-1 GK_038F11 86 48,8 51,2 
GSL10/gsl10-2 GK_054E08 78 53,8 46,2 
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2.2.2 GSL8 and GSL10 T-DNA insertions lead to pollen sterility 
 

Since callose deposition is known to occur at multiple stages during male gametophyte 

development, we investigated pollen development in each hemizygous gsl8 and gsl10 T-

DNA line. Light microscopic analysis of mature pollen from GSL8/gsl8 plants revealed over 

40% collapsed pollen while pollen from GSL10/gsl10 plants contained nearly 40% aberrant 

pollen, being either collapsed or mis-shapen (Tab. 2.2).  In contrast, only 1-2% aberrant 

pollen was found in GSL8 or GSL10 wild-type siblings and the increased frequency of 

aberrant pollen co-segregated with the respective T-DNA insertions.  Closer examination of 

the collapsed pollen phenotype by scanning electron microscopy revealed a shrunken 

appearance of pollen grains, although the characteristic reticulate exine architecture of wild-

type pollen was clearly visible in the collapsed grains (Fig. 2.2).  Thus both GSL8 and GSL10 

are required for normal pollen development. 

 
Table 2.2: Light microscopic analyses of mature pollen from GSL8/gsl8 and GSL10/gsl10 lines. 

Line total 
pollen 

collapsed 
pollen % collapsed aberrant 

pollen % aberrant 

GSL8/gsl8-1 429 201 46.9 0 0 
GSL8/gsl8-2 428 188 43.9 0 0 

GSL10/gsl10-1 562 50 8.4 171 30.4 
GSL10/gsl10-2 410 98 23.9 63 15.4 

 

We investigated the expression of GSL8 and GSL10 during pollen development using 

RT-PCR with RNA isolated from spores at different developmental stages (Fig. 2.3).  Both 

GSL8 and GSL10 are expressed throughout pollen development, with GSL8 being most 

strongly expressed in bicellular and tricellular pollen and GSL10 showing peak expression in 

bicellular pollen.  Since GSL8 and GSL10 are both expressed throughout pollen 

development, and mature pollen from GSL8/gsl8 and GSL10/gsl10 is aberrant, we 

conducted a detailed analysis of mutant pollen development to determine the role of GSL8 

and GSL10 in male gametogenesis. 

 

 
Figure 2.2: Aberrant gsl8 and gsl10 pollen phenotypes.  
(a-c) Scanning electron micrographs of pollen isolated from (a) wild type, (b) GSL8/gsl8-1, and (c) GSL10/gsl10-2 

mutant plants. Approximately half of the pollen grains of all tested heterozygous mutant lines exhibit an aberrant 

pollen phenotype. Bar=10µm. 
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Figure 2.3:  Expression of GSL8 and GSL10 during pollen development. 

RT-PCR analysis of GSL8 and GSL10 transcripts in uninucleate microspores (UNM), bicellular pollen (BCP), 

tricellular pollen (TCP) and mature pollen grains (MPG).  A histone gene is used as a control. 

 

 

2.2.3 GSL8 and GSL10 are not required for microspore development 
 

As extensive callose deposition is known to occur at the tetrad stage (McCormick, 1993) 

we visualized callose in the tetrads of the four hemizygous T-DNA insertion lines as well as 

wild-type tetrads by aniline blue staining. We failed to detect neither differences in callose 

deposition patterns nor in the shape of haploid microspores between tetrads from wild type 

and hemizygous GSL8/gsl8 and GSL10/gsl10 plants (Fig. 2.4a-c). This might indicate that 

GSL8 and GSL10 activities are redundant during tetrad formation and/or that both genes act 

gametophytically at a later stage of pollen development. 

 
Figure 2.4: Microspore development is not 
interrupted in GSL8/gsl8-1, and GSL10/gsl10-2 

plants. Isolated microspore tetrads of (a) wild type, 

(b) GSL8/gsl8-1 and (c) GSL10/gsl10-2 genotypes 

were stained with aniline blue.  Callose deposition 

around and between microspores are 

indistinguishable in wild type and mutant lines. 

Bars=5µm.  WT microspore with a polarized nucleus 

indicated with an arrow (d). Bar = 10 µm.  

Microspores from GSL8/gsl8-1 (8-1), GSL8/gsl8-2 (8-

2), GSL10/gsl10-1 (10-1) and GSL10/gsl10-2 (10-2) 

become polarized to a similar level as WT (e). 
 

Older microspores were isolated and nuclear DNA stained with DAPI. In buds containing 

free microspores all spores exhibited a single, brightly stained centrally located nucleus in 

both wild type and hemizygous T-DNA mutant lines (data not shown). During microspore 

development the nucleus migrates to the microspore wall before the asymmetric cell division, 

producing a highly polarized cell (Fig. 2.4d, arrow showing nucleus). In late microspore stage 

anthers from a wild type plant approximately 90% of microspores were polarized (Fig. 2.4e). 

Similarly in both GSL8/gsl8 and GSL10/gsl10 plants, over 80% of the microspores were 
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polarized (Fig. 2.4e), demonstrating that GSL8 or GSL10 deficient microspores can still 

establish polarity. 

 

 

2.2.4 GSL8 and GSL10 exert essential functions associated with microspore 
division 

 
Pollen was also examined after completion of the asymmetric microspore division at mid-

bicellular stage when the generative cell had migrated into the vegetative cell cytoplasm (Fig. 

2.5c). Only about half of the pollen from GSL8/gsl8-1 and GSL8/gsl8-2 plants was bicellular 

in comparison to almost 100 % of pollen from a wild type plant at this stage (Fig. 2.5a). Most 

of the remaining pollen had a single DAPI-staining nucleus, organelles that still stained with 

DAPI and were often slightly smaller and plasmolysed in comparison with bicellular pollen 

(Fig. 2.5c and d). Moreover nuclei were sometimes enlarged or displayed disordered 

chromatin structure. This aberrant pollen phenotypic class was termed ‘mononuclear’, and 

indicates that GSL8 is required for microspore entry into mitosis. There was also a small 

amount of pollen with two similar DAPI stained structures that resemble the vegetative 

nucleus with dispersed chromatin (Fig. 2.5c and e), indicating that these microspores had 

undergone mitosis but cytokinesis had been disrupted. 

 

In contrast over 80% of pollen from the GSL10/gsl10-1 mutant resembled that of wild 

type pollen at mid-bicellular stage (Fig. 2.5a). Most of the remaining pollen was also 

bicellular, but rather than migrating into the vegetative cell cytoplasm the generative cell was 

positioned against the pollen wall, and was termed ‘GC on wall’ (Fig. 2.5f).  Approximately 

half the pollen from GSL10/gsl10-2 plants was bicellular (Fig. 2.5a). Of the remaining pollen 

over half resembled gsl8 pollen and was mononuclear, many contained two similar nuclei 

and in the rest the generative cell was against the wall (Fig. 2.5a). The mononuclear 

phenotype of gsl10-2 pollen indicates that like GSL8, GSL10 is also involved in entry into 

mitosis and the similar nuclei class suggest GSL10 is important for asymmetric division. 

 

At later pollen stages all pollen was tricellular in wild type plants (Fig. 2.5b), consisting of 

the vegetative cell enclosing two sperm cells (Fig. 2.5g). Half the pollen from both 

GSL8/gsl8-1 and GSL8/gsl8-2 plants was tricellular (the GSL8 portion of the pollen) while 

most of the remaining pollen had aborted (Fig. 2.5b).  In aborted pollen, the pollen grains had 

collapsed and there was no or only residual DAPI staining (Fig. 2.5h). There were also small 

amounts of pollen that were still mononuclear or bicellular. This complementary decrease in 

the proportion of aberrantly stained mononuclear-like microspores and the associated 
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increase in the number of unstained and collapsed microspores likely reflect progressive cell 

death in gsl8 mutant microspores. 

 

 
 

Figure 2.5: Phenotypes of bicellular and tricellular pollen from GSL8/gsl8, and GSL10/gsl10 plants. 

The phenotype of GSL8/gsl8-1 (8-1), GSL8/gsl8-2 (8-2), GSL10/gsl10-1 (10-1) and GSL10/gsl10-2 (10-2) pollen 

at mid bicellular stage (a) and tricellular stage (b) was analysed in pollen with DNA stained with DAPI.  Pollen 

phenotypes observed are WT bicellular pollen (c), mononuclear pollen (d), pollen with 2 nuclei with a similar 

appearance (similar nuclei) (e), pollen with the generative cell stuck on the vegetative cell wall (GC on wall)  (f), 

WT tricellular pollen (g) and aborted pollen (h).  Bar = 10 µm. 



56 
 

Similarly, at tricellular pollen stage in GSL10/gsl10-1 and GSL10/gsl10-2 plants only 50% 

of the pollen was tricellular (Fig. 2.5b). The remaining pollen from GSL10/gsl10-1 was 

bicellular and in many cases the generative cell was tight against the wall (Fig. 2.5b). The 

amount of pollen with the generative cell against the wall was higher in the tricellular pollen 

than in the bicellular stage examined, presumably because at the bicellular stage the 

generative cell was often close to the wall but not noticeably flattened. Much of the mutant 

pollen from GSL10/gsl10-2 plants had aborted by the tricellular stage (Fig. 2.5b), and is likely 

to arise from pollen that was mononuclear or had two similar nuclei at bicellular stage. The 

remaining pollen was bicellular with the generative cell often tight against the wall, similar to 

that seen in GSL10/gsl10-1. 

 

Collectively, these findings show that GSL8 is essential for microspore division as most 

gsl8 microspores fail to enter mitosis and subsequently abort. In pollen from GSL10/gsl10 

some pollen also fails at mitosis entry (mainly in GSL10/gsl10-2), but a greater proportion of 

mutant pollen (mainly in GSL10/gsl10-1) passes through microspore division but shows 

phenotypes that may relate to incorrect cytokinesis. The differences observed between 

gsl10-1 and gsl10-2 may relate to allelic differences. As only 50% of the pollen from 

hemizygous plants for each of the four T-DNA lines becomes tricellular it appears that each 

line is fully penetrant and does not produce fertile pollen. 

 

 

2.2.5 Aberrant callose synthesis and degradation in gsl10 mutant pollen 
 

As GSL proteins are involved in callose synthesis, pollen from GSL8/gsl8 and 

GSL10/gsl10 plants was further analysed by co-staining for callose with aniline blue and for 

DNA with DAPI. In wild-type pollen callose is transiently deposited after microspore mitosis 

between the newly formed generative and vegetative cell, and appears as a dome 

surrounding the generative cell (Fig. 2.6c and d). In early bicellular pollen this callosic dome 

can be detected in over 80% of pollen (Fig. 2.6a). By mid-bicellular pollen (2 buds older) 

virtually all aniline blue staining had disappeared reflecting degradation of the callose wall 

(Fig. 2.6b). This callose wall was not synthesized in aberrant GSL8/gsl8 pollen that failed to 

enter pollen mitosis I (data not shown).  However, over 80% of early bicellular pollen from 

GSL10/gsl10-1 plants contained callose in a dome over the generative cell (Fig. 2.6a), 

indicating that these pollen grains can synthesize callose in a manner similar to wild type. 

The callose however appears to be more persistent as approximately 20% of pollen at the 

mid-bicellular stage in GSL10/gsl10-1 still contained an aniline blue-stained wall (Fig. 2.6b). 

The persistence of the callose wall therefore may interfere with the migration of the 
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generative cell, possibly leading to the generative cell being tightly stuck against the wall 

later in development. 

 

 
 
Figure 2.6: Callose deposition in bicellular pollen from GSL10/gsl10 plants. 

Pollen from early bicellular (a) and mid bicellular (b) stages were stained with aniline blue and DAPI.  Shaded 

bars show the percentage of pollen with a WT callosic dome and empty bar indicates internal ectopic callose.  In 

pollen from WT and GSL10/gsl10-1 plants the majority of pollen has a dome shaped callose wall (c) between the 

vegetative cell nucleus and the generative cell nucleus (d).  In pollen from GSL10/gsl10-2 plants internal ectopic 

callose is sometimes observed (e), often between two nuclei with a similar appearance (f).  Same pollen grains 

shown in (c) and (d) and in (e) and (f). Bar = 10 µm. 
 

Aniline blue staining was also carried out on early bicellular pollen from GSL10/gsl10-2 

plants. A callosic dome was observed in approximately 45% of early bicellular pollen (Fig. 

2.6a), suggesting that many gsl10-2 pollen grains fail to make a wild type callosic wall. 

Ectopic callose was regularly observed (Fig. 2.6e). This callose was generally in a rough line, 

although not always complete, close to the centre of the pollen grain and often with regions 

where there appeared to be clumps of callose (Fig. 2.6e). This ectopic callose was often 

(27/29) in pollen grains which also had two similar nuclei and the callose was located 
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between the two nuclei (Fig. 2.6e and f). Ectopic callose was persistent in mid-bicellular 

pollen (Fig. 2.6b) and was still present in pollen with two similar nuclei (25/27). There was 

also a small amount of mid-bicellular pollen from GSL10/gsl10-2 plants with a callosic dome 

(Fig. 2.6b) similar to the persistence of aniline blue staining in GSL10/gsl10-1 pollen, 

suggesting some gsl10-2 pollen do make a callosic dome that persists and could also result 

in the generative cell marginalisation observed in tricellular stage pollen from these plants.  

 

 

2.2.6 Transmission electron microscopy of pollen phenotype 
 

To further analyse the phenotype of the mutant gsl8 and gsl10 pollen, buds containing 

early to mid bicellular pollen and buds containing tricellular pollen from GSL8/gsl8 and 

GSL10/gsl10 plants were examined by transmission electron microscopy. We observed two 

distinct classes of pollen from GSL8/gsl8 plants in an anther locule containing early to mid 

bicellular pollen (Fig. 2.7a). A portion of pollen had dense cytoplasm including a generative 

and vegetative cell (Fig. 2.7b), similar to wild type pollen (Fig. 2.7e-h). The remaining pollen 

had less dense cytoplasm, disrupted cellular structure and a single, sometimes abnormally 

shaped nucleus (Fig. 2.7c and d). Such pollen grains were not seen in wild type and are 

likely to be the gsl8 mutant pollen classified as mononuclear in Figure 5. 

 

Unlike GSL8/gsl8, all pollen in a bicellular stage anther from GSL10/gsl10-1 had a 

density of cytoplasmic staining similar to the wild type (Fig. 2.7i and e). The gsl10-1 mutant 

pollen appears to often have a callose wall separating the generative and vegetative cell that, 

with aniline blue, appears similar to the wall in wild type pollen but persists (Fig. 2.6b). The 

ultrastructure of the wall in pollen from GSL10/gsl10-1 plants (Fig. 2.7 j-l) was compared to 

wild type pollen (Fig. 2.7 f-h). In wild type pollen the callosic wall is generally smooth and 

forms a dome around the generative cell (Fig. 2.7f). During the process of generative cell 

detachment the callosic wall becomes thinner in the central region with thickened stubs at 

junctions with the outer pollen grain wall, while the generative cell rounds up (Fig. 2.7 g and 

h). In some pollen from GSL10/gsl10-1 plants the wall separating the generative and 

vegetative cells was disturbed, being flattened rather than consistently dome-shaped and the 

wall was not always smooth and showed some invaginations (arrows Fig. 2.7 j and k). Also 

ectopic internal walls were observed that were not located between the generative and 

vegetative cells (Fig. 2.7l). Such ectopic walls may also have contributed to the number of 

persistent wild type-like wall seen with aniline blue staining (Fig. 2.6b). 
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Figure 2.7:  TEM analysis of pollen phenotypes.  

Pollen from anthers at the early to mid bicellular stage from GSL8/gsl8 plants (a-d), wild type plants (e-h) and 

GSL10/gsl10-1 plants (i-l).  Pollen from tricellular stage anthers from GSL10/gsl10-1 (m-p) and GSL10/gsl10-2 

plants (q-t).  Anther locule from GSL8-1/gsl8-1 plant at the early to mid bicellular stage with light and dark staining 

of pollen (a), wild-type bicellular pollen grain from GSL8/gls8-1 bud (b), examples of reduced cytoplasmic density 

in gsl8-1 (c) and gsl8-2 (d) pollen.  Anther locule from a wildtype plant showing consistent cytoplasmic staining 

(e).  Wildtype pollen grain with smooth domed shaped wall (arrow) between the newly divided generative and 

vegetative cells (f) and the generative cell migrating off the vegetative wall with rounded generative cells and 

callose wall stubs (arrow) (g and h). Anther locule from a GSL10/gsl10-1 plant with consistent cytoplasmic 

staining (i).  Examples of flattened and disrupted wall (arrow) between the generative and vegetative cells (j,k) 

and ectopic callose (arrow) in the GSL10/gsl10-1 mutant (l). Anther locule from GSL10/gsl10-1 (m) and 

GSL10/gsl10-2 (q) showing wild type and mutant pollen.  Wild type pollen grains at tricellular stage (n and r) 

sperm cells indicated by arrow, only one sperm cell visible in n.  Examples of the generative cell stuck on wall 

phenotype (o and s), partial walls (p) and two similar  nuclei (t). 
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Pollen was also observed from buds at the tricellular stage from GSL10/gsl10-1 (Fig. 2.7 

m-p) and GSL10/gsl10-2 plants (Fig. 2.7 q-t). Pollen was not observed for the gsl8 mutants 

because previous analysis had shown that the mutant pollen was aborted by this stage. 

Anther locules from GSL10/gsl10-1 and GSL10/gsl10-2 plants contained a mixture of pollen 

with dense cytoplasm filling the entire grain, and slightly smaller pollen grains where the 

cytoplasm was reduced or absent (Fig. 2.7m and q). The wild type pollen at this stage has 

dense cytoplasm with a vegetative nucleus and two sperm cells (Fig. 2.7n and r).  In both 

mutants pollen grains with a marginalised, electron dense region separated from the main 

cytoplasm by wall-like material were present (Fig. 2.7o and s) and presumably represent the 

generative cell stuck on wall class seen with DAPI staining (Fig. 2. 5b). In some cases the 

wall separating this region was incomplete (Fig. 2.7p).  Pollen with two similar nuclei was 

also seen in the GSL10/gsl10-2 mutant, although by this stage much of the cytoplasm is 

degraded (Fig. 2.7t), consistent with this class of pollen aborting (Fig. 2.5a, b). 

 

 

2.2.7 GSL8 and GSL10 act independently in the sporophyte 
 

The expression of GSL8 and GSL10 in diverse sporophytic tissues and organs 

(Zimmermann et al., 2004) prompted us to examine potential roles of GSL8 and GSL10 in 

sporophyte development. Since homozygous gsl8 or gsl10 mutant plants cannot be 

recovered, we chose a gene silencing approach to down-regulate GSL8 or GSL10 using 35S 

promoter driven gene-specific double-stranded RNA interference (dsRNAi) constructs. Since 

GSL5 was previously shown to function both in the male gametophyte and in sporophytic 

tissue (Jacobs et al., 2003; Nishimura et al., 2003), the resulting dsRNAi constructs were 

transformed into the gsl5 (pmr4-1) mutant background to examine potential gene interactions 

between GSL5 and GSL8 or GSL10. We recovered independent dsRNAi lines that showed a 

strong reduction of GSL8 or GSL10 leaf transcript levels (Fig. 2.8a). Although GSL8 and 

GSL10 are more closely related to each other than to any other GSL family member (63,7% 

DNA sequence identity, 63,4% protein sequence identity), the silencing effect appeared to be 

gene-specific as indicated by semi-quantitative RT-PCR analysis of the respective dsRNAi 

lines (Fig. 2.8a). dsRNAi lines containing a single locus integration event in the gsl5 

background were backcrossed with Col-0 wild-type plants to produce F2 populations. Plants 

that were Basta resistant (indicating the presence of the dsRNAi transgene) were screened 

using a cleaved amplified polymorphism marker to determine if these were GSL5/GSL5 

(WT), gsl5/gsl5 or GSL5/gsl5 (Tab. 2.3). The effectiveness of GSL8 dsRNAi or GSL10 

dsRNAi-mediated gene silencing, measured by semi-quantitative RT-PCR analysis of the 
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respective endogene-derived mRNA levels, was found to be indistinguishable in GSL5 or 

gsl5 backgrounds (Fig. 2.8a and b).  

 

 
 
Figure 2.8:  Silencing of GSL8 and GSL10 in wild type and gsl5 mutant backgrounds. 

(a) Semi-quantitative RT-PCR of GSL8 and GSL10 transcripts in wild-type (WT), gsl5 mutant plants, and 

transgenic lines expressing gene-specific GSL8 (GSL8i) and GSL10 (GSL10i) dsRNAi constructs in the gsl5 

background. (b) Semi-quantitative RT-PCR of GSL8 and GSL10 transcripts in wild-type (WT), gsl5 mutant plants, 

and transgenic lines expressing gene-specific GSL8 (GSL8i) and GSL10 (GSL10i) dsRNAi constructs in the 

GSL5 background. (c, e, g, i, k, n) Top-view of 28 day-old plants of the indicated genotypes. Bars=1 cm. (d, f, h, j, 

l, o) Side-view of 49 day-old plants of the indicated genotypes. Bars=3 cm. (m and p) Top-view of 49 day-old 

extreme dwarfs of the indicated genotypes. Bar=1 cm.  
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In GSL5 wild type and gsl5 mutant backgrounds we noticed a marked dwarf phenotype 

in both GSL8 and GSL10 dsRNAi lines. The dwarf phenotypes of GSL8 dsRNAi- or GSL10 

dsRNAi-containing siblings were enhanced in the gsl5 background (compare Fig. 2.8g-j with 

Fig. 2.8k-p).  Dwarfism in the GSL8 dsRNAi lines was consistently less severe compared to 

the GSL10 dsRNAi-lines in wild type and mutant gsl5 backgrounds (Fig. 2.8c-d and g-j). 

These data demonstrate that GSL8 and GSL10 are independently required for normal growth 

of wild-type plants. Consistent with previous findings (Enns et al., 2005), homozygous gsl5 

mutants were slightly smaller compared to wild type plants.  

 
Table 2.3: Segregation of dsRNAi transgenes in F2 progeny of crosses between GSL8 or 

GSL10 dsRNAi transgenic lines (in gsl5 background) and Col-0 wild-type. 

dsRNAi line n plants 
germinated 

n Basta  
survivors n wild-type n gsl5 n heterozygous 

GSL8i #1 100 76 21 18 37 
GSL10i #1 97 72 19 12 41 
GSL10i #2 98 69 21 18 37 

 

We could discriminate dwarf subtypes for both GSL8 and GSL10 dsRNAi lines among T2 

progeny in the gsl5 background, designated ‘moderate’ or ‘extreme’ (compare Fig. 2.8l-m 

and Fig. 2.8o-p). To test whether the severity of dwarfism was dependent on transgene 

dosage, we examined the segregation of dwarf phenotypes. Since viable seeds of extreme 

dwarfs were difficult to recover in sufficient quantities, we restricted our analysis to T3 

progeny derived from moderately dwarfed T2 plants with single locus insertions. Among the 

Basta resistant T3 progeny we found moderate and extreme dwarfs in a ratio of 

approximately 2:1, which might dicate a dose-dependent effect of the dsRNAi transgene on 

the severity of dwarfed plant growth. 
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2.3 Discussion 
 

To investigate the functional diversification and roles of GSL family members in 

Arabidopsis, two independent T-DNA insertion lines each for GSL8 (gsl8-1 and gsl8-2) and 

GSL10 (gsl10-1 and gsl10-2) were characterized. We have shown that both GSL8 and 

GSL10 are required gametophytically for pollen development and both GSL proteins also 

have a role in the sporophyte.    

 

Previously reported mutations in genes of the glucan synthase-like family that act in male 

gametogenesis affect tetrad callose deposition and/or exine architecture. GSL2 exerts an 

essential function in callose synthesis at the primary cell wall of meiocytes, tetrads, and 

microspores and is required for correct exine patterning (Dong et al., 2005). GSL1 and GSL5 

play a partially redundant role in pollen development and are responsible for the formation of 

the callose wall that separates the microspores of the tetrad (Enns et al., 2005). Unlike these 

GSL family members, GSL8 and GSL10 are not required for microspore development, as 

mutant pollen has a reticulate exine, callose deposition in tetrads appears normal and 

microspores become polarized in preparation for asymmetric division. These previously 

reported GSL family members also act later in pollen development. GSL2 is required for 

callose deposition in growing pollen tubes (Nishikawa et al., 2005) while gsl1/gsl5 mutant 

pollen are reported to have a bicellular pollen phenotype (Enns et al., 2005). GSL8 and 

GSL10 also act during pollen development and independently have a role in the entry of 

polarized microspores into mitosis. Perturbation of generative cell engulfment, that involves 

spatially controlled synthesis and turnover of the separating callose wall, was mainly 

observed in gsl10-2 pollen.   

 

Relatively few gametophytic mutants have been described in Arabidopsis that affect 

defined steps of microgametogenesis (Twell, 2006). Mutants and genes affecting microspore 

division symmetry and cytokinesis (Park et al., 1998; Twell et al., 2002) or that specifically 

block generative cell division have been isolated (Durbarry et al., 2005), but none that 

specifically block microspore division. gsl8 and gsl10, therefore, present a new class of 

gametophytic mutants that act during microspore development to prevent mitotic entry. 

Interestingly the limpet pollen mutant, in common with gsl10, also fails to complete 

generative cell migration after microspore division (Howden et al., 1998), although the locus 

responsible remains unknown.  

 

In both hemizygous gsl8 and gsl10 (mainly gsl10-2) lines some mutant pollen display a 

single DAPI-stained nucleus followed by progressive cell death (Fig. 2.5a and b), indicating a 
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role for GSL8 and GSL10 in entry into mitosis. Such a role for a GSL protein is intriguing and 

has not been shown before. Callose deposition before entry into mitosis, in the microspore or 

other cell types, has not been described. Thus the functions of GSL8 and GSL10 at this 

stage may be independent of their functions in callose synthesis. GSL8 and GSL10 may 

exert indirect regulatory functions through interactions with other proteins rather than through 

catalytic activity at this stage. Whether this regulatory function involves surveillance of cell 

wall integrity systems similar to those described in yeast in which FKS1/2 represent effector 

proteins remains to be tested (reviewed inLevin, 2005). 

 

When gsl8 (rarely) or gsl10 microspores do divide there are common defects in 

cytokinesis.  Callose deposition was previously shown to occur during cytokinesis in all 

higher plants (Scherp et al., 2001) where it consolidates the tubular network into a new cell 

plate (Samuels et al., 1995).  In gsl10 mutant pollen callose is still deposited but either in the 

wrong location in an irregular structure (mainly gs10-2) or as a dome surrounding the 

generative cell but with slight structural abnormalities (observed by TEM, Fig. 2.7) which 

persists (mainly in gsl10-1), indicating that GSL10 is not essential for callose production 

during pollen mitosis but may be required for correct temporal and spatial control of its 

deposition.  GSL6 has been reported to be important in the cell plate between dividing cells 

in sporophytic tissues (Woo et al., 2001).  Whether GSL6 is also involved in the production of 

callose after microspore division, and contributes to the callose deposited in gsl10 mutant 

pollen, is unknown. 

 

Although all four T-DNA lines show similar pollen phenotypes, the proportions of pollen 

that fail to enter mitosis or display cytokinetic phenotypes differs. The majority of gsl8 mutant 

pollen fails to enter mitosis, indicating a requirement for GSL8 in this process and consistent 

with both gsl8 alleles being nulls as the insertions occur close to the 5’ end of the coding 

region (Fig. 2.1). The gsl10-2 insertion, which results in some mononuclear pollen, also 

occurs close to the 5’ end of GSL10 so is also likely to be a null allele, suggesting the 

requirement for GSL8 in microspore entry into mitosis is not absolute.  The proportion of 

gsl10-1 and gsl10-2 pollen in different phenotypic classes differs and may be due to allelic 

differences.  Consistent with this, the T-DNA insertion in gsl10-1 is located almost exactly in 

the middle of the 14 kb long GSL10 gene, thus potentially giving rise to a truncated gene 

product with residual activity (Fig. 2.1). Since the gsl10-1 T-DNA insertion is located 

upstream of the region encoding the putative catalytic region (deduced amino acids 1064-

1796) that is conserved among GSL family members, the residual GSL10-1 activity most 

likely lacks callose synthase activity. That there appears to be some function of GSL10 while 
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lacking the putative catalytic domain is consistent with the idea that these GSL proteins may 

have a function other than callose synthesis in entry into mitosis. 

Both GSL8 and GSL10 are expressed throughout pollen development and may have 

roles after microspore division, in tricellular pollen for example, which are not apparent in 

these T-DNA lines.   Several alleles of GSL2 have been described, gsl2-1 and gsl2-2 both 

result in microspore collapse (Dong et al., 2005), but a weaker allele gsl2-3 revealed a role 

for GSL2 in callose deposition during pollen tube growth (Nishikawa et al., 2005).  Analysis of 

further alleles for GSL8 and GSL10 may also reveal additional roles for these proteins that 

may be masked by earlier phenotypic defects in strongly defective alleles. 

 

Recently Huang and colleagues (2009) described two additional GLS10 alleles (gsl10-3 

and gsl10-4), which also fail to transmit mutant gsl10 through their pollen. Likewise the two 

GSL10 alleles described above, GSL10/gsl10-3 and GSL10/gsl10-4 hemizygous plants 

display normal microspore growth but fail in asymmetric microspore division in a 1:1 ratio. 

Further more Chen et al. (2009) also failed to recover homozygous gsl10 mutant lines. Thus 

it seems likely that the requirement for GSL10 is limiting in pollen mitosis and absence leads 

to male sterility. Current research work describes 10 newly isolated alleles for gsl8 (Chen et 

al., 2009; Huang et al., 2009; Thiele et al., 2009; Guseman et al., 2010). All of them, 

including the two alleles characterized above, were described as seedling lethal by the 

authors. However permission of mutant gsl8 though the pollen is reduced (Chen et al., 2009). 

These gls8 alleles vary in the peculiarity of their mutant phenotypes. Varying segregation 

patterns in allelic gsl8 null mutants let Thiele et al. (2009) speculate on putative second site 

mutations. Nevertheless also gsl8-1 and gsl8-2 have been described as homozygous 

seedling lethal (Chen et al., 2009; Huang et al., 2009). Partial  seedling recovery of 

homozygous gsl8 individuals (9.9% homozygous plants for gsl8-2) was always observed 

under sterile conditions by the use of high amounts of sucrose (up to 3%) and decreased 

dramatically in the absence of sucrose (Chen et al., 2009). Providing additional carbon 

sources such as sucrose has been previously shown to increase germination and post-

germinational growth in mutant plants (Cernac et al., 2006; Eastmond, 2006). Interestingly a 

recent publication on GSL10 describes residual precocious pollen germination (about 20%) 

of gsl10 containing mircospores within the anther, which failed in migration of any nuclear-

like structures into the growing pollen tube (Xie et al., 2010). This observation might explain 

why mutant alleles of closely related GSL8 can be accidentally transferred by the male 

germline. For our segregation analysis we utilized the aberrant phenotype of bulk pollen from 

dehisced anthers of soil grown plants. In the post-bicellular stage analysis we mainly focused 

on GSL10. Therefore we unfortunately overlooked residual permission of gls8 in hemizygous 

GSL8/gsl8 plants.  
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In addition to their role in male gametophyte development, we have shown that GSL8 

and GSL10 are independently required for normal plant growth (Figure 8).  If the cellular 

function(s) of GSL8 and GSL10 in male gametophyte and sporophytic cells are conserved, 

then dwarfism in GSL8 and GSL10 dsRNAi plants could be the consequence of partially 

impaired entry into mitosis or cytokinesis defects. Indeed analysis of newly isolated seedling 

lethal gsl8 alleles revealed strong defects in cytokinesis, cell-to-cell connectivity, stomatal 

patterning, root-hair morphology and reduced callose deposition at plasmodesmata (Thiele et 

al., 2009; Guseman et al., 2010). Alternatively, the dwarf phenotypes that are enhanced in 

the gsl5 background may arise from deregulation of the salicylic acid (SA) pathway. 

GSL5/PMR4 has been shown to negatively regulate the salicylic acid (SA) pathway 

(Nishimura et al., 2003) and deregulated SA levels can dramatically affect cell growth (Rate 

et al., 1999; Vanacker et al., 2001; Yang and Hua, 2004). Nevertheless in the light of 

seedling lethality and male sterility, GSL8 and GSL10 are the only GSL gene-family 

members without true functional redundancy through other GSLs.    

 

A meta-analysis of publicly available data from 1,388 microarrays revealed highly 

correlated gene expression for GSL8 and GSL10 (Pearsons’s correlation coefficient r=0.66; 

http://www.atted.bio.titech.ac.jp).  This and the similar mutant phenotypes of gsl8 and gsl10 

in both the gametophyte and sporophyte point to related or overlapping gene functions and 

suggest potential concerted co-action of these two most closely related GSL family 

members. Callose synthases may exist as complexes containing a number of catalytic 

domains as callose usually exists as triple helices (Stone and Clarke, 1992; Pelosi et al., 

2003) and GSL proteins are present in very high molecular complexes on native gels  (Li et 

al., 2003; Kjell et al., 2004). Thus, it is tempting to speculate that the strikingly similar severe 

phenotypes resulting from loss-of-function mutations in GSL8 or GSL10 reflect the existence 

of a GSL8 GSL10 heteromeric callose synthase-like complex in which the absence of one 

family member disrupts complex activity. This would also explain why both gene functions 

are genetically independent.  Such heteromeric complexes have been shown for the 

cellulose synthase complexes with three different CESA proteins being present in one 

complex (Tsiamis et al., 2000; Gardiner et al., 2003). Notably loss of function in one of the 

three CESAs required for primary cell-wall cellulose synthesis (CESA1,-3 and -6) leads to 

pollen sterility (Persson et al., 2007). 

 
 
 
 
 
 
 

http://www.atted.bio.titech.ac.jp/�
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3. Material and Methods 
 
The Materials and Methods section is subdivided into two parts. In the first part (3.1) 
materials used throughout this study, including plant lines, pathogens, bacterial strains, 
chemicals, enzymes, media, buffers and solutions are listed. Methods applied in this work 

are described in the second part (3.2). 
 
 

3.1. Material 
 
 

3.1.1 Plant materials 
 
Arabidopsis wild-type and mutant lines used in this study were listed in Table 3.1 and 3.2, 

respectively.   

 

Table 3.1: Wild-type Arabidopsis accessions used in this study 

accession abbreviation   source 

Columbia Col-0  J. Danglea 

Dijon Di17  H. Kangb 

C24 C24   R. Panstrugac 

aUniversity of North Carolina, Chapel Hill, NC, USA; bBoyce Thompson, Ithaca, NC, USA; 
cMax-Planck-Institut für Pflanzenzüchtungsforschung, Köln, Germany 
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Table 3.2: Mutant Arabidopsis lines used in this study 

gene accession mutagen reference/source 

wrky18 wrky40 Col-0 T-DNA/dSpm Shen et al., 2007 

eds1-2 Col-0 (Ler-0)a FN Bartsch et al., 2006 

pen1-1 Col-0 EMS Collins et al., 2003 

pen2-2 Col-0 T-DNA Bednarek et al., 2009 

pad-3-1 Col-0 EMS Glazebrook and Ausubel, 1994 

Cyp81f2-1 Col-0 T-DNA Bednarek et al., 2009 

pmr4-1 Col-0 EMS Vogel and Sommerville, 2000 

gsl8-1 Col-0 T-DNA Töller et al., 2008/ this study 

gsl8-2 Col-0 T-DNA Töller et al., 2008/ this study 

gsl10-1 Col-0 T-DNA Töller et al., 2008/ this study 

gsl10-2 Col-0 T-DNA Töller et al., 2008/ this study 

aLer eds1-2 allele introgressed into Col-0 genetic background 8th backcross generation, 

reffered to as Col eds1-2 in this study; EMS: ethyl methane sulfonate; T-DNA: Transfer DNA; 

dSpm: defective Suppressor-mutator 

 
 

3.1.2 Bacterial strains 
 
Bacterial strains used for cloning and stabile transformation of Arabidopsis were listed in 

table 3.3. 

 

Table 3.3: Bacterial strains 

name strain   genotype 

Escherichia coli DH5a  
F- f80lacZDM15 D(lacZYA-argF) U169 
deoR endA1 recA1 hsdR17 (rk

-,mk) 
sup44 thi-1 gyrA96 relA1 phoA 

Escherichia coli DB3.1  
F- gyrA462 endA D(sr1-recA) mcrB mrr 
hsdS20 (rB

-, mB
-) supE44 ara14 galK2 

lacY1 proA2 rpsL20(Smr) xyl5 Dleu mtl1 

Agrobacterium 
tumefaciens GV3101   PMP90RK GmR KmR RifR 
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3.1.3 Yeast  
 
All yeast 2-hybrid experiments were performed with strain EGY48 (8op-LacZ): Yeast strain 

EGY48 transformed with the autonomous replicating p8op-LacZ plasmide. Genotype: MATa, 

ura3, his3, trp1, LexAop (6x)-Leu2. 

 
 

3.1.4 Pathogens 
 
For Powdery mildew infections inoculum from Golovinomyces orontii present at the pathogen 

stock collection of the MPIPZ (Köln) was used.  

 
 

3.1.5 Vectors 
 

Table 3.4 Vectors 

name     reference 

pDONR201   Invitrogen, Heidelberg; Germany 

pJawohl8-RNAi   Töller et al., 2008, this study 

pLexA-GW   Shen et al., 2007 

pB42AD-GW   Shen et al., 2007 

p8op-LacZ     Clontech, Heidelber, Germany 

 
 

3.1.6 Oligonicleotides 
 
Primers used in this study are listed below. Lyophilised primers, synthesized by Invitrogen, 

were resuspended in sterile water to a final concentration of 100µM. Working stock were 

diluted to 10µM and 5µM, respectively.  
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Table 3.5 List of primers ueds in this study 

name sequence (5´- 3´) purpose 

HvW2WD-F XACTCGCCGGCCAGGAAGCGCGC 

HvW2WD-R XTCACGGTGCGTGGTTGTGGT 

HvWRKY2: WRKY domain 

cloning 

HvW2CT-F XACCCGCCCAAGCATCAAGGCTC 

HvW2CT-R XTCAAGCAACAGGGATCCGAC 
HvWRKY2: CT domain cloning 

HvW1CT-F XACCCGCAGCAGCAGAACG 

HvW1CT-R XTTAATTGATGTCCCTGGTCG 
HvWRKY1: CT domain cloning 

W18CT-F XACGCGTTGGAGAAAAACGAAAG 

W18CT-R XTCATCATGTTCTAGATTGCTCCATTAAC
AtWRKY18: CT domain cloning 

W40CT-F XACCTTGACTGTGCCGGTGACTA 

W40CT-R XTCACTATTTCTCGGTATGATTCTGTTGA
AtWRKY40: CT domain cloning 

CC2-GW-F XACATGGGCGGTTGTGTCTC 

CC2-GW-R XTCACAACTCTTCAACCTCAGC 
At1G12210: CC domain cloning 

CC3-GW-F XACATGGGAGGTTGTTTCTCTGTTT 

CC3-GW-R XTCATGTGGGTTGAAAAGGGATCT 

At1G12220: CC domain cloning

(RPS5) 

CC4-GW-F XACATGGGAGCTTGTTTAACACTCTC 

CC4-GW-R XTCATTCTGTGAGACGGGTCCA 
At1G12280: CC domain cloning 

CC5-GW-F XACATGGGTGGTTGTGTCTCTGT 

CC5-GW-R XTCATGTTTCCTGACCAACAATCG 
At1G12290: CC domain cloning 

CC9-GW-F XACATGGCGGATTGGCTTCTACT 

CC9-GW-R XTCACTTATGCGCCACCACTTC 
At1G51480: CC domain cloning 

CC10-GW-F XACATGGCTGAGGCAGTTGTATC 

CC10-GW-R XTCACAACCCCACAAGATCACTCT 
At1G53350: CC domain cloning 

CC11-GW-F XACATGGCTGGAGAACTTGTGTC 

CC11-GW-R XTCAAAACGTTTGTCGCATCTCC 
At1G58390: CC domain cloning 

CC14-GW-F XACATGGCTGGGGAACTTATTTCG 

CC14-GW-R XTCAGCTGTCGTCGTCCTTAGAAAA 
At1G59124: CC domain cloning 
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CC16-GW-F XACATGGCTGAGACACTTTTGTCATT 

CC16-GW-R XTCACCTCTTACTTAGGCCTTCCATAT 
At1G59620: CC domain cloning 

CC18-GW-F XACATGCAGGACTTATATATGGTTGATT 

CC18-GW-R XTCAATGACGCAACTCCCTTTTCCT 
At1G59780: CC domain cloning 

CC20-GW-F XACATGGGAAATTTTGTGTGTATAGAAAT

CC20-GW-R XTCATTGACCAATCGTAGGCTGAGT 
At1G61190: CC domain cloning 

CC22-GW-F XACATGGGGAGTTGTTTTTCTTTTC 

CC22-GW-R XTCAAGGCCTCTCTTCAACTTCAGA 
At1G61310: CC domain cloning 

CC23-GW-F XACATGGGTATTTCTTTCTCGATACC 

CC23-GW-R XTCACAACAATTGTCGGCTGAAGA 
At1G62630: CC domain cloning 

CC24-GW-F XACATGGGTATCTCTTTCTCGATACC 

CC24-GW-R XTCACGGTTGAAGTTGTTGTTCCTC 
At1G63350: CC domain cloning 

CC25-GW-F XACATGGGTATTTCTTTCTCGATACC 

CC25-GW-R XTCAGATTGTCGGTTGAAGAGGTC 
At1G63360: CC domain cloning 

CC26-GW-F XCAATGGCTTCGGCTACTGTTG 

CC26-GW-R XTCAGTTGTTCACCCACTTTGCAT 

At3G07040: CC domain cloning

(RPM1) 

CC27-GW-F XACATGGCGAACTCCTATTTATCAAG 

CC27-GW-R XTCACGCTAGCTTATCTTCCACTCG 
At3G14460: CC domain cloning 

CC28-GW-F XACATGACCGGCATAGGAGAGAT 

CC28-GW-R XTCATTCAGATTCATCCACAAGAGATG 
At3G14470: CC domain cloning 

CC30-GW-F XACATGGTAGATGCGATCACGG 

CC30-GW-R XTCAAGATCGAGCACGCCGAAG 
At3G46530: CC domain cloning 

CC34-GW-F XACATGGGTAGTTGTATCTCTCTCCAA 

CC34-GW-R XTCAAATTGTTTCCCGACCCATAA 
At4G10780: CC domain cloning 

CC41-GW-F XACATGGCAGATATAATCGGCG 

CC41-GW-R XTCACAACATCTCCTTCACCTTCCTC 
At5G04720: CC domain cloning 

CC44-GW-F XACATGGCTGAAGCATTTGTGTC At5G43470: CC domain cloning
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CC44-GW-R XTCAATCGCTTTCAGAACTGTCAGG 
(RPP8) 

CC45-GW-F XACATGGTGGACTGGCTTTCACT 

CC45-GW-R XTCAACCAACTGTGGTTTGTATATGCTTC
At5G43730: CC domain cloning 

CC48-GW-F XACATGAATTGCTGTTGGCAGGT 

CC48-GW-R XTCACGTCGTATCAAGACCGACTG 
At5G47250: CC domain cloning 

CC49-GW-F XACATGGGAAATAATTTCTCAGTTGAAT 

CC49-GW-R XTCAAAGCAACTTTGCTTGAGAAACA 
At5G47260: CC domain cloning 

CC52-GW-F XACATGGGAGGTTGTGTCTCTGTATC 

CC52-GW-R XTCATAGACGGTTCCACGCACTCTC 
At5G63020: CC domain cloning 

CC54-GW-F XACATGAACGATTGGGCTAGTTTG 

CC54-GW-R XTCACTTGGGAACCGAACAAAGAT 
At5G66900: CC domain cloning 

CC60-GW-F XACATGGCAGGGGAACTTGTGT 

CC60-GW-R XTCATGTTCGTCGTATCTCCCTTTC 
At9G58602: CC domain cloning 

Mla1-46-GW-F XACATGGATATTGTCACCGGTGC 

Mla1-46-GW-R XTCAGGCAGCGTTCATGCTCTCAA 
cloning of MLA101-46 

Mla10-523-R XTCAGCCATCCAATAGATTCACAAA cloning of MLA101-523 

Mla10-225-R XTCACCGACAATCGAAATCACCTT cloning of MLA101-225 

AG9:105/E2 ACACAAGGGTGATGCGAGACA 

EDS4 GGCTTGTATTCATCTTCTATCC 

EDS5 GTGGAAACCAAATTTGACATTAG 

eds1-2 mutant 

detection 

pad3-1-F AATCTCGCCGAAATGTATGG 

pad3-1-R TTGGGAGCAAGAGTGGAGTT 

pad3-1 mutant detection; digest 

with HindIII 

cyp81F2-1-F GGACCAACTCCGTTTCCTATC 

 cyp81F2-1-R TTCATCGACCAATCTCTCTT 

cyp81f2-1 

mutant detection 

pen1-1-F CAACGAAACACTCTCTTCATGTCACGC 

pen1-1-R CATCAATTTCTTCCTGAGAC 

pen1-1 mutant 

detection 

pen2-2-F CTCTTTGGAACTGCTTCATCTTCT pen2-2 mutant 
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pen2-2-R CAGCAACACTAGCGCCATTA 
detection 

Wrky18-F CGGATTTCGTCTGATCCATT 

Wrky18-R CGATTCATTTCGATGCAAAG 
spans T-DNA insertion in wrky18 

W40-GW-F XACATGGATCAGTACTCATCCTCTTTGG 

Wrky40-R2 TCCACCAAAGCACTTGTCTG 
spans dSpm insertion in wrky40 

GK-LB8409 ATATTGACCATCATACTCATTGC left border detection (GK) 

dSpm8 GTT TTG GCC GAC ACT CCT TAC C detection of dSpm insertion 

Lba1 TGGTTCACGTAGTGGGCCATCG left border detection (SALK) 

Gsl10-F1 TGCTCAGAAACTGGATGACG 

Gsl10-R3 TGTAATGGAACCCATCAAGAAA 
spans T-DNA (GK) in gsl10-2 

Gsl10-F2 AATGTTGCTGTTGGGGTTTC 

Gsl10-R4 TGAACCAATTCGAGCCTACC 
spans T-DNA (GK) in gsl10-1 

Gsl8-F2 ATGCTGCACTAAACGCACAG 

Gsl8-R1 GGCGATCGGAGAAAATATGA 
spans T-DNA (SALK) in gsl8-1 

Gsl08-F1 TAGGTACGTGGTGCAGTCCA 

Gsl08-R2 TGCAGAGACGATCAGATGCT 
spans T-DNA (GK) in gsl8-2 

pmr4-1 F CAAGGACGGCATTCATAGGT 

pmr4-1 R CCGTCTCGCCTCTAGATTCA 

pmr4-1 mutant 

detection; digest with NhiI 

Gsl08-RT-F GGACTTAACCAGATTGCCCTA 

Gsl08-RT-R ATACCTTTGCACCACCGTGA 
GSL8 RT-PCR 

Gsl10-RT-F GAGATGTTGGGCTCAATCAAA 

Gsl10-RT-R CATTGGCACAGCAGTGAAGA 
GSL10 RT-PCR 

Gsl8-S-F1 XATGCTGCACTAAACGCACAG 

Gsl8-S-R1 XGGCGATCGGAGAAAATATGA 

GSL8 dsRNAi fragment 

amplification 

Gsl10-S-F1 XGTACCTTGCGTATGGCAA 

Gsl10-S-R1 XTAGCCTTGCTAGGGAACGAAT 

GSL10 dsRNAi fragment 

amplification 

X denotes forward or reverse Gateway® recombination sites. 
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3.1.7 Enzymes 
 
Restriction enzymes were purchased from New England Biolabs (Frankfurt/Main, Germany) 

and Fermentas (St. Leon-Rot, Gernamy). Restriction digestions were performed following the 

manufactures recommendations, using the provided 10x reaction buffer. 

Standard PCR reactions were performed using home made Taq DNA polymerase. High 

accuracy Pfu DNA polymerase (Fermentas, St. Leon-Rot, Germany) or TaKaRa DNA 

polymerase (Clontech, Heidelberg, Germany) was used to generate PCR products for 

cloning and/or sequencing. 

 
 

3.1.8 Antibiotics 
 
Antibiotic stock solutions (1000x) were prepared as indicated (Table 3.6) and stored at -

20°C. 

 

Tabel 3.6. Antibiotic stock (1000x) solutions 

name description   source 

Ampliciline 100mg/ml in dH2O  Roth, Karlsruhe, Germany 

Kanamycin 50mg/ml in dH2O  Serva, Heideberg, Germany 

Carbencilin 50mg/ml in dH2O  Sigma, München, Germany 

Rifampicin 100mg/ml in DMSO   Fluka, Buchs, Switzerland 

 
 

3.1.9  Antibodies 
 

Table 3.7 Primary antibodies 

name source dilution  source 

α-LexA mouse 1:1000 in PBST 
+ 2% milk (w/v) 

Santa Cruz,  
Heideberg, Germany 

α-B42AD rabbit 1:1000 in PBST 
+ 2% milk (w/v) 

Santa Cruz,  
Heideberg, Germany 

α-HA rat  1:2500 in PBST 
+ 2% milk (w/v) M. Roccaroa 

aMax-Planck-Institut für Pflanzenzüchtungsforschung, Köln 
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3.1.10  Chemicals 
 
Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich (München, 

Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, Germany), Serva (Heidelberg, 

Germany) and Invitrogen™ (Karlsruhe, Germany) unless otherwise stated. 

 

 

3.1.11  Media 
 

Sterile media were used for the growth of bacteria yeast and Arabidopsis in vitro pollen 

germination as follows: 

 

Escherichia coli medium:     Luria-Bertani (LB) broth or agar plates 

Agrobacterium tumefaciens medium:  YEB broth or agar plates 

  
For yeast the appropriate drop-out selection media were prepared according to the “Yeast 

Protocols Handbook” (Clontech, Heidelberg).     

 
Arabidopsis pollen germination medium: 

18% (w/v) sucrose, 0,5% (w/v) agar, 0,01% (v/v) boric acid,  1mM MgSO4, 1mM CaCl2, 1mM 

Ca(NO3)2  
 
 
 
 

Table 3.7 Secondary antibodys 

name lable dilution  Source 

α-mouse HRPb 1:4000 in PBST 
+ 5% milk (w/v) 

GE Healthcare, 
Freiburg, Germany 

α-goat HRPb 1:4000 in PBST 
+ 5% milk (w/v) 

Santa Cruz,  
Heideberg, Germany 

α-goat HRPb 1:5000 in PBST 
+ 5% milk (w/v) M. Roccaroa 

aMax-Planck-Institut für Planzenzüchtungsforschung, Köln; bhorseradish peroxidase 
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3.1.12  Buffer and solutions 
 
General buffers and solutions are denoted in the following list. All buffers and solutions were 

prepared with Milli-Q® water. Buffers and solutions for molecular biological experiments were 

autoclaved or filter sterilized, respectively. 

  

DNA extraction buffer (quick prep) Tris 200 mM 

 NaCl 250 mM 

 EDTA 25 mM 

 SDS 0,5 % 

 pH 7,5 (HCl)  

 

DNA loading dye (6x) Succrose 4  g 

 EDTA (0,5 M) 2  ml 

 Bromphenole blue 25  mg 

 dH2O to 10 ml  

 

TAE buffer (x50) Tris 242  g 

 EDTA 18,6  g 

 Glacial acetic acid 57,1 ml 

 dH2O to 1000 ml  

 pH 8,5  

 

Ethidium bromid stock solution Ethidium bromid 10 mg/ml H2O 

 Dilute 1:20000 in Agarose solution. 

 

PCR reaction buffer Tris 100 mM 

 KCl 500 mM 

 MgCl2 15 mM 

 pH 9  
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TE buffer Tris 10 mM 

 EDTA 1 mM 

 pH 8,0 (HCl)  

 

Resolving gel buffer (4x) Tris 1,5 M 

 pH 8,8 (HCl)  

   

Stacking gel buffer (4x) Tris 0,5 M 

 pH6,8 (HCl)  

 

Protein sample buffer (2x) Tris 0, 125 M 

 SDS 4 % 

 Gycerol 40 % (v/v) 

 Bromphenol blue 0,02 % 

 pH 6,8  

 
0,2 M Dithiothreitol (DTT) was added 

befor use 

 
Ponceau S Ponceau S working solution was 

prepared by diluting ATX Ponceau S 

(Fulka) 1:5 in dH2O. 

 

Running buffer (10x) Tris 30,28 g 

 Glycine 144,13 g 

 SDS 10 g 

 dH2O to 1000 ml  
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Transfer buffer (10x) Tris 58,2 g 

 Glycine 29,3 g 

 SDS (10%) 12,5 ml 

 dH2O to 1000 ml 

 
Before use dilute 80 ml in 720 ml dH2O 

and add 200 ml methanol. 

 

PBS buffer (10x)  NaCl 80 g 

 KCl 2 g 

 Na2HPO4 14,4 g 

 KH2PO4 2,4 g 

 pH 7,4 (HCl)  

   

PBS-T buffer 0,1 % (v/v) Tween® 20 in PBS 

 

DEPC-H2O Diethylpyrocarbonate 0,1 % in H2O 

 
Shake vigorously, let stand O/N and 

autoclave 30 min. 

 

ΦB Yeast extract 0,5 % 

 Tryptone 2 % 

 MgSO4 0,4 % 

 KCl 10 mM 

 pH 7,6  

 autoclave  
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TFB1 KAc 30mM 

 MnCl2 50 mM 

 RbCl 100 mM 

 CaCl 10 mM 

 Glycerol 15% 

 ph 5,8  

 filter sterile  

 

TFB2 MOPS 10 mM 

 CaCl2 75 mM 

 RbCl 10 mM 

 Glycerol 15% 

 filter sterile  

 

Yeast transformation mix PEG 3350 (50 %) 7 ml 

 TE (10x) 1 ml 

 LiAc (10x) 1 ml 

 dH2O 1 ml 

 Prepared fresh before use. 

 
 

3.2. Methods 
 

 

3.2.1 Maintenance and cultivation of Arabidopsis plant material  
 
Arabidopsis seeds were germinated by sowing directly onto moist compost (Stender AG, 

Schermbeck, Germany) or freshly moisture expanded Jiffy pots (Jiffy Products, Mölln). 

Seeds were stored for at least 3 days at 4°C before sawing or cold treated by incubating 

covered sawn pots in the dark at 4°C for 2-3 days. Pots were subsequently transferred to a 

controlled environment growth chamber, covered with a propagator lid and maintained under 
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short day conditions (10 hour photoperiod, light intensity of approximately 200 μEinsteins-2 m
 

sec-1, 23°C day, 22° C night, and 65% humidity). Propagator lids were removed when seeds 

had germinated. For propagation, plants were transferred to long day conditions (16 hour 

photoperiod), to allow bolting and setting of seed. To collect seed, aerial tissue was 

enveloped with a paper bag and sealed with tape at its base until siliques shattered. 

 
 
 
3.2.2 Generation of Arabidopsis F1 and F2 progeny 
 
Fine tweezers and a magnifying-glass were used to emasculate an individual flower. To 

prevent self-pollination, only flowers that had a well-developed stigma but immature stamen 

were used for crossing purpose. Fresh pollen from donor stamens was dabbed onto each 

single stigma. Mature siliques containing F1
 
seed were harvested and allowed to dry. 

Approximately five F1
 
seeds per cross were grown as described above and allowed to self 

pollinate. Produced F2
 
seeds from individual F1 were collected and stored separately. 

 

 

3.2.3 Golovinomyces orontii maintenance and infection procedure 
 
G.orontii was maintained as mass conidiosporangia cultures on leaves of a genetically 

susceptible Arabidopsis genotype, under short day conditions (10 hour photoperiod, 23°C 

day, 22°C night, 70% humidity) in a controlled environment growth chamber. For infections, 

conidia were carefully brushed off infected donor plants, held over acceptor plants, with a 

soft paint brush. Inoculated acceptor plans were kept in the same growth chamber as 

maintenance cultures until analysis. 

 

 

3.2.4 Agrobacterium-mediated stable transformation of Arabidopsis 
 
The method for Agrobacterium-mediated stable transformation of Arabidopsis, use in this 

study, is based on the floral dip protocol described by Clough and Bent (Clough and Bent, 

1998). Approximately 9-12 Arabidopsis plants were grown in 9 cm square pots (3 pots for 

each transformation) under short day conditions for 4 - 5 weeks. Then the plants were shifted 

to 16 h photoperiod conditions to induce flowering. Plants were used for transformation when 

they had a maximum number of young flower heads. Agrobacterium was streaked out onto 

selective YEB plates containing appropriate antibiotics (Table 3.6) and was grown at 28°C for 

72 h. A 20 ml overnight culture was prepared in selective YEB medium and cultured at 28 °C 
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in an orbital shaker. The next day 200 ml YEB broth with appropriate antibiotics was 

inoculated with all of the overnight culture and grown overnight at 28°C in an orbital shaker 

until OD600 > 1.6. Cultures were spun down at 5000 rpm for 10 min at room temperature 

and the pellet was resuspended in 5% sucrose to OD600 ~ 0.8. Silwet L- 77 (Lehle seeds, 

USA) at 500μl/l was added as surfactant. Plants were inverted into the cell-suspension 

ensuring all flower heads were submerged. Plants were agitated carefully to release air 

bubbles and left in the solution for approximately 10-20 sec. Plants were then placed 

horizontal on a plastic tray and covered with bags. The plants were incubated overnight at 

RT without direct light. Afterwards bags were removed and pots were moved to direct light in 

the greenhouse and left to set seed. 

 

 

3.2.5 Preparation of chemically competent E. coli cells 
 
5 ml of an E. coli over night culture grown in ФB was added to 400 ml of ФB and shaken at 

37°C until the bacterial growth reached an OD600 0,4 - 0,5. Cells were cooled on ice and all 

following steps were carried out on ice or in a 4°C cold room. The bacteria were pelleted at 

5000 g for 15 min at 4°C. The pellet was gently resuspended in 120 ml ice-cold TFB1 

solution and incubated on ice for 10 min. The cells were pelleted as before and carefully 

resuspended in 16 ml ice-cold TFB2 solution. Cells were transferred into 1.5 ml reaction 

tubes containing 50 μl aliquots. The cells were frozen in liquid nitrogen and stored at -80 °C 

until use. 

 
 

3.2.6 Transformation of chemically competent E. coli cells 
 
A 50 μl aliquot of chemically competent cells was thawed on ice. 10 to 100 ng of plasmid 

DNA (or 3 μl of BP or LB Gareway© reaction mixture) was mixed with the aliquot and 

incubated on ice for 30 min. The mixture was heat shocked for 40 sec at 42°C and 

immediately put on ice for 2 min. 500 μl of LB broth medium was added and the cells were 

incubated at 37°C for 1 h in an Eppendorf thermomixer. The transformation mixture was 

centrifuged for 1 min at full speed in a table top centrifuge. The Cells were resuspended in 50 

μl LB broth and plated onto selective media plates. 
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3.2.7 Preparation of electro-competent A. tumefaciens cells 
 
Agrobacterium was streaked out onto a YEB agar plate, containing adequate antibiotics and 

was incubated at 28°C for two days. A single colony was picked into a 5 ml YEB medium 

over night culture, containing the appropriate antibiotics, at 28°C. The whole overnight 

culture was added to 200 ml YEB (without antibiotics) and grown to an OD600 of 0,6. 

Subsequently, the culture was chilled on ice for 15 – 30 min. From this point onwards 

bacteria were maintained at 4°C. Bacteria were centrifuged at 6000 g for 15 min an 4°C and 

the pellet was resuspended in 200 ml of ice-cold sterile water. Bacteria were again 

centrifuged at 6000 g for 15 min and 4°C. Bacteria were resuspended in 100 ml of ice-cold 

sterile water and centrifuged as described above. The bacterial pellet was resuspended in 4 

ml of ice-cold 10% glycerol and centrifuged as described above. Bacteria were resuspended 

in 600 μl of ice-cold 10% glycerol. 40 μl aliquots were frozen in liquid nitrogen and stored at -

80°C. 

 

 

3.2.8 Transformation of electro-competent A. tumefaciens cells 
 

50-100 ng of plasmid DNA was mixed with 40 μl of electro-competent A. tumefaciens cells, 

and transferred to an electroporation cuvette on ice (2 mm electrode distance; Eurogentec, 

Seraing, Belgium). The BioRad Gene Pulse™ apparatus was set to 25 μF, 2.5 kV and 400 

Ω. The cells were pulsed once at the above settings for a second, the cuvette was put back 

on ice and immediately 1 ml of YEB medium was added to the cuvette. Cells were quickly 

resuspended by slowly pipetting and transferred to a 2 ml microcentrifuge tube. The tube 

was incubated for 3 h in an Eppendorf thermomixer at 28°C and 600 rpm. A 5 μl fraction of 

the transformation mixture was plated onto selection YEB agar plates. 

 

 

3.2.9 Transformation of yeast cells 
 

Yeast was grown at 30°C on a platform shaker in the appropriate SD selection medium over 

night. Fresh SD medium was inoculated with 10% of the over night culture and cells were 

incubated again until the yeast growth reached log phase. The yeast was peleted by 

centrifugation at 4800 rpm for 5 min and was subsequently resuspended with SD medium in 

10% of the harvesting volume. The carrier DNA was boiled for 5 min at 95 °C and was 

immediately chilled on ice. 20 µl of yeast cell suspension were incubated with 100 µg of 

carrier DNA for 2 min at RT. 1-5 µg prey and/or bait plasmid constructs were added. After 
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adding 500 µl of fresh prepared transformation mix each transformation reaction mixture was 

vortexed and incutated over night at RT.  Afterwards cells were peleted for 1 min at 10000 x 

g in a table top centrifuge. Yeast cells were resuspended in 100 µl sterile H2O and plated 

onto appropriate SD selection medium. Plates were incubated for 72 h at 30°C. 

 

 

3.2.10 Isolation of Arabidopsis genomic DNA 
 

For DNA extraction 1-2 young frozen leafs were homogenized with a pre-cold pestle in a 1,5 

centrifuge tube.  Subsequent 200µl pre-warmed (65°C) DNA extraction buffer was added and 

samles were incubated at 65°C for 20 min. The solution was centrifuged at maximum speed 

for 5 min in a bench top microcentrifuge and the supernatant was transferred into a new 

centrifuge tube containing one volume cold (-20°C) isopropanol. Samples were mixed by 

inverting the tubes several times and incubated 30 min at -20°C for DNA precipitation. The 

DNA was peleted by additional centrifugation at 15.000 x g by 4°C for 20 min. The pellet was 

washed with 70% ethanol and air dried. Finally the DNA was dissolved in 50 µl sterile H2O 

and 2 µl of the DNA solution were used for a 25 µl PCR reaction mixture. Samples were 

stored at -20°C. 

Alternatively genomic DNA was isolated with REDExtract-N-Amp™ Tissue PCR Kit (SIGMA), 

according to manufacturers instructions. Samples were stored at 4°C. 

 

 

3.2.11 Plasmid DNA isolations 
 
Plasmid DNA was isolated by using the alcaline lysis method (Birnboim and Doly, 1979). 

High quality plasmid DNA was isolated with the MACHEREY-NAGEL (MN) NucleoSpin® 

Mini-Kit according to the manufacturer’s instruction.  

 

 

3.2.12 Restriction endonuclease digestion of DNA 
 
All reactions were carried out by using the manufactures recommended conditions. Typically, 

reactions were performed in 1,5 ml microfuge tubes by using 1-2 U of Enzyme per 20 µl 

reaction. All digestions were carried out at appropriate temperatures in proper incubators or 

at least 60 min. 
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3.2.13 Polymerase chain reaction (PCR) amplification 
 

Standard PCR reactions were performed using homemade Taq DNA polymerase while for 

cloning of PCR products Pfu (Fermentas) or TaKaRa (Clontech) polymerases were used 

according to the manufacturer instructions. 

 

Table 1: PCR reaction mix   

Reagent amount per reaction 

template DNA (genomic or plasmid) 20-50 ng 

PCR amplification buffer 1/10 of the reaction volume 

dNTP mix (dATP, dGTP, dTTP, dCTP) 0,2 mM each 

upstream (F) primer 0,5 µM 

downstream (R) primer 0,5 µM 

Taq DANN polymerase 2,5 U 

sterile water variable 

 

Table 2: PCR thermal profile     

step temperature (C°) Time No. of cycles 

Initial denaturation 94 3 min   

denaturation 94 30 sec  

annealing 50-58 10-30 sec 20-35 x 

extension 72 1-5min   

final extension 72 5min   

 

 

3.2.14 Agarose gel electrophoresis of DNA 
 

DNA fragments were separated by agarose gel electrophoresis in gels consisting of 1–2% 

(w/v) SeaKem® LE agarose (Cambrex, USA) in TAE buffer. Agarose was dissolved in TAE 

buffer by heating in a microwave. Molten agarose was cooled to 50° C before 2.5 μl of 

ethidium bromide solution (10 mg/ml) was added. The agarose was pored and allowed to 

solidify before being placed in TAE in an electrophoresis tank. DNA samples were loaded 
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onto an agarose gel after addition of 2 μl 6x DNA loading buffer to 10 μl PCR- or 

restrictionreaction. Separated DNA fragments were visualised by placing the gel on a 312 nm 

UV transilluminator and photographed. 

 

 

3.2.15 Isolation of total RNA from Arabidopsis 
 
Total RNA was prepared from 3- to 6-week-old plant materials. Liquid nitrogen frozen 

samples (approximately 100 mg) were homogenized for ~20 sec to a fine powder using a 

Mini- Bead-Beater-8™ (Biospec Products) and 1.0 mm Zirconia beads (Roth) in 2 ml 

centrifuge tubes. 1 ml of TRI® Reagent (Sigma) was added and samples were homogenised 

by vortexing for 1 min. For dissociation of nucleoprotein complexes the homogenised sample 

was incubated for 5 min at room temperature. 0.2 ml of chloroform was added and samples 

were shaken vigorously for 15 sec. After incubation for 3 min at room temperature samples 

were centrifuged for 20 min at 12000 g and 4°C. The upper aqueous, RNA containing phase, 

was transferred to a new microcentrifuge tube and the RNA was precipitated by adding one 

volume of isopropanol and incubation for 10 min at room temperature. Subsequently, 

samples were centrifuged for 10 min at 12000 g and 4°C. The supernatant was removed and 

the pellet was washed in 0,5 ml of 70% ethanol. Samples were again centrifuged for 5 min at 

7500 g and 4°C, pellets were air dried for 10 - 30 min and dissolved in 50 μl DEPC-H2O. All 

RNA extracts were adjusted to the same concentration with DEPC-H2O. Samples were 

stored at -80°C.  

 
 

3.2.16 Reverse transcription PCR 
 
For first strand cDNA synthesis SuperScript™ II

 
Reverse Transcriptase (Invitrogen) was used 

by combining 1 μg template total RNA, 1 μl primer dT18 (0.5 μg/μl), 5 μl dNTP mix in a 

volume of 13 μl (deficit made up with sterile H2O). Samples were incubated at 65°C for 10 

minutes. Subsequently, the reactions were complemented with 4 μl of 5 x reaction buffer, 2 

μl of 0.1 M DTT and 1 μl reverse transcriptase. The reactions were incubated at 42°C for 60 

minutes before the enzyme was heat inactivated at 70°C for 10 minutes. For subsequent 

normal PCR appropriate dilutions of the cDNA were used.   
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3.2.17 DNA sequencing 
 
DNA sequences were determined by the “Automatische DNA Isolierung und Sequenzierung” 

(ADIS) service unit at the MPIPZ on Applied Biosystems (Weiterstadt, Germany) Abi Prism 

377 and 3700 sequencers using Big Dye-terminator chemistry (Sanger, 1977). 
 

 

3.2.18 DNA sequence analysis 
 
Sequencing data were analysed mainly using DNAStar Lasergene 8  (DNASTAR, Madison, 

USA) software.  

 
 

3.2.19 Yeast crude protein extraction 
 
Overnight yeast cultures were grown in the appropriate SD selection media on a platform 

shaker at 30°C. 4 ml of each cell culture was pelleted by centrifugation for 1 min at full speed 

in a tabletop centrifuge. Immediately the supernatant was discarded and the pelletes were 

frozen in liquid nitrogen. Subsequently, the samples were boiled for 5 min at 95°C. This 

“freez – thaw” procedure was repeated for at least 3 times. 200 μl of 2x loading buffer with 

freshly added DTT was mixed with the sample. Samples were stored at -20°C. Prior to use  

samples were boiled for 5 min at 95°C and centrifuged for 5 min at 13,000 rpm. 

 
 

3.2.20 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
 

Different percentage polyacrylamide (PAA) gels were used depending on the size of the 

protein to be resolved. The resolving gel was poured between two glass plates and overlaid 

with ~2 ml sterile H2O. The gel was allowed to set for a minimum of 15 minutes. The water 

was removed and a stacking gel was poured onto the top of the resolving gel. After insertion 

of a comb and ensuring that no bubbles were trapped the whole gel was left to set for at least 

15 minutes. 
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Table 3.8 Formulation of different percentage resolving gels 

componenta 7,5 % resolving gel 10 % resolving gel 

dH2O 4,28 ml 4,1 ml 

30 % Acrylamide/Bis solution 20:1 
(BioRad) 2,5 ml 3,3 ml 

resolving gel buffer 2,5 ml 2,5 ml 

10 % SDS 100 µl 100 µl 

TEMED (BioRad) 5 µl 5 µl 

10 % APS 75 µl 75 µl 

aAdd in stated order. 

 

Table 3.9 Constituents of a protein stacking gel  

componenta 4 % stacking gel 

dH2O 6,1 ml 

30 % Acrylamide/Bis solution 20:1 
(BioRad) 1,3 ml 

stacking gel buffer 2,5 ml 

10 % SDS 100 µl 

TEMED (BioRad) 10 µl 

10 % APS 100 µl 

aAdd in stated order. 

 

After removing the combs, each PAA gel was placed into the electrophoresis tank and 

submerged in 1x running buffer. A pre-stained molecular weight marker (Precision plus 

protein standard dual colour, BioRad) and denatured protein samples were loaded onto the 

gel and run at 80–100 V until the marker line suggested the samples had resolved 

sufficiently. 
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3.2.21 Immuno-blot analysis 
 
Proteins that had been resolved on PAA gels were transferred to Trans-Blot® nitrocellulose 

membrane (BioRad). After gels were released from the glass plates and stacking gels were 

removed with a scalpel. PAA gels were pre-equilibrated in 1x transfer buffers for 20 min on a 

rotary shaker and the blotting apparatus (Mini Trans-Blot® Cell, BioRad) was assembled 

according to the manufacturer instructions. Transfer was carried out at 100V for 120 min. 

The transfer cassette was dismantled and membranes were checked for equal loading by 

staining with Ponceau S before rinsing with deionised water. Ponceau S stained membranes 

were scanned and thereafter washed for 5-15 min in PBS-T before membranes were blocked 

for 1-2 h at room temperature in BBS-T containing 5% (w/v) non-fat dry milk (Roth). The 

blocking solution was removed and membranes were washed briefly with PBS-T. Incubation 

with primary antibodies was carried out overnight by slowly shaking on a rotary shaker at 4°C 

in PBS-T supplemented with 5% (w/v) non-fat dry milk. Next morning the primary antibody 

solution was removed and membranes were washed 3x 15 min with PBS-T at room 

temperature on a rotary shaker. Bound primary antibodies were detected using horseradish 

peroxidise (HRP)-conjugated secondary antibodies (for antibody details see 3.1.10) diluted in 

PBS-T containing 5% (w/v) non-fat dry milk. Membranes were incubated with the secondary 

antibody for at least 1 h at room temperature by slowly rotating. The antibody solution was 

removed and membranes were washed as described above. This was followed by 

chemiluminescence detection using the SuperSignal® West Pico Chemimuminescent kit or a 

5:1 - 1:1 mixture of the SuperSignal® West Pico Chemimuminescent- and SuperSignal® West 

Femto Maximum Sensitivity-kits (Pierce) according to the manufacturer instructions. 

Luminescence was detected by exposing the membrane to photographic film. 

 

 

3.2.22 Yeast two-hybrid analyses 
 
Yeast 2-hybrid constructs were cloned from the pDonr201 vector containing the appropriate 

constructs and fused to the C-terminus of the LexA DNA binding domain and B42 activation 

domain as described in Shen et. al. (2007). Prey and Bait plasmid were co-transformed into 

yeast strain EGY48 by using the LiAc method over night (as described above). Interaction 

analyses were performed according to the user manual (MATCHMAKER LexA Two Hybrid 

System User manual, PT3040-1; Clontech, Heidelberg). 
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3.2.23 Determination of the fungal host cell entry rate 
 

Arabidosis plants were inoculated with G. orontii (as described in 3.2.6). For each genotype 

three leafs of three independent plants were detached and detained in EtOH/ Acidic acid 

(3:1) for at least 24 h, respectively. To visualize the fungal structures on the leaf surface, 

leafs were rinsed in dH2O and fungal structures were stained by slewing the leafs in 0,6 % 

Coomassie® brilliant blue R250 (in EtOH; Fluka) for 15-20 seconds. The sample leafs were 

rinsed again in dH2O and mounted on a microscope slide with 50% glycerol of analyzis. 

The host cell entry attempt of G orontii is characterized by the formation of the primary 

hyphae that forms the appressorium. After successfully invading the host cell the fungus 

starts forming secondary hyphae. Therefore the ratio of primary vs. secondary hyphae 

forming spores can be used to determine the efficiency of the fungal host cell entry. A 

minimum of 50 interaction sites per leaf were analyzed using a light microscope. 

 

 

3.2.24 Microscopic analyzes of Arabidopsis pollen 

 
Light microscopy: For analysis of spores during development anthers were dissected and 

spores stained with DAPI (4’-6-Diamidino-2-phenylindole) and 0.03% aniline blue as 

described in Park et al., (1998).  For each line spores from buds from 2 or 3 inflorescences 

were analyzed with 80-200 spores observed per bud. 

 

Scanning electron microscopy: Pollen grains were sputter coated with gold and observed 

with a Zeiss DSM 940 scanning electron microscope.   

 

Transmission electron microscopy was conducted as in Park and Twell (2001). 
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