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Zusammenfassung

Wir betrachten das Problem der Disposition leerer Güterwagen (DP) bei
DB Schenker Rail Deutschland AG unter Berücksichtigung vieler praxis-
relevanter Nebenbedingungen und realer Daten(mengen). Das (DP) ist ein
„Online“- Zuordnungsproblem zwischen dezentral verfügbaren Güterwagen
(Beständen) und geographisch verteilten Kundenbestellungen (Bedarfen)
für zukünftige Gütertransporte. Eine optimale Zuordnung minimiert im
Wesentlichen die Transportkosten für leere Güterwagen.

Eine grundlegende Nebenbedingung ist die rechtzeitige Erreichbarkeit
zwischen Bestand und Bedarf, die durch einen vorgegebenen Güterzug-
Fahrplan bestimmt wird. Verschiedene Güter (wie zum Beispiel Schüttgut,
Stahl-Coils, etc.) benötigen unterschiedliche Arten von Güterwagen für
ihren Transport. Bestände und Bedarfe sind daher typisiert. Andererseits
können verschiedene Wagentypen (nach festen Schemata und Anzahlen)
gegeneinander ausgetauscht werden. Diese erlaubten Austauschbeziehun-
gen geben eine weitere zentrale Nebenbedingung des (DP) vor.

Wir stellen in der vorliegenden Arbeit zahlreiche weitere „harte“ und
„weiche“ Nebenbedingungen vor und skizzieren die zur Zeit durchgeführte
Disposition bei DB Schenker Rail Deutschland AG. Diese wird nach Grup-
pen von Wagentypen getrennt und in mehreren, teils manuellen vor- bzw.
nachgelagerten Schritten vorgenommen. So kann es zu global suboptimalen
Dispositionen kommen. Um dies unter Berücksichtigung aller Nebenbe-
dingungen zu vermeiden, modellieren wir das (DP) als generalisiertes
Flussnetzwerk, welches ganzzahlig zu lösen ist. Letzteres ist NP-schwer,
ebenso wie das (DP) unter allgemeinen Substitutionsbedingungen. Die Lö-
sung des (DP) erfordert daher einen Kompromiss zwischen praktikabler
Laufzeit und Qualität der erzeugten Disposition.

Wir erreichen dies einerseits durch Anwendung approximativer und
heuristischer Lösungsmethoden für den Fall allgemeiner Substitutionsbe-
dingungen, andererseits durch die Entwicklung einer netzwerkbasierten
Reoptimierungsstrategie. Diese berechnet für eine Folge von Instanzen mit
wenigen Datenänderungen in kurzer Zeit optimale (bzw. im allgemeinen
Fall approximative und heuristische) zulässige Lösungen.

Diese Arbeit wurde durch ein 2-jähriges Forschungs- und Entwicklungspro-
jekt der DB Schenker Rail Deutschland AG in Kooperation mit der Ar-
beitsgruppe Faigle/Schrader der Universität zu Köln und mit der Ar-
beitsgruppe von Prof. Dr. Sven O. Krumke (Technische Universität Kaiser-
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slautern) motiviert und finanziert. Das Projekt umfasste ebenfalls die Imple-
mentierung des entwickelten generalisierten Netzwerkmodells, der Reop-
timierungsstrategie sowie der Approximationsmethoden und Heuristiken.
Diese sollen als zukünftiger Optimierungskern für das (DP) bei DB Schenker
Rail Deutschland AG genutzt werden.
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Abstract

We consider the empty freight car distribution problem (DP) at DB
Schenker Rail Deutschland AG under a wide range of application relevant
constraints and real data sets. The (DP) is an online assignment problem
between geographically distributed empty freight car supplies and customer
demands for such cars in preparation of good transport. The objective is to
minimize transport costs for empty cars while distributing them effectively
with respect to the constraints.

In our case, one major constraint is given by prescheduled freight trains:
obviously a supply can only be assigned to a demand if it reaches the
latter in time. Further, the variety of goods (bulk cargo, steel coils, etc.)
to be transported requires distinct types of freight cars. Freight cars of a
certain type can be exchanged by cars of other types with respect to a given
substitution scheme and different ’exchange rates’. Allowed substitutions
are therefore another major constraint of the (DP).

We describe further ‘hard’ and ‘soft’ constraints and sketch the current
work flow at DB Schenker Rail Deutschland AG to find an adequate solu-
tion for the (DP) on a daily base in practice. The (DP) is currently solved
separately for groups of car types and in several steps. Moreover, some
steps contain manual pre- and post-processing to ensure certain constraints.
Hence global sub-optimal distributions can occur. We therefore integrate all
constraints into a generalized network flow model for the (DP). A global
optimal distribution is then provided by an integral minimum cost flow
in the network. To find such a flow is NP-hard in general. We show that
a general substitution scheme makes our notion of the (DP) also NP-hard.
Hence independent of the applied model and with respect to practical
runtime requirements, we have to find a compromise between solution time
and quality .

We do so in two ways. Instances of the (DP) which correspond to clas-
sical flow networks are solved by an integral minimum cost flow, which
can be obtained in polynomial time. We use such instances to polynomi-
ally obtain minimum cost flows of fixed bounded fractionality for certain
general instances. For those instances occurring in the application we ob-
tain half-integral flows, which can be rounded to approximate or heuristic
distributions in linear time. Moreover, we develop a network-based reopti-
mization approach, which yields optimal solutions for subsequent instances
with few changes very fast.
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This thesis was inspired and funded by a 2-year research and development
project of DB Schenker Rail Deutschland AG in cooperation with the work
group Faigle/Schrader of the University of Cologne and the work group of
Prof. Dr. Sven O. Krumke at the Technical University of Kaiserslautern. The
project included the implementation of the generalized network model and
the reoptimization, approximation and heuristic methods. The software is
designed as a future optimization kernel for the (DP) at DB Schenker Rail
Deutschland AG.
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1
I N T R O D U C T I O N

The general concern of any cargo (railway) company is obviously the trans-
port of goods between different customer sites and (air)ports for further
transport. With regard to railway transport, goods must be loaded into
empty freight cars at the initial location before this actual customer service
takes place and can then be unloaded at the transport’s destination. Mostly,
the respective freight cars are owned by the operating railway company and
not by the customers themselves.

Thus apart from the transport of loaded freight cars, a railway company
also manages the subsequent rental of its freight car stock. Although the
car rent might be included in the total transport costs, there are several
reasons to distinguish between freight car allocation and transport service.
On the one hand, loading and unloading the cars can take significant time
compared to the transport time, especially with regard to ’just-in-time’
production. Thus the car rent is also due for time periods without active
transport.

On the other hand, the allocation of empty freight cars for (transport)
demands (and thereby the possibility to satisfy a demand) is a logistic
problem, which rather depends on previous than upcoming transports. Of
the complete stock of empty cars, only parts are temporarily available, as the
rest is bound in current transports. Moreover, available cars are returned by
customers to different sites or stored decentralized and the company cannot
charge the transport cost for the empty cars to the upcoming customer
demands. Thus the logistic goal is to assign all available empty freight cars
to customer demands (or storage) with minimum total transport cost. We
call this optimization task the distribution problem (DP).

This thesis models and solves the (DP) as a real world application with
respect to specific requirements for DB Schenker Rail Deutschland AG
including a stand-alone software implementation (see Appendix A for an
overview over the implementation and experimental results). It was funded
by a two year’s research and development project of DB Schenker Rail
Deutschland AG1 in cooperation with the work group Faigle/Schrader at
the University of Cologne and the group of Prof. Dr. Sven O. Krumke at the
Technical University of Kaiserslautern.2

1 DB Schenker Rail Deutschland AG, Rheinstrasse 2, 55116 Mainz
2 AG Mathematische Optimierung, Technische Universität Kaiserslautern, Paul-Ehrlich-Str.

14, 67663 Kaiserslautern
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2 introduction

(a) Franfurt, control center (DB4788) by Mario Vedder (b) Maschen, shunting yard (DB13244) by Volker Emer-
sleben

(c) (DB28270) by Michael
Neuhaus

(d) (DB9012) by Günter
Jazbec

(e) (DB13010) by Bartlomiej
Banaszak

(f) (DB4383) by Michael
Neuhaus

Figure 1: Freight car distribution is a complex real-world process, where opti-
mization and automatizing meet expert knowledge and man power. All
pictures taken from https://mediathek.deutschebahn.com by courtesy of
Deutsche Bahn AG.
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The DB Schenker Rail Deutschland AG is one of the first cargo railway
companies on the European continent measured for example by business
volume (3.791 million Euros in 2009), transported tonnage (341 million tons
in 2009) by the nearly 5000 operated trains per day resulting in about 105

million ton kilometres.3 Planning and transport is carried out by more than
34 thousand employees managing a stock of 105 freight cars owned by DB
Schenker Rail Deutschland AG and a considerable number of cars leased
or temporarily distributed for other wagon keepers. A railway network of
about 36 thousand kilometers interconnects about 4200 customer locations
throughout Germany, Denmark, Italy, Switzerland, the Netherlands and
other European countries with about 50 shunting facilities. The workload of
the company’s about 3500 locomotives spares highway traffic 105 trucks per
working day.

At DB Schenker Rail Deutschland AG the (DP) has to be solved for 104 to
105 available empty freight cars and demands for single up to a hundred
cars per day. As mentioned above, this also includes cars which are not
permanently owned by the company, but currently taken care of in the
distribution process. The complete stock is temporarily rented to customers
for various transportation uses. For this period of time, a certain freight car
drops out of our optimization world. As soon as it returns from a customer
– mostly at other places than those it was rented – it becomes current supply
and can be assigned to another customer demand again.

This short description already contains the basic variables and constraints
which are to be met: supplies and demands of empty freight cars are connected
to their location, the time they become available respectively need to be
satisfied and to different types of cars due to their different transportation
requirements like the kind of goods to be transported. Based on these and
additional attributes, a number of constraints are imposed on the minimum
cost solution.

The major constraints considered from our view on the (DP) are for
supplies to be in time and of appropriate type for the demands they are
assigned to. The former constraint depends on a predefined freight train
schedule and the latter is defined by a so-called substitution scheme.

In the remainder of this introduction, we give a short sketch of the daily
distributive process at DB Schenker Rail Deutschland AG in Section 1.1 and
present a summary of research and optimization goals of the joint project
in Section 1.2. A brief survey of the literature on related topics is given in
Section 1.3. We close the introduction by an outline of this thesis in Section
1.4.

3 From: http://www.rail.dbschenker.de.
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1.1 distribution at db schenker rail deutschland ag

Today at DB Schenker Rail Deutschland AG the (DP) is solved once a day.
The solution relies on a variety of computer programs for data acquisition
and management in different planning and production stages with various
interfaces and parameters. Handling and coordination of those devices
depend on a considerable amount of manpower.

In the morning, system based estimates for numbers of available cars
are consolidated with actual status messages from different yard locations.
New demand information is partly gathered via different Internet portals
addressing different ranges of customers and thus different groups of car
types, but also via traditional communication channels such as telephone or
fax. All variants, however, require manual processing before entering the
optimization.

At a fixed time in the morning the (global) optimization process is started.
To reduce running time and memory requirements, supply and demand
data is split according to the seven main car type groups and seven runs of
the optimization program are started, each of which takes about one minute.
Before the optimization is started, fleet managers manually correlate the
absolute supply and demand values with respect to type groups. A set of
parameters allows to shorten demands regarding different priorities in case
of low supply. This regulation is expected to include a cost independent
fairness with regard to customer satisfaction.

The central application used to solve the above sketched optimization
problem is an implementation of the Out of Kilter algorithm [92, 41, 2]. This
algorithm already bases on a network model of the distribution problem
designed by F. Schläpfer in the 1970s for the Swiss Federal Railway [49, 108,
109].

Generally, supplies are registered at dispo stations (frequently coinciding
with shunting facilities) located throughout the German railroad network.
Further, available cars are clustered with respect to types and availability
time with the help of so called phases (time intervals). The same scheme is
applied to demands with the difference that also customers in the central
European countries are considered. It follows that the optimal distribution
based on the clustered and thus reduced input data does not provide the
individual assignments. This final assignment (often composed of two and
up to three partial assignments) is done manually as a post-processing to the
aggregated optimization. So far, supplies which are currently not allocated
for demands and demands, which are not provided the number of ordered
cars are administered manually as well as the storage capacities and the
return of cars to other wagon keepers.



1.2 project and thesis goals 5

1.2 project and thesis goals

The research and development project of the DB Schenker Rail Deutschland
AG was embedded in the fleet management project, which amongst others
aims at the following topics. On the one hand, processes are planned to be
more integrated and automated (but still manually controllable). On the
other hand more flexibility in terms of data structure and volume as well as
the work flow over time is targeted.

In this context the optimization kernel for the (DP) has to be adopted.
With regard to integration and automatizing, for example the administration
of operative storage capacities is now part of the optimization process as
well as the retransfer of cars which do not belong to the DB Schenker Rail
Deutschland AG stock. As these aspects concern all car types in a concurrent
way, also the classification in type groups and the separate optimization
runs have to be abandoned.

Further, the classical (threefold) assignment of cars as explained above
can be replaced by a single assignment. This development is partly due to a
number of additional attributes which makes formerly used clustering of
supply and demand at dispo stations non-beneficial in terms of reducing the
number of input data records. A single assignment is expected to decrease
the wagon cycle time in the operation.

Both of these aspects may lead to a larger data volume for a single
optimization run and thus demanded a more efficient implementation. A
modular optimization software in the object oriented C + + programming
language achieves this as well as the required flexibility and maintainability.
New standards like another car type classification that is currently under
consideration can then easily be prepared and later be included in the
implementation.

The main target of flexibilizing is the up to now relatively static daily
work flow over time, which does not adapt to new or changed data once the
optimization is started. Regarding this aspect, we develop a reoptimization
strategy. The latter uses a former solution and additional information to
produce a new solution after data changes. For a reasonable number of
changes (less than 20% of the complete data volume, see Appendix A.2), the
latter is much faster than a new optimization ’from scratch’ on the whole
current data volume. This performance gain allows for multiple runs of the
optimization process a day, while neither blocking the work flow with long
waiting times nor leaving optimization marges unused.

The reoptimization also exploits a certain time interval between the time a
supply becomes known to the system and the latest possible time the supply
can be assigned a distribution without intermediate storage becoming
necessary. A comparable interval exists for a demand, between it becomes
known to the system and the latest time it can possibly be satisfied. The
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interval end depends on the assigned car supply (if any). We call those time
intervals planning intervals.

The set of optimal assignments with respect to the given input data
is therefore regarded as tentative, as long as both supply and demand
concerned are still within their planning interval with respect to the next
scheduled (re)optimization. (Note that the latter convention does not permit
’reoptimization on demand’, without scheduled runs unless the end of each
planning interval triggers a reoptimization run.) Thus assignments can be
rearranged to save transport costs taking upcoming or cancelled supplies
and demands into account.

As mentioned above, one of the major constraints to the (DP) is the
substitution of a demanded car by assigning a supply of another type
respecting the substitution scheme. If this scheme involves changes in the
number of supplied cars with respect to the number of demanded cars,
finding an optimal distribution becomes a computationally difficult problem.
Hence, providing an optimal solution to the (DP) in such cases is generally
too slow for successful application in practice, which includes a certain
percentage of substitutions with number changes.

Currently, with respect to this special substitutions, the optimization
follows a greedy approach integrated into the Out of Kilter algorithm which
is rather not well-understood for the current model. Instead, we also employ
the reoptimization as part of a heuristic solution for those (DP) instances
and we investigate the trade-off between running time benefits and potential
decrease in the solution quality in detail (see Appendix A.2).

The developed model and solution approaches to the (DP) are summa-
rized into a prototypical stand-alone C++ implementation (see Appendix
A.1).

1.3 related topics

From a broad perspective, there is a large number of optimization problems
in context of ’rail industry’. They are addressed in the literature beginning
in the 1960s up to now. Surveys with emphasis on different aspects are
for example given in [94, 3, 23, 25, 28]. Following the recent survey of
Newman [94] and others we classify the respective questions as strategic
(long-term), tactical (mid- and short-term) and operational (short-term).
Owing to the strong interdependence of the resulting optimization problems,
we also sketch long- and mid-term applications, although our own focus is
operational.

Strategic aspects are for example yard location (including the analysis of
the impact of closing a yard) [3] and also rail installation and maintenance.
While such strategic considerations require a system-wide view with respect
to a long time horizon due to installation times and large investments, their
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large scale and integrated nature prevent detailed modelling of all aspects.
The latter concern for example train routing and scheduling, which are of
course influenced by the underlying network structure and the shunting
capabilities of its yards. Installing a basic train service on a network to enable
the routing of cars also requires to solve the corresponding scheduling
problem (for example [16, 17]) together with locomotive (for example [5])
and crew scheduling for the trains to be operated.

Each individual problem being computationally hard and large scale,
they are rather solved separately or iteratively, as in the above cited articles.
Yet, those problems are interdependent: each scheduled train requires an
engine of appropriate pulling-power and a crew association which meets all
technical and contractual restrictions. Regarding the equipment inventory
and crew management also an ’economies of scale’ aspect comes into play
[77, 116]. Subsequent assignment problems can thus render a preliminary
train schedule (economically) infeasible, such that it needs to be rearranged.
In turn, potential solutions to following questions like the (railroad) blocking
problem [6, 95] depend on the train schedule.

The blocking problem occurs in the operational transport for empty as
well as loaded freight cars: a freight car is not treated as a single entity,
but assigned to a so called ’block’, which means a group of cars handled
together between a certain source and destination and we ask for an assign-
ment of cars to (not necessarily predefined) blocks generating the minimum
transportation and handling cost. The definition of blocks and their assign-
ment to trains (referred to as make-up) must enable a transport between all
given origin-destination pairs. This is often achieved by designing a set of
itineraries, which means paths which have to be followed by each car from
its origin to the given destination. A similar construct named ’Leitweg’ is
used by the DB Schenker Rail Deutschland AG for routing. For a survey
focusing on routing and scheduling, we refer to [23].

Recently some dissertations also address integrated models for some of
the above mentioned problems, for example [122, 87]. Not surprisingly the
corresponding network design problems and mixed integer formulations
are large scale and hard to solve in practice even at tactical time scales
without real-time requirements. Thus (like already most of the individual
problems) they are solved heuristically, for example by (very large scale)
neighbourhood- [87], tabu-, ellipsoidal search [122] and hybrid approaches.
The usage of different decomposition techniques, simulated annealing and
neural networks is also mentioned in [23].

The above sketched problems are mostly modelled as variants of the
network flow and network design problem respectively, where the latter
emerges roughly speaking as a consequence of integrated routing and
timetabling (including for example trip planning (itineraries), design of
blocking policies). A detailed review of the application of network mod-
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els to many optimization problems occurring in the railroad industry is
given in [3]. Integrality requirements on those models generally lead to
mixed integer program formulations which are either solved with the help
of (commercial) LP-solvers, branch-and-bound/-cut, decomposition and
(lagrangian) relaxation approaches or heuristically as mentioned above. We
will return to the use of proprietary LP-solvers later on.

Note that in some of the more closely related work to the (DP), which
is briefly reviewed in the following, ’empty freight car distribution’ is
also referred to as ’equipment distribution’ and ’repositioning’ or ’fleet
management’ (in a more general context).

One of the first approaches in literature to the distribution of empty
freight cars as an optimization problem was a time-space expanded network
model by White [120]. Following the early survey on ’Models for Rail
Transportation’ by Assad [9] the resulting minimum cost flow problem was
solved via linear programming methods. Given that White considered a
homogeneous fleet, which means only one car type, the relaxation of the
resulting classical flow problem provided the necessary integral solutions.
Assad also mentions the applicability of combinatorial algorithms in this
case. For heterogeneous fleets of several car types with possible substitution,
a multi-commodity flow problem was proposed to be solved. Further, Assad
reports on the acceptance of the linear programming approach and its early
use as ’part of the analytical arsenal of many railroads’, for example at the
Swiss Federal Railways [67].

Haghani [65] claims to be the first to develop an integrated (time-space
expanded network) model for scheduling, make-up, loaded car routing and
empty car distribution, after reviewing existent models in [64]. Around the
same time Keaton [81] also addresses timetabling, blocking and car routing
simultaneously. Both problems are formulated as mixed integer programs
and solved by heuristic (decomposition) approaches, where Keaton relaxes
his formulation with regard to train capacities and heuristically repairs
capacity violations afterwards.

From these early integrated approaches we already see that the large-scale
and computationally complex nature of the combined problems seems to
prevent optimal solutions to be obtained fast enough, at least at operational
level, although computation power has of course improved significantly
since then. However, it partly explains why CSX, one of the major US railway
companies, used a decision-support tool, which was based on a simpler
single-commodity minimum cost network flow formulation for the empty
freight car distribution by Turnquist and Markowicz [117] between 1990 and
1996 [63]. Then in 1997, CSX implemented the first real-time, fully integrated
optimization system (DCP) for equipment distribution [62] still based upon
a classical single-commodity network model. Later similar systems have
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been implemented for the BNSF Railway [62] and the Union Pacific Railway
[93]. The latter uses a classical transportation model.

Nevertheless, also multi-commodity network models are employed on
an operational (for example for the Swedish Railways [71, 77]) and tactical
level (for example Canadian Pacific Railway [72]).

Beside the integrated approach, another branch of development is the
inclusion of stochastic data to model uncertainty of supply and demand
forecasts. This is important for the development of general repositioning
policies for empty cars (at a tactical level) as well as to cope with the on-
line nature of their distribution at operational level. For example Powell
and Carvalho apply stochastic modelling to a single-commodity flow ap-
proach with respect to freight car [101] and container management [102].
In both cases multiple successive assignments can be considered due to a
predicted availability time of cars/containers after previous assignments.
The stochastic approach is also extended to a multi-commodity flow model
by Topaloglu and Powell [113]. In terms of forecasts, the latter provides the
basis for a (heuristic) decision support system for locomotive scheduling
implemented at Norfolk Southern Railroad [63, 94]. A survey of ’dynamic
and stochastic models for the allocation of empty containers’ is given by
Crainic et. al. [25].

As we learn from [62], the dynamic car-planning system (DCP) of CSX
relies on a minimum cost flow model alike our own considerations. For the
(DCP) a linear program (LP) formulation is established and a proprietary
(LP) solver is employed. Although this method yields fast solutions for large
instances in general, we selected a combinatorial approach for two main
reasons. Firstly, one of the project specification was to develop a prototype as
a stand-alone software. The latter was designed to be embedded into the DB
Schenker Rail Deutschland AG software landscape without causing license
cost. The prototype was successfully embedded in a DB Schenker Rail
Deutschland AG test environment at the end of the project. Secondly, the
combinatorial solution approach enabled us to chose from various existing
flow algorithms and fit our choice specifically for the needs of instances of
the minimum cost flow problem, which arise from (DP). Examples are the
strong prioritization of demands and the reoptimization, which are both
achieved by modification of the selected Successive Shortest Path algorithm
[2].

A proprietary (LP) solver can also be fine-tuned to the application, but
thorough customization usually comes at high expenses. Moreover, espe-
cially in case of strong prioritization, it is not at all clear how to incorporate
certain constrains in a standard (LP) model.

With regard to the amount of existing literature on the empty freight
car distribution and closely related, interacting problems including some
approaches that may seem similar to our own, we conclude our brief survey
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with a citation out of [94]: ’Martland and Sussman [89] point out that even
fairly realistic models must be customized to suit a railroad’s operating
policies and user capabilities.’ The model we develop in this thesis (see 1.4)
is therefore tailored on the one hand to specific assumptions, which we
worked out with DB Schenker Rail Deutschland AG (see 2) and on the other
hand designed to aim at the major project goals (see 1.2).

1.4 thesis outline

We describe the (DP) in detail in Chapter 2 from the application’s point of
view and derive formal definitions in Chapter 4 after introducing general
terms and notation in Chapter 3. We also prove that the decision variant
of (DP) is NP-complete with respect to a practice relevant constraint set in
Chapter 4. The latter result is due to substitution schemes with number
changes.

In the Chapters 5 and 7 we then model the (DP) as a network flow
and a generalized network flow respectively such that we face increasing
computational difficulty with respect to the required integrality of minimum
cost flow solutions. Both models were developed in cooperation with DB
Schenker Rail Deutschland AG, Prof. Dr. Rainer Schrader4 and the group of
Prof. Dr. Sven O. Krumke.5

An integral minimum cost flow [39, 2] in the classic network model
has a one-to-one correspondence with an optimal distribution for (DP)
instances where only substitutions without resulting changes in numbers
of cars are allowed (homogeneous, 1-to-1-substitution). For substitutions
which alter the number of required cars, like the (heterogeneous) 2-to-1-
substitution occurring in the application, we need to solve a generalized
minimum cost flow problem [75, 2] in integers. The latter being an NP-
complete problem, its use is justified by the (DP)’s own proved complexity.
Further, we characterize instances of the (DP) which allow to obtain a
generalized minimum cost flow of bounded fractionality in polynomial
time. This way we always obtain a half-integral flow in network models
for (DP) instances from the application. (Some further theoretical results
concerning special generalized flow networks in connection with known
literature are postponed to Appendix B.)

In Chapters 5 and 7 we give an overview over known (generalized)
minimum cost flow algorithms and develop a generalized variant for the
Successive Shortest Path algorithm [76, 73, 15, 2]. We then use a modified
Successive Shortest Path algorithm to solve the minimum cost flow case
respecting strong prioritization.

4 AG Faigle/Schrader, Universität Köln, Weyertal 80, 50931 Köln
5 AG Mathematische Optimierung, Technische Universität Kaiserslautern, Paul-Ehrlich-Str.

14, 67663 Kaiserslautern
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Dynamization of the distribution process as a basic project goal is ad-
dressed in Chapter 6. With regard to the online nature of the distribution
problem (short-term changes in information/data), we present a reopti-
mization process on the basis of a formerly optimal flow and its associated
residual network. The presentation of the reoptimization approach bases
on the classical network flow model, but due to the generalization of the
Successive Shortest Path algorithm it is also applicable to the generalized
version.

So far, for the (DP) with general substitution we only obtained a solution to
the relaxed problem, which means a fractional flow, in polynomial time. We
dedicate Chapter 8 to finding adequate solutions in practice. Here, we have
to cope with a trade-off between running time and solution quality in terms
of cost. Based on rounding half-integral flows, we find optimal solutions for
so called 0.5-upgraded (DP) instances associated with the original instances.
We further establish a classical 4-approximation with presumptions on the
(DP) instances, where single spare cars are redistributed with the help of
our reoptimization approach from Chapter 6. Rounding and redistribution
are then combined to yield a heuristic which is applicable to find feasible
solutions for all (DP) instances in practice (see Appendix A).

Considerations to improve the approximation factor and/or relax the
presumption on (DP) instances to obtain a fix factor approximation leads to
a matching problem with a graph theoretic constraint, which is introduced
in Chapter 9. As checking the constraint is NP-complete for general graphs,
we concentrate on such instances where the constraint can be represented
by a tree. The latter leads to a polynomial algorithm employing dynamic
programming, which can be applied to extend the set of (DP) instances with
guaranteed 4-approximation.





2
F R E I G H T C A R D I S T R I B U T I O N

In this chapter we give an informal description of the freight car distribution
problem (DP). The basic task of freight car distribution with respect to
wagon load traffic is the assignment of currently available empty cars or
supplies to a number of currently known (customer) demands. The former
are determined by manual assertion and/or correction of a system based
supply proposal. The latter are selected amongst all known demands by a
time horizon, usually enclosing today, tomorrow and the day after tomorrow
(see Section 2.6).

The objective is to satisfy the demands with minimum total transport
costs. Supplies as well as demands are time dependent and the transport
is carried out via generally presheduled freight trains (see Section 2.2). In
times of high traffic between different locations additional freight trains can
be arranged or superfluous scheduled trains can be cancelled. Both options
require a pre-processing time, such that there is no direct dependence of the
freight train schedule on the current repositioning of empty cars and our
view on the timetable is static. We also exclude regular ’commuter’ traffic of
unit trains between two or more locations, but concentrate on less regular
demands with changing number of cars per demand (wagon load traffic).

Transport costs obviously arise due to the different localization of both
supplies and demands, which come up at various customer sites in the first
place. With respect to the production process, which means the realization of
an individual empty car transport, several locations can be aggregated to
so-called dispo(sitive) stations (see Sections 2.1, 2.2). Often the latter are nodes
in the railroad network of strategic or technical importance, but basically
the aggregation to dispo stations is a tool to allow a reasonably scaled
system-wide view of the network.

Considering the variety of goods to be transported, the freight car assigned
to a demand has to meet different physical requirements like open or
closed cars, different volume and weight capacities or special equipment
for example in coil transport. Up to today, the physical features of freight
cars are encoded in the car type, for our purposes identified by a natural
number. Moreover, we distinguish supply car types, which always possess real
world equivalents from demand car types, which can also represent groups of
car types equivalently appropriate for the demanding customer. Possible
assignments between supplies and demands are then defined by a set of
allowed substitutions between car types (see Section 2.3). Also cars of the
rolling stock of different companies (different wagon keepers) are sometimes

13
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distributed within our system. We identify the wagon keeper with a natural
number and treat this feature as an extension to the car type.

Sometimes not all current supply can be distributed to demands. As a
new feature, those are explicitly assigned to special storage tracks with
free capacity, the so called operative storage or short-term storage sidings1 as
explained in Section 2.4. Thus the transport costs for stored cars are also
controlled and influence the solution of the (DP). Although we claimed as
the major goal to satisfy all demands (or at least as much as possible), the
incorporation of the storage planning into the (DP) solution even allows to
prioritize cost issues over demand satisfaction. Such differences in priority
can also be useful between customers or demands for economic and fairness
reasons (see Section 2.5).

Rather static information about instances of the (DP) like the freight
train schedule or allowed substitutions and further detailed constraints are
sometimes referred to as master data in the following as opposed to (current)
input data, which mostly refer to actual supplies and demands. We remark
that the currently installed process of empty freight car distribution at DB
Schenker Rail Deutschland AG was also addressed by the diploma thesis of
Katharina Beygang [12].

2.1 supplies and demands

As described above, supplies and demands originate at customer sites. The
former are returned or rather ’declared free’ by the customer, as the car waits
for the actual return at the facility after a rental period. The latter includes
not only the actual good transport, but also a necessary time overhead to
unload the car, which may be lengthy due to ’just in time’ production. (The
transported good is not unloaded and stored, but processed further directly
from the car, such that the unloading time coincides with the production
time for a certain final good.)

As rarely the sum of supplies and demands at the same location equal
each other from the beginning, distribution and transport is a necessity. To
specify the above mentioned demand satisfaction ’in time’, we annotate
supplies si and demands dj with some attributes, which are explained in
detail in the following.

Supplies si and demands dj share the attribute of the location (li, lj). The
location li/lj is from the range of shunting facilities called dispo stations2.
The latter are distributed throughout the production area3 of Germany and
central Europe. We associate each dispo station with a natural number. As
only at dispo stations shunting and thus different assignments of individual

1 [germ.] Operative Abstellung
2 [germ.] Dispostellen
3 [germ.] Produktionsgebiet
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Figure 2: Hierarchic assignment of facilities/customer sites (filled black circles)
to collection stations (empty circles) and to dispo stations (double lined
circles).

freights cars are possible, the limitation of the range of the location attribute
does not influence the optimality of a distribution within our setting.

Each individual customer site is usually assigned to one dispositive station
in the master data. For some locations the associated dispo station with
respect to returned cars (supplies) differs from the dispo station to which
new customer demands are associated. The transport for each empty freight
car from its last customer to a dispo station and from the last dispo station
to a customer demand is carried out via customer (fetch/delivery) tours.4 The
latter possess their own customer tour schedule.5 Figure 2 sketches the mostly
hierarchic assignment of facilities (filled black circles) to collection stations
(empty circles) usually without shunting facilities and their assignment to
dispo stations (doubly lined circles).

The actual time when a supply si becomes available to a new assignment
is its return time at the associated dispo station li for the last customer site
it was transported to. More precisely, the earliest subsequent availability
time of a supply is the dissociation time6 of the freight train which returned
the car(s) to the dispo station by a fetch tour. For dispositive purposes we
are only interested in this adjusted availability time ci of si at the dispositive
station and not in the return time at the facility. For demands dj the time
attribute cj is equally adjusted to be the latest time a car must be available
at the associated dispositive station lj, such that the next delivery tour to the
actual customer location is early enough to satisfy the demand in time. In
both cases, times are represented as natural numbers in a reverse date (year,
month, day) and time (hours, minutes) format. (For example ’201010181305’
encodes the date 18th of October 2010 at 1 p.m. and 5 minutes.) We refer to
values of the time attributes in this format as time stamps.

4 [germ.] (Abhol-/Zuführ-) Bedienfahrt
5 [germ.] Nahbereichsfahrplan
6 [germ.] Zugauflösezeit
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The range of time stamps ci for supplies si is given by all arrivals or
dissociation times respectively of customer fetch tours at location li. The
range of time stamps cj for demands dj is analogously given by the set of
formation times7 for the delivery tours. This restriction does also not affect
the possible assignments as any time stamp in between two scheduled
fetch/delivery tours at the same dispo station can be mapped to the time
stamp of the next corresponding tour. On the contrary the time stamps
allow for more precise time management than the formerly used time phases
(see Section 2.6).

The number of cars per supply or demand range from a single car up to
tens, which shows the typical situation in wagon load traffic. We associate
the number of available and demanded cars, ni and nj respectively, with the
accumulated supply si and demand dj. To try and reduce the data volume,
currently supplies and demands are clustered with respect to location and
phases.

2.2 timetable and transport costs

The timetable is predefined such that the distribution decisions do not
affect frequency and capacity of freight trains between different locations
directly as part of the outcome. Due to seasonal or short-term requirements,
scheduled trains can be cancelled or trains can be added at higher expenses.
However, this cannot be done ’just in time’ due to a (DP) solution, but has
to be decided some time in advance. There is also a long-term adjustment
of the timetable, which is carried out every two month.

Moreover, loaded and empty freight cars share the same scheduled freight
trains, yet both are distributed independently and thus capacity control
or management is (so far) well beyond the goals of the project. It is also
general production policy to prefer loaded cars over empty cars competing
for the same block or train with strained capacity limits. Figure 3 gives
an impression of shunting facilities and loaded trains in motion. Further,
detailed routing for the individual freight car is not part of the optimization
process. Although a more integrated view is now in consideration, during
our project and up to now, a so-called ’Richtzahlverfahren’ is used to route
cars. The latter resembles a postal code based distribution and is comparable
to a local Internet routing protocol in the following sense.

Imagine each dispositive station A holds a look-up table with entries for
all possible destinations. The entry specifies exactly to which dispositive
station the car should be sent next, given its destination. This can either
be the associated dispositive station B to the destination, in which case the
routing is complete apart from local transport to the customer siding, or

7 [germ.] Zugbildungszeit
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Figure 3: Maschen, shunting yard (DB13244) by Volker Emersleben. Loaded and
empty freight cars are assembled to trains together in shunting facilities
often equipped with (limited) operational storage. Picture taken from
https://mediathek.deutschebahn.com by courtesy of Deutsche Bahn AG.

another dispositive station C on the way. Then the car is classified (shunted)
appropriately to be part of the next (possible) train leaving A and passing B

or C respectively. In fact, instead of using a look-up table, the classification
follows (immediately) from the numeral code, the ’Richtzahlen’, of the
dispositive stations A and B. The routing between A and B is thus fixed to
a single resulting route, the so-called ’Leit(ungs)weg’, through the network,
as long as no code changes occur. Such a route consists of one or more
freight train connections which are (de-)composed at start dispo, target
dispo and possibly rearranged at intermediate yards8. We call those yards
via dispositive stations (like C in the above example).

Figure 4 shows the route from A to B (via C, not via D). Straight, solid
arcs correspond to direct freight train connections and the dashed arc
corresponds to the predefined routing between A and B, which is composed
of two such connections. The right hand side table displays the artificial
timetable, which contains both direct train connections and composed
connections corresponding to the current ’Leitweg’. (Note that due to the
(de-)composition of a train in C, the cost cAB are not the sum of cAC and
cCB, but include an additional shunting cost term depending on the dispo
station C.)

The ’Leitweg’ can change over time (with the freight train schedule
or independently), but is unique with respect to a certain time interval.

8 [germ.] Umstellungen
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li ci lj cj cij

A 201011300500 C 201011301000 253

A 201011300500 B 201011301251 586

A 201011300600 D 201011301128 359

. . . . . . . . . . . . . . .

C 201011301042 B 201011301251 313

. . . . . . . . . . . . . . .

A

C

B

D

Figure 4: ’Leitwege’ define a set of via stations for each pair of dispositive stations.

This simplifies the routing of individual freight cars and enables us to
develop a more compact model. Nevertheless, the concept of ’Leitweg’ owes
more to technical requirements than to simplification: As mentioned in
the introduction, handling each car individually would be far to expensive
(both in terms of cost and work load). The distinct assembling of cars into
trains in manifold directions otherwise complicates the shunting process or
exceeds capacities of a single dispositive station, especially at central points
of the railway network.

Therefore cars are grouped into blocks and blocks are assigned to trains,
such that even at intermediate rearrangements of trains only complete
blocks and no individual cars must be handled, as long as the corresponding
dispositive station is a via station and not the destination of the block. On
the other hand, this multistage assignment basis on which the transport
is operated makes individual operational car routing a difficult and time
consuming task, which is not addressed in this thesis.

2.2.1 First Train Possible

For our model assumptions, DB Schenker Rail Deutschland AG follows a
first train possible policy. This means that a supply allocated to a demand
uses the first possible connection between supply and demand location. In
practice, a train must not only provide the appropriate connection according
to the respective ’Leitweg’, but also sufficient capacity. The latter is not
modeled explicitly, which is partly due to the lack of data with respect to
loaded cars as mentioned above.

Thus whenever a freight car is to be added to a train or changes a train
during a connection, the train can already have exceeded its maximum
length or weight (due to loaded cars) in the actual production. In this case,
the car has to wait for the next appropriate train. This can also cause a need
for temporal storage (otherwise the empty car hinders subsequent shunting
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operations), which can again result in a delay and the missing of the next
possible train.

To compensate for such effects of increasing waiting and transport times,
we forbid a deliberate delay and (implicitly) assign the first possible train to
an assignment between a certain supply-demand pair. As a consequence,
freight cars might arrive early at the demand dispo and have to be buffered
before the next delivery tour consuming operational storage capacity. Al-
though we incorporate management of operative storage capacity (see
Section 2.4), we decided in favour of the first train possible policy for our
model as a good trade-off between data availability, model complexity and
operational reality.

2.2.2 Transport Cost

Each connection in the timetable delivers the primary costs cij for a single car
transport between supply location li and demand location lj. The transport
costs are assumed to be non-negative integer values (in Euros or Euro-cents).
Those are comprised from the transport costs per track kilometer and an
individual cost term for a shunting operation at possible via stations. The
latter generally includes shunting at the start, but not the target station.

2.2.3 Local Transport Cost

Due to the local accumulation of supplies and demands with respect to
dispo stations and the corresponding timetable, the transport costs account
only for transfer between dispositive stations. There are comparatively few
such stations in the production area, such that transport from/to customer
locations to/from the corresponding dispositive station cannot always be
neglected. Yet, the cost for those transports by fetch or delivery tours are
fixed due to the fixed assignment of the customer location to a dispositive
station. Thus we annotate the local transport cost as an attribute gi and gj to
supply and demand respectively. The local transport costs are also assumed
to be non-negative integer values (in Euros or Euro-cents).

2.3 car types and substitution

Any supply or demand of empty freight cars specifies a certain car type.
Such a type can also define a group9 of possible car types. Figure 5 shows
a small collection of different car types. We speak of (real) supply car types
and demand car types (including artificial types), if distinction is necessary.
All types are given by one continuous numbering. As mentioned above,

9 [germ.] (Misch-)Bedarfstyp
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(a) coil transport (DB13572) by
Michael Neuhaus

(b) paper transport (DB2868) by Margit Brettmann

(c) gravel transport (DB13010) by
Bartlomiej Banaszak

(d) bulk transport (DB962) by Petra Schwaiger

(e) wood transport (DB11838) by Wolfgang Klee

Figure 5: Different Car Types. All pictures taken from
https://mediathek.deutschebahn.com by courtesy of Deutsche
Bahn AG.
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equality of car types between supply and demand is not always necessary
for a valid assignment. Instead, each (demand) car type has an associated
list of allowed (supply) car types to substitute its explicit type. The allowed
supply car types for each demand car type are given as a set of substitution
rules in the master data.

In the context of substitution we employ a distinction between homoge-
neous and heterogeneous substitution in terms of the ‘car exchange rate’,
which can be phrased as ‘How many cars of type A are necessary to substi-
tute n cars of type B?’

In the majority of cases the number of supplied cars equals the number
of demanded cars (homogeneous or 1-to-1 substitution). Nevertheless, there
are also cases in which the number of cars necessary to satisfy a demand
differs from the demanded number of cars according to the supply type. As
a practical example, consider a customer intending to transport bulk cargo
(sand, grain, etc.) and a cargo company which offers two appropriate supply
car types X and Y. Let X be smaller and Y larger, such that a car of type Y

supplies the double transport volume than a car of type X. The customer
needs to transport a certain volume of bulk cargo in either n big cars or 2n

small cars or any appropriate combination adding up to the desired total
volume.

In our case, the cargo company provides an artificial demand type Z,
such that a car of this type is allowed to be substituted by either one car of
type Y or two cars of type X. We call this constellation of substitution rules
heterogeneous (or in this case 2-to-1) substitution.

As in practice only 1-to-1 substitution and 2-to-1 substitution occurs for
our application, we concentrate on (approximate) solutions for this case, as
the general heterogeneous substitution renders the problem significantly
harder to solve to optimality (see Chapter 4).

2.3.1 Foreign Wagon Keepers

The basic substitution rules only rely on the notion of (artificial) car types.
An additional attribute fi/fj of supply and demand respectively represents
the wagon keeper10 by a natural number. The entity in charge of maintenance
of a car, or wagon keeper for short, is the company which is generally in
charge amongst others of the repositioning of a car. (And it is not neces-
sarily, but often, its owner.) Due to international transport, freight cars of a
company’s stock emerge rather remote from their own central production
area as available supply. In such cases, other local companies take over
the dispositive process for the so-called ‘foreign car’ for a limited number

10 [germ.] Wagenverfügungsberechtigter
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of assignments. The latter is subject to additional rules, which distinguish
between three kinds of reuse of foreign cars:

1. domestic transport

2. cross-border transport

3. return of empty wagons to the wagon keeper

The wagon keeper can be seen as an actual expansion of the car type and
is as such an attribute of supplies and demands. The customer can prefer
a car of a certain type and wagon keeper to a car of the same type, but
different wagon keeper as the latter sometimes offers minor but specific
physical differences.

Note that for the above classification of transports not only the demand
or customer location, but also the destination of the following loaded run
has to be considered. The latter is specified by the appropriate dispositive
station rj as an additional attribute of the demand dj. If no destination
of the loaded run is known for dj, rj is set to zero and foreign car reuse
is forbidden for dj, as rules based on the above classification cannot be
employed.

To further distinguish which rules should be applied to certain demands,
we annotate the demand with an additional flag aj, which indicates a
domestic (aj = 1) or foreign (aj = 0) destination for the loaded run. We
call rj the lr-target11 of dj for short. If the wagon keeper of a demand is
not specified (represented by fj = 0) it allows the assignment of every
’foreign car’ with appropriate type respecting the following rules. Those
are currently reformed to be represented by a Car Reuse and Return Matrix
(CReM)12. Up to now, such individual regulations only exist between few
wagon keepers and mainly reflect the rules we describe below.

2.3.2 Domestic Transports

Generally, a foreign car can be repositioned once within the productive area,
which means the assignment to a demand with an lr-target in this area. Each
supply carries a Boolean flag ui to distinguish whether is has already been
reused for this purpose (ui = 0) or not (ui = 1). Further, such an assignment
is only allowed, if the lr-target is geographically nearer to the respective
wagon keeper’s productive area than its current supply location. Again, if
the lr-target is unknown, the rule forbids the assignment of any foreign
car to the demand. To manage this relation without an integrated map or
geo-information system and avoid exhaustive memory requirements, we

11 [germ.] Lastlaufziel
12 [germ.] Wagenverwendungs- und Rückleitungs-Matrix (WuRM)
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use a regional geographic clustering to incorporate this rule in the model.
Nevertheless, we refer directly to the individual locations for reasons of
simplicity.

2.3.3 Cross-border Transports

Disposing a foreign car to a demand with an lr-target outside the productive
area of DB Schenker Rail Deutschland AG is not ruled as finely grained
as in the domestic case. All potential lr-targets in the production area of
one foreign rail transport company correspond to a single (virtual) dispo
station. In this context, we need to consider the target company managing the
productive area in which the lr-target is located. (Note that this ’location’ of
the lr-target is to be understood only more or less in a geographical sense
for historical reasons. More than one company can generally have facilities
in the same city for example and the central factor is the company in charge
for the particular transport process, not the city.) Further, most rules also
consider a first transit company, which is the first company, whose productive
area is crossed by the transport of a car if it is neither DB Schenker Rail
Deutschland AG nor equal to the target company. (Also note that the target
company does not need to equal the wagon keeper.)

Cross-border transports can also be allowed only considering the first
transit company. For example, foreign cars can often be sent to many
different target companies, provided the first transit company corresponds
to the wagon keeper. Therefore, each demand is annotated by the attributes
ej and zj encoding the target company and the first transit company by
a natural number. Allowed reuses are then specified as explicit triples of
wagon keeper, first transit and target company.

2.3.4 Return Transport

If a foreign car cannot be reused (assigned to a demand), it must be returned
to the wagon keeper’s productive area via any or a special dispositive sta-
tion at its border. Those border stations can be viewed as special demands.
(Mostly border stations are considered multiple times for a number of sub-
sequent days, such that capacity control for each day is possible.) Allowed
border stations for a supply are specified by triples of wagon keeper, car
type and border station. It is also possible to directly specify a return border
station for individual supplies by another attribute bi of si, which again
encodes a predefined border station as a natural number. Note that foreign
cars are never explicitly stored.
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2.4 operative storage

In general, demands of empty freight cars tend to exceed supplies, especially
as demands are typically known longer in advance than supplies. Still, there
are season dependent surpluses of distinct types of freight cars or - like
during summer or Christmas holidays, when the industrial workload is
reduced - a general backlog. In such cases, freight cars have to be stored
into special sidings, which are distributed throughout the production area.
Due to their inherent space requirements such storage sidings are often
remote, although each storage location is assigned to a dispo station like the
customer sites. Storage and subsequent reuse of cars tends to be expensive
both in terms of the costs to be paid for the transport and the time before a
remotely stored freight car can be assigned to a demand again. (The latter
increases the wagon cycle time or average idle time of empty cars which is
economically similar to cost increase – time is money.)

The latter two aspects lead to a subdivision of all storage capacity into
long-term storage and short-term or so-called operative storage, where
long-term storage use the more remote storage sidings. Further, freight
cars in long-term storage are not scheduled for regular inspection intervals.
Consequently, those cars have to pass an extra inspection before a new
assignment, which makes them unattractive for short-term reuse. Operative
storage areas are located relatively close to dispositive stations with shunting
facilities. This makes a short-time operational storage attractive, but also
strongly limits space capacities.

Today surplus cars are not explicitly distributed and rather stored in the
supply location at hand if there is enough capacity. If not, they are trans-
ported to locally optimal or rather seemingly good free capacities. Expert
knowledge makes this process generally successful in practice, but espe-
cially in situations of extreme backlog, operational storage is a challenging
task, as shunting facilities tend to be blocked by surplus supplies. Further,
’attractive’ storage locations or those where supplies occur frequently may
tend to operate at their capacity limit in regular situations. This reduces the
efficiency of corresponding shunting facilities.

In sum, long-term storage of freight cars is too reluctant to be incorporated
into a daily optimized distribution. But operative storage, as opposed to
today’s practice can be taken into account to some extend, regarding for
example the given capacities and the global optimization of storage in
terms of transport and shunting cost. Note that from the comparably great
differences in needs of some transportable goods (e.g. steel coils and bulk
cargo) it is evident that at least for some groups of car types the (DP) could
be solved separately so far. However, in our model, we abandon separation
for the sake of planning operative storage. Respecting storage capacities is
only possible if every car type is present in a single optimization run.
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2.4.1 Operative Storage as Supply

Usually supplies of freight cars are known in advance to become available
at a certain place and time. By the time they become available, in the best
case they are already assigned a new destination, such that they neither
block the shunting facility nor have to be shunted twice or more in order to
store them in a local operative storage and distribute them afterwards (see
also Section 2.6).

On supply side, the assignment of a stored car and a car on the move to a
demand differs mainly in terms of (additional shunting) cost. To distinguish
both cases, each supply si is annotated by a natural number oi representing
the associated dispositive station of its current storage or zero, if the supply
cars are on the move. Time stamps and (local) transport costs are provided
by local fetch tour schedules like in the case of returned car supplies from
customer sites.

Further, a single possible storage can be predefined for supplies. If for
example a supply has to be stored at some distance from its supply location
it usually passes via dispo stations, where the dispositive target of a car is
technically possible to be changed. Formerly not known demands can have
occurred in the meantime. A supply already assigned to a (long distance)
storage can be reentered as supply at a via station to take new demands into
account. However, a dispositive change is only intended to satisfy a new
demand. Changing the supply’s destination to another storage (with freed
capacity in the meantime) due to cost optimizing, would disturb the pro-
ductive process without ample benefit and is thus forbidden. Supplies with
storage destination, which are possibly reassigned to demands are therefore
annotated with a natural number vi, which represents the associated dispo
station of the storage destination or zero, if no such destination is set.

2.4.2 Operative Storage as Demand

An operative storage can also be viewed as a kind of demand, which
generally allows mixed types of cars. The access to a storage can be explicitly
limited to special car types by individual substitution-like rules for each
individual storage according to traffic characteristics or different categories
of operative storage. For example really fast accessible and moderately
fast accessible storage can be limited each to those car types which are
seasonably rather in demand and to those who are not. Further, cars of
other wagon keepers are generally not stored, but returned, if they cannot
be reused.

On supply side, already stored cars can be distinguished with respect to
their type, but on demand side all types compete for the limited amount
of empty track space. Consequently the capacity of a storage is not clearly



26 freight car distribution

defined. The base value for the storage capacity is the length of empty track
in metres. To discretize this value taking the mixed car types with individual
length into account, the average length of a car is computed regarding the
percentage of a certain type with respect to the whole car fleet.

To avoid overflows due to averaging, a buffer is subtracted from the total
rail length. Further, a buffer is needed for cars which are not especially
transported into operative storage but are shunted at a respective dispositive
station on their way to a demand. Here a car may have to wait for another
train on its way either if it arrives too early (perhaps due to the first train
possible policy, see Section 2.2.1) or if an appropriate train has no capacity
left and the car has to wait for the next possible train. Such waiting times
occur especially at the destination’s dispositive station. The car has to wait
there for the next local delivery tour passing the customer site. As the
waiting time in such cases highly depends on productional data which is
not provided beforehand, such delays and the corresponding amount of
storage capacity cannot be taken into account precisely. From a theoretical
point of view, the buffer solution also prevents an NP-complete sub-problem
as shown in [12].

The remaining netto length of a storage rail is then divided by the average
car length, resulting in the storage capacity. The latter can be modified
according to traffic characteristics, for example, if the cars stored are usually
of a type which is significantly shorter or longer than the average or if
waiting times tend to higher or lower values.

Dependence on fetch and delivery tours and/or scheduled shunting
activity complicates time coherent capacity administration for operative
storage locations. On supply side, the given availability time at the disposi-
tive station for stored supplies already respects corresponding fetch times.
On demand side, the following case may occur: a number of stored cars
originally occupies the full capacity, but is distributed to other demands
while other cars are scheduled for the respective storage. Thus the capacity
of the storage before and after the complete distribution process is never
violated. During this process, the next fetch tour, which frees capacity in
the respective storage may possibly be scheduled after the next delivery
tour which already relies on the freed capacity. Thus we introduce a certain
time expansion for each operative storage (see the respective definitions in
Chapter 4 and the basic model definition in Chapter 5).

2.5 prioritization of customers/demands

Customers or demands can currently be awarded different priorities. Mar-
keting reasons, but also model inherent reasons can be relevant factors to
employ a prioritization. An example for the latter is that remote customer
sites with respect to supply locations suffer a permanent disadvantage
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compared to demands which are located near to usual supply sources.
A geographic location which results in relatively high transport cost for
any assigned empty car leads to permanent neglect in a model with cost-
oriented objective like the one currently used and our own model. As a
measure against thus created unfair distribution, a demand or customer
site is made more attractive in terms of costs by reducing the kilometre
based pure transport costs with a negative cost term. Hence, the geographic
disadvantage is compensated to a variable extent.

By similar means, a trade-off can be implemented between demands
which are close to their due date and demands which are known longer in
advance. Within a moderately long time horizon, demands with a rather
short interval to their due date compete for the same supplies as demands
which can possibly (and likely) be also satisfied with upcoming supplies for
the following day. Again, ’less attractive’ demands in terms of cost will only
be considered in the distribution model after other demands are satisfied. By
this time, due dates may be expired and a demand remains unsatisfied. A
time dependant cost term with a negative cost effect inversely proportional
to the remaining time to satisfy the demand leads to a more reasonable
policy in terms of due dates. This is especially useful for the consideration
of a longer time horizon. However, we currently do not apply cost terms in
this second case, as such effects are already considered for the selection of
input data from the set of all known demands.

Both of the above examples use variable prioritization cost terms wj

per demand dj. Their effect is relative to pure or modified costs of other
demands and they do not guarantee an actual preference. We call this cost-
induced prioritization ’weak priority’. Weak priorities have already been
employed in the current DB Schenker Rail Deutschland AG model to some
extent.

With respect to some technical or procedural requirements, weak prior-
itization is not sufficient to ensure side constraints. An example for such
a requirement is the so-called ’consent’ of a number of cars to a customer.
Usually a number of cars is consented to a customer (by telephone, fax,
etc.) if required, after a distribution is established and before the production
process is completed. In today’s daily distribution, a consented car can only
fail to satisfy a demand due to unforeseen car damage or transportation
failure. After a number of cars is consented or ’promised’ to be assigned to
a demand, leaving this demand less satisfied in the final assignment is not
allowed, regardless of costs. Therefore, weak prioritization cannot be used
here without stretching the artificial cost terms beyond reasonable scales
and thus risking side effects.

In the context of a dynamic distribution, it is possible to establish a
tentative solution and keep a supply in the optimization process during
its planning interval (see Section 2.6). The corresponding demand of the
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(a) Frankfurt, control center (DB4788) by Mario Vedder

(b) Wagon examiner (DB4383) by Michael Neuhaus

(c) Duisburg, control center (DB14067) by Jürgen Brefort

Figure 6: Planning and production process depend on smooth interaction
between automated and manual steps. All pictures taken from
https://mediathek.deutschebahn.com by courtesy of Deutsche Bahn AG.

tentative solution is also kept. Changes in the input data, for example a new
demand with less associated costs, can lead to a cheaper solution with a
deficient demand. The latter solution is preferable in terms of cost mini-
mization. However, if the tentative number of assigned cars was consented,
a solution with less cars allocated to that demand is not acceptable, whereas
the allocation of the same number of cars in a cheaper way is feasible.

Hence, we also introduce a ’strong’ prioritization in three levels and
annotate each demand dj with its level of strong priority pj ∈ {0, 1, 2}.
The priority levels essentially cluster the demands for the subsequent (re-
)optimization process according to their level of variability and thus their
optimization potential. The latter can this way be exploited while the same
level of customer service and reliability is maintained.

2.6 daily dynamics of the freight car distribution

As described in Section 1.1, the current work flow at DB Schenker Rail
Deutschland AG is organized on the basis of a single daily distribution.
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The distribution is automatically optimized on an aggregated level and
separately for seven main type groups. A considerable amount of man-
ual pre-processing (data acquisition) and post-processing (individual final
assignments) is required. The computation is also influenced by certain
parameters, which are selected by fleet managers to trim the solution to
the general relation between total supply and demand like (critical) over-
/undersupply.

Note that the generated solution accounts only for transport between
dispositive stations (due to clustering) and provides for each dispo station
the number of available cars (local supplies and supplies received from
other dispo stations) and the number of local available cars to be sent to
other dispo stations. The total amount of available cars is then manually
assigned to the actual local demands in the final assignment.13 An individual
assignment composes of two or three ’parts’: The transport from the actual
returning customer or operational storage to the associated dispo station,
possibly the transport to another dispo station and finally the transport
to an actual customer site. The first and second part are mostly combined
in one consistent assignment. Upcoming supplies (late returns, returns
from foreign companies, etc.) and demands or cancellations (of demands or
defective cars) are managed manually in the remaining part of the day.

Apart from reducing manual workload and exploiting potential opti-
mization marges, the following aspect is the most relevant reason for DB
Schenker Rail Deutschland AG to aim at a ’permanent’ distribution: The
manual handling during the large optimization gap of 24 hours can lead
to temporal storage of a fresh supply car. If the corresponding new assign-
ment arrives too late, which means after dissociation of the fetch train, no
subsequent transport can take place without reclassification of the whole
storage siding. This can take considerable time, which is idle time for the
car. A car which is automatically and directly assigned a new destination,
can be classified accordingly during the train dissociation without temporal
storage and waiting times, provided it becomes known to the system early
enough. Consequently, idle times of empty cars are decreased resulting in
reduced waggon cycle times and thus important economic savings.

With multiple optimization runs per day, planning intervals of supply
and demand can be exploited. The latter can be specified more precisely
due to the introduction of time stamps to replace phases. A benefit of the
phases is the enhanced opportunity for supply and demand aggregation by
clustering. While clustering leads to data reduction, it also has drawbacks,
like the above mentioned necessity of manual final assignments and the
implicit split of assignments in up to three parts. Each part requires fault
resistance in data exchange and manual control and may cause temporal
storage, additional shunting cost and increasing idle times.

13 [germ.] Feinverteilung
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The effect of (re)optimization during planning intervals is that supplies
can be reassigned to upcoming demands and a possibly more cost-effective
solution can be found. Today, demands seldom occur scattered over the
day, because DB Schenker Rail Deutschland AG’s customer politics requires
announcements and cancellations of demands early enough with regard
to the work flow. Apart from cost-reduction due to reoptimization, also
customer convenience can be increased by a less restrictive policy. To avoid
idle times in the work flow caused by multiple optimizations per day, we
develop a fast and robust reoptimization concept which also contributes to
a heuristic solution of the computationally hard aspect of heterogeneous
substitution.



3
P R E L I M I N A R I E S

This chapter collects basic definitions and notations with regard to graphs,
algorithms, complexity and linear programming. It is designed as a reference
and the reader is encouraged to skip the section until needed.

3.1 graphs and networks

All given definitions, notations and properties are in line with [2].
A directed graph G = (V , A) consists of a set V of vertices or nodes and a

set A of arcs whose elements are ordered pairs of distinct nodes. A directed
network is a directed graph whose nodes and/or arcs have associated
numeral values (typically, costs, capacities and/or supplies and demands).
Let n denote the number of vertices and m the number of arcs in G.

We define an undirected graph in the same manner as a directed graph
except that the arcs are unordered pairs of nodes.

A directed arc (i, j) has two endpoints, i and j. We refer to i as the tail and
j as the head of the arc, which emanates from i and terminates at j. An arc
(i, j) is incident to its endpoints, which are adjacent due to (i, j) ∈ A. Arc
(i, j) is an outgoing arc of node i and an incoming arc of node j. The in degree
of node i is the number of incoming arcs, the out degree is the number of
outgoing arcs and their sum is the degree of i.

Multiarcs are two or more arcs with the same tail and head nodes and a
loop is an arc whose head and tail node are the same.

A graph G ′ = (V ′, A ′) is a sub graph of G = (V , A) if V ′ ⊆ V and A ′ ⊆ A.
We say that G ′ is the sub graph induced by V ′ if G ′ contains each arc of A

with both endpoints in V ′. G ′ is a spanning sub graph if V ′ = V and A ′ ⊆ A.
A walk in a directed graph is a sub graph consisting of a sequence of

nodes and arcs i1 − a1 − · · ·− ir−1 − ar−1 − ir such that for all 1 6 k 6 r

either ak = (ik, ik+1) ∈ A or ak = (ik+1, ik) ∈ A. We also refer to walks
by sequences of node or arcs omitting the arcs resp. nodes in between. A
directed walk is a walk with arcs ak = (ik, ik+1) ∈ A for any consecutive
ik, ik+1.

A (directed) path is a (directed) walk without node repetition and a (directed)
cycle is a (directed) path i1 − · · ·− ir together with the additional arc ((i1, ir) ∈
A or) (ir, i1) ∈ A. A graph is acyclic if it contains no cycles.

Two nodes i and j are (strongly) connected if G contains at least one
(directed) path between i and j and G is connected if every pair of vertices is
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connected, otherwise G is disconnected. The maximal connected sub graphs
of a disconnected graph are called its components.

A graph is weighted if there is a weight function c : A → R and/or
w : V → R defined on its arcs and/or nodes. The length of a path (cycle) is
the number of its edges, if the graph is unweighted. Otherwise the length
of a path is the sum of the weights on its arcs and/or nodes. The distance
dist(i, j) of two nodes i and j in a graph is the minimum over the length
of all paths between i and j and ∞ if i and j are in different (strongly)
connected components.

A cut is a partition of the node set V in two parts, S and S̄ = V \ S. Each
cut defines a set of arcs that have one endpoint in S and the other in S̄. An
s − t−cut with respect to two distinguished nodes s and t is a cut such that
s ∈ S and t ∈ S̄.

A tree is a connected acyclic graph and a forest is a collection of trees. A
rooted tree has a special node R, the root. A subtree st(r), rooted at r of a
rooted tree is an induced subgraph of all nodes i, such that a path from R

to i passes r. The height h(T) of a rooted tree T , is the maximum length of a
path from its root to another node in the tree.

A bipartite graph is a graph whose node set V can be partitioned into
V1, V2, such that for each arc (i, j) ∈ A either i ∈ V1 and j ∈ V2 or vice versa.
A bipartite graph contains no odd length cycle and each acyclic graph (for
example trees and forests) is bipartite as well as each graph containing only
even cycles.

A graph G = (V , A) is called Eulerian [35] if there exists a cycle containing
each arc of A exactly once. Such a (directed) eulerian cycle exists if and only
if G is (strongly) connected and (the in- and out degree of each node are the
same, therefore) the degree of all nodes of V are even.

Let N = (V , A) be a directed network with three associated functions:

• balance function b : V → R

• arc capacities c : A → R>0

• arc cost w : A → R>0.

Then the minimum cost flow problem in N can be stated as follows:

Minimize
∑

(i,j)∈A

f(i, j)w(i, j) (3.1)

subject to

∀i ∈ V :
∑

j:(i,j)∈A

f(i, j) −
∑

j:(j,i)∈A

f(j, i) = b(i) (3.2)

∀(i, j) ∈ A : 0 6 f(i, j) 6 c(i, j) (3.3)



3.1 graphs and networks 33

Each vertex i ∈ V with b(i) > 0 is called a source with excess or supply b(i)

and each vertex j ∈ V with b(j) < 0 is called a sink with deficit or demand
b(j). We define the value |f| of the flow f in N = (V , A) as:

|f| =
∑

v∈V ,b(v)<0

f(u, v).

Let N = (V , A) be a directed network with three associated functions as
above and an additional multiplicator function:

• balance function b : V → R

• arc capacities c : A → R>0

• arc cost w : A → R>0

• multiplicator function: µ : A → R>0.

The generalized minimum cost flow problem in N can be stated as follows:

Minimize
∑

(i,j)∈A

f(i, j)w(i, j) (3.4)

subject to

∀i ∈ V :
∑

j:(i,j)∈A

f(i, j) −
∑

j:(j,i)∈A

µ(j, i)f(j, i) = b(i) (3.5)

∀(i, j) ∈ A : 0 6 f(i, j) 6 c(i, j) (3.6)

Note that a generalized flow network with unit multipliers corresponds
to a classical flow network and that there are also more instances of the
generalized minimum cost flow problem that can be expressed in terms of
a modified classical flow network.

We further define the multiplier of a generalized walk, path and cycle as the
product of the arcs multipliers along it. A unit or break even cycle is a cycle
with multiplier 1, a gainy (lossy) cycle has multiplier greater (less) than 1.

Given an undirected graph G = (V , E), n = |V |, m = |E| a matching M(G)

on the graph is a subset of the set of Edges (M(G) ⊆ E), such that no two
edges share a common endpoint. A vertex v ∈ V is matched in M(G), if
there is an edge e = (u, v) ∈ M(G). A matching M(G) is (inclusion-wise)
maximal, if no edge E \ M(G) can be added to M(G), such that the resulting
edge set is still a matching. In contrast, we call a matching maximum, if
there is no matching M ′(G) on G with higher cardinality.

A matching M(G) is a perfect matching if the (disjoint) union of the
endpoints of edges in M(G) covers V , or simply if every vertex v ∈ V is
matched. The cardinality of a perfect matching on a graph G with n nodes



34 preliminaries

Table 1: Landau Symbols.

Notation x → ∞
f ∈ O(g) ∃ c > 0 ∃ x0 ∀ x > x0 : |f(x)| 6 c · |g(x)|

f ∈ o(g) ∀ c > 0 ∃ x0 ∀ x > x0 : |f(x)| < c · |g(x)|

f ∈ Ω(g) ∃ c > 0 ∃ x0 ∀ x > x0 : |f(x)| > c · |g(x)|

f ∈ ω(g) ∀ c > 0 ∃ x0 ∀ x > x0 : |f(x)| > c · |g(x)|

f ∈ Θ(g) ∃ c0 > 0 ∃ c1 > 0 ∃ x0 ∀ x > x0 :

c0 · |g(x)| 6 |f(x)| 6 c1 · |g(x)|

is M(G) = n
2 . We call a matching (problem) bipartite, if G is bipartite. In the

case of unit edge weights, maximality of a matching refers to the cardinality
of the matching. Given a weight function w : E → N, we can also search for
a minimal/minimum/maximal/maximum weight (perfect) matching on G.
All variants are polynomial time solvable.

3.2 algorithms, complexity and approximation

The definitions and notations of this section are in line with [2] and [24].
To denote the running time of an algorithm, we use Landau symbols (also
suggestively called ’big-O’ notation), which is formally defined in Table 1

and was introduced in [85].
We refer to an algorithm as pseudo-polynomial, if its running time is

bounded by a polynomial in n, m and upper bounds U, C, M, B on the
capacity, cost, multiplier and balance values. (Let F generally denote an
upper bound on all four values U, C, M, B.) An algorithm is polynomial if
the bound on its running time contains logarithmic terms in F and an algo-
rithm running polynomial in n and m in the worst case is called strongly
polynomial.

Each recognition (’yes-no’-) problem which can be decided by a (strongly)
polynomial time algorithm is contained in the problem class P. The problem
class NP consists of all such problems, for which the verification of a ’yes’-
instance takes polynomial time given the solution. The latter is also true for
problems in P, such that P ⊆ NP. The question if equality holds for P and
NP is a long standing open problem.

The class of NP-complete problems contains those problems of NP, which
are as hard to solve as any other problem in NP. Formally a problem L is NP-
complete, if it is in NP and NP-hard, which means there is a polynomial time
reduction fpoly(L ′), such that for any instance x ′ of any problem L ′ ∈ NP:
x = f(x ′) ∈ L ⇒ x ′ ∈ L ′ and x = f(x ′) /∈ L ⇒ x ′ /∈ L ′. Given such a reduction
fpoly, a polynomial time algorithm for problem L can be applied to obtain a
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polynomial time solution to any problem L ′ in NP, which is the key idea
of complexity classification of problems and NP-completeness. (Note that
in case L ′ is NP-complete itself, the reduction fpoly(L ′) suffices to show
NP-completeness of L.) A collection of NP-complete problems can be found
in [47].

Optimization problems such as ’minimize f(x) under a number of con-
straints’ can be viewed as a series of decision problems of the form ’given a
number of constraints, is the minimum of f(x) smaller than k’ for a problem
dependent range of k. Thus we can also employ the above classification
for optimization problems or derive analogous classes for optimization
problems.

For computationally hard optimization problems, it is desirable to ap-
proximate the optimal solution within a constant (multiplicative) factor by
a polynomial time algorithm, especially if such algorithms are unknown
for the optimal solution (as up to now for all NP-complete problems). We
define the (worst case) approximation ratio as ρ = max{C∗

C , C
C∗ }, where C∗ is

the cost of an optimal solution and C the solution of the approximation
algorithm. The ratio is maximized over all possible problem instances. (Note
that the first term applies to maximization and the second term applies
to minimization problems, such that ρ > 1 measures the multiplicative
deviation of the approximation with regard to the optimum in the worst
case.)

We call a function β-fractional or of bounded fractionality β for some β ∈ N

if all its values can be expressed as integer multiples of 1
β .

3.3 linear programming, duality

The definitions and notations of this section are in line with [18]. The generic
form of a linear program (LP) is as follows:

maximize cTx

s.t.
Ax 6 b

x > 0

The task of solving this LP is maximizing a linear objective function
z = cTx with real valued vectors c, x ∈ Rn, such that m constraints on the n

non-negative variables (entries xj of x) of the form
∑n

j=1 aijxj 6 bi (aij, 1 6
i 6 m, 1 6 j 6 n entries of A and bi, 1 6 i 6 m entries of b) are satisfied. The
first algorithm for solving LPs was the simplex method, developed by Dantzig
in 1963 [26]. Meanwhile, sophisticated implementations and improvements
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of the simplex method, as well as other specialized and general purpose
solution methods for LPs have been developed.

An important concept in linear programming (study and solution of LPs)
is duality. The dual problem to the above stated LP (which, in this context is
called the primal problem) is:

minimize bTy

s.t.
ATy > c

y > 0

The m dual variables yi, 1 6 i 6 m (entries of y ∈ Rm) correspond
to the constraints of the primal LP and the n constraints

∑n
i=1 aijxj > cj

(aij, 1 6 i 6 n, 1 6 j 6 m entries of AT and cj, 1 6 j 6 n entries of c) of the
dual LP correspond to the variables xj, 1 6 j 6 n of the primal LP.

The above defined (generalized) minimum cost flow problem is a special
case of LP, as both the objective function and the flow conservation and
capacity constraints are linear functions/inequalities. We can reformulate
the constraints in matrix form, employing the node arc incidence matrix
M ∈ R|V | ×R|A| of the respective network N = (V , A) with

mij =


−1, arc j ∈ A originates at node i ∈ V

µ(j), arc j ∈ A ends at node i ∈ V

0, otherwise

A (node arc incidence) matrix is called total unimodular if the determinant
of all its non-singular submatrices is ±1. An LP with a total unimodular
constraint matrix has an integral optimum. This concept is generalized to
k-regularity of matrices in [7, 8] which guarantees k-fractionatal LP solutions
(see Chapters 7, B).

We briefly introduced LPs here, as solutions to various flow problems are
obtained by LP solution techniques and combinatorial algorithms partly
employ optimality criteria deduced from duality theory of LPs. For further
reading consult [18, 2].
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T H E F O R M A L D I S T R I B U T I O N P R O B L E M

In this Chapter, we review our application oriented description and dis-
cussion of the distribution problem (DP) from Chapter 2 and formalize it
accordingly in the following Section 4.1. In Section 4.2, we show that (DP)
is NP-complete in its general setting.

4.1 the distribution problem (dp)

Supplies and demands are defined as tuples of attributes, whose range and
meaning are explained in detail in Section 2.1.

Definition 1 (Supply) A supply si is a tuple

si = (li, ti, fi, ci, ni, gi, ui, bi, oi, vi), with

• li ∈ N0 location of the associated dispositive station

• ti ∈ N0 (supply) type of the available freight car(s)

• fi ∈ N0 wagon keeper

• ci ∈ N0 time stamp which defines the time of earliest availability

• ni ∈ N0 number of available cars

• gi ∈ N0 local transport costs

• ui ∈ {0, 1} specifies if si can be reused in the productive area
(ui = 1) or not (ui = 0)

• bi ∈ N0 specifies the single allowed border station
(or zero, if the supply has no predefined border station)

• oi ∈ N0 specifies the location of the operative storage
(or zero, if the supply is not stored)

• vi ∈ N0 specifies the location of the predefined operative storage
(or zero, if the supply has no predefined storage)

Definition 2 (Demand) A demand dj is a tuple

dj = (lj, tj, fj, cj, nj, gj, aj, rj, ej, zj, wj, pj), with

37
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• lj ∈ N0 location of the associated dispositive station

• tj ∈ N0 (demand) car type of the demanded freight car(s)

• fj ∈ N0 demanded wagon keeper or zero if none is specifically demanded

• cj ∈ N0 time stamp which defines the time of latest possible arrival

• nj ∈ N0 number of demanded cars

• gj ∈ N0 local transport costs

• aj ∈ {0, 1} specifies if the target location (of the loaded run)
is located within the own productive area (aj = 1) or not (aj = 0)

• rj ∈ N0 target location (of the loaded run) or zero if unknown

• ej ∈ N0 first transit company (of the loaded run) or zero if domestic destina-
tion

• zj ∈ N0 target company (of the loaded run) or zero if domestic destination

• wj ∈ N0 cost reduction term (weak prioritization)

• pj ∈ {0, 1, 2} strong prioritization level

We call a demand dj preferred over another demand d ′j if pj > p ′j . Two
additional demand-like types of input data are defined in the following.
The border station represents the (artificial or doubled) dispositive station
associated with a ’border crossing’ between the own and a foreign produc-
tion area. Border stations represent the return targets for foreign freight
cars. The operative storage represents the associated dispositive station to
an operative storage track from the demand point of view. Border stations
or operative storage are never preferred over demands.

Definition 3 (Border Station) A border station bl is a tuple

bl = (ll, cl, c ′l, nl, gl),

where ll, nl, gl are defined as in Definition 2 and cl, c ′l ∈ N define a time interval
[cl, c ′l[ during which the border station can receive nl foreign cars.

Definition 4 (Early/Late Operative Storage) An early/late operative storage
o ′k/ok is a tuple

o ′k = (lk, 0, n ′
k, gk),

ok = (lk, ck, nk, gk),

where lk, gk, nk are defined as in Definition 2 and ck ∈ N is a time stamp indicating
the next fetch tour (or zero).
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Note that the meaning of the time stamp ck differs between demand,
border station and operative storage. As motivated in Chapter 2, we consider
an ’early’ and a ’late’ capacity status of each operative storage. The early
status holds until the next fetch tour, indicated by ck and the storage capacity
n ′

k until then is reduced by those cars in the current optimization process,
which are stored at lk. Even if the latter are sent to somewhere else by the
current optimization run, they occupy this capacity until ck. Therefore the
sum of cars assigned to lk which arrive until ck must not exceed n ′

k, whereas
the sum of cars assigned to lk after ck is only limited by nk (see Definition
28).

In the following, we frequently distinguish the data records representing
an instance of (DP) in input data, which comprises data in the above defined
form and master data, which is represented as follows. Master data generally
provides the constraints of the (DP) and is given by sets of tuples, which
for example explicitly represent all available freight train connections or
allowed substitutions. We add the definition of an appropriate relation
between supply and demand, border station or operative storage, such that
the input data fulfills the relation if and only if a corresponding tuple of the
set can be found.

Definition 5 (Timetable) A timetable is a set T of tuples θsd (’connections’)

θsd = (ls, ld, cs, cd, csd), where

• ls ∈ N0 is the location of the supply

• ld ∈ N0 is the location of the demand

• cs ∈ N0 is the latest time, a freight car can join the (first train of the)
connection

• cd ∈ N0 is the earliest time a freight car can leave the (last train of the)
connection

• csd ∈ N0 is the transport cost for the connection

We specify the in-time relation corresponding to a timetable T between
supplies and demands, border stations and storage respectively due to the
different influence of their time stamps on the relation.

Definition 6 (In-Time: Supply, Demand) A pair of supply si and demand dj

is in time it(si, dj) (with respect to a timetable T), if

∃θsd = (ls, ld, cs, cd, csd) ∈ T,

such that li = ls, lj = ld, ci 6 cj, ci 6 cs, cj > cd. For each pair of supply and
demand with it(si, dj), we set θsd to such a connection with smallest cs according
to the first train possible policy.
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Definition 7 (In-Time: Supply, Border Station) A pair of supply si and bor-
der station bl is in time it(si, bl) (with respect to a timetable T), if

∃θsb = (ls, lb, cs, cb, csb) ∈ T,

such that li = ls, ll = lb, ci 6 cs and cl 6 cb < c ′l or cl 6 ci < c ′l if cb = 0.
For each pair of supply and border station with it(si, bl), we set θsb to such a
connection with smallest cs according to the first train possible policy.

Definition 8 (In-Time: Supply, Operative Storage) A pair of supply si and
operative storage ok is in time it(si, ok) (with respect to a timetable T), if

∃θso = (ls, lo, cs, co, cso) ∈ T,

such that li = ls, lk = lo, ci 6 cs and co > ck or ck = 0. For each pair of
supply and storage with it(si, ok), we set θso to such a connection with smallest
cs according to the first train possible policy.

Note that θ ∈ T is independent of real freight trains, but corresponds to
the current route (’Leitweg’) between a pair of dispositive stations (lA, lB)

and can be composed of more than one train. For each known location l,
we expect θl = (l, ∞, l, 0, cl) to be in the timetable. (A known location l is a
dispositive station occurring in a supply, demand, border station or storage.)
Thus local allocation of supply si and demand dj at the same dispositive
station l = li = lj is always in-time if ci 6 cj and analogously for border
stations and (early) operative storage. The cost term cl then represents the
shunting cost at l which resembles the total real transportation cost between
si and dj (bl, ok/o ′k). Those costs can neither be taken into account for
local transportation cost at supplies or demands (border stations, operative
storage) as for locations li 6= lj the transportation cost already include this
term (for the supply dispo station) and thus the shunting costs would be
counted twice in this case.

Definition 9 (Substitution) A substitution is a set S of product pairs

σsd = (nsts, ndtd),

where ts is a car type occurring as supply (supply type) and td is a car type
occurring as demand (demand type), such that ns cars of type ts satisfy a demand
of nd cars of type td.

Definition 10 (S-Allowance) A supply si is s-allowed (with respect to a substi-
tution S) for a demand dj if

∃σsd = (nsts, ndtd) ∈ S, such that ti = ts and tj = td.
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Note that σsd ∈ S is unique for each pair of supply and demand type.
In contrast to timetable and in-time relation, the allowance relation is only
defined for supplies and demands to which type substitution refers in the
classical sense. Nevertheless, in the following a number of additional al-
lowance relations between supply and demand have to be defined according
to the various additional constraints in Chapter 2, as well as allowance
between supply and border stations or operative storage respectively. All of
them rely on their own set of substitution-like rules instead of the substitu-
tion set S itself.

Definition 11 (Domestic Rule) A domestic rule is a set I of triples

ι = (f, ls, lt), where

• f ∈ N0 specifies a wagon keeper

• ls ∈ N0 is a supply location

• lt ∈ N0 is the loaded run destination of a demand

Definition 12 (I-Allowance) A supply si is i-allowed (with respect to a domes-
tic rule I) for a demand dj if ui = 1, aj = 1 and

∃ι = (f, ls, lt) ∈ I, such that

• f = fi = fj or f = fi, fj = 0

• li = ls

• rj = lt

Definition 13 (Foreign Rule) A foreign rule is a set F of triples

ν = (f, e, z), where

• f ∈ N0 specifies a wagon keeper

• e ∈ N0 is a first transit company (of the loaded run destination) of a demand

• z ∈ N0 is a target company (of the loaded run destination) of a demand

Definition 14 (F-Allowance) A supply si is f-allowed (with respect to a foreign
rule F) for a demand dj if aj = 0 and

∃ν = (f, e, z) ∈ F, such that

• f = fi = fj or f = fi, fj = 0

• e = ej
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• z = zj

Definition 15 (Border Rule) A border rule is a set B of triples

β = (b, f, t), where

• b ∈ N0 specifies a border station

• f ∈ N0 specifies a wagon keeper

• t ∈ N0 specifies a car type

Definition 16 (B-Allowance) A supply si is b-allowed (with respect to a border
rule B) for a border station bl if

• bi = bl

or

• bi = 0 and ∃b = (b, f, t) ∈ B, such that

– b = bj

– f = fi or f = 0

– t = ti

Definition 17 (Storage Rule) A storage rule is a set O of triples

ω = (o, f, t), where

• o ∈ N0 specifies an operative storage

• f ∈ N0 specifies a wagon keeper

• t ∈ N0 specifies a car type

Definition 18 (O-Allowance) A supply si is o-allowed (with respect to a stor-
age rule O) for an operational storage oj if

• vi = oj

or

• vi = 0 and ∃o = (o, f, t) ∈ O, such that

– o = oj

– f = fi or f = 0

– t = ti or t = 0

So far, we formally defined the input of a (DP) instance, which can now
can be stated as:
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Definition 19 (Instance of the (DP)) An instance of the (DP)

I = {S, D, O, B, T, S, O, I, F, B}

is a tuple of possibly empty sets of supplies S, demands D, operative storage O,
border stations B and possibly empty sets T, S, O, I, F, B.

We call an instance of the (DP) homogeneous, if ns = nd = 1 for all
σsd ∈ S and heterogeneous otherwise. A M-heterogeneous instance with
M ⊂ N is an instance such that ns, nd ∈ M for all σsd ∈ S and for M =

{1, m 6= 1} we also speak of an m-heterogeneous instance. Remember that
σ = (nsts, ndtd) ∈ S means that ns cars of type ts can substitute nd cars of
type td. Thus we are generally interested in the ratio or ’exchange-rate’ of
ns and nd. Let TS (TD) be the set of car types ts (td) such that σsd ∈ S for
some car type td (ts) with respect to an instance I.

Definition 20 (Relative Valency) The relative valency v(ts, td) of the supply
car type ts ∈ TS to the demand car type td ∈ TD is:

v(ts, td) =
nd

ns
.

The relative valency of td to ts is defined as the reciprocal.

Definition 21 (Total Valency) The total valency of a car type t ∈ TS ∪ TD is
only defined if there is a value v(t), such that:

∀σsd ∈ S, ts = t : v(ts, td) = v(t).

Then v(t) is the total valency of t. We call an instance I of the (DP) total, if each
supply type t ∈ TS has a total valency v(t).

The solution of an instance I of the (DP) is the assignment of all supplies
si ∈ S to demands dj ∈ D, operative storage ok ∈ O or border stations bl ∈ B.
(We frequently summarize the latter as pseudo demands d̂j ∈ D∪O∪B.) The
global allocation is called a distribution, which consists of individual assign-
ments. As neither supplies nor (pseudo) demands are restricted to single
cars, we allow a supply to be allocated to several (pseudo) demands and
(pseudo) demands can be assigned several assignments of cars. Therefore,
in addition to the respective supply and (pseudo) demand each assignment
requires the number of actually assigned cars. We formalize a distribution
of cars from a supply to a (pseudo) demand as follows.

Definition 22 (Assignment) An assignment δij (with respect to I) is a tuple

dij = (si, d̂j, nij)

with si ∈ S, d̂j ∈ D∪O∪B and nij ∈ R is the number of cars sent from si to d̂j.
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Definition 23 (Distribution) A distribution (with respect to I) is a set D of
assignments δ (with respect to I).

An assignment is feasible (with respect to a (DP) instance), if the assign-
ment satisfies all constraints given by the sets T, S, O, I, F, B of the instance.
We introduce the notion of matching supplies and (pseudo) demands to
simplify notation when we formalize the feasibility of assignments/distri-
butions.

Definition 24 (Match of Supply, Demand) A supply si matches a demand dj

(with respect to I) if it(si, dj), si is s-allowed for dj and either si is i-allowed for dj

or si is f-allowed for dj.

Definition 25 (Match of Supply, Border Station) A supply si matches a bor-
der station bl (with respect to I) if and only if it(si, bl) and si is b-allowed for
bl.

Definition 26 (Match of Supply, Storage) A supply si matches an early/late
operative storage o ′k/ok (with respect to I) if and only if it(si, o ′k) or it(si, ok)

respectively and si is o-allowed for o ′k/ok.

Obviously, feasible assignments δij and distributions D also require in-
tegrality of the number of cars nij. Especially with respect to the heteroge-
neous (DP), we will also consider assignments/distributions for which this
is not true. The latter can be seen as solutions to a (LP)-relaxation of the
respective (DP) instances.

Definition 27 ((LP)-feasible Assignment) An assignment δij = (si, d̂j, nij) is
(LP)-feasible with respect to I if and only if si matches d̂j, nij ∈ R, ni > nij and
nj 6 v(ti, tj)nij.

Definition 28 ((LP)-feasible Distribution) A distribution D is (LP)-feasible
with respect to I if and only if each assignment δ ∈ D is (LP)-feasible and

• ∀si ∈ S :
∑

δij∈D nij = ni

• ∀dj ∈ D :
∑

δij)∈D v(ti, tj)nij 6 nj

• ∀ok ∈ O :
∑

δik∈D nik 6 nk

• ∀o ′k ∈ O :
∑

δik∈D,cd<ck
nik 6 n ′

k,
where θik = (ls = li, ld = lk, cs, cd, csd) ∈ T is the first possible connection
for assignments (si, ok, nik) and n ′

k = nk −
∑

si∈S:oi=ok
ni.

• ∀bl ∈ S :
∑

δil∈D nil 6 nl
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• ∀dj ∈ D such that
∑

δij)∈D v(ti, td)nij < nj :

There does not exist (si, d ′j , nij ′) ∈ mathcalD such that dj is preferred over
d ′j
and match(si, dj).

We refer to the last constraint as strong priority order. We call a demand
dj with ν(dj) =

∑
δij∈D v(ti, tj)nij − nj undersatisfied (by D) if ν(dj) < 0 and

oversatisfied (by D) if ν(dj) > 0.
An assignment δij is feasible, if it is (LP)-feasible and nij ∈ N, and a

distribution D is feasible, if it is (LP)-feasible and solely contains feasible
assignments.

Observe that a distribution which causes undersatisfied demands is fea-
sible, but a distribution which causes oversatisfied demands is not. This
imbalance stems from the fact that supplies may be too short to satisfy all
demands and still a distribution satisfying as much demand as possible
with smallest possible cost shall be found. On the other hand, even if not
all supply can be allocated to actual demands, storage capacities can be
assumed to be sufficient such that each car is assigned. Traditionally there
were undersatisfied demands as well as unassigned supplies after carrying
out the best distribution, as supply was not distributed actively into stor-
age. In the implementation practice, supply can still remain unallocated
indicating a serious problem in the input data, which is to be detected and
reported. For theoretical considerations we will adopt the above assumption
of sufficient storage. Furthermore, each supply si has to be in time and
o-allowed for appropriate amount of storage. Otherwise, we call si isolated.

The cost of an assignment/distribution is partly, but not completely
determined by the transport cost:

Definition 29 (Cost of an Assignment/Distribution) Let θsd ∈ T be the con-
nection, such that it(si, d̂j). Then the cost c(δij) of the assignment is defined
as

• the sum of the transport and the local transport costs, if d̂j ∈ O∪B:

c(δij) = nijcij = nij(csd + gi + ĝj)

• the sum of the transport and the local transport costs and the difference be-
tween the maximum weak prioritization cost term and the weak prioritization
cost term of the demand, if dj ∈ D:

c(δij) = nijcij = nij(csd + gi + gj + (max
dj∈D

wj − wj))

The cost c(D) of a distribution D is the sum of the cost of each individual assign-
ment:

c(D) =
∑
δ∈D

c(δ).
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Although the effect of the weak prioritization is a cost reduction for
assignments, we do not interpret it directly as a negative cost term to further
ensure non-negativity of all assignment costs. With the above definitions at
hand, we can now fully specify the distribution problem.

Definition 30 (Distribution Problem (DP)) Given an instance I of the (DP),
find a feasible distribution D = D(I) with minimum cost c(D).

In the context of computational complexity, we consider the following
decision variant of the distribution problem. (The solution to the decision
problem is a ’yes/no’ answer.)

Definition 31 (Decision Distribution Problem (DDP)) Given an instance I

of the (DP) and a (non-negative, integral) cost value cI, is there a feasible distribu-
tion D = D(I) with minimum cost c(D) 6 cI?

Note that a solution to the (DP) can theoretically be obtained by solving
a series of (DDP)s as follows: Determine the minimum cI, such that the
answer to the decision problem is ’yes’ by binary search on the interval of
possible values cI. In our case (with non-negative costs), the natural lower
bound on cI is zero and a (naive) upper bound is given by the sum of the
costs of all feasible assignments δ = (si, d̂j, nij) with maximum nij.

Further, we consider a special type of approximation to the (DP). For
this, we call a 1-to-1-exchange of a car of type ta with a car of type tb

an upgrade with respect to a demand dj of type tc if σac, σbc ∈ S and
v(ta, tc) < v(tb, tc). Such an exchange is called a downgrade if σac, σbc ∈ S

and v(ta, tc) > v(tb, tc). Note that an upgrade or downgrade is a 1-to-1-
exchange of cars, independent of relative or total valencies.

Definition 32 (ν-Upgrade) We call a distribution D ν-upgrade(d) for an in-
stance I of the (DP), if it is feasible for I ′ with n ′

j = nj + ν for all demands d ′j ∈ D ′

of I ′ (and all other data equal to I) and after a downgrade of a single car for each
demand dj ∈ D oversatisfied by D with respect to I we obtain a feasible distribution
for I.

Observe that downgrading does not increase the cost. An optimal ν-
upgraded distribution may well be applicable in practice as well as an
optimal distribution, as it only provides some customers with a single car
of higher quality than ordered without charging extra-cost.

4.2 computational complexity of the (dp)

We prove that the decision distribution problem as in Definition 31 is NP-
complete by reduction of a variant of the well-known satisfiability problem
[47]. Consider the following SAT type problem, which was shown to be
NP-complete in [114]:



4.2 computational complexity of the (dp) 47

[3V2L3SAT] Given a Boolean formula

α = C1 ∧ · · ·∧ Cn, Ci = li1 ∨ li2 ∨ li3,

lij ∈ {vk, ¬vk|1 6 k 6 m}∪ {0}

where each variable vk can only occur 3 times in total and maxi-
mal 2 times as one of the corresponding literals. Decide whether
there is a truth assignment satisfying α.

The reduction of 3SAT to 3V2L3SAT introduces k new variables x1, . . . , xk

for k occurrences of a variable x and exchange the ith occurrence of x by
xi. Then the clauses (xi ∨ ¬xi+1), 1 6 i < k, and (xk ∨ ¬x1) are added to
the original formula, which ensure an equal truth assignment on all xi. To
reduce 3V2L3SAT to the (DP), we construct an instance Iα, given a 3V2L3SAT
formula α with m variables in n clauses, such that the assignment of all
supply of Iα is possible with cost smaller or equal to cI = 0 if and only if α

is satisfiable.
Iα is a total 2-heterogeneous instance, which is defined as follows. Let

O, B and consequently O, B be empty sets. For the moment, we set a number
of supply attributes to zero:

si = (li, ti, 0, 0, ni, 0, 0, 0, 0, 0).

We abbreviate such a supply by si = (li, ti, 0, 0, ni). Analogously we set the
following demand attributes to zero:

dj = (lj, tj, 0, 0, nj, 0, 0, 0, 0, 0, 0, 0).

We abbreviate such a demand by dj = (lj, tj, 0, 0, nj).
The set S composes of two subsets Sc and Sv with supplies that correspond

to clauses and variables in α. For each clause ci in α the set Sc contains
one supply si and for each variable in α the set Sv contains three supplies
s1
j , s2

j , s3
j , which are defined as follows:

• Sc = {si = (li, t1, 0, 0, 1)|1 6 i 6 n}

• Sv =

{s1
k = (l1k, t1, 0, 0, 2)|1 6 k 6 m}

∪ {s2
k = (l2k, t2, 0, 0, 1)|1 6 k 6 m}

∪ {s3
k = (l3k, t1, 0, 0, 2)|1 6 k 6 m}

We set S = Sc ∪ Sv. Further, four demands are specified for each variable
in xj in α, two corresponding to the (up to two) occurrences of xj as a literal
and the other two to the occurrences of ¬xj, respectively:
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D =

{d1
j = (l1j , t3, 0, 0, 1)|1 6 k 6 m}∪ {d2

j = (l2j , t3, 0, 0, 1)|1 6 k 6 m}

∪ {d̄1
j = (l̄1j , t3, 0, 0, 1)|1 6 k 6 m}∪ {d̄2

j = (l̄2j , t3, 0, 0, 1)|1 6 k 6 m}.

We define the set of substitution rules as

S = {(2t1, t3), (t2, t3)}.

(As all occurring demands are of type t3 we can also enlarge the set by the
’natural’ extension {(t1, t1), (t2, t2)} avoiding the impression of degeneration.
On the other hand Iα is then not generically total, such that the result is
weakend.) Note that thus any supply si ∈ S is s-allowed for each demand
dj ∈ D. Further, we define the timetable T as follows:

T = {(li, 0, l1j , ∞, 0)|if ci is the first clause containing xj}

∪ {(li, 0, l2j , ∞, 0)|if ci is the second clause containing xj}

∪ {(li, 0, l̄1j , ∞, 0)|if ci is the first clause containing ¬xj}

∪ {(li, 0, l̄2j , ∞, 0)|if ci is the second clause containing ¬xj}

∪ {(l1k, 0, l1j , ∞, 0), (l1k, 0, l2j , ∞, 0)|k = j}

∪ {(l2k, 0, l2j , ∞, 0), (l2k, 0, l̄1j , ∞, 0)|k = j}

∪ {(l3k, 0, l̄1j , ∞, 0), (l3k, 0, l̄2j , ∞, 0)|k = j}

∪ {(la, 0, lb, ∞, M)|for each other combination of locations}

Note that all si and dj are in time with respect to T, while only some
corresponding connections have associated cost zero. We set the domestic
rule I to the empty set. As all demands dj carry the attribute aj = 0 this has
no effect as all demands have foreign load run targets. We define the foreign
rule as F = {(0, 0, 0)}, such that each supply in S matches each demand in
D.

We can visualize matching supplies and demands corresponding to a
single variable xj in α as shown in Figure 7: Each supply and each demand
corresponds to a solid vertex. Solid lines connect vertices corresponding
to matching supplies and demands with associated costs zero and the
numbers at the vertices represent the number of available and demanded
cars respectively. Further, the up to three clauses in α containing either xj

or ¬xj are indicated by the dotted vertices in correspondence to associated
supplies. The dotted lines also represent connections with associated cost
zero. Figure 7 shows four dotted vertices, as S contains up to two supplies
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Figure 7: Matching supply and demand associated with a variable xj and its
occurrence in clauses of α.

associated with a clause containing xj (upper part of the figure) and up
to two supplies associated with a clause containing ¬xj (lower part of the
figure). Still the total number of such supplies in Sc is three.

Lemma 33 The total supply ev =
∑

si∈Sv
nk = 5m of Sv can only be distributed

with cost zero by either of the following distributions for each variable xj:

1. Send two cars of s1
k to d1

j , one car of s2
j to d2

j and the two cars of s3
k either

both to d̄1
j or d̄2

j or one to each of the latter.

2. Send two cars of s3
k to d̄2

j , one car of s2
j to d̄1

j and the two cars of s1
k either

both to d1
j or d2

j or one to each of the latter.

Proof: The one car of s2
k can either be assigned to d2

j or d̄1
j with zero cost

and satisfies either of them completely. Otherwise it cannot be distributed
with zero cost. Consequently, either s1

k is completely assigned to d1
j or s3

k is
completely allocated to d̄2

j respectively, as otherwise the supply cannot be
distributed with zero cost. The respective other supply can (but need not)
be distributed to the respective other demands with zero cost.

Note that in either case, the total demand of four demands associated with
a variable xj is not satisfied. We associate the only two possible distributions
with zero cost per variable with its two possible truth values. The first
distribution variant, satisfying both demands dj, corresponds to ’xj is false’.
The second variant, satisfying both demands d̄j, corresponds to ’xj is true’.
This notion is chosen due to the following observation: The first variant
allows no supply ci matching to a demand dj with zero cost to be assigned
to it, whereas the second allows both of the possibly two matching supplies
to be distributed with zero cost, each to either of the demands. The latter
distribution corresponds to the truth assignment of xj satisfying the clause ci.
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The same argumentation holds for clauses containing ¬xj and the exchanged
roles of both distribution variants. Given that any supply corresponding to
a clause ci can only be distributed with zero cost to one of the demands
corresponding to a literal which occurs in ci, a distribution, which allocates
the total supply of e = ev + ec = 5m + n with zero cost corresponds to a
satisfying truth assignment. We formally show:

Theorem 34 Let Iα = {S, D, O, B, T, S, O, I, F, B}, as defined above. The formula
α is satisfiable if and only if all supply e = 5m + n can be distributed with zero
cost.

Proof: Suppose α is satisfiable. Distribute ev for each xj by the variant of
Lemma 33, which corresponds to the satisfying truth assignment of xj. Thus
ev is completely allocated at zero costs and only demands corresponding
to true literals are not yet completely satisfied. As the truth assignment
satisfies α, it satisfies every clause and consequently each corresponding
supply ci is at least a match with a connection of zero associated cost for one
not yet satisfies demand. Send ci to the latter demand, which corresponds
to a true literal. Thus the additional unit supply for each clause ec = n is
also disposable at zero cost. On the other hand, suppose α is not satisfiable.
Each distribution of ev with zero cost according to the variants in Lemma 33

corresponds to a consistent truth assignment and therefore blocks at least
one clause from all matching demands with associated connections of zero
cost, such that at most 5m + n − 1 supply can be distributed at zero cost. If
on the other hand, we allow any other distribution of ev, by Lemma 33, not
all supply ev can be assigned at zero costs and any complete distribution of
the total supply 5m + n needs at least cost of M > cI.

As we can check in polynomial time for a given distribution if it allocates
the total supply at zero costs and does not violate any constraints, it follows:

Corollary 35 The (DDP) is NP-complete for total 2-heterogeneous instances.

Note that by omitting connections with cost M in the timetable, the upper
construction allows to prove the existence of a feasible distribution if and
only if the formula α is satisfiable. Thus the DDP is strongly NP-complete,
which means that the complexity of the problem does not depend on the
values of the cost function, but remains hard for unit costs. We chose the
variant with distinguished costs in order to keep the prove closely related
to the optimization problem.



5
A N E T W O R K M O D E L F O R T H E H O M O G E N E O U S D P

In this chapter, we derive a classical network model NI for homogeneous
instances I of the (DP) (Section 5.1). We argue that for this setting an integral
minimum cost flow f∗(NI) translates into a solution to the (DP) instance I

disregarding strong priorities (Section 5.2). We obtain such a flow f∗(NI) in
polynomial time [39], as all cost, capacity and balance values are integral or
can be scaled to integers if necessary.

The minimum cost flow problem is a long known and well studied graph
theoretical problem (see [2] for a broad survey). In Section 5.3 we briefly
survey flow algorithms and motivate our choice of the Successive Shortest
Path algorithm to solve the minimum cost flow problem on instances NI.
We conclude this chapter by a modification to the Successive Shortest Path
algorithm which guarantees strong priority order.

5.1 a classical flow network

Let I = {S, D, O, B, T, S, O, I, F, B} be a homogeneous instance of the (DP).
We construct a network model NI = (VI, AI) and define capacities/costs on
arcs as well as a balance function on nodes as follows (see Figure 8).

The node set VI of the network composes of supply nodes i and (pseudo)
demand nodes j corresponding to the supplies si ∈ S and (pseudo) demands
d̂j ∈ D∪O∪B respectively. For each node k corresponding to an operative
storage ok, we add a second node k ′ to VI. The latter also corresponds to
the storage ok except that the timestamp c ′k is set to zero.

Further, a source node s and three sink nodes t0, t1, t2 corresponding to
the three strong priority levels belong to VI. The source and sink nodes are
referred to as model nodes.

The arc set AI can intuitively be decomposed into three ’layers’ of the
network: the supply layer AS, the transit layer AT and the demand layer AD.
The set AS contains all arcs (s, i) with cost csi = 0 and capacity usi = ni, the
number of freight cars available for si. The set AD contains all arcs (j, tp)

with p = pj ∈ {0, 1, 2} according to the strong priority level of dj ∈ D or
t0 if d̂j ∈ O∪ B. The cost cjtp is also set to zero for the arcs of AD and the
capacity ujtp = nj equals the number of demanded cars of dj.

The arc set AT , referred to as transit arcs, comprises all arcs (i, j) between
supply nodes i and (pseudo) demand nodes j, such that si matches d̂j. The
cost cij is the cost of a unit assignment δij = (si, d̂j, 1) and the capacity uij is
set to infinity. Additionally AT contains arcs of the type (k ′, k), correspond-
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Figure 8: The network NI contains a source s and three sinks tp, p = 1, 2, 3, a node
i, j, l for each si ∈ S, dj ∈ D, bl ∈ B and two nodes k ′, k for each ok ∈ O.
Source s is connected to all i by arcs from AS (capacity ni, cost 0) and
each node j, l, k is connected via arcs of AD (capacity nj, nl, nk, cost 0)
to one of the sinks. There are also arcs (k ′, k) ∈ AD (capacity n ′

k, cost 0).
The arcs set AT (capacity ∞, cost cij, cil, cik) connects nodes i to nodes
j, l, k ′, k according to the appropriate matching relation.

ing to operative storage ok ∈ O. The cost ck ′k are zero and the capacity uk ′k

is given by the rest capacity n ′
k = nk −

∑
si∈S:oi=ok

ni of the early storage
stage.

Finally, we define the excess at s as b(s) =
∑

(s,i)∈AI
usi; the excess at the

sinks tp, p ∈ {0, 1, 2} is defined as b(tp) = −
∑

(j,tp)∈AI
ujtp .

Definition 36 (Distribution Network NI) Let

I = {S, D, O, B, T, S, O, I, F, B}

be a homogeneous instance of the (DP). Then the distribution network NI =

(VI, AI) with capacity u : AI → N, cost c : AI → N and balance b : VI → N is
defined as described above.

5.2 minimum cost flow and distribution

We show that, if a feasible distribution for I exists, an integral minimum
cost flow f∗ = f∗(NI) in NI provides a solution to the (DP) on I disre-
garding strong priorities. The situation that no feasible distribution exists
corresponds to the existence of unassigned supply. With sufficient overall
storage capacity and non-isolated supplies, we can always find a feasible
distribution for I. Regarding the flow model, we assume that a maximum
flow in NI has been precomputed and the source and sink balances have
been adjusted such that a minimum cost flow f∗ exists with

|f∗| = b(s) =
∑

p∈{0,1,2}

−b(tp).
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For each feasible integral flow f in NI, we can identify each positive flow
fij on a transit arc a = (i, j) with a so-called derived assignment δf

ij. These
assignments can be combined to a derived distribution Df.

Definition 37 (Derived Assignment/Distribution) Let f be an integral feasi-
ble flow in NI associated to a homogeneous (DP) instance I. Then the derived
assignment from the flow fij on a = (i, j) ∈ AT is:

df
ij =

δf
ij = (si, d̂j

′
, nij = fij) with d̂j

′
= ok if j = k ′

δf
ij = (si, d̂j, nij = fij), otherwise.

The derived distribution Df is the set of all derived assignments with nij > 0 :

Df = {df
ij|fij > 0}.

The identification of freight cars with units of flow obviously requires
integrality of f. Moreover, we have to show that derived assignments/distri-
butions from integral feasible flows are generally feasible. We do so by the
following two Lemmas 38, 39.

Lemma 38 (Feasible Assignment δf
ij) Let f be a feasible integral flow in NI.

Then a derived assignment δf
ij is feasible with respect to I.

Proof: By Definition 27, an assignment is feasible if and only if si matches
d̂j or d̂j

′
respectively, nij 6 ni, nij 6 v(ti, tj)nj and nij ∈ N. Note that

v(ti, tj) = 1, as I is homogeneous. As f is an integral feasible flow in
NI, by network construction a = (i, j) ∈ AT and thus fij > 0 only if si

matches d̂j or d̂j
′

respectively with respect to I and nij = fij ∈ N. Further,
nij = fij 6 fs,i 6 u(s, i) = ni because (s, i) is the only incoming arc to i. We
distinguish four cases for the pseudo demands d̂j, d̂j

′
, respectively:

1. Let d̂j = dj ∈ D. The arc (j, tp) is the only outgoing arc from j in NI and
fij 6 fjtp 6 u(jtp) = nj, tp = pj from which follows v(ti, tj)nij 6 nj, as
∀ti, tj : v(ti, tj) = 1 for the homogeneous instance I.

2. Let d̂j = ok ∈ O. The arc (k, t0) is the only outgoing arc from k in NI

and fik 6 fkt0
6 u(k, t0) = nk from which follows nij 6 nk.

3. Let d̂j
′
= ok ∈ O. The arc (k, k ′) is the only outgoing arc from k in

NI and fik 6 fkk ′ 6 fkt0
6 u(k, t0) = nk, as again (k, t0) is the only

outgoing arc from k in NI. It follows nij 6 nk.

4. Let d̂j = bl ∈ B. The arc (l, t0) is the only outgoing arc from l in NI

and fil 6 flt0
6 u(l, t0) = nl from which follows nij 6 nl.
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Thus δf
ij is feasible with respect to I.

Lemma 39 (Feasible Distribution Df) Let f be a feasible integral flow in NI.
Then a derived distribution Df is feasible with respect to I disregarding strong
priorities.

Proof: By Definition 28, a distribution D is feasible (disregarding strong
priority) if all assignments δij = (si, d̂j, nij) ∈ D are feasible, the sum of
allocated cars from each supply si equals ni and the sum of cars assigned
to each (pseudo) demand d̂j (weighted with the relative valency in case
of demands) does not exceed nj. All assignments δ ∈ D are feasible by
Lemma 38. Further, the capacities of the single incoming and outgoing arcs
at nodes i and j, k, k ′ and l respectively together with the capacity and flow
conservation constraints ensure:∑

δij∈Df

nij =
∑

(i,j)∈AT

fij 6 u(s, i) = ni ∀si ∈ S

∑
δij∈Df

v(ti, tj)nij =
∑

(i,j)∈AT

fij 6 u(j, tpj
) = nj ∀dj ∈ D

∑
δik∈Df

nik =
∑

(i,k)∈AT

fik +
∑

(i,k ′)∈AT

fik ′ 6 u(k, t0) = nk ∀ok ∈ O

∑
δik∈Df,cd<ck

nik =
∑

(i,k ′)∈AT

fik ′ 6 u(k ′, k) = n ′
k ∀ok ∈ O

∑
δil∈Df

nil =
∑

(i,l)∈AT

fil 6 u(l, t0) = nl ∀bl ∈ B

As f is feasible, we have |f| = b(s) =
∑

(s,i)∈AS
u(s, i) =

∑
si∈S ni and all

flow from source s to sinks tp, p = 0, 1, 2, passes a unique node i through
(s, i) with u(s, i) = ni. Therefore all supply is distributed and Df is feasible
with respect to I disregarding strong priorities.

Conversely, we can also define a derived flow fD in NI from a feasible
distribution D with respect to I:
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Definition 40 (Derived Flow) Let D = D(I) be a feasible distribution with
respect to I. Then we define a derived flow fD(u, v) in NI on arcs a = (u, v) ∈ AI

as:

fD(u, v) =



ni, for u = s, v = i

nij, for u = i, v = j, if δij ∈ D

nil, for u = i, v = l, if δil ∈ D

nik, for u = i, v = k, if δik ∈ D, co > ck

nik, for u = i, v = k ′, if δik ∈ D, co < ck∑
δij∈D,j=u v(ti, tj)nij, for u = j, v = tpj∑
δil∈D,l=u nil, for u = l, v = t0∑
δik∈D,k=u nik, for u = k, v = t0∑
δik∈D,cd<ck,k ′=u nij, for u = k ′, v = k.

With the help of following Lemma 41, we show the equivalence of feasible
integral flows in NI and feasible distributions for I (disregarding strong
priority).

Lemma 41 (Feasible Flow fD) Let D = D(I) be a feasible distribution with
respect to I and fD a derived flow from D. Then fD is an integral feasible flow in
NI.

Proof: We check capacity constraints on each arc a ∈ AI and flow con-
servation constraints on each node v ∈ VI for fD. Arcs (i, j) ∈ AT possess
infinite capacity and capacity constraints obviously hold for fD on those
arcs. Due to the feasibility of D, each supply is completely distributed, such
that ni = fD(s, i) 6 u(s, i) = ni. Hence, capacity constraints hold for arcs
(s, i) ∈ AS along with node balance constraints for the source s and all
nodes i, si ∈ S. For arcs (j, tp) ∈ AD, p ∈ {0, 1, 2}, the flow fD(j, tp) is the
sum of all incoming flows. Thus node balance constraints hold for all nodes
j, d̂j ∈ D ∪O ∪ B and due to the feasibility of D, the respective sums do
not exceed u(j, tp) = nj. The flow on arcs (k, k ′), ok ∈ O, is the sum of
cars which arrive early at operative storage ok, such that the node balance
constraints also hold for nodes k ′, ok ∈ O. As D is feasible, the sum of early
arrivals does not exceed the rest capacity of ok and fD(k, k ′) 6 u(k, k ′).
Since all node balance and capacity constraints hold for fD, it is a feasible
flow in NI.

Lemmas 39 and 41 show the equality of integral feasible flows in NI and
feasible distributions with respect to I (disregarding strong priority order).
The appropriate definition of costs provides:
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Theorem 42 (Minimum Cost Flow and Optimal Distribution) Let f∗ be an
integral minimum cost flow in NI, then the derived distribution D∗ is an optimal
distribution for I, disregarding strong priorities.

Proof: By Lemma 39, D∗ is a feasible distribution for I, disregarding
strong priorities. Let c(f∗) denote the cost of f∗, then:

c(f∗) =
∑

(i,j)∈AI

fijc(i, j) =
∑

(i,j)∈AT

fijc(i, j) =
∑

δij∈D

nijcij = c(D∗).

Assume D ′ is a feasible distribution for I disregarding strong priorities with
cost c(D) < c(D∗). Then by Lemma 41, there exists a feasible integral flow
fD with cost c(fD) = c(D) < c(f∗) contradicting the minimality of f∗. Thus
D∗ is an optimal distribution for I, disregarding strong priorities.

So far, our derived distributions disregard the strong priority order. How
to guarantee the latter algorithmically is discussed at the end of the next
section.

5.3 special minimum cost flows

In Section 5.2 we showed that a minimum cost flow solution to the derived
network model NI delivers a minimum cost distribution for I, disregarding
strong priorities. In this section we motivate and explain the application of
the Successive Shortest Path algorithm to obtain an integral minimum cost
flow f∗, such that D∗ is an optimal distribution for I and respects strong
priorities. With the use of the Successive Shortest Path algorithm we also
develop a reoptimization approach (see Chapter 6) and do not need to
precompute a maximum flow. We start with a short survey of network flow
algorithms concentrating on minimum cost flow algorithms.

5.3.1 Minimum Cost Flow Algorithms

In context of network models, there is a variety of closely related flow prob-
lems to be answered, such as the question for a maximum flow/circulation,
minimum cost flow/circulation, (un)capacitated transhipment problems
and also generalized variants with gains and losses (or multipliers), which
in some cases are also equivalent to the traditional flow models (see Section
7.1, [51, 115]).

As the above mentioned network problems are special cases of linear
programming, historically the simplex method was the first solution method
which gave an exponential upper bound (avoiding cycling) on the problem
solution in terms of running time. Later on, ellipsoid [82] and interior
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point [80] methods showed that the problems can also be solved in pseudo-
polynomial time. The underlying graph theoretic structure encouraged the
development of LP solvers specialized to network problems like the network
simplex [26] and modifications to obtain strongly polynomial running time
for maximum flow [56] and minimum cost flow [99, 57].

The design of purely combinatorial algorithms started in the nineteen-
sixties with the augmenting paths [39] and out of kilter algorithm [92] for
maximum flow and minimum cost flow respectively and is continuously
improved in terms of running time and problem variants until today. The
above mentioned pioneer algorithms for the maximum flow and minimum
cost flow problems originally provided pseudo-polynomial running time, i.e.
depended linearly on the maximum balance, capacity and cost values. The
augmenting paths algorithm was improved to a strongly polynomial version
independently by Dinic and Edmonds/Karp [30, 33]. The latter also provides
the first polynomial, although not strongly polynomial, minimum cost flow
algorithm and introduces ‘capacity scaling’. Since then the idea of scaling
had many applications to flow algorithms for example like cost scaling [106,
14, 54] and double scaling combining both [4]. The first strongly polynomial
algorithm for the minimum cost circulation variant was presented by Tardos
[111], settling a challenge posed by [33].

Most combinatorial minimum cost flow algorithms such as the cycle-
canceling [83], the augmenting paths and Successive Shortest Path algorithm
[73, 15, 75] and the out of kilter algorithm maintain either feasibility or (cost)
minimality and strive to obtain the missing. The partial ’solution’ or pseudo-
flow is then improved iteratively until the appropriate optimality criterion
([2]) is fulfilled and the flow is feasible. Optimality conditions, such as the
absence of negative cost cycles in case of the cycle cancelling approach or the
existence of a node potential which generates only non-negative reduced
costs on the arcs, refer to a residual network built during the iterations.
Further, such conditions base strongly on the characteristic of the network
flow problem as a special case of linear programming and duality. (See [2],
Chapter 9, for detailed derivation of different optimality criteria.)

For example the network simplex can be seen as a cycle canceling al-
gorithm. Generically, cycle cancelling does not provide an order in which
negative cost cycles should be cancelled. Thus, as in the case of the net-
work simplex, there are actually examples for instances without pseudo-
polynomial bounds on the running time. On the other hand, the choice of
canceling a negative cycle with maximum improvement (for the objective
function) or minimum mean cost guarantees pseudo-polynomial running
time. The minimum mean cost cycle is preferable as identifying the maxi-
mum improvement cycle states an NP-complete problem.

General approaches to minimum cost flow problems are strongly con-
nected to the shortest paths problem and the maximal flow problem. Both
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problems (depending on the choice of the minimum cost flow algorithm)
may be applied as an iteration step on the residual network to obtain a
minimum cost flow solution.

5.3.2 Successive Shortest Path Algorithm

We briefly recapitulate the Successive Shortest Path algorithm (see Algorithm
1): The algorithm starts from zero flow, which satisfies capacity and flow
conservation constraints, except at sources (b(e) > 0) and sinks (b(e) < 0). It
is therefore not a feasible (primary) solution. The pseudo-flow is iteratively
transferred into a flow by augmenting the maximum possible number of
flow units along a shortest path πed from a source e to a sink d in the
residual network. We start from the original network, which is updated
according to flow augmentations as follows: For each arc a = (u, v) with
a positive flow f(a) > 0, an arc ā = (v, u) with capacity u(ā) = f(a), cost
c(ā) = −c(a) and flow f(ā) = 0 is added. If f(a) equals u(a), then a is
removed from the network. While the shortest path πed is determined, each
vertex v is labeled with its distance d(e, v) from e and we update its (initially
zero) potential to p ′(v) = p(v) − d(e, v) + d(e, d) if v was permanently
labeled. Otherwise, the potential p(v) remains unchanged. The reduced cost
cr(a) = c(a) − p(u) + p(v) of an arc a = (u, v) measures its cost relatively to
the shortest path distance of u and v. As each iteration maintains capacity
constraints and the node potentials p satisfy the reduced cost-optimality
condition, a minimum cost flow solution is obtained, as soon as all excesses
and deficits are balanced.

Furthermore, the reduced cost-optimality ensures non-negative arc weights.
Since also the initial arc costs are non-negative, we can apply Dijkstra’s algo-
rithm [29] for the shortest path computations. With the Fibonacci heap data
structure, a running time of O(m + n log n) is achieved [2]. With Dijkstra’s
Algorithm as a subroutine, the overall running time of the Successive Shortest
Path algorithm is therefore O(U(m + n log n)), where U is the minimum of
the sum of all supplies and the sum of all demands. This value U bounds
the number of iterations, because each iteration reduces a supply and a
demand at least by one, which also accounts for the integrality of the re-
sulting minimum cost flow. So far, the algorithm is pseudo polynomial as
it depends (linearly, not logarithmically) on U. Applying known scaling
techniques [54, 2] (on balances, capacities, costs or combined) would lead
to polynomial running time. For our application, the pseudo-polynomial
implementation has proved to be adequate, as the number of augmentations
showed to be roughly determined by the number of aggregated supplies
(see Chapter A).

In general, we do not limit the number of sources and sinks in a network,
but require the sum of excesses (positive balance values at sources) and
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deficits (negative balances at sinks) to equal each other. Moreover, sources
and sinks are assumed to be connected by paths with sufficient total capacity
such that excesses and deficits can be balanced. Although in our application
these requirements might be violated, for theoretical analysis and descrip-
tion we will always assume that a maximal flow has been precomputed
as mentioned above and total supply and demand at source s and sinks
tp, p ∈ {0, 1, 2}, has been adapted. Using an appropriate version of the Suc-
cessive Shortest Path algorithm, a preliminary maximal flow computation is
not necessary: We reformulate the algorithm such that in case not all given
supply and demand can be balanced, it fails to detect a shortest (or any)
path from a source to a sink and terminates. The maintained optimality of
the pseudo-flow nevertheless provides us with the minimum cost solution
for a maximum flow. In our case the latter corresponds to the distribution
of all supplied cars.

Algorithm 1 Successive Shortest Path

1: ∀v ∈ V : p(v) = 0

2: ∀a = (u, v) ∈ A : f(a) = 0, cr(a) = c(a), ur(a) = u(a)

3: E = {v, b(v) > 0}, D = {v, b(v) < 0}

4: while E, D 6= ∅ do
5: Determine shortest path π∗ed and d(e, d) for e ∈ E, d ∈ D with respect

to reduced costs cr in the residual network G(f)

6: Update p(v) = p(v) − d(e, v) + d(e, d) for each permanently labeled
v ∈ V

7: δ := min{b(e), −b(d), mina=(uv)∈π∗
ed

ur(a)}

8: Augment δ units of flow along π∗ed

9: ∀a = (u, v) ∈ A :

10: f(a), cr(a) = c(a) − p(u) + p(v), ur(a) = u(a) − f(a)

11: Update G(f), E, D
12: end while

Thus a partial solution is always feasible and (with respect to the amount
of already distributed cars) also an optimal solution. Due to this robustness,
a preliminary solution can be used in practice if the optimization is inter-
rupted or delayed. We are also able to detect and output isolated supplies
and undersatisfied demands in a single run. Further, we benefit from the
permanent feasibility of a partial solution in developing a reoptimization
strategy (see Chapter 6).

Finally, the use of the Successive Shortest Path algorithm ensures the strong
prioritization order of demand satisfaction, as we explain in the next section.



60 a network model for the homogeneous dp

s

s1

s2

d2

d1

d0

t2

t1

t0

1

1

3

2

1

1

1

1

1

Figure 9: Network NI for I with two unit supplies s1, s2 and three unit demands
d1, d2, d3 of three different strong priorities.

5.3.3 Strong Priority Order

Algorithm 1 allows arbitrary sets of source and sink nodes, whereas a
network NI associated to a (DP) instance I always contains one super source
s and (up to) three sink nodes t0, t1, t2. The sinks are associated with the
strong priority levels in ascending order. The generic Successive Shortest Path
algorithm would always pick the pair s, tp, p = 0, 1, 2, with the shortest
reduced cost distance in the current residual network and proceed. Our
implementation given in Algorithm 2 always picks the pairs (s, t2), (s, t1)

and (s, t0) in descending order.

Algorithm 2 Successive Shortest Path with predefined Order

1: ∀v ∈ V : p(v) = 0

2: ∀a = (u, v) ∈ A : f(a) = 0, cr(a) = c(a), ur(a) = u(a)

3: p = 2, t = tp

4: while p > 0 do
5: Determine shortest path π∗st and d(s, t)
6: Update p(v) = p(v) − d(s, v) + d(s, t) for each permanently labeled

v ∈ V

7: δ := min{b(s), −b(t), mina=(uv)∈π∗
st

ur(a)}

8: Augment δ units of flow along π∗st
9: ∀a = (u, v) ∈ A :

10: f(a), cr(a) = c(a) − p(u) + p(v), ur(a) = u(a) − f(a)

11: Update G(f)

12: if πst /∈ G(f) then
13: p − −, t = tp

14: end if
15: end while

Selecting the source and sink pairs by definition and independently of the
shortest path distances may lead to suboptimal solutions in terms of costs
for pseudo-flows during the iterations. Consider the example in Figure 9,
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Figure 10: Residual network for NI after two iterations of Algorithm 2: The derived
distribution obeys strong priority order.

where numbers in boxes are capacities and numbers attached to the arcs are
costs. Recall that model arcs have cost zero and transit arcs have unlimited
capacity. The balance at source s (sinks t0, t1, t2) is the sum of capacities of
outgoing (incoming) arcs. The optimal solution obviously sends one unit to
t0 via d0 and one unit to t1 via d1 with total cost 2.

This corresponds to a distribution that leaves a demand with maximal
strong priority unsatisfied although the network allows for another (more
expensive) flow solution. After two iterations with predefined source-sink-
order, the Successive Shortest Path algorithm finds the solution as shown in
Figure 10. The latter corresponds to a more expensive distribution, which
on the other hand fully respects strong priority order.

Note that we cannot guarantee higher priority demands to be satisfied
although lower priority demands also receive cars: Without arc (s2, d2), the
optimal solution would satisfy demand d0 and d2 instead of d1 and d2.
Nevertheless, the latter is a feasible distribution with respect to the strong
priority order, as d1 and d2 cannot both be satisfied any longer.

On the one hand, if supply equals (or exceeds) demand and we consider
the three source-sink-pairs in a single computation, we still obtain a cost-
optimal solution: Independent of the order of flow augmentations, finally all
demands are satisfied and the residual arcs allow for any feasible rerouting
of the flow in the transit layer, such that the overall minimum cost flow is
achieved. (Note that this cannot be achieved by solving three consecutive
minimum cost flow problems – one single-source-single-sink computation
for each source-sink-pair, where the network depends on the outcome of
each previous computation. Here the effect of predefined source-sink-pairs
cannot be undone by rerouting of flow, as we set up different (residual)
networks.)
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On the other hand, in practice (pseudo) demand usually exceeds supplies.
But flow which is routed to the higher priority sinks in earlier iterations
can still be rerouted to decrease the overall costs in Algorithm 2. Yet, the
(residual) network structure only allows such reroutings that keep the total
amount of flow into the higher priority sink unchanged. Thus we obtain a
feasible flow, which distributes the maximal amount of supply and provides
minimum costs while respecting strong priority order:

Lemma 43 (Df with Strong Priority Order) Let f in NI be determined by Al-
gorithm 2 and Df be the derived distribution from f. Then Df is a feasible distribu-
tion for I.

Proof: The distribution Df is feasible disregarding strong priority by
Lemma 39. We show that Df respects strong priority order: Assume that
dj ∈ D is undersatisfied with ν(dj) by Df and preferred over d ′j ∈ D, where
dij ′ = (si, d ′j , nij ′) ∈ Df and si matches dj as well as d ′j .

Then f contains flow f(s, i) > nij ′ , f(i, j ′), f(j ′t ′p) > nij ′ on the path
s, i, j ′, t ′p. Further, arc (j, tp), p ′ < p, has rest capacity ur(j, tp). Hence, before
sending flow along the path s, i, j ′, t ′p there still was a path s, i, j, tp, between
s and tp such that Algorithm 2 would have sent flow along this path at first.
As each later redirection of the flow from tp to t ′p in the residual network
also requires a path between s and tp to exist, but the considered source
sink pair switched from (s, tp) to (s, t ′p), p ′ < p, this is a contradiction to f

being a flow computed by Algorithm 2.

By the same arguments as in Lemma 41, we can construct a feasible flow
fD in NI from each feasible distribution D for I with c(fD) = c(D). This is
especially true for those distributions respecting the strong priority order.
Thus, Df is also of minimum cost:

Corollary 44 (Optimal Distribution Df) Let f be a flow in NI computed by
Algorithm 2 and Df be the derived distribution from f. Then Df is an optimal
distribution for I.



6
N E T W O R K - B A S E D R E O P T I M I Z AT I O N

One of the major challenges in freight car distribution is the problem’s
online nature. That is, minor changes on the given data basis can occur over
time. The latter being due to new supply cars emerging unforeseen (for
example at border stations), damage of supply cars, cancellations or short-
termed changes of demands or simply due to the rolling time horizon. On
the other hand, also system inherent procedures like the final distribution
of a supply to a demand results in changes of the network as supply and
demand (partly) drop out of the optimization process.

In a static context, the data of a given problem instance is fixed before
the optimization process starts. The optimal solution is then carried out
completely and a new problem instance is created on the basis of new data
without memory of the previous optimization. In our application context,
we want to abandon the static view and thereby increase the optimization
potential. All the more, as usually a distribution needs not to be processed
immediately after an optimization run. Depending on the time for which a
supply is known in advance, the assignment to a demand can be held back
during its planning interval (see 2.6), such that upcoming other supplies and
demands possibly leading to a globally more cost-efficient solution are taken
into account. Generally, a supply is known just before its transport from the
actual returning customer’s location is started. With regard to the highly
clustered association with distribution stations the corresponding distance
between customer locations and dispo stations leave a considerable time
interval for planning. The distribution for the supply can change within this
planning interval, up to a certain time window before the supply actually
reaches the dispo station, because only there the productive process changes
due to the distribution destination.

Assignments, which are found to be optimal within the planning interval
are called ’tentative’ assignments. They also contribute to a rather stable
data volume, as their associated supply and demand possibly stay in the
optimization process (or the network respectively) for a number of runs
until the end of the planning interval is reached. (This obviously depends
on the frequency of reoptimization runs.) Thus the data on the one hand
changes due to the above described (node based) incidences, which involve
supplies and demands separately. On the other hand, changes occur to
supply and demand simultaneously due to former tentative assignments
which become ’fixed’, as the considered supply leaves its planning interval.

63
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Figure 11: Network (a) and residual network with optimal flow, before (b) and
after (c) ’tentative’ assignment of s1 to d is ’fixed’ and removed from the
network.

Such changes - if according to the current flow solution - do not affect
the feasibility and/or optimality of the remaining solution: supply, demand,
flow and capacity (of the residual arcs) can be adjusted. Consider the simple
example in Figure 11. Both supplies are tentatively allocated to the only
demand in the (only) optimal solution. As soon as supply s1 leaves the
planning interval, the distribution of s1 to d is fixed and the corresponding
flow, including residual capacities and arcs, are deleted from the residual
network as well as the corresponding supply node. (Note that the reduction
of residual capacity on the reverse arc (t, dj) corresponds to decreasing the
number of demanded cars in d, because the order is already partly satisfied.)
The remaining network directly corresponds to the residual network of an
optimal flow given only s2 and the reduced demand d.

Still also manual assignments can be given priority over the optimized
solution or are carried out during the computation. The latter need not
be consistent with ’tentative’ assignments. These cases are interpreted as
changes of the supplies and demands, which we address by our reoptimiza-
tion procedure.

As we expect the changes to be minor relative to the whole current data
volume, our strategy is to keep the current residual network intact and
’repair’ it to associate with an optimal, feasible solution to the changed
data basis again. We also assume that data changes only affect input data
and not master data. The latter is agreeable in case of substitution rules,
as requirements of good transport do not suddenly change and thus do
not allow for different substitutions. With regard to the timetable, the
optimization process is also detached from an up-to-date timetable, which
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can be affected by sudden changes such as track closures due to accidents or
weather conditions, because we rely on itineraries (or ’Leitwege’) rather than
actual trains. Further, with a change in the timetable or rule sets, the whole
residual network has to be checked for feasibility (especially the transit arcs)
and possibly be repaired. Thus running time advantages over a computation
’from scratch’ cannot be expected in case of a network-wide rearrangement.
With this assumption, we observe that changes in the input data can always
be modelled by the following three operations on the residual network:

1. Node addition

2. Node deletion

3. Change of node attributes

The third operation can generally be simulated by deletion of the original
node and the addition of a node with changed attributes. For frequently
occurring changes, especially a changed number of cars, our implementation
supports faster direct changes. Here, we concentrate on the first two cases,
which both require a two-stage change of the residual network. One stage
keeps the optimality of the current flow solution while adding or deleting
the node and the other stage returns the now possible pseudo-flow again
into a flow by additional iterations of the Successive Shortest Path algorithm
(in the variant of Algorithm 2). The detailed procedure and order of the
stages depend on whether it is a supply or demand node which is added or
deleted.

In the following subsections, we will establish both stages for addition
and deletion of single supply and demand nodes and afterwards combine
the iterative stages for distinct groups of supply and demand nodes with
respect to the operation carried out. The following modular reformulation
of the Successive Shortest Path algorithm enables a compact representation of
the reoptimization procedures. (Note that Algorithm 3 also predefines the
order of source-sink-pairs according to Algorithm 2.)

Algorithm 3 Dispositive Successive Shortest Path

Input: N = (V , A), s, t2, t1, t0

Output: f∗, N(f∗) = (V , A∗)
1: ∀v ∈ V : p(v) = 0

2: ∀a = (u, v) ∈ A : f(a) = 0, cr(a) = c(a), ur(a) = u(a)

3: Iterate(N, s, t2)
4: Iterate(N, s, t1)
5: Iterate(N, s, t0)
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Algorithm 4 Iterate Successive Shortest Path

Input: N(f) = (Vf, Af), s, t
Output: ft, Nt(ft) = (At, V)

1: while ∃π∗st do
2: Determine shortest path π∗st and d(s, t) w.r.t. cr in N(f)

3: Update p(v) = p(v) − d(s, v) + d(s, t) for each permanently labeled
v ∈ V

4: δ := min{b(s), −b(t), mina∈π∗
st

ur(a)}

5: Augment δ units of flow along π∗st, obtaining f ′(a)

6: ∀a = (u, v) ∈ Af : cr(a) = c(a) − p(u) + p(v)

7: ∀a = (u, v) ∈ Af : ur(a) = u(a) − f ′(a)

8: Update N(f) to N(f ′)
9: end while

6.1 addition of nodes

When we build a network NI for a given (DP) instance I from scratch, each
supply (demand) node is connected to source s (one of sinks tp, p ∈ {0, 1, 2})
via an incoming (outgoing) model arc and connected to all matching demand
(supply) nodes via outgoing (incoming) transit arcs. After the network setup,
the algorithm starts with zero flow and a zero potential function, which
(due to non-negative arc costs) satisfies the reduced cost-optimality criterion
as restated in Theorem 45.

Theorem 45 [2] A feasible minimum cost flow solution f∗ is optimal if and only
if some set of node potentials p satisfies the reduced cost-optimality conditions:

∀a = (i, j) ∈ A : cp(a) = c(a) − p(i) + p(j) > 0.

Each minimum cost flow solution f∗ delivered by Algorithm 3 also delivers
a corresponding potential function by p.

Given a residual network N∗ = N(f∗) = (V , A∗) to the minimum cost flow
f∗, we can add a new supply or demand node v to V as in the network
construction. Further, we want to add the same model and transit arcs Av as
in the original construction and obtain N ′ = (V ′ = V ∪ {v}, A ′ = A∪Av). A
minimum cost flow on N ′ again delivers an optimal distribution solution. To
maintain reduced cost optimality, for each arc a = (u, v) ∈ Av (a = (v, u) ∈
Av): cp(a) = c(a) − p(u) + p(v) > 0 (cp(a) = c(a) − p(v) + p(u) > 0) must
hold.

Although a final optimal and maximal feasible pseudo-flow solution in
N ′ possibly requires the rerouting of flow throughout the network, we want
to keep the initial change in the network structure local. Thus, to avoid
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network-wide distance recalculations and potential adjustments in the first
step, we fix the potential of all ’old’ nodes u ∈ V to p(u) and set p(v)

according to the respective arc conditions. Further, we generally start with
flow f ′(a) = f∗(a) for a ∈ A and zero flow f ′(av) = 0 on the additional
’new’ arcs av ∈ Av.

As the new nodes by the desired network construction generally have
incoming as well as outgoing arcs, the potential cannot always be chosen
according to reduced cost-optimality. Yet, both in the case of new supply
or demand, it suffices to reverse the corresponding new model arc in the
residual network by sending the maximum flow along it and temporarily
creating imbalances at super source, super sink or data nodes.

6.1.1 Additional Supply

Adding supply node i to N∗, we need to create an arc (s, i) with non-negative
(reduced) cost and capacity ni, the number of supplied cars. On the other
hand, we create arcs a = (i, j) for every matching (pseudo) demand and
denote the set of additional transit arcs by Ai. This leads to the following
reduced cost constraints:

1. a = (s, i) : cp(a) = c(a) − p(s) + p(i) = p(i) − p(s) > 0

2. ∀a = (i, j) ∈ Ai : cp(a) = c(a) − p(i) + p(j) > 0

The constraints of the second type will always be satisfied by setting

p(i) = mina=(i,j)∈Ai
{c(a) + p(j)}.

This choice on the other hand needs not satisfy the first constraint. We
distinguish exactly these two cases: If the first constraint is satisfied, we
set Ai = Ai ∪ {(s, i)} and A = A∪Ai with reduced cost set appropriately to
p(i) and capacity ni. The new flow f ′ composes of f∗ and zero flow on the
new arcs, as defined above. As the total supply is increased by ni, which
again creates excess at s, we iterate the Successive Shortest Path algorithm
with input N ′ and the pairs s, t2, s, t1 and s, t0, to achieve a maximal feasible
pseudo-flow.

In case the first constraint is violated by the choice of p(i), we add the arc
ā = (i, s) to Ai instead of a = (s, i). The addition of the reverse arc ā can be
interpreted as sending ni flow units from s to i. This creates an excess of
b(i) = ni, a (temporal) demand b(s) = ni and saturates a, i.e. ur(a) = 0 and
a drops out of the residual network N ′. The resulting flow f ′ differs from
the above definition only on a as f ′(a) = ni. The reduced cost constraint for
(i, s) must now be satisfied and we also apply iterations of the Successive
Shortest Path algorithm with input N ′ and the pairs si, t2, si, t1, si, t0 and
si, s to make the pseudo-flow f ′ maximal feasible.
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Algorithm 5 Add Supply

Input: N∗ = (V , A), f∗, s, si, t2, t1, t0

Output: N ′ = (V ′, A ′), f ′

1: ∀a ∈ A : f ′(a) = f∗(a)

2: Ai = {(i, j)|si matches d̂j}

3: ∀a ∈ Ai : f ′(a) = 0

4: ∀v ∈ V : p(v) = p(v)

5: V ′ = V ∪ {s}, A ′ = A∪Ai

6: p(i) = mina=(i,j)∈Ai
{c(a) + p(j)}

7: if p(s) 6 p(i) then
8: a = (s, i), cr(a) = p(i) − p(s), ur(a) = ni, f ′(a) = 0

9: A ′ = A ′ ∪ {a}, b(s) = b(s) + ni, N ′ = (V ′, A ′)
10: Iterate(N ′, s, t2)
11: Iterate(N ′, s, t1)
12: Iterate(N ′, s, t0)
13: else
14: ā = (i, s), cr(ā) = p(s) − p(i), ur(ā) = ni, f ′(ā) = 0

15: A ′ = A ′ ∪ {ā}, b(i) = ni, b ′(s) = −ni, N ′ = (V ′, A ′)
16: Iterate(N ′, i, t2)
17: Iterate(N ′, i, t1)
18: Iterate(N ′, i, t0)
19: Iterate(N ′, i, s)
20: end if

Note that if f∗ was a feasible flow, i.e. all excesses and deficits were
balanced, Algorithm 5 only finds a path from i to s in the ’else’-case. On the
other hand, for our application we can assume the existence of rest demand
in the form of operative storage.

Lemma 46 (Additional Supply) Algorithm 5 finds a minimum cost flow on
N ′ = (V ∪ {i}, A ∪ Ai), given N∗ = (V∗, A∗) for a minimum cost flow f∗ in
N = (V , A) in O(ni) Successive Shortest Paths iterations after preparation O(m),
such that the strong priority order of demand satisfaction is kept.

Proof: Algorithm 5 establishes a pseudo-flow f ′ obeying the reduced cost
criterion and the subsequent iterations achieve a feasible flow assuming
balanced total supply and demand and appropriate paths in the network (or
a maximal feasible pseudo-flow in practice). Further, due to the predefined
iteration order of source and sink pairs Corollary 44 holds.

In context of linear programming duality, the potential function on the
nodes is a set of values for dual variables of the minimum cost flow for-
mulation. They can thus be interpreted to be the price of a flow unit at the
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corresponding node. (Note that we defined the node potential to be the
accumulated negative distances.) Thus the cases p(i) > p(s) and p(i) < p(s),
which lead to the existence of a or ā respectively can also be nicely in-
terpreted in terms of how desirable a distribution of the new car supply
is.

On the one hand, if p(i) > p(s), the flow from s through si to a demand
is not more desirable than all previously sent flows, as its price (measured
by p(si)) is higher than all paths used before (measured by p(s)). If the
demand is already completely satisfied or there is no way from si to a still
unsatisfied demand, the flow f∗ will not change as we already computed
the optimal solution in absence of si. Even if it is possible to satisfy more
demand with the additional supply si, exactly f∗ would have occurred as a
pseudo-flow after some iterations of the Successive Shortest Path algorithm,
knowing about si in advance. The algorithm did ‘nothing wrong’ during
the computation of f∗ in N∗ regarding N ′ due to the lack of information and
the subsequent iterations merely complete the computation of the Successive
Shortest Path algorithm given N ′.

On the other hand, if p(i) < p(s), the price to send a flow unit or a car
via si is lower than the price for some paths already used. The algorithm -
with respect to the unknown N ′ while computing f∗ in N∗ - formerly chose
the ‘wrong path’ due to the lack of information. To correct this wrong path,
we first try to satisfy additional demand ni and thereby reroute the flow
which was ‘too expensive’. If there is not enough demand or path capacity
left to do so, we return the remaining excess of si to s with the last iteration.
Hereby we either choose a path via another supply node sk and a backwards
arc (k, s) or flow is sent back to s directly via the reverse arc ā.

In the former case we exchange sk in a distribution by si, which means
we reroute flow along some path containing si and sk. Due to the network
structure, the latter must use a path including reversed arcs. With the
definition of the residual network, the (non reduced) cost of reversed arcs
are the negative cost of the arcs and thus the cheapest return path to s equals
to returning the most expensive former supply. According to the potential
p(i) < p(s) and by picking the shortest path first, the latter case can only
occur after sending at least one unit of flow from i to s via another supply
node k. On the other hand, this path does not need to have capacity of ni

and a rest excess must probably be returned to s via ā. Thus, the structure
of the potential function on the one hand assures that to achieve optimality
such a rerouting is necessary, but on the other hand does not provide how
much flow has to be rerouted.

Based on the network in Figure 12, we give a small example for the
’if ’-case (see Figure 13) as well as the ’else’-case (see Figure 14).
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Figure 12: Network (a) and residual network (b) with optimal flow.
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Figure 13: Add supply node si with p(s) > p(i). a) Residual network with optimal
flow. b) Additional node si and arc set Ai (in gray). c) Residual network
with optimal flow after addition of si.
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6.1.2 Additional Demand

We start by describing the addition of a demand node dj to N∗ in detail.
As pseudo demand nodes are handled similarly, we define additional steps
or simplifications respectively afterwards. Further, we assume t = tp, p ∈
{0, 1, 2} to be the sink with appropriate priority p = pj. We create arcs
Aj = {a = (i, j)} for every matching supply i and need an additional model
arc (dj, t) with zero (reduced) cost and capacity nj, the number of ordered
cars.

This leads to the following reduced cost constraints:

1. a = (j, t) : cp(a) = c(a) − p(j) + p(t) = p(t) − p(j) > 0

2. ∀a = (i, j) ∈ Aj : cp(a) = c(a) − p(i) + p(j) > 0

The constraints of the second type will always be satisfied by setting

p(j) = max{−mina=(i,j)∈Aj
{c(a) − p(i)}, 0}.

This choice again needs not satisfy the first constraint and we consider
the two cases: If the first constraint is satisfied, we add a = (j, t) with
c(a) = 0, u(a) = nj to Aj and set A ′ = A∗ ∪Aj. All reduced cost are set
appropriate to the above defined potential p(j). The new flow f ′ composes
of f∗ and zero flow on the new arcs. As the total demand is increased by
ni, which again creates deficit at t, we iterate the Successive Shortest Path
algorithm with input N(f ′) and the pairs s, t, and tk, k < p, k ∈ {0, 1, 2}.

Flow can only be routed from s to t, if there was a rest excess at s due to
supply exceeding demands or lack of sufficiently capacitated paths to the
sinks. Further, rerouting flow from a sink tk to t is enabled by temporarily
creating an artificial excess at tk. In case that there is no rest supply of
unassigned cars at s, this is necessary to ensure the strong prioritization
ordering of satisfied demands. The latter is not mirrored in the (reduced)
cost structure and therefore not taken care of automatically in the following
rerouting process. If flow is successfully routed from tk to t it is done in
the ’cheapest’ way and creates a new or increased rest demand at sink tk in
favour of additional satisfaction of demands with stronger priority.

If the first constraint cannot be satisfied by the choice of p(j), we push
nj units of flow along a = (j, t) creating temporal demand b(j) = nj at
j, excess b(t) = nj at t and the reverse arc ā = (t, j) with appropriate
capacity and reduced costs. Subsequently we iterate the Successive Shortest
Path algorithm with input N(f ′) and the pairs s, j, and tk, j, 0 6 k 6 2 as
before. We summarize the different steps in Algorithm 6.
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Algorithm 6 Add Demand

Input: N∗ = (V , A), f∗, s, dj, t2, t1, t0

Output: N ′ = (V ′, A ′), f ′

1: ∀a ∈ A : f ′(a) = f∗(a)

2: Aj = {(i, j)|si matches dj}

3: ∀aj ∈ Aj : f ′(aj) = 0

4: ∀v ∈ V : p(v) = p(v)

5: V ′ = V ∪ {j}, A ′ = A∪Aj

6: p(j) = max{−mina=(i,j)∈Aj
{c(a) − p(i)}, 0}

7: t = tl, l = pj

8: if p(j) 6 p(t) then
9: a = (j, t), cr(a) = p(i) − p(s), ur(a) = ni, f ′(a) = 0

10: A ′ = A ′ ∪ {a}, b(t) = b(t) − nj, N ′ = (V ′, A ′)
11: for k = l to k = 0 do
12: Iterate(N ′, s, tk)
13: end for
14: for k = 0 to k = l do
15: if b(j) < 0 then
16: b(tk) = b(j)

17: Iterate(N ′, tk, j)
18: end if
19: end for
20: else
21: ā = (t, j), cr(ā) = p(t) − p(j), ur(ā) = nj, f ′(ā) = 0

22: A ′ = A ′ ∪ {ā}, b(j) = −ni, N ′ = (V ′, A ′)
23: Iterate(N ′, s, j)
24: for k = 0 to k = l do
25: if b(j) < 0 then
26: b(tk) = b(j)

27: Iterate(N ′, tk, j)
28: end if
29: end for
30: end if

Lemma 47 (Additional Demand) Algorithm 6 finds a minimum cost flow on
N ′ = (V ∪ {j}, A ∪ Aj), given N∗ = (V∗, A∗) for a minimum cost flow f∗ in
N = (V , A) in O(nj) Successive Shortest Paths iterations after preparation O(m),
such that the strong priority order of demand satisfaction is kept.

Proof: Algorithm 6 establishes a pseudo-flow f ′ obeying the reduced cost
criterion and the subsequent iterations achieve a feasible flow assuming
balanced total supply and demand and appropriate paths in the network (or
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Figure 15: Add demand node dj with p(t) > p(j). a) Residual network with
optimal flow. b) Additional node dj and arc set Aj (in gray). c) Residual
network with optimal flow after addition of dj.

a maximal feasible pseudo-flow in practice). Further, due to the predefined
iteration order of source and sink pairs, Corollary 44 holds.

The pricing interpretation based on the potential function and the cases
p(t) > p(j) or p(t) < p(j) also holds for demands. In the first case, the
demand remains unsatisfied if there is no rest supply and no flow can be
rerouted from sinks with lower priority. Routing of a rest supply would
increase the flow value, which legitimates a cost increase, while rerouting
flow from the same priority sink would not increase the flow value and
will not decrease the total cost, given the reduced cost on a. On the other
hand, if ā is added to the network we can still route additional flow directly
from s to dj or via a sink, which both increases the total flow value. Or we
reroute flow from an appropriate (lower or equal priority) sink and thus
decrease the total cost while keeping flow value and priority order.

Figures 15 and 16 give examples for both cases with a single sink, based
on the optimal network flow of Figure 12. Note that we start from a feasible
flow f∗ and do not give examples with rest excesses.

Figure 17 gives an example with a lower and a higher priority sink. For
the sake of simplicity, we keep the original network as in Figure 12 and let
only the additional demand be of higher priority than the given demand.
This creates a special case, where also the higher priority super sink is
added. Thus, the potential of the sink can be set appropriately, such that
only the ’if ’-case occurs.

Although this case might be degenerated, it nicely shows that flow is
rerouted in such a case from a lower priority sink to the higher priority sink
independent of the actual cost of assigning supply to the new demand dj.
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Figure 16: Add demand node dj with p(t) < p(j). a) Residual network with
optimal flow. b) Additional node dj and arc set Aj (in gray). c) Addi-
tional backwards arc (t, dj). d) Residual network with optimal flow after
addition of dj.
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Figure 17: Add demand node with higher strong priority. a) Residual network
with optimal flow. b) Additional nodes dj, t1, arc (dj, t1) and arc set Aj.
c) Residual network with optimal flow after addition of dj.
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6.2 deletion of nodes

The deletion of a single supply or demand node from the network N∗

affects both optimality and feasibility of the given solution f∗. Each supply
si contributes to the total excess at the super source by ni, which equals
the capacity of arc (s, i). To balance the full excess of s all such arcs are
saturated, as they are the only outgoing arcs of s. Thus, f∗ sends ni flow via
i and matching demand nodes j to the corresponding sink t. The deletion
of i and its incident arcs would leave a deficit at j and f∗ is infeasible,
whereas a subsequent return of an appropriate amount of flow from t to
j may be suboptimal. The latter is true if (t, j) is not (one of) the shortest
path(s) between t and j in N∗ without Ai. The case of a demand deletion is
analogue.

If f∗ is a maximal feasible pseudo-flow and there are unassigned supplies
(which would indicate a serious problem in the application), i can luckily
be corresponding to such a rest supply at s. Or with the assumption that
(pseudo) demands exceed supplies, a demand dj to be deleted is not satisfied.
In both cases, the simple deletion of the respective node and all incident
arcs a in N∗ does not affect feasibility or optimality of f∗ as f∗(a) = 0 on all
such arcs. Our strategy is therefore to transform the more likely case when
a node deletion affects the flow f∗ into the case where all incident arcs of the
node have zero flow. To obtain a flow f ′ with the desired property, we again
manipulate the residual network N ′ locally and reapply some iterations of
the Successive Shortest Path algorithm.

Note that often a mixture of the desired case and the case where reop-
timization is needed occurs with pseudo-flows involved. This holds for
example for a partly satisfied demand in the current optimal distribution
which is then cancelled by the customer. In the following, we assume that
ni (nj) is already reduced by the portion of supply (demand) which can
be deleted from N∗ without affecting f∗. This is essentially achieved by
removing the arc (s, i) or (j, t), which then exists due to non-zero rest
capacity.

6.2.1 Deletion of Supply

Given a supply node i to be deleted from N∗, we remove the reverse arc (i, s)
from A∗. As i originally does not possess positive excess due to network
construction, the outgoing flow creates a deficit at i and f∗ is infeasible,
but still cost-optimal with respect to p and reduced costs cp. To obtain a
feasible flow f ′, we have to route flow back to i, such that no incident arc
carries flow. Then i and Ai can be deleted from N(f ′) without affecting
feasibility or optimality of f ′. We reroute the flow out of i back to i in the



76 network-based reoptimization

N ∗

00 0

0 0 −2 −2

0

0

−1
1

00 0

0 0 −2 −2

0

0

−1

b(s) = 1

b(si) = −1

00 0

0 0 −2 −2

0

−1

b(s) = 0

b(si) = 0

00 0

0 0 −2 −2

f = 0

N ′

N ′∗ N ′∗ − si

1 ∞ 1

1 1

∞

1 1 1 1∞

∞

∞

1 1

1

∞

∞
a) b)

c) d)

Figure 18: Remove supply node with rest excess at s. a) Residual network with
optimal flow and rest excess b(s) = 1. b) Removed arc (si, s) and tempo-
ral artificial sink at si with b(si) = −1. c) Rest excess of s and artificial
sink si are balanced. d) Node si and arc set Ai can be removed without
influencing the optimality of the flow.

most cost-efficient way applying iterations of the Successive Shortest Path
algorithm as in Algorithm 7.

In the first ’Iterate’-call, the arc (s, i) does not provide a path from s to i —
it exists no longer. Thus, due to the network structure each path from s to i

mus contain another supply node k, corresponding to a so far unassigned
supply sk of cars which can cover the cancellation of supply si (see Figure
18). If on the other hand no rest excess exists, an appropriate amount flow
is routed back from the sinks in ascending priority order by turning them
into temporal sources (see Figure 19). We always obtain a feasible flow as
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Figure 19: Remove supply node without rest excess at s. a) Residual network with
optimal flow. b) Removed arc (si, s) and temporal artificial sink at si

with b(si) = −1. c) Artificial sink si is balanced by augmenting flow
back from the sink t. d) Node si and arc set Ai can be removed without
influencing the optimality of the flow.
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the deficit of si is exactly the amount of flow which was already routed via
i to one of the sinks and can of course be routed back completely.

Lemma 48 (Removed Supply) Algorithm 7 finds a minimum cost flow on N ′ =
(V \ {i}, A \ Ai), given N∗ = (V∗, A∗) for a minimum cost flow f∗ in N = (V , A)

in O(ni) Successive Shortest Paths iterations after preparation O(m), such that
the strong priority order of demand satisfaction is kept.

Proof: Algorithm 7 establishes a pseudo-flow f ′ obeying the reduced cost
criterion and the subsequent iterations achieve a feasible flow assuming
balanced total supply and demand and appropriate paths in the network (or
a maximal feasible pseudo-flow in practice). Further, due to the predefined
order of source and sink pairs Corollary 44 holds.

Algorithm 7 Remove Supply

Input: N∗ = (V , A), f∗, s, i, t2, t1, t0

Output: N ′ = (V ′, A ′), f ′

1: A ′ = A \ {(i, s)}, N ′ = (V ′, A ′)
2: b(i) = −ni

3: Iterate(N ′, s, i)
4: b ′(t0) = −b(i)

5: Iterate(N ′, t2, i)
6: b ′(t1) = −b(i)

7: Iterate(N ′, t1, i)
8: b ′(t2) = −b(i)

9: Iterate(N ′, t0, i)
10: Ai = {a = (i, j)|a ∈ A ′}, A ′ = A ′ \ Ai

11: V ′ = V \ {i}

6.2.2 Deletion of Demand

The deletion of a demand node j requires flow to be either rerouted to one
or more sinks via other demand nodes (assuming that demands exceed sup-
plies and both are connected with paths of sufficient capacity) or rerouted to
source s. The latter generates rest excess (unassigned cars). In both cases, we
remove the arc (t, j) from N∗ and create nj excess at j, such that f∗ remains
cost-optimal, but becomes infeasible. Subsequent iterations of the Successive
Shortest Path algorithm then reestablish feasibility.

Feasibility is always obtained, because b(dj) equals the sum of all flow
previously routed from s via j to the appropriate sink. Thus the residual
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Figure 20: Remove demand node with (d1) and without (d0) rest demand. a)
Residual network with (former) optimal flow, removed arc (t1, d1) and
temporal artificial source at d1 with b(d1) = 1. b) Rest demand at t0 and
artificial source d1 are balanced. Node d1 and arc set A1 can be removed
without influencing the optimality of the flow. c) Residual network with
(former) optimal flow, removed arc (t0, d0) and temporal artificial source
at d0 with b(d1) = 1. d) Artificial source d0 is balanced by augmenting
flow back to the source s creating a rest excess. Node d0 and arc set A0

can be removed without influencing the optimality of the flow.

network at least contains backward paths of sufficient capacity from j to
s. Further, if there are unsatisfied demands in N∗ the prior calls of ’Iterate’
reroute flow via them to the sinks in strong priority order, if appropriate
paths exists.

We see an example for both cases in Figure 20, where d1 and d0 respec-
tively are deleted from the example in Figure 9 and Figure 10 respectively.

Lemma 49 (Removed Demand) Algorithm 8 finds a minimum cost flow on
N ′ = (V \ {j}, A \ Aj), given N∗ = (V∗, A∗) for a minimum cost flow f∗ in
N = (V , A) in O(nj) Successive Shortest Paths iterations after preparation O(m),
such that the strong priority order of demand satisfaction is kept.

Proof: Algorithm 8 establishes a pseudo-flow f ′ obeying the reduced cost
criterion and the subsequent iterations achieve a feasible flow assuming
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balanced total supply and demand and appropriate paths in the network (or
a maximal feasible pseudo-flow in practice). Further, due to the predefined
iteration order of source and sink pairs Corollary 44 holds.

Algorithm 8 Remove Demand

Input: N∗ = (V , A), f∗, s, j, t2, t1, t0

Output: N ′ = (V ′, A ′), f ′

1: A ′ = A \ {(t, j)}, N ′ = (V ′, A ′)
2: b(j) = nj

3: Iterate(N ′, j, t0)
4: Iterate(N ′, j, t1)
5: Iterate(N ′, j, t2)
6: b ′(s) = −b(j)

7: Iterate(N ′, j, s)
8: Aj = {a = (i, j)|a ∈ A ′}, A ′ = A ′ \ Aj

9: V ′ = V \ {j}

6.3 pseudo demands

Pseudo demands are nodes corresponding to border stations and storage.
With respect to the network model and consequently the reoptimization
procedures they are treated very similar to demand nodes. For each border
station bl ∈ B, the corresponding node l is always connected to t0 by the
arc (l, t0) due to the construction of NI and we can simplify the Algorithms
6 and 8 by removing the superfluous Iterate-calls for higher priority sinks.
(We do not list the resulting shortened algorithms explicitly.)

Due to time expansion, for each operational storage ok ∈ O there are two
corresponding nodes k ′, k and the arc (k ′, k) in NI. Thus the Addition of ok

requires to add both nodes, the arc (k ′, k) and the arc sets

A ′
k = {(i, k ′)|si matches ok with θik = (li, c > ci, lk, c ′ 6 ck, rik)}

and

Ak = {(i, k)|si matches ok with θik = (li, c > ci, lk, c ′ > ck, rik)}.

The potential p(k ′) is defined similar to the demand potential and p(k) is
defined as follows:

p(k) = max{−mina=(i,k)∈Ak∪{(k ′,k)}{c(a) − p(i)}, 0}.

This choice of potentials ensures positive reduced cost on A ′
k ∪ Ak ∪

{(k ′, k)}, but not necessarily on (k, t0). If the latter has negative reduced
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cost we send nk units of flow from k to t0 as before, such that the arc
drops out of the network. We define f ′ as f ′(a) = f∗(a), a ∈ A∗ and f ′(a) =

0, a ∈ A ′
k ∪Ak ∪ {(k ′, k)} in the first case and only change f ′(k, t) = nk in the

second case. Thus we again start from an infeasible, but cost optimal flow f ′

and establish feasibility by iterating the Successive Shortest Path algorithm as
in Algorithm 9. (Like in the case of border nodes, superfluous Iterate-calls
are removed here.)

Algorithm 9 Add Operative Storage

Input: N∗ = (V , A), f∗, s, k, t0

Output: N ′ = (V ′, A ′), f ′

1: ∀a ∈ A : f ′(a) = f∗(a)

2: V ′ = V ∪ {k ′, k}

3: A ′
k = {(i, k ′)|si matches ok with θik = (li, lk, c, c ′ 6 ck, rik)}

4: Ak = {(i, k)|si matches ok with θik = (li, lk, c, c ′ > ck, rik)}

5: ∀a ∈ A ′
k ∪Ak : f ′(a) = 0

6: A ′ = A∪A ′
k ∪Ak

7: p(k ′) = max{−mina=(i,k ′)∈A ′
k
{c(a) − p(i)}, 0}.

8: p(k) = max{−mina=(i,k)∈Ak∪{(k ′,k)}{c(a) − p(i)}, 0}.
9: if p(k) 6 p(t0) then

10: a = (k, t), cr(a) = p(t) − p(k), ur(a) = nk, f ′(a) = 0

11: A ′ = A ′ ∪ {a}, b(t) = b(t) − nk, N ′ = (V ′, A ′)
12: Iterate(N ′, s, t0)
13: else
14: ā = (t0, k), cr(ā) = p(k) − p(t), ur(ā) = nk, f ′(ā) = 0

15: A ′ = A ′ ∪ {ā}, b(k) = −nk, N ′ = (V ′, A ′)
16: Iterate(N ′, s, k)
17: if b(k) < 0 then
18: b(t0) = −b(k)

19: Iterate(N ′, t0, k)
20: end if
21: end if

Note that due to the minor changes or specifications, Lemma 47 also holds
for all kinds of pseudo-demands with regard to the reduced algorithm for
border stations and Algorithm 9. Deletion of pseudo demands, especially
storage nodes, also requires only minor modifications of Algorithm 8 as in
Algorithm 10 for which Lemma 49 also holds.



6.4 node changes 81

Algorithm 10 Remove Operative Storage

Input: N∗ = (V , A), f∗, s, k, t0

Output: N ′ = (V ′, A ′), f ′

1: A ′ = A \ {(t0, k)}, N ′ = (V ′, A ′)
2: b(k) = nk

3: Iterate(N ′, k, t0)
4: b ′(s) = −b(k)

5: Iterate(N ′, k, s)
6: A ′

k = {a = (i, k ′)|a ∈ A ′}, Ak = {a = (i, k)|a ∈ A ′}
7: A ′ = A ′ \ (A ′

k ∪Ak ∪ {(k ′, k)})

8: V ′ = V \ {k ′, k}

6.4 node changes

In practice changes of node attributes mostly affect the number of cars in
a supply si or demand dj, which correspond directly to the capacities on
the model arcs (s, si) or (dj, t) respectively. The necessary changes in the
(residual) network and the (optimal) flow can be viewed as generalizations
of node addition and deletion.

If ni of supply node si is increased to n ′
i, either (s, i) ∈ A∗ and we increase

its capacity by n ′
i − ni or only (i, s) ∈ A∗. Here we must again distinguish

the if -case (p(i) > p(s)) and else-case (p(i) < p(s)) of Algorithm 5 according
to the (already given) potential p(i). In the former case the arc (s, i) is added
with capacity n ′

i − ni and appropriate (reduced) cost and the additional
supply is only allocated if there is rest demand, as rerouting flow cannot
decrease the total cost. In the latter case arc (i, s) is added by sending
n ′

i − ni units of flow along (s, i), which then drops out of N∗. The resulting
temporal excess at i is either routed to one or more sinks if there is rest
demand, which increases the flow value and keeps optimality. Or flow is
rerouted from i to s via another (most expensive) supply node to regain the
optimal flow solution given the additional excess at i without increasing
the flow value. Increasing a demand follows analogously along the lines of
Algorithm 6.

Decreasing the number of supplied or demanded cars by n only requires
the following changes in Algorithms 7 and 8: The respective model arc (i, s)
or (t, j) is not deleted, but its capacity is appropriately decreased by n and
the temporal imbalances at i or j respectively are set to n instead of ni or nj

respectively.
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6.5 batch reoptimization

In the previous sections we covered the addition and deletion as well as
increase and decrease in the number of cars with respect to a single supply or
pseudo demand node. As the addition of a new node requires all potentials
of matching nodes to be already fixed, this operation can not be carried out
simultaneously for supply and demand nodes. Further, all four operations
possibly require the introduction of temporal imbalances at source, sink or
data nodes (else-cases), which can result in undesired flows if the operations
are mixed.

We can simultaneously add (increase, remove, decrease) all currently
changed supply (demand) nodes. We therefore prepare the local network
modifications for all changed supply (demand) nodes as in Algorithm 5

or 7 (6 or 8) and call the redefined Iterate procedure 11, which handles a
set of sources and sinks rather than a single node in each case. The Iterate
procedure is thus either called with a single source and a set of sinks or
vice versa. In each case, the respective model node is the singleton and thus
the predefinition of source-sink-pairs still suffices to ensure Corollary 44.
On the other hand, out of the set of changed supply or demand nodes, the
order of flow augmentation is determined by the Successive Shortest Path
algorithm and thus ensures optimality of the resulting (maximal) feasible
flow solution.

Algorithm 11 Set-Iterate Successive Shortest Path

Input: N(f) = (Vf, Af), S, T
Output: ft, Nt(ft) = (At, V)

1: while ∃π∗st, s ∈ S, t ∈ T do
2: Determine shortest path π∗st and d(s, t) w.r.t. cr in N(f)

3: Update p(v) = p(v) − d(s, v) + d(s, t) for each permanently labeled
v ∈ V

4: δ := min{b(s), −b(t), mina∈π∗
st

ur(a)}

5: Augment δ units of flow along π∗st, obtaining f ′(a)

6: ∀a = (u, v) ∈ Af : cr(a) = c(a) − p(u) + p(v)

7: ∀a = (u, v) ∈ Af : ur(a) = u(a) − f ′(a)

8: Update N(f) to N(f ′)
9: end while

By Lemmas 46, 47, 48 and 49 follows directly:

Theorem 50 (Node-based Reoptimization) Given a set S of supply nodes si,
which are added, deleted, increased or decreased in the number of cars by ni and a
set D of pseudo demand nodes d̂j, which are added, deleted, increased or decreased in
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the number of cars by nj, the reoptimization Algorithms 5, 6, 7, 8 with application of
Procedure 11 find a minimum cost flow on the network N ′ altered by S and D, given
N∗ = (V∗, A∗) for a minimum cost flow f∗ in the original network N = (V , A)

in O(nS + nD) Successive Shortest Path iterations with nS =
∑

si∈S ni and
nD =

∑
d̂j∈D nj after preparation of time O(m), such that the strong priority

order of demand satisfaction is kept.
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A N E T W O R K M O D E L F O R T H E H E T E R O G E N E O U S D P

In this chapter, we introduce a generalized network model N
g
I for hetero-

geneous instances I of the (DP) (Section 7.1) and discuss the complexity
of the generalized integral minimum cost flow problem with respect to
such networks N

g
I . The latter obviously remains NP-complete, given the

complexity result of Corollary 35.
Total instances I can be transformed to homogeneous instances I ′ (see

Section 7.2), such that an integral minimum cost flow f∗ in the classical
network N

g
I ′ can be obtained in polynomial time. A more general transfor-

mation from special generalized networks to classical networks is known
from literature [51].

We show that the flow f∗ provides an optimal (LP)-feasible derived distri-
bution D∗ of bounded fractionality for the original instance I. By characteri-
zation of totalizable instances of the (DP), this approach is extended to all
instances from the application, for which we obtain optimal (LP)-feasible
derived distributions of bounded fractionality β = 2. Those distributions
can be obtained directly from N

g
I by the modified Successive Shortest Path

algorithm for generalized minimum cost flows we present in Section 7.4
after a brief review of literature on generalized flow problems in Section 7.3.

The half-integral optimal (LP)-feasible distributions are the basis of poly-
nomial time approximations and good heuristics for the heterogeneous (DP)
in practice, which we present in Chapter 8.

7.1 a generalized flow network

We construct a generalized network model N
g
I similar to the network model

NI for homogeneous instances in Chapter 5. Let I = {S, D, O, B, T, S, O, I, F, B}

be a heterogeneous instance of the (DP). Then N
g
I = (VI, AI) and capacity

ug = u, cost cg = c and balance function bg = b are the same as before.
Additionally, we define a multiplicator function µ : AI → Q on the arcs of
N

g
I . As we show in Section B.1, there is always an equivalent generalized

network employing node multipliers. We set the multipliers µ(s, i) = 1 and
µ(j, tp) = 1, p ∈ {0, 1, 2}. For all arcs (i, j) ∈ AT , the multiplier µ(i, j) is set to
v(ti, tj), the relative valency of car type ti to car type tj.

Definition 51 (Generalized Distribution Network N
g
I ) Let

I = {S, D, O, B, T, S, O, I, F, B}

85
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be a heterogeneous instance of the (DP). Then the distribution network N
g
I =

(VI, AI) with capacity ug : AI → N, cost cg : AI → N, multiplier µ : AI → N

and balance bg : VI → N is defined as described above.

An integral feasible flow f in N
g
I provides a feasible derived distribution

Df(I) (see Definition 37) disregarding the strong priorities by analogous
arguments as in Lemma 38 and 39 (Chapter 5). With Definition 40 and
analogous arguments as in Lemma 41, we obtain the following corollary
from Theorem 42:

Corollary 52 (Generalized Flow-Distribution-Equivalence) For each feasi-
ble flow f in N

g
I there is an (LP)-feasible derived distribution Df (disregarding

strong priorities) with respect to I and vice versa. The distribution Df is feasible if
and only if f is integral and optimal if and only if f is an integral minimum cost
flow in N

g
I .

So far, if a feasible distribution exists an integral solution to the general-
ized minimum cost flow problem on N

g
I provides an optimal distribution to

any heterogeneous instance I of the (DP). Unfortunately, integrality is com-
putationally harder to guarantee in the general case. The complexity of the
integral maximal generalized flow problem (a special case of the minimum
cost flow problem with cost zero) is long known to be NP-complete for
general networks [107]. It still holds for the rather special N

g
I arising from

instances I of the (DP). This is not surprising, given the NP-completeness
result for the heterogeneous (DP) (see Section 4.2) and the equivalence be-
tween integral feasible flows and feasible distributions (disregarding strong
priority order).

An argument for the computational complexity result from the field of
linear programming is that introducing flow multipliers into a network gen-
erally destroys total unimodularity of the corresponding node-arc incidence
matrix. Therefore, without explicit integrality constraints the optimum needs
not be integral, even if all input values are integral. Figure 21 shows an
instance of the problem without any feasible integral solution.

Hence, the existence of a feasible distribution does not only require
sufficient storage and only non-isolated supplies. Consider an instance I

and the precomputed maximal generalized flow fmax in N
g
I as the one we

use to adjust b(s) and b(tp), p ∈ {0, 1, 2}. If
∑

a∈AS
fmax(a) is not integral,

no feasible solution exists for I, although there is an (LP)-feasible solution.
We also investigated the complexity of the integral generalized maximum

resp. minimum cost flow problem independent of the (DP) in other special
networks (see Appendix B). For example, in bipartite generalized networks
N = (V , A) with one source and two sinks and a multiplicator function
µ : A → K ⊂ N the problem remains NP-complete (see Section B.2). If
K = {1, k} and the structure of N is regular in the sense that for each node
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Figure 21: The only valid flow is fractional.

the multipliers on all outgoing arcs are identical, we obtain minimum cost
generalized flows of bounded fractionality β = k in polynomial time (see
Section B.3).

On the one hand, such networks occur for total k-heterogeneous instances
of the (DP). On the other hand, such networks have a so-called k-regular
[8] node-arc incidence matrix as we prove in Section B.4. Therefore, the
constraint matrix of an LP modeling the minimum cost flow in such a net-
work is k-regular as well. With the results of [8], this provides an alternative
proof for the bounded fractionality of a solution (without explicit integrality
constraint) in this case.

Due to the complexity of the (DP) and practical runtime requirements we
want to temporarily drop the integrality constraint on the generalized flow
problem in N

g
I . In the following section, we characterize those instances I for

which we then obtain minimum cost flows f of bounded fractionality in N
g
I

in polynomial time. The derived distribution Df is always an (LP)-feasible
distribution of bounded fractionality with respect to I. For instances from
the application we thus obtain half-integral derived distribution, which are
rounded to feasibility in Chapter 8.

7.2 bounded fractionality

For a generalized network, a minimum cost flow of bounded fractionality β

does not need to exist. This is especially true if we want β to be independent
of the network size, namely n = |V | and m = |A|. We give an example with
β = 1

2n in a network N = (V , A) with 3n nodes in Figure 22: At each level
l, the maximum possible flow is carried from source sl to sink tl of the
respective level. We start from level 1, where no other way of balancing t1

is possible. The rest excess of sl must then be transferred to tl+1. There it
causes a fractional rest deficit of 1

2l which is balanced by 1
2l+1 flow out of

sl+1 due to the flow multiplier of 2.
The remaining excess of source sl+1 is then 1 − 1

2l+1 and so on. For this
part of the graph, we need 2n + 1 vertices to create a flow of 1

2n units. We
create a path of n − 1 vertices connecting sn

3
and tn

3 +1 on the last level with
an arc multiplier of 2 on each arc. Thus the remaining excess is completely
consumed by the last integral deficit. In this way we ensure a valid flow
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Figure 22: An example of arbitrary small fractions of flow.

solution and the integrality of all demands and excesses by exclusive use
of multipliers 1 and 2. The same construction can be applied for any fixed
multiplier k. The fractionality of a maximum flow solution can only be
bounded in the number of vertices. Additional arcs with high costs modify
the example to apply also to the minimum cost flow problem and show
that we cannot obtain a flow of bounded fractionality without additional
constraints.

In the following we show how to obtain (LP)-feasible distributions of
bounded fractionality with minimum costs for total instances I of the (DP)
in polynomial time. We briefly call such distributions optimal fractional
distributions for I. Further, we extend the considered set of instances by
characterization of totalizable instances. The latter include the instances
from our application.

7.2.1 Bounded Fractionality of total Instances

Let I = {S, D, O, B, T, S, O, I, F, B} be a total instance such that p is the least
common multiple of the nominators and q is the least common multiple
of the denominators of total valencies v(ti), si ∈ S. For the moment let
O = B = ∅. Then we define an associated instance I’ as follows.

Definition 53 (Instance I ′)

I ′ = {S ′, D, O, B, T, S ′, O, I, F, B}

with
S ′ = {(li, ti, ci, v(ti) ·ni, gi, fi, ui, bi, oi, vi)|si ∈ S}

and
S ′ = {(ts, td)|σsd ∈ S}.
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Obviously, I ′ is a homogeneous instance, thus we apply the results of
Chapter 5, but modify the cost function of N ′

I to c ′(i, j) = v(ti)c(i, j) for
(i, j) ∈ AT and c ′(u, v) = 0 for (u, v) ∈ AI \ AT . As the number of supplied
cars not necessarily remains integral, we scale the capacity and balance
function by q to uq(v, w) = qu(v, w) and bq(v) = qb(uv) and obtain the
network N ′

I(q) with integral values. We thus obtain an integral minimum
cost flow f∗q in N ′

I(q) in polynomial time.

Lemma 54 (Equivalence of f ′ and fq) Let f ′ = 1
qfq. Then f ′ is a q-fractional

feasible flow in N ′
I if and only if fq is an integral feasible flow in N ′

I(q).

Proof: Let fq be an integral feasible flow in N ′
I(q). Due to linearity of

capacity and balance constraints, the flow f ′, obtained by scaling fq with
1
q , is feasible for N ′

I, because it is obtained from N ′
I(q) by scaling capacity

and balance by the same factor. Further, as fq is integral, f ′ is q-fractional.
Let f ′ be a q-fractional feasible flow in N ′

I. Then fq is obtained by scaling f ′

with q, while N ′
I(q) is obtained from N ′

I by scaling the capacity and balance
function with that particular q. Hence, fq is feasible in N ′

I(q) by linearity of
the scaled functions. Finally, as f ′ is q-fractional, fq is an integral feasible
flow in N ′

I(q).

Due to the equivalence of fq and f ′ as given by Lemma 54 and by linearity
of the cost functions c(f ′) and c(fq), the following holds:

Corollary 55 (Minimum Cost Flow f∗) We obtain a q-fractional minimum cost
flow f∗ = 1

qf∗q in N ′
I via scaling of a minimum cost flow f∗q in N ′

I(q), which can be
computed in polynomial time.

From f ′, we derive an optimal q-fractional distribution D(I ′) for I ′ by
Corollary 52. Intuitively, the difference between instances I and I ′ is that we
interpret flow units as fractions or tuples of freight cars appropriate to the
valency of the supply in I ′, instead of identifying flow units with cars as
in I. We derive an optimal pq-fractional distribution D(I) for I from D(I ′)
by transforming the fractions or tuples of freight cars back to actual freight
cars as follows.

Let I be a total heterogeneous (DP) instance with valencies v(t), t ∈ TS

and I ′ as in Definition 53. Further, let D∗(I ′) be the optimal q-fractional
distribution for I ′ derived from a minimum cost flow f∗ = 1

qf∗q in N ′
I, with

f∗q in N ′
I(q) being computed by Algorithm 2 (thus obeying strong priority

order).

Definition 56 (q-Derived Distribution) We define a q-derived distribution D∗(I)
as:

D∗(I) = {δ = (si, d̂j, nij =
1

v(ti)
n ′

ij)|δ
′
ij ∈ D∗(I ′)}.
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Theorem 57 (Optimal pq-fractional distribution D(I)) The q-derived distri-
bution D∗ = D∗(I) is an optimal pq-fractional distribution for I.

Proof: Each assignment δ ′ij ∈ D∗(I ′) is q-fractional feasible for I ′: si

matches d̂j with respect to I ′ and, by construction, also with respect to
I. Further, ni = 1

v(ti)
n ′

i > nij = 1
v(ti)

n ′
ij follows from n ′

i > n ′
ij and nj >

v(ti, tj)
1

v(ti)
n ′

ij from nj 6 v ′(ti, tj)n
′
ij (with v ′(ti, tj) = 1). As D∗(I ′) is q-

fractional and we obtain nij from n ′
ij by division by the reciprocal of total

valencies, every assignment δ ∈ D∗(I) is pq-fractional feasible (with p, q as
defined previously). Further, with and O = B = ∅,

v(ti)ni = n ′
i =

∑
δ ′
ij∈D∗(I ′)

n ′
ij =∑

δij∈D∗(I)
v(ti)nij ⇔

ni =
∑

δij∈D∗(I)
nij ∀si ∈ S

nj = n ′
j >

∑
δ ′
ij∈D∗(I ′)

v ′(ti, tj) ·n ′
ij =∑

δij∈D∗(I)
v(ti)

1

v(ti)
·n ′

ij ⇔

nj >
∑

δij∈D∗(I)
v(ti) ·nij =∑

δij∈D∗(I)
v(ti, tj) ·nij ∀dj ∈ D.

Moreover, D∗(I ′) is minimum with respect to c ′(D(I ′)) =
∑

δ ′∈D∗(I ′) c ′δ ′

respecting strong priority order and c ′δ ′ = n ′
ij · c ′ij = n ′

ij · v(ti) · cij = nij ·
1

v(ti)
· v(ti) · cij = nij · cij = cδ. Thus D∗(I) is minimum with respect to cost c

(respecting strong priority order).

The two drawbacks of the above method for solving heterogeneous in-
stances is that on the one hand, not all instances allow the definition of
total valencies for all supply car types and on the other hand, the feasibility
of a solution D∗(I) derived from D∗(I ′) depends on the integrality of the
reciprocal of total valencies (p = 1) and the scaling factor (q = 1). On the
other hand, with regard to approximation strategies, total instances have
the advantage of bounded fractionality solutions which can be obtained in
polynomial time.

Let I be a total instance of the (DP) with total valencies v(t), t ∈ TS and
let p be the least common multiple of all nominators, q the least common
multiple of all denominators of total valencies.
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Corollary 58 (Bounded Fractionality of Total Instances) We obtain an opti-
mal pq-fractional distribution D∗(I) with regard to I respecting strong priorities
in polynomial time.

Especially, all total k-heterogeneous instances Ik have bounded fraction-
ality k: The total valencies are from the set {1, k, 1

k }, such that p = k and
q = k and due to Corollary 58 the fractionality of D∗(Ik) would be bounded
by k2. This bound proves too abrasive: only assignments dij ∈ D∗(Ik) for
supplies si with v(ti) = k are scaled twice by k during the computation
of the q-derived distribution for Ik. Due to scaling and linearity f∗q is a
multiple of k on corresponding arcs (i, j) such that D∗(Ik) is in fact k-
fractional. The latter is formally shown in Sections B.3 and B.4 with respect
to the k-regularity of the associated networks N ′

Ik
(q). Further, we explicitly

show half-integrality of optimal fractional distributions for the non-total
2-heterogeneous instances which occur in the application in Section 7.2.3.

In the following section, we define and characterize totalizable instances,
which include those practical instances. We prove that totalizable instances
also allow pq-fractional distributions to be obtained in polynomial time.

7.2.2 Bounded Fractionality of totalizable Instances

Most (k-)heterogeneous instances are not generically total. For some in-
stances, including the practical 2-heterogeneous instances, we can achieve
relative valencies to be equal for each occurring supply car type by intro-
ducing an artificial total valency function w on occurring demand car types.
Let therefore

I = {S, D, O, B, T, S, O, I, F, B}

be a (non-total) instance of the heterogeneous (DP) and let TS and TD be the
sets of occurring supply and demand types TS = {t = ts|σsd ∈ S,∃si ∈ S :

ti = ts} and TD = {t = td|σsd ∈ S,∃dj ∈ D : tj = td}.

Definition 59 (Totalizable Instance) I is totalizable if and only if there is a
function w : TD → R such that the instance

It = {S, Dt, O, B, T, St, O, I, F, B}

with
Dt = {(lj, tj, fj, cj, w(tj) ·nj, gj, aj, rj, ej, zj, wj, pj)|dj ∈ D}

and
St = {(nsts, w(td) ·ndtd)|σsd ∈ S}

is total.

To characterize the totalizable instances of the heterogeneous (DP), we
represent the relative valencies of supply car types in the following way:
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Definition 60 (Substitution Graph) The substitution graph GS(I) = (VS, ES)

of I consists of a node s ∈ VS for each supply car type ts ∈ TS and a node
d ∈ VD for each demand car type td ∈ TD and VS = VS ∪ VD. Further, ES =

{(s, d)|(nsts, ndtd) ∈ S} and each edge (s, d) is annotated with the relative valency
v(s, d) = v(ts, td) = nd

ns
.

For the substitution graph GS(I) of a non-total instance I of the (DP), there
is a node s in VS such that two incident edges (s, d), (s, d ′) have different
values v(s, d) = nd

ns
and v(s, d ′)n ′

d
ns

. To set both relative valencies to the same
value, we scale n ′

d, which represents a number of demanded cars of type td,
by w(td) = nd

n ′
d

. Scaling nd serves to represent a number of cars by a multiple
of fractions or tuples of the cars similar to the treatment of supplied cars in
Definition 53.

To maintain the original relative valencies with respect to the real number
of cars, we have to scale n ′

d in the same way for all σsd ′ ∈ S. We replace ndtd

by w(td)n ′
dtd in all σsd ′ ∈ S and update GS(I), if relative valencies v(t ′s, td)

change. Possibly new pairs of incident edges (s ′, d), (s ′, d ′′) with different
values v(s ′, d) =

w(td)nd
n ′

s
and v(s ′, d ′′)n ′′

d
n ′

s
are created. We proceed with the

definition of a total valency w(t ′′d) for demand car type t ′′d , if and only if t ′′d
has not permanently received a different total valency yet. If this procedure
terminates without conflicts, I is totalizable.

Let I again be a (non-total) instance of the heterogeneous (DP) with
substitution rule S. Further, let the value v(p) of a path p = e1, . . . , erp ⊆ ES

be defined as:

v(p) =


v(e1)v(e3)...v(e2r−1)
v(e2)v(e4)...v(e2r)

, if rp = 2r, r ∈ N

v(e1)v(e3)...v(e2r+1)
v(e2)v(e4)...v(e2r)

, if rp = 2r + 1, r ∈ N

Note that the value v(c) of a cycle is always determined as that of an even
length path as GS is bipartite.

Theorem 61 (Characterization of Totalizable Instances) I is totalizable if and
only if GS(I) contains only cycles c with v(c) = 1.

Proof: Let (s, d), (s, d ′) ∈ ES have different values v(s, d) and v(s, d ′). Set
w(td) = 1 and w(t ′d) =

v(s,d)
v(s,d ′) = ndns

n ′
dns

= nd
n ′

d
, such that

v ′(s, d) =
nd

ns
=

nd

n ′
d

n ′
d

ns
= w(t ′d)

n ′
d

ns
= v ′(s, d ′),

which implies that both values are identical with respect to the modified
substitution rule St with total valency w(t ′d) of type td as in Definition
59. Consequently, all edges incident to d ′ receive new values v ′(s ′, d ′) =
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v(t ′d)v(s ′d ′) =
v(s,d)v(s ′d ′)

v(s,d ′) . For incident edges (s ′, d ′′) and (s ′, d ′) with differ-

ent values, w(t ′′d) is set to v ′(s,d)v ′(s ′d ′)
v ′(s,d ′)v ′(s ′,d ′′) . Continuing the assignment of total

valencies as above, w(t ′d) = v(p)w(td) for a path p from d to d ′.
As long as for any node s ′ for which a path from d ′ to s ′ exists, two

incident edges (s ′, d ′) and (s ′, d ′′) have different values, proceed as above.
If no such node s ′ exists, either I is total with respect to St and the values
w(td) (all total valencies for demand types, which are not yet explicitly set,
are set to one) or GS is not connected.

In the latter case, remove the considered connected component of GS

and start as above in a remaining component. Thus, starting from two
incident edges (s, d), (s, d ′) with different values and setting w(td) = 1

in each connected component, each value w(t ′′d) ∈ VD is determined as
w(t ′′d) = v(p)w(td) if p is a unique path from d to d ′′ or if v(p) is equal for
all paths from d to d ′′. If both is not the case, there are at least two different
paths p, p ′ from d to d ′′. Let w.l.o.g. p and p ′ be edge disjoint. (Otherwise,
we redefine d to be the last common node in VD of p and p ′ and d ′ to be
the first common node in VD of p and p ′ after d.) Then c = pp̄ ′ with p̄ ′

denoting the reverse of p ′ is a cycle in GS which contains d. The reverse
of p ′ is also associated with the inverse value v(p̄ ′) = 1

v(p ′) and the value

of the cycle c is v(c) = v(p)v(p̄ ′) = v(p) 1
v(p ′) . Due to the assumption that

v(p) 6= v(p ′), c is a cycle with v(c) 6= 1.

For a totalizable instance I of the (DP), we obtain an optimal pq-fractional
distribution D∗(It) respecting strong priority order for the associated total
instance It in polynomial time by Corollary 58 and the results of Chapter
5. Let I be a totalizable heterogeneous (DP) instance with w : TD → N,
and It as in Definition 59. Further, let D∗(It) be an optimal pq-fractional
distribution for It.

Theorem 62 (Equivalence of D(It) and D(I)) D∗(It) is a pq-fractional distri-
bution for I.

Proof: Each assignment δij = (si, d̂j, nij) ∈ D∗(It) is pq-fractional feasible
for It which means si matches d̂j, ni > nij and vt(ti, tj)nij = v(ti, tj)w(tj)nij

6 w(tj)nj from which follows v(ti, tj)nij 6 nj. As St contains for each
(nsts, ndtd) ∈ S a tuple (nsts, w(td)ndtd), for each assignment δij, si also
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matches d̂j with respect to I and δij is pq-fractional feasible for I. Further,∑
δij∈D∗(It) nij = ni holds ∀si ∈ S and∑

δij∈D∗(It)
vt(ti, tj)nij =∑

δij∈D∗(It)
v(ti, tj)w(tj)nij 6 w(tj)nj ⇔∑

δij∈D∗(It)
v(ti, tj)nij 6 nj ∀dj ∈ D

Hence (with O = B = ∅), D∗(It) is a pq-fractional distribution for I.

Since c(D∗(It)) = c(D∗(I)) minimizes the distribution cost c respecting
strong priority order, Theorem 62 generalizes Corollary 58 to totalizable
instances. Let I be a (non-total) heterogeneous instance of the (DP), totaliz-
able with w : TD → R, which results in total valencies vt(ti), si ∈ S for the
instance It. Further, let p be the least common multiple of all nominators, q

the least common multiple of all denominators of total valencies vt.

Corollary 63 (Bounded Fractionality of totalizable Instances) We obtain an
optimal pq-fractional distribution D∗(I) = D∗(It) with respect to I regarding
strong priority order in polynomial time.

A more general result for equivalence of certain generalized flow problem
instances and classical flow problems is given in [51]. It is shown that any
generalized network problem whose node-arc-incidence matrix does not
have full row rank is equivalent to a pure network problem. The prove is
given via an algorithm employing row and column manipulation on the
incidence matrix of the network. It would be interesting to investigate in how
far the determination of the values w(td) with respect to a given totalizable
instance are equivalent to the necessary row and column operations and if
the determination of w(td) in generalized networks can be shown to be a
graph-theoretic pendant to the above result.

7.2.3 Application Instances

In this section we show that the 2-heterogeneous (DP) instances

Ia = {S, D, O, B, T, S, O, I, F, B}

which occur in practice are totalizable. Moreover, we obtain half-integral
optimal solutions D∗(Ia) in polynomial time. The substitution rule S of such
instances Ia contains the following subsets:

S|xyz = {(tx, tx), (ty, ty), (2tx, tz), (ty, tz)}
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Figure 23: Subgraphs of GS: a) A non-totalizable instance. b) Increased bound of
fractionality

and
S ′|xyz = {(t ′x, t ′x), (t

′
y, t ′y), (2t ′x, t ′z), (t

′
y, t ′z)}.

Any associated instance Ir = {S, D, O, B, T, Sr, O, I, F, B} with Sr = S \

(S|xyz∪ S ′|xyz) is homogeneous. Note that Ia is not total as v(tx, tx) = 1 6=
v(tx, tz) = 1

2 and v(t ′x, t ′x) = 1 6= v(t ′x, t ′z) = 1
2 , but all other involved supply

car types t have total valency v(t) = 1. Still GS(Ia) possibly contains the
subgraphs depicted in Figure 23:

The graph in Figure 23 a) contains a cycle c = (x, z)(z, x ′)(x ′, z ′)(z ′, x) with
v(c) = 2·2

1·1 = 4 6= 1, such that the corresponding instance is not totalizable.
The graph in Figure 23 b) contains no such cycle, but w(z ′′) = 4, resulting
in vt(t

′
x, t ′′z ) = 1

4 such that D∗(It) of the corresponding totalized instance It
can only guaranteed to be 4-fractional, so far.

However, GS(Ia) does not contain the subgraphs of Figure 23, as GS(Ia) is
not connected, the edges corresponding to the subsets S|xyz and S ′|xyz are in
different connected components of GS(Ia) and neither component contains
a cycle c with v(c) 6= 1. Thus the instances Ia are totalizable by Theorem 61.
Further, Ia is totalizable with w : TD → {1, 2} by setting w(tx) = w(t ′x) = 1,
w(ty) = w(t ′y) = w(tz) = w(t ′z) = 2 and extending w to all other demand
types with corresponding nodes in the same connected component of GS(Ia)

as in Theorem 61. Demand types t with corresponding nodes in other
connected components of GS(Ia) receive total valency w(t) = 1.

Theorem 64 (D∗(Ia) is half-integral) Let Ia be a totalizable 2-heterogeneous
instance of the (DP) as above. Then we obtain a half-integral optimal distribution
D∗(Ia) in polynomial time.

Proof: Ia is totalizable with w : TD → {1, 2} by setting w(tx) = w(t ′x) = 1,
w(ty) = w(t ′y) = w(tz) = w(t ′z) = 2. Thus the totalized instance It has total
valencies vt(tx) = 1 and vt(ty) = vt(tz) = 1

2 such that p = 1, q = 2. Then
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by Corollary 63 D∗(Ia) = D∗(It) is half-integral and can be obtained in
polynomial time.

7.2.4 Operative Storage and Border Stations

We so far assumed O = B = ∅. With respect to operative storage ok ∈ O,
the substitution analogue is the storage rule O, which does not specify
different valencies. This is natural as storage is usually mix-type and does
not demand any special types due to transport requirements for certain
goods. For each ok ∈ O, the capacity nk is computed as an average over the
car length of different car types weighted with the number of those cars in
the stock (see Section 2.4.2). For a totalized heterogeneous instance It, the
capacity of a storage can be recomputed as an average over the car length
of different car types t weighted not only with the number of those cars
in the stock, but also with their total valency w(t). Thus the recomputed
storage capacity enables capacity control in the totalized solution as well as
the formerly computed capacity does in the original solution for I.

In contrast, the border station capacities cannot be redefined in such a way:
A border station possibly allows several distinct car types with different total
valencies per time interval, but the valency has no effect on the shunting
process and thus must not influence the capacity. On the other hand, in
the application, so far no foreign car types are involved in heterogeneous
substitution. More specifically, for a practical 2-heterogeneous instance Ia
with substitution rule S, a node corresponding to a foreign car type only
occurs in a different connected component of GS than x, x ′, z and z ′. Thus
for instances Ia with non-empty sets O and B we also obtain half-integral
optimal distributions in polynomial time applying the previous results of
Section 7.2 on a slightly modified instance.

7.3 algorithms for generalized flow problems

In this section, we survey algorithms for generalized flow problems as not
all instances of the (DP) can be solved via classical flow models as described
in the previous sections.

Besides the traditional network flow problems, the generalized flow model
has also been studied since the publication of [39]. Early results were the
extension of Ford and Fulkerson’s primal-dual approach for minimum cost
flows by Jewell [76, 75] and the development of the generalized network sim-
plex algorithm by Dantzig [26], which both concentrate on generalized flows
as a special case of linear programming. A dual version of the latter was
developed more recently by Goldfarb, Jin and Lin to solve the generalized
circulation problem in polynomial time [59].
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In the nineteen-sixties and -seventies, the generalized flow model was
approached in a strongly application oriented context from manufacturing,
transportation, communication and financial analysis [97, 98, 50], but also
in some broad [15, 30, 51] or limited [74] theoretical aspects.

Especially in [115], a strong relationship between generalized maximum
flow algorithms and traditional minimum cost flow algorithms is established.
In particular, setting the cost function c(i, j) of an arc a = (i, j) to − log µ(i, j),
where µ(i, j) is the arc multiplier on a, there is a 1-to-1-correspondence be-
tween flow generating cycles in the generalized maximum flow problem
with multipliers µ and negative reduced cost cycles in the traditional mini-
mum cost flow problem with cost c.

This might be considered as a kick off into the exploration of combinatorial
algorithms to solve generalized network flow problems, as it allows adaption
from known algorithms to the generalized case. In the late nineteen-eighties
and early -nineties, Goldberg and Tarjan for example developed new and
fast combinatorial algorithms for maximal flow and minimum cost flow or
circulation problems respectively [52, 53, 54]. Those algorithms also find
their application in the generalized circulation problem [55] and have been
further improved by Goldfarb, Jin (and Orlin) [58, 60]. This was the basis
for the above mentioned dual simplex approach ([59]).

On the other hand, previous generalized maximum flow algorithms
turned out to be analogues already. For example, Onaga’s algorithm [97]
could be interpreted as a successive shortest path approach with the ap-
propriately defined costs and Truemper’s own algorithm is similar to the
primal-dual algorithm for minimum cost flows. Another parallel can be
drawn between the maximum capacity augmenting path algorithm pro-
posed by Edmonds and Karp [33] for the maximum flow problem and the
most helpful cycle cancelling algorithm of Barahona and Tardos [10] or the
minimum mean cycle cancelling algorithm [53] for the minimum cost circu-
lation in an adapted network. (In the latter, an arc (t, s) with negative cost
is added while all other arcs receive cost zero.) Shigeno [110] also sketches
a generalized maximum flow algorithm on this basis.

Yet, in the nineteen-nineties also frameworks (e. g.[20]) were established
for generalized problems, which rely on solving a (relaxed or dual) lin-
ear program as a subroutine or at least testing its feasibility. Mostly such
subroutines solve generalized shortest path, transshipment or traditional
cut problems, which can nicely be formulated as linear programs with two
variables per inequality (TVPI). Those can be solved polynomially in inte-
gers [78, 1]. The running times for solving (TVPI) have been continuously
decreased for example [19, 70]. Specially structured (LP) formulations also
allow for half-integral optimal solutions obtainable in polynomial time and
a thereon based 2-approximation [69, 68]. However, up to now it seems
impossible for the generalized minimum cost flow problem to be formulated
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in that way. While most research is done into the generalized maximum
flow problem, there are also possibilities to extend this work to minimum
cost flows.

Different formulations for the generalized problem variants arise for
example with regard to excesses and demands. In this context we have new
structures in the generalized model like gainy (flow-creating) and lossy
(flow-destroying) cycles. This leads to an extended decomposition theorem
for generalized elementary flows ([61, 55]).

Concerning running times, since the development of the ellipsoid [82]
and interior point [80] methods, solutions to various generalized network
problems can provably be obtained in polynomial time as they can be
modeled as linear programs. On the other hand, exploiting combinatorial
structure of the problems tends to give better worst-case bounds on algo-
rithm running times. To our best knowledge, the fastest known running
time for a combinatorial approach to the generalized maximum flow prob-
lem is (Õ)(m2n log B) due to Radzik [104] based on [103, 60]. Applying the
fastest general purpose LP-algorithm combined with speed-up techniques
for matrix inversion delivers a time bound of (Õ)(n2m1.5 log nB) for solving
the generalized circulation problem [55, 118, 79].

One of the more recent approaches by Oldham [96] exchanges a TVPI
feasibility test for a combinatorial subroutine. The subroutine indicates if a
chosen vertex potential is smaller or greater than the dual problem’s optimal
value by a Bellman-Ford [11] computation. Unfortunately, Restrepo and
Williamson [105] show that Oldham’s assumption of converging distance
labels within n iterations is not correct via a counter-example. Yet, his
definition of appropriate reduced cost and application of a shortest path
algorithm as a combinatorial subroutine may retrospectively be seen as
the original generalization of the successive shortest path algorithm to
the minimum cost flow problem with multipliers, although Oldham only
uses the shortest path computation as a relational operator and finds the
generalized maximum flow via binary search.

Williamson and Restrepo also apply a path search algorithm, but detect a
best generalized augmenting path with respect to a ratio between general-
ized reduced cost and residual capacity. The latter is important to guarantee
the running time of O(m3nlog(mB)) as an exact and O(m2nlog(mB/ε))

for an ε-approximate algorithm. Here, the actual and probably fractional op-
timal value is approximated, as opposed to our case, where we approximate
an integral optimal solution (Chapter 8).

Regarding purely combinatorial algorithms, Wayne and Tardos [112]
improved Truemper’s augmenting paths algorithm [115] to polynomial
running time. Further, they adopt Goldberg and Tarjan’s preflow-push
algorithm [54] for generalized maximum flow and also simplify the algo-
rithm of [103]. More recently, Wayne proposed the first polynomial time
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s t

a

b

µsa = 2, c(s, a) = 1 µat = 1
2, c(a, t) = 1

µsb = 1, c(s, b) = 1 µbt = 1, c(b, t) = 1

Figure 24: Two s-t-paths with identical arc cost cause different costs for sending
one unit of flow from s to t.

combinatorial algorithm for the generalized minimum cost flow problem
[119]. Previously, Fleischer and Wayne already developed fully polynomial
time approximation schemes for generalized versions of maximum flow,
minimum cost flow and multi-commodity flow problems [38]. For series-
parallel graphs, even integral generalized maximum flows can be computed
in pseudo-polynomial time [13].

7.4 modified successive shortest path algorithm

In this section we present a modified version of the Successive Shortest
Path algorithm with predefined source-sink-pairs (see Chapter 5) to solve
generalized minimum cost flow instances N

g
I , which means for our purpose

non-totalizable instances of the (DP). Note that we can also apply the
modified Successive Shortest Path algorithm on total(izable) instances to
avoid the transformation to a total instance with integral input values. In
this case - as well as for any other instance with bounded fractionality - the
modified Successive Shortest Path algorithm has pseudo-polynomial running
time as the original algorithm. For the general case, without a fractionality
bound on the flow solution, we cannot bound the running time of our
modified algorithm, as arbitrary small fractions may be augmented.

To adopt the Successive Shortest Path algorithm for generalized flow net-
works, we define ’shortest paths’ in the presence of multipliers. Figure 24

demonstrates why such a separate definition is necessary: The two possible
paths from s to t result in costs of 2 accounting only on arc costs. Yet actually
sending one unit of flow along s − a − t creates two units of flow at a, which
have to be passed on to t in order to avoid the creation of an imbalance at
node a. This accounts to total cost of 3 for one incoming unit at t. On the
other hand, sending one unit of flow along s − b − t causes total cost of 2

per incoming unit at t. Let N = (V , A) be a generalized network with cost
function c : A → R and multiplicator function µ : A → R.
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Definition 65 (Cost of Multiplier Paths) The cost of a multiplier path (m-path)
πuv = u1 . . . un from u = u1 to v = un in N per unit of flow out of u is defined
as:

c ′(πuv) =

n∑
i=2

i−1∏
j=1

µujuj+1
c(ui−1, ui).

A shortest flow multiplier path π∗uv in N is a path from u to v of minimum cost
c ′(πuv).

We show that for this definition of path cost, similar to the canonical sum
definition, the following Lemma holds:

Lemma 66 (Consistent Shortest m-Paths) Every subpath πuiuj
, 1 6 i < j 6

n of a shortest m-path π∗uv = u = u1 . . . v = un is a shortest m-path π∗uiuj
.

Proof: Let π∗uv = u = u1 . . . v = un, 1 6 i < j 6 n be a shortest m-path
and πuiuj

⊆ π∗uv be a subpath, such that a shortest m-path from ui to uk

with c ′(π∗uiuj
) < c ′(πuiuj

) exists. Then:

c ′(π∗uv) = c ′(u . . . ui−1) +

i−1∏
l=1

µl(l+1) · c ′(πuiuj
)

+

j∏
l=1

µl(l+1) · c ′(uj . . . v)

> c ′(u . . . ui−1) +

i−1∏
l=1

µl(l+1) · c ′(π∗uiuj
)

+

j∏
l=1

µl(l+1) · c ′(uj . . . v).

This contradicts the assumption that π∗uv is a shortest m-path.

We adjust Dijkstra’s algorithm to the above defined path cost introducing a
node parameter mv, which accounts for the path multiplier of the (tentative)
shortest path from s to every node v (see Algorithm 12).
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Algorithm 12 Flow Multiplier Dijkstra (m-Dijkstra)

Input: G = (V , E), s ∈ V , c : E → R>0, µ : E → R>0

Output: ∀v ∈ V : ds(v) = |π∗sv| under c, µ
1: F = {s}, F∗ = ∅, ds(s) = 0, ms = 1

2: ds(v) = ∞, mv = 1, v ∈ V \ {s}

3: while F 6= ∅ do
4: ds(u) = minv∈F{ds(v)}

5: for all v ∈ V \ F∗ : (u, v) ∈ A do
6: F = F∪ {v}

7: if ds(v) > ds(u) + mu · c(u, v) then
8: ds(v) = ds(u) + mu · c(u, v)
9: mv = mu · µuv

10: end if
11: end for
12: F = F \ {u}, F∗ = F∗ ∪ {u}

13: end while
14: return ds

Lemma 67 (Correctness of m-Dijkstra) Algorithm 12 maintains the following
invariants (over the while loop, ll. 3–13):

1. ∀v ∈ F∗ : ds(v) = c ′(πsv), mv =
∏

(u,w)∈πsv
µuw

2. ∀v ∈ V \ F∗ : ds(v) = minx∈F∗{c
′(πsx) + mx · c(x, v)}

Proof: After the initialization both invariants hold: ds(s) = c ′(πss) = 0

and ms = 1. The first pass through the while loop updates all the distances
of the source’s neighbors to ds(v) = msc(s, v), such that the second invariant
is valid. For each additional pass through the while loop, one vertex u enters
F∗. Let π∗su = s . . . vxxyvy . . . u be a shortest m-path from s to u and x the
last vertex on the path in F∗ before the current pass through the while loop,
such that x ∈ F∗, y ∈ V \ F∗. Then

c ′(π∗su) = c ′(π∗sx) + mxc(x, y) + myc ′(uj . . . v)

> ds(y) + myc ′(uj . . . v)

> ds(u).

Assuming that c ′(π∗su) is a shortest path provides equality and thus the first
invariant is guaranteed after each while loop. The second invariant is also
valid, because for every vertex v which is not a neighbor of u, the ’arc cost’
c(u, v) is set to infinity. Thus minx∈F∗c

′(πsx) + mxc(x, v) is never decreased
by c ′(πsu) + mu · c(u, v) and for all neighbors of u a possible decrease is
checked explicitly.
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The modified Dijkstra algorithm terminates after at most n while-loops
(each vertex is added to and removed from F exactly once) maintaining the
invariant of Lemma 67. All nodes v with πsv ⊆ A are in F∗ after termination
such that shortest m-paths (and their costs) are determined correctly. Due to
non-negativity of arc costs, we employed Dijkstra’s algorithm in the Succes-
sive Shortest Path algorithm and the variant given by Algorithm 2. Replacing
Dijkstra for the m-Dijkstra and taking the multipliers into account when
computing the maximum flow δ to be augmented, we obtain a generalized
variant of the Successive Shortest Path algorithm by Algorithm 13.

Algorithm 13 Flow Multiplier SSP (m-SSP)

Input: G = (V , E), c : E → R>0, u : E → R>0, b : V → R, µ : E → R>0

Output: Minimum cost flow f in G

1: ∀v ∈ V : p(v) = 0

2: ∀a = (u, v) ∈ A : f(a) = 0, cr(a) = c(a), ur(a) = u(a)

3: E = {v, b(v) > 0}, D = {v, b(v) < 0}

4: while E 6= ∅ do
5: Determine shortest m-path π∗ev and d(e, d) for e ∈ E, d ∈ D with

respect to reduced costs cr in the residual network G(f)

6: Update p(v) = p(v) − d(e, v) + d(e, d) for each permanently labeled
v ∈ V

7: δ := min{b(e), −b(d), mina=(uv)∈πed

ur(a)
mu

}

8: Augment δ units of flow along π∗ed

9: ∀a = (u, v) ∈ A :

10: f(a), cr(a) = c(a) − p(u) + p(v), ur(a) = u(a) − f(a)

11: Update G(f), E, D
12: end while
13: return f

To prove the optimality of a flow computed by Algorithm 13, we adapt
two lemmas from [2] (Lemma 9.11, 9.12):

Lemma 68 Let f be a pseudo-flow which satisfies the reduced cost-optimality
conditions with respect to some node potentials p(v)∀v ∈ V , cr(a) = cr(u, v) =

muc(u, v) − p(u) + p(v) and let ds(v) be the cost of π∗sv∀v ∈ V in the residual
network G(f). Then:

1. The pseudo-flow f also satisfies the reduced cost-optimality conditions with
respect to the node potentials p(v) ′ = p(v) − ds(v).

2. The reduced costs c ′r(a) = c ′r(u, v) = muc(u, v) − p ′(u) + p ′(v) are zero
for all arcs a ∈ π∗sv.
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Proof: We show both properties.

1. According to the assumption, reduced costs are non-negative on all
arcs (u, v) and shortest path optimality (ds(v) 6 ds(u) + cr(uv)) holds
for shortest m-paths by Lemma 66 and 67, hence:

ds(v) 6 ds(u) + muc(u, v) − p(u) + p(v)

⇔ 0 6 muc(u, v) − (p(u) − ds(u)) + (p(v) − ds(v))

⇔ 0 6 muc(u, v) − p(u) ′ + p(v) ′

⇔ 0 6 c ′r(u, v) = c ′r(a)

2. For any arc (u, v) on a shortest m-path:

ds(v) = ds(u) + cr(u, v)
⇔ ds(v) = ds(u) + muc(u, v) − p(u) + p(v)

⇔ 0 = muc(u, v) − (p(u) − ds(u)) + (p(v) − ds(v))

⇔ 0 = muc(u, v) − p(u) ′ + p(v) ′

⇔ 0 = c ′r(u, v) = c ′r(a).

Lemma 69 Let f be a (pseudo-)flow which satisfies the reduced cost-optimality
condition. We obtain f ′ from f by sending flow along a shortest m-path from node s

to some node t. Then f ′ also satisfies the reduced cost-optimality conditions.

Proof: With potentials p and p ′ and reduced costs as defined in Lemma 68,
f ′ also satisfies the reduced cost-optimality conditions with c ′r(a). Further,
for any arc a ∈ π∗sv, a reverse arc ā is added to G(f ′), but as c ′r(a) = 0 for
such a, c ′r(ā) = −c ′r(a) = 0 > 0.

Lemmas 68 and 69 show that Algorithm 13 terminates with a minimum
cost flow, after a number of augmentations. In the classical minimum cost
flow computation, the number of augmentations is pseudo-polynomially
bounded by the maximum of total supply and demand, as the minimum δ

is at least 1 in each iteration. For instances whose solutions are known to be
of bounded fractionality β, the number of iterations increases by the factor
β in the worst case. However, the running time stays pseudo-polynomial.





8
A P P R O X I M AT I O N S F O R A P P L I C AT I O N I N S TA N C E S

As shown in Chapter 4 obtaining a feasible distribution for practical (DP)
instances is NP-complete. Therefore, we have to find a compromise between
running time and solution quality in practice. In this chapter, we obtain
integral assignments by rounding a given half-integral minimum cost flow
f in N

g
I , which can be computed in polynomial time (see Chapter 7).

The first approach only rounds strictly half-integral flows and results in a
pseudo-flow with the same cost c(f) as the half-integral flow f. The derived
distribution is not always formally feasible, hence no approximation in the
classical sense. Yet, the constraint violations are small and distinct and may
be acceptable in practice as they can be seen as upgrades on single cars
of a number of demands. We formally show that the result is an optimal
0.5-upgraded distribution (Definition 32) for instances from the application.

In a second approach, we extend rounding (or change) of flow to arcs a

with integral flow f(a). With two additional assumptions on the instances,
we obtain a classical 4-approximation to the (DP).

Both ideas are combined in practice to an iterative heuristic. The resulting
distribution is feasible for application instances without presumptions, but
we cannot guarantee a constant approximation factor with respect to the
cost. We study the performance of the heuristic on application data in
Appendix A.1.

In the following Section 8.1 we consider the associated network N
g
I of a

totalizable 2-heterogeneous instance I and a given half-integral minimum
cost flow f in N

g
I . We then investigate properties of strictly half-integral

flows f(a) on transit arcs a. In Section 8.2 we partition such transit arcs
in paths and/or cycles, which are the basis for the upgraded distribution
presented in Section 8.3. In Section 8.4 some paths are extended to cycles
before rounding, which results in a 4-approximation to the heterogeneous
(DP).

8.1 definitions and idea

Let I = {S, D, O, B, T, S, O, I, F, B} be a totalizable 2-heterogeneous instance
of the (DP) from the application (see Section 7.2.3). With respect to the appro-
ximation analysis, we assume that all supplies si ∈ S are of type tx or ty and
all demands dj ∈ D are of type tx, ty or tz. Type tz is an artificial car type to
allow demands for cars of type tx or ty without specifying the exact type (see
Section 2.3). Then assuming S = S|xyz = {(tx, tx), (ty, ty), (2tx, tz), (ty, tz)}

105
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poses no additional restriction. We also assume for the moment that no
supplies have foreign wagon keepers, all demands share the same strong
priority, have domestic destinations (of the loaded run) and B = B = ∅ to
simplify the analysis. Further, the car types tx, ty and tz are allowed for all
operative storage o ∈ O.

Let N
g
I = (V , A) be the associated generalized network to I as in Defini-

tion 51. Further, let VS ⊂ V (VD ⊂ V) denote the set of supply (demand)
nodes and Vx, Vy, Vz ⊆ V denote the sets of supply or demand nodes with
associated type tx, ty and tz respectively. (Note that VS ∩Vz = ∅.) Let T = AT

denote the set of transit arcs and Tall denote the set of possible transit arcs,
if each supply allowed for a demand is also in time for that demand.

We assume f to be a half-integral minimum cost flow in N
g
I . Such a flow

can be computed in polynomial time as described in Chapters 5 and 7. For
the further analysis we assume a preliminary maximum flow computation
and an adjustment of the balance at the sink t (which is unique due to the
single level of strong priority occurring in I) has been carried out, such that
f is a feasible flow with |f| = −b(t) =

∑
a=(i,j)∈T v(ti, tj)f(a). The basic idea

of our algorithms is to round the strictly half-integral flows of f to a feasible
integral flow from which we derive a distribution with certain properties.

Definition 70 (Subflow f ′) For all a = (i, j) ∈ T let f ′(a) be defined as follows
(with n ∈ N):

f ′(a) =



f(a) − n, for f(a) = 2n+1
2

f(a) − n, for f(a) = n, i ∈ Vy

f(a) − n, for f(a) = n, i ∈ Vx, j ∈ Vx

f(a) − 2n, for f(a) ∈ {2n, 2n + 1}, i ∈ Vx, j ∈ Vz

For a = (s, i) ∈ A \ T let f ′(a) =
∑

a ′=(i,j)∈T f ′(a ′) and for a = (j, t) ∈ A \ T let
f ′(a) =

∑
a ′=(i,j)∈T µ(a ′)f ′(a ′).

Observe that f ′(a) = 1
2 only possibly occurs on arcs a = (i, j) with

i ∈ Vy and j ∈ Vy ∪ Vz by the construction we applied to prove bounded
fractionality β = 2 for application instances. In words, flow f ′ reduces the
flow on arcs with strictly half-integral flow f to one half and sets flow on
almost all other transit arcs to zero. An exception are the arcs a = (i, j) with
ti = tx and tj = tz. If f(a) is odd, then f ′(a) is reduced to one and this
unit flow represents a car which will be rerouted later in the approximation
approach to obtain feasibility.

Our further considerations mainly concern such arcs a ∈ T (with strictly
half-integral flow f(a)), which lead to infeasible assignments in a derived
distribution Df. We extend f ′ to arcs a ∈ A \ T to argue feasibility (or limit
infeasibility) of the rounded flow. The following Definition 71 groups arcs
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and nodes due to their associated flows f ′ and those of their incident arcs
respectively.

Definition 71 (Arc and Node Sets) Let the arc sets T1, T2, T̃1, T̃2 and the node
sets V1, V2 be defined as follows:

• T1 = {a ∈ A|f ′(a) > 0}

• T2 = {a ∈ T1|f ′(a) < 1}

• T̃1 = {ã = (v, u)|a = (u, v) ∈ T1}

• T̃2 = {ã = (v, u)|a = (u, v) ∈ T2}

• V1 = {u, v ∈ V |(u, v) ∈ T1}

• V2 = {u, v ∈ V |(u, v) ∈ T2}

Rounding f ′ in a naive way can easily cause a violation of capacity bounds
on the arcs (s, i) and (j, t) and/or violate flow conservation, especially if we
round greedily on behalf of costs. As an example, consider the following
rounding heuristic in Algorithm 14 which temporarily allows arc capacities
u(j, t) to be violated by 1. The heuristic can always be applied to a half-
integral solution until there are only integral flows, because in each iteration,
at least two half-integral flows are rounded to an integral pseudo-flow.
Hence, the running time is bounded in the worst case by O(mt) ∈ O(m)

with mt the number of transit arcs with strictly half-integral flow and
m = |A|.

The arc capacities on arcs (j, t) may remain violated by at most 1. In
terms of distribution, this situation corresponds to sending one more freight
car than demanded by dj to a customer, which means dj is oversatisfied.
Moreover, flow conservation can be violated when excess b ′(i) > 0 is created
at a supply node i. A derived distribution is then infeasible, as not all supply
at si is assigned. This can happen if half-integral flows on transit arcs (i, j),
which are rounded down, have no counterpart (i, j ′) to be rounded up. Note
that in this case the number of outgoing arcs of i with strictly half-integral
flow would not be even. On the other hand Algorithm 14 can simply fail to
round properly, in case b ′(i) is increased. We see that the latter is true. Let
d2(v) = |{a = (u, v)|a ∈ T2 ∪ T̃2}|, v ∈ V2 be the degree of v with respect to T2.

Lemma 72 (Even Supply Degree) The degree d2(i) is even for all i ∈ VS ∩ V2.

Proof: For all i ∈ VS is f(s, i) =
∑

a=(i,j)∈T f(a) = ni as f is a feasible flow
in N

g
I . Since ni is integral the number of strictly half-integral flows f(i, j)

must be even. Further, with Definitions 70 and 71, each such arc (i, j) is in
T2, hence d2(i) is even.
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Lemma 72 shows that Algorithm 14 fails to round properly when creating
excess b ′(i) > 0 at supply nodes i. In the following we develop a rounding
procedure which rounds locally feasible with respect to flow conservation
instead of greedily minimizing cost. At each supply node in V2, as many
strictly half-integral flows on incident arcs are rounded up as are rounded
down. At each demand node the same is done, if possible.

Algorithm 14 Rounding Heuristic

Input: V2, T2, f
Output: Integral f

1: F = T2,∀i ∈ VS : b ′(i) = 0

2: while F 6= ∅ do
3: Choose a = (i, j) ∈ F with c(a) = mina ′∈Fc(a

′)
4: if

∑
i ′ µ(i ′, j)f(i ′, j) + µ(i, j)(f(i, j) + 1

2) 6 u(j, t) + 1 then
5: Round f(a) up, F = F \ {a}

6: if ∃a = (i, j ′) ∈ F then
7: Choose a = (i, j ′) ∈ F with c(a) = maxa ′∈Fc(a

′)
8: Round f(a) down, F = F \ {a}

9: end if
10: else
11: Round f(a) down, F = F \ {a}

12: if ∃a = (i, j ′) ∈ F then
13: Choose a = (i, j ′) ∈ F with c(a) = mina ′∈Fc(a

′)
14: Round f(a) up, F = F \ {a}

15: else
16: b ′(i) = b ′(i) + 1

17: end if
18: end if
19: end while
20: Adjust f(j, t) according to flow conservation constraints.

If we interpret ’round up flow on arc (i, j)’ as ’enter node j’ and ’round
down flow on arc (i ′, j)’ as ’leave node j’, then we can round globally
feasible, if all arcs a ∈ T2 compose a cycle (disregarding arc directions) for
each component in N

g
I . In other words, we can round globally feasible if

the undirected, bipartite graph G2 = (V2, {(u, v)|(u, v) ∈ T2 ∪ T̃2}) is Eulerian
[35]. Graph G2 being Eulerian would imply that and we could show an
analogous result as in Lemma 72 for demand nodes j ∈ VD ∩ V2 as well.

This is not true for every instance of the (DP), as the following example
shows. Consider I with unit supplies S = {s1, s2, s3} and unit demands
D = {d4, d5} of type tz, such that s1, t1 = tx matches d4, s2, t2 = ty matches
d4, d5 and s3, t3 = tx matches d5. Then Figure 25 shows the corresponding
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Figure 25: Network N
g
I for a small application instance with single feasible flow

(numbers in brackets): For all j ∈ VD ∩ V2 the degree d2(j) with respect
to T2 is odd.

Network N
g
I and the only feasible flow (numbers in brackets), which is

strictly half-integral on arcs (2, 4) and (2, 5). Hence T2 = {(2, 4), (2, 5)}, V2 =

{2, 4, 5} and d2(j) is odd for each j ∈ VD ∩ V2.

8.2 covering arcs by cycles and paths

Algorithm 15 Cover Construction

Input: T2, T̃2, V2, Vodd

Output: CO covers T2

1: CO = ∅
2: while Vodd 6= ∅ do
3: Chose j ∈ Vodd.
4: p = ∅, v = j

5: repeat
6: Chose a = (u, v), u ∈ VS ∩ V2, a ∈ T2

7: p = p∪ {ã},
8: T2 \ {a}, T̃2 \ {ã}

9: Chose a = (u, w), w ∈ VD ∩ V2, a ∈ T2

10: p = p∪ {a},
11: T2 \ {a}, T̃2 \ {ã}

12: v = w

13: until w ∈ Vodd

14: CO = CO∪ p

15: if j 6= w then
16: Vodd = Vodd \ {j, w}

17: end if
18: end while
19: Cover the remaining arcs a ∈ T2 by cycles c ∈ C.
20: CO = CO∪C.
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We saw in the previous section, that d2(j) may be odd for demand nodes
j ∈ VD ∩ V2. Let Vodd = {j ∈ VD|d2(v) = 2n + 1, n ∈ N}. Further, let B be a
set of arcs, B̃ = {ã = (v, u)|a = (u, v) ∈ B}, C ⊆ B∪ B̃. Then C is said to be
covering an arc a and arc a = (u, v) ∈ C is said to be covered by C, if either
a ∈ C or ã ∈ C. The set C is a cover of B. By definition T2 is a (special) T-join
in N

g
I viewed undirected for terminal set T = Vodd and for Vodd = ∅ the

T-join coincides with a cover by Eulerian cycles. On the other hand, not each
T-join on T = Vodd provides a cover for T2. By Algorithm 15 we obtain such
a cover of T2 consisting of cycles and paths between nodes of Vodd, as we
show in Lemma 73.

Lemma 73 (Cover of T2) The set CO as determined by Algorithm 15 covers T2

by 1
2 |Vodd| paths and a number of cycles in N2.

Proof: A single path p(j, j ′) (or cycle through j = j ′) can obviously be
constructed by Algorithm 15: The algorithm chooses v ∈ Vodd arbitrarily and
subsequently enlarges p by arcs from T2 ∪ T̃2. Arc a = (u, v), u ∈ VS, a ∈ T2

exists because v ∈ Vodd. Then there is also ã ∈ T̃2, which is included in
p (and deleted from T̃2 as well as a from T2). By Lemma 72, we know
that d2(u) is even and d2(u) > 0 because of a. Consequently there is
a ′ = (u, w) ∈ T2. Again a ′ is included in p(j, j ′) (and deleted from T2 as
well as ã ′ from T̃2). For w ∈ VD ∩V2 we distinguish two cases. Let w ∈ Vodd.
Then we found p = p(v = j, j ′ = w). Let w /∈ Vodd. Then d2(w) is even and
we can proceed enlarging p as done by Algorithm 15 with v = w. (Note that
during further iterations, we can also encounter the case that p = c, a cycle
through j = w.)

Apart from j and j ′, after the construction of p(j, j ′) the values d2(v) of all
vertices in v ∈ p are reduced by exactly 2. The values d2(j) and d2(j

′) with
respect to the remaining arc set is reduced by 1 in case of a path. Thus their
degree is now also even and they are removed from Vodd. In case of a cycle,
the degree of v = v ′ stays odd and the node is not deleted from Vodd. Hence
all parity arguments hold for the creation of a subsequent set p ′.

Further, either |Vodd| is reduced by 2 vertices (path case), or at least d2(v)

of a vertex v = v ′ ∈ Vodd is reduced by 2 (cycle case). Iterating the latter
case leaves all nodes in v ∈ Vodd with d2(v) = 1 and no cycle containing v

can occur any more during path construction. The while-loop terminates
with Vodd = ∅ after construction of 1

2 |Vodd| paths, as each path has exactly
start and end point in Vodd. Then d2(v) is even in the remainder of the arc
set T2 for all vertices v ∈ V2. Hence, the remaining graph N2 (or each of its
components) is Eulerian and can be covered (each) by a cycle efficiently.

As for each arc a (ã), which is included in a path or cycle, both arcs a and
ã are removed from the arc set, the union of all path and cycles CO covers
T2 and each vertex v ∈ V2 lies on one or more paths and/or cycles in CO.
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Algorithm 15 picks each arc from T2 or its reverse ã ∈ T̃2 once during
path construction or in the cycle cover. Choosing the appropriate arc can
be done in constant time with adjacency lists (the first arc in the list always
suffices). The administration of vertex and arc sets can also be done in
constant time. Hence, Algorithm 15 needs running time O(mt) ∈ O(m).

Consider the paths p = p(v, v ′) ⊆ CO, v, v ′ ∈ Vodd and cycles c ⊆ CO. By
construction they alternately contain arcs a ∈ T2 and ã ∈ T̃2. Our strategy
will be to round flow up on arcs a ∈ c, p and down on arcs for which ã ∈ p, c
or vice versa. Since N2 is bipartite, paths p(v, v ′) and cycles constructed by
Algorithm 15 are of even length. Thereby we round the same amount of
flow up and down on each path or cycle. Especially for each node of a cycle
and each inner node of a path, the same amount of flow on incident arcs is
rounded up and down. This will be an important argument throughout this
chapter:

Corollary 74 (Balanced Cover of T2) All paths p = p(v, v ′) ⊆ CO, v, v ′ ∈
Vodd and cycles c ⊆ CO are of even length and alternately consist of arcs a ∈ T2

and ã ∈ T̃2, such that: |T2 ∩ p| = |T̃2 ∩ p| and |T2 ∩ c| = |T̃2 ∩ c| respectively.

8.3 rounding the cycle- and path-cover

Algorithm 16 Rounding the Cycle- and Path-Cover

Input: f, f ′, T2, T̃2, V2, Vodd, CO

Output: Integral f∗ = f − f ′ + f ′′ ∈ N

1: for all a ∈ T2 do
2: if a ∈ CO then
3: f ′′(a) = 1

4: end if
5: if ã ∈ CO then
6: f ′′(a) = 0

7: end if
8: end for
9: for all a ∈ T \ T2 do

10: f ′′(a) = f ′(a)

11: end for
12: for all a = (s, u) ∈ A do
13: f ′′(a) =

∑
(i,j)∈T f ′′(a)

14: end for
15: for all a = (v, t) ∈ A do
16: f ′′(a) =

∑
(i,j)∈T v(ti, tj)f

′′(a)

17: end for
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Given CO as determined by Algorithm 15, we round the strictly half-
integral flows f(a) on transit arcs a ∈ T as follows. Let f ′′ be as determined
by Algorithm 16. Then we round f to f∗ by setting f∗(a) = f(a) − f ′(a) +

f ′′(a) for all a ∈ A. Note that f∗ remains equal to f on all transit arcs
a ∈ T \ T2. Further, f∗ is integral on all transit arcs as intended, which we
show in Lemma 75. Possibly f∗ is not a feasible flow in N

g
I and consequently

a derived distribution D∗ is not guaranteed to be feasible even if it is
integral. We therefore investigate the properties of f∗ as a pseudo-flow with
respect to flow conservation and capacity constraints by Lemmas 76 and
77. In Theorem 81 we conclude that we can derive a 0.5-upgraded optimal
distribution with respect to I from f∗.

Lemma 75 (Integrality) The rounded flow f∗ is integral for all a ∈ T .

Proof: For each arc with strictly half-integral flow a ∈ T2, f ′(a) = 1
2 and

for all other arcs f ′(a) ∈ {0, 1}, such that f(a) − f ′(a) ∈ N for all arcs a ∈ T .
Further Algorithm 15 chooses f ′′(a) from {0, 1} for each a ∈ T2, as CO covers
T2. For all other arcs f ′′(a) = f ′(a) ∈ N is set. Hence, f∗(a) is integral for all
arcs a ∈ T .

We speak of ’rounding flow up (down) on a ∈ T2’, if f∗(a) = f(a) −
1
2 + 1 (f∗(a) = f(a) − 1

2 + 0). By Lemma 75, all assignments of a derived
distribution from f∗ are integral, as we intended. Feasibility of D∗ also
requires f∗ to be feasible. Firstly, we show that f∗ preserves flow conservation
for all nodes.

Lemma 76 (Flow Conservation) The rounded flow f∗ preserves flow conserva-
tion for all v ∈ V .

Proof: The flow f is feasible in N
g
I and thus preserves flow conservation.

Let v = i ∈ VS (v = j ∈ VD). Then (s, i) ((j, t)) is the only incoming (outgoing)
arc of i (j). By Definition 70 f ′(s, i) (f ′(j, t)) is the (weighted) sum of f ′(i, j)
on all outgoing (incoming) arcs of i (j). Algorithm 16 sets f ′′(s, i) and f ′′(j, t)
analogously. Thus f∗ preserves flow conservation for all nodes v ∈ VS ∪ VD,
as b(v) = 0.

Let v = s. Then v has no incoming arcs and the outgoing arcs are (s, i)
with f∗(s, i) =

∑
(i,j)∈A f∗(i, j), as seen before. Further, each i ∈ VS only

occurs on cycles c ∈ CO or as an inner node on paths p ∈ CO. By Corollary
74 as many flows on incident arcs (i, j) are rounded up as are rounded down
by Algorithm 16 and thus

∑
(i,j)∈A f∗(i, j) =

∑
(i,j)∈A f(i, j). Consequently

f∗(s, i) = f(s, i) for each (s, i) ∈ A and since f is feasible,
∑

(i,j)∈A f(i, j) =

b(s).
Let v = t. Then v has no outgoing arcs and the incoming arcs (j, t)

with f∗(j, t) =
∑

(i,j)∈A µ(i, j)f∗(i, j), as seen before. Each j ∈ VD \ Vodd
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only occurs on cycles c ∈ CO or as an inner node on paths p ∈ CO. By
Corollary 74 as many flows on incident arcs (i, j) are rounded up as are
rounded down by Algorithm 16. Moreover, (i, j), (i, j ′) ∈ T2 and all arcs in
T2 start in VS ∩Vy and end in VD ∩ (Vy ∪Vz), such that µ(i, j) = µ(i, j ′) given
the relative valencies. Hence,

∑
(i,j)∈A v(ti, tj)f

∗(i, j) =
∑

(i,j)∈A v(ti, tj)f(i, j).
Each j ∈ Vodd occurs as an endpoint of some path p(j, j ′) ∈ CO. Thus there is
an arc (i, j) with f∗(i, j) = f(i, j) − 1

2 resulting in f∗(j, t) = f(j, t) − 1
2 for each

arc (i, j ′) with f∗(i, j ′) = f(i, j ′) + 1
2 resulting in f∗(j, t) = f(j, t) + 1

2 or vice
versa. Again with µ(i, j) = µ(i, j ′) it holds

∑
(j,t)∈A f∗(j, t) =

∑
(j,t)∈A f(j, t)

and since f is feasible,
∑

(j,t)∈A f(j, t) = −b(t).

However, f∗ may violate capacity constraints in the following restricted
way.

Lemma 77 (Bounded Capacity Violation) For all a ∈ A : f∗(a) 6 u(a) + 1
2 .

Proof: The flow is actually rounded on arcs T2 ⊆ T with u(a) = ∞,
such that no direct capacity violation occurs. The extension of f∗ to arcs
(s, i), (j, t) ∈ A \ T is determined by the flow conservation constraints for
the incident supply and demand nodes i, j. By Corollary 74, all nodes
v 6= s 6= t ∈ V \ Vodd are incident to the same number of arcs a ∈ CO

and ã ∈ CO, such that the same amount of flow out of v (for v ∈ VS) or
into v (for v ∈ VD) is rounded up and down respectively. Consequently
flows on the arcs (s, v) or (v, t) respectively are not changed and no capacity
violation occurs. (Note that strictly half-integral and therefore rounded
flows only occur on arcs (i, j), with ti = ty and tj ∈ {ty, tz}. Therefore
µ(i, j) = v(ty, ty) = v(ty, tz) and the latter also holds for arcs (v, t).)

For each node j ∈ Vodd ⊆ VD, exactly one path p ∈ CO starts or ends
in j with edge e = (i, j) or ẽ = (j, i). If f(e) is rounded down, no capacity
violation occurs. Otherwise, if already f(j, t) = u(j, t) and f(e) is rounded
up to f∗(e) = f(e) + 1

2 , then the capacity u(j, t) is violated. (Note that f∗(e)

always stays feasible if f(j, t) < u(j, t) due to integrality of u and half-
integrality of f.) As e ∈ T2, f(e) was strictly half-integral and i ∈ Vy. Hence
with v(ty) = 1, f∗(j, t) 6 u(j, t) + 1

2 .

By Lemma 77, the flow f∗ generally keeps the capacity constraints, apart
from some arcs (j, t) on which the capacity is violated by exactly 1

2 . We can
further specify such nodes j ∈ VD with capacity violation on arc (j, t):

Lemma 78 (Property of oversatisfied Demands) f∗(j, t) = u(j, t) + 1
2 ⇒ j ∈

Vodd ∩ Vz

Proof: Let j be a demand node with f∗(j, t) = u(j, t) + 1
2 . Since j ∈ Vodd, j

has an odd number of incident arcs (i, j) with strictly half-integral flow f(i, j).
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As f is feasible f(j, t) =
∑

(i,j)∈T µ(i, j)f(i, j) holds and f(j, t) = u(j, t) ∈ N

by Lemma 77. Consequently there must be an arc (i ′, j) with f(i ′, j) =

2k + 1, k ∈ N and µ(i ′, j) = 1
2 . Given µ(i, j) = v(ti, tj) and the valencies

v(ty) = v(ty, ty) = v(ty, tz) = 1, v(tx, tz) = 1
2 it must hold i ′ ∈ Vx. Since

half-integral flow only occurs on arcs incident to j ∈ Vy ∪Vz and by network
construction j ∈ Vz.

From Lemma 76 and 77, we see that f∗ is a pseudo-flow only with respect
to capacity violation on 1

2 |Vodd| arcs (j, t) ∈ A by 1
2 . Thus D∗ is strictly

speaking not yet feasible.
The cost c(f∗) are at most twice the cost of f due to the half-integrality

of f. In fact, we can do better in terms of costs: If we chose the arcs which
are rounded up or down in Algorithm 16 more carefully, we can show that
the cost for the rounded solution do not increase with respect to the given
half-integral solution. So far, a flow f(a) is rounded up if a ∈ p or a ∈ c for
some path p ⊆ CO or cycle c ⊆ CO. An arc is rounded down if the same
is true for ã. Note that Corollary 74 also holds if the roles of a and ã are
exchanged. Hence, we can specify to round f(a) up either if a ∈ p or if
ã ∈ p individually for each path and cycle in CO. We abbreviate this as the
’choice of rounding direction’ as d(p) = a (d(c) = a) or d(p) = ã (d(c) = ã).

Let ca(p) denote the cost of the rounded flow with respect to arcs covered
by p if its rounding direction is d(p) = a and c̃a(p) if its rounding direction
is d(p) = ã. Then as a subroutine in Algorithm 16, we compute ca(p) and
c̃a(p) for each p ⊆ CO. We individually determine the rounding direction
such that the resulting cost c∗(p) for each path p is the minimum of both.
Cycles are treated analogously. Note that the running time of Algorithm 16

is still linear in m. Let f∗(a) resulting from f ′′(a) be determined according
to the chosen rounding direction of p.

Lemma 79 (Path Cost) The costs c∗(p) of p with respect to the rounded flow f∗

do not exceed the cost c(p) =
∑

a∈p c(a)f(a) +
∑

ã∈p c(a)f(a) of p with respect
to the original flow f.

Proof: The cost c∗(p) can be rewritten as

c∗(p) = c(p)

−
∑
ã∈p

c(a)f ′(a) +
∑
a∈p

c(a)f ′(a)

+
∑
ã∈p

c(a)f ′′(a) +
∑
a∈p

c(a)f ′′(a)

Thus is suffices to show that f ′(a) causes more cost reduction than f ′′(a)

causes cost increase. As a ∈ p or ã ∈ p imply a ∈ T2 by definition f ′(a) = 1
2

holds. Further by (modified) Algorithm 16 either
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•
∑

ã∈p c(a)f ′′(a) = 0 and

•
∑

a∈p c(a)f ′′(a) = 2
∑

a∈p c(a)f(a) ′ =
∑

a∈p c(a)

or vice versa. W.l.o.g. we consider the former case, then it follows directly
from the choice of rounding direction that:∑

ã∈p

c(a)f ′(a) +
∑
a∈p

c(a)f ′(a) =
1

2

∑
ã∈p

c(a) +
1

2

∑
a∈p

c(a) >

∑
a∈p

c(a) =
∑
ã∈p

c(a)f ′′(a) +
∑
a∈p

c(a)f ′′(a).

Lemma 79 also holds for cycles c ∈ CO. As f and f∗ only differ on arcs
T2, which are partitioned into the paths and cycles of CO, it follows:

Corollary 80 (General Cost) c(f∗) 6 c(f).

So far, we investigated properties of f∗. Besides the derived distribution
D∗, let D be the derived distribution of f(N

g
i ).

Theorem 81 (Optimal 0.5-upgraded Distribution) The distribution D∗ is an
optimal 0.5-upgraded distribution for I with at most 0.5|Vodd| demands oversatisfied
by 0.5 cars.

Proof: By construction of N
g
I , for each δ∗ij ∈ D∗ holds si ∈ S∗ = S,

dj ∈ D∗ = D and si matches dj. By Lemma 75 it holds n∗ij = f∗(i, j) ∈ N.
By Lemma 76, also n∗ij 6 ni. Further, by Lemma 77, it holds n∗ij 6 nj, as
n∗ij ∈ N. Hence δ∗ij is feasible.

Further, by Lemma 76, we obtain
∑

δ∗ij
nij = ni. By Lemma 77, the flow

f∗ violates the capacity of at most 0.5|Vodd| arcs (j, t) by 0.5, such that D∗

oversatisfies at most 0.5|Vodd| demands dj by 0.5 cars. By Lemma 78 each
oversatisfied demand dj has type tz and we can downgrade a single car of
type ty to type tx. Given v(ty, tz) = 1 and v(tx, tz) = 1

2 , D∗ is feasible for I

after the appropriate downgrades.
Moreover c(D∗) 6 c(D) by Lemma 79 and D∗ is an optimal 0.5-upgraded

distribution for I.

8.4 extending paths to cycles

In the previous sections we saw that rounding strictly half-integral flows
alternately up and down along cycles is preferable to doing so along paths.
Yet, we cannot cover T2 with cycles only, if d2(v) is not even for all v ∈ V2.



116 approximations for application instances

We so far only considered changes to the flow on arcs in T2, which is not
obligate. In this section we want to extend paths p ∈ CO as computed by
Algorithm 16 to cycles using arcs from T1 ∪ T̃1 and eventually T \ (T1 ∪ T2).
The flow f ′(a) on arcs a ∈ T1 is either 1

2 or 1. In the latter case ’rounding
up’ means set f ′′(a) = 2 and ’rounding down’ means set f ′′(a) = 0. The
extension of p ∈ CO to a cycle is not always possible. To obtain a feasible
rounded flow f∗ we do not need to extend all paths, but only those on which
rounding with appropriate rounding direction leads to a capacity violation.

In Section 8.3, the rounding direction was chosen to minimize the cost
of the rounded flow. With respect to the feasibility of f∗ this is not the best
option. Instead, we chose the rounding direction of a path p(j, j ′) ∈ CO in
Algorithm 16 such that neither u(j, t) nor u(j ′, t) are violated, if possible.
Note that by Lemma 78 we know that j, j ′ ∈ Vz if the latter is impossible and
a capacity violation occurs on either (j, t) or (j ′, t). In this case, we want to
extend p(j, j ′) to a cycle. One way to ensure that this is possible is to assume
T = Tall. Let j 6= j ′ ∈ Vodd and p = p(j, j ′) ⊆ CO, such that rounding the
arcs covered by p in either rounding direction leads to capacity violation.
Let w.l.o.g. f∗(j, t) = u(j, t) + 1

2 .

Lemma 82 (Path Extension) There exist two arcs a = (i, j), a ′ = (i, j ′) such
that p = p(j, j ′)∪ {ã, a ′} is a cycle cp ⊆ T .

Proof: By Lemma 78 we know that j ∈ Vz and there is an arc (i, j) with
f(i, j) = 2k + 1, k ∈ N and i ∈ Vx. Hence a = (i, j) ∈ T1 and ã = (j, i) ∈ T̃1.
Since we assume T = Tall and j ′ ∈ Vz by Lemma 78 as otherwise the choice
of rounding direction for p(j, j ′) would be different, there is also an arc
a ′ = (i, j ′) ∈ T .

The assumption T = Tall is rather strong. Lemma 82 for example also
holds, if we assume T to contain all arcs (i, j) for which si with ti = tx is
allowed for dj with tz. To further weaken the assumption, we need to specify
or predefine the pairs of nodes j, j ′ ∈ Vodd, for which extensions of paths
p(j, j ′) are needed. Any predefinition of such pairs in our approach leads to
a constrained matching problem, which is therefore addressed separately in
Chapter 9.

Algorithm 17 uses the extension of paths in the CO to cycles. The resulting
additional change of flow on arcs a, a ′ can be interpreted as reassignment
of single cars of type tx with respect to D and D∗. Let f ′′ be as determined
by Algorithm 17 and f ′, f∗ be defined as before. Note that f∗ is still integral
on arcs a ∈ T as the additional changes of flow on arcs a ∈ T \ T2 with
f(a) ∈ N are integral.

Lemma 83 (Feasible rounded Flow f∗) The rounded flow f∗ is a feasible flow
in N

g
I .



8.4 extending paths to cycles 117

Proof: The flow is actually rounded on arcs a ∈ T with u(a) = ∞,
such that no direct capacity violation occurs. The extension of f∗ on arcs
(s, i), (j, t) ∈ A \ T is determined by the flow conservation constraints for
the incident supply and demand nodes i, j. For all nodes v 6= s 6= t /∈ Vodd,
each path p ∈ CO or cycle c ∈ CO which passes v enters and leaves the
node the same number of times. Hence, the same number of arcs a ∈ CO

and ã ∈ CO are incident to v and the same amount of flow out of or into
v is rounded up and down respectively. Consequently flows on the arcs
(s, v) or (v, t) respectively are not changed and no capacity violation occurs.
For each node j ∈ Vodd ⊆ VD, exactly one path p ∈ CO starts or ends in
j with edge e = (i, j) or ẽ = (j, i). If f(e) is rounded down, no capacity
violation occurs. Otherwise, if already f(j, t) = u(j, t) and f(e) is rounded
up to f∗(e) = f(e) + 1

2 , u(j, t) is violated.
In this case p is extended to a cycle by (j, i) and (i, j ′). Further, f∗(i, j) =

f(i, j) − 1 and f∗(i, j ′) = f(i, j ′) + 1. Hence, given i ∈ Vx and the valency
v(tx, tz) = 1

2 , f∗(j, t) is reduced by 1
2 to u(j, t) and no longer violates the

arc capacity. For i neither flow conservation nor capacity constraints (on
(s, i)) are violated. Finally f∗(i, j ′) is increased by 1

2 . This cannot violate the
capacity u(j ′, t) as f was feasible and f∗(j ′, t) was primarily set to f(j ′, t) − 1

2

due to the rounding direction of p. Hence, f∗ obeys the capacity constraints.
By the above arguments, also flow conservation holds for nodes v ∈ VS ∪VD.
Since f∗(s, i) = f(s, i) for all i ∈ VS (and f(s, i) = u(s, i) as f is feasible)
flow conservation also holds for s. With respect to t, f∗(j, t) = f(j, t) for all
j ∈ VD \ Vodd. On the other hand, for each j ∈ Vodd f∗(j, t) ∈ {f(j, t), f(j, t) −
1
2 , f(j, t) + 1

2 }. Let j ∈ Vodd with f∗(j, t) = f(j, t) − 1
2 , then there is j ′ ∈ Vodd

and p(j, j ′) ∈ CO, such that f∗(j, t) = f(j, t) + 1
2 and vice versa.

With respect to the cost of f∗, there are two differences to the flow as
rounded by Algorithm 16: On the one hand, we do not chose the rounding
direction of paths and cycles in CO appropriate to minimize the cost c∗(p)

and c∗(c) any longer. Hence, those costs can be twice as large as the cost
with respect to f due to half-integrality.

On the other hand, c(f) and c(f∗) no longer only differ in such cost
charged to paths and cycles. Algorithm 17 also increases flow on arcs
a ∈ T \ (T2 ∪ T1) for which possibly f(a) = 0. In this case, c(f) and c(f∗)
are not comparable. Therefore, we assume the cost c(i, j) (= c(j, i)) on arcs
(i, j) to obey the triangle inequality c(u, v) 6 c(u, w) + c(w, v). This is a
reasonable assumption on the (local) transport cost, but can be obscured for
example by weak priority terms in the application.

Let cp be a cycle extending p ∈ CO by ẽ ∈ T̃1 and e ′ ∈ T , c∗(cp) =

c∗(p) − c(e) + c(e ′) its cost with respect to the rounded flow f∗ and c(p) as
before.
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Algorithm 17 Rounding the Cycle Cover

Input: T1, T̃1, T2, T̃2, V1, V2, Vodd, f, CO

Output: f∗ = f − f ′ + f ′′ is an integral, feasible flow in N
g
I

1: for all p ⊆ CO do
2: Choose rounding direction d(p) ∈ {1, 0}.
3: end for
4: for all a ∈ T2 do
5: if a ∈ p ⊂ CO then
6: f ′′(a) = d(p)

7: else
8: f ′′(a) = 1 − d(p)

9: end if
10: end for
11: for all a = (s, i) ∈ A \ T do
12: f ′′(a) =

∑
(i,j)∈T f ′′(a)

13: end for
14: for all a = (j, t) ∈ A \ T do
15: f ′′(a) =

∑
(i,j)∈T m(i, j)f ′′(a)

16: if f(j, t) > u(j, t) then
17: Extend p(j, j ′) to cycle by (i, j), (j ′, i).
18: f ′′(a) = f ′′(a) − 1

2

19: end if
20: end for
21: for all a ∈ T \ T2 do
22: if a ∈ CO then
23: f ′′(a) = f ′(a) + d(p)

24: else
25: if ã ∈ CO then
26: f ′′(a) = f ′(a) − d(p)

27: else
28: f ′′(a) = f ′(a)

29: end if
30: end if
31: end for
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Lemma 84 (Extended Path Cost) The costs c∗(cp) are at most four times the
cost c(p).

Proof: We can rewrite the cost c∗(cp) as follows:

c∗(cp) = c(p)

−

∑
ã∈p

c(a)f ′(a) +
∑
a∈p

c(a)f ′(a)


+

∑
ã∈p

c(a)f ′′(a) +
∑
a∈p

c(a)f ′′(a)


+ c(e ′) − c(e)

Ignoring the negative terms, we have c∗(p) 6 2c(p) + c(e ′) as f(a) is at least
1
2 on each a ∈ p. Further, due to the triangle inequality c(e ′) 6

∑
a∈p c(a) 6

2c(p), as c(p) possibly only accounts for f(a) = 1
2 again on each arc a.

Hence, we have c∗(p) 6 4c(p).

The flow f∗ only differs from f on arcs covered by CO and the additional
arcs e, e ′ for the path extensions. As before, the different costs can be
charged uniquely to the (extended) paths and cycles, such that we obtain
the following corollary by Lemma 84:

Corollary 85 (Bounded General Cost) c(f∗) 6 4c(f)

Let D be the derived distribution of the minimum cost flow f = f(N
g
I )

and D∗ be the derived distribution of f∗.

Theorem 86 (4-approximate Distribution) The distribution D∗ is a 4-approxi-
mation to the optimal distribution for I.

Proof: By Lemma 83 f∗ is a feasible flow. Hence by integrality of f∗ and
Corollary 52 D∗ is a feasible distribution for I. Further c(D∗) = c(f∗) 6 4c(f)

with c(D) = c(f) being a lower bound on the cost of an optimal distribution.

8.5 an iterative rounding heuristic

As mentioned before, our assumption T = Tall is not always given in the
application. Further, although the triangle inequality naturally holds for
transport costs rij, this is not guaranteed for the cost function c. Hence,
applying the 4-approximation in practice does not always yield a fully
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feasible dispatching. We therefore combine the 0.5-upgraded distribution
with the idea of single car repositioning used in the 4-approximation.

Let D = D(I) be an optimal 0.5-upgraded distribution (Section 8.3) for the
application instance I. Remember that demands dj, which are oversatisfied
by D, are of type tz and receive an odd number of cars of type tx by Lemma
78. Consequently there is a supply si of type tx with δij = (i, j, nij > 1) ∈ D

for each such demand. Given v(tx, tz) = 1
2 , the distribution D ′ = (D \ {δij})∪

{δ ′ij = (i, j, nij − 1)} no longer oversatisfies the demands dj. On the other
hand D ′ does not assign all supply (of type tx) and is thus no longer feasible.
We call the cars which are not assigned by D ′ spare cars.

Note that the 4-approximation reassigns the spare cars to a special set of
demands by rounding the flow on the path extending arcs a, a ′. We now
allow spare cars to be reassigned to any matching demand. For this, we
compute D and modify it to D ′(I) as above. Then we reduce all supplies
and demands of I appropriate to the assignments δij ∈ D ′(I). Let I ′ be the
reduced instance.

Then I ′ does not contain any supplies of type ty any longer, as they are
fully distributed by D ′ and I ′ is (empirically) a homogeneous instance. Con-
sequently N(I ′) is a classical network and we obtain an integral minimum
cost flow and thus an optimal solution D ′′ = D(I ′) in polynomial time.
Unfortunately, we cannot bound the additional cost c(D ′′), as the following
example shows.

Consider an instance I from the application with S = {s1, s2, s3} and
D = {d4, d5, d6, d7}. The unit supplies s1, s3 are of type tx, unit supply s2

of type ty. Demands d4,d7 order a single car of type tx and d5, d6 a single
car of type tz each. Further we have T such that s1 is in time for d4 and
d5, s2 for d5 and d6 and s3 for d6 and d7. The cost are c(ij) = r for all
supply-demand-pairs except for c(1, 4) = c(3, 7) = R >> r. Then Figure 26

shows the structure of the associated network N
g
I together with an optimal

half-integral flow f (numbers in brackets).
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Figure 26: Associated network N
g
I for instance I with optimal half-integral flow

(numbers in brackets).

W.l.o.g. we obtain D = {(1, 5, 1), (2, 6, 1)} from Algorithm 16, such that s3

provides the spare car of type tx as otherwise d6 would be over-satisfied.
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Figure 27: Associated network N
g
I ′ for reduced instance I ′.

Figure 27 shows the structure of N
g
I ′ for the reduced instance I ′. Obviously

any distribution is forced to contain the single possible assignment (3, 7, 1)

at cost c(3, 7) = R. The cost ratio c(D ′(I))+c(D(I ′))
c(D(I))

= r
R is thus unbounded.

On the other hand, given c(1, 4) = c(3, 7) = R, the cost c(f) = 3r of the
optimal half-integral flow solution are an arbitrary bad lower bound on the
cost of an optimal integral flow. The latter can easily be checked to be 2r + R

in our example and the heuristic provides an optimal distribution. This is
obviously not the case in general, but the integrality gap between c(D) and
the cost of an optimal integral distribution has to be taken into account with
respect to the performance of the heuristic (see Appendix A.1).

We only considered arc costs in the choice of rounding direction of
Algorithm 16. By Lemma 79, this suffices for 0.5-upgraded distributions as
they cause no cost increase. In Algorithm 17 costs are completely neglected
as rounding directions are chosen such that the number of oversatisfied
demands dj is minimized. This is necessary as otherwise we cannot apply
Lemma 78 to ensure that all demands dj, d ′j with j, j ′ ∈ Vodd and p(j, j ′) ∈
CO have type tz. But only in this case spare cars can possibly be rerouted
feasibly.

Further, the costs for the reassignments of spare cars depend on which
pairs of nodes j 6= j ′ ∈ Vodd are connected by a path p(j, j ′). The chosen
paths p(j, j ′) also determine if a rerouting from j to j ′ or vice versa is
possible with respect to the given timetable, if we abandon the assumption
that supplies are in time for all allowed demands (assumption T = Tall). To
obtain a 4-approximation for more application instances of the (DP), we
try to find a (suggestively speaking ’matching’) partner j ′ ∈ Vodd for each
j ∈ Vodd, such that either p = p(j, j ′) does not need to be extended or we
can find arcs a, a ′ ∈ T to extend p to a cycle. Then Algorithm 17 can be
applied as a 4-approximation assuming only the triangle inequality for c.

So far, pairing nodes j 6= j ′ ∈ Vodd with p(j, j ′) ∈ CO is done more or less
arbitrary due to Algorithm 15. An intuitive way to find pairs (j, j ′) would
be the search for a perfect matching in a graph Godd with node set Vodd and
the edge set Eodd representing possible car reroutings (the existence of arcs
a, a ′ ∈ T ) between j and j ′. Unfortunately, while it is always possible to find
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a path from node j ∈ Vodd to some other node j ′ ∈ Vodd (also on an already
reduced set of arcs T2), this is not true for predefined pairs of j and j ′.
Hence, it does not suffice to find a perfect (minimum weight) matching on
Godd. We need to find such a matching which also allows the paths p(j, j ′)
to form a cover of T2. In other words, paths p(j, j ′) in G2 = (V2, T2 ∪ T̃2)

must be edge-disjoint for all matching edges (j, j ′) in Godd. This constrained
matching problem is introduced and investigated in the following Chapter
9.



9
A C O N S T R A I N E D M AT C H I N G P R O B L E M

The matching problem is closely related to and (at least) as well-studied as
the flow problem in various kinds [31, 32, 86] like (minimum weight) perfect
and maximum (weight) matching. In the special case of bipartite graphs
the matching problem coincides with a classical integral flow problem on
an appropriate instance [39]. The central idea of augmenting paths to solve
matching problems on general graphs is also lend from the work on flows.

Up to today the most famous solution algorithm for (weighted) matching
problems is the polynomial time Blossom(-Shrink) algorithm by Edmonds [31].
It was steadily improved in terms of theoretical worst case running times [86,
46, 43, 42] and implementations [21, 90, 84]. The best currently proved bound
on its running time in terms of the number of nodes and edges is O(n(m +

nlogn)) [42]. For integral weights, also bounds in the largest weight value
can be established by using scaling techniques on Edmond’s Algorithm [21].
An up-to-date reference implementation is Blossom V by Kolmogorov [84],
which is designed to find minimum weight perfect matchings.

Additional constraints create further variants of the matching problem.
One of the most famous being the stable marriage problem introduced by Gale
and Shapley [44], where we look for a bipartite matching (between ’men’
and ’women’), such that given preferences for matching candidates are met.
A marriage (matching) M is stable, if there is no couple (e ∈ M), for which
both ’man’ and ’woman’ prefer another candidate. The stable marriage and
also the non-bipartite variant of stable roommates are polynomially solvable
[45, 36] with some generalizations. For others, the resulting problems are
computationally hard [88]. Many other constrained matching variants are
also NP-complete [66, 100] or even APX-hard to approximate [37].

In the following Section 9.1 we introduce a matching problem on a graph
G with a constraint on a second graph C. For general constraint graphs C

the problem is NP-complete. In Section 9.2 we present an algorithm for the
case that C is a tree and prove its correctness and a bound on its running
time in Section 9.3. The strategy of the algorithm is related to the proof of
polynomial-time solvability of the maximum integral multi-commodity flow
problem in trees with unit edge capacity [48]. We apply the algorithm to the
approximation of the practical instances of the (DP) in Section 9.4.

123
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9.1 definitions and idea

Let G = (V , E) and C = (V ′, E ′) be undirected graphs, such that V ⊆ V ′. We
call the vertices v ∈ V terminals with respect to C to distinguish them from
vertices only present in V ′. We define the constrained matching problem on
G with edge-disjoint paths in C (MEDPIC) as follows:

Definition 87 (MEDPIC) Given graphs G, C, find a maximum matching M(G, C)

in G, such that for all (u, v) ∈ M the vertices u, v ∈ V ′ can simultaneously be
connected by edge-disjoint paths in C.

2 3 4

5

6 7

8

910 11

1

2 3 4 5

6 7 8 9

10 11

G C

Figure 28: MEDPIC instance: We search for a maximum matching M = M(G, C) in
G, such that for all (u, v) ∈ M u and v can simultaneously be connected
by edge-disjoint paths in C. The terminals (grey nodes) V are identified
with the corresponding vertices in V ′.
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Figure 29: The maximum matching (bold, coloured edges) on G is not edge-disjoint
in the tree C (doubly coloured edges).

Consider the following example. Figure 28 shows graph G on which
we search for the matching M(G, C) and constraint graph C which must
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provide the edge-disjoint paths for terminals u, v ∈ V with (u, v) ∈ M(G, C).
The terminals V ⊆ V ′ are shaded grey. Here we see that E and E ′ are not
required to have a special subset relation. Note that C is a (rooted) tree.

The maximum matching M = {(2, 10), (3, 5), (6, 11), (7, 9)} on the graph
G is displayed by bold (and partly colored) edges in Figure 29. The graph
cannot contain a perfect matching (with cardinality 5) due to the isolated
vertices 4 and 8. In Figure 29, the paths p(u, v) in C with (u, v) ∈ M are
colored corresponding to the respective matching edge in G. We see that
the paths p(2, 10) and p(7, 9) as well as the paths p(3, 5) and p(7, 9) are not
edge-disjoint. Hence M is no solution to (MEDPIC) on G and C.

We see in the example that out of each subtree st(ru) at most one terminal
u ∈ V can be connected to a terminal v ∈ V in a disjoint subtree st(rv). As
both terminals 5 and 9 are in the subtree st(5) they cannot both be connected
to terminals in other subtrees. As conversely with respect to G both are only
connected to the vertices 3 and 7, which happen to be in different subtrees
of C, M(G, C) cannot match both vertices.

An analogous case occurs for the terminals 7 and 10. Hence a solution
to (MEDPIC) on G and C has maximum cardinality 3. The two feasible
matchings with this cardinality are M1 = {(2, 3), (7, 9), (10, 11)} and M2 =

{(2, 10), (3, 5), (6, 11)}, which both solve (MEDPIC).
Unfortunately to decide whether a graph contains edge-disjoint paths

for k > 2 terminal pairs is NP-complete in general [40] and remains so for
planar graphs and k > 2 [47, 91]. The latter is also true for partial l−trees
(graphs of treewidth bounded by a fixed integer l) with k > 2 [121] as well
as for bidirected trees with arbitrary degree [34]. Thus (MEDPIC) is also
NP-complete in the above settings.

1 1′

2 2′

3 3′

1 1′

2 2′

3 3′

1 1′

2 2′

3 3′

Figure 30: Consider G = K3,3 on the nodes {1, 2, 3} ∪ {1 ′, 2 ′, 3 ′} and C the cycle
1 − 2 − 3 − 3 ′ − 2 ′ − 1 ′ − 1. Then not all pairs (u, u ′) can be connected
simultaneously by edge-disjoint paths in C, but any two of them can. The
latter is illustrated for the terminal pairs {(1, 1 ′), (2, 2 ′)}, {(2, 2 ′), (3, 3 ′)}

and {(1, 1 ′), (3, 3 ′)} respectively in the pictures above. The corresponding
edge-disjoint paths are displayed as bold edges.

Let G be a K3,3 with node set {1, 2, 3} ∪ {1 ′, 2 ′, 3 ′} and edges {(i, i ′)}, i =

1, 2, 3. Further, let C be a cycle 1 − 2 − 3 − 3 ′ − 2 ′ − 1 ′ − 1 on the node set of
G. Then of the three terminal pairs pi = (i, i ′), i = 1, 2, 3, any two can be
connected by edge-disjoint paths in C as shown in Figure 30, but not all
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three terminal pairs. Hence a maximum matching M(G, C) again cannot be
a perfect matching in G.

Also note that the path between terminals 2 and 2 ′ changes due to the
second chosen terminal pair: if we consider pairs (1, 1 ′) and (2, 2 ′) then
p1(2, 2 ′) = 2, 3, 3 ′, 2 ′ and considering pairs (2, 2 ′) and (3, 3 ′) then 2 and 2 ′

are connected by p3(2, 2 ′) = 2, 1, 1 ′, 2 ′. Analogous situations can come up
with sets of terminal pairs of any cardinality in the presence of arbitrary
cycles. This observation gives us the intuition that checking the existence of
edge-disjoint paths explicitly for arbitrary constellations of matching edges
is exponential in the number of terminals.

In constrast, given that C = T is a tree, any chosen terminal pair (u, v)
determines the unique path p(u, v) in T . Thus, any two terminal pairs can
either be connected by edge-disjoint paths or not (independent of a third
terminal pair). Consider a so-called conflict graph with a node ne for any
edge e in G. Further, let the conflict graph contain an edge (ne, n ′

e) between
two nodes, if the corresponding edges of G connect two terminal pairs
whose unique connecting paths in C are not edge-disjoint. We call such a
pair of edges conflicting. (The size of the conflict graph is quadratic in the
size of G.)

Observe that a maximum matching in G, which does not contain any
conflicting edges, is a MEDPIC solution. This problem formulation can be
interpreted as a matching problem under disjunctive constraints (MMCG) [27]
as given by the conflict graph. The latter problem is already NP-hard for
a conflict graph whose connected components are edges. Conversely not
all instances of (MMCG) with such a conflict graph can be interpreted as
MEDPIC instances where the constraint graph is a tree. Hence, the former
result does not prevent a polynomial time solution to MEDPIC in this case.

We present such a polynomial time solution for C = T by employing the
well-known dynamic programming paradigm (see for example [24]). We there-
fore determine the maximum set of edge-disjoint paths between matchable
terminal pairs in growing subtrees of T , instead of checking the constraint
in substeps of the matching solution. This is prepared by a necessary and
sufficient condition for the existence of two edge-disjoint paths connecting
two terminal pairs in T by Lemma 88.

In the following we assume T to be rooted (arbitrarily). Let P = {(ui, vi)}

be a set of matchable terminal pairs and let pi denote the unique path
between ui and vi in T . Further, let the least common ancestor for a pair of
terminals ui, vi be the root ri of the smallest subtree st(ri) of T , such that
st(ri) contains ui and vi.

Lemma 88 (Disjoint Paths Condition) The paths pi ∈ P are pairwise edge-
disjoint if and only if no subtree st(r) of T contains two terminals uk, ul, k 6= l

and neither vk nor vl.
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Figure 31: Necessary and sufficient condition for pairwise edge-disjoint paths in a
tree: a) subtree st(ru) contains terminals uk and ul, but neither terminal
vk nor vl. Consequently the solid edge (q, ru) must be contained in both
paths pk and pj which cannot be edge-disjoint. b) subtree st(ru) only
contains terminal uk (and not vk). Thus pk must use edge (q, ru), but no
other path needs to enter st(ru) and hence the solid edge is only used
once.

Proof: Consider two pairs of terminals (uk, vk), (ul, vl) ∈ P and let no two
subtrees of T contain exactly one terminal of each pair. The path pk (pl)
consist of the paths from both terminals uk, vk (ul, vl) to their least common
ancestor rk (rl). Let e = (q, r) be an arbitrary edge on pk (pl) and let q be
closer or equal to rk (rl), such that e leads to the smaller subtree st(r). As no
subtree of T contains exactly one terminal of each pair, this especially holds
for the subtree st(r). Thus no edge e can possibly be used by both paths,
because not both paths need to enter the respective subtree. Conversely,
consider a pair of paths pk, pl in T which is not edge-disjoint and shares
the edge e = (q, r). Let q be closer or equal to rk and rl. Then r is the root
of a subtree containing exactly one terminal of each pair, w.l.o.g. uk, ul,
otherwise either pk or pl would not enter st(r) and thus e would not belong
to both of the respective paths.

Figure 31 illustrates both cases of Lemma 88. In subfigure a) paths pl and
pk both need to use edge (q, ru), because the subtree st(ru) contains both
terminals uk and ul, but neither vk nor vl. Hence, the terminal pairs cannot
be connected by a pair of edge-disjoint paths and a MEDPIT solution cannot
contain both edges (uk, vk) and (ul, vl). Note that the roles of uk and vk (ul

and vl) can be exchanged. In subfigure b) st(ru) only contains uk, such that
only pk needs edge (q, ru). Notice that st(q) again contains uk and ul, but
also vl, a partner to one of the other terminals.

9.2 the medpit-algorithm

In the following we present a dynamic programming algorithm to solve
instances of MEDPIC with an arbitrary graph G and trees C = T . We call the
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problem restricted to such instances MEDPIT. Lemma 88 provides us with
the central idea for our dynamic programming approach to the MEDPIT on
G = (V , E) and T = (V ′, E ′). We recursively compute several (sub)matchings
in G on subsets of terminals which correspond to terminals occurring in
subtrees st(r) of T . For such a subtree, we assume exactly one or no terminal
occurring in st(r) to be matched to a terminal outside st(r). Due to edge-
disjointness constraint and Lemma 88, one of these submatchings will be
part of the MEDPIT solution M(G, T).

We denote by V(r) all nodes in the subtree st(r) and by T(r) all terminal
nodes in the subtree. Further, let S(r) denote all direct sons of r and ST(r)

all terminals amongst the direct sons of r, including r, if r is a terminal. The
recurrence follows a depth first search (post) order in T . In the following,
we explain how to obtain the necessary submatchings on leaves (trivial
case), subtrees of height one (non-trivial special case), and subtrees of
greater height. We start for each case by describing the computation of the
submatching for which no terminal is matched outside the subtree. Note
that for the root of T this is the only case to be considered.

As the subtree st(l) induced by a leaf l can at most contain one terminal,
a corresponding submatching is always empty and receives value 0. We
therefore start our explanation with a subtree st(r) of height h(st(r)) = 1,
which is the first non-trivial case to be considered. For those smallest non-
leaf subtrees, we compute maximum cardinality matchings in the subgraphs
of G induced by ST(r) (the sons of r), which are terminals, including r

if it is a terminal. Further, we subsequently compute such matchings in
the subgraphs of G induced by ST(r) \ OUT with OUT = {u} for all nodes
u ∈ ST(r). The matchings are denoted by M(r, OUT) and annotated with a
cost term c(M) = −|M(r, OUT)| for each matching. (The cost term associated
with leafs is 0.)

Figure 32 shows the induced subgraphs G(6, OUT) for one of the smallest
non-leaf subtrees st(6) of C in the previous example (Figure 28). The graph
G(6, ∅) contains two possible submatchings of equal size 1 (edge (6, 11) or
edge (10, 11)). The two graphs G(6, 6) and G(6, 10) each allow for one of
these submatchings and Graph G(6, 11) consists of two isolated vertices and
thus contains no possible submatching. The corresponding cost terms are
therefore c(M(6, ∅)) = −1 (and we select one of both matchings arbitrarily
as a representative), c(M(6, 6)) = c(M(6, 10)) = −1 and c(M(6, 11)) = 0.

To obtain the maximum cardinality matchings in general, we compute a
minimum weight perfect matching on an associated graph as proposed in
[22]. Therefore the node set is duplicated and all edges between original
nodes are mirrored in the additional node set (mirror edges). Further a node
is connected to its duplicate via a self edge. All original edges receive weight
−1 and all added mirror and self edges receive weight zero.
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Figure 32: The subtree st(6) of vertex 6 in C has the corresponding induced
subgraphs G(6, ∅), G(6, 6), G(6, 10), G(6, 11) on which submatchings are
computed.

Subtrees st(r) of T with height h(st(r)) > 1 are treated in the following
way. Again we compute matchings on (a subset of) r’s direct sons and
possibly r. We take advantage of the submatchings, which are prepared for
all sons due to the recurrence order. Yet, for this purpose, it is no longer
sufficient to compute maximum matchings on induced subgraphs of G: a
son s of r might not be a terminal itself and thus s /∈ V . On the other hand,
if the set of terminals T(s) in the subtree st(s) is not empty, those terminals
need to be represented in the submatching in some way. To achieve a proper
representation, we exploit the transformation of a maximum cardinality
matching into a minimum weight perfect matching as follows.

Firstly, we modify S(r) by removing all sons s of r with T(s) = ∅. The
nodes s ∈ S(r) are now either terminals or nodes which represent at least one
terminal in their corresponding subtree. Let S(r) be redefined appropriately
and contain r, if and only if it is a terminal itself. Secondly, we successively
compute submatchings M(r, OUT) for the cases that exactly one or no
terminal of st(r) is matched to a terminal outside the subtree as before.

We start with the construction of the graph G(r, ∅) for the case that no
terminal in st(r) is matched to a terminal not in st(r). Let n = |S(r)|, then
G(r, ∅) contains 2n vertices {v0, . . . , vn}∪ {v ′0, . . . , v ′n}. We call the additional
node v ′i the shadow node of vi. For each pair of nodes vi 6= vj 6= r, we check if
the set of terminals T(vi) in st(vi) contains a terminal ti and T(vj) contains
a terminal tj, such that (ti, tj) is an edge in G. If so, we add (vi, vj) to the
edge set of G(r, ∅).

Consider (vi, vj) ∈ M(r, ∅). Then the terminals ti and tj must be con-
nected by a path in T , which is edge-disjoint to all other such paths be-
tween matched terminals in M(r, ∅). Thus, for both subtrees st(vi) and
st(vj), no other terminal than ti and tj can be matched outside st(vi) and
st(vj) respectively. Consequently the maximum submatching of both sub-
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trees are in this case the previously computed M(vi, {ti}) and M(vj, {tj})

respectively. We represent this situation by setting the cost of e = (vi, vj)

to c(e) = c(M(vi, {ti})) + c(M(vj, {tj})) − 1, where −1 accounts for the ad-
ditional matched edge (ti, tj). We also add the edge (v ′i, v

′
j) between the

corresponding shadow nodes with zero cost. If T(vi) and T(vj) contain more
than one matchable terminal pair (ti, tj) ∈ E we consequently choose the one
minimizing the above given cost term to represent the maximum cardinality
submatching in the union of both subtrees.
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Figure 33: Graph G(4, ∅) for the subtree st(4) of vertex 4 in C. The number at the
edges are costs corresponding to represented submatchings.

So far, we left out the root r in the case that it is a terminal. Although
T(r) 6= {r} in general, the node only represents itself. As the terminals T(r) \

{r} are completely and uniquely covered by the subtrees st(vi), vi ∈ S(r) \ {r}

this is necessary to avoid double counting of the associated submatchings.
We thus add an edge e = (vi, r) only if there is a terminal ti ∈ T(vi) such
that (ti, r) ∈ E and we set c(e) = c(M(vi, {ti})) − 1. We also add the shadow
edge (v ′i, r

′) with zero cost.
Further, the self edges (vi, v ′i) are added to G(r, ∅). A self edge (vi, v ′i),

in the matching M(r, ∅) either represents that a terminal is not matched if
vi = r or vi is a leaf or that out of the subtree st(vi) no terminal is matched
to a terminal outside st(vi). Thus we set the cost of e = (vi, v ′i) to c(e) = 0

in the first case and to c(e) = c(M(vi, ∅)) in the second case. This completes
the construction of G(r, ∅) for h(st(r)) > 1. Note that its structure resembles
the transformed graph to compute a maximum cardinality submatching via
minimum weight perfect matching in subtrees of height one.

Figure 33 shows G(4, ∅) for the subtree st(4) of C in the example of Figure
28. Here, vertex 4 is the root only representing itself as it is a terminal.
The self edge (4, 4 ′) thus receives zero cost. Apart from 4, the set S(4) only
contains the nodes 6 and 7. The latter is a terminal and a leaf and thus also
only represents itself. Consequently c(7, 7 ′) is also zero. Node 6 represents
the subtree st(6) of height 1. The maximum submatching on T(6) with no
terminal being matched outside st(6) has cardinality 1, as we saw above.
Thus the self edge (6, 6 ′) obtains cost −1. No other edges are added to
G(4, ∅), as there are no edges in G between 4, 7 and any terminal in st(6).
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Algorithm 18 Construct

Input: G = (V , E), T = (V ′, E ′), r, t
Output: G = (Vg, Eg) = G(r, t)

1: V = E = ∅
2: if r ∈ S(r) and r 6= t then
3: Vg = {r, r ′}, Eg = {e = (r, r ′)}, c(e) = 0

4: end if
5: for all v 6= r ∈ S(r), T(v) 6= t do
6: Vg = Vg ∪ {v, v ′}, Eg = Eg ∪ {e = (v, v ′)}
7: if t /∈ T(v) then
8: c(e) = c(M(v, ∅))
9: else

10: c(e) = c(M(v, {t}))
11: end if
12: end for
13: for all v 6= w ∈ S(r) \ {r} do
14: if ∃vt 6= t ∈ T(v), wt 6= t ∈ T(w) : (tv, tw) ∈ E then
15: Eg = Eg ∪ {e = (v, w), e ′(v ′, w ′)}
16: c(e) = c(M(v, {tv})) + c(M(w, {tw})) − 1, c(e ′) = 0

17: end if
18: end for
19: for all v 6= r ∈ S(r) do
20: if ∃vt 6= t ∈ T(v) : (tv, r) ∈ E then
21: E = E∪ {e = (v, r), e ′ = (v ′, r ′)}
22: c(e) = c(M(v, {tv})) − 1, c(e ′) = 0

23: end if
24: end for
25: return (Vg, Eg)

For zero/negative weights on edges (vi, vj) and positive/zero weight on
shadow and self edges the structure of G(r, ∅) always provides a perfect
matching M, such that edges (vi, vj) ∈ M coincide with the edges of a
maximum cardinality matching on the subgraph of G(r, ∅) induced by
{v0, . . . , vn(r)} [22]. For our purpose, the edge weights encode cardinalities
of submatchings, instead of the weight of a single additional matching edge.
Further, we count each matching edge with −1. Thus we obtain a MEDPIT
submatching of maximum cardinality on the terminals T(r) by computing a
minimum weight perfect matching on G(r, ∅). This can be done for example
by an implementation of Edmond’s blossom shrink algorithm like [84]. The
weight of the submatching counts the cardinality of the matching in G(r, ∅)
as well as the cardinality of all maximum possible submatchings in the
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respective subtree representative. The overall cardinality is maximized (due
to negative weights).

Now we are done for leaves, non-leaf subtrees of height one and for the
root r of T (st(r) = T ). For all other subtrees, there are still the cases to
consider, where exactly one terminal is matched to a terminal outside the
subtree. For subtrees st(r) of height one, it was sufficient to consider one
submatching for each s ∈ ST(r). We extend this procedure to all terminals
t ∈ T(r).

Each graph G(r, {t}) is constructed in a similar way as G(r, ∅), only possi-
bly on two vertices less (one node and its shadow node) than G(r, ∅). This
is the case, if t = r or t is the only terminal in a subtree st(s), s ∈ S(r).
Otherwise s ∈ S(r) with t ∈ T(s) still represents the terminals T(s) \ {t}

and remains in G(r, {t}). Generally the edge set of G(r, {t}) is determined as
above, except that for all edges (vi, vj) the terminals ti, tj must not equal t.
Moreover, as t is potentially matched to t ′ outside st(r), a path p(t, t ′) must
exist, which is edge-disjoint to all other paths between matched terminals.
Hence, there can be no edge (s, vj) in G(r, {t}), although there may be termi-
nals ts ∈ T(s) \ {t} and tj ∈ T(vj) \ {t} with (ts, tj) ∈ E. Further, the self edge
e = (s, s) is associated with the cost c(e) = c(M(s, {t})) instead of c(M(s, ∅)).
Note that each perfect matching on G(r, {t}) is forced to include (s, s). This
guarantees the edge-disjointness of p(t, t ′) in larger submatchings.

Algorithm 19 MEDPIT

Input: G = (V , E), T = (V ′, E ′), r
Output: M(r, ∅) is MEDPIT on G with T

1: while S(r) \ {r} 6= ∅ do
2: choose s ∈ S(r) \ {r}

3: MEDPIT(G, T , s)
4: S(r) = S(r) \ {s}

5: end while
6: for all t ∈ T(r) do
7: Construct G(r, {t}) by Algorithm 18

8: M(r, {t})=minwpm(G(r, {t}))
9: end for

10: Construct G(r, ∅) by Algorithm 18

11: M(r, ∅)=minwpm(G(r, ∅))

We describe the construction of graphs G(r, OUT) in Algorithm 18. Al-
gorithm 19 provides the recursive depth first search framework to solve
the MEDPIT. We assume that the computed submatchings and its costs are
stored in an appropriate data structure and the method minwpm computes
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the minimum weight perfect matching on a given graph G(r, OUT). The sub-
matching on a graph G(r, OUT) provides the matched edges of G explicitly
and the sets S(r), ST(r), T(r) are available at global scope if necessary.

9.3 correctness and runtime

To prove the correctness of Algorithm 19 we show that the edge-disjoint
paths constraint is met by M(root, ∅) (Lemma 89). Further, the cardinality
|c(M(root, ∅))| of M(root, ∅), is maximum amongst all matchings respecting
the constraint (Theorem 90). Let M(r, OUT) be a minimum weight submatch-
ing with respect to the subtree st(r) of T as computed by Algorithm 19.

Lemma 89 (Edge-disjoint Paths Constraint) The paths p(u, v) ∈ T for all
(u, v) ∈ M(r, OUT) are edge-disjoint.

Proof: We apply induction over the size of subtrees st(v), v ∈ V ′ of T .
For all leaves q ∈ V ′, M(q, OUT) = ∅ and the claim holds. For inner nodes
r ∈ V ′ either T(r) = ∅ and M = M(r, OUT) = ∅ with c(M) = 0 and the
claim holds as before or the (sub)matching M = M(r, OUT) composes of
the following types of (unresolved) edges (u, v) in G(r, OUT):

1. u 6= v ∈ S(r) and
u = r (v = r) and v (u) is a leaf or both are leaves:
Assume u 6= v 6= r. Then p(u, v) in T composes of two edges (u, r)
and (r, v). Both terminals u, v only represent themselves in the graphs
G(r, OUT ∩ {u, v} = ∅), where (u, v) can occur in a submatching. Fur-
ther, neither u nor v can be matched twice due to the definition of
a matching. Thus edges (u, r) and (r, v) cannot possibly be used by
another path in T . The same is true for the case u = r (v = r) and the
single edge (r, v) ((u, r)).

2. u 6= v ∈ S(r) and
u = r or u is a leaf and v is the root of the non-leaf subtree st(v) :
Let u be a leaf. Then (u, tv) ∈ E for a terminal tv ∈ T(v) and p(u, tv) in
T consists of edges (u, r), (r, v) and the path p(v, tv). As neither u nor
v can be matched twice, no other path uses edges (u, r) and (r, v). The
edges of p(v, tv) can also not be used by another path: as (u, v) ∈ M,
Algorithm 19 chooses submatching M(v, tv) on G(v, {tv}). The latter
contains only edge-disjoint paths including a potential path p(tv, t),
with t outside st(v) by induction. The latter is true as Algorithm 19

recursively ensures submatchings M(w, {tv}) are attained on the series
of smaller subtrees st(w) ⊂ st(v) containing tv. If u = r, the argument
is repeated, only p(u = r, tv) in T does not contain an edge (u, r).
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3. u 6= v ∈ S(r) and
u (v) is the root of the non-leaf subtree st(u) (st(v)):
Then (tu, tv) ∈ E for terminals tu ∈ T(u), tv ∈ T(v). The path p(tu, tv)

in T consists of the path p(tu, u), the edges (u, r), (r, v) and the path
p(v, tv). As neither u nor v can be matched twice, no other path uses
edges (u, r) and (r, v). The edges of p(tu, u) and p(v, tv) also cannot
be used by another path: as (u, v) ∈ M, Algorithm 19 chooses sub-
matchings M(u, tu) on G(u, {tu}) and M(v, tv) on G(v, {tv}). The latter
contain only edge-disjoint paths including potential paths p(tu, t) and
p(tv, t ′) by induction (see case 2).

Theorem 90 (Correctness) M(root, ∅) solves MEDPIT on G and T .

Proof: By Lemma 89 the set of path p(u, v) in T with (u, v) ∈ M(root, ∅)
is edge-disjoint. Further, M(root, ∅) is a minimum weight perfect matching
on G(root, ∅) and thus a minimum weight matching on the subgraph of
G(root, ∅), induced by the non-shadow nodes. The cost of each edge e =

(u, v) in G(root, ∅) are c(e) = −|M(u, {tu})| − |M(v, {tv})| − 1. Thus the cost
value counts −1 for each possible match edge in st(u) and st(v) under the
constraint that terminal tu in st(u) is matched to tv in st(v). The cost of a
self edge e = (u, u ′) are c(e) = −|M(u, ∅)| for u 6= r (and zero otherwise),
which counts −1 for each possible match edge in st(u) under the constraint
no terminal of st(u) is matched outside st(u). The costs of shadow edges
are always zero.

The minimum weight matching M(root, ∅) on G(root, ∅) therefore selects
the maximum sum of cardinalities of submatchings and matched edges
(u, v) in G(root, ∅), under the matching and disjoint edge constraints. As
the same is true recursively for all submatchings M(u, OUT), M(v, OUT)

selected by (u, v) ∈ M(root, ∅), it solves MEDPIT on G and T .

In the following, we estimate the running time of Algorithm 19 in the
number of nodes and edges of G and T . Let nT be the number of nodes in
the tree T and nG the number of nodes in the graph G. Then submatchings
are computed for each subtree st(r) of T , which are O(nT ). The number of
submatchings on each st(r) is determined by the number |T(r)| ∈ O(nG) of
terminals which are contained in the subtree. Thus the number of computed
(sub)matchings is O(nTnG)

Further, each submatching is computed on a graph G(r, OUT) with less
or equal |S(r)| ∈ O(nT ) nodes and O(n2

T ) edges. As each node in G(r, OUT)

represents at least one terminal of G, we can limit the size of G(r, OUT)

more strictly with O(nG) nodes and O(n2
G) edges. To check existence and
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cost for an edge (u, v), we have to consider all possible pairs tu ∈ T(u) and
tv ∈ T(v), which are in O(n2

G). We can also consider each terminal pair and
add an edge to G(r, OUT) between the representative of two subtrees, if
the terminals are in those different subtrees. (If there already is such an
edge, we can try and improve its weight.) Thus the construction time for
G(r, OUT) is in O(n2

G).
The computation of M(r, OUT) on G(r, OUT) is in O(n3

G) which dom-
inates the construction time. Due to the number O(nTnG) of necessary
submatchings, we obtain:

Corollary 91 (Run Time) The running time of Algorithm 19 is in O(nTn4
G)).

9.4 application of medpit to the dp

Let I be an instance of the (DP) with T 6= Tall and f a half-integral minimum
cost flow in N

g
I = (VI, AI) as described in Chapter 7. Further, let T2, V2

and Vodd be defined as in Chapter 8. Consider the undirected graph C =

C(I) = (V ′, E ′) with V ′ = V2, E ′ = {(u, v)|(u, v)T2 ∪ T̃2} and assume that C is
acyclic. Then Algorithm 19 can be applied to check if Algorithm 17 provides
a 4-approximation on I and/or to take the cost of the possible reroutings
into account. We describe both approaches in the following.

The demands, which can be oversatisfied after rounding are the vertices
of Vodd. For each two j, j ′ ∈ Vodd, which are end points of a path p(j, j ′)
in a cover of T2, one can be oversatisfied. The application of Algorithm 17

therefore requires the assumption that all such paths can be extended to
cycles by arcs a, a ′ ∈ AI \ T2. These arcs represent the possibility to reroute
a car of type tx from a supply si to demand d ′j , if it was formerly assigned
to the oversatisfied demand dj.

If arcs a, a ′ do not exist for all possible pairs j 6= j ′ ∈ Vodd, then paths
p(j, j ′) should not be chosen as arbitrarily as Algorithm 15 suggests. Instead,
we are interested in pairing vertices of Vodd in such a way that the number of
extendable paths is maximized. Then, if all paths are extendable, Algorithm
17 provides a 4-approximation on the respective instance. This goal naturally
translates into a maximum cardinality matching on the rerouting graph
Godd = Godd(I) = (Vodd, Eodd) with Eodd = {(j, j ′)|a = (i, j), a ′ = (i, j ′) ∈
AI}.

Let M(Godd) be a maximum matching on Godd with respect to cardinality.
Then it predefines the endpoints j, j ′ of extendable (!) paths p(j, j ′). To
successfully apply the approximation algorithm, the paths p(j, j ′) (and
potentially some additional cycles) must provide a cover of T2. Hence, they
must especially be edge-disjoint in C. Therefore the endpoints suggested
by M(Godd) cannot always be used. Instead, we exactly need to solve the
MEDPIT on Godd and C as defined above.
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If we obtain a perfect matching as a solution to the MEDPIT, Algorithm
17 provides a 4-approximation without the assumption T = Tall. The appli-
cation of Algorithm 19 to Godd and C can be carried out as a preprocessing
to the approximation in any case, as the depth first search framework can
easily be extended to recognize cycles.

We can further consider the rerouting cost. The cost of rerouting a small
car of si to d ′j , which was originally assigned to dj, is the difference between
the arc cost of (i, j) and the cost of (i, j ′). (The term c(i, j) is saved in the new
solution.) Observe that a rerouting also (pre)defines the rounding direction
on the path p(j, j ′) and it can no longer be chosen according to lower cost.
Thus, for the cost of a rerouting we also take the potentially higher costs of
the rounding into account.

Let c(j) denote costs of the rounded flow on p(j, j ′), if the edge incident
to j is rounded up. (This is the rounding direction, if a small car is rerouted
from j to j ′.) Let c(j ′) be defined analogously. Then we define a rounding
penalty term φ(j, j ′) for the rerouting from j to j ′ as φ(j, j ′) = c(j) − c(j ′).
If φ(j, j ′) is negative, the rerouting requires the same rounding direction
that would be preferred by the rounding procedure anyway. If φ(j, j ′) is
positive, the extra cost for the forced choice of the more expensive rounding
is charged to the rerouting cost. We define edge weights cw : Eodd → N as
follows:

cw(j, j ′) = min{c(i, j) − c(i, j ′) + φ(j, j ′), c(i, j ′) − c(i, j) + φ(j ′, j)}.

We now require a minimum weight matching on Godd under the con-
straint that C still provides edge-disjoint paths for all matched terminals.
This can again be restated as a minimum weight perfect matching as de-
scribed above ([22]). Consequently we change the cost structure of the
graphs G(r, OUT) in Algorithm 19, such that an edge between two termi-
nals is not associated with weight −1, but with cw(e) and the cost of a
submatching is replaced by the sum of weights of their matched edges. As
the latter are positive terms, we set the cost of shadow edges and self edges
(r, r ′) to the sum of all weights W =

∑
e∈Eodd

cw(e). This way, edges (u, v) in
G(r, OUT) which correspond to (submatchings with more) matching edges
in Godd always reduce the cost of the minimum weight perfect matching on
G(r, OUT) and assure that the cardinality of the matching is still maximized
with respect to matching and edge-disjointness constraints.

With respect to the (DP), the MEDPIC so far is not generally applicable
in practice, given the complexity of the edge-disjoint paths problem for
unbounded numbers of terminals in arbitrary graphs. Still there are po-
tentially more classes of graphs on which the constraint can be checked
in polynomial time. This could also lead to further polynomially solvable
special cases of MEDPIC.
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C O N C L U S I O N A N D O U T L O O K

In this thesis we modelled and solved the empty freight car distribution
problem under the model assumptions and requirements of DB Schenker
Rail Deutschland AG. The respective constraint set partitions (DP) instances
into those with homogeneous and heterogeneous substitution rules. The for-
mer can be solved efficiently to optimality (see Chapter 5), whereas the latter
pose an NP-complete problem (see Chapters 4, 7) and are addressed with
approximative and heuristic techniques (see Chapter 8) for the operational
purpose.

All solutions where obtained via a combinatorial approach, namely a
modification of the Successive Shortest Path algorithm [2] and implemented
as a prototype. The results (see Appendix A) encourage its application for
both the homogeneous and the heterogeneous (DP) instances in terms of
running times and solution quality (with respect to the heuristic). Running
times and heuristics especially benefit from our reoptimization strategy (see
Chapter 6).

The heterogeneous (DP), which was also investigated as an interesting
theoretical problem, was so far mainly addressed from a practical point of
view in this thesis. We mainly considered special 2-to-1-substitution schemes
occurring in the application during the development of approximative and
heuristic solutions.

A focus for further research could be the generalization of those ap-
proaches to heterogeneous substitution schemes with arbitrary structures
and valencies. Rounding, as applied in the cases with guaranteed associated
half-integral minimum generalized cost flows, is not likely to be sufficient
for good and practical solutions in this case. Even in the restricted setting,
the applicability of the approximative solution (see Chapter 8) can possibly
be extended to less restrictive (DP) instances.

Moreover, the challenging problem to find matchings with an edge-
disjoint paths constraint, which was introduced in this thesis (see Chapter 9),
can possibly be solved polynomially for more classes of constraint graphs
and may serve as a model for other practical applications.

137





A
I M P L E M E N TAT I O N & C O M P U TAT I O N A L R E S U LT S

In the main part of this thesis, we described a classical and a generalized flow
model for the homogeneous and heterogeneous (DP) respectively (Chapter
5 and 7). Further, we developed minimum cost flow algorithms, which
are modifications of the Successive Shortest Path algorithm to solve those
models in a combinatorial way. The major benefits of using combinatorial
algorithms here, are to allow the reoptimization approach presented in
Chapter 6 and to increase robustness with respect to feasibility of partial
solutions. We also developed a heuristic to obtain a feasible (DP) solution
from the half-integral minimum cost solution of the generalized flow model
for application instances of the (DP) (Chapter 8). Note that the combination
of reoptimization and heuristic requires the maintenance of the original
residual network before rounding. Otherwise the optimality criterion cannot
be reestablished as described in Chapter 6.

We implemented our algorithms in the object oriented programming
language C++ using data structures from the Boost Graph Library (BGL).
The prototypical implementation FLOh is designed as the optimization core
of a new integrated dispatching tool which is in a planning stage at DB
Schenker Rail Deutschland AG.

We give a short overview over the main classes of the implementation
and their functionality in Section A.1. We present computational results
with respect to running time of optimization and reoptimization, as well as
performance results for the rounding heuristic in Section A.2.

a.1 implementation overview

The FLOh implementation is command line based and creates a set of output
files in comma separated value structure (.csv-files or ‘flat’ files, as they
avoid database management overhead). The latter consists either only of the
relevant solution to the given (DP) instance I or additionally of control files.
This can be influenced by command line parameters, which also enable a
selection between three types of run behaviour.

FLOh offers a ‘one-optimization’ run in which master and input data of
an instance I is read, a solution is computed and the program terminates
afterwards. In the ‘one-optimization-and-consolidation-run’, FLOh waits
for a trigger (appearance of a special file on the system) after solving I

and generating appropriate output. As soon as the file appears, changes
in the input data are read and the solution is reoptimized once, before
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Figure 34: Overview on the main classes of the FLOh implementation.

FLOh terminates. This execution behaviour simulates an optimization run
in practice during which manual interference occurs and potentially renders
the solution infeasible. In this case the solution needs to be consolidated with
the manual changes. The third run option for FLOh is a ’one-optimization-
and-reoptimization’ state, which is not terminated by FLOh until triggered
from the file system. In this state FLOh initially solves a (DP) instance I and
constantly reoptimizes the solution, if triggered changes to the input data
appear. Note that each reoptimization is again followed by a consolidation.

Other command line parameters switch the usage of weak and strong
priorities on or off, influence the treatment of border stations and limit the
number of supplies and demands or the accepted range of their attributes for
test purposes. The rounding heuristic can be switched off for homogeneous
instances (which for example occur when FLOh is applied to separate
instances for the main car type groups in a preliminary stage, see Chapter 2).
In case of heterogeneous instances, different cost functions can be selected
as they sometimes depend on car type valencies in practice.

The created classes can be grouped into interface, data structure, algorithm
and check classes. See Figure 34 for an overview on the main classes.

a.1.1 Interfaces

Interface classes like BBGen, CostGen and SubGen read the input and master
data of a DP instance I from 20 flat files with a comma separated value
structure. The format was chosen to make the implementation independent
of data base structures, which are not yet fully designed. BBGen creates
objects of the Node class representing the attribute data of supplies si ∈ S,
demands dj ∈ D, operative storage ok ∈ O and border stations bl ∈ B from
the actual input data of different files.
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The classes CostGen and SubGen read rule based master data. CostGen
internally creates a timetable T and provides methods to check the in-time
relation for all types of Node objects. The class SubGen provides methods
to check the different allowance relations for pairs of Node objects based on
an internal representation of S, O, I, F, B.

An interesting consideration by DB Schenker Rail Deutschland AG is
currently to unify all type related attributes of supplies and demands into
a bit string representation, such that bit-wise Boolean operations on the
strings suffice to check the allowance relation for supply and demand pairs.
The same method can be extended to storage and border stations. As this
is not yet realized in practice, FLOh prepares the change of input data by
internally precomputing the bit string representation and operating the
methods for allowance checks on them.

As mentioned in Chapter 2, domestic rules I are so far based on geograph-
ical information. To limit time and space requirements, we clustered the
productive area into regions with the help of DB Schenker Rail Deutschland
AG. For the check of i-allowance supply locations and target locations of
demands are mapped to regions, which form the basis of explicit rules ι ∈ I.

a.1.2 Data Structures & Algorithm

The classes Node and Edge are a struct-like aggregations of either input
data attributes or attributes needed for the flow computation and configure
the template based node and edge constructs of the BGL.

The central data structure for the network model NI is the class Net-
work, which also provides methods for network construction and changes
which allow the representation of the residual network during the flow
computation (optimization) as well as during the reoptimization.

The class H21Network provides an auxiliary network used for the round-
ing heuristic along with the rounding methods themselves. As mentioned
above, it is necessary to maintain the residual network corresponding to
the half-integral minimum cost flow in the Network instance. Therefore the
strictly half-integral flow on transit arcs is represented by an instance of
H21Network and rounded there.

The class FlowGen implements the modified variants of the Successive
Shortest Path algorithm for optimization, reoptimization and rounding in a
high-level way, which is supported by the Network and the H21Network
respectively.

In the case of heterogeneous instances I the supplies and demands corre-
sponding to assignments of the modified, rounded solution D ′(I) (without
spare cars of type tx) are removed from the Network instance via reopti-
mization. We directly obtain the solution D(I ′) of the reduced and now
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homogeneous instance I ′ in this way, as the flow solution in the classical N ′
I

is integral.
FlowGen then creates the relevant output files by combining D ′(I) and

D(I ′). With the help of D ′(I) and reoptimization, we can reconstruct the
residual network corresponding to a minimum cost flow of NI in the Net-
work instance. Thus reoptimization due to changes of the input data of I

can be done without constantly increasing the heuristic error.
FlowGen also creates important information on supply, which was not

distributed and undersatisfied demands. Strictly speaking, a supply si ∈ S

which cannot be allocated makes it impossible to find a feasible solution for
I with the definitions in Chapter 4. For our theoretical consideration such
supplies can be removed from I via a precomputation of a maximum flow
on NI. In practice, such situations may occur and must be recognized, as
they indicate serious undercapacities (in operative storage) or inconsistency
of the master data.

a.1.3 Checks

The class CheckFlow provides about 15 methods, which check the (DP)
solution against the given technical requirements. Apart from the inherent
optimality criterion with respect to the flow computation, the results of
these checks enable control of correct processing and internal interpretation
of input and master data for a (DP) instance.

The formal correctness of input and master data is checked via class Parser
during the reading process within the interface classes. Moreover, acceptance
or rejection of data records can be influenced by certain command line
parameters of FLOh as mentioned above. With the appropriate parameter
setting, an output file is created for all accepted data records as well as
all rejected data records with respect to a single input file for debugging
purposes.

a.2 computational results

In this section we present computational results and running times for the
FLOh implementation. We start with single optimization runs of homoge-
neous instances of the (DP) in Section A.2.1. In Section A.2.2 we present
running times for the heuristic solution of heterogeneous instances of the
(DP). We also analyze the cost of the resulting distribution with respect to
the cost of an optimal half-integral solution as a lower bound on the optimal
solution.

In Section A.2.3 running times for the solution of two consecutive (DP)
instances are compared when both are solved ’from scratch’ as opposed to
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the application of reoptimization to the solution of the first instance to solve
the second instance.

All tests were carried out sequentially on an Intel Xeon CPU E5410 at 2.33

GHz with 4 GB RAM running Debian Linux.

a.2.1 Optimization on homogeneous Instances

We start by a description of the instances we used as a test setting. DB
Schenker Rail Deutschland AG provided supply and demand data of one
calendar week comprising of more than 10, 000 supplies and about 6, 000

demands, each for a single up to tens of cars. Usually, around 2, 000 −

3, 000 supplies (the number of actual available cars scales roughly by a
factor of 10) are available per day. About the same number of demands are
considered, scattered over a time horizon of about two and a half days. The
daily dispatching thus assigns about 25, 000 cars. To keep typical supply-
demand-structures in the considered instances, we did not draw supplies
and demands from the data set randomly.

Instead, from lists of supplies and demands sorted by availability and
demand time respectively, we subsequently enlarge the supply and demand
sets for our instances in steps of 1, 000, such that we assign cars with a
time horizon between one up to five dispatching days. Additionally we take
operational storage into account as a kind of low priority demand, which is
a new feature in our automated dispatching. We consider storage capacities
for up to 10, 000 cars at about 100 different locations, such that (almost) all
supply can be assigned in each run. (Otherwise, cars may simply not be
allocated in the repositioning process, but in practice each such car has to
be stored somewhere nevertheless.)

Table 2 provides an overview over the structure of considered instances
and solution times: the second and fourth column contain the number
of supplies and demands respectively. Columns 3 and 5 contain the total
number of available and ordered cars respectively. (For instances I6 to
I10 we use the maximum number of demand data records.) Note that
we interpreted all substitution relations as 1-to-1 substitution to obtain
homogeneous instances for our optimization tests. Column 6 shows the
time (in minutes) consumed by the minimum cost flow computation and the
generation of the resulting solution. Running times are measured without
the time needed to read the input and master data (less than three seconds
in each case, which is neglectable) and network construction time (around
two minutes maximum for the largest instance I10).

The righmost column contains the number of augmentations in the flow
computation. In Table 2 (as in all our tests) their number was bounded by the
total number of nodes in the network. Hence the empirical runtime bound is
polynomial in the number of nodes in our setting, although we implemented
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Table 2: Test instances on real data (homogeneous interpretation). Columns |S|

and |D| contain the number of supply and demand nodes respectively,∑
ni (

∑
nj) is the total number of available (ordered) cars. Running

time is measured in minutes and the last column contains the number of
augmentations in the flow computation.

I |S|
∑

ni |D|
∑

nj time augm.
[103] [104] [103] [104] [min.]

I2 2 1.7789 2 1.9900 0.32 2575

I3 3 2.6243 3 3.0116 1.02 4503

I4 4 3.1439 4 4.0095 1.97 6284

I5 5 4.0913 5 4.9657 3.76 8511

I6 6 4.9427 5.715 6.2466 5.48 10150

I7 7 5.4926 5.715 6.2466 6.90 11404

I8 8 6.3655 5.715 6.2466 9.05 13153

I9 9 7.2130 5.715 6.2466 11.92 14886

I10 10 7.8308 5.715 6.2466 13.51 14885

the pseudo polynomial Successive Shortest Path algorithm without scaling.
We decided that the benefit of applying a scaling technique to obtain a
polynomial version of the Successive Shortest Path algorithm was outweighed
by the computational overhead in our case.

a.2.2 Optimization on heterogeneous Instances

In the following, we present examples for the heuristic solution of het-
erogeneous (DP) instances as described in Chapter 8. We again present
running times and also empirical approximation ratios between the cost of
the heuristic solution and the cost of a half-integral optimal flow as a lower
bound on the minimum cost.

Table 3 shows additional information on the instances we interpreted as
homogeneous in Table 2. Column 2 contains the total number of available
cars involved in heterogeneous substitution and their percentage with re-
spect to the total supply (in brackets). Column 3 contains analogous data
for demands. The last column displays the percentage of cars involved in
heterogeneous substitution with respect to the sum of total supply and
demand. These values show that instances in the application are usually
almost homogeneous. Yet, for the practical performance the integrated view
is important, for example with respect to mixed type storage capacities.

Table 4 shows running times in minutes for the computation of the
half-integral flow in column ’time (D)’. The time for the rounding and
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Table 3: Heterogeneity of (DP) instances on real data sets. Column 2 displays the
number of available cars involved in heterogeneous substitution and their
percentage of the total supply (in brackets). Column 3 shows analogous
data for demanded cars and the rightmost column contains the percentage
of all such cars with respect to the sum of total supply and demand.

I
∑

ni, het. (%)
∑

nj, het. (%) het. total %

I2 327 (1.84) 916 (4.6) 3.3
I3 670 (2.55) 1,313 (4.36) 3.52

I4 670 (2.13) 1,815 (4.53) 3.47

I5 935 (2.29) 2,105 (4.24) 3.36

I6 1,285 (2.6) 2,777 (4.45) 3.63

I7 1,285 (2.34) 2,777 (4.45) 3.46

I8 1,476 (2.32) 2,777 (4.45) 3.37

I9 1,835 (2.54) 2,777 (4.45) 3.43

I10 1,835 (2.34) 2,777 (4.45) 3.28

reassignment is displayed in column ’time (Dh)’ and their sum in column
’time’. Running times are again measured without input time (less than
three seconds in each case) and network construction time (around two
minutes maximum).

Table 5 presents the total costs of the optimal half-integral flow in N
g
I

in column ’cost (D)’ and the cost of the heuristic solution in column ’cost
(Dh)’. We show the difference ’cost (Dh) - cost (D)’ of both costs in column
4 and its percentage with respect to cost (D) (in brackets). As remarked
above, the latter cannot be seen as pure cost increase on cost (D), as the
cost of an optimal feasible solution can exceed this term by far. As a quality
measure for the heuristic, the rightmost column displays the value cost(Dh)

cost(D)

, which we call the ‘empirical approximation factor’, with ’cost (D)’ as a
lower bound on the cost of an optimal distribution.

a.2.3 Reoptimization

For the reoptimization tests, we generally compare the time to solve two
instances of the (DP) separately (or ‘from scratch’) with the time to solve the
first instance in this way and reoptimize its solution for the second instance.
We choose the first (or basic) instance identical for all test cases and increase
the number of changes to the second instance subsequently.

The basic instance IB is a middle size instance of about 5000 supply
and demand nodes (comparable, but not identical to instance I5), which
corresponds to a real application instance with a time horizon of about two
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Table 4: Running times in minutes for obtaining an optimal half-integral solution
(column ’time (D)’), rounding and redistribution (column ’time (Dh)’) and
the total time to obtain a feasible heuristic solution (column ’time total’).

I time (D) time (Dh) time total
[min.] [min.] [min.]

I2 0.32 0.08 0.40

I3 1.02 0.12 1.14

I4 1.97 0.13 2.1
I5 3.76 0.17 3.93

I6 5.48 0.35 5.83

I7 6.90 0.72 7.62

I8 9.05 1.45 10.50

I9 11.92 3.12 15.04

I10 13.51 6.87 20.38

Table 5: Costs for the optimal half-integral ’solution’ D and the feasible heuristic
distribution Dh. Their difference ’cost (Dh) - cost (D)’ and its percentage
with respect to ’cost (D)’ is shown in column 4 and 5. The righmost column
shows the ’empirical approximation factor’.

I cost (D) cost (Dh) diff. (%) cost(Dh)
cost(D)

[107] [107] [107]

I2 1.09 1.11 0.02 (1.06) 1.01

I3 1.32 1.35 0.03 (1.77) 1.02

I4 1.43 1.46 0.03 (2.05) 1.02

I5 1.84 1.87 0.03 (1.81) 1.02

I6 2.05 2.09 0.04 (1.69) 1.02

I7 2.40 2.43 0.03 (1.45) 1.01

I8 3.04 3.07 0.03 (1.17) 1.01

I9 3.47 3.60 0.13 (3.81) 1.04

I0 3.50 4.01 0.51 (14.42) 1.14
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and a half days. The time to solve this instance by a single optimization
run including data input and network construction is 3.6 minutes. Here we
include input and especially construction time for fairness reasons: the local
network (de)construction due to data changes is an integrated part of the
reoptimization and is thus also included in the reoptimization run time.

We further generate instances from IB with an increasing number of
changes δ ∈ {100, 200, 400, 800, 1000, 2000, 2500, 5000}.

Remember from Chapter 6, that we distinguish changes in addition,
removal and change in the number of cars for either supply or demand. For
each number δ of changes, we generated 40 % additions and 40 % removals
distributed equally among supplies and demands. Addition of supplies and
demands usually occurs on account of the proceeding time line. Removal
of supplies and demands usually occurs when assignments are due and
drop out of the optimization. In some cases also unforseen supplies come
up or cars prove defective and demands can be cancelled short-termed by
the customer.

The remaining 20 % of δ are changes in the number of cars, also equally
distributed between supplies and demands, which occur due to partly
allocated supplies and partly satisfied demands. Changes in the number of
cars are also necessary data corrections for the above mentioned reasons
(unforeseen/defective/canceled cars).

Let Iδ denote the instance resulting from δ changes in IB. Table 6 compares
the running times for solving Iδ from scratch (column ’optimization’) with
the time (column ’reoptimization’) needed to reoptimize the solution of
IB to fit the δ changes indicated in the first column. We also display the
difference between both in column ’diff.’ and its percentage with respect
to the optimization approach. All times are given in minutes and contain
input and network generation time.

running time and robustness We see that for up to 20% changes
(δ = 2000) on the total data volume of the basic instance the reoptimization
approach saves running time compared to optimization from scratch. For
changes on less than 10% (δ ∈ {100, 200, 400}) of the nodes in the network,
the reoptimization time is only about 10% of the time for a complete opti-
mization run on the changed instances Iδ. In these cases it can be assumed
that the number of changes between two (DP) instances is also a measure
for the similarity of their solution. Such similarities are welcome in practice,
as they indicate robustness of a solution.

While for changes on 10% (δ = 1000) of the nodes we still save about 40%
running time with the reoptimization compared to a solution from scratch,
the benefit drops to 4% when 20% of the network’s nodes are subject to
changes (δ = 2000). Finally, if about one fourth of the network is changed in
one or another way, reoptimization performs worse than an optimization
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Table 6: Runtime comparison for δ mixed type data changes via optimization and
reoptimization approach. Note that for the instances with 2500 and 3000

changes respectively the reoptimization approach yields worse running
times than the optimization approach, which results in a negative difference
(column ’diff.’).

changes optimization reoptimization diff. (%)
time [min.] time [min.] [min.]

100 3.58 0.12 3.46 96.75

200 3.62 0.23 3.39 93.55

400 3.43 0.38 3.05 88.83

800 3.19 0.9 2.29 71.82

1000 3.22 1.27 1.95 60.64

2000 3.26 3.1 0.16 4.85

2500 3.34 4.07 -0.73 -
3000 3.33 5.13 -1.8 -

from scratch. One reason is that for data changes in the dimension of 25%
of the original input data, similarity of the solution for IB and Iδ is unlikely.

reoptimization and benefit limits It would be nice to ensure that
we always benefit from reoptimization in that we need at most the same
running time as for the optimization in any case. However, this may not be
possible for the following reason. The reoptimization needs to be carried
out separately for addition (increase of the number of cars) and removal
(decrease of the number of cars) as well as for supplies and demands (cf.
Chapter 6). In case of addition for example supply and demand nodes are
treated separately to ensure that we find a valid potential.

Hence, if matching supplies and demands are added such that the former
is assigned to the latter in an optimal solution, the reoptimization needs
at least two augmentations to find the optimal distribution. This happens,
because either the supply or the demand is not present in the network until
the current solution is repaired with respect to the other. On the other hand,
in the optimization, both supply and demand are present from the very
beginning, such that a shortest path between them can be found within one
augmentation. Analogous situations can occur for other combinations of
changes on supplies and demands.

Further, an implementation of the reoptimization is always likely to pro-
duce a slight data management overhead with respect to pure optimization.
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Table 7: Runtime comparison: Optimization versus reoptimization with additional
supply and demand.

changes optimization reoptimization diff. (%)
time [min.] time [min.] [min.]

40 3.62 0.03 3.59 99.08

80 4.24 0.07 4.17 98.43

160 3.56 0.2 3.36 94.38

320 3.63 0.25 3.38 93.1
400 3.45 0.38 3.07 88.89

800 3.88 0.97 2.91 75.09

1000 4.04 1.27 2.77 68.61

1200 4.03 0.98 3.05 75.57

reoptimization benefit in practice In practice, reoptimization is
mainly used as a consolidation to guarantee a quasi non-blocking work-flow:
during the main optimization, which takes a few minutes, manual changes
can be performed as usual. Those (few) changes have to be integrated into
the solution very fast, such that a blocking of manual data entry does not
disturb the general work flow.

Moreover, a fast reoptimization can be applied frequently enough to
prevent massive data changes in between two runs. Hence, a change of one
fourth of the whole (DP) data between two runs is unlikely and indicates that
a considerable time interval has passed. In the latter case, an optimization
from scratch is the better choice anyway: we limit the possible changes
during the reoptimization to node changes, which generally correspond to
changes of the input data. With an increasing time interval it becomes more
likely that also master data such as the timetable has to be adapted.

reoptimization for separate types of changes After this gen-
eral comparison of optimization and reoptimization with respect to running
time, we also look at the runtime behaviour when only a certain type of
change occurs. Tables 7 and 8 are structured as Table 6, but the data changes
are limited to addition and removal respectively. We use the same sets of
changes δ and ignore changes different from addition or removal respec-
tively, such that we have δ ∈ {40, 80, 160, 320, 400, 800, 1000, 1200} for each
kind of change.

On the one hand, we see from Tables 7 and 8 that addition of supply or
demand seems much more well-behaved with respect to the reoptimization
approach than removal. On the one hand obviously Iδ is simply smaller in
terms of |S| and |D| than IB, if all changes are removals. Hence, the optimiza-
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Table 8: Runtime comparison: Optimization versus reoptimization with removal
of supply and demand.

changes optimization reoptimization diff. (%)
time [min.] time [min.] [min.]

40 3.35 0.07 3.28 98.01

80 3.56 0.13 3.42 96.25

160 3.54 0.27 3.27 92.46

320 2.98 0.5 2.48 83.22

400 2.96 0.7 2.26 76.35

800 2.71 1.53 1.18 43.51

1000 2.52 1.88 0.64 25.33

1200 2.44 2.28 0.16 6.3

tion on Iδ can be expected to be faster. Further, all supply is distributed in
an optimal solution and demands are usually not completely unsatisfied.
Thus a removal always results in an actual change of the solution, whereas
for example for additional supply potentially only additional assignments
are necessary without changing the assignments in the former distribution.
This is likely in our test setting, as additional supply is created by duplicat-
ing existent supplies. However, these observations only partly explain our
results, as also pure addition and pure removal can cause necessary changes
in the optimal solution, especially if supplies and demands are both subject
to the changes.

As mentioned above, removals usually occur in practice when assignments
are due and the corresponding supplies and demands need to be extracted
from the (DP) instance. This states a special case of removal. Consider an
assignment δij = (i, j, nij) of nij cars of supply si to demand dj. Further let
no heterogeneous substitution be involved with respect to si and dj and
let δij be part of the optimal distribution, which means it is no manual
assignment differing from the optimization outcome.

Then the minimum cost flow in the network N
g
I contains a flow greater

or equal to nij from s via i and j to one of the sinks t. Thus we can
reduce the capacities of the arcs (s, i) and (j, t) by nij together with the flow
on these arcs and f(i, j). (We also delete arcs if their capacity is reduced
to zero and remove the nodes i and j if they have no more incoming
or outgoing arc respectively.) The resulting flow remains optimal for the
resulting network as well as the solution remains optimal, if the single
assignment δij and the corresponding number of available and ordered
cars are removed (see Chapter 6). Hence, in this practically most relevant
case of removal, a reoptimization as described in Section 6.2 is not even



A.2 computational results 151

necessary. Consequently our test results for removals do not limit the
practical applicability of the reoptimization approach.

Not surprisingly changes in the number of cars for supplies and demands
exhibit a runtime behaviour between those of addition and removal, as we
generated increases as well as decreases.

a.2.4 Conclusion

Our tests show that the model approach as well as the prototypical imple-
mentation meets the application’s requirements. Furthermore, the reopti-
mization is beneficial with respect to speeding up subsequent computations
for up to 40% changes in the input data and yields a quasi non-blocking
work flow.





B
S P E C I A L G E N E R A L I Z E D F L O W N E T W O R K S

In this appendix we summarize some results on complexity and bounded
fractionality of generalized flow problems on special network instances.
These results are obtained independently of the (DP).

b.1 equivalence of arc and node multipliers

n

...

...

u

v

w

µnu

µnv

µnw

n

...

...

u

v

w

µu = µnu

µv = µnv

µw = µnw

⇒
µn = 1

Figure 35: Multipliers on arcs and on nodes are equivalent.

The original NP-completeness proof for generalized flows by Sahni [107]
employs the subset sum problem and a variant of generalized flows, where
multipliers are attached to nodes instead of arcs. Both variants of flow
multipliers are equivalent in the following sense:

A node multiplier µi on vi can be interpreted as an arc multiplier µij on
all outgoing arcs (vi, vj) of vi. On the other hand, if all outgoing arcs of
one node have the same multiplier µij, the node multiplier also equals this
value. For a number #µij of different arc multipliers on outgoing arcs of
vi, we introduce #µij new nodes vik, 1 6 k 6 #µij, add the arcs (vi, vik) and
set µi = 1. The originally outgoing arcs of (vi, x) are now changed to arcs
(vik, x) and the values µik are set according to the desired arc multipliers
(see Figure 35). In the worst case, m = |A| nodes and edges are added, but
the necessary modifications are thus polynomial.

b.2 complexity of generalized flow in special networks

For the convenience of the reader, we first recapitulate the original proof of
[107] for the NP-completeness of the generalized maximum flow problem. It
provides a reduction of the subset sum problem, which is defined as follows:

153
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Figure 36: Original reduction of subset sum: Node multiplier values si in the
nodes ni, all missing capacities are unlimited and the node balance at t

is b(t) = −M.

[SubsetSum] Given a multiset S = {s1, . . . , sr} of positive integers
and a positive integer M, (M 6

∑r
i=1 si), does there exist a sub

multiset of S that sums up to M?

For general positive integer values, the subset sum problem is NP-
complete. For a given subset sum instance S, construct a network NS with a
source node s, nodes ni, 1 6 i 6 r with node multiplier si for every integer
si ∈ S and a sink node t with a demand of b(t) = −M. For every i the source
is connected to ni by (s, ni) with capacity 1. The nodes ni are connected to
t by arcs (ni, t) with unlimited capacity (see Figure 36). There is an integral
s-t-flow solution if and only if there is a sub multiset of S that sums up to M.
(Concerning the appropriate node balance b(s) = r and the node balance
constraints, we have to add another sink t ′ with b(t ′) = −(

∑
si∈S si − M)

and the arcs (ni, t ′) to Sahni’s construction to guarantee a feasible flow
solution.)

We adopt the complexity result for generalized networks with multipli-
cator function µ : A → {1, 2}. We denote such networks by N1,2. With all
multipliers restricted to 1 or 2 and the above network construction, we can
only represent subset sum instances where si ∈ {1, 2}, which does not suffice
for the reduction since those instances are easy to solve. Therefore, in the
network NS we replace each arc (ni, t) (grey shaded box in Figure 36) by a
sub graph NS|ni like the one shown in Figure 37. The purpose of the sub
graph is to amplify the one unit of flow which is the upper capacity bound
on arc (s, ni) to the appropriate si flow units which have to arrive at t for
the original unit. Further we want to use only node multipliers 1 and 2 in
the sub graph. We will see that producing the appropriate number of flow
units resembles the flow equivalent of a bit representation of each si.
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Figure 37: Subgraph NS|ni for si = 31: Node multipliers are written in the nodes
and all black dots are nodes with multiplier 2. Missing capacities are
unlimited.

The sub graph NS|ni again consists of two parts: Given si, we first see how
many bits we need to represent the value. The number of bits zi we need
here is not the length of the binary representation |(si)2|, but the number of
set bits in it, e.g.:

si = 31 = (11111)2 : zi = 5 or sj = 27 = (11011)2 : zj = 4

For each set bit in si’s binary representation, we need a node bj, 1 6 j 6 zi

in NS|ni such that one unit of flow enters bj if and only if one unit of
flow enters ni. Let p(bj) be the valency, i.e. the position of bit bj in the bit
representation. Then we add a path πbjt of length p(bj) − 1 to NS|ni where
all node multipliers are set to 2. If p(bj) − 1 = 0, we add the arc (bj, t) and
set the node multiplier of bj to 1. Now the sum of flow units entering t from
all bj equals si.

Further we have to connect the bj to s: Recall that there is the arc (s, ni)

with capacity 1 and that s has the node multiplier 1. Let l with 2l < zi be
maximal. Then we add an amplification path πSni1

of length l and with
node multipliers 2 on every node, except for ni1, which has node multiplier
1. For one unit of flow, starting on s there are now 2l units arriving at ni1.
We connect ni1 to the nodes bj, 1 6 j 6 2l − 1 by arcs (ni1, bj) with capacity
1, such that the first 2l − 1 nodes bj receive exactly one unit of flow if and
only if one unit of flow starts from s to ni.

Then we add two extra nodes ni2, ni3 with node multipliers 2 and 1 and
the arcs (ni1, ni2) and (ni2, ni3) with capacity 1. For the one unit left at ni1,
we now have two units at ni3. We add the arc (ni3, b2l) to cover b2l with
one of the two remaining units. Further we add ni4 and arc (ni3, ni4) with
capacity 1. Now at node ni4 we have the same situation as before at node
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Figure 38: Forking Sub graph : Node multipliers are written in the nodes and
missing capacities are unlimited.

ni1, only that we have to generate zi − 2l units of flow and distribute them
appropriately to the remaining nodes bj, 2l + 1 6 j 6 zi. This can be done
exactly as before, determining the maximum l ′ with 2l ′ < zi − 2l and adding
the amplification path, some new nodes and the arcs with capacity 1 to the
bit nodes bj.

The procedure terminates, because each number zi has a binary repre-
sentation. Further, this representation is bounded in length by dlog2(zi)e,
thus we have to repeat the above procedure at most dlog2(zi)e times and
each amplification path itself is at most dlog2(zi)e nodes long. The same is
true for the number zi of bit nodes bj and the paths from bj to t. Thus the
construction of each NS|ni is polynomial.

To ensure a feasible flow if and only if there is a subset S ′ ⊆ S with∑
si∈S ′ si = M, we duplicate each sub graph NS|ni as NS|n

′
i and add another

sink t ′ which substitutes t for the duplicate sub graphs. Then we delete
each arc (s, ni) and add the sub graph depicted in Figure 38, where s, ni, n ′

i

are corresponding nodes which already belong to N. Thus with b(t) = M

and b(t ′) =
∑

si∈S si − M we obtain feasible flows in all desired cases.
Now we can set b(s) = r. Thus for a valid integral flow solution r units

leave s and result in si units entering t or t ′.

Theorem 92 It is NP-complete to decide whether a generalized network N1,2
allows for a feasible integral flow.

Proof: Given an instance S = {si, 1 6 i 6 r}, M of subset sum, we construct
a network as described above. Then for each unit of flow leaving s to a
node ni or n ′

i, exactly si units of flow enter t or t ′. Thus, the sinks t, t ′

with b(t) = −M, b(t ′) = −(
∑r

i=1 si − M) can be balanced by an integral
flow from s if and only if there is a subset S ′ ⊆ S with

∑
si∈S ′ si = M (and

simultaneously
∑

si∈S\S ′ si =
∑

si∈S si − M). Moreover the problem is in NP:
An NTM guesses the flows and verifies the balance and capacity constraints.

We further restrict the structure of our generalized networks and inves-
tigate the complexity of the decision if feasible integral flows exists. Let
N = Nr

1,2 be a bipartite network (V = Vs ∪ Vt, A) with one source s ∈ Vt
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Figure 39: Construction of Nα.

and multiple sinks ti ∈ Vs. Arcs are only directed from s to Vs, Vs to Vt

and Vt to ti. The multiplicator function µ : A → {1, 2} is 1 on all arcs (s, v),
(w, ti) and such that all outgoing arcs (v, w) of a node v ∈ Vs have the same
multiplier µ(v, w). We call such networks 2-regular networks. The latter
do not include the network NS we used in Theorem 92 and we present an
alternative reduction of the 3V2L3SAT problem (see Section 4.2).

For a given instance α of 3V2L3SAT, we construct the following network
Nα: We have vertices nk for every variable vk and two additional vertices n0

k,
n1

k for the corresponding literals ¬lk, lk, which occur in α. For every nk the
node balance bk is 1 and the node balance of the literal nodes is 0. Nodes nk

are connected to the corresponding literal nodes by arcs (nk, n0
k), (nk, n1

k)

with an arc multiplier of 2.
For each clause Ci in α we need another vertex ni, which has incoming

arcs (n∗k, ni) from those literal nodes which correspond to literals occurring
in Ci. Finally we add two sink nodes ssat, srest with node balances bsat = −n

and brest = −2m + n to the graph. We connect the clause nodes to both
sinks by arcs (ni, ssat) with capacity 1 and arcs (ni, srest) with unlimited
capacity (see Figure 39). Unless otherwise noted, any node nj has balance
bj = 0 and any arc eij has multiplier µij = 1, unlimited capacity and zero
costs. Note that the constructed network meets all above restrictions on Nr

1,2.

Theorem 93 It is NP-complete to decide whether a generalized network Nr
1,2

allows for a feasible integral flow.

Proof: Given a 3V2L3SAT formula α, construct Nr
1,2 = Nα as above. For a

valid solution, one unit of flow has to leave each variable node nk either to
n0

k or to n1
k as the flow has to be integral. Now we have 2 units of flow at

one half of all literal nodes which sum up to 2m units of excess exactly as
the sum of deficits at the sinks. Thus there is a valid flow if there are paths
to the sinks with appropriate capacity.



158 special generalized flow networks

As the literal nodes only occur in the network if the corresponding literal
occurs in α, each such node is connected to at least one clause node ni, which
is again connected to both sinks. As the arcs (ni, srest) have no capacity
limits, the required flow units can always pass from arbitrary literal nodes
to srest. On the other hand, ssat can be reached by only one unit of flow via
each clause node. To balance the deficit bssat = −n and at the same time
satisfy all node and capacity constraints, at least one unit of flow must pass
each clause node.

We can thus reinterpret the flow through a literal node n0
k resp. n1

k as
a truth assignment ν with ν(vk) = 0 resp. ν(vk) = 1. Each unit of flow
through a clause node ni must then correspond to a true literal in the
corresponding clause. A valid flow, especially carrying n flow units to ssat,
therefore corresponds to a truth assignment satisfying at least one literal in
every clause and thus satisfying the whole formula α.

If there is no valid integral flow, we cannot find a satisfying truth assign-
ment either. Moreover the problem is in NP (Theorem 92).

b.3 k-regular networks and k-fractionality

We generalize our notion of 2-regular networks (see Section B.2) to k-regular
networks by allowing a multiplicator function µ : A → {1, k} and keep
all other restrictions as before. For k-regular networks Nr

1,k, we obtain a
k-fractional feasible flows in polynomial time, if it exists. We argue this
along the lines of an iterative cycle cancelling algorithm, which maintains
k-fractionality of the residual capacity on all arcs. This was the first proof
that half-integral minimum cost flows f(N

g
I ) can be obtained in polynomial

time for practical instances of the (DP).
We transform a k-regular network N = Nr

1,k = (Vs ∪ Vt, A) (see Figure
40 a)) into a generalized minimum cost flow circulation instance N ′ (see
Figure 40 b)) as follows: We split node s into nodes s1 and sk and connect
all nodes ai with (s, ai) and multiplier 1 to s1, nodes ai with (s, ai) and
multiplier k (remaining nodes of set Vs) to sk while the arcs have the same
cost and capacity values as before. Further, we add arcs (t, s1) and (t, sk)

with cost zero, unlimited capacity and multipliers 1 and 1
k , respectively. The

minimum cost flow solution in N is equivalent to the minimum cost flow
circulation solution on N ′ with the following property:

Lemma 94 Given a feasible circulation f, every cycle in the residual network N ′
f

is a unit gain cycle, i.e. the product of the multipliers of the nodes in the cycle is 1.

Proof: Denote by S1 and Sk the set of nodes containing the source s1

and sk respectively and all nodes ai connected to s1 and sk respectively.
Let the set T contain all nodes bj and ti. By construction flow is generated
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Figure 40: Simple example for a k-regular network N (a). The transformed network
N ′ is shown in (b).

(multiplied by k) only on arcs from Sk to T and destroyed (divided by k)
only on arcs from T to Sk. As there are no arcs between nodes of S1 and Sk

or vice versa, each cycle has to contain as many arcs from Sk to T as from
T to Sk and thus the product of all node multipliers along any cycle is 1.
(Moreover, it follows, that every path in the residual network has a path
multiplier of either 1

k , 1 or k.)

It is well known [55, 61] that a feasible generalized circulation f is optimal
if and only if N ′

f contains no negative cost circuits, where a circuit is a
circulation that sends positive flow only along the arcs of a single residual
unit-gain cycle (or bicycle, which cannot occur here due to the network
structure). Further the optimal generalized circulation can be decomposed
into unit-gain cycles.

With this observation, we base our argumentation for the result on the
Cycle Cancelling Algorithm [83], which successively detects circuits with
negative costs in the residual network and cancels them by augmenting the
maximum possible amount of flow along them. (Thus at least one of the
cycle’s arcs is saturated. Due to the multipliers this is not necessarily the one
with least residual capacity.) By Lemma 94, we can limit this argumentation
to the cancelling of unit-gain cycles.

Theorem 95 Cycle Cancelling always yields a k-fractional solution to the mini-
mum cost circulation problem on N ′.

Proof: Let Ak comprise all arcs with tail in Sk, all other arcs are contained
in A1. We show that during the algorithm the residual capacity on all arcs
from A1 and Ak respectively remains integral and k-fractional respectively.
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Clearly, this property holds for the zero circulation. If a cycle cancelling step
increases the flow along an arc a ∈ A1 by θ, it is increased along any arc
a ′ ∈ Ak along the same cycle by 1

kθ. Obviously, if the residual capacity ua of
a determines the maximal flow which can be augmented along the current
negative cost cycle and ua is not a multiple of k, the flow θ on arcs in A1 is
still integral, but the flow on arcs in Ak can become k-fractional. Such flows
on arcs in Ak lead to k-fractional residual capacities, but those again lead
only to k-fractional flows θ on arcs in the same set and to integral flows and
residual capacities on arcs of A1.

The solution in N ′ can be transferred to the flow instance N. We can even
enlarge the set of allowed multipliers to µ : A → K ⊂ N (K-regular networks)
with the same restrictions as before. By introducing source nodes sk, k ∈ K

and partitioning the arcs into sets Ak, k ∈ K, we obtain an analogous result
as Theorem 95 for K-regular networks:

Corollary 96 Let k∗ be the least common multiple of the set K for a K-regular
network Nr

K. Then we can obtain a k∗-fractionate minimum cost flow in N in
polynomial time.

b.4 k-regular networks and k-regularity

Here we present an ILP formulation of the generalized minimum cost
flow problem in k-regular networks and show that the resulting constraint
matrix is k-regular. The latter is a generalization of total unimodularity by
G. Appa [7, 8] and guarantees fractionate solutions of integer multiples of 1

k

(k-fractional flows). First of all, we restate the definition of k-regularity:

Definition 97 (k-Regularity, [8]) A rational matrix is called k−regular, if for
each non-singular square submatrix R, kR−1 is integral.

Consider the LP formulation of the minimum cost network flow problem
in N = Nr

1,k = (V , E), where A is composed of the node arc incidence matrix
M(N) and the identity matrix of dimension m attached below. Further, b̃ is
the vector of node balances b(i) with the vector of capacities u(i, j) attached
below (in the order of arcs corresponding to the columns of M(N)). Thus
Ax 6 b̃ accounts for node balance and capacity constraints.

maximize cTx

s.t.
Ax 6 b̃

x > 0
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Let x∗ be an optimal flow. Further, each LP solution attains the bounds of
a subset of constraints (those inequalities, which are satisfied with equality).
Thus the respective values x∗ of the variables x are determined by a system
of equalities. The latter must be of full rank and is thus a non-singular
square submatrix R of A with x∗ = R−1b. In case A is k-regular, then also R

is k-regular. By Definition 97, this means that kR−1 is integral or in other
words that each entry of R−1 is a multiple of 1

k . Thus any solution x∗ has
bounded fractionality of k.

In the following, we show that A is k-regular for a k-regular network with
application of some useful lemmas of [8].

Lemma 98 (Invariants [8]) Let A be k−regular. Then the following matrices are
also k−regular:

• the transpose of A

• any submatrix of A

• the matrix obtained by multiplying a row or column of A by −1

• the matrix obtained by interchanging two rows or columns of A

• the matrix obtained by duplicating a row or column of A

• the matrix obtained by dividing a row or column of A by a non-zero integer

Lemma 99 (Attachment of Identity [8]) Let A be an integral matrix. Then A

is k-regular if and only if [A, I] is k-regular.

The following Lemma reduces the task of proving the k-regularity of A

to proving the k-regularity of M(N).

Lemma 100 (A and M(N)) A is k-regular if and only if M(N) is k-regular.

Proof: Observe that A = [M(N), I]T . By Lemma 98 A is k-regular if and
only if AT is k-regular and by 99 AT is k-regular if and only if M(N) is
k-regular and vice versa as transposition is symmetric.

As a preparation, we analyze the structure of M(N). Let n = |V | and
m = |E|. Further, we denote columns of M(N) corresponding to the arcs
(s, i) by e1, . . . , e|S|, the arcs (j, tp) by em−|D|+1, . . . , em and the arcs (i, j) by
e|S|+1, . . . , em−|D|. The rows of M(N) are arranged such that the first row
corresponds to s, rows 2 until |S| correspond to nodes ai, the following |D|

rows correspond to nodes bj and the last rows correspond to the sink nodes
tp. Within these predefinitions, we can order rows corresponding to nodes
and columns corresponding to arcs to obtain a general structure as depicted
in Figure 41.
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Figure 41: Structure of the arc node incidence matrix M(N) of a k-regular network
N.

Here O stands for the matrix with all entries zero, I is the identity ma-
trix (of appropriate dimension) and in the area marked by an asterisk ∗,
each column contains exactly one entry 1, all others are zero. From this
structure obviously most square submatrices are either singular or (totally)
unimodular as they resemble ordinary network matrices. It is obvious that
any submatrix containing a zero row or column is singular.

A non-singular square submatrix R of M(N) thus can contain a combina-
tion of the following non-zero rows or columns respectively.

Property 101 (Submatrices of M(N)) A non-singular square submatrix R of
M(N) consists of non-zero rows and columns of one of the following types:

• row r:

Type 1 contains one entry 1, all others zero

Type 2 contains one entry −1, all others zero

Type 3 contains up to |S| entries 1, all others zero

Type 4 contains up to |S| entries −1, all others zero

Type 5 contains up to |S| entries 1 and one entry −1, all others zero

Type 6 contains up to |D| entries 1, all others zero

Type 7 contains up to |D| (equal) entries −k, all others zero

Type 8 contains up to |D| (equal) entries −k and one entry 1, all others zero

• column c:
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Type 1 contains one entry 1, all others zero

Type 2 contains one entry −1, all others zero

Type 3 contains one entry −k, all others zero

Type 4 contains one entry −1 and one entry 1, all others zero

Type 5 contains one entry −k and one entry 1, all others zero

Further properties of a non-singular submatrix R of M(N) are the follow-
ing:

Property 102 (Type 1,2 or 3 column) R contains at least one type 1,2 or 3 col-
umn.

Property 103 (Value of det(R)) The determinant det(R) of R is a power of ±k.

Property 102 is obvious as the row vectors are linear dependant (add all
rows with entries −k and k times all rows with entries 1 resulting in the
zero row vector) for a submatrix R of M(N) only containing columns of
type 4 and 5, such that R is singular in this case.

For property 103 we develop det(R) based on a column of type 1,2 or
3, such that det(R) ∈ {±det(R ′), −kdet(R ′)}, where R ′ is the appropriate
smaller submatrix of M(N). As R is non-singular, also R ′ must be non-
singular, thus containing a column of type 1,2 or 3. Continuing the develop-
ment of det(R ′) iteratively until the smaller submatrix is a 1× 1-matrix and
thus the determinant is ±1 or −k results in the property.

The inverse R−1 of R is defined as R−1 = 1
det(R)

adj(R), where adj(R) is
the adjoint of R. Let R be a r× r matrix, then the entries of adj(R) are ±1

times the determinants of all r − 1× r − 1 submatrices R ′ of R. To ensure
kR−1 ∈ Nr ×Nr and given Property 103, we show the following Lemma.
(Note that the difference to the argument for Property 103 is that we consider
any submatrix R ′, not only the appropriate and relevant submatrix occurring
during the development of det(R).)

Lemma 104 (Relation of Determinants det(R), det(R ′)) Let R be a r× r non-
singular square submatrix of M(N) and R ′ a r − 1× r − 1 non-singular square
submatrix of R, then det(R) ∈ {±det(R ′), −kdet(R ′)} or R ′ is singular.

Proof: For the relevant r − 1× r − 1 submatrix R∗ occurring during the
development of det(R) as above, we know det(R) is either ±det(R∗) or
−kdet(R∗). Let c be the column by which we developed det(R). Assume
det(R) = ±det(R∗). Then c contains exactly one entry 1 or −1 and all R ′

containing the same columns as R∗ either have the same determinant det(R∗)
or are singular.

Further, each R ′, which contains c does not contain another column c ′,
which is contained in R∗. If c ′ does not contain an entry −k, then again
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(depending on which rows R ′ contains) det(R ′) = det(R∗) or R ′ is singular.
If c ′ contains an entry −k, then (depending on which rows R ′ contains)
either det(R ′) = −1

k det(R∗), as the development of det(R ′) lacks a column
of type 3 compared to det(R∗) or R ′ is singular. Thus, if R ′ is not singular
det(R ′) ∈ {det(R∗), −1

k det(R∗)} and as we assumed det(R) = ±det(R∗) it
follows that det(R) ∈ {±det(R ′), −kdet(R ′)}.

Now assume det(R) = −kdet(R∗). Then c contains exactly one entry −k

and all R ′ containing the same columns as R∗ either have the same deter-
minant det(R∗) or are singular. Further, each R ′, which contains c does not
contain another column c ′, which is contained in R∗. If c ′ contains an entry
−k, then again (depending on which rows R ′ contains) det(R ′) = det(R∗) or
R ′ is singular. If c ′ does not contain an entry −k, then (depending on which
rows R ′ contains) either det(R ′) = −kdet(R∗), as this time the development
of det(R∗) lacks a column of type 3 compared to det(R ′) or R ′ is singu-
lar. Thus, if R ′ is not singular det(R ′) ∈ {±det(R∗), −kdet(R∗)} and as we
assumed det(R) = −kdet(R∗) it follows that det(R) ∈ {kdet(R ′),±det(R ′)}.

We can now show:

Theorem 105 (M(N) is k-regular) The node arc incidence matrix of a k-regular
network is k-regular.

Proof: For each non-singular square submatrix R of M(N), the inverse
R−1 = 1

det(R)
adj(R) has entries a =

det(R ′)
det(R)

. By Lemma 104 either a = 0 (if R ′

is singular) or a ∈ {±1, −1
k }, such that ka ∈ N in each case.
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