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Kurzzusammenfassung

In der statistischen Modellierung und der statistischen Mustererkennung werden Hidden-
Markov-Modelle (HMM) in zahlreichen Anwendungsgebieten erfolgreich eingesetzt. Dabei
besteht ein fundamentales Problem in der Auswahl der zugrundeliegenden Architektur bzw.
Topologie, also der Anzahl der Zustände des HMMs und der zwischen ihnen erlaubten
Übergänge. Dies gilt insbesondere, wenn das Wissen aus dem Anwendungsbereich unzu-
reichend für eine gesicherte Topologie-Wahl ist, oder bei der sogenannten black-box Model-
lierung. Die Bedeutung der HMM-Topologie ergibt sich aus der Tatsache, daß eine zu große
Anzahl an Zuständen zu unverläßlichen Parameterschätzungen führt und andererseits eine zu
geringe Anzahl an Zuständen es nicht erlaubt, relevante statistische Eigenschaften der Daten-
quelle zu modellieren.

Wir haben einen Algorithmus entwickelt, der ausgehend von Sequenzdaten, die von einem
ergodischen Prozess erzeugt wurden, ein HMM samt Topologie und Parametern lernt. Der dafür
benutzte Bayes’sche Ansatz erlaubt eine Steuerung der erzielten Generalisierung mittels einer
a-priori Verteilung über einen zentralen Parameter.

Abstract

Hidden-Markov-Models (HMMs) are a widely and successfully used tool in statistical mod-
eling and statistical pattern recognition. One fundamental problem in the application of HMMs
is finding the underlying architecture or topology, particularly when there is no strong evidence
from the application domain — e.g., when doing black box modeling. Topology is important
with regard to good parameter estimates and with regard to performance: A model with “too
many” states — and hence too many parameters — requires too much training data while an
model with “not enough” states impedes the HMM from capturing subtle statistical patterns.

We have developed a novel algorithm that, given sequence data originating from an ergodic
process, infers an HMM, its topology and its parameters. We introduce a Bayesian approach,
where a suitable prior forces generalization while giving the user control with a single prior on
one parameter.
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für Angewandte Informatik, Köln (ZAIK). Thanks to Prof. Dr. Achim Bachem, who hired me
at the predecessor of the ZAIK, the Zentrum für Paralleles Rechnen (ZPR).

Thanks to my part-time boss, full-time mentor and friend, Dr. David C. Torney (Los Alamos
National Laboratory) for getting me started in bioinformatics, for his encouragement and his en-
thusiasm, many helpful discussions, not only pertinent to bioinformatics and this thesis, and also
for serving as a member of my thesis committee. I am very grateful to Dr. Catherine Macken
(Los Alamos National Laboratory) who got me involved with Hidden Markov Models and par-
ticular with this problem. Also, I would like to thank the further members of my thesis com-
mittee, Prof. Dr. Ewald Speckenmeyer, Prof. Dr. Diethard Tautz and Dr. Stefan Porschen. As
for bringing my prose up to the appropriate level of editorial quality, my deepest thanks go out
to Lars Kaderali, Matthias Hayer, Bernhard Knab, Alexander Schönhuth, Karin Weinbrecht and
Winfried Hochstättler.

With regards to my colleagues at the ZAIK (though it probably always will be the ZPR for
me): It was a great pleasure and an utmost privilege to work in a group of so many enthusiastic,
talented, driven individuals who shared their knowledge and their wit so freely. Thanks to every-
body! I just would like to thank particularly Matthias Hayer, my long-time office mate, Dr. Win-
fried Hochstättler, as well as my collaborators in statistical modeling — Bernhard Knab, Bernd
Wichern, Filippo Castiglione and Barthel Steckemetz — as well as the students I was allowed
to collaborate with: Eva Bolten, Ramazan Buzdemir, Achim Gädke, Lars Kaderali, Torsten Pat-
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Chapter 1

Introduction

As computers capable of storing and processing large data-sets became abundant, methods from
statistical pattern recognition and classification found their way into the applied sciences and
industrial research. They are used, for example, for tasks such as speech recognition within a
fixed problem frame. The same methods are an important tool in explorative data analysis, a
help on the quest for squeezing the most information out of whatever data one has at hand.

Hidden Markov Models (HMMs) [65], as one particular class of statistical models used in
pattern recognition and classification, have been applied with great success in both cases. They
provide a sound statistical framework, and allow for efficient and numerically stable algorithms.
They can be visualized as (mathematical) graphs, which constitutes an effective user interface
in the process of creating models for a particular application. They have become a basic and
well-understood tool in the applied sciences; cf. [19,33,54].

In explorative data analysis however, particularly when the true nature of the process gen-
erating the data is unknown or only partially understood, there is one specific problem limiting
the use of HMMs. That is, how should one choose the right HMM topology — basically the
number of states in the model and how those states should be interconnected? The two main
aspects contributing to the bottleneck are insufficient knowledge about the problem domain to
support the topology-choosing process, and, even if enough information is available, the insuf-
ficient throughput of the (mostly manual) process used so far.

Also, in data analysis, often an increased sensitivity or, equivalently, a higher degree of gen-
eralization is required. That is, instead of having one fixed model, one would prefer a choice
among general models, or, more exactly, a method which produces models at varying levels of
specificity.

Finally, smaller models allow for more reliable parameter estimates given the same amount
of training data, since the number of parameters depends, in general, quadratically on the model
size. As the model size also enters quadratically in the computational complexity of the funda-
mental HMM algorithms, there is even motivation from a purely practical point of view for a
method which allows inference of models and their topologies, while giving the user a handle
on the size of the model produced.

The algorithms known in the literature treat the problem of learning HMM topology in an
ad-hoc manner [19], with one exception [73], which uses a Bayesian approach but requires very

1



2 CHAPTER 1 INTRODUCTION

detailed specification of priors on the space of HMMs.
The main contribution of this work is the development of a robust and efficient algorithm

which learns an HMM — including its topology — from data. The algorithm is formulated in a
Bayesian setting, where a suitable prior distribution influences the generalization power of the
model inferred. The prior is embodied in one internal parameter of the algorithm. It is easy to
interpret, which is helpful in making sensible choices thereof.

Additionally, we introduce a novel measure on the space of HMMs, indicating the level of
distinguishability between states and thus allowing to quantify how close an HMM is to being a
Markov chain. We argue the relevance of the measure with respect to learning HMMs and with
respect to comparing HMMs.

This thesis is organized in six chapters.
Following this introduction, we describe the statistical pattern classification problem in chap-

ter two with the goal to formalize the particular problem of HMM inference in an appropriate
framework. Subsequently, we give a concise definition of Bayesian statistics, alluding to the
technique of explicit formulation of a priori assumptions relevant for inferring statistical models
from data. Concepts from information theory — such as cross-entropy — are defined to provide
a measure for the importance of observations when going from prior to posterior. This is fol-
lowed by notations and concepts from the theory of stochastic processes, Markov chains, graphs
and strings, which we require in the further development.

Chapter three gives an overview over the theory of HMMs with discrete observations.
Following the definition of an HMM with discrete observations over a discrete-state, time-
homogeneous, first-order Markov chain, efficient algorithms for the three fundamental prob-
lems [65] are developed. That is, we present algorithms for computing the likelihood of an obser-
vation sequence given a model, for finding the state sequence which is the “optimal” explanation
for an observation sequence, and for adjusting the model parameters as to increase the likelihood
of the training data. This is followed by a thorough discussion of HMM topology — a compo-
nent of HMMs usually chosen by experts during the modeling process — and an overview of
the literature of learning HMM topology. Also, the known distance measures on the space of
HMMs are reviewed. Two alternative representations of HMMs conclude the chapter.

In chapter four the inference algorithm is developed for the case of ergodic stochastic sources.
A motivation is given for using the so-called k-tails as identifiers of HMM states in the underly-
ing data structure of a prefix tree, which provides a compact representation of a realization of the
ergodic source. The influence of a Bayesian prior on the generalization capabilities is investi-
gated. Subsequently, the peculiarities of the algorithm and the particular choices for its individual
components are discussed, followed by an investigation of the computational complexity.

Chapter five is dedicated to the evaluation of the inference algorithm. We perform an eval-
uation on fabricated data. That is, training data produced by a known HMM is used as input to
the algorithm, and the distance measures described in chapter three are used to quantify the dif-
ferences between the source and the inferred HMM. The problem of inferring a known model is
either trivial or impossible, depending on whether the HMM is in fact a Markov chain or whether
it is completely hidden. To allow a distinction, we define a novel measure of distinguishability
and investigate it analytically. We extend it to the case of transient HMMs and demonstrate its
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heuristic suitability in that case. The evaluation is performed on two families of HMMs to obtain
an overall performance evaluation on a wide range of source processes and on some particular
HMM, chosen for specific topological features, which we are able to recover. These topolog-
ical features, basically deterministic signals in a stochastic sequence, are prevalent in various
disguises in many biological sequences. Examples are TATA boxes in eukaryotic promoter se-
quences, start and stop codons in DNA.

This is followed in Chapter 6, by a conclusion summarizing the results obtained in this work
on improving inference of HMM in a black-box setting. Also, a mention is made of possible
extensions to the method and further promising application areas.
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Chapter 2

Basic Concepts and Definitions

In this chapter, we will first introduce statistical pattern classification, in order to establish a
framework for problem formulation and for putting the particular problem of HMM learning
investigated in this thesis into perspective. Subsequently, necessary definitions from statistics,
information, graph theory, and “stringology” will be given.

2.1 Statistical Pattern Classification

All applications of Hidden Markov models can be viewed more abstractly as statistical pattern
classification problems [23]. In its simplest form, see Fig. 2.1, there is

• an abstract class corresponding to an unknown process — the stochastic source — gen-
erating data,

• a set of data, usually finite, collected and annotated with respect to membership in the
abstract class,

• a stochastic model representing the unknown process, which is inferred from the data, and

Abstract
Class

Stochastic
Source

Data Set
Observations

produces

Stochastic
Model

inference

Classifier
Unknown observation x

decides

Figure 2.1: The abstract class, represented by an unknown stochastic source, produces
a set of observations. A stochastic model is inferred, with the goal of predicting mem-
bership in the abstract class for additional data.

5



6 CHAPTER 2 BASIC CONCEPTS AND DEFINITIONS

• a decision function based on the stochastic model, indicating whether a data point belongs
to the abstract class or not.

In the following, we will formalize the foregoing concepts.

Definition 2.1 (Stochastic source) The stochastic source [31] is the process generating the
data belonging to the abstract class. Typically, neither process type nor process parameters of
the stochastic source are known. The source is sometimes also called the true model.

Definition 2.2 (Training data) With training data, we refer to a collection of data, say

S := fx1; x2; : : : ; xng; (2.1)

and an annotation, indicating whether the data originates from the given stochastic source or
not. That is, for n 2 N

Sa := f(x1; i1); (x2; i2); : : : ; (xn; in)g; (2.2)

where ik, 1 ≤ k ≤ n is one in the former case and zero otherwise. All xk are elements of some
fixed domain.

Definition 2.3 (Training) Choose a collection of, usually parameterized, statistical models, say
M(�), from which a model for the abstract class will be inferred. The choice of model collection
— e.g., a particular class of HMMs — is typically done manually. The process of adjusting the
parameters � is called training. The two most frequently used objective functions for training
are the following:
Maximum likelihood (ML): Maximize the data likelihood, i.e. the joint probability of observing
the data, given the model,

P(SjM(�)): (2.3)

Maximum a posteriori probability (MAP): In this setting, we are given a prior distribu-
tion over model parameters, and the objective is to maximize the likelihood of the model (Cf.
Eq. (2.9). Note, we can take P(S) as constant):

P(M(�)jS) / P(M(�))P(SjM(�)): (2.4)

Definition 2.4 (Classifier) A trained model allows computation of P(xjM(�)) for arbitrary x
from some fixed base set. We can then choose a threshold " and define the classifier C as

C(x) :=
�

0 if P(xjM(�)) < ";
1 otherwise:

(2.5)

Note, that the concept of classification with respect to membership in one class can naturally
and readily be extended to classification for a finite number of classes.
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2.2 Bayesian Statistics
Bayes’ formula appears innocuous and an implausible candidate for causing philosophical, and
scientific, arguments on a first encounter. A comprehensive account on its history and the history
and development of the statistical school of thought spawned by it can be found in [48]. Here,
we can only try to give a flavor and fix the notation we will use. The basic statistical terminology
can be found in a large number of textbooks, e.g. in [28].

We will use P(�) to denote the probability of an event, which will always be understood to
be a subset of an implicitly given sample space. If the set of events fB1;B2; : : : ;Bkg, k 2 N

forms a partition of the sample space, we can define a discrete probability distribution P =
(P(B1);P(B2); : : : ;P(Bk)). Performing an experiment described by P corresponds to drawing
a sample according to P.

The joint probability of two events, P(A;B), is simply defined as

P(A;B) := P(A \ B): (2.6)

The conditional probability of two events, P(BjA), where

P(BjA) :=
P(A;B)

P(A)
; (2.7)

is the probability of observing B given that one has already observed A.

Theorem 2.5 (Bayes’ theorem (1763)) Let A and B be two events. Then

P(BjA) =
P(AjB)P(B)

P(A)
: (2.8)

If we consider the formula above with data D and a model M instead of the events A and B,
we obtain

P(MjD) =
P(DjM)P(M)

P(D)
; (2.9)

and the Bayesian point of view in modeling the data with a statistical model becomes apparent. It
allows to assign probabilities to models given the data and, often, to efficiently compute the con-
ditional probability on the right hand side. In this context, P(MjD) is the a posteriori probability
of M. It is called posterior, since it is the probability after having seen the data. Analogously,
the probability P(M) is called the a priori probability of M, prior to observing any data. The cor-
responding distributions are called posterior and prior, respectively. The likelihood, P(DjM), is
the probability that the model M produces the data D.

If we select a model M such that Eq. (2.9) is maximized, we call M a maximum a posteriori
(MAP) model. Since P(D) is constant in the maximization, we will typically consider

P(MjD) / P(DjM)P(M): (2.10)

The prior P(M) should encode our complete belief about the peculiarities of the model. Alter-
natively, we can use the prior to drive the process of MAP model selection towards models we
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would prefer, such as more parsimonious models or models with a larger degree of generalization
power. Note, that in case of a uniform prior the MAP coincides with the maximum likelihood
model. A uniform prior is also called an uninformed prior.

We will also need the following two basic definitions.

Definition 2.6 A discrete probability distribution P = (P(A1); : : : ;P(An)) is called singular, if
it puts all its weight on one event. That is, if there is one 1 ≤ j ≤ n, s.t.

P(Ai) =
�

1 if i = j
0 otherwise.

Definition 2.7 A vector P = (p1; : : : ; pn) is called stochastic, if for 1 ≤ i ≤ n, pi ≥ 0 andPn
i=1 pi = 1. Similarly, a matrix A is called (row) stochastic, if its rows are stochastic vectors.

2.3 Stochastic Processes and Markov Chains
Stochastic processes can represent data such as time series:

Definition 2.8 A stochastic process X with discrete time is a sequence of random variables

X = fXtgt≥0; (2.11)

where Xt denotes the value at time t = 0; 1; 2; : : : . A realization of a stochastic process is a
sequence xt such that

fXt = xtgt≥0: (2.12)

Stochastic processes can have unbounded memory in general. That is, the probability
P(Xt+1jXt;Xt−1; : : : ;X1) depends on all X1; : : : ;Xt. In the following, we will introduce some rel-
evant properties of stochastic processes.

Definition 2.9 A stochastic process with discrete time is called stationary (in the strong sense),
if its finite joint distributions are translation invariant. That is, if

P(Xt1+t = x1; : : : ;Xtm+t = xm) = P(Xt1 = x1; : : : ;Xtm = xm) (2.13)

for arbitrary m 2 N, xi, and all t; ti ≥ 0, 1 ≤ i ≤ m.

Another relevant concept is ergodicity, whose concern is the limiting behavior of averages
over time.

Theorem 2.10 [59] Let fXigi≥0 be a sequence of independently and identically distributed ran-
dom variables with expectation value E(X1) = �. Then the time average

�t :=
1

t + 1

tX
t=0

Xt; t ≥ 0; (2.14)

converges to � as t goes to infinity with probability one.
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If the limit condition above holds, we will call a process ergodic:

Definition 2.11 Given a stochastic process X stationary in the strong sense. We will call X er-
godic, if for all realizations of X, fXi = xigi≥0, the time averages

�st :=
1

t − s

tX
u=s

xt; t > s; (2.15)

converge to the expectation E(Xs) with probability one, as — for arbitrary fixed s ≥ 0 — t goes
to infinity.

An important special class of processes are Markov chains.

Definition 2.12 A stochastic process is said to have the Markov property, iff

P(Xt+1jXt;Xt−1; : : : ;X1) = P(Xt+1jXt): (2.16)

Stochastic processes with the Markov property are also called (first-order) Markov chains. The
events in the sample space of the Xi are then called states, denoted S1; S2; : : : ; Sn. The relevant
probabilities can be represented by the so-called transition matrix A = faijg, where

aij := P(Xt+1 = SjjXt = Si); (2.17)

for 1 ≤ i; j ≤ n.

Definition 2.13 Given a Markov chain, the stochastic vector � = f�1; �2; : : : ; �ng is called an
equilibrium vector, if

AT� = �; (2.18)

where AT denotes the transpose of A. Equilibrium under these circumstances is understood as
an invariance of the state probabilities �i = P(Si), 1 ≤ i ≤ n as time progresses.

Theorem 2.14 [59] A Markov chain is ergodic, if it has a unique equilibrium distribution, to
which the relative sample state frequencies 1

t fjS1j; : : : ; jSnjg converge as t → 1.

Sufficient conditions for existence and uniqueness of an equilibrium distribution are rather
mild and given in the following.

Definition 2.15 A set � 6= ; of states Si is called stochastically closed, iff for all i 2 �:X
j2�

aji = 1: (2.19)

The set � is called minimal, if it contains no proper closed subset. A Markov chain is called
irreducible, iff its state space is minimally closed.
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Definition 2.16 An irreducible Markov chain with transition matrix A is periodic, if there exists
an integer d ≥ 2 and a sequence of states fS0; S1; : : : ; Sd−1g such that for all i = 0; : : : ; d − 1

aij = 1 for j � i + 1 (mod d): (2.20)

Otherwise the chain is called aperiodic.

Theorem 2.17 [59] If a Markov chain is irreducible and aperiodic, then it is ergodic.

Markov chains seem to have a “memory” of length one at first, since only the immediate
preceding states are relevant for transitions. Nevertheless, this is not true [33], as can be seen
from the following example, which shows how to represent a higher-order process as a (first-
order) Markov chain.

Example 2.18 Given a process fZtgt≥0 of memory length k 2 INTS, such that

P(Z0;Z1;Z2; : : : ) =
Y
i≥0

P(ZijZi−1Zi−2 � � �Zi−k): (2.21)

We can define another process by

Xi := ZiZi−1 � � �Zi−k+1; (2.22)

and this process has the Markov property, even if at the cost of a larger state space of size Nk,
with N denoting the size of the state space of fZtgt≥0.

2.4 Information Theory

In the following, we will only briefly define the relevant concepts and definitions from informa-
tion theory which we need for the further exposition. An introduction to information theory and
the concept of information, as well as an axiomatic development of entropy etc., can be found
in the ground-breaking article by Shannon [70] and also, for example, in [5]. Ibidem, proofs for
the results in this section can be found. The concepts introduced are meaningful both for ran-
dom variables and for probability distributions, even if we will only define them for one or the
other. Either ways, we will only deal with discrete random variables and discrete probability
distributions.

Definition 2.19 (Entropy) The entropy H(P) of a discrete probability distribution P =
(p1; : : : ; pn) is defined by

H(P) := −
nX

i=1

pi log pi: (2.23)

If the base of the logarithm is 2, as it is the usual convention, we say that entropy is measured
in bits.
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One interpretation of entropy is the prior uncertainty in the outcome of the random experiment
described by the probability distribution P, or, alternatively, the gain in information when the
outcome is observed.

Lemma 2.20 [70] Given a discrete probability distribution P = (p1; : : : ; pn), the following
holds:

0 ≤ H(P); (2.24)

with equality iff P is singular, and

H(P) ≤ log(n); (2.25)

with equality if and only if P is uniform. The former makes use of the convention p log p := 0 for
p = 0.

When interpreting entropy as a measure on stochastic sources with possibly differently sized
discrete state spaces, we may want to normalize it:

Definition 2.21 (Normalized entropy) With P as above, define

HN (P) :=
H(P)
log(n)

; (2.26)

the normalized entropy. HN (P) is in the interval [0; 1].

A more general concept than entropy is relative entropy:

Definition 2.22 (Relative Entropy) The relative entropy H(P;Q) between two probability dis-
tributions P = (p1; : : : ; pn) and Q = (q1; : : : ; qn), defined by

H(P;Q) :=
nX

i=1

pi log
pi

qi
; (2.27)

is a “measure” of the distance between P and Q.

Relative entropy is also known as cross-entropy, Kullback-Liebler distance, or discrimina-
tion [70]. It is not a distance in the mathematical sense, as it is not symmetric. If symmetry
is crucial, divergence [70] can be used instead of relative entropy:

Definition 2.23 (Divergence) The divergence D(P;Q) between two probability distributions
P = (p1; : : : ; pn) and Q = (q1; : : : ; qn) is defined by

D(P;Q) := H(P;Q) +H(Q;P): (2.28)
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Lemma 2.24 Let P and Q be two probability distributions, then

H(P;Q) ≥ 0; (2.29)

with equality if and only if P = Q.

That entropy is a special case of relative entropy can be seen by consideringH(P;U). If U is the
uniform distribution and P is defined as above, then H(P;U) = log(n) −H(P).

In a Bayesian setting, relative entropy can be used to measure the gain in information due
to observation of an experiment. That is, going from the prior distribution (P(A1);P(A2); : : : ;
P(An)) on events Ai to the posterior distribution conditioned on the outcome B of the experiment,
(P(A1jB); P(A2jB); : : : ;P(AnjB)):

H(posterior; prior) :=
nX

i=1

P(AijB) log
P(AijB)
P(Ai)

: (2.30)

Another information theoretic concept relating two probability distributions is mutual informa-
tion:

Definition 2.25 (Mutual Information) Given two random variables X and Y, and their respec-
tive marginal distributions P(X) and P(Y) as well as the joint distribution P(X;Y). Then, mutual
information, defined as

I(X; Y) :=
X
x;y

P(X = x;Y = y) log

�
P(X = x;Y = y)

P(X = x)P(Y = y)

�
; (2.31)

measures the degree of independence between the two random variables.

Alternatively, mutual information can be expressed in terms of conditional entropy:

Definition 2.26 (Conditional entropy) Let X and Y be two random variables. Then, the con-
ditional entropy of X given Y is defined as

H(XjY) := −
X

y

P(Y = y)
X

x

P(X = xjY = y) log(P(X = xjY = y)): (2.32)

It reflects the average amount of uncertainty about X after observation of Y. From a Bayesian
point of view, this corresponds to the uncertainty in the posterior distribution. The uncertainty
in the prior is simply H(X). The difference between the uncertainties captures the average gain
in information an observation of Y brings about X.

Remark 2.27 We can express mutual information in terms of (conditional) entropy as follows:

I(X; Y) = H(X) −H(XjY): (2.33)
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2.5 Graphs

Graphs are natural mathematical models for many real-world entities — communication net-
works, electronic circuits, to just name two examples — and constitute important data-structures
in computer science. We will use special types of graphs, so called trees, as the core of our algo-
rithm, and also use directed graphs as alternative representation of Markov chains and Hidden
Markov models.

We will use the following definition: A graph G = G(V;E) consists of a finite set of vertices,
V = V(G), and a finite set of edges, E = E(G). An edge e 2 E is a pair fv;wg with v 2 V
and w 2 V: The cardinality of the set V is called the order of G, the cardinality of the set E is
called the size of G:A graph is labeled if names, such as v1; v2; : : : ; vn or simply 1; 2; : : : ; n, are
assigned to all its vertices.

A graph is called simple, if it is undirected, and has no loops or multiple edges. That is, the
edges of the graph G are unordered pairs, fv;wg 2 E implies v 6= w, and for all v 2 V and w 2 V
there is at most one fv;wg 2 E: A graph is called directed, or, for short, digraph, if the edges
are ordered pairs (v;w).

If e = fv;wg 2 E, then we say that the vertices v and w are adjacent and that v and w are
incident to edge e; v and w are called nonadjacent otherwise. If w is adjacent to v we also say
that w is a neighbor of v: The set of all neighbors of a vertex v is called the neighborhood of v
and is denoted by N(v): The cardinality of the neighborhood of v is the degree or valency of v in
G, written as degG(v) or simply deg(v) if the graph G is understood from the context. An isolated
vertex is a vertex which has no neighbors. If all the vertices in a graph have the same degree,
then the graph is called regular or d-regular where d is the degree of any vertex.

An alternating sequence v1; e1; v2; : : : ; vk; ek; vk+1 of vertices and edges is called a walk of
the graph G, if the vertices vi and vi+1 are incident with the edge ei for i = 1; 2; : : : ; k. The
number k of edges in the walk is the length of the walk. Since in a simple graph the edges in the
walk are uniquely determined by the vertices, they are often omitted and the walk is denoted by
v1; v2; : : : ; vk; vk+1. A walk is said to be closed if the first and the last vertex on a walk are equal,
and open otherwise. If all the edges on a walk are distinct, we speak of a trail. Furthermore, if
all vertices, except possibly the first and the last one, are distinct we speak of a path. A cycle in a
graph G is a closed path. In all cases the short notation v1–vk for a walk, trail or path between v1

and vk is used. The distance between two vertices is defined as the number of edges of a shortest
path connecting them.

A (directed) graph is called (strongly) connected if there there is a (directed) path connecting
any (ordered) pair of vertices. Maximal, with respect to inclusion, subsets of vertices fulfilling
the previous conditions are called (strongly) connected components of a graph.

A connected graph T is called a tree, if size(T) = order(T) − 1. Note that this is equivalent
to T containing no cycles. We will usually consider rooted trees; i.e., trees in which one vertex,
the root, is distinguished. The vertices v with deg(v) = 1 are called leaves or terminal vertices,
the vertices v with deg(v) ≥ 2, except the root, are called internal or nonterminal vertices.

Each vertex v in a rooted tree has exactly one predecessor or parent, which is the adjacent
vertex on the unique path from v to the root. All vertices which have the same vertex w as a
parent, are called children of w. The depth, depth(v) of a vertex is its distance from the root. The
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depth of a tree is the maximum depth of vertices in the tree. We can partition vertices into levels.
Level k contains all vertices of depth k.

Edge weights are maps from the set of edges to some set W ,

w : E(G) −→ W
e 7−→ w(e) :

Edge weights can for example be probabilities or symbols or characters associated with an edge.
Similarly, we will use vertex weights.

We say that H is a subgraph of G, if V(H) � V(G) and E(H) � E(G). If fv;wg 2 E(H)
whenever v;w 2 V(H) and fv;wg 2 E(G), we call H an induced subgraph of G.

If V(H) = V(G), the subgraph H of G is called a spanning subgraph. In all cases G is called
a super graph of H.

2.6 Strings and Things

We will model the biological sequences we will ultimatively encounter as words or strings over
an alphabet. The definitions follow [27].

Definition 2.28 A finite set of characters, or symbols, � = fa; b; c; : : :g we will call an alpha-
bet. A sequence s of characters from � is called a string, or a word. We denote by

• jsj its length, that is its number of characters, by

• si its i-th character, if i > 0, extending the notion to negative i corresponding to the (−i)-th
character from the end of s, that is sjsj−i+1, and by

• s[i; j] the continuous sub-string starting at position i and ending in position j.

In the biological sciences and in bioinformatics, the term sequence is used predominantly instead
of string. If we do so, sub-sequence denotes a continuous sub-string and not a sub-sequence in
the usual mathematical sense.

Definition 2.29 Given an alphabet �, we denote with

ACCGGTTAGGAGTTCC
ACCGGTT
 CCGGTTA
  CGGTTAG

…
       AGGAGTT
        GGAGTTC
         GAGTTCC

Figure 2.2: For a DNA-sequence of length 16 (top) the windows of length 7 are de-
picted (bottom).
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vε

v0

0

0

0 0 0 01 1 1 1

1 0 1

1

0 1 0 0 1 0 1 0 1 0 0 1 0 1

v00

v000

v1

v01 v10 v11

v001 v010 v011 v100 v101 v110 v111

v0000 v0001 v0010 v0100 v0101 v0110 v0111 v1000 v1001 v1010 v1100 v1101 v1110 v1111

Figure 2.3: A Prefix tree. The counting variables c(�) associated with vertices are omit-
ted in this picture.

• �
? the set of all possible strings of arbitrary length over the alphabet �, with

• �
≤k the subset of �? containing strings of length at most k 2 N, and with

• �
k the subset containing strings of length exactly k 2 N.

Definition 2.30 Let s 2 �?. Then, with 1 ≤ i; j ≤ jsj, we call

• s[1; j], a prefix, and

• s[i; jsj] a suffix

of s. A suffix or a prefix are called proper if they are not equal to the whole string.

Definition 2.31 We will write the concatenation of two strings s and t as st, s repeated k times
as sk, and the empty string as ".

Remark 2.32 ( [51]) If we denote concatenation of strings with + then, (�?;+) is a monoid with
the identity element ".

We will later on need to divide a given long string into all continuous pieces of some fixed
length by sliding a window over the string (e.g., Fig. 2.2).

Definition 2.33 (Window set) Given a string s and an integer w. Ww(s) is the following set of
sub-strings of length w:

Ww(s) := fs[1;w]; s[2;w + 1]; : : : ; s[jsj − w + 1; jsj]g
Originally motivated from speeding up multi-pattern exact string matching algorithms, key-

word trees [27] provide a compact representation for a set of strings. To signify the use of prefixes
and since, as will be seen, we perform additional counts, we will call them prefix-trees.
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vx

vx1vx0

vy

vy1vy0

0 1 0 1

Figure 2.4: In this example of a prefix tree, PT(S), PTx(S) is the subtree rooted in vx

circled with the dashed curve and the 2-tail rooted in vy is the subtree circled with the
solid curve on the right. The vertices in both subtrees have x respectively y as a prefix,
as exemplified with vx0, vx1 etc.

Definition 2.34 (Prefix Tree) Given a set S = fs1; s2; : : : ; sng of strings over an alphabet �.
The prefix tree is a rooted tree, satisfying

• each edge is labeled with exactly one character,

• any two edges out of the same node have distinct labels,

• there is a bijection between the si and leaves, such that the concatenation of edge labels
on the path from the root to v equals si.

More formally, the vertices vx of the prefix tree PT = PT(S) correspond to prefixes x present in
S . Thus, PT has vertex set

V(PT) := fvxj9 y 2 S : x is a prefix of yg (2.34)

and edge set

E(PT) := f(vx; vy)jx = y[1; jyj − 1]g: (2.35)

The vertex degree of PT is bounded by j�j and its root is v". Define c(vx) to be the number of
strings in S , whose prefix is x. By the convention of considering " to be a prefix of any string,
this yields that c(v") is jSj.

An example of a prefix tree is depicted in Fig. 2.3.

Lemma 2.35 A prefix tree can be built in time O(n), where n is the total of the lengths of the
individual strings in S .
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Proof. Since the counting variables c(vx) can be updated with one elementary operation, the
proof for keyword trees [27, pp. 52] carries through. �

Our approach relies on particular subtrees, as a distinguishing characteristic of prefix tree
vertices.

In Fig. 2.4 one can find an example for the concept of k-tails introduced in the following
definition.

Definition 2.36 (k-Tail) Given a prefix tree PT(S), we will denote with PTz(S) the sub-tree of
PT(S) rooted in z induced by the vertex set

V(PTz) = fvxjvx 2 V(PT); z is a prefix of xg:

Similarly, we denote with PTz;k(S), 1 ≤ k ≤ depth(PT(S)) − depth(z) the subtree rooted in vz

containing only vertices of distance at most k from vz. That is, the subtree induced by the vertex
set

V(PTz;k) = fvxjvx 2 V(PT); z is a prefix of x; jxj − jzj ≤ kg:
PTz;k(S) will be called the k-subtree or k-tail of vz. We will omit the argument S when it is clear
from the context.
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Chapter 3

Hidden Markov Models

Hidden Markov Models (HMMs) have been applied to a large number of applications in sta-
tistical pattern recognition and classification with great success. They provide a sound statisti-
cal framework, and allow for efficient and numerically stable algorithms. Their visualization as
graphs, see Fig. 3.1, constitutes an effective user interface for modeling.

HMMs have been investigated under the name of (probabilistic) functions of a Markov chain
from the 1940s to the 1960s [12,14,24,29,62]. The classical development was mostly theoretical,
considering questions of uniqueness and identifiability, and did not result in wide spread popu-
larity. Starting in the 1970s, after Baum et al. [9] had derived an efficient training algorithm for
HMMs, and fueled by their prowess when applied to engineering problems, this quickly changed.
By now they have become a basic tool in the applied sciences. The most prominent applications
can be found in speech recognition and in the computational analysis of biological sequences.
In fact, the field was dominated by a group of researchers at AT&T [35,36,38], working on the
former, in the beginning. A tutorial covering the theoretical foundations of HMMs and their ap-
plication in speech recognition can be found in [65], and a description of the current state of the
art in a recently published book [33].

In molecular biology, HMMs are used to compute multiple sequence alignments [20], model
classes, families and domains of protein sequences [13,26,43,44,46], identify specific functional
protein classes based on motifs [78], recognize promoter sites in eukaryotic DNA [61] and trans-
lational units in procaryotes [75], find genes [2,6,42,45,47,77], predict protein structure [39,40],
perform fold recognition [18] and identify remote homologs [71]. Overviews and tutorials can
be found in books [5,19] and articles [21,25,43].

HMMs have also been applied to problems from a wide range of other fields. They have been
used to predict international crises [68] in the Political Sciences, to model and analyze ion chan-
nels [10] in Physiology, and to control anti-tank guided missiles [56–58] in Electric Engineering.

In the following, we will introduce the basic theory, following the notation in Rabiner’s tu-
torial [65].

19
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3.1 Definition of an HMM
HMMs are statistical processes consisting of two distinct components. There is a discrete-state,
time-homogeneous, first-order (cf. assumption 3.2) Markov chain (MC) with appropriate tran-
sition probabilities between states and an initial distribution. Associated with each state is a dis-
crete or continuous distribution over possible emissions or outputs, which is, in general, distinct
per state. The probability of an emission depends only on the state the MC is in; neither history
of states nor previous outputs matter.

When producing sequences of emissions, see Sec. 3.5, only the output values — in the dis-
crete case typically from an alphabet of size smaller than the number of states — can be ob-
served. The sequence of states of the underlying MC cannot be observed, which motivates the
name Hidden Markov Model.

Definition 3.1 (Hidden Markov Model) We will use the following notation for a Hidden
Markov Model (HMM):

N number of states
S = fS1; S2; : : : ; SNg set of states
A = faijg1≤i;j≤N transition matrix
� = (�1; �2; : : : ; �N) initial distribution over states
M size of the output alphabet
� = fv1; v2; : : : ; vMg output alphabet
B = fbjmg1≤j≤N;1≤m≤M emission matrix
T length of an observation sequence
O = O1O2 � � �OT observation sequence; Ot 2 �
Q = q1q2 � � � qT state sequence; qt 2 S

The elements of the matrices A, B and � correspond to the following probabilities:

�i := P(q1 = Si) for all i
aij := P(qt+1 = Sjjqt = Si) for all i; j; t
bj(Om) = bjm := P(Ot = vmjqt = Sj) for all j;m; t

(3.1)

Hence A and B are row-stochastic matrices and � is a stochastic vector; i.e., all the elements
are non-negative and the sums

NX
j=1

aij =
NX

j=1

�j =
MX

m=1

bim = 1; for all i: (3.2)

A HMM is completely specified by the quantities A, B, �, N, M, if we use the tacit convention
that states and output symbols are denoted by 1; 2; : : : ;N and 1; 2; : : : ;M respectively. Let

� = (A;B; �) (3.3)

denote both the model and the set of parameters.
This definition implies the following assumptions, which we would like to state explicitly,

since they are the basis for our further development.
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Figure 3.1: A simple HMM displayed as a directed graph

Assumption 3.2 HMMs satisfy:

1. First order MC. The transition probability from one state to another state depends only
on the two states, and is independent from states previously visited and from observations.
That is:

P(qt+1 = Sjjqt = Si; qt−1 = Sit−1 ; : : : ; q1 = Si1) = P(qt+1 = Sjjqt = Si) for all i; j; t: (3.4)

This is often referred to as the Markov condition.

2. Independent emissions. The probability of an emission at time t depends only on the state
at time t

3. Time homogeneity. The transition probabilities are independent of time; i.e.:

P(qt+1 = Sjjqt = Si) = P(qu+1 = Sjjqu = Si) for all t; u ≥ 1: (3.5)

In Fig. 3.1, we have depicted an HMM as a directed graph. The vertices of the graph cor-
respond to the states of the underlying MC, edges to transitions between states weighted by the
respective transition probabilities. Zero entries in the transition matrix correspond to non-edges.
The transition matrix, A, of the MC can be considered as the weighted adjacency matrix of the
graph. The discrete output distributions is depicted by dashed arrows. The initial distribution is
not displayed. We will switch freely between the matrix and graph representations in the sequel.

3.2 The Three Fundamental Problems

Rabiner [65] alludes to three fundamental problems arising naturally and immediately, when us-
ing HMMs in practical applications.

Problem 3.3 Let a model � and a finite observation sequence O = O1O2 � � �OT be given.

1. How can one compute the likelihood P(Oj�) efficiently?

2. Which state sequence Q = q1q2 � � � qT is an “optimal” explanation for O?
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3. Considering � as an initial “guess”, how should one adjust parameters of� as to maximize
P(Oj�)?

We motivate the relevance of these questions with the following two examples:

Example 3.4 A typical application of HMM in molecular biology is finding distantly related
protein sequences [20]. Typically, some protein sequences of a certain family are known. With
the parameter optimization one tries to find a model � which maximizes the sum of probabilities
of the training sequences (problem 3. above).

Subsequently, we compute for every sequence O in a protein sequence database such as
Swissprot [3] P(Oj�) (problem 1. above) and rank the sequences according to their probability.
Highly ranked sequences will likely be additional members of the protein family in question.

In this example the number of training sequences might be of the order of hundreds. As of March
19, 2001, the protein sequence database Swissprot for example contained 94,152 sequence en-
tries.

Example 3.5 Let a multiple alignment [63, pp. 123] of a set of protein sequences and a corre-
sponding profile HMM [19, pp. 100] (see. Fig. 3.9) be given. In such an HMM, states fall into
three different classes — match, insertion and deletion — with respect to the consensus [20] of
the multiple alignment. The states indicate whether for a given sequence, a residue matches the
consensus, has additional residues inserted, or has residues from the consensus removed.

By computing the optimum state sequence, we compute the alignment of a sequence to the
consensus (problem 2. above).

The exposition in the following six sections closely follows [65].

3.2.1 The Forward-Backward Algorithm
The likelihood P(Oj�) can be computed in a closed form expression as a sum over all state se-
quences Q

P(Oj�) =
X

Q

P(O;Qj�)

=
X

Q

P(OjQ; �)P(Qj�)

=
X

Q

�q1 bq1(O1)aq1q2bq2(O2) � � � aqT−1qT bqT (OT):

The exponential complexity of this naı̈ve approach — more exactly, we obtain a worst-case
complexity of O(TNT) for a fully connected model as can be seen from Fig. 3.2 — can be sub-
stantially reduced with a dynamic programming approach.

Definition 3.6 (Forward variables) The forward variables �t(i), 1 ≤ t ≤ T, denote the proba-
bility of being in state i and observing O1O2 � � �Ot given the model �:

�t(i) := P(O1O2 � � �Ot; qt = ij�): (3.6)
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Figure 3.2: This diagram shows the exponential number of paths through the state-
observation space.

Lemma 3.7 The forward variables can be computed in time O(TN2) with the following induc-
tion:

1. Initialization for t = 1:

�1(i) = �ibi(O1); for all i: (3.7)

2. Induction for t = 1; 2; : : : ;T − 1:

�t+1(i) =
NX

j=1

�t(j)ajibi(Ot+1); for all i: (3.8)

Proof. As shown in Fig. 3.3, we have to perform 2N operations to sum up the probabilities
�t(j) for each �t+1(i), weighted by the respective transition probability to state i and the proba-
bility of observing Ot+1 in state i. For each point in time, there are N forward variables, yielding
the aforementioned complexity. The correctness of the induction follows immediately from

P(O1O2 � � �Ot; qt+1 = ij�) =
NX

j=1

P(O1O2 � � �Ot; qt = jj�)aji: (3.9)
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Figure 3.3: The inductive definition of the forward variables �t+1(j) is shown.

�

To train the model parameters, we make use of the following auxiliary variables:

Definition 3.8 (Backward variables) The backward variables �t(i) are defined as the probabil-
ities of observing the suffix Ot+1;Ot+2; : : : ;OT of the observation sequence, given state i at time
t and �:

�t(i) := P(Ot+1;Ot+2; : : :OTjqt = i; �): (3.10)

Note, that the �t(i) complement the �t(i) in the sense that they capture the probability of ob-
serving the remainder of the observation sequence Ot+1Ot+2: : :OT starting from state i at time t
and given the model �.

Lemma 3.9 The backward variables can be computed in time O(TN2) by induction:

1. Initialization for t = T:

�T(i) := 1; for all i: (3.11)

2. Induction for t = T − 1;T − 2; : : : ; 1:

�t(i) =
NX

j=1

aijbj(Ot+1)�t+1(j); for all i: (3.12)

Proof. Analogous to the proof of Lemma 3.7 using Fig. 3.4. �

Remark 3.10 As �t(i)�t(i) is the probability of observing O and being in state i at time t, given
the model �, we can express the likelihood of the observation sequence in terms of the forward
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Figure 3.4: The inductive definition of the backward variables �t(i) is shown.

and/or backward variables, and the following equalities

P(Oj�) =
NX

i=1

P(qt = i;Oj�); for all t

=
NX

i=1

�t(i)�t(i); for all t (3.13)

=
NX

i=1

�T(i):

3.2.2 The Viterbi Algorithm

Asking for an “optimal” state sequence, the second problem in 3.3, can also be dealt with
efficiently, if the criterion for optimality is chosen to be the maximization of the probability
P(O;Qj�) over all possible state sequences Q.

Definition 3.11 (Viterbi path) A state sequence Q� is called a Viterbi path, if

P� := P(O;Q�j�) ≥ P(O;Qj�) for all Q: (3.14)

Analogously to the previous section, we define auxiliary variables �t(i). For a partial obser-
vation sequence O[1; t] = O1O2 � � �Ot we define

�t(i) := max
q1;q2;::: ;qt−1

P(q1q2 � � � qt−1qt = i;O[t]j�): (3.15)

That is, �t(i) is the maximal probability over all partial state sequences Q[1; t] = q1q2 � � � qt ending
in qt = i, while observing O[1; t].

Lemma 3.12 Given an HMM � and using the auxiliary variables �t(i) we can compute a Viterbi
path Q� in time O(TN2).
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Proof. Note, that we immediately obtain the following inductive formula from the definition

�t+1(j) := max
1≤i≤N

(�t(i)aij)bj(Ot+1);

and thus P� = max1≤i≤N �T(i). We introduce auxiliary variables  t(i) to store the state i maximiz-
ing Eq. (3.15). In detail we use the following procedure

1. Initialization for t = 1:

�1(i) := �ibi(O1); for all i;

 1(i) := 0:

2. Induction for t = 1; 2; : : : ;T − 1:

�t+1(j) = max
1≤i≤N

(�t(i)aij)bj(Ot+1); for all j;

 t+1(j) = arg max
1≤i≤N

(�t(i)aij):

3. Computation of P�:

P� = max
1≤i≤N

�T(i);

q�T = arg max
1≤i≤N

�T(i):

4. Backtracking to construct Q�:

q�t =  t+1(q�t+1); t = T − 1;T − 2; : : : ; 1: (3.16)

Analogously to the case for computing the likelihood of an observation sequence, we obtain a
worst-case complexity of O(TN2). �

Of course, other definitions for a “most likely” sequence of states, corresponding to a given
observation sequence, are conceivable. Churchill et al. [15] present a Bayesian approach us-
ing a Markov Chain Monte Carlo sampling procedure, to obtain state sequences which are most
reliable with respect to perturbations of the input.

3.2.3 Baum-Welch Re-estimation

Training a model is the process of adjusting the parameters of a HMM �. The objective function
is to maximize the likelihood P(Oj�) of observing a given observation sequence O. Due to the
complexity of the likelihood landscape, no efficient, general, global optimization procedures are
known.

The most widely used training procedure, called Baum-Welch re-estimation or the Baum-
Welch algorithm [7, 8, 17], belongs to the class of algorithms dealing with statistical missing
value problems or missing data problems [48]. Expectation maximization algorithms, or, for
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short, EM algorithms [11, 55, 67], provide an effective and robust local optimization procedure
for those problems.

In the typical setting of maximum-likelihood estimation, one tries to find parameters � gov-
erning a distribution from which some data X is drawn, such that the likelihood L(�jX) is maxi-
mized. In missing value or, as they are sometimes called in the literature, incomplete data prob-
lems, � now governs a distribution, which not only produces X, but also the missing values Y.
The main idea behind EM is the insight that one can consider the so-called complete-data likeli-
hood L(�jX;Y) and maximize it by iterating the following two steps:

1. Expectation Computation: Take the parameter estimate at iteration i, �i and X as con-
stant. Compute the expectation of the complete-data log-likelihood and express this log-
likelihood in terms of � with respect to Y, which is a random variable governed by �i and
X. This is also called the E-step.

2. Maximization: Choose � such as to maximize the expectation. Set �i+1 equal to �. This
is referred to as the M-step.

The EM algorithm will not decrease the likelihood, and thus converges at least to a local maxi-
mum [7,8], which implies the same behavior for the Baum-Welch algorithm.

We will only formulate the Baum-Welch algorithm. A proof of correctness and local con-
vergence can be found in [65]. In the case of HMMs, the missing values Y are the states in the
state sequence Q leading to an observation sequence O, which corresponds to the variable X in
the general formulation above. The expectation of the complete-data log-likelihood equals

Q(�; �0) =
X

Q

log
�
P(O;Qj�)P(O;Qj�0)� ; (3.17)

which we will have to evaluate in the E-step. This yields [7] in the M-step the update rules

āij :=
expected number of transitions from Si to Sj

expected number of transitions leaving Si
; (3.18a)

(3.18b)

b̄jm :=
expected number of observations vm in state Sj

expected number of arrivals in state Sj
; and (3.18c)

(3.18d)

�̄i := probability of starting in state Si at time t = 1: (3.18e)

The expectation values can be efficiently computed with the help of additional variables 
t(i)
and �t(i; j), where


t(i) := P(qt = ijO; �); and (3.19)

�t(i; j) := P(qt = i; qt+1 = jjO; �): (3.20)
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Figure 3.5: Breakdown of events and respective probabilities making up �t(i; j)

We can express the additional variables using Eq. (3.14) in terms of the forward and backward
variables introduced in Sec. 3.2.1


t(i) =
P(qt = i;Oj�)

P(Oj�)
(3.21)

=
�t(i)�t(j)PN
i=1 �t(i)�t(i)

; (3.22)

and, as illustrated by Fig. 3.5,

�t(i; j) =
�t(i)aijbj(Ot+1)�t+1(j)PN

i=1 �t(i)�t(i)
; (3.23)

yielding the identity (using 3.12)


t(i) =
NX

j=1

�t(i; j): (3.24)

By summing over time, we arrive at the desired expectations, namely
T−1X
t=1


t(i) = expected number of Si ; and (3.25)

T−1X
t=1

�t(i; j) = expected number of transitions from Si to Sj: (3.26)

We can now rewrite the re-estimation or update formulas 3.18:

āij =
PT−1

t=1 �t(i; j)PT−1
t=1 
t(i)

=
PT−1

t=1 �t(i)aijbj(Ot+1)�t+1(i)PT−1
t=1 �t(i)�t(j)

; (3.27)

b̄jm =
PT

t=1;Ot=vm
�t(j)�t(j)PT

t=1 �t(j)�t(j)
and (3.28)

�̄i = 
1(i) =
�1(i)�1(i)PN
j=1 �1(j)�1(j)

: (3.29)

Note, that the stochasticity constraints still hold for all re-estimated parameters. Also, as will
become relevant in Sec. 3.4.1, the Baum-Welch algorithm preserves zero entries in A, B and �.
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3.2.4 Implementation and Numerical Issues

Since the Baum-Welch algorithm converges to a stationary point, we can simply run it until the
likelihood does not change anymore between iterations. More typically, we will stop as soon as
the change is below some pre-specified small constant, or a maximal number of iterations has
been performed. The exact regime used will be application-dependent.

As it is routine with numerical codes in statistics, one has to take precautions against numer-
ical underflow errors, as, e.g., P(Oj�) → 0 exponentially as the length of O goes to infinity. We
will only compute log-likelihoods in practice, and also employ a scaling scheme for the algo-
rithms introduced in the previous section, which ensures that at every time step all parameters
are within the floating point range. A detailed development can be found in [65]. We will briefly
introduce scaling to the computation of the forward and backward variables.

1. t = 1:

�̃1(i) := �1(i) = �ibi(O1) ; 1 � i � N ;

c1 :=
1PN

i=1 �̃1(i)
;

�̂1(i) := c1 � �̃1(i) : (3.30)

2. t = 2; : : : ;T:

�̃t(i) :=

 
NX

j=1

�̂t−1(j)aji

!
bi(Ot) ; 1 � i � N ;

ct :=
1PN

i=1 �̃t(i)
;

�̂t(i) := ct � �̃t(i) : (3.31)

By induction, we can obtain

�̂t(i) =
� tY
�=1

c�
�
�t(i) ; (3.32)

and thus, using 3.31,

�̂t(i) =
�t(i)PN
j=1 �t(j)

: (3.33)

Remark 3.13 For the conditional probability of being in state i given the observations and the
model, the following equation holds:

P(qt = ijO1 � � �Ot; �) = �̂t(i): (3.34)
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The backward variables �t(i) will be multiplied with the same scaling factors as above, yielding

�̂T(i) := �T(i) = 1 ;

�̃T(i) := cT�̂T(i) ;

�̂t(i) :=
NX

j=1

aijbj(Ot+1)�̃t+1(j) =
� TY
�=t+1

c�
�
�t(i) ;

�̃t(i) := ct�̂t(i) : (3.35)

The re-estimation formulas, for example for āij, can be rewritten with the scaled forward and
backward variables. Observe, with Ct :=

Qt
�=1 c� and Dt+1 :=

QT
�=t+1 c� , that CtDt+1 = CT for all

t, and thus, as DT+1 := 1,

āij =
PT−1

t=1 �t(i) aij bj(Ot+1)�t+1(j)PT−1
t=1 �t(i)�t(i)

=
PT−1

t=1 CT �t(i) aij bj(Ot+1)�t+1(j)PT−1
t=1 CT �t(i)�t(i)

=
PT−1

t=1 Ct�t(i) aij bj(Ot+1) Dt+2�t+1(j) ct+1PT−1
t=1 Ct�t(i) Dt+1�t(i)

=
PT−1

t=1 �̂t(i) aij bj(Ot+1) �̂t+1(j) ct+1PT−1
t=1 �̂t(i) �̂t(i)

: (3.36)

The remaining re-estimation formulas translate as well [65]. From the following equations,

� TY
�=1

c�
�

P(Oj�) =
� TY
�=1

c�
� NX

i=1

�T(i)

=
NX

i=1

� TY
�=1

c�
�
�T(i)

=
NX

i=1

�̂T(i)

= 1 ; (3.37)

we obtain an expression for the log-likelihood, only making use of the scaled variables, and thus
safely within a computer’s floating-point range, namely

log P(Oj�) = −
TX
�=1

log c� : (3.38)

3.2.5 Extension to Multiple Observation Sequences

In many applications one has to deal with a set of observations; e.g., a family of protein sequences
or a set of samples of the same word spoken. Generally, given are K independent observation se-
quences O(1);O(2); : : : ;O(K), where the T(k) denote their respective lengths, and the observations
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within one sequence are denoted by O(k) = O(k)
1 O(k)

2 � � �O(k)
T(k) . The joint likelihood of the observed

sequences is

P(O(1);O(2); : : : ;O(K)j�) =
KY

k=1

P(O(k)j�): (3.39)

Fortunately, we can adapt the Baum-Welch algorithm to the likelihood of Eq. (3.39). As in the
case of a single observation sequence, the expected number of transitions from Si to Sj for a fixed

sequence O(k) equals
PT(k)−1

t=1 �(k)
t (i; j). By summation over k, we arrive at the expected number of

transitions from Si to Sj for all sequences. Similarly, we can adjust other parameters in a similar
manner and obtain the required re-estimation formulas; e.g., for the transition probabilities this
yields:

āij =
PK

k=1

PT(k) −1
t=1 �(k)

t (i; j)PK
k=1

PT(k) −1
t=1 
(k)

t (i)
: (3.40)

The proof of convergence can equally easily be transferred to multiple observation sequences,
as can the scaling technique introduced in Sec. 3.2.4. As a matter of fact, the only difference are
the additional summations over k in numerator and denominator.

Instead of simply using the k sequences in the training, we can also assign a positive weight
w to each sequence. This is equivalent to adding w copies of the same sequence to the training
data set.

3.2.6 Continuous Observations and further Extensions

While we only deal with strings, and thus with HMMs with discrete observations, the develop-
ment of the theory carries through even if one considers continuous distributions or their mix-
tures as outputs [34, 65, 66]. Some precautions have to be taken to assure convergence of the
Baum-Welch algorithm. In general, sufficient conditions on the probability density functions
are ellipsoidal symmetry [50] or, much stronger, log concavity. In [34], this is extended to the
case of finite mixtures of (multi-variate) Gaussian, or, more generally, elliptically symmetric,
distributions. Note, that via a routine approximation [72] this allows an extension to arbitrary
probability density functions.

Another area of research interest is using alternatives to the Markov chain in an HMM. Since
especially the Markov assumption (cf. 3.2) is a limiting factor in some applications, one approach
taken has been employing what amounts to an inhomogeneous Markov chain. The inhomogene-
ity can be either controlled, just as in time-inhomogeneous Markov chains, by the time of the
observation, or by some external quantity, conditioned on observations [59]. In [41], HMMs are
used for the analysis and simulation of economic time series data, which basically encodes cash
flow. The sum of the observations up to time t was the controlling quantity in this case.

Also, the combination of Artificial Neural Networks and HMMs [5], extending the set of
states to a continuous set [76], and the generalization of HMMs to — or embedding them in —
the framework of graphical models [5] has been investigated.
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O1 O2 O3 OT
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Figure 3.6: The unconstrained maximum likelihood model for an observation se-
quence O = O1O2 � � �OT

3.3 An even more Fundamental Problem: Choosing HMM
Topology

While the three problems described in 3.3 are indeed essential for working with HMMs, they do
not cover a problem which we find even more important: How does one obtain an HMM in the
first place? More specifically, how does one arrive at the right number of states, or the “correct”
arrangement of connections between states given some training data?

To formalize the problem, let us define the topology of a model.

Definition 3.14 (Topology of an HMM) Given an HMM �. With topology of a model we refer
to the set of states, and, most importantly, the allowed and forbidden transitions between the
states of the underlying Markov chain; that is, the non-zero and zero entries, respectively, of the
transition matrix.

Alternatively, one can also include the allowed and forbidden emissions in each state in the de-
finition of topology.

Definition 3.15 (Full topology of an HMM) Given an HMM �. With full topology of a model
we also refer — in addition to the set of states, the set of emissions, and the allowed and forbidden
transitions between the states of the underlying Markov chain — to the allowed and forbidden
emissions in each state; that is, the non-zero and zero entries, respectively, of the transition and
the emission matrix.

The dilemma of choosing the “correct” topology is caused by the fact that finding the topolog-
ically unconstrained maximum likelihood model is trivial but, alas, completely useless (cf. [73]).
For an observation sequence O = O1O2 � � �OT, the maximum likelihood model, see also Fig. 3.6,
is simply a path of length T, Q = Q1Q2 � � �QT. The transition probability between states Qi and
Qi+1 equals one and all the other transition probabilities equal zero. Each state Qi emits symbol
Oi with probability one.

This can be extended to several observation sequences, cf. Sec. 3.4.3. Nevertheless, such a
model evincing absolutely no generalization is effectively an exact string matcher, and hence
not a suitable tool for statistical pattern classification. Later on, we will describe ways to force
generalization.
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Figure 3.7: A fully connected HMM

One also finds the term architecture or structure for the concept of topology in the literature.
Note, that neither the actual values of transition probabilities nor those of the emission probabil-
ities matter, provided they be non-zero.

Lemma 3.16 No further transitions are added to HMM topology by Baum-Welch training.

Proof. Observe the presence of the aij factors in all the summands in the numerator of the
re-estimation formula Eq. (3.18a), which forces the re-estimated variables āij to remain zero. �

Remark 3.17 If all transition and emission probabilities are non-zero no transitions are re-
moved by Baum-Welch training.

3.3.1 Example Topologies

To give some intuition regarding differences in topology, we will introduce basic types of HMM
topologies and discuss their respective features.

Definition 3.18 (Fully connected HMM) We speak of a fully connected HMM, when the states
are pairwise connected; i.e., when the underlying digraph is complete.

That is the case, if the transition matrix has no zero entries, except possibly on the diago-
nal. Diagonal entries of the matrix correspond to loops or self transitions. There are typically
no distinguished initial or final states. In the language of Markov chains, the underlying MC is
irreducible, without absorbing states. Fig. 3.7 shows a fully connected HMM with four states
and self transitions.

Definition 3.19 (Left-right model) A HMM � is called a left-right model, if the underlying di-
rected graph is acyclic, except possibly loops, hence, supporting a partial order on the states.

We can compute the partial order by sorting the graph topologically [69]. In such a left-right
model, see Fig. 3.8, this yields one or several distinguished initial and final states. By convention
there is only one initial state and one final state, which can always be achieved by introducing a
special symbol for the end of an observation sequence and introducing silent states.
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Figure 3.8: A left-right HMM (cf. Def. 3.19): Note the partial order on the states

Definition 3.20 (Silent state) A state s which produces no output (or, equivalently, always the
empty string ") is called silent.

Also, the initial distribution � puts all its weight on the distinguished initial state in the case
of left-right models. For such a model the transition matrix has to be upper triangular. In the
language of Markov chains, the final state is called absorbing; note, that in this case a loop on
the absorbing state is required to ensure stochasticity of the transition matrix.

Definition 3.21 (Strict left-right model) A left-right model is called strict, when there are no
loops and there are only transitions going from a state of graph-theoretical distance d from the
initial state to one of distance d + 1.

An important aspect of left-right models are the limits to the length of the observation sequences
which can be produced by the model.

Remark 3.22 Note, that a left-right model without loops will only produce finite length obser-
vation sequences. More exactly, all observations will have length at least equal to the length of
the shortest path from the initial to the final state and at most equal to the length of the longest
path.

A special case of left-right models are so called profile HMMs used widely in molecular
biology applications.

Example 3.23 (Profile HMM) Profile HMMs [19, pp. 100], see Fig. 3.9, which are used for
various tasks in the context of protein sequence analysis, are examples of left-right models. All
states in a profile HMM have bounded degree and, neglecting the loops in the insert and deletion
states, they are strict left-right models.

As we can see in Table 3.1, for a fixed number of states the chosen topology controls the
number of parameters. This influences both the running time of the algorithms introduced in the
previous sections and the amount of training data required.
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Figure 3.9: Profile HMMs (cf. Def. 3.23), are widely used in the analysis of (protein)
sequences. The square states are so-called match states, the diamonds are insert states
and the circles are delete states corresponding to the classification of the observations
they produce with respect to a consensus sequence. Delete states are silent.

Number of free parameters
Model transitions emissions initial

Fully connected (N − 1)2 (M − 1)N N − 1
Full left-right 1

2 (N − 1)(N − 2) (M − 1)N N − 1
Profile HMM 6 L + 4 2 (M − 1) L 1

Table 3.1: The number of free parameters are shown as a function of the number of
states for different classes of HMMs. The remaining formal parameters are determined
by the stochasticity constraints. In case of profile HMMs, the number of parameters are
given in terms of L, the number of match states (cf. Fig. 3.9). Full left-right refers to a
left-right model with the maximal number of transitions.

3.3.2 Topology components

We can also look at the components making up the topology from a different angle, by classifying
the states from a Markov-chain point of view.

Definition 3.24 Given an HMM � and an infinite sequence of states, q0q1q2 � � � , define

P?
ij :=

1X
n=1

P(qn = j; qk 6= j; for all 0 < k < njq0 = i): (3.41)

With the help of the preceding definition, we can classify the states of an HMM according to
their probability of recurring, just as in the case of a Markov chain.

Definition 3.25 Given an HMM �. A state Si of � is called

• transient if P?
ii < 1, and

• recurrent if P?
ii = 1.

Note, that if the HMM � has end states, the definition makes only sense when we formally add
a self-transition with unit probability to every end state. Then, in the case of left-right models,
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all but the distinguished end states are transient. All the states in the fully connected model in
Fig. 3.7 are recurrent, assuming proper choice of the transition probabilities. In the statistical or
stochastic literature dealing with HMMs, ergodicity [59] of the source process and the model,
implying recurrence of all states, is often required to allow for the use of analytical tools such as
limit theorems.

In general, an HMM topology can consist of one or more components of two basic types,
which can be characterized according to the types of states they contain, namely

• a transient component, and

• a recurrent component.

Examples of arbitrarily complex HMMs have been constructed [15].

3.4 Computing HMM Topology

Let us return to the issue of selecting an appropriate topology for a specific application. The
search for systematic and automated procedures for selecting HMM topology is motivated by
two key shortcomings:

• insufficient throughput of the mostly manual process used so far, and

• insufficient knowledge about the problem domain to support the decision-making process.

If the application itself naturally prescribes a topology, as, for instance, for speech recognition
and for profile HMMs in bioinformatics, then experts can choose appropriate models. This is
often combined with a classical model engineering approach of giving an application specific
meaning to each individual feature of the model, and adjusting the model topology accordingly.
These hand-crafted models are unquestionable highly desirable, if there is sufficient knowledge
available on the problem domain. Still, an automated procedure capable of producing a number
of models of varying sizes is highly desirable for the following reasons:

• Need for higher throughput. Even if models can be hand-crafted, the requirements of data
mining applications often demand hundreds of distinct models, which makes manual in-
tervention infeasible. This is often addressed by training individual models starting from
the same base topology, which is not necessarily the most effective approach.

• Insufficient training data. As we can see in Table 3.1, the number of states also enters
quadratically into the number of transition parameters and linearly into the number of
emission parameters. Since the amount of training data is always too small in practice,
a model too large can cause parameter estimates to be unreliable or counterproductive.
Two mitigations are so called parameter tying [19] and Bayesian approaches with prior
distributions on observations [71]. Nevertheless, a model with the “minimal” number of
states necessary would also be advantageous from this point of view.

• Increased sensitivity. As we will see in Sec. 3.4.3, the number of states also influences sen-
sitivity and specificity of models. Grossly oversimplifying we can state that, the smaller
the number of states is, the more sensitive and the less specific the model will be. With an
automated procedure more sensitive or more specific models could easily be created.
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If the application knowledge is insufficient, that is, the “true” inner mechanism of an observed
process is completely unknown or only partially understood, then manual inspection may not be
a reliable procedure for choosing model topology. A rigorous framework, which requires explicit
specification of a priori assumptions, would allow to select a maximum a posteriori model from
training data alone.

Alternatively, learning families of models with varying numbers of states, corresponding to
varying combinations of sensitivity and specificity, would provide a family of “fishing nets” of
different mesh topology — not only mesh size — for such black-box applications. Sometimes
application knowledge might well be extracted from those models, by observing which model
feature causes changes in specificity.

Another aspect applying to both cases is a possible increase in computational efficiency. As
stated in Sec. 3.2, the number of states enters quadratically in the complexity of the basic algo-
rithms, and hence smaller models with a comparable sensitivity are highly advantageous. In the
biological sciences, likelihood computations are done routinely for large numbers of HMMs and
large sequence data bases, containing on the order of 100,000 sequences.

In the following we will discuss known algorithmic approaches to computing the topology
of an HMM.

3.4.1 Baum-Welch with Thresholds

The Baum-Welch algorithm can be used to reduce the number of states of a model in the follow-
ing way.

Algorithm 3.26 (Baum-Welch pruning) Starting from some model � and some training data
set O, we can iterate the following steps:

1. Perform Baum-Welch iterations; see 3.2.4 for details.

2. Prune the transition matrix by setting entries smaller than some " > 0 to zero.

Terminate after a certain number of iterations or if all transition probabilities are larger than "
after training.

There is no established theory guiding the choice of the initial model, of ", or of the number
of iterations. One has to monitor the likelihood at every iteration and use external criteria such
as evaluation on a test data set to decide on the right model. Depending on the choice of �, "
may have to be large in order to obtain any reduction in the number of states. Also, all transition
probabilities might have similar large values, making the choice of " appear arbitrary. Note, that
this procedure may assign zero probability to sequences which were originally in the training
set.

3.4.2 Model Surgery

An extension to using Baum-Welch with thresholds is the strategy known as model surgery. With
model surgery, one tries not only to eliminate transitions which are rarely made, but to
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• identify and eliminate states rarely visited, as states not present in the stochastic source,
which is assumed to be some unknown “true” model, and

• identify states often visited, as possible unions of several states in the unknown “true”
model.

The rationale behind model surgery is the assumption that states should contribute equally to the
model. That is, the probabilities of visiting states should be of comparable value. Note, that this
yields similarly reliable parameter estimates.

Algorithm 3.27 (Model Surgery) Given a start model �. Iterate the following steps:

• Perform Baum-Welch training, cf. 3.2.4.

• Consider the sum of transition probabilities to a given state. If the sum is very small, the
state and all incident transitions are removed from the model. If the sum is large, split the
state into two identical copies, with the same transitions and identical emission and transi-
tion probabilities. In some implementations the probabilities in the new states obtained by
splitting are randomly perturbed, to accelerate divergence of the split states’ parameters
in the subsequent training.

The algorithm terminates after a fixed number of iterations or if some sort of “equal use”1 of
states has been achieved.

Again, there is no established theory guiding a user in applying model surgery. The choice of
the thresholds for deleting states and for the splitting of states is arbitrary, as are the modification
and the termination criterion. Hence, model surgery has to be performed interactively with expert
knowledge, based upon external factors such as performance evaluations, guiding the decisions
being made.

3.4.3 Model Merging

Model merging is a Bayesian approach to learning both a model’s topology and its parameters,
developed by Stolcke and Omohundro [73]. The three major elements of model merging are [74]:

1. A method to construct an initial model from data.

2. A way to identify and merge sub-models.

3. An error measure to compare the goodness of various candidates for merging,
and to limit the generalization.

One starts with the unconstrained maximum likelihood model for a given set of observation
sequences O = fO(1);O(2); : : : ;O(k)g, see Fig. 3.10. As mentioned earlier, this model can only
reproduce the training data set, each observation with probability 1=k, and thus does not gener-
alize at all.

In the merging step, individual states of the HMM are merged, or identified. A weighted
average of their transition and emission probabilities yields the corresponding distributions for
the merged state.

1Model surgery is an ad-hoc procedure without clearly formalized objectives.
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Figure 3.10: The unconstrained maximum likelihood model for a set of observation
sequences fO(1);O(2); : : : ;O(k)g is depicted. Here, q0 is an initial state with the silent
output ". All transition probabilities equal one, except the ones from q0 to the respective
first states of each observation sequence.

A Bayesian posterior is used to select models. One component of the posterior is a prior on
the model’s topology, which is the driving force of the generalization. The posterior probability
can be computed as

P(�jO) =
P(�)P(Oj�)

P(O)
: (3.42)

The maximum a posteriori probability (MAP) model �MAP is the one maximizing Eq. (3.42),
where P(O) is constant during model selection and P(Oj�) is the likelihood. The model prior
P(�) factors into global structural, P(�G), a per state structural, P(�q

Sj�G), and per state parameter
priors, P(�q

�j�q
S; �G), where �� now denotes all the non-zero parameters in A, B and�, and �q

� those
which are pertinent to state q; i.e.,

P(�) = P(�G)
Y
q2Q

P(�q
Sj�G)P(�q

�j�q
S; �G): (3.43)

As it is routine for using priors in the context of HMMs [71], Dirichlet priors [19] were chosen
as the per state parameter priors, yielding

P(�q
�j�q

S; �G) =
1

B(�t; : : : ; �t)

Y
r2 neighbors (q)

a�t−1
qr

1
B(�e; : : : ; �e)

Y
e2 emissions (q)

bq(e)�e−1; (3.44)
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where �t and �e are the prior weights for transitions and emissions, respectively, and B(�; : : : ; �)
is the n-dimensional Beta function.

The structural prior per state allows control over the number of emissions in and transitions
from each individual state. We can choose the average number of transitions, pt, and the average
number of emission symbols with non-zero emission probability, pe, yielding the prior

P(�q
Sj�G) = pjneighbors(q)j

t (1 − pt)
N−jneighbors (q)jpjsymbols (q)j

e (1 − pe)
N−jsymbols (q)j: (3.45)

Finally, a global structural prior can bias the process towards choosing models with a smaller
number of states; for example,

P(�G) / C −N; (3.46)

for some constant C > 1.

Algorithm 3.28 (Batch best-first model merging) Given a data set, compute the uncon-
strained maximum likelihood model.

1. Determine a set of candidate merges, i.e., all pairs of states.

2. For each candidate merge compute the merged model and its posterior.

3. Select the MAP merge.

4. Terminate, if the merged model has a posterior smaller than the one in the previous itera-
tion.

The crucial step and governing factor is the computation of the set of candidate merges, which
unfortunately will in general yield a complexity of O(N2), where initially N equals the total num-
ber of symbols in the training data set.

The empirical results Stolcke and Omohundro [73] have obtained are promising, but not very
conclusive. Even though a great number of clever ideas and heuristics were used to speed up the
most time-consuming parts of the algorithm, running time remains a critical issue. Also, having
such fine-grained control over all parameter priors turned out to be problematic. All prior para-
meters have to be chosen sensibly, which is a problem different from choosing HMM topology,
but not necessarily much easier in its most general formulation. Also, for the applications re-
ported in [74], the authors had to resort to approximating likelihood computations by computing
emission probabilities along Viterbi paths in order to keep the computational effort necessary
within reasonable bounds. This is clearly unacceptable in general.

3.5 HMMs Producing and Accepting Strings

HMMs induce a probability distribution over �?, as they assign a likelihood P(Oj�) for every
finite observation sequence O. There is a distinguished subset of �? defined by �.

Definition 3.29 Given an HMM �, let L = L(�) � �
? be the set of observation sequences

O = O1O2 � � �Ot such that
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1. there exists a state sequence Q = q1q2 � � � qt with non-zero probability given �, and that

2. the joint probability P(O;Qj�) is non-zero.

We will call L the language associated with �.

We can use � to produce observations or strings. That is, we can simulate the stochastic
process described by � with the following Monte-Carlo algorithm:

Algorithm 3.30 Given an HMM �. Choose an initial state q1 randomly according to the initial
distribution � and iterate the following two steps.

1. Choose an emission value randomly, according to the distribution fBq1kg.

2. Transition to a state, chosen randomly according to fAq1ig.

L(�) is the set of all observation sequences � can produce with rates according to their likeli-
hood.

By analogy with non-stochastic finite state automata, we can also consider an HMM as an
acceptor of strings. In order to do this sensibly, we need to augment the alphabet with a special
terminating symbol, typically $, and add one or more final states which only emit the terminat-
ing symbol, and have no out-going transitions. Note, that these states cannot be subjected to the
stochasticity constraints. We can now try to find a state sequence Q for a given observation se-
quence O, ending in $. Q will necessarily end in one of the final states. If at least one such path
exists with non-zero probability, we say that the model accepts O.

3.6 Distance between HMMs

Especially when one tries to improve upon algorithms for learning or inferring HMMs, a distance
function on the space of models becomes important. One way of assessing performance is to start
with a known model �, use this model to generate data, and then use that data to infer a model �̂.
If the inference algorithm performs well, one would expect to see a decrease in distance between
� and �̂ as the inference progresses.

The task of defining a distance between HMMs is complicated by the fact that HMMs are
non-unique. The parameterization is fixed, up to relabeling of the states or, more technically,
a permutation group acting on the states. In case of a fully connected model, the group is the
symmetric permutation group. In case of the profile HMM in Fig. 3.9, neglecting the different
fixed outputs, it is a product of several S3 groups. Each S3 acts on the three states on the same
level; i.e., the three states at the same graph-theoretic distance from the initial state. In terms of
the transition and emission matrices this corresponds to permutations of the rows and columns.
Obviously, this rules out straight-forward distance measures defined solely on the matrices, as
entries in the same position of, e.g., the transition matrices, might correspond to completely dif-
ferent model parameters.

Also, a probability distribution over �? does not necessarily fix an HMM nor its parameters,
even if we ignore relabeling. This can easily be seen by considering multiple copies of a given
HMM �. We then add a silent initial state with transitions to each state in each copy, and set
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the transition probabilities from the initial state to the equivalent state in all the copies equal to
that state’s original initial probability divided by the number of copies. This newly constructed
family of models induces the same probability distribution over �? as � itself.

Whether a probability distribution fixes the parameters depends upon the origin of, or true
statistical model behind, the distribution. If the stochastic source is a fair coin, we cannot do
better than inferring an HMM with uniform output distributions and arbitrary transitions. If a
Markov chain is the true source, we could recover that in the limit. In the former case, the tran-
sition matrix A should not contribute to the distance and in the latter case, the minimum distance
over all relabelings between the respective transition and emission matrices might actually be
used as a distance function.

In the following, we will introduce distance functions on HMMs, which dispatch quite dif-
ferently with the aforementioned difficulties.

3.6.1 A Matrix Distance
Levinson et al. [49] introduced a distance function for discrete-observation HMMs by employing
the Euclidean distance between the emission matrices, minimized over all permutations of the
states.

Definition 3.31 (HMM matrix distance) Given two HMMs, �1 and �2, let N be the number of
states, M the number of emissions, and b(i)

ij the entries of the respective emission matrices of
models �1 and �2. Then the matrix distance is defined as

MD(�1; �2) := min
p

vuut 1
MN

NX
j=1

MX
k=1

�
b(1)

jk − b(2)
p(j)k

�2
; (3.47)

where the minimization is over all permutations p of f1; : : : ;Ng.

The permutation p minimizing Eq. (3.47) can be computed via minimum bipartite match-
ing [69]. Clearly, there are shortcomings of this approach. Differences in transition and initial
probabilities do not contribute to the distance, although they do contribute to the probability dis-
tributions over �? induced by the two models.

3.6.2 A Probabilistic Distance Measure
Juang and Rabiner [37] defined a distance measure on pairs of HMMs, �0 and �, both of which
have the same number of states N and are ergodic (cf. Def. 2.11). They avoid the problem of
identifying which states to compare by defining their distance on differences in the likelihood of
observations.

They approximate Kullback-Liebler distance or relative entropy, see Def. 2.22, between
probability distributions by defining an estimator based upon a finite sample of observations.

Definition 3.32 (Probabilistic distance) Given two HMMs, �0 and �, let O�0 be an observation
sequence of length T produced by the model �0. Define

PD(�0; �) := log P(O�0j�0) − log P(O�0j�): (3.48)
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The setup allows to establish a probability space [37] where an appropriate limit theorem
holds, asserting convergence to the distance as the length of the observation sequence, T, goes
to infinity, due to ergodicity.

The distance function is clearly not symmetric, but can be modified naturally by defining

Definition 3.33 (Symmetric probabilistic distance) Given two HMMS, �0 and �, define

PDs(�0; �) :=
1
2

(PD(�0; �) + PD(�; �0)) : (3.49)

The requirements of ergodicity and equal number of states arise from technicalities of the
proof and can be relaxed. Hence, the distance function can also be used for transient HMMs. By
replacing one observation O by a set of independent observation sequences with sum of lengths
equal to T, one can use the distance also for HMMs with transient states.

Note, that if the observation sequence produced by one model cannot be produced by the
other, this yields an infinite distance between the models, although they may differ only mar-
ginally.

3.6.3 A Co-emission based Distance
Another distance measure, recently introduced by Lyngsø et al. [52, 53], is obtained by consid-
ering so-called co-emission probabilities. Let �1 and �2 be two HMMs and define

C(�1; �2) := 2
X
O2�?

P(Oj�1)P(Oj�2): (3.50)

Note, that if one considers the probability distribution induced by a HMM as a vector in the
infinite dimensional space spanned by all finite sequences, the co-emission probability can be
written as

C(�1; �2) = < �1; �2 > = j�1jj�2j cos�; (3.51)

where � is the angle between the vectors, and j�j =
p

< �; � > is the length of � as a vector.
Then, one can make the following definitions:

Definition 3.34 For two HMMs �1 and �2 define the two distances

Dangle(�1; �2) := arccos

�
C(�1; �2)p

C(�1; �1)C(�2; �2)

�
; (3.52)

and

Ddiff(�1; �2) :=
p

C(�1; �1) + C(�2; �2) − 2C(�1; �2): (3.53)

The disadvantages are on the one hand the O(n6) complexity for the computation of the dis-
tance in the general case, although for left-right models more efficient exact algorithms and fast
approximation schemes are known [52]. On the other hand, there are problems in distinguishing
between models, caused by the fact that the co-emission probability is not maximal for the same
model, but for a model which assigns the same probability to all the sequences in O [52].
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3.7 Alternative Representations

In the following we will give two alternative definitions for Hidden Markov Models. The first one
is of a more historical importance, but nevertheless helpful in obtaining a deeper — and some-
times more suitable — understanding of HMMs. The second one will be used as an intermediate
representation in the algorithm introduced in the following chapter.

3.7.1 Functions of Markov Chains

Recall Def. 2.12 of a Markov chain from chapter 2. If we have a realization of a Markov chain
fXt = xtgt≥0, we can consider functions applied to each xt yielding another realization of a process
fYt = ytgt≥0.

Definition 3.35 A function of a Markov chain is a stochastic process fYtgt≥0, which is defined
by a Markov chain fXtgt≥0 and a function

f : D −→ D0

x 7−→ y = f (x)

where the random variables Xt take on values from D and the random variables Yt values from
D0, by extending f to operate on fXtgt≥0 by

f (fXtgt≥0) := ff (Xt)gt≥0: (3.54)

Definition 3.36 We speak of a stochastic function of a Markov chain in the setting of the pre-
vious definition, if f is a stochastic function. That is, if D0 is a finite set, and for each x 2 D
there is a discrete probability distribution fP(Y = yjX = x)gy2D0; evaluating f (x) is understood
as sampling from the corresponding conditional probability distribution.

Quite clearly, this definition supports the following:

Proposition 3.37 Any function of a Markov chain is a Hidden Markov Model.

In case of a non-stochastic function, all the emission probability distributions are singular. If f
is a bijection, then we have a Markov chain again.

3.7.2 HMMs as Mealy Machines

Instead of associating emissions with states, we can alternatively associate emissions with tran-
sitions. In the context of automata theory the former is called a Moore machine and the latter
a Mealy machine [1]. In case of HMMs this means that, instead of the discrete emission prob-
ability distributions for each individual state we have — possibly multiple — edges between a
pair of states s and t and each edge is labeled with an emission a and weighted with the joint
probability of transitioning from s to t and emitting a, conditioned on state s.
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Definition 3.38 (Mealy HMM) Given a digraph G and an alphabet �. Each edge is labeled
with a letter a from � and weighted with a function

w : V(G)� V(G)� � → [0; 1]

(s; t; a) → w(s; t; a) = P(t; ajs):

Note, in general G will have multiple edges between the same pair of vertices and also loops.

It is possible to switch freely between both representations.

Proposition 3.39 Given a Mealy HMM. It is equivalent to an HMM with set of states S = V(G),
output alphabet� and transition and emission probabilities P(tjs) and P(ajs) respectively, where

P(t; ajs) = P(tjs) � P(ajt): (3.55)

We can compute the probability of a transition from s to t in the HMM as the sum of the proba-
bilities over transitions from s to t regardless of the symbol produced in N.

P(tjs) =
X
a2�

P(t; ajs): (3.56)

The probability of emitting a specific symbol is given by

P(ajs) =
X
t2S

P(t; ajs): (3.57)
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Chapter 4

The Inference Algorithm

In this chapter, we develop an algorithm for inferring Hidden Markov Model topology. At first,
we will motivate our algorithmic approach by interpreting the k-tails defined in Sec. 2.6 from
the point of view of stochastic processes. Subsequently, we give an abstract definition of the
algorithm, or, more correctly, of a class of inference algorithms. In the remainder of this chap-
ter, we describe the peculiarities of the individual components and analyze the computational
complexity.

In this chapter we will assume — unless explicitly stated otherwise — that the source of the
data is a stationary and ergodic stochastic process.

4.1 k-Tails from a Stochastic Point of View

Assume we are given a realization of a stationary and ergodic process, represented as a prefix
tree (cf. Def. 2.34) of a window set (cf. Def. 2.33). Consider a k-tail of some fixed vertex vx (cf.
Fig. 4.1). The counts c(�) of children of vx divided by the count c(vx) are the relative frequencies
of the prefix x followed by o1; : : : ; oM, where the oi are the corresponding edge labels coming
from some fixed alphabet�. This extends to the children of the children etc., such that we finally
obtain a vector with relative frequencies for the leaves of the k-tail,�

c(vxs1)
c(vx)

; : : : ;
c(vxsk)
c(vx)

�
; (4.1)

where the si are all strings from�
k in lexicographical order, and the count of non-existing vertices

is assumed to be zero.
What do vx and the relative frequencies above correspond to, if we assume that the stochas-

tic source is in fact an HMM? Let us consider what the distinguishing observable characteristics
between states of an HMM are. On the one hand, there are the immediate emission probabilities,
which constitute a sufficient, yet not a necessary criterion for two given states being distinct. In
other words, it is not sufficient to consider the conditional probabilities of all observation se-
quences of length one to distinguish between states. On the other hand, one can look at condi-
tional probabilities of all observation sequences of length two, three and so on. While equality

47
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of probability distributions does not necessarily imply equality of states1, it is an indicator strong
enough for all practical purposes.

Let us return to the question at hand. The vertex vx corresponds to some state of the HMM.
With the Markov assumption, the relative frequencies are estimates of the probabilities of ob-
serving the strings si, conditioned on being in the state corresponding to vx. That is, the vector
in Eq. (4.1) is an estimate of the discrete probability distribution�

P(s1jvx); : : : ;P(skjvx)
�
: (4.2)

The main idea now is to use these probability estimates to fix a mapping from prefix tree ver-
tices to states of the HMM. A one-to-one correspondence between vertices and states cannot be
expected in general. Furthermore, the relative frequencies are only reliable estimates for the dis-
crete probability distributions above, when a large amount of data is available. Hence, one has to
resort to mapping sets — or clusters — of vertices with sufficiently “similar” relative frequencies
to the same state of the HMM. Transitions between such clusters of prefix tree vertices are given
by edges connecting prefix tree vertices they contain; emissions are given through edge labels.
The probabilities for those joint emissions and transitions can be determined using the prefix tree
vertex counts, yielding a Mealy HMM (cf. Def. 3.38). In the following we will discuss how to
control the clustering procedure, as to obtain a model satisfying our ultimate goals with respect
to pattern classification.

4.2 A Bayesian Prior driving Generalization

As noted in Sec. 3.4.3, precaution has to be taken that the model inferred is able to generalize from
the training data. Similarly to the model-merging algorithm 3.28, we employ a prior distribution
to control the generalization power of the inferred model. However, we do not require to specify
a prior on the space of HMMs.

From the previous section it is clear that the choice of the clustering — i.e., the partition of
prefix tree vertices — determines the size of the model, as the number of clusters in the prefix
tree equals the number of states in the model inferred. The number of states, though, is one of the
crucial factors contributing to generalization. A one-state HMM, for example, is the most general
model one can infer from data, as it will assign the same probability to any sequence with the
same sequence composition as the training sequence(s). That is, the relative frequencies of letters
from the alphabet � are all that matters for the computation of the likelihood. As the number of
states increases, more subtle statistical features of the training sequences can be learned, such as
bi-gram frequencies [59].

By using a parameterized clustering algorithm, where an input parameter specifies the max-
imal permissible distance between elements of the same cluster as in single-link-clustering [22],
or the maximal permissible distance to the center of a cluster, we can control the number of clus-
ters and hence the number of states by modifying the parameter. Thus, we can specify a prior
distribution on this parameter and select the MAP model according to the given prior and the
likelihood assigned to the training sequences by the HMM corresponding to a given clustering.

1The obvious counterexamples employ variations of multiple states with identical emission probabilities. A
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Figure 4.1: In this 3-tail PTx(S) of a binary example prefix tree PT(S), we can observe
the relative frequencies induced by the counts of the leaves, indicated by bold numbers,
and the count of the 3-tail’s root vx. Note, that missing counts in an incomplete k-tail are
assumed to be zero. The relative frequencies c(vxs)=c(vx), where s is a string from f0; 1g3,
are estimators for P(observing sjvx). Thus, we can associate the discrete probability dis-
tribution fP(sjvx)gs, where the s are in lexicographical order, with vx. In this example,
the estimate for this distribution equals (0:18; 0:21; 0:09; 0;0:11; 0:12; 0:25; 0:05).

4.3 The Topology Inference Algorithm: An Overview

We will introduce abstract features, which allows to characterize prefix tree vertices. Note, that
we need not restrict ourselves to relative frequencies of strings as the objects by which we define
a distance between prefix tree vertices. As a matter of fact, comparing k-tail topology is another
feasible approach. The definition of the abstract feature encompasses all these possibilities in a
general formulation.

Definition 4.1 (Feature) Given a subset V of prefix tree vertices, which all possess a k-tail. A
feature is a function

f : V −→ D
vx 7−→ f (vx) = f (PTx;k) ;

where D is some domain, which allows for a distance measure or distance function. We will refer
to D as feature space.

We will cluster prefix tree vertices based on the distance between the corresponding features.
For the purpose of formulating the inference algorithm in generality we define the following

Algorithm 4.2 (Parameterized Clustering Algorithm) Given a set V of prefix tree vertices and
a distance function d between vertices of V. A parameterized clustering algorithm takes an ar-
gument ! ≥ 0 and computes a clustering, C(!). That is, it computes a partition of V into disjoint

notion of minimality of an HMM might be useful in investigating this particular problem analytically.
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Figure 4.2: Here we depict the data-flow in the inference algorithm during its initial-
ization. Externally chosen parameters are displayed in bold face. The different shades
of grey in the box containing the prefix tree with k-tails correspond to k-tails at different
levels of the tree.
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Figure 4.3: The outline and the data-flow in the inference algorithm during its iteration
phase are shown.
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subsets C(!) = fC1;C2; : : : ;Ck(!)g. For any two clusterings C(!) and C(!̄), with 0 < ! < !̄

and jC(!)j > jC(!̄)j, the following inclusion property holds. For every C 2 C(!) there exists a
C̄ 2 C(!̄) such that C � C̄. That is, we have a hierarchical clustering [22], which we can control
by using the parameter !.

Algorithm 4.3 (Inference Algorithm) The inference algorithm computes the MAP-HMM de-
fined by the likelihood of the training data and the prior given as input.

Meta-Parameters:

• A feature on k-tails

• A distance function on the feature space

• A parameterized clustering method

Parameters:

• The window length w

• The depth of the k-tails, k

• A prior distribution � on !, the parameter of the clustering, C(!)

Input:

• A string s from �
? of length T = jsj

Initialization: (see Fig. 4.2)

1. Compute the window set Ww(s).

2. Compute the prefix tree PT := PT(Ww(s))

3. For every vertex vx in PT";w−k, that is, all vertices up to depth cd := w − k (cf. Fig. 4.4),
compute the feature based on the k-tail PTx;k.

4. For every unordered pair of prefix tree vertices in PT";w−k, compute the pairwise distance
based on the feature chosen.

Iteration over !: (see Fig. 4.3)
The iteration is performed with increasing !. If C(!) has been processed, the next value !̄ is
chosen such that C(!) 6= C(!̄); i.e., only so-called critical values of the parameterized cluster-
ing are used in the iteration. The algorithm chooses the maximum a posteriori (MAP) HMM
according to the prior � as its output.

1. Compute a clustering C(!) of vertices of the prefix tree PT";w−k with the chosen clustering
method based upon the distance between their features.

2. Consider clusters as states of a Mealy HMM (cf. Def. 3.38). Edges between prefix tree
vertices are added as edges between the corresponding states of the Mealy HMM. The
joint probabilities of the edges in the HMM are estimated based on the counts c(�).

3. Use the marginals obtained from the Mealy HMM to compute emission and transition
probabilities of a proper HMM, referred to as �. Note, we use a uniform initial distri-
bution.
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k-Tail Depth

Prefix Tree
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Figure 4.4: The interpretation of the window length w, the parameter k and the cluster
depth cd is visualized.

4. Compute the likelihood P(sj�) and, subsequently, the posterior probability

P(�js) / P(sj�)�(!): (4.3)

In the following sections we will fill in the numerous blanks in the outline above. Note, that
the performance of the algorithm depends crucially on the feature selected (see section 4.4.2)
and the clustering algorithm used (see section 4.4.4).

4.4 The Topology Inference Algorithm: Details
In the following, we will discuss the details of the algorithmic framework introduced in the pre-
vious section. Let � be a fixed alphabet. The input for the algorithm is a string s 2 �

?, taken
to be a realization of a stationary and ergodic stochastic source of length T. Parameters are the
window length w, and k, the depth of the k-tails, both taken as constants in the algorithm and
the subsequent investigations of theoretical complexity, and a prior � on the parameter of the
clustering. The cluster depth cd := w − k is an additional constant, to simplify notation.

The iteration procedure is discussed together with the complexity of the algorithm in Sec. 4.5.

4.4.1 Computing a Window Set and Prefix Tree
If s is of length T, the window set Ww(s), cf. Def. 2.33, contains T − w + 1 strings of length
w for a window size of w. Clearly, as w is constant, the window set can be computed with
complexity O(T). From Ww(s), we can compute the corresponding prefix tree, cf. Def. 2.34,
PT := PT(Ww(s)). The tree PT has depth w and, in general, order j�jw and size j�jw − 1. How-
ever, on real data, the tree will typically be sparse, as especially biological sequences are highly
repetitive. This fact has been employed in a number of settings [27], to achieve a reduction of
running-time in practice, even though the theoretical complexity remained unchanged.

From Lemma 2.35 we obtain that we can build the prefix tree in O(T), including the vertex
counts c(�) of the prefix frequencies corresponding to the vertices.
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4.4.2 Features

A number of features are conceivable which allows one to distinguish between prefix tree vertices
as representatives of HMM states. For example, one could use the topology of a k-tail, recall
Def. 2.36, for this purpose.

We will restrict ourselves to the relative frequencies introduced earlier, cf. Eq. (4.1).

Definition 4.4 (k-tail frequencies) Given a prefix tree PT and a vertex vx. Let PTx;k be the k-
tail rooted in vx, and si the strings from �

k in lexicographical order. We define the relative k-tail
frequencies r(x; k), or r(x) for short, if k is clear from the context, as

r(x; k) :=
�

c(vxs1)
c(vx)

; : : : ;
c(vxsk)
c(vx)

�
: (4.4)

Note, that the vector on the right has dimension j�jk. If a vertex vxsj is not present in PT, we set
the corresponding count c(vxsj) to zero.

For a fixed vertex vx, the relative k-tail frequencies r(x; k) can be computed with a number of
operations proportional to j�jk, for example using a truncated breadth-first-search on the tree to
visit all descendants of vx at distance k, and by setting the j�jk entries of r(x; k) correspondingly.
Since we have to compute the frequencies for all vertices in PT up to a depth cd, that is, for at
most j�jcd vertices, the total number of operations required is proportional to j�jw. Note, that
the alphabet size as well as k, cd and w are constant, and hence are not relevant in the analysis
of the computational complexity.

4.4.3 Robust Distance Functions

There are a number of approaches addressing the issue of defining a distance between discrete
probability distributions, respectively relative frequencies obtained from sampling from an un-
known discrete probability distribution. In the latter case, robustness with respects to artifacts
caused by an insufficient amount of training data is crucial.

Divergence

Recall the definition of divergence, cf. Def. 2.23. If we choose to interpret the relative k-tail
frequencies r(x) and r(y) for two given prefix tree vertices vx and vy as discrete probability distri-
butions, we can simply useD(r(x); r(y)) as a measure of their distance. Divergence will be zero,
iff r(x) and r(y) are identical, and positive otherwise, so we can employ

D(vx; vy) := D(r(x); r(y)): (4.5)

Regarding the robustness of this method with respect to sampling errors, there is one par-
ticular source for complications, namely counts which are exactly zero. As can be seen from
Eq. (2.27), such a zero count causes the relative entropy to be unbounded, which can be deduced
from considering an appropriate limit. Hence, the divergence would have to be taken as infinity.
This is clearly undesirable, as on one hand it does not allow to distinguish between the case of
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one or several of such zero relative frequencies. On the other hand equal differences between
values have a drastically different impact. That is, a difference in counts of one does have a larger
impact if it happens to be the difference between not observing and observing once than if it is
the difference between two non-zero counts.

Possible methods of dealing with this are using pseudo-counts [19, pp. 115] or, alternatively,
thresholding the individual terms in the cross-entropy computation.

Divergence with Pseudo-counts

We can simply add a count of one to each absolute count before dividing by the number of sam-
ples,

r̄(x; k) :=
�

c(vxs1) + 1
c(vx) + j�jk ; : : : ;

c(vxsk) + 1
c(vx) + j�jk

�
: (4.6)

This is known as “Laplace’s rule” [19] in the literature.
A more involved but superior (cf. [19]) approach is to use the background distribution of the

counted objects. In our case, we can use the expected numbers of k-strings over the alphabet �.
That is, we can count how often the strings si from �

k appear in our input sequence s. We will
denote the corresponding relative frequencies with

br(k) :=
1

T − k + 1

�
#s1; #s2; : : : ; #sj�jk

�
: (4.7)

Then, for the relative k-tail frequencies of some fixed prefix tree vertex vx, we can use

r̂(x; k)i :=
c(vxsi) + A br(k)i

c(vx) + A
(4.8)

instead of c(vxsi)=c(vx). The parameter A > 0 controls how much weight we put on the back-
ground distribution. Note, however, that c(vx) must be sufficiently large to assure that br(k)i > 0.
Unfortunately, for large k and large alphabet sizes this will be impossible in practice, as, roughly
speaking, on the order of j�jk samples are required even for a uniform distribution over k-tuples
to assure that the entries in br(k) are non-zero. An investigation of the use of simpler background
models, requiring less training data, might be fruitful.

We will denote with

DL(vx; vy) := DL(r(x); r(y)) := D(r̄(x); r̄(y)) (4.9)

the divergence for the “add one” pseudo-count relative k-tail frequencies and with

DBR
A (vx; vy) := DBR

A (r(x); r(y)) := D(r̂(x); r̂(y)) (4.10)

the divergence for the relative k-tail with the background distribution of weight A added.
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Cross-entropy Cut-offs

Another simple possibility is to use a constant D, say of the order of a hundred at most, whenever
the denominator in the r(x)i log(r(x)i=r(y)i) term in the divergence computation is zero, instead
of the correct value infinity. This obviously does not make mathematical sense. However, the
fact that the r(y)i are rational numbers, with c(x) as denominator and c(xsi) as numerator, implies
that we can choose a value D, such that

r(x)i log
�
r(x)i=r(y)i

�
< D; (4.11)

as the r(y)i > 1=maxxfc(x)g. Let I := [1; j�jk] and I+
x := fi 2 I j r(x)i > 0g, I+

y analogously, then
we can define

DD(vx; vy) := DD(r(x); r(y)) :=
X
i2I+

y

r(x)i log
r(x)i

r(y)i
+
X
i2I+

x

r(y)i log
r(y)i

r(x)i
+ D� �jI n I+

y j + jI n I+
x j
�
:

(4.12)

As long as none of the r(x)i and r(y)i are zero, we obtain the same value for the divergence as
from the exact computation. If there are such zero values, we can still distinguish between one or
several entries being zero, due to the small D. This yields a more informative divergence value
in that case.

A somewhat similar approach has been used to define a distance between so-called expression
profiles while clustering the results of DNA chip experiments [30]. There, two vectors x and y
were discretized element-wise, and the following contingency variables were considered: nxy,
the number of indices with corresponding non-zero entries in both vectors, nx

i and ny
j , the number

of times among those indices that the entries in vector x, respectively y, fell into discretization
interval i, respective j, and finally nxy

ij , the corresponding joint contingency table. These observed
frequencies were then used to compute the mutual information between x and y for those indices
where xi and yi are both non-zero, or where “signal is present in both vectors” [30]. Analogously,
we can restrict the divergence computation to the set of indices

I+ := fi 2 I j r(x)i > 0; r(y)i > 0g; (4.13)

yielding

D+(vx; vy) := D+(r(x); r(y)) :=
X
i2I+

r(x)i log
r(x)i

r(y)i
+ r(y)i log

r(y)i

r(x)i
: (4.14)

Note, that usingD+ is only a reasonable choice if jI+j is large on average, as D+ is zero when
I+ is empty.

Complexity

The computation of the pairwise distances is of quadratic complexity in the number of prefix-
tree vertices up to and including depth cd, as an individual distance computation requires on the
order of j�jk operations, which is a constant within the algorithm.
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4.4.4 Clustering

In the following, we will discuss our choice of suitable clustering algorithms to use in the infer-
ence algorithm. Note, that this is not an exhaustive list. Also, there is an improvement in the
performance of the algorithm to be gained from a different choice of clustering algorithm (cf.
Sec. 5.4). We will first discuss the single-link clustering algorithm, which is an attractive choice
due to its simplicity and computational efficiency.

Definition 4.5 (Threshold graph) Given a complete graph G, where the weight w((u; v)) of an
edge (u; v) corresponds to the distance between incident vertices, u and v. For a given � > 0, let
G(� ) be the graph obtained from G by removing all edges (u; v) of weight w((u; v)) > � . G(� ) is
called a threshold graph.

Algorithm 4.6 (Single-link clustering [22]) Given a threshold graph G(� ). Compute the con-
nected components C = C(� ) = fC1;C2; : : : ;Clg in G(� ), and return those connected compo-
nents as the clustering.

Lemma 4.7 The single-link-clustering algorithm is an parameterized clustering algorithm, ac-
cording to Def. 4.2.

Proof. This follows immediately from the following observation. Increasing the threshold
can be thought of as subsequently adding edges with increasing weight to the graph. Edges added
are either contained in one connected component or join two distinct connected components. In
either case, the relevant inclusion property is maintained. �

Subsequently, we will also need the following definition.

Definition 4.8 (Cluster weight) Given a cluster C of prefix tree vertices, we call

w(C) =
X
vx2C

c(vx)

the weight of the cluster.

The following algorithm is a parameterized clustering algorithm by definition.

Algorithm 4.9 (Weighted average hierarchical clustering) Define an initial clustering C(0)
with jC(0)j = jPT";cdj clusters, each of which contains an individual vertex. Iterate the following
procedure: For each cluster compute a cluster representative as the weighted average

r(C) :=
X
vx2C

c(vx)
w(C)

� r(x): (4.15)

Compute the pairwise distances between clusters based on the representatives, and merge those
clusters at distance of less than !.

Note, that we now have two graphs on the same vertex set, namely the prefix tree and the
threshold graph. In the following we will refer to the single-link clustering algorithm as SLC
and to the weighted average hierarchical as WAH.
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Figure 4.5: Here we depict the connection between edges in the Mealy HMM and the
edges between corresponding clusters in the prefix tree.

4.4.5 Computing a Mealy HMM

Given the partial prefix tree and a clustering C of its vertices, we will show how to obtain a Mealy
HMM, cf. Def. 3.38. Clusters in the prefix tree PT correspond to states of the HMM. That is, for
every cluster Ci 2 C of prefix tree vertices, we add a state Si to the HMM. We add a transition
from state Si to state Sj emitting the symbol a 2 �, if there are two vertices vx and vy in Ci and
Cj, respectively, which are joined by an edge labeled with a in the prefix-tree; see Fig. 4.5.

Note, that such an edge exists if the following prefix relation between the prefixes x and y
holds. If either x = ya or y = xa, then there is an edge labeled with a joining vx and vy in the prefix
tree. If Ci and Cj are the clusters containing x and y, respectively, we add the edge (Si; Sj; a) to the
Mealy HMM. Clearly, there can — and usually will be — more than one edge in the prefix-tree
corresponding to the same edge in the Mealy HMM. The probability associated with the edge
(Si; Sj; a) will thus be defined as

P(Sj; ajSi) :=
X

vx2Ci;vxa2Cj

c(vx)
w(Ci)

c(vxa)
c(vx)

=
X

vx2Ci;vxa2Cj

c(vxa)
w(Ci)

: (4.16)

Lemma 4.10 If we define the edge probabilities in the Mealy HMM obtained from the clustering
as in Eq. (4.16), the appropriate stochasticity constraints hold.

Proof. We have to show that the sum of probabilities over the outgoing edges is one; i.e., for
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all Ci, X
Sj;a

P(Sj; ajSi) = 1:

From the definition we haveX
Sj;a

P(Sj; ajSi) =
X
Sj;a

X
vx2Ci;vxa2Cj

c(vxa)
w(Ci)

=
1

w(Ci)

X
Sj;a

X
vx2Ci;vxa2Cj

c(vxa) =
1

w(Ci)

X
vx2Ci

c(vx);

which proves the claim. �

4.4.6 Obtaining an HMM

As we have seen in proposition 3.39 we can, making use of the Markov assumption and the
assumption that observations are independent of anything but the state, immediately obtain an
HMM proper. We do assume an uniform initial distribution. In the last step of the algorithm,
we use the forward variables, cf. Def. 3.6, to compute the likelihood of the input string s and
combine it with the prior probability of the clustering parameter !, �(!), yielding the posterior
probability P(�js; !).

4.5 Computational Complexity of the Algorithm

The only input of the algorithm for which an investigation of the theoretical complexity makes
sense is the input string s. Its length T can be arbitrarily large. A specific application has a fixed
alphabet, the window length and tail depth are also fixed, when it is assured that the properties
of the stochastic source can be captured.

The algorithm can be initialized with complexity O(T), as shown in Sec. 4.4.1-4.4.3. Note,
however, that the practical running time for the initialization is dominated by the constant, as w,
k and j�j are constant, term j�j2 cd.

We will analyze the iteration phase using SLC as the clustering method. As discussed in
Sec. 4.4.3, the various distance functions based on the relative k-string frequencies as features
do not make a difference, as the computational effort is constant in T.

When using SLC, the iteration over the clustering parameter ! can be performed efficiently,
by sorting the threshold graph edges by increasing weight, corresponding to increasing distance
and subsequently, starting from a set of isolated vertices, adding them to the graph in that order,
merging two clusters, when they are joined by an edge. Whenever adding an edge changes the
resulting clustering, we call that edge critical and subsequently re-compute the resulting Mealy
HMM. Essentially, this is equivalent to computing a minimal spanning tree with Kruskal’s algo-
rithm [69]. We can compute such a minimal spanning tree, given a graph of size e, in O(e log(e))
steps. Note, however, that there can be only n − 1 critical points, where n is the order of the
threshold graph. The threshold graph has at most size (j�jcd(j�jcd − 1))=2 and order j�jcd. The
clustering can be performed in constant time, as it does not depend on T. Similarly, once we do



60 CHAPTER 4 THE INFERENCE ALGORITHM

have a clustering, we can compute the Mealy HMM in constant time with respect to T. The likeli-
hood computation, cf. Sec. 3.2.1, can be performed with O(T N2) steps, where N is the number
of states in the HMM, which is bounded by j�jcd.

The preceding proves the following theorem

Theorem 4.11 For any of the distance measures in Sec. 4.4.3, the inference algorithm using
SLC can compute a MAP model according to the parameters w, k and the prior �with complexity
O(T).

Note, that the theoretical complexity is misleading in practice, since the constant j�j2cd term
clearly dominates the running time.

4.6 Implementation

We have implemented an HMM class and virtually all algorithms from Chap. 3 as well as the
inference algorithm described in this chapter in the programming language Python [64]. For
reasons of efficiency, the implementation made use of an external library for numerical analy-
sis. Numpy [60] is a Python package (library module), which supplies an interface to the native
Basic Linear Algebra System (BLAS) of the computing platform from within Python. The only
overhead occurring in operations such as vector and matrix additions is for the calling overhead
involved in mapping a Python operator to a library routine. The performance of the actual com-
putation is as good as in the case of direct use of the BLAS-library from compiled languages
such as C or Fortran. Nevertheless, this only applies to the likelihood computations etc., under
the general disclaimer that a matrix based implementation of HMMs is inefficient, since it cannot
make use of the typical sparseness. Most of computational effort goes into manipulating Python
data structures.

The package was used and tested with Python version 2.0, compiled with the GNU ECGS,
version 2.91.66 and release 1.1.2, on a Sun Enterprise 450 respectively Enterprise 4500 under So-
laris 7, and with Python 2.0, compiled using Compaq’s cxx compiler, version 6.20, on a Compaq
ES40 running Tru64 Unix V5.1. In the former case the generic BLAS supplied with the Numpy
package, version 17.3.0, was used, in the latter Compaq’s CXML, version 4.1.0 [16].

4.7 Choosing Window Length and Tail Depth

The two parameters w and k limit the “horizon” of our method in two subtly different ways.
Recall, that k is the depth of the tail we use to identify hidden states via the distribution of k-
strings associated with them. The choice of window length and the choice of k define the effec-
tive “memory”. We will use this term in an informal manner, for lack of a statistically sound
quantitative concept encompassing the different aspects of what constitutes memory. That is,
when visiting some state Si always results in visiting state Sj some m time steps later, we will not
be able to recognize it, if m is larger than w − k, i.e., the cluster depth cd. While this is a limi-
tation from a theoretical point of view, this is not highly relevant in practice, if the long-range
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interactions are infrequent. In that case, and for a restricted amount of training data, these inter-
actions might not be present at all or drown in the noise floor induced by sampling artifacts due
to insufficient training data.

The following aspects are relevant with regard to a choice of k and w.

• Amount of training data: For a fixed training data set, the counts in the leaves of the prefix
tree will become more unreliable as we increase w. A reasonable choice of w should assure
that the counts of prefix tree leaves are large enough to obtain reliable estimates of the
relative k-tail frequencies even for vertices at level cd. Note, that this depends heavily on
the data set. A uniform distribution — in the sense of a distribution over strings from �

?

— produces a complete prefix tree, supporting a shallower prefix tree with reliable counts
compared to a source which is a mixture of singular distributions.

• Range of significant correlations: Another area of investigation are correlations between
observation symbols at increasing distances. If there are strong long-range correlations
present, w and k should be chosen accordingly.

• “Memory” of the stochastic source: Sometimes, it will be possible to argue about mem-
ory length based upon knowledge from the application’s domain, even when the specific
mechanisms of the source are unknown.

Following the guidelines above, we will discuss our decisions for choosing w and k in
Chap. 5, where we evaluate the performance on data sets.

4.8 Choosing a Prior

One interpretation of the clustering parameter ! is that of the threshold with respect to the dis-
tance between features of prefix tree vertices, which divides non-identical from identical states.
It constitutes the maximal permissible distance, which we will attribute to pure chance, fluctu-
ations of the stochastic source, or artifacts caused by unreliable estimates due to an insufficient
amount of training data. Alternatively, it is the minimal distance, which convinces us that the
prefix tree vertices correspond indeed to distinct states of the HMM.

The numerical range over which we will define a prior depends on the distance function used.
Also, one should — as the number of states does not depend linearly on the clustering para-
meter — investigate the particular relation between ! and the number of states of the HMM.
Highly informative priors certainly need careful adjustment. Broad priors, with more weight to-
wards larger values of ! will drive the inference process “gently” towards smaller models and
towards higher degrees of generalization, and are a sensible choice in general. We will elude to
our choices in Chap. 5.

An alternative, which seems to be desirable from a purely practical point of view, is to define
a prior directly on the number of states. Note, that our algorithmic framework easily and readily
affords this change in the “user interface”, and that we have used such a prior in the evaluation
of the algorithm.
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Chapter 5

Evaluation

In this chapter, we will evaluate the performance of the inference algorithm introduced in
Chap. 4. The evaluation will be done from two different points of view, investigating two distinct
aspects of performance evaluation.

There are two limiting factors in statistical inference from real data. On the one hand, the
inference process might be inherently difficult or even infeasible for the given problem instance.
E.g., in the case of HMMs, due to the complexity of the likelihood landscape, only local op-
timization algorithms are known. Therefore, even when we want to infer parameters starting
from a prescribed topology, optimal training is impossible in general. On the other hand, the
true process behind our stochastic source might be just impossible to describe with the class of
models used.

From an engineering perspective, an evaluation of the overall performance on an annotated
data set, typically based on cross-validation [23], is sufficient. This will measure the influence
of both possible causes for errors mentioned above simultaneously. To allow the detection and
quantification of possible inherent limitations in the inference process, we chose to test our al-
gorithms on artificial data.

5.1 Artificial Data

One natural mode of testing the inference algorithm on artificial data can be formalized as fol-
lows:

Problem 5.1 (HMM recovery problem) Let there be an HMM �, the stochastic source, and a
distance function, say d, between HMMs. If � is ergodic, produce one observation sequence O of
length T, otherwise a set of observation sequencesO, whose sum of respective sequence lengths
equals T. Use this finite sample of the probability distribution over �? induced by � as an input
to infer an HMM �0. Evaluate d(�; �0).

By varying T, one can obtain an estimate on the amount of training data needed for a partic-
ular type of source model, which is helpful in establishing guidelines for working on real data.
Note, that it would be naı̈ve to expect recovery of the exact parameters of the source model, as
there will usually be a non-negligible number of models consistent with the finite sample data set.
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Hence, we have to investigate the distance between source and inferred model. Beforehand, we
will introduce a measure of distinguishability relevant with respect to the choice of the stochastic
source used in the evaluation.

Another question which supports the importance of the measure of distinguishability,
MD(�), which we will define below, is its resolution of the amount of training data needed to
assure reliable parameter estimates for a given model topology.

Remark 5.2 Given an HMM �. If MD(�) is maximal, then bounds on the amount of train-
ing data needed can be obtained from the theory of Markov Chains [59]. If, on the other hand,
MD(�) = 0, then the parameters of the underlying Markov Chain cannot be inferred at all. That
is, one cannot obtain any confidence interval on the parameters, even with infinite amounts of
training data.

Given these two extremes with regard to reliability of parameter estimates and amounts of
training data required, further investigations based on our measure of distinguishability seem a
very worth-while task, even if beyond the scope of this thesis.

5.2 A Measure of Distinguishability

Inference of HMMs and their topology even from artificial data originating from an HMM is
a task ranging from trivial to impossible. The reason for the former is that the topology is not
hidden at all, when all the observation probability distributions are singular and pairwise distinct.
In this case, the HMM is just a regular Markov chain, since the singular distributions support a
bijection between states and observation symbols, and all the statistical results for estimating
Markov chain parameters apply [59].

The other extreme is a completely hidden HMM:

Definition 5.3 If all observation probability distributions of a given HMM � are equal, we call
� and its states completely hidden.

For a completely hidden model, it is clearly impossible to distinguish between states at all. The
probability distribution over �? induced by the HMM is only governed by the one observation
probability distribution. Hence, inference of topology is impossible.

In the following section, we will introduce a measure for how well a HMM allows us to dis-
tinguish between individual states. Alternatively, the extent to which those states are obscured.
To our knowledge, ours is the first measure proposed for this purpose. Besides the theoretical
benefit of bringing order into HMM space, we also have a distinctive motivation from the ap-
plication side. For the evaluation of an inference algorithm on artificial data produced by an
HMM, the two extremes above have to be avoided, because the resulting inference problem is
either trivial or impossible to solve. We can heuristically establish correctness of the inference
algorithm from safe ground by use of the following protocol: Start with a Markov chain as the
stochastic source, and iteratively use sources with a decreasing amount of distinguishability, i.e.,
the states becoming more and more hidden. Evaluate the distance between the model inferred
and the model producing the data at each step.
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Assumption 5.4 For the following development, we will assume that the stochastic source is
stationary and that the underlying Markov chain is ergodic.

The measure we will introduce is developed from a Bayesian perspective. Given an HMM �

with n states and an observation sequence, O, of finite length t. Consider the state probabilities
conditioned on O, �, that is,

� := �(O) := (P(qt = s1jO);P(qt = s2jO); : : : ;P(qt = snjO)): (5.1)

Recall, that we can compute �(O) efficiently with the scaled forward variables (cf. Remark 3.13),
since

�(O) = (�̂t(1); �̂t(2) : : : ; �̂t(n)): (5.2)

Intuitively, it is clear that distinguishability is related to or can be measured in terms of the
differences in �. If � is uniform for all possible O, then one cannot distinguish between states
using observations; i.e., the states are completely hidden. The converse does not hold. Even if �
is singular, it might not be due to the observations, but rather due to peculiarities of the transition
matrix, as can be seen from the following example.

Example 5.5 Let A be a transition matrix such that s1 is an absorbing state. That is, P(qt =
s1) = 1 as t → 1. The distribution �(O) as defined above is singular for all O as jOj → 1.

Something more involved, capturing the dependency of � on the observation sequences, is called
for.

If A denotes the transition matrix of the underlying Markov chain, let � be the equilibrium
distribution with respect to A. That is,

� = (P(qt = s1);P(qt = s2); : : : ;P(qt = sn)) as t → 1: (5.3)

One can interpret the equilibrium distribution of the Markov chain as the prior distribution on
states, that is, prior to making any observation. For an observation sequence O, the conditional
state probability �(O) defined above can then be regarded as the corresponding posterior distri-
bution. Naturally, and as an application of information theory, one can then investigate the gain
of information attributed to the observation sequence. In the case of a Markov chain, the obser-
vation sequence is equivalent to the state sequence. Hence, we would expect a maximal gain of
information in this case. Correspondingly, for a completely hidden HMM, an observation would
yield zero information gain; i.e., prior and posterior distributions are equal.

In this setting, and for a fixed observation sequence O, relative entropy, cf. Def. 2.22, provides
a measure for the gain in information between posterior and prior: For O = O1 � � �OT,

H(�(O); �) :=
nX

i=1

P(qT = sijO) log
P(qT = sijO)
P(qT = si)

: (5.4)

To avoid possible artifacts from considering only one particular observation sequence, we will
average information gain over all observations. Note, that due to stationarity and ergodicity,
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this is equivalent to averaging over all prefixes of an observation sequence O of infinite length,
yielding the average information gain,

AI(�(O); �) := lim
T→1

1
T

TX
t=1

nX
i=1

P(qt = sijO[1; t]) log
P(qt = sijO[1; t])

P(qt = si)
: (5.5)

In practice, we will restrict ourselves to averaging over all prefixes of a finite observation se-
quence.

Definition 5.6 (Measure of Distinguishability) Given an HMM � = (A;B; �) and an integer
T, define

MD(�) := MD(�;T) :=
1
T

TX
t=1

H(�(O[1; t]); �); (5.6)

where O is a finite observation sequence of length T produced by �, and � is the equilibrium
distribution of A.

Lemma 5.7 Under assumption 5.4, MD(�) is a consistent and unbiased estimator of
AI(�(O); �).

Proof. This follows immediately from the law of large numbers as implied by the ergodicity
and stationarity assumptions. �

In the following we will prove thatMD takes on large values if the HMM is in fact a Markov
chain, and zero if it is completely hidden. Later, we investigate the space in-between by using pa-
rameterized families of HMMs, covering the spectrum spanning from one theoretically explored
extreme to the other. First, we introduce some machinery.

Remark 5.8 Let P and Q be two discrete probability distributions, P singular, say pi = 1, and
qi > 0 for all i. Analogous to the definition of the entropy H(P) as zero for singular P, we will
make use of the convention p log p := 0 for p = 0 and thus obtain

H(P; Q) = − log(qi): (5.7)

Lemma 5.9 Iff � is an HMM, where B supports a bijection between states and observation sym-
bols, that is, � is equivalent to a Markov chain, then �(O), for all 1 ≤ t ≤ T, is also singular for
all O with P(Oj�) > 0. Moreover, there is a bijection between the observation symbols and the
N pairwise distinct singular distributions �(O).

Proof. Without loss of generality assume that

bi = (0; : : : ; 0;

iz}|{
1 ; 0; : : : ; 0): (5.8)

We first show that �(O) is singular. From Eq. (3.30) and

bi(O) =
�

1 if O = i;
0 otherwise

(5.9)
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we obtain in that case that

�̃1(i) =
�
�i if O1 = i;
0 otherwise

(5.10)

and thus, after scaling, using the non-zero likelihood of O to ensure that �i > 0,

�̂1(i) =
�

1 if O1 = i;
0 otherwise:

(5.11)

Using Eq. (3.31), we obtain for the induction step

�̃t(i) =
� PN

j=1 �t−1(j)aji if Ot = i;
0 otherwise:

(5.12)

The only summands which do not vanish above are those with j = Ot−1, yielding, as �t−1(Ot−1) =
1,

�̃t(i) =
�

aji if Ot = i;
0 otherwise

(5.13)

and, after scaling,

�̂t(i) =
�

1 if Ot = i;
0 otherwise:

(5.14)

From the last equation follows that �(O) is singular, that �(O) and �(O0) are equal, iff O and O0

have the same last symbol. Whence the existence of the bijection between the �(O) and obser-
vation symbols.

For the converse, it suffices to consider N observation sequences O(i), each having non-zero
likelihood, ending in N distinct observation symbols. Let f be the bijection between the observa-
tion symbols and the N pairwise-distinct singular distributions �(O), which we extend to operate
on observation sequences, using their last symbol, and mapping to the unique unit entry in �(O).
As the �(O(i)) distributions are singular, we obtain from Eq. (3.30) and Eq. (3.31) the following
for i = 1; : : : ;N:

�(O(i); j) bj(O
(i)
−1)

�
> 0 if j = f (O(i));
= 0 otherwise:

(5.15)

The �(O; i) are simply the factors multiplied by the bi(Ot) in Eq. (3.30) and Eq. (3.31) and are
non-zero since P(Oj�) > 0. For a fixed bk(�) we obtain by collecting the relevant (in)equalities
above

�(O(i); k) bk(O
(i)
−1) > 0; if k = f (O(i)); and

�(O(j); f (O(j))) bk(O
(j)
−1) = 0; for k 6= f (O(j)):

(5.16)

This yields the singularity of bk(�) and completes the proof. �
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Lemma 5.10 Let � be an HMM and � the corresponding equilibrium distribution, then

MD(�;T) ≤ H(�); (5.17)

in the limit, as T → 1 with probability one. Equality above holds, iff the discrete probability
distributions �(O) are singular for all O.

Proof. From the definition we have

MD(�;T) =
1
T

TX
t=1

nX
i=1

�(O[1; t])i log

�
�(O[1; t])i

�i

�
; (5.18)

which we can rewrite as

1
T

TX
t=1

(
nX

i=1

�(O[1; t])i log (�(O[1; t])i) +
nX

i=1

�(O[1; t])i log

�
1
�i

�)
(5.19)

and bound from above with

1
T

TX
t=1

(
nX

i=1

�(O[1; t])i log

�
1
�i

�)
; (5.20)

as log (�(O[1; t])i) < 0. By interchanging the order of summation, we obtain

nX
i=1

(
TX

t=1

�(O[1; t])i

T

)
log

�
1
�i

�
: (5.21)

Under the assumptions of this section

E[
TX

t=1

�(O[1; t])i

T
] → �i; (5.22)

that is, the sums are estimators for the equilibrium state probabilities. Hence,

MD(�;T) ≤
nX

i=1

�i log

�
1
�i

�
(5.23)

in the limit, which completes the proof of the inequality.
To show equality, consider

1
T

TX
t=1

nX
i=1

�(O[1; t])i log (�(O[1; t])i) : (5.24)

Singularity of the �(O[1; t]) is sufficient for the vanishing of this sum. That singularity is nec-
essary follows fromH(P) = 0 implies P is singular. �
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Theorem 5.11 Iff � is an HMM, where B supports a bijection between states and observation
symbols, that is, � is equivalent to a Markov chain, then MD(�) = H(�).

Proof. Let f : � → S be the bijection between states and observation symbols, which we
extend to a map from observation sequences to states by applying it to the last symbol of the
sequence. With the preceding lemmas we have that

H(�(O); �) = log

�
1
�f (O)

�
; (5.25)

as under the assumptions in that section �i > 0 for all i. Hence we can rewrite Eq. (5.6) as

MD(�;T) =
1
T

TX
t=1

log

�
1

�f (O[1:t])

�
: (5.26)

If we introduce counting variables cT(i), which represent the number of log
�

1
�i

�
summands

above, we obtain

MD(�;T) =
1
T

NX
i=1

cT(i) log

�
1
�i

�
: (5.27)

Note, that the counting variables cT(i) divided by T are estimators for the probability of being in
state i under the assumptions in this section. That is,

�i = E[
cT(i)

T
]; (5.28)

and moreover

lim
T−→1

cT(i)
T

= �i; (5.29)

which yields

lim
T−→1

MD(�;T) = −
NX

i=1

�i log (�i) = H(�): (5.30)

The converse follows immediately from Lemma 5.10, using Lemma 5.9. �

Theorem 5.12 Iff � is an HMM, where all observation probability distributions are equal, then
MD(�) = 0.

Proof. To show that the conditions are sufficient, we compute�(O) with the help of the scaled
forward variables defined in Sec. 3.2.4, and prove the theorem by showing that, given identical
observation probability distributions for all states,

(�̂t(1); : : : ; �̂t(n)) = (AT)(t−1) �; (5.31)
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where AT denotes the transpose of A. As the HMM is ergodic and stationary, successive powers
of AT applied to the initial and, under these assumptions, stationary distribution, is equal to �,
yielding

H(�(O); �) = H(�; �) = 0; (5.32)

which proves the claim.
We will prove Eq. (5.31) by induction. For t = 1, �̂1(i) = �i follows from Eq. (3.30), as the

bi(O1) are pairwise equal and hence c1 = (bi(O1))−1. In the induction, observe that Eq. (3.31) is
just the element-wise written multiplication of AT with

(AT)(t−2)� = (�̂t−1(1); : : : ; �̂t−1(n)) (5.33)

since the bi(Ot) factors are equal and subsequently cancel out in the scaling step. Together this
establishes Eq. (5.31).

Conversely, if AI(�(O); �) = 0, we have H(�(O); �) = 0 due to ergodicity and stationarity,
and thus �(O) = � (cf. 2.24). Assume bi(O1) 6= bj(O1) exists. This contradicts �(O) = �, recalling
Eq. (3.30), and completes the proof as O1 is arbitrary. �

To demonstrate the usefulness of the measure we next consider the following two parameter-
ized families of HMMs, which run the gamut from Markov chain to completely hidden HMM.

Definition 5.13 (2-Coin HMM) Let�(x; y; ") be an HMM with a uniform initial distribution and
transition and emission matrix A and B, respectively, defined as

A(x; y) :=
�

x 1 − x
1 − y y

�
; B(") :=

�
1 − " "

" 1 − "

�
: (5.34)

Remark 5.14 For a 2-coin HMM �(x; y; "), parameters x and y control the equilibrium distri-
bution of A(x; y), which is proportional to (1 − x; 1 − y); x and y can be chosen from [0; 1]. The
parameter " 2 [0; 1

2] controls the distinguishability of states of �(x; y; "). For " = 0 we obtain a
Markov chain, for " = 1

2 the two states are completely hidden.

Fig. 5.1 shows the dependency of the measure of distinguishability on the parameter " for
some fixed pairs of values x, y. In Fig. 5.2 we evaluate the measure on the following model
family.

Definition 5.15 (3-Coin HMM) Let � be an HMM with three states and two output symbols.
Let a12, a13, a21, a23, a31, and a32 denote the free transition parameters and b1, b2, and b3 free
emission parameters. That is, the emission matrix B is defined as

B :=

0
@ b1 1 − b1

b2 1 − b2

b3 1 − b3

1
A : (5.35)

The initial distribution is uniform.
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Remark 5.16 The parameters bi control the distinguishability of states of �. If the bi are equal,
then the states are completely hidden. Since the number of states is larger than the number of
emission symbols, we cannot obtain a Markov chain for any choice of bi.

5.2.1 Comparing MD and the Probabilistic Distance

An interesting question is, whether the measure MD can be used to improve discrimination be-
tween HMMs by capturing differences not detectable by use of the probabilistic distance mea-
sure 3.32. To investigate this question heuristically, we computed the probabilistic distance be-
tween pairs of 2-coin models. In Fig. 5.3 (note the different scales on the y-axes), each of the
graphs depicts the probabilistic distance between a fixed 2-coin model �(x; y; "0) and 2-coin mod-
els �(x; y; ") for " > "0. It can be observed that the probabilistic distance provides insufficient
discrimination between Markov chains and completely hidden HMMs, when the transition prob-
abilities are both non zero. By comparing the corresponding distance values with the MD versus
" plots for particular 2-coin models (cf. Fig. 5.1), it becomes apparent, that the difference in dis-
tinguishability MD(�(x; y; "0)−MD(�(x; y; ") could be used to add further discrimination between
models, particularly when the probabilistic distance fails.

5.2.2 Extension to transient HMMs

Relaxing the assumptions in the previous section makes a theoretical investigation infeasible.
Nevertheless, we present experimental results supporting the usefulness of the measure intro-
duced in the previous section even in this case. We can extend the measure to transient HMMs
with the following approach. Instead of considering the equilibrium distribution of the underly-
ing Markov chain, we will use the image of the initial distribution under successive powers of the
transition matrix A. For an ergodic model, the distribution obtained in that way would converge
to the unique equilibrium distribution. For transient models, neither existence nor uniqueness of
the equilibrium distribution are assured in general. In case of left-right models (cf. Def. 3.19),
the terminal states are recurrent with probability one due to stochasticity constraints, yielding for
each of the terminal states a different equilibrium distribution. Moreover, the singular equilib-
rium distribution resulting for left-right models, would not capture the information gain caused
by making observations, even if there were one unique distribution.

Definition 5.17 (Measure of Distinguishability: Transient case) Given an HMM � =
(A;B; �), and denote byO a set of observation sequencesO produced by �. Let T :=

P
O2O jOj.

Define

MDT (�) := MDT (�;O) :=
1
T

X
O2O

jOjX
t=1

H(�(O[1 : t]);A(t−1) � �): (5.36)
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Figure 5.1: Our measure of distinguishability MD(�;T) evaluated on the parameter-
ized family of 2-coin HMMs (cf. Def. 5.13) for x = 0:75 and y = 0:25; 0:5; 0:75 (top)
respectively x = 0:95; y = 0:5 and x = y = 0:5 (bottom). Each individual data point was
computed for an observation sequence of length T = 100; using larger T smoothes out
curves (not shown). Note the dependency of the curve smoothness on the state duration
(bottom).
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Figure 5.2: Our measure of distinguishability MD(�;T) is evaluated on the parame-
terized family of 3-coin HMMs (cf. Def. 5.15). For two fixed choices of transition pa-
rameters — a12 = 0:1, a13 = 0:4, a21 = 0:2, a23 = 0:5, a31 = 0:3, and a32 = 0:1 (top)
a12 = 0:1, a13 = 0:4, a21 = 0:2, a23 = 0:5, a31 = 0:3, and a32 = 0:1 (bottom) — and
b1; b2; b3 = 0; 0:1; : : : ; 1 we have computed the measure of distinguishability MD(�) for
an observation sequence of length T = 100. We show the average value and the stan-
dard deviation of MD(�) vs. the maximal distance between the bi parameters. That is,
the values on the x-axis are maxfb1; b2; b3g − minfb1; b2; b3g rounded to one decimal
place.
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Figure 5.3: To investigate how the measure of distinguishability compares to the prob-
abilistic distance, we computed the latter for various x and y values. The graphs display
the distance between the 2-coin Models �(x; y; "0) and �(x; y; ") for x = 0:0; y = 0:4 (top),
x = 0:2; y = 0:7 and x = 0:4; y = 0:6 (bottom).
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5.3 Reliability of relative k-tail Frequencies

To obtain insight into the statistical reliability of the relative k-tail frequencies — in dependence
of window length and k-tail depth and sequence length — we performed the following exper-
iment. We picked an HMM and generated a number of sequences of various lengths. Starting
from this artificial sequence data, we computed prefix trees for a number of choices of w, the
window length, and k, the depth of the k-tails. This yielded, for a fixed w and k, a number of pre-
fix trees, PTj, in which we collected the relative k-tails frequencies r(x; k) corresponding to the
same vertex vx. Subsequently, we computed for each 1 ≤ i ≤ j�jk the average and the standard
deviation over fr(x; k)igPTj . This yielded for the trees PTj a set of standard deviations

f�(x; i)jvx 2 PT";w−k; 1 ≤ i ≤ j�jk; (5.37)

whose maximum value we show in Table 5.1.
When comparing entries in Table 5.1, recall that two prefix trees have the same number of

vertices only if the respective differences w−k are equal, and, qualitatively speaking, that relative
k-tail frequencies go to zero exponentially as k increases. There are the following observations
to be made:

• Doubling the sequence length is apparently reducing the standard deviation by a factor of
approximately

p
2.

• When increasing w from six to ten for k = 3 fixed, an increase of sequence length by an
eight-fold is necessary to obtain a similar standard deviation.

Conclusively, the relative k-counts seem to be sufficiently reliable. Naturally, the counts with a
higher degree of variation are to be found deeper in the tree. Note, that we observed comparable
behavior for other models (not shown).

5.4 Results for the 2-Coin Family of HMMs

To evaluate the performance on the family of 2-coin HMMs, we repeated the following experi-
ment, both for single-link clustering (SLC) and weighted average hierarchical clustering (WAH),
for x = 0:0; 0:1; : : : ; 0:9, y = x; : : : ; 0:9 and e = 0:0; 0:05; : : : ; 0:4. For each of the combina-
tions of the window length w and tail depth k — (w = 4; k = 2), (w = 5; k = 2), (w = 5; k = 3),
(w = 6; k = 2), (w = 6; k = 3), (w = 7; k = 3), (w = 7; k = 4), (w = 8; k = 3), (w = 8; k = 4),
(w = 8; k = 4), (w = 9; k = 4), and (w = 9; k = 4) — we used �(x; y; e) to generate a random
sequence of length T = 250 respectively T = 1000. For each observation sequence, we inferred
a HMM using the relative k-tail frequencies as features and using one of the following distance
functions between features: D, D+, D50, DL, DBR

1 , DBR
10 , and DBR

50 .
Since we wanted to compare several distance functions, choosing a prior on the distances

proved problematic, as the ranges of the functions and their qualitative behavior are not compa-
rable. To circumvent the danger of biasing against or in favor of particular distance functions,
we decided to use a prior on the number of states directly. We do think, that this is an inferior
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Maximal standard deviation
w k T = 250 T=500 T = 1000 T = 2000 T = 4000
6 2 0.00910 0.00465 0.00141 0.00117 0.00050
6 3 0.00178 0.00098 0.00026 0.07747 0.00033
7 3 0.00287 0.00234 0.00059 0.00069 0.00037
7 4 0.00130 0.00062 0.00013 0.00014 0.00007
8 3 0.00556 0.00476 0.00142 0.00088 0.00062
8 4 0.00127 0.00060 0.00025 0.00067 0.00025

10 3 0.02440 0.01583 0.00907 0.00539 0.00249
10 4 0.00390 0.00305 0.00113 0.00073 0.00058
10 5 0.00080 0.00040 0.00028 0.00033 0.00022

Maximal standard deviation
w k T = 250 T=500 T = 1000 T = 2000 T = 4000
6 2 0.00964 0.00445 0.00312 0.00280 0.00250
6 3 0.00321 0.00189 0.00131 0.00101 0.00080
7 3 0.00528 0.00291 0.00187 0.00138 0.00112
7 4 0.00124 0.00055 0.00023 0.00017 0.00010
8 3 0.00928 0.00454 0.00234 0.00175 0.00128
8 4 0.00282 0.00125 0.00074 0.00056 0.00047

10 3 0.03023 0.01191 0.00635 0.00338 0.00207
10 4 0.00629 0.00323 0.00164 0.00119 0.00081
10 5 0.00193 0.00110 0.00058 0.00032 0.00023

A =
�

0:8 0:2
0:1 0:9

�
B =

�
0:75 0:25
0:25 0:75

�

Table 5.1: 2-coin HMMs: We generated 10 (top), respectively 100 (middle) random
binary observation sequences of length T = 250; 500; 1000; 2000; 4000 to investigate
the reliability of the relative k-tail frequencies. For fixed k, w and T we computed the
mean and standard deviation of corresponding k-tail frequencies for the corresponding
10, respectively 100, prefix tree vertices. The values in the matrix represent the maximal
standard deviation observed. The HMM used to generate the observation sequences is
the two-coin model depicted at the bottom. Other models showed similar behavior (not
shown).
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handle on the generalization capabilities. Nevertheless, for the sake of the comparison we had
no other choice. We used a discrete probability distribution,

sp(m)i := maxf1 −
jm − ij

8
; 0g; (5.38)

scaled appropriately to yield a stochastic vector.
In all of the evaluation we used the difference in the likelihood of the training data between

true and inferred model, denoted by rl. The values thus obtained are proportional to the prob-
abilistic distance measure defined earlier, but are scaled to percent as to facilitate comparisons
between different models. The co-emission distance was not used due to computational ineffi-
ciency for fully connected HMMs; the matrix distance was shown to be inferior to the proba-
bilistic distance measure.

As far as distance function are concerned, we found DBR
A and DL to clearly outperform the

other distance functions.

5.4.1 Comparing Clustering Algorithms

As we can see from comparing Fig. 5.6 and Fig. 5.9 the weighted average hierarchical shows a
somewhat better performance.

5.5 Results for the 3-Coin Family of HMMs

We evaluated the performance of the inference algorithm on a number of 3-coin models (see Ta-
ble 5.2 for a complete list of parameters) using both SLC and WAH clustering and the following
distance functions between featuresD, D+,D50,DL, DBR

1 ,DBR
10 , andDBR

50 . As for the 2-coin mod-
els, the evaluation was performed for the following combinations of the window length w and
tail depth k: (w = 4; k = 2), (w = 5; k = 2), (w = 5; k = 3), (w = 6; k = 2), (w = 6; k = 3),
(w = 7; k = 3), (w = 7; k = 4), (w = 8; k = 3), (w = 8; k = 4), (w = 8; k = 4), (w = 9; k = 4), and
(w = 9; k = 4).

The results were consistent with the tests on the 2-coin models, as far as better perfor-
mance of the DBR

A distance functions, followed by DL, over the remaining distance functions
was concerned. Again, we observed an advantage of WAH clustering over SLC (not shown).
The difficulties for source models with not quite maximal MD(�) persisted, cf. the peak around
MD(�) = 0:35 in the graphs in Fig. 5.10.

The following example is typical for the output from the inference algorithm. To reiterate a
point made earlier, it is unlikely to recover the exact topology of the source, as there are usually
many models consistent with the input. The source model in this case was the 3-coin model with
transition matrix A0 and emission matrix B0,

A0 =

0
@ 0:9 0:05 0:05

0:05 0:9 0:05
0:05 0:05 0:9

1
A ; B0 =

0
@ 0:30 0:70

0:50 0:50
0:80 0:20

1
A :
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Figure 5.4: 2-coin HMMs, SLC: The influence of w, k and feature on the relative dif-
ference in likelihood vs. MD(�) — binned with a width of 0.05 — is depicted forD (top),
D+ and D50 (bottom).
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Figure 5.5: 2-coin HMMs, SLC: The influence of w, k and feature on the relative dif-
ference in likelihood vs. MD(�) — binned with a width of 0.05 — is depicted forDL (top),
DBR

1:0 and DBR
50:0 (bottom).
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Figure 5.6: 2-coin HMMs, SLC: The influence of w, k the relative difference in likeli-
hood is depicted in dependence on x and y, usingDBR

10 for w = 4; k = 2 (top), w = 7; k = 4,
and w = 9; k = 5 (bottom). The emission parameter " is fixed at 0.15.
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Figure 5.7: 2-coin HMMs, SLC: We show the same type of graphs as in Fig. 5.6, for
" = 0:15 using D (top) andDL (middle). At the bottom we depict the graph resulting for
" = 0:3 using DBR

10 . Note, w = 9; k = 5 in all three graphs.
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Figure 5.8: 2-coin HMMs, WAH: The influence of w, k and feature on the relative dif-
ference in likelihood vs. MD(�) — binned with a width of 0.05 — is depicted forDL (top),
DBR

1:0 and DBR
50:0 (bottom).
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Figure 5.9: 2-coin HMMs, WAH: The influence of w, k on the relative difference in
likelihood is depicted in dependence on x and y, using DBR

10 for w = 4; k = 2 (top), w =
7; k = 4, and w = 9; k = 5 (bottom). The emission parameter " is fixed at 0.15.
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Transitions Emissions
a12 a13 a21 a23 a31 a32 b1 b2 b3

0.05 0.05 0.05 0.05 0.05 0.05 0.0 0.5 1.0
0.10 0.10 0.10 0.10 0.10 0.10 0.1 0.2 0.9
0.20 0.20 0.20 0.20 0.20 0.20 0.1 0.3 0.9
0.30 0.30 0.30 0.30 0.30 0.30 0.1 0.4 0.9
0.40 0.40 0.40 0.40 0.40 0.40 0.1 0.5 0.9
0.45 0.45 0.45 0.45 0.45 0.45 0.1 0.6 0.9
0.10 0.10 0.10 0.10 0.20 0.20 0.1 0.7 0.9
0.10 0.10 0.10 0.10 0.30 0.30 0.1 0.8 0.9
0.10 0.10 0.10 0.10 0.40 0.40 0.2 0.3 0.8
0.20 0.20 0.20 0.20 0.10 0.10 0.2 0.4 0.8
0.20 0.20 0.20 0.20 0.30 0.30 0.2 0.5 0.8
0.20 0.20 0.20 0.20 0.40 0.40 0.2 0.6 0.8
0.20 0.60 0.60 0.20 0.25 0.25 0.2 0.7 0.8
0.60 0.10 0.60 0.10 0.25 0.25 0.3 0.4 0.8
0.60 0.10 0.10 0.60 0.60 0.10 0.3 0.5 0.8
0.70 0.10 0.10 0.70 0.70 0.10 0.3 0.6 0.8
0.80 0.10 0.10 0.80 0.80 0.10 0.3 0.7 0.8
0.80 0.10 0.10 0.80 0.35 0.35 0.4 0.5 0.7
0.90 0.0 0.0 0.90 0.0 0.90 0.4 0.6 0.7
0.90 0.10 0.10 0.90 0.50 0.30
0.10 0.10 0.30 0.40 0.40 0.20

Table 5.2: Parameters of 3-coin HMMs for which the inference algorithm was tested.
Note, that all combinations consisting of a set of transition parameters and a set of emis-
sion parameters were tested.

The inferred model, with transition and emission matrix A1 and B1 respectively,

A1 =

0
@ 0:66 0:0 0:34

0:0 0:58 0:42
0:42 0:43 0:15

1
A ; B1 =

0
@ 0:66 0:34

0:42 0:58
0:57 0:43

1
A ;

yields a log-likelihood of −689:488 instead of −667:232 for the true model. The probabilistic
distance between the two models amounts to 0:022. State 2 in the original model, with its uni-
form emission probabilities and the high self-transition probability of 0.9, seem to cause all the
emissions in the inferred model to spread.

The average number of states was 3.01 with a standard deviation of 0.16 for the prior anal-
ogously chosen to the previous section, only with the highest weight on 3.
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Figure 5.10: 3-coin HMMs, WAH: The influence of w, k and feature on the relative
difference in likelihood vs. MD(�) — binned with a width of 0.05 — is depicted forDBR

50:0.
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5.6 Results for Selected HMMs

We also designed a number of HMMs based on specific topological features present, with the goal
to investigate for which choice of parameters we could reliably reconstruct an approximation to
the original topology. This was motivated by the fact that in biological sequences, stochastic
regions are often interrupted or structured by deterministic signals. Examples are start and stop
codons, or the TATA boxes characteristic for promoter sequences in eukaryotic DNA.

In the following A0 and B0 will denote the transition and emission matrices for the true model,
likewise A1 and B1 for the inferred.

Example 5.18 Here the source transition graph is a 3-cycle. The model was inferred using
w = 9, k = 4, DBR

1 and for T = 1000.

A0 =

0
@ 0:0 1:0 0:0

0:0 0:0 1:0
1:0 0:0 0:0

1
A ; B0 =

0
@ 0:80 0:20

0:10 0:90
0:30 0:80

1
A ;

A1 =

0
@ 0:0 0:77 0:23

0:0 0:16 0:84
0:69 0:23 0:08

1
A ; B1 =

0
@ 0:66 0:34

0:24 0:76
0:40 0:60

1
A :

Example 5.19 Here the source transition graph is a complete directed graph on 2 nodes with
a cycle of length 3 attached to one of the nodes. The model was inferred using w = 8, k = 4,DBR

10

and for T = 1000.

A0 =

0
BB@

0:5 0:5 0:0 0:0
0:1 0:4 0:5 0:0
0:0 0:0 0:0 1:0
0:0 1:0 0:0 0:0

1
CCA ; B0 =

0
BB@

0:80 0:20 0:0
0:10 0:90 0:0
0:0 0:2 0:80
0:2 0:0 0:80

1
CCA ;

A1 =

0
BB@

0:0 0:0 1:0 0:0
0:0 0:0 0:951 0:049

0:003 0:0 0:637 0:360
0:0 0:718 0:282 0:0

1
CCA ; B1 =

0
BB@

0:269 0:0 0:731
0:169 0:781 0:050
0:183 0:447 0:370
0:175 0:273 0:552

1
CCA :

Example 5.20 Here the source transition graph is a complete directed graph on 2 nodes with
a path of length 3 joining the two nodes. The model was inferred using w = 8, k = 4, DBR

10 and
for T = 1000.

A0 =

0
BB@

0:5 0:5 0:0 0:0
0:1 0:4 0:5 0:0
0:0 0:0 0:0 1:0
1:0 0:0 0:0 0:0

1
CCA ; B0 =

0
BB@

0:80 0:20 0:0
0:10 0:90 0:0
0:0 0:2 0:80
0:2 0:0 0:80

1
CCA ;
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A1 =

0
BB@

0:44 0:0 0:18 0:37
0:0 0:0 1:0 0:0
0:53 0:0 0:43 0:04
0:0 0:71 0:29 0:0

1
CCA ; B1 =

0
BB@

0:18 0:45 0:37
0:77 0:23 0:0
0:43 0:53 0:04
0:39 0:05 0:56

1
CCA :

Example 5.21 Here the source transition graph is a complete directed graph on 2 nodes with
a path of length 4 joining the two nodes. The model was inferred using w = 7, k = 3, DBR

11 and
for T = 1000.

A0 =

0
BBBB@

0:6 0:4 0:0 0:0 0:0
0:2 0:5 0:3 0:0 0:0
0:0 0:0 0:0 1:0 0:0
0:0 0:0 0:0 0:0 1:0
1:0 0:0 0:0 0:0 0:0

1
CCCCA ; B0 =

0
BBBB@

0:70 0:30 0:0
0:10 0:90 0:0
0:0 0:20 0:80
0:20 0:0 0:80
0:0 0:40 0:60

1
CCCCA ;

A1 =

0
BBBB@

0:0 0:074 0:005 0:921 0:0
0:0 0:124 0:876 0:0 0:0

0:107 0:004 0:874 0:0 0:015
0:0 0:452 0:548 0:0 0:0
0:0 0:0 0:511 0:489 0:0

1
CCCCA ; B1 =

0
BBBB@

0:154 0:079 0:767
0:742 0:25 0:0
0:340 0:534 0:126
0:206 0:348 0:446
0:304 0:207 0:489

1
CCCCA :

The examples demonstrate that the inference algorithm is able to reconstruct peculiarities
of the topology of the source model at least partially. The examples shown are for the minimal
w and k parameters at which “approximate” reconstruction occurred, as we can conclude from
experiments not shown here. The intuition about the value of cd = w − k, which is required to
detect, say, a path of length 2 is confirmed: Namely, one needs cd > 2 and also k ≥ 2.
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Chapter 6

Conclusion

In this thesis we have introduced a novel algorithm for learning Hidden Markov Model (HMM)
topology. The algorithm employs a Bayesian approach to control the level of generalization
achieved.

We have established that the proposed inference algorithm constitutes a feasible approach
to learning HMM topology. In most instances the difference in likelihood is within the range
typically observed in multiple runs of the Baum-Welch algorithm starting from random initial
models. Note, that the initial model prescribes the topology in the latter case. Also, we could
show on examples, that the inference algorithm is able to recognize specific topological features
of the source, such as deterministic paths through states.

Nevertheless, there are some problems with the method, which need to be resolved. On one
hand, we observed that inferred models can have absorbing states, which is clearly undesirable,
even if the probability of reaching those states is low. On the other hand, there were surprising
problems with models, which were nearly Markov chains. That is, there were problems with
models which have a large MD(�) value. Markov chains on the other hand, caused no problems
in the inference process. Also, the computational effort is unacceptable for stochastic sources
with medium range memory, respective interactions.

Some of the open theoretical problems — not exclusively concerning HMMs — which are
of relevance for achieving this goal are:

• Extension to transient HMMs: Simply sliding a window over individual sequences and
dealing with the resulting overlapping w-sequences as before would obscure the transient
nature of the source process. A combination of feature and distance function able to deal
with arbitrary subtrees of depth k instead of k-tails is required.

• Establishing a comprehensive distance function between HMMs: As we have shown, the
probabilistic distance measure and differences in MD(�) capture different aspects of mod-
els. A combined distance function, taking both aspects into account, is of value with re-
spect to distinguishing between HMMs in evaluating learning algorithms and also from a
purely theoretical point of view.

• Minimality of HMMs: Similarly to existing algorithms in automata theory, an efficient
and robust procedure for obtaining a minimal size model consistent with the probability
distribution over all strings from �

? induced by a source model is desirable. This would
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further reduce ambiguity in the evaluation on artificial test data. For the problem of exact
identifiability and fully equivalent minimal representations some results are known [4,32].

• Sample size sensitive distance measure: While we have used a sample size sensitive clus-
tering method (cf. 4.9), the distance functions we used do not take the size of a sample —
in other words, the accuracy of the vectors they are comparing — into account.

• Simpler background models: To allow use of DBR
A in situations where the br(k)i are zero

due to limitations of the data set, an investigation on using br(l)i, with l << k, instead could
prove beneficial. The truncated l-tail background frequencies could, for example, be used
as priors for the relative k-tail frequencies.

• Speeding up the weighted average clustering algorithm: The most time consuming step in
the algorithm is the re-computation of the distances when two clusters are merged. Note,
that the actual pairwise distances are irrelevant, as we only need to identify the pair of
clusters at minimal distance. Hence, a iterative process using 1-tails, 2-tails etc. and the
appropriate distance on the so defined relative frequencies corresponding to these tails can
be used to successively prune out pairs of clusters at large distance, leaving just few can-
didates to select for merging.

• Investigate alternative clustering algorithms: As we have seen, using weighted average
hierarchical clustering results in an improvement of performance compared to single-link
clustering. It is conceivable, that more advanced clustering methods, tailored to the spe-
cific problem at hand, will yield even more favorable results and can circumvent the prob-
lems mentioned above.

• Additional priors: While the algorithm, as predicted, learns Markov chains (MC) very
well, there are some artifacts to be observed for near-MC stochastic sources which might
be removed by use of a prior on the MD-value of the inferred model.

• Tree pruning using variable window lengths: To assure reliability of the statistics used to
identify nodes, subtrees can be pruned — which is effectively equivalent to reducing the
window length — whenever counts c(vx) remain under some prescribed threshold. The
additional computation effort in the, overall, uncritical prefix tree building phase, would
speed up the time-critical distance computation and clustering phase, if the pruning leads
to a reduction of nodes. Note, that this would also require a distance measure capable of
dealing with relative frequencies of arbitrary collections of strings instead of all k-strings.



Bibliography

[1] A. V. AHO, R. SETHI, AND J. D. ULLMAN, Compilers: Principles, Techniques and Tools,
Addison Wesley, Reading, MA, 1986.

[2] K. ASAI, T. YADA, AND K. ITOU, Finding genes by hidden Markov models with a protein
motif dictionary, Proceedings, (1996).

[3] A. BAIROCH AND R. APWEILER, The swiss-prot protein sequence data bank and its sup-
plement trembl in 1999., Nucleic Acids Res, 27 (1999), pp. 49–54.

[4] V. BALASUBRAMANIAN, Equivalence and reduction of hidden Markov models. Master’s
Thesis, MIT, January 1993. A.I. Technical Report No.1370.

[5] P. BALDI AND S. BRUNAK, Bioinformatics: The Machine Learning Approach., MIT
Press, 1998.

[6] P. BALDI, S. BRUNAK, Y. CHAUVIN, J. ENGELBRECHT, AND A. KROGH, Hidden
Markov Models for human genes, in Advances in Neural Information Processing Systems,
J. D. Cowan, G. Tesauro, and J. Alspector, eds., vol. 6, Morgan Kaufmann Publishers, Inc.,
1994, pp. 761–768.

[7] L. E. BAUM, An inequality and associated maximization technique in statistical estimation
for probabilistic functions of Markov processes, in Inequalities, III, Academic Press, New
York, 1972, pp. 1–8.

[8] L. E. BAUM, T. PETRIE, G. SOULES, AND N. WEISS, A maximization technique occur-
ring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Sta-
tist., 41 (1970), pp. 164–171.

[9] L. E. BAUM, T. PETRIE, G. SOULES, AND N. WEISS, A maximization technique occuring
in the statistical analysis of probabilistic functions of markov chains., Ann. Maths. Stats.,
41 (1972), pp. 164–171. BAUM72.

[10] D. BECKER, J. HONERKAMP, J. HIRSCH, U. FRÖBE, E. SCHLATTER, AND R. GREGER,
Analysing ion channels with hidden markov models, Plügers Archiv - European J. of Phys-
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