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i
Kurzzusammenfassung

In der statistischen Modellierung und der statistischen Mustererkennung werden Hidden-
Markov-Modelle (HMM) in zahlreichen Anwendungsgebieten erfolgreich eingesetzt. Dabei
besteht ein fundamentales Problem in der Auswahl der zugrundeliegenden Architektur bzw.
Topologie, also der Anzahl der Zustande des HMMs und der zwischen ihnen erlaubten
Ubergange. Dies gilt insbesondere, wenn das Wissen aus dem Anwendungsbereich unzu-
reichend fir eine gesicherte Topologie-Wahl ist, oder bel der sogenannten black-box Model-
lierung. Die Bedeutung der HMM-Topologie ergibt sich aus der Tatsache, dal3 eine zu grofie
Anzahl an Zustanden zu unverlaldlichen Parameterschatzungen fuhrt und andererseits eine zu
geringe Anzahl an Zustanden es nicht erlaubt, relevante statistische Eigenschaften der Daten-
guelle zu modellieren.

Wir haben einen Algorithmus entwickelt, der ausgehend von Sequenzdaten, die von einem
ergodischen Prozess erzeugt wurden, ein HMM samt Topol ogie und Parametern lernt. Der dafUr
benutzte Bayes sche Ansatz erlaubt eine Steuerung der erzielten Generalisierung mittels einer
a-priori Verteilung Uber einen zentralen Parameter.

Abstract

Hidden-Markov-Models (HMMs) areawidely and successfully used tool in statistical mod-
eling and statistical pattern recognition. One fundamental problem in the application of HMMs
is finding the underlying architecture or topol ogy, particularly when there is no strong evidence
from the application domain — e.g., when doing black box modeling. Topology is important
with regard to good parameter estimates and with regard to performance: A model with “too
many” states — and hence too many parameters — requires too much training data while an
model with “not enough” states impedes the HMM from capturing subtle statistical patterns.

We have developed a novel algorithm that, given sequence data originating from an ergodic
process, infers an HMM, its topology and its parameters. We introduce a Bayesian approach,
where a suitable prior forces generalization while giving the user control with asingle prior on
one parameter.
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Chapter 1

Introduction

As computers capable of storing and processing large data-sets became abundant, methods from
statistical pattern recognition and classification found their way into the applied sciences and
industrial research. They are used, for example, for tasks such as speech recognition within a
fixed problem frame. The same methods are an important tool in explorative data analysis, a
help on the quest for squeezing the most information out of whatever data one has at hand.

Hidden Markov Models (HMMs) [65], as one particular class of statistical models used in
pattern recognition and classification, have been applied with great success in both cases. They
provide asound statistical framework, and allow for efficient and numerically stable algorithms.
They can be visualized as (mathematical) graphs, which congtitutes an effective user interface
in the process of creating models for a particular application. They have become a basic and
well-understood tool in the applied sciences; cf. [19,33,54].

In explorative data analysis however, particularly when the true nature of the process gen-
erating the datais unknown or only partially understood, there is one specific problem limiting
the use of HMMs. That is, how should one choose the right HMM topology — basically the
number of states in the model and how those states should be interconnected? The two main
aspects contributing to the bottleneck are insufficient knowledge about the problem domain to
support the topol ogy-choosing process, and, even if enough information is available, the insuf-
ficient throughput of the (mostly manual) process used so far.

Also, in dataanalysis, often an increased sensitivity or, equivalently, ahigher degree of gen-
eralization isrequired. That is, instead of having one fixed model, one would prefer a choice
among general models, or, more exactly, a method which produces models at varying levels of
specificity.

Finally, smaller models allow for more reliable parameter estimates given the same amount
of training data, since the number of parameters depends, in general, quadratically on the model
size. Asthe model size also enters quadratically in the computational complexity of the funda-
mental HMM algorithms, there is even motivation from a purely practical point of view for a
method which allows inference of models and their topologies, while giving the user a handle
on the size of the model produced.

The agorithms known in the literature treat the problem of learning HMM topology in an
ad-hoc manner [19], with one exception [ 73], which uses a Bayesian approach but requiresvery

1



2 CHAPTER 1 INTRODUCTION

detailed specification of priors on the space of HMMs.

The main contribution of this work is the development of a robust and efficient algorithm
which learnsan HMM — including its topology — from data. The algorithmisformulatedin a
Bayesian setting, where a suitable prior distribution influences the generalization power of the
model inferred. The prior is embodied in one internal parameter of the algorithm. It is easy to
interpret, which is helpful in making sensible choices thereof.

Additionally, we introduce a novel measure on the space of HMMSs, indicating the level of
distinguishability between states and thus allowing to quantify how close an HMM isto being a
Markov chain. We argue the relevance of the measure with respect to learning HMMs and with
respect to comparing HMMs.

Thisthesisis organized in six chapters.

Following thisintroduction, we describethe statistical pattern classification problemin chap-
ter two with the goal to formalize the particular problem of HMM inference in an appropriate
framework. Subsequently, we give a concise definition of Bayesian statistics, alluding to the
technique of explicit formulation of apriori assumptions relevant for inferring statistical models
from data. Concepts from information theory — such as cross-entropy — are defined to provide
ameasure for the importance of observations when going from prior to posterior. Thisisfol-
lowed by notations and concepts from the theory of stochastic processes, Markov chains, graphs
and strings, which we require in the further development.

Chapter three gives an overview over the theory of HMMs with discrete observations.
Following the definition of an HMM with discrete observations over a discrete-state, time-
homogeneous, first-order Markov chain, efficient algorithms for the three fundamental prob-
lems[65] aredeveloped. That is, we present algorithmsfor computing the likelihood of an obser-
vation sequence given amodel, for finding the state sequence which isthe* optimal” explanation
for an observation sequence, and for adjusting the model parametersasto increasethe likelihood
of thetraining data. Thisisfollowed by athorough discussion of HMM topology — a compo-
nent of HMMs usually chosen by experts during the modeling process — and an overview of
the literature of learning HMM topology. Also, the known distance measures on the space of
HMMs are reviewed. Two alternative representations of HMMs conclude the chapter.

In chapter four theinferencealgorithmisdevel oped for the case of ergodic stochastic sources.
A motivationis given for using the so-called k-tailsas identifiersof HMM states in the underly-
ing data structure of aprefix tree, which provides a compact representation of arealization of the
ergodic source. The influence of a Bayesian prior on the generalization capabilities is investi-
gated. Subsequently, the peculiaritiesof the algorithm and the particul ar choicesfor itsindividual
components are discussed, followed by an investigation of the computational complexity.

Chapter five is dedicated to the evaluation of the inference agorithm. We perform an eval-
uation on fabricated data. That is, training data produced by a known HMM is used as input to
the algorithm, and the distance measures described in chapter three are used to quantify the dif-
ferences between the source and the inferred HMM. The problem of inferring aknown model is
either trivial or impossible, depending on whether theHMM isin fact aMarkov chain or whether
it is completely hidden. To allow a distinction, we define a novel measure of distinguishability
and investigate it analytically. We extend it to the case of transient HMMs and demonstrate its



heuristic suitability inthat case. The evaluation isperformed ontwo familiesof HMMsto obtain
an overall performance evaluation on awide range of source processes and on some particular
HMM, chosen for specific topological features, which we are able to recover. These topol og-
ical features, basicaly deterministic signals in a stochastic sequence, are prevalent in various
disguises in many biological sequences. Examples are TATA boxes in eukaryotic promoter se-
guences, start and stop codonsin DNA.

Thisisfollowed in Chapter 6, by a conclusion summarizing the results obtained in thiswork
on improving inference of HMM in a black-box setting. Also, a mention is made of possible
extensions to the method and further promising application areas.
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Chapter 2

Basic Concepts and Definitions

In this chapter, we will first introduce statistical pattern classification, in order to establish a
framework for problem formulation and for putting the particular problem of HMM learning
investigated in this thesis into perspective. Subsequently, necessary definitions from statistics,
information, graph theory, and “stringology” will be given.

2.1 Statistical Pattern Classification

All applications of Hidden Markov models can be viewed more abstractly as statistical pattern
classification problems[23]. Initssimplest form, see Fig. 2.1, thereis

» an abstract class corresponding to an unknown process — the stochastic source — gen-
erating data,

* aset of data, usually finite, collected and annotated with respect to membership in the
abstract class,

 astochastic model representing the unknown process, which isinferred from the data, and

Abstract :
Class Stochastic
Stochastic = ——»- _> Model
Source produces inference
Data Set
Observations
. Classifier
Unknown observation X sl
decides

Figure 2.1: Theabstract class, represented by an unknown stochastic source, produces
a set of observations. A stochastic model is inferred, with the goal of predicting mem-
bership in the abstract class for additional data.

5



6 CHAPTER 2 BASIC CONCEPTS AND DEFINITIONS

» adecision function based on the stochastic model, indicating whether adata point belongs
to the abstract class or not.

In the following, we will formalize the foregoing concepts.

Definition 2.1 (Stochastic source) The stochastic source [31] is the process generating the
data belonging to the abstract class. Typically, neither process type nor process parameters of
the stochastic source are known. The source is sometimes also called the true model.

Definition 2.2 (Training data) With training data, we refer to a collection of data, say
S ={X, X2, ... , Xn}, (2.2)

and an annotation, indicating whether the data originates from the given stochastic source or
not. Thatis, forne N

Sa = {(X17 i1)7 (X27 i2)7 cee (Xm in)}? (22)

whereiy, 1 < k < nisonein the former case and zero otherwise. All x, are elements of some
fixed domain.

Definition 2.3 (Training) Choose a collection of, usually parameterized, statistical models, say
M(8), fromwhich amodel for the abstract classwill beinferred. The choice of model collection
—e.g., a particular class of HMMs —istypically done manually. The process of adjusting the
parameters ¢ is called training. The two most frequently used objective functions for training
are the following:

Maximum likelihood (M L): Maximizethedatalikelihood, i.e. thejoint probability of observing
the data, given the model,

P(S| M (9)). (2.3)

Maximum a posteriori probability (MAP): In this setting, we are given a prior distribu-
tion over model parameters, and the objective is to maximize the likelihood of the model (Cf.
Eq. (2.9). Note, we can take P(S) as constant):

P(M(0)[S) o< P(M(0))P(S| M (0)). (24)

Definition 2.4 (Classifier) A trained mode! allows computation of P(x| M (0)) for arbitrary x
from some fixed base set. e can then choose a threshold  and define the classifier C as

0 if P(X|M(0)) <,

1 otherwise (25)

C(x) := {

Note, that the concept of classification with respect to membership in one class can naturally
and readily be extended to classification for a finite number of classes.
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2.2 Bayesian Statistics

Bayes formulaappears innocuous and an implausible candidate for causing philosophical, and
scientific, argumentson afirst encounter. A comprehensive account onits history and the history
and development of the statistical school of thought spawned by it can be found in [48]. Here,
we can only try to give aflavor and fix the notation we will use. The basic statistical terminology
can befound in alarge number of textbooks, e.g. in [28].

We will use P() to denote the probability of an event, which will always be understood to
be a subset of an implicitly given sample space. If the set of events {By,B,,... ,Bk}, k € N
forms a partition of the sample space, we can define a discrete probability distribution P =
(P(By), P(By), . .. ,P(Bx)). Performing an experiment described by P corresponds to drawing
a sample according to P.

The joint probability of two events, P(A, B), issmply defined as

P(A, B) := P(AN B). (2.6)
The conditional probability of two events, P(B|A), where

P(A B)
P(A)

isthe probability of observing B given that one has already observed A.

P(B|A) =

2.7)

Theorem 2.5 (Bayes’ theorem (1763)) Let A and B be two events. Then

P(AIB)P(B)

PBIA) = 5o

(2.8)
If we consider the formula above with dataD and amodel M instead of the events A and B,
we obtain

P(DIM)P(M)
PD)

and the Bayesian point of view in modeling the datawith a statistical model becomes apparent. It
allowsto assign probabilitiesto models given the data and, often, to efficiently compute the con-
ditional probability on theright hand side. In thiscontext, P(M|D) isthe a posteriori probability
of M. Itiscalled posterior, since it is the probability after having seen the data. Analogoudly,
the probability P(M) iscalled thea priori probability of M, prior to observing any data. The cor-
responding distributions are called posterior and prior, respectively. The likelihood, P(D|M), is
the probability that the model M produces the data D.

If we select amodel M such that Eq. (2.9) is maximized, we call M a maximum a posteriori
(MAP) model. Since P(D) is constant in the maximization, we will typically consider

P(M|D) = (2.9)

P(M|D) o P(D|M)P(M). (2.10)

The prior P(M) should encode our complete belief about the peculiarities of the model. Alter-
natively, we can use the prior to drive the process of MAP model selection towards models we
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would prefer, such asmore parsimonious modelsor modelswith alarger degree of generalization
power. Note, that in case of a uniform prior the MAP coincides with the maximum likelihood
model. A uniform prior is also called an uninformed prior.

We will also need the following two basic definitions.

Definition 2.6 A discrete probability distribution P = (P(A), . .. , P(A,)) is called singular, if
it puts all itsweight on one event. That is, if thereisonel <j <n, st.

(1 ifi=]
P(A‘)_{ 0 otherwise.

Definition 2.7 A vector P = (py,... ,pn) is called stochastic, if for 1 < i < n, g = 0and
S0 pi =1 Smilarly, amatrix A iscalled (row) stochastic, if its rows are stochastic vectors.
2.3 Stochastic Processes and Markov Chains

Stochastic processes can represent data such as time series:

Definition 2.8 A stochastic process X with discrete time is a sequence of random variables

X = {X} o, (211)
where X; denotesthe value at timet = 0,1,2,.... Aredlization of a stochastic processis a
sequence x; such that

X =X} eo- (212)

Stochastic processes can have unbounded memory in general. That is, the probability
P(Xes | X, X1, - - - , X1) dependsonall Xy, . .. , X. Inthefollowing, wewill introduce some rel -
evant properties of stochastic processes.

Definition 2.9 A stochastic process with discrete time is called stationary (in the strong sense),
if itsfinitejoint distributions are trandation invariant. That is, if

P+t = Xa, -+« s Kot = Xm) = PXy, = X1, -+, Xy = Xm) (2.13)
for arbitraryme N, x,andall t,t; =0, 1<i<m.

Another relevant concept is ergodicity, whose concern is the limiting behavior of averages
over time.

Theorem 2.10 [59] Let {X;}i»o bea sequence of independently and identically distributed ran-
dom variables with expectation value E(X;) = . Then the time average

1 t
= >
m-t+1%;K,t—0, (2.14)

converges to 1 ast goesto infinity with probability one.
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If the limit condition above holds, we will call a process ergodic:

Definition 2.11 Given a stochastic process X stationary in the strong sense. We will call X er-
godic, if for al realizations of X, {X; = X }i>0, the time averages

1 t
Hst -= RZXM t>s (2.19)
u=s
converge to the expectation E(Xs) with probability one, as—for arbitrary fixed s> 0 —t goes
to infinity.

An important special class of processes are Markov chains.
Definition 2.12 A stochastic processis said to have the Markov property, iff

P()<I+1|)<17 )(1—17 s 7X1) = P()(I+1|)<t) (216)

Sochastic processes with the Markov property are also called (first-order) Markov chains. The
events in the sample space of the X; are then called states, denoted S, S, . . . , S, Therelevant
probabilities can be represented by the so-called transition matrix A = {g;; }, where

aj 1= P(Xs1 = §[X = 9), (2.17)
for1<i,j<n.

Definition 2.13 Given a Markov chain, the stochastic vector 7 = {71, 72, ... ,m,} iscalled an
equilibrium vector, if

Alr=mr, (2.18)

where AT denotes the transpose of A. Equilibrium under these circumstances is understood as
an invariance of the state probabilities 7; = P(S), 1 < i < n astime progresses.

Theorem 2.14 [59] A Markov chainis ergodic, if it has a unique equilibrium distribution, to
which the relative sample state frequencies +{|Sy], . .. , |S)|} convergeast — oc.

Sufficient conditions for existence and uniqueness of an equilibrium distribution are rather
mild and given in the following.

Definition 2.15 Aset ' # () of states S is called stochastically closed, iff for all i € I';

d =1 (2.19)

jer

The set I' is called minimal, if it contains no proper closed subset. A Markov chain is called
irreducible, iff its state space is minimally closed.
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Definition 2.16 Anirreducible Markov chainwith transition matrix Ais periodic, if there exists
aninteger d > 2 and a sequence of states {S, Sy, . .. , S-1} suchthatforalli =0,... ,d-1

aj=1 forj=i+1(modd). (2.20)
Otherwise the chain is called aperiodic.

Theorem 2.17 [59] If a Markov chain isirreducible and aperiodic, then it is ergodic.

Markov chains seem to have a “memory” of length one at first, since only the immediate
preceding states are relevant for transitions. Nevertheless, thisis not true [33], as can be seen
from the following example, which shows how to represent a higher-order process as a (first-
order) Markov chain.

Example 2.18 Given a process {Z;} o of memory length k € INTS, such that

P(Z0.21,2,....) = [ [ P(Z|ZiaZi2 - - Zi0). (2.21)
i=0

W& can define another process by
Xi =24z Liks, (2.22)

and this process has the Markov property, even if at the cost of a larger state space of size N,
with N denoting the size of the state space of {Z;}o.

2.4 Information Theory

In thefollowing, wewill only briefly define the relevant concepts and definitionsfrom informa-
tion theory which we need for the further exposition. An introduction to information theory and
the concept of information, as well as an axiomatic development of entropy etc., can be found
in the ground-breaking article by Shannon [70] and aso, for example, in [5]. Ibidem, proofsfor
the results in this section can be found. The concepts introduced are meaningful both for ran-
dom variables and for probability distributions, even if we will only define them for one or the
other. Either ways, we will only deal with discrete random variables and discrete probability
distributions.

Definition 2.19 (Entropy) The entropy #(P) of a discrete probability distribution P =
(P, - - . , Pn) is defined by

H(P) == pilogp:. (2.23)
i=1

If the base of the logarithmis 2, asit isthe usual convention, we say that entropy is measured
in bits.
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One interpretation of entropy is the prior uncertainty in the outcome of the random experiment
described by the probability distribution P, or, aternatively, the gain in information when the
outcome is observed.

Lemma 2.20 [70] Given a discrete probability distribution P = (py,... , pn), the following
holds:

0<H(P), (2.24)
with equality iff P is singular, and
H(P) < log(n), (2.25)

with equality if and only if P isuniform. The former makes use of the convention plogp := 0 for
p=0.

When interpreting entropy as a measure on stochastic sources with possibly differently sized
discrete state spaces, we may want to normalize it:

Definition 2.21 (Normalized entropy) Wth P as above, define

H(P)
log(n)’

the normalized entropy. HA (P) isin theinterval [0, 1].

HN(P) :=

(2.26)

A more general concept than entropy isrelative entropy:

Definition 2.22 (Relative Entropy) The relative entropy (P, Q) between two probability dis-
tributionsP = (py, ... ,pn) @and Q = (dy, - . - , 0n), defined by

HP.Q) =) pilog . (2.27)
i=1 :

isa“ measure” of the distance between P and Q.

Relative entropy is also known as cross-entropy, Kullback-Liebler distance, or discrimina-
tion [70]. It is not a distance in the mathematical sense, asit is not symmetric. If symmetry
iscrucia, divergence [70] can be used instead of relative entropy:

Definition 2.23 (Divergence) The divergence D(P, Q) between two probability distributions
P=(Ps,...,pn)and Q=(qy,. .. , Gn) is defined by

D(P, Q) := H(P, Q) + H(Q, P). (2.28)



12 CHAPTER 2 BASIC CONCEPTS AND DEFINITIONS

Lemma 2.24 Let P and Q be two probability distributions, then
H(P,Q) 20, (2.29)
with equality if and only if P = Q.

That entropy isaspecial case of relative entropy can be seen by considering H(P, U). If U isthe
uniform distribution and P is defined as above, then H(P, U) = log(n) — H(P).

In a Bayesian setting, relative entropy can be used to measure the gain in information due
to observation of an experiment. That is, going from the prior distribution (P(Aq), P(A2), . . . ,
P(A,)) onevents A to the posterior distribution conditioned on the outcome B of the experiment,
(P(A1|B), P(A2|B), . .. , P(An[B)):

n

H(posterior, prior) := >~ P(A|B)log

i=1

P(A|B)
P(A)

(2.30)

Another information theoretic concept relating two probability distributions is mutual informa-
tion:

Definition 2.25 (Mutual Information) Given two randomvariables X and Y, and their respec-
tive marginal distributions P(X) and P(Y) aswell asthejoint distribution P(X, Y). Then, mutual
information, defined as

A = v PX=xY=Yy)
(X Y) ._%:P(x_x,v_y)mg(P(X:X)P(Y:y)>, (2.31)

measures the degree of independence between the two random variables.

Alternatively, mutual information can be expressed in terms of conditional entropy:

Definition 2.26 (Conditional entropy) Let X and Y be two random variables. Then, the con-
ditional entropy of X given Y is defined as

HXY) ==Y P(Y=y) Y PX=xY=y)log(P(X=XY =y)). (2.32)
y X

It reflects the average amount of uncertainty about X after observation of Y. From a Bayesian
point of view, this corresponds to the uncertainty in the posterior distribution. The uncertainty
inthe prior issmply #H(X). The difference between the uncertainties captures the average gain
in information an observation of Y brings about X.

Remark 2.27 W\ can express mutual information in terms of (conditional) entropy as follows:

I(X;Y) = H(X) - H(X]Y). (2.33)
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2.5 Graphs

Graphs are natural mathematical models for many real-world entities — communication net-
works, electronic circuits, to just name two examples— and constitute important data-structures
in computer science. We will use special types of graphs, so called trees, asthe core of our algo-
rithm, and also use directed graphs as alternative representation of Markov chains and Hidden
Markov models.

We will usethefollowing definition: A graph G = G(V, E) consists of afinite set of vertices,
V = V(G), and afinite set of edges, E = E(G). Anedgee € Eisapar {v,w} withv € V
and w € V. The cardinality of the set V is called the order of G, the cardinaity of the set E is
caledthesizeof G. A graphislabeled if names, suchasvy, Vo, ... ,voorsmply 1,2, ... .n,are
assigned to all its vertices.

A graphiscalled smple, if it isundirected, and has no loops or multiple edges. That is, the
edges of the graph G are unordered pairs, {v,w} € Eimpliesv #w, andforall ve Vandw € V
thereis at most one {v,w} € E. A graphiscalled directed, or, for short, digraph, if the edges
are ordered pairs (v, w).

If e = {v,w} € E, then we say that the vertices v and w are adjacent and that v and w are
incident to edge €; v and w are called nonadjacent otherwise. If w is adjacent to v we also say
that w is aneighbor of v. The set of al neighbors of avertex v is called the neighborhood of v
and is denoted by N(v). The cardinality of the neighborhood of v isthe degree or valency of vin
G, written asdegg(v) or smply deg(v) if thegraph G isunderstood from the context. Anisolated
vertex is avertex which has no neighbors. If al the vertices in a graph have the same degree,
then the graphis called regular or d-regular where d isthe degree of any vertex.

An aternating sequence Vi, e, Vs, . . . , Vk, &, Vik+1 Of vertices and edgesis called a walk of
the graph G, if the vertices v; and vi4+; are incident with theedge g fori = 1,2,... k. The
number k of edgesin the walk isthe length of the walk. Sincein asimple graph the edgesin the
walk are uniquely determined by the vertices, they are often omitted and the walk is denoted by
Vi, Vo, ..., Vi, Viker. A walk issaid to be closed if thefirst and the last vertex on awalk are equal,
and open otherwise. If all the edges on awalk are distinct, we speak of atrail. Furthermore, if
all vertices, except possibly thefirst and the last one, are distinct we speak of apath. A cycleina
graph G isaclosed path. In all cases the short notation vi—vy for awalk, trail or path between v;
and v, isused. The distance between two verticesis defined as the number of edges of a shortest
path connecting them.

A (directed) graphiscalled (strongly) connected if therethereisa(directed) path connecting
any (ordered) pair of vertices. Maximal, with respect to inclusion, subsets of vertices fulfilling
the previous conditions are called (strongly) connected components of a graph.

A connected graph T is called atree, if size(T) = order(T) — 1. Note that thisis equivalent
to T containing no cycles. We will usually consider rooted trees; i.e., treesin which one vertex,
the root, is distinguished. The vertices v with deg(v) = 1 are called leaves or terminal vertices,
the vertices v with deg(v) = 2, except theroot, are called internal or nonterminal vertices.

Each vertex v in arooted tree has exactly one predecessor or parent, which is the adjacent
vertex on the unique path from v to the root. All vertices which have the same vertex w as a
parent, are called children of w. The depth, depth(v) of avertex isitsdistance fromtheroot. The
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depth of atreeisthe maximum depth of verticesin thetree. We can partition verticesinto levels.
Level k contains all vertices of depth k.
Edge weights are maps from the set of edges to some set W,

w: E(G — W
e - we

Edge weights can for example be probabilities or symbolsor characters associated with an edge.
Similarly, we will use vertex weights.

We say that H is a subgraph of G, if V(H) € V(G) and E(H) C E(G). If {v,w} € E(H)
whenever v, w € V(H) and {v,w} € E(G), we call H an induced subgraph of G.

If V(H) = V(G), the subgraph H of G iscalled a spanning subgraph. Inall cases G iscalled
asuper graph of H.

2.6 Strings and Things

We will model the biological sequenceswe will ultimatively encounter as words or strings over
an aphabet. The definitionsfollow [27].

Definition 2.28 A finite set of characters, or symbols, & = {a,b,c, ...} wewill call an alpha-
bet. A sequence s of characters from X iscalled a string, or a word. We denote by

* |9 itslength, that isits number of characters, by

* s itsi-thcharacter, ifi > 0, extending the notion to negativei corresponding to the (—i)-th
character fromthe end of s, that is 5411, and by

* di, ] the continuous sub-string starting at position i and ending in position j.

Inthebiological sciencesand in bioinformatics, theterm sequenceisused predominantly instead
of string. If we do so, sub-sequence denotes a continuous sub-string and not a sub-sequencein
the usual mathematical sense.

Definition 2.29 Given an alphabet ¥, we denote with

ACCGGTTAGGAGTTCC
ACCGGTT
CCGGTTA
CGGTTAG

AGGAGTT
GGAGTTC
GAGTTCC

Figure 2.2: For a DNA-sequence of length 16 (top) the windows of length 7 are de-
picted (bottom).
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Figure 2.3: APrefix tree. Thecounting variablesc(-) associated with verticesare omit-
ted in this picture.

» Y* the set of all possible strings of arbitrary length over the alphabet 32, with
+ Y= the subset of ¥* containing strings of length at most k € N, and with
« Y¥ the subset containing strings of length exactly k € N.

Definition 2.30 Letsc ¥*. Then,with 1<i,j < |s|, we call
* 41,j], aprefix, and
* di, |s]] a suffix
of s. A suffix or a prefix are called proper if they are not equal to the whole string.

Definition 2.31 We will write the concatenation of two strings s and t as st, s repeated k times
as ¢, and the empty string as <.

Remark 2.32 ([51]) If wedenote concatenation of stringswith + then, (X*, +) isa monoid with
the identity element <.

We will later on need to divide a given long string into all continuous pieces of some fixed
length by dliding awindow over the string (e.g., Fig. 2.2).

Definition 2.33 (Window set) Given a string sand an integer w. W, (s) is the following set of
sub-strings of length w:

WW(S) :: {q17w]7q27W+1]7 c 7q|s| _W+17 |S|]}

Originally motivated from speeding up multi-pattern exact string matching algorithms, key-
word trees[27] provideacompact representation for aset of strings. To signify theuse of prefixes
and since, as will be seen, we perform additional counts, we will call them prefix-trees.
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Figure 2.4: In thisexample of a prefix tree, PT(S), PT(S) is the subtree rooted in v
circled with the dashed curve and the 2-tail rooted in vy is the subtree circled with the
solid curve on theright. The vertices in both subtrees have x respectively y as a prefix,

as exemplified with vy, V1 €tc.

Definition 2.34 (Prefix Tree) Givenaset S = {s', <%, ... ,s"} of strings over an alphabet X.
The prefix tree is a rooted tree, satisfying

 each edgeislabeled with exactly one character,

* any two edges out of the same node have distinct labels,

« thereis a bijection between the s and leaves, such that the concatenation of edge labels

on the path fromthe root to v equals s.

More formally, the vertices vy of the prefix tree PT = PT(S) correspond to prefixes x present in
S. Thus, PT hasvertex set

V(PT) :={w|3dy € S : xisaprefix of y} (2.34)

and edge set
E(PT) = {(w W)x=¥y[1, ]yl - 1]}. (2.39)

The vertex degree of PT is bounded by |¥| and itsroot is v.. Define c(v) to be the number of
stringsin &, whose prefix is x. By the convention of considering < to be a prefix of any string,
thisyields that c(v.) is|S].

An example of aprefix treeisdepicted in Fig. 2.3.

Lemma 2.35 A prefix tree can be built in time O(n), where n is the total of the lengths of the
individual stringsin S.
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Proof. Sincethe counting variables c(vy) can be updated with one elementary operation, the
proof for keyword trees[27, pp. 52] carries through. O

Our approach relies on particular subtrees, as a distinguishing characteristic of prefix tree
vertices.

In Fig. 2.4 one can find an example for the concept of k-tails introduced in the following
definition.

Definition 2.36 (k-Tail) Given a prefix tree PT(S), we will denote with PT,(S) the sub-tree of
PT(S) rooted in zinduced by the vertex set

V(PT,) = {w|vw € V(PT), zis a prefix of x}.

Smilarly, we denote with PT,(S), 1 < k < depth(PT(S)) — depth(2) the subtree rooted in v,
containing only vertices of distance at most k fromv,. That is, the subtree induced by the vertex
set

V(PT.) = {w|w € V(PT), zisa prefix of x, |x| — |7 < k}.

PT,«(S) will be called the k-subtree or k-tail of v,. Wewill omit the argument S when itisclear
from the context.
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Chapter 3

Hidden Markov Models

Hidden Markov Models (HMMs) have been applied to a large number of applications in sta-
tistical pattern recognition and classification with great success. They provide a sound statisti-
cal framework, and allow for efficient and numerically stable algorithms. Their visualization as
graphs, see Fig. 3.1, congtitutes an effective user interface for modeling.

HMMs have been investigated under the name of (probabilistic) functions of a Markov chain
fromthe 1940sto the 1960s[12,14,24,29,62]. The classical development was mostly theoretical,
considering questions of uniqueness and identifiability, and did not result in wide spread popu-
larity. Starting in the 1970s, after Baum et a. [9] had derived an efficient training algorithm for
HMMs, and fueled by their prowesswhen applied to engineering problems, thisquickly changed.
By now they have become a basic tool in the applied sciences. The most prominent applications
can be found in speech recognition and in the computational analysis of biological sequences.
In fact, the field was dominated by a group of researchersat AT& T [35, 36, 38], working on the
former, in the beginning. A tutorial covering the theoretical foundations of HMMs and their ap-
plication in speech recognition can be found in [65], and a description of the current state of the
art in arecently published book [33].

In molecular biology, HMMs are used to compute multiple sequence alignments[20], model
classes, familiesand domainsof protein sequences[13,26,43,44,46], identify specific functiona
protein classes based on motifs[ 78], recognize promoter sitesin eukaryotic DNA [61] and trans-
lational unitsin procaryotes[75], find genes|[2,6,42,45,47,77], predict protein structure[39,40],
perform fold recognition [18] and identify remote homologs [71]. Overviews and tutorials can
be found in books [5,19] and articles [21,25,43].

HMMs have a so been applied to problemsfrom awiderange of other fields. They have been
used to predict international crises[68] inthe Political Sciences, to model and analyzeion chan-
nels[10] in Physiology, and to control anti-tank guided missiles[56-58] in Electric Engineering.

In the following, we will introduce the basic theory, following the notation in Rabiner’s tu-
torial [65].

19
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3.1 Definition of an HMM

HMMs are statistical processes consisting of two distinct components. There is adiscrete-state,
time-homogeneous, first-order (cf. assumption 3.2) Markov chain (MC) with appropriate tran-
sition probabilities between states and an initial distribution. Associated with each stateisadis-
crete or continuous distribution over possible emissions or outputs, which is, in general, distinct
per state. The probability of an emission depends only on the state the MC isin; neither history
of states nor previous outputs matter.

When producing sequences of emissions, see Sec. 3.5, only the output values— inthe dis-
crete case typically from an aphabet of size smaller than the number of states — can be ob-
served. The sequence of states of the underlying MC cannot be observed, which motivates the
name Hidden Markov Model.

Definition 3.1 (Hidden Markov Model) We will use the following notation for a Hidden
Markov Model (HMM):

N number of states
S={S,S,..., S} setof states

A ={ajj }1<i jeN transition matrix

7w = (7, m2,... ,mN) initial distribution over states
M size of the output al phabet

Y ={vi,Vp, ... ,uv} outputalphabet
B= {bjm}lsjsN,lsmsM emission matrix

T length of an observation sequence
0=0,05---0O¢ observation sequence; O; € X
Q=002 -ar State sequence; o € S

The elements of the matrices A, B and 7 correspond to the following probabilities:

TMi = P(1=9) for all i
ajj = P(Ow1=S|la=S) foralli,j,t (3.1
bj(Om) =bjm = PO =Vnlat =) forall j,mt

Hence A and B are row-stochastic matrices and = is astochastic vector; i.e., al the e ements
are non-negative and the sums

N N M
Yaj=) m=) bn=1 forali. (3.2
=1 =1 m=l

A HMM is completely specified by the quantities A, B, =, N, M, if we use the tacit convention
that states and output symbolsaredenotedby 1,2,... ,Nand 1,2, ... , M respectively. Let

A =(A B, ) (3.3)

denote both the model and the set of parameters.
This definition implies the following assumptions, which we would like to state explicitly,
since they are the basis for our further development.



3.2. The Three Fundamental Problems 21

Discrete
emission
distributions

Markov
Chain

Figure 3.1: A simple HMM displayed as a directed graph

Assumption 3.2 HMMs satisfy:

1. First order MC. Thetransition probability from one state to another state depends only
on the two states, and isindependent from states previously visited and from observations.
That is:

PO =Sl =S, 01 =S,,. . 0 =S) =P(Owm =Gl =3) forall i,j,t. (34)

Thisis often referred to as the Markov condition.

2. Independent emissions. The probability of an emission at timet depends only on the state
attimet

3. Time homogeneity. The transition probabilities are independent of time; i.e.:
P01 =S|t =S) =P(Quu =Slqu=9) forall ttu=1 (35

In Fig. 3.1, we have depicted an HMM as a directed graph. The vertices of the graph cor-
respond to the states of the underlying MC, edges to transitions between states weighted by the
respectivetransition probabilities. Zero entriesin the transition matrix correspond to non-edges.
The transition matrix, A, of the MC can be considered as the weighted adjacency matrix of the
graph. The discrete output distributionsis depicted by dashed arrows. Theinitial distributionis
not displayed. Wewill switch freely between the matrix and graph representationsin the sequel.

3.2 The Three Fundamental Problems

Rabiner [65] alludesto three fundamental problemsarising naturally and immediately, when us-
ing HMMs in practica applications.
Problem 3.3 Let amodel A and a finite observation sequence O = 0,0, - - - Oy be given.

1. How can one compute the likelihood P(O|)) efficiently?
2. Which state sequence Q = q;02 - - - gr isan “ optimal” explanation for O?
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3. Considering A asaninitial “ guess’ , how should oneadjust parametersof A asto maximize
P(O|A)?

We motivate the relevance of these questions with the following two examples:

Example 3.4 A typical application of HMM in molecular biology is finding distantly related
protein sequences [20]. Typically, some protein sequences of a certain family are known. With
the parameter optimization onetriesto find a model A which maximizes the sum of probabilities
of the training sequences (problem 3. above).

Subsequently, we compute for every sequence O in a protein sequence database such as
Swissprot [3] P(O|A) (problem 1. above) and rank the sequences according to their probability.
Highly ranked sequences will likely be additional members of the protein family in question.

In this exampl e the number of training sequences might be of the order of hundreds. Asof March
19, 2001, the protein sequence database Swissprot for example contained 94,152 sequence en-
tries.

Example 3.5 Let a multiple alignment [63, pp. 123] of a set of protein sequences and a corre-
sponding profile HMM [19, pp. 100] (see. Fig. 3.9) be given. In such an HMM, states fall into
three different classes — match, insertion and deletion —with respect to the consensus [ 20] of
the multiple alignment. The states indicate whether for a given sequence, a residue matchesthe
consensus, has additional residues inserted, or has residues from the consensus removed.

By computing the optimum state sequence, we compute the alignment of a sequence to the
consensus (problem 2. above).

The exposition in the following six sections closely follows[65].

3.2.1 The Forward-Backward Algorithm

The likelihood P(O| ) can be computed in a closed form expression as a sum over al state se-
guences Q

P(O])) = > P(O,QN

Q

> P(OlQ, MP(Q[))
Q

Z Ty bQ1(Ol)aQ1Q2bQ2(OZ) " Agragr bQT (OT)
Q

The exponential complexity of this naive approach — more exactly, we obtain aworst-case
complexity of O(TNT) for afully connected model as can be seen from Fig. 3.2 — can be sub-
stantially reduced with a dynamic programming approach.

Definition 3.6 (Forward variables) The forward variables oy(i), 1 < t < T, denote the proba-
bility of being in state i and observing 0,0 - - - O; given the model A:

ay(i) = P(010; - - - O, g = i[A). (36)
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Figure 3.2: This diagram shows the exponential number of paths through the state-
observation space.

Lemma 3.7 The forward variables can be computed in time O(TN?) with the following induc-
tion:
1. Initialization for t = 1:

a1(i) = mbi(Oy), for all i. (3.7
2. Inductionfort=12,2,... ,T—-1:

N
(i) =Y ar(i)abi(Owa), for all i. (3.8)

j=1

Proof. Asshown in Fig. 3.3, we have to perform 2N operations to sum up the probabilities
ax(j) for each a1 (i), weighted by the respective transition probability to state i and the proba-
bility of observing O in statei. For each point in time, thereare N forward variables, yielding
the af orementioned complexity. The correctness of the induction followsimmediately from

N
P(O10;- - Or, s =i[A) = ) P(010: - O, G = [ V)31 (39

=1



24 CHAPTER 3 HIDDEN MARKOV MODELS

t t+1
a(i) atr1()

Figure 3.3: Theinductive definition of the forward variables at.1(j) is shown.

To train the model parameters, we make use of the following auxiliary variables:

Definition 3.8 (Backward variables) Thebackward variables (i) are defined as the probabil -
ities of observing the suffix O, Oz, - - . , Of of the observation sequence, given statei at time
tand X:

Bi(i) := P(Ou1, Oz, - .. Orlqr =i, A). (3.10)
Note, that the (i) complement the a4(i) in the sense that they capture the probability of ob-

serving the remainder of the observation sequence O, Oy». . . O starting from state i at timet
and given the model .

Lemma 3.9 The backward variables can be computed in time O(TN?) by induction:
1. Initializationfor t = T:

Gr(i) =1, forall i. (3.11)

2. Inductionfort=T-1T-2,... L

N
Bi(i) = > aby(Oua)Bia(G),  for all i. (312)
j=1
Proof. Analogous to the proof of Lemma 3.7 using Fig. 3.4. O

Remark 3.10 Aso(i)f(i) isthe probability of observing O and being in state i at timet, given
the model A, we can express the likelihood of the observation sequence in terms of the forward
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t t+1
B Brr1()

Figure 3.4: Theinductive definition of the backward variables (i) is shown.

and/or backward variables, and the following equalities

N
> P(gi=i,0])); forallt
i=1

N

> an(i)(i); for all t (3.13)

i=1

N
> ar(i).
i=1

P(O[})

3.2.2 The Viterbi Algorithm

Asking for an “optimal” state sequence, the second problem in 3.3, can aso be dealt with
efficiently, if the criterion for optimality is chosen to be the maximization of the probability
P(O, Q|)) over dl possible state sequences Q.

Definition 3.11 (Viterbi path) A state sequence Q" is called a Viterbi path, if
P := P(O,Q°|\) = P(O,Q|\) for all Q. (3.14)

Analogoudly to the previous section, we define auxiliary variables é;(i). For a partial obser-
vation sequence O[1,t] = O,0; - - - O; we define

o(i):=  max PGl Geath =1, OylA). (3.15)

That is, é:(i) isthemaximal probability over al partial state sequencesQ[1,t] = 10z - - - g ending
ing; =i, while observing O[1, t].

Lemma 3.12 Givenan HMM X and using the auxiliary variables é;(i) we can compute a Viterbi
path Q* in time O(TN?).
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Proof. Note, that weimmediately obtain the following inductive formulafrom the definition
der1(j) = max(d(i)a;)by(Oa),

and thus P* = maxy<i<n o1(i). We introduce auxiliary variables /(i) to store the state i maximiz-
ing Eq. (3.15). In detail we use the following procedure

1. Initializationfor t = 1;

i) = mbi(Oy), foradl i,

(i) = 0.
2. Inductionfort=2,2,... ,T—-1:
owa() = ﬂ%@t(i)aﬂ)bj(om), foral j,
Ywa() = argmNaX(ét(i)aj)-
3. Computation of P*:
PT = maxar(i),
gy = argmaxot(i).
1<isN
4. Backtracking to construct Q~:
O = Yw(y), t=T-1T-2,....1 (3.16)

Analogoudly to the case for computing the likelihood of an observation sequence, we obtain a
worst-case complexity of O(TN?). a

Of course, other definitionsfor a“most likely” sequence of states, corresponding to agiven
observation sequence, are conceivable. Churchill et al. [15] present a Bayesian approach us-
ing aMarkov Chain Monte Carlo sampling procedure, to obtain state sequences which are most
reliable with respect to perturbations of the input.

3.2.3 Baum-Welch Re-estimation

Training a model isthe process of adjusting the parametersof aHMM . The objectivefunction
isto maximize the likelihood P(O|\) of observing a given observation sequence O. Dueto the
complexity of thelikelihood landscape, no efficient, general, global optimization proceduresare
known.

The most widely used training procedure, called Baum-Welch re-estimation or the Baum-
Welch algorithm [7, 8, 17], belongs to the class of agorithms dealing with statistical missing
value problems or missing data problems [48]. Expectation maximization algorithms, or, for
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short, EM algorithms[11, 55, 67], provide an effective and robust local optimization procedure
for those problems.

In the typical setting of maximum-likelihood estimation, onetriesto find parameters ¢ gov-
erning a distribution from which some data X is drawn, such that the likelihood £(#|X) is maxi-
mized. In missing value or, asthey are sometimes called in the literature, incomplete data prob-
lems, # now governs a distribution, which not only produces X, but also the missing values Y.
The main idea behind EM istheinsight that one can consider the so-called complete-data likeli-
hood £(6|X,Y) and maximizeit by iterating the following two steps:

1. Expectation Computation: Take the parameter estimate at iteration i, ' and X as con-
stant. Compute the expectation of the complete-data log-likelihood and express this |og-
likelihood in terms of # with respect to Y, which is a random variable governed by ¢' and
X. Thisisalso called the E-step.

2. Maximization: Choose f such as to maximize the expectation. Set §'** equal to 4. This
isreferred to as the M-step.

The EM algorithm will not decrease the likelihood, and thus converges at least to alocal maxi-
mum [7,8], which implies the same behavior for the Baum-Welch algorithm.

We will only formulate the Baum-Welch algorithm. A proof of correctness and local con-
vergence can be found in [65]. In the case of HMMs, the missing values Y are the states in the
state sequence Q leading to an observation sequence O, which corresponds to the variable X in
the general formulation above. The expectation of the complete-data log-likelihood equals

Q(A,\) =) log (P(O, QI})P(0, Q) , (3.17)
Q

which we will have to evaluate in the E-step. Thisyields[7] in the M-step the update rules

5 = expected number of transitionsfrom § to § (3.189)
' expected number of transitionsleaving § '
(3.18b)

— expected number of observations vy, in state §
m = ivalsi 1
Oim expected number of arrivalsinstate§ and (3.18c)
(3.18d)

probability of startingin state S at timet = 1. (3.18¢)

A
I

The expectation values can be efficiently computed with the help of additional variables (i)
and &(i,]), where

() P(a =i|O, A), and (3.19)
&) = Plor =1, 02 =[O, A). (3.20)
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Figure 3.5: Breakdown of events and respective probabilities making up &(i, j)

We can expressthe additional variablesusing Eq. (3.14) intermsof theforward and backward

variablesintroduced in Sec. 3.2.1
. _ Pa=i,0[})
(i) = P(TM)
IOLD)
NETOEI0)
and, asillustrated by Fig. 3.5,
ay( )aij bi (Or+1)Be1()

Eilil (1) i)

&) =
yielding the identity (using 3.12)

Y

N

(i) = 3 &G )).

j=1
By summing over time, we arrive at the desired expectations, namely

T-1

Z (i)
> &)
t=1

We can now rewrite the re-estimation or update formulas 3.18:
__ Yo &) Yl a)3ih(Oun)Bin()

expected number of §, and

TS Sl
Bjm - EL&%O_&G)@G)
thl Oét(J)ﬁ_t(J) _
7= )= A0
Zj:l 1(j)510)

expected number of transitionsfrom S to S.

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

Note, that the stochasticity constraints still hold for all re-estimated parameters. Also, as will
becomerelevant in Sec. 3.4.1, the Baum-Welch algorithm preserves zero entriesin A, B and .



3.2. The Three Fundamental Problems 29

3.2.4 Implementation and Numerical Issues

Since the Baum-Welch algorithm converges to a stationary point, we can smply run it until the
likelihood does not change anymore between iterations. Moretypically, wewill stop as soon as
the change is below some pre-specified small constant, or a maximal number of iterations has
been performed. The exact regime used will be application-dependent.

Asit isroutinewith numerical codesin statistics, one hasto take precautions against numer-
ical underflow errors, as, e.g., P(O|\) — 0exponentialy as thelength of O goesto infinity. We
will only compute log-likelihoods in practice, and aso employ a scaling scheme for the algo-
rithmsintroduced in the previous section, which ensures that at every time step all parameters
arewithin thefloating point range. A detailed development can befoundin[65]. Wewill briefly
introduce scaling to the computation of the forward and backward variables.

1.t=1
a(i) = ag(i) = mibi(01), 1<i<N,
D G
ar(i) = cp-aq(i). (3.30)
2.t=2,....T:
N
ar(i) = ( &t—l(j)aii> bi(G), 1<i<N,
j=1
.1
XA
ar(i) = ¢ aui). (3.31)
By induction, we can obtain
ali) = ([T e ) e, (332)
T=1
and thus, using 3.31,
n a(i)
&)= ———2— . 3.33
(I) Zji\llat(‘l) ( )

Remark 3.13 For the conditional probability of being in statei given the observations and the
model, the following equation holds:

P(ck =[Oz - O, A) = éx(i). (3:34)



30 CHAPTER 3 HIDDEN MARKOV MODELS

The backward variables (i) will be multiplied with the same scaling factors as above, yielding

() = s =1,
Br(i) = CTﬁT(I)v
by = Za,b(ot+1)ﬁt+1o)—(Hc)ﬁt(u),
T=t+1
B(i) = ctﬁt(l)- (3.35)

There-estimation formulas, for examplefor a;;, can be rewritten with the scaled forward and
backward variables. Observe, with C, := []'_, ¢, and Dus := [[ s C-, that C;Dys = Cr for all
t, and thus, as D41 1= 1,

G o= Lo ZOLLICEHER0
> i1 (i) Be(i)

1 Cr o(i) @ b(Ovs) B ()

th_ll Cr Oét(i) 5t(i)
1 Cean(i) @ 1(Oua) Desz/ha () e

tT_ll Cion(i) Dua (i)

:11 (i) alJ by (Ot1) 5t+1(]) Ct+1

Et 1 at(')ﬁt(')

The remaining re-estimation formulas trand ate as well [65]. From the following equations,

(f[ c7> P(O]))
=1

(3.36)

T

(H c.) im(i)
i(ﬁc ar)

i=1 7=

at(i)
= 11 (3.37)

we obtain an expression for the log-likelihood, only making use of the scaled variables, and thus
safely within a computer’s floating-point range, namely

;
logP(O]}) =~ " logc, . (3.38)

=1

3.2.5 Extension to Multiple Observation Sequences

In many applicationsone hasto deal with aset of observations; e.g., afamily of protein sequences
or aset of samples of the same word spoken. Generally, given are K independent observation se-
quencesOW, 0@ ... OK wherethe T® denote their respective lengths, and the observations
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within one sequence are denoted by O® = 0{0% . . . O, . Thejoint likelihood of the observed
sequencesis

K
PO, 02, ., 0W]) = [T POY]). (339)
k=1

Fortunately, we can adapt the Baum-Welch algorithmto thelikelihood of Eq. (3.39). Asinthe
case of asingle observation sequence, the expected number of transitionsfrom S to § for afixed
sequence OM equals 315+ ¢X(i, j). By summation over k, we arrive at the expected number of
transitionsfrom S to § for all sequences. Similarly, we can adjust other parametersin asimilar
manner and obtain the required re-estimation formulas; e.g., for the transition probabilitiesthis

yields:

() — .o
a. — Ell::l E;r:l ! t(k)(|7j) 340
aj = K TO-1 K/ ( . )
doker 2= ()

The proof of convergence can equally easily be transferred to multiple observation sequences,
as can the scaling technique introduced in Sec. 3.2.4. Asamatter of fact, the only differenceare
the additional summations over k in numerator and denominator.

Instead of simply using the k sequences in the training, we can also assign a positive weight
w to each sequence. Thisis equivalent to adding w copies of the same sequence to the training
data set.

3.2.6 Continuous Observations and further Extensions

While we only deal with strings, and thus with HMMs with discrete observations, the devel op-
ment of the theory carries through even if one considers continuous distributions or their mix-
tures as outputs [34, 65, 66]. Some precautions have to be taken to assure convergence of the
Baum-Welch agorithm. In general, sufficient conditions on the probability density functions
are ellipsoidal symmetry [50] or, much stronger, log concavity. In[34], thisis extended to the
case of finite mixtures of (multi-variate) Gaussian, or, more generally, eliptically symmetric,
distributions. Note, that via a routine approximation [72] this allows an extension to arbitrary
probability density functions.

Another areaof research interest isusing aternativesto the Markov chaininan HMM. Since
especially the Markov assumption (cf. 3.2) isalimiting factor in some applications, one approach
taken has been employing what amountsto an inhomogeneous Markov chain. Theinhomogene-
ity can be either controlled, just as in time-inhomogeneous Markov chains, by the time of the
observation, or by some external quantity, conditioned on observations[59]. In[41], HMMsare
used for the analysis and ssimulation of economic time series data, which basically encodes cash
flow. The sum of the observations up to timet was the controlling quantity in this case.

Also, the combination of Artificial Neural Networks and HMMs [5], extending the set of
states to a continuous set [ 76], and the generalization of HMMs to — or embedding them in —
the framework of graphical models [5] has been investigated.
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Figure 3.6: The unconstrained maximum likelihood model for an observation se-
gquenceO = 0,0, -- Ot

3.3 An even more Fundamental Problem: Choosing HMM
Topology

Whilethe three problems described in 3.3 areindeed essential for working with HMMss, they do
not cover a problem which we find even more important: How does one obtain an HMM in the
first place? More specifically, how does one arrive at the right number of states, or the “ correct”
arrangement of connections between states given some training data?

To formalize the problem, let us define the topology of a model.

Definition 3.14 (Topology of an HMM) Given an HMM ). With topology of a model we refer
to the set of states, and, most importantly, the allowed and forbidden transitions between the
states of the underlying Markov chain; that is, the non-zero and zero entries, respectively, of the
transition matrix.

Alternatively, one can aso include the allowed and forbidden emissions in each state in the de-
finition of topology.

Definition 3.15 (Full topology of an HMM) Given an HMM ). With full topology of a model
we also refer —inadditionto the set of states, the set of emissions, and the allowed and forbidden
transitions between the states of the underlying Markov chain —to the allowed and forbidden
emissionsin each state; that is, the non-zero and zero entries, respectively, of the transition and
the emission matrix.

Thedilemmaof choosing the* correct” topol ogy iscaused by thefact that finding the topol og-
ically unconstrained maximum likelihood model istrivial but, alas, completely useless (cf. [73]).
For an observation sequence O = O,0; - - - Or, themaximum likelihood model, see dso Fig. 3.6,
issmply apath of length T, Q = Q:Q: - - - Qr. The transition probability between states Q; and
Qi+1 equals one and all the other transition probabilities equal zero. Each state Q; emits symbol
O; with probability one.

This can be extended to several observation sequences, cf. Sec. 3.4.3. Nevertheless, such a
model evincing absolutely no generalization is effectively an exact string matcher, and hence
not a suitable tool for statistical pattern classification. Later on, we will describe ways to force
generaization.
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Figure 3.7: Afully connected HMM

One aso finds the term architecture or structure for the concept of topology in the literature.
Note, that neither the actual values of transition probabilities nor those of the emission probabil-
ities matter, provided they be non-zero.

Lemma 3.16 No further transitions are added to HMM topology by Baum-WElch training.

Proof. Observe the presence of the a; factorsin all the summands in the numerator of the
re-estimation formula Eq. (3.18a), which forces the re-estimated variables a; to remain zero. O

Remark 3.17 If all transition and emission probabilities are non-zero no transitions are re-
moved by Baum-W&lch training.

3.3.1 Example Topologies

To give some intuition regarding differencesin topology, we will introduce basic types of HMM
topologies and discuss their respective features.

Definition 3.18 (Fully connected HMM) W& speak of a fully connected HMM, when the states
are pairwise connected; i.e., when the underlying digraph is complete.

That is the case, if the transition matrix has no zero entries, except possibly on the diago-
nal. Diagona entries of the matrix correspond to loops or self transitions. There are typically
no distinguished initial or final states. In the language of Markov chains, the underlying MC is
irreducible, without absorbing states. Fig. 3.7 shows a fully connected HMM with four states
and self trangitions.

Definition 3.19 (Left-right model) A HMM ) iscalled a |eft-right mode, if the underlying di-
rected graph is acyclic, except possibly loops, hence, supporting a partial order on the states.

We can compute the partial order by sorting the graph topologically [69]. In such a left-right
model, see Fig. 3.8, thisyieldsone or several distinguished initial and final states. By convention
thereisonly oneinitial state and one final state, which can always be achieved by introducing a
special symbol for the end of an observation sequence and introducing silent states.
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Figure 3.8: Aleft-right HMM (cf. Def. 3.19): Note the partial order on the states

Definition 3.20 (Silent state) A state s which produces no output (or, equivalently, always the
empty string <) is called silent.

Also, the initial distribution 7 puts al its weight on the distinguished initial state in the case
of left-right models. For such a model the transition matrix has to be upper triangular. In the
language of Markov chains, the final state is called absorbing; note, that in this case aloop on
the absorbing state is required to ensure stochasticity of the transition matrix.

Definition 3.21 (Strict left-right model) A left-right model is called strict, when there are no
loops and there are only transitions going from a state of graph-theoretical distance d from the
initial stateto one of distanced + 1.

Animportant aspect of |eft-right modelsare the limitsto the length of the observation sequences
which can be produced by the model.

Remark 3.22 Note, that a left-right model without loops will only produce finite length obser-
vation sequences. More exactly, all observationswill have length at least equal to the length of
the shortest path from the initial to the final state and at most equal to the length of the longest
path.

A specia case of left-right models are so called profile HMMs used widely in molecular
biology applications.

Example 3.23 (Profile HMM) Profile HMMs [19, pp. 100], see Fig. 3.9, which are used for
various tasks in the context of protein sequence analysis, are examples of left-right models. All
statesin a profile HMM have bounded degree and, neglecting theloopsintheinsert and deletion
states, they are strict left-right models.

As we can see in Table 3.1, for a fixed number of states the chosen topology controls the
number of parameters. Thisinfluences both the running time of the algorithmsintroduced in the
previous sections and the amount of training data required.
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Ini

Figure 3.9: Profile HMMs (cf. Def. 3.23), are widely used in the analysis of (protein)
sequences. The sguare states are so-called match states, the diamonds are insert states
and the circles are delete states corresponding to the classification of the observations
they produce with respect to a consensus sequence. Delete states are silent.

Number of free parameters

Model trangitions emissons | initial

Fully connected (N-1)? (M-=I)N | N-1

Full left-right | 3(N-1)(N-2) | (M-DN | N-1
Profile HMM 6L+4 2(M-1)L| 1

Table 3.1:  The number of free parameters are shown as a function of the number of
states for different classes of HMMs. The remaining formal parameters are determined
by the stochasticity constraints. In case of profile HMMs, the number of parametersare
given interms of L, the number of match states (cf. Fig. 3.9). Full left-right refersto a
left-right model with the maximal number of transitions.

3.3.2 Topology components

We can also look at the components making up thetopology from adifferent angle, by classifying
the states from a Markov-chain point of view.

Definition 3.24 Given an HMM ) and an infinite sequence of states, qog10pz - - - , define

o0

Pi ::E:P(qn =], 0k #]j, forall 0 <k<n|qgo=1i). (341)

n=1
With the help of the preceding definition, we can classify the states of an HMM according to
their probability of recurring, just asin the case of aMarkov chain.

Definition 3.25 Givenan HMM ). A state S of ) iscalled
» transientif P; <1, and
* recurrent if P; = 1.

Note, that if theHMM X\ hasend states, the definition makesonly sense when weformally add
a self-transition with unit probability to every end state. Then, in the case of |eft-right models,
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all but the distinguished end states are transient. All the states in the fully connected model in
Fig. 3.7 arerecurrent, assuming proper choice of the transition probabilities. In the statistical or
stochastic literature dealing with HMMs, ergodicity [59] of the source process and the model,
implying recurrence of all states, isoften required to allow for the use of analytical toolssuch as
[imit theorems.

In general, an HMM topology can consist of one or more components of two basic types,
which can be characterized according to the types of states they contain, namely

* atransient component, and
* arecurrent component.
Examples of arbitrarily complex HMMs have been constructed [15].

3.4 Computing HMM Topology

Let us return to the issue of selecting an appropriate topology for a specific application. The
search for systematic and automated procedures for selecting HMM topology is motivated by
two key shortcomings:

* insufficient throughput of the mostly manual process used so far, and
* insufficient knowledge about the problem domain to support the decision-making process.

If theapplicationitself naturally prescribesatopology, as, for instance, for speech recognition
and for profile HMMs in bioinformatics, then experts can choose appropriate models. Thisis
often combined with a classical model engineering approach of giving an application specific
meaning to each individual feature of the model, and adjusting the mode! topology accordingly.
These hand-crafted models are unquestionable highly desirable, if thereis sufficient knowledge
available on the problem domain. Still, an automated procedure capable of producing a number
of models of varying sizesis highly desirable for the following reasons:

» Need for higher throughput. Even if models can be hand-crafted, the requirements of data
mining applications often demand hundreds of distinct models, which makes manual in-
tervention infeasible. Thisis often addressed by training individual models starting from
the same base topology, which is not necessarily the most effective approach.

* Insufficient training data. As we can see in Table 3.1, the number of states also enters
quadratically into the number of transition parameters and linearly into the number of
emission parameters. Since the amount of training data is always too small in practice,
a model too large can cause parameter estimates to be unreliable or counterproductive.
Two mitigations are so called parameter tying [19] and Bayesian approaches with prior
distributions on observations [71]. Nevertheless, a model with the “minimal” number of
states necessary would also be advantageous from this point of view.

* Increased sengitivity. Aswewill seein Sec. 3.4.3, the number of statesal so influences sen-
sitivity and specificity of models. Grossy oversimplifying we can state that, the smaller
the number of statesis, the more sensitive and the less specific the model will be. With an
automated procedure more sensitive or more specific models could easily be created.
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If the application knowledgeisinsufficient, that is, the“true” inner mechanism of an observed
processis completely unknown or only partially understood, then manual inspection may not be
areliable procedurefor choosing model topology. A rigorousframework, which requiresexplicit
specification of apriori assumptions, would allow to select amaximum aposteriori model from
training data alone.

Alternatively, learning families of models with varying numbers of states, corresponding to
varying combinations of sensitivity and specificity, would provide afamily of “fishing nets’ of
different mesh topology — not only mesh size — for such black-box applications. Sometimes
application knowledge might well be extracted from those models, by observing which model
feature causes changes in specificity.

Another aspect applying to both casesis a possible increase in computational efficiency. As
stated in Sec. 3.2, the number of states enters quadratically in the complexity of the basic algo-
rithms, and hence smaller models with acomparable sensitivity are highly advantageous. Inthe
biological sciences, likelihood computationsare done routinely for large numbersof HMMsand
large sequence data bases, containing on the order of 100,000 sequences.

In the following we will discuss known algorithmic approaches to computing the topol ogy
of anHMM.

3.4.1 Baum-Welch with Thresholds

The Baum-Wel ch algorithm can be used to reduce the number of states of amodel in the follow-
ing way.

Algorithm 3.26 (Baum-Welch pruning) Sarting from some model A\ and some training data
set O, we can iterate the following steps.

1. Perform Baum-WElch iterations; see 3.2.4 for details.
2. Prunethetransition matrix by setting entries smaller than some ¢ > 0 to zero.

Terminate after a certain number of iterations or if all transition probabilities are larger than ¢
after training.

There is no established theory guiding the choice of theinitial model, of ¢, or of the number
of iterations. One has to monitor the likelihood at every iteration and use external criteriasuch
as evaluation on atest data set to decide on the right model. Depending on the choice of A, ¢
may haveto belargein order to obtain any reduction in the number of states. Also, all transition
probabilitiesmight have ssimilar large values, making the choice of « appear arbitrary. Note, that
this procedure may assign zero probability to sequences which were originally in the training
Set.

3.4.2 Model Surgery

Anextension to using Baum-Welch with thresholdsisthe strategy known as model surgery. With
model surgery, one tries not only to eliminate transitions which are rarely made, but to
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* identify and eliminate states rarely visited, as states not present in the stochastic source,
which is assumed to be some unknown “true” model, and

* identify states often visited, as possible unions of several states in the unknown “true’
model.

The rationale behind model surgery isthe assumption that states should contribute equally to the
model. That is, the probabilities of visiting states should be of comparablevalue. Note, that this
yields similarly reliable parameter estimates.

Algorithm 3.27 (Model Surgery) Given a start model ). Iterate the following steps:
* Perform Baum-W&lch training, cf. 3.2.4.

» Consider the sum of transition probabilities to a given state. If the sumisvery small, the
state and all incident transitions are removed from the model. If the sumislarge, split the
stateinto two identical copies, with the sametransitionsand identical emission and transi-
tion probabilities. In some implementationsthe probabilitiesin the new states obtained by
splitting are randomly perturbed, to accel erate divergence of the split states' parameters
in the subsequent training.

The algorithm terminates after a fixed number of iterations or if some sort of “ equal use” ! of
states has been achieved.

Again, thereisno established theory guiding auser in applying model surgery. The choice of
the thresholdsfor deleting states and for the splitting of statesisarbitrary, as are the modification
and theterminationcriterion. Hence, model surgery hasto be performedinteractively with expert
knowledge, based upon external factors such as performance evaluations, guiding the decisions
being made.

3.4.3 Model Merging

Model merging is a Bayesian approach to learning both a model’s topology and its parameters,
devel oped by Stolckeand Omohundro[73]. Thethreemajor elementsof model mergingare[74]:

1. A method to construct an initial model from data
2. A way to identify and merge sub-models.

3. Anerror measure to compare the goodness of various candidates for merging,
and to limit the generalization.

One starts with the unconstrained maximum likelihood model for agiven set of observation
sequences © = {OM, 0@, ... ,0W}, see Fig. 3.10. As mentioned earlier, this model can only
reproduce the training data set, each observation with probability 1/k, and thus does not gener-
dizeat all.

In the merging step, individual states of the HMM are merged, or identified. A weighted
average of their transition and emission probabilities yields the corresponding distributions for
the merged state.

IMode surgery is an ad-hoc procedure without clearly formalized objectives.
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Figure 3.10: The unconstrained maximum likelihood model for a set of observation
sequences {OW, 0@ ... OM} is depicted. Here, qo is an initial state with the silent
output . All transition probabilities equal one, except the ones from gy to the respective
first states of each observation sequence.

A Bayesian posterior isused to select models. One component of the posterior isa prior on
the model’ stopology, which isthe driving force of the generalization. The posterior probability
can be computed as

P()P(OX)

POIO) = =505

(342)

The maximum a posteriori probability (MAP) model Awap isthe one maximizing Eq. (3.42),
where P(Q) is constant during model selection and P(O|)) isthe likelihood. The model prior
P()\) factorsinto global structural, P(\g), aper state structural, P(A3| \g), and per state parameter
priors, P(0}]\d, As), where ), now denotesall thenon-zero parametersin A, Band , and 47 those
which are pertinent to state g; i.e.,

P(\) = P(\e) [ [ POZAG)PETIAE Aa). (343)
qee

Asitisroutinefor using priorsinthe context of HMMs[71], Dirichlet priors[19] were chosen
asthe per state parameter priors, yielding

PO, AG)=; 11 agft_l# IT ‘@ (344

B(ot, ... ,« e
( ty ) t) re neighbors(q) ’ e) ec emissions(q)
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where o and «, are the prior weightsfor transitions and emissions, respectively, and B(-, . .. , )
is the n-dimensional Beta function.

The structura prior per state allows control over the number of emissionsin and transitions
from each individual state. We can choose the average number of transitions, p;, and the average
number of emission symbols with non-zero emission probability, pe, yielding the prior

p()\gp\e) — plneigthVS(Q)l(l _ pt)N—lneighbors(q)lp|esymbols(q)|(1 _ pe)N-|symboIs(q)|‘ (3.45)

Finally, aglobal structural prior can biasthe process towards choosing modelswith asmaller
number of states; for example,

P(\e) o C™, (3.46)
for some constant C > 1.

Algorithm 3.28 (Batch best-first model merging) Given a data set, compute the uncon-
strained maximum likelihood model.

1. Determine a set of candidate merges, i.e., all pairs of states.

2. For each candidate merge compute the merged model and its posterior.
3. Sect the MAP merge.
4

. Terminate, if the merged model has a posterior smaller than the onein the previous itera-
tion.

Thecrucial step and governing factor isthe computation of the set of candidate merges, which
unfortunately will in general yield acomplexity of O(N?), whereinitially N equalsthetotal num-
ber of symbolsin the training data set.

The empirical results Stolcke and Omohundro [ 73] have obtained are promising, but not very
conclusive. Even though agreat number of clever ideas and heuristicswere used to speed up the
most time-consuming parts of the algorithm, running timeremainsacritical issue. Also, having
such fine-grained control over all parameter priorsturned out to be problematic. All prior para-
meters have to be chosen sensibly, which is a problem different from choosing HMM topol ogy,
but not necessarily much easier in its most general formulation. Also, for the applications re-
ported in [74], the authors had to resort to approximating likelihood computations by computing
emission probabilities along Viterbi paths in order to keep the computational effort necessary
within reasonable bounds. Thisis clearly unacceptablein general.

3.5 HMMs Producing and Accepting Strings

HMMs induce a probability distribution over >, as they assign alikelihood P(O|)) for every
finite observation sequence O. Thereis a distinguished subset of >* defined by ).

Definition 3.29 Given an HMM ), let £ = £()\) C ¥* be the set of observation sequences
0=0,0;--- 0O such that
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1. there exists a state sequence Q = ;03 - - - g With non-zero probability given A, and that
2. thejoint probability P(O, Q|) is non-zero.
Wewill call £ the language associated with A.

We can use X to produce observations or strings. That is, we can simulate the stochastic
process described by A with the following Monte-Carlo agorithm:

Algorithm 3.30 Givenan HMM \. Choose aninitial state q; randomly according to theinitial
distribution = and iterate the following two steps.

1. Choose an emission value randomly, according to the distribution {Bg,} -
2. Transition to a state, chosen randomly according to {Ag,i }.

L()) isthe set of all observation sequences A can produce with rates according to their likeli-
hood.

By anaogy with non-stochastic finite state automata, we can also consider an HMM as an
acceptor of strings. In order to do this sensibly, we need to augment the al phabet with a special
terminating symbol, typically $, and add one or more final states which only emit the terminat-
ing symbol, and have no out-going transitions. Note, that these states cannot be subjected to the
stochasticity constraints. We can now try to find a state sequence Q for a given observation se-
guence O, ending in $. Q will necessarily end in one of the final states. If at least one such path
exists with non-zero probability, we say that the model accepts O.

3.6 Distance between HMMs

Especially when onetriesto improveupon agorithmsfor learning or inferring HMMs, adistance
function on the space of modelsbecomesimportant. Oneway of assessing performanceisto start
with aknown model A, use thismodel to generate data, and then use that data to infer amodel A.
If theinference a gorithm performswell, one would expect to see adecrease in distance between
X and ) astheinference progresses.

The task of defining a distance between HMMs is complicated by the fact that HMMs are
non-unique. The parameterization is fixed, up to relabeling of the states or, more technically,
a permutation group acting on the states. In case of afully connected model, the group is the
symmetric permutation group. In case of the profile HMM in Fig. 3.9, neglecting the different
fixed outputs, it is a product of several S; groups. Each S acts on the three states on the same
level; i.e., the three states at the same graph-theoretic distance from theinitial state. In terms of
the transition and emission matrices this corresponds to permutations of the rows and columns.
Obvioudly, this rules out straight-forward distance measures defined solely on the matrices, as
entriesin the same position of, e.g., the transition matrices, might correspond to completely dif-
ferent model parameters.

Also, aprobability distribution over ¥* does not necessarily fix an HMM nor its parameters,
even if we ignorerelabeling. This can easily be seen by considering multiple copies of agiven
HMM X. We then add a silent initial state with transitions to each state in each copy, and set
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the transition probabilitiesfrom the initial state to the equivalent state in al the copies equal to
that state’s original initial probability divided by the number of copies. This newly constructed
family of models induces the same probability distribution over ¥* as X itself.

Whether a probability distribution fixes the parameters depends upon the origin of, or true
statistical model behind, the distribution. If the stochastic source is afair coin, we cannot do
better than inferring an HMM with uniform output distributions and arbitrary transitions. If a
Markov chainisthe true source, we could recover that in the limit. In theformer case, the tran-
sition matrix A should not contribute to the distance and in the | atter case, the minimum distance
over al relabelings between the respective transition and emission matrices might actually be
used as a distance function.

In the following, we will introduce distance functions on HMMs, which dispatch quite dif-
ferently with the af orementioned difficulties.

3.6.1 A Matrix Distance

Levinson et a. [49] introduced a distance functionfor discrete-observation HMMs by employing
the Euclidean distance between the emission matrices, minimized over al permutations of the
states.

Definition 3.31 (HMM matrix distance) Given two HMMs, A; and )2, let N be the number of
states, M the number of emissions, and bi(j') the entries of the respective emission matrices of
models A; and X,. Then the matrix distance is defined as

N M
. 1
MDA, Ao) = min s> > (b - b®, )%, (347)
=1 k=1
where the minimization is over all permutationsp of {1, ..., N}.

The permutation p minimizing Eq. (3.47) can be computed via minimum bipartite match-
ing [69]. Clearly, there are shortcomings of this approach. Differencesin transition and initial
probabilities do not contribute to the distance, although they do contribute to the probability dis-
tributions over >* induced by the two models.

3.6.2 A Probabilistic Distance Measure

Juang and Rabiner [37] defined a distance measure on pairsof HMMs, )\ and A, both of which
have the same number of states N and are ergodic (cf. Def. 2.11). They avoid the problem of
identifying which states to compare by defining their distance on differencesin the likelihood of
observations.

They approximate Kullback-Liebler distance or relative entropy, see Def. 2.22, between
probability distributions by defining an estimator based upon a finite sample of observations.

Definition 3.32 (Probabilistic distance) Giventwo HMMs, Ao and ), let O,, bean observation
sequence of length T produced by the model ). Define

PD()\O, )\) = |Og P(O/\O|)\o) - |Og P(O/\O|)\) (348)
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The setup allows to establish a probability space [37] where an appropriate limit theorem
holds, asserting convergence to the distance as the length of the observation sequence, T, goes
to infinity, due to ergodicity.

The distance function is clearly not symmetric, but can be modified naturally by defining

Definition 3.33 (Symmetric probabilistic distance) Given two HMMS, ), and ), define
PDg(Xo, A) = % (PD(Xo, A) + PD(X, Ag)) . (3.49)

The requirements of ergodicity and equal number of states arise from technicalities of the
proof and can berelaxed. Hence, the distance function can a so be used for transent HMMs. By
replacing one observation O by a set of independent observation sequences with sum of lengths
equal to T, one can use the distance also for HMMs with transient states.

Note, that if the observation sequence produced by one model cannot be produced by the
other, this yields an infinite distance between the models, although they may differ only mar-
ginaly.

3.6.3 A Co-emission based Distance

Another distance measure, recently introduced by Lyngsa et a. [52, 53], is obtained by consid-
ering so-called co-emission probabilities. Let A\, and A\, be two HMMs and define

C(M1, A2) =2 ) P(O[A)P(O|X2). (3.50)
Oex*

Note, that if one considers the probability distribution induced by a HMM as a vector in the
infinite dimensional space spanned by all finite sequences, the co-emission probability can be
written as

C()\l, )\2) =< )\17 Ay >= |)\1||)\2| COS, (351)

where « is the angle between the vectors, and |\| = /< A, A > isthelength of A asavector.
Then, one can make the following definitions:

Definition 3.34 For two HMMs \; and ), define the two distances

Dangle(A1; A2) := arccos ( Nl )\i(is 2327 )\2)> , (3.52)
and
Diff(A1, A2) = v/C(A1, A1) + Clhz, A2) = 2C(A1, Ao). (3.53)

The disadvantages are on the one hand the O(nf) complexity for the computation of the dis-
tance in the genera case, although for left-right models more efficient exact algorithmsand fast
approximation schemes are known [52]. On the other hand, there are problemsin distinguishing
between models, caused by the fact that the co-emission probability isnot maximal for the same
model, but for amodel which assigns the same probability to all the sequencesin O [52].
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3.7 Alternative Representations

Inthefollowingwewill givetwo aternativedefinitionsfor Hidden Markov Models. Thefirst one
isof amore historical importance, but nevertheless helpful in obtaining a deeper — and some-
times more suitable— understanding of HMMs. The second one will be used as an intermediate
representation in the algorithm introduced in the following chapter.

3.7.1 Functions of Markov Chains

Recall Def. 2.12 of a Markov chain from chapter 2. If we have arealization of a Markov chain
{X = % }=0, We can consider functionsapplied to each x; yielding another realization of aprocess

{Yt = ¥t }s0.-

Definition 3.35 A function of aMarkov chain is a stochastic process { Y, }o, Which is defined
by a Markov chain {X; }1-0 and a function

f: D s D/
X - y=f(X)

where the random variables X; take on values from D and the random variables Y; values from
D', by extending f to operate on {X; }wo by

f({Xt}e0) = {f(X0) }eo- (3.54)

Definition 3.36 e speak of a stochastic function of a Markov chain in the setting of the pre-
vious definition, if f is a stochastic function. That is, if D’ is a finite set, and for each x € D
there is a discrete probability distribution {P(Y = y|X = X) }yeps; evaluating f(X) is understood
as sampling from the corresponding conditional probability distribution.

Quite clearly, this definition supports the following:

Proposition 3.37 Any function of a Markov chain is a Hidden Markov Model.

In case of a non-stochastic function, all the emission probability distributions are singular. If
is abijection, then we have aMarkov chain again.

3.7.2 HMMs as Mealy Machines

Instead of associating emissions with states, we can alternatively associate emissions with tran-
sitions. In the context of automata theory the former is called a Moore machine and the latter
a Mealy machine [1]. In case of HMMs this means that, instead of the discrete emission prob-
ability distributions for each individual state we have — possibly multiple — edges between a
pair of states s and t and each edge is labeled with an emission a and weighted with the joint
probability of transitioning from sto t and emitting a, conditioned on state s.
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Definition 3.38 (Mealy HMM) Given a digraph G and an alphabet ¥. Each edge is labeled
with a letter a from X and weighted with a function

w: V(G) x V(G) x ¥ - [0,1]
(sta) - w(st;a) = P(t, als).
Note, in general G will have multiple edges between the same pair of vertices and also loops.

It is possible to switch freely between both representations.

Proposition 3.39 Given a Mealy HMM. Itisequivalent to an HMM with set of statesS= V(G),
output alphabet 3> and transition and emission probabilities P(t|s) and P(a|s) respectively, where

P(t, als) = P(t|s) - P(alt). (3.55)

We can compute the probability of a transition fromsto t in the HMM as the sum of the proba-
bilities over transitions fromsto t regardless of the symbol produced in N.

P(t}s) =) P(t,al9). (3.56)

acx

The probability of emitting a specific symbol is given by
P(als) = > P(tals). (357)

tes
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Chapter 4

The Inference Algorithm

In this chapter, we develop an algorithm for inferring Hidden Markov Model topology. At first,
we will motivate our agorithmic approach by interpreting the k-tails defined in Sec. 2.6 from
the point of view of stochastic processes. Subsequently, we give an abstract definition of the
algorithm, or, more correctly, of aclass of inference agorithms. In the remainder of this chap-
ter, we describe the peculiarities of the individual components and analyze the computational
complexity.

In this chapter we will assume — unless explicitly stated otherwise — that the source of the
datais a stationary and ergodic stochastic process.

4.1 Kk-Tails from a Stochastic Point of View

Assume we are given a realization of a stationary and ergodic process, represented as a prefix
tree (cf. Def. 2.34) of awindow set (cf. Def. 2.33). Consider ak-tail of somefixed vertex v (cf.
Fig. 4.1). The countsc(-) of children of v, divided by the count c(vy) are the relative frequencies
of the prefix x followed by 04, . .. , 0m, Where the o; are the corresponding edge labels coming
from somefixed alphabet 3. Thisextendsto the children of the children etc., such that wefinally
obtain a vector with relative frequenciesfor the leaves of the k-tail,

(c(vxsl) . C(vxsK)> 7 (4.1)

o(v) 7 o)

wherethes areall stringsfrom XX inlexicographical order, and the count of non-existing vertices
is assumed to be zero.

What do vy and the relative frequencies above correspond to, if we assume that the stochas-
tic sourceisin fact an HMM? Let us consider what the distinguishing observable characteristics
between states of an HMM are. On the one hand, there are the immediate emission probabilities,
which congtitute a sufficient, yet not a necessary criterion for two given states being distinct. In
other words, it is not sufficient to consider the conditional probabilities of all observation se-
guences of length one to distinguish between states. On the other hand, one can look at condi-
tional probabilities of all observation sequences of length two, three and so on. While equality
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of probability distributions does not necessarily imply equality of states', it isan indicator strong
enough for all practical purposes.

Let us return to the question at hand. The vertex vy corresponds to some state of the HMM.
With the Markov assumption, the relative frequencies are estimates of the probabilities of ob-
serving the strings s, conditioned on being in the state corresponding to v,. That is, the vector
in Eq. (4.1) isan estimate of the discrete probability distribution

(P(s1IW), - - > P(SdIW) - (4.2)

The main idea now is to use these probability estimates to fix a mapping from prefix tree ver-
ticesto states of the HMM. A one-to-one correspondence between vertices and states cannot be
expected in general. Furthermore, the relativefrequenciesare only reliable estimatesfor thedis-
crete probability distributionsabove, when alargeamount of dataisavailable. Hence, onehasto
resort to mapping sets— or clusters— of verticeswith sufficiently “similar” relativefrequencies
to the same state of the HM M. Transitions between such clusters of prefix tree verticesare given
by edges connecting prefix tree vertices they contain; emissions are given through edge | abels.

The probabilitiesfor those joint emissions and transitions can be determined using the prefix tree
vertex counts, yielding aMeay HMM (cf. Def. 3.38). In the following we will discuss how to
control the clustering procedure, as to obtain amodel satisfying our ultimate goals with respect
to pattern classification.

4.2 A Bayesian Prior driving Generalization

Asnotedin Sec. 3.4.3, precaution hasto betaken that the model inferredisableto generalizefrom
thetraining data. Similarly to the model-merging algorithm 3.28, we employ a prior distribution
to control the generalization power of theinferred model. However, we do not require to specify
aprior on the space of HMMs.

From the previous section it is clear that the choice of the clustering — i.e., the partition of
prefix tree vertices — determines the size of the model, as the number of clustersin the prefix
tree equal sthe number of statesin themodel inferred. The number of states, though, isone of the
crucial factorscontributingto generalization. A one-stateHMM, for example, isthemost general
model one can infer from data, as it will assign the same probability to any sequence with the
same sequence composition asthetraining sequence(s). That is, therelativefrequenciesof letters
from the alphabet ¥ are all that mattersfor the computation of the likelihood. Asthe number of
states increases, more subtle statistical features of the training sequences can belearned, such as
bi-gram frequencies [59].

By using a parameterized clustering algorithm, where an input parameter specifies the max-
imal permissible distance between el ements of the same cluster asin single-link-clustering [22],
or the maximal permissible distance to the center of acluster, we can control the number of clus-
ters and hence the number of states by modifying the parameter. Thus, we can specify a prior
distribution on this parameter and select the MAP model according to the given prior and the
likelihood assigned to the training sequences by the HMM corresponding to a given clustering.

The obvious counterexamples employ variations of multiple states with identical emission probabilities. A
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Figure 4.1: Inthis3-tail PT,(S) of a binary example prefix tree PT(S), we can observe
the relative frequencies induced by the counts of the leaves, indicated by bold numbers,
and the count of the 3-tail’sroot v,. Note, that missing countsin an incomplete k-tail are
assumed to be zero. Therelativefrequencies c(vys)/c(Vy), wheresisastring from {0, 1}3,
are estimators for P(observing s|vy). Thus, we can associate the discrete probability dis-
tribution {P(s)Vy) }s, where the s are in lexicographical order, with vy. In this example,
the estimate for this distribution equals (0.18, 0.21,0.09, 0,0.11, 0.12, 0.25, 0.05).

4.3 The Topology Inference Algorithm: An Overview

We will introduce abstract features, which allowsto characterize prefix tree vertices. Note, that
we need not restrict ourselvesto relative frequencies of strings as the obj ects by which we define
adistance between prefix tree vertices. Asameatter of fact, comparing k-tail topology is another
feasible approach. The definition of the abstract feature encompasses all these possibilitiesin a
general formulation.

Definition 4.1 (Feature) Given a subset V of prefix tree vertices, which all possess a k-tail. A
featureisa function

f . V - D
Vi —— F(w) =F(PTxy),

where D issome domain, which allows for a distance measure or distancefunction. We will refer
to D asfeature space.

We will cluster prefix tree vertices based on the distance between the corresponding features.
For the purpose of formulating the inference algorithm in generality we define the following

Algorithm 4.2 (Parameterized Clustering Algorithm) GivenasetV of prefix tree verticesand
a distance function d between vertices of V. A parameterized clustering algorithm takes an ar-
gument w = 0 and computes a clustering, C(w). That is, it computesa partition of V into digoint

notion of minimality of an HMM might be useful in investigating this particular problem analytically.
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Figure 4.2: Here we depict the data-flow in the inference algorithm during itsinitial -
ization. Externally chosen parameters are displayed in bold face. The different shades
of grey in the box containing the prefix tree with k-tails correspond to k-tails at different
levels of the tree.



4.3. The Topology Inference Algorithm: An Overview

k d(v,w)

lteration

Partial Prefix Tree
with pairwise distances

Prior

Posterior Probability

A

Likelihood

m_aximal
distance w

Clustering of Prefix Tree
vertices in partial
tree

Sequence

«mmmmmmmmmmm

Hidden Markov Model

Mealy HMM
ik -

Figure 4.3: Theoutlineand thedata-flowintheinferencealgorithmduringitsiteration

phase are shown.

51



52 CHAPTER 4 THE INFERENCE ALGORITHM

subsets C(w) = {Cy,Cy, ..., Cywy}- For any two clusterings C(w) and C(w), with0 < w < w
and |C(w)| > |C(w)|, the following inclusion property holds. For every C € C(w) there exists a
C € C(w) suchthat C C C. Thatis, we have a hierarchical clustering [22], which we can control
by using the parameter w.

Algorithm 4.3 (Inference Algorithm) The inference algorithm computes the MAP-HMM de-
fined by the likelihood of the training data and the prior given asinpuit.

M eta-Parameters:

» Afeature on k-tails

A distance function on the feature space

* A parameterized clustering method
Parameters:

» Thewindow length w

* The depth of the k-tails, k

» Aprior distribution ¢ onw, the parameter of the clustering, C(w)
I nput:

e Adring sfrom¥* of length T = ||
Initialization: (see Fig. 4.2)

1. Compute the window set W, (9).

2. Compute the prefix tree PT := PT(W,(S))

3. For every vertex vy in PT. w, that is, all vertices up to depth cd := w — k (cf. Fig. 4.4),
compute the feature based on the k-tail PTyy.

4. For every unordered pair of prefix tree verticesin PT. ., compute the pairwise distance
based on the feature chosen.

Iteration over w: (seeFig. 4.3)

The iteration is performed with increasing w. If C(w) has been processed, the next value w is
chosen such that C(w) # C(w); i.e., only so-called critical values of the parameterized cluster-
ing are used in the iteration. The algorithm chooses the maximum a posteriori (MAP) HMM
according to the prior ¢ asits output.

1. Compute a clustering C(w) of vertices of the prefix tree PT. ,,—« With the chosen clustering
method based upon the distance between their features.

2. Consider clusters as states of a Mealy HMM (cf. Def. 3.38). Edges between prefix tree
vertices are added as edges between the corresponding states of the Mealy HMM. The
joint probabilities of the edgesin the HMM are estimated based on the counts c(-).

3. Use the marginals obtained from the Mealy HMM to compute emission and transition
probabilities of a proper HMM, referred to as A. Note, we use a uniforminitial distri-
bution.
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Figure 4.4: Theinterpretation of the window length w, the parameter k and the cluster
depth cd is visualized.

4. Compute the likelihood P(s|\) and, subsequently, the posterior probability
P(Als) o< P(g|A)@(w). (4.3)

In the following sections we will fill in the numerous blanks in the outline above. Note, that
the performance of the algorithm depends crucially on the feature selected (see section 4.4.2)
and the clustering algorithm used (see section 4.4.4).

4.4 The Topology Inference Algorithm: Details

In the following, we will discuss the details of the algorithmic framework introduced in the pre-
vious section. Let ¥ be afixed alphabet. The input for the algorithmisastrings € >*, taken
to be arealization of a stationary and ergodic stochastic source of length T. Parameters are the
window length w, and k, the depth of the k-tails, both taken as constants in the algorithm and
the subsequent investigations of theoretical complexity, and a prior ¢ on the parameter of the
clustering. The cluster depth cd := w — k is an additional constant, to simplify notation.
Theiteration procedureis discussed together with the complexity of thealgorithmin Sec. 4.5.

4.4.1 Computing a Window Set and Prefix Tree

If sisof length T, the window set W,(s), cf. Def. 2.33, contains T — w + 1 strings of length
w for a window size of w. Clearly, as w is constant, the window set can be computed with
complexity O(T). From W,(s), we can compute the corresponding prefix tree, cf. Def. 2.34,
PT := PT(Wy(s)). Thetree PT has depth w and, in general, order |X|" and size |¥|" — 1. How-
ever, onreal data, the treewill typically be sparse, as especially biological sequences are highly
repetitive. This fact has been employed in a number of settings [27], to achieve a reduction of
running-time in practice, even though the theoretical complexity remained unchanged.

From Lemma 2.35 we obtain that we can build the prefix tree in O(T), including the vertex
counts c(-) of the prefix frequencies corresponding to the vertices.
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4.4.2 Features

A number of featuresare conceivablewhich allowsoneto distinguish between prefix treevertices
as representatives of HMM states. For example, one could use the topology of a k-tail, recall
Def. 2.36, for this purpose.

We will restrict ourselvesto the relative frequencies introduced earlier, cf. Eq. (4.1).

Definition 4.4 (k-tail frequencies) Given a prefix tree PT and a vertex vy. Let PT, be the k-
tail rooted in vy, and s the strings from XX in lexicographical order. e define the rel ative k-tail
frequenciesr(x; k), or r(x) for short, if k is clear from the context, as

rcK) = (C(szl) . C(sz‘)> . (4.4)

o(v) T e

Note, that the vector on the right has dimension | |*. If a vertex v, isnot present in PT, we set
the corresponding count c(vys) to zero.

For afixed vertex v, therelative k-tail frequenciesr(x; k) can be computed with a number of
operations proportional to |2 |¥, for example using a truncated breadth-first-search on the tree to
visit all descendants of v, at distance k, and by setting the |- ¥ entries of r(x; k) correspondingly.
Since we have to compute the frequencies for al verticesin PT up to a depth cd, that is, for at
most |X|™ vertices, the total number of operations required is proportional to |X|". Note, that
the alphabet size as well as k, cd and w are constant, and hence are not relevant in the analysis
of the computational complexity.

4.4.3 Robust Distance Functions

There are anumber of approaches addressing the issue of defining a distance between discrete
probability distributions, respectively relative frequencies obtained from sampling from an un-
known discrete probability distribution. In the latter case, robustness with respects to artifacts
caused by an insufficient amount of training datais crucial.

Divergence

Recall the definition of divergence, cf. Def. 2.23. If we choose to interpret the relative k-tail
frequenciesr(x) and r(y) for two given prefix tree vertices vy and vy as discrete probability distri-
butions, we can smply use D(r(x), r(y)) asameasure of their distance. Divergence will be zero,
iff r(x) and r(y) areidentical, and positive otherwise, so we can employ

D(vx, V) :=D(r(X), (y))- (4.5)

Regarding the robustness of this method with respect to sampling errors, there is one par-
ticular source for complications, namely counts which are exactly zero. As can be seen from
Eq. (2.27), such azero count causes therel ative entropy to be unbounded, which can be deduced
from considering an appropriate limit. Hence, the divergence would have to be taken asinfinity.
Thisisclearly undesirable, as on one hand it does not allow to distinguish between the case of
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one or several of such zero relative frequencies. On the other hand equal differences between
valueshaveadragtically differentimpact. That is, adifferencein countsof onedoeshavealarger
impact if it happens to be the difference between not observing and observing once than if it is
the difference between two non-zero counts.

Possible methods of dealing with thisare using pseudo-counts|[19, pp. 115] or, dternatively,
thresholding the individual termsin the cross-entropy computation.

Divergence with Pseudo-counts

We can smply add a count of one to each absolute count before dividing by the number of sam-
ples,

(4.6)

o (L ey

(v +[Z7 T ew) + XK

Thisisknown as “Laplace’srule” [19] in the literature.

A moreinvolved but superior (cf. [19]) approachis to use the background distribution of the
counted objects. In our case, we can use the expected numbers of k-strings over the alphabet ..
That is, we can count how often the strings s from XX appear in our input sequence s. We will
denote the corresponding relative frequencies with

br(k) :=

e AT SRR SR (4.7)

Then, for the relative k-tail frequencies of some fixed prefix tree vertex vy, we can use

P0G K 1= C(szzv:)ék;:(k)i @9

instead of c(vys)/C(V). The parameter A > 0 controls how much weight we put on the back-
ground distribution. Note, however, that c(vx) must be sufficiently large to assure that br(k); > O.
Unfortunately, for large k and large alphabet sizesthiswill beimpossible in practice, as, roughly
speaking, on the order of | %[ samples are required even for a uniform distribution over k-tuples
to assurethat the entriesin br(k) arenon-zero. Aninvestigation of the use of ssimpler background
models, requiring less training data, might be fruitful.

We will denote with

D (W, W) := DH(r(), r(¥)) := D(F(¥), () (4.9)
the divergence for the “add one” pseudo-count relative k-tail frequencies and with
DRM (Vs W) 1= DRI, r(y)) = D(E(X). () (4.10)

the divergence for the relative k-tail with the background distribution of weight A added.
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Cross-entropy Cut-offs

Another smple possibility isto useaconstant D, say of the order of ahundred at most, whenever
the denominator in the r(x); log(r(xX)i /r(y)i) termin the divergence computation is zero, instead
of the correct value infinity. This obviously does not make mathematical sense. However, the
fact that ther(y); arerational numbers, with ¢(x) as denominator and c(xs) as numerator, implies
that we can choose avalue D, such that

r(x)i log (r(x)i/r(y)i) <D, (4.11)

asther(y) > 1/max{c(X)}. Let | :=[1,|X[q] and I} :={i € I |r(x); > O}, |7 analogously, then
we can define

Do) = D109, 1) = Y- 10 Tog £+ 3 r(y) log

iel+ iely

Ey;' +Dx (NI +]\ ).
(4.12)

As long as none of the r(x); and r(y); are zero, we obtain the same value for the divergence as
from the exact computation. If thereare such zero values, we can still distinguish between one or
several entries being zero, due to the small D. Thisyieldsa more informative divergence value
in that case.

A somewhat similar approach hasbeen used to define adistance between so-called expression
profiles while clustering the results of DNA chip experiments[30]. There, two vectorsx and y
were discretized element-wise, and the following contingency variables were considered: n®,
the number of indiceswith corresponding non-zero entriesin both vectors, n* and njy, the number
of times among those indices that the entriesin vector x, respectively y, fell into discretization
interval i, respectivej, and finaly nIJ , the corresponding joint contingency table. These observed
frequencieswere then used to compute the mutual information between x and y for those indices
wherex; andy; are both non-zero, or where“signal ispresent in both vectors’ [30]. Analogously,
we can restrict the divergence computation to the set of indices

I*:={i € 1| r(x); >0, r(y) >0}, (4.13)
yielding
+ Ty — r(x)i r(y)i
D* (v, Vy) 1= D (r(¥), 1()) = Y r(x)ilog ——= o) +r(y)ilog —== o (4.14)

iel*

Note, that using D" isonly areasonable choiceif ||| islargeon average, asD* iszero when
I ™ isempty.

Complexity

The computation of the pairwise distances is of quadratic complexity in the number of prefix-
tree vertices up to and including depth cd, as an individual distance computation requireson the
order of |X|X operations, which is a constant within the algorithm.
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4.4.4 Clustering

In the following, we will discuss our choice of suitable clustering algorithmsto use in the infer-
ence agorithm. Note, that thisis not an exhaustive list. Also, there is an improvement in the
performance of the algorithm to be gained from a different choice of clustering agorithm (cf.
Sec. 5.4). Wewill first discuss the single-link clustering algorithm, which is an attractive choice
due to itsssmplicity and computational efficiency.

Definition 4.5 (Threshold graph) Given a complete graph G, where the weight w((u, v)) of an
edge (u, v) corresponds to the distance between incident vertices, uandv. For agivenr >0, let
G(7) bethe graph obtained from G by removing all edges (u, v) of weight w((u, v)) > 7. G(7) is
called a threshold graph.

Algorithm 4.6 (Single-link clustering [22]) Given a threshold graph G(r). Compute the con-
nected componentsC = C(7) = {Cy,C,, ... ,C} in G(7), and return those connected compo-
nents as the clustering.

Lemma 4.7 Thesingle-link-clustering algorithmisan parameterized clustering algorithm, ac-
cording to Def. 4.2.

Proof. This followsimmediately from the following observation. Increasing the threshold
can bethought of as subsequently adding edgeswith increasing weight to the graph. Edgesadded
are either contained in one connected component or join two distinct connected components. In
either case, the relevant inclusion property is maintained. O

Subsequently, we will also need the following definition.

Definition 4.8 (Cluster weight) Given a cluster C of prefix tree vertices, we call
w(C) = Z c(Vx)
weC

the weight of the cluster.
The following algorithm is a parameterized clustering algorithm by definition.

Algorithm 4.9 (Weighted average hierarchical clustering) Define an initial clustering C(0)
with |C(0)| = |PT. | clusters, each of which containsan individual vertex. Iterate the following
procedure: For each cluster compute a cluster representative as the weighted average

(V)
= : . 4.15
© =3 o ™ (4.15)
weC
Compute the pairwise distances between clusters based on the representatives, and merge those
clusters at distance of less than w.

Note, that we now have two graphs on the same vertex set, namely the prefix tree and the
threshold graph. In the following we will refer to the single-link clustering algorithm as S.C
and to the weighted average hierarchical as WAH.
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Figure 4.5: Here we depict the connection between edges in the Mealy HMM and the
edges between corresponding clusters in the prefix tree.

4.4.5 Computing a Mealy HMM

Giventhe partial prefix treeand aclusteringC of itsvertices, wewill show how to obtainaMealy
HMM, cf. Def. 3.38. Clustersin the prefix tree PT correspond to states of theHMM. That is, for
every cluster C; € C of prefix tree vertices, we add a state § to the HMM. We add a transition
from state § to state § emitting the symbol a € %, if there are two vertices v, and vy, in C; and
G, respectively, which are joined by an edge labeled with a in the prefix-tree; see Fig. 4.5.

Note, that such an edge exists if the following prefix relation between the prefixes x and y
holds. If either x = yaor y = xa, thenthereisan edgelabeled with ajoining v, and vy in the prefix
tree. If C; and C; aretheclusters containing x and y, respectively, we add theedge (S, S; a) tothe
Mealy HMM. Clearly, there can — and usually will be — more than one edge in the prefix-tree
corresponding to the same edge in the Mealy HMM. The probability associated with the edge
(S, S; a) will thus be defined as

P(av a| S) = Z C(Vx) C(an) _ Z C(an)‘ ( 4.16)

VxECi 7an€Cj W(C|) C(VX) VxECi 7an€Cj W(C|)

Lemma 4.10 [fwedefinethe edgeprobabilitiesinthe Mealy HMM obtained fromthe clustering
asin Eq. (4.16), the appropriate stochasticity constraints hold.

Proof. We haveto show that the sum of probabilities over the outgoing edgesisone; i.e., for
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al G,

Y P(§.als) =1
§.a

From the definition we have

_ C(Vxa) _ 1 _ 1
; PS.as)=) > WC) ~ W(C) YooY cva)= WC) > c(w),

,a WECi,VxaECi ,a WEC;,vxa€C weGCi
i i

which provesthe claim. O

4.4.6 Obtaining an HMM

As we have seen in proposition 3.39 we can, making use of the Markov assumption and the
assumption that observations are independent of anything but the state, immediately obtain an
HMM proper. We do assume an uniform initial distribution. In the last step of the algorithm,
we use the forward variables, cf. Def. 3.6, to compute the likelihood of the input string s and
combine it with the prior probability of the clustering parameter w, ¢(w), yielding the posterior
probability P(A|s, w).

4.5 Computational Complexity of the Algorithm

The only input of the algorithm for which an investigation of the theoretical complexity makes
senseistheinput string s. Itslength T can be arbitrarily large. A specific application has afixed
alphabet, the window length and tail depth are also fixed, when it is assured that the properties
of the stochastic source can be captured.

The agorithm can be initialized with complexity O(T), as shown in Sec. 4.4.1-4.4.3. Note,
however, that the practical running timefor theinitialization is dominated by the constant, asw,
k and | 2| are constant, term | |24,

We will analyze the iteration phase using SLC as the clustering method. As discussed in
Sec. 4.4.3, the various distance functions based on the relative k-string frequencies as features
do not make a difference, as the computational effortisconstantinT.

When using SLC, the iteration over the clustering parameter w can be performed efficiently,
by sorting the threshold graph edges by increasing weight, corresponding to increasing distance
and subsequently, starting from a set of isolated vertices, adding them to the graph in that order,
merging two clusters, when they are joined by an edge. Whenever adding an edge changes the
resulting clustering, we call that edge critical and subsequently re-compute the resulting Mealy
HMM. Essentially, thisis equivalent to computing aminimal spanning treewith Kruskal’salgo-
rithm [69]. We can compute such aminimal spanning tree, given agraph of size e, in O(elog(e))
steps. Note, however, that there can be only n — 1 critical points, where n is the order of the
threshold graph. The threshold graph has at most size (|2|%(|2|* - 1)) /2 and order | 2|, The
clustering can be performed in constant time, as it does not depend on T. Similarly, once we do
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haveaclustering, we can computethe Mealy HMM in constant timewithrespectto T. Thelikeli-
hood computation, cf. Sec. 3.2.1, can be performed with O(T N?) steps, where N is the number
of statesin the HMM, which is bounded by |X|*.

The preceding proves the following theorem

Theorem 4.11 For any of the distance measures in Sec. 4.4.3, the inference algorithm using
S.C can compute a MAP model according to the parametersw, kand theprior ¢ with complexity
o(T).

Note, that the theoretical complexity is misleading in practice, since the constant |2 term
clearly dominates the running time.

4.6 Implementation

We have implemented an HMM class and virtually al algorithms from Chap. 3 as well as the
inference algorithm described in this chapter in the programming language Python [64]. For
reasons of efficiency, the implementation made use of an external library for numerical analy-
sis. Numpy [60] is a Python package (library module), which supplies an interface to the native
Basic Linear Algebra System (BLAS) of the computing platform from within Python. The only
overhead occurring in operations such as vector and matrix additionsisfor the calling overhead
involved in mapping a Python operator to alibrary routine. The performance of the actual com-
putation is as good as in the case of direct use of the BLAS-library from compiled languages
such as C or Fortran. Nevertheless, thisonly appliesto the likelihood computations etc., under
the general disclaimer that amatrix based implementation of HMMsisinefficient, sinceit cannot
make use of the typical sparseness. Most of computational effort goesinto manipulating Python
data structures.

The package was used and tested with Python version 2.0, compiled with the GNU ECGS,
version 2.91.66 andrelease 1.1.2, ona Sun Enterprise 450 respectively Enterprise 4500 under So-
laris 7, and with Python 2.0, compiled using Compag’'s cxx compiler, version 6.20, on aCompag
ES40 running Tru64 Unix V5.1. In theformer case the generic BLAS supplied with the Numpy
package, version 17.3.0, was used, in the latter Compag's CXML, version 4.1.0 [16].

4.7 Choosing Window Length and Tail Depth

The two parameters w and k limit the “horizon” of our method in two subtly different ways.
Recall, that k is the depth of the tail we use to identify hidden states via the distribution of k-
strings associated with them. The choice of window length and the choice of k define the effec-
tive “memory”. We will use this term in an informa manner, for lack of a statistically sound
guantitative concept encompassing the different aspects of what constitutes memory. That is,
when visiting some state § alwaysresultsin visiting state § some mtime steps later, we will not
be able to recognizeit, if mislarger than w -k, i.e,, the cluster depth cd. While thisisalimi-
tation from a theoretical point of view, thisis not highly relevant in practice, if the long-range
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interactions are infrequent. In that case, and for arestricted amount of training data, these inter-
actions might not be present at all or drown in the noise floor induced by sampling artifacts due
to insufficient training data.

The following aspects are relevant with regard to a choice of k and w.

» Amount of training data: For afixed training data set, the countsin the leaves of the prefix
treewill becomemoreunreliableasweincreasew. A reasonable choice of w should assure
that the counts of prefix tree leaves are large enough to obtain reliable estimates of the
relative k-tail frequencieseven for vertices at level cd. Note, that this depends heavily on
the data set. A uniform distribution — in the sense of adistribution over strings from >~
— produces a compl ete prefix tree, supporting a shallower prefix tree with reliable counts
compared to a source which is amixture of singular distributions.

» Range of significant correlations. Another area of investigation are correlations between
observation symbols at increasing distances. If there are strong long-range correlations
present, w and k should be chosen accordingly.

* “Memory” of the stochastic source: Sometimes, it will be possible to argue about mem-
ory length based upon knowledge from the application’s domain, even when the specific
mechanisms of the source are unknown.

Following the guidelines above, we will discuss our decisions for choosing w and k in
Chap. 5, where we eval uate the performance on data sets.

4.8 Choosing a Prior

One interpretation of the clustering parameter w isthat of the threshold with respect to the dis-
tance between features of prefix tree vertices, which divides non-identical from identical states.
It constitutes the maximal permissible distance, which we will attribute to pure chance, fluctu-
ations of the stochastic source, or artifacts caused by unreliable estimates due to an insufficient
amount of training data. Alternatively, it isthe minimal distance, which convinces us that the
prefix tree vertices correspond indeed to distinct states of the HMM.

The numerical range over which we will define aprior dependson the distance function used.
Also, one should — as the number of states does not depend linearly on the clustering para-
meter — investigate the particular relation between w and the number of states of the HMM.
Highly informative priors certainly need careful adjustment. Broad priors, with more weight to-
wards larger values of w will drive the inference process “gently” towards smaller models and
towards higher degrees of generalization, and are a sensible choice in general. We will eludeto
our choicesin Chap. 5.

An alternative, which seemsto be desirable from apurely practical point of view, isto define
aprior directly on the number of states. Note, that our algorithmic framework easily and readily
affordsthis change in the “ user interface”, and that we have used such a prior in the evaluation
of the algorithm.
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Chapter 5

Evaluation

In this chapter, we will evaluate the performance of the inference algorithm introduced in
Chap. 4. Theevauationwill be donefrom two different pointsof view, investigating two distinct
aspects of performance evaluation.

There are two limiting factorsin statistical inference from real data. On the one hand, the
inference process might be inherently difficult or even infeasiblefor the given problem instance.
E.g., in the case of HMMSs, due to the complexity of the likelihood landscape, only local op-
timization algorithms are known. Therefore, even when we want to infer parameters starting
from a prescribed topology, optimal training is impossible in general. On the other hand, the
true process behind our stochastic source might be just impossible to describe with the class of
models used.

From an engineering perspective, an evaluation of the overall performance on an annotated
data set, typically based on cross-validation [23], is sufficient. This will measure the influence
of both possible causes for errors mentioned above simultaneously. To allow the detection and
guantification of possible inherent limitations in the inference process, we chose to test our a-
gorithms on artificial data.

5.1 Atrtificial Data

One natural mode of testing the inference algorithm on artificial data can be formalized as fol-
lows:

Problem 5.1 (HMM recovery problem) Let there be an HMM ), the stochastic source, and a
distancefunction, say d, between HMMs. If X isergodic, produce one observation sequence O of
length T, otherwise a set of observation sequences O, whose sum of respective sequence lengths
equals T. Use thisfinite sample of the probability distribution over >* induced by A as an input
to infer an HMM ). Evaluate d(), X).

By varying T, one can obtain an estimate on the amount of training data needed for a partic-
ular type of source model, which is helpful in establishing guidelines for working on real data.
Note, that it would be naive to expect recovery of the exact parameters of the source model, as
therewill usually beanon-negligiblenumber of models consistent with the finite sample data set.

63
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Hence, we have to investigate the distance between source and inferred model. Beforehand, we
will introduce ameasure of distinguishability relevant with respect to the choice of the stochastic
source used in the evaluation.

Another question which supports the importance of the measure of distinguishability,
MD(X), which we will define below, isits resolution of the amount of training data needed to
assure reliable parameter estimates for a given model topology.

Remark 5.2 Given an HMM . If MD()) is maximal, then bounds on the amount of train-
ing data needed can be obtained from the theory of Markov Chains[59]. If, on the other hand,
MD(N) =0, then the parameter s of the underlying Markov Chain cannot beinferred at all. That
is, one cannot obtain any confidence interval on the parameters, even with infinite amounts of
training data.

Given these two extremes with regard to reliability of parameter estimates and amounts of
training data required, further investigations based on our measure of distinguishability seem a
very worth-whiletask, even if beyond the scope of thisthesis.

5.2 A Measure of Distinguishability

Inference of HMMs and their topology even from artificial data originating from an HMM is
atask ranging from trivial to impossible. The reason for the former is that the topology is not
hidden at all, when all the observation probability distributionsare singular and pairwise distinct.
In this case, the HMM isjust aregular Markov chain, since the singular distributions support a
bijection between states and observation symbols, and al the statistical results for estimating
Markov chain parameters apply [59].

The other extreme is a completely hidden HMM:

Definition 5.3 If all observation probability distributions of a given HMM ) are equal, we call
A and its states compl etely hidden.

For acompletely hidden model, it is clearly impossible to distinguish between states at all. The
probability distribution over >* induced by the HMM is only governed by the one observation
probability distribution. Hence, inference of topology isimpossible.

In the following section, we will introduce a measure for how well aHMM allowsusto dis-
tinguish between individual states. Alternatively, the extent to which those states are obscured.
To our knowledge, ours is the first measure proposed for this purpose. Besides the theoretical
benefit of bringing order into HMM space, we also have a distinctive motivation from the ap-
plication side. For the evaluation of an inference algorithm on artificial data produced by an
HMM, the two extremes above have to be avoided, because the resulting inference problem is
either trivial or impossible to solve. We can heuristically establish correctness of the inference
algorithm from safe ground by use of the following protocol: Start with a Markov chain as the
stochastic source, and iteratively use sources with a decreasing amount of distinguishability, i.e.,
the states becoming more and more hidden. Evaluate the distance between the model inferred
and the model producing the data at each step.



5.2. A Measure of Distinguishability 65

Assumption 5.4 For the following development, we will assume that the stochastic source is
stationary and that the underlying Markov chain is ergodic.

The measure we will introduceis devel oped from a Bayesian perspective. Givenan HMM A
with n states and an observation sequence, O, of finite length t. Consider the state probabilities
conditioned on O, o, that is,

o :=0(0) := (P(h = 21/0), P(0k =%|0), ..., P(ar = %|0)). (5.1)

Recall, that we can compute o (O) efficiently withthe scaled forward variables (cf. Remark 3.13),
since

a(0) = (at(1), () . . . , ar(n)). (5.2)

Intuitively, it is clear that distinguishability isrelated to or can be measured in terms of the
differencesin o. If o isuniform for al possible O, then one cannot distinguish between states
using observations, i.e., the states are completely hidden. The converse doesnot hold. Eveniif o
issingular, it might not be dueto the observations, but rather due to peculiarities of thetransition
matrix, as can be seen from the following example.

Example 5.5 Let A be a transition matrix such that s; is an absorbing state. That is, P(q; =
s;) =1last - oo. Thedistribution o(O) as defined above issingular for all O as |O| - oc.

Something moreinvolved, capturing the dependency of o on the observation sequences, iscalled
for.

If A denotes the transition matrix of the underlying Markov chain, let p be the equilibrium
distribution with respect to A. That is,

p=P@=%),P(=%), .. ,PG=%)) at - . (53)

One can interpret the equilibrium distribution of the Markov chain as the prior distribution on
states, that is, prior to making any observation. For an observation sequence O, the conditional
state probability «(O) defined above can then be regarded as the corresponding posterior distri-
bution. Naturally, and as an application of information theory, one can then investigate the gain
of information attributed to the observation sequence. In the case of a Markov chain, the obser-
vation sequence is equivalent to the state sequence. Hence, we would expect a maximal gain of
informationin thiscase. Correspondingly, for acompletely hidden HMM, an observation would
yield zero information gain; i.e., prior and posterior distributions are equal.

Inthis setting, and for afixed observation sequence O, relativeentropy, cf. Def. 2.22, provides
ameasure for the gain in information between posterior and prior: For O=0; - - - Oy,

P(aqr = s|0)

Plar=s) 54

H(c(0),p) = Y  P(ar =s|0)log

i=1

To avoid possible artifacts from considering only one particular observation sequence, we will
average information gain over al observations. Note, that due to stationarity and ergodicity,
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thisis equivalent to averaging over al prefixes of an observation sequence O of infinite length,
yielding the average information gain,

T n -
AT(2(0).0)= Jim 273" P(g =s [0l ) log "EZIOLD 5

=1 =1 PG = s)
In practice, we will restrict ourselves to averaging over al prefixes of a finite observation se-
quence.

Definition 5.6 (Measure of Distinguishability) Given an HMM )\ = (A B, r) and an integer
T, define

1 T
MD(Y) := MD(\, T) := = > H(o(O[1,1)). p). (5.6)
t=1
where O is a finite observation sequence of length T produced by A, and p is the equilibrium
distribution of A.

Lemma 5.7 Under assumption 5.4, MD()) is a consistent and unbiased estimator of
AZ(o(0), p).

Proof. Thisfollowsimmediately from thelaw of large numbersasimplied by the ergodicity
and stationarity assumptions. O

Inthefollowingwewill provethat M D takeson largevauesif the HMM isinfactaMarkov
chain, and zeroif it iscompletely hidden. Later, weinvestigate the space in-between by using pa-
rameterized familiesof HMMs, covering the spectrum spanning from one theoretically explored
extreme to the other. First, we introduce some machinery.

Remark 5.8 Let P and Q be two discrete probability distributions, P singular, say p; = 1, and
g > Ofor all i. Analogous to the definition of the entropy H(P) as zero for singular P, we will
make use of the convention plogp := 0 for p = 0 and thus obtain

H(P; Q) = —log(q). (5.7)

Lemma 5.9 [ff A isan HMM, where B supports a bijection between states and observation sym-
bols, that is, A is equivalent to a Markov chain, then (O), for all 1 <t < T, isalso singular for
all O with P(O|)) > 0. Moreover, there is a bijection between the observation symbols and the
N pairwise distinct singular distributions o (O).

Proof. Without loss of generality assume that
—~
bi=(,...,0, 1 ,0,...,0). (5.8)
We first show that o(O) issingular. From Eqg. (3.30) and

1 ifo=i,

0 otherwise (59)

b(O) = {
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we obtain in that case that

o [ m ifO =i,
al(')_{ 0 otherwise (510

and thus, after scaling, using the non-zero likelihood of O to ensure that 7; > O,

o (1ifO, =i,
al(l)_{ 0 otherwise. (1)

Using Eq. (3.31), we aobtain for the induction step

() ={ S i@y i1O0=1, (5.12)

0 otherwise.

The only summands which do not vanish above are those withj = O, yielding, as at-1(0Or-1) =
1,

_ [ & ifo=i,

at(l)_{ 0 otherwise (5.13)
and, after scaling,

o (1 ifo =i,

at(l)_{ 0 otherwise. (14

From the last equation followsthat o(O) is singular, that «(0O) and o(O’) are equal, iff O and O
have the same last symbol. Whence the existence of the bijection between the o (O) and obser-
vation symbols.

For the converse, it suffices to consider N observation sequences O0, each having non-zero
likelihood, ending in N distinct observation symbols. Let f be the bijection between the observa
tion symbolsand the N pairwise-distinct singular distributions o (O), which we extend to operate
on observation sequences, using their last symbol, and mapping to the unique unit entry in o (O).
Asthe o(0O%) distributions are singular, we obtain from Eg. (3.30) and Eq. (3.31) the following
fori=1,... N:

>0 ifj=fO0),

=0 otherwise (515)

RCOIICON
The (0O, i) are ssmply the factors multiplied by the bj(O;) in Eg. (3.30) and Eg. (3.31) and are
non-zero since P(O|\) > 0. For afixed by(-) we obtain by collecting the relevant (in)equalities
above

£(09.K)  b(OY) > 0, if k=f(O), and

£(00_ £(00)) b(OY) = 0, fork #f(OD). (5.16)

Thisyieldsthe singularity of by(-) and completes the proof. O
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Lemma 5.10 Let A bean HMM and p the corresponding equilibriumdistribution, then
MDO,T) < H(p), (5.17)

inthelimit,asT - oo with probability one. Equality above holds, iff the discrete probability
distributions o(O) are singular for all O.

Proof. From the definition we have

T n
MDA T) =) (5.18)
t=1

(ol gy log (7).

=l =

i=1

which we can rewrite as

T n n
S {Z (011 8 1og (r(O[L. 1)) + 3 o(OlL. ) 1og () } (519)
t=1 :

i=1 i=1

=l =

and bound from above with
y gy (L 1
Z>. 12 oL d)log( =) ¢ (5.20)
t=1 \ i=1 pi
aslog(c(O[1,1])) < 0. By interchanging the order of summation, we obtain
n T
d > 7OLLD 1og <3> . (5.21)
iz1 (=1 T Pi

Under the assumptions of this section
" 7 (O[1, 1),
ED —=—1 - (5.22)
t=1
that is, the sums are estimators for the equilibrium state probabilities. Hence,
: 1
MDA, T) <) pilog (-) (5.23)
i=1 pi

in the limit, which completes the proof of the inequality.
To show equality, consider

T n

23" " o(Ol1. ) og (+(O[L. ). (5.22)

t=1 i=1

Singularity of the o(O[1,1]) is sufficient for the vanishing of thissum. That singularity is nec-
essary followsfrom #H(P) = 0 implies P issingular. O
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Theorem 5.11 Iff \ isan HMM, where B supports a bijection between states and observation
symbols, that is, A is equivalent to a Markov chain, then MD()\) = H(p).

Proof. Letf : @ — S bethe bijection between states and observation symbols, which we
extend to a map from observation sequences to states by applying it to the last symbol of the
sequence. With the preceding lemmas we have that

H(o(0). ) = log (Fi») , (5.25)

as under the assumptionsin that section p; > 0 for all i. Hence we can rewrite Eg. (5.6) as

;
MD,T) = % > log ( ) . (5.26)
t=1

Pi(O[1:1])

If we introduce counting variables cr(i), which represent the number of log <pi> summands
above, we obtain

N
MDO,T) = % > cr(i)log (%) . (5.27)
i=1 :

Note, that the counting variables cr(i) divided by T are estimators for the probability of being in
state i under the assumptions in this section. That is,

=g o). (5.28)
T
and moreover
. cr(i) _ _
TI—IEEO T A (5.29)
whichyields
N
lim MDA\, T) = - Zl pilog (p) = H(p). (5.30)
The converse followsimmediately from Lemma 5.10, using Lemma5.9. O

Theorem 5.12 Iff A isan HMM, where all observation probability distributions are equal, then
MD(XA) = 0.

Proof. To show that the conditionsare sufficient, we compute o (O) with the hel p of the scaled
forward variables defined in Sec. 3.2.4, and prove the theorem by showing that, given identical
observation probability distributionsfor all states,

(G(1), -, a(n) = (AN 7, (5.31)
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where AT denotes the transpose of A. Asthe HMM is ergodic and stationary, successive powers
of AT applied to the initial and, under these assumptions, stationary distribution, is equal to p,
yielding

H(o(0), p) = H(p,p) =0, (5.32)

which provesthe claim.

We will prove Eqg. (5.31) by induction. For t = 1, a4(i) = m; followsfrom Eg. (3.30), asthe
bi(O,) are pairwise equal and hence c; = (bi(O1))~. Intheinduction, observe that Eq. (3.31) is
just the element-wise written multiplication of AT with

(AN = (Gea(D), - . , Gra(N)) (5:33)

since the b;(O;) factors are equal and subsequently cancel out in the scaling step. Together this
establishes Eq. (5.31).

Conversaly, if AZ(c(O), p) = 0, we have H(c(O), p) = 0 due to ergodicity and stationarity,
andthuso(O) = p (cf. 2.24). Assumeb;(O1) 7 bj(O) exists. Thiscontradictso(O) = p, recalling
Eqg. (3.30), and completes the proof as O; is arbitrary. O

To demonstrate the usefulness of the measure we next consider the following two parameter-
ized families of HMMs, which run the gamut from Markov chain to completely hidden HMM.

Definition 5.13 (2-Coin HMM) Let \(x, y, <) bean HMM with auniforminitial distribution and
transition and emission matrix A and B, respectively, defined as

AX.Y) ::<1fy 1;)‘), Eg@)::(l:5 1;). (5.34)

Remark 5.14 For a 2-coin HMM \(x, Y, €), parameters x and y control the equilibrium distri-
bution of A(X,y), which is proportional to (1 - x, 1 —Yy); x and y can be chosen from|[0, 1]. The
parameter ¢ € [0, %] controls the distinguishability of states of A(x, Y, ). For e = 0 we obtain a
Markov chain, for ¢ = % the two states are completely hidden.

Fig. 5.1 shows the dependency of the measure of distinguishability on the parameter ¢ for
some fixed pairs of values x, y. In Fig. 5.2 we evaluate the measure on the following model
family.

Definition 5.15 (3-Coin HMM) Let ) be an HMM with three states and two output symbols.
Let a;p, a13, @21, @3, ag1, and ag, denote the free transition parameters and by, b,, and b free
emission parameters. That is, the emission matrix B is defined as

by 1-by
B:= b2 1- b2 . (535)
b; 1-Dbs

Theinitial distribution is uniform.
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Remark 5.16 The parametersb; control the distinguishability of states of ). If theb; are equal,
then the states are completely hidden. Since the number of statesis larger than the number of
emission symbols, we cannot obtain a Markov chain for any choice of b.

5.2.1 Comparing MD and the Probabilistic Distance

An interesting question is, whether the measure MD can be used to improve discrimination be-
tween HMMs by capturing differences not detectable by use of the probabilistic distance mea-
sure 3.32. To investigate this question heuristically, we computed the probabilistic distance be-
tween pairs of 2-coin models. In Fig. 5.3 (note the different scales on the y-axes), each of the
graphs depictsthe probabilistic distance between afixed 2-coinmodel A(X, y, £0) and 2-coin mod-
esA(x,y, ) for e > ¢. It can be observed that the probabilistic distance provides insufficient
discrimination between Markov chainsand compl etely hidden HMMs, when the transition prob-
abilitiesare both non zero. By comparing the corresponding distance values with the MD versus
¢ plotsfor particular 2-coin models (cf. Fig. 5.1), it becomes apparent, that the differencein dis-
tinguishability MD(A(X, Y, €0)—~MD(A(X, Y, £) could beused to add further discrimination between
models, particularly when the probabilistic distance fails.

5.2.2 Extension to transient HMMs

Relaxing the assumptions in the previous section makes a theoretical investigation infeasible.
Nevertheless, we present experimental results supporting the usefulness of the measure intro-
duced in the previous section even in this case. We can extend the measure to transent HMMs
with the following approach. Instead of considering the equilibrium distribution of the underly-
ing Markov chain, wewill usetheimage of theinitial distribution under successive powersof the
transition matrix A. For an ergodic model, the distribution obtained in that way would converge
to the unique equilibrium distribution. For transient models, neither existence nor uniqueness of
the equilibrium distribution are assured in general. In case of left-right models (cf. Def. 3.19),
theterminal states are recurrent with probability one due to stochasticity constraints, yielding for
each of the terminal states a different equilibrium distribution. Moreover, the singular equilib-
rium distribution resulting for left-right models, would not capture the information gain caused
by making observations, even if there were one unique distribution.

Definition 5.17 (Measure of Distinguishability: Transient case) Given an HMM )\ =
(A, B, 7), and denote by O a set of observation sequences O produced by A. LetT =3, |O|.
Define

O]
MDT()) := MDT (), 0) := % > ) H(e(O[L: 1), AT x 7). (5.36)

0e0 t=1
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MD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Epsilon

0.7 T T T T T T T

MD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Epsilon

Figure 5.1:  Our measure of distinguishability MD(), T) evaluated on the parameter-
ized family of 2-coin HMMs (cf. Def. 5.13) for x = 0.75and y = 0.25, 0.5, 0.75 (top)
respectively x = 0.95,y = 0.5 and x =y = 0.5 (bottom). Each individual data point was
computed for an observation sequence of length T = 100; using larger T smoothes out
curves (not shown). Note the dependency of the curve smoothness on the state duration
(bottom).
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Figure 5.2: Our measure of distinguishability MD(), T) is evaluated on the parame-
terized family of 3-coin HMMs (cf. Def. 5.15). For two fixed choices of transition pa-
rameters —aj; = 0.1, a13 = 0.4, a; = 0.2, a3 = 0.5, az; = 0.3, and az; = 0.1 (top)
a;», = 0.1, iz = 0.4, a»; = 0.2, dpz = 0.5, az — 0.3, and dzp = 0.1 (bottom) —and
by, by, b3 =0,0.1,... ,1we have computed the measure of distinguishability MD()) for
an observation sequence of length T = 100. We show the average value and the stan-
dard deviation of MD(\) vs. the maximal distance between the b; parameters. That is,
the values on the x-axis are max{by, by, b3} — min{by, b,, b3} rounded to one decimal

place.
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Figure 5.3: Toinvestigate how the measure of distinguishability compares to the prob-
abilistic distance, we computed the latter for various x and y values. The graphs display
the distance between the 2-coin Models A(X, Y, £o) and A(X, y, ¢) for x = 0.0,y = 0.4 (top),

x=0.2,y=0.7and x = 0.4,y = 0.6 (bottom).
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5.3 Reliability of relative k-tail Frequencies

To obtain insight into the statistical reliability of the relative k-tail frequencies— in dependence
of window length and k-tail depth and sequence length — we performed the following exper-
iment. We picked an HMM and generated a number of sequences of various lengths. Starting
from this artificial sequence data, we computed prefix trees for a number of choices of w, the
window length, and k, the depth of thek-tails. Thisyielded, for afixed w and k, anumber of pre-
fix trees, PT;, in which we collected the relative k-tails frequencies r(x; k) corresponding to the
same vertex Vi Subsequently, we computed for each 1 < i < ||* the average and the standard
deviation over {r(x; K); }pr,. Thisyielded for the trees PT; aset of standard deviations

{o(X, )|V € PToper, 1 i < |85 (5.37)

whose maximum value we show in Table 5.1.

When comparing entriesin Table 5.1, recall that two prefix trees have the same number of
verticesonly if the respective differencesw—k areequal, and, qualitatively speaking, that relative
k-tail frequencies go to zero exponentially as k increases. There are the following observations
to be made:

» Doubling the sequence length is apparently reducing the standard deviation by afactor of
approximately /2.

» When increasing w from six to ten for k = 3 fixed, an increase of sequence length by an
eight-fold is necessary to obtain asimilar standard deviation.

Conclusively, the relative k-counts seem to be sufficiently reliable. Naturally, the counts with a
higher degree of variation are to be found deeper in the tree. Note, that we observed comparable
behavior for other models (not shown).

5.4 Results for the 2-Coin Family of HMMs

To evaluate the performance on the family of 2-coin HMMs, we repeated the following experi-
ment, both for single-link clustering (SL C) and weighted average hierarchical clustering (WAH),
forx =0.0,0.1,....,0.9,y=x%,...,09and e = 0.0,0.05,. .. ,0.4. For each of the combina-
tions of the window length w and tail depthk — (W =4,k =2), (w=5k =2), (w =5k = 3),
w=6,k=2),w=6k=3),w=7k=3),(w=7k=4),(w=8k=23),(w=28k=4),
(w=8k=4),(w=9k=4),and (w =9,k =4) — we used A(X, Y, €) to generate a random
sequence of length T = 250 respectively T = 1000. For each observation sequence, we inferred
aHMM using the relative k-tail frequencies as features and using one of the following distance
functions between features: D, D*, D, D+, DER, DER and DER.

Since we wanted to compare severa distance functions, choosing a prior on the distances
proved problematic, as the ranges of the functions and their qualitative behavior are not compa-
rable. To circumvent the danger of biasing against or in favor of particular distance functions,
we decided to use a prior on the number of states directly. We do think, that thisis an inferior
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Maximal standard deviation
T=250 | T=500 | T=1000 | T=2000 | T=4000
0.00910 | 0.00465 | 0.00141 | 0.00117 | 0.00050
0.00178 | 0.00098 | 0.00026 | 0.07747 | 0.00033
0.00287 | 0.00234 | 0.00059 | 0.00069 | 0.00037
0.00130 | 0.00062 | 0.00013 | 0.00014 | 0.00007
0.00556 | 0.00476 | 0.00142 | 0.00088 | 0.00062
0.00127 | 0.00060 | 0.00025 | 0.00067 | 0.00025
0.02440 | 0.01583 | 0.00907 | 0.00539 | 0.00249
0.00390 | 0.00305 | 0.00113 | 0.00073 | 0.00058
0.00080 | 0.00040 | 0.00028 | 0.00033 | 0.00022

0 oO~N~NO S

10
10
10

b wWwbhowbkh,owownNx

Maximal standard deviation
T=250 | T=500 | T=1000| T=2000 | T =4000
0.00964 | 0.00445 | 0.00312 | 0.00280 | 0.00250
0.00321 | 0.00189 | 0.00131 | 0.00101 | 0.00080
0.00528 | 0.00291 | 0.00187 | 0.00138 | 0.00112
0.00124 | 0.00055 | 0.00023 | 0.00017 | 0.00010
0.00928 | 0.00454 | 0.00234 | 0.00175 | 0.00128
0.00282 | 0.00125 | 0.00074 | 0.00056 | 0.00047
0.03023 | 0.01191 | 0.00635 | 0.00338 | 0.00207
0.00629 | 0.00323 | 0.00164 | 0.00119 | 0.00081
0.00193 | 0.00110 | 0.00058 | 0.00032 | 0.00023

WO ~N~NO S

10
10
10

O Whrh,wWwbkhwwNNx

A= 0.8 0.2 B = 0.75 0.25
101 09 “\ 025 075

Table 5.1: 2-coin HMMs: We generated 10 (top), respectively 100 (middle) random
binary observation sequences of length T = 250, 500, 1000, 2000, 4000 to investigate
the reliability of the relative k-tail frequencies. For fixed k, w and T we computed the
mean and standard deviation of corresponding k-tail frequencies for the corresponding
10, respectively 100, prefix tree vertices. The valuesin the matrix represent the maximal
standard deviation observed. The HMM used to generate the observation sequences is
the two-coin model depicted at the bottom. Other models showed similar behavior (not
shown).
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handle on the generalization capabilities. Nevertheless, for the sake of the comparison we had
no other choice. We used a discrete probability distribution,

Sp(m)l = maX{l - ’ 0}7 (538)

[m—i]
8
scaled appropriately to yield a stochastic vector.

In all of the evaluation we used the differencein the likelihood of the training data between
true and inferred model, denoted by rl. The values thus obtained are proportional to the prob-
abiligtic distance measure defined earlier, but are scaled to percent as to facilitate comparisons
between different models. The co-emission distance was not used due to computational ineffi-
ciency for fully connected HMMs; the matrix distance was shown to be inferior to the proba-
bilistic distance measure.

As far as distance function are concerned, we found DER and D* to clearly outperform the
other distance functions.

5.4.1 Comparing Clustering Algorithms

Aswe can see from comparing Fig. 5.6 and Fig. 5.9 the weighted average hierarchical shows a
somewhat better performance.

5.5 Results for the 3-Coin Family of HMMs

We evaluated the performance of the inference algorithm on anumber of 3-coin models (see Ta-
ble 5.2 for acompletelist of parameters) using both SL.C and WAH clustering and the following
distance functions between features D, D*, D*°, D, DER, DER, and DER. Asfor the 2-coin mod-
els, the evaluation was performed for the following combinations of the window length w and
tail depthk: (w =4,k =2),(w=5k=2),(w=5k=3),(w=6,k=2),((w=6k=3),
w=7k=3),w=7,k=4),(w=8k=3),(w=8k=4),(w=8k=4),(w=9k=4), and
(w=9,k=4).

The results were consistent with the tests on the 2-coin models, as far as better perfor-
mance of the DER distance functions, followed by Db, over the remaining distance functions
was concerned. Again, we observed an advantage of WAH clustering over SLC (not shown).
The difficulties for source models with not quite maximal MD(-) persisted, cf. the peak around
MD(A) =0.35inthegraphsin Fig. 5.10.

The following exampleistypical for the output from the inference algorithm. To reiterate a
point made earlier, it isunlikely to recover the exact topology of the source, asthere are usually
many models consistent with theinput. The source model in this case was the 3-coin model with
transition matrix Ag and emission matrix By,

0.9 0.05 0.05 0.30 0.70
A= 005 09 005 |, Bo=| 0.50 0.50 |.

0.05 005 0.9 0.80 0.20
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Figure 5.4: 2-coin HMMs, SLC: The influence of w, k and feature on the relative dif-
ferencein likelihood vs. MD(\) — binned with a width of 0.05 —is depicted for D (top),
D* and D™ (bottom).
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Figure 5.5: 2-coin HMMs, SLC: The influence of w, k and feature on the relative dif-
ferencein likelihoodvs. MD(A) —binned with awidth of 0.05 —is depicted for D" (top),
DBR and DER, (bottom).
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Figure 5.6: 2-coin HMMs, SLC: Theinfluence of w, k the relative difference in likeli-
hood is depicted in dependence onx andy, using D2} for w = 4, k = 2 (top), w = 7,k = 4,
and w = 9, k = 5 (bottom). The emission parameter ¢ isfixed at 0.15.
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Figure 5.7: 2-coin HMMs, SLC: We show the same type of graphs asin Fig. 5.6, for
¢ =0.15using D (top) and D" (middle). At the bottom we depict the graph resulting for
e =0.3using DER. Note, w =9,k =5 in all three graphs.
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Figure 5.8: 2-coin HMMs, WAH: Theinfluence of w, k and feature on the rel ative dif-
ferenceinlikelihoodvs. MD(A) —binned with awidth of 0.05 —is depicted for D" (top),
DBR and DER, (bottom).
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Figure 5.9: 2-coin HMMs, WAH: The influence of w, k on the relative difference in
likelihood is depicted in dependence on x and y, using D% for w = 4,k = 2 (top), w =
7.k=4,andw = 9,k = 5 (bottom). The emission parameter ¢ isfixed at 0.15.
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Transitions Emissions

A2 | Q13 | 21 | Qg3 | Q31 | A3k by | by | b3
0.05/005|005|005|005|005(00|05]|10
010/ 010/010{010/010|010|012(0.2]|0.9
020(020[020]0.20,020|0.20(01]|03]|0.9
030030030030, 030|030(01|04]|09
040040040040 040 | 040 01]|05]|09
0450451045045, 045 045 01|06 0.9
010/ 010,010(0.100.20| 0201012 |0.7| 0.9
010010010010, 030|030(01]|08]|0.9
010010010010 040|040 02]|03]|0.8
020/ 020,020(020010|010| 020408
020020020020, 030|030(02|05]|0.8
020020020 ]0.20| 040|040 02| 06|08
020060 060|020 025|025 02|07]|08
060(010[060|010|025|025(03|04]|0.8
060010010060 | 060|010 03|05]|0.8
070010010070 070|010 (| 03| 06|08
080010010080 |080|010(03]|07]|0.8
080(010|010/080|035|035(04|05]|0.7
090 00| 00 |09 | 00 |090 04|06 ]|07
090 (0.10|0.10|0.90 | 050 0.30
0.10 (010|030 | 0.40 | 0.40 | 0.20

Table 5.2: Parameters of 3-coin HMMs for which the inference algorithm was tested.
Note, that all combinations consisting of a set of transition parametersand a set of emis-
sion parameters were tested.

The inferred model, with transition and emission matrix A; and B, respectively,

066 0.0 0.34 0.66 0.34
Ar=| 00 058 042 |. Bi=| 042 058 |,

0.42 0.43 0.15 057 043

yields a log-likelihood of —689.488 instead of —667.232 for the true model. The probabilistic
distance between the two models amounts to 0.022. State 2 in the original model, with its uni-
form emission probabilities and the high self-transition probability of 0.9, seem to cause al the
emissionsin the inferred model to spread.

The average number of states was 3.01 with a standard deviation of 0.16 for the prior anal-
ogously chosen to the previous section, only with the highest weight on 3.
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Figure 5.10: 3-coin HMMs, WAH: The influence of w, k and feature on the relative
differencein likelihood vs. MD(\) —binned with a width of 0.05 —is depicted for DER,.
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5.6 Results for Selected HMMs

We a so designed anumber of HMM s based on specific topological features present, withthegoal
to investigate for which choice of parameterswe could reliably reconstruct an approximation to
the original topology. This was motivated by the fact that in biological sequences, stochastic
regions are often interrupted or structured by deterministic signals. Examples are start and stop
codons, or the TATA boxes characteristic for promoter sequences in eukaryotic DNA.

Inthefollowing Ay and By will denotethetransition and emission matricesfor the true model,
likewise A; and B, for theinferred.

Example 5.18 Here the source transition graph is a 3-cycle. The model was inferred using

w =9, k=4, DER and for T = 1000.
0.80 0.20
0.10 0.90 |,

00 1.0 00
A=( 0000 10|, B
0.30 0.80

1.0 0.0 0.0

0.0 0.77 0.23 0.66 0.34
A= 0.0 016 084 |, Bi=1[ 024 076 |.
0.69 0.23 0.08 0.40 0.60
Example 5.19 Here the source transition graph is a complete directed graph on 2 nodes with

a cycle of length 3 attached to one of the nodes. The model wasinferred usingw = 8, k = 4, DER
and for T = 1000.

05 05 00 00 0.80 0.20 0.0
_]1 01 04 05 00 _ | 0.10 0.90 0.0
Ao = 0.0 0.0 00 10 |’ Bo = 00 02 080 |’
00 1.0 00 0.0 02 00 080
00 00 10 00 0269 0.0 0.731
A = 00 00 0951 0.049 B, = 0.169 0.781 0.050
0.003 0.0 0.637 0.360 |’ 0.183 0.447 0.370

00 0.718 0282 0.0 0.175 0.273 0.552

Example 5.20 Here the source transition graph is a complete directed graph on 2 nodes with
a path of length 3 joining the two nodes. The model was inferred usingw = 8, k = 4, DB} and
for T = 1000.

05 05 00 00 0.80 0.20 0.0
01 04 05 00 _ | 0.10 0.90 0.0
0.0 00 00 10 | oo 02 o080 |’
1.0 0.0 0.0 0.0 02 00 080
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044 0.0 0.18 0.37 0.18 0.45 0.37
A = 00 00 10 00 B, = 0.77 023 0.0
053 00 043 004 |’ 0.43 053 0.04
00 071 029 0.0 0.39 0.05 0.56

Example 5.21 Here the source transition graph is a complete directed graph on 2 nodes with
a path of length 4 joining the two nodes. The model was inferred usingw = 7, k = 3, DER and
for T = 1000.

06 04 00 0.0 00 0.70 0.30 0.0
02 05 03 0.0 00 0.10 0.90 0.0
Ay=]| 00 00 00 10 00 |, Bo=] 0.0 0.20 0.80 |,
00 00 00 00 10 0.20 0.0 0.80
1.0 0.0 0.0 00 0.0 0.0 0.40 0.60
0.0 0074 0.005 0.921 0.0 0.154 0.079 0.767
00 0124 0876 00 0.0 0742 025 0.0
A; =] 0.107 0.004 0874 0.0 0015 |, Bi=1] 0.340 0.534 0.126
00 0452 0548 00 0.0 0.206 0.348 0.446
00 0.0 0511 0489 0.0 0.304 0.207 0.489

The examples demonstrate that the inference algorithm is able to reconstruct peculiarities
of the topology of the source model at least partialy. The examples shown are for the minimal
w and k parameters at which “approximate” reconstruction occurred, as we can conclude from
experiments not shown here. The intuition about the value of cd = w — k, which isrequired to
detect, say, apath of length 2 is confirmed: Namely, oneneedscd > 2 and also k > 2.
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Chapter 6

Conclusion

In thisthesis we have introduced anovel algorithm for learning Hidden Markov Model (HMM)
topology. The agorithm employs a Bayesian approach to control the level of generalization
achieved.

We have established that the proposed inference algorithm constitutes a feasible approach
to learning HMM topology. In most instances the difference in likelihood is within the range
typically observed in multiple runs of the Baum-Welch agorithm starting from random initial
models. Note, that the initial model prescribes the topology in the latter case. Also, we could
show on examples, that the inference algorithmis able to recognize specific topological features
of the source, such as deterministic paths through states.

Nevertheless, there are some problems with the method, which need to be resolved. On one
hand, we observed that inferred models can have absorbing states, which is clearly undesirable,
even if the probability of reaching those states islow. On the other hand, there were surprising
problems with models, which were nearly Markov chains. That is, there were problems with
models which have alarge MD(-) value. Markov chains on the other hand, caused no problems
in the inference process. Also, the computational effort is unacceptable for stochastic sources
with medium range memory, respective interactions.

Some of the open theoretical problems— not exclusively concerning HMMs — which are
of relevance for achieving thisgoal are:

» Extension to transient HMMs: Simply sliding a window over individual sequences and
dealing with the resulting overlapping w-sequences as before would obscure the transient
nature of the source process. A combination of feature and distance function able to deal
with arbitrary subtrees of depth k instead of k-tailsisrequired.

* Establishing a comprehensive distance function between HMMs. Aswe have shown, the
probabilistic distance measure and differencesin MD(-) capture different aspects of mod-
els. A combined distance function, taking both aspects into account, is of value with re-
spect to distinguishing between HMMs in evaluating learning algorithmsand also from a
purely theoretical point of view.

* Minimality of HMMs: Similarly to existing agorithms in automata theory, an efficient
and robust procedure for obtaining a minimal size model consistent with the probability
distribution over all strings from ~* induced by a source model is desirable. This would
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further reduce ambiguity in the evaluation on artificial test data. For the problem of exact
identifiability and fully equivalent minimal representations some resultsare known [4,32].

Sample size sensitive distance measure: Whilewe have used a sample size sensitive clus-
tering method (cf. 4.9), the distance functions we used do not take the size of asample —
in other words, the accuracy of the vectorsthey are comparing — into account.

Simpler background models: To allow use of DER in situations where the br (k); are zero
dueto limitations of the data set, aninvestigation on using br(l);, with | <<k, instead could
prove beneficial. The truncated |-tail background frequencies could, for example, be used
as priorsfor therelative k-tail frequencies.

Speeding up the weighted average clustering algorithm: The most time consuming step in
the algorithm is the re-computation of the distances when two clusters are merged. Note,
that the actual pairwise distances are irrelevant, as we only need to identify the pair of
clusters at minimal distance. Hence, a iterative process using 1-tails, 2-tails etc. and the
appropriate distance on the so defined rel ative frequencies corresponding to these tail s can
be used to successively prune out pairs of clustersat large distance, leaving just few can-
didates to select for merging.

Investigate alternative clustering algorithms. As we have seen, using weighted average
hierarchical clustering results in an improvement of performance compared to single-link
clustering. It is conceivable, that more advanced clustering methods, tailored to the spe-
cific problem at hand, will yield even more favorableresultsand can circumvent the prob-
lems mentioned above.

Additional priors. While the algorithm, as predicted, learns Markov chains (MC) very
well, there are some artifacts to be observed for near-M C stochastic sources which might
be removed by use of a prior on the MD-value of theinferred model.

Tree pruning using variable window lengths: To assure reliability of the statistics used to
identify nodes, subtrees can be pruned — which is effectively equivalent to reducing the
window length — whenever counts c(vy) remain under some prescribed threshold. The
additional computation effort in the, overall, uncritical prefix tree building phase, would
speed up the time-critical distance computation and clustering phase, if the pruning leads
to areduction of nodes. Note, that this would also require a distance measure capable of
dealing with relative frequencies of arbitrary collections of stringsinstead of al k-strings.
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