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II. ZUSAMMENFASSUNG 
 

Während der Samenentwicklung in Blütenpflanzen müssen die einzelnen 

Entwicklungsprozesse des Embryos, des Endosperms und der umgebenen maternal, 

sporophytischen Integumenten, die von genetisch unterschiedlichem Ursprung sind, 

untereinander abgestimmt werden. Bisher ist nur wenig über die Koordination 

zwischen endospermalen und embryonalen Wachstum bekannt. In Arabidopsis 

entsteht auf Grund von Mutationen im Zellzyklusregulatorgens “CYCLIN 

DEPENDENT KINASE A;1” (CKDA;1)’ Pollen, der nur die Eizelle befruchtet. Die 

Samen, die aus der Kreuzung mit cdka;1 entstehen, beinhalten rein maternales 

Endosperm. In dieser Arbeit wurde cdka;1 mutanter Pollen zur Entschlüsselung der 

einzelnen Prozesse während der frühen Samenentwicklung verwendet.  

Kreuzungen von 14 Arabidopsis Ökotypen mit cdka;1 mutanten Pollen wiesen eine 

breite genetische Varianz in Hinblick auf Endospermentwicklung ohne paternalen 

Genombeitrag auf. In den hierdurch entstandenen Samen lief die embryonale 

Entwicklung zunächst autonom ab, wurde jedoch später durch die Menge an 

endospermalen Nuklei beschränkt. Sechs Komponenten, die die Entwicklung von 

unbefruchtetem Endosperm beeinflussen, wurden in einer QTL Analyse unter 

Verwendung einer rekombinanten Inzuchtpopulation zwischen den beiden 

Arabidopsis Ökotypen Bayreuth-0 und Shadara entdeckt. Insgesamt wurden vier 

QTLs detektiert, die von zwei haupt und vier komplexen Loci gebildet wurden. Die 

Gene zweier DNA N-Glykosylasen ROS1 und DME, die die Demethylierung von 

symmetrischen Cytosinmethylierungen katalysieren, lagen in den Intervallen von 

einem der zwei komplexen QTLs. Durch eine phänotypische Analyse konnte ein 

neuer funktionaler Aspekt von ROS1 und DME in der Beschränkung der Proliferation 

von unbefruchtetem Endosperm gezeigt werden. ros1-dme Doppelmutanten retteten 

den durch cdka;1 Befruchtung hervorgerufenen Samenabort in Abhängigkeit von der 

Aktivität der DNA Methyltransferase MET1 während der sporophytischen 

Entwicklungsphase. Die fehlende Co-Transmission des mutanten dme Allels in den 

geretteten Samen wies auf einen ‚Trans-Effekt’ durch ros1 und dme hin. Eine nähere 

Untersuchung ergab, dass der mutanten Phänotyp in einer segregierenden 

Population paramutationsähnlich vererbt wurde. Auf Grund der Messung von fast 

100% relativem Methylierungsgehalt auf Sequenzabschnitten von PHE1 und AGL36 

in ros1-dme Doppel- im Vergleich zu Einzelmutanten und Col-0 Wildtyppflanzen 

wurde Hypermethylierung als Ursache für den mutanten Phänotyp angenommen. 

Diese Hypermethylierung wurde wahrscheinlich durch Trans-Interaktionen zwischen 

homologen DNA-Sequenzen auf unterschiedlichen Chromosomen in paternal 
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dominanter Art und Weise hervorgerufen. Die in dieser Arbeit dargestellten 

Ergebnisse bestätigen vormalige Ergebnisse, dass Endospermentwicklung unter 

anderen durch die Veränderung des Methylierungslevels vor der Befruchtung 

beeinflusst werden kann. Darüber hinaus deuten die gewonnen Erkenntnisse darauf 

hin, dass paternale DNA-Methylierungsmuster übertragen werden können. Die 

vorliegenden Daten zeigen, dass vermutlich nicht nur der epigenetische Status des 

Sporophyten, sondern auch der des hierauf folgenden Gametophyten und die 

Samenentwicklung nach erfolgter Befruchtung von paternaler Seite beeinflussbar 

sind. 
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III. ABSTRACT 
 

Seed development in flowering plants requires coordination between the two 

genetically different fertilization products, the embryo and the endosperm and the 

surrounding maternal tissues, the integuments. However, little is known about the 

coordination of endosperm and embryo growth. In Arabidopsis, mutations in the cell 

cycle regulator CYCLIN DEPENDENT KINASE A;1 (CKDA;1) result in pollen that 

only successfully fertilizes the egg cell and seeds generated from crosses with 

cdka;1 pollen develop endosperm with solely maternal contribution. Here, fertilization 

by the cdka;1 mutant pollen was used to dissect early seed development. Crosses of 

14 Arabidopsis accessions pollinated with cdka;1 mutant pollen revealed a large 

natural genetic variation with regard to the development of endosperm without 

paternal contribution. This work revealed a surprisingly large degree of autonomy in 

embryo growth, but also showed the embryo’s growth restrictions with regard to 

endosperm size. By using a recombinant inbred line population between the two 

Arabidopsis accessions Bayreuth-0 and Shahdara four QTLs were discovered, two 

main and four complex loci that influence the development of unfertilized endosperm. 

The genes of two DNA N-glycosylases ROS1 and DME, which catalyze the 

demethylation of symmetrical cytosine methylation, lay inside the two intervals of one 

of the two complex QTLs. A functional analysis revealed a new aspect of ROS1 and 

DME in restricting the proliferation of unfertilized endosperm. Moreover, ros1-dme 

double mutants could rescue the observed seed abortion upon cdka;1 pollination 

dependent on the activity of the methyltransferase MET1 during the sporophytic 

phase. Surprisingly, the rescue was independent of dme co-transmission, indicating 

an effect of ros1 together with dme in trans. The inheritance pattern of the mutant 

phenotypes revealed a paramutation-like phenomenon and the detection of almost 

100% relative methylation levels on PHE1 and AGL36 sequence loci in ros1-dme 

double compared to the single mutants and Col-0 wild-type plants suggested that 

hypermethylation caused the mutant phenotype. The observed hypermethylation is 

likely to be established by in trans interactions between homologous DNA sequences 

on different chromosomes in a dominant paternal manner. These findings confirm 

previous results that endosperm formation is, beside other factors, triggered by the 

alteration of methylation levels prior to fertilization. Furthermore, DNA methylation 

patterns can probably be transferred via the paternal gametes, influencing not only 

the epigenetic status of the sporophyte, but also of the following gametophyte and 

affecting seed development after subsequent fertilization.  
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1 INTRODUCTION 

 

 

1.1 The Seed 
 

In flowering plants, seeds form a highly intricate unit comprised of three parts: 

integuments, endosperm and embryo. The latter represents the next generation and 

its growth is supported by the surrounding endosperm. The construction of the seed 

serves three purposes. First of all, seeds are dispersal units in space and time. A 

hard shell and an extremely decreased metabolism allow them to survive under 

unfavorable conditions for lengthy periods of time, until acceptable conditions allow 

for germination. The distribution of the progeny depends on the shape of the surface, 

which can enable them to fly or swim. Finally, seeds are filled with nutrients providing 

the developing embryo and often also the germinating seedling with energy reserves.  

Within a plant, seeds are one of the most complex structures, representing tissues of 

three different genetic origins. In diploid plants two of them are fertilization products, 

which are the triploid endosperm coming from the fertilization of the homodiploid 

central cell, and the diploid embryo resulting from the fertilization of the haploid egg 

cell. This event is called double fertilization and is unique to flowering (Sitte et al. 

2002). The third genetically different seed structure is the seed coat comprised of 

several layers of sporophytic origin contributed by the mother plant. Thus, a temporal 

and spatial coordination of growth between these different tissues is critical for 

reproductive success. 

 

 

1.2 Endosperm development 
 

Endosperm has specialized functions to support proper seed development: it 

supplies the embryo with nutrients, it initiates integument growth and differentiation, 

and plays a major role in further developmental processes such as dormancy and 

germination (Holdsworth et al. 2008; Nowack et al. 2010). Furthermore, endosperm 

size might function as a reproductive border to avoid inbreeding and interspecies 

hybridization (Bushell et al. 2003; Kinoshita 2007; Walia et al. 2009). One probable 

basis for this reproduction barrier is the responsiveness towards gene dosage effects. 

The genes controlling this process are regulated especially by epigenetic 
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mechanisms such as genomic imprinting. Cytosine methylation of the nuclear DNA 

and lysine methylation on histone H3 tails assure correct gene expression levels 

(Chan et al. 2005; Guitton and Berger 2005; Baroux et al. 2007; Huh et al. 2007; 

Ikeda and Kinoshita 2009). 

Immediately after fertilization the endosperm undergoes a phase of free nuclear 

divisions followed by differentiation into distinct compartments with specific functions. 

These different functional units can best be seen in cereals. Here, endosperm 

transfer cells (ETCs) are located next to the maternal tissue and do uptake nutrients 

from the mother plant (Becraft 2001; Gutierrez-Marcos et al. 2004; Olsen 2004). The 

nutrient transfer from the ETCs to the embryo is mediated by the embryo-surrounding 

region (ESR). But most of the endosperm cells in cereals synthesize and store 

reserve proteins and starch until germination occurs. The final structure is the outer 

endosperm layer (aleurone), where enzymes are released to hydrolyze the stored 

nutrients in the starchy endosperm to support the hatching embryo (Becraft 2001; 

Olsen 2001; 2004; Li et al. 2008). In contrast to monocotyledonous in many 

dicotyledonous species, such as Arabidopsis thaliana, most of the endosperm is 

consumed except of the aleurone layer.  Here, the endosperm acts as a temporary 

storage organ before the nutrients are transported to the developing embryo (Hirner 

et al. 1998). However, in mature Arabidopsis seeds the remaining single-cell 

aleurone layer plays a crucial role in seed dormancy, germination and seedling 

nutrition (Penfield et al. 2004; Bethke et al. 2007; Holdsworth et al. 2008). 
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1.3 The influence of endosperm formation on embryo development  
 

Embryo development is dependent on a well developing and differentiating 

endosperm. The first evidence for this assumption came from inter-species crosses 

and inbreeding experiments with Solanaceous species and alfalfa. Due to a poorly 

developing endosperm embryo growth stopped and the seed aborted (Brink and 

Cooper 1939; Cooper and Brink 1942). 

 

 
Figure 1: The time around the globular stage of embryo development is assumed to be 
a major checkpoint in seed development 
Different experiments and mutant analyses suggest the developmental period around globular 
stage as a major checkpoint in seed development. In many cases of early endosperm failure, 
the embryo continues to develop until the globular stage apparently independent of the 
amount of endosperm nuclei. (A) In cap2 mutants, endosperm proliferation stops prematurely 
and occasionally cellularizes. (B) In ovules fertilized with cdka;1 mutant pollen, the fertilization 
process is accompanied by egg-cell fertilization and failure of karyogamy of the second sperm 
with the central cell. Here, various numbers of autonomous diploid endosperm nuclei can 
develop, without any contribution from the paternal genome. (C) Early endosperm ablation by 
DTA expression after the second to third round of free nuclear division. (D) In glc mutant 
seeds, the endosperm completely fails to proliferate. 
 

Half a century later, further confirmation for the interaction of endosperm formation 

and embryo development was observed in early seed development. At this time 

endosperm-specific DTA (diphtheria toxin A) expression caused a proliferation arrest 

after two to three rounds of nuclear divisions resulting later in degeneration and 

causing embryo arrest and ultimately seed abortion (Fig. 1C) (Weijers et al. 2003). 

However, four to eight endosperm nuclei were enough to sustain embryo 

development at least for some time. Further evidence for the independency of 

embryo development was observed in experiments with a female gametophytic glc 

(glauce) mutant. In this genetic background just the egg cell was fertilized because 

the central cell was not able to fuse with the second sperm cell. Interestingly, the 
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embryo started to develop without any endosperm formation but arrested at globular 

stage (Fig. 1D) (Ngo et al. 2007).  

Likewise, in cap2 (capulet) mutant seeds endosperm proliferation ranged from one to 

five free nuclear divisions, occasionally involving precocious cellularization together 

with an embryo arrest at late globular stage in all situations (Fig1A) (Grini et al. 2002). 

Taken together, these findings suggest the existence of general checkpoints of seed 

development at the globular stage of embryo development.  

One speculation for embryo arrest at the globular stage might be the function of the 

endosperm to form a sink tissue recruiting nutrients from the mother plant and 

supplying the developing embryo with nutrients. An abolished, underdeveloped or 

retarded endosperm formation cannot (properly) fulfill these functions, causing 

embryo growth to stop and the seed to abort.  

 

 

1.4 The influence of endosperm formation on integument development  
 

In angiosperms such as Arabidopsis the integuments build the seed coat, which 

protects the embryo and transfers nutrients from the mother plant to the endosperm 

and embryo (Haughn and Chaudhury 2005; Holdsworth et al. 2008). It is believed 

that nutrient flow progresses centripetally from the outer through the inner 

integuments, passing through the apoplast to the endosperm and the embryo on 

routes that are still not fully understood (Stadler et al. 2005; Morley-Smith et al. 2008). 

Integuments differentiation and their rapid growth are initiated upon fertilization 

During subsequent seed development proanthocyanidin flavonoids accumulate in the 

internal most integument layer called endothelium, where they are oxidized causing 

the brown colour of the matured seeds (Debeaujon et al. 2001). The two outer 

integuments accrue starch containing amyloplasts, followed by the deposition of 

large quantities of pectinaceous mucilage in the outermost cell layer. At the end of 

seed maturation, all integumental layers die with the exception of the endothelium 

(Haughn and Chaudhury 2005; Holdsworth et al. 2008).  

In recent years several publications underlined the influence of endosperm formation 

on seed development and particularly on integument differentiation and growth. 

(Figure 1, Signal E) (Berger et al. 2006). Unfertilized fertilization independent seed 

(fis) class mutant ovules showed autonomous endosperm formation accompanied by 

integument cell elongation and proanthocyanidin accumulation in the endothelium 

layer, a distinctive characteristic of seed development progression (Ohad et al. 1996; 
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Grossniklaus et al. 1998; Kohler et al. 2003a; Berger et al. 2006; Ingouff et al. 2006). 

In cereals the influence of endosperm formation on seed coat growth is also well 

established. One example is MN1, which encodes for an endosperm-specific cell wall 

invertase. This enzyme metabolizes the incoming sucrose, possibly contributing to 

the establishment of the endosperm as a sink tissue. Due to the lack of nutrient 

supply, mn1 (miniature1) mutant in maize or mn1-like mutant in barley develop little 

endosperm and display much smaller seeds than wild-type plants (Felker et al. 1985; 

Cheng et al. 1996).  

A principal role of endosperm during seed development was highlighted in interploidy 

crosses in maize. An increased paternal genomic contribution (e.g. in 2C x 4C 

crosses) enhanced endosperm proliferation and enlarged seed size. A higher 

maternal contribution (e.g. in 4C x 2 C crosses) had the opposite effect (Lin 1982; 

1984; Pennington et al. 2008). Similar phenotypes were obtained in interploidy 

crosses in Arabidopsis in which endosperm is not as developed as in maize or other 

cereals (Scott et al. 1998). Mutant phenotypes resembling dosage imbalances in the 

endosperm can also be found in iku mutants (Garcia et al. 2003). 

 

 

1.5 The FIS-complex is a suppressor of endosperm development  
 

Results from seed mutant screens show that a proper endosperm formation appears 

to be dependent on gene doses effects. Genes such as MEDEA (MEA) and 

PHERES1 (PHE1) are mainly regulated by imprinting and are expressed in a parent-

of-origin-specific manner (Kohler et al. 2005; Baroux et al. 2006). Genomic imprinting 

has been shown in insects, mammals and flowering plants (Bushell et al. 2003; 

Kinoshita 2007; Walia et al. 2009). In plants imprinting is restricted to the endosperm 

(Lin 1982; 1984; Scott et al. 1998).  

Imprinting is based on Histone methylation and demethylation. Histones are proteins, 

which package 146 base pairs of the DNA superhelical into an octameric contour. 

These octamers are composed of the core histones H2A, H2B, H3 and H4. The 

herby formed repetitive structure is called chromatin (Kornberg 1974; Kornberg and 

Thomas 1974). Chromatin does not only serve as a scaffold for establishment of 

chromosomes and their distribution during mitosis and meiosis; it also controls gene 

expression. The amino acids of the histone tails are constantly modified in response 

to developmental or environmental signals by various combinations of acetylation, 

methylation, ubiquitinylation and phosphorylation with distinctive outcomes for gene 
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expression (Turner 2002). Histone methylation is pivotal for the establishment of 

hetero- and euchromatin, genomic imprinting, X chromosome inactivation and 

transcriptional regulation and is mitotically inheritable. Histone itself can bind 

molecules to activate or repress gene expression (Turner 2002). In this context, 

histone H3 lysine 4 and lysine 36 methylation support transcription initiation and 

transcript elongation and thus, activate gene expression (Grasser 2005; Volkel and 

Angrand 2007). On the other hand, repressive histone marks such as histone H3 

lysine 9 and lysine 27 are linked with heterochromatin establishment and gene 

repression (Zhou 2009). 

One method of transcriptional regulation including activation or repression is 

accomplished by histone acetyltransferases (HATs) and histone deacetyltransferase 

(HADC). To this date, more than 15 members of HATs have been discovered in 

Arabidopsis acetylating all four core histones. Among the proteins involved in histone 

code assembly and interpretation, the Polycomb proteins have been shown to be one 

of the major players and were first identified in Drosophila (Jürgens, 1985; Lewis, 

1978). 

Of importance for seed development and imprinting is the FIS-PRC2 complex, 

composed of at least four core components: the Zinc-finger transcription factor 

FERTILIZATION-INDEPENDENT SEED 2 (FIS2, the WD40-repeat protein 

MULTICOPY SUPPRESSOR OF IRA 1 (MSI1), the SET domain protein MEDEA 

(MEA) and the WD40-repeat protein FERTILIZATION - INDEPENDENT 

ENDOSPERM (FIE).  

MEA has been shown to be a histone methyltransferase that methylates lysine 27 of 

histone H3 (Gehring et al. 2006). In fertilized mutant seeds the endosperm 

overproliferates and displays an enlarged embryo, which arrests at late heart stage. 

Moreover, unfertilized fis-class mutant ovules reveal the presence of a multinuclear 

endosperm (Ohad et al. 1996; Chaudhury et al. 1997; Grossniklaus et al. 1998; 

Kiyosue et al. 1999; Bartee et al. 2001; Kohler et al. 2003a). One function of the FIS-

PRC2 complex might be to stop the gametophytic phase and mediate the switch to 

zygotic stage and/or to prevent seed development in the absence of a fertilization 

signal by suppressing endosperm development (Grossniklaus et al. 2001; Johnston 

et al. 2008). 
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1.6 Maintenance of DNA methylation marks in Arabidopsis  
 

Besides histone modification by the FIS-complex, cytosine methylation is another 

mechanism to control gene expression. DNA methylation is well known to protect the 

genome against selfish DNA elements such as transposons (Yoder et al. 1997; 

Martienssen and Colot 2001). In eukaryotes like Arabidopsis, DNA 

methyltransferases have structural similarities to prokaryotic restriction enzymes, 

which are involved in degrading non-host DNA (Cheng 1995). Therefore, it is likely 

that all known cytosine methylation processes in higher organisms evolved from the 

original task of defending the genome. 

In contrast to mammals, plant DNA methylation includes not only symmetrical CG but 

also CHG (H is either A, T or C) and CHH methylation. To this date, three classes of 

DNA cytosine methyltransferases, which maintain DNA methylation sites, are known. 

METHYLTRANSFERASE 1 (MET1) transfers CG methylation sites (Saze et al. 2003), 

CHROMOMETHYLASE 3 (CMT3) mainly controls CHG sites (Lindroth et al. 2001) 

and DOMAINS REARRANGED METHYLTRANSFERASE 1 and 2 (DRM1 and 2) are 

also responsible for CHH sites (Cao and Jacobsen 2002). CMT3, DMR1 and 2 act 

redundantly to enforce non-CG methylation (Lindroth et al. 2001; Cao and Jacobsen 

2002; Chan et al. 2005).  

 

 

1.7 DNA demethylation in Arabidopsis 
 

DNA demethylation can be divided into a passive and an active demethylation 

process. The passive demethylation process occurs in the absence of MET1 during 

replication; while cytosines without methyl groups are incorporated in a semi 

conservative manner into the new DNA strand (Morgan et al. 2005). Conversely, 

active DNA demethylation occurs via an active dismiss of methyl groups. Evidence 

for this process was gained from studies of mammalian embryo development. Here, 

the demethylation of the paternal inherited chromosomes in fertilized egg cells is 

suggested to be an active process, because it is accomplished before the first 

replication (Mayer et al. 2000). Furthermore, imprinting in mice is actively released 

during the development of the primordial germ cells (Hajkova et al. 2008).  

The active demethylation process might function by the cleavage between the 

deoxyribose moiety and the 5-methylcytosine. Later, the base excision repair 

machinery replaces the methylated with an unmethylated cytosine. Recent genetic 
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studies have suggested an active DNA demethylation process by the DNA 

glycosylases DMETER (DME), REPRESSOR OF SILENCING1 (ROS1) and 

DEMETER LIKE 2 and 3 (DML2 and DML3) (Choi et al. 2002; Gong et al. 2002; 

Agius et al. 2006; Morales-Ruiz et al. 2006; Penterman et al. 2007b; Ortega-Galisteo 

et al. 2008). DME is thought to demethylate imprinted genes, while DML proteins 

remove methylation directed by the RNA-directed DNA methylation (RdDM) pathway 

against repetitive sequences and transposable elements, and that ROS1 is also able 

to remove DNA methylation directed by an RNA-DEPENDENT RNA 

POLYMERASE2 (RDR2) independent RNAi pathway (Choi et al. 2002; Gong et al. 

2002; Agius et al. 2006; Gehring et al. 2006; Morales-Ruiz et al. 2006; Penterman et 

al. 2007b; Ortega-Galisteo et al. 2008).  

All four proteins erase symmetrical and asymmetrical methylation residues (Gehring 

et al. 2006; Morales-Ruiz et al. 2006). The impact of a lacking demethylation system 

can be best seen in the endosperm of dme mutants. Under wild-type conditions the 

endosperm genome is demethylated, while in dme mutants endosperm CG 

methylation is partially restored (Hsieh et al. 2009). dme mutant seeds are maternally 

gametophytic lethal and abort at late heart stage (Choi et al. 2002). 

 

 

1.8 De novo establishment of methylation marks by siRNAs in 
Arabidopsis 

 

One way to establish de-novo cytosine methylation is by RNAi directed DNA 

methylation (RdDM) (Matzke and Birchler 2005; Slotkin and Martienssen 2007). 

Proteins, which belong to the dicer family such as DICER-LIKE 3 (DCL3) and RDR2 

cleave dsRNA into 21–30-nucleotide small interfering RNAs (siRNAs) and 

ARGONAUTE4 (AGO4) incorporate and direct these siRNAs fragments to 

homologous regions in the genome (Zilberman et al. 2003; Chan et al. 2004; Xie et al. 

2004). This process is accompanied by DRM2 together with DEFECTIVE IN RNA-

DIRECTED DNA METHYLATION1 (DDM1) at all symmetrical and asymmetrical 

methylation sites to induce, for example, transcriptional gene silencing (Matzke and 

Birchler 2005; Vaucheret 2006).  

In addition, methylated CHG and CG is connected to H3K9me2, and CHG 

methylation co-localizes with H3K9me2 by CMT3 and KRYPTONITE (KYP) (Jackson 

et al. 2002; Tariq et al. 2003; Johnson et al. 2007). Nevertheless, the complex 

methylation process by siRNA, DRM2 and CMT3 is not fully understood. It is thought 
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that these proteins or RNA fragments act redundantly together with other factors and 

locus specific pathways to silence different loci in the genome (Cao and Jacobsen 

2002; Chan et al. 2006a; Henderson and Jacobsen 2008). Furthermore, recent 

studies showed that siRNA are transported between cells, over large distances and 

influence spatial separated developmental processes by silencing through de-novo 

methylation and/or posttranscriptional silencing (Dunoyer et al. 2010a; Dunoyer et al. 

2010b). 

In addition, the expression of a large number of endogenous genes is regulated by 

CG methylation inside the OPEN READING FRAME (ORF) (Tran et al. 2005; Zhang 

et al. 2006; Zilberman et al. 2007; Cokus et al. 2008). However, repression of gene 

expression is also accomplished by promoter methylation, for example in the 

promoter of the gene FLOWERING WAGENINGEN (FWA) (Soppe et al. 2000). Here, 

the FWA promoter is silenced by methylation at tandem repeats, which generate 

siRNA. Furthermore, only methylated promoter sites were able to recruit further 

RdDM or cause methylation of additional introduced transgenic FWA copies. The 

recruitment of de novo methylation may require preexisting chromatin modifications 

or DNA methylation. Thus, pre-established methylation can enforce further 

methylation and therefore increase silencing (Soppe et al. 2000; Chan et al. 2006b). 

Besides gene repression, DNA methylation can also prevent repressor binding 

resulting in gene activation. For example, maternally inherited PHERES1 (PHE1) is 

repressed by the FIS-complex, but the methylation of a downstream located region 

away from the PHE1 locus enhances PHE1 expression (Makarevich et al. 2008). 

 

 

1.9 Maternal FIS-class gene activation prior to fertilization and the 
maintenance of maternal and paternal imprinting after fertilization 

 

A pMET1:H2B-RFP reporter line showed that the MET1 promoter was on in 4 celled 

and off in the 8 celled embryo sacs in a RBR and MSI dependent manner. 

Consequently, the maternal genome remains in a hemimethylated status after female 

gametogenesis. It has been shown that hemimethylation enhance DME activity 

triggering complete demethylation. Hereby, DME can demethylate the 5′ promoter 

region and the 3′ MEA intergenic subtelomeric repeat of the maternally derived MEA 

allele resulting in activation. In addition, DME also demethylates direct repeats of the 

5' region of FWA and FIS2 (Kinoshita et al. 2004; Jullien et al. 2006b). Similar results 
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were observed in isolated central cells in maize (Gutierrez-Marcos et al. 2006; 

Hermon et al. 2007).  

In this context, it is surprising that a hypomethylated paternal genome does not 

release paternal MEA silencing (Gehring et al. 2006; Jullien et al. 2008; Kinoshita et 

al. 2008). Interestingly, if the maternal MEA or FIE allele is mutant, silencing of the 

paternal allele is released and MEA gets paternally expressed. Molecular data have 

also underlined these results, which show that a repressive H3 lysine 27 methylation 

mark on the paternal MEA promoter is removed if the maternal MEA protein is absent. 

Thus, the maternal actively represses the expression of the paternal FIS-complex 

genes (Gehring et al. 2006).  

Maternal FIS-class proteins are not only responsible for silencing their paternal 

siblings; they are also likely to be involved in the repression of many other genes. 

One example is the regulation of PHE1. The maternal repression of PHE1 is partly 

reliant on MEA expression in the central cell. Therefore, MEA maintains paternally 

imprinted genes (MEA) silent, whereas it induces the maternal repression of another 

imprinted gene (PHE1) (Kohler et al. 2005; Makarevich et al. 2008).  

Thus, imprinted genes such as MEA are parentally differentially marked prior to 

fertilization by DNA methylation and/or histone modification, and early seed formation 

is mainly under the control of maternally expressed genes. However, the entire 

molecular pathways and genetic regulations upstream and downstream of the FIS-

complex are still not fully understood. Thus, further work is necessary to unravel the 

molecular networks responsible for a proper seed formation.  

 

 

1.10 cdka;1 and fbl17 single fertilization and their impact on embryo – 
endosperm interaction  

 

In fertilization experiments CDKA;1 (CYCLIN-DEPENDENT KINASE A;1) and FBL17 

(FBOX-LIKE PROTEIN 17) mutant pollen formed just a single sperm cell at anthesis 

(Iwakawa et al. 2006; Nowack et al. 2006; Kim et al. 2008; Gusti et al. 2009). 

Surprisingly, pollen containing a single sperm could complete fertilization, but 

seemed to prefer to fertilize the egg cell. However, further analyses revealed that in 

many cases cdka;1 mutant pollen underwent a second male mitotic division during 

pollen tube growth. As a result, instead of just one single sperm, two sperm like cells 

arrived at the embryo sac. Nevertheless, fertilization was probably only accomplished 

in the egg cell, while the karyogamy of the second sperm like cell with the central cell 
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did not succeed. Here, the male pronucleus was excluded from the central cell (Aw et 

al. 2010).  

Most of the central cells started to proliferate without containing a paternal genome 

resulting in a developing endosperm. This process could be set off by a positive 

signal coming from the fertilization event of the egg cell or a developing embryo 

(Nowack et al. 2006). In light of recent results the fusion without karyogamy of the 

second sperm like cell with the central cell could be an alternative or additional 

positive signal for the onset of endosperm proliferation (Aw et al. 2010).  

In the so-called single fertilized seed the endosperm proliferation was limited to four 

to six rounds of free nuclear divisions resulting in a maximum of 64 nuclei, followed 

by abortion (Fig. 1b) (Nowack et al. 2006). On the contrary, in feronia/sirene mutants 

the growing pollen tube reached the egg cell without releasing the two sperm cells. In 

this mutant background no autonomous endosperm formation was observed, 

underlining that either the fusion of the sperm cell with the central cell or the fusion 

with the egg cell triggers endosperm formation (Huck et al. 2003; Rotman et al. 2003; 

Escobar-Restrepo et al. 2007). 

 

 
Figure 2: Communication processes during heart stage of embryo development, where 
the embryo has an impact on endosperm differentiation 
(A) Around 6 DAP of a fis-class mutant ovule by wild-type pollen, the endosperm stops 
differentiating and the seed aborts with an embryo at late heart stage. (B) Autonomous 
endosperm in unfertilized fis-class mutant ovules shows characteristics of early endosperm 
differentiation. (C) fis-class mutant ovules fertilized with cdka;1 mutant pollen complete seed 
development. The fertilization process is accompanied by egg-cell fertilization and failure of 
karyogamy of the second sperm with the central cell. Here, a fertilized embryo develops 
alongside an autonomous maternal homodiploid endosperm. This phenotype shows that 
embryo development can trigger terminal differentiation of the endosperm (green arrow) and 
so directly or indirectly sustain seed development and survival (orange arrow). 
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Beside cdka;1 pollinated wild-type ovules, unfertilized fis-class mutant ovules such as 

fie, fis2 and mea develop autonomous endosperm (Fig 2B). In fertilized fis-class 

mutant seeds embryo development is disturbed and the endosperm overproliferates 

resulting in seed abortion (Fig. 2A) (Ohad et al. 1996; Chaudhury et al. 1997; 

Grossniklaus et al. 1998; Kiyosue et al. 1999). 

Thus, in fis-class mutant seeds the repression of endosperm formation is released. 

By fertilizing these seeds with cdka;1 or fbl17 mutant pollen differentiation of the 

endosperm was restored, leading to successful cellularization and viable embryo 

development, which gave rise to healthy and fertile plants (Figure 2C) (Nowack et al. 

2007; Gusti et al. 2009). Since the genetic composition of the unfertilized and single 

fertilized autonomously developing endosperm in fis-class mutant seeds is the same, 

the presence of the embryo appears to be necessary and sufficient for endosperm 

differentiation and seed survival. Furthermore, bypassing imprinting can form a 

homodiploid unfertilized endosperm and cause proper endosperm development 

without any paternal genomic contribution (Nowack et al. 2007; Gusti et al. 2009).  

 

 

1.11 Aim of this work 
 

Seeds generated from crosses with cdka;1 pollen develop endosperm with solely 

maternal and no paternal contribution. Little is known about the presumptive signal 

that triggers central cell proliferation without prior fertilization. This signal either arises 

from the fertilization of the egg cell and/or the sperm-central cell fusion without 

karyogamy. In this work, the use of cdka;1 fertilized seeds as a novel tool promises 

to unravel the interplay between endosperm formation and embryo growth and 

further, to dissect the genomic basis of these signal transduction pathways. This 

allows, not only, identifying single genes, responsible for the onset of central cell 

proliferation, but also determining the impact of the paternal or maternal genome on 

endosperm formation. In this context, the presented study intends to answer aspects 

such as allele specific gene expression, epigenetic influence on endosperm 

development and de novo methylation of paternal or maternal genes.  
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2 RESULTS 
 

 

2.1 The central cell nuclei in cdka;1 fertilized seeds display 
characteristics of genuine endosperm 

 

Given that an unfertilized diploid central cell can proliferate upon cdka;1 fertilization 

of the egg cell, it was interesting to investigate, whether, and if so, to what degree the 

central cell represents a developing endosperm. One characteristic of early 

endosperm formation is the migration pattern of the proliferating nuclei after 

fertilization, which was previously described by Boisnard-Lorig (Boisnard-Lorig et al. 

2001): Shortly after the first division one nucleus moves to the chalazal pole 

(opposite the embryo) while the other nuclei are distributed at the micropylar pole 

(close to the embryo). In this context, a FIS2-GUS reporter was chosen to better 

visualize the migration pattern of the endosperm nuclei. FIS2 was shown to be solely 

expressed in the central cell and during the first five free nuclear divisions of the 

endosperm (Luo et al. 2000).  
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Figure 3: Endosperm characteristics of autonomously proliferating central cell nuclei 
DIC light- and Confocal Laser Scanning (CLSM) - micrographs of developing double-fertilized 
(with wild-type pollen) and single-fertilized (with cdka;1 pollen) seeds. (A - D) Detection of 
proanthocyanidin accumulation by vanillin staining in unfertilized Sha ovules or fertilized 
seeds at 3 DAP. (A) No proanthocyanidin can be detected in unpollinated Sha ovules. (B) 
Sha seeds pollinated with wild-type pollen synthesize proanthocyanidin in the seed 
integuments indicating activation of an endosperm developmental program. (C) Col-0 seeds 
pollinated with cdka;1 mutant pollen also initiate proanthocyanidin accumulation. (D) Even low 
or non-proliferating central cell nuclei as seen for instance in Sha seeds pollinated with cdka,1 
are vanillin positive. (E - J)  Histochemical detection of GUS activity in seeds expressing a 
maternal FIS2:GUS construct (in the C24 ecotype) and pollinated with cdka;1 mutant pollen 
(E - I) or with wild-type pollen (J). The division pattern and nuclear migration of autonomous 
developing endosperm in single fertilized seeds is comparable to that observed for double-
fertilized seeds wild-type. (E) FIS2 GUS expression in central cell nucleus (fused polar nuclei). 
(F) After first division, one nucleus migrates to the chalazal end of the seed. (G) Second 
division. (H) Third division. (I) Fourth division. (J) After fifth division in an ovule fertilized with 
wild-type pollen. (K - N) CLSM micrographs of seeds or ovules a maternal KS22 construct at 
3DAP, green GFP from the marker construct, red autofluorescence of plastids. (K) No GFP 
could be observed in an unfertilized wild-type C24 central cell. (L) Double fertilized wild-type 
seeds showing expression of the KS22 GFP reporter in the endosperm nuclei. (M) The 
autonomous endosperm in seeds fertilized with cdka;1 mutant pollen express GFP, even in 
cases with an undivided central cell nucleus (N). All pictures are oriented such that the 
chalazal pole of the seed points to the right and the micropylar pole with the developing 
embryo to the left. Scale bars are 10 µm. 
 

The detection of the GUS activity in seeds pollinated with cdka;1 mutant pollen (ES = 

2n) displayed the same endosperm migration pattern as found in seeds pollinated 

with wild-type pollen (ES = 3n) (Fig. 3 E-J, data not shown). 
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Next, the integument differentiation in seeds fertilized with cdka;1 mutant pollen was 

analyzed. Fertilization triggers the accumulation of proanthocyanidin pigments in the 

endothelium cell layer of the seed coat, which can be detected as a red stain by 

vanillin assay (Debeaujon et al. 2003). In unfertilized ovules endothelium 

differentiation is not started and vanillin staining is negative. The same observation 

was reported for unfertilized rbr mutant ovules, showing autonomously proliferating 

cells. Thus, the rbr1 female gametophyte likely produces a tissue that does not have 

a proper endosperm identity (Ingouff et al. 2006). In contrast, msi1 or fis2 unfertilized 

ovules containing autonomous developing endosperm display proanthocyanidin 

accumulation and differentiation of the seed coat without an embryo (Ingouff et al. 

2006). Consequently, a developmental trigger appears to be required to induce the 

endothelium differentiation process. 

More than 60 percent of all seeds of the accession Sha pollinated with cdka;1 mutant 

pollen showed just a single nucleus in the central cell (Fig. 6b). However, more than 

85 percent of the cdka;1 fertilized Sha seeds were vanillin positive (Fig. 3d, data not 

shown).  

This shows, that in contrast to unfertilized seeds, seeds fertilized with cdka;1 pollen 

demonstrated successful cross talk between endosperm and endothelium (Fig. 3 a-d). 

Furthermore, given the fact that more than 40 percent of all ovules displayed 

proanthocyanidin accumulation, it is reasonable to state that endothelium 

differentiation is independent of endosperm nuclei number and might be triggered by 

either an embryo and/or a single central cell nucleus with endosperm characteristics. 

However, the experiment could not rule out if a developing embryo alone could 

promote seed coat differentiation.  

Next, the KS22:GFP marker line was tested, which is solely expressed in the 

endosperm but not in the central cell of unfertilized ovules (Ingouff et al. 2005). Upon 

cdka;1 pollination the autonomous dividing endosperm and even a non-dividing 

central cell accompanied by a fertilized embryo showed a GFP signal. Thus, the 

unfertilized endosperm and even a non-dividing unfertilized central cell appear to 

adopt some characteristics of wild-type endosperm (Fig. 3 k-n). Therefore, 

endosperm differentiation can be uncoupled from proliferation. 

 

 

2.2 Development of autonomous endosperm varies between different 
Arabidopsis accessions 
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Figure 4: Natural variation in A. thaliana ecotypes  
A. thaliana accessions are widely spread over the world and habituated in different eco-zones 
(Koornneef et al. 2004; Nordborg et al. 2005; Bakker et al. 2006; Schmid et al. 2006).  
 

Up to now, hundreds of different accessions of Arabidopsis thaliana have been 

collected, displaying large genetic variation within the species (Fig. 4) (Koornneef et 

al. 2004; Nordborg et al. 2005; Bakker et al. 2006; Schmid et al. 2006). This natural 

variation is used as a powerful tool for quantitative genetics to dissect many 

physiological or developmental processes.  

From the existing ecotypes, 14 frequently used accessions were chosen and 

pollinated using pollen from heterozygous cdka;1 mutant plants. The seed 

development 3 DAP was subsequently analyzed. Approximately half of the seeds in 

these crosses were double fertilized, while in the other half, only the egg cell was 

successfully fertilized (Iwakawa et al. 2006; Nowack et al. 2006). Consequently, half 

of the developing seeds in each tested accession displayed wild-type characteristics 

(Fig. 5 a, data not shown), while the other half showed the above described 

autonomous proliferation of the central cell along with the development of an embryo 

that eventually leads to seed abortion (Fig. 5 c-e) (Nowack et al. 2006). Interestingly, 

a large variation in endosperm nuclei number between the different accessions 

ranging from one up to 64 nuclei was found. 
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Figure 5: Autonomously proliferating central cell nuclei after single fertilization with 
cdka;1 mutant pollen 
Light micrograph of cleared whole mount ovules (unfertilized) or seeds stemming from the 
fertilization with wild-type pollen (double fertilized), or cdka;1 mutant pollen (successful egg-
cell fertilization and lacking karyogamy of the second sperm with the central cell). (A) Col-0 
seed fertilized with Col-0 wt pollen at 3 DAP. (B) Non-fertilized Col-0 ovules at 6 days after 
emasculation - (ec and cc indicate egg cell and central cell, respectively) (C) Col-0 seed 
fertilized with cdka;1 mutant pollen at 3 DAP, the central cell nucleus went through 5 rounds 
of nuclear division and here, 28 nuclei are visible. (D) Bay-0 seed fertilized with cdka;1 mutant 
pollen at 3 DAP, the central cell nucleus went through 3 rounds of division and 8 nuclei are 
visible. (E) Sha seed fertilized with cdka;1 mutant pollen at 3 DAP, containing a undivided 
central cell. (F) Close up of a Sha seed fertilized with cdka;1 mutant pollen showing an 
undivided central cell nucleus and an 16 celled embryo at 3 DAP. Inlays in panels A-E show 
the inner integument layers all at the same magnification. The integument cells strongly 
enlarge and vacuolize in wild-type fertilized seeds (A) whereas in unfertilized ovules (B) no 
cell expansion is detected. Upon single fertilization with cdka;1 mutant pollen (C-E) the 
integuments slightly expand. All pictures are oriented such that the chalazal pole of the seed 
points to the right and the micropylar pole with the developing embryo to the left. Scale bars 
are 50 µm.  
 

For a better description and quantification of the occurring variation, a fast and robust 

method was required to present the data. It should also facilitate comparison 

between the different data sets. Therefore, it was decided to take the mean number 

of nuclei per developing seed as a measurement of endosperm growth. However, 

this system displays some disadvantages: First of all, endosperm proliferation is an 

exponential process and thus, it overemphasizes seeds with high nuclei numbers 

and generates an increasingly larger standard deviation with increasing nuclei 

numbers. Therefore, categorization of the data was more difficult. Secondly, 

experimental problems and counting errors occurred with increasing nuclei numbers 

due to difficulties while counting the nuclei under the microscope, e.g. >30. 
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Consequently, the measure Endosperm Division Value (EDV) was introduced, 

defined as the number of anticipated division cycles per aborting seed or in other 

words, the number of divisions necessary to reach the corresponding nuclei 

numbers; e.g., 26 nuclei were scored as being in the fifth cycle (26 ≈ 25). 

On the other hand, the EDV overestimates the real endosperm nuclei number, in 

particular past the first three very synchronous division rounds. Afterwards, the 

mitotic domains change (Boisnard-Lorig et al. 2001). Nevertheless, previous studies 

support the correctness of this approach, because larger numbers can still be 

assigned to the correct division cycles 4–8 (Boisnard-Lorig et al. 2001). To support 

the method, the determined nuclei numbers of the autonomous endosperm were 

generally approximate to the value for a completed division cycle. The 14 different 

accessions analyzed displayed EDVs ranging from 0.64 for Wassilewskija (Ws-0) 

and 3.84 for C24. Figure 6a is a statistical approach to sort accessions that can be 

separated into groups with an error of 5%. The EDV of accessions within one group 

are not significantly different. To give an example, Sha and Ler-1 are significantly 

different, because they are in different groups, while the EDV of Sha and Est-1 are 

within the same group, because the EDVs cannot be statistically separated.  

 
Figure 6: Natural variation in initiation of autonomous endosperm proliferation upon 
cdka;1 pollination 
(A) Endosperm division values (EDVs) for 14 Arabidopsis ecotypes. Means are shown with 
error bars representing the standard deviation. a,b,c,d,e,f,g specify groups of significantly 
different subsets as indicated by a Student Newman-Keuls test with alpha = 0,5. (B) 
Distribution of autonomously proliferating endosperm nuclei of cdka;1 pollinated ovules in the 
Arabidopsis accessions An-1, Bay-0, Bur-0, C24, Cvi-0, Col, Est-1, Kas-1, Ler-1, Ler-2, Mt-0, 
Nd-1, WS-0, Sha, No-0. The x -axis indicates EDV, the y-axis shows the number of wild-type 
ovules pollinated with cdka,1 mutant pollen in percentage. The diagram shows that the 
observed natural variation in endosperm proliferation is in the frequency of seeds that start 
proliferating of endosperm nuclei. If nuclear proliferation has started endosperm usually 
proceeds through 4 to 5 rounds of division. 
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2.3 General seed growth parameters contribute only little to 
autonomous endosperm formation 

 

The natural variation of the autonomous endosperm proliferation could be based on 

general seed growth parameters such as natural differences in seed growth, i.e. high 

autonomous endosperm formation within an accession could correlate to a larger or 

heavier seed and vice versa. To check this, first the seeds of the used accessions 

were weighed to determine seed mass. A large variation in seed mass was measured, 

ranging from 0.73 mg/50 seeds in An-1 to 1.41 mg/50 seeds in the accession Kas-1 

(Fig. 7a). Furthermore, the data was in line with previous studies, which confirms the 

accuracy of the measurements, for example for the seed masses of Ler-1 and Cvi-0 

(Alonso-Blanco et al. 1999). Beside Kas-1 and Cvi-0, large seed masses were also 

found for the accessions C24, Nd-1, Est-1, and Bur-0 (Figure 7a). 

 

 
Figure 7: Autonomous endosperm proliferation can be uncoupled from general seed 
growth aspects 
(A) Natural variation in the seed mass (mg per 50 seeds) of double-fertilized ovules of the 14 
accessions; no strong correlation between high EDVs and heavy seeds could be found 
(R2=0.20). (B) Natural variation in seed size in mm2 of double-fertilized seeds; no correlation 
between high EDV and large seeds could be found (R2=0.0043). (C) Natural variation in 
endosperm growth rate in nuclei numbers of double-fertilized endosperm at 3 DAP; no strong 
correlation between high EDV and fast proliferating endosperm could be found (R2=0.3189). 
Means are shown with error bars representing standard deviations. a,b,c,… indicate groups of 
significantly different subsets as shown by a Student Newman-Keuls test with alpha = 0,5.  
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Disproving the initial assumption, just 20% of the EDV might be explained by seed 

mass (linear regression R2=0.20) and the influence of seed size on autonomous 

endosperm proliferation was even less important (linear regression R2=0.0043, Fig 

6a, Fig 7b). 

To assess whether general growth rate might have an effect on EDV, endosperm 

nuclei in wild-type seeds of three representative accessions were counted at 3 DAP. 

Interestingly, a variation of wild-type endosperm was observed between the 

accessions in respect to proliferation rate (Fig. 7c). Nevertheless, the impact of a 

general growth rate at the beginning of seed formation was not very pronounced 

either (linear regression R2=0.3189, Fig 6a, Fig 7c). 

Finally, the nuclei numbers counted within an accession were not normally distributed 

The natural variation found is not based on the ability to form high values of 

autonomous endosperm but rather on the frequency that the central cell starts 

proliferating (Fig. 6b). Once a central cell divided it regularly goes up to the fourth or 

fifth division cycle, approximately between 16 and 32 nuclei, even in an accession 

with a low EDV. 

To summarize, natural variation was detected in the three common seed growth 

parameters - mass, size and growth rate, also used in previous studies (Krannitz et al. 

1991; Alonso-Blanco et al. 1999). However, although the data shows that parameters, 

such as seed growth influence endosperm proliferation upon fertilization with cdka;1 

mutant pollen, the development of autonomous endosperm relies largely on 

additional factors. 

 

 

2.4 Relationship between endosperm and embryo development during 
seed growth 

 

In Arabidopsis and other plants it was reported that first the endosperm nucleus 

starts proliferating reaching up to 12 to 16 nuclei before the zygote undergoes its first 

division (Boisnard-Lorig et al. 2001). This might indicate a certain dependence of 

embryo development upon endosperm formation. Therefore, the impact of an 

incomplete proliferated endosperm on embryo formation was analyzed.  

Embryo development was observed in all cdka;1 pollinated seeds, even in cases 

where the central cell did not divide (n = 45) (Fig. 8, Fig. 9). In addition, fertilized glc 

mutant seeds displayed embryo arrest up to globular stage in the absence of 

endosperm or in seeds showing 2 to 8 nuclei (Fig. 1e). Here, the central cell was not 
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able to fuse with the second sperm cell (Ngo et al. 2007). Thus, the start of embryo 

development seems to be independent from endosperm formation and that embryo 

development might rely only on the fertilization of the egg cell. 

 
Figure 8: Early correlation of embryo development and endosperm proliferation  
Correlation between the size of the autonomously formed endosperm (in EDV) with embryo 
size (in numbers of cells) at 3 DAP. In all 5 analyzed accessions, endosperm size correlated 
with embryo size ( R2 (Bay-0) = 0,64; R2 (C24) = 0,82; R2 (Col-0) = 0,74; R2 (Cvi-0) = 0,90; R2 
(Kas-1) = 0,61). Error bars indicate standard deviation. 

 
Figure 9: Independence and constraints of embryo development 
Time course of embryo development in cdka;1 pollinated seeds of the 3 accessions, Col-0, 
Bay-0, Sha, from 3 DAP to 9 DAP. After 3 DAP, no additional divisions in the endosperm 
were observed, yet embryos in all three accessions continued to grow until 6 to 9 DAP 
indicating a self-sufficient embryo developmental program. However, embryos only reached a 
size of 55 to 65 cells (globular stage) showing the limitations of this endosperm-independent 
growth. Error bars indicate standard deviation.  
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The autonomous embryo formation raised the question to which extent embryo 

development is dependent on embryo size. Here, the variation of autonomous 

endosperm formation within an accession was used as a tool to analyze this 

dependency. Embryo growth in cell numbers was plotted against endosperm nuclei 

number in cdka;1 fertilized seeds at 3 DAP. A strong correlation of embryo cell 

numbers and endosperm size was observed. The more endosperm nuclei were 

formed, the higher was the number of embryo cells (Fig. 8). This suggests an early 

positive feedback interaction between endosperm and embryo growth (R2 (Bay-0) = 

0,64; R2 (C24) = 0,82; R2 (Col-0) = 0,74; R2 (Cvi-0) = 0,90; R2 (Kas-1) = 0,61). 

Nevertheless, a more complex interaction cannot be excluded, for example via 

maternal layers or a positive and dose-dependent effect of developing endosperm on 

embryo growth. 

Moreover, the autonomous endosperm in cdka;1 fertilized seeds decomposed 

around 3 DAP. However, the embryo continued to grow independently for about 3 

more days reaching an average size of approximately 50 cells at 9 DAP (Fig. 9). This 

data emphasizes the autonomous developmental program of the embryo, but it also 

shows the limitations of embryo growth with or without endosperm formation. The 

findings confirm results reported by Cooper and Brink half a century ago that 

completion of embryogenesis is dependent on a proper endosperm formation 

(Cooper and Brink 1942) 

 
 

2.5 QTL analysis of Sha –Bay RIL population reveals two new loci 
involved in autonomous endosperm development  

 

An additional explanation for the occurring natural variation in autonomous 

endosperm formation, apart from the natural variation in seed growth, is a 

presumptive signal that triggers autonomous endosperm proliferation upon 

fertilization of the egg cell but failing karyogamy of the second sperm cell with the 

central cell (Nowack et al. 2006; Aw et al. 2010). The variation could be explained by 

the strength or the transmission of the signal. On the other hand, variation might exist 

on the perception side, i.e. in the central cell. Due to the fact that fis-class mutants 

ovules and cdka;1 mutant pollen can mutually restore their seed viability (Nowack et 

al. 2007), an obvious hypothesis was that natural variation in the expression or 

function of FIS-class genes might be responsible for the here observed variation in 

autonomous endosperm proliferation.  
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A quantification approach was chosen to identify possible loci on the chromosome 

that might relate to the trait by using an established Recombinant Inbred Line (RIL) 

population. The two ecotypes forming the RIL population were Bayreuth-0 (Bay-0), 

originating from southern Germany, and Shahdara (Sha), from Tajikistan, which 

differed significantly in their EDV (Fig 6a) (Loudet et al. 2002). From the 165 RILs of 

the core collection 160 were grown. Each line was pollinated with pollen from 

heterozygous cdka;1 mutant plants. Seeds 3 DAP from 4 to 8 siliques of each cross 

were cleared and the number of endosperm nuclei were determined in the aborting 

seeds. The large variation of the EDVs among the RIL population differed 

substantially from the Bay-0 and Sha parents (Fig 6a, data not shown). 

Two QTLs were detected, which explained roughly 20 percent of the total variance in 

EDVs with a heritability of 0.93. The QTLs were identified and localized by composite 

interval mapping (CIM) (Fig. 10). The first QTL, located on chromosome I (peak at 

40,9 cM), linked with the marker T27K12 (at 43,6cM or 15,9 Mb) was named KIRKE 

(KIR). The detected LOD of this QTL was 4,66. The QTL explained 13,7 % of the 

phenotypic variation in the Bay-0 x Sha population. The alleles of Bay-0 at this 

position increased the number of endosperm divisions by a factor of 0,64. 

 

 
Figure 10: QTL mapping of factors controlling the autonomously proliferation of the 
central cell after cdka;1 pollination 
LOD traces of QTL mapping (in cM) for EDV in the Bay-Sha RIL population are reported for 
each of the 5 Arabidopsis chromosomes represented by the grey bars on the bottom of each 
chart (top on the left and bottom on the right). Marker names are indicated on each 
chromosome at their genetic position (Loudet et al. 2002). Composite interval mapping (CIM; 
continuous line) is reported. The markers used as cofactors in CIM are surrounded. The 
threshold of QTL detection (LOD=2.4; hatched line) has been determined using a permutation 
test (see materials and methods). 
 

The second QTL was mapped to the top of chromosome III around the marker 

athcib2 (6,8 cM or 3,96 Mb) and was named KALYPSO (KAL). In Greek mythology 

the hero Odysseus had to master the two witches Kirke and Kalypso on his journey 

(Homer 2005). Both tried to seduce Odysseus and made him stay for several years.  
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KAL had a LOD of 2,91 and described 8,1 % of the observed phenotypic variation in 

the Bay-0 x Sha population. Different to KIR, the presence of the Bay-0 alleles at the 

KAL locus decreased the number of divisions. This resulted in an overall higher EDV 

reaching up to 4,5 in some RILs. Thus, no RIL showed a lower EDV than determined 

for Sha.  

 

 
Figure 11: Complex QTL mapping of factors controlling the autonomously proliferation 
of the central cell after cdka;1 pollination 
LOD traces of complex QTL mapping for EDV in the Bay-Sha RIL population are reported for 
each of the 5 Arabidopsis chromosomes represented by the grey bars. The two complex 
QTLs are represented by the black arrows. Marker names are indicated on each chromosome 
at their genetic position (Loudet et al. 2002). The markers used as cofactors in CIM are 
surrounded. The threshold of QTL detection (LOD=2.4) has been determined using a 
permutation test (see materials and methods).  
 

Further analysis of the data set revealed no genetic interaction between KAL and KIR. 

However, two complex QTLs were detected. The first interaction was between 

chromosome I linked to marker msat1.13 (70,4 cM) and II linked to marker msat2.36 

(26,8 cM) (Fig.11). The second one was positioned between chromosome II marker 

msat2,7 (42,7 cM) and V marker nga225 (0 cM) (Fig. 11). 

The map positions of KIR, KAL and the two complex QTLs were compared with the 

location of the FIS class genes and genes associated to it in the Arabidopsis genome, 

i.e. SWN/EZA1 (AT4G02020), MEA (AT1G02580), FIE (AT3G20740), FIS2 
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(AT2g35670), the not molecularly identified BORGIA (BGA) located at the vicinity of 

FIS2 (Guitton et al. 2004), RBR (AT3G12280) and MSI1 (AT5G58230). Furthermore, 

the map positions of other genes known to influence seed size were compared; 

which are: TTG2 (AT2G37260), IKU2 (AT3G19700), MINI3 (AT1G55600), AP2 

(AT4G36920) and ARF2/MNT (AT5G62000). However, none of the genes mapped 

closely to the QTLs. Interestingly, DME (AT5G04560) involved in the demethylation 

and activation of maternal FIS-class genes correlated close to the position of marker 

nga 225 on top of chromosome V and the close relative ROS1 (AT2G36490) to 

marker msat 2,7 on chromosome II. The antagonist to DME, MET1 (AT5G49160) 

was not located near any QTL. 

In summary, neither KAL nor KIR mapped near any of seed developmental related 

genes indicating that they represent two new loci involved in endosperm 

development. However, the gene location of ROS1 and DME were close to the 

marker positions of complex QTL 2 between chromosome 2 and 5. Thus, by making 

an educational guess, it was worthwhile for these two genes to undergo further 

testing. 

 

 

2.6 ROS1 and DME mutant seeds display a shift towards the onset of 
central cell division upon cdka;1 fertilization in Col-0 background 

 

The QTL analysis revealed a complex QTL between chromosome 2 and 5 linked to 

the markers msat 2,7 and nga 225 co-located close to the genes ROS1 

(AT2G36490) and DME (AT5G04560) (Fig. 11). Therefore, ros1-3 was crossed with 

a dme-1 mutant allele (GK-252E03-014577) to receive a ros1-3/dme-1 double mutant 

line. The ros1-3 allele was isolated from Ws-0 heterozygotes (Arabidopsis Knockout 

facility, University of Wisconsin, Madison, WI) and introgressed into the Col-0 

background six times (Penterman et al. 2007a).  
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Figure 12: Variation in initiation of autonomous endosperm proliferation upon cdka;1 
pollination in a wild-type and ros1-3, dme-1 single and ros1-3 dme-1 double mutant 
genetic background 
Distribution of autonomously proliferating endosperm nuclei of cdka;1 pollinated ovules in Col-
0 wild-type, ros1-3/ros1-3, DME/dme-1 and ros1-3/ros1-3 DME/dme-1 plants. The x-axis 
indicates EDV (Endosperm Division Value), the y-axis shows the number of ovules pollinated 
with cdka;1 mutant pollen in percentage. The diagram shows that the frequency of seeds in 
which endosperm nuclei that start to proliferate increases in dme and ros1 single mutants. 
Finally in the double mutant dme-ros1 all seeds display a proliferating central cell nucleus. In 
addition, there is a slight tendency to undergo more division cycles in the single mutants and 
again an additive effect in the double mutant situation. 
 

Since the two candidate genes were found by QTL analysis using the trait EDV, I first 

tried to discover whether ROS1 and DME influenced endosperm formation and 

secondly, if both did genetically interact. Therefore, the EDVs of cdka;1 pollinated 

ros1-3 and dme-1 single and double mutant plants were determined. The percentage 

of ovules pollinated with cdka;1 mutant pollen were plotted against their EDV. 

Interestingly, autonomous central cell division was enhanced in comparison to the 

wild-type Col-0 background (Fig. 12). 11,5% (N=355) of Col-0 ovules aborting seeds 

contained an undivided central cell, of ros1-3/ros1-3 plants 6% (N=334), of 

DME/dme-1 2,9% (N=385) and of the double mutant ros1-3/ros1-3 DME/dme-1 

plants 0,25% (N=401). Almost every seed originating from a ros1-3/ros1-3 DME/dme-

1 plant and fertilized with cdka;1 mutant pollen showed autonomous central cell 

division (Fig. 12).  

The presented data show not only that DME and ROS1 influence endosperm 

development but also that the higher EDV in the ros1 dme double mutant 

background (Fig. 12) might indicate a redundancy between ROS1 and DME.  
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2.7 Fertilized ros1 mutant seeds exhibit wild-type development  
 

First, a phenotypic characterization was performed and ros1-3, dme-1 and ros1-3 

dme-1 mutant seeds were cleared and compared with wild-type seed development 

over a time course of 12 DAP. 

 
Figure 13: ros1-3 dme-1 double mutant show seed abortion at heart stage of embryonic 
development 
DIC light micrographs of (A-E) Col-0 seed pollinated with Col-0 wild-type pollen, showing 
typical embryo development with globular stage at 3 DAP (A) and 5 DAP (B), heart at 7 DAP 
(C), torpedo at 9 DAP (D) and bend cotelydon stage at 12 DAP (E). (F-J) ros1-3 mutant 
seeds display same phenotypic characteristics as wild-type (K-M) dme-1 mutant seed 
pollinated with Col-0 arrested at heart stage at 7 DAP (K) and no additional growth at 9 DAP 
(L) or 12 DAP (M). Similarly, ros1-3/dme-1 double mutant seeds pollinated with Col-0 stopped 
growth at heart stage (N-P). In both dme-1 and ros1-3/dme-1 mutants, seeds aborted at 12 
DAP with an disintegrating embryo (M and P) and vanishing endosperm (L and O). All 
pictures are placed such that the chalazal pole of the seed points to the right and the 
micropylar pole with the developing embryo to the left. Bars: 50 µm. 
 

 

ros1-3 mutant seeds developed indistinguishable from wild-type (Fig. 13 f-j), while  
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seeds inside siliques of DME/dme-1 plants displayed a characteristic maternal 

gametophytic abortion rate of around 49% and seeds of DME/dme-1 ros1-3/ros1-3 

plants around 45%. The dme-1 dependent mutant phenotype was in line with 

previous reports, and was characterized by an enlarged endosperm and an aborting 

embryo at late heart stage (Fig. 13 k-m) (Choi et al. 2002). 

 

 

2.8 Unfertilized ros1 and ros1-dme ovules show autonomous 
endosperm formation with endosperm-like features 

 

One prominent phenotype of FIS-class genes is the formation of autonomous 

endosperm in unfertilized ovules (Ohad et al. 1996; Chaudhury et al. 1997; 

Grossniklaus et al. 1998; Kiyosue et al. 1999). Two maternal FIS-class genes MEA 

and FIS2 are activated by DME, suggesting a similar phenotype for dme mutant 

ovules as observed for mea or fis2 mutants. Thus, unfertilized ovules were analyzed 

in wild-type, ros1-3/ros1-3, DME/dme-1 and DME/dme-1 ros1-3/ros1-3 mutant plants.  

 

 
Figure 14: Unfertilized ovules of ros1-3 single and ros1-3 dme-1 double mutant plants 
display autonomous endosperm proliferation. 
(A–E) DIC light micrographs of 7 DAE unfertilized ovules. (A-C) Histochemical detection of 
GUS activity in 7 DAE unfertilized ovules expressing a maternal pFIS2:GUS construct 
(Chaudhury et al., 1997; Luo et al., 2000) (A) Unfertilized ovule (7 DAE) from 
FIS2::GUS/FIS2::GUS ros1-3/ros1-3 DME/dme-1 mutant shows seven GUS stained nuclei. 
(B) Unfertilized wild-type ovule (in the C24 ecotype) containing a GUS stained central cell. (C) 
7 DAE unfertilized ovule from a FIS2::GUS/FIS2::GUS ros1-3/ros1-3 DME/dme-1 plant 
displaying no GUS staining. (D and E) Light micrograph of cleared whole mount unfertilized 
ovules (7DAE). (D) Unfertilized ovule from a ros1-3/ros1-3 DME/dme-1 plant with eight 
autonomously proliferated endosperm nuclei. (E) Unfertilized wild-type ovules (Col-0) 
displaying the egg cell and the central cell. All pictures are placed such that the chalazal pole 
of the seed points to the right and the micropylar pole with the developing embryo to the left. 
Bars: 20 µm. 
 
7 DAE ovules from wild-type and ros1-3/ros1-3 DME/dme-1 plants were cleared. No 

autonomous endosperm proliferation could be observed in ovules originated from 

Col-0 wild-type and DME/dme-1 mutant plants, which was in line with previous 

reports (Choi et al. 2002). Autonomous endosperm formation was detected in some 
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ovules of ros1-3 dme-1 double mutant plants (Fig 14 d,e). A FIS2-GUS reporter was 

chosen to better visualize the endosperm nuclei in unfertilized ovules. FIS2 is 

reported to be solely expressed in the central cell and during the first five free nuclear 

divisions of the endosperm (Luo et al. 2000). The same mutant phenotype was 

obtained from mutant ovules carrying the pFIS2-GUS construct (Fig. 14 a-c).  

 
Table 1: Unfertilized ovules of ros1-3 single and ros1-3 dme-1 double mutant plants 
display autonomous endosperm proliferation 
Around 2% of all ovules of ros1-3/ros1-3 mutant plants display autonomously proliferating 
endosperm. However, in combination with ros1-3 the mutant phenotype increases, indicating 
a redundant action of ROS1 and DME. 

 
 
To determine the percentages of ovules with autonomous endosperm formation, the 

number of ovules originating from ros1-3/ros1-3, DME/dme-1 and ros1-3/ros1-3 

DME/dme-1 plants was counted. Ovules from wild-type and DME/dme-1 7 DAE 

(N=740) plants showed no autonomous endosperm formation, while ros1-3/ros1-3 

displayed 1,95% (N=943) and ros1-3/ros1-3 DME/dme-1 11,99% (N=1241) (Tab. 1 

a). Mutant plants carrying a pFIS2:GUS construct displayed very similar proportions 

of autonomous endosperm proliferation as observed in mutants without the construct 

(Tab. 1 b). 8 nuclei was the highest amount of autonomous endosperm that was 

detected (Fig 14 Surprisingly the dme-1 together with the ros1-3 mutant allele 

increased the ros1-3 mutant phenotype, indicating a probable redundancy between 

ROS1 and DME. 
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2.9 The autonomously proliferating central cell nuclei in unfertilized 
ovules from ros1-dme mutant plants display characteristics of 
genuine endosperm 

 

Next, it was tested to what degree the proliferating central cell in unfertilized ros1-3 

single and ros1-3 dme-1 double mutant background displays features of a developing 

endosperm. 

 
Figure 15: The autonomously proliferating central cell nuclei in unfertilized ovules of 
ros1-3 dme-1 mutant plants display characteristics of genuine endosperm 
Detection of proanthocyanidin accumulation by vanillin staining in 7 DAE unpollinated ovules 
and in double fertilized Col-0 wild-type seed 3 DAP. (A) Unfertilized ovule originated from 
ros1-3/ros1-3 DME/dme-1 plants start proanthocyanidin synthesis. (B) Double fertilized wild-
type seeds accumulate proanthocyanidin in the endothelium. (C) No proanthocyanidin can be 
detected in unfertilized wild-type ovules (Col-0). All pictures are placed such that the chalazal 
pole of the seed points to the right and the micropylar pole with the developing embryo to the 
left. Bars 50 µm.  
 
Therefore, integument differentiation was analyzed in wild-type fertilized seeds 3 

DAP and unfertilized ovules 7 DAE from ros1-3/ros1-3 DME/dme-1 double mutant 

and Col-0 plants (Fig. 15 a-c). In general, fertilization triggers the deposition of 

proanthocyanidin pigments in the endothelium cell layer of the seed coat, which can 

be visualized as a red stain using vanillin assay (Fig. 15 b) (Debeaujon et al. 2003; 

Ungru et al. 2008). Unfertilized wild-type ovules do not set off endothelium 

differentiation and vanillin staining is negative (Fig. 15 c). In contrast to unfertilized 

wild-type ovules, some ovules from ros1-3/ros1-3 DME/dme-1 double mutant plants 

were vanillin positive (Fig. 15 a). Thus, the autonomous dividing central cell appears 

to possess endosperm-like characteristics. 
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2.10 ros1-dme mutants appear to disturb pollen viability and/or the 
fertilization process  

 

The here used dme-1 mutant allele is maternal gametophytic lethal and therefore is 

not transmitted through the female site (Choi et al. 2004). In addition, DME is 

reported to be not expressed in the male reproductive organs like stamen and pollen. 

To proof the transmission of the dme-1 allele the offspring of self-pollinated 

DME/dme-1 and ros1-3/ros1-3 DME/dme-1 plants and of reciprocal crosses with Col-

0 wild-type were genotyped. 

 

 
Figure 16: dme-1 transmission rate in dme-1 single mutant and ros1-3 dme-1 double 
mutant plants 
The dme-1 transmission rate was highest in self-pollinated/fertilized mutant plants, decreasing 
in Col-0 x mutant and lowest in mutant x Col-0. This indicates that the ros1-3 and dme-1 
mutations had an impact on the dme-1 transmission through the paternal gametophyte and 
the following fertilization process. The x-axis indicates the genotype of the parents and the y-
axis the transmission of dme-1 in percentages, N = absolute number of plants.  
 

Surprisingly, dme-1 transmission was lower than 50% in all crosses (Fig. 16). It was 

highest in the self-pollinated plants with 25,9% for DME/dme-1 x DME/dme-1 and 

18,3% for ros1-3/ros1-3 DME/dme-1 x ros1-3/ros1-3 DME/dme-1 (Fig. 16). dme-1 

transmission was 11,8% in Col-0 x DME/dme-1 and 5,7% Col-0 x ros1-3/ros1-3 

DME/dme-1, while in the reciprocal crosses dme-1 transmission rate was almost 

completely abolished (Fig. 16). Interestingly, an additional ros1-3 mutant allele 

decreased dme-1 transmission rate in self-pollinated and in the reciprocal crosses 

with Col-0 wild-type. In addition, no aborting seeds could be detected from crosses, 

which received a paternal dme-1 allele (data not shown). Although DME is not 

reported to be expressed in the paternal reproductive organs, our data suggest an 

impact of ROS1 and DME on pollen viability, the fertilization process and/or the 
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communication between male gametophyte and maternal sporophyte, for example 

during pollen tube guidance.  

 

 

2.11 Bypassing genomic imprinting allows seed development in ros1 
single and ros1-dme double mutant plants fertilized with cdka;1 
mutant pollen 

 

Fertilizing the seed with cdka;1 mutant pollen, only the egg cell accomplished 

fertilization, while the central cell undergoes few rounds of free nuclear divisions 

without fertilization. Nowack et al (2007) bypassed genomic imprinting in developing 

fis-class mutant seeds fertilized with cdka;1 mutant pollen. Viable seedlings 

developed without any paternal contribution to the endosperm (cdka;1 mutant pollen), 

together with an absent suppression (mutant fis-class complex) of endosperm 

proliferation. As shown above, a relaxed endosperm proliferation was observed in 

unfertilized ovules coming from ros1-3/ros1-3 and ros1-3/ros1-3 DME/dme-1 plants 

(Fig. 14 a,d,e). To test whether the observed phenotypes were dependent on the 

ros1 and dme alleles used, the crosses and analyses were repeated with a second 

ros1 (ros1-4) and dme (dme-4) allele. dme-4 was previously characterized as a weak 

dme mutant allele (Guitton et al. 2004). Double mutants in the following different 

allelic combinations were used: ros1-3 and dme-1, ros1-4 and dme-1 and ros1-3 and 

dme-4. They were fertilized with pollen from CDKA;1+/- plants.  

 
Table 2: ros1 single and ros1 dme double mutant plants produce viable offspring in 
crosses with dka;1  
Transmission rate of cdka;1 in crosses with Col-0 wild-type, ros1-3/ros1-3, DME/dme-1 and 
ros1-3/ros1-3 DME/dme-1. The different dme and ros1 mutant alleles suppress the cdka;1 
mutant phenotype. Crosses with the weak dme-4 allele show lower cdka;1 transmission rates. 
The relative transmission rate is defined as the percentage of viable single fertilized in relation 
to all viable seeds (viable without aborted seeds), while the percentage of rescued seeds are 
viable single fertilized seeds in relation to the total seed number of the silique (viable + 
aborted seeds). 
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The cdka;1 transmission rate in the F1 offspring was determined. In addition, the 

cdka;1 mutant phenotype is not fully penetrant and between 1 and 15% of cdka;1 

mutant pollen contain two instead of just one sperm cells dependent on temperature 

and growth conditions (Nowack et al. 2006). Therefore, the cross with Col-0 was 

used as a control to receive the exact number of viable seeds, which were 

CDKA;1+/- but double fertilized. The relative transmission rate was defined as the 

observed transmission rate in a mutant minus the transmission rate in wild-type. 

Hereby, it was possible to determine the amount of viable seeds containing a 

fertilized, diploid embryo and an unfertilized, homoparental diploid endosperm. This 

procedure was in line with previously reported data and calculation for cdka;1 

pollinated fis-class mutants (Nowack et al. 2007). All plants were cultivated at the 

same time and under the same growth conditions to avoid differences in the 

proportion of 2 sperm cells to 1 sperm cell in cdka;1 mutant pollen.  

In DME/dme plants approximately 75% of all seeds died due to both the cdka;1 

single fertilization (early abortion) and the dme dependent maternal gametophytic 

lethality (late abortion). The following equation was used to receive the total 

percentage of rescued seeds upon cdka;1 pollination, where a is the percentage of 

viable seeds pollinated with wild-type pollen, b the relative transmission rate of 

cdka;1 in percentages and x the percentage of ovules inside the siliques, which were 

rescued upon cdka;1 pollination. 

 

( )babx −= %100/*  

 

Surprisingly, all mutant backgrounds displayed seed rescue upon cdka;1 fertilization 

from 1% in DME/dme-1 up to 3,1% in ros1-3/ros1-3 DME/dme-1 plants (Tab. 2). In 

comparison to the strong dme-1 mutant allele, DME/dme-4 and ros1-3/ ros1-3 

DME/dme-4 plants showed around 1% rescue, which was the same as for single 

mutant plants (Tab. 2). In addition, previous work reported that in dme-4 mutant 

ovules FIS2:GUS reporter expression remained at lower levels than wild-type ovules 

while in dme-2 mutant ovules expression disappeared almost completely (Jullien et al. 

2006b). Hence, the reduced cdka;1 transmission in the offspring of ros1-3/ ros1-3 

DME/dme-4 plants in comparison with ros1-3/ ros1-3 DME/dme-1 was probably due 

to a more active DME in dme-4 mutants. 

Interestingly, the percentage of single fertilized viable seeds was lower than the 

actual percentage of unfertilized ovules displaying autonomous endosperm formation 

in ros1-3/ ros1-3 DME/dme-1 plants, i.e. 12% of all unfertilized ovules showed a 
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divided central cell, while 3,1 % of all seeds were rescued upon single fertilization 

(Tab. 1, 2). Thus, only 25% of all seeds, showing autonomous endosperm formation, 

were rescued upon cdka;1 pollination. This was in line with previous work of Nowack 

et al. (2007) in which it was reported that 20% of the offspring of mea/mea plants 

fertilized with pollen from CDKA;1+/- plants produced a viable seed containing a 

homodiploid, solely maternally derived endosperm. In comparison, almost 100% of 

all unfertilized mea mutant ovules showed autonomous endosperm formation. 

 

 

2.12 Unfertilized ovules, displaying autonomous endosperm formation 
and single fertilized and viable seeds of ros1-3/ros1-3 DME/dme-1 
plants appear to be DME wild-type 

 

As shown above, dme-1 in combination with ros1-3 or -4 increased cdka;1 

transmission and autonomous endosperm formation (Tab. 1, 2). However, dme was 

previously not reported to cause the formation of autonomous endosperm raising the 

question whether the ovules (CC > 1) and/or the viable CDKA;1+/- offspring were 

mutant for DME. 

Since the amount of autonomous endosperm in unfertilized ovules was quite small 

(12% of all ovules with not more than 8 nuclei each) and the rescued seeds in 

crosses with cdka;1 could not be distinguished from wild-type pollinated seeds, it was 

impossible to laser dissect the autonomous endosperm and genotype subsequently. 
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Table 3: Unfertilized ovules with autonomous endosperm formation and viable, single 
fertilized seeds appear to be DME wild-type 
(A) The transmission of the dme-1 allele was determined by PCR, by phenotypic analysis and 
by sulfadiazine selection on ½ MS plates. First of all, the dme-1 and the ros1-3 alleles are 
necessary for the suppression of the cdka;1 mutant phenotype. Nevertheless, the dme-1 
allele is only transmitted through the maternal gametophyte to ∼1 % in wild-type and single 
fertilized viable seeds. Thus, dme-1 is maternally gametopytic lethal. It further indicates a pre 
meiotic or trans effect of the dme-1 heterozygous mutation on the phenotype. (B) 
Autonomous endosperm formation and GUS detection in 7 DAE unfertilized ovules from ros1-
3, dme-1single or double mutant plants (Col-0). Samples were received from ros1-3/ros1-3, 
DME/dme-1, ROS1/ros1-3 DME/dme-1 (F2) and ros1-3/ros1-3 DME/dme-1 mutant plants 
expressing a homozygous maternal FIS2::GUS construct (Chaudhury et al., 1997; Luo et al., 
2000). Wild-type ovules show ∼100%, while DME/dme-1 mutant plants ∼50% GUS activity. 
Ovules displaying autonomous endosperm proliferation are GUS negative, indicating a DME 
wild-type allele. (C) Expression analysis of FWA (At4g25530), FIS2 (At2g35670), which are 
activated by DME prior to fertilization (Jullien et al. 2006b). 2 DAE samples were collected 
from wild-type pollinated Col-0 wild-type, DME/dme-1 plants. The values show a down 
regulation of FIS2 and FWA expression in DME/dme-1 mutant samples, indicating activation 
by DME.  

 
 

Therefore, a more indirect approach was chosen. First the strength of the dme-1 

allele was characterized. The pFIS2:GUS and FIS2 and FWA expression in 

unfertilized ovules 2 DAE were examined by using GUS staining and qRT-PCR. 

These genes are known to be regulated by DME (Jullien et al. 2006b). DME/dme-1 

plants were taken as the maternal parent. Here, FIS2 expression was reduced by 
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0,71 and FWA by 0,43 fold (Tab 3 c). Furthermore, GUS expression was reduced by 

50,2% in ovules from pFIS2:GUS+/+ DME/dme-1 plants (Tab. 3 b). Altogether, dme-

1 was considered to be a strong allele because FIS2 and FWA expression were 

strongly reduced. Thus, ovules without a GUS signal were likely to carry a dme-1 

allele. 

Interestingly, autonomous endosperm formation was always accompanied by a GUS 

signal, for example 12,14% of all ovules contained more than one endosperm-like 

nuclei and these ovules were always GUS positive in pFIS2:GUS+/+ ros1-3/ros1-3 

DME/dme-1 plants (Tab. 3 b). In addition, a similar amount (11,99%) of 

autonomously proliferating ovules were observed in the same mutant background 

without the pFIS2:GUS construct (Tab. 1 a). Furthermore, the dme-1 transmission 

rate was less than 1,5% in all crosses using the mutant plant as the maternal and 

either Col-0 or CDKA;1+/- as the paternal parent (Tab. 3 a). Thus, development of a 

homoparental diploid endosperm appeared to be independent of dme-1 co-

transmission in autonomously proliferating ovules and viable, single fertilized seeds 

coming from ros1-3/ros1-3 DME/dme-1 plants. Given the fact that the transmission 

rate of cdka;1 and the amount of autonomously proliferating ovules increased in 

dependency on dme-1 presence, dme-1 was not expected to be absent in the single 

fertilized offspring or in the homodiploid and autonomously proliferating endosperm.  

 

 

2.13 ROS1 and DME are involved in DNA demethylation during maternal 
gametophytic development in a MET1 dependent manner 

 

DME and ROS1 are involved in epigenetic gene regulation. Due to their function the 

hypothesis was raised that the mutant phenotype was based on a misregulated DNA 

methylation during or after the three mitotic divisions of the maternal gametes. It was 

also previously shown that MET1 expression is down regulated during 

gametogenesis, resulting in a hemimethylated status of the maternal genome 

(Gehring et al. 2006; Jullien et al. 2008; Kinoshita et al. 2008). A hemimethylated 

DNA status is pivotal for a proper DME activity on a specific 5-methylcytosine, while 

DME activity is highly reduced, if the target region is fully methylated. For example, 

DME function is reduced by up to 10 fold in case of an abasic site, sitting on the 

opposite DNA strand (David-Cordonnier et al. 2001; Weinfeld et al. 2001). 

Conversely, the inhibition of DME activity was less prominent when the abasic site 

was shifted by 4 or 7 nucleotides away from the 5-methylcytosine (Gehring et al. 
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2006). Thus, a down regulated MET1 expression may be crucial for DME activity to 

demethylate remaining methylation sites and hereby activate FIS-class genes. 

Conversely, MET1 is not down regulated during paternal gametogenesis resulting 

into a methylated DNA (Gehring et al. 2006; Jullien et al. 2008; Kinoshita et al. 2008).  

To test whether our mutant phenotype was based on a hypermethylated status of 

certain DNA regions, a met1-1 allele was crossed into ros1-3, dme-1 single and 

double mutant plants. Hereby, MET1 and/or ROS1, DME target genes should be 

completely demethylated in the mature embryo sac since the methylation sites could 

not be transferred during the three mitotic divisions of maternal gametogenesis. 

Hence, ROS1 and DME activity would not be required to erase remaining 

methylation sites any longer. Consequently, the ros1-3 dme-1 mutant phenotype 

could be reversed.  

 
Table 4: Table 4: Relative cdka;1 transmission in ros1-3, ros1-4, dme-1 and dme-4 
mutant backgrounds is dependent on MET1 
By the detection of the cdka;1 allele, seeds, originating from the pollination with cdka;1 mutant 
pollen, can be differed from seeds pollinated with wild-type pollen (Nowack et al. 2006). The 
table demonstrates that the dme and the ros1 mutant alleles promote the transmission of the 
cdka;1 allele. The maternal parents were genotyped for the met1 mutant and MET1 wild-type 
allele. The table shows that the transmission of the cdka;1 allele is dependent on the 
presence of diploid maternal MET1. 
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The here presented data was in line with previous findings that heterozygous met1 

plants showed hypomethylation in all gametes (Saze et al. 2003). Even one 

additional met1 mutant allele was enough to decrease the relative transmission rate 

of the cdka;1 mutant allele in ros1-3/ros1-3 DME/dme-1 plants from 11,04 down to 

0,00 (Tab. 4). Furthermore, cleared unfertilized ovules 7 DAE of the double and triple 

mutant plants with one met1-1 allele displayed no autonomous endosperm formation 

(pictures not shown). This suggests a haplo-insufficiency in the heterozygous 

mutants. In general, the aging gradient becomes highest in the reproductive organs. 

A heterozygous met1 mutant allele probably caused a gradual loss of methylation 

sites through plant development. A phenotypical argument for haplo-insufficiency 

was given by the fact that I and others observed a reduced general plant and leaf 

size, disturbed floral organ composition and a delay of general plant growth and 

flowering time (Saze et al. 2003). 

Summing up, the relative cdka;1 transmission and the mutant phenotype were 

dependent on the presence of a diploid maternal MET1 genotype before maternal 

gametogenesis. This supports previous observations that Met1 might not be 

completely inactive during maternal gametogenesis and an active DME is still 

needed to erase remaining methylation sites to activate, for example, FIS-class 

genes (Gehring et al. 2006; Jullien et al. 2008; Kinoshita et al. 2008).  

 

 

2.14 The dme-ros1 mutant phenotype segregates in a non-Mendelian 
manner 

 

The mutant phenotype appeared to be independent of dme-1 co-transmission and 

dependent on hypermethylation. This rose up the question how the mutant 

phenotype was inherited in a segregating population. 

First, Col-0 plants were fertilized with pollen from a ros1-3/ros1-3-/-DME/dme-1 plant. 

ROS1/ros1-3-/-DME/dme-1 (F1), ROS1/ros1-3-/-DME/dme-1 (F2) and ros1-3/ros1-3-

/-DME/dme-1 (F2) plants were obtained by sulfadiazine treatment and confirmed by 

PCR for the dme-1 allele. The F1 heterozygous generation displayed 11,46% of 

ovules with autonomous endosperm formation and 10,56% cdka;1 relative 

transmission rate (Tab. 4, Fig. 17 a, b). The F2 generation with the same genotype 

ROS1/ros1-3-/-DME/dme-1 displayed on average 5,91% seeds with autonomous 

endosperm formation and 5,15% relative cdka;1 transmission (Tab. 4, Fig. 17 a, b). 

However, zooming into individual plants (12 to 14 individuals) revealed that a double 
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heterozygous mutant displayed either 1-2% or around 11% seeds with autonomous 

endosperm formation (Tab. 4, Fig. 17 a, b). Double mutant F2 plants homozygous for 

ros1-3 gave again almost the same phenotypic proportions as for the ros1-3 

heterozygous F1 plants with 11,99% autonomous endosperm formation and 11,04% 

relative transmission rate (Tab. 4, Fig. 17 a, b). In addition, all F2 individual double 

mutants either heterozygous or homozygous for ros1-3 descended from the same 

plant.  

 
Figure 17: Autonomous endosperm formation in 7 DAE unfertilized ovules in ros1-3, 
dme-1 single or double mutant background 
(A) 7 DAE old unfertilized ovules from ros1-3/ros1-3, DME/dme-1, ROS1/ros1-3 DME/dme-1 
(F2) and ros1-3/ros1-3 DME/dme-1- mutant plants expressing a homozygous maternal 
FIS2:GUS construct. (B) Detection of autonomous endosperm formation in cleared whole 
mount unfertilized ovules from ros1-3/ros1-3, DME/dme-1, ROS1/ros1-3 DME/dme-1 (F1 and 
F2) and ros1-3/ros1-3 DME/dme-1 plants. At the x-axis the genotype of the parents is given 
and the y-axis indicates the percentages of autonomous endosperm formation; N1 = total 
amount of individual plants, N2 = total amount of ovules. Error bars indicate standard 
deviation. 
 

The same pattern was observed for the two filial generations and different ros1-4 

dme-1 genotypes, including an average 50% reduction of the relative cdka;1 

transmission rate in the offspring from ROS1/ros1-4 DME/dme-1 F2 plants (Tab. 4). 

First of all, the two mutant alleles ros1-3 and dme-1 could have influenced seed 

development by a sporophytic effect in a haplo-insufficient manner. In this context, a 

haplo-insufficient mutant would be expected to show the same phenotypic 

penetrance in plants of the same zygosity independent of the filial generation. This 

was not the case. The phenotypic proportions in the ROS1/ros1-3 DME/dme-1 

mutant plants of the first filial generation were almost the same as in the ros1-3/ros1-

3 DME/dme-1 mutant plants (∼ 12%). Furthermore, ROS1/ros1-3 DME/dme-1 

displayed two distinct classes with either ∼ 12% autonomous endosperm or just very 

little, i.e.∼ 1-2%.  

In addition, the mutant phenotype was not reduced by half in ROS1/ros1-3 

DME/dme-1 compared to ros1-3/ros1-3 DME/dme-1 plants. Thus, the mendelian 
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laws were probably not the basis of the phenotypic heredity. Consequently, in ros1-3 

dme-1 double mutant plants one allele of a gene influenced the appearance of the 

other allele.  

 

 

2.15 The mutant phenotype is likely to be established by in trans 
interactions between homologous DNA sequences on different 
chromosomes 

 

The effect of one allele onto the other one was described for the first time in 1956 

when Brink published his work about the heredity of the R-locus in maize (Brink 

1956; 1973). Many years later he named it paramutation (Brink 1956; 1973). More 

recent studies revealed that epigenetic paramutations are involved in trans 

interactions between homologous DNA sequences on different chromosomes 

resulting in alterations in gene expression, associated with changes in DNA 

methylation and chromatin structure. In plants these epigenetic marks remained 

stable throughout mitosis and meiosis, and are therefore inheritable. Thus, 

paramutation is the epigenetic transfer of information from one allele of a gene to 

another to ascertain a state of gene expression that is heritable for generations 

(Chandler and Stam 2004; Stam and Mittelsten Scheid 2005; Chandler 2007; Cuzin 

et al. 2008).  

In contrast to the definition of an epigenetic paramutation, the mutant phenotype was 

not inheritable through generations. Conversely, it was reversible in the manner that 

the F2 generation of the heterozygous ROS1/ros1-3 DME/dme-1 plants displayed 

either a complete mutant phenotype (∼12%) or not (∼1-2%) in the unfertilized ovules 

or in the single fertilized progeny. It was rather more likely that the epigenetic 

identities of certain genes were influenced in a parentally dependent manner, firstly 

because MET1 is differentially activated between paternal and maternal 

gametogenesis (Jullien et al. 2008), secondly the ROS1 wild-type allele was either 

coming from the maternal or the paternal gamete after the first filial generation of 

ROS1-3+/-DME-1+/- plants, and finally dme-1 was 99% inherited by the paternal site. 

On the one hand, the presence of a ROS1 or DME wild-type allele on the paternal 

site resulted in a highly reduced phenotype in the ovules of the next filial generation, 

i.e. that ROS1-3/ros1-3 DME/dme-1 F2 plants displayed either a mutant phenotype 

or not with 50% chance. On the other hand, a ROS1 allele from the maternal site did 

not reduce the mutant phenotype, i.e. that the first filial generation from the cross 
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Col-0 x ros1-3/ros1-3 DME/dme-1 showed the same proportion of mutant 

phenotypes as observed in ros1-3/ros1-3 DME/dme-1 plants. Thus, the methylation 

sites on an allele had to be established de novo consistently throughout each and 

every generation by the presence of a dominant epiallele coming from the paternal 

site.  

 

To elucidate a probable inter chromosomal methylation transfer, methylation marks 

of putative DME target genes such as PHE1 (AGL37), AGL34 and AGL36 were 

quantified in DNA samples of leave material coming from ros1-3 dme-1 single and 

double mutants and Col-0 wild-type plants (Kohler et al. 2003b; Kohler et al. 2005; 

Makarevich et al. 2006; Makarevich et al. 2008; Shirzadi et al. submitted).  

 

 
Figure 18: ros1-3 dme-1 double mutants display almost 100% relative methylation at 
three loci 
Methylation marks of putative DME target genes such as PHE1, AGL34 and AGL36 were 
quantified to elucidate their epigenetic status and a probable inter chromosomal methylation 
transfer. The y-bar indicates the % of input or the amount of relative methylation.  
 

The relative methylation of the measured PHE1 region was around 57% in the wild-

type and single mutant plants, but almost 100% in ros1-3/ros1-3 DME/dme-1 plants. 

The same pattern was true for AGL36. AGL34 did show an increasing methylation up 

to 72% in ros1-3/ros1-3 DME/dme-1 plants but almost doubled compared to wild-type 

or ros1-3, single mutants (37%, 39%) (Fig. 18).  

First of all, the highly increased methylation of PHE1, AGL36 and AGL34 loci in ros1-

3/ros1-3 DME/dme-1 underlined the function of ROS1 and DME to erase methylation 

sites from certain target genes. In this context, a reduced MET1 expression and the 
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presence of a maternal DME wild-type allele in DME/dme-1 heterozygous plants 

should cause a reduction of methylation sites of the maternal PHE1 and/or AGL36 

alleles during maternal gametogenesis and herby reduce their relative methylation 

levels. However, the relative methylation in PHE1 and AGL36 increased to almost 

100% in the progeny supporting the theory that a paternal hypermethylated allele 

(ros1/dme) influenced the methylation levels of the maternal epiallele (ros1/DME) 

during and/or after fertilization. Consequently, a trans methylation transfer between 

the epialleles might be necessary to explain the heredity of the mutant phenotype 

and the detected high methylation levels for PHE1 and AGL36. 

 

 

2.16 ROS1 reveals a regulative function on endosperm proliferation 
and/or seed development related gene expression around 6 DAP 

 

To unravel molecular mechanisms possibly underlying the seed phenotypes in 

homozygous ros1-3 single and/or ros1-3 dme-1 double mutants, the expression of 

endosperm proliferation and/or seed development related genes was analyzed. 

cDNA of 3 and 6 DAP seed material from Col-0, ros1-3/ros1-3, DME/dme-1, ros1-

3/ros1-3 DME/dme-1, MEA/mea72, and mea55/mea55 mutant plants fertilized with 

Col-0 wild-type pollen were used for qRT-PCR to test PHE1, DME , FWA, ROS1, 

MEA, FIS2, FIE, MSI1, AGL36, MPC (MATERNALLY EXPRESSED PAB C-

TERMINAL), AGL28 and AGL90.  
 

 
Figure 19: Expression analysis of DME and ROS1 
cDNA of four biological replica of 3 and 6 DAP seed material were used in a Probe based 
qPCR using Universal Probe Library (UPL) hydrolysis probes (Roche).The x-axis indicates 
different mutant backgrounds analyzed; the y-axis shows the expression in x-fold. Error bars 
indicate standard deviation. 
 

First of all, the expression of DME and ROS1 was analyzed. A simple assumption 

was that the expression of DME in DME/dme-1 heterozygous mutant plants would be 

reduced by half. However, DME expression increased in DME/dme-1 and ros1-
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3/ros1-3 DME/dme-1 mutant seeds 3 DAP and 6 DAP (Fig 19). Currently, the most 

likely explanation for this expression pattern comes from a t-DNA insertion in intron 2 

at the position 2374bp downstream of the 5’UTR region. The insertion was located 

15bp downstream of the start of Intron 2. The primers were designed to amplify a 

region spanning intron number 12 and 13. The Probe was located within the 95 

nucleotide amplicon. Amplification started at the position 6151bp and ended at 6513 

downstream of the 5’UTR region. Thus, the increased DME expression could be 

explained by a t-DNA derived promoter, which led to the transcription of the part 

downstream of the t-DNA insertion. Consistently, the same DME expression would 

have been expected in ros1-3/ros1-3 DME/dme-1- plants. Previous studies reported 

that ROS1 removes methylation sites from trans genes (Gong et al. 2002; Penterman 

et al. 2007a). Thus, the lower expression of DME in ros1-3/ros1-3 DME/dme-1 plants 

could be explained by elevated methylation levels inside the t-DNA sequence. 

However, at the current stage other explanations are also possible.  

ROS1 gene expression in ros1-3/ros1-3 mutants crossed with wild-type pollen was 

completely abolished at 3 DAP and very low at 6 DAP (Fig. 19). This implied that 

either ROS1 was only expressed in maternal structures such as the integuments and 

not in the fertilization products, endosperm or embryo. Alternatively, ROS1 could be 

subject to imprinting in such a way that the paternal allele would be silenced  

 

Subsequently, PHE1 as an imprinted gene was tested. PHE1 expression was 

slighted elevated in ros1-3/ros1-3 and even increased in dme-1 and ros1-3 dme-1 

double mutants. It has been previously shown that maternal dme mutant gametes 

carried a partially hypermethylated genome that resulted in the lack of activation of 

MEA, FIS2 and FWA (Gehring et al. 2006). The transcription of the maternally 

inherited PHE1 allele is repressed by the FIS2-complex, and PHE1 becomes 

upregulated in mea mutants (Kohler et al., 2003b; Kohler et al., 2005). Consequently, 

upregulation of PHE1 in DME/dme-1 could be explained by a reduced expression of 

MEA in DME/dme-1. Furthermore, methylation marks on a region 2,5 kbp 

downstream of the PHE1 locus prevents the repression of PHE1 expression 

(Makarevich et al. 2008). A maternal ros1 mutant allele increased methylation 

amounts and upregulated maternal PHE1 expression. A combined effect is 

consistent with the additive levels of overexpression observed in ros1-3/ros1-3 

DME/dme-1 than in DME/dme-1 or ros1-3/ros1-3 seeds.  
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Figure 20: Expression analysis of PHE1 
cDNA of four biological replica of 3 and 6 DAP seed material were used in a qPCR. The 
diagram shows that the maternal PHE1 allele was not activated by DME but silenced by the 
FIS-class complex at both time points (3 DAP and 6 DAP). The x-axis indicates the genotype 
of the parents; the y-axis shows the expression in x-fold. Error bars indicate standard 
deviation. 
 

However, no upregulation could be detected at the earlier stage 3 DAP (Fig. 20). One 

possibility is that only the paternal and not the maternal allele becomes hyper-active 

in a DME/dme-1, ros1-3/ros1-3 or ros1-3/ros1-3 DME/dme-1 mutant background 

during early endosperm development. Thus, a detailed, i.e. allele-specific expression 

analysis is now required to investigate, which parental allele is upregulated.  

 

To test whether ROS1 as a demethylase is involved in the expression of FIS-class 

genes, qRT experiments were performed with the putative FIS2 components FIE, 

MSI1, MEA and FIS2 and FWA as a second positive control.  

 

 
Figure 21: Expression analysis of FIE and MSI1, two members of the FIS-class complex, 
which are known to suppress endosperm proliferation 
cDNA of four biological replica of 3 and 6 DAP seed material were used in qPCR. The 
diagram shows that FIE or MSI1 expression is not regulated by DME or MEA. The x-axis 
indicates the genotype of the parents; the y-axis shows the expression in x-fold. Error bars 
indicate standard deviation. 
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So far, MSI1 and FIE have not been identified to be imprinted or to be under tight 

transcriptional control of DME or the FIS2 complex itself. Consistently, no obvious 

effect of dme-1 and ros1-3 on their expression was observed (Fig. 21).  

 

 
Figure 22: Expression analysis of FWA and FIS2 
cDNA of four biological replica of 3 and 6 DAP seed material were used in qPCR. Early (3 
DAP) FWA and FIS2 expression was dependent on the activation by DME. The x-axis 
indicates the genotype of the parents; the y-axis shows the expression in x-fold. Error bars 
indicate standard deviation. 
 

FWA and FIS2 get activated by DME in the central cell (Kinoshita et al. 2004; Jullien 

et al. 2006b). Thus, FWA and FIS2 were used as a positive control. The data exhibit 

the expected downregulation of FIS2 and FWA in DME/dme-1 and ros1-3/ros1-3 

DME/dme-1 mutant material at both timepoints (Fig. 22). Furthermore, both genes 

display the above explained ros1 dependent downregulation in 6 DAP material (Fig. 

22).  
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Figure 23: Expression analysis of MEA 
cDNA of four biological replica of 3 and 6 DAP seed material were used in qRT-PCR. The 
diagram shows the late silencing of the paternal MEA allele by maternal expressed MEA. The 
x-axis indicates the genotype of the parents; the y-axis shows the expression in x-fold. Error 
bars indicate standard deviation. 
 

Next, MEA expression was analyzed. MEA belongs to the imprinted genes, where 

only the maternal allele is expressed (Kinoshita et al. 1999). Maternal MEA 

expression is regulated in a MET1 and DME dependent manner (Choi et al. 2002; 

Zilberman et al. 2003; Gehring et al. 2006; Jullien et al. 2008; Kinoshita et al. 2008). 

The paternal allele is enriched in H3K27 chromatin methylation, which is maintained 

by maternal MEA. Consequently, paternal MEA is released when the maternal MEA 

allele is silent (Gehring et al. 2006). This is consistent with the upregulation observed 

in ros1-3/ros1-3, DME/dme-1, ros1-3/ros1-3 DME/dme-1 and mea mutant seeds at 6 

DAP (Fig. 23).  

In contrast to PHE1, no additive MEA overexpression was measured in the ros1-

3/ros1-3 DME/dme-1 double compared to the single mutants at 6 DAP. Increased 

maternal methylation levels in ros1 mutants (Gong et al. 2002; Zhu et al. 2007; 

Penterman et al. 2007b) probably caused a decreased paternal and maternal MEA 

expression in ros1-3 dme-1 double compared to mea or dme-1 single mutant seeds. 

However MEA upregulation was much lower at 3 DAP, where MEA expression is 

reported to be DME dependent (Gehring et al. 2006). Thus, only the paternal and not 

the maternal allele becomes upregulated in DME/dme-1, ros1-3/ros1-3 or ros1-

3/ros1-3 DME/dme-1 mutant backgrounds, which resulted in lower upregulation at 3 

DAP compared to 6 DAP. To prove this, an allele-specific expression analysis is 

required to assess which parental allele gets overexpressed.  
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Figure 24:Expression analysis of MPC, AGL36, AGL28 and AGL90 
cDNA of four biological replica of 3 and 6 DAP seed material were in qRT-PCR. In all cases 
over expression is highest at 6 DAP. All genes tested showed an early (3 DAP) activation by 
DME and a late (6 DAP) suppression by MEA. The x-axis indicates the genotype of the 
parents; the y-axis shows the expression in x-fold. Error bars indicate standard deviation. 
 

Paul Grini from the University of Oslo used cdka;1 single pollinated seeds to identify 

genes which influenced seed development in a parent-of-origin specific manner 

(Shirzadi et al. submitted). By this approach the expression levels of imprinted genes 

were altered compared to wild-type seeds. A microarray transcriptional profile 

showed down regulation of mainly Type-I MADS-box transcription factors of the AGL 

family. Due to the fact that DME and ROS1 were found as probable candidate genes 

in a QTL analysis based on the same response of seed development upon cdka;1 

single fertilization, the three candidate genes AGL28, 36 and 90 were included in 

qRT studies, suggesting that these genes were probably influenced by demethylation 

through DME and/or ROS1. MPC, a member of imprinted genes, was chosen as a 

positive control (Tiwari et al. 2008). 

 

At 3 DAP the control MPC and all tested AGLs were downregulated in dme-1 mutant 

material, suggesting that DME was involved in the activation of the maternal alleles 

similar to FWA and FIS2 (Fig. 22, 24). Conversely, in 6 DAP samples MPC and all 

AGLs were surprisingly elevated in ros1-3 dme-1, dme-1, and in mea mutant seed 
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material (Fig. 24). Here, mea mutant seed material displayed the highest 

overexpression, indicating that the FIS-complex was a repressor of MPC and/or AGL 

expression (Fig. 23). 

 

In summary, the expression profiles for MEA, FIS2, FWA, FIE and MSI1 were in 

accordance with published observations in dme and mea mutant material (Kinoshita 

et al. 2004; Gehring et al. 2006; Jullien et al. 2006b). Furthermore, increased 

methylation levels in ros1 mutants (Gong et al. 2002; Zhu et al. 2007; Penterman et 

al. 2007b) probably caused lower expression levels in ros1-3/ros1-3 DME/dme-1 

compared to DME/dme-1 mutant 6 DAP material for almost every gene tested except 

FIE, MSI1 and PHE1. In the case of PHE1 higher methylation levels may have 

increased PHE1 expression, which is in line with a previous report of methylation 

dependent activation of PHE1 (Makarevich et al. 2008). Thus, the qRT-data suggest 

a regulative function for ROS1 on maternal gene expression around 6 DAP, while 

DME dependent maternal FIS-class gene activation is reported to happen prior to 

fertilization (Choi et al. 2002; Zilberman et al. 2003; Gehring et al. 2006; Jullien et al. 

2008; Kinoshita et al. 2008). Nevertheless, an allele-specific expression analysis is 

required to assess which parental alleles of the genes tested get overexpressed in a 

mutant background. This is important to unravel the complex regulation of 

suppression and expression of either maternal or paternal alleles by DME, ROS1 and 

also by the FIS-class genes in the context of imprinting.  
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3 DISCUSSION 
 

Seed growth requires an intricate interplay between the different tissues that 

compose a seed. However, little is known about the coordination and integration of 

these parts into a functional whole. Analysis of seed development appears to be 

particularly difficult due to the observed coordinated growth behavior; i.e., small 

seeds contain a reduced endosperm and large seeds a correspondingly larger 

endosperm (Berger et al. 2006). Here, I have followed a genetic dissection of double 

fertilization and seed development and exploited the existing natural variation found 

in Arabidopsis to study embryo–endosperm interactions during seed development.  

A genetic dissection became possible through the use of cdka;1 mutant pollen that 

lead to a successful fertilization of only the egg cell but triggered endosperm 

development without a contribution of a paternal genome. Indeed, among 14 different 

accessions tested, a large range of endosperm proliferation was found upon 

fertilization with cdka;1 mutant pollen.  

Since it was previously found that cdka;1 mutants can be rescued in combination with 

fis-class mutants, a simple hypothesis would be that natural variation in the imprinting 

machinery might be responsible for the observed difference in endosperm size upon 

cdka;1 pollination (Nowack et al. 2007). In fact, it has been observed that a mea 

mutant in an accession background that was identified to have a high EDV, i.e., Col, 

displayed greater numbers of autonomously formed endosperm nuclei than a mea 

mutant in an accession with a low EDV, i.e., Ws, while in Ler intermediate values 

were obtained for both traits. These data, however, do not substantiate that natural 

variation in the imprinting machinery might be responsible since the loci identified 

here do not map to any known FIS-class genes.  

 
 

3.1 Interdependency of embryo and endosperm development (Ungru et 

al. 2008) 
 

The QTL identified in this study did also not correlate to any other known loci 

affecting seed growth. Moreover, I could demonstrate that factors regulating seed 

growth account for only a minor effect on the development of autonomous 

endosperm, pinpointing a new class of seed regulators. At the same time, variation in 

EDV is largely driven by genetic factors (h2 = 0.93) but the two QTL identified here 
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together explain only 20% of the total variance. Presumably, many minor QTL were 

presumably not detected due to a lack of statistical power.  

Currently, it seems likely that the two QTL identified here might either influence a 

possible signal transduction cascade between the fertilization of the egg cell and the 

central cell or the endosperm formation upon sperm – central cell fusion without 

karyogamie (Nowack et al. 2006; Aw et al. 2010). In any case, the pending molecular 

identification of these loci offers a chance to obtain molecular insights into the 

signaling system that coordinates seed development.  

Data from this work and previous studies suggest that not only one but also multiple 

signals are at work and that information has to be exchanged repeatedly between the 

developing parts of a seed (Fig. 25). Initially, evidence for an immediate early signal 

from the zygote to the central cell comes from the observation of the autonomous 

endosperm proliferation observed upon fertilization of the egg cell via fertilization with 

cdka;1 mutant pollen (Nowack et al. 2006). However, more detailed analysis of the 

fertilization process with cdka;1 mutant pollen revealed that some pollen containing a 

single sperm cell undergo a second mitotic division during pollen tube growth. Then, 

the second sperm cell fuses with the central cell but fails karyogamie (Aw et al. 2010). 

Thus, the first signal, which sets off endosperm proliferation is likely to be caused by 

the cytoplasmic but not nuclear fusion of a sperm a the central cell .As presented in 

this study, there likely exists a second interaction phase during early endosperm 

development, since at least 3 DAP embryo growth was found to correlate with the 

amount of endosperm formed (Fig. 25). A similar correlation was also found for the 

maternal-effect capulet1 (cap1) mutant (Grini et al. 2002). Although the direction of a 

putative signaling pathway underlying this phenotype cannot be explicitly clarified, it 

seems likely that the degree of endosperm influences embryo size and not vice versa. 

Consistent with this directionality is that, in experiments in which the embryo was 

genetically ablated, no obvious effects on endosperm development were reported 

(Baroux et al. 2001a; Baroux et al. 2001b).  



Discussion 

 

51

 
Figure 25: Model of signal transduction pathways and cross-talk between embryo and 
endosperm (Ungru et al. 2008) 
Based on genetic evidence, four different signaling pathways between the embryo and the 
endosperm are postulated: (i) an immediate early signal originating from the fertilization of the 
egg cell and/or the cytoplasmic but not nuclear fusion of a sperm with the central cell 
stimulating endosperm fate adoption of the central cell (ii) an early signal from the endosperm 
that stimulates embryo development in a quantitative manner (iii) a mid-early action of the 
endosperm that is required for embryo development past a globular stage (iv) finally a late 
signal stemming from the embryo and responsible for seed survival. For further explanation 
see text.  
 

For further embryo development, the endosperm has to reach a critical size as 

already suggested by Cooper and Brink (1942). It is possible that an endosperm size 

checkpoint at or beyond 64 nuclei exists since in all accessions pollinated with cdka;1 

mutant pollen the embryo reached roughly the same size of 50 cells (Fig. 25). 

Evidence for such a checkpoint also comes from the maternal-effect mutant capulet2 

(cap2) in which the embryo developed to roughly the same stage as cdka;1 fertilized 

seeds (Grini et al. 2002). Interestingly, such checkpoint behavior was previously not 

found in plants in which the endosperm was genetically ablated, and Weijers et al. 

(2003) found that embryogenesis could continue with very little endosperm although 

these embryos would eventually arrest. The driver line used for these ablation 

experiments becomes expressed 2 DAP, and a possible explanation is that this 

expression is already later than a putative seed size checkpoint. One hypothesis 

derived from this is that the establishment phase of endosperm might be especially 

crucial for seed development. A large number of recently identified gametophytic and 
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seed-specific reporter and driver lines will enable a high-resolution dissection of the 

requirements of endosperm for embryo and seed development (Stangeland et al. 

2005; Tiwari et al. 2006; Steffen et al. 2007). The function of this putative endosperm 

checkpoint could be complex and could involve, for example, interaction with the 

mother plant. Cooper and Brink (1940) observed that in interspecies crosses the 

development of both embryo and endosperm were initiated but endosperm 

proliferation slowed down, followed by seed abortion. Interestingly, they found that 

the maternal layer, in particular the nucellar tissue, overproliferated preceding seed 

degeneration. On the one hand, this overproliferation could reflect a competition 

between the different seed tissues and an underdeveloped endosperm that might not 

be able to draw sufficient resource from the mother plant. On the other hand, this 

overproliferation could be an active execution mechanism of the mother to cut off 

developing seeds from nutrient supply. In any case, the successful establishment of 

endosperm as a sink tissue is likely to be a major step in seed development. In 

addition, there appears to be a late signal coming from the embryo that is crucial for 

seed survival (Fig. 25). Seeds in unpollinated fis mutants with a developing 

endosperm and no embryo will abort whereas fis mutants pollinated with cdka;1, 

which develop autonomous endosperm accompanied by an embryo, can complete 

embryogenesis and give rise to viable plants (Nowack et al. 2007).  

 

 

3.2 Autonomy of embryo and endosperm development (Ungru et al. 

2008) 
 

The observed natural variation also allowed addressing the developmental potential 

of endosperm and embryo. An unexpected finding was the relatively large degree of 

embryonic autonomy. Even without any divisions in the endosperm, embryo 

development was started and on a morphological basis was indistinguishable from 

wild-type embryo formation. Another possibility is the nutrient uptake via the mother 

plant through the suspensor. Experiments have shown that the suspensor transports 

molecules such as sucrose and polyamine to the embryo proper to support embryo 

development (Yeung 1980; Nagl 1990; Kawashima and Goldberg 2009). Thus, 

embryo establishment and early growth is dependent on paternal gene contribution 

and the nutrient uptake through the suspensor, and not on endosperm formation.  

However, a single-nucleated endosperm appears to be functional, and differentiation 

of the central cell into endosperm along with morphological changes of the single-
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fertilized seeds was independent of cell divisions. For example, I observed that even 

in seeds with a single endosperm nucleus differentiation of the endothelium layer was 

induced. Notably, the accumulation of proanthocyanidins started from the micropylar 

pole of the seed in the surrounding area of the developing embryo and not in the 

immediate vicinity of the single endosperm nucleus. Similarly, the accumulation of 

proanthocyanidins started at the micropylar side in unfertilized seeds of the fis-class 

mutants msi1, fis2, and mea (Ingouff et al. 2006) (R. Shirzadi and P. E. Grini, 

unpublished results). Thus, it is possible that proanthocyanidin production is 

characteristic for a rapidly polarizing central cell with a very distinct basal (micropylar) 

domain. However, no subcellular markers are currently available to follow this 

putative polarization.  

The differentiation of the single central cell nucleus became most evident in the 

expression of endosperm marker gene KS22. Thus, the developmental potential for 

endosperm appears to be already programmed into the central cell as a part of the 

female gametophyte and neither fertilization nor proliferation of this cell is required for 

the adoption of this fate. However, the fertilization of the egg cell and the generation 

of subsequent signals appear to be required for a cell fate change. This is consistent 

with the hypothesis of a gametophytic evolutionary origin of endosperm in flowering 

plants and with (Strasburger 1900) hypothesis that the fertilization of the central cell 

is used in higher plants to trigger proliferation.  

 

 

3.3 ROS1 and DME1 are redundantly involved in endosperm formation  
 

The here performed QTL analysis revealed a complex QTL between chromosomes 2 

and 5 and the two genes ROS1 (Chr. 2) and DME (Chr.5) lay in or close to the 

calculated mapping intervalls. DME is reported to be the major activator of the two 

FIS-class genes FIS2 and MEA in the central cell, which suggests that dme should 

show similar mutant phenotypic characteristics to fis class mutants (Ohad et al. 1996; 

Chaudhury et al. 1997; Grossniklaus et al. 1998; Kiyosue et al. 1999; David-

Cordonnier et al. 2001; Weinfeld et al. 2001; Choi et al. 2002; Gehring et al. 2006; 

Nowack et al. 2007; Jullien et al. 2008; Kinoshita et al. 2008). However, unfertilized 

dme ovules did not show autonomous endosperm formation. Interestingly, the 

phenotypic analysis of a ros1 mutant allele, a member of DEMETER LIKE (DML) 

genes, revealed such mutant fis class related phenotypes. Unfertilized ros1 mutant 

ovules displayed autonomous endosperm formation accompanied by integument 
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differentiation and a cdka;1 related seed rescue. The penetrance of the mutant 

phenotype such as autonomous endosperm formation and cdka;1 related seed 

rescue increased in a ros1 dme double mutant background. Furthermore, the 

percentages of ovules with an undivided central cell upon cdka;1 pollination gradually 

decreased from 11,5% in Col-0 wild-type plants to 0,25% in ros1-3/ros1-3 DME/dme-

1 plants indicating reduced suppression of endosperm proliferation. Thus, the 

phenotypic analysis of the mutants suggests a probable redundancy between ROS1 

and DME. This is consistent with a complex QTL build by ROS1 and DME1. An 

impact on endosperm formation and seed development has never been reported for 

ROS1 and neither in combination with DME. 

 

 

3.4 DME and ROS1 regulate gene expression during different time 
points of endosperm development 

 

The obtained qRT data supports previous observations that MEA, FIS2 and FWA 

expression is dependent on the activation of DME in the central cell. During 

endosperm development expression of these genes becomes increasingly DME 

independent (Kinoshita et al. 2004; Jullien et al. 2006b). In contrast to DME, the 

impact of ROS1 on gene expression increases during endosperm formation. Here, 6 

DAP MEA or FIS2 overexpression levels in ros1 dme double mutants were reduced 

compared to expression levels in dme single mutants.  

In general, ros1 mutant plants display a disturbed balance of RdDM and 

demethylation resulting in increased genomic methylation, which is likely to result in 

reduced levels of transcription (Gong et al. 2002; Zhu et al. 2007; Penterman et al. 

2007b). Conversely, the 6 DAP PHE1 expression level was highest in ros1 dme 

double mutant plants, which is consistent with a methylation dependent PHE1 

activation (Makarevich et al. 2008).  
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3.5 AGL36 reveals a novel regulation mechanism of imprinting in A. 

thaliana 
 

Together with recent work submitted by Shirzadi et al. we showed that AGL36 is 

imprinted throughout early seed development by silencing the paternal allele during 

male gametogenesis in a MET1-dependent manner. In the central cell AGL36 is 

subject to DME dependent activation and expressed during early endosperm 

development (Fig. 26).  

 

 
Figure 26: Possible regulation of AGL28, 36, 90 and MPC 
AGL36 is not paternally expressed and is thus, imprinted. Maternal AGL36 activation depends 
on DME and later repression on the FIS-class complex. Demethylation might take place in the 
promoter region (PRE). Furthermore, AGL36 was found to be down regulated when the 
paternal contribution to the endosperm was absent (Shirzadi et al. submitted). Therefore, the 
maternal AGL36 allele is directly or indirectly activated by the paternal genome (indicated by 
a blue round box with an X). AGL28, 36, 90 and MPC showed similar expression patterns in 
fis class, dme and ros1 mutants backgrounds, indicating a similar regulation mechanism as 
hypothesized for AGL36.  
 

During development in wild-type plants AGL36 expression was almost absent at the 

stage of endosperm cellularization while in mea and/or fis2 mutant seeds the 

expression was highly increased and persisted throughout seed development (Walia 

et al. 2009; Shirzadi et al. submitted). Furthermore, an allele specific RT-PCR in 

mea55/mea55 mutant seeds fertilized with wild-type pollen revealed that the paternal 

AGL36 allele remained silent, while the maternal allele was upregulated. Thus, 

although only the maternal AGL36 allele is expressed, its expression is negatively 
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regulated by the FIS-complex. This represents a new regulatory wiring during seed 

development that has never been described before.   

In two independent studies the genome-wide methylation profile of the seed were 

examined (Gehring et al. 2009; Hsieh et al. 2009). Here, seeds were dissected and 

cytosine methylation in wild-type embryos was compared to wild-type and dme 

endosperm. This revealed that endosperm development was accompanied by an 

extensive demethylation of the maternal genome, especially at specific transposon 

sequences. According to the Zilberman Lab Genome Browser 

(http://dzlab.pmb.berkeley.edu/browser/ 2010), such demethylation does indeed take 

place in the promoter and within the gene sequence for AGL36, 90, 28 and MPC, 

suggesting that these genes were maternally activated by DME. Furthermore, AGL28, 

36, 90 and MPC displayed highly similar expression patterns in mea, ros1, dme 

single and ros1 dme double mutant backgrounds.  

The similar expression pattern and epigenetic features imply regulatory mechanism 

for AGL28, 90 and MPC similar to that hypothesized for AGL36. Therefore, AGL90, 

28 and MPC are candidate genes to be imprinted in such a way that the paternal 

allele is silenced, already shown for MPC (Tiwari et al. 2008). Furthermore, AGL28, 

90 and MPC might play a regulatory function during seed development. Interestingly, 

previously reported DME dependent demethylation of a −500 bp region and a 183-bp 

in an intergenic region (ISR) adjacent to the MEA gene and a -220 bp DMR 

downstream of FIS2, also appeared in the Zilberman Lab Genome Browser (Gehring 

et al. 2006; Jullien et al. 2006b) (http://dzlab.pmb.berkeley.edu/browser/). Conversely, 

PHE1, MSI1 and FIE did not show any DMRs between wild-type and dme 

endosperm, supporting the assumption that these genes were not maternally 

activated by DME. 
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3.6 The mutant phenotype in ros1 and ros1-dme mutant plants is linked 
to hypermethylation 

 
In mammalian sexual reproduction, DNA methylation patterns are rearranged 

genome wide at two time points during gametogenesis and embryogenesis. In 

embryos, rearrangement is initiated by a massive wave of DNA demethylation 

immediately after fertilization, followed by rapid de novo DNA methylation (Reik 

2007). Conversely, in plants there is no evidence for such an extensive resetting of 

DNA methylation patterns during gameto- or embryogenesis. For instance, 

hypomethylation induced by a met1 or ddm1 mutation were stably inherited for no 

less than eight generations following outcrossing of the mutant alleles (Johannes et 

al. 2009; Reinders et al. 2009). In contradiction, Arabidopsis mutants defective in 

RdDM or active DNA demethylation still exhibited near-normal CG methylation within 

and across generations (Tran et al. 2005; Zhang et al. 2006; Penterman et al. 2007a; 

Cokus et al. 2008; Lister et al. 2008). Nevertheless, plants seem to be more prone to 

the inheritance of DNA methylation defects rather than re-establishing regular 

methylation levels anew at each generation like in mammals (Richards 2006; 

Whitelaw and Whitelaw 2008). 

 
Figure 27: Reversion of the ros1 dme mutant phenotype in the offspring from 
MET/met1 plants 
The first line shows the hypothesized methylation patterns in maternal and paternal wild-type 
gametes and ros1, dme single and double mutant gametes. In ros1 and dme mutant gametes 
demethylation does not take place resulting in DNA hypermethylation. The methylation 
transfer depends on MET1 activity (David-Cordonnier et al. 2001; Weinfeld et al. 2001; 
Gehring et al. 2006). Therefore, maternal gametes are likely to be less affected by the ros1 
and dme mutant allele than the paternal ones, because MET1 activity is down regulated 
during maternal gametogensis. All gametes in met1 heterozygous mutant plants were 
reported to be hypomethylated (Saze et al. 2003) and the second line of the model displays 
this situation. Thus, the mutant phenotype is dependent on the presence of a diploid maternal 
MET1 genotype before maternal gametogenesis. 
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On the one hand, in wild-type plants demethylation does take place due to a reduced 

MET1 activity and an active demethylation process by DME during maternal 

gametogenesis, which is an argument against the inheritance of hypermethylation. 

On the other hand, genomic sequences displayed almost 100% relative methylation 

levels in ros1-dme double mutants compared to ros1, dme single mutants, indicating 

an inheritance of hypermethylation either by the paternal and/or maternal site. 

Congruently, a met1 induced hypomethylation reversed the mutant phenotype in all 

zygosities and allelic combinations of ros1 and dme mutant alleles, suggesting that 

the mutant phenotype was dependent on hypermethylation (Fig.27). Thus, 

hypermethylation seems to be inheritable by the next generation, although reduced 

MET1 activity and a DME wild-type allele was present. In addition, a single met1 

mutant allele was enough to cause hypomethylation in all maternal gametes (Saze et 

al. 2003). The reason for the establishment might be haplo insufficiency throughout 

plant development and a lacking de novo DNA methylation during the vegetative 

phase and/or maternal gametogenesis. 
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3.7 The heredity of the mutant phenotype was likely to be established 
by a trans methylation transfer dependent on a hyper-methylated 
paternal allele (epiallele) 

 
In this work, the inheritance patterns of the mutant phenotype suggested a 

paramutation-like phenomenon.  

 
Figure 28: Likelihood of hypermethylation in maternal and paternal gametes from 
ROS1-/- DME+/- plants 
The model shows hypothesized methylation patterns in paternal and maternal ros1, dme 
single and double mutant gametes. ros1-dme mutant plants display a hypermethylated 
genome. Hypomethylation depends on MET1 activity (David-Cordonnier et al. 2001; Weinfeld 
et al. 2001; Gehring et al. 2006). In maternal gametes MET1 activity is down regulated. If a 
hypermethylated allele goes into the three mitotic divisions of maternal gametogenesis, it 
results into a loss of methylation sites in a semi-conservative manner (Morgan et al. 2005). 
Therefore, 12,5% of all egg cells (EC) and 25% of all central cells (CC) would contain a 
hypermethylated allele. Conversely, 100% of all sperm cells (SC) should be hypermethylated, 
because MET1 is fully active. This model might explain the stable amount of autonomous 
endosperm proliferation in 12% of all unfertilized gametes. Here, dme mutant ovules do not 
show the mutant phenotype. Therefore, 12,5% of all gametes were likely to have the 
predisposition for autonomous endosperm proliferation. Furthermore, these seeds might have 
been allowed to bypass imprinting and allow successful seed development upon cdka;1 
single fertilization.  
 

In general, paternal gametes go through two and maternal through three mitotic 

divisions after meiosis. After gametogenesis the paternal gametophyte comprises a 

three celled pollen containing the homodiploid vegetative and two haploid sperm cells, 

while the maternal gametophyte contains seven cells including the haploid egg cell 

and the homodiploid central cell (Fig. 28). In ros1-dme double mutants at least the 

two tested genes were found to be up to 100% hypermethylated compared to genes 

of single mutants or wild-type plants. In maternal gametes MET1 activity is down 

regulated (Johnston et al. 2008; Jullien et al. 2008). If such a hypermethylated allele 

undergoes the three mitotic divisions of maternal gametogenesis, it causes a loss of 
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methylation sites in a semi-conservative manner (Morgan et al. 2005). Thus, 12,5% 

of all egg cells (EC = 1n) and 25% of all central cells (CC = 2n) would contain a partly 

hypermethylated genome (Fig. 28). Conversely, 100% of all sperm cells (SC) should 

be hypermethylated, because MET1 is fully active (Fig.28).  

In addition, the viable offspring of single fertilized ros1-3/ros1-3 DME/dme-1 plants 

was DME wild-type. Therefore, 12,5% of the viable offspring contained a 

hypermethylated allele (25%/2 = 12,5%). Interestingly, the same percentage of 

unfertilized ovules, displaying autonomous endosperm, was found. These ovules 

contained presumably a DME wild-type allele and probably a hypermethylated 

genome, too (Fig. 28).  

Previous reports showed that fully methylated DNA sequences cause a reduction of 

DME activity by 10 fold (David-Cordonnier et al. 2001; Weinfeld et al. 2001). A 

reduced DME activity still decreases methylation levels, resulting in an intermediate 

status between strong and weak levels of hypermethylation in the central cell. Thus, 

it is possible that a DME wild-type allele together with reduced DME activity in the 

central cells was necessary to cause autonomous endosperm formation and to 

bypass imprinting upon cdka;1 pollination. However, it can currently not be excluded 

that autonomous endosperm production in dme mutant ovules is hindered due to a 

function of DME in other, unknown processes influencing seed development.  

 

 

3.8 Methylation transfer by siRNA  

 
The inheritance of the mutant phenotype in a segregating population showed that the 

paternal site was likely to be responsible for the methylation status of the upcoming 

progeny. This theory is based on the observation that the first filial generation with 

the genotype ROS1+/- DME+/- from the cross Col-0 x ROS1-/-DME+/- displayed in 

its siliques the same mutant phenotypic proportions as the paternal plant. Conversely, 

a ROS1 or DME wild-type allele on the paternal site resulted in an reduced 

phenotype in the ovules of the next filial generation, i.e. that ROS1+/-DME+/- F2 

plants displayed either a high mutant phenotype or a very reduced one by 50% 

chance. Thus, the methylation sites on the epiallele may be established de novo in 

each generation by a hypermethylated dominant allele coming from the paternal site. 

Furthermore, it was shown that the probability of a maternal transmitted 

hypermethylated chromosome via the egg cell was 12,5% (Fig 29). If the heritability 

of the hypermethylated allele has been dependent on transmission through the 
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female gametophyte, it would have been diluted throughout generations (F1: 12,5%, 

F2: 1,6% …). Thus, de novo methylation of the maternal genome during or after 

fertilization is a logical consequence to ensure a stable heredity throughout the 

mitotic sporophytic divisions until the development of new gametes (Fig. 29). 

 
Figure 29: Illustration of methylation transfer from the paternal to the maternal allele 
during or after fertilization 
The model shows the establishment of a hypermethylated progeny by a dominant paternal 
epiallele. The epigenetic information is likely to be transferred by siRNA during or after 
fertilization (see text). The maternal gametes of the next generation display the same 
epigenetic features as the maternal parent generation. Here, 12,5 % of all central cells might 
develop a mutant phenotype such as autonomous endosperm proliferation due to their 
epigenetic condition indicated by the yellow dots.  
 

In plants re-methylation occurs by an RNAi-dependent pathway (Johannes et al. 

2009; Teixeira et al. 2009). However, several generations are needed to restore the 

previous methylation status, which is consistent with a gradual transposable element 

inactivation in maize and transgene silencing in many other plant species throughout 

generations (Chandler and Stam 2004; Slotkin and Martienssen 2007). It seems that 

re-methylation is a prominent feature of the reproductive phase, which was also 

observed for met1 heterozygous plants, where all gametes displayed 

hypomethylation, demonstrating haploinsufficiency and a lack of de novo methylation 

during vegetative growth. Furthermore, transposable element silencing was reported 

to be established by an RNAi dependent pathway in gametes and embryos (Mosher 
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and Melnyk 2010). However, given the fact that methylation transfer is down 

regulated during maternal gametogenesis, it is likely that remethylation and 

resilencing takes place during paternal gametogenesis or pollen development 

accompanied by a methylation transfer accomplished by MET1. On the maternal site 

histone de novo methylation and silencing of maternal and paternal gene loci were 

reported as a prominent feature of the FIS-class complex. However, imprinting is 

limited to the central cell and therefore its DNA methylation status is not transmitted 

to the next generation.  

In this work it is shown, that the paternal genome has to ensure the reestablishment 

of the methylation status and the mutant phenotype anew in every generation. 

Nevertheless, I cannot exclude that the central cell also generated siRNAs due to an 

active and widespread demethylation by a down regulated MET1 and an active DME 

(Gehring et al. 2009; Hsieh et al. 2009; Mosher et al. 2009). A precondition that the 

central cell or the endosperm could influence the inheritable change of methylation 

pattern in the progeny would be a transfer of epigenetic information from the 

endosperm into the zygote. In fact, this has been proposed as a possible explanation 

for why de novo DNA methylation of introduced FWA transgenes required fertilization 

(Chan et al. 2006b). This requirement for fertilization is also supported by 

transcriptome data indicating that many components of RdDM are highly expressed 

in developing seeds. Nonetheless, this pathway of methylation reinforcement 

remains highly speculative. 

However, there exist more information about the paternal contribution to de novo 

methylation. Here, the vegetative nucleus of the pollen was shown to display low 

levels of DDM1 protein resulting in activation of a transposable element and a high 

accumulation of siRNAs similar to that observed in ddm1, which were then probably 

transported by an unknown pathway to the two sperm cells (Fig. 30 a) (Slotkin et al. 

2009). Apparently, they induced either RdDM or post-transcriptional silencing (Barthe 

et al. 1976; Schoft et al. 2009; Slotkin et al. 2009). In addition, sperm cells show a 

long S phase, the phase of the cell cycle where epigenetic marks were reported to be 

established via siRNAs (Friedman 1999; Kloc et al. 2008). Similar to other transcripts 

produced in pollen, siRNAs could remain stable until fertilization occurred, and 

change the transcriptional and methylation status of the zygote and the endosperm 

(Fig. 30 c) (Bayer et al. 2009). In addition, the theory that siRNA were responsible for 

the establishment of 100% relative methylation in PHE1 and AGL36 is supported by 

previous reports demonstrating that ROS1 removes RNAi directed de novo DNA 

methylation (RdDM) marks from promotors of RD29A:LUC and RD29A as well as of 

other loci (Gong et al. 2002; Zhu et al. 2007; Penterman et al. 2007b). There is 
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evidence of a connection between local DNA hypermethylation and 

overaccumulation of matching siRNAs in ros1 mutants (Lister et al. 2008). 

Furthermore, many secondary suppressors such as rdm3 and/or rdm4 (RNA-directed 

DNA methylation 3 and/or 4) of ros1 generated silencing and hypermethylation were 

part of the RdDM pathway (Zheng et al. 2007; Penterman et al. 2007b; He et al. 

2009a; He et al. 2009b). In this context, a hypermethylated vegetative pollen nucleus 

might have caused siRNA overaccumulation by which epigenetic information was 

transferred from the paternal to the maternal genome (Fig. 30 c) (Hsieh et al. 2009). 

 

 

3.9 ROS1 and DME affect paternal – maternal communication during 
fertilization 

 

Beside the influence of a hypermethylated paternal genome on the epigenetic status 

of the next generation, hypermethylation also influenced pollen development and/or 

the paternal fertilization process. Here, the paternal dme-1 transmission rate was 

reduced from the expected 50% to 25,9% in a self-pollinated dme-1 mutant. It even 

decreased in self-pollinated ros1-3/ros1-3 DME/dme-1 double mutant plants to 

18,3%. It is important to mention that a hypermethylated paternal genome did not 

disturb seed development after fertilization because no early seed or additional late 

abortion phenotype was observed in seeds originating from wild-type plants fertilized 

with pollen from ros1-3 dme-1 double mutant plants. Furthermore, germination was 

not disturbed either. Thus, it was more likely that the ros1-3-dme-1 induced paternal 

hypermethylation solely affected pollen development or viability through gene 

silencing. 

Interestingly, the dme-1 transmission rate decreased in the cross of a 

hypermethylated paternal (ros1-3/ros1-3 DME/dme-1) with a wild-type (Col-0) 

methylated maternal plant. This raised the interesting question of whether or not the 

maternal part influenced the success of paternal fertilization. During the fertilization 

process the pollen lands on the stigma, rehydrates, and starts germination. The 

pollen tube grows through female tissue until it reaches the ovule, penetrates one of 

the synergids, and releases the sperm. Thus, pollen tube growth and/or guidance to 

the egg cell are highly complicated communication processes between the maternal 

sporophyte and the paternal derived pollen (Higashiyama et al. 2003; Ma 2003; 

Crawford and Yanofsky 2008). One speculation is that the accumulation of siRNAs in 

the pollen might not only have affected the epigenetic status of the sperm cells, 
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central cell and egg cell, but also the communication between the maternal tissues 

and the pollen during pollen reception, growth and sperm cell release (Fig. 30 a-c). 

Intercellular siRNA transport does occur even over large distances within the plant 

and influence spatial separated development processes (Dunoyer et al. 2010a; 

Dunoyer et al. 2010b). One advantage of recognizing an incoming hypermethylated 

paternal genome via siRNA concentrations would be to protect the upcoming 

generation against abnormal methylation patterns. Interestingly, the transmission of 

the hypermethylated genome was dependent also on the methylation status of the 

maternal genome. The dme transmission rate was higher in self-pollinated mutant 

plants than in paternal mutant plants crossed with Col-0. Here, not only the paternal 

siRNA composition but also the maternal siRNA recognition or maternal expression 

of certain genes important for the interplay between pollen tube growth, guidance or 

perception might have been disturbed (Fig. 30 b). 

 
Figure 30: siRNA response during the fertilization process in ros1 dme mutant plants 
(A) Epigenetic information is probably transferred via siRNAs from the vegetative cell (VC) to 
the two sperm cells (SC) during pollen development or immediately after germination. (B) 
siRNAs might influence general pollen development and/or a proper communication during 
pollen reception, tube growth and or guidance. (C) siRNAs could have been accumulated in 
the two sperm cells and changed the epigenetic status of the maternal epiallele in the egg cell 
(EC) and/or central cell (CC) leading to hypermethylation of the endospermatic and/or 
embryonic genome.  
 
Beside the fact that a maternal inherited dme-1 allele caused seed abortion, the 

paternal dme-1 transmission was disturbed, too. This illustrates the pivotal regulatory 
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functions of DME and ROS1 during maternal and paternal sexual reproduction. 

Furthermore, paternal dme-1 transmission was influenced by the methylation status 

of the paternal and the maternal genome. The parental epigenetic identity might have 

influenced general pollen development and/or a proper communication during pollen 

reception, tube growth and/or guidance (Fig. 30 a-c). Maybe this recognition pathway 

was triggered via abnormal siRNA concentrations inside the pollen through post 

transcriptional silencing and de novo methylation of paternal (gametophytic) and 

maternal (sporophytic) genes  
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4 MATERIALS & METHODS 
 
 

4.1 Materials 
 
 

4.1.1 Chemicals and antibiotics 
 

All used chemicals and antibiotics of analytical quality have been used from Merck 

(Darmstadt, Germany), Roth (Karlsruhe, Germany), Duchefa (Haarlem, Netherlands) 

and Sigma (Deisenhofen, Germany). 

 
 

4.1.2 Enzymes, primers and kits 
 

Modifying enzymes were used from Invitrogen (Karlsruhe, Germany), Roche 

(Mannheim, Germany), MBIfermentas (St.Leon-Rot, Germany) TaKaRa (Otsu, 

Japan). Primers were generated by Invitrogen (Karlsruhe, Germany. Kits were 

supplied from Sigma (Deisenhofen, Germany), Roche (Mannheim, Germany) and 

QIAGEN (Hilden, Germany). 

 
 

4.1.3 Plant material 
 

Plants were germinated on soil or 1/2 MS medium and grown under standard 

greenhouse conditions or in a growth room. Arabidopsis plants used in this study 

were of the following accessions: Antwerp-1 (An-1; ABRC22626), Bayreuth-0 (Bay-0; 

ABRC22633), Burren-0 (Bur-0; ABRC22656), C24 (ABRC22620), Cape Verde 

Islands-0 (Cvi-0; ABRC22614), Columbia-0 (Col-0; ABRC22625), Estland-1 (Est-1; 

ABRC22629), Kashmir-1 (Kas-1; ABRC22638), Landsberg erecta-1 (Ler-1; 

ABRC22618), Martuba-0 (Mt-0; ABRC22642), Niederzenz-1 (Nd-1; ABRC22619), 

Nossen-0 (No-0; CS1394), Shahdara (Sha; ABRC22652), Wassilewskija-0 (WS-0; 

ABRC22623). Furthermore, a core set of 165 recombinant inbred lines (RIL) derived 

from a cross between Bay-0 and Sha was used (Loudet et al. 2002). Throughout this 
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work a previously characterized cdka;1-1 allele in the Col-0 genetic background 

(SALK_106809.34.90.X) was used (Nowack et al. 2006). ros1-4 was obtained from 

SALK (SALK_045303.23.25.x) and dme-1 from GabiKat (GK-252E03-014577). (Choi 

et al. 2002) dme-4 was isolated from a gamma ray screen (Guitton et al. 2004) and 

ros1–3 was received from Ws-0 heterozygotes (Arabidopsis Knockout facility, 

University of Wisconsin, Madison, WI) and introgressed into the Col-0 background six 

times (Penterman et al. 2007a). met1 was received from SALK (SALK_07652) and 

mea55 (SAIL_55_C04) and mea72 (SAIL_724_E07) from SAIL. The endosperm 

marker line KS22 was contributed by F. Berger and is in the C24 genetic background 

(Ingouff et al. 2005). The pFIS2:GUS reporter line was kindly provided by A. 

Chaudhury and is in the C24 genetic background (Luo et al. 2000).  

 
 

4.2 Methods 
 

 

4.2.1 Microscopy 
 

Light microscopy was performed with an Axiophot microscope (Zeiss, Heidelberg, 

Germany) equipped with differential interference contrast (DIC) (Nomarski) optic and 

AxioVs40 V 4.5.0.0 software. Confocal-laser-scanning microscopy was carried out 

with LSM 510 META (Zeiss, Heidelberg, Germany) or Leica TCS SP2 AOBS (Leica, 

Wetzlar, Germany). 

 

4.2.2 Histology 
 

Light microscopy pictures were taken of pistils and siliques of different developmental 

stages. Dissected siliques were fixed on ice with FAA (10:7:2:1 ethanol:distilled 

water:acetic acid:formaldehyde [37 %]) for 30 minutes, hydrated in a graded ethanol 

series to 50 mM NaP(OH)4 buffer, pH 7.2, and mounted on microscope slides in a 

clearing solution of 8:2:1 chloral hydrate:distilled water:glycerol. The samples were 

cleared 1 hour at 4 °C before examination. For vanillin staining, siliques were 

emasculated, hand pollinated, and harvested between 3 and 6 days after pollination 

(DAP). The silique walls were removed and dissected seeds were incubated in 6 N 

HCl solution containing 1% (w/v) vanillin (Sigma-Aldrich) at room temperature for 1 hr. 
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Siliques were mounted on slides in a drop of vanillin containing acidic solution and 

directly inspected using an Axioplan 2 Carl Zeiss Microscope. GUS-activity was 

assayed according to Sessions and Yanofsky (Sessions and Yanofsky, 1999). To 

allow complete penetration of the X-Gluc-solution plants or parts of plants were 

vacuum infiltrated in staining buffer (0.2 % Triton X-100, 50 mM NaPO4 pH 7.2, 2 mM 

potassium-ferrocyanide K4Fe(CN)6*H2O, 2 mM potassium-ferricyanide K3Fe(CN)6 

containing 2 mM X-Gluc) for 15 to 30 minutes and afterwards incubated at 37 °C over 

night. Clearing was performed in 70 % ethanol at 37 °C over night. GFP fluorescence 

in seeds was analyzed by confocal laser scanning microscope as described in 

Nowack et al. (2007). 

 

 

4.2.3 QTL mapping 
 

For QTL mapping, three to five independent plants per RIL, each with 15–20 siliques, 

were emasculated and pollinated 3 days later with heterozygous cdka;1 mutant 

plants, giving rise, on average, to 100–200 analyzable single-fertilized seeds per RIL. 

The endosperm division value (EDV; for definition, see text) was determined at 3 

DAP. QTL mapping was performed on the mean EDV of each RIL. QTL analysis was 

done using the software MapQTL 5.0 (van Ooijen 2004). A permutation test using 

1000 permutations of the original data resulted in a genomewide 95% LOD threshold 

of 2.4. The automatic cofactor selection procedure was applied per chromosome to 

select markers to be used as cofactors for the composite interval mapping procedure 

(CIM). Markers most closely linked to QTL that appeared only after each round of 

CIM mapping were also selected as cofactors. The results of CIM mapping provided 

the variance explained by each and by all detected QTL as well as their additive 

allelic effect. The heritability was calculated by dividing the genetic variance by the 

sum of the genetic and the environmental variance. 
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4.2.4 Plant growth conditions 
 

Arabidopsis thaliana seeds were germinated on soil or half-strong MS-2 medium 

containing 0,5 % sucrose and 0,8 % agarose. The seeds, which germinated and/or 

were selected on agar plates, were sterilized inside a small vacuum container. 20 ml 

of bleach (DanKlorix by Colgate-Palmolive, Hamburg) were poured in a 50 ml glass 

beaker together with 2 ml of concentrated HCl. The lid of the vacuum container was 

closed immediately. The evaporating chlorine sterilized the surface of the seeds 

within approximately 4 to 12 hours. Sulfadiazin, kanamycin or a hygromycin 

resistance were selected on MS-2 agar plates containing 5,25 µg/ml sulfadiazine, 50 

µg/ml kanamycin or 25 µg/ml hygromycin, respectively. BASTA resistance plants 

were selected on soil for 10 to 15 days. The seedlings were sprayed with a 0.001 % 

BASTA solution, the spraying was repeated after 3 to 7 days.Plants were grown 

between 18 and 25 ºC under standard greenhouse conditions or in culture rooms 

under long-day conditions with a 16/8 h light/dark cycle at 18 ºC or 20 °C, 

respectively.  

 

 

4.2.5 Crossing of plants 
 

At a stage when the flowers were closed and the pollen of the anthers was not ripe 

the anthers of the acceptor flower were removed completely using very fine forceps. 

All remaining older and younger flowers were also removed. After two days the 

stigma of the carpels were pollinated with pollen from the donor plant.  

 

 

4.2.6 Genomic DNA preparation from plant tissue 
 

High-quality genomic DNA was extracted using CTAB-preparation (Rogers and 

Bendich 1988). Plant material was grinded using liquid Nitrogen. Then, 200 µl of 

extraction buffer (2 %(w/v) CTAB, 1,4 M NaCl, 20 mM EDTA, 100 mM Tris/HCl pH 

8.0, 0.2 % β-mercaptoethanol) was added and the solution was incubated for 30 min. 

at 65 °C. After addition of 150 µl Chloroform/Isoamylalcohol (24:1) and careful 

shaking, the samples were centrifuged for 15 minutes at 4000 rpm. The aqueous 

phase was transferred into a new tube and mixed with 200 µl isopropanol and 
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centrifuged for 15 min. at 4000 rpm. The pellet was washed with 70 % Ethanol and 

dried; afterwards the pellet was re-suspended in 20 µl 20 mM Tris/HCl pH 8.0.  

For high trough put PCR based genotyping, genomic plant DNA was isolated using a 

dirty preparation method after (Berendzen et al. 2005). One or two young leafs were 

put into a 2 ml well of a 96 deep-well titer plate (Part Number: 267001, Beckman or 

similar product from VWR). 500 µl of DNA extraction buffer (5 ml 1 M Tris/HCl pH 7.2 

+ 6 ml 5 M NaCl + 10 g sucrose and adjusted to the final volume of 100 ml with 

water) together with a small metal bead were added. The titer plate was closed with 

collection microtube caps from Qiagen (Mat. No.1051163). The plant tissue was 

ground by shaking for 2 to 3 min at a high frequency in the Mixer Mill MM 301 by 

Retsch (Haan, Germany) and then centrifuge for 10 sec. to spin down liquid from the 

microtube caps to avoid cross contamination. 1,5 µl of this solution was used as 

template for PCR using standard Taq-Polymerase and 10 times PCR buffer  

(Tris/HCl pH 8.7: 200 mM / KCl: 500 mM / MgCl2: 20 mM). The DNA preparation  

could be stored at –20 °C for further use. 

 
 

4.2.7 Identification of mutant alleles by PCR 
 
Allele-specific PCRs were carried out to determine a wild-type or mutant allele by 

using the primer combination, which are listed in table 5. The primer combination to 

amplify a wt allele is the forward and the wt reverse primer and to detect the mutant 

allele the same forward primer and the mutant reverse primer, respectively.  

 
Table 5: Primer used to amplify a wild-type or mutant allele 

primer name  primer sequence (5’-3’) Gene 

cdka;1_forw GCGTGGACCGCTTGCTGCAACTCTCTCAGG cdka;1  

cdka;1_rev CAGAAAGGAGATCGACTCCATCGGGATC  

ROS1-3_forw TGGAAGGGATCCGTCGTGGATTCT 

ros1-3_mut_rev CATTTTATAATAACGCTGCGGACATCTAC 

ROS1-3_wt_rev CCCGCGACTCTTGATTGTTTCAGCAACTT 

ros1-3, ROS1  

ROS1-4_forw TCGTCTTTCGATCAAATCCAC 

ros1-4_mut_rev ATTTTGCCGATTTCGGAAC 

ROS1-4_wt_rev CCAGTTAAGGACAGAACACCG 

ros1-4, ROS1 

DME-1_forw CACAAGATGTGGAGAGACATAACAGCAG 

dme-1_mut_rev. CCCATTTGGACGTGAATGTAGACAC 

DME-1_wt_rev CGAAGGAATTTCATTTAAGTTCAGAATGC 

dme-1, DME 
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DME-4_forw CAAACTCGATCAACGAACACTGTATGC 

DME-4_rev AGCATAAGCACTGGCAAAGTGTCTGC 

dme-4, DME; 
EcoRI. digest 
(wt: 79, 93, 184 
bp; mut.: 79, 
248 bp.) 

MET1_forw CAGAACAGGTTTCCACCAAGG 

met1_mut_rev TAGCATCTGAATTTCATAACCAATCTCGATACAC 

MET1_wt_rev TCAATGAGCAGTGGAAGCAAG 

met-1, MET 

MEA55_forw GAATGGTGAGGCACTAGAATTGAGC 

mea55_mut_rev TAGCATCTGAATTTCATAACCAATCTCGATACAC 

MEA55_wt_rev CCTTCTCTACAGGCGTCCACATAG 

Mea55, MEA 

 

4.2.8 Quantification of methylation marks 
 

To quantify methylation marks digestion with the McrBC enzyme (New England 

Biolabs), which cuts methylated DNA, was followed by quantitative PCR (McrBC-

qPCR) with specific primer pairs. Digestion was carried out using 1 µg of genomic 

DNA in a total volume of 100 µl. Quantitative PCR was performed on equal amounts 

(5 ng) of digested and undigested DNA samples for at least three technical replicates, 

using a Roche LightCycler 480 machine and Roche SYBR green I MasterMix Plus. 

As control loci unmethylated or chloroplast-sequences and highly methylated 

heterochromatic loci were used. Primers are listed in table 6.  

 
Table 6: Primer used for quantification of methylation marks 
Name Atg-number primer sequence (5’-3’) amplicon 

demethy3-forw. GCTTCATGAGCTCCATGCTTAAA 
demethy3-forw-
rev. 

At2g39010 
TGCATCAAATAACACATACATTGC 

154 bp 

chloro3-forw. CAGCGATGTAATGAAAGTGAAGGTC 

chloro3-rev. 
C-
20372...21495 GCCGTGGATACACTTCTTGATAATG 

194 bp 

methy5-forw. AAGGGATTACTATCTCGCAAAGCAC 

methy5-rev. 
At5g43800 

AATCAGGTCTGGTTGCAGTCAAATA 
197 bp 

AGL34-forw. TCGTGTTCTTGTGGCCGATACG 

AGL34-rev. 
At5g26580 

GCAGTTACCGCAGTTGCATTCG 
60 bp 

AGL36-forw. CATTCCTTTCGTGGACGGAAACTG 

AGL36-rev. 
At5g26650 

ACGGCTGGTAGTTGATTGGATGG 
66 bp 

PHE1-forw. TCATCCGTAGCCCGTACAACTC 

PHE1-rev. 
At1g65330 

CTTCAACGCCTTCCCTTGATGG 
60 bp 
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4.2.9 Quantitative PCR 
 
Total RNA was isolated from siliques using the spectrum plant total RNA kit (Sigma) 

and treated with DNAse (TaKaRa) according to the manufacturer’s protocol. The 

RNA concentration was measured using a Nanodrop ND-1000 instrument. cDNA 

was synthesized using 3.5 µg of total RNA in a Reverse Transcription (RT) reaction 

using Superscript III (Invitrogen). A RNase H treatment at 37 °C for 20 minutes was 

performed to eliminate remaining RNA. The complete solution was used with a 

QIAquick PCR Purification Kit (Qiagen) to purify and concentrate the cDNA. Then, 

concentration was determined by applying a Nanodrop ND-1000 instrument. Finally, 

the cDNA was used in quantitative Real-time PCR (qPCR). QPCR was performed on 

a Light-cycler LC480 instrument (Roche) according to the manufacturer’s protocol. 

To ensure that the primer combinations did not produce any undesired PCR 

fragments or primer dimers, a SYBER-GREEN qPCR with melting point analysis was 

done using the LightCycler 480 SYBR Green I Master Kit (Roche). Probe based 

qPCR was performed using the analyzed primers and Universal Probe Library (UPL) 

hydrolysis probes (Roche), which are listed in table 7 All samples and reference 

controls were measured in four independent biological replicas. The qPCR efficiency 

was determined in all replicas independently by a dilution series of 100, 50, 20 and 5 

ng cDNA per reaction for each experiment. The relative expression ratios was 

calculated according to a model described by Pfaffl (Pfaffl 2001). 

 
Table 7: Primer and Probes for quantitative real-time PCR  
 
primer name (ATG-number of 
gene measured_gene_UPL 
probe_border; R = right border, L 
= left border) 
 

primer sequence (5’-3’) 

At3g12110_ACT11-77-R TGTCTTCACCATCTGCCATT 

At3g12110_ACT11-77-L CAAAAACTACACACCCGTACCA 

At5g04560_DME_163_R GTGCCGAATTCGCTGTTT 

At5g04560_DME_163_L TCGTCTCCTTGATGGTATGGA 

At2g36490_ROS1_127_R CCGCACACACTCCACACT 

At2g36490_ROS1_127_L TGTTCCACCAGATAAAGCAAAA 

At5g26650_AGL36-160_R GATCCATCATCTTCTTGGTTCG 

At5g26650_AGL36-160_L AGGTGGCTTCAAGGTTTCTG 

At3g19350_MPC_31_R TCCTGTGATTTTTGGTGCAA 

At3g19350_MPC_31_L CCCAAAGAACAACGAGATTTG 
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At1g01530_AGL28_22_R TGAGCTAAGTTGAGTTCTGTTGGA 

At1g01530_AGL28_22_L GAGAGAACAAGGACGCTGAGA 

At5g27960_AGL90_116_R TGTTGTAGAATTCTCGTTGAATCTG 

At5g27960_AGL90_116_L ATGTTCTTGCGGGCGATA 

At1g01530_AGL28_22_R TGAGCTAAGTTGAGTTCTGTTGGA 

At1g01530_AGL28_22_L GAGAGAACAAGGACGCTGAGA 

At1g02580_MEA_56_R TGTTGCAATCCTTTGAGCAC 

At1g02580_MEA_56_L AAGCACTACACACCATGCACTT 

At4g25530_FWA_138_R GCCAATCAAAGGCTGGTAGA 

At4g25530_FWA_138_L CGACCTGTCCAATGGGTACT 

At2g35670_FIS2_111_R GGGTAGACTTAAAGGTTACGACACA 

At2g35670_FIS2_111_L TGGAAGTTGATGAATAACAGTGG 

At3g20740_FIE_163_R TCCAAAACTCTTTCATTGACCA 

At3g20740_FIE_163_L TCGCTATGAAGTTCTAAGTGTGGA 

At5g58230_MSI1_120_R AGCGAGCTCGATTAACCTCA 

At5g58230_MSI1_120_L TGGCTGTGCAACTGGAAA 

Oligo_dt(18) TTTTTTTTTTTTTTTTTT 
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