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Abstract 
The floral transition is the process by which flowering plants switch from vegetative growth to the 

production of flowers. Consistent with the importance of this developmental transition, flowering is 

highly regulated through several genetic pathways, some of which respond to environmental cues. 

Arabidopsis thaliana flowers earlier under long-days (LD) of spring than under short-days (SD) of 

winter, and day-length, or photoperiod, is one of the most important environmental stimuli 

influencing the flowering response. Photoperiod is perceived in the leaves, while the floral 

transition occurs at the shoot apical meristem (SAM). In LD, a genetic cascade is activated in the 

leaf vasculature, so that a key transcriptional regulator called CONSTANS activates the genes 

FLOWERING LOCUS T (FT) and its homolog TWIN SISTER OF FT (TSF). FT protein is then 

transported through the phloem, eventually reaching the SAM, where it triggers the floral transition. 

By forming a complex with FD, a bZIP transcription factor, FT activates target genes, such as 

SUPPRESSOR OF OVEREXPRESSION OF CO (SOC1), FRUITFULL (FUL) and later APETALA1 

(AP1), all of which encode MADS-box transcription factors. However, the floral transition involves 

a dramatic transcriptional reprogramming of the shoot meristem, and a complete picture of the 

global changes in gene expression occurring specifically in the SAM is still missing. Therefore, in 

the first part of this work, SAMs were specifically collected by the use of laser microdissection 

from plants experiencing a shift from SD to LD. RNA isolated from the meristems was converted to 

cDNA and gene expression quantified through next-generation sequencing by RNA-seq. Genes 

were grouped according to those increased or reduced in expression, with a particular focus on 

novel genes that were up-regulated similarly to SOC1 or FUL. Among them, the expression of a 

selected set of genes was tested by in situ hybridisation on wild-type apices to confirm their 

activation at the SAM, and to uncover their spatial pattern of mRNA expression. Several novel 

genes were confirmed to be induced by transferring plants to LD and they showed specific spatial 

patterns of expression in various regions of the SAM. Moreover, apices of ft tsf double mutants 

were also hybridised, to reveal whether those genes are induced by the photoperiodic cascade 

downstream of FT/TSF. Surprisingly, while many genes were induced only in the presence of 

FT/TSF, similarly to SOC1, some of them still respond to photoperiod in the ft tsf double mutants, 

suggesting that additional unknown signals may play a role in response to inductive day-length 

independently of FT and TSF. Further preliminary studies on a set of these novel genes are 

described in this study.                         

In the second part, genetic approaches were employed to address the function of SHORT 

VEGETATIVE PHASE (SVP), which encodes a floral repressor of the MADS-box family, 
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demonstrating new interactions with floral promoter genes and distinct roles of the SVP gene in the 

leaves and in the meristem. 
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Zusammenfassung 
Der Vorgang bei welchem Angiospermen von vegetativem Wachstum zur Bildung von Blüten 

übergehen wird als Übergang zur Blüte („floral transition“) bezeichnet. Dieser 

entwicklungsbiologische Vorgang ist von großer Bedeutung und wird streng durch ein genetisches 

Netzwerk reguliert, wobei einige Komponenten des Netzwerkes auf Umweltfaktoren reagieren. 

Arabidopsis thaliana blüht früher unter Langtagbedingungen (LD) des Frühlings als unter den 

Kurztagbedingungen (SD) des Winters. Die Tageslänge oder Photoperiode ist einer der wichtigsten 

Umweltfaktoren welcher die Blühantwort beeinflusst. Die Photoperiode wird über die Blätter 

wahrgenommen während der Übergang zur Blüte im apikalen Sprossmeristem (SAM) stattfindet. 

Unter Langtagbedingungen wird eine genetische Kaskade im Leitgewebe des Blattes angestoßen, 

woraufhin ein Schlüsseltranskriptionsregulator mit dem Namen CONSTANS das Gen mit dem 

Namen FLOWERING LOCUS T (FT) und sein Homolog TWIN SISTER OF FT (TSF) aktiviert. Das 

FT Protein wird daraufhin durch das Phloem transportiert und erreicht schlussendlich das SAM wo 

es den Übergang zur Blüte auslöst. Durch Bildung eines Komplexes mit FD, einem bZIP 

Transkriptionsfaktor, aktiviert FT Zielgene wie SUPPRESSOR OF OVEREXPRESSION OF CO 

(SOC1), FRUITFULL (FUL) und später APETALA1 (AP1), welche für MADS-Box 

Transkriptionsfaktoren codieren. Der Übergang zur Blüte erfordert jedoch im SAM eine 

dramatische Neuprogrammierung der Transkriptionsvorgänge. Ein vollständiges Bild der 

Genexpression welche spezifisch im SAM stattfindet fehlt bislang. Daher wurden im ersten Teil 

dieser Arbeit apikale Sprossmeristeme durch Lasersezierung aus Pflanzen ausgeschnitten, welche 

von SD nach LD überführt worden waren. RNA, welche aus den Meristemen isoliert worden war, 

wurde in cDNA umgeschrieben und die Genexpression durch Next-Generation Sequencing durch 

RNA-seq quantifiziert. Die Gene wurden nach gesteigerter oder verringerter Expression sortiert, 

wobei ein besonderes Augenmerk auf neue Gene gelegt wurde deren Expression ähnlich der von 

SOC1 und FUL gesteigert wurde. Ein Teil dieser Gene wurde über in situ Hybridisierung in 

Wildtyp-Apizes getestet um ihre Aktivierung im SAM zu bestätigen und ihr räumliches 

Expressionsmuster aufzuklären. Für mehrere neue Gene konnte die Induktion durch Transfer der 

Pflanzen in LD bestätigt werden; auch zeigten sie spezifische räumliche Expressionsmuster in 

zahlreichen Regionen des apikalen Sprossmeristems. Es wurden auch Apizes von ft tsf 

Doppelmutanten hybridisiert um aufzudecken ob die neuen Gene an der von der Photoperiode 

abhängige Kaskade folgend auf FT/TSF beteiligt sind. Während viele Gene ähnlich wie SOC1 nur 

in Anwesenheit von FT/TSF induziert wurden, fanden sich erstaunlicherweise auch Gene welche 

auch in ft tsf Doppelmutanten noch auf die Photoperiode reagierten. Dies legt nahe, dass zusätzliche 
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unbekannte Signale eine Rolle in der Antwort auf eine induzierende Tageslänge unabhängig von FT 

und TSF spielen. In der vorliegenden Arbeit werden auch weitere Untersuchungen neuer Gene 

beschrieben. 

Im zweiten Teil der vorliegenden Arbeit wurden genetische Ansätze verwendet um die Funktion 

von SHORT VEGETATIVE PHASE (SVP), einem Blührepressor aus der MADS-Box Familie, zu 

untersuchen. Hierbei wurden neue Interaktionen mit die Blüte fördernden Genen und spezifische 

Rollen des SVP Gens in Blättern und Meristem aufgedeckt. 
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Introduction

1. Introduction

1.1 Plant development and the floral transition 

Plants differ from animals in many aspects of their biology and have evolved different strategies to 

adapt  to  the  environment.  For  example,  plants  cannot  move  and  therefore  have  evolved  an 

extraordinary variety of mechanisms to respond to diverse environmental stimuli and to adapt to 

changes  in  their  surroundings.  Moreover,  plants  use  a  distinct  developmental  strategy,  because 

while  animals  undergo  major  developmental  changes  during  embryogenesis,  plants  can  also 

undertake dramatic changes in their morphology post-embryonically (Weigel and Jürgens, 2002). 

One of the best examples of post-embryonic plant developmental changes is the floral transition, 

which  drives  a  switch  from  vegetative  growth  to  reproductive  development.  This  process  is 

regulated  by  a  number  of  different  components,  including  not  only  internal  changes  but  also 

environmental factors, because plants need to synchronize the production of flowers with the most 

favorable conditions and season of the year. 

This switch in development involves a structure that is located at the apex of the plant shoot, called 

the  shoot  apical  meristem  (SAM).  This  is  a  group  of  undifferentiated  cells  formed  during 

embryogenesis that is ultimately responsible for producing all above-ground organs of the plant. 

The  SAM must  change  its  identity  and  shift  from the  stage  of  a  vegetative  meristem,  which 

produces leaves, to the stage of an inflorescence meristem, which produces flowers. This change in 

identity is a prerequisite for reproductive development to occur.

The  timing  of  flowering  is  clearly  very  important  to  ensure  the  production  of  seeds  and  the 

perpetuation of a plant species. It is also important in agriculture as for many crop plants the seeds 

are harvested. Therefore a large effort has been made in recent years to understand the mechanisms 

of regulation of flowering processes and flowering time in plants. Most of this knowledge has been 

obtained by studying the model plant Arabidopsis thaliana (Arabidopsis), through genetic analyses, 

biochemical and physiological approaches.  Arabidopsis is a particularly suitable system to study 

flowering. The life cycle of many accessions of this plant is fast, around three months in total. After 

germination, a seedling starts the cycle with an initial phase called “vegetative”. When the plant is 

old  enough  it  is  then  able  to  respond  to  inductive  stimuli and  to  switch  to  a  phase  called 

“reproductive”  in  which  it  develops  flowers.  These  in  turn  produce  fruits,  in  this  case  called 

siliques. Fruits contain and finally release the seeds, while the plant becomes senescent and then 

dies. The seeds generate new plants, re-starting the cycle from the beginning.  Arabidopsis is an 

1



Introduction

annual  plant,  completing  its  life  cycle  within one year,  and upon floral  transition all  the shoot 

meristems which are generated in the individual plant are induced to flower so that the entire plant 

starts the senescence process and cannot survive to the following year.

Arabidopsis has  a  number  of  additional  features  which  are  especially  useful  for  dissecting  the 

genetics of flowering and of other processes in general  (Koornneef and Meinke, 2010), such as a 

relatively small genome size compared to most of the other higher plant species. The genome has 

been fully sequenced (The Arabidopsis genome initiative, 2000). Also, natural variation within the 

species regarding flowering time produced an even richer scenario to study the genetic basis of 

flowering  regulation.  For  some  accessions,  also  the  genome  sequences  are  becoming  available 

(Ossowski et al. 2008a). Arabidopsis is a diploid organism, is self pollinating, and relatively easy to 

use for genetic crosses. It is also easy to transform in a stable manner with exogenous DNA. Several 

collections of mutants were generated, and several genetic and genomic tools are also available (O´ 

Malley and Ecker, 2010).  

On the other hand, some aspects of development at the level of the shoot apical meristem have been 

hindered so far by the small size of this organ in Arabidopsis. Therefore, this disadvantage resulted 

in a delay of the study of this particular aspect within flowering, and the developmental biology of 

the floral transition, especially at the genomic level, still needs to be elucidated. 

1.2 Flowering pathways   

Five major genetic pathways controlling flowering have been described in Arabidopsis (Boss et al., 

2004):  the  photoperiodic  pathway,  the  vernalisation  pathway,  the  autonomous  pathway,  the 

gibberellin pathway and the age-related pathway (Fornara and Coupland, 2009) (Fig. 1 and Fig. 2). 

In  addition  other  factors  and less  characterized  pathways  also  play  a  role  in  the  regulation  of 

flowering, such as ambient temperature  (Blázquez et al., 2003; Halliday et al., 2003; Lee et al., 

2007b),  light  quality  (Cerdan  and  Chory,  2003)  and  several  other  hormones (Davis,  2009). 

Interestingly, while new aspects of flowering time regulation are continuously uncovered, rendering 

these networks more and more detailed and inter-connected, some of the key genes and mechanisms 

are shared even among distantly related species, whereas others are not conserved and give rise to 

important differences between plant species.    

Arabidopsis is a facultative long-day plant, which means it flowers earlier in long day (LD) and 

later  in short  days  (SD).  The mechanism by which plants flower in response to day-length,  or 

photoperiod, resides in the so-called photoperiodic pathway. 

2
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Another  pathway  responding  to  an  external  stimulus,  in  this  case  extended  exposure  to  low 

temperature for several weeks, is the vernalisation pathway. Vernalisation is a prolonged period of 

cold that some plant species and some winter-annual accessions of Arabidopsis have to experience 

in order to be able to flower. Together with the photoperiod, this pathway enables a plant to initiate 

the flowering process soon after winter, and it prevents premature flowering which would cause the 

reproductive structures to be damaged by the cold. 

The  other  three  pathways  respond  to  endogenous  signals.  The  autonomous  pathway  controls 

flowering  via  fundamental  mechanisms  of  gene  expression  such  as  3´-end  site  selection,  the 

gibberellin pathway in relation to endogenous hormonal levels, and the ageing pathway through a 

microRNA whose level  falls  as the plant  gets  older.  Importantly,  the pathways are not entirely 

separate, but they have some genes in common, and they finally converge in a small set of key 

floral-promoting genes, which for that reason are called “floral pathway integrators” (Fig. 1).   

Fig. 1. Flowering pathways in  Arabidopsis thaliana. A general scheme of the most characterized genetic pathways 
influencing flowering is shown in the figure. Genes marked in red color are “floral pathway integrators”.   
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1.2.1 Vernalisation pathway

The vernalisation pathway allows flowering after the plant is exposed to an extended period of low 

temperature  (vernalisation),  preventing  flowering  during  the  unfavourable  winter  season.  In 

Arabidopsis, winter-annual accessions respond to vernalisation because they carry active alleles at 

two  loci,  FRIGIDA (FRI)  and  FLOWERING  LOCUS  C (FLC).  Commonly  used  Arabidopsis 

ecotypes Columbia (Col) and Landsberg erecta (Ler) are null mutants of FRI.

FRI encodes a nuclear protein present only in plants (Johanson et al., 2000), and it increases FLC 

expression  by a  mechanism that  remains  unclear  (Michaels  and Amasino,  1999;  Michaels  and 

Amasino, 2001).  In plants having an obligate vernalisation requirement  FLC is expressed at high 

level  and  strongly  delays  flowering  because  it  represses  key  floral  promoter  genes,  such  as 

FLOWERING  LOCUS  T (FT)  and  SUPPRESSOR  OF  OVEREXPRESSION  OF  CONSTANS 

(SOC1).  When the plant experiences vernalisation,  FLC mRNA expression is reduced  (Michaels 

and Amasino, 1999) and thus flowering is permitted.

The reason for this reduction in expression is related to chromatin modifications at the FLC locus. 

Indeed, the  FLC gene is under epigenetic regulation, so after proper exposure to cold it is stably 

maintained in a silent state, and even after a return to warm temperature this gene is not re-activated 

in  Arabidopsis.  This  phenomenon  requires  the  activity  of  proteins  such as  VERNALIZATION 

INSENSITIVE 3 (VIN3), VERNALIZATION1 (VRN1), VRN2, VRN5/VIN3-LIKE1 (VIL1) (Kim 

et al, 2009 for a review). VIN3, which encodes a PHD protein, is expressed during vernalisation, but 

its expression drops once plants are returned to warm temperature, so that it seems to be involved in 

the first part of the repression mechanism of FLC (Sung and Amasino, 2004). Vernalisation results 

in the increase in methylation of lysine 9 and lysine 27 of histone H3, which are repressive histone 

modifications, at the FLC locus (Bastow et al., 2004; Sung and Amasino, 2004). In vin3 and vrn2 

mutants, and partially in vrn1 mutants, these methylation events do not occur at the FLC locus, and 

the FLC gene is not repressed upon vernalisation (Bastow et al., 2004; Sung and Amasino, 2004). 

VRN2 encodes a component  of Polycomb repression complex 2 (PRC2) (Gendall  et  al.,  2001), 

while VRN1 is a DNA-binding protein with B3 domains. VRN5/VIL1, another PHD protein, is also 

required for these modifications (Greb et al., 2007; Sung et al., 2006). 

Other specific chromatin modifications are associated with FLC activation (Kim et al., 2009).

Interestingly,  in the related perennial  species  Arabis alpina the orthologue of  Arabidopsis FLC, 

PEP1, is also repressed by vernalisation but this repression in not stably maintained when plants 

return to warm temperature the following year (Wang et al., 2009b). This mechanism is related to 
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the  different  life  strategy  of  this  plant.  In  pep1 mutants,  indeed,  both  the  requirement  for 

vernalisation and the seasonal flowering behavior are lost.  

1.2.2 Autonomous pathway

A group of mutants not belonging to the other pathways were grouped into a so-called autonomous 

pathway.  Their  common  feature  is  being  later  flowering  than  wild-type  both  in  LD  and  SD 

(Koornneef et  al.,  1991).  The late  flowering behavior  of these mutants  is  similar  to  FRI-active 

accessions (Michaels and Amasino, 2001), because they present a high FLC expression level, and 

they  are  accelerated  in  flowering-time  upon  vernalisation  treatment.  Indeed,  the  autonomous 

pathway promotes  flowering  by decreasing  the  level  of  the  mRNA of  the  FLC transcriptional 

repressor. Rather than a linear pathway, this pathway is a collection of at least eight genes,  FCA, 

FY, FPA, FVE, FLOWERING LOCUS D (FLD), FLK, LUMINIDEPENDENS (LD) and RELATIVE 

OF EARLY FLOWERING 6 (REF6), which converge on  FLC regulation (Simpson, 2004; Noh et 

al.,  2004).  They  encode  mainly  proteins  associated  with  chromatin  structure  or  RNA-binding 

proteins. 

FLD encodes a protein homologous to a member of a human histone deacetylase complex, which 

would be involved in  deacetylation  of  FLC chromatin  to  prevent  its  transcription  and promote 

flowering  (He  et  al.,  2003).  FVE encodes  a  WD-repeat  protein,  also  associated  with  histone 

deacetylation  (Ausin et al., 2004). REF6 encodes a jumonji/zinc-finger-class transcription factor, 

also required for histone deacetylation of FLC locus (Noh et al., 2004). 

FCA (Macknight et al., 1997), FPA (Schomburg et al., 2001) and FLK (Lim et al., 2004; Mockler et 

al., 2004) proteins contain putative RNA binding domains.  FY encodes a protein homologous to 

Pfs2p,  a  poly-adenylation  and 3´-end  processing  factor  in  yeast.  FCA has  a  complex  but  well 

studied regulation. Its transcripts have alternative forms, and FCA itself negatively regulates its own 

expression, promoting the inactive splicing form with an internal poly-adenylation site (Quesada et 

al.,  2003; Macknight et al., 2002).  This mechanism is  FY-dependent, and FY and FCA proteins 

physically interact (Simpson et al, 2003). 

LD encodes a homeodomain protein with unknown function (Lee et al., 1994).

1.2.3 Gibberellin pathway

Gibberellins (GAs) are plant hormones required for plant growth. They act through promotion of 

cell division and elongation, and they also promote developmental switches, including flowering. 

5
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The effect of GAs on flowering is more pronounced in SD, and the GA pathway has been shown to 

be particularly important in the absence of the activation of the photoperiodic pathway (Reeves and 

Coupland, 2001). Indeed, for example  ga1 mutants, which lack the first step of GA biosynthesis, 

never flower in SD. gai mutants, which instead are insensitive to GA, are also late flowering in SD 

(Wilson et al., 1992). ga1-3, a highly GA-deficient mutant (Koornneef and Van der Veen, 1980), is 

severely dwarfed, regardless of photoperiod, since bolting in  Arabidopsis is absolutely dependent 

on GA signaling (Mutasa-Göttgens and Hedden, 2009). Conversely,  spindly mutants, which have 

constitutively active GA signaling, are early flowering (Jacobsen and Olszewski, 1993). 

  

Fig. 2. Genes involved in the control of the floral transition.  Some relevant genes involved in flowering and their 
relationships are shown.  Details are given in the text. The scheme was kindly provided by Fabio Fornara.
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1.3 Photoperiodic pathway and activation of flowering 

The “photoperiodic pathway” acts in response to the photoperiod, or day length. Day length is one 

of the major environmental factors regulating flowering time. Indeed, the characteristic of many 

plant  species  to  flower  in  response to  changes  in  photoperiod  synchronises  flowering with the 

favourable season. For example Arabidopsis flowers in response to increased day lengths of spring, 

whereas rice flowers in response to short days to avoid drought periods.

Interestingly,  the perception  of photoperiod in plants  takes place in  the leaves,  while the floral 

transition happens in the SAM, where the floral structures will arise, and although this has been 

known for a long time, the molecular mechanism underlying this phenomenon have been revealed 

only recently (Turck et al., 2008 for a review). 

The ability of plants to measure day length and respond to its changes is based on the interaction of 

light  with  an  internal  housekeeping  mechanism that  plants  use  to  measure  time,  the  so-called 

“circadian clock”. 

1.3.1 Circadian clock 

Plants are able to generate circadian rhythms, with a period of approximately 24 hours. This system 

is composed of the clock core or central oscillator, which generates the timing, of input pathways 

that  synchronise  the  clock oscillator  to  daily  cycles  of  light  and dark,  and of  output  pathways 

regulating  various  specific  processes  that  are  under  circadian  influence  (Salome and McClung, 

2004; Strayer and Kay, 1999). One of the rhythmic outputs generated by the circadian clock is the 

photoperiodic regulation of flowering (Imaizumi, 2010 for a review). Input pathways synchronising 

the clock are mediated for example by the photoreceptors. Some of the families of photoreceptors 

participating in clock entrainment are phytochromes, cryptochromes and the ZTL family (Ausin et 

al., 2005). Proteins that have been shown to be at the centre of the circadian oscillator are CCA1, 

LHY, TOC1, which create a feedback loop of approximately 24 hours (Alabadi et al., 2001). Their 

mRNAs are expressed in a circadian rhythm, but LHY and CCA1 mRNA levels peak at dawn, while 

TOC1 mRNA level peaks at dusk. CCA1 and LHY repress the expression of TOC1. TOC1 activates 

LHY and CCA1. Mathematical models postulated additional loops to account for the real complexity 

of  the data  (Locke et  al.,  2005).  Experimental  studies  supported this  hypothesis.  Another  loop 

includes  TOC1,  CCA1,  LHY and a Y component,  which has been suggested to be the  GI gene 

(Locke et al., 2005). Finally, PRR7 and PRR9, two proteins similar to TOC1 containing a CCT 

motif, form together with CCA1 and LHY an additional loop (Zeilinger et al., 2006). Therefore the 
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plant circadian clock is composed of three interlocked transcriptional feedback loops (Fig. 2), and 

additional regulation is provided to the clock at the post-transcriptional level (Harmer, 2009 for a 

review).  

1.3.2 The photoperiodic cascade

Classically, the three key genes GIGANTEA (GI),  CONSTANS (CO) and FLOWERING LOCUS T 

(FT) were all assigned to the photoperiodic pathway in  Arabidopsis. This was shown by genetic 

analysis (Redei, 1962; Koornneef et al., 1991; Koornneef et al., 1998), since the loss-of-function of 

these  genes  delays  flowering  under  long days  (LD)  but  not  in  short  days  (SD).  Other  studies 

demonstrated that the hierarchy of activation is  GI-CO-FT (Kardailsky et al., 1999; Kobayashi et 

al., 1999; Samach et al., 2000; Suárez-López et al., 2001). 

Nowadays a linear model GI-CO-FT is only a simplified version of a more complex situation. This 

main  branch still  accounts  for  the  major  contribution  to  the  photoperiodic  pathway,  but  at  the 

molecular level many other details and players have been revealed (Fig. 2).

1.3.2.1 GIGANTEA

A gene called GIGANTEA (GI) plays a role both in the circadian system itself, and in controlling 

flowering as an output of the circadian clock, and it has been shown that these functions are distinct 

(Mizoguchi  et  al.,  2005).  gi mutants  for  example  are  altered  in  period  length  of  the  circadian 

rhythm, they have reduced amplitude of  LHY and  CCA1 mRNA (Fowler et al., 1999; Park et al., 

1999; Mizoguchi et  al.,  2002) and some alleles cause a long hypocotyl  in deetiolated seedlings 

particularly under red light, because they are impaired in phyB signaling (Huq et al., 2000).  

GI, as an output of the clock, is circadian regulated with a peak of expression of its mRNA 10 hours 

after dawn (Fowler et al 1999, Park et al 1999).  gi mutants  are late flowering in LD, and in this 

background the mRNA of  CO is  reduced (Suárez-López et  al.,  2001).  Conversely,  plants over-

expressing  GI from the  35S promoter are early flowering both in LD and SD (Mizoguchi et al., 

2005) and express  CO and  FT mRNA at higher level.  GI promotes the transcription of  CO, and 

connects in this way the circadian clock to the photoperiodic pathway.  Nevertheless, in  co or  ft 

background  35S::GI can  still  partially  accelerate  flowering,  possibly  through  other  pathways 

independent  of  CO and  FT (Mizoguchi  et  al.,  2005).  For  example,  a  mechanism in  which  GI 

controls  FT independently of  CO was reported, where  a microRNA, miR172, is involved in the 

pathway (Jung et al., 2007).
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GI encodes a nuclear protein (Huq et al., 2000), with a large size, composed of 1173 amino acids.  

Though the molecular and biochemical functions of GI remained for a long time unknown, lately 

some progress has revealed new aspects of this protein. Interaction of GI protein with the F-box 

protein  ZEITLUPE (ZTL)  is  necessary  to  establish  and  sustain  circadian  oscillations  of  ZTL, 

through a post-translational mechanism (Kim et al., 2007). ZTL protein then sustains the circadian 

clock by mediating the ubiquitination and degradation of TOC1. 

One mechanism that has been proposed to explain the promotion of CO transcription is based on the 

interaction of GI protein with the FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) and 

CYCLING DOF FACTOR1 (CDF1)  proteins,  which  associate  on  CO chromatin  (Sawa et  al., 

2007). Interaction of GI protein with FKF1 protein would promote the FKF1-dependent degradation 

of CDF1 protein,  which is a repressor of  CO,  leading to  CO transcription (Sawa et al.,  2007). 

Recently, other members of the DOF transcription factor family were shown to redundantly repress 

CO expression. The abundance of CDF2 protein is also regulated by GI (Fornara et  al.,  2009). 

CDF1, CDF2, CDF3 and CDF5 when over-expressed in phloem companion cells delay flowering 

and decrease  CO expression, while a quadruple mutant lacking all four genes is early flowering 

both  in  LD and SD and photoperiodic-insensitive,  with  CO expressed  at  higher  level  but  still 

following the circadian pattern (Fornara et al., 2009). Interestingly, when also GI is mutated in this 

background, both the response to photoperiod and the circadian pattern of  CO are restored in the 

quintuple  mutant  (Fornara  et  al.,  2009).  Therefore,  it  seems  that  GI is  not  essential  for  the 

transcription and for the diurnal oscillation of CO, but rather required to enhance it by removing the 

repression exerted by the CDF proteins. 

1.3.2.2 CONSTANS

CO encodes a nuclear protein containing two zinc-finger domains (Putterill et al., 1995; Samach et 

al.,  2000; Robson et al.,  2001). According to expression studies based mainly on GUS reporter 

constructs, CO mRNA is expressed in vascular tissue, in hypocotyl, cotyledons and leaves, and also 

at the apex (Takada and Goto, 2003; An et al 2004). However, it has been shown that CO acts in the 

phloem companion  cells,  activating  its  target  gene  FT in  a  cell-autonomous  manner,  and  then 

resulting  in  activation  of  floral  development  at  the  apex  (An  et  al.,  2004).  A systemic  signal 

activated by CO crosses graft junctions, and does not require movement of CO protein, as shown by 

analysis of CO:GFP fusion (An et al., 2004). 

CO is a central regulator of flowering time, and not only the gene itself is finely regulated at the 
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transcriptional  level  (see  previous  paragraph)  but  also  the  protein  is  regulated  at  the  post-

transcriptional level through multiple mechanisms (Fig. 2).

CO expression is under circadian regulation, with a marked peak of its mRNA level at the end of 

the day (Suarez-Lopez et al., 2001) (Fig. 3). In this way, this gene mediates between the circadian 

clock and photoperiodic control of flowering time. Nevertheless, CO protein level depends not only 

on the relative RNA pattern but also on the light condition, because exposure to light is necessary to 

activate CO protein function (Valverde et al., 2004). If the plants grow in SD, the peak of CO falls 

in the dark period (night), when CO protein is not stabilized and it is degraded. In LD, this peak is 

at  dusk  (Suarez-Lopez  et  al.,  2001;  Yanovsky and  Kay,  2002; Imaizumi  et  al.,  2003). In  this 

condition CO protein, in response to light, is stabilized, and it directly activates the expression of 

FT (Kardailsky et al., 1999; Kobayashi et al., 1999; Samach et al., 2000; Valverde et al., 2004) thus 

triggering flowering. 

The  so-called  “external  coincidence  model”  was  formulated  decades  ago  (Bünning,  1936; 

Pittendrigh and Minis, 1964), before knowing any molecular mechanisms underlying flowering, to 

explain  the  photoperiodic  response.  This  model  seems  to  fit  with  the  current  model  of  CO 

regulation. In this view, a coincidence of the peak of expression of CO mRNA with the exposure to 

an external condition (light), has to be fulfilled to have an active function and activate flowering 

(Fig. 3). 

White light, blue light and  far-red light stabilize CO protein, while red light and dark promote its 

degradation through the proteasome (Valverde et al., 2004). CRYPTOCHROME1 (CRY1), CRY2 

and PHYTOCHROME A (PHYA) photoreceptors are involved in the stabilization of CO protein 

(Yanovsky and Kay,  2002;  Valverde et  al.,  2004).  The two cryptochromes (CRY1 and CRY2) 

stabilize CO in blue light and both at the beginning and at the end of the day. PHYA stabilizes CO 

in  far-red  light,  and  similarly  to  the  cryptochromes  during  the  day.  Conversely,  PHYB 

photoreceptor  is  responsible  for  the  reduction  of  CO protein  level,  in  red light  and during the 

morning (Valverde et  al.,  2004).  In  35S::CO background,  cry1 cry2 and  phyA mutations  delay 

flowering while phyB mutation accelerates flowering, in agreement with the previous observations 

on the effects of the various photoreceptors on CO abundance and with the relative levels of  FT 

expression, as an output of CO activity (Valverde et al., 2004). Recently, SUPPRESSOR OF PHYA 

(SPA) proteins have been implicated in the control of stability of CO protein (Laubinger et al.,  

2006).  spa1 mutants are early flowering in SD, and  spa1 spa3 spa4 even earlier,  because of a 

dramatic up-regulation of  FT expression. The co mutation suppresses the early flowering of  spa1 
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mutation. However, in absence of SPA1 the expression of CO mRNA is not altered, but there is a 

high increase of CO protein abundance. Moreover, SPA proteins have been shown to physically 

interact with CO protein, both  in vitro and  in vivo (Laubinger et al., 2006). More recently, it has 

been shown that an ubiquitin ligase called CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) 

promotes the degradation of CO protein in the dark (Jang et al., 2008). Indeed,  cop1 mutants are 

early flowering, they also show an increase in FT expression, and they are even able to flower in 

darkness. Mutation in CO partially suppresses the early flowering of cop1. Indeed, in cop1 mutant 

CO protein is stabilized in the night period,  but not in the morning.  Moreover,  CO and COP1 

proteins  have  been  shown  to  physically  interact  (Jang  et  al.,  2008).  This  provides  additional 

molecular details on how flowering response to day length is achieved.

Fig. 3. Expression patterns of  CO and FT mRNA. A schematic representation shows the expression pattern of the 
mRNAs of these two genes during a 24 hours daily cycle.   

1.3.2.3 FT and TSF

FT encodes a small protein with similarity to RAF-kinase inhibitor proteins in animals (also known 

as phosphatidyl ethanolamine-binding proteins) (Chardon and Damerval, 2005). 

Over-expression of  FT causes a dramatic early flowering, both in LD and SD  (Kardailsky et al., 

1999; Kobayashi et al., 1999), while ft loss of function mutants are late flowering in LD (Koornneef 

et al., 1991). Under LD this gene is activated by CO and it is transcribed in the vascular tissue of 

leaves (Kardailsky et al., 1999; Kobayashi et al., 1999; An et al., 2004; Wigge et al., 2005; Samach 

et al., 2000). As an output of CO, FT is also diurnally regulated, with a peak toward the end of the 

day, around ZT16 (Suarez-Lopez et al., 2001) (Fig. 3). 

Over-expressing  CO in  phloem  companion  cells  with  SUC2 promoter  causes  early  flowering 

through  the  activation  of  FT.  SUC2::FT,  similarly,  results  in  early  flowering.  Using  KNAT1 
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promoter to express FT in the shoot apical meristem also causes early flowering, while using this 

promoter to drive expression of  CO does not accelerate flowering (An et al., 2004). So, although 

both CO and FT genes are expressed in leaves, CO protein acts in the phloem while FT protein acts  

in the apical meristem to induce gene expression and promote flowering in this tissue. Since the 

1930s it was proved that photoperiod is perceived by the leaf, whereas flowering takes place in the 

shoot apical meristem (Knott, 1934; Zeevaart, 1976). It was also demonstrated that an hypothetical 

long-distance  signal,  the  so-called  “florigen”,  has  to  be  transferred  from the  leaf  to  the  apical 

meristem to promote flowering. It was then postulated for long time that FT is a plausible candidate  

for the “florigen”, although it was not clear whether this signal would travel as FT mRNA or FT 

protein. Convincing experiments coming from different groups recently solved the debate (reviewed 

by Kobayashi and Weigel, 2007; Turck et al., 2008). It has been proposed that  FT protein is the 

molecule moving from the leaf to the SAM inducing flowering in  Arabidopsis  (Corbesier et al., 

2007). In plants containing a SUC2::FT:GFP construct, which is also able to cause early flowering, 

FT:GFP  signal  was  detected  not  only  in  the  vascular  tissue  of  the  shoot,  but  also  in  the 

provasculature  at  the  shoot  apex and  at  the  base  of  the  SAM, while  no  FT:GFP mRNA was 

detected (Corbesier et al., 2007). FT:GFP was also graft-transmissible through the phloem to a ft-7 

mutant  shoot  receiver,  accelerating  its  flowering.  GAS1 promoter  was  also  used  to  drive  the 

expression  of  FT in  the  phloem  companion  cells  of  the  minor  veins  of  leaves.  In  the  ft-7 

background,  GAS1::FT causes  early  flowering,  while  GAS1::GFP:FT does  not  accelerate 

flowering, although the protein is still active in the leaf and there promotes up-regulation of  FT 

target genes (Corbesier et al., 2007). Therefore, the GFP fusion prevents flowering because it does 

not allow the export of the FT protein from the minor veins of the leaf to the apex. Other groups 

supported  the  same  conclusions  with  complementary  experiments  (Jaeger  and  Wigge,  2007; 

Mathieu et al., 2007). In one report, an epitope-tagged version of FT was constructed fusing Myc-

tags  to  FT.  Using  specific  antibodies,  Myc:FT  protein  was  detected  on  the  route  from  the 

vasculature to the organ primordia through the provasculature (Jaeger and Wigge, 2007). Then, a 

nuclear  localization  signal  (NLS)  was  used  to  target  FT  protein  constitutively  to  the  nucleus. 

Myc:NLS:FT expressed in the ft-10 mutant background causes early flowering when expressed with 

35S promoter, while it does not accelerate flowering when expressed with SUC2 promoter, because 

the FT protein is blocked in the leaf nuclei and cannot traffic to the SAM anymore (Jaeger and 

Wigge, 2007). Similarly, another group made use of FT fused to three copies of YFP and a NLS, 

and a recognition site for a virus protease between FT and the rest of the tag. Expression of this 
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tagged version of FT with 35S or FD (specific for the SAM) promoters promoted flowering, while 

expression with SUC2 promoter did not promote flowering because the protein was trapped into the 

companion cells, preventing FT to reach the meristem (Mathieu et al., 2007). Releasing FT protein 

through  a  construct  expressing  the  specific  protease  was  sufficient  to  cause  early  flowering. 

Moreover, artificial microRNA (amiRNA) against FT mRNA expressed by SUC2 promoter caused 

late flowering, while by FD promoter did not delay flowering demonstrating that the mRNA is not 

required at the meristem (Mathieu et al., 2007). 

Similar  results  were found also in  rice for the homologue of  FT (Tamaki  et  al.,  2007), and in 

Cucurbits  (Lin et al., 2007). However, the “florigen” might be a set of additive signals, and FT 

protein would be one part  of this  set (Corbesier and Coupland, 2005; Corbesier  and Coupland, 

2006; Giakountis and Coupland, 2008). 

A gene with similar features to FT is TWIN SISTER OF FT (TSF).  FT in Arabidopsis is part of a 

gene family which includes six members (Chardon and Damerval, 2005), and TSF is the closest to 

FT.  35S::TSF promotes early flowering like  FT (Kobayashi  et  al.,  1999).  tsf mutant  is not late 

flowering, but enhances the late flowering of ft mutant in the ft tsf double mutant (Michaels et al., 

2005; Yamaguchi et al., 2005), so that these two related genes have overlapping roles, but  FT is 

predominant. TSF is regulated by CO, as its expression is lower in co mutants and induced by LD 

and by CO activation through an inducible system (Yamaguchi et al., 2005). In agreement with that, 

the early flowering phenotype of SUC2::CO is only partially suppressed by the ft mutation (An et 

al., 2004), while it is completely suppressed in a ft tsf double mutant background (Jang et al., 2009). 

Also the diurnal pattern of TSF is similar to the one of FT, with a peak at dusk in LD (Yamaguchi et 

al.,  2005).  However,  the spatial  expression patterns of  TSF and  FT do not seem to completely 

overlap  in  young  seedlings,  since  TSF was  shown  to  be  expressed  in  the  vascular  tissue  of 

hypocotyl and petiole, in the basal part of cotyledons and near the SAM. Later in the development 

their expression patterns are more similar (Yamaguchi et al., 2005). Over-expression of TSF in the 

phloem with SUC2 promoter causes early flowering also in the absence of FT, and the same effect 

is obtained by SUC2::FT in tsf mutant (Jang et al., 2009). Anyway, it is not yet clear whether TSF 

is part of the florigen signal as movement of the protein has not been tested (Turck et al., 2008).

1.4 The repression of flowering by FLC

FLOWERING LOCUS C  (FLC) encodes a MADS-box transcription factor that  is a potent floral 
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repressor, with a central role in flowering, because, as discussed previously, the vernalisation and 

autonomous pathways converge on this gene (see paragraphs 1.2.1 and 1.2.2).

To repress flowering, FLC reduces the expression of floral promoter genes, like SOC1, FT, FD and 

possibly  TSF (Yamaguchi et al, 2005). Loss-of-function mutations in  FLC cause early flowering 

(Michaels and Amasino, 1999), while over-expression of this gene causes late flowering (Michaels 

and Amasino, 2001).

Ectopic  expression of  FLC with the  35S promoter  causes down-regulation of  SOC1 and  FT in 

seedlings (Hepworth et al., 2002; Michaels et al., 2005). FLC represses also FD expression (Searle 

et  al.,  2006).  Indeed,  FLC  protein  directly  binds,  in  specific  CArG  boxes,  SOC1 promoter 

(Hepworth et al., 2002), the first intron of FT (Helliwell et al., 2006) and FD promoter (Searle et al., 

2006). In this way, it has been demonstrated that FLC acts by repressing both systemic flowering 

signals produced in the leaves (such as FT) and the response to these signals at the meristem (SOC1 

and FD), until vernalisation reduces FLC expression in both tissues and allows flowering to occur 

(Searle et al., 2006). 

Recently, some reports revealed new interesting aspects of the FLC transcription factor. One aspect 

is  the  physical  and  functional  interaction  with  SVP,  another  potent  floral  repressor  (see  next 

paragraph). Another one is the possible involvement of FLC in the regulation of seed germination 

(Chiang et al., 2009). Finally, the role of antisense transcripts of FLC in the regulation of this gene 

and its impact on flowering time regulation showed an additional mechanism that plants use to 

finely regulate gene expression (Swiezewski et al., 2009; Liu et al., 2010).  

1.5 The repression of flowering by SVP 

Another gene that acts as a floral repressor is SHORT VEGETATIVE PHASE (SVP). SVP belongs to 

the MADS-box transcription factor family. Loss of function of this gene in Arabidopsis causes an 

early  flowering  phenotype,  both  in  LD and  SD (Hartmann  et  al.,  2000).  svp mutants  are  still 

sensitive to photoperiod, which means that in SD they are earlier flowering than wild-type but still 

later than the mutant in LD. Moreover, plants heterozygous for svp mutation show an intermediate 

phenotype between wild-type and homozygous, suggesting a dosage effect for the product of this 

gene. SVP expression is present during the vegetative phase in young leaves and apical meristems, 

until the early stages of bolting. Then it is not present in the inflorescence meristem, and it rises 

again in flower primordia (Hartmann et al.,  2000). This pattern suggests a role for this gene in 

maintaining the vegetative phase, before flowering occurs, and another distinct, later function in the 
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flower. 

Several reports proved that SVP represses the expression of FT. The FT mRNA level is elevated in 

svp mutants, and FT::GUS shows ectopic expression in the leaf (Lee et al., 2007b). Expression of 

FT is up-regulated in svp mutants during the whole diurnal cycle of 24 hours, and the same happens 

to TSF (Jang et al., 2009, and this study). Another gene that is repressed by SVP is  SOC1.  SOC1 

expression is higher in svp mutant and lower in 35S::SVP, compared to wild-type (Li et al., 2008). 

In addition, SOC1 mRNA increases in svp largely independently of FT and AGL24 (Li et al., 2008). 

ft or soc1 mutations partially delay flowering in svp mutant background (Lee et al., 2007b), and also 

when combined in the  ft  soc1 double mutant  still  cannot completely suppress the effect  of  svp 

mutation  (Li  et  al.,  2008;  Fujiwara  et  al.,  2008). The  svp mutation  in  ft  tsf double  mutant 

background again causes early flowering. In this triple mutant SOC1 is still transcribed as in wild-

type (Jang et al., 2009, and this study). Therefore, SVP plays a role in repressing SOC1 transcription 

strongly in  the shoot apex, independently of  FT and  TSF,  while it  modulates also FT and  TSF 

expression in the leaf (Li et al, 2008; Jang et al., 2009, and this study).

Direct binding of SVP protein to both FT and SOC1 loci has been reported. By ChIP, SVP protein 

was shown to bind to a CArG motif in the promoter of FT in protoplasts (Lee et al., 2007b), and to 

bind  to  the  promoter  of  SOC1 (Li  et  al.,  2008).  This  last  observation  was  confirmed  also  by 

mutating the putative binding site in the SOC1 promoter, which abolished SOC1 repression (Li et 

al., 2008).

The targets of SVP tightly links this gene to another MADS-box gene, FLC. Both SVP and FLC are 

floral repressors, and both FT in the leaf and SOC1 in the SAM are also directly regulated by FLC, 

as discussed in the previous section. Mutations in FLC or increase in its expression by the use of 

FRI FLC alleles does not affect SVP expression level, and also altering the expression of SVP does 

not change FLC expression level (Lee et al., 2007b). Conversely, late flowering of plants carrying 

active FRI FLC is largely suppressed by svp mutation, suggesting that FLC needs SVP as a partner 

to exert its repressing function (Lee et al., 2007b), while loss of FLC does not completely rescue the 

late flowering of  35S::SVP (Li et al., 2008). Moreover,  flc svp flowers earlier than  svp (Li et al., 

2008), although the difference is very subtle. Finally, it has been shown that FLC and SVP proteins 

physically interact, both in vitro and in vivo (Li et al, 2008; Fujiwara et al., 2008). However, SVP 

mRNA transcription does not change with vernalisation treatment (Li et al., 2008). SVP expression 

level is not affected in photoperiodic mutants, while it has been shown that this gene responds to 

endogenous  signals from the autonomous pathway and from the gibberellin pathways, since it is 
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reduced  by gibberellin  treatment  and increased  in  fve and  ga1 mutants  (Li  et  al.,  2008).  In  a 

previous  report  it  was  also  proposed  that  SVP mediates  ambient  temperature  signalling  in 

Arabidopsis (Lee  et  al.,  2007b).  svp mutants  do  not  alter  their  flowering  time  in  response  to 

different temperatures, which suggests a role for this gene in response to temperature changes. SVP 

was indeed proposed to act in the thermosensory pathway, downstream of the genes FCA and FVE, 

which are in this pathway (Blázquez et al., 2003), since the svp mutation was also epistatic to both 

fca and  fve mutations (Lee et al., 2007b). Very recently a study reported a miRNA responsive to 

temperature changes,  miR172, to be more expressed in  svp mutant  compared to wild-type,  and 

some of the miRNA targets to be consequently decreased in expression (Lee et al., 2010). Since 

miR172 promotes flowering, this provides a possible link between  SVP and miRNAs to regulate 

flowering  in  response  to  changes  in  ambient  temperature.  Therefore,  SVP is  a  floral  repressor 

controlling floral pathway integrators in response to various endogenous and environmental signals. 

Finally, an additional further role for SVP was recently discovered. This role would be downstream 

of two genes involved in the regulation of the circadian clock:  LHY and  CCA1.  lhy cca1 double 

mutants  accumulate  SVP  protein,  and  a  role  for  these  genes  was  proposed  in  reducing  the 

abundance of SVP protein, which would result in flowering acceleration (Fujiwara et al., 2008). 

This  effect  could  be  mediated  by  ELF3,  since  ELF3  protein  interacts  in  yeast  two-hybrid 

experiments both with CCA1 and SVP proteins  (Yoshida et  al.,  2009).  Moreover,  SVP protein 

abundance increases in  ELF3 over-expressors, while  elf3 mutants show a delayed phase of SVP 

protein accumulation (Yoshida et al., 2009).

The closest paralogous gene to  SVP is  AGAMOUS-LIKE 24 (AGL24). Nevertheless, despite the 

close  relationship  between  them in  term of  sequence  similarity,  they  have  opposite  effects  on 

flowering time, and  svp mutation is epistatic to agl24 mutation (Gregis et al., 2006). 

Another MADS-box gene that represses flowering is FLOWERING LOCUS M (FLM). Mutation in 

FLM results in early flowering, both in LD and SD, while over-expression of  FLM by the  35S 

promoter causes late flowering, similarly to the SVP gene (Scortecci el al., 2001). The expression 

pattern of SVP and FLM is also similar. flm svp double mutants flower like the single mutants, both 

in LD and SD, and both the effect of 35S::FLM and 35S::SVP are suppressed by mutations in SVP 

and  FLM respectively,  although  FLM expression  levels  do  not  affect  SVP expression  levels, 

suggesting that SVP and FLM act as partners in the same pathway (Scortecci el al., 2003). Although 

FLM is  closer  to  FLC in  terms  of  sequence similarity,  it  is  not  affected  by  FRI,  vernalisation 
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treatment, and mutations in genes of the autonomous pathway (Scortecci el al., 2001; Scortecci el 

al., 2003). FLM could be involved in the modulation of the sensitivity to temperature, as was shown 

in a recent report (Balasubramanian et al., 2006).

1.6 The early floral transition: from vegetative meristem to inflorescence meristem

1.6.1 The floral pathway integrators: classical and new members 

Signals from the different flowering pathways converge to a restricted group of genes that for this 

reason  have  been  classically  named  “floral  pathway  integrators”  (Simpson  and  Dean,  2002). 

Therefore, they are somehow responsible for the final part of the decision to undergo the floral 

transition. These genes are all floral promoters and include FT, LEAFY (LFY) and SOC1. 

1.6.1.1 FT as an integrator 

FT has  a  central  role  in  the induction  of  flowering in  response to  photoperiod.  However,  also 

several other factors control  FT expression. The balance between the main activator  CO and the 

various repressors determines the activation of flowering by FT. The role of some repressors of FT 

transcription belonging to the MADS-box family, like  FLC and SVP, has been already discussed 

(see above).

Some other transcription factors that have been shown to repress  FT activity are comprised in a 

family containing one or more DNA-binding AP2-domains.  TEMPRANILLO1 (TEM1) and TEM2 

genes  encode  two  related  RAV  transcription  factors,  with  one  AP2/ERF  domain  and  one  B3 

domain, and they have been shown to repress FT expression (Castillejo and Pelaz, 2008). FT and 

TEM1 have an opposite trend of expression during development. Over-expressing TEM1 results in 

lower FT mRNA level and late flowering, while the tem1 mutant shows higher FT expression, and 

the tem1 tem2 double mutant is early flowering. Additionally, TEM1 protein was shown to directly 

bind a region at the 5´UTR of the FT locus (Castillejo and Pelaz, 2008). Based on the effects on FT 

mRNA level of manipulating the relative expression levels of CO and TEM1, it was proposed that 

the balance of expression levels of these two genes contributes to determining FT expression and 

the time to flower (Castillejo and Pelaz, 2008).

Another six related transcription factors contain two AP2-domains, and they are targets of miR172 

(Aukerman  and  Sakai,  2003;  Schmid  et  al.,  2003): APETALA2 (AP2),  TARGET  OF  EAT1-3 

(TOE1-3),  SHLAFMÜTZE (SMZ) and  SCHNARCHZAPFEN (SNZ). Within this family, only  toe1 

mutant  has  a  phenotype,  which results  in  early flowering,  and which is  enhanced in  toe1 toe2 
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double mutants (Aukerman and Sakai, 2003). TOE1 function has been associated with repression of 

FT (Jung et al., 2007). Also SMZ has been proposed to be a repressor of FT (Mathieu et al., 2009). 

Plants over-expressing SMZ are late flowering (Schmid et al., 2003), and although both smz single 

mutants and smz snz double mutants do not have a phenotype, smz snz toe1 toe2 is earlier flowering 

than  toe1 toe2  (Mathieu et al.,  2009).  FT transcription is repressed by over-expression of  SMZ. 

Interestingly, both the late flowering and the FT mRNA decrease were suppressed by flm mutation, 

suggesting that  FLM is needed for  SMZ activity and maybe participates in the regulation of  FT 

repression (Mathieu et al., 2009).

TERMINAL FLOWER 2 (TFL2), a protein involved in epigenetic repression, is also a repressor of 

FT. Loss of function mutants of this gene are early flowering (Larsson et al., 1998). The increased 

level  of  FT mRNA in  tfl2 mutants  is  the main  cause of early flowering,  since the  ft mutation 

completely suppresses the early flowering phenotype (Kotake et al., 2003). co tfl2 double mutants 

flowered as early as  tfl2, although the  CO-independent  FT up-regulation was present only in the 

basal part of leaves, while FT expression in the apical part requires CO (Takada and Goto, 2003). 

The tfl2 mutation further accelerated the flowering time of 35S::CO and increased the level of FT 

mRNA, suggesting that TFL2 counteracts the activity of CO on FT expression (Takada and Goto, 

2003). 

Like FT, TSF has also been shown to be induced by vernalisation and negatively regulated by FLC 

(Yamaguchi  et  al.,  2005),  by  SVP  (Jang  et  al.,  2009,  and  this  study),  and  repressed  by over-

expression of SMZ (Mathieu et al., 2009), so that it could also be considered as an integrator. TSF is 

not repressed by TFL2 (Yamaguchi et al., 2005). 

1.6.1.2 FT and FD

Once FT is transcribed at high enough level and its protein is transported to the SAM, a series of 

downstream genes are activated to trigger flowering at the SAM (Fig. 4). In the current model FT 

protein directly interacts with a bZIP transcription factor encoded by a gene called FLOWERING 

LOCUS D (FD), forming a protein complex which is able to directly activate the gene APETALA1 

(AP1) (Abe et al., 2005; Wigge et al., 2005). AP1 is a floral meristem identity gene which encodes a 

MADS-box transcription factor involved in flower formation, and which marks the beginning of 

floral meristem formation (Bowman et al., 1993; Irish and Sussex, 1990; Mandel et al., 1992).  Two 

main reports suggested this model on the basis of very similar results (Abe et al., 2005; Wigge et 
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al., 2005). First of all, loss of function of FD results in late flowering and strongly suppresses the 

early flowering phenotype of  35S::FT over-expression. Interaction between FT and FD proteins 

was also detected in yeast-two hybrid and other methods (Abe et al., 2005; Wigge et al., 2005). In 

one report, FD was found to interact also with the FT-homolog TFL1 (Wigge et al., 2005), while in  

the other the interaction was barely detectable (Abe et al., 2005). FD protein was localized in the 

nucleus of cells at the shoot apex (Abe et al., 2005). FD mRNA is expressed in the SAM, and part 

of this domain overlaps with  AP1 expression domain (Abe et al., 2005). In agreement with that, 

AP1 mRNA  appearance  in  the  apex  is  delayed  in  the  fd single  mutant  (Wigge  et  al.,  2005). 

Moreover,  ft lfy double mutants show a very similar phenotype to  fd lfy  double mutants, and the 

expression of AP1 mRNA is in both cases strongly reduced (Abe et al., 2005; Wigge et al., 2005). 

35S::FD causes ectopic expression of AP1 and FUL, which does not occur under SD or in ft mutant 

background (Abe et al., 2005; Wigge et al., 2005). Finally, ChIP experiments using 35S::FD and 

antibodies for FT showed that AP1 promoter sequences were enriched in LD but not in SD (Wigge 

et al., 2005).    

Interestingly,  FD expression seems to decrease in floral primordia once  AP1 is expressed in that 

domain (Wigge et al., 2005), suggesting that FD is not longer required once AP1 has been already 

activated.

Clearly, AP1 is not the only target of FT, since ap1 mutants do not suppress the early flowering of 

35S::FT (Kardailsky et al., 1999). SOC1 has been demonstrated to be downstream of FT in several 

reports (Yoo et al., 2005; Searle et al., 2006), and is an earlier acting gene than AP1. In addition, 

two other two MADS-box genes shown to be induced by FT are FUL and SEP3, although this was 

not investigated in the meristem so far. In leaves, FUL and SEP3 are up-regulated in 35S::FT and 

down-regulated in ft mutant, compared to wild-type (Teper-Bamnolker and Samach, 2005). The fd 

mutation resulted in reduction in expression level of these genes similarly to ft mutation. Moreover, 

ful slightly  delayed  the  early  flowering  of  35S::FT (Teper-Bamnolker  and  Samach,  2005). 

Moreover, FUL is induced by shift to LD (Hempel et al., 1997) but this increase is strongly delayed 

in ft mutants (Schmid et al., 2003).

Also TSF protein has been shown to physically interact with FD protein by yeast two-hybrid (Jang 

et al., 2009). Indeed,  fd ft double mutants flower later than  ft, and similarly to  ft tsf  and  fd ft tsf, 

suggesting that both the FT-FD and TSF-FD protein interactions are biologically relevant (Jang et 

al., 2009). However, ft tsf is remarkably later flowering than fd mutant. Therefore, FT and TSF must 

act also independently of FD to promote flowering.  
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Fig. 4. FT protein moves to the shoot apical meristem to induce flowering. Genes acting to promote flowering in the 
early phases of the floral induction are indicated.

1.6.1.3 SOC1

SOC1 or  AGAMOUS-LIKE  20 (AGL20)  encodes  a  MADS-box  transcription  factor  promoting 

flowering. It was isolated in a mutagenesis  screen where  soc1 mutation partially suppressed the 

early  flowering  caused  by  over-expression  of  CO with  35S promoter  (Onouchi  et  al.,  2000). 

Coherently,  SOC1 expression was strongly increased by inducing CO activity with a 35S::CO:GR 

inducible system (Samach et al., 2000). The soc1 mutation alone delays flowering, both under LD 

and SD, and the mutant is still  sensitive to photoperiod (Samach et al., 2000; Lee et al., 2000). 

Over-expression  of  SOC1 through  35S promoter  causes  early  flowering  (Samach  et  al.,  2000; 

Borner et al., 2000).  SOC1 responds to photoperiod, as its expression is remarkably lower in SD 

than in LD (Lee et al., 2000; Borner et al., 2000). It is induced at the SAM and leaf primordia, 

already 16 hours after shift from SD to continuous light (Samach et al., 2000) or to LD (Borner et  

al., 2000). It is expressed in the inflorescence meristem, but excluded from floral primordia, and 
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reappears in flowers at stage 2 and 3 of flower development (Samach et al. 2000; Borner et al., 

2000). 

The activation of SOC1 by CO is mediated by FT (Yoo et al., 2005). Indeed, not only SOC1 is up-

regulated  in  35S::FT and  down-regulated  in  ft mutant,  but  also  the  ft mutation  suppresses  the 

induction  of  SOC1 by  35S::CO (Yoo et  al.,  2005).  Up-regulation  of  SOC1 at  the  meristem is 

dependent on both FT and FD, since in ft and fd mutants SOC1 increase is strongly delayed (Searle 

et al., 2006). TSF, like FT, also promotes SOC1 transcription (Michaels et al., 2005; Yamaguchi et 

al., 2005). However, SOC1 over-expression in the meristem is not sufficient to overcome the effect 

of the  co and  ft mutation (Searle et al.,  2006).  Moreover  soc1 mutation, which indeed does not 

result in a strong late flowering in LD, only partially suppresses the early flowering of  35S::FT 

(Yoo et al., 2005), confirming that FT has additional target genes other than SOC1.  

In addition to the photoperiod, SOC1 integrates also the signals from the other pathways. 

Its expression increases with the age of the plant, and it is influenced by the autonomous pathway 

(Samach et al. 2000; Borner et al., 2000; Lee et al., 2000). This gene indeed was also isolated with 

another screen by activation-tagging in which over-expressed SOC1 suppressed the late flowering 

phenotype of a  FRI-introgressed line (Lee et al., 2000). The repression exerted by FLC, which is 

direct,  and mediates  the effect  of the autonomous and vernalisation  pathway,  has  been already 

discussed (see paragraph 1.4). Interestingly, SOC1 increases upon vernalisation also independently 

of FLC (Moon et al., 2003). The repression exerted by SVP has also been mentioned (see paragraph 

1.5).

Finally,  SOC1 integrates  the  signals  from the  gibberellin  pathway  (Moon  et  al.,  2003).  SOC1 

expression increases upon GA treatments (Borner et al., 2000), and the over-expression of  SOC1 

overcomes the late flowering of ga1-3, a mutant in the gibberellin pathway, while the soc1 mutant 

is less responsive to GA (Moon et al., 2003). 

Not so much is known about how SOC1 activates flowering, and so far the only well documented 

target is  LFY (see next paragraphs). Surprisingly, over-expression of  SOC1 by the  35S promoter, 

which causes early flowering, also results in an increase of FT (Michaels et al., 2005). Indeed, the 

over-expression of SOC1 causes early flowering not only when is targeted in the meristem through 

KNAT1 promoter, but also when is targeted in phloem companion cell through  SUC2 promoter, 

although with a very small difference in terms of leaf number (Searle et al., 2006).

A possible explanation for this phenomenon comes from a recent report, in which a role of SOC1 in 

reducing FLC mRNA level is proposed (Seo et al., 2009), which could explain the promotive effect 
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of SOC1 on FT. Microarray analysis comparing wild-type, loss of function and over-expressor of 

SOC1 revealed that this gene negatively regulates a set of cold-regulated (COR) genes (Seo et al., 

2009). This repression is not direct, but acts through the CRT/DRE binding factors (CBFs), which 

are key regulators of the cold response pathway in  Arabidopsis and positively regulate the  COR 

genes (Thomashow, 1999). SOC1 protein binds to the promoters of the CBF1-3 genes, as shown by 

ChIP (Seo et al., 2009). On the other hand, over-expression of the CBFs with 35S promoter causes 

an increase in  FLC expression. Therefore, there is a feedback loop, so that transient cold would 

promote  CBFs,  and  consequently  FLC expression  and  SOC1 repression,  while  floral  induction 

would activate SOC1 that represses the cold-response and FLC, further promoting flowering.

1.6.1.4 AGL24

AGAMOUS-LIKE24 (AGL24) encodes another MADS-box transcription factor that promotes the 

floral transition. Its expression is also regulated by different floral pathways, such as photoperiod, 

gibberellin, autonomous and vernalisation pathways, so that it has been proposed as another floral 

pathway integrator (Yu et al., 2002; Michaels et al., 2003; Liu et al., 2008). 

agl24 mutants are moderately late flowering, both in LD and SD, so that they are still photoperiod-

sensitive. The effect of this gene is dosage-dependent, since plants heterozygous for the mutation 

present an intermediate flowering phenotype (Michaels et al., 2003), and the late flowering degree 

in plants harboring RNAi against  AGL24 depends on the remaining expression level of this gene 

(Yu et al.,  2002).  It  is  expressed in many tissues,  but especially in inflorescence meristems,  in 

young floral primordia until stage 2 (Michaels et al., 2003), and in other floral organs (Yu et al., 

2002). AGL24 is affected by photoperiod. In co mutants its expression level is decreased compared 

to wild-type, although not affected in ft mutant (Yu et al., 2002). 

AGL24, like SOC1, increases in expression during development (Liu et al., 2008), and it is also up-

regulated upon vernalisation (Yu et al, 2002), although its mRNA level is not regulated by  FLC 

(Michaels et al., 2003). Moreover, the late flowering of  agl24 is not suppressed by vernalisation, 

and it is not dependent on FLC (Michaels et al., 2003).

SOC1 and  AGL24 directly activate each other, and they are mutually dependent. In  35S::SOC1 

there is an increase in AGL24 mRNA, and in 35S::AGL24 an increase in SOC1 mRNA (Yu et al., 

2002;  Michaels  et  al.,  2003).  SOC1 is  activated  directly  by  AGL24, as shown by an inducible 

system, and in agl24 mutants less SOC1 mRNA is present at the SAM during floral transition (Liu 

et  al,  2008).  Moreover,  over-expression  of  AGL24 with  35S promoter  causes  early  flowering, 
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although soc1 mutation partially suppresses  this effect, so that AGL24 should promote flowering in 

part  through  SOC1.  Similarly,  over-expression  of  SOC1 with  35S promoter  is  also  partially 

suppressed by agl24 mutation (Yu et al., 2002; Michaels et al., 2003). Indeed, ChIP experiments 

confirmed that AGL24 binds to SOC1 promoter and that SOC1 binds to AGL24 promoter (Liu et al., 

2008).  Binding sites in  the identified  CArG boxes were mutated  and proved to be biologically 

relevant for the transcriptional activation (Liu et al., 2008). 

Interestingly,  GA treatment induces both  SOC1 and  AGL24,  but in  agl24 and  soc1  mutants the 

expected up-regulation of SOC1 and AGL24 respectively are abolished (Liu et al, 2008). Moreover, 

GA  does  not  accelerate  flowering  on  soc1  agl24 double  mutant,  while  it  still  can  accelerate 

flowering in the single mutants (Liu et al., 2008).

1.6.1.5 LFY as an integrator

LFY encodes a plant-specific transcription factor, which does not belong to a gene family (Parcy et 

al., 1998). 

It is expressed in young leaf primordia and its mRNA increases until a maximum in young floral 

meristems, gradually under SD condition or more sharply upon shift to LD  (Hempel et al., 1997; 

Blázquez et al.,  1997).  LFY is a pathway floral integrator,  it  specifies floral identity and it also 

promotes determinacy (Weigel et al., 1992). As a floral integrator, a correlation was shown between 

the number of copies of LFY introduced in Arabidopsis and an effect on acceleration of flowering 

time (Blázquez et al., 1997). It is activated not only by the photoperiodic pathway, but also by the 

gibberellin pathway.  It has been also shown that regions of  LFY promoter that are activated by 

gibberellins are distinct from the ones that respond to photoperiod (Blázquez and Weigel, 2000). 

Moreover, recent findings proposed SPL3 to be directly upstream of LFY (Yamaguchi et al., 2009; 

see  paragraph 1.6.3).  It  was  already shown that  activation  of  CO protein  through an inducible 

system driven by 35S promoter leads to rapid up-regulation of LFY (Simon et al., 1996). This effect 

is probably not direct, and the activation by the photoperiodic pathway is mediated via SOC1 (Lee 

et al.,  2000; Moon et al., 2003; Samach et al., 2000). ChIP analysis showed that SOC1 protein  

directly binds to the LFY promoter (Liu et al., 2008; Lee et al., 2008). LFY expression level is also 

reduced in agl24 mutants (Yu et al., 2002), and even in this case, binding of AGL24 protein to the 

LFY promoter has been proven by ChIP, also in regions that overlap with SOC1 binding sites (Lee 

et al., 2008). Recently it has been proposed that a physical interaction between SOC1 and AGL24 

proteins would be relevant for the direct activation of  LFY (Lee et al., 2008b) (Fig. 5, A). SOC1 
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protein  expressed  in  protoplasts  was  localized  in  the  cytoplasm,  while  AGL24  protein  in  the 

nucleus. When AGL24 was co-transfected with SOC1 in protoplasts, they both co-localized in the 

nucleus (Lee et al., 2008b).  

LFY is also activated by gibberellins (Blázquez et al., 1998). In the ga1 mutant, which has dramatic 

reduction of endogenous GA level,  LFY promoter activity is strongly reduced, and treatment with 

GA3 restores the activity of  LFY (Blázquez et al., 1998).  35S::LFY in  ga1 recovers the ability to 

flower in SD, but does not completely complement for the early flowering phenotype, suggesting 

that GAs regulate not only LFY expression but also the competence to respond to LFY (Blázquez et 

al.,  1998). Another report proved also GA4 to be able to induce flowering and to activate  LFY 

promoter (Eriksson et al., 2006). At the same time, a sharp increase of GA4 was observed during 

floral  transition  at  the  apex.  This,  together  with  the  fact  that  the  expression  of  several  GA 

biosynthetic enzymes did not change at the apex, and with some evidence of transport of GA4 from 

leaves to apex, suggests that gibberellins may also act as a transported signal (Eriksson et al., 2006). 

A factor that could mediate the activation of  LFY by gibberellins is AtMYB33, a transcriptional 

activator  of  a  large  gene  family  (Gocal  et  al.,  2001).  AtMYB33 has  a  very  similar  pattern  of 

expression to the one of LFY in response to GA, and its protein product binds to the LFY promoter 

in vitro (Gocal et al., 2001).

1.6.2 FUL in the floral transition

Several functions of the  FUL gene have been described.  FUL  has a key role in carpel and fruit 

development, since loss of function of this gene largely affects development of the siliques, which 

fail to elongate (Gu et al., 1998). It has a further role in the floral transition, although the ful mutant 

has only a very subtle late  flowering phenotype,  depending on the conditions  (Ferrándiz et  al., 

2000). Finally it has been shown to be involved in some aspects of meristem determinacy (Melzer 

et al, 2008).

The mRNA of this gene accumulates in two distinct phases. In the first phase, it is very similar to 

SOC1, as it is present in inflorescence meristems, where it shows a sharp increase during the floral 

transition (Mandel and Yanofsky,  1995a;  Hempel et al.,  1997), and  not in flower primordia at 

stages 1 and 2, while it reappears in stage 3.  AP1 represses  FUL in stages 1 and 2, since in  ap1 

mutant FUL is also expressed in those stages (Mandel and Yanofsky, 1995a). In the second phase, it 

is  expressed  in  the  carpel  walls,  reflecting  its  function  in  carpel  development  (Mandel  and 

Yanofsky, 1995a). FUL is also expressed in cauline leaves, and the ful mutant presents also wider 
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cauline leaves,  due to problems in their  development  and their  cellular  organization (Gu et  al., 

1998). FUL and SOC1 induction by LD at the shoot apex is strongly decreased in ft and co mutants 

(Schmid et al., 2003), delayed in fd mutant and increased in 35S::FD (Wang et al., 2009a). 

A clearer function for FUL in the floral transition has been uncovered through the use of soc1 ful 

double mutants  (Melzer  et  al.,  2008).  Indeed,  ful mutation enhances  the late flowering of  soc1 

mutation,  and while  the  single  mutants  only  partially  suppress  the  early  flowering  of  35S::FT 

constructs, the double mutant almost completely suppresses the effect of FT over-expression. This 

suggests that SOC1 and FUL have a redundant and crucial role downstream of FT during the floral 

transition (Melzer et al., 2008). 

Unexpectedly, over-expression of FUL causes early flowering not only when it is driven by 35S and 

FD promoter, but also when SUC2 promoter is used (Wang et al., 2009a). Moreover,  ft mutation 

suppresses the early flowering of SUC2::FUL, suggesting that the early flowering may be caused 

by an increase in  FT mRNA, similarly to the cases of  SOC1 (Michaels et al., 2005; Searle et al., 

2006) and SPL3 (Wang et al., 2009a). However, the major effect of FUL on floral transition seems 

to be through the meristem, since  amiR-FUL constructs driven by  SUC2 promoter have a minor 

effect on flowering in soc1 mutant, while under the FD promoter they render the soc1 mutant as late 

flowering as soc1 ful double mutants (Wang et al., 2009a).

1.6.3 SPL genes: another chapter in the floral transition?

A family of transcription factors that are named SQUAMOSA PROMOTER BINDING PROTEIN-

LIKE (SPL) is characterized by the presence of a SBP-box domain (for SQUAMOSA PROMOTER 

BINDING PROTEIN), and is encoded by 16 genes in Arabidopsis. Among them, 10 members of 

this  family are  regulated  by  miRNA156 (Rhoades  et  al,  2002).  This family of  genes has  been 

implicated in several processes, particularly plant phase transitions (Cardon et al., 1997; Cardon et 

al., 1999; Chuck et al., 2007; Schwartz et al., 2008; Wu and Poethig, 2006; Xie et al., 2006).

Plants experience several developmental transitions during their life cycle (Bäurle and Dean, 2006; 

Poethig,  2003).  The  vegetative  phase  change  is  the  transition  from  the  juvenile  to  the  adult 

vegetative stage, and it has to be achieved to undergo the subsequent reproductive phase change (or 

floral  induction), which is the transition from the vegetative to reproductive phase. MicroRNAs 

miR156  and  miR172  play  a  role  in  these  transitions.  miR156  is  expressed  highly  early  in 

development  and  decreases  with  time  (Wu  and  Poethig,  2006),  while  miRNA172  shows  the 

opposite trend (Aukerman and Sakai 2003; Jung et al., 2007). Over-expressing miRNA156 results 
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in longer expression of juvenile vegetative traits and delay in flowering (Wu and Poethig, 2006; 

Schwab et al., 2005). Over-expressing miRNA172 results in acceleration of flowering (Aukerman 

and Sakai 2003; Chen 2004; Jung et al., 2007).

Some of the targets of these miRNAs have also been involved in floral transition.  For example, 

some of the SPL factors whose mRNAs are targeted by miRNA156,  such as  SPL3,  SPL4,  and 

SPL5,  are  also  involved  in  the  floral  transition,  since  their  over-expression  results  in  early 

flowering, especially when the regions targeted by the miRNA are eliminated or mutated (Cardon et 

al., 1997; Wu and Poethig, 2006). A specific sequence at the 3´UTR of SPL3 mediates translational 

inhibition of the miRNA (Gandikota et al., 2007). These three related genes act downstream of CO 

and FT at the shoot apex, because they increase in expression upon transfer to LD, but the induction 

is reduced in the co and ft mutants (Schmid et al., 2003).

Recently, a set of reports shed more light on the involvement of the SPLs in the floral transition and 

into their complex regulation.  SPL3 was shown to activate directly the genes LFY,  FUL and AP1 

(Yamaguchi et al., 2009). Transgenic plants carrying  35S::miR156 showed reduced level of  LFY, 

FUL, and AP1 mRNAs, while in 35S::SPL3Δ plants (SPL3 mRNA without the miRNA target site at 

the 3´ UTR) the expression of  LFY,  FUL,  and in some condition  AP1,  is increased.  Moreover, 

single loss of function mutations in  LFY,  FUL, and  AP1 were, to different extents and each for 

different aspects, all partially epistatic to 35S::SPL3Δ (Yamaguchi et al., 2009). ChIP experiments 

proved direct binding of  SPL3 protein to  LFY,  FUL,  and  AP1 genomic loci (Yamaguchi et  al., 

2009). Another report confirmed the same results for SPL3 protein with the FUL gene (Wang et al., 

2009a).  35S::SPL4Δ and  35S::SPL5Δ resulted in a similar phenotype, suggesting redundant roles 

for SPL3-4-5 (Yamaguchi et al., 2009). 

Surprisingly,  SPLs act both in the phloem and in the SAM. Plants carrying  FD::MIR156 flower 

very late, carrying SUC2::MIR156 slightly late, and the combination of the two transgenes cause an 

additive effect (Wang et al., 2009a). Also the non-targeted version of SPL3 driven by SUC2 or FD 

promoters causes early flowering. Interestingly, ft mutation suppresses the effect of SPL expressed 

in the phloem (Wang et al.,  2009a). When  FD::MIR156 is introduced into the  fd mutant, so that 

LFY and  AP1 mRNA levels are strongly decreased (Wang et al., 2009a), the resulting phenotype 

resembles ft lfy, fd lfy and lfy ap1 double mutants (Ruiz-Garcia et al., 1997; Abe et al., 2005; Wigge 

et al., 2005). 

SPL9 was shown to be involved, redundantly with SPL15, in the juvenile-to-adult transition, and the 

loss  of  function  of  one  of  these  genes  also  slightly  delays  flowering,  while  spl9 spl15 double 
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mutants enhance this late flowering (Schwartz et al., 2008).  SPL9 is expressed stronger in apices 

exposed to LD, and it  is  localized  at  the provascular  strands below the meristem and in floral 

anlagen and early floral primordia (Wang et al., 2008; Wang et al., 2009a). Interestingly, SPL9 still 

increased during floral transition in ft tsf double mutants, so that in addition to photoperiod, an age-

dependent pathway independent of photoperiod regulates SPL9 (Wang et al., 2009a). Similarly, the 

level of SPL3 expression was increased in 35S::FT:GFP plants, but 35S::miR156 was not epistatic 

to 35S::FT:GFP and 35S::SPL3Δ enhanced its effect, suggesting both a response to FT and another 

pathway parallel  to  FT (Yamaguchi  et  al.,  2009).  In addition,  over-expressing  SPL3 accelerates 

flowering of fd mutants, and FD::MIR156 increases the late flowering of 35S::amiR-FT/TSF (Wang 

et al., 2009a), so that FD and SPL3 would act also in parallel.

Given the redundancy of SPL factors, one of the reports showed that several MADS-box genes, 

particularly FUL, SOC1 and AGL42 were increased in 35S::MIM156 (a target mimic of miR156), 

in  which  SPLs levels  are  higher,  and  decreased  in  35S::MIR156 (Wang  et  al.,  2009a).  While 

induction of  SPL9 by a GR inducible system led to a strong increase of  FUL expression, ChIP 

experiments showed that SPL9 binds to SOC1 and AGL42 loci (Wang et al., 2009a).

Recently it was also reported that miR156 acts upstream of miR172 to regulate its expression (Wu 

et  al.,  2009).  This  control  is  achieved  via  SPL9 that,  redundantly  with  SPL10,  promotes 

transcription of miR172. Since SPL9 and other SPLs promote miR156 transcription, a negative loop 

is established, in which the miRNAs are positively regulated by the transcription factors they target, 

which could be a way to keep a certain developmental phase more stable and avoid abrupt changes 

(Wu et al., 2009). 

1.7 The later phase of the floral transition: from inflorescence meristem to floral meristem

1.7.1 Floral meristem identity genes

Upon integration of the flowering signals, the floral pathway integrators eventually induce a set of 

genes called “floral meristem identity genes”, which initiate a developmental patterning program 

for  the  generation  of  floral  organs  (Long  and  Barton,  2000).  This  group  comprises  the  genes 

LEAFY (LFY),  APETALA1  (AP1),  CAULIFLOWER (CAL),  and  to  a  certain  extent  also 

FRUITFULL (FUL) (Blázquez  et  al.,  2006).  During  the  transition  to  the  reproductive  phase  a 

reprogramming  of  the  primordia  takes  place  at  the  apex,  and  these  genes  are  responsible  for 

establishing a robust network which irreversibly starts to confer floral identity on the meristem. 
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Fig. 5. Transcriptional loops mediating floral commitment. VM: vegetative meristem. IM: inflorescence meristem. 
FM: floral meristem. See text for details.

1.7.1.1 LFY

LFY as  a  floral  pathway  integrator  has  been  discussed  in  previous  paragraphs.  Upon  floral 

transition,  this  gene has  also  two essential  functions  in  conferring floral  meristem identity  and 

determining floral organ patterning (Weigel et al., 1992), and these two functions are distinct (Parcy 

et al., 1998).

Loss of function of LFY causes conversion of the floral meristem into inflorescence shoots (Schultz 

and Haughn, 1991; Weigel et al., 1992). Conversely, ectopic expression of LFY causes conversion 

of the inflorescence meristem into a terminal flower (Weigel and Nilsson, 1995). The mechanism 

by which LFY determines floral meristem identity and organ patterning is based on the induction of 

floral homeotic genes. 

To define floral meristem identity LFY directly activates AP1 and CAULIFLOWER (CAL) (Mandel 

and Yanofsky, 1995b; Wagner et al., 1999; William et al., 2004). Moreover, LFY activates the gene 

encoding  the  homeodomain-zipper  transcription  factor  LATE MERISTEM IDENTITY 1 (LMI1), 
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which is also a positive regulator of CAL, since loss of function of LMI1 in weak lfy alleles reduces 

CAL expression and enhances the lfy phenotype (Saddic et al., 2006). Both LFY and LMI1 proteins 

directly bind to the promoter of CAL (William et al., 2004; Saddic et al., 2006) (Fig. 5, B). 

To define floral patterning,  LFY activates genes such as  AP3 and  AGAMOUS (AG) (Parcy et al., 

1998). The activation of AP3 needs UNUSUAL FLORAL ORGANS (UFO) as a co-activator (Parcy 

et al., 1998), while the activation of  AG needs the  homeodomain transciption factor  WUSCHEL 

(WUS) as a co-activator (Lenhard et al., 2001; Lohmann et al, 2001). 

1.7.1.2 AP1 and CAL

AP1 is a floral meristem identity gene which encodes a MADS-box transcription factor.

AP1 and CAL are expressed in young flower primordia that rise from the inflorescence meristem, 

and they act in a redundant way to specify floral meristem identity (Mandel et al., 1992; Kempin et 

al.,  1995). AP1 expression  rises  later  than  LFY,  and  it  is  an  indicator  of  floral  determination 

(Hempel et al., 1997). CAL is the closest relative of the AP1 gene, and it plays redundant functions 

with it (Kempin et al., 1995). Loss of AP1 gene causes defects in floral meristem identity and floral 

organ identity  (Irish and Sussex,  1990),  while  cal mutation  does not  show a phenotype,  but  it 

strongly enhances the  ap1 mutation,  so that in  ap1 cal double mutants the floral meristems are 

completely  transformed  into  inflorescence  meristems,  and  instead  of  flowers  produce  new 

meristems  that  re-iterate  the  pattern  (Bowman  et  al.,  1993).  Later  in  development  even  these 

structures achieve floral identity.  Over-expression of  AP1 causes conversion of the inflorescence 

meristem into a terminal flower (Mandel and Yanofsky, 1995b). 

AP1 and  CAL, which are activated by  LFY, also positively regulate  LFY (Bowman et al., 1993; 

Liljegren et al., 1999) creating a feedback loop that establish a stable floral determination (Fig. 5, 

B). 

1.7.1.3 FUL

As a floral meristem identity gene,  FUL is maybe responsible for the residual floral fate that ap1 

cal double mutants eventually show, because  ap1 cal ful triple mutants never acquire floral fate, 

they fail to flower and produce leafy shoots (Ferrándiz et al., 2000). However, it could also be that 

the up-regulation of  FUL in the  ap1 background (Mandel and Yanofsky, 1995a) would lead this 

gene to partially take over the function of the AP1 and CAL in their absence, since these three genes 

are closely related in terms of sequence (Mandel and Yanofsky, 1995a). Alternatively,  FUL could 
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have a function in positively regulating LFY activation, because in the ap1 cal ful triple mutant LFY 

expression is reduced compared to ap1 cal double mutants, and 35S::LFY partially overcomes the 

loss of floral determination of the triple mutants (Ferrándiz et al., 2000).     

Finally,  a  recent  report  suggests  a  new perspective  in  which  SOC1 and  FUL affect  meristem 

determinacy  (Melzer  et  al.,  2008).  The  soc1 ful double mutant  shows a peculiar  “inflorescence 

reversion” phenomenon (see Tooke et al., 2005, for a definition), which allows further vegetative 

growth after flowering, which again proceeds to another flowering phase. This cycle is repeated 

several  times.  This  behaviour,  together  with  the  marked  secondary  growth  and  the  extreme 

longevity of these double mutants, resembles the perennial plant life style (Melzer et al., 2008). 

1.7.2 TFL1

A  gene  with  an  opposite  role  to  genes  like  LFY  or  AP1,  and  which  conversely  specifies 

inflorescence shoot identity, is TERMINAL FLOWER1 (TFL1). Loss of function of this gene causes 

the  inflorescence  shoot  to  be  converted  into  a  floral  meristem,  with  resulting  terminal  flowers 

(Shannon and Meeks-Wagner, 1991). 

TFL1 is expressed in the center of the SAM (Bradley et al., 1997), where it prevents the expression 

of  AP1 and  LFY,  and  consequent  termination  of  the  floral  meristem  (Fig.  5,  C).  Indeed,  the 

transformation of the inflorescence meristem into a floral  meristem in  tfl1 mutant  is caused by 

ectopic expression of AP1 and LFY (Weigel et al., 1992; Bowman et al., 1993; Gustafson-Brown et 

al., 1994;  Bradley et al., 1997). Over-expression of TFL1 with 35S promoter causes late flowering, 

enhanced in SD, by delaying the expression of  LFY and AP1, but without a direct block on them 

(Ratcliffe et al., 1998). In contrast, LFY represses TFL1 (Ratcliffe et al., 1999; Parcy et al., 2002), 

while  AP1 and  CAL  negatively  regulate  TFL1 (Liljegren  et  al.,  1999;  Ratcliffe  et  al.,  1999). 

Moreover, TFL1 protein was shown to be mobile, and to spread beyond the site where its mRNA is 

synthesized. A signal from LFY would promote the movement of TFL1 protein, as in lfy mutant the 

protein localization is restricted similarly to one of the mRNA (Conti and Bradley, 2007).

TFL1 plays a role also in flowering time as a repressor of the floral transition, since tfl1 mutants are 

early  flowering  (Shannon  and  Meeks-Wagner,  1991;  Bradley  et  al.,  1997). However,  the  two 

functions in shoot identity and flowering do not seem to be separate, but rather based on a general 

mechanism this gene employs to regulate the transition at the SAM (Ratcliffe et al., 1998).

TFL1 does  not  encode a  transcription  factor,  but  has  homology to  phosphatidyl  ethanolamine-
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binding proteins (Bradley et al., 1997), like FT. It is quite surprising that, despite the high sequence 

similarity  (about  59% amino acid  sequence  identity)  and almost  an  identical  three-dimensional 

structure between these proteins (Ahn et al., 2006), they have opposing functions. In one report, an 

external loop was proposed to be responsible for the antagonistic activity between the two proteins 

(Ahn et al., 2006). In another report, it has been shown that even a single amino acid is important 

for their distinct roles, since exchanging this residue between the two proteins results in almost a 

complete  switch  between  the  activities  of  FT and TFL1 proteins  (Hanzawa et  al.,  2005). This 

similarity would suggest common biochemical properties and similar molecular function, such as 

the  interaction  with  the  same partners.  TFL1 may  then interact  with  FD to  compete  with  FT. 

However, a recent report suggested that TFL1 protein has a function in the transport of proteins to 

the protein storage vacuoles, proposing an alternative biochemical function for TFL1 (Sohn et al., 

2007).

1.7.3 Flower development and the ABC model 

Flowers in Arabidopsis, as in other eudicots, are composed of four whorls of organs: sepals, petals, 

stamens and carpels (from the outermost whorl to the center of the flower). The stamens are the 

male  reproductive  organs,  while  the  carpels  are  the  female  structures  that  once  fertilized  will 

produce the fruit. Genetic studies in  Arabidopsis and  Antirrhinum majus led to the proposal of a 

model  for  flower  development  called  the  ABC  model  (Coen  and  Meyerowitz,  1991).  The 

combination of the different A, B, and C activities give the specific organs of the flower whorls: A 

for the sepals, A and B together for the petals,  B and C for the stamens and C for the carpels 

(Krizek and Fletcher, 2005, for a review). The homeotic genes belonging to the ABC functions are 

all MADS-box genes, except for  AP2. In  Arabidopsis the A function genes are  AP1 and  AP2, B 

function  genes  AP3 and  PISTILLATA  (PI),  and  the  C  function  gene  is  AGAMOUS (AG). 

Modifications of the model were included with the discovery of SEPALLATA (SEP) genes, which 

are necessary for the development of all the four whorls of organs. It has been suggested that A, B, 

C  and  SEP  proteins  act  as  multimeric  complexes  to  activate  downstream  genes  (Jack,  2001; 

Theißen and Saedler, 2001, for reviews).

1.7.4 Flowering time genes regulate floral patterning

AP1 as a transcription factor has an additional role as a repressor, and it was demonstrated that it 

controls AGL24 (Yu et al., 2004), SVP,  SOC1 (Liu et al., 2007) and FUL (Mandel and Yanofsky, 
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1995a) genes by repressing their transcription in floral meristems. This sort of feedback loop is 

probably needed to repress these genes in the floral meristem once the floral transition has occurred. 

At that point reversion to an inflorescence or vegetative meristem must be avoided, and repression 

of flowering time genes by AP1 is believed to be one of the mechanisms that avoids floral reversion 

(Fig. 5, A). All these four genes are ectopically expressed in ap1 mutant, and the three genes SVP, 

AGL24 and SOC1 are down-regulated upon activation of AP1 (Liu et al., 2007; Yu et al., 2004). It 

has been demonstrated by use of ChIP that AP1 protein binds to cis-regulatory regions of all these 

three genes (Liu et al., 2007). This, together with the fact that over-expression of SVP (Masiero et 

al., 2004), AGL24 (Yu et al., 2004), or  SOC1 in combination with one of the other two, leads to 

partial reversion of the floral meristem into inflorescence shoots, and that mutations in SVP, AGL24 

or SOC1 alleviates the inflorescence character of the flowers of ap1 mutants, suggests they have a 

role in inflorescence identity (Liu et al, 2007). However, recently an additional role for  AGL24, 

SVP and  SOC1 in floral meristem determination has been hypothesized (Liu et al.,  2009a for a 

review). 

AGL24 and SVP redundantly control flower meristem identity with AP1 (Gregis et al., 2006; Gregis 

et  al.,  2008).  After  floral  transition,  AGL24 and SVP proteins,  in  agreement  with  the  mRNA 

pattern,  are  localized  in  floral  meristems  during  stages  1  and  2  of  flower  development,  and 

disappear at stage 3 (Gregis et al., 2009). AP1-AGL24 and AP1-SVP protein dimers interact with 

the LUG-SEU co-repressor complex (Gregis et al., 2006), which regulates AG (Sridhar et al., 2004). 

Indeed, in agl24 svp double mutant, which has a temperature-dependent floral phenotype, the class 

B and C genes  AP3 and  AG are deregulated (Gregis et al.,  2006), and  LUG down-regulation in 

agl24 svp enhances the floral  defects  of the double mutant  (Gregis et  al.,  2009).  ap1 mutation 

enhances the floral phenotype of the double mutant, and ap1 svp agl24 triple mutants resemble ap1 

cal double mutants  (Kempin et al., 1995, Bowman et al., 1993; Gregis et al., 2006). In the triple 

mutant  FUL is  up-regulated,  and  in  the  ap1  agl24  svp  ful quadruple  mutants  the  vegetative 

characters are increased, so that  FUL may take over a function in flower formation in the triple 

mutant  (Gregis  et  a.,  2008).  A role  for  SOC1 has  also  been proposed in  the  context  of  floral 

development.  soc1  agl24  svp triple  mutant  has  more  floral  defects  than  the  svp  agl24 double 

mutant, so that SOC1, AGL24 and SVP would redundantly regulate flower development  (Liu et al., 

2009b). However, in agl24 svp double mutant SOC1 is ectopically expressed in floral meristems at 

stage 1-2 floral  development,  where it  should not  be expressed (Gregis et  al.,  2009),  therefore 

SOC1 could take over a function in the flower when the other two MADS-box genes are missing. In 
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the soc1 agl24 svp triple mutant, class B (AP3 and PI) and C (AG) genes are deregulated (Liu et al., 

2009b). By ChIP, both SVP and AP1 proteins has been shown to bind genomic regions of AG, AP3, 

PI  and  SEP3 in the same fragments, and AGL24 protein binds when  SVP is not present. SOC1 

protein binds to AG, AP3 and PI when AGL24 and SVP are not present (Gregis et al., 2009). 

AGL24,  SVP and  SOC1 redundantly repress  SEP3, which is up-regulated in  svp mutant and even 

more in combinations of double or triple mutants of these genes, depending on the developmental 

stage (Liu et al., 2009b). In an another report, SVP protein was also shown to bind SEP3 promoter 

by ChIP, and again AGL24 and SOC1 also bind but only in absence of  SVP (Liu et al., 2009b). 

Interestingly,  SVP could recruit TFL2 protein to  SEP3 genomic region. The interaction between 

SVP and TFL2 proteins was detected by yeast two-hybrid, and with other methods in vitro and in  

vivo (Liu et al., 2009b). Moreover, they bind to the same region of  SEP3, and TFL2 binding is 

decreased in the svp mutant (Liu et al., 2009b). 

Fig. 6. The cellular structure of the shoot apical meristem. The division in layers (L1, L2 and L3) is depicted on the 
left side. The division in domains is depicted on the right side. CZ: central zone. PZ: peripheral zone. RZ: rib zone. SC: 
stem cells. OC: organizing center. 

1.8 The shoot apical meristem: balance between stem cell maintainance and organ production 

Plant meristems are the source of new cells for the plant growth. Almost all the growth of a plant 

after embryogenesis is due to the action of two apical meristems: the shoot apical meristem (SAM), 

which is responsible for the formation of the aerial part of the plant, or above-ground part, and the 

root apical meristem (RAM), which forms the below-ground structures.

At the SAM, three layers of cells can be distinguished: the L1, at the very tip of the apex, in which 

cells only divide in anticlinal plane, gives rise to the epidermis;  the L2, in which the cells also 

divide in anticlinal plane, gives rise to mesophyll cells; the L3, in which the cells divide in more 
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random planes, anticlinally and periclinally, gives rise to the central tissue of the leaf and stem (Fig. 

6). Moreover, three zones have been classically described based on functional and cyto-histological 

point of view: the central  zone (CZ), which contains pluripotent stem cells; the peripheral zone 

(PZ), where the differentiation into lateral organs takes place; the rib zone (RZ), which provides 

multipotent cells for the differentiating stem that supports the SAM (Fig. 6). 

The SAM is responsible to keep the balance between a pool of stem cells that are maintained in that 

state and the production of differentiated tissues incorporated into the organs. 

The mechanism by which meristems remain undifferentiated is based on a pathway in which the 

main actors are the gene  WUSCHEL (WUS) and the  CLAVATA (CLV) family genes (Carles and 

Fletcher,  2003;  Dodsworth,  2009,  for  a  review).  The  homeodomain  transcription  factor  WUS 

promotes stem cell production through a non-cell-autonomous signal to activate cell division (Laux 

et al., 1996). In wus mutants, after formation of a few organs premature termination of the SAM and 

floral meristem occurs (Laux et al., 1996; Mayer et al., 1998).  CLV1,  CLV2 and  CLV3 genes are 

components  of  an  extracellular  signaling  pathway  that  acts  to  limit  the  expansion  of  the 

undifferentiated  stem cell  population  in  the  SAM and floral  meristems  (Clark,  2001).  WUS is 

expressed in the so-called organizing center (OC) while CLV3 is expressed by the stem cells region 

(SC) (Fig. 6). WUS activates CLV3, and the CLV pathway represses WUS restricting its expression 

and therefore negatively regulates stem cell production (Schoof et al, 2000). The result of this loop 

is  a  balance  in  the  meristem  homeostasis  so  that  the  loss  of  cells  going  to  new  organs  is 

counteracted by the gain of new stem cells.  

SHOOTMERISTEMLESS (STM)  is  another  gene  expressed  in  the  SAM  that  plays  a  role  in 

maintaining the meristem in an indeterminate state (Long et al., 1996). It acts independently of the 

WUS/CLV pathway, preventing cell differentiation in the meristem. STM encodes a homeodomain 

transcription factor, and it is part of the family of KNOX (KNOTTED1-like HOMEOBOX) genes, a 

group including also KNAT1, KNAT2, and KNAT6, which are also expressed in the SAM and play 

redundant functions with STM (Carles and Fletcher, 2003; Dodsworth, 2009). 

The floral transition, which marks the critical passage from vegetative to reproductive phase, and 

eventually commits the plant to the production of flowers, is reflected in a change in the apical  

meristem identity  (Fig.  7).  Initially,  the  meristem at  the  shoot  apex  of  a  plant  functions  as  a 

vegetative  meristem,  which  is  responsible  for  the  vegetative  growth of  the  plant  and produces 

leaves and shoots. When the decision to flower has been taken, the meristem undergoes the floral 

transition and becomes an inflorescence meristem, which in turn produces floral meristems. Floral 
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meristems arise on the flanks of the inflorescence meristem, and all the floral organs composing the 

flowers  are  ultimately  derived  from  this  meristem.  In  Arabidopsis,  both  vegetative  and 

inflorescence  meristems  are  indeterminate  meristems,  which  means  that  they  are  maintained 

through a pool  of  self-renewing cells.  Conversely,  floral  meristems are determinate  meristems. 

They produce flowers, which are predetermined structures, and they eventually terminate the stem-

cell activity (Sablowski, 2007). 

Interaction between  LFY and the  WUS pathway eventually causes termination of the meristem. 

LFY, together with WUS, activates the floral homeotic gene AGAMOUS (AG) by direct binding to 

its  regulatory sequences  (Lenhard  et  al.  2001;  Lohmann  et  al.  2001;  Hong et  al.  2003).  Upon 

activation,  AG mediates  termination  of  the  meristem  by  repression  of  WUS,  thus  blocking 

indeterminate growth of the floral meristem (Lohmann et al. 2001; Lehnard et al., 2001) (Fig. 5, D). 

Indeed, WUS is expressed in the floral meristem in early phases, but decreases when AG is activated 

and disappears when carpel primordia initiate (Mayer et al. 1998). Therefore, in ag mutants WUS is 

expressed  constitutively  and  a  stem  cell  population  is  produced  in  the  flower,  resulting  in 

continuous production of leaf-like organs (Lenhard et al. 2001; Lohmann et al. 2001). Conversely, 

wus mutants  show  premature  termination  of  floral  meristems  similar  to  the  over-expression 

phenotype of AG (Laux et al. 1996; Mizukami and Ma 1997; Mayer et al. 1998).

Fig. 7. Phase transition at the shoot apical meristem.  A schematic representation of the change in identity of the 
meristem during the floral transition is indicated in the figure. Green color represents vegetative tissues (vegetative  
meristem and leaves), red color the transition meristem, light blue the floral meristem and dark blue the inflorescence  
meristem.

1.9. Genomics approaches to study the floral transition

The transition from vegetative to reproductive growth is a dramatic change requiring a stepwise 

reprogramming of the shoot apical meristem. Upon inductive conditions, in a few days a set of 
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molecular events transforms a vegetative meristem into an inflorescence meristem and eventually 

floral  meristems  arise.  Given the  biological  importance  of  this  switch,  several  groups reported 

studies on global gene expression during the floral transition at the shoot apex. Pioneer work was 

performed already in the 90s on the plant Sinapis alba (Melzer et al., 1990). At that time microarray 

technology was not available, and subtraction hybridisation was used to enrich the extracted RNA 

in transcripts  specifically isolated  from the shoot  apical  meristems.  cDNA libraries  from apical 

meristems  before  the  induction  (vegetative),  during  the  transition  (inflorescence),  and after  the 

transition (floral) were compared. This approach successfully led to the identification of new genes 

involved in the floral transition in Sinapis (Melzer et al., 1990).

More  recently  (Schmid  et  al.,  2003),  a  global  gene  expression  study  at  the  shoot  apex  using 

microarray analysis focused on the floral transition of  Arabidopsis thaliana (both Landsberg and 

Columbia ecotypes). Expression levels of the whole transcriptome were followed and analysed in 

plants that were shifted from SD to LD to induce floral transition. Loss of function mutants were 

included in this study (co,  ft, and  lfy) and compared to wild-type. These experiments provided a 

systematic and complete expression dataset for SAM-enriched apices during floral transition. The 

expression pattern of known genes was largely consistent with previously published data. The only 

limitation of these experiments was the use of entire shoot apices. Indeed, meristems were isolated 

using a razor under a microscope, leading to unavoidable contamination by surrounding leaf tissues, 

so that genes that are expressed in leaves were also analyzed. Moreover, genes expressed at low 

level in the meristem or in small subsets of it could be diluted in the whole apical tissue, while a  

highly specific collection of meristem tissue would enhance the sensitivity to detect these genes 

(Jiao et al., 2009, for an example in leaf cell types). 

1.9.1 “Single cell” technology

Many techniques are available to collect and work on specific cells, without contamination from the 

surrounding tissues. In same cases, a level of “single cell  technology” has been reached (Kehr, 

2003).  Among these approaches  Laser  Capture  Microdissection (LCM) is  particularly powerful 

(Fig. 8). LCM was developed for research in the human and medical field, and the application to 

plant science followed later (Nelson et al., 2006, for a review). Particularly, some specific features 

of  plant  cells  have  led  to  the  necessity  of  some  modifications,  resulting  in  a  further  delay.  

Fortunately, there was a growing interest in recent years for the use of LCM in plants, and there are 

several reports to which it is possible to refer to set up experiments (Asano et al., 2002; Nakazono et 
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al., 2003; Kerk et al., 2003; Inada and Wildermuth, 2005; Yu et al, 2007). LCM technology allows 

to collect specific tissues or cell types. With dedicated protocols the tissue material is prepared in 

order to retrieve nucleic acids or even proteins from the collected tissue. It is then possible to study 

the presence of specific molecules in the tissue under study.  

In order to enhance the power of the tissue specificity with the characterization of the global gene 

profiling of specific tissues or cell types, LCM has been also often coupled to microarray analysis, 

with very good results in terms of detailed gene expression of several tissues with extraordinary 

specificity, even in the case of very small and hidden tissues. This has been successful also in the 

case of plant tissues (Nakazono et al., 2003; Zhang et al., 2007; Jiao et al., 2009), and because in 

these experiments normally the amount of tissue recovered is very low, special procedures of RNA 

amplification have been often associated  with the RNA extracted  from samples  processed with 

LCM. For example, the RNA linear amplification with the T7 polymerase has been shown not to 

affect  relevantly  the  proportion  of  the  different  transcripts,  that  means  that  the  amplification, 

defined “linear amplification”, is balanced (Nygaard and Hovig, 2006; Ginsberg, 2005). So, in the 

case of critically small  amounts  of RNA extracted from small  tissues, this  is normally the best 

choice so far.

Fig. 8. Laser capture microdissection technology.  The LMPC (Laser Microdissection optionally coupled to laser 
Pressure Catapulting) device form P.A.L.M. is shown in panel A. A scheme of how the sample is collected by the use of 
a catapulting laser beam is shown in panel B. A scheme of the samples adhered to the glass slides that are used for the  
laser microdissection is shown in panel C.
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1.9.2 Next-generation-sequencing technologies and gene expression analysis 

Recently  new  technologies  have  been  introduced  for  DNA  sequencing.  These  so-called  next-

generation sequencing methods are based on massive scale DNA sequencing (see Mardis, 2008, for 

a review). Besides the application for sequencing or re-sequencing genomes, and to reveal the sites 

where  proteins  bind  to  DNA  at  the  genomic  level  (“Chip-Seq”),  these  techniques  have  been 

successfully applied to sequence cDNA derived from RNA samples (also called “RNA-Seq”), in 

order to characterize gene expression at a certain stage and/or in a certain tissue. There are already 

several variations on this method, and different platforms are available on the market, with features 

and  costs  depending  on  the  requirements  of  the  investigator.  Two  examples  are  technologies 

developed by 454 (Margulies et al., 2005) and Illumina (formerly Solexa sequencing) (Bennet et al., 

2005). The Illumina Genome Analyzer for example has been used to sequence cDNA from different 

organisms,  including plants (Danilevskaya et  al.,  2008; Peiffer et  al.,  2008). An example of an 

application is the so-called MPSS (massively parallel signature sequencing) (Brenner et al., 2000) 

coupled  with  Illumina  sequencing,  which  uses  17-20  nucleotide  signatures,  and  allows  the 

identification of the different transcripts in a cDNA library of a given sample. This approach has 

been used to perform large-scale gene expression analyses in Arabidopsis (Meyers et al., 2004), for 

example for the floral transcriptome (Peiffer et al., 2008). 

Methods are being developed to quantify the number of transcripts for all the genes and to compare 

these numbers  in different  experiments,  giving rise to an alternative  to microarray analyses  for 

global comparisons of gene expression (Cloonan et al., 2008; Mortazavi et al., 2008; Marioni et al.,  

2008). Studies comparing the results from microarray and sequencing platforms confirmed that the 

two methods are highly comparable,  and the general  trend of the gene expression data  is  very 

similar (Marioni et al., 2008). Nevertheless, sequencing methods have several advantages compared 

to microarray methods. Indeed, available microarrays do not contain complete transcriptomes, they 

suffer from artifacts of hybridisation, and they need several replicates (normally 3 replicate series). 

Sequencing  methods  allow  a  complete  identification  of  the  genetic  material  contained  in  the 

biological  sample,  they  have  no  hybridisation  artifacts  and they  do not  imply  a  strict  need  of 

technical  replicates  since the repetition  of sequencing has been shown to be extremely reliable 

(Marioni et al., 2008). Sequencing allows also discrimination of different splicing variants of genes 

and  permits  the  discovery  of  new un-annotated  genes  or  the  correction  of  mis-annotated  gene 

models. Moreover, microarray experiments can be very demanding in terms of quantity of RNA to 

perform  hybridisations.  Some  sequencing  technologies  require  quantities  well  below  one 
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microgram of  DNA. Moreover,  next-generation  sequencing methods  open up the  possibility  to 

characterize the gene expression profile of other organisms in addition to model species. Indeed, 

microarrays can be performed only when the corresponding chips are produced, while RNA-Seq 

can be applied in principle to all organisms, even when the genome sequence is not available.

1.9.3 Recent genomics studies on SAM

Very recently, a series of reports were published in which these new technologies described above 

were used in various combinations. These studies are applied also to other plants than Arabidopsis, 

taking advantage of the fact that sequencing technologies are less dependent on fully-sequenced 

genomes or availability of dedicated microarray chips. Some of these studies using global gene 

expression analysis are related to the floral transition, or simply to the specific gene expression 

patterns of the shoot apical meristem. In all cases, other techniques have been used to validate some 

of the genes identified by these high-throughput analysis, like RT-PCR and in situ hybridisation.

In  garden  pea,  cDNA  libraries  specific  for  the  shoot  apical  meristem  were  generated,  and  a 

microarray has been designed based on these libraries which has been used to compare global gene 

expression between SAM and non-meristematic tissues (Wong et al., 2008a).   

In maize, several reports describe how, by means of LCM and amplification of the extracted RNA, 

shoot apical meristem gene expression has been characterized by microarray. In one case, wild-type 

and  a  mutant  for  a  specific  homeobox  gene  have  been  compared  by  means  of  a  specifically 

designed  microarray  (Zhang  et  al.,  2007).  In  another  one,  both  microarray  analysis  and  454 

sequencing technology have been used to compare the gene expression between SAM and entire 

seedlings (Ohtsu et al., 2007). Finally, a global gene expression comparison has been done between 

two sub-compartments of the SAM, leading to the identification of a novel gene involved in maize 

shoot and leaf development (Brooks III et al., 2009). Moreover, another group collected SAMs from 

maize in vegetative and early reproductive stages, compared their gene expression through MPSS, 

identified two MADS-box genes that were up-regulated upon floral  transition,  and proved with 

further experiments the involvement of one of these genes in the floral transition (Danilevskaya et 

al., 2008).      

In  soybean,  two papers  report  global  gene  expression  analysis  of  shoot  apical  meristem using 

soybean GeneChip microarrays. In one case, a comparison of the global gene expression profile was 

performed among SAM, non meristematic tissues and axillary meristems (Haerizadeh et al., 2008). 

In the other one, SAMs were collected before and during the floral transition, induced by shifting 
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the plants from LD to SD (flowering in soybean is induced by SD), and global gene expression 

analysis has been performed, with the resulting data suggesting a possible role of auxin and abscisic 

acid in floral induction (Wong et al., 2008b).  

Altogether, these reports testify that we are gradually moving into a new scenario, in which a global 

knowledge of the gene expression profiles occurring at the shoot apical meristem will unravel a 

more complete understanding of the floral transition in plants.  
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OBJECTIVES
Flowering is a complex trait and many studies using several different approaches uncovered a large 

number of genes involved in this  process and also a large number of interactions among these 

genes. From a spatial point of view, leaves perceive the change in photoperiod whereas shoot apical 

meristems produce flowers, so that these two tissues are responsible for triggering distinct genetic 

cascades. While most of the mechanisms regulating the gene cascade responding to the photoperiod 

in the leaves has been elucidated during the past years, the gene cascade which responds early to the 

florigenic signal at the SAM is less well known. This has been caused by the technical problem of 

reaching enough specificity to collect only cells from the apical meristems, which limited the study 

of gene expression on this tissue. We chose two main approaches to characterize the genes involved 

in the floral transition at the meristem.   

One approach is to make use of Laser Capture Microdissection (LCM) technique to achieve the 

spatial tissue specificity on SAM and to avoid contamination of other surrounding tissues. We want 

to set up a system which allows collection of specifically cells from the SAM, and a protocol to 

extract RNA out of this tissue and to perform global gene expression analysis to study the gene 

expression during floral transition induced by photoperiod. This would lead to identification of the 

genes that show a significant increase or decrease in expression during this process, and new genes 

that would be likely involved in the switch from the vegetative to the inflorescence meristem. We 

want to confirm the expression pattern of these genes by means of independent expression studies 

and then place them in the flowering network using other genetic analysis. 

The other approach aims at the characterization of  SHORT VEGETATIVE PHASE (SVP), a gene 

involved  in  repressing  the  floral  transition.  Because  not  too  much  is  known  about  its  spatial 

regulation, we want to test the hypothesis that SVP has different functions, regulating transcription 

not  only in  leaves  but  also in  meristems.  Because  loss  of  function  of  this  gene leads  to  early 

flowering, we want to find which genes are de-regulated in this mutant and are responsible for  the 

premature  floral  transition  at  the  SAM, in  order  to  identify  the  possible  direct  targets  of  SVP 

transcriptional repressor. Finally, analysis of the genetic interactions of  SVP with other flowering 

time genes together with tissue-specific mis-expression studies of this gene will help to clarify and 

separate the functions of SVP in different tissues and to place it in the flowering network. 
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2. Materials and methods

Plant material 

Plants used in this study were Arabidosis thaliana accession Columbia (Col), or Landsberg erecta 

(Ler) in some cases where specified in the text. The alleles carrying the mutations for SOC1, CO, 

FT,  TSF,  FUL,  SVP and  TFL1 in Col background were:  soc1-2,  co-10,  ft-10,  tsf-1,  ful-2,  svp-41, 

svp-31, svp-32, tfl1-18.

The alleles carrying the mutations for SOC1, FT,  FUL, and SVP in Ler background were: soc1-1, 

ft-1, ful-1, svp-3.

35S::SVP line in Col background is from Peter Huijser (described in Masiero et al., 2004).

35S::CO:GR line (described in Simon et al, 1996) is in co-2 background (in Ler).

Insertion  lines  from  the  SALK  collection  were:  SALK_093764  for  the  C19 candidate  gene; 

SALK_070018 for D13 candidate gene.

Plants were genotyped using specific primers (see the list of primers in Appendix I). 

Growth conditions

Seeds before the experiments were treated with stratification on soil at 4°C for 3 days in the dark. 

Plants for the experiments were grown in growth cabinets (unless specified in the greenhouse). 

Long days (LD) were 16 hours of light and 8 hours of dark, short days (SD) were 8 hours of light 

and 16 hours of dark. The temperature in the growth cabinet was 18°C.

Flowering time measurements

Flowering time was scored as number of leaves at the bolting time. The number of rosette leaves 

was counted until the bolting shoot reached around 1 cm of length. Cauline leaves were counted 

when they were all visible on the shoot.

 

Formula to calculate the percentage of induction

For each population (a distinct genotype or a population with a certain time of vegetative growth in 

SD)  the  following  formula  was  used  to  calculate  the  degree  of  induction  in  the  double  shift 

experiments:
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percentage of induction (X) = 
NSD−X

NSD−NLD x 100

Where NSD is the number of leaves at flowering for the plants in SD, NLD is the number of leaves  

at flowering for the plants shifted from SD to LD, and X is the number of leaves at flowering of the 

plants for which the percentage of induction is calculated. NSD, NLD and X are total leaf number 

(rosette plus cauline leaves), calculated as average of the population grown in the same condition. 

Vectors and constructs

To express the gene products of SVP, FT and D13, their complete coding sequence was specifically 

amplified from cDNA by PCR, using primers with Gateway extensions,  and it was inserted into 

Gateway p201 (for  SVP) or p207 (for all the others) pDONR vectors by BP reaction, to generate 

ENTRY vectors. 

An ENTRY clone with SVP.2 was already obtained from the REGIA collection in the pDONR. 

The coding sequence was then inserted into different Gateway pDEST vectors by LR reaction. The 

pDEST vectors were:

-  pSUC2 Gateway,  with the  SUC2 promoter,  which carries  the resistance for spectinomycin  in 

bacteria and for BASTA in planta.

- pKNAT1 Gateway, derived from pGREEN with KNAT1 promoter 

- pFD Gateway, derived from pGREEN with FD promoter

- pLEELA, with Gateway and 35S promoter

The  last  three  vectors  carry  the  resistance  for  Ampicillin  in  E.  coli,  for  Carbenicillin  in 

Agrobacterium, and for BASTA in planta.

For the knock-down constructs using double-strand RNA interference, a region of mRNA from the 

gene of interest (SVP or  D13) of around 200 bp was amplified from cDNA with specific primers 

(see List of primers) including Gateway extensions and was cloned into a Gateway p207 DONOR, 

and then transferred  through LR reaction  into different pDEST vectors derived from pJawohl17-

RNAi 2000 containing  SUC2,  KNAT1, and  UFO promoters in the case of  SVP, and pJawohl8.2 

containing  35S promoter in the case of D13. The 35S vector contains resistance to BASTA while 

the  others  to  Kanamycin  in  planta.  In  this  vector  the  fragment  is  cloned  in  two  opposite 

orientations, with an intron in between, in order to create a hairpin loop of a specific region of the  

gene of interest  that  triggers the RNA interference processes and silence specifically the target 

mRNA (Ossowski et al., 2008b).  
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For artificial microRNA (amiRNA) (Schwab et al., 2006) constructs the MIR319a precursor was 

engineered replacing the original miR319a with an artificial sequence (21mer) specific for the target 

genes and the miR319a* with a sequence that pairs to the amiRNA. The amiRNA was designed 

with the WMD tool (Ossowski et al., 2008b), and primers were generated with this tool and used for 

the  site-directed  mutagenesis  PCR reactions  using  pRS300 plasmid  as  template.  The  amiRNA 

precursors  were  then  cloned  into a  Gateway  p207  DONOR,  and  then  transferred  through  LR 

reaction into the pDEST vector pLeela containing the 35S promoter.

Agrobacterium (strain  GV3101 pMP90 RK) was  transformed  with  the  various  pDEST vectors 

described above.

E. coli transformation

Use DH5α competent cells.

- Add DNA to the cells (aliquot of cells: 50 μl)

- put on ice for 30 minutes

- 42°C in waterbath for 90 seconds

- put on ice for 1-2 minutes

- add 400 μl LB medium

- put at 37°C in the shaker for 1 hour

- spin at 5000g for 2 minutes to collect the cells

- discard the supernatant and replace it with 100 μl of fresh LB. Resuspend the pellet

- transfer to agar plates (LB+antibiotic)

- leave at room temperature until there is no liquid on the plate

- incubate 37°C, overnight 

Agrobacterium transformation (heat shock)

Use  Agrobacterium GV3101  pMP90 RK,  which  requires  Gentamycin,  Rifampicin,  Kanamycin 

antibiotics to be selected.

- Use 3-5 μl (500 ng-3 μg) of plasmid in a 2 ml tube.

- put DNA in competent cells

- mix with the tip of the pipette
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- leave on ice for 30 min

- heat shock: 1 minute liquid nitrogen, then 5 min 37°C

- add 500 μl of LB

- put at 37°C in the shaker for 2 hours

- plate on LB agar plates + the 3 antibiotics + antibiotic to select the vector, at 28°C,  for 3 days

- grow small liquid coltures of the colonies

- make glycerol stocks

Agrobacterium transformation (electroporation)

Use  Agrobacterium GV3101  pMP90 RK,  which  requires  Gentamycin,  Rifampicin,  Kanamycin 

antibiotics to be selected.

- Thaw competent cells on ice (50 μl)

- add plasmid DNA (1 μl of E. coli miniprep) to the cells, and mix on ice

- transfer to a pre-chilled electroporation cuvette. Use the following conditions:

capacitance: 25 μF

voltage: 2.4 kV

resistance: 200 Ω

pulse length: 5 msec

-  immediately  after  electroporation,  add  1  ml  of  LB to  the  cuvette,  and  transfer  the  bacterial 

suspension to a 15 ml culture tube. 

- incubate for 4 hours at 28°C with gentle agitation

- collect the cells by centrifugation, and spread them on LB agar plate containing the 3 antibiotics + 

antibiotic to select the vector

- incubate for 3-4 days at 28°C

- grow small liquid coltures of the colonies

- make glycerol stocks

Plant transformation

Plants were transformed with Agrobacterium strain GV3101 pMP90 RK by floral dipping (Clough 

and Bent, 1998). Plants carrying the transgene were selected in two steps: first either with BASTA 

or kanamycin, according to the resistance in the vector, and then the insertion of the transgene was 

checked  with specific primers  by PCR on genomic DNA extracted from single leaves from the 
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independent lines.  Finally, the T2 progeny was screened, and only plants segregating 3:1 for the 

resistance (plants carrying only one single insertion of the transgene) were kept for further analysis. 

These lines were segregated again in the T3 to select the plant with the insertion in homozygosis. 

Sample collection and fixation for in situ hybridisation and LCM experiments 

Seedlings were collected and fixed with 4% (w/v) paraformaldehyde (in PBS, plus 0.1% Tween-20 

and  0.1% Triton  X-100)  for  in  situ hybridisation  or  Ethanol:Acetic  acid  in  3:1  ratio  for  laser 

capture. The vials with the samples were continuously kept on ice during the harvesting to preserve 

the RNA. To allow penetration of the fixative, after collection the tissue was vacuum infiltrated 

using a pump. The fixative was replaced with a fresh one, and the samples left at 4°C on ice over-

night. The following day the fixative was replaced with a stepwise Ethanol: Water series, at 4°C. 

For in situ hybridisation samples:

- 30% Ethanol, 1 hour

- 40% Ethanol, 1 hour

- 50% Ethanol, 1 hour

- 60% Ethanol, 1 hour

- 70% Ethanol, 1 hour

- 85% Ethanol, over-night

- 95% Ethanol, 4 hours

- 100% Ethanol, over-night

- 100% Ethanol, fresh.

For the LCM samples:

- 85% Ethanol, 4 hours

- 95% Ethanol, 4 hours

- 100% Ethanol, over-night

- 100% Ethanol, fresh

The samples were stored at 4°C in 100% ethanol

Embedding and microtome sectioning

Samples were stained with eosin (0.1% Eosin Y in 100% Ethanol) prior to embedding in parrafin.

Embedding was performed with an automated system, the ASP300 tissue processor (Leica). The 

machine replaces the solution in which the samples are immersed (100% Ethanol) with liquid wax 
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at 60°C through a stepwise procedure. Paraplast Plus (McCormick) was used as embedding wax 

material. Wax blocks with eosin-stained samples were manually prepared with fresh wax at 60°C, 

cooled down in water at room temperature, and then stored at 4°C.

The  embedded  plants  were  sectioned  using  a  rotary  microtome  (Leitz  1512) at  7  micrometers 

thickness for in situ hybridisation and 10 micrometers thickness for laser capture. After microtome 

sectioning the tissue was distended on water on the glass slides, above a heatplate, and once the 

water was removed the samples were adhered on the slides overnight. Superfrost Plus (from Menzel 

Gläser) or Histobond (from Marienfeld) glass slides were used for in situ hybridisation, and PALM 

MembraneSlides (PEN-membrane, 1 mm) from P.A.L.M. were used for LCM. 

In situ hybridisation

Templates for the RNA probes were amplified by PCR using specific primers (see List of primers). 

For AP1 a plasmid (from Mandel et al., 1992) was used to synthesize a probe of 720bp (map n. 45)

For  TFL1 the pJAM2045 plasmid (map n. K4, in pGEM-T) was used to synthesize  a probe of 

0,5Kb of TFL1. 

Probe synthesis.  Reaction mix: 2.5 μl 10x RNA polymerase buffer, 1 μl RNAse inhibitor, 2.5 μl 

5mM ATP, 2.5 μl 5mM GTP, 2.5 μl 5mM CTP, 2.5 μl 1mM DIG-UTP, x μl DNA template (50 ng 

of PCR product), 1 μl T7 polymerase, dH2O to 25 μl. Incubate for 60 min. at 37°C. To stop reaction 

add 75 μl 1X MS (10mM Tris-HCI pH 7.5, 10mM MgCl2 , 50mM NaCl), 2 μl tRNA (100 mg/mL), 

1 μl DNase (RNase free). Incubate for 10 min. at 37°C. Precipitate with 100 μl 3.8M NH4Ac, 600 μl 

EtOH (ice cold). Leave at -80°C for 15 min. Spin down 15 min. at 4°C at 14000 rpm. Wash pellet  

with 200 μl 70% EtOH (ice cold). Spin again, remove supernate and air dry. Resuspend in 50 μl TE. 

Tissue  pretreatment.  Place  slides  in  stainless  steel  racks  and pass  through the  solutions  in  the 

following order: Histoclear 1 (10’), Histoclear 2 (10’), 100% ethanol 1 (1’), 100% ethanol 2 (30”), 

95% ethanol (30”), 85% ethanol, 0.85% NaCl (30”), 50% ethanol, 0.85% NaCl (30”), 30% ethanol, 

0.85% NaCl (30”), 0.85% NaCl (2’), PBS 1 (2’), Proteinase K (1μg/ml) in 100 mM Tris pH 8, 50 

mM EDTA (30’ at 37°C), Glycine 0.2% in PBS (2’), PBS 1 (2’), PBS 2 (2’), 4% paraformaldehyde 

in PBS (10’), PBS 2 (2’), PBS 3 (2’), acetic anhydride (3 ml in drops) in 0.1M triethanolamine pH 8 

(10’), PBS 3 (2’), 0.85% saline (2’). Dehydrate through the ethanol series up to 100% ethanol, wash 

in fresh 100% ethanol.

Hybridization.  Prepare hybridization buffer 50% formamide (32  μl per slide with 22 x 50 mm 
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coverslip + 8μl probe mix with 50% formamide) for 48 slides: 240 μl 10x salts (3M NaCl, 0.1M 

Tris-HCl pH 6.8, 0.1M NaPO4 buffer, 50mM EDTA), 960 μl deionized formamide, 24 μl tRNA 100 

mg/ml, 48 μl 50 x Denhardt’s, 160 μl H2O, 480 μl 50% dextran sulphate. Vortex the hybridization 

buffer, spin down and leave at room temperature. Take the slides out of the rack, allow ethanol to 

evaporate completely.  Heat the probe/50% formamide mix for 2’ at 95°C, cool on ice and spin 

down. Mix the probe with hybridization buffer in a 4:1 buffer : probe ratio. Vortex, spin down and 

leave at room temperature. Draw around sections with a Pap pen and add buffer/probe to slide. 

Lower coverslip onto slides. The coverslips have to be previously washed 15 minutes in acetone 

and  baked.  Place  the  slides  in  sealed  boxes  (kept  humid  inside)  and leave  in  50°C waterbath 

overnight.

Washing. Place the slides in wash buffer 0.1 X SSC (15 mM NaCI, 1.5 mM Na3Citrate) and let the 

coverslips to fall from the slides. Incubate at 50°C for 30’ in wash buffer. Change wash buffer and 

incubate for 45’ at 50°C. Change wash buffer and incubate for a further 45’ at 50°C again. Wash in 

wash buffer 1 h at 50°C, then in PBS 5’ at room temperature.

Antibody staining. Incubate the slides  for  5’ in  Buffer  1 (100 mM TRIS-HCl,  150 mM NaCl. 

Transfer the slides to square Petri dishes, flood with Buffer 2 (0.5% (w/v) blocking reagent in buffer 

1) and incubate for 30’ on a rocking platform. Incubate for 30’ in Buffer 3 (1% BSA, 0.3% Triton 

X-100 in Buffer 1). Incubate in Buffer 4 (Anti-digoxigenin-AP FAB fragment 1:3000 in Buffer 3) 

for 1 h 30’ on a rocking platform. Wash in Buffer 3 (20’ 4 times), Buffer 1 (5’), Buffer 5 (100 mM 

Tris pH 9.5, 100 mM NaCl, 50mM MgCl2 ) (5’). Transfer slides to new Petri dishes and flood with 

Buffer 6 (150 μg/ml NBT, 75 μg/ml BCIP, 24 μg/ml levamisole, in Buffer 5). Cover the trays with 

a lid and leave in the dark. Check after 12 hours under a dissecting microscope.     

Washing and counter staining. To stop the enzyme reaction and to wash off background, put slides 

back in racks and wash for 30’  with: distilled H2O, 70% ethanol, 95% ethanol, 100% ethanol, 95% 

ethanol,  70%  ethanol,  distilled  H2O.  Time  of  washes  will  depend  on  intensity  of  signal  and 

background; if the background is high, wash for longer.  Wash briefly in distilled H2O. Air dry 

slides, add 3 drops of 50% Glycerol, cover with coverslip and let it dry.

Preparation of slides for LCM samples

The slides for LCM were treated to remove possible RNase contamination, with dry heat at 180°C 

for 4 hours. This was followed by UV treatment, by irradiation with UV light at 254 nm for 30 

minutes using a cross-linker UV Stratalinker 1800 (Stratagene). This allows a further sterilisation 
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and also the membranes to become more hydrophilic.

Preparation of slides before LCM 

To dissolve the paraffin,  the slides  were exposed to  histoclear  solvent,  and then to a  series  of 

ethanol/water solutions with increasing concentration of water:

- 100% histoclear, 2 minutes

- 100% histoclear, 2 minutes 

- 100% Ethanol, 1 minute

- 96% Ethanol, 1 minute

- 70% Ethanol, 1 minute

- 50% Ethanol, 1 minute 

- Water, 1 minute. Let it dry.

LCM

LMPC (Laser Microdissection optionally coupled to laser Pressure Catapulting) was used, which is 

modification  of  the  conventional  LCM  machine.  This  device  is  composed  by  a  microscope 

connected to a computer interface, and a laser beam that can cut the samples that are horizontally 

stuck on a glass slide. The machine used was “HAL 100” model (230 VZ) from P.A.L.M., equipped 

with "Axiovert 200 M" from Zeiss. Dedicated software directly controls the beam, and enables to 

draw the shape of the line that the laser will cut. After microdissection of the tissue, a laser catapult-

system can pull the sample into a small collection tube (PALM AdhesiveCaps from P.A.L.M.). 

Recovery of RNA after laser capture

The samples were dissolves from the caps of the collection tubes, to extract the RNA.

- Add RLT buffer (from RNeasy kit, Qiagen) + β-mercapto-ethanol (10 μl for 1 ml of buffer), 100 

μl each tube. 

- set the tube upside-down

- 5-10 minutes at room temperature

- vortex for 10 minutes

- spin with microfuge at 13400 rcf for 5 minutes

- store at -80°C to avoid RNA degradation
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RNA extraction

For  the  samples  processed  by  laser  capture  the  total  RNA  has  been  extracted  with  PicoPure 

extraction kit (Arcturus). For all the other samples total RNA has been extracted with RNAeasy kit 

(Qiagen). The procedures were followed according to the manufacturer´s manuals.

RNA amplification

RNA amplification was performed with RiboAmp HS amplification kit (Arcturus). The procedure 

was  followed  according  to  the  manufacturer´s  manual.  A  general  scheme  of  the  procedure  is 

provided in Fig. 16.

RNA quality assessment

The RNA quality tests were performed with the Agilent 2100 Bioanalyzer (Agilent Technologies).

The kit used for the analysis of the RNA samples with the Bioanalyzer was the RNA 6000 Pico  

Assay (Agilent Technologies).

cDNA synthesis

cDNA synthesis was performed with SuperScript II kit (Invitrogen). 

In the case of the samples  processed by laser  capture the cDNA synthesis  was done using the 

RiboAmp kit where mentioned in the text. 

PCR

The PCR were carried out with the following program:

94°C for 3 min.

        {94°C for 30 s

          55-60°C (depending on the annealing T of the primers) for 45 seconds

          68°C for 30 s - 2.5 min. (depending on the size of the fragment)

        } repeated 25-40 cycles (depending on the level of expression of the gene)

68°C for 5 min.

4°C for 10 min.

PCR mix:

template DNA 3 μl
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primer F (10 μM) 0.5 μl

primer R (10 μM) 0.5 μl

dNTPs (10 mM) 0.5 μl

Brown Taq 

    buffer (10X) 2 μl

Brown Taq 

    polymerase 0.2 μl

water 13.3 μl

Quantitative real time PCR

After  total  RNA extraction  the DNA contamination was removed from the RNA samples  with 

DNAseI treatment (DNaseI from Ambion). A total quantity of 3 μg of RNA per sample was used to 

synthesize cDNA for quantitative real time PCR. The synthesized cDNA was diluted to 150 μl with 

water, and 3 μl were used in the PCR reaction. Amplified products were detected using SyBR green 

I in a IQ5 (Bio-Rad) thermal cycler.  ACTIN2 has been used as a housekeeping gene to normalize 

the expression of the genes investigated.

Buffer for real-time: 

10X buffer (from Invitrogen) 1.2 ml

MgCl2 1M 24 μl

TRITON X-100 18 μl 

SyBR green 19.6 mM

(1/10 diluted in TE pH 7.5) 2 μl  

DNA extraction from plant tissue

Genomic DNA was extracted from leaves using a modification of the Edwards method (Edwards et 

al., 1991). 

- Place about 20 mg of plant tissue in a tube 

- freeze it in liquid nitrogen

- grind tissue with pellet pestle

- add 400 μl of extraction buffer (200 mM TRIS-HCl pH 7.5, 250 mM NaCl, 25 mM EDTA, 0.5% 

SDS) 
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- Vortex for 30 seconds

- centrifuge in table-top microfuge for 10 minutes at maximum speed

- transfer supernatant to new tube (take around 250 μl)

- add 1 volume of ice cold isopropanol and incubate on ice for 5 minutes

- centrifuge in table-top microfuge at room temperature for 5 minutes at maximum speed

- discard supernatant and dry pellet

- add 500 μl of 70% ethanol

- centrifuge in table-top microfuge at room temperature for 5 minutes at maximum speed 

- discard supernatant and dry pellet

- resuspend pellet in 100 μl of TE (Tris HCl 10 mM pH 7.5, EDTA 1 mM pH 8)

- store at -20°C

Use 3 μl for PCR reactions

DNA purification from gel 

DNA for cloning purposes or for synthesizing RNA probes from DNA templates was extracted 

from agarose gels using Qiaex II gel extraction kit (Qiagen) or Nucleospin extract II kit (Macherey-

Nagel). 

Plasmids purification

Plasmids  were  extracted  from  bacteria  and  purified  using  Nucleospin  plasmid  kit  (Macherey-

Nagel).

Illumina-Solexa sequencing

The  sequencing  has  been  performed  by FASTERIS  Life  Sciences  (Geneva,  Switzerland).  The 

method used for the next-generation sequencing for the samples of replicates A and B was based on 

“genomic sample preparation” performed by this company (see Fig. 21).  

For  the  samples  of  replicate  C  the  method  used  was  based  on  the  protocol  for  mRNA-Seq 

transcriptome shotgun sequencing derived from Illumina,  as performed by FASTERIS  (see  Fig. 

21).
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Analysis of short-sequence reads from Illumina-Solexa sequencing

Trimming and Filtering

The data were initially filtered using “Seqclean” (executable dated 2005-08-18). This program trims 

matches  against  user-specified  target  sequences  (here:  the  primer  sequences 

GACGGCCAGTGAATTGTAATACGACTCACTATAGGGAGATCTGTATGCTGG 

and CCAGCATACAGATCTCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTC, and the 

UniVec_Core database (dated 2008-10-08), as well as poly-A tails and ends rich in undetermined 

bases. After trimming, a read may be trashed entirely for one of 3 reasons: (a) the sequence is  

shorter than the minimum length specified via the "-l" parameter (here, 30), (b) the percentage of 

undetermined bases is greater than 3%, and (c) less than 40nt of the sequence is left unmasked by 

the "dust" low-complexity filter. 

Mapping the reads

Each dataset of reads was converted into a blast database using “formatdb”. Because interest was in 

matches  to  known  genes,  the  TAIR8  cDNA  collection  (TAIR8_cdna_20080325)  was  then 

compared to the read databases using  Megablast (settings:  -v 2000 -b 500 -a 4 -W16 -p 0.6 -e 1 

-D3)

The initial runs were performed using the (Mega)blast version BLASTN 2.2.13 [Nov-27-2005]; the 

last runs were done with BLASTN 2.2.21 [Jun-14-2009].

Determining raw expression counts of genes (loci)

The Megablast output was converted to an expression count by the following 4 steps, in this order:

(1)  discard a  match  if  its  bitscore is  5 or  more  below the best bitscore  that  is  reached by the 

respective read

(2) discard a match if it is shorter than 20 bp, or if its edit distance (number of gaps + number of 

mismatches) is 4 or more, or if the match does not start within the first 3 bases of the read (rationale 

for the last condition: sequencing quality is best at the 5' end, therefore a true match should cover 

the 5' end)

(3) discard all matches involving reads that map to more than a single locus (note that a locus can 

encompass more than a single transcript (cDNA))

(4) for each locus, count the number of different reads that map to it (a single read can map multiple 
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times to a locus if the locus has multiple transcripts: yet, the read will be counted only once at this 

step)

The count of step (4) is output as a raw expression count.

P-value method for the identification  of differentially expressed genes

For the identification of the differentially expressed genes based on a p-value,  the values were 

calculated according to the hypergeometrycal distribution (see Marioni et a., 2008), considering the 

replicates A and B. The method was implemented by Daniela Knoll.

In order to be considered as differentially expressed between two time points (here an example 

between +0LD and +3LD), a gene had to fulfill the following criteria:

P−Value a0a3 / P−value a0b0     0,1

P−value (a0a3 / P−value (a3b3     0,1 

P−value (b0b3 / P−value (a0b0     0,1 

P−value (b0b3 / P−value (a3b3     0,1 

Where, for example, P-value(a0a3) is the p-value calculated for a gene between +0LD in replicate 

A and +3LD in replicate A (“intra-replicate”), and P-value a0b0 is the p-value calculated for a gene 

between +0LD in replicate A and +0LD in replicate B (“inter-replicates”).
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3. Global gene expression analysis of the floral transition at the SAM 

collected by LCM using next-generation sequencing

3.1 Defining the floral transition in Arabidopsis thaliana

In order to collect samples of the shoot apical meristem (SAM) in a time course during the floral 

transition, preliminary experiments were done to define the temporal boundaries of this transition. 

The initial phase of this process was of most interest, to find which genes act in the early stages of 

the response to long photoperiods. I did not want to include floral meristems which are produced at 

the flanks of the inflorescence meristem when the transition is completed, because these primordia 

trigger another developmental program, and they would represent a contaminating tissue (Fig. 7 for 

a scheme of the tissues).

3.1.1 Shift and double shift experiments to study the floral transition 

It is possible to induce flowering in  Arabidopsis by shifting plants from short days (SD, 8 hours 

light)  to long days  (LD, 16 hours light).  This approach represents a convenient  way to induce 

flowering in a controlled and synchronized manner.  With this approach it is possible to collect 

samples at the end of the SD period before induction, and then at different days after induction in 

LD, thereby placing events within a temporal framework. Moreover, “double shift” experiments 

were set up, in which plants were grown vegetatively in SD, then shifted transiently to LD, and 

shifted back to SD, to define the critical number of inductive long days required for the plants to be 

induced to flower. Arabidopsis from the Columbia ecotype (Col) were grown two weeks in SD, and 

then divided into 6 groups. 4 groups were each exposed to a different number of LD - in this case 1,  

3, 5, or 7 LD - and then shifted back to SD. Another group was shifted from SD to LD and left in 

LD,  as  a  positive  control,  and the  last  group was  never  shifted  to  LD,  as  a  negative  control.  

Flowering time was scored (Fig. 9, A). Both 7 LD and 5 LD of induction under these conditions 

were enough for the plants to be fully induced to flower, and these plants behave like plants shifted 

to LD permanently in terms of number of leaves produced before flowering. The condition in which 

a plant is fully induced, and irreversibly undergoes the floral transition, can be defined as “floral 

commitment”.  Conversely,  a  transient  exposure  to  3  LD  is  not  enough  to  induce  a  complete 

induction, but it nevertheless has a significant effect in accelerating flowering. Finally, 1 LD does 

not have a significant effect on floral induction, since it does not accelerate flowering compared to 

continuous SD exposure.  
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Genetic  background  has  a  pronounced  influence  on  the  results  of  these  experiments.  Natural 

variation  in  Arabidopsis  thaliana  is  present  at  the level  of responsiveness to  photoperiod.  It  is 

known that the Landsberg erecta (Ler) accession responds earlier than Col to the floral induction. A 

previous report showed that in the case of Ler when plants were grown for 2 weeks in SD and 

shifted  transiently  to  LD  they  responded  already  after  3  LD  with  complete  floral  induction 

(Corbesier et al., 2007).  

Fig. 9. Flowering time scored after “double shift” experiments. Plants were grown initially in short days (SD) for 2 
weeks (Panel A), 3 weeks (Panel B) or 4 weeks (Panel C), shifted to long days (LD, the number of LDs is indicated in 
the X axis) and then shifted back to SD. Flowering time was scored as number of rosette leaves (RLN) plus number of  
cauline leaves (CLN). In panel D, experiment with plants initially grown in SD for 1, 2, 3 and 4 weeks are compared. 
Percentage of induction was calculated with a formula described in the Methods. All the shifts were performed at ZT8. 

Several other parameters can also be changed, affecting the susceptibility to floral commitment, 

such as light quality (Hempel et al., 1997; King et al., 2008), a different number of hours of light in 

the LD or a different amount of time in which the plants are grown in SD before the shift to LD 

(Corbesier et al., 1996). In fact, there is a developmental process that drives Arabidopsis to flower 

eventually in SD, so that older plants are more sensitive to floral induction and more responsive to 
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LD. For example,  in the case of Col,  for plants that are grown 3 weeks in SD, still  5 LD are 

necessary  to  have  a  complete  induction,  but  also  3  LD are  able  to  induce  flowering  in  some 

individuals (Fig. 9, B). The fact that some of these plants are not fully induced by 3 LD causes a 

variation in flowering time that is reflected by the large standard deviation. Moreover, also 1 LD 

has already an effect in accelerating flowering of 3 week old plants. When plants were grown for 4 

weeks in SD, also plants transiently exposed to 3 LD were almost fully induced, as indicated by the 

number of leaves before bolting, and 1 LD had a strong effect in accelerating flowering (Fig. 9, C). 

We can define the “degree of induction” of plants exposed to these double shift experiments, and 

we can express how much quickly the plant responds to LD depending on how much it grew before 

in SD, using experimental data. This value was then plotted as “percentage of induction” following 

a formula (see Methods) which takes into account the flowering time of the plants in continuous 

SD, which would have 0% induction, the flowering time of plants shifted from SD permanently to  

LD, which would have 100% induction, and computes the values of the other treatments based on 

those two extremes. The plot (Fig. 9, D) shows that the more the plants were grown in SD, the more 

they rapidly responded to LD induction. This plot is useful to compare how much a plant can be 

easily induced among different conditions, and how much the time window of the floral transition 

can be lengthened or shortened depending on the initial growth time in SD.   

In a  previously reported study of global  gene expression during floral  transition in  Arabidopis, 

plants were grown 4 weeks in SD before induction in LD, both for Col and Ler ecotypes (Schmid et 

al., 2003). Based on our data, 2 weeks in SD were instead chosen because at this stage plants have 

not  yet  started the flowering process,  and the time window in which floral  induction  occurs is 

longer, allowing a better detection of the temporal activation of the different processes and genes at 

the SAM.     

3.1.2 In situ hybridisation on marker genes

In order to confirm the previous observations based on flowering time and to correlate them with 

the molecular events occurring at the SAM,  in situ hybridisations were performed on wild-type 

Arabidopsis apices using probes for several flowering time genes. Known genes that can be used as 

markers were chosen, such as SOC1,  SVP,  FD and AP1, because they are expressed in meristems 

and they are associated with early events of the floral transition. Previous reports on the expression 

of some of these genes upon shifts to LDs in Ler and Col ecotypes (Searle et al., 2006; Wigge et al., 

2005; unpublished data from our lab) were used as a guideline for our experiments in Col (Fig. 10). 
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Plants were grown for 2 weeks in SD and shifted to LD, and samples for in situ hybridisation were 

collected at +0LD (before the shift), +1LD, +3LD, and +5LD. All the samples were collected eight 

hours after dawn (ZT8), which is also the time when all the shifts were done. The same experiment 

was repeated, and the biological replicates showed the same results.

As  expected, SOC1 mRNA  is  remarkably  rapidly  up-regulated  upon  exposure  to  LD.  Before 

induction no signal was visible for this mRNA by in situ hybridisation (Fig. 11, A). SOC1 mRNA 

starts to be clearly detectable already from the first day after induction in LD (Fig. 11, B). After 3 

LD the expression level increases even more (Fig. 11, C). Conversely SVP, which encodes a floral 

repressor, is strongly expressed in SD before induction and then decreases in expression upon LD 

induction (Fig. 11, D-F). 

Fig. 10. Collection of the samples for in situ hybridisation and LCM. 
Panel A: A general guideline for the temporal expression of flowering time genes is given by experiments previously  
performed on Landsberg erecta ecotype (see text).
Panel B: Schematic representation of the results of in situ hybridisations on wild-type Columbia ecotype for flowering 
time genes that can be used as markers of the floral transition. 
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Fig. 11. In situ hybridisation of flowering time marker genes at the shoot apices of wild-type Columbia plants.  
RNA probes were used to detect SOC1 (A, B, C), SVP (D, E, F), FD (G, H, I) and AP1 (J, K, L) mRNAs. Plants were 
grown 2 weeks in SD and collected before induction at ZT8 (+0 LD) (A, D, G, J), after 24 hours (+1 LD) (B, E, H, K)  
and 72 hours (+3 LD) (C, F, I, L) of induction in LD. Scale bar is 50 μm.

In the case of FD, there is strong expression all along the time course, as observed previously (Fig. 

11, G-I). Following the current model, this suggests that when FT protein reaches the SAM it can 
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immediately interact with FD protein and activate the floral transition. Moreover, there is a small 

change in the expression pattern of FD during the floral transition. In terms of level of expression, 

although difficult to quantify, it seems that there is a reproducible increase in FD mRNA, as also 

reported previously (Wigge et al., 2005; Searle et al., 2006). Also the spatial pattern changes so that  

additional spots of strong expression appear in a region on the flanks of the SAM that is physically 

separated from it.

Plants grown two weeks in SD do not show AP1 expression, and the same happens when they are 

shifted to LD after 1 and 3 LD of induction (Fig. 11, J-L). After 5 LD of induction AP1 mRNA is 

clearly induced in the floral primordia, marking the beginning of floral development (see later, and 

Fig.  14,  C).  This  correlates  with  the  meristem  being  committed  to  flower  at  that  stage,  as 

demonstrated by the flowering time data of the double shift experiments (see above) and suggesting 

that the floral transition cannot be reverted once floral primordia are already present at the flanks of 

the SAM and AP1 is induced. 

Based  on  the  results  of  in  situ hybridisations  and  flowering  time  data  of  the  “double  shift” 

experiment, three time points were chosen for the global gene expression studies: two weeks SD + 0 

LD (+0LD), two weeks SD + 1 LD (+1LD), and two weeks SD + 3 LD (+3LD). The first time point 

represents  plants  before  photoperiodic  induction;  the  second  time  point  was  included  because 

although one transient LD does not affect flowering time it has been shown that  SOC1 is already 

up-regulated as a first marker of molecular events connected to floral induction; the third time point 

corresponds to the condition in which the meristem has progressed to flowering but without floral 

meristems present in the apical tissue. For the gene expression analysis seedlings were collected in 

the  same experiment  in which samples  were collected and tested by  in  situ hybridisation.  This 

already provided a control test for the stage in which the material used for LCM was collected.

3.1.3 Double shift experiments to link expression of flowering time genes to floral commitment

As it has been shown previously, when plants are shifted from SD to LD a set of genes changes 

expression level and pattern, at specific times and in specific places, and this is linked to molecular 

events triggering the floral transition at the SAM (Schmid et al., 2003; Searle et al., 2006; Wigge et 

al., 2005). Nevertheless, the expression response of these genes once the plants are shifted back to 

SD is not known. Presumably, this will depend not only on the specific function that each gene has 

in relation to the floral commitment, but also on how many days of induction in LD are given to the 

plants  before  shifting  them  back  to  SD,  since  different  degrees  of  induction  have  a  different 
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consequence in terms of flowering time and floral commitment. A similar experiment was reported 

for FT gene expression in leaves, in which it has been shown that upon shift from SD to LD FT is 

turned on immediately and its expression increases with progressive exposure to LD. When plants 

are shifted back to SD the level of  FT expression drops again to the typical basal level of SD 

condition (Corbesier et al., 2007). The authors concluded that once the floral commitment has been 

reached, FT expression is not required any longer, as flower development occurs in SD when FT is 

not expressed. 

Fig. 12. Collection of samples for  in situ  hybridisation in “double shift” experiments. Shifts in photoperiod are 
represented in the figure. The red arrow represents the shift from SD to LD, the blue arrows shifts from LD to SD. + 
indicates 8 hours after dawn (ZT8). 

Here, the focus is on the events which act downstream of FT, in the SAM. Therefore a time course 

was set up and samples were collected for in in situ hybridisation at different time points. Wild-type 

Columbia plants were grown for two weeks in SD, then transferred to LD for 1 LD, 3 LD, and 5 LD 

and seedlings were collected. Plants were then transferred back to SD and seedlings collected after 

1 SD, 2 SD, 3 SD, 4 SD, 5 SD (see Fig. 12 for a scheme). Treated plants were given specific names 

so that for example a plant that is exposed to 3 LD of induction and then shifted back to SD for 2  

days is named 3LD 2SD. A not induced control, 0LD 0SD, was also included. ZT8 was used as a 

reference  point  both for the time of the shifts  and for time of collection of the seedlings.  The 

analysis focused on the early part after the induction, represented by not more than 8 total days 

(LD+SD) after the first shift. Shoot apices from these plants were hybridised with different RNA 
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probes. In situ hybridisation on a complete time course with probes for SOC1,  FUL and SVP was 

carried out and it was also repeated. Additionally, some samples were hybridised with probes for 

AGL24,  AP1 and  FD.  It  was  not  always  easy  to  quantify  changes  in  gene  expression  among 

different samples from this kind of experiment, because of small variations in individual plants, and 

because this technique has a limited power of quantification, especially when the signal is weak or 

weakly changed. Nevertheless, it is possible to observe a clear general trend in expression for the 

genes examined. 

In situ hybridisation using SOC1 probe (Fig. 13, A) confirmed that the mRNA of this gene is up-

regulated at the SAM in response to LD and that the signal increases with the number of LD. When 

the plants are shifted back to SD the level of  SOC1 mRNA slowly decreases, regardless of the 

number of LD to which the plants were exposed and of the degree of induction of this gene. This is 

particularly evident in the 3 LD and in the 5 LD samples. Hence, although 3 LD and 5 LD represent 

not-committed and fully-committed meristems respectively,  SOC1 expression pattern follows the 

same decrease after return to SD. We can conclude that SOC1 expression quickly responds not only 

to shifts in photoperiod from SD to LD but also from LD to SD, and that flowering could occur 

independently of the level of expression of SOC1 once the meristem is committed to flower. Also, 

SOC1 level of expression at the SAM follows the level of FT in the leaf (Corbesier et al., 2007).

The same time course was hybridised with a probe for another MADS box gene, FUL. This gene 

was chosen because its mRNA expression pattern during photoperiodic induction is similar to the 

one of SOC1 and these genes are partially redundant in promoting the response to LD (Hempel et 

al., 1997; Melzer et al., 2008). In our experimental conditions  FUL expression is activated  upon 

photoperiodic induction by LD, and its expression increases with the number of LD, similar  to 

SOC1 (Fig. 13, B). FUL expression also drops when plants are shifted back to SD after exposure to 

1 LD or 3 LD, but after 5 LD its induction becomes stable, even if the plants are shifted back to SD. 

So,  in  contrast  to  SOC1,  the  expression  of  FUL is  stably  maintained  once  the  meristem  is 

committed to flowering.

Fig.  13.  (next  page)  Expression  of  flowering time  genes  at  apices  of  wild-type plants  during “double  shift”  
experiments. In situ hybridisation was used to follow the expression of genes related to floral commitment at the SAM. 
RNA probes were used to detect  SOC1 (panel A),  FUL (panel B) and  SVP (panel C) mRNAs. Plants were initially 
grown for 2 weeks in SD. The number of LD and subsequent SD to which they were exposed before the sampling are  
indicated in the figure for each sample. Scale bar is 50 μm, and magnification same for all panels.
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Fig. 14. Expression of flowering time genes at apices of wild-type plants during “double shift” experiments.  In  
situ hybridisation was used to follow the expression of genes related to floral commitment at the SAM. RNA probes 
were used to detect  AGL24 (panel A), SVP (panel B), AP1 (panel C) and FD (panel D) mRNAs. Plants were initially 
grown for 2 weeks in SD. The number of LD and subsequent SD to which they were exposed before the sampling are  
indicated in the figure for each sample. Scale bar is 50 μm, and magnification same for all panels.
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The expression pattern of SVP, another marker of the floral transition, was also examined. In our 

experimental condition the expression of this MADS-box gene before LD exposure is very strong 

and broad in the whole SAM, while it decreases in the centre of the inflorescence meristem with 

progressive induction by LD (Fig. 13, C). This is in agreement with the role of this gene as a floral 

repressor.  As it  has  also been shown previously (Hartmann  et  al.,  2000),  SVP is  also  strongly 

expressed  in  the  floral  primordia  once  they  arise  from  the  inflorescence  meristem,  after  the 

transition.  When plants  induced by 1 LD or 3 LD are shifted back to SD the general  level  of 

expression of SVP does not dramatically decrease or increase, but seems to remain stable. After 5 

LD of induction SVP expression clearly decreases, and does not rise again after shifting the plants 

to SD. This may indicate that after 5 LD floral commitment has been achieved, so that SVP mRNA 

and its floral repressing function are reduced, while after 3 LD, in which the floral commitment has 

not been completed, SVP mRNA is still expressed enough to prevent floral transition.

The closest SVP homologous gene is AGL24. The expression pattern of this MADS-box gene in our 

experimental conditions was not very clear (Fig. 14, A).  AGL24 mRNA seemed to be expressed 

both before and after shift from SD to LD, although in LD it appeared to get stronger in intensity  

and broader in terms of spatial distribution. Compared to SVP mRNA in the same condition (Fig. 

14, B), it shows an overlapping pattern in the stages before and after the transition, while it has 

more  a  complementary pattern  at  the  moment  of  floral  commitment.  This  could be  due to  the 

proteins produced by these two genes physically interacting in certain developmental stages, while 

in others they have an opposite role (Gregis et al., 2006; Gregis et al., 2008; Liu et al., 2009).   

In situ  hybridisation  using  AP1 probe showed that  after  5  LD this  gene is  strongly expressed, 

confirming that the meristem is committed to flowering (Fig. 14, C). Even if the plant is shifted 

back to SD AP1 remains strongly expressed. Finally FD, a gene that marks the competence of the 

meristem to receive the flowering signal (through interaction of FD with FT), is strongly expressed 

already after 3 LD when the meristem is not fully committed, and this is maintained when the plant 

is shifted back to SD (Fig. 14, D), leading to the conclusion that these shifts probably do not have 

much effect on the expression of the FD gene.

3.2 Laser microdissection of shoot apical meristems

3.2.1 Calculation of the material needed and choice of the techniques

Before starting the experiment, a calculation of the amount of material needed was done, in order to 

have a reasonable estimation of the number of plants to sample for each time point. Based on the 
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expected number of cells in an average SAM, and on the quantity of RNA needed for analyzing 

global  gene  expression,  the  quantity  of  plants  to  be  collected  and  dissected  by  laser  capture 

microdissection (LCM) was calculated (see  Fig. 15).  Initially,  a microarray chip experiment was 

planned for  the global  analysis  of  gene expression,  which  would need high quantities  of  high-

quality RNA. So the calculations were based on these requirements. 

Fig. 15. Scheme of the general strategy followed to collect the samples for LCM.  Apices from wild-type Col were 
collected and fixed according to LCM procedures indicated in the text. The amount of samples for LCM was estimated 
before the collection (see text for details). The experiment was done three times, and the samples were used as three  
independent biological replicates of the same experiment.   

The SAM of Arabidopsis is very small (SAM diameter is about 50 micrometers for two-weeks old 

seedlings grown in SD, and almost double that after three long days of induction); thus not only 

many samples had to be laser-dissected, but also a step of RNA amplification had to be included, 

because of the low quantity of the starting material.  To amplify the RNA extracted from SAM 
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tissue  the  so-called  “linear  RNA amplification”  (based on T7 polymerase,  with  two rounds of 

amplification) was chosen (see Fig. 16 for a scheme, and Methods; Ginsberg, 2005). 

Fig. 16. RNA amplification process. This method performs RNA amplification of either one or two rounds, depending 
on the amount of the starting material. It is based on the use of a T7 RNA polymerase. It requires total RNA as input  
and generates amplified RNA (aRNA), which is the reverse complement of the mRNA.

The quantity of RNA required for an Affymetrix chip hybridisation is around 15 micrograms for 

each sample. Since the amplification step can give a yield ranging from one thousand to one million 

fold amplification, and the process starts with total RNA but specifically amplifies only the mRNA, 

it was estimated that before the RNA amplification step 5-50 ng of total RNA was required. If an 

average  shoot  apical  meristem  of  Arabidopsis is  composed  of  around  50-100  cells,  the  RNA 

contained should be around 100-1000 pg (for the calculations refer to: Nakazono et al., 2003; Kerk 

et al., 2003; Nygaard and Hovig, 2006; Ginsberg, 2005). Therefore, meristems from about 50 plants 

are  needed  for  each  time  point,  which  consists  of  a  total  of  around 2500 cells.  This  number,  
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compared with other experiments in the literature, seems to be more than sufficient for our purpose 

(Nakazono et al., 2003; Kerk et al., 2003). All of these calculations are obviously approximate, but 

they are important in providing a rough indication of the amount of material required.

A. thaliana Columbia wild type plants were grown for two weeks in SD, after +0 LD, +1 LD and +3 

LD of induction samples were collected (see  Fig. 15) at ZT8 (see  Fig. 10, B). In order to have 

independent biological replicates, the experiment was done in triplicate, in controlled conditions in 

growth chambers. For each replicate about 100 plants per time point were collected, 70 for LCM 

and 30 for in situ hybridisation. Apices from the seedlings were fixed and embedded in wax blocks, 

and sectioned with microtome.

3.2.2 Optimization of the protocol

Before processing the meristem material, tests were carried out with other tissues, to set up and 

optimize the conditions for the LCM, RNA extraction, and the RNA amplification. To prevent the 

risk of compromising the valuable meristem material, some of the following trials were made with 

another  tissue  that  was  easier  to  collect.  This  permitted  optimisation  of  the  protocol  for  later 

procedure on the RNA and gave useful guidelines of how to proceed with the meristem samples. 

Therefore circular “leaf discs” were collected by LCM from the glass slides, both from young and 

mature leaves (Fig 17, A). Leaf tissue has different features than the meristematic tissue, which is 

composed of less differentiated cells that are smaller and more transcriptionally active. Leaf cells 

are less compact, due to larger vacuoles, and generally less rich in RNA, especially if compared 

with the meristems undergoing the floral transition. So, different quantities of leaf discs that could 

reasonably resemble the quantity of cells of the meristem samples were collected. Once leaf tissue 

was collected by LCM the RNA was extracted both with the “RLT buffer” of RNeasy kit (from 

Qiagen) and with the “XB” extraction buffer of Picopure kit (from Arcturus) and the RNA was 

purified both with the Qiagen and Arcturus kit (see Methods). To test the RNA extracted, it was 

converted into cDNA and RT-PCR was performed. Primers for TUBULIN were tested. With RNA 

extracted from 100 leaf discs no PCR product was visible on agarose gel after RT-PCR, but with 

RNA from 300 leaf discs a weak band appeared on the gel, which was more visible using 40 cycles  

in the PCR reaction instead of 35 (Fig. 17, B). The best yield of RNA estimated from the results of 

the RT-PCRs resulted from the RLT buffer from Qiagen as extraction buffer with the PicoPure kit  

from Arcturus. 
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Fig. 17. Laser microdissection, RNA extraction and RNA amplification on a test tissue. Panel A: Circular leaf discs 
from  Arabidopsis leaves were collected by laser microdissection on sectioned apices,  and RNA extracted from the 
recovered tissue. Panel B and C: cDNA was produced from RNA, and it was tested with primers for TUBULIN. Panel 
B: Different buffers were compared. “XB1” and “XB2”: RNA extracted with XB buffer. “RLT1” and “RLT2”: RNA 
extracted with RLT buffer. XB1/RLT1 and XB2/RLT2 were collected in two independent experiments, and the second 
ones were then diluted 50% more compared to the first ones. “Control” was cDNA produced from high-amount RNA 
extracted  with traditional  methods. Water  was used as a negative  control.  Panel C: Two different  systems for  the 
collection of the tissue catapulted from the laser beam were compared.  “Buffer”: tissue collected on the RLT buffer.  
“Dry”: tissue collected directly on the matrix of the tube. “Water”: negative control with water. Panel D: Bioanalyzer 
analysis of the RNA that was extracted from leaf discs and then amplified with two-rounds of RNA amplification. 

Two different methods for collecting the material catapulted from the slide by the laser into the 

collection  tube  were  also  tested.  The  “classical”  method  which  employs  special  tubes  from 

P.A.L.M., equipped with a matrix to which the tissue adheres, was compared to another method 

using normal tubes with the cap filled with RLT buffer where the tissue is catapulted. 300 leaf discs 

were collected with each of the two methods. RNA was extracted and converted into cDNA, and 

RT-PCR showed that the first  method seems to give a better  yield (Fig. 17, C).  Therefore the 

“classical” method was used for the rest of the subsequent experiments. 

Then RNA linear amplification was performed on RNA extracted from 200 leaf discs using the 

RNA amplification method (See Fig. 16 and Methods). The RNA quantity after the first round of 

amplification was 0.804 micrograms, while after the second round it was 4.59 micrograms. The 

overall quality of the RNA was assessed by analysis with the Agilent Bioanalyzer (Fig. 17, D). The 

quantity was similar to that estimated above, and the quality was good in terms of RNA integrity. 

The second round gave an amplification of about 5.7 fold. The fold of amplification for the first 
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round could not be estimated because the quantity of the initial RNA before the amplification could 

not be measured due to its low concentration. Nevertheless, considering that the final amount is 

composed of only amplified mRNA, and that the initial material consisted of a few hundreds cells, 

we can conclude that this technique allows a useful amplification in mRNA quantity.

3.2.3 Collection of the SAMs

Once sure of the yields and quality of the amplified RNA, the meristem samples were processed in 

the same way explained above. 

Making use of  LCM, shoot  apical  meristems were collected  from plants  harvested  in  the  time 

course described above, in order to proceed afterwards with RNA extraction. All the meristems 

were pooled in a total of 9 samples (+0LD, +1LD and +3LD, in triplicates A, B and C). A set of 

pictures  of  apices  from  the  three  time  points  before  and  after  the  capture  of  the  meristems,  

demonstrate  that  the laser  was able  to cut  out precisely the area of the whole meristem dome, 

avoiding the surrounding tissues, and especially leaf vasculature that is important not to take in this 

case (Fig. 18). It was checked by visual inspection with the microscope that most of the meristems 

were really catapulted in the cap of the LCM collection tubes.

3.2.4 RNA extraction from the captured material and RNA amplification

For each of the 9 samples the total RNA was extracted and two rounds of RNA amplification were 

performed on it. The RNA extractions and amplifications were carried out at three separate times 

for the three biological replicates. The resultant yields were in the range of 3-60 micrograms of 

amplified RNA (aRNA) depending on the sample (see Table 1). Remarkably, the quantity of RNA 

obtained was directly related to the level of floral induction, which probably reflects the larger size 

of florally-induced meristems.  Indeed, in the case of replicates A and B, the second time point 

produced around double the amount of RNA of the first one, and the third time point produced 

around  double  the  amount  of  the  second  one.  Floral  induction  led  to  a  visible  growth  of  the 

meristem dome (Fig. 11,  Fig. 18), resulting in both a larger area captured with the LCM and a 

higher number of sections captured per plant sample (about 2-4 sections for the +0LD, 4-6 for 

+1LD, and 6-9 for the +3LD). In addition to this increase in size, floral induction might contribute  

to a generally higher production of mRNA in the later meristems. 
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Fig. 18. Laser microdissection on shoot apical meristems. Apices of wild-type Columbia, which were sectioned and 
fixed on glass slides for LCM, are shown. Each sample is shown on the left before (A, C and E) and on the right after  
(B, D, and F) laser capture of the meristem. Samples shown were collected after 2 weeks in SD (A and B), and then  
shifted to LD for 1 LD (C and D) or 3 LD (E and F). Magnification: 20X.
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Table 1. RNA derived from the meristem collected by LCM and material used for the sequencing. Time points are 
from plants grown 2 weeks in SD and the collected at +0LD, +1LD or +3LD, as indicated in the table. RNA after 
amplification is aRNA. “RNA for sequencing” is the quantity of RNA used to prepare the cDNA sent for sequencing  
(replicates A and B) or the quantity of RNA sent directly for the RNA-seq protocol to Fasteris (replicate C). “DNA for  
sequencing” is the quantity of DNA sent to make the library for the Solexa sequencing. 

In the case of replicate C, the yields are slightly different than replicates A and B, because less 

material was collected for the larger meristems and more material for the smallest, in order to try to 

compensate for the different sizes of the meristems.  

The  quality  of  the  aRNA was  assessed  using  the  Agilent  Bioanalyzer.  Also  for  this  case,  the 

distribution  of transcript  sizes demonstrates  that  the material  is  of an overall  good quality  (for 

replicate A and B, see Fig. 19), with only little RNA degradation, as for the leaf discs. Moreover, 

the size of the RNA molecules is in the range expected for mRNA transcripts in Arabidopsis, where 

the average transcript is around 1500 bp (The Arabidopsis genome initiative, 2000).  

3.2.5 Single strand cDNA synthesis to test the RNA extracted from the meristems 

Another method to assess the quality of the RNA is to check for the expression of some control 

genes by RT-PCR. Before proceeding to sequencing, some samples were tested in this way. Initially 

part of one of the aRNA samples (1,6  μg of RNA from induced +3LD, replicate B) was used to 

produce single stranded cDNA, using random primers. Random primers were used to prime the 

retro-transcription because the aRNA is a so-called cRNA, in other words the complementary strand 

of mRNA, which lacks the usual polyA (Fig. 16).  RT-PCR was performed on this cDNA with 
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primers for various genes, such as  ACTIN,  TUBULIN,  FD, and  SOC1. At first no PCR products 

were obtained,  although this  sample  was produced by amplification  and would  be  expected  to 

contain cDNA from each of these genes. Also, a weak band (for  TUBULIN) was obtained even 

from RNA before amplification, so the amplified RNA should give more product. However, the 

linear  RNA  amplification  tends  to  shorten  the  RNA  products  in  comparison  with  the  initial 

templates, especially at the 5’-end (Fig. 16). After another subsequent cDNA synthesis with random 

primers, probably the fragments are even shorter. In this condition the primers for the PCR might 

have few DNA molecules long enough to anneal to primers at each end of the cDNA on the entire 

sequence. So, instead of primers that amplify a product of around 500 bp, primers for products of 

about 200 bp were introduced in the reaction. With these new primers, specific PCR products were 

obtained both for ACTIN and SOC1 cDNA (see Fig. 20, A). This experiment therefore confirmed 

that the amplified cDNA after LCM did contain cDNAs of genes induced in expression during 

floral induction.

Fig.  19.  Analysis  of  the RNA amplified from shoot apical  meristems collected  by laser microdissection.  The 
outputs from Agilent BioAnalyzer from all the samples of replicates A and B were combined in a single graph, which 
includes the RNA ladder to easily compare the distribution of the size of the RNA molecules  within the samples. 
Migration time is a function of the size of the molecule, fluorescence indicates the quantity of RNA for a particular size.  
1: replicate A, + 0 LD. 2: replicate A, + 1 LD. 3: replicate A, + 3 LD. 4: replicate B, + 0 LD. 5: replicate B, + 1 LD. 6:  
replicate B, + 3 LD.
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Fig. 20. Amplification of cDNA derived from the meristem samples collected by laser microdissection. RT-PCR 
was performed on cDNA produced from amplified RNA extracted from the shoot apical meristems. A: material from 
replicate B. B: material from replicate A. C: material from replicate C. “Control” was cDNA produced from a high-
amount of RNA extracted from seedlings without laser microdissection.

3.2.6 Double strand cDNA synthesis for sequencing  

Some  difficulty  was  encountered  in  using  the  RNA extracted  from the  meristem by  LCM to 

successfully hybridise Affymetrix Arabidopsis microarrays. Although several attempts were made 

and quality controls were performed in several steps, no signal was detected upon hybridisation of 

the labelled RNA on Affymetrix microarray (data not shown). 

An  alternative  option  to  microarray  hybridisation  was  based  on  next-generation  sequencing 

technology. Short tags of DNA molecules derived from the cDNA of each time point separately,  

can  be  massively  sequenced  using  Illumina-Solexa  sequencing  technology.  Identifying  which 

transcripts correspond to the short tags and counting how many times they occur in the sample, 

would  give  an  output  which  is  conceptually  similar  to  a  microarray  expression  profile.  This 

technique has the advantage that a huge number of the molecules that are present in the sample are 
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sequenced, with higher sensitivity compared to microarray technology and without the problems 

connected  to  hybridisation  of  nucleic  acids  (Wilhelm and Landry,  2009;  Wang  et  al.,  2009c). 

Moreover,  whereas  in  the  Affymetrix  ATH1 array some genes  of  Arabidopsis are  missing,  by 

means of the sequencing method virtually all the expressed genes can be monitored. 

Hence,  the  amplified  RNA  was  used  to  produce  DNA  that  can  be  sequenced  through  next-

generation sequencing technology.  The amplified RNA samples from meristems were converted 

into cDNA and then into double stranded DNA which is suitable for sequencing. Two different 

methods were used depending on the samples. For the replicates A and B (in total 6 samples) the 

aRNA was used for the synthesis of double stranded DNA. This was performed using part of the 

second round of RNA amplification, without subsequent in vitro transcription (Fig. 16). 

In the case of A and B, 1-1.6 μg of aRNA were used to produce DNA (Table 1). The quality of the 

DNA was tested by RT-PCR using primers for ACTIN and SOC1 on the samples +0LD and +3LD, 

replicate  A.  The  cDNAs  of  these  genes  could  clearly  be  detected  in  both  samples,  and  the 

abundance of SOC1 cDNA appeared higher in the +3 LD sample (Fig 20, B). A quantity of 0.5-0.7 

µg of cDNA for each time point (Table 1), for a total of 6 samples (+0LD, +1LD and +3LD – 

biological  replicate  A,  and  +0LD,  +1LD  and  +3LD  –  biological  replicate  B)  was  used  for 

sequencing  by  the  Illumina/Solexa  method  (“Genomic  sample  preparation”,  Fig.  21,  A  and 

Methods). 

Fig. 21. Methods to prepare the libraries used for transcriptome profiling of the meristem by next-generation 
sequencing. The protocol was followed by the company Fasteris, for replicates A and B (Panel A) and replicate C 
(Panel B). The sequencing technology used was Solexa-Illumina.

75



Results

For replicate C (in total 3 samples), the RNA was sent directly to FASTERIS (Table 1), where it 

was  converted  into  double-stranded  cDNA  and  sequenced  with  the  protocol  for  mRNA-Seq 

transcriptome shotgun sequencing derived from Illumina (see Methods) (Fig. 21, B). For replicate 

C, the quality of the RNA was previously checked by Bioanalyzer (data not shown), and by RT-

PCR  on  cDNA  derived  from  this  RNA.  The  expression  of  SOC1 appeared  to  increase  upon 

exposure to LD (Fig. 20, C).  

Table 2. Data from the Solexa sequencing and mapping of the reads. Time points are from plants grown 2 weeks in 
SD and then collected at +0LD, +1LD or +3LD, as indicated in the table, for the three biological  replicates.  Raw 
sequences were received from Fasteris, and then analyzed. “I” and “II” in brackets refer to samples that were sequenced 
twice, and indicate first and second sequencing run, respectively. These reads were pooled in order to have a larger 
single dataset for each biological sample. “f” and “r” refer to the samples that were sequenced by paired-end method,  
and indicate the forward and the reverse strands respectively. 
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3.3 Next-generation sequencing for gene expression analysis in the SAM

3.3.1 Deep sequencing with Illumina-Solexa and mapping of the short-sequence reads

The  cDNA  obtained  was  sequenced  with  “Solexa”  sequencing  technology  (Illumina,  Genome 

Analyzer I and II).

Short tag sequences were obtained as 35 base pair long reads. Each of the sequences was provided 

with another string which codes the quality scores for the relative sequence in each single position. 

A variable number of several millions of tags were obtained from the different samples (Table 2). 

Ulrike Göbel, Daniela Knoll and Heiko Schoof at MPIPZ analyzed the raw data and converted them 

into  a  measure  of  gene  expression  for  all  the  Arabidopsis  transcripts. A  brief  scheme  of  the 

procedure used is indicated in Fig. 22.     

A  first  filtering  of  the  sequences  was  performed  with  SeqClean,  a  tool  that  removes  vector 

sequences and some of the low quality sequences. Additionally, a large number of sequences were 

discarded because they corresponded to T7 polymerase primer sequence. Indeed, T7 polymerase 

primers were used during the RNA amplification procedure to prime the in vitro transcription (Fig. 

16). For replicates A and B this occurred because the double-strand cDNA that was sequenced was 

produced with the kit for the RNA amplification, which includes the primers of the T7 promoter 

which are incorporated into the DNA sequences. These reads might correspond to primers that were 

not incorporated into cDNA or to transcripts that were sequenced from the starting point at the 3´-

end where the primer sequence is present. Because the cDNA synthesis  and especially the two 

rounds  of  RNA  amplification  tend  to  shorten  the  fragments  (Fig.  16),  many  cDNAs  may  be 

relatively small and therefore not produce many fragments after the cDNA fragmentation prior to 

sequencing. In this case many of these fragments would contain the primer at the beginning. It  

would then be highly probable to sequence these type of fragments, and because of the short length 

of the Solexa reads, only the primer sequence would be obtained. 

Removal of the primer sequences caused a loss of around 50 percent in the number of sequences 

present in replicates A and B. In replicate C, this problem was avoided by producing the double-

stranded cDNA directly from the amplified RNA by another method (Fig. 21, B). This resulted in a 

larger number of cDNA sequences for replicate C. In addition, more sequences were retrieved from 

this last replicate compared to A and B because of the use of an improved Illumina Sequencer, 

resulting in a generally higher number of reads. Moreover, for replicate C “paired-end” sequencing 

was used, where each transcript is sequenced both from the 5´ and 3´ end. This method increased 

the quality of the data, because it helped to assign the corresponding gene to each cDNA, reducing 
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the number of ambiguities (Fullwood et al., 2009).

The remaining valid sequences were blasted against the Arabidopsis transcriptome (TAIR8 cDNA 

collection) with MEGABLAST (Altschul et al., 1997; Zhang et al., 2000), as described in Methods.

During this process many sequences could not be assigned to any transcript and were removed from 

the analysis (Table 2). The origin of these non-aligned sequences could be due to poor sequence 

quality,  contamination of DNA or artifacts created during the amplification process. Microarray 

hybridisation of RNA amplified by linear amplification showed reliable results in previous studies 

(Nygaard and Hovig, 2006), but there are not so far reports in the literature on RNA amplification 

procedures coupled with Solexa sequencing. So the amplification procedure could have affected the 

sequences, introducing for example point mutations. On the other hand, a large number of invalid 

tag sequences have been reported even with more “conventional” RNA preparations that do not 

involve amplification (Marioni et al., 2008).

Fig. 22. Flow chart of the procedure used to analyze the short-sequence reads from Solexa sequencing.  Blue 
boxes represent procedures,  yellow boxes represent samples and data. Red boxes are the initial input and the final 
output of the analysis. Details are in the Methods section.  
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Each of the reads remaining after the filtering processes were assigned to a gene. Only the reads that 

match  a  unique  transcript  were  considered,  while  the  ones  matching  more  than  one  possible 

transcript, called “promiscuous tags”, were discarded and not included in these first analyses. The 

coverage of the expressed genes detected was evaluated for each sample, as transcripts detected at 

least one time. Relative to the whole set of Arabidopsis transcripts described in TAIR, between 50% 

and 75% were detected depending on the samples.

Another  parallel  approach  employed  another  program,  BWA (Li  et  al.,  2009),  to  perform the 

alignment as an alternative to MEGABLAST. This program produced a slightly higher number of 

mapped reads, with the assigned parameters, with the exception of sample +0LD from replicate A. 

BWA is particularly useful in the case of the paired-end data. This program quantifies the number 

of  expressed  transcripts  taking  into  account  how  the  reads  map  on  the  exons  of  each  gene. 

Therefore, in the case of paired-end data, because two independent reads coming from different 

positions of the same transcript give a more precise description of the distribution of the reads on 

the transcript, the full power of the BWA approach can be used. 

For  each of  the  9  samples  (time  points  +0LD,  +1LD,  and +3LD,  repeated  in  three  biological 

replicates A, B and C) a transcriptome has been obtained, composed of the number of reads derived 

from each  Arabidopsis transcript. In the case of samples sequenced twice, the reads were pooled 

together to produce a single dataset for each biological sample and to increase the resolution for 

these samples by having more reads. The number of assigned valid reads greatly varied among the 

different  samples  (see  Table  2),  spanning  two  orders  of  magnitude  from  about  100000  total 

assigned reads to more than 5 million. Hence, in order to be able to compare the expression of a 

gene between the different time points and biological replicates, these data were normalized. The 

number of counts for each expressed gene in each sample was considered in relation to the total 

number of valid reads within that sample.  Each sample was therefore normalized as number of 

counted “tags per million” (TPM). TPM for each sample was calculated by dividing the raw counts 

by  the  total  number  of  tags  mapped  to  the  transcripts  for  the  corresponding  sample  and  then 

multiplying the answer by 1 million.     

3.3.2 Quality controls and reliability of the replicates

A quality control was performed based on the quality score given as an output of the Genome 

analyzer. The quality was good enough for the short-sequence reads to be mapped to Arabidopsis 

genes. The quality of the reads decreases with the length of the read (data not shown). This is a 
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typical  result  for  the  current  sequencing  technology.  Therefore,  even  if  the  entire  length  was 

considered, more weight was given to the initial bases of 35-mers of the reads (see Methods).  

Scatter plots were produced comparing for each gene, the values as raw counts or TPM (depending 

on the cases) coming from two samples in all possible combinations. Some of them are shown in 

Fig. 23.

A scatter plot shows for each gene, as a dot in the graph, the relative expression for two compared 

datasets. Typically for microarray data, the distribution of the dots is expected to be as a cloud 

following a straight  line  (Gentleman et  al.,  2005).  The majority  of  the genes  should  not  show 

differential expression, while the outliers indicate the small percentage of genes that are expressed 

differently in the two samples. In the case of biological replicates of the same sample, the scatter 

plot  should  be  distributed  on  a  straight  line,  showing  fewer  deviations  from the  central  line. 

Considering that microarray hybridisation data and RNA-seq data are highly correlated, the same 

kind of distribution is expected for both types of data. In our case, the scatter plots show a generally 

good distribution on a central straight line (Fig. 23, A for replicates A and B). However, for these 

biological replicates, a high number of genes deviate from the central line, especially for the earlier 

samples (+0LD and +1LD), while the correlation increases for the later samples (+3LD) (Fig. 23, 

A). This is well described by the correlation coefficient R, which is in the range 0.48-0.81 for the 

comparisons of +0LD, 0.33-0.62 for +1LD, and 0.59-0.94 for the +3LD. A comparison between 

different time points of the same replicate shows a situation similar to the one considering the same 

time points for different replicates, with correlation coefficient around 0.5. 

In order to test whether the difference in the biological replicates is due to low accuracy of the 

Solexa technology, technical replicates were performed by re-sequencing a few samples. The re-

sequenced samples look almost identical (Fig. 23, B for an example), even in the case of +0LD. The 

correlation coefficient R, between 0.94 and 1 for the different samples re-sequenced, confirms high 

reproducibility.  This  indicates  that  Solexa technology is  highly reliable  when performed on the 

same sample (see Marioni et al., 2008) and that the differences found in the biological replicates are 

probably due to differences in the different experiments. A likely reason for this difference is that 

the RNA amplification was not totally balanced for all the transcripts, especially if we consider the 

extremely low quantity of the starting material. Indeed, the lowest correlation is for samples derived 

from smaller meristems, while the best correlation is in the +3LD samples, those with the largest 

quantity of RNA material. Also the extremely high number of sequences identified as primers, if 

they were real transcripts of which the information was lost, could have biased the final result. 
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Fig. 23. Scatter plots for mapped reads. Panel A: All the different samples for replicates A and B are compared to 
each other as mapped with MEGABLAST. Panel B: comparison between two technical replicates of sample +3LD from 
replicate B as mapped with MEGABLAST. Panel C: comparison between the two strands of the paired-end sequences  
for sample +1LD from replicate C as mapped with MEGABLAST. Panel D: comparison between the reads mapped 
with MEGABLAST and BWA for sample +0LD from replicate A. The reads were in TPM (A) or raw counts (B, C, and 
D). 
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A comparison was done to assess the performance of the paired-end sequencing in replicate C. In 

this case the transcripts were sequenced twice, from the two ends, and the two corresponding short 

sequences for each transcript are stored in separate files. Therefore, the two files were compared. 

Both scatter plots (Fig. 23, C) and R values (between 0.9 and 1) show that there is a very high 

correlation,  so that the paired-end sequencing is a very accurate and reliable system to identify 

transcripts as both ends are highly likely to identify the same transcripts. Therefore, the values used 

for the further analysis  of the data for replicate C were calculated as averages between the two 

sequenced strands. Another comparison was done between the reads obtained with the separated 

strands in replicate C and the reads obtained with BWA considering the two strands together. Also 

in this case the correlation was high (between 0.9 and 1 depending of the cases).

Finally, a comparison between MEGABLAST and BWA results was performed to assess whether 

there  is  a  substantial  difference  between  these  two  programs  in  mapping  the  reads  onto  the 

transcripts. From this comparison it emerged that the results are highly similar (Fig. 23, D for an 

example of a scatter plot). However there are large deviations in the case of a few genes, which 

render  some of  the R values  lower than 0.7 in  some cases.  Because these genes show a large 

difference as outputs of the two programs (for example 0 counts with MEGABLAST and more than 

4000 with BWA), while all the other genes have very similar numbers of counts, the increase of 

mapped reads with BWA is probably due to a few genes that were mapped as a result of an artifact. 

Therefore, the data mapped with MEGABLAST seemed more reliable and were used for further 

analysis.

3.3.3 Use of housekeeping genes for the normalization

An alternative  possibility  to  normalize  the  results  of  next-generation  sequencing  is  to  use  the 

expression of housekeeping genes as a standard. According to recent studies based on large sets of 

data from available microarrays,  some classical  Arabidopsis genes used in the past as reference 

genes,  such as  ACTIN,  are  not  the  best  choice  because  they still  show significant  variation  in 

expression  under  different  environmental  conditions  (Czechowski  et  al.,  2005).  We  chose 

UBIQUITIN10 (UBQ),  because it  seemed to be the most  constantly expressed gene among the 

classical genes used to normalize the mRNA levels of other genes in quantitative real-time PCR 

experiments.  UBQ expression  was  then  used  to  normalize  the  datasets  generated  by  Solexa 

sequencing. For each independent sample, the number of counts for each gene was divided by the 

number of counts for UBQ in that sample, and then multiplied by 100. Therefore, the values for the 
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expressed genes were expressed as a percentage of the level for UBQ. This method cannot change 

the  correlation  coefficients  between different  samples,  because it  only changes  a  multiplicative 

factor applied to all the genes in the sample. Nevertheless, the average values of the genes and the 

variation of their values along the time points are affected. The value of some genes was checked, 

and  although  variation  still  occurred  between  the  biological  replicates,  the  trend  of  expression 

patterns for known genes was generally constant, and the variation was less compared to the data 

normalized only as TPM for the majority of genes that I tested (see next section), although for a few 

other genes the data expressed in TPM was instead more stable. Therefore different methods can be 

used to normalize RNA-seq data, and these generally improve the analysis in comparison to using 

raw reads, however the results of the different methods vary making it difficult to assess at this time 

which method is the most appropriate.     

3.3.4 Expression values for known genes

As a first approach to assess the biological quality of the data, the number of tags (both in TPM and 

normalized with UBQ) for known meristem genes was checked in the dataset. In Fig. 24 the values 

for some of these genes are shown, as TPM or normalized with UBQ. mRNAs of genes that should 

be expressed at the SAM, because they are important for its maintainance, such as  CLV1,  CLV3, 

STM,  WUS,  and  KNAT1  were detected in our gene expression datasets  (Fig. 24, A, B,  below). 

Particularly, mRNAs of genes that are expressed in a very restricted subset of the SAM tissue, like  

the  CLVs and  WUS,  are  easily  detected.  This  demonstrates  the  value  of  specifically  collecting 

SAMs, so the expression level of these genes was not diluted as would happen in entire apices, 

although WUS expression level is still low. STM and KNAT1 are strongly expressed because they 

are present in the whole SAM, and the former seems to increase in expression upon the shift to LD, 

as already reported previously for apical samples (Schmid et al., 2003).

Another set of genes that are particularly important for this experiment comprises those involved in 

the floral transition at the SAM (Fig. 24, A, B, center). Particularly, SOC1 mRNA shows a marked 

increase in the number of tags with the number of LD of induction in all three biological replicates  

(from 30 to 300 fold between +0LD and +3LD, in TPM). FUL mRNA also shows an increase, but 

much less than for SOC1 (from 5 to 30 fold between +0LD and +3LD, in TPM) and it is delayed 

with respect to SOC1, which is also consistent with in situ hybridisation results (Fig. 11, Fig. 13). 

FD is  already strongly expressed before the transition,  and slightly increases  after  3 LD, as is 

expected  from our  previous  results.  SVP is  generally  strongly  expressed,  and it  appears  to  be 
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slightly up-regulated after 3 LD. This seems in contradiction to its role as a floral repressor and the 

expression pattern  shown by  in  situ hybridisation  (see  sections  3.1.2 and 3.1.3). This  apparent 

contradiction might be reconciled because there is mainly a re-distribution of the mRNA of  SVP 

within  the  meristem during  the  floral  transition.  Rather  than  a  net  decrease,  there  is  a  down-

regulation of the mRNA in the central part of the inflorescence meristem, and an up-regulation on 

its flanks (Fig. 11, Fig. 13, Fig. 14). Therefore, such a complex pattern cannot be fully described by 

the quantification of the mRNA in the entire SAM. AGL24 is another gene that has been shown to 

be expressed before floral  induction by LD in our conditions,  and increase in expression upon 

induction (Liu et al., 2008; Michaels et al., 2003; Yu et al., 2002). This is consistent with the data 

from RNA-seq gene expression dataset. 

Genes involved in the floral transition, and controlled by miRNAs were also checked (Fig. 24, A, 

B, center). SPL9 mRNA was absent before induction and increases upon transfer to LD, as recently 

reported and shown by in situ hybridisation at the SAM (Wang et al., 2009a). SPL3 mRNA was not 

detected, while SPL4 and SPL5 mRNAs were detected at very low levels. This could be due to the 

fact that they are induced later, or to the similarity of their sequences, which creates ambiguities in 

the assignment of the reads to a unique gene causing the reads to be discarded. The two related 

genes  SMZ and SNZ seem to decrease in expression, but their mRNAs were detected only in one 

sample. These two genes were identified by microarray analysis (Schmid et al., 2003) as down-

regulated  upon the  shift  to  LD in  shoot  apices.  Our  approach,  which  is  more  specific  for  the 

meristematic tissue, suggests these genes are not expressed in the meristem, and this is in agreement 

with recent results indicating that they repress FT expression in the vascular tissue (Mathieu et al., 

2009). 

Another control that was performed was to test for the expression of genes whose mRNAs were not 

expected in these meristems (Fig. 24, A, B, on top). For example, mRNAs of meristem identity 

genes and floral  genes should be absent or very lowly expressed,  because they should be only 

expressed in later stages.  AP1 mRNA, as for  in situ hybridisation, is barely detectable. Also LFY 

and PI mRNAs are not present at all or very lowly expressed. Conversely TFL1, which counteracts 

LFY and  AP1, is expressed. Finally  TSF mRNA is also not expressed in the collected SAMs, as 

expected because it is expressed in the leaf tissue.  
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Fig. 24. Expression values of selected genes extracted from the gene expression dataset.  The values are calculated 
as averages between the three biological replicates, as TPM (A and C) or normalized with UBQ10 (B and D). The bar 
represents the standard deviation. In panels A and B, values for known meristem expressed genes are indicated. In 
panels C and D, values for candidate genes identified in the datasets are indicated. The corresponding candidate genes 
are listed in Table 5. 

These  controls  provided  important  support  for  the  RNA-seq  method.  Even  although  before 

sequencing the cDNA was tested by RT-PCR (for example for the presence of SOC1 mRNA in the 

induced samples), it was not known whether the quantity of such mRNAs was still balanced in the 
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samples after RNA amplification. Also contamination by other tissues remained possible and that 

would disturb the general balance of the transcripts and include genes that should not be expressed. 

Based on these controls, we can conclude that next-generation sequencing applied as RNA-Seq on 

meristems collected by LCM produced a coherent dataset that detects several known mRNAs that 

are specifically expressed in the SAM, and does not include several mRNAs that are specifically 

expressed in floral meristems and leaves. Moreover, mRNAs of flowering time genes like  SOC1 

and FUL seem to be up-regulated as they should be.  

3.3.5 Data analysis: identification of differentially expressed genes 

The  general  approaches  for  global  gene  expression  analysis  using  microarrays  make  use  of 

biological replicates to provide an estimate of the variation in gene expression for all the genes 

present on the array  (Allison et al, 2006; Grant et al., 2007). Statistical tests are used to decide 

whether a gene is considered to be differentially expressed between different samples. In the RNA-

Seq data,  the  variability  was  relatively  high between  samples  and there  are  genes  that  have  a 

relatively large difference in TPM not only between different time points, but also within the same 

time point for different biological replicates. 

Therefore, different methods were applied to correct for the resulting noise and to identify genes 

differentially  expressed  between  time  points.  Lists  of  genes  considered  up-  or  down-regulated 

during the shift to LD were generated with the different methods, and several candidates were tested 

for their expression levels by independent methods. This information was used also to validate and 

evaluate the different methods. 

A first set of genes was made using only replicate A, before the other datasets were available. The 

genes were selected simply by the largest up- or down- regulation between +0LD and +3LD. These 

genes were named “C” candidates, from C1 to C20. 

Another  set  of  genes  was  compiled  using  replicates  A  and  B,  before  the  third  replicate  was 

available. These were named “D” candidates, from  D1 to  D60, and two approaches, a “p-value” 

approach and a “log2 ratio” approach were used. To make possible some of the calculations of these 

methods (e.g. to calculate ratios and log2 ratios), the 0 values (NULL) indicating the absence of 

expression of certain genes in certain time points, were converted to 1, which did not affect the 

general distribution of the data. 

In the “p-value” approach, a particular statistical method was applied, using the hypergeometrical 

distribution. A formula was used (modification from Marioni et al., 2008, see Methods) to calculate 
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for each gene a p-value, taking into account both its variation between time points and its variation 

between the two technical replicates. In this case the raw values (counts not normalized) were used 

to compute the calculations of the p-values. So for each gene a p-value is related to the probability 

that a gene is differentially expressed between two time points, for each comparison among the 

three time points +0LD/+1LD/+3LD (Fig. 25, A). The threshold has been set at 0.1 (p-value < 0.1), 

resulting  in  identification  of  138 differentially  expressed genes  between +0LD and +1LD, 351 

genes between +0LD and +3LD, and 232 genes between +1LD and +3LD (Fig. 25, A). 

In the “log2 ratio” approach, using the normalized values as TPM, the log2 ratio between each pair 

of time points for each gene was calculated, and the genes were ranked. After ranking the top 1000 

genes  both  for  replicate  A  and  replicate  B  separately,  the  genes  which  were  present  in  both 

replicates and which had the same “trend” in expression (up- or down- regulation) were considered. 

The small number of genes in this list (37 genes between +0LD and +1LD, 46 genes between +0LD 

and +3LD, and 50 genes between +1LD and +3LD, see Fig. 25, A) indicates that it is difficult to 

compare the two replicates only in terms of up- or down- regulation without taking into account the 

variation of these genes in all the dataset.

A direct comparison between the two approaches was also done, and the majority of genes that are 

in the “log2 ratio” set are included in the “p-value” set for each comparison between time points 

(Fig. 25, A). SOC1 up-regulation was detected between +0LD and +1LD, and between +0LD and 

+3LD, with both the approaches.  If we consider the three groups of transitions (among +0LD, +1 

LD, and +3LD), it seems reasonable that some of the identified genes would belong to more than 

one group. Again, SOC1 is a good example, since it is up-regulated between +0LD and +1LD, and 

between +0LD and +3LD. For all the differentially expressed genes the ones that are present in 

more than one group were identified. These genes should represent a set showing a coherent and 

constant expression pattern during the floral induction (Fig. 25, A). A total of 107 genes is present 

in more than one group, while only 2 of these genes are present in all three groups. 

Finally, with a dataset including all three replicates, a “clustering” approach was used. When the 

data of all three replicates are compared, many genes show the same general trend in expression 

pattern  (for  example  up-  or  down-  regulation,  or  constant  expression).  However,  the  values 

expressed in TPM between replicates can be so different for certain genes that if the average is 

calculated, the standard deviation appears larger than the average. This could be due to the general 

distribution of the short-sequencing data, which does not follow the normal statistical distribution, 

or to the fact that the normalization in TPM is not accurate enough and another method is required.  
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Moreover,  the  C replicate  is  qualitatively  different  to  A and B,  because  more  sequences  were 

provided for the analysis giving rise to a deeper detection of transcripts, and also the paired-end 

approach generated a better-quality dataset. This could result in difficulties to compare directly the 

values for certain genes between replicates A and B and replicate C. While alternative statistical 

distributions for the short-sequence data and alternative methods for normalization have still to be 

well established, here a “clustering” method was used, which directly compared the data expressed 

in TPM.

Fig. 25. Approaches used to identify differentially expressed genes in the global gene expression dataset from  
Solexa sequencing. Panel A: The 3 possible comparisons between time points are indicated above. For each of the 
comparisons, the number of genes identified by the “log2 ratio” and “p-value” methods and the number of common 
genes are shown in the Venn diagrams. Panel B: The clustering method identified genes that were up-regulated (upper 
Venn diagram) or down-regulated (lower Venn diagram) in all biological replicates and the number of genes identified 
is shown at the intersection of the three sets in each Venn diagram. “Rep A”, “B”, and “C” represent the three biological 
replicates.  
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Fig. 26. A schematic representation of the possible relationships between the expression values of selected genes.  
+0LD, +1LD and +3LD represent the time points of the time course from the global gene expression dataset, for one 
hypothetical replicate. The red line represents the expression trend of a certain gene, up-regulated (A, B, C) or down-
regulated (D, E, F). A gene is considered coherently up- or down-regulated if the expression values fulfill the conditions 
indicated in the figure.   

The aim was to identify for each replicate the genes that are coherently up-regulated or down-

regulated (from +0LD to +1LD and from +1LD to +3LD), and then among those to select the genes 

common to all three replicates (Fig. 25, B). These genes should represent a reliable set, because 

they are up-or down- regulated in 3 independent experiments. First of all, in order to set a threshold 

of detectable expression, all the values that were lower than 10 TPM were excluded by setting them 

to 0, resulting in the exclusion of genes considered to be too lowly expressed to be reliable. Then,  

for  each  replicate,  a  threshold for fold change was imposed to  be 3LD/0LD > 1.5 for the up-

regulated genes. However, because of the slight variation of the data, I wanted to include not only 

the genes for which the value of the +1LD is located between +0LD and +3LD (Fig. 26, A, for a 
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schematic example), but also the genes for which this value is slightly higher than +3LD (Fig. 26, 

B) or slightly lower than +0LD (Fig. 26, C). Therefore, two additional conditions were allowed for 

the up-regulated genes: 1LD/3LD < 1.5 and 0LD/1LD < 1.5. A similar approach was considered for 

the down-regulated genes (Fig. 26, D-F), where the first condition to be respected was 0LD/3LD > 

1.5, and then two additional conditions were 3LD/1LD < 1.5 and 1LD/0LD < 1.5.  

The use of these parameters  resulted in  the recovery of  genes  that  are  generally  up-  or  down-

regulated, without including genes that have a value in +1LD that is too deviating from the general 

trend. As an example, SOC1 in replicate A is 0, 400 and 300 TPM respectively, and it fulfills these 

conditions. 

The rationale to choose genes with this pattern was to have a set of genes that are co-expressed with 

SOC1 (responding already after the first LD) and FUL (responding mainly after +3LD), in the case 

of the up-regulated genes. As an output of this analysis, the overlap between all replicates for the 

up-regulated genes was 339, while the overlap for the down-regulated genes was far lower (Fig. 25, 

B).  

Another test was performed with the same method, but using the values of the genes normalized 

with UBQ (see above). The same criteria were applied for the fold ratios, while values lower than 1 

(1% respect to  UBQ) were considered 0. In this case, the common up-regulated genes were 447, 

although the down-regulated genes were 56, again very low. Moreover, the number of genes of the 

different replicates used for the intersection were very different to each other, in some case up to 3 

fold. The overlap between the genes found starting with the TPM data and with the normalization 

with UBQ was 114 up-regulated genes and 29 down-regulated genes.   

From  all  these  lists  of  genes,  a  set  of  candidate  genes  were  chosen  to  be  tested  by  other 

experimental procedures, and they will be described in the following sections.

3.3.6 GO term enrichment analysis 

The clustering approach identified differentially expressed genes using the data of three biological 

replicates,  and therefore the lists of these up- and down- regulated genes were used for further 

analysis  at  the  global  gene  expression  level.  In  order  to  highlight  the  classes  of  processes 

characterizing the floral transition at a genomic level, GO term enrichment analysis was performed 

with the software FatiGO (Al-Shahrour et al., 2006). This program detects the GO terms that are 

over-represented in a sub-set of genes, in our case the up- or down- regulated genes, toward another 

list  of genes,  in our case composed of all  the genes present in the list  of transcripts  used as a  
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reference for the mapping of the reads. The output of the program provides also a p-value and an 

adjusted p-value for each of the terms, which gives a statistical significance to the different terms 

listed. For the up-regulated genes, several terms were found to be statistically significant (Table 3). 

Strikingly, for the biological processes, the set of classes found gave a coherent scenario, because 

they are all connected to general biosynthetic and metabolic processes. Going up to more specific 

classes (higher levels), other terms are more connected to protein metabolic processes, ribosomes 

biogenesis and assembly,  and translation. The only molecular function found to be significantly 

enriched in this dataset was the one connected to the structural constituents of ribosomes.  

For the down-regulated genes, a few terms were found to be statistically significant  (Table 4), 

likely due to the fact that this list of genes is too restricted. Nevertheless, it seems that the category 

related to response to stress is over-represented, plus some processes related to specific metabolic 

pathways. 
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Table 3. GO term enrichment analysis for the 339 up-regulated genes identified by the clustering approach.

Table 4. GO term enrichment analysis for the 82 down-regulated genes identified by the clustering approach.
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4. Characterization of novel genes induced during the floral transition 

selected from gene expression analysis  

4.1 Selection of the genes

A set of genes expressed in the SAM is expected, which should already restrict the number of genes 

identified as induced during the floral transition. Moreover, only the early stage of the induction has 

been  selected  in  the  experiment,  and  this  should  further  restrict  the  number  of  induced  genes 

detected.  A dataset  is  already available  for  the  floral  transition  in  the  Arabidopsis shoot  apex 

(Schmid et al., 2003), so a direct comparison with these available data is also useful. Of particular 

interest will be the genes that were not identified by the previous approach because their pattern of 

expression was masked by a dilution in the apical tissue, but were identified by our highly tissue-

specific approach. 

In  situ hybridisation  was  selected  to  confirm the  gene  expression data.  However,  because  this 

technique  is  not  as  sensitive  as  others  such as  RT-PCR, probing mRNA of  genes  that  are  not 

strongly expressed can lead to absence of a visible signal. Therefore a first filter was used to select 

genes that are strongly expressed at least in one of the time points. A general threshold was set 

based on the values of known genes that are detected by in situ hybridisation, of around 100 TPM. 

Moreover,  the  genes  were  selected  on  the  basis  of  the  highest  degree  of  up/down regulation, 

because  in situ hybridisation is also not always suitable to discriminate small differences in gene 

expression. Therefore, sometimes candidates were chosen even if the expression value was under 

the set threshold, as long as the difference in expression was high between time points. 

Three lists of genes were selected using the three approaches described in the previous section: 

1) C1-20 from the first analysis based on replicate A.

2) D1-60 from “p-value” and “log2 ratio” approaches, from replicates A and B. About one third of 

the genes were taken from the log2 ratio list, another third from the p-value list, and the remaining 

genes are present in both lists. This approach should give a chance to assess if one method is more  

reliable than the other (for the first 40 genes) and at the same time to screen the 20 genes that are in  

both lists, which should be the most reliable genes to test. 

3) C21-30 from the “clustering” approach, from replicates A, B, and C. 

The only gene that can be used as a positive control is SOC1, because it is known to be involved in 

the floral transition at the SAM and is clearly differentially expressed during the floral transition in 
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our experimental conditions (Fig. 11). Up-regulated candidate genes were given emphasis because 

they showed a similar expression pattern to  SOC1. Moreover, genes that are up-regulated only in 

the later phase, from +1LD to +3LD, were included in the set of genes to be analyzed. Indeed, these 

genes could be targets of SOC1/FUL, or of any other regulatory protein responding in the very early 

phase of the floral transition.   

Table 5. Candidate genes and their fold increase in expression after exposure to LDs. The fold changes 1LD/0LD 
and 3LD/0LD were calculated from the averages between the three replicates. In case of 0 values, they were converted  
to  0.1 to calculate  the fold increase.  The methods by which the genes  were  identified were  the “first  preliminary 
method” (1), “the p-value” and “log2 ratio” (2) and the “clustering” (3), described in the text. The fold change from 
microarray data is calculated from Schmid et al, 2003, considering the ratios between +3LD and +0LD in wild-type  
Col.
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Some  of  the  candidate  genes  were  then  analyzed  by  in  situ hybridisation  (see  the  following 

sections). A few of these genes are also plotted as they resulted originally from the global gene 

expression in the three replicates (see Fig. 24, C and D).

4.2 Validation of the gene expression data: in situ hybridisations on candidate genes

In  situ hybridisation  is  a  very  powerful  technique  if  coupled  with  the  LCM and employed  to 

confirm the results of the gene expression analysis. Indeed, we wanted to follow the expression of 

meristem-specific genes, therefore we cannot rely heavily on RT-PCR on apices because we would 

loose the resolution on expression level due to dilution of the meristem tissue in the whole apex. 

Moreover, in situ hybridisation gives not only an idea of the expression level by the strength of the 

signal,  but  it  also  shows  the  spatial  expression  pattern  of  a  gene,  revealing  specific  sub-

compartments of the SAM in which that gene could exert a specific function.    

In order to check the expression patterns of selected candidate genes by in situ hybridisation, DNA 

templates  for  in  situ probes  were  synthesized  by PCR using  specific  primers  for  the  selected 

candidates, and the relative RNA probes tested on apices. The total number of genes tested was 60 

(see  Appendix II for the complete list). A list of 22 of these genes, which are discussed in the 

following  sections  because  they  show  expression  patterns  consistent  with  the  RNA-Seq  gene 

expression data, are indicated in Table 5. Around half of the probes tested did not give any visible 

signal,  while a few others showed signal but were not easy to interpret  in terms of differential 

expression between samples.

In situ hybridizations with SOC1 probe were repeated several times, to provide a positive control in 

our experiments with the candidate genes (Fig. 27).  

1) First series. 

The C4 candidate gene showed an interesting expression pattern in wild-type, as it is expressed 

specifically only in the SAM and its signal increases with longer exposure to LD (Fig. 27). It is 

predicted to encode a bZIP transcription factor of unknown function. The C11 candidate gene does 

not  show visible  expression  before  induction,  is  only  weakly  expressed  after  +1LD and  more 

strongly expressed after +3LD (Fig. 27). It is a gene encoding a zinc finger-homeodomain protein. 

In terms of spatial distribution, C11 mRNA is detected at the flanks of the SAM, in regions which 

correspond to the positions at which organ primordia will form.  C15 is expressed already before 

transition, but it seems to increase in expression upon transfer to LD. The pattern looks similar to 

genes like  AGL24 (see  Fig. 14), although it is expressed more broadly also outside of the SAM. 
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This gene encodes a leucine-rich repeat (LRR) family protein, with predicted kinase activity. C19 is 

strongly expressed, especially at the SAM but also in the young leaves surrounding the meristem 

(Fig. 27), and it seems to increase during the floral transition. It encodes a LRR protein of unknown 

function.  C20 is strongly expressed in the apex, and particularly at the SAM. It is already present 

before induction in LD, and it seems to increase in intensity after induction, although the saturation 

of the signal makes the quantification quite difficult. It encodes a protein with RING finger-like 

zinc finger motif.

2) Second series.

D3, D27 and D29 seem to be expressed already before the shift, but they increase in intensity. Their 

expression is also not specific for the SAM, since they are expressed in other tissues in the apex 

(Fig. 28 and Fig. 29). D3 encodes a protein of unknown function, D27 an ATP binding protein and 

D29 a  glyceraldehyde-3-phosphate  dehydrogenase.  D19,  D31,  D35 and  D37 seem to  be  very 

specifically expressed in the meristem, although the mRNAs of the first three genes are very weakly 

detected.  D19 encodes  a  protein involved in  the  β-oxidation  of fatty acids,  D31  a heptahelical 

transmembrane protein,  D35 a nitrate reductase that was found to be also involved in flowering 

(Seligman et al., 2008) and D37 a Dof-type zinc finger protein. D55 has a pattern similar to SOC1. 

It encodes for a phospholipid/glycerol acyl transferase.

D13 has an intriguing pattern of expression (Fig. 28). Before induction, it is expressed in the apex 

quite strongly and concentrated in the very young leaves near the meristem, on the most external 

cell layer of these leaves. After +3LD of induction another spot of expression appears in the center 

of the shoot apical meristem, spanning part of the “rib zone” and the “central zone” of the meristem, 

in a region that resembles TFL1 expression pattern. D13 encodes a stearoyl-ACP desaturase.

3) Third series.

Most of the genes of this series were also tested. The ones shown (Fig. 30) are all up-regulated after 

+3LD, although for some of them the in situ hybridisation signal is very weak. All of them are 

expressed mainly in the whole SAM, except for  C23, which is specifically expressed only in the 

central  part  of  the SAM (Fig.  30).  C21 encodes  a  homeobox protein,  which was shown to be 

involved  in  flowering  (Wang  et  al.,  2003),  C22 encodes  a  putative  hydrolase/lipase,  C25 an 

uncoupling mitochondrial  protein,  C27 a putative calcium-dependent  protein kinase,  and  C29 a 

GATA transcription factor. C23, C26, and C30 all encode proteins with unknown function.
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Fig.  27.  In  situ hybridisations  with  candidate  genes. These  genes  were  initially  selected  using  only data  from 
replicate A (see text for details). Plants were grown for 2 weeks in SD and shifted to LD, as indicated in the figure.  
Samples were collected at ZT8. SOC1 is used as a positive control on the samples. The corresponding genes are listed 
in Table 5. Scale bar is 50 μm.
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Fig. 28. In situ hybridisations with candidate genes. These genes were selected with the “p-value” and “log2 ratio” 
approaches using data from replicates A and B (see text for details). Plants were grown for 2 weeks in SD and shifted to  
LD, as indicated in the figure.  Samples were collected at ZT8. D13_2 is an alternative probe for detection of  D13 
mRNA. The corresponding genes are listed in Table 5. Scale bar is 50 μm.
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Fig. 29. In situ hybridisations with candidate genes. These genes were selected with the “p-value” and “log2 ratio” 
approaches using data from replicates A and B (see text for details). Plants were grown for 2 weeks in SD and shifted to  
LD, as indicated in the figure. Samples were collected at ZT8. The corresponding genes are listed in Table 5. Scale bar 
is 50 μm.
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Fig. 30. In situ hybridisations with candidate genes. These genes were selected with the “clustering” approach, using 
data from replicates A, B and C (see text for details). Plants were grown for 2 weeks in SD and shifted to LD, as 
indicated in the figure. Samples were collected at ZT8. SOC1 was used as a positive control and as a “reference gene”. 
The corresponding genes are listed in Table 5. Scale bar is 50 μm.

All three methods of analysis lead to the identification of novel genes with interesting expression 
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patterns. However, the success rates of these methods were different. Although it is not easy to 

compare them directly, because a different number of genes was tested for each method. However, 

the most reliable method appears to be the third one, with a success rate of about 80% (8 positive 

genes out of 10 tested), followed by the first method with about 60% success rate (5 positive genes 

out of 8 tested), and finally the second method with about 21% (9 positive genes out of 42 tested).  

In the case of the second method, the “p-value” approach had more success than the “log2 ratio” 

approach, since D19, D27, D29, D31, D35 and D37 were in the “p-value” list, while only D55 was 

in the “log2 ratio” list, and finally D3 and D13 were in both lists.  

4.3 The use of mutants to test the response of the candidate genes to flowering pathways

In a first screen,  in situ  hybridisations were performed using probes for the candidate genes on 

apices  from  wild-type  plants.  To  test  whether  the  confirmed  genes  were  activated  by  the 

photoperiodic flowering pathway they were analyzed by in situ hybridisation on a ft-10 tsf-1 double 

mutant (grown in the same condition as wild-type plants) and repeated in parallel on wild-type.  

Indeed, up- or down-regulation of a gene at the SAM driven by a shift from SD to LD in wild-type 

could be caused by many different reasons, such as developmental changes at the meristem due to 

its growth, or simply a response to light, temperature or stress. A plant carrying null mutations in 

both  FT and  TSF is extremely late flowering in LD because it does not respond to photoperiod 

(Jang et al., 2009), as the SAM of these plants does not receive the floral stimulus from the leaf 

upon induction because both the  FT mobile signal and its homologue  TSF are absent. If a gene 

responds to the inductive FT/TSF signal at the SAM in wild-type plants, it should not respond to 

LD in the double mutant. This is indeed the case for SOC1, which was used as a control gene (see 

Fig.  31).  So  ft  tsf can  be  used  to  identify  genes  that  respond  to  this  known  signal.  In  situ  

hybridisations show that  SOC1 is not expressed in wild-type grown for two weeks in SD before 

induction (+0LD), starts to be up-regulated after +1LD and strongly increases at the SAM after 

+3LD (Fig. 31, A-C). In contrast, in the ft-10 tsf-1 double mutant the level of expression of SOC1 

does not increase after induction, and remains at a very low level even after 3 LD (Fig. 31, D-F). 

In  principle,  three  behaviors  in  relation  to  FT/TSF can  be  expected:  total  dependence,  partial 

dependence, independence.

D31 is an example of the first behavior. Indeed, expression of this gene is detected in wild-type in 

the whole SAM only after 3 LD, while it is absent in ft tsf (Fig. 31, G-L).
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D27 is an example of the second behavior. Although its expression depends sometimes on the tissue 

sections, in general it is expressed quite strongly and in particular after +3LD, in wild-type, while in 

the double mutant its expression is clearly lower, during the entire time course (Fig. 32, A-F). It is 

surprising  that  also  before  induction  the  double  mutant  shows  less  expression  than  wild-type, 

because it should look very similar since FT and TSF are generally believed not to be expressed in 

SD. 

Surprisingly,  the third behavior was also found. For  D13, in the  ft tsf double mutant the pattern 

appears similar to the one in wild-type both before and after induction (Fig. 32), which would imply 

that this gene is activated by a signal after 3 LD that is independent of FT or TSF action.  

Fig. 31. In situ hybridisations with SOC1 and a candidate gene. In situ hybridisations were carried out using probe 
for SOC1 mRNA (A-F), or D31 (G-L) on apices from wild-type Col (A, B, C, G, H, I) and ft-10 tsf-1 (D, E, F, J, K, L). 
Plants were grown 2 weeks in SD and collected before induction at ZT8 as +0 LD (A, D, G, J), after +1 LD (B, E, H,  
K), after +3 LD (C, F, I, L) of induction in LD. Scale bar is 50 μm.
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Fig. 32.  In situ hybridisations with candidate genes.  In situ hybridisations were carried out using probe for  D27 
mRNA (A-F), or D13 (G-L) on apices from wild-type Col (A, B, C, G, H, I) and ft-10 tsf-1 (D, E, F, J, K, L). Plants 
were grown 2 weeks in SD and collected before induction at ZT8 as +0 LD (A, D, G, J), after +1 LD (B, E, H, K), after 
+3 LD (C, F, I, L) of induction in LD. Scale bar is 50 μm.

4.4 D13: a gene encoding a lipid desaturase induced by photoperiod independently of FT and 

TSF

This gene was selected from the list of genes which were confirmed by in situ hybridisation for four 

main reasons. The first one is that its pattern of expression was unique among those tested. It is 

already expressed before induction, but only in the young leaves near to the meristem, specifically 

in the outer layer. Then upon exposure to LD it appears in the center of the inflorescence meristem 

with a strong signal after 3 days of induction (Fig. 28). The second reason is that in the global gene 
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expression dataset from the meristem this gene has one of the highest levels of up-regulation (more 

than 500 times for the values in TPM between +0LD and +3LD), and this is reflected in a strong 

and clearly visible signal by  in situ hybridisation. The third reason is that this gene encodes an 

enzyme  (lipid  desaturase),  involved in  a  pathway that  has  not  been linked so  far  to  the  floral 

transition. The fourth reason is that the expression pattern of this gene in ft-10 tsf-1 double mutant is 

very similar to the one in wild-type plants (Fig. 32, G-L). This suggests that in the ft-10 tsf-1 double 

mutant there is still a response to photoperiod, which triggers a signal, and eventually a response at 

the SAM, which is independent of FT and TSF, a fact that has not been described so far. Another 

interesting feature of this gene is that it is a member of a family of 7 genes, but while the others are  

expressed in several distinct tissues in the plant, D13 expression could not be detected (Kachroo et 

al., 2007). This suggests that it may represent an isoform of this class of enzymes that is specific for 

the meristem.  

The expression pattern initially found for this gene was reproducible, in different hybridisations and 

using samples collected in independent  experiments.  Also an alternative RNA probe for  in situ 

hybridisation was synthesized,  designed in another region of the mRNA, and using this second 

probe the pattern of expression for this gene was confirmed (Fig. 28). So the first probe was used 

for all the subsequent experiments, since it gave a slightly stronger signal.

Fig.  33.  Expression  pattern  of  D13 in  wild-type  and  ft  tsf double  mutant  until  5  LD  after  shift. In  situ 
hybridisations were carried out using probe for D13 mRNA, on apices from wild-type Col (A, B, C, D) and ft-10 tsf-1 
(E, F, G, H). Plants were grown 2 weeks in SD and collected before induction at ZT8 as +0 LD (A, E), after +1 LD (B, 
F), after +3 LD (C, G) and after +5LD (D, H) of induction in LD. Scale bar is 50 μm.
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Fig. 34. Expression pattern of D13 as induced by LD and in relation to TFL1. In situ hybridisations were performed 
using probes for TFL1 (E) and D13 (all the others). Plants were grown for 10 LD (A, C, E), 12 LD (B, D), 2 weeks SD 
+0LD (G), 2 weeks SD +3LD (H), and 2 weeks SD +3LD +2SD (F). Plants were collected at ZT8. Scale bar is 50 μm. 
Picture E was kindly provided by Aimone Porri.

Another in situ hybridisation experiment showed again that  D13 is up-regulated after 3 LD in the 

central region of the inflorescence meristem, both for wild-type and ft tsf double mutants (Fig. 33). 

In this  experiment the strength of the signal is slightly weaker for the double mutant,  probably 

reflecting the biological variation of the sample (compare with Fig. 32, G-L). However, the signal 

is still clearly stronger than before the third LD. Moreover, after 5 LD of induction, the mRNA of 

D13 is  broadly  expressed  through  all  the  inflorescence  meristem,  and  this  expansion  of  the 
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expression domain occurs both in wild-type and ft tsf double mutants (Fig. 33). In wild-type after 5 

LD, there is a small domain in which  D13 is not expressed, which could be the floral meristem 

forming on the flanks of the inflorescence meristem (Fig. 33). This domain, indeed, is not present in 

ft tsf double mutants, which are strongly delayed in floral meristem formation. 

4.4.1 On the expression pattern of D13: possible interactions with TFL1

Because  the  portion  of  the  D13 transcript  which  is  expressed  in  the  meristem  after  3  LD  of 

induction is similar to the pattern of expression of TFL1 gene upon induction (Fig. 34, E), it was 

tested whether there is any interaction between these two genes. 

A time courses of plants grown in LD, both for wild-type Col and tfl-18 mutant, was collected and 

hybridised with D13 probe. Meristems of tfl1 mutants grow slightly faster in LD compared to wild-

type due to the effect of a slightly earlier flowering of the mutant (Fig. 34, A-D). In both genetic 

backgrounds  D13 presents  an  increase  of  expression with the increasing  number  of  LD in  the 

florally-induced meristem. Nevertheless,  D13 shows a stronger signal in  tfl1 mutant compared to 

the corresponding wild-type control grown for the same number of LD (Fig. 34, A-D).  

4.4.2 On the signal inducing D13: triggering flowering without LD

The expression of D13 mRNA increases during floral induction triggered by LD, but is independent 

of FT and TSF, therefore it was of interest to separate floral induction from induction of flowering 

by photoperiod and assess whether  D13 was still induced during flowering. One way to separate 

these two processes is to use an inducible system, in which the flowering cascade can be triggered 

without shifting the plants to LD. Moreover, the fact that D13 is increased in the absence of FT and 

TSF does not necessarily exclude that FT or TSF can also contribute to the induction of this gene 

and that they could induce it once they are strongly activated. Transgenic plants carrying a construct 

encoding the CO protein fused to the gluco-corticoid receptor (GR) ligand-binding domain driven 

by the  35S promoter were used. In these lines, treatment with dexamethasone (DEX) leads to a 

strong activation of CO function and induction of flowering (Simon et al., 1996). This construct is 

in  co genetic background (in Ler), so CO is activated only in response to DEX. Therefore, this 

system can be used to activate flowering in SD upon treatment with DEX and the response can be 

studied in terms of gene expression.   

Plants were grown for 2 weeks in SD, and the ones carrying 35S::CO:GR either treated with DEX 

or with the mock, only one time at  ZT8, while wild-type Ler was shifted to LD, as a positive 
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control for induction of floral promoting genes. Samples were collected at days +0, +1, +3, +5 after 

the treatment or the shift. Plants carrying  35S::CO:GR were monitored and the ones treated with 

DEX flowered significantly earlier than the ones treated with the mock, confirming the effect of the 

treatment. Apices enriched in meristem tissue were collected by removing the leaves with small 

tweezers.  These samples still  contain small  parts  of leaves,  so it  is still  possible  to monitor  an 

increase in  FT expression under strong inductive condition, such as the activation of the CO:GR 

system. The expression of FT was measured and a strong up-regulation of this gene was found in 

the samples treated with DEX from the first day after treatment, while no increase was detected in 

the mock-treated samples (Fig. 35, A). Wild-type Ler shifted to LD did not show a large increase in 

FT mRNA, probably because there is not so much leaf tissue to detect the increase due to the shift 

in LD at this stage.  SOC1 was used as a marker for the relative induction at the meristem.  SOC1 

induction upon DEX treatment reflects FT expression in these samples (Fig. 35, B), and it is even 

stronger than in wild-type shifted to LD, confirming that floral induction is being triggered in the 

samples treated with DEX. In wild-type samples there was no more increase of SOC1 mRNA after 

the first long day. This could be due to the fact that after 3 LD Ler is already flowering, and there is 

not a significant increase of SOC1 after this stage. Finally, expression level of D13 was tested. First 

of all, because the expression pattern of D13 was described in Col in our previous experiments, and 

for the RT-PCR Ler ecotype was used, in situ hybridisation was carried out on apices of wild-type 

Ler grown 2 weeks in SD and then shifted to LD. This experiment confirmed an up-regulation of 

D13 upon exposure to LD (Fig. 34, G, H). The increase in the expression level of this gene seems 

even stronger in Ler, probably reflecting the faster induction occurring in this ecotype compared to 

Col. Therefore, expression level of D13 could also be measured by RT-PCR. In wild-type samples 

this gene was strongly up-regulated upon shift to LD (Fig. 35, C), similarly to previous results from 

the sequencing data and from in situ hybridisation (see above). But in the case of plants carrying 

35S::CO:GR, no induction of D13 was detected upon treatment with DEX. From this experiment 

we can conclude that  D13 is not influenced by the photoperiodic pathway activated by  CO, and 

therefore that it is not activated by FT/TSF.

Additionally, since possible interactions between D13 and TFL1 are being tested, TFL1 expression 

was also checked in those samples. TFL1 expression level increased in wild-type upon shift to LD, 

similarly to  D13 (Fig. 35, D). In the case of plants carrying  35S::CO:GR, no induction of  TFL1 

expression was detected,  as for  D13.  This last  result  seems to be in contradiction to what  was 

published  previously  (Simon  et  al.,  1996).  Nevertheless,  the  general  experimental  and  growth 
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condition  were  probably  very  different,  and  it  is  not  easy  to  compare  our  RT-PCR data  with 

previous  in  situ hybridisation  data.  Moreover,  the  spatial  expression  pattern  of  TFL1 is  quite 

complex, because upon induction it starts to be expressed in different and separated zones of the 

SAM, and RT-PCR cannot take into account the contribution of these distinct parts on the general 

expression in the whole apex.   

Expression of D13 was also tested in plants that were grown 2 weeks in SD, shifted to LD for 3 LD 

and then shifted back to SD, in Col ecotype. In situ hybridisation shows that at 2 days after the shift 

back to SD, there is still strong expression (Fig. 34, F), comparable to that after 3 LD (Fig. 33, C). 

This would suggest that expression of D13 is not only sustained by LD, but once expressed it can 

stay on even after return to SD. Nevertheless its expression does not increase to the levels detected 

in plants shifted to LD for 5 days. 

Fig. 35. Quantitative real time PCR on RNA extracted from plants in which the photoperiodic pathway has been  
induced. Levels of expression of FT (A), SOC1 (B), D13 (C), and TFL1 (D) mRNAs are measured at ZT8 in apices of 
seedlings enriched in meristem tissue. Plants were previously grown for two weeks in SD, then wild-type Ler (wt) was 
shifted to LD, while  35S::CO:GR in  co-2 (COGR) was kept in SD and treated with dexamethasone (+DEX) or with 
mock (-DEX).
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Fig. 36. Modulation of D13 expression level with transgenic approaches. Wild-type Columbia, a T-DNA line (see 
text)  with an  insertion  in  the  promoter  of  D13,  and  several  independent  lines  expressing  RNAi  against  D13,  are 
compared. Panel A: flowering time data. Total number of leaves (rosette plus cauline leaves) are scored both in LD and 
SD. Panel B:  quantitative real  time PCR to measure  D13 RNA expression in apices  (apices  enriched in meristem 
tissue). Plants were grown in LD in growth chambers for 12 days and collected at ZT8.

4.4.3 Modulation of D13 expression with transgenic approaches

The SALK collection of plants carrying T-DNA insertions (Alonso et al., 2003) was searched to 

find a line of  Arabidopsis with an insertion at the  D13 locus. There was no line with a T-DNA 

insertion in exonic or intronic regions of this gene, but one with an insertion in the promoter region, 

just  a few base pairs before the ATG start  codon was detected.  Therefore,  it  is not possible to 

predict  the  effect  of  this  insertion.  In  parallel,  the  expression  of  this  gene  was  modulated  by 

transgenic approaches. Wild-type Col was transformed with a construct designed to target a specific 

region of the mRNA of D13 by RNA interference (see Methods) driven by the 35S promoter. Six 

independent homozygous lines carrying one single insertion of the transgene were obtained. None 

of the RNAi lines nor the SALK line showed a flowering time phenotype or any other obvious 

phenotype (Fig. 36, A), except for a slight early flowering of line #3 (especially in SD) and line #9 

(especially in LD). The RNA level of D13 in all these lines was measured in apices (Fig. 36, B). 

Compared to wild-type, most of the lines did not show a significant decrease in  D13 expression. 

The only line with less detectable expression was line #7. Moreover, the SALK line showed higher 

D13 expression, confirming that it is a line over-expressing D13 presumably due to expression from 

a promoter within the T-DNA. However, there is no correlation between the resulting flowering 

time and level of expression of D13 in those lines. It seems quite likely that the RNAi approach in 

this case did not result in a significant reduction of the mRNA of D13.   
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Wild-type Col was also transformed with a construct expressing  D13 complete coding sequence, 

driven by 35S promoter or FD promoter. T1 plants selected on BASTA did not show any obvious 

phenotype.

Fig. 37. Expression patterns of the C11 candidate gene and close related genes. In situ hybridisations were carried 
out on shoot apices with probes for C11 (A-I), ATHB21 (J, K, L) and ATHB25 (M, N, O). Apices were from wild-type 
Col (A, B, C, G-O) and ft-10 tsf-1 (D, E, F). Plants were grown 2 weeks in SD and collected at +0LD (A, D, J, M), 
+1LD (B, E, K, N), +3LD (C, F, L, O) and +5LD (G, H, I). G, H and I are pictures from three sections of the same 
plant. Plants were collected at ZT8. Scale bar is 50 μm.
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4.5 C11: a homeodomain transcription factor which is dependent on FT/TSF

C11 is a gene encoding a homeodomain protein included in the zinc finger-homeodomain family. 

The gene that we identified as C11 corresponds to ATHB31.

C11 mRNA is not detected by in situ hybridisation on apices of wild-type Col grown for 2 weeks in 

SD. Upon induction, it is weakly visible after 1 LD and more strongly expressed after 3 LD (Fig. 27 

and  Fig. 37, A-C). The expression of this gene at +3LD seems to be restricted to regions at the 

flank of the SAM which correspond to the organ primordia. Although at this stage there are still leaf 

primordia, rather than floral primordia, this gene could be expressed just before the appearance of 

the floral primordium itself or during its formation. In addition, ft tsf double mutants do not express 

this gene at all during 3 LD of induction, demonstrating that it is downstream of the FT/TSF signal 

(Fig. 37, D-F). Furthermore, hybridisation on wild-type apices after 5 LD shows expression of C11 

specifically at the boundary between the meristem and the organ primordia (Fig. 37, G-I).

Fig. 38. Phylogenetic relationship in the Arabidopsis zinc finger-homeodomain gene family. The tree (from Tan and 
Irish, 2006) was constructed with Bayesean analysis, and posterior probabilities were indicated for each branch.  

4.5.1 C11 has close homologues which might play redundant roles with it

It was previously reported that loss of function alleles in each of the genes belonging to the same 

family as  C11 do not confer any visible phenotype (Tan and Irish, 2006). The authors concluded 

that this is probably due to functional redundancy between the members of this family, since they 
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are quite similar in sequence. Also, in some cases the general expression pattern monitored by RT-

PCR was similar for some of the members.  In addition, protein-protein interaction among some 

members of this family was detected by yeast two-hybrid (Tan and Irish, 2006).

To study C11 further, the members of the gene family that were closer to this gene were chosen, 

according  to  their  phylogenetic  relationship  (Fig.  38).  RNA probes  for  these  genes  were  then 

synthesized, and wild-type apices were hybridised by in situ hybridisation.  

The closest homologue to C11, which is ATHB21, did not show any visible signal (Fig. 37, J-L) in 

our conditions. These genes seem to be quite lowly expressed, so maybe it is difficult to detect the 

expression of some of them by  in situ hybridisation. Indeed, in our dataset,  ATHB21 is detected 

only  at  +3LD,  and  is  extremely  lowly  expressed  (2.3  and  0.8  TPM  for  replicate  B  and  C 

respectively) and not detected at all in replicate A. Another gene tested was ATHB25, which is the 

next closest homologue. This gene is not visible before induction by LD, but its expression becomes 

visible after 3 LD on the primordia at the flanks of the SAM (Fig. 37, M-O). This pattern is very 

similar to the the one of C11, further suggesting a possible redundant role with C11. In agreement 

with  this  possibility,  a  strong  interaction  in  the  yeast  two-hybrid  system  was  found  between 

ATHB31 and ATHB25 proteins. In our dataset,  ATHB25 mRNA is detected (range 0-138 TPM), 

although not clearly up- or down- regulated. 

Given  the  possible  redundant  function  played  by  these  genes,  and  the  overlapping  pattern  of 

expression of some of them, the strategy of using artificial microRNA (amiRNA) to specifically 

knock  down  more  than  one  gene  of  this  family  was  chosen  (Schwab  et  al.,  2006).  amiRNA 

constructs were designed (see Methods), and two constructs were generated: one targeting ATHB31 

and  ATHB21 (amiRNAh21/31),  and  the  other  one  targeting  ATHB25 and  ATHB22 

(amiRNAh22/25), both driven by the 35S promoter.

At  the  stage  of  T1  several  individuals,  both  from the  first  and  the  second  construct,  show a 

moderate later flowering time compared to the other individuals. A more precise screen, at the level 

of  the  homozygous  T3  generation,  including  measuring  RNA  level  for  the  targeted  genes  in 

comparison to wild-type plants, is needed to assign a possible function of this family of genes on 

flowering regulation.  
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Fig. 39. Expression pattern of C19 candidate gene. In situ hybridisations were carried out on shoot apices with probes 
for C19 (A-H) and PGIP2 (I). Apices were from wild-type Col (A, B, C, G, H, I) and ft-10 tsf-1 (D, E, F). Plants were 
grown 2 weeks in SD and collected at +0LD (A, D), +1LD (B, E), +3LD (C, F, I) and +5LD (G, H). G and H are 
pictures from two sections of the same plant. Plants were collected at ZT8. Scale bar is 50 μm.
 

4.6 C19: a LRR protein responding to FT/TSF  

C19 encodes a protein that was previously named FLOR1, because it was discovered in an assay to 

isolate  proteins  putatively  expressed  in  flowers.  It  was  isolated  as  a  possible  interactor  of 

AGAMOUS, and the physical interaction between them was tested and confirmed with various 

techniques (Gamboa et al., 2001). The protein is composed of 326 amino acids and contains a LRR 

domain.  The predicted  LRR domain  is  composed of  10 leucine-rich  tandem repeats.  It  is  also 

annotated as an enzyme inhibiting protein, because of its similarity with a class of inhibitors named 

polygalacturonase inhibiting protein (PGIP).

The signal detected for this gene by in situ hybridisation is very strong. It is present at the SAM, but 

also  in  young  leaves  surrounding  the  meristem  (Fig.  39).  The  intensity  of  the  signal  clearly 

increases  during  the  floral  transition  in  wild-type  plants  (Fig.  39,  A-C),  while  in  ft  tsf  double 
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mutants it remains at a basal level that is comparable to the wild-type before induction (Fig. 27 and 

Fig. 39, D-F). Interestingly, while in wild-type the expression spreads all over the meristem dome 

at the third LD (Fig. 39, C), in the double mutant it seems to be restricted in the lower part at the 

base of the meristem (Fig. 39,  F),  like in wild-type  before induction  (Fig. 39,  A).  This  would 

suggest that the photoperiodic signal also changes the spatial distribution of the C19 mRNA causing 

a broader expression over the central zone and reaching the L1 layer. Interestingly,  in wild-type 

after 5 LD the expression is still strong all over the inflorescence meristem, but the signal is absent 

from the  floral  primordia  (Fig.  39,  G,  H).  This  last  feature  is  also  found for  SOC1  and  FUL 

transcripts (Samach et al. 2000; Mandel and Yanofsky, 1995a), which are excluded from the floral 

meristem and strongly expressed in the inflorescence meristem at this stage. 

4.6.1 Loss of function of C19 may influence flowering

A line which carries a T-DNA in the C19 locus (SALK_093764) was found in the SALK collection 

(Alonso et al., 2003). The T-DNA is inserted in the intron between the two exons composing the 

gene  locus  (Fig.  40,  A).  This  insertion  was  confirmed  by PCR on  genomic  DNA and  plants 

homozygous  for  the  insertion  were  obtained  by  segregation.  RNA  was  extracted  for  the 

homozygous T-DNA line and wild-type Col, and RT-PCR was used to test for the expression of 

C19 transcript.  When  primers  amplifying  the  segment  of  cDNA  downstream  of  the  T-DNA 

insertion were used, no transcript was detected, even with high number of PCR cycles, while a clear 

band is visible for wild-type (Fig. 40, B). Conversely,  when primers amplifying the segment of 

cDNA upstream of  the  T-DNA insertion  were  used,  a  transcript  was  detected,  with  the  same 

intensity of the product obtained for wild-type (Fig. 40, C). We can conclude that in this line the 

product  of  the  C19 gene  is  not  entirely  transcribed,  but  is  truncated  before  the  second  exon. 

However, we cannot conclude on whether the putative product of this gene is functional in this 

mutant.  

These plants do not have an obvious phenotype, although flowering occurs slightly later than wild-

type Col, both in LD and SD. However, the difference is only approximately 1 leaf, and within the 

standard variation of the single individuals (Fig. 41), although reproducible in several experiments. 

The standard t-test was performed on three independent experiments, to test the statistical difference 

between the flowering time (as total number of leaves in LD) of wild-type and c19 plants. In one 

case the difference was not significant (p-value=0.2), while in the other two cases it was either  

highly significant (p-value=0.02) or nearly significant (p-value=0.055).   
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Fig. 40. A T-DNA insertion in the C19 locus.  Panel A: a scheme of the insertion site in the genomic DNA of C19 
locus for the line from the SALK collection. Panel B and C: Electrophoresis gels of products from RT-PCR reactions.  
“wt”: cDNA from wild-type Columbia. “T-DNA”: cDNA from the line homozygous for the insertion in  C19 locus. 
Number of cycles for the PCR reactions are within parenthesis. Primers used to amplify cDNA of C19 were designed 
downstream of the T-DNA insertion (B)  or  upstream of the T-DNA insertion (C).  Plants were  grown in LD and 
seedlings were collected after 10 days at ZT8, for RNA extraction.

Because the pattern of expression of this gene by in situ hybridisation in the inflorescence meristem 

(Fig. 39) has similarities with the one of SOC1 and FUL, and because the product of this gene has 

been shown to interact  with  AGAMOUS, another  MADS-box transcription  factor,  c19 putative 

mutant was crossed with  soc1-2 ful-2 to obtain  c19 soc1 ful triple mutant and the other mutant 

combinations. Flowering time has been scored in LD (Fig. 41). 

When combined with the loss of function of  SOC1 and  FUL,  c19 mutant adds a slight delay in 

flowering time, so that  c19 soc1 ful is slightly later flowering than soc ful in terms of number of 

rosette leaves at bolting. Again, this delay is small, but it appears to be enhanced compared to the 

one  between  c19 and  wild-type.  There  were  few  plants  to  score  in  this  population  and  the 

experiment will be repeated to confirm the difference in flowering time. Additionally,  flowering 

time of double mutants c19 soc1 and c19 ful will be scored and compared to the ones of soc1 and 

ful single  mutants,  to  test  whether  an  effect  on  flowering  is  already  visible  in  one  of  these 

combinations.    

A possible redundant function of this gene with homologue genes could mask a clear effect of the  

loss of function of  C19. Nevertheless,  PGIP2 and  PGIP1, the closest paralogs to  C19, are barely 

detected in the SAM based on our gene expression dataset. This would be in agreement with the 

role of these genes in pathogen response (Ferrari et al., 2006), therefore not related to flowering. A 

test was carried out with a probe for PGIP2 by in situ hybridisation on apices, which did not show a 

clear signal at the SAM (Fig. 39, I).
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Fig. 41. Flowering times of Col wild-type and soc1 ful plants carrying c19 T-DNA insertion. Flowering times were 
scored in LD. RLN: number of rosette leaves. CLN: number of cauline leaves.  

4.7 Some bZIP transcription factors partially respond to FT/TSF

The candidate gene C4 is annotated as a gene coding a bZIP transcription factor. Interestingly, the 

pattern of expression of this gene is very specific for the SAM. Upon shift to LD, its expression 

level increases, and it is visible not only in the central part of the SAM but also continues laterally 

toward the pro-vascular tissue (Fig. 27 and Fig. 42, A-C). In ft tsf double mutants C4 mRNA level 

does not show such an increase upon shift to LD, although there is a slight up-regulation (Fig. 42, 

D-F). 

Another gene encoding a bZIP transcription factor,  FD, is known to be important for the floral 

transition  at  the  SAM,  and  it  is  also  specifically  expressed  in  this  tissue.  Therefore,  in  situ 

hybridisations were carried out in wild-type Col and ft tsf double mutant with a probe for FD. While 

in wild-type, as reported previously, there is an increase in expression of FD upon induction to LD 

(Fig. 42, G-I), in the double mutant the expression level of this gene remained almost constant (Fig. 

42, J-L). It was previously shown that in the ft single mutant (in Ler ecotype) FD did not change its 

pattern  compared  to  wild-type  (Searle  et  al.,  2006).  It  may  be  that  FT and  TSF redundantly 

contribute  to  up-regulation  of  FD at  the  SAM.  However,  the  difference  found  between  our 

experiment and the one in the ft mutant can be due to different experimental conditions, and to the 

different ecotype used. 
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Taken  together,  these  data  suggest  that  some  bZIP  transcription  factors  are  regulated  in  the 

meristem via FT/TSF. 

Fig. 42. Expression pattern of a bZIP candidate gene. In situ hybridisations were carried out on shoot apices with 
probes for C4 (A-F) and FD (G-L). Apices were from wild-type Col (A, B, C, G, H, I) and ft-10 tsf-1 (D, E, F, J, K, L). 
Plants were grown 2 weeks in SD and collected at +0LD (A, D, G, J), +1LD (B, E, H, K), and +3LD (C, F, I, L). Plants 
were collected at ZT8. Scale bar is 50 μm.
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Fig. 43.  In situ hybridisations with candidate genes.  In situ hybridisations were carried out using probes for  C25 
mRNA (A-H), or C27 (I-P) on apices from wild-type Col (A-D, I-L) and ft-10 tsf-1 (E-H, M-P). Plants were grown 2 
weeks in SD and collected before induction at ZT8 as +0 LD (A, E, I, M), after +1 LD (B, F, J, N), after +3 LD (C, G,  
K, O), and after +5 LD (D, H, L, P) of induction in LD. Scale bar is 50 μm.

4.8 Several genes are related to the growth of the meristem in response to FT/TSF

RNA probes  for  three  genes  from the  series  of  candidate  genes  identified  with  the  clustering 

approach (see previous sections) were tested again by in situ hybridisation in wild-type Col and ft-

10 tsf-1 double mutants:  C23 (described in the next section),  C25, and C27. The time course was 

extended  to  +5LD  for  both  genotypes.  The  expression  patterns  of  C25 and  C27 show  some 

similarities.  Indeed,  upon  shift  they  highly  increase  their  expression  progressively  in  LD, 

specifically at the SAM, in wild-type apices, while they show no or a very slight increase in the  

double mutant (Fig. 43). However, C27 is already expressed in the whole apex before shift to LD, 

while  C25 is less expressed. As mentioned before,  C25 encodes for an uncoupling mitochondrial 

118



Results

protein (called PUMP1), while  C27 for a putative calcium-dependent protein kinase. Particularly, 

C25 is  involved in  photosynthesis  and the  loss  of  function  mutant  is  impaired  in  some of  the 

processes related to photosynthesis (Sweetlove et al., 2006). We have shown already several genes 

tested from the lists of candidates increasing their expression, and many of those are involved in 

metabolic processes. This is also in strong agreement with our analysis for GO term enrichment on 

the up-regulated genes. Possibly many genes increase their expression upon shift to LD and then 

progressively during the LD induction, in relation to the marked growth of the meristem in this 

condition. In the case of ft tsf, this double mutant is impaired in the response to photoperiod, and its 

meristem does  not  grow as much as  the wild-type  one in  response to  LD, and thus  shows no 

increase in the expression of those genes. 

4.9 An unknown protein induced in the center of the SAM by FT/TSF

C23 showed an interesting pattern of expression, since its mRNA gives a very strong hybridisation 

signal only after +3LD of induction, in a specific region at the center of the SAM (see Fig. 30). This 

region seems to overlap with the one in which WUSCHEL is expressed (Fig. 44, J, K) (Schoof et 

al.,  2000).  C23 probe was tested again by  in situ hybridisation in wild-type Col and  ft-10 tsf-1 

double mutants, in a time course extended to +5LD. This experiment confirmed that  C23 mRNA 

becomes strongly detectable at +3LD in wild-type  (Fig. 44, C, I). At +5LD its expression is also 

very similar to +3LD, and additionally other regions, most probably axillary meristems forming at 

the flanks of the main shoot, show detectable expression (Fig. 44, D). Interestingly, in the double 

mutant no expression is detected, even after +5LD of induction (Fig. 44, E-H). This suggests that 

C23 responds to a signal triggered by FT/TSF.
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Fig. 44. In situ hybridisations with C23 candidate gene. In situ hybridisations were carried out using probes for C23 
mRNA (A-i), or WUS (J, K) on apices from wild-type Col (A-D, I-K) and ft-10 tsf-1 (E-H). Plants were grown 2 weeks 
in SD and collected before induction at ZT8 as +0 LD (A, E), after +1 LD (B, F, J, K), after +3 LD (C, G, I), and after 
+5 LD (D, H) of induction in LD. D and I are pictures of the same plants in different sections. J and K are pictures of  
the same plants in different sections. Scale bar is 50 μm.

120



Results

5. The role of  SVP in leaf and meristem and the control of flowering 

time

5.1 Loss of function of single floral promoter genes does not overcome the early flowering 

phenotype of svp mutants.

The first report of SVP was based on a mutant screen in which loss of function of this gene resulted 

in an early flowering phenotype (Hartmann et al., 2000). The SVP MADS-box transcription factor 

was therefore classified as a floral repressor. Later, it was proposed that SVP directly represses FT 

transcription  (Lee et al., 2007b) and thereby prevents flowering.  Because  FT is transcribed in the 

leaf  upon  exposure  to  LD,  SVP would  then  exert  its  function  in  the  leaf.  According  to  this 

hypothesis,  mutations  in FT should suppress the early flowering phenotype of  svp mutants,  but 

actually the effect of an  ft mutation in a  svp ft double mutant is very mild, and this was shown 

recently in Col (Li et al., 2008) and Ler (Fujiwara et al., 2008), although a previous report showed a 

larger effect (Lee et al., 2007b). This could be due to the use of different alleles for the mutants used 

by the  different  groups.  I  repeated  these  experiments  with different  and stronger  alleles  of  the 

mutants. First of all, flowering time was scored for all the available mutants at the SVP locus, such 

as svp-41, svp-31, svp-32 (in Col) and svp-3 (in Ler), confirming that svp-41 is the strongest allele 

in Col in terms of early flowering phenotype (Fig. 45, A). Then svp-41 mutant was crossed with ft-

10 mutant, which carries the strongest loss of function allele for FT in Col, and this confirmed that 

svp-41 ft-10 double mutants flower only slightly later than svp-41 mutant (Fig. 45, B). This implies 

that there are other additional target genes regulated by SVP. 

CO is a key gene in the induction of flowering in the leaf. Loss of function of CO, which causes 

very late flowering, does not have a strong effect in an svp-41 mutant background (Fig. 45, B). The 

other plant tissue where SVP could have a role in controlling flowering in addition to the leaf is the 

shoot apical meristem (SAM).  A suggestion that  SVP could have a role outside of the leaf tissue 

comes from its  expression pattern.  Indeed  SVP is  also strongly expressed at  the SAM, and its 

expression level in this tissue decreases upon floral transition (Fig. 11), raising the possibility of a 

role of SVP in blocking the floral transition at the meristem. SOC1, which induces flowering at the 

SAM, was also suggested to be target of SVP (Li et al., 2008). Nevertheless, loss of function of the 

SOC1 gene in soc1-2 background has a very mild effect of delaying flowering in the svp-41 mutant, 

similar  to  the  loss  of  function  of  FT  (Fig.  45,  B).  Even a  triple  mutant  svp ft  soc1,  although 

flowering later  than wild-type,  flowers earlier  than  ft  soc1 in Ler background (Fig. 45,  C,  and 
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similarly  Fujiwara  et  al.,  2008),  and  remarkably  earlier  in  Col  background  (Li  et  al.,  2008). 

Therefore, the scenario is far more complex than SVP having a small number of known targets, and 

it is probably necessary to combine several mutations in genes promoting flowering in the svp-41 

mutant background to suppress its early flowering phenotype. Moreover, if SVP has a role not only 

in the leaf but also in the meristem, these two functions need to be clearly separated. Therefore,  

three parallel approaches were chosen: one is based on combining loss of function of SVP (in svp-

41 mutant background) with loss of function alleles of genes promoting flowering either in leaf or 

meristem;  the  second  is  performing  expression  analysis  on  specific  genes  in  different  mutant 

backgrounds; and the third is based on mis-expressing SVP in different tissues in the svp-41 mutant 

background in order to study the direct effect of this gene on flowering in specific tissues. 

Fig. 45. Flowering times of plants carrying  svp mutant alleles in Col or in combination with other mutations 
affecting flowering. Flowering time is scored as number of leaves. Col carrying different mutant alleles of  SVP (A), 
svp-41 in combination with ft,  soc1 or  co in Columbia background (B) and svp-3 in combination with ft and soc1 in 
Landsberg erecta background (C). RLN: number of rosette leaves. CLN: number of cauline leaves.
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5.2 SVP and the leaf: genetic and spatial interactions

5.2.1 Role of SVP in the leaf and its relationship to FT and TSF 

As discussed before, SVP must have further targets in addition to FT. Particularly, if SVP has a role 

in repressing flowering in the leaf, an obvious candidate to test is  TSF. This gene indeed shares 

many features  with  FT,  as it  is  its  closest  homologue and it  acts  in  part  redundantly with  FT 

(Michaels et al., 2005; Yamaguchi et al., 2005). It has been already reported that  FT expression 

levels in svp mutants are higher than in wild-type (Lee et al., 2007b; Li et al, 2008). The levels of  

FT transcript were checked again by quantitative real-time PCR in the wild-type, svp-41, co-10 and 

co-10 svp-41 backgrounds using RNA from leaves collected from seedlings grown in LD condition 

for 12 days (Fig. 46, A). Then, also TSF transcript levels were measured (Fig. 46, B). In addition, a 

similar analysis was done for SOC1, because it is known that this gene is expressed in young leaves 

in addition to the shoot apical meristem (Fig. 46, C). In this case the levels of SOC1 transcript were 

measured by quantitative real-time PCR in wild-type, svp-41, and svp-41 ft-10 backgrounds, using 

RNA from leaves collected from 10 days-old seedlings grown in LD condition.  In addition,  the 

level of FT expression was measured by real-time PCR in meristems of wild-type and svp mutants 

grown in the same conditions, collecting apices enriched in SAM by manually removing as many 

leaves as possible, in order to check for the possibility of a direct effect in the meristem of FT up-

regulation in svp mutants. Under these conditions, FT expression is barely detectable both in wild-

type and svp apices (Fig. 46, D). This suggests that the up-regulation of FT in svp seedlings only 

occurs in the leaf tissue.

SOC1, FT and TSF show similar behavior in terms of their expression levels in the leaves (Fig. 46). 

In all cases, their expression decreases when genes promoting their expression are mutated: FT and 

TSF mRNAs decrease in co mutant background, SOC1 mRNA decreases in ft mutant background. 

Moreover, their expression increases in  svp mutants, compared to wild-type.  In double mutants, 

where both the promoter  gene and the repressor gene (SVP)  are  mutated,  FT,  TSF,  and  SOC1 

mRNAs have an intermediate level between wild-type Col and the svp-41 mutant. These data are in 

agreement with the flowering time data of the corresponding genotypes.

Nevertheless, this expression analysis takes into account only one particular time during the day 

(around ZT8), and does not reflect the complex diurnal expression patterns that all these genes have 

and therefore describes only a simplified scenario of a more complex situation.  
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Fig. 46. Quantitative real time PCR of mRNA of genes whose expression is altered by SVP in different genetic 
backgrounds. Panel A and B: seedlings were grown in LD and leaves were collected after 12 days. Panel C and D:  
Seedlings were grown in LD and leaves or aerial parts enriched in meristems (apex) were collected after 10 days. All  
samples were collected at ZT8.

To have a more precise description of the expression patterns of FT and TSF in the svp background, 

the diurnal expression patterns of these two genes during a 24 hours cycle under LD was followed 

in wild-type, svp-41, and svp-41 co-2, with a resolution of three hours (Fig. 47, A, B). FT and TSF 

show their expected diurnal expression pattern, with a peak at the end of the light period in LD, and 

another  smaller  peak just  after  dawn (Suárez-López e al.,  2001; Yamaguchi  et  al.,  2005).  This 

pattern is conserved also in svp background, but the level of expression is higher, especially for the 

peak at ZT15 (for FT and TSF) and the lower peak at ZT3. Another two independent experiments 

were performed in the same conditions and they show essentially the same results (data not shown).
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Fig. 47. Diurnal patterns of  FT,  TSF and  CO mRNA levels in presence or absence of a functional  SVP allele, 
measured by quantitative real time PCR. Seedlings were grown in LD for 10 days and then collected during the 
following 24 hours. Aerial parts of the plants were used for RNA extraction.
Samples at ZT8 were collected in light, samples at ZT24 were collected in dark. Samples at ZT16 (for panel A and B)  
were collected in light.
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In one of these experiments,  in which samples were collected at the resolution of 4 hours,  CO 

expression pattern was also tested. No significant difference in the pattern of  CO expression was 

found between wild-type and svp (Fig. 47, C). Therefore, the up-regulation of both FT and TSF is 

not due to a higher level of CO mRNA in the svp background. In addition, FT and TSF expression 

in the svp co background is very low (Fig. 47, A, B), without the characteristic peaks, indicating 

that CO is needed for the up-regulation of FT and TSF in the svp mutant. 

Fig. 48. Flowering times of plants carrying loss of function alleles of SVP, FT, or TSF. Flowering time was scored 
as number of leaves both in long-days (LD) and short-days (SD). RLN: number of rosette leaves. CLN: number of  
cauline leaves.

All these expression data suggest that SVP represses not only FT but also TSF in the leaf.

In order to further test this hypothesis, svp-41 was crossed with ft-10 tsf-1 double mutant and svp-

41 ft-10 tsf-1 triple mutants were obtained, together with all the other double mutant combinations. 

Flowering time was scored both in LD and SD conditions (Fig. 48). The effect of the tsf mutation in 

svp background is minimal (similar to ft mutation), while ft tsf double mutant combinations cause a 

larger delay in flowering time in the  svp background. Nevertheless, the triple mutant still flowers 

much earlier than the double mutant ft tsf, so the early flowering effect of svp is still very strong. 

Taken together, these results strongly suggest that SVP has a role in repressing the expression of FT 

and TSF in the leaf, but the effect of SVP cannot be explained only by repressing these two genes in 

the leaf. Therefore since activation of  FT and  TSF are the last known events in the leaf there is 

likely  an  additional  effect  that  occurs  at  the  apical  meristem.  Indeed,  the  triple  mutant  is 
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photoperiodic insensitive, and shows a flowering time similar to that of the svp mutant in SD, which 

suggests that the early flowering phenotype of  svp ft  tsf  would be dependent on genes that are 

downstream of FT and TSF, such as SOC1.

5.2.2 SOC1 in relation to SVP, FT and TSF.

Because the increase of expression of SOC1 in svp background can be due either to a direct effect of 

the loss of function of SVP or to an indirect effect of the up-regulation of FT, or to a combination of 

both, the different contributions on SOC1 expression need to be separated using different genetic 

backgrounds. Therefore the pattern of expression of SOC1 was investigated in the  svp ft tsf triple 

mutants and compared to that in wild-type, svp, and ft tsf.

In situ hybridisations on wild-type Col, as described previously, show that when plants are shifted 

from SD to LD SOC1 expression in the meristem is dramatically increased, while SVP expression 

follows the opposite trend (see Fig. 11). The expression of these two genes was followed again by 

in situ hybridisation on wild-type Col during a time course in LD. Under these conditions SVP starts 

to decrease in expression in the inflorescence meristem (Fig. 49, A, B) and SOC1 starts to increase 

at the time of the floral transition (Fig. 49, D, E). At a later stage, SVP is also expressed in the floral 

meristems arising from the inflorescence, where SOC1 is excluded (Fig. 49, C, F). The two genes 

thus have an opposite pattern of expression.

Fig. 49.  SVP and SOC1 mRNA expression patterns in wild-type Col plants grown in LD. In situ hybridisations 
were performed on apices using RNA probes for SVP (A, B, C) or SOC1 (C, D, E). Plants were grown in LD for 10 
days (A, D), 12 days (B, E) and 15 days (C, E) and harvested at ZT8. Scale bar is 50 μm.
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Fig.  50.  Expression  of  SOC1 mRNA  in  plants  carrying  loss  of  function  alleles  of  SVP,  FT or  TSF.  In  situ 
hybridisations were performed on apices using RNA probes for SOC1. Wild-type Col (A, D), svp-41 (B, E), svp-41 ft-
10 tsf-1 (C, F, G, H) and ft-10 tsf-1 (I) were compared. Plants were grown in LD for 12 days (A, B, C), 15 days (D, E, 
F), 17 days (G), 20 days (H), and 24 days (I), and harvested at ZT8. Scale bar is 50 μm.

Anyway, only from the expression pattern, it is not possible to conclude whether there is a direct 

interaction between SVP and SOC1, since the increase in SOC1 expression in the meristem could be 

an indirect effect caused by FT up-regulation in the leaves. It was already observed, both by in situ 

hybridisation and real-time-PCR (see above), that SOC1 mRNA levels in svp ft double mutants are 

lower than in svp mutants, but even in the absence of FT they were higher than in wild-type (Fig. 

46, C). Because this remaining activation could be due to the presence of TSF, svp ft tsf were tested 

in comparison with svp, wild-type, and ft tsf by in situ hybridization on a time course in LD (Fig. 

50). This experiment showed that SOC1 is expressed in svp ft tsf with a delay (Fig. 50, C, F, G, H) 

in respect to wild-type (Fig. 37, A, D), and with less intensity than in svp single mutants (Fig. 50, 

B, E). Nevertheless in these triple mutants SOC1 mRNA is still clearly detectable at the SAM, and 

increases progressively during the time course. On the contrary in  ft tsf  double mutants no SOC1 
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mRNA is detected even later in the time course at 24 LD (Fig. 50, I), but it starts to be detectable at 

30 LD (Fig. 51, I).

The results  from  in situ  hybridisation  match with the flowering time data of the corresponding 

genotypes, suggesting that the cause of the residual early flowering of the svp ft tsf triple mutants 

compared to  ft  tsf both in LD and SD is due to  SOC1 expression at  the SAM. The svp single 

mutants  flower  even  earlier  in  LD  than  the  triple  mutant  likely  because  of  the  additional 

contribution of FT and TSF. 

All these results demonstrate that SOC1 is still up-regulated in svp mutant background even in the 

absence of both FT and TSF function and the photoperiodic cascade is not needed to activate SOC1 

in absence of SVP repression. 

The down-regulation of SVP during the floral transition, coinciding with the up-regulation of SOC1, 

indicates the presence of a mechanism that represses specifically SVP. Whether this mechanism is 

based on a response to photoperiod or on developmental changes at the SAM is still not known. In 

order  to get some insight into the mechanism repressing  SVP,  the expression of this  gene was 

followed by in situ hybridisation comparing apices from wild-type Col with ft tsf double mutants 

(Fig. 51). In the case of plants grown 2 weeks in SD and then shifted to LD,  SVP mRNA level 

decreases during the first 3 LD of the shift (Fig. 11 and Fig. 51, A, B). This decrease does not occur 

in ft tsf double mutants (Fig. 51, C), and at the third LD the pattern of expression of SVP resembles 

the one before the shift to LD. However, this experiment focuses on a short time after the shift to 

LD, and since ft tsf double mutants are not responsive to LD, it could be that SVP does not decrease 

because these plants are still  completely vegetative rather than because  FT/TSF are upstream of 

SVP. Another experiment in which plants were grown directly in LD shows that while SVP clearly 

decreases in the center of the inflorescence meristem in wild-type Col between 10 and 15 days after 

germination  (Fig.  51,  D-F),  there  is  still  some remaining  expression in  the  center  of  the  ft  tsf 

inflorescence meristem between 24 and 30 LD (Fig. 51, G, H), even when these mutants start to 

flower, and when SOC1 is still very weak (Fig. 51, I). However, SVP signal in this case is not very 

strong, and weaker than in the developing floral buds. Overall the data suggest that SVP repression 

does not occur as strongly in the absence of FT/TSF, however it is still difficult to determine how 

direct  this  effect  is  and there  is  clearly  some  down-regulation  of  SVP even in  the  absence  of 

FT/TSF.  
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Fig.  51.  Expression  patterns  of  SVP and  SOC1 mRNAs  in  wild-type  and  ft  tsf double  mutants. In  situ 
hybridisations were performed on apices using RNA probes for SVP (A-H) and SOC1 (I). Wild-type Col plants were 
grown for 2 weeks in SD and collected before induction (A) and after +3 LD (B), and ft-10 tsf-1 was also collected after 
+3 LD (C). Wild-type Col plants were grown in LD for 10 days (D), 12 days (E) and 15 days (F), while  ft-10 tsf-1 
plants were grown in LD for 24 days (G) and 30 days (H, I). All the samples were harvested at ZT8. Scale bar is 50 μm.

5.2.3 Mis-expression of SVP in the leaf vasculature

In order to monitor the effect of mis-expressing SVP in the leaf, the gene was specifically expressed 

in the vascular tissue of  svp-41 mutant using a heterologous promoter. A  SUC2::SVP construct, 

which  uses  the  SUC2 promoter  to  specifically  express  the  gene  in  the  companion  cells  of  the 

phloem  (Stadler  and  Sauer,  1996),  was  constructed  and  introduced  into  svp-41 using 

Agrobacterium. In Fig. 52, flowering times under LD and SD of 9 independent lines transformed 

with this construct are shown. There is some variability in the flowering time of those lines, but 

most of them flower slightly later than the svp mutant, while a few of the strongest ones flower at a 

similar time to wild-type Col under LD (Fig. 52, A). SUC2::SVP had a weaker effect under SD and 

most of the transgenic lines flowered at a similar time to svp-41 (Fig. 52, B). The effect of the mis-
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expression is  then not strong, especially if  it  is  compared with the  35S::SVP line,  which over-

expresses the gene in every tissue and causes markedly late flowering (Fig. 52, A, B).  

Fig. 52. Effect of mis-expression of SVP in the leaves. Flowering times of SUC2::SVP mis-expression lines (in svp-
41 background)  were  scored  in  LD (Panel  A)  and  SD (Panel  B).  SVP and  FT mRNA levels  were  measured  by 
quantitative real time PCR (Panel C) in the same mis-expressing lines. The mRNAs of the two genes were measured in  
two separate reactions and plotted in the same graph. Seedlings were grown in LD and collected after 10 days at ZT8  
for RNA extraction.
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Fig. 53. Effect of reducing SVP expression in the leaves. Flowering time of SUC2::SVP dsRNAi lines (in wild-type 
Col background) was scored in LD (Panel A). SVP and FT mRNA levels were measured by quantitative real time PCR 
(Panel B) in the same lines as in A. The two mRNAs were measured in two separate reactions and plotted in the same  
graph. Seedlings were grown in LD for 10 days and leaves were collected at ZT15 for RNA extraction.

Level of expression of SVP and FT has been checked under LD in some of these transformed lines 

(Fig. 52, C). SVP mRNA levels are higher in the lines that show later flowering (e.g. lines 21 and 

43),  suggesting  a  direct  effect  of  the  mis-expression  of  SVP on  flowering  time.  FT levels  are 

generally  higher  in  the earlier  flowering lines,  where the  SVP levels  are  lower,  confirming the 

inverse correlation between SVP and  FT expression in the leaf tissue, with only line 39 being an 

exception to this rule. In general, the effect of SUC2::SVP on flowering was more pronounced in 

LD (Fig. 52, A), while in SD the effect is milder and very similar among all the independent lines 

(Fig. 52, B), which is also consistent with a direct effect on FT expression. 

The  effect  of  decreasing  the  level  of  SVP gene  expression  only  in  leaf  vasculature  was  also 
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monitored  using  RNA  interference  (dsRNAi)  constructs  targeting  SVP driven  by  the  SUC2 

promoter and transformed into wild-type Col. Nine independent transgenic lines were identified and 

some showed early flowering compared to wild-type in LD (Fig. 53) and SD (data not shown), but 

none were as early flowering as svp-41. SVP and FT mRNA levels in leaves were measured from 

these plants, and again a negative correlation between the two gene products was found, although 

less clear than in the case of the SUC2::SVP mis-expressing lines and only in some lines. 

Therefore, the effect of increasing or decreasing  SVP in the leaves trough transgenic approaches 

results in a direct effect on  FT expression and on flowering time. However, it suggests that SVP 

does not only act in the vascular tissue to repress FT. These results are in agreement with genetic 

data shown in the previous sections.  

5.3. SVP and the meristem: genetic and spatial interactions

5.3.1 Role of SVP in the SAM and relation to SOC1 and FUL

To explore the possibility that SVP also has a role in repressing flowering in the meristem, the effect 

of the  svp mutation on expression of genes that act in the SAM to regulate flowering was also 

examined. 

As previously indicated, SOC1 has been already reported to be regulated by SVP (Li et al., 2008). A 

gene that shares some features with SOC1 is FRUITFULL (FUL). Both genes have been shown to 

increase at the SAM during the floral transition, around the time at which SVP is down-regulated. 

Moreover, redundant functions of these two genes were demonstrated by studying soc1 ful double 

mutants (Melzer et al., 2008). 

The expression of SOC1 and FUL mRNAs were followed by in situ hybridisation on a time course 

in LD. Wild-type and svp-41 plants grown for 8-10-12-14 LD were collected  at ZT3 and hybridised 

with RNA probes (Fig. 54). Both  SOC1 and FUL moderately increase in expression in wild-type 

Col during the time course, while they show a marked increase in expression in svp mutants for the 

corresponding time points. Because the mutants were already flowering, compared to wild-type that 

were still vegetative, and this increase in  SOC1 and  FUL expression could be indirect due to an 

increase of the FT levels in the svp background, the level of SOC1 and FUL were compared also in 

the  svp ft double mutant, which flowers later and lacks an active  FT. Nevertheless, even in this 

background the expression of  SOC1 and  FUL  is higher than in wild-type (intermediate between 

wild-type and svp mutant), suggesting also a more direct effect of SVP on these two genes that is 

not mediated by FT. On the same genotypes, real time PCR was performed on RNA extracted from 
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apices (apices enriched in SAM removing older leaves) of seedlings grown under LD condition for 

10 days, and the level of SOC1 mRNA was measured. This independent experiment demonstrated 

the same trend as the in situ hybridisation, confirming a higher expression of SOC1 mRNA in svp 

compared to wild-type, and an intermediate level in the svp ft double mutant (see Fig. 46, C).

In  order  to  test  the  effect  of  SVP on  SOC1 and  FUL gene expression in  the meristem and to 

investigate the interaction among these MADS-box genes, crosses were done to obtain an svp soc1 

ful triple mutant and all the combinations of the loss of function alleles of these genes, both in Col 

and Ler ecotypes.  Double  and triple  mutants  have  been obtained and flowering time has  been 

scored in LD and SD conditions for the Col genotypes (Fig. 55).

In terms of flowering time, soc1-2 ful-2 double mutants flower as late as the soc1-2 single mutant in 

LD, therefore with a moderate late flowering phenotype, while in SD they flower extremely late 

(around 80 rosette leaves and 20 cauline leaves). For most of the individuals the number of cauline 

leaves  in SD could not be scored,  since in that condition the plants grow in a very bushy and 

compact architecture and do not extend the main stem enough before they die. They also show an 

additional unusual phenotype. When soc1 ful double mutants grow in LD, after they have already 

flowered and very late in development they show a sort of “reversion” to vegetative development.  

Once mature siliques are formed, instead of dying the plants start another vegetative phase on top of 

the main apex of the plant (Fig. 56), they flower again and repeat this cycle several times. The 

effect was also recently independently shown by another group (Melzer et al., 2008). 

The triple mutant svp soc1 ful still flowers earlier than the soc1 ful double mutant. Combining soc1 

with ful mutation in svp background slightly delays flowering time in comparison with svp soc1 and 

svp ful double mutants. Therefore, when combined with soc1 ful, the svp mutation still confers an 

early flowering phenotype both in LD and SD. 
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Fig. 54. Expression of SOC1 and FUL mRNA during floral transition in presence or absence of a functional SVP 
allele. In situ hybridisation on a time course in LD using probes for SOC1 (Panels A-K) and FUL (Panels L-V) mRNA. 
Wild-type Col (A-D, L-O) is compared to svp-41 (E-G, P-R) and svp-41 ft-10 (H-K, S-V). Plants were grown in LD for 
8 days (A, E, H, L, P, S), 10 days (B, F, I, M, Q, T), 12 days (C, G, J, N, R, U) and 14 days (D, K, O, V). All the  
samples were harvested at ZT3. Scale bar is 50 μm.
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Fig. 55. Flowering times of plants carrying loss of function alleles of  SVP,  SOC1  or  FUL.  Flowering time was 
scored as number of leaves both in long-days (LD) and short-days (SD). RLN: number of rosette leaves. CLN: number 
of cauline leaves.
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Fig. 56. Phenotype of the soc1-2 ful-2 double mutant. Plants were grown in LD (A, B, C) or SD (D). A: general view 
of the plant architecture after flowering. B and C: detailed view of new vegetative shoots grown on the inflorescences  
after formation of mature siliques. D: bushy architecture of the double mutants grown under continuous SD. Wild-type 
Col did not show any of these phenotypes under the same growth conditions (data not shown). Scale bar is 5 mm.

These data indicate that as for FT and TSF in the leaf, SVP represses expression of both SOC1 and 

FUL in the meristem, but the effect of  SVP cannot be explained only by the repression of these 

genes. This result complements our previous results of the role of SVP in the leaf.

In addition, it was observed that the svp mutation suppresses the “reversion” phenotype of the soc1 

ful  double mutant.  Thus in  a  soc1 ful double mutant  SVP must  have an important  function  in 

facilitating the reversion to vegetative growth observed in these plants. 

5.3.2 Mis-expression of SVP in the meristem

The approach of mis-expressing or knocking down SVP in a tissue-specific manner, as seen above 

for the leaf, was also followed to assess the function of SVP in the meristem. The KNAT1 promoter 

can be used to express a gene in the SAM (Lincoln et al., 1994).  KNAT1::SVP constructs were 
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introduced into svp-41 mutants and flowering time of 7 independent lines was scored both in LD 

and SD (Fig. 57).  Most of these lines,  similar  to mis-expression with  SUC2 promoter,  show a 

slightly later flowering compared to svp-41 under LD, which does not fully complement the loss of 

function of  SVP. In this case, the effect of  KNAT1::SVP on flowering in SD is stronger than the 

effect of SUC2::SVP (see above), consistent with a role of SVP in repressing genes at the meristem 

such as SOC1, which has a major role in floral induction. 

Fig.  57.  Effect  of  mis-expression  of  SVP in  the  shoot  apical  meristem. Flowering  time  of  KNAT1::SVP mis-
expression lines (in svp-41 background) was scored in LD (Panel A) and SD (Panel B). 

Interestingly,  most  of  the  KNAT1::SVP lines  show  an  additional  floral  phenotype.  A  variable 

number of flowers, depending on the line and on the growth condition, have additional organs, such 

as 5-6 sepals,  and 5-6-7-8 petals.  An example is given in  Fig. 58 for line 5,  which shows the 

strongest floral phenotype and the latest flowering in SD. 

Because KNAT1 should be expressed only in the SAM (Lincoln et al., 1994), a floral phenotype was 

not initially expected. However, although KNAT1 transcript was not detected in sepals, petals and 
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stamens, it was detected in cells encircling the base of the floral primordia (Lincoln et al., 1994). It 

may be that this effect is caused by a deregulation of the KNAT1 promoter itself in the svp mutant 

background, which would lead KNAT1::SVP to be expressed in the floral meristem causing floral 

abnormalities. The expression of  SVP was followed by in situ hybridisation comparing wild-type 

Col, svp-41 and most of the KNAT1::SVP lines (Fig. 59). Plants were grown in LD for 10 days and 

collected at ZT8. Wild-type apices show the typical strong expression of  SVP in the SAM before 

floral transition (Fig. 59, A), while svp-41 mutants are already flowering and show a residual weak 

expression of SVP transcript at the floral primordia (Fig. 59, B). This signal is probably caused by 

the fact that this mutant allele is generated by a transposon and part of the coding sequence could be 

still  transcribed, although not functional.  The  KNAT1::SVP lines are in different  developmental 

stages, from vegetative (for example Fig. 59, C, D, G) to a flowering stage very similar to the one 

of  svp mutants  (Fig.  59,  F,  I).  For  most  of  the  lines,  the  situation  depicted  in  the  in  situ 

hybridisations correlates with the corresponding flowering time of these lines, especially for the 

data in SD. Line 5 is the only one with a convincing strong expression of SVP at the SAM, while 

the others mainly show expression near or on the floral primordia. It is not then clear whether this 

expression is caused by KNAT1 promoter in the SAM, by the deregulation of KNAT1 in the flowers, 

or if this is the residual expression of SVP that is present in the svp-41 background.     

Fig. 58. Effect on the flowers of mis-expression of SVP by KNAT1::SVP. Examples from  KNAT1::SVP (in svp-41) 
line #5 are shown. Flowers with 5 petals (D), 6 petals (E, F), and 7 petals (A, B, C) are shown. Scale bar is 3 mm.
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Fig. 59. SVP mRNA expression in KNAT1::SVP lines. In situ hybridisations with RNA probe for SVP mRNA were 
performed to detect the level of expression and the spatial pattern of SVP transcribed under the KNAT1 promoter. Wild-
type Columbia (A), svp-41 (B), and KNAT1::SVP (in svp-41 background) lines #1 (C), #2 (D), #3 (E), #4 (F), #5 (G), 
#8 (H), #10 (I)  are compared. Plants were grown in LD for 10 days and apices collected at ZT8.

KNAT1::SVP  dsRNAi constructs  expressed  in  wild-type  Col  seem  to  have  a  weak  effect  on 

flowering time (Fig. 60).  It  could be that  the  KNAT1 promoter  is not strong enough to have a 

significant effect on silencing SVP. The level of expression of SVP mRNA at the meristem of these 

lines was not measured. Additionally,  UFO::SVP dsRNAi constructs were also generated.  UFO is 

another promoter that has a specific expression pattern in the meristem and in flowers (Ingram et 

al., 1995), although it is more expressed in the later phases of the floral transition. It is therefore 

useful for expressing genes in the floral meristem. One of the UFO::SVP dsRNAi lines shows slight 

early flowering in LD, but because only two lines were generated, there is not strong support for 

this effect (Fig. 60). Nevertheless, considering that only a few of the  KNAT1::SVP dsRNAi line 

showed early flowering, this suggests again that the weakness of the  KNAT1 promoter may be a 
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problem. This, together with the possible de-regulation of the KNAT1 promoter itself in the svp-41 

background, which will be further investigated, suggests that it would be better to test also another 

independent promoter to express  SVP specifically in the SAM. Mis-expression of  SVP was then 

performed also with the FD promoter. In order to test the efficiency of the FD promoter to express 

flowering time genes at the SAM, the same vector was used to produce a FD::FT promoter fusion, 

and transformed into wild-type Col. Several lines transformed with this construct at T1 stage show 

early flowering phenotype (data not shown), demonstrating the effectiveness of this construct and 

postulating a possible alternative for the mis-expression of  SVP in the SAM.  FD::SVP in  svp-41 

background, at the level of T1 transformants, did not show a clear effect on flowering. The effect of 

these constructs need to be further investigated in the T3 generation. 

Fig. 60. Effect of reducing SVP expression in the shoot apical meristem. Flowering times of KNAT1::SVP dsRNAi 
(in wild-type Col background) lines were scored in LD (Panel A). Additionally, flowering times of UFO::SVP dsRNAi 
(in wild-type Col background) lines were scored in LD and SD (Panel B). 
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Fig. 61. Flowering times of wild-type and mutants scored after “double shift” experiments.  Plants were grown 
initially in short days (SD) for 2 weeks (except for svp-41 (Panel A), which was grown for 1 week in SD), shifted to 
long days (LD, the number of LDs is indicated in the X axis) and then shifted back to SD. Flowering time was scored as 
number of rosette leaves (RLN) plus number of cauline leaves (CLN), and percentage of induction was calculated with 
a formula described in the Methods.  

5.3.3 Double shift experiments with mutants in flowering time genes

As previously introduced, wild-type Col plants grown for two weeks in SD need 5 LD of induction 

to be fully committed to flower and 3 LD to be only partially committed, thus accelerating their  

flowering  time  compared  to  plants  only  grown  in  SD.  It  has  also  been  shown  how  several 

parameters can affect the number of days required for a plant to be induced or committed to flower.  

Another example of altering this response is to use mutants instead of wild-type plants in these 

experiments. Plants carrying mutations in genes required to promote or repress flowering might also 
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have a different response to LD in terms of floral commitment compared to wild-type. Both cases of 

loss of components of the photoperiodic signal from the leaf or loss of components of the response 

to the signal in the meristem might affect this response.

Mutants lacking a functional  SVP gene flower earlier than wild-type, and they respond faster to 

induction by LD. A functional  SVP gene, which is a strong repressor of flowering, is probably a 

decisive factor in delaying the commitment to flower, as suggested by the SVP expression pattern in 

“double  shift”  experiments  shown before  (Fig.  13,  Fig.  14).  Indeed,  in  our  conditions  svp-41 

mutants grown only one week in SD needed exposure to only 3 LD to be fully committed to flower 

and needed only 1 LD to accelerate flowering.  Although this experiment shows that the meristem 

responds earlier in the svp mutant compared to wild-type, it does not explain whether this is due to a 

stronger inductive signal coming from the leaf or to a higher sensitivity of the meristem to the 

stimulus from the leaf, or to both. In all cases, lack of repression from SVP decreases the threshold 

required for the response, either acting in the leaf or in the meristem, or in both. 

Double  shift  experiments  were performed with  soc1-2, ful-2, soc1-2 ful-2,  svp-41 soc1-2 ful-2  

plants, to study the role of SOC1 and FUL in contributing to the effect of the svp mutation on the 

commitment to flower. ft tsf double mutants and svp ft tsf triple mutants were not used to study the 

contribution in the leaf, because they are not sensitive to photoperiod so a transient exposure to LD 

would  not  have  a  significant  effect  on  flowering  time.  Moreover,  the  “standard”  2  weeks  of 

vegetative growth in SD before the LD induction could not be used for the svp mutant because the 

flowering processes are highly accelerated in  this  background and so that  these mutants  would 

already show a partial induction before the shift. So only 1 week in SD was used for this mutant, 

while 2 weeks were used for the other ones. The response of the different genotypes was compared 

using the protocol introduced in section 3.1.1 (see also Methods). In one experiment, wild-type Col, 

svp and soc1 ful genotypes are compared. As expected, svp responds to fewer LDs than wild-type, 

while soc1 ful shows the opposite effect. Surprisingly, while the double mutant does not exhibit a 

strong delay in flowering when shifted permanently to LD, it only responds weakly to transient 

exposure to LD, at least until 7 LD in our condition (Fig. 61, A). In another experiment wild-type 

Col,  soc1, ful, soc1 ful,  and svp soc1 ful  were compared (Fig. 61, B).  soc1 single mutants  are 

significantly less responsive than wild-type, since 9 LD are needed to have a complete response. 

Conversely,  ful mutants are more responsive than  soc1, although less than wild-type.  This is in 

agreement with the flowering time phenotype of these mutants. soc1 ful double mutants, like for the 

flowering time in LD, show a synergistic effect compared to the single mutants. But again, although 
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in this experiment also 9 LD of transient induction were included, there was a strongly reduced 

effect of a transient induction in LD compared to SD. This is in agreement with the idea that these 

two genes play redundant roles in the response to photoperiod at  the SAM.  svp soc1 ful triple 

mutants are able to recover a higher degree of induction compared to soc1 ful double mutants, since 

after 5 LD the plants behave similarly to wild-type. The triple mutants have increased levels of FT 

mRNA in the leaf,  due to the loss of  SVP,  but  this  may not be the direct  cause of the higher 

response. Indeed, soc1 ful double mutants induced with more LD, resulting in more FT expression, 

do not respond once shifted back to SD. Moreover, the effect of over-expressing  FT in  soc1 ful 

double mutants did not have a strong effect on flowering (Melzer et al., 2008). So it seems more 

likely than in the triple mutant the induction to LD is restored by a gene or a set of genes that are  

up-regulated at the SAM in svp background and can partially suppress the requirement for  SOC1 

and FUL. 

These results are clearly not fully conclusive, but suggest that SVP has a major role at the SAM in 

delaying floral  commitment.  Such an effect  is  consistent  with the reduced reversion phenotype 

observed in svp soc1 ful plants compared to soc1 ful (see section 5.3.1). 

5.4 Dual role of SVP: leaf and meristem

In the previous sections, it was shown that the effect on flowering time of SVP when active only in 

the leaf or only in the meristem is mild, although significant. The mild effect on flowering of SVP 

when active in only one of these tissues could be due to it having an additive effect in both tissues 

to completely fulfill its function. To test this idea mutations in genes acting downstream of  SVP 

either in the leaf or the meristem were combined in the svp background. Also the transgenic lines 

mis-expressing SVP in the leaf were crossed to those mis-expressing SVP in the meristem.   

5.4.1 Quintuple mutant

A soc1 ful double mutant grown in SD condition does not express FT and TSF, because these genes 

are only induced in LD. A svp soc1 ful triple mutant in SD shows only a weak expression of FT and 

TSF, due to relieving the repression by SVP.  However, this up-regulation is not strong, since  svp 

mutants and svp ft tsf triple mutants show only a mild difference in flowering time in SD, of around 

5 leaves (see above). Perhaps therefore svp soc1 ful triple mutants grown in SD would flower late. 

However, this triple mutant in SD is still remarkably earlier than the soc1 ful double mutant (Fig. 

55). Therefore introducing svp mutation into soc1 ful double mutants suppresses the late flowering 
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phenotype. To test whether this might be due to FT and TSF the quintuple mutant svp ft tsf soc1 ful  

was made.  

The svp-41 ft-10 tsf-1 plants were crossed to  svp-41 soc1-2 ful-2 in order to generate a quintuple 

mutant  svp-41 ft-10 tsf-1 soc1-2 ful-2  and the other mutant combinations in the  svp background. 

Moreover, ft-10 tsf-1 were crossed to soc1-2 ful-2 in order to generate a quadruple mutant ft-10 tsf-

1 soc1-2 ful-2 and the other mutant combinations in the presence of a functional SVP gene.

Only  a  few individuals  homozygous  for  the  5  mutations  were  identified,  therefore  a  complete 

flowering time experiment could not yet be performed. However, the estimated average number of 

total leaves at flowering for this quintuple mutant was around 55-60 (Fig. 62). We still do not have 

a ft tsf soc1 ful quadruple mutant to compare with the quintuple, but we already generated a triple 

mutant ft tsf soc1. The triple mutant flowers with around 70 total leaves (Fig. 62), so even later than 

ft tsf. Since we do not expect ft tsf soc1 ful quadruple mutants to flower earlier than ft tsf soc1, we 

assume that the  svp ft tsf soc1 ful  quintuple mutant would flower earlier than the  ft tsf soc1 ful  

quadruple mutant, at least by 5-10 leaves.

We can then conclude that SVP has further other targets in addition to  FT,  TSF,  SOC1 and FUL, 

and other genes need to be mutated to fully suppress early flowering in an svp background.

Fig. 62. Flowering times of plants carrying loss of function alleles of SVP, FT, TSF, SOC1 or FUL. Flowering time 
was scored as number of leaves both in long-days (LD) and short-days (SD). RLN: number of rosette leaves. CLN:  
number of cauline leaves.
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Fig. 63. Combined effect of mis-expression of SVP in leaves and meristem. Flowering time was scored for wild-type 
Col,  svp-41,  35S::SVP,  SUC2::SVP and  KNAT1::SVP  (in  svp-41 background) mis-expression lines, and  SUC2::SVP 
crossed  to  KNAT1::SVP  (F1,  in  svp-41 background).  S  and  K indicate  SUC2 and KNAT1 respectively.  Panel  A: 
flowering time was scored in LD. Panel B: flowering time was scored in LD and SD. 

5.4.2 Combined effect of mis-expression

In order to cross SUC2::SVP lines with KNAT1::SVP lines, 3 independent lines made with each of 

the constructs were selected and they were crossed in all possible combinations (only one of the 

combinations failed). The parental lines were selected based on the expression of the transgene and 
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on the late flowering time phenotype, considering both LD and SD conditions. 

Flowering time was scored both in LD and SD for the parental mis-expressing lines and the F1 

progeny of the crosses between the different parental lines, together with svp-41 mutant and wild-

type. Because both SUC2::SVP and KNAT1::SVP are in svp-41 background, the F1 progeny of the 

crosses can be used to test the effect of combining the two transgenes. Also the transgenes exert a  

dominant effect in heterozygosis. The flowering times of some of the parental mis-expressing lines 

were also previously compared to 35S::SVP (see Fig. 52, A, B, and Fig. 63, A). 

Combining the two transgenes resulted in significantly later flowering compared to the parental 

lines, for the vast majority of cases. In LD, this effect is comparable to the effect of over-expressing 

SVP using the  35S promoter,  and for most  of the F1 crosses results  in slightly later  flowering 

compared to wild-type Col (Fig. 63, B). In SD, conversely, none of the combinations of transgenes 

led to the strong effect of the 35S ectopic expression, and all the lines flowered significantly earlier 

than wild-type Col (Fig. 63, B). However, all lines carrying combinations of transgenes were much 

later than svp-41 mutants.

This result shows that combining the mis-expression of SVP in leaf and meristem has an additive 

effect. This complements all the previous results and further demonstrates an independent role for 

SVP in the leaf and in the meristem to control flowering time. 

The combination of transgenes in the F1 generation completely restores the effect of SVP in LDs, 

while it  partially restores it in SD. Selection of progeny of F2 plants homozygous for both the 

trangenes will clarify if this partial effect is due to a quantitative effect of  SVP expression in the 

svp-41 background.      

5.5 Mis-expression of SVP.2 in different tissues

In TAIR database (version 9) there are two splicing variants annotated as products of SVP. Together 

with the conventional form used in the current literature as the product of SVP, there is another one 

which was also found from cDNA libraries. This alternative splicing variant is referred to here as 

SVP.2. This form is longer than the previous one, because it includes an intron (between exon 6 and 

7). Within this intron there is a stop codon in frame with the coding sequence so that the predicted 

protein product is truncated before it reaches the following exon (see Fig. 64, A). In this truncated 

protein the last part of the K-box domain and the C-terminal part of SVP would be missing. We 

tested whether this form has a biological significance and possibly a function in the floral transition. 

As for the conventional  SVP,  SVP.2 coding sequence was cloned into binary vectors under the 
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control of different promoters: 35S promoter for ectopic expression, SUC2 promoter for the leaves, 

and FD promoter for the meristem. svp-41 mutants were transformed with these constructs and 20 

independent lines carrying the transgene were obtained for each of the constructs. Only preliminary 

results were obtained, because only the 35S::SVP.2 was followed so far. At the T2 stage, among the 

different independent lines there is a significant variation in flowering time. While the majority of 

transformants are similar to svp-41 mutants, a few lines flower significantly later than svp-41 (Fig. 

64,  B),  although  far  less  than  35S::SVP over-expressing  lines.  Further  analysis  is  needed  to 

characterize the function of this second splicing form of SVP.   

Fig. 64. Alternative splicing of SVP gene. Panel A: The coding region of the SVP genomic locus is shown on top. The 
two alternative splicing forms as indicated in TAIR database are indicated below, as SVP.1 (the conventional form) and 
SVP.2 (another for present in TAIR based on EST collection).  The scheme was taken from Gbrowse in the TAIR 
database (Poole, 2007) and adapted. Panel B: SVP.2 form was expressed under the 35S promoter in svp-41 background. 
Two lines are shown among all the independent transgenic lines, an early flowering one (line #5) and a later flowering  
one (line #2).  
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6. Discussion

PART1

6.1 Known genes and novel mechanisms that regulate the floral transition

A  global  gene  expression  profiling  of  the  Arabidopsis SAM  during  the  floral  transition  was 

performed in this study. The general aims were to identify genes that were not previously known to 

have functions in floral induction and to place these within a temporal hierarchy of events in the 

SAM. Prior to the sampling,  a detailed analysis  of the stages of the floral  transition was done. 

Indeed, while for example for flower development a detailed description of the various stages has 

been compiled (Smyth et al., 1990), together with a thorough knowledge of the molecular markers 

of the different  stages,  a similar  formalization is  still  lacking for the floral  transition.  Previous 

indications of the expression kinetics of known genes, such as SOC1, FUL, AGL24, FD, SVP and 

AP1 have  been confirmed in this  study and some information  further  extended.  Particularly,  a 

combination of expression studies on key genes upon shift from SD to LD, and flowering time 

results of double shift experiments have better defined the stages involved in the floral transition 

and the boundaries of this process. A “transition meristem” is an intermediate state between the 

vegetative meristem, which did not initiate floral induction, and an inflorescence meristem, which is 

already induced and bears floral meristems on its flanks. A transition meristem can still be reverted 

to a vegetative meristem by removing the inductive photoperiod, although I demonstrated that it 

retains some memory of exposure to inductive conditions,  depending on the level of induction. 

Because my interest in floral induction includes this transition meristem state, I set up a system in 

which it  is  possible to  induce this  state  by shifting plants  grown for 2 weeks in SD to 1 or 3 

consecutive LDs. Exposure to 1 LD activates FT expression in the leaf (Corbesier et al., 2007) but 

only a few molecular events connected to floral induction are induced in the meristem, without any 

consequence  on  flowering  time.  3  LD  partially  activates  the  floral  transition.  Exposure  to  an 

additional 2 LD cause this meristem to be fully committed to flowering at +5 LD, and to reach the 

inflorescence state with production of floral meristems.

So far,  two main families  of transcription factors  have been shown to play a role  in the floral 

transition at the SAM, the MADS-box (Melzer et al., 2008; Michaels et al., 2003; Samach et al.,  

2000) and SPL families (Fornara and Coupland, 2009). In the MADS-box family, SOC1 and FUL 

play key roles in the response to the inductive photoperiod at the SAM. Activation of expression of 

both genes depends on FT and FD (Schmid et al., 2003; Searle et al., 2006; Wang et al., 2009a), 
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although it  is  not  known how direct  this  activation  is.  In  our experimental  conditions  soc1 ful 

double mutants are still responsive to LD and their late flowering phenotype in LD is quite mild  

(around 10 total leaves more than wild-type) suggesting that although these genes are expressed 

early during the floral transition other genes that can partially compensate for their loss of function 

are also expressed at this time. AP1 is another MADS-box gene, and it is considered to be a direct 

target of FT and FD (Abe et al., 2005; Wigge et al., 2005). However, AP1 is not a flowering time 

gene  per  se,  because  ap1 mutants  are  not  late  flowering,  rather  it  plays  a  function  in  the 

determination of the floral meristem and in the establishment of the early floral organs (Irish and 

Sussex, 1990; Mandel et al., 1992). This conclusion is consistent with its expression pattern, which 

is specific to floral meristems. The last MADS-box gene is  AGL24, which is also involved in the 

floral transition, but its role in response to photoperiod seems to be less clear and more accessory to 

the function of SOC1 (Liu et al, 2008; Michaels et al., 2003; Yu et al., 2002).

In  this  study,  I  showed  that  SOC1 and  FUL expression  patterns  differ  in  their  response  to 

photoperiod.  While  SOC1 decreases in expression once induced plants are shifted back to non-

inductive conditions,  FUL expression is stably maintained once the meristems are committed to 

flower, regardless of the photoperiod. This is a new aspect, because there are not any other reports 

on  flowering  time  genes  that  are  stably  maintained  during  the  floral  transition  when inductive 

conditions  are  removed.  On the other  hand,  this  has been reported  for  floral  meristem identity 

(Adrian et al., 2009), where positive loops sustain the expression of meristem identity genes once 

they are activated, (like the loop AP1-LFY (Bowman et al., 1993; Liljegren et al., 1999; Wagner et 

al., 1999)), thereby avoiding floral reversion. In addition, feedback regulation suppresses genes that 

confer  inflorescence  activity  ensuring these are  not  expressed in  floral  meristems and avoiding 

reversion  (like  AP1  to TFL1/AGL24/SOC1/SVP/FUL  (Liljegren  et  al.,  1999;  Liu  et  al.,  2009a; 

Mandel and Yanofsky 1995a; Ratcliffe et al., 1999)). Similarly, floral activity is suppressed in the 

inflorescence meristem to avoid floral termination (like TFL1 to AP1 (Ratcliffe et al., 1998)). The 

only known positive loop in the case of the floral transition is the one involving SOC1 and AGL24 

(Liu et al., 2008), but the in situ hybridisation analysis suggested that this loop is not maintained in 

our experimental conditions in the absence of inductive photoperiods. A role for FUL and SOC1 in 

determination and maintainance of floral induction has been proposed on the basis of the phenotype 

of  soc1 ful double mutants,  in  which  a  phenotypic  reversion  to  vegetative  growth occurs  after 

flowering (Melzer et al., 2008). I independently confirmed this effect. It can be related to the results 

of my double shift experiments in which the soc1 ful double mutants never acquired stable floral 
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induction upon transient exposure to up to 9 LD, while the  soc1 and  ful single mutants are only 

delayed compared to wild-type. Experiments with more than 9 LD of transient induction are needed 

to exclude the possibility that  soc1 ful is only further delayed compared to the single mutants. 

Particularly,  ful mutant is only slightly delayed, while soc1 responds later. This, together with the 

results of the  in situ hybridisation on wild-type plants in double shift experiments, suggests that 

SOC1 is  more  important  to  rapidly respond to LD induction,  while  FUL is  required  to  stably 

maintain this induction at the meristem. This model implies that there should be a mechanism to 

maintain FUL expression when the plants are returned to SD non-inductive conditions, which is not 

true for FT or SOC1. Such a role could be played by AGL24. Indeed, it remains to be determined 

whether there is an interplay between FUL and AGL24, which would maybe better clarify how the 

transition meristem is fully committed to the production of flowers. Moreover, the stable decrease 

of SVP mRNA in the SAM at the commitment stage might be important in allowing the increase of 

FUL  expression. Again, we do not know what is the upstream mechanism that drives the down-

regulation of SVP. The other possible candidate as a positive regulator of FUL at this commitment 

stage is SPL3, since it has been shown to directly activate FUL (Yamaguchi et al., 2009). 

The SPL genes also play important roles in the floral transition, inducing floral meristem identity 

genes.  In  addition,  they  respond  to  photoperiodic  induction,  although  they  are  probably  only 

accelerated in their function by FT/FD, and not dependent on them. They are more important for the 

age dependent pathway, which acts in parallel to the photoperiodic pathway (Wang et al., 2009a).

It is very likely that many other regulatory genes are involved in the floral transition at the SAM, 

while in addition most of the genes regulated by SOC1, FUL and the SPLs remain to be identified. 

Many genetic screens carried out in the last years failed to identify new genes involved in the floral 

transition at the SAM and activated in response to FT. These difficulties could be due to these 

putative genes having only a minor effect on flowering when inactivated. This could be because 

they play a relatively minor role in the floral transition, that they have family members that are 

genetically redundant or they might be important for earlier steps in plant development and have 

been excluded in genetic screens because of the pleiotropic effect of the mutations.     

6.2 Next-generation sequencing for global gene expression analysis

Global  gene  expression  analysis  performed  by  next-generation  sequencing  on  laser-dissected 

material was a challenging experiment. This was one of the first examples of this kind of approach, 

and at the time that the experiment was set up and performed, there was no other attempt reported in 
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literature.  Therefore,  many of the technical  steps were still  not optimised,  from how to recover 

suitable  RNA and  DNA material  for  the  sequencing,  until  the  bioinformatics  and  statistics  to 

analyze  the  data.  The  latter  part  relating  to  quantification  of  gene  expression  is  still  under 

development in the scientific community (Wang et al., 2009c; Wilhelm and Landry, 2009). Despite 

these difficulties the approach has the advantages of analyzing gene expression specifically in the 

meristem and utilizing the extreme sensitivity of Solexa sequencing. The output of this experiment 

is a gene expression profile,  in which much of the data show correlation in terms of biological 

replicates, a good correlation with previously published data and allowed the confirmation of newly 

identified genes with interesting temporal and spatial expression patterns.

6.2.1 Comparison with available microarray data

Comparing my dataset with the microarray data previously published for shoot apices (Schmid et 

al., 2003), identifies both interesting similarities and differences. Comparison of different global 

gene expression experiments is difficult, even if performed in a similar way, due to the variability 

caused by different experimental conditions (Allison et al., 2006; Grant et al., 2007). In this case, 

the experiments have also some intrinsic differences, such as a different time in which the plants 

were  grown in  SD before  shift  to  LD,  the  difference  in  the  tissues  collected  and methods  for 

sampling the tissue, different procedures for extraction and amplification of the RNA, and finally a 

different  technology  for  gene  expression  analysis  and  statistical  procedures  for  data  analysis. 

Moreover, the focus of the previous report was on the late stages of floral induction, at +7 LD after 

shift, by which time floral primordia are already present. Very few genes, even considering the time 

point +3 LD after the shift for both datasets, have a similar pattern in both datasets. Examples of 

similarities are SOC1, FUL, and SPL9. Several genes closely similar in sequence to other members 

of the same family, such as the SPL3-4-5 or AGL42, were not identified by our approach probably 

because  the  reads  corresponding  to  these  genes  led  to  an  ambiguous  assignation,  and  were 

considered “promiscuous tags” so that they were discarded.

The number of genes identified as differentially expressed by the two approaches is quite similar. In 

the microarray, for the comparison between time point +0 LD and +7 LD the top 500 genes were 

considered  for  both  Ler and  Col  experiments.  Those  common between  the  two ecotypes  were 

recovered, resulting in a total of 332 genes, 101 up-regulated and 231 down-regulated. I show, with 

the final clustering approach, 339 genes up-regulated and 82 down-regulated, which is in the same 

range. However, in their case the quantity of down-regulated genes is larger than the up-regulated, 
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while in my case the trend is opposite. Interestingly, using the same cut-off in the microarray data, 

comparing +0 LD to +3 LD instead of +7 LD, results in a lower number of differentially expressed 

genes (about half).  

Importantly, many genes that I identified as differentially expressed, showed a ratio of around 1 in 

expression between time points +3 LD and +0 LD in the microarray experiment, so that those genes 

were not identified as differentially expressed in that experiment. This could be due to the greater  

specificity of the LCM in sampling the SAMs, which prevented a dilution of the meristem tissue in 

the whole apex. SOC1 and FUL are exceptions to this phenomenon, as they were identified also in 

the microarrays. In addition to their spatial pattern of expression, which extends to the leaves as 

well as the SAM, this is probably due to the very strong up-regulation of SOC1 and FUL mRNAs in 

the SAM, so that a dilution of their signal in the entire apex does not prevent their identification. 

Another  exception was  C23,  which is  also up-regulated in the microarray data,  again probably 

because of the strong up-regulation of this gene in the central region of the SAM. However, this  

gene is considered as up-regulated only at + 3 LD, while in the later time points this up-regulation is 

not significant.    

6.2.2 General features of the data

A set of genes that  shows a consistent change in expression upon photoperiodic induction was 

identified. Some of these were chosen as candidates and also tested by in situ hybridisation. For the 

up-regulated genes, some of them were confirmed by this method. For the down-regulated genes, 

none of them showed a convincing pattern by  in situ hybridisation (data not shown). There are 

many possible explanations for this difference. One possibility is that the level of detection by in  

situ hybridisation for all the down-regulated genes was very low. Another possibility is that some of 

them were  false  positives.  Anyhow,  it  seems  quite  challenging  to  find  genes  that  consistently 

decrease in expression upon floral transition using our method. Indeed, no genes are so far known to 

be strongly decreased in expression at this stage. SVP is considered to be down-regulated, but only 

locally,  and  its  transcript  is  re-distributed  on  the  flanks  of  the  SAM (Hartmann  et  al.,  2000). 

Consistent with this its expression value is overally constant in my dataset.  SMZ and SNZ, which 

were identified as down-regulated from the apex RNA microarray data (Schmid et al., 2003), were 

later shown to be genes mainly acting in the vascular tissue of leaves (Mathieu et al., 2009). The 

presence of putative false positive down-regulated genes in my dataset could be due to an artifact of 

the RNA amplification  process.  Indeed, those genes present a high number of counts  in +0LD 
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sample and very low or even 0 in the +3LD sample. Because the +0LD is the sample with least 

initial  material,  less  quality  in  terms  of  data,  and  which  suffered  more  of  the  bias  of  the 

amplification procedure,  it  could be more prone to produce unbalanced values for some genes, 

leading to very high values in the +0LD sample.        

6.3 Classification of the genes selected from the dataset

Analysis of the gene expression data from the SAM transcriptome dataset and the further studies by 

in situ hybridisation for some known and some selected novel genes revealed different patterns of 

gene expression following the shift from non-inductive SD to inductive LD photoperiod. Genes 

identified as differentially expressed can be classified according to different criteria: 

- response to the photoperiod: how quickly their expression changes upon shift to LD

- spatial pattern of expression: where they are expressed, how the pattern changes upon induction, 

how specific the signal is for the meristem 

- molecular function and biological process in which they are involved

- response to FT/TSF: whether their up-regulation is dependent on FT or TSF function

These issues are described in the following sections.

6.4 Time of the response to the inducing photoperiod

My major interest was to identify genes induced during the early events of the floral transition. 

Several genes were found to be up-regulated already after the first LD of induction, although the 

exact number depended on the criteria used to define up-regulation. All of these genes are potential 

targets  of the very early photoperiodic activation at  the SAM, either  responding directly  to FT 

protein or to some other signal. SOC1 follows this response, as shown by several reports, and this 

was confirmed also by this study. Indeed, SOC1 activation is also dependent on FT and FD (Searle 

et al., 2006). FUL should follow the same pattern (Schmid et al., 2003), although in our conditions 

it is less strongly induced during the first LD, as demonstrated by  in situ hybridisations and data 

from the transcriptome analysis. Therefore, it is also important to take into account the genes that 

increase in expression only after 3 LD of induction, because some of them may require more time to 

respond, depending on which threshold has to be reached for their activation. Indeed, although FT is 

already up-regulated upon shift to LD, 3 LD are necessary to activate a complete floral induction in 

Ler, and FT mRNA level in the leaves increases progressively during the 3 LDs (Corbesier et al.,  

2007). This gradual accumulation of the FT transcript, which would lead to the accumulation of FT 
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protein at the apex, correlates with the gradual increase of SOC1 mRNA in the apex, and with the 

fact that AP1 is activated even later, presumably after 3 LD in Ler and 5 LD in Col, although AP1 is 

a direct target of FT/FD.

Moreover, activation of genes at +3LD rather than +1LD may be an indirect effect of FT activating 

early acting genes like SOC1 or FUL. This would be remarkable since not so much is known about 

target genes of  SOC1, besides  LFY (Lee et al., 2008b) and probably the  CBF genes (Seo et al., 

2009). Similarly almost nothing is known about targets of FUL, although it was reported that LFY 

expression may also depend on this  gene (Ferrándiz et  al.,  2000).  Interestingly,  from the gene 

expression data, most of the selected candidate genes showed a similar up-regulation from +0LD to 

+1LD and from +0LD to +3LD, which means that the major up-regulation occurs during the first 

LD,  and  this  is  in  agreement  in  most  cases  with  the  results  of  the  in  situ hybridisations. 

Nevertheless, for some genes the signal in the in situ appears later, at +3LD, suggesting that these 

genes  are  likely  activated  later  during  floral  induction.  Typical  case  is  C11,  which  is  lowly 

expressed and restricted to the primordia area. In the case of genes with very low expression levels, 

it can be useful to probe a later time point such as +5LD, because if there is a progressive increase 

in  its  expression  under  LD,  there  is  more  chance  that  the  transcript  is  detected  after  5  LD. 

Moreover, this revealed more clearly the expression pattern of some genes, that have to reach that 

developmental stage of the floral commitment  to clearly show their  specific pattern.  Our global 

gene analysis  did not include +5LD but some selected genes were tested at  that  stage and this 

should be repeated for all of them.

Other genes respond later at +3LD, and there was agreement between the expression data and in  

situ hybridisation.  For  example  D13 and  C23 mRNAs increased  already at  +1LD, but  the  up-

regulation at +3LD is much higher. C23 could be a possible target of SOC1 or FUL, and this needs 

to  be tested. D13 does  not  seem to  be  a  target  of  SOC1 and  FUL,  because  it  is  up-regulated 

independently of FT and TSF, which are upstream of SOC1 and FUL. Indeed, in the ft tsf double 

mutant, when D13 strongly increases in expression at +3LD, very low mRNA level of both SOC1 

and FUL is present.        

 

6.5 Spatial pattern of expression

Several  patterns of gene expression were described by  in situ hybridisation experiments in this 

study, both for known and previously undescribed genes  (see  Fig. 65  for a scheme). The typical 

pattern of expression for genes implicated in floral promotion is a broad expression in the whole 
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dome of the SAM upon induction. This pattern is shown by SOC1,  FUL and AGL24.  SVP is also 

broadly expressed, and then it disappears from the center of the SAM upon floral induction.  SPLs 

are emerging as genes with a more complex expression pattern,  probably because they regulate 

several  processes  and are also related  to  juvenile/adult  vegetative  trait  transitions  (Fornara and 

Coupland, 2009).  AP1, which marks the beginning of the floral meristem, and its homolog  CAL, 

have a restricted pattern in the floral meristem, and these genes are not involved in the transition 

from the vegetative to the inflorescence meristem but are expressed after this has occurred (Kempin 

et al., 1995). 

Interestingly,  while  some novel genes found in this  screen have a similar  expression pattern to 

SOC1 (D37, D55, D31, C25, C27), some of them show differences. C11 is expressed in a restricted 

region at the primordia before the floral meristems arise, and subsequently in the boundary with the 

floral organ. C4 is expressed broadly but excluded from the most external layer L1 (and maybe L2). 

Strikingly, C23 and D13 are expressed in the center of the transition meristem (Fig. 65), in a region 

that is included within the “central zone” (Lyndon, 1998). This results in a novel pattern, because 

although genes like WUS are expressed in this region (Schoof et al., 2000), they are already present 

at the vegetative phase of the SAM. TFL1 is the only flowering-related gene known to be expressed 

specifically in that part of the inflorescence meristem, although it is also already expressed at the 

vegetative phase (Bradley et al., 1997). This suggests there might be an interaction between TFL1 

and these novel genes, as they at least function in a common tissue and at the same stage. These 

possible  interactions  still  have  to  be  tested  at  the  expression  and  genetic  levels.  C23,  a  gene 

encoding an unknown protein, is especially interesting because its mRNA seems to be restricted 

only to that particular region, and only upon floral induction, while D13 for example is expressed 

also in external layers of the youngest leaves in the apex. Additionally, the strong signal of  C23 

disappears in the absence of  FT and  TSF, suggesting that this gene is downstream of the known 

photoperiodic flowering cascade. Additional hybridisation signals are found after 5 LD of induction 

in regions that could be developing axillary meristems. This is another common feature with TFL1 

(Bradley et al., 1997).  

Interestingly,  C19 and  D13 are strongly and broadly expressed in the inflorescence meristem at 

+5LD but are not expressed in floral primordia (Fig. 65). This feature is also shown by flowering 

time genes like SOC1 and FUL. Also a gene involved in meristem maintainance, STM (Long et al., 

1996), is expressed in the SAM but not in the incipient primordia, both leaf and floral, while its 

expression returns in the later floral meristems (Long et al., 1996).
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Fig 65. A schematic representation of spatial expression patterns of some known and newly identified genes.  The 
simplified patterns are representations of the results of in situ hybridisation experiments. See text for details.  

6.6 Biological and molecular functions of the genes up-regulated during the floral transition

6.6.1 Transcription factors and proteins involved in signaling  

Transcription factors and other types of regulatory proteins are essential for many developmental 

switches, like the floral transition. The majority of genes encoding these types of proteins in the 

Solexa dataset present extremely low expression values, so that only a few of them were tested by 

in situ hybridisation.   

Examples are C4, which encodes a putative bZIP transcription factor,  D37, which encodes a dof-

type zinc finger transcription factor, and C29, which encodes a GATA transcription factor. Among 

these, C4 and D37 present expression patterns that are restricted to the SAM. This contrasts with, 

for example,  FD, a crucial gene for the floral transition, which also encodes a bZIP transcription 
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factor,  because  FD expression pattern  does  not  completely  overlap  with  the  one  of  C4.  Other 

members of the dof family are the CDFs, which are involved in flowering but they regulate  CO 

transcription in the leaf vascular tissue (Sawa et al., 2007; Fornara et al., 2009). C20, which encodes 

a protein with a RING finger-like zinc finger motif, is more broadly expressed in the whole apex. 

This gene is part of the SHI family, and although it was isolated as a gene expressed in the roots as 

LATERAL ROOT PRIMORDIUM1 (LRP1) (Smith and Fedoroff, 1995), loss of function of this gene 

enhances the defects in the gynoecium when combined with other mutants of the other members of 

the SHI family (Kuusk et al., 2006).  

C21 mRNA is barely detectable, although among the regulatory genes identified here it is the only 

one  that  has  been  previously  reported  to  be  implicated  in  the  floral  transition.  C21 encodes 

ATHB16, a homeodomain-leucine zipper class I protein, involved in plant growth and response to 

light  (Wang  et  al.,  2003).  Altering  the  level  of  ATHB16 mRNA  in  transgenic  plants  affects 

flowering time, leaf expansion and shoot elongation. Compared to wild-type, 35S::ATHB16 plants 

are later flowering in LD, while slightly earlier in SD. Therefore, the over-expressor lines show less 

responsiveness to photoperiod. Conversely, lines carrying an antisense construct for ATHB16 have 

enhanced responsiveness to photoperiod compared to wild-type, since they flower slightly early in 

LD and significantly late  in SD. My data  together  with these genetic  experiments  suggest  that 

induction of ATHB16 expression in the SAM in response to inductive photoperiod may feedback to 

reduce responsiveness to photoperiod.  

However, two putative regulatory genes on which I focused most were C19 and C11, and these are 

described in the next sections.  

6.6.1.1 C19

C19 encodes FLOR1, which has been classified as a leucine-rich repeat (LRR) protein (Gamboa et 

al.,  2001).  LRR proteins,  which  form a  very  large  family  in  Arabidopsis,  are  transmembrane 

receptors involved in signaling, and have several roles mainly in plant development and defense to 

pathogens (Diévart and Clark, 2004, for a review). In this group, several members were shown to 

play pivotal  roles  in  developmental  processes,  like  CLAVATA1 (Clark  et  al.  1997),  ERECTA 

(Torii et al., 1996), and BRASSINOSTEROID INSENSITIVE1 (Li and Chory, 1997).

There  are  already  two  reports  on  FLOR1.  This  protein  was  shown  to  interact  in  vitro with 

AGAMOUS (Gamboa et al., 2001). The pattern of expression was also previously investigated by 

in situ hybridisation (Acevedo et al.,  2004), although a major focus was given to its expression 
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during flower development, because this gene was proposed to have a role in the flower. However, 

no  experimental  evidence  for  such  a  role  has  yet  been  provided.  The  pattern  of  expression 

previously reported for this gene in the inflorescence meristem closely resembles the pattern shown 

in my study in the SAM at vegetative and early stages of floral induction. The signal is strong in the 

L3 layer in the peripheral zone, less intense in the central zone and not present in the L1 and L2 

layers. Moreover, the pattern of the protein was shown to be less restricted than the mRNA and to 

spread all over the inflorescence meristem, including a further complication (Acevedo et al., 2004). 

In my study, the expression of this gene is clearly excluded from early floral meristems, as it also 

seems to be in the previous report.     

Interestingly, the LRR proteins that are most closely related in terms of sequence to FLOR1 are the 

polygalacturonase inhibiting  proteins (PGIP).  Although the function of PGIP1 and PGIP2 were 

mostly related to pathogen defense (Ferrari et al., 2006), a PGIP-like protein was shown to regulate 

floral organ number in rice (Jang et al., 2003).

I showed that the late flowering of soc1 ful is enhanced by mutation in FLOR1. This suggests a role 

of this protein in the floral transition, rather than in floral development. It could be that, in addition 

to AGAMOUS, FLOR1 is  able to interact  with other MADS-box proteins,  related to the floral 

transition, like SOC1, FUL or AGL24. This was not tested in the previous reports, and needs to be 

investigated.

Another candidate gene encoding a LRR protein is C15. However, its expression seems to be quite 

broad in the apex, even before induction. D31 encodes a heptahelical protein (HHP) called HHP3. 

The  proteins  of  this  family  are  predicted  to  have  7  transmembrane  helices,  and  could  act  as 

receptors  in  plant  cells.  HHP3,  like  the  other  members,  is  increased  in  expression  upon  light 

treatment,  primarily through the effect of photosynthetic  products (Hsieh and Goodman,  2005). 

Interestingly, although barely detectable, D31 mRNA seems to be present at +3LD after the shift to 

LD and to be restricted to small areas of the SAM, while being absent in the ft tsf double mutants.   

6.6.1.2 C11

C11 is part of the Arabidopsis zinc finger-homeodomain (ZF-HD) family. While other related gene 

families, such as the Class I  KNOX genes (Scofield and Murray, 2006), the  WOX class  (van der 

Graaff et al., 2009), and the class III HD-Leu zipper proteins (Elhiti and Stasolla, 2009),  contain 

members  that  are  well  studied  since  several  years,  the  ZF-HD  is  still  not  well  functionally 
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characterized. However, there is a report in which a general study of the entire family, consisting of 

14 members,  named  ATHB20-34,  has been carried out (Tan and Irish, 2006). In this study,  the 

authors reported the phylogenetic relationships among these genes, their expression by northern-

blot analysis, and the physical interactions among their protein products. Particularly, these proteins 

can interact with each other in yeast two-hybrid assays, with a preference for heterodimerization, 

suggesting that these proteins form complexes to regulate transcription. ATHB33 has been found to 

interact also with AP1 by yeast two-hybrid (Tan and Irish, 2006). The expression pattern of the 

different ZF-HD genes varies in different plant tissues, but all the members are strongly expressed 

in flowers, and almost all of them in inflorescence.  

Because ATHB31 was isolated from my screen as C11, and the loss of function mutant of this gene 

does not have a phenotype, I tried to silence C11 and the most related genes in the same plants. I 

generated  two  constructs:  amiRNAh21/31,  which  silences  ATHB21 and  ATHB31,  and 

amiRNAh22/25,  which silences  ATHB22 and  ATHB25.  These two pairs  of  genes,  not  only are 

closely related in terms of sequence, but they are also present in two blocks of conserved synteny, 

suggesting  that  they  originated  from  genomic  duplications.  Moreover,  ATHB21,  ATHB25 and 

ATHB31 are more highly expressed in younger flowers, suggesting an earlier temporal role in floral 

initiation,  more  related  to  the  onset  of  AP1 expression  than  to  floral  development.  Detailed 

phenotypic screening of the transformants will be needed to test if a decrease of the expression of 

these genes is related to an effect on the response to photoperiod, but the later flowering of the 

transformants is encouraging and suggests they play a role in the floral transition. 

Both ATHB31 and ATHB25 are expressed at the primordia at +3LD, and later at +5LD ATHB31 is 

expressed at the boundary between the SAM and floral primordia. An intriguing possibility is that 

ATHB31 and  ATHB25 are  expressed  at  a  time  that  immediately  precedes  floral  primordia 

determination, in a tissue that is not yet determined as floral primordia but will be re-specified with 

floral meristem character during floral induction. It was reported that at the stage of floral transition 

there is a restricted period of time in which there is an overlap between development of the last leaf 

and the first flower, and this overlap can occur in a single primordium on the primary shoot axis 

(Hempel and Feldman, 1995). This leads to the formation of a chimeric shoot, with both flower and 

leaf characteristics. The frequency of chimeric shoot formation depends on the growth conditions, 

but  it  appeared  to  be  significantly  higher  in  plants  shifted  from  SD  to  LD  than  in  plants 

continuously grown in LD. The authors hypothesized a partial re-specification of the leaf anlage by 

the floral stimulus, and they speculated that primordia in Arabidopsis can be specified also during 
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their  development.  If  this  is  correct,  some genes  should  be  devoted  to  regulate  this  transition. 

Possibly members of the ZF-HD family participate in this process. Alternatively, they could have a 

role  in  the  specification  of  the  boundary  between  the  SAM  and  the  arising  organs.  Many 

transcription factors are known to play a role in this  specific developmental  process (Aida and 

Tasaka, 2006, for a review). However, it is perhaps unlikely that such a process would be under 

photoperiodic control.

6.6.2  Additional layers of regulation

Other proteins that may play pivotal roles in the floral transition, although they are not transcription 

factors, are protein modifiers that regulate the activity of transcription factors by post-translational 

modifications. For example the transcription factor AP1 is a target of farnesylation, and the over-

expression of a mutated form of  AP1 lacking the farnesylation site does not exhibit  the typical 

terminal flower of the complete AP1 coding region but only causes early flowering and additional 

novel  phenotypes  (Yalovsky  et  al.,  2000b).  The  Arabidopsis era1  (for  “enhanced  response  to 

abscisic  acid”) is  a  mutant  in  the  β subunit  of  a  farnesyltransferase,  which  presents  several 

developmental anomalies in meristems, organs and flowers, as well as late flowering (Yalovsky et 

al., 2000a). Over-expression of wild-type AP1 in era1 background also causes early flowering but 

not meristem termination (Yalovsky et al., 2000b).   

Recently  it  was  reported  that  a  peptidyl-prolyl  cis/trans isomerase  encoded  by  Pin1At gene  is 

involved in  flowering (Wang et  al.,  2010).  Pin1At protein  was proposed to  exert  its  effect  on 

flowering through post-translational regulation of two key flowering time proteins promoting the 

floral  transition  at  the  SAM,  SOC1 and  AGL24,  by  phosphorylation-dependent  cis/trans 

isomerization of these two MADS-box transcription factors. Pin1At plays an important function in 

the floral transition since lines expressing an antisense suppressor of this gene (Pin1At-AS) show 

delayed flowering, and over-expression of this gene promotes early flowering. Early flowering of 

35S::SOC1 and  35S::AGL24 plants was significantly delayed in  Pin1At-AS  background, and the 

early  flowering  of  35S::Pin1At is  completely  suppressed  in  the  soc1  agl24 double  mutant 

background. In this study, both SOC1 and AGL24 proteins were demonstrated to be phosphorylated 

in planta, and Pin1At protein interacted with their phosphorylated forms, catalyzing conformational 

changes  by  isomerization  and  thus  affecting  their  function  at  the  post-translational  level.  The 

expression of Pin1At was detected in all tissues, including the SAM, and generally increased during 

floral transition. Interestingly, this was also detected in our gene expression dataset, where Pin1At 
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is in the list of the up-regulated genes identified by the clustering approach (see  Appendix II). 

Consistent with this scenario, a specific kinase called Meristematic receptor-like kinase (MRLK) 

could be implicated in phosphorylation of AGL24 protein (Fujita et al., 2003). AGL24 was isolated 

by yeast two-hybrid screen as a physical interactor of MRLK, and then shown to be phosphorylated 

by this kinase. MRLK is expressed especially in apical meristems (Fujita et al., 2003).  

Another gene identified in our dataset, C27, encodes a putative calcium-dependent protein kinase. I 

showed that the expression of this gene strongly increases at the SAM during induction in LD, and 

that this increase is strongly suppressed in the ft tsf  double mutant. In tobacco a related protein, a 

calcium/calmodulin-binding  protein  kinase  named  NtCBK1,  was  reported  to  be  involved  in 

flowering (Hua et al., 2004). However, this gene was strongly expressed in tobacco SAM in the 

vegetative phase, and its expression decreased upon floral transition. Indeed, NtCBK1 has a floral 

repressive function, as over-expression of this gene in tobacco causes late flowering.

6.6.3 Genes involved in metabolism

Metabolism has a role in all basal cellular processes and as many of these are likely to change in the 

meristem during the floral transition it is not surprising to find many genes connected to metabolic 

pathways  among  the  up-  or  down-regulated  genes  in  my  dataset.  However,  the  significant 

enrichment  shown  in  the  GO  term  analysis  of  processes  like  ”biosynthetic  process”, 

“macromolecule metabolic process”, “cellular metabolic process” and “primary metabolic process”, 

gives an indication that metabolism plays a major role in the SAM during floral transition. There 

are two reasons that can account for this enrichment. One is that the floral transition involves a 

change in the SAM identity so that different structures are produced that sustain new organs, with a 

considerable energetic consumption. This is reasonable considering the extensive growth undergone 

by the SAM during the 3 LD of induction that I monitored and the resulting change in the SAM 

size. The other reason is that the shift from SD to LD implies also a longer exposure of the plants to 

light, which is reflected by more photosynthetic activity. The result of the photosynthesis, which 

takes place in the leaves, probably also has consequences at the SAM, which acts as a stronger sink 

for nutrients as more growth occurs. Transient exposure to red-rich light LD condition at high light 

intensity promotes  flowering in  Arabidopsis,  while it  does not have such an effect at low light 

intensity (King et al., 2008). The effect of high intensity red-rich light correlates with FT induction, 

and increase in expression of SUC2, a photosynthetically regulated gene. Blocking photosynthesis 

by  transiently  removing  atmospheric  CO2 delayed  flowering  and  the  activation  of  FT by  LD. 
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Moreover, ft mutants did not respond to floral activation by high-intensity red-rich LD (King et al., 

2008).  This  suggests  that  photosynthesis,  perhaps  by  increasing  sugar  concentration,  has  a 

promotive  effect  on flowering in  LD through  FT.  Furthermore,  higher  light  intensity  promoted 

flowering even in SD, but independently of FT (King et al., 2008).  

From the set  of  genes  which were up-regulated  upon shift  to LD,  C25 encodes  an uncoupling 

mitochondrial  protein (UCP) called UCP1 (or PUMP1). Uncoupling proteins are integral  to the 

inner  mitochondrial  membrane and dissipate  the proton gradient.  Loss  of  function  of  this  gene 

impacts  photosynthesis,  as  the  ucp1 mutant  has  a  significant  decrease  in  the  rate  of  CO2 

assimilation, and restriction in photorespiratory flux (Sweetlove et al., 2006). 

Another gene, D29, encodes a plastid glyceraldehyde-3-phosphate dehydrogenase (GAPCP-1). Loss 

of  GAPCP-1  and  GAPCP-2  enzymes  cause  drastic  changes  in  sugar  and  amino  acid  balance 

resulting in arrested root development, dwarfism and sterility (Muñoz-Bertomeu et al., 2009). Male 

sterility of gapcp1 gapcp2 double mutants is caused by defects in pollen development, and is likely 

due to modifications in sugar signaling, particularly by an increase in trehalose (Muñoz-Bertomeu 

et al., 2010). 

There are several publications that implicate sugar metabolism in floral transition processes. In the 

pgi1 mutant, which has a highly reduced plastidial phosphoglucose isomerase enzyme activity, leaf 

starch synthesis is impaired (Yu et al.,  2000). Also mutants in phosphoglucomutase (pgm1) and 

ADP-glocose pyrophosphorylase (adg1) have low starch content.  All three mutants pgi1, pgm1 and 

adg1 show a slight delay in flowering in LD compared to wild-type and a more pronounced delay in 

shorter photoperiods of 12 hours light-12 hours dark (Yu et al., 2000). Additionally, supplementing 

the medium with 1% sucrose, glucose or fructose restored the flowering time of pgi1 mutant to that 

of the wild-type.  Sugar concentration has been shown to be correlated with the floral transition 

(Corbesier et al., 1998), although with opposite effects depending on the concentration and on the 

genetic background (Ohto et al., 2001). 

Mutants in trehalose-6-phosphate synthase1 (tps1) are embryonic lethal in the homozygous state, 

but with a DEX-inducible system for TPS1 in the tps1 mutant it is possible to generate viable seeds 

(van Dijken et  al.,  2004).  Interestingly,  these lines  flower only if  they are induced with DEX, 

otherwise  they  remain  in  the  vegetative  state  for  about  six  months  until  they  die.  Upon DEX 

application, TPS function is restored, and the floral transition occurs, although it is still strongly 

delayed compared to wild-type. These lines also show other phenotypes related to retarded growth 

(van Dijken et al., 2004). 
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Another  two  candidate  genes, D35 and  D19,  are  only  very  weakly  detectable  by  in  situ 

hybridisation, although they seem to be quite specific for the SAM and not visible before +3LD. 

D35 encodes  NIA2,  a  nitrate  reductase.  The  nia1  nia2 double  mutant  has  an  early  flowering 

phenotype  (Seligman  et  al.,  2008),  which  has  been  attributed  to  a  decrease  in  nitric  oxide 

production, since this molecule has a repressing action on the floral transition (He et al., 2004). 

NIA1 mRNA was also detected in our gene expression dataset, and it was identified as up-regulated 

by the clustering approach (see Appendix II). D19 encodes AIM1, an enzyme in the pathway of β-

oxidation  of  fatty  acids  (Richmond  and  Bleecker,  1999).  Several  abnormalities  affect  the 

inflorescence meristems of  aim1 mutants. Moreover, the normal structure and the fertility of the 

flowers is severely compromised in these mutants. The presence of AIM1 mRNA in many tissues, 

including inflorescence meristems and flowers, was confirmed by in situ hybridisation (Richmond 

and Bleecker, 1999).  There are other candidate genes that are related to fatty acid methabolism. 

D55 encodes a phospholipid/glycerol acyl transferase, which is expressed strongly after +3LD, and 

it  has a  putative  role  in  membrane metabolism (Stålberg et  al.,  2009).  C22 encodes  a putative 

hydrolase/lipase, which is also detected at +3LD, and quite specifically at the SAM. Finally D13, 

encodes a fatty acid desaturase, which I will discuss in a later section.

6.6.4 Growth is a key process for the floral transition

6.6.4.1 Meristem growth

As already mentioned, meristem growth is a striking aspect of the transition to an inflorescence 

meristem. Even before the floral primordia arise, remarkable growth of the meristem occurs in all 

three dimensions. This is immediately visible from sections of the SAMs of plants shifted from SD 

to LD (Fig. 11 and Fig. 18). 

This growth must require increases in metabolic and cellular processes. This is in agreement with 

the  significant  enrichment  in  expression  of  genes  with  the  GO  terms  “cellular  component 

organization  and  biogenesis”  and  other  terms  concerning  ribosomes,  protein  metabolism  and 

translation.  I  already discussed  the  possible  role  of  metabolism in  the  transition  in  the  earlier  

section.  The  contributions  of  cell  division  and  cell  elongation  to  this  growth  have  not  been 

thoroughly measured but it seems likely that increased cell cycle activity must play an important 

role in the meristem transition. 

Past studies tried to make a link between meristem transitions and meristem growth, and to describe 

this by measuring various parameters, including the cell cycle in different sub-domains of the SAM 
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(Kwiatkowska, 2008 for a review). However, the small size of the Arabidopsis meristem precluded 

extensive research on this model plant, and other species were mainly studied. Intrinsic species-

specific  differences  in  SAM  growth  and  inflorescence  architecture  allow  only  a  limited 

extrapolation of this knowledge to  Arabidopsis. Moreover, there is not always a clear agreement 

between different reports concerning the dynamics of these parameters during the floral transition. 

Many studies have shown that in Arabidopsis the meristem increases in size during the transition to 

flowering. For Ler, it was reported that the vegetative meristem measures around 53 μm at the base 

and 13 μm in height, and expands to 70  μm at the base and 15 μm in height as an inflorescence 

meristem (Laufs et al., 1998). In the inflorescence meristem the cell size increases from the outer 

layer to the inner regions, so that cells in L1 layer are smaller than in L3. Mitotic index for both L1  

and L2 layers in the center is lower than in periphery (Laufs et al., 1998), in agreement with the 

central zone (CZ) consisting of stem cells and the peripheral zone (PZ) consisting of cells forming 

the organs. Also in vivo imaging showed that, at the surface, cells at the center of the SAM grow 

slower than at the periphery (Grandjean et al., 2004).   

In another report, upon shift from SD (after 2 months of growth) to LD, the mitotic index at the 

transition meristem was 2-3 fold higher than at the vegetative meristem. Considering the central and 

peripheral zones, the increase was seen especially in the peripheral part (Jackmard et al., 2003). 

However, slight activation of cell division occurred also at the rib zone. Upon floral induction the 

SAM grows both in width and height, but because of the higher increase in height relative to width 

it becomes more domed. This process is also immediately followed by elongation of the apical 

internodes on the stem (Jackmard et al., 2003).

Recently, a comparison between vegetative, transition, and inflorescence meristems was carried out 

taking also into account marker genes of the different meristem zones (Geier et al., 2008). The size 

of the transition meristem was around twice that of the vegetative meristem, correlating also with 

the width of  STM expression domain. Inflorescence meristems were intermediate in terms of size 

between the other two meristem stages. The mitotic index also increased from the vegetative to the 

transition meristem, both in the CZ and in the PZ. Interestingly, the size of the organizing center 

and the stem cell region did not directly follow the growth of the overall meristem size (Geier et al., 

2008).

6.6.4.2 FT, “florigen”, and growth

The remarkable growth of the SAM of wild-type plants upon the shift from SD to LD does not take 
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place in the ft tsf double mutant. Although this can be simply explained by the fact that without FT 

(and  TSF) there is not any response to photoperiodic induction, it raises interesting points on the 

function of the FT protein at the SAM in the transition to flowering. In this sense, FT could be seen 

as a general inducer of growth, because increasing the concentration of this at the meristem causes 

an increase in growth. 

A role for the “florigen” as a regulator of growth was proposed from studies in tomato (Shalit et al.,  

2009).  The tomato  ortholog of  FT is  SINGLE FLOWER TRUSS (SFT).  The  sft mutant  is  late 

flowering and presents altered architecture and flower morphology (Lifschitz et al.,  2006). Both 

SFT and FT when over-expressed cause early flowering even in tobacco and tomato, which are day-

neutral-flowering plants. Over-expression of SFT induces early flowering also in a short-day strain 

of tobacco as well as long-day Arabidopsis, suggesting conservation of the function and mechanism 

of  action.  SFT  is  also  graft-transmissible.  However,  over-expression  of  SFT leads  to  terminal 

inflorescences and retardation of growth (Lifschitz et al., 2006). Conversely SELF PRUNING (SP), 

the homolog of Arabidopsis TFL1, promotes growth and represses flowering (Pnueli et al., 1998). 

Besides its role in flowering, SFT requires SP for its role in sympodial and flower meristems (Shalit 

et  al.,  2009).  High  SFT/SP ratio  causes  growth  restriction  at  the  SAM  and  in  lateral  leaflet 

meristems, leading to reduced leaf complexity, while still higher ratios (for example in  35S::SFT 

sp) cause complete suppression of both vegetative and inflorescence meristems (Shalit et al., 2009). 

Therefore, the authors propose SFT/SP to regulate the balance of growth processes, and the florigen 

as a general growth hormone. The negative role of SFT on growth in tomato seems to contrast with 

the situation in  Arabidopsis. However, this could be due to differences in life strategy and plant 

architecture of these two species. 

Another example comes from poplar, where  PtFT1, the ortholog of  Arabidopsis FT, plays a role 

both  in  flowering  and bud set  (Böhlenius  et  al.,  2006).  In  autumn,  in  response to  SD, growth 

terminates and bud dormancy is initiated in this tree species. However, over-expression of PtFT1 in 

poplar causes not only early flowering, but also suppresses the growth cessation induced by SD and 

bud set, so that transgenic trees do not terminate growth in SD. So in this case FT would promote 

growth, as appears to be the case in Arabidopsis meristems. Also in slow-growing conifers an FT 

orthologue was correlated with photoperiodic bud setting (Gyllenstrand et al., 2007).

However, this does not exclude that the putative “growth factor” is something downstream of FT, 

which is activated by FT protein, either together with FD or independently of it.  SOC1 and FUL, 

putative early targets of FT, could mediate this function, since they are transcription factors.  FUL 
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has been associated with functions in the cell cycle (Gu et al., 1998). Moreover, in a recent report, 

FT, SOC1 and FUL were connected to growth processes in addition to flowering control (Melzer et 

al., 2008). For example,  ft ful double mutants show extreme indeterminacy of the apical meristem 

and grow up to 1 meter tall with only a few branches, reverting to vegetative growth. The soc1 ful 

double mutants show several rounds of reversion to vegetative growth after flowering. 35S::FT in 

soc1 ful grows with a short inflorescence, a few terminating co-inflorescences, and a reiteration of 

vegetative growth (Melzer et al., 2008).  

6.7 Response to FT/TSF and responsiveness of ft tsf

In principle, classes of genes can be identified based on how much their induction upon shift to LD 

is dependent on FT/TSF. This can be done comparing the induction of a gene in wild-type to the 

induction in ft tsf  double mutant. However, it is not possible to quantify this difference by in situ 

hybridisation, and other techniques are necessary to determine the level of gene expression in each 

genotype.  Furthermore,  in  this  study  only  very  few  genes  were  tested  in  the  double  mutant. 

Nevertheless, some qualitative information was gained from a series of genes.  C11 and  C23 are 

genes that convincingly respond to photoperiod and this response is dependent on FT or TSF, since 

they are clearly induced by LD in wild-type but not in the double mutant (Fig. 37 and Fig. 44). 

A series of other genes have been shown to be expressed in the meristem, and while in wild-type 

they are up-regulated upon the shift to LD, they remain constant in the double mutant (see C19 and 

C4) (Fig. 39 and Fig. 42).

Another set of genes seems to partially respond to FT/TSF. They increase in their expression in the 

double mutant, but clearly less than in wild-type (see C25 and C27) (Fig. 43). From the microarray 

data of the shoot apices (Schmid et al., 2003), genes like  SOC1,  FUL, and several  SPLs, show a 

marked increase in expression upon shift to LD in wild-type. This increase is strongly delayed in co 

and ft mutants, but the increase is still detectable, suggesting a residual effect of the photoperiod.

This increase could be due to other factors rather than a response to the photoperiodic flowering 

pathway. A shift from SD to LD is a dramatic environmental change that plants never experience in  

nature because they gradually pass from a SD-like to a  LD-like condition during the changing 

seasons. Therefore, many genes could be induced in expression because of this shift, not only due to 

the floral  response to photoperiod.  Genes related to stress,  especially abiotic,  or to temperature 

change, may be induced due to a direct consequence of a higher exposure of the plants to light. 

These genes would be expected to be expressed very similarly in the ft tsf double mutant. Moreover, 
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photosynthetic activity is higher in LD than SD, and this can also trigger processes that are related 

to energy production, as discussed before.

The ft tsf double mutants, although un-responsive to photoperiod in terms of induction of flowering, 

seem to be still responsive to LD for growth. Although the size of the SAM upon floral induction in 

our experimental condition has not yet been quantified in detail, it it possible to recognize a certain 

degree of growth at +3LD after photoperiodic induction even in the double mutant. This residual 

growth may depend on the sugars produced upon photosynthesis and transported to the meristem. 

The  size  of  the  meristem of  both  wild-type  and  ft  tsf during  the  floral  transition  needs  to  be 

compared, and the mechanism of this residual growth can then be investigated.     

From  the  novel  genes  isolated  in  my  screen,  the  only  one  that  seems  to  be  induced  by  LD 

completely independently of FT/TSF is D13.

6.8 A novel signal identified in response to shift in photoperiod

D13, a gene encoding a putative stearoyl-acyl-carrier-protein (ACP) desaturase, has been shown to 

be strongly induced upon shift to LD in a region at the center of the inflorescence meristem. This  

induction occurs not only in wild-type, but also in ft tsf double mutant, with the same dynamics and 

a very similar pattern (Fig. 32, G-L and  Fig. 33). This induction is unlikely to be due to direct 

detection of photoperiod in the meristem, as this is strongly shaded by young leaves. Therefore, I 

postulated that another signal distinct from  FT/TSF is likely to trigger  D13 expression. To date, 

there are no reports of genes rapidly induced by LD in the SAM in the absence of the photoperiodic  

pathway. Some hypotheses can be made on the identity of this signal.   

One  possibility  is  that  the  photosynthesis,  which  would  create  a  metabolic  signal  through  the 

production of sugars could be involved. As discussed before, shift from SD to LD increases the 

exposure to light and boosts photosynthesis. This possibility could be tested for example using so-

called Extended Short Days (ESD) instead of LD. ESD consists of initial 8 hours of light with the 

complete spectrum, then 8 hours of exposure to far-red light that is perceived as photoperiodically 

active but is not photosynthetically active, and finally 8 hours of dark. 

Another possibility is a hormonal signal. Gibberellins for example are also involved in triggering 

flowering independently of FT, although some studies report possible connections between the two 

pathways (Hisamatsu and King, 2008). Moreover, some responses to GA are similar to those caused 

by exposure to LD (Gocal et al., 2001), and gibberellins were reported to be a possible moving 

signal  (Eriksson  et  al.,  2006),  although  additional  reports  are  needed  to  clearly  support  this 
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hypothesis. Another critical point is that for both sugars and gibberellins, and to a certain extent 

cytokinins  (Corbesier et  al.,  2003),  a  role  in  the floral  transition has been proposed as well  as 

possible movement from leaf to apex. However, it is not known whether their roles are causal or a 

consequence of the floral transition. In other words, we do not know if these possible signals would 

be active in a ft tsf double mutant, which does not undergo the transition readily upon shift to LD.  

The experiment  with the  inducible  system that  activates  CO also  indicates  that  D13 induction 

occurs independently of the CO-FT module, and links D13 more clearly to the response to LD (Fig. 

35). The tfl1 mutant shows an increase of D13 expression, or a premature expression of this gene, 

compared to wild-type, at the moment of the floral transition (Fig. 34). This suggests that this gene 

is somehow connected to the floral transition of the SAM. It could be that upon shift to LD a signal 

triggers the expression of D13, which contributes to the transition, independently of FT. Expression 

of  D13 cannot be sufficient to induce flowering, because it is expressed normally in  ft tsf  double 

mutants, although these are very late flowering. However,  D13 might still contribute to the early 

flowering caused by FT/TSF in wild-type plants. Insertion lines carrying a T-DNA within the locus 

are not available, and the RNAi against D13 did not efficiently decreased its expression. Possibly a 

feedback regulation causes this enzyme to be up-regulated once its concentration decreases, making 

RNAi  approaches  more  challenging.  Moreover,  the  over-expression  of  D13 did  not  show any 

visible phenotype, consistent with what has been shown for other members of the same gene family 

(Kachroo et al., 2007).  

What could be then the function of D13 at the SAM? Stearoyl-ACP desaturases are enzymes that 

catalyze the conversion of stearic acid (18:0) to oleic acid (18:1), to regulate polyunsaturated fatty 

acid content. Plants can adjust the membrane lipid fluidity by changing levels of unsaturated fatty 

acids mainly by regulating the activity of fatty acid desaturases. This has been related mainly to the 

response  of  abiotic  stresses  such  as  changes  in  temperature  (Upchurch,  2008,  for  a  review). 

Particularly, desaturase activity would maintain higher membrane fluidity when the temperature is 

very low.  Therefore,  this  function  could  be  connected  to  the  floral  transition,  in  which  higher 

fluidity of the membrane would perhaps facilitate the growth of the meristem. Moreover,  TFL1, 

which is expressed in a similar region, was reported to be implicated in endomembrane trafficking, 

and  fractionation  of  protoplasts  showed  that  TFL1 protein  was  associated  with  the  membrane 

fraction (Sohn et al., 2007).

These enzymes can also be involved in pathogen defense responses (Kachroo et al., 2001). D13 is 

part of a family of 7 stearoyl-ACP desaturase in Arabidopsis. Loss of function mutants of one of the 
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members of this family,  SSI2/FAB2, causes a dwarf phenotype, constitutive activation in salicylic 

acid-mediated signaling and repression in certain jasmonic acid-mediated responses, with several 

consequences in defense responses (Kachroo et al.,  2001). Therefore,  signals derived from fatty 

acids  modulate  crosstalk between different  defense signaling  pathways,  revealing  an interesting 

possible role of these enzymes in signaling mechanisms. A general description of this gene family 

has been published and showed a certain degree of tissue-specificity of the various members in  

planta, although  D13 was not detected and not considered in this study (Kachroo et al.,  2007). 

Knock-out lines for 3 out of the 7 members of this family were not viable when homozygotic, while 

for the other 2 members no visible mutant phenotype was detected (Kachroo et al., 2007). However, 

D13 is the most divergent member of this family,  as demonstrated by phylogenetic analysis. Its 

expression pattern,  specific for a particular region in the SAM in inductive photoperiods, could 

account for a unique function of this gene which cannot be predicted from the information on the 

other Arabidopsis ACP-desaturases.       

PART2

6.9 SVP represses many genes

Although  SVP was first  described in  2000 (Hartmann et  al.,  2000),  it  only recently became of 

interest to many groups. Several reports underlined the importance of this transcription factor in the 

control of the floral transition, together with roles in floral meristem determination. A repressive 

effect of SVP on FT transcription has been reported by several studies, together with this study (Lee 

et al., 2007b; Li et al., 2008; Jang et al., 2009). Moreover, I showed that this repression is exerted 

during the 24 hours of a daily cycle, so that part of the early flowering of the  svp mutant can be 

explained by up-regulation of FT and not, for example, by a shift in the phase of FT expression. I 

demonstrated the same for TSF, adding another similarity between FT and TSF at the level of their 

regulation (Jang et al., 2009). 

Repression of SOC1 by SVP was also reported, together with this study, by another group (Li et al., 

2008). Moreover, a direct repression of  SOC1 by SVP was demonstrated by showing that SVP 

binds to the SOC1 promoter (Li et al., 2008). In addition, I showed that in svp mutant, SOC1 still 

rises in expression, even in the absence of FT and TSF. Therefore, in absence of inducers and the 

SVP repressor, there is still activation of SOC1. A similar phenomenon was also shown in various 

double mutant combinations, in which in the absence of repressor (SVP) and inducer (CO or  FT) 

activities there was still activation of the target (FT or  SOC1, respectively), as measured by real-
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time PCR. It could be that  SOC1 in  svp ft tsf,  in absence of functional photoperiod pathway, is 

induced by other pathways such as the GA pathway. This can be tested in the future. 

Another point is that the svp co double mutant flowers slightly but significantly earlier than svp ft  

tsf. Considering FT and TSF as the only significant targets of CO for floral induction, it is expected 

that these two mutant combinations show the same phenotype.  Indeed, I showed that in  svp co 

during a day cycle of 24 hours the level of  FT and  TSF is very low. However, this reflected the 

situation of only 1 day at a precise developmental stage (from 10 to 11 days in LD condition), so it 

could be that there is a slight up-regulation of FT/TSF in svp co double mutants at another stage. 

Indeed, another real time PCR experiment showed that at 12 days in svp co the expression of both 

FT and TSF is significantly higher than in co, and even slightly higher than in wild-type. This result 

suggests that other activators can promote FT expression in an svp co double mutants.

It is not yet clear how direct is the repression of FUL by SVP. In svp ft double mutants FUL is still 

quite strongly expressed in early stages of the floral transition, suggesting a direct control of SVP 

on  FUL. However, the  svp soc1 ful triple mutant does not significantly differ from the  svp soc1 

double mutant in terms of flowering time. Hence, other experiments need to be done to investigate 

the relation between SVP and FUL. As reported previously, FUL is ectopically expressed in ap1 cal 

double mutants, because it lacks the repression exerted by AP1 (Mandel and Yanofsky, 1995a). In 

another report,  FUL mRNA was measured in the ap1 agl24 svp triple mutant and found to be up-

regulated even significantly more than in ap1 cal (Gregis et a., 2008). The mutation in SVP could 

account for this further up-regulation of FUL, suggesting that FUL is normally repressed by SVP.

6.10 Is SVP a general repressor or is it downstream of photoperiodic induction?

I showed that several floral promoter genes are increased in expression in the svp mutant and they 

could also be targets of SVP. An alternative view is that, in addition, SVP is genetically downstream 

of some floral promoter genes. Indeed,  SVP  shows a decrease in expression at the center of the 

SAM during the floral transition, and it is still not known if a floral promoter gene is upstream of 

SVP and negatively regulates it to allow the floral transition to occur. Moreover, the two views are 

not mutually exclusive, and it is possible that some factors are repressed by  SVP and then when 

they are activated, for example by the photoperiod, they in turn repress SVP. A similar hypothesis 

was suggested for FLC, where FLC represses SOC1 but SOC1 would then down-regulate FLC (Seo 

et al., 2009). A previous report excluded that the photoperiodic pathway influences SVP expression, 

since the expression level  of this  gene did not  change in  mutants  of  genes within  this  genetic 
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pathway (Li et al., 2008).

6.11 Double action leaf-meristem

I demonstrated that SVP has a role in repressing floral promoting genes expressed in the leaves, and 

a role in repressing floral promoting genes expressed in the meristem.  FLC is obviously a similar 

case, since this MADS-box protein has the same dual function in these tissues (Searle et al., 2006). 

Also the two repressors share many target genes and likely act in a complex.  However,  in the 

meantime it is emerging that more and more genes in the flowering time network show this kind of 

dual  function  in  these  two tissues.  For  example  both  SOC1 and  FUL cause  an acceleration  of 

flowering  when  over-expressed  in  leaf  or  meristem,  although  the  major  contribution  is  in  the 

meristem (Searle et  al.  2006; Wang et al.,  2009a).  The same approach with  SPL3 gave similar 

results (Wang et al., 2009a).

Interestingly,  the  contribution  of  SVP on  flowering  seems  to  be  equally  important  in  leaf  and 

meristem, since more or less the same effect is obtained using SUC2 and KNAT1 promoters, and the 

combination of the two transgenes restores a phenotype similar to the wild-type. This is similar to 

what  has  been  observed  with  FLC (Searle  et  al  2006).  However,  the  combination  of  the  two 

transgenes for SVP does not fully complement the flowering time phenotype in SD. This might be 

due to the strength of the promoters, which might not be enough to suppress the effect of the svp 

mutation, or to the fact that the transgenes are single copy and heterozygotic. Analysis of the F2 

generation when the plants are homozygotic will clarify whether the number of transgene copies 

makes a difference for the flowering time.

The basis of the floral phenotype of  KNAT1::SVP mis-expressing lines remains to be explained. 

Over-expression of SVP in all tissues using the 35S promoter leads to a dramatic effect of homeotic 

transformation on flowers (Masiero et al., 2004). It could be that the tissue where this promoter 

causes this effect partially overlaps with that of KNAT1 expression. Independent transformations of 

svp-41 mutant with 35S::SVP constructs that I performed show a range of floral phenotypes (data 

not shown), indicating that the level of expression is also important for the effect. Alternatively, in 

the svp background KNAT1 is de-regulated. This remains to be tested.  

6.12 SVP and FLC

Recently,  SVP and FLC have been shown to be closely related in function. However, these genes 

also show notable differences.
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At the level of targets,  FT,  TSF and  SOC1 are shared between them. Additionally,  FLC could be 

involved  in  the  repression  of  FUL,  since  FRI-FLC lines  strongly  suppress  the  photoperiodic 

induction of FUL (Schmid et al., 2003). At the level of regulation, SVP and FLC are both targets of 

temperature  changes  and  the  autonomous  pathway,  and  they  are  not  directly  affected  by 

photoperiod (Lee et al., 2007b; Li et al., 2008; Michaels and Amasino, 1999). Finally, they are both 

down-regulated in the inflorescence apex (Hartmann et al., 2000; Michaels and Amasino, 1999).

There are also major differences at the level of regulation. While the GA pathway affects only SVP, 

vernalization has an effect only on FLC (Li et al., 2008; Michaels and Amasino, 1999). Regarding 

the target genes, a direct binding of SVP protein to the FT promoter has been reported only once, 

and that experiment  was performed in a transient  assay with protoplasts  (Lee et  al.,  2007b).  It 

remains possible that the repression by SVP could not be direct, or could involve other specific 

factors, such as TFL2, that is also a repressor of  FT and was shown to be recruited to the  SEP3 

locus by SVP to establish its repression (Liu et al., 2009b).

The fact that SVP and FLC proteins physically interact does not necessarily explain the possible 

complexity of the regulation of their target genes. MADS-box transcription factors usually form 

different complexes with several partners, depending on the developmental stage and the specific 

tissue (Rijpkema et al, 2007). For example, in the flower SVP interacts with AP1 and AGL24 (and 

maybe with SOC1) (Liu et al, 2009a, for a review), but probably not with FLC. Because AGL24 

and SOC1 proteins are present in the meristem also before floral initiation, interactions of SVP with 

these proteins to regulate transcription cannot be excluded and needs to be tested. 

Other similarities or differences still wait to be tested, such as the epigenetic regulation, which is 

well known for the FLC locus and the regulation through antisense transcripts, which has just been 

discovered for FLC (Swiezewski et al., 2009; Liu et al., 2010). Neither of these aspects has been 

studied for SVP.

Finally,  the presence of an alternative shorter differentially spliced form of  SVP was discussed. 

Preliminary experiments showed a modest but significant effect on flowering for this form, when 

over-expressed with the 35S promoter, while the complete form strongly delays flowering and has 

also a dramatic  effect on flower development.  Interestingly,  while the function that  SVP has in 

Arabidopsis  is well conserved in closely related species, such as  Brassica campestris  (Lee et al., 

2007a), in other species there are important differences. In rice, the  SVP-like genes still show a 

conserved role in meristem identity and they have a major role in brassinosteroid signaling, but they 

are not involved in the floral transition (Lee et al., 2008a). When over-expressed in  Arabidopsis, 
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they do not delay flowering but they cause floral reversion similar to the endogenous SVP (Fornara 

et al., 2008). Also in barley,  several  SVP-like genes were isolated, and they also generate floral 

reversions when over-expressed, both in barley and  Arabidopsis, while only one member caused 

late flowering (Trevaskis et  al.,  2007). Several isoforms of this protein may have arisen during 

evolution in different species, and alternative splicing may contribute in  Arabidopsis to keeping 

more than one function encoded by the same genomic locus. Whether the alternative form of SVP 

mRNA  is  biologically  relevant  or  just  coding  for  a  truncated  inactive  protein  needs  to  be 

investigated in more detail. 

6.13 A quintuple mutant reveals additional targets of SVP

The generation of the svp ft tsf soc1 ful quintuple mutant, and possibly all the other combinations of 

the different mutations, is a valuable tool to verify the genetic interactions among all these genes. 

Indeed, it is not yet clear, for example, how much SOC1 and FUL are functionally redundant. It is 

also not known what would be the effect of combining these mutations into a quadruple mutant ft  

tsf soc1 ful. A triple mutant ft tsf soc1 is already very late flowering in LD, but it has to be tested if 

the quadruple mutant can still easily flower. 

However, I already showed that the quintuple mutant flowers slightly earlier than ft tsf soc1 triple 

mutant, therefore presumably earlier than the ft tsf soc ful quadruple mutant, which still has to be 

generated.  This  demonstrates  that,  in  absence  of  FT,  TSF,  SOC1 and  FUL,  svp still  promotes 

significant early flowering. This suggests that an additional gene which is normally repressed by 

SVP, promotes early flowering in the quintuple mutant. 

What could this unknown gene be?  AGL24 is a possible target,  although the  svp mutation was 

reported to be epistatic to agl24 (Gregis et al., 2006). If the effect of the loss of AGL24 was masked 

by the up-regulation of the other floral promoter genes in the  svp background, this  would be a 

reason  why this  gene  was  not  identified  as  a  possible  target  of  SVP.  Another  floral  pathway 

integrator,  LFY, could also be downstream of  SVP. Possible other targets are the  SPL genes, for 

which the genetic interactions with SVP have not been tested so far. Finally, another gene is SEP3, 

since it has been reported to be a possible direct target of SVP during the flower development. 

Moreover, a role in promoting flowering was never reported for the SEP genes. It is possible that in 

absence  of  many  other  known  floral  promoters  SEP3 would  significantly  promote  the  floral 

transition. Therefore, SVP might control one or more genes that are still not reported to have a role 

in the floral transition. This has to be further investigated.  
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Conclusions

I set up a system in which the early phase of the floral transition in Arabidopsis can be induced and 

monitored in a controlled and synchronized way by shifting plants from SD to LD. I then collected 

shoot  apical  meristems  (SAM)  from wild-type  Columbia  with  high  tissue  specificity  by  laser 

microdissection creating a time course during floral  transition,  and used the extracted RNA for 

global gene expression analysis through next generation sequencing.

Around 300 genes were identified as up-regulated during this process in 3 independent experiments. 

Global  analysis  highlighted  a  high  enrichment  in  metabolic  activity,  especially  for  the  protein 

synthesis processes. A group of novel genes from different functional categories were chosen to 

validate the gene expression data by in situ hybridisation. These experiments confirmed the increase 

in expression upon floral induction for several candidates, and showed novel spatial and temporal 

expression patterns in some cases. Particularly, I started to characterize four candidates among these 

novel genes by further experiments (see model in Fig. 66). 

One is C19, a gene encoding a LRR protein, which is expressed broadly in the SAM but seems to 

respond to floral induction increasing in expression at the SAM. In the  ft tsf double mutant, the 

increase in expression of this gene is strongly attenuated. Moreover, a putative loss of function of 

this  gene,  when  crossed  to  soc1  ful double  mutant,  enhances  the  late  flowering  phenotype. 

Therefore, C19 could be involved in the perception of the floral stimulus or in the response to it at 

the SAM. The second gene is  C11,  which encodes a member of the zinc finger homeodomain 

protein family, and is specifically up-regulated at the primordia on the flanks of the SAM, only in  

the  presence  of  functional  FT and  TSF. This  suggests  that  this  gene  is  downstream  of  the 

photoperiodic cascade. Preliminary results with transgenic lines knocking-down several members of 

this  homeodomain family show a moderate  late  flowering,  that  would suggest a redundant  role 

played by C11 together with other homologue genes in the control of the floral transition. The third 

is D13, a gene encoding a lipid desaturase, expressed in the center of the SAM upon photoperiodic 

induction. This gene is up-regulated independently of the presence of functional FT and TSF genes, 

suggesting the presence of a signal responding to inductive photoperiod that does not pass through 

the classical pathway activated by long-day. Additionally a fourth gene, C23, which does not have 

similarity to any known gene, is also expressed in the center of the meristem in a very restricted 

area upon photoperiodic induction, and this up-regulation is totally dependent on  FT/TSF. Since 

some of the genes isolated by this approach were not previously identified by other global gene 
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expression studies,  the use of laser microdissection resulted in  a successful method to increase 

sensitivity toward lowly expressed genes.   

Fig 66. A model of the possible temporal and spatial interactions between flowering time genes and novel genes 
identified by this study. See text for details.  

I  also showed by genetic  and expression studies that  SVP transcription factor represses several 

floral promoter genes. These included FT and SOC1, as shown by other studies, and TSF and FUL, 

which are novel targets. In addition, I showed the spatial relationship of SVP with these genes: FT 

and TSF are repressed in the leaf, SOC1 and FUL in the SAM. Furthermore, I found that in absence 

of SVP the presence of FT and TSF is not necessary to activate SOC1, but it only probably enhances 

this activation. I confirmed the dual role of SVP in leaf and meristem in repressing flowering using 

lines that mis-express this transcription factor in one or the other tissue. SVP activity in either organ 
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has a partial effect on flowering, but these activities are synergistic so when combined in the same 

background much later flowering occurs. Finally, an svp ft tsf soc1 ful quintuple mutant showed that 

the absence of SVP still promotes flowering in this genetic background, and demonstrates that an 

additional or more unknown genes are repressed by SVP (see model in Fig. 67).

Fig 67. A model of the genetic and spatial interactions of the transcription factor SVP with floral promoter genes. 
See text for details.  

Perspectives

In general, many loss of function mutations do not cause a phenotype due to genetic redundancy.  

Similarly, the redundant nature of the flowering pathways in Arabidopsis often makes it necessary 

to combine mutations in different  loci to cause a clear phenotypic effect.  Furthermore,  because 

floral induction occurs late in plant development, mutation affecting earlier steps in development 
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can have pleiotropic  effects  on flowering,  confounding the identification  of  genes  with a  more 

direct effect. Therefore, identifying new genes involved in the floral transition in Arabidopsis can 

be  a  challenging  task.  Nonetheless,  global  gene  expression  analysis  combined  with  genetic 

approaches can be very powerful. The initial  approach that will be used on the most promising 

genes identified in  this  study,  is  to try to place them in the genetic  hierarchy of the flowering 

pathways, testing their expression level and spatial pattern in mutants. Together with ft tsf double 

mutants, also  soc1 ful double mutants,  svp, and  tfl1 will be used, to reveal if there are epistatic 

interactions with these novel genes during the early phases of the floral induction. This will pinpoint 

which  genes  are  likely  to  participate  in  the  flowering  network  and place  them relative  to  one 

another. Also transgenic approaches are in progress to ectopically express these genes using specific 

promoters, in order to investigate whether their over-expression is sufficient to cause a flowering 

phenotype. More detailed phenotypic analysis of meristem morphology during the floral transition 

in  wild-type,  mutants  and  transgenic  plants  may  show that  some of  these  genes  do  not  affect 

flowering time but still have significant effects on meristem growth or development. A particular 

interest is also on the unknown signal that I proposed leads to a molecular response at the SAM 

when plants  are  shifted  to  inductive  photoperiod  in  the  absence  of  FT and  TSF.  Experimental 

approaches, together with the use of specific mutants, will be employed to identify the nature of this 

putative novel signal. 

Another unknown factor to identify is the further gene or genes regulated by SVP in addition to FT, 

TSF,  SOC1 and FUL. Global gene expression analysis comparing the svp ft tsf soc1 ful  quintuple 

mutant to the ft tsf soc1 ful quadruple mutant is a possible approach to try to address this question, 

in order to gain insight on possible novel genes involved in the floral transition.   
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Appendix I. List of primers used in this study

-RT-PCR

SOC1 
  T003 SOC1small-R  GTGATCTCCACTCAACAAAAA
  T004 SOC1small-R  CAACAAGAGAGAAGCAGCTTTA
TUBULIN
  F041 TUB-F        CAACTCTGACCTCCGAAAGC
  F042 TUB-R        CACATTCAGCATCTGCTCGT
ACTIN2

  T032 qRT-ACT-F    GGTAACATTGTGCTCAGTGGTGG   
  T033 qRT-ACT-R    AACGACCTTAATCTTCATGCTGC
SOC1
  SOC1-RTAn-F       GGATCGAGTCAGCACCAAACCG
  SOC1-RTAn-R       CTTGAAGAACAAGGTAACCCAATGAACAAT
C19 (upstream T-DNA)
  T151 C19-F3       GCATCCACACATAATCACGA
  T181 C19-R3       GTGTGGCAGGTAGCTGAAAT
C19 (downstream T-DNA)
  T070 C19-F        TCTACGGGAAGATACCACCA                        
  T071 C19-T7-R     TAATACGACTCACTATAGGGAAGGGGAGTTCCACAAAGAC

-Real-time PCR

TSF
  T030 TSF-F-RT     CTCGGGAATTCATCGTATTG
  T031 TSF-R-RT     CCCTCTGGCAGTTGAAGTAA
ACTIN2

  T032 qRT-ACT-F    GGTAACATTGTGCTCAGTGGTGG   
  T033 qRT-ACT-R    AACGACCTTAATCTTCATGCTGC
SVP
  T074 SVP-RT-F     AAGAGAACGAGCGACTTGG
  T075 SVP-RT-R     ATACGGTAAGCCGAGCCTAA
FT

  T144 FT-F-PLC191  CGAGTAACGAACGGTGATGA
  T145 FT-R-PLC192  CGCATCACACACTATATAAGTAAAACA
TFL1
  A07-FW-TFL1 RT    GGCAAAGAGGTGGTGAGCTA 
  A08-RE-TFL1 RT    AAGATCATACTCGACCGCAAA 
SOC1 
  T003 SOC1small-R  GTGATCTCCACTCAACAAAAA
  T004 SOC1small-R  CAACAAGAGAGAAGCAGCTTTA
SOC1
  SOC1-RTAn-F       GGATCGAGTCAGCACCAAACCG
  SOC1-RTAn-R       CTTGAAGAACAAGGTAACCCAATGAACAAT
CO

  F191 CO-qRT-F     TAAGGATGCCAAGGAGGTTG
  F192 CO-qRT-R     CCCTGAGGAGCCATATTTGA
D13
  T094 D13-F        CCCGATGCTATTCGAACATT  
  T188 D13-R        TCTCTCGTCTGCACGCTCT 
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-Cloning

SVP CDS

  T001 SVPattB1-F   GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGAGAGAAAAGATTC
  T002 SVPattB2-R   GGGGACCACTTTGTACAAGAAAGCTGGGTCACCACCATACGGTAAGC
SVP RNAi

  T008 SVPRNAi-F    GGGGACAAGTTTGTACAAAAAAGCAGGCTTATTTCCTCTGGCTTCTTCTTC
  T009 SVPRNAi-R    GGGGACCACTTTGTACAAGAAAGCTGGGTGAAGCAAGAGAGAGAGCTTAGGT
D13 RNAi

  T149 D13i-F       GGGGACAAGTTTGTACAAAAAAGCAGGCTGTGTGGGTTAGCTCAGAGGA
  T150 D13i-R       GGGGACCACTTTGTACAAGAAAGCTGGGTCAAGAAACGGAGAAA
amiRNAh21/31 
  T189 ARNA1_I      gaTAGTAATGTCGTTATTACCAGtctctcttttgtattcc
  T190 ARNA1_II     gaCTGGTAATAACGACATTACTAtcaaagagaatcaatga
  T191 ARNA1_III    gaCTAGTAATAACGAGATTACTTtcacaggtcgtgatatg
  T192 ARNA1_IV     gaAAGTAATCTCGTTATTACTAGtctacatatatattcct
amiRNAh22/25

  T193 ARNA2_I      gaTCCTTGCGGTGGAAGTCGCGAtctctcttttgtattcc
  T194 ARNA2_II     gaTCGCGACTTCCACCGCAAGGAtcaaagagaatcaatga
  T195 ARNA2_III    gaTCACGACTTCCACGGCAAGGTtcacaggtcgtgatatg
  T196 ARNA2_IV     gaACCTTGCCGTGGAAGTCGTGAtctacatatatattcct
D13 CDS
  T203 D13-GW-F     GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCTTGCGCACAAGTCTCT
  T204 D13-GW-R     GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACACACTAATCTGCTTATCGAAGA

-Genotyping

  T166 SALKLB       TGGTTCACGTAGTGGGCCATCG
  T187 GKLB         CCCATTTGGACGTGAATGTAGACAC
svp-41
  F208 SVP-1F (wt)  GACCCACTAGTTATCAGCTCAG
  F209 SVP-1R (wt)  AAGTTATGCCTCTCTAGGAC
  F210 SVP-2R (mut) AAGTTATGCCTCTCTAGGTT
soc1-2 
  SOC1-F            TTCTTCTCCCTCCAGTAATGC
  SOC1-R            GAGTTTTGCCCCTCACCATA 
  SALKLB
ful-1
  T012 AGL8PG       TGTATTCACGTCACATACCG
  T013 AGL8MG       CTCATGAGCTTTCTTGAGC
  T014 GUS3         CTTGTAACGCGCTTTCCC
ful-2

  T026 ful2-1F      AATGTTGTAGGAAAATTGG
  T027 ful2-1R      TTATGAGGATCCAAGACACA
  T028 ful2-2F      CCAATGTTGTAGGAAAATTA
  T029 ful2-2R      ATGAGGATCCAAGACACAA
svp-3 (followed by digestion with HgaI)
  T080 svp3F_dicap  TTATTGGAATGTGTTTATATTATGAC 
  T020 svp3-2       TTGGTAATTCAACGGAGTAA
soc1-1 (followed by digestion with AvaII)
  T081 soc1F_dicap  TCGTTATCTGAGGCATACTAAGGAC 
  T077 SOC1WT-R     TTCATCATGTTTGCTGCTTC
ft-10 
  FT-F-Fer          TAAGCAGAGTTGTTGGAGAC
  FT-R-Fer          GTCTTCTTCGTCCGCA
  T187 GKLB
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tsf-1
  TSF-F-Fer         CACGAGGTTGGTCTCTCTTAAG
  TSF-R-Fer         CTGGCAGTTGAAGTAAGAG
  SALKLB
c19 

  T151 C19-F3       GCATCCACACATAATCACGA
  T071 C19-T7-R     TAATACGACTCACTATAGGGAAGGGGAGTTCCACAAAGAC
  SALKLB-F
d13
  T234 D13-LP       AAGGGTGTTGATCATCGTCTG  
  T235 D13-RP       TCAACCATAAGATCCAATGGC  
35S promoter
  F195 35S-For      CTTCGCAAGACCCTTCCT
SUC2 
  F067 pSUC2-1F     CGAATTTCTCGCTTCATGGT
FD promoter
  F353 pFD-2F       TCCCTCTCTGCGTGTAGGA
KNAT1 promoter
  T005 KNAT1-F      GAAGTAGCCGCGAAGACCTA
SVP.2 (intron)  
  T205 SVP-i-R      GGGGTGTGTACGTTAATGGT
amiRNAh21/31 
  T238 pIIARNA1     CTGGTAATAACGACATTACTA  
amiRNAh22/25
  T239 pIIARNA2     TCGCGACTTCCACCGCAAGGA     

-Templates for   in situ   hybridisation  

SVP
    SVPT3-F           ATTAACCCTCACTAAAGGGAATGAAGGAAGTCCTAGAGAGGCATAAC
  SVPT7-R           TAATACGACTCACTATAGGGAGAATTCACTACTTAGACATTGTCTC 
SOC1
  SOC1T3-F          ATTAACCCTCACTAAAGGGAATCGAGGAGCTGCAACAGAT 
  SOC1T7-R          TAATACGACTCACTATAGGGTTGACCAAACTTCGCTTTCA 
AGL24

  T015 AGL24-F      GGATGAGAATAAGAGACTGAGGGATAAAC
  T016 AGL24-T7R    TAATACGACTCACTATAGGGGACCAATAACACGTACAATATCTGAAAC
WUS
  T175 WUS-F        ACAACAACGTAGGTGGAGGA
  T176 WUS-T7-R     TAATACGACTCACTATAGGGCACCGTTGATGTGATCTTCA
FD
  F094 FDT7-2R      TAATACGACTCACTATAGGGaccagagcctcgaaagaggt
  F095 FDT3-2F      ATTAACCCTCACTAAAGGGAtttcatcctcatcaccatcg
FUL
  F096 FULT7-R      TAATACGACTCACTATAGGGacgtctcgacaacggagttc
  F097 FULT3-F      ATTAACCCTCACTAAAGGGAgggggaagatcttgattcgt

Candidate genes:

C4
  T040 C4-F         TTCAATCCAACGGTGCAG                          
  T041 C4-T7-R      TAATACGACTCACTATAGGGCATTAGCCATAATGGGTTGG
C11

  T054 C11-F        CAATGTTGATCTGTCCGGTA                        
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  T055 C11-T7-R     TAATACGACTCACTATAGGGCGAGAGATAGCGAAATGAGC
C15
  T062 C15-F        ATTTTCAGGCAACACAGAGC                        
  T063 C15-T7-R     TAATACGACTCACTATAGGGCAGCTTCTTCCTCCATTTCA
C19

  T070 C19-F        TCTACGGGAAGATACCACCA                        
  T071 C19-T7-R     TAATACGACTCACTATAGGGAAGGGGAGTTCCACAAAGAC
C20
  T072 C20-F        GGATCGTAGGGTCTCAACAA                        
  T073 C20-T7-R     TAATACGACTCACTATAGGGCCTCCACTGCCGTTACTCTA
D3

  T084 D3-F         AAGCCTCTTGGTTCTGATCG
  T085 D3-T7-R      TAATACGACTCACTATAGGGATTTAGCTGGAGGCCCAAAT
D13
  T094 D13-F        CCCGATGCTATTCGAACATT
  T095 D13-T7-R     TAATACGACTCACTATAGGGTCTCTCGTCTGCACGCTCT
D13_2
  T147 D13-2F       GTGTGGGTTAGCTCAGAGGA                                                              
  T148 D13-T7-2R    TAATACGACTCACTATAGGGCAAGAAACGGAGAAAGGAAA
D19
  T100 D19-F        TGTTTTCTGGGCAGACACTG
  T101 D19-T7-R     TAATACGACTCACTATAGGGTTCAGCCTCTCCTTCTGCAT
D27
  T108 D27-F        ACAAGCCAAGGGAGGTGAG
  T109 D27-T7-R     TAATACGACTCACTATAGGGATCGTTTGGGGGATAATAGC
D29
  T110 D29-F        TGACAACTGTCCACGCAACT
  T111 D29-T7-R     TAATACGACTCACTATAGGGCGTAAGAGGCACCCTTCTCA
D31
  T112 D31-F        GGTGCTCTTGCTCATTGTGT
  T113 D31-T7-R     TAATACGACTCACTATAGGGCAAATCAAGTCTCGGTTTCAA
D35
  T116 D35-F        AAACGTTAAGTCGTCAAAAAGC
  T117 D35-T7-R     TAATACGACTCACTATAGGGCGCAGAAAATTCAATGTACG
D37
  T118 D37-F        GTCAAGAAGAGGGGTCCAGT
  T119 D37-T7-R     TAATACGACTCACTATAGGGCTCCAAAACCCAACAGATTG
D55
  T136 D55-F        CACGCCACATTTTATTCCTT
  T137 D55-T7-R     TAATACGACTCACTATAGGGTTGTCGCTAAGTCCCAACTC
C21
  T208 C21-F        GAGGGCAAAGGTGGAATAAT
  T209 C21-T7-R     TAATACGACTCACTATAGGGCAGACTTAAGGGGTCAAACG
C22
  T210 C22-F        GAGACTGCTAACGCCATTGT
  T211 C22-T7-R     TAATACGACTCACTATAGGGATCAATTGTGACCGGTTTTT
C23
  T212 C23-F        ATTCAGCAGAAGATGCAAGG
  T213 C23-T7-R     TAATACGACTCACTATAGGGTCTCCTCAAGAAATCGTACTAAAAA
C25
  T216 C25-F        CTTGGCTCATGGAACGTAAT
  T217 C25-T7-R     TAATACGACTCACTATAGGGCCGAAAACAATATTCGACCA
C26
  T218 C26-F        TCAAAGACAAGTTGCTTCCAG
  T219 C26-T7-R     TAATACGACTCACTATAGGGACAAAAGTCAAAAGAACTTTCACA
C27
  T220 C27-F        CATGACCTAAGCGAAATCGT
  T221 C27-T7-R     TAATACGACTCACTATAGGGTCTTTTTGGAATTTTCTTTTTCA
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C29
  T224 C29-F        GGAAGGTTTTTAAAGGAGCAG
  T225 C29-T7-R     TAATACGACTCACTATAGGGTTCTGAAAATTAATGCGAAACA
C30
  T226 C30-F        CTGTGGCTCATTTGCTCTTT
  T227 C30-T7-R     TAATACGACTCACTATAGGGATCTGCAGGTCCTTCTTCCT
ATHB21
  T177 ATHB21-F     CAGCTTTGTCAAGAGATTGGA
  T178 ATHB21-T7-R  TAATACGACTCACTATAGGGAACAACAATCTGAACTTAACTAAGGA
ATHB25
  T179 ATHB25-F     ACCACCACAGTCTTCGTTTC
  T180 ATHB25-T7-R  TAATACGACTCACTATAGGGCCAACATCATCAACATCATCA
PGIP2
  T182 PGIP2-F      GCATCCCCAAAGGAGAGTAT
  T183 PGIP2-T7-R   TAATACGACTCACTATAGGGGCTAAAACATTGGTTCATGCT
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Appendix II. Lists of genes from the Solexa gene expression data
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Appendix III. List of abbreviations

General abbreviations

amiRNA artificial micro RNA

bp base pairs

cDNA complementary DNA

Col Columbia

CZ central zone

DNA deoxyribonucleic acid 

dNTP deoxyribonucleotide triphosphate

dsRNAi double-stranded RNA interference

GA gibberellin

GO gene ontology

kb kilo bases

LB Luria-Bertani

LCM laser capture microdissection

LD long days

Ler Landsberg erecta

LRR LEUCINE-RICH REPEAT

miR micro RNA

mRNA messenger RNA

PCR polymerase chain reaction

PZ peripheral zone

RNA ribonucleic acid

RT-PCR Reverse transcriptase PCR

SAM shoot apical meristem

SD short days

UTR Untranslated region

Name of the genes

AG AGAMOUS

AGL24 AGAMOUS-LIKE 24

AP1 APETALA1
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CAL CAULIFLOWER

CDF CYCLING DOF FACTOR

CLV CLAVATA

CO CONSTANS

FD FD

FLC FLOWERING LOCUS C

FT FLOWERING LOCUS T

FUL FRUITFULL

KNAT1 KNOTTED1-LIKE IN ARABIDOPSIS THALIANA

LFY LEAFY

SMZ SCHLAFMUTZE

SNZ SCHNARCHZAPFEN 

SOC1 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS

SPL SQUAMOSA PROMOTER BINDING PROTEIN-LIKE

STM SHOOTMERISTEMLESS

SUC2 SUCROSE-PROTON  SYMPORTER 2

SVP SHORT VEGETATIVE PHASE

TFL1 TERMINAL FLOWER1

TSF TWIN SISTER OF FT

UFO UNUSUAL FLORAL ORGAN

WUS WUSCHEL
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