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Abstract

We give an equivalent description of taut submanifolds of complete Riemannian man-
ifolds as exactly those submanifolds whose normal exponential map has integrable
fibers. It turns out that every taut submanifold is also Z2-taut, so that tautness is
essentially the same as Z2-tautness. In the case where the normal exponential map
of a submanifold has integrable fibers, we explicitely construct generalized Bott-
Samelson cycles for the critical points of the energy functionals on the path spaces
which, generically, represent a basis for the Z2-cohomology. We also consider singu-
lar Riemannian foliations all of whose leaves are taut and discuss some of their main
features. Using our characterization of taut submanifolds, we are able to show that
tautness of a singular Riemannian foliation is actually a property of the quotient.

Kurzzusammenfassung

Wir beschreiben straffe Untermannigfaltigkeiten einer vollständigen Riemannschen
Mannigfaltigkeit äquivalent durch die Eigenschaft, dass die Fasern ihrer normalen
Exponentialabbildung integrierbar sind. Diese äquivalente Charakterisierung im-
pliziert, dass eine straffe Untermannigfaltigkeit stets Z2-straff ist, was zeigt, dass
die Begriffe von Straffheit und Z2-Straffheit im Wesentlichen identisch sind. In
dem Fall, dass die normale Exponentialabbildung einer Untermannigfaltigkeit inte-
grierbare Fasern hat, konstruieren wir explizit verallgemeinerte Bott-Samelson Zykel
für die kritischen Punkte des Energiefunktionals auf generischen Wegeräumen, die
eine Basis für die Z2-Kohomologie bilden. Zudem betrachten wir singuläre Rie-
mannsche Blätterungen mit ausnahmslos straffen Blättern und untersuchen einige
ihrer speziellen Merkmale. Mit Hilfe unserer Beschreibung von Straffheit können wir
zeigen, dass die Eigenschaft, dass alle Blätter einer solchen Blätterung straff sind
tatsächlich eine Eigenschaft des Quotienten ist.
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Introduction

The terminology of taut submanifolds was introduced by Carter and West in [CW72],
where they call a submanifold L of a Euclidean space V taut if all the squared
distance functions d2

q : L→ R, d2
q(p) = ‖p− q‖2, with respect to points q ∈ V that

are not focal points of L are perfect Morse functions for some field F, i.e. if the
number of critical points of index k of d2

q coincides with the k-th Betti number of L
with respect to the field F for all k. If L is taut and F is a field as in the defintion
of tautness, then L is also called F-taut. Thus, geometrically, taut submanifolds
are as round as possible. If one tries to generalize this defintion to submanifolds
of arbitrary Riemannian manifolds, the problem arises that the squared distance
function is not a priori everywhere smooth anymore. Namely, it is not differentiable
in the cut locus of the submanifold.

Using different approaches, Grove and Halperin [GH91] and, independently, Terng
and Thorbergsson [TT97] generalized this notion to submanifolds L of complete
Riemannian manifolds M by saying that L is taut if there exists a field F such that
every energy functional Eq(c) =

∫
[0,1]

‖ċ(t)‖2dt on the space P(M,L×q) of H1-paths

c : [0, 1] →M from L to a fixed point q ∈M is a perfect Morse function with respect
to F if q is not a focal point of L. The critical points of Eq are exactly the geodesics
parameterized proportionally to arc length that start orthogonally to L and end in
q. In particular, in the case where M = V is a Euclidean space, there is an obvious
way to identify a submanifold L with the space of segments in P(V, L×q) and under
this identification the map d2

q corresponds to Eq. Further, it is not hard to see that
in this case the path space P(V, L × q) admits the subspace of segments from L
to q as a strong deformation retract. So the definitions agree for submanifolds of
a Euclidean space and it turns out that this is indeed the right way to generalize
tautness.

It is shown in [TT97] that if L ⊂ M is an F-taut submanifold, then the energy
functionals Eq are Morse-Bott functions for all points q ∈M . Our first main result
now states that this property actually characterize taut submanifolds.

Theorem A. A closed submanifold L of a complete Riemannian manifold M is
taut if and only if all the energy functionals Eq : P(M,L× q) → R are Morse-Bott
functions.

In fact, if all the energy functionals are Morse-Bott functions, then the field with
respect to which L is taut is Z2. Thus, as a direct consequence, we obtain the fol-
lowing result, which was, just as Theorem A, so far not even known in the case of a
Euclidean space.

Theorem B. If a submanifold is F-taut, then it is also Z2-taut.
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Based on this result it is suggested to consider only Z2-taut submanifolds, so that
we no longer distinguish between Z2-taut and taut.

As the definition shows, tautness is a very special property. In some sense, it is
a kind of homogeneity requirement for the pair (M,L). So it is no surprise that
so far not many examples of taut submanifolds are known. This makes it all the
more remarkable that taut submanifolds, if at all, often occur in families which then
decompose the ambient space, e.g. an orbit decomposition induced by the isotropy
representation of a symmetric space. It is for this reason that we study such families
as they usually appear, i.e. singular Riemannian foliations with only taut leaves.
We call such families taut foliations. As a main result in this direction we observe
that tautness of a foliation is indeed a property of the quotient of the foliation, so
that it actually makes sense to talk about taut quotients as equivalence classes of
quotients under isometries.

Theorem C. Let F and F ′ be closed singular Riemannian foliations on complete
Riemannian manifolds M and M ′ such that their quotients M/F and M ′/F ′ are
isometric. Then F is taut if and only if F ′ is taut.

Due to this result one could think about taut foliations as foliations with pointwise
taut quotients, where we follow [Le06] and call a manifold pointwise taut if all of
its points are taut (submanifolds). Of course, in general a quotient of a singular
Riemannian foliation is far from being a manifold, but as soon as it is a nice space
in the sense that one could use differential geometric methods it turns out that this
picture is reasonable. Viewed in this light, the largest class of spaces for which one
has the appropriate tools available is the class of Riemannian orbifolds, i.e. spaces
locally modelled by quotients of Riemannian manifolds modulo the action of a finite
group of isometries. Now, given a taut singular Riemannian foliation F on M such
that the quotient M/F is an orbifold, it follows that M/F is already a good Rie-
mannian orbifold, that is to say M/F is isometric to N/Γ, where N is a Riemannian
manifold and Γ ⊂ I(N) is a discrete group of isometries. This observation together
with the last theorem leads directly to our next result, which mainly motivates our
picture of pointwise taut quotients.

Theorem D. Let F be a closed singular Riemannian foliation on a complete Rie-
mannian manifold M . Then F is taut and M/F is an orbifold if and only if M/F is
isometric to N/Γ, where N is a pointwise taut Riemannian manifold and Γ ⊂ I(N)
is a discrete group of isometries of N .

In view of applications, the more interesting direction of this result is that the
existence of a pointwise taut quotient covering implies tautness of the foliation. The
known examples of pointwise taut Riemannian manifolds are mainly two classes of
spaces together with Riemannian products of elements of these classes. The first
one is the class of symmetric spaces, which are pointwise taut by the work of Bott
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and Samelson [BS58] and the second class consists of manifolds without conjugate
points, e.g. manifolds with non-positive curvature. In fact, if there are no conjugate
points along any geodesic in a Riemannian manifold, the index of every critical point
of a given energy functional is zero, hence all points in such a manifold are taut.
A conjecture in [TT97] states that a compact pointwise taut Riemannian manifold
that has the homotopy type of a compact symmetric space is symmetric. We want
to mention as an aside that it is shown in [TT97] that in the case of a compact
rank-one symmetric space this conjecture is equivalent to the Blaschke conjecture
which is still not settled.

It is therefore not a surprise that in all known examples of taut foliations with orb-
ifold quotients these quotients are isometric to a space (N × P )/Γ, where N is a
symmetric space, P is a manifold without conjugate points, and Γ is a discrete sub-
group of isometries. Consider, for instance, the parallel foliation F of a Euclidean
space V that is induced by an isoparametric submanifold L of V . Such a foliation
is a singular Riemannian foliation and is also called an isoparametric foliation. One
can show that the isoparametric foliations on V are exactly the polar ones. In this
case, the quotient V/F is isometric to (p + νp(L))/Γ, where p ∈ L is some point
and Γ is the finite Coxeter group generated by the reflections across the focal hyper-
planes in p+νp(L) ⊂ V . So V/F admits a flat orbifold covering which is a manifold,
thus F is taut. In particular, our result implies that isoparametric submanifolds are
taut, what is well known by [PT88]. More generally, we see again that the orbits of
hyperpolar actions, e.g. the orbits of the action induced by the isotropy representa-
tion of a symmetric space, are taut. Since totally geodesic submanifolds of compact
rank-one symmetric spaces are also compact rank-one symmetric spaces (see [Wo63]
for a classification), and sections of a polar action are always totally geodesic, we
also reobtain the result from [BG07] that a polar action of a compact Lie group on
a compact rank-one symmetric space is taut. In fact, since the sections must also
admit a Weyl group, they are always real, i.e. a sphere or a real projective space.
In [GT03] Gorodski and Thorbergsson classified all taut irreducible representations
of compact Lie groups as either hyperpolar and hence equivalent to the isotropy
representation of a symmetric space or as one of the exceptional representations of
cohomogeneity three. Let ρ : G → O(V ) be an exeptional representation, i.e. the
induced action of G on V has cohomogeneity equal to three. Then, the restriction
of this action on the unit sphere S ⊂ V has cohomogeneity two such that S/G is
isometric to a quotient S2/Γ of the round 2-sphere with a finite Coxeter group Γ.
Since it is, by linearity, not hard to see that the orbits of the G-action on V are taut
if and only if the orbits of the G-action on S are taut, it follows from Theorem D
again that the exeptional representations are taut.

Let us now say some words about the organization and the ideas of the present
work. This work contains three chapters, all of which are devoted to one of our
main results. Every chapter is subdivided into three sections, where the first two
sections always provide definitions, preliminaries, and tools and the third section
is intended for the respective main theorem. A detailed discussion of path spaces
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can be found in the appendix, where we gather some background material such as
finite-dimensional approximations and formulas for the energy functional.

Practically, the only way to prove that a given submanifold L ↪→ M is taut is
the explicit construction of so called linking cycles for the energy. Namely, one
has to find cycles that complete the local unstable manifolds associated to some
Morse chart around the critical points below the corresponding critical energy. This
concept is introduced in Section 1.1. For the proof of Theorem A in Section 1.3 (see
Theorem 1.3.1) we therefore first make the observation that all the energy functionals
Eq : P(M,L×q) → R are Morse-Bott functions if and only if the normal exponential
map exp⊥ : ν(L) → M has integrable fibers. If so, we explicitely construct linking
cycles for non-degenerated critical points, i.e. a basis for the (co-)homology of
P(M,L× q) if q ∈M is not a focal point, proving that L is taut. For this purpose,
for a normal vector v ∈ ν(L), we define Zv to be the set of all piecewise continuous
paths c : [0, 1] → ν(L) obtained as follows. Follow the segment tv towards the zero
section up to the first focal vector t1v, then take an arbitrary normal vector v1 in the
fiber of exp⊥ through t1v and follow the segment tv1 towards the zero section up to
first focal vector t2v1, then take an arbitrary normal vector in the fiber through t2v1

and repeat this procedure. By construction, for every c ∈ Zv, exp⊥ ◦c is a broken
geodesic from exp⊥(v) to L and we define the space ∆v ⊂ P(M,L × exp⊥(v)) to
consist of all broken geodesic obtained in this manner reparameterized on [0, 1] after
reversing the orientation. Using a powerful tool developed in Section 1.2, we then
prove that ∆v defines a linking cycle for the geodesic exp⊥(tv) ∈ P(M,L× exp⊥(v))
if the endpoint is not a focal point of L along this geodesic. Thus, if q ∈M is not a
focal point of L, the so defined cycles indeed represent a basis for the (co-)homology
of the path space P(M,L × q). As mentioned above, Theorem B is then a direct
consequence of this result.

In the second chapter we introduce the notion of singular Riemannian foliations
and make some preliminary observations about taut foliations in the first section.
As a main part of the definition, a geodesic either meets the leaves of a singular
Riemannian foliation orthogonally at all or at none of its points. If a geodesic
intersects one and hence all leaves perpendicularly, it is called horizontal. Roughly
speaking, the possibilities to vary a horizontal geodesic through horizontal geodesics
consist of variations of the projection of the geodesic to the quotient and of variations
through horizontal geodesics all of which meeting the same leaves simultaneously.
This results in an index splitting for horizontal geodesics into horizontal and vertical
index that we discuss in Section 2.2, the latter one counting the intersections with
the singular leaves (with their multiplicities). In Section 2.3 we then prove Theorem
C (see Theorem 2.3.1) using Theorem A and the fact that the horizontal index is
an intrinsic notion of the quotient. Using the arguments from the proof of Theorem
C, we are able to construct new examples of taut submanifolds.

The third chapter deals with Theorem D, a refined version of Theorem C for a special
class of singular Riemannian foliations, the so called infinitesimally polar foliations.
These are exactly those singular Riemannian foliations whose (local) quotients are
orbifolds. For this reason, we introduce the notion of orbifolds in Section 3.1. In
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Section 3.2 we recall Lytchak’s equivalent description of infinitesimally polar folia-
tions as those foliations admitting a geometric resolution and use his construction
of the canonical geometric resolution in Section 3.3 to observe that the quotient of
a taut infinitesimally polar foliation is developeable. Instead of finishing the proof of
Theorem D with Theorem C and this observation, we give a clearer and more geo-
metric proof of Theorem D in Section 3.3 that only uses Theorem A (see Theorem
3.3.1).

Our proof of Theorem D (as well as Theorem A and Theorem C) may be viewed as
a generalization of the construction of Bott and Samelson in [BS58] that proves that
the orbit foliation of a variationally complete action, i.e. when the focal points of the
orbits are only caused by singular orbits, is taut. Given an orbit of such an action,
Bott and Samelson came up with concrete cycles associated to the critical points
of the energy on the space of paths to a generic point which, generically, represent
a basis for the Z2-(co-)homology of the corresponding path space. Let (G,K) be a
symmetric pair, and g = k⊕p the corresponding Cartan decomposition. Then there
are three natural actions associated to the symmetric pair. Namely, the standard
action of K on G/K, the action of K on p induced by the adjoint representation
k 7→ Ad(k) ∈ O(p), and the action of K ×K on G via (k1, k2) · g = k1gk

−1
2 . In their

study of Morse theory of symmetric spaces, Bott and Samelson proved in [BS58] that
all of these actions are variationally complete and therefore taut. To get a picture of
their cycle construction, let us consider the action of K on p given by the isotropy
representation of the symmetric space N = G/K and let us denote by FK the
induced orbit foliation. It is well known that this action of K on p is hyperpolar, i.e.
for all K-regular points p ∈ p, the linear subspace Σp = p + νp(K(p)) intersects all
orbits and always orthogonally, so that p/FK = Σp/Γp, where Γp is the Weyl group
associated to the section Σp. Let Q : p → p/FK and Q′ : Σp → Σp/Γp = p/FK

denote the respective quotient projections. Now, given a regular orbit K(p) and
a point q ∈ p that is not a focal point of K(p), the work of Bott and Samelson
implies that for every critical point γ ∈ P(p, K(p) × q) the space ∆γ consisting of
all horizontal polygons from K(p) to q that have the same projection to p/FK as γ
is a compact submanifold of P(p, K(p)× q) of dimension equal to the index of γ (as
a critical point of Eq) whose fundamental class indeed provides a linking cycle for
the critical point γ.

To generalize this construction, let γ′ be a lift of the orbifold geodesic Q ◦ γ to Σp.
Then γ′ is a critical point of the energy Eγ′(1) on the path space P(Σp, γ

′(0)×γ′(1))
with index equal to zero. Thus the one point set ∆γ′ = {γ′} represents a linking
cycle for γ′ and the linking cycle ∆γ is nothing else than the space of all horizontal
polygons c in P(p, K(p)× q) with Q ◦ c = Q′ ◦ d for some d ∈ ∆γ′ .

Therefore, this construction admits a natural generalization to the case where the
quotient of a foliation F on a manifold M is a good orbifold N/Γ and N is point-
wise taut, but not necessarily flat. Namely, for a horizontal geodesic γ starting at
a regular leaf L, we consider a lift γ′ of the projected orbifold geodesic Q ◦ γ to
N , where again Q : M → M/F denotes the quotient map. Then, the index of
this lift as a critical point of the energy on P(N, γ′(0)× γ′(1)) equals the horizontal
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index of γ and one obtains a linking cycle ∆γ for γ, intuitively having the right
dimension, as follows. Let v ∈ Tγ′(0)N denote the initial velocity and let ∆v be the
linking cycle for γ′ as described in the discussion of the proof of Theorem A above.
Define ∆γ to be the space of all broken horizontal geodesics c in P(M,L × γ(1))
with Q ◦ c = Q′ ◦ d for some d ∈ ∆v, where Q′ : N → N/Γ = M/F is the natural
projection. In this way, the space ∆γ can be regarded, in some sense, as a singular
fiber bundle over ∆v with fibers as in the case of a flat quotient covering, having
the right (co-)homological properties, so that it indeed defines a linking cycle for γ.
It turns out that this construction does not depend on the fact that N is trivially
foliated by points and therefore could also be used in the case where two foliations
have isometric quotients proving that tautness of a foliation is in fact a property
of the quotient as it is stated in Theorem C, because a dense family of taut leaves
forces a foliation to be taut.

Finally, we must warn the reader that the use of the term “taut foliation” could
lead to confusions. In the theory of (regular) foliations there are other definitions of
tautness, such as geometrically or topologically taut foliations. But in this work, by
a taut foliation, we always mean a singular Riemannian foliation all of whose leaves
are taut submanifolds as defined above. Likewise, a taut action is an isometric action
such that the induced orbit foliation is taut in the way we defined it.
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Chapter 1

Taut Submanifolds

1.1 Linking Cycles

The terminology of tautness for submanifolds of a Euclidean space was introduced
by Carter and West in [CW72]. They call a submanifold L of a Euclidean space V
taut if there exists a field F such that for generic points q ∈ V , the squared distance
functions d2

q : L → R, given by d2
q(p) = ‖p − q‖2, are perfect with respect to the

field F. A definition similar to this can be used for submanifolds of the round sphere
Sn ⊂ V .

Reminder. A Morse function on a complete Hilbert manifold P is a smooth function
f : P → R, which is bounded below, has a discrete critical set C(f) and satisfies
Condition (C), i.e. if (pn) is a sequence of points in P with {f(pn)} bounded and
‖dfpn‖ → 0, then (pn) has a convergent subsequence. Thus Condition (C) can be
regarded as an analogue of a compactness claim in the infinite-dimensional setting.

If p is a critical point for the Morse function f , then the index ind(p) is defined to
be the dimension of a maximal subspace of TpP on which the Hessian is negative
definite, i.e. the number of independent directions in which f decreases. As in the
finite dimensional case a Morse function gives rise to a cell complex with one cell
of dimension k for each critical point with index k, which is homotopy equivalent
to P . If we set P r = {p ∈ P |f(p) ≤ r}, then the weak Morse inequalities say that
if νk(a, b) denotes the number of critical points of index k in f−1(a, b) for regu-
lar values a < b, then bk(P

b, P a; F) ≤ νk(a, b) for all k, where bk(P
b, P a; F) is the

k-th Betti number of (P b, P a) with respect to the field F and f is called perfect
(with respect to F) if the weak Morse inequalities are equalities for all k and all reg-
ular values a < b. For a detailed background we refer the reader to Part II of [PT88].

Using different approaches, Grove and Halperin [GH91] as well as Terng and Thor-
bergsson [TT97] defined a general notion of taut immersions into a complete Rieman-
nian manifold. In [TT97] it has been proven that for submanifolds of a Euclidean
space and the round sphere the generalized definition of tautness coincides with the
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one previously known. We are going to introduce this generalized notion using the
exposition in [TT97].

Let M be a complete Riemannian manifold and let H1(I,M) denote the complete
Hilbert manifold of H1 paths I = [0, 1] → M with its canonical differentiable
structure (cf. Appendix A.1). Recall that a path is of class H1 if and only if it is
absolutely continuous with finite energy. Furnished with this differentiable structure,
the map e : H1(I,M) →M ×M , given by e(c) = (c(0), c(1)), defines a submersion.

Now for a proper immersion φ : L→ M into a complete Riemannian manifold and
a point q ∈M , we define the path space P(φ,q)(M,L) to be the pullback of H1(I,M)
along the map p 7→ (φ(p), q) from L into M ×M , i.e. P(φ,q)(M,L) consists of pairs
(p, c) ∈ L × H1(I,M) with φ(p) = c(0) and c(1) = q. In particular, P(φ,q)(M,L)
inherits a smooth structure that turns it into a complete Hilbert manifold and one
can show that the induced energy functional E(φ,q) : P(φ,q)(M,L) → R, defined by

E(φ,q)((p, c)) =

∫
I

‖ċ(t)‖2dt,

is a Morse function if and only if q is not a focal point of L. The critical points of
E(φ,q) are exactly the pairs (p, γ), where γ is a geodesic, parameterized proportionally
to arc length, which starts perpendicularly to L and ends in q. By the famous
theorem of Morse, the index of a critical point (p, γ) is then given by the sum
i((p, γ)) =

∑
t∈(0,1) µ(t) over the multiplicities µ(t) of the points γ(t) as focal points

of L along γ. In our setting of path spaces every energy sublevel contains a finite
dimensional submanifold such that the restriction of the energy to this submanifold
has the same relevant behavior, i.e. the critical points of the restriction are exactly
the critical points of the energy functional and their indices and nullities coincide.
In particular, the indices and nullities are finite.

For these facts and a detailed discussion on path spaces and the energy functional
we refer the reader who is not familiar with these notions to the appendix (cf. A.1).

Finally, if φ is a closed embedding identifying L with its image φ(L) ⊂ M , we will
drop the reference to the map φ and simply write P(M,L×q) instead of P(φ,q)(M,L)
for the space of H1-paths from L to q.

Terng and Thorbergsson proved that in the case where M is a Euclidean space or a
round sphere a properly immersed submanifold φ : L→M is taut if and only if the
energy functional E(φ,q) : P(φ,q)(M,L) → R is perfect for generic q ∈ M . This led
them to a natural generalization of the notion of a taut immersion into any complete
Riemannian manifold M .

Definition 1.1.1. A proper immersion φ : L→M of a manifold L into a complete
Riemannian manifold (M, g) is called taut if there exists a field F such that the
energy functional E(φ,q) : P(φ,q)(N,L) → R, given by E(φ,q)(p, c) =

∫
I
‖ċ(t)‖2dt, is a

perfect Morse function with respect to the field F for every point q ∈M that is not
a focal point of L. In particular, a point p ∈M is called a taut point if {p} is a taut
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submanifold of M , i.e. Eq : P(M, p × q) → R is perfect with respect to some field
for every q ∈ M that is not conjugated to p along some geodesic. If a submanifold
L is taut and F is a field as in the definition of tautness, then L is also called F-taut.

In [Le06] Leitschkis called a manifold with only taut points pointwise taut and we
will continue with this notion.

Note 1.1.2. In [TT97] it is shown that a properly immersed, taut submanifold of
a simply connected, complete Riemannian manifold is actually embedded. Because
we will see in Section 2.1 that one can always assume that the ambient space is
simply connected, we will proceed assuming that all submanifolds are embedded
and closed, but all of our results will, of course, also hold in the case of a proper
immersion. For this reason, if not otherwise stated, by a submanifold L of M we
always mean an embedded submanifold and consider all submanifolds as subsets of
M . Finally, a manifold is always assumed to be connected.

The only way that is known to prove tautness in general, i.e. that a given Morse
function is perfect, is the concept of linking cycles, that we are going to explain
now. For this reason let f : P → R be again a Morse function on a complete Hilbert
manifold. Then, for every r ∈ R the sublevel P r contains only a finite number
of critical points of f and we can assume that these critical points have pairwise
dictinct critical values. That the latter assumption is not restrictive follows from
the fact that one can lift a small neighborhood of a critical point a little without
changing the relevant behavior of the function. Moreover, using the flow of the
negative gradient, one sees that for small ε the sublevel sets P r+ε and P r−ε have the
same homotopy type unless r is a critical value. If so, let p be the critical point of
f with f(p) = r and choose an ε such that (r − ε, r + ε) contains no critical value
except r. If we denote the index of p by i then P r+ε has the homotopy type of P r−ε

with an i-cell ei attached to f−1(r−ε). Consider the following part of the long exact
cohomology sequence of the pair (P r+ε, P r−ε) with coefficients in a field F:

· · · → H i−1(P r+ε, P r−ε)︸ ︷︷ ︸
=0

→ H i−1(P r+ε) → H i−1(P r−ε)
∂∗−→ H i(P r+ε, P r−ε)︸ ︷︷ ︸

∼=F

→ H i(P r+ε) → H i(P r−ε) → H i+1(P r+ε, P r−ε)︸ ︷︷ ︸
=0

→ · · ·

Since we are using coefficients from a field, we can switch between the more common
homological and our cohomological point of view by dualization, i.e. H∗(P r; F) ∼=
HomF(H∗(P

r; F),F). Anyway, we see that by passing from P r−ε to P r+ε the only
possible changes in homology or cohomology occur in dimensions i − 1 and i. To
understand this geometrically let us have a look what happens in homology. In the
first case, the boundary ∂ei of the attaching cell is an (i− 1)-sphere in P r−ε which
does not bound a chain in P r−ε, i.e. ei has as boundary the nontrivial cycle ∂ei and
so ∂∗ 6= 0. In the second case, ∂ei does bound a chain in P r−ε which we can cap
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with ei to create a new nontrivial homology class in P r+ε, that is to say ∂∗ = 0 and
Hi(P

r+ε) ∼= Hi(P
r−ε)⊕ F.

We see that the Morse inequalities are equalities if and only if

H i(P r+ε, P r−ε) → H i(P r+ε) is nontrivial, i.e. ∂∗ ≡ 0,

or, equivalently,

Hi(P
r+ε) → Hi(P

r+ε, P r−ε) is surjective, i.e. ∂∗ ≡ 0,

for all critical points p of f .

For a critical ponit p ∈ P , one can show that

H∗(P f(p)+ε, P f(p)−ε) ∼= H∗(P f(p), P f(p) \ {p}).

Thus suppose that we have a map hp : ∆p → P f(p) for every critical point p such
that the composition

H i(P f(p), P f(p) \ {p})
h∗p−→ H i(∆p, h

−1
p (P f(p) \ {p})) → H i(∆p)

is nontrivial. In this case, because the connecting homomorphism ∂∗ is a natural
transformation, we have that

h∗p ◦ ∂∗ = ∂∗ ◦ h∗p
and we conclude that the map H i(P f(p), P f(p) \ {p}) → H i(P f(p)) cannot be zero,
so that f is a perfect Morse function under this assumption. If so, we call the pair
(∆p, hp) a linking cycle for p, the critical point p of linking type, and we say that
the function f : P → R is of linking type if all the critical points are of linking type.
Of course, if f is perfect, then the inclusions of the corresponding sublevels define
linking cycles, so that f is of linking type. Thus we see that a Morse function is
perfect if and only if it is of linking type.

Note 1.1.3. At the end of this section we will prove that an F-taut submanifold is
always Z2-taut. By this reason, and due to the fact that dealing with (co-)homology
there is just a little chance to get general results with other coefficients, we restrict
our attention to the case F = Z2. From now on, saying taut we always mean Z2-taut
and we drop the reference to the field. Because of this, we also simply write H∗(X)
for the singular cohomology ring H∗(X; Z2) and Ȟ∗(X) for the Čech cohomology
groups Ȟ∗(X; Z2). If we use other coefficients, e.g. in a (pre-)sheaf, we will explicitly
point this out.

Remark 1.1.4. Using finite-dimensional approximations of the path space (see Ap-
pendix A.2) we see that in the setting we are interested in, singular cohomology is
isomorphic to Čech cohomology (cf. Section 1.2). Because the latter groups satisfy
some continuity properties and are more easy to handle, we focus on the Čhech
cohomology groups in the following.
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To get an impression of the concept of linking cycles we now briefly discuss the
method of Bott and Samelson, which has mainly motivated our construction below.
Let V be a Euclidean space and let G ⊂ O(V ) be a closed, connected subgroup.
Assume that L = G(p) is a regular G-orbit and that q ∈ V is a point that is not a
focal point of L. Let v ∈ ν(L) be a normal vector such that the segment sv(t) = tv
satisfies sv(1) = q, i.e. sv is a critical point of Eq, and let 0 < tr < tr−1 < · · · < t1 < 1
be the focal times along sv. Then every focal point qi = tiv comes along with an
obvious contribution to its focal datum, namely, the difference dim(L)−dim(G(qi))
of the dimensions of the orbits. To see that singular orbits indeed give rise to
focal points consider the induced action of the isotropy group Gqi

on the normal
space Tqi

(G(qi))
⊥. This linear action is nontrivial and ṡv(ti) is a regular point of

the Gqi
-action. Further, the dimension of the orbit Gqi

(ṡv(ti)) equals the difference
of the orbit dimensions dim(L) − dim(G(qi)) and one obtains a smooth variation
f : Gqi

(ṡv(ti))
0 → P(V, L×q) of sv through once broken geodesics, all of which have

the same length as sv, by

f(w)(t) =

{
−t · w, if t ∈ [0, 1]

sv(t), if t ∈ [ti, 1],

where Gqi
(ṡv(ti))

0 denotes the connected component of Gqi
(ṡv(ti)) that contains

ṡv(ti). By construction, all of the paths c in this variation cross the same orbits
simultaneously, i.e. c(t) ∈ G(sv(t)) for all t ∈ [0, 1]. Thus starting in the furthermost
focal point q1 one can glue these variations as follows. The principal isotropy group
H = Gp fixes the segment sv pointwise and the r-fold product Hr acts on the
product manifold Gq1 × · · · ×Gqr from the right by

(g1, . . . , gr) · (h1, . . . , hr) = (g1h1, h
−1
1 g2h2, h

−1
2 g3h3, . . . , h

−1
r−1grhr).

If ∆v = Gq1 ×H Gq2 ×H · · · ×H Gqr/H denotes the quotient manifold under this
action, we obtain a map hv : ∆v → L by hv(g1, . . . , gr) = g1 · · · gr(sv(0)). The
space ∆v can be viewed as the total space of an iterated fiber bundle that can be
identified with the space of polygonal paths from q to g1 · · · gr(sv(0)) with vertices
q1, g1(q2), g1g2(q3), . . . , g1g2 . . . gr−1(qr) for r-tupels (g1, . . . , gr) ∈ Gq1 × · · · × Gqr .
Therefore, we consider hv as a map from ∆v into P(V, L×q)κ, where we set κ = ‖v‖2.

For the dimension of ∆v, we compute

dim(∆v) =
r∑

i=1

(dim(Gqi
)− dim(H))

=
r∑

i=1

(dim(L)− dim(G(qi))) .

If all the focal points of all orbits are only caused by the singular orbits, such
an action is called variationally complete, so that in this case the orbit differences
dim(L)− dim(G(qi)) are just the multiplicities of the points qi as focal points of L
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and the above equation yields

dim(∆v) =
r∑

t=1

µ(ti) = i(sv).

Since ∆v is a compact manifold of dimension i(sv), it has H i(sv)(∆v) ∼= Z2. More-
over, it is easy to see that sv ∈ hv(∆v) ⊂ E−1

q (κ) and that hv is an immersion
near (1, ..., 1) ∈ G1 × · · · × Gr. Now locally in a Morse chart centered at sv, the
image hv(∆v) is transversal to the ascending cell so that we can deform it into the
descending cell. Therefore, if we now set P κ = P(M,L× q), the map

H i(sv)(P κ, P κ \ {sv})
h∗v−→ H i(sv)(∆v,∆v \ {(1, . . . , 1)}) → H i(sv)(∆v)

is nontrivial, i.e. hv : ∆v → P(M,L× q) defines a linking cycle for sv, which is also
referred to as a Bott-Samelson cycle.

Motivated by this example, we have introduced the concept of linking cycles, be-
cause this is exactly what we want to use to prove our main characterization of taut
submanifolds, as exactly those submanifolds whose normal exponential map has an
integrable kernel distribution. The problem when dealing with cycle constructions
as above is the behavior of the focal data. The construction of Bott and Samelson
works well, also in the general case, if the focal points along a variation correspond-
ing to the kernel distribution of the normal exponential map do not collapse, i.e.
if the cardinality of the intersections of normal geodesics with the focal set is lo-
cally constant. Unfortunately, the occurrence of focal collapses along a variation
of normal geodesics cannot be avoided in general, but since these collapses depend
continuously on the initial directions of the geodesics, it turns out that this indeed
constitute no problem for our goal. The next section prepares Lemma 1.2.5, which
provides a powerful tool in this direction. Our applications of Lemma 1.2.5 in the
following demonstrate how useful this tool actually can be dealing with similar cycle
constructions. Namely, as in the construction of Bott and Samelson, given a critical
point of the energy functional we will construct a nice space that can be regarded
as the total space of a singular fiber bundle and Lemma 1.2.5 will ensure that the
occuring singularities do not pose any problems for Z2-cohomology, so that these
spaces will indeed represent linking cycles for the energy.

1.2 The Main Tool

Given a continuous map f : X → B from a compact Hausdorff topological space
X onto some nice space B with a fundamental class in Z2-homology, e.g. a man-
ifold, such that all the fibers are compact manifolds of constant dimension, one
would expect that the union over the base B of all the fibers defines a non-trivial
Z2-homology class in dimension equal to the sum of the homological dimension of
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B and the fiber dimension. In order to prove our main theorem later on, we are
dependent on a tool like this, because we want to construct explicit (co-)cycles with
specified cohomological behaviour and it will turn out how powerful this method can
be, dealing with Z2-cohomology. The easiest way, known to the author, to prove
such a statement is by means of sheaf cohomology. Therefore, we proceed with some
basic definitions and facts we need for our aim, the proof of Lemma 1.2.5. We follow
the notation of Bredon [B67] and Chapter 5 of [Wa83]. The reader who is familiar
with this theory could directly skip ahead to Lemma 1.2.5.

A presheaf (of Abelian groups) on a topological space X is a contravariant functor
from the category of open subsets of X, where the morphisms are just the inclusions,
to the category of Abelian groups, i.e. a function that assigns to each open set U an
Abelian group A(U) and to each pair U ⊂ V a homomorphism, called the restric-
tion, rU,V : A(V ) → A(U) in such a way that rU,U = 1A(U) and rU,V ◦ rV,W = rU,W

whenever U ⊂ V ⊂ W .

Example. For any standard cohomology theory H∗ on X, the assignment given by
U 7→ Hr(U ;G) defines a presheaf, where the coefficients are taken to be any Abelian
group G. Other well-known examples of presheaves are U 7→ C0(U), the presheaf of
(locally) continuous functions, or in the case of a manifold U 7→ Cr(U), the presheaf
of (locally) r times continuous differentiable functions.

Definition 1.2.1. A sheaf (of Abelian groups) on X is a pair (A, π), where

1. A is a topological space;

2. π : A → X is a local homeomorphism;

3. Each fiber Ax = π−1(x) is an Abelian group and is called the stalk of A at x;

4. The group operations are continuous, i.e. the map

A×π A → A,
(α, β) 7→ α− β

with A×π A = {(α, β) ∈ A×A|π(α) = π(β)}, is continuous.

As always, if the context is clear we will drop the reference to the map π and talk
about the sheaf A. For an Abelian group G, we say that A is a G-sheaf on X if all
the fibers π−1(x) are isomorphic to G.

If (A, π) is a sheaf on X and U is an open subset of X, then we denote by A(U)
the space of sections of A over U , i.e. continuous maps s : U → A with π ◦ s = idU .
By the second point in the above definition, we know that around every point in X
there is a neighborhood U and a section s ∈ A(U), and the last item ensures that
s− s is also a section over U . Thus we see that the zero section 0 : X → A, x 7→ 0x,
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indeed defines a global section. Again, since the group operations are continuous,
for every open set U , the space A(U) is an Abelian group. It follows that every
sheaf A on X induces a presheaf U → A(U), where the restrictions are the usual
restriction of maps.

If (A, π) is a sheaf on X, then the following properties are directly implied by the
definition:

• π is an open map;

• Any section of A over some open set is an open map;

• Any element of A is in the range of some section over an open subset;

• The set of all images of sections over open sets is a basis for the topology of
A;

• For any two sections s ∈ A(U) and t ∈ A(V ) the set W of points x ∈ U ∩ V
with s(x) = t(x) is open.

If A were Hausdorff, then W in the last item would also be closed. But typically
A is not Hausdorff, what causes the main source of difficulty in dealing with sheaves.

As we have seen a sheaf A induces a presheaf in a natural way. Conversely, there
is a canonical way to obtain a sheaf out of a given presheaf. Therefore, let us start
with a presheaf A on X and consider the disjoint union

E =
⊔

U⊂X

U × A(U),

where the union is taken over all open subsets and the sets A(U) are endowed
with the discrete topology. Define an equivalenve relation on E by saying that for
(x, s) ∈ U × A(U) and (y, t) ∈ V × A(V )

(x, s) ∼ (y, t) ⇔ x = y and there exists an open neighborhood

W ⊂ U ∩ V of x with s|W = t|W .

Here we use the usual notation s|W instead of rW,U(s). Now, let A be the quotient
space E/ ∼ with the quotient topology and let π : A → X be the projection induced
by the map E → X, (x, s) 7→ x. Then one can check that (A, π) actually defines a
sheaf on X, which we call the sheaf generated by the presheaf A or the sheafification
of A. Clearly, the stalk Ax = π−1(x) is just the direct limit lim→A(U), taken over
the open neighborhoods U of x, directed by inclusion. An element s ∈ A(U) defines
a section s̄ : U → A by s̄(x) = sx, where we denote by sx the equivalence class of
(x, s) in A, which we call the germ of s in x. In particular, the topology of A is
generated by the sets {sx|s ∈ A(U), x ∈ U}.
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Definition 1.2.2. A homomorphism of presheaves h : A → B is a collection of
homomorphisms {hU : A(U) → B(U)} commuting with the restrictions. Two
presheaves are called isomorphic if all the maps are isomorphisms.
A homomorphism of sheaves h : A → B is a continuous map, which commutes with
the projections in such a way that the restriction to each stalk hx : Ax → Bx is a
homomorphism. Two sheaves A and B are called isomorphic if there is a homomor-
phism of sheaves that is also a homeomorphism.

If we start with a sheaf A on X and apply the sheafification construction, explained
above, to the presheaf of sections, we obtain a sheaf, which is clearly isomorphic
to A. On the other hand, a given presheaf A on X is in general not isomorphic to
presheaf of section of its sheafification. Namely, one can show that this is equivalent
to the fact that A satisfies the following two properties:

1. If U =
⋃

i Ui with Ui open and s, t ∈ A(U) are two elements with s|Ui
= t|Ui

for all i, then s = t.

2. If U =
⋃

i Ui with Ui open and si ∈ A(Ui) are elements with si|Ui∩Uj
= sj|Ui∩Uj

for all i, j, then there exists an element s ∈ A(U) with s|Ui
= si.

Thus we see that our definition of a sheaf is the same as to define a sheaf as a
presheaf that satisfies these two properties. This equivalent definition is perhaps
the more common one used in text books about this topic. It depends on the per-
sonal preference in which way one thinks about sheaves.

Example (1). Let G 6= 0 be an Abelian group and let A be the constant presheaf on
X, defined by A(U) = G for all open sets U and the identity as restrictions. Assume
that X has at least two points which can be seperated. Then A is not the presheaf
of sections of its sheafification, which is the constant (or trivial) sheaf G = X ×G,
because A do not satisfy the gluing property. Namely, for two disjoint open subsets
U and V and two different elements s and t of G, there is obviously no element in
A(U ∪ V ) = G that restricts to s on U and t on V , respectively. Note that the
presheaf of sections of the trivial sheaf G = X × G is necessarily nothing else than
the presheaf of locally constant functions with values in G, since G has the discrete
topology.

Example (2). Let f : Y → X be a continuous map between topological spaces. Then
for every r ≥ 0 there is an associated presheaf on X given by U → Ȟr(f−1(U);G),
where we denote by Ȟ∗ the Čech cohomology. The sheaf Hr(f ;G) generated by this
presheaf is called the Leray sheaf of f on X.

The following lemma states that there are no nontrivial Z2-sheaves over sufficiently
nice spaces.

Lemma 1.2.3. Let X be a locally compact Hausdorff topological space. Then there
are no nontrivial Z2-sheaves on X.
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Proof. Assume that (A, π) is a Z2-sheaf on X, i.e. π−1(x) ∼= Z2 for all x ∈ X.
Then each fiber π−1(x) has exactly one element that is not zero and we denote this
nontrivial element by 1x. Because the zero section 0 : X → A is a global section,
it remains to show that the well-defined map 1 : X → A, given by 1(x) = 1x, is
continuous. Because if so, the map X×Z2 → A, given by (x, ε) 7→ εx for ε ∈ {0, 1},
would define an isomorphism of sheaves. Thus take a point x ∈ X and let U be
an open neighborhood of x such that there is a section s ∈ A(U) with s(x) = 1x.
Then s : U → s(U) is a homeomorphism onto an open neighborhood of 1x. By
assumption, there is a compact neighborhood V ⊂ U of x, which is also closed in
U since X is Hausdorff. Hence s(V ) is closed in s(U) and contains 1x. Now the
zero section defines a topological embedding 0 : X → A. In particular, the image
0(X) is open in A. But then s(V ) ∩ 0(X) is closed in the open set s(U) ∩ 0(X).
Since π is an open map and the restriction π : 0(X) → X is a homeomorphism we
conclude that π(s(V )∩0(X)) is closed in the open set π(s(U)∩0(X)) ⊂ U and does
not contain x. Therefore, there exists an open neighborhood W ⊂ U around x with
W ⊂ U \ π(s(V ) ∩ 0(X)). But this means that s|W 6= 0, so s(y) = 1y for all y ∈ W
and this proves the claim.

There is a way to define cohomology theories with coefficients in a pesheaf or in
a sheaf, what is the same for paracompact spaces (see, e.g. Chapter 6 of [Sp66]).
But a developement of this theory would go beyond the scope of our discussion, the
more so as it is not really necessary for our goal. By this reason we have to refer
the reader to the literature, e.g. [B67], [Sp66] or [Wa83]. Because it is all we need,
we just want to mention that in the case of a constant sheaf X×G this cohomology
is exactly the same as the usual Čech cohomology with coefficients in G. Moreover,
it can be shown that if X is a topological manifold of dimension n, then all the
cohomology groups with coefficients in any sheaf vanish in dimensions greater than
n. This is an important feature from which we make essential use of.

Example. In Example (2) above we have defined, for an arbitrary continuous map
f : Y → X, the Leray sheaf Hr(f ;G) on X, as the sheaf generated by the presheaf
U 7→ Ȟr(f−1(U);G) using Čech cohomology with coefficients in G. As mentioned
above, the cohomology groups Hr(U ;G) with coefficients in the constant sheaf
G = X × G are isomorphic with the corresponding Čech groups. Thus the gen-
erated sheaves are also isomorphic. Due to this, our definition of the Learay sheaf
in this case behaves well with respect to the general definition of the Leray sheaf in
the context of sheaf cohomology, which is, given a sheaf A on Y , generated by the
presheaf U → Hr(f−1(U);A).

Remark 1.2.4. It is shown in [Sp66] that in the cases we are interested in, the
cohomology groups Hr(X;G) with coefficients in the constant sheaf G = X × G
are nothing else than the Alexander-Spanier cohomology groups with coefficients
in G and that the latter coincide with the Čech cohomology groups Ȟr(X;G). In
particular, it is therefore clear that we have long exact sequences, excision, and that
the homotopy axiom holds. Finally, because we are dealing only with nice spaces,
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please recall that for compact subsets (K,L) of a manifold, the Čech cohomolgy
groups Ȟr(K,L) are isomorphic to the direct limit

lim
−→
{Hr(U, V )|(K,L) ⊂ (U, V )}

where the limit is taken over open subsets (U, V ) ⊃ (K,L).

We now come to the heart of this section, that is a very powerful tool for our use.
We formulate the following lemma in an easy to handle version, adjusted accordingly
to our purpose, but the reader who goes through the proof will notice that it also
holds under weaker assumptions, e.g. if B as in the claim has the cohomological
behavior of a manifold.

Lemma 1.2.5. Let X be a connected, compact Hausdorff topological space and let
f : X → B be a continuous map onto a manifold B of dimension k. Assume
that every fiber f−1(b) is a connected manifold of (constant) dimension n or, more
general, that Ȟn(f−1(b); Z2) ∼= Z2 and Ȟ l(f−1(b); Z2) = 0 for all l > n, where
Ȟ∗ denotes the Čech cohomology. Then X has cohomological dimension n+ k, i.e.
Ȟn+k(X; Z2) ∼= Z2 and Ȟ l(X; Z2) = 0 for l > n+ k.

Proof. Since X is compact and connected and f is surjective, B is compact and
connected, too. If we consider cohomology with coefficients in the constant sheaf
Z2 = X × Z2, then, due to Theorem 6.1 in [B67], there exists a spectral sequence
{Er, dr} with dr : Em,l

r → Em+r,l−r+1
r converging to H∗(X;Z2) with E2 page

Em,l
2 = Hm(B;Hl(f ;Z2)),

where Hl(f ;Z2) denotes the Leray sheaf on B (cf. Example (2)), generated by
the presheaf U 7→ H l(f−1(U);Z2). Further, it is proven there that in our set-
ting the stalks Hl(f ;Z2)p of the Leray sheaf are isomorphic to the cohomology
groups of the corresponding fibers H l(f−1(b);Z2) ∼= Ȟ l(f−1(b); Z2). Then, by our
assumptions and Lemma 1.2.3, the n-th Leray sheaf is the constant sheaf on B,
i.e. Hn(f ;Z2) ∼= B × Z2. Therefore, the entry Ek,n

2 is just given by the k-th Čech
cohomology group Ȟk(B; Z2) ∼= Z2. Because B is a manifold of dimension k, all
the groups Hm(B;Hl(f ;Z2)) vanish for m > k, by dimensional reasons mentioned
above. Also all the entries Em,l

2 with l > n vanish, because Hl(f ;Z2) is the 0-sheaf
in this case. But this means that the entry Ek,n

2 survives in the spectral sequence
since it is the top right entry in the nontrivial rectangle on the E2 page. The second
statement of the claim follows from the fact that if m + l > k + n then m > k or
l > n.

For every b ∈ B, the map f : X → B induces a map X \ f−1(b) → B \ {b}
by restriction. Now the inclusion X \ f−1(b) ↪→ X induces a long exact sequence
in cohomology and also a compatible map on each page of the respective spectral
sequences. By the same arguments as in the proof of 1.2.5, there is a nontrivial
class in Ȟn+k(X,X \ f−1(b); Z2). Moreover, this class is mapped onto the class in
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Ȟn+k(X; Z2) constructed above, because this is true for B. For this reason, we call
such a cohomology class an f -fundamental class.

Let us state this as a corollary.

Corollary 1.2.6. Under the assumptions in Lemma 1.2.5 the space X has an f -
fundamental class.

1.3 An Equivalent Description

Having achieved our key tool in the last section, we are now able to prove our main
result after a short reminder.

Reminder. A Morse-Bott function f : P → R on a complete Hilbert manifold P is
a smooth function whose critical set is the union of closed submanifolds and whose
Hessian is non-degenerate in the normal direction. That is to say, every critical
point lies in a closed submanifold whose tangent space coincides with the kernel of
the Hessian at each point. If so, the index of a critical point is defined to be the
index of the restriction of the Hessian on the normal space of the corresponding crit-
ical manifold. Since the Hessian depends continuously on the points of the critical
manifolds, the index is constant along the connected components of the critical set.
As we already mentioned, in our case of the energy functional on the path spaces,
we can replace the infinite dimensional setting by a finite dimensional one, so that
of course all indices and nullities are finite (cf. A.1).

Theorem 1.3.1. A closed submanifold L ⊂M of a complete Riemannian manifold
M is taut if and only if all energy functionals are Morse-Bott functions.

Proof. If L is a taut submanifold (with respect to any field F), then all the energy
functionals Eq : P(M,L × q) → R are Morse-Bott functions by Theorem 2.8 of
[TT97], which is essentially the result of Ozawa in [Oz86]. Therefore, it remains
to show that if all energy functionals are Morse-Bott functions then L is taut. We
prove this by constructing explicit linking cycles.

Thus let V = ν(L) be the normal bundle of L, identify L with the zero section 0 in
V , and denote by η : V → M the restriction of the exponential map of M to the
normal bundle. By the ray through v ∈ V we mean the linear map rv : R+

0 → V ,
given by rv(t) = tv, and by the segment to v we mean sv = rv|[0,1]. Then for λ ≥ 1,
the point q = η(v) is a focal point of L along the geodesic γλv = η ◦ sλv if and only
if dηv is singular and the multiplicity of q as such a point is just the dimension of
the kernel of dηv. In the case that dηv is not onto we will therefore also call v a
focal vector and we will say that µ(v) = dim(ker(dηv)) is its multiplicity. Let us
denote by C the union of all points in V where dη is singular and call it the tangent
focal locus. We call every number in r−1

v (C) a focal time along the ray rv. It is
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a well known fact that the focal times are discrete along any ray and that they
depend continuously on the rays. Namely, that every vector v ∈ V has an open
neighborhood U such that every ray that intersects U contains µ(v) focal vectors in
U counted with multiplicities, i.e. if im(rw)∩U 6= ∅, then

∑
t∈r−1

w (U∩C) µ(tw) = µ(v).
Finally, we call a focal vector v ∈ C regular if there is an open neighborhood U of
v such that all rays which intersect U intersect U ∩C exactly once. Due to Warner
[Wa65] and Hebda [Heb81], the set CR of regular focal vectors is an open and dense
subset of C that is a codimension-one submanifold of V such that TvV ∼= TvCR⊕Rv
for all v ∈ CR. Let V R denote the set of vectors v ∈ V \ C such that sv intesects
C only in CR. Then V R is obviously open in V and it is also dense. To see this,
consider the function n : V \ C → Z, given by

n(v) = #
{
s−1

v (C)
}
,

which is lower semi-continuous by our above observations. Then

V R = {v ∈ V \ C|n is constant on a neighborhood of v}
=

{
v ∈ V \ C|s−1

v (C) = s−1
v (CR)

}
.

Since the set of regular vectors V \ C is open and dense in V , it is enough to show
that V R is dense in V \ C. Thus assume that V R is not dense in V \ C. Then
the complement of V R in V \ C contains an open set U . The function n admits
its maximum nr on every intersection U ∩ B(r) of U with an open tube B(r) of
radius r around the zero section. Choose r so large that U ∩ B(r) 6= ∅. Due to the
semi-continuity of n, the set n−1(nr) ∩ U ∩B(r) ⊂ V \ V R ∩ V \ C defines an open
subset of V \ C on which n is constant, what clearly contradicts our definition of
V R.

Our assumption that Eq : P(M,L × q) → R is a Morse-Bott function for all q
implies that the singular kernel distrinution is completely integrable, i.e. through
every point v ∈ V there is a µ(v)-dimensional compact connected submanifold Cv

with TwCv = ker(dηw) for all w ∈ Cv. This follows by taking the time derivative in 0
of all paths in the corresponding critical manifolds. Moreover, we have Cv ⊂ S(‖v‖),
where S(‖v‖) denotes the sphere bundle over L of normal vectors of length ‖v‖, and
the index i(v) =

∑
t∈(0,1) µ(tv) is constant along Cv. For a vector v ∈ S(1) let

0 < t1(v) ≤ t2(v) ≤ . . . denote the focal times along the ray rv, counted with
their multiplicities. Then these focal times (counted with multiplicities) depend
continuously on v ∈ S(1) (cf. [IT01]).

Let us now define a function m : V → [0, 1) which assigns to a vector v the number

m(v) = max {t ∈ (0, 1)|µ(tv) 6= 0}

if i(v) > 0, and m(v) = 0 if i(v) = 0. In particular, by our above observations, the
restriction of m to each submanifold Cv is continuous.

Denote by C =
⋃

v∈V Cv the η-kernel decomposition of V and define Q : V → V/C
to be the natural quotient map. Since the fibers of Q are compact submanifolds
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of V the quotient is a locally compact Hausdorff space and the restriction of the
projection to V \ C is a homeomorphism onto an open subspace of V/C. The fiber
norms on V push down to the distance function from the image Q(0) of the zero
section, so that every compact subset in V/C has to be of bounded distance from
Q(0). In particular, the map Q is proper and therefore closed.

We now define a natural cycle candidate ∆v for every geodesic γv = η ◦ sv with
v ∈ V . Because η factorizes over V/C by a map η̄ : V/C → M , we will work in
the quotient space and consider the space P (V/C, Q(0)×Q(v)) of continuous paths
c : [0, 1] → V/C fromQ(0) toQ(v) with the compact open topology. The constructed
cycles will embed in an energy preserving and obvious way into P(M,L×η(v)) under
the map on the path space level induced by η̄, so that we renounce the reference to
the latter space for the rest of the proof.

Because the η-kernel distribution on V is integrable, there is a natural cycle through
Q ◦ sv, intuitively having the right dimension. Namly, take Zv to be the set of all
piecewise continuous maps from [0, 1] to V obtained (with the reversed orientation)
as follows: Take a vector w1 ∈ Cv and follow the straight line tw1 towards the zero
section up to the first conjugate vector, then take an arbitrary conjugate vector w2 in
the corresponding leaf and follow the line tw2 towards the zero section up to the first
conjugate vector, then take an arbitrary conjugate vector w3 in the corresponding
leaf and follow the line tw3 up to the first conjugate vector and so on. This process
will end after a finite number of steps and we can push these piecewise continuous
maps down via Q to continuous paths [0, 1] → V/C starting in Q(0) and ending in
Q(v) and define ∆v to be the injective image of Zv under this map.

To be more precise, let us say that a tuple c = (c1, . . . , cr) is a piecewise linear map
on [0, 1] if there exists a partition 0 = tr < tr−1 · · · < t1 < t0 = 1 of [0, 1] such that
ci : [ti, ti−1] → V is given by ci(t) = swi

(t) = twi for some vector wi ∈ V . Then for
v ∈ V , let Zv be the set consisting of all piecewise linear maps c on [0, 1] recursively
defined by c1 = sw1 |[m(w1),1] for w1 ∈ Cv, and for i ≥ 2 by

ci(t) = s ‖v‖
‖wi‖

wi
(t), t ∈ [m(wi)

‖wi‖
‖v‖

,m(wi−1)
‖wi−1‖
‖v‖

] with wi ∈ Cm(wi−1)wi−1
.

Thus in the above notation ti = m(wi)
‖wi‖
‖v‖ . Note that this is well defined because

of m(wi−1)‖wi−1‖ = ‖wi‖ and our definition that m(w) = 0 if i(w) = 0. Moreover,
we have Zv = Zw for all w ∈ Cv. We can regard a piecewise linear map on [0, 1] as a
piecewise continuous map c : [0, 1] → V , defined by c(0) = 0 and c|(ti,ti−1] = ci|(ti,ti−1],
where, of course, here c(0) = 0 means the origin of the normal space that is uniquely
defined by c(ε) for some small number ε > 0. Anyway, there is a well-defined
injective map

Q̄ : Zv → P (V/C, Q(0)×Q(v)),
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given by Q̄(c)|[ti,ti−1] = Q ◦ ci with

E(Q̄(c)) = (1−m(w1))‖v‖2 +
∑
i≥2

E(ci)

= (1−m(w1))‖v‖2 +
∑
i≥2

(m(wi−1)
‖wi−1‖
‖v‖

−m(wi)
‖wi‖
‖v‖

)‖v‖2

= ‖v‖2.

Now we define the space ∆v to be the image Q̄(Zv) ⊂ P (V/C, Q(0) × Q(v)) with
the relative topology, i.e. induced by the compact open topology on the path space
P (V/C, Q(0) × Q(v)). With this topology the space ∆v is compact, because Q is
proper, and we have that ∆v = ∆w for all w ∈ Cv, so that we could also write ∆Q(v)

for this space. The map Q̄ : Zv → ∆v is a bijection and we topologize Zv by the
postulation that this map is a homeomorphism. As mentioned above, we can regard
Zv as a space of piecewise continuous maps.

We follow this direction and define e : Zv × [0, 1] → V by e(c, 0) = c(0) and
e(c, t) = limt′↗t ci(t

′) if t ∈ (ti, ti−1], so that t 7→ et(c) is the required map. Let us
set ē : ∆v×[0, 1] → V/C for the continuous evaluation map, given by the prescription
ē(Q̄(c), t) = Q̄(c)(t), and consider the commutative diagram

Zv × [0, 1] e //

Q̄×id
��

V

Q

��
∆v × [0, 1] ē // V/C

from which it follows that e is continuous in (c, t) if Q̄(c)(t) /∈ Q(C). If we set
et = e(·, t), then e1 : Zv → V is also continuous. To see this, we first observe that e1
is continuous iff it is continuous considered as a map to Cv ⊂ S(‖v‖). Then take an
open subset U ⊂ Cv and note that by definition e1(c) = w ∈ U iff the image of c1
is contained in [m(w), 1] · U = {rw′|r ∈ [m(w), 1], w′ ∈ U}. Because m is bounded
away from 1 on Cv, we can find an ε such that (1− ε, 1) · Cv ⊂ V \ C and because
Q is an embedding on V \ C we have

e−1
1 (U) = e−1

1−ε/2((1− ε, 1) · U) = Q̄−1(ē−1
1−ε/2(Q((1− ε, 1) · U))),

which is therefore open.

The crucial point with regard to our goal is that we can write ∆v as a twisted
product over Cv, what enables us to use an inductive argument to verify the right
cohomological behavior. For this reason, identify Cv with the subspace of unbroken
paths in ∆v, i.e. by the map w 7→ Q ◦ sw. Set

∆ =
⋃

n
w∈V \{0}|i(w)<i(v)

o ∆w ⊂ P (V/C, Q(0)× V/C),
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where of course the latter space is the space, homotopy equivalent to Q(0), of con-
tinuous paths [0, 1] → V/C that start in Q(0) with the compact open topology. Now
define a map R : ∆v → ∆ by assigning to a path Q̄(c) ∈ ∆v the reparameterization
of Q̄(c)|[0,m(c(1))] on [0, 1], i.e. R(Q̄(c)) ∈ ∆m(c(1))c(1) is given by

R(Q̄(c))(t) = Q̄(c)(m(c(1)) · t) for t ∈ [0, 1].

If c = (c1, c2, . . . , cr) ∈ Zv is a piecewise continuous map with c1 = t · c(1) on

[m(c(1)), 1] and ci : [ti, ti−1] → V for i ≥ 2 given by t ‖v‖‖wi‖ · wi with ti = m(wi)
‖wi‖
‖v‖

for wi ∈ Cm(wi−1)wi−1
as above, then R(Q̄(c)) = Q̄(d) for the piecewise linear map

d = (d1, . . . , dr−1) ∈ Zm(c(1))c(1) on [0, 1] given by

di(t) = t
‖w2‖
‖wi+1‖

wi+1 = t
m(c(1))‖c(1)‖

‖wi+1‖
wi+1

= t ·m(c(1))
‖v‖
‖wi+1‖

wi+1

= ci+1(m(c(1)) · t)

for t ∈ [t′i, t
′
i−1] with t′i = m(wi+1)

‖wi+1‖
‖w2‖ = m(wi+1)

‖wi+1‖
m(c(1))‖v‖ = ti+1

m(c(1))
.

By our previous discussion the map m̄ = m ◦ e1 ◦ Q̄−1 : ∆v → [0, 1), given by
Q̄(c) 7→ m(c(1)), is continuous and we deduce that, therefore, R is continuous,
because a path R(c) ∈ ∆ maps a compact interval J into an open set U if and
only if c maps m̄(c) · J into U . So that if we denote by VJ,U the set of paths
in P (V/C, Q(0) × V/C) which map J to U and take a path c ∈ R−1(VJ,U), then
Vm(c)·J,U is an open neighborhood of c. But that m̄ is continuous means that for
some small open neighborhood W of c in ∆v we have that d(m̄(d) · J) ⊂ U for all
d ∈ W ∩ Vm(c)·J,U , so that W ∩ Vm(c)·J,U is an open neighborhood of c in R−1(VJ,U).

Therefore, we can define a continuous map

T : ∆v → ∆ ē1×Q◦m̄ Cv,
Q(c) 7→ (R(Q(c)), e1(c)),

where the twisted product is defined by

∆ ē1×Q◦m̄ Cv = {(d, w) ∈ ∆× Cv|ē1(d) = d(1) = Q(m(w))} .

It is now easy to see that T is bijective, so that, due to the compactness of ∆v, it is
already a homeomorphism.

Now assume that v is not a conjugate vector. Using the above identification let
prm(v)v : ∆m(v)v → Cm(v)v be the projection onto the second factor. Then by defi-
nition, our cycle ∆v is just ∆m(v)v ∗ {Q ◦ sv|[m(v),1]} consisting of paths c such that
c|[0,m(v)] is the reparameterization of a path in ∆m(v)v on [0,m(v)] and c|[m(v),1] is just
Q ◦ sv|[m(v),1]. Therefore, we can identify ∆v

∼= ∆m(v)v in this case. In particular,
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for v ∈ V , we have pr−1
v (v) = {Q ◦ sv} and ∆v

∼= Cv if i(v) = 0. If i(v) = 1 we
have pr−1

v (w) ∼= Cm(w)w
∼= S1 for all w ∈ Cv and therefore, due to Lemma 1.2.5,

that Ȟ1+dim(Cv)(∆v) ∼= Z2 and Ȟk(∆v) = 0 if k > 1 + dim(Cv) = 1 + µ(v). In the
general case, we first observe that for all w ∈ Cv we have i(w) = i(v) and of course
µ(w) = µ(v). Then for all u ∈ Cm(w)·w we have

i(u) = i(m(w) · w) = i(w)− µ(m(w) · w) = i(v)− dim(Cm(w)·w) < i(v).

So, by induction on the index, we can therefore assume that the compact fibers
pr−1

v (w) ∼= ∆m(w)·w satisfy

Ȟ i(m(w)·w)+µ(m(w)·w)(pr−1
v (w)) ∼= Z2

and
Ȟk(pr−1

2 (w)) = 0 if k > i(m(w) · w) + µ(m(w) · w).

Again, with Lemma 1.2.5 and i(m(w) · w) + µ(m(w) · w) = i(w) = i(v) as well
as µ(v) = dim(Cv), we then deduce that H i(v)+µ(v)(∆v) ∼= Z2 and Hk(∆v) = 0 if
k > i(v) + µ(v).

Coming so far, it remains to prove that the spaces ∆v indeed represent linking cycles
for Q ◦ sv. But this follows from the fact that, due to [Wa67] and [Heb81], C defines
a smooth distribution on every connected component of CR, so that it is more or
less obvious by our construction that Q ◦ sv admits a manifold neighborhood in ∆v

for all v ∈ V R. Further, this neighborhood can be deformed into the local unstable
manifold in some Morse chart around Q ◦ sv, because of the discussion below A.2.4
and the following expression of the tangent space that is a direct consequence of
our construction. Namely, TQ◦sv∆v =

⊕r
k=1 J (tk), where s−1

v (C) = {t1, . . . , tr} and
J (tk) equals the vector space of continuous vector fields J along Q ◦ sv such that
J |[0,tk] is an L-Jacobi field along Q ◦ sv and J |[tk,1] ≡ 0. In this case, if we denote by
PL,η(v) the path space P(M,L× η(v)), the following commutative diagramm

Ȟ i(v)(P‖v‖
2

L,η(v))
// Ȟ i(v)(∆v)

Ȟ i(v)(P‖v‖
2

L,η(v),P
‖v‖2
L,η(v) \ {η ◦ sv})

OO

∼= // Ȟ i(v)(∆v,∆v \ {Q ◦ sv})

∼=

OO

yields the claim if v ∈ V R is not a conjugate vector. Since for manifolds Čech
cohomology is isomorphic to singular cohomology and V R is dense in V , we deduce,
with the same arguments as in the proof of Proposition 2.7 in [TT97], that the
energy Eq : P(M,L× q) → R is Z2-perfect for all points q that are not focal points
of L.

Remark 1.3.2. As we mentioned in the last section, for compact subsets (K,L)
of a manifold P the Čech cohomolgy groups Ȟj(K,L) are isomorphic to the direct
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limit
lim
−→

{
Hj(U, V )|(K,L) ⊂ (U, V )

}
where the limit is taken over open subsets (U, V ) ⊃ (K,L). Therefore, one could
also show directly that

H i(v)(P‖v‖
2

L,η(v),P
‖v‖2
L,η(v) \ {η ◦ sv}) → Ȟ i(v)(∆v,∆v \ {η ◦ sv}) → Ȟ i(v)(∆v)

is nontrivial for all the spaces ∆v with v ∈ V \ C, because using the deformation

retraction of P
‖v‖2+ε
L,η(v) onto the Morse complex one can assume that a neighborhood

base of η ◦ sv in ∆v is contained in some ball around the origin in Ri(v).

As a direct consequence of the proof of Theorem 1.3.1 and the above remark, we
obtain the following fact, which was so far not even known in the case of a Euclidean
space.

Theorem 1.3.3. If a closed submanifold of a complete Riemannian manifold is taut
with respect to some field, then it is also Z2-taut.
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Chapter 2

Taut Foliations

Even if there are not many examples of taut submanifolds, a remarkable observation
is that they often occur, if at all, in families, which then decompose the ambient
space. In this chapter we therefore focus on taut families as they usually occur,
namely on singular Riemannian foliations all of whose leaves are taut. For this
reason, we first recall some basic facts about singular Riemannian foliations and
make some preliminary observations which we need to prove our second result in
Section 2.3 that characterizes taut singular Riemannian foliations by means of their
quotients.

2.1 Singular Riemannian Foliations

Definition 2.1.1. Let F be a partition of a manifold Mn+k into connected, injec-
tively immersed submanifolds with maximal dimension n. For a point p ∈ M , let
Lp denote the element of F which contains p. Set

TF =
⋃

p∈M

TpLp.

Then the partition F is called a singular foliation of M of dimension n/ codimen-
sion k iff the C∞(M)-module Γ(TF) of smooth vector fields X tangential to F , i.e.
Xp ∈ TpLp for all p ∈ M , exhaust TpLp for every p ∈ M . We call the elements
of F leaves. A leaf is regular if it has dimension n, otherwise singular. A point
belonging to a regular leaf is regular, otherwise singular. By M0 we denote the set
of regular points and call it the regular stratum. If (M, g) is a Riemannian manifold,
a singular foliation is called a singular Riemannian foliation if every geodesic in M
which intersects one leaf orthogonally intersects every leaf it meets orthogonally.

We sometimes also speak about a singular Riemannian foliation (M,F), or (M, g,F)
if we want to abbreviate that F is a singular Riemannian foliation on the Rieman-
nian manifold M , or (M, g).
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Example. The set of orbits of an isometric Lie group action on a Riemannian mani-
fold M is a singular Riemannian foliation, closed if and only if the group considered
as a subgroup of the isometry group is closed.

For d ≤ n, denote by Md the subset of all points p ∈ M with fixed leaf dimension
dim(Lp) = n − d. Since the dimension of the leaves varies lower semicontinuously,
the set

⋃
d′≤dMn−d′ = {p ∈M |dim(Lp) ≤ d} is closed. Further, Md is an embedded

submanifold of M and the restriction of F to Md is a (regular) Riemannian foliation.
The main stratum M0 is open, dense and connected if M is connected. All the other
singular strata have codimension at least 2 in M .

Let p be a point in (M, g,F) and let B be a small open ball in Lp. Then there is a
number ε > 0 and a distinguished tubular neighborhood U at p so that the following
holds true:

1. The foot point projection π : U → B is well defined;

2. U is the image of the ε-discs νε(B) in the normal bundle ν(B) of B under the
exponential map and the map exp : νε(B) → U is a diffeomorphism;

3. Tq = π−1(q) is a global transversal of (U,F|U) for all q ∈ B, i.e. Tq meets all
the leaves of F|U and always transversally;

4. For each real number λ ∈ [−1, 1] \ {0} the map hλ : U → U , given by
hλ(exp(v)) = exp(λv) for all v ∈ νε(B), preserves F .

Indeed, the fact that the geodesics perpendicular to B remain perpendicular to the
leaves implies that if d(q, B) = δ, then the connected component Pq of q in the open
subset Lq ∩ U of the leaf Lq is entirely contained in the tube SB

δ of radius δ around
B. The leaf of FU through q, which is exactly Pq, is called the plaque of F passing
through q in the neighborhood U . In particular, we have B = Pp by construction.
Moreover, we see that for all q ∈ U , the distance from q to B remains constant as
q moves along the plaque Pq, thus the distance between the neighboring leaves is
locally constant.

Definition 2.1.2. We say that a singular Riemannian foliation (M,F) has the
property P if every leaf of F has the property P , e.g. F is closed if all the leaves
are closed subspaces of M .

It is well kown that the leaves of a closed singular Riemannian foliation F on a
complete Riemannian manifold M admit global ε-tubes, so that the distance be-
tween two leaves is globally constant. In this case, the quotient M/F is a complete
metric space, where the distance between two points is just the distance between
the corresponding leaves, as submanifolds of M .
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Lemma 2.1.3. Let (M,F) be a singular Riemannian foliation. Then a leaf L ∈ F
is embedded if it is closed.

Proof. Let r be the dimension of L. Then Mn−r is an embedded submanifold of M
and F|Mn−r is a regular Riemannian foliation. Due to Molino (cf. p.22 of [Mol88]),
the statement is true for (Mn−r,F|Mn−r), so it is true for (M,F).

Again, let p ∈ M be a point and let B be a small open neighborhood in the leaf
Lp through p. Then there is an ε > 0 and a distinguished tubular neighborhood
(U,B, π) around p such that there is an embedding φ of U into the tangent spaces
TpM with Dpφ = Id and a singular Riemannian foliation Fp on TpM , called infinites-
imal singular Riemannian foliation of F at the point p that coincides with φ∗F on
φ(U) and such that Fp is invariant under all rescalings rλ : TpM → TpM, rλ(v) = λv
for all λ 6= 0. In particular, Fp is closed iff F is locally closed at p.

The diffeomorphism φ is constructed as follows. If dim(Lp) = r, we can choose B and
ε so small that there are r linear independent vector fields X1, . . . , Xr ∈ Γ(TF|U)
such that {X1

p , . . . , X
r
p} form an orthonormal basis of TpLp. Let ϕXi

t denote the
local flow of X i. Denote by Bδ ⊂ Rr, resp. Dδ ⊂ νp(Lp) the ball of radius δ around
0 ∈ Rr, resp. the ball of radius δ around 0 ∈ νp(Lp). For δ small we get a smooth
map ψ : Bδ ×Dδ →M by

ψ(t1, . . . , tr, v) = ϕXr

tr ◦ ϕXr−1

tr−1
◦ · · · ◦ ϕX1

t1
(expp(v)).

Since the differential dψ(0,0) is invertible, we can find an ε such that ψ|Bε×Dε is a
diffeomorphism onto its image, which is a distinguished tubular neighborhood and
after identifying Rr ∼= TpLp, (t1, . . . , tr) 7→

∑r
i=1 tiX

i
p we get the desired diffeomor-

phism by φ = (ψ|Bε×Dε)
−1.

One can consider Fp as the blow up of F in the following sense. Identify U with
φ(U). Set Uλ = rλ(U) for λ > 0. So

⋃
λ>0 U

λ = TpM . Define the Riemannian metric
gλ on Uλ as gλ = λ2(rλ)∗g. Then the blow up metrics gλ smoothly converge to the
flat metric gp (ref. [Wie08], p.43-44). By construction, the restriction of Fp to Uλ is
a singular Riemannian foliation with respect to gλ. Moreover, if dim(Lp) = r, then
the infinitesimal singular foliation Fp on TpM = TpMn−r × (TpMn−r)

⊥ is a product
Fv

p×Fh
p , where Fv

p is the trivial foliation given by parallels of TpLp and the main part
Fh

p on (TpMn−r)
⊥ is a singular Riemannian foliation, invariant under rescalings and

with the origin as the only 0-dimensional leaf. Thus Fh
p is the cone over a singular

Riemannian foliation of dimension n − r on the unit sphere of TpM
⊥
n−r, which is

induced by the intersections of the nearby higher dimensional leaves with a slice
through p.

If F is locally closed at p, the quotient TpM/Fp is a non-negatively curved Alexan-
drov space and the local quotient U/F is a metric space of curvature bounded below
in the sense of Alexandrov. Further, the space TpM/Fp is the tangent space to this
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Alexandrov space at the leaf L ∩ U ∈ U/F . The inclusion U → M induces a map
between the quotients U/F → M/F , which is an open finite-to-one map if F is
closed. So, assume that F is closed and M is complete. Then the quotient M/F
is a complete metric space with the metric induced by the distance of the leaves
of F (as submanifolds). Let T be a global ε-tube around L with the same ε as in
the definition of the distinguished neighborhood U , then U is saturated, i.e. it is a
union of leaves, and T/F is a neighborhood of L in the global quotient M/F . In
this case, there is a finite group of isometries Γ acting on the local quotient U/F
that fixes the plaque L ∩ U ∈ U/F such that U/F is isometric to T/F .

For a proof of the above statements and for more on singular Riemannian foliations
we refer to [Mol88].

Definition 2.1.4. Let F be singular Riemannian foliation on a complete Rieman-
nian manifold M . If F is closed, we call F taut if every leaf of F is taut.

Note that if F is closed, then by 2.1.3 all the leaves are embedded submanifolds.
Further, if F is the trivial foliation given by the points of M and F is taut, then,
as already defined in Section 1.1, we call M pointwise taut.

We now proceed with some properties of taut foliations. Let us start with an ele-
mentary observation on the infinitesimal foliations.

Lemma 2.1.5. Let F be a closed singular Riemannian foliation on a complete Rie-
mannian manifold (M, g). If F is taut, then for every p ∈ M , the infinitesimal
foliation Fp on (TpM, gp) is taut.

Remark 2.1.6. Anticipating our discussion in Section 3.1, we say that a singular
Riemannian foliation on a Euclidean space V is polar if for all regular points v ∈ V ,
the affine space v+νv(Lv) that is the image of the corresponding normal space under
the endpoint map intersects all the leaves and always orthogonally. It is well known
that the polar singular Riemannian foliations on Euclidean spaces are exactly the
parallel foliations given by an isoparametric submanifold. Thus if the infinitesimal
singular Riemannian foliation Fp on (TpM, gp) is polar, Fp is an isoparametric folia-
tion given by the parallel foliation induced by a regular and hence isoparametric leaf.
Since isoparametric foliations on a Euclidean space are taut (see, e.g. [PT88]), the
infinitesimal singular foliation Fp is taut in this case. For a more detailed treatment
of these facts, we refer the reader to Chapter 3, where we will focus on infinitesimally
polar foliations, namely those foliations whose infinitesimal foliations are all polar.

Proof of Lemma 2.1.5. We will use the notation from the beginning of this section.
Take a point p ∈ M with d = dim(Lp) and k = codim(Mn−d). Then we have an
orthogonal splitting TpM = TpMn−d ⊕ νp(Mn−d) that induces a splitting of Fp into
a product foliation Fp = Fv

p × Fh
p , where the first factor is the foliation given by
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parallels of TpLp and the main part Fh
p is the cone-foliation, i.e. invariant under all

homotheties rλ(v) = λ · v, of a singular Riemannian foliation with compact leaves of
dimension at least one on the unit sphere in νp(Mn−d) (if νp(Mn−d) 6= {0}). Now for
(v, w) ∈ TpMn−d×νp(Mn−d), let L = (v+TpLp)×Lh

w be the leaf of Fp through (v, w)
and let u = (x, y) be not a focal point of L (with respect to the flat metric gp). Then
obviously a curve c : [0, 1] → TpM is a critical point of Eu : P(TpM,L × u) → R
if and only if c is a straight line with ċ ∈ νc(0)(L) ⊂ W × νp(Mn−d), where we
again denote by W the orthogonal complement of TpLp in TpMn−d. So if we write
TpMn−d = W×TpLp and v = (v1, v2), x = (x1, x2) with respect to this decomposition,
we have that c(t) = (x1 + t · (v1 − x1), c

h(t)) and we get a 1:1 correspondence
between the critical points of Eu and the critical points of the restricted energy
functional Ey on the path space P(νp(Mn−d),Lh

w × y) of the compact submanifold
Lh

w ⊂ νp(Mn−d). In particular, since TpLp is contractible, Fp is taut if and only if Fh
p

is taut. Further, because Fp as well as the set of straight lines in TpM is invariant
under homotheties it follows that Fp is taut if and only if the restricted foliation
Fh

p |D is taut, where D is a small ball in νp(Mn−d) around the origin. Note that such
a ball D is always saturated. Let U be a distinguished tubular neighborhood around
p and set V = φ(U) and h = φ∗ g, where φ : U → TpM with φ∗(F|U) = Fp|V is an
embedding as in the definition of the infinitesimal foliation at p. Now with respect to
the metric h and for a small ball D around the origin in νp(Mn−d) the closed singular
Riemannian foliation Fp|(TpMn−d×D)∩φ(U ′) is taut, i.e. the saturation of F|φ−1(D) in
U ′ is taut, where U ′ ⊂ U is a smaller distinguished tubular neighborhood at p that
contains φ−1(D). To see this, we can choose U ′ so small that we have to consider
only critical points γ in U ′ with energy r such that the whole ball of radius r around
γ(1) is contained in U , so that we have

P (U,Lγ(0) ∩ U × γ(1))r = P (M,Lγ(0) × γ(1))r

and we conclude by tautness of F that all the local unstable manifolds can be
completed in U below the energy r. Thus since U and U ′ are diffeomorphic, the
local unstable manifolds can also be completed in U ′, what implies our claim. If we
now consider the blow up metrics hλ on V λ = {λ · v|v ∈ V } as defined above, i.e.

hλ = λ2 · (rλ)∗ h,

it follows that our restricted foliation is also taut with respect to the metrics hλ.
But the constant metric gp is just the flat limit limλ→∞ h

λ and we deduce that Fp

is taut with respect to gp, because it is not hard to see that if a sequence of perfect
Morse functions converge to a Morse function, this limit has to be perfect.

In order to prove tautness of a foliation, one can always assume that M is simply
connected. To see this, we first need the closeness property of lifts.

Lemma 2.1.7. Let F be closed and let π : N → M be a covering map. Then the
lift F̃ of F given by the involutive singular distribution T F̃ = π∗(TF) is closed.
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Remark 2.1.8. Note that the converse is false, as one can see by the dense torus fo-
liation induced by the submersion f : R2 → R, (x, y) 7→ y−λx, where λ is irrational.

Proof. For every leaf L of F , the preimage π−1(L) =
⋃

i L̃i is a union of leaves of F̃
and the restriction π|eLi

: L̃i → L is a covering projection for each i. Thus each leaf

L̃ ∈ F̃ is a connected component of the closed saturated set π−1(π(L̃)) and hence
closed.

Assume that f : N → M is a Riemannian submersion between complete Rieman-
nian manifolds and L ⊂ M is a closed submanifold. Then, by [He60], f : N → M
is a locally trivial fiber bundle and therefore for any point q̄ ∈ f−1(q), the spaces
P(N, f−1(L) × q̄) and P(M,L × q) are homotopy equivalent. Since f yields a 1:1
correspondece between the critical points and preserves their indices (cf. Lemma
6.1 in [HLO06]), we obtain

Lemma 2.1.9. If f : N → M is a Riemannian submersion between complete Rie-
mannian manifolds and L ⊂ M is a closed submanifold, then L is taut if and only
if f−1(L) is taut.

Now, since the homology of a path connected component injects in the homology of
the whole space, it is not hard to see that a union of connected, closed submanifolds
is taut if and only if its components are taut. So that we deduce

Lemma 2.1.10. Let π : N →M be a Riemannian covering and let M be complete.
If F is closed, then F is F-taut if and only if the lift F̃ of F to N is F-taut.

Given a closed singular Riemannian foliation F on a complete Riemannian manifold
M , every leaf posses a global ε-tube. For a regular leaf L with such a global tube,
the restriction of the foot point projection on a nearby regular leaf induces a finite
covering map onto L. We say that L has trivial holonomy if all these coverings are
diffeomorphisms. It is well known that the set of regular points whose leaves have
trivial holonomy is open and dense in M .

In particular, all regular leaves of F have trivial holonomy, that is to say that the
quotient M0/F is a Riemannian manifold, if the foliation is taut and M is simply
connected. To see this, for p, q ∈M , let Ωp,q(M) denote the space of all paths from
p to q. Then Ωp,q(M) ' Ωq,q(M) and the long exact sequence of the path space
fibration gives πi(M) ∼= πi−1(Ωq,q(M)), what implies that Ωp,q(M) is connected.

The fibration P(M,L × q) → L given by c 7→ c(0) gives the below part of the
corresponding long exact homotopy sequence

π0(Ωq,q(M)) → π0(P(M,L× q)) → π0(L) → 1.

Thus P(M,L× q) is connected. Now a leaf with nontrivial holonomy would yield at
least two local minima for the energy on the path space of a neighboring generic leaf,
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i.e. a leaf without holonomy. By tautness, all the maps in homology are injective
what clearly contradicts our connectedness observation.

We are now able to state a characterisation of taut regular foliations, that indeed
also follows from our second main result, Theorem 2.3.1 below. For the notion of
Riemannian orbifolds see Section 3.1.

Lemma 2.1.11. Let F be a closed (regular) Riemannian foliation on a complete
Riemannian manifold M . Then F is F-taut if and only if the quotient M/F is a
good Riemannian orbifold with a pointwise F-taut universal covering orbifold, i.e.
M/F is isometric to N/Γ with a simply connected Riemannian manifold N , all of
whose points are F−taut and Γ ⊂ I(N) is a discrete subgroup of isometries.

Proof. Let F̃ denote the lift of F to the universal cover M̃ of M . Then, by Lemma
2.1.10, F̃ is taut if and only if F is taut. By the discussion above, if F̃ is taut,
then it is simple, i.e. given by the fibers of a Riemannian submersion. So if F is
taut, the quotient map M̃ → M̃/F̃ is a Riemannian submersion between complete

Riemannian manifolds and M̃/F̃ is 1-connected by the exact sequence for fibrations.

In this case, the map M̃/F̃ → M/F coincide with the universal orbifold covering.
On the other hand, assume that M/F is a good Riemannian orbifold. Then, due to

Lemma 3.1.11, F̃ is simple, that is to say M̃/F̃ is a Riemannian manifold and we
can reduce the problem to Lemma 2.1.9.

Remark 2.1.12. In Section 3.3 we prove the corresponding statement for the class
of infinitesimally polar foliations and coefficients in Z2.

We end this section with some preliminaries, which are useful in order to prove that
a closed singular Riemannian foliation F on a complete Riemannian manifold M is
taut.

Lemma 2.1.13. Let F be closed. Then L ∈ F is F-taut if and only if the energy
functional Eq : P(M,L× q) → R is an F-perfect Morse function for all non L-focal
regular points q ∈ M . Further, F is F-taut if and only if all regular leaves are
F-taut.

Proof. Since the set of non-focal points of L as well as the set of regular points
is open and dense in M , every neighborhood of a given point q contains a regular
point that is not a focal point. Therefore, the same argument as in the proof of
Proposition 2.7 in [TT97] yields the first claim.

For the second claim, assume that all regular leaves are taut. Let N be a singular
leaf and let q ∈ M be not a focal point of N . By our above observations, we can
assume that the point q is regular. Let γ be a critical point of EN

q . Then γ̇(0)
is a regular vector of Fγ(0), hence there exists an ε > 0 such that L = Lγ(ε) is a
regular leaf contained in a global tube of N and the point q is not a focal point
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of L. Denote by γ̄ the restriction γ|[ε,1] after linear reparameterization on [0, 1].
Then the horizontal geodesic γ̄ is a critical point of the perfect Morse function
EL

q : P(M,L × q) → R. Now let i = i(γ̄) be the index of the geodesic γ̄ and set
κ = EL

q (γ̄) for its energy. We also set Lc = (EL
q )−1([0, c]), resp. N c = (EN

q )−1([0, c]).
Denote by σ ∈ Hi(Lκ) the completion of the local unstable manifold representing a
nontrivial cycle in Hi(Lκ,Lκ \ {γ̄}) associated to γ̄. We then have i(γ) = i(γ̄) for
small numbers ε, by continuity reasons.

The projection R : L→ N, (p, v) 7→ p, induces a map

R̄ : Lκ → NEN
q (γ)

c 7→ c̃

where c̃ is the curve that one gets by concatenation of the unique horizontal geodesic
from R(c(0)) to c(0) with c followed by reparameterization between 0 and 1 and the
map R̄ maps level sets to level sets. Moreover, R̄ is clearly an immersion. Therefore,
R̄∗(σ) is a cycle in NEN

q (γ) that can be deformed within a morse chart around γ into
a cycle z that agrees with the unstable manifold at γ above the EN

q -level EN
q (γ)− δ

for small δ. It follows that the homology class of z and thus the homology class
R̄∗(σ) is mapped onto a generator of Hi(NEN

q (γ),NEN
q (γ) \ {γ}). Since the critical

point γ was chosen arbitrary, every local unstable manifold can be completed to a
cycle in Hi(γ)(NEN

q (γ)+δ), i.e. the map Hn(N λ+δ) → Hn(N λ+δ,N λ−δ) is surjective
for all n and regular values λ± δ. Hence N is taut.

Our last observation in this section is that a foliation F is F-taut if and only if a
dense family of regular leaves is F-taut, where we call a family of leaves dense if
their union is a dense set. The next lemma shows that tautness is a closed property
relative to non-collapsing convergence. It is then straight forward to see that taut-
ness of a dense family of regular leaves forces a foliation to be taut.

Lemma 2.1.14. Let F be a closed singular Riemannian foliation on a complete
manifold M and let {Ln} be a sequence of F-taut regular leaves converging to a
regular leaf L without holonomy, i.e. for every tubular neighborhood T of L there is
n0 ∈ N such that Ln ⊂ T and the canonical projection π : T → L restricted to Ln is
a covering map for every n ≥ n0. Then L is F-taut.

Proof. Let T be a tubular neighborhood of L and let π : T → L be the canonical
projection. Choose a number n0 ∈ N so large that Ln ⊂ T for all n ≥ n0. Now let
q ∈M be not a focal point of L. Then for large n, the point q is not a focal point of Ln

as well. By fn : P(M,L×q) → P(M,Ln×q), resp. gn : P(M,Ln×q) → P(M,L×q)
we denote the induced maps between the path spaces which one gets by assigning
to a curve c the curve γc(0) · c and then reparameterizing it between 0 and 1, where
γc(0) is the unique shortest geodesic between Ln and L that intersects L in c(0), resp.
γc(0) is the unique shortest geodesic between L and Ln that intersects Ln in c(0).
Then fn is in an obvious way a homotopy equivalence with homotopy inverse gn.

Let γ be a critical point of EL
q with κ = EL

q (γ). We can choose n so large, i.e. a
tube T so small, that there is an ε > 0 such that (κ− 3ε, κ+3ε) \ {κ} contains only
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regular values and g ◦ f(P κ−2ε) ⊂ P κ−ε with f = fn, g = gn and P r = P(M,L× q)r

and P r
n defined analogous. Moreover, we can deform g ◦ f : P κ−2ε → P κ−ε into the

inclusion j : P κ−2ε ↪→ P κ−ε below the κ-level of EL
q , i.e.

(g ◦ f)∗ = j∗ : H∗(P
κ−2ε) → H∗(P

κ−ε).

Since P κ−2ε is a strong deformation retract of P κ−δ for all 2ε > δ > 0, the map
above is an isomorphism, i.e. the induced map in homology

f∗ : H∗(P
κ−2ε) → H∗(P

α
n )

with α = max{ELn
q (p) : EL

q (p) = κ− 2ε} is injective.

Denote by i = i(γ) the index and by [γ] ∈ Hi(P
κ, P κ−2ε) the corresponding unstable

manifold of γ and set α̃ = max{ELn
q (p) : EL

q (p) = κ}. Now consider the commutative
diagramm which comes from the long exact sequence for pairs of spaces together
with the natural behavior of the connecting homomorphism:

Hi(P
κ)

f∗ //

��

Hi(P
α̃
n )

��
Hi(P

κ, P κ−2ε)
f∗ //

∂∗
��

Hi(P
α̃
n , P

α
n )

∂̃∗
��

Hi−1(P
κ−2ε)

f∗ // Hi−1(P
α
n )

Since Ln is taut, we have ∂̃∗ = 0. So

f∗ ◦ ∂∗ = ∂̃∗ ◦ f∗ = 0.

As we have seen, the map f∗ : H∗(P
κ−2ε) → H∗(P

α
n ) is injective. But this means

∂∗ = 0, i.e. L is taut.

Now assume under the assumptions of Lemma 2.1.14 that all Ln are regular leaves
without holonomy and that L is an exceptional leaf, i.e. has nontrivial holonomy.
Due to Lemma 2.1.10, we can assume that M is simply connected. Then for large
n, L would provide at least two local minima for Ln, because all Ln are taut and
therefore have trivial holonomy, as we have seen above. Again, by tautness of Ln,
the path space corresponding to Ln would be disconnected. But this is clearly a
contradiction, since M is simply connected. So, L necessarily has trivial holonomy.
Thus combining 2.1.10,2.1.13, and 2.1.14 together with the fact that the set of reg-
ular leaves without holonomy is open and dense in M/F , we have

Corollary 2.1.15. The closed singular Riemannian foliation F is F-taut if and only
if a dense family of leaves is F-taut.
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2.2 Index Splitting for Horizontal Geodesics

In this section we summarize some general observations on the focal index of geodesics
with respect to Lagrangian subspaces of the space of normal Jacobi fields, which we
then apply to the case of a horizontal geodesic of a singular Riemannian foliation
(M,F). We will see that the focal data of the space of normal Lγ(a)-Jacobi fields
along a regular horizontal geodesic γ : [a, b] → M are of two types. Namely, for
t ∈ (a, b), there is a vertical multiplicity dim(F) − dim(Lγ(t)) corresponding to the
focal index of t of the isotropic space of Jacobi fields that are everywhere tangent to
F , and a horizontal multiplicity that is, roughly speaking, the multiplicity of γ(t)
as a conjugate point of γ(a) in the quotient M/F along the projection of γ. Our
discussion is based on [L09], [LT10], and [Wil07].

If F is a singular Riemannian foliation on a Riemannian manifold (M, g) we call a
geodesic γ horizontal if it meets all leaves of F perpendicularly. We will call such a
geodesic γ : [a, b] →M regular, if γ(a) and γ(b) are regular points of F .

A regular horizontal geodesic intersects the singular strata of F only in finitely many
points a < t1 < · · · < tr < b (see Cor.4.6 in [LT10]). We set

c(γ) =
r∑

i=1

dim(Lγ(a))− dim(Lγ(ti))

and call this number the crossing number of γ.

Definition 2.2.1. Let γ : [a, b] → M be a horizontal geodesic. An F -Jacobi field
along γ is a variational field through horizontal geodesics starting on the leaf Lγ(a).
An F -vertical Jacobi field along γ is an F -Jacobi field J with J(t) ∈ Tγ(t)Lγ(t) for
all t.

Remark 2.2.2. In [LT07] Lytchak and Thorbergsson generalize the notion of varia-
tional completeness to the setting of singular Riemannian foliations by saying that a
horizontal geodesic γ has no horizontal conjugate points if each F -Jacobi field J with
J(t0) ∈ Tγ(t0)Lγ(t0) for some a < t0 < b is F -vertical. If no horizontal geodesics in
M have horizontal conjugate points, F is called without horizontal conjugate points.
Further, they give a description of singular Riemannian foliations without horizontal
conjugate points. Namely, they show that a closed singular Riemannian foliation F
on a complete Riemannian manifold M has no horizontal conjugate points if and
only if the quotient M/F is a good Riemannian orbifold without conjugate points,
i.e. M/F = N/Γ and N has no conjugate points. They also prove that a singular
Riemannian foliation is infinitesimally polar (cf. 2.1.6 or Section 3.1) iff it is locally
without horizontal conjugate points. In particular, if F has no horizontal conjugate
points, then it is infinitesimally polar. Finally, Lytchak generalizes this result in
[L10](Cor.1.4) proving that a singular Riemannian foliation on a complete Rieman-

nian manifold M does not have horizontal conjugate points if and only if the lift F̃
of F to the universal covering M̃ of M is closed and the quotient M̃/F̃ is a good
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Riemannian orbifold without conjugate points.

Let us recall some basic facts about the Jacobi equation, Jacobi fields, and focal
points. We refer to [L09] and [Wil07] for the proofs and a more detailed discussion
of the following facts. Our summary is referred to [LT10].

Let γ : [a, b] → M be a geodesic and let N be the normal bundle of γ. Let Jac
denote the space of all normal Jacobi fields along γ, i.e. solutions of the equation

∇2J +R(J, γ̇)γ̇ = 0,

where R denotes the curvator tensor. By ω we denote the canonical symplectic
form on Jac, defined by ω(J1, J2) = 〈∇J1, J2〉 + 〈J1,∇J2〉. For subspaces W of
Jac, we denote by W⊥ the orthogonal complement with respect to ω. A subspace
W ⊂ Jac is called isotropic, resp. Lagrangian if W ⊂ W⊥, resp. W = W⊥.
For an isotropic subspace W and t ∈ [a, b], we define the W -focal index of t
to be fW (t) = dim(W ) − dim(W (t)) with W (t) = {J(t) | J ∈ W}. Note that
fW (t) = dim(W t), where we set W t = {J ∈ W | J(t) = 0}. One can show that the
set of points with non-zero focal index is discrete and such points are called W -focal.
The W -index of γ is defined by indW (γ) =

∑
t∈[a,b] f

W (t).

Example. If N is a submanifold of M through γ(a), orthogonally to γ, then the space
ΛN of normal N -Jacobi fields is a Lagrangian. In this case, the ΛN -focal index of a is
equal to dim(M)−dim(N)−1 and a point t 6= a is a ΛN -focal point if and only if it is
a focal of N along γ in the usual sense of Riemannian geometry. So we will speak, for
short, of the N -focal index and N -focal points in this case. In particular, the space
ΛLγ(a) of all F -Jacobi fields along a horizontal geodesic γ of a singular Riemannian
foliation F is a Lagrangian. Thus the space of all vertical F -Jacobi fields is isotropic.

We recall now the construction of Wilking [Wil07] of the transversal Jacobi equation
in our situation. Again let γ : [a, b] → M be a geodesic and consider the normal
bundel N of γ with the connection induced by the pull back. Let R : N → N
denote the curvature endomorphism, defined by R(X) = R(X, γ̇)γ̇. Let Jac be as
above and consider an isotropic subspace W of Jac. Set

W̃ (t) = W (t)⊕
{
∇J(t) | J ∈ W t

}
and note that W̃ (t) = W (t) for every non W -focal t ∈ [a, b].

Then Wilking observed (in a more generall setting) that W̃ defines a smooth subbun-

dle of N . If we denote by H the orthogonal complement of W̃ and by P : N → H
the orthogonal projection, then P defines an identification H ∼= N/W̃ and we can

define a smooth endomorphism field A : W̃ → H, by A(J(t)) = P (∇J(t)) and
A(∇J(t)) = 0 for all J ∈ W t. Consider the field RH : H → H of symmetric
endomorphisms, defined by

RH(Y ) = P (R(Y )) + 3AA∗(Y )
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and denote by ∇H the induced covariant derivative on H, i.e.

∇H(Y ) = P (∇Y ).

Wilking proved in [Wil07] that for each Jacobi field J ∈ W⊥ ⊂ Jac the projection
Y = P (J) is an RH-Jacobi field, i.e. (∇H)2J +RH(J) = 0. Moreover, two R-Jacobi
fields J1, J2 ∈ W⊥ have the same projection to H if and only if J1 − J2 ∈ W . Thus
the induced map

I : W⊥/W → JacRH

is injective and by dimensional reasons it is an isomorphism. Hence RH-Jacobi fields
are precisely the projections of Jacobi fields in W⊥; and Lagrangians in JacRH are
projections of Lagrangians in Jac that contain W . As a consequence we obtain (cf.
[L09])

Lemma 2.2.3. For each Lagrangian Λ ⊂ Jac that contains W , we have the equality
indW (γ) + indΛ/W (γ) = indΛ(γ).

Example. Let f : M → B be a Riemannian submersion and let F(f) denote the
induced foliation on M . Let γ be a horizontal geodesic in M and denote by γ̄ = f(γ)
its image in B. Consider the space W of F(f)-vertical Jacobi fields along γ, i.e.
variational fields of variations of horizontal lifts of γ̄. Then W is an isotropic
subspace, since it is contained in the space ΛN of normal N -Jacobi fields, where
N = f−1(f(γ(a))). In this case, for each t, the space W (t) is the vertical space
of f through γ(t), H is canonically identified with the normal bundle of γ̄ in B
and the transversal operator RH coincides with the curvatur endomorphism in the
base space, i.e. the term AA∗ is just the O’Neill tensor. So, the horizontal index
indΛN/W (γ) describes the index of γ̄. The vertical index indW (γ) is zero in this
case, but in the much more general situation of a singular Riemannian foliation the
vertical index counts the intersections of γ with singular leaves and coincides with
the crossing number as we will see below.

Set (M,F , g) as usual and let γ : [a, b] → M be a horizontal geodesic. Then
the space ΛLγ(a) of all normal F -Jacobi fields is Lagrangian but depends not only
on the maximal geodesic containing γ but also on the starting point γ(a). Let
us see how we can arrange this problem. Consider the space W γ, consisting of all
Jacobi fields along γ with the property that these fields are variational fields through
horizontal geodesics γs with γs(t) ∈ Lγ(t) for all t. One can show (cf. [LT10] 4.5) that
W γ(t) = {J(t) | J ∈ W γ} coincides with Tγ(t)Lγ(t), for all t and by definition we have
W γ ⊂ ΛLγ(a) . Therefore, W γ is just the space of all F -vertical Jacobi fields along
γ and does not depend on the starting point in contrast to ΛLγ(a) . If d(γ) denotes
the maximal dimension of L(γ(t)), then we have d(γ) = dim(W γ). Moreover, the
W γ-focal points along γ are precisely the points ti with dim(Lγ(ti)) < d(γ) and
the W γ-focal index is d(γ) − dim(Lγ(ti)). In particular, for a regular horizontal
geodesic γ its crossing number c(γ) coincides with the vertical index indW γ (γ). If in
addition, we call a Jacobi field horizontal if it is the variational field of a variation
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of γ through horizontal geodesics one can describe the space (W γ)⊥ as the space
consisting of normal horizontal Jacobi fields. Therefore, the singular Riemannian
foliation F does not have horizontal conjugate points if and only if any F -horizontal
Jacobi field along any horizontal geodesic that is tangent to the leaves at two points
is tangent to the leaves at all points.

Recall that two points c < d in [a, b] are called conjugate if there is a non-zero
Jacobi field J ∈ Jac with J(c) = 0 = J(d). Thus the statement that the point a
does not have conjugate points on (a, b) for the transversal Jacobi equation on H,
where H is the W γ-transversal bundle as defined above, is equivalent to the equality
ind

Λ
Lγ(a) (γ0) = indW γ (γ0), where γ0 denotes the subgeodesic γ0 : (a, b) → M of γ.

To see this, note that by Lemma 2.2.3 ind
Λ

Lγ(a) (γ0) = indW γ (γ0) is equivalent to the

absence of focal points of ΛLγ(a)/W γ on the open interval (a, b). But ΛLγ(a)/W γ is
by definition the Lagrangian in Jac(H) of all Jacobi fields Y with Y (a) = 0. Thus
the statement that ind

Λ
Lγ(a)/W γ (γ0) = 0 is equivalent to the fact that a does not

have conjugate points with respect to the transversal Jacobi equation.

We end this section with a summarizing lemma (cf. [LT10], 5.8), which we have
already proven in parts by our above discussion. For the notion of orbifolds see
Section 3.1.

Lemma 2.2.4. There are no horizontal conjugate points along γ if and only if
ind

Λ
Lγ(a) (γ0) = indW γ (γ0), where γ0 : (a, b) → M denotes the subgeodesic of γ. If

M is complete, F is infinitesimally polar and closed, and γ̄ denotes the projected
orbifold geodesic, then there are no horizontal conjugate points along γ if and only
if there are no conjugate points along γ̄ in the local development of M/F . Further,
a singular Riemannian foliation is infinitesimally polar if and only if it is locally
without horizontal conjugate points.

2.3 A Property of the Quotient

Dealing with singular Riemannian foliations one focuses mainly on the horizontal
geometry of the foliation, that is to say the geometry of the quotient. For this
reason, one is often interested in geometric properties of the foliation that can be
read off the quotient and to consider equivalence classes of foliations by means of
isometric quotients. An example of such a quotient property is infinitesimal polarity
(cf. Section 3.1), in which case the quotients are Riemannian orbifolds, i.e. every
point in the quotient has a neighborhood isometric toN/Γ, where N is a Riemannian
manifold and Γ ⊂ I(N) is a discrete group of isometries. Our second main result
now states that tautness of a foliation is actually also a property of the quotient,
so that one can speak about equivalence classes of taut foliations by means of their
leaf spaces.

We want to remind the reader that by our convention taut always means Z2-taut.
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Theorem 2.3.1. Let F and F ′ be closed singular Riemannian foliations on com-
plete Riemannian manifolds M and M ′ with isometric quotients. Then F is taut if
and only F ′ is taut.

Since we already know that F-tautness implies Z2-tautness, we directly obtain

Corollary 2.3.2. If (M,F) and (M ′,F ′) are as in Theorem 2.3.1 and one of the
foliations is F-taut, then both of them are also Z2-taut.

Before we begin with the proof of the theorem let us discuss and apply this result
in the context of the known examples.

If M = Sk is the round sphere and F is the trivial foliation by points, there is a well
known cycle construction for critical points of the energy functional (cf. p.95-96 of
[Mi63]) which shows that Sk is pointwise taut. Terng and Thorbergsson proved in
[TT97] that the standard metric on the sphere is the only one with respect to which
the sphere is pointwise taut.

Now consider the more general case M/F = N/Γ, where N is a symmetric space.
In their study of the Morse theory of symmetric spaces, Bott and Samalson came
up with concrete cycles which represent a basis in Z2-homology of the path space
P(N, p × q) and which are in fact compact connected manifolds (see [BS58]) and
coincide with those we constructed in Theorem 1.3.1. In particular, symmetric
spaces are pointwise taut and therefore, the foliation F on M has to be taut by
Theorem 2.3.1.

On closer inspection, one can reduce the case of a nontrivial Γ-action to the exam-
ple of the sphere as follows. If again M/F = N/Γ and N is a simply connected
symmetric space, write

N = N0 ×N1 × · · · ×Nm

as a Riemannian product with N0 of Euclidean type and irreducible symmetric
spaces Ni, i > 1 of compact or noncompact type. Since M/F is a Coxeter orb-
ifold and N is simply connected, Γ is a Coxeter group, generated by reflections
on dissecting hyperplanes. Due to Corollary 3.5 of [Ko07], a totally geodesic hy-
perplane H in N has to be of the form H = N0 × · · · × Hi × · · · × Nm for some
i ≥ 0 and some totally geodesic hyperplane Hi in Ni. But this implies that also
Γ splits into Γ = Γ0 × · · · × Γm, where Γi is a Coxeter group on Ni. It is well
known that an irreducible symmetric space of compact or noncompact type which
admits a totally geodesic hyperplane, e.g. if it allows a reflection, has constant
curvature. Now for points p = (p0, . . . , pm) and q = (q0, . . . , qm) ∈ N , we have
πr(P(N, p×q)) ∼= πr+1(N). But the homotopy groups of a product are the products
of the homotopy groups of the factors and since P(N, p × q) is connected, because
N is simply connected, we conclude that the map

P(N, p× q) → P(N0, p0 × q0)× · · · × P(Nm, pm × qm),
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which sends a path c to (c0, . . . , cm) is a homotopy equivalence. The critical points
of E(q0,...,qm) =

∑m
i=0Eqi

are exactly the products of the geodesics in the factors and
the index, as well as the nullity behaves additive. Since symmetric spaces of non-
compact type have nonpositive curvature, there are no conjugate points and thus
all geodesics must be local minima. Since the factors are also simply connected,
there is exactly one geodesic between any two points in the factors which are not of
compact type. Thus it is enough to consider the factors of compact type. But as
we have seen, the factors of compact type with nontrivial Coxeter group have to be
spheres and we deduce pointwise tautness again. In particular, our argumentation
also works if we allow an additional constant direction of nonpositive curvature in
the quotient.

We want to emphasize that the following corollary covers all known examples and
that its converse in the case of a compact orbifold quotient is closely related to the
Blaschke conjecture (cf. Theorem 3.3.11 below and Section 6 of [TT97]).

Corollary 2.3.3. If F is a closed singular Riemannian foliation on a complete Rie-
mannian manifold M and M/F = (N ×P )/Γ is a good Riemannian orbifold, where
N is a symmetric space and P is a nonpositively curved manifold, then F is taut.

Another application of Theorem 2.3.1 are foliations admitting generalized sections.

Example. Let M be a complete Riemannian manifold with an isometric action of a
compact Lie groupG. In [GOT04] the authors developed the concept of a generalized
section for such an action. They call a connected, complete submanifold Σ of M a
k-section if the following hold:

• Σ is totally geodesic;

• Σ intersects all orbits;

• for every G-regular point p ∈ Σ the tangent space TpΣ contains the normal
space νp(G(p)) as a subspace of codimension k;

• if p ∈ Σ is a G-regular point with g(p) ∈ Σ for some g ∈ G then g(Σ) = Σ.

Generalized sections are also called fat sections and the copolarity of (G,M) is
defined by copol(G,M) = min {k ∈ N| there is a k-section Σ ⊂M} and measures,
roughly speaking, how far the action is from being polar, i.e. admitting a 0-section.
If Σ is a fat section, then it is shown in [Ma08] that there is the fat Weyl group
W (Σ) = NG(Σ)/ZG(Σ) that acts on Σ with G(p)∩Σ = W (Σ)(p) if p ∈ Σ, inducing
an isometry between the quotients Σ/W (Σ) = M/G. We therefore deduce that
(Σ,FW ) is taut if and only if (M,FG) is taut.

Before we start with the proof of Theorem 2.3.1, we now state a preparing lemma
that says that focal points caused by singular leaves do not provide any difficulties
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when dealing with tautness. This fact was already discussed in [No08] and proves
that singular Riemannian foliations without horizontal conjugate points are taut.

Lemma 2.3.4. Let F be a closed singular Riemannian foliation on a complete Rie-
mannian manifold M and let L ∈ F be a regular leaf. For every broken horizontal
geodesic c : [0, 1] → M from L to a point q ∈ M that intersects the singular stra-
tum discretely, let ∆(c) denote the space of broken horizontal geodesics in the path
space P(M,L× q) which have the same projection to the quotient M/F as c. Then
∆(c) carries a smooth structure of a compact (possibly non-connected) manifold of
dimension

∑
t∈[0,1] dim(F) − dim(Lc(t)) such that the inclusion into the path space

P(M,L× q) becomes an embedding.

Proof. Given a leaf L ∈ F let νε(L) be a global ε-tube of L. Then the pull back of
F by the normal exponential map is invariant under the homotheties rλ(v) = λv for
all λ ∈ [−1, 1] \ {0}, so that there is a unique singular foliation G(L) that extends
the pull back to ν(L) satisfying this property. The singular foliation G(L) is closed
if F is closed and it is shown in Section 4 of [LT10] that v, w ∈ ν(L) are in the same
leaf of G(L) iff γw(t) ∈ Lγv(t) for all t, where as usual γv is the unique geodesic with
γ̇v(0) = v. Let V be a small open neighborhood of v in the leaf Lv of G(L) through
v. Then the vector space of variational vector fields of variations through geodesics
γw with w ∈ V coincides with the space W γv of F -vertical Jacobi fields along γv, as
defined in the last section. Due to [LT10], one has

W γv(t) = {J(t)|J ∈ W γv} = Tγv(t)Lγv(t),

so that if the dimension of L is maximal along the horizontal geodesic γv, i.e.
dim(L) = maxt∈[0,1]{dim(Lγv(t))}, we deduce that the map ηt : Lv → Lγv(t), given by
ηt(w) = exp(tw) = γw(t), is a submersion for all t, which is surjective if F is closed.
In this case, all the preimages η−1

t (p) are compact submanifolds of Lv of dimension
dim(Lv) − dim(Lγv(t)). In particular, if L is a regular leaf the dimension of such a
preimage equals dim(F)− dim(Lγv(t)).

We will now describe the compact set ∆(c) as the total space of an iterated bundle.
Since the general case requires no new ideas, but only some more notation, we will
assume for the rest of the proof that c as in the claim is smooth. So let L ∈ F be
a regular leaf and let γ = γv be a horizontal geodesic from L to a point q ∈ M .
Let γ−1(M \M0) = {ti}i=1,...,r with 0 < tr < · · · < t1 ≤ 1 denote the times where
γ crosses the singular stratum and set Li = Lγ(ti) and vi = dim(F) − dim(Li).
Note that if q is a regular point, the vertical index of γ is given by v(γ) =

∑r
i=1 vi.

With the notation from above, let ηi : Lv → Li be the surjective submersion defined
by ηi(w) = exp(tiw). Starting with the furthermost singular leaf, we now define
V1 = η−1

1 (γ(t1)) ⊂ Lv and identify this space with the subspace

∆1 =
{
cw ∈ ∆(γ)|cw|[0,t1] = γw|[0,t1] for w ∈ V1 and cw|[t1,1] = γ|[t1,1]

}
of ∆(γ) of (at most) once broken geodesics in the obvious way, i.e. by w 7→ cw. With
this identification ∆1 inherits a smooth structure which turns it into an embedded
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submanifold of P(M,L× q) of dimension v1.

At the second step we define V2 to be the twisted product

Lv ×η V1 = {(w2, w1) ∈ Lv × V1|η2(w2) = exp(t2w1)} ,

which can be identified with the subspace ∆2 of ∆(γ) that consists of all (at most)
twice broken horizontal geodesics c(w2,w1) with c(w2,w1)|[0,t2] = γw2|[0,t2] for some el-
ement w2 ∈ Lv and c(w2,w1)|[t2,1] = cw1|[t2,1] for some w1 ∈ V1. With the induced
smooth structure ∆2 becomes a submanifold of P(M,L× q) with

dim(∆2) = dim(Lv) + dim(V1)− dim(L2) = v2 + v1.

Note that all we need to ensure that ∆2 is a submanifold is the fact that η2 : Lv → L2

is a submersion, so that the map Lv × V1 → L2 × L2 is transversal to the diagonal
in L2 × L2.

Now assume that for some r−1 ≥ j ≥ 1 we already have defined Vj as a submanifold
of dimension

∑j
i=1 vi of the j-fold product Lj

v together with an identification Vj
∼= ∆j

given by (wj, . . . , w1) 7→ c(wj ,...,w1). Then we inductively define Vj+1 and ∆j+1 as
follows. Set Vj+1 = Lv ×η Vj, where again the twisted product is defined by

Lv ×η Vj = {(wj+1, wj, . . . , w1) ∈ Lv × Vj|ηj+1(wj+1) = exp(tj+1wj)} ,

which is therefore a submanifold of Lj+1
v of dimension

dim(Vj+1) = dim(Lv) + dim(Vj)− dim(Lj+1)

= vj+1 + dim(Vj)

=

j+1∑
i=1

vi.

Finally, define ∆j+1 to be the subspace of ∆(γ) consisting of all (at most) (j+1)-fold
broken horizontal geodesics c(wj+1,wj ,...,w1) such that

c(wj+1,wj ,...,w1)|[0,tj+1] = γwj+1
|[0,tj+1] for some wj+1 ∈ Lv and

c(wj+1,wj ,...,w1)|[tj+1,1] = c(wj ,...,w1)|[tj+1,1] for some (wj, . . . , w1) ∈ Vj.

By construction, it is clear that there is a 1:1 correspondence between (j+1)-tupels
(wj+1, . . . , w1) ∈ Vj+1 and paths c(wj+1,wj ,...,w1) ∈ ∆j+1. Moreover, the identification
∆j+1

∼= Vj+1 (as manifolds) via the assignment (wj+1, wj, . . . , w1) 7→ c(wj+1,wj ,...,w1)

turns ∆j+1 into a compact submanifold of P(M,L × q) of dimension
∑j+1

i=1 vi. In
particular, this defines a smooth structure for ∆r = ∆(γ) with the desired properties.
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Remark 2.3.5. The assumptions in Lemma 2.3.4 are adapted to our setting, but
the conclusion also holds if the foliation is not closed, or the manifold is not complete.
For this fact, because being a manifold is a local property, one only has to localize
the arguments given in the proof of the lemma. Further, if c = γ is smooth, let
W γ denotes the space of F -vertical Jacobi fields along γ (see Section 2.2) and let
t1 < · · · < tr be the W γ-focal times along γ. Define W γ

i to be the space of continuous
vector fields J along γ such that J |[0,ti] ∈ W γ|[0,ti] and J vanishes on [ti, 1]. Then
by our description in the proof of the lemma, we conclude that the tangent space of
∆(γ) at γ is given by

Tγ∆(γ) =
r⊕

i=1

W γ
i .

As a consequence of Lemma 2.3.4 we reprove the mentioned special case.

Corollary 2.3.6. If F is a closed singular Riemannian foliation on a complete
Riemannian manifold M and F is without horizontal conjugate points, then F is
taut.

Proof. By Lemma 2.3.4, there is a compact manifold ∆(γ) through every regular
horizontal geodesic γ consisting of broken horizontal geodesics, all having the same
length as γ, and dim(∆(γ)) coincides with the vertical index v(γ). But by assump-
tion, the index of γ is just the vertical index. Moreover, the satement about Tγ∆(γ)
and the discussion below A.2.4 ensures that if we look at a finite dimensional ap-
proximation of the path space, ∆(γ) is transversal to the ascending cell in a Morse
chart around γ, so that ∆(γ) can be deformed into the descending cell, hence defines
a linking cycle for γ. This proves tautness of all regular leaves, so that the claim
follows with Lemma 2.1.13.

Proof of Theorem 2.3.1. Let us briefly sketch the idea of the proof. For (M,F) and
(M ′,F ′) as in the claim let us identify B = M/F = M ′/F ′ via an isometry and
consider the following diagram

M

Q   A
AA

AA
AA

A M ′

Q′
~~||

||
||

||

B

Now assume that F is taut. In order to prove that F ′ is taut it suffices to prove that
the normal exponential map of a generic leaf of F ′ has integrable fibers, by Theorem
1.3.1 and our genericity results from Section 2.1. Let therefore L′ ∈ F ′ be a regular
leaf without holonomy. In this case, the leaf L = Q−1(Q′(L′)) ∈ F is a regular
leaf without holonomy, too, and its normal exponential map has integrable fibers,
by assumption. For v ∈ ν(L), let ∆v denote the connected component of the fiber
through v that contains v and identify it with the manifold of horizontal geodesics
from L to exp(v) which have initial velocity in ∆v. Now, given a vector v′ ∈ ν(L′)
with the same projection to B as v, we push ∆v down to B and lift it to M ′ along
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Q′ to obtain a space ∆′
v′ of horizontal geodesics that start in L′ and end in exp(v′).

The observation that the map ∆′
v′ → ν(L′) which assigns to a horizontal geodesic

its starting direction provides an integral manifold of the kernel distribution of the
normal exponential map of L′ through v′ then finishes the proof.

Having sketched the proof, let us now work out the details. For this purpose, let
D(M) ⊂ T 1M be the subset of horizontal unit vectors and write P : D(M) → M
for the restricted foot point projection. In [LT10] it is shown that there is a subset
O(M) ⊂ D0(M) = P−1(M0) of horizontal unit vectors with regular foot points of
full measure such that for v ∈ O(M) the projection Q◦γv is completely contained in
the open and dense orbifold part of B, where again γv denotes the unique horizontal
geodesic with γ̇v(0) = v (for the notion of orbifolds see Section 3.1). In this case,
Q ◦ γv defines an orbifold geodesic. As mentioned in the proof of Lemma 2.3.4,
given any leaf L ∈ F one can pull back F via the normal exponential map to
some ε-neighborhood of the zero section of the normal bundel ν(L) to obtain a
closed singular foliation invariant under non-zero homotheties that therefore admits
a unique extension to a singular foliation G(L) on ν(L) with closed leaves. This
induces an equivalence relationRM on D(M) by saying that to vectors v, w ∈ D(M)
are equivalent iff P (w) ∈ LP (v) and v and w lie in the same leaf of G(LP (v)). The
set D(M) is stratified by the preimages of the elements of the stratification of M
induced by the leaf dimension and because the main stratum D0(M) is a manifold,
the restriction of RM to D0(M) is given by the leaves of smooth regular foliation
with closed leaves. Further, if we denote the equivalence class of v ∈ D(M) by
RM(v), we have

γw(t) ∈ Lγv(t) for all t ∈ R ⇐⇒ w ∈ RM(v).

Now given a point p ∈ M , the infinitesimal foliation Fp splits as a product folia-
tion Fp = TpLp × F1

p on the tangent space TpM = TpLp × νp(Lp) so that we have
TpM/Fp = νp(Lp)/F

1
p, which is the tangent space to a local quotient U/F at L∩U ,

where U is a distinguished neighborhood of p. The map U/F → M/F , induced
by the inclusion U → M , is a finite-to-one open map, given by the quotient map
of the action of a finite group Γ of isometries, onto a neighborhood T ε/F of Lp,
where T ε is a global ε-tube around Lp with the same ε as in the definition of the
distinguished neighborhood U (cf. Section 2.1). Identifying νε(Lp) ∼= T ε via the
normal exponential map, we see that we can identify the tangent space TLpB of
B at Lp with (νp(Lp)/F

1
p)/Γ = ν(Lp)/G(Lp) = νp(Lp)/G(Lp). We therefore define

the differential dQp : TpM → TQ(p)B of the projection Q : M → B at the point
p to be the composition of projections TpM → νp(Lp) → νp(Lp)/G(Lp) and write
Q∗ : TM → TB for the induced map, i.e. Q∗(v) = dQP (v)(v).

All the above observations are of general nature so that we use the analogous nota-
tions that we developed for (M,F) also for (M ′,F ′). Moreover, the tangent spaces
TbB, as defined above, only depend on the metric structure of the space B, so
that we do not distinguish between the isometric descriptions as νp(Lp)/G(Lp) and
νp′(L

′
p′)/G(L′p′) if Q(Lp) = Q′(L′p′) for p′ ∈M ′.

43



Since orbifold geodesics coincide if they coincide initially, we deduce from the above
that given v ∈ O(M) and v′ ∈ D(M ′) with the same projection Q∗(v) = Q′

∗(v
′),

we have v′ ∈ O(M ′) and Q ◦ γv(t) = Q′ ◦ γv′(t) for all t ∈ R. But this implies
that Q ◦ γv = Q ◦ γv′ for all F -horizontal vectors v ∈ TM and F ′-horizontal vectors
v′ ∈ TM ′ with Q∗(v) = Q′

∗(v
′), because O(M), resp. O(M ′) is dense in D(M), resp.

D(M ′) and the maps induced by Q and Q′ on the corresponding path space levels
are continuous.

Now take a regular leaf L ∈ F and recall that in this case G(L) is a regular foliation
with closed leaves such that the intersection of every leaf L ∈ G(L) with any normal
space νp(L) is finite. Further, as explained in the proof of Lemma 2.3.4, for every
normal vector v ∈ ν(L) the restriction of the normal exponential map to the leaf Lv

induces a submersion ηv : Lv → Lγv(1), so that all the fibers η−1
v (q) for q ∈ Lγv(1) are

(unions of) compact submanifolds of dimension dim(F)−dim(Lγv(1)), since the nor-
mal exponential map is proper. In this case, the smooth map η−1

v (q) → νq(Lγv(1)),
given by w 7→ γ̇w(1), defines a smooth identification of the connected component of
η−1

v (q) that contains w with the regular leaf Lγ̇w(1) of F1
q through γ̇w(1) ∈ νq(Lγv(1)),

where w ∈ η−1
v (q) is any preimage of q. Moreover, due to the above observation and

our discussion in Section 2.2 on the horizontal index, it is not hard to see that for
v ∈ ν(L) and a horizontal geodesic γ′v′ : [0, 1] → M ′ with Q ◦ γv = Q′ ◦ γ′v′ their
horizontal indices coincide. That is to say, the kernel ker((d exp⊥M)v) of the differen-
tial of the normal exponential map in v contains the subspace TvLv ⊂ Tvν(L) and
the dimension of ker((d exp⊥M)v)/TvLv is independent of the foliation, or to be more
precise, an intrinsic datum of the quotient.

We now finish the proof as follows. Assume that F is taut. Combining Lemma 2.1.15
and the proof of Theorem 1.3.1, it remains to prove that for generic leaves L′ ∈ F ′

the normal exponential map exp⊥M ′ : ν(L′) →M ′ has integrable fibers. Thus we can
restrict our attention to a regular leaf L′ ∈ F ′ without holonomy, i.e. Q′(L′) is a
manifold point of B and the restriction of Q′ to a tubular neighborhood of L′ defines
a Riemannian submersion. In particular, in this case the leaf L = Q−1(Q′(L′)) ∈ F
is a regular leaf without holonomy, too. Let v′ ∈ ν(L′) be a horizontal vector and
let us set q′ = γv′(1). Choose an F -horizontal vector v ∈ ν(L) with Q∗(v) = Q′

∗(v
′)

and set q = γv(1). Then, by construction, Q ◦ γv = Q′ ◦ γv′ and

dim(ker((d exp⊥M ′)v′))− (dim(F ′)− dim(Lexp⊥
M′ (v

′)))

= dim(ker((d exp⊥M)v))− (dim(F)− dim(Lexp⊥M (v))).

Since F is taut, the connected component ∆v of (exp⊥M)−1(q) containing v is a
compact submanifold of ν(L) that is smoothly foliated by the (dim(F)− dim(Lq))-
dimensional regular foliation whose leaf through a horizontal vector w ∈ ∆v is given
by Nw = (exp⊥M)−1(q) ∩ Lw. Again, we can regard ∆v as a saturated subset of
the regular part of the singular Riemannian foliation F1

q on νq(Lq) via the map
dv : ∆v → νq(Lq) defined by the prescription dv(w) = d(exp⊥M)w(w). Moreover, by
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our choice of L′, the image of the composition dQq ◦ dv is completely contained in
the manifold part of TqM/Fq = νq(Lq)/F

1
q (cf. Section 4 of [LT10]), so that every

leaf of Fq′ through a vector w′ ∈ νq′(L
′
q′) with dQ′

q′(w
′) ∈ dQq(dv(∆v)) is also regular

without holonomy.

If we therefore define Kq′ ⊂ F1
q′ to be the preimage

Kq′ = (dQ′
q′)

−1((dQq ◦ dv)(∆v)),

then Kq′ is obviously a union of regular leaves of F1
q′ without holonomy, namely of

leaves of dimension dim(F ′)−dim(L′q′), completely contained in a concentric sphere.
Further, because dQq(dv(∆v)) carries a natural smooth structure that turns it into
a (dim(∆v)−(dim(F)−dim(Lq)))-dimensional manifold, and the restriction of dQ′

q′

to the set of points lying on regular leaves without holonomy is a submersion, the
set Kq′ is a compact submanifold of νq′(L

′
q′) of dimension

dim(Kq′) = dim(F ′)− dim(L′q′) + dim(ker((d exp⊥M)v))

−(dim(F)− dim(Lq))

= dim(F ′)− dim(L′q′) + dim(ker((d exp⊥M ′)v′))

−(dim(F ′)− dim(Lq′))

= dim(ker((d exp⊥M ′)v′)).

Now recall that all the infinitesimal foliations are invariant under all non-zero ho-
motheties. Thus, if we define ∆′

v′ = {−γ̇w′(1) ∈ ν(L′)| − w′ ∈ Kv′}, it easily follows
from our above discussion that ∆′

v′ is a compact submanifold of (exp⊥M ′)−1(q′) con-
taining v′ that satisfies Tw′∆

′
v′ = ker((d exp⊥M ′)w′) for all w′ ∈ ∆′

v′ . This proves the
claim.

As already mentioned before, tautness of a submanifold L ⊂M requires very special
symmetry of the pair (M,L) around the submanifold L, what clarifies the fact that
there are not many examples of taut submanifolds actually known. By this reason,
it is worth mentioning that the ideas of the last proof can be used to construct lots
of examples. For this purpose, consider a closed singular Riemannian foliation F
on M such that the space of leaves M/F is isometric to a quotient N/Γ, where N
is a Riemannian manifold and Γ ⊂ I(N) is a discrete group of isometries, that is to
say that M/F is a good Riemannian orbifold. Assume that there is a submanifold
S ⊂ N completely contained in the interior of a fundamental domain of the Γ-action
which we identify with M/F , and consider the saturated preimage T = Q−1(S) that
is a union of regular leaves without holonomy. Now let v ∈ νp(T ) be a normal vector
to T . Then every F -vertical Jacobi field along γv (cf. Section 2.2) is also a T -Jacobi
field along γv, i.e. W γv ⊂ ΛT , and similar arguments as in the proof of Theorem
2.3.1 can be used to see that the multiplicity of Q∗(v) as a focal vector of S in N is
the same as the difference of the multiplicity of v as a focal vector of T in M and
the number dim(F)− dim(Lγv(1)). Thus the following lemma is obtained along the
same lines as the proof of Theorem 2.3.1.
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Lemma 2.3.7. Let F be a closed singular Riemannian foliations on a complete
Riemannian manifold M , such that the space of leaves M/F is isometric to a quo-
tient N/Γ, where N is a Riemannian manifold and Γ ⊂ I(N) is a discrete group of
isometries. Let N0 ⊂ N denote a fundamental domain of the Γ-action and identify
N0

∼= M/F . Now assume that S ⊂ N is a taut submanifold that is completely
contained in the interior of N0. Then if Q : M → N0 denotes the projection, the
submanifold Q−1(S) is taut, too.

In the case where M = Rn+k is the standard Euclidean space and F is an n-
dimensional isoparametric foliation, i.e. the parallel foliation induced by an isopara-
metric submanifold L of dimension n, identify a section Σ with the Euclidean space
Rk. Then take a small taut submanifold S ⊂ Rk completely contained in the
interior of a Weyl chamber associated to the finite Coxeter group generated by
the reflections across the L-focal hyperplanes in Σ and consider the saturated set
T =

{
p ∈ Rn+k|Lp ∩ S 6= ∅

}
. Then, due to the last lemma, T is a taut submanifold

of Rn+k.
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Chapter 3

The Infinitesimally Polar Case

This last chapter is devoted to the generalization of Lemma 2.1.11 to infinitesimally
polar foliations. For the sake of completeness and for a better understanding we will
give a direct prove of the corresponding statement in this special case, without the
use of Theorem 2.3.1 (of course, otherwise it would be enough to observe that the
quotient of a taut foliation is developeable if it is an orbifold). For this reason, we
start with two introductional sections.

3.1 Riemannian Orbifolds

For our purpose, the concept of Riemannian orbifolds is closely related to a special
class of singular Riemannian foliations, namely those whose infinitesimal foliations
have sections. Let us recall that a singular Riemannian foliation (M, g,F) admits
sections if there exists a complete, immersed submanifold Σp through every regular
point p ∈M that meets every leaf and always orthogonally. It is not hard to see that
a section is totally geodesic in M . As an example, the set of orbits of a polar action
is a singular Riemannian foliation admitting sections. Motivated by this example
we also speak about polar foliations.

Singular Riemannian foliation with sections are well understood and were studied,
for example by Alexandrino and Töben. One nice feature of this class is that one
can canonically construct a blow up which has the same horizontal geometry (cf.
[T06]). In [L10] it is shown that the existence of such a geometric resolution of
a singular Riemannian foliation is equivalent to the fact that the foliation carries
at the infinitesimal level the information of a singular Riemannian foliation with
sections (see Section 3.2). Such foliations are called infinitesimally polar and were
first defined and discussed by Lytchak and Thorbergsson in [LT10].

Remark 3.1.1. Please note that the polar singular Riemannian foliations on a
Euclidean space are exactly the parallel foliations given by an isoparametric sub-
manifold, which we call isoparametric foliations for short.
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Definition 3.1.2. We call a singular Riemannian foliation F infinitesimally polar
if the induced singular Riemannian foliation Fp on the tangent space (TpM, gp) is
polar for every p ∈M , i.e. if Fh

p is polar for every p ∈M .

Example. As we have seen, the infinitesimal foliation Fp on the tangent space
TpM = TpMn−r × νp(Mn−r), where again Mn−r denotes the stratum through p
of points with fixed leaf dimension r = dim(Lp), splits as a product foliation
Fp = Fv

p × Fh
p . The foliation Fv

p is just the trivial foliation on TpMn−r = TpLp × Cp,
where Cp denotes the orthogonal complement of TpLp in TpMn−r, induced by the
projection onto the second factor TpLp×Cp → Cp. Now, if Σ is a section of Fh

p , then
Σ must contain the origin and Σ×Cp is a section of Fp through 0. Conversely, any
section of Fp through 0 is of this form and all the other sections are translates of
these. Therefore, Fp is polar if and only if Fh

p is polar. In particular, if F is given by
the orbits of an isometric group action, then F is infinitesimally polar if and only if
the isotropy representation at every point is polar.

Obviously, if ι : Σ → M is a section of F then dιp(TpΣ) is a section of Fι(p). Thus
a singular Riemannian foliation with sections is infinitesimally polar. Conversely,
in the general case a section Σ of Fp cannot be realized as the tangent space of a
local section, because this is equivalent to the fact that the horizontal distribution
given by H =

⋃
p∈M0

(TpLp)
⊥gp over the regular stratum is integrable, what, under

the assumption of completeness of M , is equivalent to existence of sections. A well
known example of an infinitesimally polar singular Riemannian foliation that is not
polar is given by the fibers of the Hopf fibration S1 ↪→ S3 → S2(1

2
).

Hence, the class of infinitesimally polar foliations is in fact larger than the class of
singular Riemannian foliations with sections. As we will see, this class of foliations
can be described in terms of the local quotient as exactly those singular Riemannian
foliations for which the local quotients are Riemannian orbifolds. We therefore pro-
ceed with a summary of basic facts about orbifolds, which can be found in [MM03]
and [ALR07].

Definition 3.1.3. Let B be a topological space. An orbifold chart of dimension k
on B is a triple (U,G, φ), where U is a connected open subset of Rk, G is a finite
subgroup of Diff(U) and φ : U → B is an open map which induces a homeomor-
phism U/G → φ(U). If (V,H, ψ) is another orbifold chart on B, an embedding
λ : (V,H, ψ) → (U,G, φ) between orbifold charts is an embedding λ : V → U such
that φ ◦ λ = ψ.

Lemma 3.1.4. Let M be a manifold and G a finite subgroup of Diff(M). For any
smooth map f : V → M defined on a non-empty open subset V of M , satisfying
f(p) ∈ Gp for each p ∈ V , there exist a unique g ∈ G such that f = g|V .

Let λ : (V,H, ψ) → (U,G, φ) be an embedding between orbifold charts. Then the
image λ(V ) is a G-stable open subset of U , so that for every h ∈ H there is a
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unique element λ̄(h) ∈ Gλ(V ) = {g ∈ G | g(λ(V )) = λ(V )} which extends the em-
bedding λ ◦h ◦λ−1 to U , by Lemma 3.1.4. Moreover, the so defined homomorphism
λ̄ : H → Gλ(V ) satisfying λ(hx) = λ̄(h)λ(x) is unique.

Lemma 3.1.5. The following statements hold true.

1. The composition of two embeddings between orbifold charts is an embedding
between orbifold charts.

2. For any orbifold chart (U,G, φ), any diffeomorphism g ∈ G defines an embed-
ding of (U,G, φ) into itself with ḡ(g′) = gg′g−1.

3. If λ, µ : (V,H, ψ) → (U,G, φ) are two embeddings between the same orbifold
charts, there exist a unique g ∈ G with λ = g ◦ µ.

Remark 3.1.6. Because of the identity Gg(p) = gGpg
−1 for the isotropy groups,

there is, up to an isomorphism, a well defined isotropy group for each point b ∈ φ(U).
Note that for an embedding λ : (U,G, φ) → (V,H, ψ) betwenn orbifold charts with
λ(p) = q we have λ̄(Gp) = Hq. Points with nontrivial isotropy group are called
singular, otherwise they are called regular.

Definition 3.1.7. We say that two orbifold charts (U,G, φ), (V,H, ψ) of dimension k
on B are compatible if for any z ∈ φ(U)∩ψ(V ) there exists an orbifold chart (W,K, ρ)
on B with z ∈ ρ(W ) together with two embeddings λ : (W,K, ρ) → (U,G, φ) and
µ : (W,K, ρ) → (V,H, ψ).

Definition 3.1.8. An orbifold atlas of dimension k of a topological space B is a
collection of pairwise compatible orbifold charts U = {(Ui, Gi, φi)}i∈I of dimension
k on B such that B =

⋃
i∈I φi(Ui). Two orbifold atlases of B are equivalent if their

union is an orbifold atlas. An orbifold of dimension k is a pair (B,U), where B is
a second countable Hausdorff topological space and U is a maximal orbifold atlas
of dimension k of B. If in addition B is a metric space and there is a Riemannian
metric on the Ui such that G ⊂ I(Ui) and the homeomorphisms Ui/Gi → φi(Ui) are
isometric, then we call B a Riemannian orbifold.

If the context is clear we often just speak about the orbifold B instead of (B,U),
keeping the additional structure in mind. But as the example of the teardrop, i.e.
the round 2-sphere with one cone point with cone angle π/n, shows, one should be
careful in doing so not to confuse the properties of the underlying space with those
of the orbifold.

Example. Let N be a Riemannian manifold and let Γ be a discrete subgroup of
isometries of N . Then local linearization of the action gives us a natural structure
of N/Γ as a Riemannian orbifold. We always think about global quotients as orb-
ifolds furnished with this structure.
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Definition 3.1.9. A covering orbifold of an orbifold (B,U) is an orbifold (B̃, Ũ),

with a map P : B̃ → B between the underlying spaces such that each point b ∈ B
has a neighborhood V = U/G for which each component Ṽi of P−1(V ) is isomorphic
to U/Gi for some subgroup Gi ⊂ G and such that the isomorphisms commute with
P .

It is well known that any orbifold admits a universal orbifold covering, i.e. for
a regular base point b0 ∈ B, there exists a pointed connected covering orbifold
P : B̃ → B with base point b̃0 projecting to b0 such that for any other covering
orbifold P ′ : B′ → B with base point b′0 and P ′(b′0) = b0, there is a lift Q : B̃ → B′

of P along P ′ to an orbifold covering. In particular, a universal orbifold covering is
regular in the sense that its group of deck transformations acts simply transitive on
a generic fiber. This group is denoted by πorb

1 and is called the orbifold fundamental
group.

Definition 3.1.10. An orbifold is called good if it is a global quotient or, equiv-
alently, if the universal covering orbifold is a manifold, i.e. there are no singular
points.

In the case of a Riemannian orbifold all the definitions are to be modified in the
obvious manner, so that we can speak about Riemannian orbifold coverings and
good Riemannian orbifolds. Of course, the statement about the universal orbifold
covering also holds in the Riemannian case.

Example. Again let N be a Riemannian manifold and let Γ be a discrete group of
isometries of N . If Ñ denotes the universal covering of N , then Ñ is the universal
Riemannian covering orbifold of N/Γ. This can be seen, for instance, by the obser-

vation that every covering orbifold of N/Γ has to be of the form Ñ/Γ̃′, where Γ̃′ is

a subgroup of the group Γ̃ of deck transformations of Ñ over N/Γ. Hence the two
definitions of a good orbifold are indeed equivalent.

Because we will use it frequently in the following, we will formulate the next obser-
vation as a lemma.

Lemma 3.1.11. Let F be a closed (regular) Riemannian foliation on a complete

Riemannian manifold M and let F̃ denote its lift to the universal Riemannian co-
vering M̃ of M . Then the quotient M̃/F̃ is a complete Riemannian manifold, i.e. F̃
is simple, if M/F is a good Riemannian orbifold. In particular, the orbifold covering

M̃/F̃ →M/F coincides with the universal Riemannian orbifold covering.

Proof. Since F is closed its lift F̃ is closed too (cf. Lemma 2.1.7), and the leaves

of F̃ admit global ε-tubes, because M̃ is complete. Due to [Hae88] or [Sal88], there

is a surjective homomorphism π1(M̃) → πorb
1 (M̃/F̃), where the latter group is the
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group of deck transformations of the universal orbifold covering of M̃/F̃ . Now, if

M/F is a good Riemannian orbifold, its branched cover M̃/F̃ is a good Riemannian

orbifold, too. But then πorb
1 (M̃/F̃) = 1 implies that M̃/F̃ already coincide with its

universal covering orbifold and is therefore a manifold.

Let B be a Riemannian orbifold. Then B is locally isometric to a finite quotient of
a smooth Riemannian manifold. Since tangent spaces and geodesics are invariant
under isometries, one gets corresponding notions on B. Namely, the tangent bundle
TB being a disjoint union TB =

⋃
b∈B TbB of spaces of directions, locally being

a finite quotient of the tangent bundle of a covering Riemannian manifold. This
tangent bundle comes along with a foot point projection π : TB → B, a locally
compact (quotient) topology and a local geodesic flow φ. For v ∈ TB, we set
ηv(t) = π(φt(v)), i.e. the curve ηv is locally the image of a geodesic in a Riemannian
manifold under the quotient map. We call ηv the orbifold-geodesic in direction v.

For each orbifold-geodesic ηv, the curvature endomorphism along ηv is well defined.
Therefore, the notions of Jacobi fields and conjugate points are also well-defined. Let
us now assume that B is complete as a metric space. Then each orbifold-geodesic is
defined on R and the local geodesic flow is a global flow. Denote by B0 the regular
stratum and note that B is stratified by Riemannian manifolds, where the unique
maximal stratum B0 is open and dense in B. Take a regular point b ∈ B0 and
consider the orbifold exponential map exp : TbB → B, given by exp(tv) = ηv(t).
This map (since defined in metric terms) factors over local branched covers of B, i.e.
for each w ∈ TbB there is a finite quotient N/Γw = O ⊂ B with exp(w) ∈ O, such
that exp lifts on a neighborhood of w to a smooth map to N . The vector w = tv is
a conjugate vector along the geodesic ηv if and only if this lift has a non-injective
differential at w. For a detailed discussion about orbifolds see [ALR07].

In [LT10]Lytchak and Thorbergsson proved the following

Theorem 3.1.12. Let F be a singular Riemannian foliation on a Riemannian man-
ifold M . Let p ∈ M be a point and let Fp be the infinitesimal singular Riemannian
foliation induced by F on the tangent space TpM . Then the following are equivalent:

1. The infinitesimal singular Riemannian foliation Fp is polar;

2. F is locally closed at p and a local quotient U/F of a neighborhood U of p is
a Riemannian orbifold.

In fact, in [LT10] it is shown that the statements above are equivalent to the non-
explosion of the curvature in the local quotients as one approaches a boundary point
p of M0.

Now assume (M, g,F) is a closed singular Riemannian foliation of dimension n on
a complete, simply connected manifold Mn+k and that F is infinitesimally polar.
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Let p be a point in M and let Fp be the infinitesimal foliation. Then Fp is an
isoparametric foliation on (TpM, gp). Let Σ ⊂ νp(Lp) be a section of Fp through
the origin. Then Σ is a totally geodesic submanifold of (TpM, gp), hence a linear
subspace which we can identify with Rk. Moreover, there is a finite Coxeter group
W p, generated by reflections on the focal hypersurfaces of a regular leaf of Fp such
that Σ/W p = TpM/Fp. In particular, Σ/W p is a Weyl chamber. Due to [LT10],
there is a metric hp on a ball Up around 0 in Σ such that each element of W p acts as
an isometry on (Up, h

p) and (Up, h
p)/W p is isometric to a neighborhood of the point

p̄ in the local quotient. Now assume that all regular leaves have trivial holonomy.
Then the local quotient can be identified with a neighborhood of p̄ ∈ B = M/F in
the global quotient (see proof of Theorem 1.6 in [L10]) and this construction yields
a collection U = {(Up, h

p,W p, φp)} of orbifold charts. In this case, the quotient
B = M/F is a Riemannian orbifold with the property that the local groups W p

are finite Coxeter groups. Such an orbifold is called Coxeter orbifold. Thus the
absence of holonomy on the regular part is a sufficient condition for B to be a Cox-
eter orbifold. That this is also necessary is one of the statements of the next theorem.

We refer to [L10] where Lytchak shows the following

Theorem 3.1.13. Let M be a complete, simply connected Riemannian manifold
and let F be a closed infinitesimally polar singular Riemannian foliation on M with
quotient B = M/F . Then the following are equivalent.

1. There are no exceptional leaves;

2. The regular part B0 = M0/F is a good orbifold;

3. The quotient B is a Coxeter orbifold;

4. All non-manifold points of the orbifold B are contained in the closure ∂B of
the stratum of codimension 1 points.

Example. Let (Mm, g) be a complete, simply connected Riemannian manifold with
a closed singular Riemannian foliation F of codimension 2 and M/F = S2/Γ. Then
F is infinitesimally polar and Γ is a finite Coxeter group. Further, F has no ex-
ceptional leaves by 3.1.13. Let L ∈ M/F be a point of codimension 2, i.e. a
corner. Take a point p ∈ Lm−k and consider the infinitesimal singular Riemannian
foliation Fh

p on (νp(L), gp). Since L has codimension 2 in M/F , the singular Rie-
mannian foliation Fh

p is the cone foliation over a singular Riemannian foliation of
codimension 1 on the unit sphere Sk−1 in νp(L). By a result of Münzner (see [Mü80],
[Mü81]), one has therefore Sk−1/Fh

p = Id for an interval Id of length |Id| = π/d with
d ∈ {1, 2, 3, 4, 6}, i.e. νp(L)/Fh

p is an open cone over Id with angle π/d. Note that to
obtain a local isometry between νp(L)/Fh

p and U/F for a neighborhood U around
p, indeed one has to change the metric on νp(L), but this has no influence on the
possible values of the angle, because the metrics coincide in 0. Now the finite to
one mapping U/F → M/F between the local and global quotient is given by the
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quotient (U/F)/W , where W is a group acting on U by isometries. But the absence
of exceptional leaves implies that W acts trivially, so that a neighborhood of L in
M/F is isometric to U/F . It follows by the known classification of S2/Γ that the
quotient M/F is either the whole sphere S2, the hemisphere S2/Z2, a sickle S2/Di

with i ∈ {2, 3, 4, 6}, or it is a spherical triangle with angles (π/n1, π/n2, π/n3) and
(n1, n2, n3) ∈ {(2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 2, 6), (2, 3, 3), (2, 3, 4)}

3.2 Geometric Resolution

In the last section we have seen how infinitesimally polar singular Riemannian folia-
tions can be described by means of their local quotients. In some sense, the quotient
M/F carries the whole information about the horizontal geometry of a singular Rie-
mannian foliation (M, g,F). So, if one is intrested in the horizontal geometry of
such a foliation, one is naturally lead to the question whether there is a regular
Riemannian foliation (M̂, ĝ, F̂) having the same horizontal geometry, because the
singular leaves are the main source of difficulties if one tries to understand the geo-
metric and topological properties of a singular foliation.

Example. In the standard picture of an isometric action of a Lie group G on a Rie-
mannian manifold M , one could ask if there exists another Riemannian manifold
(M̂, ĝ), canonically related to M , on which G acts by isometries in such a way that
all orbits of this action are regular. There are ways, known before, to resolve actions
preserving some information, but none preserving the transverse geometry.

Keeping the above example in mind, the following definition generalizes this setting.

Definition 3.2.1. Let F be a singular Riemannian foliation on a Riemannian
manifold (M, g). A geometric resolution of (M, g,F) is a smooth surjective map

F : M̂ → M from a Riemannian manifold (M̂, ĝ) with a regular foliation F̂ such

that the following holds true: For all smooth curves c in M̂ the transverse lengths
of c with respect to F̂ and of F (c) with respect to F coincide.

Remark 3.2.2. The transverse length of a smooth curve c : [a, b] → M is defined
as the length of the projection to local quotients

LT (c) =

∫ b

a

‖Pc(t)(ċ(t))‖dt,

where Pq : TqM → (TqLq)
⊥ =: Hq denotes the orthogonal projection. In particu-

lar, F , as in the definition of a geometric resolution, sends leaves of F̂ to leaves of
F , such a map is called foliated, and induces a length preserving map between the
quotients.
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As the main result in [L10] Lytchak proves

Theorem 3.2.3. Let (M, g) be a Riemannian manifold and let F be a singular
Riemannian foliation on M . Then (M,F) has a geometric resolution if and only
if F is infintesimally polar. If F is infinitesimally polar, then there is a canonical
resolution F : M̂ →M with the following properties

1. dim(M̂) = dim(M);

2. F induces a bijection between the spaces of leaves;

3. F |F−1(M0) : F−1(M0) →M0 is a diffeomorphism;

4. F is proper and 1-Lipschitz.

In particular, the resolution M̂ is compact or complete if M has the corresponding
property. The isometry group Γ of (M,F) acts by isometries on (M̂, F̂) and the map

F : M̂ →M is Γ-equivariant. If F is given by the orbits of a group G of isometries
of M , then G acts by isometries on M̂ , and F̂ is given by the orbits of G. If M
is complete, then the singular Riemannian foliation F has no horizontal conjugate
points if and only if F̂ has no horizontal conjugate points and f has sections if and
only if F̂ has sections.

For the notion of horizontal conjugate points see Section 2.2.

To get an idea what this canonical resolution is about let us consider some construc-
tions (cf. [L10]). For the rest of this section F always denotes an infinitesimally
polar singular Riemannian foliation of codimension k on a Riemannian manifold
(M, g).

Recall that the Grassmannian bundle Gk(M) of a given manifold Mn+k consists
fiberwise of the Grassmaniann manifolds

Gk(TpM) = {σ ⊂ TpM |σ is a k-plane}

of the k-dimensional linear subspaces of the tangent space TpM , that is to say
Gk(M) =

⋃
p∈M Gk(TpM). For a detailed discussion of the Grassmanian bundle

with its natural metric we refer the reader to [Wie08].

For a singular Riemannian foliation F of codimension k on M which has sections,
Boulam defined in [B93] the set

M̂ ′ = {TpΣ|Σ is a section through p}

of the Grassmannian bundle. Let P : M̂ ′ → M denote the restriction of the
canonical map Gk(M) → M . Boualem constructed a differentiable structure on
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M̂ ′ and showed that there is some Riemannian metric on N such that the partition
F̂ ′ = {P−1(L)|L ∈ F} becomes a regular Riemannian foliation on M̂ ′. The foliation

F̂ ′ is called the blow up of F .

In [T06] Töben proved this result again with another technique and gives the fol-
lowing amplification: If we denote by h the natural Riemannian metric on Gk(M)

and by ĝ′ = ι∗h the pull back on M̂ ′, then the pair (F̂ ′, F̂ ′⊥) is a bi-foliation on M̂ ′

with a Riemannian foliation F̂ ′ and totally geodesic foliation F̂ ′⊥.

Therefore, in some sense, the sections of F play the role of a global benchmark
and give rise to a resolution of the singularities. In [L10] Lytchak generalized this

construction replacing M̂ ′ by

M̂ = {Σ ⊂ TpM |Σ is a section of Fp through 0}

to infinitesimally polar singular Riemannian foliation. Thus what is really needed is
just the infinitesimal geometric information of a singular Riemannian foliation with
sections, but not the actual existence of sections.

Example. Consider the standard S1-action on M = R2 by rotation with its orbit
foliation F . In this case, the canonical resolution is just the subset

M̂ = {0} × RP 1 ∪
⋃

x∈R2

(x,R · x)

of the Riemannian product Gk(R2) = R2×RP 1 with the induced metric and the foli-

ation is given by F̂ = F ∗F , where F : M̂ → R2 is the projection onto the first factor.

By reasons of a detailed understanding, we follow [L10] and recapitulate the main

steps of Lytchak’s construction of M̂ .

Let V be a finite-dimensional real vector space with scalar products g and g+ and
let Ig,g+ : V → V be the linear map, defined by

g+(Ig,g+(v), w) = g(v, w) for all v, w ∈ T.

A quick calculation easily shows that for a linear subspace H of V we have the
identity H⊥g = (Ig,g+(H))⊥g+ and that the equality Ig,g+ ◦ Ig+,g = idV holds.

If M is a manifold with Riemannian metrics g and g+ we get a canonically defined
smooth bundle automorphism

Ig,g+ : TM → TM

and also a smooth bundle automorphism

Ig,g+ : Gk(M) → Gk(M)
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of the Grassmannian bundle, which we will denote by the same symbol.

Now, if F is a singular Riemannian foliation on M with respect to g and g+, the
map Ig,g+ satisfies Ig,g+(Hp(g)) = Hp(g

+) by construction, with Hp(h) = (TpLp)
⊥h

for h ∈ {g, g+}. In fact, since the tangent spaces of the leaves do not depent on the
adapted Riemannian metrics, we have

TpLp = (Hp(g))
⊥g = (Ig,g+(Hp(g)))

⊥g+ ⇐⇒
(TpLp)

⊥g+ = Hp(g
+) = Ig,g+(Hp(g)).

Definition 3.2.4. We define the subset M̂ ⊂ Gk(M) of the Grassmannian bundle
of k-planes to be

M̂ = {Σp|Σp is a section of Fp through 0} .

Remark 3.2.5. As we have seen, the infinitesimal foliation Fp on TpM is a singular
Riemannian foliation with respect to the flat metric gp of the same codimension as
F . Since any section is totally geodesic and the totally geodesic submanifolds of
Euclidean spaces are just the affine linear subspaces, every section of Fp through
the origin is a k-dimensional linear subspace of Hp and these sections are in 1:1-
correspondence with sections of Fh

p .

Assume that F is an infinitesimally polar singular Riemannian foliation with respect
to another Riemannian metric g+ and let M̂+ be defined as above with respect to
g+. Then it is not hard to see that the map Ig,g+ sends M̂ to M̂+.

For every point p ∈ M , we can pull back the flat metric gp via the foliated diffeo-
morphism φ : (U,F|U) → (φ(U),Fp|φ(U)) ⊂ (TpM,Fp) from Section 2.3. Since the
metric g+ = φ∗gp is adapted to F , we see that the foliation F is locally equivalent to
an isoparametric foliation on an open set of a Euclidean space. Therefore, after we
identify locally M̂+ = Ig,g+(M̂), using the results from [T06] we get a differentiable

structure for M̂ such that M̂ is an immersed submanifold of Gk(M), satisfying the

desired properties. Moreover, it is clear that F̂ = P ∗(F) is a regular foliation.

The main observation by Lytchak in order to define the distribution Ĥ normal to
T F̂ is that the assignment of a regular horizontal unit vector to the corresponding
section is a smooth submersion. Let us say some explaining words about that. Let
D0 ⊂ T 1M be the space of all regular horizontal unit vectors. Then D0 is a smooth,
injectively immersed submanifold of the unit tangent bundle T 1M that is invariant
under the geodesic flow. Recall that a horizontal vector v ∈ Hp is called regular
iff the geodesic starting in the direction of v contains at least one regular point. If
so, the set of singular points on this geodesic is discrete. Equivalently, one can say
that a vector v ∈ Hp is regular iff v is a regular point of the infinitesimal singular
Riemannian foliation Fp. If F is infinitesimally polar, then a horizontal vector v is
regular if and only if it is contained in exactly one section Σv of the isoparametric
foliation Fp. If we let m : D0 → M̂, v 7→ Σv, denote this map, the assertion is
that m is a smooth submersion. In particular, m has local sections and this is the
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observation Lytchak uses. Since the restriction to the preimage of the regular part
P |P−1(M0) : P−1(M0) → M0 is a diffeomorphism there is a smooth distribution Ĥ0

that is sent to the horizontal distribution H0 of F|M0 by P∗. Thus it remains to show
that this distribution can uniquely be extended. For the reason of understanding
we give the proof of [L10].

Lemma 3.2.6. There is a unique smooth k-dimensional distribution Ĥ on M̂ that
extends Ĥ0.

Proof. Since P−1(M0) is dense in M̂ , it is clear that if there exists such an extension,

then it is unique. Therefore, it remains to show that for each point Σ ∈ M̂ there
are k linearly independent smooth vector fields Vi defined on an open neighborhood
O of Σ such that the restriction of each Vi to O ∩ P−1(M0) is a section of Ĥ0.

Thus let Σ ∈ M̂ be given and let p = P (Σ) ∈M be the foot point of Σ. Let v ∈ TpM

be a regular horizontal unit vector contained in Σ. Since the map m : D0 → M̂ is
a smooth submersion, we find an open neighborhood O of Σ in M̂ and a smooth
section X : O → D0 with m ◦X = idO and X(Σ) = v.
There is a small interval I around 0 such that the map ξ̄ : O × I → D0, given by
ξ̄(Σ′, t) = ϕt(X(Σ′)), where ϕt denotes the restriction of the geodesic flow to D0, is
defined. Since ξ̄ is smooth, the composition ξ : O × I → O, given by ξ = m ◦ ξ̄, is
smooth, too. By construction, ξ satisfies ξ(Σ′, 0) = Σ′ for all Σ′ ∈ O and the map
V (Σ′) = d

dt

∣∣
t=0
ξ(Σ′, t) defines a smooth vector field on the open neighborhood O.

We have P (m(v)) = P (v) for all v ∈ D0, i.e. the map m commutes with the foot
point projections. Thus the projection of any ξ-trajectory to M is the projection of
the corresponding ξ̄-trajectory to M . Because of the fact that the ξ̄-trajectories are
flow lines of the geodesic flow, the ξ-trajectory of Σ′ ∈ O is sent by P to the regular
horizontal geodesic that starts at P (Σ′) in the direction of X(Σ′). In particular, we

deduce that the restriction of V to O∩P−1(M0) is a section of Ĥ0 with P∗(V (Σ)) = v.

Applying this construction to a basis v1, . . . , vk of Σ that consists of regular unit
vectors, we get k linearly independent smooth vector fields Vi as in the claim.

Finally, let h denote the canonical Riemannian metric on Gk(M) and also its re-

striction to M̂ . Then we define the Riemannian metric ĝ on M̂ uniquely by the
following three properties:

1. On T F̂ the metric ĝ coincides with the canonical metric h;

2. The distributions T F̂ and Ĥ are orthogonal with respect to ĝ;

3. On Ĥ the restriction of the differential P∗ to Ĥ induces an isometry between
ĤΣ and Σ ⊂ HP (Σ).

By construction, ĝ is a smooth Riemannian metric on M̂ . Moreover, if we identify
P−1(M0) and M0 the metric ĝ arises from the metric g by changing g only on TF .
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Therefore, F̂ is a Riemannian foliation on P−1(M0). Since P−1(M0) is dense in M̂ ,

the regular foliation F̂ is Riemannian on the whole manifold (M̂, ĝ).

Having the constructions of (M̂, ĝ), the foliation F̂ , and the distribution Ĥ in mind,
the properties stated in Theorem 3.2.3 are an immediate consequence.

3.3 Pointwise Taut Quotients

Coming so far, we now prove the announced result in the infinitesimally polar case.
Altough the analogous statement of Lemma 2.1.11 for arbitrary coefficient fields
might be false in the general case of a singular Riemannian foliation, we give an
affirmative answer in the Z2-case. We want to remind the reader once again that,
by our convention, taut always means Z2-taut.

Theorem 3.3.1. Let F be a closed singular Riemannian foliation on a complete
Riemannian manifold M . Then F is infinitesimally polar and taut if and only if
the quotient M/F is a good Riemannian orbifold with a pointwise taut universal
covering orbifold.

Unfortunately, there are examples of taut singular Riemannian foliations that are
not infinitesimally polar, already in the homogenous case. So there is no chance to
drop the condition of infinitesimal polarity in the theorem. However, since, due to
Lemma 2.1.5, the infinitesimal foliations are taut if the foliation is taut, it might be
possible to decide if a foliation is infinitesimally polar in particular cases.

In [GT03] Gorodski and Thorbergsson classified the taut irreducible representations
of compact Lie groups as either variationally complete and hence hyperpolar or as
one of the exeptional cases of cohomogeneity equal to three that are not polar. With
this result and Lemma 2.1.5 one easily obtain

Corollary 3.3.2. Let M be a complete Riemannian manifold with an action of a
closed subgroup G ⊂ I(M). Assume that for all p ∈ M the isotropy representation
of Gp on νp(G(p)) contains no irreducible factor equivalent to one of the following:

• (standard)⊗R (spin) : SO(2)× Spin(9) → O(32);

• (standard)⊗C (standard) : U(2)× Sp(n) → O(8n);

• (standard)3 ⊗H (standard) : SU(2)× Sp(n) → O(8n).

Then the partition FG into the orbits is infinitesimally polar. If, in addition, the
G-action on M is taut, the quotient M/G is developable with a pointwise Z2-taut
universal covering orbifold.
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With respect to Theorem 3.3.1 let us now formulate the following statement:

(S) F is taut and infinitesimally polar ⇔
M/F is a good Riemannian orbifold N/Γ and N is pointwise taut.

In order to discuss this, let us fix a setting. Throughout this section, M is always as-
sumed to be a complete, connected (n+ k)-dimensional Riemannian manifold with
a closed singular Riemannian foliation F of dimension n. If F is infinitesimally
polar, we will denote by F : (M̂, F̂) → (M,F) the canonical geometric resolution,
discussed in Section 3.2. Recall that F is infinitesimally polar iff it is locally without
horizontal conjugate points (see Section 2.2), e.g. if M/F is a Riemannian orbifold.
Since we already know that F is taut and infinitesimally polar iff its lift to the
universal covering of M is and the right hand side of (S) is, of course, equivalent
to the corresponding statement for this lift, we see that (S) is invariant under the
transition to the universal covering. Therefore, we can and will additionally assume
from now on that M is simply connected.

Assume that F is infinitesimally polar and let γ : I = [0, 1] → M be a horizontal
geodesic starting from a regular leaf L ∈ F to a point q ∈M . Then γ̇(t) is a regular

horizontal vector for all t ∈ I. Thus γ admits a lift γ̂ to M̂ given by γ̂(t) = Σγ̇(t),
where Σγ̇(t) is the unique section of Fγ(t) which contains γ̇(t) and by construction of

(M̂, F̂) it follows that γ̂ : I → M̂ is a horizontal geodesic. On the other hand, if

γ : I → M̂ is a horizontal geodesic, then F ◦γ : I →M is a horizontal geodesic, too.
Accordingly, if L is a regular leaf of F and q is a point in M and we set L̂ = F−1(L)
and choose a point q̂ ∈ F−1(q), we see that the induced map, which we still denote
by F ,

F : P(M̂, L̂× q̂) → P(M,L× q)

provides a bijective correspondence between the critical points of the respective
energy functionals. Further, if we let i(γ) be the index of γ as a critical point of Eq,
then ,as we have seen in Lemma 2.2.3 and in A.2.4, we have

i(γ) = ind
Λ

Lγ(0) (γ0)

= indW γ (γ0) + ind
Λ

Lγ(a)/W γ (γ0),

where as usual γ0 : (0, 1) →M denotes the subgeodesic.

Definition 3.3.3. We set v(γ) = indW γ (γ0), resp. h(γ) = ind
Λ

Lγ(a)/W γ (γ0) and call

this number the vertical index, resp. the horizontal index of γ.

In the case of a regular horizontal geodesic, we have seen in Section 2.2 that, ge-
ometrically, the vertical index coincides with the crossing number, i.e. counts the
intersection with the singular leaves (counted with their multiplicity) and that the
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horizontal index can be described in terms of conjugate points in the local devel-
opement of the quotient. Since F̂ is a regular foliation and the quotients M/F and

M̂/F̂ are isometric, we conclude that with the above notation i(γ̂) = h(γ).

Consider the following diagramm (D):

(M̃, F̃)
π //

eQ
��

(M̂, F̂)

bQ

����
��

��
��

��
��

��
��

��
�

F

��
M̃/F̃

P

&&NNNNNNNNNNN
(M,F)

Qxxppppppppppp

M/F = M̂/F̂

where π : M̃ → M̂ is the universal covering with F̃ = π∗(F̂) and Q, Q̂, Q̃ denote

the respective quotient maps and P : M̃/F̃ →M/F is the induced orbifold covering.

If M/F is a good Riemannian orbifold, it is a Coxeter orbifold, because M is as-

sumed to be simply connected. Then F is infinitesimally polar and M̃/F̃ , which
is an orbifold covering of M/F , is a good Coxeter orbifold, too. Thus, by Lemma

3.1.11, the map P : M̃/F̃ → M/F coincides with the universal orbifold covering

and the quotient M̃/F̃ is a manifold. In particular, the projection Q̃ : M̃ → M̃/F̃
is a Riemannian submersion between complete Riemannian manifolds. Moreover, if
M/F = N/Γ is a good Riemannian manifold with N pointwise taut, then M̃/F̃ is
pointwise taut. But in this case, by the discussion at the beginning of the previous
section, we conclude that F̃ and thus, by Lemma 2.1.7, F̂ is taut. Conversely, as-
sume that F̂ exists and is taut. Then F̃ is taut, too. But F̃ is a regular foliation on
a simply connected manifold and again, as in the proof of 2.1.11, tautness implies
that all leaves have trivial holonomy, i.e. M̃/F̃ is a complete Riemannian manifold

and Q̃ a Riemannian submersion. Hence, all points of M̃/F̃ have to be taut. We
conclude that if F is infinitesimally polar, the statement (S) is equivalent to the
following statement:

(S’) F is taut ⇐⇒ F̂ is taut.

Remark 3.3.4. Uncoupled from our geometric setting one could translate the state-
ments (S) and (S’) into an abstract one as follows. Let f : P → R be a Morse
function on a closed, finite-dimensional manifold and let K ⊂ P be a submanifold
which contains all the critical points of f and such that the gradient ∇f is tangent
to K along K, i.e. ∇f |K ∈ Γ(TK). Under which assumptions can one deduce
F-perfectness of f from F-perfectness of f |K or the other way round?

The fact that (S) holds for Z2-coefficients, but that without further assumptions
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there are counterexamples for the abstract problem, even in the Z2-case, and that it
is not at all clear how to give special conditions, at least for one implication, shows
the special geometry of our setting.

With the notation used in the diagram let M/F be a good Riemannian orbifold
with universal orbifold covering N and recall that, by our convention, M is always
assumed to be simply connected. Let p, q ∈ N be two regular points for the Γ-action
and let c : [0, 1] → N be a broken geodesic between p and q which intersects the
singular Γ-strata of N in finitely many times. Then the projection c̄ = P ◦ c of c
to M/F is a broken orbifold geodesic which intersects the singular orbifold strata
in exactly the same times. We can associate to such a broken geodesic a gener-
alized crossing number v(c) =

∑
t∈[0,1] dim(F) − dim(c̄(t)) that coincides with the

generalized version of the vertical index of a horizontal lift of c̄ to M and which
we therefore also denote by v. Since the dimension of the leaves is locally constant
along the strata in M/F we can associate to a stratum S of M/F a multiplicity
vS, which is just dim(F) − dim(L) for any L ∈ S. This function behaves additve,
i.e. if Si are strata with Sk =

⋂
i S̄i then vSk

=
∑

i vSi
, because this is true for

isoparametric foliations. The next lemma shows that we can extend this function
to the set of hypersurfaces H associated with the Γ-action, i.e. the supports of the
walls of a fixed chamber and their Γ-translates.

Lemma 3.3.5. If P : N → M/F denotes the orbifold covering map, the function
N → Z, p 7→ dim(P (p)), is constant on the set H \

⋃
H′∈H:H′ 6=H H

′.

Proof. Given a point p ∈ H, we fix a point p̃ ∈ P (p) in M . Then we can identify
a small ball U around p with a small ball V in a section Σ of the isoparametric
foliation Fp̃. Identify Σ ∼= TxL

⊥
x for a regular point x ∈ Σ, where Lx ∈ Fp̃ is the leaf

through x. Under this identifications, H ∩ U corresponds to the intersection of V
with a focal hyperplane in Σ. Since Fp̃ is the parallel foliation induced by the regular
leaf Lx, the claim follows from the slice theorem for isoparametric submanifolds (cf.
Section 6.5 of [PT88]).

The lemma ensures that we can associate to each element H ∈ H a multiplicity
vH which is just dim(F) − dim(P (p)) for a generic point p ∈ H, and the crossing
number v(c) as above counts the intersections of c with the singular Γ-strata with
respect to their multiplicities.

Definition 3.3.6. In the above setting, we call a path c ∈ H1([0, 1], N) transversal
to H if it intersects the Γ-singular strata in N discretely and if limt′↘t ċ(t

′) and
limt′↗t ċ(t

′) lie in the same chamber of the Γc(t)-action on Tc(t)N for all t ∈ [0, 1],
i.e. if for small ε, the points c(t − ε) and c(t + ε) lie on opposite sides of H for all
H ∈ H containing c(t).

Lemma 3.3.7. Let N be a complete, simply connected and pointwise taut Rieman-
nian manifold on which a reflection group Γ acts. Denote by H the set of reflection
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hyperplanes related to the Γ-action and associate to each element H ∈ H a num-
ber vH ∈ N. Extend this assignment to N by v(p) =

∑
H∈H:p∈H vH , what can be

done because the set of hyperplanes is locally finite. Then for every Γ-regular point
p ∈ N \

⋃
H∈HH, all the linking cycles ∆w with w ∈ TpN , as constructed in Theorem

1.3.1, consist of transversal broken geodesics and the assignment v : ∆w → N, given
by v(c) =

∑
t∈[0,1] v(c(t)), is constant on every cycle ∆w.

Proof. Since the Γ-hyperplanes are totally geodesic and each cycles ∆w consists of
broken geodesics, either an element c ∈ ∆w intersects H discretely or there exists a
hyperplane H ∈ H and two breaking points t0 < t1 such that c([t0, t1]) ⊂ H. In the
latter case, it follows that c(0) ∈ H because by construction c|[t2,t1](t) = expc(0)(tu)
for some t0 ≤ t2 < t1 and u ∈ Tc(0)N , so that c(0) = expc(0)(0) ∈ H. Thus, if
p ∈ N is a Γ-regular point, then every path in ∆w intersects H discretely for every
w ∈ TpN and we have to check the transversality condition only at the breaking
points of such paths. But if Cu ⊂ TpN is a kernel leaf with q = expp(Cu) ∈ H,
consider the smooth map ∂1 : Cu → TqN, ∂1(x) = (d expp)x(x). Then, due to our
construction of the cycles, the transversality condition is verified by the fact that,
with the same argument as before, ∂1(x) /∈ TqH and therefore the image ∂1(Cu) is
completely contained in one half of TqN \ TqH. Further, we have

v(c) =
∑

t∈[0,1]

v(c(t)) =
∑
H∈H

#{c−1(H)} · vH ,

so that v is constant if and only if c 7→ #{c−1(H)} is constant on ∆w for all H ∈ H.
Thus, the second claim follows by generalized transversality arguments. Namely, for
the continuous evaluation map e : ∆w×[0, 1] → N and the projection onto the second
factor, pr : ∆w × [0, 1] → ∆w, our transversality condition implies that the image
pr(e−1(H)) is open in ∆w for every reflection hyperplane H and that the function
∆w → Z, given by c 7→ #{c−1(H)}, is locally constant. Since, by compactness of
∆w, the image pr(e−1(H)) is always closed, we have pr(e−1(H)j) = ∆w for every
connected component e−1(H)j of e−1(H), so that the map e−1(H) → ∆w is a local
homeomorphism and the restriction of this map to each connected component is a
covering projection. In particular, the number

v(c) =
∑
H∈H

#{c−1(H)} · vH =
∑
H∈H

∑
j

#{(pr|e−1(H)j
)−1(c)} · vH

is constant on ∆w.

Corollary 3.3.8. If N is the universal orbifold covering of M/F and additionally
pointwise taut, then for generic points p ∈ N the generalized crossing number is
constant on each linking cycle ∆v with v ∈ TpN .

After this observations, which are needed in equal parts for our understanding of
the next proof and for further constructions, we are now able to state the first half
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of Theorem 3.3.1 from the beginning of this section.

Theorem 3.3.9. If F is a closed infinitesimally polar singular Riemannian folia-
tion on a complete Riemannian manifold M and F is F-taut, then M/F is a good
Riemannian orbifold with a pointwise taut universal covering orbifold. In particular,
F̂ is taut in this case.

Proof. As always we will assume that M is simply connected. Consider the above
diagram (D) with the notation used there. We first show that M/F is good by

showing that the Riemannian foliation F̃ on M̃ has no exceptional leaves. Let us
therefore assume that L̃ ∈ F̃ is a leaf with nontrivial holonomy. Then for a nearby
regular leaf L̃1 and a point q̃ ∈ L̃, the point q̃ is not a focal point of L̃1 and there are
at least two minimal horizontal geodesics γ1 and γ2 from L̃1 to q̃. These two minima
yield two 0-cells for the cell decomposition of P(M̃, L̃1 × q̃) induced by the energy

functional. But the latter space is connected since M̃ is simply connected, so that
there must be a critical point γ3 of index 1 in such a way that the corresponding
1 cell e1 satisfies ∂e1 6= 0. On the other hand, if we push down γ3 via F ◦ π, we
obtain a horizontal geodesic from the leaf L = F ◦ π(L̃1) to the point q = F ◦ π(q̃)

and after moving L̃1 slightly, we can assume that if γ3(t0) denotes the focal point
on γ3, the point F ◦ π(γ3(t0) does not lie on a singular leaf. Due to Theorem 2.8
of [TT97], the energy functional Eq : P(M,L × q) → R is a Morse Bott function
for every point q ∈ M , so that if we denote by γ the restriction F ◦ π ◦ γ3|[0,t0],
there exists a closed, connected 1-dimensional submanifold S of horizontal geodesics
parameterized on [0, t0] through γ, which start in L and end in γ(t0), all having the
same length as γ. If we concatenate the elements of S with the segment F ◦π◦γ3|[t0,1],
we get a one dimensional variation of F ◦ π ◦ γ3, which we can lift along F ◦ π to
a one dimensional variation S̃ of γ3 with constant energy. By the classification
of one dimensional manifolds, S̃ is the 1-sphere and therefore represents a linking
cycle for γ3 with respect to any field F, which is clearly a contradiction, because
this implies ∂e1 = 0. It follows that F̃ has trivial holonomy and therefore, M̃/F̃
is a complete Riemannian manifold, which is also simply connected by the exact
homotopy sequence. In particular, M̃/F̃ →M/F is the universal orbifold covering.

In order to prove that N = M̃/F̃ is pointwise taut we will deduce that for every
Γ-regular point p̃ ∈ N , the energy functional Eeq : P(N, p̃× q̃) → R is a Morse-Bott
function for all points q̃ ∈ N . This being the case, we then finish the proof with
Theorem 1.3.1 and Lemma 2.1.13.

So, let p̃, q̃ ∈ N be two points as above and consider a regular path space sublevel
P̃ b = P(N, p̃ × q̃)b = E−1eq ((−∞, b]). Let L denote the leaf P (p̃) ∈ F , fix a point

q ∈ P (q̃), and set P b = P(M,L× q)b. Using a common sufficiently fine subdivision
0 = t0 < t1 < · · · < tr < tr+1 = 1 of the interval [0, 1] as in Section A.2, we can regard

P̃ b(t1, . . . , tr) as a submanifold of P b(t1, . . . , tr) as follows. Recall that F : M̂ →M
restricted to the preimage of the regular part of M is a diffeomorphism and set
L̂ = F−1(L) and choose a point q̂ ∈ F−1(q). Let L̃ be the union of leaves π−1(L̂)
and fix a point q′ ∈ π−1(q̂). Then we can uniquely lift an absolutely continuous
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path that starts in p̃ and ends in q̃ to a horizontal absolutely continuous path
in M̃ of the same energy that starts in L̃ and ends in q′. Since lifting paths is a
continuous operation, this defines a continuous map between the corresponding path
spaces, which we can compose with the map on the path space levels induced by
F ◦ π to push down the paths to M . In this manner we obtain a continuous map
j : P̃ b → P b that restricts to an energy preserving smooth injective immersion on
the finite-dimensional approximations of the path spaces and therefore defines an
embedding j : P̃ b(t1, . . . , tr) → P b(t1, . . . , tr), because P̃ b(t1, . . . , tr) is compact. For

notational reasons, set X = P̃ b(t1, . . . , tr) and Y = P b(t1, . . . , tr). We will identify
X with its image j(X) which consists exactly of the F -liftable broken horizontal
geodesics in Y , i.e. those broken horizontal geodesics c ∈ Y such that limt↗ti ċ(t)
and limt↘ti ċ(t) lie in the same section of the isoparametric foliation Fc(ti) on Tc(ti)M
for all i. With this identification, we have that Eeq = Eq|X and from A.2 it follows
that the gradient of Eq is tangent to X along X. Thus, the critical points of Eeq are
exactly those of Eq lying in X and, as we have seen above, their indices as critical
points of Eeq are just their horizontal indices considered as critical points of Eq.

It is shown in [TT97] that under the assumption that F is taut, Eq is always a Morse-
Bott function. Now let γ ∈ X be a horizontal geodesic with index i(γ) = h(γ)+v(γ)
as a critical point of Eq, where as usual h(γ), resp. v(γ) denotes the horizontal index,
resp. vertical index of γ. Let n(γ) = h(1) + v(1) with v(1) = dim(F) − dim(Lq)
denote its nullity. Then h(1) is just the multiplicity of q̃ as a conjugate point of
p̃ along γ. Since Eq is a Morse-Bott function, the connected component of the
critical points containing γ is an n(γ)-dimensional closed manifold Z in E−1(E(γ))
through γ consisting of horizontal geodesics all of which having the same index
as γ. Moreover, for c ∈ Z, the tangent space TcZ consists of all L-Jacobi fields
along c which vanish in q and contains the v(1)-dimensional subspace of F -Jacobi
fields along c (cf. Section 2.2). Consider the smooth injective evaluation map
ẽ : Z → νq(Lq), ẽ(c) = ċ(1). Since L is a regular leaf, every tangent vector ċ(1)
lies in some regular leaf of the retsricted ioparametric foliation F1

q on νq(Lq). So
let l = dim(Lq) denote the dimension of the leaf through q and set Mn−l for the
connected component of the stratum of all l-dimensional leaves that contains the
point q. Then this foliation is a product foliation F1

q = F2
q × Fh

q on the orthogonal
product νq(Lq) = W × (TqMn−l)

⊥, where W is the orthogonal complement of TqLq

in TqMn−l (cf. Section 2.1) and F2
q is the trivial foliation of W by points. In

particular, every section Σ of Fq is of the form Σ = W × Σh for a section Σh of the
isoparametric main part Fh

q , the leaves of which through a point x we will denote
by Lx. Let pr2 : νq(Lq) → (TqMn−l)

⊥ be the orthogonal projection onto the second
factor and set e = pr2 ◦ ẽ : Z → (TqMn−l)

⊥. Then, due to our discussion in the proof
of Lemma 2.3.4, it is clear that for all c ∈ Z we have Tpr2(ċ(1))Lpr2(ċ(1)) ⊂ (de)c(TcZ),
what implies that (Z, e) is transversal to Σh

γ̇(1), where as always Σγ̇(1) = W × Σh
γ̇(1)

denotes the unique section of Fq that contains γ̇(1). By our description of the image
ofX in Y , we conclude that Z∩X = e−1(Σh

γ̇(1)) and that it is therefore a submanifold
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of Z of the same codimension as Σh
γ̇(1) in (TqMn−l)

⊥. Thus

dim(Fh
q ) + h(1)− dim(Z ∩X) = dim(F)− dim(Lq) + h(1)− dim(Z ∩X)

= v(1) + h(1)− dim(Z ∩X)

= dim(Z)− dim(Z ∩X)

= codim(Mn−l)− dim(Σh
γ̇(1))

= dim(Fh
q ) + dim(Σh

γ̇(1))− dim(Σh
γ̇(1))

= dim(Fh
q ),

so that as we expected

dim(Z ∩X) = h(1)

is just the multiplicity of q̃ as a conjugate point of p̃ along γ. This proves that Eeq is
also a Morse-Bott function in that case. The proof of the theorem now follows with
Theorem 1.3.1 and Lemma 2.1.13.

Remark 3.3.10. Of course, constancy of the vertical index on Z could also be de-
duced directly from the above setting from which one could obtain the Morse-Bott
property by regular value arguments using the splitting of the index along Z ∩ X
and the fact that the gradient of Eq is tangent to X along X.

For the rest of this section, we will now apply ourself to the remaining direction of
the statement (S), which is perhaps the more interesting one in view of applications.
Namely, we will show that a closed singular Riemannian foliation F on a complete
Riemannian manifold M is Z2-taut if the quotient M/F is good with a pointwise
taut orbifold covering.

Theorem 3.3.11. Let F be a closed singular Riemannian foliation on a complete
Riemannian manifold M such that M/F is a good Riemannian orbifold with a point-
wise taut universal covering orbifold. Then F is taut.

As already mentioned above, for the round sphere there is a well known cycle con-
struction for critical points of the energy functional (cf. p.95-96 of [Mi63]), what
shows that the sphere is pointwise taut. Now let G be one of the groups listed
in 3.3.2 acting on a Euclidean space V via the indicated representation. Then the
action induces an action of G on the unit sphere S(V ) and, by linearity, one easily
sees that FG is taut if and only if FG|S(V ) is taut. In all of these cases, the quotient
S(V )/FG|S(V ) is isometric to a spherical triangle S2/Γ with angles (π/2, π/2, π/n)
for n ∈ {2, 3} and multiplicities for the edges given by

(v1, v2, v3) ∈ {(1, 6, 7), (1, 2, dim(V )/2− 5), (dim(V )/2− 5, 1, 1)} .
In particular, as a special case of our result, we prove again that the orbit foliations
of the exceptional representations listed in Corollary 3.3.2 are taut. For more appli-
cations, we refer to the beginning of Section 2.1, where we have already discussed, as
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a special case of Theorem 2.3.1, the most common application examples of Theorem
3.3.11.

Let us now say some words about the proof of Theorem 3.3.11. Given a regular
horizontal geodesic γ, we will again construct a nice space ∆γ which is, in some
sense, the total space of a stratified fiber bundle over some ∆v, as constructed in the
last section, and consists of broken horizontal geodesics. The idea is the following.
Assume that M/F is a good Riemannian orbifold with a pointwise taut universal
covering orbifold N . Then a developement γ̃ of Q ◦ γ in this space is a geodesic
whose index coincides with the horizontal index of γ. Now, if v denotes the tangent
vector of γ̃ at 0, the space ∆v represents a linking cycle for γ̃, which we can push
down to M/F and define ∆γ to be the connected component that contains γ of the
set of all broken horizontal geodesics which start in Lγ(0) and end in γ(1) and whose
projection down to M/F lie in the image of ∆v. Since we know from Corollary
3.3.8 that the vertical index is constant on ∆v, this, together with Lemma 1.2.5,
would identify ∆γ as a linking cycle for γ if we could show that each fiber of ∆γ, i.e.
the subspace of broken horizontal geodesics c in ∆γ which are mapped down to the
same orbifold geodesic, is a compact manifold of dimension equal to the generalized
vertical index v(c). So this should be our first goal.

As in the first part of this section, we will assume that M is simply connected and we
continue with the notation used there, i.e. from diagramm (D). We also denote maps
on the occuring path spaces, which are induced by maps in the diagram by the same
symbols. Now again, by Lemma 3.1.11, the orbifold covering P : M̃/F̃ → M/F
coincides with the universal orbifold covering, so that we identify M̃/F̃ ∼= N . Let
L ∈ F be a regular leaf and let q ∈M be a regular point which is not a focal point
of L. Set L̂ = F−1(L), q̂ = F−1(q), L̃ = π−1(L̂), and fix a point q̃ ∈ π−1(q̂). If
γ ∈ P(M,L× q) is a critical point for the energy and γ̄ denotes the developement of

the orbifold geodesic Q◦γ in N , then by our convention γ̄ coincides with Q̃◦γ̃, where
γ̃ is the unique lift to M̃ which ends in q̃ of the horizontal geodesic γ̂ : [0, 1] → M̂ ,

given by γ̂(t) = Σγ̇(t), itself being the lift of γ to M̂ . Then γ̄ : [0, 1] → N is a geodesic

with γ̄(1) = Q̃(q̃) and γ̄(0) ∈ Q̃(L̃). Note that L̃ is a union of leaves. If v denotes
the initial tangent vector of γ̄, then, by assumption, the space ∆v, as constructed in
Theorem 1.3.1, represents a linking cycle for γ̄ as a critical point of index h(γ) for
the energy on P(N, γ̄(0)× γ̄(1)). We define ∆γ ⊂ P(M,L× q) to be the connected
component of the space of broken horizontal geodesics c with Q ◦ c = P ◦ d for some
d ∈ ∆v that contains γ. Then ∆γ is compact and we define for c ∈ ∆γ the compact
subset ∆γ(c) to be

∆γ(c) = Q−1(Q ◦ c) ∩∆γ = {d ∈ ∆γ|Q ◦ d = Q ◦ c}

and we call it the fiber through c. Now we can lift ∆v along Q̃ to horizontal bro-
ken geodesics in P(M̃, L̃ × q̃) and then push it down to P(M,L × q) via F ◦ π
to obtain a homeomorphic image of ∆v contained in ∆γ. To be more precise, the
image of ∆v under this map consists of all broken horizontal geodesics c ∈ ∆γ such
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that limt′↗t ċ(t
′) and limt′↘t ċ(t

′) lie in the same section of the infinitesimally polar
foliation Fc(t). For this reason, we will identify ∆v with its image in ∆γ.

Now each fiber intersects ∆v in a finite set and those intersections are encoded in
the Coxeter group Γ as some different word representations of a given element or,
equivalently, given some path in ∆v, as the finite number of possibilities to obtain
different broken geodesics in ∆v by reflections of its segments. Indeed each fiber
intersects ∆v in exactly one point. To see this, let us denote by

(M/F , L1, L2)
([0,1],{0},{1})

the space of continuous paths [0, 1] → M/F from L1 to L2 with the compact open
topology. Then we get a commutative diagram

∆v
� � /

P

((QQQQQQQQQQQQQQQ ∆γ

Q
��

(M/F , L, Lq)
([0,1],{0},{1})

that induces a homeomorphism

∆v/ ∼P
∼= ∆γ/ ∼Q,

where of course ∼R denotes the equivalence relation c ∼R d ⇔ R ◦ c = R ◦ d
for R ∈ {P,Q}. But, as we observed in Lemma 3.3.7, all the paths in ∆v are
transversal to the family H of Γ-hypersurfaces, so that we deduce that the map
P : ∆v → (M/F , L, Lq)

([0,1],{0},{1}) is injective. In particular, each fiber ∆γ(c) inter-
sects ∆v exactly once. Thus, ∆γ is the disjoint union

∆γ =
⋃

c∈∆v

∆γ(c).

Because one can show that in the infinitesimally polar case all the fibers are con-
nected, ∆γ is connected, too. We further obtain a retraction R : ∆γ → ∆v via
R(c) = ∆γ(c) ∩∆v.

Remark 3.3.12. Given a real number κ > 0, for generic points q, all the critical
points in P(M,L × q)κ intersect the singular stratum only in points with quotient
codimension one, i.e. the projected orbifold geodesics cross the singular orbifold
strata only in the codimension one strata. In this case, the proofs of Theorem 1.3.1
and Lemma 2.3.4 show that such a critical point γ has a manifold neighborhood in
∆γ of dimension i(γ) and that the tangent space Tγ∆γ splits as

Tγ∆γ = Tγ∆v ⊕ Tγ∆γ(γ),

the space Tγ∆v being the direct sum

Tγ∆v =
s⊕

j=1

(ΛL/W γ)j,
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where 0 < t1 < · · · < ts < 1 are the conjugate times along γ̄, that is to say the
ΛL/W γ-focal times along γ (cf. Section 2.2) and (ΛL/W γ)j is the vector space con-
sisting of continuous vector fields J along γ such that J |[0,tj ] ∈ (ΛL/W γ)|[0,tj ] and J
vanishes on [tj, 1]. In particular, due to our observations in Section A.2, using finite
dimensional approximations a neighborhood of γ in ∆γ can be deformed to coincide
locally with the descending cell in some Morse chart around γ.

Together with our genericity results from Section 2.1, the next lemma finishes the
proof of Theorem 3.3.11. Finally, combining Theorem 3.3.9 and Theorem 3.3.11, we
obtain Theorem 3.3.1.

Lemma 3.3.13. Let L be a regular leaf and let q ∈ M be a regular point. Then, if
γ ∈ P(M,L × q) is a critical point for the energy such that it crosses the singular
stratum only in quotient codimension one points, the space ∆γ, as defined above,
defines a linking cycle with respect to Z2-coefficients if q is not a focal point of L
along γ.

Proof. As in the proof of Theorem 1.3.1, by induction on the horizontal index, we
can assume that the 0-sheaf on ∆v has trivial cohomology. Then, as in Lemma 1.2.5,
the map R : ∆γ → ∆v gives rise to an explicit generator of the Čech chomology
group Ȟ i(γ)(∆γ) ∼= Z2, which is in the image of the map

Ȟ i(γ)(∆γ,∆γ \∆γ(γ)) → Ȟ i(γ)(∆γ).

Now, due to 3.3.12, we can choose a small manifold neighborhood U of γ in ∆v such
that

R−1(U) =
⋃
c∈U

∆γ(c)

is a manifold neighborhood of ∆γ(γ) of dimension h(γ) + v(γ) = i(γ). In this case,
we deduce by excision that the inclusion

(∆γ,∆γ \∆γ(γ)) ↪→ (∆γ,∆γ \ {γ})

induces an isomorphism

Ȟ i(γ)(∆γ,∆γ \ {γ}) → Ȟ i(γ)(∆γ,∆γ \∆γ(γ)).

If we set P = P(M,L× q) and denote by j : ∆γ ↪→ P the inclusion, then the map
j induces an isomorphism

Ȟ i(γ)(PE(γ),PE(γ) \ {γ}) → Ȟ i(γ)(∆γ,∆γ \ {γ}),
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by 3.3.12, so that the commutative diagram

Ȟ i(γ)(PE(γ))
j∗ // Ȟ i(γ)(∆γ)

Ȟ i(γ)(∆γ,∆γ \∆γ(γ))

∼=

OO

Ȟ i(γ)(PE(γ),PE(γ) \ {γ})

OO

∼= // Ȟ i(γ)(∆γ,∆γ \ {γ})

∼=

OO

shows that ∆γ indeed defines a linking cycle for the critical point γ.
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Appendix A

Path Spaces

A.1 The Energy Functional

We start this section with a brief discussion of the Hilbert manifold of H1-paths of
a complete Riemannian manifold (Mn, g). We refer the reader who is not familiar
with this setting to [Kl82],[Pa63].

Let c : I → M be a path in M , where I = [0, 1] is the unit interval. If we assume
that c is almost everywhere differentiable and that the time derivative ċ is square
integrable, then the energy integral

E(c) =

∫
I

‖ċ(t)‖2dt

of c is well defined. The largest class for which the energy integral make sense (for
all paths in this class) is the class of H1-paths, i.e. absolutely continuous paths
c : I →M with E(c) <∞. To be more precise, we recall that a path c : [a, b] → Rn

is called absolutely continuous if for every ε > 0 there exists a δ > 0 such that
a ≤ t0 < · · · < t2k+1 ≤ b and

∑k
i=0 |t2i+1−t2i| < δ imply

∑k
i=0 ‖c(t2i+1)−c(t2i)‖ < ε.

So, if c is absolutely continuous, then it is continuous and the time derivative is
defined almost everywhere. Moreover, H1(I,Rn) is exactly the completion of the
piecewise differentiable curves C ′∞(I,Rn) with respect to the norm obtained by the
scalar product

〈c1, c2〉 =

∫
I

〈c1(t), c2(t)〉 dt+

∫
I

〈ċ1(t), ċ2(t)〉 dt.

A path c : I →M is then called absolutely continuous if for every chart (U, φ) of M
with c−1(U) 6= ∅ and every closed intervall I ′ ⊂ c−1(U) the path φ ◦ c|I′ : I ′ → Rn

is absolutely continuous. If we denote the set of all paths in M of class H1 by
H1(I,M), we have the following canonical inclusions:

C ′∞(I,M) ↪→ H1(I,M) ↪→ C0(I,M),
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where C ′∞(I,M) denotes the set of all piecewise differentiable curves in M and
C0(I,M) is the space of continuous curves c : I → M endowed with the metric
d∞(c, c̃) = supt∈I d(c(t), c̃(t)). Moreover, it is not hard to see that C ′∞(I,M) is
dense in C0(I,M).

Now let c ∈ H1(I,M) be piecewise differentiable and consider the induced bundle
c∗(TM) over I. Let C ′∞(c∗TM) denote the vector space of piecewise differentiable
sections of c∗TM and let 〈·, ·〉1 be the scalar product on C ′∞(c∗TM) defined by

〈X, Y 〉1 =

∫
I

g(X(t), Y (t))dt+

∫
I

g(∇X(t),∇Y (t))dt.

By H1(c∗TM) we denote the completion of C ′∞(c∗TM) with respect to the induced
norm. As a standard result, there is a small open neighborhood O around the
zero section of the tangent bundle TM → M such that for every point p ∈ M the
exponential map of M restricted to Op = TpM ∩ O is a diffeomorphism onto its
image. Let Oc denote the preimage (c̄)−1(O), where c̄ is the canonical bundle map
over c. If we denote by H1(Oc) the set of all sections X ∈ H1(c∗TM) satisfying
X(t) ∈ Oc(t) for all t ∈ I, then H1(Oc) is an open subset of H1(c∗TM) and we get
an injective map ẽxpc : H1(Oc) → H1(I,M), with ẽxpc(X)(t) = expc(t) ◦c̄(X(t)).
Since I is contractible, the bundle c∗(TM) is trival. So H1(c∗TM) does not depend
on c and one easily check the differentiability of ẽxp−1

c ◦ ẽxpd, for c, d ∈ C ′∞(I,M) as
a map between open subsets of the Hilbert spaces H1(d∗TM) and H1(c∗TM). The
requirement that those charts are diffeomorphisms yields a differentiable structure
on H1(I,M) which turns H1(I,M) into a Hilbert manifold, locally modeled on
H1(I,Rn). In [Kl82] it is shown that the scalar product 〈·, ·〉1 on the tangent space
TcH

1(I,M) ∼= H1(c∗TM) for c ∈ C ′∞(I,M), as defined above, extends to a complete
Riemannian metric on the Hilbert manifold H1(I,M) which we still denote by 〈·, ·〉1.
Next consider the differentiable map e : H1(I,M) → M ×M which is defined by
e(c) = (c(0), c(1)), and let f : N → M ×M be a smooth map from a complete
Riemannian manifold N . Since e is a submersion the pull back of H1(I,M) to N
along f , which we denote by

Pf (M,N) = f ∗(H1(I,M)) =
{
(p, c) ∈ N ×H1(I,M)|f(p) = e(c)

}

is a complete submanifold of N × H1(I,M). In particular, if fi : Li → M are
immersed submanifolds of M and we set N = L0 × L1 and f = (f0, f1), the space
Pf (M,L0 × L1) is formed by tuples ((p0, p1), c) ∈ N ×H1(I,M) with fi(pi) = c(i)
and the tangent space T((p0,p1),c)Pf (M,L0 × L1) consists of H1-vector fields X(t)
along c(t) with X(i) ∈ (dfi)pi

(Tpi
Li) for i = 0, 1.
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Now consider the pull back diagram

N ×H1(I,M)
pr2

++WWWWWWWWWWWWWWWWWWWWWWW

pr1

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB

Pf (M,N)
5 U

hPPPPPPPPPPPP

f∗e

��

f̄
// H1(I,M)

e

��

E
// R

N
f
//M ×M

We get a smooth function on Pf (M,N) by the induced energy integral Ef = E ◦ f̄
whose critical points are characterized in [G73] as exactly those (p, γ) ∈ Pf (M,N)
such that the path γ : [0, 1] →M is a geodesic with (γ̇(0), γ̇(1)) ⊥ im(dfp).

As a main result in [GH91], Grove and Halperin prove the following theorem.

Theorem A.1.1. The energy integral Ef : Pf (M,N) → R satisfies Condition (C)
(cf. Section 1.1) if and only if dist ◦ f : N → R is proper.

Since we want to apply critical point theory in the special case induced by an im-
mersion i : L→M , i.e. N = L×{q} and f = (i, q) for a point q ∈M , the theorem
says that we have to focus our attention on proper immersions, because in this case
dist ◦ f is proper if and only if i is proper. Moreover, it is well known that Ef is a
Morse function if and only if q is not a focal point of L. If in addition i is injective,
i.e. i : L → M is a closed embedding, we will identify L with i(L) ⊂ M , drop the
reference to the map i and replace it by the reference to the point q, i.e. we just
write P(M,L× q) instead of P(i,q)(M,L).

For the rest of this section we will assume that L ⊂ M is a closed embedded sub-
manifold and refer to [Kl82] or [Sak96] for of the next propositions.

Proposition A.1.2. The energy functional Eq : P(M,L×q) → R is a differentiable
function, bounded below and satisfies Condition (C) with differential

1

2
(dEq)c(X) =−

∫ 1

0

g(∇ċ(t), X(t))dt+
k−1∑
i=1

g(ċ(t−i )− ċ(t+i ), X(ti))

− g(ċ(0), X(0)),

for every piecewise differentiable curve c such that the restriction c|[ti−1,ti] is smooth
for i = 1, . . . , k. The critical points of Eq are exactly the geodesics γ ∈ P(M,L× q)
parameterized proportional to arc length with γ̇(0) ⊥ Tγ(0)L.

The expression for dEq is also called the first variation formula. The second varia-
tion formula yields an analogous expression for the Hessian at a critcal point γ.
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Proposition A.1.3. The Hessian of Eq at a critical point γ is given by

1

2
H(Eq)(γ)(X,Y ) =

∫ 1

0

(g(∇X(t),∇Y (t))− g(R(X(t), γ̇(t))γ̇(t), Y (t)))dt

− g(Aγ̇(0)X(0), Y (0)),

where A denotes the shape operator of L, R denotes the curvature tensor, and
X, Y ∈ TγP(M,L× q) are piecewise differentiable vector fields along γ.

Remark A.1.4. If 0 = t0 < · · · < tk = 1 is a subdivision of [0, 1] such that X|[ti,ti+1]

is smooth, integration by parts together with the identity

d

dt
g(∇X, Y ) = g(∇2X, Y ) + g(∇X,∇Y )

yields

1

2
H(Eq)(γ)(X, Y ) =−

∫ 1

0

g(∇2X(t)−R(X(t), γ̇(t))γ̇(t), Y (t))dt

+
k−1∑
i=1

g(∇X(t−i )−∇X(t+i ), Y (ti))

− g(Aγ̇(0)X(0) +∇X(0), Y (0)).

These identities are formulated just for c ∈ C ′∞(I,M), respectively, for vector fields
X, Y ∈ C ′∞(γ∗TM). But C ′∞(I,M) is dense in H1(I,M) and C ′∞(γ∗TM) is dense
in H1(γ∗TM). Further, in [Kl82] it is shown that it is possible to extend the above
notions to P(M,L× q), resp. TP(M,L× q). Therefore, by an abuse of notation the
above equations hold for c ∈ H1(I,M), resp. tangent vectors X, Y ∈ TγP(M,L×q).
As a direct consequence we get

Proposition A.1.5. A tangent vector X ∈ TγP(M,L× q) belongs to the null space
of H(Eq)(γ) if and only if X is a Jacobi field along γ which satisfies the boundary
condition X(0) ∈ Tγ(0)L and ∇X(0) + Aγ̇(0)X(0) ∈ Tγ(0)L

⊥, i.e. X is an L-Jacobi
field along γ. In particular, Eq is a Morse function if and only if q is not a focal
point of L.

Note A.1.6. It is well known that the path space Pf (M,N) as defined above is
homotopy equivalent to the space Cf (M,N), which is the pull back via f of the
space C0(I,M) of continuous paths c : I → M endowed with the compact open
topology. Since we are only interested in the path space structure up to homotopy,
we will not distinguish these spaces in our notation during the discussion. If we use
topological methods, such as fibrations, we will implicitly deal with Cf (M,N) and
if we use differential geometric methods we really mean Pf (M,N).
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A.2 Finite-Dimensional Approximation

As we have seen in the last section, the path space P(M,L×q) carries the structure of
an infinite-dimensional Riemannian Hilbert manifold locally modelled on H1(I,Rn).
Therefore, we can use differential geometric methods for computations, e.g. the
energy functional is bounded below and satisfies Condition C, so we can use infinite-
dimensional critical point theory to get a picture of the topology of the CW-complex
P(M,L× q) for a generic point q ∈M . But in general it is more convenient to work
with another description of P(M,L× q) namely a finite-dimensional approximation
of the sub levels

P(M,L× q)d = {c ∈ P(M,L× q) | Eq(c) ≤ d} = E−1
q ((−∞, d])

and P(M,L × q)d− = E−1
q ((−∞, d)). This description is the aim of this section,

namely for every d > 0, we will construct a finite-dimensional manifold that is ho-
motopically equivalent to P(M,L × q)d− and consists of broken geodesics between
q and L of length less than

√
d.

Let (M, g) be a complete Riemannian manifold of dimension n and let ι : L → M
be a properly immersed submanifold. For simplicity, we will assume that ι is an
embedding and identify L ∼= ι(L) ⊂ M . We proceed on this assumption just to
make the notation easier. The following arguments hold true in the more general
setting of a proper immersion. For a point q ∈ M and a real number d ∈ R we set
P d = P(M,L× q)d2

, respectively P d− = P(M,L× q)d2
− for short.

As a basic result in differential geometry, there exists for any point p ∈ M an
ε > 0 and a small open neighborhood W of p such that for every point p′ ∈ W the
restricted exponential map expp′ |Bε(0) : Tp′M ⊃ Bε(0) → M is a diffeomorphism
onto its image with W ⊂ expp′(Bε(0)). In particular, every point p in M posses a
neighborhood W which is geodesically convex, in the sense that any two points in
W are joint by a unique minimal geodesic which has image totally contained in W .
Further, recall that by the Hopf-Rinow theorem completeness of (M, g) is equivalent
to the compactness of the closure of all distance balls Br(p). Therefore, given an
d > d(L, q) we can choose an r > 0 such that the following statements hold:

1. For any point p of the compact set Bd(q) the open distance ball Br(p) is
geodesically convex;

2. For the compact subset K = L ∩ Bd(q) of L, the normal exponential map
exp⊥ restricted to an open neighborhood of the normal r-tube defined by
Br(0K) =

{
v ∈ TpL

⊥|p ∈ K, ‖v‖ ≤ r
}

is a diffeomorphism onto its image.

After we have choosen such an r > 0 we fix a subdivision of the unit interval
0 = t0 < t1 < · · · < tk < tk+1 = 1 such that ti+1 − ti < r2/d2 for i = 0, . . . , k − 1.
Now we define the subset P d(t1, . . . , tk) of P d as

P d(t1, . . . , tk) = {c ∈ P d
∣∣c|[ti,ti+1]are minimal geodesics for 1 ≤ i ≤ k,

c|[t0,t1]is a minimal geodesic joining L to c(t1)}.
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The subset P d−(t1, . . . , tk) of P d− is defined analogously. By definition, for c ∈ P d,
we have d(c(t), q) ≤ L(c) ≤ d, i.e. c(t) ∈ Bd(q) for all t ∈ I and

d(c(ti), c(ti+1)) ≤ L(c|[ti,ti+1]) ≤
√

(ti+1 − ti)Eq(c) < r for i = 1, . . . , k − 1,

as well as d(L, c(t1)) < r. Thus, there exist unique minimal geodesics joining c(ti)
to c(ti+1) and L to c(t1), which together define a point in P d(t1, . . . , tk).

Proposition A.2.1. The subset P d(t1, . . . , tk) is a strong deformation retract of
P d. The deformation retraction H : P d × [0, 1] → P d is given by

H(c, s)(t) =

{
σi

s(t), ti ≤ t ≤ ti + s(ti+1 − ti),

c(t), ti + s(ti+1 − ti) ≤ t ≤ ti+1,

where σi
s denotes the unique minimal geodesic from c(ti) to c(ti + s(ti+1− ti)), from

L to c(t0 + s(t1 − t0)) when i = 0, respectively.

Proof. By the previous consideration H is well defined, i.e. Hs(P
d) ⊂ P d for all

s ∈ [0, 1]. Since H satisfies H0(c) = H(c, 0) = c, H1(P
d) ⊂ P d(t1, . . . , tk) and fixes

P d(t1, . . . , tk) pointwise, the only thing we need to show is continuity and this is
straight forward to check.

Having achieved this result as a first step, we will show that P d−(t1, . . . , tk) carries
the structure of a smooth manifold of dimension k ·n, where n denotes the dimension
of M . For this reason, consider the product Mk of k copies of M and the function
Ēq : Mk → R, given by

Ēq(p1, . . . , pk) =
d2(p1, L)

t1 − t0
+

k∑
i=1

d2(pi, pi+1)

ti+1 − ti
,

where we set q = pk+1. We define

Md
k =

{
(p1, . . . , pk) ∈Mk|Ēq(p1, . . . , pk) ≤ d2

}
and

Md−
k = Md

k \ Ē−1
q (d2).

The set Md−
k is open in Mk and, by construction, Ēq is a smooth function on Md−

k .
Thus for almost all d, i.e. for all non-critical values, Md

k is a submanifold of Mk

with boundary Ē−1
q (d2).

Now we define a bijective map Φ : Md
k → P d(t1, . . . , tk) by assigning a tuple

(p1, . . . , pk) ∈Md
k to the curve Φ(p1, . . . , pk) such that Φ(p1, . . . , pk)|[t0,t1] is the min-

imal geodesic from L to p1 and Φ(p1, . . . , pk)|[ti,ti+1] is the unique minimal geodesic
joining pi to pi+1.
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Proposition A.2.2. The space P d−(t1, . . . , tk) carries a unique smooth structure
such that the map Φ defined as above becomes a diffeomorphism and Eq is a proper
C∞ function on it.

As stated in the introduction to this section we are intrested in studying the topology
of the path space by means of Morse theory. The next lemma shows that it suf-
fices to consider the corresponding space of polygons. For a proof we refer to [Sak96].

Lemma A.2.3. With the notation introduced above we have

1. The tangent space of P d−(t1, . . . , tk) at c ∈ P d−(t1, . . . , tk) is given by

TcP
d−(t1, . . . , tk) = {Y ∈ TcP(M,L× q)

∣∣Y |[t0,t1] is an L-Jacobi field,

Y |[ti,ti+1] are Jacobi fields along c|[ti,ti+1]}.

2. γ ∈ P d−(t1, . . . , tk) is a critical point of Eq if and only if γ is an L×q-geodesic,
i.e. γ starts from L perpendicularly and ends at q.

3. If γ is a critical point of Eq and X, Y ∈ TγP
d−(t1, . . . , tk), then

1

2
H(E)(γ)(X, Y ) =

k∑
i=1

g(∇X(t−i )−∇X(t+i ), Y (ti)).

4. At a critical point γ of Eq, the null space of H(Eq)(γ)|(TγP d−(t1,...,tk))2 coincides
with the null space of H(Eq)(γ) that is given by

{Y ∈ TγP(M,L× q)|Y is an L-Jacobi field along γ with Y (1) = 0} .

Moreover, the index ind(γ) of the critical point γ is equal to the index of
H(Eq)(γ)|(TγP d−(t1,...,tk))2. In particular, ind(γ) is finite.

Finally, we give a geometric interpretation of the index of the energy functional, the
famous Morse index theorem, which can also be seen as a way to compute the index.

Theorem A.2.4. Let M be a Riemannian manifold and let L be a submanifold of
M . Let γ : [0, 1] → M be an L× q-geodesic, i.e. a geodesic from L to q emanating
perpendicularly from L. Denote by γ(t1), . . . , γ(tk) the (isolated) focal points of L
along γ|(0,1), ordered by 0 < t1 < · · · < tk < 1. Let µ(ti) be the multiplicity of γ(ti)
as a focal point of L along γ. Then

ind(γ) =
k∑

i=1

µ(ti).

A proof of this theorem can be found in almost any text book about Riemannian
geometry. The idea of the proof is the following. If γ(ti) is a L-focal point of multi-
plicity µ(ti), then there exist µ(ti) linearly independent L-Jacobi fields Y1, . . . , Yµ(ti)
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along γ|[0,ti] with Yj(ti) = 0, which are the variational fields of variations through
L-geodesics with length less than or equal to the length of γ|[0,ti]. If we extend the
Yj to broken Jacobi fields along γ by Yj|[ti,1] ≡ 0, we get vector spaces W (ti), which

we put together to obtain a vector space W =
⊕

iW (ti) of dimension
∑k

i=1 µ(ti).
After choosing d large and fixing a subdivision of [0, 1] that includes the ti, we get
an injective linear map G : W → TγP

d−(t1, . . . , tk).

Let V−, resp. V+ be the direct sum of eigenspaces corresponding to negative, resp.
non-negative eigenvalues of H(Eq)(γ)|(TγP d−(t1,...,tk))2 . Denote by

p− : TγP
d−(t1, . . . , tk) = V− ⊕ V+ → V−

the orthogonal projection. The observation thatH(Eq)(γ)(G(W (ti)), G(W (tj))) = 0
together with the last lemma ensures that p− ◦ G is injective. Because if not, we
can write G(Y ) = X = X− + X+ 6= 0 with p−(X) = 0, i.e. X = X+. Then we
have 0 = H(Eq)(γ)(X,X) = H(Eq)(γ)(X+, X+) ≥ 0. Since H(Eq)(γ) is positive
semidefinite on V+, it follows that X = X+ belongs to the null space of H(Eq)(γ)
and is therefore a smooth L-Jacobi field along γ with X(1) = 0. But because of
X(1) = ∇X(1) = 0, we then have X = 0, what is a contradiction. The proof of the
fact that p− ◦G is also surjective is somewhat more difficult but similar.
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