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Tag der mündlichen Prüfung: 11. November 2011



Abstract

Pricing high-dimensional American-style derivatives is still a challenging task, as the complexity

of numerical methods for solving the underlying mathematical problem rapidly grows with the

number of uncertain factors. We tackle the problem of developing efficient algorithms for valuing

these complex financial products in two ways. In the first part of this thesis we extend the

important class of regression-based Monte Carlo methods by our Robust Regression Monte Carlo

(RRM) method. The key idea of our proposed approach is to fit the continuation value at every

exercise date by robust regression rather than by ordinary least squares; we are able to get a more

accurate approximation of the continuation value due to taking outliers in the cross-sectional

data into account. In order to guarantee an efficient implementation of our RRM method, we

suggest a new Newton-Raphson-based solver for robust regression with very good numerical

properties. We use techniques of the statistical learning theory to prove the convergence of our

RRM estimator. To test the numerical efficiency of our method, we price Bermudan options

on up to thirty assets. It turns out that our RRM approach shows a remarkable convergence

behavior; we get speed-up factors of up to over four compared with the state-of-the-art Least

Squares Monte Carlo (LSM) method proposed by Longstaff and Schwartz (2001). In the second

part of this thesis we focus our attention on variance reduction techniques. At first, we propose

a change of drift technique to drive paths in regions which are more important for variance and

discuss an efficient implementation of our approach. Regression-based Monte Carlo methods

might be combined with the Andersen-Broadie (AB) method (2004) for calculating lower and

upper bounds for the true option value; we extend our ideas to the AB approach and our

technique leads to speed-up factors of up to over twenty. Secondly, we research the effect of

using quasi-Monte Carlo techniques for producing lower and upper bounds by the AB approach

combined with the LSM method and our RRM method. In our study, efficiency has high priority

and we are able to accelerate the calculation of bounds by factors of up to twenty. Moreover, we

suggest some simple but yet powerful acceleration techniques; we research the effect of replacing

the double precision procedure for the exponential function and introduce a modified version

of the AB approach. We conclude this thesis by combining the most promising approaches

proposed in this thesis, and, compared with the state-of-the-art AB method combined with

the LSM method, it turns out that our ultimate algorithm shows a remarkable performance;

speed-up factors of up to over sixty are quite possible.

Key words: American options; Bermudan options; Monte Carlo simulation; multiple state vari-

ables; regression-based Monte Carlo methods; outliers; Newton-Raphson method; dual methods;

variance reduction; quasi-Monte Carlo; importance sampling; stochastic approximation.



Zusammenfassung

Die Bewertung von höherdimensionalen amerikanischen Derivaten zählt nach wie vor zu den

faszinierendsten und anspruchvollsten Thematiken auf dem Gebiet der numerischen Finanzmath-

ematik. Die Schwierigkeit liegt insbesondere darin, dass mit wachsender Anzahl an unsicheren

Faktoren auch die Komplexität der numerischen Methoden, die zur Lösung herangezogen wer-

den, rapide ansteigt. Um dieses Problem zu bewältigen, haben wir uns zum Ziel gesetzt, effiziente

Algorithmen zur Bewertung dieser komplexen Finanzprodukte zu entwickeln. Dabei werden zwei

Herangehensweisen gewählt. Zum einen erweitern wir die bedeutende Klasse regressionsbasierter

Monte-Carlo Methoden um unsere eigens konzipierte Robuste-Regression-Monte-Carlo (RRM)

Methode. Kernidee dieses Ansatzes ist es, den Haltewert zu jedem Ausübungszeitpunkt mit-

tels Robuster Regression anstelle der Methode der kleinsten Quadrate anzupassen. Dadurch

erzielen wir eine präzisere Approximation des Haltewerts, da die Verwendung von Robuster

Regression Ausreißer mit in Betracht zieht. Um eine effiziente Implementierung der RRM Meth-

ode gewährleisten zu können, empfehlen wir einen neuartigen Newton-Raphson-basierten Löser

für die Robuste Regression, der über wünschenswerte numerische Eigenschaften verfügt. Zur

Überprüfung der Konvergenz unseres RRM Schätzers kommen Techniken der Statistischen Lern-

theorie zum Einsatz. Um die numerische Effizienz unserer Methode zu testen, bewerten wir

Bermuda-Optionen auf bis zu 30 Assets. Es stellt sich heraus, dass unser RRM Ansatz ein be-

merkenswertes Konvergenzverhalten zeigt. Der Vergleich unserer Methode mit der in der Praxis

fest etablierten Least-Squares-Monte-Carlo (LSM) Methode von Longstaff und Schwartz (2001)

liefert uns Speed-Up-Faktoren der Größe vier und höher. Des Weiteren beschäftigen wir uns in

der vorliegenden Arbeit mit der Thematik der Varianzreduktion. Wir entwickeln eine Technik

für den Driftwechsel, um Pfade in für die Varianz begünstigte Regionen umzulenken. Zusätzlich

diskutieren wir die effiziente Implementierung dieser Technik. Zur Berechnung von oberen und

unteren Schranken für den wahren Optionswert können regressionsbasierte Monte-Carlo Metho-

den mit der Andersen-Broadie (AB) Methode (2004) kombiniert werden. Durch die Erweiterung

unseres Ansatzes auf eben diesen AB Ansatz lässt sich die Konvergenz um einen Faktor größer

20 beschleunigen. Zusätzlich analysieren wir die Auswirkungen von Quasi-Monte-Carlo Tech-

niken bei der Berechnung oberer und unterer Schranken mittels der Kombination des AB und

des LSM Ansatzes sowie unseres RRM Ansatzes. Der effizienten Implementierung messen wir

wiederum oberste Priorität bei. Als Resultat erhalten wir eine bis zu 20-fache Beschleunigung

der Berechnung der Schranken. Des Weiteren wenden wir einfache, allerdings äußerst effektive

Techniken zur Konvergenzbeschleunigung an, insbesondere schlagen wir eine modifizierte Ver-

sion des AB Ansatzes vor. Abschließend kombinieren wir eine Vielzahl der im Rahmen dieser

Arbeit vorgeschlagenen Ansätze und vergleichen die Resultate mit denen der bekannten AB -

in Kombination mit der LSM - Methode. Der finale Algorithmus zeigt eine außerordentliche

Performance - Speed-Up-Faktoren der Größe 60 und höher sind durchaus erzielbar.
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Audrey Laude, LEO, Université d’Orléans, Orléans, France, for our successful joint work

on real option pricing [87]. I would like to address special thanks to Anna Mischor for

support in any kind. Several parts of this thesis were presented at numerous workshops

and conferences, including presentations at the DMV Jahrestagung (September 2011),

Cologne, Germany, the Amsterdam-Cologne Workshop on Computational Finance (March

2011), Amsterdam, The Netherlands, the SIAM Conference on Financial Mathematics and

Engineering (November 2010), San Francisco, California, USA, the 6th World Congress

of the Bachelier Finance Society (June 2010), Toronto, Canada, the 10th MathFinance

Conference on Derivatives and Risk Management in Theory and Practice (March 2010),

Frankfurt, Germany, the 2nd SMAI European Summer School on Financial Mathematics

(August 2009), Paris, France, the 23rd European Conference on Operational Research

(July 2009), Bonn, Germany, and several seminars. I would like to thank participants for

helpful comments and fruitful discussions. Last but not least, I am grateful to SIAM for

financial support to travel to the 2010 SIAM Conference on Financial Mathematics and

Engineering in San Francisco, California, USA, and to Fintegral for sponsoring the Best

Poster Award at the 10th MathFinance Conference on Derivatives and Risk Management

in Theory and Practice (March 2010), Frankfurt, Germany. Owing to the high demand

and the fast-moving research field, I have already submitted the approach proposed in

Chapter 3 as a research article [75] to the SIAM Journal of Financial Mathematics.



Chapter 1

Introduction

A fast growing complexity of financial markets has made financial mathematics and

engineering to be a vital field for researchers and practitioners. Financial instruments

with an early exercise feature are in great demand, and, therefore, a couple of research

has been spent on pricing American-style derivatives. Bringing more complex financial

instruments to market presupposes the ability to value and hedge them. The underlying

financial model drives the dimension of the mathematical problem; not also the number

of assets determines the complexity but also multiple parameters of uncertainty, e.g.,

stochastic volatility and jump components motivated by empirical evidence.

Options on one or two factors of uncertainty with an early exercise feature can be priced

with standard numerical methods; for instance, the Binomial tree [35] can be extended to

more complex models, see [19], [20], [66], [116], [104] and [83]. There exists a wide range

of well-working numerical pricing methods in lower dimensions, an overview is given in

[117]. Penalty methods for pricing options in low-factor models have been suggested in

[49], [52], [103], among others. Another alternative is to adapt numerical methods to

parallel computing. Such a parallel method based on fast Fourier transform and sparse

grids for valuing multi-asset options has been presented in [90]. If we focus our attention

on multi-factor models, all these numerical methods seem to loose their strength with

increasing dimension such that they become unfeasible. Therefore, in recent years Monte

Carlo methods have become more and more attractive for practice due to their flexibility.

In 1977 Boyle pioneered the valuation of European claims with Monte Carlo in [18].

Let us provide an insight into the rich history of Monte Carlo solvers for pricing financial

products with an early-exercise feature; we refer to [58] for a wider overview. Boessarts

and Tilley pioneered Monte Carlo methods for pricing American-style options in [16]

and [124], respectively. Broadie and Glasserman proposed a random tree method in

[24] to generate lower and upper biased estimators as well as resulting valid confidence
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intervals for the true option value. The computational complexity of their method

grows exponential in the number of exercise dates, but not in the underlying dimension.

Furthermore, they introduced the well-known Stochastic Mesh method with linear

complexity in the number of exercise dates and quadratic complexity in the number

of simulated paths of the underlying Markov process. Methods based on partitioning

the state-space have been proposed in [9] and [8]. All these methods approximate the

optimal stopping problem for the value of an American-style option by using the dynamic

programming principle. Another ansatz is the parameterization of the early exercise

rule leading to finite-dimensional optimization problems, see e.g. [54], [3], [55], [72]. The

idea of regression-based Monte Carlo methods is the fitting of the continuation value

to the cross-sectional information provided by the simulated paths of the underlying

model. The approaches by Tilley [124] and Carrière [28] are cornerstones for this class of

methods; refinements are proposed in [29], [125] and [126]. A breakthrough with respect

to practical applications was achieved by Longstaff and Schwartz in [91]. The success of

their Least Squares Monte Carlo (LSM) method can be attributed to the reformulation

of the dynamic programming principle in terms of the optimal stopping time rather than

in terms of the value process. The LSM method plays a leading role in this thesis, as it

is often the method of choice for practitioners. Based on an approximation of the early

exercise strategy, a vital extension of Monte Carlo approaches for American-style options

are duality approaches, as they are able to produce lower and upper bounds as well as

resulting confidence intervals, see [64] and [114]. The Andersen-Broadie (AB) approach

[4] also belongs to the class of duality approaches, and, combined with the LSM method,

it is implemented in many running option pricing systems in practice. Currently, two

hybrid methods have been proposed: a finite-difference type method combined with

Monte Carlo techniques and a stochastic grid method involving several techniques of

different Monte Carlo approaches mentioned above have been introduced in [12] and [73],

respectively.

The slow probabilistic convergence of Monte Carlo estimators motivates for spending

more effort in variance reduction techniques. Antithetic variates, control variates and

importance sampling are approaches for increasing efficiency, see [58] for a general

treatment. Especially, on the basis of the LSM method, control variate approaches have

been proposed in [47] and [23]. Another way to accelerate convergence is to work with

quasi-random numbers rather than with pseudo-random numbers. Paskov and Traub

[109] pioneered the use of sequences with low discrepancy by evaluating 360-dimensional

integrals arising from a collateralized mortgage obligation with great success. A number

of researchers investigated the effect of quasi-Monte Carlo techniques for pricing financial

derivatives, see [78], [1], among others; we refer to Niederreiter [101] for a brief survey.

The common believe is that theoretical error bounds on quasi-Monte Carlo integration



1 Introduction 3

are often too pessimistic and the use of quasi-random numbers leads to significant

convergence improvements; the benefit can be explained by the concept of effective

dimension introduced by Caflisch et al. [27]. We refer the interested reader to the technical

review article by L’Ecuyer [88]. Chaudhary [31] studied the effect of running the LSM

method with quasi-random numbers by pricing options on up to four assets; we could

not confirm the success of using sequences with low discrepancy for higher dimensions

in our study [76]. Needless to mention, the underlying pseudo-random number generator

plays a crucial role in a comparative study.

This thesis aims at developing new algorithms for the efficient pricing of multi-asset

options with an early exercise feature. In so doing, speed and accuracy have high priority

and, therefore, we discuss efficient implementations of our proposed approaches. To

achieve this objective, we proceed as follows:

In Chapter 2 we introduce this thesis by constructing a mathematical framework for

pricing American-style derivatives. After considering the optimal stopping problem in

Section 2.1, we give a brief overview of regression-based Monte Carlo methods in Section

2.2. The body of this thesis is organized as follows: In the first main part, Chapter 3,

we extend the class of regression-based Monte Carlo methods, and, to do so, we present

our Robust Regression Monte Carlo (RRM) method in Section 3.1. Our method is based

on the dynamic programming principle in terms of the optimal stopping time, and,

additionally, it can be interpreted as a modification of the state-of-the-art LSM method.

The key idea of our approach is to take outliers into account during the approximation

process of the continuation value. To guarantee an efficient implementation, we propose

a new Newton-Raphson-based solver for robust regression in Section 3.2. Techniques of

the statistical learning theory enable us to prove the convergence of our RRM estimator

in Section 3.3. In order to test the performance of our proposed approach, in Section

3.4 we focus our attention on numerical experiments and price some Bermudan-style

options; a comparative study with respect to the LSM method is given and we run our

RRM method with the AB approach. In the second main part of this thesis, Chapter

4, we focus our attention on techniques for improving convergence. At first, we propose

a variance reduction technique via importance sampling in Section 4.1. The key idea

of our approach is to drive paths in regions which are more important for variance.

We introduce our change of drift technique in Subsection 4.1.1 and discuss an efficient

implementation in Subsection 4.1.2. Before we conclude this section by investigating

the numerical performance of our proposed approach in Subsection 4.1.4, we show the

extension to the vital class of dual methods in Subsection 4.1.3. In addition to our change

of drift technique for accelerating convergence, we study the use of quasi-random numbers

in Section 4.2. By doing so, we consider sequences with low discrepancy in Subsection

4.2.1. For practical purposes, we briefly discuss the randomization of deterministic point
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sets and extend the ideas to the AB approach. As sequences with low discrepancy lose

their high quality in higher dimensions, dimensionality reduction techniques might be

implemented to overcome this deficiency; these tools are the issue of Subsection 4.2.3.

Finally, in Subsection 4.2.4 we investigate the effect of using randomized sequences with

low discrepancy for the AB approach combined with the LSM method and our RRM

method. In the last section of this chapter, Section 4.3, we propose some simple but

yet powerful techniques for further efficiency increases. Moreover, we use this Section to

combine all proposed approaches in this thesis and give an ultimate recommendation for

pricing high-dimensional options with an early exercise feature. In Chapter 5 we sum up

this thesis and discuss some further possible areas of research.

Computer hardware and software

All our codes are implemented in Java and we work with CPU time ratios to manage a

comparative speed-accuracy study; the experiments are run on an Intel R© Xeon R© X5570

(2.93 GHz).



Chapter 2

Mathematical Framework

To start with, we focus our attention on the optimal stopping problem for pricing financial

derivatives with an early exercise feature in Section 2.1. As mentioned in the introduction,

Monte Carlo approaches using regression for approximating the continuation value are a

cornerstone for this thesis, and, therefore, we review this class of methods in Section 2.2.

2.1 Optimal Stopping Problem

Before we study the pricing of American-style options with a finite maturity date T , we

shall make some assumptions:

(A1) (Ω,F , P̃ ) is a complete probability space, where the time horizon [0, T ] is finite and

F = {Ft|0 ≤ t ≤ T} is the filtration with the σ-Algebra Ft at time date t.

(A2) There are no arbitrage opportunities in the markets and the markets are complete.

This implies the existence of a unique martingale measure P , which is equivalent to

P̃ .

The underlying of the options to be priced as well as the riskless investment opportunity

in the asset market of our economy are specified by the following two assumptions:

(A3) Bt denotes the value at time t of 1 money unit invested in a riskless money market

account at time date t = 0, i.e. Bt is described by

dBt = rtBtdt, B0 = 1,

where rt is the risk-free interest rate at time t. Then, Ds,t denotes the discount factor

given by

Ds,t = Bs/Bt, s, t ∈ [0, T ].
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Option type Call Put

Maximum (Max) (max(S1, . . . , SD)−K)+ (K-max(S1, . . . , SD))+

Minimum (Min) (min(S1, . . . , SD)−K)+ (K-min(S1, . . . , SD))+

Geometric average ((
∏D

d=1 S
d)1/D −K)+ (K − (

∏D
d=1 S

d)1/D)+

Arithmetic average ( 1
D

∑D
d=1 S

d −K)+ (K − 1
D

∑D
d=1 S

d)+

Table 2.1: Several payoffs of multi-asset call and put options; Sd and (x)+ denote the

value of asset d, d = 1, ..., D, and max(0, x), respectively.

In the special case of a constant risk-free rate r, we have

Bt = ert and Ds,t = e−r(t−s).

(A4) The risky underlying assets or state variables of the underlying model are supposed

to follow a R
D-valued Markov process (St)0≤t≤T , where S0 is assumed to be known.

For the expectation conditional on the information available until time date t notify that

we have E[·|Ft] = E[·|St] due to (A4). Moreover, we reduce the valuation of American

options to the valuation of Bermudan options, i.e. to options admitting a finite set of

exercise opportunities:

(A5) The option can be exercised at L + 1 time points, 0 = t0 < t1 < ... < tL = T , with

a constant time step width of △t = T/L.

This assumption should be seen as nonrestrictive, as the price of an American option can

be calculated by increasing the number of time steps. In the following we use the short

notation El[·] = E[·|Stl ]. Based on these assumptions, in 1984 Bensoussan proved that the

fair price of an American or Bermudan option at time t0 is given by

sup
τ∈T0,L

E0[D0,τZτ ], (2.1)

where T0,L is the set of all stopping times with values in {0, ..., L} and (Zl)0≤l≤L is an

adapted payoff process, see [11]. Some typical payoffs of multi-asset options with strike

K are listed in Table 2.1, and Figure 2.1 shows the payoffs of a Max call option and

an arithmetic average call option on two assets. A natural ansatz to solve the optimal

stopping problem (2.1) is given by the dynamic programming principle (DPP) in terms

of the value process (Vl)0≤l≤L itself:

VL = ZL (2.2)

Vl = max{Zl,El[Dl,l+1Vl+1]}, l = L− 1, ..., 0; (2.3)
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Figure 2.1: Left panel shows the payoff of a Max call option and right panel shows the

payoff of an arithmetic average call option on two assets.

(D0,lVl)0≤l≤L is the smallest supermartingale dominating the sequence (D0,lZl)0≤l≤L and is

called the Snell envelope of (D0,lZl)0≤l≤L. Then, the continuation value of the underlying

option at tl is defined by

Cl := El[Dl,l+1Vl+1].

Indeed, as the random variable

τ ∗0 = inf{l ≥ 0|Vl = Zl}

defines a stopping time and the sequence (V
τ∗0
l )0≤l≤L is a martingale, we can show that

V0 = E0[D0,τ∗0
Zτ∗0

] = sup
τ∈T0,L

E0[D0,τZτ ],

see, e.g., [85]; (V
τ∗0
l )0≤l≤L is the sequence stopped at time τ ∗0 and is defined as V

τ∗0
l := Vτ∗0∧l

such that

V
τ∗0
l =




Vk, k ≤ l

Vl, k > l

on the set {τ ∗0 = k}. Therefore, the concept of the Snell envelope (2.2)-(2.3) delivers a

solution to the optimal stopping problem (2.1) and we call τ ∗0 optimal. As a consequence,

we have the more general relation

Vl = El[Dl,τ∗
l
Zτ∗

l
] = sup

τ∈Tl,L
El[Dl,τZτ ]

with τ ∗l = inf{k ≥ l|Vk = Zk}, i.e. by stopping the sequence Vl adequately, we get a

martingale. To get a better understanding of the valuation process of multi-asset options,

Figure 2.2 shows the early exercise region of a Max put option on two assets; the inter-

section of the continuation value function and the payoff defines the early exercise region

and the continuation region. Let us consider the continuation value process (Cl)0≤l≤L
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Figure 2.2: Early exercise region for an American Max put option on two assets.

vanishing at maturity date tL. Evidentally, (Cl)0≤l≤L satisfies a DPP as well:

CL = 0

Cl = El[Dl,l+1max{Zl+1, Cl+1}], l = L− 1, ..., 0.

Then, the fair option price at t0 is given by C0 or V0 = max{Z0, C0}.
Another but equivalent way is to formulate the DPP in terms of the optimal stopping

time given by

τ ∗L = L (2.4)

τ ∗l =




l , Zl ≥ El[Dl,τ∗

l+1
Zτ∗

l+1
]

τ ∗l+1 , otherwise
, l = L− 1, ..., 0. (2.5)

Apparently, the continuation value of the option at decision date tl is defined by

Cl := El[Dl,τ∗
l+1

Zτ∗
l+1

], (2.6)

and we obtain the fair option price at time t0 by

V0 = E0[D0,τ∗0
Zτ∗0

]. (2.7)

For any stopping time τ with values in {1, ..., L}, the value of an American-style option

is bounded below by the primal problem

L0 := E0[D0,τZτ ] ≤ V0, (2.8)
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due to (2.1). Now, from a practical point of view, it is desirable to derive an upper bound

for our pricing problem (2.1). Based on the approach suggested by Davis and Karatzas

[39] in 1994, Rogers derived in [114] a dual problem for pricing American-style options as

follows:

Let H1 be the space of martingales M = (Ml)0≤l≤L for which sup0≤l≤L |Ml| ∈ Lp, where

Lp denotes the space of all random variables with finite p-th moment, p ≥ 1. For any

martingale M ∈ H1, we have

sup
τ∈T1,L

E0[D0,τZτ ] = sup
τ∈T1,L

E0[D0,τZτ −Mτ +Mτ ]

= sup
τ∈T1,L

E0[D0,τZτ −Mτ ] +M0 (2.9)

≤ E0

[
max

l=1,...,L
(D0,lZl −Ml)

]
+M0, (2.10)

where the second equality (2.9) directly follows from the martingale property and the

optional sampling theorem. As the upper bound (2.10) holds for any martingale M , the

option value might be estimated by

sup
τ∈T1,L

E0[D0,τZτ ] ≤ inf
M∈H1

(
E0

[
max

l=1,...,L
(D0,lZl −Ml)

]
+M0

)
. (2.11)

According to the primal problem (2.8), the right-hand side of (2.11) is called dual problem

for pricing American-style derivatives. Considering (2.11) suggests to find a martingale

M ∈ H1 so that we yield equality. For this purpose, let us consider the Doob-Meyer

decomposition of the supermartingale (D0,lVl)0≤l≤L, which allows for splitting the process

(D0,lVl)0≤l≤L into two components, a martingale M∗ and an increasing process (Al)0≤l≤L

with M∗
0 = V0 and A0 = 0, respectively. More precisely, the Doob-Meyer theorem justifies

the unique decomposition

D0,lVl = M∗
l − Al,

where the processes (M∗
l )0≤l≤L and (Al)0≤l≤L are recursively given by

M∗
0 = V0, M∗

l = M∗
l−1 +D0,lVl − El−1[D0,lVl], l = 1, ..., L, (2.12)

and

A0 = 0, Al = Al−1 +D0,l−1Vl−1 − El−1[D0,lVl], l = 1, ..., L,

respectively, see [85]. Immediately, it follows the essential inequality

E0

[
max

l=1,...,L
(D0,lZl −D0,lVl − Al)

]
+ V0 ≤ V0,

as (D0,lVl)0≤l≤L dominates (D0,lZl)0≤l≤L. Thus, to get a tight upper bound for the price

of an American-style option, we should try to find a good approximation of M∗ according
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to (2.12).

Let us draw some conclusions from these theoretical results for the construction of algo-

rithms for option pricing. Obviously, to value American-style derivatives we might build

algorithms based on the DPP, and, to do so, a common way is to use the DPP (2.2)-(2.3);

e.g., needless to mention, the Binomial tree [35] makes use of the DPP in terms of the

value process itself. Anyway, in view of practical applications, it seems to be convenient

to go a further step and to pursue the following strategy:

1. Find a stopping policy τ with values in {1, ..., L} and a martingale M that are

optimal in the sense that they are good approximations to the optimal stopping

time τ ∗1 and the optimal martingale M∗, respectively.

2. Calculate a lower bound L0 and an upper bound U0 for the fair value of an American-

style option by

L0 := E0[D0,τZτ ] ≤ sup
τ∈T1,L

E0[D0,τZτ ] ≤ E0

[
max

l=1,...,L
(D0,lZl −Ml)

]
+M0 =: U0.

(2.13)

Following this approach constricts the fair price, and, therefore, we are not in the dark if

we price high-complex financial instruments.

2.2 Regression-Based Monte Carlo Methods

The mathematical framework presented in the previous section is the starting point of a

number of Monte Carlo methods for pricing financial derivatives with an early exercise

feature. It seems to be obvious to use the DPP in terms of the value process itself; for in-

stance, the well-known stochastic mesh method proposed by Broadie and Glasserman [25]

is based on (2.2)-(2.3). Let us introduce the functionality of the vital class of regression-

based Monte Carlo methods. The core of Monte Carlo methods for option pricing is the

simulation of the underlying process as illustrated in Figure 2.3 for a two-dimensional

geometric Brownian motion; in general, under the riskneutral probability measure the

D-dimensional geometric Brownian motion is given by

dSd
t = (r − δd)S

d
t dt+ σdS

d
t dW

d
t , d = 1, ..., D, (2.14)

where r is the annualized constant risk-free interest rate, δd the continuous dividend

yield of asset d, σd the volatility of asset d, W d
t a standard Brownian motion and W d

t

and W e
t have correlation ρde. For a general treatment of the numerical integration of

stochastic differential equations (SDEs), we refer the reader to [58] or [117], and the
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Figure 2.3: Paths of a two-dimensional geometric Brownian motion.

references therein. Without loss of generality, from now on, we assume a constant risk-

free interest rate. On the basis of the DPP (2.2)-(2.3) and the set of N simulated paths

{Snl}n=1,...,N,l=0,...,L, the option value for each path n, n = 1, ..., N, at every exercise date

tl, l = L, ..., 1, is determined by

V n
L = Zn

L

V n
l = max{Zn

l , Cl(Snl)}, l = L− 1, ..., 1,

as illustrated in Figure 2.4 for six paths; we assign an option value to each knot. In so

doing, we clearly know the payoff of each path n, n = 1, ..., N, at every exercise date tl

with 1 ≤ l ≤ L−1, but, obviously, we have no idea about the structure of the continuation
value Cl. Thus, the key for constructing a well-working Monte Carlo method is to find a

good approximation C l of the continuation value Cl. To tackle this problem, the idea of

regression-based Monte Carlo methods is to estimate a model function for the continuation

value via regression. A practical model function for the continuation value is given by a

simple linear combination of basis functions, i.e.

C l :=
M∑

m=1

xmφm(Sl), (2.15)

where the coefficients might be determined by solving the ordinary least squares (OLS)

problem

min
x∈RM

‖ Cl − C l ‖22; (2.16)

for the sake of completeness, C l is an element of a finite-dimensional linear subspace Hl

of L2, {φm(·)}Mm=1 is a basis of Hl and the optimal coefficients x1, ..., xM are solutions of



2 Mathematical Framework 12

V 5
5

V 6
5

V 4
5

V 3
5

V 2
5

V 1
5

V 1
4

V 1
3

V 1
2

V 1
1

V̂0

t5 = Tt4t3t2t1t0 = 0

Figure 2.4: Pricing procedure based on the DPP of the value process.

the normal equations. Theoretically, a model function such as (2.15) is justified by the

following further assumption:

(A5) The payoff Zl at date tl, l = 0, ..., L, is a square-integrable random variable. So,

E[(Zl)
2] <∞ for all Zl, l = 0, ..., L, and Zl ∈ L2(Ω,Fl, PSl

). PSl
denotes the image

probability measure induced by Sl on the state space E ⊆ R
D, and L2 is a Hilbert

space.

Then, an important implication from this assumption is the following expression for the

continuation value (2.6):

Cl
(A5)
=

∞∑

m=1

xmφ
∗
m(Sl), (2.17)

where {φ∗
m(·)}∞m=1 is an orthonormal basis, and xm = 〈Cl, φ

∗
m(Sl)〉 = E[Clφ

∗
m(Sl)] are the

Fourier coefficients, see [115]. Note that the model function (2.15) results from truncating

the infinite sum in (2.17). Numerically, we solve problem (2.16) by

min
x∈RM

1

N

N∑

n=1

(Cn
l − hl(Snl))

2 , (2.18)

where for n = 1, ..., N, we have hl(Snl) =
∑M

m=1 xmφm(Snl); the realizations Cn
l of the

continuation value coincide with the cash flows of each path, i.e.

Cn
l = e−r∆tV n

l+1 = e−r∆t max{Zn
l+1, hl+1(Sn,l+1)}.
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Following this ansatz, an approximation of the fair option price today is given by

V̂0 = max

{
Z0, e

−r∆t 1

N

N∑

n=1

V n
1

}
. (2.19)

Tilley pioneered the class of regression-based Monte Carlo methods in [124] by introducing

the estimator

V̂0 = max

{
Z0,

1

N

N∑

n=1

e−rτn1 ∆tZn
τn1

}
,

where τ1 results from approximating the continuation value at every exercise date, i.e.

τn1 = inf{k ≥ 1|Zn
k ≥ hk(Snk)}, n = 1, ..., N. To approximate the continuation value, this

approach works with a crude kernel smoothing technique; more precisely, at every exercise

date realizations of the asset price are ordered in bundles to approximate the continuation

value by a step function. In 1996 Carrière proposed in [28] to fit the continuation value by

nonparametric regression. In addition to Tilley’s estimator, Carrière introduced estimator

(2.19). The approach suggested by Tsitsiklis and van Roy works with this second high-

biased estimator combined with least squares, see [125] and [126]. Carrière priced options

in [29] with the same estimators as in his previous paper and also with least squares. All

these methods are either heavily extended to the vital multi-dimensional case or give poor

approximations of the continuation value such that an accurate estimation of multi-asset

options seems to be infeasible, see also [58]. A breakthrough with respect to pricing multi-

dimensional options with an early exercise feature came with the proposal of Longstaff

and Schwartz [91]. The key idea of their LSM method is to work with the DPP in terms

of the optimal stopping time (2.4)-(2.5). By doing so, based on the set of simulated paths,

we try to find the optimal stopping time for each path to approximate the fair option

price by (2.7). So, numerically, the idea of the LSM algorithm is to realize the rule

τnL = L

τnl =




l , Zl(Snl) ≥ hl(Snl)

τnl+1 , otherwise
, l = L− 1, ..., 1.

The dependent variables for least squares are determined by Cn
l = e−r(τn

l+1−l)△tZτn
l+1

, n =

1, ..., N, l = 1, ..., L; to get a better approximation of the continuation value, Longstaff

and Schwartz suggested to consider only paths in the money, see Figure 2.5. At time t0

we estimate the continuation value by its empirical mean and get for the option value

V̂0 = max

{
Z0,

1

N

N∑

n=1

e−rτn1 ∆tZn
τn1

}
, (2.20)

compare (2.6) and (2.7); the functionality of the LSM approach is illustrated in Figure

2.6. According to [58], the LSM estimator (2.20) is an interleaving option price estimator.
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Figure 2.5: Approximation of the continuation value via least squares at a fixed time date.

0

0.5

1

1.5

0

7

0

2.5

5

T

t0

S0
K

τ =




2

2

2

3

3

3



, CF =




3.5

2.4

1.5

1.1

0.4

0.0




Time

O
p
t
io
n

v
a
lu
e

Stock price

Figure 2.6: Functionality of the LSM method.

Notes. τ and CF are vectors used for saving the current optimal stopping time and the corre-

sponding payoff, respectively, for each path, see [76].
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Notify that rough approximations of the continuation value have limited influence on the

estimated option price, as just the intersection of the payoff and the continuation value

function determine the optimal stopping time for each path. Even if we work with an

approximation of lower quality, we meet the right decision for most of the paths; thus,

the dependent variables for the regression problem and the estimated option price might

be of high quality despite the dilemma of a poor continuation value function. This fact

explains the striking success of the LSM method, whereby methods based on the DPP of

the value process (2.2)-(2.3) are quite sensitive to perturbations in the continuation value

function. Recently, in [76] we gave a guideline for an efficient implementation of the LSM

method; especially, we could accelerate this method by a factor of about two or more by

our vectorization procedure.

As previously mentioned, a vital extension of regression-based Monte Carlo methods are

dual methods. Let us focus our attention on the AB algorithm. By doing so, consider

any exercise strategy τ defined by an approximation hl of the continuation value Cl for

l = 1, ..., L with CL = 0 such as given by τl = inf{k ≥ l|Zl ≥ hl}, l = 1, ..., L; hl

might result from running the LSM method with N0 paths. By drawing N1 i.i.d. samples

e−rτn1 ∆tZn
τn1
, n = 1, ..., N1, an estimate of the lower bound L0 in (2.13) is realized by

L̂0 =
1

N1

N1∑

n=1

e−rτn1 ∆tZn
τn1
. (2.21)

Note that a valid (1− α) confidence interval of L0 is given by

L̂0 ± z1−α/2
σ̂L√
N1

(2.22)

with the estimated standard error σ̂L of L0; z1−α/2 denotes the (1 − α/2) quantile of a

standard normal distribution. For a given early exercise strategy, Figure 2.7 illustrates

the process of realizing estimator (2.21). Next, we consider the vital construction of a

valid upper bound, and, to this end, we concentrate on the numerical realization of the

right-hand side of (2.13) in the notion of the exercise policy τ ; more precisely, the upper

bound is given as

U0 = E0

[
max

l=1,...,L
(e−rl∆tZl −Ml)

]
+M0 =: ∆0 +M0 (2.23)

with

M0 = E0[e
−rτ1∆tZτ1 ], Ml = Ml−1+El[e

−rτl∆tZτl ]−El−1[e
−rτl∆tZτl ] =: Ml−1+δl, l = 1, ..., L,

and

El[e
−rτl∆tZτl ] =

{
e−rl∆tZl, if Zl ≥ hl

El[e
−rτl+1∆tZτl+1

], if Zl < hl

. (2.24)
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Figure 2.7: Evaluation procedure of an American option for a given early exercise strategy.

Now, to get an estimate Û0 of the upper bound U0, we simulate another set of N2 paths,

{S2
nl}n=1,...,N2,l=1,...,L, to approximate ∆0 in (2.23) by

∆̂0 :=
1

N2

N2∑

n=1

∆n, (2.25)

where

∆n = max
l=1,...,L

(e−rl∆tZn
l −Mn

l ), Mn
l = Mn

l−1 + δnl ;

to control the accuracy and to preserve the martingale property of M , Andersen and

Broadie suggested to evaluate δnl by

δnl =

{
e−rl∆tZn

l , if Zn
l ≥ hl(S

2
nl)

Cn
l , if Zn

l < hl(S
2
nl)
− Cn

l−1,

where

Cn
l =

1

N3

N3∑

m=1

e−rτm
l+1∆tZm

τm
l+1

(2.26)

are estimates of the continuation values in (2.24) resulting from drawing N3 i.i.d. samples

e−rτm
l+1∆tZm

τm
l+1

, m = 1, ..., N3; Z
m
τm
l+1

results from simulating the underlying Markov process

starting at S2
nl and stopping according to τl+1. As a final result, an estimate of the upper

bound U0 in (2.23) is given by

Û0 = ∆̂0 + L̂0

such that

Û0 ± z1−α/2

√
σ2
L

N1

+
σ2
∆

N2

(2.27)
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is a valid (1 − α) confidence interval of U0 with the estimated standard error σ̂∆ of ∆0.

In order to get a deeper look into the working procedure of the AB approach, the path

S0

T

Figure 2.8: Path simulations for determining an upper bound for an American option by

the AB approach.

construction for realizing estimator (2.25) is illustrated in Figure 2.8. As we can see, we

start off by simulating N2 paths of our underlying model; these paths are colored gray.

Based on this set of paths, at each state of a path we run an inner simulation of N3 paths to

evaluate the continuation value (2.26); this procedure is demonstrated for two states and

the red paths are these subsimulations stopped according to τl. Thus, following the AB

approach, to produce valid upper bounds, we have to run subsimulations in a simulation,

which might be seen critical at first glance. Anyway, as claimed by the authors, a small

number of paths N2 and N3 are only necessary to get accurate upper bounds; we can

underline this statement, see, e.g., our numerical experiments in [76]. By combining both

valid confidence intervals, (2.22) and (2.27), we are in the situation to determine a valid

(1− α) confidence interval for the true option value by


L̂0 − z1−α/2

σ̂L√
N1

, Û0 + z1−α/2

√
σ̂2
L

N1

+
σ̂2
∆

N2


 ;

this is just a simple result of taking the lower half width of (2.22) and the upper half

width of (2.27). From a practical point of view, the AB approach is a valuable extension

of the class of regression-based Monte Carlo methods due to the restriction of the fair

option price. The higher the lower bounds and the tighter the lower and upper bounds,

the more accurate is the used early exercise strategy. Thus, the tightness of the bounds
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is a good indicator of the quality of basis functions, which is especially of high interest

for pricing new complex financial derivatives; we should spend more effort in searching

well-working functions if the bounds are too large.

Independently to the proposal by Andersen and Broadie, Haugh and Kogan introduced in

[64] another method to calculate lower and upper bounds as well as valid confidence inter-

vals by using supermartingales rather than martingales. Their approach is based on the

DPP of the value process (2.2)-(2.3) and also works with subsimulations. To determine an

approximation of the continuation value, a neural network approach is used, which might

be expensive in higher dimensions, see our comments in Chapter 5. In their numerical

experiments, the authors priced multi-asset options with a huge number of paths and no

CPU times are reported. We are not familiar with any comparative speed-accuracy study

of both approaches, the AB method and the algorithm by Haugh and Kogan. Anyway, to

the best of our knowledge, the AB approach combined with the LSM method is often the

method of choice and implemented in many running option pricing systems of financial

institutions for pricing complex financial derivatives with an early-exercise feature, see

also [93]. This gives us rise to compare our proposed methods in this thesis with the AB

approach combined with our efficient version of the LSM method rather than with the

approach by Haugh and Kogan. Nevertheless, at the end of thesis we discuss some possible

modifications of the Haugh-Kogan approach by our proposed methods.



Chapter 3

Robust Regression Monte Carlo

Method

On the basis of the mathematical framework formulated in Chapter 2, we present our RRM

method for pricing American-style options in Section 3.1. To give a complete guideline

for an efficient implementation of our proposed method, we focus our attention on solving

robust regression problems and suggest a new solver with very good numerical properties

in Section 3.2. Techniques of the statistical learning theory help us to prove convergence

of our proposed Monte Carlo estimator in Section 3.3. In Section 3.4 we investigate the

numerical performance of our RRM method and aim at a comparative study with the

state-of-the-art LSM method.

3.1 Algorithm

Following the idea of Longstaff and Schwartz [91], we concentrate on an approximation

of the DPP in terms of the optimal stopping time (2.4)-(2.5) rather than of the option

value process itself. In order to motivate our approach, let us have a closer look at one

regression step. As we can see in Figure 3.1, there are some points, namely the red points,

which are really far away from the light gray surface showing the continuation value

function calculated by least squares for an American-style option on two assets. This

observation directly leads to robust regression, as robust regression is able to take outliers

into account. Coming back to the LSM algorithm considered in Chapter 2, we propose to

replace least squares (2.18) by robust regression. For this purpose, to get an estimation
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Figure 3.1: Approximation of the continuation value by least squares for an American

Max call option on two assets; red points denote outliers.

of the coefficients in every time step, we suggest to solve

min
x∈RM

f(x) := min
x∈RM

1

N

N∑

n=1

ℓ (Cn
l − hl(Snl)) (3.1)

with a suitably measurable loss function

ℓ : R→ [0,∞)

specified a priori. In the following we denote the residuals by

rln := Cn
l − hl(Snl), n = 1, .., N, l = 1, ..., L− 1.

Let us make some assumptions on this loss function:

(L1) ℓ(·) is a piecewise twice continuously differentiable function with ℓ(r) = 0 if r = 0.

(L2) ℓ
′

(r)/r ≥ 0 and ℓ
′′

(r) ≥ 0 for any r ∈ R.

(L3) ℓ(·) is convex or piecewise convex.

Some selections of loss functions ℓ(·) are listed in Table 3.1 and Figure 3.2 shows their

graphs. We should remark that many loss functions are twice continuously differentiable
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Table 3.1: Several loss functions ℓ(·) for robust regression.
ℓ(r) ℓ(r)

OLS r2 Talwar




r2 , |r| ≤ γ1

γ2
1 , |r| > γ1

Huber




r2 , |r| ≤ γ1

2γ1|r| − γ2
1 , |r| > γ1

Jonen





r2 , |r| ≤ γ1

2γ1|r| − γ2
1 , γ1 ≤ |r| < γ2

2γ1γ2 − γ2
1 , |r| ≥ γ2

almost everywhere, and one-sided derivatives should be used at points where ℓ(·) is not

differentiable; see also our comments in Section 3.2. Huber proposed in [71] the Huber as

well as the Talwar loss functions; many authors denote the Talwar loss function after [68].

Huber’s function is a famous choice due to its nice statistical properties. Furthermore, we

introduce a new loss function called Jonen, which is a mixture of both of them. For other

common loss functions we refer to [70]. As we can see, the idea of robust regression is to

0 
0

r

ℓ(
r
)

 

 

OLS
Huber
Talwar
Jonen

−γ2 γ2−γ1 γ1

Figure 3.2: Loss functions for robust regression; γ1 and γ2 are transition points.

give outliers fewer weight than the other points. By using robust regression, we attempt to

eliminate outliers in order to improve the quality of an approximation of the continuation

value function. Outliers occur by strongly fluctuated paths in the context of regression-

based Monte Carlo methods based on the DPP of the optimal stopping time. By the way,
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we expect fewer outliers by considering methods based on the DPP of the value process

itself. Even though outliers are often bad data points, by locating points as outliers which

contain valuable information, we might destroy the whole structure of the problem. So, we

should investigate outliers carefully. However, in Section 3.4 we concentrate on eliminating

these points from the data and address the determination of the parameters γ1, γ2.

Remark 3.1.1. In a statistical framework practitioners are used to make an assumption

about the distribution of the error to specify the loss function a priori. However, in our

context we are not familiar with any distribution, and, that is why, we use loss functions

to improve the quality of a continuation value function fit.

A number of loss functions lead to optimization tasks which have to be solved iteratively,

and we focus on that topic in the next section. Assumption (L3) guarantees the well-

posedness of (3.1) in the sense that there is a unique (global) minimizer. Provided with

these tools, we can formulate our RRM method, see Algorithm 1. In analogy to the LSM

algorithm, we just take paths in-the-money into consideration for regression; J denotes

the number of these paths. Notice that the LSM algorithm is a special case of our RRM

algorithm by using the loss function

ℓ
(
Cj

l − hl(Sjl)
)
=
(
Cj

l − hl(Sjl)
)2

, j = 1, ..., J, l = 1, ..., L.

Thus, from an implementation point of view, we only have to replace the solver for re-

gression if the LSM method is already implemented in a running option pricing system.

3.2 Solving Robust Regression

The routine RobustRegression(A, b, J) in Algorithm 1 needs special care to guarantee an

efficient implementation. With the notation of the previous section the first order condition

of the right-hand side of our minimization problem (3.1) becomes to the following set of

M equations:
J∑

j=1

ℓ′(rlj)Ajm = 0, m = 1, ...,M (3.2)

— for simplicity we drop in the following the overline index of x and the time index of

r. In general, we obtain a nonlinear system, and, therefore, we should concentrate on

iterative solvers for system (3.2). Even though a couple of approaches for solving robust

regression problems exist, see e.g., [92], [33] and the mentioned approaches below, we pro-

pose a new Newton-Raphson-based solver with the purpose of an efficient implementation.
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Algorithm 1 RRM(N,M, T, L,Θ).

Input: N,M, T, L,Θ

Output: V̂0

1: △t = T/L // Time step width

2: for l← 1 to L do

3: for n← 1 to N do

4: Snl = (S(n−1)D+d,l)d=1,...,D ← GeneratePaths(N,∆t, L,Θ, )

5: end for

6: end for

7: for n← 1 to N do

8: CFn = ZL(SnL) // Payoff for path n at tL

9: τn = L // Optimal exercise point for path n at tL

10: end for

11: for l← L− 1 to 1 do

12: J = 0

13: for n← 1 to N do

14: if (n-th path in-the-money) then

15: J = J + 1, π(J) = n

16: AJm = φm(Snl), m = 1, ...,M // Fill regressor matrix

17: bJ = e−r(τn−l)△tCFn // Fill vector with regressands

18: end if

19: end for

20: x̂1, ..., x̂M ← RobustRegression(A, b, J)

21: for j ← 1, ..., J do

22: Ĉ =
∑M

m=1x̂mAjm

23: if (Zl(Sπ(j),l) ≥ Ĉ) then

24: CFπ(j) = Zl(Sπ(j),l)

25: τπ(j) = l

26: end if

27: end for

28: end for

29: Ĉ0 =
1
N

∑N
n=1e

−rτn△tCFn // Continuation value at t0

30: V̂0=max{Z0, Ĉ0} // Approximated fair value at t0
Notes. The routine GeneratePaths(N,∆t, L,Θ) in line 4 realizes the numerical integration of

the underlying stochastic differential equation, where Θ denotes the set of parameters for the

underlying model. The type of basis functions φ(·) as well as the structure of the payoff Zl must

be specified a priori.
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Considering minimization problem (3.1), we yield the Newton-Raphson iteration

x(k+1) = x(k) + s(k), k = 0, 1, ..., (3.3)

where the search direction s(k) results from solving

s(k) = −(H(k))−1g(k) (3.4)

with the Hessian matrix

H(k) = ATD(k)A (3.5)

and the gradient

g(k) = −ATy(k);

y(k) is a vector with entries y
(k)
j = ℓ

′

(r
(k)
j ) and D(k) is a diagonal matrix with elements

D
(k)
j = ℓ

′′

(r
(k)
j ), j = 1, ..., J. According to assumption (L1), if ℓ′(r) and ℓ′′(r) are dis-

continuous at any point r ∈ R, we work with the concept of the subgradient and the

generalized Hessian matrix defined by [34], respectively, such that (3.3) is a step of the

generalized Newton-Raphson method, see [112]. In order to guarantee that s(k) is a de-

scent direction, the Hessian matrix (3.5) must be positive definite; indeed, it is symmetric

and positive semi-definite for loss functions fulfilling (L2). A reasonable assumption in our

framework is that M ≪ J . Suppose that UJΣMV T
M is the singular value decomposition

(SVD) of A ∈ R
J×M , where UJ = [u1, ..., uJ ] ∈ R

J×J and VM = [v1, ..., vM ] ∈ R
M×M are

orthogonal matrices with the i-th left singular vector ui and the i-th right singular vector

vi, respectively; ΣM = diag(σ1, ..., σM ) ∈ R
J×M is a diagonal matrix with the singular

values σi, i = 1, ...,M, of A, σ1 ≥ σ2 ≥ ... ≥ σM ≥ 0, see [60] or [15]. Then, to avoid

any numerical trouble caused by stability problems, we suggest to decompose the search

direction (3.4) to

s(k) = V Σ−1
(
UTD(k)U

)−1
UTy(k) =: V Σ−1

(
H

(k)
)−1

UTy(k) (3.6)

with U = [u1, ..., uρ] ∈ R
J×ρ, V = [v1, ..., vρ] ∈ R

M×ρ, and Σ−1 = diag(1/σ1, ..., 1/σρ) ∈
R

ρ×ρ, ρ = rank(A). As U , V and Σ−1 are independent of the current residuals r(k), a cheap

way to calculate the matrix H
(k)

in step k is by adding block matrices to the matrix H
(k−1)

of the previous step as follows:

H
(k)

= H
(k−1)

+
J∑

j=1

∆D
(k)
j UjU

T
j 1{|∆D

(k)
j |>ǫ}, k = 1, 2, 3, ... (3.7)

with ǫ ≥ 0, ∆D
(k)
j = D

(k)
j −D

(k−1)
j , j = 1, ..., J ; UT

j and 1{·} denote the j-th row of U and

the indicator function, respectively. Notify that we have to run the SVD just one time at

the beginning of every time step tl, l = L− 1, ..., 1. Similar update techniques have been

used in [48],[131], [108]. Update technique (3.7) combined with search direction (3.6) lead

to our solver for robust regression, see Algorithm 2.
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Algorithm 2 RobustRegression(A, b, J).

Input: A, b, J

Output: x1, ..., xM

1: U,Σ−1, V, ρ = rank(A)← SV D(A)

2: x = V Σ−1UT b

3: k = 0; ε ≥ 0

4: while (not converge) do

5: k = k + 1

6: r = b− Ax

7: y = ℓ′(r)

8: d = ℓ′′(r)

9: if (k==1) then

10: H =
∑J

j=1 djUjU
T
j

11: else

12: for j ← 1 to J do

13: if (|dj − doldj | > ε) then

14: H = H + (dj − doldj )UjU
T
j // Update according to (3.7)

15: end if

16: end for

17: end if

18: dold = d

19: g = UTy

20: s← CholeskySolver(H, g)

21: x = x+ V Σ−1s

22: end while
Notes. The loss function ℓ(·) has to be specified a priori.

Remark 3.2.1. As mentioned in [30], from a numerical point of view, setting derivatives

at discontinuous points should not influence the search procedure for finding the minimum

of a sum of almost everywhere differentiable functions as given in (3.1). Anyway, the

local convergence as well as the resulting order of Newton-Raphson-based solvers for robust

regression might be shown by using techniques of the non-smooth analysis, see [112].

Making Newton-Raphson’s method safe is vital for a successful implementation. As

already mentioned, by construction the matrices H(k) in (3.5) and H
(k)

in (3.6) are

positive semi-definite as long as the elements of D(k) are non-negative. To assure the

regularity of them and, thus, the positive definiteness, we should shift the eigenvalues

into a positive range whenever necessary; H
(k)

is better behaved than H(k). Following
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[106], an ad hoc modified Cholesky decomposition may be implemented:

η :=

{
0 , if mini=1,...,ρ(H

(k)

ii ) > 0

−mini=1,...,ρ(H
(k)

ii ) + ξ , else
, ζ := 2, ξ := 10−3,

do{H̃(k) := H
(k)

+ ηIρ;Cholesky(H̃
(k)); η = max(ζη, ξ) } while(Cholesky failed)

where Iρ and H
(k)

ii denote the (ρ × ρ) identity matrix and the i-th diagonal element of

H
(k)
. Notify that the routine Cholesky(·) is involved in SolveCholesky(·) in Algorithm

2. To make fast progress, ζ might be chosen larger such as ζ = 10; the value of parameter

ξ might be modified as well. A sufficient reduction of the objective function (3.1) in each

step is desirable, but not necessarily guaranteed. In order to ensure global convergence, a

damped Newton-Raphson version might be implemented

x(k+1) = x(k) + λks
(k) (3.8)

for some λk > 0. To decide whether the chosen λk is good enough, the Armijo condition

can be verified

f(x(k) + λks
(k)) ≤ f(x(k)) + κλk∇f(x(k))T s(k)

with a sufficiently small number κ > 0, e.g., κ = 10−4. After testing the full Newton-

Raphson step, i.e. λk = 1, we select a new damped parameter λk ∈ [0.1λold
k , 0.5λold

k ] as

suggested in the backtracking procedure in [41]; see [111] for implementation details. It

makes sense to terminate the line search procedure close to the optimum as roundoff errors

may cause numerical difficulties.

Following the discussion in [41], we use both convergence criteria

max
m=1,...,M

|x(k+1)
m − x

(k)
m |

max{|x(k+1)
m |, 1}

≤ TOL∆x, 0 < TOL∆x ≪ 1, (3.9)

to test for convergence on ∆x, and

max
m=1,...,M

|(∇f(x(k+1)))m max{|x(k+1)
m |, 1}|

max{f(x(k+1)), 1} ≤ TOL∇f , 0 < TOL∇f ≪ 1, (3.10)

to test for convergence on zero gradient; (∇f(x(k+1)))m is the m-th entry of ∇f(x(k+1)).

To highlight our proposed approach, denoted by RRNew in the following, we give a brief

overview of alternative robust regression solvers in Remark 3.2.2; a similar overview is

given in [5], but we only focus on solvers promising good numerical properties.
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Remark 3.2.2. An elegant way to find the descent direction s(k) in (3.3) is the solution

of the least squares problem

s(k) = argmin
s̃∈RM

‖Ãs̃− b̃‖22

with Ã = (D̂(k))1/2A, b̃ = (D̂(k))−1/2y(k), and D̂
(k)
j = max{D(k)

j , η}, j = 1, ..., J , are

modified elements of the diagonal matrix D(k) to avoid zero elements; η is a sufficiently

small number, see [5]; we denote this approach by R̃RNew to refer to it later on. Replacing

the elements of the diagonal matrix in (3.5) by the secant approximation

ℓ′′(rj) ≈
ℓ′(rj)− ℓ′(0)

rj − 0
=

ℓ′(rj)

rj
=: D̃j, j = 1, ..., J,

leads to the iteration step

x(k+1) = (AT D̃(k)A)−1AT D̃(k)r(k), k = 0, 1, 2, .... (3.11)

As (3.11) is the solution of a weighted least squares problem, this approach is known

as iteratively re-weighted least squares (IRLS). This might be seen as a comfortable way

for implementing because a number of programming packages deliver stable solvers for

(weighted) least squares problems. Many objective functions fulfill D̃j ≥ max{0, ℓ′′(rj)} for
all j = 1, ..., J, and, generally, ℓ

′

(0) = 0. Due to its simplicity and global convergence, IRLS

is the common way to solve robust regression problems. In contrast to Newton-Raphson-

based solvers, it is just linear convergent, see [13]. Following the approach proposed by

O’Leary in [108], a residual instead of a coefficient iteration in combination with the QR

decomposition leads to stability advantages. Finding the minimum residual r∗ leads to the

iteration

r(k+1) = r(k) − As(k), k = 0, 1, ...,

and, finally, the coefficients can be determined by solving

Ax̂ = b− r̂,

where r̂ is the approximated optimal residual. Anyway, a residual iteration might become

expensive if M ≪ J.

3.3 Convergence

In order to proof convergence of our RRM estimator, we use techniques of the statisti-

cal learning theory. Similar ideas are used in [46] and [132] for a convergence proof of

the LSM method. Before we start, let us complete our mathematical framework by some

notations. So far, we have restricted ourselves on finite-dimensional linear approximation



3 Robust Regression Monte Carlo Method 28

sets. According to [132], we want to drop this limiting assumption, and, thus, we con-

sider arbitrary subsets Hl of L2. To refer to the minimizer of optimization task (3.1), we

introduce the function ĈHl,l to be any function hl ∈ Hl satisfying

1

N

N∑

n=1

ℓ
(
Cn

l − ĈHl,l(Snl)
)
≤ inf

hl∈Hl

1

N

N∑

n=1

ℓ (Cn
l − hl(Snl)) + ε̃.

with ε̃ ≥ 0. From a numerical point of view, we have ε̃ > 0 if errors caused by stability

problems, convergence criteria, or otherwise, influence the output produced by Algorithm

2. We may set ε̃ = 0 if a minimizer exists and may be computed exactly. Actually, we

work with the DPP in terms of the approximated optimal stopping time,

τL = L (3.12)

τl =




l , Zl ≥ ĈHl,l

τl+1 , otherwise
, l = L− 1, ..., 0, (3.13)

and we define the continuation value at tl, l = L− 1, ..., 0, w.r.t. (3.12)-(3.13) by

C∗
l = El[e

−r(τl+1−l)△tZτl+1
]

– C∗
l is often called regression function in a statistical learning framework. Moreover,

for any l = 0, ..., L − 1, Pl denotes the image probability measure on Ωl = E × R

jointly induced by the variables (Sl, e
−r(τl+1−l)△tZτl+1

). The entire collection of variables

(Sk, e
−r(τk+1−l)△tZτk+1

), k = l, ..., L − 1, jointly induces an image probability measure on

Ωl × ... × ΩL−1 =: Ωl, and we give it the notation Pl. Due to the simulation of N paths

sampled independently according to Pl, we consider the product measure P1
l ⊗ ... ⊗ PN

l

on Ωl × ...×ΩL−1 =: ΩN
l . For notational purposes notify that

ω := ω
lN = ((S1l, C

1
l ), ..., (SNl, C

N
l )) ∈ ΩN = ΩN

l

for a fixed number N ∈ N and any l = 0, ..., L− 1, and

ωln := ((Snl, C
n
l ), ..., (Sn,L−1, C

n
L−1)) ∈ Ωl

for any l = 0, ..., L − 1, n = 1, ..., N. The ordered (L-l)-tuple (ωlN , ...,ωL−1,N) as well as

the ordered N-tuple (ωl1, ...,ωlN) are generic sample elements from the probability space

ΩN
l . In the following we assume that F and H are positive integers with

F = max{1, ‖Z1‖∞, ..., ‖ZL‖∞} <∞

and

sup{‖hl‖∞|hl ∈ Hl} ≤ H <∞,

respectively. Equipped with these definitions, we are able to prove the convergence of our

RRM estimator in Subsection 3.3.2 based on a error decomposition derived in Subsection

3.3.1.
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3.3.1 Error Decomposition

To begin with, let us introduce some notations in the manner of the statistical learning

theory, and we refer to [129] or [38] for a deeper look into this field. Let E be a compact

domain or a manifold in Euclidean space and Y = R.We denote by ρ the Borel probability

measure on Ω = E × Y, whose regularity properties are assumed as needed. Then, in

general, we define the error of a suitably measureable function f : E → R by

E(f) =
∫

Ω

ℓ(c− f(s))dρ,

where ω = (s, c) are the elements of Ω. To be consistent with our framework, for any

function hl ∈ Hl we write

El(hl) :=

∫
ℓ(Cl − hl(Sl)) :=

∫

E

ℓ(Cl − hl(Sl))dPSl
. (3.14)

Moreover, a second error of any hl ∈ Hl is given by

E∗l (hl) :=

∫
ℓ(C∗

l − hl(Sl)) :=

∫

E

ℓ(C∗
l − hl(Sl))dPSl

. (3.15)

The second equalities of (3.14) and (3.15) are for reasons of notational convenience, and

we use these short notations whenever there is no confusion. According to quantity (3.15),

we define the empirical errors of any hl ∈ Hl (w.r.t. ω) by

Ê∗l (hl) =
1

N

N∑

n=1

ℓ(Cn
l − hl(Snl)).

A further helpful definition is the projection of C∗
l on Hl given by

CHl,l := arg inf
hl∈Hl

E∗l (hl).

The existence of CHl,l follows from the compactness of Hl and the continuity of the error.

By the way, quantity infhl∈Hl

∫
ℓ(C∗

l − hl(Sl)) is often called approximation error. Let tl

be any time date fixed for l = 0, ..., L − 1. Then, we define a generalized version of the

triangle inequality by
∫

ℓ(Cl − ĈHl,l) =

∫
ℓ(Cl − C∗

l + C∗
l − ĈHl,l)

≤ O

(∫
ℓ(Cl − C∗

l ) +

∫
ℓ
(
C∗

l − ĈHl,l

))
, (3.16)

and, by choosing an appropriate constant γ ≥ 1, we get the γ-triangle inequality

El(Ĉl) ≤ γ(El(C∗
l ) + E∗l (ĈHl,l)). (3.17)
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Remark 3.3.1. The triangle constant γ in (3.17) depends on the loss function. For

example, by Jensen’s inequality and the convexity of r 7→ r2, one can show that γ = 2 for

the squared loss function, see [36].

Clearly, considering the last time step before maturity tL−1 leads to

E∗L−1(ĈHL−1,L−1) = EL−1(ĈHL−1,L−1). (3.18)

However, we are interested in an error decomposition of El(ĈHl,l) at any time date tl, l =

L − 1, ..., 1. Remember that regression-based Monte Carlo methods are based on the

DPP. Thus, on account of taking heed of propagation errors, we obtain the following vital

inequalities for l = L− 1, ..., 0:

Theorem 3.3.1. Assume that the mathematical framework above holds. Then, at all

tl, l = L− 1, ..., 1,

El(ĈHl,l) ≤
L−1∑

k=l

γ̃k−lγ2(k−l)(1{k 6=l} + γ)E∗k (ĈHk,k) (3.19)

with γ̃ > 0. Moreover, at t0 = 0 we have

(V̂0 − V0)
2 ≤ 2(Ĉ0 − C∗

0)
2 + 2

L−1∑

k=1

γ̃kγ2k−1(1 + γ)E∗k (ĈHk,k). (3.20)

Proof. At first, at any time date tl, l = L− 1, ..., 1, consider

El(ĈHl,l) =

∫
ℓ(Cl − ĈHl,l)

≤ γ

(∫
ℓ(Cl − C∗

l ) +

∫
ℓ(C∗

l − ĈHl,l)

)
. (3.21)

In analogy to [132], we are able to show by reverse induction that

El(C∗
l ) ≤

L−1∑

k=l+1

γ̃k−lγ2(k−l)−1(1 + γ)E∗k (ĈHk,k), l = L− 2, ..., 1, (3.22)

holds for the first term on the right-hand side of (3.21). Obviously, inequality (3.22)

will be clear at tL−2 with the same argumentation as follows, but with τL = τ ∗L = L.

In general, inequality (3.22) is an immediate consequence of Jensen’s inequality and γ-

triangle inequality (3.17). To see this, we assume that inequality

El0(C∗
l0
) ≤

L−1∑

k=l0+1

γ̃k−l0γ2(k−l0)−1(1 + γ)E∗k (ĈHk,k) (3.23)
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holds at time tl0 for any l0 fulfilling L − 1 > l0 ≥ 2. Then, applying Jensen’s inequality

for convex functions leads to the reformulation

El0−1(C
∗
l0−1) =

∫
ℓ(E[e−r(τ∗

l0
−(l0−1))△tZτ∗

l0
|Sl0−1]− E[e−r(τl0−(l0−1))△tZτl0

|Sl0−1])

=

∫
ℓ(E[E[e−r(τ∗

l0
−(l0−1))△tZτ∗

l0
|Sl0 ]− E[e−r(τl0−(l0−1))△tZτl0

|Sl0 ]|Sl0−1])dPSl0−1

≤ γ̃l0

∫
ℓ(E[e−r(τ∗

l0
−(l0−1))△tZτ∗

l0
|Sl0 ]− E[e−r(τl0−(l0−1))△tZτl0

|Sl0 ])dPSl0
. (3.24)

Notify that we make use of assumption (L3). If our chosen loss function is just piecewise

convex, we apply Jensen’s inequality on subintervals; in this case the transition points

define our decomposition. To be more flexible with respect to the chosen loss function at

any time date tl0−1, we introduce a constant γ̃l0 > 0; γ̃l0 = 1 if we work with the same loss

function as in the previous time step tl0 . For simplicity, we define γ̃ := maxk=l0,...,L−1 γ̃k.

Consider the following three events:

A1 := ({τ ∗l0 = l0} ∩ {τl0 = τl0+1}) = {Zl0 ≥ E[e−r(τ∗
l0+1−l0)△tZτ∗

l0+1
|Sl0 ], Zl0 < ĈHl0

,l0},
A2 := ({τ ∗l0 = τ ∗l0+1} ∩ {τl0 = l0}) = {Zl0 < E[e−r(τ∗

l0+1−l0)△tZτ∗
l0+1
|Sl0 ], Zl0 ≥ ĈHl0

,l0},
A3 := ({τ ∗l0 = τ ∗l0+1} ∩ {τl0 = τl0+1}) = {Zl0 < E[e−r(τ∗

l0+1−l0)△tZτ∗
l0+1
|Sl0 ], Zl0 < ĈHl0

,l0}.

Let us assume that the event A1 occurs. Then,

γ̃

∫
ℓ(E[e−r(τ∗

l0
−(l0−1))△tZτ∗

l0
|Sl0 ]− E[e−r(τl0−(l0−1))△tZτl0

|Sl0 ])

≤ γ̃γ

(∫
ℓ(Cl0 − ĈHl0

,l0) +

∫
ℓ(ĈHl0

,l0 − C∗
l0
)

)
. (3.25)

Obviously, the right-hand side of (3.25) is an upper bound for all three cases. All in all,

by exploring that our chosen loss function is even, we obtain

El0−1(C
∗
l0−1) ≤ γ̃(γ2El0(C∗

l0
) + γ2E∗l0(ĈHl0

,l0) + γE∗l0(ĈHl0
,l0)). (3.26)

If we work with an uneven loss function, we should work on with a modified even loss

function ℓ̃(·) such that ℓ(·) ≤ ℓ̃(·). Finally, by induction hypothesis (3.23) applied to the

first term on the right-hand side of (3.26), we get (3.22), and (3.22) combined with (3.21)

leads to (3.19). Following the argumentation above, we have

(C∗
0 − C0)

2 ≤ γ̃1(γ
2E1(C∗

1) + γ2E∗1 (ĈH1,1) + γE∗1 (ĈH1,1)) (3.27)

at t0. Therefore, inequality (3.20) holds at t0 = 0 due to

(max(Z0, Ĉ0)−max(Z0, C0))
2 ≤ (Ĉ0 − C0)

2 ≤ 2(Ĉ0 − C∗
0)

2 + 2(C∗
0 − C0)

2 (3.28)

combined with (3.22) and (3.27).
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3.3.2 Error Estimates

In the manner of the statistical learning theory, the defect function of a function f is

defined by

L̂(f) := Ê(f)− E(f)

with the empirical error Ê(f) of f as above. Bounds on L̂(f) seem to be helpful to bound

the actual error from an observed quantity. A well-known uniform estimate on the defect

is Pollard’s inequality, which is often used to give bounds on the sample error, see [38].

Before we proceed, let us define the l1-covering number.

Definition 3.3.1 ([43]). Let A be a bounded subset of Rd. Then, for every ε > 0, the l1-

covering number N (ε, A) is defined as the cardinality of the smallest finite set in R
d such

that for every z ∈ A there is a point y ∈ R
d in the finite set such that 1/d‖z − y‖1 < ε,

where ‖x‖1 :=
∑d

i=1 |x(i)| is the l1−norm of the vector x = (x(1), ..., x(d)) ∈ R
d. So, N (ε, A)

is the smallest number of l1-balls of radius εd, whose union contains A.

Let G be the class of real-valued functions defined on R
d such that for any g ∈ G,

0 ≤ g(x) ≤ G for all x ∈ R
d and some G < ∞. If we define the set G(x) :=

{(g(x1), ..., g(xN )); g ∈ G} ⊂ R
N for N fixed points xi, i = 1, ..., N, in R

d, x = (x1, ..., xN ),

N (ε,G(x)) denotes the l1-covering number of G(x).

Theorem 3.3.2 (Pollard). Let X1, ..., XN and X be i.i.d. random variables with X =

(X1, ..., XN ). For any N ∈ N and ε > 0,

P

(
sup
g∈G

∣∣∣∣∣
1

N

N∑

n=1

g(Xn)− E[g(X)]

∣∣∣∣∣ > ε

)
≤ δ, (3.29)

where the probability δ is defined by

δ := 8E
[
N
(ε
8
,G(X)

)]
exp

(
− Nε2

128G2

)
.

Proof. See [110] or [43].

Notify that N (ε,G(X)) is a random variable whose expected value plays a decisive role

in Pollard’s theorem.

Remark 3.3.2. Usually, Pollard’s theorem does not give sharp bounds, and, that is why,

we sometimes use sharper inequalities. Nevertheless, for our purposes it is sufficient to

work with it.

A further important definition in the statistical learning theory is the Vapnik-

Chervonenkis (VC) dimension given in Definition 3.3.2 according to [46].
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Definition 3.3.2 (VC Dimension). Let G be a set of real-valued functions defined on

some set B ⊆ R
d. A set of points {x1, ..., xn} ⊂ B is said to be shattered by G if there

exists r ∈ R
n such that, for every b ∈ {0, 1}n, there is a function g ∈ G such that for each

i, g(xi) > ri if bi = 1, and g(xi) ≤ ri if bi = 0. Then, the VC dimension of G denoted by

vc(G) is defined as the cardinality of the largest set of points which can be shattered by G.

Let us include Theorem 3.3.2 in our framework. To do so, G denotes the set of functions

g for which g(ω) = ℓ(c − hl(s)), hl ∈ Hl, ω = (s, c), and X = (Sl, e
−r(τl+1−l)∆tZτl+1

).

Now, we are able to show a vital result for proofing convergence of our RRM estimator

in Lemma 3.3.1.

Lemma 3.3.1. Suppose that Pollard’s inequality holds with the previous settings at all

time dates tl, l = L− 1, ..., 1. Then, for any ε̃ ≥ 0,

P
ω

lN∈ΩN
l

(
E∗l (ĈHl,l) ≤ 3ε+ E∗l (CHl,l)

)
≥ 1− δ̃l, l = L− 1, ..., 1, (3.30)

with ε̃ ≤ ε, and

δ̃l = 22(vc(Hl) + 1)

(
348H(F +H)

ε

)vc(Hl)

exp

(
− Nε2

128G2
l

)
. (3.31)

Proof. By Pollard’s inequality (3.29), for any hl ∈ Hl and ε ≥ 0 we obtain that

Ê∗l (hl) ≤ E∗l (hl) + ε

with probability at least

1− 8E
[
N
( ǫ
8
,Gl(ω)

)]
exp

(
− Nǫ2

128G2
l

)
(3.32)

over ωlN ∈ ΩN
l . It is important to note that quantity Gl depends on the loss function itself,

e.g. Gl = (F +H)2 for the squared loss function, Gl = min{(F +H)2, 2γ1(F +H)− γ2
1}

for Huber’s loss function, Gl = min{(F + H)2, γ2
2} for Talwar’s function. We denote by

G̃l the set of functions g̃ for which g̃(ω) = c− hl(s) with hl ∈ Hl, ω = (s, c). Moreover, let

G̃1l be the set of functions g1 for which g1(ω) = hl(s) and G̃2l be the set of functions g2 for

which g2(ω) = c, ω = (s, c). Then, in analogy to [132], by definition of the l1−covering
number we obtain

N
( ǫ
8
,Gl(ω)

)
≤ N

(
ǫ

16(F +H)
, G̃l(ω)

)

≤ N
(

ǫ

32(F +H)
, G̃1l (ω)

)
N
(

ǫ

32(F +H)
, G̃2l (ω)

)
. (3.33)

Applying Haussler’s inequality to the first term of (3.33) leads to

N
(

ǫ

32(F +H)
, G̃1l (ω)

)
≤ e(vc(G̃1l ) + 1)

(
128eH(F +H)

ε

)vc(G̃1
l
)

, (3.34)
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see [65] or [46] for Haussler’s inequality. All in all, as the second term of (3.33) is equal

to 1, quantity (3.32) can be estimated by

8E
[
N
( ǫ
8
,Gl(ω)

)]
exp

(
− Nǫ2

128G2
l

)

≤ 22(vc(Hl) + 1)

(
348H(F +H)

ε

)vc(Hl)

exp

(
− Nε2

128G2
l

)
=: δ̃l.

Thus, with probability at least 1− δ̃l we yield that

E∗l (ĈHl,l) ≤ Ê∗l (ĈHl,l) + ε (3.35)

and

Ê∗l (CHl,l) ≤ E∗l (CHl,l) + ε (3.36)

over ωlN ∈ ΩN
l . As ĈHl,l minimizes Ê∗l on Hl, we have

Ê∗l (ĈHl,l) ≤ Ê∗l (CHl,l) + ε̃. (3.37)

Finally, bringing inequalities (3.35)-(3.37) together leads to the statement that

E∗l (ĈHl,l) ≤ Ê∗l (ĈHl,l) + ε ≤ Ê∗l (CHl,l) + ε+ ε̃ ≤ E∗l (CHl,l) + 2ε+ ε̃ (3.38)

with probability at least 1− δ̃l. Immediately, claim (3.30) follows from (3.38) with ε̃ ≤ ε

over ωlN ∈ ΩN
l .

Now, we are in the situation to justify results regarding convergence of our RRM estimator:

Theorem 3.3.3 (Convergence of RRM estimator). Suppose that all assumptions and

definitions of the complete framework are maintained. Furthermore, assume that vc(Hl) ≤
q <∞ for l = L− 1, ..., 1. Then, for any ε > 0 and at each time date tl, l = L− 1, ..., 1,

P(ωl1,...,ωlN )∈ΩN
l

(
El(ĈHl,l) ≤

L−1∑

k=l

γ̃k−lγ2(k−l)(1{k 6=l} + γ)(3ε+ E∗k (CHk,k))

)
≥ 1− δl (3.39)

and

P(ωl1,...,ωlN )∈ΩN
l

(
El(ĈHl,l) ≤

L−1∑

k=l

γ̃k−l(2γ2 + γ3)k−l(1 + γ)(3ε+ γΓ∗(l))

)
≥ 1− δl (3.40)

with

δl :=
L−1∑

k=l

22(q + 1)

(
348H(F +H)

ε

)q

exp

(
− Nǫ2

128G2
k

)
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and Γ(l) := max
k=l,...,L−1

Ek(CHk,k), where Γ(0) = max
k=1,...,L−1

Ek(CHk,k). Especially, at t0 we have

P(ω01,...,ω0N )∈ΩN
0

(
(V̂0 − V0)

2 ≤ 2ε2 + 2
L−1∑

k=1

γ̃kγ2k−1(1 + γ)(3ε+ E∗k (CHk,k))

)
≥ 1− δ0

(3.41)

and

P(ω01,...,ω0N )∈ΩN
0

(
(V̂0 − V0)

2 ≤ 2ε2 + 2
L−1∑

k=1

γ̃kγ(2γ2 + γ3)k−1(1 + γ)(3ε+ γΓ(0))

)
≥ 1− δ0

(3.42)

with

δ0 := δ1 + 8 exp

(
− Nε4

128F 2

)

Proof. Consider the intersection of (L− l) events given by Lemma 3.1 at each time date

tl, l = L − 1, ..., 1. Then, combining (3.30) and (3.19) leads to the statement that with

probability at least 1− δl, δl :=
L−1∑
k=l

δ̃k,

El(ĈHl,l) ≤
L−1∑

k=l

γ̃k−lγ2(k−l)(1{k 6=l} + γ)(3ε+ E∗k (CHk,k)) (3.43)

over all (ωlN , ...,ωL−1,N) ∈ ΩN
l at any time date tl, l = L − 1, ..., 1. For notational

convenience we defineH0 by the singleton set {E[e−r△tτ1Zτ1|S0]}. Using Pollard’s theorem,

for any ε > 0, we have

P
ω

0N∈ΩN
0
((Ĉ0 − C∗

0)
2 ≤ ε2) ≥ 1− 8 exp

(
− Nε4

128F 2

)
. (3.44)

Thus, at t0 = 0 we obtain statement (3.41) by combining the intersection of (L-1) events

given by Lemma 3.1 with the event given in (3.44) and taking (3.20) into account. In

order to show statement (3.40) , we use (reverse) induction. To begin with, (3.40) is clear

for l0 = L− 1. Let tl0 be any time date with 0 < l0 ≤ L− 2, and assume that

L−1∑

k=l0+1

γ̃k−(l0+1)γ2(k−(l0+1))(1 + γ)(3ε+ E∗k (CHk,k))

≤
L−1∑

k=l0+1

γ̃k−(l0+1)(2γ2 + γ3)k−(l0+1)(1 + γ)(3ε+ γΓ(l0 + 1)) (3.45)

holds at tl0+1. Note that the left-hand side of this inequality is the upper bound of (3.43).
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At time date tl0 we have

L−1∑

k=l0

γ̃k−l0γ2(k−l0)(1 + γ)(3ε+ E∗k (CHk,k)) (3.46)

= (1 + γ)3ε+ (1 + γ)E∗l0(CHl0
,l0) +

L−1∑

k=l0+1

γ̃k−l0γ2(k−l0)(1 + γ)(3ε+ E∗k (CHk,k)).

By applying triangle inequality (3.17) and taking (3.22) and (3.30) into account, we yield

for the second term on the right-hand side

E∗l0(CHl0
,l0) ≤ γ

(
El0(CHl0

,l0) + γγ̃

L−1∑

k=l0+1

γ̃k−(l0+1)γ2(k−(l0+1))(1 + γ)(3ε+ E∗k (CHk,k))

)
.

(3.47)

All in all, (3.46) can be estimated by

L−1∑

k=l0

γ̃k−l0γ2(k−l0)(1 + γ)(3ε+ E∗k (CHk,k))

≤ (1 + γ)(3ε+ γEl0(CHl0
,l0)) +

(
L−1∑

k=l0+1

γ̃k−(l0+1)γ2(k−(l0+1))(1 + γ)(3ε+ E∗k (CHk,k))

)
γ̃γ2(2 + γ),

and using the above definition of Γ(l) as well as induction hypothesis (3.45) prove state-

ment (3.40). Thus, at t0 = 0 statement (3.42) directly follows from (3.41).

Remark 3.3.3. In accordance with the results in [132], our statements involve an ex-

ponential dependence on the number of time steps. Focusing on loss functions fulfilling

ℓ(·) ≤ (·)2 – as the loss functions in Table 3.1 – shows that our RRM estimator is su-

perior to the LSM estimator; provided that the transition points are carefully chosen.

Moreover, it makes sense to cut the chosen loss function above to get sharper convergence

statements.

A number of numerical experiments have shown that an approximation of the continu-

ation value by polynomials performs well. To focus on this linear finite-dimensional ap-

proximation architecture, we denote by ΠD
M̃

the space of all multivariate polynomials, i.e.

polynomials in D variables s1, ..., sD, of total degree ≤ M̃−1 with real coefficients. There-

fore, our model function for the continuation value at every time date tl, l = 1, ..., L− 1,

is assumed to be a polynomial π(s) =
∑

α xαs
α, sα = sα1

1 · · · sαD

D , αi ∈ N0, i = 1, ..., D.

Let QD(θ) be a closed cube of side length 0 ≤ 2θ <∞ in R
D centered at the origin; the

interior is denoted by QD(θ). Then, Π
D
M̃
(QD(θ)) is the space of all multivariate polynomi-

als on QD(θ). Moreover, we denote by Cn(QD(θ)) the space of all continuous real-valued

functions f on QD(θ) whose continuous classical derivatives ∂
αf exist for all multi-indices
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for which |α| ≤ n and posses continuous extensions to QD(θ). Then, the norm on this

space is given by

‖f‖Cn(QD(θ)) =
∑

|α|≤n

sup
x∈QD(θ)

|∂αf(x)|.

In the same manner as the last two results in [132], we show by both results, Corollaries

3.1 and 3.2, that we are able to get bounds on the overall rate of convergence up to

arbitrarily high probability provided that the continuation values satisfy some regularity

assumptions. To get stronger statements, we suppose that our chosen loss function fulfills

ℓ(·) ≤ (·)2.

Corollary 3.3.1. Assume that the framework above holds with state space E = QD(θ).

Moreover, suppose that there exists n ∈ N such that Cl is the continuous extension to

QD(θ) of some function Cl ∈ Cn(QD(θ)) for all tl, l = 1, ..., L − 1. Let M̃ be a positive

integer with 1 ≤ n < M̃ and ζ be a constant with ζ ≥ 1, and define

Hl := {π ∈ ΠD
M̃
(QD(θ)); ‖π‖C0(QD(θ)) ≤ 2‖Cl‖Cn(QD(θ))}.

Then, for any ε > 0, we have

P(ω01,...,ω0N )∈ΩN
0

(
(V̂0 − V0)

2 ≤ 2ε2 + 2
L−1∑

k=1

γ̃kγ(2γ2 + γ3)k−1(1 + γ)(3ε+ γζ̃2(M̃)−2n)

)
≥ 1−δ0

(3.48)

with δ0 = 8 exp
(
− Nε2

128F 2

)
+

L−1∑
k=1

22(q + 1)
(

696ζ̃(F+2ζ̃)
ε

)q
exp

(
− Nε2

128G2
k

)
and q = (M̃−1+D)!

(M̃−1)!D!
;

ζ̃ ≥ 1 is any constant fulfilling ζ2‖Cl‖2Cn(QD(θ))
≤ ζ̃2 for l = 1, ..., L− 1.

Proof. To begin with, let us remark that the VC-dimension of a finite-dimensional vector

space of measurable real-valued functions coincides with its vector space dimension, see

[46]. Thus, due to the dimension of the space of multivariate polynomials we obtain

vc(Hl) ≤
(

M̃ − 1 +D

D

)
= dim(ΠD

M̃
) := q

at all tl, l = 1, ..., L− 1. Moreover, combining statement (3.42) with the relation

inf
π∈Hl

∫
ℓ(Cl − π) ≤

∫
ℓ(Cl − πl) ≤ ‖Cl − πl‖2∞ ≤ ζ2(M̃)−2n‖Cl‖2Cn(QD(θ))

(3.49)

for any πl ∈ Hl and each l = 1, ..., L− 1, leads to statement (3.48); the last inequality of

(3.49) is a consequence of Jackson-type estimates, where the constant ζ ≥ 1 depends on

QD(θ), see [46]; quantity H is replaced by 2ζ̃ in Gk as well.



3 Robust Regression Monte Carlo Method 38

Let Lip(QD(θ)) be the space of Lipschitz continuous functions f on the closed cube QD(θ)

that satisfy

|f(x)− f(y)| ≤ ζL|x− y|, ∀x, y ∈ QD(θ),

where 0 ≤ ζL <∞ is the Lipschitz constant.

Corollary 3.3.2. Assume that the framework above holds with state space E = QD(θ).

Moreover, suppose that Cl ∈ Lip(QD(θ)). Let M̃ be a positive integer such that

(
88ζLθD

M̃ − 1 +D

)2

≤ ‖Cl‖2C0(QD(θ))

and

Hl := {π ∈ ΠD
M̃
(QD(θ)); ‖π‖C0(QD(θ)) ≤ 2‖Cl‖C0(QD(θ))}

for l = 1, ..., L− 1. Then, for any ε > 0, we have

P(ω01,...,ω0N )∈ΩN
0

(
(V̂0 − V0)

2 ≤ 2ε2 + 2
L−1∑

k=1

γ̃kγ(2γ2 + γ3)k−1(1 + γ)

(
3ε+ γ

(
88ζLθD

M̃ − 1 +D

)2
))

≥ 1− δ0 (3.50)

with δ0 = 8 exp
(
− Nε2

128F 2

)
+

L−1∑
k=1

22(q + 1)
(

696ζ̃(F+2ζ̃)
ε

)q
exp

(
− Nε2

128G2
k

)
and q = (M̃−1+D)!

(M̃−1)!D!
;

ζ̃ ≥ 1 is a constant fulfilling ‖Cl‖2C0(QD(θ))
≤ ζ̃2, l = 1, ..., L− 1.

Proof. Statement (3.50) is an immediate consequence of Feinerman-Newman’s Lemma,

see [50] or [132].

3.4 Numerical Investigations

In this section we concentrate on the numerical performance of our RRM method. In

Subsection 3.4.1 we examine numerical properties of our RRM method and aim at a com-

parative study with the LSM method. Based on both methods, we focus our attention

on dual methods in Subsection 3.4.2. Before we proceed, let us make mention of some

technical details. In all our experiments we assume that the vector-valued price process

S of D assets follows a multi-dimensional geometric Brownian motion, compare (2.14).

To reduce variance, we use antithetic variables for generating paths. In general, the coder

should take special care about generation of uniform pseudo-random numbers. Our exper-

iments with different random number generators, namely linear congruential methods and

lagged fibonacci generators, have shown that another choice than the Mersenne Twister
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MT19937 [95] can lead to inaccurate values. We use the following linear congruential

method for generating a seed vector,

x0 = (as0 + b)modM, xi = (axi−1 + b)modM,

i = 1, ..., 623, s0 seed, a = 214013, b = 2531011, M = 4294967296. We convert uniformly

distributed random numbers with the Ziggurat algorithm rather than with the Polar

method because of speed, see [94]. Clearly, the practical efficiency of a Monte Carlo

estimator does not only depend on the theoretical properties, but also on the quality of

the underlying random number generator. A vital calibration of regression-based Monte

Carlo methods for pricing complex financial products with an early exercise feature is the

choice of basis functions. There are a variety of proposals for choosing a basis, e.g., see

[91], [97], [4], [58]. We specify our chosen functions in a suitable position. At this point we

would like to remark that a well-considered choice of basis functions can avoid the curse

of dimensionality; taking multivariate polynomials in D input variables of total degree M̃

into account leads to a power law growth of the number of coefficients proportional to

DM̃ .

3.4.1 Numerical Experiments

Before we investigate the performance of our RRM method, we briefly discuss the out-

lier detection procedure used in our experiments. Robust regression is often applied in

a statistical context, and, thus, we suppose reasonable distributions of the error. Unfor-

tunately, we are not familiar with any distribution, and, that is why, we should work

with empirical distributions as pointed out by [53]. In so doing, working with empirical

α-quantiles suggests itself, and a possible outlier detection procedure is given as follows:

rhelpj = |rj|, j = 1, ..., J, r = (r1, ..., rJ)

rhelp = sort(rhelp) (3.51)

γ1 = rhelp⌊αJ⌋, 0≪ α < 1,

and, if a loss function with a further transition point is chosen,

γ2 = rhelp⌊βJ⌋, α < β < 1.

Notify that we presume (1−α)100 ((1−β)100) per cent of the data points to be (extreme)

outliers a priori. For pricing put options it makes more sense to run the above procedure

without taking absolute values of the residuals due to asymmetric data; put options are

naturally bounded above. Needless to mention, other approaches for detecting outliers are
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cogitable. In our experiments we determine transition points in each regression procedure

by the initial estimation of the coefficients at the beginning of the iteration. As we focus

on Bermudan options, we take the least squares solution as initial values for our Newton-

Raphson-based solver; taking the approximation of the previous time step seems to be

more efficient if we price options with a couple of exercise opportunities.

Remark 3.4.1. Following [111], due to complexity O(J log2 J) Quicksort should be se-

lected for the procedure sort(·) in (3.51) if J > 50. It is stable and often superior to

Heap-Sort by a factor of 1.5-2 with respect to speed; nevertheless, Heap-Sort is the more

elegant algorithm. For J < 50 we prefer the stable method by Shell having worst case

complexity O(J3/2).

To get a first impression of our RRM algorithm, we price Bermudan Max call options on

two uncorrelated assets with

T = 3, ∆t = 1/3, K = 100, r = 0.05, σd = 0.2, δd = 0.1, Sd
0 = 90, 100, 110 ∀d.

To measure error quantities, we run each algorithm fifty times with different seeds in

the random number generator; the benchmark values are 8.0724, 13.9018 and 21.3441

for the out-of-the-money (OTM), at-the-money (ATM) and in-the-money (ITM) option,

respectively, and result from the three-dimensional Binomial tree proposed in [116] with

Richardson extrapolation based on 4,500 and 9,000 time steps. Before we move on, let

us compare several solvers for robust regression. For this comparative study we price the

ATM max call option; we run the algorithms with just one seed and work with the first

seven functions of the basis

{1, {Xd}Dd=1, {X2
d}Dd=1, {XdXe}De 6=d, {X3

d}Dd=1, X
2
1X2, X1X

2
2}, (3.52)

where X1, X2, ... denote the highest, second highest, and so on asset value, and N =

100, 000 paths. Table 3.2 shows the convergence behavior of IRLS, R̃RNew and RRNew

combined with Huber’s loss function measured by the a posteriori relative error

‖x(k) − x∗‖2/‖x∗‖2

with the approximated optimum x∗. Both methods based on the Newton-Raphson itera-

tion perform quadratic convergence; as R̃RNew works with a perturbed system by construc-

tion, our robust regression solver shows better performance. As R̃RNew solves a weighted

least squares problem in each iteration step, using this approach leads to a speed-up factor

of about 5 compared with the IRLS approach. We obtain speed-up factors of about 18 or

more by using our proposed solver RRNew rather than using IRLS. Needless to say, it pays



3 Robust Regression Monte Carlo Method 41

Table 3.2: A posteriori relative error of different robust regression solvers.

IRLS R̃RNew RRNew

Step tL−1 t1 tL−1 t1 tL−1 t1

0 6.5851 1.0617 6.5851 1.0617 6.5851 1.0617

1 2.7867 1.2561·10−1 2.5500·10−1 1.6567·10−2 2.5502·10−1 1.6567·10−2

2 1.31 4.8139·10−2 3.0171·10−5 2.4134·10−6 2.4928·10−5 2.4133·10−6

3 6.6768·10−1 1.1464·10−2 1.1940·10−14 - - -
...

...
... - - - -

15 1.2429·10−4 1.1180·10−10 - - - -
...

... - - - - -

27 1.0836·10−8 - - - - -

CPU Time - - 5.93 4.09 28.13 18.04

Ratio

Notes. Algorithm specific parameters are as follows: α = 0.9, TOL∆x = TOL∇f = 10−10.
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Figure 3.3: Convergence of RRNew for the Jonen loss function.

Notes. Algorithm specific parameters are as follows: α = 0.9, β = 0.99, TOL∆x = TOL∇f =

10−10.
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to work with the update technique (3.7). Figure 3.3 shows the convergence behavior for

our solver combined with our proposed loss function, i.e. the Jonen loss function. Even

though we work with subgradients and generalized Hessian matrices, we observe second

order convergence in the neighborhood of the optimum; see Remark 3.2.1. The speed-up

factors of Table 3.2 are representative for this test as well. Needless to mention, the lower

we choose the transition points the more iterations we need. As the results of these nu-

merical experiments reflect our experience, we use our proposed solver RRNew in all our

experiments combined with

TOL∆x = 10−15 and TOL∇f = 10−12.

Figure 3.4 shows the bias for the ATM max call option determined by the LSM method,

i.e. α = β = 1, and our RRM method in combination with the three robust loss functions

listed in Table 3.1; again, we run the algorithms with the first seven functions of basis

(3.52) and N = 100, 000 paths. At first glance we see that we get a striking bias reduction

by using our RRMmethod rather than the LSMmethod. Our proposed loss function called

Jonen shows a better performance than Huber’s and Talwar’s loss function; nevertheless,

our RRM method combined with the Huber and Talwar loss function shows a remarkable

accuracy improvement. As we consider a bias reduction for any combination of transition

points with α ∈ [0.85, 1.00] and β ∈ [0.99, 1.00], we conclude that our RRM method shows

robustness against the choice of these parameter settings. We see a similar convergence

behavior for the ATM, ITM and OTM option; optimal transition point combinations lead

to a bias reduction by a factor of up to 219, 1,452 and 3.66 for the OTM, ATM and ITM

option, respectively. By our chosen algorithm settings, we obtain an unbiased estimator

for the OTM and ATM option. The bias variance tradeoff is a well-known problem in

estimation theory – a reduction in bias yields in an increasing variance, and vice versa.

Anyway, the surfaces of Figure 3.5 show that our method does not suffer by this effect.

On the contrary, we often see a slight reduction in variance by using robust regression;

this fact seems to be natural as outliers increase variance.

To underline these results we price a Bermudan arithmetic average call option on two

uncorrelated assets with

T = 3, ∆t = 1/3, K = 100, r = 0.05, σd = 0.4, δd = 0.1, Sd
0 = 90, 100, 110 ∀d.

Again, we calculate benchmark values by the Rubinstein tree with Richardson extrapola-

tion based on 4,500 and 9,000 time steps; the benchmark values are 8.9553, 13.1573 and

18.3282 for the OTM, ATM and ITM option, respectively. We run the algorithms with

the basis

{1, {sd}Dd=1, {s2d}Dd=1, 1/D
D∑

d=1

sd} (3.53)
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Figure 3.4: Bias calculated by the LSM method (α = β = 1) and the RRM method

combined with the Huber (β = 1), Talwar (α = 1), Jonen (α 6= 1, β 6= 1) loss function

for a Bermudan Max call option on two assets.
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Figure 3.5: SE (standard error) ratios for several transition points calculated for an OTM,

ATM and ITM Bermudan Max call option on two assets.

and N=100,000 paths; sd is the value of asset d. Again, Figure 3.6 shows a significant
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Figure 3.6: Bias and SE ratio on the left and on the right, respectively, calculated by the

LSM method and the RRM method for a Bermudan arithmetic average call option on

two assets.

reduction in bias with decreasing variance simultaneously for the OTM option by using

robust regression. These numerical results are representative, as we observe the same

convergence behavior for the ATM and ITM option.

A further bias variance tradeoff caused by regression estimations should be taken into

consideration: increasing the number of paths and basis functions leads to a lower and

higher variance, but to a higher and lower bias, respectively. Thus, regression-based Monte

Carlo methods are seriously effected by the same dilemma, and [59] gives an optimal

relation between the number of paths and the number of basis functions in the (geometric)

Brownian motion case. However, to ensure a fair comparison between the LSM method

and our RRM method, we measure the performance of both estimators V for a quantity

V by the root mean square error (RMSE) given by

RMSE(V ) :=

√
E[(V − V )2] =

√
Bias(V )2 +Variance(V );

it quantifies the balance of variance and bias. Even though we are able to reduce bias

by a significant factor without increasing variance for a fixed number of paths and basis

functions, a vital investigation of efficiency of our proposed Monte Carlo estimator is

a comparative study with respect to accuracy and computational efficiency, in terms of

CPU time and memory requirements. Let Jl be the number of paths for which we should

exercise the option at time date tl, i.e. τ
∗
j = l in Algorithm 1. It is well known that the

early exercise regions of max call options become smaller with decreasing time steps, see

[42]. The closer we are at t0 the lower should become the quantity Jl as the variance of

the simulated paths increases in time. Taking this observation into account, to save CPU

time a natural adaptive control of α and β might be favorable such as realized by

αl = max (αhelp, αmin) , l = L− 1, ..., 1,

where αhelp might be given by the equation of a linear function through the points



3 Robust Regression Monte Carlo Method 45

(x1, αmax) and (x2, α2), 0 < x1 < x2 < 1, 0≪ αmin ≤ α2 < αmax ≤ 1,

αhelp = αmax +
α2 − αmax

x2 − x1

(Jl+1 − x1), (3.54)

and

β = αmax − θ(αmax − αl), 0 < θ ≪ 1,

if we choose a loss function with a further transition point. Numerical tests have indicated

that this strategy is very robust to the free parameters; in the following we work with

(x1, αmax) = (0.15, 1.0), (x2, α2) = (0.4, 0.9), αmin = 0.85, θ = 0.1.

Additionally, we work with the Jonen loss function if αl < 0.9 and with Huber’s loss

function if 0.9 ≤ αl < 0.99; otherwise, we switch to least squares. We take Jl+1 as an

approximation for Jl in (3.54), where JL is the number of paths in-the-money at tL.

In order to calculate speed-up factors, we increase the number of paths and number of

basis functions simultaneously, and Figure 3.7 indicates that we get the same accuracy

by using our RRM method with seven functions and the LSM method with ten functions

for an ATM Bermudan Max call option on two assets. Thus, as illustrated in Figure 3.8

Number of Basis Functions

N
u
m

b
er

of
P
at

h
s

 

 

6 7 8 9 10 6 7 8 9 10

60,000

100,000

140,000

180,000

0.03

0.035

0.04

0.045

0.05

0.055

Figure 3.7: RMSE calculated by the LSM method, the left half, and the RRM method,

the right half, for an increasing number of paths and functions of basis (3.52).

we get speed-up factors between 1.3 and 2.15 for max call options on two assets with

σd = 0.2, d = 1, 2, and between 1.6 and 2.6 for this option type with σd = 0.4, d = 1, 2.

The lower half of the right sketch of Figure 3.8 shows the validity of our comparative

study, as using just nine basis functions for the LSM method leads to higher RMSEs
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Figure 3.8: LSMmethod vs. RRMmethod for max call options on two assets with σd = 0.2,

on the left, and σd = 0.4, on the right.

such that a comparison between both methods is not possible. After analyzing numerical

results of this subsection, we come to the conclusion that we can significantly improve

convergence by using robust regression rather than least squares. We discuss the vital

investigation of our RRM method in higher dimensions in the following subsection.

3.4.2 Dual Methods

Measuring errors for options on more than two assets is often hard, as calculating bench-

mark values for these options is time expensive or often nearly infeasible due to hardware

constraints. Remember that pricing multi-asset options with an early exercise feature by

the LSM method, and, hence, by our RRM method, create an interleaving estimator, see

[58]. Anyway, without having knowledge of benchmark values we cannot make a state-

ment about the performance of both methods in higher dimensions. Thus, we focus our

attention on the AB approach [4] introduced in Chapter 2, and as a measure of accuracy

we take the difference between the upper and lower bound denoted by ∆0; as previously

mentioned, the tighter the lower and upper bound and the higher the lower bound the

more accurate is the approximated early exercise rule. We use the notation of Chapter 2,

i.e. N0 is the number of paths used for determining the early exercise strategy, N1 is the

number of paths used for estimating the lower bound, N2 is the number of paths used for

estimating the upper bound, and N3 is the number of simulations in the simulation for

estimating the upper bound. To get a first impression of the performance of our RRM

method in higher dimensions, we price Bermudan Max call options on five uncorrelated

and correlated assets by the AB approach combined with both methods, the LSM and our

RRM method, for a fixed number of paths and basis functions. As pointed out by [23], it

makes sense to distinguish between options with reasonable symmetric and asymmetric

parameters. Taking this investigation into account, we run the algorithms with the basis

{1, {Xd}Dd=1, {X2
d}Dd=1, {X3

d}2d=1, X1X2, X1X3, X2X3, X
2
1X2, X1X

2
2} (3.55)
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Table 3.3: Lower and upper Bounds calculated by the AB approach combined with the

LSM and RRM method for Bermudan Max call options on five assets.

S0 Algorithm Lower Bound Upper Bound 95% CI CPU Time ∆ Ratio

Ratio

a) 90 LSM 16.622 (0.016) 16.640 (0.017) [16.590,16.672] - −
RRM 16.623 (0.016) 16.630 (0.016) [16.591,16.662] 0.99 2.56

100 LSM 26.106 (0.019) 26.133 (0.020) [26.067,26.172] - −
RRM 26.132 (0.019) 26.141 (0.019) [26.094,26.179] 1.00 2.86

110 LSM 36.716 (0.022) 36.751 (0.022) [36.673,36.795] - −
RRM 36.741 (0.022) 36.764 (0.022) [36.698,36.808] 0.99 1.53

b) 90 LSM 27.517 (0.033) 27.698 (0.039) [27.452,27.775] - −
RRM 27.577 (0.033) 27.641 (0.034) [27.513,27.707] 1.00 2.84

100 LSM 37.825 (0.038) 38.062 (0.047) [37.750,38.154] - −
RRM 37.915 (0.037) 38.028 (0.039) [37.842,38.106] 0.99 2.09

110 LSM 49.254 (0.043) 49.507 (0.047) [49.170,49.600] - −
RRM 49.380 (0.041) 49.542 (0.044) [49.299,49.628] 1.20 1.56

c) 90 LSM 38.933 (0.051) 39.184 (0.079) [38.833,39.340] - −
RRM 39.040 (0.050) 39.155 (0.052) [38.943,39.256] 1.00 2.20

100 LSM 50.161 (0.057) 50.513 (0.071) [50.048,50.652] - −
RRM 50.263 (0.056) 50.494 (0.070) [50.153,50.631] 1.01 1.53

110 LSM 62.291 (0.064) 62.676 (0.080) [62.166,62.832] - −
RRM 62.400 (0.061) 62.639 (0.068) [62.276,62.772] 1.00 1.59

Notes. Common option parameters are T = 3, L = 9, K = 100, r = 0.05, δd = 0.1, d = 1, ..., 5,

and, especially, option parameters for a) are σd = 0.2 d = 1, ..., 5, ρde = 0 ∀d 6= e, for b) are

σd = 0.08 + (d − 1)0.08, d = 1, ..., 5, ρde = 0 ∀d 6= e, and for c) are given by the covariance

matrix

Σ =




0.22 0.2 · 0.35 · (−0.1) 0.2 · 0.08 · (−0.2) 0.2 · 0.5 · 0.05 0.2 · 0.4 · 0.0
0.2 · 0.35 · (−0.1) 0.352 0.35 · 0.08 · 0.4 0.35 · 0.5 · 0.1 0.35 · 0.4 · 0.25
0.2 · 0.08 · (−0.2) 0.35 · 0.08 · 0.4 0.082 0.08 · 0.5 · 0.2 0.08 · 0.4 · 0.25
0.2 · 0.5 · 0.05 0.35 · 0.5 · 0.1 0.08 · 0.5 · 0.2 0.52 0.5 · 0.4 · 0.15
0.2 · 0.4 · 0.0 0.35 · 0.4 · 0.25 0.08 · 0.4 · 0.25 0.5 · 0.4 · 0.15 0.42




.

Algorithm specific parameters are as follows: N0 = 130, 000, N1 = 1, 000, 000, N2 = 1, 000,

N3 = 5, 000. The CPU time and ∆0 ratios are defined by (CPU TimeLSM/CPU TimeRRM) and

(∆LSM/∆RRM), respectively.
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and

{1, {sd}Dd=1, {s2d}Dd=1, {Xj
d}2d,j=1, X1X2, {X3

d}2d=1, } (3.56)

in case of symmetric and asymmetric parameters, respectively. For options on many assets

choosing a basis with non-distinguishable functions might be favorable. In doing so, Table

3.3 reports results by using the functions (3.55) for case a) and (3.56) for cases b),c). The

lower bounds produced by our method are higher for all options. Obviously, we obtain a

better approximation of the optimal stopping rule strengthened by the fact that the gap

between the upper and lower bound is tighter by a factor between 1.54 and 2.86. Especially

for the upper bound, we consider a slight reduction in variance by using robust regression.

Both methods calculate a 95 % confidence interval in about the same CPU time; more

precisely, the CPU time ratios are between 0.99 and 1.20. Even though a least squares

solver is superior to our RRM method with respect to CPU time, it might happen that

our method is slightly faster than the LSM method as the second phase of dual methods

depends on the approximated early exercise strategy. To underline these results, Figure 3.9
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Figure 3.9: Lower and upper bounds calculated by the AB approach combined with the

LSM and RRM method for a Bermudan arithmetic average option on five assets.

Notes. The solid line is the connection between the lower and upper bound; the stars denote

the lower and upper bound of the calculated 95% confidence interval. The first column shows

the result of the LSM method, i.e. α = β = 1.00; the other columns show results calculated

by the RRM method for a given α combined with the following decreasing values for β: 1.000,

0.999, 0.996, 0.993, 0.990, 0.987. Option parameters and algorithm settings are concorde with

the parameters used in Table 3.3 b).
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shows lower and upper bounds with resulting 95% confidence intervals estimated by the

LSM method and our RRM method combined with several transition points for an ATM

Bermudan arithmetic average call option on five assets; we run the algorithms with the

first eleven functions of basis (3.53). Once again, we see a remarkable robustness against

the choice of transition points. Thus, we are able to improve convergence by using robust

regression with any combination of α ∈ [0.87, 0.99] and β ∈ [0.987, 1.000]; depending on

these transition points the difference between the upper and lower bound is tighter by a

factor between 1.28 and 3.95, and the lower bounds are higher than the value calculated

by the LSM algorithm. We observe similar convergence behaviors for an ITM and OTM

option with the same parameter settings, and Table 3.4 shows results for the LSM method

and our RRM method combined with α = 0.87, β = 0.993. By using our RRM method

Table 3.4: Lower and upper bounds calculated by the AB approach combined with the

LSM and RRM method for Bermudan arithmetic average call options on five assets.

S0 Algorithm Lower Bound Upper Bound 95% CI CPU Time ∆ Ratio

Ratio

90 LSM 1.540 (0.005) 1.560 (0.006) [1.530,1.573] - −
RRM 1.547 (0.004) 1.553 (0.005) [1.538,1.562] 1.03 3.46

100 LSM 3.961 (0.007) 4.002 (0.008) [3.948,4.027] - −
RRM 3.987 (0.006) 3.999 (0.007) [3.974,4.012] 0.99 3.34

110 LSM 9.301 (0.008) 9.359 (0.010) [9.285,9.378] - −
RRM 9.340 (0.007) 9.360 (0.008) [9.326,9.376] 0.98 2.91

Notes. See Table 3.3 b) for option parameters. Algorithm settings for the LSM and RRM method

are as follows: N0 = 300, 000, N1 = 1, 000, 000, N2 = 1, 000, N3 = 5, 000.

we obtain a reduction of ∆0 by factors between 2.91 and 3.46 in the same CPU time.

Again, we see that we get higher lower bounds and a slight reduction in variance by using

robust regression. For all practical purposes our first experiments are meaningful, since

practitioners are often obliged to price options in a fixed time budget.

To make a meaningful comparative speed-accuracy study between the LSM and our RRM

method, we fix the number of paths for determining the lower and upper bounds, i.e. we

fix the quantities N1, N2, N3. Since we are able to interpret the tightness of the lower and

upper bound as a measure of accuracy, we increase the number of paths for calculating

the coefficients of the model function for the continuation value, i.e. we increase N0, as

well as the number of basis functions. Before we discuss a performance comparison, let

us address a vital point from a practical point of view. For this purpose, we add to basis
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Figure 3.10: ∆0 calculated by the LSM and RRM method with several basis functions and

an increasing number of paths N0 for an ATM Bermudan Max call option on five assets.

Notes. See Table 3.3 b) for option parameters. Algorithm settings for the LSM and RRM method

are as follows: N1 = 1, 000, 000, N2 = 1, 000, N3 = 5, 000.

(3.56) the following functions:

{X2
1X2, X1X

2
2 , X3, X1X3, X2X3, {Xj

3}3j=2, X
2
1X3,

X1X
2
3 , X

2
2X3, X2X

2
3 , {Xj

4}3j=1, X1X4, X2X4, X3X4}. (3.57)

Figure 3.10 shows ∆0 calculated by both methods with the first M =

16, 18, 20, 23, 25, 29, 35 basis functions for an increasing number of paths N0. At first

glance our RRM method shows a better convergence behavior than the LSM method.

Even if we use more than double as much basis functions with the LSM method, we never

reach the accuracy that we obtain with our RRM method. Evidentally, our RRM method

seems to be less sensitive with respect to the choice of basis functions strengthened by

the results of Table 3.5, in which we determine bounds by

(B1) basis (3.56) combined with {X3, X
2
3 , X1X3, X2X3, X

4
1 , X

5
1 , X1X

2
2 , X

2
1X2, X4, X

2
4},

(B2) basis (3.56) combined with the first eleven functions of (3.57),

(B3) basis {1, {sd}Dd=1, {s2d}Dd=1} combined with monomials up to a total degree of two in

the ordered statistics.
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Notify that basis (B2) and (B3) are natural choices due to Taylor expansion. For this

experiment, we choose a reasonable large number of paths for the regression step, namely

N0 = 330, 000. As we can see, the lower bounds produced by the LSM method are

Table 3.5: Accuracy comparison of the LSM and RRM method with respect to several

basis functions for an ATM Bermudan Max call option on five assets.

Basis Algorithm Lower Bound Upper Bound 95% CI ∆

(B1) LSM 37.921 (0.038) 38.067 (0.041) [37.847,38.147] 0.146

RRM 37.947 (0.037) 38.064 (0.039) [37.875,38.141] 0.117

(B2) LSM 37.872 (0.038) 38.045 (0.043) [37.797,38.128] 0.172

RRM 37.956 (0.037) 38.069 (0.040) [37.883,38.147] 0.114

(B3) LSM 37.855 (0.039) 38.062 (0.042) [37.779,38.145] 0.207

RRM 37.937 (0.037) 38.040 (0.039) [37.864,38.117] 0.103

Notes. See Table 3.3 b) for option parameters. Algorithm settings for the LSM and RRM method

are as follows: N0 = 330, 000, N1 = 1, 000, 000, N2 = 1, 000, N3 = 5, 000.
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Figure 3.11: ∆0 against number of paths calculated by the AB approach combined with

the LSM and RRM method for an ATM Bermudan Max call option on five assets.

Notes. See notes of Figure 3.10 for algorithm settings.

quite unstable with respect to several basis functions, and ∆0 strongly varies for several



3 Robust Regression Monte Carlo Method 52

basis functions, although our chosen basis are of about the same size. To sum up, we

are strongly limited in the choice of basis functions, if we are interested in a comparative

study between both methods. Therefore, in the following we use functions working well

for the LSM method. More precisely, for symmetric option parameters we add to basis

(3.55) functions in the order

{X4
1 , X

5
1 , X

3
3 , X1X

2
3 , X

2
1X3, X2X

2
3 , X

2
2X3, X

3
4 , X1X4, X2X4, X3X4},

and for asymmetric option parameters we work with basis (B1). Let us keep in mind that

our study is a worst case study. Figure 3.11 illustrates our test for getting a comparative

study with respect to CPU time and is as follows: we fix a given level of tightness,

e.g., 0.16 as in Figure 3.11, and we examine the number of paths and the number of

basis functions needed to guarantee that we remain below this bound; for instance, to

guarantee that we remain below the limit of 0.16 we need eighteen basis functions and

at least 30,000 paths for our RRM method as well as twenty-eight basis functions and

at least 160,000 paths for the LSM method; by using only twenty-four basis functions

we cannot consider a long term undercut for the LSM method. Measuring the first time

Table 3.6: Lower and upper bounds calculated by the AB approach combined with the

LSM and RRM method for Bermudan Max call options on five assets and given levels of

tightness.

∆0 S0 Method Lower Bound Upper Bound 95% CI CPU Time Settings

Level Ratio N0|M
a) 0.013 90 LSM 16.638 (0.016) 16.647 (0.017) [16.606,16.679] - 370,000|29

RRM 16.636 (0.016) 16.647 (0.016) [16.605,16.679] 2.24 110,000|18
0.017 100 LSM 26.132 (0.020) 26.145 (0.020) [26.094,26.184] - 210,000|29

RRM 26.132 (0.019) 26.141 (0.019) [26.094,26.180] 2.49 130,000|18
0.03 110 LSM 36.748 (0.022) 36.769 (0.022) [36.705,36.812] - 210,000|29

RRM 36.747 (0.022) 36.776 (0.022) [36.704,36.821] 2.05 190,000|18
b) 0.12 90 LSM 27.573 (0.033) 27.678 (0.035) [27.507,27.748] - 170,000|28

RRM 27.569 (0.033) 27.650 (0.034) [27.504,27.716] 1.85 90,000|18
0.16 100 LSM 37.895 (0.038) 38.014 (0.042) [37.820,38.095] - 160,000|28

RRM 37.857 (0.038) 38.008 (0.046) [37.786,38.087] 1.94 30,000|18
0.2 110 LSM 49.336 (0.042) 49.509 (0.045) [49.254,49.597] - 90,000|28

RRM 49.369 (0.041) 49.538 (0.047) [49.289,49.631] 4.75 70,000|18

Notes. The option parameters for a) and b) are consistent with the parameters used in Table

3.3 a) and b), respectively. See notes of Figure 3.10 for algorithm settings.
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we go below our given level of accuracy such that we can guarantee that we stay below

this level gives us speed-up factors reported in Table 3.6. Notify that we pass our test

with significant fewer number of paths and number of basis functions by using our RRM

method rather than the LSM method. Thus, pricing five-dimensional options with an

early exercise feature by our RRM method leads to speed-up factors between 1.85 and

4.75. To conclude our numerical experiments, lower and upper bounds as well as resulting

Table 3.7: Lower and upper bounds calculated by the AB approach combined with the

LSM and RRM method for a Bermudan Max call option on thirty assets and a given level

of tightness.

∆0 Level Algorithm Lower Bound Upper Bound 95% CI CPU Time Settings

Ratio N0|M
1.0 LSM 298.499 (0.155) 299.405 (0.242) [298.194,299.879] - 1,000,000|44

RRM 298.701 (0.148) 299.475 (0.180) [298.411,299.829] 3.30 320,000|11

Notes. Option parameters are as follows: T = 3, L = 12, K = 100, r = 0.05, Sd
0 = 100,

σd = 0.08 + 0.015d, δd = 0.1, d = 1, ..., 30. Algorithm settings for the LSM and RRM method

are as follows: N1 = 2, 000, 000, N2 = 1, 000, N3 = 5, 000.

95% confidence intervals are reported in Table 3.7 for an ATM Bermudan Max call option

on thirty uncorrelated assets. Numerical experiments have indicated that we need at least

fourty-four basis functions and at least 1,000,000 paths to ensure that we remain below

the bound of 1.0 with the LSM method; the basis consists of the functions

{1, {Xd}3d=1, {X2
d}2d=1, {X3

d}2d=1, X1X2, X1X3, X2X3, {Xj
3}3j=2, X

4
1 , {sd}30d=1}. (3.58)

As it turned out that we could not reach our given level of tightness by using just non-

distinguishable basis functions, we worked with distinguishable functions as well. The

results for our RRM method are very remarkable, as we just need the first eleven functions

of basis (3.58) and at least 320,000 paths for passing our test such that we get a speed-up

factor of 3.30; we observe a variance reduction factor of 1.81 for the upper bound.

Concluding this section, let us make some remarks on computational efficiency in terms

of memory requirements. To ensure convergence of regression-based Monte Carlo, we

have to increase the number of paths and number of basis functions simultaneously. Our

numerical experiments have shown that we can improve convergence significantly by using

our RRM method rather than the LSM method. Thus, contrary to the LSM method, the

implementation of our RRM method has much less memory requirements, especially for

higher-dimensional options.



Chapter 4

Efficiency Increase

The probabilistic convergence rate O(1/
√
N) might be the proof of Monte Carlo estima-

tion’s inadequacy. To overcome this shortcoming, a number of variance reduction tech-

niques have been proposed, see, e.g., [58], for an overview. From our point of view, it is

essentiell to speed up convergence by several techniques, and, thus, we pursue the goal

of increasing efficiency in two ways. To start with, we propose a variance reduction tech-

nique via importance sampling in Section 4.1. We introduce our change of drift technique

and discuss an efficient implementation. Random numbers with low discrepancy are also

widely-used catalyzers for improving convergence of Monte Carlo estimators. Thus, in

Section 4.2 we discuss the application of quasi-Monte Carlo techniques for pricing finan-

cial derivatives with an early exercise feature and study the extension to dual methods.

To conclude this chapter, we discuss some further acceleration techniques in Section 4.3.

4.1 Variance Reduction via Importance Sampling

The key idea in reducing variance via importance sampling is to change the probability

measure. By doing so, a common way is to change the drift in Brownian motion of the

underlying model to drive paths in regions which are more important for variance. In

Subsection 4.1.1 we propose a change of drift technique to improve the convergence be-

havior of Monte-Carlo estimators for financial derivatives with an early exercise feature.

In order to determine the drift minimizing variance, we discuss algorithms for solving the

underlying stochastic optimization problem in Subsection 4.1.2. To conclude the theoret-

ical part, we extend our proposed approach to the vital class of dual methods for pricing

American derivatives in Subsection 4.1.3. The last part of this section, Subsection 4.1.4,

is devoted to investigating the numerical performance of our proposed approach.
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S0

T

Figure 4.1: Change of drift in Brownian motion for American options.

4.1.1 Variance Reduction by a Change of Drift

To start with, let us motivate a change of drift in Brownian motion by Figure 4.1 showing

the valuation procedure for American options by Monte Carlo methods. As we can see,

the idea of a change of drift is to enforce the early exercise decision such that zero-paths

vanish; indeed, zero-paths, i.e. τn1 = L and Zn
L = 0 in (4.5), lie out-of-the-money at

maturity tL = T and are drivers for an increasing variance. Having this sketch in mind,

let us discuss a realization of this concept in the following. Throughout this section, we

denote by {FW
t |0 ≤ t ≤ T} the filtration generated by a standard D-dimensional P -

Brownian motion (Wt)0≤t≤T , which is augmented to involve all subsets of sets having

P -probability 0. A basic tool for changing the probability measure in our context is given

by Girsanov’s theorem:

Theorem 4.1.1 (Girsanov). For each fixed T ∈ [0,∞), let θ be a R
D-valued process

adapted to {FW
t } satisfying

∫ t

0

‖θs‖22ds <∞ a.s., 0 ≤ t ≤ T. (4.1)

Define the processes (ζt)0≤t≤T and (W̃t)0≤t≤T by

ζt := exp

{∫ t

0

θTs dWs − 0.5

∫ t

0

‖θs‖22ds
}

(4.2)

and

W̃t := Wt −
∫ t

0

θsds,
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respectively. Under the assumption that EP [ζT ] = 1, (ζt)0≤t≤T is a martingale and the

measure Q on (Ω,FT ) defined by dQ = ζTdP is equivalent to P . Moreover, the process

(W̃t)0≤t≤T is a standard Brownian motion with respect to {FW
t } under Q.

Proof. See [57].

By the way, a more general version of a change of two equivalent probability measures

is defined by the Radon-Nikodym theorem; therefore, process (4.2) is also called Radon-

Nikodym derivative or likelihood probability, see [105] for the original work in French.

Under the assumption that (4.1) is fulfilled, a sufficient condition for the requirement

that EP [ζT ] = 1 in Girsanov’s theorem is given by the Novikov condition

E
P

[
exp

{
1

2

∫ T

0

‖θs‖22ds
}]

<∞,

see [107]; we refer to [80] or [100] for a deeper look into this theory. Assume that our

underlying asset model is driven by an Itô process under the risk-neutral probability

measure P ,

dSt = a(St, t)dt+ b(St, t)dWt, (4.3)

where Wt is a standard D-dimensional Brownian motion under P ; in order to ensure

existence and uniqueness of the solution, we assume that a(·, ·) ∈ R
m and b(·, ·) ∈ R

m×D

fulfill the common boundedness and regularity conditions; for convenience, again, we set

t0 = 0 and the value of S0 at t0 denoted by s0 is assumed to be known, i.e. s0 ∈ R
m.

Based on the vital framework above, we can justify a change of drift in Brownian motion,

and we get that

W̃t := Wt −
∫ t

0

θsds

is a Brownian motion under Q such that

dSt = (a(St, t) + b(St, t)θt)dt+ b(St, t)dW̃t (4.4)

is the Itô process (4.3) under Q. Let us come back to the valuation of American-style

derivatives on assets driven by (4.3) such that our starting point is the optimal stopping

problem (2.1). By exploring Girsanov’s theorem, for any stopping time τ ∈ T1,L and any

time-invariant θ, we obtain that

E
P
0 [e

−rτ∆tZτ ] = E
Q
0 [e

−rτ∆tZτe
−θT W̃τ−0.5‖θ‖22τ∆t],

and, consequently, according to (2.1) the fair price can be rewritten as

sup
τ∈T1,L

E
P
0 [e

−rτ∆tZτ ] = sup
τ∈T1,L

E
Q
0 [e

−rτ∆tZτe
−θT W̃τ−0.5‖θ‖22τ∆t].
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Let us make for a moment the assumption that the optimal stopping rule τ ∗1 is known, i.e.

we suppose the knowledge of the continuation value process (Cl)1≤l≤L. Then, an unbiased

estimate of the continuation value at time date t0 is given by

1

N

N∑

n=1

e−r∆t(τ∗1 )
n

Z̃n
(τ∗1 )

ne
−θT W̃n

(τ∗1 )n
−0.5‖θ‖22(τ∗1 )n∆t

=:
N∑

n=1

Xn (4.5)

with the N i.i.d. samples Xn; (τ
∗
l )

n and Z̃n
l are the optimal stopping time and the payoff

of path n, n = 1, ..., N, at time tl, l = 1, ..., L, respectively, whereby Z̃n
l results from

simulating the process (4.4); W̃ n
l is the value of the simulated Brownian motion under

Q for path n, n = 1, ..., N, at time tl, l = 1, ..., L. Again, notify that estimator (4.5)

combined with any stopping strategy τ with values in {1, ..., L} is low-biased. As the

variance of estimator (4.5) is ruled by the samples Xn, n = 1, ..., N , we concentrate on

V arQ0

(
e−r∆tτ∗1Zτ∗1

e
−θT W̃τ∗1

−0.5‖θ‖22τ∗1∆t
)
. (4.6)

One can easily verify that (4.6) can be written as

E
Q
0

[(
e−rτ∗1∆tZτ∗1

e
−θT W̃τ∗1

−0.5‖θ‖22τ∗1∆t
)2]
− C2

0 (4.7)

such that our target quantity is the first term of (4.7) simplified to

E
Q
0

[(
e−rτ∗1∆tZτ∗1

e
−θT W̃τ∗1

−0.5‖θ‖22τ∗1∆t
)2]

= E
P
0

[(
e−rτ∗1∆tZτ∗1

)2
e
−θTWτ∗1

+0.5‖θ‖22τ∗1∆t
]
=: V(θ).

(4.8)

In the context of variance reduction by a change of drift in Brownian motion for European-

style options, a similar derivation to an objective function can be found in [122]. From a

statistical point of view, the optimal estimator for an unbiased estimator is the one with

the smallest variance. Thus, for the purpose of determining the drift minimizing variance,

we should solve the optimization problem

min
θ∈RD
V(θ). (4.9)

Note that the second term of the right-hand side of (4.7) and the payoff of V(θ) are

independent of the parameters θd, d = 1, ..., D; this fact makes our optimization problem

very attractive. The following theorem indicates that our minimization problem is well-

posed, which means that a minimum exists and is unique.

Theorem 4.1.2. Suppose that the mathematical framework above holds with the reason-

able assumption that P (e−rτ∗1Zτ∗1
> 0) 6= 0. Then, V(θ) is strictly convex on R

D such that

the minimization problem (4.9) has a unique solution θ∗ ∈ R
D.
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Proof. In analogy to [7], we verify that V(θ) is twice continuously differentiable with

gradient

∇V(θ) = E
P
0

[
(θτ ∗1 −Wτ1)(e

−rτ∗1∆tZτ∗1
)2e

−θTWτ∗1
+0.5‖θ‖22τ∗1∆t

]

and Hessian matrix

∇2V(θ) = E
P
0

[
(IDτ

∗
1 + (θτ ∗1 −Wτ1)(θτ

∗
1 −Wτ1)

T )(e−rτ∗1∆tZτ∗1
)2e

−θTWτ∗1
+0.5‖θ‖22τ∗1∆t

]
,

where ID is the (D × D) identity matrix. Since ∇2V(θ) is positive definite and

lim‖θ‖2→∞ V(θ) =∞, V(θ) is a strictly convex function on R
D with a unique minimum.

As in practical applications the optimal stopping rule is not known, we might use

regression-based Monte Carlo method for the numerical realization of this step; for in-

stance, the LSMmethod or our RRMmethod can be used to approximate the continuation

value at every exercise date. Our variance reduction approach involving a change of drift

in Brownian motion for pricing options with an early exercise feature based on an ap-

proximated exercise policy τ1 is given in Algorithm 3.

Before we discuss the vital step 1 in Algorithm 3 of finding the optimal solution of (4.9)

Algorithm 3 ABIS1(N1, T, L,Θ).

Input: τ1, N1, T, L,Θ,Γ

Output: L̂0, σ̂L

1: θ ← SolveSOP (τ1, T, L,Θ,Γ)

2: Draw N1 i.i.d. samples Xn = e−r∆tτn1 Z̃n
τn1
e
−θT W̃n

τn1
−0.5‖θ‖22τn1 ∆t

3: L̂0 =
1
N1

∑N1

n=1 Xn

4: σ̂2
L = 1

N1−1

∑N1

n=1(Xn − L̂0)
2

Notes. The routine SolveSOP (τ1, T, L,Θ,Γ) in line 2 realizes the approximation of the optimal

drift; Γ contains parameters for setting up this solver, see Subsection 4.1.2. σ̂L might be used

for calculating an confidence interval of L0.

in the next subsection, let us briefly address another approach on a change of drift in

Brownian motion for American options. Moreni [96] presumed that the LSM estimator

with an unknown exercise strategy is ruled by the quantity V(θ); in particular, the willful

neglect that the discounted cash flows of the option price estimator are dependent was

done. For practical applications, as a compromise, Moreni proposed to work with the

optimal drift of the estimator for the European option with the same parameter settings

as the American option to be priced; finding the optimal drift for the American option

has remained unsolved. Compared to this approach, we suppose a priori that an optimal

stopping strategy is known to derive an estimator as well as an optimization problem for

finding the drift minimizing variance.
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4.1.2 Optimization Methods

Stochastic approximation for solving stochastic optimization problems is still going strong,

and a widely-used approach is the Robbins-Monro (RM) algorithm proposed in [113]. To

begin with, we direct our attention to this stochastic search algorithm given by

θ(k+1) = θ(k) − γkYk, k = 0, 1, 2, ..., (4.10)

where Yk is a noisy estimate of ∇V(θ(k)) and γk is an appropriate sequence. The conver-

gence is ensured by the following theorem:

Theorem 4.1.3. Assume that the following hypotheses hold:

(H1) γk > 0, γk → 0 as k →∞,
∑∞

k=0 γk =∞,
∑∞

k=0 γ
2
k <∞.

(H2) ∃θ∗ ∈ R
D,∇V(θ∗) = 0, ∀θ ∈ R

D : θ 6= θ∗, (θ − θ∗) · ∇V(θ) > 0.

(H3) ∃c > 0, ∀k ≥ 0 : E[‖Yk‖2|Fk] < c(1 + ‖θ(k) − θ∗‖2) a.s..

Then, the sequence (θ(k))k≥0 defined by (4.10) converges almost surely (a.s.) to θ∗. This

statement is even true, if (H3) is replaced by

(H4) ∃c > 0,
∑∞

k=0 γ
2
kE[‖Yk‖2|Fk] ≤ c <∞.

Proof. See [113], [45] or [84] for probabilistic convergence statements under (H1)-(H3);

for a proof with respect to the assumptions (H1), (H2) and (H4) see [17].

Unfortunately, neither (H3) nor (H4) are trivial assumptions in our framework such that

we cannot verify them; numerical tests have confirmed our guess that these assumptions

do not hold at all. To this end, Arouna [7] could gain a variance reduction approach via

a change of drift in Brownian motion for European-style options by using a truncated

version of the RM method to find the optimal drift. The idea of a truncation is to make

sure that the new determined drift θ(k+1) does not jump out of a given compact set U at

each iteration step. In the case of such an event, the set U is expanded and the entries

of the new drift θ(k+1) might be set back to constant values. To this end, to avoid large

steps, the projection algorithm proposed by [32], is given by the procedure

θ(k+1) =

{
θ(k) − γkYk, if ‖θ(k) − γkYk‖2 ≤ Uck

θ
(k)
, otherwise

, k = 0, 1, 2, ..., (4.11)

with

θ
(k)

=

{
θ1, if ck is even

θ2, if ck is odd
(4.12)
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and

ck =
k−1∑

i=0

1‖θ(i)−γiYi‖2>Uci
. (4.13)

With Theorem 4.1.2 and the additional assumption that E[|e−rτ∗1∆tZτ∗1
|4p] < ∞, p > 1,

in analogy to [7], we are able to prove that a sequence Uc can be selected such that θ(k)

converges a.s. to the unique solution of the equation ∇V(θ) = 0, θ ∈ R
D. In accordance

with Arouna’s choice, we run the truncated RM algorithm with the sequences γk =

1/(1 + k) and Up =
√

0.1 log(p) + U0, p = 1, 2, ..., U0 = 10.

Let us discuss an alternative way of solving our stochastic optimization task (4.9). By

generating N4 i.i.d. samples, we are able to replace our original stochastic optimization

task

min
θ∈RD

E
P
0

[(
e−rτ∗1∆tZτ∗1

)2
e
−θTWτ∗1

+0.5‖θ‖22τ∗1∆t
]

(4.14)

by its deterministic counterpart

min
θ∈RD

1

N4

N4∑

n=1

(
e−r(τ∗1 )

n∆tZn
(τ∗1 )

n

)2
e
−θTWn

(τ∗1 )n
+0.5‖θ‖22(τ∗1 )n∆t

=: min
θ∈RD

ν(θ), (4.15)

and ordinary solvers such as the Newton-Raphson method might be used to determine

the optimal drift. Notify that the entries of the gradient ∇ν(θ) ∈ R
D and the Hessian

matrix ∇2ν(θ) ∈ R
D×D of ν(θ) are given by

(∇ν(θ))d :=
∂ν(θ)

∂θd
(4.16)

=
1

N4

N4∑

n=1

(θd(τ
∗
1 )

n∆t− (W n
(τ∗1 )

n)d)
(
e−r(τ∗1 )

n∆tZn
(τ∗1 )

n

)2
e
−θTWn

(τ∗1 )n
+0.5‖θ‖22(τ∗1 )n∆t

,

d = 1, ..., D, and

(∇2ν(θ))de :=
∂2ν(θ)

∂θd∂θe
(4.17)

=
1

N4

N4∑

n=1

((θe(τ
∗
1 )

n∆t− (W n
(τ∗1 )

n)e)(θd(τ
∗
1 )

n∆t− (W n
(τ∗1 )

n)d) + (τ ∗1 )
n∆t1{d=e})·

(
e−r(τ∗1 )

n∆tZn
(τ∗1 )

n

)2
e
−θTWn

(τ∗1 )n
+0.5‖θ‖22(τ∗1 )n∆t

,

d, e = 1, ..., D, respectively, where 1{d=e} denotes the indicator function. Quasi-Newton-

Raphson methods for solving deteministic unconstrained optimization tasks build up an

approximation of the inverse Hessian matrix such that cheap update techniques in each

iteration step can be used. These methods promise to accelerate the search procedure for

unconstrained optimization tasks. Thus, in our numerical experiments in Subsection 4.1.4

we test the Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach to avoid the expensive
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evaluation of (4.17); see [51] for the BFGS algorithm. It is well known that the Newton-

Raphson method is locally quadratically convergent, see [41]. Following the discussion in

[41], we use both convergence criteria

max
d=1,...,D

|θ(k+1)
d − θ

(k)
d |

max{|θ(k+1)
d |, 1}

≤ TOL∆θ, 0 < TOL∆θ ≪ 1, (4.18)

to test for convergence on ∆θ, and

max
d=1,...,D

|(∇ν(θ(k+1)))d max{|θ(k+1)
d |, 1}|

max{ν(θ(k+1)), 1} ≤ TOL∇ν , 0 < TOL∇ν ≪ 1, (4.19)

to test for convergence on zero gradient.

Remark 4.1.1. Even though, to the best of our knowledge, solving stochastic optimization

tasks via reformulating as deterministic optimization tasks is not widely-used, theoreti-

cally, it is guaranteed that an optimal solution θ̂N of (4.15) provides an approximation of

the exact optimal solution of problem (4.9), see, e.g., [40] for an overview of convergence

proofs; especially, see [81] or [118] for Central Limit Theorem-type results.

4.1.3 Dual Methods

As already pointed out in the second chapter, a vital extension of Monte Carlo methods

for pricing American-style derivatives are dual methods. In order to embed our change of

drift technique in the framework of dual methods, we need the abstract Bayes formula:

Proposition 4.1.1 (Abstract Bayes Formula). Let P and Q be two equivalent probability

measures and X be a random variable integrable with respect to P . Then, for any t ∈ [0, T ],

E
P
t [X] =

E
Q
t

[
X dP

dQ

]

E
Q
t

[
dP
dQ

] .

Proof. See [100].

Remember that the dual problem (2.11) coincides with the optimal stopping problem

(2.1) by choosing the martingale according to the Doob-Meyer factorization. By exploring

Girsanov’s Theorem and applying Proposition 4.1.1, we are able to reformulate the dual

problem (2.11) with (2.12) as follows:

sup
τ∗∈T1,L

E
P
0 [e

−rτ∗∆tZτ∗ ]

= E
Q
0

[
max

l=1,...,L
(e−rl∆tZle

−θT W̃l−0.5‖θ‖22l∆t − M̃l)

]
+ M̃0 (4.20)
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with

M̃0 = V0, M̃l = M̃l−1 + Vle
−θT W̃l−0.5‖θ‖22l∆t − E

Q
l−1[Vle

−θT W̃l−0.5‖θ‖22l∆t]

for l = 1, ..., L. To gain from this theory, again, we focus our attention on the dual method

proposed by Andersen and Broadie [4], and, by doing so, we consider an exercise strategy

defined by an approximation hl of the continuation value Cl for l = 1, ..., L with CL = 0

such as given by τl = inf{k ≥ l|Zl ≥ hl}, l = 1, ..., L. Then, we have

M̃0 = E
Q
0 [e

−rτ1∆tZτ1e
−θT W̃τ1−0.5‖θ‖22τ1∆t]

and, for l = 1, ..., l,

M̃l = M̃l−1 + E
Q
l [e

−rτl∆tZτle
−θT W̃τl

−0.5‖θ‖22τl∆t]− E
Q
l−1[e

−rτl∆tZτle
−θT W̃τl

−0.5‖θ‖22τl∆t]

with

E
Q
l [e

−rτl∆tZτle
−θT W̃τl

−0.5‖θ‖22τl∆t]

=

{
e−rl∆tZle

−θT W̃l−0.5‖θ‖22l∆t, if Zl ≥ hl

E
Q
l [e

−rτ∗
l+1∆tZτl+1

e−θT W̃τl+1
−0.5‖θ‖22τl+1∆t], if Zl < hl

.

So, on the basis of Algorithm 3, we propose to implement this modification of the AB

approach to calculate an upper bound and a confidence interval for the option to be

priced, see Algorithm 4.

Remark 4.1.2. We should like to stress out that the estimation of upper bounds and

confidence intervals as presented in the context of the AB method is just representative

for modifying dual problems by our variance reduction approach; e.g., our change of drift

technique might be applied to the dual method of Haugh and Kogan [64].

4.1.4 Numerical Investigations

To start with, we should like to motivate our numerical experiments by Figure 4.4 showing

the search paths of the truncated RM algorithm and the Newton-Raphson method for

finding the optimal drift; the option to be priced is an ATM arithmetic average call option

on two assets. We start both search procedures at the origin, i.e. with zero-drift. The red

line shows the strongly fluctuating search path of the truncated RM algorithm. There are

two cluster regions: Points are clustered close to the origin, as we set θ1 = (0.0045, 0.0045)T

and θ2 = (0.004, 0.004)T in (4.12); i.e. to ensure convergence we set θ(k+1) back to these

points if too large steps are done. A further accumulation region is around the optimal

drift, compare also Figure 4.3 showing the standard error σL in Algorithm 4 for several

values of the drift vector. Different from that chaotic convergence behavior, the Newton-

Raphson method finds the minimum of the deterministic optimization task (4.15) in six
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Algorithm 4 ABIS2(N4, N5, T, L,Θ, θ, L0, σ̂L, τl, z1−α/2).

Input: N2, N3, T, L,Θ, θ, L0, σ̂L, τl, z1−α/2

Output: U0, CI1−α

1: ∆t = T/L // Time step width

2: for l← 1 to L do

3: for n← 1 to N2 do

4: Snl = (S(n−1)D+d,l)d=1,...,D ← GeneratePaths(N2,∆t, L,Θ, θ)

5: end for

6: end for

7: for n← 1 to N2 do

8: Ĉ0 = 0

9: for l← 1 to L do

10: Ĉl =
1
N3

∑N3

m=1 e
−r∆tτm

l+1Z̃m
τm
l+1

e
−θT W̃m

τm
l+1

−0.5‖θ‖22τml+1∆t

11: if (Z̃n
l ≥ hl(Snl)) then

12: V = Z̃n
l e

−θT W̃n
l
−0.5‖θ‖22l∆t

13: else

14: V = Ĉl

15: end if

16: ∆l = V − Ĉl−1

17: Ml =
∑l

k=1∆k

18: end for

19: πn = max
l=1,...,L

(
Z̃n

l e
−θT W̃n

l
−0.5‖θ‖22l∆t −Ml

)

20: end for

21: ∆0 =
1
N2

∑N2

n=1 π
n.

22: U0 = L0 +∆0

23: σ̂2
∆ = 1

N2−1

∑N2

n=1(π
n −∆0)

2

24: CI1−α =

[
L0 − z1−α/2

σ̂L√
N1

, U0 + z1−α/2

√
σ̂2
L

N1
+

σ̂2
∆

N2

]

Notes. The routine GeneratePaths(N2,∆t, L,Θ, θ) in line 4 realizes the simulation of paths

according to (4.4), where Θ denotes the set of parameters for the underlying model and θ

is the calculated optimal drift. Z̃m
τm
l+1

, m = 1, ..., N3, are samples resulting from simulating

paths according to (4.4) beginning at state Snl. Notify that the knowledge of an approximated

optimal stopping strategy τl, l = 1, ..., L, implies the knowledge of an approximation hl of the

continuation value Cl.
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iteration steps and we observe quadratic convergence. Both methods convergence to the

optimal drift such that the variance reduction factors are 10.27 and 14.15 for calculating

the drift by the truncated RM algorithm and the Newton-Raphson alogrithm, respectively.

Notify that the drift calculated by the Newton-Raphson method seems to be of higher

quality, even though we set up the Newton-Raphson method with only N4 = 5, 000

samples and the truncated RM method with TOL∆θ = 10−10, i.e. 50, 600 samples are

required to yield convergence; we calculate speed-up factors in the following examples.

Before we study the numerical performance of our variance reduction technique, let
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Figure 4.2: Search paths of the truncated RM algorithm and Newton-Raphson method

for finding the drift minimizing variance.

us consider the numerical minimization of (4.15) with respect to efficiency reasons. By

defining

znl := e−rl∆tZn
l , l = 1, ..., L, xn := (znτn1 )

2e
−θTWn

τn1
+0.5‖θ‖22τn1 ∆t

, n = 1, ..., N4,

and

ydn := (θdτ
n
1 − (W n

τn1
)d)xn, d = 1, ..., D, n = 1, ..., N4,

we are able to rewrite the entries of the gradient (4.16) and the Hessian matrix (4.17) as

(∇ν(θ))d =
1

N4

N4∑

n=1

(θdτ
n
1 ∆t− (W n

τn1
)d)xn, d = 1, ..., D,

and

(∇2ν(θ))de =
1

N4

N4∑

n=1

(θeτ
n
1 ∆t− (W n

τn1
)e)y

d
n + τn1 ∆t1{d=e}xn, d, e = 1, ..., D,
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Figure 4.3: Standard error for several drift parameters.

Notes Figures 4.4 and 4.3. Option parameters are T = 3, L = 9, σ1 = 0.2, σ2 = 0.4, ρ = 0,

δ1,2 = 0.1, r = 0.05. Algorithm specific parameters are as follows: N0 = 200, 000, N1 = 500, 000;

algorithms are run with monomials up to a total degree of two.

respectively. Hence, in every iteration step we save N3(D − 1 + D2) evaluations of the

exponential function dominating the calculation of both quantities, (4.16) and (4.17).

Even though we expect that this simplification makes the Newton-Raphson method very

efficient, a comparative study with a quasi Newton-Raphson approach such as the BFGS

method should be done. Provided that all parameters of the truncated RM algorithm

are well-adjusted, we are able to control the accuracy with just one parameter, namely

the one for the stopping criteria TOL∆θ. In general, we control the accuracy for Newton-

Raphson-based solvers by both convergence criteria, (4.18) and (4.19); a further free

parameter is the number of paths N4 used to replace the stochastic optimization task

(4.9) by the deterministic optimization task (4.15). Figure 4.4 illustrates the convergence

behavior for finding the optimal drift by both methods, the truncated RM algorithm

and the Newton-Raphson method, for an increasing number of paths N4; the underlying

option is an OTM Bermudan Max call option, see Table 4.2 for parameter settings. Due to

their working procedure both methods cannot be compared one by one in the sense that

stochastic approximation methods belong to the class of online algorithms and algorithms

for solving the deterministic optimization problem (4.15) belong to the class of offline

algorithms, but we observe some vital facts. The red line shows the convergence of the

truncated RM algorithm for a decreasing value of TOL∆θ. The convergence of the Newton-



4 Efficiency Increase 66

Raphson method resulting from approximating the stochastic optimization problem (4.9)

is illustrated by the blue line; here and in the following we use TOL∆θ = 10−10 and

TOL∇f = 10−10. At first glance, we observe a remarkable convergence behavior of the

Newton-Raphson method. To find the drift minimizing variance, the Newton-Raphson

method need significant fewer paths than the truncated RM algorithm; more precisely,

the truncated RM method must be set up with TOL∆θ = 10−15, i.e. 10,322,007 paths,

and the Newton-Raphson method must be set up with only N4 = 3, 500 paths. Measuring

the CPU time of both methods required to find the optimal drift gives us a speed-up

factor of 552 to the credit of the Newton-Raphson solver. To underline this impressive
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Figure 4.4: Convergence of the truncated RM algorithm and Newton-Raphson method

for finding the drift minimizing variance.

speed-up factor, our general test for a comparative speed-accuracy study is as follows: To

begin with, we determine the level of accuracy, i.e. the value of TOL∆θ, required by the

truncated RM algorithm such that we do not recognize any more changes in the resulting

variance. Then, for the Newton-Raphson-based solvers we determine the minimum number

of paths needed to guarantee that we obtain the same minimal variance. Measuring the

CPU times of both methods for this search procedure gives us speed-up factors denoted

by CPU Time Ratio II in Tables 4.1 and 4.2. Moreover, let us introduce some quantities

with respect to the CPU time to determine speed-up factors for a comparative study with

and without our proposed variance reduction technique:

r1 CPU time required to calculate the naive lower bound L̂0

r2 CPU time required to calculate ∆̂0 for creating the naive upper bound
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r̃1 CPU time required to calculate the lower bound L̂0 via importance sampling

r̃2 CPU time required to calculate ∆̂0 via importance sampling for creating the upper

bound

r̃3 CPU time required to approximate the optimal drift

As we produce valid confidence intervals by using the AB method and both estimators, L̂0

and ∆̂0, are independent of each other, we determine the number of replications required

to achieve a confidence interval half width of εL for the lower estimator by

n1 =
z21−α/2σ̂

2
L

ε2L

and a confidence interval half width of ε∆ for ∆̂0 by

n2 =
z21−α/2σ̂

2
∆

ε2∆
;

we denote the run lengths for the lower bounds by n1 and ñ1 for the naive estimator and

the estimator with importance sampling, respectively, and the run lengths for ∆̂0 by n2

and ñ2 for the naive estimator and the estimator with importance sampling, respectively.

Then, under the assumption that an early exercise region is given, we estimate speed-up

factors by

SUF1 :=
r1n1/N2

r̃1ñ1/N2 + r̃3

and

SUF2 :=
r2n2/N3

r̃2ñ2/N3 + r̃3

for the lower bound and ∆̂0, respectively. In all our numerical experiments, we set εL =

ε∆ = 0.001. In the remainder of this thesis, we denote by ISRoMo the truncated RM

method for solving the stochastic optimization task (4.9); ISNew and ISQNew are the

Newton-Raphson solver and the BFGS solver for finding the optimal drift via (4.15).
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Table 4.1: Lower and upper bounds calculated by the AB approach combined with the LSM method and several importance sampling

techniques for Bermudan arithmetic average call options on five assets.

S0 Method Lower Bound Upper Bound 95% CI CPU Time CPU Time VR Ratio SUF1|SUF2

Ratio I Ratio II L0|U0

a) 90 LSM 0.428 (3.87 · 10−3) 0.439 (4.81 · 10−3) [0.420,0.449] − − − −
LSM + ISRoMo 0.422 (8.59 · 10−4) 0.429 (1.24 · 10−3) [0.420,0.431] 0.93 − 20.32|15.14 18.66| 9.63
LSM + ISNew 0.423 (8.41 · 10−4) 0.430 (1.16 · 10−3) [0.421,0.432] 0.97 9.38 21.19|17.26 22.12|12.37
LSM + ISQNew 0.423 (8.41 · 10−4) 0.430 (1.16 · 10−3) [0.421,0.432] 0.97 9.83 21.19|17.26 22.14|12.37

100 LSM 2.345 (8.38 · 10−3) 2.370 (9.00 · 10−3) [2.329,2.388] − − − −
LSM + ISRoMo 2.349 (2.39 · 10−3) 2.377 (4.70 · 10−3) [2.344,2.387] 1.11 − 12.31|3.66 11.63| 0.79
LSM + ISNew 2.348 (2.37 · 10−3) 2.371 (4.30 · 10−3) [2.343,2.380] 1.16 51.88 13.05|4.38 13.05| 1.02
LSM + ISQNew 2.348 (2.37 · 10−3) 2.371 (4.30 · 10−3) [2.343,2.380] 1.16 55.23 13.05|4.38 13.06| 1.02

110 LSM 8.443 (1.17 · 10−2) 8.461 (1.21 · 10−2) [8.420,8.485] − − − −
LSM + ISRoMo 8.471 (4.03 · 10−3) 8.490 (5.66 · 10−3) [8.463,8.501] 1.14 − 8.36|4.57 8.89| 0.82
LSM + ISNew 8.467 (3.55 · 10−3) 8.480 (4.98 · 10−3) [8.460,8.490] 1.15 36.71 10.80|5.91 12.57| 1.02
LSM + ISQNew 8.467 (3.55 · 10−3) 8.480 (4.98 · 10−3) [8.460,8.490] 1.15 36.71 10.80|5.91 12.57| 1.02

b) 90 LSM 3.965 (2.20 · 10−2) 4.006 (2.32 · 10−2) [3.921,4.052] − − − −
LSM + ISRoMo 3.954 (7.87 · 10−3) 4.006 (1.09 · 10−2) [3.938,4.028] 0.67 − 7.81|4.52 6.72|3.38
LSM + ISNew 3.954 (7.86 · 10−3) 4.013 (1.04 · 10−2) [3.938,4.033] 0.97 689 7.83|4.99 7.36|4.82
LSM + ISQNew 3.954 (7.86 · 10−3) 4.013 (1.04 · 10−2) [3.938,4.033] 0.97 689 7.83|4.99 7.36|4.82

100 LSM 7.105 (2.71 · 10−2) 7.210 (3.29 · 10−2) [7.052,7.274] − − − −
LSM + ISRoMo 7.113 (1.22 · 10−2) 7.196 (1.54 · 10−2) [7.089,7.226] 0.45 − 4.95|4.54 4.94|3.93
LSM + ISNew 7.118 (1.08 · 10−2) 7.202 (1.35 · 10−2) [7.097,7.228] 1.03 7378 6.32|5.95 6.51|5.43
LSM + ISQNew 7.118 (1.08 · 10−2) 7.202 (1.35 · 10−2) [7.097,7.228] 1.03 7378 6.32|5.95 6.51|5.43

110 LSM 11.968 (3.05 · 10−2) 12.115 (3.34 · 10−2) [11.908,12.180] − − − −
LSM + ISRoMo 12.006 (1.41 · 10−2) 12.128 (1.95 · 10−2) [11.978,12.166] 1.03 − 4.65|2.92 5.45|1.25
LSM + ISNew 11.981 (1.29 · 10−2) 12.115 (1.76 · 10−2) [11.956,12.149] 1.13 820 5.59|3.59 6.43|1.48
LSM + ISQNew 11.981 (1.29 · 10−2) 12.115 (1.76 · 10−2) [11.956,12.149] 1.13 820 5.59|3.59 6.43|1.48
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Notes Table 4.1. See Table 3.3 a) and Table 3.3 c) for option parameters for a) and b), respec-

tively. Algorithm specific parameters are as follows: N0 = 50, 000, N1 = 200, 000, N2 = 1, 000,

N3 = 1, 500. To achieve the drift minimizing variance, the truncated RM method must be set

up as follows: a) TOL∆θ = 10−11 for S0 = 90, TOL∆θ = 10−12 for S0 = 100, TOL∆θ = 10−11

for S0 = 110; b) TOL∆θ = 10−13 for S0 = 90, TOL∆θ = 10−14 for S0 = 100, TOL∆θ = 10−13

for S0 = 110. To get the optimal drift by solving the deterministic optimization task (4.15),

the optimization solvers must be set up as follows: a) N4 = 1, 500 for S0 = 90, N4 = 1, 000 for

S0 = 100, N4 = 700 for S0 = 110; b) N4 = 500 for S0 = 90, N4 = 100 for S0 = 100, N4 = 100

for S0 = 110. CPU Time Ratio I coincides with CPU Time Ratio in Section 3.4; VR Ratio is

the variance reduction ratio.

Table 4.1 reports lower and upper bounds calculated by the AB method combined with

and without several importance sampling techniques for Bermudan arithmetic average

call options on five assets; the early exercise strategy is calculated by the LSM method.

At first glance, we see that we observe a significant variance reduction by changing the

drift in Brownian motion; the VR ratios for the lower bounds are between 4.65 and 21.19

and for the upper bounds between 3.66 and 17.26. As expected, due to the construction,

the effect of a change of drift for OTM options is stronger than for ATM and ITM options.

Both approaches, the stochastic approximation approach realized by a truncated version

of the RM method and the solution of the deterministic optimization problem based on

drawing i.i.d. samples a priori, perform well for symmetric option parameters; the CPU

time ratios for the whole procedure are of about the same size. Nevertheless, we observe

that using the Newton-Raphson or quasi Newton-Raphson solver significantly speeds up

the search procedure of the optimal drift; more precisely, the CPU time ratios II are

between 9.38 and 36.71, whereby the quasi Newton-Raphson approach is slightly faster.

Anyway, the CPU time ratios I for asymmetric option parameters show that searching

the drift by the truncated RM algorithm is quite expensive; the CPU time ratios I are

0.67 and 0.45 for the OTM and ATM options, respectively, and the CPU time ratios II

are between 689 and 7,378. All in all, we observe remarkable speed-up factors for the

lower bounds for both methods; the speed-up factors for the lower bounds are between

4.94 and 22.14, whereby the Newton-Raphson-based approaches clearly dominate the

truncated RM-based approach with respect to efficiency. Anyway, the speed-up factors

for the upper bounds are between 1.02 and 12.37 for the Newton-Raphson-based method

and between 0.79 and 9.63 for the truncated RM-based method. Thus, it pays to use our

change of drift technique provided that we work with deterministic solvers; the use of the

truncated RM algorithm even leads to a break-down in the sense that a variance reduction

becomes quite inefficient for the ATM and ITM options in Table 4.1 a). Note that the high
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Figure 4.5: Early exercise regions for an American Max call option on two assets.

variance reduction factors for the upper bounds result from the high variance reduction of

the lower bounds. However, our speed-accuracy analysis takes this fact into account. By

the way, for all option parameter settings the drifts calculated by solving the deterministic

optimization task seem to be of higher quality than the calculated drifts by the truncated

RM algorithm. To get a better impression about the effect of changing the drift, let us

consider the pricing of Max call options. Table 4.2 shows that we are able to reduce

variance by using our importance sampling technique for Bermudan Max call options

on five assets as well. We see that the deterministic solvers outperform the truncated

RM algorithm; running our change of drift technique with stochastic approximation slows

down the procedure of calculating lower and upper bounds. Nevertheless, for both methods

we get speed-up factors between 2.15 and 2.40 for the lower bounds and between 0.80 and

2.16 for the upper bounds. We observe that the factors are lower than, e.g., for basket call

options, and we cannot recognize an acceleration for the upper bound of the ATM option.

Considering Figure 4.5 brings light in the dark. As we can see, there are two disjunct early

exercise regions such that driving paths into these regions by constant drift parameters

seems to be difficult. Therefore, our idea is to work with flexible drift parameters, i.e.

state-dependent drifts. A possible realization for Max call options might be given by

choosing a drift vector depending on the underlying payoff such as realized by

θd =

{
θd, if Sd = max{S1, ..., SD}
θd, otherwise

, d = 1, ..., D. (4.21)
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Table 4.2 b) reports the results of using (4.21), and we see that it makes sense to work with

a flexible drift parameter for this option type. The more effort in using a flexible drift is

negligible such that we are able to speed up convergence by factors between 3.61 and 3.90

for the lower bounds and we observe a further improvement for the upper bounds. In our

experience, these test results are representative for finding the optimal drift, and, thus,

we highly recommend to search the drift minimizing variance by replacing the stochastic

optimization problem by its determinic counterpart for practical applications; this is the

more robust way and clearly outperforms stochastic approximation in our framework.

Both deterministic solvers, the Newton-Raphson method and the BFGS method, show

a good performance and the user’s favorite algorithm should be implemented. Although

we have seen that we get a remarkable convergence improvement by our change of drift

technique attributed by an efficient solution of the underlying optimization problem, let

us conclude this section with a final remark:

Remark 4.1.3. The dimension of optimization task (4.9) is linear in the dimension of

the underlying SDE, and pricing financial derivatives with many uncertain factors leads

to high-dimensional optimization problems. To reduce the dimension of the underlying

optimization task, we might think about working with drifts which are independent of the

factors; for instance, for Max call options we might set θd = θ and θd = θ for all assets

d, d = 1, ..., D, in (4.21) such that we just work with two drift parameters.
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Table 4.2: Lower and upper bounds calculated by the AB approach combined with the LSM method and several importance sampling

techniques for Bermudan Max call options.

S0 Method Lower Bound Upper Bound 95% CI CPU Time CPU Time VR Ratio SUF1|SUF2

Ratio I Ratio II L0|U0

a) 90 LSM 27.522 (3.34 · 10−2) 27.687 (3.67 · 10−2) [27.456,27.759] − − − −
LSM + ISRoMo 27.532 (2.19 · 10−2) 27.655 (2.50 · 10−2) [27.489,27.703] 0.65 − 2.15|2.18 2.15|1.49
LSM + ISNew 27.525 (2.19 · 10−2) 27.676 (2.51 · 10−2) [27.482,27.725] 0.98 552 2.16|2.10 2.16|1.48
LSM + ISQNew 27.525 (2.19 · 10−2) 27.676 (2.51 · 10−2) [27.482,27.725] 0.98 597 2.16|2.10 2.16|1.48

100 LSM 37.816 (3.82 · 10−2) 37.839 (3.86 · 10−2) [37.741,37.914] − − − −
LSM + ISRoMo 37.817 (2.50 · 10−2) 38.035 (3.16 · 10−2) [37.768,38.097] 0.86 − 2.33|1.76 2.24|0.80
LSM + ISNew 37.824 (2.49 · 10−2) 38.052 (3.10 · 10−2) [37.775,38.113] 1.02 290 2.34|1.82 2.27|0.87
LSM + ISQNew 37.824 (2.49 · 10−2) 38.052 (3.10 · 10−2) [37.775,38.113] 1.02 307 2.34|1.82 2.27|0.87

110 LSM 49.256 (4.24 · 10−2) 49.567 (5.30 · 10−2) [49.172,49.671] − − − −
LSM + ISRoMo 49.277 (2.76 · 10−2) 49.574 (3.51 · 10−2) [49.223,49.643] 0.74 − 2.36|2.29 2.39|2.16
LSM + ISNew 49.277 (2.76 · 10−2) 49.558 (3.52 · 10−2) [49.223,49.627] 1.01 665 2.36|2.28 2.40|2.16
LSM + ISQNew 49.277 (2.76 · 10−2) 49.558 (3.52 · 10−2) [49.223,49.627] 1.01 690 2.36|2.28 2.40|2.16

b) 90 LSM +ISNew2 27.528 (1.73 · 10−2) 27.660 (2.08 · 10−2) [27.494,27.701] 0.97 − 3.72|3.11 3.61|1.76
100 LSM +ISNew2 37.821 (1.99 · 10−2) 38.018 (2.55 · 10−2) [37.782,38.068] 1.01 − 3.67|2.70 3.76|1.22
110 LSM +ISNew2 49.262 (2.21 · 10−2) 49.536 (3.01 · 10−2) [49.219,49.595] 1.03 − 3.68|3.09 3.90|2.45

Notes. See Table 3.3 b) for option parameters and algorithm settings. To achieve the drift minimizing variance, the truncated RM method must

be set up with ε = 10−15 for all options. To get the optimal drift by solving the deterministic optimization task (4.15), the optimization solvers

must be set up as follows: N4 = 3, 500 for S0 = 90, N4 = 2, 500 for S0 = 100, N4 = 1, 800 for S0 = 110.
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4.2 Quasi-Monte Carlo Methods

Quasi-random numbers are a widely-spread tool for increasing the efficiency of estimators.

To start with, we introduce these sequences with low discrepancy in Subsection 4.2.1.

As our ultimate goal is to price options in higher dimensions with quasi-Monte Carlo

(QMC) techniques, we consider the randomization of quasi-random numbers as a way of

measuring errors in Subsection 4.2.2. It is well known that the quality of sequences with

low discrepancy becomes poor for higher dimensions, and, therefore, in Subsection 4.2.3

we consider dimensionality reduction techniques to increase the performance. Finally, we

investigate the effect of using QMC tools for pricing high-dimensional options with an

early exercise feature in Subsection 4.2.4.

4.2.1 Sequences with Low Discrepancy

The ultimate goal of QMC integration is to evaluate the integral of a function f

µ :=

∫

[0,1]D
f(u)du (4.22)

by the estimate

µ :=
1

N

N∑

n=1

f(Qn)

with the deterministic point setQ = {Q1, ..., QN}, Qn ∈ [0, 1]D, n = 1, ..., N – rather than

using a point set P = {U1, ..., UN} with uniformly distributed random variables U1, ..., UN

such as in ordinary Monte Carlo integration. In so doing, the requirement on the point

set Q is high, as we want to beat the probabilistic convergence rate of MC integration

O(1/
√
N). It is desirable to work with points Q1, ..., QN that are evenly distributed over

[0, 1]D. The discrepancy of point sets is a measure of uniformity and is defined as follows:

Definition 4.2.1 ((Star) Discrepancy). Let R be the set of all rectangles in [0, 1)D of

the form
∏D

d=1[yd, zd), 0 ≤ yd < zd ≤ 1, and ♯{xi|xi ∈ R} be the number of points xi

contained in R, R ⊆ R. Then, the discrepancy of a point set Q is defined as

DN(Q,R) := sup
R⊆R

∣∣∣∣
♯{xi|xi ∈ R}

N
− vol(R)

∣∣∣∣ ,

where vol(R) is the volume of R. Furthermore, let R∗ be the set of all rectangles in [0, 1)D

of the form
∏D

d=1[0, yd), 0 < yd ≤ 1. Then, according to DN , the star discrepancy D∗
N is

given by

D∗
N := DN(Q,R∗). (4.24)
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The star discrepancy is a vital quantity for error bounds of QMC integration; for instance,

provided that the function f satisfies some regularity assumptions, the Koksma-Hlawka

inequality is given as follows:

Theorem 4.2.1 (Koksma-Hlawka Inequality ). Suppose that the integrand f in (4.22) has

bounded variation V (f) on [0, 1)D in the sense of Hardy and Krause. Then, the inequality

∣∣∣∣∣
1

N

N∑

n=1

f(Qn)−
∫

[0,1)D
f(u)du

∣∣∣∣∣ ≤ V (f)D∗
N (4.25)

holds for any point set Q.

Proof. See [69] for the original work in German; a proof can also be found in [102].

For an overview of error bounds we refer the reader to [102]. Results like (4.25) motivate

for finding sequences with low discrepancy, i.e. sequences characterized by

D∗
N = O

(
(logN)D

N

)
.

Even though the practibility of results like the Koksma-Hlawka inequality is problematic,

a number of studies report a great efficiency increase by working with quasi-random

numbers, see the cited papers in this section. There are a variety of sequences fulfilling

criteria (4.24), e.g., the Halton sequence, the Faure sequence, the Niederreiter sequence or

the Sobol sequence, to mention just a few of them. The construction of all these sequences

are often closely related, and the concept of (t,m, s)-nets plays a key role, see [102]. Let us

focus our attention on the Halton and Sobol sequences. No doubt, the construction of the

Halton sequence is quite simple compared with the construction of the Sobol sequence.

Anyway, the common believe is that the Sobol sequence performs well, see the references

later on, and, therefore, we should include it in our comparative study.

Definition 4.2.2 (Radical Inverse Function). Consider the b-base expansion of any inte-

ger n with b ≥ 2,

n =

j∑

k=0

αkb
k, αk ∈ {0, ..., b− 1}.

Then, the radical inverse function of n is given by

ϕb(n) :=

j∑

k=0

αkb
−k−1.

Thus, a stepwise refinement of the mesh is achieved with an increasing number of digits

j in n. In 1960 Halton [61] proposed the following sequence with low discrepancy:
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Definition 4.2.3 (Halton Sequence). Let p1, ..., pD be relatively prime integers greater

than 1. Then, the Halton sequence is defined as

Qn = (ϕp1(n), ..., ϕpD(n)), n = 1, 2, ....

Actually, the Halton sequence is a slight modification of the point set introduced by

Hammersley [62].

Definition 4.2.4 (Hammersley’s Point Set). For any N ∈ N, the points Qn, n = 1, ..., N,

of the Hammersley set Q = {Q1, ..., QN} are given by

Qn = (n/N, ϕp1(n), ..., ϕpD(n)), n = 1, ..., N.

To construct the Hammersley point set, we have to set up the number of points N a priori;

this fact might be seen as a drawback for practical applications such that Halton’s sequence

is often preferred. However, using prime integers as bases ensures that the hypercube

is completely filled. Originally, Hammersley’s point set is an extension of the van der

Corput sequence (n/N, ϕ2(n)), n = 1, 2, ..., proposed in [128]. Figure 4.6 illustrates the
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Figure 4.6: First 2,000 Halton points in dimension 40 projected onto the first two coordi-

nates (bases p1 = 2 and p2 = 3) and onto the last two coordinates (bases p39 = 167 and

p40 = 173) in the left and right panel, respectively.

first 2,000 points of the Halton sequence in dimension 40. We see the typical behavior

of this sequence in lower and higher dimensions; more precisely, the points in dimensions

1 and 2 produced by the bases 2 and 3, respectively, cover the space more evenly than

the points in dimensions 39 and 40 produced by bases 167 and 173, respectively. The

correlation of coordinates in higher dimensions is a well-known phenomenon and is caused

by the van der Corput sequence: In general, if we examine coordinates produced by large

primes pd1 and pd2 with d1 < d2, the unit square is filled in cycles of length pd2 , and

points are clustered into lines as indicated in the right panel of Figure 4.6. In financial
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applications, the dimensions of the underlying problems are often high, and, therefore,

other ways of generating deterministic point sets should be considered. For instance,

the illustrative proof that the Sobol sequence [120] promises a better behavior in higher

dimensions is given in Figure 4.7; we observe more evenly distributed points and even in

higher dimensions we recognize just slight patterns. Based on the Gray code, Antonov

and Saleev [6] proposed an efficient implementation of the Sobol sequence, see also [22] for

details; we run our codes with initial direction numbers of [74]. To overcome the deficiency
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Figure 4.7: First 2,000 Sobol points in dimension 100 projected onto the first two coordi-

nates (dimensions 1 and 2) and the last two coordinates (dimensions 99 and 100).

of the Halton sequence in higher dimensions, Kocis and Whiten [82] proposed the Halton

sequence leaped, which can be described as follows: The green points in the left panel of

Figure 4.8 are the first 358,000 points of the Halton sequence in dimension 40 projected

onto the last two coordinates (bases 167 and 173). The idea is now to construct a sequence

consisting of only every L-th point of the original Halton sequence; for instance, every

179-th point is colored black in the left panel and these points build the elements of the

Halton sequence leaped. By doing so, we try to enforce more uniformity compared to the

original sequence. This simple but obviously effective modification of the Halton sequence

is numerically described as follows:

Definition 4.2.5 (Halton Sequence Leaped). In accordance with the original Halton se-

quence, Definition 4.2.3, the Halton sequence leaped is defined as

Qn = (ϕp1(nL), ..., ϕp
D̃
(nL)), n = 1, 2, ...

with the leap L, where L is a positive integer relatively prime to the bases p1, ..., pD.

Kocis and Whiten find that the Halton sequence leaped can be interpreted as a generalized

Halton sequence [21], [67], because leaping has the same effect as permuting the digits of

the Halton sequence. Despite the hope of producing quasi-random numbers with higher
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quality than the original sequence by this simple modification, the leap L should be chosen

carefully. Figure 4.9 warns us to select any leap value; poor values of L lead to the same

dilemma as with the original sequence. Therefore, by minimizing the integration error of

some test functions for a range of dimensions D and number of sample points N , Kocis

and Whiten suggested good values for L; e.g., 31, 61, 149, 409 and 1949 are recommended

for the ranges D ∈ [1, 400] and N ∈ [10, 105]. The common believe is that points of the
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Figure 4.8: Construction of the 40-dimensional Halton sequence leaped with leap 179. Left

panel shows the projection of the first 358,000 Halton points onto the last two dimensions

and right panel shows the first 2,000 points of the Halton sequence leaped onto the last

two dimensions.
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Figure 4.9: First 2,000 points of the Halton sequence leaped in dimension 40. Left and

right panels show the projection of the Halton sequence leaped with L = 233 and L = 269,

respectively, onto the last two coordinates.

Sobol sequence are of high quality, and, thus, they are used as the ultimate quasi-random

numbers for empirical studies, see [31], [89], [44], [58], among others. Nevertheless, as we

are not familiar with any study investigating the performance of the Halton sequence

leaped in computational finance, we will include this slight modification of the Halton
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squence in our experiments in Subsection 4.2.4. At this point we want to stress out that

comparative studies with respect to Monte Carlo and quasi-Monte Carlo methods should

be taken with a pinch of salt, as the underlying pseudo-random number generator plays a

key role in a comparative study; for instance, the well-working Mersenne Twister generator

[95] was proposed in 1998 and a number of studies were published around this year, see

[101] for a chronology of some studies. We might tackle the problem of correlations between

higher dimensions in two ways. On the one hand, we might try to construct sequences of

high quality in higher dimensions as well. This is the topic of recent research and is out of

the scope of this thesis; we refer the interested reader to [101] and the references therein.

Anyway, by investigating the performance of the Halton sequence leaped, empirically, we

will do a first step in this direction. Alternatively, we might try to evade the dilemma

by reducing the effective dimensionality of the problem itself. This is exactly the topic

of Subsection 4.2.3. Before we introduce such techniques, we proceed with randomized

quasi-random numbers as a possibility to measure errors. Let us conclude this subsection

with a final technical remark:

Remark 4.2.1. Numerically, inversion methods realize the relation Zn = F−1(Un)

to transform a sequence of independent random variables Un, n = 1, 2, ..., uniformly

distributed on [0, 1] into independent standard normally distributed random variables

Zn, n = 1, 2, ...; F−1 denotes the inverse of the standard normal distribution. In order

to preserve the structure of the point set of quasi-random numbers, we should use these

methods for generating normally distributed quasi-random numbers rather than rejection-

acceptance methods; rejecting points out of our given point set destroys the structure and,

hence, all the trouble for constructing points with good properties was for nothing. Follow-

ing this way entails the numerical approximation of F−1, and an efficient algorithm with

an absolute error of 3×10−9 for up to seven standard deviations was proposed by Moro in

[98]; especially, to achieve higher accuracy than the normal inversion algorithm by Beasley

and Springer [10], Moro’s method approximates the tails by truncated Chebyshev series.

4.2.2 Randomization

As previously mentioned, even if the function f in (4.22) satisfies the required regularity

conditions, it is often hard to calculate bounds on the deterministic error. Provided that

we are in such a situation, the calculated bounds are often too conservative, see [88]. For

this purpose, randomizing quasi-random numbers enables us to get error estimates, which

are more practical than using bounds like the Koksma-Hlawka inequality (4.25). This

process of making sequences random combine the good features of both techniques, the

high accuracy of quasi-random numbers and the ability to estimate errors of Monte Carlo
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integration. By doing so, we take the possible loss of precision to get a more practical

way of measuring errors. In the following, we denote by Q = {Q1, ..., QN} a set of N

points Qn, n = 1, ..., N, in [0, 1]D, where the elements of Q are quasi-random points. To

get randomized quasi-random numbers, the following two widely-used techniques might

be applied:

Definition 4.2.6 (Random Shift Modulo 1 ). Let U be uniformly distributed in [0, 1)D.

Based on the set Q, a new set of N points Q̃ = {Q̃1, ..., Q̃N} with Q̃n ∈ [0, 1)D is given by

Q̃nd := (Qnd + Ud)mod1, d = 1, ..., D, n = 1, ..., N.

Cranley and Patterson [37] pioneered this random shift modulo 1 (RSM1) technique for

randomizing points produced by lattice rules. Tuffin [127] suggested to use their approach

in combination with low-discrepancy sequences. Another but similar method is the random

digital shift in base b described by:

Definition 4.2.7 (Random Digital Shift in Base b). Let U be uniformly distributed in

[0, 1)D. By writing each Ud and Qnd in its base b expansion, i.e.

Ud =

j∑

k=0

αkb
−k−1, d = 1, ..., D,

and

Qnd =

j∑

k=0

α̃nkb
−k−1, d = 1, ..., D, n = 1, ..., N,

respectively, a new set of N points Q̃ = {Q̃1, ..., Q̃N} with Q̃n ∈ [0, 1)D is defined by

Q̃nd =

j∑

k=0

((α̃nk + αk)modb)b−k−1, d = 1, ..., D, n = 1, ..., N.

Notify that the random digital shift in base b might be easily realized by a bitwise

exclusive-or operation for b = 2. We refer the interested reader to [88] or [58] for an

overview of other techniques; [88] also covers theoretical results regarding randomized

deterministic point sets.

For any positive integer p, let Q̃ = {Q̃1, ..., Q̃p} be a set of p randomized quasi-random

points. Then, we are able to get an estimate of (4.22) by

Q̂k =
1

p

p∑

i=1

f(Q̃i).

The trick is now to repeat this procedure, say q times, such that Q̂k, k = 1, ..., q, are i.i.d.

– this is realized by generating a new pseudo-random number U for each trial – and to
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estimate (4.22) by

Q̂ =
1

q

q∑

k=1

Q̂k.

Following this procedure, a valid (1− α) confidence interval might be determined by

[
Q̂− tq−1,1−α/2

σ̂q√
q
, Q̂+ tq−1,1−α/2

σ̂q√
q

]
,

where tq−1,1−α/2 denotes the (1− α/2) quantile of the Student’s t distribution with q − 1

degrees of freedom (or simply the tq−1 distribution) and σ̂q is the sample error given by

σ̂q =

√√√√ 1

q − 1

q∑

k=1

(Q̂k − Q̂)2.

For the sake of completeness, the tq distribution has the probability density function

f(x) =

(
q−1
2

)
!

√
qπ
(
q−2
2

)
!

(
1 +

x2

q

)− q+1
2

and converges to the standard normal distribution as q →∞. Hence, for sufficiently large

values of q, it is reasonable to replace tq−1,1−α/2 by z1−α/2; compare also (2.27). Let us

briefly address the adequate choice of the quantities p and q. In practical applications, q

might be chosen small, e.g. q < 25, such that the total number N = pq is dominated by

the value of p. By this choice, much of the accuracy resulting from using random numbers

with low discrepancy is preserved, and, therefore, we expect to obtain a good estimate

of (4.22). Anyway, if a comparative study between an ordinary Monte Carlo approach

and a (randomized) quasi-Monte Carlo approach has top priority, we should increase the

value of the number of trials q, say q ≥ 30, to draw more meaningful conclusions. The

reason for this choice is that we get a more accurate estimation of the sample deviation

by using a richer set of test trials, see [130] for a statistical treatment of these topics.

We address that point in more detail in our numerical experiments when we determine

variance reduction factors. This section aims at producing lower and upper bounds as

well as resulting confidence intervals under the quasi-Monte Carlo framework. Focusing

on the AB approach, we are able to produce valid confidence intervals by


L̂q1

0 − tq1−1,1−α/2
σ̂L√
q1
, L̂q1

0 + ∆̂q2
0 + tq−1,1−α/2

√
σ̂2
L

q1
+

σ̂2
∆

q2


 (4.26)

with q = min{q1, q2}; L̂q1
0 and ∆̂q2

0 are the estimates (2.21) and (2.25) of L0 and ∆0 based

on q1 and q2 trials, respectively. To ensure the validity of these intervals, we should choose

q1, q2 ≥ 30. Needless to mention, to generate normally distributed random numbers,
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we should not differ from using inverse methods, compare Remark 4.2.1. To permit a

comparison with the results by [31], we studied in [76] the effect of using quasi-random

numbers by permuting coordinates. Anyway, we see in randomization a good alternative

for practical applications; therefore, we neglect the approach of permuting dimensions in

this thesis.

4.2.3 Dimensionality Reduction

First practical applications in computational finance could improve convergence by using

quasi-random numbers rather than pseudo-random numbers, see [109], [78], [1], among

others. To explain this phenomenon, Caflisch et al. [27] introduced the concept of the

effective dimension of a problem. The common believe is that many problems in mathe-

matical finance have a low effective dimension, i.e. the number of important dimensions

of the quasi-random sequence is much lower than the true dimension; we refer the inter-

ested reader to [88] for a detailed treatment. To reach a low effective dimension, we try to

reformulate our underlying problem with the goal that larger fractions of the variance are

explained by the first few dimensions of the sequence with low discrepancy. Let us con-

cretize this point by considering two tools promising an effective dimensionality reduction

in computational finance. The common way to simulate a standard Brownian motion is

to use the random walk recursion (RWR)




W1

...

WL


 =




a11
...

aL1


Z1 + . . .+




a1L
...

aLL


ZL

where Zl ∼ N (0, 1), l = 1, ..., L, and al = (a1l, ..., aLl)
T are the columns of the matrix

A =




√
dt 0 0 . . . 0√
dt
√
dt 0 . . . 0

... 0√
dt
√
dt
√
dt . . .

√
dt




(4.27)

such that AZ ∼ N(0,Σ1) with AAT = Σ1. As mentioned in Subsection 4.2.1, the first

dimensions of sequences with low discrepancy have better properties than the higher

dimensions. Therefore, the idea is to generate much of the shape of each path by the

first dimensions being of high quality. In the following we describe two techniques, the

Brownian bridge construction (BBC) and the principal component construction (PCC),

for generating paths such that most of the variability is explained by the first dimensions

of a quasi-random sequence.
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t1 t4 = Tt3t2t10 = t0

Figure 4.10: Path construction by BBC for four time steps.

Brownian Bridge Construction Let tk, tk+1, tl be any time dates in [0, tL] such that

tk = tl − ∆t1 and tk+1 = tl + ∆t2 with ∆t1,∆t2 > 0. Given that Wk = wk and

Wk+1 = wk+1 are known, we are able to generate paths of a standard Brownian

motion via

Wl =
∆t2wk +∆t1wk+1

∆t1 +∆t2
+

√
∆t1∆t2

∆t1 +∆t2
Z, Z ∼ N (0, 1). (4.28)

In so doing, we are free in simulating paths of the Brownian motion in any time

order. This is a valid construction and is reasoned as follows: Let t0, ..., tK be any time

dates with t0 = 0. Then, for any time date tl between tk and tk+1, the distribution

of Wl conditional on (W0 = 0, ...,WK = wK) is known is given by

(Wl|W0 = 0, ...,WK = wK) = (Wl|Wk = wk,Wk+1 = wk+1)

∼ N
(
∆t2wk +∆t1wk+1

∆t1 +∆t2
,

∆t1∆t2
∆t1 +∆t2

)

see [80] or [119]. In order to get a better view of this technique, Figure 4.10 illustrates

the construction of BBC for L = 4. Notify that (4.28) can be easily extended to sim-

ulate multi-dimensional processes for which the variability is explained by Brownian

motions. The gain of using BBC rather than RWR is that the variance is concen-

trated into large time steps. Thus, the first dimensions of a quasi-random sequence

control much of the structure of the generated path, and, needless to mention, this

has the effect of getting a lower effective dimensionality. Caflisch and Moskowitz [99]

pioneered the use of BBC in combination with quasi-Monte Carlo approaches, and a

number of reseachers successfully applied BBC for pricing financial derviatives with

quasi-Monte Carlo estimators, see [1], [31], [44], to mention just a few.

Principal Component Construction The symmetric time covariance matrix Σ1

might be decomposed by the spectral decomposition such that

Σ1 = V ΛV T ,
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where V is an orthonormal matrix and Λ is a diagonal matrix; the columns of

V are the normalized eigenvectors v1, ..., vL of Σ1 and the elements of Λ are the

real eigenvalues λ1, ..., λL of Σ1. Then, to generate paths of the Brownian motion,

we might set up A = V Λ1/2 rather than using (4.27). Let us assume that the

columns of A are ordered with respect to the eigenvalues λl, i.e. λ1 ≥ ... ≥ λL. In

general, the principal component analysis tells us that the optimal lower dimensional

approximation to W for which the variance of the projection is maximized is given

by the k eigenvectors v1, ..., vk of Σ1 corresponding to the k largest eigenvalues

λ1, ..., λk, see [14]; more precisely, according to [58], the mean square approximation

error

E

[
‖W −

k∑

l=1

alZl‖22

]

is minimized by setting al =
√
λlvl and Zl = vTl W/

√
λl for any k = 1, ..., L, and the

explained variance is given by the fraction

λ1 + ...+ λk

λ1 + ...+ λL

.

In case of constant time step width, the eigenvalues and eigenvectors of Σ1 are given

by

λl = 0.25∆t sin−2

(
2l − 1

2L+ t
0.5π

)
, l = 1, ..., L,

and

vlk =
2√

2L+ 1
sin

(
2l − 1

2L+ 1
kπ

)
, k, l = 1, ..., L,

respectively, see [2]. Let us fix for a moment the time step tl. Realizations of a multi-

dimensional Brownian motion with covariance matrix Σ2 at tl might be generated

by 


W 1
l
...

WD
l


 =




b11
...

bD1


Z1 + . . .+




b1D
...

bDD


ZD

with Zd ∼ N (0, 1), d = 1, ..., D, and an appropriate chosen (D × D) matrix

B. Numerically, we are used to work with the Cholesky decomposition to obtain

B such that BBT = Σ2 with W ∼ N (0,Σ2). Using this framework for simu-

lating multi-dimensional Brownian motions might be seen critical, as, in general,

Cholesky factorizations for positive semi-definite matrices are not unique. With the

same argumentation as above, denoting by µd the D eigenvalues with correspond-

ing normalized eigenvectors wd of Σ2, the matrix B can also be defined by the D

columns bd =
√
µdwd, d = 1, ..., D, due to the factorization Σ2 = WMW T with

W = [w1, ..., wD] and M = diag(µ1, ..., µD). Let us now consider the vital case of
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simulating paths of multidimensional Brownian motions with the help of the prin-

cipal component analysis. Combining the steps above justifies the construction




W 1
1
...

WD
1
...

W 1
L
...

WD
L




=
L∑

l=1

D∑

d=1

√
λl
√
µd




v1l




w1d

...

wDd




...

vLl




w1d

...

wDd







Zld =: (A⊗ B)Z (4.29)

such that CZ := (A ⊗ B)Z ∼ N(0,Σ3) with CCT = Σ3 and Z ∼ N (0, I),

where I is the (D̃ × D̃) identity matrix, D̃ = LD. Indeed, for i = 1, ..., D̃ the

eigenvalues and corresponding eigenvectors of Σ3 are given by ηi = µlλd and

ci = vlwd l = 1, ..., L, d = 1, ..., D, respectively, see [86]. Notify that the evaluation

of (4.29) requires O(D2L2) operations. Under the assumption that η1 ≥ ... ≥ ηD̃,

the recipe for a successful implementation is to simulate paths via (4.29) such that

Zk coincides with the k-th dimension of the sequence with low discrepancy. In so

doing, most of the variability of the paths is covered by quasi-random numbers of

high quality. In many practical applications, working with only the first k princi-

pal components leads to a significant dimensionality reduction provided that k is

sufficiently smaller than the original dimension. Figure 4.11 shows the accumulated

ordered eigenvalues of the (45×45) covariance matrix resulting from the parameters

of Table 3.3 c). As we can see, the first eigenvalues explain much of the variability,

but a value of about 99% is even reached at k = 28; faster drop offs of the eigen-

values are observed for scalar Brownian motions, see [58]. We refer to pertinent

numerical analysis literature for calculating eigenpairs, see, e.g., [60]. PCC com-

bined with sequences with low discrepancy was introduced in [1] for option pricing;

[44] priced plain vanilla American options by the LSM method combined with PCC

and quasi-random numbers.

4.2.4 Numerical Investigations

Let us study the effect of using randomized quasi-random numbers for calculating lower

and upper bounds. To do so, we proceed as follows: For approximating the early exercise

strategy, i.e. for the regression procedure, we use quasi-random numbers with dimensional-

ity reduction techniques. To draw i.i.d. samples for calculating lower and upper bounds as

well as valid confidence intervals, we use randomized quasi-random numbers. Considering
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Figure 4.11: Accumulated eigenvalues of a 5-dimensional Brownian motion for nine time

steps.

Figure 4.10 in the previous subsection suggests to work with RWR rather than with BBC,

whereas we apply the PCC approach without restriction of any kind; the key idea of BBC

is to construct large time steps at first, but, as we have no idea about the optimal exercise

date of each path, it seems to be senseless to use BBC. As discussed in Subsection 4.2.2,

the choice of the values p and q is somewhat tricky and depends on the user’s intuitions.

Following our discussion, our choice is as follows: As we are more interested in getting a

more accurate estimator (2.26), we set q = 7 for the inner simulation procedure. More-

over, each subsimulation starts with the first dimension of the randomized sequence with

low discrepancy; notify that randomization allows us to simulate in this way, and, hence,

even the choice q = 1 would be justified. For a comparative study with the LSM method

and the evaluation procedure, we should increase the value of q; for instance, in our ex-

periments we set q = 70 to get estimated variance reduction factors with a standard error

of approximately 25 per cent or more. This choice is sufficient to draw any conclusions

from our numerical tests and to estimate quite accurate bounds. In all our experiments

we set q = q1 = q2 in (4.26). Table 4.3 reports lower and upper bounds calculated by the

Least Squares Quasi-Monte Carlo (LSQM) method and our Robust Regression Quasi-

Monte Carlo (RRQM) method combined with several quasi-random number techniques;

the index BBC indicates that we run the algorithms in combination with BBC for the

regression step and RWR for calculating bounds; the index PCC indicates that we run

the algorithms with PCC for the regression step and for calculating bounds; the index
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S and LH denote the use of the Sobol sequence and the Halton sequence leaped, respec-

tively. Moreover, RRQMLH
PCRWC denotes our RRQM method combined with PCC for the

regression step and for the ordinary simulation procedure, but with RWR for the inner

simulations; we combine both techniques due to the higher complexity of PCC.
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Table 4.3: Lower and upper bounds calculated by the AB approach combined with the LSM and RRMmethods and several quasi-Monte

Carlo techniques for Bermudan Max call options.

S0 Method Lower Bound Upper Bound 95% CI CPU Time ∆ Ratio VR Ratio SUF1|SUF2

Ratio L0|U0

90 LSM 27.531 (3.29 · 10−2) 27.715 (3.68 · 10−2) [27.466,27.787] − − − −
LSQMS

BBC
27.575 (1.72 · 10−2) 27.690 (1.81 · 10−2) [27.541,27.726] 0.92 1.59 3.65|4.14 3.24|8.03

RRQMS

BBC
27.593 (1.82 · 10−2) 27.672 (1.87 · 10−2) [27.557,27.709] 0.92 2.34 3.26|3.88 2.94|13.88

LSQMS

PCC
27.569 (1.36 · 10−2) 27.691 (1.50 · 10−2) [27.542,27.721] 0.85 1.51 5.81|6.06 4.99|6.16

RRQMS

PCC
27.603 (1.21 · 10−2) 27.683 (1.30 · 10−2) [27.579,27.709] 0.88 2.29 7.34|8.03 6.34|10.18

RRQMLH

PCC
27.560 (1.14 · 10−2) 27.631 (1.24 · 10−2) [27.537,27.656] 0.89 2.57 8.25|8.82 7.33|10.44

RRQMLH

PCRWC
27.560 (1.14 · 10−2) 27.642 (1.20 · 10−2) [27.537,27.666] 1.03 2.23 8.25|9.37 7.33|20.49

100 LSM 37.840 (3.75 · 10−2) 38.090 (3.98 · 10−2) [37.766,38.168] − − − −
LSQMS

BBC
37.856 (2.01 · 10−2) 38.023 (2.15 · 10−2) [37.816,38.065] 0.98 1.50 3.46|3.43 3.69|3.32

RRQMS

BBC
37.898 (2.02 · 10−2) 38.015 (2.13 · 10−2) [37.858,38.056] 0.98 2.13 3.44|3.50 3.74|4.19

LSQMS

PCC
37.850 (1.53 · 10−2) 38.034 (1.69 · 10−2) [37.820,38.068] 0.92 1.36 6.00|5.54 6.39|3.28

RRQMS

PCC
37.896 (1.68 · 10−2) 38.015 (1.78 · 10−2) [37.863,38.051] 0.93 2.11 4.98|5.03 5.34|5.28

RRQMLH

PCC
37.895 (1.33 · 10−2) 38.010 (1.45 · 10−2) [37.868,38.039] 0.91 2.17 7.94|7.54 8.64|5.06

RRQMLH

PCRWC
37.895 (1.33 · 10−2) 38.016 (1.46 · 10−2) [37.868,38.045] 1.07 2.08 7.94|7.41 8.64|5.52

110 LSM 49.320 (4.17 · 10−2) 49.625 (4.33 · 10−2) [49.239,49.710] − − − −
LSQMS

BBC
49.300 (2.30 · 10−2) 49.533 (2.49 · 10−2) [49.254,49.583] 0.94 1.30 3.28| 3.02 3.29|1.49

RRQMS

BBC
49.356 (2.18 · 10−2) 49.509 (2.30 · 10−2) [49.313,49.554] 0.94 2.00 3.66| 3.55 3.67|2.60

LSQMS

PCC
49.300 (1.81 · 10−2) 49.548 (2.01 · 10−2) [49.264,49.588] 0.89 1.23 5.36| 4.62 5.05|1.58

RRQMS

PCC
49.370 (1.67 · 10−2) 49.524 (1.84 · 10−2) [49.336,49.561] 0.91 1.97 6.22| 5.55 5.89|2.23

RRQMLH

PCC
49.376 (1.46 · 10−2) 49.532 (1.65 · 10−2) [49.347,49.561] 0.89 1.96 8.24| 6.88 7.79|2.13

RRQMLH

PCRWC
49.376 (1.46 · 10−2) 49.543 (1.67 · 10−2) [49.347,49.577] 1.03 1.82 8.24| 6.75 7.79|2.24

Notes. See Table 3.3 b) for option parameters and basis functions. Algorithm specific parameters are as follows: N0 = 480, 000, N1 = 1, 050, 000,

N2 = 4, 900 and N3 = 4, 900; i.e. N1 = 70 · 15, 000, N2 = 70 · 70 and N3 = 7 · 480 for the LSQM and RRQM methods.
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Let us comment our test results. We see that the bounds produced by our RRQM method

are of higher quality; our lower bounds are higher and we get tighter bounds. Obviously,

our calculated early exercise strategy is more accurate than the policy resulting from the

LSM method and the LSQM method. Nevertheless, we observe a remarkable convergence

improvement by using sequences with low discrepancy rather than using pseudo-random

numbers for both methods, the LSQM method and our RRQM method. Using PCC for

reducing the effective dimensionality of the problem is more efficient than using BBC

for the regression step and RWR for the evaluation procedure. The use of PCC leads to

estimated variance reduction factors between 4.62 and 8.82; on the contrary, the variance

reduction factors for the alternative construction, BBC, are between 3.02 and 4.14. Al-

though PCC is more expensive than RWR and BBC, the speed-up factors coincides with

the variance reduction factors for the lower bounds; using our RRQM method combined

with PCC leads to speed-up factors of about 6 or more. However, it also pays to work

with the LSQM method rather than with the LSM method. We see another behavior

for the speed-up factors of the upper bounds; using randomized quasi-random numbers

accelerates the convergence by a factor of about 6 or more for the OTM option, of about

3 or more for the ATM option and of about 1.5 or more for the ITM option. Obviously,

ITM options are more robust against the quality of random numbers; we think that this

behavior can be reduced to the fast exercise decision of these options. Moreover, we ob-

serve that using RWR for the inner simulations has no significant effect on the variance of

the upper bound, but it is much more cheaper than using PCC for the nested estimation

procedure such that we observe a further efficiency increase. Our numerical tests show

a remarkable phenomenon: The Halton sequence leaped with L = 409 outperforms the

well-working Sobol sequence. Even though the bounds are of about the same size, this

simple modification of the Halton sequence leads to variance reduction factors which are

significant higher than the factors produced by the Sobol sequence; more precisely, almost

all factors are larger than 7.5. By the way, this statement also holds for using the LSQM

or our RRQM method with or without a dimensionality reduction technique, for brevity

we omit reporting these results. As pointed out in Subsection 4.2.1, the value of the leap

is ultimately responsible for the success of this sequence; our chosen leap value L = 409

is recommended by Kocis and Whiten [82], but we have good working experience with

other leap values. By the way, in our experience, both sequences, the Sobol sequence and

the Halton sequence leaped, are superior to the Halton sequence and, therefore, we have

just considered these both sequences. As an additional information, it turned out that

it makes sense to work with dimensionality reduction techniques for the regression step,

and, thus, we run all our codes in combination with these tools for approximating the con-

tinuation value in a first step. In order to underline these results, let us price an option

on five correlated assets with more exercise opportunities, i.e. we work with sequences
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of higher dimension. In the following, we set q = 30 for calculating bounds and q = 5

for inner simulations. Figure 4.12 shows a typical convergence behavior of the standard
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Figure 4.12: Convergence of the lower bound for the LSM and RRQM methods combined

with several quasi-Monte Carlo techniques.

Notes. See Table 3.3 c) for option parameters, but with L = 16. The early exercise strategy

is determined by N0 = 150, 000 paths and the first eleven functions of basis (3.53). Standard

errors calculated by the RRQM method result from an increasing number of trials q such that

N1 = q · 33, 000.

error for the lower bound calculated by the LSM method and our RRQM method com-

bined with PCC for the regression step; we run our RRQM method with RWR and the

promising hybrid technique PCRWC for the evaluation process. We see that our RRQM

method clearly outperforms the LSM method for an increasing number of paths N1, even

though we work with 80-dimensional sequences of low discrepancy. As expected, it is more

efficient to work with PCRWC rather than with RWR. Moreover, we see a remarkable

convergence behavior of the Halton sequence leaped (L = 1951).
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Table 4.4: Lower and upper bounds calculated by the AB approach combined with the LSM and RRMmethods and several quasi-Monte

Carlo techniques for Bermudan arithmetic average call options.

S0 Method Lower Bound Upper Bound 95% CI CPU Time ∆ Ratio VR Ratio SUF1|SUF2

Ratio L0|U0 L0|U0

90 LSM 3.991 (1.00 · 10−2) 4.076 (1.39 · 10−2) [3.971,4.103] − − −
RRQMLH

RWR 4.009 (5.00 · 10−3) 4.047 (6.38 · 10−3) [4.000,4.059] 0.87 2.30 4.02|4.73 3.89|5.21
RRQMS

RWR 4.019 (5.67 · 10−3) 4.058 (7.07 · 10−3) [4.008,4.072] 0.87 2.18 3.20|3.85 3.02|4.65
LSQMLH

PCRWC 3.974 (4.42 · 10−3) 4.050 (7.91 · 10−3) [3.980,4.081] 0.87 1.12 5.13|3.08 2.34|1.96
RRQMLH

PCRWC 4.003 (3.72 · 10−3) 4.041 (5.08 · 10−3) [4.005,4.061] 0.94 2.24 7.25|7.45 3.54|7.66
RRQMS

PCRWC 4.017 (3.59 · 10−3) 4.063 (5.43 · 10−3) [4.010,4.074] 0.93 1.89 7.78|6.53 3.64|5.48
100 LSM 7.155 (1.23 · 10−2) 7.310 (1.66 · 10−2) [7.131,7.342] − − −

RRQMLH
RWR 7.195 (6.10 · 10−3) 7.282 (9.52 · 10−3) [7.183,7.301] 0.87 1.76 4.09|3.04 3.28|1.95

RRQMS
RWR 7.190 (4.29 · 10−3) 7.277 (8.13 · 10−3) [7.181,7.293] 0.87 1.78 8.27|4.17 6.75|2.26

LSQMLH
PCRWC 7.147 (5.56 · 10−3) 7.294 (1.12 · 10−2) [7.137,7.302] 0.93 1.06 4.91|2.18 2.22|1.23

RRQMLH
PCRWC 7.181 (4.95 · 10−3) 7.263 (7.73 · 10−3) [7.174,7.285] 0.96 1.91 6.19|4.60 2.76|3.43

RRQMS
PCRWC 7.185 (5.17 · 10−3) 7.272 (8.00 · 10−3) [7.175,7.289] 0.94 1.78 5.68|4.30 2.45|3.19

110 LSM 12.087 (1.34 · 10−2) 12.319 (1.93 · 10−2) [12.061,12.357] − − −
RRQMLH

RWR 12.127 (7.28 · 10−3) 12.289 (1.17 · 10−2) [12.113,12.312] 0.92 1.45 3.41| 2.71 2.96|2.02
RRQMS

RWR 12.141 (6.90 · 10−3) 12.280 (1.04 · 10−2) [12.127,12.300] 0.89 1.67 3.79| 3.43 3.34|2.72
LSQMLH

PCRWC 12.083 (5.37 · 10−3) 12.281 (1.32 · 10−2) [12.071,12.304] 0.92 1.17 6.26| 2.14 2.77|1.22
RRQMLH

PCRWC 12.134 (5.50 · 10−3) 12.276 (9.82 · 10−3) [12.125,12.286] 1.01 1.65 5.97| 3.86 2.91|2.96
RRQMS

PCRWC 12.135 (5.02 · 10−3) 12.267 (8.17 · 10−3) [12.125,12.284] 0.99 1.76 7.16| 5.58 3.11|4.55

Notes. See Figure 4.12 for option parameters. Algorithm specific parameters are as follows: N0 = 150, 000, N1 = 990, 000, N2 = 1, 200 and

N3 = 5, 000; i.e. the LSQM and RRQM methods are run with N1 = 30 · 33, 000, N2 = 30 · 40, N3 = 5 · 1, 000; especially for the RRQM method,

α = 0.887, β = 0.993; codes are run with the first eleven functions of basis (3.53).
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This observation is strengthened by the results of Table 4.4 showing lower and upper

bounds calculated by our RRQM method with PCC for the regression step as well as

RWR and PCRWC for the evaluation step; the index RWR indicates the use of RWR

in the second phase. We prefer the use of PCRWC, as it is more efficient than using

PCC alone for the evaluation procedure. Once again, we observe a remarkable reduction

in variance by using randomized quasi-random numbers; the estimated variance reduc-

tion factors are between 4.91 and 6.26 for the LSQM method combined with PCRWC

and between 5.68 and 7.78 for our RRQM method combined with PCRWC for the lower

bounds; for the upper bounds the estimated variance reduction factors are of about the

same size for the OTM option, but significantly lower for the ATM and ITM options.

Using randomized quasi-random numbers combined with RWR for calculating lower and

upper bounds seems to make sense as well, but the factors are somewhat lower than using

PCRWC. Anyway, the higher complexity of PCC leads to lower speed-up factors for the

lower bounds than in the previous example such that using PCRWC is no longer more

efficient than RWR for a smaller time step width. Anyway, the estimated speed-up factors

of using PCRWC for the upper bounds are slightly superior to the factors achieved by

using RWR. This is the result of using RWR for the inner simulations such that the total

CPU time is not greatly affected by PCC; generally, the CPU time for the upper bound

is dominated by the inner simulation procedures.

Let us draw some conclusions from our experiments. In general, it pays to work with

randomized quasi-random numbers for estimating lower and upper bounds. We should

implement the regression step in combination with PCC rather than with BBC. Provided

that the number of time steps is sufficiently small, our hybrid approach PCRWC is more

efficient than using RWR or PCC alone. Once again, we have seen a remarkable con-

vergence behavior of our RRM method. Therefore, we highly recommend to implement

our RRQM method combined with PCC for approximating an early exercise policy and

with PCRWC for the evaluation process. To deal with a larger number of time steps,

for European-style options Giles [56] proposed to implement PCC in combination with

the sine transform; more precisely, by rewriting (A ⊗ B)Z in (4.29) as AZ̃BT with the

(L×D)-matrix Z̃ filled with the elements of Z, we might evaluate AZ̃ in O(DL log2(L))

operations and O(LD2) further operations are required for the multiplication with BT .

We might implement this approach to get a further acceleration of our proposed method.

Anyway, in this thesis we tackle the problem in another way: Combining our change of

drift technique proposed in Section 4.1 with RWR leads to a natural dimensionality re-

duction, as we drive paths into early exercise regions. In so doing, most of the paths are

generated by the first dimensions of the randomized point set, and, thus, we expect to

price options with high accuracy. Let us conclude this section with a final remark on the

sequences with low discrepancy itself. It turned out that using the random digital shift in
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Figure 4.13: CPU time partitions of the AB approach for an arithmetic average call option

on five assets. Left and right pie charts show partitions with N3 = 1, 200 and N3 = 5, 000,

respectively.

base 2 rather than RSM1 leads to the same results, and, therefore, we have implemented

our codes with RSM1. We are not familiar with any studies regarding option pricing by

the Halton sequence leaped. However, our experience is that this slide modification of the

Halton sequence does a great job. The construction of the Sobol sequence is more com-

plex, which might be seen as an advantage for the Halton sequence leaped. Our chosen

leap values perform well, and, thus, due to its simplicity we prefer the Halton sequence

leaped rather than the Sobol sequence.

4.3 Further Acceleration Techniques

The purpose of this section is to explore the effect of implementing some simple techniques

for further acceleration. To start with, Figure 4.13 gives us insight into typical CPU

time partitions of the AB approach combined with the LSM method for calculating an

ATM arithmetic average call option on five assets; see Table 4.3 for option and algorithm

parameters. We clearly see that the CPU time for calculating upper bounds dominates

the total CPU time; the more effort we spend in the inner simulation procedure, the more

this process dominates the total CPU time. Notice that the worst-case computational

complexity for calculating ∆̂0, compare (2.25), is O(N2N3L
2D). The user might decrease

the number of inner simulations, but, in general, it is often not clear which size gives

sufficiently accurate approximations of the quantities (2.26). It is obvious that there is

a tradeoff between speed and accuracy. To deal with this deficiency, we suggest to work

with online algorithms such as the RM method (4.10); in Section 4.1 we have seen that

these algorithms take as many paths as they need for convergence. To be more precisely,

let us consider the estimates for the continuation values (2.26), which we denote by cN3
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with

cN3 =
1

N3

N3∑

m=1

cm, cm = e−rτm
l
∆tZm

τm
l

for notational convenience. According to [121], a stepwise calculation of cN3 is recursively

defined by

cN3+1 =
1

N3 + 1

N3+1∑

m=1

cm

=
N3

N3 + 1
cN3 +

1

N3 + 1
cN3+1

= cN3 −
1

N3 + 1
(cN3 − cN3+1), N3 = 0, 1, 2, ..., (4.30)

with c0 = 0; notice that this recursion can be interpreted as a search step of the RM

algorithm (4.10) by setting

γN3 =
1

N3 + 1
, YN3 = cN3 − cN3+1.

Following this reformulation, we are now in the situation to estimate the continuation

values (2.26) by an online procedure in the sense that i.i.d. samples cN3+1 are drawn until

convergence. In our view, rather than using (4.18) a more robust convergence criteria is

to compare only the J-th approximations of cN3 with each other, i.e. for N3 = J, 2J, ...,

we test for convergence on ∆c via

|cN3 − cN3−J |
max{|cN3|, 1}

< TOL∆c, 0 < TOL∆c ≪ 1.

Moreover, we cancel the search procedure in case of non-convergence after a reasonable

number of iterations N3. Figure 4.14 illustrates the calculated ∆̂0 for an increasing number

of paths. The solid line shows the convergence for the static approach, i.e. for a fixed

number of inner simulations N3. The dash-dotted and dashed lines reflect the convergence

of our proposed RM approach with tolerance values TOL∆c = 10−6 and TOL∆c = 10−8,

respectively; the maximum number of paths N3 coincides with the increasing number

of inner simulations N3 for the static approach; see Table 4.3 for algorithm and option

parameters with S0 = 90, N1 = 1, 000, 000, N2 = 1, 000, J = 20. We see that we achieve

the same level of accuracy as the original static approach by running our approach with

TOL∆c = 10−8; demanding for a lower value such as TOL∆c = 10−6 leads to almost

the same convergence. In our experience, a value in the range of both values is sufficient

for getting stable results. Thus, we are able to guarantee the same level of accuracy

with lower effort; see Table 4.3 for speed-up factors. Before we consider last test results,

let us discuss two further techniques that might lead to efficiency increases. It is well

known that evaluating the exponential function exp(x) for any x ∈ R is a time-consuming
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Figure 4.14: Convergence of estimator ∆̂0 for a static and an adaptive approach.

process. Thus, we should test the effect of replacing the pre-implemented double precision

routine for realizing this operation by evaluation algorithms with lower accuracy; for

instance, according to Hart [63] and Jonen [77], we might approximate exp(x) by rational

polynomials for which the coefficients determine the accuracy that we fix a priori. In this

thesis we focus our attention on the approach by Jonen and test the influence of replacing

exp(x) by the rational polynomial

exp(x) ≈ 2a
(

2b(a0 + b2a1)

(b0 + b2b1)− x(a0 + b2a1)
+ 1

)
(4.31)

with x = a ln 2 + b ≥ 0, b ∈ [0, ln(2)), a ∈ N; the coefficients resulting from the rational

Chebyshev approximation are a0 = 4.9999994 ·10−1, a1 = 8.2832497 ·10−3, b0 = 1.0, b1 =

9.9897819 · 10−2. Notify that we have exp(x) = 1/ exp(|x|) in case of x < 0. Our guess

is that the relative accuracy of 10−7 of this approximation is quite sufficient for getting

stable results. Let us address a further vital point in Monte Carlo applications. Antithetic

variables (AVs) might reduce variance and we are used to work with this technique.

Anyway, in our experience using AVs does not often have the desired effect we expect

from a variance reduction technique for calculating lower and upper bounds by the AB

approach; this is caused by the construction of the AB approach. Nevertheless, generating

a normally distributed random number Z and taking -Z as a further random number

reduces the CPU time of the random number generation by a factor of 2. Therefore, from

this point of view, we should work with AVs, even if the effect of this technique is often

not clear. Table 4.3 reports lower and upper bounds by using the LSM method with and
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without AVs denoted by LSM and LSMAV , respectively, for arithmetic average call options

on five assets. At first glance, it seems to be senseless to reduce variance via AVs; the

variance reduction factors are between 0.85 and 1.00 for the estimated lower and upper

bounds. However, the further gain is in the lower CPU time such that around 10 per cent

of the CPU time might be saved by using AVs; we get speed-up factors of 1.15 for the

lower bound of the OTM option, but around 1.0 for the ATM and ITM options. Anyway,

the speed-up factors for the upper bounds are between 0.59 and 0.91, as σ̂∆ is higher by

using AVs. At this point we should remark that in our experience using AVs does not

lead to a slow-down for calculating upper bounds in any case, i.e. we often consider a

slight speed-up for upper bounds as well, but there is no clear trend. We also run this

experiment by the LSM method in combination with replacing the routine exp(x) in

Java by (4.31), denoted by LSMExp, and our modified inner simulation procedure (4.30),

denoted by LSM∆. Working with the approximation (4.31) is worth mentioning, as we

are able to accelerate the calculation of lower and upper bounds by 11 up to 17 per cent

without any loss in accuracy. This impressive speed-up factors are caused by the fact that

the operations of evaluating exp(x) have a great influence on the complexity of the path

simulations. Rather than running the algorithms with the static approach for the inner

simulation process, we should use our proposed dynamic approach (4.30); our modification

leads to speed-up factors of about 2 or more without remarkable changes in the results.

Last but not least, we combine all proposed approaches of this thesis to calculate lower

and upper bounds; i.e. we price this type of option by our RRMmethod combined with the

Halton sequence leaped (L = 409) and PCC for approximating an early exercise strategy;

for calculating lower and upper bounds we use our proposed change of drift technique

ISQNew combined with RWR for reducing the effective dimensionality; additionally, we

replace exp(x) by (4.31) and work with (4.30) for the inner simulation procedure; we

denote our approach by RRQMAllIn. First of all, we are able to get much higher lower

bounds and the differences between the lower and upper bounds are tighter by factors

between 2.76 and 3.50. It is obvious that our approximated early-exercise strategy is of

high quality. We observe a remarkable reduction in variance for the estimated bounds;

the factors for the lower bounds are between 14.98 and 20.55; the factors for the upper

bounds are between 4.70 and 16.43. As for all three initial values, the CPU time is much

lower than the required time by the LSM method, we are able to speed-up the evaluation

procedure by factors between 15.69 and 25.45 for the lower bound and between 8.19 and

62.12 for the upper bound. These impressive speed-up factors originates from combining

the most promising techniques proposed in this thesis. Further numerical tests have shown

that these results are representative for more exercise opportunities as well.
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Table 4.5: Lower and upper bounds calculated by several speed-up techniques for arithmetic average call options.

S0 Method Lower Bound Upper Bound 95% CI CPU Time ∆ Ratio VR Ratio SUF1|SUF2

Ratio L0|U0

90 LSM 1.537 (4.87 · 10−3) 1.550 (5.42 · 10−3) [1.528,1.560] − − − −
LSMAV 1.540 (4.88 · 10−3) 1.558 (5.84 · 10−3) [1.530,1.570] 1.07 0.67 0.99 |0.86 1.15 |0.59
LSMExp 1.537 (4.87 · 10−3) 1.550 (5.42 · 10−3) [1.528,1.560] 1.16 − − −
LSM∆ 1.537 (4.87 · 10−3) 1.549 (5.35 · 10−3) [1.528,1.559] 2.50 − − −
RRQMLH

AllIn 1.545 (1.15 · 10−3) 1.550 (1.34 · 10−3) [1.542,1.552] 3.50 2.38 17.95|16.43 16.05|62.12
100 LSM 3.963 (6.80 · 10−3) 4.006 (8.19 · 10−3) [3.950,4.022] − − − −

LSMAV 3.961 (6.82 · 10−3) 4.010 (8.87 · 10−3) [3.948,4.028] 1.13 0.88 0.99| 0.85 1.02 |0.76
LSMExp 3.963 (6.80 · 10−3) 4.006 (8.19 · 10−3) [3.950,4.022] 1.17 − − −
LSM∆ 3.963 (6.80 · 10−3) 4.009 (8.41 · 10−3) [3.950,4.026] 2.00 − − −
RRQMLH

AllIn 3.992 (1.51 · 10−3) 4.005 (2.24 · 10−3) [3.989,4.009] 3.38 3.23 20.55|13.44 25.45|40.00
110 LSM 9.311 (7.84 · 10−3) 9.364 (9.25 · 10−3) [9.296,9.382] − − − −

LSMAV 9.301 (7.86 · 10−3) 9.353 (9.51 · 10−3) [9.285,9.372] 1.08 1.01 1.00 |0.95 1.01 |0.91
LSMExp 9.311 (7.84 · 10−3) 9.364 (9.25 · 10−3) [9.296,9.382] 1.11 − − −
LSM∆ 9.311 (7.84 · 10−3) 9.364 (9.27 · 10−3) [9.296,9.382] 1.89 − − −
RRQMLH

AllIn 9.342 (1.89 · 10−3) 9.362 (4.27 · 10−3) [9.338,9.371] 2.76 2.67 14.98|4.70 15.69|8.19

Notes. See Table 3.3 b) for option parameters and basis functions. Algorithm settings are as follows: N0 = 300, 000, N1 = 990, 000, N2 = 1, 200,

N3 = 5, 000; especially for RRQMLH
AllIn, N4 = 3, 000, q = 30, i.e. N1 = 30 · 33, 000, N2 = 30 · 40, J = 10, α = 0.887, β = 0.993; especially for

LSM∆, J = 20; especially for LSM∆ and RRQMLH
AllIn, N3 = 5, 000, TOL∆c = 10−6.



Chapter 5

Conclusions

In recent years high-dimensional American-style derivatives have gained in importance

for the financial market. From a practical point of view, regression-based Monte Carlo

methods in combination with dual methods have established themselves for pricing these

complex financial instruments. In this thesis we have proposed efficient pricing algorithms

and have compared them with state-of-the-art approaches. We have tackled the problem

of developing efficient algorithms in two ways: In the first main part of this thesis we have

extended the class of regression-based Monte Carlo methods by introducing our RRM

method. In order to get an impression about the strength of our proposed approach, we

have priced options on up to thirty assets with an early-exercise feature. In the second

main part we have focused our attention on variance reduction techniques as well as some

simple but powerful tools for increasing efficiency. We have investigated the performance

of our proposed techniques by valuing several options with an early exercise feature.

Let us sum up the key results of our proposed methods. Based on the fact that outliers

destroy the quality of an approximation of the continuation value, we have suggested to

take bad data points into account during the regression procedure. We have seen that we

get a remarkable bias reduction without increasing variance – that is important from a

practical point of view – by using robust regression rather than ordinary least squares.

Compared with the state-of-the-art LSM estimator, we get a nearly unbiased estimator,

and in combination with the AB approach we often obtain tighter bounds by a factor of

more than two. In our speed-accuracy test we have seen that we get speed-up factors of

up to over four; as a consequence, we are able to improve the approximated early exer-

cise strategy significantly by using our approach. A further gain is that we have lower

memory requirements due to faster convergence, which seems to be very desirable. In our

experience and considering applications in the literature, especially for high-dimensional

problems, it is often not clear to choose an adequate basis for regression-based Monte
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Carlo methods, and numerical tests must be done to specify well-working basis functions;

efficient basis functions do not only depend on the underlying payoff, but also on the

underlying model and input parameters of the model. This procedure might be time-

consuming, and, that is why, we have a huge advantage by pricing options with our RRM

method rather than with the LSM method. We have shown that our method is much

less sensitive to the choice of basis functions. In practice, our RRM method might be

implemented as an interleaving estimator for pricing complex financial derivatives with

an early exercise feature. Anyway, based on an approximation of the continuation value

by our RRM method, we might combine the resulting early exercise strategy with dual

methods; this application might be seen more favorable, as bounds for the true option

value are more meaningful, especially for high-dimensional products. We have tackled the

problem of slow convergence for producing lower and upper bounds in three ways: To

start with, we have introduced our change of drift technique for driving paths in regions

which are more important for variance. It turned out that it is much more efficient to solve

the underlying stochastic optimization problem for finding the drift minimizing variance

by the deterministic counterpart; due to huge speed-up factors of up to 7,378 and more

robustness, we highly recommend this way of implementation. Remarkable speed-up fac-

tors of up to over 20 for the lower bounds are the proof of the success of our proposed

approach; provided that we use the efficient way of finding the optimal drift, we have

observed that it makes sense to reduce variance by a change of drift. Especially for OTM

and ATM options, this approach is a worthwhile acceleration technique. Secondly, we

have studied the effect of using quasi-random numbers for the AB approach. We have

considered several quasi-Monte Carlo techniques and applied them in numerical exper-

iments. It turned out that it pays to work with quasi-random numbers combined with

the dimensionality reduction technique PCC for the regression and evaluation steps; we

achieved speed-up factors of up to over 20. However, due to its high complexity using

PCC for a smaller time step width might be seen critical. In our numerical investigations

we have tested the Halton sequence leaped with great success. This slight modification

of the Halton sequence is competitive to the well-working Sobol sequence. To the best of

our knowledge, our study of using quasi-Monte Carlo techniques with respect to the AB

approach is the first one. Moreover, we are not familiar with any study in computational

finance investigating the performance of the Halton sequence leaped. Last but not least,

we have proposed some simple but yet powerful acceleration techniques. Our proposed RM

approach for the inner simulation procedure shows a remarkable speed-up for calculating

upper bounds, and replacing the double-precision evaluation procedure of the exponential

function by a cheaper approximation leads to a further convergence improvement. More-

over, we have critically discussed the use of antithetic variables as a variance reduction

technique. Combining all our proposed approaches in this thesis leads to our ultimate
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pricing algorithm. We highly recommend to work with our RRM method combined with

quasi-random numbers and PCC for approximating an early exercise strategy. Note that

PCC does not greatly affect the CPU time of the regression step as the complexity is

determined by the regression solver itself. Our change of drift technique combined with

randomized deterministic point sets is a natural powerful dimensionality reduction tech-

nique, also for smaller time step widths, and our further acceleration techniques suggested

in Section 4.3 perform well such that our RRQMAllIn solver might be help practitioners

to price high-dimensional American-style financial products much more efficient.

We would like to conclude this thesis with a brief overview of further possible areas of

research. Our chosen loss functions for specifying the robust regression problem show

very good performance, but other loss functions might be tested as well. We have focused

our attention on an outlier detection procedure defined by the empirical distribution of

the error, and it has turned out that our method is very robust against the selection

of empirical quantiles. However, it seems to be convenient to research for other outlier

detection procedures, e.g. working with natural bounds for options. As our convergence

proof allows for considering nonlinear approximation architectures such as neural net-

works, wavelet thresholding, etc., a logical next step might be to apply the idea of robust

regression to these interesting approaches. Anyway, first numerical tests have shown that

nonlinear large-residual approximation architectures should be investigated carefully; see

also [15]. In our experience, they might significantly slow down the pricing procedure such

that linear regression is much more efficient. Needless to mention, initial values play a key

role for an efficient implementation, and, thus, besides recent developments of solvers for

nonlinear regression, see [133], we should spend more effort on that issue. As mentioned

in Chapter 2, the approach by Haugh and Kogan [64] works with modified samples for ap-

proximating the continuation value such that we might consider distribution-dependent

outlier detection procedures if we apply the idea of robust regression to their method.

Moreover, our RM approach for the inner simulation procedure might be used for acceler-

ating the determination of samples. A number of methods work with the minimization of

the squared loss function to approximate the continuation value; some of them are cited in

the introduction. Roughly speaking, all these methods might be tested under our robust

regression framework. Recently, [26] has proposed an approach for estimating greeks by

the LSM method; we are sure that this approach combined with our RRM method leads to

more accurate results. As much effort has been spent on increasing the efficiency by vari-

ance reduction techniques, see e.g. [47], [23] and [79], our method might be implemented

in combination with these approaches to accelerate convergence. Needless to mention,

we are concerned in developing further variance reduction techniques for our RRQMAllIn

method. An active research field are quasi-Monte Carlo techniques, constructing sequences

of higher quality and new dimensionality reduction techniques might help to improve con-
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vergence. Recently, Tian et al. [123] have compared our vectorization approach of the LSM

algorithm [76] with their graphics processing unit (GPU)-based approach and have drawn

the conclusion that it is more efficient to program on GPUs. However, it is obvious that

this is just a technical outsourcing of the problem and should not keep us from developing

faster and more accurate algorithms. To conclude, our suggested ideas might open up new

fields of study regarding the efficient pricing of high-dimensional financial derivatives with

an early exercise feature.
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[72] A. Ibáñez and F. Zapatero,Monte Carlo valuation of American options through

computation of the optimal exercise frontier, Journal of Financial and Quantitative

Analysis, 39 (2004), pp. 253–275.

[73] S. Jain and C. Oosterlee, Pricing higher-dimensional American options using

the stochastic grid method. Available at SSRN: http://ssrn.com/abstract=1723712,

2010.



BIBLIOGRAPHY 107

[74] S. Joe and F. Kuo, Remark on algorithm 659: implementing Sobol‘s quasiran-

dom sequence generator, ACM Transactions on Mathematical Software, 29 (2003),

pp. 49–57.

[75] C. Jonen, Valuing high-dimensional American-style derivatives: A Robust Regres-

sion Monte Carlo method, to be submitted.

[76] , An efficient implementation of a Least Squares Monte Carlo method for valu-

ing American-style options, International Journal of Computer Mathematics, 86

(2009), pp. 1024–1039.

[77] M. Jonen, Die Black-Scholes Formel: Die Konstruktion von Minimal-Algorithmen

bei vorgegebener Genauigkeit, Diploma Thesis, University of Cologne, Cologne, Ger-

many, 2010.

[78] C. Joy, P. Boyle and K. Tan, Quasi-Monte Carlo methods in numerical finance,

Management Science, 42 (1996), pp. 926–938.

[79] S. Juneja and H. Kalra, Variance reduction techniques for pricing American op-

tions using function approximations, Journal of Computational Finance, 12 (2009),

pp. 79–102.

[80] I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer,

New York, USA, 1998.

[81] A. King and R. Rockafellar, Asymptotic theory for solutions in statistical

estimation and stochastic programming, Mathematics of Operations Research, 18

(1993), pp. 148–162.

[82] L. Kocis and W. Whiten, Computational investigations of low-discrepancy se-

quences, ACM Transactions on Mathematical Software, 23 (1997), pp. 266–294.

[83] R. Korn and S. Müller, The decoupling approach to binomial pricing of multi-

asset options, Journal of Computational Finance, 12 (2009), pp. 1–30.

[84] H. Kushner and G. Yin, Stochastic approximation algorithms and applications,

Springer, New York, USA, 1997.

[85] D. Lamberton and B. Lapeyre, Introduction to Stochastic Calculus Applied to

Finance, vol. 2nd, Chapman & Hall/CRC, London, England, 2000.

[86] A. Laub, Matrix Analysis for Scientists and Engineers, SIAM, Philadelphia, Penn-

sylvania, USA, 2005.



BIBLIOGRAPHY 108

[87] A. Laude and C. Jonen, Biomass and CCS: The influence of learning effect, to

be submitted.

[88] P. L’Ecuyer, Quasi-Monte Carlo methods with applications in finance, Finance

and Stochastics, 13 (2009), pp. 307–349.
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