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Chapter 1

Introduction

Motivation, e¤ort and decisions of individuals are a major source of eco-

nomic success in today�s organizations. In order to e¤ectively manage and

lead individuals, organizations need to apply well-designed human resource

practices. These enable �rms to assign employees to the right jobs, to reduce

employee turnover, to provide incentives to the workforce and to facilitate

the recruitment of productive employees. As the human-resource related cost

is the largest component of all costs in today�s corporations, "one can hardly

overestimate the importance of understanding better how organizations (...)

manage their employees" (Lazear and Gibbs (2009)).

This thesis aims to contribute to the understanding of human resource

instruments that are relevant in practice and discussed in the personnel eco-

nomics and management literature. Four papers are presented which em-

pirically investigate the use and the e¤ects of three practices: the system of

performance appraisal, the use of target agreements and intra-�rm trainings.

In the following, we will motivate the research on these practices, brie�y

describe the results and highlight how they are related to each other.

One major challenge for ful�lling the �rm�s organizational strategy is

setting the right incentives for employees to induce optimal e¤orts. Incentives

include remuneration systems such as individual incentive pay, promotions

and career advancement. They are designed to overcome the con�ict of

interest between �rms and employees which is that �rms aim at maximizing
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worker e¤ort but e¤ort is costly for employees. Incentive schemes could solve

the con�ict if employee e¤ort would be perfectly observable and contractible.

As this is typically not the case, �rms use performance measures as a proxy

for employee e¤ort. But the use of performance measures, such as sales

�gures, adds noise to the process and increases uncertainty for employees.

Since people are generally risk-averse, uncertainty reduces their motivation

to exert higher e¤ort. Hence, measurement of performance is a crucial part

of incentive setting.

In many jobs there are not even objective performance measures available

that capture employee performance, which is why �rms often rely on sub-

jective performance evaluations by supervisors (Prendergast (1999)). But

these evaluations add supervisor discretion which might lead to biases in

evaluations and dilute the incentive setting. When high performers are not

adequately rewarded and low performers not adequately punished, the in-

centive to exert e¤ort is reduced. There are two major evaluation biases

discussed in the literature. First, supervisors tend to give in�ated perfor-

mance evaluations that are too positive relative to the true performance of

employees (leniency bias). Secondly, there is a tendency to compress evalu-

ations to the middle of the rating scale, so that the di¤erentiation in grades

is lower compared to the actual performance distribution of employees (cen-

trality bias) (see Landy and Farr (1980), Murphy and Cleveland (1995) for

an overview).

In the psychological and economic literature, several reasons for biased

evaluations by supervisors are discussed. With lenient performance evalua-

tions, supervisors may want to avoid con�icts with their subordinates (Napier

and Latham (1986)) or agency costs for diverging beliefs about what consti-

tutes good performance (MacLeod (2003)). Likewise, supervisors may want

to signal their outstanding leadership competencies by assigning high grades

to all of their employees. Moreover, positive reciprocity of employees for good

evaluations may be expected as proposed in the e¢ ciency wage literature

(Akerlof (1982), see Fehr et al. (1993) for experimental evidence of gift ex-

change). Compressed ratings might occur due to supervisor�s beliefs to have

insu¢ cient information about subordinates�performance. Instead of reward-
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ing or punishing the wrong employees, they will tend to assign everyone the

same grade. In addition, it is costly for supervisors to observe performance

di¤erences of subordinates and hence di¤erentiate. However, one of the most

prominent reasons for evaluation bias is that supervisors may have personal

preferences for certain employees and favour them in evaluations (Prender-

gast and Topel (1996)). The degree of favoritism in evaluations might be

determined by the social tie between supervisor and employee.

The second chapter of this thesis investigates whether social proximity

between supervisor and employees may cause supervisors to give in�ated

ratings. Supervisors generally face a trade-o¤ between evaluating accurately

and caring for the well-being of their subordinates (Prendergast and Topel

(1996)). The extent to which they care for the subordinate�s well-being may

depend on the social relation to the employee which is what we address in

this study. Although the question is highly relevant with regard to incentive

setting in organizations, empirical studies have been sparse, mainly because

of limited access to meaningful data sets. With the study, we hence comple-

ment the empirical research on biases in performance appraisals.

Our study uses 4-years of personnel records of a call center subsidiary

located in Germany. The unique feature of the data is that we are able to

observe the performance evaluations by supervisors in addition to objective

performance measures of the call center agents. Observing the "true" per-

formance of agents allows us to identify potential biases in the evaluations.

Social proximity is measured by the size of a work team and a variable indi-

cating if an employee has worked for the supervisor before. For the analysis

we apply �xed e¤ects regressions and thus make use of frequent changes of

agents between departments to eliminate unobserved heterogeneity of indi-

viduals. While controlling for the objective performance measures, we �nd

that employees working in smaller teams are assessed more leniently than em-

ployees working in larger teams. Furthermore, employees who have worked

for the same supervisor before receive better grades than employees who have

not. In the analysis, learning e¤ects of agents are controlled for by including

�rm tenure in the regressions. The results of the study are highly conse-

quential when setting up performance evaluations in organizations as biases
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may a¤ect work morale and reduce performance (Bol (2011), Berger et al.

(2010)). Firm strategies to mitigate the problem of biased evaluations are

discussed in the conclusion of chapter 2.

In the third chapter, our focus turns to the determinants of centrality bias

and di¤erentiation in evaluations. Besides social interaction, also supervisor

characteristics may in�uence how evaluations are made. Men and women

may possibly di¤er in how they evaluate subordinates. Chapter 3 analyzes

whether women evaluate in a more di¤erentiated manner than men do. As-

suming that higher rating di¤erentiation is a leadership competence, we may

contribute to the question of gender di¤erences in leadership qualities. This

question is of special interest in the recent debate of why women remain still

rare in leadership positions. Based on former evidence on gender di¤erences

in social preferences and personality (Croson and Gneezy (2009)), we derive

several arguments why women may di¤erentiate in other ways than men.

Our empirical analysis is based on personnel records of a large, multi-

national company based in Germany for the years 2006-2008. We observe

the results of subjective performance evaluations for all employees in Ger-

many, yielding about 13; 000 employee-year observations. To every employee,

we can match the direct supervisor who conducts the evaluations. We con-

sider all employees that are working under the same supervisor as work unit.

Two variables measure the degree of di¤erentiation in grades: The standard

deviation of grades and the percentage of poor grades per unit. With the

aggregated data set, on work unit level, it is shown that women di¤eren-

tiate to a signi�cantly larger extent between their subordinates than men

do. A further analysis shows that female supervisors also give poor grades

more frequently. Given an often reported reluctance of supervisors to iden-

tify low performers, women seem to overcome this task better than men.

The results are con�rmed by a further analysis that allows to eliminate time-

constant unobserved heterogeneity between units. Therefore the data set is

rearranged so that a work unit is de�ned based on a group of employees

that worked together over the three years. The new data set allows to use

gender of the supervisor as a time-varying work unit variable. Hence, we can

use �xed e¤ects regressions through which an e¤ect is only identi�ed when
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supervisors change between units. In the data, we additionally observe infor-

mation on the leadership evaluations that supervisors receive. Women score

signi�cantly higher in the leadership dimension "Leading People" which is

consistent with the former result. Overall, the analyses suggests that, on

average, female supervisors show good leadership abilities by evaluating in a

more di¤erentiated manner than men do. Several reasons for this observa-

tion are discussed. Besides gender di¤erences in social preferences, a further

reason might be a selection of very competent women in leadership positions.

This suggests that di¤erent standards to become a leader might be applied

for women compared to men which is further addressed in the conclusion of

the chapter.

In practice, performance evaluations are often combined with target agree-

ments serving as a performance standard against which employees�perfor-

mance is evaluated (Murphy (2001)). Murphy (2001) emphasizes the rele-

vance of these standards for bonus payments: "Bonuses are usually not, in

practice, based strictly on a performance measure, but rather on performance

measured relative to a performance standard" (Murphy (2001), p. 246). The

setting of goals or standards for incentive schemes is a widely used practice

in �rms and recent studies have shown renewed interest in the process of goal

setting (Anderson et al. (2010), Bol et al. (2010), Koch and Nafziger (2011)).

Research on goals and targets is originally based on the goal-setting theory

by Latham and Locke (1990) showing that goals have a motivational e¤ect

on people when they are set in a su¢ ciently speci�c and challenging manner.

Economic arguments also suggest that using standards can lead to a higher

pay-performance sensitivity (Murphy (2001)). While most of the empirical

research has looked at the e¤ects of target setting for individuals, empirical

evidence on the use and the performance e¤ect of target setting in �rms is

scarce.

The fourth chapter investigates which �rms use target agreements for

employees in Germany and whether the introduction of target agreements

leads to an increase in overall �rm performance. By deriving hypotheses

about which �rms will mostly bene�t from target settings, the determinants

of �rms using this practice are investigated. We make use of a representa-
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tive �rm-level data set from the Federal Employment Agency (BA) at the

Institute for Employment Research (IAB) in Germany. In 2005 and 2007,

establishments were asked about the use of target agreements for employees.

We �nd that quali�cation and tenure of the workforce are important deter-

minants for the use of this practice as the cost of reduced e¤ort is higher

for quali�ed employees and longer-tenured employees require less guidance

through speci�c goals. In addition, �rms that have recently undergone reor-

ganizations are more likely to use target settings than those who have not.

Surprisingly, we do not �nd a �rm size e¤ect on the probability of using

target agreements which has been expected due to economies of scale for the

use of costly human resource practices. Unionization in �rms shows a pos-

itive relation with using target agreements for employees while the reverse

has been expected because of a possible in�uence of target agreements on

payment schemes. For the analysis of a performance e¤ect we make use of

a �rst-di¤erencing approach to eliminate unobserved heterogeneity between

�rms. The in�uence of time-constant factors such as the general growth

potential of a �rm in the observed years can thus be eliminated. We can

further control for observed di¤erences in �rm size or workforce character-

istics between the years. By comparing �rms in a regression analysis that

introduced target settings between 2005 and 2007 to those that have not,

we �nd a substantial positive e¤ect of the introduction on sales growth of

5:7%. In a robustness check, we additionally include a variable for having

introduced subjective performance evaluation to rule out that the result is

driven by the implementation of a formal evaluation system. The e¤ects re-

main robust leading to the conclusion that �rms seem to highly bene�t from

target setting for employees.

Besides the importance of performance evaluations for incentive schemes

in organizations (Prendergast (1999)), evaluations serve as a feedback device

through which training needs of employees may be identi�ed (Murphy and

Cleveland (1995)). Intra-�rm training is the third human-resource related

practice which is investigated in this thesis. Training investments generally

aim to increase employees�human capital to make them more productive.

Therefore, many studies have focused on identifying the productivity e¤ects
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of training by looking at individual wages (Bartel (2000), Dearden et al.

(2006)) or �rm-level productivity such as sales or value added (i.a. Black

and Lynch (1996)). In the analysis of chapter 5, we address whether in-

vestment in training may lead to behavioral responses of employees. In

particular, the e¤ects of training on absenteeism and turnover are investi-

gated based on a single-�rm data set. Whereas human capital theory would

expect a permanent decrease of absenteeism due to increased opportunity

costs of leisure time, we raise the argument that employees might perceive

�rm-provided training as a gift (similar to the logic of e¢ ciency wage theory

by Akerlof (1982)) and positively reciprocate with lower absence. Economic

theory further expects an increased turnover for employees that are trained in

general skills (like in the �rm we observe) because of their enhanced value for

competitive �rms. Here again, the argument is raised that training may be

perceived as a gift or a signal of employer�s con�dence in the employee which

may lead to the opposite e¤ect and increase employee loyalty. In contrast to

economic predictions, investments in general training may hence even help

to reduce employee turnover.

The empirical analysis of chapter 5 is based on personnel records of a

large, multinational company for the years 2006�2008, similar to those used
in chapter 3. The focus is partially on non-managerial employees because

only for them we observe absence hours. Besides having detailed informa-

tion on training participation, we can track whether employees voluntarily

left the company in the year 2007 or 2008. One major issue discussed in the

training literature is the endogeneity of being selected into training. Our em-

pirical approach aims at addressing this in several ways. A panel approach is

conducted for the analysis of absenteeism to eliminate time-invariant di¤er-

ences between employees such as general motivation or ability. Furthermore,

we conduct propensity score matching by which an optimal control group is

computed that is most similar to the group that received training. By com-

paring the outcome variable between the two groups, an average treatment

e¤ect on the treated (ATT) can be derived. Results of the regression analyses

indicate that non-managerial workers, contrary to human capital theory, de-

crease their voluntary absence only in the short-run. This short-term e¤ect is
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in line with results from a laboratory experiment on gift exchange by Gneezy

(2004) who �nd a short-term e¤ort increase of individuals when they are paid

above market-clearing wages. Employees might hence positively reciprocate

to training by a short-term decrease in absence hours. In addition, we �nd a

reduced turnover probability for employees that have been trained in mainly

general skills by the �rm. This stands in contrast to the prediction of human

capital theory as well and rather suggests that investments in general train-

ing may help �rms to retain employees. The negative relation of training and

turnover probability is further found to be larger for low-tenured employees.

The e¤ect may hence be strongest for the �rst trainings received within a

�rm. High-tenured employees may have already received several trainings,

so that the marginal e¤ect of training on turnover is reduced. Overall, the

results suggest that training investments might lead to behavioral responses

of employees.
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Chapter 2

Social Ties and Subjective
Performance Evaluations - An
Empirical Investigation1

2.1 Introduction

In many jobs, not all aspects of employee performance are objectively mea-

surable. Therefore, organizations frequently use subjective performance eval-

uations to assess the employees�contributions. Theoretical work in the eco-

nomics and accounting literature has argued that the use of subjectivity in

performance measures can strengthen incentive setting as more facets of the

job can be appraised (Baker et al. (1994), Baiman and Rajan (1995)).2 On

the other hand the use of subjective components in evaluations raises issues

of biased ratings which can cause substantial ine¢ ciencies (see for example

Prendergast and Topel (1993), Murphy and Cleveland (1995)). In a sub-

jective assessment "human judges other humans" (Milkovich and Wigdor

(1991)) which for instance may open the door to favoritism, so that super-

visors can follow their personal social preferences and bias the outcome of

the evaluation. A biased performance evaluation can, for instance, lead to

1This chapter is based upon Breuer et al. (2010).
2Empirically, Gibbs et al. (2003) present survey evidence that subjectivity in bonus

allocation complements weaknesses of objective performance measures.
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an ine¢ cient allocation of workers to tasks or jobs (Prendergast and Topel

(1996)) or to a failure to identify training needs of employees when they are

judged too leniently. Therefore, it is important to investigate potential dis-

tortions in subjective evaluations in a real organizational context which we

do here and thus contribute to the progress of "understanding how subjective

assessments are made" (Prendergast (1999): 57).

A key observation in the literature is that subjective performance evalua-

tions tend to be lenient (Jawahar and Williams (1997), Moers (2005), Berger

et al. (2010), Bol (2011)). Prendergast and Topel (1996) and Prendergast

(2002) analyze subjective appraisals in economic models assuming that su-

pervisors, while having some intrinsic preference for accurately reporting the

true performance, also care for the welfare of their subordinates. This leads

to a basic trade-o¤between accuracy and leniency and it directly results that

evaluations are the more lenient, the stronger the supervisor�s social prefer-

ences towards the evaluated subordinate. Based on this reasoning, we argue

that a closer social proximity between supervisor and subordinate should

lead to better performance ratings even when there are no di¤erences in

actual performance. The aim of this study is therefore to empirically inves-

tigate whether social ties between supervisor and subordinate can bias the

outcome of subjective evaluations.

To our knowledge, the connection between the degree of acquaintance

between rater and ratee and rating biases has only been analyzed in the

psychological literature (see for instance Cardy and Dobbins (1986), Varma

et al. (1996), or Lefkowitz (2000)). Most of these studies are either laboratory

experiments with students or they lack objective measures of performance.

For example, Kingstorm and Mainstone (1985) study the connection between

personal acquaintance and task acquaintance (i.e. the level of the supervisor�s

familiarity with the employees tasks) on ratings of sales employees.

For our analysis, we use a 4-year panel data set from personnel records

of a call center organization. A special feature is that the data set covers

information on subjective performance evaluations and other objective per-

formance measures. Incorporating the performance measures in the analysis

helps us to discover systematic distortions in the evaluation process.
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2.2 Measuring Social Proximity

The key hypothesis of our study is that �controlling for objective measures

of performance �ratings are the higher the closer the social proximity be-

tween rater and ratee. Based on our data set, we use two proxies for social

proximity. First, we suppose that the strength of the personal relationship

between supervisor and subordinate depends on the size of the group eval-

uated. We analyze the e¤ect of the number of employees a supervisor has

to evaluate per year on the result of subjective evaluations and expect more

lenient results for supervisors in smaller groups where the personal contact

is closer. Second, we expect more lenient ratings for employees who have

worked for the same supervisor a longer period of time. It is important to

stress that our data set allows us to disentangle the di¤erent drivers of per-

formance assessments, as there is a frequent reallocation of call center agents

and supervisors between di¤erent teams and we can observe a number of

more objective measures of performance.

An underlying assumption is of course that the frequency of interaction

increases social proximity. There is quite substantial evidence backing this

claim. In a very exhaustive psychological review on social proximity Baumeis-

ter and Leary (1995) for instance conclude that �...several other studies sug-

gest how little it takes (other than frequent contact) to create social attach-

ment�. In an economic experiment Glaeser et al. (2000) show that the time

since a �rst meeting between two interaction partners has a signi�cant posi-

tive e¤ect on the amount of money transferred in a trust game. Brandts and

Solà (2010) study the e¤ect of personal relations on distributive decisions

and �nd discrimination against the subjects that are not personally known

to the distributor.3

3Also some experimental studies started to invite subjects to the lab that have already
known each other before (friends) and subjects that meet for the �rst time (strangers)
to identify an e¤ect of social ties. For example Abbink et al. (2006) investigate an e¤ect
of social ties in an experimental micro�nance experiment. They �nd a more generous
behaviour in repayment decisions between group members in a "friends"-treatment.
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2.3 Institutional Background

We investigate personnel data of call center employees from an international

company with headquarter in Germany. The data covers one German sub-

sidiary between 2004 and 2007. The investigated subjects are call-agents

whose main task is to deal with service queries over the telephone from

clients who bought technical products. The business activities of the com-

pany are organized in departments, of which we observe a total of 12 in the

full sample over the years. Departments with supportive and administrative

activities like Human Resources, Accounting and IT are excluded because no

objective performance measures as for the call center agents are observed. In

addition, the performance review system di¤ers for those departments. The

company o¤ers call center services to large business customers who outsource

their technical support. Due to organizational and contractual changes in the

client structure, not all departments exist over the �ve years: only two exist

in the whole �ve years, three departments in four years, three in three years,

four in two years and three departments only in one year. 11 of these depart-

ments are so-called "Inbound"-projects receiving calls from end costumers

for a client, for instance a computer production �rm, to answer technical or

administrative queries.

A department consists of about 1 to 2 team leaders with leadership au-

thority, one communication coach, one �oor manager, several so-called second

level and �rst level agents. The communication coach is responsible to train

the communication skills of the agents while the �oor manager is planning

the service schedule and therefore controlling the capacities. Second level

agents are promoted �rst level agents who, while still answering calls, also

serve as a link between the team leader and the �rst level agents.

The subsidiary has implemented a subjective performance evaluation sys-

tem demanding an overall evaluation of every agent by the team leader once

a year according to di¤erent criteria. The results of the subjective evaluation

do not a¤ect monetary compensation directly but are important for instance

for promotion decisions and the identi�cation of training needs. The evalu-

ation data is stored in an internal database with the exact time period the
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evaluation is referring to. Employees that just entered the company or re-

ceived a negative evaluation are forced to be rated again after six months.

The supervisor can rate the employee for each criterion on a scale from 1 to 5,

where 5 is the highest rate and 3 means "to be up to standard". Additionally

every criterion is complemented by a behavioral statement. An important

point is that the supervisor can access other performance measures which are

stored in an internal database. These measures are collected on a monthly

basis. The quality of the work is assessed by a so-called Transaction Mon-

itoring (TM) tool. Calls are either followed by a second level agent sitting

beside the monitored agent or recorded without the agent being informed.

This randomly selected call is then evaluated according to a quite narrowly

de�ned rating sheet and the test is passed when at least reaching 80� 100%
of the maximal score. The speed of work is evaluated with the so-called Av-

erage Handling Time (AHT). It describes the average time an agent needs

to process a call and can be broken down to hourly scores. A third ob-

jective performance measure are the days of absence during the subjective

performance evaluation period (one year).

2.4 Data Set and Empirical Approach

At the end of the appraisal criterion catalogue the assessor is always asked to

give an overall rating. We use this item as dependent variable throughout our

analysis. The item is scaled on a 5- point likert-scale with values from 1 to

5 where 5 indicates the best value "far above requirements" and 1 indicates

the lowest value "far below requirements".

We estimate the following speci�cation:

Yit = �+ �Xit + #Vit + 
Iit + �t + ai + "it

where Yit is the individual rating of an agent i who is evaluated at time t. Xit

represents the main indicators for social proximity which will be explained

in the following and the vector Vit measures the objective performance mea-

sures for worker i in period t. Iit are further worker characteristics, �t year
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dummies and ai is an individual �xed e¤ect. As the dependent variable is

measured on an ordinal scale we additionally run ordered probit regressions.

As using �xed e¤ects in probit models may lead to inconsistent parameter es-

timates (Hsiao (2003) p.194) we rescaled the dependent variable as suggested

by Van Praag and Ferrer-i Carbonel (2004) according to their probit-adapted

OLS (or POLS) approach.4 The idea of this approach is to create a new

dependent variable by assigning to each ordinal category the z-value corre-

sponding to the cumulative frequency of the category. This new independent

variable is now cardinally measured and can be used in standard linear panel

models. The rescaling makes the coe¢ cients of the linear estimations similar

to those of ordered probit estimations.

In our analysis, we apply two main indicators for social proximity. First,

group size is measured by the quantity of evaluations an assessor conducted

per year. As we keep only one evaluation per employee and year in our

data set the number of evaluated employees per supervisor measures the

group size. Hence, for every supervisor the absolute number of evaluations

conducted per year is summed up in a variable called "assessments per year".

Second, a dummy variable is introduced indicating that an appraisal has been

conducted by the same supervisor the year before.

A typical problem of studying performance appraisal data is that distor-

tions are hard to detect as the true performance is typically not observable to

the researcher (see for instance the discussion in Kane et al. (1995)). Hence,

it is hard to measure whether an employee received a good appraisal because

of good performance or whether the appraisal was biased for instance due to

favoritism or social preferences. A key feature of our data set is that besides

the subjective evaluation we observe a number of more objective measures of

performance. We can therefore control for objective measures of performance

to exclude that the results are driven simply by di¤erences in productivity.

But more importantly, in the company we study, employees move between

teams and supervisors quite frequently, which helps us to identify reasons for

biased evaluations by using panel regressions.

Performance measures used as control variables are the average result of

4We thank an anonymous reviewer who suggested to follow this approach.
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the Transaction Monitoring, the sum of the absence days during the period

covered by the subjective performance evaluation, and two dummies mea-

suring the Average Handling Time. These two dummies are generated as

follows: One of the dummies indicates that the AHT value of an agent was

below 90% of the mean AHT within his group in the considered year and

the other one indicates that the AHT exceeded the mean value. The reason

for this structure is that the company�s objective is to make optimal use of

capacity by having shorter calls but also to provide an acceptable quality.

Other control variables cover individual-speci�c characteristics like age, age2,

tenure and sex and unit-speci�c attributes such as average age in the unit,

or the percentage of women per unit. Additionally a dummy variable is in-

cluded indicating whether a supervisor was conducting an appraisal for the

�rst time in his or her career.5

We restrict our sample to full-time employees during the years 2004�2007.
Additionally we only consider �rst level call center agents as there are dif-

ferent evaluation formats in use for di¤erent hierarchical levels. We dropped

a few observations (n = 22) for which two evaluations have been stored in

the data base for the same evaluation period. Since assigned values of the

objective performance measures (that are partially measured on a daily ba-

sis) depend on the speci�c evaluation period we dropped the observations

with missing details about the exact period, so that we reduced the sample

to the observations complete in this respect. After these selection processes

our sample consists of 520 employee-year observations. These agents are in

total employed in 12 di¤erent departments and are evaluated by 18 di¤erent

supervisors. The 520 observations cover 386 di¤erent individuals that have

been assessed one to three times during the 4 years. There are very high

turnover rates in the call center. Hence, only 33:7% of these individuals have

been evaluated several times. Descriptive statistics of the main variables are

presented in table 2.9 in the appendix. Please note that nearly 89% of the ob-

servations received a 3 ("ful�lled requirements") which a¢ rms a "managers�

5Landy and Farr (1980), for instance, state that younger supervisors tend to evaluate
more negatively than their more senior colleagues do. Hence, it is important to control
for this e¤ect.
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tendency to assign uniform ratings to employees" (Murphy (1992)).

2.5 Results

We �rst look at the distribution of appraisal grades for small (less than 15

agents assessed by the supervisor per year), middle-sized (between 15 and 30

agents) and large groups (more than 30 agents) as shown in table 2.1. Indeed

the table already indicates that better grades seem to be more frequent in

smaller groups. The frequency of grade 4 is, for instance, twice as high in

groups with less than 15 as compared to groups with more than 30 employees.

Grades Distribution (in %) 1 2 3 4 5
Small groups (< 15) 0 3.76 89.47 6.02 0.75
Middle-sized groups (� 15 & < 30) 0 9.13 86.31 4.18 0.38
Large groups (� 30) 0 5.63 91.34 3.03 0

Table 2.1: Distribution of Appraisal Grades by Group Size

As a starting point, simple pooled regressions regarding the e¤ects of the

number of assessed employees per assessor are shown in table 2.2 reporting

robust standard errors clustered for teams. Column (1) shows the OLS re-

gression without controlling for objective performance measures. The coe¢ -

cient for the variable counting the number of assessments per supervisor-year

is negative and signi�cant at the 5%-level. In speci�cation (2) the four ob-

jective performance measures are added. The coe¢ cient of the assessments

per year becomes stronger and achieves a signi�cance level of 1%. Hence, in

line with our hypothesis appraisals in smaller units are indeed more lenient.

Ordered probit regressions con�rm this result (columns (3) and (4) of table

2.2).

The coe¢ cients of the objective performance measures show the expected

signs. High Transaction Monitoring results positively a¤ect the overall as-

sessment, while the days of absence have signi�cantly negative impact. The

dummy variables for the AHT score boundaries have the expected sign but

are insigni�cant. Having an assessor who has never rated before has also the
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Pooled OLSa Pooled Ordered Probit
Overall appraisal (1) (2) (3) (4)

Assessments per year -0.007�� -0.010��� -0.017�� -0.026���

(0.003) (0.003) (0.007) (0.006)

TM 0.018��� 0.047���

(0.005) (0.009)

Days of absence -0.004��� -0.012���

(0.001) (0.003)

Over 100% AHT -0.053 -0.155

(0.052) (0.152)

Under 90% AHT 0.020 0.041

(0.073) (0.176)

New Assessor -0.429�� -0.513��� -0.888��� -1.142���

(0.181) (0.155) (0.317) (0.256)

Female -0.139 -0.130 -0.335 -0.351

(0.095) (0.095) (0.250) (0.287)

Tenure 0.029��� 0.037��� 0.076��� 0.116���

(0.010) (0.011) (0.026) (0.028)

Constant 3.269��� 1.252

(1.100) (0.834)

Observations 520 520 520 520

R2 0.098 0.159

Pseudo Likelihood -193.95661 -177.04632
aDependent variable "overall appraisal" is cardinalized according to the approach

by Van Praag and Ferrer-i Carbonel (2004). Robust Standard errors in parentheses.

Clustered on team level. Control variables include age, age squared, year dummies,

the share of women and average team age. ���p<0.01, ��p<0.05, �p<0.1

Table 2.2: Number of Assessments: OLS and Ordered Probit
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anticipated negative impact (signi�cant on the 1%- level in columns (2), (3)

and (4)) in the estimations.

While we consider it quite unlikely that team size is endogenous as it

is mainly driven by client demands and we control for several measurable

aspects of performance, our data allows us to go one step further and in-

vestigate panel data to control for further unobservable heterogeneity (such

as individual abilities not captured by the objective performance measures).

The results of �xed and random-e¤ects regressions are reported in table 2.3

and con�rm the previous observations in all speci�cations. The model pre-

dicts that a speci�c employee switching from a smaller to a larger group will

receive an inferior evaluation even if his true performance is una¤ected.6 A

Hausman-Test does not reject that the ai are uncorrelated with the explana-

tory variables (p=0.8829). Still, the �xed e¤ects model is our most preferred

speci�cation as we have a complete data set of all call center agents in the

given unit.

Next we analyze the e¤ect of a repeated assessment by the same super-

visor on performance evaluations. We therefore created a dummy variable

indicating whether the employee has been evaluated by the same assessor

before.

Table 2.4 shows the distribution of grades dependent on whether there

has been a previous assessment by the same supervisor. Note that 5:08%

of those employees who have been assessed by the same supervisor before

receive a good grade of 4 while only 2:88% of those who had been appraised

by a di¤erent supervisor before receive this grade. Furthermore, supervisors

who rate an employee for the �rst time give the low grade 2 more than �ve

times as often as supervisors who have evaluated the same employee before.

This could indicate that more social proximity leads to better grades.

6Please note that in the �xed e¤ects regressions, we omitted the linear terms of tenure
and age because the e¤ects cannot be distinguished from the time e¤ects when controlling
for year dummies.
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Random e¤ects - OLSa Fixed e¤ects - OLSa

Overall appraisal (1) (2) (3) (4)

Assessments per year -0.007��� -0.010��� -0.015��� -0.016���

(0.002) (0.002) (0.005) (0.005)

TM 0.019��� 0.014�

(0.004) (0.009)

Days of absence -0.004��� -0.003

(0.002) (0.004)

Over 100% AHT -0.042 0.131

(0.064) (0.130)

Under 90% AHT 0.019 -0.010

(0.068) (0.143)

New Assessor -0.436��� -0.522��� -0.651�� -0.763��

(0.140) (0.133) (0.313) (0.321)

Female -0.143�� -0.134� - -

(0.071) (0.070)

Tenure 0.029 0.037�� - -

(0.018) (0.019)

Constant 3.344��� 1.320 7.045��� 5.878�

(0.885) (0.930) (2.714) (3.055)

Observations 520 520 520 520

Overall R2 0.097 0.159 0.126 0.159
aThe dependent variable is cardinalized (Van Praag and Ferrer-i Carbonel (2004)).

Robust Standard errors in parentheses. Further control variables include age,

age squared, year dummies, the share of women and average team age.

In the FE regressions, the linear age and tenure terms are excluded.
���p<0.01, ��p<0.05, �p<0.1.

Table 2.3: Number of Assessments: Random and Fixed E¤ects
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Grades Distribution (in %) 1 2 3 4 5
Di¤erent supervisor 0 8.65 88.46 2.88 0
Same supervisor 0 1.67 93.22 5.08 0
Note: Only repeated appraisals taken into account.

Table 2.4: Distribution of Appraisal Grades by "Repeated Assessment"
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It is also interesting to compare changes in grades for given employees

(table 2.5): When being appraised by the same supervisor a grade improve-

ment occurs twice as often as when the supervisor has changed (10:71% in

comparison to 5:21%). On the other hand, the probability that an employee

gets a worse grade is three times as high in case of an assessment by a di¤er-

ent supervisor (14:58% in comparison to 5:36%). Hence, for a given employee

the chances to obtain a better grade are higher if he is repeatedly evaluated

by the same supervisor.

Of course, the repeated assessment dummy may capture also simple ex-

perience e¤ects. Hence, it is very important to control for �rm tenure. The

results of OLS and ordered probit regressions are reported in table 2.6.

Columns (1) and (4) contain the results for speci�cations without further

performance measures while we control for these measures in speci�cations

(2) and (5). We �nd that employees receive a better grade when they are

repeatedly assessed by the same supervisor as compared to employees of the

same tenure attaining the same performance measure values who are assessed

by a di¤erent supervisor.
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The two further speci�cations (3) and (6) additionally include a �new

assessor�-dummy indicating that a supervisor had no prior experience with

evaluations. Note that this reduces the e¤ect size for the repeated appraisal.

While the e¤ect of repeated appraisals becomes insigni�cant in the OLS re-

gressions it stays weakly signi�cant in the ordered probit regression. Hence

at least part of the e¤ect is driven by the tendency of inexperienced super-

visors to assign worse grades. But again, it seems very important here to

control for unobserved heterogeneity. To see that, note that the comparison

of the results with and without the objective performance measures shows

an increase of the tenure coe¢ cient in columns (2) and (5). Due to on the job

human capital formation we would usually expect a better performance of

employees with higher tenure and hence a decreasing tenure coe¢ cient when

objective performance measures are included. Interestingly, we observe the

opposite pattern as the tenure coe¢ cient gets even stronger. This can be best

understood when considering the two graphics in �gure 2.1 and 2.2 which

illustrate average Transaction Monitoring scores and days of absence per year

of tenure. The TM results do not increase with tenure and even fall beginning

with the �fth year of tenure and the days of absence consistently increase in

the data set. These developments have two di¤erent reasons. First of all, the

jobs in the call center are typically regarded as stressful, hence absence rates

increase and performance seems to go down. In addition, there are selection

e¤ects as able �rst level agents will be promoted to the second level and

poorly performing agents leave the company.

To control for unobserved heterogeneity and selection e¤ects we therefore

again ran random and �xed e¤ects regressions (see table 2.7). Again, the

Hausman Test does not reject that the ai are uncorrelated with the explana-

tory variables (p=0.6883).
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The repeated appraisal dummy is again signi�cantly positive in all �xed

e¤ects speci�cations. Hence, a given employee at a given point in time indeed

obtains better grades when he is evaluated by a supervisor he is familiar with

as compared to a situation in which he is evaluated by a di¤erent supervisor.

Note that it could be argued that supervisors who have evaluated the

same person before, can more accurately appraise the work of the employee

as they are able to observe them over a longer time. However, while this

may lead to more di¤erentiated grades it should not lead to grades which are

better on average such as we observed. Moreover, as shown in table 2.10, the

standard deviation of assessments by the same supervisor is smaller rather

than larger which also makes such a mechanism implausible.

Finally, we estimate regressions in which we use both proxies for social

proximity in the same speci�cation. The results are similar when we include

both proxies for social ties, the unit size and the dummy for the repeated

appraisal by the same supervisor as is shown in table 2.8. But here the e¤ects

of team size are somewhat more robust than those of repeated appraisals.

Again, the Hausman Test of the �rst speci�cation revealed that there is no

systematic di¤erence between the random and the �xed e¤ects regression

(p=0.5742). In a �nal robustness check, we included assessor �xed e¤ects
to the OLS baseline speci�cations because the personal characteristics of su-

pervisors might be relevant for the subjectively given grades. As can be seen

in table 2.11 in the appendix, sign and size of the coe¢ cients stay robust

when including assessor �xed e¤ects but the e¤ect of number of assessments

is no longer signi�cant. This is probably due to the small within-supervisor

variation (i.e. team size did not vary su¢ ciently for given supervisors). How-

ever, the e¤ect is highly signi�cant for the repeated assessment (here there is

natural within-supervisor variation) which con�rms that for a given assessor,

a repeated employee-supervisor interaction positively biases the performance

evaluation.
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Random E¤ects - OLSa Fixed E¤ects - OLSa

Overall appraisal (1) (2) (3) (4)

Assessments per year -0.007��� -0.010��� -0.007� -0.014���

(0.002) (0.002) (0.003) (0.005)

Repeated Appraisal Same Supervisor 0.144� 0.068 0.347�� 0.209

(0.080) (0.079) (0.144) (0.140)

TM 0.015��� 0.018��� 0.014 0.015�

(0.004) (0.004) (0.010) (0.009)

Days of absence -0.005��� -0.004��� -0.002 -0.002

(0.002) (0.002) (0.004) (0.004)

Over 100% AHT -0.036 -0.035 0.103 0.146

(0.065) (0.064) (0.135) (0.133)

Under 90% AHT 0.016 0.022 -0.014 -0.011

(0.069) (0.068) (0.147) (0.142)

Female -0.152�� -0.137� - -

(0.072) (0.070)

Tenure 0.041�� 0.036� - -

(0.019) (0.019)

New Assessor -0.508��� -0.628�

(0.134) (0.332)

Constant 1.479 1.357 4.043 5.430�

(0.953) (0.936) (3.134) (3.058)

Observations 520 520 520 520

Overall R2 0.126 0.160 0.136 0.170
aThe dependent variable is cardinalized according to Van Praag and Ferrer-i Carbonel (2004).

Robust standard errors in parentheses. Clustered on team level. Control variables include

age,age squared, year dummies, the share of women and average team age. In the FE

regressions, the linear age and tenure terms are excluded. ���p<0.01, ��p<0.05, �p<0.1

Table 2.8: Number of Assessments and Repeated Appraisals: Random and
Fixed E¤ects Estimations
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2.6 Conclusion

We investigated possible distortions in subjective performance appraisals and

found evidence for the hypothesis that subjective performance is biased when

there is a closer social proximity between supervisor and subordinates. Our

analysis shows that the size of the work unit has a negative impact on grades

in subjective performance evaluations. Controlling for objective performance

measures employees in large units received worse evaluations than employees

in smaller units. We also observed that employees who have been evalu-

ated by the same supervisor before receive better ratings. Both results also

hold in �xed and random e¤ects regressions, where we thus controlled for

unobserved heterogeneity in abilities. Hence, we conclude that a person with

given experience and performance receives lower ratings when moving to a

larger team or when getting a new supervisor.

It is important to note that such distortions in subjective evaluations

may have substantial consequences for performance as, for instance, rating

leniency may negatively a¤ect di¤erentiation in performance grades, at least

for those employees who are well acquainted with their supervisor. There is

now a number of studies investigating the performance consequences of di¤er-

entiated ratings. Engellandt and Riphahn (2011), for instance recently have

analyzed a large data set from a multinational company �nding that e¤ort

as measured by overtime hours is higher in departments in which individual

performance evaluations are more �exible over time. Bol (2011) reports a

positive e¤ect of leniency bias on performance improvement while she �nds a

negative impact of centrality bias on performance. Berger et al. (2010) have

conducted a laboratory experiment observing that lenient ratings led to a

subsequent drop in performance.

Moreover, systematic distortions in appraisals may have a negative e¤ect

on employee morale. When appraisals have an impact on subsequent wage

increases, distortions may reduce the connection between performance and

wage increases and this may have detrimental e¤ects on performance.

Hence, it should be worthwhile for �rms to invest in avoiding potential

biases. Firms may, for instance, consider training supervisors to become
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aware of potential distortions in their evaluation behavior. Moreover, it seems

useful to confront supervisors with systematic deviations between objective

performance measures and their subjective assessments.

Finally, our results also indicate that �rms must be cautious when using

subjective performance evaluations to compare employees across departments

or to assign bonuses. There is a bias in favor of employees from smaller

groups and employees who have been acquainted with the supervisor for

longer periods of time. These e¤ects have to be taken into account when

decisions on promotions or layo¤s are made forcing a �rm to rank employees

across departments.
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2.7 Appendix of Chapter 2

Variable Group and Description Mean SD

Dependent Variable

Overall assessment 2.967 0.336

Indicators for social ties

Assessments per year (by supervisors) 32.994 21.025

Repeated Appraisal Same Supervisor (Dummy) 0.113 0.317

Objective Performance Measures

Result Transaction Monitoring (TM) 90.554 8.992

Over 100% AHT per group-year (Dummy) 0.462 0.499

Under 90% of mean AHT per group-year (Dummy) 0.285 0.452

Days of absence 13.611 18.804

Individual Characteristics

Tenure 2.754 1.988

Dummy female (1=0) 0.387 0.487

Age 32.323 9.260

(Age)2 1130.36 661.311

Characteristics of assessor/ assessor unit

Average Age of unit 31.957 1.709

Share of female employees 0.372 0.197

Dummy new assessor (1=0) 0.077 0.267

Note: The table describes all main variables on the basis of N=520 observations.

Table 2.9: Descriptive Statistics

Grades by new assessments Mean Sd
Di¤erent supervisor 2.975 0.356
Same supervisor 3.033 0.258

Table 2.10: Mean and Standard Deviation by "Repeated Assessment"
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OLS with assessor �xed e¤ectsa

Overall appraisal (1) (2) (3)

Assessments per year -0.004 -0.003

(0.003) (0.003)

Repeated Appraisal Same Supervisor 0.226��� 0.222���

(0.083) (0.082)

TM 0.019��� 0.019��� 0.019���

(0.005) (0.005) (0.005)

Days of absence -0.003� -0.003� -0.003��

(0.002) (0.002) (0.002)

Over 100% AHT -0.095 -0.082 -0.079

(0.063) (0.062) (0.062)

Under 90% AHT -0.032 -0.033 -0.029

(0.069) (0.069) (0.069)

Female -0.118� -0.126� -0.123�

(0.065) (0.065) (0.065)

Tenure 0.027 0.021 0.020

(0.018) (0.017) (0.017)

New Assessor -0.262 -0.139 -0.227

(0.276) (0.247) (0.272)

Assessor Fixed E¤ects included yes yes yes

Constant -6.913 -7.007 -6.522

(5.351) (5.293) (5.354)

Observations 520 520 520

Overall R2 0.233 0.240 0.241
aThe dependent variable is cardinalized according to

Van Praag and Ferrer-i Carbonel (2004). Standard errors in parentheses are

clustered on individual level. ���p<0.01, ��p<0.05, �p<0.1

Table 2.11: OLS Baseline Speci�cation Including Assessor Fixed E¤ects
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Chapter 3

Are Women Better Leaders?
An Empirical Investigation of
Gender Di¤erences in
Manager�s Evaluation
Behavior1

3.1 Introduction

As women remain rare as elite leaders and top executives in �rms (Catalyst

(2010)), many reasons for this observation are discussed in the economic,

psychological, and management literature. Besides theories of taste-based or

statistical discrimination (Becker (1957), Lazear and Rosen (1990), Booth

et al. (2003), Bjerk (2008)), di¤erences between men and women in general

preferences towards a career or promotion tournaments (Konrad et al. (2000),

Croson and Gneezy (2009), Niederle and Vesterlund (2007)) have been dis-

cussed. However, a further reason may be a gender di¤erence in the ability

of being a good leader. In economics, studies on leadership di¤erences be-

tween men and women are scarce. The overall e¤ect of women in corporate

1This chapter is based upon Breuer (2011).
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boards on �rm performance has been investigated (Carter (2003), Erhardt

et al. (2003), Adams and Ferreira (2009)), but evidence is mixed.

In this study, we aim to contribute to the question of whether men and

women di¤er with regard to their leadership qualities by investigating dif-

ferences in their performance evaluation behavior. Managers who supervise

employees in white collar jobs typically have to evaluate the performance of

their employees in order to set incentives, decide about promotion, training

needs or to allocate tasks when no objective performance measures are avail-

able (Prendergast (1999)). These performance evaluations are a core task

when supervising other employees (Murphy and Cleveland (1995)), so that

it is important to understand how men and women may di¤er with regard

to this task. Speci�cally, we investigate whether female managers give more

di¤erentiated performance evaluations than their male colleagues.

A higher di¤erentiation between employees is important especially when

evaluations are tied to monetary incentives (see for example Prendergast

(1999)). When bonus payments are tied to ratings, a higher di¤erentiation

implies an increasing marginal return to e¤ort for employees (see for example

Holmström (1979)). Employees anticipate that with more di¤erentiated rat-

ings, high e¤ort is more likely to be rewarded while low e¤ort is more likely

to be punished which increases the incentive to exert greater e¤ort. More-

over, di¤erentiation helps in taking the right personnel decisions. Like Jack

Welsh formulated (Welch (2003): 195): To improve workforce performance,

an organization should be capable of "sorting out the A, B and C players"

to promote A and to get rid of C players.

However, it has been claimed that supervisors in practice often compress

the subjective performance evaluations relative to the true performance dis-

tribution of employees.2 Typically, this bias is referred to as centrality bias.

Compressed ratings imply a reduction of incentives due to the lack of rewards

and punishments.

Indeed, some �eld and experimental studies have already con�rmed the

2In their case study of Merck, Murphy (1992) give anecdotal evidence. For an overview
of rating biases see Murphy and Cleveland (1995), Milkovich and Wigdor (1991) and
Prendergast and Topel (1996), Prendergast and Topel (1993) and MacLeod (2003) for an
economic model.
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performance-enhancing e¤ect of di¤erentiated evaluations or bonus payments.

Bol (2011) shows that a compression in ratings leads to a decrease in e¤ort by

high and low performers in a Dutch �nancial service company. Engellandt

and Riphahn (2011) support this �nding, showing that a higher variabil-

ity in ratings increases individual performance. In an experimental study,

Berger et al. (2010) investigate the forced-distribution-system as a measure

for obliging supervisors to di¤erentiate more in ratings, and they �nd that

individual e¤ort increases when supervisors are forced to di¤erentiate more.

Furthermore, Kampkoetter and Sliwka (2010) analyze the e¤ect of bonus dif-

ferentiation in the �nancial service industry con�rming that higher di¤eren-

tiation in bonus payments increases individual performance. This evidence

suggests �rms to employ supervisors that su¢ ciently di¤erentiate between

their employees.

Besides assigning more di¤erentiated grades to subordinates, a higher

di¤erentiation also includes the assignment of poor grades to low perform-

ing subordinates. This can be perceived as the di¢ cult part of conducting

performance appraisals in organizations as individuals are typically reluc-

tant to assign poor grades in order to avoid negative consequences such as

a violated supervisor-subordinate relationship or negative reactions by the

employee (Harris (1994), Shore and Tashchian (2002), Yariv (2006)). The

fear of negative consequences may lead to the overall tendency of being le-

nient in evaluations (Napier and Latham (1986), Shore and Tashchian (2002),

MacLeod (2003)) leading to an increased compression of ratings. Jack Welch

illustrated the di¢ culty of GE managers to assign low grades to their sub-

ordinates. He states that managers "will play every game in the book to

avoid identifying their bottom 10" (Welch (2003): 198).3 But not identifying

the low performers may weaken the �rm�s productivity. Thus, assigning low

grades is a crucial part of performance evaluations in organizations and so

we also analyze whether women or men are more likely to assign poor grades

to their subordinates.
3One example he gives is that a GE manager put a name of a man in the bottom

10 category who has died two month before, just to avoid the nomination of one team
member.
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A wide range of studies in the psychological literature have analyzed per-

formance ratings with focus on information processing, rating accuracy, reac-

tions to ratings, rater training and on rating formats (see Bretz et al. (1992)

for extensive reviews of the literature). Further research has addressed the ef-

fect of social context on evaluation outcomes (see Levy and Williams (2004)

for an overview) including personal supervisor characteristics. Only some

studies looked at the impact of supervisor gender on performance evalua-

tions so far (Benedict and Levine (1988), Furnham and String�eld (2001) and

Varma and Stroh (2001)), but ignore the analysis of di¤erentiation. Two of

the studies especially focus on evaluations in same-sex supervisor-subordinate

dyads and �nd, based on experimental data sets, that performance ratings are

higher when supervisors evaluate subordinates of the same gender (Furnham

and String�eld (2001), Varma and Stroh (2001)).

Our empirical analysis is based on a dataset of a large company headquar-

tered in Germany for the years 2006 � 2008. We observe the performance
evaluations of every managerial worker in the �rm and many other personal

and job-speci�c characteristics. The data set is unique, as it allows us to

identify work unit and the respective supervisor so that we can incorpo-

rate work unit, supervisor, and individual characteristics in our regression

analysis. We use the standard deviation in grades and the share of poor

grades for a workgroup as dependent variables. Due to the panel structure

of the dataset, we are able to conduct �xed e¤ects regressions to eliminate

unobserved heterogeneity of a workgroup. Our analysis shows that women

di¤erentiate more between their employees and give lower grades more often

than men. In this respect they are therefore rather better leaders on average

as compared to men.

The paper proceeds as follows. Section 3.2 provides a discussion on why

di¤erences in the evaluation behavior between men and women can be ex-

pected due di¤erences in personality, risk attitudes or social preferences and

sums up the relevant literature. Section 3.3 introduces the data set and sec-

tion 3.4 presents some descriptive results. Subsequently, section 3.5 to 3.7

report the results. Section 3.8 concludes.
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3.2 Reasons for Gender Di¤erences in Eval-

uation Behavior

Much economic research has been conducted to analyze gender di¤erences

in risk attitudes and social preferences (see, e.g. Holt and Laury (2002),

Dohmen et al. (2006) and Croson and Gneezy (2009) for an overview) that

may give explanations for gender di¤erences in evaluation behavior. In the

following, we aim at developing these arguments. A �rst robust insight from

these studies is that women are more risk-averse than men (see Croson and

Gneezy (2009) for a summary). Risk attitudes may be relevant in the di¤er-

entiation between employees in two ways. First, higher risk aversion possibly

implies less compression in evaluations. Given that compressed ratings may

have negative incentive e¤ects, organizations may want to monitor supervi-

sors (Prendergast and Topel (1996)). If a central tendency of supervisors is

thereby detected, supervisors may be �ned. With a positive probability of

bias detection, more risk averse individuals may hence shy away from taking

that risk and evaluate in a more di¤erentiated and accurate manner. Sec-

ond, risk aversion can also cause more centrality bias in evaluations, as low

grades for subordinates may cause a risk of negative reactions by subordi-

nates (Napier and Latham (1986)).4 Supervisors with higher risk aversion

may want to avoid this risk and bias the evaluations toward the top of the

scale, which leads to more compressed ratings. However, although there is

some evidence that risk attitudes do not di¤er between men and women in

the managerial population (Johnson and Powell (1994)), a recent study by

Berger (2011) concludes based on the analysis of two data sets, that women

are more risk-averse on every level of a hierarchy.

Second, experiments have shown that women more reciprocal than men

(Eckel and Grossman (1996), see Croson and Gneezy (2009) for a review).

Eckel and Grossman (1996) show in their paper that women are more likely

4MacLeod (2003) for example modeled optimal contracts with subjective performance
evaluations and showed that if the agent´s and principal´s signals about the agent´s
performance are weakly correlated, this leads to bias in evaluations through the avoidance
of agency costs. Her furthermore shows that this bias reduced the incentive setting and
leads to worse worker morale.
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to reward fair behavior and punish unfair behavior. Hence, women may be

more likely to reward employees with good grades when high e¤ort is exerted

and also to punish subordinates for low performance. This would predict that

women di¤erentiate more between their subordinates than men.

Third, women seem to be less likely to lie than men (Dreber and Jo-

hannesson (2008), Conrads et al. (2011)). Following the study of Gneezy

(2005) examining deception, Dreber and Johannesson (2008) used a sender-

receiver game in which the sender has a monetary incentive to send a decep-

tive message to the receiver. They �nd that men are much more likely to

lie than women in order to secure a monetary bene�t (Dreber and Johan-

nesson (2008)). Conrads et al. (2011) con�rm the lower lying inclination for

women in their study on lying under piece-rate or team incentive scheme.

Women may hence evaluate more truthfully and di¤erentiate more between

their subordinates.

Fourth, Croson and Gneezy (2009) argue that women are more inequal-

ity averse in their giving, which has been analyzed in dictator games. In

performance ratings, more inequality aversion would imply more compressed

evaluations. However, when considering the invested e¤ort of employees, a

higher inequality aversion of women may also imply a higher di¤erentiation

in ratings conditional on di¤erent investments of employees.

Furthermore, di¤erences in personality traits between men and women

can contribute to di¤erences in evaluation behavior. Personality character-

istics are generally studied based on the Big Five personality traits that are

supposed to broadly cover the personality of a person (Costa and McCrae

(1992)). Bernadin et al. (2000) who investigate personality traits as predic-

tors of rating leniency, found that conscientiousness seems to be negatively

related to leniency in evaluations while agreeableness was positively corre-

lated with rater leniency. Similar correlations of personality traits can be ex-

pected with regard to the di¤erentiation in grades. In psychological studies,

women rated higher in neuroticism, agreeableness, extraversion and consci-

entiousness than men, which seem to be consistent across cultures (Schmitt

et al. (2008)). Conscientious people are conceptually de�ned as organized,

having the tendency to follow norms and rules, striving for excellence and
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to think before acting (John and Srivastava (1999)). Managers with higher

conscientiousness can be expected to evaluate in an accurate and thorough

manner implying a higher di¤erentiation in grades. Moreover, conscientious-

ness can be assumed to be negatively correlated with lying. On the contrary,

agreeableness implies a prosocial and communal orientation towards others,

causing agreeable people to be altruistic, trustful and modest (John and Sri-

vastava (1999)). Managers who are more agreeable might therefore evaluate

in a modest manner, leading to more compressed evaluations.

3.3 The Data Set

To analyze the di¤erentiation in performance evaluations, we use person-

nel records of a large multinational �rm based in Germany for the years

2006 � 2008.5 The data contains information about the subjective perfor-

mance ratings of all employees in Germany. Because of con�dentality reasons,

personnel data of managers working at top two hierarchical levels had to be

excluded. At the end of every year, supervisors in this �rm have to evaluate

their direct subordinates based on a prede�ned form. The outcome of this

evaluation is a grade for job performance that ranges from 1 to 5 with 1

standing for "problematic", 2 for "partially meets expectations", 3 for "fully

meets expectations", 4 for "exceeds expectations" and 5 for "outstanding".6

In general, the grade determines a substantial part of the bonus payment

an employee receives in the respective year.7 Moreover, the policy of the

performance management system was identical in the three observed years.

By considering those employees as one unit who are working under the same

5We additionally observe the year 2009, but leave it out of the analysis because the
performance management system was changed in that year.

6Please note that in the original scale of the �rm, 1 denoted the best and 5 the worst
grade. We have recoded the grade for interpretation reasons. In addition, there is no
standard which is set for managerial employees individually. The performance standard
that has to be attained for receiving a certain grade should hence not di¤er between
employees.

7Please note that the ratio of bonus to total salary is increasing with the hierarchical
level of managers in this �rm. For the lowest managerial level, the ratio is 15% on average
and it goes up to about 44% for the top managerial levels.
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supervisor, we can look at the grades distribution per unit. In the following,

we will refer to this level of aggregation as �work unit�. Besides the informa-

tion on performance grades assigned by the direct supervisor, the data set

contains information on demographic characteristics of employees (length of

service, age, gender) and job characteristics (hierarchical level, subgroup,

�xed salary). We are further able to match supervisor characteristics (e.g.

supervisor gender) and unit characteristics (e.g. female share in work unit)

to the work unit. The data set set contains information on 5; 775 managerial

employees which are observed several times over the years yielding 13; 116

employee-year observations8. By means of the supervisor ID, the employee-

year observations can be aggregated to 3; 392 work unit-year observations.

Overall, the female share in the data is 18:0 percent, while 9:8 percent

of the identi�ed unit-supervisors who are evaluating employees are women.

The overall share of women increased over the years from 17:2 percent in

2006 to 19:3 percent in 2008.

3.4 Descriptive Statistics on Performance Eval-

uations in the Firm

We begin our analysis by looking at the distribution of performance ratings

in this company. Figure 3.1 shows a histogram of the pooled performance

ratings over the years 2006 � 2008.9 Obviously, there is a central tendency
in evaluations. About 71:6 percent of employees received a 3 for "fully meets

expectations." Furthermore, the distribution is slightly skewed to the right

with a higher share of employees having received a grade better than 3 than

a grade worse than 3. Over the years 2006 � 2008, only about 3:09 percent
of the observations are evaluations with the lowest grades of 1 and 2. And

similar to the study by Medo¤ and Abraham (1980) (p.709) and to the case

8We originally observe 15; 152 performance evaluations of employees over the three
years but due to missing information on the supervisor ID, we can only use 87% of these
for our analysis. One reason for this missing information is the exclusion of the top level
employees in the analysis.

9Please note that the distribution did hardly change over the years (see �gure 3.7 in
the appendix).
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study by Murphy (1992) (p. 40), about 96 percent of evaluations are crowded

into two categories in our data set .10 The pooled average rating is 3:23 with

a standard deviation of 0:51, and mean values and standard deviation of

ratings hardly change over the years (in 2008, the mean (standard deviation)

of grades is 3:21 (0:51) while it is 3:26 (0:53) in 2007 and 3:21 (0:48) in 2006).
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Figure 3.1: Distribution of Grades for the Years 2006-2008 (pooled)

As we aim to investigate the di¤erences in evaluations by gender of the

supervisor, we separated the distribution of performance evaluation with

respect to the supervisor gender in �gure 3.2. About 9 percent (1169 out of

13116 employee evaluations) are conducted by female managers (see table 3.8

in the appendix). Although the means in performance grades given by male

and female supervisors do not di¤er (see table 3.8 in the appendix), �gure 3.2

shows that on average female supervisors di¤erentiate more in their ratings

10Medo¤ and Abraham (1980) report that in both analyzed �rms, about 95% of eval-
uations are concentrated in two categories. In the case study of Merck (Murphy (1992)),
even 96% of evaluations fall into two categories, but categories are are subdivided in three
subcategories.
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Figure 3.2: Distribution of Grades for Male and Female Supervisors (2006-
2008)

than male supervisors do. Women rate a lower share of their employees with

the middle grade of 3 (t-test, p=0:0033). And the di¤erence in the share

of giving a 2, which equals "Partially meets expectations," is substantial:

Female managers give a 2 nearly twice as often as men (4:9% compared to

2:8%) which is signi�cant on on the 1% level (t-test, p=0:0001).11 Hence,

women seem to be less reluctant to assigning a grade that clearly indicates

poor performance. Identifying low performers is the inconvenient part of

performance evaluations (Harris (1994), Shore and Tashchian (2002), Yariv

(2006)) and illustrated by Grote (2005) who says (p. 27):"... too many

managers display a reluctance to make meaningful di¤erentiations among the

troops, preferring to live in a Lake Wobegon coccon where all the children

11To put it in absolute numbers: Women assign the grade 2 to 57 out of 1112 of their
employees while men assign the same grade to 338 out of 11609 employees.
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are above average." The result is con�rmed by �gure 3.3, which shows that

female supervisors gave poor grades more frequently than men in every year.

The di¤erence in the share of poor grades is statistically signi�cant in 2006

and 2008 (p = 0:0131 in 2006 and p = 0:0026 in 2008).

Bonus Di¤erence (e) Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Grade 2 - Grade 3 3,216 4,891 5,413 10,794 11,864 58,079

Grade 3 - Grade 4 2,613 2,933 3,247 5,988 11,017 13,452

Relative Loss

Grade 2 - Grade 3 4.51% 5.10% 4.73% 7.94% 7.58% 32.14%

Grade 3 - Grade 4 3.59% 3.08% 2.89% 4.42% 7.03% 7.44%

Table 3.1: Marginal Return of Bonus Payments for Di¤erent Grades

0.
00

0.
10

0.
20

0.
30

0.
40

2006 2007 2008

Share of low grades (1 and 2)

Female supervisor
Male supervisor

0.
00

0.
10

0.
20

0.
30

0.
40

2006 2007 2008

Share of good grades (4 and 5)

Female supervisor
Male supervisor

Figure 3.3: Share of High and Low Grades by Supervisor Gender (2006-2008)

To further illustrate the impact of the performance grades on employees,

we look at the marginal return in bonus payments. Table 3.1 shows the
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absolute di¤erences in average bonus payments for di¤erent levels of the

hierachy when grade 3 is assigned instead of grade 2 and grade 4 instead

of grade 3. Level 1 is the lowest managerial level in this �rm. It can be

seen that for the lowest levels, receiving grade 2 instead of grade 3 already

accounts for more than 3,000 Euro which equals about 4,5% of the total

salary. This monetary di¤erence is substantial. The table also shows that

the marginal return for receiving grade 3 increases with the hierarchical level,

in absolute and relative terms. Moreover, the marginal loss for receiving

grade 2 compared to grade 3 is larger than the marginal loss when receiving

grade 3 instead of grade 4 on every level. Assigning grade 2 to employees

hence implies non-negligible monetary consequences making it even harder

for supervisors to take this decision.

As a direct measure for di¤erentiation in grades, the standard deviation of

grades is computed per unit. The employee-level data is therefore aggregated

on unit-level by means of the supervisor ID. Units with only one employee are

excluded.12 The result is shown in �gure 3.4 which shows a higher standard

deviation in grades for teams with a female supervisor compared to teams

with a male supervisor.

The di¤erences in the standard deviation are signi�cant for the years

2007 and 200813; this indicates that female supervisors di¤erentiate more in

their performance evaluations. However, as di¤erences in other observables

between male and female supervisors may drive the descriptive results, we

will use regression analyses to further eliminate observed and unobserved

heterogeneity of supervisors and work units.

12Additionally, we computed the coe¢ cient of variation and the span of grades. In our
view, the standard deviation is the most appropriate measure here also accounting for the
frequencies of di¤erentiated grades which the span of grades ignores. Moreover, for a scale
from 1 to 5, a standardization by the coe¢ cient of variation is not necessary. However,
the �gure is the same when using the other two di¤erentiation measures.
13The test was signi�cant on the 10% level in 2007 (p=0:0533) and on the 1% level in

2008 (p=0:0002).
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Figure 3.4: Standard Deviation of Grades within Workgroup by Supervisor
Gender

3.5 Gender Di¤erences in the Di¤erentiation

of Performance Evaluations

This section presents our empirical strategy and the regression results for

gender e¤ects in the di¤erentiation of performance grades. In the �rst step,

a work unit is de�ned as the group of employees who are evaluated by the

same supervisor as described above (identi�ed based on supervisor ID). The

data is thus aggregated on supervisor level and the standard deviation of

grades in the unit is the dependent variable.

The main explanatory variable is a dummy that takes the value 1 if the

supervisor is a woman. A number of work unit and supervisor characteris-

tics are computed as control variables because there are several reasons to

believe that these may be correlated with the supervisor�s gender and also

have an impact on the di¤erentiation in grades. It may well be that, for
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example, the age of the supervisor positively correlates with a higher com-

pression of ratings, because a higher conscientiousness due to career concerns

can be assumed of younger supervisors. In addition, older and longer-tenured

employees may have built up social ties with subordinates, making it more

di¢ cult for them to di¤erentiate to the bottom of the scale. As the observed

female supervisors are on average younger than their male colleagues, this

may drive the result. Furthermore, the size of a workgroup can in�uence

di¤erentiation in grades, as in smaller teams, the personal contact between

supervisor and subordinates is closer, rendering it more di¢ cult for the su-

pervisor to di¤erentiate between the group members. Heterogeneity of the

team, including the di¤erences in status, might be an important in�uenc-

ing factor in the di¤erentiation in grades, causing heterogeneity in grades

to be driven by heterogeneity in status. Moreover, we want to control for

further unit characteristics such as the share of newly hired, promoted and

job movers which might in�uence the evaluations. Newly hired employees

have not accumulated speci�c human capital yet which may results in lower

performance evaluations compared to incumbents. In addition, newly hired

supervisors may not have had a lot of time to observe the employees´ e¤ort

which can cause a higher compression in ratings. If newly hired supervisors

are mainly male, this could drive the result.

Our regression model will account for these observable in�uencing fac-

tors. In particular, the work unit characteristics include the female share,

average age of employees per unit, average hierarchical level14, average salary

(measured in Euro) and the average contractual working time of employees.

In total, we observe nine levels for managerial employees where jobs on the

lowest level (level 14) are the typical university-entry positions to young aca-

demics in this �rm. The contractual working time has the maximum value

1 which stands for a full-time position. Furthermore, the percentages of

newly hired, promoted and horizonally moved employees per work unit are

computed. A further control variable on work unit level is the standard de-

14In this �rm, the salary level is de�ned as a contractual salary band with lower and
upper salary limits and determines the hierarchical level of an employee. In total, we
observe 9 salary levels for managerial workers in the data set.

46



viation of employees� levels which is a work unit heterogeneity measure to

control for objectively measurable variability of team members that may in-

�uence the di¤erentiation in grades. Besides the gender of the supervisor,

supervisor age, contractual working hours and the level of the supervisor are

included. We also control for three additional variables that indicate whether

the supervisor is newly hired, was currently promoted or changed business

units. Descriptive statistics of all variables are presented in table 3.2.

Mean Std.dev. Min Max

Dependent variables

Std. dev. of grades per unit 0.390 0.305 0 1.527

Fraction of grade 2 0.034 0.131 0 1

Supervisor variables

Female supervisor (0/1) 0.098 0.298 0 1

Level supervisor 18.212 1.893 14 23

Working hours supervisor 39.889 1.150 20 47.4

Age of supervisor 47.065 6.511 24 64

Promotion of supervisors (0/1) 0.159 0.366 0 1

Newly hired supervisor (0/1) 0.011 0.103 0 1

Subdivision move of supervisor (0/1) 0.014 0.118 0 1

Work unit variables

Female share 0.190 0.281 0 1

Contractual working time 0.983 0.057 0.4 1

Average hierarchical level 15.872 1.329 14 20.75

Average age 44.676 5.624 25 63

Number of unit members 3.867 2.832 1 21

Average salary (EUR) 83,389 17,118 30,092 157,800

Promotion rate 0.139 0.238 0 1

Rate of newly hired 0.030 0.115 0 1

Rate of subdivision moves 0.020 0.125 0 1

Std. deviation of salary levels 0.929 0.539 0 3.266

This table includes the descriptive statistics for the aggregated and pooled

data (2006-2008) set on the supervisor level. Please note that standard

deviations are only computed for units with at least two employees.

Table 3.2: Means and Standard Deviations

In the �rst step, we use a data set where the supervisor is the unit of

observation. Therefore, we estimate our model based on pooled OLS and
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random e¤ects regressions. The regressions equation is as follows:

Std:dev:ratingsjt = �+� �FemaleSupervisorjt+
 �Xjt+� �Zjt+ � �Yt+�jt

where j denotes the work unit in year t, Xjt covers general workgroup

characteristics, which besides the above described variables includes business

unit dummies. Zjt contains the above discussed supervisor characteristics.

Additionally, we control for year �xed e¤ects with Yt. Table 3.5 reports the

results of the regression analysis. Column (1) and (2) show the OLS and the

random e¤ects OLS regressions respectively.

We again �nd that groups led by women have a higher standard deviation

in grades compared to groups led by a male supervisor. Moreover, the age of

the supervisor is negatively correlated with the standard deviation in grades,

suggesting that younger supervisors di¤erentiate more. The size of the team

has a signi�cant and positive coe¢ cient. In addition, the standard devia-

tion of salary grades in the workgroup show the expected positive signi�cant

relationship with the standard deviation in grades.

The analysis indeed suggests that female supervisors di¤erentiate more

between their employees. However, there might still be unobserved unit char-

acteristics which may bias the results. To rule this out, we apply a second

empirical approach that allows us to identify an e¤ect based on within work

unit di¤erences with regard to the gender of the supervisor. For this ap-

proach, a workgroup is de�ned based on the employees who worked together

over the whole period. In 2006, we assign to every employee who is working

under the same supervisor a team ID. Thus, 2006 constitutes the base year

of identifying a workgroup. The 2006-team ID of an employee is transferred

to the remaining year-observations of the same employee, so that it stays

constant for every employee over the whole period. We then identify a work-

group based upon the majority of employees of the original assigned team in

2006 who are still working under a common supervisor, regardless of whether

it is the same supervisor as in 2006. If employees are not working under the

same supervisors as their workgroup colleagues, they may have changed units

or left the �rm, so they are eliminated from the sample of the respective year.
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Pooled OLS Pooled RE

Dependent variable: Std. dev. of grades

(1) (2)

Female Supervisor (0/1) 0.046** 0.049*

(0.023) (0.027)

Age of supervisor -0.004*** -0.005***

(0.001) (0.001)

Working hours supervisor 0.002 0.005

(0.007) (0.006)

Size of team 0.016*** 0.017***

(0.002) (0.002)

Share of promotions 0.023 0.003

(0.034) (0.032)

Share of new hires -0.051 -0.045

(0.076) (0.073)

Share of horizontal moves 0.111 0.103

(0.090) (0.081)

Std. dev. of salary grades 0.034*** 0.023***

(0.013) (0.014)

Controlled for promoted/ new/ yes yes

moved supervisors

Observations 2,460 2,460

R2 0.089

Number of teams 1,144

Further control variables on supervisor level are salary grade and working

time of the supervisor, team controls are share of women, average age,

average salary level, salary and contractual status (full-time or part-time).

Year business unit �xed e¤ects are included. Robust standard errors in

parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 3.3: OLS and Random E¤ects Regression with Standard Deviation of
Grades in Workgroup
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When aggregating the data set on this workgroup level, the supervisor gen-

der varies over time because supervisors move between workgroups. Now we

can identify a gender e¤ect by estimating workgroup-�xed e¤ects regressions

based on within workgroup di¤erence in supervisor gender. The dependent

variable is again the standard deviation in grades within the workgroup. The

coe¢ cient of the female dummy will reveal whether a female supervisor dif-

ferentiates more in evaluations of the same workgroup compared to a male

supervisor. As there is hardly any reason why the change of a supervisor to

one of the opposite gender should be related to any unobserved time-variant

workgroup characteristic, this approach should allow us to get very close to

an exogenous variation in supervisor gender.

Fixed E¤ects Regressions (OLS)

Dependent variable: Std.dev. of grades

(1) (2) (3)

Female Supervisor (0/1) 0.122** 0.119** 0.085

(0.059) (0.060) (0.071)

Female Supervisor � Female Share 0.204

(0.240)

Age of supervisor2 -0.000 -0.000 -0.000

(0.000) (0.000) (0.000)

Working hours supervisor 0.005 0.003 0.005

(0.018) (0.019) (0.189)

Team size 0.030*** 0.030*** 0.030

(0.007) (0.007) (0.007)

Level dummies supervisor yes yes yes

Other team characteristicsa) yes yes

Observations 2,208 2,208 2,208

R2 0.044 0.048 0.049

Number of teams 835 835 835
a) These include average age, female share, average level and salary, std. deviation in

levels and average working hours. Year and business unit �xed e¤ects are included.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 3.4: Standard Deviation of Grades - Workgroup Fixed E¤ects

For the analysis, control variables are the same as above, obviously adapted
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according to the team composition of this approach. Due to the new data

aggregation approach we cannot include the share of promoted, newly hired

or horizontally moved employees as control variables because these employ-

ees are eliminated from the sample. Table 3.4 reports the results of the

�xed e¤ects regressions. In column (1) only supervisor controls are included

whereas the speci�cation in column (2) controls additionally for other team

characteristics such as for example the standard deviation in levels and the fe-

male share. The coe¢ cient of the female supervisor dummy is again positive

and signi�cant on the 5 percent-level in both speci�cations, which indicates a

signi�cantly higher standard deviation in grades for female supervisors. How-

ever, it might be that the degree of di¤erentiation of a unit is in�uenced by

the share of female or male employees. As former studies report a positive

evaluation bias for same-sex dyads in subordinate-supervisor-relationships

(Furnham and String�eld (2001), Varma and Stroh (2001)), a female super-

visor may evaluate di¤erently when the majority of subordinates are male.

To rule this out, we included the interaction term of the gender of the su-

pervisor and the share of female employees in the �xed e¤ects regression in

column (3). The coe¢ cient of the interaction term is not signi�cant, so that

there is no di¤erence in di¤erentiation only because of the gender composi-

tion. Overall, the variation from a male supervisor to a female supervisor

of a workgroup with the same employees increases the standard deviation in

grades. In a next step we will investigate in more detail the assignment of

poor grades to subordinates.

3.6 Do Female Supervisors Give Poor Grades

More Frequently?

Supervisors can di¤erentiate toward the top or the bottom of the evalua-

tion scale. As Jack Welsh (2003) for instance claims, it is especially tough

to di¤erentiate towards the bottom of the scale and nominate low perform-

ers in organizations. In his book he says: "Dealing with the bottom 10 is

tougher(...). No leader enjoys making the tough decisions. We constantly
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face severe resistance from even the best people in our organization"(Welch

(2003): 198). Therefore, we here further investigate whether female man-

agers are more likely to give poor grades to subordinates. Our empirical

approach is similar to the one above. We start with aggregating the data

on the supervisor level (based on supervisor ID). The dependent variable

of our analysis is the fraction of employees per work unit that received the

grade below the middle grade, namely "Partially meets expectations" (2).

We chose this variable because supervisors might tend to put a poor per-

former in the middle category "Fully meets expectations" (3) hiding him or

her in the mass of average performers. But supervisors who dare to give

the 2 to subordinates demonstrate real competence in di¤erentiating. OLS

and random e¤ects regressions are estimated. Work units with only one

employee are again excluded. Control variables are work unit (Xjt) and su-

pervisor characteristics (Zjt) from above, so that we estimate the following

speci�cation:

PercentageGrade2jt = �+� �FemaleSupervisorjt+
 �Xjt+��Zjt+� �Yt+�jt

Table 3.5 reports the regression results. Both models show a signi�cant

and positive coe¢ cient of the female supervisor dummy on the fraction of

grade 2 in a team. A unit with a female supervisor has a 2 percentage points

higher fraction of grade 2 evaluations than a unit with a male supervisor

in the random e¤ects regression. The coe¢ cient is substantial, given that

only about 3 percent of employees receive a poor grade in this �rm. In a

larger team, there is a slightly higher percentage of poor grades, which is

consistent with the above �nding of higher standard deviations in grades for

larger teams. The percentage of promoted employees is negatively correlated

with the fraction of poor grades, which suggests that promoted employees are

often high performers who have a low probability of receiving a poor grade.

In addition, we use the data with the newly de�ned workgroups from

above to eliminate unobserved heterogeneity between units.The same regres-

sion is conducted with the new dependent variable. Results are reported in

table 3.6. Again, the coe¢ cient of the female supervisor dummy is positive
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Pooled OLS Pooled RE

Dependent variable: Fraction of Grade 2

(1) (2)

Female Supervisor (0/1) 0.017�� 0.020��

(0.007) (0.010)

Age of supervisor 0.000 -0.000

(0.000) (0.000)

Working hours supervisor 0.000 0.001

(0.001) (0.001)

Size of team 0.001� 0.002��

(0.001) (0.001)

Share of promotions -0.024��� -0.019��

(0.009) (0.009)

Share of new hires -0.005 -0.011

(0.019) (0.016)

Share of horizontal moves 0.003 0.007

(0.029) (0.027)

Controlled for promoted/ new/ yes yes

moved supervisors

Observations 2,460 2,460

R2 0.044 0.041

Number of teams 1,144

Marginal e¤ects reported in (1). Further control variables on the supervisor level

are salary grade and working hours. Further team controls are average age,

average hierachical levels salary and average contractual status. Year and

business unit �xed e¤ects are included. Robust standard errors in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

Table 3.5: OLS and Random E¤ects Regressions with the Fraction of Giving
Poor Grades
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Fixed E¤ects Regression (OLS)

Dependent variable: Fraction of grade 2

(1) (2) (3)

Female Supervisor (0/1) 0.033** 0.034** 0.043**

(0.016) (0.016) (0.020)

Female Supervisor � Female share -0.047

(0.057)

Age of supervisor2 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Working hours supervisor 0.006 0.007 0.007

(0.005) (0.005) (0.005)

Team size 0.002 0.002 0.002

(0.002) (0.002) (0.002)

Level Dummies Supervisor yes yes yes

Other team characteristicsa) yes yes

Observations 2,230 2,230 2,230

R2 0.016 0.019 0.020

Number of teams 843 843 843
a) These include average age, average level, female share, average salary and average

working hours. Year and business unit �xed e¤ects are included. Robust standard

errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 3.6: Fraction of Poor Grades - Workgroup Fixed E¤ects

54



and signi�cant on the 5 percent level in both speci�cations. On average, in

a work unit in which a male supervisor has been exchanged by a female one

the fraction of evaluations with grade 2 increases signi�cantly by about 3

percentage points. Given that the share of grade 2 is on average 2:9% in

the observed teams, the e¤ect is immense: a 100% increase in the share of

grade 2 when the team is supervised by a women. Hence, female supervisors

indeed show the evaluation behavior many �rms strive to achieve: they dare

to di¤erentiate more and are less reluctant to give poor grades. In column

(3) we again include the interaction of the female unit members and the gen-

der of the supervisor. A higher share of low grades could be driven by the

mere fact that the majority of subordinates are men, and female supervisors

give lower evaluations to men compared to women. However, we see that the

interaction term is insigni�cant which rules out this alternative explanation.

Female supervisors indeed seem to be less reluctant to assign poor grades

and are hence performing well in the tough part of evaluations.

3.7 Are Female Supervisors Indeed Good in

Leading People?

So far, we found strong evidence that women evaluate in a more di¤erenti-

ated manner than men and that they give lower grades more often. In this

section, we want to validate whether women in this �rm are perceived by

their managers as being better in leading their subordinates than men. In

the observed �rm, managers have to evaluate the leadership competencies

of supervisors based on 7 leadership principles once a year. For every lead-

ership principle, the supervisor receives a grade of 1 to 3 from his or her

direct manager; 1 stands for "Development Need", 2 for "On Target" and 3

for "Strength". As revealed from company representatives, these evaluations

are relevant for promotions and the career development of managers. One of

the de�ned leadership principles is denoted as "Leading People" and depicts

the ability of the supervisor to manage his employees in such a way that they

contribute to the �rm�s value. The �rm gives precise descriptions about the
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competencies that are required for being strong in "leading people". Two of

these competencies are "Giving open and honest feedback and fairly reward-

ing and acknowledging performance" and "Inspiring in others a passion to

succeed, enabling and empowering them to achieve optimum performance."

In our view, these descriptions are closely related to the objectives of di¤eren-

tiated performance evaluations, because more di¤erentiation requires honesty

and implies fair rewards for employees and enhanced incentives to increase

e¤ort. Also, we �nd a slightly positive and signi�cant correlation between the

di¤erentiation in grades and the evaluation of "Leading People" (Spearmen

0.05, p=0.0613).15 Thus, we here look at the di¤erences in evaluations for the

principle "Leading People" between male and female supervisors. There are

many empirical studies in the management literature comparing overall per-

formance grades of women and men (see Roth et al. (2011) for an overview)

that show that women are on average better evaluated than men. However,

we here investigate the evaluations of leadership principles of supervisors

which is di¤erent to the overall performance grade. Not every supervisor in

the �rm receives the leadership evaluations yet, so we cannot observe the

evaluations for each of the observed supervisors; this is because evaluation

of leadership performance is still in the process of being launched for every

supervisor in the �rm. Overall, 62% of managers in the data set received

the rating 2 for being "on target", 34% received the grade 3. For only 4%

of the managers, there is development needed in the dimension of leading

people. Figure 3.5 shows that in every observed year, a higher fraction of

female supervisors is "Strong" in "Leading People" (receive the best grade

3) than male supervisors. Over all years, 45:6 percent of female supervisors

receive the grade 3 compared to only 32:5 percent of male supervisors.16

We further conducted a simple, pooled regression to analyze whether

women are more likely of being evaluated with grade 3 in "Leading Peo-

ple" when other supervisor characteristics are controlled for. The dependent

variable is a dummy that takes the value of 1 for being strong in "Leading

15The overall leadership evaluation is also positively correlated with the standard devi-
ation of grades per work group (0.07, p=0.001).
16Please note that we observe 291 (33) evaluations in 2006, 481 (73) in 2007 and 505

(85) evaluations in 2008 for male (female) supervisors.
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Figure 3.5: Fraction of Supervisors Receiving the Grade 3 ("Strength") in
the Dimension Leading People

People". We use the aggregated data set on the supervisor level from above

and control for age, salary level, working hours of the supervisor and size of

the supervisor�s team. Also, dummy variables for supervisors that are just

being promoted, newly hired or changed jobs are added. In addition, we

control for business unit and year �xed e¤ects. Probit and random e¤ects

probit regressions are computed. Table 3.7 reports the results.

The �rst column reports marginal e¤ects of the probit regression and

shows that female supervisors are by 13:1 percent more likely of being eval-

uated with the best grade in the leadership dimension "Leading People",

which is signi�cant at the 5%-level. The random e¤ects probit regression

con�rms the result. Overall, the results reinforces that female supervisors

are strong in leading people which is in line with a higher di¤erentiation

between employees.

However, we also looked at the other leadership principles to reveal whether

women also rate higher in other dimensions. Figure 3.6 reports the average
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di¤erence between female and male manager�s leadership evaluations.17 As

we can see, the di¤erence is the highest for "Leading People". Female man-

ager�s rate also signi�cantly higher (see ** and * in the �gure) in two other

principles: Delivering Results and Overcoming complex tasks.18 But it is ob-

vious that female managers do not rate better in every principle on average.

The di¤erence to men is the most negative for "Partnering" which describes

the ability to "cultivate an active professional network inside and outside of

the organization". While this could be a result of women�s exclusion from

"old boy�s networks" (Davies-Netzley (1998)) and their resulting diminished

opportunities to network, there are also theories about gender di¤erences in

networking behavior (Friebel and Seabright (2011)). While women seem to

focus on networks with "strong ties", men are rather focused on networks

with "weak ties" which may be more e¤ective at transmitting information

according to Granovetter (1973). According to our data, women score in-

deed lower in "Partnering", but the di¤erence is not signi�cant. Overall, the

comparison illustrates that the female managers seem to be especially strong

in the dimension of leading other people.

3.8 Conclusion

In this paper, we addressed the question of whether female and male su-

pervisors di¤er in their leadership competence to di¤erentiate between their

subordinates in performance evaluations. As the evaluations are tied to bonus

payments, di¤erentiation enhances the marginal return of e¤ort for employees

and implies an enhanced incentive setting (Bol (2011), Berger et al. (2010),

Kampkoetter and Sliwka (2010)).

Our analysis was based on a unique �rm-level data set of a large German

17Please note that *** p<0.01, ** p<0.05 and * p<0.1.
18"Delivering Results" is described with "Setting challenging yet realistic targets", "Pur-

suing goals with energy, drive and determination" and "Resolving con�icts, setting the
right priorities, and allocating resources accordingly". "Overcoming complex tasks" is de-
scribed as "Understanding how things get done in our complex environment", "Identifying
how things could be done more simply and e¤ectively and taking the necessary action"
and "Challenging and eliminating activities that do not create value".
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company for the years 2006-2008. With the information on the hierarchical

connections in this �rm, we were able to analyze the di¤erentiation in grades

together with supervisor characteristics of a work group. Based on pooled

OLS regressions and panel regressions, eliminating unobserved heterogeneity

of the work units, we observe women to di¤erentiate more in performance

evaluations than their male counterparts. Especially, female supervisors seem

to assign poor grades twice as often as men. Based on survey data of these

managers, we �nd evidence that this evaluation behavior is especially driven

by women with children having a full-time working partner.

Di¤erences in personality and social preferences between men and women

may give explanations for the observed gender di¤erences in evaluations be-

havior.19 In detail, di¤erences in reciprocity, in personality, or in lying aver-

sion between men and women may possibly explain this observation. Women

have empirically been shown to be more conscientious (Schmitt et al. (2008))

and more averse to lying than men (Dreber and Johannesson (2008), Conrads

et al. (2011)) which may lead to more honest and therefore more di¤erentiated

performance evaluations. Also, a higher reciprocity of women can explain the

results, as they have been shown to reward fair and punish unfair behavior

more often then men (Eckel and Grossman (1996)).

Another explanation for our �ndings could be that we observe a (self-)

selection of female managers that have proven to be good leaders. A selec-

tion of very able women in our data would imply that women may not be

represented in leadership positions to the same extent than men. It might

be that the �rm would not equally value female and male competencies for

leadership positions so that women have to show better qualities in order

to be promoted to managerial positions. To check the relevance of higher

di¤erentiation for being a good leader, we see in �gure 3.8 in the appendix

that the standard deviation of grades assigned to subordinates increases with

the hierarchical level in this �rm.20 This illustrates that di¤erentiation is a
19Please see Croson and Gneezy (2009) for an overview of gender di¤erences in risk

attitudes and social preferences.
20Please note that the level 1 in the graph is one of the lowest levels of supervisors in

this �rm and equals level 16 from the abobe described levels. Only very few supervisors
are assigned to level 14 or 15 which is why they are ignored here. Starting from level 4
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relevant competence for being a leader in this company.

To rule out selection, we would need a measure for ability of women. But

we are not able to measure ability of managers other than looking at the

leadership evaluations. Although �gure 3.6 suggests that women do not sys-

tematically score better in every leadership dimension, signi�cant di¤erences

only occur for the principles in which women positively deviate from men.

On average, female manager�s hence seem to show better leadership qualities

than men which could hint to (self-)selection of competent women. Although

women rate higher in the observed leadership ratings, male managers may

compensate the di¤erence in other dimensions. For example, due to family

responsibilities women may have on average shorter working hours than men.

Based on a survey in this �rm in 2010, it was revealed that female full-time

managers work on average 1.2 hours less per week than male managers.

The observation that female managers show good leadership quality is

consistent with management studies investigating gender di¤erences with

regard to leadership styles. For example, Eagly et al. (2003) show in their

meta-analysis that women rate higher in the "contingent reward" dimension

of "transactional leadership" than men. In accordance with the description of

the "contingent reward" dimension, leaders with high scores in this dimension

provide rewards for satisfactory performance, which has shown to improve

employee�s performance.21 Here, women also score higher in the dimension

"Leading People," which covers the competence of giving honest feedback

and rewarding fairly.

A major limitation of our study is that we only use data of one single �rm

which may limit generalizability of the result. The same analysis should be

conducted with similar data sets from other companies to strengthen the re-

sult. In addition, this study is not able to give explanations for the observed

di¤erences, so we cannot de�netely consider gender di¤erences in personal

preferences as the driving force of the result. Further research might be

the standard deviation in grades is signi�cant to the former levels on the 1% level (also in
regressions when controlling for in�uencing variables).
21An exemplary item for the contingent reward dimension from the Multifactor Leader-

ship Questionnaire (MLQ) asked to subordinates is: "My supervisor works out agreements
with me on what I will receive if I do what needs to be done."
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encouraged to obtain a deeper understanding of the di¤erent evaluation be-

havior of men and women. We aimed to show empirically, based on a rich

personnel data set, that women perform well in one important dimension

of being a leader: in setting incentives for employees and e¢ ciently lead-

ing people. Our data even shows that they outperform male supervisors in

this leadership dimension which is often considered as a key competency of

managers.
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3.9 Appendix of Chapter 3
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Pooled Probit Pooled RE - Probit

Dependant variable: Strong in leading people

(1) (2)

Female Supervisor (0/1) 0.131�� 0.582��

(0.053) (0.267)

Age of supervisor -0.014��� -0.062���

(0.003) (0.016)

Size of team 0.018��� 0.084���

(0.005) (0.027)

Observations 1,055 1,055

R2 -636.697 -594.754

Number of teams 628

Marginal e¤ects reported in column (1), not (2). Additional

control variables are age, salary level, contractual working

hours of the supervisor and the size of the team. Robust

standard errors in parentheses. Year and business unit

�xed e¤ects are included. *** p<0.01, ** p<0.05, * p<0.1

Table 3.7: OLS and Random E¤ects Regression of Being Strong in "Leading
People"

2006 2007 2008 Total

Female Supervisor (Mean/ Sd) 3.17 (0.50) 3.30 (0.56) 3.22 (0.56) 3.23 (0.54)

Male Supervisor (Mean/ Sd) 3.21 (0.47) 3.26 (0.52) 3.22 (0.51) 3.23 (0.50)

Number of observations 4016 4177 4923 13116

Evaluations by female supervisor 8.2% 8.9% 9.5% 8.9%

Table 3.8: Mean and Standard Deviations of Grades by Supervisor Gender
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Chapter 4

Determinants and E¤ects of
Target Agreement Systems: An
Empirical Investigation of
German Firms1

4.1 Introduction

Goals can regulate motivation and increase performance (Locke (1968)). So

far, an extensive body of psychological studies has investigated the e¤ects

of goal-setting with robust insights: Goal setting may increase performance

because it directs the attention and action of individuals and encourages

overall e¤ort (Latham and Locke (1990), Locke and Latham (2002)). Today,

many organizations incorporate goal setting in incentive schemes and other

human resource activities. As Hale and Whitlam (1998) say: "Target set-

ting might potentially impact upon a very large number of organizational or

human resource initiatives and policies" (p.50). Besides directing employee

actions and stipulating standards for performance, goals can be linked to

remuneration systems such as bonus payments. Empirical evidence suggests

that goals increase performance and e¤orts of individuals. But can target

1This chapter is based upon Breuer and Zimmermann (2011).
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setting for employees improve organizational performance? With this paper,

we empirically address this question by analyzing a large-scale survey data

set of German �rms.

So far, the e¤ects of goal setting has intensively been studied in the con-

text of individual cognitive processes and behavior. Locke�s "goal-setting

theory" has shaped a body of psychological research in which goals are seen

as a "reference standard for satisfaction versus dissatisfaction" (Locke and

Latham (2002): p. 710), so that exceeding the goal provides increasing sat-

isfaction while falling short of the goal raises dissatisfaction with increasing

discrepancy. Many studies in cognitive psychology revealed that, compared

to easy and/or vague goals that urge people to "do their best", goals that

are speci�c and challenging are more likely to boost individual performance

(see Locke and Latham (2002) for a literature review). Following the logic of

goals as references points, Heath et al. (1999) modeled goals as the subject

of the value function in Kahneman and Tversky�s (1979) prospect theory

with loss aversion regarding goal achievement. Also, goals serve as perfor-

mance standards in non-linear incentive contracts such that when a standard

is attained, a "target bonus" is paid out (Murphy (2001), Rablen (2010)).

Some economic studies analyzed how individuals may set goals for them-

selves addressing self-control problems or the selection of reference standards

(Falk and Knell (2003), Koch and Nafziger (2011), Koch and Nafziger (2009),

Kaur et al. (2010)). In addition, some recent empirical studies have shown

further interest in goals with the focus on how employees�targets are set and

in�uenced by supervisors or �rms (Bol et al. (2010), Anderson et al. (2010)).

Despite the work about the motivational e¤ects of goals on individuals,

rarely the impact or use of target setting for employees has been addressed

on the organizational level. But as implementing systematic target setting

for employees in organizations is costly, the bene�ts have to be evaluated.

Bene�ts may also vary substantially with the character of a �rm. In this

paper, we �rst aim to investigate attributes of �rms which are most likely to

bene�t from target setting for employees. Second, by making use of panel

data methods we analyze whether the introduction of target agreements for

employees show an e¤ect on organizational productivity.
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Somewhat related to our paper are the early management studies on the

concept management by objectives (MBO) (Drucker (1954)) which look at

the productivity gain of MBO on organizational level. The evidence suggests

that MBO positively a¤ects organizational performance (see Rodgers and

Hunter (1991) for a meta-study). However, MBO includes goal setting as

only one of three components. These are: participative management, goal

setting and objective feedback (Rodgers and Hunter (1991)). Additionally,

the concept of MBO is more holistic in the sense that objectives are set on

�rm level and translated into individual targets down the hierarchy. Mostly

MBO was studied based on case studies and small cross-sectional samples

limiting the generalizibility of results (Rodgers and Hunter (1991)). In our

analysis, we focus on the usage of target setting for employees and investigate

the organizational determinants and e¤ects with large-scale panel data.

Our analysis is based on a unique data set from the German Institute for

Employment Research (IAB) Survey, which covers a representative sample

of more than 16; 000 German �rms. The survey includes questions about

employment characteristics and management practices, focusing on di¤erent

topics over the years. In 2005 and 2007, the survey asked company represen-

tatives whether their �rm uses target agreements for managing employees. In

2005 and in 2007; 24:1% and 26:9% of the �rms reported to use the practice.

We additionally observe many other �rm characteristics such as size, work-

force structure and change policies which are included in regression analyses.

The paper is organized as follows: Section 4.2 derives hypotheses about

the �rm characteristics that determine the use of target setting for employees

and about the performance e¤ect. After a description of our data set in

section 4.3, our empirical strategy is described in 4.4. The hypotheses are

empirically tested in section 4.5. Section 4.6 concludes.
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4.2 Determinants of Target Setting and Per-

formance E¤ects

In what follows, we derive several hypotheses about workforce and �rm char-

acteristics that may determine whether an organization uses target agree-

ments for employees. As mentioned above, targets may serve as a perfor-

mance standard for employees against which their performance is measured

in the performance appraisal process (Hale and Whitlam (1998)). In our

sample, about 75 percent of the �rms that use target setting for employees

also use performance evaluations. Hence, determinants of using target set-

ting are related to those of using performance evaluations that have been

studied by Brown and Heywood (2005) and Addison and Bel�eld (2008).2

The degree of target achievement might be used as a performance measures

for promotion or payment decisions. Arguments about which �rms may be

more likely to use the practice are hence partially derived by looking at who

will most probabily bene�t from incentive schemes. We have separated the

relevant �rm characteristics in workforce and structural �rm characteristics.

Workforce characteristics

We expect that �rms with relatively low employee tenure are more likely

to use target setting for employees. Low-tenured employees may have a

higher need to be steered toward the objectives of the �rm than those with

longer tenure. In addition, target agreements enable managers to de�ne spe-

ci�c weaknesses that the employees have to improve for future job ful�llment,

which is much more important for employees early in their career than for

those later in their careers. Target achievement is also a kind of perfor-

mance measures which facilitates looking at low-tenured employees�abilities

to assign them to the right jobs (Jovanovic (1979)). Moreover, linking target

attainment to bonus payments is especially important for lower-tenured em-

ployees, as employees with higher tenure are incentivized by deferred compen-

sation, which raises the cost of dismissal for low e¤ort (Lazear (1979), Lazear

2In addition, Grund and Sliwka (2009) have analyzed individual and job-based deter-
minants of performance appraisal usage in Germany.
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(1981)). In our data, we do not directly observe the average employee tenure.

Therefore, we use the average turnover rate and the percentage of employ-

ees with temporary contracts as proxies for tenure such that the higher the

employee turnover in a �rm and the higher the percentage of employees with

temporary contracts, the lower the average tenure of employees.

H1: Firms with a high average tenure are less likely to use a target agree-

ments for employees than are �rms with a low average tenure.

We expect an increased probability of using target agreements for �rms

with more quali�ed workers compared to �rms with low quali�ed workers.

Since the pro�t loss of low e¤ort by highly quali�ed workers is higher than for

low quali�ed employees, �rms with a more quali�ed workforce should be more

willing to set up target agreements. In addition, highly quali�ed employees

are typically assigned to non-standardized white-collar jobs with a higher

level of discretion over their tasks. A higher level of job discretion increases

the need of directing employees�attention to the �rm�s objectives. We use

three variables to measure the quali�cation of employees: the percentage of

skilled workers (i.e., workers fully trained in their jobs), the percentage of

workers with a university degree and the supply of written personnel devel-

opment and training plans to workers in the �rm, since a �rm with a formal

personnel development is likely to employ more quali�ed employees.

H2: Firms with a higher share of quali�ed employees are more likely to

use a target agreements for employees than are �rms with a lower share of

quali�ed employees.

Structural �rm characteristics

Several non-workforce related characteristics may be relevant for the ap-

plication of a target agreement system. We expect the size of a �rm, mea-

sured by the size of the workforce and by the �rm�s sales volume, to be a

determinant of the use of target agreements. First, larger �rms pro�t from

economies of scale when they use costly human resource practices. Second,

�rms with higher monetary gains have more monetary resources with which

to install systematic target agreements for employees, particularly when goal
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attainment is tied to bonus payments. Moreover, since the transparency of

individual e¤ort contribution decreases with �rm size, the likelihood of shirk-

ing is increased in larger �rms. Setting targets for employees may help to

reduce shirking opportunities.

H3: The size of a �rm is positively related to the use of a target setting

for employees.

We assume that �rms that have recently experienced reorganizations are

more likely to use target agreements with employees. Restructuring may lead

to con�icts because of changes in team compositions, supervisors (Howard

and Frink (1996)), and tasks. Target agreements, hence, can help to direct

the attention of employees to their new job responsibilities and away from

contextual problems of the restructuring.

H4: Firms that have recently undergone job reorganizations are more

likely to use target setting for employees than are �rms that have not.

Another important determinant may be the level of labor union organi-

zation. We expect collective agreements and the presence of a works council

to be negatively correlated with the use of target agreements. Target attain-

ment is frequently linked to payment schemes that may violate wage schemes

pursued by unions. In Germany, works councils have co-determination rights

in most personnel-related topics, leading to negotiation costs. To avoid these

costs, labor-union-organized �rms may choose not to apply target agreements

for their employees.

H5: Collective agreements and the presence of a works council are nega-

tively correlated with the probability of a �rm�s use of target agreements with

employees.

Performance e¤ect of introducing target agreements

If goals or targets increase individual productivity, an organization that

implements targets for employees is expected to pro�t from target setting

on a corporate level. In cognitive psychology, four mechanisms have been

empirically identi�ed through which goals a¤ect individual performance (see
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Locke and Latham (2002) for an overview). Goals direct the attention of in-

dividuals toward relevant activities and away from irrelevant activities; goals

act as energizers, such that for both physical and cognitive tasks lead to

greater e¤ort than lower goals do; goals a¤ect persistence, such that indi-

viduals continue exerting e¤ort until they have attained the goal; and goals

activate cognitive and task-relevant knowledge so the individual can man-

age the situation successfully (Locke and Latham (2002)). If targets are

introduced as the standard of performance in incentive schemes (Murphy

(2001), Hale and Whitlam (1998)), employees are induced to exert higher ef-

fort. Besides having a direct incentive e¤ect on employees, the introduction

of compensation-relevant targets may cause a sorting of employees (Cadsby

et al. (2007)). While high-performing employees self-select into the organi-

zation because they can expect to achieve the target level of performance,

low performers may be dismissed or leave the �rm for one without target-

dependent compensation arrangements. Overall, a performance increase for

�rms that implement target setting for employees can be expected.

H6: The introduction of target agreements for employees leads to improved

corporate performance.

So far, empirical evidence that investigates the overall e¤ect of the in-

troduction of target setting for employees is limited. We only know about

one further related study of Terpstra and Rozell (1994) who analyze the

relationship of applying goal setting theory in �rms and organizational prof-

itability based on a survey data set. The focus of analysis is di¤erent as

they ask �rms�managers for the relevance of Locke�s goal setting theory for

their overall human resource practices while we focus on the application of

target agreements to manage employees. Moreover, while they look at cor-

relations in a cross-sectional design, we focus on the impact of the target

setting implementation in a longitudinal research design.
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4.3 Data Set

Access to the IAB Establishment Panel, Wave 2005 to 2008, was provided

via remote processing by the Research Data Centre (FDZ) of the German

Federal Employment Agency (BA) at the Institute for Employment Research

(IAB).3 The IAB Establishment Panel is an annual representative survey of

German establishments on topics like the determinants of labor demand. The

survey has been conducted since 1993 in West Germany and since 1996 in

East Germany. Since 2001 more than 16; 000 organizations have been inter-

viewed every year. Only those establishments that are mainly responsible for

the operative business of a �rm are included - for example, holding divisions

are excluded - so a relevant data basis for employment-related topics can be

assured. The main feature of the data set is the longitudinal format, which

allows the use of panel data methods that control for unobserved heterogene-

ity among establishments. In 2005 and 2007, the establishments were asked

if they conduct written target agreements with employees, a question that

constitutes the main variable of our analysis. The exact question, trans-

lated into English, is, "Does your company use written target agreements

for employees?". The regression analysis is primarily based on the pooled

cross-sectional and longitudinal data from these two years. Table 4.2 shows

that, in total, we observe 15; 875 �rms in 2005 and 16; 004 �rms in 2007. The

companies in our sample employ on average 161 employees with a median

value of 26 employees, illustrating that companies of all �rm sizes are cov-

ered in the data set (see Table 4.1). In the next section we will describe the

relevant variables for the analysis and the empirical strategy in detail.

4.4 Empirical Approach

The empirical strategy is as follows. To analyze the determinants of target

setting we conduct binary probit estimations. The dependent variable yit is

a dummy that takes the value 1 for an establishment i if the company has

3Further information about the data set can found in the methodological report of the
FDZ 01/2008 (Fischer et al. (2008)).
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a target agreement system in the year t. Otherwise, the value is 0. As the

question referring to the application of target agreements for employees was

asked only in 2005 and 2007, the pooled probit estimations cover the two

years while the standard errors are clustered for �rms. Based on the hy-

potheses, we use several independent variables. To approximate the average

tenure of a company, we use the turnover rate and the percentage of tempo-

rary workers of a �rm. Based on these variables we compute two dummies,

each of which takes the value 1 if the rates of an establishment lie below

the 25th-percentile or above the 75th-percentile of the distribution in the

relevant industry and year. These variables take into account the industry

benchmark in order to facilitate interpretation of the e¤ects.4

In 2007, the survey included ten items that asked for organizational

changes in the preceding two years of which we use three items to measure

job reorganizations in a �rm. These three items indicate a change in work

organization and asked for the "reorganization of departments or functions,"

the "relocation of responsibilities to the bottom," and the "introduction of

group work or autonomous workgroups". Respondents answered with yes

if there was the respective organizational changein the �rm and no if not.

Hence, three dummy variables are built, each of which took the value 1 if the

establishment was a¤ected by the change and 0 otherwise.

To approximate the quali�cation level of employees, we use three vari-

ables: the percentage of quali�ed employees, the percentage of employees

with university degrees, and the use of formal personnel development or

training plans. A professional personnel development is especially applied

in �rms with a substantial amount of white-collar employees which tend to

be better educated than blue-collar workers. In the regression, the dummies

for the percentage of quali�ed employees and those with university degree

were used while these are again based on the respective variable distribution

per industry and year. The existence of formal personnel development or

training plans was measured based on a dummy variable taking the value 1

if respondents answered with yes and the value 0 for no.

4We also computed the regressions using the simple shares as dependant variables and
do not �nd a qualitatively di¤erent result.
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The size of the observed establishments was measured by the number of

employees employed5 (in 1000) and the in�ation-adjusted revenue per year

(in million EUR). We add the quadratic terms because we expect a decreas-

ing marginal probability of using target agreements for increasing �rm size.

Of course, information on revenue was provided only for commercial organi-

zations.

Unionization of a �rm is measured by three dummy variables taking the

value 1 for the existence of a works council, an collective agreement in the

industry, or a collective agreement on the �rm level and 0 otherwise. The

descriptive statistics of all the dependent variables are shown in Table 4.1.

All of the described workforce (x) and structural �rm characteristics (z) may

a¤ect the probability of using target agreements (y) for employees so that:

P (yit = 1jxit; zit) = G(�+ x0it� + z0it� + c0it
)

describes our empirical model. c0it is a vector of further control variables

and includes year, industry and legal form dummies. � and � measure the

e¤ect of the independent variables on the probability of using target agree-

ments for employees and � is the intercept. Because revenue was applicable

only to commercial establishments, we conduct regressions with two separate

samples: one sample that includes all establishments and one that excludes

non-commercial establishments.

For analyzing the performance e¤ect following an introduction of target

setting, we use an OLS �rst-di¤erencing approach to eliminate unobserved

time-constant di¤erences between �rms. From the initial sample we only con-

sider �rms that had not installed target agreements for employees in 2005.

Comparing the revenue growth of �rms that introduced the system between

the two years to the performance of those who did not, provides the opportu-

nity to get closer to a causal relationship in the multivariate regression. Two

performance measures are used as dependent variables (rit): the log revenue

for the observed year and a subjective evaluation of the revenue growth. In

the survey, total revenue is reported for the previous year, so we take the rev-

5This number equals the personnel endowment at 31 July every year.
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enue variables from the subsequent years, 2006 and 2008.6 We consider for the

analysis only those �rms that previously stated that they use revenue as their

transaction volume. Thus, banks, insurances, and non-pro�t-organizations

are excluded, which view performance in terms of the balance sheet total,

total premiums, or total budget. The subjective evaluation of growth is based

on the following question in the survey: "Which development in business vol-

ume/ revenue do you expect for the current year (...) in comparison to the

previous year (...)?" Answer possibilities were "Increasing", "Stay the same"

and "Decreasing". The constructed dummy variable takes the value of 1 for

an increasing revenue and 0 otherwise. Table 4.1 reports the descriptives for

the revenue variables. The correlation of the two variables is quite high with

0:7 (p<0:01). A �rst-di¤erencing approach requires to compute the di¤er-

ences of all variables between 2005 and 2007. The main explanatory variable

hence takes the value 0 (yi2007 � yi2005 = 0i2007 � 0i2005) if target agreements
are not introduced or the value 1 (yi2007 � yi2005 = 1i2007 � 0i2005) if they are
introduced. Firms that use target agreement for employees in both years ( so

that yi2007�yi2005 = 1i2007�1i2005 = 0) are ignored in the analysis. We further
control for di¤erences in the above workforce and �rm-speci�c characteris-

tics between the two years. The reorganization variables are not included

as they are only observed in 2007. In the �rst-di¤erencing OLS regression,

all time-constant �rm in�uence variables such as industry, legal form and

federal state are eliminated (�rm �xed e¤ects) so that only the time-variant,

unobserved heterogeneity remains. The estimated linear equation is:

�ri = �+ ��yi +�c
0
i
 +��i

�c0i represents a vector of control variables and ��i the �rst di¤erence

of the time-variant error term.
6The exact question from the survey was, "What was your transaction volume in the

previous �nancial year?".
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Variable Obs. Mean Std.dev.

Key variable

Target agreements (1/0) 31879 0.255 0.436

Tenure variables

Turnover rate 31879 0.069 0.655

Share of temporary workers 31879 0.059 0.147

Quali�cation variables

Share of quali�ed workers 31879 0.656 0.295

Share of workers with university degree 31879 0.099 0.192

Personnel development (1/0) 31879 0.282 0.450

Size variables

Number of employees 31879 161 25.798

Revenue (in million) 17669 32.385 426.707

Reorganization variables

Reorganization of departments (1/0) 16004 0.163 0.394

Relocation of responsibilities (1/0) 16004 0.112 0.338

Introduction of group work (1/0) 16004 0.061 0.258

Unionization variables

Works council (1/0) 31879 0.325 0.469

Industry tari¤ commitment (1/0) 31879 0.421 0.494

Company tari¤ commitment (1/0) 31879 0.073 0.261

Other variables

Expectation of revenue growth (1/0) 23887 0.366 0.431

Commercial �rm (1/0) 31879 0.842 0.365

Industry Dummies (1/0)

Agriculture & Mining 31879 0.041

Manufacturing 31879 0.241

Construction 31879 0.084

Retail 31879 0.143

Tourism & Transportation 31879 0.040

Financial services & Insurances 31879 0.028

Public & Private Services 31879 0.334

Others 31879 0.086

The table shows the pooled statistics for 2005 and 2007. The number

of obs is reduced for the revenue variables because only commercial

�rms report this �gure. The reorganization variables have only been

collected in 2007 which reduced the number of obs.

Table 4.1: Descriptive Statistics
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4.5 Results

In what follows, we will �rst present some descriptive statstics on the use of

target agreements in German �rms and report some descriptive evidence to-

wards the hypothesized relationships. Subsequently, the regression analyses

are presented.

4.5.1 Descriptive Results

The number of �rms that use target agreement systems is shown in table 4.2.

The percentage of �rms with target agreements increased by about 2:8% from

24:1% in 2005 to 26:9% in 2007. When computing the share of �rms that use

target agreements and performance appraisal in 2007 (see table 4.2), we see

that 74:6% (3; 214 out of 4; 311) of the �rms with target agreements probably

combine it with performance appraisals. This supports the often discussed

usage of target achievements as performance measure in appraisals.

2005 2007 Total

Use of target agreements Frequency 3,820 4,311

Percentage 24.1% 26.9%

Additionally use of performance appraisal Frequency 2,694 3,214

Percentage 17.0% 20.1%

Number of �rms 15,875 16,004 31,879

Table 4.2: Frequency of the Use of Performance Appraisals and Target Agree-
ments

For a �rst indication regarding the hypotheses that cover the determinants

of target agreement systems, we look at the mean values of the explanatory

variables in �rms with and without target agreements. Table 4.3 shows

the averages of the company characteristics based on whether they have

a target agreement system or not. The average turnover rate of �rms that

have installed target agreements is lower than that for �rms without the

instrument, which is in contrast to the expected relationship because we

expected �rms a lower average tenure and hence a higher average turnover

to be more likely to use targets for employees. But the average percentage

78



of employees with temporary contracts shows the expected pattern. In �rms

with target agreement systems, the percentage of employees with temporary

contracts is higher (6:8%) than in �rms without these (5:6%). As suggested in

hypothesis 2, �rms with target agreements have a higher average percentage

of quali�ed (75:6%) and graduated employees (15:4%) than do �rms without

target agreements (62:1% and 8:0% respectively).

The number of employees indicates that companies that use target agree-

ments are larger in size which is in line with hypothesis 3. While �rms with

target agreements employ on average 376 employees, it is only 88 employees

for �rms without it. Also, revenue is ten times as large for �rms with the

target setting compared the ones without.

The relevant variables for hypothesis 4 also show the expected relationship

in the descriptive overview. The variable job reorganization takes the value

of 1 if any of the three described job reorganizations were conducted in a

�rm. More than half (51:2%) of the companies with target agreements faced

at least one of the three job reorganization in 2007, whereas only 18:1 percent

of the companies without target agreements did. The same picture evolves

when considering the single dummies for reorganizations of work.

Hypothesis 5 proposed that a negative relationship between collective

agreements and the installation of appraisal systems can be expected, which

is not obvious in the descriptive overview. Also more than a half (54:4%)

of companies that use target agreements are bound to industry tari¤ com-

mitments, while only 38 percent of the companies without target agreements

are tied to industry tari¤ commitments. In summary, there is descriptive

evidence for hypotheses 1-4, but the descriptive results are opposite to what

was expected in hypothesis 5. However, this result may be driven by �rm size

as larger �rms are more likely of being unionized. In a multivariate analysis,

other observable and in�uencing factors will be hold constant.
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Performance measures All No introduction of TA Introduction of TA

Average net sales 10.69 mill.e 8.00 mill.e 28.83 mill.e

% Sales growth 8.68% 7.28% 11.31%

Sales per FTE 0.12 mill.e 0.11 mill.e 0.17 mill.e

Positive pro�t expectation 5.5% 5.3% 6.4%

Only �rms that do not use target agreements in 2005 are considered. Sales are

taken from the 2008 survey as �rms answer retrospectively.

Abbreviations: FTE - Full-time equivalent, TA - Target Agreements

Table 4.4: Performance Measures in Dependence of Having Introduced Tar-
get Agreements

In Table 4.4 we look at the descriptives of hypothesis 6. Out of the �rms

without target agreements in 2005 for which we also observe the informa-

tion on target agreements 2007 (n=11; 413), about 11:4% (n=1296) of �rms

have implemented target agreements by 2007. Table 4.4 presents the means

of several performance measures of 2007 based on whether the �rm intro-

duced target agreements between the years or not. On average, �rms that

implemented target agreements show signi�cantly higher net sales in 2007

than �rms that did not. While the sale growth (sales2007
sales2005

� 100) is on average
7:3% for �rms without the introduction of target agreements, it is about 4%

higher for �rms that introduced target agreements. Moreover, the sales per

full-time equivalent (FTE) is about 1.5 times larger for a �rm that introduced

targets. In addition, a slightly higher percentage of representatives in �rms

that introduced the system expect higher sales growth than �rms without it.

Overall, the descriptive results are in line with the hypothesis.

4.5.2 Determinants of the Use of Target Agreements

Table 4.5.2 shows the marginal e¤ects of the probit regression with a dummy

for the use of target agreements as the dependent variable. In the �rst two

columns, all �rms and commercial �rms in both years are considered, while

in column (3) and (4), only regressions based on 2007 are presented because

of the inclusion of the reorganization dummies, which were available only for

2007.
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The coe¢ cients of the dummy for the lowest turnover quartile is signi�-

cantly negative. Establishments with very low turnover compared to industry

averages are less likely to use target agreements. This result is in line with the

prediction and robust over all speci�cations. However, the highest turnover

quartile does show the expected sign, but no signi�cance. In addition, having

a low share of employees with temporary contracts (below the 25th% quar-

tile) in the industry shows signi�cant negative coe¢ cient of about �3:7 % in
(1) supporting the suggested relationship between tenure and use of target

agreements. This result is robust in nearly all speci�cations. The 75th%-

quartile dummy for the percentage of employees with temporary contracts

in the industry is positive and signi�cant only in the �rst speci�cation; while

this result is in line with the hypothesis, it suggests that the e¤ect is driven

by �rms with very low turnover rates and low percentages of employees with

temporary contracts. Firms with a high share of high-tenured employees

seem to have less need to set targets for performance. Employees in these

�rms might be already matched to well-suited jobs, may have proven to be

aligned with the �rm�s objective and may be motivated by deferred compen-

sation schemes.

The analysis of hypothesis 2 con�rms the suggested relationship. Firms

in the lowest quartile of the share of quali�ed employees are signi�cantly less

likely to have implemented target agreement systems than are �rms with a

medium level of quali�ed employees, which is robust over all speci�cations.

However, the coe¢ cient of the 75th%- quartile dummy for the percentage of

quali�ed employees does not show the expected e¤ect, leading to the con-

clusion that �rms with an extremely low percentage of quali�ed employees

in the same industry refrain from using target agreements. For them, the

bene�t from target agreements is limited because of their relatively low costs

for lower e¤ort by employees. The quartiles for the percent of graduate em-

ployees show the expected relationship. Firms that employ a percentage of

graduate employees that lies above the 75th%-percentile are even more likely

to have implemented target agreements which is robust in all speci�cations.7

7To rule out multicollinearity of the share of graduated and quali�ed employees, we
computed the correlation between the variables which is r = 0:33 and thus not critical.
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Furthermore, the coe¢ cient of the personnel development dummy shows a

highly signi�cant and positive sign. With a 32:9 percent higher probability of

using target agreements for employees when a personnel development exists,

the e¤ect is substantial and con�rms the hypothesis.

As for hypothesis 3, the �rst regression shows a signi�cantly positive co-

e¢ cient of the number of employees, but the e¤ect is surprisingly small with

1:3 percent increased probability of using target agreements per 1; 000 em-

ployees. Net sales were also used to indicate size, but the coe¢ cients were far

from signi�cance and close to zero. This result is surprising, given that other

studies have found that performance appraisals, which are typically com-

bined with target agreements tend to be used in large �rms (see, e.g. Grund

and Sliwka (2009), Brown and Heywood (2005)). However, other covariates

may be positively correlated with the size of the �rm and hence capture the

relevant correlations with the use of target agreements for employees.

Coe¢ cients for the reorganization measures (hypothesis 4) can be esti-

mated only in the 2007 speci�cations. All coe¢ cients show a highly signi�-

cant and positive sign for both samples. Firms that experienced reorganiza-

tion, while controlling for size of the �rm and other characteristics, were more

likely to use target agreements. The introduction of group work shows the

largest positive relationship, with a 9:0 percent higher probability of using

target agreements.

According to hypothesis 5, the presence of a works council and collec-

tive agreements should be negatively related to the use of target agreements.

However, as has already been indicated in the descriptive statistics, the oppo-

site is found here. The presence of a works council is signi�cantly positively

correlated with the probability of using target agreements. One explanation

for the positive correlation is that a works council may serve as a communica-

tion tool between the �rm�s management and employees (Freeman and Lazear

(1995)). Due to information assymetries employees may generally distrust

what management says. But the legal requirement that management has

to disclose information to elected works council representatives may increase

employees�trust in the �rm, so that the implementation of new practices,

such as a target agreement system, can even be facilitated. In addition, the
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use of target agreements may suggest the presence of a formal performance

evaluation process, and formality itself may be in the interest of the works

council. Company tari¤ commitment also has a positive and signi�cant rela-

tionship with using target agreements for employees but is not as robust as

the works council e¤ect.

In summary, relationships with the use of target agreements for employees

are con�rmed for �rms with long-tenured employees, highly quali�ed employ-

ees, and job reorganizations. There is no size e¤ect, and unionized �rms are

even more likely to use target agreement systems, which is contrast to the

hypothesis. The results are the same when using continuous variables for the

turnover rate, the share of temporary contracts and the quali�cation vari-

ables instead of the quartile dummies. The corresponding regressions are

reported in Table 4.8 in the appendix.

To rule out the argument that the coe¢ cients of determinants are driven

by a speci�c year observation, we conducted the same regressions by including

the three-year moving averages of the independent variables as a robustness

check. The averaged variables are supposed to be a smoothed and more

robust indicator of the underlying workforce or structural �rm characteristic.

The results are robust for the adapted independent variables (see table 4.9
in the appendix).
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4.5.3 E¤ects of Introducing Target Agreements

In this section, we present the analysis of the performance e¤ect after a

�rm implemented target agreements with employees between 2005 and 2007.

The underlying sample of the regression analysis includes only �rms without

target agreements in 2005. Thus, the coe¢ cient of the dummy for target

agreements covers the within-�rm di¤erence in performance between those

establishments that introduced target agreements between 2005 and 2007

and those that did not introduce it.

The �rst column of table 4.6 presents the �rst di¤erencing OLS esti-

mates of the log revenue. With any changes in other �rm characteristics

that may in�uence revenue growth, such as �rm growth measured by the

change in number of employees or the operation in an upcoming industry,

establishments that introduced target agreements between 2005 and 2007

achieved revenue growth that was 5:7 percentage points higher than the rev-

enue growth of �rms without the practice (signi�cant on the 1% level). This

increase equals a revenue growth of 2:85 percent per year. Thus, the �rst-

di¤erencing approach delivers strong evidence for a performance e¤ect on

the organizational level. Column 2 in table 4.6 shows the result of the probit

analysis using the dummy variable of the subjective evaluation of revenue

growth as the dependent variable. In this speci�cation, the introduction

of target agreements for employees implies a signi�cant positive probability

increase of about 3:9 percent that company representatives expect revenue

growth in the near future, which con�rms the result. Organizations seem to

pro�t from setting target for employees.

Some e¤ects of the control variables are also worth mentioning. An in-

crease in the turnover rate between the two years has a signi�cantly negative

e¤ect on revenue, suggesting that a loss of human capital negatively in�u-

ences �rm�s performance. Moreover, the percentage of quali�ed employees is

positively correlated with revenue, which leads to the conclusion that stronger

human capital may lead to revenue growth.
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4.5.4 Separating the E¤ect from the Introduction of

Performance Appraisals

One could argue that not the target agreements are the driving force of the

performance e¤ect here, but rather introduction of a formal performance

appraisal system since targets are often the standards against which perfor-

mance is subjectively appraised. Therefore, we further conducted a regression

analysis in which we additionally add the dummy variable for the introduc-

tion of an appraisal system in organizations between 2005 and 2007. The

variable is built in the same way as the dummy for introducing target agree-

ments. Hence, the sample is further reduced to those �rms that did not use

performance appraisals and target agreements in 2005. Column (1) in Table

4.7 shows the result of the same regression as above when controlling for

performance appraisal and the interaction between target agreements and

performance appraisals. The interaction aims to account for the introduc-

tion of both practices between 2005 and 2007. The table shows that the

e¤ect of introducing target agreements becomes even larger (7:2%) and is

highly signi�cant, while the e¤ect for introducing performance appraisals is

notably smaller (4:1%) and signi�cant at the 10 percent-level. The interac-

tion term is not signi�cant, suggesting that there is no additional utility for

�rms when both practices are implemented together. The results show that

setting targets for employees in �rms may have an even larger e¤ect than the

introduction of performance appraisal.

Argueing that targets for employees are even always linked to performance

appraisals in organizations, we assumed for a further speci�cation that tar-

get agreements cannot exist decoupled from performance evaluations. This

approach required recoding of the dummy for performance evaluations to 1

in all cases in which target agreements are introduced. Only the two dummy

variables, one for the introduction of performance appraisal alone and one for

target agreements combined with an, in some cases, assumed performance

appraisal are included in the �rst-di¤erencing regression. Results are shown

in column (2) of table 4.7. The introduction of performance appraisal alone

does not seem to have a signi�cant e¤ect on performance; only when per-
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First di¤erencing - OLS

Dependent variable: Log revenue

(1) (2)

Target agreement 0.072*** 0.057***

(0.024) (0.020)

Performance appraisal 0.041* 0.031

(0.024) (0.020)

Target agreements*Performance appraisal -0.036 n.a.

(0.041)

Intercept 0.000 0.001

(0.007) (0.007)

Number of observations. 4120 4120

R2 0.047 0.046

For all variables the di¤erences �2007;2005 are considered. Additional

control variables are the same as used in the regression in table 4.6.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 4.7: The (combined) E¤ects of Performance Appraisal and Target
Agreements

formance appraisal is implemented together with target setting we observe

a total revenue growth of 5:7 percent over those that have not introduced

the practices. This result further strengthens the e¤ect of target setting and

suggests that setting goals as a performance benchmark may be a necessary

condition for actually improving performance, also when linked to a formal

evaluation system.

4.6 Conclusion

We investigated the determinants and productivity e¤ects of using target

agreements based on a representative �rm level data set in Germany. This

paper is the �rst to present evidence on which �rms use target agreements for

managing employees. As a formal target setting approach is costly to a �rm,

only those who may gain the highest bene�ts from it are likely to use it. We

�nd evidence for a negative relationship between employee tenure and the

use of target agreements. The necessity of incentivizing and directing high-
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tenured employees decreases because of deferred compensation practices and

their understanding of the �rm�s objectives. In addition, organizations with

a higher percentage of quali�ed workers will have a greater loss if employees

reduce their e¤ort, so these organizations have a greater need for speci�c

targets to make their employees exert more e¤ort. Our analysis con�rms

this relationship. Target agreements for employees are also more likely to be

used in establishments that have undergone job reorganizations. Employees

working with new responsibilities or in newly introduced workgroups may

need to be guided with targets more than other employees would, so guidance

and alignment with company goals is more important. The �rm size was

only slightly positively related with using target agreements, although an

economies of scale e¤ect could be expected. Organizations with a higher

level of labor union organization are more likely to use target agreements,

which is also in contrast to our prediction, but this result suggests the need for

further analysis of whether unionization in �rms facilitates the introduction

of HR-related activities in �rms.

We �nd strong evidence for increased �rm-level performance following

the introduction of targets for employees. Our analysis shows that �rms that

introduced the practice between 2005 and 2007 saw higher revenue growth

(by 5:7 %) than did �rms that did not. By using a �rst di¤erencing approach

and controlling for structural changes like the change in the number of em-

ployees, we get close to a cause-e¤ect analysis. Our result is robust when

using managerial expectations of future revenue growth as dependent vari-

able. Moreover, the e¤ect of introducing combined target agreements and

performance appraisal is larger than the e¤ect for the introduction of only

performance evaluations.

In addition to the strong evidence from the study, there are, of course,

some shortcomings. Future investigations should consider alternative perfor-

mance measures, such as �rm pro�t or value added. Also we do not have

precise information on the coverage of target agreements in �rms, which

would allow a more precise analysis about for which jobs or employees tar-

get setting is most pro�table. However, missing this information makes our

result even stronger because the result may be driven only by a share of
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employees covered by the target agreements. Besides identifying a strong

performance e¤ect on the �rm level, we cannot look at the mechanisms be-

hind. Future researchers may be encouraged to collect comprehensive data

sets from companies to understand these mechanisms and reactions by em-

ployees experiencing the introduction of target agreements. Also, methods

of insider econometrics (like for example in the study of Ichniowski et al.

(1997)) might be applied. Some recent studies have shown renewed interest

in target setting and use rich data sets (Bol et al. (2010), Anderson et al.

(2010)). While these rather focus on how targets are set and in�uenced by

di¤erent parties, the employee reactions should receive further attention as

well.
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Chapter 5

Do Employees Reciprocate to
Intra-Firm Training? An
Analysis of Absenteeism and
Turnover1

5.1 Introduction

Organizational investments in intra-�rm trainings are signi�cant. In 2005,

total costs of continuing vocational training (CVT) amounted to 1:6% of

total labor costs in the EU-27, according to a recent study by the European

Union2 (Cedefop (2010)). Almost 70% of all German companies provided

CVT and about 30% of the workforce in a given �rm participated in training

courses. In companies with more than 500 employees, even 90% provided

intra-�rm trainings.3

Companies invest in trainings because they want to enhance employee

productivity by improving their knowledge and skills. When investments are

1This chapter is based upon Breuer and Kampkötter (2011a).
2Figures for training courses. Other forms of vocational training like on-the-job train-

ings or job rotation excluded.
3Furthermore, in large companies, training provision was formalized to a large extent,

as more than 70% of these companies had a speci�c person/unit responsible for training,
pursued training plans, prepared a training budget and measured participant satisfaction.
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made, also the returns have to be evaluated, which is why former research

has mainly focused on the e¤ects of training participation on productivity,

both on the individual and organizational level. On the individual level, an

increased employee productivity should be re�ected in higher wages (Bartel

(1995), Barron et al. (1989), Lynch (1992), Barron et al. (1993), Veum (1995),

Parent (1999)).4 We argue, however, that besides improving the skills of

employees, training might also lead to behavioral responses. When �rms

pay for general and speci�c training, employees may perceive this as a gift to

which they may respond by higher e¤ort or commitment. This logic is similar

to the prediction of the e¢ ciency wage literature stating that employers pay

wages above the market-clearing wage to ensure higher e¤orts by employees

(Akerlof (1982)).

In this paper, we want to discuss the application of the gift exchange

framework to the intra-�rm training context and empirically test whether

employees show a behavioral reaction when being trained. By using personnel

records of a large multinational �rm, we observe variables other than wages

that may re�ect behavioral responses of employees: absence hours and the

turnover behavior of employees. For both outcomes, we give a standard

economic and a behavioral prediction which is then empirically tested.

We �nd that �rm-sponsored training that aims at the accumulation of

general skills is associated with lower employee absence. While both, human

capital theory and behavioral arguments would predict a negative relation of

training and absenteeism, they di¤er in their prediction of the e¤ect dura-

tion. A reciprocal reaction might only imply a temporary decrease in absence,

while increased opportunity costs from being trained should result in a more

persistent decrease. Based on several analyses we �nd a temporary e¤ect of

training on absence behavior. Moreover, theories make di¤erent predictions

for the analysis of turnover. While �rm-sponsored training, for improving

mainly general skills, should increase the turnover probability of employees

because increased general human capital raises their market value according

4Organizational-level studies investigate the return of training investments based on
�rm-level surveys whereby productivity is measured by accounting �gures like sales per
year (Bartel (1994), Black and Lynch (1996), Barrett and O�Connell (2001)) or value
added (Dearden et al. (2006), Zwick (2006)).
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to standard theory (see among others Lincoln and Kalleberg (1996), Shaw

et al. (1998), Batt (2002), Fairris (2004), and Haines et al. (2010)), receiv-

ing training may also be perceived as being valued by the �rm and signal

employer�s con�dence that employees stay with the �rm. In contrast to the

standard prediction, this could positively a¤ect employees� loyalty to the

�rm. We indeed �nd that �rm-sponsored training is negatively related to

employee turnover. Moreover, the e¤ect is largest for low-tenured employees.

We contribute to the training literature in several aspects. First, the

available data for training research is mainly based on survey data. De�ni-

tions of training can be quite heterogenous for respondents and there might

be a problem of respondents�di¢ culty to reliably report their training par-

ticipation (Barron et al. (1997)). With personnel records we can overcome

these shortcomings and thus follow the recommendation of Bartel (1995) to

"focus on collecting more comprehensive data from companies".5 Second,

we extend the standard analyses on the e¤ect of training participation on

wages by focusing on the e¤ect on non-monetary indicators: Absenteeism

and turnover probability. For the analysis of absenteeism, the use of person-

nel records is especially useful because survey answers on absenteeism may

underestimate the true absence time. Using absence and turnover as out-

come variables, a behavioral perspective of training e¤ects is o¤ered which

might partially explain the rather weak human capital e¤ect of training that

has been manifested in previous studies (e.g. Bartel (1995)).

The paper proceeds as follows. In section 5.2 and 5.3, the theoretical

background is described and hypotheses are derived. Section 5.4 explains the

data set and the methods for the empirical analysis. Descriptive statistics

and regression results of the e¤ect on sickness absence are presented in the

�rst part of section 5.5, whereas the second part of the section analyzes the

e¤ect on turnover. Finally, section 5.6 concludes.

5Some studies have already based their analysis of training e¤ects on company data
sets so far. See Bartel (1995), Krueger and Rouse (1998), Breuer et al. (2010) and Fahr
et al. (2010).
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5.2 Training and Sickness Absence

In the recent literature, sickness absence has been typically referred to as

unscheduled absence from the workplace (in contrast to scheduled absence

like e.g. vacation). So far, a series of studies has used data on individual ab-

sence as proxy for employee e¤ort or shirking behavior (see e.g. Winkelmann

(1999), Riphahn (2004), Ichino and Riphahn (2005)). This is reasonable as

e.g. Barmby et al. (1991) report that the majority of sickness absence is only

a short-term phenomenon indicating a practice of self-certi�cation of illness

by employees in most cases. In the case of Germany, employees have su¢ -

cient degrees of freedom in self-certifying illness because a doctor�s certi�cate

is only needed starting from the third sickness day. Unmotivated employees

may thus be induced to stay away from the workplace for at least two days,

while wages are paid continuously by the employer.

But howmay training participation a¤ect the absence behavior of employ-

ees? In an economic setting, individuals are typically endowed with a stock

of time which they can allocate to work or leisure. Participation in company

trainings increases the human capital of employees and, hence, the oppor-

tunity costs of spending leisure time. Increased human capital can hence

lead to a reduction of leisure time. "Voluntary" sickness absence, being a

proxy for leisure time, should decrease. Since human capital accumulation

implies a permanent productivity increase, employees who have been trained

are expected to be permanently less absent than untrained employees.

However, another argument for predicting the e¤ects of training on ab-

senteeism is derived from the e¢ ciency wage theory. Akerlof (1982) proposed

that �rms provide gifts for employees by paying a wage above the market-

clearing or fair wage and employees respond by exerting e¤ort in excess of

the minimum work standard (positive reciprocity). The gift exchange logic is

a widely accepted phenomenon and has frequently been con�rmed in labora-

tory settings (see Fehr et al. (1993) for the �rst experimental study and Fehr

and Gächter (2000) for a survey on reciprocity). Firm-sponsored training

may be perceived as a gift by employees as it increased their labor market
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value.6 Employees may hence positively reciprocate to this gift by increasing

their e¤ort. In contrast to the human capital argument, reciprocal behavior

may only be temporary. According to an experiment conducted by Gneezy

and List (2006) who analyzed the duration of a reciprocity e¤ect when above-

market-clearing wages are paid, participants positively reciprocated only in

the �rst few hours of the job while adapting to a lower e¤ort level afterwards.

The gift exchange logic should especially apply when training investments

target an increase in employees� general human capital because then the

employees should generally bene�t through higher wages as they become

more valuable for other �rms as well. Although standard human capital

theory suggests that �rms are not willing to pay for general training due

to the risk of losing the return of investment when employees leave the �rm,

empirical evidence shows the opposite in practice. According to Barron et al.

(1998), about 60% of the �rms covered in the US �rm level survey of the

Employment Opportunity Pilot Program (EOPP) reported that the o¤ered

training invests in almost only general human capital. Furthermore, Becker

(1962) noted that, in practice, a distinction between general and �rm-speci�c

human capital is not easy to make considering that "much on-the-job training

is neither completely speci�c nor completely general".

Some related studies in the management literature already reported a

positive relationship between training participation and job satisfaction, with

satisfaction mediating the e¤ect on absenteeism (see e.g. García (2005), Jones

et al. (2009)). However, most of this research is based on survey data with low

sample sizes and a cross-sectional data structure. Krueger and Rouse (1998)

are, to the best of our knowledge, the �rst to analyze the direct relationship

between training and absence hours based on personnel records of two �rms.

They �nd a negative e¤ect of training participation on absence hours in the

same week and conclude that employees liked to attend the courses. Here,

we rather focus on the annual e¤ect and especially investigate the persistence

of the e¤ect on absence behavior of employees.

Both, standard and behavioral theory, expect training participation to

6This argument has already mentioned in the conclusion of Barrett and O�Connell
(2001).
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have a negative e¤ect on sickness absence of employees. However, di¤erent

results may be expected for the duration of the e¤ect. While the e¤ect should

be permanent in case of human capital accumulation, a behavioral response

to training may only have a short-term e¤ect. This leads to our hypotheses:

H1a: Intra-�rm training participation has a sustainable negative e¤ect on

employee absenteeism (human capital perspective).

H1b: Intra-�rm training participation has a temporary, negative e¤ect on

employee absenteeism (gift exchange perspective).

5.3 Training and Employee Turnover

The relationship between training participation and voluntary turnover prob-

ability has largely been discussed in the economic literature. In a fully com-

petitive labour market, accumulation of general human capital should in-

crease employee turnover when the increased productivity is not re�ected in

wages. Higher wage o¤ers by competitive �rms will hence increase the proba-

bility to leave the �rm. As the accumulation of purely speci�c human capital

mainly increases the employees�value for the current employer, wages might

be raised by the current �rm to reward higher productivity, but competitive

�rms will most likely not match the o¤er. Employees�turnover probability

may hence be decreased.

However, in the observed �rm the o¤ered trainings are mainly of general

nature. Trainings are assigned to six training categories which are Leadership

& Communication, Language & Culture, Business Administration & Law,

Research & Production, IT and Project & Process Management. As the

notations suggest, most of the trainings o¤ered under these categories teach

general contents whereas some categories such as Business Administration &

Law may build up more transferable knowledge than for example IT trainings

which may in some cases focus on a speci�c software tool. According to the

standard rationale, the �rm�s investment in general skills should increase

employees� turnover probabilities. But the opposite might be true when

employees perceive �rm-sponsored trainings as a gift from the �rm. Receiving

training may also help employees feel as an inherent part of the �rm or
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signal future career prospects within the organization. A positive reciprocal

reaction of employees might result, so that turnover probability can even be

reduced.

Former research already raised that the e¤ects of training in practice may

not always be consistent with human capital theory predictions which mainly

focuses on the relation between training and wages (Levine (1993)). Also,

labor market frictions (Acemoglu and Pischke (1999)) may limit the mobil-

ity of employees and hence o¤ers an explanation why �rms invest in general

training at all. Some management studies emphasized the impact of intra-

�rm training on job satisfaction or commitment (see for example Lee and

Bruvold (2003), García (2005), Jones et al. (2009)) as predictors of turnover

intentions. Furthermore, several �rm-level studies have investigated the hu-

man capital prediction of training and employee turnover (see for example

Lincoln and Kalleberg (1996), Shaw et al. (1998), Batt (2002), Fairris (2004),

Haines et al. (2010)). While Haines et al. (2010) have shown a positive corre-

lation between intra-�rm training and individual turnover rates, Lincoln and

Kalleberg (1996), Shaw et al. (1998), and Batt (2002) did not �nd any sig-

ni�cant relationship. Based on survey data from about 500 establishments,

Fairris (2004) presented evidence on a slightly negative relationship. Besides

the limited reliability of survey data, most of the studies are based only on

cross-sectional surveys and therefore no temporal dimension can be included

in the analysis. Individual-level analyses which are typically based on micro-

survey data sets mainly look at the employability of workers on the labor

market (see for example Picchio and van Ours (2011)) instead of analyz-

ing individual turnover probability. According to the discussion above, we

formulate two competing hypotheses:

H2a: Participation in intra-�rm training has a positive e¤ect on the turnover

probability of employees (human capital perspective).

H2b: Participation in intra-�rm training has a negative e¤ect on the

turnover probability of employees (gift exchange/commitment perspective)
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5.4 Data and Empirical Approach

In the following, we will introduce the data set and the empirical strategy

for the analysis. Subsequently, we will give an overview of the training par-

ticipation and the training policy in the �rm.

5.4.1 Data and Measurement

We investigate personnel records from a large, multinational company with

headquarter in Germany for the years 2006 � 2008.7 The records comprise
annual information on about 15; 000 German full-time, permanent employees

resulting in a total of about 46; 300 employee-year-observations. The panel

data set covers information about the training participation of employees,

the number of attended trainings and the training content. According to

the company�s training policy, there are di¤erent reasons for training partic-

ipation. We exclude mandatory trainings which typically inform about new

legal requirements and have to be completed by all employees in the company.

Only trainings that are designed to increase human capital are considered for

the analysis. Employees can either choose to participate in these trainings

or they are selected by their direct supervisor. Note that we observe two

types of employees: managerial and non-managerial employees. Managerial

employees typically have an academic background, while non-managerial em-

ployees have completed a vocational education.8 As managerial employees

in this �rm have �exible working time arrangements, absence hours for these

employees are not o¢ cially recorded. Hence, we only observe individual ab-

sence hours for all non-managerial employees. We look at absence hours due

to illness reasons, which include absence without a doctor�s certi�cate. Ab-

sent time due to holidays or other compensated absence (e.g. participation

in trainings, works councils, etc.) is excluded, so that only those absence

hours are considered which occur due to illness reasons. Note that we ex-
7Due to con�dentiality reasons, the data sheets and the company name had to be

anonymized.
8In Germany, non-managerial workers are normally tari¤ workers whose working con-

tracts underlie the tari¤ commitment of the union with the respective company or the
organization of employers.
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clude employees from the analysis with annual absence hours lying above the

99th percentile of the distribution. As these employees are absent from work

up to each working day in a year, considering employees on long-term sick

leave may lead to biased coe¢ cients.

Employee turnover is tracked by a dummy variable turnover with the

value 1 if an employee is not employed by the �rm in the following year

and 0 otherwise. Hence, turnover can be measured for the years 2006 and

2007. We cannot explicitly di¤erentiate between voluntary and involuntary

turnover, but discussions with company representatives revealed that the

share of involuntarily leaves is very low. According to company records in

2007, only 1:4% of employees who left the �rm had to leave the �rm invol-

untarily (15 out of 1; 065 employees). Turnover is hence almost completely

voluntary in the �rm. Additionally, Germany has very rigid labor market

laws protecting employees from dismissal, i.e. involuntary turnover is less

often observed than in other countries. Note that we excluded employees

older than 60 years of age in the turnover regressions to avoid potential ef-

fects of early retirement programs that are quite common in larger German

companies.

Moreover, besides demographic information on age, years of �rm tenure,

and gender, we observe job-related information on annual salary, employee

status, hierarchical level and business unit. There are 23 levels in the ob-

served company. We measure promotions by a move to the next higher level.

Employee status comprises four groups: Non-managerial employees (levels

2 to 12) and three di¤erent groups of managerial employees. These cover

junior managers (levels 13 to 15), which include the typical entry positions

for university graduates, senior managers (levels 16 to 17) and senior execu-

tives (levels 18 to 24). Table 5.1 shows that about two third of all employees

in this �rm are non-exempt employees, about 30% are working as junior or

senior managers and about 3% are senior executives.

Average �rm tenure (age) is 21 (42) years for non-managerial employees

while it ranges from 15 to 19 (42 to 49) for managerial employees. We

further observe three main subdivisions: The holding, the service units, and

the operational/industrial units. About 4% of all employees work in the
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Employee status 2006 2007 2008

Freq. Percent Freq. Percent Freq. Percent

Non-managerial 9,879 67.84 10,517 67.32 10,254 65.25

Junior manager 2,559 17.57 2,709 17.33 2,980 18.95

Senior manager 1,779 12.22 1,988 12.72 2,042 12.99

Senior executive 345 2.37 411 2.63 441 2.81

Total 14,660 100.00 15,744 100.00 15,839 100.00

Table 5.1: Distribution of Employees by Employee Status and Year

holding, 22% in the service units and about 74% in the operational units.

5.4.2 Empirical Strategy and Identi�cation

Our �rst hypothesis relates to the e¤ect of training participation on ab-

senteeism of employees. Note that only non-managerial employees can be

considered for this analyses. We estimate the following equation to analyze

if the participation in training in period t and t � 1 has a positive e¤ect on
absenteeism of an employee i in year t:

ait = �0 + �1pit + �2pit�1 ++c
0
it
 + �t + �i + "it

ait indicates the absent hours due to illness by non-managerial employees.

pit and pi(t�1) are dummy variables taking the value 1 if person i participated

in a training in year t or t � 1 and 0 for no training participation. c0it is a
row vector of controls and covers several individual and job-speci�c variables

such as age, tenure, logarithm of base salary, required working hours, level

dummies and business unit dummies. The business unit �xed e¤ects account

for structural and cultural di¤erences between units (such as peer pressure

or demand shocks). To proxy human capital and job requirements, we in-

clude level dummies in the analysis. These covariates controls for di¤erences

in absence behavior that are correlated with the hierarchical position of an

employee and for which di¤erent training policies might be applied. To rule

out that training participation negatively a¤ects absenteeism because of the

necessity to �nish ongoing tasks that had to be neglected during training
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time, we additionally control for overtime hours of an employee (included

in c0it). �0 is the intercept and �1, �2 and �j are the estimated coe¢ cients,

�t are year dummies and �i describe individual �xed e¤ects to control for

unobserved, time-constant heterogeneity, like individual ability or a general

attitude towards absenteeism. "it denotes the time-dependent error term.

According to our hypothesis, we expect a negative relationship between ab-

sent hours and training participation in year t. If the lagged e¤ect shows

a signi�cant negative e¤ect on absenteeism, a permanent human capital ac-

cumulation as predicted by the human capital theory seems prevalent. In

a further speci�cation we also include the interaction term between pit and

pit�1 to analyze if the repeated training participation has a stronger e¤ect on

absenteeism which would be in line with predictions of the human capital the-

ory. We exclude employees from our sample who were promoted, newly hired

or moved between subdivisions because they are expected to have di¤erent

training policies than other employees.

Fixed e¤ects least squares estimators are used to estimate the model for

absence hours.9 We aim at identifying the causal e¤ect of training partic-

ipation on absence behavior. Several conditions have to be met to ensure

that these parameters are unbiased. Training participation has to be exoge-

nous so that there is no selection of speci�c employee groups into training.

One prominent argument (also discussed by Bartel (1995)) is that higher-

skilled employees are more likely to be trained by �rms because of a higher

expected return on investment. Assuming that relevant unobserved charac-

teristics for selection into training, such as ability, do not vary over time,

this selection e¤ect is controlled for when applying individual �xed e¤ects

in the regressions. But the individual �xed e¤ects do not eliminate the bias

resulting from time-varying heterogeneity. As employees might reveal their

productivity over time, this might still be included in the time-dependent

error term of the regression. We try to eliminate this bias in a further speci-

�cation of the model by including a productivity measure into the regression.

Productivity is proxied by the percentile of individual�s overtime hours and

9We also computed tobit estimates with 0 as the lower limit yielding the same results.
For interpretation purposes, the least squares estimates are reported.
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the percentile of the individual�s base salary in the respective peer group

in year t � 1 (Bartel (1995) uses a similar ability proxy). A peer group is

de�ned as a unique combination of year, strategic business unit (subgroups

of business unit) and salary level, with an average of 86 individuals.10 If the

coe¢ cient of training participation on absence hours does not substantially

vary in the speci�cation with and without the productivity measures, en-

dogenous selection of more productive employees into training is unlikely to

bias the estimates. One might argue that the use of the salary percentile as

productivity measure is inappropriate because a position in the upper part of

the salary band may only compensate an employee for not being considered

in future promotions or simply re�ect seniority wages (Lazear (1981)). In a

companion paper (Breuer and Kampkötter (2011b)), we tested the reliabil-

ity of this measure by regressing the promotion probability on several salary

percentile dummies. An increasing salary percentile seems is signi�cantly

increases the promotion probability which supports the use of the percentile

as productivity measure.

We conduct a further robustness checka and estimate separate �xed e¤ects

regressions both for high and less productive employees. If the coe¢ cient of

training participation is robust for the subsample of employees located at

the bottom of the overtime or salary distribution, selection of productive

employees will be less likely to bias the parameters. In another robustness

check, we further address the selection problem by applying a kernel match-

ing approach to estimate the average treatment e¤ect on the treated (ATT).

This approach attempts to eliminate the endogenous selection problem by

�nding an optimal control group which does not systematically di¤er to the

treatment group. By comparing the outcome of treatment and control group,

the ATT can be estimated. The control group is computed based on propen-

sity scores (a kind of probabilities) of training participation which are de-

rived based on observable individual and job covariates. For estimating the

propensity score we, for instance, take into account whether an employee has

participated in training the year before the period of interest. In addition,

10Note that we exclude groups with less than three observations for the computation of
the percentile.
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the productivity proxies from above are included as predictors of training

participation. Finally, absent hours of the treated group (training participa-

tion) are then compared to the untreated group (no training participation) in

the same year. A detailed explanation of the matching procedure is included

in the robustness check section of this paper.

In the analysis of turnover (hypothesis 2), we use a probit regression

function with the turnover dummy as the dependent variable. This analysis

is conducted for all employees in the sample.11 It is argued that training

participation in t may have an impact on the probability to leave the �rm in

t+ 1 so that the equation

P (Turnoveri(t+1) = 1jpit; Xit) = G(�+ �pit + �Xit)

describes our model. In the probit model, G is the the standard nor-

mal cumulative distribution function. The e¤ect of training on the proba-

bility of turnover is indicated by the estimated coe¢ cient �; whereas � is

the intercept and Xit covers several control variables that may in�uence the

probability of turnover. These are �rm tenure, age, gender, �xed wage, level

dummies, business unit and year �xed e¤ects. In addition, we include an

ability proxy in this model because more able employees are expected to

have better outside options for being employed at another �rm. This mea-

sure is the above-de�ned percentile position of an individual employee in the

salary distribution of the direct peer group. In contrast to the percentile

in the overtime distribution, the salary percentile can be calculated for all,

managerial and non-managerial, employees. The de�nition of the peer group

is identical to the one above. By including this measure we can partially rule

out that the coe¢ cient of training is positively biased through low-ability

employees receiving less training and being more likely to leave the company.

In one further speci�cation we additionally include an explanatory dummy

variable indicating if an employee participated in training in t � 1. Like in
the analysis of absenteeism, we exclude employees from the sample that are

11As we only have three years of data, we are not able to run harzard rate models to
predict turnover probabilities. Hence, we follow other studies using a linear probability
model (see for example Krueger and Rouse (1998)).
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promoted, newly hired or just moved between subdivisions. Overall, we can

make use of about 30; 000 observations (from 2006 and 2007) for the analysis

of turnover.

We also conduct robustness checks to address a potential selection bias

of the estimated parameters. We use two further productivity measures as

controls in additional regressions. These are the overtime percentile for non-

managerial employees and individual�s bonus percentile in the relevant peer

group for managerial employees.12 To rule out the possibility that an e¤ect is

only driven by the more productive employees, we further conduct separate

regressions for the above and below-median group of individuals with respect

to salary, overtime hours and bonus payments. Finally, a matching approach

is also applied for the analysis of turnover.

Table 5.2 provides descriptive statistics for our dependent and indepen-

dent variables. The mean of absence hours is 73:5 hours (about 9:2 days)

with a median of 36 hours (=4:5 days), the average turnover rate of the three

years is 6:5%.

5.4.3 Training Participation in the Firm

In the following, we aim to descrobe how training is applied in the observed

�rm. Typically, classroom trainings are o¤ered to a group of employees and

are instructed by an internal or external trainer. In our data set, we ob-

serve that about one third of all employees attained at least one training

in a respective year (15; 076 training-year observations during the time span

2006-2008). This indicates that classroom trainings are a widely used per-

sonnel development instrument in the analyzed company. Overall, training

participation decreased from 36% in 2006 to 31% in 2008. The rate of train-

ing participation may depend on the economic situation of a company as in

growth periods employees may have fewer days left to participate in training

programs. There is some indication for this relationship as the observed �rm

increased net sales signi�cantly between 2006 and 2008. Figure 5.1 shows the

12The reliability of the bonus percentile is also tested in our companion paper (Breuer
and Kampkötter (2011b)).
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Descriptive Statistics Obs. Mean Std. dev. Min Max

Dependent variables

Absent hours (non-managerial) 30,650 73.526 108.362 0 885

Turnover (0/1) (all employees) 30,116 0.065 0 1

Training indicators

Training participation t (0/1) 45,874 0.329 0 1

Training participation t� 1 (0/1) 27,776 0.357 0 1

Number of trainings t 45,874 0.636 1.201 0 13

Individual pay & hierarchical level

Fixed salary (in EUR) 45,353 (conf.)� 27,584 (conf.)� (conf.)�

Bonus payment (in EUR) 14,835 (conf.)� 15,130 (conf.)� (conf.)�

Non-managerial employee (0/1) 45,874 0.668 0 1

Junior managers (0/1) 45,874 0.180 0 1

Senior Manager (0/1) 45,874 0.127 0 1

Senior Executive (0/1) 45,874 0.026 0 1

Working time (non-managerial)

Overtime hours (unpaid) 30,650 10.898 39.138 0 717

Individual characteristics

Tenure 45,874 19.721 10.021 0 49

Age 45,874 42.937 8.906 19 64

Female (0/1) 45,874 0.199 0 1

Individual job moves

Promotion (0/1) 27,801 0.125 0 1

Newly hired (0/1) 45,874 0.015 0 1

Division move (0/1) 27,868 0.020 0 1
�
con�dentia l

Table 5.2: Descriptive Statistics
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average training participation (in at least one training) by employee status

and year (promoted, newly hired and move employees excluded). Junior man-

agers show the highest rates with a three-year average of about 52%. It shows
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Figure 5.1: Average Training Participation by Employee Status and Year

that the focus of personnel development instruments like classroom trainings

is on young managerial workers which are supposed to acquire human capital

to become the future leaders of the company. Besides participation rates, the

data set covers information on training hours and the number of attended

trainings. On average, a training lasts 19:5 hours in this company, which is

equivalent to about 2:4 training days. Table 5.3 shows the average number

of trainings per employee and year for trained employees.

Junior managers are the mostly trained employee group and also receive

the highest number of trainings (two trainings per year on average). As

mentioned above, trainings are assigned to six categories which are "Busi-

ness Administration and Law" (with overall participation rate 5:2%), "Re-

search and Production" (4:2%), "IT" (8:1%), "Leadership and Communica-
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Number of trainings

Employee status 2006 2007 2008

Non-managerial 1.95 1.82 1.79

Junior manager 2.50 2.02 2.11

Senior manager 1.77 1.63 1.70

Senior executive 1.60 1.52 1.51

Total 2.07 1.85 1.88

Table 5.3: Average Number of Classroom Trainings by Employee Status and
Year

tion" (8:5%), "Project and Process Management" (3:6%) and "Language and

Culture" trainings (8:5%). Participation rates are the highest in "Leadership

and Communication" and "Language and Culture" trainings which is mainly

driven by junior managers, too.

5.5 Results

5.5.1 E¤ects of Training on Worker Absence

Prior to the interpretation of the regression results, we provide some de-

scriptive evidence on the relationship between training and individual absen-

teeism. Table 5.4 shows a positive trend in absence hours over the years with

much lower absence hours for non-managerial employees that participate in

training compared to those who do not participate. Employees without train-

ing participation are absent from work about 23:8 hours more than trained

employees (t-test, p=0:000).

Average absence hours 2006 2007 2008 Total

Training Participation 52.3 56.9 61.5 56.7

No Training Participation 76.2 79.7 85.0 80.5

Table 5.4: Absence Hours by Training Participation

The results of the �xed e¤ects regression are shown in table 5.5. Con-

trolling for unobserved, time-constant individual heterogeneity, column (1)
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shows a negative and signi�cant coe¢ cient of training participation indicat-

ing a decrease of 7:9 absence hours. When additionally including training

participation in t � 1 (column 2), the table shows that participation in at
least one training leads to a substantial decrease of 10:7 absence hours in the

same year, which is equal to about 1:3 working days. Based on the average

annual salary paid to non-managerial workers, this yields a �recovered value�

of about EUR 250 (equal to USD 350, exchange rate = 1:3994 EUR/USD

on 31/12/2008) for the participation in training per employee. However, the

e¤ect of training participation in the year t � 1 is not statistically di¤erent
from zero indicating that no sustainable e¤ect on sickness absence behavior

is observed. This supports the hypothesis of a reciprocal reaction.

Additionally including the interaction term between training in t and

training in t� 1 in the model shows that the negative e¤ect on absenteeism
for trained employees in the current year is even stronger when an employee

was not trained in t�1 (see column (3)). The results suggest that employees
adjust there absence behavior, dependent on training participation, only in

the current year. The short-term e¤ect rather leads to the conclusion that

employees temporarily reciprocate to �rm-sponsored trainings.

Columns (4) to (6) show that the estimates are robust when the produc-

tivity proxies of the year t� 1 are included. Assuming that the measures are
reliable proxies for time-varying productivity, the estimated e¤ect of train-

ing is hence not biased by an endogenous selection of more productive em-

ployees into training. Interestingly, unpaid overtime hours show a negative

coe¢ cient, but the e¤ect is mostly not statistically signi�cant. By further

assuming that unpaid overtime is a proxy for work motivation, using it as

a control variable can mitigate the problem that the e¤ect of training on

absence behavior is driven by more motivated or highly engaged employees

who are also more likely to participate in trainings and are less absent.
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5.5.2 Robustness Tests for Predicting Employees�Ab-

sence

As mentioned above, we re-estimate our model separately for high and low

productive employees. Employees with overtime hours and salary above the

peer group median in period t � 1 are assumed to be more productive, em-
ployees below the median to be less productive. The results of the four

subsamples are reported in table 5.6. In all speci�cations, the negative e¤ect

can be con�rmed. Employees with above and below-median salary or over-

time hours show a decrease in absence hours when they are trained in the

same year, with an even larger e¤ect for the below-median groups. But the

coe¢ cient di¤erence between the groups is only signi�cant (on the 5% level)

when comparing the above and below median groups of the salary percentile.

Hence, especially less productive employees may perceive training as a gift

from the company.

Dependent variable: Sickness Absence hourst
Grouping variable Salary percentile Overtime percentile

> median � median > median � median

Trainingt -5.502** -17.859*** -7.714** -9.792**

(2.417) (6.167) (3.328) (4.203)

Overtime hourst -0.204*** -0.198*** -0.212*** -0.516

(0.064) (0.075) (0.045) (0.343)

Observations 21,564 5,312 16,946 9,930

R2 within 0.01 0.02 0.02 0.005

Number of groups 11,522 3,567 11,520 6,411

Control variables are the same as included in table 5.5.

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

Table 5.6: Fixed E¤ects Regression - E¤ect of Training Participation on
Absence Hours for Subgroups

We additionally conduct a matching approach which has become pop-

ular as a possible solution to the selection problem. The following para-

graph explains this approach in detail. In general, matching allows to non-

parametrically test the average e¤ect of a binary variable on an outcome

variable (for a survey see Caliendo and Kopeinig (2008)). Assuming that
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there are two potential outcomes Y 1i (employee i receives treatment = train-

ing, T = 1) and Y 0i (employee i receives no training, T = 0), the treatment

e¤ect is described by the di¤erence in potential outcomes � i = Y 1i � Y 0i . As
we will never observe both outcomes for one person at the same time, an

ideal treatment e¤ect could be derived by comparing the outcome of treated

and untreated individuals under the condition that both groups are intended

to receive training. An ideal average treatment e¤ect on the treated (ATT)

would be described as:

�ATT = E(Y
1jT = 1)� E(Y 0jT = 1)

The second term is the hypothetical term; it is the outcome of individu-

als which are meant to receive training but are not treated. In the sample,

we only observe E(Y 0jT = 0) which is typically not equal to E(Y 0jT = 1)
because the outcome of treated individuals may systematically di¤er from

untreated individuals. Only comparing the outcomes of the two subsam-

ples could therefore imply a selection bias. But comparing the outcome of

the treated with the outcome of an adequate control group can be done by

applying a matching estimator. The basic idea is to �nd, for each treated

individual i with characteristics Xi, a control individual with the same char-

acteristics and then compare their outcomes. One established method for

determining the control group is the method of propensity score matching

(�rst discussed by Rosenbaum and Rubin (1983)). The propensity score is

the probability of receiving treatment (participation in training) given a vec-

tor of observable covariates Xi. Individuals with the same propensity scores

are divided into two groups, the treated and the untreated. Average values

of the variables that are used to predict the propensity score should be bal-

anced for both groups. The assignment to training is then supposed to be

random for individuals having the same propensity score. Two conditions

have to hold when conducting propensity score matching: the conditional

independence assumption (CIA) (Lechner (1999)) stating that conditional

on the propensity score P (Xi), the counterfactual outcome is independent

of treatment: Y 0 ? T jP (Xi): This is a strong assumption implying that all
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variables that in�uence treatment assignment and outcome simultaneously

are to be observed by the researcher. Variables included in the matching pro-

cedure therefore have to be carefully selected (Smith and Todd (2005)). The

second condition to hold is �overlap�and requires Pr(T = 1jP (Xi)) < 1. It

means that the probability of not participating in training has to be positive

for every propensity score P (Xi). When these assumptions hold, the ATT

can be identi�ed by:

�Matching
ATT = E(Y 1jP (Xi); T = 1)� E(E(Y 0jP (Xi); T = 0)jT = 1)

We estimate the propensity score of participating in trainings based on

a probit model. Two propensity score estimations are computed here, one

for training participation in the same year and one for participation in t� 1.
The observable covariates that are used to predict training participation have

been carefully selected based on economic rationales and described in the fol-

lowing.13 In addition, we checked econometric indicators such as signi�cance

or the pseudo-R2 (which should be as high as possible) to de�ne the �nal pro-

bit speci�cation for determining the propensity score regression (for further

discussion of estimating propensity scores see e.g. Heckman et al. (1998)).

The observable covariates in the probit regression of training participa-

tion are gender, age, tenure, the logarithm of base salary, overtime hours,

business unit and year dummies. To take into consideration that higher-

positioned employees have di¤erent training habits due to time constraints,

we include level dummies to predict training participation. According to

the argument that more able employees are more likely to be selected into

training, we include the salary percentile and the overtime percentile in the

peer group�s distribution as ability proxy. Furthermore, we include training

participation in t� 1 as a predictor of training in t because trained employ-
ees are more likely to be trained also in the subsequent year. In addition, as

absence hours is the de�ned outcome variable, we also add absence hours in

t � 1 as predictor variable to the probit regression. If employees are absent
13Insights from others studies with regard to the determinants of individual training

participation have been considered (see for example Bartel (1995)).

119



due to sickness in t� 1, �rms may not want to invest in their human capital
in t because they are regarded as unproductive or employers anticipate that

these employees will also be absent in the future implying that the newly

accumulated skills cannot be applied properly. One further determinant is

the number of trainings the direct supervisor has participated in. When the

supervisor regularly participates in trainings, this may induce a training cul-

ture with spill-over e¤ects on the employees. It may also re�ect an increased

requirement of human capital accumulation in a given department. We ex-

cluded employees that were promoted, newly hired or moved subdivisions

from the analyses. The results of the probit regressions are shown in table

5.13 in the appendix. Note that overall signi�cance levels of coe¢ cients are

the same in both regressions. The results show that training participation

in t � 1 is highly correlated with training participation in t. Also, women
are more likely to participate which might be due to career breaks of women

when giving birth to children leading to a need to catch-up with men after-

wards (Fitzenberger and Muehler (2011)). As predicted by human capital

theory, older workers are less likely to participate in training possibly because

of a shorter amortization period for the training investment. However, we

see that employees located higher in the salary distribution are less likely to

participate in training.

The distribution of propensity scores is illustrated in �gures 5.3 and 5.4

in the appendix and indicates that the propensity score distribution of the

true participants is slightly skewed to the right. This suggests that the true

training participants are, on average, more likely to participate in trainings.

Nevertheless, participant�s propensity score overlaps the region of propen-

sity scores of non-participants completely. Hence, the overlap condition is

ful�lled. We conducted several quality checks of the propensity score match-

ing which are shown in columns (1) and (2) of table 5.14 in the appendix.14

By computing t-tests in order to compare the means of covariates between

participants and non-participants before and after matching, we see that al-

though there were signi�cant mean di¤erences on the 5% level for 20 to 25

covariates before, there are no signi�cant di¤erences (on the 5% level) after

14For a discussion of quality checks see Caliendo and Kopeinig (2008).

120



the matching procedure. On the 10% level, there is a signi�cant di¤erence in

the mean for only one covariate. The a¤ected variable is a dummy covariate

for one hierarchical level. Also, the standardized bias is reduced substan-

tially after the matching procedure (see table 5.14). Lastly, we compared the

Pseudo R2 when predicting training participation in the probit regression for

the samples before and after matching . Pseudo R2 is about zero when us-

ing the matched sample which con�rms that propensity score matching was

successful.

In the next step, we estimate the ATT from the equation above by using

a kernel matching algorithm in order to be able to run bootstrapping for

inferences.15 The ATT for both speci�cations are shown in table 5.7.

Outcome variable: Absent hourst Obs Di¤erence Bootstrap S.E. P>jzj
ATT of Trainingt 14350 -13.242*** 1.989 0.000

ATT of Trainingt�1 6529 -2.218 3.964 0.723

Standard errors are based on bootstrapping with 200 replications.

*** p<0.01, ** p<0.05, * p<0.1.

Table 5.7: Propensity Score Matching Result - Training in t and t-1 on
Absent Hours

For the estimation of standard errors, bootstrapping with 200 replica-

tions was conducted. When comparing the absent hours of the treated sam-

ple (those who have participated in training) with the absent hours of the

matched sample, we see that employees who participated in a training in t

are signi�cantly less absent (13:2 hours) than their matched sample which

con�rms the results from above. The ATT of the group that were treated in

t � 1 is also negative, but far from statistical signi�cance. Employees that

were trained in the previous year do not show a di¤erent absence behavior

today than employees who were not trained in t� 1. Overall, the matching
procedure con�rms our results from above that there is only a temporary

e¤ect of training participation on absence behavior.

15Precisely, we conducted the Epanechnikov Kernel with a bandwith of 0.06. Addition-
ally, other matching algorithms (e.g. Nearest-Neighbour matching) were computed and
the results were con�rmed in all speci�cations.
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Turnover rate t+1

(1) (2)

No Training (=0) in t / t-1 8.2% 6.8%

Training (=1) in t / t-1 2.3% 3.0%

Di¤erence in turnovera 5.8%��� 3.8%���

a Tested with t-test (*** denotes signi�cance on

1%-level). Column (1) reports �gures for training

or no training in t and column (2) for t-1

Table 5.8: Turnover Rates by Training Participation

5.5.3 E¤ects of Training on Turnover Probability

To analyze the relationship between training participation and turnover prob-

ability, we �rst present descriptive statistics for di¤erences in turnover rates.

As shown in table 5.8, turnover rates are signi�cantly lower for employees

that have been trained in the actual or previous period. We see in column (1)

that the turnover rate for the group of employees that have not been trained

(8:2%) in t is three times larger compared to the trained group (2:3%). The

di¤erence in turnover is smaller for the groups separated by training partic-

ipation in t� 1, but still signi�cant (see column (2)).
We further test the impact of training participation based on a probit

model with the binary variable �turnover in t+1�as dependent variable. Table

5.9 reports marginal e¤ects for all speci�cations. Column (1) shows that

employees that were trained in period t are signi�cantly less likely of leaving

the �rm voluntarily in t + 1. With �5:0% this e¤ect is substantial showing

a strong correlation between training and future turnover of an employee.

Controlling for training participation in t � 1 in column (2), the e¤ect is
con�rmed and reveals that employees who receive training in the previous

year are also less likely to leave the �rm voluntarily. As only a mixture of

general and speci�c trainings are o¤ered, this e¤ect is contrary to the one

expected by human capital theory and rather supports the hypothesis of

increased attachment of employees after training participation. The result

stands in contrast to Krueger and Rouse (1998) who report a small, but

positive relationship between training participation and quitting behavior.
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Dependent variable: Turnovert+1 (0/1)

(1) (2)

Training participationt -0.050*** -0.026***

(0.002) (0.003)

Training participationt�1 -0.029***

(0.003)

Percentile Salaryt 0.025*** 0.032***

(0.006) (0.008)

Ln(Salary)t -0.250*** -0.263***

(0.010) (0.016)

Tenuret -0.001*** -0.000

(0.000) (0.000)

Aget -0.000 -0.001*

(0.000) (0.000)

Femalet 0.032*** 0.022***

(0.004) (0.005)

Observations 27,018 11,062

Pseudo R2 0.2193 0.231

Log Likelihood -5044.037 -1750.955

Marginal e¤ects reported. Additional control variables

include salary level, subdivision and year. Robust standard

errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5.9: Probit Regression Results for Employee Turnover

Some control variables also show interesting insights. The more produc-

tive employees (proxied by the salary percentile) are more likely to leave the

�rm which con�rms that they may have better outside options on the labor

market. Furthermore, turnover probability decreases with the salary paid to

employees. This is in line with the prediction that higher salaries tie employ-

ees to the �rm, holding other job-related factors like tenure and salary level

constant. Moreover, women show a signi�cant higher turnover probability

which might be driven by females leaving the labour market to take over

family responsibilities.

However, the e¤ect of training participation on the loyalty of employees

may depend on individual�s �rm tenure. First, mobility or turnover prob-

abilities are generally higher for low-tenured employees because they may
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have accumulated less speci�c human capital as for example through net-

works or on-the-job learning e¤ects. Hence, there is more room to increase

their attachment to the �rm compared to higher-tenured employees. Second,

higher-tenured employees already might have received several �rm-sponsored

trainings during their time with the �rm, so that the marginal e¤ect of train-

ing on their behavior is decreased the longer the employee has worked for the

�rm. To check this, we computed the same probit regression from above for

eight tenure categories: 0-4 years, 5-9 years, 10-14 years, 15-19 years, 20-24

years, 25-29 years, 30-34 years and more than 34 years of tenure. Figure 5.2

shows the predicted turnover probabilities (at the means of covariates) for

the eight tenure groups in dependence of training participation. We see that
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Figure 5.2: Predicted turnover probability for di¤erent tenure categories in
dependence of training participation

the predicted turnover probabilities of employees without training proceed
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above the probabilities for trained employees for all tenure groups. The dif-

ference is signi�cant on the 1% level in all of the eight probit regressions.16

However, the reduction in predicted turnover probability is much higher for

lower-tenured employees. In a regression with interactions of training par-

ticipation and tenure dummies we found a signi�cant higher reduction in

turnover probability due to training for employees with 0-4 years of tenure

(on the 1% level) and for employees with 5-9 years of tenure (on the 5% level)

compared to the middle-tenured group of 15-19 years of tenure. The �nding

supports our hypothesis that training indeed has an e¤ect on the turnover

probability of employees, especially for those which are new to the �rm.

5.5.4 Robustness Tests for Predicting Turnover Prob-

ability

In a robustness check for the impact of training on turnover, we introduce

further proxy variables for productivity to counter the argument that the

salary percentile might be a weak proxy variable for productivity. We use

two additional proxy variables: First, we observe annual bonus payments for

managerial employees which are tied to individual performance evaluations

in this �rm. Second, for non-managerial employees, we observe overtime

hours as described above. In two separate probit regressions, one for each

employee group (managerial and non-managerial), we additionally control

for these productivity measures and for the percentile position of the respec-

tive variable in the peer group. Table 5.10 shows that the e¤ect of training

participation remains robust in both speci�cations. There is a negative cor-

relation of training in periods t and t� 1 with the turnover rate in t+ 1 for
both employee groups.

Like above, in the second robustness check separate probit regressions for

the low and highly productive employees are applied to rule out that the

e¤ect is driven by one group. As productivity measures we use the three
introduced proxies (salary, bonus and overtime percentile) and divide the

subsample into a group above and below the median. The results are reported

16The regressions are available upon request.

125



Dependent variable: Turnovert+1
Managerial Non-managerial

(1) (2) (3) (2)

Trainingt -0.039*** -0.017*** -0.046*** -0.028***

(0.004) (0.005) (0.002) (0.004)

Trainingt�1 -0.029*** -0.023***

(0.006) (0.004)

Percentile Bonust -0.014 0.010

(0.009) (0.015)

Ln(Bonus)t 0.021** -0.052**

(0.009) (0.022)

Percentile Overtimet -0.020*** -0.011

(0.006) (0.008)

Overtime hourst 0.000 0.000

(0.000) (0.000)

Observations 7,701 3,131 18,792 7,504

Pseudo R2 0.099 0.107 0.243 0.292

Log likelihood -1048.5051 -404.63875 -3444.1622 -1162.819

Marginal e¤ects reported. Additional controls: see table 5.9

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5.10: Robustness Checks for the E¤ect of Training Participation on
Turnover
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in table 5.11 and show that the coe¢ cients of training participation in t or

t� 1 are negative for all subsamples. In the regressions with the separation
based on the median salary and median bonus payment compared to the

peer group, we see that the coe¢ cient is higher for the below-median group.

But only the di¤erence between the above and below-median group in the

salary percentile regressions is signi�cant on the 10% level (as tested in a

separate regression with interaction terms). Overall, the result is robust for

all subsamples.

Dep. var.: Turnovert+1
Salary percentile Bonus percentile Overtime percentile

(all employees) (managerial) (non-managerial)

> median � median > median � median > median � median

Trainingt -0.015*** -0.047*** -0.013** -0.027*** -0.024*** -0.026***

(0.003) (0.007) (0.006) (0.009) (0.004) (0.004)

Trainingt�1 -0.023*** -0.039*** -0.020*** -0.047*** -0.013*** -0.025***

(0.003) (0.007) (0.006) (0.012) (0.004) (0.005)

Obs. 7,261 3,798 1,965 1,129 2,629 5,186

Pseudo R2 0.099 0.332 0.091 0.154 0.311 0.296

Marginal e¤ects reported. Additional controls: see table 5.9

In column (3) to (6) additional controls for salary percentile. Robust standard errors

in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5.11: Robustness Checks for the E¤ect of Training Participation on
Turnover

We also applied a kernel density matching approach. The propensity score

is computed based on a probit regression predicting training participation

(table 5.15 in the appendix). We used the same observable covariates as

above except overtime and absence variables which are only available for

non-managerial employees. Again, to capture possible selection of the same

employees into training, we included the dummy for participation in t� 1 in
the probit model. Hence, we can only apply a matching approach for training

participation in t and turnover probability in t + 1 as we only have three

years of data. The last column of table 5.14 (in the appendix) shows that

after the matching procedure there are no signi�cant di¤erences in variables

between the matched control group and the treated group. The pseudo R2
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of the probit regressions is reduced to 0 and the overlap condition is ful�lled

(see �gure 5.5 in the appendix). Hence, matching was successful and allows

us to compare the outcome variable �turnovert�1�between the treated and

untreated group. Table 5.12 shows that trained employees are about 4%

less likely to leave the �rm compared to their matched control group which

supports the result from above.

Outcome variable: turnovert+1 Obs Di¤erence Bootstrap S.E. P>jzj
ATT of Trainingt 9964 -.0416*** 0.006 0.000

Epanechnikov Kernel matching with bandwidth 0.06. Standard errors are based

on bootstrapping with 200 replications. *** p<0.01, ** p<0.05, * p<0.1.

Table 5.12: Propensity Score Matching Result - Training in t and t-1 on
Turnover Probability

5.6 Conclusion

Analyzing the e¤ects of intra-�rm training on employee�s absence behav-

ior and turnover probability based on personnel records of a multinational

company, we �nd little support for human capital theoretic predictions. We

rather observe that employees respond to training most probably due to recip-

rocal motives. Applying �xed e¤ects regressions, we can show that trained

employees are less absent in the year of training. But there is no persistent

e¤ect of reduced absence in the year after training. Furthermore, we �nd a

negative e¤ect of training participation on turnover in the subsequent year

and two years after training. This suggests that besides strengthening the

skills of the workforce, training increases the loyalty of employees and thereby

even helps to retain quali�ed employees. In addition, the e¤ect is stronger

for employees with lower levels of �rm tenure indicating that the training

investment is especially helpful for �rms to retain newly hired employees.

To further strengthen the positive e¤ect on employees�perception of the

�rm when being trained, data of the �rm�s employee survey from 2007 was

analyzed. Employees were asked if their unit "o¤ers them good continuing

education opportunities". We �nd a positive and signi�cant correlation of
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0:357 (p=0:0352) between average training participation in the work unit

in t � 1 and the outcome of this item based on 35 unit observations. This

result is consistent with our interpretation and shows that employees express

their belief in good continuing training opportunities of the �rm when being

trained more.

The results from our analysis may serve as a further explanation why �rms

invest in general training at all. Besides labor market frictions as addressed

by Acemoglu and Pischke (1999), anticipating that employees positively re-

act to training may lead to larger general training investments of �rms in

practice.

Our data set is unique because it guarantees a homogenous understand-

ing of training policies and also includes reliable information from personnel

records on the e¤ort indicator sickness absence and on turnover. We are

furthermore able to use the relative position of employees in the income and

overtime distribution to control for time-varying selection e¤ects into training

and also apply matching procedures.

However, our study has some limitations. First, further research should

try to collect more years of company records in order to better evaluate

potential long-term e¤ects of training. Especially for the analysis of turnover,

statistical methods such as hazard rate models could then be applied. Second,

our results may only partly be generalizable because we use a single �rm

data set. Hence, more company data sets should be collected in the future

to test the reliability of the results. It might especially be helpful to match

survey answers on employee level to personnel records in order to get a deeper

understanding of the mechanism behind the individual reactions to �rm-

sponsored training.
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5.7 Appendix of Chapter 5

Dependent variable: Training participationt Training participationt�1
(1) (2)

Training participation
a)
t�1=t�2 0.878*** 0.814***

(0.026) (0.038)

Absence hourst�1=t�2 -0.000 -0.000*

(0.000) (0.000)

Female 0.104*** 0.135***

(0.032) (0.046)

Aget=t�1 -0.013*** -0.016***

(0.003) (0.003)

Tenuret=t�1 -0.007*** -0.004

(0.002) (0.003)

Salary percentilet=t�1 -0.172*** -0.288***

(0.0.065) (0.097)

Ln(Salary)t=t�1 0.254 -0.010
(0.155) (0.263)

Overtime percentilet=t�1 0.104 -0.017

(0.065) (0.097)

Overtime hourst=t�1 0.002*** 0.003***

(0.000) (0.001)

Number of trainings supervisort=t�1 0.208*** 0.204***

(0.011) (0.015)

Observations 14350 6529

Log likelihood -6687.9734 -3235.1244

Pseudo R2 0.2063 0.2014
a)The �rst part of the subscript refers to the utilized variable in column (1) and the second

part to the variable in column (2). Further controls are business unit, year and salary

level dummies. No marginal e¤ects reported.. *** p<0.01, ** p<0.05, * p<0.1.

Table 5.13: Probit Regression - Estimating Propensity Scores of Participating
in Training in t and t-1 for Absent Hours
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Figure 5.3: Propensity Scores Distribution for Matching Estimation of Train-
ing in t on Absence Hours in t
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Figure 5.4: Propensity Score Distribution for Matching Estimation of Train-
ing in t� 1 on Absence in t
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Dependent variable: Training participationt
Training participationt�1 0.817***

(0.030)

Female 0.083**

(0.038)

Aget -0.020***

(0.003)

Tenuret -0.002

(0.003)

Salary percentilet -0.135**
(0.064)

Ln(Salary)t -0.400***
(0.102)

Number of trainings supervisort 0.185***

(0.012)

Observations 9964

Log likelihood -5154.1372

Pseudo R2 0.1913

Further controls are business unit, year and salary

level dummies. No marginal e¤ects reported.

*** p<0.01, ** p<0.05, * p<0.1.

Table 5.15: Probit Regression - Estimating Propensity Scores of Participating
in Training in t and t-1 for Turnover Probability
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Figure 5.5: Propensity Score Distribution for Matching Estimation of Train-
ing in t on Turnover in t+ 1
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