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AAbbssttrraacctt  

The development of obesity, insulin resistance and type 2 diabetes is highly interlinked. In 

the past, differential phosphorylation and protein interaction of the insulin receptor 

substrates (IRS) have been identified in the regulation of insulin signaling. However, the 

exact molecular changes on the IRS protein network that occur upon insulin resistance 

have yet to be determined completely. 

In this study, a transgenic mouse model was generated featuring a streptavidin binding 

peptide tag allowing for IRS1 affinity purification in the liver and the assessment of in vivo 

interactions of IRS1 in diet-induced obesity and insulin signaling. To this end, affinity 

purification of hepatic streptavidin binding peptide-tagged IRS1 was performed and 

subsequent mass spectrometry and label-free quantification of the results led to the 

identification of 809 putative IRS1 interactions. Of the interacting proteins, association of 

53 was reduced on HFD in the non-insulin stimulated state. Comparing the different diets 

upon insulin signaling, IRS1 association of 31 proteins was increased in NCD-fed mice, 

while in HFD-fed mice only 18 proteins were increasingly associated with IRS1. 

Notably, the association of p110" and # with the IRS1-p85 complex was increased upon 

insulin treatment in NCD-fed mice. However, this effect was blunted on HFD, indicating a 

reduced insulin signaling capacity in HFD-fed mice and a contribution to the development 

of insulin resistance. 

A tendency towards increased Lyn association with IRS1 upon HFD may likely lead to the 

development of insulin resistance, as for Fyn, a kinase related to Lyn, a regulation of 

energy expenditure and fatty acid oxidation has been described previously. 

Moreover, 14-3-3 proteins !, "/#, $, % and &/' increasingly interacted with IRS1 upon 

insulin signaling in NCD conditions, however on HFD interaction was reduced to levels 

seen in the non-insulin stimulated state. In this context, 14-3-3 proteins seem to serve as 

adaptor proteins regulating the association of kinases with IRS1, a mechanism that may 

affect the signaling functionality of IRS1 and thereby contribute to insulin resistance upon 

diet-induced obesity. 

IRS1 interaction with two serine/threonine kinases, protein kinase C (PKC) and salt 

inducible kinase 3 (QSK) was identified in this study. IRS1-PKC interaction has been 

described previously in connection with 14-3-3 interaction. QSK, however, is a novel 

interacting protein of IRS1, which has been shown to also interact with 14-3-3 proteins. 

These findings strongly suggest that not only PKC-, but also QSK-mediated regulation of 

insulin signaling at the level of IRS1 may contribute to insulin resistance. 
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ZZuussaammmmeennffaassssuunngg  

Die Grundlagen zur Entstehung von Adipositas, Insulinresistenz und 

Typ 2 Diabetes sind stark verzahnt. Bisher wurde unter anderem das differenzielle 

Auftreten von Insulin Rezeptor Substrat (IRS)-spezifischen Phosphorylierungen und 

Proteininteraktionen für die Regulierung der Insulin Signaltransduktion verantwortlich 

gemacht. Jedoch sind die zugrundeliegenden molekularen Veränderungen des 

IRS Proteinnetzwerkes während einer Insulinresistenz noch weitgehend unbekannt. 

In dieser Arbeit wurde ein transgenes Mausmodell generiert, welches es erlaubt, IRS1 

spezifisch per fusioniertem Streptavidinbindepeptid aufzureinigen und in vivo Interaktionen 

von IRS1 zu charakterisieren. Speziell wurde der veränderte Zustand bei 

ernährungsinduzierter Adipositas und Insulinbehandlung in der Leber untersucht. Dazu 

wurde die Streptavidin-Affinitäts-Aufreinigung von hepatischem IRS1 in Kombination mit 

Massenspektrometrie durchgeführt. Eine anschließende markierungsfreie Quantifizierung 

der Ergebnisse führte zur Identifizierung von 809 putativen Interaktionspartnern von IRS1. 

Basal war die Assoziation von 53 dieser Proteine bei fettreicher Diät (FD) reduziert. 

Vergleiche zwischen normaler Diät (ND) und FD ergaben zudem, dass die Assoziation von 

31 Proteinen mit IRS1 nach Insulingabe bei ND erhöht war, während nach Insulingabe bei 

FD nur 18 Proteine verstärkt mit IRS1 assoziiert waren. 

Insbesondere war die Interaktion von p110" und # mit IRS1 nach Insulingabe bei ND 

erhöht. Jedoch blieb dieser Effekt bei FD aus, was auf eine reduzierte 

Insulinsignaltransduktion bei FD hinweist und darauf schließen lässt, dass die Regulation 

von p110 einen Beitrag zur Entstehung von Insulinresistenz leistet. 

Für die Tyrosin-Proteinkinase Lyn wurde eine Tendenz zu verstärkter Assoziation mit IRS1 

bei FD festgestellt, was möglicherweise zur Entstehung von Insulinresistenz beitragen 

kann. Fyn, eine verwandte Kinase von Lyn, ist dafür bekannt, Energieaufwand und 

Fettsäureoxidation zu regulieren. 

Darüber hinaus interagieren die 14-3-3 Proteine !, "/#, $, % und &/' nach Insulingabe bei 

ND verstärkt mit IRS1. Allerdings war diese Interaktion bei FD reduziert. In diesem 

Zusammenhang scheinen die 14-3-3 Proteine als Adapterproteine zu fungieren, die 

die Assoziation von Kinasen mit IRS1 regulieren, und so schließlich sowohl die 

Funktionalität von IRS1, als auch adipositasinduzierte Insulinresistenz beeinflussen. 

Zwei Serin/Threoninkinasen, Proteinkinase C (PKC) und salt inducible kinase 3 (QSK) 

wurden in dieser Arbeit als IRS1-Interaktionspartner identifiziert. Die Interaktion von IRS1 

und PKC in Verbindung mit 14-3-3 wurde bereits in der Literatur beschrieben. QSK ist 

jedoch bisher nicht als Interaktionspartner von IRS1 bekannt und interagiert zusätzlich mit 

14-3-3. 
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Diese Ergebnisse weisen stark auf einen ähnlichen Mechanismus von PKC- und 

QSK-vermittelter Regulation der Insulinsignaltransduktion auf der Ebene von IRS1 hin, 

welche schließlich zur Entstehung der Insulinresistenz beitragen kann. 
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11  IInnttrroodduucctt iioonn  

11..11  OObbeessii ttyy  

Among the variety of non-communicable pathologies, obesity and associated health 

syndromes play an increasingly important role in society. 

According to the World Health Organization (WHO), worldwide, obesity has increased 

more than 2 fold since 1980 and today affects as many as 200 million men and nearly 

300 million women (1). Additionally, 1.5 billion adults over the age of 20 were overweight 

in 2008 and approximately 43 million children under the age of five were overweight in 

2010 (2). 

In Germany, 70% of all men and 50% of all women are overweight. Alarmingly, although 

in Germany the percentage of overweight people has remained stable over the last 

20 years, an increasing number of obese patients has been recorded during this period 

(3). 

Although rather a surrogate characteristic, the body-mass index (BMI) is widely used and 

accepted as a measure of adiposity. The BMI is calculated by the ratio of body weight in 

kilograms to square of height in meters. Per WHO definition, a BMI above 25 kg/m2 

indicates overweight, while a BMI above 30 kg/m2 demarcates obesity (2). 

Besides the BMI, waist-to-hip ratio (WHR) may be used to estimate pathological levels of 

body fat. The WHR leads to a more accurate approximation of risk related to 

cardiovascular disease than BMI, as here, not only the amount of fat but also its 

distribution throughout the body plays a determining role (4). 

Recently, extensive comparative analysis of long-term developments of body mass index 

in 199 countries with over 9 million participants has revealed a worldwide increase of BMI 

by 0.4 kg/m! per decade for men and 0.5 kg/m! per decade for women since 1980 (1). 

The highest BMI among high-income countries was detected in the United States of 

America with comparable increases of male and female BMI. Analysis of BMI in Germany 

also revealed a modest constant increase since 1980, which was more pronounced in 

men than in women (Figure 1). These data suggest that increasing BMI and obesity will 

further affect societies around the world for the next decades. 
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Figure 1: Development of age-standardized mean BMI (black line) and 95% uncertainty 
intervals (shaded area) between 1980 and 2008. Results shown for males and 
females in Germany and the United States of America; rearranged from (1). 

Despite this, at the same time obesity is one of the most neglected risk factors for various 

diseases. In addition to the obvious overall reduced quality of life related to obesity, 

numerous studies support the finding that obesity, but also overweight, lead to the 

development of various comorbid diseases. For example, the development of insulin 

resistance and resulting type 2 diabetes mellitus is largely based on overweight and 

obesity (5). Yet, also cardiovascular disease, myocardial infarction and cerebral infarction 

are known to coincide with increased body weight (4, 6, 7). Furthermore, obesity related 

cancers, osteoarthritis and psychological disturbance are found with increased incidence 

among obese patients (8). Taken together, several studies conclude drastic decreases in 

life expectancy and increases in early mortality due to obesity and overweight (9-11). 

Major causes of overweight and obesity include a trend towards a sedentary lifestyle with 

an overall decrease in physical activity, and excess intake of food rich in macronutrients 

(12). These environmental factors, together with polygenic variations, steer society 

towards an increased BMI attributing to the majority of all cases of obesity. In contrast, 

monogenic mutations, like leptin deficiencies, leptin receptor deficiencies (13) or 

melanocortin receptor mutations cause less than 5% of all cases of severe obesity 

(14, 15). 
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11..22  TTyyppee  22  ddiiaabbeetteess  mmeell ll ii ttuuss  

Diabetes mellitus is one of the most common metabolic disorders (16). In Germany, 

diabetes occurs in almost 6% of men and almost 5% of women, however the prevalence 

remained stable between 1990 and 2005 (17). 

Worldwide, more than 220 million people suffer from diabetes and similar to estimates for 

obesity, the WHO predicts a dramatic rise in diabetic patients and in diabetes related 

deaths over the next two decades (18). Prevalence of diabetes rises with increasing age, 

increasing body mass index, increasing sedentary behavior and decreasing education 

(17). 

Most data sources do not distinguish between type 1 and type 2 diabetes mellitus (19), 

however, WHO estimates attribute more than 95% of all diabetes cases to 

type 2 diabetes mellitus (20). 

While type 1 diabetes is an early-onset autoimmune disease by which insulin-producing 

#-cells in the islets of Langerhans are destroyed (21), generally type 2 diabetes occurs 

later in life (22) and while type 1 diabetes is characterized by an absolute deficiency in the 

hormone insulin (21), type 2 diabetes leads to relative insulin deficiency. However, both 

type 1 and type 2 diabetes result in severe hyperglycemia. Depending on the fasting 

state, human normoglycemic blood glucose levels in whole blood range from 

60 to 140 mg/dL (3.3 mmol/L to 7.8 mmol/L). In contrast, in uncontrolled diabetic 

patients hyperglycemia can reach more than 270-360 mg/dL (15-20 mmol/L). General 

recommendations refer to maximum values of 126 mg/dL (7 mmol/L) for fasting blood 

glucose, while after a meal a short-term maximum of 180 mg/dL (10 mmol/L) is tolerated. 

The development of insulin resistance as a major characteristic of type 2 diabetes (16, 23) 

is mainly influenced by increased body weight (17), but also progressive #-cell dysfunction 

begins before onset of the disease and plays a determining role for the progression of 

type 2 diabetes (24). Insulin resistance is initially compensated by an increased insulin 

secretion and proliferation in the pancreatic #-cells, however, this eventually leads to 

#-cell failure (25, 26). 

Further, type 2 diabetes may include impaired glucose tolerance, leading to either normal 

or increased insulin response in mild cases of glucose intolerance, or decreased insulin 

response in severe cases of glucose intolerance (27). Fatal complications including kidney 

failure, neuropathy, retinopathy, dermopathy, increased risk of atherosclerosis and stroke 

(28) occur secondary to insulin resistance and glucose intolerance, determining the 

severity of the disease. 
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The most obvious strategies for treatment and possibly even prevention of 

type 2 diabetes include extensive changes in lifestyle, i.e. a healthier diet (29) and regular 

physical activity (30). Indeed, nutrition and exercise seem to regulate insulin receptor 

expression (31), increasing insulin functionality. 

Nonetheless, medicinal treatment is available. Besides the administration of insulin also 

sulfonylurea, thiazolidinedione and the biguanid metformin, which improve insulin release, 

insulin sensitivity and glucose uptake, respectively, are used to ameliorate the effects of 

diabetes (32-34). 

11..33  IInnssuull iinn  ssiiggnnaall iinngg  

1.3.1 Systemic effects of insulin 

Following a meal, blood glucose levels are elevated, and more glucose enters pancreatic 

#-cells through insulin-independent glucose transporters 2 (GLUT2) (35). Upon increasing 

intracellular glucose, adenosine triphosphate (ATP) is produced, which leads to the 

closure of ATP-sensitive KATP channels, shutting down potassium exchange through the 

membrane and resulting in its depolarization. In turn, opening voltage-gated calcium 

channels facilitate Ca2+ influx, which triggers exocytosis of secretory granules containing 

insulin. Finally, secretion into the circulation occurs (36). These granules are preformed 

and reside at the cell membrane, enabling an immediate response to the acute insulin 

demand after meals. 

Through the bloodstream, insulin targets its various metabolic target tissues like skeletal 

muscle, white adipose tissue and the liver through the insulin receptor. Among those 

major targets, adipocytes show the highest expression of insulin receptor, while in 

comparison, expression in hepatocytes and skeletal muscle cells is approximately 

30% and 10%, respectively (37, 38). Nevertheless, only a small fraction of glucose 

clearance from the blood can be attributed to white adipose tissue, whereas skeletal 

muscle takes up the largest amount of blood glucose of approximately 70% (38-40). 

The insulin receptor is furthermore expressed in brain, heart, kidney, pulmonary alveoli, 

pancreas, placenta, various blood cells, and fibroblasts (41). 

As a result of anabolic insulin signaling, uptake of glucose is increased in peripheral 

organs, like white adipose tissue and skeletal muscle, where it can be utilized or stored 

(42). 

Except for the intestine and kidney, where glucose uptake is also facilitated via 

sodium-linked glucose transporters, which act against concentration gradients (43), other 
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tissues mainly utilize glucose transporters, which carry glucose along the concentration 

gradient. This second class of glucose transporters comprises five known transporter 

proteins, i.e. glucose transporters 1-5 (38). 

Among those, GLUT4 is the only insulin-dependent glucose transporter and expression is 

localized to insulin responsive tissues, like skeletal muscle, cardiac muscle and adipose 

tissue, whereas GLUT1, GLUT2, GLUT3 and GLUT5 are independent of insulin and differ 

in their kinetic properties as well as distribution (38). 

Neurons and the placenta are organs with high glucose demand, which explains the 

presence of GLUT3, exhibiting the highest affinity for glucose among the glucose 

transporters. GLUT2 has only low affinity to glucose and is localized in hepatocytes and 

pancreatic #-cells, but also kidney and small intestinal epithelium take up glucose via 

GLUT2. GLUT1 on the other hand, is expressed on various cell types, with high 

expression in brain, erythrocytes, and endothelial cells. GLUT5 has the lowest glucose 

affinity and a higher affinity for fructose. GLUT5 can be found on small intestinal cells, 

sperm, kidney, brain, adipose tissue cells and muscle (38). 

In white adipose tissue, where energy is stored in the form of newly synthesized lipids, 

glycolysis is increased upon insulin signaling, leading to increased formation of 

glycerol-3-phosphate used for triglyceride synthesis (44). To support this effect, 

anti-catabolic actions of insulin reduce lipolysis (45), thus reducing the amount of 

non-esterified fatty acids circulating to the liver (46). In addition, insulin signaling increases 

glucose uptake into adipocytes via an intensified expression and translocation of GLUT4 

and also GLUT1 expression is regulated by insulin (38, 45). 

As in adipose tissue, in skeletal muscle, insulin signaling likewise leads to an increased 

expression and translocation of GLUT4 (38). Furthermore, insulin stimulates the synthesis 

of hexokinase II and pyruvate kinase, increasing glycolysis and formation of ATP (47). 

Generation of glycogen storage from glucose is a key feature in skeletal muscle, which is 

also elevated upon insulin signaling contributing to the regulation of blood glucose levels 

(48, 49). 

Moreover, in the liver glycolysis and the formation of ATP are increased upon insulin signal 

transduction, whereas glycogenolysis and gluconeogenesis are blocked 

(50, 51). Further, insulin facilitates glycogen synthesis and increases biosynthesis of 

hexokinase IV, which enhances glycolysis in response (52). Overall, the liver contributes 

substantially to the control of blood glucose by the regulation of hepatic glucose 

production. 
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The secretion of glucagon by pancreatic "-cells leads to an increase in blood glucose and 

thus is inhibited by insulin and elevated blood glucose levels (53). As up to 75% of hepatic 

glucose production is determined by glucagon in order to counteract decreasing amounts 

of blood glucose (54), the inhibition of glucagon secretion by insulin indirectly reduces 

hepatic glucose production in the liver (55). 

In summary, utilization of stored energy is inhibited upon insulin action, and glucose, lipid 

and protein release from tissues is decreased (42). By action of insulin, less 

gluconeogenic amino acids are released from fat and muscle and therefore less of those 

precursors are available for glucose production in the liver (56). 

In addition to insulin’s effects on peripheral organs, insulin signaling also affects the 

central nervous tissue. However, rather than influencing metabolic pathways, insulin here 

seems to act on numerous regulatory pathways, for example regulating appetite or 

affecting the reward centers of the brain (57). 

1.3.2 Molecular features of insulin signal transduction 

The peptide hormone insulin binds to the membrane-bound insulin receptor via its two 

extracellular "-subunits and thereby triggers a conformational change on the two 

intracellular #-subunits of the receptor (58). In turn, this conformational change facilitates 

the autophosphorylation of the insulin receptor on a maximum of seven tyrosine residues 

thereby activating its tyrosine kinase abilities (59, 60). Proteins containing 

phosphotyrosine binding (PTB) domains then interact with the receptor (61-64) and are 

phosphorylated on tyrosine residues, while being localized to the plasma membrane 

through pleckstrin homology (PH) domains (63, 64). Among those proteins, the 

insulin receptor substrates (IRS) play a prominent role, as proteins like the p85 subunit of 

phosphatidylinositol-3 kinase (PI3K) or growth factor receptor bound protein 2 (Grb2) 

interact with the phosphorylated IRS proteins via their src homology 2 (SH2) domains 

(65, 66). 

Further downstream, signaling branches off at the level of the IRS proteins into the 

PI3K-pathway (67) and the Ras/Raf mitogen-activated protein kinase (MAPK)-pathway 

(68, 69), related to metabolic and proliferative regulation, respectively (Figure 2). 

The metabolic PI3K-pathway is initiated by binding of the regulatory p85 subunit of the 

PI3K to IRS proteins (66, 70). The catalytic p110 subunit of PI3K then transforms 

phosphatidylinositol-4,5-bisphosphate (PIP2) into phosphatidylinositol-3,4,5-trisphosphate 

(PIP3), which activates phosphoinositide dependent kinase 1 (PDK1) (71). Subsequently, 

protein kinase B (Akt) is activated by phosphorylation on serine and threonine residues 
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(72) and the PI3K-pathway diverges into several branches leading to the repression of 

lipolysis, the de-repression of glycogen synthesis, and protein synthesis (73). Furthermore, 

PDK1 activates protein kinase C (PKC), a serine/threonine kinase, which is able to 

modulate insulin signaling by phosphorylation of a serine residue of IRS1 (74, 75). 

Together with son of sevenless (SOS) and SH2 containing protein (Shc), the activation of 

Ras and Raf is mediated through the binding of growth factor receptor binding protein 2 

(Grb2) to IRS (76, 77). Finally, this cascade leads to estrogen receptor kinase (ERK) and 

thus to mitogen-activated protein kinase signaling (78, 79) influencing the proliferative 

state of the cell. 

 

Figure 2: The insulin signal transduction pathway. Insulin binds to the insulin receptor on the 
cell surface, facilitating conformational change and thus autophosphorylation on 
intracellular domains. Further downstream signaling is directed by the insulin 
receptor substrates finally leading to insulin’s effects like gene transcription, 
proliferation, lipolysis, glycogen synthesis and protein synthesis. Proteins 
interacting with IRS1 are in bold print. IR: insulin receptor, APS: adapter protein with 
a PH and SH2 domain, CAP: cbl-associated protein, Tc10: Ras-like protein Tc10, 
GLUT: glucose transporter, IRS1: insulin receptor substrate 1, Grb2: growth factor 
receptor binding protein 2, Shc: SH2 containing protein, SOS: son of sevenless, 
Ras: rat sarcoma, Raf: v-raf-leukemia viral oncogene, ERK: extracellular signal-
regulated kinase, PI3K: phosphatidylinositol-3 kinase (subunits p85 and p110), 
PIP2: phosphatidylinositol-4,5-bisphosphate, PIP3: phosphatidylinositol-3,4,5-
trisphosphate, PDK1: phosphoinositide dependent kinase 1, Akt: protein kinase B, 
FOXO1: forkhead transcription factor 1, PKA: protein kinase A, GSK3: glycogen 
synthase kinase 3, mTOR: mammalian target of rapamycin, PKC: protein kinase C. 
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Another pathway, bypassing the IRS proteins, leads to insulin-dependent translocation of 

GLUT4 to the plasma membrane facilitating glucose uptake into the cell (80, 81). Via 

insulin receptor activation of a signaling cascade including adapter protein with a PH and 

SH2 domain (APS), casitas B-lineage lymphoma (Cbl) and Ras-like protein Tc10, initial 

fusion of GLUT4 containing vesicles with the plasma membrane is initiated (42, 81). 

In addition to the IRS proteins and APS, there are further proteins known to interact with 

the insulin receptor, like Grb2-associated binding protein 1 (Gab-1), p60dok, and Cbl all of 

which exert distinct functions in downstream signaling (42). 

1.3.3 Role of insulin receptor substrates in insulin signaling 

The family of insulin receptor substrates consists of four known members and two 

putative new members, which were recently identified (82-84). So far, IRS1 and IRS2 

have been most extensively studied. However, also research on IRS3 and IRS4 is more 

and more adding to the overall understanding of the differential signaling capabilities of 

insulin receptor substrates. In contrast, the function of IRS5 (DOK4) and IRS6 (DOK5) is 

still vague (82). 

Detailed structural data are available, comparing the properties of protein domains and 

phosphorylation sites of insulin receptor substrates 1-4 (Figure 3) (85). 

The phosphotyrosine binding domains facilitating interaction with the insulin receptor and 

pleckstrin homology domains facilitating localization to the plasma membrane are 

conserved between IRS1-4, suggesting similar insulin receptor binding characteristics of 

the different isoforms. Moreover, on a structural level, about 20 tyrosine residues are 

conserved between IRS1 and IRS2 concerning their approximate location and 

surrounding binding motif, while the overall comparison suggests a rather distinct 

C-terminus, and a 75% conserved N-terminus (85). Furthermore, IRS2 binds to the insulin 

receptor not only via the PTB domain but has an additional binding loop (Figure 3), 

providing a possible explanation for the different binding kinetics (86). 
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Figure 3: Comparison of protein structures of mouse insulin receptor substrates; from (85). 
PH domain of IRS proteins located at the N-terminus, PTB domain and tyrosine 
phosphorylation sites; known interacting proteins with the respective interaction 
motif indicated by arrows (a). Different structural features of isoforms 1-4 (b). PH: 
pleckstrin homology domain, PTB: phosphotyrosine-binding domain, Y: tyrosine 
phosphorylation sites. Numbers display amino acid count. 

 

Functional characterization of the different insulin receptor substrate proteins was 

achieved by the analysis of knockout mice. IRS1 knockout studies revealed that integrity 

of insulin signaling is largely depending on functional IRS1, as IRS1 knockout mice are 

insulin resistant with increased insulin serum levels, glucose intolerant and further exhibit 

growth retardation (87, 88). However, these mice failed to develop diabetes and thus, an 

alternative substrate compensating for IRS1 was identified and named IRS2 (88). 

In comparison, a knockout of IRS2 also led to insulin resistance, but additionally mice 

developed type 2 diabetes and had impaired #-cell function (89, 90). 

Furthermore, differential dephosphorylation kinetics were observed for IRS1 and 2, where 

total IRS1 tyrosine phosphorylation was detected up to 60 minutes after stimulation with 

insulin, while total IRS2 tyrosine phosphorylation lasted for only 3-10 minutes (91). 

In parallel, PI3K activation times correlated with the duration of tyrosine phosphorylations. 

Taken together, these findings suggest differential roles for IRS1 and IRS2. Yet, this plays 

an even more important role in tissues with parallel expression of both proteins, like the 
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liver (85). In liver of whole-body IRS1 knockout mice, IRS2 is able to compensate for 

IRS1-mediated activation of PI3K and thus ameliorates the loss of regulation of blood 

glucose levels (87). In addition, knockout of IRS2 leads to a declined suppression of 

hepatic glucose production and reduces glycogen synthesis in the liver. Furthermore, 

these mice show a dysregulated lipid metabolism (92). 

Knockdown of IRS1 specifically in liver, performed by adenoviral RNA interference, 

increases gluconeogenesis and reduces glucokinase expression, whereas knockdown of 

IRS2 in liver increases the expression of lipogenic enzymes like fatty acid synthase and 

hepatic lipid accumulation (93). 

Overall, these findings suggest that in liver IRS1 and IRS2 have overlapping roles in the 

control of metabolism, while IRS1 seems to regulate glucose homeostasis and IRS2 

seems to play a role in lipid metabolism (92, 93). 

It is known for tissues where glucose uptake is insulin-dependent and facilitated via 

GLUT4, that primarily IRS1 and IRS3 are expressed, and only little amounts of IRS2 (94). 

Thus, in muscle tissue of IRS1 knockout mice, PI3K activation is decreased and not 

compensated for by IRS2. Moreover, muscle and adipose tissues of these mice exhibit 

reduced insulin-induced glucose transport (87). 

In summary, IRS1 and IRS2 regulate a variety of insulin’s major effects in the tissues 

involved in glucose and lipid metabolism, whereas IRS3 expression so far has only been 

shown in rodents and might not play an important role in humans (95). Also IRS4 seems 

to have only a limited influence on the metabolic effects of insulin, although it is expressed 

in brain, liver, kidney and muscle (96). 

The insulin receptor substrates are also involved in insulin-like growth factor (IGF) 1 

signaling and it is known that they interact with the IGF-1 receptor via their PTB domain 

upon activation of the receptor by IGF-1 (97). The liver, when stimulated by growth 

hormone, produces IGF-1, but also numerous other tissues are a source of IGF-1. 

Circulating IGF-1 then stimulates growth by its anabolic effects on almost every cell-type 

(98). 

1.3.4 Molecular basis of insulin resistance 

Since the insulin signaling pathway is comprised of a complex network of several 

interlinked downstream cascades, it is prone to disturbances when one or more of the 

components are dysregulated. Such dysregulation, which may originate from a certain 

genetic or environmental background, can lead to insulin resistance. 
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Over the last decades, research dedicated to the elucidation of mechanisms involved in 

insulin resistance has accumulated a variety of involved pathways and regulation 

machineries. Insulin resistance thus was found to have multifaceted molecular causes and 

is possibly further complicated by combinations of different resistance mechanisms. 

On the one hand numerous kinases convey the modulation of insulin signaling on protein 

level, providing a well-balanced signaling network, which may easily be disturbed. 

Because of their central role in insulin signaling, IRS proteins are of major research interest 

and as the insulin signal branches off into the different pathways at this level, these 

proteins form a level of extensive regulation. Numerous kinases and phosphatases are 

known, which modulate IRS activity by the addition or removal of phosphate residues 

(99-101). Further, phosphorylations involving different functional domains of IRS proteins 

indicate interference on different levels of IRS function, like impaired association with the 

insulin receptor, or with downstream signaling components (100, 101). 

Generally, tyrosine phosphorylations are considered to have an activating effect on IRS 

proteins, whereas serine phosphorylations are considered to be inhibitory. While this 

assumption holds true for tyrosine phosphorylations, phosphorylation of some serine 

residues can as well amplify the insulin signal (Figure 4). In the physiological state, 

activating serine phosphorylations by Akt (PKB) or PKC& appear first, allowing for correct 

tyrosine phosphorylations and protect from inhibitory serine phosphorylations (102, 103), 

and later in a time-controlled manner, inhibitory serine phosphorylations are added by 

PKC& or mTOR decreasing tyrosine phosphorylations and presumably turning off the 

signaling (99, 104). In pathophysiology, kinases known to be activated by several 

inflammatory stimuli can cause inhibitory phosphorylation of serine residues in an 

uncontrolled manner. Kinases contributing to these inhibitory phosphorylations and 

thereby leading to insulin resistance are I(B kinase # (IKK#), c-jun N-terminal kinase (JNK), 

extracellular signal-regulated kinase (ERK) or protein kinase S6K (99). 

Indeed, a link between metabolism and the immune system was established, laying 

grounds for the finding that obesity corresponds to a state of low-level inflammation (105). 

This condition is especially true for the adipose tissue, where in lean individuals insulin 

reduces the secretion of free fatty acids (106). It is known that in obesity and 

type 2 diabetes, serum levels of free fatty acids are elevated, imposing inhibitory effects 

on insulin sensitivity in vitro and in vivo (106, 107). Interestingly, these effects could in part 

be reversed, when soluble tumor necrosis factor-" (TNF-") receptor was administered to 

rats (105). 
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TNF-" signals through the formation of TNF-" receptor complex and TRAF2, ultimately 

resulting in the activation of downstream serine/threonine kinases JNK and IKK 

(108-110). In response to TNF-" signaling, these serine/threonine kinases are able to 

disrupt insulin signaling through the phosphorylation of murine IRS1 on Ser307 close to 

the PTB domain (corresponding to Ser312 in humans) (111, 112). Furthermore, the 

mutation of Ser307 to alanine in case of JNK (111), and alternatively the deletion of IKK 

resulted in a partial rescue of the insulin resistant phenotype (112). 

Direct phosphorylation of IRS proteins by JNK and IKK certainly is one of the central 

mechanisms by which insulin signaling may be disturbed, however, also secondary 

effects on the phosphorylation state of insulin receptor and IRS1 have been described 

(113). Driven by IKK#, the protein-tyrosine phosphatase 1B facilitates the removal of 

tyrosine phosphorylations on both the insulin receptor (114, 115) and IRS1 (116, 117), 

thereby leading to reduced insulin sensitivity. 

According to the observations regarding TNF-", an increase of several other 

inflammation-associated markers, for example interleukin (IL)-6 (118-120), IL-1 receptor 

antagonist (IL-1Ra) (121), IL-8 (120, 122), C-reactive protein (119), and MCP-1 

(119, 123), is known for adipose tissue or plasma levels of obese mice and humans, 

suggesting similar outcomes for the disturbance of insulin signaling through the activation 

of JNK and IKK. 

In addition, the phosphorylation state of the IRS proteins has been studied extensively 

during the last years and a variety of other kinases involved in the modulation of insulin 

signaling has been identified. Among those, mammalian target of rapamycin (mTOR) is 

capable of phosphorylating Ser307 on IRS1 upon insulin signaling (124). Studies on 

mTOR and mitogen-activated protein (MAP) kinases have revealed additional 

phosphorylation target sites, like Ser612 and Ser632 (125). Also Ser24 in the PH domain 

of IRS1 seems to be the target for several serine/threonine kinases, as at least PKC and 

pelle-like kinase (PLK) a homolog of human IL-1 receptor-associated kinase (IRAK) have 

been shown to catalyze this phosphorylation reaction (126, 127). 

For IRS2 considerably less interventions by serine/threonine kinases have been detected 

so far, but JNK and GSK3 phosphorylate IRS2 and thus negatively regulate insulin 

signaling by disruption of the association with the insulin receptor or constraining tyrosine 

phosphorylations (Figure 4) (99, 128, 129). 
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Figure 4: Known serine phosphorylation sites on IRS1 and IRS2 and the respective kinases 
inducing the phosphorylation. PH: Pleckstrin homology domain, PTB: 
phosphotyrosine binding domain, KRLB: kinase regulatory-loop binding domain, 
BD: binding sites, h: numbering according to human IRS1 protein sequence; from 
(99). 

 

Several groups recently concentrated on the mass spectrometric assessment of IRS 

interaction partners (130), IRS phosphopeptides (131, 132), and specifically of 

phosphopeptide-mediated interactions (133), aiming at a better understanding of the 

IRS binding network with the identification of novel interactions. 

Although the main research interest concentrates on phosphorylations mediating insulin 

resistance, other posttranslational modifications of serine/threonine residues are known to 

interfere with proper signal transduction. For example, O-linked N-acetylglucosamine 

(O-GlcNAc) modifications close to phosphorylation sites may have a regulatory function 

on the respective protein (134-136). The production of O-GlcNAc from 

fructose-6-phosphate is regulated by the hexosamine biosynthesis pathway, which is 
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increased during hyperglycemia due to the abundance of glucose and was shown to 

induce insulin resistance as well (137, 138). 

Also ubiquitinations have been studied in the relation to pathological consequences. The 

ATP-dependent ubiquitin-proteasome system primarily serves as cellular proteolytic 

machinery, degrading proteins in a regulated manner. Importantly, insulin is not only able 

to increase protein synthesis, but also inhibits the proteasomal degradation of proteins 

(139, 140). Indeed, prolonged exposure of cells to insulin leads to proteasomal 

degradation of IRS1 after ubiquitin modification of the N-terminus (141, 142) and thus to 

the development of insulin resistance (143). 

Further research indicated that suppressor of cytokine signaling (SOCS) 1 and SOCS3 

specifically serve as adapter proteins bringing together IRS1 or IRS2 with 

elongin BC ubiquitin ligase, thereby targeting the IRS proteins for proteasomal 

degradation and inhibiting insulin action for example in mouse liver (144, 145).  

Also dysregulated transcriptional components may negatively influence insulin signaling. 

Expression of the insulin receptor, for example, is mediated by the forkhead family 

transcription factor FOXO1, acting as transcription factor in a feedback mechanism (146). 

FOXO1 activity is regulated by insulin signaling itself via phosphorylation through Akt, 

ultimately leading to its nuclear export (147-149). Nuclear export upon phosphorylation 

leads to the inhibition of gene expression of genes originally activated by FOXO1, but also 

to activation of gene expression of genes originally repressed by FOXO1 (150, 151). 

The nutritional state of cells, as shown for C2C12 cells, mediates phosphorylation of 

FOXO1 and thereby FOXO1 serves as an insulin sensor. When cells are starved, FOXO1 

is unphosphorylated and thus resides in the nucleus, where it induces expression of the 

insulin receptor gene upon binding to the promoter. When insulin is added to the cells, 

insulin signaling promotes FOXO1 phosphorylation through Akt, which ultimately reduces 

insulin receptor expression (152). This mechanism allows for rapid transmission of the 

insulin signal when nutrient levels are high. As in the pathophysiology of obesity, insulin 

levels are constantly increased, also FOXO1 phosphorylation is elevated, in turn reducing 

the amount of transcribed insulin receptor mRNA and thus also reducing the amount of 

insulin receptor (152). 

Posttranscriptional gene silencing mediated by miRNA species has been identified to be a 

potent regulator in the control of protein expression. miRNA-143 is overexpressed in the 

liver of obese mice and was identified to cause a reduction of Akt activation, thus leading 

to impaired insulin signaling (153). Furthermore, in mice overexpressing miRNA-143, 
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glucose homeostasis was compromised, whereas in mice with miRNA-143 deletion, 

protection from obesity-induced insulin resistance was detected (153). 

On the other hand, insulin resistance may already start with mutations at the genomic 

level, disturbing functional expression of signaling components. Almost two decades ago, 

a missense mutation in the insulin receptor gene was detected in individuals suffering 

from hereditary insulin resistance, exchanging the amino acid alanine (Ala1134) to 

threonine and thereby affecting the tyrosine kinase domain of the receptor (154). Thus, in 

spite of regular binding of insulin to the receptor, impaired induction of 

autophosphorylation of the intracellular domains prevented functional downstream 

signaling. In line with these findings, insulin receptor knockout mice display hyperglycemia 

and hyperinsulinemia, however also leading to fatal ketoacidosis shortly after birth 

(155, 156). 

Further downstream, a polymorphism is known featuring a glycine to arginine (G972R) 

mutation of IRS1, which is associated twice as often with type 2 diabetes mellitus patients 

than healthy individuals (157). The polymorphism is located close to two tyrosine 

phosphorylation sites in the p85-binding domain of IRS1 and leads both to reduced 

tyrosine phosphorylation and increased IRS1 binding to the insulin receptor inhibiting its 

autophosphorylation, ultimately reducing systemic insulin sensitivity (158). 

IRS1 deletion accordingly revealed a similar outcome with mild insulin resistance in mice 

(87, 88) and even simultaneous heterozygous deletion of insulin receptor and IRS1 causes 

severe insulin resistance with the development of diabetes, more closely resembling the 

situation seen in human patients (159). 

Downstream of insulin receptor and the IRS proteins, function of protein kinase B # (Akt2), 

a mediator in the insulin signaling pathway, can be disturbed by a polymorphism in the 

human Akt2 gene (160). As expected, expression of mutant Akt2 carrying the 

polymorphism leads to disruption of insulin sensitivity in cell culture. Further also 

co-expressed wildtype Akt2 function is inhibited (160). In mice, the deletion of Akt2 

impairs the regulation of blood glucose and leads to a diabetes-like syndrome (161). 

Glucokinase is a key enzyme in homeostasis of blood glucose, and its genetic alteration 

can cause early onset type 2 diabetes mellitus (162), by a variety of different mutations 

(163). 

Although these single gene mutations served as an explanation for the basis of insulin 

resistance in the respective patients, overall monogenic alterations only rarely account for 

the metabolic disorder, while more often the combination of several inherited traits may 

affect the fine-tuned machinery of the insulin signaling network (164). 
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11..44  PPrrootteeoommiicc  ssttuuddiieess  iinn  tthhee  ccoonntteexxtt  ooff  iinnssuull iinn  ssiiggnnaall iinngg  

As the development of type 2 diabetes is inextricably connected with obesity and insulin 

resistance, numerous studies have been conducted trying to elucidate the development 

of insulin resistance and to find the underlying mechanisms causing the disease 

(87, 88, 92, 165). In the course of time, various mediators of insulin resistance have been 

identified, like the serine/threonine kinases JNK and IKK (111, 112). However, so far the 

known mechanisms only give an incomplete view on the insulin resistant state. Moreover, 

research specifically defining key mediators involved in insulin resistance mechanisms was 

further complicated by the lack of suitable methods to tackle this complex protein 

network. 

In recent years however, holistic and quantitative proteomic studies were made possible 

by the development of high-performance mass spectrometry with high sensitivity suited 

for the analysis of complex protein networks.  

Originally, mass spectrometry evolved from the studies of Eugen Goldstein and 

Wilhelm Wien in the late 19th century, before in 1918 the first mass spectrometer was 

developed. Further improvements led to increasing mass accuracies and adaptations 

were made for the use with amino acids and peptides in 1958 (166). The principle of 

mass spectrometry is based on the analysis of mass-to-charge ratios of ionized and thus 

charged compounds or their fragments. In 2002 the Nobel Prize in chemistry was 

awarded to John B. Fenn and Koichi Tanaka for the development of electrospray 

ionization and soft laser desorption, which made biological macromolecules a more 

feasible source for mass spectrometry. Matrix-assisted laser desorption/ionization time-

of-flight (MALDI/TOF) tandem mass spectrometry and liquid chromatography-coupled 

electrospray ionization (LC-ESI) mass spectrometry as standard tools for protein 

identification have been established for peptide mass fingerprinting and peptide 

sequencing (167, 168). 

Based on those powerful tools to examine the components of protein networks, recently 

several proteomic studies have emanated dealing with the insulin signaling pathway. 

Via peptide immunoprecipitation with an antibody directed against phospho-tyrosine 

residues, tyrosine phosphorylation sites of components of the insulin signaling cascade 

were characterized in a time-dependent setting in 3T3-L1 adipocytes. In a total of 

89 different proteins changing their phosphorylation state, the study found 122 tyrosine 

phosphorylation sites, of which again 89 increased at least 1.3 fold upon insulin 
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treatment. A total of 69 novel phosphorylation sites were identified in the adipocyte 

proteome (169). 

Another study that combined a similar immunoprecipitation approach with high-resolution 

mass spectrometry and stable isotope labeling of amino acids in cell culture (SILAC) in 

differentiated brown adipocytes found 40 insulin-induced tyrosine phosphorylations on 

proteins involved in insulin signaling. Among those, 7 were described for the first time, for 

example SDR, PKC' binding protein, LRP-6 and PISP/PDZK11 (132). 

Further research has led to the identification of IRS1-specific phosphorylations and based 

upon these, also protein interactions. In myotubes derived from C2C12 cells, 

52 interacting proteins were identified specifically interacting with 109 phosphorylation 

sites in the insulin receptor, the IGF-1 receptor and IRS1 and IRS2 (133). A SILAC 

approach was combined with pulldowns of synthetic peptides, which were either 

phosphorylated or unphosphorylated. Although this procedure is based on an artificial 

approach, several proteins were found in pulldowns of IRS1 specific peptides, which have 

been previously described, like Grb2 or the p85 subunit of PI3K (133). 

A new mass spectrometry-related method has been used in a study, dealing with insulin- 

stimulated IRS1 interactions. To this end, endogenous IRS1 was co-immunoprecipitated 

with interacting proteins and subsequently these protein complexes were subjected to 

mass spectrometry analysis. The results were quantified with a label-free method relating 

the site-specific abundance of phosphorylations to the respective precursor ions, finally 

leading to the identification of 11 novel insulin-stimulated IRS1 interactions in 

L6 myotubes (130). An earlier related study of the same group concentrated on the 

quantification of serine phosphorylations in human IRS1 after insulin treatment in vitro 

using a similar technique (131). 

In addition to the classical approach using co-immunoprecipitations as a means of 

characterizing protein interactions, a method combining affinity purifications with mass 

spectrometry-based interactomics was developed, with the aim to analyze protein 

interactions and their implications on a larger scale. Direct assessment of protein 

interactions was made practicable by the development of numerous protein tagging 

strategies, which have added to the understanding of protein interactions, like myc-tag, 

His-tag or FLAG-tag (170). 

Further, using the affinity of streptavidin to biotin produces considerable advantages over 

antibody-driven purifications due to high affinity with a dissociation constant of 10-15 M 

(171). Additionally, the streptavidin-binding peptide (SBP) can be used for pulldown 
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experiments with superior purities compared to the His-tag or maltose-binding 

protein-tag (172). 

From these one-step purifications using single tags, a number of tandem affinity 

purification (TAP) techniques evolved, driven by the need to further reduce the possibility 

of false-positive identifications originating from unspecific binding. 

The first tag of this kind, composed of calmodulin binding peptide (CBP), a TEV cleavage 

site, and protein A, was used in yeast (173). Subsequently, the same tag was also 

adapted for mammalian cell culture (174) and interestingly, even used with IRS1 as bait 

protein (175). The study identified 35 interacting proteins specifically induced upon 

IGF-1 signaling, of which 5 were verified by co-immunoprecipitations (175). 

Later, also a different TAP tag, the Strep II-FLAG-tag was developed (176). Recently, even 

a triple tag combining the streptavidin and calmodulin binding peptide tags with a His-tag 

was developed and successfully used on Bruton’s tyrosine kinase in HEK-293 cells (177). 

One disadvantage of the so far developed tandem affinity purification methods is 

insufficient yield. In all tags, which require a time-consuming TEV cleavage step, low yield 

is mostly due to insufficient cleavage, so most of the material is lost after the first 

purification step. For higher efficiency, therefore SBP and CBP tags were combined in 

order to facilitate a purification of the bait protein in native buffer conditions with the 

possibility for specific elution. 

11..55  OObbjjeecctt iivveess  

As described in literature, obesity and insulin resistance, as well as type 2 diabetes as a 

result of different risk factors, are becoming a progressing problem in society. However, 

the exact molecular changes that occur during development of the disease have yet to be 

determined completely. 

Among all major insulin-responsive organs, the liver plays an important role in glucose, 

protein, and lipid homeostasis. But still, the basis of the molecular derailment in the 

development of hepatic insulin resistance and type 2 diabetes mellitus is not fully 

understood. Thus, the influence of inhibitory pathways impinging on insulin signaling has 

been one of the most intensively studied topics related to insulin resistance. IRS proteins 

have been identified as a central target in the modulation of insulin signaling by various 

kinases, but a complete picture of the cooperation of different kinase pathways was so far 

out of reach. 
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In this study, in order to facilitate purification of IRS1-associated protein complexes, 

a novel mouse model was established, featuring an affinity tagged IRS1 protein, which 

can be expressed specifically in liver. 

Further, proteomic state-of-the-art techniques were applied, enabling the extensive 

quantitative analysis of in vivo protein interactions in the liver. To assess IRS1 interactions 

related to diet-induced obesity and insulin resistance, IRS1 interaction profiles in different 

nutritional conditions were examined as well as in basal and insulin-stimulated states. 
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22  MMaatteerr iiaallss  aanndd  mmeetthhooddss  

22..11  MMoolleeccuullaarr  bbiioollooggyy  tteecchhnniiqquueess  

2.1.1 General considerations 

All molecular biology techniques were performed according to standard protocols by 

Sambrook et al. (178) unless otherwise mentioned. For the display of DNA sequences of 

vectors and genes, the Gene Construction Kit Software was used (Textco Biosoftware, 

version 2.5). 

2.1.2 Cloning PCR 

Polymerase chain reaction (PCR) was employed for the amplification of specific DNA 

fragments for cloning purposes like the creation of insert DNA or the generation of 

Southern blot probes. Primers used to this end were custom made by Eurogentec 

(Table 1). 

Table 1: Primers used for cloning PCRs. Sequences in 5’-3’ direction. 

Primer name Primer Sequence 

IRS1pCTAP1 TAA GCA ACT ATG CCA GCA TCA GCT TCC AGA AGC AGC 

CAG AGG ATC GTC AAG ACG AGA AG ACC ACC GGC TGG 

IRS1pCTAP2 TCT TCT GAC TTT GCC ACC ATA AAA ACG CAC CTG CTG 

TGA TGT CCA GTT ACG CGA TCG CCT AGG GGT AAC C 

IRS1TTori1 CCA TTT TGA TAA GAT TCT TGC TAC AGG CTC TGC TTG 

TTG AAG TAA ATT TGG TCT TAG ACG TCA GGT GGC ACT 

IRS1TTori2 TGG GGG CGC TGG GGC GGA GGG GAC GCG GGT GAC 

CTG CTA GCT CTC ACC CAA ACC GGT GCG TCA GCA GAA 

TAT 

IRS1TTAcsI1 GGC GCG CCA CCA TGG CGA GCC CTC CGG 

IRS1TTAscI2 GGC GCG CCT CTA AAG TGC CCC GGA GGA 

Neoprobe1 GCC GCC AAG CTC TTC AGC AAT AT 

Neoprobe2 TGA ATG AAC TGC AGG ACG AGG CA 

IRSprobe1 GGC GCG CCA CCA TGG CGA GCC CTC CGG ATA CC 

IRSprobe2 GTC TGG CAG GTT ATC CTG AAA 
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For general cloning PCRs, a total volume of 25 µL per reaction was used, consisting of 25 

pmol of the respective primers, 25 µmol dNTP mixture (Genaxxon, #M3015.4100), 

0.5U DreamTaq Green DNA Polymerase (Fermentas, #EP0714) and DreamTaq Green 

Buffer. PCR reactions were performed in a DNA Engine Dyad Peltier Thermal Cycler 

(bio-rad) and standard cycling protocols were used. 

For the generation of insert DNA for BAC cloning or TOPO TA cloning, High Fidelity PCR 

Master (Roche, #12 140 314 001) with proofreading function was used. Reactions of a 

total volume of 50 µL were set up as suggested by the manufacturer and 50 pmol of the 

primers (IRS1pCTAP1 and 2, IRS1TTori1 and 2, or IRS1TTAcsI1 and 2, Table 1) were 

added. The cycling program was adapted from the user instructions. 

PCR reactions were analyzed on 1% (w/v) agarose gels substituted with 

0.5 mg/mL ethidium bromide run in TAE buffer (40 mM Tris base, 1 mM EDTA, 

20 mM glacial acetic acid). 

2.1.3 DNA sequencing 

Big Dye terminator v3.1 cycle sequencing kit (Applied Biosystems, #4337455) was used 

for DNA Sequencing based on the sequencing method developed by Sanger et al. (179). 

Concerning DNA amounts and reaction conditions the manufacturer’s instructions were 

followed. Analysis of the sequencing reaction was done at the Cologne Center for 

Genomics at the University of Cologne. Verification of the final insert IRS1-TapTag 

sequence was performed with the primers listed below (Table 2). 

Table 2: Sequencing primers used for verification of insert IRS1-TapTag DNA. 

Primer name Primer Sequence 

Seq1 TTT CAG GAT AAC CTG CCA GAC 

Seq2 TGA TGC TGG ACG GGA CAT GGT 

Seq3 CTT TCG AAA CCG GTT ATC CAG 

Seq4 ACT ACC ACT GGG TGA CAT CAT 

Seq5 TGT GAG GCT TGA CTC TGG CCT 

Seq6 CAT GTA GTC ACC ACG GCT ATT 

Seq7 ACA CAC TGG AGC CGA CTC CTT 

Seq8 AAGGAGTCGGCTCCAGTGTGT 

Seq9 TACATAGACCTGGATTTGGC 
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2.1.4 Gel extraction 

DNA fragments were excised manually from agarose gels under UV light and purified 

using E.Z.N.A. gel extraction kit (Omega Bio-Tek, # D2501-01) as described in the 

manufacturer’s instructions. 

2.1.5 Red E/T Recombination 

The IRS1 BAC (bacterial artificial chromosome, BACPAC Resources Center, 

Children’s Hospital Oakland Research Institute, #RP23-430H22) was modified by 

Red E/T Recombination (180, 181) as outlined in the technical protocol for the Counter-

Selection BAC Modification Kit (Gene Bridges, #K002). In brief, an overnight culture of the 

BAC containing bacteria was transformed with the red E/T recombination vector by 

electroporation. Then, the transformed bacteria were grown at 30°C until an OD600 of 

0.3, when 50 µL of 10% L-Arabinose (Sigma, #A-3256) were added to a total amount of 

1.4 mL of BAC culture. After 60 minutes at 30°C and another 60 minutes at 37°C 

transformation by electroporation was carried out with 600 ng of pCTAPneokana insert 

DNA containing homology arms produced with IRS1pCTAP1 and 2 primers (Table 1). 

Cultures were incubated another 70 minutes at 37°C to allow for recombination and finally 

spread on agar plates. 

Another BAC recombination step was performed on the resulting IRS1-TapTag BAC with 

the origin of replication of the pACYC177 plasmid (NEB, #E4151S) (182). For the 

amplification of the origin of replication with homology arms, primers IRS1TTori1 and 2 

(Table 1) were used in a proofreading PCR. 

2.1.6 Transformation of competent bacteria 

Plasmids containing DNA constructs of interest were transformed into chemically 

competent TOP10 bacterial cells (Invitrogen, part of #K4500-01) by exposure to 42°C for 

45 seconds, followed by 2 minutes on ice. Subsequently, cultures were grown in 

LB-medium for 1 hour at 37°C and spread on agar plates. 

2.1.7 Purification of plasmid DNA 

Bacteria containing plasmids of interest were grown overnight at 37°C in LB medium 

(AppliChem, AppliChem, #A0954) with 100 µg/mL Ampicillin (AppliChem, #A0839). 

Depending on further use of purified vector DNA either a miniprep or maxiprep was 

performed with QIAGEN Plasmid Mini or Maxi Kit (QIAGEN) following the manufacturer’s 
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instructions. Minipreps of BAC DNA were prepared omitting the usage of supplied 

columns. 

2.1.8 TOPO TA cloning 

TOPO TA cloning (Invitrogen, #K4500-01) was used to insert the construct into the 

pCR2.1-TOPO vector according to the instructions manual. Next, the final vector was 

transformed into chemically competent TOP10 bacterial cells and the fusion construct 

was cut from the pCR2.1-TOPO vector by AscI restriction digest (Fermentas, #ER1892) 

following the product instructions. 

2.1.9 Ligation 

Ligation of vector and insert was performed overnight at 16°C with T4 DNA Ligase 

(NEB, #M0202S). 

2.1.10 Linearization 

For further ligation DNA vectors were linearized by digestion with AscI 

(Fermentas, #ER1892) and overhangs were dephosphorylated by shrimp alkaline 

phosphatase (Fermentas, #EF0511) for one hour at 37°C. The vector was then purified by 

sodium acetate precipitation. 

An amount of 50 µg of the gene targeting vector was linearized with 30 units of the 

restriction enzyme AsiSI (Fermentas, #ER2091) and in buffer conditions recommended by 

the manufacturer overnight at 37°C. 

2.1.11 Phenol chloroform extraction 

DNA for transfection was purified by phenol chloroform extraction. One volume of 

phenol : chloroform : isoamyl alcohol 25:24:1 (AppliChem, # A0944) was vigorously mixed 

with the DNA solution and spun down at 17,000 x g for 15 minutes. Subsequently the 

upper phase was vigorously mixed with one volume chloroform. Another centrifugation 

step of 10 minutes followed and the upper phase was subjected to isopropanol 

precipitation with an equal volume. DNA was pelleted and washed with 70% ethanol. 

Finally, the DNA pellet was dried for ES cell transfection or stored at -20°C in 70% 

ethanol. 
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2.1.12 Preparation of ES cell DNA 

In order to detect homologous integration of transfected ES cell clones, genomic DNA 

was extracted from separately grown DNA plates in a 96-well format. To this end, cell 

culture medium was removed from the cells and wells were washed with PBS. The cells 

were then lysed in cell lysis buffer (10 mM Tris/HCl pH7.5, 10 mM EDTA, 10 mM NaCl, 

0.5% (w/v) N-Lauroylsarcosine, 4% Proteinase K; Roche, #03115844001) overnight at 

55°C in a high humidity chamber. Then, equal volumes of chilled pure ethanol were 

added and incubated at room temperature for 4 hours. The ethanol was removed and 

after drying the DNA pellets were reconstituted in 20 µL of TE/RNAse A buffer 

(10 mM Tris/HCl pH8.5, 1 mM EDTA, 0.1% (v/v) RNAase A (Fermentas, #EN0531)). 

For expanded ES cell clones, lysis was performed overnight at 55°C in cell lysis buffer and 

DNA was precipitated by an equal volume of isopropanol. The sample was centrifuged at 

17,000 x g for 15 minutes to precipitate DNA. The DNA pellet was subsequently washed 

with an equal volume of 70% ethanol and dried, before being reconstituted in TE/RNAse 

A buffer. 

2.1.13 Restriction digest of genomic DNA 

Genomic DNA was digested with 100 U EcoRI (Fermentas, #ER0273), 3 mM DTT, 

3 mM spermidine, 0.14 µg/µL RNAse A (Fermentas, #EN0531) and 0.1 µg/µL BSA 

overnight at 37°C in high humidity conditions. 

2.1.14 Southern blot 

A large 0.8% (w/v) agarose (Invitrogen, #16500-500) gel substituted with 0.5 mg/mL 

ethidium bromide (AppliChem, #A1152) carrying all 96 ES cell clones was run overnight at 

30 V in TAE buffer (see 2.1.2). 

DNA was blotted overnight from the gel onto Hybond XL membrane 

(GE Healthcare, #RPN203S) by capillary force induced by several layers of Whatman 

paper (Whatman, #3030-861) and transfer buffer (0.4 M NaOH) (183). The membrane 

was then incubated at 80°C for 30 minutes. 

A Southern blot probe (ROSA-probe) upstream of the 5’homology region of the ROSA26 

locus was generated from the A-04 plasmid (184) by restriction with BamHI and EcoRI in 

2x Tango Buffer (Fermentas, #ER0051, #ER0271) and the resulting fragment of 1.2 kb 

was purified by gel extraction. 

A 532 bp fragment from the ROSA-CAGS-IRS1-TapTag vector was amplified with the 

primers Neoprobe1 and Neoprobe2 for the use as neo probe and a 502 bp fragment 
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from the IRS1 gene was created with the primers IRS1probe1 and IRS1probe2 for use as 

IRS1 specific probe (Table 1). 

Prehybridization solution (1 M NaCl, 50 mM Tris/HCl pH7.5, 10% (w/v) dextran sulfate, 

1% (w/v) SDS, 250 µg/mL sonicated salmon sperm DNA (Biomol, #54653.5)) was applied 

to the pre-wet membrane and the radioactively labeled probe was added to the solution 

after 2 hours. Radiolabeling of 100 ng DNA probe (185) with 

2.5 µCi $32P desoxytriphosphate ($32P dCTP) was performed with the Ladderman labeling 

kit (Takara, #6046) as described in the user’s manual. Hybridization of the radioactive 

probe with the corresponding DNA fragments on the membrane was performed overnight 

at 65°C in a rotating oven. On the next day, excessive material was washed with 2xSSC 

(300mM NaCl, 30 mM tri-sodium citrate dihydrate, pH7.0), 0.1% (w/v) SDS at 65°C. The 

membrane was sealed in a plastic envelope and a phosphoimager screen (Fuji, BasIIIS) 

was exposed to the membrane overnight. The Typhoon 9400 (GE Healthcare) was used 

in storage phosphor mode with a resolution of 50 µm to visualize the signal on the 

phosphoimager screen. 

2.1.15 Isolation of genomic mammalian DNA 

Tail tip biopsies were taken from mice at the age of three weeks and incubated overnight 

on a shaker at 55°C in proteinase K buffer (100 mM Tris/HCl pH8.5, 

5 mM EDTA, 0.2% SDS, 200 mM NaCl, 1% (v/v) proteinase K). Hair and cell debris were 

spun down and DNA was precipitated from the solution using isopropanol. Ethanol was 

used to wash the DNA pellet and after drying the DNA was reconstituted in TE/RNAse A 

buffer. 

2.1.16 Genotyping PCR 

Polymerase chain reaction (PCR) was used to amplify transgene specific and wildtype 

specific DNA fragments in order to detect transgenic alleles and thus determine the 

genotype of experimental cells or animals. For this purpose, primers were custom made 

by Eurogentec (Table 3) and standard cycling protocols were used. PCR reactions were 

analyzed on 1% (w/v) agarose gels substituted with 0.5 mg/mL ethidium bromide run in 

TAE buffer (see 2.1.2). 
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Table 3: Primers used for genotyping PCRs. 

Primer name Primer Sequence 

CAGS1 AAA GTC GCT CTG AGT TGT TAT C 

CAGS2 GAT ATG AAG TAC TGG GCT CTT 

CAGS3 TGT CGC AAA TTA ACT GTG AAT C 

Cre1 ACG AGT GAT GAG GTT CGC A 

Cre2 ATG TTT AGC TGG CCC AAA TGT 

22..22  CCeell ll   CCuullttuurree  TTeecchhnniiqquueess  

2.2.1 ES cell culture 

v6.5 murine embryonic stem cells (ES cells), which originated from a hybrid mouse strain 

of C57BL/6 and 129/sv background, were used for ES cell culture. ES cells were grown 

in ES medium (DMEM with L-glutamine (PAA, #E15-810), 15% (v/v) fetal bovine serum 

(Biochrom AG, #S0115), 1 mM sodium pyruvate (Invitrogen, #11360), 1% (v/v) non 

essential amino acids (Invitrogen, #11140), 2 mM L-Glutamine (Invitrogen, #25030), 0.1% 

(v/v) leukemia inhibitory factor (LIF) (recovered from supernatant of ebna-h LIF-producing 

cells induced with puromycin), additional 0.1 mM #-mercaptoethanol 

(Invitrogen, #31350)). As underlying cell layer, mitotically inactivated embryonic fibroblasts 

(EF cells) were grown on cell culture plates coated with 0.1% (v/v) gelatin solution 

(Invitrogen, #G1393) in EF medium (DMEM with stable glutamine (PAA, #E15-883), 10% 

(v/v) fetal bovine serum, 1 mM sodium pyruvate). To this end, after three passages, EF 

cells were exposed to 10 µg/ml mitomycin C (Sigma, #M0503) for two hours. Both, ES 

and EF cells were maintained in incubators at 37°C, 10% CO2 and 95% relative humidity. 

Medium was replaced every day for ES cell culture and every other day for EF cell culture. 

Medium was washed off with PBS and cells were treated with 0.05% trypsin 

(PAA, #L11-003) when cells were needed in solution for passaging or freezing. 

When necessary, cells were frozen in fetal bovine serum containing 10% (v/v) DMSO and 

stored at -80°C for up to four weeks or in liquid nitrogen for longer periods. 

2.2.2 ES cell transfection 

Fresh ES medium was applied to ES cells designated for DNA transfection four hours 

before the procedure was started. ES cells were then treated with Trypsin and the cell 

pellet was entered into 400 µL RPMI 1640 (Invitrogen, #11835063). Linearized and 

purified DNA was dissolved in 400 µL RPMI as well. Both solutions were mixed and 
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transferred to a chilled electroporation cuvette (bio-rad, #1652088) for electroporation in a 

GenePulser device (bio-rad) at 500 µF and 240 V while a time constant of 7-11 ms had to 

be achieved. Cells were kept in the cuvette for five minutes at room temperature and 

subsequently divided onto four 10 cm cell culture plates, which were precoated with 

gelatin and inactivated EF cells. After 48h, selection with G418 was started 

(0.5% v/v G418 (Invitrogen, #10131-027) in regular ES medium) and continued until no 

further cells died. 

Nine days after transfection, surviving individual ES cell clones were picked from PBS filled 

cell culture dishes into round-bottom 96-well plates prefilled with 25 µL Trypsin and 

transferred to fresh flat-bottom 96-well plates in triplicates. Two of those plates were kept 

as backup plates while cells on the third plate were split onto three new 96-well plates 

coated only with gelatin. These plates were used to isolate genomic DNA from the ES cell 

clones and were stored at -20°C after washing with PBS. 

2.2.3 Microinjection into blastocysts 

Confirmed ES cell clones were expanded onto 10 cm dishes and prepared for 

microinjection into blastocysts as previously described (186). Essentially, the cells were 

trypsinized, pelleted and resuspended. The cell suspension was incubated on a 

gelatinized 10 cm plate for 30 minutes and the supernatant containing most of the 

ES cells was pelleted again. The plate was washed with ES medium removing all loosely 

attached cells, which were also pelleted. Both pellets were resuspended in 

0.5 mL injection medium (DMEM without L-Glutamine (PAA, #E15-009), 15% (v/v) fetal 

bovine serum (Biochrom AG, #S0115), 1mM sodium pyruvate (Invitrogen, #11360), 

1% (v/v) non essential amino acids (Invitrogen, #11140), 2 mM L-Glutamine (Invitrogen, 

#25030), 1x penicillin/streptomycin (PAA, #P11-010), 25 mM HEPES (Invitrogen, #15630-

049), 0.015 % (w/v) DNAse (Sigma)). 50 blastocysts isolated from CB20 mice were 

injected with around 10 transfected v6.5 ES cells each by Sonja Becker and 

Tanja Tropartz at the Center for Mouse Genetics at the University of Cologne. 

Then, injected blastocysts were implanted into the uterus of pseudopregnant mice from 

the F1 generation of crossings between C57BL/6 and BALB/c mice. 

2.2.4 In-vitro cre recombination 

For treatment with cre, ES cells were incubated with cre recombinase medium (50% (v/v) 

EF or ES fasting medium (EF or ES medium lacking fetal bovine serum), 50% (v/v) PBS, 
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4 µM cre, sterile filtered through 0.22 µm PVDF filters) overnight. Fresh EF or ES medium 

was applied for another 24 hours before the cells were further analyzed. 

2.2.5 Fluorescence Microscopy 

Integration and expression of eGFP in targeted ES cells shown by green fluorescence was 

analyzed in cre-transfected cells with an Axioskop 40 (Carl Zeiss). ES cells were washed 

with PBS, all fluid was removed and plates were sealed with parafilm. During microscopy, 

cells were handled without medium for a maximum of 30 minutes. 

2.2.6 siRNA transfection 

Hepa 1-6 mouse hepatoma cells (187, 188) were grown in Hepa medium (DMEM with 

stable glutamine, 10% (v/v) fetal bovine serum, 1mM sodium pyruvate, 1% (v/v) non 

essential amino acids) at 37°C, 5% CO2 and 95% relative humidity. Transient transfection 

of small interfering RNA (siRNA) into Hepa 1-6 mouse hepatoma cells was performed at 

50% confluency with either 14-3-3! siRNA (Invitrogen, Oligo ID MSS213024) or respective 

Stealth RNAi siRNA Negative Control (Invitrogen, #12935-100) in Opti-MEM medium 

(Invitrogen, #51985-026) with Lipofectamine 2000 Transfection Reagent (Invitrogen, 

#11668019). Transfections were performed according to Invitrogen’s instructions in Hepa 

fasting medium (Hepa medium lacking fetal bovine serum). After transfection, cells were 

maintained in Hepa medium for 48 hours before insulin stimulation. 

2.2.7 In-vitro insulin signaling 

Cells were starved in fasting medium for 16 hours overnight. For insulin stimulation, the 

medium was removed from the cells and replaced by fresh fasting medium either 

containing 10 nM insulin (Sigma, #I9278) or equal volumes of PBS (PAA, #H15-002). 

The cells were placed in the incubator for 10 minutes, subsequently washed by PBS and 

finally harvested in fresh PBS from cell culture plates with cell scrapers (Sarstedt). 

Cell culture plates and samples were kept on ice from this step onwards. PBS was taken 

off the cells after centrifugation at 1,200 x g for two minutes and lysis was performed in IP 

lysis buffer, followed by a 20 minute centrifugation at 17,000 x g at 4°C. The supernatant 

was transferred to a fresh tube and protein concentration was assessed using the 

NanoDrop Spectrophotometer ND-1000 (Thermo Scientific). Samples were immediately 

prepared for Western blot analysis. 
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22..33  AAnniimmaall   EExxppeerr iimmeennttss  

2.3.1 Animal care 

All handling of experimental animals and all procedures conducted with experimental 

animals were in accordance with the animal care committee of the University of Cologne 

and approved by the Bezirksregierung Köln. 

Mice were kept in small groups of less than six animals in a virus-free facility at 22-24°C. 

A light-dark cycle was maintained with 12 hours light from 7 a.m. to 7 p.m. and 12 hours 

darkness from 7 p.m. to 7 a.m. and changes during daylight savings time were avoided. 

Animals were either fed a normal chow diet (NCD; Harlan, Teklad Global Rodent 

#T.2018.R12) consisting of 53.5% carbohydrates, 18.5% proteins and 5.5% fat 

(12% calories from fat) or a high fat diet (HFD; Altromin, #C1057) consisting of 

31.4% carbohydrates, 21% proteins and 35.3% fat (55.2% calories from fat). Access to 

food and water was ad libitum during regular maintenance and food was withdrawn 

overnight if needed for an experiment. 

2.3.2 Mouse models 

In addition to the transgenic ROSA-CAGS-IRS1-TapTag mouse established in this study, 

the Alfpcre-mouse line (189) expressing the cre recombinase in hepatocytes was used to 

direct hepatocyte specific expression of IRS1-TapTag. 

2.3.3 Measurement of body weight and liver weight 

Body weight of mice was measured on a weekly basis on a regular precision balance 

(Sartorius). 

2.3.4 Analysis of body composition 

Body fat content and lean mass of live mice were measured relative to total body weight 

using nuclear magnetic resonance with a minispec mq7.5 (Bruker Optik) for mice at the 

age of 20 weeks. 

2.3.5 Collection of blood samples 

Blood samples of a few drops were taken through a cut in the tail tip and blood glucose 

levels were examined in whole blood using a Glucomen PC (A. Menarini Diagnostics). 
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2.3.6 Glucose tolerance test 

For assessment of glucose tolerance, mice were fasted for 16 hours overnight. The next 

morning, basal fasting blood glucose levels were measured with a Glucomen PC in blood 

collected from the tail tip capillaries and sterile glucose (Baxter) was intraperitoneally 

injected at a dose of 2 g glucose/kg body weight. Glucose concentration was measured 

at 15, 30, 60 and 120 minutes after injection. 

2.3.7 Insulin tolerance test 

Insulin tolerance was assessed on random-fed mice and the procedure was carried out in 

analogy to glucose tolerance. Sterile insulin (Insuman Rapid, Sanofi Aventis) was diluted in 

0.9% sterile saline (Berlin-Chemie AG, #HCA001431) and injected intraperitoneally at a 

dose of 0.75 U/kg body weight and blood glucose levels were measured 

at 15, 30 and 60 minutes after injection. 

2.3.8 Extraction of sample material 

At the end of the experimental period, mice were sacrificed by overdosing CO2 and body 

length was measured on dead mice from the tip of the nose to the proximal end of the 

tail. Different organs were dissected, weighed in case of epigonadal fat pad and 

immediately processed for affinity purifications or shock frozen in liquid nitrogen and 

stored at -80°C for further analysis. 

2.3.9 In-vivo insulin signaling 

Mice were fasted for 16 hours overnight and experiments were performed the following 

morning. The anesthetic Avertin (2,2,2-Tribromoethanol, Sigma-Aldrich) was injected 

intraperitoneally at a dose of 10 µL per g body weight. The abdomen of anesthetized mice 

was opened and 125 µL sterile human insulin (equivalent to 5U; Insuman Rapid, Sanofi 

Aventis) was injected into the vena cava inferior. Accordingly, 125 µL of 

0.9% sterile saline (Berlin-Chemie AG) was injected as control. The whole liver was 

harvested 5 minutes after injection and immediately subjected to organ lysis. If needed, 

samples of skeletal muscle, white adipose tissue of the epigonadal fat pad and brain were 

taken 6, 7 and 10 minutes after injection, respectively, shock frozen in liquid nitrogen and 

stored at -80°C for further analysis. 
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22..44  PPrrootteeiinn  AAnnaallyyssiiss  

2.4.1 Organ lysis 

All steps of organ lysis and sample preparation were carried out on ice. For affinity 

purifications, whole liver was homogenized in chilled 15 mL IRS lysis buffer 

(25 mM Tris/HCl pH8.0, 10 mM MgCl2, 100 mM NaCl, 0.5% Triton X-100, 10% glycerol, 

complete protease inhibitor cocktail (Roche, #11697498001), 10 mM #-mercaptoethanol; 

adapted from (175)) using a Dounce Tissue Grinder (Wheaton, #357544). The lysate was 

centrifuged for 20 minutes at 290 x g at 4°C in 50 mL Falcon tubes. The concentration of 

the supernatant was measured using the NanoDrop Spectrophotometer and protein 

lysates were immediately used for TAP experiments. 

2.4.2 Streptavidin affinity purification 

The complete purification was carried out on ice and incubation as well as centrifugation 

steps were performed at 4°C. 

An amount of 400 mg protein was adjusted to a total volume of 15 mL with IRS lysis 

buffer, 15 mL dilution buffer (100 mM KCl, 50 mM Tris/HCl pH7.5, 2 mM PMSF) 

was added and the mixture was completed by the addition of 2 mM EDTA and 

10 mM #-mercaptoethanol. 

Equilibration of UltraLink immobilized streptavidin beads (Thermo Scientific, #53114) was 

achieved by washing the beads with wash buffer (150 mM KCl, 40 mM Tris/HCl pH7.5, 

0.5% Triton X-100, 1 mM PMSF, 10 mM #-mercaptoethanol, complete protease 

inhibitors) three times. Centrifugation steps were performed at 1,500 x g for 5 minutes 

and finally the streptavidin beads were reconstituted as 50% gel slurry. 

500 µL of 50% streptavidin beads gel slurry were added to prepared protein samples 

each with a total volume of 30 mL and the mixture was rotated gently for 30 minutes. To 

collect the beads, the sample was centrifuged at 290 x g for 5 minutes and the 

supernatant was discarded or an aliquot was kept for further analysis of unbound 

proteins. The beads were washed twice with 15 mL IRS lysis buffer, rotated for 5 minutes 

and centrifuged. The supernatant was thoroughly removed and if necessary an aliquot 

was kept for analysis. In order to elute the bound proteins, the beads were rotated with 

500 µL of biotin elution buffer (150 mM NaCl, 40 mM Tris/HCl pH7.5, 0.1% Triton X-100, 

1 mM PMSF, 10 mM #-mercaptoethanol, 2 mM Biotin, complete protease inhibitors) for 

30 minutes in Spin Columns (Thermo Scientific, #69725). The biotin eluate was collected 

by centrifugation at 1,500 x g for 1 minute. 
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Biotin eluates were concentrated using NanoSep Columns (Pall Corporation, 

#OD003C33) with a molecular weight cutoff of 3 kDa. To this end, eluates were loaded 

onto columns and concentrated by centrifugation at 17,000 x g at 4°C until a volume of 

100 µL was reached. 

2.4.3 Protein gel electrophoresis 

In order to pre-separate samples for subsequent mass spectrometry, samples diluted 

with Reducing Agent and LDS sample buffer (Invitrogen, #NP0004 and #NP0007), 

NuPAGE® Novex 4-12% Bis-Tris Gels (Invitrogen, #NP0335) were run with MOPS SDS 

Running Buffer (Invitrogen, #NP0001). Antioxidant (Invitrogen, #NP0005) was added to 

the running buffer in the inner gel chamber. PageRuler Prestained Protein Ladder 

(Fermentas, #SM0671) was loaded as a size marker and the gels were run at constant 

200 V according to Invitrogen’s technical guide. 

Following electrophoresis, the gels were Coomassie stained with Colloidal Blue Stain Kit 

(Invitrogen, #LC6025) as instructions in the user manual suggest. 

For Western blot analysis, samples were either processed for NuPAGE® Novex 4-12% 

Bis-Tris Gels or diluted with 4x SDS sample buffer (250 mM Tris-HCl pH 6.8, 8% (w/v) 

SDS, 40% (v/v) glycerol, 40 mM DTT, 0.004% Bromophenolblue; adapted from (190)) and 

run on 10% tris-glycine mini gels (190) in electrophoresis buffer (190 mM glycine, 

25 mM Tris base, 3.5 mM SDS) at 100 V. PageRuler Prestained Protein Ladder was used 

as a size marker. Tris-glycine gels were immediately subjected to Western Blot analysis. 

2.4.4 Western Blot 

Western Blot transfer of proteins from NuPAGE® Novex 4-12% Bis-Tris Gels was 

performed with mini trans blot cells (bio-rad, # 170-3930) onto Hybond ECL nitrocellulose 

membranes (GE Healthcare, # RPN2020D). Blotting chambers were cooled on ice while 

blotting was carried out at 2 mA/cm2 for 3 hours. 

In contrast, Western Blot transfer of proteins from Laemmli gels onto Immun-Blot PVDF 

Membranes (bio-rad, #162-0177) was performed in Trans-Blot SD Semi-Dry Transfer 

Cells (bio-rad, #170-3940) at 2 mA/cm2 for 1 hour. Following the blotting procedure, the 

membranes were blocked in 1x Western Blocking Reagent (Roche, #11 921 673 001) in 

TBS buffer (2 mM Tris base, 13,7 mM NaCl, pH7.4) for 1 hour at room temperature. 

Antibodies (Table 4) were diluted in 0.5x Western Blocking Reagent and applied to the 

membranes overnight. 
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Table 4: Antibodies used for immunodetection of proteins, with dilution applied and the 
ordering information. 

Antibody Dilution source Distributor 

IRS1  1:1000 mouse BD Bioscience, #611394 

PI3K p85 1:5000 rabbit Millipore, #06-195 

PI3K p85" 1:1000 mouse Abcam, #ab22653 

PI3K p85# 1:  500 mouse Abcam, #ab28356 

PI3K p110" 1:  250 rabbit Santa Cruz Biotechnology, #sc-7174 

PI3K p110# 1:  250 rabbit Santa Cruz Biotechnology, #sc-602 

pIR (Tyr972) 1:  250 rabbit Abcam, #ab5678 

IR# 1:  500 rabbit Santa Cruz Biotechnology, #sc-711 

pAkt (Ser473) 1:1000 rabbit Cell Signaling Technology, #4058 

Akt 1:1000 rabbit Cell Signaling Technology, #4685 

#-Actin 1:5000 mouse Sigma, #A5441 

pGSK3# (Ser9) 1:1000 rabbit Cell Signaling Technology, #9323 

GSK3# 1:1000 rabbit Cell Signaling Technology, #9315 

14-3-3! 1:1000 mouse Santa Cruz Biotechnology, #sc-130547 

14-3-3&/' 1:1000 rabbit Cell Signaling, #9639 

Lyn 1:  100 rabbit Santa Cruz Biotechnology, #sc-15 

Lyn 1:  100 mouse Santa Cruz Biotechnology, #sc-7274 

PKC 1:  100 mouse Santa Cruz Biotechnology, #sc-17804 

QSK (SIK3) 1:  250 rabbit Abcam, #ab88495 

pTyr 1:  500 mouse Millipore, #05-321 

pIRS1 (Ser307) 1:  250 rabbit Cell Signaling Technology, #2381 

anti-mouse IgG HRP 1:1000 goat Sigma, #A4416 

anti-rabbit IgG HRP 1:1000 goat Sigma, #A6154 

    

Excessive antibody was removed in two washing steps with TBS-T buffer (TBS buffer 

supplied with 0.1% (v/v) Tween 20 (AppliChem, #A1974)) and subsequently the 

respective horseradish peroxidase (HRP)-coupled secondary antibody was applied for 

1 hour at room temperature. Another washing step was included before ECL Western 

Blotting Substrate (Thermo Scientific, #32106) was used for chemiluminescence detection 

of protein bands with Hyperfilm ECL (GE Healthcare, #28-9068-37). 
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2.4.5 In-gel trypsin digest 

All steps of gel preparation and trypsin digest were carried out in a sterile workbench at 

room temperature unless otherwise noted. Eppendorf Protein LoBind tubes were used for 

all peptide solutions. Each lane of the stained bis-tris gradient gel containing a protein 

sample was cut into ten small gel slices beginning with the smallest molecular weight. The 

gel slices were further minced and destained in 100 µL destaining solution 

(50% 10 mM NH4HCO3 / 50% ACN (acetonitrile)) for 30 minutes at 55°C. Supernatant 

was discarded before dehydrating the gel pieces in 500 µL 100% ACN for 20 minutes 

with occasional vortexing. Supernatant was again discarded and 30-50 µL of trypsin 

mixture (12.5 ng/µL sequencing grade trypsin (Promega, #V5111) in 10 mM NH4HCO3) 

depending on the size of the gel pieces. The dried gel pieces were incubated for 90 

minutes on ice to allow complete absorption of the trypsin mixture. After incubation the 

remaining trypsin mixture was removed and replaced by 20 µL 10 mM NH4HCO3 and 

digestion was carried out at 37°C overnight. The digest was stopped by the addition of 

5 µL 5% TFA, spun down and the supernatant was collected in a fresh tube. For 

extraction, 20 µL 1% TFA were added to the gel pieces and incubated on a shaker at 700 

rpm for 30 minutes. The supernatant was collected and the extraction step was repeated 

once more. The third extraction step was carried out with 20 µL 60% ACN / 40% H2O / 

0.1% TFA and otherwise repeated. After the extraction 30 µL 100 % ACN were added to 

the gel pieces and incubated on a shaker at 700 rpm for 15 minutes. The supernatant 

was collected and the step was repeated. During the protocol all supernatants of one gel 

slice were collected in the same tube. After final collection of the supernatant the 

combined supernatant containing the tryptic peptides was concentrated in a vacuum 

concentrator (Christ, RVC 2-25) at 55°C until they reached a volume of less than 65 µL. 

2.4.6 Desalting 

Desalting of the peptide samples was achieved using Stage Tips (Thermo Scientific, 

#SP201) and centrifuge adaptors. All centrifugation steps were carried out at 500 x g for 

30 seconds. The protocol was adapted from Rappsilber et al. (191) in two instances: 

conditioning with buffer A (0.5% acetic acid) was performed twice and elution with buffer 

B (80% ACN / 0.5% acetic acid) was carried out three times. 

The desalted peptide solution was concentrated in a vacuum concentrator at 55°C to 

approximately 10 µL to remove ACN. The sample volume was then adjusted to 20 µL 

with 0.5% acetic acid and subjected to nano-LC-ESI-MS/MS. 
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2.4.7 Nano-LC-ESI-MS/MS mass spectrometry 

Experiments were performed on a Thermo LTQ Orbitrap Discovery mass spectrometer 

which was coupled to a split-less Eksigent nano-LC system. Intact peptides were 

detected in the Orbitrap at 30,000 resolution in the mass-to-charge (m/z) range 

400-2000. Internal calibration was performed using the ion signal of (Si(CH3)2O)6H at 

m/z 445.120025 as a lock mass. For LC-MS/MS analysis, up to five CID spectra were 

acquired following each full scan. Aliquots of the samples were separated on a 10 cm, 

75 µm reversed phase column (Thermo Fisher/Proxeon). Gradient elution was performed 

from 2 to 30% ACN within 80 minutes at a flow rate of 200 nL/min. All mass spectrometry 

equipment used was available through the CECAD Proteomics Facility at the University of 

Cologne. 

22..55  DDaattaa  AAnnaallyyssiiss  

2.5.1 Label-free quantitative analysis 

Mass spectrometry data sets were processed using MaxQuant quantitative proteomics 

software (v 1.1.1.36) allowing for label-free normalization and quantification of identified 

proteins (192-194). 

2.5.2 General calculations and analysis 

Data from all experiments were gathered in Microsoft Excel and prepared for the 

comparison of average values, standard error of the mean (SEM), student’s t test and 

graphical displays. 

2.5.3 Statistical methods 

Statistical significance was analyzed with the unpaired two-tailed student’s t test, while all 

probability (p) values below 0.05 were considered significant and were indicated by an 

asterisk: * p < 0.05, ** p < 0.01, *** p < 0.001 stating the significance level versus 

controls. 

For average values standard errors are expressed and depicted as standard error of the 

mean (SEM).  
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33  RReessuull ttss  

33..11  GGeenneerraatt iioonn  ooff  tthhee  ttaarrggeett iinngg  vveeccttoorr  

The pCTAPneokana construct (Figure 5) containing the TapTag sequence (Table 5) was 

amplified by primers IRS1pCTAP1 and 2 (Table 1) and inserted into the IRS1 BAC by Red 

E/T recombination, thereby placing the TapTag sequence in frame behind the IRS1 open 

reading frame and creating the IRS1-TapTag fusion construct. In this step, the 

endogenous stop codons were removed in order to prevent premature termination of 

transcription after the IRS1 and in front of the TapTag sequence. 

 

Figure 5: Scheme of the pCTAPneokana construct, containing the TapTag sequence and a 
FRT (ellipses) flanked resistance cassette under the control of prokaryotic Pgb2 and 
eukaryotic PGK promoters. 

 

Table 5: Amino acid sequence of the components of the TapTag, streptavidin binding 
peptide (SBP) (172) and calmodulin binding peptide (CBP) (173). 

TTaagg  SSeeqquueennccee  

SBP  MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREPSGGCKLG 

CBP KRRWKKNFIAVSAANRFKKISSSGAL 

 

Another BAC recombination step was performed on the resulting IRS1-TapTag BAC with 

the origin of replication of the pACYC177 plasmid (182), thereby reducing the BAC size by 

180kb and shaping the IRS1-TapTag-neokana vector. For the amplification of the origin of 

replication with homology arms, primers IRS1TTori1 and 2 (Table 1) were used in a 

proofreading PCR. 

Finally, primers containing AscI restriction sites (IRS1TTAscI1 and 2, Table 1) were used 

to amplify the IRS1-TapTag sequence from the IRS1-TapTag-neokana vector. 

TA overhangs produced by the polymerase were subsequently used for TOPO TA cloning 

into the pCR2.1-TOPO vector. 

TapTag neo/kanaR Pgb2 PGK

pCTAPneokana

Homology Arm
50 bp

Homology Arm
50 bp
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From this source, the IRS1-TapTag insert was sequenced and afterwards excised by AscI 

restriction through the restriction sites introduced earlier and ligated into the 

ROSA-CAGS vector (195), which was also linearized by AscI restriction. 

 

Figure 6: Gene Targeting strategy for the homologous recombination of the ROSA-CAGS-
IRS1-TapTag targeting vector into the ROSA26 locus and the modified locus after 
cre-mediated excision of the loxP flanked stop signal. SA: splice acceptor, CAGS: 
chicken %-actin promoter, WSS: Westphal stop signal, IRES: internal ribosome entry 
site, eGFP: enhanced GFP, vertical black bars: exons, triangles: loxP (locus of X-
over P1) sites, ellipses: frt sites, arrow: start of transcription. 

 

The ROSA-CAGS-IRS1-TapTag targeting vector (Figure 6), including the fusion construct, 

was generated to enable overexpression of the IRS1-TapTag fusion protein driven by the 

ubiquitously expressed chicken %-actin (CAGS) promoter, while the expression was 

initially inhibited by a loxP flanked stop signal. Upon cre recombination, the stop signal 

along with a neomycin resistance cassette was excised, enabling expression of 
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IRS1-TapTag. In addition, the vector contained an IRES-eGFP sequence allowing for 

fluorescence detection of the integration of the construct in cells. 

 

33..22  GGeenneerraatt iioonn  ooff  RROOSSAA--CCAAGGSS--IIRRSS11--TTaappTTaagg  mmiiccee  

3.2.1 ES cell targeting 

The linearized gene targeting vector ROSA-CAGS-IRS1-TapTag was purified and 

transfected into v6.5 ES cells. After the selection period individual cell clones were 

isolated and screened by Southern blot. Clones 2 and 3 showed the correct integration 

pattern for the ROSA and neo probes as well as the IRS1 specific probe detecting both, 

the ROSA-CAGS-IRS1-TapTag construct at 7.3 kb and the endogenous IRS1 locus at 

4.3 kb (Figure 7). 

 

Figure 7: Southern Blot results for three individual ES cell clones. Clones 2 and 3 show the 
correct band pattern resulting from homologous recombination into the ROSA26 
locus. 

Those clones were further expanded for injection into blastocysts. In parallel, green 

fluorescent light emission was detected in targeted ES cells treated with recombinant cre 

recombinase (Figure 8), further validating the integration of the 

ROSA-CAGS-IRS1-TapTag construct. 
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Figure 8: Verification of functional integration of the ROSA-CAGS-IRS1-TapTag construct in 
transfected ES cells. Cells were either treated with cre or left untreated. Light 
microscopy (A) and eGFP expression in cells shown by the emission of green 
fluorescent light (B). 

 

3.2.2 Transgenic mice 

Chimeric transgenic ROSA-CAGS-IRS1-TapTag mice were created by the injection of 

transfected v6.5 ES cells into blastocysts of CB20 mice, which were implanted into the 

uterus of pseudopregnant mice (F1 generation of C57BL/6 x BALB/c). The chimeric 

offspring (Figure 9) of those mice with the highest chimerism was crossed to C57BL/6 

mice and offspring of the next generation was scanned for the transgene with the CAGS 

genotyping PCR (Table 3). 

 

Figure 9: Chimeric mouse with an estimated 95% chimerism. White coat color represents 
cells derived from the CB20 blastocyst, while brown or black coat color represents 
cells derived from v6.5 ES cells. 

Once germline transmission of the transgene was established, the 

ROSA-CAGS-IRS1-TapTag mice were backcrossed to C57BL/6 mice. In the next step, 

ROSA-CAGS-IRS1-TapTag mice were crossed with Alfp-cre mice to trigger hepatocyte 

specific cre-mediated excision of the loxP flanked stop signal and thereby enabling liver 

restricted expression of IRS1-TapTag. Mice were bred to homozygosity for the TapTag 

- cre + cre

A

B
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allele, whereas the Alfp-cre allele was kept at heterozygosity. Homozygous IRS1-TapTag 

mice carrying the Alfp-cre allele were analyzed as IRS1-TapTag mice (further abbreviated 

as TapTag mice), while Alfp-cre negative littermates served as control (further mentioned 

as wildtypes, WT). 

3.2.3 Physiological verification 

Functionality of the IRS1-TapTag construct in mice was verified by Western blot analysis. 

Livers and other selected organs were dissected from control and TapTag mice and 

protein samples were obtained. On Western blots of liver proteins, both the endogenous 

IRS1 and IRS1-TapTag were detected and the levels of expression of the heterozygous 

transgene was comparable to the endogenous expression (Figure 10). 

 

Figure 10: Western blot of hepatic endogenous IRS1 and the elongated IRS1-TapTag in a 
mouse heterozygous for IRS1-TapTag. 

 

Other organs were examined in order to rule out aberrant expression of IRS1-TapTag. 

All organs and tissues examined, like white adipose tissue, brain, kidney, heart and 

skeletal muscle were tested negative for IRS1-TapTag and showed a band for 

endogenous IRS1 only (Figure 11). 

 

Figure 11: Western blot of IRS1 expression in selected tissues. IRS1-TapTag protein was only 
detected in liver. WAT: white adipose tissue, sk.muscle: skeletal muscle. 
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33..33  PPhheennoottyyppiicc  aannaallyyssiiss  ooff  RROOSSAA--CCAAGGSS--IIRRSS11--TTaappTTaagg  

mmiiccee  

The metabolic phenotype of transgenic IRS1-TapTag mice was assessed in order to 

examine the influence of additional IRS1 expression on parameters like body weight, body 

composition and blood glucose levels. Furthermore, insulin and glucose tolerance were 

assessed to study the systemic response of the transgenic mice to these stimuli. One of 

two different diets, normal chow diet (NCD) or high fat diet (HFD), was fed from the day of 

weaning at the age of three weeks and maintained throughout the course of the study. 

3.3.1 Body weight 

Body weight of transgenic mice and littermate controls was assessed in mice either fed a 

normal chow diet or a high fat diet. Measurements of body weight of both female and 

male mice were performed from the time of weaning until the age of 16 weeks on a 

weekly basis. 

The average body weight was unchanged between IRS1-TapTag animals and controls, 

for both NCD and HFD (Figure 12, Figure 13). However, both female and male mice fed a 

HFD were significantly heavier approaching week 16. 

 

Figure 12: Average body weight of female IRS1-TapTag mice and controls over the course of 
13 weeks. Error bars depict SEM values; n=17-25. 
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Figure 13: Average body weight of male IRS1-TapTag mice and controls over the course of 13 
weeks. Error bars depict SEM values; n=20-26. 

3.3.2 Body composition 

Body fat content was assessed at the age of 20 weeks relative to total body weight for 

female and male mice and for mice on NCD as well as on HFD. For both, controls and 

TapTag mice regardless of gender, the percentage of body fat increased significantly on 

HFD, whereas on NCD mice remained lean throughout adulthood (Figure 14). 

 

Figure 14: Average body fat content of IRS1-TapTag mice and controls at the age of 20 
weeks. Error bars depict SEM values; n=7. 

3.3.3 Epigonadal fat pad weight 

The complete epigonadal fat pad was weighed after dissection and its weight was 

unchanged between IRS1-TapTag animals and wildtypes, for both NCD and HFD 
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(Figure 15). Comparing mice fed NCD with those fed HFD, a significant increase in fat pad 

weight was observed. 

 

Figure 15: Average epigonadal fat pad weight of IRS1-TapTag mice and controls at the age of 
16 weeks. Error bars depict SEM values; n=8-12. 

3.3.4 Blood glucose levels 

Blood glucose was measured in mice at the age of 8 and 16 weeks and was found to be 

unchanged between female IRS1-TapTag mice and controls (Figure 16). 

 

Figure 16: Average blood glucose of female mice with ad libitum access to the respective diet. 
Error bars depict SEM values; n=14-19. 

 

Accordingly, blood glucose levels were similar for male IRS1-TapTag mice and controls of 

different age and when fed different diets (Figure 17). 

0,0 

0,2 

0,4 

0,6 

0,8 

1,0 

1,2 

1,4 

1,6 

1 2 3 4 

ep
ig

on
ad

al
 fa

t p
ad

 w
ei

gh
t (

g)
 

WT 

TapTag 

*** *** 

NCD NCD HFD HFD 
females males 

0 

20 

40 

60 

80 

100 

120 

140 

160 

 
NCD week 

8 

 
NCD week 

16 

 
HFD week 

8 

 
HFD week 

16 

bl
oo

d 
gl

uc
os

e 
(m

g/
dL

) 

WT 
TapTag 

week 8 week 8 week 16 week 16 
NCD HFD 



   
3 Results   

 58 

 

Figure 17: Average blood glucose of male mice with ad libitum access to the respective diet. 
Error bars depict SEM values; n=16-24. 

 

In addition, fasting blood glucose levels were measured at the age of 12 weeks while 

preparing fasted mice for glucose tolerance test. In fasted mice, blood glucose levels 

were comparable for IRS1-TapTag mice and controls, both on NCD and on HFD 

(Figure 18). 

 

Figure 18: Average blood glucose of fasted mice at the age of 12 weeks. Error bars depict 
SEM values; females: n=13-19; males: n=19. 
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3.3.5 Glucose tolerance 

In order to assess systemic glucose tolerance of IRS1-TapTag mice, the animals were 

fasted overnight at the age of 12 weeks and a bolus of glucose was intraperitoneally 

injected. Reaction to a glucose stimulus was mirrored in the blood glucose level, which 

reflects the responsiveness of peripheral organs to clear glucose from the blood 

(Figure 19, Figure 20). Glucose tolerance was unchanged between female IRS1-TapTag 

mice and controls, but a significant decrease in glucose sensitivity was observed in HFD 

fed female mice (Figure 19). 

 

Figure 19: Blood glucose levels of female mice in response to a bolus injection of glucose in a 
glucose tolerance test. Error bars depict SEM values; n=17-24. 

For male IRS1-TapTag mice, higher blood glucose values and thus a decreased 

peripheral glucose response was measured for HFD-fed IRS1-TapTag mice and controls 

compared to IRS1-TapTag mice on NCD (Figure 20). However, control mice on NCD 

responded similar to mice on HFD, which indicates that these mice reacted with a 

reduced peripheral response to the glucose stimulus. 
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Figure 20: Blood glucose levels of male mice in response to a bolus injection of glucose in a 
glucose tolerance test. Error bars depict SEM values; n=20-27. 

 

3.3.6 Insulin tolerance 

Insulin tolerance of peripheral organs of IRS1-TapTag mice was evaluated for random-fed 

mice by the intraperitoneal injection of an insulin bolus. Values of blood glucose after the 

injection reflect the response of the peripheral organs to the insulin stimulus. 

Female IRS1-TapTag mice and controls on HFD responded to the same extent to the 

insulin stimulus (Figure 21). In addition, female IRS1-TapTag mice on NCD showed a 

tendency to increased insulin sensitivity when compared to controls on NCD and female 

mice on HFD. However, the statistical analysis did not reveal a significant difference. 

For male mice, insulin sensitivity was comparable between IRS1-TapTag mice and 

controls. Furthermore, the initial response to insulin was decreased in HFD-fed animals for 

the first time point measured 15 minutes after the injection (Figure 22). 
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Figure 21: Blood glucose levels of female mice in response to a bolus injection of insulin in an 
insulin tolerance test. Error bars depict SEM values; n=15-23. 

 

 

Figure 22: Blood glucose levels of male mice in response to a bolus injection of insulin in an 
insulin tolerance test. Error bars depict SEM values; n=23-27. 

3.3.7 Influence of IRS1 on metabolic phenotype 

As added expression of IRS1-TapTag from the transgenic allele increases the overall 

amount of available IRS1 (Figure 10), an increased response to the insulin signal mediated 

by additional IRS1 was a substantial concern. However, the phenotyping data indicate 

that additional expression of IRS1 from the ROSA-CAGS-IRS1-TapTag allele has no effect 

on the measured metabolic characteristics (Figure 12-Figure 22). 
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33..44  PPrrootteeoommiicc  aannaallyyssiiss  ooff  IIRRSS11  iinntteerraacctt iioonnss  

3.4.1 Sample generation 

Proteomic analysis of the IRS1 interactome was performed on mouse liver protein lysates. 

Both, control wildtype mice and IRS1-TapTag mice were used for the analysis. Groups 

were split into mice receiving normal chow diet or high fat diet. And furthermore, mice of 

each group were either treated with sodium chloride or insulin on the day of the 

experiment. 

To this end, a set of 24 hepatic protein extracts was collected originating from 24 mice. 

The set included 12 controls and 12 IRS1-TapTag mice of which 6 were fed NCD diet 

and 6 were fed HFD (Figure 23). Animals were fasted overnight, and three animals of each 

group were stimulated either by sodium chloride or insulin injection into the 

vena cava inferior of anesthetized mice. 

 

 

Figure 23: Scheme of different conditions applied for a set of 24 mice. 
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3.4.2 Verification of insulin signaling 

For Western blot confirmation, protein lysates of all 24 samples were compared regarding 

their protein content (Figure 24). In TapTag animals, extra bands are detected for 

IRS1-TapTag. While p85 and total Akt content remains unchanged, the appearance of 

pAkt in insulin stimulated samples indicates functional insulin signaling downstream of 

IRS1 as a verification of vena cava injection of insulin. Additionally, #-Actin levels reflect 

equal total protein content of all 24 samples. 

 

Figure 24: Western blot analysis of protein lysates used for affinity purifications and 
subsequent mass spectrometry analysis. Western blot was probed with IRS1 
antibody, revealing endogenous IRS1 and IRS1-TapTag, p85 antibody and pAkt 
antibody as a marker for activated insulin signaling downstream of IRS1. 
Additionally, Akt and #-Actin serve as loading control. 

3.4.3 Streptavidin affinity purification 

One-step affinity purifications were carried out using the streptavidin binding peptide of 

the TapTag. Performance of the experiment was routinely checked by Western blot 

analysis of various fractions of the purifications (Figure 25). In the initial protein input both, 

endogenous IRS1 and p85 are detected, while in the TapTag sample an additional band 

for IRS1-TapTag appears. As expression levels were similar in heterozygous 

IRS1-TapTag mice (Figure 10), in livers of homozygous IRS1-TapTag mice expression of 

IRS1-TapTag exceeds the expression of endogenous IRS1 (Figure 25). After the binding 

step, IRS1-TapTag has bound to the beads. However, residual IRS1-TapTag is detected 

in the unbound protein fraction due to limited capacity of the beads. Moreover, both 

endogenous IRS1 and unbound p85, or p85 initially bound to endogenous IRS1, are 

removed from the mixture. After two washing steps, no further IRS1 or p85 are removed 

from the beads, and finally, elution with biotin displaces IRS1-TapTag with bound proteins 

from the streptavidin beads. 

Whether the biotin elution was effectively removing all bound bait protein was not 

conclusive from the biotin eluate only, and thus, after biotin elution, beads were boiled in 
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SDS sample buffer. Proteins recovered from this last fraction show the amount of protein 

not included in the analysis of interacting proteins. 

 

 

Figure 25: Representative Western blot of input, unbound protein fraction, wash fractions and 
biotin eluate of a streptavidin affinity purification. Additionally, beads were boiled 
with SDS sample buffer after elution. Blots were probed with primary antibodies 
IRS1 and p85. 

In addition, biotin eluates of all 24 purifications were analyzed on Western blots for the 

assessment of successful purification of IRS1 and co-purification of p85 (Figure 26). 

Both, IRS1 and p85 were detected in all 12 TapTag samples but not in wildtypes, 

indicating a TapTag-specific elution. 

 

 

Figure 26: Western blot analysis of biotin eluates of affinity purification. IRS1 was specifically 
purified in TapTag samples only; p85 was co-purified with IRS1-TapTag. 

 

For the proteomic analysis of IRS1 interaction profiles under conditions of diet-induced 

obesity, biotin eluates were separated on gradient gels and lanes of the Coomassie 

stained gel were cut in 10 slices each (Figure 27). From Coomassie stained gels, 

differences in band patterns between experimental conditions were not apparent, 

however, the overall protein content in wildtype samples seemed reduced. 
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Figure 27: Coomassie gradient gels with all 24 biotin eluates prepared for subsequent mass 
spectrometry analysis. On the left, numbers reflect molecular weight (kDa) in protein 
marker (A). On the right, horizontal lines indicate the gel slices cut for in-gel trypsin 
digest (D). 

3.4.4 Mass spectrometry and label-free quantification 

A total of 809 different proteins were identified in nano-LC-ESI-MS/MS experiments, while 

three proteins were listed as “putative uncharacterized protein” and remained unidentified 

(Table 8-S). Skin-derived keratins were considered contaminants and thus were excluded 

manually from the list. Proteins identified in wildtype samples with an average intensity 

above 5x106 were considered unspecific and also excluded from the analysis. 

Lower and upper limits for intensity ratios were defined to eliminate mathematically 

misleading ratios from the list and to narrow the distribution of the results. This was 

necessary to display ratios for protein interactions with IRS1 that were not detectable in 

one of the conditions and were therefore assigned values of zero. A maximum of 50 was 

defined to replace all conditions in which the respective protein was not detected in HFD 

or insulin samples. In analogy, a minimum of 0.02 was set for conditions in which proteins 

were not detected in NCD or sodium chloride samples. 

Average intensities, calculated as average between NCD and HFD and NCD/HFD ratios 

for identified interacting proteins in samples from either NaCl- or insulin-treated mice were 

displayed as scatter plots on logarithmic scale (Figure 28). Respective values for IRS1 
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were marked individually. Proteins found at a ratio of 1 were unchanged between NCD 

and HFD biotin eluates. Higher ratios represent a decrease of interaction on HFD, while 

lower ratios indicate an increased interaction on HFD. In biotin eluates from NaCl-treated 

mice, 697 potentially interacting proteins were identified, while in the biotin eluates from 

insulin-treated mice, 646 proteins were identified. 

 

 

Figure 28: Scatter plot of identified interacting proteins after NaCl and insulin treatment. 
Proteins with a log ratio of 1 were found to be associated to IRS1 in comparable 
amounts on both, NCD and HFD. Below a log ratio of 1, protein interaction with 
IRS1 was increased on HFD compared to NCD and above 1 the interaction was 
decreased on HFD. 

Additionally, ratios comparing NaCl and insulin samples were summarized in a scatter plot 

showing individual values for samples from NCD and HFD mice (Figure 29). 

Again, respective values for IRS1 were marked individually. In biotin eluates from NCD-fed 

mice, 717 potentially interacting proteins were identified, while in the biotin eluates from 

HFD-fed mice, 595 proteins were identified. 
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Figure 29: Scatter plot of identified interacting proteins for NCD- and HFD-fed mice. 

Intensity and ratio for significant changes in IRS1 interactions were extracted and plotted 

separately (Figure 30, Figure 31). 

Overall, comparing NCD and HFD mice, IRS1 interaction with 106 proteins was 

significantly altered between the conditions. For the set of NaCl treated TapTag mice, 

13 proteins interacting with IRS1 were significantly increased upon HFD feeding as 

analyzed by Student’s t test, while 53 proteins were significantly decreased. On the other 

hand, in insulin-treated TapTag mice, administration of HFD led to a significantly increased 

interaction of 25 proteins with IRS1 and also a significantly decreased IRS1 interaction of 

15 proteins was detected in HFD-fed mice treated with insulin 

(Figure 30, Table 6). 
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Figure 30: Scatter plot of IRS1 interacting proteins, significantly changed between NCD and 
HFD. 

 

 

Table 6: IRS1 interacting proteins identified in biotin eluates of affinity purifications, which 
significantly varied between NCD controls and mice fed HFD. Ratio NCD/HFD: ratio 
of average intensities, average intensity: arithmetic mean of NCD and HFD 
intensities, significance assessed by Student’s t test. 

protein 
ratio 
NCD/HFD 

average 
intensity 

significance 
(p-value) 

NNaaCCll::   ii   nn  cc  rr  ee  aa  ss  ee  dd      bb  yy      HH  FF  DD  
Ribonuclease UK114 0,02 536552 0,00082428 

5-hydroxyisourate hydrolase 0,02 71863 0,00652843 
D-dopachrome decarboxylase 0,02 211857 0,03657367 
Igh protein 0,11 436829 0,00713017 
ATP-dependent RNA helicase A 0,20 184493 0,03500638 
Heterogeneous nuclear ribonucleoprotein A3 0,26 1113210 0,03767205 
Regulator of chromosome condensation 1 0,29 188720 0,03577194 

14-3-3 protein beta/alpha 0,39 659837 0,01100881 
Beta III spectrin 0,49 1045487 0,01664590 
Aldehyde dehydrogenase family 3, subfamily A2 0,49 680903 0,02175244 
60S ribosomal protein L23 0,65 2580067 0,01319390 
Formimidoyltransferase-cyclodeaminase 0,65 315258 0,04814504 
Radixin 0,71 788105 0,01281583 

NNaaCCll::   dd  ee  cc  rr  ee  aa  ss  ee  dd      bb  yy      HH  FF  DD  
Probable urocanate hydratase 1,47 346642 0,03367752 
Tubulin beta-2C chain 1,61 3754567 0,01960744 
Glyoxylate reductase/hydroxypyruvate reductase 1,71 172293 0,01450478 
Sarcosine dehydrogenase, mitochondrial 1,72 833153 0,03480824 
Cytochrome P450 2F2 1,75 616523 0,00499669 
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protein 
ratio 
NCD/HFD 

average 
intensity 

significance 
(p-value) 

NNaaCCll::   dd  ee  cc  rr  ee  aa  ss  ee  dd      bb  yy      HH  FF  DD  (continued) 

10-formyltetrahydrofolate dehydrogenase 1,99 2442150 0,00805952 
Endoplasmin 2,03 957012 0,03475376 

Succinate dehydrogenase subunit A 2,03 484232 0,00394639 
ATP synthase subunit b, mitochondrial 2,10 2563650 0,03137530 
ATP synthase subunit delta, mitochondrial 2,38 1521188 0,02684807 
Cytochrome P450 2C29 2,64 291608 0,04791424 
Aspartate aminotransferase 2,85 291290 0,03536053 
ATP synthase subunit gamma, mitochondrial 3,20 891683 0,00910801 

Cytochrome P450 2D9 4,34 68001 0,03134083 
3-alpha-hydroxysteroid dehydrogenase type 1 4,54 141862 0,03804481 
60S ribosomal protein L10a 4,61 162235 0,02671896 
Estradiol 17-beta-dehydrogenase 8 4,67 87320 0,02472089 
Cathepsin Z 4,75 93385 0,03147981 
Cytochrome P450 2C50 4,77 107135 0,03699983 

C-1-tetrahydrofolate synthase, cytoplasmic 4,92 215268 0,03326627 
Mannosyl-oligosaccharide glucosidase 5,06 216000 0,01588389 
Rab GDP dissociation inhibitor beta 5,20 157467 0,01465577 
Voltage-dependent anion-selective channel protein 2 5,80 76237 0,02383055 
Cytochrome P450 2D10 6,19 224823 0,00989160 
Receptor of activated protein kinase C 1 8,98 661152 0,00936571 

Mitochondrial import TIM50 50,00 58462 0,00000925 
Ribophorin-1 50,00 143137 0,00002744 
Fatty acid synthase 50,00 99465 0,00005099 
Aldo-keto reductase family 1 member C13 50,00 53139 0,00007597 
Neutral alpha-glucosidase AB 50,00 38922 0,00020581 
Cytochrome P450 4A14 50,00 86130 0,00029406 

UDP-glucose 6-dehydrogenase 50,00 117535 0,00030213 
Cytochrome P450 1A2 50,00 88078 0,00058619 
Ceruloplasmin 50,00 29511 0,00167798 
Probable D-lactate dehydrogenase, mitochondrial 50,00 85035 0,00194381 
Cystathionine gamma-lyase 50,00 125282 0,00328819 
1,4-alpha-glucan-branching enzyme 50,00 59565 0,00346123 

Cytochrome P450 3A11 50,00 323120 0,00346364 
Transaldolase 50,00 48045 0,00371966 
Apolipoprotein A-IV 50,00 28885 0,00401632 
Proliferation-associated protein 2G4 50,00 21110 0,00405390 
Diaphorase-1 50,00 194152 0,00442902 
Peroxisomal acyl-coenzyme A oxidase 2 50,00 25748 0,00476434 

T-complex protein 1 subunit gamma 50,00 62426 0,00704655 
Flotillin-1 50,00 49505 0,00778784 
Eukaryotic peptide chain release factor subunit 1 50,00 33596 0,01006718 
Ces5 protein 50,00 53039 0,01049759 
Cytochrome P450 2J5 50,00 44197 0,01125364 
Heat shock 70 kDa protein 4 50,00 137115 0,01284088 

Serine-threonine kinase receptor-associated protein 50,00 167488 0,01532933 
Plasma kallikrein 50,00 59956 0,02047452 
ATP synthase subunit alpha, mitochondrial 50,00 941383 0,03414592 
Histone H2A type 3 50,00 139057 0,04478532 
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protein 
ratio 
NCD/HFD 

average 
intensity 

significance 
(p-value) 

iinnssuull iinn::  ii   nn  cc  rr  ee  aa  ss  ee  dd      bb  yy      HH  FF  DD  
Heterogenous nuclear ribonucleoprotein U 0,10 190359 0,01780266 
Polypyrimidine tract binding protein 1 0,13 433432 0,02945082 

Cofilin-2 0,14 848842 0,01857239 
ATP-dependent RNA helicase A 0,18 129375 0,03170103 
Splicing factor, arginine/serine-rich 7 0,19 848945 0,01184797 
Heterogeneous nuclear ribonucleoprotein A/B 0,20 425652 0,00487370 
Catalase 0,23 301057 0,03385420 
Heterogeneous nuclear ribonucleoprotein D0 0,23 479819 0,00590583 

Heterogeneous nuclear ribonucleoprotein K 0,23 718155 0,02461895 
TAR DNA-binding protein 43 0,25 181852 0,00556680 
Formimidoyltransferase-cyclodeaminase 0,32 447148 0,03739451 
Heterogeneous nuclear ribonucleoproteins A2/B1 0,32 3074333 0,00065202 
Splicing factor, arginine/serine-rich 1 0,33 409842 0,02454686 
Heterogeneous nuclear ribonucleoprotein A3 0,33 924378 0,02537710 

Actin-related protein 2 0,34 995370 0,02778201 
AP-2 complex subunit alpha-1 0,37 254440 0,02100234 
Talin-1 0,41 884063 0,00224929 
AP-2 complex subunit beta-1 0,42 2150425 0,03392636 
AP-2 complex subunit alpha-2 0,45 1133193 0,02312266 
Beta III spectrin 0,45 2075550 0,02376896 

Spectrin beta chain, brain 1 0,48 4195183 0,00173724 
Myosin-9 0,56 4928417 0,00365483 
Heat shock 70 kDa protein 1B 0,65 253175 0,02075014 
Serotransferrin 0,72 869552 0,01998260 
Actin-related protein 2/3 complex subunit 2 0,79 489270 0,00550855 

iinnssuull iinn::  dd  ee  cc  rr  ee  aa  ss  ee  dd      bb  yy      HH  FF  DD  
Protein transport protein Sec24A 1,83 3649233 0,01199740 

Desmoplakin 1,85 933275 0,04816860 
Protein transport protein Sec23A 1,89 3008500 0,01276602 
Protein transport protein Sec23B 1,95 553625 0,00801024 
Acetyl-CoA carboxylase 2 2,27 7258083 0,02726718 
14-3-3 protein epsilon 2,32 6826100 0,00055545 
14-3-3 protein gamma 2,58 6778733 0,02570782 

14-3-3 protein zeta/delta 2,97 1888058 0,02156504 
Voltage-dependent anion-selective channel protein 1 4,32 154882 0,03573597 
2-oxoglutarate dehydrogenase E1 component 4,87 82876 0,02780820 
Cathepsin Z 6,16 101753 0,01375986 
Annexin A2 50,00 86342 0,00051851 
Mitochondrial 2-oxodicarboxylate carrier 50,00 38359 0,00248245 

Leucine-rich repeat-containing protein 59 50,00 118288 0,00486852 
Receptor of activated protein kinase C 1 50,00 424322 0,03037874 
 

A total of 91 protein interactions were significantly regulated comparing NaCl and 

insulin-treated samples. For NCD-fed TapTag mice, 31 protein interactions with IRS1 

were significantly increased after insulin injection as analyzed by Student’s t test, while 

34 proteins were significantly decreased. Further, in HFD-fed TapTag mice, injection of 

insulin led to a significantly increased interaction of 18 proteins with IRS1, however also 
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significantly decreased interaction of 8 proteins with IRS1 was detected in insulin-treated 

mice (Figure 31, Table 7). 

 

Figure 31: Scatter plot of IRS1 interacting proteins, significantly changed between NaCl and 
insulin treatment. 

 

Table 7: IRS1 interacting proteins identified in biotin eluates of affinity purifications, which 
significantly varied between NaCl controls and insulin-treated mice. Ratio 
NaCl/insulin: ratio of average intensities, average intensity: arithmetic mean of NaCl 
and Insulin intensities, significance assessed by Student’s t test. 

protein 
ratio 
NaCl/insulin 

average 
intensity 

significance 
(p-value) 

NNCCDD::  ii   nn  cc  rr  ee  aa  ss  ee  dd      uu  pp  oo  nn      ii   nn  ss  uu  ll   ii   nn  
Thioredoxin 0,02 134450 0,00117861 
Ribonuclease UK114 0,02 729133 0,00150522 
ATP synthase e 0,02 506705 0,02575948 
Clathrin light chain B 0,05 1188298 0,01353605 
Igh protein 0,08 592723 0,04380832 
Moesin 0,09 68282 0,02383953 

Cingulin 0,12 178828 0,01418280 
Splicing factor, arginine/serine-rich 1 0,19 121125 0,04766261 
14-3-3 beta/alpha 0,22 1019550 0,02160806 
Desmoplakin 0,24 748713 0,00620093 
Glyoxalase II 0,25 277580 0,02453758 
CytC somatic 0,27 533935 0,01858194 

Junction plakoglobin 0,34 693903 0,00094079 
Lamin-B2 0,36 262415 0,01630094 
Transcription factor A 0,37 516398 0,04842617 
Annexin A2 0,39 119748 0,04951861 
Lamin-B1 0,39 434458 0,01348655 
14-3-3 zeta/delta 0,45 2046417 0,04125169 
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protein 
ratio 
NaCl/insulin 

average 
intensity 

significance 
(p-value) 

NNCCDD::  ii   nn  cc  rr  ee  aa  ss  ee  dd      uu  pp  oo  nn      ii   nn  ss  uu  ll   ii   nn  (continued) 

Aldh4a1 0,46 820965 0,00439232 
Beta-filamin 0,51 343368 0,00170217 

14-3-3 epsilon 0,53 7291867 0,01519247 
Clathrin light polypeptide (Lca) 0,53 767798 0,00773365 
GTPase Ran 0,54 307320 0,01961267 
Vinculin 0,55 1567727 0,04312590 
Bile acid-CoA ligase 0,57 276495 0,00855864 
DEAD box protein 5 0,58 384830 0,02513798 

Carboxylesterase 3 0,59 1441168 0,01973892 
Beta-II-Spectrin 0,61 2196650 0,01256377 
Arp2/3 complex subunit 2 0,61 347507 0,00485367 
H2-Ke6 0,70 174613 0,01405080 
Peroxisomal multifunctional enzyme type 2 0,78 1467667 0,01481826 

NNCCDD::  dd  ee  cc  rr  ee  aa  ss  ee  dd      uu  pp  oo  nn      ii   nn  ss  uu  ll   ii   nn  
Probable urocanate hydratase 1,42 352187 0,03489161 

Aconitate hydratase 1,71 462282 0,00362565 
Decr1 1,81 546998 0,02424911 
Tubulin beta-2C chain 1,88 3548650 0,04251287 
Acyl-CoA oxidase 1 1,96 762773 0,02534985 
Fructose-1,6-bisphosphatase 1 2,03 2725317 0,03207546 
Thiosulfate sulfurtransferase 2,13 1051077 0,03354674 

ATP synthase subunit gamma 2,34 969185 0,01736927 
Peptidyl-prolyl cis-trans isomerase B 2,70 1498473 0,04731116 
Cytochrome P450 2D10 2,78 263298 0,04470201 
Arp2/3 complex subunit 4 3,05 794627 0,04775045 
MCG5400 3,13 1331005 0,00705186 
Peroxiredoxin-5 3,24 633710 0,03179279 

60S ribosomal protein L10a 3,29 173823 0,01542303 
Glucosidase II alpha 3,41 50339 0,01670608 
Hydroxysteroid (17-beta) dehydrogenase 13 3,56 165548 0,01330282 
Glycine N-acyltransferase 3,60 257347 0,01274160 
Aldo-keto reductase a 4,00 66415 0,04325229 
Cytochrome P450 2D9 4,17 68514 0,03644352 

CapZ alpha-1 4,67 129782 0,02933035 
Acetyl-CoA acyltransferase A 4,80 80799 0,02367134 
Nitrilase homolog 2 5,87 70833 0,01004585 
Probable D-lactate dehydrogenase 6,67 97791 0,01408472 
Perioredoxin-3 50,00 139170 0,00000064 
Succinate dehydrogenase FeS 50,00 229163 0,00000122 

UMP-CMP kinase 50,00 65172 0,00005065 
Mn SOD 50,00 177383 0,00008827 
CytP450 C27/25 50,00 82700 0,00016248 
Annexin A6 50,00 34053 0,00103924 
Sepiapterin reductase 50,00 95337 0,00313611 
Transaldolase 50,00 48045 0,00371966 

Abhydrolase domain-containing protein 14B 50,00 87375 0,00462482 
Acox2 50,00 25748 0,00476434 
GTP-binding protein SAR1b 50,00 89283 0,00700857 
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protein 
ratio 
NaCl/insulin 

average 
intensity 

significance 
(p-value) 

HHFFDD::  ii   nn  cc  rr  ee  aa  ss  ee  dd      uu  pp  oo  nn      ii   nn  ss  uu  ll   ii   nn  
ATP synthase alpha 0,02 342428 0,00002851 
Ribophorin-1 0,02 102067 0,00299000 

Plasma kallikrein 0,02 93538 0,01266945 
HSP70 0,02 135557 0,04134671 
T-complex protein 1 zeta 0,15 151233 0,00731748 
Bile acid-CoA ligase 0,17 178997 0,01361373 
Heterogeneous nuclear ribonucleoprotein F 0,19 231673 0,03756442 
Cytochrome P450 2C50 0,21 106967 0,02523418 

Talin-1 0,26 785628 0,00637427 
Cytochrome c, somatic 0,42 615958 0,03179426 
Glutaryl-CoA dehydrogenase 0,46 519525 0,03782171 
Beta-II-Spectrin 0,49 4220650 0,02219327 
Beta-III-Spectrin 0,49 2131183 0,02502917 
UDP-glucose pyrophosphorylase 0,50 347185 0,01916395 

Succinate dehydrogenase subunit A 0,54 458298 0,01067276 
Hepatic flavin-containing monooxygenase 5 0,63 368117 0,03375016 
Peroxiredoxin-1 0,68 5515283 0,04616739 
Radixin 0,83 1021058 0,04275227 

HHFFDD::  dd  ee  cc  rr  ee  aa  ss  ee  dd      uu  pp  oo  nn      ii   nn  ss  uu  ll   ii   nn  
Fructose-1,6-bisphosphatase 1 1,28 2195333 0,04220511 
Elongation factor 2 1,87 1340607 0,00738175 

Peptidyl-prolyl cis-trans isomerase A 3,27 1138043 0,03239641 
Succinyl-CoA ligase alpha 4,07 423333 0,03921015 
Succinate dehydrogenase FeS 6,06 326865 0,03193280 
Peroxiredoxin-5 6,78 387477 0,00806316 
Glycine N-acyltransferase 50,00 210707 0,00411546 
Major urinary protein 24 50,00 292803 0,01081099 
 

 

Individual analysis of average intensities for proteins detected in all four different 

conditions was conducted for wildtype and IRS1-TapTag mice in bar charts, which 

represent average interaction with IRS1. 

For IRS1 itself, no difference was detected between NaCl and insulin samples or between 

NCD and HFD samples (Figure 32, A). As expected, peptides derived from the IRS1 

protein were only found in mass spectrometry analysis of IRS1-TapTag mice and were 

absent in wildtypes. 

A known high affinity interaction between IRS1 and PI3K (Phosphatidylinositol 3-kinase) 

(70) was used for verification in this study. Different isoforms of the subunits of the PI3K 

complex, p85" and # (Figure 32, B and C), as well as p110" and # (Figure 32, D and E) 

were detected in TapTag samples but not in wildtypes. IRS1 interaction with the 

regulatory subunit p85, also used as verification in Western blots of affinity purifications 

(Figure 25), was increased for p85" after insulin treatment as compared to 
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NaCl treatment (Figure 32, B), although the difference was not statistically significant. 

IRS1-p85# interaction showed a tendency towards increased association after insulin 

treatment (Figure 32, C). Moreover, interaction of IRS1 with the catalytic subunit p110 

seemed to be largely depending on the insulin signal, as only low levels of basal 

IRS1-p110" interaction were detected in NaCl samples (Figure 32, D) and p110# only 

associated with IRS1 after insulin treatment (Figure 32, E). 

Remarkably, five members of the 14-3-3 family interact with IRS1 in TapTag livers in all 

four conditions, while 14-3-3 proteins were absent in wildtype biotin eluates 

(Figure 33, B and D) or detected only at low levels (Figure 33, A, C and E). Overall, 

interaction of 14-3-3 proteins and IRS1 was increased after insulin stimulation on NCD. 

Basal interaction in NaCl samples was comparable between NCD and HFD. However, 

HFD feeding blunted insulin-stimulated interaction of IRS1 and 14-3-3 proteins. 
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A 

                  

B          C 

   

D          E 

   

Figure 32: Label-free quantification of bait protein IRS1 (A) and identified subunits of the 
known interacting protein phosphatidylinositol 3-kinase. Interactions with " (B) and 
# isoforms (C) of regulatory subunit p85 were detected as well as interactions with 
the catalytic subunits p110 " (D) and # (E). 
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A 

                    

B          C 

   

D          E 

   

Figure 33: Label-free quantification of members of the 14-3-3 protein family. 14-3-3! (A),  
14-3-3"/# (B), 14-3-3$ (C), 14-3-3% (D) and 14-3-3&/' (E) were found in biotin 
eluates of TapTag samples. 
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In contrast, IRS1 interaction with tyrosine-protein kinase Lyn was increased after insulin 

treatment in HFD-fed mice (Figure 34). In NCD samples, both after NaCl and insulin 

treatment, interaction was similar. However, despite the fact that no peptides 

corresponding to Lyn protein were detected in wildtype biotin eluates, comparing Lyn 

average intensities among TapTag samples, the detected difference was not statistically 

significant. 

           

Figure 34: Label-free quantification of tyrosine-protein kinase Lyn. 

 

Taken together, a number of protein associations with IRS1 seem to be increased upon 

insulin treatment, however this effect was more pronounced on NCD than on HFD. 

Furthermore, the proteins more closely examined, like subunits of PI3K and the 

14-3-3 protein family, show an association pattern that suggests an increased association 

with IRS1 upon insulin signaling, which was blunted on HFD. 
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partners were verified on Western blots in lysates and eluates of the streptavidin 
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p110#, 14-3-3! and 14-3-3&/' were detected in all groups. In contrast, p85", QSK, PKC, 

and Lyn were mildly increased in HFD lysates (Figure 35, A). In biotin eluates obtained 

after streptavidin purification of IRS1-associated complexes, all of those proteins were 

verified by Western blot analysis (Figure 35, B). 
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signaling both in NCD and HFD conditions. This effect was even more pronounced for 

p110" and p110#, which both showed low association with IRS1-TapTag in unstimulated 

conditions, i.e. in livers of mice treated with sodium chloride, on NCD and HFD, whereas 

interaction of IRS1-TapTag with p110" and p110# drastically increased upon insulin 

signaling in NCD samples. Interestingly, this effect was blunted in livers of insulin-treated 

HFD-fed mice. 

Further, 14-3-3! was found to interact with IRS1-TapTag, however, while the association 

of these proteins was elevated in NCD compared to HFD, association after sodium 

chloride and insulin treatment was similar on HFD. These findings were in contrast to the 

results suggested by label-free quantifications of mass spectrometry measurements, 

where the highest interaction between IRS1 and 14-3-3! was found in livers of 

insulin-treated NCD-fed mice (Figure 33, A). 

14-3-3&/' was found in both mass spectrometry and Western blot analyses in lower 

amounts than 14-3-3!. Furthermore, mass spectrometry results suggest that 14-3-3&/' 

associates with IRS1 in a similar pattern as 14-3-3! across all experimental groups 

(Figure 33, E). But, as for 14-3-3! in Western blots of biotin eluates this was not 

confirmed (Figure 35, B). 

 

 

      A   Lysates            B   Eluates 

 

Figure 35: Western blot analysis of putative IRS1 interaction partners in IRS1-TapTag liver 
lysates and eluates after streptavidin purification; lysates from NCD- and HFD-fed 
mice were tested in NaCl- and insulin-stimulated conditions. 
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increased in HFD conditions, while label-free quantifications suggested levels, which were 

not significantly altered (Figure 34). 

Interaction of PKC and IRS1-TapTag was shown previously (75) and was verified in this 

study by Western blots of biotin eluates of streptavidin purifications. No obvious 

differences were detected comparing the different experimental groups, but overall levels 

of PKC were low in all biotin eluates. 

In addition, serine/threonine-protein kinase QSK (salt-inducible kinase 3, SIK3) was 

identified by mass spectrometry among the putative interacting proteins of IRS1 in all 

samples obtained from IRS1-TapTag mice. In lysates of livers of IRS1-TapTag mice QSK 

was identified with a mild increase in HFD-fed mice, while differences between sodium 

chloride and insulin treatments were not detected. In eluates of streptavidin purifications 

QSK was clearly identified in only one NCD-fed mouse treated with sodium chloride and 

only one HFD-fed mouse treated with insulin. 

In summary, p85", p85#, p110", p110#, QSK, PKC, Lyn, 14-3-3! and 14-3-3&/', initially 

identified in mass spectrometry, were verified by Western blot analysis. 

33..55  RRoollee  ooff  1144--33--33!!   iinntteerraacctt iioonn  wwiitthh  IIRRSS11  

14-3-3! knockdown experiments were performed in order to further characterize the role 

of 14-3-3! in insulin signaling. Hepa 1-6 cells treated with control siRNA or 

14-3-3! siRNA were compared with untreated cells (Figure 36). In cells with reduced 

14-3-3! content, IRS1 protein content was decreased, however, this had no detectable 

influence on IRS1 phosphorylation, as indicated by unchanged tyrosine (pTyr) and serine 

phosphorylation (pSer307 IRS1). Moreover, insulin receptor tyrosine phosphorylation (pIR) 

was unchanged, i.e. pIR was efficiently increased after the treatment of the cells with 

insulin. Also downstream signaling was unaffected, as the phosphorylation states of pAkt 

and pGSK3#, after insulin treatment of the cells, were comparable to the control cells. 



   
3 Results   

 80 

 

Figure 36: Western blot analysis of Hepa 1-6 cells. Content of the indicated proteins in control 
cells and after 14-3-3! siRNA knockdown. 

 

In summary, these results indicate a possible role of 14-3-3! in the regulation of 

IRS1 stability, but not in the functional regulation of downstream signaling. 
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44  DDiissccuussssiioonn  

Obesity, insulin resistance and type 2 diabetes are closely associated pathologies. In the 

pursuit of the underlying mechanisms leading to the development of insulin resistance 

upon overweight or obesity, numerous mouse models have been used to study 

loss-of-function scenarios. Not only whole body knockouts of the insulin receptor, (155) 

as well as IRS1 (87, 88) and IRS2 (89) have been studied. But also the respective 

conditional knockouts in an organ-specific setup contributed to the understanding of the 

distinct roles of those central signaling components (45, 90, 196, 197). While knockout 

studies concentrated on the role of single proteins, new methods have been explored to 

characterize the IRS proteins. In recent years the advantages brought about by the vast 

improvements made in mass spectrometry-based proteomic methods, have been utilized 

to examine IRS1 interactions and phosphorylations. 

In this study, a combination of a streptavidin-specific affinity purification of IRS1, mass 

spectrometric identification and subsequent label-free quantification analysis of interacting 

proteins was applied in order to detect regulatory differences between normal body 

weight conditions and diet-induced obesity in basal and insulin-stimulated states. To this 

end, a construct expressing IRS1-TapTag was stably integrated in the ROSA26 locus. 

Expression was controlled by the CAGS promoter and only enabled after cre-mediated 

recombination. As the liver is one of the main organs in the development of insulin 

resistance, in order to examine liver-specific interactions of IRS1, the Alfpcre mouse line 

was used to enable liver-restricted expression of IRS1-TapTag. 

44..11  IImmppll iiccaatt iioonnss  ooff  ttrraannssggeenniicc  eexxpprreessssiioonn  ooff  

IIRRSS11--TTaappTTaagg  oonn  tthhee  mmeettaabbooll iicc  pphheennoottyyppee  

The additional expression of a protein primarily mediating major metabolic and proliferative 

effects of insulin signaling, like IRS1, implies potential alterations in the overall 

physiological state. Thus, the phenotype related to insulin and glucose metabolism was 

analyzed for mice expressing IRS1-TapTag in hepatocytes in comparison to control mice.  

As intended, additional expression of IRS1-TapTag was restricted to livers of 

IRS1-TapTag mice. Altogether, the overall amount of available IRS1 is increased in liver of 

IRS1-TapTag mice in comparison to the physiological situation observed in the liver of 

wildtype mice, bearing the potential to possibly alter the physiology of insulin signaling. 
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As expected, female and male mice gained more weight on HFD compared to NCD, had 

larger epigonadal fat pads and exhibited an overall increase in body fat content. However, 

no differences were observed between wildtype and IRS1-TapTag mice. These findings 

suggest that the transgenic expression of IRS1-TapTag in the liver neither affects physical 

parameters of body composition, nor changes body weight. 

Further, the finding that regulation of blood glucose remains unchanged, rules out that 

additional hepatic expression of IRS1-TapTag had any aberrant effect on hepatic glucose 

production. As also, the clearance of glucose from the blood, as seen in the glucose 

tolerance test was unaltered between the genotypes, hepatic IRS1-TapTag 

overexpression seems not to affect general glucose metabolism. In line with this, 

IRS1-TapTag mice responded similar to an insulin challenge, indicating that these mice 

also exhibit unaltered insulin sensitivity. 

Previous studies indicate a role for increased levels of IRS1 in the regulation of neoplastic 

transformation (198), tumorigenesis and metastasis (199) in various organs. However, this 

was not observed in the hepatic IRS1-TapTag mouse model. An explanation for this can 

be the amount of IRS1 overexpression used in the latter study, which produced increases 

of IRS1 of up to 9 fold (200), whereas amounts of IRS1-TapTag in livers of transgenic 

IRS1-TapTag mice only increased mildly. 

Taken together, these findings indicate that in the IRS1-TapTag mouse model, due to the 

additional transgenic expression of IRS1-TapTag, total IRS1 levels were increased, but an 

effect on physiological parameters was not observed, thereby suggesting that all further 

results can be attributed to the performed treatments, i.e. feeding with NCD or HFD and 

injection of sodium chloride or insulin and are not likely caused by artifacts of any 

component of the transgene. 

44..22  IIRRSS11  iinntteerraacctt iioonnss  

Numerous studies have shown the complex regulation of insulin signaling on the level of 

the IRS proteins. Altogether, from the 809 proteins identified, 30 IRS1 interacting proteins 

of the previous studies (130, 133, 175) were confirmed by the affinity purification and 

mass spectrometry approach used in this study. In 54 additional cases the identified 

proteins were closely related to previously known interactions, i.e. they belonged to the 

same protein family or were different isoforms. This accounts for a total of 3.7% 

(6.7% for similar isoforms) of previously known IRS1 interactions identified in previous 

proteomic studies. 
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4.2.1 Phosphatidylinositol-3 kinase interaction 

In the past, the interaction of IRS1 with the p85 subunit of the PI3K has been studied 

extensively. PI3K regulatory subunits associate with IRS1 upon insulin signaling (66). 

In this study, the IRS1-p85 interaction occurred with high variance within the different 

experimental groups and thus, only a tendency for increased association upon insulin 

signaling was observed. Overall, the association of IRS1 and p85 subunits was 

unchanged between NCD and HFD. However, HFD blunted the insulin-stimulated 

association of p110" and #. So far, p110 association with IRS1 was described to be 

secondary through p85 (66). 

Total regulatory p85 exists in two different forms, p85", which makes up about 

70-80% of total p85 content of the cell and p85#, which accounts for the rest (201). 

Therefore, low levels of p85# detected in Western blots were expected in liver lysates. In 

contrast, upon purification with IRS1, p85# was clearly detected. 

In accordance with previous findings reported in the literature, in this study p85" levels in 

livers of HFD-fed animals were increased as compared to levels on NCD (201, 202). 

Within the cell, an equilibrium of p85 monomers and p85-p110 complexes exists. While 

p110 levels remain similar, an increase of p85 induced by HFD may disturb the 

equilibrium and shift the balance towards an increased amount of p85 monomers (201). 

Since p85 and p85-p110 complexes compete for the same binding site on IRS1, 

ultimately this will reduce PI3K signaling. Supporting this fact, in mice with heterozygous 

deletion of p85", improved insulin sensitivity is observed (203). Similar findings were 

reported for mice lacking p85# (204). 

Since increases in the predominant subunit p85" have been reported previously (201, 

202) and in this study p110 levels remained unchanged in liver lysates across the different 

experimental groups, the lack of p110 association to IRS1 upon insulin treatment in 

HFD-fed IRS1-TapTag mice may be attributed to a competitive hindrance of p85-p110 

complexes by free p85 monomers. However, the increase of p85" expression upon HFD-

feeding is rather moderate in this study, whereas the repression of p110 association upon 

insulin signaling in HFD mice is highly pronounced. Therefore, other proteins may be 

involved in the regulation of the association of IRS1, p85 and p110 or even the differential 

phosphorylation state of IRS1 may influence p110 binding. 

Taken together, after insulin stimulation of HFD-fed mice, the reduction of p110" and 

p110# associated to IRS1 and p85 may prevent further PI3K signaling and thereby may 

play a role in the development of insulin resistance. 
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On a methodological level, the appearance of PI3K components validates the adequate 

purification of IRS1-associated complexes. 

4.2.2 14-3-3 protein interaction 

Moore and Perez discovered the first members of the 14-3-3 protein family in 1967. 

The 14-3-3 proteins have since been found across mammalian species, with high 

amounts in brain and lower amounts in all other tissues examined so far. Moreover, the 

14-3-3 proteins are conserved not only among mammals, but also among plants, insects, 

amphibians, and yeast. To date, 7 different isoforms have been identified (205). 

14-3-3 proteins are involved in various cellular signaling processes like tryptophan and 

tyrosine hydroxylase activation, regulation of phospholipase A2, inhibition of PKC, 

activation of Ca2+-dependent kinases and various signaling outcomes like regulation of 

growth in yeast and neurotransmitter synthesis in mammals (205). 

The ability of the 14-3-3 proteins to form homodimers and heterodimers consequently led 

to the proposal for a function of 14-3-3 dimers as adaptors bringing together distinct 

regulatory proteins (206). 

Further, 14-3-3! is a known interaction partner for IRS1 (63) and IGF-1R depending on 

the phosphorylation of serine residues as established by yeast-two-hybrid screens (207). 

The interaction of 14-3-3# with IRS1 was previously shown to increase upon insulin 

treatment in 3T3 L1 adipocytes, thereby reducing IRS1-PI3K association (208). 

Eventually, binding of 14-3-3 proteins to IRS1 was attributed to phosphorylated serine 

residues in the PTB domain of IRS1 (209). Based upon this finding, an additional 

mechanism was proposed by which the IRS1-14-3-3 protein complex may also induce 

insulin resistance through hindrance of insulin receptor-IRS1 binding via the PTB domain 

of IRS1. 

As a means of regulation, 14-3-3 association with IRS1 is able to regulate intracellular 

localization and trafficking of IRS1 (210), suggesting a close relationship with cytoskeletal 

proteins. 

Recently, an epitope tagging strategy was applied for Chico, the IRS homologue in 

Drosophila melanogaster, identifying 14-3-3! and & as well as insulin receptor to be 

increasingly associated with IRS1 upon insulin signaling (211). In the same study in two 

analyses another 64 and 75 proteins were identified as IRS1 interaction partners, 

11 of which were also found after streptavidin affinity purifications of IRS1-TapTag in 

mouse livers, suggesting the existence of a protein complex consisting of IRS1, 14-3-3 

and the respective proteins identified in both, mouse liver and fruit flies. 
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In label-free quantifications of mass spectrometry results in this study, a conserved 

pattern of IRS1 interaction in liver was found for five different 14-3-3 isoforms. 

Consistently, 14-3-3 interaction of the !, "/#, $, % and &/' isoforms with IRS1 was notably 

increased upon insulin treatment in NCD conditions, an effect which was blunted in 

HFD conditions. However, Western blot analysis of 14-3-3! and 14-3-3&/' did not 

reproduce the pattern seen in mass spectrometry, maybe due to sample deterioration 

after storage. 

Nevertheless, in this study for the first time, the IRS1-14-3-3 protein interaction in liver 

was verified by in vivo proteomics. 

In siRNA knockdown experiments, lack of 14-3-3! reduced the overall amount of IRS1 

upon insulin treatment. However, this had no detectable consequences on insulin 

signaling, as reflected by pAkt and pGSK3# levels. For the experiment, Hepa 1-6 cells 

were used, which are a cell model resembling hepatocytes. Since in the liver IRS2 

function is induced in parallel to IRS1 signaling, levels of activated downstream 

components like pAkt and pGSK3# may be kept at regular levels through IRS2 signaling. 

4.2.3 Novel mechanism for the modulation of 

IRS1 serine phosphorylation 

Recently, interaction between IRS1, protein kinase C" (PKC") and 14-3-3! has been 

established in NIH-3T3 cells (75). As reflected by 14-3-3! knockdown experiments in the 

same study, insulin action is diminished upon reduced 14-3-3! through downregulation of 

tyrosine phosphorylation of insulin receptor and IRS1. The additional knockdown of PKC" 

reversed the effects of the 14-3-3! knockdown. Interestingly, this interaction seems to be 

specific for the 14-3-3! isoform. 

Neither PKC" nor any PKC isoform were detected among the interacting proteins of IRS1 

by mass spectrometry. However, association of total PKC and IRS1 was shown by 

Western blot analysis of biotin eluates. This inconsistency may be explained by 

considering the variety of different PKC isoforms. The abundance for each isoform may 

have been below the detection limits of the mass spectrometry procedure, while, in 

Western blot analysis the presumably higher total PKC content was assessed by the use 

of a pan-PKC antibody. 

Another PKC isoform, PKC) is known to phosphorylate IRS1 at Ser1101, thereby 

inhibiting insulin signaling (74). In a similar mechanism, the association of PKC" could lead 

to the modulation of insulin signaling on the level of IRS1 (Figure 37, A). Based on this 

assumption the role of 14-3-3! in the complex would then be to serve as adaptor protein, 
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mediating the association of the two proteins maybe even regulating the relative 

localization within the cell. 

Here, a similar but novel mechanism is proposed also for IRS1 association with 14-3-3&/' 

and the serine/threonine kinase salt-inducible kinase 3 (SIK3 or QSK) (Figure 37, B). 

QSK, a member of the AMPK-activated protein kinase subfamily, is activated by 

serine/threonine kinase liver kinase B1 (LKB1), a kinase also targeted by Fyn (212). 

Furthermore, 14-3-3 and LKB1 together regulate the activity and localization of QSK and 

SIK (213). Moreover, salt inducible kinase 2 (SIK2 or QIK) phosphorylates IRS1 on Ser789 

in adipocytes, on the same residue also phosphorylated by AMPK, an effect that was 

increased in diabetic animals (214). 

Taken together, this study provides an explanation for the considerable involvement of 

14-3-3 proteins in insulin signaling, namely through the interaction with IRS1 and further 

provides a hypothesis for a novel interaction of IRS1, 14-3-3&/' and QSK. The resulting 

protein complex may serve to regulate insulin signaling by the modulation of serine 

phosphorylation on IRS1. 

  A                  B 

 

Figure 37: Role of 14-3-3! and possible role of 14-3-3"/# in the modulation of serine/threonine 
kinases PKC and QSK. IRS1 as a known target for serine phosphorylation in the 
IRS1–PKC"–14-3-3! complex, possibly on Ser1101 (A). Proposed model for the 
hypothetical complex formation and novel proposed interaction of IRS1, QSK and 
14-3-3"/# with possible phosphorylation on Ser789 (B). 

Maybe on a superordinate level, through the activation of LKB1 also Lyn plays a role in 

the activation of the 14-3-3-modulated regulation of kinases on IRS1, ultimately 

modulating insulin signaling. 
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partner of IRS1. So far, a possible interaction of IRS1 and Lyn has not been described. 
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Label-free quantifications suggest an increased association of IRS1 and Lyn upon 

HFD-feeding. However, the difference was not significant. Nevertheless, Lyn is a 

promising candidate for further analysis, as it closely resembles Fyn on a structural level. 

Fyn is known to bind tyrosine-phosphorylated IRS proteins via its SH2 domain (215). 

Moreover, Fyn has recently been shown to regulate energy expenditure and fatty acid 

oxidation in skeletal muscle and adipose tissue via serine/threonine kinase LKB1 and 

subsequent AMP-activated protein kinase (AMPK) activation (212). As in Fyn knockout 

experiments higher energy expenditure and fatty acid oxidation rates were observed, the 

role of increased Lyn association with IRS1 upon HFD may likely lead to the reversed 

outcome, i.e. reduced energy expenditure and fatty acid oxidation, further aggravating 

overweight. 

4.2.5 Nuclear protein interactions 

Streptavidin affinity purifications were performed on whole-cell lysates. Nuclear proteins 

found in the streptavidin affinity purification analysis can be explained considering that 

upon IGF-1 signaling, IRS1 was recently found to localize to the nucleus (216-218). 

This study identified several transcription factors associated with IRS1 and it is known that 

IRS1 triggers transcriptional processes in the nucleus. Upon translocation to the nucleus, 

IRS1 can bind upstream binding factor 1 (UBF1) a regulator of RNA polymerase I (219), 

thereby regulating the synthesis of ribosomal RNA (217) and ultimately cell size (220). 

Furthermore, IRS1 plays a role in cell cycle progression. Through a novel mechanism, 

IRS1 seems to bind directly to regulatory DNA elements to drive transcription of target 

genes involved in mitogenic and anti-apoptotic regulation (221). Additional binding 

proteins may be involved in different signaling outcomes for IRS1 in the nucleus, and 

further investigation of the nuclear proteins identified here will be needed to elucidate the 

possible role of nuclear IRS1 signaling in the development of insulin resistance. 

4.2.6 Mitochondrial protein interactions 

In addition, a considerable number of mitochondrial proteins was found to associate with 

IRS1 in mass spectrometry experiments and also previously, the insulin signaling pathway 

has been shown to influence mitochondrial physiology (222, 223). For example, 

peroxiredoxin isoforms 1, 2, 5, and 6 were identified as putative IRS1 interactors. The 

protein group of peroxiredoxins is involved in the reduction of hydroperoxides and its 

members are therefore considered antioxidant enzymes (224). Peroxiredoxin levels are 
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altered in obese diabetic patients, potentially affecting the state of oxidative stress in the 

cell (225), and could therefore contribute to insulin resistance (226). 

On a more general level, mitochondrial dysfunction plays a role in the development of 

insulin resistance and diabetes (227-229). Further, a connection of IRS1 regulation with 

mitochondrial dysfunction, as seen in insulin resistance, was established (230). During 

mitochondrial dysfunction, kinases like JNK and p38 MAPK are increased, leading to 

decreased levels of tyrosine phosphorylation and increased levels of inhibitory serine 

phosphorylation on IRS1 (230). Ultimately, during mitochondrial dysfunction glucose 

utilization is disturbed as seen in insulin resistance and as expected, inhibitors of JNK and 

p38 MAPK are able to reverse this effect. 

4.2.7 Metabolic protein interactions 

In streptavidin purifications, an impressive number of metabolic enzymes like 

Acetyl-CoA carboxylase, pyruvate carboxylase and ATP synthase has been identified. 

These proteins are involved in fatty acid synthesis, citric acid cycle and electron transport 

chain, respectively. Some of these proteins were identified in previous proteomic studies 

as proteins interacting with IRS1. Further, acetyl-CoA carboxylase is a mediator of the 

metabolic syndrome and cancer, so research has focused on the inhibition of the 

respective proteins (231, 232). 

However, the carboxylases found as putative interactors of IRS1, are likely co-purified as 

false-positives. Pyruvate carboxylase, the protein identified with the highest average 

intensity in mass spectrometry, uses biotin as cofactor to facilitate binding of CO2 (233). 

The same is true for Acetyl-CoA carboxylase, propionyl-CoA carboxylase and 

methylcrotonyl-CoA carboxylase (234), all of which were identified with high average 

intensities in streptavidin purifications of IRS1-TapTag. Biotin as a component of the 

respective protein will bind to the resin-coupled streptavidin with high affinity and also 

elute pseudo-specifically with IRS1-complexes via competitive displacement from the 

beads. 

Via the CBP tag also present in the IRS1-TapTag mouse model, calmodulin may have 

been purified as false-positive. Calmodulin is a widely expressed temporally and spatially 

regulated protein involved in various pathways (235, 236). Therefore a putative interaction 

with IRS1 is likely to occur, however it is rather improbable given the possibility of 

IRS1-independent purification. This fact is further supported as calmodulin was identified 

as putative interaction partner of 14-3-3! in another tandem affinity purification study 

using a Flag-CBP tag (237). 
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4.2.8 Cytoskeletal protein interactions 

IRS1 is likely transported within the cell along transportation routes established by the 

cytoskeletal network. Not only is IRS1 transported to the nucleus, but also concentrates 

at the plasma membrane. Therefore, a variety of cytoskeletal proteins identified in biotin 

eluates of streptavidin purifications like plectin, vimentin, radixin and spectrin may play a 

role in IRS1 trafficking. 

However, there is a certain possibility that multi-purpose cytoskeletal proteins may 

interact with the streptavidin-binding peptide of the affinity tag, streptavidin, or the bead 

resin due to their generalized binding capabilities (238). 

Further research will be needed to determine if disturbed IRS1 trafficking may contribute 

to the development of insulin resistance. 

44..33  AAffff iinnii ttyy  ppuurr ii ff iiccaatt iioonnss  aanndd  tthheeiirr  ll iimmiittaatt iioonnss  

Over the last decade, affinity purifications have been largely used to study protein 

interactions. When affinity purifications are combined with modern mass spectrometry 

instrumentation, highly precise characterization of protein networks may be achieved. 

Initially, the SBP and CBP tags were introduced in the IRS1-TapTag mouse model for the 

use in tandem affinity purifications. While the tandem affinity purification was successfully 

performed by using both tag moieties sequentially, as assessed by Western blot analysis, 

the yield of the bait protein after the second purification step was very low. Therefore, 

nano-LC-ESI-MS/MS analysis was not feasible. Several improvements by the adjustment 

of buffer systems or the replacement of biotin with desthiobiotin for elution were 

endeavored. The refined buffer system helped to improve final yield, however, 

desthiobiotin was inefficient to improve the final yield. Thus, the purification was 

performed using only the SBP tag in combination with the adapted buffer conditions and 

biotin elution (2.4.2, page 45). 

There are some limitations to the other affinity purification techniques. High yields of the 

respective affinity purification approach are a major interest and are frequently also a 

central concern, when designing an affinity purification method. When the yeast tandem 

affinity purification was adapted for mammalian cells, up to 109 cells were used for a 

single purification in order to elute as little as 0.2 µg of interacting protein (174). 

The use of triple SBP-CBP-His-tag even required eight 15-cm cell culture plates, adding 

up to approximately 2 g of cells (177). In comparison to purifications from cultured cells, 

for SBP affinity purifications of liver protein in this study, almost a whole mouse liver of a 
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mean weight of 1.1-1.5 g per purification was subjected to protein lysis in order to lead to 

successful purification of IRS1-TapTag complexes. 

IRS1-TapTag was expressed from a transgenic allele in liver. Thus, endogenous IRS1 

levels are unaffected and endogenous IRS retain the capability to bind a given fraction of 

respective interaction partners. Therefore, in this affinity purification approach only the 

amounts of proteins interacting with IRS1-TapTag and not endogenous IRS1 were 

analyzed, which are only assumed to correspond to total IRS1-associated amounts of the 

respective binding proteins. 

Overall, affinity purifications benefit from moderate lysis conditions throughout the whole 

procedure (172, 174). Those moderate lysis conditions are however compromised to a 

certain extent by the low solubility of IRS1, probably due to its interaction with membrane-

bound proteins and the plasma membrane itself via PTB and PH domains, respectively 

(64). Therefore up to 1% Triton X-100 had to be used to solubilize IRS1 in non-denaturing 

buffers, increasing the risk of higher detergent concentrations interfering with protein 

interactions. Other detergent conditions of 0.5% NP40, as previously described for lysis of 

cultured cells (175), were not efficient to solubilize IRS1 in liver samples. 

In general, the study of endogenous proteins in their native form may be superior over 

affinity purifications, which require artificial protein tags. Especially for smaller proteins, the 

addition of relatively large protein tags may interfere with initial folding or regular protein 

physiology. However, the 8 kDa SBP-CBP TAP tag used in this study is smaller than the 

original 21 kDa TAP tag (174, 176) and in combination with a large protein like IRS1, risk 

of interference with protein structure and protein interactions is minimized. 

In this study for the first time IRS1-associated protein complexes were affinity purified 

from liver facilitating in vivo proteomics of interactions involved in insulin signaling. 

Moreover, a unique feature of this study is the large-scale proteomic assessment of IRS1 

protein interactions influenced by HFD-feeding, which are only possible in an animal 

model. 

44..44  IImmppll iiccaatt iioonnss  ffoorr  iinnssuull iinn  rreessiissttaannccee  

For the first time, a mouse model was used in combination with affinity purification to 

extensively examine the IRS1 protein network in the liver with proteomic methods 

regarding alterations provoked by insulin and diet-induced obesity. In summary, the 

generated mouse model was successfully used to identify candidate interacting proteins 

of IRS1 in liver. Over 800 proteins were identified as putative interaction partners for IRS1 

and comparison with known interactions nicely validated the novel combination of the 
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methods used. Label-free quantification of mass spectrometry results led to unique 

intensity profiles for basal and insulin-stimulated interactions, as well as for NCD and HFD 

conditions. 

Not only protein interactions suggesting inhibitory regulatory mechanisms were detected, 

but also proteins possibly involved in stimulatory interactions were found associated 

with IRS1. 

The examination of IRS1 interactions with p85 and p110 subunits of PI3K revealed an 

increased association of p110" and # with IRS1 upon insulin signaling, possibly 

secondary through p85. Unexpectedly, p110" and # interaction with IRS1-p85 was 

blunted on HFD, suggesting a mechanism by which downstream signaling of the insulin 

signal may be reduced in conditions of diet-induced obesity. 

Most importantly, 14-3-3!, "/#, $, % and &/' specifically interacted with IRS1, an 

interaction which was stimulated by insulin on NCD, but blunted on HFD. Generally, 

14-3-3 proteins seem to serve as adaptor proteins, mediating and modulating the 

interaction of IRS1 with various binding proteins. Thereby, they are possibly involved in the 

development of insulin resistance. 

Novel IRS1 protein interactions were implied for Lyn and QSK. For the Lyn-related kinase 

Fyn a role in the reduction of energy expenditure and fatty acid oxidation was identified. 

Interestingly, as Lyn seems to increasingly bind to IRS1 upon HFD-feeding, via a 

mechanism similar to Fyn, Lyn may be able to contribute to the development of 

obesity-related insulin resistance. For QSK, an interaction with 14-3-3&/' has been 

described, while the interaction with IRS1 was so far unknown. SIK2, a related 

serine/threonine kinase, plays a role in the phosphorylation of Ser789, providing a 

possible comparable mechanism also for the kinase QSK in the development of insulin 

resistance. 

Overall, these findings may help to advance the current knowledge of serine/threonine 

kinase-mediated regulation of insulin signaling at the level of IRS1. 
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55  PPeerrssppeecctt iivveess  

Thorough verification and numerous further experiments are needed to characterize the 

respective role of the vast amount of putative IRS1 interactions identified by this study. 

Their relevance for the development of obesity as well as for insulin resistance will have to 

be determined by particular functional studies. Furthermore, for each experimental 

condition, interaction-related alterations of the phosphorylation state of IRS1 have to be 

examined in order to characterize the respective molecular function. Mainly, 

immunoprecipitations are feasible to verify interactions and determine phosphorylations of 

IRS1. Main focus will be on the p110 subunit of PI3K, 14-3-3 proteins, Lyn, PKC isoforms 

and the novel putative interaction partner QSK. 

Finally, as follow-up of the 14-3-3! knockdown experiments, influence of 14-3-3! on IRS2 

will be assessed. This will allow for a more complete interpretation of the effects of 

IRS1-14-3-3! binding and the possibility of IRS2 compensating for IRS1 signaling. The 

findings for 14-3-3! function will also be analyzed for other 14-3-3 isoforms to examine if 

there is evidence for a differential influence of the isoforms. 

Mice containing the IRS1-TapTag fusion construct under endogenous control of gene 

expression providing for physiological levels of the fusion protein are currently produced in 

parallel to this study. This mouse model will closely resemble the physiological and 

possibly pathological regulation of expression of the IRS1 gene in conditions of 

diet-induced obesity and it will therefore be interesting to compare interaction profiles of 

IRS1 in livers of these mice with those found in this study, in order to establish a direct 

correlation of these results to a more physiological state. 

Furthermore, the IRS2-TapTag fusion construct was generated and can be studied in 

mice expressing IRS2-TapTag under physiological control. Thereby, differences of 

interactions of the insulin receptor substrates can be examined and advance the 

understanding of possible redundancies between different IRS proteins. 

Another aspect of the mouse model introduced in this study and those placing the 

IRS-TapTag proteins under physiological control is the possibility to study IRS interactions 

in different organs, as the former model can be crossed to different cre-mouse lines to 

induce organ-specific expression, while the latter models express IRS1- and 

IRS2-TapTag in exactly those tissues that also express the native IRS1 and IRS2. 
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66  SSuupppplleemmeennttaall   DDaattaa  

Table 8-S: List of proteins potentially interacting with IRS1, which were identified in biotin 
eluates derived from TapTag liver lysates of affinity purifications. Proteins are sorted 
descending from highest average intensity detected in samples from 
NCD-fed, sodium chloride treated mice. Known interactions are in bold print, known 
similar interactions are in italic print. 

    Average Intensities 

Protein ID Protein Name NCD 
NaCl 

HFD 
NaCl 

NCD 
insulin 

HFD 
insulin 

IPI00114710 Pyruvate carboxylase, mitochondrial 1,61E+09 1,26E+09 1,12E+09 1,21E+09 

IPI00468481 ATP synthase subunit beta, mitochondrial 7,74E+07 3,40E+07 3,56E+07 2,68E+07 

IPI00605223 Insulin receptor substrate 1 5,73E+07 4,78E+07 4,24E+07 4,09E+07 

IPI00848443 Acetyl-CoA carboxylase 1 5,41E+07 2,77E+07 3,88E+07 2,19E+07 

IPI00857439 Atp5a1 ATP synthase, H+ transporting, 
mitochondrial F1 complex alpha subunit 1 

4,88E+07 1,89E+07 2,65E+07 2,02E+07 

IPI00111908 Carbamoyl-phosphate synthase 
[ammonia], mitochondrial 

4,72E+07 3,00E+07 3,95E+07 3,14E+07 

IPI00880839 Heat shock 70 kDa protein 9 4,53E+07 3,52E+07 3,97E+07 3,30E+07 

IPI00845802 Alpha-globin 2,90E+07 1,91E+07 1,58E+07 2,16E+07 

IPI00223367 Uricase 2,80E+07 6,09E+07 2,65E+07 5,66E+07 

IPI00323357 Heat shock cognate 71 kDa protein 2,63E+07 2,50E+07 2,15E+07 2,56E+07 

IPI00555023 Glutathione S-transferase P 1 2,63E+07 1,92E+07 1,01E+07 1,33E+07 

IPI00223092 Trifunctional enzyme subunit alpha, 
mitochondrial 

2,60E+07 2,39E+07 2,32E+07 3,03E+07 

IPI00330523 Propionyl-CoA carboxylase alpha chain, 
mitochondrial 

2,07E+07 1,36E+07 1,44E+07 1,57E+07 

IPI00648173 Clathrin, heavy polypeptide (Hc) 2,01E+07 5,14E+07 1,61E+07 3,58E+07 

IPI00553333 Hemoglobin subunit beta-1 1,71E+07 1,54E+07 1,07E+07 1,26E+07 

IPI00320850 Methylcrotonoyl-CoA carboxylase subunit 
alpha, mitochondrial 

1,65E+07 1,38E+07 1,58E+07 1,34E+07 

IPI00553717 Methylcrotonoyl-CoA carboxylase beta chain, 
mitochondrial 

1,29E+07 1,41E+07 1,04E+07 1,35E+07 

IPI00115607 Trifunctional enzyme subunit beta, 
mitochondrial 

1,28E+07 1,62E+07 1,35E+07 1,59E+07 

IPI00421241 Acetyl-CoA carboxylase 2 1,28E+07 5,68E+06 1,01E+07 4,44E+06 

IPI00319992 78 kDa glucose-regulated protein 1,27E+07 8,58E+06 8,50E+06 8,33E+06 

IPI00322466 Phosphoinositide 3-kinase p85alpha 1,19E+07 1,67E+07 2,22E+07 2,79E+07 

IPI00226430 3-ketoacyl-CoA thiolase, mitochondrial 1,05E+07 7,00E+06 5,93E+06 5,90E+06 

IPI00134746 Argininosuccinate synthase 1,01E+07 6,38E+06 9,51E+06 6,49E+06 

IPI00131695 Serum albumin 9,88E+06 6,98E+06 5,25E+06 9,16E+06 

IPI00420718 Hydroxymethylglutaryl-CoA synthase, 
mitochondrial 

9,86E+06 1,00E+07 7,91E+06 9,89E+06 

IPI00857142 Major urinary protein 5 9,85E+06 4,29E+06 1,76E+06 4,85E+06 

IPI00118899 Alpha-actinin-4 9,63E+06 8,96E+06 1,06E+07 1,36E+07 

IPI00127206 Fructose-bisphosphate aldolase B 9,59E+06 6,71E+06 7,70E+06 7,85E+06 

IPI00918862 Pccb protein 9,54E+06 8,08E+06 8,43E+06 8,44E+06 

IPI00308885 60 kDa heat shock protein, mitochondrial 9,18E+06 1,22E+07 9,34E+06 1,04E+07 

IPI00222228 Putative uncharacterized protein 8,95E+06 1,69E+07 3,88E+06 5,34E+05 

IPI00395100 Try10-like trypsinogen 8,85E+06 1,62E+07 8,77E+06 4,75E+06 

IPI00307837 Elongation factor 1-alpha 1 8,28E+06 6,23E+06 6,22E+06 4,85E+06 

IPI00130950 Betaine--homocysteine S-
methyltransferase 1 

8,17E+06 4,02E+06 6,67E+06 5,70E+06 
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   Average Intensities 

Protein ID Protein Name NCD 
NaCl 

HFD 
NaCl 

NCD 
insulin 

HFD 
insulin 

IPI00127841 ADP/ATP translocase 2 7,69E+06 6,76E+06 8,87E+06 6,26E+06 

IPI00848801 Glyceraldehyde-3-phosphate 
dehydrogenase 

7,49E+06 5,14E+06 5,82E+06 4,63E+06 

IPI00622780 Cytoplasmic aconitate hydratase 7,14E+06 1,38E+06 5,97E+06 1,24E+06 

IPI00221890 Carbonic anhydrase 3 6,85E+06 5,68E+06 6,08E+06 5,52E+06 

IPI00330480 Gm5478 predicted pseudogene 5478 6,30E+06 7,55E+06 1,98E+07 5,59E+06 

IPI00331241 Glutathione S-transferase A3 6,14E+06 6,59E+06 6,74E+06 7,06E+06 

IPI00453673 Serine/threonine-protein kinase QSK 6,04E+06 4,37E+06 4,83E+06 2,01E+06 

IPI00114209 Glutamate dehydrogenase 1, 
mitochondrial 

5,59E+06 6,32E+06 5,04E+06 6,19E+06 

IPI00121788 Peroxiredoxin-1 5,54E+06 4,48E+06 5,08E+06 6,55E+06 

IPI00120451 Fatty acid-binding protein, liver 5,51E+06 1,59E+07 1,10E+07 1,04E+07 

IPI00111218 Aldehyde dehydrogenase, mitochondrial 5,45E+06 4,85E+06 3,85E+06 5,38E+06 

IPI00117914 Arginase-1 5,20E+06 3,33E+06 2,70E+06 2,79E+06 

IPI00831055 Beta-globin 5,18E+06 4,27E+06 3,40E+06 1,35E+07 

IPI00229252 Uncharacterized protein C3orf43 
homolog 

5,17E+06 0,00E+00 0,00E+00 0,00E+00 

IPI00118384 14-3-3 protein epsilon 5,04E+06 6,47E+06 9,54E+06 4,11E+06 

IPI00230707 14-3-3 protein gamma 5,03E+06 3,61E+06 9,77E+06 3,79E+06 

IPI00664670 Filamin-C 5,00E+06 0,00E+00 3,38E+06 0,00E+00 

IPI00222225 Protein transport protein Sec24A 4,78E+06 3,22E+06 4,72E+06 2,58E+06 

IPI00169463 Tubulin beta-2C chain 4,63E+06 2,88E+06 2,46E+06 3,48E+06 

IPI00649135 Glutathione S-transferase, mu 1 4,46E+06 5,31E+06 6,12E+06 3,36E+06 

IPI00130589 Superoxide dismutase [Cu-Zn] 4,07E+06 3,61E+06 2,35E+06 3,28E+06 

IPI00129928 Fumarate hydratase, mitochondrial 3,92E+06 3,15E+06 3,76E+06 2,40E+06 

IPI00118986 ATP synthase subunit O, mitochondrial 3,71E+06 1,36E+06 1,35E+06 1,13E+06 

IPI00123181 Myosin-9 3,67E+06 5,57E+06 3,53E+06 6,33E+06 

IPI00228630 Fructose-1,6-bisphosphatase 1 3,65E+06 2,46E+06 1,80E+06 1,93E+06 

IPI00331596 Peroxisomal trans-2-enoyl-CoA reductase 3,55E+06 2,92E+06 4,73E+06 3,31E+06 

IPI00341282 ATP synthase subunit b, mitochondrial 3,48E+06 1,65E+06 4,29E+06 2,73E+06 

IPI00123349 Protein transport protein Sec23A 3,29E+06 2,02E+06 3,94E+06 2,08E+06 

IPI00153317 10-formyltetrahydrofolate dehydrogenase 3,25E+06 1,63E+06 2,35E+06 2,64E+06 

IPI00134131 Non-specific lipid-transfer protein 3,19E+06 3,72E+06 3,08E+06 4,28E+06 

IPI00117312 Aspartate aminotransferase, 
mitochondrial 

3,17E+06 2,51E+06 1,56E+06 2,27E+06 

IPI00125325 Peroxisomal 2,4-dienoyl-CoA reductase 3,15E+06 2,40E+06 1,83E+06 2,17E+06 

IPI00114593 Actin, alpha cardiac muscle 1 3,15E+06 5,25E+06 1,27E+06 2,14E+06 

IPI00133522 Protein disulfide-isomerase 3,12E+06 3,12E+06 2,84E+06 3,14E+06 

IPI00323816 Selenium-binding protein 2 3,11E+06 2,48E+06 1,78E+06 1,14E+06 

IPI00230440 Adenosylhomocysteinase 3,09E+06 2,42E+06 2,24E+06 2,99E+06 

IPI00127417 Nucleoside diphosphate kinase B 3,08E+06 2,65E+06 9,61E+05 8,39E+05 

IPI00133456 Regucalcin 3,08E+06 2,11E+06 2,17E+06 1,86E+06 

IPI00126861 Protein-glutamine gamma-
glutamyltransferase 2 

3,04E+06 3,28E+06 4,03E+06 3,35E+06 

IPI00462072 Alpha-enolase 3,01E+06 2,66E+06 2,38E+06 2,42E+06 

IPI00117159 Phosphatidylinositol 3-kinase regulatory 
subunit beta 

2,97E+06 2,88E+06 3,95E+06 3,43E+06 

IPI00230108 Protein disulfide-isomerase A3 2,92E+06 2,20E+06 2,12E+06 2,25E+06 

IPI00227299 Vimentin 2,92E+06 5,26E+06 3,72E+06 4,13E+06 
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    Average Intensities 

Protein ID Protein Name NCD 
NaCl 

HFD 
NaCl 

NCD 
insulin 

HFD 
insulin 

IPI00312058 Catalase 2,87E+06 3,16E+06 3,21E+06 2,91E+06 

IPI00117348 Tubulin alpha-1B chain 2,65E+06 1,89E+06 1,91E+06 1,38E+06 

IPI00154054 Acetyl-CoA acetyltransferase, 
mitochondrial 

2,64E+06 2,44E+06 3,72E+06 2,39E+06 

IPI00116603 Ornithine carbamoyltransferase, 
mitochondrial 

2,58E+06 1,62E+06 2,12E+06 2,33E+06 

IPI00316491 Hemoglobin subunit beta-2 2,57E+06 9,78E+05 8,48E+05 1,25E+06 

IPI00123183 Aquaporin-1 2,38E+06 3,70E+06 2,13E+06 3,01E+06 

IPI00626662 Retinal dehydrogenase 1 2,37E+06 2,70E+06 1,84E+06 2,83E+06 

IPI00554989 Peptidyl-prolyl cis-trans isomerase A 2,20E+06 1,74E+06 1,45E+06 5,33E+05 

IPI00135686 Peptidyl-prolyl cis-trans isomerase B 2,19E+06 2,40E+06 8,10E+05 2,00E+06 

IPI00229080 Heat shock protein 84b 2,17E+06 1,34E+06 1,50E+06 1,93E+06 

IPI00453777 ATP synthase subunit delta, 
mitochondrial 

2,14E+06 9,00E+05 2,69E+06 1,16E+06 

IPI00466069 Elongation factor 2 2,07E+06 1,75E+06 1,84E+06 9,33E+05 

IPI00115862 Eukaryotic translation initiation factor 6 2,05E+06 1,83E+06 1,12E+06 1,57E+06 

IPI00139780 60S ribosomal protein L23 2,02E+06 3,14E+06 1,63E+06 1,98E+06 

IPI00109044 MCG5400 2,02E+06 3,41E+06 6,45E+05 5,84E+06 

IPI00467066 Glycine N-methyltransferase 2,02E+06 1,01E+06 1,20E+06 1,17E+06 

IPI00121440 Electron transfer flavoprotein subunit beta 2,01E+06 1,60E+06 1,73E+06 1,96E+06 

IPI00620256 Lamin-A/C 2,00E+06 8,13E+06 3,62E+06 1,24E+07 

IPI00555059 Peroxiredoxin-6 2,00E+06 2,27E+06 1,24E+06 1,68E+06 

IPI00221400 Alcohol dehydrogenase 1 1,95E+06 2,30E+06 2,04E+06 1,81E+06 

IPI00128518 S-adenosylmethionine synthetase isoform 
type-1 

1,94E+06 1,55E+06 8,29E+05 1,62E+06 

IPI00130280 ATP synthase subunit alpha, 
mitochondrial 

1,88E+06 0,00E+00 1,32E+06 6,85E+05 

IPI00323592 Malate dehydrogenase, mitochondrial 1,88E+06 1,36E+06 1,90E+06 1,59E+06 

IPI00230507 ATP synthase subunit d, mitochondrial 1,85E+06 1,54E+06 7,76E+05 5,13E+05 

IPI00653931 Fumarylacetoacetase 1,73E+06 1,22E+06 7,67E+05 1,27E+06 

IPI00378063 AP-2 complex subunit beta-1 1,70E+06 2,77E+06 1,27E+06 3,03E+06 

IPI00751369 L-lactate dehydrogenase 1,67E+06 1,74E+06 1,37E+06 1,75E+06 

IPI00319830 Spectrin beta chain, brain 1 1,67E+06 2,78E+06 2,73E+06 5,66E+06 

IPI00831626 Tpm1 tropomyosin 1, alpha 1,64E+06 2,90E+06 3,52E+06 4,18E+06 

IPI00321617 Epoxide hydrolase 2 1,62E+06 2,17E+06 1,51E+06 2,18E+06 

IPI00352163 Fibronectin 1,61E+06 1,76E+06 1,96E+06 2,09E+06 

IPI00111950 Estradiol 17 beta-dehydrogenase 5 1,60E+06 1,50E+06 2,19E+06 1,78E+06 

IPI00875416 Sorbitol dehydrogenase 1,55E+06 1,21E+06 1,21E+06 1,20E+06 

IPI00112549 Long-chain-fatty-acid--CoA ligase 1 1,54E+06 1,59E+06 1,15E+06 1,63E+06 

IPI00116753 Electron transfer flavoprotein subunit 
alpha, mitochondrial 

1,51E+06 1,02E+06 9,21E+05 8,75E+05 

IPI00223216 Thiosulfate sulfurtransferase 1,43E+06 8,35E+05 6,72E+05 7,29E+05 

IPI00624663 Alpha-2-macroglobulin 1,41E+06 6,12E+05 9,66E+05 1,65E+06 

IPI00313475 ATP synthase subunit gamma, 
mitochondrial 

1,36E+06 4,25E+05 5,80E+05 1,51E+05 

IPI00554931 4-hydroxyphenylpyruvate dioxygenase 1,35E+06 1,03E+06 1,05E+06 1,29E+06 

IPI00461964 Methylmalonate-semialdehyde 
dehydrogenase [acylating], mitochondrial 

1,35E+06 1,51E+06 1,42E+06 1,59E+06 

IPI00761390 Fatty-acid-coenzyme A ligase, very long-
chain 1 

1,33E+06 1,19E+06 1,74E+06 1,60E+06 

IPI00554834 Peroxisomal bifunctional enzyme 1,33E+06 1,43E+06 1,33E+06 8,85E+05 
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    Average Intensities 

Protein ID Protein Name NCD 
NaCl 

HFD 
NaCl 

NCD 
insulin 

HFD 
insulin 

IPI00111265 F-actin-capping protein subunit alpha-2 1,31E+06 1,93E+06 1,07E+06 1,56E+06 

IPI00112322 UDP-glucuronosyltransferase 2B5 1,29E+06 1,39E+06 1,24E+06 1,19E+06 

IPI00331628 Peroxisomal multifunctional enzyme type 
2 

1,29E+06 1,11E+06 1,65E+06 1,14E+06 

IPI00129526 Endoplasmin 1,28E+06 6,32E+05 7,98E+05 8,19E+05 

IPI00116498 14-3-3 protein zeta/delta 1,27E+06 1,24E+06 2,82E+06 9,51E+05 

IPI00138691 Actin-related protein 2/3 complex subunit 
4 

1,20E+06 1,60E+06 3,93E+05 3,15E+06 

IPI00317740 Guanine nucleotide-binding protein 
subunit beta-2-like 1 

1,19E+06 1,33E+05 8,49E+05 0,00E+00 

IPI00319525 Glycogen phosphorylase, liver form 1,18E+06 7,64E+05 1,09E+06 1,31E+06 

IPI00405227 Vinculin 1,11E+06 1,61E+06 2,02E+06 3,80E+06 

IPI00474883 CAPZB3 1,11E+06 1,59E+06 1,35E+06 2,21E+06 

IPI00109293 Serine beta-lactamase-like protein 
LACTB, mitochondrial 

1,10E+06 1,58E+06 2,07E+06 7,22E+05 

IPI00381178 Liver carboxylesterase 31 1,08E+06 1,25E+06 7,67E+05 9,99E+05 

IPI00848866 Myosin light polypeptide 6 1,07E+06 1,19E+06 8,12E+05 1,61E+06 

IPI00387289 Carboxylesterase 3 1,07E+06 1,76E+06 1,81E+06 1,60E+06 

IPI00890322 3-hydroxybutyrate dehydrogenase 1,06E+06 8,79E+05 6,20E+05 6,42E+05 

IPI00136213 Sarcosine dehydrogenase, mitochondrial 1,05E+06 6,12E+05 8,90E+05 7,72E+05 

IPI00120123 Dimethylglycine dehydrogenase, 
mitochondrial 

1,05E+06 7,19E+05 1,09E+06 6,18E+05 

IPI00135231 Isocitrate dehydrogenase [NADP] 
cytoplasmic 

1,04E+06 8,69E+05 5,21E+05 6,97E+05 

IPI00336324 Malate dehydrogenase, cytoplasmic 1,04E+06 8,88E+05 1,12E+06 8,20E+05 

IPI00755916 Ubc protein 1,03E+06 7,30E+05 9,25E+05 1,28E+06 

IPI00555069 Phosphoglycerate kinase 1 1,01E+06 9,39E+05 5,52E+05 7,38E+05 

IPI00828479 Acyl-Coenzyme A oxidase 1, palmitoyl 1,01E+06 6,21E+05 5,16E+05 4,62E+05 

IPI00314788 Argininosuccinate lyase 9,97E+05 6,85E+05 1,22E+06 8,66E+05 

IPI00828488 Heterogeneous nuclear 
ribonucleoproteins A2/B1 

9,90E+05 3,72E+06 1,49E+06 4,66E+06 

IPI00177038 Actin-related protein 2 9,77E+05 1,61E+06 5,07E+05 1,48E+06 

IPI00129517 Peroxiredoxin -5, mitochondrial 9,69E+05 6,75E+05 2,99E+05 9,97E+04 

IPI00406302 Alpha-1-antitrypsin 1-1 9,57E+05 6,90E+05 5,21E+05 9,66E+05 

IPI00129577 Apoptosis-inducing factor 1, 
mitochondrial 

9,47E+05 7,84E+05 1,02E+06 8,70E+05 

IPI00310669 Bifunctional ATP-dependent 
dihydroxyacetone kinase/FAD-AMP lyase 
(cyclizing) 

9,33E+05 1,02E+06 4,53E+05 9,42E+05 

IPI00885793 Fibrinogen A-alpha-chain 9,22E+05 1,31E+06 5,93E+05 3,82E+06 

IPI00115627 Actin-related protein 3 8,95E+05 1,38E+06 1,02E+06 1,99E+06 

IPI00274407 Elongation factor Tu, mitochondrial 8,94E+05 4,96E+05 6,02E+05 7,90E+05 

IPI00406442 Succinyl-CoA ligase [GDP-forming] 
subunit alpha, mitochondrial 

8,81E+05 6,80E+05 2,92E+05 1,67E+05 

IPI00110556 Cytochrome P450 2E1 8,79E+05 6,55E+05 7,16E+05 8,68E+05 

IPI00124820 Coronin-1C 8,60E+05 9,92E+05 5,51E+05 2,03E+06 

IPI00622235 Transitional endoplasmic reticulum 
ATPase 

8,59E+05 4,49E+05 7,48E+05 5,83E+05 

IPI00114396 Galectin-9 8,46E+05 1,18E+06 1,03E+06 1,07E+06 

IPI00466128 Alcohol dehydrogenase [NADP+] 8,45E+05 4,80E+05 7,49E+05 6,66E+05 

IPI00276926 Solute carrier family 25 (Mitochondrial 
carrier, citrate transporter), member 1 

8,41E+05 8,86E+05 9,65E+05 4,19E+05 
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IPI00139788 Serotransferrin 8,23E+05 7,52E+05 7,29E+05 1,01E+06 

IPI00308328 Cytochrome P450 2F2 7,85E+05 4,48E+05 3,97E+05 1,81E+05 

IPI00754649 Myosin-Ic 7,73E+05 3,10E+06 1,52E+06 1,66E+06 

IPI00310131 AP-2 complex subunit alpha-2 7,49E+05 1,18E+06 7,07E+05 1,56E+06 

IPI00134961 Medium-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

7,47E+05 7,43E+05 5,29E+05 8,33E+05 

IPI00119219 Estradiol 17-beta-dehydrogenase 12 7,37E+05 9,24E+05 6,17E+05 5,51E+05 

IPI00876504 Maleylacetoacetate 7,36E+05 1,11E+06 2,68E+05 3,41E+05 

IPI00124819 Coronin-1B 7,30E+05 1,66E+06 1,15E+06 2,91E+06 

IPI00124829 Actin-related protein 2/3 complex subunit 
3 

7,29E+05 8,66E+05 4,64E+05 2,33E+06 

IPI00122139 3-ketoacyl-CoA thiolase B, peroxisomal 7,23E+05 8,69E+05 4,44E+05 7,54E+05 

IPI00230113 Cytochrome b5 7,07E+05 5,10E+05 3,90E+05 4,74E+05 

IPI00387379 2,4-dienoyl-CoA reductase, mitochondrial 7,04E+05 4,68E+05 3,90E+05 2,89E+05 

IPI00230084 Aldehyde dehydrogenase family 7 
member A1 

6,87E+05 5,92E+05 3,19E+05 7,47E+05 

IPI00134344 Beta III spectrin 6,85E+05 1,41E+06 1,29E+06 2,86E+06 

IPI00133549 Phenylalanine-4-hydroxylase 6,81E+05 4,85E+05 6,13E+05 6,59E+05 

IPI00461427 Ig mu chain C region membrane-bound 
form 

6,68E+05 2,60E+06 1,01E+06 1,78E+06 

IPI00331436 Cytosol aminopeptidase 6,62E+05 6,87E+05 5,20E+05 7,81E+05 

IPI00114416 3,2-trans-enoyl-CoA isomerase, 
mitochondrial 

6,58E+05 5,87E+05 3,04E+05 7,64E+05 

IPI00653921 Radixin 6,52E+05 9,24E+05 1,05E+06 1,12E+06 

IPI00378649 Major urinary protein 24 6,51E+05 5,86E+05 2,91E+05 0,00E+00 

IPI00230351 Succinate dehydrogenase [ubiquinone] 
flavoprotein subunit, mitochondrial 

6,49E+05 3,20E+05 8,67E+05 5,97E+05 

IPI00775829 Pyruvate kinase 6,48E+05 4,24E+05 5,60E+05 8,58E+05 

IPI00134504 Cytochrome P450 3A11 6,46E+05 0,00E+00 5,59E+05 0,00E+00 

IPI00131438 Phosphoenolpyruvate carboxykinase, 
cytosolic [GTP] 

6,46E+05 4,09E+05 4,84E+05 3,70E+05 

IPI00124771 Phosphate carrier protein, mitochondrial 6,37E+05 3,52E+05 5,73E+05 5,28E+05 

IPI00467841 Calmodulin 6,35E+05 8,80E+05 9,89E+05 2,26E+06 

IPI00131176 Cytochrome c oxidase subunit 2 6,06E+05 1,68E+05 2,45E+05 1,75E+05 

IPI00877236 Apolipoprotein A-I 5,86E+05 8,43E+05 6,39E+05 1,06E+06 

IPI00317604 Protein transport protein Sec23B 5,86E+05 2,74E+05 7,31E+05 3,76E+05 

IPI00116074 Aconitate hydratase, mitochondrial 5,84E+05 4,18E+05 3,41E+05 5,08E+05 

IPI00266188 Cofilin-2 5,80E+05 5,40E+05 2,05E+05 1,49E+06 

IPI00125813 Dipeptidyl peptidase 4 5,74E+05 8,62E+05 6,08E+05 6,62E+05 

IPI00112963 Catenin alpha-1 5,71E+05 1,05E+06 7,88E+05 1,45E+06 

IPI00120233 Glutaryl-CoA dehydrogenase, mitochondrial 5,70E+05 3,27E+05 4,70E+05 7,13E+05 

IPI00330747 Acyl-CoA dehydrogenase family member 
11 

5,62E+05 4,11E+05 6,18E+05 1,76E+06 

IPI00279079 Fibrinogen beta chain 5,59E+05 9,74E+05 7,60E+05 2,95E+06 

IPI00408961 3-hydroxyanthranilate 3,4-dioxygenase 5,56E+05 3,20E+05 4,45E+05 5,13E+05 

IPI00117978 Cytochrome c oxidase subunit 4 isoform 
1, mitochondrial 

5,51E+05 1,53E+05 4,70E+05 1,89E+05 

IPI00122312 Fibrinogen gamma chain 5,51E+05 6,10E+05 2,76E+05 1,42E+06 

IPI00126625 Acyl-coenzyme A synthetase ACSM1, 
mitochondrial 

5,45E+05 3,41E+05 3,02E+05 5,16E+05 

IPI00648927 Clathrin light polypeptide (Lca) 5,32E+05 1,15E+06 1,00E+06 2,17E+06 
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IPI00137409 Transketolase 5,32E+05 5,78E+05 5,84E+05 5,41E+05 

IPI00319652 Glutathione peroxidase 1 5,28E+05 5,73E+05 3,49E+05 8,56E+05 

IPI00405699 Delta-1-pyrroline-5-carboxylate 
dehydrogenase, mitochondrial 

5,19E+05 5,69E+05 1,12E+06 9,10E+05 

IPI00112339 LIM domain and actin-binding protein 1 5,13E+05 7,15E+05 3,37E+05 5,49E+05 

IPI00459487 Succinyl-CoA ligase [GDP-forming] 
subunit beta, mitochondrial 

5,09E+05 3,99E+05 2,60E+05 4,09E+05 

IPI00648318 Adenylate kinase 2, mitochondrial 5,08E+05 3,42E+05 1,38E+05 4,03E+05 

IPI00459279 Dihydropteridine reductase 5,03E+05 4,32E+05 2,05E+05 2,19E+05 

IPI00109275 Mitochondrial glutamate carrier 1 4,93E+05 3,66E+05 5,03E+05 3,61E+05 

IPI00408215 Myosin-Ib 4,74E+05 1,21E+06 8,11E+05 1,70E+06 

IPI00124372 4-trimethylaminobutyraldehyde 
dehydrogenase 

4,70E+05 3,60E+05 3,72E+05 5,47E+05 

IPI00480429 UDP glucuronosyltransferase 1 family, 
polypeptide A1 

4,67E+05 5,57E+05 9,20E+05 5,77E+05 

IPI00269661 Heterogeneous nuclear ribonucleoprotein 
A3 

4,63E+05 1,76E+06 4,62E+05 1,39E+06 

IPI00120864 Phenazine biosynthesis-like domain-
containing protein 1 

4,59E+05 3,73E+05 3,99E+05 4,15E+05 

IPI00331461 60S ribosomal protein L11 4,59E+05 7,00E+05 2,06E+05 6,81E+05 

IPI00890117 Cofilin-1 4,59E+05 2,99E+05 1,84E+05 6,40E+05 

IPI00338536 Succinate dehydrogenase [ubiquinone] 
iron-sulfur subunit, mitochondrial 

4,58E+05 5,61E+05 0,00E+00 9,26E+04 

IPI00131830 Serine protease inhibitor A3K 4,58E+05 1,75E+05 1,98E+05 4,16E+05 

IPI00515370 Aldehyde dehydrogenase family 3, 
subfamily A2 

4,49E+05 9,13E+05 4,23E+05 4,37E+05 

IPI00454049 Enoyl-CoA hydratase, mitochondrial 4,48E+05 4,25E+05 4,37E+05 3,86E+05 

IPI00321734 Lactoylglutathione lyase 4,47E+05 8,06E+05 1,87E+05 3,47E+05 

IPI00555140 Phosphoglucomutase-1 4,47E+05 4,02E+05 3,98E+05 5,79E+05 

IPI00122549 Voltage-dependent anion-selective 
channel protein 1 

4,34E+05 2,17E+05 2,52E+05 5,82E+04 

IPI00317309 Annexin A5 4,32E+05 2,07E+05 3,38E+05 1,67E+05 

IPI00877205 Aspartate aminotransferase 4,31E+05 1,51E+05 2,94E+05 2,40E+05 

IPI00117910 Peroxiredoxin-2 4,23E+05 2,61E+05 1,95E+05 6,04E+05 

IPI00134503 Cytochrome P450 2C29 4,23E+05 1,60E+05 3,76E+05 1,72E+05 

IPI00117350 Tubulin alpha-4A chain 4,22E+05 2,17E+05 2,50E+05 2,70E+05 

IPI00626385 Plectin-1 4,20E+05 4,06E+05 8,56E+05 4,01E+05 

IPI00874651 Imidazolonepropionate hydrolase 4,13E+05 2,80E+05 2,91E+05 4,20E+05 

IPI00117167 Gelsolin 4,06E+05 5,40E+05 4,30E+05 1,35E+06 

IPI00129056 Glycine N-acyltransferase 4,03E+05 4,21E+05 1,12E+05 0,00E+00 

IPI00230185 Glycerol-3-phosphate dehydrogenase 
[NAD+], cytoplasmic 

4,01E+05 4,43E+05 2,99E+05 4,03E+05 

IPI00119203 Very long-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

3,97E+05 4,05E+05 3,51E+05 3,87E+05 

IPI00111258 Major vault protein 3,96E+05 2,00E+05 3,97E+05 2,28E+05 

IPI00110885 Diaphorase-1 3,88E+05 0,00E+00 3,00E+05 0,00E+00 

IPI00323908 Cytochrome P450 2D10 3,87E+05 6,25E+04 1,39E+05 2,55E+05 

IPI00776145 Myosin VI 3,86E+05 5,40E+05 4,88E+05 4,71E+05 

IPI00132208 DnaJ homolog subfamily A member 1 3,82E+05 3,40E+05 2,09E+05 1,44E+05 

IPI00138084 Adenosine kinase 3,82E+05 2,48E+05 2,12E+05 1,46E+05 

IPI00132076 Catechol O-methyltransferase 3,79E+05 1,54E+05 1,96E+05 1,49E+05 
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IPI00119114 Long-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

3,73E+05 3,14E+05 2,10E+05 4,17E+05 

IPI00849793 60S ribosomal protein L12 3,71E+05 4,31E+05 2,63E+05 2,89E+05 

IPI00230682 14-3-3 protein beta/alpha 3,69E+05 9,51E+05 1,67E+06 9,27E+05 

IPI00320462 Valacyclovir hydrolase 3,67E+05 1,60E+05 1,71E+05 7,19E+04 

IPI00309073 Microsomal triglyceride transfer protein 
large subunit 

3,67E+05 1,26E+05 2,27E+05 2,50E+05 

IPI00459493 T-complex protein 1 subunit alpha B 3,63E+05 2,24E+05 8,50E+05 1,26E+06 

IPI00330323 Mannosyl-oligosaccharide glucosidase 3,61E+05 7,13E+04 3,52E+05 1,42E+05 

IPI00874920 Histone H4 3,59E+05 3,22E+05 1,86E+05 4,65E+05 

IPI00122862 C-1-tetrahydrofolate synthase, 
cytoplasmic 

3,58E+05 7,27E+04 3,69E+05 2,27E+05 

IPI00108125 Eukaryotic translation initiation factor 5A-
1 

3,58E+05 1,19E+05 1,09E+05 0,00E+00 

IPI00229475 Junction plakoglobin 3,55E+05 6,25E+05 1,03E+06 8,32E+05 

IPI00109109 Superoxide dismutase [Mn], 
mitochondrial 

3,55E+05 3,00E+05 0,00E+00 2,29E+05 

IPI00338039 Tubulin beta-2A chain 3,54E+05 1,88E+05 1,48E+05 3,53E+05 

IPI00122346 Translocon-associated protein subunit 
delta 

3,54E+05 3,44E+04 3,72E+04 0,00E+00 

IPI00319973 Membrane-associated progesterone 
receptor component 1 

3,52E+05 3,27E+05 3,31E+05 1,36E+05 

IPI00465786 Talin-1 3,51E+05 3,21E+05 5,18E+05 1,25E+06 

IPI00380436 Alpha-actinin-1 3,44E+05 4,91E+05 2,90E+05 4,20E+05 

IPI00222546 60S ribosomal protein L22 3,44E+05 2,04E+05 3,68E+05 4,81E+05 

IPI00132443 Heterogeneous nuclear ribonucleoprotein 
M 

3,43E+05 7,11E+05 3,21E+05 1,16E+06 

IPI00121522 Glycine N-acyltransferase-like protein 
Keg1 

3,43E+05 3,31E+05 3,17E+05 1,31E+05 

IPI00111885 Cytochrome b-c1 complex subunit 1, 
mitochondrial 

3,41E+05 3,25E+05 2,88E+05 3,40E+05 

IPI00119138 Cytochrome b-c1 complex subunit 2, 
mitochondrial 

3,38E+05 2,10E+05 3,03E+05 1,82E+05 

IPI00279858 DnaJ homolog subfamily A member 3, 
mitochondrial 

3,37E+05 1,88E+05 1,84E+05 2,93E+05 

IPI00130670 Serine-threonine kinase receptor-
associated protein 

3,35E+05 0,00E+00 1,74E+05 7,42E+04 

IPI00121322 Electron transfer flavoprotein-ubiquinone 
oxidoreductase, mitochondrial 

3,32E+05 2,41E+05 3,97E+05 3,61E+05 

IPI00626790 Glutamine synthetase 3,30E+05 3,13E+05 1,33E+05 2,41E+05 

IPI00137730 Phosphatidylethanolamine-binding protein 
1 

3,29E+05 1,98E+05 1,61E+05 1,38E+05 

IPI00346073 Heat shock 70 kDa protein 1B 3,28E+05 3,27E+05 1,99E+05 3,08E+05 

IPI00110852 Translocon-associated protein alpha, 
muscle specific isoform 

3,23E+05 2,35E+05 3,06E+05 3,87E+04 

IPI00127223 MCG1788 3,22E+05 1,32E+05 4,22E+05 1,73E+05 

IPI00554961 Dimethylaniline monooxygenase [N-oxide-
forming] 5 

3,12E+05 2,84E+05 3,69E+05 4,52E+05 

IPI00323571 Apolipoprotein E 3,10E+05 2,22E+05 4,15E+05 3,25E+05 

IPI00467833 Triosephosphate isomerase 3,10E+05 1,66E+05 8,00E+04 4,24E+04 

IPI00321644 Cytochrome P450 2D26 3,05E+05 1,81E+05 9,55E+04 1,47E+05 

IPI00123281 Leucine-rich repeat-containing protein 59 3,04E+05 1,99E+05 2,37E+05 0,00E+00 

IPI00608064 Fech protein 3,02E+05 3,02E+05 3,21E+05 3,18E+05 

IPI00135651 Calcium-binding mitochondrial carrier 
protein Aralar2 

2,99E+05 1,99E+05 3,91E+05 4,18E+05 
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IPI00128399 Carboxylesterase ML1 2,90E+05 2,84E+05 2,90E+05 1,05E+05 

IPI00469268 T-complex protein 1 subunit theta 2,89E+05 2,04E+05 3,54E+05 3,65E+05 

IPI00309035 Dolichyl-diphosphooligosaccharide--
protein glycosyltransferase subunit 1 

2,86E+05 0,00E+00 2,58E+05 2,04E+05 

IPI00553419 Desmoplakin 2,85E+05 7,93E+05 1,21E+06 6,55E+05 

IPI00123639 Calreticulin 2,83E+05 2,27E+05 2,10E+05 1,46E+05 

IPI00869393 Catalase 2,83E+05 1,87E+05 1,11E+05 4,91E+05 

IPI00228253 Acetyl-CoA acetyltransferase, cytosolic 2,81E+05 1,42E+05 1,12E+05 2,19E+05 

IPI00420363 Probable ATP-dependent RNA helicase 
DDX5 

2,81E+05 5,52E+05 4,88E+05 5,24E+05 

IPI00116192 Thioredoxin-dependent peroxide 
reductase, mitochondrial 

2,78E+05 1,38E+05 0,00E+00 1,44E+05 

IPI00221463 Histone H2A type 3 2,78E+05 0,00E+00 5,45E+04 1,68E+05 

IPI00112822 Transcription factor A, mitochondrial 2,77E+05 8,52E+05 7,56E+05 8,36E+05 

IPI00471246 Isovaleryl-CoA dehydrogenase, 
mitochondrial 

2,77E+05 1,79E+05 2,09E+05 3,22E+05 

IPI00123129 Staphylococcal nuclease domain-
containing protein 1 

2,75E+05 6,50E+04 2,21E+05 4,44E+04 

IPI00331556 Heat shock 70 kDa protein 4 2,74E+05 0,00E+00 2,24E+05 2,71E+05 

IPI00890309 Major urinary protein 8 2,73E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00313900 Lumican 2,67E+05 0,00E+00 6,96E+05 0,00E+00 

IPI00127085 60S ribosomal protein L10a 2,67E+05 5,79E+04 8,11E+04 7,16E+04 

IPI00122565 Rab GDP dissociation inhibitor beta 2,64E+05 5,08E+04 1,16E+05 1,75E+05 

IPI00661414 Actin-related protein 2/3 complex subunit 
2 

2,64E+05 6,92E+05 4,31E+05 5,48E+05 

IPI00163011 Thioredoxin domain-containing protein 5 2,61E+05 0,00E+00 5,45E+05 0,00E+00 

IPI00314748 WD repeat-containing protein 1 2,60E+05 4,96E+05 2,90E+05 6,32E+05 

IPI00118676 Eukaryotic initiation factor 4A-I 2,59E+05 1,88E+05 1,17E+05 1,40E+05 

IPI00881340 Hydroxysteroid (17-beta) dehydrogenase 
13 

2,58E+05 1,78E+05 7,27E+04 1,48E+05 

IPI00224575 Heterogeneous nuclear ribonucleoprotein 
K 

2,57E+05 6,55E+05 2,70E+05 1,17E+06 

IPI00346965 Beta-adaptin 1 2,56E+05 3,98E+05 1,92E+05 4,58E+05 

IPI00122344 Cystathionine gamma-lyase 2,51E+05 0,00E+00 2,36E+05 4,62E+04 

IPI00129011 Formimidoyltransferase-cyclodeaminase 2,49E+05 3,82E+05 2,15E+05 6,79E+05 

IPI00460335 Aldh4a1 protein 2,45E+05 9,51E+04 1,34E+05 2,28E+05 

IPI00230394 Lamin-B1 2,45E+05 7,89E+05 6,24E+05 1,88E+06 

IPI00271951 Protein disulfide-isomerase A4 2,45E+05 6,26E+04 2,96E+05 1,81E+05 

IPI00173179 Methyltransferase-like protein 7B 2,44E+05 7,66E+04 3,27E+04 8,18E+04 

IPI00409462 Spliceosome RNA helicase Bat1 2,43E+05 8,13E+05 1,90E+05 1,01E+06 

IPI00515360 Perlecan (Heparan sulfate proteoglycan 2) 2,42E+05 2,12E+05 4,16E+05 3,82E+05 

IPI00116591 Short-chain specific acyl-CoA 
dehydrogenase, mitochondrial 

2,41E+05 2,09E+05 1,64E+05 2,78E+05 

IPI00109932 Probable ATP-dependent RNA helicase 
DDX6 

2,37E+05 1,21E+05 1,13E+05 1,23E+05 

IPI00132728 Cytochrome c1, heme protein, 
mitochondrial 

2,35E+05 1,03E+05 0,00E+00 0,00E+00 

IPI00118344 UDP-glucose 6-dehydrogenase 2,35E+05 0,00E+00 1,66E+05 4,36E+04 

IPI00663627 Filamin-B 2,33E+05 3,31E+05 4,54E+05 9,23E+05 

IPI00128376 3-alpha-hydroxysteroid dehydrogenase 1 2,32E+05 5,12E+04 1,00E+05 3,58E+04 

IPI00114628 Indolethylamine N-methyltransferase 2,32E+05 4,10E+05 3,91E+05 1,22E+05 

IPI00130018 Acyl-protein thioesterase 1 2,31E+05 1,61E+05 8,67E+04 1,70E+05 



   
  6 Supplemental Data 

 101 

    Average Intensities 

Protein ID Protein Name NCD 
NaCl 

HFD 
NaCl 

NCD 
insulin 

HFD 
insulin 

IPI00227392 14-3-3 protein eta 2,31E+05 2,81E+05 4,76E+05 1,12E+05 

IPI00222419 Cytochrome c, somatic 2,30E+05 3,64E+05 8,38E+05 8,68E+05 

IPI00330094 Carnitine O-palmitoyltransferase 1, liver 
isoform 

2,26E+05 2,05E+05 1,92E+05 1,72E+05 

IPI00323819 40S ribosomal protein S20 2,22E+05 6,42E+04 0,00E+00 0,00E+00 

IPI00880850 Microsomal glutathione S-transferase 1 2,21E+05 0,00E+00 0,00E+00 6,02E+04 

IPI00762203 Ferritin light chain 1 2,21E+05 3,01E+04 3,68E+04 5,71E+04 

IPI00130530 Glyoxylate reductase/hydroxypyruvate 
reductase 

2,17E+05 1,27E+05 2,00E+05 4,82E+04 

IPI00131204 UTP--glucose-1-phosphate 
uridylyltransferase 

2,17E+05 2,32E+05 2,57E+05 4,62E+05 

IPI00134621 GTP-binding nuclear protein Ran 2,15E+05 2,01E+05 4,00E+05 2,62E+05 

IPI00753303 Dihydrodipicolinate synthase-like, 
mitochondrial 

2,15E+05 1,35E+05 1,08E+05 6,39E+04 

IPI00877182 F-actin-capping protein subunit alpha-1 2,14E+05 1,65E+05 4,58E+04 1,01E+05 

IPI00314844 Twinfilin-1 2,12E+05 3,22E+05 4,01E+05 3,75E+05 

IPI00119478 Tropomodulin-3 2,09E+05 3,18E+05 2,04E+05 7,47E+05 

IPI00153143 UDP glucuronosyltransferase 2 family, 
polypeptide B1 

2,05E+05 9,52E+04 8,85E+04 5,75E+04 

IPI00314950 60S acidic ribosomal protein P0 2,02E+05 6,31E+04 1,31E+05 4,86E+04 

IPI00313236 Bile acyl-CoA synthetase 2,02E+05 5,27E+04 3,51E+05 3,05E+05 

IPI00113223 Fatty acid synthase 1,99E+05 0,00E+00 1,34E+05 1,88E+05 

IPI00662342 UPF0465 protein C5orf33 homolog 1,99E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00344626 Glycerol-3-phosphate acyltransferase 1, 
mitochondrial 

1,97E+05 4,49E+04 1,41E+05 6,33E+04 

IPI00114818 SEC14-like protein 2 1,95E+05 1,49E+05 1,28E+05 1,28E+05 

IPI00118022 AP-2 complex subunit sigma-1 1,95E+05 3,79E+05 0,00E+00 0,00E+00 

IPI00114162 Fatty acid-binding protein, epidermal 1,93E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00153660 Dihydrolipoamide acetyltransferase 
component of pyruvate dehydrogenase 
complex 

1,92E+05 5,55E+04 1,06E+05 0,00E+00 

IPI00129164 Sepiapterin reductase 1,91E+05 8,04E+04 0,00E+00 3,07E+04 

IPI00123223 Murinoglobulin-1 1,90E+05 5,79E+04 1,13E+05 2,86E+05 

IPI00116222 3-hydroxyisobutyrate dehydrogenase, 
mitochondrial 

1,89E+05 1,03E+05 1,01E+05 5,86E+04 

IPI00110843 Agmatinase, mitochondrial 1,87E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00120848 Mimecan 1,87E+05 0,00E+00 2,19E+05 0,00E+00 

IPI00857740 Flavin reductase 1,86E+05 1,54E+05 6,58E+04 1,21E+05 

IPI00137491 Tartrate-resistant acid phosphatase type 
5 

1,85E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00119622 Cysteine sulfinic acid decarboxylase 1,80E+05 2,36E+05 1,50E+05 8,47E+04 

IPI00129178 Ornithine aminotransferase, mitochondrial 1,79E+05 0,00E+00 1,28E+05 0,00E+00 

IPI00874456 Dihydrolipoyl dehydrogenase, 
mitochondrial 

1,79E+05 1,76E+05 1,36E+05 8,38E+04 

IPI00132397 GTP-binding protein SAR1b 1,79E+05 5,13E+04 0,00E+00 5,16E+04 

IPI00107952 Lysozyme C-2 1,78E+05 2,93E+05 8,19E+04 1,76E+05 

IPI00128489 Cytochrome P450 2C50 1,77E+05 3,71E+04 1,73E+05 1,77E+05 

IPI00314191 Carbonyl reductase [NADPH] 1 1,77E+05 8,29E+04 1,16E+05 2,52E+04 

IPI00119755 Peroxisomal coenzyme A diphosphatase 
NUDT7 

1,77E+05 4,96E+04 0,00E+00 0,00E+00 

IPI00128287 Cytochrome P450 1A2 1,76E+05 0,00E+00 3,13E+05 5,42E+04 
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IPI00874670 Abhydrolase domain-containing protein 
14B 

1,75E+05 9,94E+04 0,00E+00 2,40E+05 

IPI00132762 Heat shock protein 75 kDa, mitochondrial 1,74E+05 1,28E+05 2,05E+05 1,83E+05 

IPI00122633 Acyl-CoA synthetase family member 2, 
mitochondrial 

1,74E+05 1,83E+05 1,27E+05 2,22E+05 

IPI00321718 Prohibitin-2 1,73E+05 4,80E+04 1,12E+05 3,58E+04 

IPI00133877 Cytochrome P450 4A14 1,72E+05 0,00E+00 1,76E+05 8,48E+04 

IPI00330958 Heterogeneous nuclear ribonucleoprotein 
D0 

1,72E+05 6,17E+05 1,77E+05 7,83E+05 

IPI00621548 NADPH--cytochrome P450 reductase 1,71E+05 1,17E+05 1,91E+05 1,53E+05 

IPI00108780 AP-2 complex subunit alpha-1 1,71E+05 2,03E+05 1,39E+05 3,70E+05 

IPI00133440 Prohibitin 1,71E+05 1,03E+05 7,93E+04 4,10E+04 

IPI00555036 Asialoglycoprotein receptor 1 1,70E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00380320 Probable D-lactate dehydrogenase, 
mitochondrial 

1,70E+05 0,00E+00 2,55E+04 0,00E+00 

IPI00222763 Splicing factor, arginine/serine-rich 7 1,68E+05 8,20E+05 2,76E+05 1,42E+06 

IPI00122257 5'-nucleotidase 1,68E+05 1,35E+05 2,26E+05 1,59E+05 

IPI00331442 Peptide methionine sulfoxide reductase 1,66E+05 1,54E+05 1,14E+05 5,65E+04 

IPI00119685 Sterol 26-hydroxylase, mitochondrial 1,65E+05 8,50E+04 0,00E+00 3,66E+04 

IPI00267407 Aldehyde dehydrogenase family 8 
member A1 

1,65E+05 6,94E+04 5,32E+04 1,13E+05 

IPI00320241 DnaJ homolog subfamily B member 11 1,62E+05 0,00E+00 5,60E+04 0,00E+00 

IPI00117705 Dolichyl-diphosphooligosaccharide--
protein glycosyltransferase 48 kDa 
subunit 

1,62E+05 4,12E+04 1,00E+05 6,49E+04 

IPI00467119 Probable N-acetyltransferase CML1 1,62E+05 6,38E+04 0,00E+00 1,22E+05 

IPI00154047 3-hydroxyisobutyryl-CoA hydrolase, 
mitochondrial 

1,60E+05 9,20E+04 7,24E+04 4,99E+04 

IPI00110528 Phenazine biosynthesis-like domain-
containing protein 2 

1,60E+05 9,15E+04 1,04E+05 4,86E+04 

IPI00845652 2-oxoglutarate dehydrogenase E1 
component, mitochondrial 

1,58E+05 4,96E+04 1,38E+05 2,82E+04 

IPI00113394 40S ribosomal protein S15a 1,57E+05 3,84E+05 2,33E+05 1,76E+05 

IPI00123276 MOSC domain-containing protein 2, 
mitochondrial 

1,57E+05 7,99E+04 1,11E+05 0,00E+00 

IPI00313998 Sulfide:quinone oxidoreductase, 
mitochondrial 

1,57E+05 0,00E+00 8,59E+04 0,00E+00 

IPI00462802 Tripartite motif-containing protein 14 1,57E+05 2,55E+05 6,92E+04 2,44E+05 

IPI00116281 T-complex protein 1 subunit zeta 1,56E+05 4,02E+04 2,42E+05 2,62E+05 

IPI00856979 Sulfotransferase-like protein 2 1,55E+05 1,78E+05 1,03E+05 3,14E+04 

IPI00135646 ATP-binding cassette sub-family D 
member 3 

1,55E+05 3,87E+05 7,09E+04 1,96E+05 

IPI00131138 Filamin-A 1,54E+05 6,17E+04 2,20E+05 2,04E+05 

IPI00125220 Cathepsin Z 1,54E+05 3,25E+04 1,75E+05 2,84E+04 

IPI00309224 Phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha isoform 

1,54E+05 2,98E+05 3,97E+06 2,80E+06 

IPI00318750 Dehydrogenase/reductase SDR family 
member 4 

1,52E+05 7,58E+04 6,41E+04 8,59E+04 

IPI00454008 Serine hydroxymethyltransferase 1,51E+05 8,87E+04 1,75E+05 8,24E+04 

IPI00125143 Actin-related protein 2/3 complex subunit 
1B 

1,51E+05 3,64E+05 2,32E+05 5,09E+05 

IPI00653643 Heterogeneous nuclear ribonucleoprotein 
L 

1,51E+05 6,66E+05 3,33E+05 8,59E+05 

IPI00387282 Arylacetamide deacetylase 1,48E+05 5,41E+04 9,24E+04 5,14E+04 
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IPI00116277 T-complex protein 1 subunit delta 1,48E+05 0,00E+00 2,56E+05 1,07E+05 

IPI00112448 40S ribosomal protein S10 1,45E+05 8,55E+04 5,51E+04 8,27E+04 

IPI00230550 Estradiol 17-beta-dehydrogenase 8 1,44E+05 3,08E+04 2,05E+05 1,01E+05 

IPI00877345 Hemopexin 1,40E+05 0,00E+00 5,87E+04 0,00E+00 

IPI00126191 Lamin-B2 1,40E+05 5,22E+05 3,85E+05 1,43E+06 

IPI00127280 Myeloid bactenecin (F1) 1,39E+05 0,00E+00 0,00E+00 1,57E+05 

IPI00277066 Heterogeneous nuclear ribonucleoprotein 
A/B 

1,39E+05 5,27E+05 1,43E+05 7,08E+05 

IPI00775863 Guanine nucleotide-binding protein 
G(I)/G(S)/G(T) subunit beta-2 

1,38E+05 1,60E+05 2,36E+05 9,12E+04 

IPI00421223 Tropomyosin alpha-4 chain 1,35E+05 1,91E+05 2,58E+05 4,67E+05 

IPI00121833 3-ketoacyl-CoA thiolase A, peroxisomal 1,34E+05 1,48E+05 2,78E+04 9,27E+04 

IPI00311682 Sodium/potassium-transporting ATPase 
subunit alpha-1 

1,33E+05 3,90E+04 1,14E+05 1,16E+05 

IPI00130144 Epoxide hydrolase 1, microsomal 1,33E+05 7,73E+04 5,81E+04 3,69E+04 

IPI00226073 Heterogeneous nuclear ribonucleoprotein 
F 

1,31E+05 7,26E+04 1,36E+05 3,91E+05 

IPI00469380 Aldehyde oxidase 3 1,31E+05 1,71E+05 8,73E+04 1,72E+05 

IPI00331146 UMP-CMP kinase 1,30E+05 1,11E+05 0,00E+00 5,14E+04 

IPI00122547 Voltage-dependent anion-selective 
channel protein 2 

1,30E+05 2,24E+04 9,08E+04 6,46E+04 

IPI00154043 Carboxylesterase 6 1,29E+05 1,25E+05 7,60E+04 0,00E+00 

IPI00318841 Elongation factor 1-gamma 1,28E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00222496 Protein disulfide-isomerase A6 1,28E+05 0,00E+00 8,98E+04 0,00E+00 

IPI00856927 Rps19 protein 1,25E+05 9,42E+04 3,48E+04 1,21E+05 

IPI00116283 T-complex protein 1 subunit gamma 1,25E+05 0,00E+00 3,33E+05 5,16E+04 

IPI00316314 2-hydroxyacyl-CoA lyase 1 1,22E+05 1,78E+05 1,20E+05 6,42E+04 

IPI00320217 T-complex protein 1 subunit beta 1,21E+05 9,10E+04 1,42E+05 7,44E+04 

IPI00228978 Clathrin light chain B 1,21E+05 7,86E+05 2,26E+06 2,22E+06 

IPI00119945 Nitrilase homolog 2 1,21E+05 6,04E+04 2,06E+04 3,51E+04 

IPI00113057 Plasma kallikrein 1,20E+05 0,00E+00 2,05E+05 1,87E+05 

IPI00762346 Kynurenine/alpha-aminoadipate 
aminotransferase mitochondrial 

1,19E+05 0,00E+00 5,86E+04 0,00E+00 

IPI00109823 1,4-alpha-glucan-branching enzyme 1,19E+05 0,00E+00 4,14E+04 6,66E+04 

IPI00317794 Nucleolin 1,19E+05 1,04E+05 9,20E+04 3,64E+05 

IPI00133034 Histidine triad nucleotide-binding protein 
2 

1,18E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00111045 Mitochondrial import inner membrane 
translocase subunit TIM50 

1,17E+05 0,00E+00 3,18E+04 0,00E+00 

IPI00121105 Hydroxyacyl-coenzyme A 
dehydrogenase, mitochondrial 

1,17E+05 8,11E+04 1,14E+05 0,00E+00 

IPI00122350 U1 small nuclear ribonucleoprotein A 1,17E+05 1,90E+05 2,82E+04 2,01E+05 

IPI00122634 Cytochrome P450, family 2, subfamily a, 
polypeptide 12 

1,16E+05 0,00E+00 8,88E+04 0,00E+00 

IPI00330804 Heat shock protein HSP 90-alpha 1,15E+05 0,00E+00 1,62E+05 1,26E+05 

IPI00122122 Complement component C8 gamma 
chain 

1,14E+05 0,00E+00 0,00E+00 5,52E+04 

IPI00556870 Igh protein 1,13E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00228633 Glucose-6-phosphate isomerase 1,12E+05 0,00E+00 2,00E+04 0,00E+00 

IPI00471231 UDP-glucuronosyltransferase 2A3 1,12E+05 1,15E+05 1,90E+05 1,23E+05 

IPI00115866 Hydroxyacylglutathione hydrolase 1,11E+05 2,18E+05 4,44E+05 2,36E+05 

IPI00877297 Cytochrome P450 2D9 1,11E+05 2,55E+04 2,65E+04 0,00E+00 
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IPI00261627 Succinyl-CoA ligase [ADP-forming] 
subunit beta, mitochondrial 

1,10E+05 7,12E+04 1,21E+05 0,00E+00 

IPI00310658 Aldo-keto reductase family 1 member 
C13 

1,06E+05 0,00E+00 2,66E+04 0,00E+00 

IPI00222489 Ces5 protein 1,06E+05 0,00E+00 3,41E+04 2,04E+04 

IPI00131424 Carnitine O-palmitoyltransferase 2, 
mitochondrial 

1,06E+05 1,16E+05 7,16E+04 1,82E+05 

IPI00314189 3 beta-hydroxysteroid dehydrogenase 
type 5 

1,06E+05 0,00E+00 4,84E+04 0,00E+00 

IPI00113141 Citrate synthase, mitochondrial 1,05E+05 7,66E+04 1,04E+05 6,42E+04 

IPI00408495 Basigin 1,05E+05 6,82E+04 1,17E+05 8,65E+04 

IPI00875110 Isocitrate dehydrogenase [NADP], 
mitochondrial 

1,05E+05 1,29E+05 8,11E+04 2,59E+04 

IPI00649326 Myosin-XVIIIa 1,03E+05 1,24E+05 1,79E+05 3,94E+05 

IPI00122293 Prolargin 1,00E+05 0,00E+00 4,12E+05 5,13E+04 

IPI00123927 Alpha-1-antitrypsin 1-5 1,00E+05 0,00E+00 0,00E+00 0,00E+00 

IPI00399943 Actin-related protein 2/3 complex subunit 
5 

9,94E+04 1,88E+05 5,75E+04 3,34E+05 

IPI00117181 Flotillin-1 9,90E+04 0,00E+00 3,52E+04 1,55E+05 

IPI00230035 ATP-dependent RNA helicase DDX3X 9,81E+04 7,13E+04 9,12E+04 9,71E+04 

IPI00121534 Carbonic anhydrase 2 9,72E+04 0,00E+00 0,00E+00 4,47E+04 

IPI00124692 Transaldolase 9,61E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00457898 Phosphoglycerate mutase 1 9,57E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00123924 Alpha-1-antitrypsin 1-4 9,56E+04 8,57E+04 1,57E+05 4,35E+04 

IPI00127942 Destrin 9,56E+04 0,00E+00 0,00E+00 1,47E+05 

IPI00113073 Aldehyde dehydrogenase X, 
mitochondrial 

9,38E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00331555 2-oxoisovalerate dehydrogenase subunit 
alpha, mitochondrial 

9,31E+04 0,00E+00 6,41E+04 0,00E+00 

IPI00115824 Protein NipSnap homolog 1 9,26E+04 5,11E+04 0,00E+00 0,00E+00 

IPI00221769 GTP:AMP phosphotransferase 
mitochondrial 

9,22E+04 5,33E+04 0,00E+00 8,92E+04 

IPI00123604 40S ribosomal protein SA 9,17E+04 0,00E+00 5,19E+04 0,00E+00 

IPI00130343 Heterogeneous nuclear 
ribonucleoproteins C1/C2 

9,07E+04 4,91E+05 1,71E+04 6,34E+05 

IPI00125515 PCTP-like protein 8,96E+04 9,30E+04 1,80E+05 6,61E+04 

IPI00128904 Poly(rC)-binding protein 1 8,94E+04 1,19E+05 8,02E+04 1,34E+05 

IPI00762625 Anti-lipoteichoic acid light chain variable 
region 

8,89E+04 3,44E+05 7,52E+04 1,91E+05 

IPI00128271 Kynurenine 3-monooxygenase 8,88E+04 0,00E+00 3,28E+04 0,00E+00 

IPI00471437 Igh protein 8,85E+04 7,85E+05 1,10E+06 2,67E+05 

IPI00117741 Cytochrome P450 2J5 8,84E+04 0,00E+00 8,46E+04 3,74E+04 

IPI00131584 Mitochondrial carnitine/acylcarnitine 
carrier protein 

8,79E+04 0,00E+00 0,00E+00 2,88E+04 

IPI00889811 Ribophorin-2 8,74E+04 0,00E+00 1,31E+05 3,85E+04 

IPI00108143 Heterogeneous nuclear ribonucleoprotein 
H2 

8,72E+04 8,96E+04 8,84E+04 2,31E+05 

IPI00118459 Gap junction beta-1 protein 8,72E+04 5,76E+05 0,00E+00 3,29E+05 

IPI00154045 Alanine aminotransferase 1 8,69E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00322936 Plasminogen 8,69E+04 7,90E+04 1,05E+05 1,94E+05 

IPI00475378 Polypyrimidine tract binding protein 1 8,63E+04 4,34E+05 1,00E+05 7,66E+05 

IPI00420972 Ig gamma-2A chain C region, A allele 8,59E+04 1,35E+05 7,36E+04 2,78E+05 
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IPI00228617 Guanine nucleotide-binding protein G(i), 
alpha-2 subunit 

8,59E+04 2,32E+05 1,03E+05 1,93E+05 

IPI00123762 Regulator of chromosome condensation 
1 

8,53E+04 2,92E+05 9,62E+04 1,91E+05 

IPI00121051 Glutathione S-transferase kappa 1 8,46E+04 4,80E+04 0,00E+00 3,06E+04 

IPI00137471 3-beta-hydroxysteroid-Delta(8),Delta(7)-
isomerase 

8,44E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00134809 Dihydrolipoamide succinyltransferase 
component of 2-oxoglutarate 
dehydrogenase complex 

8,44E+04 0,00E+00 3,40E+04 4,23E+04 

IPI00226140 Amine oxidase [flavin-containing] B 8,36E+04 1,15E+05 1,34E+05 9,70E+04 

IPI00121758 TAR DNA-binding protein 43 8,28E+04 1,29E+05 7,20E+04 2,92E+05 

IPI00127625 Hydroxymethylglutaryl-CoA lyase, 
mitochondrial 

8,10E+04 0,00E+00 1,11E+05 0,00E+00 

IPI00123196 Decorin 8,08E+04 0,00E+00 4,35E+05 0,00E+00 

IPI00111117 Actin-related protein 2/3 complex subunit 
5-like protein 

7,97E+04 1,30E+05 3,45E+04 6,68E+04 

IPI00132958 Acyl-coenzyme A thioesterase 13 7,95E+04 0,00E+00 2,91E+04 0,00E+00 

IPI00320503 Solute carrier family 25 member 42 7,84E+04 1,55E+05 0,00E+00 8,67E+04 

IPI00115679 Neutral alpha-glucosidase AB 7,78E+04 0,00E+00 2,28E+04 1,16E+04 

IPI00221932 Protein MAL2 7,74E+04 1,32E+05 0,00E+00 1,67E+05 

IPI00124790 Receptor expression-enhancing protein 6 7,73E+04 3,64E+04 0,00E+00 0,00E+00 

IPI00125853 Mitochondrial ornithine transporter 1 7,60E+04 0,00E+00 1,45E+04 0,00E+00 

IPI00128378 Cystathionine beta-synthase 7,55E+04 5,21E+04 4,25E+04 0,00E+00 

IPI00135085 Heme-binding protein 1 7,54E+04 0,00E+00 0,00E+00 4,45E+04 

IPI00121348 L-serine dehydratase 7,43E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00132042 Pyruvate dehydrogenase E1 component 
subunit beta, mitochondrial 

7,42E+04 0,00E+00 1,23E+05 0,00E+00 

IPI00649763 Tyrosine-protein kinase Lyn 7,40E+04 1,41E+05 8,36E+04 2,63E+05 

IPI00318577 Dihydropyrimidinase 7,40E+04 6,98E+04 2,50E+05 9,39E+04 

IPI00224740 Profilin-1 7,33E+04 1,65E+05 1,23E+05 6,35E+04 

IPI00322206 N-acylneuraminate cytidylyltransferase 7,31E+04 0,00E+00 1,98E+05 5,72E+04 

IPI00554845 Mitochondrial inner membrane protein 7,21E+04 8,02E+04 7,34E+04 6,81E+04 

IPI00408796 Splicing factor 3 subunit 1 7,12E+04 5,25E+04 3,16E+04 1,90E+05 

IPI00135730 ADP-ribosylation factor 2 7,07E+04 0,00E+00 3,50E+04 0,00E+00 

IPI00137145 Polyadenylate-binding protein 1 6,96E+04 0,00E+00 6,31E+04 1,02E+05 

IPI00406193 Ras GTPase-activating-like protein IQGAP2 6,93E+04 0,00E+00 1,76E+05 3,11E+04 

IPI00128556 Nicotinate-nucleotide pyrophosphorylase 6,82E+04 0,00E+00 9,82E+03 0,00E+00 

IPI00323600 Coronin-1A 6,82E+04 4,27E+04 5,26E+04 1,19E+05 

IPI00554894 Annexin A6 6,81E+04 2,55E+04 0,00E+00 6,26E+04 

IPI00130535 Dihydrolipoamide branched chain 
transacylase E2 

6,73E+04 4,88E+04 2,92E+04 0,00E+00 

IPI00312468 Eukaryotic peptide chain release factor 
subunit 1 

6,72E+04 0,00E+00 2,08E+04 2,47E+04 

IPI00624210 Glycine N-acyltransferase-like protein 6,68E+04 1,19E+05 7,99E+04 1,27E+05 

IPI00468203 Annexin A2 6,68E+04 0,00E+00 1,73E+05 0,00E+00 

IPI00830749 Collagen alpha 3 chain type VI 6,67E+04 0,00E+00 0,00E+00 4,70E+04 

IPI00458583 Heterogenous nuclear ribonucleoprotein U 6,61E+04 2,33E+05 3,42E+04 3,47E+05 

IPI00136984 40S ribosomal protein S7 6,58E+04 1,77E+05 0,00E+00 5,67E+05 

IPI00762185 3-mercaptopyruvate sulfurtransferase 6,57E+04 7,44E+04 6,82E+04 0,00E+00 
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IPI00828470 Low molecular weight phosphotyrosine 
protein phosphatase 

6,50E+04 2,13E+04 2,74E+04 0,00E+00 

IPI00471081 Phospholipase B domain-containing 
protein 1 

6,50E+04 0,00E+00 7,20E+04 0,00E+00 

IPI00113427 Lysozyme C-1 6,49E+04 3,68E+04 2,12E+05 0,00E+00 

IPI00136134 Protein NDRG2 6,48E+04 0,00E+00 7,93E+04 0,00E+00 

IPI00877335 Putative uncharacterized protein 6,41E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00122557 Liver carboxylesterase 31-like 6,29E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00649502 Erythrocyte protein band 4.1 6,26E+04 1,38E+04 2,17E+05 3,47E+05 

IPI00339468 ATP-dependent RNA helicase A 6,19E+04 3,07E+05 4,02E+04 2,19E+05 

IPI00337893 Pyruvate dehydrogenase E1 component 
subunit alpha, somatic form, 
mitochondrial 

6,14E+04 0,00E+00 8,42E+04 5,71E+04 

IPI00135655 Vesicle-associated membrane protein-
associated protein B 

6,04E+04 0,00E+00 1,58E+04 3,29E+04 

IPI00605187 Truncated ceruloplasmin 5,90E+04 0,00E+00 8,12E+04 7,77E+04 

IPI00130102 Desmin 5,90E+04 6,70E+04 6,27E+04 4,96E+04 

IPI00118625 Histidine ammonia-lyase 5,87E+04 0,00E+00 5,90E+04 7,72E+04 

IPI00750595 Myosin regulatory light polypeptide 9 5,82E+04 2,18E+05 0,00E+00 2,33E+05 

IPI00377351 Apolipoprotein A-IV 5,78E+04 0,00E+00 1,58E+04 0,00E+00 

IPI00264501 Phosphatidylinositol-binding clathrin 
assembly protein 

5,71E+04 1,72E+05 3,17E+04 8,51E+04 

IPI00314202 Bile acid-CoA:amino acid N-
acyltransferase 

5,64E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00652925 Sec24b protein 5,61E+04 0,00E+00 1,16E+05 0,00E+00 

IPI00317074 Mitochondrial dicarboxylate carrier 5,55E+04 0,00E+00 0,00E+00 3,00E+04 

IPI00172146 Trans-1,2-dihydrobenzene-1,2-diol 
dehydrogenase 

5,54E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00407499 4-aminobutyrate aminotransferase, 
mitochondrial 

5,38E+04 0,00E+00 4,04E+04 0,00E+00 

IPI00331490 Aflatoxin B1 aldehyde reductase member 
2 

5,33E+04 0,00E+00 2,73E+04 2,39E+04 

IPI00119470 Probable imidazolonepropionase 5,25E+04 0,00E+00 6,21E+04 4,43E+04 

IPI00134870 Peroxisomal acyl-coenzyme A oxidase 2 5,15E+04 0,00E+00 0,00E+00 1,69E+04 

IPI00121514 Stress-induced-phosphoprotein 1 5,13E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00114331 Alpha-methylacyl-CoA racemase 5,12E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00123313 Ubiquitin-like modifier-activating enzyme 
1 

5,10E+04 0,00E+00 6,54E+04 1,44E+04 

IPI00308882 NADH-ubiquinone oxidoreductase 75 
kDa subunit, mitochondrial 

5,04E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00114647 Deoxyhypusine synthase 4,95E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00117063 RNA-binding protein FUS 4,92E+04 2,23E+04 9,96E+04 3,01E+05 

IPI00330632 Collagen alpha-1(XIV) chain 4,92E+04 0,00E+00 7,56E+04 4,72E+04 

IPI00336362 Aldehyde dehydrogenase, cytosolic 1 4,79E+04 0,00E+00 4,19E+04 7,09E+04 

IPI00114381 Tryptophan 2,3-dioxygenase 4,72E+04 0,00E+00 2,33E+04 0,00E+00 

IPI00125091 LIM and SH3 domain protein 1 4,68E+04 0,00E+00 0,00E+00 3,06E+04 

IPI00458043 Sorbin and SH3 domain-containing 
protein 1 

4,68E+04 1,34E+05 1,81E+05 3,88E+05 

IPI00918921 Ubiquitin-conjugating enzyme E2 variant 
1 

4,62E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00331174 T-complex protein 1 subunit eta 4,59E+04 0,00E+00 2,23E+05 0,00E+00 

IPI00109910 Ighg protein 4,56E+04 0,00E+00 5,34E+04 2,90E+04 
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IPI00121309 NADH dehydrogenase [ubiquinone] iron-
sulfur protein 3, mitochondrial 

4,55E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00675981 FK506-binding protein 15 4,53E+04 9,83E+04 3,82E+04 2,31E+04 

IPI00133544 Pancreatic alpha-amylase 4,39E+04 1,21E+05 0,00E+00 0,00E+00 

IPI00170363 Long-chain-fatty-acid--CoA ligase 5 4,36E+04 0,00E+00 1,04E+05 6,80E+04 

IPI00408207 Myosin-Id 4,35E+04 1,63E+05 5,44E+04 1,26E+05 

IPI00623845 Selenium-binding protein 1 4,35E+04 0,00E+00 3,09E+04 0,00E+00 

IPI00226872 EF hand domain containing 2 4,34E+04 0,00E+00 2,44E+04 1,71E+05 

IPI00120832 Major urinary protein 3 4,34E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00125899 Catenin beta-1 4,25E+04 2,03E+05 1,48E+05 4,07E+05 

IPI00323911 Glutathione S-transferase A4 4,25E+04 5,44E+04 0,00E+00 0,00E+00 

IPI00119305 Proliferation-associated protein 2G4 4,22E+04 0,00E+00 2,48E+04 0,00E+00 

IPI00471091 Aspartate dehydrogenase domain-
containing protein 

4,19E+04 0,00E+00 3,51E+04 0,00E+00 

IPI00313631 Mitochondrial 2-oxodicarboxylate carrier 4,18E+04 0,00E+00 7,67E+04 0,00E+00 

IPI00153190 SEC14-like protein 4 4,15E+04 0,00E+00 3,01E+04 1,78E+04 

IPI00314909 Serine--pyruvate aminotransferase, 
mitochondrial 

4,11E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00108271 ELAV-like protein 1 4,05E+04 2,95E+05 5,78E+04 1,63E+05 

IPI00315794 Cytochrome b5 type B 3,99E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00129468 Chromobox protein homolog 3 3,92E+04 6,95E+04 0,00E+00 1,27E+05 

IPI00276157 Apoptosis-inducing factor 2 3,92E+04 0,00E+00 2,58E+04 2,87E+04 

IPI00420807 Splicing factor, arginine/serine-rich 1 3,91E+04 2,57E+05 2,03E+05 6,17E+05 

IPI00119220 Small nuclear ribonucleoprotein Sm D2 3,89E+04 4,86E+05 2,19E+05 8,52E+05 

IPI00120826 Translocon-associated protein subunit 
gamma 

3,87E+04 0,00E+00 0,00E+00 2,09E+04 

IPI00850737 Methylmalonyl-Coenzyme A mutase 3,86E+04 3,57E+04 4,21E+04 3,49E+04 

IPI00757790 Cingulin 3,85E+04 1,80E+05 3,19E+05 2,78E+05 

IPI00115215 Thiopurine S-methyltransferase 3,79E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00226882 Protein transport protein Sec61 subunit 
alpha isoform 1 

3,79E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00153677 Arf-GAP with dual PH domain-containing 
protein 2 

3,78E+04 1,03E+05 3,24E+04 5,26E+04 

IPI00131478 Sulfotransferase 1A1 3,77E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00126716 Eukaryotic initiation factor 4A-III 3,75E+04 1,10E+05 6,16E+04 1,67E+05 

IPI00135635 Serine protease inhibitor A3M 3,64E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00313296 Ribonuclease inhibitor 3,62E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00124979 Heterogeneous nuclear ribonucleoprotein 
G 

3,62E+04 2,25E+05 0,00E+00 3,06E+05 

IPI00284816 Collagen alpha-1(XVIII) chain 3,60E+04 0,00E+00 2,91E+04 1,15E+05 

IPI00886106 Ketohexokinase 3,58E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00137848 Splicing factor 3A subunit 3 3,54E+04 1,03E+05 0,00E+00 0,00E+00 

IPI00169666 UDP glucuronosyltransferase 2 family, 
polypeptide B34 

3,53E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00121271 UPF0585 protein C16orf13 homolog 3,49E+04 0,00E+00 4,24E+04 2,43E+04 

IPI00114368 Vesicle-trafficking protein SEC22b 3,34E+04 2,25E+04 0,00E+00 2,56E+04 

IPI00311809 Solute carrier family 2, facilitated glucose 
transporter member 2 

3,29E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00271986 ATP synthase subunit f, mitochondrial 3,25E+04 0,00E+00 4,34E+05 1,36E+05 

IPI00116356 AP-2 complex subunit mu-1 3,24E+04 0,00E+00 0,00E+00 5,90E+04 
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IPI00130804 Delta(3,5)-Delta(2,4)-dienoyl-CoA 
isomerase, mitochondrial 

3,23E+04 0,00E+00 0,00E+00 3,30E+04 

IPI00673886 Sorbin and SH3 domain-containing 
protein 2 

3,14E+04 0,00E+00 5,34E+04 1,23E+05 

IPI00121493 Tetratricopeptide repeat protein 36 3,12E+04 0,00E+00 0,00E+00 2,78E+04 

IPI00119808 ATP-dependent Clp protease ATP-
binding subunit clpX-like, mitochondrial 

3,09E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00120761 Band 3 anion transport protein 3,06E+04 0,00E+00 1,84E+04 4,48E+04 

IPI00123557 RuvB-like 2 3,05E+04 1,98E+04 2,00E+04 5,83E+04 

IPI00624896 Aspartyl/asparaginyl beta-hydroxylase 2,99E+04 4,29E+04 0,00E+00 0,00E+00 

IPI00129323 Splicing factor, arginine/serine-rich 3 2,98E+04 1,28E+05 0,00E+00 3,20E+05 

IPI00122743 Aspartyl-tRNA synthetase, cytoplasmic 2,96E+04 0,00E+00 2,26E+04 0,00E+00 

IPI00877214 Peroxisomal 3,2-trans-enoyl-CoA 
isomerase 

2,90E+04 2,60E+04 3,44E+04 5,39E+04 

IPI00118963 39S ribosomal protein L12, mitochondrial 2,90E+04 0,00E+00 0,00E+00 3,93E+04 

IPI00828590 Cytochrome P450, family 4, subfamily a, 
polypeptide 12a 

2,84E+04 0,00E+00 2,65E+04 0,00E+00 

IPI00896567 Spectrin alpha chain, erythrocyte 2,83E+04 1,51E+05 9,50E+04 4,68E+05 

IPI00136012 Vitamin K-dependent gamma-
carboxylase 

2,81E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00229539 Histone H2B type 3-B 2,79E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00120457 Farnesyl pyrophosphate synthetase 2,76E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00117264 Protein DJ-1 2,73E+04 0,00E+00 0,00E+00 4,07E+04 

IPI00347394 Protein KIAA0664 2,70E+04 0,00E+00 1,62E+04 4,56E+04 

IPI00845690 Kynurenine--oxoglutarate transaminase 3 2,67E+04 0,00E+00 1,34E+04 0,00E+00 

IPI00331088 Pigment epithelium-derived factor 2,65E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00651878 Adenylate kinase isoenzyme 4, 
mitochondrial 

2,64E+04 3,16E+04 0,00E+00 0,00E+00 

IPI00133985 RuvB-like 1 2,64E+04 0,00E+00 0,00E+00 3,25E+04 

IPI00127987 Actin-related protein 2/3 complex subunit 
1A 

2,63E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00153144 Sulfite oxidase, mitochondrial 2,61E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00124830 Leukocyte surface antigen CD47 2,56E+04 0,00E+00 2,46E+04 2,41E+04 

IPI00757372 Isochorismatase domain-containing 
protein 2A, mitochondrial 

2,54E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00116432 Dimethylaniline monooxygenase [N-oxide-
forming] 1 

2,51E+04 0,00E+00 4,66E+04 0,00E+00 

IPI00130985 Retinol dehydrogenase 7 2,49E+04 0,00E+00 5,28E+04 0,00E+00 

IPI00126248 ATP-citrate synthase 2,48E+04 0,00E+00 2,32E+04 0,00E+00 

IPI00666034 Apolipoprotein B 2,43E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00118143 Src substrate cortactin 2,41E+04 8,67E+04 2,39E+04 1,81E+05 

IPI00761408 Lon protease homolog, mitochondrial 2,39E+04 0,00E+00 2,55E+04 2,97E+04 

IPI00121517 Phosphotriesterase-related protein 2,39E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00115599 Corticosteroid 11-beta-dehydrogenase 
isozyme 1 

2,38E+04 0,00E+00 1,54E+04 0,00E+00 

IPI00123494 26S proteasome non-ATPase regulatory 
subunit 2 

2,34E+04 0,00E+00 3,16E+04 1,01E+04 

IPI00230415 Eukaryotic translation initiation factor 2 
subunit 3, X-linked 

2,34E+04 0,00E+00 2,92E+04 0,00E+00 

IPI00111519 Fructosamine-3-kinase 2,34E+04 0,00E+00 4,35E+04 3,09E+04 

IPI00856379 Fructose-bisphosphate aldolase 2,33E+04 0,00E+00 3,59E+04 0,00E+00 

IPI00169543 Zymogen granule membrane protein 16 2,31E+04 0,00E+00 0,00E+00 0,00E+00 
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IPI00761657 Galectin-8 2,16E+04 7,74E+04 0,00E+00 0,00E+00 

IPI00139795 60S acidic ribosomal protein P2 2,15E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00229647 Tln2 protein 2,10E+04 4,66E+04 3,44E+04 1,88E+05 

IPI00321308 Alanyl-tRNA synthetase, cytoplasmic 2,09E+04 0,00E+00 2,35E+04 1,45E+04 

IPI00330476 Cytoplasmic FMR1-interacting protein 1 2,09E+04 0,00E+00 4,14E+04 0,00E+00 

IPI00387388 BCL2-associated athanogene 3 2,09E+04 0,00E+00 1,49E+04 1,10E+05 

IPI00135869 Ras-related protein Rab-11B 2,09E+04 0,00E+00 0,00E+00 6,70E+04 

IPI00123342 Hypoxia up-regulated protein 1 2,07E+04 0,00E+00 3,82E+04 0,00E+00 

IPI00129430 Splicing factor, proline- and glutamine-
rich 

2,07E+04 0,00E+00 1,78E+04 4,05E+04 

IPI00323881 Importin subunit beta-1 2,05E+04 4,74E+04 2,50E+04 8,75E+04 

IPI00134599 40S ribosomal protein S3 2,03E+04 4,34E+04 3,35E+04 0,00E+00 

IPI00660980 A6 anti-[4-hydroxy-3-
nitrophenyl(Phenolate form)] acetyl mAb 
V-L region 

2,03E+04 2,07E+05 0,00E+00 0,00E+00 

IPI00119239 Proteasome subunit beta type-6 2,02E+04 0,00E+00 0,00E+00 1,58E+04 

IPI00116228 Peptidyl-prolyl cis-trans isomerase, 
mitochondrial 

2,00E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00474446 Eukaryotic translation initiation factor 2 
subunit 1 

2,00E+04 0,00E+00 9,07E+04 0,00E+00 

IPI00118059 Serine hydroxymethyltransferase, 
cytosolic 

1,98E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00130185 Serine/threonine-protein phosphatase 
PP1-alpha catalytic subunit 

1,97E+04 0,00E+00 0,00E+00 3,23E+04 

IPI00114560 Ras-related protein Rab-1A 1,95E+04 0,00E+00 0,00E+00 1,92E+04 

IPI00131376 Spectrin beta chain, erythrocyte 1,95E+04 1,16E+05 0,00E+00 3,76E+05 

IPI00459033 DnaJ homolog subfamily C member 3 1,94E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00122428 Heat shock protein beta-8 1,89E+04 6,04E+04 0,00E+00 8,10E+04 

IPI00132799 Complement component 1, q 
subcomponent binding protein 

1,89E+04 0,00E+00 0,00E+00 3,57E+04 

IPI00311072 Cysteine desulfurase, mitochondrial 1,89E+04 0,00E+00 3,07E+04 0,00E+00 

IPI00118875 Elongation factor 1-delta 1,84E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00654397 Activin receptor-interacting protein 2a 1,83E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00170008 U2 small nuclear ribonucleoprotein A' 1,76E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00331573 Protein-glutamine gamma-
glutamyltransferase K 

1,75E+04 0,00E+00 7,96E+04 6,70E+04 

IPI00406118 Heterogeneous nuclear ribonucleoprotein 
Q 

1,73E+04 0,00E+00 0,00E+00 1,06E+05 

IPI00132531 NADH dehydrogenase [ubiquinone] 1 
beta subcomplex subunit 5, mitochondrial 

1,72E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00124067 UPF0598 protein C8orf82 homolog 1,72E+04 0,00E+00 0,00E+00 2,76E+04 

IPI00136227 Growth hormone-regulated TBC protein 1 1,70E+04 4,14E+04 0,00E+00 2,96E+04 

IPI00128857 NADP-dependent malic enzyme 1,69E+04 0,00E+00 8,71E+04 0,00E+00 

IPI00122362 Protein disulfide-isomerase A5 1,66E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00122521 Fragile X mental retardation syndrome-
related protein 1 

1,61E+04 3,68E+04 0,00E+00 7,72E+04 

IPI00762812 Chloride channel CaCC 1,60E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00169925 NADH dehydrogenase [ubiquinone] 
flavoprotein 2, mitochondrial 

1,60E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00331163 S-phase kinase-associated protein 1 1,53E+04 0,00E+00 0,00E+00 2,50E+04 

IPI00313841 V-type proton ATPase subunit d 1 1,50E+04 0,00E+00 2,71E+04 0,00E+00 
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IPI00115626 Lipid phosphate phosphohydrolase 3 1,45E+04 4,71E+04 1,92E+04 1,99E+04 

IPI00229705 Dihydropyrimidine dehydrogenase 
[NADP+] 

1,44E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00117834 Lipolysis-stimulated lipoprotein receptor 1,40E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00400301 Coproporphyrinogen-III oxidase, 
mitochondrial 

1,38E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00457852 60S ribosomal protein L6 1,38E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00409918 Eukaryotic initiation factor 4A-II 1,38E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00119923 Peroxisomal Lon protease homolog 2 1,37E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00137142 Transcription elongation factor A protein 3 1,29E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00119618 Calnexin 1,28E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00229835 Cytochrome P450 CYP2C44 1,23E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00653398 Flotillin-2 1,21E+04 0,00E+00 2,70E+04 1,14E+05 

IPI00127560 Transthyretin 1,21E+04 0,00E+00 7,05E+04 2,64E+04 

IPI00120165 Peroxisomal carnitine O-
octanoyltransferase 

1,20E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00110588 Moesin 1,18E+04 5,92E+04 1,25E+05 1,22E+05 

IPI00114246 NADH dehydrogenase [ubiquinone] 1 
beta subcomplex subunit 11, 
mitochondrial 

1,16E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00331598 DnaJ (Hsp40) homolog, subfamily B, 
member 12 

1,09E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00317590 40S ribosomal protein S18 1,08E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00114733 Serpin H1 1,08E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00310091 Serine/threonine-protein phosphatase 2A 65 
kDa regulatory subunit A alpha isoform 

1,06E+04 0,00E+00 1,17E+04 6,74E+04 

IPI00223714 Histone H1.4 1,03E+04 0,00E+00 0,00E+00 1,88E+05 

IPI00136655 2-amino-3-ketobutyrate coenzyme A 
ligase, mitochondrial 

1,01E+04 0,00E+00 0,00E+00 0,00E+00 

IPI00116850 UPF0027 protein C22orf28 homolog 1,00E+04 0,00E+00 0,00E+00 2,93E+04 

IPI00269265 Cytochrome P450 2C70 9,89E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00323660 Actin-like protein 6A 9,79E+03 0,00E+00 0,00E+00 7,08E+04 

IPI00339885 Collagen alpha-1(VI) chain 9,74E+03 0,00E+00 1,37E+04 0,00E+00 

IPI00121288 NADH dehydrogenase [ubiquinone] 1 
beta subcomplex subunit 10 

9,58E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00759878 Complement C3 9,09E+03 0,00E+00 5,08E+04 6,45E+04 

IPI00132474 Integrin beta-1 9,09E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00314467 Proteasome subunit beta type-3 8,82E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00128818 DEAH box protein 15 8,68E+03 0,00E+00 0,00E+00 5,17E+04 

IPI00136498 Lin-7 homolog C 8,54E+03 0,00E+00 0,00E+00 3,82E+04 

IPI00466919 6-phosphogluconate dehydrogenase, 
decarboxylating 

8,35E+03 0,00E+00 1,01E+04 0,00E+00 

IPI00762806 Tetratricopeptide repeat protein 38 8,23E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00410937 RNA-binding protein 8A 8,22E+03 1,05E+04 0,00E+00 7,07E+04 

IPI00221556 Acyl-coenzyme A synthetase ACSM5, 
mitochondrial 

8,13E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00322218 Cytochrome P450 4A10 8,05E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00128945 Proteasome subunit beta type-2 8,03E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00111560 Protein SET 7,99E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00323166 NAD(P) transhydrogenase, mitochondrial 7,74E+03 0,00E+00 2,20E+04 1,13E+04 
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IPI00756893 Retinol-binding protein 4 7,64E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00114781 Cytochrome P450 2C40 7,63E+03 0,00E+00 2,39E+04 0,00E+00 

IPI00120197 Cytochrome P450 4V3 7,42E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00320399 Lamina-associated polypeptide 2, 
isoforms beta/delta/epsilon/gamma 

7,06E+03 0,00E+00 0,00E+00 1,13E+05 

IPI00119004 Isoamyl acetate-hydrolyzing esterase 1 
homolog 

6,98E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00126000 FK506-binding protein 3 6,80E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00649950 Elongation factor Tu GTP binding domain 
containing 2 

6,40E+03 5,44E+04 3,00E+04 9,86E+04 

IPI00387249 Regulator of microtubule dynamics 
protein 1 

6,28E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00776264 Retsat protein 5,86E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00109311 Na(+)/H(+) exchange regulatory cofactor 
NHE-RF1 

5,14E+03 0,00E+00 3,82E+04 0,00E+00 

IPI00124181 Selenide, water dikinase 2 4,70E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00123619 Cytochrome P450, family 2, subfamily d, 
polypeptide 22 

4,59E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00115065 Glia-derived nexin 4,22E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00315581 Putative uncharacterized protein 4,02E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00126552 U1 small nuclear ribonucleoprotein C 2,78E+03 0,00E+00 0,00E+00 4,36E+04 

IPI00554933 Glutathione S-transferase theta-1 1,88E+03 0,00E+00 0,00E+00 0,00E+00 

IPI00130640 Ribonuclease UK114 0,00E+00 1,07E+06 1,46E+06 1,60E+06 

IPI00125929 NADH dehydrogenase [ubiquinone] 1 
alpha subcomplex subunit 4 

0,00E+00 0,00E+00 1,15E+06 6,98E+05 

IPI00111770 ATP synthase subunit e, mitochondrial 0,00E+00 0,00E+00 1,01E+06 4,36E+05 

IPI00404837 Myosin-4 0,00E+00 0,00E+00 5,77E+05 0,00E+00 

IPI00230034 D-dopachrome decarboxylase 0,00E+00 4,24E+05 2,77E+05 6,04E+05 

IPI00226993 Thioredoxin 0,00E+00 1,90E+05 2,69E+05 2,71E+05 

IPI00129126 Claudin-3 0,00E+00 1,58E+05 2,47E+05 3,54E+05 

IPI00675483 Chromodomain helicase DNA binding 
protein 3 

0,00E+00 0,00E+00 2,20E+05 0,00E+00 

IPI00677618 5-hydroxyisourate hydrolase 0,00E+00 1,44E+05 1,89E+05 5,14E+04 

IPI00136110 Phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit beta isoform 

0,00E+00 0,00E+00 1,88E+05 2,95E+04 

IPI00116154 Cytochrome c oxidase, subunit Vb 0,00E+00 0,00E+00 1,88E+05 0,00E+00 

IPI00830581 Mitochondrial ribonuclease P protein 2 0,00E+00 0,00E+00 1,73E+05 7,88E+04 

IPI00377441 40S ribosomal protein S26 0,00E+00 0,00E+00 1,71E+05 0,00E+00 

IPI00652450 Lethal(2) giant larvae protein homolog 2 0,00E+00 5,59E+04 1,02E+05 1,50E+05 

IPI00130238 Adenomatous polyposis coli protein 2 0,00E+00 0,00E+00 8,84E+04 0,00E+00 

IPI00853924 14-3-3 protein theta 0,00E+00 0,00E+00 6,67E+04 0,00E+00 

IPI00129215 Pantetheinase 0,00E+00 5,82E+04 4,71E+04 9,49E+04 

IPI00114330 Homogentisate 1,2-dioxygenase 0,00E+00 0,00E+00 4,56E+04 0,00E+00 

IPI00331507 Cullin-5 0,00E+00 0,00E+00 4,43E+04 2,32E+04 

IPI00670268 Probable phospholipid-transporting 
ATPase 11C 

0,00E+00 0,00E+00 4,42E+04 7,43E+04 

IPI00123802 Heat shock protein 105 kDa 0,00E+00 0,00E+00 3,85E+04 2,08E+04 

IPI00222208 Heterogeneous nuclear ribonucleoprotein 
U-like protein 2 

0,00E+00 8,53E+04 3,71E+04 6,29E+04 

IPI00269662 Heterogeneous nuclear ribonucleoprotein 
A3 

0,00E+00 0,00E+00 3,11E+04 5,68E+05 

IPI00322562 40S ribosomal protein S14 0,00E+00 0,00E+00 3,02E+04 0,00E+00 
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    Average Intensities 

Protein ID Protein Name NCD 
NaCl 

HFD 
NaCl 

NCD 
insulin 

HFD 
insulin 

IPI00134519 Cytochrome P450 3A13 0,00E+00 0,00E+00 2,75E+04 0,00E+00 

IPI00554928 Neurofilament light polypeptide 0,00E+00 0,00E+00 2,75E+04 3,01E+04 

IPI00319965 26S proteasome non-ATPase regulatory 
subunit 6 

0,00E+00 0,00E+00 2,65E+04 0,00E+00 

IPI00109142 S-formylglutathione hydrolase 0,00E+00 0,00E+00 2,61E+04 0,00E+00 

IPI00828412 Retinoblastoma binding protein 4 0,00E+00 0,00E+00 2,44E+04 8,11E+04 

IPI00132347 Cytochrome b-c1 complex subunit 7 0,00E+00 5,43E+04 2,39E+04 0,00E+00 

IPI00109672 Proto-oncogene tyrosine-protein kinase 
Yes 

0,00E+00 0,00E+00 2,39E+04 7,21E+04 

IPI00652811 Phospholipase A2 inhibitory protein 0,00E+00 0,00E+00 2,01E+04 0,00E+00 

IPI00467338 Ran GTPase-activating protein 1 0,00E+00 0,00E+00 1,88E+04 1,35E+05 

IPI00623030 UPF0493 protein KIAA1632 0,00E+00 0,00E+00 1,79E+04 0,00E+00 

IPI00453826 Matrin-3 0,00E+00 0,00E+00 1,74E+04 1,02E+05 

IPI00553777 Heterogeneous nuclear ribonucleoprotein 
A1 

0,00E+00 8,78E+04 1,14E+04 1,04E+05 

IPI00127707 Poly(rC)-binding protein 2 0,00E+00 0,00E+00 1,11E+04 4,20E+04 

IPI00169670 Aldose 1-epimerase 0,00E+00 0,00E+00 1,08E+04 0,00E+00 

IPI00125861 Disks large homolog 1 0,00E+00 0,00E+00 9,91E+03 1,77E+04 

IPI00136000 Alpha-adducin 0,00E+00 0,00E+00 5,97E+03 1,59E+04 

IPI00670422 NHP2-like protein 1 0,00E+00 2,25E+04 0,00E+00 0,00E+00 

IPI00316740 DNA damage-binding protein 1 0,00E+00 2,47E+04 0,00E+00 0,00E+00 

IPI00308077 Ectonucleotide 
pyrophosphatase/phosphodiesterase 
family member 6 

0,00E+00 3,32E+04 0,00E+00 0,00E+00 

IPI00378156 Rab GTPase-activating protein 1 0,00E+00 1,99E+05 0,00E+00 0,00E+00 

IPI00756257 Titin 0,00E+00 2,08E+05 0,00E+00 0,00E+00 

IPI00420185 Epidermal growth factor receptor 
substrate 15-like 1 

0,00E+00 0,00E+00 0,00E+00 2,65E+03 

IPI00330649 Myosin IE 0,00E+00 0,00E+00 0,00E+00 5,28E+03 

IPI00125180 Uncharacterized protein KIAA0564 
homolog 

0,00E+00 0,00E+00 0,00E+00 5,44E+03 

IPI00653270 Non-receptor tyrosine-protein kinase 
TYK2 

0,00E+00 0,00E+00 0,00E+00 7,12E+03 

IPI00755993 Ankyrin-1 0,00E+00 0,00E+00 0,00E+00 8,82E+03 

IPI00762919 Huntingtin-interacting protein 1 0,00E+00 0,00E+00 0,00E+00 9,99E+03 

IPI00136618 Toll-interacting protein 0,00E+00 0,00E+00 0,00E+00 1,05E+04 

IPI00319509 Aminopeptidase N 0,00E+00 0,00E+00 0,00E+00 1,22E+04 

IPI00125658 Glutamate--cysteine ligase catalytic 
subunit 

0,00E+00 0,00E+00 0,00E+00 1,31E+04 

IPI00415385 Bcl-2-associated transcription factor 1 0,00E+00 0,00E+00 0,00E+00 1,34E+04 

IPI00310059 Polymeric immunoglobulin receptor 0,00E+00 0,00E+00 0,00E+00 1,38E+04 

IPI00454050 Transcription elongation factor SPT6 0,00E+00 0,00E+00 0,00E+00 1,50E+04 

IPI00453820 Ankycorbin 0,00E+00 0,00E+00 0,00E+00 1,58E+04 

IPI00319933 Protein kinase C and casein kinase II 
substrate protein 3 

0,00E+00 0,00E+00 0,00E+00 1,64E+04 

IPI00133801 SAP domain-containing ribonucleoprotein 0,00E+00 0,00E+00 0,00E+00 1,66E+04 

IPI00125493 Myosin light chain kinase, smooth muscle 0,00E+00 0,00E+00 0,00E+00 1,69E+04 

IPI00850983 Synaptojanin-1 0,00E+00 0,00E+00 0,00E+00 2,18E+04 

IPI00109482 N(G),N(G)-dimethylarginine 
dimethylaminohydrolase 1 

0,00E+00 0,00E+00 0,00E+00 2,19E+04 

IPI00263048 Nuclear mitotic apparatus protein 1 0,00E+00 0,00E+00 0,00E+00 2,23E+04 
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    Average Intensities 

Protein ID Protein Name NCD 
NaCl 

HFD 
NaCl 

NCD 
insulin 

HFD 
insulin 

IPI00621024 B cell antigen receptor 0,00E+00 0,00E+00 0,00E+00 2,34E+04 

IPI00120719 Cytochrome c oxidase subunit 5A, 
mitochondrial 

0,00E+00 0,00E+00 0,00E+00 2,85E+04 

IPI00127172 ATP-dependent RNA helicase DDX1 0,00E+00 1,53E+04 0,00E+00 2,90E+04 

IPI00130409 Pre-mRNA-processing factor 6 0,00E+00 0,00E+00 0,00E+00 2,91E+04 

IPI00221767 Nuclear pore complex protein Nup107 0,00E+00 0,00E+00 0,00E+00 3,05E+04 

IPI00337844 E3 SUMO-protein ligase RanBP2 0,00E+00 0,00E+00 0,00E+00 3,47E+04 

IPI00115257 PC4 and SFRS1-interacting protein 0,00E+00 0,00E+00 0,00E+00 3,64E+04 

IPI00114232 Histone deacetylase 1 0,00E+00 0,00E+00 0,00E+00 3,80E+04 

IPI00756386 Probable 2-oxoglutarate dehydrogenase 
E1 component DHKTD1, mitochondrial 

0,00E+00 0,00E+00 0,00E+00 3,86E+04 

IPI00323748 Erythrocyte band 7 integral membrane 
protein 

0,00E+00 0,00E+00 0,00E+00 3,88E+04 

IPI00266463 Serrate RNA effector molecule homolog 0,00E+00 0,00E+00 0,00E+00 4,22E+04 

IPI00377930 THO complex subunit 7 homolog 0,00E+00 0,00E+00 0,00E+00 4,77E+04 

IPI00659860 Leucine-rich repeat flightless-interacting 
protein 2 

0,00E+00 0,00E+00 0,00E+00 4,85E+04 

IPI00623284 Splicing factor 3B subunit 1 0,00E+00 0,00E+00 0,00E+00 5,28E+04 

IPI00331342 WD40 repeat-containing protein SMU1 0,00E+00 0,00E+00 0,00E+00 5,51E+04 

IPI00848926 Peptidyl-prolyl cis-trans isomerase H 0,00E+00 0,00E+00 0,00E+00 5,62E+04 

IPI00459742 SWI/SNF complex subunit SMARCC2 0,00E+00 0,00E+00 0,00E+00 5,86E+04 

IPI00420329 MKIAA0788 protein 0,00E+00 0,00E+00 0,00E+00 6,30E+04 

IPI00128699 Small nuclear ribonucleoprotein-
associated protein N 

0,00E+00 0,00E+00 0,00E+00 9,58E+04 

IPI00122011 Splicing factor 3B subunit 3 0,00E+00 1,58E+04 0,00E+00 1,21E+05 

IPI00606760 Splicing factor arginine/serine-rich 4 
(SRp75) 

0,00E+00 0,00E+00 0,00E+00 2,15E+05 
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