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Zusammenfassung

In der vorliegenden Arbeit werden verschiedene Anwendungen von Reaktions-
Diffusions-Modellen untersucht. Im ersten Teil dieser Arbeit untersuchen wir den
Einfluß von Robustheit auf die Fitness von Populationen. Robustheit ist hier im
Sinne von Toleranz einer gewissen Menge schädlicher Mutationen ohne Verlust
der Fitness aufzufassen. Dabei konzentrieren wir uns auf einfache Organismen
bzw. effektive Systeme, die durch die deterministischen Quasispeziesmodelle
beschrieben werden können. Wir leiten analytische Ausdrücke für die Fitness
solcher Populationen im Grenzwert langer Informationssequenzen (z.B. DNA)
der Individuen her. Insbesondere erlaubt der von uns gewählte Zugang die Her-
leitung von Korrekturtermen für kurze Sequenzlängen, die die Übereinstimmung
zwischen numerischen und analytischen Ergebnissen stark verbessern. Dies ist
für Anwendungen von besonderer Bedeutung. Weiterhin beantworten wir die
Frage, unter welchen Bedingungen eine höhere Toleranz gegenüber schädlichen
Mutationen zu einer höheren Fitness der gesamten Population führt als eine
höhere Fitness weniger Sequenztypen. Alle analytischen Ergebnisse werden
durch numerische Lösungen verifiziert.

Den zweiten Teil dieser Doktorarbeit bildet die systematische Untersuchung
des Einflusses von Unordnung auf die Reaktionsraten von diffundierenden
Teilchen auf zweidimensionalen Oberflächen. Unordnung bezieht sich hier auf
die Verteilung von Bindungsenergien, mit denen die Reaktionspartner auf der
Oberfläche gebunden werden. Als Beispiel dient die elementare Reaktion der
Bildung molekularen Wasserstoffs aus atomarem Wasserstoff H + H→ H2 auf
interstellaren Oberflächen. Wir können in dieser Arbeit die zuvor aufgestellte
Vermutung, dass Unordnung in den Bindungsenergien auf der Oberfläche die
Reaktionsrate stark erhöht, bestätigen und quantitative analytische Ergebnisse
für verschiedenste Verteilungen der Bindungsenergien präsentieren. Es stellt sich
heraus, daß der Fall binärer Unordung (zwei verschiedene Bindungsenergien)
fundamental ist. Alle anderen untersuchten Systeme mit beliebigen (normier-
baren) diskreten und kontinuierlichen Bindungsenergieverteilungen lassen sich
auf den binären Fall abbilden. Wir können diese Abbildungsvorschriften explizit
angeben. Alle analytischen Ergebnisse werden durch numerische Lösungen und
kinetische Monte-Carlo-Simulationen bestätigt.
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Abstract

In this thesis we study several problems from biophysics and astrophysics, which
can be all be described by reaction-diffusion systems.

The first part of this thesis is concerned with biophysical quasispecies models.
These are deterministic models, describing the interaction of mutations and
selection (i.e. fitness advantage by adaption). We investigate the influence of
robustness against deleterious mutations on the stationary states of these models.
Here, robustness means that a certain number of mutations in the individual’s
information string is tolerated before the fitness of the individual is diminished.
The equations of state for the quasispecies models can be represented by a
reaction-diffusion equation for a special type of reaction term. We give analytic
results for the robustness effect on the mean fitness of a population. These
results become exact in the limit of infinite information-sequence length. By
exploiting a mapping to a Schrödinger-type equation, we find correction terms
for finite sequence length, essential for applications. The provided solutions
allow to answer the question under what circumstances robustness is preferable
to fitness, a question often referred to as survival of the flattest. Additionally,
we investigate the occurence of the error threshold (a phase transition of the
population’s state) in a general class of epistatic fitness landscapes. We show
that diminishing epistasis is necessary but not sufficient for the emergence of an
error threshold. All analytic work is supported and verified by numerical studies.

In the second part we investigate diffusion-mediated reactions on two-dimen-
sional surfaces drawing on the example of hydrogen formation on interstellar
dust grains. The surfaces of these dust grains play an important role in molecule
production in the interstellar medium, by acting as catalysts. We are interested in
the influence of (quenched) surface disorder on the production rate of molecules.
As model system, we study the not yet completely understood reaction H +
H → H2 of hydrogen formation. We confirm the earlier proposed significant
enhancement in the production rate of this process by disorder in the binding
energies of the surface and moreover give analytic results for different distributions
of binding energies. We identify the main mechanism leading to an enhanced
production rate, enabling us to give temperature dependent mappings from
systems with discrete and continuous binding energy distributions to effective
systems with only a binary energy distribution. The analytical results on all
models are confirmed by numerical solutions of the full rate equations as well as
by kinetic Monte Carlo simulations.
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General Introduction

The following work is set in the context of statistical physics and its applications,
namely reaction-diffusion systems. Diffusion as such is the most prominent
and fundamental transport mechanism in many physical systems, starting from
Brownian motion itself [31], over mixing of heterogeneous gases or liquids to
osmosis and many other examples. Even for systems, where the particles do
not diffuse in the microscopic sense, it is possible that the overall system’s
behavior can be described by a diffusion equation. A prominent example is heat
conduction in solids. We speak of reaction-diffusion systems, if the particles do
not only diffusive through the system, but are also interacting. This involves
active reactions of the particles to events like e.g. meeting another particle
or encountering a special surface site. Typical interactions considered are of
contact type, like pair annihilation, particle creation, nucleus formation, etc.
The nonlinear time evolution equation for some quantity u(r, t), e.g. particle
concentration, depending on space and time is

∂tu(r, t) = D∇2u(r, t) +R(u(r, t)), (1)

as introduced by Kolmogorov, Petrovskii, Piskunov [54] and Fisher [34]. This is
the simplest general description of a one-component reaction-diffusion system. D
is the diffusion coefficient (which can also be space-dependent) and the function
R(u(r, t)) encapsulates the reaction(s).

The exact structure of the reaction term determines whether a (closed)
analytical solution exists. Often slight changes in the reaction term structure lead
to a completely altered system behavior. We will come across these characteristics
especially in the second part of this thesis.

Typical reaction terms investigated are of linear, non-linear and catalytic
type. Linear reaction terms can describe processes like a particle becoming
immobile, particle creation and spontaneous annihilation. Whenever a reaction
involves more than one particle, the reaction term is non-linear. Prominent
examples are pair annihilation, recombination, or nucleus formation. In catalytic
reactions the product is only formed in the presence of a catalyst which is not
chemically changed during the reaction. We investigate systems with linear
reactions terms in the first part and with non-linear (and implicitly catalytic)
reaction terms in the second part of this work.

As turned out over the years, reaction-diffusion systems are useful models to
describe very different phenomena known from physics, chemistry and biology [8,
21]. In this thesis, we investigate two applications, the first exhibits its reaction-
diffusion character on the level of the effective model description, the second
is truely reactive and diffusive on the (microscopic) particle level. Though the
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investigation of the dynamical properties of the systems to be introduced would
be highly interesting, we focus on the stationary state properties throughout, as
even there fundamental questions have not been solved, yet.

Robustness in quasispecies models: Quasispecies models are famous in
biophysics and can be used to describe large populations of simple organisms
like viruses or bacteria. The issue of robustness against deleterious mutations
has been risen recently [26, 55]. Amongst other things it is concerned with
understanding under which conditions a high tolerance of mutations is preferable
to a higher offspring production rate of a few very well adapted individuals
regarding the survival of the population. This is often referred to as “survival of
the flattest”. In this work, we derive analytical expressions for the populations
mean fitness in landscapes with one plateau or with two competing plateaus.
These results enable us to appraise recent results [39, 86] and to extend the
existing mean field model solutions by finite size correction terms, crucial for
applying the model to real systems. Our results have been published in [88].

Formation of H2 on interstellar surfaces: Drawing on the example of
hydrogen formation on interstellar dust grains, we investigate the influence of
disorder on diffusion-mediated reactions on two-dimensional surfaces . As the
most abundant element in space, H and H2 are involved in an immense number of
reactions and reaction networks that lead to the formation of complex molecules.
Nevertheless, the fundamental formation of H2 via H + H→ H2 has not been
fully understood so far. Due to the low temperatures and pressures in space,
this reaction is not efficient for two atoms meeting in three-dimensional space.
It has been agreed on that the surfaces of dust grains in the interstellar medium
act as catalysts and H2 is formed on these surfaces. Inspired by former work, we
investigate in this thesis the influence of disorder in the surface’s binding energies
on the reaction rate of molecule formation. We identify a uniform mechanism
facilitating a high reaction rate even in temperature regions where a system
without disorder performs poorly. This part is based on the publications [89, 90]
and contains further efforts on general discrete binding energy distributions and
multiple-species systems.

More details on the connection between the applications and the framework of
reaction-diffusion systems will be given after the detailed introduction to each of
the systems at the beginning of the corresponding part of this thesis.
For our investigations the following methods are employed:

analytical treatment: The stationary reaction-diffusion equations for both
applications are analyzed with emphasis on simplified effective equations that
capture the essence of the system’s behavior,

numerical treatment: Additional to the (effective) analytic solutions we also
employ direct numerical solutions of the full (stationary) system in both parts
of this work,

kinetic Monte Carlo simulations: In the second part of this work we
also use simulations that capture the microscopic processes in detail. These
simulations serve as a reference for both the analytical models and the direct
numerical solutions.
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Part I

Robustness in deterministic
mutation-selection models
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Chapter 1

Introduction

The branch of population genetics, which tries to describe biological evolution in
terms of natural selection, nowadays referred to as Neo-Darwinism or ’modern
synthesis’, was founded in the 1920’s by Fisher, Haldane and Wright (see
[33, 42, 91] and references therein).

Studies revealed the high complexity of molecular processes like reproduction
or gene expression. The question is still not answered, which of the conceivable
interplays between the elementary processes on the molecular level like for
example genetic drift, mutations, selection or recombination, are the most
important ones for the evolution of a whole species.

Theoretical models for evolution can - due to the complexity of the processes
- typically capture only a few aspects found in the experiments. An important
class of models are the ones assuming mutation and selection mechanisms to
be the most essential ones. Even if these mechanisms are not as essential as
assumed, they play an important role and thus worth studying them in detail.
The elementary processes found in these models can probably be used as case
studies for models concerned with other aspects of evolutionary processes. For
reviews about this topic see [3] or [27].

Here, we will restrict ourselves to mutation-selection models for the artificial
case of infinite population sizes, the quasispecies models. That means influences
like drift (due to fluctuations caused by finite population size) are neglected,
which in turn provides us with some powerful possibilities of solving the emerging
equations for the population’s state. The two famous models concerned with the
influence of mutation and selection on large populations are the Crow-Kimura
model established 1965, [53, 50], and the Eigen model, invented 1971, [30].

Models: The Crow-Kimura (CK) and the Eigen model present the principal
ideas of how mutations and reproduction can interfere in asexual, haploid
organisms and in the regime of very large (“infinite”) populations. One possibility
is that mutations occur steadily due to permanent influence of the environment,
captured by the Crow-Kimura model, the other is that mutations occur only
during reproduction as copying errors, as decribed by the Eigen model. For that
reason the Crow-Kimura model is also known as parallel model and the Eigen
model as coupled model. The two models are deterministic models in the sense
of neglecting fluctuations due to finite population size. Therefore, the obtained
results are only asymptotically correct for real populations. Furthermore, the
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CK-model, being a continuous time model, can be derived from the discrete time
Eigen model via straightforward continuum limit in time (to first order). Though
invented for another purpose, it turned out, that the Eigen model is adequate to
describe bacteria under strongly controlled environmental conditions. We will
present this model together with the Crow-Kimura model in chapter 2. The
Crow-Kimura model can be used to describe the evolution of virus populations,
which is used in the development of drugs against viral diseases. For more details
about the context of the Crow-Kimura model see e.g. [53, 50].

Fitness landscapes: The crucial additional ingredient needed in both
models is the fitness landscape. It assigns to each information sequence (e.g.
DNA or RNA sequence) the expected number of offspring an individual with
this sequence produces. Thus it provides information on the selection. In
principle, this fitness landscape has to be measured for real populations in
fixed environments, but this is a highly complicated issue. Hence, different
simple and more complex shapes of fitness landscapes have been proposed
and investigated theoretically, starting with Eigens sharp-peak landscape [30],
where only one sequence has a better fitness than all others. A theoretical
analysis is, for example, concerned with the qualitative and quantitative shape
of the equilibrium population distribution, occurring phase transitions between
qualitative different distributions, scaling behavior for infinitely long sequences,
etc. Some cases can be solved analytically, but for most of them, one has to rely
on numerical methods. Examples of important landscapes are the mentioned
sharp-peak landscape, the Fujiyama landscape, the plateau landscape, rugged
fitness landscapes or epistatic landscapes. For a review about all mentioned
landscapes see [51]. A discussion about how and to what extent these kinds of
landscapes can be be inferred from experiments can be found in [85]. For several
of these landscapes, experimental evidence exists [17, 10, 87, 15].

In this thesis, we are concerned with the class of epistatic fitness landscapes,
especially with the most extreme variant, the plateau-shaped landscape. In
the latter, a high fitness value is assigned to all sequences that differ from the
best-adapted one only by a defined maximal number of sites. All other sequences
have a very low fitness. A central question we adress is under which conditions
and to what extend a broader plateau is preferable to a higher fitness value,
regarding the mean fitness of the whole population. To answer this question it is
first necessary to understand the fitness effect of one plateau on a quasispecies
population.

Connection to the framework of reaction-diffusion models: To
apply the general reaction-diffusion equation (1) to a specific problem, the
reaction term has to be specified. Like Fisher and Kolmogorov applied the
specific form of R(u) = u(1−u) in (1) to describe gene spreading in a population,
in [29] Ebeling et al. consider the class of reaction terms R(u) = w(x, u)u(x, t)
with arbitrary real function w. Their main application is a generalization of
Fisher’s classical population genetics model [33]. They show in detail that the
generalized Fisher model can be regained from the reaction-diffusion equation (1)
by their choice of the reaction term. Now, the Eigen model, whose continuous
time version — the Crow-Kimura model — we study in this thesis, is the
space-discretized version of Fisher’s model. In this sense, the evolution models
investigated here, belong to the great class of phenomena that can be described
by reaction-diffusion models. In particular, Ebeling et al. derive a Schrödinger
type equation for the time behavior of their system’s solution (eq. (3.5) in [29]),
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which is of exactly the same shape as equations (3.7) and (3.11) we provide in
chapter 3 for the mean fitness of the population.

Outline

In the first section of chapter 2 we start with the explanation of the basic biological
concepts and continue in section 2.2 with the definition of the Eigen and the
Crow-Kimura model. Having understood the basic principles, we introduce and
exemplify the notion of fitness landscapes in section 2.3 and specify the term of
the error threshold in section 2.4. Equipped with this knowledge, we review a
popular method of solving the dynamical equations of the Eigen model and the
Crow-Kimura model for the equilibrium state, in the limit of infinite sequences,
called maximum principle, in section 2.5. The knowledge presented in the whole
chapter 2 is well known in the field and provides the background for our analysis
starting in chapter 3 with the calculation of the equilibrium state of a population
in a plateau-shaped fitness landscape (also called mesa landscape) for finite
sequence length. We calculate finite sequence length corrections to the maximum
principle, thereby improving the accordance of analytical and numerical results
significantly. For the calculations we exploit an analogy to quantum mechanics
and map the systems equation of state to a Schrödinger equation. All results
are confirmed by numerics in section 3.5. After this comprehensive analysis
of fitness landscapes with one mesa, we turn in chapter 4 to the competition
between selection and robustness, also called survival of the flattest. The so far
derived results are used to answer the question in which cases more robustness is
preferable to higher selection values. We find that for finite sequence lengths, a
broader but smaller fitness plateau can maintain a population at large mutation
rates, where a higher but narrower plateau already fails. In the limit of infinite
sequence length and fixed plateau widths, the higher plateau always provides
the highest fitness for the population. We provide a formula for the critical
sequence length, beyond which only the higher plateau can maintain a localized
population. Additionally, the notion of the ancestral population is introduced
and discussed for mesa-shaped fitness landscapes with two plateaus. Before
drawing a final conclusion in chapter 6 we discuss the occurrence of the error
threshold in a general epistatic landscape in chapter 5, thereby improving a
previous result [86].
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Chapter 2

Basic principles

In this chapter we introduce the basic concepts and notions of population genetics
and dynamics needed. We focus on so-called deterministic mutation-selection-
models for haploid asexual species, the quasispecies models. Haploid means
that each individual of the species contains only one string of information (e.g.
the DNA or RNA string). Asexual means that each individual can produce
offspring autonomously, e.g. via cell division, and deterministic refers to an
infinite population size. So we are in a context that allows for description of
large populations of bacteria and viruses, but not higher developed organisms.
Due to their simplicity, these quasispecies models can serve as toy models to
find e.g. the characteristics of a certain fitness landscape.

2.1 Terms and definitions

As indicated in the introduction (chapter 1), we can characterize the individuals
of the considered species by the string they carry. This string σ = (s1, .., sL),
of length L contains letters si ∈ A which are taken from an alphabet A of size
|A| ≥ 2. In classical population genetics this string is just the DNA or RNA
of an individual, so the alphabet A is of size four and there are 4L possible
sequences which form the sequence space 1. In the simplest case the two letters
A and G and the letters C and T (U) are pooled respectively as A and G are
purins and C and T (U) are pyrimidines. These are to some extent exchangeable.
Then we get an alphabet consisting of 2 letters A = {+1,−1} and 2L possible
sequences. If we connect all sequences of the set of all possible sequences in such
a way, that a connection is made between all sequences that differ only by one
site, we get the sequence space with the topology of a hypercube, an illustration
of which can be seen in figure 2.1.

As is known from evolutionary biology, individuals well-adapted to their
environment have the best chance to produce a large number of offspring,
thereby passing on their information sequence. The fraction of not well-adapted
individuals is diminished over time, dies out or survives only by mutation effects,
as the individuals produce less offspring. If we assume that an information

1Depending on the posed question also other information strings can be taken to characterize
the individuals. For example it can be the information of the gene configuration of the individual
(which allele of a certain gene this individual has).
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Figure 2.1: Illustration of the sequence space for binary sequences of length four with
an alphabet consisting of ±1. The letter −1 is abbreviated 1̄ in the picture. The
sequence space has a hypercubic topology.

string σ = (s1, .., sL) characterizes the individuals, a quantifying degree of
adaptation should be connected with each of the possible sequences. This degree
of adaptation is usually called the fitness and its value is connected to the
effective number of offspring an individual produces per unit time. In the context
of population genetics the fitness is usually assigned to the genotype instead
of the phenotype because the connection between the two is complicated and
mostly unknown2.

We assume the generations of the considered population to be non-overlapp-
ing and the generation time to be normalized to one. Then we can describe
the evolution of this species by a discrete time model where the time takes
discrete values 1, 2..., according to the actual generation. For a discrete time
model the fitness Fσ then is the expected number of offspring an individual with
sequence σ produces. It is also called the Wrightian fitness. We can now perform
a continuum limit in time, corresponding to the limit of small generation time
∆t→ 0, such that the total amount of offspring produced in a finite time span
is constant. Then the number of offspring is reduced, when the individuals’ lives
are shorter, and we also have to perform a continuum time limit in the fitness
function Fσ. We write

Fσ ≡ ewσ∆t (2.1)

and call wσ the Malthusian fitness. Sending the generation time ∆t to zero, we
find to first order in time

Fσ ≡ ewσ∆t ≈ 1 + wσ∆t , for ∆t→ 0 . (2.2)

2All individuals with a certain sequence σ∗ belong to the same genotype. The phenotype
comprises all genotypes that produce the same characteristic traits of individuals. The
mapping from geno- to phenotype is thus typically from many to one. A simple example is the
formation of amino acids by triplets of the nucleotides. There are 20 amino acids but 43 = 64
possible combinations of three nucleotides (of which there are four different ones). So several
combinations of nucleotides lead to the production of the same protein.



2.1 Terms and definitions 9

The Malthusian fitness is the important quantity for a continuous time model,
like the Wrightian fitness is for the discrete time models. Equation (2.2) reflects
the idea of reduced offspring for smaller generation times. As next step, we also
want to include the effect of mutations either due to the environment or due
to copying errors during reproduction. On the level of genes and nucleotides a
mutation changes a sequence into another one, for example by changing single
sites. This basic type of mutation is called point mutation. We concentrate in
this work on point mutations only. If we assume that the mutation probability
µ is uniform throughout the whole sequence and is the same for all letters in the
alphabet, we can write down the mutation probability for an abitrary sequence
σ to mutate into another arbitrary sequence σ′ as

Qσσ′ =

(
µ

|A| − 1

)k(σ,σ′)

(1− µ)L−k(σ,σ′) . (2.3)

The first factor accounts for the probability that the differing sites are mutated
into each other, while the second factor represents the probability that the other,
already matching sites do not mutate. Here

k(σ, σ′) =
1

2
(L−

L∑
i=1

sis
′
i) (2.4)

is the Hamming distance of the two sequences σ and σ′, which is just the number
of different sites. The mutation probability Qσσ′ is the same for all sequences σ′

which have Hamming distance k to sequence σ. The number Nk of sequences
with the same Hamming distance to sequence σ is

Nk =

(
L

k

)
(|A| − 1)k . (2.5)

Qσσ′ is a real probability as
∑
σ Qσσ′ = 1. This normalization condition

simply states that the sequence σ′ mutates to some other sequence — or stays
the same. When performing the continuous time limit we need to change from
mutation probabilities to mutation rates ησσ′ . This is done by

Qσσ′ ≈ δσ,σ′ + ησσ′ ·∆t, for ∆t→ 0 . (2.6)

If we denote the mutation rate per letter by µ̃ and set µ = µ̃∆t then

ησσ′ =

 0 , k(σ, σ′) > 1
µ̃ , k(σ, σ′) = 1
−µ̃L , k(σ, σ′) = 0

(2.7)

The normalization condition reads
∑
σ ησσ′ = 0. A review about the topic of

mutation and selection can e.g. be found in [3].
A special class of fitness landscapes are the so-called permutation-invariant

fitness landscapes, in which only the number of mutations away from the wild
type sequence σo and not their position is important for a sequence’s fitness. In
mathematical terms, this means wσ = wk(σ,σo). Though being a simplification,
permutation-invariant fitness landscapes are applicable to relevant systems, like
to the binding energies of proteins to binding sites in the regulatory region of a
gene [39].
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2.2 Models

2.2.1 Eigen model

To describe the evolution of the population, we need to specify the interplay
between the different ingredients. Here we take into account only mutations
occurring as copying errors during reproduction and deterministic evolution3.
For finite generation time this situation is described by the Eigen model [30].
In consequence, the fraction of individuals Pσ(t) carrying sequence σ at time t
evolves to the next generation according to

Pσ(t+ 1) =

∑
σ′ Qσσ′Fσ′Pσ′(t)∑
σ′ Fσ′Pσ′(t)

. (2.8)

Σσ′ runs over all possible sequences and for binary sequences Qσσ′ is given by

Qσσ′ = µk(σ,σ′)(1− µ)L−k(σ,σ′) . (2.9)

Again k(σ, σ′) is the Hamming distance between the sequences σ and σ′. We
notice the fact, that the model is invariant under multiplication of the fitness by
a constant factor Fσ → C · Fσ. The equations can be linearized by changing to
an unnormalized population distribution Zσ(t) via [51]

Zσ(t) = Pσ(t)

t−1∏
τ=0

∑
σ′

Fσ′Pσ′(τ), (2.10)

at the cost of non-locality in time. We then arrive at the linear equations

Z(σ, t+ 1) =
∑
σ′

Qσσ′Fσ′Zσ′(t) . (2.11)

This linearized version is easier to solve, when calculating stationary states.
By renormalization of the result Z∗(σ), we regain the normalized population
distribution P ∗(σ). But for convenience we will in the following work with a
continuous time model, the Crow-Kimura model, which can be inferred from
(2.8) by the limit generation time ∆t→ 0 as shown below.

2.2.2 Crow-Kimura model

To derive the proper continuous time evolution from the discrete time model
(2.8), we use (2.2) and (2.6) to paraphrase the dynamics for short generation
time ∆t. Writing Pσ(t+ ∆t) ≈ Pσ(t) + [dtPσ(t)]∆t, we find

dtPσ(t) = (wσ − w̄)Pσ(t) +
∑
σ′

ησσ′Pσ′(t). (2.12)

Therein w̄ is defined through w̄ = Σσ′wσ′Pσ′(t). Now we assume the (Malthusian)
fitness to be a function wk only of the Hamming distance k to the optimal
sequence at k = 0. Then, surpressing the time dependence, renaming the point
mutation rate µ̃→ µ and using (2.7), we can rewrite (2.12) to the final and here
needed formulation of the Crow-Kimura model

dtPk = (wk − w̄)Pk + µ(k + 1)Pk+1 + µ(L− k + 1)Pk−1 − µLPk, (2.13)

3achieved by assuming infinite population size
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with 1 ≤ k ≤ L − 1. For k = 0 and k = L the equations obviously have
to be modified. Still, the deterministic character of this equation is justified
by an infinitely large population. The nonlinearity introduced by the mean
(malthusian) fitness w̄(t) =

∑
k wkPk can be eliminated by passing again to

unnormalized population variables via the transformation [51, 80]

Zσ(t) = Pσ(t) · exp

∑
σ′

t∫
0

dτPσ′(τ)

. (2.14)

The resulting linearized CK-model for the case of fitness landscapes only de-
pending on the Hamming distance then reads

dtZk(t) = (wk − µL)Zk(t) + µ(k + 1)Zk+1(t) + µ(L− k + 1)Zk−1(t). (2.15)

From the solution of this linearized set of equations, the normalized solution can
be reconstructed via

Pk(t) =
Zk(t)∑
k′ Zk′(t)

. (2.16)

In the following we will be concerned with the equilibrium states of (2.13), or
rather (2.15). The stationary states can be found by the separation ansatz

Pk(t) = eλt P ∗k . (2.17)

implying the largest of all possible eigenvalues Λ = max λ to dominate the
behavior of the system in the long-time limit. In the corresponding eigenvalue
equation

ΛP ∗k = (wk − µL)P ∗k + µ(k + 1)P ∗k+1 + µ(L− k + 1)P ∗k−1

=: Mk,k′P
∗
k′ ∀k = 0, ..., L

⇔ ΛP∗ = MP∗
(2.18)

the L× L fitness-mutation-matrix M only consists of real non-negative entries.
So the Perron-Frobenius theorem is applicable here, ensuring the existence of an
unique, positive, and real largest eigenvalue Λ, and a corresponding principal
eigenvector P∗ that only has non-negative entries. This eigenvalue Λ is equal to
the long-time limit of the mean population fitness w̄, as can be seen by inserting
the stationarity condition Pk(t) = P ∗k into (2.13) using (2.18), and it is the main
quantity of interest in this work. The CK-model is invariant under additive
shifts of the fitness, wk → wk + c, as counterpart to the Eigen model.

In figure 2.2 the equilibrium population P ∗k of the CK-model is shown as
function of the mutation rate per letter µ for a single peak landscape wk = δk,0
and a sequence length of L = 100. With growing mutation rate, the population
becomes uniformly distributed in sequence space, a phenomenon called error
threshold, which will be discussed in the next section.

We will work with the Crow-Kimura model for the rest of this first part, as
the continuous time formulation is more convenient to handle and the derived
results are qualitatively also valid for the Eigen model.
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Figure 2.2: Part of the equilibrium population distribution of the quasispecies popu-
lation in a sharp-peak landscape w(k) = δk,0 with sequence length L = 100. Shown
are the normalized population fractions P ∗k for different Hamming distances k. Some
very important ones are labeled in the picture. The data is obtained numerically, as
described in section 3.5.

2.3 Fitness landscapes and robustness

The still missing ingredient of our population model is the fitness landscape.
These landscapes typically serve as toy functions, in the hope, that the model
captures some important aspects of reality. In the last section, we already
introduced one important class of fitness functions, the permutation invariant
landscapes. To this class — to which we will stick in this work — belong several
famous landscapes, like the sharp-peak landscape, introduced by Eigen [30]

wk = w0δk,0, w0 > 0, (2.19)

where only the master sequence has a high fitness. This reflects an extreme kind
of epistasis (see below). It is applicable, if e.g. the environment sets very strong
conditions on the population. In the Fujiyama (or multiplicative) landscape

wk = w0 − b · k ,w0, b > 0 (2.20)

every mutation away from the master sequence reduces the fitness by the same
amount, while in epistatic landscapes like [86]

wk = w0 − b · kα , w0, b, α > 0 (2.21)

the reduction depends on the number of already occured mutations. Depending
on the epistatic factor α every additional mutation away from the master sequence
is punished more (α > 1) or less (α < 1) than the previous one. We will discuss
the case of epistatic landscapes in detail in chapter 5. In these two latter types
of landscapes, mutations are non-lethal (in the way which will be discussed
in sec. 2.4 below) but lead to a reduction of offspring. In the corresponding
populations we typically find mutational variety and the width of the population
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Figure 2.3: Equilibrium population distribution for the localized Pk,loc and delocalized
P ∗k,deloc population distribution, as function of the Hamming distance k in a plateau-
shaped fitness landscape with a plateau width k0. The left y-axis belongs to the fitness
(dashed line), the right y-axis to the population distributions P ∗k . We see the localized
population to reside mainly at the edge of the plateau as due to the mapping from
sequence to Hamming space, the number of sequences there is larger than at k = 0.
The delocalized population is normally distributed around the Hamming distance L/2.

distribution (in Hamming space) depends on the mutation rate, as well as on
the parameters of the landscape.

Coming back to our concerns, we want to discuss the effects of robustness on
a population. This is a concept of central importance in current evolutionary
theory [26, 55]. Here we address specifically mutational robustness, which we take
to imply the stability of some biological function with respect to mutations away
from the optimal genotype. To be precise, suppose the genotype is encoded by a
sequence of length L, and the number of mismatches with respect to the optimal
genotype is denoted by k. Robustness is then quantified by the maximum number
of mismatches k0, that can be tolerated before the fitness of the individual drops
significantly below that of the optimal genotype at k = 0. This situation arises
e.g. in the evolution of regularity motifs, where the fitness is a function of
the binding affinity to the regulatory protein [39, 9]. This mesa-shaped fitness
function is the simplification of a Fermi function at low temperatures, which in
turn appears e.g. in simple thermodynamic models for the binding probability
of a transcription factor to a regulatory region. Assuming that the fitness is
independent of k both for k ≤ k0 and for k > k0, the fitness landscape is
parametrized by the width k0 and height w0 of the mesa [68]. In figure 2.3, a
(permutation invariant) mesa-shaped fitness landscape and the corresponding
localized and delocalized population distribution in Hamming space are depicted.
In the following we will especially analyze this type of mesa landscapes and come
later on to the more general case of epistatic landscapes. We use the terms mesa
and plateau landscape interchangeably.

2.4 Error threshold

Depending on the shape of the fitness function and the mutation rate per letter
µ, in quasispecies models a localization-delocalization phase transition, also
called error threshold can occur. At this threshold the population undergoes a
transition from a localized state around the fittest sequence(s) to a population
homogeneously spread in sequence space (which corresponds to a binomial distri-
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bution in Hamming space). For a population this transition can be interpreted
as insensitivity towards changes in fitness or as the extinction of the (real) finite
population to which the model is applied to.

To analyze any transition in which the mean Hamming distance of a popula-
tion changes4, the population averaged “magnetization” M , defined by

M = 1− 2〈x〉 ∈ [−1, 1] with 〈x〉 =
1

L

L∑
k=0

kP ∗k , (2.22)

is a convenient though not fundamental quantity — the principal eigenvalue Λ
of (2.18) is the fundamental quantity determining P ∗k . If the whole population
only consists of master sequences (k = 0 by definition), the magnetization
is M = 1. If only the inverse master sequence is present, the magnetization
becomes M = −1. For a uniform distribution in sequence space (delocalized
population) the magnetization is M = 0. Thus we can in most cases distinguish
the qualitatively different states a population assumes under different mutation
rates (except the mentioned pathologic cases), by considering the population
averaged magnetization M as a function of µ. There are some special cases, where
only the observation of the magnetization becoming zero is not sufficient, like
in the case of the Fujiyama (or multiplicative) landscape, where the population
remains localized but its average Hamming distance is — with growing mutation
rate — continuously shifted towards k = L/2 . Then we have to retreat to the
analysis of the quality of change of either the population mean fitness Λ(µ) or
the magnetization.

To obtain meaningful results in the limit L→∞, the mutation probability
has to be scaled to zero accordingly, µ→ 0, 5. Another possible scaling — we
do not adopt here — is to scale the fitness ∝ L. For most fitness landscapes a
scaling with µL = const. is appropriate, but the right scaling can often only be
obtained from the calculation of the critical mutation rate (error threshold) µtr
itself. An example for a landscape where the scaling µL = const is inappropriate
is the epistatic landscape which will be discussed in chapter 5.

The order of the phase transition is somewhat delicate to estimate. The
intricacy lies in the sequence of performing limits. As we here will frequently use
numerics to confirm our analyical results, we always work with finite sequence
lengths. So, the limit of infinite sequence length is the last one to be performed.
For finite sequences we see the error threshold to resemble a second order phase
transition. For this reason, we will here consider the error threshold to be of
second order. When estimating the order of the transition after performing the
infinite sequence length limit, the error threshold will be of first order, as the
order parameter performs a discontinuous jump from M = 1 at µ = 0 to M = 0
at µ 6= 0. Though we have to point out here, that the error threshold, in the
sense of a proper physical phase transition only exists in the limit L→∞. This
discussion is also taken up in the paper by Tarazona [79] in the context of a
treatment of the models as Ising chains. Nevertheless, other opinions on the
order of the error threshold and which order parameter should be taken exist.
For a different view on the topic see e.g. [44].

4pathologic cases like a (changing) population distribution symmetric to x = 1/2 are not
covered!

5otherwise the mutation probability per sequence would diverge
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2.5 The maximum principle

So far, we have presented the basic ingredients and how they enter into the models.
Now we turn to finding the equilibrium state and the growth rate of a population
in a given environment (represented by the fitness function). Therefore we have
to solve the set of equations (2.18). To its solution, a considerable body of work
has already been devoted for large L. If, in addition to the scaling constraints
on µ, the fitness landscape wk is assumed to depend only on the relative number
of mismatches, such that

wk → f(x), x = k/L, (2.23)

then for L→∞, the principal eigenvalue in (2.18) is given by the solution of a
one-dimensional variational problem as [44, 2, 74, 67, 73, 4]

Λ = max
x∈[0,1]

{f(x)− γ[1− 2
√
x(1− x)]}, (2.24)

where γ = µL. Moreover, if f(x) is differentiable the leading order correction to
(2.24) takes the form [67, 73]

∆Λ =
γ

2L
√
xc − x2

c

[1−
√

1− 2f ′′(x∗)(xc − x2
c)

3/2/γ], (2.25)

where xc is the value at which the maximum in (2.24) is attained. Therefore,
we need other methods when analyzing the main features of robustness using a
mesa-shaped fitness landscape of the form

wk =

{
w0 > 0 : 0 ≤ k ≤ k0

0 : k > k0,
, (2.26)

as wk is not differentiable any more. Here w0 denotes the selective advantage
of the functional phenotype and k0 is the number of tolerable mismatches. For
scaling landscapes (2.23), here realized by

f(x) = w0Θ(x− x0), (2.27)

where Θ(x) is the Heaviside function and x0 = k0/L, at least the maximum
principle can be applied (x0 < 1/2) to yield

Λ =

{
w0 − γ(1− 2

√
x0(1− x0)) , w0 > wc0

0 , w0 < wc0
(2.28)

with wc0 = γ(1− 2
√
x0(1− x0)). The value wc0 of the selective advantage marks

the location of the error threshold at which the population delocalizes from the
fitness plateau and the location xc of the maximum in (2.24) jumps from xc = x0

to xc = 1/2.
To calculate the leading order correction ∆Λ to the maximum principle for

finite sequence length in the next chapter, we will clarify and use an analogy to
quantum mechanics, thereby rederiving the maximum principle (2.24), and we
will show that ∆Λ is of order L−2/3 or L−1/2 rather than L−1 in the case of the
pure maximum principle for scaling landscapes.
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Chapter 3

Continuum limit in
Hamming space

We want to solve the problem of finding the influences and limits of robustness
in deterministic mutation-selection models. Robustness is implemented as a
plateau-shaped fitness function into the Crow-Kimura model as introduced
above. Based on the existing approaches, we clarify the connections between
these different accesses and use a formal analogy to quantum mechanics to finally
solve the issue of mutational robustness. Therefore, we first derive a description
of the CK-model in a continuous Hamming space. Then we are able to find a
finite size correction in harmonic approximation and beyond, using an analogy
to quantum mechanics. Here we can connect to the work of Gerland and Hwa
[39]. As reference method, we study the system by means of direct numerical
calculations and find the analytical results verified.

3.1 Analytical derivation in harmonic approxi-
mation

A natural ansatz to analyzing (2.18) for large sequence lengths L is a continuum
limit in Hamming space, that is in the index k. Therefore, we introduce the
small parameter ε = 1/L and replace the population variable Pk by a function

φ(x) = lim
L→∞

PxL. (3.1)

Furthermore we assume the fitness to be of the general form (2.23). By expanding
the finite differences in (2.18) up to second order in ε, we get a differential equation
of second order,

fφ− εγ d

dx
[(1− 2x)φ] +

ε2γ

2

d2

dx2
φ = Λφ, (3.2)

which is a stationary drift-diffusion equation. By changing back to the unscaled
variable k = Lx, we can see, that the equation is identical to the one obtained
by Gerland and Hwa [39]. Nevertheless, we will see that x is the proper variable
to perform the continuum limit, not the least because it fulfills the mathematical
constraint of a compact support.
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In order to solve equation (3.2) it is advantageous to eliminate the first-order
drift term, which can be done by the transformation

φ(x) =
√
φ0(x)ψ(x), (3.3)

with
φ0(x) ∝ exp[−(1− 2x)2/(2ε)]. (3.4)

It is easy to see, why this transformation symmetrizes the linear operator in
(3.2). In the absense of selection, f = 0, the principal eigenvalue in (3.2) is Λ = 0,
and the corresponding (right) eigenvalue is a Gaussian centered at x = 1/2 and
thus just given by (3.4). This Gaussian is the central limit approximation of the
binomial distribution

P 0
k = 2−L

(
L

k

)
, (3.5)

which solves (2.13) for wk = 0 (∀k) and Λ = 0. It is well known that the central
limit approximation of (3.5) is valid in a region of size

√
L around k = L/2, but

becomes imprecise for deviations of order L.
The theory of large deviations provides an improved approximation by the

ansatz
Pk ∝ exp(−Lu(x)) (3.6)

with u(x) being the large deviations function. This ansatz, which has been
recently suggested for this problem by Saakian [74], will be explained in more
detail in Appendix A.1.

And though we have just shown that the drift-diffusion approximation is only
accurate near x = 1/2, the center of the Hamming space, we will stick to this
approach, as it allows a fundamental understanding of the problem. First, we can
make contact with the work of Gerland and Hwa and second can we reformulate
the eigenvalue problem in the language of standard quantum mechanics. The well
developed formalism of quantum mechanics then allows to extend the solution
of the eigenvalue problem beyond the second order approximation made in
equation (3.2).

But coming back to solving the drift-diffusion equation (3.2), inserting (3.3)
leads to the equation

− ε2γ

2

d2

dx2
ψ + V (x)ψ = −(Λ− εγ)ψ, (3.7)

with
V (x) =

γ

2
(1− 2x)2 − f(x). (3.8)

A sketch of V (x) for different values of γ and a mesa-shaped fitness landscape
(2.27) can be found in Fig 3.1.

Using standard quantum mechanics, we can interpret (3.7) as the stationary
Schrödinger equation for a particle of mass 1/γ exposed to the effective potential
(3.8) and energy eigenvalue − (Λ− εγ) in one dimension and space representation.

The potential is the superposition of a harmonic oscillator centered at x = 1/2
and the negative fitness landscape. The qualitatively different cases are depicted
in figure 3.1. As pointed out in [68], the inverse sequence length ε plays the role
of Planck’s constant ~, which implies that the case of interest is the semiclassical
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Figure 3.1: Sketch of the effective potential V (x) (3.8) for different values of the
mutation rate γ. For small mutation rates (figure on the left), the population is
localized on the plateau. At the critical mutation rate γc (figure in the middle) the
ground state is degenerate and thus allows for a transition of the population from a
localized (minimum at x = x0) to a delocalized (minimum at x = 0) state and vice
versa. And for large mutation rates (figure on the right) the population is delocalized.

limit of the quantum mechanical problem. In particular, for ε→ 0 the ground
state energy −Λ becomes equal to the minimum of the effective potential. We
thus arrive at the variational principle

Λ = max
x∈[0,1]

[f(x)− γ

2
(1− 2x)2], (3.9)

which is precisely the harmonic approximation of the (exact) relation (2.24).
In the perspective of quantum mechanics, the error threshold corresponds to a
shift between different local minima of V (x), which become degenerate at the
transition point. The transition is generally of first order, in the sense that the
location xc of the global minimum jumps discontinuously. Within the harmonic
approximation the transition occurs at

wc0 =
γ

2
(1− 2x0)2 ≈ γ

2

(
1− 4k0

L

)
(3.10)

for x0 = k0/L� 1, following the argumentation of section 2.5.

3.2 Extension of the harmonic approximation

The so-far used harmonic approximation around x = 1/2 breaks down near the
boundaries x = 0 and x = 1. However, to access the regime 1 � k0 � L, an
accurate treatment of the region of small x� 1 is clearly necessary, especially,
since we want to connect to the work of Gerland and Hwa [39] who obtain a
seemingly contradictory result for the critical plateau needed for a localized
population. The quantum mechanical treatment can be extended such that it
becomes quantitatively valid over the whole interval 0 ≤ x ≤ 1. Based on the
considerations of [73], we then arrive at the modified Schrödinger equation (see
appendix A.1 for a derivation)

− ε2γ
√
x(1− x)

d2

dx2
ψ +

[
γ(1− 2

√
x(1− x))− f(x)

]
ψ = −Λψ, (3.11)

which differs from (3.7) in two respects. First, the potential (3.8) is replaced by

Vfull(x) = γ(1− 2
√
x(1− x))− f(x). (3.12)



20 Continuum limit in Hamming space

In the asymptotic limit ε→ 0 the principal eigenvalue is given by minimizing
Vfull, which exactly recovers the maximum principle (2.24). Second, the mass of
the quantum particle described by (3.11) becomes position dependent,

m(x) =̂
(

2γ
√
x(1− x)

)−1

, (3.13)

which replaces the simple identification m =̂ 1/γ in the harmonic case.

3.3 Finite sequence length corrections

From the considerations of sections 3.1 and 3.2, we can infer correction terms
to (2.24) for finite sequence lengths. Within the harmonic approximation, for
finite but large sequence lengths ε = 1/L � 1 we have to include quantum
corrections to the classical limit solution (3.9). Assuming a smooth fitness
function f(x), the ground state wave function is localized near the minimum
xc of the effective potential, and the shift in the ground state energy can be
computed by a harmonic approximation of V (x),

V (x) ≈ V (xc) +
1

2
V ′′(xc)(x− xc)2 = V (xc) +

1

2
[4γ − f ′′(xc)](x− xc)2. (3.14)

Identifying 1/γ with the mass m of the quantum particle and comparing the
correction term to the potential of a harmonic oscillator Vhar = mω2x2/2, we
find the frequency of the oscillator to be

ω = 2γ
√

1− f ′′(xc)/4γ. (3.15)

By further exploiting this analogy, we find the ground state energy contribution
of the correction term to be

E0 =
~ω
2
∼= εω

2
= εγ

√
1− f ′′(xc)/4γ. (3.16)

Re-inserting the results into (3.7), we get an expression for the leading order
correction to Λ:[

−ε
2γ

2

d2

dx2
ψ + V (xc)ψ

]
= −(Λ− εγ +

1

2
εω)ψ (3.17)

=: −(Λ + ∆Λ)ψ. (3.18)

The correction term

∆Λ =
γ

L
[1−

√
1− f ′′(xc)/4γ] (3.19)

coincides with (2.25) evaluated for xc ≈ 1/2. Analogously, the width ξ of the
wave function can be estimated via ξ =

√
~/(2mω) to be1

ξ =
√
γε/2ω =

√
εγ

[8
√

1− f ′′(xc)/4γ]1/4
. (3.20)

1Note that, because of the factor
√
φ0 in (3.3), this is not equal to the width of the stationary

population distribution.
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Figure 3.2: Sketch of the effective potential V (x) near xc = x0. The slope left of the
step is to first order given by −a = V ′(x0). The height of the step is w0, which can

— for small ε — be considered as effectively infinite, since the kinetic energy of the
particle is linear in ε.

In the case of the mesa landscape (2.27), the potential near xc = x0 consists of
a linear ramp of slope

− a = V ′(x0) = 2γ(2x0 − 1) < 0 (3.21)

followed by a jump of height w0, see figure 3.2 . For small ε, the jump can be
considered as effectively infinite (as the kinetic energy of the particle is then
very small since being linear in ε) and we retrieve the well-known 1d-quantum
mechanical ground state problem of a particle in a negatively sloped potential
terminated by an infinitely high wall. The solution, provided by the Airy
function, is standard textbook material, e.g. [71] and we obtain for our problem
the prediction

∆Λ = z1(~2/2m)1/3a2/3 = 21/3z1γ(1− 2x0)2/3L−2/3 +O(L−1), (3.22)

where z1 ≈ −2.33811... is the first zero of the Airy function. The scaling
∆Λ ∼ L−2/3 was already noted in [68]. Again, the width of the wave function
can be estimated and is of the order

ξ ∼ (~2/ma)1/3 ∼ ε2/3 (3.23)

in this case. These considerations can also be applied to the extended solution
of equation (3.11) in section 3.2. Inserting (3.12) and (3.13) into the expression
(3.22) for the finite size correction yields

∆Λ = 2−1/3z1ε
−2/3γ(1− 2x0)2/3[x0(1− x0)]−1/6. (3.24)

For fixed x0 this still scales as ε2/3 = L−2/3, but when taking L→∞ at fixed
k0, such that x0 → 0, we find instead that

∆Λ→ 2−1/3z1γx
−1/6
0 ε2/3 = 2−1/3z1γk

−1/6
0 L−1/2. (3.25)
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3.4 Connection to former results

3.4.1 Review

A recent study on mesa-shaped fitness landscapes with finite sequence length was
done by Gerland and Hwa (GH) [39]. They approach the problem by assuming
from the outset 1� k0 � L. So the maximal number of non-lethal mismatches is
small compared to the sequence length. Then they perform the limit of infinitely
long sequences L→∞ and focus on the region k � L at the same time, while
keeping the Hamming distance k as the variable in which the limit is performed.
As an intermediate result they recover eq. (3.2) (in terms of k), but then neglect
the contribution 2k/L (corresponding to 2x) in the drift term. As a result the
drift term becomes constant for all k.

In the localized regime, the stationary population distribution is of the form

φ(k) = ekψ(k) (3.26)

in terms of the Hamming distance k. But the potential of the corresponding
Schrödinger equation to (3.7) is given by −γ/2 · f(x). Due to the ’zoomed in’
view on the system, the error threshold manifests itself in the non-normalizability
of the solution or in other words, when ψ(x) decays as e−x/ε = e−k. This is
also the point, where the assumption of sufficient slow variation of ψ(k) on the
scale of k (needed for the continuum limit) is violated. Then for a broad fitness
plateau k0 � 1, GH find a critical plateau height of

wc0 =
γ

2

(
1 +

π2

k2
0

)
. (3.27)

This result clearly shows a dependence on the absolute number of allowed
mismatches k0, but is independent of the sequence length L, apparently in
contrast to (3.10).

3.4.2 Comparison

To understand the role and applicability of our results and the one of GH,we have
to take a closer look on the validity of both approaches. For didactical reasons
we start on the level of the harmonic approximation (sec. 3.1) and then extend
the comparison to the improved solution (sec. 3.2). The harmonic approximation
solution (3.10) is valid for large k0 and breaks down, when the width of the wave
function ξ becomes comparable to the potential well provided by the effective
potential V (x). In the case of the mesa landscape, this is tantamount to

ξ ∼ x0, (3.28)

which leads to

k0 ∼ ε−1/3 = L1/3 (3.29)

using (3.23) and x0 = εk0. If we consider short plateaus with k0 � L1/3, the
ground state energy of the corresponding wave function can be estimated to

E0 ∼
~2

md2
∼ ε2γ

x2
0

∼ γ

k2
0

, (3.30)
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where d is the width of the confinement potential (in our case x0). This contri-
bution exceeds the harmonic contribution ∼ k0/L in (3.10) usually by far. So in
the case x0 → 0, the most important correction to the ’classical ground state
energy’ (3.9)

Λ = w0 −
γ

2
(3.31)

is a negative contribution ∼ γ/k2
0. This in turn leads to an increase of wc0, as

qualitatively seen in (3.27). But the range of application of (3.27) is very small.
In the case of smooth fitness landscapes, the harmonic approximation already
breaks down at k0 ∼ L1/2, due to the central limit approximation. Nevertheless,
the energy contribution of the wave function ∼ γ/k2

0 dominates the γk0/L-term
in (3.10) only, if k0 � L1/3. Hence, the GH regime is in this case not visible.

But since the harmonic approximation is not valid in the interesting region
of broad but relative small plateaus, k0, L � 1, x0 � 1, we will now improve
our solution and refine the just made conclusions made about the GH regime.

Within the improved solution of section 3.2, mass and slope now diverge as

m, a ∼ x−1/2
0 for x0 → 0. So, the width of the wave function scales as

ξ ∼ (~2/ma)1/3 ∼ (ε2x0)1/3 = εk
1/3
0 , (3.32)

instead of ξ ∼ x0 in the harmonic approximation. Consequently, the breakdown
condition ξ � εk0 of the semiclassical approximation is never satiesfied and the
“quantum confinement regime” discussed just before does in fact not exist. For
the finite size corrections we expect equation (3.24) to be valid for all k, L, as
long as k0, L� 1.

3.5 Numerics

To test the analytical predictions derived in the preceding sections, we have
carried out a detailed numerical study of the dependence of Λ and wc0 on k0, L
and γ. In the first part of this section we discuss the method used to obtain the
numerical data presented in the second part.

3.5.1 Numerical method

For the calculation of numerical values for the mean fitness Λ or the critical
plateau height wc0 it is necessary to calculate the equilibrium state of the popu-
lation described by (2.13) or in other words, the largest eigenvalue of the matrix
defined by (2.18) and the corresponding principal eigenvector P ∗. An iteration
of (2.13) does in most cases not lead to the equilibrium state in acceptable time,
as the convergence is very slow.

For the calculations we used Matlab and the included subroutines, especially
the LAPACK package, since it is best suited for large and sparse matrices. To
achieve short calculation times, we symmetrized the original set of stationary
equations (2.18) via the transformation
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Pk → Π−1
k,k · Pk, (3.33)

Mk+1,k → Π−1
k+1,k+1Mk+1,kΠk,k, (3.34)

Πk,k =

√(
L

k

)
, (3.35)

which is exactly the discrete transformation analogous to the symmetrization
operation (3.3) of the analytic ansatz (see also Appendix A). In doing so, we
arrive at the following eigenvalue equation

ΛP ∗,sym
k = (wk − γ)P ∗,sym

k + µ
√

(L− k)(k + 1)(P ∗,sym
k+1 + P ∗,sym

k−1 )

=: Σk′M
sym
kk′ P

∗,sym
k′ ,∀k ∈ {0, ..., L}

⇔ ΛP∗,sym = MsymP∗,sym.

(3.36)

First we test the accuracy of the method by calculating the sensitivity of the
fitness-mutation matrix to pertubations, by determining the condition number
of the fitness-mutation matrix Msym. The condition number of a matrix is
defined as the product of the largest singular values of the matrix itself and its
inverse. The values are obtained from singular decomposition of the matrix. The
smaller the condition number is, the more stable the matrix behaves towards
small pertubations of the matrix elements. We find that the system is stable for
small mutation rates but becomes unstable for µ→ 1

2 . For small mutation rates
between zero and the error threshold µtr we find numbers of the order of 101

to 103. For µ = 1
2 the condition number diverges. For more information on the

condition number and singular-value decomposition we refer to Appendix B.
To find the dependence of Λ or wc0 on k0, L or γ, we carried out the calcu-

lation of Λ or w0 for each set of parameters independently. The price for this
independent data is the not arbitrarily high density of data points in the plots.
Thus in many plots the numerical curve is a bit stepped.

To obtain the critical values of the plateau height wc0, or the mutation rate
µ, the order parameter M (see equation (2.22)) is calculated for each set of
parameters. The average of the two values of w0 or µ next to the qualitative
change of M then give the desired critical value.

3.5.2 Results

We extensively tested the analytical predictions versus the numerical results.
Here we only show some representative examples of these. In figure 3.3 two
examples for the dependence of Λ on the plateau width k0 are depicted. The
prediction of the asymptotic maximum principle (2.24) reproduces the qualitative
behavior of the numerical data but significantly overestimates the value of Λ.
The L−2/3 finite size correction (3.22) derived in the harmonic approximation
improves the comparison, but quantitative agreement is achieved only using the
refined expression (3.24), which is proportional to L−1/2.

Figure 3.4 shows a similar comparison for the critical plateau height wc0. Here
the prediction (3.27) of GH is also included and seen to match the numerical
outcome only poorly, whereas the maximum principle result with the finite size
correction (3.24) produces excellent agreement.
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Figure 3.3: Growth rate Λ as a function of the plateau width k0 for two values of
the plateau height w0 = 0.5, 0.95. The sequence length is L = 100 and the mutation
rate per sequence is γ = 1. The solution of the maximum principle together with
the L−1/2-correction term (including the position-dependent mass) provides the best
agreement with the numerics. The numerical values of the growth rate have been
obtained by (numerical) calculation of the largest eigenvalue of the matrix defined by
equation (2.18), c.f. subsection 3.5.1.
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Figure 3.4: Critical plateau height wc
o as a function of the plateau width k0. The

sequence length is L = 500 the mutation rate per sequence γ = 1. The solution of the
maximum principle together with the L−1/2-correction term provides the best overall
agreement with the numerics. With increasing the plateau width k0, the L−2/3 and
L−1/2-corrections approach each other. The prediction by GH matches the numerics
very poorly and does not reflect the qualitative behavior of wc

0(k0) in contrast to the
other solutions. The analytical solution for the maximum principle (and correction
term) has been obtained by equating the two solutions of (2.28) and solving for wc

0.
The numerical values have been obtained via calculation of the average magnetization
M of the population and determining the plateau height, where M jumps from finite
value to zero. See page 14 for a detailed discussion of M and subsection 3.5.1 for a
discussion of the numerical method.
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Figure 3.5: Illustration of the power of the sequence length in the correction term for
fixed relative and absolute plateau width. ∆Λ has to be understood as the numerical
value for the growth rate Λnum less the value obtained by the maximal principle, eq.
(2.24). For fixed relative plateau width, as well as for fixed absolute width, the numerics
show the same exponent of the sequence length as the corresponding analytical result.

Finally, in the left picture of figure 3.5 we verify that the finite size correction
∆Λ indeed varies as L−2/3 when L is increased at fixed relative plateau width x0.
The right figure shows the corresponding L−1/2 dependence for fixed absolute
plateau width k0. Altogether, we find the analytical propositions affirmed.

Hereby, we stop the discussion of fitness landscape with one plateau and
continue with the question, to what extend a robust species is superior to a
species with higher fitness but less tolerance for mutations, using the analytical
results obtained in this chapter.
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Chapter 4

Fitness landscapes with
competing plateaus

4.1 The selection transition

We now apply the analytical theory to the phenomenon of the survival of the
flattest as explained in the introduction (chapter 1). We want to find out to what
extent robustness (in the sense of plateau width) outcompetes selection (fitness
of a Hamming class) — for finite sequence lengths and in the limit L→∞.

In the literature this question has already been discussed to some extent
by Schuster and Swetina [75]. The question can be answered by investigating
a fitness landscape consisting of two fitness plateaus at the opposing ends of
the Hamming space (see figure 4.1). As was shown in [75], for small µ the
interference between the two plateaus is negligible when they are separated by a
few mutational distances. The stationary state of the system is therefore to a
very good approximation determined by the comparison between the population
growth rates associated with each of the two plateaus in isolation. In [17]
experimental evidence for the existence of similar fitness landscapes and the
interplay of fitness and mutation rate in virus populations is given.

k

wk

k0 L− k1 L

w0

w1

Figure 4.1: Illustration of a fitness landscape with two plateaus. This type of landscape
is used to investigate the influence of height and (relative) broadness of the plateaus
on the population fitness Λ.
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For the CK model (and the Eigen model as well), observing the mean
Hamming distance of the population1 as function of the mutation rate and
for fixed sequence length, we find two types of transitions. The first one is a
jump of the population from the higher to the broader plateau, which we will
refer to as the selection transition [79] taking place at a mutation rate µs. The
second transition is the well-known error threshold taking place at µtr, where
the population becomes uniformly spread in sequence space.

The selection transition is a sharp transition, even for finite sequence lengths,
while the error threshold is a continuous transition for finite sequence lengths
and becomes sharp only in the limit L → ∞. Both transitions are illustrated
in the left figure of 4.2. With growing sequence length, both critical rates µs
and µtr become smaller and approach each other, until, at a critical sequence
length L∗, they reach the same value and the selection transition vanishes. For
all larger sequence lengths, the population directly delocalizes from the high,
narrow plateau, as can be seen in the right figure of 4.2.

Using the maximum principle this behavior can be understood quite easily.
By evaluation and comparison of (2.24) on both plateaus we find the selection
threshold as the mutation rate, at which the population mean fitnesses for both
plateaus are equal:

µs =
w0 − w1

2
(√

k1L− k2
1 −

√
k0L− k2

0

) ≈ w0 − w1

2(
√
k1 −

√
k0)

L−1/2. (4.1)

We assumed k0, k1 � L in the last step. Quite analogously, for each plateau the
error threshold µitr, i = 0, 1 is obtained by the vanishing of the corresponding
eigenvalue Λi (a delocalized population has an eigenvalue of zero), yielding

µ
(i)
tr =

wi

L
(

1− 2
√
kiL− k2

i

) ≈ wi

1− 2
√
ki/L

L−1. (4.2)

The error threshold observed in the population is then the smaller of both
values. Since the error threshold decreases faster with growing sequence length,
than the selection threshold, the error threshold of the high plateau will be
encountered before the selection threshold for sufficiently long sequences, implying
the selection threshold to be no longer observable. The critical sequence length
L∗ at which the selection threshold disappears, can be calculated by equating
the expressions (4.1) and (4.2)

L∗ ≈ 4(w0

√
k1 − w1

√
k0)2

(w0 − w1)2
, (4.3)

where we used the approximated expressions.
For comparison with the former work of Swetina & Schuster and Tarazona

[75, 79], we used a fitness landscape with short plateaus k0 = 1 and k1 = 2, and
relative fitness values w1/w0 = 0.9, for which (4.3) gives a critical sequence length
of L∗a ≈ 106. Our numerical calculations shown in the left figure of 4.3 reveal
a significant underestimation of L∗n ≈ 285, which is not notably improved by
using the full finite sequence corrections for the principal eigenvalues derived in
section 3.2. But this is not surprising, as in the continuum approach of chapter 3

1or the eigenvector corresponding to the equilibrium state of the population
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Figure 4.2: Order parameter M as function of the mutation rate µ per site for a fitness
landscape with a high plateau at k = 0 and a broad plateau at k = L. For short sequence
lengths one can observe a hopping of the population from the higher to the broader
plateau and then a delocalization (left picture). For long sequences, one only observes
the delocalization transition from the higher fitness plateau (right picture). The hopping
between the plateaus we call the selection transition. It takes place at mutation rate
µs. The delocalization transition, also called error threshold, takes place at a mutation
rate µtr. The underlying fitness landscape is wk = 10 ·Θ(0− k) + 9 ·Θ(k − (L− 1)).
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Figure 4.3: Critical mutation rate µs of the selection transition and µtr of the error
threshold for the fitness landscape wk = 10 ·Θ(0−k) + 9 ·Θ(k− (L+ 1−2)) (left figure)
and wk = 10 ·Θ(10− 1− k) + 9 ·Θ(k − (L+ 1− 20)) (right figure) as functions of the
sequence length. The two lines cross at a critical sequence length L∗. The selection
transition is observed only for sequence lengths smaller than L∗. The numerical
data are compared to analytic predictions based on the maximum principle including
the L−1/2-correction term. As before, the numerical values have been obtained by
calculating the magnetization of the population and determining for each sequence
length the mutation rate where the magnetization jumps from a finite value to zero.
The difference between the numerical and analytical values, especially of µs, are much
smaller for longer sequences and broader plateaus, as well as the relative error between
L∗a and L∗n.
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ki � 1 was assumed and we cannot expect quantitative accuracy for plateau
widths of order unity. We also carried out calculations for other relative and
absolute heights as well as different plateau widths, especially broader plateaus.
Representatively shown in the right figure of 4.3 are the results for a landscape
with ten times broader plateaus, namely k0 = 10 and k1 = 20, and the same
absolute fitness values. Here we see, a much better agreement between numerical
and analytically predicted values for µs and µtr, leading to a smaller relative
error on the prediction of L∗.

To complete this discussion, we mention that for scaling fitness landscapes
(in the sense x0 = k0/L = const. and x1 = k1/L = const. for L → ∞), the
selection transition as well as the error threshold are maintained at fixed values
γs = µsL and γtr = µtrL for L→∞ [74].

Simulations performed with digital organisms [87], show the outcompetition
of a high but narrow fitness peak by a smaller but broader fitness area also for
more rounded fitness peaks.

4.2 The ancestral distribution

In addition to the equilibrium population distribution P ∗k (t → ∞), we can
also consider the ancestral distribution, the equilibrium distribution of the
backward time process, first introduced by Hermisson, Baake and others [44, 4]
in the context of branching models. The ancestral distribution a contains
the information on the origin of the observed equilibrium population and is
obtained as the product of left and right eigenvectors, P ∗∗ and P ∗ respectively,
of the mutation-selection matrix defined through (2.18). The probability, that a
randomly picked individual at time t stems from an ancestor of type k (∀k =
1, .., L) at time t − τ is in the limits t → ∞ and τ → ∞ (performed in that
order) given by ak = P ∗∗k · P ∗k and is the distribution of ancestors weighted by
the offspring they produce. Figure 4.4 depicts the idea.

Application to the fitness landscape with two competing peaks, shows that
the ancestral population is either located on one or the other of the plateaus or
delocalized (uniformly distributed in sequence space). Though, in contrast to the
equilibrium population, the transitions between these states are all sharp even
for finite sequence length, as illustrated in figure 4.5. The continuous transition
of the equilibrium population at the error threshold is caused by the mutational
pressure driving the population from the plateau to larger Hamming distances.
And the stronger the pressure, the more does the population “leak out” from
the plateau, a fact also found in experiments [17]. Yet, the population is mainly
supported by the individuals on the plateau, since they produce the most offspring
and maintain the population localized. Only, when eventually the mutational
pressure becomes too strong and the equilibrium population delocalizes, the
ancestral distribution is formed by the Hamming classes comprising the most
sequences, so the ones around k = L/2.

To complete this discussion, we want to mention the connection of our work
to the language of Ising chains and two-dimensional Ising models. As becomes
clear in [79], the ancestral distribution is the same as the bulk distribution and
the equilibrium distribution becomes the distribution of the surface layer. The
“leakage effect” in the equilibrium population at the error threshold is also known
as surface wetting in terms of two-dimensional Ising models [79].
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t− τ t

Figure 4.4: Sketch of the time evolution of an asexual population. Each line corresponds
to one individual. Different genotypes are indicated by different line styles. At branching
points offspring is produced and ending lines symbolize the death of an individual.
Time is measured horizontally from left to right. The right eigenvector P∗ of the
mutation-selection matrix M (2.18) for t → ∞ gives the equilibrium population
distribution, while the left eigenvector P∗∗ of M for t, τ →∞ gives the distribution of
ancestors weighted by their offspring. The ancestral distribution is the product of both
(normalized) eigenvectors in the sense ak ∼ P ∗k · P ∗∗k , ∀k = 1, ..., L.
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Figure 4.5: The dominant entries of the equilibrium and ancestral population distribu-
tion of the Crow-Kimura model as function of the mutation rate per site, calculated
numerically. The underlying fitness landscape is the same two-plateau landscape used
in Figs.4.2 and 4.3. As sequence length we chose L = 50. Occupation fractions are
plotted only for the most populated Hamming classes. The two distributions undergo
phase transitions at the same mutation rates, but at the error threshold the ancestral
distribution undergoes a discontinuous transition, while for the equilibrium distribution
the transition is continuous.
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Chapter 5

Error threshold in epistatic
fitness landscapes

So far, we have discussed robustness of phenotypes using plateau-shaped fitness
landscapes, which are a special case of the class of epistatic fitness functions.
We now discuss the latter in a more general framework. The original meaning
of epistasis concerns the interaction between genes, namely the action of one
gene blocking the action of another gene [7]. This definition was broadened by
Fisher [35] to describe any form of gene interaction. Here, we mean by epistasis
the non-linear dependence of the fitness function on the number of mismatches
k [70]. Every additional mismatch is penalized harder (synergistic epistasis of
deleterious mutations) or less hard (diminishing epistasis) than the previous one.
The focus lies on the effect of epistasis on the existence of an error threshold.

Following Wiehe [86] we consider the following class of permutation invariant
(Malthusian) epistatic fitness functions

wk = w0 − bkα, (5.1)

where k is again the Hamming distance to the master sequence and b > 0
can be regarded as a selection coefficient. The epistatic factor α tunes the
landscape. α > 1 and α < 1 produces landscapes with synergistic and diminishing
epistasis, respectively. For α → 0 (5.1) reduces to the sharp-peak landscape
wk = w0 − b(1− δk,0).

It is well known that an error threshold exists for α→ 0, but not for α = 1
[51]. For α = 1 we recover the multiplicative or Fujiyama landscape, that can
be solved analytically and though the magnetization of the population can reach
zero, it does not undergo neither a discontinuous nor a delocalization transition,
as well as the growth rate Λ itself. Neglecting backward mutations, Wiehe argued
in [86] that an error threshold emerges whenever α < 1.

In the following we show that, based on the maximum principle (2.24), the
critical value of the epistasis exponent below which an error threshold develops
is in fact α = 1/2. For larger values of α we do not observe an error threshold.

As before, we work in the scaling limit L→∞ and µ→ 0 with the mutation
rate per sequence γ = µL = const. Next we change variables from k to x, so we
can apply the maximum principle

wk = f(x) = w0 − b̃xα, (5.2)
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with b̃ = bLα and the usual x = k/L. The limit L → ∞ should be combined
with b → 0, such that b̃ = const. We are thus considering a situation where
both the mutation rate per site and the selection forces are small. Applying the
maximum principle (2.24) to this landscape, the mean fitness Λ of the population
in the equilibrium state is given by

Λ = max
x∈[0,1]

{w0 − b̃xα − γ[1− 2
√
x(1− x)]}

=: max
x∈[0,1]

λ(x),
(5.3)

where λ(x) is the function that has to be maximized.
By setting dλ/dx = 0, we find the conditions under which the maximum of

λ(x) is attained inside the interval x ∈ [0, 1], which leads to

αxα−1/2
√

1− x =
γ

b̃
(1− 2x). (5.4)

The right hand side is a simple linear function of x, dropping from γ/b̃ at x = 0
to −γ/b̃ at x = 1. On the left hand side we find for α > 1/2 a function, that
vanishes at the endpoints x = 0, 1 and is positive-valued in-between, with slope
zero at x = 0, infinite slope at x = 1 and a left-right turning point that only
vanishes for α = 3/2. The intersection xc of the left and right hand side functions
varies smoothly with γ/b̃ from xc = 0 for γ/b̃ = 0 to xc = 1/2 for γ/b̃ → ∞.
Since the left hand side is always positive-valued, we do not find an intersection
with xc > 1/2. Due to the smooth variation of the solution xc with x, no error
threshold (jumping) occurs for any value of γ/b̃.

For α < 1/2, the exponent α−1/2 becomes negative and thus the left handed
side diverges (to +∞) additionally at x = 0. So, for (sufficiently) small γ/b̃
there is no solution of (5.4) and the maximum of λ(x) has to be located on
the boundary. The function λ(x) itself is — for small γ/b̃ — monotonically
decreasing, so its maximum is found at x = 0 over a range of small γ/b̃. With
increasing γ/b̃, λ(x) develops a local maximum inside (0, 1) which finally exceeds
the value at λ(x = 0) = w0 − γ. This is, where the population jumps from x = 0
to xc ∈ (0, 1) discontinuously and we discover an error threshold. At which value
of γ/b̃ the error threshold occurs clearly depends on the epistatic factor α, so we
write

γ

b̃
= g(α) (5.5)

where g is some (not further specified) function of the epistatic factor. From this
relation we can recover the same scaling of the error threshold with sequence
length as [86]

µtr =
γtr
L

= g(α)b̃L−1 = g(α)bLα−1. (5.6)

We can say a bit more about the characteristics of g(α). For the sharp-peak
landscape α → 0, we know the error threshold to occur at γ/b̃ = 1, so g(α =
0) = 1. To find g(α = 1/2), we evaluate λ(x) at α = 1/2 and for x ≈ 0:

λ(x) = w0 − γ +
√
x(2γ

√
1− x− b̃) ≈ w0 − γ +

√
x(2γ − b̃)− γx3/2. (5.7)

Reconciling dλ/dx = 0 for x ≈ 0, we find γ/b̃ ≈ 1/2, leading to g(α = 1/2) = 1/2.
In the vicinity of g(α = 1/2) = 1/2, for γ/b̃ ' 1/2 and 0 < x� 1, we can solve
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dλ/dx = 0 and find xc = 2/3(2− b̃/γ), which moves smoothly away from xc = 0
at γ/b̃ = 1/2.

Summing up, the population is localized at x = 0 for α < 1/2 and small
γ/b̃ until α = 1/2 and γ/b̃ < 1/2. For α < 1/2 and large enough γ/b̃, λ(x)
develops a local maximum at xc > 0 and eventually the population undergoes a
discontinuous transition (error threshold) from xc = 0 to xc > 0. At α = 1/2
this behaviour changes in the sense that here at γ/b̃ = 1/2 the population is
located at xc = 0 and moves away continuously from there with growing γ/b̃,
while for γ/b̃ < 1/2 the population is located at xc = 0 since dλ/dx = 0 has
no solution in (0, 1). For α > 1/2 the population is always located at some xc,
that changes continuously with the parameters. So we find an error threshold
for α < 1/2 and γ/b̃ = g(α). This behavior terminates at α = 1/2 = γ/b̃, where
the transition becomes smooth. This point can be interpreted as the critical
endpoint terminating the discontinuous phase transitions occurring for α < 1/2.

The specialty of the value α = 1/2 is due to the fact, that here the leading
order behavior of the fitness function (5.3) for small x is the same as of the
entropic term

√
x(1− x) in the maximum principle (2.24), namely

√
x.

The analytically derived behavior is fully confirmed by our numerical cal-
culations. In figure 5.1 the existence of an error threshold for α < 1/2 and its
absence for α > 1/2 is illustrated by displaying the magnetization M of the
population as function of the mutation rate per sequence γ. For α < 1/2 the
magnetization shows a discontinuous jump, while for α > 1/2 the magnetization
is a smooth function of γ. The full phase diagram is depicted in figure 5.2. Here
the error threshold in the sense of γ/b̃ is shown as function g(α) and varies nicely
between g(0) = 1 and g(1/2) = 1/2. The deviations from theory in figure 5.2 are
due to the finite sequence length calculations and become smaller with growing
sequence length.

Since a similar term appears also for general alphabet sizes (see A.3), the
considerations of this section hold in that case as well. Here we finish the
discussion on robustness in mutation-selection models and conclude our findings
in the next chapter.
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Figure 5.1: Magnetization as a function of mutation rate for the fitness landscape
(5.1) with epistasis exponent α = 0.4 and α = 0.52, respectively. For α = 0.4 the
magnetization undergoes a discontinuous jump, whereas for α = 0.52, it changes
smoothly. The shown values of α have been chosen in order to show the qualitative
difference of M(γ) for α < 1/2 and α > 1/2. The numerical estimation of critical value
of αc. where the error threshold vanishes is estimated to αc = 1/2 within the bounds of
the numerical stepsize. Calculations have been done for a sequence length of L = 500.
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Figure 5.2: Numerically determined phase diagram for the epistatic fitness landscape
(5.1). At the thick line the population undergoes a first order phase transition from a
state localized at xc = 0 (below the line) to a delocalized state xc > 0 (above the line).
This line terminates in a second order phase transition at α = 1/2. The deviation
from the prediction γ/b̃ = g(1/2) = 1/2 at α = 1/2 is due to finite sequence length
corrections. For all larger values of the epistasis exponent, α > 1/2, the population
changes smoothly. Calculations have been performed for a sequence lengths of L = 750.
The stair-like character of the line is only due to the numerical step size.
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Chapter 6

Summary

We investigated a special aspect of population genetics, namely the concept of
robustness against deleterious mutations in the context of quasispecies models.
The concept itself has been studied previously within the framework of regulatory
motifs [39, 9]. The model we used is the continuous time Crow-Kimura model, a
deterministic model for large haploid and asexual populations. We analyzed the
stationary state properties of such populations in epistatic fitness landscapes for
sequences consisting of two letters. These fitness landscapes, especially the mesa
landscape (an extreme kind of epistasis), are used to model robustness of phe-
notypes against deleterious mutations. In these landscapes the mastersequence
and a certain amount of its neighboring sequences (in terms of the Hamming
distance) have a high fitness value compared to all other sequences. Previous
approaches provide a solution in the limit of infinitely long sequences as well as
a first order correction term for smooth fitness landscapes [73, 74, 67, 79, 59].

Using an analogy to quantum mechanics, we were able to derive a correction
term to the maximum principle for finite sequence lengths as well as for non-
smooth landscapes, significantly improving the agreement between numerical
calculations and the analytical predictions.

During the derivation of the correction terms, we reviewed two existing
approaches [39, 44, 74] with different predictions for the plateau problem and
clarified the reason for their discrepancy by expanding the approach [39] beyond
the harmonic approximation. In particular, we could show, that the regime
predicted by Gerland and Hwa [39] is not applicable to any finite size system.

The central result of our analysis is, that the relative number of mismatches
x0 = k0/L that could be tolerated by the population is the relevant parameter
for the fitness effect of mutational robustness. We provide accurate expressions
for its quantitative evaluation.

Having solved the problem for one fitness plateau, we tackled the problem
of the optimal plateau shape providing the best mean fitness to a population
under the influence of a given mutation rate. Therefore, we introduced a fitness
landscape with two differently shaped plateaus, following the spirit of [75],
and found an analogy to the error threshold, the so-called selection threshold,
describing the jump of the population from the higher to the broader mesa with
growing mutation rate. Due to the scaling with sequence length L, we showed,
that this transition vanishes in the limit L→∞, if the plateau widths are not
scaled with L.
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In the last chapter 5 we discussed a more general family of epistatic landscapes
with respect to the existence of the error threshold. Based on the results of
[44, 4] we were able to improve on the results of [86] and showed that diminishing
epistasis (α < 1 in the fitness function (5.1)) is not a sufficient condition for an
error threshold to occur, but rather α = 1/2 marks the threshold.

With the fitness landscapes investigated here, we were able to clarify the
essential characteristics of the “fitness landscape ingredients” epistasis, fitness
plateau and different shapes of plateaus concerning the error threshold and
highest mean fitness of a population described by quasispecies models.

Experimental evidence for all these ingredients to appear in real populations
[17, 10, 15] and digital organisms [87] has been given.
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Part II

Molecule formation on
interstellar dust grain

surfaces with quenched
disorder
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Chapter 7

Introduction

In space, simple and complex molecules are mainly produced in the molecular
clouds of the interstellar medium. By interstellar medium (ISM) the matter in
between the star systems is meant, which includes atoms, molecules and ions as
gas and as well as dust. The denser parts of the ISM are called molecular clouds.
In their younger age, they form stable clouds of matter usually far from thermal
equilibrium, but when the cloud is massive enough and the gas pressure cannot
sustain the gas, the clouds (or parts of a cloud) will undergo a gravitational
collapse, finally leading to the formation of new stars.

Depending on the local temperature of the cloud and the presence of radiation
(starlight), gas phase or surface processes are dominant for molecule formation.
In the outskirts of the clouds, the temperature and the gas density are low, so
here in general particles do not recombine by collisions in the gas phase. Instead
the main process for molecule formation involves the surfaces of dust grains, as
will be specified in the next paragraph. Particles impinging on these surfaces
can overcome the activation energy needed for molecule formation with the help
of the surface acting as a catalyst. A review on the early state-of-the-art can be
found in [25].

The most abundant element is hydrogen in atomic as well as molecular form.
About 90% of the ISM is made up by hydrogen. As such it is involved in
many reactions and reaction networks leading to the formation of more complex
molecules. Still the simplest reaction H+H→ H2, occurring in the gas phase and
on the surfaces, has not been completely understood yet. It has been known that
the formation of molecular hydrogen from atomic hydrogen is far too inefficient
in the gas phase [40] to explain the observed abundances at the measured cloud
temperatures. Instead it is the most important surface reaction [48] with an
underlying scenario of atoms impinging onto the grain surface, diffusing on this
surface and — if meeting another atom before desorption — reacting with it to
form a molecule [46, 47, 48]. Clearly, the (physical) binding strength offered to
an atom by the surface has an impact on the production of molecules. Most
relevant for our considerations of surface processes is the physisorption of atoms
on the surface (van der Waals interaction). For chemically bound particles, also
called chemisorbed, processes are believed to take place ’in’ the matrix of the
surface rather than ’on’ the surface.

experiments: The quantitative predictions of models clearly depend on
many parameters of gas and surface, like their temperature, gas composition,
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grain geometry, porosity of the surface, size distribution of the grains, etc. Apart
from observational data, we have no further information of the exact structure
of interstellar dust grains.

Some questions regarding the influence of structure, porosity and other factors
may be answered by laboratory experiments. While investigations of such surface
features are notoriously difficult, thermodynamic and kinetic parameters of the
whole surface can be determined by experiments. The most popular type of such
experiments is temperature-programmed desorption (TPD), which will now be
described briefly. In these experiments one puts a surface of a desired material
composition and surface structure into a ultra-high vacuum (UHV) chamber
that is cooled to very low temperature (using a Helium cryostat). Then at a
fixed temperature, typically ≤ 30 K, the surface is exposed to atom beams of
the elements of interest (very often this involves H and D atoms). Afterwards,
the actual desorption phase starts. The surface sample is heated up linearly,
which causes the deposited atoms (or formed molecules) to desorb from the
surface. The emerging gas is aspirated and the constituents are determined by
mass spectroscopy. By this kind of experiment the activation energy barriers for
diffusion and desorption of the atoms and molecules can be estimated.

Materials found to be of astrophysical relevance are olivines (silicates) and
amorphous carbon [52], as well as different sorts of ices, especially water and
CO ice [23, 49]. These ices appear in the cloud regions where water or methanol
is formed on the surfaces but cannot evaporate due to the low temperatures and
missing other mechanisms (e.g. photodesorption) [23, 49].

Disorder - Experiments and observations: Hollenbach and Salpeter [47]
argued already in the early seventies that disorder (in the binding and hopping
energies) on the grain surfaces is needed to explain the observed quantities of
molecular hydrogen. This is by now accepted in the astrochemical community
[43]. The reasoning is, that even a few enhanced adsorption sites will increase
the coverage of the grain by binding particles for a longer time and thus the
highly mobile particles on the more shallow sites can find them and react.

Though from TPD experiments, complete binding energy distributions cannot
be estimated reliably, several evidences for distributions of binding and hopping
energies have been given. In their work on H2 formation on surfaces covered
with non-porous ice, Buch [16] and Hixson [45] give evidence for distributions
of potential minima (binding energies in our terminology) and for a diffusion
energy barrier distribution that can be approximated by a gaussian distribution.
Cazeaux and Thielens [19] consider a surface with a combination of physisorption
and chemisorption sites, which can be comprised to a system with effectively two
different binding energies. We will study such a system as the simplest system
with disorder in chapter 9.

As will be shown in this work, the distribution of binding energies of the un-
derlying surface (“energy landscape”) has indeed crucial impact on the molecule
formation. We systematically investigate the influence of different (effective) bind-
ing (and diffusion) energy distributions on the efficiency in molecule formation
of this surface.

The surfaces resulting from assigning different energies in one or another
manner to its sites can be thought of as to display all sorts of geometrical or
energetical features a surface could be equipped with. Examples are different
materials on certain sites, surface steps, holes, other arrangements of sites,
blocked sites e.g. by other molecules, etc.
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Connection to the general framework of reaction-diffusion
systems: In this part diffusion has to be understood in its original meaning
of particle movement (here in two dimensions). The time scale of diffusion
mediates or limits the encounter probability of particles. Upon meeting of two
particles on the surface a reaction occurs immediately, namely the formation
of a dimer (and its leaving of the system). Thus, the description through a
reaction-diffusion system arises naturally. The appropriate reaction terms will
be specified in chapters 9, 10, 11, and 12 for each of the examined systems,
separately. The special ingredient to these systems is the spatial confinement, as
the number of sites on the surface is finite and periodic boundary conditions are
employed. We expect the presented results to be relevant for general systems
with diffusion-mediated reactions.

Outline

After an introduction to the relevant notions in chapter 8, we will review the re-
sults on homogeneous systems. Then in chapter 9, we examine systematically the
influence of disorder in the binding energies, starting from a system with binary
disorder. We use a rate equation approach for a fundamental understanding of
the problem and KMC simulations to verify our results. The main result is, that
the interplay between the sites with different binding energies maintains a high
efficiency of the system even at temperatures where the corresponding homoge-
neous systems perform poorly. Afterwards, we give a generalization to systems
with discrete distributions of binding energies by means of simulations and a
rate equation analysis in chapter 10. We can define a temperature-dependent
mapping from discrete distributions to an effective binary system using rate
equations. This is highly convenient to compute the system’s efficiency regarding
applications. A rate-equation-independent treatment of these systems will be
provided after the discussion of systems with continuous distributions of binding
energies in chapter 11. Here we can define a mapping from the system with
the continuous distribution to an effective binary system, improving the under-
standing remarkably. This mapping only depends on the temperature and the
continuous distribution itself. Since every (finite) realization of a system with an
underlying continuous binding energy distribution comprises only a finite number
of different binding energies, the application of the found mapping to the case of
discrete distributions is straightforward. Before concluding on our work, we take
a brief look on systems with two reactant species in chapter 12. The formation of
molecules more complex than e.g. molecular hydrogen involves reactions between
different particle species. In principle, these systems are accessible (and solvable)
by a rate equations approach. Nevertheless, even for a simple generic system,
we cannot provide a closed analytical solution for all temperatures. Only the
energetically degenerated case can be fully understood by analytical means.
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Chapter 8

The model

8.1 Basic principles

We study the simplest possible reaction of a single particle species forming dimers
occurring in the ISM, the reaction H + H→ H2. In this thesis we investigate the
influence of rate disorder (on the surface) on this reaction. Hence, our system
consists of one single-particle species and a surface. We think of this surface
as a lattice of binding sites on which the particles forming the gas phase above
can impinge onto. Throughout this work, we will assume the lattice to be a
two-dimensional square lattice with S sites and periodic boundary conditions.1

An illustration of the system and its implementation can be found in figures 8.1
and 8.2.

Each of the lattice sites i is characterized by a binding energy EWi
specific for

the type of particles. Particles from the gas can only stick to empty lattice sites.
If a site is already occupied, the particle is rejected — this is known in surface
chemistry as Langmuir-Hinshelwood rejection (LH-rejection) [57]. Furthermore,
we assume the incoming particle flux per lattice site f to be constant and uniform
for all lattice sites.

Once landed on the surface, the particles can explore the lattice by hopping
between neighboring sites. The hopping rates as are undirected and only depend
on the current particle position. In addition, particles can desorb from a site
with rate Ws. In this model, both rates as and Ws depend on the binding energy
at the particle position. We assume the rates a and W to be thermally activated

Ws = ν e
−EWskBT ,

as = ν e
− Eas
kBT ,

(8.1)

with the attempt frequency ν, which is simply the vibrational frequency of the
particle. In the following we set kB = 1 and measure all energies in units of
temperature. When two particles meet on the surface (by one particle hopping
onto an already occupied site), they react and form a dimer which leaves the

1In [63, 65], the influence of the surface topology, shape and dimension on the efficiency of
a homogeneous system has been analyzed in detail. As turns out, the impact of the disorder
introduced in the following is much bigger than of the other factors mentioned before. Hence
we concentrate on the disorder effects and keep the rest of the system as simple as possible.



46 The model
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F = f · S

R

W

Figure 8.1: Schematic view of the dimer formation model. Atoms impinge with a
homogeneous flux f per site, of which there are S on the whole surface, leading to
a total flux of F = f · S from the surrounding gas onto the surface. The atoms can
explore the surface by hopping with a (in general) site-dependent rate as and either
leave the surface as single particle with (site-dependent) desorption rate W or — upon
meeting another atom — react with it and leave the surface as part of a dimer with
recombination rate R (global quantity). The estimation of R is the main task of this
part of our work.

f as
as

Ws

R

Figure 8.2: Implementation of the general model described by figure 8.1 and in chapter 8.
Throughout this work, we assume the binding sites to have a coordination number
of four. The influence of different coordination numbers on the efficiency has been
investigated in [63] and will be of minor importance for our analysis. The red line
indicates an exemplary cut, that will be used to sketch the particular binding energy
landscape considered in the following chapters, see figures 9.1, 10.1, 11.1.



8.1 Basic principles 47

surface immediately. Since we are interested in stationary state properties of the
system, the immediate leaving of the dimer needs not to be understood literally.
If in a real system dimers stay on the surface for a typical time span, these
sites are blocked for other particles. But the number of blocked sites is roughly
constant and we can interpret S as the effective number of sites available to the
particles. The quantity characterizing the system’s state, is the efficiency η of
the system, that is the ratio of particles that react on the surface and the total
number of impinging particles. For its analytical and numerical evaluation, we
make use of rate equations and kinetic Monte Carlo simulations, which will both
be introduced in the next section 8.2.

To get a physically meaningful description, the system should be able to
relax to its equilibrium state when the incoming particle flux is switched off.
So we impose detailed balance to hold, which is equivalent to a vanishing net
flux between any two nearest-neighbor sites. Let ps be the probability to find a
particle at site s. Then the stationary gain-loss equation for ps is given by

(as +Ws)ps = f +
∑

s′ nn of s

as′

z
ps′ , (8.2)

where z is the coordination number of the lattice. The left-handed site accounts
for the particle loss at site s by hopping to neighboring sites or desorption, the
right-handed site describes the particle gain at site s by incoming particle flux
and hopping from the nearest-neighbor sites. The demand for detailed balance
is then expressed by

ps
as
z

= ps′
as′

z
(8.3)

for the nearest neighbors s and s′. Inserting this condition into the stationary
gain-loss equation (8.2) yields ps = f/Ws and by re-insertion into the detailed
balance condition (8.3) we arrive at

Ws

as
=
Ws′

as′
. (8.4)

For a regular and fully connected lattice like the one considered here, this clearly
implies Ws/as = const for all sites s.

In the following we will use rate equations to estimate a system’s efficiency
analytically. Rate equations are gain-loss equations for the change in the number
of particles on the lattice, and cover incoming particles due to the flux f , losing
particles by desorption and losing particles through reactions. They do not
cover topological or spatial effects and thus they only provide an appropriate
analytical treatment if the system and the incoming particle flux are large enough.
Deviations occur especially for small system sizes and very low incoming flux [11].
Such systems can for example be investigated by employing master equations.

For the model system of H2 formation, we can compute the flux of H-atoms
from the gas onto a grains surface. Assuming a temperature of the surrounding
gas of Tgas = 100K and a density ρH,gas = 10/cm3 of H atoms in the gas phase,
this defines the average velocity vH,gas of the particles:

vH,gas =

√
8Tgas

πmH
. (8.5)

In order to obtain meaningful results for possible applications, we will employ
amorphous carbon as the standard surface, which is believed to be relevant in
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Figure 8.3: Coverage θ (blue) and efficiency η (red) as functions of temperature T , in
the homogeneous model described by a rate equation. Parameters are chosen for an
amorphous carbon surface.

the astrophysical context. The binding and hopping energies are then given by
EW = 658 K and Ea = 511 K [52]. From the density of sites on the surface
ρsites = 2 · 1014/cm2 we can then (approximately) compute the total flux (per
grain) F and the flux onto each site of the grain f

F = ρH,gasvH,gas · πR2,

f =
F

S
=
ρH,gas · vH,gas

4ρsites

(8.6)

where πR2 is the cross section of the (spherical) grain and perfect sticking
of the H-atoms on the grain is assumed. For the standard parameters of an
amorphous carbon grain, the flux per site amounts to f = 7.3× 10−9/s. For the
attempt frequency we adopt ν = 1012/s, which has become the standard value
for the attempt frequency in surface science.2 Combining the above this defines
a reaction-diffusion system in a spatially confined region.

8.2 Review: the homogeneous system

Systems with a homogeneous surface have been studied by means of rate equa-
tions [11, 52, 14], the master equation [41, 14], and moment equations [60, 6]. All
these approaches have their advantages, disadvantages and limits. The general
problem of homogenous systems is that astrophysical observations suggest a
much broader temperature window of high efficiency than can be provided by any
homogeneous system employing the parameters from laboratory experiments [46].
It has become apparant that disorder can enhance the efficiency dramatically
[46]. Before tackling the problem of disorder, we give a short review on the
analysis of homogeneous systems, with an emphasis on the tools and methods
we will employ afterwards.

2 The typical vibrational frequencies of adatoms or molecules range from roughly 1012 Hz
to approximately 1014 Hz.
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8.2.1 Analytical Results

As we want to concentrate on the effects of disorder, we analyze large systems
with sufficiently high fluxes, thereby avoiding strong fluctuations produced by
small grains, distorted lattices or small fluxes. While for the small grains a
master equation or moment equations approach is necessary, the rate equation
approach suffices for our purposes.

In the homogeneous system only one binding (and thus one hopping energy)
is offered to the particles. The hopping and desorption rates are the same for all
lattice sites and of the form (8.1)

Ws = W = ν e−
EW
T ,

as = a = ν e−
Ea
T .

(8.7)

The dependence of the efficiency on the temperature η(T ) is known for this
kind of system [41, 14] and illustrated together with the surface coverage in
figure 8.3. The surface coverage — as the name suggests — is defined by the
ratio θ = 〈N〉/S, where 〈N〉 is the mean particle number in the system. The
rate equation for the mean particle number 〈N〉 in this system reads

dt〈N〉 = f(S − 〈N〉)−W 〈N〉 − 2A〈N〉2 (8.8)

where A = a/S is the (approximated) sweeping rate3 [76]. The terms on the right
hand side correspond to gaining particles due to the constant influx on empty
sites, losing particles by desorption and losing particles by reactions, respectively.
The last term of the right-hand side shows the fundamental assumption of the
rate equation approach: the reaction rate is proportional to the square of the
mean number of the reactants and the discreteness as well as fluctuations of the
particle number are neglected. Therefore,

R = A〈N〉2, (8.9)

called reaction or production rate of the system, is not given by A〈N(N − 1)〉,
which would be the correct average number of pairs in the system. Both
expressions agree if and only if 〈N2〉 − 〈N〉2 = 〈N〉, or in other words, if N is
distributed according to the Poisson distribution. On small grains this equality
of variance and mean is violated because the confinement of particles on the
surface enhances the probability of two atoms to meet. In this work, we want to
treat rate disorder and thus consider only large systems to exclude these other
effects from the system. Therefore, we will abbreviate the notation by setting

N := 〈N〉, (8.10)

so N now denotes the average particle number on the grain.
The efficiency of the system in the stationary state can then be computed

via its definition

η ≡ 2R

fS
= 1− (W + f)2

4fa

(√
1 +

8fa

(W + f)2
− 1

)
, (8.11)

3see 9.4.1 for a more detailed discussion on the choice of the sweeping rate in the presence
of disorder
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where the factor 2 in the definition accounts for the fact that two particles are
needed to form one dimer. Qualitatively, at low temperatures, the particles
are almost immobile (due to the temperature activated rates) and thus they do
not meet other particles on the lattice. The coverage of the lattice is very high.
With growing temperature, the hopping process becomes activated and particles
can diffuse on the surface. This leads to more encounters and a rising efficiency.
Increasing the temperature even more, the particles tend to desorb before they
meet each other and so, the efficiency decreases, as well as the lattice coverage.
The characteristic temperatures for the three regimes can be estimated within
the rate equation approach [14]. Specifically,

T low =
Ea

ln(ν/f)
(8.12)

is the temperature derived from f = a, below which the particles arrive faster
than they hop. A lot of particles are rejected by the LH mechanism and the
efficiency of the system is low. At high temperatures

T up =
2EW − Ea

ln(ν/f)
, (8.13)

determined by f/W = W/a, marks the characteristic value above which particles
typically desorb before encountering another particle. So for T > T up the
efficiency and the coverage are low. The temperature of maximum efficiency,
determined by f = W , is given by the average of these two bounds and reads

Tmax =
EW

ln(ν/f)
. (8.14)

If the binding energy EW is increased, the efficiency maximum is shifted towards
higher temperatures, and the shift is directly proportional to the change in
binding energy. The width of the efficiency peak T up − T low stays the same, as
it only depends on the (material-specific) difference EW − Ea: For two equal
lattices that are equipped either with binding energy EW1

or EW2
(differing by

∆E = EW2
− EW1

), the temperatures of maximal efficiency are related via

Tmax
2 = Tmax

1 ·
(

1 +
∆E

EW1

)
. (8.15)

In the next chapter we will begin to systematically introduce disorder into
the system. We expect to obtain a much broader efficiency window, enabling a
better alignment of model predictions and astrophysical observations.

For simplicity, we will always consider only one grain surface at a time
and use the following expressions interchangeably throughout: particle/atom,
dimer/molecule, surface/grain/lattice.

8.2.2 Kinetic Monte Carlo simulations

In [63], a code for Kinetic Monte Carlo (KMC) simulations was developed and
presented. This code provides the basis for all simulations presented in this
thesis. Therefore, we briefly review how it works.

As the Kinetic Monte Carlo (KMC) simulations serve as a reference for our
analytical and numerical analysis, we need a thoroughly tested algorithm. We
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use the standard algorithm as reviewed e.g. in [84], implemented by Lohmar
[63]. In his thesis, he shows in detail how and that the code works as intended.
Here, we concentrate on a review of the basic algorithm and the newly added
features needed in the next chapters.

The standard KMC algorithm proceeds as follows: the particles are treated
as continuous time random walkers with standard exponential waiting time
distributions. In each step of the simulation, the possible elementary processes
and their associated rates are evaluated from the current system configuration.
Then a random number is drawn and compared to the normalized partial sums
of the actual process rates. Thereby the process to be executed is determined.
Then the simulation time is advanced by the inverse of the total sum of all rates
and the system configuration is updated according to the process chosen by the
random number.

The code is written in Fortran95 and parallel computing of the simplest
type is used. That is, for each set of parameters a separate job is started on
one processor of the institute’s high performance cluster, leading to the parallel
simulation of up to 200 parameter sets.

The KMC simulations are tailored to handle disorder, as they keep track
of every single particle and enable detailed modeling of the binding energy
distribution. Especially for the simulations with quenched disorder, averaging
out the realization dependence is an important issue. We handle this by averaging
over enough realizations; typically 20 are sufficient. In addition to the nearest-
neighbor hopping described above, another type of dynamics called ’longhop’
dynamics is implemented. It is suited for comparison with the rate equation
results: particles can not only hop to their neighboring sites, but to all sites
of the lattice with equal probability (not distance dependent). This kind of
dynamics switches off all spatial correlations between the sites and thus is best
suited for a comparison with the rate equation results.

Furthermore, the energy landscapes are now generated separately from the
simulations and are fed into the program. Thus, detailed modeling of the energy
landscape and investigation of the spatial correlations is possible and will be
made use of especially in chapters 9 and 11.
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Chapter 9

Binary disorder in binding
energies

As first step in our treatment of disordered surfaces, we start with the simplest
form of rate disorder, realized by a binary binding energy distribution. Each
lattice site corresponds to either a standard (shallow) site, or to a strong-binding
(deep) site, with an enhanced binding energy. The homogeneous systems of
either shallow or deep sites, show temperature windows of high efficiency that
will typically be separated by a gap, as implied by the considerations of section
8.2.1. The natural question arising is, whether a system obtained by mixing these
two types of sites still exhibits two separated efficiency peaks, or whether the
efficiency is also high for intermediate system temperatures in-between the two
peaks. If so, the next question would be, under which conditions this behavior
occurs.

In this chapter, we first clarify the setting (section 9.1). In the following
section 9.2 we provide a qualitative picture in which we identify three temperature
regimes and describe the relevant processes for each of them. Then we give a
systematic description and analysis of the extensive KMC simulations, which
includes a study of spatial correlations in the (quenched) disorder in section 9.3.
Afterwards, in section 9.4 we present a simple but accurate rate equation model
and derive an expression for the efficiency in the interesting regime of intermediate
temperatures.

9.1 Setting

Like described in chapter 8 the grain’s surface is modeled by a quadratic grid
with side lengths L1 = L2 = L =

√
S and periodic boundary conditions. For the

standard sites (or type-1 sites) we adopt the energy values of amorphous carbon
[52]. We will vary the binding energy (and the hopping energy accordingly) of
the second type of sites, the deep or type-2 sites, and to be consistent, the rates
are still thermally activated like for the standard sites. Also here we want to
ensure detailed balance on the surface such that the system can equilibrate for
vanishing incoming particle flux. The simplest way to achieve this is by choosing
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EWi
− Eai = const

Ea1 Ea2

EW1

EW2

∆E

Figure 9.1: One-dimensional cut through the energy landscape of our model, as
introduced in figure 8.2.

the rates according to (8.3)

W1/a1 = W2/a2 (9.1)

which is equivalent to

EW1 − Ea1 = EW2 − Ea2 = const. (9.2)

Then, the number of sites a particle visits before desorption becomes independent
of the disorder. We imply EW2 > EW1 throughout. A sketch of a one-dimensional
cut (as introduced in figure 8.2) through such an energy landscape is depicted in
figure 9.1.

Note that although we implemented detailed balance (the necessary property
of systems in equilibrium) into the system on the level of binding and hopping
rates, the whole system is not in equilibrium. Single particles enter the system
by impinging on the lattice sites and leave the system either as single particles
or — more importantly — as part of a molecule. Thus we have a net particle
flow through the system. In the stationary state which we consider in this thesis,
the particle influx and outflux are of same absolute value, so particles do not
accumulate on the grain. In mathematical terms, this is called a system in
non-equilibrium stationary state (NESS).

9.2 Qualitative Discussion

We consider the binary square lattice introduced in the last section 9.1 with the
two binding energies EW1

and EW2
. The binding energies are assigned to the

sites in a random way. For a particle on a shallow site, there is a typical length
(number of hops) to reach a strong-binding site. This lengths obviously depends
on the number of deep sites in the system and shortens when more of these sites
are in the system. At low temperatures, around Tmax

1 , particles can only diffuse
on (and desorb from) shallow sites. A particle impinging on or hopping onto
a deep site will not leave this site by hopping or desorption, since the binding
energy is so high. Thus, recombinations can only take place on shallow sites, or
on occupied deep sites, that have a neighboring shallow site from which particles
can hop onto the deep site. At very high temperatures around Tmax

2 , particles
diffuse, desorb and recombine only on the deep sites, while particles on shallow
sites desorb so quick, that no other process will take place. But at intermediate
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temperatures Tmax
1 < T < Tmax

2 this picture changes. Particles on deep sites are
nearly immobile and do not desorb either, while particles on shallow sites tend
to desorb too quickly to recombine on shallow sites. But if they find a deep site
within their short range of exploration before desorbing, they are stuck on the
surface and can recombine, if another particle hops onto this same site. So at
intermediate temperatures, we expect the strong-binding sites to act as traps
for the particles diffusing on the shallow sites. The random walk with traps
has been studied extensively [66, 32]. To leading order, the number of steps a
random walker has to perform before encountering a trap is given by

〈n〉 ≈ 1

π

1

S2
S lnS, (9.3)

where S2 is the total number of traps on a lattice with coordination number four
and a total number of sites S. So the typical trapping length is

`trap =
√
〈n〉. (9.4)

For a random walker on shallow sites, we find on the other hand a random walk
length of [65]

`rw =

√
a1

W1
(9.5)

before desorption. These two processes of trapping and desorption from shallow
sites now compete with each other. While the former is a function of the number
of traps (or deep sites), the latter is a function of the lattice temperature T .
On average, for `rw > `trap, a particles is trapped before it can desorb. So we
expect the trapping mechanism to be successful and to lead to a high efficiency
of the system, up to the temperature, where both lengths are equal, given a
fixed number of deep sites S2.

Putting everything together, we find three temperature regimes. The low
temperatures, where only particles on shallow sites are active, the intermediate
temperatures, where particles behave like random walker on a lattice with traps,
and the high temperatures, where particles become mobile on the deep sites. In
the next step, we will check this picture by KMC simulations.

9.3 Kinetic Monte Carlo Simulations

In order to test our predictions, we carried out extensive kinetic Monte Carlo
simulations.

For a given realization, we wait for the system to reach the steady state
before we measure the efficiency over 106 impingements. We used a square lattice
of S = 100× 100 sites. The flux per site is taken to be f = 7.3× 10−9 s−1 [12],
as explained before. We choose the standard attempt frequency ν = 1012 s−1.
With each site we associate either the standard binding energy EW1

= 658 K,
as found for hydrogen atoms on amorphous carbon [52], or an enhanced energy
EW2 = EW1 + ∆E with ∆E = 250, 750 or 1500 K. The activation energy for
hopping reads Ea1 = 511 K or Ea2 = Ea1 + ∆E, respectively.

For each case, we estimate the efficiency as function of the temperature η(T )
and as function of the relative frequency of deep sites η(S2/S). To learn more
about the spatial influence of the efficiency, we do these calculations for up to
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four different ways of distributing the binding energies among the lattice sites.
For the case of nearest-neighbor hopping dynamics, we either assign the energies
randomly to each site with the probabilities p1 and p2 = 1− p1, or we arrange
the strong-binding sites in a regular sublattice, or we concentrate them in a
single square cluster. The probabilities in the case of random assignment have
to be understood in the sense, that S2 is binomially distributed with parameter
p2. The resulting fluctuations of the individual realizations are eliminated by
averaging over 20 realizations for every set of parameters considered. Therefore,
in the following, we identify Si/S with pi. To compare with rate equations, that
will be introduced in section 9.4, and have already been discussed in section 8.2.1
for the homogeneous system, we adopt another kind of dynamics, we will call the
’longhop’ case. Here, particles can hop from any site of the lattice to any other
site, making the system effectively zero-dimensional and thereby switching off
any spatial correlations. As rate equations do not account for spatial correlations,
this simulation dynamic is best suited for a comparison.

Our KMC results are shown in figure 9.2. For each of the three different
values of ∆E, we simulated systems with 1, 4, 10, 25 and 50% of strong-binding
sites. In the case of random energy assignment (blue marks) — probably the
most relevant case for applications — we see for each series of each value ∆E
the predicted bridging of the intermediate temperature regime, as soon as the
number of strong-binding sites is large enough. This is in accordance with the
considerations of section 9.2, since the trapping length `trap has to be smaller
than the random walk length `rw for all intermediate temperatures. For better
visualization we also plotted T eq (green bar), the temperature where `rw = `trap,
and see, that as soon as T eq > Tmax

2 , the efficiency is virtually constant for the
intermediate temperatures. These observations hold at least up to ∆E = 3000 K
(figure 9.3), which is the largest value of ∆E that we have considered; beyond
this energy scale one enters the regime of chemisorption, which is not our focus
in this work.

The bigger the differences of the binding energies, the more strong-binding
sites are needed to form a genuine plateau, where the efficiency does not depend
on the temperature. This conforms to the ideas of Sec. 9.2; when the deep-
site peak is shifted to higher temperatures, T eq has to increase to warrant the
formation of a plateau. This is achieved by increasing the deep-site fraction. The
variance of the efficiency between different realizations of random landscapes was
found to be negligible throughout. For the simulations with longhop dynamics,
we found the efficiency to vary as much. As spatial correlations cannot play a
role here, we conclude, that these fluctuations are entirely due to fluctuations in
the absolute number of deep sites S2 in every realization.

Still considering the nearest-neighbor hopping case, we find that the sublattice
distributions performs slightly better than the random assignment. This is not
astonishing since the sublattice optimizes the distance between the traps. In
the random case, small clusters of strong-binding sites can occur, in which a
single trap is less efficient. In an alternative picture we can say, that the capture
zones of individual deep sites typically overlap, and the sublattice minimizes this
overlap.

For the arrangement of all strong-binding sites into one single cluster, we find
for all temperature and any frequency of deep sites no bridging any more. The
performance gets even worse, when the system size is increased (cf. figure 9.4).
For high frequencies of either shallow or strong-binding sites, only one restricted
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Figure 9.2: Efficiency versus temperature for various fractions of deep sites. Left column
∆E = 250 K, middle ∆E = 750 K, right ∆E = 1500 K. Randomly assigned energies
(blue line, diamonds), longhop dynamics (red line, circles). Only for ∆E = 750 K:
sublattice (orange dashed line, crosses), and cluster (black line, squares). Vertical green
line at T eq. The first row shows the results for homogeneous systems of only standard
or only deep sites, respectively.
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Figure 9.3: Simulation data with nearest-
neighbor hopping: Efficiency as function
of temperature for ∆E = 3000 K. Shown
are 50% of deep sites (blue, circles) and
80% of deep sites (orange, diamonds).
The bridging still sets on, but a lot of
deep sites are needed. This is in accor-
dance with the results of sections 9.3.1
and 9.4.3.
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Figure 9.4: Simulation results for a cluster
formation on a surface with S = 500×500
sites and 50% of deep sites and ∆E =
750K. In the intermediate temperature
regime the efficiency nearly drops to zero
and shows no “bridging” effect — in con-
trast to the well-mixed cases.

peak emerges, while for intermediate frequencies of strong and shallow sites two
nearly separated peaks appear. This strongly indicates, that the hypothesis of
the random walker on a lattice with traps scenario holds true. The efficiency does
not drop to zero in the intermediate temperature regime, because an exchange
between shallow and deep sites takes place along the boundary of the cluster.
However, since the proportion of boundary length compared to the overall

system size scales as L/L2 =
√
S
−1

, the fraction of boundary sites decreases
with increasing S, and correspondingly the suppression of the efficiency in this
regime becomes even more pronounced for larger systems. This is in contrast
to the well-mixed case, where a finite fraction of sites are boundary sites (see
below).

Considering now the longhop dynamics simulations, we first verified, that
the simulation results are indeed independent of the way of distributing binding
energies on the surface. Therefore we checked, that the results on the sublattice
and a cluster landscape coincide. The efficiency under longhop dynamics outper-
forms even the sublattice results for nearest-neighbor hopping, where distances
for the walkers are minimized. The reason lies in the finite probability to reach
a trap in every hopping step. We will further analyze the longhop case when
discussing rate equations in section 9.4.

9.3.1 Quantitative analysis of KMC results

In addition to our qualitative explanations, we analytically and numerically
examine the dependence of the plateau efficiency value on the number of deep
wells. First we note that for our choice of parameters, the efficiency value at
Tmax

1 ≈ 14 K always corresponds to the plateau value. From the results for
∆E = 750 K shown in figure 9.5 we infer that the way of distributing the
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strong-binding sites is of crucial importance. In the case of a single square
cluster of deep wells, the efficiency decreases linearly as 1− S2/S, while for the
random distribution the efficiency first decreases more slowly (for less than 50%
of strong-binding sites) and faster to the end (more than 50%). We propose that
this effect is related to the border length between shallow and deep sites, and
use this connection to derive an empirical formula for the plateau efficiency.

First we present an analytical expression of the plateau efficiency for the case
S2/S � 1. Afterwards, we fit the simulation data to gain a results for all values
of S2/S.

The efficiency of the whole surface η is composed of three parts: the efficiency
on the shallow sites ηshallow, on the deep sites ηdeep, and on the border between
shallow and deep sites ηborder

η = ηshallow + ηdeep + ηborder. (9.6)

At the temperature T = 14K, the deep sites are inactive in the sense that
we can neglect hopping of atoms from a deep site, once they encountered one,
so ηdeep = 0. On the other hand, molecules are very effectively produced on
shallow sites with an efficiency of ηshallow = S1/S = 1− S2/S since this is the
fraction of the surface that is covered by shallow sites. This behavior is shown
by the simulations on the cluster surface1. We are left with the calculation of
the contribution from the border between shallow and deep sites. For randomly
distributed deep wells, we calculate the border length L as function of S2/S
(cf. figure 9.6). We find a shallow site next to a deep site with probability
(S2/S)(1− S2/S). Since the orientation of the pair does not matter, we gain an
additional factor of 2. Furthermore we have 2S possibilities to place such a pair
of sites on a square lattice with S sites and periodic boundary conditions. So we
find the following expression for the border length between shallow and deep
sites

L = 4S · S2

S

(
1− S2

S

)
, (9.7)

leading to a surface coverage of L/S. For calculation of the efficiency, this
fraction has to be diminished by a factor of two, since only every second particle
jumping on a deep site produces a molecule. Furthermore — assuming that the
fraction of deep sites is sufficiently small — only one of four equally possible
hopping processes leads to recombination on the border, so we arrive at ηborder =
L/(2 · 4 · S)

Summing up all terms, we obtain the total efficiency of the surface

η = 1− S2

S
+ 0 +

4SS2/S(1− S2/S)

8S

=

(
1− S2

S

)(
1 +

S2

2S

)
≈ 1− S2

2S
,

(9.8)

with approximation in first order of S2/S � 1 This formula will also be derived
from the rate equations model in section 9.4.3, thus confirming the above
reasoning.

1the contribution from the border can be neglected in this case
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For larger fractions of deep sites this argumentation has to be refined because
with growing density the deep sites begin to compete for surface particles. This
leads to an enhancement of the number of hopping processes at the border that
result in molecule formation (more than one out of four hopping directions leads
to recombination on the border), but more deep sites are surrounded by only
other deep sites and thus do not contribute to the border length. So far, this
factor can only be determined numerically. From the numerical examinations
we know that the difference ∆η = ηrandom − ηcluster ≡ ηborder is only due to
the border between shallow and deep sites. The efficiency ηborder constitutes of
three factors, the ratio of border length to site number L/S, the ratio of hopping
processes leading to molecule formation to the total number of hopping processes
from shallow to deep sites 1/2, and the ratio of the number hopping processes
on the border to the number of all possible hopping processes 1/4 (for a small
fraction of deep sites). The only component of ηborder changing with the fraction
of deep sites is the ratio of hopping processes on the border compared to all
possible hopping processes. When more deep sites are present on the grain, more
than one out of four possible hopping directions leads to the encounter of a deep
site, and the ratio of the two becomes bigger. By a numerical fit, we can gain
information on that ratio. Fitting the efficiency difference ∆η to a multiple of
the border length yields

∆η = C · L, (9.9)

with C = (1.487± 0.019)× 10−5 or

ηrandom ≈
(

1− S2

S

)
·
(

1 + (0.595± 0.008)
S2

S

)
(9.10)

for the empirical plateau efficiency value2. Now we can solve for the ratio of
hopping directions on the border to all hopping directories, rp, and find

rp = 2SC = 0.2974± 0.0038. (9.11)

Comparing to the value of 1/4 for the case S2/S � 1, we find the predicted
growth of rp for larger values of S2/S. This means very roughly, that on average
1.2 instead of only 1 out of the four hopping directions leads to a trapping of
the particle on a deep site. As can be seen from figure 9.6, the fit is not perfect,
so there is a variation in rp with varying fraction S2/S.

In addition to this fitting, we actually counted the border length for 125 ·20 =
2500 surfaces with varying fractions of deep sites between 0% and 100%. The
analysis indeed showed that in

rp ≈ 0.366± 0.006 (9.12)

cases a hop from a shallow site results in an encounter of a deep site, which is
quite close to the extrapolated value of 0.2974± 0.0038 from the numerical curve
fitting (9.11).

This concludes the discussion of the KMC simulations. From the simulations
and the qualitative and quantitative discussions, we have inferred the basic
mechanisms, governing the behavior of a surface with binary disorder. In the
next section we use rate equations to treat the system and gain further insight
into details.

2The quality of the fit ∆η ∝ L for KMC results underlines the role of the border length,
and this corroborates our picture that the dominant reaction process on the plateau is by
hopping from standard to deep sites.
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Figure 9.5: Efficiency as function of the
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(black, squares, ηcluster) and randomly as-
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9.4 Rate Equation Model

The applicability of a rate equation approach and its limits have already been
discussed in section 8.2.

In previous work [22], KMC simulations on surfaces with varying roughness
have been performed and a rate equation model was used to check the consistency
of the landscape model with surfaces considered astrophysically relevant and
examined in the laboratory.

We use this approach to support the findings of our KMC simulations and
to deepen our qualitative understanding of the system’s behavior and derive
a set of equations for the total particle number Ni on each type of sites. The
processes to be taken into account are, incoming flux on empty sites, desorption
and reaction. While the first two can be written down straightforwardly, the
reaction rates have to be determined carefully, since they are not an elemental
process. We denote this so-far undetermined rate by Ai for sites of type i. The
rate equations then take the form [69, 22]

dN1

dt
= f(S1 −N1)−W1N1 −A1N1(S2 −N2)−A1N1N2

− 2A1N
2
1 +A2N2(S1 −N1)−A2N1N2,

dN2

dt
= f(S2 −N2)−W2N2 −A2N2(S1 −N1)−A2N1N2

− 2A2N
2
2 +A1N1(S2 −N2)−A1N1N2.

(9.13)

Here the first two contributions cater for the impingement flux with rejection
and the desorption of particles. For clarity we separated the remaining terms.
The next two terms describe leaving to a site of the opposite type (either to
an empty or to an occupied site). Then we account for reactions inside one
population due to hops between sites of the same type, removing two atoms.
The remaining two contributions describe gaining a particle by a hop from the
other site type, and finally, losing one particle due to the reaction with a particle
coming from the other population.
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It should be mentioned again that in the rate equation treatment, the total
particle numbers Ni are continuous and especially can drop below unity. Thus,
we must not replace the reaction term 2AiN

2
i for ’homogeneous’ reactions by

the — on first sight more intuitive — term 2AiNi(Ni − 1), as the reaction term
then could become negative. As mentioned in the introductory section 8.2.1
for the homogeneous system and argued in detail in [89], the assumption that
the reaction rate can be written as above is at the heart of the rate equation
approach. Equations (9.13) are easily derived from the full master equation
using this assumption in the forms 〈Ni(Ni − 1)〉 ≈ N2

i and 〈N1N2〉 ≈ N1N2

(where the expectation is over the joint probability distribution P (N1, N2) and
the r.h.s. Ni’s are already the mean values as above).

From the reaction terms, we can infer the recombination rate and efficiency
of the system. Adding up all terms proportional to the Ai in dN/dt = dN1/dt+
dN2/dt, pure hopping terms (not leading to a reaction) cancel. Accounting for
the fact that each reaction consumes two particles, the rate with which particles
are removed from the system by reaction amounts to

2R = 2A1N
2
1 + 2A2N

2
2 + 2(A1 +A2)N1N2, (9.14)

which can be simplified to 2R = 2(A1N1 + A2N2)(N1 +N2). Relating this to
the particle influx f(S1 + S2) = fS gives the efficiency η = 2R/(fS).

9.4.1 The reaction rate coefficient

The reaction rate coefficient is a crucial quantity in all of the aforementioned
approaches (master, rate and moment equations). Typically, it is approximated
by the choice A = a/S [76], also we adopt. This choice neglects back-diffusion
and the competition between a reaction of particles and the prior desorption
of one of the potential reactants. In [64, 65] a proper definition and evaluation
of A was given and it was argued, that this choice should be implemented
into all approaches, including rate equations. Nevertheless, we will stick with
the choice A = a/S throughout this work, since the situation with disorder
is different. In all zero-dimensional approaches like master equation or rate
equations, spatial structure cannot be included properly. When dealing with
disorder and heterogeneous systems, there will be site type correlations that will
be neglected additionally to the correlations in the particle residence probabilities.
Then we have to assume, that a particle can reach any site from any other site
within one hop, to be consistent. In particular, it hops to a site of type i with
probability Si/S, and it meets a particle on an i-site with probability Ni/S. The
conventional choice Ai ≈ ai/S thus arises naturally if we use rate equations to
describe a system with site disorder, and we adopt this choice in the following.
For a system with quenched spatial structure and nearest-neighbor hops only,
this description corresponds most closely to the well-mixed case.

9.4.2 Comparison with KMC simulations

The rate equations (9.13) are exactly solvable at steady state by finding the real
positive root of a third-order polynomial. However, the results are cumbersome
and less than illuminating. We therefore directly opted for a numerical solver
throughout.
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Results on the validity of rate equations to describe the model in the
homogeneous case have shown that confinement to a finite surface renders
the discreteness of particles and fluctuations in the particle number impor-
tant [81, 14, 56, 13, 64, 58]. Consequently, the mean-field approach of rate
equations considerably overestimates the recombination efficiency in small sys-
tems.

In contrast, we find that the rate equations for the binary system reproduce
the outcome of extensive KMC (longhop) simulations for a wide parameter range
of practical relevance to excellent accuracy (see figure 9.7). The reasons for this
slightly surprising result are as follows. First, since we present our results as
functions of temperature and parameters are thermally activated, we typically
have rather steep rises or declines. As noted in prior work [64], even factors of
two or three in the efficiency do not have to appear substantial then. This hardly
explains the observed accuracy in itself, especially on plateaus and moderate
peaks for η considerably smaller than unity. Second, since we are interested in
the behavior when there is a substantial number of particles in our system, the
effects of discreteness and of fluctuations in this particle number are strongly
reduced. Third, the confinement of particles to a finite surface is also far less
important than for the homogeneous system, because the majority of these
particles is trapped in deep wells in the regimes of most interest, anyway. Finally,
we cannot preclude completely that differences might be more pronounced for
smaller system sizes or activation energies of different type.

9.4.3 Plateau efficiency

One of the central questions of this chapter concerns the bridging of the two
efficiency peaks belonging to the homogeneous systems of either type of sites.
We found a convincing explanation of the occurrence of the plateau and the
qualitative picture developed in section 9.3 also led to a crude estimation of
the plateau efficiency, which we want to specify now. To arrive at an analytic
expression comparably simple to equation (9.8), we need to simplify the full
rate equation model using some observations: figure 9.7 shows that whenever a
plateau emerges in the efficiency, practically all recombinations are due to hops
between the two types of sites — as already argued in section 9.3. Only, when
the concentration of deep sites is low and the efficiency is close to unity, the lower
temperature end of the plateau also includes a substantial contribution from
recombination on standard sites. At the high-temperature end of the efficiency
window, any contribution from reactions on deep sites happens in the narrow
temperature window around Tmax

2 and results in an efficiency peak additional
to the plateau value.

To calculate the plateau efficiency by means of rate equations, we can therefore
concentrate on the reaction between the two populations. With denoting standard
sites by type 1, we can clearly state A1 � A2 and neglect all terms proportional
to A2 since they are small compared to their A1 counterparts. But we keep
all the flux and desorption terms. We clearly can leave out the reactions
A2N1N2 � A1N1N2 and have to remove the hopping term ∝ A2 for consistency.
Furthermore, we can neglect the homogeneous recombination (inside the Ni
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Figure 9.7: Efficiency versus temperature for various fractions of deep sites. Left
column ∆E = 250 K, middle ∆E = 750 K, right ∆E = 1500 K. Red circles: KMC
longhop results (see section 9.3). Red lines the numerical solution of rate equations
with standard Ai = ai/S (solid), blue lines contributions by reaction on the 1- and
2-sites (dashed), and by switching between the types (dot-dashed). Dotted green lines
show the results of the plateau model (9.17), and green horizontal line the simple (9.18).
Vertical green line at T eq.
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populations). This leads to the simplified steady-state equations

0 = f(S1 −N1)−W1N1 −A1N1S2,

0 = f(S2 −N2)−W2N2 +A1N1S2 − 2A1N1N2,
(9.15)

which yield an efficiency

ηp =
2A1N1N2

fS
=

2fA1S1S2(V1 +A1S)

S(V1 +A1S2)[V2(V1 +A1S2) + 2fA1S1]
, (9.16)

where Vi = Wi+f . Instead of directly evaluating this expression at a temperature
right on the plateau, we notice that we can make two more assumptions in this
case. We can neglect desorption from the type-2, so that V2 = f , and together
with A1 = a1/S, the simplified equation (9.16) reduces to

ηp =
2(S1/S)(S2/S)(1 + V1/a1)

(V1/a1 + S2/S)(1 + V1/a1 + S1/S)
. (9.17)

Then, V1/a1 � S2/S < 1 holds on the plateau and for a reasonable fraction of
deep sites S2/S, yielding

ηp ≈
2

S/S1 + 1
. (9.18)

This expression for the plateau efficiency does not depend on any energy scale
and nicely agrees with equation (9.8) from the quantitative KMC analysis. The
agreement with the simulations and the full rate equation results is excellent (cf.
figure 9.7). This result is valid whenever conditions for plateau formation are
fulfilled (i.e., if ∆E is large enough to separate the homogeneous-system peaks,
and if there are enough deep wells if ∆E is fairly large).

We have to check the validity of the above made approximations. In Sec-
tion 9.3 we found the peak temperature of the standard sites Tmax

1 to always
belong to the plateau. By definition it does lie right beyond the low-temperature
rise to the shallow site peak and yet this temperature is minimal enough not to be
under an influence of the peak separation ∆E. At T = Tmax

1 , V1 = W1 + f = 2f
and V2 = W2 + f = f [(f/ν)∆E/EW1 + 1]. Reasonably, f/ν � 1, while the
smallest interesting ∆E ∼ EW1 − Ea1 , such that the ratio ∆E/EW1 is not
excessively smaller than unity. This justifies the approximation V2 ≈ f , elim-
inating ∆E from the game, as suggested by figure 9.7. We now check the
order of V1/a1 = 2f/a1 = 2(f/ν)(EW1

−Ea1 )/EW1 . The exponent is about 0.22
for amorphous carbon, and with the corresponding standard flux we have
V1/a1 ≈ 6.3 × 10−5 (cf. section. 9.3). This is negligible compared to any
interesting deep-well fraction S2/S (≥ 1%), which completes the argument for
equation (9.18). (We checked that this holds at least equally well for the standard
olivine parameters [52].)

If we anticipate from the beginning, what terms can be neglected, this result
can also be inferred from even further simplified rate equations. An intuitive
explanation for the system’s behavior is given in the following.

We consider the system in a steady state. So all particles entering the system,
have to leave it. Entering the system can happen by impingement on a shallow
or a deep site. Leaving the system only takes place on deep sites either by
LH-rejection or by reaction with an incoming particle from a shallow site. So
the rate at which particles from type-1 sites arrive at each type-2 site is given
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by fS1/S2. Thus the rate at which particles leave from the type-2 sites at a
rate 2fS1/S2 ·N2 since two particles are needed for each reaction. Alternatively,
particles leave the system by LH-rejection (which can be considered as another
desorption process on the level of rates) at a rate fN2. The efficiency of the
surface now is the fraction of particles leaving the system by reaction, normalized
by the total rate of leaving the system (by LH-rejection or reaction). This yields

ηp =
2S1

2S1 + S2
, (9.19)

which coincides with equation (9.18). We note that equation (9.19) can be
rewritten as

ηp =
1− S2/S

1− S2/(2S)
≈
(

1− S2

S

)(
1 +

S2

2S

)
(9.20)

for S2/S � 1, which then results in precisely the form of the empirical rela-
tion (9.8).

9.5 Conclusions

In this chapter we studied a lattice with a binary binding energy distribution
and its influence on dimer formation from single particles impinging the surface.
The mixing of the shallow and deep sites leads to a high efficiency even in
regions where the corresponding homogeneous systems do not perform well at
all. We explicitly identified the mechanism supporting the high efficiency in
this intermediate temperature region, namely shallow sites catering for particle
mobility and funneling the particles into the deep sites that act as particle
traps and thus facilitate molecule formation. The identification was done by
comparing KMC simulations of surfaces with well-mixed types of sites to surfaces
with the same amounts of each type of site but deep sites arranged in a cluster,
thereby minimizing the border between shallow and deep sites, leading to a
significant reduction of the efficiency in the intermediate temperature regime
(section 9.3). The (numerical) rate equation solutions (section 9.4) corroborate
this picture. Our findings nicely coincide with the model predictions of [19],
who observed the formation of hydrogen on a surface with physisorption and
chemisorption sites and found that for high temperatures the dominant process
is Hchemis. + Hchemis. → H2 while for low temperatures (physisorbed atoms still
mobile) Hphysis. + Hchemis. → H2 dominates. As the mechanism leading to the
enhancement of the temperature window of high efficiency is quite fundamental,
we expect it to hold true also for other distributions of binding energies, which
we will turn to in the next two chapters.
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Chapter 10

Discrete distributions of
binding energies

In view of possible applications it is useful to understand not only systems with
binary disorder but discrete distributions in general. Different types of materials
forming a grain surface, as well as surface features like steps, corners and holes,
will automatically lead to some kind of discrete binding energy distribution.

With the central result of the former chapter in mind, we now consider
discrete binding energy distributions, starting with a ternary system. For the
analysis, rate equations and KMC simulations are used in the same spirit as
before. We will discover the mechanism identified in the binary disorder case
of sites either serving as traps or providing particle mobility on the surface,
to be of central importance again. Later on in chapter 11 we will introduce a
mapping from continuous distributions to an effective binary system and apply
this mapping also to general discrete binding distributions. We start with a
treatment of the ternary system by means of rate equations in section 10.1.1.
Our findings are confirmed by KMC simulations in section 10.1.2. Finally we
extend the results of the ternary system to discrete binding energy distributions
with arbitrarily many types of sites in section 10.2 and discuss the limits of this
approach in section 10.3.

10.1 Mapping of a ternary to a binary system

In chapter 9 we showed how the simplest case of disorder in the binding energies
influences the efficiency of this surface in dimer formation. For reasons we will
identify in the analysis of the ternary system, the results can be extended to
systems with a finite but arbitrarily large number of binding energies types
under quite general constraints. The general procedure for analyzing the ternary
system will be the same as for the binary system (chapter 9), involving rate
equations, effective rate equations and KMC simulations.

We extend the binary system by another kind of site with binding energy
EW3 and hopping energy Ea3 , still satisfying the condition for detailed balance
EWi

−Eai = EWj
−Eaj , i, j = 1, 2, 3. The total number of sites S now is made

up by three parts: S = S1 + S2 + S3. Without loss of generality we arrange the
binding energies in such a way that EW1

< EW2
< EW3

, and refer to them as
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Figure 10.1: One-dimensional cut through the energy landscape of the three-type
model, as indicated in 8.2.

’shallow’, ’intermediate’, and ’deep’ sites, or type-1, -2, or -3 sites, respectively. A
one-dimensional cut through such an energy landscape is sketched in figure 10.1.

10.1.1 Rate equations

From the qualitative discussion in section 9.2, we know what happens at the
border between two sites with different binding energies at a given surface
temperature. Either atoms are mobile or immobile on both types of sites, or —
and that is the interesting case when Tmax

i < T < Tmax
i+1 — atoms are mobile

on one type and immobile on the other. In the latter case, we have again
the situation of a random walker on a lattice with traps. We analyzed this
situation qualitatively and quantitatively in section 9.3.1 for the case of two
different binding energies. Now we investigate the situation with three binding
energies. This implies that type-2 sites must be considered as either shallow or
deep — providing either mobility or trapping — depending on the temperature,
while type-1 sites are always shallow (providing mobility) in the interesting
temperature regime and type-3 sites always act as deep sites (trapping particles).

Following the argumentation in section 9.4 we find for the surface with three
types of binding energies the following set of rate equations:

dN1

dt
= f(S1 −N1)−W1N1 −A1N1(S2 −N2)−A1N1(S3 −N3)

−A1N1N2 −A1N1N3 − 2A1N
2
1 +A2N2(S1 −N1)

+A3N3(S1 −N1)−A2N1N2 −A3N1N3,

dN2

dt
= f(S2 −N2)−W2N2 −A2N2(S1 −N1)−A2N2(S3 −N3)

−A2N1N2 −A2N2N3 − 2A2N
2
2 +A1N1(S2 −N2)

+A3N3(S2 −N2)−A1N1N2 −A3N2N3,

dN3

dt
= f(S3 −N3)−W3N3 −A3N3(S1 −N1)−A3N3(S2 −N2)

−A3N1N3 −A3N2N3 − 2A3N
2
3 +A1N1(S3 −N3)

+A2N2(S3 −N3)−A1N1N2 −A2N2N3.

(10.1)

The structure of the equations is the same as in the binary case, but we have
to account for hopping from and to two other types of sites for each site type.
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Again, for transparency, we separated the hopping terms into hopping onto an
empty site and hopping onto an occupied site (of either type). The mere hopping
terms without reaction cancel upon addition of all three equations.

Solving for the stationary state, dNi/dt = 0, we distinguish two temperature
regimes in which we expect non-trivial behavior of the efficiency: Tmax

1 < T <
Tmax

2 < Tmax
3 and Tmax

1 < Tmax
2 < T < Tmax

3 .

• Case 1: Tmax
1 < T < Tmax

2

According to section 9.4, in the rate equation approach, we can neglect all
terms proportional to A2, A3,W2 and W3, since the temperature is too low
to allow hopping and single-particle desorption from the intermediate and
deep sites. Also we assume T > T up

1 such that we can neglect homogeneous
reaction terms ∝ N2

1 on shallow sites. Then the stationary rate equations
are given by

0 = f(S1 −N1)−W1N1 −A1N1(S2 + S3),

0 = f(S2 −N2)−W2N2 +A1N1S2 − 2A1N1N2,

0 = f(S3 −N3)−W3N3 +A1N1S3 − 2A1N1N3.

(10.2)

As the structure of the type-2 and type-3 equations is equal, we combine
them to yield

0 = f(S1 −N1)−W1N1 −A1N1(S2 + S3),

0 = f(S2 + S3 − (N2 +N3)) +A1N1(S2 + S3)

− 2A1N1(N2 +N3).

(10.3)

Now we rename N1 = N1,eff , N2 +N3 = N2,eff , S1 = S1,eff , S2 +S3 = S2,eff ,
and A1 = A1,eff , leading to the two effective equations

0 = f(S1,eff −N1,eff)−W1N1,eff −A1,effN1,effS2,eff ,

0 = f(S2,eff −N2,eff) +A1,effN1,eff(S2,eff)− 2A1,effN1,effN2,eff .
(10.4)

Comparing this set of equations to the rate equations of the binary system
(9.15), we find that the structure is identical. Therefore, we can use the
solutions of the binary disorder case (for the plateau regime)

N1,eff =
fS1,eff

V1,eff +A1,eff(S − S1,eff)

N2,eff = (f +A1,effN1,eff)

(
S2,eff

V2,eff + 2A1,effN1,eff

)
.

(10.5)

Inserting these effective expressions into the definition of the efficiency η,
we find

ηp =
2

S/S1,eff + 1
, (10.6)

where S = S1,eff +S2,eff = S1 +(S2 +S3) and sufficiently many (effectively)
deep sites S2,eff are assumed to be present on the surface. Thus we find the
bridging effect also occurs in the ternary system, which is not astonishing
as such. Also the combination of all sites of type i with Tmax

i > T to one
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effective type of site with the energy parameters of the original intermediate
sites,

Eeff,W2
= EW2

= min
{i:Tmax

i >T}
EWi

,

Eeff,a2 = Ea2 = min
{i:Tmax

i >T}
Eai ,

(10.7)

seems natural, as on the sites considered deep in comparison with the
system temperature, virtually no dynamic processes happen. The type-2
and type-3 sites act effectively in the same way, independent of their exact
binding energy.

• Case 2: Tmax
2 < T < Tmax

3

Here, we can only neglect contributions proportional to A3 and W3, since
only on these deep sites particles are trapped. But since now particles on
type-1 and type-2 sites are highly mobile and tend to desorb very fast,
we also can neglect terms proportional to N2

1 ,N2
2 and N1N2, yielding the

following simplified stationary rate equations:

0 = f(S1 −N1)−W1N1 −A1N1(S2 + S3) +A2N2S1,

0 = f(S2 −N2)−W2N2 −A2N2(S1 + S3) +A1N1S2,

0 = f(S3 −N3)−W3N3 + (A1N1 +A2N2)S3

− 2(A1N1 +A2N2)N3,

(10.8)

where now the first and second equation are of the same structure. The
solutions read

N1 =
fS1(V2 +A2S)

(V2 +A2(S − S2))(V1 +A1(S − S1))−A1S1A2S2
,

N2 =
fS2(V1 +A1S)

(V2 +A2(S − S2))(V1 +A1(S − S1))−A1S1A2S2
,

N3 =
fS3 + S3(A1N1 +A2N2)

f + 2(A1N1 +A2N2)
.

(10.9)

Next we apply the approximations V1/a1 � (S − S1)/S < 1, V2/a2 �
(S − S2)/S < 1 introduced in section 9.4.3 and valid for any reasonable
amount of intermediate and deep sites to find

N1 ≈
fS1

a1(1− (S − S3)/S)
,

N2 ≈
fS2

a2(1− (S − S3)/S)
,

N3 ≈
fS3 + S3/S(a1N1 + a2N2)

f + 2/S(a1N1 + a2N2)
.

(10.10)

At this point we rename

a1,effN1,eff = a1N1 + a2N2,

N2,eff = N3,

S1,eff = S1 + S2,

S2,eff = S3,

(10.11)
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identify a2 ≡ a1,eff , and express N1 by N2 using equation (10.10),

N1 =
a2S1

a1S2
N2. (10.12)

We find for the effective shallow and deep sites

N1,eff =
a1

a2
N1 +N2 =

(
a1a2S1

a2a1S2
+ 1

)
N2

=
S1 + S2

S2
N2 =

fS

a1,eff

(
S

S3
− 1

)
,

N2,eff =
S

1 + 2(S/S2,eff − 1)
.

(10.13)

Now we can calculate the efficiency of this effective binary system:

η =
2R

fS
=

2a1,effN1,effN2,eff

fS

=
2

1 + S/(S − S3)
.

(10.14)

Remembering that S2,eff = S3 and S1,eff = S1 + S2, we recover again the
plateau formula (9.18) of the binary system, now with S1 + S2 sites of
binding energy EW1,eff = EW2

and S3 sites of binding energy EW2,eff = EW3

as we can read off the nature of the effective shallow particles and sites
from equation (10.12): the number of effectively shallow sites N1,eff is
given by the number of original shallow and intermediate sites S1 + S2

multiplied by the density of particles on the intermediate sites n2 = N2/S2.
So it is clear why the effective shallow sites inherit their energy parameters
from the intermediate sites. Their (average) number N1,eff is calculated by
merging the original number of shallow sites to the intermediate ones and
assuming that on these sites all particles act like on type-2 sites.

Thus, we can give a simple recipe, how to determine the recombination efficiency
in a system with ternary disorder. Throughout, we have to assume that for all
three types of sites, there are reasonable amounts present in the system. The idea
of this mapping is depicted in figure 10.2. First, we determine how the tempera-
ture T relates to the temperatures of the efficiency maxima of the homogeneous
systems Tmax

i (corresponding to the binding energies present in the system).
Then we add up all sites Si with Tmax

i < T and Tmax
i > T , respectively. In terms

of energies this corresponds to a cutting of the binding energy distribution at the
temperature-dependent cutting energy Ecut = T ln(ν/f). To these two numbers
of sites, called S1,eff and S2,eff , the titles ’effectively shallow’ and ’effectively
deep’ are assigned, respectively, and the binding energies of the two types are
determined as follows. For the effectively shallow sites we determine the largest
of the binding energies present in the group of sites that form the effectively
shallow sites. For the effectively deep sites, we determine the smallest of the
binding energies and assign these binding (and hopping) energies to the effective
types of sites. Then we have a binary system and apply our knowledge from
the last chapter 9. For the plateau formula to hold, the condition for plateau
formation in the effective binary system has to be fulfilled, as discussed in 9.3.1
and 9.4.3, of course.
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Figure 10.2: Idea of the mapping from the original system with discrete binding energies
to an effective binary system. The translation between the temperature T and energies
EW is performed on the binding energy level: Ecut = T ln(ν/f) and we have to account
for the regimes of validity as will be discussed in section 10.3 .

Combining the presented arguments and reasoning, we conclude that the
binary system already shows all relevant mechanisms needed for explaining the
observed recombination efficiency in the ternary system. Moreover, the recipe
found above suggests its application to arbitrary discrete distributions of binding
energies.

10.1.2 Kinetic Monte Carlo simulations

To complete and corroborate the picture of the rate equation approach, we
performed KMC simulations of the full ternary system and of the effective
binary system derived in the previous section 10.1.1. For the simulations we
consider randomly distributed sites in the sense explained above, fixing the
relative frequency of each kind of site and drawing the energies of sites randomly,
according to this frequency. Additionally we mainly use ’longhop’ dynamics in
the KMC simulations for comparison with rate equations, as the influence of site
arrangement has been studied extensively in the last chapter and is not covered
by the rate equation approach.

According to the results of the rate equation approach, we find in the
ternary system two temperature regimes of interest, Tmax

1 < T < Tmax
2 and

Tmax
2 < T < Tmax

3 . For these two regimes we find two different effective binary
systems. In the first case we obtain the effective model by regarding the sites of
type 3 as type-2 sites to form the effectively deep sites. The effectively shallow
sites are identical to the original type-1 sites. In the second case we find the
effective binary system by regarding the type-1 sites to type-2 sites and adding
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them to the type-2 sites. The effectively deep sites consist of the type-3 sites.

For the simulations we used one ternary distribution with equally spaced
site types of ∆1E = ∆2E = 750 K and one distribution with ∆1E = 1000 K
and ∆2E = 500 K. For better comparison with the former results, we adopt
the energy values of amorphous carbon for the shallow sites (EW1

= 658 K,
Ea1 = 511 K). The total number of sites on the quadratic square lattice with
periodic boundary conditions is S = 10000. Now we have two parameters for
fixing the amounts of sites of the different types of sites. We handle this for
the plots by fixing, e.g., the number of shallow sites and varying the number of
intermediate and deep sites, and vice versa. The frequencies of effectively deep
sites are chosen such as to produce both, systems that reveal a full bridging and
systems that do not have enough deep sites to show a full peak bridging.

First of all, in figure 10.3 we show that the simulation results with longhop
dynamics and the numerical rate equation results coincide nicely for the full
ternary system. From the figures 10.4 and 10.5 we see that for the lower and the
higher temperature regime, the effective binary system reproduces the efficiency
of the full ternary system almost perfectly. The temperature regimes considered
are highlighted by the light green background color. The very pale regimes
together with the more intense ones visualize the intervals Tmax

i < T < Tmax
i+1 ,

while the smaller more intense color bars refer to the regime Tmax
i < T < T low

i+1.
Additionally in figure 10.5 we show that indeed, in the regime Tmax

i < T < T low
i+1,

the efficiency of the effective binary system reproduces the efficiency of ternary
systems, as long as the numbers of sites for the effectively deep and shallow sites
are matched. The distribution of these numbers of sites among the different
binding energies does not play any role.

10.2 n types of binding energies

The simulations and rate equation results in the last section strongly suggest
that the systematics of combining sites with a homogeneous system maximal
temperature Tmax

i smaller and larger than the actual system temperature T to
an effective binary system also works for systems with n > 3 types of binding
energies. Due to the generic structure of the reduced effective rate equations,
the number of different binding energies does not affect the results. We now
construct the mapping from a system with n different binding energies to an
effective binary system for a given system temperature. The total number of
sites is S =

∑n
i=1 Si, the corresponding binding and hopping energies are given

by EWi and Eai , and the temperature of maximal efficiency in a homogeneous
system with sites of type i reads Tmax

i . For system temperature T the rate
equations for the types of sites with Tmax

i < T read

0 = f(Si −Ni)−WiNi −AiNi(S − Si) + Si
∑

j 6=i:Tmax
j <T

AjNj . (10.15)
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Figure 10.3: Comparison of KMC simulations with ’longhop dynamics’ (open circles)
and numerical solutions of the full rate equations (10.8) (solid lines) for a surface with
three types of binding energies and 50% shallow sites. The number of deep sites is
varied from 1% over 5%, 10%, 20%, to 49%, and the number of intermediate sites
varies accordingly. The total number of sites is S = 10000, and the parameters chosen
are the ones for H atoms on an amorphous carbon surface. The other binding energies
are EW2 = EW1 + 750K, and EW3 = EW1 + 1500K, and EWi −Eai = const. We used
the ’longhop’ dynamics to generate the numerical data. As reference we also shown
the efficiency curves of the three corresponding homogeneous systems in the upper
leftmost of the pictures, as also displayed in figure 9.2.
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Figure 10.4: Simulation results for the temperature dependence of the efficiency of
the full system (as in figure 10.3) with KMC ’longhop’ dynamics (solid line) and the
simulation results of the effective binary system. In the effective system the amount of
shallow sites is added to the intermediate sites and give the amount of shallow sites
in the effective system with the binding energy of the former intermediate sites. This
simple comprising is valid for system temperatures between Tmax

2 < T < Tmax
3 in terms

of the original system (open circles). This temperature region is indicated by the light
green color area in the plots. The frequency of shallow sites in the full system is kept
at 50% which fixes the number of intermediate sites, while the (varying) frequency of
deep sites is indicated for each of the plots. The binding energies of the three types
are chosen as 658K, 1408K and 2158K for the shallow, intermediate and deep sites,
respectively. All other parameters are chosen according to the standard values used so
far.
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Figure 10.5: Efficiency of the full ternary and the effective binary systems. The greenish
regions mark the temperatures for which the effective system is deduced. The intensely
green region refer to temperatures Tmax

i < T < T low
i+1 and the intense together with

the pale region refers to Tmax
i < T < Tmax

i+1 . The binding energies are: EW1 = 658 K,
EW2 = 1658 K, and EW3 = 2158 K. Open circles: KMC simulations of effective binary
system. Left column: Solid lines: KMC simulations of the full ternary system with
frequencies (0.5, 0.45, 0.04), (0.45, 0.45, 0.1), (0.5, 0.25, 0.25), (0.25, 0.25, 0.5) of type-1,
-2, and -3 sites, respectively, from top to bottom. Dashed lines: KMC simulations of the
full ternary system with frequencies (0.95, 0.01, 0.04), (0.89, 0.01, 0.1), (0.74, 0.01, 0.25),
(0.49, 0.01, 0.5). Right column: Solid lines: KMC simulations of the full ternary system
with frequencies (0.96, 0.00, 0.04), (0.96, 0.00, 0.1), (0.96, 0.00, 0.25), (0.96, 0.00, 0.5).
Dashed lines: (0.96, 0.01, 0.03), (0.90, 0.01, 0.09), (0.75, 0.01, 0.24), (0.5, 0.01, 0.49). We
stress, that the data displayed by lines is also obtained from ’longhop’ simulations for
discrete temperatures with a step widths of ∆T = 2.
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We combine the types of sites with Tmax
i < T to the effective shallow sites and

assign to them the binding and hopping energies

EW1,eff = max
{i:Tmax

i <T}
EWi

Ea1,eff = max
{i:Tmax

i <T}
Eai

S1,eff =
∑

i:Tmax
i <T

Si

(10.16)

where S1,eff is the number of effectively shallow sites. The same protocol is
applied to the group of site types forming the effectively deep sites, where the
rate equations have the structure

0 = f(Si −Ni) +
( ∑
j 6=i:Tmax

j <T

AjNj

)
(Si − 2Ni). (10.17)

The corresponding energies are found by replacing the maxima with minimas:

EW2,eff = min
{i:Tmax

i >T}
EWi

Ea2,eff = min
{i:Tmax

i >T}
Eai

S2,eff =
∑

i:Tmax
i >T

Si = S − S1,eff

(10.18)

The average numbers of particles on the effective site types are then given by

N1,eff =
( ∑
i:Tmax

i <T

Si

)Ni∗
Si∗

N2,eff =
∑

i:Tmax
i >T

Ni

= (f +A1,effN1,eff)
∑

i:Tmax
i >T

Si
Vi + 2A1,effN1,eff

(10.19)

where i∗ = max
{i:Tmax

i <T}
i.

These equations can be evaluated using the approximation Vi/ai � (S −
Si)/S < 1 for all types of sites and Vi ≈ f for the site types forming the effectively
deep site type. We then arrive at the simple expressions

N1,eff =
fS

a1,eff

(
S

S2,eff
− 1

)
N2,eff =

S

1 + 2(S/S2,eff − 1)

(10.20)

for the number of particles on the effectively shallow and deep sites and can
compute the efficiency of the system

η =
2

S/(S − S2,eff + 1)
, (10.21)

if in the effective system the condition for plateau formation Teq > Tmax
2,eff is

satisfied. Otherwise, if Teq < Tmax
2,eff , we have to revert to the original expression

of the efficiency and calculate η = 2A1,effN1,effN2,eff/(fS).
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10.3 Limits of validity

All results derived in this chapter are based on rate equations. Transferring
them to real, spatially extended systems requires some caution as experienced
in chapter 9. At least for temperatures Tmax

1 < T < Tmax
2 (< Tmax

n ) with n > 2
the situation is simple. Since the absolute values of binding energies of the
strong-binding sites do not matter, as particles cannot diffuse or desorb from
them due to the low temperature, the combining of deep sites to the peak next
to the actual temperature is straightforward and justified.

For the case of comprising different binding energies on which particles are
mobile at the given system temperature T , the situation is not that clear. The
larger the difference T − Tmax

i (> 0), the quicker and easier particles desorb
from these sites and the funneling mechanism to deep sites becomes less and
less effective. Intuitively it is not clear, why combining sites providing mobility
should work as well as combining sites trapping particles. Considering the situa-
tion Tmax

1 < Tmax
2 < T (< Tmax

n ) with sufficiently well-separated homogeneous
systems peaks at Tmax

1 and Tmax
2 , we find the random walk length `rw on the

different types of sites

`rw =

√
ai
Wi

= exp

(
EWi

− Eai
2T

)
= exp

(
const.

2T

)
(10.22)

to be independent of the disorder as discussed before (cf. section 9.1) and to
decrease exponentially with growing temperature. To solve the problem on the
rate equation level, we assumed above that Vi/ai = (Wi+f)/ai � (S−Si)/S < 1
for all sites on which particles are mobile. For the random walk length on these
sites this means

`rw � 1. (10.23)

For the typical binding and hopping energies discussed here (EWi−Eai = 147K),
the temperature can reach quite high values (≈ 70 K) before the random walk
length drops below unity.1 Hence, in the realm of physisorption, and for a
sufficiently large number of deep sites, a particle on a shallow site always has a
good chance to reach a deep site before desorption — in the well-mixed case or
with ’longhop’ dynamics. For surfaces with particular arrangements of binding
sites, the validity of the rate equation solution will break down much earlier, as
seen in the case of the binary distribution for the cluster distribution (figure 9.3).

Throughout the whole chapter, we implicitly assumed the sufficient sepa-
ration of the binding energies. To quantify this vague formulation, we recall
some findings of the binary system. The intermediate temperature regime of the
binary system with the trapping mechanism dominating the surface’s efficiency
only exists, if the corresponding homogeneous peaks are separated well enough
to exhibit an efficiency gap. The necessary amount of separation can be roughly
estimated by demanding Tmax

1 < T low
2 . Then the plateau formula is valid for

surface temperatures Tmax
1 < T < T low

2 . For binding energies that lie closer
together, the efficiency has to be estimated using the full formula (9.14). Convey-
ing these thoughts to the discrete distributions with n types of binding energies,
we get a simple yet meaningful efficiency prediction for surface temperatures in
regions Tmax

i < T < T low
i+1. We will revert to this discussion in section 11.7 when

1Tmax = 70K would correspond to a binding energy of EW ≈ 3250K, which already belongs
to the regime of chemisorption sites, as mentioned in section 9.3.



10.4 Summary 79

discussing this mapping together with an alternative one that will be derived in
the next chapter in the context of continuous binding energy distributions.

10.4 Summary

Based on the findings of chapter 9 we were able to treat general discrete binding
energy distributions based on the rate equations approach. The central finding
of this chapter is the fact that even numerous different binding energies can be
comprised into only two different types — effectively shallow and deep sites.
The assignment of the original types of sites to the effective types ’shallow’ and
’deep’ is temperature-dependent, and requires a sufficiently large gap between
the binding energies, namely Tmax

i < T < T low
i+1. The energy assignment can be

made quantitative by determining and grouping the types of sites with Tmax
i < T

and Tmax
i > T and associate with them the largest and smallest binding and

hopping energy present in their group, respectively. The numbers of sites of
the effective types are determined by adding up all sites of either group. Then
the results for the binary system derived in chapter 9 can be applied to the
effective system. In the temperature regions around the efficiency windows of
the corresponding homogeneous systems, more precisely for T low

i < T < Tmax
i ,

the systems behavior is dominated by the behavior of the homogeneous system
rather than the disorder.

The mapping is valid as long as even the particles on ’very shallow’ sites
have a chance of reaching a deep site within one step, which is expressed by
demanding `rw ≥ 1.

For the ternary binding energy distribution, the rate equations were solved
explicitly (section 10.1.1) and the results were confirmed by KMC simulations
(section 10.1.2). In the KMC simulations we compared the efficiency as function
of the temperature for the full ternary system and for the effective binary system
corresponding to the temperature regime considered.

In the next chapter we will develop a mapping from continuous binding
energy distributions to effective binary systems independent of the rate equations
approach. In section 11.7, we will also apply this new mapping to the discrete
distributions discussed here and verify, that both mappings predict the same
efficiency for a given temperature within the realms of validity. Due to its
simplicity, however, we expect the above presented rate equations based mapping
to serve as a straightforward method to compare and fit the model to experiments.
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Chapter 11

Continuous distributions of
binding energies

So far, we discussed discrete distributions of binding energies. Nonetheless,
also continuous distributions are of theoretical and applied interest [83, 63]. In
this chapter we analyze the properties of systems with binding energies drawn
from several kinds of continuous distributions that we believe to be relevant
for applications and reveal the underlying mechanism of molecule formation on
this type of surfaces. It turns out that such a kind of surface acts equal to an
appropriately chosen binary one and thus we are able to define a mapping from
the continuous to an effective binary system, thereby reproducing the efficiency
as well as the coverage of the original system. We point out, that the mapping
neither involves data obtained from simulations, nor does it depend on a special
approach to the system (like the mapping based on rate equations in the last
chapter 10). Instead we use KMC simulations again, to verify our analytical
results.

11.1 The effective binary system

Encouraged by the possibility to map discrete binding energy distributions to
effective binary systems, the central idea of our mapping for continuous binding

s

EWs

EWs
− Eas

= δE = const.

〈EW 〉

Figure 11.1: Cut through binding energy landscape with energies drawn from some
continuous distribution with finite and known mean 〈EW 〉 and variance, as introduced
in figure 8.2. Still detailed balance is included into the system by keeping EWs − Eas

constant for all sites s.
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Figure 11.2: Basic idea of the mapping to the effective binary model.

energy distributions ρ(EW ) is again that an energy landscape drawn from a
continuous distribution of binding energies can be condensed to only two types of
sites: The effectively “shallow” sites, which have low binding energy, and which
provide particles with easy mobility and funnel them, namely into the effectively
“deep” sites, which have high binding energy and which provide sufficient coverage.
If this partition into shallow and deep sites is performed at the proper energy
Ecut, and if the binding energies of the two effective types of sites are chosen
appropriately, the original detailed binding energy of each individual site in a
realization of the continuous case is irrelevant. Shallow sites in the effective
model will reflect the overall mobility of particles on sites with energies smaller
than Ecut. Deep sites in the effective model will capture the overall ability to
bind particles strong enough to provide coverage on sites with energies larger
than Ecut. Since both diffusion and desorption are thermally activated processes,
it is obvious already at this stage that the threshold Ecut must increase with
temperature.

Figure 11.2 depicts this central idea, the notation and further details will be
described in the next section. Note that we always consider the effective binary
system to be well-mixed—it is essential that deep sites are as easily accessible
as possible from the shallow sites. This also ensures that the system is well
described by rate equations, which we will also employ below. Moreover, we
will focus on the case that there are still a reasonable number of both types of
sites, or equivalently, that the continuous distribution is still sampled well on
both sides of the threshold energy Ecut. The issue of rare events and sample-to-
sample fluctuations will be returned to in 11.6. In the relevant case that these
fluctuations are sufficiently small, our mapping is equivalent to a mapping from
the entire continuous distribution of binding energies to a binary one. Unless
specified otherwise, we will always refer to the latter mapping in the remainder.
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11.2 Confirmation of mapping assumptions by
simulations

The idea presented above has to be tested before we progress. To this end, we
first introduce some additional notation and define the relevant quantities. We
use subscripts ω for a realization of binding energies and s for a single site. Then
Eω,s is the binding energy of site s in realization ω (in this subsection, we will
omit the subscript W for brevity). Further, rω,s denotes the steady-state (or
time-averaged) fraction of all reaction events in realization ω that takes place
on site s; we call rω,s ∈ [0, 1] the reactivity. We denote by uω,s the steady-state
fraction of (physical) time that site s in realization ω is occupied; uω,s ∈ [0, 1] is
called the occupancy.

We are interested in the relation between the binding energy of a certain site
and its reactivity. On that account, we transform from the spatial distribution
of reaction events to the distribution with respect to the local energy,

rω(E) =
∑
s

rω,sδ(E − Eω,s). (11.1)

Obtained from a limited number of sites, rω(E) is obviously only a collection of
S sample values from an imagined smoothed function. Gathering information
from a set {ω} of realizations, we additionally have to weight this distribution for
each single realization ω according to the efficiency ηω of the latter, effectively
accounting for the number of reaction events during a certain period of time:
A site with given energy might be responsible for a much larger fraction in
one realization simply because in distant parts of the surface the particular
energy landscape results in fewer events. In this case the overall efficiency of this
particular realization will be diminished, and rescaling by the efficiency removes
this unwanted distortion. The result (which we still call “reactivity”) reads

r{ω}(E) =

∑
ω rω(E) · ηω∑

ω ηω
, (11.2)

including proper normalization

∑
E

r{ω}(E) =

∑
ω ηω

∑
s rω,s

∑
E δ(E − Eω,s)∑

ω ηω
=

∑
ω ηω (

∑
s rω,s)∑

ω ηω
= 1.

(11.3)
The slightly clumsy notation is an artifact of the finite number of samples. In
the limit considering the statistical ensemble of all possible realizations, the E
sum becomes an integral, and functions of E become smooth.

For the occupancy of sites of a certain energy, we transform analogously to
the above. Comprising several realizations does not need any weighting here,
since the definition of the occupancy uω,s of a site does not relate to the total
coverage in the realization. Normalization, however, implies we factor out the
total number of particles in all realizations. Noting that the time-averaged total
coverage in realization ω reads Nω =

∑
s uω,s, we have

u{ω}(E) =

∑
ω uω(E)∑
ω Nω

, (11.4)
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again called “occupancy”. Then

∑
E

u{ω}(E) =

∑
ω

∑
s uω,s

∑
E δ(E − Eω,s)∑

ω Nω
=

∑
ω (
∑
s uω,s)∑

ω Nω
= 1. (11.5)

Figure 11.3 shows the occupancy and the reactivity as functions of the
binding energy, comprised from KMC simulations for 10 realizations. We have
chosen the paradigmatic example of the normal distribution here, with a relative
width of σ̃ = 30%, and for several temperatures. The unprocessed functions
u{ω}(E) and r{ω}(E) are not shown, as they exhibit strong fluctuations (we
return to this issue in section 11.6). Instead, we present better approximations
of the smooth ensemble averages, which we denote by u(E) and r(E). These
approximations are obtained by a sliding average, in which the function’s value
at each sample energy E is replaced by the average of all points within a certain
energy neighborhood. This is preferable to an average over a fixed number of
neighboring points, since samples are not equally spaced on the energy scale. In
our plots we use an energy interval of 4% of the total range of energies sampled.
The original distribution of binding energies is drawn as a thin line for orientation.
In order that the plots can be easily compared, we have rescaled this distribution
to have a maximum value of unity. Likewise, we have rescaled u(E) and r(E)
by a constant factor such that u(E) attends a maximal value of unity as well.

Whenever sample-to-sample fluctuations become small, both occupancy and
reactivity very clearly distinguish two types of sites according to their energy,
with a fairly steep “step” between them. For lower energies there is little to no
activity, and we identify these sites as effectively shallow. The sites with higher
energies, however, provide nearly all the coverage and reaction events, and are
effectively deep. Moreover on both sides of this border, the precise energy of the
individual sites does no longer play any role.

The threshold energy Ecut separating both types of sites moves to higher
energies as the temperature increases, as expected. For very high temperatures,
only very few sites from the distribution tail still contribute coverage and
reactions. On the other hand, we checked that the cut is largely independent
of the shape and width of the distribution. Again, this is compatible with our
earlier thoughts and will be substantiated in the next subsection. Figure 11.4
gives one example for the exponential and the uniform distribution, respectively,
qualitatively similar to the results for the normal distribution. For the exponential
distribution, high-energy tails decay more slowly than for the normal one, leading
to a picture for T = 30 K which resembles those for lower temperatures in the
normal-distribution case (with deep sites still over a large range of energies). The
plot for the uniform distribution at T = 10 K hardly shows fluctuations in the
(smoothed) occupancy and reactivity, compared with the normal distribution.
This is due to the fact that there are no high-energy tails, so that energies are
roughly equally (and “densely”) spaced up to their maximum, and hence few
outliers do not affect the smoothed plot at all.

Lastly, we find the agreement between the graphs for occupancy and reactivity
remarkable in all instances. This shows that exactly the highly-occupied sites
are those on which reactions take place, just as in the genuinely binary model.
Together we thus have numerical proof of the arguments we have presented in
section 11.1.
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Figure 11.3: (Rescaled) occupancy u(EW ) (blue, dashed) and reactivity r(EW ) (red)
versus binding energy EW of the sites, for the normal distribution of relative width
σ̃ = 30% and at temperatures T = 10, 15, . . . , 25 K (top to bottom). The rescaled
PDF (thin cyan line) is shown for reference. The vertical green lines mark two specific
choices for Ecut to be defined in 11.3.
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Figure 11.4: As in figure 11.3, u(EW ) (blue, dashed) and r(EW ) (red), for an exponential
distribution with σ̃ = 30% at T = 30 K (left), and for a uniform distribution with
σ̃ = 40% at T = 10 K (right). Rescaled PDF’s (thin cyan line) shown for reference.

11.3 Heuristic derivation of the mapping

In principle, there are many strategies to find a mapping from the continuous to
a binary model that reproduces the efficiency and coverage. It is even possible
to find a mapping from the continuous to an effective homogeneous system, if
all parameters of the system can be chosen arbitrarily. But this is not the aim
of our work, since we are interested in understanding the underlying relevant
physics. In our approach, we try to retain as many features of the continuous-
distribution model as possible, altering only a minimal subset of parameters—
thereby minimizing the arbitrariness of the mapping.

From a physics point of view it stands to reason to restrict changes only to
the binding energy distribution itself. We will find a system, where only the
binding energy of the sites is changed. Concretely, this implies that we keep f ,
T , S and ν fixed.

Note that we speak of a mapping of the binding energies EW throughout, but
the hopping barriers Ea are of similar importance. In the continuous case they
are fixed by demanding constant δE = EW − Ea for all sites, which guarantees
detailed balance, and implies a constant ratio W/a. We stick to this choice
(particularly for the detailed-balance argument), using the same δE for the
binary distribution.

Consequently, there are three quantities left that define the mapping: the
discrete binding energies EW1 and EW2 of shallow and deep sites in the effective
model, respectively, and the number of both types of sites. The latter can
be conveniently parametrized by a cutting energy Ecut at which we split the
continuous distribution of binding energies.

The discrete binary distribution has to capture the essential features of the
original continuous one. The two most obvious properties of a distribution are
the mean binding energy 〈EW 〉 and the standard deviation σ. To keep the
arbitrariness as low as possible, we demand that the effective binary distribution
has the same mean and standard deviation. 1 Once given the number of shallow

1Other choices have been tested to set EW1
and EW2

once S1 and S2 are known. But
they all introduce additional arbitrariness without improving (but often detracting from) the
quality of the mapped model predictions.
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and deep sites, S1 and S2, the discrete binding energies are fixed and read

EW1
= 〈EW 〉 − σ

√
S2/S1, EW2

= 〈EW 〉+ σ
√
S1/S2. (11.6)

Recall our earlier assumption that both S1 and S2 are not too small, and in
particular that the binary model does not degenerate to a homogeneous model
in the regime of our interest.

It only remains to choose Ecut, which governs how many sites are regarded
as shallow and deep. As the simplest choice, we assume that this energy is
independent of the shape and parameters of the distribution.

To find the appropiate Ecut, we now first consider the limiting regime of
high temperature. There are many shallow and few deep sites, regardless of the
precise form of Ecut. The limiting factor for the efficiency is lack of coverage on
the deep sites, while mobility on shallow sites (to quickly funnel atoms to the
deep ones) is a given. Hence, we have to split the binding energy distribution at
an Ecut such that at this and at higher energies, sites are sufficiently occupied.
This energy is set by f = W |EW=Ecut

, such that without any reactions, we would
have half-filling on average. This means

Ecut = E<cut := T ln(ν/f) (high T ). (11.7)

Mobility on the shallow sites is then guaranteed by a|EW≤Ecut
≥ a|EW=Ecut

�
W |EW=Ecut

= f .
For low temperatures, the overall surface coverage is high and there are lots

of deep but only a few shallow sites. In this regime, the efficiency is limited
by a lack of mobility instead of a lack of coverage. Particles have to hop at
least as frequently as new ones arrive, or else LH rejection will curtail the
efficiency. Therefore, the maximal energy of “working” shallow sites is set by
f = a|EW=Ecut

, and sites at lower energies have a > f . Re-writing the condition
using Ea = EW − δE we obtain

Ecut = E>cut := T ln(ν/f) + δE (low T ). (11.8)

On the deep sites, we then have f ≥ a|EW≥Ecut
�W , so high coverage there is

guaranteed.
In the figures 11.3 and 11.4 for the energy-resolved occupancy and reactivity,

the two choices for Ecut are shown as vertical lines. Also the figures themselves
suggest a reasonable choice for Ecut, at e.g. the energy at which the occupancy
or reactivity reach half of their maximal value. Comparing this choice with E<cut

and E>cut, we find Ecut to always between the former two. And indeed we find
in the simulations our heuristic derivations confirmed: the suggested cutting
energy moves closer to the upper energy E>cut for low temperatures, whereas it
comes closer to the lower energy E<cut for higher temperatures.

The shift of δE between the two choices reflects the fact that in the above
arguments, for high temperatures the distribution of binding energies is cut in
two, while at low temperatures the distribution of diffusion barriers is cut. These
results are indeed independent of the shape, mean, and width of the distribution,
as suggested above.

The limiting temperature regimes correspond to finite temperatures (not
to T → 0 and T → ∞, that is), hence the transition between them involves
additional temperature scales (describing location and width). These quantities
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evidently have to depend on the shape and width of the distribution, which
we will confirm by simulation results (see below). We have not found a con-
vincing theoretical argument to determine these scales. In practice, it is still
straightforward to determine the appropriate choice for Ecut. Sites with energies
in the range [E<cut, E

>
cut] provide coverage and mobility, and could be labeled

either deep or shallow, depending on this choice. The proper choice of Ecut

in the limits of low and high temperature regards these sites to provide the
scarce property which limits the efficiency, respectively. The “opposite” choice
misinterprets their role and leads to substantially lower efficiency.2 Summing
up, in both limits, one chooses Ecut such that it leads to the highest possible
efficiency in the effective model. It is then plausible to stick with this prescription
for intermediate temperatures as well.

In principle, cutting the distribution at Ecut provides real values for the
numbers Si of sites of a given type. To stay true to the idea that we replace the
whole energy landscape by an effective one, we round to the nearest integer values
for Si, when the effective system has physically sensible parameters throughout.
In the case where the system is sufficiently large and still has a substantial
number of both shallow as well as deep sites, the difference to the nearest integer
values is negligible anyway.

11.4 Comparison to KMC simulations

We have introduced the mapping to an effective binary model, and we have
reviewed earlier (cf. chapter 9) how this model is described and solved using
rate equations. We will now compare its predictions with the outcome of
KMC simulations. For each temperature and distribution shape and width, we
simulated 10 realizations as described in section 9.3. Figure 11.5 shows that
overall, agreement between the KMC results and the prediction of the effective
model is very good, for both the coverage and the efficiency. Most importantly,
the temperature range of efficient reaction is reproduced with very good accuracy
in most circumstances—this is the truly valuable information, compared with
minor deviations in the efficiency itself. There is some discrepancy between
KMC and effective model results in the high-temperature tail for the normal and
the exponential distribution. The rate equation solution of the effective model
describes hops between any two sites of the lattice, such that spatial correlations
are switched off entirely. If we include such “long hops” in the KMC simulations,
the efficiency also increases (as checked in several test runs, and as previously
found and explained for the binary system [89]), and it then agrees even better
with the effective model results.

The system now shows a broad temperature window of high efficiency, different
from the homogeneous system, but also from the binary case, as far as the slow
decay to higher temperatures is concerned (cf. figures 9.2 and 9.7). Likewise, we
observe a smooth monotonic transition from full coverage to an empty system,
in stark contrast to the binary case—this illustrates once more that the effective

2For narrow exponential and uniform distributions (σ̃ = 10%), this statement is not strictly
true: There is a very small range of low temperatures at which the “high-T” model has
marginally higher efficiency, starting where it is still degenerate (no shallow sites) and ending
just after it features both effectively shallow and deep sites. This is an artifact of the simple
mapping prescription, and in any case, such narrow distributions are not the focus of this
work.
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binary model we map to changes its structure with temperature. It is also
evident that sample-to-sample fluctuations are a subordinate effect throughout,
even on the critical flanks of the efficiency and for the long-tailed exponential
distribution. We will return to this issue in section 11.6.

Of special interest is the range of validity of the mapping idea. As emphasized
before, it relies on the presence of both types of sites, shallow and deep, in the
effective model. This is no longer satisfied at very low temperatures, when
all sites are effectively deep (S1 = 0), and at very high temperatures, when
all sites are effectively shallow (S2 = 0). Obviously, these limits are reached
at less extreme temperatures for narrower distributions (upper rows), and in
the absence of distribution tails, as exemplified by the uniform and (to lower
energies) the exponential distribution. The effective model degenerates to a
homogeneous system then, with the binding energy given by the mean of the
distribution. For the figure, we correspondingly replaced the numerical solution
of the effective binary model by the analytical results for the homogeneous case.

For very low temperatures, the examples studied here show essentially full
coverage and zero efficiency, which is trivially reproduced by the homogeneous
rate equation results. The support of the exponential and the uniform distribution
is bounded to low energies. Therefore, the transition to the S1 = 0 regime is
not smooth, which manifests itself in the discontinuous derivative of coverage
and efficiency. For high temperatures, the situation is more subtle. The normal
and the exponential distribution, which both have tails to high energies, are
still accurately described at very high temperatures: For most of the panels
shown, S2 = 0 is reached eventually, but only after the KMC efficiency has
vanished completely. Up to this temperature, there are still some deep sites in
the effective model owed to the distribution tail (not visible in the plots due to
limited resolution), and they are sufficient to reproduce KMC results. At still
higher temperatures, the effective homogeneous system trivially reproduces zero
coverage and efficiency. For the uniform distribution, however, KMC results
show a fast (but by no means abrupt) decay of the efficiency with increasing
temperature. Due to the lack of high-energy tails (which could still provide a
few deep sites), the effective model now degenerates (S2 = 0) at a temperature
low enough that KMC results still exhibit some efficiency. For a very narrow
distribution (σ̃ = 10%) this happens so early (T ≈ 18 K) that the resulting
effective model (homogeneous with binding energy 〈EW 〉) still shows the high-
temperature flank seen in figure 8.3. For all wider distributions the switch to
the degenerate effective model occurs at temperatures where the homogeneous
system has no efficiency left, while the KMC results still have residual efficiency,
most likely due to the mere fact that there is a distribution of different binding
energies (in part exceeding 〈EW 〉) and possibly some spatial correlations.

11.5 Tail shape and analytical expressions

For a homogeneous system, the tail shape of the efficiency η(T ) (fairly symmetric
to low and high temperatures) is well understood (cf. chapter 8.2): The efficiency
decays exponentially with the temperature in both cases, since all rates are
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Figure 11.5: Coverage θ (orange diamonds, blue lines) and efficiency η (green circles,
red lines) versus temperature T , of the continuous-distribution system from KMC
simulations (marks, one per realization), and as obtained for the effective binary model
via rate equations (lines). Also shown is the fraction S1/S of shallow sites in the
effective model (thin cyan line). Columns (left to right) for normal, exponential, and
uniform distribution, rows for several relative widths σ̃ = σ/〈EW 〉 as indicated. The
spikes seen at an intermediate temperature, most notably for S1/S, are a result of the
switch of Ecut between E>

cut and E<
cut.
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thermally activated. From the rate equation efficiency (8.11) one finds

η ' 2
a

f
= 2

ν

f
e−Ea/T (low-T tail),

η ' 2
fa

W 2
= 2

f

ν
e(2EW−Ea)/T (high-T tail),

(11.9)

which mirrors the temperature bounds (8.12) and (8.13). The tail shapes for the
binary system are the same as for the homogeneous system, since for each tail
only reaction on one type of site is important.

For continuously distributed binding energies, however, the situation is
different. There are many similar binding energies acting almost but not exactly
the same (at a certain temperature). This is reflected by the slower decay of the
efficiency. We now use the mapping to the effective binary model to derive an
analytical expression for the (low-temperature) tail shape.

As alluded to in chapter 8.2, the binary system exhibits a plateau of the
efficiency η(T ) between the two peaks of the corresponding homogeneous systems
in certain conditions. More precisely, one needs enough deep binding sites—
depending on the temperature, flux and the difference in the binding energies of
the two types of sites. Following [89], we let T eq denote the temperature below
which the random walk length (on shallow sites), `rw =

√
a1/W1, exceeds the av-

erage hopping length before encountering a trap [66, 32], `trap '
√
S/(πS2) · lnS:

At lower temperatures, particles typically end in deep sites. If T eq > Tmax
2 we

find a plateau, with an efficiency of [89]

ηp ≈
2

1 + S/S1
. (11.10)

Now in the effective binary model, the energies and numbers of both types
of sites are functions of Ecut and thus depend on the temperature T . For
the low temperature tail of all shown distributions, we have sufficiently many
deep sites S2 in the effective model, such that the condition T eq > Tmax

2 is
satisfied—the effective model (for the given temperature) features a plateau.
One also finds that Tmax

1 < T < Tmax
2 , such that we evaluate the model on

this plateau, and the formula (11.10) applies. The fraction of shallow sites
S1/S in the effective model is given by the cumulative distribution function

Φ(Ecut) :=
∫ Ecut

−∞ ρ(EW ) dEW . Lastly, since we are in the low-temperature tail,

we have (cf. 11.3) Ecut = E>cut = T ln(ν/f) + δE, leading to

η ≈ 2

1 + Φ(T ln(ν/f) + ∆E)−1
(low T ). (11.11)

This expression shows a much weaker dependence on temperature compared
with the homogeneous and (genuinely) binary cases with their exponential
decay. It also explains that the broader tails of the efficiency do not necessarily
originate from tails of the underlying distribution ρ(EW ) (provided there still
are both deep and shallow sites). Rather, the decisive factor is that the mapping
introduces a T -dependent split into shallow and deep sites via the cutting energy
Ecut—without thermally activated rates playing any role. Moreover, this implies
a lower temperature bound of efficient reaction (where η = 1/2) given by

Φ(T low ln(ν/f) + δE) =
1

3
. (11.12)
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Figure 11.6: Efficiency η versus temperature T in the effective binary model, evaluated
using the numerical solution of rate equations (red, as in figure 11.5) and as given
by the analytical expression (11.11) (green, dashed), for a normal distribution with
σ̃ = 30% (left), and for an exponential distribution with σ̃ = 30% (right). For reference,
the fraction S1/S of shallow sites in the effective model is shown again (thin cyan line).

Figure 11.6 shows that indeed the low-temperature expression (11.11) is extremely
accurate up to intermediate temperatures around the efficiency peak temperature.
This corresponds to the fact that the plateau in the binary model breaks down
only at rather low fraction S2/S (depending on EW2

− EW1
). We have checked

that these statements hold true for all parameters used in figure 11.5.
For the high-temperature tail, the situation is more subtle. Here, the effective

binary model only has few deep sites, and they are far from the mean energy 〈EW 〉
(cf. equation (11.6)). Even a fixed such model has no efficiency plateau then,
but a T -dependent efficiency drop between the “homogeneous peaks” [89, Figure
5]. We do not have an illuminating analytical expression for this dependence,
wherefore the upper temperature bound T up remains inaccessible as well.

11.6 Realization dependence

We first comment on the effect of the quenched nature of disorder at the
microscopic level. In any particular realization of the system, sites with similar
binding energy may live in a very different local neighborhood. Therefore,
they can differ strongly in the occupancy u and the reactivity r. This is very
prominent in the raw simulation data, and the variability was intentionally
reduced in figures 11.3 and 11.4 by using a sliding average. The site-to-site
variability only vanishes in passing to the ensemble of all realizations (or infinite
system size S → ∞), whereas purely stochastic fluctuations decrease with
increasing simulation time. We have confirmed this distinction by comparison
with KMC simulations in which spatial correlations are suppressed (“long hops”
between all sites are included, cf. section 11.4). This indeed removes the major
part of the variability in occupancy and reactivity.

Interestingly, site-to-site variations are much more pronounced for the re-
activity than for the occupancy. The reason for this is as follows: Consider
the system dynamics over a certain period of time, and we are only concerned
with effectively deep sites, where essentially all coverage and reaction events
are concentrated. The number of such events on a given site is (to a good
approximation) Poisson-distributed, with a rate parameter depending on the
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local surroundings. Together with statistical fluctuations, this gives rise to the
variability seen in the reactivity r. For the occupancy u, individual occupation
times of a site are added up and compared with the total time passed. Since
only a reaction event empties the site (hopping and desorption from deep sites is
negligible), there are as many individual occupation times as there are reaction
events on this site. This strongly anticorrelates the number of such events with
the length of individual occupation times—if particles arrive more frequently,
single occupation times are shorter. Therefore the number of reaction events (and
hence, the reactivity) can strongly differ between two sites of similar energy, yet
the fraction of time they are occupied (the occupancy) will differ far less. Note
that the reduced variability in the occupancy versus the reactivity immediately
translates to that of the total coverage versus the efficiency between different
realizations.

We now turn to this dependence of global quantities on the realization. The
overall system size in this article is large enough not to expect a noticeable
dependence of the coverage and the efficiency on the realization. This is confirmed
in figure 11.5 for the lower-temperature regime of both the coverage and the
efficiency. For the high-temperature decay of the efficiency, however, such a
dependence is clearly seen in the vertical spread of symbols referring to different
realizations, both in the case of the normal and the exponential distribution.
Somewhat counterintuitively, the variability between realizations decreases with
increasing disorder strength (width of the distribution).

The mapping to an effective model explains if and why we see significant
sample-to-sample variations of the efficiency. As explained at the end of sec-
tion 11.5, for high temperatures the effective binary model has few deep sites,
far from the mean binding energy. We know (from both simulations and nu-
merical solutions of the rate equations), that in this regime the efficiency of the
binary system is very sensitive to the exact number of deep sites [89]. This is
perfectly intuitive, since there are so few of them, yet they are very important
for the reaction. Applying the mapping to different realizations of the finite
continuous-distribution system, the number of effectively deep sites also varies,
and because there are few in any case, the variations relatively matter a lot.
The sensitivity of the effective binary model to their number (at fixed T ) thus
explains the realization dependence of the KMC efficiency of the continuous
system (figure 11.5), and why it only shows on the high-temperature flank.
Moreover, it is more pronounced for narrower distributions of the binding energy,
since steeper flanks of the PDF lead to larger relative variations in the small
number of effectively deep sites. The coverage is already very small in this
regime, such that its realization dependence is not visible in figure 11.5.

It is an interesting feature that, though part of a nominally large system, the
smallness of one crucial component (the number of deep sites) is enough to imply
a strong realization dependence of a key quantity such as the efficiency. This
constitutes an effective small-system regime, in the sense that the realization
dependence will still vanish as usual upon increasing the total system size S. In
this context, the mapping to an effective model concisely explains that depending
on the temperature, we are in different regimes as to the effect of disorder. The
asymmetry between shallow and deep sites (i.e., why is there no strong sensitivity
when there are only few of the former?) is easily resolved. At temperatures so
low that there are very few effectively shallow sites only, S1/S � 1, application of
the plateau formula (11.10) (as justified in section 11.5) yields ηp ≈ 2S1/S � 1.
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Therefore, whatever sample-to-sample variability there is in the efficiency cannot
be seen in figure 11.5. On the other hand, the sensitivity of the coverage to the
realization is much weaker anyway, as shown above.

11.7 Connection to discrete-distribution mapping

During the analysis of disordered surfaces we derived two different mapping
to effective systems with binary disorder. In chapter 10, a general discrete
distribution with n types of binding energies was mapped onto an effective
system using rate equations. In this chapter here, we mapped continuous
distributions to effective binary ones using only the distribution and a well-
defined cutting energy. The mapping from the continuous distributions does not
explicitly depend on the continuous character of the distribution. Rather, we
implicitly showed that it is also applicable to discrete distributions by confirming
its validity by comparisons to KMC simulations (for finite system sizes). In
general on application to a discrete distribution, the mappings will result in
two effective binary systems with different sets of shallow and deep binding
energies. To assure that nevertheless both mappings result in the same efficiency
prediction when applied to a discrete distribution with n types, we now take a
detailed look at both mappings.

The essential feature of the binary system is the energy- and temperature-
independence of the efficiency for intermediate temperatures — if the system
possesses enough deep sites. The plateau efficiency is solely determined by the
relative amount of sites. Under the premise of sufficiently many deep sites in the
effective systems, we have to assure that — within the validity limits of both
mappings — the effective models provide the same number of shallow and deep
sites. We can perceive the premise on the number of deep sites as a constraint
on the system temperature T .

First we calculate the effective binary distribution for a discrete distribution
with n types of binding energies EWi

. The probability density for the discrete
distribution can be written as

P (E)dE =

n∑
i=1

SEWi
S

δE,EWi (11.13)

with the Kronecker-Delta δE,EWi . The number of shallow and deep sites for
given a temperature is determined by the integrals

S1 = S ·
∫ Ecut

−∞
P (E) dE =

∑
EWi<Ecut

SEWi

S2 = S ·
∫ ∞
Ecut

P (E) dE =
∑

EWi>Ecut

SEWi = S − S1.

(11.14)

And thus, S1 and S2 together with their assigned energies (11.6) are piecewise
constant, whenever EWi∗ < Ecut < EWi∗+1

, where i∗ and i∗ + 1 indicate the
next-lying energies to Ecut.

We remember that Ecut refers to a cutting energy of the binding energy
distribution for high temperatures and a cutting energy of the hopping energy
distribution for low temperatures. We showed in section 11.5 that, as long as
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the low temperature expression is adequate, the plateau formula is applicable to
the effective binary system.

As long as the different binding energies of the original discrete distribution
are well-separated such that EWi

< Eai+1
(or Tmax

i < T low
i+1 in the temperature

formulation), the shift in the cutting energy for low and high temperatures has
no effect on the number of effectively shallow and deep sites. Simultaneously, this
ordering in the characteristic temperatures of the corresponding homogenous sys-
tems (to the occurring energies in the discrete distribution) allows the utilization
of the plateau formula in the effective binary system, as discussed in section 10.3
in the context of the discrete-distribution mapping. Then the plateau formula
gives a correct efficiency prediction for all temperatures Tmax

i < T < T low
i+1

(assuming the effective system develops a plateau).
Concluding, we can say that both mappings result in the same efficiency

prediction (but from different effective binary systems), if the binding energies in
the original discrete distribution fulfill the condition EWi

< Eai+1
. Thereby we

always restrict to the case of a fulfilled plateau condition in the effective binary
systems. We illustrate the different mappings using the example of a ternary
system in figure 11.7.

If the ordering condition in the binding and hopping energies is locally not
fulfilled, the mappings can be applied nonetheless. Then we also have to take care
of the individual mapping properties. Consider the case of EWi > Eai+1 for some
binding energy of the discrete distribution with a system temperature so low
that for the continuous-distribution mapping the choice E>cut has to be employed.
Then the numbers of shallow and deep sites in both effective systems differ,
but the effective system of the continuous distribution still develops a plateau
and the plateau formula is applicable here, while for the effective system of the
discrete-distribution mapping this is not the case (as discussed in section 10.3).
For the two other cases, namely EWi > Eai+1 without plateau formation in
the effective system, and EWi

< Eai+1
without plateau formation, the relative

amounts of shallow and deep sites in the effective systems become the same
again, but the full efficiency expression (9.14) has to be evaluated.

11.8 Conclusions

We studied the effect of continuous binding energy distributions on the efficiency
of a disordered surface. The surface sites can play two roles in this scenario, as
verified in simulations: if the binding energy is low enough, sites provide mobility
of particles to traverse the surface. If their binding energy is strong enough, they
instead provide coverage by trapping particles for a long time. As a result, we
can map the continuous-distribution model to an effective binary model of these
shallow and deep sites, which is well understood and easily solved (cf. chapter 9).
The precise form of the mapping has been derived heuristically and does not
depend on any fitting parameters or approaches like the rate equations. As
shown in section 11.4, the model yields results for the coverage and the reaction
efficiency which are in good agreement with simulations. Compared with the case
of discrete distributions studied before, the model shows a markedly different
behavior, with the temperature range of efficient reaction broadened and the
tails decaying much slower. The mapping explains this slower decay for low
temperatures, as well as the sample-to-sample fluctuations found for the high-
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Figure 11.7: Illustration of the different mappings for a ternary system with 25% shallow
and intermediate sites and 50% deep sites with energies EW1 = 658K, EW3 = 1658K,
and EW3 = 2158K, respectively. Blue circles: Efficiency from KMC simulations for
each of the depicted binding energy distribution. The upper picture is showing the
original distribution, the effective binary system of the continuous-distribution mapping
is shown in the middle, and the low picture displays the results of discrete-distribution
mapping. The system temperature T , with Tmax

2 < T < Tmax
3 , is indicated by the

green vertical line. The theoretically predicted efficiency value of ηp = 2/3 is not
perfectly reached by the KMC simulations for nearest-neighbor hopping, as explained
in section 9.3, but all three systems show the same efficiency at the system temperature.
Moreover, in the whole temperature regime Tmax

2 < T < T low
3 , indicated by the light

green background color, the efficiency in the three systems is (approximately) the same.
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temperature decay of the reaction efficiency.
Additionally, we showed that the application of the continuous-distribution

mapping to a discrete distribution results in the same efficiency predictions as
the ones from the earlier derived rate equation based mapping (chapter 10). It
has become clear that the mechanism of sites either providing mobility or acting
as traps is the fundamental mechanism determining the behavior of all analyzed
systems with quenched disorder on the surface.

The particular model studied here is paradigmatic for applications in astro-
physics and in heterogeneous surface catalysis. Moreover, the existence of a
simple mapping from a highly complex to a simple effective model is of great
theoretical value.

Here we end our investigations on single-species reactions on surfaces with
rate disorder. We think this issue is adequately covered by the presented work.
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Chapter 12

Different particle species on
a surface

In this last chapter we present our modest efforts in understanding the interplay
between different (competing) reaction channels in multiple-species systems
systematically. When it comes to the more realistic situation of reactions
between several particle species, the systems to be analyzed become significantly
more complex. And starting a thorough analysis of multiple species reactions
would open up a completely new field. The so-far studied fundamental and
important single-species reactions give us the opportunity to understand the
influence of disorder on the reaction process. However, in the ISM also more
complex molecules are built (both in the gas phase and on the dust grain surfaces)
and understanding the formation of the latter is crucial — not least to have
a correct input for the complex chemical network models that try to emulate
(parts of) the whole chemistry of a molecular cloud.

The existence of several pathways for the formation of larger molecules makes
the situation even more complicated. Water (H2O), which is highly abundant
in the ISM, is a prominent example. It can be produced both in the gas phase
and on surfaces. Tielens and Hagen [82] first proposed the water formation
on dust grain surfaces and by now it is known, that even for this comparably
small molecule different pathways exist to form water on the surfaces [49, 23, 72]
and experimental evidence for water formation on surfaces under interstellar
conditions has been given [28]. At low temperatures, the water even stays on
the surfaces and forms an icy mantles that contain most of abundant water [18],
bringing us back to the surfaces with (quasi) quenched disorder. Some other
very important reaction networks worth studying are the formation of CO2, CH4

(methan), and CH4O (methanol). For all of them strong evidence exists, that a
considerable amount of molecules is produced on interstellar surfaces [36, 60].

In order to get a tractable description of systems with one particle species, the
introduction of detailed balance in the hopping rates on the surface, implemented
in our case by a constant value EW − Ea (for all sites), was a crucial ingredient
to get the correct equilibrium state for vanishing incoming particle flux. To
preserve such a condition also for more than one species, we can demand detailed
balance to hold for each of the species. But since each species has its own
individual desorption and hopping energies (for one surface material), we can in
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general not arrange for a global difference EWα
− Eaα = const. for all particle

types α. However, if constα = const. for all types α, then the corresponding
single-species systems’ efficiency peaks of all particle types are of same width. As
a treatment by kinetic Monte Carlo simulations would involve the development of
a completely new simulation code, in this chapter we make use of rate equations
only. Taking into account that for all former investigations simulations and rate
equations coincided very well, as long as the system size and the occupation
numbers are large enough, the missing simulations should be no drawback.

We start with the rate equation analysis of a generic two-species system
in section 12.1. In section 12.1.1 we discuss how efficiency can be defined for
arbitrary multiple- species systems. Afterwards, we present our analytical and
numerical findings in section 12.2, before ending this discussion by an outlook in
section 12.3.

12.1 Rate equations

Here, we concentrate on a generic system consisting of two particle species a and
b with binding energies EWa

< EWb
. We refer to them as ’weakly-bound’ and

’strongly-bound’ species, respectively. We assume that in the system three kinds
of dimers can be formed: a + a → a2, b + b → b2 and a + b → ab, all with a
probability depending only on the chance of the involved reactants to meet. Also,
the products of the reactions are assumed to leave the surface immediately, so we
do not account for second and higher order reaction of types like a2 + b→ a2b.

A real system showing these three kinds of reaction channels is the formation
of H2, HD, and D2 from atomic hydrogen and deuterium. Lipshtat et al. study
in [62] the formation of the three molecules on small grains with physisorption
sites using the master equation approach. They find a low formation rate of D2

and a decrease in the production of all three molecule types with decreasing grain
size. The emphasis of the work of Caseaux et al. [20] also lies on the grain size
dependence, but they study a model that includes physi- and chemisorbed sites
by means of rate equations. In their model they find an enhanced production
rate of HD and D2 because the H-atoms mainly populate the chemisorbed sites,
while the D-atoms mainly populate the physisorption sites. In our language
this corresponds to deuterium being the weakly-bound and hydrogen being the
strongly-bound species.

Sticking to the hitherto employed philosophy of improving the qualitative
understanding of elementary processes, we now analyze the rate equations
corresponding to the introduced generic system. They can be written down
straightforwardly

dNa
dt

= fa(S −Na −Nb)−WaNa −AaNaNb −AbNaNb − 2AaN
2
a ,

dNb
dt

= fb(S −Na −Nb)−WbNb −AbNaNb −AaNaNb − 2AbN
2
b ,

(12.1)

where fa, fb are the incoming particle fluxes, Aa, Ab denote the hopping rates
and Wa, Wb the desorption rates for each species, respectively. Again, we
include LH-rejection and assume the system to be large enough such that the
approximate description by rate equations as well as the approximation of the
sweeping rate Aα = aα/S is valid. The number of particles of each species can
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vary from 0 to S, the number of surface sites, and the meeting of two particles
on the same site by hopping leads to instantaneous dimer formation.

For simplicity, we assumed the probabilities for dimer formation not to depend
on the kind of dimer, but merely on the chance of meeting a particle of either type.
To keep it even more simple, we adopt the choice EWa−Eaa = EWb

−Eab = const.
For any realistic system, this strongly restricts the choice of particles. The rate
equations for steady state can — in principle — be solved analytically but
do in general not provide instructive solutions that improve the qualitative
understanding of the system. Therefore, we rather opt for solving the full rate
equations numerically and search for effective analytical expressions in certain
temperature or parameter regimes. Next, we discuss the analytical results we
found for this system. For not mentioned temperature regimes, we were not able
to find a simple but meaningful solution, yet.

We start by considering the case of low temperatures T � Tmax
a < Tmax

b ,
where Tmax

a , Tmax
b correspond to the temperatures of maximal efficiency in the

corresponding homogeneous systems. At low temperature Wb �Wa, Ab � Aa,
Wa � Aa and Wa, Aa � 1 hold, so we neglect all terms ∝Wb, Ab, and keep in
the solution of (12.1) only the flux terms and terms ∝ Aa,Wa. Then the only
positive and real solution we get from (12.1) is

Na = 0, Nb = S, (12.2)

which is not surprising at all. Since the particle number of each species can
vary from 0 to S and a-particles are more likely to leave the surface (either
via desorption or recombination) than b-particles, the sites will all eventually
become occupied by b-particles.

For very high temperatures, (T up
a <)T up

b < T , desorption dominates the
behavior of the particles, the surface is nearly empty Na ≈ Nb ≈ 0, and the
efficiency drops to zero, too. So we turn our attention to the intermediate
temperature regime Tmax

a < T < Tmax
b .

In the case of two species with well-separated homogenous system peaks and
equal incoming particle fluxes, we can find a simple solution for the temperature
regime T up

a < T < (<)T low
b . To be more specific in the case Wb � fb � 1,

Aa � Ab, Wa �Wb, and fa = fb ≡ f , the rate equations can be substantially
simplified. Since the temperature is high with respect to the weakly bound
species, the average number of type-a particles on the surface will be low and
we can neglect all terms ∝ N2

a . Additionally, the temperature is so low that the
strongly bound species does not move substantially, so we also neglect the terms
∝ Ab. With Wi + fi = Vi, we arrive at the following set of equations

0 =f(S −Nb)− VaNa −AaNaNb,
0 =f(S −Na)− VbNb −AaNaNb.

(12.3)

With the approximation Vb = Wb + f ≈ f , we again find

Na = 0, Nb = S. (12.4)

This trivial result reflects the fact, that as long as (the least) hopping for the
type-b particles is not activated, in the stationary state they cover the complete
surface and prevent the occurrence of any recombination event. Obviously, we
can extend these findings to the case fb > fa. If even more than half of the
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impinging particles are of the strongly-bound type, the stationary state has to
be a surface completely covered with type-b particles.

In contrast to the single-species systems with rate disorder, excluding LH-
rejection from the model, would change the result dramatically. Then, especially
in the whole temperature region T low

a < T < T low
b , a-particles could impinge on

sites occupied by a b-particle and take it away by forming a ab-dimer, leaving an
empty site on the surface that could be occupied by another impinging a-particle
and thus facilitating ab-dimer formation by two impinged particles.

Only when hopping of type-b particles is activated, the surface coverage by
the b-particles drops below unity and allows the impingement of a-particles,
which then leads to formation of ab- and b2-dimers. Unfortunately, we found
no meaningful analytical rate equation solutions in these temperature regimes.
Concluding we can say that for multiple-species models with fb ≥ fa, the
temperature window of efficient molecule production is determined by the energy
parameters of the strongly bound species, solely. It turns out, that the case
fa > fb is much more subtle to analyze and we have to invest further effort.

The only case, that can be solved in a closed form, is the degenerated case of
two species with exactly the same binding and hopping energies. Constraining
to the case of equal fluxes fa = fb ≡ f , we find the following highly symmetric
set of rate equations for the stationary state

0 = f(S −Na −Nb)−WNa −ANaNb −ANaNb − 2AN2
a ,

0 = f(S −Na −Nb)−WNb −ANaNb −ANaNb − 2AN2
b ,

(12.5)

where we abbreviated Aa = Ab = A and Wa = Wb = W . Since the fluxes,
hopping and desorption rates are equal for both species are equal, also the
solution has to reflect this symmetry and we can conclude Na = Nb ≡ N with

0 = fS − (W + 2f)N − 4AN2. (12.6)

This corresponds to a homogeneous system (see equation (8.8)) with particle
number Ñ = 2N , a desorption rate W̃ = W/2 and a hopping rate Ã = A/2 and
we can read of the solution

N = −W + 2f

8A
+
W + 2f

8A

√
1 +

16fa

(W + 2f)2
,

η =
2AN2

fS
=

1

2
− (W + 2f)2

16fa

(√
1 +

16fa

(W + 2f)2
− 1

)
,

(12.7)

where η is the efficiency of all three reactions of a2-, b2- and ab-formation. We
will see, that the here anticipated formula of η is in this special case independent
of the choice of the efficiency. The possible choices of η will be discussed in the
next section 12.1.1. The solution (12.7) is confirmed by numerical calculations
in section 12.2.

We can even go a step further and expand to the case fa 6= fb. The steady
state rate equations for this case read

0 = fa(S −Na −Nb)−WNa − 2ANaNb − 2AN2
a ,

0 = fb(S −Na −Nb)−WNb − 2ANaNb − 2AN2
b .

(12.8)
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As the activation energies of both species are the same, the amount of particles
of either species is determined by the incoming particle fluxes and their relation
dictates that of the particle numbers, such that Na/Nb = fa/fb. Inserting this
relation into (12.8) we find an effective homogeneous system for the particle
number Ñ = Na(fa + fb)/fa = Na +Nb,

0 = fa(S − Ñ)− W̃ Ñ − 2ÃÑ2, (12.9)

with desorption rate W̃ = Wfa/(fa + fb) and hopping rate Ã = Afa/(fa + fb).
Using the solution of the homogeneous system we find for the particle numbers
of the two species the following expression

Na =
fa

fa + fb
Ñ

=
fa

fa + fb

W + fa + fb
8A

(
−1 +

√
1 +

fa + fb
fa

8faa

(W + fa + fb)2

)
,

Nb =
fb

fa + fb
Ñ

=
fb

fa + fb

W + fa + fb
8A

(
−1 +

√
1 +

fa + fb
fa

8faa

(W + fa + fb)2

)
.

(12.10)

The efficiency of the effective homogeneous system, given by ηe.h.s. = 2ÃÑ/(faS),
yields in terms of W and a = AS

ηe.h.s. = 1− fa
fa + fb

(W + fa + fb)
2

4faa
·

·
(
−1 +

√
1 +

fa + fb
fa

8faa

(W + fa + fb)2

) (12.11)

We will discuss the efficiency values (and their relation) of the three possible
reactions in section 12.2 after the discussion on possible definitions, which we
will turn to now.

12.1.1 Efficiency definitions

While for the single-species systems, the definition of the efficiency was straight-
forward, the situation is more involved for multiple-species systems. In the
single-species case, the efficiency is obtained by relating the particle number
leaving the surface as part of a molecule to the total incoming particle flux.
For multiple reactions, we can choose to define an efficiency for each process
separately or for the whole surface. Both definitions are meaningful and which
one to choose depends on the imposed questions.

It is possible to define the total efficiency of the whole surface by relating
the sum over all reaction rates to the sum over all incoming fluxes,

ηtot =
2
∑
iRi

S
∑
j fj

=
∑
i

2Ri
S
∑
j fj

, (12.12)

where
∑
iRi sums over all possible reaction rates of the system and

∑
j fj is

the total incoming particle flux. Then we get a quantity with values between
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Figure 12.1: Temperature-dependence of the efficiency for different particle fluxes:
homogeneous reactions between particles of type a: a + a → a2 (orange, squares),
homogeneous reactions between particles of type b: b+ b→ b2 (darkgreen, diamonds),
and heterogeneous reactions a+b→ ab (red, circles), for changing values of EWb−EWa =
(0K, 50K, 100K, 250K, 350K) from top to bottom. For species a, the standard
parameters for hydrogen on amorphous carbon are adopted. For species b, only
binding and hopping energies are changed, all other parameters are identical to species
a, so especially EWα − Eaα = const. here. The columns refer to fa = fb = f ≡
7.3 × 10−9/s (left column) and fa = fb/2 = f (right column). We used the relative
efficiency assignment throughout (see section 12.1.1). In the graphic for the energetically
degenerated systems (upper left and upper right) also the analytical solution is plotted
(blue line), which coincides perfectly with the numerical results.
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zero and unity, indicating what fraction of the incoming particles react on the
surface regardless of their type and the reactions. The individual summands of
this definition can be interpreted as the relative frequency with which molecules
of a specific type are produced on the surface.

The alternative approach is to assign a relative efficiency, that is an efficiency
for each of the reactions, separately. It gives information about how efficient
a single reaction is, compared to the individual maximal amount of molecules
that can be produced under the given flux constraints. For each reaction this
efficiency is defined as the reaction rate divided by product of the minimal
individual flux of the involved species, the number of species, and the number of
surface sites.

ηrel,αβ =
2Rαβ

Shmini∈{α,β} fi
, (12.13)

where h is the number of species involved in the reaction (so h = 1 for single-
species reactions and h = 2 for reactions involving two species). The fact that
several reactions may compete for one particle species is reflected in the efficiency
values of this definition. But the definition does not reflect the possibility that
not all impinging particles can participate in the reaction due to a difference
in the particle flux relations and the stoichiometric particle relations of the
product(s).

The two efficiency choices coincide if all incoming particle fluxes are equal.

12.2 Numerical results

To solve the full rate equation system (12.1), we opted for a direct numerical solver
using python and mathematica. In principle, the system can straightforwardly
be extended to any number and kind of different reactions among the species.
The results are displayed in figure 12.1 for the standard parameters of hydrogen
atoms on amorphous carbon and another generic species with a different binding
(and hopping) energy but same parameters else.

For ∆E = EWb
− EWa

≥ 250K we see that no dimers of type a2 are formed
on the surface, whereas for smaller binding energy differences at least a small
amount is produced. This is due to the fact that for the very small binding
energy differences, hopping of type-b particles is activated before Tmax

a is reached,
so there is a temperature regime, where both species are mobile and a sufficient
quantity of both is present on the surface because the coverage of the strongly
bound species drops significantly below unity. The formation of b2-molecules
is suppressed (compared to the formation ab-dimers) because at temperatures
where the b-particles are mobile, the a-particles impinging on the empty lattice
sites react with the b-particles due to their very high mobility. The more mobile
the b-particles become, the more b2-molecules can form before the b-particles are
taken away by the type-a particles. This dynamic is only limited by the growing
desorption rate of the b-particles, reflected by the alignment of the green (b2-
dimers) to the red (ab-dimers) curve for high temperatures. The numerical results
for the completely degenerated system coincide with the analytical calculations
from equation (12.7).

In the plots we used the relative efficiency definition. So, an efficiency value
of unity indicates that all particles from the species with the lowest incoming flux
are consumed in the reaction. A diminished maximal efficiency value indicates
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that different reactions compete for one of the species such that not all available
particles of that species are channeled to the considered reaction.

We can estimate the critical binding energy difference at which no more
a2-dimers are produced. Considering the characteristic temperatures of the
corresponding homogeneous systems, the ∆E where the efficiency of the strongly
bound species reaches zero for low temperatures ηb2 ≈ 0 (which is for the
parameters employed here roughly at Tηb=0 = T low

b − 1K) determines this
threshold. Namely, when Tηb2=0 = Tmax

a no more dimers of type a2 are produced
because the b-particles occupy the whole surface at temperatures where the a-
particles would be mobile and their single-species coverage would be sufficiently
high. For the here employed energy values of amorphous carbon, this corresponds
to ∆E ≈ 250 K. We can confirm the rate equation results (12.4) stating that
with growing ∆E, the whole efficiency window of molecule production (no matter
what type) is shifted to higher temperatures and is determined by the binding
and hopping energies of the strongly bound species alone. In particular, the
width of the efficiency window is determined by EWb

− Eab . For fa ≤ fb, the
relative amounts of molecules produced (of either type) depend on the ratio of
the incoming particle fluxes.

For the energetically degenerated case the relation between the efficiency
values of the three reactions can be estimated by a simple argument. As the energy
parameters of both species are identical, we argued in section 12.1 that the relation
of the particles numbers of the species is (for activated hopping!) determined by
the relation of their fluxes, Na/Nb = fa/fb, only. Inserting this into the (relative)
efficiency definitions yields ηrel,a2 = 2AN2

a/(faS), ηrel,b2 = ηrel,a2 · fa/fb, and
ηrel,ab = ηrel,a2 · fa/fb = ηrel,b2 . To determine the efficiency ηrel,a2 , we remember,
that the particle numbers Na and Nb were computed using the solution of a
homogeneous surface with Ñ = Na(fa + fb)/fa particles, flux fa, hopping rate
Ã = A/2 and desorption rate W̃ = W/2. We already calculated the efficiency
ηe.h.s. of this effective homogeneous system in equation (12.11). Combining all
the relations this yields for the efficiencies of a2-, b2-, and ab-dimer production

ηrel,a2 =
fa

fa + fb
ηe.h.s.,

ηrel,b2 =
fb

fa + fb
ηe.h.s.,

ηrel,ab =
fb

fa + fb
ηe.h.s..

(12.14)

Evaluating these expressions for the parameters employed in the left and right
upper plots of figure 12.1 we gain for the efficiencies at the single-species system’s
maximum temperature Tmax in the case fa = fb = f

ηmax
rel,a2 = ηmax

rel,b2 = ηmax
rel,ab =

1

2
, (12.15)

and for 2fa = fb = 2f the efficiencies yield

ηmax
rel,a2 =

1

3
, ηmax

rel,b2 =
2

3
, ηmax

rel,ab =
2

3
. (12.16)

These results are fully confirmed by the numerical solutions.
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12.3 Conclusions and outlook

The short analysis of a generic multiple-species scenario reveals a highly complex
system, that can in principle be solved analytically on the level of rate equations.
In contrast to the single-species systems with quenched disorder in the rates, here
no general temperature regimes with a meaningful simple analytical solution can
be identified in the case fa ≤ fb. Only two special cases are amenable to simple
argumentations: the (trivial) regime of low temperatures where none or only
one of the species is mobile and in the stationary state the surface is covered
completely by the strongly-bound species, and the energetically degenerated
system, where both species possess the same activation energies. For this
latter case, we gave a closed solution by using the analogy to a single-species
homogeneous system.

As we have seen, the relative amounts of molecules produced strongly depend
on the system parameters. Thus it seems reasonable to concentrate first on
important realistic system like the production of H2O, CO2, CH4 or CH4O .
For all four molecules evidence exists, that a considerable amount of them is
produced on interstellar surfaces [36, 60].

Concerning the methods, rate equations can in principle be used to find
reaction efficiencies. As illustrated, the number of equations needed to describe
such systems grows with the number of reactants. Garrod et. al. [36] use
modified rate equations to compute the formation of methanol. Cuppen et. al.
[24] use Monte Carlo simulations for a specific multiple-species system including
layering effects on the surface. Also a master equation approach on a moderately
complex level has been employed to solve a small reaction network based on
H, D, O and CO [78, 77].

For large reaction networks with a lot of reactants, the moment equations
method is well-suited and has already been used to investigate on the methanol
network [5]. In the moment equations approach only 2n equations have to
be solved for n reactant species in the system. For small networks also the
multiplane method can be used [61], which disassembles the whole network into
smaller non-connected subnetworks.

To find an analytic description for application-relevant, non-generic reactions,
it will be necessary to include also higher order reactions into the rate equations,
where the product of one reaction is an educt of another reaction.

Additionally it will be interesting to see the system’s behavior in a non-
stationary state, when at low temperatures the system is not completely covered
with the species bound most strongly. KMC simulations could serve as a good
reference for all the mentioned methods.

From our point of view, it should be possible to include rate disorder into
multiple-species systems without facing fundamental problems.
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Conclusions

Part I: Robustness in quasispecies models. We analyzed the effect of
robustness against deleterious mutations on the mean fitness of quasispecies
populations. Concentrating on permutation-invariant fitness landscapes, the
hypercubic phase space was mapped onto the one-dimensional Hamming space.
Robustness was then modeled as a plateau-shaped fitness landscape. With the
help of a large deviations ansatz we found a correspondence between the popu-
lations stationary state equation and a Schrödinger-type equation. Exploiting
this analogy, we derived a formula for the mean fitness in the limit of infinite
sequence length and finite size correction terms. The results hold for both,
smooth and non-smooth fitness landscapes and improve the agreement between
numerical and analytical solutions significantly. In principle it is possible to
extend this analysis to more than first order in the sequence length. Furthermore
we showed, that the fitness regime predicted by Gerland and Hwa [39] does not
exist. Applying our findings to the question of the optimal plateau shape for
finite sequence lengths, we find that a broad plateau can provide a higher mean
fitness to the population than a smaller but higher one. In the literature this
phenomenon is often referred to as “survival of the flattest”.

In addition to the mesa-shaped fitness landscapes, which can be considered as
an extreme kind of epistasis, a more general class of epistatic fitness landscapes
concerning the error threshold existence was analyzed. Here, we could improve
on a result by Wiehe [86] by application of the earlier findings. As a result, we
find diminishing epistasis to be necessary but not sufficient to ensure the error
threshold existence.

Recently, Ancliff and Park [1] developed a new approach using spin coherent
state representations. The simplicity of this method — compared to the existing
ones — is promising, moreover as the derivation of finite size corrections emerges
naturally and the path integral formulation is suited for the description of the
population dynamics.

Part II: Molecule formation on interstellar dust grain surfaces
with quenched disorder The question of disorder enhancing a surface’s
efficiency in molecule production has been answered satisfactorily. The employed
minimalistic model was analyzed by means of rate equations and kinetic Monte
Carlo simulations. We started with the analysis of a system with binary disorder.
It turned out, that the mixing of different binding energies on one surface enhances
it’s efficiency in temperature regions where the corresponding homogeneous
systems do not perform well at all. The reason lies in the different roles that
are assigned to the two types of sites. The shallow sites provide mobility to
the particles, while the deep sites trap particles and thus increase the surface
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coverage. Then dimers are formed by a particle hopping from a shallow onto a
deep site and recombining with a particle that has already been trapped there.
Depending on the energies of the sites and their quantity, this mechanism leads
to a uniformly high efficiency in the whole intermediate temperature regime.
We gave an analytical formula for the efficiency value of this plateau. It turned
out that this concept of mobility and trapping can be extended to the other
binding energy distributions investigated. As a result we provide (temperature-
dependent) mappings from discrete and continuous binding distributions to
effective binary systems that reproduce the efficiency of the original one.

Concerning the discrete distributions, this mapping involved the validity of a
rate equation description and well-separated binding energies. Yet, under these
constraints, the mapping is easy and quick to apply.

For the continuous binding energy distributions we even went a step further
and could define a mapping to an effective binary system using the system
temperature and the distribution only. Thereby the energies are also grouped
into effectively shallow and deep wells by a cutting energy. As we showed, this
mapping is as well applicable to the discrete distributions.

Nevertheless, the contribution of our findings to astrophysical applications
depends on estimating binding energies and topologies of relevant surfaces under
(simulated) interstellar conditions. The energy values we used for the KMC
simulations and numerical solutions are believed to be astrophysically relevant.
The output of our models in terms of temperature-dependent efficiency points
into the right direction with broader temperature windows of high efficiency and
at higher temperatures compared to the homogeneous system results (with the
same parameters).

The question of rate disorder on surfaces is closely related to that of geometric
effects. Lattice distortion has been studied [65], as well as a different coordination
number, but nevertheless the system’s translational symmetry has always been
sustained. In addition to rate disorder effects, it would be interesting to see the
influence of disorder in the connectivity of the sites. The surface can then be
interpreted as a network of binding sites of integer or fractal dimension. In this
way it can be accounted for e.g. holes that can be accessed from more than four
or six sites or for sites that cannot be accessed from all direct neighbors.

Additionally, we took a brief look on a generic multispecies system. It turned
out, that the numerical solution of the rate equations is delicate and susceptible
to small numerical errors. Clearly, more research in this direction need to
done. Solving multispecies reactions on surfaces will be a great improvement
in understanding interstellar molecule formation in general since the surface
products re-enter the gas chemistry network as educts and thus have a strong
influence on the solution of the whole gas-grain system.

Research on the multispecies systems should be continued as the majority of
chemical reactions involves more than one particle species. The results will not
only be of importance for interstellar molecule formation. The rate equations
approach seems to be promising, at least for large grains and sufficiently high
fluxes. It is accessible to direct numerical solvers and all kinds of reactions can
be included straightforwardly. Nevertheless other promising approaches like
moment equations exist that are well-suited for large reaction networks.

Regarding the analysis of homogeneous dimer formation on disordered surfaces
we feel that we have substantially contributed to the theory. The main mechanism
for molecule formation has been identified and quantitative results for different
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binding energy distributions have been derived, that are in accordance with
previous suggestions.

General remarks. We have exemplified that reaction-diffusion systems
appear in very different contexts. In the quasispecies model, the reaction-
diffusion character appeared on the level of effective model description, while
for the problem of interstellar molecule formation the diffusion and reactions
naturally appear on the microscopic level. The solvability of reaction-diffusion
systems strongly depends on the exact shape of the reaction term, as encountered
in this thesis. Though we only analyzed two applications, the systems considered
here already proved their relevance and we hope to see some of the open questions,
especially on the multispecies systems, pursued in the future.
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Part III

Additional material
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Appendix A

Appendix

A.1 The large deviations approach

We start by symmetrizing the eigenvalue problem (2.18). The discrete analogue
of the transformation (3.3) is

Qk =

(
L

k

)1/2

P ∗k , (A.1)

which leads to

ΛQk = (wk − γ)Qk + µ
√

(L− k)(k + 1)Qk+1

+ µ
√

(L− k + 1)k Qk−1.
(A.2)

Following [73], we now perform the continuum limit by making a large deviations
ansatz for Qk,

Qk = QxL = ψ(x) = exp[−ε−1u(x)] (A.3)

with ε = 1/L. Inserting this into (A.2) one finds

(Λ− f(x) + γ)ψ = 2γ
√
x(1− x) cosh[u′]ψ. (A.4)

Cancelling ψ on both sides yields a Hamilton-Jacobi equation for the ‘action’
u(x), with u′ = du/dx playing the role of a canonical momentum [73]. In order
to cast (A.4) into the form of a Schrödinger equation, we expand the momentum-
dependent factor to quadratic order, cosh(u′) ≈ 1 + (u′)2/2, and make use of
the relation

(u′)2 = ε2ψ−1 d
2ψ

dx2
, (A.5)

which follows from (A.3) to leading order in ε. Inserting this into (A.4) results
in (3.11).

A.2 Singular-value decomposition

The singular-value decomposition is a decomposition of an arbitrary real or
complex m× n matrix A into three matrices of the shape

A = UDV T .
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The matrix D is symmetric and diagonal, and U and V are unitary matrices. If
A is invertible, then

A−1 = UD−1V T .

The entries of D are called the singular values and give informations about the
characteristics of the matrix A, similar to the eigenvalues.
The condition number, calculated by Octave, is the product of the largest
singular values of A and A−1. This is the same as the ratio of the largest and the
smallest singular value of A itself. The condition number is a measure for the
magnitude of mixing of the numerical scales. The bigger the condition number is,
the more are different scales mixed, and the more likely errors in the calculation
occur. Thus, the condition number is a measure of stability of a matrix towards
slight pertubations of matrix elements. Stability becomes important when the
matrix has to be diagonalised numerically. Numerical methods use iterative
procedures. As more iterations are needed the more off-diagonal elements exist,
the bigger they are and the farer they are away from the diagonal, stability of
the matrix is essential for an exact numeric result.

A.3 Alphabet sizes A > 2

The results presented in the main part are all valid for an alphabet size of
A = 2. We here want to illustrate, how these results can be generalized to
arbitrary alphabet sizes in the case of a uniform mutation rate µ and a fitness
that depends only on the (generalized) Hamming distance to the wild type. For
the mutation rate this especially means, that any letter at any site is changed
into any other one with the same overall rate, and for the fitness it means, that
it does not matter into which direction (into which letter) the mutation occured.
As a consequence, sequences differing at a certain position can have the same
Hamming distance to the wild type. Again, this is an oversimplifying model, but
suffices for our purpose of sketching the main idea. More sophisticated mutation
schemes can e.g. be found in [38]. For an alphabet size of A, the eigenvalue
problem of the Crow-Kimura equation (2.18) then reads

ΛP ∗k =

[
wk − (A− 1)γ

(
L− k +

k

A− 1

)]
P ∗k . (A.6)

For large L→∞ this problem has been solved by [2, 38, 37], and we find the
largest eigenvalue given by the generalized maximum principle

Λ =maxx∈[0,1]{
f(x)− (A− 1)γ

[(
1− (A− 2)x

A− 1

)
− 2√
A− 1

√
x(1− x)

]}
.

(A.7)

Applying this formula to a mesa landscape with relative mesa width x0, we find
the critical plateau height for population localization

wc0 = γ(A− 1)

[(
1− (A− 2)x0

A− 1

)
− 2√
A− 1

√
x0(1− x0)

]
. (A.8)

Hardly surprising, we find the critical plateau height to increase with the alphabet
size (x0 fixed) and to decrease with x0 (fixed A) until wc0 = 0 at x0 = 1− 1/A.
For A = 2 we regain the earlier presented results of section 2.5.
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Glossary

Part I

Quasispecies models: description of very large (infinite) population of asexual
(self-replicating) individuals. In the long-time limit the quasispecies corresponds
to the localized eigenvector of the system, specified by the fitness and mutation
probability/rate.

mutation: in general, mutation means the alteration of a genomic sequence
due to copying errors during replication. There are different types of mutations,
e.g. point mutations (also called substitutions), where only one letter is changed,
insertion, where additional letters are inserted into the sequence, or deletions,
encoding the opposite process of insertion.

selection: the favorization of certain genotypes concerning the number of off-
spring. The better adapted to the environment, the more offspring an individual
of a population produces during replication.

genetic drift: finite population size effect: the frequency of the different types
of information sequences in the population varies due to random sampling (in
the reproduction phase).

recombination: During sexual reproduction the offspring gets a new combina-
tion of information strings by exchanges between the latter.

gene expression: During the expression of a gene (special part of the DNA),
the information encoded in the gene is processed to a functional product like
proteins or RNA.

CK model (parallel model): Quasispecies model formulated in continuous
time, in which mutations and selection occur parallel to each other. Can be
derived from the →Eigen model by sending the generation time to zero.

Eigen model (coupled model): Quasispecies model in discrete time (that is
generation time) for haploid asexual organisms in which mutations only occur
as copying errors during replication.

fitness landscape: gives the degree of adaptation to the environment (typically
measured by the amount of offspring produced by an individual) as function of
the information sequence.
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permutation invariant (fitness landscape): the degree of adaptation only
depends on the →Hamming distance to the best adapted sequence. Hence
permutation invariant fitness landscapes are effectively onedimensional

epistasis: the interplay of different mutations: the number of mutations away
from the wildtype influences the amount of fitness reduction, the next mutation
will produce. Epistasis refers to both decreasing and increasing functions of the
number of mutations.

robustness: The resiliance of a population to the influence of mutation.

haploid/diploid: individuals of an haploid population possess one copy of their
genome (e.g. bacteria - except special types), whereas in diploid populations,
the individuals carry two copies of their genetic information (e.g. mammals).

asexual/sexual populations: in asexual population all individuals are equal
and every individual can reproduce on its own (e.g. via cell division), whereas
in sexual populations, two kinds of individuals exist (male and female) and both
of them together are needed to produce offspring.

Hamming distance: number of letters in which an individuals sequence differs
from the best adapted sequence, the so-called wildtype.

ancestral population distribution: equilibrium population distribution of
the backwards time process (given population evolution model).

Part II

interstellar medium (ISM): matter between the star systems of a galaxy.
The densest parts of the ISM are called molecular clouds.

physisorption: binding of atoms/molecules onto a surface by means of the
van-der-Waals force.

chemisorption: chemical binding of atoms/molecules to a surface. Typically
binding energies are higher for chemisorbed particles than for physisorbed ones.

NESS: non-equilibrium stationary state.

Langmuir-Hinshelwood rejection (LH-rejection): effect that particles from
the gas cannot impinge onto lattice sites already occupied by another particle.
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Frequently used symbols

Part I

symbol meaning
σ(s1, .., sL) information string (sequence) of an individual
si ∈ A letters of the sequence σ
A alphabet from which the letters are drawn
µ mutation rate
µtr error threshold
µs selection threshold

γ = µL mutation rate per sequence
L sequence length
k (absolute) Hamming distance

x = k/L relative Hamming distance
k0, x0 absolute and relative plateau width

Pσ(t), Pk, P (x) population distribution depending on sequence and time,
abs. Hamming distance, and rel. Hamming distance, respectively

P ∗σ , P ∗k , P (x)∗ equilibrium population distributions
ak, a(x) ancestral distribution
a∗k, a(x)∗ ancestral distribution in equilibrium
f(σ), fk Wrightian fitness function, depending on the sequence

or the Hamming distance, respectively
w(σ), wk Malthusian fitness function, depending on the sequence

or the Hamming distance, respectively
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Part II

symbol meaning
T temperature of the grain surface / lattice
T low temperature where the efficiency starts to become non-zero

for a homogeneous surface with given binding energy
T up temperature where the efficiency drops to zero again

for a homogeneous surface with given binding energy
Tmax temperature where the efficiency reaches its maximum

for a homogeneous surface with given binding energy
f flux onto each lattice site (of a grain)

L1, L2 side lengths of the lattice
S = L1 · L2 number of sites on the grain/lattice

N (mean) number of particles on the grain/lattice
Si number of sites of a certain type of sites
Ni (mean) number of particles on type of sites i
Na (mean) number of particles of species a
ν attempt frequency (for hopping and desorption) of the particles
η efficiency of the grain/lattice
R reaction rate
Eai energy needed for hopping from site i
EWi energy needed for desorption from site i

also called binding energy
ai hopping rate for lattice site i
Wi desorption rate for lattice site i

Ai = ai/S sweeping rate
∆E = EWj

− EWi
difference in binding energy for different types of sites

`rw =
√
ai/Wi (continuous time) random walk length on sites of type i
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Entstehung dieser Dissertation beigetragen haben, bedanken.

Diese Arbeit wurde von der DFG im Rahmen des SFB/TR 12 und durch die
Bonn-Cologne Graduate School of Physics and Astronomy unterstützt.





Erklärung
Ich versichere, dass ich die von mir vorgelegte Dissertation selbständig angefertigt,
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dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens
nicht vornehmen werde.
Die Bestimmungen der Promotionsordnung sind mir bekannt. Die von mir
vorgelegte Dissertation ist von Herrn Prof. Dr. Joachim Krug betreut worden.

Teilpublikationen:

A. Wolff, J. Krug, Robustness and epistasis in mutation-selection-models, Physi-
cal Biology 6, 036007, (2009)

A. Wolff, I. Lohmar, Y. Frank, J. Krug, O. Biham, Diffusion-limited reactions on
a two-dimensional lattice with binary disorder, Phys. Rev. E 81, 061109, (2010)

A. Wolff, I. Lohmar, J. Krug, O. Biham, Diffusion-limited reactions on disordered
surfaces with continuous distributions of binding energies, J. Stat. Mech. 10,
P10029, (2011)


	General Introduction
	I Robustness in deterministic mutation-selection models
	Introduction
	Basic principles
	Terms and definitions
	Models
	Fitness landscapes and robustness
	Error threshold
	The maximum principle

	Continuum limit in Hamming space
	Analytical derivation in harmonic approximation
	Extension of the harmonic approximation
	Finite sequence length corrections
	Connection to former results
	Numerics

	Fitness landscapes with competing plateaus
	The selection transition
	The ancestral distribution

	Error threshold in epistatic fitness landscapes
	Summary

	II Molecule formation on interstellar dust grain surfaces with quenched disorder
	Introduction
	The model
	Basic principles
	Review: the homogeneous system

	Binary disorder in binding energies
	Setting
	Qualitative Discussion
	Kinetic Monte Carlo Simulations
	Rate Equation Model
	Conclusions

	Discrete distributions of binding energies
	Mapping of a ternary to a binary system
	n types of binding energies
	Limits of validity
	Summary

	Continuous distributions of binding energies
	The effective binary system
	Confirmation of mapping assumptions by simulations
	Heuristic derivation of the mapping
	Comparison to KMC simulations
	Tail shape and analytical expressions
	Realization dependence
	Connection to discrete-distribution mapping
	Conclusions

	Different particle species on a surface
	Rate equations
	Numerical results
	Conclusions and outlook


	Conclusions
	III Additional material
	Appendix
	The large deviations approach
	Singular-value decomposition
	Alphabet sizes A>2

	Glossary
	Frequently used symbols
	Bibliography


