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Abstract  
 

Soil moisture and its distribution in space and time plays an important role in the surface 

energy balance at the soil-atmosphere interface. It is a key variable influencing the 

partitioning of solar energy into latent and sensible heat flux as well as the partitioning of 

precipitation into runoff and percolation. Due to their large spatial variability, estimation of 

spatial patterns of soil moisture from field measurements is difficult and not feasible for large 

scale analyses. In the past decades, Synthetic Aperture Radar (SAR) remote sensing has 

proven its potential to quantitatively estimate near surface soil moisture at high spatial 

resolutions. Since the knowledge of the basic SAR concepts is important to understand the 

impact of different natural terrain features on the quantitative estimation of soil moisture and 

other surface parameters, the fundamental principles of synthetic aperture radar imaging are 

discussed. Also the two spaceborne SAR missions whose data was used in this study, the 

ENVISAT of the European Space Agency (ESA) and the ALOS of the Japanese Aerospace 

Exploration Agency (JAXA), are introduced. Subsequently, the two essential surface 

properties in the field of radar remote sensing, surface soil moisture and surface roughness 

are defined, and the established methods of their measurement are described. The in situ data 

used in this study, as well as the research area, the River Rur catchment, with the individual 

test sites where the data was collected between 2007 and 2010, are specified. On this basis, 

the important scattering theories in radar polarimetry are discussed and their application is 

demonstrated using novel polarimetric ALOS/PALSAR data. A critical review of different 

classical approaches to invert soil moisture from SAR imaging is provided. Five prevalent 

models have been chosen with the aim to provide an overview of the evolution of ideas and 

techniques in the field of soil moisture estimation from active microwave data. As the core of 

this work, a new semi-empirical model for the inversion of surface soil moisture from dual 

polarimetric L-band SAR data is introduced. This novel approach utilizes advanced 

polarimetric decomposition techniques to correct for the disturbing effects from surface 

roughness and vegetation on the soil moisture retrieval without the use of a priori knowledge. 

The land use specific algorithms for bare soil, grassland, sugar beet, and winter wheat allow 

quantitative estimations with accuracies in the order of 4 Vol.-%. Application of remotely 

sensed soil moisture patterns is demonstrated on the basis of mesoscale SAR data by 
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investigating the variability of soil moisture patterns at different spatial scales ranging from 

field scale to catchment scale. The results show that the variability of surface soil moisture 

decreases with increasing wetness states at all scales. Finally, the conclusions from this 

dissertational research are summarized and future perspectives on how to extend the proposed 

model by means of improved ground based measurements and upcoming advances in sensor 

technology are discussed. The results obtained in this thesis lead to the conclusion that state-

of-the-art spaceborne dual polarimetric L-band SAR systems are not only suitable to 

accurately retrieve surface soil moisture contents of bare as well as of vegetated agricultural 

fields and grassland, but for the first time also allow investigating within-field spatial 

heterogeneities from space.  

 

 

 



Kurzzusammenfassung 

 

 

V 

Kurzzusammenfassung 
 

Bodenfeuchte und deren Verteilung in Raum und Zeit spielt eine wichtige Rolle in der 

Energiebilanz an der Erdoberfläche. Sie beeinflusst die Partitionierung von Sonnenenergie in 

latenten und fühlbaren Wärmefluss sowie die Aufteilung des Niederschlags in Abfluss und 

Versickerung. Aufgrund ihrer hohen räumlichen Variabilität, ist die Bestimmung von 

räumlichen Bodenfeuchtemustern anhand von Feldmessungen schwierig und für großräumige 

Untersuchungen nicht praktikabel. In den vergangenen Jahrzehnten hat die Fernerkundung 

mittels Radar mit Synthetischer Apertur (SAR) ihr Potenzial zur quantitativen Bestimmung 

der oberflächennahen Bodenfeuchte mit hoher räumlicher Auflösung erwiesen. Da 

Kenntnisse über die grundlegenden Eigenschaften der SAR-Fernerkundung wichtig sind, um 

die Auswirkungen der verschiedenen natürlichen Oberflächen- und Geländeeigenschaften auf 

die Berechnung der Bodenfeuchte und anderer Oberflächen-Parameter zu verstehen, werden 

die grundlegenden Prinzipien der SAR Bildgebung diskutiert. In diesem Zusammenhang 

werden auch die beiden SAR-Satelliten, deren Daten in dieser Studie Verwendung finden, der 

ENVISAT der europäischen Weltraumorganisation (ESA) und der ALOS der japanischen 

Weltraumorganisation (JAXA), vorgestellt. Anschließend werden die beiden zentralen 

Oberflächeneigenschaften im Bereich der Radar-Fernerkundung, die Bodenfeuchte und die 

Bodenrauhigkeit, detailliert erklärt, und die etablierten Messmethoden beschrieben. Die in 

dieser Studie verwendeten in situ Daten, sowie das Untersuchungsgebiet, das Rur 

Einzugsgebiet mit den einzelnen Test-Standorten, an denen die Daten in den Jahren 2007 - 

2010 erhoben wurden, werden beschrieben. Auf dieser Grundlage werden die wichtigen 

Rückstreuungstheorien in der Radar Polarimetrie diskutiert und ihre Anwendung anhand 

neuartiger polarimetrischen ALOS/PALSAR Daten gezeigt. Eine kritische Betrachtung 

verschiedener klassischer Ansätze zur Berechnung der Bodenfeuchte aus SAR Daten erfolgt 

am Beispiel unterschiedlicher Modelle, welche mit dem Ziel ausgewählt wurden, einen 

Überblick über die Entwicklung von Ideen und Techniken auf dem Gebiet der 

Bodenfeuchtebestimmung mit aktiven Mikrowellen-Sensoren zu geben. Als Kernstück dieser 

Arbeit wird ein neues semi-empirisches Modell für die Inversion der 

Oberflächenbodenfeuchte mit dual polarimetrischen L-Band SAR Daten vorgestellt. Dieser 

neuartige Ansatz nutzt polarimetrische Dekompositionstechniken um die störenden Einflüsse 
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von Bodenrauhigkeit und Vegetation auf die Bodenfeuchteibestimmung ohne Zuhilfenahme 

von a-priori Informationen zu korrigieren. Die landnutzungsspezifischen Algorithmen für 

Grasland, unbedeckten Boden, Winterweizen und Zuckerrüben ermöglichen eine 

Abschätzungsgenauigkeit im Bereich von ±4 Vol.-%. Als Anwendungsbeispiel für 

fernerkundlich bestimmte Bodenfeuchtemuster, wird auf der Grundlage mesoskaliger SAR 

Daten die Variabilität der Oberflächenbodenfeuchte auf unterschiedlichen räumlichen Skalen 

untersucht. Es wird gezeigt, dass die Variabilität der räumlichen Bodenfeuchteverteilung auf 

allen Skalen mit zunehmendem Feuchtezustand der Bodenoberfläche kleiner wird. 

Schließlich werden die Schlussfolgerungen aus dieser Doktorarbeit zusammengefasst und es 

werden Zukunftsperspektiven, wie das vorgestellte Modell durch verbesserte bodengestützte 

Messungen und kommende Entwicklungen in der Sensor-Technologie erweitert werden kann, 

diskutiert. Die Ergebnisse dieser Arbeit zeigen, dass moderne, weltraumgestützte dual 

polarimetrische L-band SAR Systeme nicht nur eine genaue Bestimmung der Bodenfeuchte 

auf nackten und vegetationsbedeckten landwirtschaftlich genutzten Flächen ermöglichen, 

sondern zum ersten Mal auch eine kleinräumige Untersuchung von Heterogenitäten innerhalb 

einzelner Ackerschläge erlauben.  
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SPM  Small Perturbation Model 

SPOT Satellite Probatoire d’Observation de la Terre 

TDR  Time Domain Reflectometry 

T/R Transmit/Receive 

UAV Unmanned Airborne Vehicle 

UTM Universal Transverse Mercator 

WS Wide Swath 
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1. Introduction 
 

 

Without any doubt, soil moisture can be regarded as one of the important life sustaining 

entities on our planet. Among its various functions, the first is probably to enable the growth 

of vegetation on the land surface. Apart from this, water stored in soils has several others 

roles in the global water cycle. For instance, it controls the partitioning of rainfall into runoff 

and infiltration, where efficient infiltration commonly means replenishment of aquifers, while 

runoff may mean both exportation of valuable fresh water to other areas and degradation of 

top soil through leaching and erosion. The saturation state of a soil may also affect the 

transformation of rainfall into floods. Thus, surface soil moisture is a key variable for 

improving the forecasting performance of run-off models in terms of flood risk assessment 

and water resources management. 

Moreover, surface soil moisture is a major driver of spatio-temporal patterns of evaporation 

and transpiration and thus impacts the energy and mass transfer between the Earth’s land 

surfaces and the atmosphere. Consequently, it is a very important input parameter in weather 

forecast models as well as in global climate models. Soil moisture deficits and/or surplus 

greatly affect spatio-temporal dynamics of vegetation systems. Hence, information on spatial 

and temporal fluctuations of soil water content is relevant to a wide range of agricultural 

applications such as the prediction of plant growth, the determination of proper sowing dates, 

irrigation practices, and the identification of arable land areas prone to droughts or water 

logging. 

 

In situ measurements of soil moisture are time and cost intensive. Due to their large spatial 

variability, estimation of spatial patterns of soil moisture from field measurements is rather 

difficult and generally not feasible for large-scale analyses. Although hydrological models 

have shown their capability to derive spatial soil moisture patterns, their application is still a 

challenging task, requiring a multitude of input parameters (such as soil properties, i.e. 

hydraulic characteristics and permeability, along with meteorological and climatological 

data). Neither the full spatial variability of these environmental parameters nor the full details 
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of the processes are typically known. Consequently, modeled soil moisture distributions tend 

to reduce the real magnitude of heterogeneity. 

 

Classical methods in environmental monitoring rely on point measurements to estimate the 

spatial distributions of soil moisture, and one of the most critical factors is the extrapolation 

of point samples to catchment scale processes. According to Dooge (1986; 1988) the 

hydrological theory encompasses 15 orders of magnitude ranging from the molecule scale of 

H2O clusters (10
-8 m) to the planetary scale of the global hydrological cycle (107 m). 

Traditionally, studies in applied hydrology have favored the catchment scale which is also 

referred to as meso-scale or the lower end of the macro-scale. A large source of error occurs 

at the interfaces between the different scales of hydrological to meteorological or ecosystem 

models. These scaling problems may limit the suitability of impact studies which are driven 

by the output of such models. Hence, methods for both monitoring and representation of sub-

grid-scale variability, as well as linking parameters and state variables across disparate 

dimensions are in great need to bridge the scales between different science applications such 

meteorological and ecological modeling. 

 

Still today, one of the great challenges in the field of hydrological modeling and monitoring 

remains the linking and integration of geophysical laws across different spatial scales. Up to 

the 1970’s, environmental monitoring was primarily focused on local-scale processes. 

Principally, these small observation scales were a consequence of the traditions of applied 

hydrology on the one hand, and of the relative simplicity of in situ data collection and the 

available technology for data storage and handling, on the other hand. With growing 

appreciation of the small and large scale dimensions of environmental changes and 

concomitant improvements in measurement and data handling techniques within the last 

decades, there have been strong initiatives to improve monitoring networks and to conduct 

interregional measurement campaigns such as the TERrestrial ENvironmental Observatoria, 

TERENO (Zacharias et al., 2011).  

 

Remote sensing provides today mature opportunities to scientists from different fields in 

terms of monitoring extended processes with spatial resolutions ranging from several 

decimeters up to a global scale of thousands of kilometers. Remotely sensed data can be used 

for hydrological model parameter estimation, computation of geophysical parameters as well 
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as for real time forecasting and disaster monitoring. In the field of hydrology, remote sensing 

is indeed capable of providing some of the key state variables for water balance modeling 

like precipitation, snow cover, sea ice, and soil moisture. A variety of remote sensing 

techniques have been developed to measure various parameters on the land and sea surfaces 

at meso- to macro-scale (Campbell, 2007). In the field of soil moisture estimation these 

techniques encompass gamma ray, near to far infrared, and thermal infrared spectrometers, 

passive microwave radiometers, as well as active radar sensors. Among all these technologies, 

imaging radar is due to its sensitivity towards the dielectric surface properties, its weather 

independent day and night operation capabilities and its potential to acquire also subsurface 

information, the most suitable approach for surface soil moisture estimation.  

 

1.1 Spaceborne Active Microwave Remote Sensing of Soil 

Moisture 

 

The sensitivity of the radar backscattering coefficient (σ0) to soil moisture at low microwave 

frequencies is well described in the literature (Ulaby et al., 1978; Ulaby et al., 1981b; Ulaby 

et al., 1982a; Ulaby et al., 1982b; Hallikainen et al., 1985; Dobson et al., 1985; Dobson & 

Ulaby, 1986; Oh et al., 1992). Numerous research activities carried out within the last three 

decades have demonstrated that sensors operating in the low-frequency portion of the 

microwave electromagnetic spectrum (especially P and L-band) are suitable to measure the 

surface moisture content. The penetration depth of the radar beam depends on soil 

characteristics and moisture state. It is typically in the order of some tenths of the wavelength 

up to half a wavelength. While the combination of different frequencies, polarizations, and 

incidence angles provide best results (Dubois et al., 1995; Ji et al., 1996; Wang et al., 1997; 

Romshoo et al., 2000) such data is today only available from airborne sensors. P-band is not 

available from current satellite sensors and multi-channel spaceborne L-band data is available 

only from PALSAR aboard the Advanced Land Observing Satellite (ALOS). However, 

spaceborne systems generally do not offer the repetition rate, spatial resolution, frequency 

and polarimetric characteristics needed for continuous high resolution soil moisture 

monitoring. Current and future satellite based SAR systems such as ALOS-2 (JAXA), 

SENTINAL-1 (ESA), Tandem-L (NASA/DLR), etc. are, and will be in the foreseeable future, 
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limited to a single frequency-band. Nonetheless, considerable effort has been successfully 

devoted to research on the retrieval of soil moisture from C-band radar data (Cognard et al., 

1995; Altese et al., 1996; Rombach & Mauser, 1997; Schneider & Oppelt, 1998; Quesney et 

al., 2000; Verhoest et al., 2000; Le Hégarat-Mascle et al., 2002; Leconte et al., 2004; Loew, 

2004; Paloscia et al., 2008), which is operational today on Earth Observation platforms such 

as ERS-2 (ESA), RADARSAT-1 (CSA), ENVISAT (ESA), and RADARSAT-2 (CSA). 

However, besides being sensitive to soil moisture, the radar backscatter signal at C-band is 

significantly disturbed by vegetation and surface roughness. Another major drawback of such 

high frequency SAR systems is the poor penetration capability rendering a consistent 

comparison with ground based surface measurements problematic (Shi & van Zyl, 1998). 

 

Besides the surface roughness, a major impediment to accurate quantitative retrievals of soil 

moisture is the presence of a vegetation cover which is characterized by gradual variations 

over the growing season. Both factors modulate the radar sensitivity to soil dielectric constant 

rendering accurate soil moisture retrieval intricate to achieve. Because for a single-channel 

SAR configuration many combinations of surface parameters exist which explain the same 

SAR backscatter, it is not possible to separate the different scattering contributions of the soil 

and vegetation components within one resolution cell without additional information. Thus, 

the estimation of spatial soil moisture patterns with a suitable accuracy needed for many 

applications requires the use of correction procedures for vegetation and roughness effects 

(Jackson et al., 1997; Satalino et al., 2001; Loew et al., 2006; Mattia et al., 2006).  

 

For bare soils, the relationship between SAR backscattering coefficient (σ0), surface 

roughness and surface soil moisture is well investigated (Autret et al., 1989; Beaudoin et al., 

1990; Mattia & Le Toan, 1999; Le Toan et al., 1999; Satalino et al., 2002). It is based upon 

the large contrast of the dielectric constant (ε′) of dry soil (~ 3) and water (~ 80). The 

dielectric constant directly affects the backscatter intensity. Physically based backscatter 

models are available for bare soil conditions (Beckmann & Spizzichino, 1987; Ishimaru & 

Chen, 1991; Fung et al., 1992; Chen & Fung, 1995; Ishimaru, 1997). In general, these 

scattering models calculate σ0 as a function of sensor configuration and soil surface state 

allowing the inversion of near surface volumetric water content. However, these theoretical 

models require either detailed knowledge of the spatial patterns of soil parameters (e.g. 
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surface roughness) and/or multiple radar channels (i.e. polarizations) to isolate the effects of 

surface dielectric constant and surface roughness. A suitable parameterization of these 

models, especially for larger areas, is therefore often not possible (Romshoo et al., 2000; van 

Zyl & Kim, 2001). Empirical and semi-empirical algorithms have shown their potential to 

derive soil moisture from single frequency SAR data (Oh et al., 1992; Dubois et al., 1995; 

Rombach & Mauser, 1997; Quesney et al., 2000). However, their applicability might be 

limited to the region where they were developed and thus must be validated and/or adopted if 

transferred to a different area.  

 

Despite all these great achievements and important contributions from the microwave and 

SAR community, it is important to point out that up to date there is still no operational 

retrieval model available which allows robust quantitative estimation of soil moisture under 

vegetation. 

 

1.2 Scope and Outline of the Thesis 

 

The aim of this dissertation thesis is to answer the following key questions: With what 

accuracy and under what conditions can soil moisture be retrieved from single-channel and 

multi-channel (partial or full polarimetric) spaceborne SAR data? Does the available state-of-

the-art polarimetric radar satellite data allow development of a soil moisture inversion 

scheme where information on the disturbing effects from vegetation and surface roughness 

can be derived directly from the SAR images? Can satellite derived soil moisture patterns 

help to improve our understanding of the scaling problems in hydrology? 

 

Considering the recent advances made in sensor technology, data processing, and data 

analysis techniques along with the progress in the physical understanding of microwave 

scattering from natural terrain, an answer to these questions seems to be in reach. As 

polarimetric SAR data is becoming more and more available to a wide Earth Observation 

(EO) community (Lee & Pottier, 2009) and with ongoing discussion of whether only full 

polarimetric or also partial polarimetric operation should be conducted by future spaceborne 
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state-of-the-art sensors like ALOS-2 (http://www.jaxa.jp/projects/sat/alos2/index_e.html) 

answering these questions becomes even more important.  

 

The work is composed of nine chapters organized in a hierarchical manner, with each chapter 

building upon the previous ones. Following this introduction, the fundamental principles of 

synthetic aperture radar imaging are presented in Chapter 2. Knowledge of the basic SAR 

concepts is important to understand the impact of different natural terrain features on the 

quantitative estimation of soil moisture and other surface parameters. The two essential 

surface properties in the field of radar remote sensing, namely the surface soil moisture and 

the surface roughness are then discussed in Chapter 3. Both parameters are defined and 

described in detail, and the established methods of their measurement are presented. Chapter 

4 summarizes the description of the study area, the River Rur catchment, and of the 

individual test sites as well as of the distributed field measurements as conducted in the 

framework of this dissertation research. These ground based measurements were taken 

simultaneously with satellite passes of the European ENVISAT/ASAR (ESA) and the 

Japanese ALOS/PALSAR (JAXA) operating at C- and L-band, respectively. The information 

provided in this section is necessary for the discussion of the experimental results presented 

in the following chapters. Since radar polarimetry is crucial for quantitative parameter 

inversion by means of surface scattering models, in Chapter 5 the very basic polarimetric 

wave and scattering concepts are discussed. This chapter also addresses the differences 

between classical fully polarimetric radars and the innovative dual polarimetry modes of 

current state-of-the-art sensors. Chapter 6 provides a critical review of different classical 

approaches to invert soil moisture from SAR measurements. Two theoretical scattering 

models, the small perturbation model (SPM) and the integral equation model (IEM), two 

semi-empirical models proposed by Oh et al. (1992) and Dubois et al. (1995), as well as one 

empirical retrieval model (Rombach & Mauser, 1997; Loew et al., 2006) are addressed. Their 

performance to accurately estimate surface soil moisture is validated against in situ 

measurements. The five models have been chosen with the aim to provide an overview of the 

evolution of ideas and techniques in the field of quantitative soil moisture estimation from 

active microwave data. In Chapter 7 a new alternative semi-empirical retrieval model is 

developed for dual polarimetric L-band SAR data. Based on correlation analysis between 

multitemporal polarimetric radar data and extensive ground based measurements, land use 

specific parameter models are proposed which allow correcting the measured backscattering 
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coefficient for the disturbing effects of surface roughness and vegetation. It is demonstrated 

that partial polarimetric systems using only one co- and one cross-polarized channel have the 

potential to accurately estimate surface soil moisture under vegetation. Four different models 

for the land cover types bare soil, grassland, sugar beet, and winter wheat are introduced. 

Application of remotely sensed soil moisture is demonstrated in Chapter 8 where mesoscale 

soil moisture patterns derived from multitemporal C-band SAR data are used to investigate 

the behavior of spatial variability of surface soil moisture at different spatial scales. The 

relationships between the spatial variance and the mean soil moisture states are analyzed at 

the scales of the entire catchment (~2400 km²), two major landscape units (~1000 km²), 

boxes (2.25 km²), and individual fields (~0.1 km²). Finally, the obtained results are 

summarized in Chapter 9. Conclusions are drawn from a concise and comprehensive 

comparative analysis of the pertinent methods addressed in this thesis. An outlook is 

presented which provides perspectives for future investigations employing novel SAR data 

and improved ground based monitoring of biophysical surface parameters. 
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2. Remote Sensing with Synthetic 

Aperture Radar Imaging 
 

 

Today, Synthetic Aperture Radar (SAR) imaging is considered a well-developed microwave 

remote sensing technique suitable to provide large-scaled two-dimensional high spatial 

resolution images of the Earth’s surface reflectivity. The imaging SAR system is an active 

radar system operating in the microwave region of the electromagnetic wave spectrum, 

generally between P-band and Ka-band, as illustrated in Fig. 2.1. Usually mounted on a 

moving platform (i.e. airplane, UAV, space-shuttle, or satellite) it operates in a side-looking 

geometry with an illumination perpendicular to the flight direction. These systems illuminate 

the Earth’s surface with microwave pulses and receive the EM signal backscattered from the 

illuminated terrain. Synthetic Aperture Radar employs signal processing to synthesize a two-

dimensional image of the Earth’s surface from all the received signals. Due to this active 

operation mode, SAR sensors are independent of solar illumination and thus capable of day 

and night time acquisitions. In addition, operating in the microwave spectral region avoids 

the effects of clouds, fog, rain, smokes, etc. on the resulting images. However it should be 

mentioned that this is unconditionally true only in the case of operation below the S-band, 

while S-/C-/X-band space-borne SAR systems are sometimes also deployed for cloud and 

precipitation imaging. Nevertheless, generally speaking, imaging SAR systems allow an 

almost all-weather continuous global scale Earth monitoring. Moreover, SAR is intrinsically 

the only viable and practical imaging radar technique to achieve high spatial resolution also 

from space platforms. 

The main scope of this chapter is to provide a brief overview of the basic concepts of 

Synthetic Aperture Radar. More detailed information can be found in the dedicated literature 

like, for example, in Brown & Porcello (1969), Tomiyasu (1978), Elachi (1987), Curlander & 

McDonough (1991), Henderson & Lewis (1998), Franceschetti & Lanari (1999), Oliver & 

Quegan (2004), and Cumming & Wong (2005). The chapter concludes with a description of 

the specific SAR systems and their products as used in this study.   
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Figure 2.1: Microwave section of the electromagnetic spectrum. 

 

2.1 Development of Imaging Radar 

 

Before discussing the basic principles of Synthetic Aperture Radar in the next sections, firstly 

some brief information on the development of imaging radar shall be given here. A 

comprehensive review on the history of radar imaging and microwave sensing can be found 

in Ulaby et al. (1981b).  

The genesis of the synthetic aperture concept appears to have been the work of Carly Wiley 

of the Goodyear Aircraft Corp. in the early 1950s. As described in a paper by Sherwin et al. 

(1962), Wiley was the first to observe a one-to-one correspondence between the along-track 

coordinate of a reflecting object (being linearly traversed by a radar beam) and the 

instantaneous Doppler shift of the signal reflected to the radar from that object. He concluded 

that a frequency analysis of the reflected signals could enable higher along-track resolutions 

than that permitted by the along-track width of the physical beam itself. 

Imaging radar has then established itself as a capable and indispensable Earth remote sensing 

instrument since 1978, the year when the SEASAT satellite with SAR aboard was 

successfully launched. SEASAT was the first earth-orbiting satellite carrying a Synthetic 

Aperture Radar system designed for remote sensing of oceans and sea ice with wide ground 

swath. In addition, it also demonstrated its capability in general terrain discrimination and 

target detection (Birrer et al., 1982). The SEASAT SAR operated at L-band with a center 

frequency of 23.5 cm in wavelength and a single polarization channel employing horizontal 

transmit and horizontal receive (HH). Even though the SEASAT SAR observed the Earth for 

only 105 days due to a massive electric system failure (Jordan, 1980), it demonstrated the 

capability of imaging radar and opened the door for launching several follow-on space-borne 

SAR missions in the 1980s and 1990s. Most notable among these were the National 
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Aeronautics and Space Administration (NASA) Shuttle Imaging Radar missions SIR-A in 

1981 and SIR-B in 1984, the European ERS-1 and 2 in 1992 and 1995, the Japanese JERS-1 

in 1992, as well as the Canadian RADARSAT-1 in 1995. SEASAT SAR is also considered to 

have stimulated the development and research in multipolarization and fully polarimetric 

radar imaging (Lee & Pottier, 2009), which is regarded as a natural extension of single 

polarization SAR. 

Today, many space-borne and airborne SAR systems are available. They are competitive with 

and complementary to multi- and hyperspectral radiometers as the primary remote sensing 

instruments. At the time of this writing, the state of the art civil SAR satellites in orbit are 

namely the Japanese ALOS (JAXA), the Canadian RADARSAT-2 (CSA), and the German 

TanDEM-X (DLR). 

 

2.2 Principles of Synthetic Aperture Radar 

 

In principle, two main classes of remote sensing imaging sensors can be distinguished: active 

systems and passive systems. While passive sensors exploit the naturally emitted, reflected, 

or scattered radiation from the Earth’s surface, active sensors are equipped with a 

transmitting unit and receive the backscattered or reflected echo from the illuminated terrain. 

An important class of such active imaging systems is radar operating in the microwave region 

of the electromagnetic spectrum. As mentioned before, this active operation mode renders 

these systems independent from external illumination sources (e.g. the sun), while 

additionally, the long wavelengths at the microwave region drastically reduce the impact of 

weather phenomena like clouds, fog, or rain on the resulting images.  

 

Radar imaging provides a two-dimensional image of the radar reflectivity of a scene by 

illuminating it with microwave pulses and receiving the backscattered field. For such radar 

systems two possible operation scenarios exist. The first one is that the same sensor is used 

for transmitting and receiving. That is, transmitter and receiver are located at the same 

position. In radar science, this scenario is known as monostatic configuration. In case of the 

second scenario, known as bi-/or multistatic configuration, transmitter and receiver are 

spatially separated using one active transmit-only system to illuminate the terrain and one or 
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several passive receive-only systems for measuring the scattered field (Skolnik, 1981). 

Bistatic radar is well established in the field of defence (Ender, 2003) and since the launch of 

the German TanDEM-X in 2009 it is now also available for the geoscience community 

(Krieger et al., 2009). However, in this dissertation only the monostatic case is used and thus 

the bistatic configuration will not be considered in the following.  

 

In SAR imaging, a natural scene is characterized in terms of its three-dimensional reflectivity 

function describing the density distribution of scattering targets in the scene. In this sense, the 

SAR imaging process can be regarded as the projection of this three-dimensional scene 

reflectivity function onto the two-dimensional range-azimuth image space. Consequently, the 

physical information content of the SAR image is nothing more than the band-limited 

projection of the scene reflectivity into the SAR image geometry (Elachi, 1987). The 

reflectivity function of the scene depends mainly on the frequency, the polarization, and the 

imaging geometry. Thus, the physical information content of SAR images depends also on 

the choice of these diversified parameters (Henderson & Lewis, 1998). As stated in the 

beginning of this chapter, radar imaging systems operate within the microwave region at 

frequencies from 3 MHz up to 300 GHz with corresponding wavelengths from 100 m to 1 

mm. Most commonly, civil radars nowadays operate at P- , L- , S- , C- , or X-band (Fig. 2.1). 

With respect to polarization, conventional SAR systems employ linearly polarized antennas 

(horizontally and/or vertically) in a single-, dual-, or fully polarimetric mode. In case of the 

single polarization mode the pulse is transmitted in a single polarization defined by the 

antenna, and the backscattered signal is received in the same polarization (Boerner et al., 

1998). The most common mode of dual-polarization systems is to transmit in a single 

polarization and to receive at two orthogonal polarizations. This is for example the case for 

the dual-polarization mode of ALOS PALSAR (ERSDAC, 2008). Finally, the complete 

polarimetric information in form of the scattering matrix is measured by fully polarimetric 

systems. These systems, also referred to as quad-polarized, are capable of simultaneous 

transmission and reception in two orthogonal polarizations, completely retaining the relative 

phase information. The information content of such fully polarimetric radar data is discussed 

in detail in section 5.6, while that of dual-polarized data is discussed in section 5.7. 
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2.2.1 Radar Penetration Depth 

 

One of the important features of radar remote sensing is the penetration capability of 

microwaves into material media. The penetration depth or skin depth is a function of the 

density and the moisture content of the illuminated medium, as well as frequency and 

polarization dependent (Ulaby et al., 1981b; Hajnsek et al., 2003b). Hence, the information 

content depends again on the frequency and polarization. Considering a dry medium, for 

example, shorter wavelengths (i.e. X- or C-band) interact predominantly with its upper layer 

and thus the obtained radar image contains information only about this part of the illuminated 

medium. In contrast, by using radars operating at lower frequencies (L- or P-band), the 

incident waves penetrate further into the medium, and the obtained images may contain 

information about deeper layers. Generally speaking, the penetration depth of the radar beam 

with a given frequency depends on soil characteristics and moisture state. It is typically in the 

order of some tenths of the wavelength up to half a wavelength. Ulaby et al. (Ulaby et al., 

1981a) observed that penetration depth decreases with increasing mv at frequencies from 1.3 

to 10 GHz. They pointed out that at frequencies higher than 4 GHz the penetration depth 

decreases rapidly below 1 cm if mv is high. 

The depth of signal penetration was intensively investigated in the context of the SIR- A and 

B missions (Elachi et al., 1984; Farr et al., 1986; Schaber et al., 1986). One of the key 

findings was that maximum radar imaging depth can be as large as 3 m when the soil has a 

favorable distribution of particle sizes and an extremely low moisture content as occurs, for 

instance, in active sand dunes. In a more recent study by Nolan & Fatland (2003) the authors 

conclude from DInSAR measurements that a change in soil moisture will cause a change in 

penetration depth in the order of a millimeter per 1%, above a soil water content of 10 Vol.-%. 

Moreover, they found that for C-band in soils with typical moisture contents > 10 Vol.-%, the 

penetration depths remains less than 10 mm.  

 

In case of vegetation-covered soils, the penetration capabilities of a radar beam at a given 

frequencies is additionally governed by the geometry of the canopy parts, the dielectric 

properties (i.e. the water content) of the canopy parts, as well as the vegetation volume 

fraction in the canopy (volume of plant material per unit volume of canopy, which is mostly 

air). If the water content of the vegetation is low, as is the case for many types of crops 

during the fruit-filling stage prior to harvest (e.g. cereals), the penetration depth can be 
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significantly higher than it is when the vegetation is green and lush (Ferrazzoli et al., 1992). 

A schematic illustration of the relation between penetration depth and wavelength is shown in 

Fig. 2.2. It can be seen that the longer wavelength at L-band penetrates much better than the 

shorter wavelength at C-band. In the extreme case of forest vegetation, there is no soil 

component in the received signal at C-band, while at L-band the forest soil still receives 

typically about 30% of the transmitted energy (Masanobu Shimada, personal communication, 

EUSAR, June 8, 2010). 

 

Figure 2.2: Schematic representation of radar penetration into vegetation and soil at L- and C-band 

(redrawn after Ulaby et al., 1981b). 

 

 

2.3 SAR Imaging Geometry 

 

As already mentioned, a monostatic SAR can, albeit in a simplified manner, be described as 

an imaging system consisting of a pulsed microwave transmitter/receiver antenna and a 

receiver unit. SARs are mounted on a moving platform and operate in a side-looking 

geometry as illustrated in Fig. 2.3.  
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Figure 2.3: SAR imaging geometry in strip-map mode. 
 

 

The SAR imaging system is situated at a height H and moves with a velocity VSAR. The 

aperture is aimed perpendicular to the flight direction, referred to as azimuth (y). The antenna 

beam is then directed slant-wise toward the ground with an angle of incidence θ0. The radial 

axis or radar-line-of-sight (RLOS) is referred to as slant-range (r). The area covered by the 

antenna beam in the ground range (x) and azimuth (y) directions is the so-called antenna 

footprint. The scanning is provided by the movement of the platform along the flight 

direction. The area scanned by the antenna beam is known as the radar swath. The antenna 

footprint is defined by the antenna apertures dimensions (θX, θL) given by 
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where LX and LY correspond to the physical dimensions of the antenna, while λ denotes the 
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From the Fig. 2.4 and 2.5, the approximated expression of the range swath (∆X) and the 

azimuth swath (∆Y) can be derived as 

 

 

0

0

cosθ
θ XR

X ≈∆  and YRY θ0≈∆  (2.2) 

 

where R0 is the distance between the radar and the center of the antenna footprint. RMIN and 

RMAX represent the near range (nearest to the nadir point) and far-range distances, 

respectively.  

 

 

Figure 2.4: Broadside view of the SAR geometry 

in altitude ground-range domain. 

 

Figure 2.5: Broadside view of the SAR geometry 

in slant-range azimuth domain. 

 

 

2.4 SAR Spatial Resolution 

 

Among the most important quality criteria of a SAR imaging system is its spatial resolution. 

This property describes the ability of the imaging radar to separate two closely spaced targets. 

For a high resolution in range direction, very short pulse durations are necessary. Besides, in 

order to obtain a sufficient signal-to-noise ratio (SNR) it is important to generate short pulses 

with high energy to enable the detection of the reflected signals. A major limitation in the 

design of a SAR, however, is the fact that the equipment required to transmit such a very 
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short high-energy pulse is intricate to achieve with practical antennas. For this reason, high 

energy is generated by transmitting a longer pulse where the energy is distributed over the 

duration of the longer pulse. To achieve the range resolution comparable to the use of short 

pulses, the so-called pulse compression technique (Skolnik, 1981) is used. That is, the 

emitted pulses are linearly modulated in frequency for duration of time TP. The frequency of 

the signal sweeps a band B centered on a carrier at frequency f0. Such a signal is called chirp. 

The received signal is subsequently processed with a matched filter which compresses the 

long pulse to an effective duration equal to 1/B (Moreira et al., 1996). The slant range 

resolution is then given by 

 

 

B

c
r

2
≈δ  (2.3) 

 

where c is the speed of light. 

 

The ground range resolution δx is the change in ground range associated with a slant range of 

δr, with 

 

 

θ
δ

δ
sin

r
x ≈  (2.4) 

 

where θ denotes the incidence angle. Hence, the ground range resolution varies nonlinearly 

across the swath.  

 

In the along-track direction, the echoes of two reflecting objects are received by the antenna 

at the same time when both targets are in the radar beam simultaneously. However, the 

reflected echo from a third object, located outside the radar beam, is not received until the 

radar moves on. At the time the third target is illuminated, the first two are no longer 

illuminated, and thus the echo of this target can be recorded separately. In case of a real 

aperture radar, two objects in the azimuth or along-track resolution can be separated only if 

the distance between them is larger than the radar beamwidth. Thus, the azimuth 

instantaneous resolution for a range R0 is given by (Reigber, 2001)  
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Hence, it can be seen that high resolution in azimuth requires large antennas. The solution to 

achieve high resolution without the use of impractical large antennas is given by the concept 

of synthetic aperture (Brown, 1967; Elachi, 1987). The basic idea behind this concept is to 

simulate a very long antenna by moving a small antenna along the flight direction (Curlander 

& McDonough, 1991). Based on the exploitation of the Doppler Effect (Kownacki, 1967), the 

coherent integration of the received signals along the flight track allows synthesizing a long 

(virtual) antenna. The maximum length for the synthetic aperture is the length of the flight 

path from which a target is illuminated and is equal to the size of the antenna footprint on the 

ground (∆Y). If a scattering target, at a given range R0, is coherently integrated along the 

flight track, the azimuth resolution is equal to 

 

 

2
YLy =δ  (2.6) 

 

It is interesting to note that the resolution in azimuth is determined only by the physical size 

of the real antenna of a radar system, while being independent of range and wavelength. The 

corresponding azimuthal resolution expression for an orbital SAR imaging system is given by 

(Oliver & Quegan, 2004) 
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where RE is the Earth’s radius and H is the platform altitude. 

 

Today the constraints on the spatial resolution of a SAR system are given by practical 

limitations on the transmitted power, the data rate, and bandwidth leading to resolutions of 

several meters at lower frequencies (e.g. L-band) and in the order of one meter or better at 

high frequencies (e.g. X-band). In case of the follow-on mission to the Japanese ALOS 

(Kankaku et al., 2010), which will be launched in 2013, the large bandwidth of 80 MHz at the 

L-band center frequency requires a diligent coordination with space-borne navigation systems 
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(e.g. GPS, Galileo) operating at similar frequencies. This will allow spatial resolutions of up 

to 3 m, what is very high for an L-band system.  

  

2.5 SAR Complex Images 

 

A SAR image can be described as a 2-D array of pixels formed by columns and rows where a 

pixel is associated with a small area of the Earth’s surface. The size of these image resolution 

cells depends only on the SAR system characteristics. Each of them provides a complex 

number (amplitude and phase information) which is associated to the reflectivity of all 

scatterers situated within the pixel. It is important to note that the surface reflectivity, usually 

expressed as the radar backscattering coefficient σ0, is a function of the radar system 

parameters (frequency f, polarization, incidence angle θi of the emitted EM waves) and of the 

surface parameters (topography, local incidence angle, roughness, dielectric properties of the 

medium, moisture content, etc.). The backscattering coefficient σ0 will be discussed in detail 

in section 2.7. 

 

 

Figure 2.6: Geometric effects of terrain slope variations. 
 

It should be emphasized that the knowledge of the imaging geometry is essential for the 

physical interpretation of a SAR image. Of special importance is the radar look angle (RLA) 
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which is defined as the angle between the vertical of the antenna to the ground and the range 

direction as shown in Fig. 2.6. On the one hand, the scattering process itself depends on the 

direction of the incident wave. On the other hand it directly effects the projection which 

defines the mapping of the scene into the SAR image. Due to this projection, information 

about the spatial structure of the scene is lost. Consequently, all points located at the same 

range distance to the sensor are mapped into the same position in the image independently of 

their individual height. This circumstance leads to the characteristic geometric distortion 

effects in SAR images. In case of a flat planar scene without any topographic variations, all 

points in the scene are located at the same height so that the geometric distortion is caused 

only by the RLA variation over range. Hence, the geometrical relationship between the scene 

and the corresponding image is given completely by the radar look angle. For a non-planar 

natural terrain, however, the topography has a considerable impact on the SAR images. Since 

the imaging SAR system is a side-looking radar sensor with an illumination perpendicular the 

flight direction, the cross-track dimension in SAR images is determined by a time 

measurement associated with the direct distance from the radar to the point of the surface 

(Meier et al., 1992). Thus, in the case of topographic variations inside the illuminated scene, 

SAR images present inherent geometrical distortions that are due to the difference between 

the slant range and the horizontal distance or ground range as illustrated in Fig. 2.7. Of the 

three different inherent distortions, radar shadow, foreshortening, and layover, the last two 

are considered as the main specific distortion sources in SAR imaging (Curlander & 

McDonough, 1991). 
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Figure 2.7: Schematic representation of the ground range to slant range projection. 

 

 

Foreshortening is a dominant effect in mountainous areas and probably the most striking 

feature in SAR images along the range direction. Especially in the case of steep-looking 

space-borne sensors, the cross-track slant-range difference between two points located on 

fore slopes of mountains are smaller than they would be in flat areas. This effect results in a 

cross-track compression of the radiometric information backscattered from fore slope areas as 

shown in Fig. 2.8. It can be seen that the points A, B, and C are equally spaced when 

vertically projected on the ground. However, the distance between A’ and B’ is considerably 

shortened compared to the distance between B’ and C’, because the mountain top is relatively 

closer the SAR system and the mountains seem to “lean” towards sensor.  
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Figure 2.8: Foreshortening effect. 
 

 

Due to the fact that a target on the top of the mountain is relatively closer to the SAR sensor 

than a target located in the valley, in the case of a very steep slope, the foreshortening is 

“reversed” in the slant range image. This phenomenon, where the ordering of surface 

elements on the radar image is the reverse of the ordering on the ground, is called layover 

(Fig. 2.9).  

 

 

Figure 2.9: Layover effect. 
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Finally, slopes turned away from the radar illumination with an angle that is steeper than the 

sensor depression angle, provoke radar shadow as illustrated in Fig. 2.10. Shadow regions 

appear as dark areas in SAR images, corresponding to a zero signal. Note that due to the 

system noise level of the radar sensor, the intensity level of such a region still may not be 

zero. As can be seen from Fig. 2.10, the geometry of the mountain determines that the 

segment between the points B and C is not contributing to the slant range direction.   

 

 

Figure 2.10: Radar shadow effect. 
 

 

2.6 Radar Backscattering Coefficient 

 

In the previous sections SAR systems were treated as imaging instruments. In this section 

SAR shall be considered as a measurement instrument. It is important to note that the 

quantitative use of SAR data, as opposed to the qualitative, requires calibrated images. In 

other words, the comparison of data from different sensors and/or modes, the extraction of 

geophysical parameters by using models, multitemporal studies, etc., can only be carried out 

using well calibrated SAR data. The procedure to establish the relation between the pixel 

values of a radar image and the physical observable is called radiometric calibration. It can 

be considered as a two-step process: i) relative calibration accounting for the relative 

relationship within the image, and ii) absolute calibration to establish absolute observables 
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comparable between different SAR images with different imaging geometries (Freeman, 

1992).  

For distributed targets, the intensity information of the SAR image is expressed in terms of 

the radar brightness and the radar backscattering coefficient. The radar brightness β0 

corresponds to the average radar cross section (RCS) per unit image area (Wang et al., 2006), 

i.e. the pixel or resolution cell, in dB and is the standard radiometric product for uncalibrated 

radar images. It is a direct result of the amplitude of the received signal expressed in terms of 

the digital number DN as 

 

 









×=

K

DN 2

10
0 log10β  (2.8) 

 

where K is the so-called absolute calibration constant, which is derived - in the ASAR and 

PALSAR case - from measurements over precision transponders during the Cal/Val periods. 

For the ASAR sensor aboard ENVISAT K is 55 dB (Rosich & Meadows, 2004) and for the 

PALSAR sensor aboard the ALOS K is -83 dB (Shimada et al., 2009).  

 

The radar backscattering coefficient σ0 is defined as the average RCS per unit ground area in 

dB. Hence, σ0 can be obtained by normalizing β0 to the ground patch corresponding to the 

projection of each pixel onto the ground with  

 

 θβσ sin00 ×=  (2.9) 

 

The angle θ is the local incidence angle (LIA), also known as angle of incidence (AOI), 

defined as the angle between the incident radar beam to the surface normal (Fig. 2.6). The 

radiometric resolution describes the ability of a SAR sensor to discriminate differences in σ0, 

and thus indicates its quality as a measurement instrument. It can be seen from Eq. (2.9) that 

the incidence angle is important in order to obtain the normalized intensity observable. As 

mentioned above, the values of σ0 are defined by the physical and electrical properties of the 

target, by the wavelength and polarization, as well as by the radar look angle.  
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In case of a flat terrain, the local incidence angle corresponds to the radar look angle and can 

be estimated directly from the imaging geometry as 

 

 







 −
=

0

arccos
R

zH
θ  (2.10) 

 

where H is the platform altitude above mean sea level, z  is the averaged terrain elevation, 

and R0 is the slant-range distance to the target. However, it is important to understand that the 

local incidence angle is no longer given by the radar look angle if topographic variations are 

present in the scene. Then the relative orientation of the terrain – in terms of its surface 

normal – is required to estimate the LIA. In general, this information cannot be extracted 

from a single SAR image. Commonly, this is accounted for by using an ancillary digital 

elevation model (DEM) of the imaged terrain (Small et al., 2004; Small et al., 2009).  

 

2.7 Speckle 

 

It is a well known fact that SAR images usually display a noiselike characteristic over 

distributed targets. This typical granular appearance, known as speckle, is inherent to all 

kinds of coherent imaging systems operating at wavelengths smaller than the spatial 

resolution. It is a consequence of the interference of the individual scattering processes 

occurring within an image pixel.  
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Figure 2.11: Schematic illustration of distributed targets and imaging geometry. 
 

 

Distributed targets can be modeled to consist of a large number of randomly distributed 

discrete scatterers as illustrated in Fig. 2.11 (Goodman, 1976; Lee, 1981; Durand et al., 1987; 

Lopes et al., 1990; Nezry et al., 1991; Lee et al., 1994; Touzi, 2001; Lopez-Martinez et al., 

2008). In this context, the total scattered field is given by the coherent superposition of the 

contributions of each of these discrete scatterers. The phase of each contribution depends on 

the location of the corresponding target inside the resolution cell. Their individual scattering 

contributions sum up coherently resulting in a single complex value measured by the sensor, 

so that the total returned modulation of the transmitted EM wave is 
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where A is the amplitude, φ  is the phase, and N is the number of discrete targets within the 

cell. As their location varies from pixel to pixel, the resulting total scattered field varies in 

amplitude and phase accordingly (see Fig. 2.12).  
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Figure 2.12: Coherent sum of discrete scatterers within one image pixel. 

 

It is important to emphasize, that speckle is not noise but the result of constructive and 

destructive interferences between the complex returns from the scatterers within a resolution 

cell, and thus a real electromagnetic measurement. In this sense, the same imaging 

configuration always leads to the same speckle pattern. However, speckle limits the 

radiometric resolution reducing the subsequent ability to discriminate between different 

intensity levels. It can be reduced by averaging (multi-looking) on the cost of spatial 

resolution. This averaging can be carried out by different approaches, e.g.: i) by averaging 

adjacent pixels in the SAR image (spatial domain multi-looking), ii) by dividing the synthetic 

aperture into segments, which are processed separately to individual images and averaged 

incoherently afterwards (frequency domain approach). In the last three decades, a large 

variety of speckle filter algorithms have been developed in order to fulfill the requirements 

for different applications of SAR imaging (e.g. Frost et al., 1982; Nezry et al., 1991; Lee et 

al., 1991; Touzi & Lopes, 1994; Quegan & Rhodes, 1995; Lee et al., 1999b; Lee et al., 2006; 

Lopez-Martinez et al., 2008; Lee et al., 2009). 

 

2.8 ENVISAT-1 ASAR 

 

The Advanced Synthetic Aperture Radar (ASAR) was launched aboard the ENVISAT-1 

satellite by the European Space Agency (ESA) in March 2002. ENVISAT-1 is an advanced 

polar-orbiting Earth-observation (EO) satellite providing measurements of the atmosphere, 

ocean, land, and ice. The mission had an ambitious and innovative payload designed to 
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ensure the continuity of the data measurements of the predecessors ERS-1 and ERS-2. 

Altogether the platform carries ten remote sensing instruments and is considered not only the 

most expensive European EO satellite but with a payload of more than 8.2 t also the largest. 

ENVISAT-1 revolves around the earth in a sun-synchronous polar orbit (SSO) with a 

nominal reference mean altitude of 800 km and 98.55 degree inclination. The orbital repeat 

cycle is thus 35 days. The ASAR instrument is a coherent, active phased-array SAR which 

derives from the Active Microwave Instrument (AMI) of ERS-1/2. It operates at C-band with 

a center frequency of 5.331 GHz and a corresponding wavelength of 5.62 cm. The antenna is 

10 m x 1.33 m in size and consists of 320 T/R (Transmit/Receive) modules which are 

arranged in 20 tiles with 16 T/R modules each. This phased array design enables not only to 

adjust the incidence angle via beam steering but also allows for the first time satellite radar 

acquisitions with alternating polarization. The main characteristics of the instrument are 

summarized in Tab. 2.1. The ENIVISAT-1 satellite and the space-borne ASAR sensor are 

shown in Fig. 2.13. Detailed instrument descriptions and technical information can be found 

in ESA (2007). 

 

 

Figure 2.13: ENVISAT-1 in orbit (left) and the ASAR aperture in the laboratory (right); 

(courtesy of ESA and EADS Astrium) 
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Table 2.1: ASAR instrument parameters 

 

Launch Date March 1, 2002 

Launch Vehicle Ariane 5 

Orbit 

Sun-Synchronous Polar Orbit  

Repeat Cycle: 35 days 

Altitude: 799 to 801 km (at Equator) 

Inclination: 98.55 deg. 

Mode Image  
Alternating 

Polarization 
Wide Swath  

Center Frequency 5331 MHz (C-band) 

Chirp Bandwidth up to 16 MHz 

Polarization VV or HH 
VV+HH, HV+HH 

or VH+VV 
VV or HH 

Incidence Angle 15 to 45 deg. 15 to 45 deg.   

Range Resolution 25 m 30 m  150 m 

Observation Swath 56 to 100 km 56 to 100 km 406 km 

Radiometric Resolution 1.5 dB 2.5 dB 1.5 to 1.7 dB 

Radiometric Accuracy 0.32 to 0.40 dB 0.5 to 0.55 dB 0.32 to 0.42dB 
 

 

 

The instrument design allows for acquisitions in different images modes and with selectable 

swaths. The modes of interest for regional geophysical parameter inversion are namely the 

Image Mode (IM), the Alternating Polarization (AP) modes, and the Wide Swath (WS) mode. 

 

• Image Mode of the ASAR sensor generates the highest possible spatial resolution 

products (Davidson et al., 1998) similar to the ERS-1/2 SAR products. This mode can 

image one of seven different swaths (IS1-IS7) spread over a range of incidence angles 

from 15 to 45 degrees in horizontal (HH) or vertical (VV) co-polarization. The standard 

swath is IS2 corresponding to the incidence angle of the ERS missions of 23 degrees. 

This mode offers the highest geometric and radiometric accuracy and thus is the first 

choice for quantitative geophysical investigations. 

• Alternating Polarization Mode can also generate high resolution products in any swath 

but with changing polarizations of the ASAR subapertures. By employing a ScanSAR 
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technique (Guarnieri & Prati, 1996), albeit without changing the subswath, this mode 

provides dual polarized images of a scene. It should be noted that the radiometric 

accuracy is reduced compared to IM. Moreover, it is essential to emphasize that ASAR 

AP is a non-coherent polarimetric radar configuration that does not allow applying 

PolSAR techniques as discussed in chapter 5.  

• Wide Swath Mode uses the ScanSAR technique to provide images covering a larger strip 

of the Earth’s surface. The total swath width is approximately 400 km and is composed of 

five subswaths which are illuminated by bursts of pulses. ASAR WS acquires scenes in 

HH or VV polarization with a reduced resolution of 150 m. This mode is suitable for the 

derivation of large scale surface soil moisture patterns as described in chapter 6.  

 

2.8.1 Basic Processing of ASAR Data 

 

It should be noted that there is no standard processing chain for SAR images. Principally, the 

processing depends on how the data was acquired (radar system and acquisition mode). 

Additionally, the type of product that is envisaged determines how intermediate SAR 

products will be further processed. In this study all image processing were performed using 

ENVI (ITT Visual Information Solutions, Boulder, USA) and the add-on module SARscape 

(sarmap, Purasca, Switzerland). The processing steps are outlined in Fig. 2.14. 

 

 

Figure 2.14: Basis processing chain for ENVISAT-1 ASAR data. 
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After header analysis, full resolution extraction is carried out to produce single look complex 

images (SLC). Wide Swath data must to be multi-looked separately for each of its 5 sub-

swaths to produce the slant range intensity image with square resolution cells. The resolution 

of the WS SLC image is 150 m. Image Mode data is multi-looked with a factor of 5 resulting 

in SLC images with 25 m ground resolution. Auxiliary orbit and calibration information for 

each ASAR image are used to yield the most accurate multi-looked intensity images (Rosich 

& Meadows, 2004). The DORIS (Doppler ORbitography and Radiopositioning Integrated by 

Satellite) data provide precise orbital information for ENVISAT ASAR, whereby two 

different versions of this information are available. We used the verified orbits (VOR) since 

they provide the most precise location information. However, VOR data are not available 

until one month after the actual satellite acquisition, at the earliest. In addition, the most 

recent XCA (eXternal CAlibration data) files were used to assure best radiometric accuracy 

(ESA, 2007). These ancillary ASAR data are also used in the following processing steps. 

 

In order to render the application of a multi-temporal speckle filter possible, and to assure 

completely identical geometries, the multi-look images were co-registered subsequently. This 

step requires spatial registration to correct for relative translational shift, rotational and scale 

differences. Co-registration can be described as the process of superimposing, in the slant 

range geometry, two or more SAR images having the same acquisition geometry (Meijering 

& Unser, 2003).  

 

Speckle was reduced in a two step approach. A first step to reduce the speckle is inherently 

performed as part of the multi-looking procedure through averaging range and/or azimuth 

resolution cells to produce the spatial resolution of the WS images. According to De Grandi 

et al. (1997), multi-temporal speckle filtering should be applied whenever two or more 

images of the same scene taken at different times are available. By exploiting the space-

varying temporal correlation of speckle between images, this filtering process significantly 

reduces the noise. Hence, we used a multi-temporal De Grandi filter for despeckling of the 

images. 

  

After despeckling, the images were geocoded and radiometrically calibrated to σ0. The 

ASAR images were orthorectified and terrain corrected using a high resolution (10 m) 

airborne laser scanner DEM (Sci Lands, 2008). As discussed in section 2.7, local terrain 
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slopes and aspects with respect to the incident wave result in significant radiometric as well 

as geometric distortions in the recorded backscatter amplitude (Meier et al., 1993). Also 

effects of variations in the scattering area must be accounted for (Ulander, 1996; Small et al., 

2004). These terrain corrections including an incidence angle correction were performed prior 

to calculating the surface soil moisture using ArcGIS (Esri, Redlands, USA). 

 

2.9 ALOS PALSAR 

 

The Phased Array type L-Band Synthetic Aperture Radar (PALSAR) was developed by the 

Japanese Ministry of Economy, Trade and Industry (MITI) as a joint project with the Japan 

Aerospace Exploration Agency (JAXA). The sensor was launched on January 24, 2006, 

aboard the Advanced Land Observing Satellite (ALOS). ALOS follows the Japanese Earth 

Resources Satellite-1 (JERS-1) and Advanced Earth Observing Satellite (ADEOS) and 

utilizes sophisticated land-observing technologies. The platform carries three advanced 

remote sensing instrument. Apart from the PALSAR sensor, these are the Panchromatic 

Remote-sensing Instrument for Stereo Mapping (PRISM) and the Advanced Visible and Near 

Infrared Radiometer type 2 (AVNIR-2) for precise land coverage observation. After the 

calibration and validation (Cal/Val) period, routine operations have been conducted since 

October 24, 2006. ALOS revolves around the earth in the sun-synchronous orbit of 691.65 

km and 98.16 degree inclination resulting in 14 revolutions per day, or once every 100 

minutes. The return to the original path (repeat cycle) is every 46 days, and the inner-orbit 

distance is approximately 59.7 km on the equator. PALSAR operates at L-band with a center 

frequency of 1.27 GHz and a corresponding wavelength of 23.62 cm. The antenna is 8.9 m x 

3.1 m in size and consists of 80 fully independent T/R modules. Besides the beam steering 

capability to adjust the off-nadir angles, the main advantage of this design is the fact that the 

system can operate in quad-polarized configuration. In effect, ALOS was the first satellite 

capable of fully polarimetric radar imaging. Tab. 2.2 gives an overview of the instrument 

main characteristics. Fig. 2.15 shows the PALSAR antenna mounted to the ALOS spacecraft. 

Detailed technical information can be found in JAXA (JAXA, 2007).  
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Figure 2.15: ALOS PALSAR in orbit (left) and in the laboratory (right);  

(images courtesy of Dr. Shimada, JAXA) 
 

 

Table 2.2: PALSAR instrument parameters 

 

Launch Date January 24, 2006 

Launch Vehicle H-IIA 

Orbit 

Sun-Synchronous sub-recurrent 

Repeat Cycle: 46 days 

Altitude: 691.65 km (at Equator) 

Inclination: 98.16 deg. 

Mode Fine ScanSAR 
Polarimetric 

(experimental)  

Center Frequency 1270 MHz (L-band) 

Chirp Bandwidth 28 MHz 14 MHz 14 to 28 MHz 14 MHz 

Polarization HH or VV 
HH+HV or 

VV+VH 
HH or VV HH+HV+VH+VV 

Incidence Angle 8 to 60 deg. 8 to 60 deg. 18 to 43 deg. 8 to 30 deg. 

Range Resolution 7 to 44 m 14 to 88 m  100 m  24 to 89 m 

Observation Swath 40 to 70 km 40 to 70 km 250 to 350 km 20 to 65 km 

Radiometric Resolution < 1 dB < 1 dB < 1.5 dB 1  to 1.2 dB 

Radiometric Accuracy 0.22 to 0.34 dB 0.22 to 0.54 dB 0.22 to 0.76 dB 0.22 to 0.76 dB 
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PALSAR can perform different acquisition modes: 

• High resolution mode is the most commonly used under regular operation. It actually 

encompasses two different modes: i) Fine Beam Single (FBS) polarization mode 

measures with a horizontally co-polarized (HH) signal only. At the time of launching, its 

finest ground resolution of approximately 7 m was the highest as a SAR loaded on a 

satellite. ii) Fine Beam Dual (FBD) polarization mode is an innovative coherent-on-

receive configuration transmitting a horizontally polarized signal and simultaneously 

receiving the backscattered co- (HH) and cross-polarized (HV) signals. PALSAR FBD 

images are acquired with a ground resolution of approximately 15 m and can be used, 

albeit in a limited sense compared to fully polarimetric configurations, for advanced 

PolSAR applications as discussed in chapter 5.  

• ScanSAR mode enables to switch off-nadir angle from 3 to 5 times (scan by the swath of 

70 km) to cover wide swaths from 250 km to 350 km. This mode operates also with an 

HH single-polarized signal, but the resolution is with 100 m inferior to the high resolution 

mode.  

• Polarimetry mode (PLR) allows multi polarimetric acquisitions by simultaneous 

transmission and reception of HH, HV, VH, and VV polarizations. Since the T/R modules 

are split up into four groups – one for every polarization – quad-pol operation provides 

only a reduced spatial resolution of approximately 25 m. It should be mentioned that due 

to higher energy consumption the operation time is limited and frequent acquisitions are 

usually not available. PALSAR was the first space-borne sensor capable to measure the 

full scattering matrix as discussed in chapter 5. Its experimental PLR mode has been 

highly anticipated by the PolSAR community which considers the launch of ALOS as the 

beginning of the “golden age of polarimetry” (Boerner et al., 2010).  

 

Due to the fact that the description of polarimetric ALOS PALSAR image processing 

requires a prior consideration of radar polarimetry theory, it will be dealt with later on in 

chapter 7.  

 

In order to close this chapter it is worth showing two examples of ASAR and PALSAR image 

products. In Fig. 2.16 two SAR images of the Selhausen area are presented: an ASAR Image 

Mode acquisition on the left and a PALSAR Fine Beam Dual polarization acquisition on the 

right hand side. The vertically co-polarized (VV) ASAR scene was acquired in descending 
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orbit on June 7, 2008. The calibrated image has a spatial resolution of 25 m. The PALSAR 

scene is cross-polarized (HV) and was acquired in ascending orbit on June 22, 2008. The 

pixel size of the calibrated image is 15 m. All basic image processing performed in this study 

was carried out using ENVI® (ITT Visual Information Solutions, Boulder, USA) and the add-

on module SARscape® (sarmap, Purasca, Switzerland). The exact processing and calibration 

steps for ASAR and PALSAR images are discussed in detail in sections 2.9.1 and 7.2, 

respectively.  

 

 

Figure 2.16: The Selhausen test site in ASAR Image Mode VV polarization (left) and PALSAR Fine 

Beam Mode HV polarization (right). 

 

 

It can be seen that the two images differ from each other substantially. The time lag between 

the acquisitions is only 15 days, it is thus reasonable to assume that the great difference stems 

6°28'0"E6°27'0"E6°26'0"E

5
0
°5
3
'0
"N

5
0
°5
2
'0
"N

5
0
°5
1
'0
"N

Ü

0 1,000500
m

6°28'0"E

6°28'0"E

6°27'0"E

6°27'0"E

6°26'0"E

6°26'0"E

5
0
°5
3
'0
"N

5
0
°5
2
'0
"N

5
0
°5
1
'0
"N

Ü

7-18
sigma nought [dB]

7-25
s igma nought [dB]



Remote Sensing with Synthetic Aperture Radar Imaging 

 

 

35 

not from significant changes in the vegetation conditions. In fact, the variations are primarily 

caused by different frequencies (C- and L-band), polarizations (VV and HV), and viewing 

geometries (ascending and descending orbit). In the ASAR case, we can just distinguish 

different fields while the PALSAR images with superior spatial and radiometric resolution 

allows identifying tree hedges, forests, arable land, and build up area easily. Another aspect 

worth mentioning is the fact that at C-band the reflection is substantially higher than at L-

band. This is mostly due to the lower reflectance in the cross-polarized channel and the 

higher penetration capability of the longer waves resulting in higher attenuation of the signal. 

However, the return from manmade structures, where no penetration occurs, is always larger 

in the L-band image because of the absolute higher transmitted energy. 
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3. Soil Surface Physical Properties 
 

 

The following chapter provides an outline of the main parameters describing the dielectric 

and geometric characteristics of natural soil surfaces as far as they are of importance for 

microwave remote sensing. The chemical and physical processes influencing theses surface 

properties will be briefly reviewed and the corresponding variables used for their description 

and parameterization will be introduced. It will be discussed how these observables can be 

measured, and why it is important to measure them. First of all, it is important to define what 

soil is. In general, soil is often described as the relatively thin mantel of porous media over 

the land surface of the earth with properties varying widely over time and space. Its solid 

phase consists of the inorganic products of weathered rock or transported material together 

with the organic products of the inhabited flora and fauna. Thus, relevant parameters to 

determine the properties of a soil are time, parent material, climate, vegetation, as well as 

topography (Jenny, 1994). It should be mentioned that the definition of the soil surface itself 

is somewhat arbitrary, meaning different things to different people working in different 

disciplines and at different scales. In geosciences, the soil surface is often defined as being 

the top 2.5, 5, 10, or 15 cm of the soil column (Snell et al., 1950; Mortland, 1954; Bulfin & 

Gleeson, 1967; Bond & Willis, 1971; Shaver et al., 2002). In the context of radar applications, 

however, the soil surface is basically defined by the radar penetration depth. As will be 

discussed below, it hence varies as a function of the given radar band, of the soil moisture, as 

well as of the soil texture and density (Ulaby et al., 1982b).  

 

3.1 Soil Moisture Content 

 

Soils can be regarded as a three phase system of solid particles, soil water, and soil air within 

spatial and time variations of the soil matrix. According to their grain size, soil particles are 

classified into sand, silt, and clay in the descending order. The water within the soil matrix 

represents the porosity part consisting of a portion tg VV /  (volume of gas/bulk density of a 
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quantity of soil) occupied by soil air and another tl VV /  (volume of liquid/total volume of a 

quantity of soil) occupied by soil water. The amount of water in a soil can be expressed as 

 

 water content, volume fraction tl VVR /=  (3.1) 

 water content, mass basis sv mmR /=  (3.2) 

 degree of saturation )/( gll VVVS +=  (3.3) 

 

where mv is the volumetric soil moisture and ms is the dry mass of the soil. The following 

relationship for the conversion from the mass basis to the volume fraction, which is generally 

more useful in field studies, can be obtained by combining Eq. (3.1) and Eq. (3.2): 

 

 wbmv RR ρρ /=  (3.4) 

 

Eq. (3.4) implicitly assumes that the density of water is unaffected by being adsorbed in soils, 

with bρ  denoting the soil bulk density, so that tv Vm /  is equal to the density of pure free 

water wρ . The volume fraction R is equivalent to a depth fraction representing the ratio of the 

depth of water to the depth of the soil column. Because precipitation and evapotranspiration 

are also expressed as depth of water, this form is used for the examination of gains and losses 

of water in the field (Gardner, 1986).  

 

The moisture content as a volume fraction ranges between zero at oven dryness and a 

maximum value at pore space saturation. In agronomic and hydrological applications, two 

intermediate stages are commonly recognized during the drying of wet soils. The wetter stage 

is known as the field capacity expressing the water content found when a thoroughly wetted 

soil has drained for about 2 days. The so-called permanent wilting point, constituting the 

dryer stage, expresses the moisture content found when plants wilt and do not recover. For 

most plants it occurs at about pF 4.2, with pF being the logarithm of the cm of water suction 

pressure (see Fig. 3.1). Field capacity and permanent wilting point are used as markers for the 

upper and lower boundaries of soil moisture at which water is usually available for plants. As 

found from experiments with inorganic soils, both thresholds tend to increase with increasing 

clay content in the soil. Moreover, at field capacity the degree of saturation of a sandy soil is 

far lower than the one of a clayey soil. This is due to the fact that sandy soils have a larger 
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amount of pore space made up of relatively large pores that drain quickly and remain air 

filled most of the time. As a result, the size distribution of pores influences water retention, 

water movement, and aeration of a soil. Hence, it is oftentimes more important than the size 

distribution of the soil particles (Scheffer & Schachtschabel, 2002). 

 

The so-called soil water retention describes how water is held within a soil matrix by 

absorption at surfaces of particles and in capillaries. The surface absorption is controlled by 

the specific surface area of the pores and its exchangeable cations. Clay particles, on the one 

hand, are particularly able to absorb water actively by swelling. On the other hand, surfaces 

of quartz grains are not that reactive, i.e. only limited surface absorption can occur in a bed of 

sand. Nevertheless, water can be sucked into the pores by capillary forces. As matter of fact, 

it is sometimes not possible to distinguish which of the two mechanisms, surface or capillary 

absorption controls the water retention. The relationship between water content R and suction 

S is one of the basic properties of a soil and is known as the moisture characteristics, 

sometimes also denoted as water retention curve. Fig. 3.1 gives examples of curves R(S) for 

three idealized soils drying from saturation. It can be seen, that sandy soils release more 

water at low suctions than clayey soils. Moreover, a sandy medium of fairly uniform particle 

sizes release most of its water over a small range of suction. Suctions of 1 and 150 m are 

commonly selected as useful reference points on the curve. For a wide range of soils, this 

corresponds, in an approximate way, to the water content at field capacity and at the 

permanent wilting point. The total amount of water held by a soil at a given suction is 

controlled by different properties of the soil including its texture, structure, organic content, 

and the nature of its clay minerals (Stewart & Sumner, 1992). To show the effect of these 

properties on the water content at different suctions, various regression equations have been 

established. For instance, Gupta and Larson (1979) tabulated regression coefficients for the 

prediction of water contents from the sand, silt, clay, and organic matter contents, as well as 

the bulk density for a variety of suctions. Consequently, the appropriate moisture 

characteristics can be estimated when these soil properties are known.  
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Figure 3.1: Generic relationship between water content and suction for a sand, a silt, and a clay 

texture (redrawn after Scheffer & Schachtschabel, 2002) 
 

 

3.1.1 Unique Properties of Water 

 

As is well known, liquid water possesses unique physical properties compared to most other 

liquids. This is mainly due to its strongly polarized molecular structure: The single electron 

of each hydrogen atom is bound to the oxygen atom causing a positive charge on both 

hydrogen atoms. Because the two hydrogen atoms are arranged towards one side of the 

oxygen atom, water acts as an electrical dipole with a positive pole at the hydrogen atoms 

and a negative pole at the oxygen atom. Further, a molecule of water can link up with another 

water molecule through hydrogen bounding allowing some degree of association between 

molecules of liquid water.  

In a review on the structure of water, Némethy (1966) states, as one example, the effect of 

hydrostatic pressure on the viscosity of a liquid should increase with pressure. In water, 

however, it first decreases and only after applying sufficient pressure it reaches normal values. 

This is due to the fact that the clusters of hydrogen-bonded molecules are progressively 

eliminated by increasing the pressure until the water behaves like a normal liquid. Among the 

various unique properties of water, two are of major importance in regard to soil physics. 

These are namely its high surface tension and its heat capacity. 
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Figure 3.2: Top view of the vadose zone with predominant forces restraining water in the soil. 
 

Since the centers of positive and negative charges are separated in the molecule, water 

molecules are attracted and oriented by the electrostatic field of a charged ion resulting in the 

hydration of solute ions. As evidence of the rearrangement of water molecules accompanying 

hydration, it can be observed that the overall volume is commonly reduced when adding salt 

to the water. This phenomenon is known as electrostriction. Hydration of ions can also occur 

in soils when polarized water molecules interact with exchangeable cations. It is a major 

mechanism in water absorption at the first stage of soil wetting. Further possible mechanisms 

of absorption at this first stage are intermolecular attractions between the solid surface and 

water over a short range due to van der Waals forces, as well as second hydrogen bounding 

of water molecules to oxygen atoms on the solid surface. Marshall et al. (1999) state that 

hydrogen bounding provokes a partially bounded network of water molecules originating at 

the oxygen atoms of the mineral surface and extending outward with decreasing effectiveness 

for a distance of 5 nm or more.  

 

The next section will discuss the main physical and chemical properties of the soil matrix and 

the way they are influenced by the presence of water. This is important for the understanding 

of the relationship between soil moisture content and the dielectric properties of a soil matrix.  
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3.1.2 Complex Dielectric Constant 

 

In the 1820s, Michael Faraday (1791-1867) first observed the phenomenon by which non-

conducting materials can also be influenced by electrical fields. The term dielectrica (from 

“dia-electric”) was coined by William Whewell (1794-1866) in a response to a request from 

Faraday. The key parameter describing the behavior of a non-conductor in an electrical field 

is the so-called complex dielectric constant, which depends on numerous parameters such as 

frequency, temperature, salinity and ferromagnetic substances. Under the impact of an 

external electrical field, charged particles get out of balance, while the free electrons of a 

conductor move until the electrical field inside the conductor vanishes. In dielectrica, this 

happens only partially where the free charges move until the back force in the solid body 

equalizes the force provoked by the external electrical field. As positive and negative 

particles are polar linked, they constitute electric dipoles. In the literature, this process is also 

called dielectric polarization (Jackson, 1998; Marshall et al., 1999). A pair of main 

mechanisms responsible for the polarization of dielectrica can be distinguished, namely 

deformation and orientation polarization. The energy of a dielectrica is generated by the 

orientation of the electric dipole. A first part of this energy is stored as thermal energy while a 

second part is lost due to the internal friction. Thus, the dielectrica of a material defines the 

amount of electric energy which can be stored, adsorbed and lead through the medium.  

 

The electromagnetic wave theory defines the real part of the complex dielectric constant as 

refraction or reflection of a wave at the interface between two different media (Snellius Law). 

The corresponding refraction index is a function of the incident angle and the velocity of the 

transmitted wave. The latter is related to the refractive angle and the velocity of propagation 

in the boundary layer of the wave. The refraction index is defined as the square root of the 

complex dielectric constant of the denser medium and constitutes a dielectric constant when 

related to a vacuum or the air. The complex dielectric constant can be considered as a 

measure of the response of a medium to an electromagnetic field. It is composed of two parts, 

the real and the imaginary one (Stratton, 1941; von Hippel, 1995b). The complex dielectric 

constant is given by 

 

 ''' εεε j−=  (3.5) 
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where 'ε  denotes the permittivity of a material, while ''ε  is referred to the dielectric loss 

factor of a material. The latter describes the feasibility of a medium to adsorb a wave and to 

transform its energy into another form. In this work 'ε  will always refer to the average 

relative dielectric constant of a material. It should be mentioned that for most natural surfaces 

''' εε >>  (Stratton, 1941).  

 

The imaginary part of the complex dielectric constant also describes the attenuation length of 

the electrical field in a given medium. Assuming that the propagating electromagnetic energy 

has exponential attenuation with depth, the penetration depth pδ  of the wave into a medium 

is denoted as the skin depth given by (Ulaby et al., 1981b) 

 

 

''2

'

πε
ελ

δ =p  (3.6) 

 

For a so-called slightly lossy medium pδ  is per definition about e/1  ( e  = Euler’s Number 

7183.2≈ ) of the input value (Ulaby et al., 1982b). It follows Eq. (3.6) that pδ  increases with 

increasing wavelength λ , while at the same time for a fixed λ  the skin depth generally 

increases with decreasing dielectric constant.  

 

Generally speaking, the dielectric constant of most dielectric natural media varies between 1 

and 6. It increases significantly with increasing water content, and free liquid water finally 

reaches ε up to 81 at low frequencies (Ulaby et al., 1986). This circumstance is the reason for 

the high sensitivity of the microwave spectrum towards the moisture content of the observed 

media. Note that the dielectric constant of water varies in dependence on the molecules 

rotation, e.g. freezing, tight binding to soil particles, etc. 

 

In homogeneous media, such as pure liquid water or ice, the behavior of ε is fairly well 

understood (Wang & Schmugge, 1980). For pure water the frequency dependency of the 

dielectric constant is given by the Debye equation as  
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where 0wε  is a static dielectric constant of pure water and represents a high-frequency (or 

optical) limit of wε . Both formulations are dimensionless. The relaxation time of pure water 

wτ  is measured in seconds and the electromagnetic frequency f  is given in Hz (Debye, 

1929).  

 

In dry soils the real part ε′ of the complex dielectric constant ranges from two to four, while 

typical values for the imaginary part ε′′ lie below 0.05 (Ulaby et al., 1986). As a matter of fact, 

the first water that is added to a dry soil will cause only a small increase of ε, because at first 

the molecules are tightly bound to the surface of the soil particles. Due to the behavior of the 

water molecules, as described in the foregoing section, adding more water will rapidly 

increase ε of the soil. Since the matrix forces decrease substantially with the distance from 

the surface of the soil particles, the water molecules located several layers away from the 

particles are able to move freely within the pores (Wang & Schmugge, 1980). 

 

In the literature many empirical and theoretical models to relate the dielectric constant of a 

mixture to that of its constituents have been proposed. Extensive investigations in the 

frequency range between 0.3 and 18 GHz were, for instance, conducted by von Hippel 

(1995a), Hallikainen et al. (1985), or Peplinski et al. (1995). The dielectric behavior observed 

from experimental measurements have been summarized by polynomial expressions in 

dependence on the volumetric soil water content as well as the percentage of sand and clay 

contained in the soil. It should be mentioned that these studies classify the soil particles 

according to the USGS (United States Geological Survey) system. Hence, care has to be 

taken when they are transferred to the European or FAO (Food and Agriculture Organization) 

soil classification system. In order to take out the dependence on adjustable parameters, 

Dobson et al. (1985) introduced a physical soil model only dependent on measurable soil 

characteristics, thus not requiring any adjustable parameters to fit the experimental data. The 

model is based on two parameters: the bound water fraction and the free water fraction, both 

corresponding to the pore-size distribution as calculated from the particle size distribution. 

Studies by e.g. Hoekstra & Delaney (1974), Wobschall (1977), Topp et al. (1980), De Loor 

(1983), Sihvola & Kong (1988), Ren & Tateiba (1998), Kärkkäinen et al. (2001), and Mattei 

et al. (2008) on the permittivity of dielectric mixtures indicate that for a frequency range from 

1 to 10 GHz, a two component refractive index formula considering only the volumetric 
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fraction of dry matter and free water is a sufficiently good approach for most soil types. In 

this study, the polynomial relation of the third order developed by Topp et al. (1980) is used 

for the conversion from volumetric water content mv to the real part of the complex dielectric 

constant ε′, and vice versa. As for the soil types occurring in the study area the influence of 

the imaginary part of the complex dielectric constant is almost negligible, measurements and 

evaluation of ε′′ are not considered in the following.  

 

3.1.3 Measurement of Soil Moisture 

 

First methods for measuring the amount of water contained in a soil were already reported in 

the 15th century. The most common methods for soil moisture measurements today are with 

regard to the mass, the volume or the saturation of soils. Gardner et al. (2001) emphasize that 

the measurement of soil moisture content is one of the least accurate methods in principle. 

Nevertheless, it can be considered as one of the relatively accurate methods in soil physics 

(Koorevaar et al., 1983). Still, the main problem in soil water investigations is the definition 

of the material state at which a soil can be characterized as dry (Gardner et al., 2001). In the 

literature, a large number of methods to measure directly and indirectly the soil water content 

has been described (e.g. Veihmeyer & Hendrickson, 1950; Schmugge et al., 1980; Topp et al., 

1984; Jackson, 1988; Parchomchuk et al., 1990; Dabrowska-Zielinska et al., 2002; Huisman 

et al., 2003; Serbin & Or, 2004). In principle, it can be distinguished between direct and 

indirect methods of measuring soil moisture contents. In this sense, direct methods include all 

measured processes by which the soil water is evaporated, extracted, or removed by chemical 

reactions, while indirect methods refer to the functional relations between the physical or 

chemical properties of the soil matrix and the water content of the soil. In the presented study 

two methods were used, a direct one, namely the gravimetric method, and the indirect method 

of frequency domain reflectometry (Navarro et al., 2006). Both techniques will be discussed 

in the following. 

 

3.1.4 Gravimetric Soil Moisture Determination 

 

The most common direct method to obtain the water content of a soil sample is to measure 

the mass difference before and after drying it at 105°C until reaching a constant weight. Then, 
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the mass difference mv corresponds to the water loss of the soil sample due to the drying 

process (Reynolds, 1970a). It should be noted that the endpoint of this drying process does 

not represent an entirely water free soil, but a balanced state between vapor pressure of the 

material and water vapor partial pressure in the drying region (Marshall, 1966). In this sense, 

the state for which a soil is called dry can be considered as a subjective term (Reynolds, 

1970b). The water content on a mass basis is defined in Eq. (3.2) as discussed in section 3.1. 

The gravimetric water content is given in units of g/g expressing the weight in percent after 

multiplication with 100 of the soil water in weight percent (Weight-%). In case the water 

content is expressed in volumetric percent (Vol.-%), one has to take the bulk density into 

account. Therefore, the soil samples are taken with the predefined volume of so-called stick 

cylinders. In this study we used standard cylinders with a sample volume of 100 cm³ (Fig. 

3.3). The water content as a volume fraction R, commonly expressed in Vol.-%, is obtained 

from Rm via Eq. (3.4), where bρ  is the dry bulk density of the soil and wρ  is the density of 

the water.   

 

 

Figure 3.3: Schematic representation of the stick cylinder technique. 
 

 

The technique described was introduced by Gardner (1986). In despite of its arbitrary features, 

the method is the established standard with which other estimations of soil moisture are 

compared. One downside of this approach is the fact that the nature of sampling interferes 

with continuous experiments. That is, every tested soil volume can only be sampled once. 

Moreover, when holes are dug and roots are cut, the infiltration and drainage regime is 

severely affected. Due to the typically strong heterogeneity of soil texture and/or structure 
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influencing the water retention and movement, a large number of samples may be required to 

map the spatial variability in the field. Finally it should be mentioned that the procedure is 

very time- and work-consuming. As the amount of water lost by drying increases with 

increasing oven temperature for any inhomogeneous soil containing clay or organic matter, 

the temperature has to be controlled within a range between 100 and 110°C (Reynolds, 

1970b). Holmes et al. (1967) observed that a variation of about 10% or more can occur in 

typical field samples. Taking all this into account, the gravimetric approach is rather 

unattractive in terms of a time efficient and repeatable ground data collection for remote 

sensing studies. 

 

3.1.5 Frequency Domain Reflectometry 

 

In this study frequency domain reflectometry (Navarro et al., 2006) is used as standard 

technique for in situ soil moisture measurements. Employing hand held probes with data 

loggers is one of the most time efficient methods to accurately measure distributed soil 

moisture patterns in the field. The principle of FDR is based on the well established method 

of responding to changes in the relative dielectric constant. These changes are converted into 

a DC voltage, virtually proportional to soil moisture content over a wide working range. The 

hand held probes (Theta ML2x Delta-T probes, Delta-T Devices Ltd., Cambridge, UK) 

consist of a waterproof housing containing the electronics. According to the length of its 

sharpened stainless steel rods, the measured surface soil moisture provides an average value 

for the topmost 6 cm (Fig. 3.4). The device generates a 100 MHz sinusoidal signal which is 

applied to a specially designed internal transmission line extending into the soil by means of 

the array of the four rods. The impedance of this array varies with the impedance of the soil, 

which has two components: the relative dielectric constant and the ionic conductivity. The 

choice of the 100 MHz signal frequency minimizes the effect of ionic conductivity, so that 

changes in the transmission line impedance are dependent almost solely on the soil’s relative 

dielectric constant. As mentioned earlier, the dielectric constant of water (ε′ ≈ 81) is very 

much higher than dry soil (typically ε′ ≈ 3 to 5) and air (ε′ ≈ 1), and thus, the dielectric 

constant is determined primarily by its water content. The impedance of the rod array affects 

the reflection of the 100 MHz signal, and these reflections combine with the applied signal to 

form a voltage standing wave along the transmission line. The output of the probe is an 
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analogue voltage proportional to the difference in amplitude of this standing wave at two 

points forming a sensitive and precise measure of the soil water content (Gaskin & Miller, 

1996). The output signal is 0 to 1 V DC for a range of soil dielectric constant between 1 and 

32, what corresponds to a moisture content of approx. 50 Vol.-%. Studies published over 

many years by e.g. Topp et al. (1980), Whalley (1993), White et al. (1994), or Heimovaara et 

al. (1996) show almost linear correlation between the square root of the dielectric constant 

and the volumetric moisture content for a wide range of soil types.  

 

 

Figure 3.4: Frequency domain reflectometry scheme. 
 

 

Electric transmission line theory leads to the expression for the propagation velocity of an 

electromagnetic wave in a slightly long transmission line (Stratton, 1941) as  
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where c  is the velocity of light in vacuum and ( ){ } '//''tan 0 εωεσεδ dc+= . The remaining 

symbols are the real part of the complex dielectric constant 'ε , the imaginary part ''ε , the 

zero-frequency electrical conductivity of the medium dcσ , the angular frequency ω , and the 

free space permittivity 0ε . At very high frequencies, δtan  tends to zero, so that 
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 ( ) 2
1

'εcV =  (3.13) 

 

The variation of the dielectric constant of soil with its water content R  can be estimated 

approximately by adding the three contributions εR  (water), φε  (air), and ( )[ ]εφ+− R1  

(soil). Here, R  is the volume fraction of water, φ  is the volume fraction of air-filled pores, 

and ( )[ ]φ+− R1  is the volume fraction of the soil. Consequently, it is expected that R  would 

have a functional dependence on ε  as determined for the soil in question. The most 

recognized of such a relationship was established by Topp et al. (1980) to be 

 

 32 εεε dcbaR +−+−=  (3.14) 

 

the volumetric soil water content vm  

 

 362422 '103.4'105.5'1092.2103.5 εεε −−−− ×+×−×+×−=vm  (3.15) 

 

and the relative dielectric constant 'ε  

 

 32 7.761463.903.3' vvv mmm −++=ε  (3.16) 

 

The experimental values for ε  were determined by pulse travel-times as shown in Eq. (3.15), 

and those for R  by gravimetric measurements and the use of dry bulk densities. As 

confirmed by several studies, this empirically determined third order polynomial expression 

of the dielectric constant is quasi independent of the soil type and texture, the bulk density, as 

well as the salinity and temperature of the soil (Topp & Davis, 1985; Dalton & Van 

Genuchten, 1986; Whalley, 1993). Up to now this function is regarded as a universal 

calibration function and is used in various investigations. However it should be mentioned, 

that some studies indicate a limited validity for specific soil types. For example, Herkelrath et 

al. (1991) reported significantly divergent results for soils with high organic matter contents. 

Based on extensive investigations on inorganic and organic soil types, Roth et al. (1992) 

suggest the use of two different calibration functions – one for inorganic and one for organic 

soils. 
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The accuracy of the obtained frequency domain measurements after calibration to a specific 

soil type is in the range of ±1.0 Vol.-%. However, the accuracy slightly decreases for soil 

temperatures >40°C (Gaskin & Miller, 1996). It should be noted that all studies report some 

underestimation of soil water contents for soils with high clay and/or organic matter contents. 

Some authors, e.g. Dobson et al. (1985) and Hallikainen et al. (1985), argue that this is due to 

the dielectric properties of bounded water. Minerals and swelling clay particles have a high 

surface tension enabling them to adsorb high amounts of water. Hydration of the 

exchangeable cations is largely driving this absorption as well as the accompanying increase 

in the interlayer spacing. The minerals and clay particles swell macroscopically due to this 

process. In case the solution between two parallel surfaces has a higher electrolyte 

concentration than that of an outer solution bathing the clay particle, water will be attracted 

osmotically, and consequently the distance between the surfaces will increase. Then, the 

exchangeable cations become unable to move freely out to the bathing solution and act as if 

retained with a semipermeable membrane (Koorevaar et al., 1983; Stewart & Sumner, 1992; 

Jury & Horton, 2004). Due to the strong binding of the water dipoles they lose their ability to 

rotate or polarize. Consequently, the dielectric constant of bounded water is significantly 

smaller than that of free water, i.e. it cannot be measured anymore by means of frequency 

and/or time domain reflectometry. Note that this stands in contrast to the gravimetric method 

where the drying process overcomes the binding forces. Hence, the use of a universal 

calibration function may lead to an underestimation of soil water contents. It should be 

emphasized that for some soil types, especially mineral and clay rich soils, the use of a soil 

specific calibration function is mandatory.  

 

3.2 Surface Roughness 

 

In order to address the geometric properties of a soil surface, it is important to understand that 

the solid phase of soils is composed of particles with various shapes and sizes. These particles 

are packed together in different ways, and this packing may be dense or open. The particles 

themselves may either behave as heterogeneous individuals or as clusters in so-called soil 

aggregates, where the amount of pore space and the size of the pores vary in a 



Soil Surface Physical Properties 

 

50 

complementary manner. The soil structure may then be defined as the arrangement of the 

solid particles and of the pore space between them (Low, 1954).  

 

The soil structure is determined by the size distribution of the primary particles as well as by 

the forces affecting their arrangement. Processes like swelling and shrinking, freezing and 

thawing, the movement of water, the growth and decay of plant roots, as well as the action of 

earthworms and other borrowing animals can all cause the rearrangement of the particles. 

Materials aggregating these particles are mobilized and deposited by chemical and biological 

processes in the soil. The resulting structure and especially the size, shape, and arrangement 

of the aggregates is greatly influenced by weather conditions. Soil structure itself directly 

affects many of the soil properties. Water retention and conductance are dependent on pore 

space and pore size. The properties of individual particles are in a way masked in stable 

aggregates what may result in favorable physical conditions of soils which otherwise would 

not be arable. Moreover, it affects the environment for roots by influencing the water and air 

supply. In this sense, growth of plants can be severely hampered or completely prevented by 

structures which are unfavorable to water or air movement or resistant to seedling emergence 

or root growth. 

 

From all these processes and descriptions of the soil structure, it becomes obvious that all 

natural surfaces are characterized by some kind of roughness. The scale of this roughness 

may range from geological dimensions like mountains down to sub-millimeter scales as 

found, for example, in aeolian depositions. Generally speaking, rough surfaces can be divided 

into two main categories: the deterministic and the randomly rough surfaces. The first are 

periodic surfaces with a given profile and periodic irregularities. However, natural surfaces 

are attributed to the latter class of random rough surfaces. This category is characterized by 

random irregularities on the surface. Such surfaces are best described by the statistical 

distribution of their deviation from a certain reference level (Davidson et al., 2000). 

 

In terms of the application on bare agricultural fields, randomly rough surfaces are defined as 

the relief produced by tillage operations without taking into account the straightened soil 

structure (e.g. furrows and seed grooves). In the literature the term micro-relief is also used as 

synonym. According to Romkens & Wang (1986) four different types of such a relief can be 

distinguished in relation to the size, the genesis, and the impact of the soil: i) relief size 0 – 2 
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mm, consisting of single particles and unequally distributed micro aggregates; ii) relief size 2 

– 100 mm, consisting of large unequally distributed soil aggregates; iii) relief size 100 – 200 

mm, consisting of furrows and grooves caused by systematic and equally distributed tillage 

operations; iv) relief size >100 m, surface landforms resulting from geological processes. 

Even though these relief types are not always clearly distinguishable through their attributes, 

all of them have a different impact on soil processes known as soil erosion (Lal, 1991). Since 

this study mostly deals with agricultural land surfaces, the relief size of 2 to 100 mm over 

bare arable fields is of interest. 

 

The influence of tillage operations as well as of chemical, physical, and biological processes 

on the micro-relief was investigated in numerous studies as summarized in the book of 

Marshall et al. (1999). It was shown by some authors that the micro-relief becomes finer with 

tillage (Allmaras et al., 1967; Slattery & Bryan, 1992). Others verified that roots and fungal 

hyphae are responsible for the stable crumbs by pressing soil particles together as they 

expand during growth. They separate some parts of the thoroughly ramified soil while 

compressing others, dry it, and incorporate organic matter to it. Moreover, some products 

from the decomposition of roots and other organic matter by micro-organisms may act as 

binding agents (Swaby, 1949; Emerson, 1954; Oades, 1993). The physical agents of cracks 

separating natural aggregates are mainly caused by the movement of the soil due to shrinking 

and swelling of the clay minerals. According to a hypothetical model proposed by Emerson 

(1959) the microstructure of the smallest unit of soil aggregates consists of clay domains 

linked to each other on the one hand, and of quartz grains held together by electrostatic 

bounds on the other hand. Changes in weather conditions additionally influence the micro-

relief, as for instance, surface runoff, rainfall, wind, and freezing.  

 

It should be emphasized that the characterization and categorization of roughness on arable 

fields depend on the given soil type, on the region, on the point of time when roughness 

measurements are taken, as well as on the type of crops seeded. This renders impossible a 

consistent classification of roughness over a large area. Finally, it is essential to understand 

that different tillage methods affect the roughness of cultivated fields very differently. 

Generally speaking, three main tillage methods widely applied in all regions of the Earth can 

be discriminated. In the order of decreasing roughness these are: ploughing, harrowing, and 

seedbedding. Ploughed fields are deeply gashed in the soil crumb which is oftentimes literally 



Soil Surface Physical Properties 

 

52 

turned upside down, while on harrowed fields the surface of the soil crumb is raked, and for 

the seedbed fields the soil crumb is flattened. In the preparation for sowing, the different 

methods, ploughing, harrowing, and seedbedding, are oftentimes conducted successively to 

enable an optimal state for the shoot of the seedlings. 

 

In the field of microwave remote sensing, the second important state variable influencing the 

electromagnetic scattering behavior of natural terrains is the so called surface roughness. In 

the following section, the established approaches to define surface roughness through 

statistical parameters as well as the existing methods to measure these parameters will be 

discussed. The task to describe the roughness of natural surfaces in a suitable manner for 

electromagnetic scattering problems has been object of numerous studies within the last two 

decades (e.g. Brisco et al., 1991; Champion & Faivre, 1996; Colpitts, 1998; Davidson et al., 

1998; Mattia & Le Toan, 1999; Davidson et al., 2000; Darboux & Huang, 2003; Allain et al., 

2003; Zribi et al., 2006; Bryant et al., 2007; Oh & Hong, 2007). A comprehensive review on 

this topic has been published by Verhoest et al. (2008) and a study by Marzahn et al. (2009) 

summarizes the most advanced approaches to estimate surface roughness with full 

polarimetric SAR (PolSAR) data. 

 

3.2.1 Statistical Description of Rough Surfaces 

 

As already mentioned in the foregoing section, randomly rough surfaces are commonly 

described in terms of their height deviation from a smooth reference surface. In principle, two 

aspects describing the nature of a randomly rough surface can be distinguished: i) the spread 

of heights about the reference surface and ii) the variations of these heights along the surface. 

To parameterize these two surface properties, a variety of equivalent statistical distributions 

and parameters is available. In many theoretical investigations the parameter set of the root 

mean square (RMS) height s and the surface correlation length l, based on the surface 

correlation function, are considered best for the parametric description of natural terrain 

surfaces (Oh et al., 1992; Fung et al., 1992; Chen & Fung, 1995; Altese et al., 1996; Cloude, 

1999; Satalino et al., 2001; Hajnsek et al., 2003b; Dash & Prusty, 2007). The RMS height s is 

widely used to describe the vertical surface roughness and is defined as the standard deviation 

of the surface height variation in cm: 
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The surface correlation function p(x) and the associated correlation length l, on the other hand, 

are parameters describing the horizontal structure of the surface roughness. In the discrete 

case, the normalized surface correlation function for a spatial displacement xjx ∆−= )1('  is 

given by 
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where zj+i-1 denotes a point on the surface with a spatial displacement from the point xi (Fung 

et al., 1996). The surface correlation length is defined as the displacement x′ for which p(x′) 

between two points on the horizontal profile inhibits values smaller than 1/e (Euler’s Number 

≈ 2.7183) 

 

 elp 1)( =  (3.19) 

 

Hence, the surface correlation length is a description of the statistical independence of two 

points on a surface and it increases with increasing correlation between two neighboring 

points. For a perfectly smooth surface ∞=l . 

 

In regard to the characterization of a surface with two parameters, s and l describe the natural 

surface only as two-dimensional stationary randomly rough surface (see Fig. 3.5). In 

accordance to the single scale roughness theory (Beckmann & Spizzichino, 1987), both 

statistical parameters are independent from each other. That is, the surface correlation length 

can be either large or small for a given high or low RMS height. Experimental data acquired 

over natural terrain surfaces show that most bare soil surfaces are characterized by 

considerably large spatial variations rendering difficult the determination of consistent 

roughness parameters for modeling and inversion purposes. This is especially the case for the 
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measurement of the correlation length. It was shown in different studies that the variability of 

l is normally too large to define useful mean values for a natural arable land surface (Mattia 

& Le Toan, 1999; Zribi & Dechambre, 2003; Oh & Hong, 2007; Panciera et al., 2009). 

Baghdadi et al. (2007) proposed a look-up table of empirically derived correlation length 

values for specific land uses and soil types. Two critical aspects that are controversially 

discussed in the literature should be mentioned. One is the question about how long the 

measurements distance should be for an accurate estimation of the surface correlation length. 

The other question is what shape of the correlation function should be used for 

electromagnetic modeling.  

 

 

Figure 3.5: Concept of electromagnetic wave scattering on rough surfaces (Cloude, 1999). 
 

 

With respect to the first question, Oh & Kay (1998) and Oh & Hong (2007) demonstrated 

that the variability of l estimates decreases with profile length, and that a mean estimate of l 

with a precision of ±10% requires a profile length of at least 200 l. These and other results 

also illustrate that, at short profile length, the correlation length estimates are biased towards 

values smaller than the true underlying value of l, and that this bias increases with decreasing 

profile length (Alvarez-Mozos et al., 2008). In addition to that, Davidson et al. (2000) 

observed a correlation between s and l for a 1 m profile, what is inconsistent with the single 

scale roughness theory as mentioned above. The authors explain this finding with the relative 

size of the clods of soil which are associated with different tillage states and conclude that 

this result could provide a method of reducing the number of unknowns related to the surface 

roughness problem. 

 

θ θ

correlation length L

Rough Surface Slightly Rough Surface

RMS Height s > λ RMS Height s << λ
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The theory of electromagnetic wave scattering from rough surfaces often follows the 

assumption that surface correlation functions for natural terrain surfaces have mainly two 

different shapes: a Gaussian or an exponential distribution function (Ishimaru, 1997). As 

observed by Ogilvy & Foster (1989) and Zribi (1999), measurements sometimes suggest that 

surface correlations close to the origin have an exponential shape that changes to a Gaussian 

shape for points further apart. Alternatively to the single scale roughness description, several 

studies propose multiscale roughness descriptions. In general, two main approaches can be 

distinguished: the two scale roughness models with the small and the large scale roughness 

(Ulaby et al., 1982a; Shin & Kong, 1984; Beaudoin et al., 1990), on the one hand, and the 

approaches based on random fractals (Burrough, 1981; Keller et al., 1987; Shepard et al., 

1995; Arakawa & Krotkov, 1996; Mattia & Le Toan, 1999; Davidson et al., 2000; 

Schneeberger et al., 2004; Jester & Klik, 2005; Sun et al., 2006; Bryant et al., 2007; Garcia 

Moreno et al., 2008) on the other hand.  

 

Being fully aware of the problems discussed in regard to the single scale approach, this study 

uses the classical single scale roughness approach to describe the randomly natural rough soil 

surfaces. In particular, only the RMS height for the randomly rough surface description will 

be used. Due to the described difficulties to accurately estimate the surface correlation length, 

concerning the field measurements as well as the mathematical formulation, some of the 

theoretical and the most empirical EM models do not consider l (Chen & Fung, 1995). 

Moreover, some studies showed that l has only a small influence on the radar backscatter of 

about 1 dB at L- and C-band, and can thus be neglected (Zribi et al., 1999; Hajnsek et al., 

2003b).  

 

Finally it should be considered that the relation of the in situ measured RMS height and the 

surface correlation length to the scattered EM wave are given as a function of the actual 

wavelength λ (k = 2π/λ) with ks and kl. Hence, the ks and kl are decreasing with increasing 

wavelength. The values for ks are ranging between 0 and 1 at L-band with a center frequency 

of about 1.3 GHz, and between 0 and 4 at C-band with a center frequency of about 5 GHz. 

This will be discussed in detail in section 4.3.2. 
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3.2.2 Methods of Surface Roughness Measurement 

 

In the last century several methods of soil surface roughness measurements have been 

developed. In principle, these can be distinguished into two major categories: two-

dimensional and the three-dimensional methods. A comprehensive summary of the most 

common methods can, for instance, be found in the publication by Jester & Klik (2005).  

 

First roughness measurements for soil surfaces were taken mechanically by using long and 

thin steel needles attached to a normalized board. These vertical movable needles are 

mapping the relief of the ground profile by representing it on a scale attached on the board 

(Burwell et al., 1963; Allmaras et al., 1967). While first approaches date back to the early 20th 

century (Cole, 1939), this method was perfected in the 1960ies by Kuipers (1957). Initially, 

the distances between the individual rods were ranging from 50 to 100 mm. With time, the 

technique has been steadily improved to increase its measurement and operational efficiency. 

The space between the individual needles was reduced down to 5 mm to increase the 

estimation accuracy; while on the other hand, the digitalization of photographs of the rod 

positions or the automated recording of the vertical movement by means of potentiometers 

allowed reducing the evaluation time (Currence & Lovely, 1971). The advantage of this pin-

board profilometer technique is the simple handling and the easily accessible overview of the 

impact of tillage on the soil surface. A major disadvantage, however, is the disturbance of the 

soil surface caused be the needles, rendering impossible a precise repetition of the 

measurements. Apart from this, the low spatial resolution with 5 mm point to point 

measurement distance and a vertical resolution of > 1 mm may be insufficient for detailed 

relief investigations. Also critical is the fact that, due to the technical limitation of the length 

of such needle profilometers, usually up to 1.5 m, the estimation of surface correlation length 

is always somewhat imprecise. 

 

During the last decades several new methods to measure soil surface roughness were 

developed with the aim to satisfy the requirements of being contactless, fast, and high 

resoluted. These methods use optical sensors and are based on photogrammetry or 

triangulation. The method of photogrammetry is based on the principle of transmitting light 

and measuring its reflection from the surface. Such measurements are well established, they 

are precise, fast and nowadays relatively low cost (Butler et al., 1998; Chandler et al., 2005). 
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However the processing of the recorded images and the generation of digital surface 

elevation models require a rather time consuming manual processing (Jeschke, 1990; Warner, 

1995). Another disadvantage of this method is the disturbing influence of surrounding light as 

well as the influence of the color and the moisture content of the soil at time of measurement 

(Jester & Klik, 2005). The laser profiler method, where transmitted laser pulses are reflected 

on the soil surface and recorded with a photodiode, is much more robust to such influences. 

The fast sampling time and a high spatial resolution ranging from 1 to 5 mm with a vertical 

precision of ± 1mm render these systems highly attractive (Darboux & Huang, 2003). 

Nevertheless, high costs and time effort to construct and install such profilers are 

disadvantages that should be considered (Davidson et al., 2000; Sun et al., 2006). Most laser 

profilers are only capable to measure short profiles lengths in the order of 1 to 2 m. Some 

advanced laser profilers allow acquiring surface profiles up to 25 m with very high location 

precision (Davidson et al., 1998). Profiles of this length are required for an accurate 

estimation of the surface correlation length and surface characterization (periodicity, 

stationarity, homogeneity). The latest development in this field is the use of three-

dimensional terrestrial laser scanners. By combining areal laser scanner data with high 

resolution digital photography, these systems are suitable to provide high resolution models 

of the soil surface. It was found that such laser scanners can reproduce even small aggregates 

as well as voids in between them (Jester & Klik, 2005; Perez-Gutierrez et al., 2007). Even 

though there is yet not much literature about using terrestrial laser scanners to characterize 

the soil surface roughness, some studies indicate that this approach may be the best choice for 

such applications (Perez-Gutierrez et al., 2007; Wenjian et al., 2009). It should be mentioned, 

however, that these systems are still very expensive, and the processing of the data requires 

considerable expertise. 

In this study, the measurements of the soil surface roughness were carried out using a 

terrestrial 3D laser scanner (LMS-Z390i, Riegl GmbH, Horn, Austria) and a prototype field 

laser scanner device (Technology of Crop Farming Institute, University Bonn). The different 

devices employed in this study are shown in Fig. 3.6, and the description of the 

measurements procedure is given in chapter 4.  
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Figure 3.6: Devices for the measurement of the soil surface roughness: a) classical pin meter, b) field 

laser scanner, and c) terrestrial 3D laser scanner. 
 

 

3.2.3 Electromagnetic Scattering from Rough Surfaces 

 

In order to conclude this chapter it is essential to discuss the effect of the soil surface 

roughness on the backscattering behavior of EM waves. Generally speaking, all natural 

surfaces can be considered as rough, and this roughness is considered as the dominant factor 

for the scattering behavior of an EM wave from this surface (Stratton, 1941). It is important 

to note that the electromagnetic roughness of any scattering surface is not an intrinsic 

property of this surface but a function of the properties of the transmitted EM wave. Both the 

frequency and the local incidence angle (LIA) of the incoming plane wave determine how 

smooth or rough a surface appears to be. As discussed in the foregoing section, the roughness 

term in radar science depends on the given wavelength, so that its appearance changes with 

different frequencies. That is, at lower frequencies, the surface of an illuminated target 

appears smoother than at higher frequencies. To compensate this effect, the RMS height s is 

scaled to the actual wavelength using the wavenumber k ( λπ2 ) with the following equation: 
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λ
π2

×= sks  (3.20) 

 

where ks is the RMS height s, as defined by Eq. (3.17), normalized to the wavelength λ. 

Besides the wave frequency, also the LIA plays an important role in defining electromagnetic 

roughness of a target. In the near field of the propagating EM wave the same surface appears 

rougher than in the far field, comparable to the reflection of the sunset over the sea 

(Beckmann & Spizzichino, 1987).  

 

 

Figure 3.7: Schematic representation of Fresnel reflection. 
 

 

For an ideal smooth surface, the characteristics of the reflection can be described by the so 

called Fresnel reflectivity Γ (Ulaby et al., 1981b). The Fresnel reflectivity, named after the 

French engineer and physicist Agustin Jean Fresnel (1788-1827), describes the reflection of a 

transmitted wave at the interface between two dielectric media n, e.g. the air n1 and a 

homogeneous soil column n2. The Fresnel coefficient Γ is a function of the angle of the 

incoming θ and reflected wave θ′, and the complex dielectric constant ε of the target: 
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where Γh and Γv represent the horizontal and vertical polarizations of the EM wave, and for 

non-ferromagnetic media, like natural terrain surfaces, the variable µ is always equal to one. 

The response of the horizontal polarization increases with increasing LIA, while the vertical 

θ
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polarization decreases to zero at a certain incidence angle. At this angle, known as Brewster 

angle, the transmitted wave is absorbed completely by the illuminated dielectric medium. 

With further increased LIA, however, Γv suddenly increases again (Fung, 1994). 

 

Assuming a constant wavelength at a fixed LIA, the interaction of the incoming plane wave 

with differently rough surfaces can, generally speaking, be treated as follows: the rougher the 

surface, the more diffuse the scattering behavior, and the smoother the surface, the more 

directional the scattering behavior. As described above, the Fresnel reflectivity is valid only 

for a perfectly smooth surface boundary. In natural environments, however, surface 

conditions generally vary from medium to rough. Thus, the backscattering of an EM wave 

from natural terrain surfaces consists of two components, a reflected or coherent and a 

scattered or incoherent one. In this sense, the coherent component behaves as a specular 

reflection on a smooth surface. Hence, in the case of monostatic radar, there is no return of 

the coherent part back to the sensor as can be seen Fig. 3.8. The incoherent component is a 

diffuse scatterer, where the reflected power is spread in all directions. With increasing 

roughness the coherent component becomes negligible and the incoherent component 

consists only of diffuse scattering.  

 

 

Figure 3.8: Characterization of roughness components on a) smooth, b) rough, and c) very rough 

surfaces. 

 

As already mentioned, in electromagnetic terms, the definition of a surface as smooth or 

rough is obviously somewhat arbitrary. Nonetheless, the literature offers two main criteria to 

define a smooth surface: the Rayleigh criterion and the Fraunhofer criterion (Ulaby et al., 

1982b). In the case of a plane monochromatic wave impinging at some angle θ upon a rough 

surface (Fig. 3.9), the phase difference φ∆  between two rays scattered from separate points 

on the surface can be calculated in a simple manner with 

θ θ θ θ θ θs

a) b) c)

coherent field diffuse field + coherent field diffuse field
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where h is the standard deviation of the roughness height from a reference height and the 

local incidence angle θ.  

 

 

Figure 3.9: Scheme for the determination of the phase difference between two parallel EM waves 

scattered from different points on a rough surface. 
 

 

The Rayleigh criterion defines that a surface can be considered as smooth if the phase 

difference φ∆  between two reflected waves is smaller than 2π  radians, as given by Eq. 

(3.23)  
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This criterion is considered as a useful first-order classifier of surface roughness or 

smoothness. However, due to the fact that for modeling the scattering behavior of natural 

terrain surfaces in the microwave region a more stringent criterion is needed, Ulaby et al. 

(1982b) proposed to adopt a criterion which was originally used to define the far-field 

distance of an antenna. According to this criterion, which they named the Fraunhofer 

criterion, a surface is defined as smooth, if the phase difference is 8πφ <∆  leading to Eq. 

(3.24) 

 

 

θ
λ
cos32

<h  (3.24) 

θ

h

RMS Height s > λ



Soil Surface Physical Properties 

 

62 

Having understood the essential aspects of microwave interactions with natural soil surfaces, 

we can now proceed to consider the experimental settings of this study by introducing the 

study area and the ground based data set used in this dissertation in the next chapter.  

 



Study Area and Field Measurements 

 

 

63 

4. Study Area and Field 

Measurements 
 

 

In situ measurements are essential for calibration and/or validation of remotely sensed data 

products. Ground truth information is used to validate the quality of existing models and is a 

prerequisite for the adaption or development of new models. In this chapter the description of 

the study area, as well as of the individual test sites is provided followed by the detailed 

description of the ground based measurements which are used later on for the development of 

a new semi-empirical soil moisture retrieval model as well as for the validation of this and 

other models applied in this dissertation.  

 

4.1 The River Rur Catchment 

 

The catchment basin of the River Rur, a sub-catchment basin of the River Meuse, is located 

in the Belgian-Dutch-German border region (Fig. 4.1). The River Rur, with a length of 165 

km, drains a total area of 2354 km2 of which about 157 km2 (6.7%) belong to Belgium and 

about 108 km2 (4.6%) to Dutch territory. The largest city in the area is Aachen with a 

population of approximately 260,000. Arable land accounts for 36% of the catchment area 

followed by forests and grassland covering 34% and 22%, respectively. 

The catchment basin is located in the Lower Rhine Embayment, which is a geological 

subsidence structure located in North Rhine-Westphalia, and is separated into two major 

landscape units. The southern part covers the hilly landscape of the Eifel low mountain range, 

with a high long-term annual precipitation of 850–1300 mm/a and a moderate annual 

potential evapotranspiration of 450–550 mm/a. The northern part belongs to the eastern 

extension of the Belgium-Germany loess belt and is characterized by virtually flat terrain 

with a relatively low annual precipitation of 650–850 mm and a high potential 

evapotranspiration of 580–600 mm/a. As the name indicates, the soils of this fertile loess 

plain evolved mainly from loess which accumulated on Tertiary and Quaternary depositions 



Study Area and Field Measurements

 

64 

of the Rivers Rhine and Meuse. Water

catchment. In accordance with this 

are clearly distinguishable. Forest 

whereas in the northern part intensively used

 

Figure 4.1: River Rur catchment with the two major landscape units (grey shaded) and locations of 

the three test sites for in situ soil moisture measurements.
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north-west directions, cause a significant precipitation shadowing effect in the area. Thus, the 

precipitation rates in the elevated regions of the Rhenish Massif (“High Fens”) are higher 

than those in the eastern part (lee regions). While annual precipitation rates of 1200 mm/a and 

more can occur in the elevated regions, leeward precipitation rates below 700 mm/a are 

observed in the Selhausen area. This example demonstrates that the windward and lee effects 

should be taken into account in a consideration of the topography dependent spatial 

distribution of precipitation in the study area. In the middle part of the Rur catchment, the 

winter/summer precipitation ratio is fairly balanced. Whereas, in the low mountain range 

areas, winter precipitation is dominant. Hence, the highest amounts of precipitation fall in the 

period of the lowest evapotranspiration potential. Due to the low transpiration rates in winter 

and the associated high soil moisture contents, a large portion of this precipitation water 

becomes runoff. This stands in sharp contrast to the northern part of the catchment where the 

highest amounts of rainfall occur in summer, i.e. the period of the highest potential 

evapotranspiration (Schulze & Matthies, 2001; Bogena et al., 2005; Montzka et al., 2008). 

 

 

Figure 4.2: Distribution of annual precipitation in the Rur catchment;  

(redrawn after Bogena et al., 2005). 
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4.1.2 Geological Overview 

 

The geology of the River Rur catchment is complex. Paleozoic and Mesozoic rocks crop out 

mainly in the southern part of the catchment occupying about 47% of the catchment area. The 

Paleozoic rocks of the Rhenish Massif were formed in the course of the Variscan orogenesis. 

With an area fraction of 33%, this is the most widespread geological formation. Predevonian 

rocks crop out only in few locations, making up about 7% of the catchment area. For example, 

they can be found as Cambrian and Ordovician clay slates and quartzites in the region of the 

High Fens. The Rhenish Massif itself is predominantly formed of Devonian and 

Carboniferous sedimentary rocks, which can reach a thickness of several thousand meters. 

They are composed by alternating sequences of silt- and mudstones as well as of sandstones 

and greywackes with small cavity and groundwater storage volumes. The Middle and Upper 

Devonian carbonate rocks, e.g. the Givetian reef limestone “Massenkalk” south to the city of 

Stolberg, on the other hand exhibit higher groundwater storage volumes.  

Mesozoic rocks crop out in the east border region of the Rur catchment between the localities 

of the cities of Nideggen and Kall. These rocks were primarily formed during the Lower 

Triassic Age and consist mainly of semisolid sandstones of the Lower Triassic stage 

superimposed by Triassic limestone. Approximately 53% of the near-surface rocks within the 

Rur basin are composed by unconsolidated sediments which are mainly formed from 

Quaternary deposits. Thick Tertiary unconsolidated rock deposits are above all present in the 

northern part of the catchment, albeit mostly covered by Pleistocene terrace deposits, namely 

sands and gravels of the main, middle, and lower terraces of the rivers Maas and Rur, as well 

as by aeolian deposits, i.e. loess and dune sands.  

 

4.2 Test Sites and Sampling Fields 

 

Ground based measurements were conducted at two test sites representing the typical land 

use of the two major landscape units, namely grassland and arable fields. For a single 

PALSAR acquisition in fully polarimetric (PLR) mode, not covering the whole area due to 

steeper incidence angle and smaller swath width (cf. section 2.10), field measurements were 

taken at a third test site once. The three different test sites will be introduced in the following.  
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4.2.1 Test Site Selhausen 

 

The test site “Selhausen” represents an intensively used agricultural area. Crops are grown on 

virtually flat terrain with slopes from 0-3°. The mean elevation is approximately 100 m above 

sea level. As situated in the lee region of the Rhenish Massif, mean annual precipitation does 

not exceed 700 mm. The dominant soils are Cambisols and Luvisols with a silt loam texture 

according to the FAO soil classification. The six sampling fields cover an area of 

approximately 34 ha. The corner coordinates are given in Tab. 4.1. 

 

Table 4.1: Corner coordinates of the Selhausen test site. 

Corner 
Geographical UTM (Zone N32) 

Longitude [°] Latitude [°] Easting [m] Northing [m] 

Upper left 6°26'36'' E 50°52'22'' N 320130 5638800 

Lower right 6°28'05'' E 50°51'35'' N 320950 5637650 

 

 

Fig. 4.3 shows an aerial image of the test site with the arrangement of the individual sampling 

fields. Due to the homogenization of the topsoil caused by tillage, variability in soil 

conditions is considerably small on the different sampling fields. In the eastern parts of field 

A03 slightly increased clay contents were observed, while in the western parts of A10 and 

A02 a relatively high stoniness occurs. The stones are alluvial deposits from an eroded river 

terrace located west of the test site. 

 



Study Area and Field Measurements 

 

68 

 

Figure 4.3: Aerial view of the Selhausen test site. 

 

4.2.2 Test Site Rollesbroich 

 

The test site “Rollesbroich” represents typical grassland within the rolling topography of the 

Eifel. This test site is characterized by a mean elevation of approx. 510 m above sea level and 

slopes ranging from 0-10°. The mean annual precipitation is fairly high with amounts of 1200 

mm. The site covers a total area of approximately 20 ha. Tab. 4.2 show the corner coordinates 

of the grassland site. 

 

Table 4.2: Corner coordinates of the test site Rollesbroich. 

 

Corner 
Geographical UTM (Zone N32) 

Longitude [°] Latitude [°] Easting [m] Northing [m] 

Upper left 6°17'55'' E 50°37'40'' N 308950 5611920 

Lower right 6°18'17'' E 50°37'10'' N 309350 5610980 
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The dominant soils of the test site are (gleyic) Cambisols, Stagnosols and Cambisol-

Stagnosols according to the FAO classification. Significant variations in the soil conditions 

occur on the sampling fields. Apart from gleyic conditions prevailing at most locations, 

especially the soil depth is highly variable ranging from < 0.5 m up to > 1 m. Consequently, it 

can be assumed that the routing of the interflow has a large impact on the moisture patterns 

found at the soil surface.  

 

A peculiarity of any grassland is the presence of a thatch layer right below the grass plants. 

This thatch consists of dead un-decayed plant material and forms a barrier to water and air 

movement in the manner of a thatched roof. Such a layer can hold enormous amounts of 

water of up to and higher than 80 Vol.-%. Since, from a remote sensing point of view, this 

thatch layer constitutes the actual “soil surface”, this effect has to be taken into account in the 

development of a soil moisture retrieval model, as will be discussed in section 7.3. An aerial 

image of the test site with the arrangement of the individual sampling fields is shown in Fig. 

4.4. 

 

 

Figure 4.4: Aerial view of the Rollesbroich test site. 
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4.2.3 Test Site Duerwiss 

 

The test site “Duerwiss” is located near the city of Eschweiler. The characteristics are similar 

to the Selhausen test site. In effect the site is completely flat. The dominant soils are also 

Cambisols and Luvisols with a silt loam texture. The mean annual precipitation is with 760 

mm slightly higher than in the other arable land site. The four sampling fields cover an area 

of approximately 22 ha. Tab. 4.3 gives the corner coordinates of the site. At the measurement 

day May 14, 2009, fields D01 and D04 were at bare soil state, while D02 and D03 were 

covered with a winter wheat.  

 

Table 4.3: Corner coordinates of the test site Duerwiss. 

 

Corner 
Geographical UTM (Zone N32) 

Longitude [°] Latitude [°] Easting [m] Northing [m] 

Upper left 6°15'02'' E 50°50'30'' N 306432 5635821 

Lower right 6°15'58'' E 50°50'10'' N 307504 5635162 
 

 

 

 

Figure 4.5: Aerial view of the Duerwiss test site. 
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4.3 Ground Truth Data Set 

 

The following section provides a comprehensive overview of the ground truth data set used in 

this dissertation. The different in situ surface and vegetation parameters as measured at the 

three test sites are discussed. Special emphasize should be put on the measurement ranges for 

soil moisture, surface roughness, and vegetation biomass, because this observation space has 

direct impacts on the validity ranges of the new semi-empirical soil moisture retrieval model 

introduced in chapter 7. 

 

4.3.1 In Situ Surface Soil Moisture 

 

In situ surface soil moisture measurements were taken on 15 sampling fields at the Selhausen 

(A01-A11) and Rollesbroich (G01-G09) test sites between August 2007 and June 2010 (see 

Fig. 4.3 and 4.4). The measurements were performed on different land cover types, namely 

bare soil, sugar beet (Beta vulgaris L.), winter wheat (Triticum aestivum L.), and grassland 

vegetation dominated by a ryegrass society, particularly perennial ryegrass (Lolium perenne 

L.) and smooth meadow grass (Poa pratensis L.). As mentioned before the size of the 

individual sampling fields ranged from 2 to 10 ha. The surface soil moisture measurements 

were arranged in a grid with a sampling point spacing of 30 to 60 m, with 12 to 24 points per 

field. According to the length of the rods of the hand-held frequency domain reflectometry 

(FDR) probes, as described in chapter 3, the measured surface soil moisture is an average 

value for the topmost 6 cm of the soil column. Thus, in this study the surface soil moisture is 

defined as the mean water content within these topmost 6 cm below the soil surface. This 

depth is considered to be a suitable choice in regard to the radar penetration depth at L-band 

(cf. section 2.2). To minimize sampling errors and to yield a representative value for every 

sampling location, each sampling location is represented by the mean of six individual 

measurements taken within a radius of 40 cm. Obvious measurement errors, which might 

occur, for instance, by incomplete contact with the substrate, were excluded from further 

analysis.  
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In the ASAR case, all images were acquired on descending tracks on ± 10:00 h local time. 

The measurement campaigns were conducted within a time frame starting 2 h before and 

ending 2 h after the satellite pass. In the PALSAR case, however, all images were acquired 

on ascending tracks on ± 21:45 h local time. This is due to the ALOS systematic observation 

strategy (JAXA, 2007). In general, the descending daytime acquisitions are designated for the 

two optical remote sensing instruments AVNIR-2 and PRISM (cf. section 4.10). The ground 

based measurements were taken in the afternoon, typically from 14:00 to 18:00 h, prior to the 

ALOS overflight. This measurement strategy is considered as a suitable compromise between 

the requirement to cover large areas, to provide representative samples for each land cover 

type, the limited amount of time for sampling, and the personnel available for this study. 

Usually, two 2-person teams per test site were available for field measurements. Tab. 4.4 

gives an overview of the different measurement dates with the land cover specific mv 

averaged from all sampling locations for the given land cover type. 

 

Table 4.4: Overview of measured average surface soil moisture for the different land cover types and 

dates of ASAR and PALSAR acquisitions. 

 

Date  Sensor 
land cover specific mean mv [Vol.-%] 

bare soil  sugar beet winter wheat  grassland 

2-Aug-2007 PALSAR 28.0 19.1 - - 

17-Sep-2007 PALSAR - 31.5 - 50.3 

29-Apr-2008 ASAR 30.1 - 31.2 52.1 

4-May-2008 PALSAR 29.9 - 31.4 52.4 

3-Jun-2008 PALSAR / ASAR 32.1 - 32.3 35.0 

8-Jul-2008 ASAR - 23.0 24.5 - 

18-Jul-2008 PALSAR - 22.9 21.3 - 

16-Sep-2008 ASAR 24.5 23.6 - 48.9 

14-May-2009 PALSAR 25.3 - 29.8 - 

7-Jun-2009 ASAR 27.4 - 28.2 38.9 

21-Jul-2009 PALSAR 14.7 16.5 - 35.7 

10-May-2010 PALSAR 20.8 - 22.1 49.1 
 

 

 

In total, 120 and 96 sampling locations were distributed over the arable land and grassland 

test site, respectively. Tab. 4.4 provides an overview of the measured average soil moisture 

for the different land cover types and dates of ASAR and PALSAR overflights. Each mean 

mv value is composed from 36 to 96 sampling locations. It is interesting to note that for each 
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measuring day the variations between the different land covers are relatively small. In effect, 

the variability within one land cover type, with standard deviations typically ranging between 

2 and 3 Vol.-%, is always larger than that between two different land covers. Another aspect 

worth mentioning is the fact that the average bare soil mv is always lower than the one 

measured under a vegetation cover. This is most likely due to the canopy reducing the 

evaporation from the soil surface, while the roots extract water mostly from soil regions 

below 6 cm depth. 

 

It should be mentioned that in the case of the PALSAR scene acquired on June 2, 2008, 

ground based soil moisture measurements were obtained on the morning of the next day 

about 10 hours after the satellite pass. Despite the time lag between satellite pass and field 

measurements, the in situ data set is fully comparable with the satellite measurements, 

because there was no precipitation or dew formation at night and only very little 

evapotranspiration. Evidence for the comparability of both data sets is provided by 

continuous surface soil moisture measurements in Selhausen and Rollesbroich. Fig. 4.6 

provides continuous soil moisture measurements for the time frame from June 2, 6 pm, until 

the end of our field measurements at 12 noon, June 3. The measurements were taken in 10 cm 

depth. Obviously, there is no significant change in surface soil moisture conditions in both 

test sites. The TDR measurements in Rollesbroich show a higher noise level as compared to 

the FDR measurements in Selhausen. However, both measurements do not show a significant 

trend. The temporal variations of the soil moisture are well below the accuracy level of the 

hand held field probes used for spatial sampling and are an order of magnitude smaller than 

the spatial variations of the surface soil moisture. It should be mentioned that this kind of 

comparison was carried out for every PALSAR measurement campaign to assure the 

suitability of the mv values measured shortly prior to the image acquisitions. 
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Figure 4.6: Continuous surface soil moisture measurements with TDR (Rollesbroich, G03) and FDR 

(Selhausen, A10) probes in 10 cm depth. 

 

 

4.3.2 In Situ Surface Roughness 

 

Measurements of surface roughness were conducted on the agricultural sampling fields of the 

Selhausen test site on six different days of PALSAR acquisitions. The recorded surface 

roughness varied significantly between the different measurement days and locations with 

RMS heights s ranging from 0.51 to 3.37 cm. As can be seen form Tab. 4.5, four different 

surface states were identified, namely very smooth, seeded, harrowed, and ploughed.  
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Table 4.5: Measured surface roughness for different test fields and dates. 

 

Field ID Date RMS h [cm] surface state method PALSAR ks 

A01-1 4-May-2008 2.11 ploughed 3D laser scanner 0.56 

A01-2 4-May-2008 1.98 ploughed 3D laser scanner 0.53 

A03-1 4-May-2008 3.53 ploughed 3D laser scanner 0.94 

A03-2 4-May-2008 3.37 ploughed 3D laser scanner 0.90 

A01-1 2-Jun-2008 0.66 very smooth 3D laser scanner 0.18 

A01-2 2-Jun-2008 0.51 very smooth 3D laser scanner 0.14 

A03-1 2-Jun-2008 0.73 very smooth 3D laser scanner 0.19 

A03-2 2-Jun-2008 0.59 very smooth 3D laser scanner 0.16 

A01-1 5-Sep-2009 1.21 harrowed 3D laser scanner 0.32 

A01-2 5-Sep-2009 1.48 harrowed 3D laser scanner 0.39 

A03-1 5-Sep-2009 1.18 seedbed 3D laser scanner 0.31 

A03-2 5-Sep-2009 1.09 seedbed 3D laser scanner 0.29 

A10-1 14-May-2009 1.25 seedbed 3D laser scanner 0.33 

A10-2 14-May-2009 1.17 seedbed 3D laser scanner 0.31 

A10-3 14-May-2009 1.12 seedbed 3D laser scanner 0.30 

A10-4 14-May-2009 1.3 seedbed 3D laser scanner 0.35 

A11-1 10-May-2010 1.47 harrowed laser profiler 0.39 

A11-2 10-May-2010 1.53 harrowed laser profiler 0.41 

A11-3 10-May-2010 1.42 harrowed laser profiler 0.38 

A11-4 10-May-2010 1.58 harrowed laser profiler 0.42 

A11-1 22-Jun-2010 1.37 harrowed laser profiler 0.36 

A11-2 22-Jun-2010 1.25 harrowed laser profiler 0.33 

A11-3 22-Jun-2010 1.82 ploughed laser profiler 0.48 

A11-4 22-Jun-2010 1.79 ploughed laser profiler 0.48 
 

 

 

As discussed in section 3.3.2, the surface roughness was estimated by means of two different 

techniques: i) RMS heights were estimated from three-dimensional surface models as 

generated from the terrestrial laser scanner (LMS-Z390i, Riegl GmbH, Horn, Austria). Fig. 

4.7 shows a 3D composite image of the surface model recorded on field A01 at the beginning 

of May, 2008. The advantage of this kind of data is the fact that one can easily calculate a 

sufficient amount of roughness profiles for all possible directions (e.g. perpendicular (PPR) 

and parallel to the ridges (PAR), or perpendicular (PPF) and parallel to the flight direction), 

ii) s values were derived from two-dimensional laser profiler data (Technology of Crop 

Farming Institute, University Bonn).  
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Figure 4.7: Terrestrial laser scanner 3D composite image of field A01 on May 4, 2008. 

 

 

In this dissertation we use RMS heights averaged from 12 profiles 1.5 m in length all oriented 

parallel to the flight direction of ALOS. Due to the SAR viewing geometry, this orientation 

of the profiles is perpendicular to the incident EM waves (cf. section 2.3). The RMS height s 

for each profile is calculated using Eq. (3.17). The averaged s values were then normalized to 

the PALSAR wavelength of 23.62 cm to obtain the electromagnetic roughness ks by using Eq. 

(3.20), as described in section 3.2.3. The resulting ks values ranged from 0.14 to 0.93 (see 

Tab. 4.5). It should be noted, that the sampling fields were split up into sub fields in order to 

get a larger number of field mean s values for the calibration of the retrieval model. The area 

taken into account for each ks value equals 8 x 6 PALSAR FBD pixels (approximately 

10,800 m²).  

 

Note that the very smooth surface state measured on June 2, 2008, resulted from an intense 

precipitation event flattening the bare soil surfaces in the area. In effect, one of the farmers 

reported that there hasn’t been such an extreme event in the area since the 1960ies (Peter 

Holzkamp, personal communication, June 2, 2008) 

The 2010 measurements were conducted in cooperation with the Research Center Jülich. 

Field A11 was kept free from vegetation throughout the vegetation period and different 

tillage induced roughness states were prepared for investigation. Fig. 4.8 shows a picture of 

the test field with two different surface roughness states.  
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Figure 4.8: Tower view of the test field A11 with seedbed (left) and ploughed surface (right). 

 

4.3.3 In Situ Vegetation Parameters 

 

A variety of plant parameters for the different vegetation covers were measured at the two 

test sites during the growing seasons 2008, 2009, and 2010. At the arable land test site, sugar 

beet and winter wheat was monitored (one field per crop). Field measurements were carried 

out fortnightly. Biomass (wet and dry weights), leaf area index, canopy height, phenological 

stage and plant density were determined. 

 

Crop measurements were carried out at three sampling locations per field. Phenological 

stages were documented according to the BBCH-scale (Meier, 2001). In the case of sugar 

beet crops, at least three representative plants per sampling point were taken. Wheat plants 

were harvested from a 60 cm long row. To determine fresh weight biomass, the plants were 

divided into their constituents of living and dead leaves (if available), stem (including leaf 

sheath) and storage organ (including grain, glume and rest of the ear in the case of wheat). 

The fresh weight of the plant organs was determined for each single sampled plant of sugar 

beet. For the determination of dry matter, sub-samples of each portion were dried at 105 °C 

until reaching a constant weight. Note that for winter wheat only above ground biomass was 

considered, while for sugar beet both above and below ground biomass was measured. 
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Leaf area index (LAI) was measured using a destructive (direct) method (LI-3000A Area 

Meter, LI-COR Biosciences, Lincoln, NE, USA). The leaf area is measured by a scanning 

head combined with a transparent belt conveyer. As the leaves have already been collected to 

be weighed for dry matter determination, this procedure requires only little extra effort. 

 

At the grassland test site, above ground biomass was harvested at three locations per field. 

Also, fresh and dry weights were determined following the above procedure. It should be 

pointed out that we assume the grass, sugar beet, and winter wheat samples taken at one 

location to be representative for the whole area covered by the corresponding PALSAR FBD 

pixel (≈ 225 m²). Thus, the measured plant parameters can be used for a backscattering 

analysis on a pixel by pixel basis, as will be discussed later on in this dissertation.  

 

The experimental data set introduced in this chapter is used for the validation of the classical 

soil moisture inversion models in chapter 6 and is prerequisite for the development of a new 

semi-empirical approach in chapter 7. But before that, it is important to discuss the concepts 

of polarimetric SAR remote sensing in the following chapter. 
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5. Polarimetric Radar Imaging and the 

H/A/α Decomposition Theorem 
 

 

Polarimetric SAR (PolSAR) remote sensing offers an efficient and reliable means of 

collecting information required to extract geophysical and biophysical parameters from 

Earth’s surface. This remote sensing technique has found many successful applications in 

crop monitoring and damage assessment, in forestry clear cut mapping, deforestation and 

burn mapping, in land surface structure (geology) land cover (biomass) and land use, in 

hydrology (soil moisture, flood delineation), in sea ice monitoring, in oceans and coastal 

monitoring (oil spill detection) etc. PolSAR represents today a very active area of research in 

radar remote sensing, and it is important for future generations of researchers to understand 

this very important topic to be able to handle this kind of advanced EO products. The aim of 

the following sections is to give an introduction to the most important polarimetric 

parameters used for the extraction of physical information about the scattering process 

properties of a distributed target. A substantial introduction to the basic theory, scattering 

concepts, systems and advanced concepts, and applications typical to radar polarimetric 

remote sensing is given in the appendix of this thesis. For further reading and fully 

understanding of this complex topic it is recommended to take a look at the PolSAR tutorials 

provided by the European Space Agency (http://earth.eo.esa.int/polsarpro/tutorial.html) or the 

Canadian Space Agency (http://ccrs.nrcan.gc.ca/resource/tutor/polarim/pdf/polarim_e.pdf) 

and the recently published reference books by Lee & Pottier (2009) and Cloude (2010). A 

good and comprehensive introduction to modern matrix algebra can be found in the book by 

Schmidt & Trenkler (2006). 

 

The method for extracting average parameters from polarimetric radar data by using a 

smoothing algorithm based on second-order statistics was first proposed by Cloude and 

Pottier (1997). As will be discussed in this section, this method does not rely on the 

assumption of a particular underlying statistical distribution and thus is free from physical 

constraints imposed by such multivariate models. The authors use an eigenvector analysis of 
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the 3x3 coherency [T3] matrix as it provides a basis invariant description of the scattering 

target with a specific decomposition into types of scattering processes (i.e. the eigenvectors) 

and their relative magnitudes (i.e. the eigenvalues). This original approach employs a three-

level Bernoulli statistical model to generate estimates of the average target matrix parameters. 

Generally speaking, this statistical model sets out with the assumption that there is always 

one dominant “average” scattering mechanism in each resolution cell and then undertakes the 

task of finding the parameter of this average component (Cloude & Pottier, 1996; 1997; Lee 

& Pottier, 2009). 

 

5.1 Diagonalization of the Coherency [T3] Matrix 

 

Due to the fact that the coherency [ ]3T  matrix is hermitian positive semi-definite, it is always 

diagonalizable by unitary similarity transformation of the form (Cloude, 1986; Cloude, 1992; 

Cloude & Pottier, 1995) 
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where [ ]Λ  is the diagonal eigenvalue matrix with elements corresponding to the real 

non-negative eigenvalues, i.e. 3210 λλλ ≤≤≤ , of [ ]3T , and [ ]3U  is the unitary eigenvector 

matrix with columns corresponding to the orthonormal eigenvectors 1e
r
, 2e
r
, and 3e

r  of [ ]3T . 

The basic idea of this eigenvector approach is the diagonalization of the coherency [ ]3T  

matrix of a distributed target, which is in general of rank 3, to decompose it into the non-

coherent sum of three independent coherency [ ]iT3  matrices  

 

 [ ] [ ][ ][ ] ( ) ( ) ( ) [ ] [ ] [ ]333231331222111
1

333 TTTeeeeeeUUT ++=×+×+×=Λ= +++− rrrrrr
λλλ  (5.2) 

 

Each [ ]iT3  matrix is of rank 1 in accordance with a deterministic backscattering contribution, 

which is characterized by single target matrix. It follows, that Eq. (5.2) may be interpreted as 
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the decomposition of [ ]3T  into three single scattering components described by [ ]31T , [ ]32T , 

and [ ]33T . In terms of power, the contribution of each matrix is given by the appropriate 

eigenvalue. The sum of the three eigenvalues is defined as the span or the total power 

received from the scattering target 

 

 
321 λλλ ++=span  (5.3) 

 

In this sense, the information about the kind of scattering targets presented by the three [ ]iT3  

matrices is contained in the corresponding eigenvectors. An exact interpretation of the 

eigenvectors in terms of the scattering mechanism will be discussed in the subsequent section. 

Note that the physical basis of the eigenvector decomposition is provided by the orthogonal 

nature of ie
r  and the statistical significance of diagonal coherency matrices. The former 

guarantees always the existence of a set of orthonormal basis matrices in which the expansion 

of [ ]3T  leads to a diagonal coherency matrix. Hence, the choice of the basis matrices is 

dictated by the eigenvectors. In comparison, the absence of off-diagonal terms establishes the 

statistical independence between the component vectors.  

 

5.2 Polarimetric Scattering Alpha Angle 

 

Among the mean angular parameters ( α , β , δ , and γ ) of the dominant scattering 

mechanism, which can be extracted from the 3x3 coherency [ ]3T  matrix, the roll-invariant α  

is the main parameter for indentifying the dominant scattering mechanism in terms of random 

media problems. The other three parameters ( β ,δ , and γ ) can be used to define the target 

polarization orientation angle (Pottier, 1998; Pottier et al., 1999; Lee et al., 2000; Lee et al.; 

2002). As will be shown in section 5.5, the study of the scattering mechanism is mainly 

performed through the interpretation of the parameter α  because its value can be easily 

related with the physics behind the scattering process. Considering the backscattering case 

from a cloud of identical anisotropic particles with a target matrix [S] 
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where a and b are complex scattering coefficients in the particle characteristic coordinate 

system. In this case, the effect of rotation about the line of sight on the associated coherency 

[ ]3T  matrix can be generated as (Cloude & Pottier, 1996) 
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where ( )[ ]θ3R  is the unitary similarity rotation matrix and 2
2/1 ba +=ε , 2

2/1 ba −=ν , and 

( )( )*2/1 baba −+=µ . Assuming a uniform distribution, the coherency [ ]3T  matrix averaged 

over all angles θ is the given by 
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It can be noticed that the averaged coherency [ ]3T  matrix is diagonal and the matrix of the 

eigenvectors corresponds to the identity [ ]3DI  matrix. Hence, the parameter α  is given by 
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5.3 Polarimetric Scattering Entropy 

 

As firstly demonstrated by Cloude (1986), there are two important physical features arising 

directly from the eigenvalues of the coherency [ ]3T  matrix. The first one is the polarimetric 

scattering entropy H defined by using the logarithmic sum of the eigenvalues of [ ]3T   

 

 
i

i

i PPH ∑
=

−=
3

1
3log  (5.8) 

 

where 
iP  expresses the appearance probabilities for each contribution as defined from the 

eigenvalues of [ ]3T  by 
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1
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λ

λ

λ
++

==
∑ =

i

j j

i
iP  so that 1321 =++ PPP . (5.9) 

 

Following its definition, the entropy H ranges from 0 to 1. The parameter can be interpreted 

as a measure of randomness of the backscattering mechanisms within a resolution cell. In 

other words, H expresses the number of effective scattering processes occurring: An entropy 

0=H  indicates a rank 1 [ ]3T  matrix with only one non-zero eigenvalue, i.e. 032 == λλ . 

This characterizes a coherent non-depolarizing backscattering process described by a single 

target matrix. At the other extreme, an entropy 1=H  indicates the presence of three equal 

non-zero eigenvalues, i.e. 321 λλλ == . It describes a random noise scattering process 

completely depolarizing the incident wave. As a matter of fact, most natural distributed 

targets lie in between these two extreme cases, i.e. they have intermediate entropy values. If 

the polarimetric entropy H is low ( 3.0<H ), the system may be considered weakly 

depolarizing and the dominant scattering mechanism in terms of a specifically identifiable 

“equivalent point target” may be recovered. In the course of this, the eigenvector 

corresponding to the largest eigenvalue is chosen and the other eigenvector components are 

neglected. However, if the entropy is high, the “scattering target ensemble” is depolarizing 

and a single equivalent point target no longer exists. Thus, a mixture of possible point targets 
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types has to be considered from the full eigenvalue spectrum. As H further increases, the 

number of distinguishable classes identifiable from polarimetric observations is reduced.  

 

5.4 Polarimetric Scattering Anisotropy 

 

The second important feature is the polarimetric scattering anisotropy which is defined as the 

normalized difference between the appearance probabilities of the second and the third target 

component (Cloude, 1986a; Pottier, 1998) 
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PP

PP
A  (5.10) 

 

The polarimetric anisotropy A also ranges from 0 to 1 and is a complementary parameter to 

the polarimetric entropy H. The anisotropy measures the relative importance of the second 

and the third eigenvalues of the eigen decomposition. From a practical point of view, the 

anisotropy A can be regarded as a source of discrimination especially when 7.0>H . This is 

due to the fact that for lower entropies, the second and third eigenvalues are highly affected 

by noise. Hence, the anisotropy A is also significantly noisy. Inherent to the spatial averaging, 

however, the entropy increases, while the number of distinguishable classes reduces. For 

instance, an entropy 9.0>H  can correspond to two limit types of scattering process with 

associated eigenvalues spectra given by ( )4.0,4.0,1 321 === λλλ  and 

( )3.0,1,1 321 === λλλ . To distinguish between these two different types of scattering 

processes, it is thus possible to use the anisotropy A information, where it takes e.g. the 

corresponding values 0=A  and 54.0=A  for the two previous examples (Cloude & Pottier, 

1997; Cloude, 1999). It is important to note that the polarimetric anisotropy A plays a key 

role in PolSAR applications and represents a very useful parameter to improve the capability 

to distinguish different types of scattering processes in case the polarimetric entropy reaches 

high values. Generally speaking, for targets characterized by intermediate entropy values, a 

high anisotropy indicates the presence of only one significant secondary scattering process, 

while a low anisotropy indicates the appearance of two equally strong scattering processes.  
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In the polarimetric backscattering problem, the great advantage of these two parameters 

arises from the invariance of the eigenvalue problem under unitary transformations (Touzi, 

2007). In this sense, the same scattering target leads to the same eigenvalues and hence to the 

same entropy and anisotropy values independent from the basis used to measure the 

corresponding target matrix. 

 

5.5 Scattering Mechanism Interpretation 

 

In section 5.1 it was discussed that the diagonalization of [ ]3T , according to Eq. (5.1), 

produces a set of three orthogonal components, which at first have no physical significance. 

The aim of the following section is the physical interpretation of the resulting components 

and the corresponding eigenvectors of the coherency [ ]3T  matrix. The unitary [ ]3U  matrix in 

Eq. (5.1) is a general unitary matrix with 8132 =−  degrees of freedom (Cloude, 1986b). The 

unitary [ ]3U  matrix describing the change of polarization basis transformation possesses only 

two degrees of freedom. Hence, Eq. (5.1) cannot be interpreted as a simple change of 

polarization basis transformation, and the corresponding eigenvectors cannot be considered 

as conventional polarization states (Lee & Pottier, 2009). 

 

It is important to note that the critical idea for the interpretation of the eigenvector 

decomposition is to associate the unitary complex vectors with polarimetric scattering 

mechanisms. In this sense, a scattering target with a target matrix / vector given by  
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where yxxy SS =  is considered. The target vector pk
r

 can be normalized to obtain the 

associated unitary vector e
r
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Such an arbitrary three-dimensional unitary vector e
r
 has five degrees of freedom, and thus, 

can be written in terms of five angular variables (Cloude, 1995) 
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In accordance to the Scattering Vector Reduction Theorem introduced by Cloude (1997), it is 

always possible to generate this arbitrary scattering mechanism, described by the associated 

complex unitary vector e
r
, by starting from the identity vector [ ]T0,0,1  and applying a set of 

three ordered matrix transformations 
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The scattering phase angles are contained in the first matrix. It accounts for the phase 

relations between the elements of the vector e
r
and, in the following, will be ignored for 

convenience. The second and third matrices represent canonical forms of plane rotations, i.e. 

a change about α∆  and β∆  of the parameterization angles corresponds to a change from 

one scattering mechanism e
r
 to an alternate 'e

r . For the angles α  and β , the transformation 

matrices are simple plane rotations given by 
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 (5.15) 

 

The second transformation matrix in Eq. (5.14) represents physically a rotation of the 

scattering target about the RLOS by an angle 2/β . Note that this correspondence is only 

valid as long as the Pauli basis is used for the vectorization of the target matrix. In effect, it 

follows directly from the nature of the Pauli matrices which relate physical rotations to matrix 

transformations (Cloude, 1986b). 
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However, the third matrix cannot be associated with a physical rotation. Instead, α  

represents an internal degree of freedom of the scattering target. In this sense, the parameter, 

continuous within a range of °≤≤° 900 α , is associated with the “type” of backscattering 

mechanism. This feature becomes apparent by substituting different values of the α  angle 

into Eq. (5.14) and interpreting the generated vector e
r
 in terms of the target vectors, 

assuming °= 0β  for the sake of simplicity. 

 

I) For °= 0α    
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e
r
 as obtained from Eq. (5.14) is associated with the target vector of an isotropic surface, i.e. a 

surface where both horizontally and vertically co-polarized waves are in phase and 

YYXX = . 

 

II) For °= 90α   
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e
r
 corresponds to the target vector of an isotropic dihedral with a phase difference between 

HH and VV of 180°, i.e. a dihedral with yyxx = .  

 

III) For °= 45α   
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the obtained e
r
 is associated with the target vector of a horizontally oriented dipole scattering 

target, where 1=xxS  and 0== xyyy SS . In order to illustrate the effect of β , keeping 

°= 45α , °= 90β  is applied as follows 
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 (5.19) 

 

Now, e
r
 corresponds to a vertically oriented dipole scattering target, where 1=yyS  and 

0== xyxx SS . In case that α  takes intermediate values, anisotropic backscattering 

mechanisms are represented, and xx  and yy  are no longer equal. The range of possible 

variations in backscattering mechanism can be depicted by the variation of α  along the real 

line as shown in Fig. 5.1. It should be emphasized that the type of scattering target is defined 

by its α  angle independently of its orientation 2/β . It thus does not matter if there is a 

misalignment between radar and target coordinates. Tab. 5.1 gives the angular values for 

some canonical scattering mechanisms, which are of interest in radar polarimetry (Ferro-

Famil et al., 2001). 

 

 
 

Figure 5.1: Schematic representation of the α  angle interpretation. 
 

 

Taking theses aspects into consideration, the general [ ]3U  transformation of the target vector 

k
r
 describes not only polarimetric basis transformation, but also linear combinations of three 

orthogonal coherent scattering mechanisms corresponding to changes in the selected 

°= 0α °= 45α °= 90α

[ ] 







=

10

01
aS [ ] 








=

00

01
aS [ ] 









−
=

10

01
aS

Anisotropic Surfaces Anisotropic Dihedrals

Isotropic Surface Isotropic DihedralDipole



Polarimetric Radar Imaging and the H/A/α Decomposition Theorem 

 

 

89 

scattering mechanism (Cloude & Pottier, 1996). Consequently, the physical interpretation of 

the diagonalization of [ ]3T  is the generation of a set of complex projections of the target 

vector onto three orthogonal backscattering mechanisms given by the three eigenvectors of 

[ ]3T . The origin of the eight degrees of freedom in the general [ ]3U  matrix should now 

become evident. 

 

Table 5.1: Angular values of canonical targets (∞ represents non-fixed values); (Ferro-Famil et al., 

2001). 

 

Sphere α = 0° β = ∞ φ1 = τ φ2 = φ3 = ∞ 

Dihedral at θ° α = 90° β = 2θ° φ1 = ∞ φ2 - φ3 = 0° 

Dipole at θ° α = 45° β = 2θ° φ1 = τ φ2 = φ3 = τ 

Surface at θ° α = 0° β = 2θ° φ1 ≈ 0° φ2 ≈ φ3 = 0° 

Helix α = 90° β ± 45° 
 

φ2 - φ3 = -90° 
 

 

 

The fact that each of the three eigenvectors ie
r  contains five parameters, leads to a sum of 15 

parameters. The constraint that the three mechanisms must be orthogonal, however, provides 

six equations. Thus, the number of parameters reduces down to nine. Moreover, to establish 

the correct phase relationship between the components, the phase of the determinant should 

be zero according to the special unitary of [ ]3U . This lastly results in eight independent 

parameters of the [ ]3U  matrix. 

 

As discussed in section 5.1, the eigen decomposition of a rank 3 [ ]3T  matrix leads to three 

eigenvalues and three eigenvectors. The polarimetric scattering entropy H and anisotropy A 

can be estimated directly from the eigenvalues using Eq. (5.8) and Eq. (5.10), respectively. 

But then, for each eigenvector 
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the corresponding iα  angle is obtained from the absolute value of the first element according 

to Eq. (5.19) as 

 

 ( )
111 arccos e=α , ( )

122 arccos e=α , ( )
133 arccos e=α  (5.21) 

 

whilst the corresponding parameter iβ  is obtained by using the ratio between the absolute 

values of the second and third eigenvectors elements as  
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In the exact same manner three sets of target angles can be obtained as (Boerner, 1992) 
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Hence, the 15 angular variables extracted from the eigenvectors composing the general 

unitary [ ]3U  matrix are obtained. Due to the fact that the [ ]3U  matrices contain only eight 

independent parameters, as previously discussed, the 15 extracted angles are not independent 

from each other. This renders it problematic to interpret each individual iα  and iβ  parameter. 

To tackle this problem, the interpretation is performed in terms of a dominant scattering 

mechanism: Since the distributed target is modeled to be decomposed into three elementary 

scattering processes, occurring with a probability 
iP  and corresponding to an iα  and iβ  

angle, the best estimate (in a maximum likelihood sense) of the parameters α  and β  are 

given by their mean values (Cloude, 1997) 

 



Polarimetric Radar Imaging and the H/A/α Decomposition Theorem 

 

 

91 
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These two angular parameters for the dominant backscattering mechanism along with the 

entropy and anisotropy values have so far mainly been used for the classification of natural 

targets from fully polarimetric SAR data (e.g. Cloude & Pottier, 1997; Lee et al., 1999a; 

Ferro-Famil et al., 2001; Kimura et al., 2004; Lee et al., 2004; Cao et al., 2007; Ainsworth et 

al., 2009).  

 

5.6 ALOS PALSAR Experimental PolSAR Data Analysis 

 

Before closing this chapter, a first order interpretation of basic PolSAR images obtained from 

the experimental polarimetry mode of ALOS PALSAR shall be given. Namely Pauli-RGB 

(Fig. 5.2), entropy, anisotropy and alpha angle maps will be addressed (Fig. 5.3). The detailed 

description of the river Rur catchment study area as well as the local test sites within the 

fertile loess plain and the low mountain range regions can be found in Chapter 4. The 

description of the fully polarimetric ALOS PALSAR intensity images is given in Chapter 2. 

As learned before, the mesoscale catchment is basically subdivided into two parts. The fertile 

loess plain in the north is mainly composed of agricultural fields, small urban areas, small 

forest areas, some grassland, and little surface water. As a distinctive feature of the area, one 

should not forget to mention the open-cast mining Garzweiler, Hambach, and Inden. The low 

mountain range part, on the other hand, is dominated by grassland, coniferous forests, and 

bushes. Build up areas are usually rather small. 

 

The virtue of using the Pauli target vectors lies in the straightforward physical interpretation 

in terms of the dominant scattering mechanism occurring in a PolSAR image resolution cell 

(cf. section A.4). Fig. 5.2 shows a Pauli vector color-coded image of the fully polarimetric 

ALOS PALSAR scene for the Rur catchment. The three Pauli vectors |HH-VV|, |HV+VH|, 

and |HH+VV| are displayed as the three RGB channels, respectively. The image shows 

surface scattering in black to blue colors, volume scattering in green colors, and double 

bounce in red colors. Hence the Pauli representation of the PALSAR data allows an easy 
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identification of the different land cover types within the catchment. The fertile loess plain is 

characterized by surface scattering on the bare or sparsely vegetated agricultural fields, while 

the low mountain range is dominated by volume scattering in the forest areas. Moreover, the 

double bounce scattering in build-up areas clearly shows that the northern part of the 

catchment is far more densely populated than the southern part. 
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Figure 5.2: ALOS PALSAR Pauli-RGB of the River Rur catchment. The Pauli vectors are color coded as 

red = |HH-VV|, green = |HV-VH|, and blue = |HH+VV|. 
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Figure 5.3: Polarimetric entropy (left), anisotropy (middle), and alpha angle maps (right) of the River 

Rur catchment. 
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The bare and sparsely vegetated agricultural fields have low entropy values ranging from 0.1 

to 0.6, as can be seen in Fig. 5.3. The anisotropy ranges from 0 to 0.6 and alpha angles are 

low ranging from 10° to 30°. The low values of H indicate the presence of a single dominant 

scattering mechanism. The low α values at the same time suggest an anisotropic surface 

scattering. The polarimetric parameter A varies between 0 and 0.8 with low values over 

rougher surfaces for which the presence of a secondary scattering effect can be expected, to 

high values over smoother surfaces for which the scattering process is quasi deterministic.  

 

Table 5.2: Land cover type specific ranges of values for polarimetric target parameters. 

 

  Arable fields Grassland Forest Build-up area 

Entropy 0.1 - 0.6 0.4 - 0.8 0.7 - 1 0.1 - 1 

Anisotropy 0 - 0.8 0.1 - 0.9 0.1 - 1 0 - 1 

Alpha angle 10° - 30° 12° - 40° 30° - 80° 40° - 80° 
 

 

 

The polarimetric scattering from grassland and agricultural fields with higher amounts of 

biomass at L-band include components from the vegetation as well as from the underlying 

soil surface. Hence, we expect the presence of secondary scattering processes. Indeed such 

scattering targets are characterized by a medium range of H and α, while A again covers a 

larger range between 0.1 and 0.9. As shown in Tab. 5.2, H ranges from 0.4 to 0.8 and α from 

12° to 40°. Medium H values are characteristic for the presence of two (or more) scattering 

mechanisms. The corresponding α values indicate dipole-like scattering behavior. 

 

Finally, forest and build-up urban areas are represented by both high H and α values while A 

varies over its whole definition range between 0 and 1. The high entropy region indicate the 

superposition of three scattering mechanism. The large alpha angles indicate that dihedral 

scattering is dominant. Here, high anisotropy represents the presence of two main scattering 

mechanisms, whereas low values indicate three scattering mechanisms.  
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5.7 ALOS PALSAR Dual Polarimetric Decomposition 

 

In the forgoing sections it was discussed that the entropy/alpha approach was originally 

designed to simplify multi-parameter depolarization occurring in quad polarized 

backscattering. However, Cloude (2007) demonstrated that it can also be applied to the 

simpler case of dual polarization. In this scenario the radar transmits only a single 

polarization and receives, either coherently or incoherently, two orthogonal components of 

the scattered signal. In the coherent case, this corresponds to measurement of the full state of 

polarization of the scattered signal for fixed illumination (Cloude & Pottier, 1996; Touzi, 

2007; Touzi et al., 2008; Lee & Pottier, 2009). The ALOS PALSAR sensor (ERSDAC, 2006) 

has such a fully coherent-on-receive mode. Cloude (2007) investigated development and 

application of a dual polarized entropy/alpha technique that can be used to take advantage of 

such coherent dual polarized systems. In this section we will discuss the eigen decomposition 

of the dual polarized ALOS PALSAR FBD data. 

 

In radar science there are two important special cases when the dual formalism becomes 

important. From a cost, data rate and coverage point of view, it is often advantageous in radar 

design to employ a single transmitted polarization state and a coherent dual channel receiver 

to measure orthogonal components of the scattered signal. Note that such dual polarized 

systems are not capable of reconstructing the complete scattering matrix, as discussed in 

section A.3, but instead can be used to reconstruct a column of the [S] matrix (Raney, 2006). 

This allows for constructing a 2x2 wave coherency matrix [J] to estimate depolarization. One 

key decision in the design of such radars is the best single polarization to employ (the 

reference point X on the Poincaré sphere shown in Fig. 5.4). As mentioned before, the FBD 

mode of ALOS PALSAR employs horizontally polarized transmission, while the 

experimental dual polarization mode of TERRASAR-X, for example, transmits in vertical 

polarization. Both systems employ dual channel reception of horizontally and vertically 

polarized components.  
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Figure 5.4: The Poincaré sphere interpretation of the dual polarized alpha angle. 
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It should be mentioned, that some dual polarization radars are not capable to employ the 

coherent-on-receive mode. For example, the European ENVISAT ASAR system in 

alternating polarization (AP) mode cannot measure the off-diagonal elements of [J] and 

obtains only the two diagonal terms. It is important to realize that such non-coherent 

polarimetric radars do not allow applying the polarized/depolarized decompositions. 

 

5.9.1 The Dual Polarized Entropy/Alpha Decomposition  

 

Using the standard interpretation of normalized eigenvalues of [J] as probabilities Pi, together 

with the fact that in 2x2 problems the second eigenvector can be derived from the principal 
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eigenvector using orthogonality, we obtain an entropy/alpha parameterization of the wave 

coherency matrix [J] as shown in Eq. (5.26)  
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In this dual polarized case we have a simple interpretation of α  on the Poincaré sphere (Fig. 

5.4). The angle α  is the angular separation between the received wave polarization state P 

and the reference state X used for construction of the wave coherency matrix. Indeed, the 

angles α  and δ  are related to the orientation and ellipticity angles τθ ,  of the received 

wave’s polarization ellipse via a spherical triangle construction on the Poincaré sphere as 

shown in Fig. 5.4. One reason for employing this approach as opposed to the conventional 

Stokes vector/degree of polarization (Raney, 2006) is the continuity it provides with the 

entropy/alpha decomposition for quadpol backscatter (Cloude & Pottier, 1996; 1997). In this 

sense the same phenomenology to describe all polarized scattering problems can be used. It 

should be noted that Cloude (2007) refers to the dual polarized case as H2α to distinguish it 

from the quad polarized H/α case as discussed in section 5.5. The averaging implied by the 

entropy/alpha approach does not pick out the state P corresponding to the maximum 

eigenvalue as in the polarized/depolarized decomposition but instead forms an average based 

on a probabilistic interpretation of making measurements on the wave and obtaining 

polarization X and Y with probabilities P1 and P2 respectively. Hence the average 

polarization state would have a corresponding alpha value given by α . In this sense, the 
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coherency matrix approaches the identity (noise) when 4πα = , being an equal mixture of 

the state X ( 0=α ) with its antipodal orthogonal state Y ( 2πα = ). It should be noted that in 

the partial polarimetric case the anisotropy A has no physical meaning since it compares two 

secondary scattering mechanisms while in dual polarimetry only one secondary mechanism 

can be identified (Breuer et al., 2003). 

 

5.9.3 Experimental Observations 

 

To demonstrate the use of these theoretical considerations for real life data, Koyama & 

Schneider (2011) calculated a series of H2α planes for different land cover types from the 

PALSAR FBD images and compared it with different in situ measured ground truth 

parameters. Fig. 5.5 shows the array of H2α planes for major land cover types bare soil, 

grassland, sugar beet, and winter wheat. To alleviate the interpretation of the diagrams, each 

H2α plane includes the mean mv value of all pixels and the mean ks or fresh weight (FW) of 

the biomass, respectively. In addition, the mean values are supplemented with the 

corresponding standard deviation. Several interesting observations can be noted from the 

plots. The most notable are summarized in the following points. 

 

The comparison between bare soil and winter wheat H2α planes indicate that both land 

covers have similar scattering behavior. Surprisingly, the entropy is rather lower for the 

winter wheat pixels. In effect, the absolute minimum entropy of 0.1 < H < 0.4 is found on the 

wheat fields on June 2, 2008, while the bare soil fields show higher entropy values of 

0.2 < H < 0.6. Note that this is the date with the measured absolute minimum ks.  

 

It is very interesting to note that the absolute maximum entropy occurs on the bare soil fields 

on May 4, 2008. This is the date with the highest measured surface roughness with ks values 

up to 0.92. This significant observation indicates that we have very high volume scattering 

within the ploughing layer of the freshly ploughed fields. Note that this has drastic 

consequences for the applicability of surface scattering models with L-band SAR data, i.e. 

possibly these models could, in general, not be true for such surface conditions at low radar 

frequencies.  
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From the grassland planes we receive the impression that depolarization decreases with 

decreasing water content of soil and thatch. For instance, the entropy reaches the minimum of 

0.3 < H < 0.7 for the date with the measured absolute minimum moisture contents in the 

grassland test site (June 2, 2008). This could be explained by decreased scattering from grass 

plants and thatch due to their lower dielectric constants. This leads to a better penetration of 

the signal towards the real soil surface and thus increases the surface scattering.   

 

Finally, it should be mentioned that the entropy of the sugar beet pixels seems to increase 

with increasing biomass. It can be seen that H reaches very high values up to 0.85 for mature 

sugar beet on September 17, 2007.  

 

Figure 5.5: Land use specific PALSAR dual-pol H2α planes for different imaging dates; mv is the mean 

surface soil moisture in Vol.-%, ks is the surface roughness, and SD is the corresponding standard 

deviation. 
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In order to conclude this chapter, an additional way to demonstrate the potential of the partial 

polarimetric H/α decomposition by calculating composite images of the different 

decomposition products is considered. Koyama & Schneider (2010) proposed the application 

of a HSV color-coding scheme with the hue equal to the alpha angle. The entropy is used as 

saturation term, so the color saturation decreases with increasing entropy. The scattered total 

power is used to modulate the intensity through the value term. Fig. 5.6 shows the different 

signatures in the entropy/alpha domain for the Selhausen sampling fields on July 21, 2009. 

Significant variations of scattering behavior can be noted for the various land cover types 

indicating the potential of discrimination and classification based on the dual-pol phase 

information. The green color represents low or no vegetation. Sugar beet fields and tree 

hedges appear bluish, while the maize in the northern part of field A11 occurs reddish. The 

very bright areas in the eastern part represent double bounce effects from man-made 

structures with high reflected total power.  

 

 

Figure 5.6: HSV image of the Selhausen test site from 21st July 2009  

(Hue = Alpha, Saturation = Entropy, Value = Span) 
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6. Classical Models for Quantitative 

Soil Moisture Estimation 
 

 

In the last decades a large variety of models have been developed to quantitatively invert land 

surface parameters, i.e. soil moisture and roughness, from radar measurements. These models 

range from experimental relationships to physically based theoretical approaches and vary 

significantly in regard to their complexity and validity ranges. In this chapter a critical review 

of different approaches for the estimation of soil moisture content from SAR imaging is 

provided. The chapter is basically divided into three parts according to three different 

approaches for the inversion of geophysical parameters based either on theoretical, physical 

based, semi-empirical or fully empirical models. In the first part, the small perturbation 

surface scattering model (SPM) is considered followed by the integral equation model (IEM) 

– which is today by far the most common and best investigated theoretical scattering model 

for computing electromagnetic wave scattering on rough surfaces. Part two is concerned with 

the two famous semi-empirical extensions of the SPM which were developed to improve the 

performance of the original theoretical approach. The first one is the semi-empirical model 

proposed by Oh et al. (1992) and the second is the empirical extension introduced by Dubois 

et al. (1995). In the last part, a fully empirical approach which has no physical basis but relies 

solely on observed linear or polynomial relationships between the backscattering coefficient 

and volumetric water content of a soil is addressed. The empirical retrieval model was 

especially designed for spaceborne single channel C-band SAR systems (i.e. ERS/SAR, 

Envisat/ASAR) and allows, in contrast to the former approaches, estimating soil moisture 

under a vegetation cover. Finally, the chapter concludes with a discussion of why it is 

necessary to develop a new semi-empirical model for spaceborne radar imaging at low 

frequencies. 
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6.1 Theoretical Scattering Models 

 

Even though the scattering problem of electromagnetic waves on randomly rough surfaces 

has been intensively researched over decades, it still cannot be considered as satisfactorily 

solved. That is, up to this date, no exact closed-form solution exists for this problem (Lee & 

Pottier, 2009). Nonetheless, a wide range of approximate methods to model EM wave 

scattering on rough surfaces have been developed, and, as a matter of fact, for many practical 

applications such approximate solutions may be sufficient. In radar science, the most 

prevalent approximate methods of treating this problem have been the so called Kirchhoff 

Approximation (KA) and the Small Perturbation Model (SPM) (Ishimaru, 1997). However, in 

the last decade the Integral Equation Model (IEM) has become the most commonly used 

physical model in inversion procedures for the retrieval of soil moisture and/or roughness for 

most practical radar applications (Song et al., 2009). This is mostly due to the fact that, unlike 

the above models, the IEM validity domain covers the range of surface roughness values 

typically found on agricultural soils. 

 

It should be pointed out that the KA is only valid if the dimensions of surface roughness are 

large compared to the actual radar wavelength (Ishimaru & Chen, 1991). Thus, it is more 

suitable for radar applications at high frequencies, e.g. at X- or C-band, and for large surface 

correlation lengths of kl > 6. Under such conditions, the scattering at a given point on the 

rough surface may be treated as scattering on the tangent plane of this point (Rodríguez, 

1991). Nonetheless, this approximation does not allow obtaining an analytical solution, and 

thus, it requires additional assumptions. For that reason, two modification of the KA have 

been introduced: i) the Geometric Optics Model (GOM) and ii) the Physical Optics Model 

(POM). The GOM represents the low frequency solution of the KA where obtained 

backscattering coefficients depend mainly on the surface slope. It is valid for very rough 

surfaces with ks > 2 (Macaskill, 1991). Contrary to this, the POM may be considered as the 

high frequency solution of the KA valid for high surface roughness conditions of ks > 0.25 

(Papa et al., 1986). The restricted validity ranges of these three approximations make it 

obvious that they have only limited relevance in practical radar applications (Chen & Fung, 

1988).  
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6.1.1 The Small Perturbation Model 

 

The Small Perturbation Model sets on the assumption that the deviations in surface height are 

small compared to the given wavelength. Hence, it is more appropriate for applications at 

lower frequencies such as S-, L-, and P-band (Chen & Fung, 1988). Despite the fact that the 

SPM is also only valid within a limited range of roughness conditions, it is one of the 

classical and most widely used solutions for the rough surface scattering problem. In effect, 

this method requires the surface standard deviation to be less than 5% of the electromagnetic 

wavelength. Nonetheless, it is considered as one standard approach and has been extensively 

used in various practical applications (Engman & Wang, 1987). The analytical conditions for 

its validity have been subject of investigation in several studies (Beckmann & Spizzichino, 

1987; Chen & Fung, 1995). 

 

As discussed in section 3.4, a perfectly smooth surface has zero backscatter at oblique 

incidence. In the so called Bragg scattering region where the deviations in surface height are 

relatively small compared to the wavelength, however, the presence of a certain roughness 

can be treated as a perturbation of the smooth surface scattering problem. In this particular 

case, the backscattering coefficients can be obtained by means of the small perturbation or 

Bragg scattering model derived directly from Maxwell’s equation (Borgeaud et al., 1989; 

Ishimaru, 1997). In this model, the random surface is decomposed into its Fourier spectral 

components, each of which is corresponding to an ideal sinusoidal surface. The scattering 

process itself is mainly driven by the spectral surface component as a function of wavelength 

and local incidence angle. For a Bragg surface, the polarimetric scattering matrix [S] takes 

the form of  
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where As denotes the backscattering amplitude holding the information about the surface 

roughness conditions, and SHH and SVV are the so called Bragg scattering coefficients 

perpendicular and parallel to the plane wave’s direction of travel, respectively. Both of which 
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are functions of the complex dielectric constant ε of the medium and the local incidence angle 

θ given by 
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Note that one of the most important statements of the SPM arises directly from Eq. (6.1). 

That is, the co-polarized ratio SHH/SVV depends only on the complex dielectric constant and 

the local incidence angle, and thus is independent of surface roughness. Several studies 

investigated the dependency of the co-pol ratio on the given soil moisture for incidence 

angles ranging from 25 to 60 degrees (Engman & Wang, 1987; Chen & Fung, 1988; Hajnsek 

et al., 2003b) showing that for dry surfaces, the SHH/SVV ratio is high and decreases with 

increasing water content. A strong variation at all incidence angles was observed for mv 

values between 0 and 20 Vol.-%, while saturating at mv > 20 Vol.-%. These findings indicate 

that the SPM is quasi insensitive to (very) wet surfaces, and thus its inversion yields get out 

of true for soil moisture values above the saturation level. Hence, it can be concluded that for 

most natural bare soil surfaces the validity range for both roughness and moisture conditions 

is too strict to be of any practical importance. It should be mentioned that not one of the test 

fields, as sampled in this study, actually meets the requirements of the Bragg region (cf. 

section 4.3.2). This demonstrates the limited applicability of the SPM under realistic 

conditions in radar remote sensing. 

 

In order to increase these strict validity ranges of the SPM, Hajnsek (2001) (Hajnsek et al., 

2003b) introduced an extension of the Bragg surface scattering model. The X-Bragg model is 

a two-component scattering model with one Bragg scattering term and one roughness related 

perturbation term. Hence, it allows dealing with roughness-induced depolarization as well as 

with cross-polarized backscattering contributions. The approach extends the validity range of 

the original SPM up to mv = 35 Vol.-%, rendering it more suitable for parameter inversions 

over natural bare surfaces. Another advantage of this model is the fact that it allows a 

straightforward separation of roughness and dielectric constant estimations. However, it 

should be noted that the estimation of ε′ was found to be highly sensitive towards variations 

in the incidence angle (Hajnsek et al., 2003b). The X-Bragg model was used in several 
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studies dealing with fully polarimetric airborne SAR data (Breuer et al., 2003; Hajnsek et al., 

2009; Jagdhuber & Hajnsek, 2010). 

   

6.1.2 The Integral Equation Model 

 

The Integral Equation Model developed by Fung et al. (1992; 1996) offers an alternative 

theoretical approach for the retrieval of soil moisture and/or surface roughness from active 

microwave data. As already mentioned, the model is valid for a wider range of roughness 

conditions compared to other theoretical models like KA, POM, GOM, or SPM. However, it 

should be noted that, in return, the IEM requires a multitude of parameters such as surface 

RMS height, surface power spectrum of the surface correlation function, and correlation 

length; sensing configuration parameters such as frequency (or wavelength) and look angle, 

as well as permittivity of the soil. As demonstrated in several studies (Oh & Kay, 1998; 

Davidson et al., 2000; Mattia et al., 2003a; Callens et al., 2006), of all these variables in the 

IEM, especially the roughness-related parameters are difficult to determine. Moreover, the 

complexity of this model along with the implicit relationship between soil dielectric constant 

and radar data make it difficult to directly invert soil moisture and roughness parameters from 

reflectivity measurements over natural terrain surfaces.  

 

In chapter 2 it was discussed that the radar backscattering coefficient of a bare soil surface is 

a function of soil texture, structure, density, roughness (RMS height), soil moisture, and soil 

surface conditions described by the autocorrelation function of a random surface height and 

correlation length. According to the electromagnetic scattering theory, in the case of natural 

terrains that have a small RMS slope, multiple scattering is not significant, and thus, single 

scattering will dominate in most situations (Beckmann & Spizzichino, 1987). Therefore, only 

co-polarized backscattering coefficients are considered by the IEM 
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where p = h (horizontal) or v (vertical) polarization and   
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where s is the surface RMS height, k is the wavenumber as given by Eq. (2.20), θcoskk z =  , 

θsinkkx = , with θ  being the incidence angle, ε′ the relative dielectric constant of the soil, µr 

is the relative permeability, and ||R  and ⊥R  are the vertically and horizontally polarized 

Fresnel reflection coefficients, respectively. ( )yx
n kkW ,  is the Fourier transform of the nth 

power of a known surface correlation function which can be calculated by (Fung, 1994) 

 

 ( ) ( ) ( )∫∫ += dxdyyjkxjkyxkkW yx
n

yx
n exp,

2

1
, ρ

π
 (6.9) 

 

where ),( yxρ  is the surface correlation function as given by Eq. (3.18) in section 3.3.1. 

 

Studies by Shi et al. (1997) and Zribi & Dechambre (2003) showed that the single-scattering 

IEM is suitable to compute both soil backscattering coefficients for bare soil and short-

vegetated surfaces. However, application of the model to retrieve mv from the radar 

backscattering coefficient is difficult because the dependence of the model on 'ε , θ , s , 
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surface power spectrum of the surface roughness correlation function, and correlation length 

is complicated and thus requires model inversion. Therefore, different approaches to modify 

the original IEM with the aim to derive a direct inversion model suitable to retrieve 'ε  

directly from the backscattering coefficient have been published in the last two decades 

(Fung et al., 1996; Shi et al., 1997; Hsieh & Fung, 1997; Licheri et al., 2001; Baghdadi et al., 

2002; Paloscia et al., 2004; Lee et al., 2007; Song et al., 2009). Baghdadi et al. (2004; 2011) 

developed an empirical calibration to enable a good fit between model simulations and 

measured radar data. Their approach consists of replacing the measured correlation length by 

a calibration parameter. This calibration parameter considers the true correlation length 

taking into account the imperfections of the IEM, and is dependent on roughness, incident 

angle, polarization and wavelength. Chen et al. (2000) and Wu & Chen (2004) proposed new 

expressions for both single and multiple scattering from rough surfaces. Comparisons with 

numerical simulations and laboratory measurements indicate that the original IEM was 

improved.  

However, it should be noted that recent studies often still use the original version of the IEM 

for the theoretical retrieval of soil moisture and surface roughness (e.g. Bindlish & Barros, 

2000; Dash & Prusty, 2007; Le Morvan et al., 2008; Paloscia et al., 2008). In this study, the 

original version with the empirical calibration parameters for the surface roughness 

correlation length as proposed by Baghdadi et al. (2004) was used.   

 

6.1.2.1 Experimental Results  

 

The IEM model was used to estimate mv from the fully polarimetric PALSAR PLR image 

acquired over the Duerwiss test site on May 14, 2009. The model results were evaluated 

against in situ soil moisture values taken on the bare soil field D01. Altogether 108 sampling 

locations were distributed over the 6 ha field. Taking into account the reduced spatial 

resolution of the PLR image, each 25x25 m pixel is represented by three sampling locations. 

By this we assume that the averaged mv value reasonably represents the according PALSAR 

resolution cell, rendering a pixel by pixel comparison possible. Consequently, 36 pixel values 

were available for the validation procedure. It should be noted that the limited observation 

space, with just a single roughness value of 6.0=ks , a single incidence angle of °= 3.21θ , 

and a small soil moisture range of 24.9 ≤ mv ≤ 33.3 Vol.-%, allows only a limited evaluation 

of the model performance.  
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Figure 6.1: Pixel-wise comparison between 

estimated and measured mv using the IEM. 

 

Figure 6.2: Soil moisture distribution on field 

D01 in the Duerwiss test site on May 14. 
 

Fig. 6.1 shows the pixelwise comparison between modeled and measured mv. It can be seen 

that the IEM significantly underestimates the water content for mv < 30 Vol.-%, while the fit 

for mv > 30 Vol.-% appears to be fairly good. As indicated by the slope of the linear fit (a = 

2.32), this underestimation increases with decreasing mv. It is interesting to note that the 

original soil moisture range is also significantly increased to 15.3 ≤ mv ≤ 33.1 Vol.-%. The 

RMS error taking into account all pixels is 7.7 Vol.-%. This is consistent with observations 

reported in the literature (Rakotoarivony et al., 1996; Boisvert et al., 1997; Bindlish & Barros, 

2000; Baghdadi & Zribi, 2006). It should be mentioned that these authors also found that the 

error tends to increase with increasing surface roughness. This is especially the case at higher 

frequencies (e.g. C-band), where the surface is always considerably rougher than at lower 

frequencies, such as used here. Fig. 6.2 is a PALSAR image tile from the Duerwiss test site 

showing the surface soil moisture distribution on field D01 as calculated with the IEM. 

 

6.2 Semi-empirical Inversion Models 

 

Generally speaking, semi-empirical approaches are based on theoretical scattering models 

and extend or modify these according to empirical observations. By this, the performance of 

the original model to simulate and/or interpret experimental data is increased. To establish the 

underlying experimental calibration relationships, a large number of experimental 
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measurements is required. However, such empirical relationships are often difficult to apply 

to sites other than those where they were developed. Moreover, they are generally valid only 

for specific soil conditions. This may limit their use significantly. Among the numerous semi-

empirical models reported in the literature, the most popular are the two extension of the 

SPM, namely the ones developed by Oh et al. (1992) and Dubois et al. (1995). Both will be 

considered in the following. 

 

6.2.1 The Oh Model 

 

Oh et al. (1992; 1994; 2002) developed this semi-empirical algorithm at the University of 

Michigan based on theoretical models and radar measurements with a truck-mounted 

scatterometer operating at three frequencies, 1.5, 4.5, and 9.5 GHz. The radar data was 

acquired in a fully polarimetric mode with an incidence angle range from 10° to 70°. Based 

on the observed relationships between the scatterometer data and field measurements over a 

wide variety of bare soil conditions, an empirically determined function for the co- and cross-

polarized backscattering ratios was proposed (Oh et al., 1992):  

 

 























−== −Γ ks

vv

hh ep
03

1

0

0 2
1

π
θ

σ

σ
 (6.10) 

  

and 

 

 ( )ks

vv

hv eq −−Γ== 123.0 00

0

σ

σ
 (6.11) 

 

where θ  is the local incidence angle, ks  is the electromagnetic roughness (i.e. RMS height 

normalized to the wavelength), 0Γ  is the Fresnel reflectance coefficient at nadir (i.e. 0=θ ) 

with 
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and 'ε  is the real part of the complex dielectric constant.  

 

To incorporate the effect of varying incidence angles, a new expression for q was introduced 

(Oh et al., 1994):  
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Later on, the expression for p and q were further modified, and an expression for the cross-

polarized backscattering coefficient was suggested (Oh et al., 2002): 
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Finally, taking into account the fact that the measurement of the surface roughness correlation 

length is not exact (cf. section 3.3) and that the ratio q is insensitive to the roughness 

parameter, Oh (2004) proposed a new formulation of the cross-polarized ratio which ignores 

the correlation length:  
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In general, the Oh model allows accurate estimations of mv within a validity range of ks < 3 

and 9 < mv < 31 Vol.-% (Oh, 2006; Baghdadi & Zribi, 2006). Due to this fact the algorithm is 

more suitable for applications at lower frequencies like S-, L-, or P-band.   

 

6.2.1.1 Experimental Results  

 

The latest version of the Oh model (2004) was applied to estimate soil moisture from the 

fully polarimetric PALSAR image acquired over the Duerwiss test site on May 14, 2009. The 

modeled soil moisture values were validated against the in situ measurements taken on the 

bare soil field D01. The validation was performed following the procedure described in 

section 6.1.2.1. The pixel by pixel comparison yields a RMS error of 14.2 Vol.-%. This poor 

performance of the model is illustrated in Fig. 6.3. It can be seen that the modeled water 

contents are highly underestimated. This result is consistent with evaluations reported in 

other studies (Boisvert et al., 1997; Hajnsek, 2001; Baghdadi & Zribi, 2006), which all 

observed a systematical underestimation of the modeled backscattering coefficients. However, 

Hajnsek (2001) found that in cases with a high roughness component, the Oh model may 

actually strongly overestimate the soil moisture content. The soil moisture distribution map 

retrieved from the PALSAR PLR image for field D01 is shown in Fig. 6.4. 

 

 

Figure 6.3: Pixel-wise comparison between 

estimated and measured mv using the Oh model. 

 

Figure 6.4: Surface soil moisture distribution on 

field D01 in the Duerwiss test site on May 14, 

2009. 
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6.2.2 The Dubois Model 

 

The semi-empirical model developed by Dubois et al. (1995) may be considered as a 

simplification of the Oh model addressing only the co-polarized backscattering coefficients. 

The radar data used in the original study was also collected with scatterometer, while in later 

investigations the algorithm was widely applied to SAR data. Based on the observed 

relationships between scatterometer data and field measurements, the empirical co-polarized 

backscattering coefficients 0
hhσ  and 0

vvσ  were expressed as a function of radar parameters, i.e. 

the local incidence angle and frequency, and of soil parameters, such as permittivity and 

surface roughness. After investigating the dependency of the backscattering coefficient ratio 

on different moisture conditions and varying incidence angles, the roughness-induced 

deviations were accounted for by an empirically derived expression for the roughness term 

)sinlog( θ×ks . The following empirical expressions for the co-polarized backscattering 

coefficients were found: 
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where θ  is the local incidence angle, 'ε  is the relative dielectric constant, ks  is the 

normalized surface roughness, and λ  is the wavelength. Hence, for known θ  , Eq. (6.18) and 

Eq. (6.19) constitute a system of two non-linear equations with two unknowns: ks  and 'ε .  

 

Note that the backscattering coefficients of Eq. (6.18) and Eq. (6.19) decrease with increasing 

θ  and/or with decreasing ks. This is similar to the prediction of the SPM. On the other hand, 

the backscattering coefficients increase with increasing mv. This increase is stronger in 

vertical than in horizontal co-polarization. The sensitivity of the model to mv decreases with 

increasing LIA. Moreover, it can be seen that the empirically determined expressions 

condition that the 00
vvhh σσ  ratio is dependent on roughness and increases with increasing ks. 

This, however, is different from the SPM, where the co-polarized term is not roughness-
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dependent. The co-polarized ratio increases steadily with increasing mv, while its sensitivity 

to mv decreases with decreasing θ  (Hajnsek, 2001). 

 

Dubois et al. (1995) estimated the validity range for the surface parameters to be 

mv ≤ 35 Vol.-% and ks ≤ 2.5. Their accuracy is stated as 4.2 Vol.-% for the soil moisture 

estimates and as ks of 0.4 for the surface roughness over bare soil. However, there are some 

important aspects which are not considered by the Dubois model, such as the influence of the 

surface correlation length on the fields, or the influence of topographic variations on the 

accuracy of the estimates.  

Finally, it should be mentioned that the authors had several reasons to consider only the co-

polarized signals in their model. First of all, the co-polarized backscattering coefficients are 

less sensitive to system noise and cross talk rendering the calibration of co-pol channels 

simpler and more accurate (Freeman, 1992). Moreover, the deployment of effective and 

reliable calibration algorithms for polarimetric SAR data was still under development in the 

early and mid 1990’s (Touzi et al., 2008). And finally, the use of only two channels allows 

applying the model on data acquired with dual polarized radar systems, whereas the Oh 

model strictly requires fully polarimetric data.  

 

6.2.2.1 Experimental Results  

 

Following the validation procedure described in section 6.1.2.1, the soil moisture values 

estimated from the PALSAR image by means of the Dubois model are compared with the in 

situ measurements from field D01. It can be seen from Fig. 6.5 that, in contrast to the ones 

discussed above, the model significantly overestimates the soil water contents. Again this 

result is in agreement with other studies reported in the literature (e.g. Hajnsek, 2001; 

Leconte et al., 2004; Álvarez-Mozos et al., 2007; McNairn et al., 2010). Ji et al. (1996), for 

instance, applied the model on test fields similar to D01 and observed a high error in the 

retrieved soil moisture for L- as well as C-band imagery. Wang et al. (1997) and Baghdadi & 

Zribi (2006) found a general overestimation of the backscattering coefficients especially in 

HH polarization. The soil moisture distribution for field D01 as calculated with the Dubois 

model is shown in Fig. 6.6. 
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Figure 6.5: Pixel-wise comparison between 

estimated and measured mv using the Dubois 

model. 

 

Figure 6.6: Soil moisture distribution on field 

D01 in the Duerwiss test site on May 14, 2009 

 

 

6.3 Empirical Retrieval Models 

 

Empirical relationships between the radar backscattering coefficient and soil moisture have 

been presented by numerous studies (Wang & Schmugge, 1980; Bernard et al., 1984; 

Cognard et al., 1995; Rakotoarivony et al., 1996; Wang et al., 1997; Deroin et al., 1997; 

Weimann et al., 1998; Quesney et al., 2000; Le Hégarat-Mascle et al., 2002; Zribi & 

Dechambre, 2003). For a bare soil surface, there exists a functional relationship between the 

topsoil water content and the backscattering coefficient, which, of course, also includes a 

roughness term (cf. section 3.4). Under these conditions, many studies have shown that either 

a linear or a polynomial relationship between σ0 and mv is a reliable approximation for a 

given study site, setting on the assumption that surface roughness remains constant between 

successive radar acquisitions. However, the coefficients of these relations may vary 

significantly for different studies. Hence, it is generally difficult to apply such empirical 

relationships in areas other than the one in which the observations were made. Apart from 

their simplicity, which usually allows a straightforward estimation of mv, the greatest 

advantage of the fully empirical approaches is the fact that it also renders possible to establish 

such relations for vegetated areas. In effect, several studies reported accurate soil moisture 

estimations under a crop canopy by using empirical retrieval models (Taconet et al., 1996; 

RMSE = 14.8 [Vol.-%]

20 25 30 35 40 45
20

25

30

35

40

45

measured mv [Vol-%]

e
s
ti
m
a
te
d
m

v
[V
o
l-
%
]

RMSE = 8.3 [Vol.-%]

R2 = 0.18**; Slope = 0.31 Ü

0 10050
m

mv [Vol.-%] 4010



Classical Models for Quantitative Soil Moisture Estimation 

 

116 

Rombach & Mauser, 1997; Schneider & Oppelt, 1998; Mattia et al., 2003b; Loew et al., 

2006). The following section will provide a review of just such a model, as it was actually 

applied in this study to derive the watershed scale soil moisture distribution from single 

channel Envisat/ASAR data. 

 

6.3.1 Empirical Soil Moisture Retrieval Model for Single Channel 

ASAR Data 

 

The inversion approach for ENVISAT ASAR data was developed at the LMU Munich with 

the aim to provide soil moisture maps for mesoscale catchments in an operational manner, 

and was based on an antecedent empirical inversion scheme developed for C-band SAR data 

from the European Remote Sensing (ERS) satellite mission (Rombach & Mauser, 1997). As 

the given approach calculates the real part of the complex dielectric constant ε′ as a function 

of land use, it requires a detailed land use map as well as additional soil texture information 

for the inversion of ε′ to mv by means of a dielectric mixture model. The ERS model has 

proven its applicability in different studies showing that surface soil moisture contents can be 

derived with an RMSE of 4-7 Vol.-%, and that it is also usable for mesoscale C-band SAR 

data (Schneider & Oppelt, 1998; Mauser et al., 2000; Loew et al., 2003). An advantage of this 

empirical retrieval approach is that it only requires very few model parameters to derive 

spatially distributed surface soil moisture patterns. The soil moisture retrieval model has been 

validated for land cover types cereals, root crops, bare soils, harvested fields, and grassland 

using C-band SAR data, and thus, is only valid for these land cover and frequency settings. 

Soil moisture is inverted in 2 steps. First, ε′ is derived from the backscattering coefficient σ0 

using the empirical algorithm and ancillary land use information. The second step is the 

conversion of ε′ to volumetric soil moisture content mv by using a dielectric mixture model 

based on a soil texture map. In the present study the dielectric mixture model proposed by 

Hallikainen et al. (1985) is used.  
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The backscattering coefficient is related to the relative dielectric constant of a soil volume 

using empirically derived land use specific relationships as 

 

 200 ][][' dBcdBba σσε ++=  (6.20) 

 

where a, b, and c are land use dependant model parameters as shown in Tab. 2, ε′ is the real 

part of the complex dielectric constant, and σ0 is the vertically co-polarized backscattering 

coefficient expressed in dB. 

  

The relationship given by (6.20) is based on an extensive empirical database from two test 

sites in Southern Germany. Between 1992 and 1997 soil moisture was monitored with TDR-

probes on 10 test fields with varying surface roughness conditions at each site. Thus, the 

found relationship between σ0 and ε′ can be considered to represent the mean surface 

roughness of a given land cover type (Davidson et al., 2000). The bare soil function of (6.20) 

is comparable to relationships between soil water contents and bare soil backscattering 

coefficients as described in other studies (Cognard et al., 1995; Quesney et al., 2000; Le 

Hégarat-Mascle et al., 2002).  

 

Table 6.1: Land use dependant coefficients for the inversion of σ
0
 to ε′ using (6.20) and biomass 

correction coefficients for (6.21) at an incidence angle of 23°. (Loew et al., 2006) 
 

Land use Model parameters 

  a b c R
2
 

bare soil 34.20 4.42 0.15 0.90 
cereals 42.77 4.91 0.16 0.88 
harvested fields 45.71 5.87 0.20 0.81 
grassland 40.94 5.33 0.18 0.92 
root crops 42.05 4.42 0.15 0.84 

biomass correction 
  

α β   
meadow extensive use 0.9765 0.7278   
meadow intensive use 1.0350 0.5934     
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6.3.2 Radar-Vegetation Interactions 

 

As a first approximation, the vegetation cover causes a bias in the relationship between the 

dielectric constant and the backscattering coefficient (El-Rayes & Ulaby, 1987; Karam et al., 

1992; Le Vine & Karam, 1996). Loew et al. (2006) point out that for vegetated areas the 

polynomials given by (6.20) are only valid after canopy closure. They found from the 

empirical field data, that the vegetation influence on the backscattering coefficient at an 

incidence angle of 23° saturates after this phenological stage. Since the vegetation structure 

(height, phenological stage, vegetation type) and water content determine the scattering 

mechanism of the incident electromagnetic wave, a quasi non-varying vegetation influence 

can only be explained by interactions of different aspects as, for instance, an increasing 

surface scattering compensated by increasing signal attenuation (Mattia et al., 2003b). In case 

of vertically structured canopies the backscattered signal is strongly influenced by the 

vertically oriented stems. Picard et al. (2003) as well as Brown et al. (2003) showed that the 

stem ground interactions become the predominant scattering term for wheat fields after 

canopy closure, and that it remains stable during the whole vegetation period, while the 

contributing part of the soil surface declines. Comparable findings were also published by Le 

Toan and Le Toan (1988), Ferrazzoli et al. (1992) and Cookmartin et al. (2000). It should be 

noted that this empirical approach substantially simplifies the physical interactions between 

the plane incidence waves and the vegetation canopy. Moreover, the studies mentioned above 

have shown that the phenological development of a plant as well as changes in incidence 

angle can also result in essentially different mechanisms and attenuation properties of the 

vegetation cover.  

In contrast to the constant vegetation influence for the field crops in vertical co-polarization 

(VV) as described by the authors of the model, a different behavior was observed in case of 

grassland vegetation (Rombach & Mauser, 1997). According to Dubois et al. (1995) the 

significant differences in backscatter intensities observed between grassland fields with the 

same soil moisture content could be attributed to the varying amount of biomass. The authors 

propose the use of an attenuation factor Ω that is related to the dry biomass of the grassland 

vegetation MDRY [kg/m²] as 

 

 
DRYMβα −=Ω  (6.21) 
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where α and β are specific parameters, as given in Tab. 6.1, that depend on the type of 

grassland, since differences were also observed between intensively and extensively used 

grassland. However, it should be mentioned that the actual physical scattering mechanisms 

and attenuation properties due to interactions between above-ground biomass, thatch, and 

underlying mineral soil, constitutes a major problem for the estimation of soil moisture from 

C-band SAR under grassland vegetation (Martin et al., 1989; Saatchi et al., 1994; Wang et al., 

1997). 

 

6.3.2.1 Experimental Results 

 

Koyama et al. (2010) evaluated the empirical soil moisture retrieval model using eight Wide 

Swath images acquired in 2008. As ASAR WS pixels provide an average value for a 150 x 

150 m area, comparison of remote sensing and ground measurement was done on the basis of 

individual fields and for all available dates with ground truth data. Fig. 6.7a shows the 

comparison of measured and retrieved soil moisture values for all eight maps. Triangles 

indicate the average values measured for the different fields. According to the individual size, 

each field is represented by 10 - 24 measurement locations each covered by six samples. In 

addition, measurements taken at our continuous measuring sites are shown as circles. Since 

the continuous measurements represent only the given measurement location instead of an 

areal average, larger differences of the point measurements and the spatial mean covered by 

the remote sensing data may exist. Nevertheless, the measurements taken at the continuous 

measurement sites match the values derived from remote sensing very well. It should be 

mentioned that due to the small penetration capabilities of the C-band signal, a reliable 

ground truth is very difficult to acquire. That is, the in situ measurements using hand held 

probes give an average soil moisture value for the topmost 6 cm, while the skin depth of the 

ASAR images may actually be less than 1 cm, as discussed in section 2.2.1. Fig. 6.8 

exemplarily shows the spatial surface soil moisture pattern for March 25. Areas where the 

land cover does not allow the calculation of mv (e.g. built-up areas, forests, or water) remain 

unspecified as grey or white pixels. 
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a  

b   

Figure 6.7: Comparison between measured 

and a) ASAR WS derived and b) ASAR IM 

derived surface soil moisture. Dashed lines 

indicate the ±5 Vol.-% margins. 

Figure 6.8: Soil moisture distribution map of the 

Rur catchment on 25 March 2008 as derived 

from ASAR WS image. 

 

 

Comparison of the field average ground truth data with ASAR derived soil moisture values 

yields a RMSE of 5 Vol.-% (Fig. 6.7a). While field measurements and remote sensing 

estimates agree well in the mid and low soil moisture range, at high soil moisture states, the 

ASAR retrievals significantly underestimate the field measurements. Very high soil moisture 

values in excess of 45 Vol.-% were measured only under grassland. Here, the handheld 

probes integrate over the wet thatch and the mineral soil part. The thatch layer of the grass 

cover and the organic top soil layer provide a large storage capacity for water, which exceeds 

the porosity of mineral soils and thereby dominates the soil moisture measurement. The 

empirical inversion algorithm does not appropriately account for this effect. In addition, the 
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soil texture map does not reflect the large water retention characteristic of the organic top-

layer of this land use - soil combination. For dry conditions, the soil moisture estimates for 

grassland as well as for arable land agree well with field measurements. This indicates that 

for dry conditions, the measured water content of the soil is mainly determined by the 

properties of the mineral soil, rather than the thatch layer.  

 

Soil moisture conditions of the arable land of the loess plain are generally well represented by 

the ASAR estimates. Since the inversion algorithms were developed mainly for mineral soils, 

they perform well here. However, it should be pointed out that, even though the validation 

using field mean values delivers good results, a pixel by pixel comparison, as carried out for 

the above models, yields far less accurate results. In effect it was found, that a pixelwise 

evaluation for the 25x25 m ASAR Image Mode resolution cell is in the order of RMS errors 

of 7 Vol.-%. Fig. 6.7b shows the comparison between measured mv and estimates derived 

from ASAR IM data acquired on April 29, 2008. The in situ values were taken on bare soil 

fields A01 and A03 in the Selhausen test site, each of which is represented by 24 sampling 

locations. It can be seen, that despite the relatively large total error, the field mean evaluation 

would yield a high accuracy of RMS error 1.6 Vol.-%. Thus, it can be stated that in terms of 

within-field variability this empirical model does not perform significantly better than the 

IEM, Oh, or Dubois model.  

 

Finally, one has to be aware of different sources of uncertainty in the estimation of surface 

soil moistures from ASAR data which can arise from the following: (i) Image calibration 

errors which range between 0.5 and 1.0 dB for the ASAR products (ESA, 2007). Insufficient 

speckle reduction can add a stochastic component to σ0. Both error sources are assumed to be 

small, since accurate ancillary data were used and state of the art image processing was 

employed. (ii) Imprecise land use information and land use specific conversion, which can 

result in a false inversion of σ0 to 'ε . (iii) Unknown or imprecise biomass information for 

grassland pixels. Spatial variability in biomass results in spatial variability of the attenuation 

factor. We used field measurements to determine the biomass of grassland. While these 

measurements provide accurate data for our sample fields, they might not be accurate 

everywhere in the catchment. (iv) Unknown or imprecise soil texture information can result 

in a false conversion of 'ε  to volumetric soil moisture by means of dielectric mixture models. 
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6.4 The Need for a New L-band Model 

 

From the foregoing sections it should have become clear that up to now no paramount model 

exists which allows quantitative soil moisture estimations in an operational manner anywhere 

at any time of the year. That is, the presence of a varying vegetation cover during the growth 

period and a changing surface roughness caused by land management or rainfall greatly 

hamper their operational application. The theoretical scattering models all have significant 

constraints in their validity ranges, and they commonly require a large amount of parameters 

which are usually very difficult to collect for larger areas. Moreover, these approaches only 

consider surface scattering, so that they are only suitable for bare soil surfaces or, at the best, 

for surfaces with a very sparse vegetation cover (Daniel et al., 2007). The semi-empirical Oh 

and Dubois model (Oh et al., 1992; Dubois et al., 1995) fail to cover the wide range of soil 

moisture and surface roughness typically found on natural surfaces. Besides, they were 

developed with antennas that did not have the sophisticated performance (e.g. radiometric 

accuracy, cross-talk, etc.) of the ones employed in current SARs and thus in general lack 

accuracy. For the inversion of the two major surface parameters mv and ks, the SPM, IEM, as 

well as the Oh and Dubois model have to resolve two unknowns from a system of two non-

linear coupled equations. The first parameter is calculated in step one and subsequently used 

as input to resolve the second parameter. Hence, the error of the first parameter propagates 

into the calculation of the other one. 

 

The fully empirical approaches available in the literature were all developed for single 

channel C-band data. Hence, it is due to the limited penetration capabilities always difficult to 

find a meaningful relation between soil dielectric constants in depth > 1 cm, and even more 

difficult under a vegetation cover. Moreover, the fact that the C-band signal is always more 

sensitive towards surface roughness effects represents a greater source of error.  

 

To conclude this chapter, it can be emphasized that not a single semi-empirical nor empirical 

L-band model exists which is capable to correct for the dynamic effects caused by surface 

roughness and/or vegetation. This motivates us to consider development of just such a model 

in the next chapter. We introduce a semi-empirical soil moisture retrieval model for dual-

polarized L-band SAR data, which is not only capable of accurate quantitative soil moisture 
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estimations for any given surface roughness state and all possible vegetation conditions, but 

in addition, allows accurately deriving mv at high spatial resolution rendering remote sensing 

of within-field spatial heterogeneities possible. 
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7. A New Semi-Empirical Soil 

Moisture Model for Dual 

Polarimetric L-band SAR Data 
 

 

Despite the several promising results reported in the literature, there exists no theoretical nor 

(semi) empirical approach which has the potential to reliably retrieve the water content of 

soils over large areas with high resolution. In case of the theoretical scattering models this is 

partly due to the fact that they are just not true for many conditions of natural surfaces (cf. 

section 5.7.3 and 6.1). On the other hand the semi-empirical and empirical approaches were 

all developed and/or adopted using high frequency radar satellites operating at C-band which 

is widely recognized to be a suboptimal choice for this purpose. That is, the limited 

penetration capability greatly hampers a consistent investigation of relationships between soil 

permittivity and backscattering coefficients regardless of single, dual, or quad polarization 

modes (McNairn et al., 2010). However, the reason why no such model is available for L-

band satellite data is simply the fact that up to the launch of ALOS PALSAR only C-band 

satellites were available. The only spaceborne SAR systems operating at L-band were aboard 

the SEASAT and JERS-1 satellites. These however, had either not the radiometric accuracy 

and/or not the spatial resolution to make an in-depth analysis in terms of soil moisture 

inversion feasible.  

 

The development of a new semi-empirical soil moisture retrieval model in this chapter is 

based on correlation analysis between PALSAR observables and in situ data. First, the 

suitability of different empirical estimation algorithms to provide information on surface 

roughness and vegetation cover is assessed. The best parameter models to derive surface 

roughness and biomass are subsequently used to correct the co-pol backscattering coefficients 

in order to yield more accurate estimates of mv. Four different land cover specific models are 

introduced for the land cover types bare soil, grassland, sugar beet, and winter wheat. 
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7.1 Dual Polarimetric ALOS PALSAR Data 

 

An overview of all PALSAR images acquired over the study area during the investigation 

period is shown in Tab. 7.1. As can be seen, 13 FBD images with dual polarization (HH + 

HV) plus 2 PLR images with quad polarization (HH+HV+VH+VV) were available for this 

study. Note that not all ground based measurements were taken for each scene. This may 

have different reasons such as incorrect information from ESA about upcoming acquisitions, 

defect measurement equipment, or short-term strategy changes by JAXA. In effect, plenty 

more measurements campaigns were carried out on days with potential or planned PALSAR 

acquisitions which ultimately did not take place. These additional measurements not 

considered in this dissertation were used in a study on soil moisture patterns by Korres et al. 

(2010). 

 

Table 7.1: PALSAR data and associated field measurements (mv, s, and v represent measurements of 

soil moisture, RMS height, and vegetation parameters, respectively). 

Date  Polarization AOI Track mv s v 

2-Aug-07   HH, HV 34.3° 648 X     

17-Sep-07   HH, HV 34.3° 648 X     

4-May-08   HH, HV 34.3° 648 X X X 

2-Jun-08   HH, HV 34.3° 647 X X X 

19-Jun-08   HH, HV 34.3° 648     X 

18-Jul-08   HH, HV 34.3° 647 X   X 

12-Mar-09   HH, HV, VH, VV 21.5° 642     X 

14-May-09   HH, HV, VH, VV 23.1° 643 X X X 

22-Jun-09   HH, HV 34.3° 648     X 

21-Jul-09   HH, HV 34.3° 647 X   X 

5-Sep-09   HH, HV 34.3° 647   X X 

22-Sep-09   HH, HV 34.3° 648 X   X 

21-Oct-09   HH, HV 34.3° 647       

10-May-10   HH, HV 34.3° 648 X   X 

22-Jun-10   HH, HV 34.3° 648 X X X 

 

 

Key for the development of a new semi-empirical soil moisture retrieval model is the Fine 

Beam Dual polarization mode (FBD) which employs a single transmit polarization (H) and 
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dual coherent reception of horizontal and vertical polarization. Note that the fully 

polarimetric mode (PLR) which enables full coherent scattering matrix collection by 

alternating H and V polarization on transmit (cf. section 4.10) was used to simulate FBD data 

by taking only the HH and HV scattering terms as demonstrated by Cloude et al. (2008). The 

preprocessing of these partial polarimetric SAR images will be addressed in the following 

section. 

 

7.2 Preprocessing of Polarimetric PALSAR Data 

 

To extract the full information contained in the partial polarimetric FBD data an advanced 

processing scheme was developed. As discussed earlier in this dissertation, the coherent-on-

receive operation of the PALSAR sensor allows decomposing the images by means of 

PolSAR techniques. Hence, the processing requires not only a radiometric calibration of the 

horizontally and vertically polarized channels to obtain the backscattering coefficients in HH 

and HV polarization, but also decomposition of the scattering matrix into its eigenvectors and 

eigenvalues (cf. section 5.7). A simplified representation of the processing chain is shown in 

Fig. 7.1. The intensity images were processed using ENVI (ITT Visual Information Solutions, 

Boulder, USA) and the add-on module SARscape (sarmap, Purasca, Switzerland). The 

polarimetric processing was performed using the polarimetric SAR data processing and 

educational toolbox PolSARpro (Pottier et al., 2008). This software was compiled and 

programmed by Eric Pottier and his associates under the sponsorship of ESA and can be 

downloaded free of charge from the internet (http://earth.esa.int/polsarpro).  
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Figure 7.1: Simplified processing chain for dual polarized ALSO PALSAR data. 

 

 

In principle, the radiometric calibration to sigma nought is performed according to the 

processing procedure for single polarized ASAR data as discussed in section 2.9.1. After 

header analysis of the Level 1.1 products, full resolution extraction is carried out to obtain the 

single look complex (SLC) images. To produce the slant range intensity image with square 

resolution cells, multi-looking is executed with a factor of 5:1 (Azimuth/Range). 

Subsequently these intermediate products are coregistered to assure fully identical geometries. 

Note that the images are only moderately despeckled using an adaptive Lee-filter with a box-

size of 3x3 pixels. It was found that this filtering best preserves the full spatial information 

based on the higher geometric accuracy of ALOS PALSAR compared to Envisat -1 ASAR. 

Once the despeckling is conducted, the images are geocoded and radiometrically calibrated to 

0σ  using the high resolution DEM of the study area (Sci Lands, 2008). For every scene this 

processing has to be performed individually for the co- and cross-polarized channels resulting 

in two separate images of 0
hhσ  and 0

hvσ .  

 

As discussed in detail in section 5.7, the dual polarized FBD acquisitions of ALOS PALSAR 

enable the exploitation of the distributed target (2x2) complex covariance matrix ([C2]) raw 

binary data off-diagonal elements. In order to extract the full information content of these 

images, the eigenvectors constructed from the [C2] matrix are used to calculate the dual-pol 
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target parameters entropy, anisotropy, and alpha angle by applying the H/A/α decomposition 

(Cloude & Pottier, 1996).  

 

As the fully coherent-on-receive FBD mode of ALOS/PALSAR is not capable of 

reconstructing the complete (3x3) scattering matrix, the dual polarization H/A/α polarimetric 

decomposition is based on an eigenvector decomposition of the (2x2) complex Covariance 

[C2] matrix as shown in Eq. (7.1). 
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In the dual polarization case the eigenvector decomposition of a distributed target covariance 

matrix is performed using a simple statistical model consisting in the expansion of the (2x2) 

complex covariance matrix into a weighted sum of two covariance matrices as 
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where λ denotes the eigenvalues and v the eigenvectors of the covariance matrix. 

 

After this, pseudo-probabilities of the (2x2) complex covariance [C2] matrix expansion are 

defined from the set of sorted eigenvalues given by 
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The distribution of the probabilities can then be fully described by two parameters. The 

entropy H indicates the degree of statistical disorder of the scattering phenomenon, while for 

high entropy values (> 0.7), a complementary parameter is necessary to fully characterize the 

set of probabilities. In this sense, the anisotropy A is defined as the relative importance of the 

secondary scattering mechanism. In the partial polarimetric case, A is equivalent and equal to 

the wave degree of polarization (Mott, 2007). It should be mentioned that the condition of 
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mutual orthogonality between the eigenvectors entails that the two polarimetric parameters 

sets resulting from the matrix expansion are not independent of each other.  

 

Each unitary eigenvector υ  of the (2x2) complex covariance [C2] matrix is then 

parameterized using the two real angular variables α and δ, as discussed in section 5.9.1 (see 

Fig. 5.8), with 

 

 [ ]tj
iii

ie
δααυ sin,cos=  (7.4) 

 

The final products of the polarimetric decomposition are four images, namely the entropy, 

anisotropy, alpha angle, and span image. Before they are imported into a GIS together with 

the calibrated backscattering products, the images are geocoded and orthorectified to obtain 

identical geometries. It should be pointed out that, consequently, every PALSAR resolution 

cell is represented by six parameters. Compare this to the single channel ASAR data with just 

one parameter, as discussed in section 2.9. An example of such an image set is shown in Fig. 

7.2. 

 

 

 

 

 

 



A New Soil Moisture Model for Dual Polarimetric L-Band SAR Data 

 

130 

Figure 7.2: Dual polarization image set of the Selhausen area as obtained from PALSAR FBD data with 

a) HH, b) HV, c) span, d) entropy, e) anisotropy, and f) alpha angle. 
 

7.2 Bare Soil Model 

 

In chapter 6 it was discussed that the radar backscattering coefficient of bare soils is 

principally a function of the radar system parameters as well as of the roughness and 

dielectric properties of the illuminated surface. Since the system parameters are known, the 

inversion of mv is a problem with two unknowns. Hence, the effect of the surface roughness 

needs to be accounted for to correctly estimate the permittivity of the soil. For this reason, 

several surface roughness measurement campaigns were conducted within the frame of this 
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study (cf. section 4.3.2). The measured roughness conditions at the time of satellite 

acquisitions allow investigating relationships between ks and the different PALSAR 

observables. The approach of the bare soil model is to use these relationships to estimate ks. 

Subsequently, these estimates are used to correct the horizontally co-polarized backscattering 

coefficients, to yield more accurate retrievals of mv by taking into account the actual 

roughness state at the time of acquisition. We use the horizontally polarized transmit, 

horizontally polarized receive case (HH) because the co-polarized signal is generally more 

sensitive towards the dielectric properties of a surface (Ulaby et al., 1978; Ulaby et al., 

1982b; Oh et al., 1992).  

 

7.2.1 Surface Roughness Estimation 

 

From the backscatter analysis it was found that the cross-pol ratio 00
hhhv σσ  is highly 

sensitive towards measured ks. The comparison between the ratio [dB] and ks is shown in Fig. 

7.3. It can be seen that this comparison yields a highly significant coefficient of determination 

of 0.94 using a polynomial regression of second order. 

 

 

Figure 7.3: Comparison between HV/HH ratio and measured ks. 
 

A comparable sensitivity was observed for the dual polarized anisotropy. As can be seen 

from Fig. 7.4, the comparison between ks and A also yields a highly significant relationship 

with R² = 0.92.   
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Figure 7.4: Comparison between anisotropy A and measured ks. 
 

Based on these findings, we can invert the surface roughness directly from the FBD data 

using the following relationship between ks and cross-pol ratio with 
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or between ks and A with 

 

 0563.47081.889.4 2 +×+×= AAks  (7.6) 

 

To validate the accuracy of the calculated surface roughness, the estimates are compared with 

measured ks values as shown in Fig 7.5. We retrieve ks from the FBD data with a RMS error 

of 0.11. Note that the validation data has not been used in the correlation analysis before, and 

thus is considered to be fully independent. 
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Figure 7.5: Comparison between estimated and measured ks. The bars indicate the corresponding 

standard deviations. 
 

7.2.2 Soil Moisture Estimation on Bare Soil using Roughness 

Corrections 

 

Having obtained information about the roughness state of the soil surface by following the 

above procedure, we subsequently use this roughness estimates to correct for its effect on the 

horizontally co-polarized backscattering coefficients. The relative dielectric constant of the 

soil is then derived using a simple linear relationship between 0
hhσ  and ε′ as empirically 

derived from our extensive data set (Koyama & Schneider, 2010). We use the estimated 

surface roughness information to correct sigma nought with 

 

 ( ) 3.000 ' kshhhh ×= σσ  (7.7) 

 

Then 'ε  is calculated by 

 

 ( ) ( ) 11.132'128.20'625.0' 020 −−−= dBdB hhhh σσε  (7.8) 

 

Finally, ε′ is inverted to soil moisture content by using the dielectric mixture model proposed 

by Hallikainen et al. (Hallikainen et al., 1985). The comparison between estimated and 

measured mv shows that the RMS error is 4.48 Vol.-% for the backscattering coefficients 
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without roughness correction and 3.57 Vol.-% for the backscattering coefficients with 

roughness correction (Fig. 7.6). It is obvious that the estimates are distributed much closer to 

the zero error line after applying the roughness correction.  

 

 

Figure 7.6: Comparison between measured and estimated mv before (left) and after surface 

roughness correction (right). 

 

7.3 Grassland Model 

 

Grassland vegetation is one of the important land cover classes not only of the Rur catchment 

but of the Earth’s land surface in general. However, in terms of microwave remote sensing 

only few studies on grassland can be found in the literature most of which concerning the 

retrieval of biomass (Martin et al., 1989; Saatchi et al., 1994; Hill et al., 1999; Van Der 

Heijden et al., 2007). The most comprehensive investigation was conducted by Stiles & 

Sarabandi (2000) and by Stiles et al. (2000) who tried to develop a semi-empirical scattering 

model using multi-frequency (L-, C-, and X-band) polarimetric scatterometer data. Even 

though, good estimation results were reported for above ground biomass at C-band, their 

highly complex approach based on the modeling of backscattering from single grass blades 

did not provide reliable estimates for soil moisture. It is important to note that the least 

significant relationship between biomass and radar backscatter was found at L-band. This is 

consistent with the findings from our study. In effect, the detailed investigation of the dual 

polarized PALSAR data interactions with ground based biomass information (amount of 
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fresh weight biomass, canopy height) did not show significant relationships between the L-

band data and measured plant parameters. This indicates that the attenuation properties of the 

grassland vegetation at low radar frequencies are of minor importance compared to the 

interactions with the soil surface. Hence, the semi-empirical approach for quantitative soil 

moisture retrieval under grassland vegetation developed in this study is not based on a 

biomass attenuation correction. Instead, a parameter model is derived that is capable to 

account for the different effects of soil properties and biomass on the soil moisture estimation.  

 

In the description of the grassland test site (section 4.2.2), the special characteristics of the 

thatch layer were discussed and the implications of this organic top layer in terms of radar 

remote sensing were treated in section 6.3.2. For wet conditions, the large storage capacity of 

the thatch layer dominates the dielectric properties of the surface. It can be considered, that 

the penetration depth of the incoming EM waves decreases with increasing ε′ of the thatch 

(Saatchi et al., 1994). This effect is larger at higher frequency rendering the retrieval of soil 

moisture under grassland problematic. Also at L-band the backscattering contribution from 

the underlying soil matrix will decrease if the thatch is very wet. Moreover, it is important to 

understand that this feature can cause very high water contents of up to 75 Vol.-% for the 

skin depth at L-band. However, it should be mentioned that most studies dealing with 

microwave grassland interactions do not account for this very important aspect (Martin et al., 

1989; Dubois et al., 1995; Chiu & Sarabandi, 1997; Hill et al., 1999; Stiles et al., 2000; Loew 

et al., 2006). A schematic representation of the different scattering contributions within a 

grassland pixel is shown in Fig. 7.7. 
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Figure 7.7: Schematic representation of the different scattering contributions occurring in a 

grassland pixel. 
 

7.3.1 Soil Moisture Estimation under Grassland Vegetation 

 

As discussed above, a biomass correction is not feasible for the retrieval of mv under 

grassland vegetation. Taking into account all measured variations in the amount of biomass 

and water content at the soil surface (including the thatch layer), it was found that the most 

accurate estimates of mv are obtained by using a dedicated grassland parameter directly in a 

linear regression model. The effective parameter ΡHERBA was empirically derived from our 

extensive data set as 
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where 0
hhσ  and 0

hvσ  are the co- and cross-polarized backscattering coefficient in DN, 

respectively, H is the entropy, A is the anisotropy, and span is the total reflected power. Note 

that the parameter model also accounts for the surface roughness effect via the cross-pol ratio 
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The comparison between ΡHERBA and in situ ε′ is shown in Fig. 7.8. The highly significant 

correlation with R² = 0.61 demonstrates that this parameter model is well suited to explain the 

soil permittivity under grassland vegetation. 

 

 

Figure 7.8: Grassland parameter model vs. measured dielectric constant. 

 

The relationship found from the linear regression can then be used to derive ε′ as 

 

 4748.032.169' +Ρ×= HERBAε  (7.10) 

 

After this, mv can be calculated using the dielectric mixture model for intermediate organic 

soils as proposed by Topp et al. (1980). The estimated soil moisture values are validated 

against independent in situ measurements in Fig. 7.9. The number of validation pixels taken 

from different dates to cover all possible moisture and vegetation conditions is as large as 80. 

The proposed soil moisture retrieval model allows estimating mv with a RMS error of 4.1 

Vol.-%. It should be pointed out that the validation data represents a (above ground) biomass 

range from 0.6 – 2.2 kg/m². This demonstrates the large validity range of the model in regard 

to surface soil moisture as well as to vegetation conditions. 
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Figure 7.9: Comparison between measured and estimated mv for grassland pixels on various dates. 

 

7.4 Sugar Beet Model 

 

Sugar beet constitutes one of the most important cash crops in the study area. In 2009, it was 

cultivated on 364 000 ha in Germany, representing 3% of the entire arable land 

(Wirtschaftliche Vereinigung Zucker, 2010). Due to the favorable soil conditions of the 

fertile loess plain the percentage of area under sugar beet is with 6.8% somewhat larger 

within the Rur catchment.  

As mentioned before, sugar beet parameters were monitored on the sampling fields by 

harvesting 3 to 5 plants at different locations. We assume that the means of the harvested 

plants at any location represent the mean for the area of the corresponding PALSAR pixel. In 

regard to interactions with incident EM waves, sugar beet as root crop constitutes a special 

case compared to other crops (e.g. maize, winter wheat, rape seed, soy beans). Since most of 

the biomass (and water) is below ground, the above ground vegetation is of minor importance 

when it comes to the attenuation properties at L-band (Ulaby & Jedlicka, 1984). Indeed, as 

observed from the field measurements, on sugar beet fields the crops within the soil can 

easily hold up to 20 kg/m² of water modulating not only the waves while passing through the 

canopy, but changing the dielectric constant of the illuminated soil column itself. The 

dielectric constant of the crops is typically about 60 (Konstantinovic et al., 2008), while the 

surrounding soil matrix reaches a maximum of about ε′ ≈ 25 at saturation. The different 

scattering contributions occurring on such a sugar beet pixel are illustrated in Fig. 7.10. As 
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can be seen, the backscattering is still influenced by surface roughness through the surface 

scattering term. However, it can be assumed that surface scattering is of minor importance 

compared to the contributions from volume scattering, sub-surface and fruits. Moreover, a 

measurement of ks is generally not feasible on vegetated fields. On the other hand, the overall 

roughness of a sugar beet field is mainly induced by the crops sticking out of the soil matrix. 

Hence, the surface roughness effect is neglected in the retrieval process.  

 

 

Figure 7.10: Schematic representation of the different scattering contributions occurring in a sugar 

beet pixel. 
 

7.4.1 Sugar Beet Biomass Estimation 

 

To estimate the amount of biomass within a PALSAR pixel needed to correct the 

corresponding attenuation of the backscattering coefficients, we developed a dedicated sugar 

beet biomass parameter capable to account for the different scattering effects discussed above. 

Based on comprehensive sensitivity analysis for all available observables, it was found that 

the PALSAR signal is most sensitive towards the total fresh weight biomass, while other 

plant parameters like LAI, phenology stage, or canopy height did not yield significant 

correlations. The effective parameter MBeta was empirically derived from our dataset with:  
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where 0
hvσ  is the cross-polarized backscattering coefficient in DN, span is the total reflected 

power, and α  is the dual polarimetric alpha angel.  

   

As shown in Fig. 7.11, the correlation analysis between MBeta and the sum of in situ fresh 

weight above and below ground biomass (FWa.g.+FWb.g.) yields a highly significant 

coefficient of determination of 0.64.  

 

 

Figure 7.11: Comparison between effective biomass parameter MBETA and measured total fresh 

weight of sugar beet biomass. 
 

This highly significant correlation between in situ total fresh weight and MBETA demonstrates 

the potential of the introduced parameter. Using the relationship found from the correlation 

analysis between polarimetric PALSAR parameter MBETA and in situ sugar beet biomass, we 

can estimate above and below ground fresh weight of the crops with 
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A comparison between measured and estimated total fresh weight yields an RMS error of 2.7 

kg/m² as can be seen in Fig. 7.12. It can be noted that the biomass estimates are well aligned 

along the zero error line.  

 

 

Figure 7.12: Estimated vs. measured total fresh weight of sugar beet biomass. 
 

7.4.2 Soil Moisture Estimation using Sugar Beet Biomass 

Corrections 

 

Finally, we use the estimates of sugar beet biomass to correct for their disturbing effects on 

the PALSAR backscattering coefficient. The dielectric constant estimation is carried out 

using an empirically derived second order polynomial relationship between ε′ and the 

horizontally co-polarized signal. The retrieved biomass information is used to correct 0
hhσ  

with 
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where 0
hhσ  is the co-polarized backscattering coefficient in DN and FWtotal is the sum of 

above and below ground fresh weight biomass.  
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Then ε′ is calculated with: 

 

 [ ]( ) [ ]( ) 528.23'375.0'064.0' 020 ++−= dBdB hhhh σσε  (7.14) 

 

After applying this biomass correction, the comparison between estimated and measured mv 

yields a RMS error of only 4.2 Vol.-% for the sugar beet pixels (Fig. 7.10). Without the 

correction procedure the estimation error applying Eq. (7.14) varied between 7.8 and 

16.6 Vol.-%, depending on the amount of biomass at the time of image acquisition. It can be 

seen that the estimates are aligned fairly well along the zero error line (b = 0.82). Although 

the amount of pixels available for the validation is limited to 46, the comparison shows a 

highly significant coefficient of determination (R² = 0.61***) indicating that the algorithm 

has potential to cover the within-field spatial heterogeneity of sugar beet biomass.  

 

 

Figure 7.13: Estimated versus measured soil moisture for sugar beet pixels on various dates. 
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7.5 Winter Wheat Model 

 

In terms of cultivated area and production, winter wheat constitutes by far the most important 

land cover type within the study area. Usually > 60% of the entire arable land is used for its 

production. With respect to microwave remote sensing, winter wheat may be considered as 

the best studied vegetation type. A variety of studies dealing with winter wheat microwave 

interaction at high radar frequencies (C- and X-band) can be found in the literature (Attema 

& Ulaby, 1978; Lin-Kun et al., 1985; Cognard et al., 1995; Taconet et al., 1996; Cookmartin 

et al., 2000; Marliani et al., 2002; Picard et al., 2003; Brown et al., 2003; Mattia et al., 2003b). 

The effect of a wheat canopy on the backscattering behavior of arable fields at C-band was 

discussed in detail section 7.x. However, the attenuation properties of wheat canopies at L-

band have been addressed by only few studies (Ulaby & Jedlicka, 1984; Dabrowska-

Zielinska et al., 2007; Hajnsek et al., 2009; Lievens & Verhoest, 2011).  

 

Despite the fact that some author’s consider LAI as the primary parameter to be correlated 

with attenuation and scattering behavior (Prevot et al., 1993; Brown et al., 2003) we could 

not find a significant relationship from our data set. Dabrowska-Zielinska et al. (Dabrowska-

Zielinska et al., 2007) related the leaf water area index (LWAI) with canopy backscatter. The 

LWAI is the product of the LAI with the vegetation water expressed as the ratio of the 

difference between the fresh and dry biomass. However, this parameter also did not show 

meaningful relations in this study. The only vegetation parameter that allowed a significant 

correlation with the PALSAR observables is the fresh weight of above ground biomass. It 

should be mentioned that this is consistent with studies attributing the magnitude of 

attenuation mainly to the dielectric properties of a canopy at frequencies below 1.5 GHz 

(Ulaby et al., 1981a; Ulaby & Jedlicka, 1984; Senior et al., 1987; El-Rayes & Ulaby, 1987). 

 

7.5.1 Winter Wheat Biomass Estimation 

 

As discussed above, we relate the amount of above ground fresh weight biomass (FWa.g.) to 

the dual polarimetric SAR observables. Various parameter models were tested to find the one 

with highest explanatory content. Based on this investigation we empirically derived the 

effective parameter MTRITI as 
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H
M hvhh

TRITI

00 σσ ×
=  (7.15) 

 

where 0
hhσ  and 0

hvσ  are the co- and cross-polarized backscattering coefficient in DN, 

respectively, and H is the entropy.  

 

 

Figure 7.14: Winter wheat biomass parameter model vs. above ground fresh weight. 
 

 

The comparison between above ground fresh weight of winter wheat biomass [kg/m²] and 

MTRITI (R²=0.62) is shown in Fig. 7.11. The second order polynomial regression model found 

from this relationship may then be used to invert FWa.g. with 
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The estimates of above ground biomass [kg/m²] as derived from the dual polarized SAR data 

yield an accuracy of 0.8 kg/m² (RMSE) using the relationship (7.16) The comparison 

between FWa.g. estimates and independent in situ values is shown in Fig. 7.12.  
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Figure 7.15: Estimated vs. measured above ground fresh weight winter wheat biomass. 
 

7.5.2 Soil Moisture Estimation using Winter Wheat Biomass 

Corrections 

 

The good quality of the biomass estimates allows correcting for the attenuation properties of 

the winter wheat canopy according to the procedure used in the sugar beet model. After this, 

the dielectric constant estimation can be performed using an empirically derived second order 

polynomial regression model for ε′ as a function of the horizontally co-polarized 

backscattering coefficient. The retrieved biomass information is used to correct 0
hhσ  with 
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where 0
hhσ  is the co-polarized backscattering coefficient in DN and FWa.g. is the above 

ground fresh weight biomass. 

 

Then ε′ is derived with: 
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After applying this biomass correction, the comparison between estimated and measured mv 

yields a RMS error of only 3.9 Vol.-% for the winter wheat pixels (Fig. 7.16). Before the 

backscattering correction, the estimation error ranged from 4.3 to 8.9 Vol.-%, depending on 

the amount of biomass at the time of image acquisition. As can be seen in Fig. 7.16 the 

estimates are aligned fairly well along the zero error line (b = 0.78). Despite the limited 

amount of pixels (n = 44) available for the validation, the comparison yields a highly 

significant coefficient of determination (R² = 0.53***). Again, this indicates that the 

proposed retrieval algorithm has potential to cover the within-field spatial heterogeneity of 

winter wheat biomass. It should be noted that the amount of biomass for the validation pixels 

ranged from 2.6 to 7.1 [kg/m²]. Hence, the proposed algorithm might not be valid for biomass 

conditions below this range.  

 

 

Figure 7.16: Comparison between estimated and measured mv for winter wheat pixels. 
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7.6 PALSAR Soil Moisture Maps 

 

The four different models introduced in the foregoing sections can then be used to calculate 

surface soil moisture distribution maps from the dual polarization ALOS PALSAR data. Fig. 

7.17 shows two derived soil moisture patterns in the arable land test site Selhausen. The first 

map shows the spatial surface soil moisture distribution for the sampling fields on June 22, 

2009. Two different retrieval algorithms were used: for the sugar beet fields (A04 and A11) 

mv was calculated using the sugar beet model with Eq. (7.11) – (7.14), while for the winter 

wheat fields (A01, A03, A09, and A10) the winter wheat model with Eq. (7.15) – (7.18) was 

used to derive mv. It can be seen that the fields are all fairly wet. However, the surface of the 

southern winter wheat fields is somewhat wetter than the neighboring one. The second map 

shows the soil moisture pattern for September 5, 2009. As can be seen, the soil surfaces on 

most fields are significantly dryer on that day. Especially the bare soil fields (A01, A03, A09, 

and A10), as calculated using the bare soil model with Eq. (7.5), (7.7), and (7.8), show a 

rather dry surface state, while the values of mv for the surfaces of the sugar beet fields (A04 

and A11) are still somewhat higher. Note that this observation is consistent with the in situ 

measurements, as discussed in section 4.3. 
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Figure 7.17: PALSAR derived surface soil moisture patterns for the Selhausen sampling fields on June 

22 (left) and September 5, 2009 (right). 
 

Application of the grassland model is demonstrated in Fig. 7.18. The two maps show the 

spatial distribution of surface soil moisture for the grassland test site Rollesbroich on July 18, 

2008 and July 21, 2009. The moisture patterns were derived using Eq. (7.9) and (7.10) as 

discussed in section 7.3. It can be seen that, although the site-average moisture states are 

fairly comparable, both patterns differ from each other substantially. It should be noted that 

pixels with trees do not allow calculating mv by means of the grassland model, and thus were 

masked out from the maps. 
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Figure 7.18: PALSAR derived surface soil moisture patterns for the grassland test site Rollesbroich on 

July 18, 2008 (left) and July 21, 2009 (right). 

 

Fig. 7.19 finally shows a PALSAR derived soil moisture map of the entire Rur catchment. 

The map represents the spatial distribution of surface soil moisture for the land cover types 

bare soil, grassland, sugar beet, and winter wheat on June 22, 2009. It can be seen that the 

large scale spatial moisture pattern follows the major landscape units in the catchment. Hence, 

we can clearly distinguish the wet grassland in the low mountain range area from the 

relatively dryer agricultural area of the fertile loess plain (cf. section 4.1). While most parts of 

the “Eifel” area show a soil moisture range from 35 – 50 Vol.-%, the northern part exhibits 

basically a range between 20 and 35 Vol.-%. However, some dryer and/or wetter areas can be 

found in both parts. Worth mentioning is the feature of the wet floodplains along the courses 

of the rivers (cf. Fig. 4.1). These areas predominantly characterized by grassland cover are 

significantly wetter than the surrounding arable fields. Finally, it is important to note that the 

classification of the PALSAR pixels into the different land cover types is performed on the 

basis of a classical land use classification derived from optical satellite imagery. Thus care 

has to be taken in areas where the land surface is not classified correctly resulting in a false 

estimation of mv.  
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Figure 7.19: PALSAR derived surface soil moisture distribution in the Rur catchment on June 22, 

2009. 
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8. Variability of Surface Soil Moisture  
 

 

In this chapter we analyze the spatial variability of the surface soil moisture at different 

spatial scales based upon field measurements and remote sensing estimates. Surface soil 

moisture patterns derived from multitemporal ENVISAT ASAR data by means of an 

empirical C-band retrieval algorithm, as discussed in section 6.3.1, are used. Eight Wide 

Swath (WS) images with a spatial resolution of 150 m acquired between February and 

October 2008 are used to determine surface soil moisture contents. The accuracy of the 

surface soil moisture retrievals was evaluated by comparison with in situ measurements. This 

comparison yielded a root mean square error of 5 Vol.-%. 

Based upon in situ measurements as well as remote sensing results, the relationship of the 

coefficient of variation of the spatial soil moisture patterns and mean soil moisture is 

analyzed on different spatial scales ranging from catchment scale to the field scale. The 

results show that the coefficient of variation decreases at all scales with increasing soil 

moisture. However, the gain of this relationship decreases with scale, indicating that at a 

given soil moisture state, the spatial variations at the large scale of whole catchments is larger 

than on the field scale. Knowledge of the spatial variability of the surface soil moisture is 

important to better understand energy exchange processes and water fluxes at the land surface 

as well as their scaling properties.  

 

8.1 Soil Moisture Patterns 

 

A key issue with regards to soil moisture is to understand the spatial patterns at different 

scales, the scaling behavior, as well as the processes which lead to spatial patterns. Several 

studies have investigated the spatial variability of soil moisture based upon remotely sensed 

as well as ground based measurements. Reynolds (1970c) classified the controls into static 

(e.g. topography, soil texture) or dynamic (e.g. rainfall and varying vegetation cover) 

parameters. Based upon theoretical considerations for any given soil texture, a relationship 

between the spatial variance of soil moisture and the average moisture value can be assumed 
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that should results in a reduction of variance at low, as well as well as at high soil moisture 

values, since the lower boundary of the wilting point and the upper boundary of soil 

saturation provides physical limits soil moisture variations. The lower boundary of the 

wilting point and the upper boundary of the soil saturation provides the physical limits for 

variations in water contents for a given soil texture. Thus, one can assume that the 

relationship between the spatial variance of soil moisture and the average moisture content 

shows a decrease in variance at low, as well as at high soil moisture values. Measurements 

provided by Famiglietti et al. (1998), for instance, support this assumption. They monitored 

time series of soil moisture along a 200 m hill slope transect and found that the magnitude of 

the spatial variability across the transect decreases with decreasing mean moisture values. 

Owe et al. (1982), as well as Albertson and Montaldo (2003) found the trend of variability to 

depend on the mean soil moisture state. Comparable findings were also published by other 

groups (e.g. Bell et al., 1980; Western & Grayson, 1998; Choi & Jacobs, 2007). Nevertheless, 

studies with contradictory observations can be found. Hawley et al. (1983) as well as 

Charpentier and Groffman (1992) did not find a relationship between mean soil moisture and 

soil moisture variability. Other authors found an increasing moisture variability with 

decreasing mean soil moisture (e.g. Famiglietti et al., 1999; Hupet & Vanclooster, 2002; 

Oldak et al., 2002). These observations indicate that in a complex landscape, the spatial 

variability is a result of the interactions of many different parameters and processes. 

Moreover, observations have been made, showing that the dependency of the soil moisture 

variability upon the mean soil moisture varies with spatial scale (Rodriguez-Iturbe et al., 

1995; Crow & Wood, 1999). Teuling and Troch (2005) showed that both soil and vegetation 

controls can cause either the creation or destruction of spatial variance. Vereecken et al. 

(2007) conducted a re-examination of recent experimental work (e.g. Choi & Jacobs, 2007; 

Choi et al., 2007) showing that the spatial variance increases when drying occurs from a very 

wet state. Spatial variability peaks at a moisture values in the mid range between maximum 

and minimum values, and decreases accordingly with further drying. 

The primary aim of this chapter is to analyze the spatial variability of surface soil moisture 

based upon remote sensing and field measurements at different spatial scales. To this end, we 

derive a time series of surface soil moisture patterns from Advanced Synthetic Aperture 

Radar (ASAR) data of the European Earth Observation satellite ENVISAT using an empirical 

soil moisture retrieval algorithm published by Loew et al. (2006) as discussed in section 6.3.1. 

Based upon these data, the dependence of spatial soil moisture variability upon the soil 
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moisture state is analyzed for different spatial scales ranging from the field to the catchment 

scale. 

 

8.2 Statistical Description of Soil Moisture Variability  

 

In order to analyze soil moisture variability on different spatial scales, field and remote 

sensing data with different aggregation levels were used in a three step approach: (i) In a first 

step the ASAR soil moisture retrievals were analyzed on the scale of the entire Rur catchment 

and on the scales of the two major landscape units. On theses scales, differences in soil 

moisture variability should result from variations in soils, topography (especially in the low 

mountain range area), land cover types, and potential variations in the spatial distribution of 

antecedent rainfall. (ii) In a next step we analyzed 1.5 x 1.5 km boxes (10 x 10 pixels) of the 

ASAR derived soil moisture (number of boxes per image was 293). This analysis was 

restricted to the fertile loess plain as effects of topography on rainfall, soil type and soil 

moisture, as well as small scale patterns in land cover type, should be reduced as far as 

possible. The 1.5 x 1.5 km boxes were created using a moving window shifted box-wise over 

the ASAR images. To calculate mean and soil moisture variability for each box, only those 

boxes were included in the analysis, where at least 30% of the pixels represent a soil moisture 

value. Mean soil moisture and variance for the 1.5 x 1.5 km boxes were calculated by shifting 

a non-overlapping moving 10 x 10 pixels window over the ASAR images. Since not all of the 

pixels in the image (e.g. built up areas, forests, water) represent a soil moisture value, only 

those boxes that have at least 30% (30/100) of the pixels classified were included in the 

analysis. On this spatial scale, soil moisture differences should be dominated by differences 

in land cover type, while differences due to varying soil texture should be small and 

homogenous antecedent rainfall is still a reasonable assumption. (iii) For a field-scale 

evaluation, the field measurements at Selhausen were analyzed on the basis of individual 

fields (0.02-0.10 km²) to address the within-field soil moisture variability, as differences in 

soil texture is small and homogenous antecedent rainfall per field can be assumed. On all 

spatial scales, soil moisture variability was compared with mean soil moisture content. To 

avoid interdependency between both statistical moments, coefficients of variation instead of 

standard deviations were used to represent variability. 
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8.3 ASAR Derived Soil Moisture Patterns 

 

Eight Wide Swath images were processed for 2008. Fig. 8.1 exemplarily shows the spatial 

patterns and frequency distribution of the soil moisture map for March 25. Areas where the 

land cover does not allow calculating surface soil moisture (e.g. built up areas, forests, water) 

remain unspecified in the soil moisture maps. The soil moisture frequency distribution of the 

derived pattern is shown in the histogram. The histogram shows a bimodal soil moisture 

distribution averaging at 34.5 Vol.-% with a range of 25 to 47.5 Vol.-%, the first and second 

peaks are centered at 31.5 Vol.-%, and 38 Vol.-%, respectively. While the soil moisture map 

shows quite similar soil moisture values within the major landscapes units, it can be seen that 

the low mountain range part is wetter than most areas of the fertile loess plain. Within a 

period of two days prior to the satellite overpass, the catchment received precipitation 

amounts ranging from 2.2 to 8.5 mm. The image covers 97% of the Rur catchment area. The 

south-eastern part of the catchment (approximately 70 km²) is not covered due to missing 

land use information.   
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Figure 8.1: Envisat ASAR derived soil moisture pattern of the River Rur catchment from March 25, 

2008. 

 

8.4 Analysis of Soil Moisture Variability 

 

The relationship between the mean soil moisture and the coefficient of variation calculated 

for the whole Rur watershed using all ASAR soil moisture images is shown in Fig. 8.2. The 

coefficient of variation decreases linearly with increasing mean soil moisture. A decreasing 

soil moisture variability with increasing soil moisture has been described in the literature (e.g. 
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Famiglietti et al., 1999; Hupet & Vanclooster, 2002; Choi et al., 2007) and should be 

expected particularly when areas with homogeneous soil textures approach saturation.  

 

 

Figure 8.2: Relationship between ASAR derived mean soil moisture and the CV for the entire River 

Rur catchment. 

 

 

As described previously, the watershed consists of two distinctively different regions: The 

flat loess plain and the mountainous Eifel region. Land use and soil textures as well as their 

spatial variability are significantly different in both regions. While in the Eifel region, the 

topography results in large spatial heterogeneity particularly with respect to soil texture, the 

loess plain exhibits more or less uniform soil textures but differs strongly with respect to 

different types of arable land use. These differences in landscape properties may result in a 

different relationship between average soil moisture and soil moisture variability. 

Consequently, we analyzed this relationship separately for both regions (Fig. 8.3).  

 

The correlation for the loess plain (Fig. 8.3) yields a very strong negative relationship (R² = 

0.83) between mean soil moisture and spatial moisture variability expressed by the 

coefficient of variation. The slope of the relationship is very close to the slope for the whole 

catchment. In contrast, the relationship for the Eifel area does not show a clear trend (Fig. 

8.3). Even at high soil moisture levels the spatial variability is high. While the soil texture in 

the loess plain is rather uniform, the soil textures in the Eifel vary considerably from mineral 

soils saturating at moisture values between 45 to 50 Vol.-% to organic soil or soils with an 
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organic top soil layer with surface soil moisture values in excess of 60 Vol.-%. Thus, even at 

or close to saturation, the Eifel soils show large spatial variability. Moreover, the hilly 

topography of the Eifel also causes larger spatial variations of precipitation.  

 

  
 

Figure 8.3: Relationship between ASAR derived soil moisture and coefficient of variation for the 

fertile loess plain (left), and the low mountain range region (right). 

 

 

Fig. 8.4 shows the relationship of the coefficient of variation and the mean surface soil 

moisture based upon 10 x 10 pixel boxes for the fertile loess plain. The different acquisition 

dates of the images are color coded to allow assessment of the variability with a given scene. 

The slope of the regression line in Fig. 8.4 is significantly smaller than the respective slope 

for the whole area (Fig. 8.3). While the soil moisture varies considerably within the 10 x 10 

boxes for all soil moisture values, the previously described decrease of the coefficient of 

variation with increasing soil moisture is still obvious. In addition, the upper limit of the soil 

moisture variability decreases significantly with increasing soil moisture and the lower limit 

of the soil moisture variability within the 10 x 10 boxes is considerably larger at lower soil 

moistures than at soil moistures in excess of 32 Vol.-%.  
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Figure 8.4: Relationship between ASAR derived soil moisture and coefficient of variation for (a) the 

fertile loess plain pixels taking into account all dates and land cover classes. 

 

 

Fig. 8.5 shows the relationship between the mean field surface soil moisture measured during 

our field campaigns and the coefficient of variation within the individual fields. It can be seen 

that the coefficient of variation decreases again with increasing mean soil moisture. For the 

soil moisture range from 15 to 34 Vol.-%, the linear regression results in a coefficient of 

determination of 0.59 and a slope of -0.0063 on the winter wheat fields, and in a coefficient 

of determination of 0.76 and a slope of -0.0065 on the sugar beet fields, respectively. At the 

field scale, the slope of the regression line is significantly smaller than the slope for the 

mesoscale (10x10 pixel boxes) or the regional scale. Thus, while the level of spatial variation 

shows a comparable range of values at all spatial scales, the decrease of the soil moisture 

variability with increasing soil moisture is smaller at the local scale than at the large scale.  

Choi and Jacobs (2007) also used an exponential fit as an efficient way to explain soil 

moisture variability patterns as function of mean soil moisture. An exponential fit 

θBAeCV =  between mean soil moisture and coefficient of variation yields a tighter 

coefficient of determination of 0.60, with A = 0.521 and B = -0.059, and of 0.81, with A = 

0.591 and B = -0.073 for the winter wheat and sugar beet fields, respectively. The parameter 

A describes the relative variability range and B indicates the variability change as related to 

mean soil moisture. Hence, parameter A is related to the maximum relative variability, while 

parameter B is related to the slope of the relative variability. The parameters, A and B, as 
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observed from our in situ field measurements are consistent with the observations of surface 

soil moisture variability from SMEX as reported by Choi et al. (2007).  

 

 
 

Figure 8.5: Relationship between field mean soil moisture and coefficient of variation from in situ 

measurements at the Selhausen test site. 

 

 

The negative correlations between soil moisture variability and mean soil moisture content 

found in our study are consistent with previous studies of Famiglietti et al. (1999), Hupet and 

Vanclooster (2002), and Choi and Jacobs (2007). Nonetheless, it should be noted that some 

studies also found positive relationships between the mean surface soil moisture content and 

the soil moisture variability (Famiglietti et al., 1998; Western & Grayson, 1998). These 

studies postulated that variability peaked under wet conditions, as soil heterogeneity would 

be maximized after precipitation events. While we concur that spatially heterogeneous 

precipitation, particularly when investigating large areas, results in increased heterogeneity if 

soil saturation is not reached, our findings indicate, that for areas with homogeneous soil 

textures, the soil moisture variability decreases with increasing soil moisture. However, in 

regions with large differences in soil texture and thus soil porosity / maximum soil moisture 

values at saturation, this relationship might not hold and may result in a large soil moisture 

variability even at high soil moistures as evidenced by the data for the Eifel. According to 

Famiglietti et al. (1998) the combined effects of soil texture, hysteresis effects, vegetation, 

topography, and sampling scale may lead to different relationships between spatial variability 

and soil moisture.  
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Fig. 8.6 provides a comprehensive overview about the relationship of spatial soil moisture 

variability and soil moisture value for different spatial scales. As can be seen in the graph, the 

gain of the relationship between soil moisture value and coefficient of variation decreases 

with scale. Hence, at a given soil moisture level, we observed the highest variability on the 

scale of the entire Rur catchment and the smallest variability on the very field-scale. We 

postulate that this is due to the fact that the drivers of variations in surface soil moisture 

contents (e.g. precipitation, soil characteristics, vegetation, etc.) are also much more variable 

on the large scale. If we consider precipitation as the dominant driving process for spatial 

variance on days with high mean soil moisture values, the variability of surface soil water 

contents increases with increasing scale, as the amounts of rainfall, with annual means of 

approx. 600 mm in the fertile loess plain and over 1200 mm in the low mountain range, vary 

significantly over the whole Rur catchment. At smaller scales, on the other hand, these 

fluctuations in precipitation decrease and contribute only small amounts of variance. On days 

with dry conditions, i.e. low mean soil moisture values, variance is more likely driven by 

processes associated with evapotranspiration. Thus, soil moisture variability also increases 

with increasing scale due to the fact that spatial heterogeneities of factors like soil clay 

content, vegetation (including agricultural management aspects), and topographic conditions 

become larger the larger the scale. 

 

 
 

Figure 8.6: Overview of the scale dependent relationships between coefficient of variation and 

surface mean soil moisture. 
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As microwave remote sensing at C-band only provides information about the top surface 

layer of a soil volume, it is unclear if these relationships also hold for deeper soil layers. Thus, 

care should be taken in extrapolating statistics from surface measurements (e.g. SAR) to the 

entire root zone. Choi and Jacobs (2007) found that surface soil moisture had the least 

negative relationship (slope closest to zero) between coefficient of variation and mean soil 

moisture in comparison to deeper soil layers. According to the authors, these small variability 

patterns for the surface layer are affected by the high variation of mean soil moisture at the 

surface. Several other studies found less variability at deeper depths as compared to surface 

soil moisture observations (Famiglietti et al., 1999; Hupet & Vanclooster, 2002; Albertson & 

Montaldo, 2003).  

 

In this chapter, an empirical retrieval algorithm of surface soil moisture from ENVISAT 

ASAR data at C-band was applied successfully within the Rur catchment. The validation of 

the model to derive soil moistures for a catchment in central Europe yielded an RMSE of 5.0 

Vol.-%, as discussed in section 6.3.2.1. The main advantage of the inversion scheme is that it 

only requires very few parameters in comparison to other retrieval approaches. In regard to 

an operational use of any parameter inversion model for either optical or microwave remote 

sensing data, the availability of input parameters is of great importance. Highest deviations of 

the derived soil moisture from in situ values were recorded on wet meadows and mature 

sugar beet field. The model parameters could be further improved using empirical data 

measured under these conditions. However, any improvement of the algorithm will rely on a 

better assessment of the vegetation influence on the C-band backscattering mechanisms 

taking into account dynamic vegetation effects. 

The variability of mean surface soil moisture was investigated on different scales using in situ 

measurements and eight ASAR derived soil moisture patterns. By analyzing the relationships 

between spatial variance and mean soil moisture state on the scales of the entire catchment 

(~2400 km²), the two major landscape units (~1000 km²), boxes (2.25 km²), and individual 

fields (~0.1 km²), it was found that the coefficients of variation decreases with decreasing 

sampling scale for all datasets. The different slopes of the linear correlations, ranging from -

0.0063 on the field-scale to -0.022 on the catchment-scale, indicate that small-scale and large-

scale variances depend differently on mean soil moisture content.  
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9. Conclusions and Perspectives 
 

 

The sensitivity of radar backscattering to the dielectric properties, i.e. the water content of 

soil and vegetation biomass, and to the geometric structure of bare and vegetated land 

surfaces, i.e. surface roughness and plant geometry, render microwave remote sensing a 

valuable tool for a wide range of Earth Observation issues related to the physical conditions 

of natural surfaces. Notably, its potential for the quantitative estimation of soil moisture at 

high spatial and/or temporal resolution constitutes an important contribution to hydrological 

and meteorological modeling, as well as to ecological and economic optimization of 

agricultural procedures and water management from local scales to global scales. 

 

Since a careful preprocessing, i.e. calibration, of the satellite images is prerequisite for any 

quantitative analysis of SAR data, different sophisticated processing chains were developed 

for different ENVISAT ASAR and ALOS PALSAR products using state-of-the-art image 

processing techniques. The use of high resolution auxiliary terrain information in the form of 

a LiDAR-derived Digital Elevation Model (Sci Lands, 2008) allowed for most accurate 

corrections of the geometric and radiometric distortions induced by topography effects. To 

extract the full information content of multi-channel PALSAR data sophisticated PolSAR 

preprocessing techniques were employed. 

 

Taking into account all sampling fields from the three individual test sites Duerwiss, 

Rollesbroich, and Selhausen, the in situ measurements cover a wide soil moisture range with 

field mean values between 14 and 52 Vol.-% (i.e. 7 < ε′ < 34), and a wide surface roughness 

range with RMS height values between 0.5 and 3.5 cm (i.e. 0.14 < ks < 0.94, at L-band). With 

respect to plant measurements, the observations also cover a fairly large range of vegetation 

conditions for grassland, sugar beet, and winter wheat crops. Uncertainties of field 

measurements which can occur during sample collection should be minded. Inaccurate 

ground truth not only may be the reason for low correlations between measurements and 

estimates, but also for deficient parameterization of new models. In this context, special 

emphasis should be put on the aspect of the small scale spatial heterogeneity of surface soil 



Conclusions and Perspectives 

 

 

163 

moisture distribution. Particularly, the question of how well are local observations suited to 

represent the area of a given remote sensing pixel is very important to consider.  

 

In this study, a sampling strategy was established which enables a pixel by pixel comparison 

between calibrated SAR images and ground based measurements. As described in section 4.3, 

each image resolution cell is represented by multiple measurements in order to account for 

this sub-pixel heterogeneity. However, it should be pointed out that comparisons between 

SAR observables and in situ values on a pixel-by-pixel basis were only feasible for the high 

resolution products of ALOS PALSAR. This is, the sampling strategy used is still suitable to 

cover the spatial variability of surface soil moisture for the 15 m (225 m²) resolution cells, 

while the magnitude of variability within the larger 25 m (625 m²) cells of ENVISAT ASAR 

render a pixelwise approach problematic. 

 

The major impediment for the quantitative retrieval of surface soil moisture from SAR data 

lies in the separation of different scattering contributions to the backscattering coefficients. 

Polarimetry is the key to overcome these problems because it allows a direct or indirect 

separation of attenuation effects induced by surface roughness and vegetation. In effect, most 

of the popular inversion approaches use polarimetric SAR imaging. The fundamental 

principles of radar polarimetry have been introduced in Chapter 5. 

 

A large variety of models for the inversion of soil moisture from spaceborne SAR data have 

been addressed within the last decades. In Chapter 6, five representative retrieval approaches 

were addressed and their estimation performances were tested against in situ measurements. 

Two theoretical scattering models, the SPM and the IEM, two semi-empirical extensions of 

the SPM, the Oh model and the Dubois model, as well as one empirical retrieval model were 

discussed. 

 

In Chapter 7, new semi-empirical retrieval algorithms were introduced for land cover types 

grassland, bare soil, sugar beet, and winter wheat. Key for the development of the novel soil 

moisture model for dual channel L-band SAR data was the coherent-on-receive dual 

polarimetry mode (FBD) of ALOS PALSAR. By applying a PolSAR decomposition 

technique, namely the H/A/Alpha decomposition, the phase information was exploited to 

increase the amount of observables. The potential to derive information on biomass and 
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surface roughness from the dual-pol data was investigated based on correlation analyses 

between PALSAR observables and in situ measurements. High sensitivities towards surface 

roughness and crop biomass could be ascertained. Using these findings, surface roughness ks 

was estimated with RMS errors of 0.11. Sugar beet total fresh weight and winter wheat above 

ground fresh weight were estimated with RMS errors of 2.7 kg/m² and 0.8 kg/m², respectively. 

The good quality of the estimates allowed correcting the horizontally co-polarized 

backscattering coefficients for the surface roughness and vegetation effects. The accuracy of 

soil moisture retrievals could be increased from 4.5 to 3.6 Vol.-% using the roughness 

correction for bare soil and from >10.0 to 4.2 and 3.9 Vol.-% using the biomass correction for 

sugar beet and winter wheat, respectively. In the grassland case, no such corrections were 

performed. Instead it was found that the most accurate estimates of mv are obtained when a 

dedicated grassland parameter model incorporating the co- and cross-polarized backscattering 

coefficients, the 00
hhhv σσ  ratio, as well as the PolSAR observables, is used directly in a 

linear regression model. This grassland model yielded an estimation error of 4.2 Vol.-%. 

 

These observations demonstrate the suitability of dual polarized H/alpha parameters to 

improve the capabilities to estimate surface parameters. Along with the land cover 

classification capabilities of dual-pol L-band SAR systems (Lee et al., 2001; Ohki & Shimada, 

2010; Yamaguchi et al., 2011), the findings give a promising outlook in terms of the 

possibility to develop an operational soil moisture retrieval model where information on the 

land cover and the disturbing effects from vegetation and surface roughness can be derived 

directly from the SAR image without the need for a priori knowledge or ancillary EO data.  

 

The results obtained in this thesis lead to the conclusion that state-of-the-art dual 

polarimetric L-band SAR data is not only suitable to retrieve surface soil moisture 

contents of bare as well as of vegetated agricultural fields and grassland with an 

absolute accuracy of better than 5 Vol.-%, but for the first time also allows investigating 

within-field spatial heterogeneities from space.  
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Figure 9.1: Within-field variability of surface soil moisture distribution as seen by ALOS PALSAR. 

 

 

Furthermore, several other interesting observations were made through the course of this 

extensive SAR study. The most important key findings of this dissertation research are 

summarized in the following.  

Fresh weight biomass is the vegetation variable to which L-band SAR data is most sensitive. 

At L-band the attenuation effects caused by above ground vegetation can be neglected if the 

amount of fresh weight biomass is below 2 kg/m². The sophisticated dual polarization modes 

of current SAR satellites, i.e. ALOS, RADARSAT-2, and TanDEM-X, can be used, albeit in 

a limited sense compared to quad polarization modes, for advanced PolSAR applications. For 

such coherent-on-receive dual polarization configurations, both the cross-pol ratio 00
hhhv σσ  

and the dual-pol anisotropy A are suitable to describe the surface roughness over bare 

agricultural fields. Terrestrial 3D laser scanner measurements allow for improved analysis 

and monitoring of surface roughness on agricultural fields. In grassland ecosystems, the most 

important feature limiting the estimation accuracy of soil moisture is the thatch layer rather 

than the above ground biomass. Remotely sensed soil moisture patterns can help to improve 

the understanding of scaling problems in hydrology. The variability of surface soil moisture 

decreases with increasing wetness states at all scales ranging from the field scale (~ 0.1 km²) 

to the catchment scale (> 1000 km²). 
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The ALOS follow on mission, ALOS-2, will be launched in 2013 with the next generation L-

band SAR aboard. With even more advanced performance in terms of resolution and 

operation modes, along with a much better repetition cycle of only 14 days (Okada et al., 

2011), PALSAR-2 will again constitute a big step forward in hydrological remote sensing 

and Earth Observation in general. With a remarkably large bandwidth of 84 MHz, this sensor 

will be able to image the Earth’s surface with resolutions of about 3 m. Moreover, it will be 

the first system capable of both left and right looking acquisitions. This will offer all new 

possibilities for surface scattering studies, and it can be expected that it will bring 

improvements in many application like land classification, biomass monitoring, soil moisture 

and surface roughness estimation, etc. The planned Tandem-L mission (Moreira et al., 2011), 

a joint project of DLR and NASA, is now scheduled to be launched in 2019. Both systems 

will be highly suitable for single and repeat pass PolInSAR applications (Cloude & 

Papathanassiou, 1998; Papathanassiou & Cloude, 2001) and thus will greatly improve the 

capabilities to estimate soil moisture under all kinds of vegetation with high accuracy and 

with high temporal and spatial resolutions. The sensitivity of the interferometric phase 

towards the coherent location of effective scattering centers within a resolution cell provide a 

powerful approach to estimate even weak ground scattering under vegetation. In addition, the 

variation of the interferometric coherence as a function of baseline allows retrieving more 

detailed information about the vegetation cover over the soil surface. The combination of 

polarimetry and interferometry is probably the most promising approach for a better 

estimation of geophysical parameters from SAR data acquired over natural terrain (Hajnsek 

et al., 2003a; Papathanassiou et al., 2007; Lopez-Martinez et al., 2008).  

 

Improvements in the monitoring techniques for soil surface and vegetation parameters will 

also improve the capabilities to develop and validate inversion models. For instance, the 

newly installed sensor networks within the TERENO framework will greatly increase the 

availability of in situ soil moisture information for remote sensing studies. Terrestrial 3D 

laser scanners will not only improve the monitoring of surface roughness but also can provide 

accurate ground based biomass measurements in a fast and efficient manner. The use of such 

3D data will greatly improve the possibility to develop better biomass retrieval algorithms. 

 

The results reported in this thesis along with the future perspectives in the field of radar 

remote sensing and environmental monitoring give a promising outlook in terms of the 
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possibility to develop a fully operational soil moisture retrieval model for spaceborne L-band 

SAR in the near future. The author hopes that this work, including the various publications 

and presentations made during the course of his PhD studies, will have a meaningful 

contribution to this challenging topic. 
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A: Polarimetry in Microwave Remote 

Sensing: Basic Concepts 

 

The aim of this chapter is to provide a substantial introduction to the basic theory, scattering 

concepts, systems and advanced concepts, and applications typical to radar polarimetric 

remote sensing. For further reading and fully understanding of this complex topic it is 

recommended to take a look at the PolSAR tutorials provided by the European Space Agency 

(http://earth.eo.esa.int/polsarpro/tutorial.html) or the Canadian Space Agency 

(http://www.ccrs.nrcan.gc.ca/resource/tutor/polarim/pdf/polarim_e.pdf) and the recently 

published reference books by Lee & Pottier (2009) and Cloude (2010). A good and 

comprehensive introduction to modern matrix algebra can be found in the book by Schmidt & 

Trenkler (2006). 

 

The reviewed definitions and mathematical formulations addressed in this section are 

necessary to describe the polarimetric scattering problem for point and distributed targets. 

They are essential for the inversion of surface parameters from polarimetric ALOS/PALSAR 

data in this thesis. In principle, there are two main conceptual formalisms in polarimetry. The 

first one is a real space formalism based on the Stokes Vector for the description of the 

polarimetric properties of waves and on the Mueller matrix for the polarimetric description of 

the scatterer (Boerner et al., 1981; Können, 1985; Chaudhuri et al., 1986; Guissard, 1994; 

Boerner et al., 1998; Born & Wolf, 1999; Mott, 2007). The second one is a complex space 

formalism based on the Jones vector for the analysis of wave polarization and on the 

Covariance or Coherency matrix for the description of the scattering process (Jones, 1941; 

Kennaugh, 1954; Chaudhuri & Boerner, 1975; Cloude, 1986b; Luneburg et al., 1997). Both 

formalisms are equivalent. The real space formulations and concepts can be transformed 

unambiguously into the corresponding complex space formulations and concepts, and vice 

versa. Due the fact that SAR data is measured and processed in the complex domain, 

however, the complex space formalism is used here.  
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A.1 Polarization of a Plane EM Wave 
 

The wave equation for linear source-free homogeneous media is derived from Maxwell’s 

equations. Its solution leads to the simplest form of electromagnetic waves with constant 

amplitude on a plane perpendicular to the direction of propagation. Such waves are known as 

plane EM waves (Stratton, 1941; Sander & Reed, 1978; Jackson, 1998). The instantaneous 

real electric field vector of such a wave ),( trE
rr

 propagating into the direction k
r
 at a given 

location, defined by the position vector r
r  and a given time t, can be written as 

 

 )cos()(),( trEtrE ω
rrrr

=  (A.1) 

 

where )(rE
rr

 is the real amplitude of the electric field and ω is the angular frequency of the 

wave. 

 

In the case that the electric field vector varies in time with a single angular frequency, the 

wave is characterized as monochromatic. According to the IPU (International Physical 

Union) convention the corresponding complex representation of the time independent electric 

field is given by 

 

 )()( rkieErE
rrrrr

×=  (A.2) 

 

where E
r
 is the constant complex amplitude vector of the electric field.  
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Figure A.0.1: Propagation of a plane EM wave in direction k . 
 

Introducing a right handed orthogonal coordinate system ),,( kvh
rrr

(Fig. A.1), the complex 

amplitude vector E
r
 can be decomposed into two orthogonal coordinate complex components 

hE  and vE  as 

 

 vEhEE vh

rrr
+=  (A.3) 

 

Generally speaking, polarization is related to the vectorial nature of waves. More precisely, it 

describes the behavior of the field vector in time. Since polarization is a physical property of 

the EM wave, it is independent of the coordinate system used to describe it. Nonetheless, the 

definition of polarization requires a reference coordinate system and a given direction of 

propagation. In regard to a monochromatic plane EM wave, the polarization gives a 

description of the orientation of the electric field vector as a function of time in the plane 

perpendicular to the direction of travel. In this way, the tip of the electric field vector moves 

on this plane in time along an ellipse. This ellipse is known as the polarization ellipse 

(Deschamps, 1951; Boerner et al., 1997; Mott, 2007; Lee & Pottier, 2009). 

 

The shape of the polarization ellipse depicts the polarization state of the plane wave and it 

can be fully described in terms of two angular variables, the orientation angle φ and the 

ellipticity angle τ. 

 

ẑ

ŷ

x̂

k
r

v
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Figure A.0.2: Different shapes of the polarization ellipse expressing the polarization states of a plane 

wave. 
 

As can be seen from Fig. A.2, τ describes the shape of the ellipse and varies by definition 

between -45° and 45. At τ = 0° the ellipse degenerate to a straight line with inclination given 

by the orientation angle φ, corresponding to linear states. In this case, φ = 0° defines 

horizontally polarized waves, while φ = 90° depicts vertically polarized waves. For τ = π/4, 

the ellipse, becoming a circle, expresses circular polarization states. Ellipticity angles 

between 0° and 45° characterize elliptical polarized waves. Besides, the ellipticity angle τ 

also defines the sense of rotation of the E
r
vector. In case τ < 0, the rotation is right-handed, 

otherwise, the rotation is left-handed (in the IPU System of Conventions). It should be noted 

that the sense of rotation is related to the direction of wave propagation and thus depends on 

its definition (Mott, 2007) as compiled in Tab. 5.1. 

 

Table A.0.1: Characteristic polarization states with corresponding polarization descriptors. 

 

 

Horizontal Vertical Linear +45° Left Circular Right Circular 

Orientation angle φ 90° 0° 45° 0° - 180° 0° - 180 

Ellipticity angle τ 0° 0° 0° 45° -45° 

Complex ratio ρ ∞ 0 1 -1 -i 
 

 

 

In the main, a plane monochromatic EM wave has potentially four degrees of freedom, of 

which two are required for the description of the polarization state of the wave. As mentioned 

before, the two polarization angles constitute such a real pair of parameters for the 

description of the polarimetric state of the wave in terms of the shape of the polarization 

ellipse. In addition to the polarization state, two further parameters are needed for a complete 

v

h

v

h

v

h

φ φ φ

τ
τ

°= 45τ °= 0τ
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wave description: the wave amplitude A0, corresponding to the wave intensity and the size of 

the polarization ellipse and an initial absolute phase reference α, as can be seen in the full 

Poincaré sphere (Fig. A.3). However, since both variables are wave characteristics and not 

polarization parameters, they are not essential for the definition of the polarimetric state of 

the wave. 

 

 

Figure A.0.3: Full Poincaré sphere with wave amplitude A, absolute phase α, 

orientation angle φ, and ellipticity angle τ. 

 

 

Eq. A.3 gives the complex amplitude of the electric field represented as a linear combination 

of two orthogonal linear polarizations h
r
 and v

r
 weighted by their corresponding complex 

amplitudes hE  and vE . This characterization of the electric field vector can be considered as 

a component representation of the electric field vector in a two-dimensional complex space 

with respect to the { }vh
rr
,  basis. In this context, a monochromatic plane wave in the two-

dimensional complex space can alternatively be represented as a linear combination of two 

arbitrary orthonormal polarization states. Consequently, by defining two orthonormal 

polarization states, denoted by mε
r

 and nε
r
, which establish a polarization reference basis 

{ }nm εε
rr
, , a given plane wave E

r
 can be decomposed into its projections onto the basis 

polarization as 

 

)0,( =tzE
r

ox̂
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oŷ

ŷ
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nnmm EEE εε
rrr

+=  where 1== nnmm εεεε
rrrr

 and 0=nmεε
rr

 (A.4) 

 

Using the complex amplitudes mE  and nE , an alternative representation of the plane wave in 

terms of a two-dimensional complex vector mnE
r

  

 

 








=

n

m
mn

E

E
E
r

 (A.5) 

 

called the Jones vector was introduced by Jones (Jones, 1941; Hurwitz & Jones, 1941; 

Graves, 1956), which fully describes a coherent plane wave (also known as the Sinclair 

vector in radar polarimetry according to the IEEE standard notation). To demonstrate the 

equivalence between the real and complex space representation of a plane, the Jones vector 

can be addressed in terms of the orientation angle θ, the ellipticity angle τ, the wave 

amplitude A0 and the initial phase φ0 as 

 

 








−







 −
= −

τ
τ

θθ
θθφ

sin

cos

cossin

sincos
0

0
i

eAE
i

mn

r
 (A.6) 

 

After the introduction of the Jones vector, a complex polarization descriptor, namely the 

complex polarization ration ρ, which is defined as the ratio of the orthogonal complex electric 

field components, can be deduced (Boerner et al., 1981; Kostinski & Boerner, 1986; Boerner 

et al., 1998) 

 

 )()( tan δδδ αρ ii

m

n

m

n ee
a

a

E

E
mn ×=== −  (A.7) 

 

where mn ααα /tan =  with 2/0 πα <<  and mn δδδ −=  with πδ 20 << . The two 

angular variables α and δ, known as the Deschamps parameters (Deschamps, 1951), 

constitute an alternative two parameter real set for the description of the polarization state of 

an EM wave in terms of an amplitude ratio and a phase difference. 

 



Appendix 

 

198 

The complex polarization ration ρ has two degrees of freedom, expressed by the two 

Deschamps parameters, and allows the mapping of polarization states onto the two-

dimensional complex plane. It should be emphasized that the absolute magnitude and phase 

of the polarization ellipse gets lost with the information of the polarization ratio. In 

accordance with Eq. (A.7) linear polarization is represented by a real ρ ( 0=δ  or 0=τ ), 

while elliptic polarization is represented by a complex ρ ( 0≠δ  or 0≠τ ). The complex 

polarization ρ can be depicted as a function of the polarization angles θ and τ as (Born & 

Wolf, 1999) 

 

 

θτ
τθτ

ρ
2cos2cos1

2sin2sin2cos

+
+

=
i

 (A.8) 

 

The descriptions in terms of θ and τ as well as ρ referred to a Cartesian basis for some 

characteristic polarization states are summarized in Tab. 5.1. 

 

A.2 Partially Polarized Waves 

 

In the foregoing section, completely polarized single-frequency or monochromatic plane 

waves were considered. As discussed, the polarization state of such waves can be fully 

described in terms of a single polarization ellipse or a single Jones vector. However, many 

waves encountered in electromagnetic science are not monochromatic. Another important 

class of waves is the so-called quasi monochromatic or partially polarized wave. In radar 

science, partially polarized waves arise primarily from scattering. These waves can be 

regarded as wave packets of multiple frequencies of a bandwidth centered on the mean wave 

frequency. Compared to completely polarized waves for which both the amplitude and the 

phase of the electric field are independent of time and space, partially polarized waves are 

characterized by temporal and/or spatial variations of the electric field amplitude, the phase, 

and the polarization. As a consequence, the ellipse describing the electric field vector is no 

longer well defined but varying in time. In that case, the wave polarization can only be 

defined in the sense of statistical averaging over time (Cloude & Pottier, 1996). 
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Born and Wolf (1999) introduced the concept of a wave coherency matrix in order to advance 

the analysis of partially polarized waves. Based on the outer product of the corresponding 

Jones vector averaged over a coherency time, the coherency matrix is defined as (Boerner et 

al., 1998; Born & Wolf, 1999; Mott, 2007) 

 

 

[ ] 







=














=×= +

nnnm

mnmm

nnmn

nmmm

nmnm
JJ

JJ

EEEE

EEEE
EEJ

**

**
rr

 (A.9) 

 

Formally, the coherency matrix is a 2x2 hermitian positive semi definite matrix. Its elements 

are proportional to the second order moments of the elements of the complex Jones vector. 

The diagonal elements of the matrix correspond to the intensities of each element, i.e. the 

trace of [ ]J  equals the total intensity of the wave. The cross-correlation between the elements 

are contained in the off-diagonal elements of the Jones vector which expressing the amount 

of correlated structure in the field. In case of no correlation between mE  and nE , 

0== nmmn JJ  and [ ]J  becomes diagonal with equal diagonal elements. If so, the wave does 

not contain any polarized structure and thus is called completely unpolarized. Such a wave 

has only one degree of freedom, namely the amplitude. On the contrary, if nnmmnmmn JJJJ =  

(i.e., det( [ ]J ) = 0) the correlation between mE  and nE  is maximum, i.e. the wave is 

completely polarized. In this case, the wave has four degrees of freedom. In between these 

two extreme cases falls the more general case of partial polarization (det( [ ]J ) > 0) with a 

certain amount of correlation between mE  and nE  (Lee & Pottier, 2009). 

 

From the discussion of the partially polarized case it becomes evident that, in addition to the 

two parameters required to describe the polarization state of monochromatic waves, the 

degree of polarization is needed as well (Boerner et al., 1998; Born & Wolf, 1999; Mott, 

2007; Lee & Pottier, 2009). Hence, they cannot be described by a single Jones vector, 

because it holds only one degree of freedom. In fact, they require the entire wave coherency 

matrix for their complete description.  
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A.3 Polarimetric Backscattering 

 

The foregoing section provided the description of the polarimetric properties of plane EM 

waves. In the following, the polarimetric properties of the interaction of waves with 

scattering targets will be considered. Generally speaking, the scattering process can be 

addressed as follows (Kennaugh, 1954): the fully polarized monochromatic plane EM wave 

iE
r
 with a defined polarization state is emitted by a transmitting antenna and travels in 

direction of propagation ik
r
 towards the target. Using a right-handed orthogonal coordinate 

system ( iii kvh
rrr

,, ) located at the transmitter, the transmitted wave can be written as 

 

 
i

i
hi

i
h

i vEhEE
rrr

+=  (A.10) 

 

The wave interacts with the scattering target, potentially changing its polarization and/or 

degree of polarization, and is backscattered with a directional characteristic, which is 

dependent on the scatterer. A receiving antenna, located in direction ik
r
 in the so-called far 

field region of the target, where the scattered wave is considered to be a plane wave, receives 

the backscattered wave sE
r
. Using a right-handed orthogonal coordinate system ( sss kvh

rrr
,, ) 

located at the receiving antenna, the received wave can be written as 

 

 
s

s
hs

s
h

s vEhEE
rrr

+=  (A.11) 

 

At this point it should be mentioned that there are two different conventions to define the 

scattered wave coordinate system ( sss kvh
rrr

,, ) with respect to the incident wave coordinate 

system ( iii kvh
rrr

,, ) proposed in the literature (Ulaby et al., 1981b; Skolnik, 1990). The first one 

is known as the Forward Scattering Alignment (FSA) convention and is mainly used in 

bistatic scattering problems. The second one is known as the Back-Scattering Alignment 

(BSA) convention (Fig. A.4). The latter is used preferably in radar backscattering problems 

and thus is the one explicitly valid for this study (Boerner et al., 1998).  
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Figure A.0.4: Back-Scattering Alignment (BSA) geometry. 

 

 

The scattering process itself can be described as a transformation of the incident wave into a 

backscattered wave caused by the scattering target. The polarization state of the wave as well 

as its degree of polarization may change due to this transformation. By using the Jones vector 

representation for the incident monochromatic wave and the backscattered wave as discussed 

above 
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this transformation can be expressed by a 2x2 complex Sinclair matrix [S] as  
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This complex 2x2 matrix is known as the radar scattering or target matrix [S] and may be 

considered as the very basic concept of radar polarimetry (Sinclair, 1950; Kennaugh, 1954; 

Kostinski & Boerner, 1986; Boerner et al., 1998; Mott, 2007; Lee & Pottier, 2009). 
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yyyx
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ikr
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r

e
S  (A.14) 

 

The factor ikre / r  represents both the wave attenuation which occurs during the travel time 

from the transmitter to the target and the corresponding phase shift (with the wavenumber k, 

cf. section 2.4). However, this factor is not of interest in radar polarimetry. As it allows the 

estimation of three-dimensional location of the scattering target, this phase shift is crucial in 

SAR interferometry and polarimetric interferometry (Cloude & Papathanassiou, 1997a; 

Cloude & Papathanassiou, 1997b). 

 

The four elements of the scattering matrix [Sij] (i, j = x or y, i.e. horizontal or vertical) are 

denoted as the complex scattering amplitudes. They are related to the corresponding radar 

cross section values 0
ijσ  in the {H, V} polarization basis (Kennaugh, 1954): 
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(A.15) 

 

where c is the scalar calibration factor. The span of [S], defined by the sum of the squares of 

the absolute values of the complex scattering amplitudes (A.16), corresponds to the total 

power scattered by the target. The total power TP is an invariant with (Skolnik, 1990) 

 

 2222
yyyxxyxx SSSSTP +++=  (A.16) 

 

Disregarding an absolute phase factor, the [S] matrix contains in the general bistatic case 

seven independent parameters: four amplitudes and three relative phases. However, it is 

important to note that in the monostatic backscattering case, where transmitter and receiver 

are located at the same position, the scattering matrix becomes symmetric in a reciprocal 
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scattering medium (i.e. yxxy SS = ). In this case [S] is known as symmetric Sinclair matrix 

(Born & Wolf, 1999; Mott, 2007). This symmetry holds for all reciprocal propagation and 

scattering media. Hence, the number of independent parameters in [S] is reduced down to 

five: three amplitudes and two relative phases. 

The virtue of the scattering matrix concept is accentuated by Eq. (A.15): For a given 

scattering geometry and at a given frequency, the scattering matrix is only dependent on the 

scattering target and not on the polarization of the wave used for its measurement. If the 

incident wave polarization is changed, the scattered wave changes accordingly, while [S] 

remains unchanged. It should be noted that the form of the scattering matrix certainly 

depends on the basis chosen to describe the incident and scattered waves. 

 

The [S] matrix can be measured by transmitting two orthogonal polarizations on a pulse to 

pulse basis and receiving the scattered waves in two orthogonal polarizations (commonly the 

same as used for transmission). As mentioned before, most polarimetric systems (e.g. ALOS 

PALSAR) operate in the H, V basis, where in a first cycle a horizontally polarized wave and 

receiving in the horizontal H and vertical V polarizations the SHH and SVH scattering 

coefficients are measured, while the remaining coefficients SHV and SVV are measured in a 

second cycle, where a V polarized wave is transmitted and H and V polarizations are received.  

 

A.4 The Target Vector 

 

In this section, the concept of the target (or scattering) vector, which is needed to extend the 

scattering matrix in order to allow the description of distributed targets, is discussed. As an 

alternative to the matrix formulation in Eq. (A.14), the polarimetric backscattering problem 

can be addressed in a vectorial formulation based on the concept of system vectors (Kostinski 

& Boerner, 1986; Cloude & Pottier, 1996). Using this approach the scattering matrix is 

replaced by an equivalent four-dimension complex scattering vector k4 defined as 
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where [ ]( )SV  is the matrix vectorization operator, [ ]( )STrace  is the sum of the diagonal 

elements of [S] and ψ is a complete set of 2x2 complex basis matrices under a hermitian inner 

product (Cloude, 1986a). There are several basis sets that can be used for the vectorization of 

[S], of which two are commonly used in the literature: the first one ψL is denoted as the 

lexicographic basis corresponding to a straightforward ordering of the elements of [S] 

 

 










































=

10

00
2,

01

00
2,

00

10
2,

00

01
2Lψ  (A.18) 

 

By vectorizing the elements of [S] using the lexicographic basis matrices, the corresponding 

scattering vector is obtained as 

 

 [ ]TyyyxxyxxL SSSSk ,,,4 =
r

 (A.19) 

 

The virtue of the resulting scattering vector is that its elements are given by the amplitudes of 

the scattering matrix, and thus, are directly related to the system observables.  

 

The set of the four so-called Pauli spin matrices ψP constitutes the second important basis 

used for the vectorization of the scattering matrix as 
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Performing the vectorization of [S] by using the Pauli matrices set leads to the Pauli 

scattering vector for the general bistatic case with the explicit form 

 

 ( )[ ]TyxxyyxxyyyxxyyxxP SSiSSSSSSk −+−+= ,,,
2

1
4

r
 (A.21) 

 

It should be pointed out that the advantage of using the Pauli matrix lies in the 

straightforward physical interpretation of the Pauli matrices in terms of elementary scattering 
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mechanisms as well as relative polarization plane preservation (Cloude & Pottier, 1996). This 

physical interpretation is as follows: 

• The first Pauli matrix can be interpreted as the scattering matrix of an isotropic “odd”-

bounce scattering target. Such scatterers are characterized by Sxx = Syy and Sxy = Sxy = 0. 

Typical scatterers of this type are spheres, flat surfaces or trihedral corner reflectors. 

• The second Pauli matrix is also diagonal but generates a π phase difference between the 

diagonal elements indicating isotropic “even”-bounce scattering. This mechanism is 

characterized by Sxx = -Syy and Sxy = Sxy = 0 as e.g. from dihedral corner reflectors. 

• The third Pauli matrix can be interpreted as the scattering matrix of an isotropic “even”-

bounce scattering target with a relative orientation of π/4 with respect to the horizontal. 

This is because the third can be obtained from the second Pauli matrix via a rotation of 

the { }yx εε
rr

,  reference basis by π/4. 

• The fourth Pauli matrix represents a target that transforms all incident polarization states 

into orthogonal states. Because it is asymmetric, i.e. Sxy ≠ Sxy, it does not appear in 

backscattering, unless the medium is not reciprocal (as it occurs with the Faraday rotation 

effect). 

 

As demonstrated by Cloude (1986), the Pauli scattering vector is hence closely related to the 

physics of wave scattering. Another important advantage of the Pauli scattering vector 

compared to the lexicographic scattering vector relies on the close relationship between the 

Pauli matrices and its manipulations leading to a simplified formation of line of sight (LOS) 

rotation in terms of scattering targets, antennas and the Pauli scattering vector.  

 

In the reciprocal backscattering case, one of the elements of the target vector is redundant and 

the reduced three-component scattering vector is commonly introduced for a simplified 

formulation. As follows in the case of the lexicographic scattering vector 

 

 [ ]TyyxyxxL SSSk ,2,3 =
r

 (A.22) 

 

and the corresponding three dimensional Pauli scattering vector 
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 [ ]TxyyyxxyyxxP SSSSSk 2,,
2

1
3 −+=
r

 (A.23) 

 

The factor 2  in Eq. (A.23) is required to keep the norm (total power) of the three-

dimensional vector consistent with its four-dimensional representation (Boerner et al., 1981). 

 

The transformation of the three-dimensional scattering vector from its Pauli basis into its 

lexicographic basis representation, and vice versa, is given by 
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where [D3] is a 3x3 special unitary matrix (Boerner et al., 1998) 
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Thus, the scattering vector contains exactly the same information as the scattering matrix, i.e. 

it is also characterized by five degrees of freedom. The major virtue of using the scattering 

vector instead of the scattering matrix is the fact that it enables the introduction of a scattering 

covariance matrix (similar to the concept of the wave covariance matrix, cf. section A.2). 

This covariance matrix can then be used to describe backscattering effects which cannot be 

described by a single scattering matrix (Papathanassiou & Cloude, 1997). However, the 

relevant case for conventional SAR remote sensing applications is the scattering problem in 

backscattering, and thus, will be the only one considered in the remaining of this work.  

 

A.5 Distributed Targets 

 

In the foregoing sections only coherently scattering targets were considered. As discussed, 

such deterministic scatterers can be fully described by a single scattering matrix or by a 

single scattering vector, respectively. Anyhow, in most geoscience radar applications the 
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scattering targets are embedded in a dynamic environment. Hence, they are affected by 

spatial and/or time variations (Ulaby et al., 1982b). These targets, called incoherent or 

depolarizing scatterers, can no longer be fully described by a single scattering matrix. One 

important class of depolarizing scatterers are spatially distributed targets. In effect, most of 

the natural terrain surfaces belong to this class. Statistically, such targets may be considered 

to be homogeneously composed of randomly distributed coherent scattering centers. And that 

means, the scattering behavior of each of these individual scattering centers can be 

completely described by a single scattering matrix [Si]. Due to the finite resolution of 

imaging radar systems, the measured scattering matrix consists of the coherent superposition 

of the individual scattering matrices [Si] of all individual scattering centers located within the 

resolution cell. The measured scattering matrix [Si] can be different for another resolution 

element of the same scatterer because of a different spatial disposition of the individual 

targets. It should be noted that this is the same physical effect as the generation of speckle 

discussed in section 4.8 (Lee et al., 1999b). 

 

In order to advance the analysis of distributed scattering targets, Boerner et al. (1981) 

introduced the concept of a target covariance or coherency matrix. The 3x3 polarimetric 

covariance matrix [C3] is defined by using the outer product of the three-dimensional 

lexicographic scattering vector (Boerner et al., 1981; Tragl, 1990; Boerner et al., 1998; Mott, 

2007; Lee & Pottier, 2009).  
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with ...  indicating spatial averaging, while homogeneity of the random scattering medium is 

assumed. According to this, the 3x3 polarimetric coherency matrix [T3] is defined by using 

the outer product of the three-dimensional Pauli target vector (Cloude, 1992)  
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[C3] and [T3] are equivalent methods to describe the distributed targets and hold the same 

information content. By definition, both matrices are hermitian positive semi definite, i.e. that 

they have real non-negative and orthogonal eigenvalues. They are in general of full rank three, 

whereby the rank of a matrix is defined as the maximum number of linearly independent 

columns (or rows) of the matrix (Schmidt & Trenkler, 2006). Concerning the physical 

information content of the coherency (or covariance) matrix, the rank of [T3] (or [C3]) can be 

considered as the amount of linear independent contributions in which the target matrix can 

be decomposed. That is, a rank three coherency matrix implies the existence of three linearly 

non-zero eigenvectors (Mott, 2007; Lee & Pottier, 2009). The physical meaning of the 

eigenvalues and eigenvectors will be discussed in the following sections.  

 

As elucidated, the two matrices completely describe a reciprocal distributed scattering target. 

They contain nine independent parameters: three real power values in the main diagonal and 

three off-diagonal complex cross-correlations. The latter contain the information of 

correlation between the complex elements of [S] over spatial averaging. Cloude (1986a) 

showed that the relation between [C3] and [T3] can be established by using the 

transformation of the corresponding scattering vectors in Eq. (A.28)  
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The elements of [T3] can be expressed in terms of the elements of [C3] by carrying out the 

matrix multiplication  
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Accordingly, the transformation of [T3] into [C3] again is obtained by using Eq. (A.28) 
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Then the [C3] elements can be expressed in terms of the elements of [T3] as  
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Because the transformation in Eq. (A.29) and Eq. (A.31) are unitary similarity 

transformations (Schmidt & Trenkler, 2006), both matrices have the same eigenvalues but 

different eigenvectors. The two matrices are in general of full rank three, i.e. they have three 

non-zero eigenvalues. 

 

As a final note on the formation of the coherency and covariance matrix, it should be pointed 

out that the [T3] (or [C3]) matrix data has a reduced resolution due to the spatial averaging 

needed for the formation of the coherency (or covariance) matrix. This loss of resolution 

elements is especially critical in terms of point targets because for distributed targets the loss 
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is compensated by a reduced speckle noise due to the multi-looking effect. This trade-off 

between high resolution required for deterministic targets and reduced speckle noise over 

distributed targets can be resolved by applying an adaptive polarimetric speckle filter as first 

introduced by Lee et al. (1999b). Such filters perform a multi-looking filtering process on 

distributed scattering targets, while point scattering targets or edges remain unfiltered (Lee & 

Pottier, 2009). 

 

Note that in this work, the scattering problem is only addressed in terms of the Pauli target 

vector and the coherency target matrix.  
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