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Summary 
 

Powdery mildew is a common fungal disease of monocotyledonous and dicotyledonous plant 

species. Successful pathogenesis by the biotrophic fungus depends on the presence of plant-

specific MLO (MILDEW RESISTANCE LOCUS O) proteins, as mutations in particular 

MLO genes confer durable powdery mildew resistance in barley, tomato and Arabidopsis. In 

the absence of MLO, fungal spores fail to invade the host epidermal cell, resulting in an early 

termination of fungal pathogenesis. 

MLO proteins define a family of heptahelical plasma membrane-localized proteins, 

reminiscent of G-protein coupled receptors (GPCRs) in metazoans that activate heterotrimeric 

G-protein signaling. A genetic approach was chosen in this study to assess the role of MLO 

proteins as putative plant GPCRs and results from these experiments demonstrate that 

powdery mildew susceptibility conferred by MLO is independent of the heterotrimeric G-

protein complex. However, data from this analysis suggest a function of the heterotrimeric G-

protein in basal defense mechanisms against powdery mildew fungi as well as in the 

integration of MAMP (microbe-associated molecular patterns) perception into downstream 

immune responses. 

Metabolomic analysis performed in this study indicates that the adapted powdery mildew 

fungus, Golovinomyces orontii, is able to suppress the accumulation of the defense-relevant 

indolic glucosinolate, 4MI3G (4-methoxyindol-3-ylmethylglucosinolate) in Arabidopsis, 

thereby inhibiting the PEN2-dependent glucosinolate defense pathway. This inhibition 

requires functional MLO, suggesting that successful defense suppression either operates 

through the MLO protein or that it requires the formation of post-invasive fungal infection 

structures. Other data obtained here demonstrate that MLO proteins negatively regulate 

transcriptional activation of defense-related genes in response to powdery mildew challenge 

as well as upon MAMP treatment, implicating MLO functions in MAMP-triggered defense 

signaling. 
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Zusammenfassung 
 

Mehltau ist eine weit verbreitete Pilzkrankheit von monokotyledonen und dikotyledonen 

Pflanzenarten. Die pflanzenspezifischen MLO (MILDEW RESISTANCE LOCUS O)-

Proteine sind dabei unerlässlich für eine erfolgreiche Infektion durch den biotrophen 

Mehltaupilz, da Mutationen in bestimmten MLO Genen in Gerste, Tomate und Arabidopsis 

zur dauerhaften Mehltauresistenz führen. Durch Abwesenheit der MLO-Proteine wird der 

Eintritt der Pilzspore in die pflanzliche Epidermiszelle verhindert, wodurch es zum früher 

Erliegen der Mehltauinfektion kommt. 

MLO-Proteine gehören zur Familie der heptahelikalen Transmembranproteine und ähneln 

damit G-Protein gekoppelten Rezeptoren (GPCR), welche durch Aktivierung von 

heterotrimeren G-Proteinen Signaltransduktionswege einleiten. Im Rahmen dieser Arbeit 

wurde ein genetischer Ansatz gewählt, um die potentielle Rolle von MLO-Proteinen als G-

Protein gekoppelte Rezeptoren in Arabidopsis zu untersuchen. Dabei wurde gezeigt, dass die 

MLO-vermittelte Mehltauinfektion unabhängig von der Aktivität heterotrimerer G-Proteine 

ist. Vielmehr liefert die vorliegende Arbeit Hinweise für eine Funktion des heterotrimeren G-

Protein Komplexes in der Pflanzenabwehr gegenüber Mehltaupilzen sowie in der Vermittlung 

von Immunantworten nach Erkennung von Mikroben-assoziierten molekularen Signaturen 

(MAMPs; microbe-associated molecular patterns).  

Des Weiteren deuten Analysen von Sekundärmetaboliten in Arabidopsis darauf hin, dass der 

adaptierte Mehltaupilz, Golovinomyces orontii, dazu fähig ist, die Akkumulation des Abwehr-

relevanten Indol-Glucosinolats, 4MI3G (4-Methoxyindol-3-ylmethylglucosinolat), zu 

unterdrücken und damit den PEN2-anhängigen Abwehrmechanismus zu inhibieren. Dieser 

Prozess ist abhängig vom funktionalen MLO-Protein und lässt daher vermuten, dass die 

effektive Unterdrückung pflanzlicher Abwehr durch den Mehltaupilz entweder durch die 

Manipulation des MLO-Proteins durch den Pilz erfolgt oder aber die Invasion des Pilzes in 

die Pflanzenzelle voraussetzt. Weitere Ergebnisse aus dieser Studie demonstrieren, dass 

MLO-Proteine die transkriptionelle Aktivierung von Abwehrgenen nach Inokulation mit dem 

Mehltaupilz sowie nach Behandlung mit MAMPs negativ regulieren. Letzteres weist auf die 

Funktion von MLO-Proteinen in MAMP-induzierten Abwehrmechanismen hin. 
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_______________________________________________________________________________Introduction 
 

1. Introduction 
 
Plants are permanently exposed to a wide range of pathogens including viruses, bacteria, 

fungi and oomycetes that have different infection strategies and life styles. While 

necrotrophic parasites feed on dead plant tissue, biotrophic pathogens entirely rely on the 

living plant and its metabolites. Nevertheless, plant disease represents the exception and most 

plants are immune to the majority of pathogenic microbes. This phenomenon is termed ‘non-

host resistance’ and describes the immunity of an entire plant species against all variants of a 

non-adapted pathogen species (Thordal-Christensen, 2003; Nürnberger and Lipka, 2005; 

Lipka et al., 2010). Non-host resistance defines the most robust and durable form of plant 

immunity and has been proposed to comprise successive layers including constitutive plant 

barriers as well as inducible reactions (Thordal-Christensen, 2003; Nürnberger and Lipka, 

2005; Lipka et al., 2010). The former constitutes physical and chemical barriers like a rigid 

cell wall and toxic compounds. If a pathogen successfully evades these constitutive plant 

defense barriers it faces the risk of recognition by plant membrane-localized pattern 

recognition receptors (PRRs), which sense highly conserved microbial molecules, the 

microbe-associated molecular patterns (MAMPs). Following MAMP perception a plethora of 

immune responses is initiated leading to MAMP-triggered immunity (MTI), which defines the 

first layer of plant innate immunity (Chisholm et al., 2006; Jones and Dangl, 2006; Bent and 

Mackey, 2007; da Cunha et al., 2007; Dodds and Rathjen, 2010). Successful pathogens 

evolved strategies to suppress MTI by delivering effector molecules into the plant cell 

enabling plant colonization. In turn plants possess resistance (R) proteins to recognize 

effectors, leading to effector-triggered immunity (ETI) defined as the second layer of plant 

immunity.  

 
1.1 Microbe-associated molecular pattern-triggered immunity (MTI) 
 

Like in animals, cell surface pattern recognition receptors (PRRs) initiate immune responses 

upon detection of microbe-associated molecular patterns (MAMPs). MAMPs represent highly 

conserved and indispensable microbial structures, including bacterial lipopolysacharides 

(LPS), flagellin, coldshock proteins and elongation factor Tu (EF-Tu); fungal chitin, 

ergosterol and xylanase as well as β-glucan, Pep-13 and heptaglucosides from oomycetes 

(Boller and Felix, 2009). PRRs consist of extracellular leucine-rich repeat (LRR) or 

peptidoglucan-bindig LysM domains and are largely grouped into receptor-like kinases 

(RLKs) and receptor-like proteins (RLPs) according to the presence or absence of an 
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intracellular kinase domain (Boller and Felix, 2009). The best-characterized PRRs are the 

flagellin sensing receptor kinase FLS2 (Gómez-Gómez and Boller, 2000) and the elongation 

factor EF-Tu receptor EFR (Zipfel et al., 2006). The highly conserved flagellin and EF-Tu 

epitopes, flg22 and elf18, respectively are sufficient to trigger MAMP responses (Felix et al., 

1999; Kunze et al., 2004). While FLS2 orthologues are present in tomato, tobacco and rice, 

EF-Tu perception is restricted to Brassicacea (Felix et al., 1999; Kunze et al., 2004; Hann and 

Rathjen, 2007; Robatzek et al., 2007; Takai et al., 2008). Upon flg22 binding, FLS2 rapidly 

forms a complex with the LRR-RLK BAK1 (BRI1-associated receptor kinase 1), which is 

required for full activation of subsequent defense responses (Chinchilla et al., 2007). Other 

known plant PRRs are the rice LRR-RLK XA21 (for a sulfated peptide from the 

Xanthomonas protein Ax21) (Lee et al., 2009), the LysM-RLP CeBiP from rice (for fungal 

chitin) (Kaku et al., 2006), the tomato LRR-RLPs LeEIX1/2 (for fungal xylanase EIX) (Ron 

and Avni, 2004), the LysM-RLK CERK1 from Arabidopsis (for fungal chitin) (Miya et al., 

2007; Wan et al., 2008; Petutschnig et al., 2010) and legume NFR1/5 (for rhizobial Nod 

factor) (Radutoiu et al., 2007). Plants also evolved receptors that sense endogenous molecules 

termed danger-associated molecular patterns (DAMPs). Classical DAMPs are plant cell wall 

fragments, the oligogalacturonides (OGs), that are released by microbial enzymes and are 

likely perceived by the wall-associated kinase 1 (WAK1) (D'Ovidio et al., 2004; Brutus et al., 

2010). Recent studies identified the endogenous Arabidopsis elicitor Pep1 and its two LRR-

RLKs PEPR1 and PEPR2 (Huffaker et al., 2006; Yamaguchi et al., 2006; Huffaker and Ryan, 

2007; Krol et al., 2010; Yamaguchi et al., 2010). Pep1, which originates from its precursor 

PROPEP1, is generated in response to pathogens and their MAMPs. It activates immune 

responses as well as expression of its own gene and therefore has been proposed to act as a 

MAMP amplifier (Huffaker and Ryan, 2007).  

Recognition of MAMPs and DAMPs by the respective PRRs triggers a common set of 

defense responses indicating that down-stream signaling events converge to a stereotypical 

response. Early MAMP responses that occur within minutes are ion fluxes across the plasma 

membrane like Ca2+ influx, generation of reactive oxygen species (ROS) and nitric oxide 

(NO), activation of mitogen-activated protein kinase (MAPK) and calcium-dependent protein 

kinase (CDPK) cascades as well as ethylene production (Schwessinger and Zipfel, 2008; 

Boller and Felix, 2009; Boudsocq et al., 2010). Moreover, accumulation of antimicrobial 

compounds and reprogramming of gene expression occur. Typical late responses, which 

develop over one to several days, comprise callose deposition and inhibition of seedling 

growth (Boller and Felix, 2009). To date, the contribution of the individual defense responses 
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to the establishment of robust immunity as well as the mechanisms leading to such diverse 

outputs are largely unknown.  

 
1.2 Effector-triggered immunity (ETI) 
 

Successful pathogens are able to suppress MTI through the delivery of effector molecules into 

the plant cell. Bacteria transfer effector proteins by a dedicated needle apparatus, the type III 

secretion system (TTSS), whereas effector delivery of fungal and oomycete parasites occurs 

via a specialized infection structure, the haustorium, which seems to involve secretory 

pathways (Cunnac et al., 2009; Panstruga and Dodds, 2009). The development of effector 

proteins by plant pathogens led to the evolution of plant resistance (R) proteins that 

specifically recognize effectors (gene-for-gene resistance) (Flor, 1971). In absence of a 

matching R protein the effector escapes the recognition by the plant, resulting in plant disease 

(compatible interaction), whereas presence of a cognate R protein leads to termination of 

pathogen growth (incompatible interaction) (Chisholm et al., 2006). The recognized effector 

is referred to as avirulence (Avr) protein. In contrast to non-host immunity, which acts at the 

species level, R gene-mediated resistance is cultivar-specific.  

Most R proteins belong to the intracellular NB-LRR protein family with a nucleotide binding 

site (NB) and leucin-rich repeat (LRR) domains, that can be further divided into coiled-coil 

(CC) NB-LRR and Toll-interleukin-1 receptor (TIR) NB-LRR according to their N-terminus 

(Dangl and Jones, 2001). The best characterized members of the NB-LRR class include 

RPS2, RPM1 and RPS5 that confer resistance to Pseudomonas syringae pv. tomato bacteria 

carrying the corresponding effector. 

Multiple R genes have been identified that encode transmembrane receptor-like kinase (RLK) 

or receptor-like proteins (RLP) with an extracellular LRR including the well-studied tomato 

RLPs of the Cf family (Jones et al., 1994; Bent and Mackey, 2007).  

R proteins can recognize effectors either directly by physical interaction or indirectly by 

detecting effector-mediated modifications of plant targets. Direct effector recognition has 

been reported in few cases including the R/Avr protein interactors Pi-ta/AvrPita in rice, 

L/AvrL567 or M/AvrM in flax (Jia et al., 2000; Dodds et al., 2004; Dodds et al., 2006; 

Catanzariti et al., 2010; Dodds and Rathjen, 2010). Indirect effector recognition has been 

observed in a number of cases and is often referred to as the ‘guard’ model (Van Der Biezen 

and Jones, 1998; Dangl and Jones, 2001). This model postulates that R proteins guard a host 

protein (guardee), which is targeted and modified by pathogen effectors. One of the best-

studied guardees is Arabidopsis RIN4 (RPM1 INTERACTING PROTEIN 4), which is 
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guarded by the two NB-LRR proteins RPM1 (RESISTANCE TO PSEUDOMONAS 

MACULICOLA 1) and RPS2 (RESISTANCE TO PSEUDOMONAS SYRINGAE 2) and is 

targeted by the sequence-unrelated P. syringae effectors, AvrRpm1, AvrB and AvrRpt2. 

RPM1-mediated disease resistance is activated by AvrRpm1- or AvrB-mediated 

phosphorylation of RIN4, whereas the protease effector AvrRpt2 cleaves RIN4 for 

degradation, which in turn activates RPS2-mediated resistance (Mackey et al., 2002; Axtell 

and Staskawicz, 2003; Mackey et al., 2003).  

The signal transduction pathway downstream of activated plant NB-LRR receptors is poorly 

understood. However, EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1) is required for 

signaling of TIR-NB-LRRs, whereas NDR1 (NON-RACE-SPECIFIC DISEASE 

RESISTANCE 1) mediates signaling of CC-NB-LRR proteins (Parker et al., 1996; Aarts et 

al., 1998; Peart et al., 2002; Hu et al., 2005; Wiermer et al., 2005). EDS1 and its interacting 

partners PAD4 (PHYTOALEXIN DEFICIENT 4) and SAG101 (SENESCENCE 

ASSOCIATED GENE 101) are important activators of salicylic acid signaling (1.3) and play 

therefore also a central role in basal resistance (Feys et al. 2001, 2005). Forward genetic 

screens revealed a requirement of HSP90 (HEAT SHOCK PROTEIN 90), RAR1 

(REQUIRED FOR MLA12 RESISTANCE) and SGT1 (SUPPRESSOR OF G2 ALLELE OF 

SKP1) for function of some NB-LRR proteins (Austin et al., 2002; Azevedo et al., 2002; 

Muskett et al., 2002; Tornero et al., 2002; Hubert et al., 2003; Lu et al., 2003; Takahashi et 

al., 2003; Liu et al., 2004).  

ETI-induced defense responses show significant overlap with those of MTI (Nimchuk et al., 

2003; Nürnberger et al., 2004). However, effector recognition by R proteins results in a 

stronger and faster immune response that is usually associated with localized programmed 

death of the attacked cell, the hypersensitive response (HR) (Greenberg and Yao, 2004).   

 
1.3 Phytohormones and plant defense 
 

Plant defense against pathogenic microbes involves regulation by the phytohormones salicylic 

acid (SA), jasmonic acid (JA), its conjugates termed jasmonates (JAs), and ethylene (ET) 

(Glazebrook, 2005; Pieterse et al., 2009). A cross-talk between the different hormone 

signaling pathways allows the plant to fine-tune the induction of defense responses against 

different pathogens. It is commonly accepted that SA mostly regulates defense against 

pathogens with a biotrophic lifestyle, whereas defense responses activated by JA and ET 

signaling rather act against necrotrophic pathogens (Glazebrook, 2005). Mainly antagonistic 

interactions have been reported for JA and SA, whereas JA and ET often act synergistically 
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(Glazebrook, 2005; Memelink, 2009). In turn pathogens evolved strategies to manipulate the 

plant hormone signaling network for their own benefit. For example, several strains of the 

hemibiotrophic bacterium P. syringae produce coronatine, a functional JA mimic, which 

inhibits SA defense by inducing the JA signaling pathway (Bender et al., 1999). Although the 

role of SA in resistance against biotrophs and JA in defense against necrotrophs has been 

demonstrated in many plant-pathogen interactions, the situation is far more complex and 

plenty of exceptions to this rule exist (Glazebrook, 2005; Pieterse et al., 2009). 

SA is synthesized in chloroplasts from chorismate by the isochorismate synthase SID2 (SA 

INDUCTION-DEFICIENT 2) (Wildermuth et al., 2001; Lu, 2009). SA-induced cellular redox 

changes lead to monomerization of NPR1 (NONEXPRESSOR OF PATHOGENESIS-

RELATED GENES1) the key component in SA signaling (Mou et al., 2003; Dong, 2004). 

NPR1 monomers are translocated from the cytoplasm to the nucleus and modulate the 

expression of SA-dependent genes including the PR (PATHOGENESIS-RELATED) genes 

(Zhang et al., 1999; Tada et al., 2008). EDS1 and its interactors PAD4 and SAG101 are also 

important players in SA signaling (Feys et al., 2001; Feys et al., 2005; Wiermer et al., 2005).  

JA and its conjugates are lipid-derived compounds synthesized in chloroplasts (Wasternack 

and Kombrink, 2009). JA signaling operates through the F-box COI1 (CORONATINE 

INSENSITIVE 1) SCF (Skip/Cullin/F box) E3 ubiquitin ligase complex. The SCFCOI1 

complex promotes proteasomal degradation of JAZ (jasmonate-ZIM-domain protein) 

repressors of transcription factors such as MYC2, thereby activating the expression of JA-

responsive genes including the PDF1.2 (PLANT DEFENSIN 1.2) genes (Xie et al., 1998; 

Dombrecht et al., 2007; Chung et al., 2009). 

ET is sensed by a family of endoplasmic reticulum (ER)-associated ET receptors (ETRs) that 

initiate a regulatory cascade leading to stabilization and activation of transcription factors, 

such as EIN3, and expression of ethylene-responsive genes including PDF1.2 (Schaller and 

Bleecker, 1995; Chao et al., 1997; Hua and Meyerowitz, 1998; Hua et al., 1998; Sakai et al., 

1998; Hall et al., 2000; Zhu and Guo, 2008). The membrane protein EIN2 (ETHYLENE 

INSENSITIVE 2) is a central element of the ethylene signaling pathway, but its biochemical 

function remains elusive (Alonso et al., 1999). 

 
1.4 Pathogenesis of powdery mildew fungi 
 

Powdery mildew parasites are Ascomycete fungi that cause disease of about 10,000 distinct 

plant species resulting in severe agricultural yield losses (Takamatsu, 2004; Micali et al., 

2008). They are obligate biotrophic phytopathogens that entirely rely on living host tissue and 
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exclusively infect epidermal cells in order to reproduce (Figure 1.1) (Plotnikova et al., 1998; 

Eichmann and Hückelhoven, 2008; Micali et al., 2008). Within a few hours after the landing 

of a conidiospore on the plant leaf surface a germ tube is formed and differentiates into the 

appressorium, which is used by the fungus to penetrate into the plant epidermal cell. 

Penetration attempts are typically associated with host cell wall appositions termed papillae, 

which contain callose (β-1,3-glucan), pectins and phenolics and are formed locally at 

infection sites (Hardham et al., 2007; Hückelhoven, 2007). Successful host cell invasion 

results in the development of the specialized fungal infection structure, the haustorium, which 

is thought to allow nutrient uptake from the plant as well as the delivery of effectors into the 

host cell to manipulate plant defense (Ellis et al., 2006; Panstruga and Dodds, 2009). 

Subsequently, the fungus spreads on the plant leaf by epiphytic growth of secondary hyphae. 

Several days after infection conidiophores are formed and conidiospores are released to 

initiate new asexual infection cycles. 

 

 
 
Figure 1.1. Schematic illustration of the asexual life cycle and pathogenesis of the Arabidopsis powdery 
mildew fungus. The scheme represents the chronological order of events after the landing of a spore on the leaf 
surface. Within 1–2 hours post-inoculation (hpi) a germ tube is formed, which differentiates into an 
appressorium for host cell penetration. Penetration attempts are typically associated with the formation of 
papillae. At about 14–24 hpi, sporelings that successfully penetrated the host cell wall establish a haustorium 
within the epidermal cell enabling epiphytic growth of secondary hyphae. At 3–7 days post-inoculation (dpi) 
conidiophores with new conidiospores are formed.  
 

The powdery mildew species Erysiphe cruciferarum (Koch and Slusarenko, 1990), 

Golovinomyces cichoracearum (Adam and Somerville, 1996), Golovinomyces orontii 

(Plotnikova et al., 1998) as well as the tomato powdery mildew fungus Oidium neolycopersici 

(Whipps et al., 1998; Ellis and Turner, 2001; Jones et al., 2001; Xiao et al., 2001; Bai et al., 

2008; Göllner et al., 2008) are able to successfully reproduce on Arabidopsis plants. 
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The recent genome sequencing of the barley powdery mildew fungus Blumeria graminis f. sp. 

hordei (Bgh) represents a milestone in the powdery mildew research and provides a powerful 

tool for investigation and understanding of these biotrophic pathogens (Spanu et al., 2010). 

Further genome sequencing of the pea and Arabidopsis powdery mildew fungi Erysiphe pisi 

and G. orontii, respectively, is currently ongoing. Interestingly, Bgh genome analysis revealed 

a massive retrotransposon proliferation and genome-size expansion. Moreover, several genes 

encoding enzymes for primary and secondary metabolism as well as transporters are missing 

in the Bgh genome, possibly reflecting the cause or consequence of the biotrophic powdery 

mildew life style. 

 
1.5 Arabidopsis powdery mildew resistance 
 

In many plant species resistance to powdery mildew fungi is conferred by dominantly or 

semi-dominantly inherited resistance (R) genes, such as those located at the polymorphic 

barley Mla locus (Jørgensen, 1994), the tomato Ol locus (Huang et al., 2000; Bai et al., 2005) 

or the Run1 gene in grapevine (Donald et al., 2002; Barker et al., 2005), which provide 

isolate-specific powdery mildew immunity. In contrast, no true R gene-mediated isolate-

specific resistance against powdery mildew fungi has been reported in Arabidopsis (Göllner et 

al., 2008). Instead Arabidopsis possesses a unique type of dominantly inherited R gene, 

termed RPW8 (RESISTANCE TO POWDERY MILEW 8), which confers broad-spectrum 

powdery mildew resistance in several Arabidopsis accessions (Xiao et al., 2001). Examination 

of the sequence polymorphism of 32 Arabidopsis accessions at the RPW8 locus revealed that 

this locus defines a key player in resistance to powdery mildew disease in Arabidopsis (Xiao 

et al., 2004). RPW8 proteins are atypical R proteins that contain an N-terminal 

transmembrane domain and a CC domain, but lack the typical NB site and LRR motifs 

characteristic for most R proteins (Wang et al., 2007). Interestingly, RPW8 resistance shares 

characteristics with R gene-mediated immunity. Both types of resistance are dependent on 

SA, require EDS1 and result in HR-like cell death (Xiao et al., 2001; Xiao et al., 2003; Xiao 

et al., 2005). Intriguingly, recent studies have revealed that RPW8-mediated broad-spectrum 

powdery mildew resistance involves specific targeting of RPW8 to the haustorial complex of 

the invading pathogen (Wang et al., 2009). 

In a forward genetic screen for Arabidopsis mutants that displayed enhanced powdery mildew 

(G. cichoracearum) resistance in the absence of constitutive PR1 gene expression three 

recessive mutants, termed enhanced disease resistance (edr) 1, edr2 and edr3, were isolated 

(Frye and Innes, 1998; Frye et al., 2001; Tang and Innes, 2002; Tang et al., 2005a; Tang et al., 
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2005b; Tang et al., 2006). Powdery mildew development in all edr mutants was arrested after 

successful host cell penetration but before conidiophore formation. This late-onset of 

resistance was dependent on SA and accompanied by accelerated cell death leading to large 

necrotic lesions. The EDR1 gene encodes a CTR1-like protein kinase, EDR2 encodes a 

mitochondrial protein with a pleckstrin homology (PH) domain and a steroidogenic acute 

regulatory protein-related lipidtransfer (START) motif and EDR3 encodes a dynamin-like 

protein with an N-terminal GTPase domain and a C-terminal GTPase effector region (Frye 

and Innes, 1998; Tang et al., 2005a; Tang et al., 2005b; Tang et al., 2006).  

In an independent screen for powdery mildew resistant (pmr) Arabidopsis mutants, in tolal six 

pmr mutants, pmr1 to pmr6, with enhanced resistance to the virulent powdery mildew fungus 

G. cichoracearum were identified and to date four of them were cloned (Vogel and 

Somerville, 2000; Vogel et al., 2002; Jacobs et al., 2003; Nishimura et al., 2003; Vogel et al., 

2004; Consonni et al., 2006). 

The PMR2 gene was found to be allelic to MLO2 (MILDEW RESISTANCE LOCUS O 2), 

which encodes one of 15 Arabidopsis members of a heptahelical plasma membrane-localized 

protein family that show high sequence similarity to barley HvMLO, the founder of this plant-

unique protein family (see 1.5.3) (Büschges et al., 1997; Consonni et al., 2006).  

PMR4, also termed GLUCAN SYNTHASE-LIKE5 (GSL5), was identified as a wound- and 

pathogen associated callose synthase  (Jacobs et al., 2003; Nishimura et al., 2003). 

Interestingly, pmr4 mutants were described to constitutively hyperaccumulate SA and 

mutations in components of the SA pathway suppressed pmr4-mediated resistance (Nishimura 

et al., 2003). Moreover, pmr4 plants exhibit enhanced resistance to Hyaloperonospora 

parasitica, indicating that enhanced immunity in this mutant is likely the result of constitutive 

SA-dependent defense activation that is effective against a broad range of pathogens (Jacobs 

et al., 2003).  

The pmr5 and pmr6 mutants exhibited altered cell wall compositions indicating a putative 

function in the maintenance of cell wall integrity. PMR6 encodes a pectate lyase-like protein 

while PMR5 codes for an unknown protein likely targeted to the ER (Vogel et al., 2002; 

Vogel et al., 2004). Double mutant analysis suggests that PMR5 and PMR6 likely control 

parallel defense pathways that are independent of SA, ET and JA signaling. Furthermore, 

pmr5 and pmr6 are fully susceptible to pathogens unrelated to powdery mildew fungi, 

indicating that both proteins may be true powdery mildew specific compatibility factors. 
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1.5.1 The role of phytohormones in Arabidopsis powdery mildew defense 
 

First evidence for an involvement of SA signaling in powdery mildew resistance came from 

early analysis of plants bearing pad4, eds5 or npr1 mutations, which supported enhanced 

growth of the adapted powdery mildew fungus G. orontii (Reuber et al., 1998). All three 

components are linked to SA accumulation or signaling (Lu, 2009). In accordance with a role 

of SA in powdery mildew immunity, mutants with hyperactive SA-dependent defense 

responses, such as pmr4 or edr1, exhibited enhanced resistance against these fungal pathogens 

(Frye et al., 2001; Nishimura et al., 2003). Infection with G. cichoracearum did not induce 

JA/ET-dependent PDF1.2 gene expression, a marker gene of JA/ET-signaling (Zimmerli et 

al., 2004). Interestingly, ectopic activation of the JA/ET signaling pathway by treatment of 

Arabidopsis plants with exogenous JA or ethanol reduced the infection of G. cichoracearum 

(Zimmerli et al., 2004). Similarly, a mutation in the cellulose synthase CEV1, which results in 

constitutive activation of the JA/ET singnaling pathway, led to enhanced resistance against G. 

orontii and G. cichoracearum (Ellis and Turner, 2001; Ellis et al., 2002a; Ellis et al., 2002b). 

Together, these findings suggest that JA/ET-dependent responses are not induced by 

compatible powdery mildew fungi, but if they are triggered artificially, they are effective. In 

contrast, the non-adapted powdery mildew fungus Bgh induced PDF1.2 gene expression, 

indicating that non-adapted powdery mildew pathogens are able to trigger the JA/ET defense 

pathway (Zimmerli et al., 2004). Therefore, it has been concluded that adapted powdery 

mildew fungi, such as G. orotnii, either fail to elicit JA/ET defense or are able to actively 

suppress it (Zimmerli et al., 2004). 

 
1.5.2 Arabidopsis powdery mildew non-host resistance 
 

Non-host resistance is the most effective and durable form of plant immunity (Thordal-

Christensen, 2003; Nürnberger and Lipka, 2005; Lipka et al., 2010). Arabidopsis non-host 

resistance to non-adapted powdery mildew fungi comprises two layers: pre-invasion defense 

that controls fungal penetration at the cell periphery and post-invasion defense, which can be 

associated with a cell death response (Collins et al., 2003; Lipka et al., 2005). Three key 

components designed PENETRATION1 (PEN1), PEN2 and PEN3 of pre-invasion resistance 

were identified in a genetic screen for Arabidopsis mutants with enhanced entry success of the 

non-adapted powdery mildew fungi Bgh and E. pisi (Collins et al., 2003; Lipka and 

Panstruga, 2005; Stein et al., 2006). Genetic analysis suggests that PEN1 and PEN2 act in 
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independent entry control pathways, whereas PEN2 cooperates with PEN3 in the same 

pathway (Lipka et al., 2005; Stein et al., 2006). 

PEN1 encodes a plasma membrane-associated syntaxin with a SNARE (soluble N-

ethylmaleimide-sensitive factor attachment protein receptor) domain, which forms a 

pathogen-induced ternary SNARE complex with the SNARE protein SNAP33 

(Synaptosomal-associated protein 33) and the endomembrane-anchored VAMP721 or 

VAMP722 (vesicle associated membrane protein 721/722) (Kwon et al., 2008). In eukaryotes, 

ternary SNARE complexes are key players in vesicle-associated membrane fusion and 

secretion processes (Lipka et al., 2007). Therefore, it is thought that the PEN1-SNAP33-

VAMP721/722 complex mediates pathogen-induced vesicle-dependent secretion at the 

plasma membrane. Moreover, PEN1 was found to focally accumulate in papillae at sites of 

attempted fungal penetration, assuming that PEN1-mediated secretion possibly delivers anti-

microbial as well as cell wall-reinforcing cargo (Assaad et al., 2004; Bhat et al., 2005; Kwon 

et al., 2008; Meyer et al., 2009).  

PEN2 encodes an atypical myrosinase associated with peroxisomes, which was shown to 

participate in the metabolism of a group of tryptophan (Trp)-derived secondary metabolites, 

the indole glucosinolates, to release potential antimicrobial products (Lipka et al., 2005; 

Bednarek et al., 2009). Specifically, the 4-methoxyindol-3-ylmethylglucosinolate (4MI3G) is 

supposed to be the biologically relevant PEN2 substrate leading to formation of yet unknown 

toxic compounds that are important for the restriction of fungal growth (Supplementary 

Figure 6.1) (Bednarek et al., 2009). PEN2-dependent hydrolysis of 4MI3G is also required for 

PMR4/GSL5-mediated callose accumulation after flg22 treatment (Clay et al., 2009). 

Interestingly, phylogenetic analysis suggests that the PEN2 gene is an evolutionarily recent 

invention of Arabidopsis (Xu et al., 2004). 

PEN3 encodes the pleiotropic drug resistance 8 (PDR8) ATP binding cassette (ABC) 

transporter (Stein et al., 2006). The absence of PEN3 results in hyperactivation of the SA-

signaling pathway, which is suppressed in pen2 pen3 double mutants, indicating that 

accumulation of toxic PEN2-derived products results in the hyperactivation of the SA-

signaling in pen3 mutant plants. Thus, it has been proposed that PEN2 and PEN3 act in the 

same defense pathway, where PEN3 transports toxic PEN2 hydrolysis products across the 

plasma membrane to restrict fungal growth (Lipka et al., 2005; Stein et al., 2006).  

In contrast to PEN1, the PEN2/PEN3-dependent pathway contributes to defense against a 

broad range of pathogens with different life-styles (Lipka et al., 2005; Hiruma et al., 2010; 

Sanchez-Vallet et al., 2010; Schlaeppi et al., 2010).  
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Although pen single mutants exhibit impaired non-host resistance at the cell periphery 

resulting in enhanced entry rates of non-adapted powdery mildew fungi, they mount effective 

post-invasion immunity, which is accompanied by a HR-like cell death response ultimately 

terminating fungal colonization (Lipka et al., 2005). Analysis with various mutant 

combinations revealed a requirement of EDS1, PAD4 and SAG101 for post-invasion defense 

(Lipka et al., 2005). Dramatic infection phenotypes were observed on pen2 pad4 sag101 triple 

mutants in which Bgh was capable to complete its life cycle and growth and reproduction of 

E. pisi was macroscopically detectable (Lipka et al., 2005). Thus, removal of three genes 

renders Arabidopsis a fully susceptible plant for non-adapted powdery mildew fungi. 

 
1.5.3 Broad-spectrum powdery mildew mlo resistance 
 

In the genetic screen for Arabidopsis pmr mutants (see 1.5), the PMR2 gene was isolated and 

later identified to be allelic to MLO2 (MILDEW RESISTANCE LOCUS O 2) (Vogel and 

Somerville, 2000; Consonni et al., 2006). Arabidopsis MLO2 is one of 15 members of the 

seven transmembrane (7TM) domain MLO protein family (Devoto et al., 2003). Recessively 

inherited loss-of-function mutations of the founder of this plant unique gene family, barley 

MLO, confer durable and broad-spectrum resistance against all isolates of the compatible 

powdery mildew fungus Bgh (Jørgensen, 1992; Büschges et al., 1997). In the absence of 

MLO, fungal spores fail to penetrate the host epidermal cell, thus rendering the plant resistant 

to the pathogen. Because successful powdery mildew pathogenesis requires the presence of 

MLO, this protein is considered to be a negative modulator of powdery mildew defense 

(Panstruga and Schulze-Lefert, 2003; Panstruga, 2005). The phenomenon of mlo-based 

resistance was long considered as a unique type of plant immunity restricted to barley 

(Jørgensen, 1992; Jørgensen, 1994). However, broad-spectrum immunity against powdery 

mildew fungi based on loss-of-function mlo alleles has recently also been shown in the dicot 

plant species Arabidopsis and tomato (Solanum lycopersicum) (Consonni et al., 2006; Bai et 

al., 2008). These findings imply a conserved requirement of MLO proteins in pathogenesis to 

distantly related powdery mildew fungi in dicot and monocot plants. Mutations in the 

Arabidopsis MLO2 gene and its closest homologs, MLO6 and MLO12 were found to be 

required for full powdery mildew resistance, while mutations in MLO2 alone confer only 

partial resistance to the compatible pathogens G. orontii and G. cichoracearum (Consonni et 

al., 2006). Arrest of fungal penetration in mlo mutant plants is linked with localized cell wall 

remodelling leading to the formation of callose-containing papillae (Jørgensen and 

Mortensen, 1977; Skou, 1982, , 1985; Bayles et al., 1990; Wolter et al., 1993; Thordal-
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Christensen et al., 1997). The fact that presence of MLO is absolutely required by powdery 

mildew fungi to successfully infect the host plant suggests that these pathogens may abuse 

MLO function(s) to suppress host defense (Panstruga, 2005). 

Interestingly, barley and Arabidopsis mlo mutants exhibited enhanced susceptibility to fungal 

pathogens with a hemibiotrophic and necrotrophic lifestyle, indicating that MLO proteins 

influence pathogenesis of fungi with diverse lifestyles (Kumar et al., 2001; Jarosch et al., 

2005; Consonni et al., 2006). 

 
1.5.3.1 Requirements for mlo-mediated powdery mildew resistance 
 

Arabidopsis mlo-based powdery mildew resistance requires functional PEN1- and 

PEN2/PEN3 defense pathways (see 1.5.2), as mutations in one of the three PEN genes in the 

mlo2 mutant background restore penetration rates of the respective powdery mildew fungus to 

wild-type like levels (Consonni et al., 2006). The barley orthologue of the PEN1 syntaxin, 

HvROR2, as well as a SNAP25 homolog, HvSNAP34, are required for mlo resistance in the 

crop plant barley, indicating that vesicle-mediated secretion is a common feature of mlo 

immunity in monocots and dicots (Freialdenhoven et al., 1996; Collins et al., 2003). Contrary 

to mlo2/pen1 mutants, mlo2/pen2 and mlo2/pen3 double mutants not only display restored 

powdery mildew penetration rates but also wild-type like conidiation of the fungus, 

suggesting a role for PEN2/PEN3 in both, pre- and post-invasion defense, in the context of 

mlo-based immunity (Consonni et al., 2006). Besides the requirement of PEN2-hydrolyzed 

Trp-derived indolic compounds also the Trp-derived phytoalexin camalexin partially 

contributes to mlo2-mediated powdery mildew resistance (Consonni et al., 2010). Consistent 

with the role of Trp-derived indolic metabolites in mlo2-based resistance, triple mutants 

defective in MLO2 and the cytochrome P450 monooxygenases CYP79B2 and CYP79B3, 

which convert Trp into the precursor of most known Trp-derived metabolites, restored wild-

type like susceptibility to the compatible powdery mildew fungus G. orontii (Supplementary 

Figure 6.1) (Consonni et al., 2010). 

Arabidopsis mutant analysis revealed that mlo-mediated powdery mildew resistance acts 

independently of the SA-, JA- and ET- defense pathways (Consonni et al., 2006). In contrast, 

disruption of the actin cytoskeleton using pharmacological inhibitors as well as the ectopic 

expression of an ADF (ACTIN-DEPOLYMERIZING FACTOR) gene in barley epidermal cells 

revealed a requirement for a functional actin cytoskeleton in mlo-mediated resistance (Miklis 

et al., 2007). Plant cells attacked by fungal pathogens respond with rapid cellular 

rearrangement involving reorganization of the actin cytoskeleton, mobilization of organelles 
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and focal deposition of antimicrobials and cell wall material towards the fungal infection site 

(Schmelzer, 2002; Takemoto and Hardham, 2004; Lipka and Panstruga, 2005; Takemoto et 

al., 2006; Hardham et al., 2007). Perturbed actin cytoskeleton function also impeded defense 

against a range of fungal non-host pathogens (Kobayashi et al., 1997; Yun et al., 2003; 

Shimada et al., 2006; Miklis et al., 2007). Therefore, it is conceivable that a functional actin 

cytoskeleton is a general requirement for antifungal defense. 

An in vitro screen for novel calmodulin (CaM) interacting proteins revealed the interaction 

between a rice MLO homolog and the calcium sensor calmodulin (Kim et al., 2002a). 

Likewise, interactions of CaM with the barley as well as several Arabidopsis MLOs were 

confirmed by yeast split-ubiquitin assays and FRET (fluorescence resonance energy transfer) 

microscopy, suggesting that CaM binding is a general feature of MLO proteins (Kim et al., 

2002b; Bhat et al., 2005). Consistently, a calmodulin-binding domain (CaMBD), located in 

the cytoplasmic C-terminus of MLO, is conserved throughout the MLO protein family (Kim 

et al., 2002a; Kim et al., 2002b). Barley MLO variants carrying mutations in the CaMBD, 

which disrupt the interaction with CaM, only partially complemented mlo resistance, 

suggesting that CaM is an activator of MLO function (Kim et al., 2002b). 

Transient expression studies in single barley leaf epidermal cells revealed that overexpression 

of the potential barley apoptosis suppressor, Bax inhibitor 1 (BI-1), as well as overexpression 

of a constitutive active variant of a barley calcium-dependent protein kinase (CDPK) isoform 

partially compromises mlo-mediated resistance to the adapted barley powdery mildew fungus 

Bgh (Hückelhoven et al., 2003; Freymark et al., 2007). Furthermore, in a barley genetic 

suppressor screen for components required for mlo resistance (ror), two mutants were isolated 

that exhibit partially disabled mlo resistance (Freialdenhoven et al., 1996). While the ROR2 

gene was cloned and shown to encode a homolog of the Arabidopsis PEN1 syntaxin, the 

identity of ROR1 remains elusive (Collins et al., 2003).  

 
1.5.3.2 Powdery mildew mlo resistance is reminiscent of non-host immunity 
 

Interestingly, comparison of histological and phytopathological characteristics as well as 

conserved genetic requirements reveals common features of powdery mildew non-host 

resistance and mlo-mediated immunity. Therefore, it has been hypothesized by Humphry and 

colleagues (2006) that powdery mildew non-host resistance and mlo-mediated immunity are 

mechanistically related or possibly identical. In summary, both types of resistance confer 

durable and broad-spectrum immunity and mainly terminate powdery mildew pathogenesis at 

the stage of plant cell invasion, an early time point of fungal infection. Abortion of pathogen 
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penetration in both cases is associated with the formation of papillae. Moreover, mlo-based 

powdery mildew resistance and non-host penetration immunity depend on a functional actin 

cytosekeleton. Arabidopsis non-host resistance to the non-adapted barley and pea powdery 

mildew fungi, Bgh and E. pisi, respectively, requires the PEN1-dependent secretory defense 

pathway and the formation of PEN2-hydrolyzed antifugal glucosinolate products as well as 

PEN3, which has been implicated in the transport of these toxic compounds. Similarly, mlo-

mediated resistance to the adapted-powdery mildew fungi G. orontii and G. cichoracearum 

also depends on functional PEN1- and PEN2/PEN3-defense mechanisms. Taken together, 

lack of MLO, the key compatibility factor for successful powdery mildew pathogenesis, 

appears to convert the compatible interaction between the adapted powdery mildew fungus 

and its host plant into a non-host interaction. Therefore, it seems that the pathogen encounters 

the same plant defense barriers on mlo mutants as any other non-adapted powdery mildew 

fungus. 

 
1.5.3.3 mlo mutants display pleiotropic phenotypes 
 

Mutations in barley and Arabidopsis MLO genes are accompanied by additional 

developmentally controlled pleiotropic phenotypes. Developmentally controlled spontaneous 

callose deposition in mesophyll cells and early leaf chlorosis/necrosis were reported in mlo 

mutants (Wolter et al., 1993; Piffanelli et al., 2002; Consonni et al., 2006; Consonni et al., 

2010). In Arabidopsis, callose accumulation in mlo2 mutants is mediated by PMR4/GSL5-

activity and chlorosis/necrosis represents an accelerated progression of leaf senescence 

(Consonni et al., 2006; Consonni et al., 2010). Both phenotypes are fully dependent on SA 

accumulation, which is not essential for mlo2-mediated powdery mildew resistance, 

demonstrating that the pleiotropic effects can be uncoupled from mlo-based resistance 

(Consonni et al., 2006). Comparative metabolomic profiling revealed altered levels of Trp-

derived indolic compounds during vegetative development of mlo2/mlo6/mlo12 mutants. 

However, additional mutations in the biosynthesis of indolic metabolites did not suppress the 

early leaf senescence phenotype of mlo2 mutants, indicating that these compounds are not the 

major cause of mlo2-associated leaf senescence (Consonni et al., 2010).  

 
1.5.3.4 The MLO protein structure resembles mammalian G-protein coupled receptors 
 

Results from scanning N-glycosylation mutagenesis and MLO-Lep fusion protein assays 

demonstrated that barley MLO is an integral plasma membrane-resident protein with seven 

transmembrane (7TM) helices, an extracellularly located N-terminus and a cytoplasmic C-
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terminus (Devoto et al., 1999). Thus the domain architecture and subcellular localization of 

MLO proteins is reminiscent of the G-protein coupled receptor (GPCR) superfamily in 

metazoans (Temple and Jones, 2007; Oldham and Hamm, 2008). In animals and fungi, 

GPCRs relay extracellular stimuli into intracellular signaling events by the activation of 

heterotrimeric G-proteins (see 1.6). To date knowledge about potential plant GPCRs is still 

sparse and although no significant sequence similarity between mammalian GPCRs and MLO 

proteins exists, these plant-specific 7TM domain proteins remain obvious receptor candidates 

for G-protein binding and signaling. Moreover, a common strategy of several human parasites 

is the corruption of host GPCRs for successful infection. Prominent examples include the 

malaria parasite Plasmodium vivax, the human immunodeficiency virus type 1 (HIV-1) and 

the pathogenic bacterium Streptococcus pneumoniae (Pease and Murphy, 1998). Together, 

these facts raise the question whether MLO proteins may play a similar role during plant 

colonization by powdery mildew fungi.  

A potential involvement of heterotrimeric G-proteins in MLO function was tested in a 

combined pharmacological and genetic study in barley (Kim et al., 2002b). However, 

transient overexpression of constitutive active and dominant negative mutant variants of the 

single copy HvGα subunit in single barley leaf epidermal cells did not affect powdery mildew 

infection in susceptible wild-type or resistant Hvmlo mutant barley plants. Similarly, 

application of G-protein modulating chemicals had no effect on powdery mildew 

susceptibility, therefore rather precluding a role of heterotrimeric G-protein signaling in 

MLO-dependent powdery mildew pathogenesis. 

 
1.6 Arabidopsis heterotrimeric G-protein signaling 
 

Like MLO proteins, GPCRs possess 7TM domains with an extracellular N- and intracellular 

C-terminus. GPCRs activate heterotrimeric G-protein signaling, one of the most 

evolutionarily conserved signaling pathways in metazoans, by relying extracellular signals 

through their intracellularly associated G-proteins (Fig. 1.2) (Oldham and Hamm, 2008). The 

canonical G-protein consists of three distinct subunits, Gα, Gβ and Gγ, which form a 

heterotrimeric complex in the inactive state. Ligand binding to a GPCR induces the 

conversion of an inactive G-protein into its active conformation via exchange of GDP by GTP 

bound to Gα. As a result, Gα–GTP separates from the Gβγ dimer and both, Gα–GTP and the 

Gβγ dimer, can activate downstream effectors ultimately leading to a cellular response. The 

intrinsic hydrolytic GTPase activity of Gα recovers the GDP-bound state, which promotes 
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reassociation of the complex into its inactive form. RGS (Regulator of G-protein Signaling) 

proteins accelerate the GTPase activity of Gα. 

inactive active

 
Figure 1.2. Classical model for heterotrimeric G-protein signaling. Ligand binding by the corresponding 
GPCR activates the heterotrimeric G-protein complex causing Gα to exchange GDP for GTP. Subsequently, Gα-
GTP separates from the Gβγ dimer. Both, Gα and Gβγ can then activate downstream effectors (E). The intrinsic 
GTPase activity of the Gα subunit hydrolyses GTP to GDP and returns the G-protein complex into its inactive 
form. Regulator of G-protein Signaling (RGS) proteins accelerate the Gα GTPase activity.  
 

Signal transduction via G-proteins is a conserved mechanism found in all eukaryotes. 

Mammals have 23 different Gα, 5 Gβ and 12 Gγ subunits mediating signaling in processes 

such as vision, olfaction, taste and in neuroendocrine pathways (Temple and Jones, 2007; 

Oldham and Hamm, 2008). Therefore, it is not surprising that heterotrimeric G-protein 

cascades are targets for approximately 30 % of all approved pharmaceuticals (Temple and 

Jones, 2007; Oldham and Hamm, 2008; Williams and Hill, 2009). In sharp contrast the set of 

known heterotrimeric signaling components in plants is much simpler. The fully sequenced 

reference plant A. thaliana has a single canonical Gα subunit (GPA1), one Gβ subunit 

(AGB1), two Gγ subunits (AGG1 and AGG2) and a single RGS protein (RGS1) (Chen et al., 

2003; Temple and Jones, 2007). Interestingly, kinetic studies revealed that the Arabidopsis 

Gα subunit has one of the slowest GTPase activity and the fastest GDP release properties, 

which is the limiting step in all previously described non-plant Gα proteins (Johnston et al., 

2007). These findings indicate that unlike in mammals the Arabidopsis Gα protein is in the 

activated GTP-bound state by default. Despite its simplicity, the Arabidopsis heterotrimeric 

G-protein complex has been implicated in a broad diversity of biological processes, including 

seed germination, cell division, hormone sensitivity, sugar sensing, pathogen defense and 

abiotic stress responses (Assmann, 2002; Jones and Assmann, 2004; Perfus-Barbeoch et al., 

2004; Chen, 2008). However, elucidation of a complete cascade of G-protein signaling in 

plants is lacking. To date, neither the downstream signaling components nor the upstream 

GPCRs have been unequivocally identified. Intriguingly, currently no bona fide plant GPCR 

has been described and only few candidate proteins exist, whereas approximately 1000 

G-protein coupled receptor (GPCR)

RGS

Regulator of G-protein signaling

 Gα 
GDP

Gβ 
Gγ 

Ligand

Membrane 

 Gα Gβ
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GPCRs have been estimated for mammals. Among these putative Arabidopsis GPCRs GCR1 

(G-Coupled Receptor 1) shares the highest sequence similarity (~25 %) with known GPCRs 

and physically interacts with the Arabidopsis Gα subunit, GPA1. However, a ligand for 

GCR1 has not yet been identified (Josefsson and Rask, 1997; Plakidou-Dymock et al., 1998; 

Pandey and Assmann, 2004). The Arabidopsis RGS1 protein is also a well-characterized 

candidate plant GPCR. This protein has an unusual domain structure composed of an N-

terminal 7TM domain and a C-terminal RGS box (Chen et al., 2003). Therefore, unlike 

typical GPCRs, which activate Gα proteins, RGS1 may function as a receptor that accelerates 

Gα GTPase activity resulting in inactivation of Gα (Chen et al., 2003). Genetic analysis 

revealed D-glucose as a putative ligand for RGS1 (Grigston et al., 2008). Recent studies 

reported about novel GPCR-type G-proteins termed GTG1 and GTG2 that interact with the 

Arabidopsis Gα subunit (Pandey et al., 2009). Interestingly, GTGs have a predicted nine TM 

domain topology with a classic GTP-binding as well as a GTP-hydrolysis domain. With a 

total of 15 members the plant specific MLO proteins constitute one of the largest family of 

7TM domain proteins in Arabidopsis (Devoto et al., 1999). However, studies performed in 

barley rather preclude a role for MLO proteins as GPCRs in the context of powdery mildew 

pathogenesis (Kim et al., 2002b). 

In addition to the canonical heterotrimeric G-protein and small G-proteins, plants have also 

some unconventional GTP-binding proteins including the above mentioned GTGs as well as 

XLGs (extra-large GTP-binding proteins) and DRGs (developmentally regulated GTP-

binding proteins) (Lee and Assmann, 1999; Li and Trueb, 2000; Assmann, 2002; Ding et al., 

2008; Pandey et al., 2009). XLGs contain a Gα-like domain at the C-terminus, which is 

essential for GTP-binding and GTP-hydrolysis (Ding et al., 2008). Additionally XLGs have 

an N-terminus with a predicted nuclear localization signal (NLS) that is plant-specific and not 

found in any non-plant species. DRGs have a conserved GTPase domain motif found in 

conventional G-proteins but not any other sequence similarities with conventional G-proteins 

(Li and Trueb, 2000). While plant XLGs are involved in the regulation of root development, 

responses to sugars, hormones, abiotic stress and pathogens the function of DRGs in plants 

remains unknown (Ding et al., 2008; Pandey et al., 2008; Zhu et al., 2009).  

 
1.6.1 Arabidopsis heterotrimeric G-protein signaling and plant immunity  
 

A number of early pharmacological analysis originally suggested a role for the heterotrimeric 

G-protein in plant defense (Legendre et al., 1992; Vera-Estrella et al., 1994; Beffa et al., 1995; 

Gelli et al., 1997; Mahady et al., 1998; Rajasekhar et al., 1999; Han and Yuan, 2004). 
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Meanwhile genetic studies with Arabidopsis G-protein mutants have provided conclusive 

evidence for a function of heterotrimeric G-protein signaling in plant immunity. Arabidopsis 

mutants lacking the Gβ (AGB1) or the Gγ1 (AGG1) subunit displayed increased susceptibility 

to the necrotrophic fungi Plectosphaerella cucumerina, Alternaria brassicicola, Fusarium 

oxysporum and Botrytis cinerea, whereas Gα-deficient plants exhibited slightly enhanced 

resistance to these pathogens (Llorente et al., 2005; Trusov et al., 2006; Trusov et al., 2007). 

Infection phenotypes of double mutants lacking both Gα and Gβ subunits or Gγ1 and Gγ2 

were indistinguishable from Gβ- or Gγ1-single mutants, respectively, suggesting that Gβγ1-

and not Gβγ2-mediated signaling plays the leading role in Arabidopsis defense against 

necrotrophic fungi, which was shown to act independently of SA-, JA- and ET-mediated 

defense signaling (Trusov et al., 2006; Trusov et al., 2007; Trusov et al., 2008). The increased 

resistance of Gα mutants was proposed to result from an increase in free Gβγ dimer leading to 

enhanced Gβγ-mediated defense responses. In contrast, pathogenesis of biotrophic or 

hemibiotrophic pathogens, including the oomycete H.arabidopsidis and the bacterium P. 

syringae, was not affected in G-protein mutants (Llorente et al., 2005; Trusov et al., 2006). 

However, other data provided evidence for a role of heterotrimeric G-protein signaling in 

bacterial MAMP responses. For instance, inhibition of stomatal opening by flg22 as part of 

MTI implicates the Gα subunit, as Gα mutants were impaired in flg22-mediated stomatal 

closure (Zhang et al., 2008). Moreover, the Gβ subunit was reported to integrate MAMP 

perception into downstream ROS production, as Gβ-deficient mutants exhibited reduced ROS 

formation upon treatment with flg22 and elf18 (Ishikawa, 2009). Recent studies reported a 

function of the unconventional GTP-binding protein XLG2 in defense against P. syringae 

bacteria as well as the non-adapted powdery mildew fungus E. pisi (Zhu et al., 2009; 

Humphry et al., 2010). 

 
1.7 Thesis aims 
 

To date knowledge about potential plant GPCRs is sparse and although no significant 

sequence similarity between mammalian GPCRs and MLO proteins exist, these plant-unique 

proteins are considered receptor candidates for G-protein signaling. Previous analysis did not 

provide any evidence for a requirement of heterotrimeric G-protein signaling for MLO-

dependent powdery mildew pathogenesis in barley (Kim et al., 2002b). However, these earlier 

studies have to be regarded with caution because of the following arguments: 1. The genetic 

approach used in that analysis was based on transient overexpression and dsRNAi-mediated 

gene silencing in single barley leaf epidermal cells. 2. Solely a putative function of the barley 
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Gα subunit was tested. 3. Residue substitutions of the barley Gα subunit supposedly leading 

to constitutive active or dominant negative protein variants were deduced from the animal or 

yeast system, questioning a similar function in plants. 4. Pharmacological analysis was 

performed using chemicals known to manipulate G-protein signaling in the animal system, 

again questioning an equal effect in plants. In contrast, identification of mlo2-mediated 

powdery mildew resistance in Arabidopsis (Consonni et al., 2006) combined with availability 

of the Arabidopsis genome sequence and stable sequence-indexed T-DNA insertion mutants 

allows a more reliable analysis. Consequently, a genetic approach using stable Arabidopsis G-

protein signaling mutants was chosen in this study to unequivocally test a potential molecular 

link between MLO proteins and heterotrimeric G- protein signaling (Section 2.1).  

Emerging evidence points to a role of heterotrimeric G-protein signaling in the integration of 

MAMP perception into downstream responses. Therefore, a putative role of the Arabidopsis 

heterotrimeric G-protein in MAMP-triggered responses and immunity was investigated in this 

study (Section 2.3).  

The current knowledge about the molecular mechanisms underlying mlo-based powdery 

mildew resistance is sparse. Absence of MLO may result in a constitutive and/or faster 

activation of defense responses and/or may prohibit defense suppression by powdery mildew 

fungi. In order to differentiate between these possibilities and to learn more about the 

molecular basis of mlo-mediated resistance a comprehensive comparative analysis of defense 

marker activation in Arabidopsis wild-type and mlo2 mutant plants was performed. This 

analysis was conducted at the transcriptional, hormone, protein and metabolite level (Section 

2.2). 
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2. Results 
 

2.1 A putative function of MLO2 in heterotrimeric G-protein signaling during powdery 
mildew pathogenesis in Arabidopsis 
 

2.1.1 The Gβ-deficient mutant exhibits increased susceptibility to powdery mildew fungi 
 

To investigate the role of MLO proteins as putative GPCRs, stable T-DNA insertion lines 

disrupting either the Arabidopsis thaliana (here referred to as Arabidopsis) MLO2 gene or 

individual members of the heterotrimeric G-protein complex (Gα/GPA1, Gβ/AGB1, 

Gγ1/AGG1, Gγ2/AGG2 or RGS1) were assessed for their powdery mildew infection 

phenotype. In addition, a set of respective mlo2 and G-protein double mutants was generated 

and likewise inspected following powdery mildew challenge. 

Host cell penetration by powdery mildew fungi is essential for successful infection and thus a 

critical step during pathogenesis. Quantitative analysis of host cell entry by the adapted 

powdery mildew fungus Golovinomyces orontii (G. orontii) was performed at 48 hours post 

inoculation (hpi) and penetration success was calculated as the percentage of germinated 

fungal spores that developed secondary hyphae. Like wild-type plants, single mutants 

defective in G-protein signaling were fully susceptible to G. orontii (Fig. 2.1A). Slightly 

enhanced fungal entry rates were observed on Gβ-deficient mutants, agb1-2 (T-DNA 

insertion line) and agb1-9 (EMS-mutant) (Fig. 2.1A). This effect was even more pronounced 

on the respective mlo2-6 double mutants, agb1-2/mlo2-6 and agb1-9/mlo2-6 (Fig. 2.1A). All 

other double mutants behaved like resistant mlo2-6 plants (Fig. 2.1A). 

In the compatible interaction with G. orontii high pathogenicity of the host-adapted fungus 

may mask a contribution of the G-protein complex to powdery mildew defense. Therefore, 

entry rates of the non-adapted powdery mildew fungus Erysiphe pisi (E. pisi) on the G-protein 

mutants were determined at 7 dpi. Again, the agb1-2 and agb1-9 single mutants exhibited an 

increased penetration rate of the pea powdery mildew fungus, which was up to 10 % higher 

compared to wild-type plants (Fig. 2.1B). Similarly, agb1-2/mlo2-6 and agb1-9/mlo2-6 

double mutants but also agg1-1/mlo2-6 allowed enhanced plant cell invasion of E. pisi (Fig. 

2.1B). Taken together, these data suggest a role of the Gβ subunit in preventing plant cell 

penetration by powdery mildew fungi, termed pre-invasion resistance. Moreover, this function 

is independent of the presence or absence of the MLO2 protein. 

Resistance of Arabidopsis mlo2 mutants against the compatible powdery mildew fungus       

G. orontii is incomplete, as 40 – 50 % of the spores successfully invade the plant epidermal 

cells (Consonni et al., 2006). However, fungal development is ultimately terminated by post-
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invasion defense mechanisms largely inhibiting fungal conidiation. In order to analyze a 

putative contribution of the heterotrimeric G-protein to post-invasion defense, quantitative 

analysis of fungal conidiation was performed. Therefore, the number of conidiophores per 

single fungal colony was determined at 7 dpi. Remarkably, conidiophore formation of the 

fungus was at least doubled on all G-protein single mutants compared to wild-type plants, 

indicating a role of all heterotrimeric G-protein components in post-invasion defense against 

the adapted powdery mildew fungus G. orontii (Fig. 2.1C). 

Furthermore, mlo2-6 mutants with an additional mutation in either the agb1, agg1 or agg2 

gene allowed increased conidiophore formation of the fungus compared with mlo2-6 single 

mutant plants (Fig. 2.1C). 

In summary the presented results point to a function of the Gβ subunit in pre-invasion defense 

against the adapted and non-adapted powdery mildew fungi G. orontii and E. pisi, 

respectively, which is independent of the MLO2 protein. Interestingly, all heterotrimeric G-

protein components seem to be involved in post-invasion defense mechanisms against          

G. orontii. 

 
2.1.2 The Gγ1-deficient mutant exhibits reduced mlo2-mediated callose deposition  
 

When grown under pathogen-free conditions, barley and Arabidopsis mlo mutant plants 

display pleiotropic phenotypes such as developmentally controlled spontaneous callose 

accumulation (Wolter et al., 1993; Peterhänsel et al., 1997; Piffanelli et al., 2002; Consonni et 

al., 2006). In order to test if heterotrimeric G-protein signaling is involved in this process, 

callose was visualized by aniline blue staining in non-infected G-protein single mutants and 

respective mlo2-6 double mutant plants. G-protein single mutants exhibited no spontaneous 

callose deposition, whereas the corresponding mlo2-6 double mutants behaved like mlo2-6 

control plants and accumulated callose (Fig. 2.2A). Notably, the agg1-1/mlo2-6 double 

mutant showed markedly reduced callose accumulation, indicating a requirement of the Gγ1 

subunit for mlo2-dependent callose deposition. 

To investigate if the Gγ1 subunit may also be involved in callose formation in other 

processes, callose accumulation after leaf wounding and powdery mildew inoculation was 

determined. As shown in Figure 2.2B callose was formed at wound sites of Col-0 wild-type, 

agg1-1, mlo2-6 and agg1-1/mlo2-6 leaves. However, agg1-1/mlo2-6 double mutant plants did 

not display a callose ring structure around the wound site (see white arrowheads). Callose 

accumulation after infection with the powdery mildew fungus E. pisi was not affected in any 

of the tested genotypes (Fig. 2.2C). 
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Figure 2.1. Quantitative analysis of powdery mildew infections of G-protein signaling single mutants and 
corresponding mlo2 double mutants. Powdery mildew inoculations were performed with conidiospores of the 
respective fungus on rosette leaves of 4-week-old plants. (A) G. orontii host cell entry scored at 48 hpi. (B) E. 
pisi plant cell entry determined at 7 dpi. (C) G. orontii conidiophore formation per single fungal colony assessed 
at 7 dpi. Results represent mean ± SD (n=6 for (A) and (C), n=12 for (B)) of at least three independent 
experiments. Asterisks indicate a significant difference from Col-0 wild-type (*** P < 0.01, * P < 0.05, 
Student’s t-test) and number signs indicate a significant difference from mlo2-6 mutant (### P < 0.01, # P < 
0.05, Student’s t-test). n: represents the number of leaves tested per genotype in one experiment. 
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Figure 2.2. Callose accumulation in rosette leaves of G-protein signaling single mutants and 
corresponding mlo2 double mutants. Callose was stained with aniline blue. (A) Representative micrographs 
demonstrating spontaneous callose deposition in leaves of 6-week-old plants grown in pathogen-free conditions. 
The experiment was repeated at least twice (n=6) with similar results. Bar = 100 µm. (B) Leaves from 4-weeks-
old plants injured with forceps showing callose accumulation at wound sites. White arrowheads point to callose 
ring structure around the wound site. The experiment was performed once. Bar = 100 µm. (C) Four-week-old 
leaves at 7 dpi with the non-adapted powdery mildew fungus E. pisi exhibit callose deposition at sites of fungal 
interaction. The experiment was performed once (n=6). Bar = 100µm. n: represents the number of leaves tested 
per genotype in one experiment. 
 

2.2 The molecular basis of mlo-mediated powdery mildew resistance in Arabidopsis 
 

2.2.1 A transcriptomic approach to elucidate the molecular basis of mlo resistance 
 

To elucidate the molecular mechanisms underlying the powdery mildew resistance of the 

mlo2 mlo6 mlo12 (here referred to as mlo2/6/12) mutant, a global gene expression analysis 

using the Affymetrix ATH1 GeneChip comparing mlo2/6/12 mutants with Col-0 wild-type 

plants upon inoculation with the host powdery mildew fungus G. orontii was performed.  

Whole rosette leaves from Col-0 wild-type control plants and the mlo2/6/12 mutant were 

harvested at 0 (prior to inoculation), 8 and 12 hpi in three independent replicates. To be able 

to compare the transcriptional reprogramming events of both genotypes, early time points 

before host cell entry were chosen for analysis in order to ensure an equivalent developmental 

stage of the pathogen on both genotypes. 
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The transcript accumulation data was analyzed to identify candidate genes that exhibited 

differential transcript levels in the mlo2/6/12 mutant compared with Col-0 wild-type plants in 

response to G. orontii challenge. A selection of genes with a significant (P ≤ 0.05) and at least 

two-fold change in transcript abundance was used to categorize the genes into two main 

groups. Group I comprises genes that showed higher transcript levels upon challenge with    

G. orontii in the mlo2/6/12 mutant compared to the wild-type. Group II represents genes that 

exhibited lower transcript accumulation in the mutant compared to Col-0 wild-type plants. 

Full lists of the genes in group I and II are provided in the Supplementary Tables 6.1 and 6.2, 

respectively. Venn diagrams in Figure 2.3A illustrate the number of differentially expressed 

genes in both groups. 

Within group I, a set of 116 and 66 genes exhibited elevated transcript levels in the mlo2/6/12 

mutant compared to the wild-type at 8 hpi and 12 hpi, respectively (Fig. 2.3A). Thirty seven 

genes overlapped between both time points and 78 genes had specifically higher transcript 

levels at 8 hpi, whereas only 28 genes showed enhanced transcript accumulation specific to 

the later time point after inoculation, at 12 hpi. These results indicate a more rapid and/or 

stronger transcriptional activation in response to powdery mildew challenge in the mlo2/6/12 

mutant at early stages after G. orontii inoculation. Notably, only one gene, QQS (Qua-Quine 

Starch), exhibited higher mRNA levels in non-treated mutant plants (at 0 hpi), suggesting that 

no major constitutive gene expression occurs in the mlo2/6/12 mutant. 

Within group II, only 21 genes exhibited a statistically significant decrease in transcript levels 

in the mlo2/6/12 mutant compared to the wild-type upon treatment with G. orontii (Fig. 

2.3A). Twenty of these genes were specifically reduced at 8 hpi. With respect to the number 

of genes with altered transcript accumulation, transcriptional activation rather than inhibition 

appears to dominate the response of mlo2/6/12 mutant plants in response to G. orontii 

inoculation.  

 
2.2.1.1 Transcript levels of defense-related genes and genes encoding components for the 
biosynthesis of tryptophan-derived secondary metabolites increase in the mlo2/6/12 
mutant upon G. orontii inoculation 
 

Detailed analysis of group I genes, which showed elevated transcript levels in the mlo2/6/12 

mutant upon G. orontii inoculation, revealed a high prevalence of genes related to defense. 

Examples are the plant defensin genes PDF1.2a and PDF1.2b, genes encoding the 

pathogenesis-related proteins PR1, PR2 and PR4 as well as a chitinase (Supplementary Table 

6.1).  
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Figure 2.3. Analysis of differentially regulated genes in the mlo2/6/12 mutant compared to the Col-0 wild-
type in response to the adapted powdery mildew fungus G. orontii at 8 and 12 hpi. Whole rosette leaves of 
4-week-old Col-0 and mlo2/6/12 plants were inoculated with G. orontii spores and sampled at 0 (prior to 
inoculation), 8 and 12 hpi for comparative transcriptome analysis using the Affymetrix ATH1 GeneChip. All 
samples were analyzed in triplicates. (A) Venn diagram displaying genes significantly (P ≤ 0.05) induced (group 
I; left) or repressed (group II; right) by ≥ or ≤ 2-fold in the mlo2/6/12 mutant at the indicated time points after   
G. orontii inoculation, respectively. (B) In silico analysis of induced (group I, left) and repressed (group II, right) 
genes in the mlo2/6/12 mutant upon G. orontii inoculation using the tool Genevestigator V3 on the basis of 
displayed stimuli. Relative gene expression is indicated in red or green for representing up- or down-regulated 
gene expression, respectively (Hruz et al., 2008). (C) Functional classification of induced (group I; left) and 
repressed (group II, right) genes in the mlo2/6/12 mutant in response to G. orontii inoculation at 8 dpi according 
to MapMan (Thimm et al., 2004). 
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Furthermore genes coding for the pathogen-responsive AP2/ERF (APETALA2/Ethylene 

Response Factor)-domain transcription factors ORA59, ERF1 and ERF2 as well as a member 

of the WRKY transcription factor family were present among the genes in group I.  

The web-based tool Genevestigator is a large microarray gene expression database that allows 

the identification of expression patterns of individual genes throughout selected 

environmental conditions, growth stages or organs in Arabidopsis (Hruz et al., 2008). In silico 

analysis using Genevestigator revealed that genes present in group I were also predominantly 

induced in response to various pathogens, including fungi other than powdery mildew, 

oomycetes and bacteria (Fig. 2.3B). Furthermore, MAMPs as well as abiotic stresses 

enhanced transcript levels of these genes. In agreement with this observation, MapMan 

analysis, which categorizes selected genes according to their biological function, revealed that 

most genes present in group I predominantly assign to processes related to stress (Fig. 2.3C, 

Supplementary Table 6.3) (Thimm et al., 2004). Moreover, genes related to signaling 

processes were also highly abundant among group I genes, suggesting an enhanced signaling 

activity upon G. orontii inoculation in the mlo2/6/12 mutant. Together these data indicate a 

hyperactivation of genes related to defense and stress in the mlo2/6/12 mutant in response to 

G. orontii challenge. 

MapMan analysis of genes in group II, which exhibited decreased transcript levels in the 

mlo2/6/12 mutant upon G. orontii inoculation, showed that most of these genes associate with 

processes related to stress and signaling (Fig. 2.3C, Supplementary Table 6.4). Comparative 

analysis using the expression profile database Genevestigator revealed that these genes are 

generally repressed by pathogens as well as after treatment with MAMPs (Fig. 2.3B). 

Further analysis of the microarray data revealed that transcripts of several genes encoding 

tryptophan (Trp) biosynthetic and metabolic enzymes hyperaccumulated in the mlo2/6/12 

mutant upon inoculation with the powdery mildew fungus G. orontii (Table 2.1). Examples 

are genes encoding the tryptophan biosynthesis enzymes TSA1 (Trytophan Synthase Alpha 

subunit) as well as IPGS (Indole-3-Glycerol Phosphate Synthase). Moreover, genes coding for 

several cytochrome P450 monooxygenases which catalyze steps during the indole 

glucosinolate and camalexin biosynthesis were found to be induced by G. orontii in mlo2/6/12 

mutant plants. The transcription factor MYB51, a key regulator of the genes encoding indole 

glucosinolate biosynthesis enzymes was also present among group I genes (Gigolashvili et al., 

2007). Together these findings emphasize an important role for Trp-derived indolic secondary 

metabolites in mlo-mediated powdery mildew defense, which is in agreement with recently 
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published data from Consonni et al. (2010), who demonstrated a requirement of these 

metabolites for resistance in the mlo2 mutant. 

 
Table 2.1. Genes related to Trp biosynthesis and metabolism hyperaccumulate in the mlo2/6/12 mutant in 
response to inoculation with the powdery mildew fungus G. orontii. Genes were identified by comparative 
transcriptome analysis and manually selected from Supplementary Table 6.1. Some of the following genes do 
not fit the selection criteria of a significant (P ≤ 0.05) and at least a 2-fold change in transcript abundance but 
were included for comparison. Trp: tryptophan, IG: indole glucosinolate. 
 

AGI code Gene annotation and putative function Process 

Fold 
change 

mlo2/6/12 
vs Col-0 

G. orontii 
(8 hpi) 

Fold 
change 

mlo2/6/12  
vs Col-0 

G. orontii 
(12 hpi) 

P-value  
8 hpi 

P-value 
12 hpi 

AT5G05730 ASA1 (Anthranilate Synthase Alpha 1) Trp synthesis 1,6 1,9 2,7E-02 3,9E-03 
AT2G04400 IGPS (Indole-3-Glycerol Phosphate Synthase) Trp synthesis 2,3 2,0 1,0E-04 5,1E-04 
AT5G17990 PAT1 (Phosphoribosylanthranilate Transferase 1) Trp synthesis 1,5 1,6 2,4E-02 1,2E-02 
AT3G54640 TSA1 (Tryptophan Synthase Alpha subunit 1) Trp synthesis 2,7 2,5 5,1E-06 9,7E-06 
AT4G39950 CYP79B2 (Cytochrome P450) IG & camalexin synthesis 1,5 1,7 1,8E-01 8,5E-02 
AT5G57220 CYP81F2 (Cytochrome P450) IG synthesis 2,3 1,5 1,1E-02 1,7E-01 
AT4G31500 CYP83B1 (Cytochrome P450) IG synthesis 2,1 1,6 6,7E-03 6,7E-02 
AT1G18570 MYB51 (MYB domain transcription factor 51) IG synthesis 2,5 2,0 4,1E-03 2,2E-02 
AT1G74100 SOT16 (Sulfotransferase 16) IG synthesis 2,0 1,8 8,1E-03 1,9E-02 
AT1G24100 UGT74B1 (UDP-glucosyltransferase) IG synthesis 1,3 1,4 3,2E-01 1,8E-01 
AT2G30770 CYP71A13 (Cytochrome P450) Camalexin synthesis 6,4 4,0 1,2E-04 1,4E-03 
AT3G26830 PAD3 (Phytoalexin Deficient 3) Camalexin synthesis 6,1 2,3 1,6E-04 3,1E-02 

 

2.2.1.2 Transcript levels of JA/ET-responsive genes increase in the mlo2/6/12 triple 
mutant upon G. orontii inoculation  
 

Analysis of the transcriptomic data revealed an overrepresentation of jasmonate (JA)- and 

ethylene (ET)-responsive genes in the mlo2/6/12 triple mutant after G. orontii inoculation, 

including the members of the AP2/ERF (APETALA2/Ethylene Response Factor)-domain 

transcription factor family, ORA59, ERF1, ERF2 as well as the major JA/ET marker genes 

encoding the plant defensins PDF1.2a and PDF1.2b and other (Table 2.2). These results 

suggest an increased JA/ET signaling activity in mlo-mutant plants upon G. orontii challenge. 

This hypothesis was tested in the following experiments with the focus on PDF1.2a and 

PDF1.2b (here referred to as PDF1.2) gene expression. Some of these experiments were 

performed with the kind help of Katia Becker (master’s student). 

First, elevated PDF1.2 transcript levels in the mlo2/6/12 mutant after G. orontii challenge 

were confirmed by qantitative real-time PCR analysis (Fig. 2.4A). In contrast to previously 

published results (Zimmerli et al., 2004), PDF1.2 gene expression was also induced in Col-0 

wild-type plants, although always to a lower degree compared to the mlo2/6/12 mutant (Fig. 

2.4A). 

JA/ET signaling pathways are activated in response to wounding (León et al., 2001; Gfeller et 

al., 2010). 
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Table 2.2. Transcripts of JA/ET-responsive genes are elevated in mlo2/6/12 mutant plants after 
inoculation with the powdery mildew fungus G. orontii. Genes were identified by comparative transcriptome 
analysis, manually selected (Supplementary Table 6.1) and compared with published expression data from Col-0 
wild-type plants treated with JA or JA and ET. aInduced genes in Col-0 wild-type plants after treatment with JA 
or JA and ET (Pré et al., 2008). bThese genes were characterized using Genevestigator V3 (Hruz et al., 2008). 
 

AGI code Gene annotation and putative function 
Fold change 

mlo2/6/12 vs Col-0
G. orontii (8 hpi) 

Fold change 
mlo2/6/12 vs Col-0 
G. orontii (12 hpi) 

Col-0a 
JA 

Col-0a 

JA + ET 

AT5G44420 PDF1.2a (Plant Defensin 1.2a) 5,0 6,3 yes yes 
AT5G61160 AACT1 (Anthocyanin-5-Aromatic Acyltransferase 1) 5,0 6,2 yes yes 
AT3G49620 DIN11 (Dark Inducible 11) 4,7 7,3 yes yes 
AT3G04720 PR4 (Pathogenesis-Related Protein 4) 4,3 2,8 - yes 
AT4G16260 Glycosyl hydrolase family 17 protein 4,0 5,8 - yes 
AT2G26020 PDF1.2b (Plant Defensin 1.2b) 3,9 7,1 yes yes 
AT2G26560 PLP2 (Phospholipase A 2A) 3,5  yes yes 
AT1G67810 Fe-S metabolism associated domain-containing protein 3,5 2,7 - yes 
AT3G16530 Lectin like protein 3,2 2,2 yes yes 
AT3G23550 MATE efflux family protein 3,0  yes yes 
AT1G26380 FAD-binding domain-containing protein 2,9 2,1 yes yes 
AT5G25250 Unknown protein 2,8 2,2 - yes 
AT1G17745 PGDH (3-Phosphoglycerate Dehydrogenase) 2,7 2,5 yes yes 
AT3G28930 AIG2, avrRpt2-induced gene 2,6  yes yes 
AT2G38860 Protease I (pfpI)-like protein YLS5 2,5 2,0 - yes 
AT1G06160 ORA59 (AP2/ERF domain transcription factor)  2,4 2,8 - yes 
AT1G02920 GST7 (Glutathione-S-Transferase 7) 2,4  yes yes 
AT2G04400 IGPS (Indole-3-Glycerol Phosphate Synthase) 2,3 - - yes 
AT5G47220 ERF2 (AP2/ERF domain transcription factor) 2,2 -  yesb  yesb 
AT5G10520 RBK1 (ROP binding protein kinases 1) - 3,8 - yes 
AT1G30135 JAZ8 (Jasmonate-Zim-domain protein 8) - 2,7  yesb  -b 
AT1G07260 UGT71C3 (UDP-glycosyltransferase 71C3) - 2,6 - yes 
AT4G08770 Peroxidase, putative - 2,6 yes yes 
AT4G24350 Phosphorylase family protein - 2,3 yes yes 
AT1G51760 JR3 (Jasmonic Acid Responsive 3) - 2,3  yesb  -b 
AT4G17500 ERF1 (AP2/ERF domain transcription factor 1) - 2,2  yesb  yesb 
AT4G24340 Phosphorylase family protein - 2,2 yes yes 
AT5G54960 PDC2 (Pyruvate Decarboxylase 2) - 2,2 - yes 
AT1G17380 JAZ5 (Jasmonate-Zim-domain protein 5) - 2,2  yesb  -b 
AT4G34200 EDA9 (Embryo Sac Development Arrest 9) - 2,0 yes yes 

 

To exclude that increased PDF1.2 transcript levels are a consequence of leaf wounding during 

the inoculation procedure (streaking infected leaf over leaf to be tested), leaves were 

alternatively inoculated by brushing spores form infected leaves on sample leaves. This non-

contact inoculation method also led to increased PDF1.2 mRNA levels in the mlo2/6/12 

mutant compared to wild-type plants, excluding an impackt of the inoculation method on 

PDF1.2 gene expression (data not shown).  

Beyond the inoculation procedure, wound responses may also be triggered during attempted 

fungal penetration when a combination of high turgor pressure and hydrolytic enzyme activity 

is applied on the plant cell. To directly test the impact of wounding on PDF1.2 gene 

expression in the mlo2/6/12 triple mutant, plant leaves were injured with forceps and sampled 

at 1, 12 and 24 hours after wounding. PDF1.2 transcript abundance increased at 24 hours in 

injured leaves of both genotypes but was slightly higher in the mlo2/6/12 mutant compared to 

Col-0 wild-type plants (Fig. 2.4B). However, wound- induced PDF1.2 gene expression was 

much lower in both genotypes than in plants challenged with G. orontii (compare to Fig. 

2.4A). 
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According to published data, transcript levels of PDF1.2 genes were induced in response to 

the non-adapted powdery mildew fungus Bgh (Zimmerli et al., 2004). To test the impact of a 

less-adapted powdery mildew fungus on PDF1.2 expression in mlo2/6/12 mutant plants, 

PDF1.2 transcript abundance was determined after inoculation with the barley powdery 

mildew fungus Bgh. Again, PDF1.2 gene expression was higher in the mlo2/6/12 mutant 

compared to the wild-type but increased later at 24 hpi and always less than in plants 

inoculated with the adapted fungus G. orontii (Fig. 2.4C; compare to Fig. 2.4A). Similar 

results were observed with the pea powdery mildew fungus E. pisi (data not shown). 

To assess if accumulation of PDF1.2 transcripts in the mlo2/6/12 mutant is a response specific 

to powdery mildew fungi or also occurs upon challenge with other pathogens, PDF1.2 gene 

expression was anlyzed after inoculation with the nectrotrophic fungus Botrytis cinerea and 

the hemibiotrophic fungus Colletotrichum higginsianum. However, due to high variability in 

the results, conclusions cannot yet be drawn from these expriments (data not shown). 

In order to test if PDF1.2 gene expression oscillates during the day, samples of non-treated 

plants were taken at the same time points during the day as after powdery mildew treatment.  

PDF1.2 expression was low during the first 4 hours and increased at 8 hours, a time point 

where PDF1.2 transcript levels also elevated in response to powdery mildew treatment (Fig. 

2.4D). Thereafter PDF1.2 expression dropped again. Notably, increase in PDF1.2 transcript 

abundance at 8 hours was higher in the mlo2/6/12 mutant than in Col-0 wild-type plants. 

However, overall PDF1.2 gene expression in non-treated plants was much lower than in 

plants challenged with G. orontii (compare to Fig. 2.4A). 

In addition to PDF1.2, also the genes VSP2 (VEGETATIVE STORAGE PROTEIN 2) and 

LOX2 (LIPOXYGENASE 2) are highly expressed in response to JA signaling activity (Bell 

and Mullet, 1993; Benedetti et al., 1995). Therefore, the effect of G. orontii inoculation on the 

expression of these additional two JA marker genes was analyzed in mlo2/6/12 mutant plants. 

As shown in Figure 2.4E mRNA abundance of both VSP2 and LOX2 transiently increased in 

wild-type and mlo2/6/12 mutant plants upon challenge with G. orontii. However, the 

induction of these two JA marker genes was much weaker than that of PDF1.2a and PDF1.2b 

(compare to Fig. 2.4A). Moreover, transcript levels of VSP2 and LOX2 were not remarkably 

higher in the mlo2/6/12 mutant compared to the wild-type upon G. orontii inoculation and 

followed a different pattern compared to PDF1.2. Taken together, these findings suggest that 

at least in the context of powdery mildew challenge PDF1.2 expression is regulated 

independently from the expression of VSP2 and LOX2. 
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Figure 2.4. Expression levels of JA/ET marker genes in mlo mutant plants in response to various stimuli 
determined by quantitative RT-PCR. Expression of the PDF1.2a (left) and PDF1.2b (right) gene in mlo2/6/12 
mutant plants (A) upon G. orontii inoculation, (B) after wounding with forceps, (C) upon Bgh inoculation, (D) 
under non-treated conditions. (E) Transcript levels of LOX2 (left) and VSP2 (right) in mlo2/6/12 mutant plants 
after G. orontii inoculation. (F) Expression of PDF1.2a (left) and PDF1.2b (right) in Col-0 wild-type, mlo2-11, 
mlo2-11/coi1-1 and mlo2-11/ein2-1 plants after G. orontii inoculation. Quantitative RT-PCR analysis was 
performed with rosette leaves from 4-week-old plants at the indicated time points after treatment. Gene 
expression was normalized to the transcript levels of At4g26420 encoding a methyltransferase and is presented 
relative to the transcript abundance of Col-0 wild-type at 0 hpi. A representative data set with mean ± SD of 
three technical replicates per genotype and time point is shown. The experiments were repeated twice (A and C) 
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or once (B, D and E) gaining similar results. The experiment in F was performed once. Measurements in A, C 
and E were carried out by Katia Becker in the context of her master thesis.  
 

To determine if levels of endogenous jasmonates were altered in the mlo2/6/12 mutant upon 

powdery mildew challenge, abundance of free jasmonic acid (JA), its bioactive amino acid-

derivative JA-Ile (JA-Isoleucine) as well as the JA precursors, OPDA (12-oxo-phytodienoic 

acid) and dn-OPDA (10-oxo-dinor-phytodienoic acid) were measured in G. orontii and Bgh 

inoculated leaves of mlo2/6/12 mutant and Col-0 wild-type plants at 4, 8, 12 and 24 hpi. 

These experiments were kindly performed in collaboration with Prof. Dr. Ivo Feußner 

(Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Göttingen, Germany). As shown in 

Figure 2.5 JA and JA-Ile concentrations were very low in both genotypes before challenge 

and upon powdery mildew inoculation, and no significant differences in these compounds 

between Col-0 wild-type and mlo2/6/12 mutant plants were observed. Notably, in a second 

biological replicate JA and JA-Ile were undetectable in the samples (Supplementary Figure 

6.2). Interestingly, the JA precursors OPDA and dn-OPDA were specifically induced in 

response to the non-adapted powdery mildew fungus Bgh in both genotypes (Fig. 2.5). 

However, this observation was not validated in a second biological replicate (Supplementary 

Figure 6.2). Generally, the variability between the experiments hampers a reliable conclusion 

regarding the role of OPDA in plant powdery mildew interactions and requires further 

investigation. In summary the data indicate that JA biosynthesis is not differentially altered in 

mlo2/6/12 mutant and Col-0 wild-type plants in response to powdery mildew fungi. 

The genes COI1 (CORONATINE INSENSITIVE 1) and EIN2 (ETHYLENE INSENSITIVE 2) 

encode for major regulators of JA- and ET-responsive genes, respectively (Xie et al., 1998; 

Alonso et al., 1999). To elucidate the importance of JA- and ET signaling in PDF1.2 gene 

expression in mlo mutant plants after powdery mildew infection, analysis of double mutants 

defective in the MLO2 and COI1 or EIN2 gene, respectively, were performed. Similar to the 

mlo2/6/12 triple mutant mlo2-11 single mutant plants also exhibited increased PDF1.2 

expression in response to G. orontii challenge (Fig. 2.4F). Noteworthy, PDF1.2 transcript 

levels in powdery mildew-treated Col-0 wild-type plants were lower than in previous 

experiments (compare to Fig. 2.4A). Double mutants defective in MLO2 and COI1 failed to 

trigger PDF1.2 gene expression upon G. orontii inoculation, indicating that G. orontii-

induced PDF1.2 transcription in the mlo mutant is dependent on COI1. Mutants deficient in 

MLO2 and EIN2 exhibited strongly decreased PDF1.2 transcript levels in response to G. 

orontii, which were similar to Col-0 wild-type plants. These results suggest that also EIN2 is 

required for PDF1.2 expression in G. orontii inoculated mlo mutant plants.  
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Interestingly, neither the presence of COI1 nor EIN2 could compensate for PDF1.2 

expression in the absence of the other, indicating a requirement of both signaling pathways in 

this context.  

 

 
 

Figure 2.5. Analysis of  jasmonic acid (JA), its conjugate, JA-Ile, and the JA precursors OPDA and dn-
OPDA in Col-0 wild-type and mlo2/6/12 mutant plants after inoculation with powdery mildew fungi. 
Rosette leaves from 4-week-old plants were inoculated with spores form the adapted and non-adapted powdery 
mildew fungus G. orontii and Bgh, respectively, and harvested for jasmonate analysis at the indicated time 
points. Results represent mean ± SD of two measurements of the same experiment. The experiment was repeated 
once with different observations resulting in no JA and JA-Ile detection and with OPDA and dn-OPDA levels 
similar after inoculation with G. orontii and Bgh (compare Suplemmentary Figure 6.2). Measurements were 
performed in cooperation with Prof. Dr. Ivo Feußner (Albrecht-von-Haller-Institute für Pflanzen-
wissenschaftern, Göttingen, Germany). 
 

2.2.1.3 Summary of transcriptome analysis of the mlo2/6/12 mutant after challenge with 
the powdery mildew fungus G. orontii  
 

Analysis of the transcriptomic data revealed an overrepresentation of genes associated with 

defense and stress responses that showed higher mRNA abundance in the mlo2/6/12 mutant 

upon G. orontii inoculation compared to Col-0 wild-type plants. Amongst those, transcripts of 

several genes encoding tryptophan biosynthetic and metabolic enzymes were found, 

emphasizing an important role for Trp-derived indolic secondary metabolites in mlo-mediated 

powdery mildew defense. Furthermore, increased transcript abundance of JA/ET-responsive 

 33



Results____________________________________________________________________________________ 
 

genes such as PDF1.2a and PDF1.2b in G. orontii-inoculated mlo2/6/12 mutant plants was 

observed and was shown to be dependent on COI1 and EIN2. However, JA biosynthesis and 

accumulation appears to be not affected in mlo2/6/12 mutant plants after powdery mildew 

inoculation. 

 
2.2.2 Metabolomic analysis of tryptophan-derived indolic compounds in the mlo2/6/12 
mutant in response to powdery mildew inoculation  
 

Recent studies revealed the requirement of a PEN2-dependent glucosinolate metabolism 

pathway for Arabidopsis non-host resistance against powdery mildew fungi (Bednarek et al., 

2009). More recently, it was found that the same Trp-derived indolic secondary metabolites 

are essential for mlo2-mediated powdery mildew resistance (Consonni et al., 2010). In this 

study comparative transcriptional profiling revealed a hyperactivation of genes encoding 

enzymes involved in the biosynthesis of these Trp-derived metabolites in the mlo2/6/12 triple 

mutant in response to the powdery mildew fungus G. orontii (Table 2.1). These results 

suggest an enhanced activity of metabolic processes leading to the formation of indolic 

metabolites in G. orontii-inoculated mlo2/6/12 plants compared to the wild-type. To examine 

if the transcriptional hyperactivation in fact correlates with enhanced accumulation of indolic 

metabolites in mlo2/6/12 mutant plants upon challenge with powdery mildew fungi, a 

comparative metabolite profile was conducted in cooperation with Paweł Bednarek (MPI for 

Plant Breeding Research, Cologne, Germany). Therefore, 4-week-old plants of the Col-0 

wild-type, pen2-1, mlo2/6/12 triple and pen2-1/mlo2/6/12 quadruple mutant genotypes were 

inoculated with the adapted or non-adapted powdery mildew fungus G. orontii and Bgh, 

respectively. Whole leaf samples of the indicated genotypes were harvested at 0 (prior to 

inoculation), 8, 16 and 24 hpi and concentrations were measured of the indol-3-

ylmethylglucosinolate (I3G), its PEN2-mediated hydrolysis products, indol-3-ylmethylamine 

(I3A) and raphanusamic acid (RA), as well as its 4-methoxylated conjugate 4-methoxyindol-

3-ylmethylglucosinolate (4MI3G), which is converted to yet unknown antifungal products by 

the atypical PEN2 myrosinase (Bednarek et al., 2009). 

Constant levels of the indole glucosinolate, I3G, were detected in all tested genotypes, 

throughout all time points after inoculation and independent of the pathogen (Fig. 2.6). This 

indicates that I3G accumulation is not affected in any of the genotypes in response to powdery 

mildew challenge. The atypical PEN2 myrosinase hydrolyzes I3G to the compounds I3A and 

RA. In accordance with this, I3A and RA only accumulated in Col-0 wild-type and mlo2/6/12 

triple mutant plants (Fig. 2.6). Mutants defective in the PEN2 gene failed to accumulate these 
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compounds, confirming the requirement of a functional PEN2 myrosinase for I3A and RA 

production. Interestingly, concentrations of I3A and RA in wild-type and mlo2/6/12 plants 

treated with the barley powdery mildew fungus Bgh were remarkably higher compared to 

plants inoculated with the adapted fungus G. orontii. This either indicates an overall low 

hydrolysis of I3G into I3A and RA by PEN2 or a rapid depletion of these compounds in 

G.orontii-treated Col-0 wild-type and mlo2/6/12 mutant plants. The indole glucosinolate 

4MI3G, which is activated by PEN2 for antifungal defense, did not accumulate in Col-0 and 

mlo2/6/12 triple mutant plants after powdery mildew inoculation independent of the pathogen. 

Mutants lacking a functional PEN2 myrosinase were enriched in 4MI3G after treatment with 

the non-adapted fungus Bgh, confirming that 4MI3G is a PEN2 substrate. This Bgh-induced 

4MI3G accumulation was solely dependent on the pen2 mutation and independent of the 

presence or absence of functional MLO proteins. Interestingly, 4MI3G accumulation in 

response to G. orontii was not observed in pen2-1 single mutants, suggesting that the adapted 

powdery mildew fungus either fails to induce 4MI3G production or interferes with its 

accumulation. Quadruple mutants defective in PEN2 and the three MLO genes exhibited 

4MI3G accumulation after G. orontii challenge, indicating that the adapted powdery mildew 

fungus is able to induce 4MI3G formation. Therefore, the host fungus G. orontii may either 

be able to metabolize 4MI3G or to suppress its biosynthesis, a process which seems to be 

entirely dependent on the presence of all three MLO proteins. Nonetheless, transcriptional 

hyperactivation of genes encoding for biosynthetic enzymes of Trp-derived metabolites does 

not correlate with an enhanced accumulation of the tested indolic metabolites in the mlo2/6/12 

mutant in response to powdery mildew pathogens. 

 
2.2.3 PEN1 and PEN2 protein accumulation in mlo mutants in response to powdery 
mildew inoculation 
 

The results presented in 2.2.2 indicate that powdery mildew-triggered amounts of the 

measured indolic metabolites are not differentially altered in mlo2/6/12 mutant plants 

compared to the wild-type. However, it is possible that PEN2 protein levels are elevated in 

mlo mutant plants upon powdery mildew challenge, enabling an enhanced 4MI3G turnover 

into the yet unknown antifungal products. Therefore, PEN2 protein levels were determined in 

Col-0 and mlo2-6 single as well as mlo2/6/12 triple mutant plants at 0 (prior to infection), 12, 

24, 36, 48 and 72 hpi with the adapted and non-adapted powdery mildew fungi G. orotnii and 

Bgh, respectively. 
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Figure 2.6. Accumulation of selected Trp-derived metabolites in response to inoculation with powdery 
mildew fungi. Rosette leaves of 4-week-old Col-0 wild-type, mlo2/6/12, pen2-1 and pen2-1/mlo2/6/12/ plants 
were inoculated with spores from the adapted and non-adapted powdery mildew fungus G. orontii and Bgh, 
respectively. Samples for the metabolite profile were harvested at the indicated time points after inoculation. 
Results are represented as mean ± SD (n=3; n: represents the number of plants tested per genotype in one 
experiment) of three independent experiments. Measurements were performed in cooperation with Paweł 
Bednarek (MPI for Plant Breeding Research, Cologne, Germany). n: represents number of plants tested per 
genotype in one experiment. 
 

As shown in Figure 2.7A constitutively high PEN2 protein abundance was detected before 

pathogen challenge (0 hpi), which sustained throughout all time points independent of the 

genotype and pathogen. This finding indicates that PEN2 protein levels are not differentially 

elevated in mlo mutant plants upon powdery mildew challenge. 

Published data demonstrated the requirement for a PEN1-dependent vesicle-mediated 

secretory pathway in mlo-based powdery mildew resistance (Consonni et al., 2006). In order 

to test if PEN1 protein accumulation was altered in mlo-resistant mutants, PEN1 protein 

levels were determined in mlo2-6 single and mlo2/6/12 triple mutants in response to the 

powdery mildew fungi G. orontii and Bgh. Similarly to PEN2, non-infected plants of all 

tested genotypes showed high steady-state PEN1 protein levels (Fig 2.7B). 
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Figure 2.7. PEN2 and PEN1 protein accumulation in mlo mutants in response to powdery mildew fungi 
inoculation. Total protein extracts from 4-week-old plants inoculated with the powdery mildew fungus             
G. orontii or Bgh for the indicated time points were separated by SDS-PAGE and probed with either α-PEN2 (A) 
or α-PEN1 (B) antiserum. Ponceau staining served as a loading control. The experiment was repeated once with 
similar results.  
 

Consistent with previously published results, PEN1 protein amount slightly increased in Bgh 

challenged plants at later time points after inoculation, indicating an enhanced contribution of 

the PEN1-dependent defense pathway (Pajonk et al., 2008). The accumulation of PEN1 

occurred irrespective of the presence or absence of functional MLO proteins.  

In response to G. orontii treatment PEN1 protein abundance was generally less than in Bgh-

challenged plants. Col-0 wild-type plants exhibited a slight increase in PEN1 protein amount 

in response to G. orontii but it occurred later (at 48 hpi) compared to Bgh-inoculated wild-

type plants. Strikingly, PEN1 levels decreased in mlo mutant plants at 48 hpi, with a stronger 

decrease in the mlo2/6/12 triple mutant, suggesting no major contribution of the PEN1-

mediated defense pathway to mlo-mediated resistance against G. orontii during later time 

points after fungal inoculation.  

 
2.2.4 MAMP-triggered responses in mlo mutants 
 

MAMP perception triggers a broad set of early and late cellular responses leading to an 

enhanced state of immunity that limits invasion and propagation of potential microbial 

intruders (Boller and Felix, 2009). To investigate if MAMP-mediated signaling is altered in 
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mlo mutant plants, MAMP-triggered responses such as the formation of reactive oxygen 

species (ROS), also termed oxidative burst, activation of mitogen-activated protein kinase 

(MAPK) cascades and transcriptional reprogramming were analyzed. However, measurement 

of some of these responses after treatment with powdery mildew fungi is technically not 

trivial. Therefore, elicitors such as the fungal chitin and flg22, the active epitope of bacterial 

flagellin, were used as elicitors of immune responses.   

As shown in Figure 2.8A flg22-induced ROS formation was not altered in mlo2-6 single and 

mlo2/6/12 triple mutants compared to the wild-type. In contrast, ROS production in response 

to chitin was abolished in mlo2/6/12 triple mutants, whereas mlo2-6 single mutant plants 

showed wild-type like oxidative burst after chitin treatment. These results indicate a putative 

role for MLO6 and/or MLO12 in chitin-triggered ROS formation, which is independent of 

MLO2.  

Activity of MAPKs was strongest at 15 minutes after treatment with flg22 or chitin and 

decreased at 30 minutes after MAMP-application in both genotypes (Fig. 2.8B). Notably, in 

mlo2/6/12 mutant plants chitin-induced MAPK activity was lower at 30 minutes after 

treatment.  

 

 
 

Figure 2.8. MAMP-induced oxidative burst and MAPK activation in the mlo2/6/12 mutant. Leaf discs from 
4-week-old plants were treated with 1 µM flg22 or crab shell chitin (see 4.1.7). (A) ROS formation was 
measured in a chemiluminescence assay for the indicated time points after MAMP application. Results are 
represented as mean ± SD (n=10-12; n: represents the number of leaf discs tested per genotype in one 
experiment) of at least three independent experiments. (B) MAPK activity was determined by immunoblot 
analysis at the indicated time points after MAMP treatment. Ponceau staining served as a loading control. The 
experiment was repeated twice with similar results.   
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Downstream of MAPK activation transcriptional reprogramming events are induced in order 

to generate defense ouputs. Induction of WRKY22 and WRKY29 gene expression, encoding 

members of the WRKY transcription factor family, was widely reported in response to 

different MAMPs (Asai et al., 2002; Navarro et al., 2004; Libault et al., 2007; Zhang et al., 

2007). Therefore, expression of these genes was analyzed in Col-0 wild-type and mlo2/6/12 

triple mutant seedlings during the time course of flg22 and chitin treatment. Consistent with 

previous data, both WRKY genes were rapidly induced within 1 h of MAMP treatment (Fig. 

2.9A, B) (Lu et al., 2009). However, no significantly different WRKY gene expression 

between the Col-0 wild-type and mlo2/6/12 mutant was observed in response to both 

MAMPs. PDF1.2b gene expression was also tested in response to MAMP treatment and 

highest PDF1.2b transcript levels were observed at 8 h in both genotypes independent of the 

elicitor (Fig. 2.9C). Interestingly, no different PDF1.2b transcript abundance was detected 

between the mlo2/6/12 mutant and wild-type as it was observed after G. orotii inoculation 

(compare to Fig. 2.4A). 

Interrogation of the Arabidopsis gene co-expression database ATTED-II (Obayashi et al., 

2009) revealed that the genes PROPEP2 and PROPEP3 were co-expressed with MLO6 and 

MLO12, respectively. Both PROPEP genes encode endogenous defense peptides and showed 

high levels of expression in response to pathogen attack as well as to microbe-derived 

elicitors including flg22 (Huffaker et al., 2006). Therefore, PROPEP2 and PROPEP3 gene 

expression was analyzed in the mlo2/6/12 mutant upon flg22 and chitin treatment. Both 

PROPEP genes were rapidly induced within 1 h after MAMP-application (Fig. 2.9D, E). 

Interestingly, PROPEP2 and PROPEP3 transcript levels were higher in the mlo2/6/12 mutant 

than in the wild-type upon treatment with either MAMP. 

Recent studies revealed the involvement of a signaling network between MAPKs and 

calcium-dependent protein kinases (CDPKs) in activation of MAMP-triggered transcriptional 

reprogramming (Boudsocq et al., 2010). In this context the authors proposed the involvement 

of four different regulatory programs in the activation of early flg22-responsive genes. Genes 

such as FRK1 (FLG22-INDUCED RECEPTOR KINASE1) were specifically activated by 

MAPKs, whereas PHI1 (PHOSPHATE-INDUCED1) seemed to be CDPK-specific. Other 

flg22-induced genes were either activated equally by both, the MAPK- and CDPK signaling 

pathway, for example NHL10 (NDR1/HIN1-LIKE 10), or were induced to much higher levels 

by MAPKs.  
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Figure 2.9. Expression levels of selected MAMP-induced genes in the mlo2/6/12 mutant after treatment 
with flg22 or chitin. Two-week-old seedlings were treated with 1 µM flg22 (left) and crab shell chitin (see 
4.1.7) (right) and sampled at the indicated time points after MAMP application. Transcript levels were 
determined by quantitative RT-PCR. (A) WRKY22, (B) WRKY29, (C) PDF1.2b, (D) PROPEP2 and (E) 
PROPEP3 gene expression was normalized to the transcript levels of At4g26420 encoding a methyltransferase 
and is presented relative to the transcript abundance of Col-0 wild-type at 0 hpi. A representative data set with 
mean ± SD of three technical replicates per genotype and time point is shown. The experiments were repeated 
twice gaining similar results. 
 

Interestingly, Boudsocq and colleagues (2010) observed that flg22-induced expression of 

PROPEP2 and PROPEP3 was CDPK-dependent, raising the question if elevated PROPEP 

transcript levels in the mlo2/6/12 mutant are a consequence of an enhanced CDPK signaling 

pathway. In accordance with this hypothesis transcript abundance of the early CDPK-specific 

gene PHI1 was elevated in the mlo2/6/12 mutant in response to chitin, whereas expression of 
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the MAPK-specific gene FRK1 was not altered (Fig. 2.10A, B). Expression levels of NHL10, 

a gene equally induced by MAPK and CDPK signaling cascades, was also stronger in the 

mlo2/6/12  mutant in response to chitin treatment compared to the wild-type (Fig. 2.10C). 

 

In summary the results presented in this section revealed a defect in the chitin-induced 

generation of ROS in the mlo2/6/12 triple but not in the mlo2-6 single mutant. However, 

MAPK activation in response to MAMPs was not effected in the mutant. Consistently, 

MAMP-triggered activation of MAPK-specific genes was not altered in the mlo2/6/12 

genotype. Interestingly, genes specifically regulated by CDPKs were stronger expressed in the 

mutant in response to MAMPs, indicating an enhanced activity of the CDPK signaling 

pathway in mlo2/6/12 plants upon MAMP treatment. 

 

 
 
Figure 2.10. Expression levels of selected MAMP-induced genes in the mlo2/6/12 mutant after treatment 
with chitin. Two-week-old seedlings were treated with crab shell chitin (see 4.1.7) and sampled at the indicated 
time points after MAMP application. Transcript levels were determined by quantitative RT-PCR. (A) PHI1, (B) 
FRK1 and (C) NHL10 gene expression was normalized to the transcript levels of At4g26420 encoding a 
methyltransferase and is presented relative to the transcript abundance of Col-0 wild-type at 0 hpi. A 
representative data set with mean ± SD of three technical replicates per genotype and time point is shown. The 
experiments were repeated once gaining similar results.   
 

2.3 The role of heterotrimeric G-protein signaling in MTI 
 

2.3.1 The Gβ-deficient mutant exhibits altered MAMP-triggered responses 
 

Recent publications demonstrated a function for the Arabidopsis Gβ subunit, AGB1, in 

MAMP-induced oxidative burst control (Ishikawa, 2009). These results were confirmed in 

this study using two independent agb1 mutants, the T-DNA insertion line, agb1-2, and the 

EMS mutant, agb1-9, which showed reduced ROS production upon flg22 treatment (Fig. 
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2.11A). In contrast, MAPK activation upon flg22 and elf18 treatment was not disturbed in 

agb1 mutant plants as has been shown by Ishikawa (2009).  

Consistent with this, MAPK-specific FRK1 gene activation in response to flg22 was not 

altered in agb1 mutant seedlings (Fig. 2.12A) (Boudsocq et al., 2010). Furthermore, induction 

of WRKY22, another MAPK-activated flg22-responsive gene was also not affected in the 

mutants (Fig. 2.12B) (Asai et al., 2002). However, expression levels of NHL10, a gene which 

is synergistically induced by MAPK and CDPK signaling cascades, was notably lower in 

agb1-2 and agb1-9 mutants, assuming that the CDPK-dependent singnaling cascade may be 

impaired in Gβ-deficient mutants (Fig. 2.12C). In agreement with this hyothesis transcript 

levels of the CDPK-activated genes PROPEP2 and PROPEP3 were also reduced in agb1 

mutant plants after flg22 treatment (Fig. 2.12D, E).  

 

 
 
Figure 2.11. Flg22-induced ROS and Ca2+ spiking as well as growth of Pst DC3000 bacteria in agb1 
mutants. (A) Leaf discs from 4-week-old plants were treated with 1 µM flg22 and ROS formation was measured 
in a chemiluminescence assay for the indicated time points after flg22 application. Results are presented as mean 
± SD (n=10-12; n: represents the number of leaf discs tested per genotype in one experiment) of at least three 
independent experiments. (B) Mesophyll protoplasts expressing the Ca2+ sensor aequorin were treated with 1 µM 
flg22 and changes in Ca2+ concentration were measured in a luminescence assay for the indicated time points. 
Results are presented as mean ± SD (n=5; n: represents the number of wells containing protoplasts tested per 
genotype) of one experiment. (C) Four-week-old plants were sprayed with Pst DC3000 bacteria at OD600=0.2 
and bacterial titres were determined 3 h (0 dpi) after inoculation and at 3 dpi. A representative data set with mean 
± SD (n=9; n: represents the number of leaves tested per genotype in one experiment) of one experiment is 
shown. The experiment was repeated once with similar results.   
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However, inconsistent with this assumption, expression of PHI1, which has been shown to be 

specificaly induced by the CDPK signaling pathway, was not affected in the agb1 mutant (Fig 

2.12E) (Boudsocq et al., 2010). 

In order to elucidate if Ca2+ signatures are modified in the agb1 mutant in response to MAMP 

treatment, Ca2+ spiking was measured in agb1 mesophyll protoplasts expressing the Ca2+ 

sensor aequorin. Preliminary data suggest a reduction in the cytosolic Ca2+ concentration in 

agb1 mutant plants after flg22 treatment (Fig. 2.11B). Notably, Ca2+ spiking in the Col-0 

wild-type occurred quicker and was higher than in the agb1 mutant protoplasts.  

Finally, the contribution of the Gβ subunit to bacterial defense was investigated. Notably, 

published studies contradict a role of the Gβ subunit in bacterial growth restriction (Trusov et 

al., 2006). However, these conclusions were based on bacteria infiltration assays, an 

inoculation method that may circumvent the first steps of natural infection process, as has also 

been observed for the fls2 mutant (Zipfel et al., 2004). Naturally, bacteria enter host plant 

leaves through wounds or natural openings such as stomata. Thus, Pst DC3000 bacteria were 

sprayed on plant leaves in order to mimic the natural infection conditions. As shown in Fig. 

2.11C agb1 mutant plants showed a slight increase in bacterial growth which was more 

pronounced on the T-DNA insertion line agb1-2 than on the EMS mutant, agb1-9. Although 

the differences in bacterial growth were not statistically significant, a minor contribution of 

the Gβ subunit to defense against bacteria can be assumed. 

 
2.3.2 The role of Gγ1 and Gγ2 subunits in MTI 
 

The Arabidopsis genome encodes two canonical Gγ subunits, Gγ1 and Gγ2 (AGG1 and 

AGG2, respectively) but only one Gβ subunit, AGB1, indicating the presence of two Gβγ 

dimers, Gβγ1 and Gβγ2, in Arabidopsis (Temple and Jones, 2007). In the following section 

the putative function of the two Gγ subunits in MAMP-triggered signaling and immunity was 

assessed. Given that Gγ1 and Gγ2 may act redundantly, the double mutant agg1-1/agg2-1 

(here referred to as agg1/agg2) was added to the analysis.  

In agreement with redundant functions of both Gγ subunits, the agg1/agg2 double mutant but 

not the single mutants were impaired in ROS formation after flg22 and elf18 treatment (Fig. 

2.13A). MAPK activation upon treatment with the different MAMPs flg22, elf18 and chitin 

was not affected in the single mutants (Fig. 2.13B). Intriguingly, flg22-triggered MAPK 

activity was completely abolished in the agg1/agg2 double mutant, whereas it was wild-type 

like in response to elf18 and chitin, suggestive of a redundant role of the two Gγ subunits 

specifically in flg22-induced MAPK signaling. 
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Figure 2.12. Expression levels of selected MAMP-induced genes in the agb1 mutant after treatment with 
flg22. Two-week-old agb1-2 (left) and agb1-9 (right) seedlings were treated with 1 µM flg22 and sampled at the 
indicated time points after MAMP application. Transcript levels were determined by quantitative RT-PCR. (A) 
FRK1, (B) WRKY22, (C) NHL10, (D) PROPEP2, (E) PROPEP3 and (F) PHI1 gene expression was normalized 
to the transcript levels of At4g26420 encoding a methyltransferase and is presented relative to the transcript 
abundance of Col-0 wild-type at 0 hpi. A representative data set with mean ± SD of three technical replicates per 
genotype and time point is shown. The experiments were repeated once gaining similar results.   
 

 

44 



____________________________________________________________________________________Results 
 

In bacterial spray assays no difference in growth of the wild-type bacterial strain Pst DC3000 

was observed between the tested genotypes (Fig. 2.13C). However, using the disarmed 

bacterial strain Pst DC3000 hrcC, which is defective in effector delivery via the type III 

secretion system, bacterial growth was slightly enhanced in the agg1-1 and agg2-1 single 

mutants and more pronounced in the respective agg1/agg2 double mutant, suggesting a 

redundant function of the two Gγ subunits in MAMP-triggered immunity.  

Importantly, the agg1-1 single mutation originates from the Arabidopsis accession Ws-0 and 

was subsequently introgressed into the Col-0 ecotype by eight backcrosses (Trusov et al., 

2007). This designated agg1-1 Col-0 mutant was used to generate the agg1/agg2 double 

mutant. Of particular importance is that the Ws-0 accession carries a natural mutation in the 

gene encoding the flagellin receptor, FLS2, and is therefore insensitive to flg22 treatment 

(Gómez-Gómez and Boller, 2000). Hence, it was possible that the agg1/agg2 plants lack a 

functional FLS2 receptor, although the agg1-1 single mutant, which was used to generated the 

double mutant plants, was still responsive to flg22 (Fig. 2.13A, B). Sequencing of the FLS2 

gene in the agg1/agg2 double mutant revealed a deletion at 3014 bp that leads to an early stop 

codon and therefore a non-functional FLS2 receptor as it is known for the natural fls2 

mutation in the Arabidopsis Ws-0 accession (Fig. 2.14A) (Silke Robatzek, personal 

communication). The agg1-1 single mutant carried a non-mutated FLS2 version (Fig. 2.14A), 

which is consistent with its wild-type-like responses to flg22. Interestingly, the elf18-

mediated oxidative burst was also strongly impaired in the agg1/agg2 double mutant, 

indicating an influence of either the Ws-0-associated fls2 mutation or yet another mutation in 

the Ws-0 genetic background on elf18-triggered MAMP signaling (Fig. 2.13A). 

However, Gγ1 and Gγ2 may still act redundantly in MAMP-triggered signaling and 

immunity. In agreement with this is the weak increase in susceptibility to bacterial challenge 

of both single mutants, agg1-1 and agg2-1 (Fig. 2.13C). To test this possibility a transient 

FLS2 complementation approach in mesophyll protoplast was performed. Protoplasts from the 

Col-0, fls2 and agg1/agg2 genotypes were transfected with a functional YFP-tagged FLS2 

gene and treated with flg22 to monitor MAPK activity in response to the elicitor. Non-

transfected protoplasts served as a control. As shown in Figure 2.14B (left) solely non-

transfected Col-0 protoplasts exhibited flg22-induced MAPK activity, whereas non-

transfected fls2 and agg1/agg2 mutant protoplast, which lacked a functional FLS2 gene, were 

insensitive to flg22-triggered MAPK activation. Transfection of FLS2-YFP into protoplasts of 

the fls2 mutant restored flg22 sensitivity and MAPK activity, indicating that FLS2 

complementation in protoplasts is functional (Fig. 2.14B). 

 45



Results____________________________________________________________________________________ 
 

 
 
Figure 2.13. MAMP-induced oxidative burst and MAPK activation as well as growth of Pst DC3000 wild-
type and hrcC bacteria in agg1, agg2 single and double mutants. (A) Leaf discs from 4-week-old plants of 
the indicated genotypes were treated with 100 nM flg22 and 100 nM elf18. ROS formation was measured in a 
chemiluminescence assay for the indicated time points after MAMP application. A representative data set with 
mean ± SD (n=10-12; n: represents the number of leaf discs tested per genotype in one experiment) of one 
experiment is shown. The experiment was repeated once with the same MAMP concentration as well as with     
1 µM flg22 or elf18 in at least three independent replicates (data not shown) gaining similar results. (B) MAPK 
activity was induced in leaf discs of 4-week-old plants by application of 1 µM flg22 or 1 µM elf18 or crab shell 
chitin (see 4.1.7) for the indicated time points and determined by immunoblot analysis. Ponceau staining served 
as a loading control. The experiment was repeated once with similar results. (C) Four-week-old plants were 
sprayed with Pst DC3000 and hrcC bacteria at OD600=0.2 and bacterial titres were determined at 3 dpi. A 
representative data set with mean ± SD (n=9; n: represents the number of leaves tested per genotype in one 
experiment) of one experiment is shown. The experiment was repeated once with similar results.    
 

FLS2 transfected agg1/agg2 protoplast also successfully responded to flg22 with activation of 

the MAPK signaling cascade, indicating that flg22-induced MAPK activity is not affected in 

the agg1/agg2 double mutant. However, Gβ-deficient plants are also not impaired in flg22-

mediated MAPK activation but show defects in other flg22 responses including oxidative 

burst, Ca2+ spiking and defense gene activation (see Fig. 2.11, 2.12). Therefore the generation 
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of a true agg1/agg2 double mutant is indispensable to assess the contribution of the Gγ 

subunits to MTI.  

 

 
 
Figure 2.14. The agg1/agg2 double mutant carries a mutation in the flagellin receptor FLS2. (A) Partial 
sequence of the FLS2 gene of the indicated genotypes. Similar to the Arabidopsis ecotype Ws-0, the agg1/agg2 
double mutant carries a deletion at 3014 bp (red bar) in the FLS2 gene leading to flg22 insensitivity. The agg1 
single mutant has a functional Col-0 wild-type-like FLS2 gene. (B) Flg22-induced MAPK activation in 
mesophyll protoplasts of Col-0, agg1/agg2 and fls2 genotypes transiently expressing a functional FLS2 gene 
tagged with YFP (right). The protoplasts were treated with 1 µM flg22 for the indicated time points and sampled 
for detection of MAPK activity by immunoblot analysis. Non-transfected protoplasts were treated in the same 
way and served as control (left). Ponceau staining served as a loading control. The experiment was performed 
once. 
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3. Discussion 
 

3.1 The role of heterotrimeric G-protein signaling in Arabidopsis defense 
 

3.1.1 MLO2 function in powdery mildew pathogenesis is independent of heterotrimeric        
G-protein signaling 
 

To date knowledge about potential plant G-protein coupled receptors (GPCRs) is sparse and 

currently no bona fide plant GPCR has been identified. The plant-specific MLO proteins 

constitute one of the largest heptahelical protein families in Arabidopsis. The topology and 

subcelullar localization of MLO proteins is reminiscent of the GPCR superfamily in 

metazoans and although no significant sequence similarity between mammalian GPCRs and 

MLO proteins exist, these plant-unique proteins are considered receptor candidates for G-

protein signaling. A previous combined pharmacological and genetic study in barley did not 

provide any evidence for a function of heterotrimeric G-protein signaling in MLO-mediated 

powdery mildew pathogenesis (Kim et al., 2002b). However, these studies have to be 

regarded critically as they were based on transient overexpression and dsRNAi-mediated gene 

silencing in single leaf epidermal cells of barley Gα variants that were deduced from the 

animal or yeast system. A similar function of these mutant variants in plants seems likely but 

has not been proven. Moreover, pharmaceutical agents used in that study were known to 

modulate G-protein signaling in the animal system, however, their specificity to manipulate 

the plant G-protein has been questioned and criticized (Fujisawa et al., 2001; Miles et al., 

2004). Consequently, a genetic approach using stable Arabidopsis thaliana (here referred to 

as Arabidopsis) G-protein signaling mutants was chosen in this study to unequivocally test a 

potential molecular link between MLO proteins and heterotrimeric G-protein signaling. 

Therefore, T-DNA insertion lines disrupting the MLO2 gene or individual members of the 

heterotrimeric G-protein complex (Gα/GPA1, Gβ/AGB1, Gγ1/AGG1, Gγ2/AGG2 or RGS1) 

as well as the corresponding   mlo2-6 double mutants were assessed for their powdery mildew 

infection phenotype with either the adapted or non-adapted fungus G. orontii or E. pisi, 

respectively. Results obtained in this study demonstrated that absence of the Gβ subunit, 

AGB1, either alone or in the mlo2-6 mutant background, enhanced penetration rates of both 

the adapted and non-adapted powdery mildew fungus (Fig. 2.1A, B). Similarly, irrespective of 

the presence or absence of the MLO2 protein, lack of Gβ or one of the Gγ subunits, AGG1 or 

AGG2, increased post-invasive conidiophore formation of the host powdery mildew fungus 

G. orontii (Fig. 2.1C). Taken together, the contribution of Gβ, Gγ1 and Gγ2 to powdery 

mildew defense is independent of the presence or absence of the MLO2 protein. Thus these 
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findings support previous results form Kim et al. (2002b), indicating that powdery mildew 

susceptibility conferred by the presence of MLO does not implicate heterotrimeric G-protein 

signaling and therefore precluding a role of MLO2 as a GPCR in this context. Furthermore, an 

interaction between MLO2 and either of the heterotrimeric G-protein components in the split-

ubiquitin system have not been observed (Consonni C. unpublished, Ralph Panstruga personal 

communication). However, although results obtained in this study and analysis performed by 

Kim and co-workers (2002b) strongly suggest that MLO-dependent powdery mildew 

pathogenesis functions independently of heterotrimeric G-proteins, this remains a possibility 

for other yet unknown MLO-dependent processes. Calmodulin (CaM) binding is a common 

feature of MLO proteins and numerous examples for CaM binding to members of mammalian 

GPCR families were reported, including the µ-opioid, metabotropis glutamate, serotonin 5-

HT(1A) and the D2-dopamine GPCRs (Minakami et al., 1997; Wang et al., 1999; Bofill-

Cardona et al., 2000; Belcheva et al., 2001; Kim et al., 2002a; Turner et al., 2004; Bhat et al., 

2005; Liu et al., 2007). Alternatively, MLO proteins may transmit extracellular signals 

through mechanisms that function independently of G-protein coupling (signaling ‘at zero G’) 

as has been proven for GPCRs in Dictyostelium discoideum and mammalian cells 

(Brzostowski and Kimmel, 2001). Consistent with this hypothesis, the putative Arabidopsis 

GPCR, GCR1, which shares extended sequence similarity (~ 20 %) with the D. discoideum 

CAR1 receptor, has been shown to act in both, G-protein-dependent and -independent 

pathways (Chen et al., 2004; Pandey et al., 2006). On the other hand kinetic studies 

demonstrated that the sole Arabidopsis Gα subunit is in the activated GTP-bound state by 

default, suggesting that the heterotrimeric G-protein may act without any canonical GPCRs in 

Arabidopsis (signaling ‘at zero GPCR’) (Johnston et al., 2007).  

Alternatively, it is conceivable that the function of MLO proteins is entirely unrelated to 

ligand binding but may involve transduction of signals perceived by other receptors such as 

receptor-like kinases (RLKs) or receptor-like proteins (RLPs). The Arabidopsis genome 

contains more than 600 RLKs that represent nearly 2.5 % of the annotated protein-coding 

genes (Shiu and Bleecker, 2001). Interestingly, applying the split-ubiquitin system to unravel 

the Arabidopsis membrane interactome within the ‘Arabidopsis membrane interactome 

project’ suggests a preferential interaction of the MLO2 protein with different RLKs. The 

corresponding data can be accessed via the web-based tool Associomics 

(http://www.associomics.org/index.php), but have to be regarded carefully and need further 

confirmation. However, recent studies demonstrated that the MLO7/NORTIA protein and 

FERONIA (FER), a RLK, both control pollen tube reception (Kessler et al., 2010). Moreover, 
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fer and mlo7 as well as mlo2 mutants share several phenotypic similarities, suggesting that 

FER and various MLO proteins function together to control pollen tube reception as well as 

powdery mildew pathogenesis and maybe other yet unknown processes. However, an 

interaction between MLO proteins and FER has not been observed. It, nevertheless, remains 

also possible that the function of MLO proteins is entirely unrelated to signal transduction. 

 
3.1.2 The heterotrimeric G-protein signaling facilitates defense against powdery mildew 
fungi 
 

Results obtained in this study demonstrated that absence of the Gβ subunit, AGB1, either 

alone or in the mlo2-6 mutant background, increased penetration rates of both, the adapted 

and non-adapted powdery mildew fungus G. orontii and E. pisi, respectively (Fig. 2.1A, B). 

This finding strongly suggests a role of the Gβ subunit in pre-invasion defense against 

adapted and non-adapted powdery mildew fungi, which is independent of the presence or 

absence of MLO2. This is in agreement with the previously published function of the Gβ 

subunit in defense against necrotrophic fungi including Plectosphaerella cucumerina, 

Alternaria brassicicola, Fusarium oxysporum and Botrytis cinerea (Llorente et al., 2005; 

Trusov et al., 2006; Trusov et al., 2007). In contrast, previous findings did not support a role 

of Gβ in Arabidopsis defense against pathogens with a biotrophic life style such as P. 

syringae bacteria or the oomycete P. parasitica (Llorente et al., 2005; Trusov et al., 2006). 

Therefore, data acquired in this study for the first time provide evidence for a function of 

heterotrimeric G-protein signaling in Arabidopsis defense against biotrophic pathogens, the 

powdery mildew fungi.  

According to previous reports defense against necrotrophic fungi is selectively mediated by 

Gβγ1 and not Gβγ2 signaling (Trusov et al., 2007). In this study, none of the agg1-1 single or 

respective mlo2-6 double mutants showed altered powdery mildew penetration rates, except 

for the agg1-1/mlo2-6 double mutant, which displayed a statistically significant increase of E. 

pisi entry success (Fig. 2.1A, B). Furthermore, Gγ2-deficient single and respective mlo2-6 

double mutants exhibited unaltered powdery mildew penetration rates (Fig. 2.1A, B). 

However, a functional redundancy between Gγ1 and Gγ2 in the context of powdery mildew 

defense can be likely excluded, as the respective double mutant agg1-1/agg2-1 exhibited 

wild-type like penetration levels of both powdery mildew fungi (Fig. 2.1A, B). Together, 

these findings do not support a selective function of Gβγ1 or Gβγ2 signaling in defense 

against powdery mildew fungi and thus contrasts the findings for necrotrophic pathogens 

(Trusov et al., 2007). 
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The Gβ and Gγ subunits generally act together as a dimer and therefore mutations in one of 

the proteins should result in the same phenotype. Paradoxically, while Gβ-deficient mutants 

displayed enhanced powdery mildew penetration success, mutants lacking the Gγ1 or Gγ2 

subunit showed entry rates similar to control plants. This finding indicates a Gγ-independent 

function of the Arabidopsis Gβ subunit in powdery mildew pre-invasion defense comparable 

to the mammalian Gβ5 subunit, which interacts with novel binding partners other than Gγ 

(Snow et al., 1998; Snow et al., 1999; Dupré et al., 2009).   

In contrast, single or the corresponding mlo2-6 double mutants defective in the Gβ, Gγ1 or 

Gγ2 subunit allowed increased conidiophore formation of the adapted powdery mildew 

fungus G. orontii, suggesting an involvement of both, Gβγ1 and Gβγ2 dimers, in post-

invasion defense (Fig. 2.1C). Taken together, results obtained in this study provide evidence 

for Gγ-independent as well as -dependent functions of the plant Gβ subunit in pre-and post-

invasion defense to powdery mildew fungi, respectively.  

Remarkably, conidiophore formation of the adapted powdery mildew fungus G. orontii was at 

least twice as high on all G-protein single mutants compared to wild-type plants, indicating a 

role of all heterotrimeric G-protein components in post-invasion defense (Fig. 2.1C). This 

phenotype was surprising, because it implicates that all components of the plant 

heterotrimeric G-protein act in common cellular processes that affect defense against G. 

orontii following successful host cell invasion. Given that plant heterotrimeric G-protein 

signaling modulates various biological processes it is conceivable that single mutations in the 

G-protein complex affect different cellular functions that positively contribute to fungal 

fitness, therefore ultimately leading to enhanced condidiophore formation of the fungus 

(Assmann, 2002; Jones and Assmann, 2004; Perfus-Barbeoch et al., 2004; Chen, 2008). 

Moreover, preliminary data suggest that not only G. orontii condiophore formation is 

increased on all G-protein single mutants but also fungal colony size, indicating a generally 

better performance of the fungus on these mutants (data not shown). 

Of particular importance is that the agg1-1 mutation originates from the Arabidopsis Ws-0 

accession and was subsequently introgressed into the Col-0 ecotype (Trusov et al., 2007). 

Therefore, an influence of the Ws-0 genetic background on powdery mildew defense cannot 

be excluded. In general all agg1-1 associated phenotypes have to be regarded with caution.  

 
3.1.3 The Gγ1 subunit is involved in mlo2-dependent spontaneous callose accumulation  
 

When grown under axenic conditions mlo2 mutants display pleiotropic phenotypes such as 

spontaneous callose accumulation during later developmental stages (Consonni et al., 2006; 
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Consonni et al., 2010). Recent studies demonstrated that the PMR4/GSL5 callose synthase is 

accountable for the developmentally controlled biosynthesis of spontaneous callose deposits 

in mlo2 plants (Consonni et al., 2010). Analysis of the G-protein single and corresponding 

mlo2-6 double mutants in this study revealed a putative involvement of the Gγ1 subunit in 

spontaneous callose accumulation in mlo2 mutant plants. Notably, agg1-1/mlo2-6 plants 

showed reduced callose deposition, indicating that Gγ1 contributes to, but is not absolutely 

required for PMR4-dependent callose accumulation in mlo2 plants (Fig. 2.2A). 

Spontaneous callose formation in mlo2 mutants depends on functional SA-signaling, as 

double mutants defective in MLO2 and components of the SA pathway such as eds5, npr1, 

pad4 and sid2 or when expressing the bacterial salicylate hydroxylase gene, NahG, were 

suppressed in developmental callose deposition (Consonni et al., 2006). Moreover, mlo 

mutant plants displayed elevated levels of free and conjugated SA during the development 

from six weeks onwards (Consonni et al., 2006). It is therefore tempting to speculate that 

Gγ1-mediated signaling positively contributes to the SA pathway. Consequently, a mutation 

in the Gγ1 encoding gene, AGG1, may result in a compromised SA pathway and hence 

account for a reduced spontaneous callose formation in the mlo2 genetic background. Thus, 

determination of SA levels in agg1-1/mlo2-6 plants would be of interest.  

PMR4-generated callose is also deposited at wound sites and in pathogen-triggered papillae 

(Jacobs et al., 2003; Nishimura et al., 2003). Callose staining after leaf wounding of agg1-

1/mlo2-6 mutant plants showed callose speckles around the wound site, but the wound-

induced callose ring structure was absent, suggesting that also PMR4-mediated wound callose 

deposition may be reduced in this double mutant (Fig. 2.2B) (Jacobs et al., 2003). In contrast, 

pathogen-triggered callose accumulation by the non-adapted powdery mildew fungus E. pisi 

seemed not to be altered in the agg1-1/mlo2-6 mutant, suggesting that PMR4-mediated 

pathogen-induced callose production was not affected in this mutant (Fig. 2.2C). However, 

these results are based on one experiment. Therefore more data are required to investigate a 

putative function of the Gγ1 subunit in wound- and pathogen-induced callose formation.  

The Gβ and Gγ subunits generally act together as a dimer and therefore depletion of one of 

these proteins should result in the same phenotype. Interestingly, while agg1-1/mlo2-6 double 

mutants displayed reduced developmentally controlled callose deposition, agb1-2/mlo2-6 

double mutants lacking the Gβ subunit and MLO2 exhibited callose formation 

indistinguishable from mlo2-6 control plants (Fig. 2.2A). Since a Gβ-independent Gγ-

mediated signaling has not been reported yet, it is likely that a yet unknown polymorphism in 

the Ws-0 genetic background in the agg1-1 mutant may account for the reduced spontaneous 
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callose deposition in the agg1-1/mlo2-6 mutant. As already mentioned above, all phenotypes 

associated with the agg1-1 mutant have to be regarded critically.  

To date only one study provided some evidence for a putative function of the heterotrimeric 

G-protein complex in pathogen-induced callose deposition. Llorente and colleagues (2005) 

observed specifically impaired callose accumulation in Gβ-deficient mutants, agb1-1, upon 

inoculation with the necrotrophic fungus P. cucumerina, whereas pathogen-induced callose 

formation upon P. parasitica challenge as well as after wounding was not altered in agb1-1 

mutant plants. Preliminary data obtained in this study showed that pathogen-triggered callose 

formation upon inoculation with the adapted powdery mildew fungus G. orontii was not 

affected in agb1-2 mutants, therefore precluding a role of Gβ in powdery mildew-induced 

callose accumulation (data not shown). 

 
3.1.4 The Gβ subunit mediates flg22-induced defense responses 
 

Perception of MAMPs by the corresponding PRRs is associated with the activation of diverse 

physiological responses that are thought to contribute to robust immunity. However, 

mechanisms by which MAMP-induced responses are achieved are largely unknown. 

Emerging evidence points to a role of heterotrimeric G-protein signaling in the integration of 

MAMP-perception into downstream responses. A recent publication revealed a function for 

the Arabidopsis Gβ subunit in MAMP-induced ROS formation (also oxidative burst) 

positioning Gβ-mediated signaling upstream of the NADPH oxidase activity (Ishikawa, 

2009).  

In Arabidopsis the plasma membrane-resident NADPH oxidase homologs RbohD and RbohF 

(respiratory burst oxidase homologs D and F) are the mediators of apoplastic ROS production 

in defense and other stresses (Torres et al., 2002; Kwak et al., 2003; Galletti et al., 2008). 

Whereas RbohD is essential for flg22-induced oxidative burst, RbohF plays a minor role in 

this context (Zhang et al., 2007). 

The results obtained by Ishikawa (2009) were confirmed in this study with two independent 

agb1 mutants (agb1-2 and agb1-9). Both mutants showed reduced ROS production after 

treatment with flg22 (Fig. 2.11A). Residual ROS spiking in agb1 mutants suggests the 

involvement of other components in flg22-triggered oxidative burst.   

Different studies already implicated plant heterotrimeric G-protein signaling in Arabidopsis 

ROS formation during ozone (O3) stress and stomatal closure as well as in response to an 

elicitor from the rice blast fungus in rice (Suharsono et al., 2002; Joo et al., 2005; Lieberherr 

et al., 2005; Li et al., 2009). While the Gα subunit accounts for ROS production in the two 
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latter cases, Gα and Gβ act synergistically and separately in activating ROS during O3-stress. 

The early ROS peak of the bimodal O3-induced oxidative burst is mediated by both subunits, 

whereas the late peak is activated by Gα only (Joo et al., 2005).  

Although flg22-induced oxidative burst was reduced in Gβ-deficient mutants, MAMP-

triggered activation of MAPK cascades was not affected, indicating that Gβ-signaling is not 

required for MAPK activity (Ishikawa, 2009). Together these results suggest that either both 

events occur independently of each other or that MAPKs act upstream of Gβ-mediated ROS 

formation. There have been many disputations about the relationship between ROS and 

MAPK cascades in plant defense and while some results favour the action of MAPKs 

upstream of ROS formation (Zhang et al., 2007) other data contradict this hypothesis (Lu et 

al., 2009; Boudsocq et al., 2010).   

Besides MAPK cascades calcium-dependent protein kinases (CDPKs) play a central role in 

plant immune responses. Recently, Arabidopsis CDPK4, 5, 6 and 11 were reported to mediate 

MAMP-triggered responses including transcriptional reprogramming and oxidative burst 

(Boudsocq et al., 2010). Moreover double and triple cdpk mutant combinations were 

compromised in flg22-induced bacterial disease resistance. Results obtained by Boudsocq and 

colleagues (2010) point to a network of four different regulatory pathways involved in the 

activation of early flg22-induced genes. Genes such as FRK1 were specifically activated by 

MAPKs, whereas induction of PHI1 was CDPK-specific. Other genes including NHL10 were 

synergistically activated by MAPK- and CDPK-signaling.  

Consistent with unaltered flg22-induced MAPK activation in Gβ-deficient mutants, induction 

of FRK1 and WRKY22, another MAPK-activated flg22-responsive gene, was not affected in 

agb1 mutants upon flg22 treatment (Fig. 2.12A, B). In contrast expression levels of NHL10 as 

well as PROPEP2 and PROPEP3, which have been shown to be specifically activated by 

CDPK5 and CDPK11 in response to flg22, were reduced in Gβ-deficient mutants (Fig. 2.12C-

E) (Boudsocq et al., 2010). Hence it is tempting to speculate that flg22-mediated CDPK-

signaling cascade is impaired in agb1 mutants. To prove this hypothesis, in-gel kinase assays 

to detect flg22-induced CDPK activity in agb1 mutants would be of interest. Inconsistent with 

this assumption, PHI1 gene activation was not altered upon flg22 treatment in Gβ-deficient 

mutants (Fig. 2.12F). However, it is conceivable that mutations in the Gβ subunit only affect 

the activity of a subset and not all CDPKs, thereby allowing normal flg22-induced PHI1 gene 

expression in mutant plants. Moreover, a CDPK-independent induction of PHI1 gene 

expression in agb1 mutants cannot be excluded. 
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Activation of CDPKs occurs through binding of Ca2+ ions, and cytosolic Ca2+ elevation is an 

early event in response to MAMP-recognition (Harper et al., 2004; Ma and Berkowitz, 2007). 

Assuming that reduced flg22-mediated CDPK-signaling in Gβ-deficient mutants might be 

caused by impaired Ca2+ influxes, cytosolic Ca2+ signatures upon flg22 treatment were 

determined in agb1 mutant protoplasts expressing the Ca2+ sensor aequorin. Preliminary data 

suggest a reduction in cytosolic Ca2+ levels in agb1 mutant protoplasts in response to flg22, 

leading to a delayed and lower Ca2+ spiking in comparison to the wild-type (Fig. 2.11B). 

Although these results derive from a single experiment and therefore must be judged 

carefully, it is tempting to speculate that the Gβ subunit may regulate Ca2+ influxes in 

response to flg22. This hypothesis is further supported by studies which showed a function of 

the plant heterotrimeric G-protein in activation of Ca2+ influxes in response to extracellular 

nucleotides or ABA during stomatal closure as well as during pollen tube germination (Wu et 

al., 2007; Tanaka et al., 2010; Zhao et al., 2010). While ABA-induced Ca2+ influx in guard 

cells during stomatal closure as well as Ca2+ influx during pollen development require the Gα 

subunit, Ca2+ influx induced by extracellular nucleotides is inhibited by the Gβ subunit, as 

agb1 mutants exhibited increased cytosolic Ca2+ concentrations upon treatment with 

extracellular nucleotides. This seems to contrast the observations made in this study. 

However, it is conceivable that Ca2+ influxes mediated by flg22 and extracellular nucleotides 

are coordinated by distinct types of Ca2+ channels requiring different regulatory modes of the 

Gβ subunit. Other studies also implicate heterotrimeric G-protein signaling in ABA- and 

flg22-induced inhibition of K+ influxes during stomatal opening (Wang et al., 2001; Fan et al., 

2008; Zhang et al., 2008).  

Plant cyclic nucleotide gated channels (CNGCs) are supposed to represent non-selective 

cation channels that are activated by cAMP or cGMP binding and that contribute to cytosolic 

Ca2+ rise upon pathogen perception (Ali et al., 2007; Ma and Berkowitz, 2007; Qi et al., 

2010). Mammalian heterotrimerc G-protein signaling regulates adenylate cyclase, the cAMP 

producing enzyme (Piñeyro, 2009). Interestingly, plants lack a canonical adenylate cyclase, 

however, there is evidence for a cAMP system in plants (Lomovatskaya et al., 2008). Given 

that Ca2+ influxes in response to flg22 may be disturbed in agb1 mutants, determination of 

cyclic nucleotide concentrations in Gβ-deficient plants would be of interest to investigate a 

putative link between Gβ and CNGC-mediated Ca2+ influxes. However, other candidate 

channels for facilitating cytosolic Ca2+ spiking in plant defense such as glutamate receptors 

cannot be excluded (Ma and Berkowitz, 2007). 
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Finally, the contribution of the Gβ subunit to antibacterial defense was investigated. Notably, 

published studies did not provide any evidence for a role of the Gβ subunit in bacterial growth 

restriction (Trusov et al., 2006). However, these conclusions were based on bacteria 

infiltration assays, an inoculation method that may bypass the first steps of the natural 

infection process, as has also been observed for the fls2 mutant (Zipfel et al., 2004). Naturally, 

bacteria enter host plant leaves through wounds or natural openings such as stomata. Thus in 

this study, P. syringae bacteria were sprayed on plant leaves to mimic the natural infection 

conditions, resulting in slightly increased bacterial growth on agb1 mutant plants (Fig. 

2.11C). Although it is largely unknown to which extent MAMP-triggered responses add to 

plant immunity, it is conceivable that reduced but not abolished flg22-induced defense 

responses and the functional MAPK signaling in agb1 mutants account for the subtle bacterial 

infection phenotype of agb1 plants. Moreover, it is also possible that subsequent sustained 

defense responses, which have been shown to be important for robust immunity against 

bacteria, may not be affected in agb1 mutants (Lu et al., 2009). Hence, analysis of late 

induced genes such as PR1 in Gβ-deficient mutants upon flg22 treatment would be of interest. 

Taken together, although differences in bacterial proliferation were not statistically 

significant, a minor contribution of the Gβ subunit to defense against bacteria cannot be 

excluded. 

Analysis of a putative redundant function of the Gγ subunits, Gγ1 and Gγ2, in MTI was 

hampered by the discovery of an fls2 mutation in the agg1/agg2 double mutant, explaining the 

flg22 insensitivity as well as enhanced susceptibility to bacteria of this mutant (Fig. 2.13A-C, 

2.14A). Transient complementation of the wild-type FLS2 gene in agg1/agg2 protoplasts 

restored flg22-triggered MAPK activation comparable to wild-type (Fig. 2.14B). However, 

this does not exclude a redundant role of Gγ1 and Gγ2 in flg22-induced defense responses as 

Gβ-deficient mutants also displayed wild-type like MAPK activation but showed defects in 

other flg22 responses (Ishikawa 2009 and this study). Bacterial susceptibility of agg1-1 and 

agg2-1 single mutants was weakly but not statistically significantly increased, indicating a 

putative redundant function of Gγ1 and Gγ2 in antibacterial defense. Interestingly, enhanced 

bacterial susceptibility was only observed with the disarmed bacterial strain Pst DC3000 

hrcC, which is defective in effector delivery into the plant cell, supporting a role of the Gβγ 

dimer in MTI. However, the generation of a genuine agg1/agg2 double mutant is 

indispensable to investigate the contribution of the Gγ subunit to MTI. 

Interestingly, elf18-mediated oxidative burst was strongly reduced in the agg1/agg2 double 

mutants (Fig. 2.13A). Similar results were obtained with the Ws-0 ecotype, indicating an 
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influence of either the Ws-0-associated fls2 mutation or yet another mutation in the Ws-0 

genetic background on elf18-triggered MAMP signaling (Kunze et al., 2004). 

 
3.1.6 A model for the function of heterotrimeric G-protein signaling in MTI and 
powdery mildew defense 
 

MAMP perception in plants is accompanied by a diverse set of defense responses that are 

thought to contribute to robust immunity. However, mechanisms by which MAMP-induced 

responses are achieved remain largely elusive. Published reports and data obtained in this 

study point to an involvement of heterotrimeric G-protein signaling in the integration of 

MAMP-perception into downstream responses. In the following, these results are summarized 

and assembled into a speculative model for the function of the heterotrimeric G-protein in 

flg22-induced signaling (Fig. 3.1A). Results acquired in this study and by Ishikawa (2009) 

support a role for the Gβ subunit in flg22-induced ROS production therefore placing Gβ 

activity upstream of RbohD oxidase function (Fig. 2.11A). Activation of Rboh oxidases 

involves Ca2+ signaling as has been shown in tomato and tobacco and is indicated by the Ca2+ 

binding EF-hand motifs in the N-terminus of Rboh proteins (Keller et al., 1998; Sagi and 

Fluhr, 2001). Moreover, CDPKs were recently shown to modulate the oxidative burst by 

directly phosphorylating an Rboh oxidase in potato (Kobayashi et al., 2007). Preliminary data 

obtained in this study indicate a function of Gβ in flg22-triggered Ca2+ influxes (Fig. 2.11B). 

Reduced Ca2+ levels in agb1 mutant plants may therefore account for decreased oxidative 

burst as well as impaired CDPK signaling, which is supported by decreased PROPEP2, 

PROPEP3 and NHL10 gene activation after flg22 treatment (Fig. 2.12C-E). Unaltered PHI1 

gene expression in agb1 mutants rather contradicts a reduced CDPK signaling cascade (Fig. 

2.12F). However, the existence of CDPK-independent PHI1 activation cannot be excluded. 

Together, these findings support a putative role for Gβ in Ca2+ channel activation upon flg22 

perception. In contrast, MAPK activation is independent of Gβ, which is consistent with 

unaltered gene induction of FRK1 and WRKY22 in agb1 mutant plants after flg22 treatment 

(Fig. 2.12A, B) (Ishikawa, 2009). Interestingly, Gβ functions are not restricted to flg22 

singnaling, as elf18-induced ROS production was also reduced in the agb1 mutant (Ishikawa, 

2009). It is therefore conceivable that Gβ has a general function in integrating the perception 

of various MAMPs into downstream signaling.  
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Figure 3.1. A hypothetical model for the function of heterotrimeric G-protein signaling in MTI and 
powdery mildew defense. (A) Perception of flg22 by the FLS2 receptor stimulates Ca2+ influxes, which are 
partially modulated by the Gβ subunit. Cytoplasmic Ca2+ activates CDPK cascades as well as the NADPH 
oxidase RbohD resulting in an oxidative burst. CDPK signaling mediates transcriptional reprogramming and 
oxidative burst through phosphorylation of RbohD. In parallel, flg22-perception induces MAPK signaling 
cascades resulting in transcriptional activation. For simplicity, only the Gβ subunit of the heterotrimeric G-
protein complex is depicted. For details see text. (B) The contribution of heterotrimeric G-protein signaling to 
powdery mildew defense is independent of MLO2 function(s). Red lines indicate the involvement in pre-
invasion and dashed lines in post-invasion powdery mildew defense. The Gβ subunit plays the predominant role 
and contributes to both pre- and post-invasion resistance, either alone or as Gβγ dimer. All heterotrimeric G-
protein components partly confer post-invasion resistance. Thickness of the lines indicates the degree of the 
contribution to powdery mildew defense. For simplicity, transmembrane domains of RGS1 and MLO2 are not 
depicted. 
 

Moreover, besides the involvement of heterotrimerc G-protein signaling in defense against 

necrotrophic fungal pathogens in Arabidopsis, data acquired in this study also support a role 

of the heterotrimeric G-protein in defense against virulent and non-virulent biotrophic 

powdery mildew fungi (Fig. 3.1B, 2.1A-C) (Llorente et al., 2005; Trusov et al., 2006; Trusov 

et al., 2007). In this context signaling mediated by the Gβ subunit appears to play the 

predominant role in Arabidopsis powdery mildew defense, as Gβ-deficient mutants were 

impaired in pre-invasion defense against the adapted and non-adapted G. orontii and E. pisi, 

respectively, as well as in post-invasion defense against the adapted fungus. Mutants lacking 

Gγ1 and Gγ2 exhibited normal powdery mildew penetration rates, indicating a Gγ-

independent function of Gβ in pre-invasion defense against powdery mildew fungi (Fig. 2.1A, 

B). In contrast, post-invasion defense against G. orontii seems to involve the action of both G-

protein dimers, Gβγ1 and Gβγ2 (Fig. 2.1C). Interestingly, all heterotrimeric G-protein 

components contribute to powdery mildew post-invasion defense (Fig. 2.1C). However, a 

direct or indirect function in this context remains elusive. In any way, the contribution of the 

heterotrimeric G-protein to powdery mildew defense is independent of the presence or 
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absence of the MLO2 protein. In other words, MLO2 function in powdery mildew 

pathogenesis does not implicate heterotrimeric G-protein signaling, therefore precluding a 

role of MLO2 as a GPCR in this context. 

 
3.2 MLO: a negative regulator of powdery mildew defense 
 

3.2.1 MLO proteins negatively regulate the transcriptional activation of defense-related 
genes in response to G. orontii inoculation 
 

Successful powdery mildew pathogenesis in the dicotyledonous plant species Arabidopsis as 

well as the monocot barley requires the presence of specific isoforms of the plant-unique 

MLO proteins (Jørgensen, 1992; Consonni et al., 2006). Currently the knowledge about the 

molecular mechanisms underlying mlo-based powdery mildew resistance is sparse. However, 

the following scenarios are conceivable to explain mlo-mediated immunity. Absence of MLO 

may result in (1) a constitutive and/or (2) faster activation of defense responses and/or (3) 

may eliminate defense suppression by powdery mildew fungi. In order to differentiate 

between these possibilities and to learn more about the molecular basis of mlo-mediated 

resistance, a comprehensive comparative analysis of defense marker activation in Arabidopsis 

wild-type and mlo2 mutant plants was conducted in the presented study.  

In this context a whole leaf-based transcriptome analysis comparing mlo2/6/12 triple mutant 

with Col-0 wild-type plants upon inoculation with the adapted powdery mildew fungus        

G. orontii was conducted at 0, 8 and 12 hpi. Time points before host cell entry were chosen 

for analysis in order to be able to compare transcriptional reprogramming events of both 

genotypes. Analysis of the expression data revealed a predominance of genes with elevated 

transcript levels in the mlo2/6/12 triple mutant compared to the wild-type at 8 and 12 hours 

after G. orontii inoculation (Fig. 2.3A). In contrast, the number of genes with decreased 

transcript accumulation was low, indicating that transcriptional activation and not inhibition 

dominates the response of mlo2/6/12 plants to powdery mildew inoculation. The majority of 

genes with enhanced expression levels was already present at 8 hpi and detailed analysis 

revealed a high prevalence of genes known to be associated with defense and stress, which 

was further supported by in silico analysis using MapMan and Genevestigator 

(Supplementary Table 6.1, 6.3, Fig. 2.3A-C). Similarly, barley mlo mutants also displayed 

elevated transcript accumulation of pathogenesis-related genes compared to the wild-type in 

response to the barley powdery mildew fungus Bgh (Peterhänsel et al., 1997; Gjetting et al., 

2004; Zierold et al., 2005). Together, these findings point to a faster defense gene activation 

in Arabidopsis and barley mlo mutant plants at early stages after inoculation with the 
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compatible powdery mildew fungus. Recently published microarray data showed that a 

similar set of defense-related genes was also activated in Col-0 wild-type plants after G. 

orontii inoculation, indicating that these genes are generally activated in response to G. 

orontii challenge (Chandran et al., 2009; Chandran et al., 2010). Importantly, transcriptome 

analysis performed by Chandran and colleagues (2009, 2010) focused on later time points 

after G. orontii inoculation (from 0 – 7 dpi) when the fungus already successfully invaded and 

colonized the host plant. In contrast, activation of defense genes in the mlo2/6/12 mutant was 

already present before host cell penetration. Taken together, these findings suggest that the 

presence of MLO proteins may negatively regulate defense gene activation in response to 

powdery mildew challenge, corroborating the model of MLO as a negative regulator of plant 

defense (Büschges et al., 1997; Panstruga, 2005; Consonni et al., 2010). If this holds true, 

then MLO-mediated defense gene suppression in wild-type plants may account for the 

delayed formation of respective antimicrobial metabolites, thus leading to compatibility of G. 

orontii. In contrast, the absence of MLO proteins, resulting in a faster activation of defense 

genes upon G. orontii challenge, may contribute to early termination of pathogenesis and thus 

confer resistance against the fungus. However, it is conceivable and therefore important to 

note that negative regulation of defense responses by loss of MLO proteins may either be a 

direct or an indirect consequence of mlo mutations. The first scenario implicates a direct 

involvement of MLO proteins in defense suppression. In the latter case, yet unknown changes 

that are associated with mlo mutations, which may implicate alterations in cell wall 

composition, the apoplastic environment or other, may primarily cause early termination of 

fungal pathogenesis thereby preventing host cell invasion and effective defense suppression 

by the fungus. In this case, hyperactivation of defense genes in the mlo2/6/12 mutant upon G. 

orontii challenge would be an indirect consequence. However, data obtained in this study 

rather contradict this scenario, as early defense gene activation upon MAMP treatment also 

occurred faster in mlo2/6/12 triple mutant than in wild-type plants, suggesting that MLO 

proteins negatively regulate this MAMP response (see 3.2.6, Fig. 2.9, 2.10). 

Rapid transcriptional activation of defense genes in the mlo2/6/12 mutant may not only be 

induced by powdery mildew fungi, but occur generally upon any pathogen challenge. 

Therefore, transcriptional analysis of mlo2/6/12 mutant plants upon inoculation with 

pathogens other than powdery mildew is required to investigate this possibility. However, 

absence of barley MLO enhanced transcript accumulation of pathogenesis-related genes in 

response to the rice blast fungus Magnaporthe oryzae (Jarosch et al., 2003). Furthermore, as 

shown in this study defense gene activation was also enhanced in Arabidopsis mlo2/6/12 
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mutant plants upon MAMP treatment (Fig. 2.9, 2.10). Taken together, these findings disagree 

with a powdery mildew-specific activation of defense genes in barley and Arabidopsis mlo 

mutants, further corroborating a general function of MLO proteins as negative regulators of 

defense.  

A constitutive gene expression was not observed in mlo2/6/12 mutant plants under the tested 

conditions, but constitutively enhanced transcript levels in epidermal cells may be diluted in 

whole-leaf extracts. Moreover, it cannot be ruled out that constitutive activation of other, 

transcription-independent defense responses may account for mlo-based immunity. 

In whole leaf-based transcriptomic analysis of G. orontii - Arabidopsis interaction, genes 

specifically activated by the fungus at infection sites are masked and diluted by infection-

independent gene expression in distal cell tissues. To avoid the dilution effect, Chandran and 

colleagues (2010) employed the laser microdissection (LMD) technology to isolate single    

G. orontii-infected epidermal cells, thereby increasing the sensitivity to detect responses that 

act specifically at the site of infection. Using the LMD approach, 1089 differentially 

expressed genes were exclusively identified in the site-specific analysis, allowing the 

identification of novel host processes and components previously hidden in whole-leaf global 

expression analysis. Although transcriptome analysis of powdery mildew-infected epidermal 

cells of barley mlo mutants was performed previously, it would be of importance to apply the 

LMD technology to isolate epidermal cells from G. orontii-challenged Arabidopsis mlo2/6/12 

mutant plants in order to get more detailed insights into the molecular basis of mlo-mediated 

transcriptional reprogramming in response to powdery mildew inoculation (Zierold et al., 

2005). 

 
3.2.2 Non-host resistance and mlo-mediated immunity share similar transcriptional 
reprogramming events in response to powdery mildew inoculation 
 

Comparative transcriptome analysis performed in this study revealed that transcript levels of 

genes related to plant defense increased more rapidly in mlo2/6/12 mutant plants upon 

inoculation with the adapted powdery mildew fungus G. orontii (Supplementary Table 6.1). 

Among these genes the plant defensins genes PDF1.2a and PDF1.2b as well as genes 

encoding components relevant for the Trp-derived indole glucosinolate pathway were present 

(Table 2.1, 2.2). Indolic glucosinolates were previously described in the context of powdery 

mildew non-host resistance, but have been recently shown to be required for mlo-mediated 

immunity (Bednarek et al., 2009; Consonni et al., 2010). Interestingly, genes of the PDF1 

family including PDF1.2a and PDF1.2b as well as particular indole glucosinolate pathway-
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relevant genes were also shown to be uniquely induced in wild-type plants following 

inoculation with the non-adapted powdery mildew fungus Bgh (Zimmerli et al., 2004). This 

suggests that the adapted powdery mildew fungus may elicit the same transcriptional 

responses in the mlo2/6/12 mutant as Bgh in Arabidopsis wild-type plants, indicating that 

non-host resistance to Bgh and mlo-mediated immunity to G. orontii share similar 

transcriptional reprogramming events in response to the respective pathogen. Consistently, 

when comparing histological and phytopathological characteristics as well as genetically 

defined requirements of powdery mildew non-host and mlo-based resistance in Arabidopsis 

and barley, it becomes evident that both types of resistance share analogous features (see 

1.5.3.2). It has been therefore hypothesized that non-host resistance and mlo-based immunity 

are mechanistically related or possibly identical (Humphry et al., 2006). Taken together, 

results obtained by Zimmerli and colleagues (2004) as well as in this study suggest similar 

transcriptional responses in wild-type and mlo2/6/12 mutant plants upon challenge with Bgh 

and G. orontii, respectively, therefore substantiating a mechanistic link between powdery 

mildew non-host resistance and mlo-mediated immunity.  

 
3.2.3 MLO proteins negatively regulate the accumulation of the defense-relevant indolic 
glucosinolate, 4MI3G, in response to G. orontii inoculation  
 

It has recently been demonstrated that Trp-derived indolic metabolites that are hydrolyzed by 

the atypical myrosinase PEN2 are required for Arabidopsis non-host resistance (Bednarek et 

al., 2009). Loss of PEN2 enhanced the penetration rate of the non-adapted powdery mildew 

fungi Bgh and E. pisi. Similarly, double mutants defective in CYP79B2 and CYP79B3, the 

two core enzymes leading to most known Trp-derived metabolites, also showed enhanced 

susceptibility to the non-adapted fungi, pointing to the importance of indole metabolites in 

powdery mildew non-host resistance. Specifically, the 4-methoxyindol-3-

ylmethylglucosinolate (4MI3G) is supposed to be the biologically relevant PEN2 substrate 

leading to the formation of yet unknown toxic metabolites that are important for the 

restriction of fungal growth (Supplementary Figure 6.1) (Bednarek et al., 2009). More 

recently, it was found that the same Trp-derived indolic secondary metabolites are likely also 

essential for mlo-mediated powdery mildew resistance (Consonni et al., 2010). The absence of 

PEN2 or both CYP79B2 and CYP79B3 in the mlo2 mutant background restored susceptibility 

of the adapted powdery mildew fungus G. orontii to wild-type-like levels, indicating that 

MLO2 negatively regulates this defense pathway (Consonni et al., 2006; Consonni et al., 

2010). In this study, comparative transcriptional profiling revealed a hyperactivation of genes 
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encoding enzymes involved in the biosynthesis of Trp-derived metabolites in the mlo2/6/12 

triple mutant in response to the powdery mildew fungus G. orontii, corroborating the 

importance of these metabolites in Arabidopsis mlo2-based powdery mildew immunity (Table 

2.1). Interestingly, a similar set of genes was also found to hyperaccumulate in the mlo2/6/12 

mutant under pathogen-free conditions during vegetative development in 7-week-old plants 

(Consonni et al., 2010). It is therefore tempting to speculate that the increased spontaneous 

activation of defense responses including the biosynthesis of indolic secondary metabolites in 

mlo2/6/12 mutant plants may account for the pleiotropic effects in this mutant (Consonni et 

al., 2006; Consonni et al., 2010).  

To study if the transcriptional hyperactivation in powdery mildew-inoculated mlo2/6/12 

mutant correlates with enhanced accumulation of indolic metabolites, comparative profiling 

of the Trp-derived compounds I3G, I3A, RA and 4MI3G was performed. Interestingly, no 

differnetial accumulation of these metabolites was observed between Col-0 wild-type and 

mlo2/6/12 mutant plants after G. orontii or Bgh inoculation (Fig. 2.6). However, it cannot be 

excluded that higher accumulation of indolic metabolites in the mlo2/6/12 mutant may be 

compensated by a concomitant increase in glucosinolate turnover, therefore resulting in 

unaltered compound steady-state levels between the mutant and wild-type. Moreover, a 

differential indolic metabolite accumulation might be diluted in whole-leaf extracts. 

Importantly, it is currently not possible to properly estimate the turnover of the indole 

glucosinolate pathway, because the indolic end products remain elusive (Bednarek et al., 

2009). 

Consistent with previous findings, accumulation of the indole glucosinolate 4MI3G, which is 

activated by PEN2 for antifungal defense, was absent in pen2-1 mutants challenged with Bgh, 

confirming that 4MI3G is a PEN2 substrate (Fig. 2.6) (Bednarek et al., 2009). A similar 

phenotype was observed in the pen2-1/mlo2/6/12 quadruple mutant. Interestingly, absence of 

PEN2 did not cause 4MI3G accumulation in response to the adapted powdery mildew fungus 

G. orontii, suggesting that the host fungus may fail to elicit 4MI3G formation. Inconsistent 

with this hypothesis, the quadruple mutant defective in PEN2, MLO2, MLO6 and MLO12 

displayed 4MI3G accumulation upon G. orontii inoculation, indicating that the presence of 

MLO proteins negatively regulates 4MI3G accumulation in response to G. orontii challenge. 

This is in agreement with the hypothesis that the adapted powdery mildew fungus might 

specifically corrupt MLO proteins to modulate plant defense for successful pathogenesis 

(Panstruga, 2005). Consequently, absence of MLO-mediated defense suppression by the 

fungus may enable the formation of 4MI3G and its subsequent activation by PEN2 for 
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antifugal defense and thus leading to resistance of mlo2/6/12 mutant plants against G. orontii. 

Alternatively, suppression of 4MI3G accumulation in the mlo2/6/12 mutant may be an 

indirect consequence of the mutations in MLO genes and primarily an effect of abolished 

fungal host cell invasion, indicating that post-invasive fungal infection structures might be 

required for successful suppression of 4MI3G accumulation (see 3.2.1).   

 
3.2.4 The adapted powdery mildew fungus, G. orontii, induces PEN1 protein 
accumulation dependent on the MLO proteins 
 

The PEN1-dependent vesicle secretory pathway is required for Arabidopsis non-host 

resistance to powdery mildew fungi (Lipka et al., 2005). Absence of the PEN1 syntaxin 

greatly enhanced the entry rates of the barley and pea powdery mildew fungi, Bgh and E. pisi, 

respectively. It has been proposed that the cargo delivered by PEN1-dependent vesicles may 

comprise antimicrobials and cell wall components in order to defeat the pathogen and 

reinforce the cell wall at attempted penetration sites (Kwon et al., 2008). PEN1 as well as its 

barley homolog, ROR2, are also essential for mlo-mediated powdery mildew resistance in 

Arabidopsis and barley, respectively (Freialdenhoven et al., 1996; Collins et al., 2003; 

Consonni et al., 2006). Loss of wild-type ROR2 or PEN1 in Hvmlo or Atmlo2 genotypes, 

respectively, restored susceptibility to the corresponding adapted powdery mildew fungus, 

suggesting that syntaxin activity is required for effective mlo resistance. Moreover, PEN1, 

ROR2 as well as the MLO protein focally accumulate at sites of attempted fungal cell-wall 

penetration (Assaad et al., 2004; Bhat et al., 2005; Meyer et al., 2009).  

Consistent with previously published data, results obtained in this study demonstrated an 

induced PEN1 protein accumulation in response to the non-adapted powdery mildew fungus 

Bgh, likely reflecting an enhanced requirement for PEN1-mediated defense against this 

pathogen (Fig. 2.7B) (Pajonk et al., 2008). These observations corroborate the importance of 

PEN1-dependent activity in Arabidopsis non-host resistance. PEN1 accumulation in response 

to Bgh occurred irrespective of the presence or absence of functional MLO proteins 

(Fig.2.7B). 

PEN1 protein levels also increased in Col-0 wild-type plants in response to the adapted 

powdery mildew fungus G. orontii, although delayed and to a lesser degree compared to Bgh-

inoculated wild-type plants (Fig. 2.7B). Consistently, transcriptomic analysis of single             

G. orontii-infected wild-type epidermal cells revealed that genes associated with the PEN1-

secretory defense pathway such as PEN1 itself, SNAP33, VAMP721 and VAMP722 displayed 

elevated transcript levels at 5 dpi, indicating a transcriptional activation of the PEN1 defense 

 65



Discussion_________________________________________________________________________________ 

pathway upon G. orontii challenge (Chandran et al., 2010). Interestingly, PEN1 protein levels 

decreased in G. orontii inoculated mlo mutant plants with a stronger decrease in the mlo2/6/12 

triple compared to the mlo2-6 single mutant, suggesting no major contribution of the PEN1-

mediated defense pathway to mlo-mediated resistance against G. orontii. This is consistent 

with the powdery mildew infection phenotype of Arabidopsis mlo2/pen1 double mutant 

plants. While the Arabidopsis powdery mildew fungus G. cichoracearum was able to 

propagate on mlo2/pen1 mutant plants, these plants were still resistant to the adapted fungus 

G. orontii, suggesting that G. orontii might be insensitive to PEN1-mediated defense 

(Consonni et al., 2006). 

As demonstrated in this study, G. orontii-induced PEN1 protein accumulation appears to be 

dependent on the presence of functional MLO proteins, indicating that the adapted powdery 

mildew fungus G. orontii may trigger PEN1 protein accumulation through the MLO proteins. 

With respect of the different G. orontii and G. cichoracearum infection phenotypes on 

mlo2/pen1 mutant plants and the results obtained in this study, it is tempting to speculate that 

the adapted fungus G. orontii, but not G. cichoracearum, may have evolved means to subvert 

the PEN1-mediated secretory pathway for its own advantage. Such advantage may implicate 

the delivery of beneficial cargo for successful fungal propagation. An example for successful 

abuse of host trafficking vesicles by pathogens is the human bacterium Salmonella enterica. 

The pathogen replicates within host cells in a specialized membrane-bound compartment, the 

Salmonella-containing vacuole (SCV) and uses effectors to exploit host vesicle trafficking for 

biogenesis and maintenance of the SCV (Knodler and Steele-Mortimer, 2005; Bujny et al., 

2008). However, if G. orontii in fact is able to manipulate the PEN1-dependent exocytosis 

apparatus for the secretion of beneficial cargo, than the contribution of such mechanisms to 

the establishment of successful G. orontii pathogenesis is rather minor or redundant, as pen1 

mutants are still susceptible to G. orontii and not resistant (Lipka et al., 2005). In future, it 

would be of interest to analyse PEN1 protein accumulation in mlo mutant plants in response 

to G. cichoracearum challenge. 

 
3.2.5 Plant defensins are dispensable for mlo-mediated powdery mildew resistance 
 

Global gene expression analysis performed in this study revealed an overrepresentation of JA- 

and ET-responsive genes among the genes that showed elevated expression levels in the 

mlo2/6/12 triple mutant after G. orontii inoculation (Table 2.2, Supplementary Table 6.1). In 

the microarray analysis, the plant defensin genes PDF1.2a and PDF1.2b, which represent 

major marker genes for JA and ET signaling pathways, displayed 5 – 7-fold enhanced 
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transcript abundance in mlo2/6/12 mutant plants after G. orontii challenge compared to the 

wild-type. These results suggest an increased JA/ET signaling activity in mlo2/6/12 mutant 

plants after G. orontii inoculation. As previously published, enhanced PDF1.2 transcript 

abundance was also observed in wild-type plants upon challenge with the non-adapted 

powdery mildew Bgh but not in response to the host fungus G. cichoracearum (Zimmerli et 

al., 2004). It was thus concluded that the host pathogen must either suppress or fail to elicit 

the JA/ET signaling pathways. Differential transcript levels of PDF1.2 genes in G. orontii-

challenged mlo2/6/12 mutant plants disagree with the latter hypothesis and rather favour the 

first assumption, pointing to a negative regulation of JA and/or ET signaling by MLO proteins 

in response to G. orontii. Consequently, an increased activity of these phytohormones in 

powdery mildew-challenged mlo2/6/12 mutant plants may contribute to resistance. 

Inconsistent with this hypothesis, jasmonate levels did not differ between mlo2/6/12 and wild-

type plants in response to G. orontii inoculation (Fig. 2.5). However, a possible dilution effect 

in whole leaf-based analysis or altered ET accumulation and signaling in G. orontii-

challenged mlo2/6/12 mutant plants cannot be excluded. Nonetheless, mlo2 double mutants 

affecting the JA or ET pathway still displayed a resistant powdery mildew infection 

phenotype, which was comparable to mlo2 single mutants (Consonni et al., 2006). Taken 

together these findings rather preclude a role for JA/ET signaling in mlo-based powdery 

mildew immunity, although a compensatory effect of both pathways cannot be ruled out. 

Therefore, a triple mutant defective in MLO2 and both signaling pathways is required to 

conclusively investigate this possibility. As demonstrated in this and previous studies, the 

major regulators of JA and ET signaling, COI1 and EIN2, are required for PDF1.2 gene 

expression in G. orontii treated mlo plants, but they are dispensable for mlo-mediated 

powdery mildew resistance, indicating that the plant defensins PDF1.2 do not contribute to 

mlo-based immunity (Fig. 2.4F) (Consonni et al., 2006). Nevertheless, it remains elusive how 

JA/ET-responsive genes are activated in mlo2/6/12 mutant plants upon G. orontii inoculation. 

Notably, PDF1.2 gene expression seems to underlie circadian oscillations resulting in 

elevated transcript accumulation at the same time point when PDF1.2 gene expression was 

induced in mlo2/6/12 mutant plants by G. orontii (Fig. 2.4D). However, this contribution is 

rather minor, as non-treated mlo2/6/12 plants displayed a much lower PDF1.2 gene 

expression than G. orontii-challenged plants. Currently it cannot be excluded that the fungus 

induces a wound response during its penetration attempts, resulting in enhanced PDF1.2 

transcript abundance.  
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3.2.6 MLO proteins negatively regulate CDPK-mediated gene activation in response to 
MAMPs 
 

MAMP perception triggers a broad set of cellular responses that are supposed to enhance the 

state of plant immunity to limit invasion and propagation of potential microbial intruders. To 

date knowledge about a potential function of MLO proteins in MAMP-induced signaling 

pathways is lacking. Consequently, analysis of MAMP-triggered responses in mlo mutant 

plants was undertaken in this study. Interestingly, the oxidative burst in response to chitin, but 

not flg22 treatment, was abolished in mlo2/6/12 triple mutant, but not in mlo2 single mutant 

plants (Fig. 2.8A). This result implicates a role of MLO6 and/or MLO12 in ROS formation 

that is specific to chitin and independent of MLO2. To clarify if one or both MLO proteins 

mediate chitin-induced ROS formation, analyses of the single or respective mlo6/12 double 

mutant are required. Consistent with unaltered MAPK induction upon treatment with flg22 or 

chitin, activation of MAPK-induced genes including FRK1, WRKY22 and WRKY29 was not 

changed in mlo2/6/12 mutant plants, indicating that MAMP-triggered MAPK signaling is not 

affected in the mutant (Fig. 2.8B, 2.9A, B, 2.10B). In contrast, CDPK-activated genes such as 

PHI1, PROPEP2, PROPEP3 and NHL10 displayed elevated transcript levels in the mlo2/6/12 

mutant in response to flg22 and chitin (Fig. 2.9D, E, 2.10A, C). These findings suggest a 

negative regulation of MAMP-induced CDPK signaling by the MLO proteins. Consistent 

with this notion, transient expression of a putative constitutive active variant of the barley 

HvCDPK3 partially compromised mlo-mediated Bgh resistance in barley, corroborating a 

negative regulation of CDPK signaling by MLO proteins (Freymark et al., 2007). A similar 

break in mlo resistance to Bgh was also observed upon expression of the junction domain of 

the paralog HvCDPK4, which supposed to exert a dominant negative effect on multiple 

CDPKs, pointing to antagonistic roles of individual CDPKs (Freymark et al., 2007). However 

a potential link between MLO function and CDPK signaling requires further investigation and 

in-gel kinase assays to detect MAMP-induced CDPK activity in mlo mutant plants as well as 

cdpk mutant analysis would be of interest in this context. 

 
3.2.7 A model for MLO-mediated control of powdery mildew defense 
 

Mutations affecting the PEN1- or PEN2- (PEN2, PEN3, CYP79B2, CYP79B3) defense 

pathway restore powdery mildew susceptibility in the mlo2 mutant, indicating that presence of 

MLO2 negatively regulates these defense pathways (Consonni et al., 2006; Consonni et al., 

2010). Consistently, results obtained in this study demonstrated that dependent on the 

presence of MLO proteins the host fungus, G. orontii, is able to suppress the accumulation of 
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the defense-relevant PEN2 substrate, 4MI3G, thereby inhibiting the PEN2-dependent 

glucosinolate defense pathway (Fig. 2.6). However, it remains elusive if this suppression acts 

through the MLO proteins or requires the formation of post-invasive fungal infection 

structures.  

In addition, data presented in this study point to a negative regulation of transcriptional 

defense gene activation by MLO proteins in response to powdery mildew challenge 

(Supplementary Table 6.1). Unexpectedly, defense gene activation upon MAMP treatment 

appears also to be suppressed by MLO proteins, suggesting an impact of MLO functions on 

MAMP-triggered signaling, possibly through the regulation of CDPK-cascades (Fig.2.9, 

2.10). Consistent with previous findings, results from this study preclude a role of JA 

signaling in mlo-mediated resistance (Fig. 2.4, 2.5) (Consonni et al., 2006). In any way, 

findings from this work rather disagree with a constitutive activation of defense responses in 

mlo mutants. Taken together, powdery mildew resistance in mlo mutants appears to be the 

consequence of multiple more rapidly activated defense response pathways (Fig. 3.2).  

The presence of MLO is absolutely required for powdery mildew fungi to successfully infect 

the host plant. It was therefore proposed that these pathogens possibly abuse MLO function(s) 

to suppress host defense (Panstruga, 2005). Alternatively, MLO proteins were suggested to 

function as a negative regulator (modulator) of plant defense (Panstruga and Schulze-Lefert, 

2003). Data obtained in this study rather support the second hypothesis. Early defense gene 

activation upon MAMP treatment, which did not implicate the influence of the fungus, 

occurred faster in the Arabidopsis mlo2/6/12 triple mutant than in the wild-type, suggesting 

that MLO proteins dampen early MAMP signaling. However, it can not be ruled out that 

powdery mildew fungi potentiate the negative regulatory role of MLO proteins, e.g. by 

manipulation of MLO activity via secreted effector proteins.  

It has been previously hypothesized that powdery mildew non-host resistance and mlo-

mediated immunity share common defense execution machinery (Humphry et al., 2006). The 

results obtained in this study corroborate this hypothesis, pointing to similar transcriptional 

reprogramming events in wild-type and mlo mutant plants in response to the non-adapted and 

adapted powdery mildew fungus, respectively.  
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Figure 3.2 A hypothetical model for MLO-mediated control of Arabidopsis defense. MAMP recognition 
mediates MAPK and CDPK signaling resulting in transcriptional activation. MLO proteins negatively regulate 
defense, including the PEN1-dependent secretory pathway, biosynthesis of Trp-derived secondary metabolites, 
transcriptional activation of defense-related genes and MAMP-induced CDPK signaling. Powdery mildew fungi 
may potentiate the negative regulatory role of MLO proteins. Components marked by the red cross are not 
required for mlo-mediated resistance. JA: jasmonates, ET: ethylene, SA: salicylic acid, PRR: pathogen 
recognition receptor, MAMP: microbe-associated microbial pattern. 
 
3.3 Perspectives 
 

Results presented in this study point to a role of the Gβ subunit in the regulation of flg22-

induced CDPK signaling cascades. In order to prove this assumption in-gel kinase assays to 

detect potentially altered flg22-induced CDPK activity would be of interest. Preliminary data 

indicate that Gβ functions may be involved in the modulation of Ca2+ influxes in response to 

flg22. However, these data have to be confirmed in additional experiments. Nonetheless, it 

would be of interest to determine cyclic nucleotide concentrations in flg22-treated agb1 

mutant plants to investigate a putative link between Gβ and CNGC-mediated Ca2+ influxes. 

Moreover, the generation of a genuine agg1/agg2 double mutant is indispensable to analyze a 

putative redundant function between the Gγ1 and Gγ2 subunits in MAMP-triggered 

responses.  

Data obtained in this study indicate an impact of MLO function(s) in MAMP signaling. 

Interestingly, MLO6 and/or MLO12, but not the MLO2 protein, seem to regulate ROS 

production that is specific to chitin. Mutant analysis using the single or respective mlo6/12 

double mutant is required to entangle the role of these MLO proteins to chitin-mediated 

oxidative burst. 
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4. Material and Methods 
 

4.1 Material 
 

4.1.1 Plant materials 
 

Arabidopsis thaliana (here referred to as Arabidopsis) wild-type and mutant lines used in this 

study are listed in Table 4.1 and 4.2, respectively. G-protein mlo2 double mutants were 

generated by crossing the mlo2-6 mutant with the corresponding G-protein single mutants 

listed below and homozygous plants were selected by PCR genotyping from F2 progeny.  

 
Table 4.1. Wild-type Arabidopsis accessions used in this study 
Accession Abbreviation Original source 
Columbia Col-0 J. Dangla

Wassilewskaija Ws-0 K. Feldmannb 

aUniversity of North Carolina, Chapel Hill, NC, USA 
bUniversity of Arizona, Tuscon, AZ, USA 

 
Table 4.2. Mutant Arabidopsis lines used in this study 
Mutant allele Accession  Mutagen (Reference/Source 
agb1-2 Col-0 T-DNA (Ullah et al., 2003) 
agb1-9 Col-0 EMS (A. M. Jonesa 
agg1-1 Col-0/(Ws-0)b T-DNA (Trusov et al., 2007 
agg2-1 Col-0 T-DNA (Trusov et al., 2007 
agg1-1/agg2-1 Col-0/(Ws-0)b T-DNA (Trusov et al., 2007 
fls2 Col-0 T-DNA (Zipfel et al., 2004 
gpa1-4 Col-0 T-DNA (Jones et al., 2003) 
mlo2-6 Col-0 T-DNA (Consonni et al., 2006
mlo2-11 Col-0 EMS (Consonni et al., 2006
mlo2-11/coi1-1 Col-0 EMS (C. Consonnic 

mlo2-11/ein2-1 Col-0 EMS (C. Consonnic  
mlo2-5/mlo6-2/mlo12-1 Col-0 T-DNA/T-DNA/transposon (Consonni et al., 2006
pen2-1 Col-3, gl1 EMS (Lipka et al., 2005 
pen2-1/mlo2-5/6-2/12-1 Col-0/Col-3, gl1 EMS/ T-DNA/T-DNA/transposon (R. Panstrugac 
rgs1-1 Col-0 T-DNA (Chen et al., 2003 
aUniversity of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; unpublished 

bWs-0 agg1-1 allele introgressed into Col-0 genetic background, 8th backcrossed generation 
cMax-Planck Institute for Plant Breeding Research, Cologne, Germany; unpublished 
EMS: ethyl methanesulfonate; T-DNA: transfer DNA 

 
4.1.2 Pathogens 
 

4.1.2.1 Pseudomonas syringae pv. tomato (Pst) 
 

Pseudomonas syringae pv. tomato (Pst) wild-type strain DC3000 (R. Innes, Indiana 

University, Bloomington, Indian, USA) and Pst DC3000 hrcC defective in the type III 

secretion system (K. Shirasu, The Sainsbury Laboratory, John Innes Centre, Norwich, UK) 

were used throughout this study. 
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4.1.2.2 Powdery mildew fungi 
 

Anonymous powdery mildew isolates of Golovinomyces orontii (G. orontii) and Erysiphe pisi 

(E. pisi) kept at the Max-Planck Institute for Plant Breeding Research (Cologne, Germany) as 

well as the Blumeria graminis f. sp. hordei (Bgh) isolate K1 were used in this study 

(Büschges et al., 1997; Lipka et al., 2005).   

 
4.1.3 Vectors 
 

Vectors used in this study are listed in Table 4.3. 

 
Table 4.3. Vectors used in this study 
Vector Description
pAM-PAT-35S-mCherry-AEQ-NES Binary Gateway® vector expressing mCherry-tagged aequorin carrying 

a NES motif obtained from Dr. M. Kwaaitaal (Max-Planck Institute for 
Plant Breeding Research, Cologne, Germany).  

pEX-35S-FLS2-YFP Binary Gateway® vector expressing YFP-tagged FLS2 obtained by Dr. 
N. Frey dit Frei (Max-Planck Institute for Plant Breeding Research, 
Cologne, Germany). 

 

4.1.4 Oligonucleotides 
 

Oligonucleotides used in this study are listed in Tables 4.4 and 4.5 and were purchased from 

Invitrogen (Karlsruhe, Germany). 

 
Table 4.4. Oligonucleotides used in this study for qRT-PCR analysis (F: forward, R: reverse) 
Gene AGI code Sequence 5’ 3’ Reference 
At4g26420 At4g26420 F: GAGCTGAAGTGGCTTCCATGAC Czechowski et al., 2005
  R: GGTCCGACATACCCATGATCC
FRK1 At2g19190 F: CGGTCAGATTTCAACAGTTGTC Boudsocq et al., 2010
  R: AATAGCAGGTTGGCCTGTAATC
LOX2 At2G45140 F: TGAATTGCAAGCTGTTGCTC unpublished 
  R: GCAGAAGCTACAAGACCACC
NHL10 At2g35980 F: TTCCTGTCCGTAACCCAAAC Boudsocq et al., 2010
  R: CCCTCGTAGTAGGCATGAGC
PDF1.2a At5g44420 F: TAAGTTTGCTTCCATCATCACCC Zimmerli et al., 2004
  R: GTGCTGGGAAGACATAGTTGCAT
PDF1.2b At2g26020 F: ACGCTGCTCTTGTTCTCTTTGCA Zimmerli et al., 2004
  R: AAGTACCACTTGGCTTCTCGCAC
PHI1 At1g35140 F: TTGGTTTAGACGGGATGGTG Boudsocq et al., 2010
  R: ACTCCAGTACAAGCCGATCC
PROPEP2 At5g64890 F: AGAAAAGCCTAGTTCAGGTCGTC unpublished 
  R: CTCCTTATAAACTTGTATTGCCGC
PROPEP3 At5g64905 F: GTTCCGGTCTCGAAAGTTCATC unpublished 
  R: TGAACTCTAATTGTGTTTGCCTCC
VSP2 At5g24770 F: ACCGTTGGAAGTTGTGGAAG unpublished 
  R: CCAAATCAGCCCATTGATCT
WRKY22 At4g01250 F: CATCCGATCAACAGACGAGTAAAT Lu et al., 2009 
  R: AAATTCGTCGGCTGAAGTCAC
WRKY29 At4g23550 F: TCCTATGATCCCATCCGCTG Lu et al., 2009 
  R: CGCTTGGTGCGTACTCGTT
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Table 4.5. Oligonucleotides used in this study for sequencing (F: forward, R: reverse) 
Gene AGI code Sequence 5’ 3’ Reference 
FLS2 At5g46330 F: TCTTAGGGTTTGCGTGGGAAAGCG unpublished 
  R: AATCGATTTCTCCACCAATTGGCGC
 

4.1.5 Enzymes 
 

Restriction enzymes were purchased from New England Biolabs (Frankfurt/Main, Germany) 

and Fermentas (St. Leon-Rot, Germany). Restriction digestions were performed following the 

manufacturer’s recommendations, using the provided 10 x reaction buffer. Standard and 

quantitative RT-PCR reactions were performed using home-made Taq DNA polymerase. 

 
4.1.6 Chemicals and antibiotics 
 

Laboratory grade chemicals and reagents were purchased from Sigma-Aldrich (Deisenhofen, 

Germany), Roche (Mannheim, Germany), Roth (Karlsruhe, Germany), Merck (Darmstadt, 

Germany), Invitrogen (Karlsruhe, Germany), Serva (Heidelberg, Germany) unless otherwise 

stated. Rifampicin (Rif) antibiotic stock solution (1000 x) was prepared in DMSO, sterile 

filtrated and used in the concentration of 100 µg/ml. 

 
4.1.7 Elicitors 
 

Peptides were synthetized by EZBiolab Inc. (Carmel, USA) with the following sequences: 

flg22 – QRLSTGSRINSAKDDAAGLQIA and elf18 – AcSKEKFERTKPHVNVGTIG. Crab 

shell chitin (Sigma-Aldrich, Deisenhofen, Germany) was prepared in water at a concentration 

of 10 mg/ml, ground with a pestle, heated at 56 °C for 15 – 30 min and centrifuged at 13,000 

rpm for 15 min. The supernatant was used to trigger MAMP responses.   

 
4.1.8 Antibodies 
 

Primary and secondary antibodies used in this study for immunoblot analysis (4.2.6.3) are 

listed in Table 4.6. 

 
Table 4.6. Primary and secondary antibodies used in this study 
Antibody Source Conjugate Dilution (Reference 
α-PEN1 rabbit, polyclonal - 1:5000 (Zhang et al., 2007)
α-PEN2 rabbit, polyclonal - 1:5000 (Lipka et al., 2005
α-phospho p44/p42 MAPK rabbit, polyclonal - 1:1000 (Cell Signaling,USA
α-rabbit IgG goat, monoclonal horseradish peroxidase 1:5000 (Santa Cruz, USA
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4.1.9 Media, buffers and solutions 
 

Media were sterilised by autoclaving at 121 °C for 20 min. For the addition of antibiotics and 

other heat labile compounds the solution or media were cooled. Heat labile compounds were 

sterilised using filter sterilisation units prior to addition. 

 
Pseudomonas syringae media 

NYG broth 

Bactopeptone  5 g/l 
Yeast extract  3 g/l 
Glycerol  20 ml/l 
pH 7.0 
 
For NYG agar plates 1.5 % (w/v) bacto agar (Becton, Franklin Lakes, USA) was added to the 

above broth. 

 
Arabidopsis thaliana media 

½ MS (Murashige and Skoog) medium 

MS powder including vitamins 2.2 g/l 
Sucrose       8 g/l 
pH 5.8 
 
For MS agar plates 0.8 % (w/v) plant agar (Duchefa, Haarlem, Netherlands) was added to the 

above medium. MS powder including nitch vitamins (MSN) was purchased from Duchefa 

(Haarlem, Netherlands).  

 
Buffers and solutions used in this study are described below each method. If not otherwise 

stated, buffers were prepared in dH2O and aqueous solutions were sterilized by autoclaving at 

121 °C for 20 min. 

 
4.2 Methods 
 

4.2.1 Maintenance and cultivation of Arabidopsis plants and pathogens 
 

Arabidopsis seeds were germinated by sowing directly onto moist compost (Stender, 

Schermbeck, Germany) or on jiffy pellets (Jiffy Products International AS, Stange, Norway) 

(Sections 2.2.1.1, 2.2.1.2, 2.2.2). Before sowing the jiffy pellets were moistened in water 

supplied with 1 ml/l Wuxal (Stender, Schermbeck, Germany) fertilizer. Seeds were stratified 

for three days at 4 °C in darkness and subsequently transferred to a controlled environment 

growth chamber and maintained under short day conditions (10 h light/14 h darkness, 23 °C 
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during light period, 20 °C during darkness and 60 % humidity). For pathogen treatment plants 

were transferred to growth chambers designated for the respective pathogen (see below). For 

MAMP-triggered gene expression assays (Sections 2.2.4, 2.3.1) seedlings were grown on ½ 

MS agar plates for 5 days and subsequently on ½ MS liquid medium under controlled 

conditions (10 h light/14 h darkness, 21 °C during light period, 21 °C during darkness and 70 

% humidity).  

The barley powdery mildew fungus Bgh isolate K1 was maintained on seven-day-old barley 

seedlings I10, a near-isogenic line of Ingrid, and plants were kept at 14 h light/10 h darkness, 

21 °C during light period and during darkness and 70 % humidity. Bgh inoculated 

Arabidopsis plants were transferred into a climate chamber suitable for Arabidopsis 

cultivation (10 h light/14 h darkness, 23 °C during light period, 21 °C during darkness and  60 

% humidity).  

The pea powdery mildew fungus E. pisi was propagated on 3-week-old pea plants cultivar 

Linga and plants were kept at 12 h light/12 h darkness, 22 °C during light period and during 

darkness and 70 % humidity.  

The Arabidopsis powdery mildew fungus G. orotnii was maintained on Arabidopsis 

pad4/sag101 double mutants cultivated at 10 h light/14 h darkness, 22 °C during light period 

and during darkness and 70 % humidity.  

Pseudomonas syringae DC3000 strains (4.1.2.1) were streaked onto selective NYG agar 

plates containing rifampicin (100 µg/ml) and were incubated at 28 °C for 48 h. Plants sprayed 

with Pst bacterial strains were kept at 10 h light/14 h darkness, 23 °C during light period,     

22 °C during darkness and 65 % humidity. 

 
4.2.2 Arabidopsis seed surface sterilization 
 

Seeds were placed in 2 ml tubes and washed with 70 % ethanol for 30 sec followed by a 

second washing step with 100 % ethanol. The ethanol was removed and seeds were dried in a 

sterile hood.  

 
4.2.3 Generation of Arabidopsis protoplasts 
 

Arabidopsis leaf mesophyll protoplasts were prepared from 4 - 5-week-old plants according to 

Asai et al., 2002, with some modifications. Fifteen leaves were cut in strips and placed in the 

enzyme solution (0.4 M Mannitol; 20 mM KCl; 20 mM MES pH 5.7) containing 1 % 

cellulase R-10 (Merck, Darmstadt, Germany), 0.2 % macerozyme R-10 (Serva, Heidelberg, 

Germany) and 0.1 % BSA (Sigma-Aldrich, Deisenhofen, Germany). The solution was 
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vacuum-infiltrated for 15 - 30 min and incubated for 3 h in the dark. The protoplasts were 

released by shaking for 1 min and W5 solution (154 mM NaCl; 125 mM CaCl2; 5 mM KCl; 2 

mM MES pH 5.7) was added. The protoplast solution was filtered through a nylon mesh and 

centrifuged at 100 g for 2 min. The protoplast pellet was resuspended in W5 solution, 

centrifuged again and dissolved in MMg solution (0.4 M Mannitol; 15 mM MgCl2; 4 mM 

MES pH 5.7). Protoplasts were diluted in MMg solution to a concentration of 2 * 105/ml. 

 
4.2.4 Pathogen infection assays 
 

4.2.4.1 Pseudomonas syringae pv. tomato infections 
 

Four-week-old Arabidopsis plants were watered and kept under a humidified lid before 

treatment. P. syringae spray inoculation was performed with a bacterial suspension 

(OD600=0.2) in 10 mM MgCl2 supplemented with 0.04 % Silwet L-77. Infected plants were 

kept in a covered container and samples were harvested at 1 h (0 dpi) and 3 days (3 dpi) post-

inoculation. A total of 9 surface-sterilized leaf discs (5 mm diameter) excised from 9 plants 

per genotype were separated into 3 pools, and subjected to the quantification of leaf bacteria. 

Bacterial titers were determined by shaking the leaf discs in 10 mM MgCl2 supplemented 

with 0.01 % Silwet L-77 at 28 °C for 1 h (Tornero and Dangl, 2001). The resulting bacterial 

suspensions were serially diluted 1:10 and an aliquot of 20 μl per dilution was grown on 

selective NYG agar medium with rifampicin (100 µg/ml) at 28 °C for 48 h before colony 

numbers were determined. Bacterial infections per genotype were performed in two to three 

independent experiments. 

 
4.2.4.2 Powdery mildew infections  
 

Powdery mildew inoculations were carried out as described before (Consonni et al., 2006). In 

brief, 4-week-old Arabidopsis plants were inoculated with G. orontii or E. pisi spores and 

quantitative analysis of fungal entry rates were performed at 48 hpi or at 7 dpi, respectively. 

Quantification of G. orontii conidiophore formation was assessed at 7 dpi. For visualization of 

epiphytic fungal structures, detached leaves were cleared with ethanol/acidic acid (3/1 (v/v)) 

and subsequently stained with 0.6 % Coomassie Brillant Blue in ethanol. For quantification of 

fungal entry rate, the proportion of germinated fungal sporelings that developed secondary 

hyphae was assessed on at least 6 leaves (two leaves per plant) per genotype (minimum of 40 

germinated sporelings/leaf evaluated). Fungal penetration success on each genotype was 

quantified in at least three independent experiments. The quantification of conidiophore 
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formation was performed by counting conidiophores on a single fungal colony. A minimum 

of 24 leaves (two leaves per plant) per genotype were counted in at least three independent 

experiments. 

 
4.2.5 Molecular biological methods 
 

4.2.5.1 Genomic DNA extraction 
 

Genomic DNA was isolated as previously described (Edwards et al., 1991). In brief, 

Arabidopsis leaf tissue was ground in Edwards buffer (200 mM Tris-HCl ph 7.5; 250 mM 

NaCl; 25 mM EDTA; 0.5 % SDS) and centrifuged at 13,000 rpm for 5 min. The DNA in the 

supernatant was precipitated with isopropanol and centrifuged. The DNA pellet was washed 

with 70 % ethanol, dried and resuspended in sterile water.   

 
4.2.5.2 RNA extraction and cDNA synthesis 
 

Total RNA from 2-week-old seedlings (Fig.2.9, 2.10, 2.12) was isolated using the RNeasy 

Plant Kit (QIAGEN, Hilden, Germany) according to the manual provided. RNA from mature 

leaves of 4-week-old plants (Fig. 2.3, 2.4) was extracted with 1 ml Trizol (Invitrogen, 

Karlsruhe, Germany) per 100 mg leaf material according to the manufacturer’s instructions. 

In this case, further purification of the isolated RNA was performed using mini columns from 

the RNeasy Plant Kit as suggested by the manufacturers (QIAGEN, Hilden, Germany). cDNA 

was synthesized using 5 µg total RNA, oligo(dT) primers and the SuperScript II reverse 

transcriptase according to the manual provided (Invitrogen, Karlsruhe, Germany). 

 
4.2.5.3 Polymerase chain reaction (PCR) 
 

Standard PCR reactions were performed using home-made Taq DNA polymerase and were 

carried out in a Peltier Thermal Cycler PTC-225 (GMI Inc., Ramsey, USA). A typical PCR 

reaction mix and thermal profile is shown below using the 10 x PCR buffer containing 750 

mM Tris-HCl pH 8.8; 200 mM (NH4)2SO4; 0.1 % (v/v) Tween 20; 25 mM MgCl2. 

 
Reaction mix  PCR programme
genomic DNA 2 µl  Initial denaturation 95 °C 5 min 
PCR buffer (10 x) 2,5 µl  Denaturation 95 °C 30 sec 
dNTPs (10 mM) 0.5 µl  Annealing 55 °C 30 sec          (35 x) 
Forward primer (10 µM) 1 µl  Extension 72 °C 1.5 min 
Reverse primer (10 µM) 1 µl  Final extension 72 °C 3 min 
Taq polymerase 0.5 µl  16 °C 5 min 
H2O ad 25 µl  
 

 77



Material and Methods_______________________________________________________________________ 

4.2.5.4 Quantitative RT-PCR 
 

Quantification of transcripts of the indicated genes was performed on the IQ5 real-time PCR 

Thermocycler (Bio-Rad, Hercules, USA) using the primers listed in Table 4.4. A typical PCR 

reaction mix and thermal profile is shown below. The expression of the genes of interest, 

normalized to At4g26420 encoding a methyltransferase and relative to the transcript 

abundance in Col-0 wild-type control samples at 0 hpi was calculated according to the 

comparative cycle threshold (ΔΔCt) method (Libault et al., 2007). The reference gene 

At4g26420 was previously described to be stably expressed upon biotic stresses (Czechowski 

et al., 2005). Three technical replicates per sample were included. Experiments were 

performed once (Fig. 2.4F), in two (Fig. 2.4B, D, E and 2.10A-C and 2.12A-F) or in three 

independent (Fig. 2.4A, C and 2.9A-E) biological replicates. 

 
Reaction mix  PCR programme  
cDNA (1:10) 1 µl Initial denaturation 95 °C 2 min 
PCR buffer (10 x) see 2.2.53 2.5 µl Denaturation 95 °C 20 sec 
dNTPs (10 mM) 0.5 µl Annealing 59 °C 30 sec          (40 x)
Forward primer (10 µM) 1 µl Extension 72 °C 25 sec 
Reverse primer (10 µM) 1 µl 95 °C 1 min 
SYBR® Green (1:3000) 1.25 µl 55 °C 1 min 
Glycerol (50 %) 4 µl Melting curve 55 – 95 ° C 10 sec; à 0.5 °C; 81 x
DMSO (100 %) 0.75 µl  
Taq polymerase 0.5 µl  
H2O ad 25 µl  
 

4.2.5.5 Microarray experiment and data analysis  
 

Powdery mildew inoculated mature rosette leaves from 4-week-old plants (three per genotype 

and time point) were harvested at 0 (prior to inoculation), 8 and 12 hpi and frozen                  

in liquid nitrogen. Total RNA was extracted according to 4.2.5.2. Copy                       

RNA (cRNA) was prepared following the manufacturer's instructions 

(www.affymetrix.com/support/technical/manual/expression_manual.affx). Labeled cRNA 

transcripts were purified using the sample cleanup module (Affymetrix). Fragmentation of 

cRNA transcripts, hybridization, and scanning of the high-density oligonucleotide microarrays 

(Arabidopsis ATH1 genome array; Affymetrix) were performed according to the 

manufacturer's GeneChip Expression Analysis Technical Manual. Three replicates per time 

point and genotype were performed. The quality of the data was evaluated at probe level by 

examining the arrays for spatial effects, distribution of absent and presents calls, and the 

intensity of spike-in controls. The robust multiarray average procedure (Irizarry et al., 2003) 

was used to correct for background effects and chip effects and to summarize the probe values 
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into probe set values, resulting in 22,811 normalized expression values per array. 

R/Bioconductor (Gentleman et al., 2004) was used to preprocess the raw microarray data. The 

ANOVA statistical test was applied in combination with the false discovery rate test method 

to correct for the P-values (Benjamini and Hochberg, 1995). To identify candidate genes with 

potentially altered transcript accumulation in the mlo2 mlo6 mlo12 triple mutant after powdery 

mildew inoculation genes were selected that showed a significant (P ≤ 0.05) and at least 2-

fold higher transcript accumulation at 0, 8 and 12 hpi in the mutant (M) than in the wild-type 

(WT) resulting in the group I list (group I: M 0 hpi ≥ 2 x WT 0 hpi: 1 gene; M 8 hpi ≥ 2 x WT 

8 hpi: 116 genes; M 12 hpi ≥ 2 x WT 12 hpi: 66 genes). Furthermore genes that showed a 

significant (P ≤ 0.05) at least 2-fold lower transcript accumulation at 0, 8 and 12 hpi in the 

mutant than in the wild-type were selected and resulted in the group II gene list (group II: M 0 

hpi ≤ 2 x WT 0 hpi: 0 genes; M 8 hpi ≤ 2 x WT 8 hpi: 20 genes; M 12 hpi ≤ 2 x WT 12 hpi: 1 

gene). Analysis of overrepresented gene processes was carried out by using the               

online tool MapMan (www.mapman.gabipd.org/web/guest/mapman) (Thimm et al., 2004). 

Genevestigator V3 (https://www.genevestigator.com/gv/index.jsp) was used for meta-analysis 

of gene expression (Hruz et al., 2008). 

 
4.2.5.6 DNA sequencing and analysis 
 

DNA sequences were determined by the “Automatische DNA Isolierung und Sequenzierung” 

(ADIS) service unit at the Max-Planck Institute for Plant Breeding Research (Cologne, 

Germany) on Abi Prism 377 and 3700 sequencers(Applied Biosystems, Weiterstadt, 

Germany) using Big Dye-terminator chemistry. Sequence data were analysed using EditSeq™ 

version 5.00 (DNAStar, Madison, USA). 

 
4.2.5.7 Agarose gel electrophoresis of DNA 
 

DNA fragments were separated by agarose gel electrophoresis in gels consisting of 1 - 3 % 

(w/v) agarose (Bio-Budget Technologies, Krefeld, Germany) supplied with ethidium bromide 

solution (1:40000) in TAE buffer (400 mM Tris; 10 mM EDTA; 200 mM acetic acid; pH 

8.5).  

 
4.2.5.8 PEG transfection of Arabidopsis protoplasts  
 

Leaf mesophyll protoplasts (2 * 105/ml) were transfected with plasmid DNA (1 µg/ml) and 

PEG solution (40 % (v/v) PEG4000 (Fluka); 0.2 M Mannitol; 0.1 M Ca(NO3)2) and were 
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incubated for 15 min. The protoplast solution was washed with W5 solution (see 4.2.3), 

centrifuged at 150 g for 2 min and resuspended in W5 solution. Protoplasts used for analysis 

of flg22-induced MAPK activation were treated with WI solution (0.5 M Mannitol; 20 mM 

KCl; 2 mM CaCl2; 4 mM MES pH 5.7) and instead of W5 as protoplasts for Ca2+ 

measurements. 

 
4.2.6 Biochemical methods 
 

4.2.6.1 Total protein extraction 
 

Total protein extracts were prepared from leaves of 4 - 5-week-old plants. Plant material was 

frozen in liquid nitrogen and homogenized with stainless steel beads (1,5 mm; Mühlheimer, 

Bärnau, Germany) in a Mini-Beadbeater-8 (Biospec Products, Bartlesville, USA). Lysis 

buffer (20 mM HEPES pH 7.5; 13 % Sucrose; 1 mM EDTA; 1 mM DTT; 0.01 % Trition, 1x 

complete protease inhibitor cocktail (Roche, Mannheim, Germany)) was added (120 µl/100 

mg FW) and samples were centrifuged at 13,000 rpm, 4 °C for 10 min. The supernatant was 

collected and the protein concentration was determined using the Bradford reagent (Bio-Rad, 

Hercules, USA) according to the manufacturer’s instructions. Subsequently, 2x loading buffer 

(125 mM Tris-HCl pH 6.8; 5 % SDS; 25 % Glycerol (v/v); 0,025 % Bromphenol blue (w/v); 

0.2 M DTT) was added, boiled for 10 min and samples were loaded onto SDS-polyacrylamide 

gels.  

 
4.2.6.2 Denaturing SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
 

Denaturing SDS-PAGE was carried out using the Mini-PROREAN® 3 system (Bio-Rad, 

Hercules, USA) and discontinuous SDS-polyacrylamide gels according to standard 

procedures (Laemmli, 1970). A 10 % separating gel (Table 4.7) was poured between two 

glass plates and overlaid with ethanol. After polymerization the ethanol was removed and a 

stacking gel was poured onto the separating gel (Table 4.7).   

 
Table 4.7 Formulation for separating and stacking gel 
Separating gel 10 % Stacking gel  
30 % Acrylamide/Bis solution, 29:1 (Roth) 5 ml 30 % Acrylamide/Bis solution, 29:1 (Roth) 6.8 ml
1 M Tris-HCl pH 8.8 5.7 ml 1 M Tris-HCl pH 6.8 1.26 ml
10 % SDS 150 µl 10 % SDS 100 µl
10 % APS 150 µl 10 % APS 100 µl
TEMED  6 µl TEMED 15 µl
dH2O 4 ml dH2O 6.8 ml
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SDS-polyacrylamide gel was placed into the electrophoresis tank and submerged in 1x SDS-

running buffer (25 mM Tris; 250 mM Glycine; 0.1 % SDS). A pre-stained molecular weight 

marker (Precision plus protein standard dual colour, Bio-Rad, Hercules, USA) and denatured 

protein samples were loaded onto the gel and run at 100 V (stacking gel) and 130 V 

(separating gel).  

 
4.2.6.3 Immunoblot analysis 
 

Proteins that were separated on SDS-polyacrylamide gels were transferred to a Hybond™-

ECL™ nitrocellulose membrane (Amersham Biosciences, Buckinghamshire, UK) in a Mini 

Trans-Blot® Cell (Bio-Rad, Hercules, USA) according to the manufacturer's instruction. The 

transfer was carried out in 1 x transfer buffer (15 mM NaPO4; 0.05 % SDS; 20 % Ethanol) at 

70 V for 2 h. Subsequently, membranes were stained with Ponceau S (0.5 % Ponceau S (w/v) 

in 5 % (v/v) acedic acid) for 10 min, washed 3 x 5 min with PBS-T (10 mM Na2HPO4; 2 mM 

NaH2PO4; 137 mM NaCl; 1:1000 Tween20; pH 7.5) and blocked for 1 h in PBS-T containing 

5 % (w/v) non-fat dry milk (AppliedChem, Germany). The blocking solution was removed 

and membranes were washed 3 x 5 min with BBS-T. Incubation with primary antibodies was 

carried out overnight by slowly shaking at 4 °C in PBS-T. The primary antibody solution was 

removed and membranes were washed 3 x 5 min with PBS-T at room temperature. Bound 

primary antibodies were detected using horseradish peroxidase (HRP)-conjugated goat anti-

rabbit secondary antibodies diluted in PBS-T for 1 h at room temperature. For antibody details 

see 4.18. The antibody solution was removed and membranes were washed 3 x 5 min with 

PBS-T. Chemiluminescence detection using the SuperSignal®
 West Pico Chemimuminescent 

kit or a 8:1 mixture of the SuperSignal®
 West PicoChemimuminescent- and SuperSignal®

 

West Femto Maximum Sensitivity-kits (Pierce, Rockford, USA) was carried out according to 

the manufacturer’s instructions. Luminescence was detected by exposing the membrane to 

photographic film. 

 
4.2.7 Analysis of indolic metabolites and oxylipins 
 

4.2.7.1 Extraction of indolic metabolites and HPLC analysis 
 

Extraction of secondary metabolites was performed in collaboration with Dr. Paweł Bednarek 

(Max-Planck Institute for Plant Breeding Research, Cologne, Germany). Powdery mildew-

inoculated plants were collected at 8, 16 and 24 hpi and frozen in liquid nitrogen. Non-

inoculated control plants were harvested prior to inoculation. Extraction and HPLC analysis 
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of secondary metabolites was performed as previously described (Bednarek et al., 2009). 

After addition of DMSO (50 μl/20 mg FW), the tissue was homogenized with zirconium 

beads (1 mm; Roth, Karlsruhe, Germany) in a Mini-Beadbeater-8 (Biospec Products, 

Bartlesville, USA) and centrifuged for 15 min at 20,000 g. The supernatant was collected and 

subjected to HPLC on an Agilent 1100 HPLC system (Agilent Technologies, Santa Clara, 

USA) equipped with diode array detector and fluorescence detector. Samples were analyzed 

on an Atlantis T3 C18 column (150 mm x 2.1 mm, 3 μm; Waters) with 0.1 % trifluoroacetic 

acid as solvent A and 98 % acetonitrile/ 0.1 % trifluoroacetic acid as solvent B at a flow rate 

of 0.25 ml/min at 22°C (gradient of solvent A: 100 % at 0 min, 100 % at 2 min, 90 % at 9 

min, 72 % at 30 min, 50 % at 33 min, 20 % at 40 min, 100 % at 41 min). The concentrations 

of the metabolites of interest were quantified based on the comparison of their peak areas with 

those obtained during HPLC analyses of known amounts of the respective compounds 

purified from plant tissue (I3G, 4MI3G), synthetic (I3A) or commercial (RA) standards. Each 

sample was tested in three independent experiments. 

 
4.2.7.2 Extraction of oxylipins and HPLC-MS/MS analysis 
 

Extraction of jasmonic acid (JA), JA-isoleucine (JA-Ile), 12-oxo-phytodienoic acid (OPDA) 

and 10-oxo-dinor-phytodienoic acid (dinor-OPDA, dn-OPDA) was performed in 

collaboration with Prof. Dr. Ivo Feußner (Albrecht-von-Haller-Institut für 

Pflanzenwissenschaften, Göttingen, Germany) as previously described with some 

modifications (Luo et al., 2009). Powdery mildew-inoculated leaves were collected at 4, 8, 12 

and 24 hpi and plant material (200 mg) was extracted with 0.75 ml of methanol containing   

10 ng D6-JA, 30 ng D5-OPDA (kindly provided by Otto Miersch, Halle/Saale, Germany) each 

as internal standard. After vortexing, 2.5 ml of methyl-tert-butyl ether (MTBE) were added 

and the extract was shaken for 1 h at room temperature. For phase separation, 0.625 ml water 

was added, incubated for 10 min at room temperature and centrifuged at 450 g for 15 min. 

The upper phase was collected and the lower phase was re-extracted with 0.7 ml methanol 

and 1.3 ml MTBE as described above. The combined upper phases were dried under 

streaming nitrogen and resuspended in 100 μl of acetonitrile/water/acetic acid (20:80:0.1, 

v/v/v). The analysis of constituents was performed using an Agilent 1100 HPLC system 

(Agilent Technologies, Santa Clara, Germany) coupled to an Applied Biosystems 3200 hybrid 

triple quadrupole/linear ion trap mass spectrometer (MDS Sciex, Ontario, Canada). 

Nanoelectrospray (nanoESI) analysis was achieved using a chip ion source (TriVersa 

NanoMate; Advion BioSciences, Ithaca, USA). Reversed-phase HPLC separation was 
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performed on an EC 50/2 Nucleodure C18 gravity 1.8 µm column (50 x 2.1 mm, 1.8 µm 

particle size; Macherey and Nagel, Düren, Germany). The binary gradient system consisted of 

solvent A, acetonitrile/water/acetic acid (20:80:0.1, v/v/v) and solvent B, acetonitrile/acetic 

acid (100:0.1, v/v) with the following gradient program: 10 % solvent B for 2 min, followed 

by a linear increase of solvent B up to 90 % within 6 min and an isocratic run at 90 % solvent 

B for 2 min. The flow rate was 0.3 ml/min. For stable nanoESI, 130 µl/min of 2-

propanol/acetonitrile/water/formic acid (70:20:10:0.1, v/v/v/v) delivered by a 2150 HPLC 

pump (LKB, Bromma, Sweden) were added just after the column via a mixing tee valve. By 

using another post column splitter 740 nl/min of the eluent were directed to the nanoESI chip. 

Ionization voltage was set to -1.7 kV. Phytohormones were ionized in a negative mode and 

determined in multiple reaction monitoring mode. Mass transitions were as follows: 215/59 

[declustering potential (DP) -45 V, entrance potential (EP) -9.5 V, collision energy (CE) -22 

V] for D6- JA, 209/59 (DP -45 V, EP -9.5 V, CE -22 V) for JA, 296/170 (DP -70 V, EP -8.5 

V, CE -28 V) for D5-oPDA, 291/165 (DP -70 V, EP -8.5 V, CE -28 V) for OPDA, 263/59 

(DP -70 V, EP -8.5 V, CE -28 V) for dinor-OPDA and 322/130 (DP -80 V, EP -4 V, CE -30 

V) for JA-Ile. The mass analyzers were adjusted to a resolution of 0.7 amu full width at half-

height. The ion source temperature was 40 °C, and the curtain gas was set at 10 (given in 

arbitrary units). Quantification was carried out using a calibration curve of intensity (m/z) 

ratios of [unlabeled]/[deuterium-labeled] vs. molar amounts of unlabeled (0.3 – 1000 pmol). 

 
4.2.8 Analysis of MAMP responses 
 

4.2.8.1 ROS measurement 
 

ROS measurements were performed as described previously (Felix et al., 1999). Briefly, leaf 

discs (5 mm diameter) excised from 4-week-old plants were incubated over night in water 

before they were transferred into microtiter plates (CulturePlate-96, Perkin Elmer, Waltham, 

USA) containing 50 μl water. ROS production was triggered by the addition of 1 µM MAMP 

(unless otherwise stated; 4.1.7), applied in a reaction mixture containing 50 μl water, 20 μM 

luminol (Fluka, Deisenhofen, Germany) and 1 μg horseradish peroxidase (Sigma-Aldrich, 

Deisenhofen, Germany). Luminescence was measured in a Centro LB 960 microplate 

luminometer (Berthold Technologies, Wildbach, Germany). 
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4.2.8.2 MAPK measurement  
 

Leaf discs (5 mm diameter) excised from 4-week-old plants were incubated over night in 

water before MAMP treatment. Three leaf discs per genotype or 100 µl mesophyll protoplasts 

(2 * 105/ml) were treated with 1 µM flg22 or chitin (4.1.7) for the indicated time points. Total 

proteins were extracted using a lysis buffer containing 50 mM Tris at pH 7.5, 200 mM NaCl, 

1 mM EDTA, 10 mM NaF, 25 mM beta-glycerophosphate, 2 mM sodium orthovanadate, 10 

% (w/v) glycerol, 0.1 mM Tween 20, 0.5 mM DTT, 1 mM PMSF, and 1x complete protease 

inhibitor cocktail (Roche, Mannheim, Germany) as previously described (Saijo et al., 2008) 

and separated by SDS-PAGE (4.2.6.2). MAPK activation was detected by immunoblot 

analysis (4.2.6.3) using anti-phospho p44/p42 MAPK antibody (4.1.8).  

 
4.2.8.3 Calcium measurement 
 

Coelenterazine (10 µM in methanol) was added to leaf mesophyll protoplasts (2 * 105/ml) 

expressing the mCherry-tagged calcium sensor aequorin and incubated in darkness for at least 

two hours. Protoplasts (100 µl/well) were transferred into black microtiter plates 

(CulturePlate-96, Perkin Elmer, Waltham, USA) and mCherry fluorescence was quantified 

using the SynergyTM 4 Hybrid Microplate Reader (BioTek, Winooski, USA). Calcium spiking 

was triggered with 1 µM flg22 and chemiluminescence was monitored using the LAS-4000 

detection system (FujiFilm, Tokio, Japan). 

 
4.2.9 Analysis of callose deposition 
 

Leaves from 6-week-old plants grown under axenic conditions were detached, cleared with 

ethanol/acidic acid (3/1 (v/v)) and subsequently stained for 24 h with 0.01 % aniline blue in 

150 mM KH2PO4 (pH 5.8). Callose deposits were visualized by epifluorescence microscopy 

using a UV filter set. 
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6. Supplementary Material  
 

Tryptophan biosynthesis Chorismatic acid 

Anthrantillic acid 

 
Supplementary Figure 6.1. Scheme of the tryptophan, camalexin and indolic glucosinolate biosynthesis as 
well as the indolic glucosinolate metabolism. Tryptophan is synthesized from chorismatic acid (red) and 
subsequently hydrolyzed to indole-3-acetaldoxime by the cytochrome P450 monooxygenases CYP79B2 and 
CYP79B3. Indole-3-acetaldoxime is either converted to camalexin (blue) or indolic glucosinolates (yellow). 
PEN2 is an atypical myrosinase that hydrolyzes 4MI3G for antifungal defense (green). 
 

 
 

Supplementary Figure 6.2. Analysis of the JA precursors OPDA and dn-OPDA in Col-0 wild-type and 
mlo2/6/12 mutant plants after inoculation with powdery mildew fungi. Independent biological replicate of 
the experiment shown in Figure 5. Rosette leaves from 4-week-old plants were inoculated with spores form the 
adapted and non-adapted powdery mildew fungus G. orontii and Bgh, respectively, and harvested for jasmonate 
analysis at the indicated time points 
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