Funktionelle Analyse des SCAR/WAVE- und Exocyst-Komplexes hinsichtlich der Zellmorphogenese in Arabidopsis thaliana

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

> vorgelegt von Kristina Selbach aus Braunschweig

Köln, 2012

Berichterstatter:Prof. Dr. M. HülskampProf. Dr. U. HöckerTag der mündlichen Prüfung:26. 01. 2012

Inhaltsverzeichnis

I	Zusammenfassung	I
II	Abstract	II
	Abbildungsverzeichnis	III
IV	Tabellenverzeichnis	IV
V	Abkürzungsverzeichnis	V-VII

1 Einleitung 1-8 1.1 Differenzierung und Wachstum von pflanzlichen Zellen 1-2 1.2 Aufgaben des Zytoskeletts bei der Zellmorphogenese 2-5 1.2.1 Der ARP2/3- und SCAR/WAVE-Komplex in Pflanzen 4-5 Transport und Exozytose sekretorischer Vesikel 1.3 5-7 1.3.1 Der Exocyst-Komplex in Pflanzen 6-7 1.4 Ziel der Arbeit 7-8

2 Ergebnisse

9-26

2.1	2.1 Charakterisierung von Insertionsmutanten des Exocyst-Komplexes		9-16
	2.1.1	Analyse der SALK-Insertionslinien	10-13
	2.1.2	Analyse der Mutante exo84b-2	13-16
2.2	Funkt	ionelle Analyse von Sec10 und ABIL3 über Fragmentierung	16-23
	und Ü	berexpression	
	2.2.1	Sec10-N und Sec10-C	16-19
	2.2.2	Analyse der ABIL3-Fragmente	19-23
2.3	Etabli	erung eines CrelLox-Systems hinsichtlich der Funktion von Sec6	23-26
	2.3.1	Klonierung	23-25
	2.3.2	Generierung der Cre/Lox-Linien in A. thaliana	25-26

3	Diskussion	27-36
3.1	Exo84b-2 zeigt neue Defekte in der Zellmorphogenese	27-31
3.2	ABIL3 besitzt zwei Bindungsstellen für SCAR/WAVE-	
	Untereinheiten	31-32
3.3	Die Überexpression des N-Terminus von ABIL3 führt zu	
	verlängerten Wurzeln	33-34
3.4	Die Überexpressionen von Sec10-N und Sec10-C	
	verursachen gegensätzliche Effekte beim Wurzelwachstum	34-36
3.5	Etablierung eines Cre/Lox-Systems hinsichtlich der Funktion	
	von Sec6	36
4	Material und Methoden	37-55
4.1	Material	37-45

T 11	mater	iui		01 40
	4.1.1	Verwendete	e Organismen	37-38
	4.1.2	Chemikalie	n und Enzyme	38
	4.1.3	Plasmide		38-40
	4.1.4	Primer		40-45
4.2	Metho	oden		45-55
	4.2.1	Arbeiten mi	it Organismen	45-47
		4.2.1.1	Pflanzenanzucht und Pflanzenernte	45-46
		4.2.1.2	Präparation von Rohextrakten aus Pflanzen	46
		4.2.1.3	Kultivierung und Lagerung von E. coli,	
			A. tumefaciens und S. cerevisiae	46-47
	4.2.2	Molekularbi	ologische Methoden	47-51
		4.2.2.1	DNA-Extraktion aus pflanzlichem Material	47
		4.2.2.2	RNA-Isolation aus pflanzlichem Material	47-48
		4.2.2.3	Polymerase-Kettenreaktion (PCR)	48-49
		4.2.2.4	Ligation von DNA-Fragmenten	49
		4.2.2.5	Anwendung von BP,- und LR-Klonase	50
		4.2.2.6	Minipräparation von Plasmid-DNA	50
		4.2.2.7	Automatische DNA-Sequenzierung	50
		4.2.2.8	Die Klonierung des Cre/Lox-Systems	50-51
	4.2.3	Transforma	ation von pflanzlichem Material	51-53
		4.2.3.1	Floral Dip	52

	4.2.3.2	Bomardierung	52-53
	4.2.3.3	Kreuzungen	53
4.2.4	Dokumentatio	on morphologischer Phänotypen	53-54
	4.2.4.1	Blätter, Trichome, Samen und Schoten	53
	4.2.4.2	Pavement-Zellen	53
	4.2.4.3	Wurzellänge	53-54
	4.2.4.4	Mucilage (Samenhülle)	54
4.2.5	Untersuchungmethoden der Interaktionen zwischen Proteinen		54-55
	4.2.5.1	Yeast-Two-Hybrid (Hefe-2-Hybrid-System)	54-55
	4.2.5.2	Split-YFP (BiFC)	55

5 Literaturverzeichnis

56-66

Danksagung	67

Erklärung

68

I Zusammenfassung

Die ortsspezifische Ausbildung eines Aktinzytoskeletts ist Teil der Zellmorphogenese pflanzlicher Zellen. Daran beteiligt ist der ARP2/3-Komplex, der nach Aktivierung über den SCAR/WAVE-Komplex Aktinpolymerisation induziert. Der SCAR/WAVE-Komplex besteht aus den Untereinheiten SCAR, BRICK, NAP, PIR und ABIL. Vesikeltransport und -sekretion sind ein weiterer Aspekt der Zellmorphogenese. Der Exocyst-Komplex, der aus den Untereinheiten Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 und Exo84 besteht, ist an Sekretionsvorgängen durch seine Rolle bei der Exozytose beteiligt. Untereinheiten des Exocyst-Komplexes aus *Arabidopsis thaliana* interagieren zudem mit Untereinheiten des SCAR/WAVE- und ARP2/3-Komplexes.

Im Unterschied zu ABI in Metazoen konnte in dieser Arbeit über Interaktionsstudien für ABIL3 gezeigt werden, dass sowohl der N-Terminus als auch der C-Terminus mit SCAR, NAP und PIR interagieren. Für die Interaktion mit Exo70B2 konnte gezeigt werden, dass nur der C-Terminus von ABIL3 interagiert. Die Überexpression des N-Terminus von ABIL3 führte in *Arabidopsis thaliana* zu längeren Wurzeln, wie es auch für eine amiRNA-Linie von *ABIL3* bekannt ist. Die Überexpression eines C-terminalen Fragments von Sec10 in *Arabidopsis thaliana* ergab auch längere Wurzeln. Im Gegensatz dazu führte die Überexpression des N-Terminus von Sec10 zu kürzeren Wurzeln und reduzierter Komplexität der *Pavement*-Zellen.

Pavement-Zellen sind geeignete Modellzellen der Zellmorphologie und waren ein Aspekt der Analyse von Exocyst-Mutanten. Dabei konnte ein noch nicht beschriebener Phänotyp für die heterozygote *exo84b-2*-Mutante entdeckt werden: Neben einer reduzierten Komplexität der Pavement-Zellen ist die Mutante zudem kleiner und zeigt kürzere Schoten mit weniger Samen. Ein Teil der Samen erscheint vertrocknet und besitzt keine Schleimhülle.

Die Mutantenanalyse im vegetativen Stadium von *sec6* und *sec8* ist aufgrund der männlich gametophytischen Letalität nicht durchführbar. Daher sollte über das *Cre/Lox*-System *Sec6* im vegetativen Stadium einer homozygoten geretteten *sec6*-Pflanze durch die *Cre*-Rekombinase entfernt werden. Zu diesem Zweck wurde im Rahmen dieser Arbeit die Funktionsfähigkeit einer induzierbaren *Cre*-Rekombinase durch die Etablierung einer Kontrolle gezeigt: In Col-0 überexprimiertes *TRY* führt zu Blättern mit wenig Trichomen. Nach Induktion der *Cre*-Rekombinase konnte *TRY* entfernt werden, so dass die Pflanzen wieder wildtypisch erschienen.

Hinsichtlich der funktionellen Verbindung zwischen dem SCAR/WAVE- und Exocyst-Komplex konnte gezeigt werden, dass ABIL3 über den C-Terminus mit Exo70B2 interagiert und Überexpressionen von ABIL3- und Sec10-Fragmenten zu veränderten Wurzellängen in *Arabidopsis thaliana* führen.

II Abstract

The site-specific formation of an actin cytoskeleton is part of the morphogenesis of plant cells. The ARP2/3 complex and its activator, the SCAR/WAVE complex, induce actin polymerization. The SCAR/WAVE complex consists of the subunits SCAR, BRICK, NAP, PIR and ABIL. Vesicle transport and secretion are another aspect of morphogenesis. The Exocyst complex, which consists of the subunits Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84, is involved in secretion through its role in exocytosis. Exocyst subunits of the complex from *Arabidopsis thaliana* also interact with subunits of SCAR/WAVE- and ARP2/3 complexes.

In contrast to ABI in metazoen, one result of this work showed that both the N-terminus and the C-terminus of ABIL3 interact with SCAR, NAP and PIR. In contrast to this, Exo70B2 only interacts with the C-terminus of ABIL3. Overexpression of the N-terminus of ABIL3 resulted in longer roots in *Arabidopsis thaliana*, as it is also known for a line of amiRNA *ABIL3*. The overexpression of a C-terminal fragment of Sec10 in *Arabidopsis thaliana* also showed longer roots. In contrast, the overexpression of the N-terminus caused shorter roots and reduced complexity of the pavement cells.

Pavement cells are model cells for cell morphology and were part of the analysis of Exocyst mutants. For the heterozygous *exo84b-2*-mutant a not yet described phenotype could be detected: In addition to a reduced complexity of the pavement cells, the mutant is also smaller and has shorter siliques with less seeds. A part of the seeds looks dessicated and shows no mucilage.

The analysis of *sec6-* and *sec8-*mutants in the vegetative stage is not possible because of the male gametophytic lethality. Therefore, introduced *Sec6* of a homozygous rescued *sec6-*plant should be removed by using the *Cre-*recombinase of the *Cre/Lox-*system. For this purpose, the functionality of an inducible *Cre-*recombinase was demonstrated in this work by establishing a control: Overexpressed *TRY* in Col-0 leads to leaves with less trichomes. After induction of the *Cre-*recombinase *TRY* could be removed so that the plants showed the wild-type phenotype.

Regarding the functional link between the SCAR/WAVE and Exocyst complex it was shown that ABIL3 interacts via the C-terminus with Exo70B2 and overexpression of ABIL3- and Sec10-fragments led to changes in root length in *Arabidopsis thaliana*.

III Abbildungsverzeichnis

Abb. 1.1:	Beispiele für polarisiertes Wachstum von Epidermiszellen.	1
Abb. 1.2:	Auswirkungen von Defekten des Zytoskeletts auf die Zellmorphogenese	. 3
Abb. 1.3:	Beispiele des distorted-Phänotypes in A. thaliana.	5
Abb. 1.4:	Modell der Regulation von Zytoskelett und Vesikeltransport.	7
Abb. 2.1:	Skizzierung und RT-PCR der homozygoten SALK-Insertionen.	11
Abb. 2.2:	Vergleiche der Exocyst-Mutanten und Col-0.	12-13
Abb. 2.3:	Skizzierung der SAIL-Insertion in Exo84.1.	13
Abb. 2.4:	Die heterozygote exo84b-2-Linie im Vergleich mit Col-0.	15-16
Abb. 2.5:	Fragmentierung von Sec10.	17
Abb. 2.6:	Überexpressionslinien von Sec10-Fragmenten im Vergleich mit Col-0.	19
Abb. 2.7:	Fragmentierung von ABIL3.	21
Abb. 2.8:	Die Überexpressionslinien der N-terminalen Fragmente	
	im Vergleich mit Col-0.	22-23
Abb. 2.9:	Funktion des <i>Cre/Lox</i> -Systems.	25
Abb. 2.10:	Generierung der Linie	
	A.th. pAlc::NLS+Cre x A.th. p35S::NLS+LoxP+TRY.	26
Abb. 3.1:	Bindungsstellen von ABIL3 mit Untereinheiten	
	des SCAR/WAVE- und Exocyst-Komplexes.	32
Abb. 4.1:	Klonierungsstrategien der Vektoren für das Cre/Lox-System.	51

IV Tabellenverzeichnis

Tab. 2.1:	T-DNA-Insertionslinien des Exocyst-Komplexes.	9-10
Tab. 2.2:	Analyse des Erbgangs der Exocyst-Mutanten.	11
Tab. 2.3:	Prozentuale Verteilung der Homo- und Heterozygoten	
	sowie Wildtypen bei <i>exo84b-2</i> .	14
Tab. 2.4:	Yeast-Two-Hybrid-Ergebnisse von Sec10-C.	18
Tab. 2.5:	Interaktionen der ABIL3-Fragmente im Yeast-Two-Hybrid	
	und im Split-YFP.	21
Tab. 4.1:	Verwendete Organismen (pflanzlich).	37
Tab. 4.2:	Verwendete Organismen (bakteriell).	38
Tab. 4.3:	Verwendete Plasmide.	38-40
Tab. 4.4:	Verwendete Primer.	40-45

V Abkürzungsverzeichnis

Abb.	Abbildung
ABI	Abelson murine leukemia viral oncogene homolog 1
	interactor
ABIL	Abil-like
ADP	Adenosin-Diphosphat
Amp	Ampicilin
ARP	actin-related protein
ATP	Adenosin-Triphosphat
BiFC	Bimolecular fluorescence complementation
Вр	Basenpaare
bzw.	beziehungsweise
°C	Grad Celsius
ca.	circa
Ca ²⁺	Kalzium
ddH ₂ O	bidestiliertes Wasser
ddNTP	didesoxy-Nukleosidtriphosphat
DEPC	Diethyldicarbonat
dNTP	desoxy-Nukleosidtriphosphat
EDTA	Ethylendiamintetraacetat
EthOH	Ethanol
FL	full-length = Vollänge
g, mg, µg, ng	Gramm, Milligramm, Mikrogramm, Nanogramm
GAP	GTPase-activating-protein
GDI	guanine nucleotide dissociation inhibitors
GDP	Guanosin-Diphosphat
GEF	guanine-nucleotide exchange factors
GTP	Guanosin-Triphosphat
н	Histidin
HSPC	haematopoietic stem/progenitor cell protein
Hz	Hertz
ICR	interactors of constitutively active Rop1 proteins
Kana	Kanamycin
КОН	Kaliumhydroxid
konz.	konzentriert
L	Leucin

l, ml, µl	Liter, Milliliter, Mikroliter
LB	Luria-Bertani-Medium
LT	Langtag
M, mM, µM, nM	Molar, Millimolar, Mikromolar, Nanomolar
MAP	microtubule-associated protein
max.	maximal
min	Minute
mol, mmol, µmol, nmol, pmol	Mol, Millimol, Mikromol, Nanomol, Pikomol (Stoffmenge)
NAP	Nck-associated protein
nm	Nanometer
NPF	nucleating promoting factor
OD	optische Dichte
PCR	Polymerasekettenreaktion
PIP	Phosphatidyl-Inositol-Phosphate
RFP	red-fluorescence-protein
rhl	roothairless
ROP	Rho of plants
ROS	Reactive Oxygen Species
rpm	Umdrehungen pro Minute
RT	Raumtemperatur (hier: ca. 21-25°C)
SCAR/WAVE	Suppressor of cyclic AMP receptor/ WASP family
	Verprolin homologous
sec	Sekunde
SRA	Steroid receptor RNA activator
Std	Stunde
Tab.	Tabelle
Tris	Tris(hydroxymethyl)aminomethan
u.a.	unter anderem
W	Tryptophan
WASP	Wiskott-Aldrich Syndrome protein
WT	Wildtyp
x g	Vielfaches der Erdbeschleunigung
YFP	yellow fluorescence protein
z.B.	zum Beispiel

Abkürzungen für Artennamen

А. сера	Allium cepa
А. сера	Allium cepa

- A. thaliana Arabidopsis thaliana
- A. tumefaciens
- E. coli
- S. cerevisiae

Escherichia coli

Agrobacterium tumefaciens

Saccharomyces cerevisiae

1 Einleitung

1.1 Differenzierung und Wachstum von pflanzlichen Zellen

Während der Entwicklung und des Wachstums einer Pflanze differenzieren sich ihre Zellen, um Gewebe mit spezialisierten Funktionen oder einzelnen spezialisierten Zellen zu bilden (Yang, 2008). Beim Zellwachstum kann man zwei Formen unterscheiden: das isometrische und das polarisierte Zellwachstum. Dabei ist das polarisierte Zellwachstum von größerem Interesse, da hier die Mechanismen des Wachstums und der Differenzierung besser zu beschreiben sind. Beispiele für polarisiertes Wachstum von Epidermiszellen sind in Abb. 1.1 dargestellt: Trichome entstehen durch apikal-basale Polarität (Yang, 2008) und stellen durch ihre spezielle Morphologie ein gutes Model zur Analyse der Zellmorphogenese dar (Hülskamp *et al.* 1994; Schellmann & Hülskamp, 2005). Planare Polarität ist auch bei tierischen Zellen zu beobachten, in Pflanzen zeigen die Trichoblasten der Wurzeln und die Blattepidermiszellen diese Wachstumsart (Yang, 2008).

Abb. 1.1: Beispiele für polarisiertes Wachstum von Epidermiszellen.

Abgebildet sind von links nach rechts die schematischen Zeichnungen eines Trichoms, einer Wurzelhaarzelle und von *Pavement*-Zellen. Alle drei Zelltypen stellen ein gutes Untersuchungsobjekt zur Analyse der Zellmorphogenese in Pflanzen dar (Abb.: Yang, 2008).

Die spezifische Zellform ist aber bei allen pflanzlichen Zellen vom Druck des Turgors und von der Plastizität der Zellwand abhängig, die überwiegend aus Pektinen, Proteinen und Zellulose besteht. An bestimmten Stellen muss hier Zellwandmaterial hinzugefügt oder weggenommen werden, damit die spezifische Zellform entstehen kann. Hierzu benötigt die Zelle u.a. Zellulasen, Glukanasen und Expansine, um die Strukturen der Zellwand aufzulösen. Die Zellulose-Synthase baut Zellulose-Mikrofibrillen in ihrer typischen Paralleltextur auf. Diese Enzyme werden von der Zelle synthetisiert und müssen an den Sekretionsort gebracht werden. Dies geschieht u.a. über das Zytoskelett, über dessen Aktinbündel Golgi-Vesikel transportiert werden können, welche die bestimmten Komponenten tragen. Dazu gehören neben den Enzymen auch Zellwandbestandteile, die zusätzlich eingebaut werden müssen (Smith & Oppenheimer, 2005). Nach einem Modell von

Giddings & Staehelin (1991) spielen nicht zuletzt auch Mikrotubuli eine wichtige Rolle, da sie die Orientierung der neu zu synthetisierenden Mikrofibrillen angeben (Ledbetter & Porter, 1963; Paredez *et al.*, 2006). Darüber hinaus besteht auch die Überlegung, dass Mikrotubuli an der Positionierung des Golgis und damit an der Sekretion beteiligt sind (Lu *et al.*, 2005; McFarlane *et al.*, 2008; Crowell *et al.*, 2009). Umgekehrt kann über diesen Weg auch abgebautes Zellwandmaterial wieder abtransportiert werden; z.B. können Ionen-Kanäle und Rezeptoren durch Endozytose wiederverwertet werden (Cole *et al.*, 2005). Die Zellmorphogenese in Pflanzen ist nicht nur vom Zytoskelett und dem Vesikeltransport abhängig (Yang, 2008), sondern auch von Signalkaskaden, die u.a. Kalzium (Ca²⁺) - Gradienten und den Weg über *Reactive-Oxygen-Signalling* (ROS) und GTPasen beinhalten (Bohme *et al.*, 2004; Carol *et al.*, 2005; Yang, 2008).

1.2 Aufgaben des Zytoskeletts bei der Zellmorphogenese

Das Zytoskelett der eukaryotischen (hier: pflanzlichen) Zelle ist ein Filamentsystem aus Aktinfilamenten und Mikrotubuli und hat u.a. die Funktion der Formgebung, Kommunikation, Organisation, Zellteilung, des Vesikeltransportes und des Wachstums (Alberts et al., 2004). Aktinfilamente sind zweisträngige helikale Polymere bestehend aus kugelförmigen Aktin-Polypeptid-Untereinheiten, die in gebündelter Form im Zytoplasma für den intrazellulären Transport (Mathur et al., 2002) oder als feines Aktin am Zellkortex, z.B. von Pavement-Zellen (Frank & Smith, 2002; Frank et al., 2003; Review Szymanski, 2009) vorliegen. Jede Untereinheit hat eine ATP- bzw. ADP- Bindungsstelle. Während es beim Aktinfilament nur eine Aktinart gibt, finden sich bei den Mikrotubuli zwei verschiedene Arten des Tubulins wieder: das α -Tubulin, welches GTP fest gebunden hat, und das β -Tubulin, welches sowohl GTP als auch GDP bindet. ATP und ADP sowie GTP und GDP sind für die Dynamik der Polymerisierung der Filamente über Kappenbildung verantwortlich. Aktin und Mikrotubuli besitzen beide ein schneller wachsendes Ende, das Plus-Ende, an dem mehr Untereinheiten pro Zeit polymerisieren als am Minus-Ende (Alberts et al., 2004). Die Funktion der beiden Filamente hinsichtlich der Zellmorphologie wurde durch Experimente mit Zellgiften deutlich gemacht (s. Abb 1.2): z.B. verhindern Cytochalasin und Latrunculin die Polymerisierung von Aktinfilamente und führen zu einer Reduktion der Zellexpansion, was sich in kurzen Wurzeln, kleinen Pavement-Zellen oder deformierten Trichomen zeigt (Szymanski et al., 1999; Mathur et al., 1999; Baluska et al., 2000; Hepler et al., 2001). Behandelt man aber die Pflanzen mit Oryzalin oder Colchicin (Gifte, die Mikrotubuli depolymerisieren bzw. sie durch Bindung blockieren), beobachtet man diffuses Wachstum und Anschwellen der Zellen (Baskin et al., 1994) oder unverzweigte Trichome (Mathur & Chua, 2000).

Abb. 1.2: Auswirkungen von Defekten des Zytoskeletts auf die Zellmorphogenese.

Die Modellzellen Trichome, *Pavement*-Zellen und Wurzeln zeigen unterschiedliche Phänotypen bei verschieden Zytoskelettdefekten. Allgemein verlieren Zellen bei Mikrotubulidefekten ihr zielgerichtetes polares Wachstum, wogegen Aktindefekte zu eingeschränktem Zellwachstum und kleineren Zellen führt (Abb. nach Mathur, 2004).

Sowohl den Aktinfilamenten als auch den Mikrotubuli ist gemein, dass sie u.a. auf Hilfsproteine angewiesen sind; so wie z.B. Mikrotubuli-assoziierte Proteine (MAP), die durch die Verhinderung des Mikrotubuliabbaus für mehr Stabilität sorgen, oder der Actin-related protein (ARP)-Komplex, der die Aktinkeimung beginnend am Minus-Ende und die Verlängerung am Plus-Ende ermöglicht. Letzterer wurde zunächst in Hefen und Tieren gefunden und kann über das Minus-Ende an andere Filamente anknüpfen und so eine Verästelung des Filamentsystems hervorrufen (Alberts et al., 2004). Somit kann der ARP2/3-Komplex in seiner aktiven Form an Aktin binden, um dessen Stabilität durch die Entstehung und Verzweigung neuer Aktinfilamente zu erhöhen (Blanchoin et al., 2000; Amann & Pollard, 2001). Seine Aktivität erhält der Komplex wiederum über nucleating promoting factors (NPF) (Goley & Welch, 2006; Pollard, 2007). Bekannte NFPs in Tieren sind das Wiskott-Aldrich Syndrome protein (WASP) oder Suppressor of cyclic AMP receptor/ WASP family Verprolin homologous (SCAR/WAVE). Der SCAR/WAVE-Komplex in Tieren besteht aus 5 Untereinheiten: Steroid receptor RNA activator (SRA1, ein Rac-bindendes Protein), Nckassociated protein (NAP1), haematopoietic stem/progenitor cell protein (HSPC300), Abelson murine leukemia viral oncogene homolog 1 interactor (ABI) und SCAR (Eden et al., 2002; Innocenti et al., 2004; Gautreau et al., 2004). Der SCAR/WAVE-Komplex in Tieren und auch in Hefen ist für die Aktivierung des ARP2/3-Komplexes verantwortlich bevor dieser mit bei der Polymerisierung und Vernetzung von Aktinfilamenten beginnen kann (Pollard & Borisy, 2003).

1.2.1 Der ARP2/3- und SCAR/WAVE-Komplex in Pflanzen

In *Arabidopsis thaliana* (*A. thaliana*) sind acht verschiedene Gene beschrieben worden, deren Mutation einen *distorted*-Phänotyp hervorrufen. Der *distorted*-Phänotyp äußert sich in ungerichtetem Zellwachstum, was u.a. überwiegend durch verdrehte und ungeordnete Trichome, weniger komplexe *Pavement*-Zellen, kürzere Wurzelhaare und weniger elongierte Petiolen zu erkennen ist (Hülskamp *et al.*, 1994; Le *et al.*, 2003; Li *et al.*, 2003; Mathur *et al.*, 2003a; Basu *et al.*, 2004; El-Assal Sel *et al.*, 2004; Saedler *et al.*, 2004). Beispiele von *distorted*-Phänotypen sind in Abb. 1.3 dargestellt. Parallel hierzu sieht man in den Mutanten, dass sich die Größe und Zahl der Golgi-Vesikel erhöht. Außerdem tritt in den Nicht-Wachstums-Regionen vermehrt Aktin-Bündelung ein und die Organisation des Aktins im Zytosol geht verloren (Le *et al.*, 2003; Li *et al.*, 2003; Mathur *et al.*, 2003; El-Assad Sel *et al.*, 2003; Mathur *et al.*, 2003; Saedler *et al.*, 2004; El-Assad Sel *et al.*, 2003; Mathur *et al.*, 2003; Saedler *et al.*, 2004; Mathur et *al.*, 2004; Color, 2004; El-Assad Sel *et al.*, 2003; Mathur *et al.*, 2003; Saedler *et al.*, 2004; El-Assad Sel *et al.*, 2003; Li *et al.*, 2003; Mathur *et al.*, 2003; Saedler *et al.*, 2004; El-Assad Sel *et al.*, 2004). Allein diese Beobachtung legte die Vermutung nahe, dass die Mutanten Defekte im Zytoskelett haben. Letzlich konnte gezeigt werden, dass es sich bei einigen der *distorted*-Phänotypen um Mutanten des ARP2/3-Komplexes handelte.

Aber nicht nur der ARP2/3-Komplex wird durch *distorted*-Gene kodiert, ein Teil kodiert u.a. auch für Proteine des SCAR/WAVE-Komplexes in Pflanzen. SCAR/WAVE in *A. thaliana* besteht wie auch in Tieren und Hefen aus 5 Untereinheiten, die den der tierischen Untereinheiten verwandt sind und *in vitro* fähig sind, den tierischen ARP2/3-Komplex zu aktivieren (Frank *et al.*, 2004; Basu, 2005): SCAR 1-4, BRICK (das Homolog zu HSPC300), NAP125, ABIL1-4 (*ABI-like protein*) und PIR121 (das Homolog zu SRA1; Frank & Smith, 2002; Brembu *et al.*, 2004; Basu *et al.*, 2004; El-Assa Sel *et al.*, 2004; Li *et al.*, 2004; Zimmermann *et al.*, 2004). Dabei wurde über Doppelmutantenanalysen deutlich, dass SCAR die Funktion eines positiven ARP2/3-Regulators besitzt (Deeks *et al.*, 2004; Basu *et al.*, 2005; Djakovic *et al.*, 2006; s. Abb. 1.4).

ABIL-Proteine werden durch ihre Bindung an NAP125, BRICK und SCAR (Basu *et al.*, 2005; Uhrig *et al.*, 2007) als Verbindung zwischen den Untereinheiten gesehen und zusammen mit den anderen Untereinheiten als Regulatoren der SCAR-Aktivität diskutiert (Innocenti *et al.*, 2004; Derivery *et al.*, 2009; Ismail *et al.*, 2009).

Neben genetischen Bestimmungen über die Entwicklung einer Zelle spielen u.a. auch Umwelteinflüsse und die Zell-Zell-Kommunikation eine Rolle, wodurch sich die Frage nach der Signaltransduktion stellt. In pflanzlichen Zellen sind Ca²⁺, kleine Rho-GTPasen der Ras-Superfamilie (u.a. ROPs), *ROP-guanine-nucleotide exchange factors* (GEFs), *ROP-guanine nucleotide dissociation inhibitors* (GDIs), *ROP-GTPase-activating-protein* (GAP), Serin/Threonin-Kinasen, Phosphatidyl-Inositol-Phosphate (PIPs) und Auxine dafür bekannt, eine Rolle bei der Signalübertragung zu spielen (Gu *et al.*, 2004; Brembu *et al.*, 2006; Basu *et al.*, 2008). Interaktionsdaten und Mutantenanalysen zeigen, dass der ARP2/3-Komplex

4

und der SCAR/WAVE-Komplex in Signalkaskaden eingebunden sind. Es ist bekannt, dass ROP2 mit PIR121 (Basu *et al.*, 2004) sowie ROP7 und SPIKE1 (SPK1- ein GEF) mit SCAR (Uhrig *et al.*, 2007) interagieren. Zusätzlich zeigen die Mutanten *rop2*, *rop7* und *spk1* Phänotypen, die starke Ähnlichkeiten mit dem *distorted*-Phänotyp aufweisen (Qiu *et al.*, 2002; Fu *et al.*, 2005; Basu *et al.*, 2008). SPK1 wird auch nicht zuletzt durch seine Interaktion mit ABIL-Proteinen als möglicher Regulator im Signalweg vermutet (Uhrig *et al.*, 2007).

Abb. 1.3: Beispiele des *distorted*-Phänotypes in *A. thaliana*.

A: Die Trichome der *dis2-1*-Mutante sind angeschwollen und zeigen reduzierte Elongation der Verzweigungen (Abb. nach Saedler *et al.*, 2004). **B** zeigt den Phänotyp von *dis1-1* und ist von Mathur *et al.*, 2003 veröffentlicht. Hier sieht man die weniger komplexen *Pavement*-Zellen.

1.3 Transport und Exozytose sekretorischer Vesikel

Bei der Morphogenese von Zellen müssen die Bestandteile der Zellwand und der Plasmamembran sowie u.a. Rezeptoren, Kanäle und Transporter an ihr Ziel gebracht bzw. von dort entfernt werden. Es werden teils neue Bestandteile im Endoplasmatischen Reticulum synthetisiert und über Vesikel des Golgi-Apparates mit Hilfe des Zytoskelettes an die Plasmamembran gebracht. Es werden aber auch Teile über Endosomen wiederverwertet. Sowohl der anterogerade als auch der retrogerade Vesikeltransport sind Teil des Zytoskeletts und der Endo- bzw. Exozytose (Alberts *et al.*, 2004).

Die Exozytose selbst ist u.a. von Bindungsfaktoren abhängig. Hierbei handelt es sich um *coiled-coil* Dimere, dessen bekannteste Vertreter die SNAREs (<u>soluble N-ethylmaleimide-</u> sensitive-factor <u>attachment receptor</u>) sind, und um große Superkomplexe, wie z.B. den Exocyst-Komplex (Cole *et al.*, 2005). Letzterer ist im Zusammenhang mit Endo- und Exozytose bekannt (TerBusch *et al.*, 1996; Hsu *et al.*, 1996; Guo *et al.*, 1999; Matern *et al.*, 2001; Prigent *et al.*, 2003; Zhang *et al.*, 2004).

Der Exocyst-Komplex wurde zunächst als Teil des polarisierten Zellwachstums in den Hefen

Saccharomyces cerevisiae und Candida albicans gefunden (TerBush & Novick, 1995; TerBush *et al.*, 1997; Li *et al.*, 2007). Mutationen in diesem Komplex führen zu einer Reduktion der Knospung in Hefe und zu einer Akkumulation von Vesikeln an der Membran (Guo *et al.*, 1999; Grote *et al.*, 2000; He *et al.*, 2007). Dieser Komplex wurde auch in Säugern nachgewiesen (Hsu *et al.*, 1996; Kee *et al.*, 1997). Sowohl in Tieren als auch in Säugern besteht der Komplex aus acht Untereinheiten: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 und Exo84. Dabei interagieren viele dieser Untereinheiten mit GTPasen, wie z.B. Rab, Rho, Arf oder Ral (Adamo *et al.*, 1999; Guo *et al.*, 1999 / 2000).

1.3.1 Der Exocyst-Komplex in Pflanzen

In A. thaliana konnten zu allen Untereinheiten des Exocyst-Komplexes Homologe gefunden werden (Jürgens & Geldner, 2002; Elias et al., 2003). Die Untereinheiten sind durch eine bis viele Kopien kodiert (Elias et al., 2003; Synek et al., 2006): für Sec6 und Sec8 liegt jeweils nur eine Genkopie vor und eine Mutation führt zu einem Defekt im Pollenwachstum und zu männlich gametophytischer Letalität (Cole et al., 2005; Halá et al., 2008). Für Exo70 liegen dagegen 23 Genkopien vor. Die Mutante in A. thaliana für Exo70A1 zeigt u.a. einen Defekt im Zellwachstum (speziell der Elongation im Hypokotyl), eine reduzierte Zellzahl und reduzierte Fertilität (Synek et al., 2006). Ähnliches ist bei Exo84 zu beobachten, für das drei Genkopien vorliegen. Nur für exo84b-2 ist ein steriler Phänotyp mit zytokinetischen Defekten (u.a. Vesikelakkumulation in den Nebenzellen der Spaltöffnungen) bekannt (Fendrych et al., 2010). Die übrigen Untereinheiten des Exocyst-Komplexes werden je von zwei Genkopien kodiert: Sec5 und Sec15a scheinen ähnlich wie Sec6 und Sec8 für Pollenwachstum und keimung zuständig zu sein (Cole et al., 2005; Halá et al., 2008). Die sec3-Mutation, die in Zea mais beschrieben wird, zeigt den roothairless (rhl1) - Phänotypen, der zu kürzeren Wurzelhaaren führt (Wen et al., 2005). Für Sec10 ist in der Literatur bislang kein veränderter Phänotyp bekannt.

Sowohl durch die Redundanz einiger Gene als auch durch schwerwiegende Defekte ist eine funktionale Charakterisierung des Komplexes in Pflanzen über Mutantenanalyse schwierig. Andere Untersuchungsansätze wie z.B. Lokalisationsstudien zeigten, dass Exo70A1, Sec6 und Sec8 sich an der Spitze von wachsenden Pollenschläuchen befinden (Halá *et al.*, 2008). Exo84b-2 lokalisiert an neu entstehenden Zellplatten (Fendrych *et al.*, 2010). Biochemische Studien weisen darauf hin, dass die Untereinheiten in Pflanzen als Komplex vorliegen und agieren. Innerhalb des Komplexes interagieren die Untereinheiten Exo70A1 mit Sec3a, Sec15b mit Sec10 sowie Sec6 mit Sec8 (Halá *et al.*, 2008). Während in Tieren und Hefen GTPasen und PIPs als Interaktionspartner der Exocyst-Komponenten identifiziert wurden,

konnte in Pflanzen bislang nur gezeigt werden, dass Sec3 aus *A. thaliana* über ICR1 (*interactors of <u>constitutively active ROP1</u> proteins*) mit ROP interagiert (Lavy *et al.*, 2007). Darüber hinaus konnten Bindungen des Exocyst-Komplexes mit dem SCAR/WAVE-Komplex und dem ARP2/3-Komplex gefunden werden, welche die Verbindung zwischen Zytoskelett und Exozytose deutlich machen (Jörgens, 2010; s. Abb. 1.4). Aufgrund dieser Beobachtungen stellte sich auch eine der Hauptfragen dieser Arbeit nach dem Zusammenhang zwischen Zytoskelett und Sekretion hinsichtlich der Zellmorphogenese in Pflanzen.

Abb. 1.4: Modell der Regulation von Zytoskelett und Vesikeltransport.

Dargestellt sind der SCAR/WAVE-Komplex aus Pflanzen und der Aufbau des Exocyst-Komplex wie er in Tieren und Hefen angenommen wird. Bei den bekannten Interaktionspartnern handelt es sich um Rho-GTPasen und PIPs (Robinson *et al.*, 1999; Adamo *et al.*, 1999; Gu *et al.*, 2001; Zhang *et al.*, 2001; Frank & Smith, 2002; Boyd *et al.*, 2004; Brembu *et al.*, 2004; Basu *et al.*, 2004; EI-Assa Sel *et al.*, 2004; Li *et al.*, 2004; Zimmermann *et al.*, 2004; Basu *et al.*, 2005; Uhrig *et al.*, 2007; Zhang *et al.*, 2008; He & Guo *et al.*, 2009; Wu *et al.*, 2010; Jörgens, 2010). Die Interaktionen zwischen den Untereinheiten des SCAR/WAVE-Komplexes, des Exocyst-Komplexes und des ARP2/3-Komplexes in Pflanzen sind durch grüne Linien gekennzeichnet. Die Interaktion zwischen Vesikel und dem Exocyst-Komplexe sowie den Rho-GTPasen und PIPs mit dem Exocyst-Komplex sind in Hefe nachgewiesen.

1.4 Ziel der Arbeit

Bei der Zellmorphogenese in Pflanzen sind die Komplexe SCAR/WAVE und ARP2/3 an der Aktinpolymerisierung beteiligt und spielen daher auch eine Rolle bei der Regulation des Zytoskelettes. Aber auch die Sekretion ist ein Teil der Morphogenese, da über Vesikel das für die Differenzierung benötigte Zellmaterial transportiert und sekretiert wird. Der Exocyst-Komplex ist dabei von Interesse, weil er u.a. eine Rolle bei der Exozytose spielt, aber auch weil Verbindungen zu SCAR/WAVE und ARP2/3 bekannt sind. Dadurch stellt sich eine der Hauptfragen nach der funktionellen Verbindung zwischen Vesikeltransport, Exozytose und Zytoskelett. Hierzu sollten in dieser Arbeit die Komplexe SCAR/WAVE und Exocyst funktional analysiert werden:

1) Charakterisierung von Insertions-Mutanten des Exocyst-Komplexes

Zu Beginn dieser Arbeit waren wenige Exocyst-Mutanten bekannt, nicht zuletzt durch die Redundanz der Gene oder die letalen Mutationseffekte. Daher sollten T-DNA-Insertionslinien des Exocyst-Komplexes hinsichtlich eines veränderten morphologischen Phänotypes untersucht werden. Wegen der Frage nach funktionalen Verbindungen zwischen Vesikeltransport, Exozytose und Zytoskelett stand zunächst ein möglicher *distorted*-Phänotyp der Insertions-Mutanten im Fokus.

2) Funktionelle Analyse von Sec10 und ABIL3 über Fragmentierung und Überexpression

Um das Problem der Redundanz zu umgehen, sollte in dieser Arbeit versucht werden, durch Überexpression von Sec10- und ABIL3-Fragmenten in *A. thaliana* die nativen Proteine zu verdrängen und damit einen dominant negativen Effekt hervorzurufen. Da in Hefen bei Überexpression von Sec10p-Fragmenten dominant negative Effekte dokumentiert wurden (Roth *et al.*, 1998), sollte in dieser Arbeit A.t.Sec10 in ähnliche Fragmente geteilt und in *A. thaliana* überexprimiert werden.

Pflanzliches ABIL besitzt wenige Homologien zur N-terminalen WA-Domäne von ABI aus Metazoen (Innocenti *et al.*, 2004). Da für *ABIL3* eine amiRNA-Linie mit verändertem Phänotyp bekannt ist (Jörgens *et al.*, 2010), sollte der N-Terminus von ABIL3 in *A. thaliana* überexprimiert werden. Wie ABI aus Metazoen interagiert ABIL mit SCAR und BRICK. Zusätzlich sollte ABIL3 hinsichtlich dieser und weiterer bekannter Interaktionen kartiert werden.

3) Etablierung eines Cre/Lox-Systems hinsichtlich der Funktion von Sec6

Mutationen in Sec8 und Sec6 sind männlich gametophytisch letal (Cole *et al.*, 2005; Halá *et al.*, 2008), so dass eine weiterführende Analyse dieser Mutanten im vegetativen Stadium nicht durchführbar ist. In dieser Arbeit sollte ein *Cre/Lox*-System nach Adamski *et al.* (2009) etabliert werden. *Sec8* und *Sec6* sollten zunächst die homozygoten T-DNA-Insertionslinien retten, um danach im adulten Stadium über flankierende *LoxP*-site mit Hilfe der *Cre*-Rekombinase wieder entfernt zu werden. Die Expression der *Cre*-Rekombinase sollte über einen alkohol-induzierbaren Promotor reguliert werden. Durch diese Strategie sollte eine homozygote Pflanze generiert werden, die im vegetativen Stadium hinsichtlich weiterer Defekte untersucht werden kann.

2 Ergebnisse

2.1 Charakterisierung von Insertionsmutanten des Exocyst-Komplexes

Zu Beginn der Arbeit waren wenige Mutanten des Exocyst-Komplexes in *A. thaliana* bekannt, nicht zuletzt weil Mutationen des Exocyst-Komplexes oft keinen veränderten Phänotyp aufgrund der Redundanz der Gene oder eines drastischen Phänotyps mit letalen Folgen zeigen. Mutationen im *single-copy*-Gen *Sec8* führen zu Defekten im Pollenwachstum, welche die männlich gametophytische Letalität zur Folge haben. Ähnliche Defekte konnten bei Mutanten von *Sec6*, *Sec5* und *Sec15a* beschrieben werden (Cole *et al.*, 2005; Halá *et al.*, 2008). Die Mutation *exo70A1* zeigt Defekte im Zellwachstum und einen nahezu sterilen Phänotypen (Synek *et al.*, 2006), ähnliches ist auch für *exo84b-2* bekannt (Fendrych *et al.*, 2010). In *Zea mais* führt *sec3* zu dem *roothairless (rhl)*-Phänotypen (Wen *et al.*, 2005). Um weitere Effekte durch Mutationen in Genen des Exocyst-Komplexes zu finden, wurden T-DNA-Insertionslinien (s. Tab. 2.1) untersucht. Für die von Fendrych *et al.* (2010) beschriebene homozygote SAIL-Linie *exo84b-2* sollten in dieser Arbeit weitere morphologische Phänotypen gefunden werden.

Die Analyse der Mutanten erfolgte zunächst über Genotypisierung, um homozygote Linien zur weiteren Analyse zu isolieren. Die Homozygoten wurden über RT-PCR auf eine Nullmutation geprüft. Desweiteren wurde der Erbgang ermittelt und der Phänotyp zunächst hinsichtlich eines *distorted*-Phänotypen analysiert, da der Zusammenhang zwischen SCAR/WAVE und Exocyst in dieser Arbeit näher untersucht werden sollte.

Tab. 2.1: T-DNA-Insertionslinien des Exocyst-Komplexes.

Es wurden SALK-Insertionslinien für *Exo84.2*, *Exo84.3*, *Sec15.2* und *Sec5.1* und eine SAIL-Linie für *Exo84.1* (=*Exo84b-2*) untersucht. Mithilfe von http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi (*) wurden die Expressionsdaten erstellt.

Protein	Gen	Expression *	T-DNA-Insertions- Linie	Insertion
Exo84.1 = Exo84b-2	AT5G49830	gesamte Pflanze, mehr in Schoten und seneszenten Blättern	<i>exo84b</i> -2 = SAIL_736_A04	4. Intron

Protein	Gen	Expression	T-DNA-Insertions- Linie	Insertion
Exo84.2	AT1G10180	12 Wochen alte Blätter; Schoten; Samen; Wurzeln	<i>exo84.2-</i> 1 = SALK_011569	4. Exon
			<i>exo84.2-</i> 2 = SALK_142737	1.Intron
			<i>exo84.2</i> -3 = SALK_017883	3. Exon
Exo84.3	AT1G10385	Samen; Pollen	exo84.3-1 = SALK_072277	4. Exon
			<i>exo84.3</i> -2 = SALK_055303	3. Exon
			exo84.3-3 = SALK_072526	Promotor
Sec15.2	AT4G02350	Samen; Blätter	sec15.2-1 = SALK_042723	1. Exon
			sec15.2-2 = SALK_007664	2. Exon
			<i>sec15.2</i> -3 = SALK_130663	1.Exon
Sec5.1	AT1G21170	12 Wochen alte Blätter (oder älter); Samen; Wurzeln	sec5.1 = SALK_001525	13. Exon

2.1.1 Analyse der SALK-Insertionslinien

Über Genotypisierungs-PCRs der oben genannten SALK-Linien wurden homozygote Linien von SALK_011569, SALK_017883, SALK_072277, SALK_072526, SALK_007664 und SALK_001525 identifiziert (s. Abb. 2.1 A). RT-PCR-Analysen zeigen, dass bis auf *sec15.2-2* alle Linien eine Nullmutation besitzen (s. Abb. 2.1 B).

Um den Erbgang zu ermitteln, wurde das Verhältnis von Hetero- zu Homozygoten zu Wildtyp bestimmt. Nach Selbstung der Heterozygoten wurde die Verteilung über Genotypisierungs-PCRs überprüft; Tab. 2.2 stellt das Ergebnis dar. Erste Versuche zeigen, dass *exo84.2-1* und *sec5.1* keine embryonale oder gametophytische Letalität aufweisen. Wäre die Mutation gametophytisch letal, gäbe es keine Homozygoten. Das Verhältnis Heterozygote zu Wildtypen wäre 1:1. Wäre die Mutation embryonal letal würde man die Verteilung 2:1 erwarten. Bei der hier beobachteten Verteilung von 2:1:1 handelt es sich um einen rezessiven Erbgang nach der 2. Mendelschen Regel. Daher weisen die Mutanten *exo84.2-3* und *exo84.3-3* mit der Erhöhung ihrer Homozygoten über den möglichen 25% eines rezessiven Erbgangs eine nicht erwartete Verteilung auf. Einzig *exo84.3-1* zeigt eine Reduktion seiner Homozygoten und auch Heterozygoten, was auf eine teilweise sowohl männlich als auch weiblich gametophytische Letalität hindeuten könnte. Dieses Ergebnis muss aber durch einen größeren Probenumfang verifiziert werden.

Abb. 2.1: Skizzierung und RT-PCR der homozygoten SALK-Insertionen.

A Die homozygoten SALK-Insertionslinien sind hier abgebildet und modifiziert nach http://gbrowse.arabidopsis.org/cgi-bin/gbrowse/arabidopsis. Schwarze Balken stellen die Exons dar, der Pfeil gibt die Leserichtung an und die Dreiecke zeigen den Ort der Insertion.

B: Expressionsanalysen der mutierten Gene in Volllänge (FL=*full-length*) im Vergleich zum Wildtyp. Bis auf die Mutante *sec15.2-2* ist hier zu sehen, dass die Gene mit Insertion nicht mehr exprimiert werden.

Tab. 2.2: Analyse des Erbgangs der Exocyst-Mutanten.

Über Genotypisierungs-PCR wurde die Verteilung der Mutationen in den SALK-Linien ermittelt; n gibt die Anzahl der untersuchten Pflanzen an.

Linie	exo84.2-1 (n=16)	exo84.2-3 (n=24)	exo84.3-1 (n=13)	exo84.3-3 (n=21)	sec5.1 (n=15)
Wildtyp	25%	25%	69%	19%	27%
homozygot	25%	54%	8%	57%	27%
heterozygot	50%	21%	23%	24%	46%

Die Zellmorphogenese von Pflanzen hängt sowohl vom Zytoskelett als auch von der Exocytose ab. Da in den distorted-Mutanten des ARP2/3-Komplexes und des SCAR/WAVE-Komplexes u.a. Veränderung in der Trichommorphogenese und den Pavement-Zellen zu verzeichnen sind (Hülskamp et al., 1994; Le et al., 2003; Li et al., 2003; Mathur et al., 2003a/b; Basu et al., 2004; El-Assal Sel et al., 2004; Saedler et al., 2004), sollten auch die Mutanten des Exocyst-Komplexes hinsichtlich der genannten Merkmale untersucht werden. Zusätzlich wurden die gesamten Pflanzen verglichen: Größe und Wachstumsgeschwindigkeit zeigten keine signifikanten Unterschiede (ohne Abbildungen). Auch beim Vergleich der Blätter und der Trichome konnte kein signifikanter Unterschied festgestellt werden (s. Abb. 2.2 A). Beim Vergleich der Komplexität der Pavementzellen wurden nur geringe Unterschiede zum Wildtyp verzeichnet, die nicht signifikant waren (s. Abb. 2.2 B).

Abb. 2.2: Vergleiche der Exocyst-Mutanten und Col-0.

A: Morphogenese der Blätter und Trichome. Je Linie und Wildtyp wurden 10 Blätter untersucht, abgebildet ist ein Beispiel eines Blattes je Linie. Die Pflanzen waren zwei Wochen alt und wuchsen unter Langtagbedingungen (LT). Bei den Blättern handelte es sich um das dritte oder vierte Blatt. B: Komplexität der Pavement-Zellen. Je Linie und Wildtyp wurden 50 Zellen in ihrem Umfang und ihrer Fläche vermessen. Die errechnete Komplexität der Zellen ist hier mit der Standardabweichung dargestellt. Dabei war die Standardabweichung für *sec5.1* zu hoch, um in der Graphik dargestellt werden zu können. Die Signifikanz des Ergebnisses wurde mit dem Student T-Test errechnet und wird durch * dargestellt, wenn ein signifikanter Unterschied besteht (P<0,001). Ein signifikanter Unterschied zu Col-0 besteht nicht.

2.1.2 Analyse der Mutante exo84b-2

Nach Fendrych *et al.* (2010) gibt es einen veränderten Phänotypen für die homozygote Linie *exo84b-2* (Abb. 2.3). Die Pflanzen sind steril und zeichnen sich durch einen kleinen reduzierten Habitus mit kleinen Blättern und nicht entwickelten bis fehlenden Trichomen aus. Zudem fallen Zelldefekte, wie nicht durchgängige Zellwände der Epidermiszellen oder asymmetrische Stomata mit defekten Begleitzellen auf. Auch eine Akkumulation von Vesikeln konnte in dieser Studie beobachtet werden.

Abb. 2.3: Skizzierung der SAIL-Insertion in *Exo84.1*.

Die hier abgebildete Skizzierung wurde modifiziert nach http://gbrowse.arabidopsis.org/cgibin/gbrowse/arabidopsis und Fendrych *et al.* (2010). Schwarze Balken stellen die Exons des Gens dar, der Pfeil gibt die Leserichtung an und das Dreieck zeigt den Ort der Insertion von SAIL_736_A04.

Die homozygote Mutante sollte in dieser Arbeit zunächst hinsichtlich weiterer *distorted*-Merkmale untersucht werden. Dabei fiel auf, dass die Heterozygoten bis zu ³/₄ kleiner waren als der Wildtyp Col-0 (s. Abb. 2.4 A). Aufgrund dieses überraschenden Ergebnisses und der Tatsache, dass die Homozygoten sehr klein und schwer zu isolieren sind, sollten sich weitere Analysen nur noch auf die heterozygoten Pflanzen von *exo84b-2* beziehen.

Zunächst wurde nach Effekten bezüglich der Gametogenese gesucht. Die prozentuale Verteilung in Tab. 2.3 zeigt, dass ein teilweise gametophytisch letaler Defekt vorliegen könnte, da nur 8% Homozygote auftraten.

Da es bei den Homozygoten einen Effekt in der Trichomentwicklung zu verzeichnen gab (Fendrych *et al.*, 2010), sollten auch hier die Trichome hinsichtlich eines *distorted*-Phänotypes untersucht werden. Beim Vergleich der Blätter und deren Trichome zeigte sich jedoch kein signifikanter Unterschied zu Col-0 (Abb. 2.4 B). Bei der Messung der Komplexität der *Pavement*-Zellen konnte aber durch einen Student-T-Test ein signifikanter Unterschied in

der Komplexität der *Pavement*-Zellen festgestellt werden: Die Mutante besitzt um etwa 12% weniger komplexe *Pavement*-Zellen (s. Abb. 2.4 F).

Bei Mutanten des SCAR/WAVE-Komplexes ist eine Veränderung in der Wurzellänge bekannt (Li et al., 2004; Jörgens et al., 2010). Die Wurzeln der exo84b-2-Mutante sind um 20% länger als die des Wildtyps, jedoch nicht signifikant länger (s. Abb. 2.4 G). Vergleicht man zusätzlich die Schoten, so ist zu erkennen, dass die Schoten um ca. 1/3 kürzer und auch dicker sind (s. Abb. 2.4 D). Auch der Vergleich der Samen ergab einen veränderten Phänotyp (s. Abb. 2.4 C): Ein Teil der mutanten Samen sind dunkler, sehen vertrocknet aus und zeigen nicht mehr die glatte ovale Form des Wildtyps. Der andere Teil erscheint wildtypisch. Von 11 Samen, die vertrocknet erschienen, keimte nur ein Samen auf Erde. Die anderen der wildtypisch aussehenden Samen keimten zu 100% (n = 11 Samen). Dies lässt im Gegensatz zu der oben vermuteten gametophytischen Letalität auf eine embryonale Letalität schließen. Eine Genotypisierung dieser Samen steht noch aus. Es konnte auch beobachtet werden, dass in Wildtyp-Schoten durchschnittlich 22 Samen vorhanden sind, während es in den kleinen Schoten der Mutante nur 8 Samen sind (n = 7 Schoten je Wildtyp und Mutante). Bei dem Vergleich der Schleimschicht (Mucilage) der Samen war zu beobachten, dass die wildtypisch erscheinenden Samen einer heterozygoten Pflanze auch ein wildtypisches Erscheinungsbild der Mucilage zeigen (n = 15 Samen). Den vertrocknet erscheinenden Samen fehlt eine Mucilage. Die Samen zeigen eine morphologische Veränderung der Vulkan-Zellen, die im Vergleich zum Wildtyp aufgeguollen wirkt und nicht das typische gezackte Muster zeigt (n = 15 Samen; s. Abb. 2.4 E).

Zusammenfassend konnten hier für die heterozygote *exo84b-2*-Mutante folgende Effekte der Mutation beschrieben werden: reduziertes Größenwachstum und reduzierte Komplexität der *Pavement-*Zellen, kleinere Schoten mit weniger Samen sowie dunklere Samen, die vertrocknet erscheinen und denen eine *Mucilage* fehlt. Die unterschiedliche Ausprägung der Effekte der Heterozygoten im Vergleich zur Homozygoten (Fendrych *et al.*, 2010) weisen darüber hinaus auf einen bis dahin nicht beschriebenen Dosiseffekt hin.

Tab.	2.3: Prozentuale	Verteilung der	Homo-und	Heterozygot	en sowi	e Wildtyp	en bei ex	co84b-2.	
Über	Genotypisierungs	-PCR wurde die	e Verteilung	der Mutation	in der S/	AIL-Linie	exo84b-2	ermittelt; i	n
gibt d	die Anzahl der unte	ersuchten Pflanz	zen an.						

Linie	exo84b-2				
	(n=92)				
Wildtyp	49%				
homozygot	3%				
heterozygot	48%				

Abb. 2.4: Die heterozygote exo84b-2-Linie im Vergleich mit Col-0.

A: Vergleich der Größe. Die Mutante zeigt eine deutliche Reduktion der Größe. Die Pflanzen sind fünf Wochen alt und unter LT-Bedingungen gewachsen.

B: Morphogenese der Blätter und Trichome. Für *exo84b-2* und dem Wildtyp wurden je 10 Blätter untersucht (drittes oder viertes Blatt), abgebildet ist je ein Beispiel für *exo84b-2* und Col-0. Die Pflanzen waren zwei Wochen alt und wuchsen unter LT-Bedingungen.

C: Vergleich der Samen. Die Samen der mutanten heterozygoten Pflanze zeigen zum Teil wildtypische Samen und zum Teil dunklere Samen, die vertrocknet erscheinen. Die Samen sind im Vergleich zum Wildtyp dargestellt.

D: Vergleich der Schoten. Zu sehen ist eine deutliche Reduktion in der Länge der Schote, aber zusätzlich auch eine Verdickung im Vergleich zu Col-0.

E: Anfärbung der *Mucilage*. Die *Mucilage* der Samen wurde mit Ruthenium-Rot angefärbt. Zu sehen ist die unterschiedliche *Mucilage*-Ausprägung sowohl der heterozygoten Pflanzen im Vergleich zu Col-0 als auch die Unterschiede innerhalb der Mutante. Die Vulkan-Zellen sind im unteren Teil vergrößert zu sehen und mit einem Pfeil gekennzeichnet.

F: Komplexität der Pavement-Zellen. Es wurden je 50 Zellen vermessen, die errechnete Komplexität der Zellen ist hier mit Standardabweichung dargestellt. Die Signifikanz des Ergebnisses wurde mit dem Student T-Test errechnet und wird durch * dargestellt, wenn ein signifikanter Unterschied besteht (P<0,001).

G: Messung der Wurzellängen. Bei Col-0 wurden 49 Pflanzen und bei *exo84b-2* 44 Pflanzen vermessen. Ein signifikantes Ergebnis wird durch * dargestellt.

2.2 Funktionelle Analyse von Sec10 und ABIL3 über Fragmentierung und Überexpression

Für den Exocyst-Komplex gibt es nur wenige bekannte Insertionsmutanten mit einem veränderten Phänotyp. Dies liegt u.a. daran, dass Gene wie *Sec6* oder *Sec8* als Einzelkopien vorliegen und Knock-outs gametophytisch letal sind (Cole *et al.*, 2005). Andere Komponenten sind im Genom redundant kodiert, wie dies für Sec10 der Fall ist. Das Problem liegt auch beim SCAR/WAVE-Komplex vor, bei dem es 4 ABIL-Proteine gibt. Erst kürzlich konnte eine amiRNA-Linie für *ABIL3* erzeugt werden, die einen veränderten Phänotyp zeigt (Jörgens *et al.*, 2010).

In dieser Arbeit sollten Fragmente des Sec10- und des ABIL3-Proteins in *A. thaliana* überexprimiert werden. Vermutet wurde ein dominant negativer Effekt, durch den das Problem der Redundanz umgangen werden sollte. Darüber hinaus sollte untersucht werden, welche Interaktionsmuster diese Fragmente haben. Dabei stand die zu untersuchende funktionelle Verbindung zwischen Exocyst und SCAR/WAVE im Mittelpunkt.

2.2.1 Sec10-N und Sec10-C

Für Sec10p in Hefe wurden Fragmente erstellt und in Hefen zur Überexpression gebracht (Roth *et al.*, 1998; s. Abb. 2.5): Für das 589 Aminosäure (As)-lange hydrophile Fragment Sec10∆C wurde eine um 70% reduzierte Wachstumsrate beobachtet, wogegen für das 283

As-lange C-terminale Fragment Sec10CT eine Reduktion von 45% zu verzeichnen war. Zudem wurden in den Hefen mit dem überexprimierten Sec10 Δ C-Fragment Defekte im Aktinzytoskelett, weniger Knospung und eine Vesikelakkumulation beobachtet. Basierend auf der Veröffentlichung von Roth *et al.* (1998) sollten in dieser Arbeit zwei dominant negative *A. thaliana*-Überexpressionslinien von Sec10-Fragmenten erstellt und analysiert werden. Die Fragmente Sec10 Δ C und Sec10CT aus Hefe wurden in dieser Arbeit als analoge Fragmente aus *A. thaliana* hergestellt und mit den Namen Sec10-N (entspricht Sec10 Δ C) und Sec10-C (entspricht Sec10CT) versehen (s. Abb. 2.5). Nach Transformation in *A. thaliana* wurde ein veränderter Phänotyp gesucht und in einem Yeast-Two-Hybrid-Ansatz wurden die Fragmente hinsichtlich veränderter Interaktionen untersucht.

Abb. 2.5: Fragmentierung von Sec10.

Abgebildet ist die Fragmentierung des Sec10 in Hefe von Roth *et al.* (1998). Analog zu Sec10∆C und Sec10CT wurde eine Fragmentierung des Sec10 aus *A. thaliana* vorgenommen, dessen Fragmente Sec10-N und Sec10-C genannt wurden und eine Größe von 596 As bzw. 230 As haben.

Interaktionen in Hefe

Da in früheren Versuchen von A. Steffens (2008) gezeigt wurde, dass Sec10 mit Sec15.2 in Hefen interagiert, sollte im folgenden untersucht werden, welche Fragmente von Sec10 mit Sec15.2 interagieren. In Tab. 2.4 sind die Interaktionen von Sec10 und Sec10-C mit Sec15.2 gezeigt. Die Interaktion zwischen Sec10 und Sec15.2 konnte bestätigt werden. Der C-Terminus von Sec10 interagiert nicht mit Sec15.2. Eine Transformation des N-Terminus sowohl mit der GFP-Negativ-Kontrolle als auch mit Sec15.2 in Hefen war aber nicht möglich. Dies könnte mit den Ergebnissen von Roth *et al.* (1998) übereinstimmen, die eine um 70% reduzierte Wachstumsrate mit dem Fragment Sec10 Δ C in Hefe sahen.

Überexpressions-Mutanten

Um die oft beobachtete Redundanz der Gene in *A. thaliana* zu umgehen, wurden die Fragmente von *Sec10* unter dem 35S-Promotor und mit C-terminalem RFP in *A. thaliana* überexprimiert, um diese Linien auf einen veränderten Phänotypen hin zu untersuchen. Die

Vergleiche zu Col-0 wurden hinsichtlich eines Phänotypes durchgeführt, der auch in *distorted*-Mutanten und der amiRNA-Linie von *ABIL3* zu sehen ist. Daher wurde neben dem Habitus der Pflanze auch die Morphologie der Blätter und Trichome, sowie die Komplexität der *Pavement*-Zellen und die Wurzellänge untersucht.

Zunächst konnten über RT-PCR-Analysen die Linien identifiziert werden, welche die Sec10-Fragmente in A. thaliana exprimieren (s. Abb. 2.6 A). Diese Linien wurden zur weiteren Analyse verwendet. Bei dem Vergleich der gesamten Pflanzen (Größe und Wachstumgeschwindigkeit) konnten keine Unterschiede festgestellt werden (ohne Abbildungen). Auch die Morphologie der Blätter und Trichome zeigte keine Unterschiede zum Wildtyp (s. Abb. 2.6 B). Beim Vergleich der Komplexität der Pavement-Zellen unterschied sich die Linie mit dem überexprimierten C-Terminus nicht signifikant vom Wildtyp. Jedoch zeigte die den N-Terminus überexprimierende Linie eine signifikant geringere Komplexität der Pavement-Zellen um ca. 25% (s. Abb. 2.6 C). Auch bei der Analyse der Wurzellängen zeigte sich ein Unterschied der Pflanzen aus der Überexpressionslinie mit p35S::Sec10-N-RFP, der mit einer signifikanten Reduktion der Wurzellänge um ca. 66% einherging. Im Gegensatz dazu waren die Wurzeln der Linie mit p35S::Sec10-C-RFP um ca. 33% länger als der Wildtyp, auch dieses Ergebnis ist signifikant (s. Abb. 2.6 D).

Tab. 2.4: Yeast-Two-Hybrid-Ergebnisse von Sec10-C.

SNF1 und SNF4 sind Positivkontrollen, GFP diente als Negativkontrolle und Sec10 sowie Sec10-C wurden gegen Sec15.2 getestet. Die Selektion hinsichtlich der Doppeltransformation erfolgte auf SD-Medium ohne Leucin (-L) und Tryptophan (-W) und die Interaktion wurde über zusätzlich fehlendes Histidin (-H) getestet. Der Versuch wurde einmal wiederholt.

Prey	Bait	SD-Medium	SD-Medium	
(pAct)	(pAs)	-L/-W	-L/-W/-H	
SNF1	SNF4	+	+	
GFP	GFP	+	-	
Sec10	GFP	+	-	
Sec10-C	GFP	+	-	
Sec10-N	GFP	-	-	
GFP	Sec15.2	+	-	
Sec10	Sec15.2	+	+	
Sec10-C	Sec15.2	+	-	
Sec10-N	Sec15.2	-	-	

Abb. 2.6: Überexpressionslinien von Sec10-Fragmenten im Vergleich mit Col-0.

A: RT-PCR-Analysen. Oben abgebildet ist die Expression des Aktins als Kontrolle in den Überexpressionslinien und dem Wildtyp. Unten ist die Expression von Sec10-N bzw. Sec10-C mit C-terminalem RFP zu sehen. Die Primer wurden so gewählt, dass der Forward-Primer im Fragment und der Reverse-Primer im RFP bindet.

B: Morphologie der Blätter und Trichome. Die Pflanzen mit p35S:: *Sec10*-C-RFP und p35S:: *Sec10*-N-RFP zeigen keine Unterschiede zum Wildtyp. Es wurden jeweils 10 Blätter untersucht. Die Pflanzen waren zwei Wochen alt und wuchsen unter LT-Bedingungen. Bei den Blättern handelte es sich um das dritte oder vierte Blatt.

C: Komplexität der Pavement-Zellen. Die Komplexität der Pavement-Zellen wurde über ihren Umfang und ihre Fläche errechnet. Für *A. th.* mit p35S::*Sec10*-N-RFP wurden 38 Zellen, für *A. th.* mit p35S::*Sec10*-C-RFP 84 Zellen und für Col-0 77 Zellen vermessen. Die Signifikanz des Ergebnisses wurde mit dem Student T-Test errechnet und wird durch * dargestellt, wenn ein signifikanter Unterschied besteht (P<0,001).

D: Messung der Wurzellängen. Bei Col-0 wurden 49 Pflanzen, bei *A. th.* mit p35S::*Sec10*-N-RFP 16 Pflanzen und bei *A. th.* mit p35S::*Sec10*-C-RFP 56 Pflanzen vermessen. Ein signifikantes Ergebnis wird durch * dargestellt.

2.2.2 Analyse der ABIL3-Fragmente

In Metazoen wurde in ABI-Proteinen eine N-terminale WA-Domäne gefunden, die mit SCAR und BRICK interagiert. An diese Domäne schließen sich Homeodomänen an sowie eine Prolin-reiche Domäne und eine C-terminale SH3-Domäne (Innocenti *et al.*, 2004). In pflanzlichen ABIL-Proteinen wurden Interaktionen mit SCAR und BRICK nachgewiesen, allerdings konnte nur eine geringe Homologie zur WA-Domäne gezeigt werden (Uhrig *et al.*, 2007). AmiRNA-Linien von *ABIL3* zeigten einen veränderten Phänotyp mit verdrehten

Trichomen, reduzierter Komplexität der *Pavement-*Zellen, längeren Wurzeln und einem veränderten Aktinzytoskelett (Jörgens *et al.*, 2010). Auf der Basis dieser Kenntnisse wurde *ABIL3* für weitere Analysen in dieser Arbeit genutzt. Aufgrund der Redundanz der ABIL-Proteine wurde die Methode der Überexpression gewählt, um über einen möglichen dominant negativen Effekt weitere Funktionen von ABIL3 zu untersuchen. Da es zum tierischen System nur Homologien zum N-Terminus von ABI gibt, stellte sich hier die Frage, ob und welche Auswirkungen die Überexpression von Fragmenten des N-Terminus in Pflanzen hat. Zusätzlich wurden vom C-Terminus ausgehend weitere Fragmente hergestellt, um ABIL3 hinsichtlich der bekannten Interaktionen mit SCAR, BRICK, NAP und Exo70B2 (Jörgens, 2010) zu kartieren.

Fragmentierung

Zur Fragmentierung des N-Terminus von ABIL3 wurde zunächst der konservierte Bereich durch einen Protein-Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi) auf die ersten 120 As eingegrenzt. Die Hydrophobizität von ABIL3 wurde nach der Kyte-Doolittle-Skala (mit CLC) vorhergesagt und die Regionen für *coiled-coil*-Domänen und Helices mit dem Programm SOPMA (http://npsa-pbil.ibcp.fr). Das Fragment N2 ist 120 As und das Fragment N1 101 As lang (s. Abb. 2.7). N1 und N2 wurden so gewählt, dass sie den vorhergesagten konservierten Bereich abdecken. Außerdem wurden bei der Fragmentierung die errechneten Regionen nicht voneinander getrennt. So wurden nur die Übergänge der Regionen mit vielen Helices und starker Hydrophilität bzw. Hydrophobizität geteilt. Vom C-Terminus ausgehend wurde ABIL3 von J. Uhrig in 6 weitere Fragmente unterteilt (s. Abb. 2.7).

Interaktionen

Über Yeast-Two-Hybrid-Versuche konnte gezeigt werden, dass alle ABIL3-Fragmente mit den SCAR/WAVE-Komponenten SCAR2, BRICK und NAP interagieren. C3 ist bei der Interaktion mit NAP eine Ausnahme. Bei der Interaktionsanalyse der Fragmente mit der Exocyst-Untereinheit Exo70B2 konnte gezeigt werden, dass C5, C4, C3 und C1 im Yeast-Two-Hybrid interagieren (s. Tab. 2.5).

Im anschließenden Split-YFP (BiFC) konnten die Interaktionen der ABIL3-Fragmente mit SCAR2 und BRICK bestätigt werden. Die Interaktionen von Exo70B2 mit C5, C3 und C1 stimmten auch mit den Yeast-Two-Hybrid-Analysen überein. Es konnte gezeigt werden, dass N1, N2 und C6 nicht mit Exo70B2 interagieren. Für NAP konnten nur die Daten von C5 und C3 verifiziert werden (s. Tab. 2.5). Da für den Ansatz über Split-YFP nach weiteren geeigneten Kontrollen gesucht wird, werden die Interaktionen der Fragmente, außer C3, mit NAP zunächst unter Vorbehalt einer endgültigen Verifizierung durch Split-YFP als positiv bewertet.

Abb. 2.7: Fragmentierung von ABIL3.

Der N-Terminus wurde in zwei Fragmente geteilt (**C**: N1 und N2), wobei sich die Teilung nach der Hydrophobizität (**A**: CLC: Kyte-Doolittle-Skala) und den vorhergesagten Regionen (**B**: http://npsa-pbil.ibcp.fr; Blau: Helix; Rot: Faltblatt; Grün: Turn; Violett: *coiled-coil*) richtete. Der C-Terminus wurde in 6 weitere Fragmente von J. Uhrig unterteilt (**C**: C1-C6), die von S. Lagodka kloniert wurden.

Tab. 2.5: Interaktionen der ABIL3-Fragmente im Yeast-Two-Hybrid und im Split-YFP.

Die Fragmente wurden in Yeast-Two-Hybrid-Analysen und über Split-YFP auf ihre Interaktion mit Komponenten des Exocyst- und SCAR/WAVE-Komplexes getestet. "+" stellt eine Interaktion und "-" keine Interaktion dar. Die Analysen wurden bis zu 3 mal durchgeführt. Für C2 und C4 sowie C6 mit NAP liegen im Split-YFP keine Ergebnisse vor (n.d.).

Methode	Protein	N1	N2	C6	C5	C4	C3	C2	C1
Yeast-	SCAR2	+	+	+	+	+	+	+	+
Two-	BRICK	+	+	+	+	+	+	+	+
Hybrid	NAP	+	+	+	+	+	-	+	+
	Exo70B2	-	-	-	+	+	+	-	+
Split-YFP	SCAR2	+	+	+	+	n.d.	+	n.d.	+
	BRICK	+	+	+	+	n.d.	+	n.d.	+
	NAP	-	-	n.d.	+	n.d.	-	n.d.	-
	Exo70B2	-	-	-	+	n.d.	+	n.d.	+

Dominant negative Überexpressionslinien

Aufgrund der Homologie zur N-terminalen WA-Domäne in Tieren wurden die beiden Fragmente N1 und N2 mit dem 35S-Promotor und einem C-terminalen RFP in *A. thaliana* überexprimiert. Die möglichen dominant negativen Effekte wurden hinsichtlich eines Phänotypes dokumentiert, der auch in *distorted*-Mutanten und der amiRNA-Linie von *ABIL3* zu sehen ist. Neben dem Habitus der Pflanze wurden ihre Blätter und Trichome sowie die Komplexität der *Pavement*-Zellen und die Wurzellängen untersucht.

Über RT-PCR wurden Linien gefunden, die das Fragment N1 bzw. N2 exprimierten (s. Abb. 2.8 A). Diese Linien wurden für die weitere Analyse genutzt. Bei dem Vergleich der gesamten Pflanzen (Größe und Wachstumgeschwindigkeit) konnten keine Unterschiede festgestellt werden (ohne Abbildungen). Beim Vergleich der Blätter und deren Trichome konnte keine veränderte Morphologie dokumentiert werden (s. Abb. 2.8 B). Der Vergleich der Komplexität der *Pavement*-Zellen zeigt, dass die Pflanzen mit überexprimierten N-terminalen Fragmenten zwar eine reduzierte Komplexität um bis zu 17% zeigen, jedoch ist das Ergebnis nicht signifikant (s. Abb. 2.8 C). Beim Vergleich der Wurzellängen gibt es für das Konstrukt p35S::*ABIL3*-N2-RFP in *A. thaliana* ein statistisch signifikantes Ergebnis: Die Wurzeln sind im Vergleich zum Wildtyp um 18% länger (s. Abb. 2.8 D). Dies stimmt auch mit den Ergebnissen von Jörgens *et al.* (2010) überein, in denen von einer Verlängerung der Wurzeln in amiRNA-Linien von *ABIL3* berichtet wird.

Abb. 2.8: Die Überexpressionslinien der N-terminalen Fragmente im Vergleich mit Col-0.

A: RT-PCR-Analysen. Aktin als Kontrolle ist oben abgebildet. Die Expressionsanalysen der Linien mit p35S::*ABIL3*-N1-RFP bzw. p35S::*ABIL3*-N2-RFP sieht man unten. Die Primer wurden so gewählt, dass der Forward-Primer im Fragment und der Reverse-Primer im RFP bindet.

B: Morphologie der Blätter und Trichome. Die Pflanzen mit p35S::*ABIL3*-N1-RFP bzw. p35S::*ABIL3*-N2-RFP zeigten keine veränderte Morphologie im Vergleich zum Wildtyp. Es wurden jeweils 10 Blätter (drittes oder viertes Blatt) untersucht. Die Pflanzen waren zwei Wochen alt und wuchsen unter LT-Bedingungen.

C: Komplexität der Pavement-Zellen. Für die Pflanzen mit p35S::*ABIL3*-N1-RFP bzw. p35S::*ABIL3*-N2-RFP wurden je 43 Zellen und für Col-0 77 Zellen vermessen. Die Signifikanz des Ergebnisses wurde mit dem Student T-Test errechnet und wird durch * dargestellt, wenn ein signifikanter Unterschied besteht (P<0,001).

D: Messung der Wurzellängen. Bei Col-0 wurden 49 Pflanzen, bei *A. th.* mit p35S::*ABIL3*-N1-RFP 60 Pflanzen und bei *A. th.* mit p35S::*ABIL3*-N2-RFP 58 Pflanzen vermessen. Ein signifikantes Ergebnis ist durch * gekennzeichnet.

2.3 Etablierung eines *Cre/Lox*-Systems hinsichtlich der Funktion von Sec6

In der Veröffentlichung von Cole et al. (2005) wurde gezeigt, dass in A. thaliana verschiedene T-DNA-Insertionen in Sec8 zu einer männlich gametophytischen Letalität durch einen Defekt in der Pollenreifung und im Pollenschlauchwachstum führen. Je näher die Insertion am 3'-Ende gelegen ist, desto weniger schwer ist dieser Defekt. Parallel hierzu konnten Halá et al. (2008) zeigen, dass es auch einen Defekt in der Pollenreifung und im Pollenschlauchwachstum in sec6-Mutanten gibt. Durch Immunofluoreszenz in Pollenschläuchen konnte nachgewiesen werden, dass sich sowohl Sec6 als auch Sec8 in den Regionen des Spitzenwachstums befinden. Durch diese Defekte ist eine genauere Analyse der homozygoten Insertionslinien von Sec6 und Sec8 in adulten Pflanzen nicht möglich. Daher wird in dieser Arbeit auf das Cre/Lox-System zurückgegriffen (Dale & Ow, 1990). Sec6 bzw. Sec8 sollten mit LoxP-sites versehen werden und zunächst die homozygoten SALK-Insertionslinien retten. Mit einer zusätzlich eingebrachten alkoholinduzierbaren Cre-Rekombinase sollten die zuvor eingebrachten Gene über die LoxP-sites wieder entfernt werden (Roslan et al., 2001; Deeks et al., 2005; Ketelaar et al., 2007; Adamski et al., 2009). Die Effekte in der homozygoten Pflanze sollten so in verschiedenen Entwicklungsstadien und/oder in bestimmten Geweben analysiert werden und Aufschluss über eine genauere Funktion dieser Gene geben.

2.3.1 Klonierung

Für das *Cre/Lox*-System wurden zwei Vektoren verwendet: der pEthOH mit einem alkoholinduzierbaren Promotor (Knappe *et al.*, 2003) und der pEXSG-YFP (Wiermer, M.; MPIZ-Köln). In den pEthOH mit einem alkohol-induzierbaren Promotor wurde die *Cre*-Rekombinase mit einer NLS-Erkennungssequenz eingebracht (Adamski *et al.*, 2009). Die NLS soll die *Cre*-Rekombinase in den Kern lokalisieren, da sie dort Gene mit umgebenden *LoxP*-sites herausschneiden soll. Dieser Vektor wurde in Col-0 transformiert (*A. th.* mit pAlc::NLS+*Cre*, s. Abb. 2.9 B).

Promotor und Terminator von Sec6 und Sec8 wurden mit vorangehender NLS-Erkennungssequenz und flankierenden LoxP-sites für die Erkennung durch die Rekombinase in den pEXSG mit C-terminalem YFP gebracht. Wegen der Expression von Sec6 und Sec8 in Pollen, sollten auch die Sec6- bzw. Sec8-spezifischen Promotoren verwendet werden. Bei der Klonierung handelte es sich um Fragmente über 5 Kb mit adeninreichen Sequenzen des Promotors, wodurch die Amplifikation der Fragmente problematisch war. Darüber hinaus erreicht der gesamte Vektor eine Größe über 10 Kb, wodurch eine Transformation in Agrobakterien und Pflanzen erschwert wird. Letzlich konnten über die Strategie der Fusions-PCR die Fragmente amplifiziert und die Vektoren mit pSEC6::Sec6; pSEC8::Sec8 und pSEC8::Sec6 kloniert werden. Aus zeitlichen Gründen, deren Ursache in den oben beschriebenen Faktoren lag, konnte bei Abschluss dieser Arbeit einzig die Kombination pSEC8:: Sec6 in die heterozygote SALK-Insertionslinie von Sec6 (SALK 078235) transformiert werden (s. Abb. 2.9). Es ist geplant, die homozygote transformierte SALK-Linie, die durch das Konstrukt mit Sec6 gerettet ist, mit der Linie A. th. pAlc::NLS+Cre zu kreuzen. Induziert man dann mit Alkohol die Cre-Rekombinase sollte das Konstrukt mit Sec6 wieder entfernt werden. Die adulte homozygote Pflanze kann so hinsichtlich der Mutation sec6 analysiert werden.

Als Kontrolle des Systems diente *TRY*, das in Col-0 unter der Kontrolle des 35S-Promotors zu einem Phänotyp mit wenigen bis keinen Trichomen führt (Pesch & Hülskamp, 2011). Auch hier wurde *TRY* mit *LoxP*-Sequenzen und einer vorangehenden NLS-Erkennungssequenz versehen, in Col-0 transformiert und mit der Linie gekreuzt, die pAlc::NLS+*Cre* trägt. Wenn *TRY* erfolgreich über die *LoxP*-sites von der *Cre*-Rekombinase durch vorherige Alkoholinduktion ausgeschnitten wird, sollten die Pflanzen wieder Trichome zeigen und wildtypisch aussehen. Darüber hinaus wurde der Vektor so kloniert, dass bei Exzision des *TRY* das YFP des pEXSG abgelesen und durch die NLS in den Kern transportiert wird, wo es als Kontrolle zu sehen sein soll.

Abb. 2.9: Funktion des Cre/Lox-Systems.

Das hier dargestellte System besteht aus zwei Vektoren (**B**): Im pEtHOH befindet sich die *Cre*-Rekombinase, die unter Alkoholzugabe durch den alkohol-induzierbaren Promotor exprimiert wird. Durch die NLS-Erkennungssequenz wird diese in den Kern transportiert; der Ort, an dem sie auch ihre Funktion erfüllen soll. Dort soll sie über die *LoxP*-Erkennungssequenzen (**A**) das Konstrukt aus Promotor, Gen und Terminator (**B**) ausschneiden und so in der adulten homozygoten SALK-Insertionslinien zu einem Fehlen des Gens in verschiedenen Geweben und/oder Zeiten führen. Durch das Ausschneiden über die *LoxP*-Sequenzen kann nun das YFP des Vektors pEXSG abgelesen und über die NLS-Erkennungssequenz in den Kern transportiert werden, wo es als Kontrolle für erfolgreiche Exzision dient. Die gleiche Orientierung der *LoxP*-sites führt zur Exzision (**A**) und die entgegengesetzte Orientierung verursacht eine Inversion des Gens.

2.3.2 Generierung der Cre/Lox-Linien in A. thaliana

Der Vektor pEthOH mit der *Cre*-Rekombinase wurde in *A. thaliana* Col-0 stabil transformiert. Über RT-PCRs wurde gezeigt, dass die Pflanzen mit Konstrukt die *Cre*-Rekombinase nach Induktion durch 0,5% Ethanol exprimieren, während ohne Induktion keine Expression stattfindet. Dies zeigt zum einen, dass der alkohol-induzierbare Promotor nicht *"leaky"* ist und zum anderen, dass die *Cre*-Rekombinase funktionsfähig ist (s. Abb. 2.11 A).

Der Kontrollvektor pEXSG-YFP mit p35S::NLS-*LoxP+TRY* wurde ebenfalls in *A. thaliana* Col-0 stabil transformiert. Wie erwartet konnte schon in der T1-Generation beobachtet werden, dass die Überexpression des *TRY* zu einem Phänotypen mit wenigen Trichomen am Blattrand führt (ohne Abbildung). Diese Pflanzen wurden für die weitere Kreuzung mit den Pflanzen verwendet, die das Konstrukt pEthOH mit pAlc::*Cre+*NLS tragen. Die Linien, die beide Konstrukte tragen, zeigten durch RT-PCR-Analysen, dass zum einen die *Cre*-Rekombinase durch Alkoholinduktion exprimiert wird. Zum anderen konnte über die Expression des *TRY*-Gens stattgefunden hat (s. Abb. 2.11 B). Dies zeigt sich auch im Phänotyp der Pflanzen: Ohne Alkoholzugabe erscheinen die Mutanten mit wenigen Trichomen am Blattrand. Nach Zugabe von 0,5% Ethanol wachsen wieder Trichome und die Pflanze erscheint wie erwartet wildtypisch (s. Abb. 2.11 C). Obwohl eine Fluoreszenz des exprimierten YFPs mikroskopisch nicht zu sehen war, konnte hier gezeigt werden, dass die *Cre*-Rekombinase funktionsfähig ist und eine Kontrolle für das *Cre/Lox*-System etabliert werden konnte.

Abbildung 2.10: Generierung der Linie A.th. pAlc::NLS+Cre x A.th. p35S::NLS+LoxP+TRY. A: RT-PCR von A.th. pAlc::NLS+Cre. Abgebildet sind die RT-PCRs von Col-0-Pflanzen, die mit der Cre-Rekombinase unter dem alkohol-induzierbaren Promotor des Vektors pEthOH transformiert wurden. Aktin diente hierbei als Kontrolle. Nach Alkoholinduktion wird die Rekombinase exprimiert. B: RT-PCR nach Alkoholinduktion von A.th. pAlc::NLS+Cre x A.th. p35S::NLS+LoxP+TRY. Es ist zu sehen, dass in den gekreuzten Linien die Cre-Rekombinase nach Induktion mit Ethanol exprimiert wird. Aktin dient hier als Kontrolle. Die Expression des YFP wurde über die Primer YFP_FW und YFP_RV nachgewiesen.

C: Phänotyp vor und nach Induktion von *A.th.* pAlc::NLS+*Cre* x *A.th.* p35S::NLS+LoxP+*TRY.* Vor Induktion zeigt die Kreuzung den bekannten Phänotyp mit wenigen Trichomen. Nach Alkoholinduktion zeigt die Linie wieder einen wildtypischen Phänotyp.

3 Diskussion

Bei den Untersuchungen hinsichtlich der Zellmorphogenese in A. thaliana stand in dieser Arbeit die funktionelle Analyse der beiden Komplexe SCAR/WAVE und Exocyst im Mittelpunkt. Der SCAR/WAVE-Komplex ist ein Teil des ARP2/3-Signalweges in Pflanzen, durch den das Aktinzytoskelett reguliert und somit auch die Zellform bestimmt wird. Mutanten der ARP2/3- und SCAR/WAVE-Komplexe zeigen den *distorted*-Phänotyp u.a. mit verdrehten Trichomen und weniger komplexen Epidermiszellen (Le et al., 2003; Li et al., 2003; Mathur et al., 2003a/b; Basu et al., 2004; Brembu et al., 2004; El-Assal-El et al., 2004; Li et al., 2004; Basu et al., 2005; Djakovic et al., 2006; Dyachok et al., 2008). Der Exocyst-Komplex wird in Tieren und A. thaliana in Verbindung mit Exozytose, Sekretion und Hefen, Vesikelrekrutierung gebracht (TerBusch et al., 1996; Guo et al., 1999; Grote et al., 2000; Cole et al., 2005; Wen et al., 2005; Synek et al., 2006; He et al., 2007; He & Guo, 2009). In Tieren wurde eine Interaktion zwischen Exo70 und ARPC1, einer Untereinheit des ARP2/3-Komplexes, gefunden (Zuo et al., 2006), die auch in A. thaliana bestätigt werden konnte: Hier interagiert Exo70B2 mit ARPC1.2 und ABIL3. Desweiteren konnte die Interaktion zwischen Exo70A1 mit ABIL2 gefunden werden (Jörgens, 2010; s. Einleitung Abb. 1.4). Diese Beobachtungen werfen die Frage auf, ob es eine funktionale Verbindung zwischen ARP2/3, SCAR/WAVE und Exocyst gibt sowie eine damit verbundene koordinierte Regulation zwischen Aktinzytoskelett, Vesikeltransport und Exozytose. Daher wurden die pflanzlichen Exocyst- und SCAR/WAVE-Mutanten dieser Arbeit hinsichtlich des distorted-Phänotypen aus ARP2/3- und SCAR/WAVE-Mutanten untersucht. Eine amiRNA-Linie von ABIL3 sowie die Mutanten pir121 und nap124 zeigten zusätzlich eine Verlängerung ihrer Wurzeln (Jörgens et al., 2010; Li et al., 2004), was in der folgenden Mutantenanalyse überprüft wurde.

3.1 Exo84b-2 zeigt neue Defekte in der Zellmorphogenese

Für den Exocyst-Komplex in *A. thaliana* sind bislang wenige Mutanten mit einem veränderten Phänotyp beschrieben. Daher wurde in diesem Teil der Arbeit nach weiteren Mutanten mit einem veränderten Phänotyp gesucht.

Für die T-DNA-Insertions-Mutanten *exo84.2-1*, *exo84.2-3*, *exo84.3-1*, *exo84.3-3* und *sec5.1* konnten homozygote Linien mit Nullmutationen gefunden werden. Um zu überprüfen, ob die Mutationen einen Effekt in der Gametogenese der Pflanzen verursachen, wurde die

Verteilung von Heterozygoten zu Homozygoten zu Wildtypen überprüft. Die Mutanten *exo84.2-1* und *sec5.1* zeigen keinen gametophytisch letalen Erbgang und sind auch nicht embryonal letal, da ihre Verteilung der 2. Mendelschen Regel, der Spaltungsregel, entspricht. Bei der Mutante *exo84.3-1* lässt sich allein durch die Reduktion des Anteils der Homozygoten auf 8% eine teilweise gametophytische Letalität vermuten. Das Auftreten von 69% Wildtypen und 23% Heterozygoten könnte sich durch einen sowohl männlich als auch weiblich gametophytischen Defekt erklären lassen. An dieser Stelle muss beachtet werden, dass es sich derzeitig nicht um eine repräsentative Statistik handelt, die für eine eindeutige Aussage wiederholt werden muss. Gleiches gilt für die Mutanten *exo84.2-3* und *exo84.3-3*: Hier wurde eine nicht erwartete Erhöhung des Aufkommens von Homozygoten auf 54% und 57% beobachtet. Zur Klärung des Erbganges müssten auch an dieser Stelle die Versuche wiederholt werden.

In vorangegangenen Studien konnte gezeigt werden, dass ABIL3 mit Exo70B2, Exo70B2 mit ARPC1.2 und ABIL2 mit Exo70A1 interagiert (Jörgens, 2010). Aufgrund der beschriebenen Proteininteraktion zwischen Untereinheiten des Exocyst-, ARP2/3- und SCAR/WAVE-Komplexes wurden bei der Mutantenanalyse Phänotypen gesucht, die eine funktionelle Verbindung dieser Komplexe unterstützen. Daher wurde die Morphogenese der Trichome und die Komplexität der *Pavement*-Zellen untersucht. Bei den Mutanten konnte durch die Analyse kein veränderter Phänotyp hinsichtlich dieser Kriterien beobachtet werden, die auf einen *distorted*-Phänotypen hingewiesen hätten. Auch Veränderungen im Habitus und der Blätter waren nicht erkennbar. Das Fehlen eines veränderten Phänotypen könnte durch die Redundanz der Gene verursacht worden sein. Insgesamt lieferten die Mutanten in dieser Untersuchung keinen Hinweis auf eine funktionale Verbindung zwischen Exo84.2-1, Exo84.2-3, Exo84.3-1, Exo84.3-3 und Sec5.1 und dem SCAR/WAVE- und ARP2/3-Komplex.

Die von Fendrych *et al.* (2010) beschriebene homozygote *exo84b*-2-Mutante ist steril und zeigt u.a. einen schwerwiegenden Defekt im Größenwachstum. Diese Mutante sollte hinsichtlich weiterer veränderter Phänotypen untersucht werden. Aufgrund der vermuteten funktionalen Verbindung zwischen dem Exocyst-, SCAR/WAVE und ARP2/3-Komplex sollte zunächst die Suche bei *distorted*-Phänotypen beginnen.

Bei der Suche nach homozygoten Mutanten fiel auf, dass die Heterozygoten kleiner waren als der Wildtyp. Durch die starke Kleinwüchsigkeit der homozygoten Mutante war es zum einen schwierig, diese zu finden und zu analysieren. Zum anderen zeigte auch schon die heterozygote Mutante einen noch nicht beschriebenen Wachstumsdefekt, wodurch ein Dosiseffekt der Mutation vermutet werden kann. Aufgrund dieser neuen Ergebnisse wurde in dieser Arbeit die heterozygote Pflanze charakterisiert. Beim Vergleich der heterozygoten *exo84b-2*-Mutanten mit Col-0 hinsichtlich eines *distorted*-Phänotypes konnte gezeigt werden, dass die *Pavement*-Zellen weniger komplex sind. Reduzierte Komplexität konnte auch bei *distorted*-Mutanten gezeigt werden (Hülskamp *et al.*, 1994; Le *et al.*, 2003; Li *et al.*, 2003; Mathur *et al.*, 2003a/b; Basu *et al.*, 2004; El-Assal Sel *et al.*, 2004; Saedler *et al.*, 2004), jedoch konnten weitere *distorted*-Charakteristika, wie *distorted*-Trichome, nicht dokumentiert werden. Zum einen könnte die Redundanz von Exo84 zu einem unvollständigen *distorted*-Phänotypen führen, zum anderen könnte Exo84b-2 bei der Zellmorphogenese eine zelltypspezifische Funktion übernehmen. Es ist bekannt, dass je nach Zelltyp verschiedene Komponenten an der Polarisierung beteiligt sind. So wird z.B. das Zytoskelett von *Pavement*-Zellen u.a. über ROP2 und ROP4 reguliert (Fu *et al.*, 2005), während bei Pollenwachstum ROP1 an der Regulation der Aktinpolymerisierung beteiligt ist (Hwang & Yang. 2006).

Die exo84b-2-Mutation zeigt darüber hinaus weitere bis dahin nicht beschriebene Effekte, die nicht mit einem distorted-Phänotyp in Verbindung gebracht werden können, wie z.B. das veminderte Wachstum und die kleineren und dickeren Schoten. In der Veröffentlichung von Fendrych et al. (2010) wurde neben der starken Wachstumsinhibition der homozygoten Mutante eine Vesikelakkumulation und Lokalisation von GFP-markiertem Exo84b-2 an der neu entstehenden Zellplatte dokumentiert. Diese Beobachtungen könnten auf einen zytokinetischen Defekt hindeuten, bei dem die Zellteilung betroffen ist. Auch elektronenmikroskopische Beobachtungen von Exocyst-Partikeln an neu entstehenden Zellplatten deuten darauf hin (Otequi & Staehelin, 2004). Interessant ist, dass ein Teil der Samen der heterozygoten Pflanze nach vollständiger Trocknung dunkler und vertrockneter erscheint. Samen entwickeln in ihrer frühen Entwicklungsphase zunächst einen vielzelligen Embryo durch Zellteilung und nehmen an Masse und Volumen zu. Danach synthetisieren sie Reserveproteine und verlieren massiv an Wasser, um zum Schluss in die Trocknungsphase zu gehen. Der letzte Schritt geht mit einer Erhöhung der Abscisinsäurekonzentration einher (Westhoff et al., 1996). Neben einer gestörten Zellteilung könnte auch die Trocknungsphase gestört sein. Da dieser Vorgang über Abscisinsäure geregelt wird, kann es auch möglich sein, dass die Mutation exo84b-2 zu einer Störung im Phytohormonhaushalt der Pflanze führt. Auch der kürzere und dickere Habitus der Schoten könnte auf einen Defekt des Phytohormonhaushaltes zurückzuführen sein. Doch im Gegensatz zur Wasserreduktion in Samen ist bei der Fruchtentwicklung nicht Abscisinsäure sondern Auxin hierfür verantwortlich. Diese beginnt mit der Zellteilung des Fruchtansatzes und geht in das anschließende Streckungswachstum der Frucht über (Strasburger, 2002). Darüber hinaus wird auch in der Literatur beschrieben, dass Auxine für das Verhältnis von Samenanzahl zu Schotengröße verantwortlich sind. Auch diese Beobachtung konnte in dieser Arbeit durch die Reduktion der Samenzahl pro Schote im Vergleich zum Wildtyp beschrieben werden. Die

Reduktion der Samenzahl kann aber auch ein Hinweis auf einen weiblich gametophytischen Defekt sein, bei dem weniger Samenanlagen gebildet werden. Auxine werden oft in Zusammenhang mit der Polarität von Zellen gebracht. Da ihre Wirkung von ihrer Konzentration abhängig ist, wird diese zum einen über die Synthese und den Abbau, zum anderen über den Transport geregelt (Strasburger, 2002). In der Zelle kann Auxin neben Diffusion auch aktiv über Influx- bzw. Efflux-Carrier-Proteine transportiert werden. PIN ist als Efflux-Carrier bekannt und es wird vermutet, dass Auxin zusammen mit ROP in Wurzeln PIN an die Stellen der Polarisierung rekrutieren kann (Fischer et al., 2006; Paciorek et al., 2005). ROPs wiederum sind als Aktivatoren des SCAR/WAVE- und Exocyst-Komplex bekannt und spielen bei der Entwicklung polarisierter Zellen eine wichtige Rolle. Aufgrund der oben beschriebenen Erkenntisse von Fischer et al. (2006) und Paciorek et al. (2005) über Auxin/ROP-vermittelte PIN-Lokalisation, vermuten Yang et al. (2008), dass auch die Entwicklung von Pavement-Zellen über ROP2/Auxin vermittelt wird. Da es in den exo84-b-2-Mutanten weniger komplexe Pavement-Zellen verzeichnen zu aab und für Exocystuntereinheiten die Interaktion mit ROPs bekannt ist (Synek et al., 2006; Lavy et al., 2007), könnte Exo84b-2 an der Rekrutierung von PIN und am Auxintransport beteiligt sein.

Das reduzierte Aufkommen von Schleimstoffen (Mucilage) bei der Samenkeimung und die veränderte Form der Vulkanzellen der Columella stimmen mit den Beobachtungen der sec8und exo70A1-Mutante überein (Kulich et al., 2010). Die Mucilage besteht überwiegend aus Pektinen, die über den Golgi und sekretorische Vesikel an die Plasmamembran gelangen, um dort über Exozytose die extrazelluläre Matrix zu bilden (Dupree & Sherrier, 1998). Bei der Ausbildung der Mucilage in der Columella wird eine sekundäre Zellwand ausgebildet, so dass sich die gebildeten Pektine zwischen primärer und sekundärer Zellwand befinden. Bei Befeuchtung des Samens bricht die primäre Zellwand auf und die Mucilage tritt aus dem Samen hervor (Western et al., 2000). Die vertrocknet erscheinenden Samen hatten keine Mucilage, wogegen die wildtypisch erscheinenden Samen eine wildtypische Mucilage zeigten. Dies ist interessant, weil es sich bei der Samenschale um maternales Gewebe handelt, das nicht segregiert. Es müssen daher die Zellen des Embryos oder des Endosperms an der Bildung der Mucilage beteiligt sein. Es ist möglich, dass durch den Defekt in exo84b-2 die Exozytose gestört ist und es zu einer Akkumulation von Mucilage-Vesikel sowie zu einer Reduktion der Mucilage-Masse in der Columella kommt. Um diese Idee zu überprüfen, müsste die Menge vorhandener Pektine gemessen werden. Denkbar ist auch, dass das Zytoskelett, über das der Transport verläuft, durch die Mutation betroffen ist. Erste Versuche deuten darauf hin, dass nahezu alle vertrocknet erscheinenden Samen ohne Mucilage nicht keimen. Dieses Ergebnis lässt vermuten, dass durch die Mutation ein Durch Untersuchung embryonaler Defekt vorliegt. die des Erbganges konnte herausgefunden werden, dass 3% homozygot waren. Es könnte sein, dass es sich bei den

Samen ohne *Mucilage* um die Homozygoten handelt, bei denen es nur wenige schaffen zu keimen. Es würde sich demnach um eine teilweise embryonale Letalität handeln. Dagegen spricht das 1:1-Verhältnis von Heterozygoten zu Wildtypen, das auf eine gametophytische Letalität hindeutet. Es könnte möglich sein, dass es sich sowohl um eine embryonale als auch gametophytische Letalität handelt. Um eine klare Aussage machen zu können, steht noch eine reziproke Kreuzung aus und die Samenanlagen der Heterozygoten sollten untersucht werden. Zusätzlich sollten die gekeimten Samen genotypisiert und ihre Verteilung bestimmt werden.

Es sind mehrere Funktion von Exo84b-2 hinsichtlich der Zellmorphogenese in Pflanzen denkbar: Die Beteiligung

- 1) über den SCAR/WAVE ARP2/3 Signalweg an der Regulierung des Zytoskelettes,
- 2) über PIN am Auxintransport,
- 3) über Vesikelrekrutierung und -sekretion am Zellzyklus.

3.2 ABIL3 besitzt zwei Bindungsstellen für SCAR/WAVE-Untereinheiten

In Metazoen besitzt ABI eine N-terminale WA-Domäne, die mit SCAR und BRICK interagiert. An diese Domäne schließen sich C-terminale Homeodomänen, eine Prolin-reiche Domäne und eine SH3-Domäne an (Innocenti *et al.*, 2004). Obwohl das pflanzliche ABIL nur mit wenigen Homologien der N-terminalen WA-Domäne von ABI in Metazoen ähnelt, bindet auch pflanzliches ABIL die Proteine SCAR, BRICK und NAP (Innocenti *et al.*, 2004; Basu *et al.*, 2005; Uhrig *et al.*, 2007). Vermutet wurde, dass diese Interaktionen über den Nterminalen Teil von ABIL stattfinden. Daher wurden Interaktionsstudien von ABIL-Fragmenten mit SCAR, BRICK und NAP durchgeführt. Da bislang nur ein veränderter Phänotyp für eine amiRNA-Linie von *ABIL3* vorliegt, die neben einem *distorted*-Phänotypen auch einen Effekt in der Wurzellänge zeigt (Jörgens *et al.*, 2010), beziehen sich die Interaktionsanalysen dieser Arbeit auf ABIL3. Für ABIL3 wurde darüber hinaus eine Interaktion mit Exo70B2 gezeigt (Jörgens, 2010), die in diese Interaktionsstudien einbezogen wurde.

Die N-terminalen Fragmente (N1 und N2) interagierten mit den Komponenten des SCAR/WAVE-Komplexes SCAR2, NAP und BRICK, aber nicht mit der Exocyst-Untereinheit Exo70B2 (s. Abb. 3.1). Hiermit konnte die Vermutung bestätigt werden, das der N-terminale Teil von ABIL3 mit den Untereinheiten SCAR/WAVE-Komplexes interagiert. Die kleinste Bindungsmöglichkeit am N-Terminus für SCAR2, BRICK und NAP war in diesem Versuch das Fragment N1. Analysen über das Programm "Prosite" (http://expasy.org/) ergaben, dass N1 kein bekanntes Bindungsmotiv besitzt. Gleichzeitig konnte auch über Fragmentierung

des C-Terminus von ABIL3 und anschließenden Yeast-Two-Hybrid-Analysen die kleinste Bindungsmöglichkeit des C-Terminus sowohl für SCAR2, BRICK und NAP als auch für Exo70B2 eingegrenzt werden: das Fragment C1 (s. Abb. 3.1). Analysen über Prosite zeigten auch hier keine konservierten Bindungsmotive. Die zuvor gefundenen Interaktionen von ABIL3 mit SCAR2, BRICK, NAP und Exo70B2 konnten hiermit bestätigt werden. Neu ist dabei, dass es mehrere Bindungsmöglichkeiten über ABIL3 gibt, da bislang angenommen wurde, dass sowohl das Metazoen-ABI als auch das pflanzliche ABIL mit BRICK und SCAR über die konservierte WA-Domäne am N-Terminus interagiert (Innocenti et al., 2004; Basu et al., 2005; Uhrig et al., 2007). SCAR2, BRICK und NAP haben bei ABIL3 zwei mögliche Bindungsstellen, wogegen Exo70B2 nur am C-terminalen Teil von ABIL3 bindet. Naheliegend ist die Vermutung, dass der Bereich zwischen dem N1 und C1 als Linker zwischen den Bindungsstellen fungiert. Als Beweis dieser Vermutung müsste dieser Bereich zusätzlich in einzelne voneinander unabhägige Fragmente geteilt werden. Interagieren diese Fragmente nicht mit den zu testenden Komponenten des SCAR/WAVE oder Exocyst-Komplexes, handelt es sich wahrscheinlich um einen Linkerbereich. Denkbar ist auch, dass über die beiden Bindungsstellen für SCAR, BRICK und NAP die Zusammenlagerung des Komplexes und seine Funktion reguliert wird. Dabei könnten über unterschiedliche Expressionen in verschiedenen Zelltypen die Bindungsstellen in mehreren möglichen Kombinationen belegt werden. Die Art der Zusammenlagerungen der Proteine könnte zu veränderten Funktionsweisen des SCAR/WAVE-Komplexes aber auch anderer Komplexe führen, wie z.B. Exocyst.

Abb. 3.1: Bindungsstellen von ABIL3 mit Untereinheiten des SCAR/WAVE- und Exocyst-Komplexes.

Über Yeast-Two-Hybrid und BiFC konnte gezeigt werden, dass ABIL3 nicht nur über seinen N-Terminus mit den Komponenten des SCAR/WAVE-Komplexes interagiert, sondern auch über den C-Terminus. Exo70B2 hingegen interagiert nur mit dem C-Terminus.

3.3 Die Überexpression des N-Terminus von ABIL3 führt zu verlängerten Wurzeln

ABIL besitzt 4 Genkopien. Für *ABIL3* ist eine amiRNA-Linie bekannt, die neben *distorted*-Trichomen auch eine Verlängerung der Wurzeln zeigte. Die dort beobachteten längeren Wurzeln sind parallel auch bei den Mutanten *nap124* und *pir121* zu finden (Li *et al.*, 2004), stellen aber gleichzeitig einen Gegensatz zu den kürzeren Wurzeln der *scar*-Quadrupel-Mutante und der *brick1*-Mutante dar (Dyachok *et al.*, 2008).

Aufgrund der Homologien zum tierischen N-Terminus wurde vermutet, dass auch die Interaktionen von ABIL mit SCAR2, BRICK und NAP über den N-Terminus von ABIL3 stattfinden. Neben den oben beschriebenen Interaktionsanalysen sollte die Funktion des N-Terminus durch Überexpression in A. thaliana untersucht werden. Zudem sollte durch die Überexpression die Redundanz der ABIL-Gene umgangen werden. Hinsichtlich eines distorted-Phänotyps konnte die dominant negative Überexpression keine ähnlichen Defekte hervorrufen, wie sie von Jörgens et al. (2010) in der amiRNA-Linie dokumentiert wurden. Beobachtet wurde aber eine Verlängerung der Wurzeln der Linie mit p35S:: ABIL3-N2-RFP im Vergleich zum Wildtyp, ähnlich den amiRNA-Linie von ABIL3. Wie auch schon durch die Interaktionsanalysen beschrieben, interagiert ABIL3 nicht nur über den N-Terminus. Über den C-Terminus bindet es sowohl an die Untereinheiten des SCAR/WAVE-Komplexes SCAR, BRICK und NAP als auch an die Exocyst-Untereinheit Exo70B2. SCAR könnte durch Überaktivierung zu einer vermehrten ARP2/3-Aktivität führen, die eine Aktinpolymerisierung zur Folge hat. Durch diese Aktinpolymerisierung könnten die verlängerten Wurzeln entstehen. Möglich ist, dass SCAR seine Aktivität durch Dissoziation von ABIL, PIR und NAP erhält (Eden at al., 2002). In diesem Fall könnte die Überexpression des N-Terminus von ABIL3 durch eine fehlende zweite Bindungsstelle am C-Terminus zur Dissoziation des SCAR/WAVE-Komplexes führen. Eine weitere Theorie wird durch das Aktivierungsmodell nach Innocenti et al. (2004) beschrieben. SCAR erhält dabei seine Aktivität nur dann, wenn der SCAR/WAVE-Komplex als Ganzes vorliegt. Dyachok et al. (2011) vermuten auch, dass SCAR durch die anderen SCAR/WAVE-Komponenten vor proteosomalem Abbau geschützt wird. In diesem Fall würde die Überexpression des N-Terminus dazu führen, dass der Komplex als Ganzes in seiner aktiven Form vorliegt. Der C-Terminus wäre dabei nicht nötig. Denkbar ist auch, dass PIR und NAP mit anderen aktinpolymerisierenden Faktoren interagieren. Durch die Überexpression und die fehlende Bindungsstelle am C-Terminus könnten PIR und NAP vermehrt frei vorliegen, mit diesen Faktoren interagieren und sie positiv regulieren. ABIL3, PIR und NAP könnten aber auch inhibitorische Funktionen übernehmen, die durch das Fehlen des C-Terminus bei der Überexpression gestört sind. Dass ABI, PIR und NAP in Tieren mit anderen Aktin-Regulatoren interagieren, vermuten auch Yang et al. (2007) und Ryu et al. (2009). Da der C-Terminus auch mit der ExocystUntereinheit Exo70B2 interagiert, könnte auch der Exocyst-Komplex bei der Regulation der Wurzellänge eine Rolle spielen. Interessant ist auch, dass die Überexpression des Fragments N1 nicht den Effekt der Wurzelverlängerung hervorrufen kann, obwohl durch die Interaktionsstudien für die kleinste Bindungsmöglichkeit des N-Terminus das N1-Fragment gefunden wurde. Jedoch scheint es, dass N2 seine Interaktionspartner stärker binden kann und so den stärkeren dominant negativen Effekt auslöst. Denkbar wäre auch, dass N1 in der Pflanze abgebaut wird.

3.4 Die Überexpressionen von Sec10-N und Sec10-C verursachen gegensätzliche Effekte beim Wurzelwachstum

In der Veröffentlichung von Roth et al. (1998) wurde Sec10p in Hefen in einen hydrophilen N-Terminus und einen hydrophoben C-Terminus geteilt und in Hefen überexprimiert. Die Überexpression des N-Terminus zeigte eine Reduktion der Wachstumsrate um 70% und die Überexpression des C-Terminus eine Reduktion um 45%. Die analoge Teilung des pflanzlichen Sec10 in Sec10-N und Sec10-C in dieser Arbeit führte über Interaktionsstudien und Überexpression in A. thaliana zu ähnlichen Ergebnissen. Zunächst konnte über Yeast-Two-Hybrid-Analysen die bekannte Interaktion zwischen dem Volllängen-Sec10 und Sec15.2 bestätigt werden (Steffens, 2008; Halá et al., 2008). Eine Interaktion zwischen Sec15.2 und dem C-Terminus von Sec10 konnte nicht gezeigt werden. Hefen konnten mit dem N-Terminus nicht transformiert werden, so dass die Interaktionsanalyse nicht durchgeführt werden konnte. Dies könnte mit der durch Roth et al. (1998) beobachteten reduzierten Wachstumsrate durch die Überexpression des N-Terminus von Sec10p in Hefe erklärt werden und würde bedeuten, dass der pflanzliche N-Terminus denselben dominant negativen Effekt in Hefen auslösen kann wie der N-Terminus aus Hefe. Da der N-Terminus aus Hefen mit Sec15p interagiert (Immunopräzipitationsversuche von Roth et al., 1998), könnte man auch für das N-terminale Fragment aus Pflanzen vermuten, dass es mit Sec15.2 interagiert.

Bei der Überexpression der Sec10-Fragmente in *A. thaliana* konnte in dieser Arbeit gezeigt werden, dass die Überexpression des C-Terminus zu längeren und die Überexpression des N-Terminus zu kürzeren Wurzeln als im Wildtyp führt. Die Überexpression des N-Terminus führt außerdem zu weniger komplexen *Pavement*-Zellen. Hier lassen sich Parallelen zu den Experimenten in Hefe ziehen (Roth *et al.*, 1998): Hefen mit überexprimiertem N-terminalen Sec10 zeigen neben der reduzierten Wachstumsrate u.a. eine Vesikelakkumulation. Hefezellen mit überexprimiertem C-Terminus sind um 70% länger und zeigen eine Aktinakkumulation an der Spitze der Knospung. Aber auch in Tieren zeigen sich ähnliche

Beobachtungen: Überexpression Die eines N-terminalen Fragments blockiert Neuritenwachstum (Vega & Hsu, 2001) und inhibiert das durch ARF6-angeregte Wachstum von NRK-Zellen wahrscheinlich über die Bindung zu ARF6 (Prigent et al., 2003). Eine RNAi-Linie von Sec10 führt in Drosophila zu einer postembryonalen Letalität (Andrews et al., 2002). Sec10 ist demnach für die Zellmorphogenese sowohl in Tieren, Hefen und Pflanzen essentiell. Es scheint, dass der C-Terminus dabei eine zentrale Rolle spielt, denn wenn dieser durch die Überexpression des N-Terminus verdrängt wird, kommt es zu einer verstärkten Wachstumsinhibition. Sec10p aus Hefen interagiert über den N-Terminus mit Sec15p. Sec15p wiederum interagiert über Sec4p mit Vesikeln. Sec4p ist ein Rab-Protein, das in Hefen am Transport von Vesikeln vom Golgi zur Plasmamembran beteiligt ist. Darüber hinaus ist bekannt, dass Sec10 in Hefen mit Sec5 interagiert (Guo et al., 1999). In Pflanzen ist bislang nur die Interaktion zwischen Sec10 und Sec15.2 bekannt (Steffens, 2008, Halá et al., 2008). Es ist denkbar, dass durch die Verdrängung des C-Terminus, der N-Terminus zwar über Sec15.2 an Vesikel bindet, aber die Verbindung, z.B. über Sec5, zum Exocyst-Komplex fehlt. Wie aus Hefen bekannt, ist der Exocyst-Komplex an der Vesikelrekrutierung beteiligt (Guo et al., 1999). Diese könnte durch den verdrängten C-Terminus hinsichtlich der durch den N-Terminus gebundenen Vesikel inhibiert sein. Um bestätigen, müssten die diese Vermutung zu verkürzten Wurzeln auf eine Vesikelakkumulation untersucht werden. Die Interaktionen aus Hefen zwischen Sec10 und Sec5 sowie Sec10 und dem Homolog zu Sec4p müssten zusätzlich in Pflanzen verifiziert werden. Interessant ist, dass die Überexpression des C-Terminus zu verlängerten Wurzeln führt. Ähnliches ist auch bei der Überexpression des Sec10 in Volllänge bei menschlichen Epithelzellen zu beobachten, bei denen es zu vermehrten Auswüchsen kommt (Lipschutz et al., 2000). Bei der Überexpression des C-Terminus von Sec10p in Hefen waren die Zellen um 70% länger. Es wurde vermutet, dass es sich um Defekte der Umorganisierung des Sekretionsapparates beim Wechsel von Zellwachstum zu Zellteilung handelt. Es ist möglich, dass die Überexpression des C-Terminus durch die Interaktion mit Proteinen, die an dieser Reorientierung beteiligt sind, den Wechsel von Zellwachstum zu Zellteilung verzögert (Roth *et al.*, 1998). Ähnliches könnte auch bei den p35S::Sec10-C-RFP-Pflanzen mit längeren Wurzeln passiert sein. Hinsichtlich dieser Vermutung müssten die Zellen der verlängerten Wurzeln untersucht werden, um die angenommene vermehrte Zellstreckung zu zeigen. Eine andere mögliche Erklärung der Wurzelverlängerung wäre, dass der C-Terminus mit Untereinheiten des SCAR/WAVE-Komplexes interagiert und durch die Überexpression die Zusammenlagerung des gesamten Komplexes verändert, wodurch es zu einer Überaktivierung SCAR verlängerten Wurzeln von und zu durch vermehrte Aktinpolymerisierung käme. Da nur die Überexpressionslinien des N-Terminus weniger komplexe Zellen zeigen, scheint für die Komplexität der Pavement-Zellen der C-Terminus

eine Rolle zu spielen. Basierend auf den genannten Erkenntnissen und Vermutungen könnte man annehmen, dass die Vesikelrekrutierung über den Exocyst-Komplex an der Morphogenese von *Pavement*-Zellen beteiligt ist.

3.5 Etablierung eines *Cre/Lox*-Systems hinsichtlich der Funktion von Sec6

Sec6 und sec8 sind durch einen Defekt der Pollenreifung und des Pollenwachstums gametophytisch letal (Cole et al., 2005; Halá et al., 2008). Um trotzdem weitere Defekte der homozygoten Mutanten untersuchen zu können, sollte ein Cre/Lox-System etabliert werden (Dale & Ow, 1990), durch das Sec6 und Sec8 in der adulten Pflanze entfernt werden können. Sec6 bzw. Sec8 mussten dabei unter dem Sec6 bzw. Sec8-spezifischen Promotor exprimiert werden und sollten so zunächst die jeweiligen homozygoten T-DNA-Insertionslinien von Sec6 bzw. Sec8 retten. Das Konstrukt aus Promotor, Sec6 bzw. Sec8 und Terminator wurde von LoxP-sites flankiert, über die das Konstrukt mit der zusätzlich eingebrachten Cre-Rekombinase wieder entfernt werden sollte. Diese Cre-Rekombinase wurde so kloniert, dass sie durch einen alkohol-induzierbaren Promotor erst nach Induktion abgelesen und exprimiert wird (Roslan et al., 2001; Knappe et al., 2003; Deeks et al., 2005; Ketelaar et al., 2007; Adamski et al., 2009). In dieser Arbeit konnte über eine Kontrolle gezeigt werden, dass das Konstrukt mit der Cre-Rekombinase funktionsfähig ist. Pflanzen, die das Konstrukt p35S:: TRY mit flankierenden LoxP-sites sowie das Konstrukt der induzierbaren Cre-Rekombinase trugen, zeigten vor Alkoholinduktion den bekannten Phänotyp mit wenigen Trichomen am Blattrand (Pesch & Hülskamp, 2011). Nach Induktion der Cre-Rekombinase zeigten sie wieder den wildtypischen Phänotyp, da das Enzym das Konstrukt p35S:: TRY entfernt hat. In dieser Arbeit konnte zunächst eine geeignete Kontrolle für die Funktionsfähigkeit der Cre-Rekombinase erstellt werden, dessen Erprobung abgeschlossen ist und für weitere Versuche verwendet werden kann.

Die Klonierung von Sec6 bzw. Sec8 mit den spezifischen Promotoren und Terminatoren wurde zunächst aufgrund der Größe der Konstrukte und der adeninreichen Sequenzen von Promotor und Terminator erschwert. Erst durch die Strategie der Fusions-PCR und Ligation konnten die Konstrukte für die Transformation in Agrobakterien und Arabidopsis erstellt werden. Bei Abschluss dieser Arbeit konnte das Konstrukt mit Sec6 unter dem Promotor von Sec8 in die heterozygote T-DNA-Insertionslinie sec6 gebracht werden. Wenn die homozygote T-DNA-Insertionslinie für Sec6 mit dem Konstrukt pSEC8::Sec6 gefunden ist, wird diese mit der Linie gekreuzt, welche die induzierbare Cre-Rekombinase trägt. Die geretten Pflanzen mit beiden Konstrukten können im adulten Stadium nach Induktion durch die Cre-Rekombinase auf weitere Defekte untersucht werden.

4 Material und Methoden

4.1 Material

4.1.1 Verwendete Organismen

In dieser Arbeit wurden pflanzliche und bakterielle Organismen sowie Hefen verwendet. Bei den pflanzlichen Materialien (s. Tab. 4.1) handelte es sich um die Ackerschmalwandart *Arabidopsis thaliana (A. thaliana)* und die Zwiebel *Allium cepa (A. cepa)*. Der Wildtyp Columbia-0 (Col-0) und die *A. thaliana*-SALK- bzw. SAIL-Insertions-Mutanten wurden zur Charakterisierung hinsichtlich der Funktion des Exocyst-Komplexes genutzt. Col-0 und eine SALK-Insertionslinie für *Sec6* wurden zur Transformation mittels *Agrobakterium tumefaciens* (*A. tumefaciens*) von dominant negativen Expressionsvektoren und Vektoren für das *Cre/Lox*-System angezogen. Die Zwiebel diente als Material für Interaktionsstudien.

Bei den bakteriellen Organismen (s. Tab. 4.2) wurden Stämme des Bakteriums *Escherichia coli* (*E.coli*) genutzt, um Klonierungen vorzunehmen. Zur Transformation von pflanzlichem Material wurde mit *A. tumefaciens* gearbeitet. Für Interaktionsstudien wurde *Saccharomyces cerevisiae* (*S. cerevisiae*) AH109 verwendet.

Ecotyp	Mutation	Verwendung	Referenz	
A. thaliana				
Col-0	-	Transformation und Vergleich	-	
Col-0	SAIL_736_A04	Mutantenanalyse	NASC, Fendrych <i>et al.</i> , 2010	
Col-0	SALK_011569	Mutantenanalyse	NASC	
Col-0	SALK_142737	Mutantenanalyse	NASC	
Col-0	SALK_017883	Mutantenanalyse	NASC	
Col-0	SALK_072277	Mutantenanalyse	NASC	
Col-0	SALK_055303	Mutantenanalyse	NASC	
Col-0	SALK_072526	Mutantenanalyse	NASC	
Col-0	SALK_042723	Mutantenanalyse	NASC	
Col-0	SALK_007664	Mutantenanalyse	NASC	
Col-0	SALK_130663	Mutantenanalyse	NASC	
Col-0	SALK_001525	Mutantenanalyse	NASC	
Col-0	SALK_145187	Mutantenanalyse	NASC	
Col-0	SALK_140590	Mutantenanalyse	NASC	
Col-0	SALK_078235	Cre/Lox	NASC, C. Jörgens	
	A	. cepa		
A. cepa	-	Interaktionsstudien	-	

Tab. 4.1: Verwendete Organismen (pflanzlich).

Stamm	Besonderheiten	Verwendung	Referenz	
E. coli				
DH5α	F-endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG Φ80dlacZΔM15 Δ (lacZYAargF)	Klonierung	Hanahan, 1983	
DB3.1	F-gyrA462 endA1 gln V44 Δ (sr1-recA) mcrB mrr hasdS20 (rB-, mB-) ara14 galK2 lacY1 proA2 rosL20 (Smr) xyl5 Δ leu mtl1	ccdB-Resistenz, Klonierung von Destinationvektoren für Gateway-LR-Reaktionen	Invitrogen	
	A. tumefaci	ens		
GV3101 pMP90	Rif/Gent-Resistenz	Transformation von pflanzlichem Material über Floral Dip (<i>A. thaliana</i>) oder Infiltration (<i>N. benthamiana</i>)	Koncz & Schell, 1986	
GV3101 pMP90RK	Helferplasmid; Transformation von Gateway basierte Vektoren; Rif/Kan-Resistenz	Transformation von pflanzlichem Material über Floral Dip (<i>A. thaliana</i>)	Koncz & Schell, 1986	
	S. cerevisi	ae		
AH109	MATa, trp-901, leu2-3, 112, ura3- 52, his3-200, gal4D, gal80D, Lys::GAL1 _{UAS} -GAL1 _{TATA} -HIS3, MEL1, GAL2 _{UAS} -GAL2 _{TATA} -ADE2, URA3::MEL1 _{UAS} -MEL1 _{TATA} -lacZ	Interaktionsstudien	Clontech	

Tab. 4.2: Verwendete Organismen (bakteriell).

4.1.2 Chemikalien und Enzyme

Die verwendeten Chemikalien wurden in analytischer Qualität von den Firmen Roth (Karlsruhe), Sigma-Aldrich (München, Steinheim), VWR (Darmstadt), Duchefa (Haarlem) und Difco (Hamburg) bezogen.

Die in dieser Arbeit verwendeten Enzyme zum Schneiden, Ligieren und Amplifizieren von DNA sowie zum Protein-Abbau wurden von Invitrogen, Bioline, Finnzyme und Fermentas verwendet.

4.1.3 Plasmide

In dieser Arbeit werden folgende Vektoren eingesetzt (s. Tab. 4.3):

Plasmid	Resistenz	Verwendung	Besonderheiten	Hersteller
		allgemeine Vektor	ren	
pJet1 blunt pDONR201	Amp	Klonierung	-	Fermentas
DONDOOT	Kan	Klonierung	Gateway- Klonierung	Invitrogen
pDONR207	Gent	Klonierung	Gateway- Klonierung	Invitrogen

Tab. 4.3: Verwendete Plasmide.

Plasmid	Resistenz	Verwendung	Besonderheiten	Hersteller
		Sec10 und ABIL	3	
pBatTL-B-RFP	Spec	Klonierung	Gateway- Klonierung	J. Uhrig
Sec10-N-bzw C_ms- bzw. os- pBatTL-B-RFP	Spec	Überexpression in Pflanzen		diese Arbeit
ABIL3-N1-bzw. N2_ms-bzw. os- pBatTL-B-RFP	Spec	Überexpression in Pflanzen		diese Arbeit
pAct	Amp	Klonierung	Gateway- Klonierung	Clontech
Sec10-pAct	Amp	Yeast-Two-Hybrid		A.Steffens
Sec10-N bzw C_ms-pAct	Amp	Yeast-Two-Hybrid		diese Arbeit
ABIL3-N1 bzw. -N2_ms-pAct	Amp	Yeast-Two-Hybrid		diese Arbeit
ABIL3-C1 bis C6_ms-pAct	Amp	Yeast-Two-Hybrid		J. Uhrig; S. Lagodka
SCAR2_ms-pAct	Amp	Yeast-Two-Hybrid		P. Thomas
BRICK_ms-pAct	Amp	Yeast-Two-Hybrid		P. Thomas
NAP_ms-pAct	Amp	Yeast-Two-Hybrid		P. Thomas
Exo70B2_ms-pAct	Amp	Yeast-Two-Hybrid		C. Jörgens
SNF1-pAct	Amp	Yeast-Two-Hybrid		K Kloppfleisch
GFP-pAct	Amp	Yeast-Two-Hybrid		K Kloppfleisch
n A c	Amp	Kloniorung	Catoway	Clontoch
μus		Romercing	Klonierung	Cionech
Sec15.2-pAs	Amp	Yeast-Two-Hybrid		A.Steffens
ABIL3-N1 bzw. -N2_ms-pAs	Amp	Yeast-Two-Hybrid		diese Arbeit
ABIL3-C1 bis C6_ms-pAs	Amp	Yeast-Two-Hybrid		J. Uhrig; S. Lagodka
SCAR2_ms-pAs	Amp	Yeast-Two-Hybrid		P. Thomas
BRICK_ms-pAs	Amp	Yeast-Two-Hybrid		P. Thomas
NAP_ms-pAs	Amp	Yeast-Two-Hybrid		P. Thomas
Exo70B2_ms-pAs	Amp	Yeast-Two-Hybrid		C. Jörgens
SNF4-pAs	Amp	Yeast-Two-Hybrid		K. Kloppfleisch
GFP-pAs	Amp	Yeast-Two-Hybrid		K. Kloppfleisch
pCl112	Spec	Klonierung	Gateway-	J. Uhrig

Plasmid	Resistenz	Verwendung	Besonderheiten	Hersteller
			Klonierung	
SCAR2-pCl112	Spec	Split-YFP		P. Thomas
BRICK-pCI112	Spec	Split-YFP		P. Thomas
NAP-pCl112	Spec	Split-YFP		P. Thomas
Exo70B2-pCl112	Spec	Split-YFP		C. Jörgens
pCl113	Spec	Klonierung	Gateway- Klonierung	J. Uhrig
ABIL3-N1 bzw. -N2-pCL113	Spec	Split-YFP		diese Arbeit; S. Lagodka
ABIL3-C1, -C3, -C5 und –C6- pCl113	Spec	Split-YFP		S. Lagodka J. Uhrig;
•		Cre/Lox -Vektore	n	
pEXSG-YFP	Amp	Klonierung	Gateway- Klonierung	M. Wiermer (MPIZ- Köln)
NLS-LoxP-Try- LoxP-pEXSG-YFP	Amp	Expression in Col-0		diese Arbeit
NLS-LoxP-pSEC8- Sec6-tSEC8- LoxP-pEXSG-YFP	Amp	Expression in htz. SALK-Linie für <i>Sec6</i>		diese Arbeit
NLS-LoxP-pSEC8- Sec8-tSEC8- LoxP-pEXSG-YFP	Amp	Klonierung		diese Arbeit
NLS-LoxP-pSEC6- Sec6-tSEC6- LoxP-pEXSG-YFP	Amp	Klonierung		diese Arbeit
pEthOH	Kan	Klonierung	Gateway- Klonierung	Knappe <i>et al.</i> , 2003
NLS-Cre-pEthOH	Kan	Expression in Col-0	Alkohol- induzierbarer Promotor	diese Arbeit

<u>4.1.4 Primer</u>

Die Sequenzen der Primer wurden über das Programm der Internetseite http://signal.salk.edu/tdnaprimers.2.html und über CLC DNA Workbench 5 von CLC Bio erstellt (s. Tab. 4.4).

Tab.	4.4:	Verwendete	Primer.
------	------	------------	---------

Primerbezeichnung	Sequenz (5´- 3´)	Verwendung
	allgemein	
attB_FW	TCGCGTTAACGCTAGCATGGATCTC	Sequenzierung
attB_RV	GTACACTCAGAGATTTTGAGACAC	Sequenzierung

Primerbezeichnung	Sequenz (5´- 3´)	Verwendung	
SALK-und SAIL-Insertionsmutanten			
LP_SALK_053303	TTCTCTCTGCTCAAGCAGCTC	Genotypisierung	
RP SALK 053303	ACTGTAATGCTTCATCCAGCG	Genotypisierung	
LP_SALK_072526	GTTTGCGTAGACGCTCTTACG	Genotypisierung	
RP_SALK_072526	AAATTTGGACCCAAAAATTGC	Genotypisierung	
exo84.3-3_FL_FW	ATGGAAGCGAGAGAAAGAG	RT-PCR	
exo84.3-3 FL RV	ATTTAGCAGAGGAAACAGAG	RT-PCR	
LP_SALK_007664	GACTTGCATCCTCTGGTGAAG	Genotypisierung	
RP_SALK_007664	TCCTTCCATCATTTCAACGAC	Genotypisierung	
sec15.2-2_FL_FW	ATGCAATCGTCGAAAGGACGG	RT-PCR	
sec15.2-2 FL RV		RT-PCR	
LP SALK 011569	ATGTTGATGGCTCGATTGATC	Genotypisierung	
		g	
RP_SALK_011569	TTGAATGAAACTGATGAGGGC	Genotypisierung	
exo84.2-1_FL_FW	ATGGAGAGCAGCGAGGAAGAC	RT-PCR	
exo84.2-1_FL_RV	TCAGAATCGGTGAAAGATGG	RT-PCR	
LP_SALK_017883	TCAAAGATCGATTCCGTTCAC	Genotypisierung	
RP_SALK_017883	AAGCTGTTTCGGAAGGAGAAG	Genotypisierung	
exo84.2-3_FL_FW	ATGGAGAGCAGCGAGGAAGAC	RT-PCR	
exo84.2-3 FL RV	TCAGAATCGGTGAAAGATGG	RT-PCR	
LP_SALK_130663	TTCACCAATAGCCAACTGACC	Genotypisierung	
RP SALK 130663	ACTAAGGACATTTATACCTACCAACTG	Genotypisierung	
 LP_SALK_001525	AAGCAAAGGTCTTCTCCTTGC	Genotypisierung	
RP_SALK_001525	TGATTGTTCTTCCTGGTGGTC	Genotypisierung	
sec5.1_FL_FW	ATGTCTAGCAGTGATGATTTA	RT-PCR	
	TTATCTTCCTCTCCCCTCTCC		
LP SALK 142737		Genotypisierung	
		Contrypiolorung	
RP_SALK_142737	TCGATTCCAATCATCCATCTC	Genotypisierung	
LP_SALK_042723	GGTATAGATTCGGCGGAGAA	Genotypisierung	
RP_SALK_042723	GATGTGACTCGAGAAACGGA	Genotypisierung	
Lba1		Genotypisierung	
Aktin_FW	IGCGACAATGGAACTGGAATG	RT-PCR	
Aktin_RV	GGATAGCATGTGGAAGTGCATAC	RT-PCR	
SAIL_LP	GGACCTTCCTCAATGTCATCC	Genotypisierung	
SAIL_RP	TGTAGATGTGCTGGTAAGAGC	Genotypisierung	
LB3	TAGCATCTGAATTTCATAACCAATCTCGATACAC	Genotypisierung	

Primerbezeichnung	Sequenz (5 [°] - 3 [°])	Verwendung
	Sec10 und ABIL3	
ABIL3_N_FW	GGGGACAAGTTTGTACAAAAAGCAGGCTTAG GATCCATGAGTGCAGCAGCTACAAT	Klonierung/ Sequenzierung/ Genotypisierung/ RT-PCR
ABIL3_N_101aa_RV_ms	GGGGACCACTTTGTACAAGAAAGCTGGGTTCT CGAGTCAGGTTCCTGCTACTTCATCGA	Klonierung/ Sequenzierung
ABIL3_N_101aa_RV_os	GGGGACCACTTTGTACAAGAAAGCTGGGTTCT CGAGGGTTCCTGCTACTTCATCGA	Klonierung/ Sequenzierung/ Genotypisierung
ABIL3_N_120aa_RV_ms	GGGGACCACTTTGTACAAGAAAGCTGGGTTCT CGAGTCAATCCATGTACTCTTGGCACA	Klonierung/ Sequenzierung/
ABIL3_N_120aa_RV_os	GGGGACCACTTTGTACAAGAAAGCTGGGTTCT CGAGATCCATGTACTCTTGGCACA	Klonierung/ Sequenzierung/ Genotypisierung
Sec10N-FW	GGGGACAAGTTTGTACAAAAAGCAGGCTTA	Klonierung/ Sequenzierung/ Genotypisierung
Sec10N-RVms	GGGGACCACTTTGTACAAGAAAGCTGGGTT	Klonierung/ Sequenzierung
Sec10N-RVos	GGGGACCACTTTGTACAAGAAAGCTGGGTT	Klonierung/ Sequenzierung/ Genotypisierung
Sec10C-FW	GGGGACAAGTTTGTACAAAAAAGCAGGCTTA	Klonierung/ Sequenzierung/ RT-PCR/ Genotypisierung
Sec10C-RVms	GGGGACCACTTTGTACAAGAAAGCTGGGTT	Klonierung/ Sequenzierung
Sec10C-RVos	GGGGACCACTTTGTACAAGAAAGCTGGGTT	Klonierung/ Sequenzierung/ Genotypisierung
Sec10-N-1_FW	AGATCATTTGCAGAGTGC	Sequenzierung
Sec10-N-2_FW	AGGAAATTACAGACACCG	Sequenzierung
Sec10-N-3_FW	TCATCTCAGCCAGCCACA	Sequenzierung/ RT-PCR
Sec10N4_FW	CCTCTGATTCTTGACATTG	Sequenzierung
Sec10N5_RV	CTGAGATGAAAACAATGTGC	Sequenzierung
RFP_FW	GAGAGAGGATCCAAACCATGGCCTCCTCCG	RT-PCR
RFP_RV	GAGAGAAGATCTGTCCACGGCGCCGGTGGA	RT-PCR

Primerbezeichnung	Sequenz (5´- 3´)	Verwendung
	Cre/Lox	
attB1+NLS+LoxP_FW	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAT GCCAAAAAAGAAAAG	Klonierung
LoxP+pSEC6_FW	GGTATTGAAGCATATTACATACGATATGCTTCAA TAAATCTTTTGTACGTTTTTAAG	Klonierung
pSEC6+RE+tSEC6_RV	CAGATGCGCACAATTCAAAGGGGGGTTACCCCG TTTAAACCATCTTCGCTAAATCACCTTA	Klonierung
pSEC6+RE+tSEC6_FW	GATGGTTTAAACGGGGTAACCCCCTTTGAATTG TGCGCATCTGTAAAACAGCGTTCAGCG	Klonierung
tSEC6+loxP+attB2_RV	AAGCTGGGTTTATTGAAGCATATCGTATGTAAT ATGCTTCAATATCCCGTATTTATGAAAGTAAAG	Klonierung
Pmel+Sec6_FW	GGGGAAAACCGTTTAAACATGATGGTCGAAGAT CTTGG	Klonierung
NsbI+Sec6_RV	GGTTTTCCCCTGCGCATTAAGTGAGTTTTCGCC ACA	Klonierung/ Genotypisierung
CreLoxSec6_FW1	TCTGTCCTTGGATGCTTC	Sequenzierung
CreLoxSec6_FW2	GTAAAGTTAGTGTCGACG	Sequenzierung
CreLoxSec6_FW3	CTAAACGGACTCTAGATG	Sequenzierung
CreLoxSec6_FW4	TTTGCAAAGCATGTCGTC	Sequenzierung
CreLoxSec6_FW5	CCGAACTTTCCATTAGAG	Sequenzierung
CreLoxSec6_FW6	GGATCGGAGTTCGTAAAT	Sequenzierung
CreLoxSec6_FW7	CCAAATAAAGCTGCTGAG	Sequenzierung
CreLoxSec6_FW8	CTGGTTCGTGCTTTGAGG	Sequenzierung
CreLoxSec6_FW10	ATTATATACACCGGCTGC	Sequenzierung
CreLoxSec6_FW11	GTGGCTAAGGAAGCAGTG	Sequenzierung
CreLoxSec6_FW13	TAAAACAGCGTTCAGCGT	Sequenzierung
CreLoxSec6_FW14	GGCGTATTTTTTGTCGCA	Sequenzierung
CreLoxSec6_FW15	ATAAAGAGTCCATCCACC	Sequenzierung
CreLoxSec6_FW16	CAATCTCATCTCTGCCAA	Sequenzierung
sec6_FW4	AGCACTTGATGGTAAACG	Sequenzierung
Sec6_FW5	TTGGAGAGGAACTTGGAG	Sequenzierung
Sec6_FW6	CAGCTGAAAAGAAGAGAG	Sequenzierung
Sec6_FW7	AAGTGCATCTAAAGTGGAG	Sequenzierung
LOXP+pSEC8_FW	GGTATIGAAGCATATIACATACGATATGCTTCAA TACTGCTCAAAACTAGGGTTAG	Klonierung/ Genotypisierung

Primerbezeichnung	Sequenz (5´- 3´)	Verwendung
pSEC8+RE+tSEC8_RV	TGACATGCGCACAATTCAAAGGGGGGTTACCCC	Klonierung
	GTTTAAACGCTGGCGAACTCACTCCGAT	
pSEC8+RE+tSEC8_FW	GCGTTTAAACGGGGTAACCCCCTTTGAATTGTG	Klonierung
	CGCATGTCAAAGCCATTCGCGGATTAC	
tSEC8+LoxP+attB2_RV	GGGGACCACTTTGTACAAGAAAGCTGGGTTTAT	Klonierung
	TGAAGCATATCGTATGTAATATGCTTCAATAAAC	
Pmel+Sec8_FW	GGGGAAAACCGTTTAAACATGGGGATTTTCAAT	Klonierung
	GGTTT	
Nsbl+Sec8_RV	GGTTTTCCCCTGCGCATTAATGAGAAAGAATTT	Klonierung
	CCA	
CreLoxSec8_FW1	GGAGTAGAGAATTGAGAG	Sequenzierung
CreLoxSec8_FW2	GGAAGGAGAATAAAACAAACGC	Sequenzierung
CreLoxSec8_FW3	GTTGGGTCCACTAGCTTC	Sequenzierung
CreLoxSec8_FW4	AGAATAGATGAGAGCTGG	Sequenzierung
CreLoxSec8_FW5	GTTACATTGCGGCACATC	Sequenzierung
CreLoxSec8_FW6	TGATGAAGTACCAACGAC	Sequenzierung
CreLoxSec8_FW8	CAAATTCAGGAACTCACC	Sequenzierung
CreLoxSec8_FW9	ATGTGAGATTCTACGAGC	Sequenzierung
CreLoxSec8_FW11	TGAGAGGACATTTGAGAG	Sequenzierung
CreLoxSec8_FW13	CTGGTGAGAAGCGGAATT	Sequenzierung
CreLoxSec8_FW14	CACCCACAGAGTATTCCA	Sequenzierung
CreLoxSec8_FW15	GAGTTTGGATTCGTGAGT	Sequenzierung
CreLoxSec8_FW16	CTCTCTTTTGGCTTTTGG	Sequenzierung
Sec8_FW4	AGGTTCCATCTCGTATTG	Sequenzierung
Sec8_FW5	CTTCCTCCATGGCTTTCT	Sequenzierung
Sec8_FW6	GGCTTCACAACATGACAT	Sequenzierung
Sec8_FW7	GAAAACTTTGTGAAGGACC	Sequenzierung
Sec8_FW8	ATTCTTGAGTTTGCGACC	Sequenzierung
Sec8_FW9	GGCAGCTATTCCATATATC	Sequenzierung
LoxP+stop+TRY_FW	GGTATTGAAGCATATTACATACGATATGCTTCAA TATAAATGGATAACACTGACCGTCG	Klonierung/ Genotypisierung
attB2+LoxP+TRY RV	GGGGACCACTTTGTACAAGAAAGCTGGGTTTAT	Klonieruna/
	TGAAGCATATCGTATGTAATATGCTTCAATACTA	Genotypisierung
	GGAAGGATAGATAGAAAAG	

Primerbezeichnung	Sequenz (5´- 3´)	Verwendung
CreLoxTRY_FW1	CATGACTGAACAAGAAGAAG	Sequenzierung
CreLoxTRY_FW2	TTGCAACGAACAGGTCAC	Sequenzierung
YFP_FW	ATGGTGAGCAAGGGCGAGGAG	RT-PCR
YFP_RV	TTACTTGTACAGCTCGTCCAT	RT-PCT
Cre_FW	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAT GGCTCCCAAGAAGAAGAG	Klonierung/ Genotypisierung/ RT-PCR
Cre_RV	GGGGACCACTTTGTACAAGAAAGCTGGGTTCTA ATCGCCATCTTCCAGCA	Klonierung/ Genotypisierung/ RT-PCR
CreLoxCre_FW1	AATGCTTCTGTCCGTTTG	Sequenzierung
CreLoxCre_FW2	GGTTCGTTCACTCATGGA	Sequenzierung
CreLoxCre_FW3	GAAAAAATGGTGTTGCCG	Sequenzierung
CreLoxCre_FW4	ATAGTGAAACAGGGGCAA	Sequenzierung

4.2 Methoden

4.2.1 Arbeiten mit Organismen

4.2.1.1 Pflanzenanzucht und Pflanzenernte

Im Rahmen dieser Arbeit wurden *A. thaliana*-Erdkulturen des Wildtypes Col-0 und der SALKbzw. SAIL-Insertion-Mutanten sowie *A. cepa* verwendet.

In gut durchnässter Aussaaterde werden die jeweiligen *A. thaliana*- Samen in Plastikpflanztöpfen oder -schalen ausgebracht und nach einer 24-stündigen Keimungsinduktion bei 4 °C im Dunkeln in einen Kulturschrank oder in das Gewächshaus des Biozentrums der Universität zu Köln mit Langtag (LT)-Bedingungen überführt und dort in einem Zeitraum von 4-9 Wochen entweder mit Leitungswasser oder mit 0,5 % Ethanol versetztem Leitungswasser gegossen. Bei Selektion werden nach 1 Woche die Pflanzen zweimal mit einer BASTA-Lösung besprüht, die aus 1 Teil BASTA von Aventis (200 g/L Glufosinolat-Ammonium), 0,02 % Tween und 1000 Teilen Leitungswasser besteht.

Werden Pflanzen steril angezogen, müssen die Samen zunächst mit 70 % Ethanol oder mit 4 % Hypochlorit und 0,1 % Triton-X-100 sterilisiert werden, um auf MS- oder ½ MS-Agarplatten ausgelegt und induziert zu werden. Das MS-bzw.1/2 MS-Medium stammt von Duchefa und wird nach Anleitung mit 1 % Saccharose und 8 % Plant Agar von Duchefa

angesetzt. Wahlweise kann bei Selektionsversuchen auch vor dem Gießen der Platten 50 μ g/ml steriles Kanamycin und / oder 20 mg/ml BASTA hinzugegeben werden.

Bei der Ernte nach der für den Versuch vorgesehenen Zeit werden nur die Blätter abgeschnitten und entweder frisch weiter verarbeitet oder in Eppendorf-Reagenzgefäßen in flüssigem Stickstoff eingefroren.

4.2.1.2 Präparation von Rohextrakten aus Pflanzen

Das Pflanzenmaterial wird mittels flüssigen Stickstoffs, Glaskugeln und je nach Versuch in einem speziellen Extraktionspuffer durch den Tissue Lyser von Qiagen aufgebrochen. Der so gewonnene Rohextrakt kann nach Zentrifugation für weitere DNA- bzw. RNA-Präparationen benutzt werden.

4.2.1.3 Kultivierung und Lagerung von E. coli, A. tumefaciens und S. cerevisiae

E. coli-Zellen werden in flüssigem oder festem LB-Medium (s. unten) bei 37 °C über 10-16 Stunden kultiviert. Übernachtkulturen dienen als Starterkulturen für größere Zellanreicherungen oder als Ausgangsmaterial für Plasmid-Minipräparationen oder Glycerol-Kulturen.

A. tumefaciens wird in flüssigem oder festem YEB-Medium (s. unten) bei 28 °C über 2 Tage angezogen und dient als Ausgangsmaterial für Transformation oder Glycerol-Kulturen.

Hefen benötigen flüssiges oder festes YPAD-Medium (s. unten), 30 °C und 3 Tage zum Wachsen. Soll in Versuchsansätzen, wie z.B. dem Yeast-Two-Hybrid-System, selektiert werden, werden SD-Medien mit verschiedenen Zusätzen benutzt.

Für die langfristige Lagerung bestimmter Klone empfiehlt sich die Herstellung von Glycerol-Kulturen, die bei -80 °C für mehrere Jahre haltbar sind. Hierzu werden 500 μ l einer frischen Übernachtkultur mit 500 μ l sterilem 50 % Glycerol vermischt und in flüssigem Stickstoff schockgefroren.

LB-Medium:

10 g Trypton; 5 g Hefeextrakt; 10 g NaCl; ddH_2O ad 1 l; pH 7,0; Festmedium: 1,5 % Agar autoklavieren; ggf. Antibiotikum zugeben

YEB-Medium:

20 g Bacto-Peptone (Trypton/Pepton aus Casein); 20 g Fleisch-Extrakt; 4 g Bacto-Yeast-Extrakt; 20 g Saccharose; 8 ml 1M Magnesium-Heptahydrat; mit ddH₂0 ad 4 l; je 400 ml 6,4 Agar; autoklavieren; ggf. Antibiotikum zugeben YPAD-Medium:

20 g Difco-Peptone; 10 g Hefe Extract; 100 mg Adenin (Sigma); 950 ml ddH₂O; pH 5,8 (mit 25 % HCl); ad 1 l ddH₂O auffüllen und 17 min autoklavieren; bei 55 °C 50 ml sterile 40 % Glucose-Lösung hinzugeben (Endkonz.=2 %)

Antibiotikum-Stammlösung:

Ampicillin: 100 mg/ml; Arbeitskonzentration 100 µg/ml Spectinomycin:50 mg/ml; Arbeitskonzentration 50 µg/ml Kanamycin: 50 mg/ml; Arbeitskonzentration 50 µg/ml Gentamycin: 25 mg/ml; Arbeitskonzentration 25 µg/ml Rifampicin: 50 mg/ml; Arbeitskonzentration 50/150 µg/ml Carbenicilin: 50 mg/ml; Arbeitskonzentration 50 µg/ml

4.2.2 Molekularbiologische Methoden

Die molekularbiologischen Methoden dieser Arbeit umfassen RNA-Isolation aus pflanzlichem Material, cDNA-Herstellung aus zuvor gewonnener RNA, Amplifikation bestimmter DNA-Fragmente mittels PCR, Klonierung von DNA und Herstellung rekombinanter Konstrukte durch Restriktionsendonukleasen, Ligasen und Klonasen.

4.2.2.1 DNA-Extraktion aus pflanzlichem Material

Das geerntete und eingefrorene Pflanzenmaterial wird mit 300 µl Extraktionspuffer (50 mM Tris/HCl, pH 7,2; 300 mM NaCl und 10 % Succhrose) und 3-4 Glaskugeln versetzt und im Tissue Lyser bei 30 Hz für 2 min zerstoßen. Danach wird 2 min bei 13000 rpm zentrifugiert und der Überstand abgenommen. Der Extrakt wird direkt weiter verwendet für PCRs zu Genotypisierungszwecken.

4.2.2.2 RNA-Isolation aus pflanzlichem Material

Bei diesem Versuchsteil wird aus je 100 mg Pflanzenmaterial RNA isoliert, aus der cDNA generiert wird. Diese cDNA dient für weitere Expressionsanalysen mittels PCR.

Um den Schutz der RNA vor RNasen zu gewährleisten, werden zunächst Arbeitsflächen, Pipetten und Handschuhe mit 70 % Ethanol gereinigt und ausschließlich RNase freie Pipettenspitzen und Reaktionsgefäße verwendet.

Das eingefrorene Pflanzenmaterial wird zusammen mit 3-4 Glaskugeln in 2 ml-Eppendorfgefäßen im Tissue Lyser für 1 min bei 30 Hz zerkleinert und danach mit 300 µl TRI-Reagenz versetzt. Nach weiterem Homogenisieren für 2 min bei 30 Hz werden weitere 700 μ I TRI-Reagenz zugefügt. Nach Vortexen und 5 min Belassen bei Raumtemperatur (RT), werden 200 μ I Chloroform zugegeben, gevortext und weitere 5 min bei RT stehen gelassen. Danach wird das Gemisch bei 4 °C für 15 min bei 13000 x g zentrifugiert und die obere wässrige Phase (550 μ I) abgenommen. Die 10 min Fällung erfolgt durch Zugabe von 550 μ I Isopropanol und Vortexen. An dieser Stelle kann die Probe bei -20 °C gelagert werden. Weiter wird bei 15 °C und 13000 x g die Probe für 20 min pellettiert. Das RNA-Pellet wird 2 x mit je 200 μ I 70 % Ethanol gewaschen (Pellettieren durch 2 min Zentrifugation bei RT und 13000 x g) und (gegebenenfalls über Nacht) getrocknet und anschließend in 50 μ I Diethyldicarbonat (DEPC)-behandeltem Wasser (1L ddH₂O + 400 μ I DEPC; mind. 30 min, besser aber 6 Std. oder ü. WE nach gutem Durchmischen unter dem Abzug stehen lassen; danach 20 min bei 121 °C autoklavieren) aufgenommen und gelöst.

Es folgt ein DNAse-Verdau:

- 50 µl RNA werden versetzt mit:
- 10 µl 10 x DNAse I-Puffer (Fermentas)
- 2 µl DNAse I (Fermentas)
- 38 µl DEPC-behandeltes H₂O

Die Mischung wird 1 Std. bei 37 °C inkubiert. Die Reaktion wird danach mit 5 µl 25 mM Ethylendiamintetraacetat (EDTA) für 10 min bei 65 °C abgestoppt. Die Probe kann an dieser Stelle bei -20 °C gelagert werden.

4.2.2.3 Polymerase-Kettenreaktion (PCR)

Für diese Arbeit wurden die Thermal-Cycler S1000[™] und C1000[™] von Biorad verwendet. Folgende Ansätze wurden durchgeführt:

Genotypisierungs-PCR

Um die Insertionen und erfolgreichen Transformationen zu verifizieren, wurden Genotypisierungs-PCRs mit der eigenen House-Taq (1 min / 1 Kb), 50 mM MgCl₂, 10 x NH₄-Puffer (160 mM NH₄SO₄, 670 mM Tris, pH 8,8) und den spezifischen Primern durchgeführt. Als Template diente der DNA-Extrakt aus pflanzlichem Material. Für die Genotypisierung der Insertionslinien wurden mittels Left - und Right - Border- Primer (LP und RP) der Wildtyp und die Heterozygoten und mittels dem LP bzw. RP und dem T-DNA-Insertions-Primer Lbal bzw. LB3 die Homozygoten und Heterozygoten unterschieden. Weiterhin wurden die Pflanzen *A.th.* p35S::*ABIL3*-N1-RFP, p35S::*ABIL3*-N2-RFP, p35S::*Sec10*-C-RFP, p35S::*Sec10*-N-RFP, pAlc::NLS+*Cre*, p35S::NLS+*LoxP*+*TRY*-YFP und pSEC8::*Sec6* mit den in der Primerliste genannten Primern genotypisiert. Reverse Transkriptase Polymerase Kettenreaktion (RT-PCR)

10 ng – 5 µg RNA,

1 µl 10mM Oligo-dT-Primer (Fermentas),

ad 12 µl mit ddH₂O (DEPC-behandelt) auffüllen,

mischen und 5 Min. auf Eis inkubieren lassen;

4 µl 5 x Revert Aid Reaction Buffer (Fermentas),

1 µl RNAse-Inhibitor (Fermentas),

2 µl 10 mM dNTPs (Fermentas),

hinzugeben und 5 min bei 37 °C inkubieren;

1 µl Reverse Transkriptase hinzufügen und 1 Std. bei 42 °C inkubieren;

die Reaktion wird danach bei 70 °C für 10 min abgestoppt

Die PCRs zur Überprüfung der Expressionsprofile der SALK und SAIL-Linien sowie der dominant-negativen Überexpressionslinien und der Linien für das *Cre/Lox*-System wurden mit dem Dream-Taq-Green-PCR-MasterMix von Fermentas nach Herstellerangaben durchgeführt. Die verwendeten Primer sind in der Primerliste zu finden.

Die Kontroll-PCR wurde mit Aktin_FW und Aktin_RV durchgeführt.

Amplifikations-PCR

Zu Klonierungszwecken wurden mit der Phusion-Polymerase von Finnzymes (nach Herstellerangaben) und den spezifischen Primern Amplifikationen von DNA-Fragmenten aus cDNA vorgenommen, die für die dominant negativen Konstrukte Sec10-C, Sec10-N, ABIL3-N1 und ABIL-N2 sowie das *Cre/Lox*-System (s. unten) vorgesehen waren.

Die Aufreinigung der PCR-Amplifikate erfolgte über das Kit "High Pure PCR Product Purification" von La Roche nach Herstellerangaben oder über die Isolierung von DNA-Fragmenten aus Agarosegelen mithilfe des Kits NucleoSpin[®] Extract II von Qiagen nach Herstellerangaben.

4.2.2.4 Ligation von DNA-Fragmenten

Als Enzym für diese Reaktion wird die T4-Ligase genutzt. Für einen Reaktionsansatz werden Vektor und Insert in einem molaren Verhältnis von 1:5 eingesetzt. Der Reaktionsansatz wird für 1 Std. bei RT und über Nacht bei 16 °C inkubiert. Anschließend folgt die Transformation in chemisch kompetente *E. coli*-Zellen nach der Hitze-Schock-Methode.

Ein Ligationsansatz enthält: x ng Vektor-DNA

- y ng Insert-DNA
- 5 μl 10 x Ligase-Puffer (Fermentas)
- 1 U T4-Ligase (Fermentas)

auf 10 µl mit ddH2O auffüllen

4.2.2.5 Anwendung von BP- und LR-Klonase
0,25 μl pDONR201 bzw. 207 (bei BP) bzw. Expressionsvektor (bei LR)
1,75 μl PCR-Produkt oder geschnittener Vektor (bei BP) bzw. Entry (bei LR)
0,5 μl BP- bzw. LR- Klonase (Invitrogen)
mind. 1 Std. bei 25 °C inkubieren oder über Nacht
1 μl ProteinaseK (Invitrogen)
10 min bei 37 °C inkubieren
Anschließend folgt die Transformation in chemisch kompetente *E. coli*-Zellen nach der Hitze-Schock-Methode.

4.2.2.6 Minipräparation von Plasmid-DNA

In dieser Arbeit werden sämtliche Plasmidpräparationen mithilfe des Kits von Fermentas durchgeführt, der auf Säulchen mit einer DNA-bindenden Silicamatrix basiert. Der Kit wird nach Angaben des Herstellers verwendet.

4.2.2.7 Automatische DNA-Sequenzierung

Die Sequenzierungsreaktionen wurden durch GATC Biotech AG, Konstanz und CTG, Köln durchgeführt. Bei CTG werden zuvor noch nach Vorschrift die PCRs durchgeführt.

4.2.2.8 Die Klonierung des Cre/Lox-Systems

In den pEthOH wurde die zuvor aus dem Vektor von Adamski *et al.*, 2009 amplifizierte *Cre*-Rekombinase mit einer NLS-Erkennungssequenz über Gateway eingebracht (Abb. 4.1 A). Promotor und Terminator von *Sec6* und *Sec8* wurden aus genomischer Wildtyp-DNA mit vorangehender NLS-Erkennungssequenz und flankierenden *LoxP*-sites über Fusions-PCR amplifiziert und über Gateway in den pEXSG-YFP gebracht. Parallel wurden *Sec6* und *Sec8* aus Col-0-cDNA mit den Enzymschnittstellen Pmel und Nsbl amplifiziert, die über diese Schnittstellen zwischen den Promotor und Terminator ligiert wurden (Abb. 4.1 B). Für die Kontrolle des Systems wurde *TRY* (Pesch & Hülskamp, 2011) mit *LoxP*-Sequenzen amplifiziert und mit einer NLS-Erkennungssequenz versehen und über Gateway in den pEXSG-YFP gebracht (Abb. 4.1 C). *TRY* wird über den 35S-Promotor des Vektors pEXSG-YFP exprimiert.

Abb. 4.1: Klonierungsstrategien der Vektoren für das Cre/Lox-System.

A: Die Cre-Rekombinase wurde mit einer NLS über Gateway in den Vektor pEthOH kloniert.

B: Promotor und Terminator von *Sec6* bzw. *Sec8* wurden über Fusions-PCR mit zwischenliegenden Restriktionsschnittstellen amplifiert, über die zum Schluss *Sec6* bzw. *Sec8* ligiert wurden. Promotor, Terminator und Gen sind von *LoxP*-sites flankiert. Es wurde eine NLS-Erkennungssequenz hinzugefügt, die später das nach Exzision von Promotor, Terminator und Gen ablesbare YFP in den Kern bringen soll.

C: *TRY* wurde als Kontrolle mit *LoxP*-sites und NLS amplifiziert. Die NLS sollte wie unter **B** beschrieben das YFP nach Exzision in den Kern transportieren.

4.2.3 Transformation von pflanzlichem Material

In dieser Arbeit wurden verschiedene Methoden zur stabilen und transientenTransformation von *A. thaliana* und *A. cepa* verwendet: die Floral Dip-Methode zur stabilen Transformation in *A. thaliana* durch Agrobakterien, die Kreuzung von stabil transformierten Pflanzen

und/oder Wildtypen und die Methode des Bombardments für die transiente Transformation in *A. cepa* durch das mechanische Einbringen von DNA in die Zellen.

4.2.3.1 Floral Dip

Um stabil transformierte A. thaliana-Linien zu erhalten, wird die Methode des Floral Dips verwendet, bei der zunächst Agrobakterien des Stamms A. tumefaciens GV3101 mit dem Konstrukt über Hitze-Schock transformiert werden, das zuletzt in die Pflanze eingebracht werden soll. Die transformierten Agrobakterien werden in einer Vorkultur von 5 ml YEB-Flüssigmedium mit entsprechenden Antibiotika bei 28 °C über Nacht und danach für 2 Tage in 200 ml YEB-Flüssigmedium mit entsprechenden Antibiotika angezogen. Diese Kultur wird mit 300 ml ddH₂O, 25g Saccharose (Endkonzentration 5 %) und 250 µl Silwett versetzt und kann zum Dippen der A. thaliana-Pflanzen benutzt werden, die ca. 2 Wochen alt sind und Blüten zeigen. Die Lösung sollte immer gleichmäßig gerührt werden und alle Blüten sollten von der Lösung benetzt werden. Die Pflanzen werden über Nacht im Dunkeln und liegend inkubiert, bevor sie wieder unter Langtagbedingungen weiter wachsen. Die hieraus entstehenden Samen können wieder ausgesät und durch Selektion und Genotypisierung auf die Effienz des Dippens getestet werden. Diese Methode wurde zur Erstellung von A. thaliana Col-0-Überexpressions-Mutanten und für die Etablierung von Mutanten des Cre/Lox-Systems genutzt. Col-0 wurde mit den Konstrukten p35S:: ABIL3-N1-RFP, p35S:: ABIL3-N2-RFP, p35S::Sec10-C-RFP, p35S::Sec10-N-RFP, pAlc::NLS+Cre und p35S::LoxP+TRY-YFP transformiert. Die SALK-Linie 078235 wurde mit pSEC8:: Sec6 transformiert.

4.2.3.2 Bomardierung

In dieser Arbeit wurde die Bombardierung für die transiente Transformation von ABIL3-Fragmenten und Untereinheiten des Exocyst- und SCAR/WAVE-Komplexes genutzt. Bei den Konstrukten, die über Bombardierung in *A. cepa* eingebracht werden sollten, handelte es sich um ABIL3-Fragmente, die in den pCI113-Vektor kloniert wurden, und SCAR, BRICK, NAP, Exo70B2 im pCI112. Über Split-YFP sollten die Interaktionen überprüft werden.

Für das Bombardment werden pro Schuss 300 ng je Konstrukt benötigt. Die DNA wird für einen Schuss bei gleichmäßigem Schütteln mit 5 μ I 30 mg/ml Gold, 10 μ I 2,5 M CaCl₂ und 4 μ I 0,1M Spermidin versetzt und 10 min bei RT weiter geschüttelt. Mit 5 sec Zentrifugationsschritten bei 10000 rpm dazwischen wird die Probe zunächst mit 50 μ I 70 % Ethanol und dann mit 20 μ I 100 % Ethanol gewaschen und in 12 μ I 100 % Ethanol aufgenommen. Diese Gold-DNA-Suspension wird auf Mikrocarrier (Biorad) pipettiert und trocknen gelassen. Die Bombardierung erfolgt auf die Zwiebelhaut der Innenseite einer Zwiebelschicht mit dem Gerät PDS-1000/He Biolistic Particle Delivery System von BioRad nach Herstellerangaben. Es werden Rupture Disks (Biorad) von 900 PSI und ein Druck von 26``Hg verwendet.

Die Zwiebelschichten werden auf feuchtem Whatman-Papier über Nacht dunkel gelagert und können am nächsten Tag für die mikroskopischen Untersuchungen verwendet werden.

4.2.3.3 Kreuzungen

Mit einer feinen Pinzette werden die Stamina aus den fast noch geschlossenen Blüten der Akzeptorpflanze entfernt und mit den Pollen der Donorpflanze bestäubt. Es wurden die Pflanzen *A. th.* pAlc::*Cre*+NLS mit *A. th.* P35S::*TRY*+NLS+*LoxP* gekreuzt.

4.2.4 Dokumentation morphologischer Phänotypen

4.2.4.1 Blätter, Trichome, Samen und Schoten

Für die Aufnahmen der Blätter, Trichome, Samen und Schoten wurden das Fluoreszenz-Binokular MZ16F und das Fluoreszenz-Mikroskop DMRB von Leica genutzt. Die Pflanzen waren 2 Wochen alt und wuchsen unter Langtagbedingungen. Es handelte sich um Blatt 3 bzw. 4.

4.2.4.2 Pavement-Zellen

Für die Analyse der *Pavement*-Zellen werden 2 Wochen alte *A. thaliana*-Kotyledonen benutzt, dessen Blattoberseiten auf einen 3 %igen flüssigen Agartropfen gelegt werden. Nach 1 Std. wird das Blatt aus dem erhärteten Agar genommen und der Abdruck eine weitere Std. trocknen gelassen. Der Abdruck der Zellen in der Blattspitze wird am Fluoreszenz-Mikroskop DMRB von Leica aufgenommen. Bilder wurden mit der Kamera KY-F70 3-CCD JVC und der DISKUS-Software (DISKUS, Technisches Büro, Königswinter) aufgenommen. Die Zellen werden mit ImageJ in ihrem Umfang und ihrer Fläche vermessen und die Komplexität der Zellen durch die Formel

<u>(Umfang²) / (4* 3,14159 *Fläche)</u> errechnet (Uhrig *et al.*, 2007). Als Referenz wird hierbei immer Col-0 mit vermessen und berechnet. Die Signifikanz des Ergebnisses wurde mit dem Student T-Test in Excel errechnet. Ein signifikanter Unterschied bestand bei P<0,001.

4.2.4.3 Wurzellänge

Die zuvor sterilisierten Samen werden auf ½ MS-Platten mit 1 % Saccharose und 8 % Agar in einer Reihe ausgelegt und ü.N. im Dunkeln bei 4 °C zur Keimung induziert. Die Platten werden dann unter Langtagbedingungen aufrecht in Klimakammern gestellt, so dass die Pflanzen nicht in den Agar wachsen, sondern die Wurzeln auf dem Agar nach unten wachsen. Nach 1 Woche kann die Vermessung der Wurzellänge erfolgen, die immer im Vergleich mit Col-0 erfolgt. Die Signifikanz des Ergebnisses wurde mit dem Student T-Test in Excel errechnet. Ein signifikanter Unterschied bestand bei P<0,001.

4.2.4.4 Mucilage (Samenhülle)

Die Samen der zu untersuchenden Pflanzen werden in eine 0,25 %ige Agarlösung mit Ruthenium-Rot (0,01 %) gelegt und eine halbe Std. angefärbt. Die angefärbten Samen wurden über das Fluoreszenzmikroskop DMRB von Leica aufgenommen. Bilder wurden mit der angeschlossenen hochauflösenden KY-F70 3-CCD JVC Kamera und der DISKUS-Software (DISKUS, Technisches Büro, Königswinter) aufgenommen.

4.2.5 Untersuchungmethoden der Interaktionen zwischen Proteinen

4.2.5.1 Yeast-Two-Hybrid (Hefe-2-Hybrid-System)

Im Yeast-Two-Hybrid soll die Interaktion zwischen zwei Proteinen nachgewiesen werden. Hierfür benötigt man die beiden Vektoren pAct und pAs, die beide einen Teil des Transkriptionsfaktors GAL4 besitzen. pAct trägt die Informationen für Aktivierungsdomäne und pAs die Information für die Bindedomäne. Kloniert man hinter die Domänen die Gene der zu untersuchenden Proteine und transformiert man beide Konstrukte in Hefen ohne GAL4, aber mit GAL4-Bindestelle, finden sich bei Interaktion der Proteine die Domäne zusammen und können als Transkriptionsfaktor die Histidinsynthese aktivieren. Hefen, in denen diese Reaktionen stattfinden, können durch Histidinmangelmedium selektiert werden und durch ihr Wachstum die Interaktion anzeigen.

Um die Konstrukte in *S. cerevisiae* zu transformieren, muss der Stamm AH109 in einer 10 ml Vorkultur mit YPAD-Medium ü.N. bei 30 °C angezogen werden. Aus dieser Vorkultur werden 1 ml zum Animpfen von 50 ml YPAD genutzt (reicht für 10 Trafos) und diese für 3-4 Std. bei 30 °C angezogen bis eine OD₆₀₀ von 0,8 erreicht ist. Danach werden die Zellen für 5 min bei 4000 rpm abzentrifugiert und in 10 ml 0,1 M LiAc resuspendiert. Nach weiterem Zentrifugieren für 5 min bei 4000 rpm werden die Zellen wie folgt behandelt:

- + Anzahl der Trafos x 240 µl PEG (50 % PEG 3350)
- + Anzahl der Trafos x 36 µl 1 M LiAc
- + Anzahl der Trafos x 50 µl ssDNA (vorher ssDNA 10 min kochen)
- + Anzahl der Trafos x 25 µl Wasser

Die Mischung wird 30 sec gevortext und je 350 µl der kompetenten Zellen zu den vorgelegten Plasmiden gegeben. Hierbei werden je pAct und pAs 2 µl verwendet. Nach Mischen werden die Zellen mit der DNA einem 40 min Hitze-Schock bei 42 °C unterzogen

und danach für 30 sec bei 6000 rpm herunterzentrifugiert. Das Zellpellet wird in 100 µl ddH₂O gelöst und auf SD-Platten ohne Tryptophan (W) und Leucin (L) ausgestrichen und für 3 Tage bei 30 °C inkubiert. Hier sollten alle Hefen inklusive der Negativkontrollen mit GFP wachsen, da bei erfolgreicher Transformation der pAct für die Synthese des Leucins und der pAs für die des Tryptophans sorgen. Beim Umimpfen auf SD-Platten ohne W, L und Histidin (H) sollten die Negativkontrollen nicht mehr wachsen, aber die Proben, deren Proteine interagieren. Die Positivkontrolle ist SNF1/SNF4.

Diese Methode wurde für Interaktionsstudien von Sec10-N bzw. Sec10-C mit Sec15.2 und den ABIL3-Fragmenten N1, N2, C1, C2, C3, C4, C5 und C6 mit Untereinheiten des Exocystund SCAR/WAVE-Komplexes in beide Richtungen genutzt.

SD-Medium:

1,7 g Yeast Nitrogen Base w/o Amino Acids w/o; (NH₄)³SO₄ von Difco; 5,0 g Ammonium-Sulfat; nach Herstellerangaben: DO-Supplements (Clontech);

je nach Versuch: 100 mg Leucin (Sigma), 20 mg Histidin (Sigma), 50 mg Tryptophan (Sigma), 20 mg Uracil (Sigma) oder /und 100 mg Adenin (Sigma);

15 g Select Agar (Merck); pH 5,8 mit 1 M NaOH; ad 1 I mit ddH₂O auffüllen und 17 min autoklavieren; bei 55 °C 50 ml sterile 40 % Glucose-Lösung hinzugeben (Endkonzentration: 2 %) und bei Interaktionsstudien 1 M steriles 3-Amino-1,2,4-Triazol (3´AT) hinzugeben (Endkonzentration: 3 - 30 mM)

4.2.5.2 Split-YFP (BiFC)

Um Interaktionen zwischen zwei Proteinen zeigen zu können, kann man sich der Methode des Split-YFPs bedienen. Hierbei werden die Vektoren pCl112 und pCl113 benutzt, in die die Gene der zu untersuchenden Proteinen kloniert werden. pCl112 besitzt den N-Terminus des YFP und pCl113 den C-Terminus. Transformiert man nun *A. cepa* mit beiden Vektoren und den entsprechenden Genen durch Bombardierung wird es zu einer Fluoreszenz des YFPs kommen, wenn die exprimierten Proteine miteinander interagieren und somit ein funktionsfähiges YFP darstellen. Diese Fluoreszenz wurde über das Fluoreszenzmikroskop DMRB von Leica aufgenommen. Bilder wurden mit der angeschlossenen hochauflösenden KY-F70 3-CCD JVC Kamera und der DISKUS-Software (DISKUS, Technisches Büro, Königswinter) aufgenommen. Es empfiehlt sich eine geeignete Kontrolle mitzuführen, wie z.B. den Leervektor pCl112 bzw. pCl113 als Negativkontrolle sowie ein CFP-fusioniertes Glabra3, dass bei jedem Ansatz als Positivkontrolle mitgeführt wird, um zu zeigen, dass sowohl die Transformation als auch die Expression prinzipiell funktionieren. Zu sehen ist Glabra3-CFP im Zellkern. Wenn es keine YFP-Fluoreszenz der zu untersuchenden Konstrukte gibt, kann dies als fehlende Interaktion gedeutet werden.

5 Literaturverzeichnis

Adamo, J. E., Rossi, G., Brennwald, P. "The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity." Mol. Biol. Cell 10, 1999, 4121–4133

Adamski, N. M., Anastasiou, E., Eriksson, S., O'Neill, C. M., Lenhard, M. "Local maternal control of seed size by *KLUH/CYP78A5*-dependent growth signalling." PNAS 2009, Vol. 106, Nr. 47, 20115–20120

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P. "Molekularbiologie der Zelle" Wiley-VCH 4. Auflage 2004; 1054-1140

Amann, K. & Pollard, T. D. "Direct real-time observation of actin filament branching mediated by Arp 2/3 complex using total internal reflection fluorescence microscopy." *Proc. Natl. Acad. Sci. USA* 98, 2001, 15009-15013

Andrews, H. K., Zhang, Y. Q., Trotta, N., Broadie, K. "Drosophila sec10 is required for hormone secretion but not general exocytosis or neurotransmission." Traffic. 2002; 906-21

Baluska, F., Salaj, J., Mathur, J., Braun, M., Jasper, F., Samaj, J., Chua, N.-H., Barlow, P. W., Volkmann, D. "Root Hair Formation: F-Actin-Dependent Tip Growth Is Initiated by Local Assembly of Profilin-Supported F-Actin Meshworks Accumulated within Expansin-Enriched Bulges." Developmental Biology 2000, Vol. 227, 618–632

Baskin, T., Wilson, J. E., Cork, A., Williamson, R. E. "Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol." Plant Cell Physiol. 1994, Vol 35, 935-942

Basu, D., EI-Essal Sel, D., Le, C. J., Mallery, E. L., Szymanski, D. B. "Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leave development." Development (Cambridge, England) 2004, Vol. 131, 4345-4355.

Basu, D., Le, J., El-Essal Sel, D., Huang, S., Zhang, C., Mallery, E. L., Koliantz, G., Staiger, C. J., Szymanski, D. B. "DISTORTED3/SCAR2 is a putative arabidopsis WAVE complex

subunit that activates the Arp2/3 complex and is required for epidermal morphogenesis." Plant Cell 2005, Vol. 17, 502–524

Basu, D., Le, J., Zakharova, T., Mallery, E. L., Szymanski, D. B. "A SPIKE1 signaling complex controls actin-dependent cell morphogenesis through the heteromeric WAVE and ARP2/3 complexes." Proc. Natl. Acad. Sci. USA, 2008, Vol. 105, 4044–4049

Blanchoin, L., Amann, K. J., Higgs, H. N., Marchand, J. B., Kaiser, D. A., Pollard, T. D. "Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins." Nature 2000, Vol. 404, , 1007-1011

Bohme, K., Li, Y., Charlot, F., Grierson, C., Marrocco, K. "The *Arabidopsis COW1* gene encodes a phosphatidylinositol transfer protein essential for root hair tip growth." Plant. J. 2004; 686–698

Brembu, T., Winge, P., Seem, M., Bones, A. M. "NAPP and PIRP encode subunits of a putative wave regulatory protein complex involved in plant cell morphogenesis." Plant Cell 2004, Vol. 16, 2335–2349

Brembu, T., Winge, P., Bones, A. M., Yang, Z.: "A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases." Cell Res. 2006, 435-45

Carol, R. J. & Dolan, L.: "The role of reactive oxygen species in cell growth: lessons from root hairs." J. Exp. Bot. 2006, Vol. 57, 1829-34

Carol, R. J., Takeda, S., Linstead, P., Durrant, M. C., Kakesova, H. "A Rho-GDP dissociation inhibitor spatially regulates growth in root hair cells." Nature 2005; 1013–1016

Cole, R. A., Synek, L., Zarsky, V., Fowler, J.E. "SEC8, a subunit of the putative Arabidopsis exocyst complex, facilitates pollen germination and competitive pollen tube growth." Plant Physiol. 2005, Vol. 138, 2005–2018

Crowell, E. F., Bischoff, V., Desprez, T., Rolland, A., Stierhof, Y. D., Schumacher, K., Gonneau, M., Höfte, H., Vernhettes, S.: "Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis." Plant Cell. 2009, 1141-54

Dale, E.C. & Ow, D. W. "Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase." Gene 1990, 79-85.

57

Deeks, M., Kaloriti, D., Davies, B., Malhó, R., Hussey, P. "Arabidopsis NAP1 is Essential for ARP2/3-dependent trichome morphogenesis." Curr. Biol. 2004, Vol. 14, 1410-1414

Deeks, M. J., Cvrcková, F., Machesky, L. M., Mikitová, V., Ketelaar, T., Zársky, V., Davies, B., Hussey, P. J. *"Arabidopsis* group le formins localize to specific cell membrane domains, interact with actin-binding proteins and cause defects in cell expansion upon aberrant expression." New Pytologist 2005, Vol.168, 529–540

Derivery, E., Lombard, B., Loew, D., Gautreau, A.: "The Wave complex is intrinsically inactive." Cell Motil Cytoskeleton. 2009, Vol. 66, 777-90

Djakovic, S., Dyachok, J., Burke, M., Frank, M. J., Smith, L. G.: "BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis." Development. 2006, Vol. 133, 1091-100

Dyachok, J., Shao, M. R., Vaughn, K., Bowling, A., Facette, M., Djakovic, S., Clark, L., Smith, L. "Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots." Mol Plant. 2008 Vol 1, 990-1006

Dupree, P. & Sherrier, D. J. "The plant Golgi apparatus." Biochim Biophys Acta. 1998 Vol. 14, 259-270

Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M., Kirschner, M. W. "Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck" Nature 2002, Vol. 418, 790–793

EI-Assal Sel, D., Le, J., Basu, D., Mallery, E. L., Szymanski, D. B. "Arabidopsis GNARLED encodes a NAP125 homolog that positively regulates ARP2/3" Curr. Biol. 2004, Vol.14, 1405–1409

Elias, M., Drdova, E., Ziak, D., Bavlnka, B., Hala, M., Cvrckova, F., Soukupova, H., Zarsky, V.: "The exocyst complex in plants." Cell Biol Int. 2003, Vol. 27, 199-201

Fendrych, M., Synek, L., Pecenková, T., Toupalová, H., Cole, R., Drdová, E., Nebesárová, J., Sedinová, M., Hála, M., Fowler, J. E., Zársky, V.: "The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation." Plant Cell. 2010, Vol. 22, 3053-65

58

Fischer, U., Ikeda, Y., Ljung, K., Serralbo, O., Singh, M., Heidstra, R., Palme, K., Scheres, B., Grebe, M. "Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity." Curr Biol. 2006, 2143-2149

Frank, M. J. & Smith, L. G.: "A small, novel protein highly conserved in plants and animals promotes the polarized growth and division of maize leaf epidermal cells." Curr Biol. 2002, Vol. 12, 849-53

Frank, M. J., Cartwright, H. N., Smith, L.G. "Three Brick genes have distinct functions in a common pathway promoting polarized cell division and cell morphogenesis in the maize leaf epidermis." Development. 2003, Vol. 130, 753-62

Frank, M. J., Egile, C., Dyachok, J., Djakovic, S., Nolasco, M., Li, R., Smith, L.G. "Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE." Proc Natl Acad Sci U S A. 2004, Vol. 101, 16379-84

Fu, **Y**., Gu, Y., Zheng, Z., Wasteneys, G., Yang, Z. "Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis" Cell 2005, Vol. 120, 687–700

Gautreau, H., Ho, H. Y., Li, J., Steen, H., Gygi, S. P., Kirschner, M. W. "Purification and architecture of the ubiquitous Wave complex." Proc. Natl. Acad. Sci. USA 2004, Vol. 101, 4379-4383

Giddings, T. H. & Staehelin, L. A.: "Microtubule-mediated control of microfibril deposition: A re-examination of the hypothesis." in C.W. Lloyd (Ed): The cytoskeletal basis of plant growth and form. Academic Press, London 1991, 85-99

Goley, E. D. & Welch, M. D.: "The ARP2/3 complex: an actin nucleator comes of age." Nat Rev Mol Cell Biol. 2006, Vol. 7, 713-26

Grote, E., Carr, C.M., Novick, P. J. "Ordering the final events in yeast exocytosis." J Cell Biol. 2000, Vol.,151, 439-52

Gu, Y., Wang, Z., Yang, Z. "ROP/RAC GTPase: an old new master regulator for plant signaling." Curr Opin Plant Biol. 2004, Vol. 7, 527-36

Guo, W., Roth, D., Walch-Solimena, C., Novick, P. "The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis" EMBO J. 18, 1999, 1071–1080

Guo, W., Sacher, M., Barrowman, J., Ferro-Novick, S., Novick, P. "Protein complexes in transport vesicle targeting" Trends Cell Biol 10, 2000, 251–255

Hanahan, D: "Studies on Transformation of Escherichia coli with Plasmids" J. Mol. Biol. 1983, Vol. 166, 557-580

Hepler, P. K., Vidali, L., Cheung, A. Y. "Polarized cell growth in higher plants." Annu Rev Cell Dev Biol. 2001, Vol. 17, 159-87

Hála, M., Cole, R., Synek, L., Drdová, E., Pečenková, T., Nordheim, A., Lamkemeyer, T., Madlung, J., Hochholdinger, F., Fowler, J. E., Žárský, V. "An Exocyst Complex Functions in Plant Cell Growth in *Arabidopsis* and Tobacco Plant" Cell. 2008, Vol. 20, 1330–1345

He, B., Xi, F., Zhang, X., Zhang, J., Guo, W. "Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane." EMBO J 2007, Vol. 26, 4053–4065

He, B. & Guo, W. "The Exocyst Complex in Polarized Exocytosis." Curr Opin Cell Biol. 2010, 573-542

Hsu, S. C., Ting, A. E., Hazuka, C. D., Davanger, S., Kenny, J. W., Kee, Y., Scheller, R. H. "The mammalian brain rsec6/8 complex" Neuron, 1996, Vol. 17, 1209-1219

Hülskamp, M., Misra, S., Jürgens, G. "Genetic dissection of trichome cell development in *Arabidopsis*" Cell 1994, 555–566

Hwang, J.-U. & Yang, Z. "Small GTPases and spatiotemporal regulation of pollen tube growth." in The PollenTube, ed. R Malho, Heidelberg, Ger.: Springer-Verlag 2006, 95–116

Innocenti, M., Zucconi, A., Disanza, A., Frittoli, E., Areces, L. B., Steffen, A., Stradal, T. E., Di Fiore, P. P., Carlier, M. F., Scita, G. "Abi1 is essential for the formation and activation of a WAVE2 signalling complex" Nat. Cell Biol. 2004, 319–327

Ismail, A. M., Padrick, S. B., Chen, B., Umetani, J., Rosen, M. K.: "The WAVE regulatory complex is inhibited." Nat Struct Mol Biol. 2009, Vol. 16, 561-563
Jörgens, C. Inaugural-Dissertation: "SCAR/WAVE complex and exocyst complex – Two regulators of cell morphogenesis in *Arabidopsis thaliana*", Universität zu Köln 2010

Jörgens, C., Grünewald, N., Hülskamp, M., Uhrig, J. F. "A role for ABIL3 in plant cell morphogenesis" The Plant Journal 2010, Vol. 62, 925–935

Jürgens, G. & Geldner, N.: "Protein secretion in plants: from the trans-Golgi network to the outer space." Traffic. 2002, 605-613

Kee, Y. *et al.* "Subunit structure of the mammalian exocyst complex" Proc. Natl. Acad. Sci. USA 1997, Vol. 94, 14438–14443

Ketelaar, T., Allwood, E. G., Hussey, P.J. "Actin organization and root hair development are disrupted by ethanol-induced overexpression of *Arabidopsis* actin interacting protein 1 (AIP1)" New Phytologist 2007, Vol. 174, 57–62

Knappe, S., Löttgert, T., Schneider, A., Voll, L., Flügge, U. I., Fischer, K. "Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis--AtPPT1 may be involved in the provision of signals for correct mesophyll development" Plant J. 2003, 411-20

Koncz C & Schell J.:"The promoter of T_L -DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of *Agrobacterium* binary vector." Mol Gen Genet. 1986, Vol. 204, 383–396

Kulich, I., Cole, R., Drdová, E., Cvrcková, F., Soukup, A., Fowler, J., Zárský, V. "Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin." New Phytol. 2010 Vol. 188, 615-625

Lavy, M., Bloch, D., Hazak, O., Gutman, I., Poraty, L., Sorek, N., Sternberg, H., Yalovsky, S. "A Novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking." Curr Biol. 2007, Vol. 17, 947-52

Le, J., El-Assal Sel, D., Basu, D., Saad, M. E., Szymanski, D. B. "Requirements for Arabidopsis ATARP2 and ATARP3 during epidermal development" Curr. Biol. 2003, Vol. 131, 341–1347

Ledbetter, M. C. & Porter, K. R. "A "Microtubule" in plant cell finde structure." J Cell Biol. 1963, Vol. 19, 239-50

Li, C., Lee, R. T., Wang, Y., Zheng, X., Wang, Y. "Candida albicans hyphal morphogenesis occurs in Sec3p-independent ans Sec3p-dependent phases separated by septin ring formation." Journal of Cell Science 2007, Vol. 120, 1898-1907

Li, S., Blanchoin, L., Yang, Z., Lord, E.M. "The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis" Plant Physiol. 2003, Vol. 132, 2034–2044

Li, Y., Sorefan, K., Hemmann, G., Bevan, M. W. "Arabidopsis NAP and PIR regulate actinbased cell morphogenesis and multiple developmental processes" Plant Physiol. 2004, Vol. 36, 3616–3627

Lipschutz, J. H., Lingappa, V. R., Mostov, K.E. "The exocyst affects protein synthesis by acting on the translocation machinery of the endoplasmic reticulum." J Biol Chem. 2003; 20954-60

Lu, L., Lee, Y. R., Pan, R., Maloof, J. N., Liu, B. "An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis." Mol Biol Cell. 2005, Vol. 16, 811-23

Matern, H. T., Yeaman, C, Nelson, W. J., Scheller, R. H. "The Sec6/8 complex in mammalian cells: Characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells." Proc Natl Acad Sci USA 2001, Vol. 98, 9648–9653

Mathur, J., Spielhofer, P., Kost, B., Chua, N. "The actin cytoskeleton is required to elaborate and maintain spatial patterning during trichome cell morphogenesis in Arabidopsis thaliana." Development. 1999, Vol. 126, 5559-5568

Mathur, J., Mathur, N., Hülskamp, M. "Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants." Plant Physiol. 2002, Vol. 128, 1031-45

Mathur, J., Mathur, N., Kernebeck, B., Hülskamp, M. "Mutations in actin-related proteins 2 and 3 affect cell shape development in Arabidopsis", Plant Cell 2003a, Vol. 15, 1632–1645

Mathur, J., Mathur, N., Kirik, V., Kernebeck, B., Srinivas, B.P., Hulskamp, M. "Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation" Development 2003b, Vol. 130, 3137–3146

Mathur, J. & Chua, N. H. "Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes." The Plant Cell 2000, Vol. 12, 465-477

McFarlane, H. E., Young, R. E., Wasteneys, G. O., Samuels, A. L. "Cortical microtubules mark the mucilage secretion domain of the plasma membrane in Arabidopsis seed coat cells." Planta. 2008. Vol. 227, 1363-75

Otegui, M. S. & Staehelin, L. A. "Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana." Planta. 2004, Vol. 218, 501-515

Paciorek, T., Zazímalová, E., Ruthardt, N., Petrásek, J., Stierhof, Y. D., Kleine-Vehn, J., Morris, D. A., Emans, N., Jürgens, G., Geldner, N., Friml, J. "Auxin inhibits endocytosis and promotes its own efflux from cells." Nature. 2005 Vol. 435, 1251-6

Paredez, A. R., Somerville, C.R., Ehrhardt, D. W. "Visualization of cellulose synthase demonstrates functional association with microtubules." Science. 2006, Vol. 312, 1491-5

Pesch, M. & Hülskamp, M. "Role of TRIPTYCHON in trichome patterning in Arabidopsis." BMC Plant Biol. 2011, Vol. 11, 130

Pollard, T. D. "Regulation of actin filament assembly by Arp2/3 complex and formins." Annual Review of Biophysics and Biomolecular Structure 2007, Vol. 36, 451-477

Pollard, T. D. & Borisy, G. G. "Cellular motility driven by assembly and disassembly of actin filaments." Cell. 2003, Vol. 112, 453-65

Prigent, M., Dubois, T., Raposo, G., Derrien, V., Tenza, D., Rossé, C., Camonis, J., Chavrier, P. "ARF6 controls post-endocytic recycling through its downstream exocyst complex effector." J Cell Biol. 2003, Vol. 163, 1111-21

Qiu, J. L., Jilk, R., Marks, M. D., Szymanski, D. B.: "The Arabidopsis SPIKE1 gene is required for normal cell shape control and tissue development." Plant Cell 14, 101–118 (2002).

63

Roslan, H. A., Salter, M. G., Wood, C. D., White, M. R., Croft, K. P., Robson, F., Coupland, G., Doonan, J., Laufs, P., Tomsett, A. B., Caddick, M. X. "Characterization of the ethanolinducible alc gene-expression system in Arabidopsis thaliana." Plant J. 2001, Vol. 28, 225-35

Roth, D., Guo, W., Novick, P.: "Dominant Negative Alleles of *SEC10* Reveal Distinct Domains Involved in Secretion and Morphogenesis in Yeast" Molecular Biology of the Cell Vol. 9, 1725–1739, July 1998

Ryu, J. R., Echarri, A., Li, R., Pendergast, A. M. "Regulation of cell-cell adhesion by Abi/Diaphanous complexes." Mol Cell Biol. 2009, Vol. 29, 1735-48

Saedler, R., Zimmermann, I., Mutondo, M., Hulskamp, M. "The Arabidopsis KLUNKER gene controls cell shape changes and encodes the AtSRA1 homolog" Plant Mol. Biol. 2004, Vol. 56, 775–782

Schellmann, S. & Hülskamp, M. "Epidermal differentiation: trichomes in *Arabidopsis* as a model system" Int. J. Dev. Biol. 2005, 579–584

Smith, L. G., Oppenheimer, D. G. "Spatial control of cell expansion by the plant cytoskeleton" Annu. Rev. Cell Dev. Biol. 2005, 271–295

Steffens, A. "Funktionelle Charakterisierung der Sec8-Untereinheit des Exocyst-Komplexes." Universität zu Köln 2008

Strasburger: Lehrbuch der Botanik. Sitte, P, Weiler E. W., Kadereit, J. W., Bresinsky, A., Körner C. Auflage 35, 2002, Spektrum Akademischer Verlag

Synek, L., Schlager, N., Eliáš, M., Quentin, M., Hauser, M.-T., Žárský, V. "AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development." Plant J. 2006, Vol. 48, 54–72

Szymanski, D. B., Marks, D., Wick, S. M.: "Organized F-Actin Is Essential for Normal Trichome Morphogenesis in Arabidopsis" The Plant Cell 1999, Vol. 11, 2331–2347

Szymanski, D. B. "Breaking the WAVE complex: the point of *Arabidopsis* trichomes" Curr. Opin. Plant Biol. 2005, 103–112

Szymanski, D. B. "Plant cells taking shape: new insights into cytoplasmic control." Curr Opin Plant Biol. 2009, 735-44

TerBush, D. & Novick, P. "Sec6, Sec8, and Sec15 are components of a multisubunit complex localizes to small bud tips in Saccharomyces cerevisiae" J. Cell Biol. 1995, Vol. 130, 299–312

TerBush, D. R., Maurice, T., Roth, D., Novick, P. "The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae." EMBO J. 1996, 6483-94.

Uhrig, J. F., Mutondo, M., Zimmermann, I., Deeks, M. J., Machesky, L.M., Thomas, P., Uhrig, S., Rambke, C., Hussey, P. J., Hulskamp, M. "The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis" Development 2007, Vol. 134, 967–977

Wen, T.-J., Hochholdinger, F., Sauer, M., Bruce, W., Schnable, P. S. "The *roothairless1* Gene of Maize Encodes a Homolog of *sec3*, Which Is Involved in Polar Exocytosis" Plant Physiol. 2005, Vol. 138, 1637–1643

Vega, I. E &, Hsu, S. C. "The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth." J Neurosci. 2001; 3839-48

Western, T. L., Skinner, D. J., Haughn, G. W. "Differentiation of mucilage secretory cells of the Arabidopsis seed coat." Plant Physiol. 2000, Vol. 122, 345-56

Westhoff, P., Jeske, H., Jürgens, G., Kloppstech, K., Link, G. "Molekulare Entwicklungbiologie – Vom Gen zu Pflanze" Thieme Verlag, Auflage 1996, 106-109

Wu, H., Turner, C., Gardner, J., Temple, B., Brennwald, P. "The Exo70 subunit of the exocyst is an effector for both Cdc42 and Rho3 function in polarized exocytosis." Mol Biol Cell. 2010, 430-42

Yang, C., Czech, L., Gerboth, S., Kojima, S., Scita, G., Svitkina, T. "Novel roles of formin mDia2 in lamellipodia and filopodia formation in motile cells." PLoS Biol. 2007, 317

Yang, Z. "Cell Polarity Signaling in Arabidopsis" Annu. Rev. Cell Dev. Biol. 2008; 551-575

Zhang, X. M., Ellis, S., Sriratana, A., Mitchell, C. A., Rowe, T. "Sec15 is an effector for the Rab11 GTPase in mammalian cells." J Biol Chem. 2004, Vol. 279, 43027-34

Zimmermann, I., Saedler, R., Mutondo, M., Hülskamp, M. "The Arabidopsis GNARLED gene encodes the NAP125 homolog and controls several actin-based cell shape changes" Mol. Genet. Genomics 2004, Vol. 272, 290–296

Zuo, X., Zhang, J., Zhang, Y., Hsu, S., Zhuo, D., Guo, W. "Exo70 interacts with the Arp2/3 complex and regulates cell migration." Nature Cell Biology 2006, Vol. 8, 1383-1388

Danksagung

Mein besonderer Dank gilt Herrn Prof. Dr. M. Hülskamp für die Möglichkeit, das Thema dieser Dissertation an seinem Institut bearbeiten zu können sowie für sein Interesse an der vorliegenden Arbeit und seine fördernde Unterstützung.

Mein Dank gilt auch Frau Prof. Dr. U. Höcker für die Bereitschaft, das Koreferat dieser Arbeit zu übernehmen und für ihr Interesse an meiner Arbeit.

Herrn Prof. Dr. S. Roth danke ich für die Übernahme des Prüfungsvorsitzes.

Herrn PD Dr. J. Uhrig möchte ich für seine Betreuung der Arbeit und seine Diskussionsbereitschaft danken.

Frau Dr. C. Jörgens gilt mein Dank für die Korrektur und die Hilfestellungen, die sie mir während der Erstellung dieser Arbeit gab. Auch möchte ich mich dafür bedanken, dass es immer möglich war, Probleme der Arbeit zu erörtern.

Ebenso möchte ich Herrn Dr. Marc Jakoby für die Ideen und Hilfen bei der Erstellung des *Cre/Lox*-Systems sowie der Korrektur dieser Arbeit danken.

Danke auch an Frau Sophia Lagodka und Herrn Benjamin Jaegle für die Unterstützung bei der Durchführung von Versuchsteilen.

Den Technischen Assistenten, insbesondere Herrn Bastian Welter, möchte ich für die hilfreichen Informationen aus langjährigen Berufserfahrungen danken. Auch möchte ich Frau Uschi Claßen, Herrn Siegfried Werth und der Gärtnerei danken, durch die viel Arbeit abgenommen wurde.

Schließlich gilt mein besonderer Dank allen Mitarbeitern der Arbeitsgruppe für das angenehme Arbeitsklima und die Hilfsbereitschaft aber auch für die schöne Zeit außerhalb des Labors.

Erklärung

"Ich versichere, dass ich die von mir vorgelegte Dissertation selbstständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; dass diese Dissertation noch keiner anderen Fakultät oder Universität zur Prüfung vorgelegen hat; dass sie - abgesehen von unten angegebenen Teilpublikationen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung vor Abschluss des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. Martin Hülskamp betreut worden."

Köln, 2012

Kristina Selbach