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Abstract

The orbital and stellar rotation evolution of CoRoT planetary systems due to tides

raised by the planet on the star (stellar tidal friction) and by tides raised by the

star on the planet (planetary tidal friction, for e > 0) is investigated. The evolution

time scale depends on the stellar tidal dissipation factor over stellar Love number

Q∗/k2,∗ which is not very well constrained. Tidal energy dissipation models yield

Q∗/k2,∗ = 105 − 109.

Many CoRoT planets may migrate towards their star because the stellar rotation

rate Ω∗ is smaller than the planetary mean revolution rate n. To guarantee long-term

stability of the CoRoT-planets, Q∗
k2,∗

≥ 107−108 is derived as a common stability limit.

As the planet migrates towards the star, the stellar rotation is spun-up efficiently. For

most CoRoT stars no sign of tidal spin up is found, therefore Q∗
k2,∗

> 106 is derived by

requiring tidal friction to be weaker than magnetic braking. CoRoT-17 apparently is

experiencing moderate tidal spin-up which requires 4× 107 ≤ Q∗
k2,∗

< 109.

For planets with e ≥ 0.5, like CoRoT-10b and CoRoT-20b, planetary and stellar

tidal friction may act on similar timescales. This may lead to a positive feedback

effect, decreasing the semi major axis/increasing the stellar rotation rapidly. To

avoid this, Q∗
k2,∗

> 106 is required.

The CoRoT-3 and CoRoT-15 system may be tidal equilibrium states, where Ω∗ =

n. To achieve this state and to maintain it in the presence of magnetic braking
Q∗
k2,∗

≤ 107 − 108 is required. Even then, the double synchronous orbit may decay

because magnetic braking removes angular momentum from the system. Therefore,

only F stars are capable to maintain a double synchronous state with a massive

companion, because these stars are not strongly affected by magnetic braking.

The Q∗
k2,∗

values required for double synchronous rotation are comparatively low

although Q∗
k2,∗

is expected to grow as Ω∗ → n. This discrepancy is explained by the

on-set of dynamical tides as stellar eigenfrequencies are exited, leading to a more

efficient tidal energy dissipation and reducing Q∗
k2,∗

. The other CoRoT-systems are

assumed not to excite dynamical tides.
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Kurzzusammenfassung

Die Entwicklung des Orbits und der Sternrotation von CoRoT Planetensyste-

men aufgrund von stellarer Gezeitenreibung und planetarer Gezeitenreibung wird

untersucht. Die Entwicklungszeiträume hängen vom stellaren Gezeitendissipations-

factor über stellare Love-Zahl Q∗/k2,∗ ab, deren Grösse nicht genau bekannt ist. Aus

Gezeitenenergie-Dissipations-Modelle ergeben sich: Q∗/k2,∗ = 105 − 109.

Viele CoRoT-Planeten könnten zum Stern wandern, da Ω∗ < n. Um das Überleben

der CoRoT-Planeten zu garantieren, ergibt sich Q∗
k2,∗

≥ 107 − 108 als Stabilitätslimit.

Wenn der Planet zum Stern wandert, wird die Sternrotation stark beschleunigt.

Die meisten CoRoT-Sterne zeigen kein Zeichen einer Gezeitenbeschleunigung, daher

ergibt sich Q∗
k2,∗

> 106, wenn angenommen wird, dass Gezeitenreibung schwächer ist

als ’magnetic braking’. Die Rotation von CoRoT-17 scheint moderat durch Gezeit-

enreibung beschleunigt zu werden, woraus sich 4× 107 ≤ Q∗
k2,∗

< 109 ergibt.

Planeten mit e ≥ 0.5, wie CoRoT-10b und CoRoT-20b, sind gleichzeitig planetarer

und stellarer Gezeitenreibung unterworfen. Das führt zu einer positiven Rückkopplung,

wobei sich die große Halbachse stark verringert bzw. die Sternrotation stark beschle-

unigt. Um dies zu verhindern, ist Q∗
k2,∗

> 106 erforderlich.

Das CoRoT-3 and CoRoT-15-System könnte in einem Gleichgewichtszustand sein,

so dass Ω∗ = n. Um diesen Zustand trotz ’magnetic braking’ aufrechtzuerhalten,

ist Q∗
k2,∗

≤ 107 − 108 erforderlich. Selbst dann könnte der doppelt-synchrone Orbit

aufgrund von ’magnetic braking’ zerfallen. Daher können nur F-Sterne einen doppelt-

synchronen Zustand mit einem schweren Begleiter aufrechterhalten, weil diese Sterne

reduziertem ’magnetic braking’ unterworfen sind.

Die Q∗
k2,∗

-Werte für den doppelt-synchronen Zustand sind verhältnismässig klein,

obwohl erwartet wird, dass Q∗
k2,∗

wächst, wenn Ω∗ → n. Das kann durch dynamische

Gezeiten erklärt werden, wenn stellare Eigenfrequenzen angeregt werden. Das führt

zu einer effizienten Gezeitenenergie-Dissipation und einem kleineren Q∗
k2,∗

. Es wird

angenommen, dass die anderen CoRoT-Systeme keine dynamischen Gezeiten anregen.
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Variables and constants

Constants description

G = 6.673× 10−11m3kg−1s−2 gravitational constant

AU = 1.496× 1011 m astronomical unit

c = 2.9979× 108ms−1 velocity of light (vacuum)

MJup = 1.8986× 1027 kg Jovian mass

RJup = 69.911× 106 m volumetric mean radius of Jupiter

MSun = 1.989× 1030 kg Solar mass

RSun = 6.96× 108 m Solar radius

REarth = 6.378× 106 m Earth radius

MEarth = 5.973× 1024 kg Earth mass

Variables description

QP primary dissipation factor

QS secondary dissipation factor

k2,P primary Love number

k2,S secondary Love number

Q∗ stellar dissipation factor

Qpl planetary dissipation factor

k2,∗ stellar Love number

k2,P l planetary Love number

MP primary mass

MS secondary mass

RP primary radius
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RS secondary radius

ΩP primary rotation rate

ΩS secondary rotation rate

ω tidal frequency

a semi major axis of an orbit

e orbital eccentricity

aequiv equivalent semi major axis of the correspond-

ing circular orbit

ρ bulk density

gP gravitational acceleration at the surface of a

primary

µ̃ effective rigidity

ζP amplitude of the equilibrium tide on a pri-

mary

τP tidal lag time on the primary

τd damping time scale

TP tidal time scale

n orbital revolution rate

M∗ stellar mass

MPl planetary mass

Ω∗ stellar rotation rate

ΩPl planetary rotation rate

P∗ stellar rotation period

CP moment of inertia of the primary

IP normalized moment of inertia of the primary

Porb orbital period

PPl planetary rotation period

L angular momentum

Ltot total angular momentum
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Lorb orbital angular momentum

Lrot,∗ stellar rotation angular momentum

Lrot,P l planetary rotation angular momentum

E energy

Eorb orbital energy

I∗ stellar normalized moment of inertia

IPl planetary normalized moment of inertia

C∗ stellar moment of inertia

τsynchr synchronization time scale

τRoche time scale to reach Roche limit

Do planetary Doodson constant

PF tidal property factor



Introduction

While I’m still confused and uncertain, it’s on a much higher plane, d’you

see, and at least I know I’m bewildered about the really fundamental and

important facts of the universe.

Terry Pratchett, humorist & writer (Equal Rites)

In 1995, something was discovered that took many planetary scientists by surprise:

Michel Mayor and Didier Queloz found a 0.46 Jupiter mass object that orbits the

main sequence star 51 Pegasi every 4.2 days (Mayor and Queloz, 1995). This period

corresponds to an orbit with a semi major axis of 0.05 astronomical units (AU).

For comparison, Mercury, the innermost planet in our Solar System, has an orbit

with a semi major axis of 0.39 AU. 51 Pegasi b, as the planet is called now, is the

first extrasolar planet found around a Sun-like star and it is a strange planet when

compared to the planets in our Solar System.

Not only is the very close orbit a surprise, but also the fact that such a short-

period orbit is occupied by a gas giant and not by a terrestrial planet. Before the

discovery of 51 Pegasi b, it was regarded as self-evident that the innermost region

of planetary systems can only harbor planets of terrestrial composition and that gas

giants can only form beyond the ’snow line. The ’snow line’ marks the distance from

a star where volatile materials like helium and hydrogen, the building blocks of gas

4
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giants, can exist in a primordial gas-dust disc without being dispersed by stellar wind

and irradiation (Hayashi, 1981; Sasselov and Lecar, 2000). This idea was challenged

by 51 Pegasi b’s very existence.

Today, more than 600 extrasolar planets1 have been discovered and, yet, it re-

mains controversial if the formation theory of planetary systems requires ’just’ small

corrections by allowing gas giants to migrate towards their stars (Lin et al., 1996;

Weidenschilling and Marzari, 1996) or if the formation theory itself needs to be mod-

ified to allow for in-situ formation in close proximity to the star (Wuchterl, 1999;

Broeg and Wuchterl, 2007). In any case, extrasolar planets continue to challenge and

broaden our conceptions of how planetary systems form and evolve over time.

This work focuses on another aspect of extrasolar planetary system evolution:

Tidal interactions between a close-in planet and its star. More specifically, tidal

friction is investigated where torques due to the tidal bulge on the star and on the

planet lead to changes in the planet’s orbit and the rotation rates of the star and

planet; this is a research field that holds surprises as well.

Tidal friction raised by a massive close-in planet on the star may have an influence

on the stellar rotation evolution. It is one of the rare examples of direct star-planet

interactions. Furthermore, tidal friction may destabilize the orbit of a planet and

spin up the stellar rotation. The timescale on which these effects take place depends

on how much energy is dissipated within the star as the tidal bulge plows over the

stellar surface. These dissipation processes depend on the inner structure of the star.

Therefore, tidal friction between close-in extrasolar planets and their star may allow

to ’probe’ the stellar interior or, at least, the stellar outer layer. In the case of main

1As listed in the exoplanet catalogue: http://www.exoplanet.eu/catalog-all.php as of 14th Octo-
ber 2011.
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sequence stars, which are investigated in this work, the outer layer is the convective

envelope; a turbulent plasma environment.

Compared to the Solar System, this is an unparalleled situation. The Solar System

planets are too far away and the innermost planets not very massive. Consequently,

the resulting planetary tidal forces are too small to produce an observable effect

(Goldreich and Soter, 1966).

The goal of this work is to investigate the evolution of planets discovered by

the CoRoT mission (Baglin, 2003) due to the influence of tidal torques. From the

evolution scenarios, the timescale on which tidal friction acts on the planetary systems

can be constrained. This in turn sheds light upon the stellar energy dissipation

mechanisms, currently not very well constrained.

The CoRoT planets are selected because they provide a variety of interesting

scenarios:

• Planets on circular orbits around slowly rotating low-mass stars.

• Planets on circular orbits around slowly rotating F-stars.

• Planets on eccentric orbits.

• Planets around fast-rotating stars.

• Possible double synchronous systems.

In addition, the stellar and planetary parameters of the CoRoT systems are very well

determined (See Tables 1.3, 1.2, and Appendix A).

In Chapter 1, extrasolar planets and brown dwarfs are defined, a brief detection

history is given and extrasolar planet detection methods are discussed. The CoRoT
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space mission is presented because the planets found by CoRoT provide the basis of

this work. Furthermore, a quick overview over the properties of the planetary systems

discovered so far is given.

Subsequently (Chapter 2), the theoretical foundations of this work is laid out.

Tidal potentials, tidal forces and tidal torques are developed. The influence of tidal

torques on planetary systems with circular and eccentric orbits is calculated. The

tidal dissipation factor Q, describing the amount of tidal energy dissipated within

a body, and the Love number k2, from which the tidal deformation can be derived,

are introduced. Several Q/k2 values derived for Solar System and extrasolar objects

are discussed. The angular momentum and energy criteria for the stability of double

synchronous states are presented. Furthermore, the magnetic braking effect in main

sequence stars is discussed. Several moments of inertia are calculated for ideal bodies,

Solar System planets and the Sun. The solar moment of inertia is derived from a Solar

model. Finally, the Roche zone is presented where a planet may be tidally disrupted

as it approaches its star.

In Chapter 3, the constant Q assumption is critically investigated, which is the

basis of the tidal friction model used in this work. It will be shown that the majority

of the CoRoT planets are tidally locked. Furthermore, the angular momenta and

energies of a typical planetary system consisting of a ’hot Jupiter’ and a Sun-like star

are calculated, showing that the majority of the angular momentum is stored in the

planet’s orbit. Furthermore, it will be shown that the Roche zone may be under-or

overestimated if the planetary density is not known.

In Chapter 4, the CoRoT planets are identified that may reach the Roche zone

for Q∗
k2,∗

= 105 − 109 within the stellar lifetime, and that exert strong tidal forces on
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the star. It will be shown that the majority of the CoRoT planets are potentially

unstable due to tidal friction.

In Chapter 5, the tidal evolution of planets around slowly rotating stars is in-

vestigated and an orbital stability limit for Q∗
k2,∗

is derived. Chapter 6 presents the

stellar rotation evolution of their host stars and shows that tidal friction may lead to

an acceleration of the stellar rotation. From this a spin-up limit for Q∗
k2,∗

is derived.

In both Chapters, it will be shown that for planets on orbits with large eccentrici-

ties (e ≥ 0.5), planetary and stellar tidal friction may lead to an accelerated tidal

evolution.

Chapter 7 presents the tidal evolution for fast rotating stars of spectral type F for

different magnetic braking scenarios. It will be investigated which magnetic braking

and tidal friction scenario is compatible with the observed stellar rotation periods of

CoRoT spectral type F stars. Furthermore, an orbital stability limit for Q∗
k2,∗

is derived

again.

In Chapter 8, it will be investigated which CoRoT systems may be ’true’ double

synchronous states. A spin-up limit for Q∗
k2,∗

is derived required to force the star into

corotation with the planet’s revolution. An evolution limit for Q∗
k2,∗

is derived, if it is

assumed that the planet migrated towards the double synchronous state. It will be

investigated how the double synchronous orbit evolves in the presence of magnetic

braking and how this can be described mathematically. It will be investigated for

which magnetic braking scenarios, the CoRoT-3 and CoRoT-15 system may still be

stable within the systems’ lifetime. It will be shown why the evolution of the CoRoT-

20 system depends on the initial stellar rotation period and why the system may be

forced into a double synchronous state for certain conditions but can not maintain it
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in the presence of magnetic braking.

Finally, the results are summarized, compared and discussed in Chapter 9.



Chapter 1

Extrasolar planets and Brown
Dwarfs

Since their discovery in 1995, extrasolar planets have become an important branch

of modern astronomy. In this chapter, an overview of extrasolar planets and the

methods used so far to detect them is given. Sometimes, it is not easy to ascertain

the true nature of a stellar companion. Therefore, first of all, a consistent definition

is needed to distinguish planets from other objects.

1.1 Definition of extrasolar planets

and brown dwarfs

In 2003, the Working Group on Extrasolar Planets (WGESP) of the International

Astronomical Union (IAU) developed the following working definitions commonly

used by astronomers today:

1: Objects with true masses below the limiting mass for thermonuclear fusion of

deuterium (currently calculated to be 13 Jupiter masses for objects of solar metallicity)

that orbit stars or stellar remnants are ”planets” (no matter how they formed). The

10
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minimum mass/size required for an extrasolar object to be considered a planet should

be the same as that used in our Solar System.1

2: Substellar objects with true masses above the limiting mass for thermonuclear

fusion of deuterium are ”brown dwarfs”, no matter how they formed nor where they

are located.

3: Free-floating objects in young star clusters with masses below the limiting mass

for thermonuclear fusion of deuterium are not ”planets”, but are ”sub-brown dwarfs”

(or whatever name is most appropriate).2

Planets and stars not only differ by mass, which would be a quantitative difference

only, they also differ qualitatively and hierarchically according to the standard theory

of planetary formation: Stars form by cloud-collapse, whereas planets form around

a star by matter accretion. It has to be emphasized that planets always require a

central star, whereas a star does by no mean require a planet. That is the reason why

free floating objects in young star clusters - although similar in mass to planets - are

not regarded as ’true’ planets.

Brown dwarfs with masses3 between 13 and 80 MJupiter appear to represent a

transitional stage between Jupiter-like gas giants and bona-fide stars. On the one

hand, they are not massive enough to reach the stage of hydrogen burning in thermal

equilibrium. On the other hand, they are massive enough to ignite deuterium fusion

processes which are, however, inefficient nuclear reactions that are not capable to

compensate the radiative heat loss. Therefore, unlike stars, brown dwarfs gradually

1Resolution B5, the IAU’s definition of a planet in the Solar System can be found at:
http://www.iau.org/public/pluto/.

2http://www.dtm.ciw.edu/boss/definition.html
3This mass range is valid for substellar objects with solar metallically and may be corrected for

individual cases. As a rough estimate, however, it is sufficient.
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Figure 1.1: Histogram of the masses of all detected exoplanets. The data were taken
from the exoplanet catalogue: http://www.exoplanet.eu/catalog-all.php as of 14th
October 2011.

cool down with time (see for example Unsoeld and Baschek (2001)).

To date, it is controversial if brown dwarfs form either by cloud collapse or matter

accretion. There may even be two classes of brown dwarfs: light brown dwarfs that

are more or less overweight planets formed by matter accretion, and very massive

brown dwarfs that may be regarded as failed stars and have formed by cloud collapse

(Deleuil et al. (2008) among others).

That there are maybe two classes of brown dwarfs, light ones at the higher end of

the exoplanet’s mass regime and heavy ones at the low end of the stellar mass regime,

may explain the mysterious ’brown dwarf desert’ (Marcy and Butler, 2000; Halbwachs

et al., 2000): There is a deficiency in numbers of objects between masses of 13-80

Jupiter masses which can not be explained by an observation bias (Figure 1.1)4. As

will be shown in Section 1.3, the more massive an object is, the easier it is to discover.

Not only are brown dwarfs that orbit main sequence stars rare objects, free floating

4The data were taken from the exoplanet catalogue: http://www.exoplanet.eu/catalog-all.php
as of 14th October 2011.
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brown dwarfs are found far more often although they are more difficult to detect

(Marcy and Butler, 2000)5. Some of these rare brown dwarfs around main sequence

stars, CoRoT-3b (Deleuil et al., 2008) and CoRoT-15b (Bouchy et al., 2011), will play

an important role in subsequent chapters.

This work focuses on tidal interactions of companions around main sequence stars

where the formation of the system is completed. In the context of tidal interaction,

it is only important that the mass of the stellar companion is orders of magnitude

smaller than the mass of the star. Therefore, brown dwarfs and their less massive

counterparts are regarded as ’planetary objects’, regardless of their formation history.

1.2 History of extrasolar planet detection

In the following, a short - but on no account exhaustive - summary of historical events

in the course of extrasolar planet detection is given.

• In 1989, using the radial velocity method (Section 1.3.1), a substellar object

was discovered around the Sun-like star HD 114762, which was identified as a

Brown Dwarf with 11 Jupiter masses (Latham et al., 1989).

• In 1992, the existence of two planets with masses of at least 2.8 MEarth and

3.4 MEarth around the pulsar PSR1257 + 12 was inferred using the pulsar

timing method (Section 1.3.1, Wolszczan and Frail (1992)). This was confirmed

in 1994 (Wolszczan, 1994).

5The latter can only be observed directly by their faint infrared radiation, whereas the existence
of the former can be inferred more easily by their influence on the host star.
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• In 1995, the first Jupiter-mass companion around a solar type star was discov-

ered using radial velocity measurements (Mayor and Queloz, 1995). The gas

giant 51 Pegasi b with a minimum mass of 0.5 MJup orbits its host star at only

0.05 AU.

• In 2002, a free floating planetary mass object of mass 3+5
−1MJup in the σOrionis

cluster was reported. It was discovered by direct imaging (section 1.3.2) during

a near-infrared survey (Zapatero Osorio et al., 2002).

• In December 2006, the European space mission CoRoT was launched. It is

the first space mission dedicated to the search of extrasolar planets. To date,

CoRoT discovered more than 20 planets. Chapters 5, 6, 7 and 8 will investigate

the tidal evolution of 21 CoRoT planets in more detail.

• In 2009, CoRoT announced the discovery of CoRoT-7b, the first definitely

terrestrial extrasolar planet (Léger et al., 2009). Objects with a few Earth

masses have been discovered previously, but CoRoT-7b is the first planet for

which both, its mass (4.8 ± 0.8MEarth) and radius (1.68 ± 0.09REarth), could

be determined (Queloz et al., 2009). A bulk density consistent with that of a

terrestrial planet was derived: ρ = 5.6±1.3g/cm3. Recently, Hatzes et al. (2011)

revised the mass of CoRoT-7b (7.42± 1.21MEarth) which yields with improved

stellar parameters of CoRoT-7 (Bruntt et al., 2010) and therefore improved

radius of CoRoT-7b (1.58± 0.10REarth) a density of ρ = 10.4± 1.8g/cm3, still

consistent with a terrestrial planet.

• In March 2009, the NASA space telescope Kepler was launched. It is the second

space mission dedicated to the search of extrasolar planets. To date, Kepler
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confirmed 35 planetary systems.

• In 2010, Holman et al. (2010) announced the discovery of the first multiple

transiting planetary system consisting of two Saturn-size planets by Kepler.

• In 2011, Batalha et al. (2011) announced the discovery of Kepler’s first rocky

planet, Kepler-10b, which – apart from its greater age – is a CoRoT-7b analogue

(4.56+1.17
−1.29MEarth, 1.416

+0.033
−0.036REarth, and ρ = 8.8+2.1

−2.9g/cm
3).

To date, 759 extrasolar planets in 609 planetary systems have been discovered 6.

1.3 Extrasolar planets detection methods

Various detection methods are used to discover extrasolar planets. A brief overview

of the different methods is given, discussing advantages and disadvantages of each

technique with special emphasis put on requirements for the investigation of tidal

interactions between stars and planets.

1.3.1 Indirect detection methods

Some detection methods monitor the motion of the star which may be influenced

gravitationally by an otherwise invisible companion. Both, the companion and the

star, revolve around a common point: the common center of gravity or barycenter

(Figure 1.2). The center of gravity of a star-planet system is defined:

a∗
aPl

=
MPl

M∗
, (1.3.1)

where a∗ and aP are the semi major axis of the star’s and the planet’s orbit around

the barycenter and M∗, MP are the stellar and planetary mass, respectively.

6As listed by the Exoplanet catalog http://www.exoplanet.eu/catalog.php maintained by Jean
Schneider from the Observatoire de Paris by 11th February 2012
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Figure 1.2: The motion of a star and a planet with masses M∗ and MPl and semi
major axes a∗ and aPl, respectively, around their common center of mass (CM).

The stellar as well as the planetary orbit obey Kepler’s third law, therefore:

(a∗ + aP )
3

P 2
orb

=
G(M∗ +MP )

4π2
, (1.3.2)

where Porb is the orbital period.

If M∗ ≫MPl and a∗ ≪ aPl, aPl, equation (1.3.2) can be approximated by:

a3Pl ≈
GM∗P

2
orb

4π2
. (1.3.3)

The indirect exoplanet detection methods observe the revolution of the star around

the common center of mass which yields Porb and a∗. The stellar mass M∗ is deter-

mined by spectral classification. Therefore, aPl can be derived from equation 1.3.3,

and MPl can be derived from equation (1.3.1).

This is, however, only valid if the orbital plane is parallel to the line-of-sight. If

the orbital plane is inclined, indirect methods yield the projection of a∗ onto the



17

Figure 1.3: The orbital plane of a planetary system which is inclined by the angle
i with respect to the line-of-sight. The system consists of a star and a planet with
masses M∗ and MPl, revolving with semi major axes a∗ and aPl, respectively, around
their common center of mass.

observation plane. Therefore, the orbital inclination i has to be taken into account as

well when determining planetary parameters. The orbital inclination of exoplanets

is defined as the angle between a vector perpendicular to the orbital plane and the

line-of-sight (Figure 1.3).

Pulsar timing method

In 1992, planetary objects were discovered around pulsars. A pulsar is a neutron star

formed out of the remnants of a massive star after a supernova explosion. It emits

regular radio pulses, hence its name. The arrival time ta of such a pulse is:

ta =
D

c
, (1.3.4)
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where D is the distance between the star and observer and c the velocity of light.

If a pulsar is orbited by a planet, the motion around the barycenter yields periodic

variations in the distance between the observer on Earth and the star. If the system

is seen ’edge on’, D oscillates between d + a∗ and d − a∗, where d is the distance

between the planetary system’s barycenter and the Earth and a∗ is the semi major

axis of the Keplerian orbit of the star.

The maximum delay time δt from the expected arrival time ta is:

δt =
a∗
c

(1.3.5)

Inserting equation (1.3.1) yields the following relation:

δt =
aPlMPl

M∗c
. (1.3.6)

If the orbital plane is inclined with respect to the line-of-sight, then δt is:

δt =
sin i · aPlMPl

M∗c
, (1.3.7)

where i is the orbital inclination. The pulsar timing method is sensitive to planets

with large semi major axes. Planetary systems that are seen ’face on’ (i = 0◦) are

’invisible’ to this method.

Because the pulsar intervals can be measured to great precision, even terrestrial

planets can be detected by this method. The extrasolar planets discovered in 1992,

for example, have only about 2.8 and 3.4 Earth masses (Wolszczan and Frail, 1992).

Pulsars are rare objects and planets around pulsars are thought to be even rarer.

Indeed, only eight extrasolar planet systems with twelve planets around pulsar stars

have been discovered to date 7.

7As listed by the Exoplanet catalog http://www.exoplanet.eu/catalog.php maintained by Jean
Schneider from the Observatoire de Paris by 17th October 2011
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Figure 1.4: As the star moves around the barycenter, emitted light is Doppler shifted
(Credit: ESO).

Radial velocity method

The first extrasolar planet around a sun-like host star, 51 Pegasi b, was discovered

by radial velocity measurements (Mayor and Queloz, 1995). This method also makes

use of the Keplerian motion of the star around the system’s barycenter. This motion

results in a Doppler shift of the emitted light alternatively toward the bluer (shorter)

wavelengths, when the star is moving toward the observer, and toward the redder

(longer) wavelengths, when the star is moving away (Figure 1.4).

During one orbital period Porb, the star completes one revolution; therefore, the

following relation holds for the stellar velocity v∗:

Porbv∗ = 2πa∗, (1.3.8)

where a∗ is the semi major axis of the stellar orbit.
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Inserting equation (1.3.1), the planet’s mass can be determined:

MPl =
M∗

aPl

· v∗
2π

· Porb, (1.3.9)

where aPl is the semi major axis of the planet’s orbit and M∗ is the stellar mass.

From the Earth, however, only the Doppler shift due to the velocity component

vr along the line-of-sight can be observed:

∆λ ≈ vrλ/c, (1.3.10)

where ∆λ is the Doppler shift, c is the velocity of light, λ is the wavelength of the

emitted stellar light, and vr is:

vr = v∗ sin i. (1.3.11)

i is again the orbital inclination.

The planetary mass can be determined from the observed Doppler shift by:

MPl sin i =
M∗

aPl

· c ·∆λ
λ2π

· Porb. (1.3.12)

The amplitude of the oscillating stellar radial velocity, caused by the star’s motion

around the barycenter of the planetary system, is in general very small. Jupiter, for

example, induces a solar radial velocity modulation with an amplitude of 12 m/s,

Saturn with an amplitude of 2.7 m/s and Earth induces only a solar radial velocity

modulation of amplitude 0.04 m/s. 51 Pegasi b, on the other hand, induces a stellar

radial velocity modulation with an amplitude of ≈ 50 m/s (Figure 1.5, Mayor and

Queloz (1995)), which is comparatively large because 51 Pegasi b’s semi major axis

(a = 0.05 AU) is very small compared to the semi major axes of Jupiter, Saturn and

Earth (5.2 AU, 9.5 AU, and 1 AU, respectively). For comparison, the Super-Earth

CoRoT-7b causes a radial velocity modulation with 3.3 m/s amplitude (Queloz et al.,
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Figure 1.5: Radial velocity curve of 51 Pegasi b. The planet induces a radial velocity
modulation of about 50 m/s (Mayor and Queloz, 1995).

2009). The radial velocity method is sensitive to massive planets in close proximity

to their star. Such planets are ideal for the investigation of tidal interactions between

the planet and its star.

A great disadvantage of this method is, especially in terms of tidal interaction

investigation, that ’only’ the minimum planetary massMP ·sin i can be determined. If

i = 0◦, when the system is seen ’face on’, the planet is even ’invisible’ to this detection

method. To obtain the true mass, the measurements have to be complemented by

another method that also yields the orbital inclination i: The transit method (see

Section 1.3.2).

Another disadvantage of the radial velocity method is, that such measurements

are time-consuming and can only be applied to individual stars. The method becomes
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even more time consuming, the less massive the companion is. For example, more

than 70 hours of observations had been gathered to determine the mass of CoRoT-7b

(Queloz et al., 2009).

Still, it is the best detection method to constrain the mass of a substellar com-

panion which is crucial in determining its nature (Bonfils et al., 2011; Delfosse et al.,

2012).

To date, 643 planetary systems have been discovered or confirmed by radial ve-

locity measurements8.

Astrometry method

The astrometry method makes use of the Keplerian stellar motion. This very motion

itself may be observed directly by monitoring the proper motion of the star in the

night sky.

If the system is seen ’face on’ (i = 0◦), the apparent parallax of the star δa∗ is

δa∗ =
a∗
D
, (1.3.13)

where a∗ is the star’s semi major axis and D is the distance between the observer on

Earth and the planetary system.

Inserting equation (1.3.1) yields:

δa∗ =
aPl

D
· MPl

M∗
, (1.3.14)

aPl is the planet’s semi major axis, M∗ and MPl are the star’s and planet’s mass,

respectively.

8As listed by the Exoplanet catalog http://www.exoplanet.eu/catalog.php maintained by Jean
Schneider from the Observatoire de Paris by 17th October 2011
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The astrometry method requires accurate star position measurements which are

hard to achieve. Although astrometry is the oldest method to search for extrasolar

planets, so far no planet has undoubtedly been discovered by astrometry - despite

decades of meticulous observations and claims to the contrary.

• In 1943, Kaj Strand claimed that he found a planet orbiting the widely separated

binary star 61 Cygni via astrometric measurements (Strand, 1943). Although

the announcement was greeted with enthusiasm at that time, the claim remained

unsupported. In 1978, the astrometric measurements were reexamined by W.D.

Heintz who concluded that ”there is no evidence for any companion of substellar

mass” (Heintz, 1978).

• In 1960, Sarah Lippincott claimed that the star Lalande 21185 is orbited by a

planet of approximately ten Jupiter masses (Lippincott, 1960).

• In 1963, Peter Van de Kamp claimed the discovery of a 1.6 Jupiter mass planet

orbiting Barnard’s Star at 4.4 AU (van de Kamp, 1963). That detection was

discounted in 1973 by Gatewood and Eichhorn (Gatewood and Eichhorn, 1973).

The ’apparent’ wobble of the star in the night sky turned out to be a false

detection due to systematic effects (Hershey, 1973).

• In 2009, Pravdo and Shaklan (2009) claimed the discovery of a 6.4 Jupiter mass

companion to VB 10 which promptly was rejected by Bean et al. (2010).

Maybe astrometry space missions like GAIA, foreseen to launch in 2013, will

probably overcome the limitations in accuracy that trouble ground based astrometry

measurements (Perryman, 2002).
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Astrometry method is foreseen to be complementary to other detection methods

because it is sensitive to planetary systems with orbital inclination i ≈ 0◦, which are

all but invisible to most other detection methods.

Although the astrometry method failed so far to yield extrasolar planet detections,

it was used in some cases to constrain the orbital inclination and, therefore, the mass

of planets discovered by the radial velocity method (Reffert and Quirrenbach, 2011).

For tidal interaction investigations, however, the planets found by astrometry will

probably be of limited use because this method is sensitive to planets with large semi

major axes.

1.3.2 Direct detection methods

In the following, some detection methods are presented that infer the existence of an

extrasolar planet by more direct means.9

Microlensing method

The microlensing method is a practical application of general relativity. When a star

harboring a planet moves through the line of sight between Earth and a background

light source (usually another star located further away), the gravitational field of the

star and its planet can act as a gravitational binary lens to amplify the luminosity of

the source star.

Consequently, the photometric light curve of a star whose light is subjected to

microlensing by a star-planet system shows a characteristic double peak (Figure 1.6),

where the highest peak is the lensing event due the star and the second smaller peak

is the lensing event due to the planet.

9From now on aPl ≈ a is used.
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Figure 1.6: Left panel: Schema of the microlensing effect (Credit: OGLE).
Right panel: Photometric curve with best-fitting double-lens models of OGLE 2003-
BLG-235/MOA 2003-BLG-53 b (Bond et al., 2004).

The mass of a gravitational lens M can be deduced by determining the Einstein

radius RE of the ring image obtained when the source, lens and observer are collinear.

The relation between Einstein radius and mass of a lensing object is:

RE = 2

√
GMD

c2
, (1.3.15)

where D is the reduced distance defined by 1/D = 1/Dol+1/Dls. Dol and Dls are the

distances from the observer to the lens and from the lens to the source, respectively,

and c is the speed of light.

This method is sensitive to planets on very wide orbits because a wide separation

between star and planet is needed to resolve the lensing effect of each individual

object (Cassan et al., 2012). It is even possible to find planets of a few Earth masses

(Bennett et al., 2008).

One major drawback of this method is, that a planet is only observable during the
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lensing event. One may reobserve the host star to refine stellar parameters, but the

planet becomes ’invisible’ after the lensing event. Furthermore, because lensing events

are rare and unpredictable, microlensing surveys like OGLE require an observational

network that constantly monitors a large number of stars.

Due to the weak constraints on the planetary parameters and the large separation

between star and planet, microlensing planets are unsuitable for tidal investigations.

To date, thirteen planets in twelve planetary systems have been discovered by this

method10.

Direct imaging

This method aims at obtaining a direct image of an extrasolar planet. In visible light,

however, only stellar light scattered by the planet can be observed.

The luminosity LPl of a planet due to scattered light is:

LPl ∝
(
RPl

a

)2

L∗, (1.3.16)

where L∗ is the luminosity of the star, RPl is the planet’s radius and a the semi

major axis of the orbit (Brown and Burrows, 1990). Brown and Burrows (1990)

estimated a brightness ratio LPl/L∗ = 10−8 for a cloudy planet with RPl = 0.13RJup

and a semi major axis of 1 AU.

In the infrared, the contrast is much higher, especially for young hot planets. For

example, the 5 Jupiter mass giant planet 2M1207b is 0.025 as bright in the infrared

(L’ band) as the 25 Jupiter mass brown dwarf it orbits (Figure 1.7, Chauvin et al.

(2004)).

10As listed by the Exoplanet catalog http://www.exoplanet.eu/catalog.php maintained by Jean
Schneider from the Observatoire de Paris by 11th February 2012
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Figure 1.7: Composite image of the brown dwarf 2M1207 and its gas giant companion
in the infrared (Chauvin et al., 2004).

This detection method is sensitive to young hot planets (a few tens of million

years old) around faint stellar or substellar objects. This work, however, focuses

on older systems whose stars have settled on the main sequence. Furthermore, the

planets found by direct imaging are so far away from their star that tidal interactions

between them are negligible.

To date, 31 planets in 27 planetary systems have been discovered by direct imag-

ing11.

Transit method

The transit method aims for the detection of the shallow dip in a photometric

lightcurve of a star caused by the transit of a planet (Figure 1.8). The depth of

11As listed by the Exoplanet catalog http://www.exoplanet.eu/catalog.php maintained by Jean
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Figure 1.8: As the planet passes in front of its star, the apparent brightness of the
star decreases by ∆F (Credit: Hans Deeg, ESA).

a transit DTransit is determined by the following ratio:

DTransit =
∆F

F
=

(
RPl

R∗

)2

, (1.3.17)

where F is the observed mean flux before and after the transit, ∆F is the flux differ-

ence during transit and RPl and R∗ are the planet’s and star’s radius, respectively.

When the spectral type of the star is known, the planet’s radius can be inferred

immediately. This is the only method that yields the radius of a planet so far.

The transit detection requires accurate star flux monitoring, as can be shown by

calculating the transit depth DTransit for Solar System planets: The Jupiter transit

leads to a ≈ 1% reduction of the solar flux, the Neptune transit reduces the solar flux

by 0.13% and the Earth transit by 0.0084%.

A transit, however, is only visible if the line-of-sight is parallel or nearly parallel

to the orbital plane of the planet (i ≈ 90 ◦) (Figure 1.9). Let γ be the angle between

two rays from the top of the star and the bottom of the star of radius R∗ that meet

the planet at semi major axis aPl. The same rays span a sphere segment S at distance

aPl + y between star and observer on Earth.

Schneider from the Observatoire de Paris by 11th February 2012
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Figure 1.9: Probability to observe a transit from Earth.

The probability PTransit to observe a transit is the ratio of the small segment

2π(y+aPl)S, within which the transit is visible, over the whole sphere surface 4π(y+

aPl)
2. Because y ≫ aPl and with the relations S = γy and 2R∗ = γaPl, the following

equation is derived for PTransit:

PTransit =
R∗

aPl

. (1.3.18)

The Earth has a 0.42% probability to be observed by a transit by a distant observer,

for Jupiter the probability is even less: PTransit ≈ 0.1%. For planets like 51 Pegasi

b with aPl ≈ 0.05 AU and a host star of radius R∗ ≈ RSun, the probability is about

10%. Therefore, the transit method predominantly finds large planets in close orbits.

These represent 10% of the total planet population, assuming that planetary orbits

can assume any inclination with respect to the line-of-sight.
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The probability to observe a transit event is relatively small. Therefore, observa-

tion programs that use the transit method, like the CoRoT and Kepler space missions,

monitor a large number of stars to maximize their yields of transiting planets. CoRoT,

for example, observes ≈ 10 000 stars per star field every six months (Carone et al.

(2011) among others).

Every transit detection has to be confirmed by radial velocity measurements (Sec-

tion 1.3.1), because the mass of the planet can not be determined by the transit

method. A combination of both methods yields the full parameter set of the system:

true planetary massMPl, planetary radius RPl, semi major axis a, eccentricity e, and

even the density of a planet which is important to determine its composition.

The full set of planetary parameters and a good knowledge of stellar parameters

like the age of the system and the stellar rotation period are very important for the

investigations of tidal interactions between extrasolar planets and their host stars

discussed in this work. The parameters of planetary systems detected by the transit

method, especially those found by the space mission CoRoT, are very well determined

and therefore this work focuses on these planets. The space mission Kepler also

provided several exoplanets suitable for tidal interaction investigations, but at the

time of the writing, the parameters of many Kepler.planets and their host stars were

still under investigation. CoRoT-planets benefit from the fact that the CoRoT mission

was launched several years earlier.

To date, 230 transiting planets have been found in 196 planetary systems12.

12As listed by the Exoplanet catalog http://www.exoplanet.eu/catalog.php maintained by Jean
Schneider from the Observatoire de Paris by 11th February 2012
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1.4 CoRoT

The space telescope CoRoT (COnvection ROtation and planetary Transits) was

launched on 27th December 2006 (Baglin, 2003). It orbits the Earth in a polar

orbit and is the first space telescope dedicated to the search for extrasolar planets

(Figure 1.10). CoRoT is observing several star fields in the galaxy since May 2007

Figure 1.10: Artistic view of the satellite CoRoT in polar orbit around Earth (CNES,
D.Ducros).

(see Carpano et al. (2009), Cabrera et al. (2009), and Carone et al. (2011), Fig-

ure 1.11). The transit method used by CoRoT is complemented with ground based

follow up measurements using the radial velocity method. The CoRoT mission is

particularly well endowed in terms of manpower and telescope time. This allows to

fully characterize the planetary system to great precision. Even the stellar rotation

rate is known for all CoRoT systems. In contrast to that, the stellar rotation rates

for many other extrasolar planet systems are not constrained at all. As will be shown

in Sections 2.6, 2.7 and 3.1.2, the knowledge of the stellar rotation is indispensable
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Figure 1.11: The CoRoT ’eyes’ in the night sky (diameter:10◦). The ’red’ circle
is observed in summer and contains the Aquila constellation. The ’blue’ circle is
observed in winter and lies in the Monoceros constellation (CNES).

Planet type CoRoT planet
Gas Giant CoRoT-1b, CoRoT-2b, CoRoT-4b, CoRoT-5b, CoRoT-

6b, CoRoT-8b, CoRoT-9b, CoRoT-10b, CoRoT-11b,
CoRoT-12b, CoRoT-13b, CoRoT-14b, CoRoT-16b,
CoRoT-17b, CoRoT-18b, CoRoT-19b, CoRoT-20b,
CoRoT-21b

Brown Dwarf CoRoT-3b, CoRoT-15b
Super Earth CoRoT-7b

Table 1.1: Planet types discovered by the CoRoT space mission.

for the investigation of tidal interactions. At the time of writing, the full parameter

set of twenty-one CoRoT planetary systems is known. Table 1.1 lists the gas giant

planets, brown dwarfs and terrestrial planets found by the CoRoT space mission. The

stellar and planetary parameters are given in Tables 1.2 and 1.3, respectively. The

stellar rotation period and planetary revolution period are listed in Table 1.4. The

references for each system are listed in the Appendix (Table A.1).

As can be seen from Table 1.1, many CoRoT planets are massive companions like

gas giants and brown dwarfs with small semi major axes. Even one Super Earth,
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CoRoT-7b, with an extremely close orbit was discovered. Therefore, the CoRoT

planets provide an interesting test field for the investigation of tidal interactions with

very well determined parameters.

Furthermore, the author’s working group is directly involved in the CoRoT mission

and therefore the author had access to data in the proprietary phase (see Grziwa et al.

(2012) for a description of the analysis of CoRoT data). The data for the CoRoT

planets CoRoT-19b-21b were, for example, not public at the time of writing. In

addition, the CoRoT planets present several interesting tidal interaction scenarios,

as will be shown in Chapter 4, that allow a consistent comparative analysis of tidal

interactions in planetary systems from a single data source.
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Systems Spectral
type

Stellar Mass Stellar Radius Stellar Ro-
tation Pe-
riod

Stellar Age

[MSun] [RSun] [days] [Gyrs]
CoRoT-1 G0V 0.95± 0.15 1.11± 0.05 10.8+2.6

−1.8 -
CoRoT-2 G7V 0.97± 0.06 0.902± 0.018 3.85± 0.17 0.5+3.5

−0.3

CoRoT-3 F3V 1.37± 0.09 1.56± 0.09 3.85± 0.17 1.6− 2.8
CoRoT-4 F8V 1.1± 0.03 1.15± 0.03 9.2+1.7

−1.3 0.7− 2
CoRoT-5 F9V 1± 0.2 1.19± 0.04 > 30 5.5− 8.3
CoRoT-6 F9V 1.05± 0.05 1.025± 0.026 7± 1 2.5− 4
CoRoT-7 G9V 0.91± 0.03 0.82± 0.04 22+66

−9.4 1.2− 2.3
CoRoT-8 K1V 0.88± 0.04 0.77± 0.02 19.5+19.5

−6.5 1.7+0.6
−0.5

CoRoT-9 G3V 0.99± 0.04 0.94± 0.04 ≥ 13.6 0.15− 8
CoRoT-10 K1V 0.89± 0.05 0.79± 0.05 20+6.6

−4 1− 3
CoRoT-11 F6V 1.27± 0.05 1.37± 0.03 1.4± 0.3 1− 3
CoRoT-12 G2V 1.08± 0.08 1.12± 0.1 57+∞

−28 3− 9
CoRoT-13 G0V 1.09± 0.02 1.01± 0.03 12.8+4.3

−2.6 0.12− 3
CoRoT-14 F9V 1.13± 0.09 1.21± 0.08 12.8+4.3

−2.6 0.4− 0.8
CoRoT-15 F7V 1.32± 0.12 1.46+0.3

−0.14 3.9± 0.4 1− 3
CoRoT-16 G5V 1.1± 0.08 1.19± 0.14 ≥ 60 6.7± 2.8
CoRoT-17 G2V 1.04± 0.10 1.59± 0.07 18± 2 10.7± 1.0
CoRoT-18 G9V 0.95± 0.15 1.03± 0.10 5.4± 0.4 0.6± 0.4
CoRoT-19 F9V 1.21± 0.06 1.65± 0.04 14.0± 2.4 5± 1
CoRoT-20 G2V 1.14± 0.08 1.02± 0.05 11.5± 2.6 0.1+0.8

−0.04

CoRoT-21 F8IV 1.29± 0.09 1.95± 0.21 9.0± 2.8 4.1± 0.5

Table 1.2: Stellar parameters of CoRoT-1 to -21.
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Planet Planetary
Mass

Planetary Ra-
dius

Semi Major Axis Orbit Ecc.

[MJ ] [RJ ] [AU ]
CoRoT-1b 1.03± 0.12 1.49± 0.08 0.0254± 0.0004 0
CoRoT-2b 3.31± 0.16 1.465± 0.029 0.0281± 0.0009 0
CoRoT-3b 21.66± 1 1.01± 0.07 0.057± 0.003 0
CoRoT-4b 0.72± 0.08 1.19± 0.06 0.090± 0.001 0− 0.1
CoRoT-5b 0.467+0.047

−0.024 1.39± 0.05 0.0495± 0.0003 0
CoRoT-6b 2.96± 0.34 1.166± 0.035 0.0855± 0.0015 < 0.1
CoRoT-7b 0.024± 0.004 0.0172±2×10−4 0.0172± 0.0002 0
CoRoT-8b 0.22± 0.03 0.57± 0.02 0.063± 0.001 0
CoRoT-9b 0.84± 0.07 1.05± 0.04 0.407± 0.005 0.11± 0.04
CoRoT-10b 2.75± 0.16 0.97± 0.07 0.1055± 0.0021 0.53± 0.04
CoRoT-11b 2.33± 0.34 1.43± 0.03 0.044± 0.005 0
CoRoT-12b 0.92± 0.07 1.44± 0.13 0.04016± 0.0009 0.07+0.06

−0.04

CoRoT-13b 1.308± 0.066 0.885± 0.014 0.051± 0.003 0
CoRoT-14b 7.6± 0.6 1.09± 0.07 0.027± 0.002 0
CoRoT-15b 63.3± 4.1 1.12+0.3

−0.15 0.045± 0.01 0
CoRoT-16b 0.535± 0.085 1.17± 0.16 0.0618± 0.0015 0.3± 0.1
CoRoT-17b 2.45± 0.16 1.02± 0.07 0.0461± 0.0080 0
CoRoT-18b 3.47± 0.38 1.31± 0.18 0.0295± 0.016 < 0.08
CoRoT-19b 1.14± 0.05 1.45± 0.05 0.0518± 0.0008 0.047± 0.045
CoRoT-20b 4.24± 0.23 0.84± 0.04 0.092± 0.021 0.562± 0.013
CoRoT-21b 2.53± 0.37 1.30± 0.04 0.0417± 0.011 0

Table 1.3: Planetary parameters of CoRoT-1b to -21b.
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System Stellar Rotation Period Planetary Revolution Period
[days] [days]

CoRoT-1 10.8+2.6
−1.8 1.5089557± 6.4 · ×10−6

CoRoT-2 3.85± 0.17 1.7429964± 1.7× 10−6

CoRoT-3 3.85± 0.17 4.2568± 5× 10−6

CoRoT-4 9.2+1.7
−1.3 9.20205± 0.00037

CoRoT-5 60+∞
−30 4.037896± 1× 10−6

CoRoT-6 7± 1 8.886593± 4× 10−6

CoRoT-7 22+66
−9.4 0.85359± 0.00059

CoRoT-8 19.5+19.5
−6.5 6.21229± 3× 10−5

CoRoT-9 ≥ 13.6 95.2738± 0.0014
CoRoT-10 20+6.6

−4 13.2406± 0.0002
CoRoT-11 1.4± 0.3 2.99433± 1× 10−5

CoRoT-12 57+∞
−28 2.82805± 5× 10−4

CoRoT-13 12.8+4.3
−2.6 4.03519± 3× 10−5

CoRoT-14 12.8+4.3
−2.6 1.51214± 1.3× 10−4

CoRoT-15 3.9± 0.4 3.06036± 3× 10−5

CoRoT-16 ≥ 60 5.35227± 0.00020
CoRoT-17 18± 2 3.76813± 0.00026
CoRoT-18 5.4± 0.4 1.9± 2.8× 10−6

CoRoT-19 14.0± 2.4 3.89713± 1× 10−5

CoRoT-20 11.5± 2.6 9.244± 0.001
CoRoT-21 9.0± 2.8 2.72474± 0.00014

Table 1.4: Stellar rotation period of CoRoT-1 to -21 and planetary revolution of
CoRoT-1b to -21b.
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1.5 Overview of exoplanet properties

An overview of the extrasolar planet systems discovered so far and their properties

are presented. Special emphasis is put on the relevance of the systems’ properties for

tidal interactions between the planets and their host stars13.

Figure 1.1 shows the mass distribution of all known extrasolar planets. The ex-

istence of the brown dwarf desert is apparent: There is a deficiency of substellar

companions more massive than thirteen Jupiter masses although they are much eas-

ier to detect. There is no shortage, on the other hand, of Jupiter mass planets, which

are ideal candidates to test their influence on their host stars due to tidal forces.

Figure 1.12 contains the distribution of the exoplanets’ mass on logarithmic scale.

Figure 1.12: Histogram of the masses of all detected exoplanets in logarithmic scale.

13The parameters were taken once again from the Exoplanet catalog
http://www.exoplanet.eu/catalog.php maintained by Jean Schneider from the Observatoire
de Paris.
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It reveals another interesting feature: a lack of Neptune planets with ≈ 0.1 Jupiter

mass which can no longer be explained by detection bias. Indeed, Carone et al.

(2011) discuss this point in terms of detection efficiency of CoRoT. CoRoT has the

full capacity of finding short-period planets down to Super-Earth size but failed to

detect Neptune planets in the first two observation years. The deficiency in short

period Neptune planets found by Kepler (Borucki et al., 2011) further supports the

conclusion that such ’hot Neptunes’, i.e., Neptune planets on close orbits are rare

objects (Mazeh et al., 2005). Either they do not form in such close proximity of the

star or they are eroded by stellar irradiation (Baraffe et al., 2004). The latter may

explain the origin of the Super-Earths Kepler-10b and CoRoT-7b as core remnants

of eroded Neptune planets. All of this, however, is still speculative. The left panel of

Figure 1.13: Left panel: Histogram of the semi major axis of all detected exoplanets.
Right panel: Histogram of the semi major axis of exoplanets in close proximity to
their star in units of solar radii.

Figure 1.13 shows the semi major axis distribution of all exoplanets. Most extraso-

lar planets were found in close proximity to their stars because the most successful

exoplanet detection methods, transit detection and radial velocity, are sensitive to

planets on close orbits.
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Figure 1.14: Left panel: Histogram of the masses of all detected transiting exoplan-
ets. Right panel: Histogram of the masses of all detected transiting exoplanets in
logarithmic scale.

It will be shown in the next chapter that the smaller the semi major axis and the

greater the mass of the planet, the stronger the tidal forces acting on the planet and

on the star. The distribution of the semi major axes of the exoplanets in very close

proximity to their star (Figure 1.13, left panel) is not flat but peaks at 10 solar radii.

The slope between 1 and 10 solar radii may hint at an erosion of such very massive

extrasolar planets due to tidal forces.

This work focuses on transiting planets because for these the stellar and planetary

parameters, particularly the planet’s mass, are known to a better degree than for

planets discovered by other methods. Figure 1.14 shows their mass distribution and

Figure 1.15 shows their semi major axes distribution. Again, the majority of the

transit planets are Jupiter-like with a deficiency of Neptune planets. About two

hundred transiting planets orbit in very close proximity to their star, making them

an ideal target for the investigations of tidal interactions.

The fact that so many close-in extrasolar planets proves the relevance of the

investigation of orbital stability due to tidal interactions.
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Figure 1.15: Left panel: Histogram of the semi major axis of all detected transiting
exoplanets. Right panel: Histogram of the semi major axis of transiting exoplanets
in units of solar radii.



Chapter 2

Theory of tidal interaction

The theoretical framework necessary to describe tidal forces will be presented. Special

emphasis will be put on potential theory and the mathematical description of radial

symmetric potentials in polar coordinates. It will be shown that extended bodies

are deformed by tidal forces and that energy is dissipated within them. This leads

to tidal friction which may change a planet’s orbit and a star’s rotation in secular

time scales. The relevant equations will be derived for circular as well as for eccentric

orbits.

A quick overview will be given on the timescales on which tidal friction acts in the

Solar System and on the uncertainties of tidal friction timescales in exoplanet systems.

The special case of the equilibrium state under tidal friction will be presented and its

stability will be discussed. Furthermore, the angular momentum evolution of main

sequence stars and their moment of inertia will be presented, as both are needed to

model stellar rotation evolution. Finally, the Roche limit is discussed. This is the

distance at which a planet is tidally disrupted.

41
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2.1 The gravitational potential

The gravitational potential for a point mass and an extended uniform sphere will be

calculated (according to Kertz (1969)) to prepare the calculation of an extended body

with an arbitrary mass distribution.

For a point mass M , the gravitational force at a distance r′ is described by New-

ton’s law of gravity:

F⃗Gravity(r) =
GM

r′2
⃗̂r, (2.1.1)

where G = 6.673× 10−11 m3

kgs2
is the gravitational constant and ⃗̂r is the unit vector

of the position vector r⃗′ of the reference point in a coordinate system with the point

mass as its origin.

The corresponding gravitational potential is:

Φ(r) = −GM
r′

. (2.1.2)

For an extended body, a mass distribution
∫

dm needs to be considered.

In the following, the coordinates of a potential reference point in polar coordinates

are r′, θ′, ϕ′, the coordinates of a mass element dm are r, θ, ϕ.

2.1.1 The outer gravitational potential

The easiest case to consider is that of the gravitational potential of a homogeneous

sphere of total massM with radius R and constant density ρ as seen from a reference

point P ′ at distance r′ ≥ R is (r′ is measured from the center of mass):

ΦGravity(r
′) = −

∫
M

G dm

∆
, (2.1.3)
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Figure 2.1: The parameters of the mass element dm in polar coordinates.

where dm is a mass element at distance r ≤ R from the center of mass and ∆ is the

distance between the mass element dm and the reference point.

For the mass element dm at position P the following holds in polar coordinates:

dm = ρdV = ρ · dr · r dθ · r sin θ dϕ, (2.1.4)

where r is the radial distance from the center of mass, θ is the colatitude measured

from the polar axis and ϕ is the longitude (Figure 2.1).
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Figure 2.2: The distance ∆ between P , the position of the mass element dm, and
the reference point P ′ in polar coordinates

For the distance ∆ the following holds (Figure 2.2):

∆2 = r′2 + r2 − 2r′r cos θ. (2.1.5)

According to this, dθ can be substituted by d∆:

2∆d∆ = 2rr′sinθ dθ. (2.1.6)

The outer gravitational potential is now:

ΦGravity(r
′) = −Gρ

∫ R

0

∫ π

0

∫ 2π

0

r2 sin θ

∆
dr dθ dϕ (2.1.7)

= −G2πρ

r′

∫ R

0

r

(∫ r′+r

r′−r

d∆

)
dr

= −Gρ4πR
3

3r′
,
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which is equal to the potential of a point massM at the center of mass of the extended

body because ρ4πR3

3
= ρ · VSphere =M .

2.1.2 Inner gravity potential

The inner potential of a homogeneous sphere of radius R, mass M and density ρ is

derived as seen from a reference point P ′ at distance r′ < R from the center of mass

(again according to Kertz (1969)). It is useful to decompose the inner potential by

considering the gravity potential of an inner homogeneous sphere of radius r and the

remaining gravity potential of a spherical shell of thickness R− r′.

For the potential ΦI(r
′) of the inner sphere the result of (2.1.7) is used. Here,

the reference point lies on the surface of the inner sphere (RI = r′) and therefore the

potential is:

ΦI(r
′) = −Gρ4πr

′2

3
= −GMr′2

R3
, (2.1.8)

where ρ was substituted by 3M
4πR3 .

For the second part of the inner gravitational potential ΦR(r
′), the potential of a

homogeneous spherical shell, the following holds:

ΦR(r
′) = −Gρ

∫ R

r′

∫ π

0

∫ 2π

0

r2 sin θ

∆
dr dθ dϕ (2.1.9)

= −G2πρ

r′

∫ R

r′
r

(∫ r+r′

r−r′
d∆

)
dr

= −G2πρ
(
R2 − r′2

)
.

Consequently, the total internal gravitational potential of a homogeneous sphere is:

Φint(r) = ΦI(r
′) + ΦR(r

′) = −2

3
πρG(3R2 − r′2) (2.1.10)
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The homogeneous spherical sphere is a very special case. It is, however, useful as a

first approximation.

2.2 The role of Legendre polynomials in axial sym-

metric gravity potentials

In general, the gravitational potential of an extended body of arbitrary shape with

inhomogeneous density distribution as seen from a point P ′ is the sum over the

potential of all point massesmi (the derivation was adapted fromMurray and Dermott

(1999)):

Φgravity,body(r
′) = G

∑
i

mi

∆
(2.2.1)

or

Φgravity,body(r
′) = G

∫
V

ρ(Pi)

∆
dVi, (2.2.2)

where ρ(Pi) is the density of the volume element dVi at a point Pi inside the body with

the coordinates (r⃗i = ri, θi, ϕi). ∆ is the distance between the mass element dmi =

ρ(Pi) dVi and the point of reference P ′ with the coordinates (r⃗′ = r′, θ′, ϕ′)(Figure

2.3). ∆ can be described in terms of ri and r
′ as:

∆2 = r2i + r′2 − 2r′ri cos(χ), (2.2.3)

where χ is the angle between the vectors r⃗ and r⃗i. The term 1/∆ can be expanded

binomially either with respect to r′ or with respect to ri:

1

∆
=


1

r′

∞∑
l=0

Pl(cosχ)
(ri
r′

)l
if ri ≤ r′

1

ri

∞∑
l=0

Pl(cosχ)

(
r′

ri

)l

if ri ≥ r′,

(2.2.4)
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Figure 2.3: The potential of mass element at Pi as seen from an outer reference point
P ′ in a spherical coordinate system.
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where Pl(cosχ) are the Legendre polynomials. They can be calculated using Ro-

drigues’ formula (see Murray and Dermott (1999) among others):

Pl(x) =
1

2ll!

dl(x2 − l)l

dxl
. (2.2.5)

The Legendre polynomials play an important role in the solution of potentials that

satisfy the Laplace equation. This will be explained in more detail in the following

section and follows the treatment given in Murray and Dermott (1999) and Kertz

(1969).

2.2.1 Potential theory

Laplace’s equation is:

∇2V = 0. (2.2.6)

Transformed into spherical coordinates (r, θ, ϕ), this becomes:

∂

∂r

(
r2
∂V

∂r

)
+

∂

∂µ

(
(1− µ2)

∂V

∂µ

)
+

1

1− µ2

∂2V

∂ϕ2
= 0, (2.2.7)

where µ = cos θ.

Any function V that satisfies the equation above can be decomposed into three

functions, each of which depends only on either r, θ or ϕ, respectively. V is called

a spherical solid harmonic. The solution of Laplace’s equation can be derived by

setting V = rnSn(µ, ϕ), which contains two functions, one dependent only on r and

the other dependent only on µ and ϕ. In the end, Sn(µ, ϕ) has to factorize into two

separate functions each dependent on µ and θ, respectively, for V to be a spherical

solid harmonic.

Inserting V = rnSn(µ, ϕ) into Laplace’s equation yields:

∂

∂µ

(
(1− µ2)

∂Sn

∂µ

)
+

1

1− µ2

∂2Sn

∂ϕ2
+ n(n+ 1)Sn = 0. (2.2.8)
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This is Legendre’s equation and the function Sn is called a spherical surface har-

monic of degree n. Legendre’s equation can also be derived from Laplace’s equa-

tion with the trial function V = r−(n+1)Sn(µ, ϕ). Therefore, the general solution of

Laplace’s equation (the spherical solid harmonic) is:

V =
∞∑
n=0

(
Anr

n +Bnr
−(n+1)

)
Sn(µ, ϕ), (2.2.9)

where An and Bn are constants.

A more detailed treatment of the general solution can be found in Kertz (1969).

In this work, however, axial symmetry is assumed: The situations discussed in the fol-

lowing do not depend on ϕ and consequently (∂2Sn)/(∂ϕ
2) = 0. Therefore, Legendre’s

equation reduces to:

(1− µ2)
∂2Pn(µ)

∂µ2
− 2µ

∂Pn(µ)

∂µ
+ n(n+ 1)Pn(µ) = 0. (2.2.10)

The Legendre polynomials Pn(µ) satisfy Laplace’s equation under axial symmetry

and are called zonal surface harmonics.

Surface harmonics have the important property that they are orthonormal and

satisfy the following relation:∫ 2π

0

∫ +1

−1

Ym(µ, ϕ)Sn(µ, ϕ)dµϕ = 0 ifm ̸= n, (2.2.11)

=
4π

2n+ 1
ifm = n,

where Ym(µ, ϕ) and Sn(µ, ϕ) are two spherical surface harmonics of degree m and

n, respectively. Here, the Schmidt or Gram-Schmidt orthonormalization over a unit

sphere is used. A very useful property of this normalization is described in the

following: Let P and P ′ be two points on a unit sphere with the angular coordinates
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Figure 2.4: The location of two points P and P ′ on a unit sphere.

(θ, ϕ) and (θ′, ϕ′), respectively, and let χ be the angle between the vectors (r = 1, θ, ϕ)

and (r = 1, θ′, ϕ′) (Figure 2.4). Then:∫ 2π

0

∫ +1

−1

Sn(µ
′, ϕ′)Pn(cosχ)dµ

′dϕ′ =
4π

2n+ 1
Sn(µ, ϕ), (2.2.12)

where µ′ = cos θ′ and µ = cos θ.

Applying this to the gravitational potential of an extended inhomogeneous body of

arbitrary form and choosing a coordinate system such that its origin coincides with the

center of mass, the gravitational potential at a reference point P (r, µ = cos θ, ϕ) can

be described as (see Kertz (1969) and Murray and Dermott (1999) for the derivation):

Φgravity,body(P ) = −GM
r

[
1−

∞∑
n=2

n∑
m=0

(
R

r

)n

Pm
n (cos θ)(Cm

n cos(mϕ) + Sm
n sin(mϕ))

]
,

(2.2.13)



51

where

Cm
n = − 1

RnM

∫ R

0

dri

∫ 1

−1

dµi

∫ 2π

0

dϕi ρ(Pi)r
n+2
i Pm

n (µi) cos(mϕi) (2.2.14)

Sm
n = − 1

RnM

∫ R

0

dri

∫ 1

−1

dµi

∫ 2π

0

dϕi ρ(Pi)r
n+2
i Pm

n (µi) sin(mϕi), (2.2.15)

are integrated over a mass element dmi at a point Pi(ri, cos θi = µi, ϕi) with density

ρ(Pi) and reflect the mass distribution within an extended body. The associated

Legendre polynomials Pm
n are derived from the ordinary Legendre polynomials by:

Pm
n (µ) = (−1)m(1− µ2)

m
2
dmPn(µ)

dµm
, (2.2.16)

with m = 0, 1, 2, ...n.

If the potential is axial symmetric with respect to ϕ, then m equals zero. In

this case, the associated Legendre polynomials are equal to the ordinary Legendre

polynomials (P 0
n = Pn).

This is the theoretical framework - in terms of potential theory - that is needed

as a basis for describing the tidal interaction between two bodies.

2.3 Tidal force and potential

The following is derived from Murray and Dermott (1999) and Kertz (1969). A situ-

ation is considered where a celestial object experiences tides due to the gravitational

attraction of another body. The first object will be called from now on the primary

and its parameters are denoted by the subscript P . The second object will be referred

to as the secondary and its parameters are denoted by the subscript S. Furthermore,

the mass of the primary is assumed to be much greater than the mass of the sec-

ondary: MP ≫ MS. Both shall orbit a common center of mass that lies within the
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Figure 2.5: The relationships between the radius of the primary, RP , the radius of
the orbit of the secondary, a, and the distance ∆ from a point P on the surface of
the primary to the center of mass of the secondary.

primary. The orbit shall be circular with a radius a. In addition, a is much greater

than the respective radii RP and RS of the primary and the secondary: a ≫ RP

and a ≫ RS. A coordinate system is chosen with its origin at the center of mass of

the primary and the latitude Ψ is measured from the axis that points towards the

secondary (Figure 2.5).

The gravitational field of the secondary at any position P ′ on the surface and

within the primary is indistinguishable from that of a point mass MS. The primary

on the other hand is considered as extended: Mass elements dm at position P ′ within

the primary have different distances ∆ to the origin of the gravitational force, the

center of mass of the secondary. Therefore, the gravitational field as seen from a

reference point P ′ at the surface of the primary with the coordinates (r⃗′ = RP ,Ψ) is

described by:

Φgravity,S(P
′) =

GMS

∆
, (2.3.1)
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where ∆ is:

∆ = R2
P + a2 − 2R2

Pa cosΨ andRP ≪ a. (2.3.2)

∆ is expanded according to equation (2.2.4). Therefore, the gravity potential that is

felt at the surface of the primary can be described by:

Φgravity,S(P
′) = −GMS

a

∞∑
l=0

(
RP

a

)l

Pl(cosΨ) (2.3.3)

= −GMS

a

[
1 +

(
RP

a

)
cosΨ +

1

2

(
RP

a

)2

(3 cos2Ψ− 1) + ...

]
≈ V1 + V2 + V3.

Only the leading three terms of the gravitational field are further considered. The

corresponding force of this potential is derived by applying the gradient operator:

F⃗gravity,S

MP

= −∇Φgravity,S(P
′) (2.3.4)

≈ −∇V1 −∇V2 −∇V3.

The gradient of the first term of the potential, −∇V1, is 0, because V1 contains only

constants 1. Only V2 and V3 remain.

At the same time, V2 = −GMS

a2
RP cosΨ according to equation (2.3.3). Because

the coordinate system was selected such that one of the axes is pointing along a

(Figure 2.5), the gradient of the potential in the direction RP cosΨ is parallel to a,

pointing towards the secondary. This gradient applied to V2 yields:

− ∂V2
∂RP cosΨ

=
GMS

a2
. (2.3.5)

1Note that this is the viewpoint as seen from a reference point P ′ at any point at the surface
of the primary. When the position of the reference point changes, ∆ changes as well, but the semi
major axis a is constant in this context.
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Figure 2.6: Centrifugal versus gravitational force at different points within the pri-
mary.

Gravity, however, is not the only force that needs to be considered. Because the

primary and the secondary orbit around a common center of mass, a centrifugal force

due to this motion arises as well. The difference between the centrifugal and the

gravitational force is the tidal force (Figure 2.6).

The properties of the centrifugal force due to the motion of the primary on a grav-

itationally bound orbit is illustrated by Figure 2.7: All particles within the primary

move on congruent circles if rotation is neglected. The corresponding centrifugal

force is acting in the direction of the secondary parallel to a and is the same for every

point within the primary in magnitude and direction. The magnitude of the centrifu-

gal force is known for one point at least: For the center of mass it has to be equal

to GMPMS/a
2, the gravitational force between the two point masses MS and MP .
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Figure 2.7: The particles in a primary move on circles of identical radii aP , which is
the distance from the primary’s center of mass to the common center of gravity CM .
This is illustrated by the movement of P ′ about the point CM ′ and the center of the
primary CP about CM . In this picture the rotation of the primary about its polar
axis is neglected.
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Therefore the force arising due to the potential V2 is compensated by the centrifugal

force at any point within the primary.

When the centrifugal force is subtracted from (2.3.3) only the force arising from

the potential V3 remains. This is the tidal force and V3 is identical to the tidal

potential Vtide:

Vtide(P
′) = Φgravity,S − Φcentrifugal (2.3.6)

≈ (V1 + V2 + V3)− Φcentrifugal

= ( V1︸︷︷︸
∇V1=0

+ V2︸︷︷︸
=Φcentrifugal

+V3)− Φcentrifugal

= V3

= −GMS

a

(r
a

)2
P2(cosΨ).

The tidal force acting on any mass m within the primary at a reference point P ′

with coordinates r⃗′ = (r′,Ψ) is:

F⃗tide/m = −∇Vtide

= −∂Vtide
∂r′

ˆ⃗
r′ − 1

r′
∂Vtide
∂Ψ

ˆ⃗
Ψ

= 2
GMS

a3
r′P2(cosΨ)

ˆ⃗
r′ − 2

GMS

a3
r′
3

4
sin(2Ψ)

ˆ⃗
Ψ, (2.3.7)

where
ˆ⃗
r′ and

ˆ⃗
Ψ are the unit vectors in the direction of the r′ and Ψ-axis of the

coordinate system.

At the surface of the primary (r′ = RP ) the tidal potential is:

Vtide(RP ) = −GMSR
2
P

a3
P2(cosΨ) = −ζPgPP2(cosΨ), (2.3.8)

where

1

2

(
3 cos2 Ψ− 1

)
(2.3.9)
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is the Legendre Polynomial of degree n = 2 with respect to cosΨ′,

gP =
GMP

R2
P

(2.3.10)

is the gravitational acceleration on the surface of the primary, and the remaining

terms are combined in ζP :

ζP =
MP

MS

(
RP

a

)3

·Rp . (2.3.11)

ζPP2(cosΨ) is the amplitude of the equilibrium tide for any angle Ψ on the surface of

the primary. It reaches its maximum for Ψ = 0, π and its minimum for Ψ = π/2, 3π/2.

This explains why the tidal force produces two high tides and two low tides per

rotation cycle.

2.4 Deformation of celestial bodies

2.4.1 Tidal deformation

Up to now, the primary was considered as spherical throughout the whole evaluation

of the potential and forces. The shape of the primary, however, only assumes a

spherical form if homogenous density is assumed and if the primary is only subjected

to self-gravity. As was shown in the previous section, the mass elements of the primary

are not only subjected to the gravitational but also to the tidal potential Vtide. This

leads to a deformation of the primary, which will be elaborated in the following. The

derivation according Murray and Dermott (1999) is given.

The mass elements of the surface are assumed to change their position until all the

forces acting on them are in equilibrium. Therefore, the surface forms an equipotential

surface. In the literature and also in this work, these outermost mass elements are
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Figure 2.8: The deformation of a homogenous sphere due to the tidal potential.

sometimes called an ’ocean’ because in this context they are assumed to behave like

a fluid.

The total potential at the surface (r′ = RP ) of the primary is:

Vtotal(RP ,Ψ) = −GMp

RP

− ζgP2(cosΨ) + gh(Ψ), (2.4.1)

where h(Ψ) is the height of the equipotential surface dependent on Ψ. It accounts for

the deformation of the primary due to tides. For the surface to be an equipotential

plane, Vtotal(RP ,Ψ) has to be constant and, consequently, h(ψ) ∝ P2(cosΨ) has to

cancel out the ψ-dependency. Therefore, the primary takes the form of a prolate

ellipsoid (like a rugby ball) with its elongated axis pointing towards the secondary

(Figure 2.8).

If the primary would be an inflexible sphere covered by a shallow, zero-density

fluid, then the surface would be equal to the equilibrium tide h(ψ) = ζP2(cosΨ). In
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reality, however, the deformation h(ψ) is not the equilibrium tide but deviates from

this ideal form due to the self-gravity of the tidal bulge and the flexibility of the inner

structures of the primary.

In general, the shape of a tidally deformed body is described by:

R(Ψ) = RP [1 + ϵP2(cosΨ)] , (2.4.2)

where ϵ≪ 1 is a constant and ϵP2(cosΨ) is the true amplitude of the tidal bulge.

In addition, a flexible primary will change its mass distribution due to the tidal

deformation. Therefore, its gravitational potential at the surface can no longer be

described by Vgravity,undisturbed = GMP/RP .

To calculate the new gravitational potential as seen from point P (Figure 2.8)

with the coordinates (r, µ = cos θ, ϕ), the deviation from the sphere with radius

Rmean = RP (the ’old’ surface) is considered. The point P ′(r′, µ′ = cos θ′, ϕ′) on the

tidally deformed surface can lie beneath or above the surface of this sphere. The

colatitudes θ, θ′ are this time measured from the axis of symmetry of the tidal bulge

which points towards the secondary (Figure 2.8).

Let χ be the angle between the position vectors to P and P ′. The total gravi-

tational potential at point P can therefore be decomposed into several parts. First,

into the internal and external gravity potential of a spherical body of radius Rmean

(equations 2.1.7 and 2.1.10). Second, into the potential of the non-centric part of a

thin layer of matter between the surface of the deformed body and the mean sphere,

which needs to be added, when this layer lies above the mean radius, and which needs

to be subtracted, when the layer lies below the mean radius.

At P ′, the radial thickness of this thin layer is according to equation (2.4.2) dr′ =

ϵRmeanP2(µ
′) and r′ = Rmean. The element of volume at this point is r′2 dr′ dµ′ dϕ′ =



60

ϵR3
meanP2(µ

′) dµ′ dϕ′. The distance between the points P and P ′ is ∆ which again

can be expanded binomially (see equation 2.2.4).

Because the height of the tidal bulge can lie either beneath or above Rmean, two

cases are considered.

Case 1: Here, the internal potential of the non-central deformed mass distribution

is derived. Because r < Rmean holds, ∆ = PP ′ can expanded as:

1

∆
=
(
R2

mean + r2 − 2Rmeanr cosχ
)−1/2

(2.4.3)

=
1

Rmean

∞∑
n=0

(
r

Rmean

)n

Pn(cosχ).

Therefore, the internal gravitational potential due to the tidal bulge is:

Vint ,bulge = −Gdm
∆

(2.4.4)

= −GρR2
meanϵ

∞∑
n=0

(
r

Rmean

)n ∫ ∫
P2(µ

′)Pn(cosχ) dµ
′ dϕ′

= −GρR2
meanϵ

(
r

Rmean

)2
4π

5
P2(cos θ)

= −4π

5
ρGr2ϵP2(cos θ).

The second last step in the calculations above follows from the special properties of

the spherical harmonics given by equations (2.2.11) and (2.2.12).

The total internal potential of a roughly spherical but tidally deformed body is:

Vint,total(r, θ) = Vint,bulge(r, θ) + Φint(r) (2.4.5)

= −4

3
πR3

meanρG

[
3R2

mean − r2

2R3
mean

+
3r2ϵP2(cos θ)

5R3
mean

]
Case 2: Equivalently, the outer potential is derived (r > Rmean). ∆ = PP ′ can

then be expanded as follows:

1

∆
=

1

r

∞∑
n=0

(
Rmean

r

)n

Pn(cosχ), (2.4.6)
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Figure 2.9: The tidal deformation of a two-component model planet of radius Rmean

and density ρo and a core of radius RCore and density ρc.

and the total external potential is:

Vext,total(r, θ) = −4

3
πR3

meanρG

[
1

r
+

3R2
mean

5r3
ϵP2(cos θ)

]
. (2.4.7)

From the internal and external gravitational potential of a tidally deformed body, the

true height h(ψ) of the equipotential plane can be derived for a two-component planet

of mean radius Rmean that consists of a homogenous, incompressible, fluid ocean of

density ρO, and a homogeneous core of radius RCore with density ρC . The core is

assumed to be a solid body (Figure 2.9). To form equipotential planes, the shape of

the core boundary and the ocean surface must have the following forms, where Ψ is

measured again from the axis pointing towards the secondary:

RCB(Ψ) = RCore [1 + S2P2(cosΨ)] (2.4.8)

ROS(Ψ) = Rmean [1 + T2P2(cosΨ)] , (2.4.9)
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where S2 ≪ 1 and T2 ≪ 1 are constants. Furthermore, ζC is the amplitude of the

equilibrium tide at the core boundary:

ζC =
MS

MC

(
RCore

a

)3

RCore, (2.4.10)

where MC is the mass of the tidally deformed core of the primary. The gravity

acceleration gC at the core boundary is:

gC =
GMC

R2
Core

(2.4.11)

and µ̃, the effective rigidity, is a dimensionless constant defined as:

µ̃ =
19µ

2ρCgCRCore

, (2.4.12)

where µ is the modulus of rigidity which is defined as the ratio of shear stress to shear

strain. If µ̃ ≪ 1, the core acts like a liquid, if µ̃ ≫ 1 the core hardly deforms at all

under tidal deformation because elastic forces put up too much resistance.

The complete calculations of the tidal deformation of a two-component planet can

be found in Murray and Dermott (1999).

In this two component model, the amplitudes of the tides in the core and in an

outer ocean are:

RCoreS2 = F
(5/2)ζC
1 + µ̃

(2.4.13)

RmeanT2 = H
5ζ

2
, (2.4.14)

where F is a dimensionless number which quantifies the effect of the ocean on the

amplitude of the core tide. H is the effect of the internal structure (elastic forces,

gravitational forces) on the external shape of the whole body.
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F and H are in general:

F =
(1 + µ̃)(1− ρO/ρC)(1 +

3

2α
)

1 + µ̃− ρO/ρC + (3ρO/2ρC)(1− ρO/ρC)− 9
4α
(RCore/Rmean)5(1− ρO/ρC)2

(2.4.15)

H =
2⟨ρ⟩
5ρC


1 + µ̃+ 3

2

(
RCore

Rmean

)2

Fδ

(1 + µ̃)(δ + 2ρO/5ρC)

 , (2.4.16)

where < ρ >=MP/(4/3πR
3
mean) is the mean density,

α = 1+(5ρC)/(2ρO) (RCore/Rmean)
3 (1− ρO/ρC)

3 and δ = (RCore/Rmean)
3 (1− ρO/ρC)

(Murray and Dermott, 1999).

With this general relation, several special cases can be calculated. For example,

when the core and the shallow ocean have the same density (ρC = ρO) then F = 0

and H = 1. The ocean tide is maximal, 2.5 times the amplitude of the equilibrium

tide:

Rmean(T2 − S2) =
5

2
ζ, (2.4.17)

and the core is undeformed (S2 = 0).

If a primary has a large solid core and a shallow ocean (Rcore ≈ Rmean, ζc ≈ ζ),

then the following can derived from the two-component model.

The amplitude of the ocean tide is:

Rmean(T2 − S2) =
µ̃ζ

1− ρO
ρC

+ µ̃
(
1− 3

5
ρO
ρC

) . (2.4.18)

Furthermore, if µ̃ → 0 then the amplitude of the ocean tide approaches zero as

well. The core is maximally deformed and the ocean just follows the form of the core.
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The amplitude of the solid body tide, on the other hand, is RCoreS2. In the case

of a shallow ocean (Rcore ≈ Rmean), this is:

RmeanS2 =
5

2
ζ

 1− ρO
ρC

1− ρO
ρC

+ µ̃
(
1− 3ρO

5ρC

)
 . (2.4.19)

If the planet is ocean-free, then ρO = 0 and the solid body tide is:

RmeanS2 =
5

2

ζ

1 + µ̃
, (2.4.20)

which agrees with the expression derived by Lord Kelvin (Thomson, 1863a,b).

2.4.2 Rotational Deformation

The mathematical framework for describing tidal deformation is also useful for de-

scribing rotational deformation. Here again the description in Murray and Dermott

(1999) is used. It is assumed that the tidal as well as the rotational deformations

are small, such that they can be calculated independently and added to each other

linearly (Dermott, 1979a).

At first, a spherical rigid body rotating with angular rotation rate Ω about the

polar axis is investigated (Figure 2.10). Again, axial symmetry with respect to ϕ is

assumed. Consequently, the centrifugal potential depends on r and θ only, where θ is

measured from the polar axis of rotation this time. Note that this coordinate system

differs from the one previously used where θ was measured from an axis pointing

towards the secondary.

The centrifugal potential Vcf (r, θ) at a point P (r, θ) is:

Vcf (r, θ) = −1

2
Ω2r2 sin2 θ. (2.4.21)
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Figure 2.10: Centrifugal force in a primary rotating about its polar axis with the
rotation rate Ω in a coordinate system where the angle θ is measured from the rotation
axis.

This can also be written as:

Vcf =
1

3
Ω2r2 [P2(cos θ)− 1] . (2.4.22)

A rigid core with a shallow, zero density ocean is assumed as a simple approach

to the potential solution. The total potential the fluid experiences at the surface is:

Vtotal(RP , θ) = −GMP

RP

+ Vcf (RP , θ), (2.4.23)

where MP and RP are the mass and mean radius of the rotating body.

The distortion of the ocean from the surface δr is small and its surface can be

described by:

rsurface = RP + δr(θ). (2.4.24)

The equipotential on the ocean surface can be derived by inserting rsurface into
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equation (2.4.23) and using a Taylor approximation for terms depending on RP + δr:

Vtotal(surface) ≈ −GMP

RP

+
GMP

R2
P

δr(θ)− 1

2
Ω2R2

P sin2 θ − Ω2RP sin2 θδr(θ). (2.4.25)

If Ω2RP ≪ GMP/R
2
P , the last term can be neglected and the equation above solved

for δr yields:

δr ≈ const +
Ω2R4

P

2GMP

sin2 θ. (2.4.26)

It is obvious that the rotation of a spherical body about its polar axis will deform it

to an oblate ellipsoid. The flattening of such an ellipsoid is defined as:

f =
req − rpole

req
, (2.4.27)

where the equatorial radius is

req ≈ RP + δr(θ = π/2, 3π/2) + const = RP +
Ω2R4

P

2GMP

+ const (2.4.28)

and the polar radius is

rpole ≈ RP + δr(θ = 0, π) + const = RP + const. (2.4.29)

Therefore, the flattening is approximately:

f ≈ q/2 (2.4.30)

where

q =
Ω2R3

P

GMP

(2.4.31)

is the dimensionless ratio of the centrifugal to the gravitational acceleration at the

equator. The upper limit of the rotation rate of a planet is derived when q → 1.

Then equation (2.4.31) yields:
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ΩMax ≈
(
GMP

R3
P

)1/2

≈ 2 · (G⟨ρ⟩)1/2, (2.4.32)

where < ρ > is the mean density of the planet.

Up to now, the gravitational potential at the surface of the rotating planet was

set equal to that of a rigid sphere. This approach neglects feedback effects on the

gravitational potential due to the rotational deformation. Now, an improved model

of the gravitational potential will be derived taking into account the oblate ellipsoidal

form.

The external gravitational potential of such an axially symmetric ellipsoid is (equa-

tion 2.2.13 with m = 0):

Φrot(r, θ) = −GMP

r

[
1−

∞∑
n=2

Jn

(
RP

r

)n

Pn(cos θ)

]
(2.4.33)

where MP is the total mass, RP is the radius and Jn are dimensionless constants

that describe the mass distribution within the body. Pn(cos θ) is the Legendre poly-

nomial of degree n.

In general, values for Jn are calculated by:

Jn =
1

Rn
PMP

∫ RP

0

∫ +1

−1

rnPn(µ = cos θ)ρ(r, µ)2πr2 dµ dr, (2.4.34)

where ρ(r, µ) describes the internal density distribution. For roughly spherical bodies

like stars and planets several simplifications can be made: If the northern and southern

hemispheres are symmetric, then J3 = 0, J5 = 0, J7 = 0.... J2 is the leading term of

the Jn-terms,. Indeed, if q is small, Jn ∝ qn/2 and higher order terms of Jn can be

neglected.

Also, for a planet of uniform density, J2 = q/2, and for a body of arbitrary density
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according to MacCullaugh’s theorem (Mayor and Queloz, 1995):

J2 =
C − 1/2(A+B)

MPR2
P

≈ C − A

MPR2
P

, (2.4.35)

where A,B,C are the three moments of inertia about the principal axes and A = B

under axial symmetry.

The total potential experienced by the ocean surface of a rotationally deformed

planet is:

Vtotal(r, θ) ≈ −GMP

r
+

[
GMPR

2

r3
J2 +

1

3
Ω2r2

]
P2(µ). (2.4.36)

Inserting rsurface = RP + δr(θ) into equation (2.4.36) and taking into account that

δr/RP ≪ 1 yields:

δr = const−
[
J2 +

1

3
q

]
RPP2(µ). (2.4.37)

This can be inserted into equation (2.4.27) to derive the flattening of a rotating planet

with P2(µ) = 1 for θ = π/2 and P2(µ) = −1/2 for θ = 0:

f =
3

2
J2 +

q

2
. (2.4.38)

This is a more accurate description of the flattening f than f ≈ q/2, as derived previ-

ously. Indeed, a good agreement is found when comparing observed versus calculated

f for Earth and Jupiter: fEarth,calculated = 0.003349 ≈ fEarth,observed = 0.003353 and

fJupiter ,calculated = 0.0667 ≈ fJupiter ,observed = 0.0649 (Murray and Dermott, 1999).

Now, the special case is considered of a secondary rotating with ΩS and revolving

around a primary of mass MP in a circular and equatorial orbit with semi major axis

a and mean revolution rate n. The rotation of the secondary shall by synchronized

with the revolution ΩS = n. The centrifugal potential within the secondary at a point

P (r, θ) according to equation (2.4.22) is:

Vcf (P ) =
1

3
Ω2

Sr
2P2(cos θ), (2.4.39)
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where θ is the angle between the radius vector and the vertical rotation axis.

The tidal potential acting acting on the secondary is according to (2.3.6):

Vtide(P ) = −GMP

a3
r2P2(cosχ), (2.4.40)

where χ is the angle between the radius vector and the axis orientated along the line

joining the centers of the primary and the secondary. In general, the angles θ and χ

are completely independent of each other because the centrifugal and tidal potential

have different axes of symmetry (Figure 2.11).

Figure 2.11: Left: Symmetry axis with respect to the tidal deformation.
Right: Symmetry axis with respect to the rotation of the body.

It is assumed now that the symmetry axes are perpendicular to each other: θ ≈

π/2 − χ. According to Kepler’s third law because ΩS = n: Ω2
S = GMP/a

3. In that

case, the tidal potential is:

Vtide = −Ω2
Sr

2P2(cosϕ). (2.4.41)



70

As can be seen when comparing Vtide in this special case with Eq. 2.4.22, the am-

plitudes of Vtide and Vcf only differ by a factor of 1
3
. It will be shown in Section 3.2

that the rotation of short-period extrasolar planets is probably tidally locked with

their revolution period. Therefore, the rotational deformation is only one third of

the tidal deformation. Furthermore, because the revolution period is on the order

of several days, the rotational flattening of a close-in extrasolar planet is in any case

smaller than that of Jupiter which rotates relatively fast: fJupiter,observed = 0.0649

with a 10 hour rotation period. Consequently, the rotational flattening of the planets

is neglected throughout this work.

The main sequence stars investigated in this work usually rotate with rotation

periods in the order of ten days. Consequently, their rotational flattening is small

and can be neglected as well.

2.5 Tidal waves in the forced damped oscillator

framework

The following situation is considered: A tidal wave is raised on the primary by a

secondary in a circular, equatorial orbit with orbital mean motion n. The primary,

on the other hand, rotates with the angular speed ΩP . If ΩP ̸= n, the tide moves

across the surface of the primary: It experiences tidal oscillations.

This corresponds to a situation of a forced damped harmonic oscillator whose

equation of motion is:

m
d2x

dt2
= −kx− β

dx

dt
+ F0 cos(ωt), (2.5.1)

where x is the displacement from equilibrium, m is the mass, β is the damping
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coefficient, k is the stiffness parameter, kx is the restoring force, F0/m is the amplitude

of the external driving force, and ω the frequency of the driving force.

The equation of motion may also be written as:

d2x

dt2
= −ω2

0x−
1

τd

dx

dt
+
F0

m
cos(ωt), (2.5.2)

where ω0 is the resonance frequency of the oscillator, and τd is the damping timescale.

When the oscillator is underdamped, after an initial transient phase, the steady-

state solution of the oscillation is:

x = A cos(ωt+ δ) (2.5.3)

with

A =
F0

m

[
(ω2

0 − ω2)2 + (ω/τd)
2
]−1/2

(2.5.4)

and

tan δ = − ω/τd
ω2 − ω2

0

. (2.5.5)

The phase shift δ of the forced oscillation with regard to the driving force F0/m

is always negative because the damping force opposes the driving force; more specific

−π < δ ≤ 0. In general, the phase shift δ depends on the frequency ω of the driving

force but not on the amplitude F0/m.

The phase shift δ can also be described via the specific dissipation function QP ,

defined by:

QP =
2πE0

∆E
, (2.5.6)

where ∆E is the energy dissipated per cycle and E0 is the peak energy stored during

once cycle. According to Efroimsky and Williams (2009) for tidal waves this is

QP =
|ω2

0 − ω2|
ω/τd

. (2.5.7)
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Therefore δ and QP are related to each other via:

tan |δ| = 1

QP

. (2.5.8)

If ω2
0 ≫ ω2 ≫ (ω/τd)

2, that is, if the system is not close to resonance

Q−1
P =

ω/τd

ω2
0|1−

ω2

ω2
0

|
≈ ω/τd

ω2
0

. (2.5.9)

In this ’weak friction’ case, the tidal dissipation factor QP is inversely proportional

to the external driving frequency ω.

In the following, it is argued that a primary of massMP , on which tides are raised

by the secondary of massMS, behaves like a damped oscillator where the driving force

is the tidal force and the driving frequency ω is the tidal frequency 2|ΩP − n|. This

is twice the difference between the rotation rate of the primary and the revolution

rate of the secondary on a Keplerian orbit. In this damped oscillator scenario the

response of the oscillator to the external driving frequency, the formation of the tidal

bulge, takes some time.

If ΩP > n, the tidal bulge is carried ahead of the secondary. If ΩP < n, the

tidal bulge lags behind. In both cases, the angle ϵ between the symmetry axis of

the tidal bulge and the line connecting the primary and the secondary is very small

(Figure 2.12). This tidal lag corresponds to the phase shift in the forced oscillator

framework for small angles: 2ϵ = δ ≈ tan δ. Therefore the tidal lag angle is connected

by the following relation with the tidal dissipation factor:

2|ϵ| = Q−1
P . (2.5.10)
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2.6 Tidal torques

Due to the tidal lag, the tidal bulge is not symmetric around the line connecting the

primary and the secondary’s center (Figure 2.12). Therefore, the external gravity

potential Vext of the primary at the position r⃗ of the secondary gives rise to a torque

acting on the secondary’s revolution rate n that is (Murray and Dermott, 1999):

Γ⃗ = r⃗ × F⃗ext, (2.6.1)

where

F⃗ext = −m∇Vext (2.6.2)

and m is the mass the perturbing force F⃗ext acts upon. In this case, it is the mass of

the secondary m =MS.

Furthermore, only the component of the force F⃗ext perpendicular to the line con-

necting the centers of the primary and the secondary contributes to the torque:

FΨ = −MS

r

∂Vext
∂Ψ

, (2.6.3)

where the angle Ψ is measured from the axis that is pointing towards the secondary.

Furthermore, only the non-central gravitational potential part due to the tidal bulge

Vnc,ext contributes:

Γ = −MS
∂Vnc,ext
∂Ψ

. (2.6.4)

According to equation (2.4.7), Vnc,ext is:

Vnc,ext = −3

5
gP

(
RP

r

)3

RP ϵtP2(cosΨ), (2.6.5)

where RP is the radius of the primary, gP = GMP/R
2
P is the gravitational acceleration

at the surface and ϵt is the tidal distortion (Eq. 2.4.2).
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In Section 2.4.1, it was shown that the tidal deformation depends on the inner

structure and that the tidal deformation can be described by:

RP ϵt = h2,P ζP , (2.6.6)

where h2,P is a structure constant and ζP = MS/MP (RP/a)
3RP is the amplitude

of the equilibrium tide. Inserting into the non-central potential above and setting

k2,P = 3/5 · h2,P yields:

Vnc,ext = −k2,P ζg
(
RP

r

)3

P2(cosΨ). (2.6.7)

The coefficients k2,P and h2,P were first introduced by A.E.H. Love and are called

’Love numbers’. Murray and Dermott (1999) state that ’They are mostly used as

a convenient way to cloak our ignorance of a body’s internal structure’. If sufficient

information about the inner structure is available, the Love numbers can be calculated

or at least approximated.

If the outer surface of the tidally deformed primary is in hydrostatic equilibrium,

then the total potential is constant at the surface: It is an equipotential plane.

The total potential on the surface is the sum over the central gravity potential at

the deformed surface, the non-central gravity potential with r = RP and the already

known tidal potential at the surface:

−GMP

r
− k2,P ζgP2(cosΨ)− ζgP2(cosΨ) = const. (2.6.8)

Substituting r with r = RP (1 + ϵt)P2 cosΨ, the radius of a tidally deformed body,

using a Taylor approximation and setting the sum over all P2(cosΨ)-dependent terms

equal zero to get a constant potential, yields:

k2,P =
RP ϵt
ζ

− 1. (2.6.9)



75

For a two-component model as introduced by Murray and Dermott (1999) and

outlined in section 2.4.1, RP ϵt/ζ = 5/2H and k2,P = 5/2H − 1, where H can range

between 2/5 and 1 (eq. 2.4.14). For a homogenous solid body, on the other hand, are

h2,P = 5/2·1/(1+µ̃) and k2,P = 3/5h2 = 3/2·1/(1+µ̃), where µ̃, the effective rigidity,

is the ratio of gravitational forces over elastic forces determining the tidal deformation.

In any case, for the Love number k2,P the following is true: 0 ≤ k2,P ≤ 3/2.

From this, the torque Γ arising from the primary’s non-central gravity potential

at the position of the secondary (r = a) can be derived:

Γ = −MS
∂Vnc,ext
∂Ψ

= k2,P
GM2

S

a6
R5

P

∂P2(cosΨ)

∂Ψ

=
3

2
k2,P

GM2
S

a6
R5

P sin(2ϵ)

=
3

2
k2,P

GM2
S

a6
R5

P2ϵ (2.6.10)

In the last two steps, two facts are used: Firstly, the tidal bulge is displaced by the

angle ϵ with respect to the line between the centers of masses. Secondly, ϵ is small so

that sin(2ϵ) ≈ 2ϵ, which according to (2.5.10) equals Q−1
P , where QP is the primary’s

tidal dissipation factor introduced in the forced damped oscillator framework.

This torque acts at a rate Γn on the secondary and an opposite torque acts at a

rate ΓΩP on the primary, where n is the revolution rate of the secondary and ΩP is

the rotation rate of the primary. This effect is called tidal friction and if ΩP ̸= n,

angular momentum will be transferred between the orbit and the primary’s rotation.

At the same time, the total angular momentum L of the system is conserved i.e.
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L̇ = 0:

L̇ =
d

dt

(
CPΩP +

MPMS

Mp +MS

a2n

)
= 0, (2.6.11)

where CP = IPMPR
2
P is the moment of inertia of the rotating primary and the

normalized angular momentum IP reflects the inner mass distribution.

From conservation of angular momentum, the following relation is derived:

CP Ω̇P = − MPMS

2(MP +MS)
naȧ. (2.6.12)

Therefore, a change in the primary’s rotation results in a change of semi major

axis and the following conclusions can be drawn (Figure 2.12):

• If the primary is rotating faster than the secondary revolves, ΩP > n, the torque

Γ decreases the rotation of the primary at a rate ΓΩP (Ω̇P < 0). An equal and

opposite torque increases the orbital revolution of the secondary at a rate Γn.

Therefore, the semi major axis a increases (ȧ > 0). This is the case for the

Earth-Moon-system.

• If the primary is rotating slower than the secondary revolves, ΩP < n, the

torque Γ increases the rotation at a rate ΓΩP (Ω̇P > 0). An equal and opposite

torque decreases the orbital revolution at a rate Γn and the semi major axis

decreases(ȧ < 0). This is the case for the Mars-Phobos-system.

• If the secondary is in a retrograde revolution, the tidal bulge is always lagging

behind the line joining the centers. Therefore, the torque Γ decreases the rota-

tion of the primary at a rate −ΓΩP , therefore Ω̇P < 0). An equal and opposite

torque decreases the orbital revolution at a rate −Γn, and ȧ < 0. The semi

major axis of the orbit decreases. This is the case in the Neptune-Triton-system.
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Figure 2.12: Upper panel: If the primary’s rotation is faster than the secondary’s
revolution (ΩP > n), the tidal bulge is carried ahead the line connecting the two
center of masses. The tidal torques decrease ΩP and increase n.
Middle panel: If the primary’s rotation is slower than the secondary’s revolution
(ΩP < n), the tidal bulge is lagging behind the line connecting the two center of
masses. The tidal torques increase ΩP and decrease n.
Lower panel: If the system is in retrograde revolution, the tidal torques decrease ΩP

and n.
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While the total angular momentum is conserved, if ΩP ̸= n, the total dynamical

energy of the system decreases at a rate:

Ė = −sign(ΩP − n)Γ(ΩP − n). (2.6.13)

This energy is dissipated within the primary as frictional heat. The rate of energy

dissipation depends on the structure and the energy dissipation mechanisms within.

Murray and Dermott (1999) point out that ’...it is the rate of energy dissipation

that determines the rate of orbital evolution’. Consequently, the orbital evolution is

intricately linked with the inner structure of the primary. It should be noted that the

model described in this Section, keeps the tidal dissipation factor QP constant with

time.

The total dynamical energy of the system affected by the tidal torques is the sum

of the rotational energy of the primary and the orbital energy of the system. The

rate of change of total energy is therefore:

Ė =
d

dt

(
1

2
CPΩ

2
P − GMPMS

2a

)
= CPΩP Ω̇P +

GMPMS

2a2
ȧ. (2.6.14)

By inserting Kepler’s third law G(MP + MS) = n2a3, the equation above can be

expressed as:

Ė = CPΩP Ω̇P +
MPMS

2(MP +MS)
n2aȧ. (2.6.15)

Now equation (2.6.12) is inserted:

Ė = − MPMS

2(MP +MS)
naȧ(ΩP − n). (2.6.16)

Combined with equations (2.5.10), (2.6.10), (2.6.13), (2.6.16), and Kepler’s third law,

the rate of change in the semi major axis a is derived:

ȧ = sign(ΩP − n)
3k2,PMS

QPMP

(
RP

a

)5

na. (2.6.17)



79

Inserting equation (2.6.17) into equation (2.6.12) yields the rate of change of angular

velocity:

Ω̇P = −sign(ΩP − n)
3k2,P
2IPQP

M2
S

MP (MP +MS)

(
RP

a

)3

n2. (2.6.18)

Tidal torques due to tides raised by the secondary on the primary are not the

only torques affecting such a system. There are also tidal torques due to tides raised

by the primary on the secondary that need to be considered. These result in angular

momentum transfer between the secondary’s rotation and the orbit and in energy

dissipation within the secondary whose rate is scaled by QS.

The relevant equations describing the semi major axis and secondary’s rotation

evolution are:

ȧS = sign(ΩS − n)
3k2,SMP

MS

(
RS

a

)5

na (2.6.19)

Ω̇S = −sign(ΩS − n)
3k2,S
2ISQS

M2
P

MS(MP +MS)

(
RS

a

)3

n2. (2.6.20)

Therefore, the complete tidal evolution of the system due to the displacement of the

tidal bulges on the primary and the secondary from the line connecting the centers of

masses can be found by adding equations (2.6.19, 2.6.17) and combining them with

(2.6.20) and (2.6.18). In the next chapter, however, it will be found that for most

planetary systems discovered in this work, ΩS ≈ n is a good assumption. Therefore,

ȧS ≈ 0 and Ω̇S ≈ 0.

As a consequence, the long-term evolution of the semi major axis can be calculated

by integrating Eq. (2.6.17) at first order. This yields for evolution in the past:

2

13
a
13/2
0

[
1−

(
ai
a0

)13/2
]
= sign (ΩP − n)

3k2,P
QP

(
G

MP

)1/2

R5
PMS∆tpast (2.6.21)
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where ai is the initial, a0 is the current semi major axis and ∆tpast > 0 is the elapsed

time; assuming that the orbit was approximately circular during ∆tpast, that MS ≪

MP and that either ΩP > n or ΩP < n during the whole integration time.

For evolution in the future this yields:

2

13
a
13/2
0

[(
ae
a0

)13/2

− 1

]
= sign (ΩP − n)

3k2,P
QP

(
G

MP

)1/2

R5
PMS∆tfuture, (2.6.22)

where a0 is the current, ae is the future semi major axis and ∆tfuture is the time

needed to achieve the future position. This relation is used in this work to estimate

tidal evolution time scales for circular orbits (Section 4.1 and Section 8.4.2).

2.7 Tidal evolution of eccentric orbits

Up to now, the orbit was assumed to be circular which is a good approximation for

many planets and moons in our Solar System. In the past years, extrasolar planets

on short-period orbits with large eccentricities were found. The orbit of CoRoT-10b,

for example, has e = 0.5. Therefore, the equations derived in the previous section

for circular orbits no longer hold. Hut (1981) calculates the force arising due to the

non-central gravity potential of the tidal bulge for a secondary on an eccentric orbit

using a different derivation than the one in the previous section following Murray and

Dermott (1999). Hut (1981) calculates the perturbed gravitational force between the

primary and the secondary due to two point masses at the surface of the primary

which represent the two tidal bulges. For e = 0, the tidal torques derived by Murray

and Dermott (1999) and Hut (1981) are the same. This will be shown by comparing

the Ψ-component of the force acting perpendicular to the line connecting the centers

of masses which is the only relevant force-component when the orbit is circular.
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Hut (1981) derives:

FΨ = 3G
M2

S

r2

(
RP

r

)5

k2,P τP

(
ΩP − Ψ̇

)
, (2.7.1)

where Ψ̇ is the instantaneous revolution rate, Ψ is the true anomaly of the orbit, τP

is a small time lag for the tidal bulge to form on the primary. Furthermore, r is

the distance between the primary’s and secondary’s center of mass, which can vary

between a(1 ± e) for eccentric orbits, k2,P is the Love number2. FΨ creates a torque

Γ = rFΨ on the secondary.

Comparing this torque Γ with the torque calculated in the previous section shows

that the equations (2.6.10) and (2.7.1) are equal for e = 0, r = a, and Ψ̇ = n. For a

circular orbit

τP (ΩP − n) = ϵ, (2.7.2)

where ϵ is again the tidal lag angle introduced in the forced oscillator framework,

2|ϵ| = Q−1
P (see eq. (2.5.10)). If the system is not close to resonance and weakly

damped, i.e., if the damping time scale τd is large, then equation (2.5.7) holds:

Q−1
P =

|ω|/τd
ω2
0

, (2.7.3)

where ω0 is the resonance frequency which is a constant property of the primary

and ω = 2|ΩP − n| is the frequency of the tidal waves. Consequently, the time lag

τP = 1/(τdω
2
0) is indeed small and constant as required by Hut (1981). τP and QP

are connected for circular orbits via the following relation:

Q−1
P = 2|ΩP − n|τP . (2.7.4)

2Hut (1981) calls k2,P the apsidal motion constant.
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This relation describes one factor that causes much confusion when comparing liter-

ature on tidal interactions from the planetary science and the astronomy community.

Whereas the first group often uses the tidal dissipation QP to quantify the strength

of tidal friction and keeps this parameter constant over time, the latter group often

uses the time lag τP to quantify the strength of tidal friction and keeps this parameter

constant over time. As long as ΩP −n ≈ const, both approaches yield similar results.

Care has to be taken when ΩP − n is not constant over time. This will be discussed

in more detail in subsequent chapters when applying the relevant equations.

The effect of the force component FΨ on the orbital parameters for the general

case of eccentric orbits can be found by calculating the energy loss during one orbit

under conservation of angular momentum. The sum of orbital angular momentum

Lorb and rotational angular momentum of the primary Lrot,P needs to be conserved

under force FΨ, where the orbital angular momentum is:

Lorb =
MPMS

MP +MS

na2
√
1− e2, (2.7.5)

and the rotational angular momentum is:

Lrot,P = IPMPR
2
PΩP . (2.7.6)

The rate of change in orbital angular momentum is:

L̇orb =
1

2

MPMS

MP +MS

naȧ
√
1− e2 − MPMS

MP +MS

na2
eė√
1− e2

. (2.7.7)

The orbital energy is

Eorb = −GMPMS

2a
, (2.7.8)

and its rate of change is:

Ėorb =
d

dt

(
−GMPMS

2a

)
= G

MPMS

2a2
ȧ. (2.7.9)
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The angular momentum of a barycentric orbit is connected to the position vector r

and the mean anomaly Ψ by

Lorb =
MPMS

MP +MS

h, (2.7.10)

where the constant h is

h = r2Ψ̇, (2.7.11)

and the position vector r in polar coordinates is:

r = a
1− e2

1 + e cosΨ
. (2.7.12)

As was already stated, FΨ creates a torque Γ = rFΨ on the secondary by the tides

raised on the primary. The corresponding orbital energy loss is:

∆EΨ =

∫ 2π

0

ΓdΨ = 3GM2
SR

5
Pk2,P τP

∫ 2π

0

ΩP − Ψ̇

r6
dΨ. (2.7.13)

Using the equations (2.7.5),(2.7.10), (2.7.12), integrating over Ψ, inserting the mean

motion n =
√
G(MP +MS)a

−3/2 and dividing by the orbital period Porb – which

according to Kepler’s third law is (Porb = 2πa3/2/
√
G(MP +MS)) – gives

ĖΨ = −3
k2,P
TP

G(MP +MS)
M2

S

MP

(
RP

a

)8
(1− e2)−15/2

a
f2(e), (2.7.14)

where TP is the typical tidal time scale defined by Hut (1981) as TP =
R3

P

GMP τP
and

f2(e) is a function depending on e:

f2(e) =

(
1 + 14e2 +

105

4
e4 +

35

4
e6 +

35

128
e8
)

(2.7.15)

− ΩP

n
(1− e2)3/2

(
1 +

15

2
e2 +

45

8
e4 +

5

16
e6
)
.

The corresponding change in semi major axis due to the loss of orbital energy is

derived by using (2.7.9) and solving for ȧ:

ȧ = −6
k2,P
TP

q(1 + q)

(
RP

a

)8

a(1− e2)−15/2f2(e), (2.7.16)
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where the mass ratio q =MS/MP is introduced.

The amount of orbital angular momentum transferred to the primary’s rotation

per orbit is calculated by:

∆Lorb =

∫
orbit

Γdt =

∫ 2π

0

Γ
dΨ

Ψ̇
. (2.7.17)

It follows by integrating over Ψ and dividing by Porb:

dLorb

dt
= −3

k2,P
T

√
G(MP +MS)

M2
S

MP

R8
Pa

−15/2(1− e2)−6f3(e) (2.7.18)

with

f3(e) =

(
1 +

15

2
e2 +

45

8
e4 +

5

16
e6
)
− ΩP

n
(1− e2)3/2

(
1 + 3e2 +

3

8
e4
)
. (2.7.19)

The change in eccentricity ė is derived by using equation (2.7.7) and inserting ȧ and

L̇orb as determined above:

ė = −3

2

k2,P
TP

q(1 + q)

(
RP

a

)8

(1− e2)−13/2ef4(e), (2.7.20)

with

f4(e) =

(
15 +

225

4
e2 +

225

8
e4 +

75

64
e6
)

(2.7.21)

− ΩP

n
(1− e2)3/2

(
11 +

33

2
e2 +

11

8
e4
)
.

L̇orb is transferred to the primary. The angular momentum of the primary is IPMPR
2
PΩP .

IP is the normalized moment of inertia. Therefore, the angular momentum transfer

results in a change of the primary’s rotation rate ΩP which is derived by setting

(2.7.18) equal to

dLorb

dt
= IPMPR

2
P

dΩP

dt
(2.7.22)
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and solving for Ω̇P . This yields

Ω̇P = 3
k2,P
T

q2

IP

(
RP

a

)6

(1− e2)−6nf3(e). (2.7.23)

In addition to FΨ, a radial force component arises due to the non-central gravity

potential when the orbit is eccentric. The distance r between the primary and the

secondary is not constant anymore.

As a reminder, the potential is (eq. 2.6.7):

Vnc,ext(r(t)) = −k2,P ζPgP
(

RP

r(t− τP )

)3

P2(cosΨ), (2.7.24)

where k2,P is the Love number, gP and ζP are the surface gravity acceleration and the

amplitude of the equilibrium tide on the primary. The tidal potential of the secondary

acted at a time t−τP to form the tidal bulge, where τP is the tidal time lag, when the

secondary was at a distance r(t− τP ). At time t, when the displacement of the tidal

bulge gives rise to a force acting on the secondary, this secondary is at distance r(t).

The distance r(t− τP ) with respect to r(t) is r(t− τP ) ≈ r(t)− ṙτP = r(t)(1− ṙ
r
τP ).

Inserting this into the potential and using Taylor approximation yields:

Vnc,ext(r) = −k2,P ζPgP
(

RP

r(1− ṙ
r
τP )

)3

P2(cosΨ)

≈ −k2ζPgP
(
RP

r

)3

(1 + 3
ṙ

r
τP )P2(cosΨ). (2.7.25)

Note that ζP , the amplitude of the equilibrium tidal bulge at the time of the tidal

bulge formation due to the tidal potential of the secondary, is constant in this context.

It does not change when the tidal bulge is displaced with respect to the line connecting

the centers of masses. This is equivalent to stating that the height of the tidal bulge

does not change between t − τP and t. Therefore, the radial force component Fr
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due to the displacement of the tidal bulge acting on the secondary at distance r(t) is

derived from:

Fr = −MS
∂Vnc,ext(r)

∂r

≈ −3k2,PMSζPgP

(
RP

r

)3 (1 + 3 ṙ
r
τP )

r

= −3k2,PG
M2

S

r2

(
RP

r

)5

(1 + 3
ṙ

r
τP ), (2.7.26)

where the boundary condition Ψ(t) = ϵ was used. P2(cos ϵ) ≈ 1 because the tidal lag

angle is small: ϵ ≪ 1. In the last step ζP = MS

MP

(
RP

r

)3
and gP = GMP

R2
P

were inserted.

While ζP was constant during the tidal lag time τP , it is not constant over the whole

orbit when this orbit is eccentric. ζP varies over time because the tidal force of the

secondary, that forms the tidal bulge, varies over one orbit as the distance r between

the primary and secondary alternatively grows and shrinks.

The corresponding energy loss ∆E due to the radial force Fr is computed by:

∆Eradial =

∫
orbit

Frdr =

∫ 2π

0

Fr
dr

dΨ
dΨ. (2.7.27)

The radial force does not change the orbital angular momentum and therefore L̇orb =

0. (Note that for a circular orbit dr
dΨ

= 0 and ∆Eradial = 0.) Using the equations

(2.7.5), (2.7.10), (2.7.12) and integrating over Ψ yields:

∆Eradial = −9πG3/2(MP +MS)
1/2M2

SR
5
Pk2,P τPa

−15/2(1− e2)−15/2f(e), (2.7.28)

where f(e) is:

f(e) = e2
[
1 +

15

4
e2 +

15

8
e4 +

5

64
e6
]
. (2.7.29)

∆Eradial is negative as expected for a dissipative process. To derive the mean orbital

energy loss Ėorb, ∆Eradial is divided by the orbital period P .
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Consequently, Ėradial is:

Ėradial = −9

2
G2(MP +MS)M

2
SR

5
Pk2,P τPa

−9(1− e2)−15/2f(e). (2.7.30)

The change in the semi major axis ȧ as a consequence of Fr acting on the orbit is

derived by setting Ėradial = Ėorb (equation 2.7.9) and solving for ȧ:

ȧ = −9
k2,P
TP

q(1 + q)

(
RP

a

)8

a(1− e2)−15/2f(e). (2.7.31)

The change in eccentricity ė is derived by using the relation (2.7.5) and L̇orb = 0

(2.7.7) and solving for ė:

ė = −9

2

k

T
q(1 + q)

(
R

a

)8

(1− e2)−13/2f(e)

e
. (2.7.32)

The total change in the semi major axis ȧ and eccentricity ė due to Fr and FΨ is

derived by adding (2.7.31) to (2.7.16) and adding (2.7.32) to (2.7.20).

This results in the following set of equations for the tidal evolution of the system

due to the lag of the tidal bulge on the primary:

ȧP = −6
k2,P
TP

q(1 + q)

(
RP

a

)8

an−1(1− e2)−15/2
[
nf1(e)− (1− e2)3/2f2(e)ΩP

]
(2.7.33)

ėP = −27
k2,P
TP

q(1 + q)

(
RP

a

)8

en−1(1− e2)−13/2

[
nf3(e)−

11

8
(1− e2)3/2f4(e)ΩP

]
(2.7.34)

and

Ω̇P = −3
k2,P
TP

q2

IP

(
RP

a

)6

(1− e2)−6
[
nf2(e)− (1− e2)−3/2f5ΩP

]
, (2.7.35)
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where

f1(e) = 1 +
31

2
e2 +

225

8
e4 +

185

16
e6 +

25

64
e8

f2(e) = 1 +
15

2
e2 +

45

8
e4 +

5

16
e6

f3(e) = 1 +
15

4
e2 +

15

8
e4 +

5

64
e6 (2.7.36)

f4(e) = 1 +
3

2
e2 +

1

8
e4

f5(e) = 1 + 3e2 +
3

8
e4.

Up to now, tidal evolution due to tides raised by the secondary on the primary

was calculated. As was stated in the previous section, the tidal evolution due to

tides raised by the primary on the secondary needs to be taken into account as well.

This results in a set of equation similar to the ones above safe for the fact that the

subscripts P and S are exchanged and q =MS/MP needs to be replaced by 1/q. The

complete tidal friction evolution is described by adding ȧP and ȧS and ėP and ėS and

complementing them with the equations describing the evolution of the primary’s and

secondary’s rotation evolution Ω̇P and Ω̇S.

The equations used in this section use the typical tidal time scale TP which con-

tains the tidal lag time τP to determine the rate of change of the orbital elements.

This quantity is defined as:

TP =
R3

P

GMP τP
. (2.7.37)

This is connected to the tidal dissipation factor QP by:

τP =
1

2QP |ΩP − n|
. (2.7.38)

Therefore, inserting into the equations above

TP =
2R3

PQP |ΩP − Ψ̇|
GMP

(2.7.39)
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yields equations dependent on QP which are used by other authors (see the next

Section).

The difference between a tidal friction model parameterized with QP

k2,P
and a model

parameterized with τP will be discussed in more detail in subsequent chapters.

2.8 The tidal dissipation factor and the Love num-

ber

In the previous sections, the importance of the tidal dissipation factor Q and the Love

number k2 for describing tidal friction became apparent. The quantity Q describes

the energy loss of a damped externally driven oscillator. Q is inversely proportional

to the amount of energy dissipated per cycle (see section 2.5, equation (2.5.6)). The

larger Q, the less energy is dissipated, the smaller Q the more energy is dissipated.

The Love number k2, on the other hand, describes the feedback effect on the tidal

deformation due to the self-gravity on the tidal bulge. If k2 = 0, there is no feedback

effect and the tidal deformation has the same amplitude as the tidal equilibrium tide

ζ. If k2 = 1.5, the feedback effect is maximal and the tidal deformation is 2.5 times

as large as ζ (see Section 2.4.1). Both quantities are dimensionless parameters that

contain the knowledge (or lack thereof) of the processes that are at work within a

celestial body that is deformed and excited by tides.

Furthermore, the parameter Q/k2 determines the secular change of the semi ma-

jor axis and rotation rates, so a good constraint on Q/k2 is critical for successful

predictions of the dynamical evolution of planetary systems. The argument can also

be reversed. If Q and k2 are constrained, this may help to improve our understanding
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of inner processes of the tidally excited body.

Historically, Q/k2 was first investigated for the Earth-Moon system. With the

advent of the space age, attempts were made to constrain Q/k2 in the Solar System

and this was used to gain knowledge on the inner structure of bodies different from

the Earth and the Moon, even when in-situ measurements are not possible. Selected

publications will be discussed in the following to gain insight about the possible

magnitude of Q/k2 and the timescales on which dynamical evolution due to tidal

friction takes place.

Furthermore, it will be shown that for the stellar tidal dissipation factor Q∗
k2,∗

, there

are large uncertainties that cover several orders of magnitude. Indeed, these uncer-

tainties provide one of the the main motivations for this work which puts constraints

on Q∗
k2,∗

and explains why different approaches yield different Q∗
k2,∗

-values.

It should be noted that in many works discussed in this section, Q/k2 is regarded

as approximately constant over time. This basic assumption and its limitations will

be discussed in more details in the next Chapter, in Section 3.1.

2.8.1 Q/k2 in the Solar System

Earth and Moon

Already Thomson (1863a) derived k2,Earth = 0.36 from measuring the solid body tide

of the Earth. From this and the Lunar Laser ranging (LLR) measurements, the tidal

dissipation factor Q of the Earth can be deduced. LLR measurements determined the

rate at which the Moon’s semi major axis increases to be: ȧ = 3.74 cm/yr (Murray

and Dermott, 1999; Lambeck, 1977). Inserting ȧ into equation (2.6.17), the current
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ratio of tidal dissipation factor over Love number is derived:

QEarth, current

k2,Earth, current
≈ 12.

For the tidal dissipation factor and Love number of the Moon, the following parame-

ters were derived based on measurements from the Apollo seismic network (Lambeck,

1977):

QMoon ≈ 300 for the central region,

QMoon ≈ 1000 for the upper 500− 600 km,

k2,Moon ≈ 0.02. (2.8.1)

Mars

Pollack (1977) estimates QM

k2,M
≈ 100 based on the measured secular decrease of the

semi major axis of Phobos (Born and Duxbury, 1975; Shor, 1975) due to tidal friction

because of tides raised by Phobos on Mars. This work was revised by Lainey et al.

(2007) who derived:

QMars = 79.9± 0.7

k2,Mars = 0.152,

based on the measured decay rate of Phobos’ semi major axis (20 cm/yr) taken from

observations between 1877 and 2005 and spacecraft observations from Mars Express

and Mars Global Surveyor.

For the Mars moon Phobos, Lambeck (1979) derived:

QPhobos ≈
1

5
QMars

k2,Phobos = 10−4, (2.8.2)
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assuming that Phobos was captured by Mars about four billion years ago and that

the initially high eccentricity that such captured asteroids usually show was damped

by tidal friction.

Jupiter, Saturn and Uranus

Starting in the 60s of the last century, several authors estimated QJupiter and QSaturn

based on the fact that many of the satellites of these gas giants are in orbit resonances.

Most notably, the mean motions of the Galilean moons Io, Europa and Ganymede (n1,

n2 and n3, respectively) obey the following relation: n1−3n2+2n3 = 0. Furthermore,

the saturnian satellites Enceladus and Dione as well as Mimas and Thethys each form

a pair with mean motion resonances. Assuming that the satellites have evolved into

this state due to tidal friction and are now stable, the time averaged Q was estimated

by Goldreich (1965) to be:

QJupiter ≈ (1− 2)× 105

QSaturn ≈ (6− 7)× 104.

k2, on the other hand, was assumed as

k2 =
3

2

(
1 +

19µ

2gρRP

)−1

≈ 1, (2.8.3)

where g, ρ, µ, and RP are the surface gravity, density, rigidity and radius of the gas

giants, respectively (See Section 2.4.1).

In 1977, Goldreich and Nicholson (1977) contradicted Goldreich (1965) by stating

that if turbulent viscosity in the atmosphere of Jupiter is the dominant mechanism

by which energy is dissipated then QJupiter ≈ 5×1013. This would mean that no tidal

evolution of the Galilean moons could have occurred and that the amount of energy
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dissipated within Jupiter is negligible. Note the difference in Q by eight orders of

magnitude. Dermott (1979b) on the other hand states that energy dissipation in the

solid or quasi-solid core of gas giants is important (Qe ≈ 60 in the core). The total

averaged Q for Jupiter and Saturn can then be in the orders of 105 and allow for the

tidal evolution of the inner Jupiter and Saturn satellites; but only if it is assumed

that the dense cores of Jupiter and and Uranus have volumes twice as large as that

of the Earth. For Saturn, a dense core of eight times the Earth’s volume is required.

Today, it is still uncertain if Jupiter has a dense core and how large it is (Saumon

and Guillot, 2004). A dense core, however, is postulated for the core-instability or

core-accretion mechanism that explains the formation of gas giants (Pollack et al.,

1986; Wuchterl, 1993). Furthermore, a number of extrasolar gas giants have been

discovered that confirm this scenario. The planet HD 149026, for example, probably

has a 67 Earth mass core (Sato et al., 2005).

Later investigations derived tidal dissipation factors in the orders of 104 − 105 for

Solar System gas giants and not in the orders of 1013: In 1990, Tittemore and Wisdom

(1990) constrained Q for Uranus by investigating the tidal evolution of Miranda,

Umbriel and Ariel and derived 1.1× 104 ≤ QUranus ≤ 3.9× 104.

Only recently, Lainey et al. (2009) derived the following values for Jupiter and Io

from astrometric observations:

k2,Io
QIo

= 0.015± 0.003

k2,Jup
QJup

= (1.102± 0.023)× 10−5.

Leconte et al. (2011) derived k2 based on numerical models and compared them with
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observations. They give for Jupiter and Saturn planets:

k2,Jup ≈ 0.5 (2.8.4)

k2,Sat ≈ 0.3. (2.8.5)

A comparison of the different QP

k2,P
values within the Solar System allows to draw

the following conclusion: rocky planets and moons apparently have QP

k2,P
≈ 10 − 100

and gas giants have QP

k2,P
≈ 104 − 105. Therefore, rigid bodies are much more efficient

in dissipating tidal energy than gaseous bodies, as expected intuitively. Furthermore,

for very small rocky bodies like the Moon and Phobos the Love number is very small.

There is almost no feedback effect due to the self-gravity of the tidal bulge. In

contrast to that, the Earth, Jupiter and Saturn allow for moderate feedback effects.

k2,Jup ≈ 0.5 , for example, means that the tidal deformation is 1.5 times the amplitude

of the tidal equilibrium tide ζJup.

2.8.2 Q/k2 in extrasolar planet systems

Q/k2 for brown dwarfs

Heller et al. (2010) constrain QP for brown dwarfs by:

QP > 104.5 (2.8.6)

to allow the eclipsing brown dwarf binary 2MASSJ05352184-0546085 to become

synchronized. The Love number for brown dwarfs is assumed as k2 = 0.286. The

Love number and tidal dissipation factor found by Heller et al. (2010) agree with the

Love number and tidal dissipation factor found for gas giants. This would mean that
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brown dwarfs dissipate tidal energy and are tidally deformed like gas giants and not

like main sequence stars.

Q∗
k2,∗

for main sequence stars

Leconte et al. (2011) give the following simple equation to derive the Love number

k2,∗:

k2,∗ =
3

2

(
I∗
5

2

)2 (
1− n

5

)
, (2.8.7)

where I∗ is the normalized moment of inertia and n is the polytropic index used for

the modeling of the inner stellar density and pressure by the Lane-Emden equation

(for example Prialnik (2000)). It is beyond the scope of this work to describe stellar

models in detail. It shall be sufficient to state that for main sequence stars, n ≈ 3 is

used and the normalized moment inertia is assumed as I∗ = 0.074 (See Section 2.11).

From this, the stellar Love number is derived:

k2,∗ = 0.018. (2.8.8)

Hut (1981) gives k2,∗ ≈ 0.01 which agrees within order of magnitude.

Therefore, when comparing tidal interaction models in the literature one has to

check if Q∗
k2,∗

or Q∗ is discussed, because both values may differ by a factor of 50 just

due to the Love number. Throughout this work, k2,∗ = 0.018 is assumed. This small

number indicates that almost no feedback occurs due to the self-gravity of the tidal

bulge in contrast to planets like Earth or Jupiter. The tidal deformation is almost

identical to the equilibrium tide indicating that main sequence stars behave in that

respect like a rigid sphere covered by a zero-density fluid (Section 2.4.1).

In the following, several Q∗
k2,∗

values are discussed derived in the last two decades.

In 1996, shortly after the discovery of the first extrasolar planets, Rasio et al. (1996)
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calculated wether jovian planets like 51 Pegasi b could be stable under tidal friction.

It was assumed that the star is a slowly rotating main-sequence star like our Sun

(PSun ≈ 27 days) and that the planet has a circular orbit with a short revolution

period of a few days. In such a case, the stellar rotation rate is smaller than the

revolution rate (Ω∗ < n) and consequently the application of (2.6.17) or (2.7.33) for

e = 0 yields a decrease of the planet’s semi major axis. (In the following, the star

is regarded as the primary whose parameters are denoted by subscript ∗, whereas

Pl denotes planetary parameters. The planet is the secondary in the tidal friction

context.).

The authors estimated the orbital decay rate τa assuming that the tidal energy is

entirely dissipated within the convective envelope by viscous dissipation:

1

τa
=

|ȧ|
a

=
f

τc

Menv

M∗

q

1 + q

(
R∗

a

)8

, (2.8.9)

where M∗ and R∗ are the radius of the host star, a is the distance between the star

and the extrasolar planet, q is the ratio of planetary mass to stellar mass, Menv is the

mass of the convective outer layer in the main sequence star, τc is the eddy turnover

time scale and f is a numerical value found by integrating viscous dissipation of tidal

energy over the convective envelope. Comparing this equation with (2.7.33), it is

obvious that the equations are very similar and can be related to each other to derive

the corresponding tidal dissipation factor of the star Q∗
k2,∗

.

f

τc

Menv

M∗
=

6k2,∗
T∗

Ω∗ − n

n

=
3k2,∗GM∗

Q∗R3
∗n

with n =
√
G(M∗ +MPl)/a3, where MPl is the mass of the exoplanet, and

T∗ = R3
∗Q∗2(Ω∗ − n)/(GM∗). Rasio et al. (1996) further derived τa ≈ 4 × 104 Gyrs
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for a solar-like slowly rotating star (M∗ = MSun, R∗ = RSun, Menv/MSun = 0.028,

Ω∗ << n) and an extrasolar planet with mass MPl = 10−3MSun and semi major axis

a = 11, RSun = 0.511 AU. This corresponds to

Q∗

k2,∗
≈ 4× 108 (2.8.10)

or

Q∗ = 8× 106. (2.8.11)

This is more than one order of magnitude higher than the QPl-values of the gas giants

in the Solar system. This would indicate that if stars dissipate energy by turbulent

viscosity in their convective envelope, they are even less efficient in dissipating tidal

energy than gas giants who also contain a turbulent atmosphere. This is compatible

with the discussion of QPl

k2,P l
of gas giants in the 1970s, when it was found that turbulent

viscosity is not an efficient energy dissipation mechanism. Instead, additional energy

dissipation in dense cores had to be inferred to account for the observed QPl

k2,P l
values.

On the other hand, such a large Q∗
k2,∗

would mean that the planet is safe from orbital

decay within the lifetime of the star; which is about 10 Gyrs for a main sequence star

- much less than the decay time.

Recently, Penev and Sasselov (2011) derived Q∗
k2,∗

values of

Q∗

k2,∗
= 108 − 3× 109, (2.8.12)

based on numerical simulation of tidal energy dissipation in externally-perturbed con-

vective volumes. Their work was stimulated by the fact ”(...)that a comprehensive

theoretical understanding of turbulent dissipation in stellar convection zones is lack-

ing.” These values agree nicely with the one given by Rasio et al. (1996) and also the
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one derived by Carone and Pätzold (2007): 3× 107 ≤ Q∗
k2,∗

≤ 2× 109 and Pätzold and

Rauer (2002): Q∗
k2,∗

≥ 1.5× 108.

These values are, however, much higher than those used by many other authors

(Jackson et al. (2008) Q∗
k2,∗

= 105.5, Dobbs-Dixon et al. (2004) Q∗
k2,∗

= 105 − 106, and

Lin et al. (1996), Q∗
k2,∗

= 105). In summary, all given values cover the following range:

Q∗

k2,∗
= 105 − 3× 109, (2.8.13)

which would correspond to

Q∗ = 2× 103 − 6× 107, (2.8.14)

The lower values are derived from synchronization time scales of main sequence

stellar binaries (Meibom and Mathieu, 2005).

This work aims to constrain Q∗
k2,∗

by applying tidal friction models to extrasolar

planets and discussing their dynamical evolution. Indeed, it will be shown that Penev

and Sasselov (2011)’s work will become particularly important when discussing the

Q∗
k2,∗

-constraints derived in this work. In any case, the variety of possible Q∗
k2,∗

-values

presented here shows how important it is to derive improved constraints on the stellar

dissipation factor. Otherwise, it is almost impossible to predict the orbital evolution

of a close-in extrasolar planet.

2.9 Stability of tidal equilibrium

If the orbit of a tide raising body is circular and ΩP = ΩS = n, then in principle no

tidal friction can occur and the orbital elements will remain unchanged as long as

no other mechanism removes angular momentum from the system. It will be proven

that such a configuration can be achieved only under certain constraints.
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Hut (1980) investigates the stability of such a state for a system of two celestial

bodies which exchange significant tidal forces. The state of such a binary system is

considered from the viewpoint of the barycentric orbit. Although Hut (1980) devel-

opes this formalism for stellar binary systems, the same method can be applied to a

’binary systems’ composed of a star and a planetary companion. The binary system

is determined in the most general case by the semi major axis a of the orbit and its

eccentricity e, the angle i between the orbital angular momentum L⃗orb and the total

angular momentum L⃗tot and the rotation rates Ω⃗P and Ω⃗S of the primary and the

secondary (Figure 2.13) before it enters a double synchronous state.

Figure 2.13: The barycentric orbit configuration of a binary system including its
relevant parameters. L⃗ is the total angular momentum L⃗tot and h⃗ is the orbital
angular momentum L⃗orb (Hut, 1980).

The total angular momentum L⃗tot is composed of the orbital angular momentum
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and the rotation angular momenta:

L⃗tot =
MPMS

MP +MS

n⃗a2
√
1− e2 + IPMPR

2
P Ω⃗P + ISMSR

2
SΩ⃗S, (2.9.1)

where IP and IS are the normalized moments of inertia of the primary and secondary

with masses MP and MS and radii RP and RS, respectively, and n⃗ is the orbital

revolution rate or orbital mean motion.

The total energy Etot is composed of the orbital energy and the rotational energy

of each body:

Etot = −GMPMS

2a
+

1

2
IPMPR

2
P

∣∣∣Ω⃗P

∣∣∣2 + ISMSR
2
S

∣∣∣Ω⃗S

∣∣∣2 . (2.9.2)

A system is considered stable if its energy is minimal. In addition, the angular

momentum needs to be conserved (dLtot

dt
= 0). A good way to solve this problem is

the application of Lagrange multipliers, a mathematical method to find maxima and

minima of a function subject to additional constraints.

For this example, the application of the Lagrange multipliers yields:

0 =
∂

∂xi
E + λx

∂

∂xi
Ltot,x + λy

∂

∂xi
Ltot,y + λz

∂

∂xi
Ltot,z (2.9.3)

where xi are the nine free parameters that describe the system

a, e, i,ΩP,x,ΩP,y,ΩP,z,ΩS,x,ΩS,y, and ΩS,z and the Lagrange multiplicator λ⃗ is a con-

stant vector.

Hut (1980) expresses the equations above in units of length (IPMPR
2
P )

1/2M
−1/2
P ,

units of time G−1/2M
−5/4
P (IPMPR

2
P )

3/4 and units of mass MP . In that case, MP ,

IPMPR
2
P , and G can be set to one. In addition, a coordinate system was chosen

where the z-axis is oriented along the vector L⃗tot = (0, 0, |Ltot|)) and where L⃗orb =

(|Lorb| sin i, 0, |Lorb| cos i) is in the (x, z)-plane.
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The equations of total energy and total angular momentum reduce to:

Etot = − q

2a
+

1

2

(
Ω2

P,x + Ω2
P,y + Ω2

P,z

)
+

1

2
γ
(
Ω2

S,x + Ω2
S,y + Ω2

S,z

)
(2.9.4)

and

Ltot,x = 0 = |Lorb| sin i+ ΩP,x + γΩS,x (2.9.5)

Ltot,y = 0 = ΩP,y + γΩS,y

Ltot,z = |Ltot| = |Lorb| cos i+ ΩP,z + γΩS,z,

where q is the ratio of the masses q = MS/MP and γ is the ratio of the moments of

inertia γ = ISMSR
2
S/IPMPR

2
P . Equations (2.9.5) now yield:

0 =
q

a
+ λx|Lorb| sin i+ λz|Lorb| cos i (2.9.6)

0 =
e

1− e2
|Lorb| (λx sin i+ λz cos i)

0 =λx cos i− λz sin i

0 =ΩP,i + λi (i = x, y, z)

0 =ΩS,i + λi (i = x, y, z).



102

The conditions above are met when:

ΩP,z =n (2.9.7)

ΩS,z =n

e =0

i =0

ΩP,x =0

ΩP,y =0

ΩS,x =0

ΩS,y =0,

where n =
√

1+q
a3

is the orbital revolution rate.

Therefore, the system is in equilibrium when the orbit is circular, all rotation

vectors are parallel to each other and all rotation rates are equal (ΩP,z = ΩS,z = n).

This is called a double synchronous state state.

The total angular momentum Ltot,doub of a system in double synchronous state is

Ltot,doub =
q

(1 + q)1/3
n−1/3 + (1 + γ)n. (2.9.8)

Figure 2.14 shows the possible Ltot,doub-values with respect to n. A double syn-

chronous equilibrium state is only possible if Ltot,doub is greater than the critical an-

gular momentum Ltot,crit. Ltot,crit can be found with (2.9.8) by solving
dLtot,doub

dn
= 0

for n. In modified units of time, mass and length this yields:

Ltot,crit = 4

[
1

27
(1 + γ)

q3

1 + q

]1/4
(2.9.9)

or

Ltot,crit = 4

[
G2

27

(
IPMPR

2
P + ISMSR

2
S

) M3
PM

3
S

MP +MS

]1/4
(2.9.10)
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in SI-units.

For Ltot = Ltot,crit, the following holds for the individual components of the total

angular momentum:

Lorb,crit =3(1 + γ)ncrit (2.9.11)

Lrot,crit =ΩP + γΩS = (1 + γ)ncrit,

with ncrit:

ncrit =
1

33/4

(
(1 + γ)3

√
1 + q

q

)−3/4

. (2.9.12)

In other words, a stable double synchronous state only exists if the orbital angu-

lar momentum is at least three times larger than the sum of the angular momenta

contained in the rotation of the two individual bodies. Therefore, Lorb has to exceed

the following critical value to allow for a stable double synchronous rotation state:

Lorb > Lorb,crit = 3 (1 + γ)ncrit (2.9.13)

in modified units and

Lorb > Lorb,crit = 3
(
IPMPR

2
P + ISMSR

2
S

)
ncrit (2.9.14)

in SI-units.

As can be seen in Figure 2.14, there exist two possible states where the rotation

rates can be synchronized if Ltot > Ltot,crit. But only the state with the wider orbit i.e.

the smaller n is stable, because here the total energy is minimal as well, whereas for

the orbit with the larger n, the total energy is maximal. For n = ncrit only one solution

exists with Ltot = Ltot,crit, which is unstable because in that case Lorb = Lorb,crit, as

well. And it was found previously that only orbits with Lorb > Lorb,crit can establish

a stable double synchronous state.
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Figure 2.14: Total angular momentum of a binary system in double synchronous
rotation Ltot,doub versus orbital revolution rate n (Hut, 1980). For n > ncrit, two
double synchronous states exist. Arrows show the direction of decreasing total energy.
The stability of a given double synchronous state is determined by the total energy:
Stability is only ensured if the total energy is minimal as well. For n = ncrit only
one solution with Ltot,doub = Lcrit exists. For Ltot,doub < Lcrit, no double synchronous
state can be achieved.
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2.10 Evolution of the rotation of main sequence

stars

To investigate tidal interactions between close-in extrasolar planets and their host

stars, the evolution of the stellar rotation of main sequence stars needs to be included.

Indeed, Barnes (2001) found that rotation rates of the host stars of extrasolar planets

apparently are indistinguishable from a sample of near-by field stars. This observation

will later help to constrain the strength of tidal friction acting on the planet’s orbit

as well as the star’s rotation.

In general, the change in stellar angular momentum is:

dJ

dt

1

J
=

dΩ∗

dt

1

Ω∗
+

dC∗

dt

1

C∗
, (2.10.1)

where J = C∗Ω∗ is the angular momentum. Ω∗ is the stellar rotation rate and C∗

is the moment of inertia of the star.

The second term on the right hand side of the equation, representing the change

in the moment of inertia, is important for a pre main sequence (PMS) star that is

still in process of formation and contraction. Figure 2.15 shows the evolution of the

stellar radius and moment of inertia in the pre-main sequence phase.
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Figure 2.15: Evolution of the stellar radius, radius of gyration I (=moment of inertia
C∗ in the notation used in this work) for 0.5, 0.8 and 1MSun stars (Bouvier et al.,
1997).
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The star enters the main sequence as a Zero age main sequence (ZAMS) star

(Bouvier et al., 1997) at an age of about 60 − 100 million years. After that, the

internal structure is settled and dC∗/ dt ≃ 0 can be assumed. Only the first term on

the right-hand side of the equation remains. In this work, main sequence stars are

investigated therefore an age of 60 million years is selected as the starting point of

the simulations.

Older main sequence stars, including the Sun, rotate much slower than younger

stars that have just entered the main sequence. Therefore, although the stellar struc-

ture remains more or less the same over the course of billions of years and although

stellar mass loss is negligible, something else must act on the star to reduce angular

momentum.

In the 60s and 70s, remarkable progress was made to understand this phenomenon.

Weber and Davis (1967) explain the underlying mechanism: Ionized material, the

solar wind, is driven away from the Sun by thermal pressure. As the solar wind

travels outward, it is forced into corotation with the Sun by a torque arising due

to magnetic hydrodynamic (MHD) coupling of the solar wind with the roots of the

magnetic field lines on the rotating solar surface. Effective corotation is established

within the Alfven radius ra. The torque acting on the solar wind generates magnetic

stress which in turn results in an equal torque acting on the Sun and decelerates the

solar rotation. This process is called ’magnetic braking’. Weber and Davis (1967)

describe the angular momentum loss due to magnetic braking as:

dJSun
dt

=
2

3
ΩSunr

2
a

dMSun

dt
= −JSun

τ
, (2.10.2)

where JSun is the angular momentum of the Sun, ΩSun is the solar rotation rate
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and τ is the characteristic time, which is about τ = 7 × 109 yrs for the Sun. The

Alfvén radius ra describes the distance at which the stellar wind is no longer able to

magnetically couple to the stellar surface. This coupling is, however, a prerequisite

for angular momentum transfer from the star to the stellar wind. The Alfven radius

depends on the properties of the stellar wind and may lie between 15 to 50 solar radii

for the Sun according to Weber and Davis (1967).

Skumanich (1972) uses a phenomenological approach and derives a scaling law for

angular momentum loss of main sequence stars by comparing the rotation rates of

several stars at different ages (Figure 2.16):

Ω∗ ∝ t−0.5, (2.10.3)

where Ω∗ is the stellar rotation rate and t is the star’s age. Indeed, Figure 2.16

shows that not only the rotation rate represented by the rotation velocity

v∗ = Ω∗ · R∗ follows the t−0.5 scaling law, but also the lithium abundance and Ca+

emission luminosity. Interestingly, Figure 2.16 also shows that the Lithium abundance

of the Sun (age 4.5 Gyrs) is anomaly low.
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Figure 2.16: Ca+ emission luminosity, rotation velocity and lithium abundance with
age. Shown as an example are the properties of stars in the Pleidaes (0.04 Gyrs),
Ursa Major (0.15 Gyrs), the Hyades Cluster (0.4 Gyrs) and the Sun (4.5 Gyrs). In
1972 the age estimate of the Hyades Cluster was controversial. Other age estimates
would have resulted in a shift of the Pleiades data points along the x-axis as indicated
by the arrows (Skumanich, 1972).



110

In this work, a description of stellar angular momentum evolution due to magnetic

braking is used based on the work of Bouvier et al. (1997). This model is not only

applicable to the Sun, like the model of Weber and Davis (1967), but for any sun-

like star in the mass range 0.5MSun − 1.1MSun. Furthermore, it is much better

parameterized than the description of Skumanich (1972) which gives a rudimentary

power law connecting stellar rotation and age.

The angular momentum loss by magnetic braking alone is modeled by:

dJ

dt
=−KΩ1+4N/3

∗

(
R∗

RSun

)2−N (
M∗

MSun

)−N/3

for Ω∗ < ωsat (2.10.4)

dJ

dt
=−KΩ∗ω

2
sat

(
R∗

RSun

)0.5(
M∗

MSun

)−0.5

for Ω∗ ≥ ωsat,

where K = 2.7× 1040Nms is a scaling factor, phenomenologically derived by Bouvier

et al. (1997) from the rotation rates of star clusters of different age, R∗ and M∗ are

the stellar radius and mass, RSun and MSun are the solar radius and mass, and ωsat

is a saturation rotation rate derived by Bouvier et al. (1997). ωsat equals 3, 8, and

14ΩSun for 0.5, 0.8, and 1.0MSun stars, respectively, where ΩSun = 2.9× 10−6 1/s is

the current solar rotation rate. This magnetic saturation accounts for the observation

that the surface magnetic field of a star, which drives the angular momentum loss,

increases with the angular velocity Ω∗ but only up to Ω∗ ≈ 10ΩSun (Saar, 1996). N

is a magnetic parameter accounting for the geometry of the magnetic field. Bouvier

et al. (1997) choose N = 1.5 to represent a field that is more radial than dipolar. This

allows for a mixture of closed and open field lines, the latter allow the stellar angular

momentum to be removed from the system by the ionized stellar wind (Barnes, 2003).

Interestingly enough, the Bouvier et al. (1997) model is an improvement of the

relatively sketchy Skumanich (1972) relation. The dJ
dt

∝ Ω3
∗-dependency is equivalent
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to Ω∗(t) ∝
√
t as postulated by Skumanich (1972) (see Barnes (2003) for the proof).

It should be noted that for the model by Weber and Davis (1967) as well as for the

model by Bouvier et al. (1997), the star is assumed to be a solid-body rotator. Indeed,

this basic assumption is also used in this work for the modeling of the stellar rotation

evolution due to tidal friction. That Bouvier et al. (1997) require a solid-body rotation

can be interpreted physically in the following way: Although the angular momentum

loss is mainly driven by the coupling of the outer convective envelope with the stellar

winds, the rotation of the radiative core is slowed down as well. This requires strong

coupling of the radiation core with the convection zone. Barnes (2003) suggests the

magnetic field of the star as the origin of this coupling.

The efficiency of magnetic braking is, however, only firmly established for stars

with masses M∗ < 1.1MSun, for G, K and M main-sequence stars. In the past years,

many planets have been found around F main sequence stars with higher masses.

Indeed, this work will model the stellar evolution of several F-stars under tidal friction.

Barnes (2003) gives a good overview of the uncertainties in magnetic braking:

Whereas rotational spin down with increasing age is well established for G, K and M

stars, at least some high mass stars beyond late F spectral type stars (B − V < 0.5)

do not spin down at all with increasing age (Figure 2.17). Schatzman (1962) suggests

that only stars with deep convective envelops can loose angular momentum due to

magnetic braking. Indeed, the observational data gathered by Barnes (2003) show

that lower mass stars with very deep convection zones spin down faster than higher

mass stars with shallower convection zones.

F stars (B − V ≈ 0.5 − 1) seem to lie in a transition region. Their spin-down

rate is reduced compared to lower mass stars, but at least some F-stars lose angular



112

Figure 2.17: Color-period diagrams (B − V versus rotation period, on a linear scale)
for a series of open clusters and Mount Wilson stars with different ages. Note the
change in scale for the old Mount Wilson stars. The higher B − V , the redder the
star, the less hot the stellar surface and the lower the mass of the star. On the other
hand, the smaller B− V , the bluer the star, the hotter the stellar surface, the higher
the mass of the star (Barnes, 2003).

momentum over the course of billion of years. According to Barnes (2003), this

’failure’ in magnetic braking can be explained by a different stellar magnetic field

configuration. These stars do not have global but small-scale magnetic fields that are

no longer able to couple the convection zone to the inner radiative core efficiently.

In addition, the magnetic coupling of the convective zone to the outer region and

therefore to the stellar wind is reduced as well. This outer coupling, however, is the

reason for the angular momentum loss, and, therefore, reduced coupling leads to a



113

reduced rate of angular momentum depletion.

In subsequent Chapters (6, 7 and 8), this uncertainty in angular momentum loss

and its effect on the long-term evolution of planetary systems due to tidal friction is

investigated in more detail. Indeed, these investigations may even shed some light on

the strength of angular momentum loss in F-stars.

2.11 Moment of Inertia

The evolution of stellar angular momentum due to magnetic braking was described

in terms of dJ
dt

in the previous section, where J = C∗Ω∗ is the angular momentum.

Therefore, to model the stellar rotation evolution, C∗ is needed.

In general the moment of inertia C is:

C =
N∑
i=1

mir
2
i (2.11.1)

for a body that consists of N mass elements mi at distance ri from the rotation axis.

In this work, the stellar rotation axis is assumed to be perpendicular to the orbital

plane.

In planetary science, it is common usage to divide C by MR2, where M is the

total mass and R is the mean radius of the planetary body. The quantity I = C
MR2 is

the normalized moment of inertia. Note that many astronomers call the normalized

moment of inertia ’radius of gyration’.

Table 2.1 lists some normalized moments of inertia I = C
MR2 for some ideal bodies

and Table 2.2 gives normalized moment of inertia for some Solar System objects

Weissman et al. (1999)3.

3Values not found there were taken from NASA’s planetary fact sheet:
http://nssdc.gsfc.nasa.gov/planetary/factsheet/.
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I
solid ring of radius R and mass M 1
hollow sphere of radius R and mass M 2/3
homogenous sphere of radius R and mass M 2/5
point mass concentrated in center of mass 0

Table 2.1: Normalized moment of inertia for some ideal bodies

I
Moon 0.393
Mars 0.365
Earth 0.3315
Neptune 0.29
Jupiter 0.26
Uranus 0.23
Saturn 0.20

Table 2.2: Normalized moment of inertia for some solar system bodies

As can be seen, by comparing the normalized moments of inertia I in Table 2.2

with the value for a homogenous sphere 0.4 and a point mass 0, the normalized

moment of inertia indicates how the mass elements are distributed with respect to

the rotation axis. Mars and Earth have I smaller than 0.4, which indicates that these

bodies have a core of dense material (iron and nickel) and are covered by lighter

silicates. The gas giants, Jupiter, Saturn, Uranus, and Neptune have even smaller

normalized moments of inertia. Their masses are even more concentrated in the

core whereas their deep atmosphere is composed of light materials like helium and

hydrogen.

The normalized moment of inertia of the Sun is derived by using the values M(r)

and r listed in Figure 2.184 provided by Dziembowski et al. (1994) and by applying

equation (2.11.1). This yields ISun = 0.074, consistent with the value used by other

4Available online at: http://gong.nso.edu/science/models/goode.html
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authors. Rasio et al. (1996), for example, use I∗ = 0.08 for sun-like stars. In the

following, I∗ = 0.074 will be used for all stars investigated in this work (Pätzold

et al., 2004).

Figure 2.18: The solar seismic model taken from Dziembowski et al. (1994). r is the
radius from the center of the Sun, u is the square of isothermal speed of sound at
radius r, ρ is the density at radius r, P is the pressure and M(r) is the integrated
mass up to r.

2.12 The Roche limit

As was already suggested in Section 2.8, some extrasolar planets may migrate towards

their host star due to tidal friction. On their way they may meet the ’Roche limit’,

which is the distance between a small and a large body where the tidal force exerted

by the large body is greater than the cohesive forces of the small body. Ultimately,
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it is torn apart.

As a first approximation, the Roche limit can be calculated by regarding a test

mass δm at the surface of a small body of mass MS and radius RS facing directly the

larger body of mass ML and radius RL at distance d, where d is measured between

the two centers of masses. The following gravitational force is attracting the mass

element δm:

FG =
GδmMS

R2
S

. (2.12.1)

The following tidal force is pulling δm toward the large body:

Ftide = G
2MLδmRS

d3
. (2.12.2)

Ftide is derived from (2.3.7) for the special case r = RS and Ψ = 0.

In addition, δm experiences a centrifugal force due to the rotation of the small

body. This force is directed away from the center of mass of the small body:

FC = δmΩ2RS. (2.12.3)

If the sum of Ftide + FC exceeds the gravitational force FG, δm breaks away from

the small body.

Consequently, the limit of stability is derived by calculating the distance at which

the following equation holds:

Ftide + FC = FG. (2.12.4)

In such a situation, where the small body is close to being tidally disrupted, its

spin-rate Ω is tidally locked with the revolution rate n (This will be shown in a latter

chapter 3.2). The revolution rate is connected with the sum of the masses ML +MS

and the distance d between the centers of masses via Kepler’s third law:

G(ML +MS)/a
3
Roche ≈ GML/a

3
Roche = n2, (2.12.5)
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that can be inserted into equation (2.12.3). Assuming Ω = n, inserting (2.12.1) into

(2.12.4), solving for d and setting d = aRoche yields the Roche limit:

d = aRoche = RS

(
3
ML

MS

)1/3

. (2.12.6)

Assuming that both bodies are homogenous spheres, the masses in the equation above

can be substituted with ML = 4πρL/R
3
L and MS = 4πρS/R

3
S, where ρL and ρS are

the densities of the large and small body, respectively:

aRoche,spher . = RL

(
3
ρL
ρS

)1/3

. (2.12.7)

In the Solar System, the mean densities of Jupiter and the Sun are similar enough

that the following approximation may be useful if the true density of a gas giant

planet is not known:

aRoche,spher .,EGP = 31/3
(
ρ∗
ρP

)1/3

R∗

≈ 1.44R∗, (2.12.8)

whereR∗ and ρ∗ are the stellar radius and density. The density of Jupiter is 1300kg/m3

which is 0.94 times the solar density (1408kg/m3). The third root of the ratio of the

solar over the jovian mean density is 1.02. The Roche limit aRoche,spher. is, of course,

only a rough estimate without considering any elastic forces and deformation due to

tides and rotation.

Chandrasekhar (1987) uses a more detailed approach by calculating the Roche

limit of a tidally locked prolate spheroid in hydrostatic equilibrium:

aRoche,hydro. ≈ 2.44R∗

(
ρ∗
ρP

)1/3

. (2.12.9)



118

Following the argumentation above, it may be assumed
(

ρ∗
ρP

)1/3
≈ 1 for extrasolar

gas giant planets (EGP), and the following approximation may be used:

aRoche,hydro.,EGP ≈ 2.44R∗. (2.12.10)

The region between aRoche,hydro. and aRoche,spher . is called the ’Roche zone’. In the

Solar System, the planetary rings are found in the respective Roche zones of the main

body (Murray and Dermott, 1999). These are remnants of satellites that were tidally

disrupted.

Therefore, it may be safe to assume that an extrasolar planet entering this zone

will be destroyed. It will be shown in this work that the semi major axes of several

extrasolar planets may decrease so fast within the Roche zone that no qualitative

difference is found if the planet is assumed to be destroyed at aRoche,hydro or a little

later at aRoche,spher ..



Chapter 3

Critical examination of
assumptions and approximations

At this point, it is worthwhile to check several key assumptions that are the basis of

the tidal friction model of Murray and Dermott (1999) presented in Section 2.6 that

will predominantly be used in this work.

3.1 The constant Q∗-assumption

In Section 2.5, the quality factor Q was introduced and set into relation with the tidal

lag angle ϵ to be 2ϵ = Q−1 (Eq. 2.5.10). ϵ is the angle between (a) the line connecting

the centers of mass of the star and its planet, and (b) the line connecting the center of

mass of the star and the center of the tidal bulge on the star raised by the tidal force

of the planet. The tidal bulge is displaced by ϵ because the star does not instantly

change its form to accommodate the tidal potential and the subsequent change of the

internal gravity potential. The deformation takes a tidal lag time τ (Section 2.7). As

already shown (Eq. 2.7.2), the following relation connects ϵ and τ :

ϵ = (Ω∗ − n) · τ.

119
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In Section 2.8 and in the literature using the formalism described in Section 2.5 and

Section 2.6, two basic assumptions are made about the stellar dissipation factor Q∗:

The system is assumed to be independent of resonance states. This is the weak

friction assumption. Furthermore, Q∗ is usually assumed to be constant.

3.1.1 Can Q∗ be regarded as constant even though the system
may meet resonant states?

As was shown in Section 2.5, in general Q is defined as

Q−1 =
ω/τd

ω2
0 − ω2

.

If ω → ω0, then Q−1 → ∞ or Q → 0. It can be argued, however, that the time

average ⟨Q∗⟩ over billion of years is considered throughout this work. Therefore, the

variation of Q∗ when the system passes through resonant states is contained within

this time averaged value.

The weak friction assumption is justified by Hut (1981) who investigates the tidal

evolution of binary stars: ”A detailed description of the evolution in time of the orbital

elements caused by tidal effects cannot be given in general form. One of the major

complications arises from the possibility that the stars can be forced to oscillate in a

variety of eigen modes.”

Hut (1981) further argues: ”In order to get a general qualitative picture of tidal

evolution, one can investigate a simple model in which only equilibrium tides are

described, with very small deviations in position and amplitude with respect to equipo-

tential surfaces. Dynamical tides, where the stars oscillate, are then neglected.”

The simple tidal evolution model is still frequently used in general applications

seeking answers over long timescales. For these types of analysis, that are also used
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Figure 3.1: Left panel: Planetary revolution period versus semi major axis of a close-
in extrasolar Jupiter analogue around a Sun-like star.
Right panel: Planetary revolution rate versus semi major axis of a close-in extrasolar
Jupiter analogue around a Sun-like star.

in this work, simple models are parsimonious in providing sufficiently accurate pre-

dictions without the requirement to specify a high number of parameters.

Even if the model is found to be incorrect in some special cases, this failure in

itself would also be a valuable result. In such a case, the tidal evolution of the system

is strongly affected by dynamical tides (Zahn, 1977).

3.1.2 Can Q∗ be regarded as constant although it is defined
as frequency dependent?

As a repetition, the definition of Q∗ for the weak friction assumption is given (Equa-

tion 2.5.7):

Q =
|ω2

0 − ω2|
ω/τd

(3.1.1)

where ω = 2(Ω∗ − n) is the tidal frequency and τd is the damping time scale.

With the equation given above, the assumption that Q∗ = const can be justified

for close-in extrasolar planets with semi major axes smaller than 0.05 AU by the

following arguments:
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• For a < 0.05 AU, the planetary revolution rate n changes by one to two orders

of magnitude at most when the planet migrates toward the star (Figure 3.1).

• In many cases, the main sequence star in an extrasolar system rotates much

slower (typically with a rotation period between 10-100 days, see Section 2.10,

Figure 2.17) than the close-in planet revolves around the star (typically with a

revolution period of a few days, Figure 3.1). Therefore Ω∗ − n ≈ −n. In this

case, ȧ < 0 (according to equation 2.6.17): The planet will migrate toward the

star.

• When comparing different possible values for the stellar dissipation factor Q∗

(Section 2.8), the possible values Q∗ given by different energy dissipation models

differ by several orders of magnitude. In the presence of such large uncertainties

in the mechanism of energy dissipation within the star, a possible variation of

Q∗, due to the underlying frequency dependency that is one to two orders of

magnitudes, can safely be neglected.

3.1.3 What happens with Q∗ when the system approaches
double synchronicity?

For some exoplanetary systems discussed in this work, Ω∗ is similar to n. Later, in

Section 3.2, it will be shown that, in addition, the planetary rotation is probably

synchronized with the planet’s revolution, as well. Therefore, such systems may be

in a double synchronous state.

When the planetary system approaches this state, it follows from equation 2.5.7

that in the weak friction assumption, Q−1
∗ → 0 or Q∗ → ∞. This strange result can

be explained by considering the problem in the reference system centered on the star



123

and rotating with it. The tidal wave on the star forms because mass elements inside

the star rearrange to accommodate the tidal potential of the planet and the subse-

quent change of the internal gravity potential of the star due to the tidal deformation.

Because the tidal bulge follows the planet as it revolves around the star, from the

viewpoint of the star, the tidal wave ’plows’ through the star with the effective fre-

quency ω = 2(Ω∗−n). This process generates friction, and energy is dissipated within

the star. More precisely, this can be envisioned at first order as a drag process within

a plasma environment. The force acting on a propagating wave is typically either

proportional to the velocity of the tidal wave v in the rotating frame or proportional

to the square of said velocity v2.

When ω = 0 and the orbit is circular, the tidal wave is stationary, no energy

is dissipated within the star (∆E over one cycle in the quotient of the definition of

Q (eq. 2.5.6) is zero), and no tidal friction takes place. Indeed, when looking at

equations (2.6.17) and (2.6.18), the terms are zero if Ω∗ = n. If the requirements

described in Section 2.9 are met, the system should remain in this equilibrium state

unless external forces disrupt the equilibrium state.

In this work, some possible double synchronous systems are investigated for which

Ω∗ − n is already very small. In this context, the constant Q∗ assumption may be

used again but for a different frequency regime than the non-synchronous cases for

which the tidal frequency is |ω| = 2|Ω∗ − n| ≈ |2n| ≈ 10−4 − 10−3s−1. In the double

synchronous state |ω| = 2|Ω∗ − n| ≈ 0.

Other systems will be investigated evolving from a state with Ω∗ > n to Ω∗ ≪

n, crossing the Ω∗ = n region. For these, the Q∗ = const assumption is at least

questionable. It will be shown, however, that the constant Q∗ may still be used in
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this cases with some caveats.

It may be useful in the future to compare tidal friction models using a constant

stellar dissipation function Q∗ with tidal friction models using a constant tidal lag

time τ∗.

3.1.4 Switching from the constant Q- to the constant τ-formalism.

The derivation of the model described by Hut (1981) (Section 2.7) is identical to the

one described by Murray and Dermott (1999) (Section 2.6) if e = 0. The model by

Hut (1981) is, however, more general as it also describes tidal friction for bodies on

orbits with large eccentricities.

Apart from this, there is another major point where the formalisms deviate. As the

system evolves over time, the model of Hut (1981) keeps the tidal lag time τ∗ constant,

whereas the model described byMurray and Dermott (1999) regards the tidal lag angle

as ϵ or Q∗ constant. Both quantities are connected via 2ϵ = Q−1 = 2|Ω∗ − n|τ∗. As

long as the tidal frequency remains more or less constant during the whole evolution,

both models are equivalent.

Although the constant Q assumption is used in this work, one may easily switch

to constant τ -model by using well-known examples as ’calibration points’.

Switch from Q∗ to τ∗

The tidal dissipation factor Q∗
k2,∗

is constrained for the OGLE-TR-56-system to be

Q∗
k2,∗

≥ 2× 107 (Carone and Pätzold, 2007) and with k2,∗ = 0.018 this corresponds to

Q∗ ≥ 4 × 105. The following parameters describe the OGLE-TR-56-system: M∗ =

1.17MSun, MPl = 1.3MJup, a = 0.0225 AU, and the stellar rotation period is P∗ =

19 days.
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Consequently,

Ω∗ − n =
2π

P∗
−
√
G(M∗ +MPl)

a3
(3.1.2)

=
(
3.8× 10−6 − 6.38× 10−5

)
s−1

= −6× 10−5s−1.

From this, τ∗ can be calculated by:

τ∗ =
1

2|Ω∗ − n|Q∗
≈ 8333

Q∗
s. (3.1.3)

Consequently, the lower limit of Q∗ = 4 × 105 corresponds to a tidal lag time

τ∗ ≈ 2× 10−2 s. In the following, the equation above will be used to switch from Q∗

to τ∗
1.

Switch from QP to τP for jovian planets

The following ’calibration point’ can be used for the switch from the constant τPl to

a constant QPl formalism for jovian planets: The Jupiter-Io-example. Lainey et al.

(2009) derive QP

k2,P
= 105 for Jupiter and, with k2,P l = 0.5, the tidal dissipation factor

is QPl = 5 × 104. The rotation period of Jupiter is 9.925 hours, and the revolution

period of Io is 42.5 hours.

Consequently,

ΩPl − n =
(
1.8× 10−4 − 4× 10−5

)
s−1 = 1.4× 10−4s−1. (3.1.4)

The tidal lag time τPl is:

τPl =
1

QPl2|ΩPl − n|
≈ 3600

QPl

s. (3.1.5)

1As a sidenote, the OGLE-TR-56 example illustrates that Ω∗ − n ≈ −n is indeed justified.
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τPl and τ∗ differ only by a constant factor of about 2 because |Ω∗−n| and |ΩPl−n|

only differ by that factor. It follows that Jupiter, which experiences tides raised by Io,

as well as a main sequence star, which experiences tides raised by a close-in planet,

represent tidally oscillation systems with driving frequencies comparable in order.

Therefore, the Q-value derived in both cases and the underlying energy dissipation

mechanisms can be compared.

3.2 Is the planetary rotation tidally locked?

Throughout this work it is assumed that the planetary rotation is synchronized with

its revolution rate and that the planets therefore rotate relatively slow with rotation

periods of a few days. In other words, close-in extrasolar planets with semi major

axes a smaller than 0.1 AU are considered to be in the so-called tidally locked state.

This assumption can be tested by evaluating τsynchr, the time it takes for the

planetary rotation to become synchronized with its revolution. τsynchr is calculated

as (Murray and Dermott, 1999) for circular orbits (e = 0):

τsynchr =
|n− ΩPl|

3
2

M∗
MPl

(
RPl

a

)3 GM∗
a3

· IPl
QPl

k2,P
, (3.2.1)

where n is the planetary revolution rate, ΩPl is the primordial rotation rate of the

planet, IPl is the normalized moment of inertia of the planet, QPl is the planetary

dissipation constant and k2,P is the Love number of second order. Most of the stel-

lar and planetary parameters are determined by the combination of the transit and

radial velocity observations. Some planetary characteristics are unknown or poorly

constrained but can be estimated within reasonable ranges, as will be shown in the

following.
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The normalized moment of inertia IPl is the mass distribution in the interior of a

body with respect to the rotation axis. If the body is differentiated (a safe assumption

for bodies larger than 1000 km in diameter), the mass is concentrated in the core and

IPl < 0.4. The following IPl values are used in this work: IPl = 0.35 for terrestrial

planets, IPl = 0.25 for gas giants and IPl = 0.15 for Brown Dwarfs (Leconte et al.

(2011), see also Section 2.11).

The ratio of the planetary dissipation constant and the planetary Love number

QPl

k2,P l
is set to the corresponding values known from our Solar System. Terrestrial

planets have values in the order of 10 − 1000 and gas giants values in the order of

104 − 105 (Yoder, 1995; Mayor and Queloz, 1995; Goldreich and Soter, 1966; Lainey

et al., 2009). Because τsynchr is proportional to QPl

k2,P l
, the upper limits of these QPl

k2,P l
-

values are used to calculate the upper limit of the spin-orbit synchronization times.

The values are: QPl

k2,P l terrestrial
= 1000 and QPl

k2,P l gas giants
= 105 and QPl

k2,P l brown dwarfs
= 106.

In fact, the value used for brown dwarfs is one order of magnitude higher than the

lower limit for QPl

k2,P l brown dwarfs
derived by Heller et al. (2010) (See Section 2.8). The

derived upper limit for the synchronization time scale should give a safety margin

under the assumption that the energy dissipation mechanism within the brown dwarfs

discussed in this work are comparable with gas giants.

The primordial planetary rotation rate ΩPl before synchronization is not known,

but to account for this uncertainty τsynchr is calculated for a fast rotating (rotation

period of 10 hours) and a slowly rotating (rotation period of 10 days) planet.

With these assumptions, τsynchr is calculated for the CoRoT planets. τsnychr-

values for fast and slow primordial planetary rotation are listed in Table 3.1 and

plotted in Figure 3.2. As can be seen, the time required for a planet to end in a
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tidally locked state is less than the systems age except for two cases: (a) CoRoT-9b,

the CoRoT-planet with the greatest semi major axis a = 0.407 AU and therefore the

CoRoT-planet that experiences the weakest stellar tidal forces, and (b) CoRoT-20b,

the youngest CoRoT-planet of an age of about 0.1 billion years that may not yet be

tidally locked.

Still this example shows that, unless the system is very young, planets with semi

major axes smaller than 0.1 AU can safely be assumed to be tidally locked. This

assumption is further supported by at least two observational evidences:

System τsynchr,slow rotator τsynchr,fast rotator IPl
QPl

k2,P l

[106 years] [106 years]
CoRoT-1 4× 10−4 0.0013 0.2 105

CoRoT-2 0.02 0.0078 0.2 105

CoRoT-3 3 49 0.15 106

CoRoT-4 0.012 3 0.2 105

CoRoT-5 0.003 0.043 0.2 105

CoRoT-6 0.06 11.8 0.2 105

CoRoT-7 3× 10−5 3.5× 10−5 0.35 1000
CoRoT-8 0.05 1.7 0.2 105

CoRoT-9 2.3× 103 6.3× 104 0.2 105

CoRoT-10 1 95 0.2 105

CoRoT-11 0.007 0.058 0.2 105

CoRoT-12 0.0022 0.018 0.2 105

CoRoT-13 0.032 0.47 0.2 105

CoRoT-14 0.008 0.024 0.2 105

CoRoT-15 2.9 26 0.15 106

CoRoT-16 0.01 0.27 0.2 105

CoRoT-17 0.029 0.34 0.2 105

CoRoT-18 0.0037 0.016 0.2 105

CoRoT-19 0.006 0.082 0.2 105

CoRoT-20 0.17 53 0.2 105

CoRoT-21 0.0075 0.058 0.2 105

Table 3.1: Synchronization time scale τsynchr for the CoRoT-planets. A slow rotator
is a planet with an initial rotation period PPl = 10 days, a fast rotator is a planet
with an initial rotation period of PPl = 10 hours.
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Figure 3.2: Synchronization time scales τsynchr and the age of the CoRoT planets
versus their semi major axes. The black solid lines represent τsynchr calculated for a
slow (10 days) and a fast (10 hours) primordial planetary rotation. The grey lines
represent the system ages within the limit of uncertainties. The age of CoRoT-9b, a
planet orbiting its star beyond 0.4 AU, is represented by a dotted grey line. In this
case, the system age and the possible synchronization time scale overlap each other.

The planetary emissions of υ Andromeda b (Harrington et al., 2006) and of

HD 189733 (Knutson et al., 2007) in the infrared show day/night variations con-

sistent with tidally locked planets. Figure (3.3) shows the substellar hot spot on the

planet. The day side is constantly heated by the star, the heating being strongest

at the substellar point. In contrast, the night side, which always points away from

the star, attains less heat via wind transfer from the day side. If the tidal locking

assumption would not be valid, the planet would show a more uniform heat emission

due to stellar irradiation over the whole surface.
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Figure 3.3: Relative brightness in the infrared estimated for 12 longitudinal strips on
the surface of the planet HD 189733. Data are shown as a colour map (a) and in
graphical form (b) (Knutson et al., 2007).
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3.3 Energy and angular momentum in close-in ex-

trasolar planetary systems

It is useful to calculate the energies and angular momenta within a typical extraso-

lar system because these quantities ultimately determine the tidal evolution of the

system.

For this purpose, the following hypothetical test case is evaluated: An extrasolar

Jupiter analogue of mass MPl = 1MJup and radius RPl = 1RJup around a solar-like

star of mass and radiusM∗ = 1MSun, R∗ = 1RSun orbiting the star in a circular orbit

at semi major axis a = 0.02 AU is assumed.

The orbital energy is:

Eorbit = G
MPlM∗

2a
(3.3.1)

= 4.2× 1037J.

The stellar rotational energy is:

Erot,∗ =
1

2
I∗M∗R

2
∗Ω

2
∗ (3.3.2)

= 2.83× 1035J,

where Ω∗ is set to the rotation rate of the sun: Ω∗ = ΩSun = 2.9×10−6s−1 (Bouvier

et al., 1997) and the normalized moment of inertia is I∗ = 0.074 (see Section 2.11).

The planet’s rotational energy is:

Erot,P l =
1

2
IPlMPlR

2
PlΩ

2
Pl (3.3.3)

= 4.45× 1033J,

where the planet’s rotation rate is set to its revolution rate because spin-orbit synchro-

nization is expected: ΩPl = n =
√
G(M∗ +MPl)/a3 = 7× 10−5s−1. The normalized
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moment of inertia IPl of a gas giant is assumed: IPl = 0.2.

Therefore, the rotational energy stored within a close-in extrasolar planet is two

orders of magnitude smaller than the stellar rotational energy and four orders of

magnitude smaller than the orbital energy, respectively. This comparison also shows

that in general more dynamical energy is stored in the planetary orbit than in the

stellar rotation.

The comparison between angular momenta with the parameters as defined above

yields:

Lorb =
MPl ·M∗

MPl +M∗
a2n (3.3.4)

= 1.2× 1042Nms

Lrot,∗ = I∗M∗R
2
∗Ω∗ (3.3.5)

= 2× 1041Nms

Lrot,P l = IPlMPlR
2
PlΩPl (3.3.6)

= 1.3× 1038Nms.

The amount of angular momentum in the planetary rotation is two orders of

magnitude smaller than the amount of angular momentum in the stellar rotation

and four orders of magnitude smaller than the orbital angular momentum. This

comparison also shows that the amount of angular momentum stored in the planetary

orbit exceeds the amount of stellar angular momentum by one order of magnitude.

Therefore, transfer of angular momentum from the planet’s orbit to the star needs to
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be treated with care. It cannot be readily neglected because it affects the evolution of

stellar rotation. Furthermore, it is justified to neglect the planet’s rotation about its

spin-axis when calculating the long-term dynamical evolution of the planetary system

due to tidal interactions between the planet and the star.

3.3.1 Possible pitfalls in the calculation of the Roche zone

The approximations (eq. 2.12.10) and (eq. 2.12.8) used in Section 2.12 to calculate

the Roche zone are used if the planet’s density is unknown. The equations, however,

are valid only if
(

ρ∗
ρPl

)1/3
≈ 1 which is true for Solar System gas giants and the Sun.

The calculation of the Roche limits with the true density derived from transiting

exoplanets, however, may shed light onto the limitations of these approximations.

The Roche limits aRoche,spher . and aRoche,hydro. are computed for some CoRoT plan-

ets for which the stellar and planet’s density are known and listed in Table 3.2. Their

parameters are listed in Section 1.4. As can be seen, for some systems the assump-

tion 3
√
ρPl ≈ 3

√
ρ∗ holds, but for many other systems it doesn’t. Figure 3.4 shows the

density of all transiting exoplanets in units of Jupiter density. For example, several

exoplanets have been found with average densities much smaller than the density of

Jupiter 2. Brown dwarfs (CoRoT-3b and CoRoT-15, for example), on the other hand,

don’t satisfy the 3
√
ρPl ≈ 3

√
ρ∗-assumption because they are much denser than Jupiter

planets. These objects lie in the transition region between the mass regimes of gas

giants and the smallest stars (see Section 1.1). An object in the ’brown Dwarf desert’

is approximately the size of Jupiter although it may contain up to eighty Jupiter

masses.

2The mechanism responsible for the inflation of some short-period extrasolar gas giants is still
disputed.
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Figure 3.4: Density of transiting exoplanets versus their mass.

If the planet is inflated, the extent of the Roche zone is underestimated. If the

companion is a brown dwarf or a terrestrial planet like CoRoT-7b, the extent of the

Roche zone is overestimated. This needs to be considered when using (eq. 2.12.10)

and (eq. 2.12.8).

As a side remark, it is interesting to note that the ’true’ Roche zone of Brown

Dwarfs lies within the star; see the derived Roche limits of CoRoT-3b and CoRoT-

15b (Table 3.2). This would mean that brown dwarfs can approach their stars and

be engulfed by them without being tidally disrupted during their approach.
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System aRoche,spher. aRoche,hydro ρ∗ ρPl (ρ∗/ρPl)
1/3

[R∗] [R∗] [ρSun] [ρJup]
CoRoT-1 1.86 3.19 0.70 0.32 1.27
CoRoT-2 1.54 2.63 1.32 1.08 1.05
CoRoT-3 0.37 0.63 0.36 21.65 0.25
CoRoT-4 1.70 2.91 0.73 0.44 1.16
CoRoT-5 2.15 3.67 0.59 0.18 1.46
CoRoT-6 1.15 1.96 0.98 1.92 0.78
CoRoT-7 0.90 1.54 1.65 6.73 0.61
CoRoT-8 1.68 2.86 1.93 1.22 1.14
CoRoT-9 1.68 2.88 1.19 0.75 1.15
CoRoT-10 1.20 2.05 1.81 3.10 0.82
CoRoT-11 1.22 2.08 0.49 0.82 0.83
CoRoT-12 1.94 3.31 0.77 0.32 1.32
CoRoT-13 1.18 2.01 1.06 1.94 0.80
CoRoT-14 0.82 1.41 1.13 6.04 0.56
CoRoT-15 0.30 0.51 0.42 46.40 0.21

Table 3.2: Comparison of Roche limit approximations



Chapter 4

Close-in extrasolar planets as
playground for tidal friction models

This work focuses on tidal friction due to tides raised by the planet on the star (stellar

tidal friction) and on the consequences for the exoplanet’s semi major axis and the

stellar rotation. As derived from Sections (2.6) and (2.7), massive exoplanets with

very short semi major axes are the most interesting in this context. It will be shown

that the planetary systems discovered by CoRoT provide an ideal playground for

investigating tidal evolution and to derive constraints on Q∗
k2,∗

.

4.1 The tidal stability maps for planets around

main sequence stars

In most cases, an extrasolar planet with semi major axis less than 0.1 AU revolves

faster about the star than the star rotates (Ω∗ < n). Therefore, tidal friction as a

result of the delay of the tidal bulge on the star leads to a decrease in the planet’s

semi major axis and consequently to the spin-up of the star. The planet may even

reach the Roche zone and may be destroyed there (Section 2.12). It is worthwhile

investigating which Q∗
k2,∗

is required for a planet to reach the Roche limit within the

136
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planetary system’s lifetime and how many planets may be destroyed due to tidal

friction.

The time τRoche it takes for a planet on a circular orbit to reach the Roche zone

due to tidal friction can be calculated by (Pätzold and Rauer, 2002):

τRoche =

1
13

[
a
13/2
Present − a

13/2
Roche

]
3k2,∗MPl

2Q∗M∗
R5

∗
√
GM∗

, (4.1.1)

where aPresent is the current semi major axis of the planet, aRoche is the Roche limit,

MPl is the planet’s mass, M∗ and R∗ are the stellar mass and radius, respectively, G

is the gravitational constant, Q∗ is the stellar tidal dissipation factor and k2,∗ is the

stellar Love number.

As was explained in Section 2.12, several estimates exist for the Roche limit. Here,

aRoche,hydro = 2.46R∗

(
ρ∗
ρPl

)1/3
, which defines the outer boundary of the ’Roche zone’,

is used for the calculation of τRoche.

Of all the parameters needed to calculate τRoche, the ratio of the stellar tidal

dissipation factor over Love number Q∗
k2,∗

is the least constrained. Indeed, estimates

of the stellar dissipation factor cover several orders of magnitude. In the following,

a Q∗
k2,∗

between 105 and 109 is assumed to cover the whole range of estimates of the

amount of tidal energy dissipated within a main sequence star (See Section 2.8.2).

τRoche is calculated here under the constant Q∗ assumption. As outlined in Sec-

tion 3.1.2, the validity of this assumption requires the following: The star rotates

much slower than the planet revolves around it (Ω∗ ≪ n) to satisfy the approxi-

mation (Ω∗ − n) ≈ −n, where 2(Ω∗ − n) is the tidal frequency. Furthermore, the

revolution rate n should remain approximately constant throughout the calculation.
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As was outlined in Section 3.1.2, n varies by one and a half order of magnitude be-

tween 0.02 and 0.15 AU which is acceptable given the large uncertainties of Q∗. The

time scale τRoche will now be investigated systematically for different ’model’ planets

placed in close proximity to the star.

At the center of these model planetary systems, a main sequence star of spectral

type K, G, and F is placed. For each spectral type, there exists a CoRoT exoplanet

host star (Table 1.2). One of these was selected as a representative of spectral type

K and F (Table 4.1). For spectral type G, the Sun was selected as a representative to

show that the investigation of tidal interactions in extrasolar planetary systems helps

to place our own Solar System in a greater context and to potentially learn something

about solar properties. If Q∗
k2,∗

is constrained for a solar-like star, this result is also

applicable to energy dissipation processes within our Sun.

Spectral
type

name Teff mass radius reference

[K] [MSun] [RSun]
K1V CoRoT-8 5080 0.88 0.77 Bordé et al. (2010)
G2V Sun 5780 1 1 Unsoeld and Baschek (2001)
F7V CoRoT-15 6350 1.32 1.46 Bouchy et al. (2011)

Table 4.1: The parameters of the central stars used for the calculation of the tidal
stability maps. Real stars were selected as representatives of K-, G- and F-spectral
type stars, respectively.

The following exoplanets are investigated exemplarily for each star: A high-

mass Brown Dwarf (HBD) like CoRoT-15b, a low-mass Brown Dwarf like CoRoT-3b

(LBD), a hot Jupiter (HJ) like CoRoT-1b, an extrasolar hot Neptune analogue planet

(HN), an extrasolar Super Earth like CoRoT-7b (SE), an extrasolar Earth analogue

planet (EE) and an extrasolar Mercury analogue planet (EM). See Table 4.2 for their

parameters.
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Exoplanet type name mass radius reference
[MJup] [RJup]

High mass
brown dwarf

CoRoT-15b 63 1.12 Bouchy et al. (2011)

low mass brown
dwarf

CoRoT-3b 21.66 1.01 Deleuil et al. (2008)

hot Jupiter CoRoT-1b 1.03 1.49 Barge et al. (2008)
hot Neptune Neptune 0.054 0.36 Unsoeld and Baschek

(2001)
Super Earth CoRoT-7b 0.023 0.15 Hatzes et al. (2011),

Bruntt et al. (2010)
Exo-Earth Earth 0.0032 0.092 Unsoeld and Baschek

(2001)
Exo-Mercury Mercury 1.74× 10−4 0.035 Unsoeld and Baschek

(2001)

Table 4.2: The parameters of the exoplanets placed around each star (Table 4.1) for
the calculation of the tidal stability map. A real planet was selected as a representative
for each exoplanet category.

Now τRoche is calculated for planets with semi major axis greater than aRoche,hydro

but within 0.15 AU and for Q∗
k2,∗

= 105−109. τRoche is compared with the total lifetime

of the star, the time for which the star remains on the main sequence. It is reasonable

to investigate if a planet will survive during that time.

For main sequence stars, the stellar lifetime can be calculated approximately by

(Prialnik, 2000):

T0 = 1010
(

M∗

MSun

)−2.8

years. (4.1.2)

With these assumptions, ’tidal stability maps’ can be calculated (Figures 4.1, 4.2,

and 4.3). They show unstable semi major axes for combinations of specific planets

and stars in dependence of Q∗
k2,∗

. Instability herein means that the planet may reach

the Roche zone within the remaining lifetime. Furthermore, athreshold is given for each

Q∗
k2,∗

= 105 − 109 that is the semi major axis where τRoche equals the total lifetime of
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the central star.

Planets within athreshold are the most interesting ’test cases’ for different stellar

tidal dissipation models as these systems should be affected by tidal friction on as-

tronomical time scales. As can be seen (Figures 4.1, 4.2, and 4.3), the more massive

the planet and also the more massive the host star, the further outwards extends

the region of orbital instability. In addition, when comparing the parameters of the

CoRoT planetary systems (Tables 1.3 and 1.2) with the tidal stability maps, it will

become apparent that several CoRoT planets lie in unstable regions.
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Figure 4.1: Tidal stability maps for different exoplanets around a K-star. From top to
bottom, from left to right: A high mass brown dwarf, a low mass brown dwarf, a hot
Jupiter, a Neptune, a Super-Earth, an Earth and a Mercury planet. The grey color
gives the time scale τRoche in log(109 years). The total lifetime of the star is indicated
as a white dashed line. The black lines are the isochrones of τRoche. The horizontal
and vertical dashed white lines indicate the stability limit athreshold for every Q∗

k2,∗
.
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Figure 4.2: Tidal stability maps for different exoplanets around a G-star. See also
Figure 4.1.
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Figure 4.3: Tidal stability maps for different exoplanets around an F-star. See also
Figure 4.1.
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4.1.1 CoRoT systems most strongly affected by tidal friction

It became apparent in the previous section that the majority of the orbits of the

majority of the CoRoT planets would be unstable under tidal friction for Q∗
k2,∗

= 105.

There are four clear cases that are stable for all assumed values of Q∗
k2,∗

= 105 − 109

because their semi major axes are greater than the respective athreshold: CoRoT-4b,-

6b,-8b, and -9b. CoRoT-16b lies barely below athreshold for Q∗
k2,∗

= 105. CoRoT-20b

and CoRoT-10b appear at first glance to be stable. Their orbits, however, are in

contrast to most other CoRoT planets very eccentric. Subsequent chapters will show

that these planets are sufficiently long in the unstable regions to be affected by tidal

friction.

Apart from the tidal stability maps, there are two other parameters that can be

used to identify systems strongly affected by tidal friction: the Doodson constant Do

and the tidal property factor PF .

The Doodson constant

The Doodson constant (see Doodson (1921) and Pätzold et al. (2004)) is defined as:

Do =
3

4

GMPl

a3
R2

∗. (4.1.3)

This is the amplitude of the tidal potential (equation 2.3.8) and is a direct measure

of the strength of the tidal force acting on the star 1. Figure 4.4 shows the Doodson

constant for tides raised by the CoRoT-planets on their stars. In comparison some

Doodson constants are given for the Solar System.

Compared to tidal forces in the Solar System (Earth-Moon, Sun-any planet), the

tidal forces between the CoRoT stars and planets are orders of magnitudes larger.

1The factor 3/4 arises to ensure that the amplitude of the angle dependent part of the tidal
potential, that is the Legendre polynomial of second order P2(cos θ), is scaled to unity.
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Figure 4.4: Doodson constants for tides raised on the star by CoRoT-1 to CoRoT-21b
and several Solar System bodies. M marks the Doodson constant for tides raised by
the Earth on the Moon, E denotes the Doodson constant for lunar tides raised on
Earth, J denotes tides raised by Jupiter on the Sun and Me denotes the Doodson
constant for tides raised by Mercury on the Sun.

CoRoT-planets are much closer to their stars than the planets in the Solar System.

Mercury, the innermost planet in the Solar System, orbits at a = 0.387 AU. In

addition, many CoRoT-planets are massive objects like gas giants and Brown Dwarfs.

In the Solar System, the gas giants orbit far away from the Sun. Jupiter, the innermost

gas giant, orbits at a = 5.2 AU. Within the CoRoT planetary systems, the following

planets stand out due to their large Doodson numbers: CoRoT-1b,-2b,-3b,-14b,-15b,-

18b, and -21b. In contrast to that, CoRoT-4b,-8b,-10b, and especially CoRoT-9b are

the CoRoT planets with the smallest Doodson constant. CoRoT-9b is the transiting

planet with the largest semi major axes found to date, therefore, the small Doodson

number comes as no surprise. CoRoT-4b was already identified by the stability maps

as a planetary system where planetary tides raised on the star have little consequences.

The Doodson constant of CoRoT-10b, on the other hand, may be misleading due to
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CoRoT-10b’s large orbital eccentricity and because the Doodson constant is only valid

for circular orbits.

The tidal property factor

The tidal property factor PF determines the secular orbital change (equation 2.6.19)

and is described in Pätzold and Rauer (2002):

PF =
MPl√
M∗

R5
∗. (4.1.4)

Figure 4.5: The tidal property factor for tides raised by the planets CoRoT-1b to
CoRoT-21b on their stars.

Figure 4.5 shows the property factor for tides raised by the CoRoT planets and

their stars. Four planets stand out: The brown dwarfs CoRoT-3b and CoRoT-15b

have by far the largest property factor and reflect the fact that the mass ratio between

the star and these companions is unusually high compared to other extrasolar planet

systems. Consequently, it comes as no surprise that the least massive CoRoT planet,

the Super Earth CoRoT-7b, has the lowest property factor. CoRoT-8b on the other
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hand has such a small property factor because it orbits the smallest CoRoT exoplanet

host star. CoRoT-8 is a K star with a radius of only 0.77RSun.

In short, planetary companions, that stand out due to their large tidal property

factor or Doodson constant or that lie in the unstable region of the tidal stability

map, are particularly worthwhile candidates for tidal interaction investigations. This

would be here: The brown dwarfs CoRoT-3b and CoRoT-15b, the jovian exoplanets

CoRoT-1b,-2b,-3b, -5b,-11b,-13b,-14b,-18b,-19b, and -21b with semi major axis be-

tween 0.0254 AU and 0.057 AU. The tidal evolution of the Super Earth CoRoT-7b

at a = 0.0172 AU is worthwhile investigating, as well. The tidal stability maps show

that the planet lies in an unstable region around its star making it a worthwhile

candidate for tidal interaction investigations even though it has the smallest prop-

erty factor and a comparatively small Doodson constant. This example shows that,

strictly speaking, a comparison of Doodson constants and property factors is better

reserved for planets of the same class. Otherwise one may incorrectly judge a Super

Earth to be an unsuited object for tidal interaction investigations when it is directly

compared with much more massive Brown Dwarfs.

CoRoT-4b,-6b,-8b,and -9b have large semi major axes a = 0.063 − 0.407 AU,

which lie in the stable regions of the tidal stability and have small tidal property

factors and Doodson constants. For these systems, tidal friction is expected to play

a minor role in their dynamical evolution.

When comparing the stellar rotation periods with the revolution periods (Ta-

ble 1.4), many CoRoT systems are identified for which the stellar rotation is slower

than the planetary revolution which may lead to the planet’s migration towards the

star, as expected. For other systems, however, this assumption does not hold: In
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the CoRoT-6, CoRoT-11 and CoRoT-9 system, the stellar rotation is faster than the

planet’s revolution, consequently, the planet may migrate away from the star. Fur-

thermore, the stellar rotation and planetary revolution appears to be very similar

in the CoRoT-3, CoRoT-4, CoRoT-15 system, and maybe the CoRoT-20 system,

which marks them as potential double synchronous states. Finally, four systems are

identified with substantial orbital eccentricity e = 0.3− 0.562: CoRoT-9, CoRoT-10,

CoRoT-16, CoRoT-20. These are worthwhile investigating for this fact alone.

In summary, the CoRoT planets not only present a number of systems potentially

unstable under tidal friction. In addition, many more scenarios with very different

parameter constellations are encountered, worthwhile investigating in terms of tidal

interactions. Consequently, the CoRoT-planetary systems can be divided into five

categories which will be investigated separately in the course of this work:

• Planets on circular orbits around slowly rotating low-mass stars: CoRoT-1b,

CoRoT-2b, CoRoT-7b, CoRoT-8b, CoRoT-12b, CoRoT-13b, CoRoT-17b, and

CoRoT-18b.

• Planets on circular orbits around slowly rotating F-stars and one subgiant:

CoRoT-5, CoRoT-14b, CoRoT-19b, and CoRoT-21b (around a subgiant)

• Planets on eccentric orbits: CoRoT-9b, CoRoT-10b, CoRoT-16b, and CoRoT-

20b.

• Planets around fast-rotating stars: CoRoT-6b and CoRoT-11b

• Possible double synchronous systems: CoRoT-3, CoRoT-4, CoRoT-15, and

CoRoT-20.



Chapter 5

Constraining Q∗
k2,∗

by requiring

orbital stability of close-in planets
around slowly rotating stars

In this chapter, the tidal semi major axes evolution of planets around slowly rotating

stars is investigated. The constant-Q∗-assumption is justified at least for systems

with planets on circular orbits because Ω∗ − n < 0 during the whole evolution time

and because Ω∗−n does not vary by more than one and a half orders of magnitude at

most during the whole evolution time. This is verified in Chapter 6 that investigates

the stellar rotation evolution and in the Appendix (Figures C.1, C.2, C.3, and C.4).

The planets discussed here may migrate towards their star and even enter the Roche

zone within the lifetime of the star. It will be investigated for which Q∗
k2,∗

the system

may be regarded as stable.

149
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5.1 Tidal evolution of the semi major axis of CoRoT-

Planets on circular orbits

Because the star rotates more slowly than the planet revolves around it (Ω∗ < n), the

evolution of a planet’s semi major axis on a circular orbit is modeled by:

ȧ = −3k2,∗MPl

Q∗M∗

(
R∗

a

)5

na (5.1.1)

according to Section 2.6, Eq. (2.6.17). In Chapter E, the integration method used in

this work is described and in Chapter F a model sensitivity analysis is performed for

several selected CoRoT-systems.

The start time of the semi major axis evolution was set to 60 million years because

at this age the inner structure of the CoRoT stars has settled (see Section 2.10,

Figure 2.15). Even in cases where the minimum age cannot be constrained further

by observations (CoRoT-1), this gives the lower limit for the age. The end time of

the evolution was set to 1.5 × 1010 years to accommodate even the system with the

largest lifetime and to keep the evolution of all systems comparable. The results of

the semi major axis evolution are discussed in terms of the remaining lifetime, the

total lifetime of each system minus the estimated age.

The semi major axis evolution is calculated for Q∗
k2,∗

= 105− 109 to account for the

uncertainty of the stellar tidal dissipation factor. Furthermore, QPl

k2,P l
= 105 is assumed

for the tidal evolution of Jupiter-like planets on circular orbits in agreement with

calculations in Section 3.2. These planets can be regarded as tidally locked (ΩPl = n)

and tidal friction due to tides raised on the planet by the star is neglected1.

1For the Super-Earth CoRoT-7, QPl = 10−100 is probably more realistic, in agreement with QPl

found for terrestrial bodies in our own Solar System. For the investigations in this work, this only
means that the planet’s rotation is more easily synchronized with the planet’s revolution. Therefore,
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In the following, planets around low mass and higher mass stars are discussed

separately. The need for this additional sub-division will become clear when discussing

the stellar rotation evolution due to tidal friction in Chapter 6.

5.1.1 Tidal evolution of the semi major axis of CoRoT-Planets
on circular orbits around low mass stars

CoRoT systems with a close-in planet on a circular orbit and a low mass star (M∗ <

1.1MSun) are: CoRoT-1, CoRoT-2, CoRoT-7, CoRoT-8, CoRoT-12, CoRoT-13, CoRoT-

17, and CoRoT-18. The eccentricities of the orbits of CoRoT-12b and CoRoT-18b

are sufficiently small (e = 0.07 ± 0.06 and e ≤ 0.08, respectively) that they can be

assumed to be zero, as well.

Figure 5.1 shows the evolution of the planets’ semi major axis for the next 1.5×1010

years into the future with the equation (5.1.1) given above. The vertical lines mark

how much time is left until the star evolves away from the main sequence, i.e., until

its hydrogen fuel is depleted enough so that the star changes its inner structure

dramatically in very short time, astronomically speaking (see for example Unsoeld

and Baschek (2001)). The estimated total lifetime is listed in Table 5.12. For CoRoT-

17, the estimated total lifetime is actually smaller than the age of the system. This is

not surprising because the relation by Prialnik (2000) (Eq 4.1.2) is a very simplified

estimate that can be ’off’ by one to two billion years. When taking into account,

however, the error bars for the age of main sequence stars (Table 5.1), it becomes

apparent that such a deviation is acceptable.

As can be seen from Figure 5.1, CoRoT-8 is the only planet within this subsample

it is a safe assumption that CoRoT-7b is tidally locked, as well.
2The age of CoRoT-1 is unknown. Therefore, the system is assumed to be at the beginning of

its evolution.



152

Figure 5.1: The tidal evolution of the semi major axis of the planets CoRoT-1b,
-2b, -7b, -8b, -12b, -13b, -17b and -18b for the next 1.5 × 1010 years and for
Q∗
k2,∗

= 105 − 109. The horizontal lines mark Roche limits (from top to bottom:

aRoche,hydro, aRoche,inter, aRoche,rigid) which span the Roche zone (Section 2.12). At the
distance a = 1R∗, another horizontal line marks the stellar surface. The vertical
grey lines show the remaining lifetime of the system. The solid vertical line is the
total lifetime of the star computed by 4.1.2 minus the age of the system. The dot-
ted vertical lines are the minimum and maximum remaining lifetime of the system
(lifetime− age±∆age). For CoRoT-1, no age is known. A black vertical line marks
the total lifetime. CoRoT-17 has reached the end of its lifetime, this is indicated by
a black vertical line at the start point of the evolution.
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which does not change its semi major axis significantly for any investigated Q∗
k2,∗

=

105 − 109 during the next 15 billion years. This was already inferred in the previous

Chapter 4.1.1 by the tidal stability map, the Doodson constant and the property

factor. Apparently, these three measures are useful in distinguishing between tidally

evolved and tidally stable systems.

CoRoT-1b, -2b, -7b, -13b, and -18b, on the other hand, may become unstable

within the remaining lifetime of the system. CoRoT-12b and CoRoT-17b, whose

stars may already be at the end of their lifetime, can still be considered as unstable

if Q∗
k2,∗

= 105, in which case these planets may enter the Roche zone on timescales of

ten to hundred million years. This is a fate they share with CoRoT-1b, -2b, -7b and

-18b.

This is very short when compared to the remaining lifetime of several billion years.

It would be unlikely to observe such planets just as they plunge toward their host

star, but detections of close-in hot Jupiters are by no means rare events. Intuitively,

Q∗
k2,∗

would be expected to be much higher than 105 to allow long-term survival for

such very short-period extrasolar planets. The same conclusion may be tentatively

drawn for Super-Earths like CoRoT-7b. The Kepler-10 system, for example, has very

similar properties to CoRoT-7 with one noteworthy exception (Batalha et al., 2011):

Kepler-10 (age: 12 billion years) is about ten billion years older than CoRoT-7 (age:

1-2 billion years). Kepler-10b looks like an older version of CoRoT-7b, which also

hints to a long-term stability of such systems.

The Q∗
k2,∗

-limit of stability necessary for a given planet to survive under tidal friction

can be derived more accurately by setting the remaining lifetime τrem.lifetime = τRoche,
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inserting it into equation 4.1.1 and by solving for Q∗
k2,∗

:

Q∗

k2,∗ stable
≥
τrem.lifetime

3MPl

2M∗
R5

∗
√
GM∗

1
13

[
a
13/2
Present − a

13/2
Roche

] , (5.1.2)

where τrem.lifetime is the estimated total lifetime minus the age of the system (Ta-

ble 5.1), for the Roche limit aRoche, the outermost limit of the Roche zone was se-

lected aRoche,hydro = 2.46R∗

(
ρ∗
ρPl

)1/3
, and aPresent is the current semi major axis of

the planet.

The derived limits of stability are given in Table 5.1. It should be noted that for

CoRoT-12b, a confidence interval of the estimated stability is computed due to the

large uncertainty in the age of the system. The given values represent the stability

limit for the minimum, average and maximum remaining lifetime. The minimum

estimated remaining lifetime of CoRoT-12 is zero because the system may already be

at the end of its lifetime. Q∗
k2,∗

= 107 − 108 emerges as a common limit of stability

from Table 5.1.
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a) No error bars for the age of the system are given in the detection paper (Bordé
et al., 2010)

b) The given age is larger than the estimated total lifetime. Therefore, the system is
assumed to be at the end of its lifetime.

System Q∗
k2,∗ stable

total lifetime age

[Gyrs] [Gyrs]
CoRoT-1 1.3× 108 11.5 -
CoRoT-2 6+1

−2 × 107 11 0.5+3.5
−0.3

CoRoT-7 6.9+0.3
−0.7 × 106 13 1.7+0.6

−0.5

CoRoT-8 stable for 105 − 1010 14 3a

CoRoT-12 -/8× 105/2× 106 8 6.3+3.1
−3.1

CoRoT-13 5.2+1.3
−2.5 × 105 8 1.6+1.5

−1.5

CoRoT-17 already at the end of lifetime 8b 10.7+1
−1

CoRoT-18 1± 0.02× 108 11.5 0.6+0.4
−0.4

Table 5.1: Required Q∗
k2,∗ stable

for the planet’s orbit to stay outside the Roche limit

within the minimum, average, and maximum remaining lifetime of the star.
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5.1.2 Tidal evolution of the semi major axis of planets on
circular orbits around F stars and subgiants

The orbit stability of the CoRoT-planets on circular orbits around F-stars is inves-

tigated: These are CoRoT-5b, CoRoT-14b, CoRoT-19b, and CoRoT-21b orbiting a

subgiant.

Figure 5.2: The tidal evolution of the semi major axis of the planets CoRoT-5b, 14b,
19b, and -21b for the next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109. The horizontal

lines span the Roche zone. The horizontal line at a = 1R∗ marks the stellar surface.
The vertical lines show the remaining lifetime of the system. See Figure 5.1 for a
more detailed description.

Figure 5.2 shows the evolution of the planets’ semi major axes. All planets inves-

tigated in this subsection may reach the Roche zone within their remaining lifetime.
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System Q∗
k2,∗ stable

total lifetime age

[Gyrs] [Gyrs]
CoRoT-5 2.7+1.2

−1.2 × 105 10 6.9+1.4
−1.4

CoRoT-14 -/9× 107/1.9× 108 7.1 4+4
−3.6

CoRoT-19 -/6.3× 105/1.4× 106 5.9 5+1
−1

CoRoT-21 1+0.2
−0.6 × 107 4.9 4.1+0.5

−0.1

Table 5.2: Required Q∗
k2,∗ stable

(eq. 5.1.2) for the planet’s orbit to stay outside the Roche

limit within the remaining lifetime of the star.

The age of CoRoT-14 and -19 are not very well constrained and it cannot be excluded

that the systems are already at the end of their lifetimes. Strictly speaking, Q∗
k2,∗

can-

not be constrained by requiring the planets CoRoT-14b and -19b to survive for the

next few billion years. Still, the CoRoT-14 system would already be destroyed within

the next few hundred million years if Q∗
k2,∗

≤ 107. The same is true for CoRoT-21b.

If Q∗
k2,∗

is indeed as small as 105, it should be unlikely to observe such systems on the

’brink of destruction’.

Equivalent to the approach in the previous section, Q∗
k2,∗ stable

is calculated as a

lower limit that would allow the planet to survive the remaining lifetime under tidal

friction (Table 5.2).

Again, Q∗
k2,∗

= 107 − 108 emerges as a common limit of stability; even though the

systems in this subset have much shorter lifetimes than the systems with low mass

stars, discussed previously (Table 5.1)
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5.2 Tidal evolution of the semi major axis and ec-

centricity of planets on eccentric orbits

The following CoRoT-systems with non-negligible orbit eccentricity are identified:

CoRoT-9, CoRoT-10, CoRoT-16 and CoRoT-20. CoRoT-9b’s semi major axis, how-

ever, is so great that no substantial orbital evolution is expected. Furthermore,

CoRoT-9 rotates much faster than the planet revolves around it. Consequently, even

if tidal friction would be a factor in the system’s evolution, it would drive the planet

away from the star. That tidal friction plays no role in the orbital evolution of

CoRoT-9b is confirmed by the computation (Appendix, Figure B.2). In the follow-

ing, the semi major axis and eccentricity evolution of CoRoT-10b, CoRoT-16b and

CoRoT-20b are investigated in more detail.
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The relevant set of equations are:

da

dt
=− 3

k2,∗
Q∗

MPl

M∗

(
R∗

a

)5

na(1− e2)−15/2

[
f1(e)n− (1− e2)3/2f2(e)Ω∗

]
|n− Ω∗|

− 3
k2,P l

QPl

M∗

MPl

(
RPl

a

)5

na(1− e2)−15/2

[
f1(e)n− (1− e2)3/2f2(e)ΩPl

]
|n− ΩPl|

(5.2.1)

de

dt
=− 27

2

k2,∗
Q∗

MPl

M∗

(
R∗

a

)5

ne(1− e2)−13/2

[
f3(e)n− 11

18
(1− e2)3/2f4(e)Ω∗

]
|n− Ω∗|

− 27

2

k2,P l

QPl

M∗

MPl

(
RPl

a

)5

ne(1− e2)−13/2

[
f3(e)n− 11

18
(1− e2)3/2f4(e)ΩPl

]
|n− ΩPl|

(5.2.2)

dΩ∗

dt
=

3

2I∗

k2,∗
Q∗

MPl

M∗ +MPl

MPl

M∗

(
R∗

a

)3

n2
(
1− e2

)−6

[
f2(e)n− (1− e2)3/2f5(e)Ω∗

]
|n− Ω∗|

+
dΩ∗

dt m.braking
(5.2.3)

dΩPl

dt
=

3

2IPl

k2,P l

QPl

M∗

M∗ +MPl

M∗

MPl

(
RPl

a

)3

n2
(
1− e2

)−6

[
f2(e)n− (1− e2)3/2f5(e)ΩPl

]
|n− ΩPl|

,

(5.2.4)

where

f1(e) = 1 +
31

2
e2 +

225

8
e4 +

185

16
e6 +

25

64
e8 (5.2.5)

f2(e) = 1 +
15

2
e2 +

45

8
e4 +

5

16
e6

f3(e) = 1 +
15

4
e2 +

15

8
e4 +

5

64
e6

f4(e) = 1 +
3

2
e2 +

1

8
e4

f5(e) = 1 + 3e2 +
3

8
e4,

dΩ∗

dt m.braking
= − K

I∗M∗R2
∗
Ω3

∗

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

if Ω∗ < ωsat (5.2.6)

= − K

I∗M∗R2
∗
Ω2

∗ωsat

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

if Ω∗ > ωsat. (5.2.7)
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As can be seen, apart from tidal friction due to tides raised on the star (stellar

tidal friction), the effect of tidal friction due to tides raised on the planet (planetary

tidal friction) are taken into account as well. The latter were neglected for planets

on circular orbits due to tidal locking of the planet’s spin. The influence of stellar

and planetary tidal friction on the orbit are added; just as it was done by Matsumura

et al. (2010) based on the Hut (1981) equations described in Section 2.73. Matsumura

et al. (2010) calculates tidal friction, however, in the constant τ∗ and τPl formalism

but discusses his results using Q∗ and QPl values which the authors derives by the

well known relation:

τ =
1

2|Ω− n|Q
.

In this work, the relation above is already applied to (Eq. 5.2.1, 5.2.2, 5.2.3, and 5.2.4)

to keep the discussion consistent throughout this work. The constant Q assumption

is used with care, keeping in mind that it requires 2|Ω∗−n| ≈ const and 2|ΩPl−n| ≈

const4 The calculations shown here should therefore be handled with care and may

need to be revised in the future. For now, the constant Q assumption is used as a

first order approach to gain insights about the possible tidal evolution for planets on

eccentric orbits.

When comparing the stellar rotation period P∗ and the orbital period Porb for the

CoRoT-10, the CoRoT-16, and the CoRoT-20 system (Table 1.4), several conclusions

can already be drawn. For the CoRoT-10 and 16 system, the stellar rotation is slower

than the orbital revolution (Ω∗ < n), the planet should migrate towards the star. For

the CoRoT-20 system, the situation is uncertain, because here P∗ = 11.5 ± 2.6 days

3Contrary to Matsumura et al. (2010), stellar obliquity ϵ∗ is neglected (cos ϵ∗ ≈ 1).
4It was shown that for planets on circular orbits (Chapter 3.2) |ΩPl − n| ≈ 0. For planets on

eccentric orbits, however, |ΩPl − n| = n
(
6e2 + 3

8e
4 + 223

8 e6
)
(See Appendix D).
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and Porb = 9.244±0.001. Therefore, either Ω∗ < n, Ω∗ = n, or Ω∗ > n within limits of

uncertainty. In this section, the average stellar rotation period P∗ = 11.5 days is used

as a starting point of the evolution. Another possible starting point P∗ = 8.9 days is

investigated in Section 8.4.1 when discussing possible double synchronous systems.

To distinguish the influence of planetary tidal friction from that of stellar tidal

friction, the tidal evolution of the planetary semi major axes are not only investigated

for different Q∗
k2,∗

-values but also for different planetary tidal dissipation factors. The

exoplanets discussed here are jovian planets, therefore QPl

k2,P l
≈ 105 (from Section 2.8)

is a good first choice for the investigation of tidal evolution. To be on the safe side,

a QPl

k2,P l
-range covering three orders of magnitude is investigated, QPl

k2,P l
= 104, 105, 106.

This QPl

k2,P l
-range is also adopted by Dobbs-Dixon et al. (2004) and Jackson et al. (2008).

Exemplarily, the semi major axis evolution of eccentric planets for QPl

k2,P l
= 104

(Figure 5.3) is discussed:

Semi major axis evolution of CoRoT-10b, QPl

k2,P l
= 104

If Q∗
k2,∗

≥ 106, the semi major axes of CoRoT-10b will decrease for the next two billion

years until the orbit settles at 0.076 AU and remains there. If Q∗
k2,∗

= 105, the planet

settles on a slightly smaller semi major axis after an initial decrease and will even

start to migrate moderately towards the star after several billion years.

Semi major axis evolution of CoRoT-16b, QPl

k2,P l
= 104

The orbital evolution of CoRoT-16b also goes through two stages of tidal orbital

migration. At first, there is an initial decrease on timescales of tens of million years.

The orbit remains stable for the next billion years. After several billion years, a

decrease in the semi major axis follows that depends on Q∗
k2,∗

. For the smallest Q∗
k2,∗

=
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Figure 5.3: The tidal evolution of the semi major axis of the planets CoRoT-10b,
-16b, and CoRoT-20b for the next 1.5 × 1010 years, for Q∗

k2,∗
= 105, 106, 107, 108, 109

and QPl

k2,P l
= 104. The horizontal lines span the Roche zone. The horizontal line at

a = 1R∗ marks the stellar surface. The vertical lines show the remaining lifetime of
the system. See Figure 5.1 for a more detailed description.
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105, the planet will reach the Roche limit after two billion years. For Q∗
k2,∗

= 106, the

planet may start to migrate towards the star after 10 billion years. The system is,

however, foreseen to survive only the next 4 billion years at most. Therefore, the

orbit of CoRoT-16b will remain stable within the remaining lifetime for Q∗
k2,∗

≥ 106.

Only for Q∗
k2,∗

= 105, the planet may be destroyed and only at the end of the system’s

remaining lifetime.

Semi major axis evolution of CoRoT-20b, QPl

k2,P l
= 104

The semi major axis evolution of CoRoT-20b is more complicated. If Q∗
k2,∗

≥ 107, the

orbit evolution is very similar to that of CoRoT-10b: After a decrease in semi major

axis within the next two billion years, the semi major axis settles at 0.063 AU. For

smaller Q∗
k2,∗

≤ 106, two stages of orbit evolution are again discernible. There is a

fast initial decrease within 100 million years if Q∗
k2,∗

= 105, within 900 million years

if Q∗
k2,∗

= 106. For Q∗
k2,∗

= 105, the planet remains only for about one hundred million

years at a ≈ 0.05 AU, showing a moderate migration towards the star during this

time. Then, the planet’s migration towards the star accelerates rapidly and CoRoT-

20b reaches the Roche limit within 400 million years evolution time. For Q∗
k2,∗

= 106,

the planet remains at a ≈ 0.06 AU for several billion years until the planet migrates

toward the star and reaches the Roche limit after nine billion years evolution time.

Orbital eccentricity evolution of CoRoT-10b, QPl

k2,P l
= 104

When taking into account the tidal eccentricity evolution (Figure 5.4), it becomes

clearer why there are two stages of tidal orbital evolution. The orbital eccentricity of

CoRoT-10b will decrease within the next 2.5 billion years until the orbit is circular,

for any Q∗
k2,∗

. This is exactly the time for which a semi major axis decrease is observed.
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Figure 5.4: The tidal evolution of the orbit eccentricity of CoRoT-10b, -16b, and
CoRoT-20b for the next 1.5× 1010 years, for Q∗

k2,∗
= 105 − 109 (solid lines) and QPl

k2,P l
=

104. The vertical lines show the remaining lifetime of the system.
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Apparently, the orbital evolution during this time is driven mainly by planetary tidal

friction. When e = 0, the terms in equation (5.2.1) depending on QPl

k2,P l
vanish, as was

already discussed previously. Only for Q∗
k2,∗

≤ 106, a small contribution of stellar tidal

friction to the initial semi major axis and eccentricity evolution is visible (Figures 5.5

and 5.6).

For the long-term stability of the CoRoT-10 system it can be concluded that the

system is stable and unaffected by stellar tidal friction, if Q∗
k2,∗

≥ 106. Because the

orbit settles at 0.076 AU after orbit circularization, the planet is too far away from

the star to experience tidal migration within the remaining lifetime.

Figure 5.5: Close-up of the orbit eccentricity evolution of CoRoT-10b and -16b due
to tides for Q∗

k2,∗
= 105 − 109 and QPl

k2,P l
= 104.

For Q∗
k2,∗

= 105, on the other hand, the combination of stellar and planetary tidal

friction leads to a stronger decrease in semi major axis during this initial evolution

phase. The planet settles at a lower orbit than compared with evolution tracks with

Q∗
k2,∗

≥ 106, a = 0.071 AU . This small difference is sufficient to lead to a destabilization

of the orbit on timescales of billion years due to stellar tidal friction.
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Figure 5.6: The tidal evolution of the semi major axis of the planets CoRoT-10b for
the next 1.5 × 1010 years in more detail, for Q∗

k2,∗
= 105 − 109 and QPl

k2,P l
= 104. The

vertical lines show the remaining lifetime of the system.

Orbital eccentricity evolution of CoRoT-16b, QPl

k2,P l
= 104

The orbital eccentricity of CoRoT-16b will already be zero after ten million years,

this is so fast that no influence on the eccentricity evolution is seen due to stellar

tidal friction. The evolution is the same for each Q∗
k2,∗

(Figure 5.5). This very fast

circularization corresponds to a fast decrease in the semi major axis of CoRoT-16b

(Figure 5.3). After that, only stellar tidal friction may affect the system and only if

Q∗
k2,∗

= 105. In that case, however, the planet reaches the Roche limit within the next

three billion years.
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Orbital eccentricity evolution of CoRoT-20b, QPl

k2,P l
= 104

While for any Q∗
k2,∗

, the influence of stellar and planetary tidal friction on the orbital

parameters of the planets CoRoT-10b and CoRoT-16b could be divided into an early

phase driven mainly by planetary tidal friction and a possible later phase driven only

by stellar tidal friction, for CoRoT-20b, only orbital evolution tracks with Q∗
k2,∗

≥ 107

show this behavior. In that case, the orbit of CoRoT-20b is circularized within the

next two billion years and the semi major axis finally settles at 0.063 AU, too far

away to be affected by stellar tidal friction.

For smaller Q∗
k2,∗

≤ 106, stellar tides have a non-negligible influence on the eccen-

tricity evolution of CoRoT-20b in the initial phase and lead to further damping such

that the orbit becomes circular much earlier within 150 million years ( Q∗
k2,∗

≥ 105)

and 900 million years Q∗
k2,∗

≥ 106, respectively. In addition, the semi major axis is

reduced so much for Q∗
k2,∗

= 105 due to the combined action of planetary and stellar

tidal friction, that the orbit decays within the remaining lifetime.

5.2.1 How does the semi major axis and eccentricity evolu-
tion change with larger QPl

k2,P l

Figures 5.7, 5.8, and 5.9, 5.10 show the semi major axis and eccentricity evolution for

QPl

k2,P l
= 105 and QPl

k2,P l
= 106, respectively. Any change in the evolution tracks compared

to the QPl

k2,P l
= 104-scenario can be ascribed to the reduction in planetary tidal friction

strength.
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Figure 5.7: The tidal evolution of the semi major axis of CoRoT-10b, -16b, and
CoRoT-20b for the next 1.5 × 1010 years, for Q∗

k2,∗
= 105 − 109 and QPl

k2,P l
= 105. The

horizontal lines span the Roche zone. The horizontal line at a = 1R∗ marks the stellar
surface. The vertical lines show the remaining lifetime of the system. See Figure 5.1
for a more detailed description.
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Figure 5.8: The tidal evolution of the orbit eccentricity of CoRoT-10b, -16b, and
CoRoT-20b for the next 1.5× 1010 years, for Q∗

k2,∗
= 105 − 109 (solid lines) and QPl

k2,P l
=

105. The vertical lines show the remaining lifetime of the system.
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Figure 5.9: The tidal evolution of the semi major axis of CoRoT-10b, -16b, and
CoRoT-20b for the next 1.5 × 1010 years, for Q∗

k2,∗
= 105 − 109 and QPl

k2,P l
= 106. The

horizontal lines span the Roche zone. The horizontal line at a = 1R∗ marks the stellar
surface. The vertical lines show the remaining lifetime of the system. See Figure 5.1
for a more detailed description.
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Figure 5.10: The tidal evolution of the orbit eccentricity of CoRoT-10b, -16b, and
CoRoT-20b for the next 1.5× 1010 years, for Q∗

k2,∗
= 105 − 109 (solid lines) and QPl

k2,P l
=

106. The vertical lines show the remaining lifetime of the system.
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Orbital evolution of CoRoT-16b, QPl

k2,P l
= 105 − 106

The evolution of CoRoT-16b will be discussed first, as an example for planets with

moderate to low orbit eccentricity e ≤ 0.3. The discussion starts with this case

because comparing the different QPl

k2,P l
is more straightforward for this case than for

the other two CoRoT planets with larger eccentricities, as will be shown later.

For CoRoT-16b, it will take longer for the eccentricity to become zero with increas-

ing QPl

k2,P l
. In any case, the eccentricity will be damped to zero within a few hundred

million years which is very fast when compared to the total stellar lifetime of several

billion years. Most importantly, the semi major axis evolution after the eccentricity

is damped to zero is independent of QPl

k2,P l
: The semi major axis after circularization,

let’s call it aequiv, is the same.

The equivalent semi major axis aequiv

Therefore, aequiv can be used for CoRoT-16b, a planet on an orbit with e = 0.3, to

derive the orbital long-term stability limit Q∗
k2,∗ stable

from calculations developed for

circular orbits.

aequiv can be derived keeping in mind that planetary tidal friction requires conser-

vation of total angular momentum Ltot, where the total angular momentum in this

case is the sum of the orbital angular momentum and the angular momentum of the

planet’s rotation. Because the latter is negligible as discussed in Section 3.3, the total

angular momentum is approximately equal the orbital angular momentum.

Before circularization, this is (using Kepler’s third law n =
√
G(M∗ +MPl)/a3):

Lorb,e>0 =
MPlM∗

MPl +M∗
na2

√
1− e2

=
MPlM∗

MPl +M∗

√
G(M∗ +MPl)

√
a
√
1− e2,
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Planet semi major axis eccentricity aequiv
[AU] [AU]

CoRoT-9b 0.407 0.11 0.402
CoRoT-10b 0.1055 0.53 0.076
CoRoT-16b 0.0618 0.3 0.056
CoRoT-20b 0.092 0.562 0.063

Table 5.3: Equivalent semi major axis aequiv (equation 5.2.8) of the CoRoT-planets
on eccentric orbits.

and after circularization this is:

Lorb,e=0 =
MPlM∗

MPl +M∗

√
G(M∗ +MPl)

√
aequiv.

Because Lorb,e>0 ≈ Lorb,e=0, combining the equations above and solving for aequiv

yields:

aequiv = a
(
1− e2

)
. (5.2.8)

The equivalent semi major axes of CoRoT-9b, CoRoT-10b, CoRoT-16b, and

CoRoT-20b for a circular orbit are listed in Table (5.3).

When comparing aequiv of CoRoT-20b instead of the ’normal’ semi major axis of

the eccentric orbit with the tidal stability maps (Section 4.1), it is no longer surprising

that CoRoT-20b may become unstable for Q∗
k2,∗

= 105 − 106. It should also be noted

that the aequiv-values of CoRoT-10b and CoRoT-20b given in Table 5.3 are the semi

major axes values on which the planets settle after an initial eccentricity damping

phase for QPl

k2,P l
= 104 and Q∗

k2,∗
≥ 107.

It has to be stressed, however, that the calculations used to derive aequiv are only

valid as long as planetary tidal friction acts on much shorter timescales than stellar

tidal friction. Only then it can be assumed that the orbital angular momentum is

conserved during eccentricity damping by planetary tidal friction.



174

The eccentricities of the orbits of CoRoT-10b and CoRoT-20b are, however, rela-

tively large (e > 0.5). For these planets, it will be shown that planetary and stellar

tidal friction may act on the same timescale if Q∗
k2,∗

≤ 106 and, therefore, it can no

longer be assumed that the orbital angular momentum is always conserved during

eccentricity damping. The long-term stability of the orbits depends on Q∗
k2,∗

and QPl

k2,P l
.

5.2.2 Positive feedback effect for planets on orbits with
e > 0.5

Orbital evolution of CoRoT-10b, QPl

k2,P l
= 105 − 106

For CoRoT-10, an increased QPl

k2,P l
= 105 − 106 results in an inefficient orbit circular-

ization if Q∗
k2,∗

≥ 107. The eccentricity will never be zero within the remaining lifetime.

Furthermore, the eccentricity evolution tracks are the same for each Q∗
k2,∗

, suggesting

that the eccentricity damping is driven by planetary tidal friction alone.

For Q∗
k2,∗

≤ 106, stellar tidal friction is no longer negligible for the eccentricity

damping, leading to a faster decrease in eccentricity. This becomes even more appar-

ent when considering the semi major axis evolution. As the semi major axis decreases,

stellar and planetary tidal friction increase in strength. This leads to an accelerating

decrease in semi major axis.

For Q∗
k2,∗

= 105, the positive feedback effect is the strongest: When the eccentricity

becomes zero, the semi major axis of the circularized orbit is so small and stellar tidal

friction is so efficient that the planet becomes unstable within the next seven billion

years well within the system’s remaining lifetime. Apparently, the assumptions used

to calculate aequiv no longer hold. Namely, that the orbital angular momentum is

conserved during circularization because planetary tidal friction acts on much shorter

timescales than stellar tidal friction. When discussing the stellar rotation evolution
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in the next chapter, it will become obvious that the missing amount of orbital angular

momentum during the orbit circularization is transferred to the star by stellar tidal

friction. It is surprising that a planet with the same orbital angular momentum as

CoRoT-10b would be regarded as stable if the orbit were circular. Due to the large

eccentricity of the orbit of CoRoT-10b, the planet will instead reach the Roche limit

if Q∗
k2,∗

= 105 and QPl

k2,P l
≥ 105.

Orbital evolution of CoRoT-20b, QPl

k2,P l
= 105 − 106

The early evolution of the semi major axis of CoRoT-20 gives even stronger evidence

for the positive feedback effect of the combined influence of stellar and planetary tidal

friction, when comparing the semi major axis evolution in the QPl

k2,P l
= 104-scenario

with those of the QPl

k2,P l
= 105- and QPl

k2,P l
= 106-scenarios. In the QPl

k2,P l
= 104-scenario,

the semi major axis reaches the Roche limit only for Q∗
k2,∗

= 105 within the remaining

lifetime but then very fast within the next 400 million years. When QPl

k2,P l
increases,

the Q∗
k2,∗

= 106 evolution track reaches the Roche limit within the remaining lifetime

as well. Within five to six billion years, if QPl

k2,P l
= 105 − 106.

5.2.3 Orbital stability for planets on eccentric orbits

In summary, for low Q∗
k2,∗

≤ 106, planetary tidal friction can not be neglected when

investigating the orbital long term stability of planets with large orbital eccentricities

e > 0.5 like CoRoT-20b and CoRoT-10b. In this case, planetary and stellar tidal

friction act on similar timescales to decrease the semi major axis. Therefore, the orbit

stability depends on Q∗
k2,∗

as well as on QPl

k2,P l
. To derive the stability limit, the orbital

evolution is modeled with different Q∗
k2,∗

, where Q∗
k2,∗

is incremented logarithmically in

steps of 100.2, beginning with Q∗
k2,∗

= 106, until the evolution track is found on which
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a) using eq.(5.1.2) with aequiv
b) orbit simulation with stepwise Q∗

k2,∗
-increase

System Q∗
k2,∗ stable

QPl

k2,P l
total lifetime age

[Gyrs] [Gyrs]
CoRoT-9 stable for 105 − 1010 104 − 106 10 0.15− 8
CoRoT-10 stable for 105 − 1010 104 14 2± 1
CoRoT-10b 105.2 105 14 2± 1
CoRoT-10b 105.4 106 14 2± 1
CoRoT-16a -/8× 104/1.6× 105 104 − 106 7.7 6.7± 2.8
CoRoT-20b 106 104 6.9 0.1+0.8

−0.04

CoRoT-20b 106.2 105 6.9 0.1+0.8
−0.04

CoRoT-20b 106.2 106 6.9 0.1+0.8
−0.04

Table 5.4: Required Q∗
k2,∗ stable

for the planet’s orbit to stay outside the Roche limit

within the minimum, average and maximum remaining lifetime of the star.

the planet enters the Roche zone at the end of the remaining lifetime. For CoRoT-16b,

aequiv can be inserted into eq.(5.1.2) to yield the stability limit.

Q∗
k2,∗ stable

for all eccentric planets, CoRoT9b, -10b, CoRoT-16b, CoRoT-20b, are

listed in Table 5.45. CoRoT-16 may very well be at the end of its lifetime. Therefore,

Q∗
k2,∗

cannot be constrained for the upper limit of the remaining lifetime.

As can be seen, the orbits of CoRoT-16b and CoRoT-10b are stable for Q∗
k2,∗

≫ 105.

The orbit of CoRoT-20b for Q∗
k2,∗

≫ 106, which agrees nicely with the stability limit

107− 108 derived in previous sections. If Q∗
k2,∗

≥ 107, the planets may settle after orbit

circularization at the equivalent semi major axes listed in (Table 5.3) and will remain

stable there.

5CoRoT-9 is only included for completeness.
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5.3 Limits of stability on potentially unstable sys-

tems

The common limit of stability is Q∗
k2,∗

≥ 107 for all cases discussed in this chapter. If Q∗
k2,∗

is indeed so large, this would explain why close-in extrasolar planets are frequently

discovered. Otherwise, some of these planets would exist only for several hundred

million years or even less if Q∗
k2,∗

= 106. This is very small in astronomical time scales

and it would be very improbable to observe such a planet before it reaches the Roche

zone and is tidally disrupted.

So far, the tidal evolution of the stellar rotation was not discussed in detail. It was

only assumed that the tidal frequency 2|Ω∗ − n|, which contains the stellar rotation,

is more or less constant during the computation and that at all times Ω∗ ≪ n. It will

be shown that the evolution of stellar rotation itself bears surprises that may help to

constrain the stellar tidal dissipation factor based on other arguments.



Chapter 6

Constraining Q∗
k2,∗

by stellar rotation

evolution of slowly rotating stars

In the previous chapter, the tidal evolution of the orbit of CoRoT planets around

slowly rotating stars due to stellar tidal friction - and planetary tidal friction, in the

case of eccentric orbits - was investigated. It was shown that, for the lower values

of Q∗
k2,∗

≤ 106, the semi major axis of many planets may decay considerably over

astronomical timescales. In consequence, the orbital angular momentum of these

planets decreases. Due to conservation of total angular momentum, the angular

momentum has to be transferred somewhere else. As was outlined in Sections 2.6 and

2.7, it is transferred to the extrasolar planet host star. To gain further insight into this

process, the stellar rotation evolution is investigated in this chapter. It has to be noted

that the stellar rotation period might have large error bars, in particular, when the

rotation is slow. In this work, the average rotation period is used as a starting point

of evolution to obtain qualitative results on the expected stellar rotation evolution

in the presence of tidal friction. It will be shown that the derived conclusions with

respect to Q∗
k2,∗

do not depend strongly on the stellar rotation starting point. A more

detailed model sensitivity analysis with respect to the limits of uncertainties of the

178
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initial parameters is given in Appendix, Chapter F.

Like in the previous chapter, the following categories of CoRoT systems are inves-

tigated: low mass main sequence host stars of planets on circular orbit, host stars of

F-spectral type and one subgiant of planets on circular orbit and host stars of planets

on eccentric orbits.

6.1 Tidal rotation evolution of the host stars of

CoRoT-Planets on circular orbits

The star rotates more slowly than the planet revolves around it (Ω∗ < n) and the

tidal evolution of the stellar rotation is modeled according to Section 2.6 with equa-

tion (2.6.18). Because main sequence stars lose angular momentum due to magnetic

braking, the model used here also has to account for this effect. The model of Bouvier

et al. (1997) is adopted as described in Section 2.10. Therefore, the following set of

equations describe the stellar rotation evolution:

Ω̇∗ =
3k2,∗
2I∗Q∗

M2
Pl

M∗(M∗ +MPl)

(
R∗

a

)3

n2 (6.1.1)

+
dΩ∗

dt m.braking
,

where

dΩ∗

dt m.braking
= − K

I∗M∗R2
∗
Ω3

∗

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

if Ω∗ < ωsat (6.1.2)

= − K

I∗M∗R2
∗
Ω2

∗ωsat

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

if Ω∗ > ωsat (6.1.3)

. (6.1.4)
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As stellar normalized moment of inertia I∗ = 0.074 (see Section 2.11) is adopted.

The scaling factor K determines the effectiveness of magnetic braking.

6.1.1 Tidal rotation evolution of low mass host stars of CoRoT-
Planets on circular orbits

CoRoT systems with a close-in planet on a circular orbit and a low mass star (M∗ <

1.1MSun) are: CoRoT-1, CoRoT-2, CoRoT-7, CoRoT-8, CoRoT-12, CoRoT-13, CoRoT-

17, and CoRoT-18. For these stars, the effectiveness of magnetic braking is well es-

tablished and the scaling factor K = 2.7 × 1040 Nms is adopted from Bouvier et al.

(1997).

Figure 6.1 shows the evolution of the stellar rotation due to stellar tidal friction

for the next 15 billion years. In addition, the remaining lifetime with all uncertainties

due to the age of the system is marked. For comparison, the evolution of the orbital

period is included as well.

As can be seen by comparing Figure 6.1 with Figure 5.1, when the planet ap-

proaches the star and enters the Roche zone (i.e. if Q∗
k2,∗

≤ 106), tidal friction is in

general efficient enough to compensate for angular momentum loss due to magnetic

braking and to spin up the star. In the end, the star rotates with a rotation period

in the order of magnitude of several days. Therefore, the stellar rotation evolution

of main sequence stars with very close-in massive substellar companions may differ

from the regular rotation evolution of main sequence stars.

The only unstable planet unable to spin up the star in this sample is the Super-

Earth CoRoT-7b. Only for very small Q∗
k2,∗

≤ 106, a small effect on the stellar rotation

is visible just before the planet is tidally disrupted. This is not surprising because

the angular momentum stored in the orbit of a planet, which is then transferred onto
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Figure 6.1: The tidal evolution of the stellar rotation of CoRoT-1, -2, -7, -8, -12,
-13, -17 and -18 for the next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109 (solid lines).

The dashed-dotted lines show the evolution of the orbital period of the corresponding
close-in planet for comparison. The vertical lines show again (like in Figure 5.1) the
remaining lifetime of the system.
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the star due to tidal friction, is proportional to the mass of the planet (Section 3.3).

The mass of the Super-Earth CoRoT-7b (≈ 8Earthmasses) is about 10−2 times the

mass of a Jupiter analogue. Therefore, CoRoT-7b’s orbital angular momentum is

10−2 times the orbital angular momentum of a Jupiter-mass planet. This amount is

negligible compared to the angular momentum of a main sequence star. In summary,

only close-in companions with minimum masses approximately that of Jupiter can

spin up the star due to tidal friction.

Not only planets with fast orbital evolution that reach the Roche zone within

the remaining lifetime of the star affect the stellar rotation. Even planets that only

migrate moderately towards the star at the end of the stellar lifetime spin-up their

star due to conservation of total angular momentum.

The tidal evolution of CoRoT-12 system is now discussed as an example (Fig-

ure 6.1): If Q∗
k2,∗

≤ 106 below the threshold of orbital stability (Table 5.1), the star is

spun up in the future as the planet migrates towards the Roche limit (Figure 5.1).

When the planet enters the Roche zone, the final rotation period P∗ ≈ 8 days of

CoRoT-12 is virtually identical for Q∗
k2,∗

= 105 and Q∗
k2,∗

= 106; no matter how long it

takes for the planet to reach the Roche limit – either a few hundred million years or

a few billion years.

If Q∗
k2,∗

= 107, the planet is not destroyed within the remaining lifetime, but only

starts to migrate towards the Roche limit just before the end of the lifetime. Even

this moderate migration is accompanied by an angular momentum transfer to the

star which spins up the star considerably, in the end. Apparently, the stellar rotation

is even more susceptible to stellar tidal friction than the extrasolar planet’s orbit.

This can be explained by comparing the stellar and orbital angular momentum. In
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Section 3.3 it was found that the bulk of the total angular momentum is stored in the

planet’s orbit (Section 3.3). In addition, a main sequence star loses a considerable

amount of its angular momentum over time. Therefore, it comes as no surprise that

old stars are very susceptible to spin-up due to stellar tidal friction.

It should be noted that even for small values of Q∗
k2,∗

= 105, although the star is

spun up rapidly as the planet approaches the Roche limit, the stellar rotation and

planetary revolution are never synchronized. Indeed, it will be shown in Chapter 8

that only few CoRoT systems fulfill the requirements to achieve rotation-revolution

synchronization. Therefore, the assumption that Ω∗ − n does not vary by more than

two orders of magnitude remains valid in this Section (see Figure C.1).

6.1.2 Tidal rotation evolution of F-spectral type host stars
of CoRoT-Planets on circular orbits

CoRoT systems with a close-in planet on a circular orbit and an F spectral type star

rotating slower than the planet’s revolution are CoRoT-5, CoRoT-14, and CoRoT-19.

CoRoT-21b orbits a subgiant. For all intents and purposes, CoRoT-21 is treated like

an F star in this work to gain first insights about the stability and evolution of this

special system for the next few billion years. The stellar rotation evolution due to

stellar tidal friction is modeled by the same set of equations used above - with one

difference: The magnetic braking term.

The effectiveness of magnetic braking in F-stars is not so clear as for low mass

stars discussed in the previous section (See Section 2.10). There are many indications

that these stars experience either inefficient or no magnetic braking at all.

To account for this uncertainty in magnetic braking efficiency, the magnetic brak-

ing term used above adopted from Bouvier et al. (1997) is used again but with different
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scaling factors K:

• K = 2.7×1040 Nms for ’full magnetic braking’, adopting the same scaling factor

as for low mass main sequence stars,

• K = 2.7× 1039 Nms for ’reduced magnetic braking’,

• K = 0 for a model without magnetic braking.

This allows to constrain the possible stellar rotation evolution. Consequently,

three instead of one panel with stellar rotation evolution tracks are shown (Figures

6.2, 6.3, and 6.4).

When comparing stellar rotation evolution with the equivalent semi major axis

evolution of their planets (Figure 5.2), the following becomes apparent: If the planet

approaches the Roche limit, the star is spun up significantly in the end. The presence

of magnetic braking may only delay the on-set of stellar tidal spin-up in the near

future. When the planet enters the Roche zone, however, even full magnetic braking

(Figure 6.2) is finally overcome by stellar tidal friction. The star is rapidly rotating;

regardless whether the spin-up was initially counteracted by magnetic braking or not.

This is again due to the fact that the amount of angular momentum stored in the

orbit is much larger than the angular momentum stored in the stellar rotation. In

addition, it is found that at the end of the stellar lifetime even a moderate migration

of the planet towards the star is enough to result in stellar spin-up.



185

Figure 6.2: The tidal evolution of the stellar rotation of CoRoT-5, -14, 19, and -21
for the next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109 (solid lines) in the presence

of full magnetic braking. The dashed-dotted lines show the evolution of the orbital
period of the corresponding close-in planet for comparison. The vertical lines show
the remaining lifetime of the system.
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Figure 6.3: The tidal evolution of the stellar rotation of CoRoT-5, 14, 19, and -21
for the next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109 (solid lines) in the presence of

reduced magnetic braking.
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Figure 6.4: The tidal evolution of the stellar rotation of CoRoT-5, 14, 19, and -21
for the next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109 (solid lines) without magnetic

braking.
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Take as an example CoRoT-19: If Q∗
k2,∗

≥ 108, the stellar rotation evolution is

not affected at all by tidal friction and determined by magnetic braking only (Fig-

ures 6.2, 6.3, and 6.4).

Either the stellar rotation will decelerate unhindered for either full and reduced

magnetic braking, or without magnetic braking (Figure 6.4) will remain the same as

today.

If Q∗
k2,∗

= 107, the stellar rotation will decelerate for the next few billion years or will

remain the same. In the presence of full magnetic braking, tidal friction reduces the

deceleration of the star’s rotation after four billion years, and after ten billion years

it will become more efficient than magnetic braking and the star will be spun up

again. Without magnetic braking, the tidal spin-up will become apparent after four

billion years, as the star will start to rotate faster. Actually, the difference between

the evolution with reduced and no magnetic braking is minor for Q∗
k2,∗

= 107. In both

cases, the star rotates at the end of the system’s lifetime with a rotation period in

the order of six to eight days.

If Q∗
k2,∗

= 106 and in the presence of either full or reduced magnetic braking, the

stellar rotation will slightly decelerate in the next few hundred million years. The

deceleration stops after about 600 million years, and the star will be spun-up rapidly

as the planet approaches the Roche zone after one and a half billion years. If no

magnetic braking is acting, then the stellar rotation will remain unchanged for the

first 400 million years, before it will be spun up earlier than in the presence of magnetic

braking.

In any case, for Q∗
k2,∗

below the limit of stability 107 − 108 given in Table 5.2, not

only is the planet destroyed, the star is spun-up even in the presence of full magnetic
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braking. Furthermore, no matter how long it takes for the planet to reach the Roche

limit - either a few hundred million years or a few billion years - and regardless if the

star experiences magnetic braking or not: the star is rapidly rotating at about the

same rotation rate, in the end. Apparently, the amount of angular momentum lost by

magnetic braking is more than compensated for by angular momentum transferred

by tidal friction from the planet’s orbit to the stellar rotation.

Whereas all the stars in the previous subsection settled at a rotation period of

a few days, once the planet has been destroyed in the Roche zone, there are two

stars in this section for which this conclusion does not hold: CoRoT-5 ends up with

a comparatively slow rotation period of 12 days when the planet reaches the Roche

zone. This is due to the fact that this star starts its rotation evolution with an

unusually long rotation period of 60 days although CoRoT-5 is an F-star. F-stars

typically rotate faster than that (see Section 2.10). The rotation period of CoRoT-5,

however, is not very well constrained with a measured value of 60+∞
−30 (Table 1.4).

Even taking into account that the stellar rotation period could be as low as 30 days,

this star stands out in this section due to its slow rotation. Chapter F shows that

even such large uncertainties in P∗ do not affect the qualitative results derived in this

Section and the previous Chapter for very slow stellar rotators. CoRoT-14, on the

other hand, represents the other extreme. Here, the stellar rotation is relatively low

P∗ = 14± 2.4 days to begin with and the star ends up with a rotation period below

1 day when the planet reaches the Roche zone. Although this rotation is relatively

fast, in Chapter H, it is shown that stars with rotation periods much larger than

0.1 days don’t run the risk of being disrupted due to centrifugal forces. In summary,

when a star is tidally spun-up its final rotation period can range between more than
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10 days to less than 1 day. It is still rotating much faster than expected for a star of

its age.

6.2 Tidal rotation evolution of host stars of CoRoT-

Planets on eccentric orbits

The following CoRoT-systems with non-negligible orbit eccentricity are identified:

CoRoT-9, CoRoT-10, CoRoT-16 and CoRoT-20. In the previous chapter it was

already shown that CoRoT-9b is too far away to cause a significant tidal evolution of

the orbit. The same is true for the stellar rotation (Figure B.2) In the following, the

stellar rotation evolution of CoRoT-10, CoRoT-16 and CoRoT-20 is investigated.

As already outlined in Section 5.2, the tidal evolution for systems with planets

on eccentric orbits need to take into account stellar as well as planetary tidal friction

terms. Consequently, the stellar rotation evolution is modeled by the following set of

equations repeated here:

dΩ∗

dt
=

3

2I∗

k2,∗
Q∗

MPl

M∗ +MPl

MPl

M∗

(
R∗

a

)3

n2
(
1− e2

)−6

[
f2(e)n− (1− e2)3/2f5(e)Ω∗

]
|n− Ω∗|

+
dΩ∗

dt m.braking

dΩPl

dt
=

3

2IPl

k2,P l

QPl

M∗

MPl

M∗

M∗ +MPl

(
RPl

a

)3

n2
(
1− e2

)−6

[
f2(e)n− (1− e2)3/2f5(e)ΩPl

]
|n− ΩPl|

,
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where

f1(e) = 1 +
31

2
e2 +

225

8
e4 +

185

16
e6 +

25

64
e8

f2(e) = 1 +
15

2
e2 +

45

8
e4 +

5

16
e6

f3(e) = 1 +
15

4
e2 +

15

8
e4 +

5

64
e6

f4(e) = 1 +
3

2
e2 +

1

8
e4

f5(e) = 1 + 3e2 +
3

8
e4,

dΩ∗

dt m.braking
= − K

I∗M∗R2
∗
Ω3

∗

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

if Ω∗ < ωsat (6.2.1)

= − K

I∗M∗R2
∗
Ω2

∗ωsat

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

if Ω∗ > ωsat, (6.2.2)

Like in the previous chapter, the tidal evolution is discussed first for QPl

k2,P l
= 104 and

Q∗
k2,∗

= 105 − 109 (Figure 6.5).
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Figure 6.5: The tidal evolution of the stellar rotation of CoRoT-9,-10, -16, and
CoRoT-20 for the next 1.5×1010 years, for Q∗

k2,∗
= 105−109 (solid lines) and QPl

k2,P l
= 104.

The dashed-dotted lines show the evolution of the orbital period of the corresponding
close-in planet for comparison. The vertical lines show the remaining lifetime of the
system.
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Stellar rotation evolution of CoRoT-16, QPl

k2,P l
= 104

CoRoT-16 experiences tidal spin-up for Q∗
k2,∗

≤ 106 as the planet CoRoT-16b moves

toward the star (Figure 5.3) due to stellar tidal friction, just as it was found for

several stars discussed in the previous section. During the first tens of million of

years (Figure 5.4) – when the eccentricity is damped to zero due to planetary tidal

friction – no influence is seen on the stellar rotation. But then again this is expected

because planetary tidal friction only transfers angular momentum within the orbit

and from the planet’s rotation.

Stellar rotation evolution of CoRoT-10, QPl

k2,P l
= 104

If Q∗
k2,∗

= 106, the rotation of CoRoT-10 is affected - albeit not strongly - by tidal

spin-up although the corresponding orbital migration due to stellar and planetary

tidal friction is small. If Q∗
k2,∗

= 105, the spin-up is much stronger due to the positive

feedback effect explained in Section 5.2 that leads to moderate planetary migration.

Stellar rotation evolution of CoRoT-20, QPl

k2,P l
= 104

The rotation of CoRoT-20 is already affected for Q∗
k2,∗

= 106 by the positive feedback

between stellar and planetary tidal friction, which is to be expected considering the

orbital evolution of CoRoT-20b (Figures 5.3 and 5.4) for small Q∗
k2,∗

≤ 106. In the

initial tidal evolution phase, stellar and planetary tidal friction decrease the planet’s

semi major axis and eccentricity more efficiently than each would acting on its own.

Consequently, a comparatively large amount of angular momentum is transferred

from the orbit to the star, which is observed as rapid spin-up already at an early

evolution stage. This is in contrast to the stellar rotation evolution of stars with

close-in planets on circular orbits where the spin-up is the strongest at the end of the
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tidal evolution. When e has become zero, stellar tidal friction alone is less efficient in

spinning-up the star, but catches up as the planet approaches the star.

For Q∗
k2,∗

= 107, the star experiences weak tidal spin-up at the end of the full

evolution time, which is not strong enough to compensate magnetic braking. This

evolution is driven by moderate planetary migration (Figure 5.3) due to stellar tidal

friction. For larger Q∗
k2,∗

, the stellar rotation evolution is unaffected.

6.2.1 How does the stellar rotation evolution change with
larger QPl

k2,P l

Now, the tidal evolution scenario for QPl

k2,P l
= 104 is compared with tidal evolution

tracks for QPl

k2,P l
= 105 and Q∗

k2,∗
= 105 − 109 (Figure 6.6), and finally QPl

k2,P l
= 106 and

Q∗
k2,∗

= 105 − 109 (Figure 6.7)

Stellar rotation evolution of CoRoT-16, QPl

k2,P l
= 105 − 106

The stellar rotation evolution of CoRoT-16 does not change when QPl

k2,P l
is increased.

Therefore, planetary tidal friction has no influence on the star. The stellar rotation

may only be affected by stellar tidal friction and for the smallest Q∗
k2,∗

≤ 106.

6.2.2 Positive feedback effect for planets on orbits with
e > 0.5

Stellar rotation evolution of CoRoT-10, QPl

k2,P l
= 105 − 106

Comparing the stellar rotation evolution of CoRoT-10 for different QPl

k2,P l
-scenarios

shows that for Q∗
k2,∗

= 106 the stellar spin-up due to the combination of stellar and

planetary tidal friction becomes stronger with increasing QPl

k2,P l
. Still, the stellar rota-

tion period of CoRoT-10 never falls below fifteen days and, at the end of the system’s

lifetime, the stellar rotation period is always larger than 25 days. It would be very
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Figure 6.6: The tidal evolution of the stellar rotation of CoRoT-9,-10, -16, and
CoRoT-20 for the next 1.5×1010 years, for Q∗

k2,∗
= 105−109 (solid lines) and QPl

k2,P l
= 105.

The dashed-dotted lines show the evolution of the orbital period of the corresponding
close-in planet for comparison. The vertical lines show the remaining lifetime of the
system.
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Figure 6.7: The tidal evolution of the stellar rotation of CoRoT-9,-10, -16, and
CoRoT-20 for the next 1.5×1010 years, for Q∗

k2,∗
= 105−109 (solid lines) and QPl

k2,P l
= 106.

The dashed-dotted lines show the evolution of the orbital period of the corresponding
close-in planet for comparison. The vertical lines show the remaining lifetime of the
system.
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hard to identify such abnormally fast rotating state, especially due the difficulties

when measuring the rotation of a slowly rotating star where error bars can span tens

of days (See Table 1.4).

For Q∗
k2,∗

= 105, the combination of stellar and planetary tidal friction acting on

similar timescales affects the stellar rotation more strongly than if stellar tidal friction

would act individually. The combined tidal spin-up is even stronger than magnetic

braking, leading to a net spin-up of the star at an early evolution stage as long as

planetary tidal friction is strong. Apparently, the strength of planetary tidal friction

diminishes over time as the eccentricity approaches zero (Figures 5.8 and 5.10). As

the planet approaches the star, stellar tidal friction eventually becomes stronger than

magnetic braking and is spinning up the star again. If the planet reaches the Roche

limit, which only happens if QP

k2,P
≥ 105, the star would rotate with a rotation period

of one day, in the end.

Stellar rotation evolution of CoRoT-20, QPl

k2,P l
= 105 − 106

The same feedback effect is also seen in the stellar rotation evolution of CoRoT-20,

if Q∗
k2,∗

≤ 106. Indeed, when comparing the rotational evolution of the different QP

k2,P

scenarios, the tidal spin-up due to the combination of stellar and planetary tidal

friction becomes stronger with increasing QPl

k2,P l
. But this only holds for the next forty

million years, if Q∗
k2,∗

= 105, and for the next one billion years, if Q∗
k2,∗

= 106. After

that, magnetic braking takes over as the eccentricity is damped to zero (Figures 5.8

and 5.10). Afterwards, the star may be spun-up again due to stellar tidal friction

alone when the planet enters the Roche zone (Figures 5.7 and 5.9). If CoRoT-20b

enters the Roche zone, the stellar rotation finally ends up with a rotation period of

about one day; regardless of the initial evolution phases and how long it took to
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reach the Roche zone. Looking at Figures 6.5, 6.6, and 6.7, it appears that the stellar

rotation comes very close to the planetary revolution.

A detailed inspection of Ω∗−n shows that while for QPl

k2,P l
= 104 the stellar rotation

always exceeds the planetary revolution (Figure C.5), Ω∗ will be synchronized with

n very briefly for QPl

k2,P l
= 104 − 105 (Figures C.6 and C.7). Here, P∗ = 11.5 days

was selected as a start point for the model. It will be shown in Section 8.4.1 and

Chapter F that the CoRoT-20 system may synchronize the stellar rotation with the

planet’s revolution starting with a different initial stellar rotation period within limits

of uncertainties P∗ = 11.5 ± 2.6 days. The system, however, will fail to maintain

a stable double synchronous orbit because magnetic braking removes the required

angular momentum from the system.

6.3 Using stellar rotation as a ’smoking gun’ for

the influence of tidal friction

In this chapter, it was shown for several examples that the stellar rotation is affected

very strongly by tidal friction, even when the orbit remains stable over the remaining

stellar lifetime. Tidal spin-up may be even efficient enough to compensate magnetic

braking. Old stars, in particular, are noticeably affected. Geochronology may yield

false results for the age of a system that once harbored or may still harbor a close-in

massive extrasolar planet.

To gain an insight about what can be learned in terms of Q∗
k2,∗

from an abnormally

rotating star, Q∗
k2,∗ spin−up limit

is computed for the previously discussed main sequence

stars for which tidal friction may overcome magnetic braking.

For the host stars of planets on circular orbits, mainly the ones described in



199

a) No error bars for the age of the system are given in the detection paper (Bordé
et al. (2010))

b) The given age is larger than the estimated total lifetime. Therefore, the system is
assumed to be at the end of its lifetime.

System Q∗
k2,∗ spin−up limit

age

[Gyrs]
CoRoT-1 ≤ 5× 106 -
CoRoT-2 ≤ 5× 105 0.5+3.5

−0.3

CoRoT-7 ≤ 4× 104 1.7+0.6
−0.5

CoRoT-8 ≤ 103 3a

CoRoT-12 ≤ 4× 107 6.3+3.1
−3.1

CoRoT-13 ≤ 105 1.6+1.5
−1.5

CoRoT-17 ≤ 2× 107 10.7+1
−1

CoRoT-18 ≤ 2× 106 0.6+0.4
−0.4

Table 6.1: Required Q∗
k2,∗

for tidal friction to compensate magnetic braking at the

planet’s current position.

Section 6.1, the following can be found when comparing the tidal friction and magnetic

braking term and solving for Q∗
k2,∗

:

dΩtidal friction

dt
<

dΩmagnetic braking

dt

Q∗

k2,∗
<

3

2

M2
Pl

M∗ +MPl

(
R∗

a

)3

n2 R2
∗

KΩ3
∗

(
R∗

RSun

)−1/2(
M∗

MSun

)1/2

..(6.3.1)

Consequently, Table 6.1 lists the Q∗
k2,∗

for which the stellar rotation would be dom-

inated by stellar tidal friction in the near future.

CoRoT-7 and CoRoT-8 are currently not spun up stronger than magnetic braking

can decelerate the star because tidal friction is too inefficient to affect the stellar

rotation for the whole investigated Q∗
k2,∗

-range 105 − 109. This is different for the

other stars in the sample: The youngest stars in this sample, CoRoT-2, CoRoT-

13, and CoRoT-18, require Q∗
k2,∗

smaller than 105 − 2 × 106. Consequently, only the

smallest investigated Q∗
k2,∗

-values are sufficient to spin-up the star at this young age.
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The oldest stars, CoRoT-12 and CoRoT-17, which are the best indicators for tidal

spin-up, require 4 × 107 and 2 × 107, respectively. Indeed, CoRoT-12 rotates today

(P∗ = 57+∞
−28 days) rather slowly showing no indication of considerable spin-up but

rather a rotation period that is expected if the past evolution was dominated by

magnetic braking. Such an evolution requires Q∗
k2,∗

= 4 × 107 which agrees nicely

with the limit derived for orbit stability in the previous chapter. CoRoT-17, on the

other hand, appears to be rotating rather fast for a star at the end of its lifetime

(P∗ = 18 ± 2 days), but the rotation period is still larger than 10 days (Figure 6.8).

This may indicate moderate tidal spin-up and planetary migration due to tidal friction

with Q∗
k2,∗

≈ 107. CoRoT-1, for which no age constraint is given, requires Q∗
k2,∗

less than

5× 106.

Figure 6.8: The stellar rotation periods of the CoRoT-stars of spectral type K and
G versus age including the limits of uncertainties. The stellar rotation of CoRoT-17
stands out because it is faster than expected for such an old star.

For stars with uncertain magnetic braking efficiency, equation (6.3.1) cannot be
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used. However, CoRoT-5 is rotating slowly (P∗ = 60+∞
−30) and is several billion years

old (Figure 6.9). As was shown in Section 6.1.2, such a star would be spun up

considerably over billion years if Q∗
k2,∗

≤ 106. One may therefore tentatively assume

that in this system in the past Q∗
k2,∗

≫ 105, because otherwise the star would currently

rotate much faster. When looking at Figure 6.9 one may tentatively assume that

at least the rotations of CoRoT exoplanet host stars of spectral type F seem to

show a deceleration trend with increasing age, hinting to a reduced magnetic braking

scenario.

Figure 6.9: The stellar rotation periods of the spectral type F CoRoT-stars versus
age including the limits of uncertainties. The blue crosses are the rotation periods
and the age of CoRoT-3 and CoRoT-15.

For host stars of planets on eccentric orbits, CoRoT-10, CoRoT-16 and CoRoT-20,

Q∗
k2,∗ spin−up limit

can be derived, required for tidal friction to spin up the star stronger

than magnetic braking can decelerate it. The tidal stellar rotation evolution of
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Table 6.2: Required Q∗
k2,∗

for tidal friction to compensate magnetic braking for planets

on eccentric orbits at the current position.
System Q∗

k2,∗ spin−up limit

QPl

k2,P l
age

[Gyrs]
CoRoT-9a not affected by tidal friction 104 − 106 0.15− 8
CoRoT-10 105.6 104 − 106 2± 1
CoRoT-16 2.3× 106 104 − 106 6.7± 2.8
CoRoT-20 106.2 104 − 106 0.1+0.8

−0.04

a) included for completeness.

CoRoT-16 is solely driven by stellar tidal friction after the orbit has become cir-

cular. Therefore, the limiting Q∗
k2,∗

can be found by using the equivalent semi major

axis aequiv = 0.063 AU (see previous chapter) and inserting it into equation (6.3.1)

derived for circular orbits.

For CoRoT-10 and CoRoT-20, the stellar rotation evolution depends on stellar

and planetary tidal friction, therefore it depends on the combination of QPl

k2,P l
and

Q∗
k2,∗

if a stellar rotation evolution is dominated by magnetic braking or tidal friction.

The limiting Q∗
k2,∗

can be found, however, by the same method by which the orbit

stability limit was found in the previous chapter: by modeling the stellar evolution

for QPl

k2,P l
= 104, 105, and 105 and by increasing the stellar tidal dissipation factor –

beginning with Q∗
k2,∗

= 105 for CoRoT-10 and Q∗
k2,∗

= 106 for CoRoT-20 in each scenario

– until the value is found for which tidal friction spin-up equals magnetic braking.

The results for eccentric orbits are collected in Table 6.2.

Again, stellar spin-up at the current position due to tidal friction is only possible

for very low Q∗
k2,∗

= 105 − 106. CoRoT-16’s low stellar rotation (P∗ > 60 days) at

an age of several billion years does not allow for tidal spin-up due to tidal friction.

Consequently, for this system Q∗
k2,∗

≫ 105 can be tentatively assumed.
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6.4 Evaluating evidence for tidal spin up

In summary, it was shown that for slowly rotating host stars of very close-in massive

extrasolar planets considerable spin-up of the stellar rotation is expected when the

planet’s orbit is unstable due to tidal friction. During the migration of the planet

towards the Roche zone, considerable angular momentum is transferred onto the star

whose own angular momentum due to its rotation is in general much smaller than

orbital angular momentum. Furthermore, the amount of angular momentum lost by

magnetic braking is more than compensated by tidal friction. In addition, it was

found that old stars in particular are prone to being spun-up even by moderate tidal

friction.

At last, a limit of Q∗
k2,∗

was derived for which the stellar rotation evolution is

dominated by tidal friction between the star and the planet at the current position.

Several old or middle-aged stars, CoRoT-5, CoRoT-12, and CoRoT-16, have been

found which rotate very slowly. This is only feasible if in the past Q∗
k2,∗

> 105 − 106.

CoRoT-17, a very old star at the end of its lifetime on the main sequence, may show

moderate tidal spin-up, which would require Q∗
k2,∗

≈ 107.

Therefore, it seems implausible that CoRoT planet host stars have very low values

of Q∗
k2,∗

= 105−106 requiring an efficient tidal energy dissipation mechanism. Not only

would the orbit of many planets be very unstable (Chapter 5), but the stars would

be tidally spun-up so efficiently that not even magnetic braking would be able to

compensate. Apart from CoRoT-17, no signs of tidal spin-up stronger than magnetic

braking is seen in the CoRoT host stars.

The tidal spin-up of host stars to close-in massive planetary companions may,
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in addition, affect one method to determine the age of a main sequence star. Gy-

rochronology assumes that main sequence stars rotate slower with increasing age and

that, therefore, the stellar rotation can be used to estimate it’s age. The results de-

rived in this section, however, show that this assumption may not be valid for stars

with close-in massive extrasolar planets. It may not even be valid for stars that don’t

currently have a close-in companion because the stars may have had a planet in the

past that is now lost due to tidal disruption. The only sign of the existence of the

tidally disrupted planet would be the spin-up of the star which may be mistaken

for an indication of young stellar age. The danger of determining a false age by gy-

rochronology is the greatest for old stars. These may be spun up even by moderate

tidal friction i.e. Q∗
k2,∗

≈ 108.

6.5 A word regarding the evolution of the tidal

frequencies

The constant Q∗ and QPl model requires the tidal frequencies 2|Ω∗−n| and 2|ΩPl−n|

at least not to vary strongly. This is a valid assumption for CoRoT planetary systems

with circular orbits (Figures C.1, C.2, C.3, C.4) and planets with small to moderate

orbital eccentricties like CoRoT-16b (e ≤ 0.3). The constant Q assumption warrants

further investigation for planets with large orbital eccentricities (e > 0.5) because

|Ω∗ − n|(Figures C.5, C.6, and C.6) and |ΩPl − n| (Chapter D) may vary strongly

during the evolution. It is worthwhile investigating, if the tidal evolution of the

CoRoT-10 and CoRoT-20 system changes for tidal friction models by switching to

the constant τ∗ and τPl formalism, for example, as described in Section 3.1.4. This

shall be reserved for future investigations.



Chapter 7

Tidal evolution of close-in
exoplanets around fast rotating
stars

In the systems CoRoT-6 and CoRoT-11, the stars rotate faster than the planets

revolve around them. In contrast to the systems previously discussed this means:

Ω∗ > n (Table 1.4). Consequently, the planets currently migrate outwards and the

stellar rotation is slowed down by tidal friction. Furthermore, it will be found that

a state Ω∗ = n may be reached. Therefore, the orbital and stellar rotation evolution

can not be modeled independent from each other but are closely linked.

Although, the assumption Ω∗ − n ≈ const, in principle, no longer holds all the

time, it will be shown that the synchronicity Ω∗ = n is, in most cases, not achieved by

tidal friction. Furthermore, it will be shown that at least for the CoRoT-11 system,

apart from a brief initial evolution phase, |Ω∗ − n| ≈ const is still a valid assumption

on timescales of billion years.

205
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The relevant set of equations for modeling the system’s tidal evolution are:

ȧ =sign(Ω∗ − n)
3k2,∗MPl

Q∗M∗

(
R∗

a

)5

na

Ω̇∗ =− sign(Ω∗ − n)
3k2,∗
2I∗Q∗

M2
Pl

M∗(M∗ +MPl)

(
R∗

a

)3

n2

+
dΩ∗

dt m.braking
,

where

dΩ∗

dt m.braking
= − K

I∗M∗R2
∗
Ω3

∗

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

if Ω∗ < ωsat (7.0.1)

= − K

I∗M∗R2
∗
Ω2

∗ωsat

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

.if Ω∗ > ωsat (7.0.2)

(7.0.3)

Another point of uncertainty is the stellar rotation evolution. CoRoT-6 and

CoRoT-11 are F-stars. Therefore, the evolution of the CoRoT-6 and -11 system

is calculated with full magnetic braking (K = 2.7 × 1040 Nms), reduced magnetic

braking (K = 2.7 × 1039 Nms) and without magnetic braking (K = 0). This yields

three different evolution tracks for the stellar rotation, and for the semi major axes of

the planets. Contrary to the evolution of the planets previously discussed, the orbit

evolution in this chapter depends on when and if the state Ω∗ = n is reached. Luckily,

the stellar rotation period of fast rotating stars has small error bars: P∗ = 7± 1 days

for CoRoT-6 and 1.4 ± 0.3 days for CoRoT-11. Therefore, it is justified to use the

mean value as starting point of the stellar rotation evolution. See also Chapter F

for a model sensitivity analysis that shows that the general evolution will not change

drastically with different start points.

Figure 7.1 shows the evolution of the semi major axes of the planets CoRoT-11b

and CoRoT-6b with full, reduced and no magnetic braking in constant Q∗-formalism.
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Figure 7.2 shows the corresponding evolution of the stellar rotation of CoRoT-11 and

CoRoT-6.
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Figure 7.1: The tidal evolution of the semi major axis of the planets CoRoT-6b, and
-11b for the next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109. The horizontal lines

span the Roche zone. The horizontal line at a = 1R∗ marks the stellar surface. The
vertical lines show the remaining lifetime of the system. See Figure 5.1 for a more
detailed description).
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Figure 7.2: The tidal evolution of the stellar rotation of CoRoT-6, and -11 for the
next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109 (solid lines) with full, reduced and

without magnetic braking. The dashed-dotted lines show the evolution of the orbital
period of the corresponding close-in planet for comparison. The vertical lines show
the remaining lifetime of the system.



210

7.1 The tidal evolution of the CoRoT-6 system

The orbit of CoRoT-6b and the stellar rotation of its host star do not change signifi-

cantly under tidal friction for Q∗
k2,∗

= 106 − 109. On closer inspection (Figure 7.3), it

becomes apparent that the orbit of CoRoT-6b may change after ten billion years if

Q∗
k2,∗

= 105. In contrast to the cases discussed in previous sections, the orbit change

depends on the evolution of the relation Ω∗ − n in the near future which is closely

linked to the stellar rotation evolution (Figure 7.2).

Figure 7.3: The tidal evolution of the semi major axis of the planets CoRoT-6b for
the next 1.5× 1010 years and for Q∗

k2,∗
= 105− 109. The y-axis is this time set to linear

scale and spans from 0.04 to 0.1 AU.
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Full magnetic braking

For full magnetic braking, the stellar rotation is decelerated within the next three

hundred million years, crosses the Ω∗ − n = 0 state and is decelerated further. The

CoRoT-6 system then becomes a planetary system with a close-in planet around a

slowly rotating star with Ω∗ ≪ n, like the planetary systems discussed previously.

CoRoT-6b will then start to migrate towards the star, but will fail to reach the Roche

limit within the remaining lifetime.

Reduced magnetic braking

For reduced magnetic braking, the planet may migrate slightly away from the star

before the stellar rotation rate is decelerated into a state where again Ω∗ < n. After

that, the planet starts to migrate towards the star after ten billion years. Conse-

quently, the orbit will never near the Roche limit even after fifteen billion years.

No magnetic braking

Without magnetic braking, Ω∗ remains larger than n until tidal friction kicks in and

starts to synchronize the stellar rotation period and the planetary revolution period by

increasing both (See also Figure C.8). The planet will migrate only slightly outwards.

This will be discussed in more detail in Chapter 8.

Summary

Apparently, the early stellar rotation evolution may only be affected by magnetic

braking. Tidal friction may affect the stellar rotation only on longer timescales of

billion of years. Because the tidal friction evolution starts very late into the system’s

evolution time, |Ω∗ − n| ≈ const for the majority of the evolution and, therefore, the
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constant Q∗ assumption is a valid approach (See also Figure C.8).

In any case, even for Q∗
k2,∗

= 105 and for all magnetic braking scenarios, tidal

friction leaves the orbit virtually unchanged and stable during the remaining lifetime.

This confirms the conclusions drawn in Section 4.1, where the semi major axis of

CoRoT-6b a = 0.0855 AU places the planet in the stable region around an F-star for

all investigated Q∗
k2,∗

. Only the stellar rotation may be affected significantly within this

time, leading either to a moderate tidal spin-up in the presence of magnetic braking

or to a slight spin-down of the stellar rotation if no magnetic braking is acting on the

star.

7.2 The tidal evolution of the CoRoT-11 system

The CoRoT-11 system, on the other hand, is one system that is expected to evolve

strongly due to tidal friction within the remaining lifetime, as can already inferred

by looking at the tidal stability maps (Section 4.1), the Doodson constant and the

property factor (Section 4.1.1). Here, the close connection between the semi major

axis and the stellar rotation evolution is even more apparent.

Full magnetic braking

In the presence of full magnetic braking acting on the star, the planet hardly has

time to migrate outwards (Figure 7.1). Even for the smallest Q∗
k2,∗

the stellar rota-

tion is braked so efficiently that it reaches the state Ω∗ = n within 100 million years

(Figure 7.2). Only for Q∗
k2,∗

= 105 will the planet move noticeably outwards in this

brief time. After that, magnetic braking slows down the stellar rotation further. Ap-

parently, the early stellar rotation evolution is dominated again by magnetic braking

and not by tidal friction. Therefore, the planet will start to migrate towards the star
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again in the long run. apart from the first two hundred million years evolution time,

the tidal evolution of the CoRoT-11 system is similar to the evolution of the CoRoT-

systems with close-in planets around slowly rotating stars discussed in Section 5.1.2

(See also Figure C.8).

Reduced magnetic braking

For reduced magnetic braking acting on the star, the stellar rotation will be faster

than the planet’s revolution only for the the first 600 million years if Q∗
k2,∗

≥ 106 and

for the next one billion years if Q∗
k2,∗

≥ 105.

During the first evolution stage, while Ω∗ − n > 0 and Q∗
k2,∗

≤ 106, the planet will

migrate quite a distance outwards. Indeed, when the state Ω∗ = n is reached, the

distance between the planet and its star is very different for Q∗
k2,∗

= 105 − 107, and

Q∗
k2,∗

≥ 108.

For Q∗
k2,∗

≥ 108, the planet is approximately at the same position as today. If

Q∗
k2,∗

= 107, the semi major axis does not change initially but will decrease long after

the stellar rotation has slowed down beyond the Ω∗ = n state. Then, the planet will

migrate towards the star and will even reach the Roche zone within the next seven

billion years. This is, however, longer than the remaining stellar lifetime.

For Q∗
k2,∗

= 106, the planet will have migrated noticeably outwards until Ω∗ = n.

After the star is decelerated further by magnetic braking, CoRoT-11b will then start

to migrate towards the star again and will reach the Roche zone within the next two

billion years evolution time; well within the remaining lifetime of the system. For

Q∗
k2,∗

= 105 the planet will have migrated even farther outwards until Ω∗ = n. When

the stellar rotation is decelerated further, the planet will again ’turn around’ and

migrate towards the star. It will reach the Roche limit after more than three billion
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years, much later than compared to the Q∗
k2,∗

= 106-evolution track. Figure 7.4 shows

this in more detail.

Figure 7.4: The tidal evolution of the stellar rotation of CoRoT-11 with reduced
magnetic braking for the next three billion years and for Q∗

k2,∗
= 105 and 106.

In this detailed view, it is apparent that tidal friction is already efficient enough

during the next hundred million years of evolution time, if Q∗
k2,∗

= 105, and that it will

cause a noticeable additional spin-down of the stellar rotation. At the same time, the

planet’s semi major axis and the planet’s revolution period increase considerably due

to tidal friction. The Ω∗ − n = 0 state will be met at 1 billion years, later than for

Q∗
k2,∗

≥ 106. For Q∗
k2,∗

≥ 106, the stellar rotation evolution is driven mainly by magnetic

braking at this early state and the system will reach Ω∗ − n = 0 after 600 million

years. If Q∗
k2,∗

= 105, not only does CoRoT-11b show the strongest outwards migration

compared to larger Q∗
k2,∗

-values, it also has more time to migrate outwards. Therefore,

the planet’s semi major axis at the ’turning point’ Ω∗ − n = 0 is so large that tidal

friction is less efficient compared to the Q∗
k2,∗

= 106-scenario where the distance at
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the turning point lies much nearer towards the star. The strength of tidal friction

depends more strongly on the semi major axis a (with the power to five) than on Q∗
k2,∗

(linear dependency). This is the only situation found so far where the Q∗
k2,∗

= 106-semi

major axis evolution track overtakes the Q∗
k2,∗

= 105-semi major axis evolution track

during the planet’s migration towards the star. In any case, the stellar rotation rate

will never match the orbital revolution rate again, even when the planet enters the

Roche zone.

If Q∗
k2,∗

≥ 106 the stellar rotation decreases even due to reduced magnetic braking

very fast such that Ω∗ ≪ n before tidal friction can have a noticeable effect on the

system. The constant Q∗ assumption is again valid on timescales of billion of years

on which tidal friction acts. For Q∗
k2,∗

= 105, this assumption may be shaky for the first

billion years because tidal spin-up can not be neglected at this early stage. After that,

Ω∗ ≪ n is established and therefore, even in this case, the constant Q∗ assumption

can be assumed as valid at the later evolution phase at least (Figure C.8).

No magnetic braking

If no magnetic braking is acting on the star, the turning point Ω∗ − n = 0 is never

reached and |Ω∗−n| ≈ const (See also Figure C.8). The planet will migrate noticeably

outwards for the whole evolution time if Q∗
k2,∗

≤ 107. At the same time, the stellar

rotation is slowed down by a negligible amount due to tidal friction. Even after 15

billion years of evolution and for Q∗
k2,∗

= 105, the stellar rotation period changes from

about 1.5 days to 3 days. For higher values of Q∗
k2,∗

, tidal friction is too weak to

noticeably affect the system within the next 15 billion years.
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7.3 Orbital stability

While the orbit of CoRoT-6b is stable within the remaining lifetime, CoRoT-11b may

reach the Roche zone, depending on Q∗
k2,∗

and the strength of magnetic braking which

decelerates the stellar rotation.

Without magnetic braking, the planet will never come in the vicinity of the star

for any Q∗
k2,∗

. On the contrary, the planet may migrate outwards for small Q∗
k2,∗

≤ 107.

The stellar rotation can be regarded as unaltered for any Q∗
k2,∗

.

If magnetic braking is decelerating the star, the system will evolve within the

remaining lifetime into a configuration where a close-in extrasolar planet revolves

around a slowly rotating star (Ω∗ ≪ n), like the systems discussed in previous chap-

ters. In consequence, the planet may reach the Roche zone depending on Q∗
k2,∗

. For

reduced magnetic braking, it is safe to use the current semi major axis to investigate

orbital stability using equation (5.1.2). For full magnetic braking, equation (5.1.2)

can not be used because the evolution of the semi major axis depends on how far the

planet has migrated during the Ω∗ > n-state. To derive the stability limit, the orbital

evolution is simulated beginning with Q∗
k2,∗

= 106 and increasing Q∗
k2,∗

in steps of 100.2,

until the evolution track is found for which the planet enters the Roche zone exactly

at the end of the remaining lifetime. The results are listed in Table 7.1.

7.4 Results of the stellar rotation evolution

The fact that stellar rotation is decelerated by even reduced magnetic braking into a

slowly rotating state (Ω∗ ≪ n) shows that fast rotating host stars of close-in extrasolar

planets must either be very young or cannot experience magnetic braking. According

to Barnes (2003), only F stars may meet the last criterion. Furthermore, Bouvier et al.
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System Q∗
k2,∗ stable

K total lifetime age

[Nms] [Gyrs] [Gyrs]
CoRoT-6 stable for 105 − 1010 all K 8.7 2.5− 4
CoRoT-11 106.4/106.6/106.8 2.7× 1040 5.1 2± 1
CoRoT-11 stable if ≤ 105.4 or ≥ 106.4/

≤ 105 or ≥ 106.6/
≥ 106.8

2.7× 1039 5.1 2± 1

CoRoT-11 stable for 105 − 1010 0 5.1 2± 1

Table 7.1: Required Q∗
k2,∗ stable

for the planet’s orbit to stay outside the Roche limit

within the remaining lifetime of the star.

(1997) show that there are many stars that enter the main sequence as fast rotators.

In principle, there should be no shortage of fast rotating F-stars as exoplanet host-

stars with P∗ ≪ 3 days. Instead, even in the CoRoT planet subsample that contains

seven F-spectral type main sequence host stars, there are only two systems found for

which the F-star is clearly rotating faster than the planet revolves around it. And

there is only one star, CoRoT-11, with P∗ ≪ 3 days.

It may therefore be speculated, based on a very small subsample, that fast rotators

are under-represented in exoplanet host stars of spectral type F. Either these stars

lose angular momentum due to magnetic braking or there is another effect at play

braking such stars during the formation of the planetary system. Bouvier et al. (1997),

for example, suggest that a primordial planetary dust-disc may be locked with the

star and breaks the stellar rotation down during planet formation. If this is correct,

F-stars without a primordial dust-disc and without a planet may be fast rotators

whereas F-stars with planets should tend to be slower rotators.

The latter explanation, however, is contradicted by the existence of the CoRoT-11

planetary system with a very fast rotating star (P∗ = 1.4 days) and a massive plan-

etary companion. The first explanation, that angular momentum loss by magnetic
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braking is at play, is corroborated by the rotation rates and ages of the F-stars found

in the CoRoT-planetary system sample (Figure 6.9). CoRoT-11, the fastest rotation

F-star, is relatively young with an age of 2± 1 billion years. CoRoT-5, the oldest F-

star in this sample with an age of 5−8 billion years, is also the slowest rotating F-star

(P∗ > 30 days). The other F-stars, with ages between one to five billion years show

rotation periods between CoRoT-11’s and CoRoT-5’s. This is exactly the expected

age-rotation period-relation if such stars lose angular momentum due to magnetic

braking. At the same time, the rotation periods of F-stars are at all times - with the

exception of CoRoT-5 - noticeably smaller than that of other main sequence stars.

This would indicate reduced magnetic braking as pointed out by Barnes (2007). As

was shown in this chapter, reduced magnetic braking is sufficient to break the system

out of the Ω∗ > n state.

As a side effect, the investigation of tidal effects within close-in extrasolar systems

may shed light upon the efficiency of magnetic braking in higher mass main sequence

stars.

Furthermore, it was shown that the CoRoT-11 system does not settle at the

Ω∗ − n = 0-state and that the CoRoT-6 system may only settle at Ω∗ − n = 0 in

the absence of magnetic braking and at the end of the remaining lifetime. In the

next chapter, several CoRoT-systems will be investigated that may indeed settle on

a double synchronous state within the remaining stellar lifetime.



Chapter 8

Double synchronous states

The CoRoT-systems CoRoT-3, CoRoT-4 and CoRoT-15 may be in double syn-

chronous rotation (|Ω∗ − n| ≈ 0). CoRoT-6 may evolve into a double synchronous

state in the absence of magnetic braking (see Chapter 7), CoRoT-10 and 20 may

briefly establish a double synchronous state (see Section 6.2). Indeed, in all these

cases (except for CoRoT-10) the planetary revolution rate n is very similar to the

stellar rotation rate Ω∗ (See Section 1.4, Table 1.4). Therefore, the possibility of tidal

equilibrium states warrants in-depth investigation.

8.1 The stability of the double synchronous CoRoT

systems

In the previous chapters it was shown that the evolution of the stellar rotation is driven

by two mechanisms that in most cases counteract each other: Tidal friction decreases

the planet’s orbit and consequently spins up the stellar rotation, in particular for

very small Q∗
k2,∗

≈ 105 − 106. Magnetic braking, on the other hand, reduces the stellar

rotation.

While tidal friction is found to be very efficient in spinning up the star, in most

219
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cases, it is not efficient enough to actually catch up with the planetary revolution rate

n that will usually be larger than the stellar rotation rate Ω∗.

What is the difference between the CoRoT-systems in apparent double synchronous

rotation and other systems? With the exception of CoRoT-4, the main difference lies

in the mass of the companions: CoRoT-3b and CoRoT-15b are the most massive

CoRoT planetary companions (Table 1.3). CoRoT-6b, the planet that may evolve

into a double synchronous rotation at the end of the system’s lifetime, is with a mass

of about 3MJup also relatively massive. The orbits of massive planets and brown

dwarfs should contain more angular momentum than the orbits of the less close-in

Super-Earths, for example.

Indeed, Hut (1980) showed that energy and angular momentum considerations are

necessary to evaluate the stability of double synchronous states. See section 2.9 for

the mathematical derivation.

’Binary systems’ can end up in a double synchronous rotation state only if their

total angular momentum, Ltot, exceeds a critical value Ltot,crit (2.9.10):

Ltot,crit = 4

[
G2

27

(
I∗M∗R

2
∗ + IPlMPlR

2
P

) M3
∗M

3
Pl

M∗ +MPl

]1/4
. (8.1.1)

Furthermore, this state can only be stable if the orbital angular momentum, Lorb,

exceeds a critical value Lorb,crit (2.9.14):

Lorb,crit = 3
(
I∗M∗R

2
∗ + IPlMPlR

2
∗
)
n. (8.1.2)

Figure (8.1) shows the total angular momentum of each CoRoT system in comparison

with the total critical angular momentum Ltot,crit and the orbital angular momentum

of each CoRoT planet in comparison with the critical value Lorb,crit.



221

Figure 8.1: Comparison of the total angular momentum, Ltot, of the CoRoT planets
with the critical angular momentum, Ltot,crit, and comparison of the orbital angular
momentum of the CoRoT systems, Lorb, with the critical orbital angular momentum
Lorb. Top: The ratio Ltot over Ltot,crit for each CoRoT system. Bottom: The ratio of
Lorb and Lorb,crit for each CoRoT system.
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The following eight CoRoT-systems have a total angular momentum which allows

the existence of a double synchronous state: CoRoT-3, CoRoT-4, CoRoT-6, CoRoT-

9, CoRoT-10, CoRoT-11, CoRoT-15 and CoRoT-20. Such a state, however, is only

stable if the orbital angular momenta of the planets exceed the critical value Lorb,crit.

Indeed, CoRoT-4 and CoRoT-11 fail this test. The evolution of CoRoT-11 was

investigated in the previous chapter, and the detailed simulation of the tidal evolution

of this system shows that the Ω∗ = n is only a transient state. In the end, the planet

will migrate towards the host star and may be unstable under tidal friction.

The ’false’ double synchronous case of CoRoT-4

Why are the orbital period of CoRoT-4b and the rotation period of CoRoT-4 al-

most identical, when the CoRoT-4 system fails the angular momentum requirement

for achieving a stable double synchronous state? Furthermore, it was found in Sec-

tion 4.1.1 that the Doodson constant of CoRoT-4b is one of the smallest among the

CoRoT planets. In addition, its orbit is in a region of tidal stability for Q∗
k2,∗

= 105−109

when considering the tidal stability map. Therefore, the orbit and stellar rotation

are not expected to be affected strongly within the complete stellar lifetime. Indeed,

the computation of the tidal evolution of the CoRoT-4 system confirms this result

(Figure B.1). Even if a stable double synchronous state would be possible for the

CoRoT-4 system, it is hard to understand how the system should evolve into such

state under tidal friction within its lifetime.

Another explanation is needed for the apparent synchronicity of stellar rotation

and planetary revolution within the CoRoT-4 system: It may just be coincidence

to find a planet around such a star with just about the ’correct’ revolution period.

The stellar rotation of CoRoT-4 of nine days is a typical value for F-stars (See for
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instance Bouvier et al. (1997) or Barnes (2007)). The stellar rotation is not a very

precisely determined property and therefore might be ’off’ within limits of uncertainty

( P∗ = 9.2+1.7
−1.3 days and Porb = 9.20205± 0.00037 days).

’True’ potentially double synchronous systems

The following six CoRoT-systems may end up in a stable double synchronous state

due to angular momentum considerations: CoRoT-3, CoRoT-6, CoRoT-9, CoRoT-10,

CoRoT-15, and CoRoT-20.

CoRoT-6b, however, is relatively far away from its star and was shown to end

up in a double synchronous state very late only in the absence of magnetic braking

and if Q∗
k2,∗

= 105 (Chapter 7, Figure 7.2). Interestingly, CoRoT-6b’s semi major axis

(a = 0.0855 AU) is similar to that of CoRoT-4b (a = 0.09 AU), which also orbits an

F-star. But CoRoT-6b (MPl = 2.96MJup) is four times as massive than CoRoT-4

(MPl = 0.72MJup) and, consequently, stellar tidal friction acting in the CoRoT-6

system is four times as efficient than stellar tidal friction acting in the CoRoT-4

system.

CoRoT-9b (a = 0.407 AU) is even farther away from its star and tidal forces

are too weak to force the systems into double synchronous states. Indeed, the stellar

rotation and orbital period are not similar and will not converge within the remaining

lifetime of the systems.

In the end, only four CoRoT-systems remain that may be ’true’ examples of

double synchronous tidal equilibrium states within the lifetime of the star: CoRoT-3,

CoRoT-5, CoRoT-10 and CoRoT-20. These will be discussed in more detail in the

following sections.

The examples of the systems CoRoT-6, and CoRoT-9 illustrate that the energy
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and angular momentum considerations of Hut (1980) ’only’ allow to draw the conclu-

sion that such systems may end up in principle in stable double synchronous states.

If in reality a double synchronous state is achieved in reasonable time, i.e., within

the lifetime of the system, is another matter entirely that depends on the strength of

stellar tidal friction (and planetary tidal friction for eccentric orbits), and also on the

strength of magnetic braking, in the case of the CoRoT-6 system,.

8.2 Constraints on Q∗
k2,∗

to achieve a double syn-

chronous state in the presence of magnetic brak-

ing

To force a star into corotation and to maintain this double synchronous orbit, stellar

tidal friction has to act efficiently. This depends on Q∗
k2,∗

. It will be shown that

planetary tidal friction may help to establish a double synchronous state but, in the

long run, planetary tidal friction will not maintain the double synchronous orbit as

the orbital eccentricity is forced rapidly towards zero.

In the following, the evolution of such a system around the double synchronous

rotation state (Ω∗−n ≈ 0 ) is investigated in the presence of at least reduced magnetic

braking.

Several justified assumptions to simplify the calculations are:

• The tidal equilibrium state is stable; that is, the stability criteria discussed in

the previous section are fulfilled.

• The system is assumed to be double synchronous if Ω∗ = n is achieved, because

the planetary rotation is already synchronized with the planets revolution (Sec-

tion 3.2).
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• Once the system is in double synchronous rotation it remains there.

• The orbit is circular; indeed it will be shown that the potential double syn-

chronous systems either have circular orbits or evolve quickly into circular or-

bits.

• In consequence, the tidal frequency ω = 2|Ω∗ − n| ≈ 0 during the whole calcu-

lation.

• Therefore, the constant Q∗ assumption that requires the tidal frequency or

tidal lag angle to be approximately constant (see Section 2.5), can be used to

investigate the further evolution.

It should be noted, however, that the constantQ∗ required for ω ≈ 0 in this chapter

can, and in fact should, differ from the constant Q∗ required for ω = 2|Ω∗ − n| ≈ 2n

in previous sections for planetary systems with slowly rotating stars where Ω∗ ≪ n.

This should be kept in mind during the discussion of the results.

The systems evolution can be modeled using equations derived in Section 2.6 and

2.10 by:

da

dt
= sign (Ω∗ − n)

3k2,∗
Q∗

MPl

M∗

(
R∗

a

)5

na (8.2.1)

dΩ∗

dt
=− sign (Ω∗ − n)

3k2,∗
2 ∗ I∗Q∗

M2
Pl

M∗(M∗ +MPl)

(
R∗

a

)3

n2 (8.2.2)

− K

I∗M∗R∗2
Ω3

∗

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

.
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In the following, the constant terms are expressed as follows to simplify the equa-

tions:

A =
3k2,∗
Q∗

MPl

M∗
R5

∗ (8.2.3)

B =
3k2,∗

2 ∗ I∗Q∗

M2
Pl

M∗(M∗ +MPl)
R3

∗ (8.2.4)

C =
K

I∗M∗R∗2

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

(8.2.5)

B′ =
B

G(MPl +M∗)

Then the equations governing the evolution of the system shortly before entering

the doubly synchronous state can be written as:

da

dt
= sign (Ω∗ − n)A

n

a4
(8.2.6)

dΩ∗

dt
= −sign (Ω∗ − n)B

n2

a3
− CΩ3

∗ (8.2.7)

= −sign (Ω∗ − n)B′n4 − CΩ3
∗, (8.2.8)

where in addition Kepler’s third law a3 = G(M∗ +MPl)/n
2 is used to express the

equation describing Ω̇∗ in terms of n and Ω∗ instead of a, n and Ω∗.

Furthermore, it is advisable to describe the situation with respect to the fictive

double synchronous orbit for any given Ω∗ (Figure 8.2). This is the orbit for which

the mean motion is exactly n = Ω∗. If the planet is revolving faster around the star

than the star rotates about its axis of symmetry, n > Ω∗, and the planet’s orbit

would lie inside the synchronous orbit. After all, a3 = G(M∗ +MPl)/n
2 according

to Kepler’s law. Such a configuration is sometimes called a subsynchronous orbit in

the literature (Lanza (2010) and Levrard et al. (2009), for example). If n < Ω∗, the

planet’s orbit lies outside the double synchronous orbit.
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Figure 8.2: The orbit of a planet around a star with respect to the double synchronous
orbit (n = Ω∗, solid line). If n < Ω∗, the orbit lies outside the double synchronous
orbit (dashed line). If n > Ω∗, the orbit lies inside the double synchronous orbit
(dotted line)

In the following, the evolution into and around the double synchronous state is

investigated in several steps:

Step 0: One time step before double synchronicity As a start point of inves-

tigation, a situation was chosen where the star rotates slower (Ω∗,0) than a

close-in planet with semi major axis a0 and mean motion n0 revolves around it.

Consequently, Ω∗,0 < n0 shortly before entering double synchronous rotation.

The orbit lies inside the double synchronous orbit for which ndoub,0 = Ω∗,0.
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This initial situation is selected because it is more difficult to achieve the double

synchronous state from inside the double synchronous orbit: tidal friction spins

up the star and forces the star and planet into corotation. Magnetic braking, on

the other hand, decelerates the star away from the double synchronous rotation

state1. Therefore sign (Ω∗ − n) = −1. In this case, the following set of equations

describe the evolution of the system under stellar tidal friction:

da

dt
= −An0

a40
(8.2.9)

dΩ∗

dt
= B′n4

0 − CΩ3
∗,0. (8.2.10)

Step 1: Double synchronous orbit achieved After a time step δt, the semi ma-

jor axis a1 and stellar rotation rate Ω∗,1 are:

a1 = a0 +
da

dt
δt

Ω∗,1 = Ω∗,0 +
dΩ∗

dt
δt.

or

a1 = a0 − A
n0

a40
δt

Ω∗,1 = Ω∗,0 + (B′n4
0 − CΩ3

∗,0)δt.

This new orbit should be double synchronous: Ω∗,1 = n1 = ndoub,1, with n1 =√
G(MPl +M∗)/a31. This is shown in Figure 8.3. The new planetary orbit is

1If Ω∗,0 > n0 is chosen as initial situation, both, magnetic braking and tidal friction, would
decelerate the stellar rotation. From this starting point, the double synchronous state is easier to
achieve.
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inside the old orbit, but the new double synchronous orbit should be inside the

old double synchronous orbit as well.

Figure 8.3: Evolution of the subsynchronous orbit n0 > Ω∗,0 represented by the dotted
blue circle with respect to the double synchronous orbit represented by the solid blue
circle into a double synchronous orbit n1 = Ω∗,1 represented by the red solid circle.

Therefore, magnetic braking has to be less efficient than tidal friction to ensure

that the stellar rotation rate increases.

The first condition therefore is:

Ω̇∗,0 > 0. (8.2.11)

If this condition is not fulfilled, the planet’s orbit and the double synchronous
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orbit will evolve away from each other (Figure 8.4).

The condition above can also be expressed as:

B′n4
0 − CΩ3

∗,0 > 0. (8.2.12)

It is at this point safe to assume that n0 and Ω∗,0 are already very similar just

before entering the double synchronous state: n0 ≈ Ω∗,0. Therefore the relation

above reduces to

B′n0 > C. (8.2.13)

Or fully expressed and solved for Q∗
k2,∗

:

3k2,∗
2I∗Q∗

M2
Pl

GM∗(MPl +M∗)2
R3

∗n0 >
K

I∗M∗R2
∗

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

(8.2.14)

3

2

k2,∗
Q∗

M2
Pl

G(MPl +M∗)2
R5

∗n0 > K

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

(8.2.15)

Q∗

k2,∗
< n0

3

2

M2
Pl

G(MPl +M∗)2
R5

∗
1

K

(
R∗

RSun

)−1/2(
M∗

MSun

)1/2

(8.2.16)

This is the upper limit of Q∗
k2,∗

required to force a planetary system in double

synchronous rotation despite magnetic braking. It depends on the planetary

revolution rate n or on a−3/2 (using Kepler’s third law). The larger the semi

major axis and the lower n is, the lower is the required Q∗
k2,∗

for establishing

double synchronous rotation.

Up to now, it was only made sure that the double synchronous orbit decreases

as well as the planet’s orbit. Close inspection of Figure 8.3 makes another
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Figure 8.4: Evolution of a subsynchronous orbit n0 > Ω∗,0 represented by the dotted
blue circle with respect to the double synchronous orbit represented by the solid blue
circle if magnetic braking is more efficient than tidal friction. In the next time step, the
planet’s orbit would shrink (dotted red circle) but the stellar rotation would decrease
and lead to a double synchronous orbit with even larger radius, where n1 = Ω∗,1,
represented by the red solid circle.
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condition apparent: The double synchronous orbit must decrease faster than

the planet’s orbit for the two to meet.

ṅdoub,0 = Ω̇∗,0 > ṅ0. (8.2.17)

If C = 0, that is, if no magnetic braking is counteracting tidal friction, equa-

tion (8.2.17) is equivalent to equation (8.1.2). This is proven in detail in Chap-

ter G2. Without magnetic braking, therefore the system has no problem to

achieve a double synchronous state, as long as the orbital angular momentum

exceeds the critical value Lorb,crit.

If C > 0, the orbital angular momentum has not only to exceed Lorb,crit but

the sum of Lorb,crit + ∆Lmagnetic braking , where ∆Lmagnetic braking is the total an-

gular momentum that magnetic braking removes from the system during the

stellar lifetime. Incidently, in a subsequent section there will be investigated a

CoRoT system that fulfills the requirement Lorb > Lorb,crit but fails the stronger

requirement Lorb > Lorb,crit +∆Lmagnetic braking .

In summary, two requirements were identified that must be fulfilled to achieve

a double synchronous state even in the presence of magnetic braking. Q∗
k2,∗

must be

lower than the upper limit defined by 8.2.16. In addition to the requirements given in

the previous section for the orbital and total angular momentum (equations (8.1.1)

and (8.1.2)), the orbital angular momentum has to exceed: Lorb,crit+∆Lmagnetic braking

to achieve a double synchronous state.

Whether the system ends up in a double synchronous state in reasonable time - on

time scales of several billion years - is another matter entirely and will be investigated

in a subsequent section.

2It should be noted that this proof is original work and not adopted from other authors.
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8.3 Long-term stability of double synchronous or-

bits in the presence of magnetic braking

Can tidal interactions maintain this state in the future despite magnetic braking,

once the double rotation state is established? To answer this question, the evolution

of the system is investigated starting with the system in double synchronous rotation

(Figure 8.5):

Step 2 The system’s parameters at this point are:

a1 = (G(MPl +M∗)/n
2
1)

1/3

Ω∗,1 = n1.

Therefore, from equations 8.2.6 and 8.2.8 the following set of equations govern

the further evolution:

da

dt 1
= 0

dΩ∗

dt 1
= −Cn3

1.

In the presence of magnetic braking, Ω∗ always decreases once the system is

in a double synchronous state. This is the same as stating that the double

synchronous orbit is forced outside of the the planet’s orbit by magnetic braking.

Step 3 = Step 0 The system is in the following configuration

a2 = a1

Ω∗,2 > Ω∗,1 = n1.

The system is again in a subsynchronous rotation state as described in the

previous section as ’step 0’ and depicted in Figure 8.3.
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Figure 8.5: Evolution of double synchronous orbit n1 = Ω∗,1 represented by the solid
blue circle in the presence of magnetic braking. The stellar rotation becomes slower
and as a consequence the radius of the new double synchronous orbit is larger than
the radius of the previous one (solid red circle), while the planet’s orbit (dotted red
circle) remains at its position. This is the same situation than depicted in Figure 8.3.
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Therefore, the same requirements than given in the previous section have to be

met to achieve double synchronous rotation, but from an orbit closer to the star

than compared to the orbit at ’step 0’. If the stellar rotation and the planet’s spin

can not be synchronized again, the stellar rotation remains slower than the planet’s

revolution and Ω∗ ≤ n. The system would become another case of a planet around a

slowly rotating star with an evolution as described in Sections 5 and 6.

The first criterion for establishing double synchronicity is that tidal friction is

more efficient than magnetic braking (equation (8.2.16)):

Q∗

k2,∗
< n1

3

2

M2
Pl

G(MPl +M∗)2
R5

∗
1

K

(
R∗

RSun

)−1/2(
M∗

MSun

)1/2

Q∗

k2,∗
< n1 const.

In the previous section it was already established that Q∗
k2,∗

< n0 const had to

be fulfilled to establish a double synchronous state in the first place. This double

synchronous orbit is inside the previous double synchronous orbit therefore n1 > n0

and the following relation holds as well:

Q∗

k2,∗
< n0 const < n1 const. (8.3.1)

Therefore, once a double synchronous orbit is established, stellar tidal friction

will always be stronger than magnetic braking, if Q∗
k2,∗

does not change drastically

but remains more or less constant. This is not surprising because, as stated time

and again, stellar tidal friction depends strongly on the orbit’s semi major axis. In

consequence, a double synchronous orbit with smaller radius than the previous one is

achieved in the next timestep. In the next timestep, the star loses angular momentum

again by magnetic braking and the new double synchronous orbit for this rotation

state will be outside the planet’s orbit. Subsequently, the system is forced by tidal
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friction on a double synchronous orbit with an even smaller radius and so forth and

so forth (Figure 8.6).

This creates the strange situation of a system in or near double synchronous ro-

tation which is not stable. The orbit still decays as the stellar rotation is ’dragged

along’ and always kept close to the orbital mean motion. Therefore, a planetary sys-

tem cannot be regarded as tidally stable if Ω∗ ≈ n, unless stellar angular momentum

loss by magnetic braking is investigated.

Another point of concern is that the system loses orbital angular momentum as

well as the double synchronous orbit decays, therefore Lorb > Lorb,crit+∆Lmagnetic braking

may at one point not be fulfilled anymore as the double synchronous orbit moves

closer and closer to the star. Should that happen, synchronicity can not be reestab-

lished again and the double synchronous orbit will lag behind the planet’s orbit: the

planetary system will become unstable.

In any case, in the presence of magnetic braking a double synchronous orbit may

be unstable.

8.3.1 The possible decay of the double synchronous orbit due
to magnetic braking

A step-wise calculation of the decay of the double synchronous orbit as described

above would be very cumbersome and computationally challenging. In the following,

it will be investigated how this can be achieved more efficiently.

The key to a better description is again the angular momentum:

Step 1 The system is in double synchronous rotation. The total angular momentum

of a double synchronous system can be expressed in terms of orbital revolution

rate ndoub,1. Because Ω∗,1 = n1 and Kepler’s third law is used to replace a1 with
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Figure 8.6: The decay of a double synchronous orbit (red circles) in the presence of
magnetic braking starting with a subsynchronous planetary orbit (the blue dotted
circle is the planet’s orbit, the blue solid line is the ’fictive’ double synchronous orbit
that lies outside the planet’s orbit). In the first step, the planetary and double syn-
chronous orbit converge to a new double synchronous orbit with smaller radius(red).
In the next step, the stellar rotation decreases and for this state the ’fictive’ double
synchronous orbit (blue) would lie outside the ’old’ double synchronous state where
the planet is still orbiting the star. In the next step, the planet’s and double syn-
chronous orbit converge into a new double synchronous orbit with even smaller radius
etc. In consequence, the planetary orbit continually shrinks. The double synchronous
orbit alternatively shrinks and expands, as indicated by the black arrows.
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n1 = ndoub,1:

L1 = Ltot = I∗M∗R
2
∗ndoub,1 +

MPlM∗

MPl +M∗
µ2/3n

−1/3
doub,1, (8.3.2)

where µ = G(MPl +M∗).

Step 2 The star loses angular momentum δL1 due to magnetic braking according to

equation (2.10.4):

L2 = L1 − δL1 = I∗M∗R
2
∗Ω∗,2 +

MPlM∗

MPl +M∗
µ2/3n

−1/3
2 , (8.3.3)

where Ω∗,2 < n2 and n2 = n1 = ndoub,1 as explained in the previous section.

Step 3 Now tidal friction acts to synchronize the stellar rotation and orbital revolu-

tion rate again, but only if tidal friction is more efficient than magnetic braking

(Ω̇mag.braking < Ω̇tidalfriction). This is a condition that may safely be regarded as

fulfilled as was proven in previous sections (equation 8.2.11). This is equivalent

to saying that from the point of view of magnetic braking, tidal friction acts

’instantly’ to reestablish a new double synchronous state. Therefore, there will

only be a transfer of angular momentum from the orbit to the star during the

synchronization:

L3 ≈ L2 = I∗M∗R
2
∗ndoub,2 +

MPlM∗

MPl +M∗
µ2/3n

−1/3
doub,2. (8.3.4)

The system will settle again on a new double synchronous orbit that lies beneath

the previous one (ndoub,2 < ndoub,1).

Because the total amount of angular momentum loss does not change from step

2 to step 3, the amount of angular momentum lost by magnetic braking can be
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calculated using equation (2.10.4). The equation only depends on constants and

ndoub,1. Therefore, the new double synchronous rotation rate ndouble,2 can be calculated

by going from step 0 directly to step 2.

Therefore, the decay of the double synchronous orbit in the presence of magnetic

braking can be modeled using equation 2.10.4 and setting it equal to dLtot

dt
:

dJ

dt
= I∗M∗R

2
∗ṅdoub +

MPlM∗

MPl +M∗
µ2/31

3
n
−4/3
doub ṅdoub. (8.3.5)

Solving for ṅdoub gives:

dndoub

dt
=

dΩ∗

dt
=

dJ
dt

C∗ +Bn
−4/3
doub

, (8.3.6)

where C∗ = I∗M∗R
2
∗ is the stellar moment of inertia and B = 1

3
MPlM∗
MPl+M∗

µ2/3.

As a reminder, the angular momentum loss due to magnetic braking, dJ
dt
, is once

again shown at full length:

dJ

dt Ω∗
=−KΩ3

∗

(
R∗

RSun

)0.5(
M∗

MSun

)−0.5

for Ω∗ < ωsat (8.3.7)

dJ

dt Ω∗
=−KΩ∗ω

2
sat

(
R∗

RSun

)0.5(
M∗

MSun

)−0.5

for Ω∗ ≥ ωsat,

where K is the phenomenologically derived scaling constant (K = 2.7× 1040 Nms

for low-mass main sequence stars).

Using equation (8.3.6), the evolution of the systems CoRoT-3 and CoRoT-15 can

be calculated (Figures 8.7 and 8.8), as long as the orbital and total angular momentum

fulfill equations (8.1.2) and (8.1.1).
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8.4 Tidal evolution of the CoRoT-3 and CoRoT-15

system

The tidal evolution of CoRoT-3 and CoRoT-15 systems are modeled using Equa-

tions (5.1.1) and (6.1.1), as long as Ω∗ < n. To account for the uncertainty in mag-

netic braking in the F-stars CoRoT-3 and CoRoT-15, the semi major axis and stellar

rotation evolution is simulated with full, reduced and without magnetic braking (See

also Section 5.1.2) by using different scaling factors K:

• K = 2.7×1040 Nms for ’full magnetic braking’, adopting the same scaling factor

as for low mass main sequence stars,

• K = 2.7× 1039 Nms for ’reduced magnetic braking’,

• K = 0 for a model without magnetic braking.

As soon as a state Ω∗ = n is reached, the further evolution is modeled using

Equation 8.3.6 as a ’short cut’ saving computation time.

Figures 8.7 and 8.8 show the evolution of the planet’s orbit and the stellar rotation

for the next 15 billion years. Figures 8.9 and 8.10 show a close-up of the first billion

years of evolution. This allows to better identify the conditions for which the CoRoT-

3 and CoRoT-15 system may enter the double synchronous state.(See also Figures C.9

for the Ω∗−n evolution). The evolution was modeled with the average stellar rotation

period as given in Table 1.4. It should be considered that a variation of the stellar

rotation period at the start of the computations may change the semi major axis and

stellar rotation evolution because the Ω∗ = n state may be met earlier or later than

computed here. This does not affect, however, the qualitative results derived in terms

of magnetic braking and Q∗
k2,∗

(See also Chapter F).
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Figure 8.7: The tidal evolution of the semi major axis of the brown dwarfs CoRoT-3b,
and -15b for the next 1.5× 1010 years and for Q∗

k2,∗
= 105 − 109. The horizontal lines

span the Roche zone. The horizontal line at a = 1R∗ marks the stellar surface. The
vertical lines show the remaining lifetime of the system.
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Figure 8.8: The tidal evolution of the stellar rotation of CoRoT-3, and -15 for the
next 1.5 × 1010 years and for Q∗

k2,∗
= 105 − 109 (solid lines) with full, reduced and

without magnetic braking. The dashed-dotted lines show the evolution of the orbital
period of the corresponding close-in planet for comparison. The vertical lines show
the remaining lifetime of the system.
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Figure 8.9: Close-up of the tidal evolution of the semi major axis of the Brown Dwarfs
CoRoT-3b, and -15b for the next one billion years and for Q∗

k2,∗
= 105 − 109.
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Figure 8.10: Close-up of the tidal evolution of the stellar rotation of CoRoT-3, and
-15 for the next one billion years and for Q∗

k2,∗
= 105−109 (solid lines) with full, reduced

and without magnetic braking. The dashed-dotted lines show the evolution of the
orbital period of the corresponding close-in planet for comparison.
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The CoRoT-3 system, full magnetic braking

With full magnetic braking, the CoRoT-3-system will not reach the double syn-

chronous state if Q∗
k2,∗

≥ 108, although the system is near the double synchronous

Ω∗ = n state and although the system in principle fulfills the energy and angular

momentum criteria for a stable double synchronous state. But magnetic braking is

stronger than tidal friction and slows the stellar rotation efficiently away from the

near-double synchronous state. For Q∗
k2,∗

= 108, tidal friction appears to catch up in

strength with magnetic braking after several billion years and begins to dominate the

stellar rotation and semi major axis evolution. But even then it will not come near

the double synchronous state at the end of the evolution time, that is, after 15 billion

years. If Q∗
k2,∗

= 107, tidal friction will ’win’ after two billion years and force the system

in double synchronous rotation. After that, the system will continue to lose angular

momentum due to magnetic braking. As a consequence, the double synchronous or-

bit will decay and will even reach the Roche limit very quickly one hundred million

years later. In principle, the orbit is already on its way towards the Roche limit when

stellar rotation catches up with the planet’s revolution rate.

If Q∗
k2,∗

≤ 106, the double synchronous state will be reached within the next few ten

million years. After that, the double synchronous orbit will decay. As shown in the

section above, once inside the double synchronous state, the decay will not depend

on Q∗
k2,∗

but only on the strength of magnetic braking and the revolution rate of the

double synchronous orbit ndoub. Because the double synchronous revolution rate that

is reached for Q∗
k2,∗

= 105 and Q∗
k2,∗

= 106 is almost the same, the further evolution is

virtually the same for both Q∗
k2,∗

-values.
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The CoRoT-3 system, reduced magnetic braking

With reduced magnetic braking, the system will reach the double synchronous state

already after a few hundred million years for Q∗
k2,∗

≤ 107. The evolution of this double

synchronous state is same for very Q∗
k2,∗

≤ 107. Consequently, the decay of the double

synchronous orbit will be identical. The decay will take, however, longer than for full

magnetic braking. The orbit will reach the Roche zone after ca. six billion years. For

Q∗
k2,∗

≥ 108, even for reduced magnetic braking, tidal friction is still not strong enough

to force the system into corotation.

The CoRoT-3 system, no magnetic braking

In the absence of magnetic braking, the orbit will not decrease any further once the

double synchronous state is reached (Figure 8.11). That will happen within the next

ten million years if Q∗
k2,∗

= 105, the next twenty million years if Q∗
k2,∗

= 106, within

the next two hundred million years if Q∗
k2,∗

= 107 and ca. after two billion years if

Q∗
k2,∗

= 108. Even for Q∗
k2,∗

= 109 the system may gradually evolve towards the double

synchronous state over billions of years, but not quite reach it after 15 billion years.

The CoRoT-15 system, full magnetic braking

The CoRoT-15 system will evolve into a double synchronous state within the next

few ten million years if Q∗
k2,∗

≤ 107 in the presence of full magnetic braking. Even for

Q∗
k2,∗

= 108 the system will be in double synchronous rotation after two billion years.

For Q∗
k2,∗

= 109, tidal friction will have compensated magnetic braking after three

billion years and spin-up the star. The system will not reach the double synchronous

state, however, within the evolution time of 15 billion years.
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Figure 8.11: Close-up of the tidal evolution of the semi major axis of the Brown
Dwarfs CoRoT-3b for the next 15 billion years and Q∗

k2,∗
= 105 − 109. Vertical lines

denote the minimum, average and maximum remaining lifetime.

The CoRoT-15 system, reduced magnetic braking

In the presence of reduced magnetic braking the system will still evolve very fast

(within the next few ten million years) towards the double synchronous state if Q∗
k2,∗

≤

107. For Q∗
k2,∗

= 108, the system will be caught within the next few hundred million

years in a double synchronous state already. The subsequent decay of the double

synchronous orbit, on the other hand, will take much longer than with full magnetic

braking. The orbit may reach the Roche zone after ca. eight billion years, which is

probably longer than the remaining lifetime. Indeed, within the remaining lifetime,

the double synchronous orbit will only migrate moderately. If Q∗
k2,∗

= 109, the system

will hardly evolve. A slow evolution towards a double synchronous state can be seen

after eight billion years. The system, however, will not have reached the double
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synchronous state at the end of the simulation time.

The CoRoT-15 system, no magnetic braking

Without magnetic braking, the system will still evolve within a few ten million years

towards the double synchronous state for Q∗
k2,∗

≤ 107. Apparently, tidal friction is

so efficient for these Q∗
k2,∗

-values that magnetic braking hardly changes anything. If

Q∗
k2,∗

= 108, the system may be a little earlier in a double synchronous state than with

reduced magnetic braking. The difference is, however, negligible. If Q∗
k2,∗

= 109, the

system may reach the double synchronous state as well and even within the remaining

lifetime of the star. Once the system is in double synchronous rotation, it will stay

there and will not evolve further. As was shown in Section 2.9, the double synchronous

state is stable if the angular and energy criteria are fulfilled.

Summary of the results of the CoRoT-3 and CoRoT-15 evolution

The lessons learned from these scenarios are:

a Only relatively massive substellar companions i.e. Brown Dwarfs on close orbit are

capable to spin-up the star sufficiently within the remaining lifetime of the star

to achieve a double synchronous state from state Ω∗ < n.

b To achieve a double synchronous state within the remaining lifetime Q∗
k2,∗

≤ 107 for

the CoRoT-3 system, and Q∗
k2,∗

≤ 108 for the CoRoT-15 system is required.

c If the system has been forced by tidal friction into a double synchronous state, the

double synchronous orbit will decay in the presence of magnetic braking, in any

case, and may even reach the Roche limit within the remaining lifetime for full

magnetic braking.
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d The orbital decay may take several billion years for reduced magnetic braking,

which is, however, too long to lead to significant decay within the remaining

stellar lifetime. Therefore, the double synchronous orbits of CoRoT-3b and

CoRoT-15b can be regarded as stable in the reduced magnetic braking scenario.

e Without magnetic braking, a double synchronous system will be stable and the

planet will be ’safe’ from migrating towards the star. Furthermore, a rather

massive companion (MPl ≈ 60MJup) like CoRoT-15b will evolve within the

remaining stellar lifetime into a double synchronous state for every Q∗
k2,∗

= 105−

109.

f In any case, a double synchronous orbit is more stable than the ’normal’ non-

synchronous orbit if Q∗
k2,∗

≤ 106. Even in the presence of full magnetic braking,

the decay rate of the double synchronous orbit is much smaller than the decay

rate of the non-synchronous planetary orbit if Q∗
k2,∗

≤ 106.

8.4.1 Why will CoRoT-20 not be able to maintain a stable
double synchronous state?

In section 2.9, the CoRoT-20 system was identified as one of three systems that may

end up in a stable double synchronous state configuration. Its tidal evolution was

already investigated in Sections 5.2 and 6.2 as an example of a potentially unstable

system where the planet may reach the Roche zone within the lifetime of the start.

Figures C.6 and C.7 suggest that for Q∗
k2,∗

= 105 and QPl

k2,P l
≥ 105, the CoRoT-20

system may come very close to Ω∗ = n at an evolution time of 90 million years for

a very brief time. Still, it can safely be concluded that the system never settles at a

double synchronous orbit.
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Decay of total angular momentum by magnetic braking

This can be explained by looking in more detail into the angular momentum evolution.

The system’s total angular momentum currently exceeds the critical value, but only

barely (Figure 8.1).

The critical total angular momentum, Ltot,crit, for the CoRoT-20 system is:

Ltot,crit = 4

[
G2

27

(
I∗M∗R

2
∗ + IPlMPR

2
Pl

) M3
∗M

3
Pl

M∗ +MPl

]1/4
= 9.74× 1042kg

m2

s
. (8.4.1)

Currently, the total angular momentum, Ltot of the CoRoT-30 system is the sum of

the orbital angular momentum and the angular momenta of the rotation of CoRoT-20

and CoRoT-20b:

Ltot = Lorb + Lrot,P l + Lrot,∗

=
MPlM∗

MPlM∗
n2a

√
1− e2 +MPl ·R2

Pl · IPlΩPl +M∗ +R2
∗ ∗ I∗Ω∗

=
[
9.5× 1042 + 1.5× 1038 + 5.05× 1041

]
kg

m2

s

= 1× 1043kg
m2

s
(8.4.2)

It was confirmed again that, even for rather massive exoplanets, the angular mo-

mentum of the planet’s rotation is negligible. More importantly is the following result:

The total angular momentum of the CoRoT-20 system is only slightly larger than the

critical total angular momentum to begin with.

In the next few billion years, the system loses angular momentum by magnetic
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braking. The angular momentum loss rate is currently (Section 2.10):

dJ

dt
= −KΩ3

∗

(
R∗

RSun

)1/2(
M∗

MSun

)−1/2

= −7.23× 1024kg
m2

s2
. (8.4.3)

This value can be used to roughly estimate the angular momentum loss in the

next one billion years by assuming that dJ
dt

is more or less constant over this time

period ∆t = 1 Gyrs:

∆J =
dJ

dt
×∆t

= −2.3× 1041kg
m2

s
. (8.4.4)

As can be seen, when subtracting ∆J from Ltot, the system has already lost so

much angular momentum after one billion years that Ltot ≈ Ltot,crit. Because the

star continues to lose angular momentum, the system is expected to have a total

angular momentum Ltot smaller than Ltot,crit after more than one billion years. As

Hut (1980) has shown, a double synchronous state is not possible in such a case. This

is, however, only a quick ’back of the envelope’ calculation. Figure 8.12 shows the

evolution of the total angular momentum for magnetic braking and tidal friction with

QP

k2,P
= 105 and Q∗

k2,∗
= 106 as modeled in Sections 5.2 and ??. As can be seen, the

total angular momentum decreases due to magnetic braking and falls below Ltot,crit

even earlier than estimated above. After 600 hundred million years already, the total

angular momentum does not exceed Ltot,crit anymore, which is the prerequisite for a

double synchronous state.
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Figure 8.12: The evolution of the ratio of total angular momentum Ltot over critical
total angular momentum Ltot,crit for the CoRoT-20 system under tidal friction and
magnetic braking with QPl

k2,P l
= 105 and Q∗

k2,∗
= 106. The horizontal dashed line marks

Lcrit,tot.

Alternative evolution of the CoRoT-20 system with P∗ = 8.9 days

In Sections 5.2 and 6.2, however, P∗ = 11.5 days was selected as initial condition

for the tidal evolution (Ω∗ < n). It was already stated there that the limits of

uncertainties of the stellar rotation P∗ = 11.5 ± 2.6 days allow also for an evolution

with Ω∗ = n, and Ω∗ > n.

In the following, tidal evolution tracks of the CoRoT-20 system using P∗ = 8.9 days

as initial condition are discussed, with Q∗
k2,∗

= 105 − 109 and QPl

k2,P l
= 104 − 106

(Figures 8.13, 8.14, and 8.15). The evolution tracks were calculated using Equa-

tions (5.2.1), (5.2.2), (5.2.3), and (5.2.4) (See Section 5.2).
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Figure 8.13: Tidal evolution of the CoRoT-20 system with P∗ = 8.9 days as initial
condition of the stellar rotation. The panels show the evolution of the semi major
axis, the eccentricity, the stellar rotation (solid lines) and planetary orbital revolution
period (dashed lines), and of |Ω∗−n| for Q∗

k2,∗
= 105−109 and QPl

k2,P l
= 104. The vertical

lines show the remaining stellar lifetime with limits of uncertainty.
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Figure 8.14: Tidal evolution of the CoRoT-20 system with P∗ = 8.9 days as initial
condition of the stellar rotation. The panels show the evolution of the semi major
axis, the eccentricity, the stellar rotation (solid lines) and planetary orbital revolution
period (dashed lines), and of |Ω∗−n| for Q∗

k2,∗
= 105−109 and QPl

k2,P l
= 105. The vertical

lines show the remaining stellar lifetime with limits of uncertainty.



255

Figure 8.15: Tidal evolution of the CoRoT-20 system with P∗ = 8.9 days as initial
condition of the stellar rotation. The panels show the evolution of the semi major
axis, the eccentricity, the stellar rotation (solid lines) and planetary orbital revolution
period (dashed lines), and of |Ω∗−n| for Q∗

k2,∗
= 105−109 and QPl

k2,P l
= 106. The vertical

lines show the remaining stellar lifetime with limits of uncertainty.
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Apparently, the tidal evolution of the CoRoT-20 system changes only slightly for

different QPl

k2,P l
= 104 − 106 if P∗ = 8.9 days is chosen as initial condition. Therefore,

this tidal evolution scenario will be discussed in detail for Q∗
k2,∗

= 105 − 109 and the

average QPl

k2,P l
= 105, only.

The system will evolve for every Q∗
k2,∗

= 105 − 109 and QPl

k2,P l
into a double syn-

chronous state within one hundred million years. This is in contrast to the evolution

of CoRoT-20 described in Sections 5.2 and 6.2. There, the system reached the double

synchronous state only for Q∗
k2,∗

= 105 and QPl

k2,P l
≥ 105.

This confirms one statement from Section 8.2: It is much easier to achieve a double

synchronous state Ω∗ = n from an initial condition Ω∗ > n (a supsynchronous orbit)

than from an initial condition Ω∗ < n (a subsynchronous orbit). As can be seen

on detailed inspection (Figure 8.16), tidal evolution is not even necessary to achieve

this state. If Q∗
k2,∗

≥ 107, magnetic braking on its own moves the ’fictive’ double

synchronous state outwards towards the planetary orbit. Neither the semi major axis

nor the eccentricity changes during this brief initial phase.

Once a state Ω∗ = n is reached, apparently stellar and planetary tidal friction,

even for Q∗
k2,∗

= 109 and QPl

k2,P l
= 104 − 106, are sufficient to force the system into a

’true’ double synchronous state. The most telling sign for the double synchronous

orbit evolution is the efficient eccentricity dampening. As was described in Section 2.9,

a stable double synchronous orbit is not only characterized by Ω∗ = n. Furthermore,

the total and orbital angular momentum need to exceed Ltot,crit and Lorb,crit, which

is currently true for the CoRoT-20 system (Section 8.1). In addition, a true double

synchronous orbit can not be eccentric. Indeed, the evolution tracks here show that,

once the Ω∗ = n is reached, the eccentricity is damped very fast within the next one
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Figure 8.16: Tidal evolution of the CoRoT-20 system with P∗ = 8.9 days as initial
condition of the stellar rotation focusing on the first one billion years evolution time.
The panels show the evolution of the semi major axis, the eccentricity, the stellar
rotation (solid lines) and planetary orbital revolution period (dashed lines), and of
|Ω∗ − n| for Q∗

k2,∗
= 105 − 109 and QPl

k2,P l
= 105.
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hundred million years to zero for any Q∗
k2,∗

= 105 − 109 and QPl

k2,P l
. In contrast to that,

the non-synchronous evolution of the CoRoT-20 system shows that the eccentricity

may never reach zero within the remaining lifetime if Q∗
k2,∗

≥ 108 and QPl

k2,P l
(Sections 5.2

and 6.2). The fast eccentricity dampening in a true double synchronous configuration

shows that although Ω∗ = n is in principle a possible state for the CoRoT-20 system

within the limits of uncertainty, the large eccentricity of the orbit of CoRoT-20b

shows that the system cannot truly be in a double synchronous state.

Furthermore, once the eccentricity is damped to zero, magnetic braking imme-

diately decelerates the stellar rotation and stellar tidal friction on its own and is

not able to compensate by spinning-up the star at the current position. Apparently,

even with this favorable initial condition P∗(initial) = 8.9 days, the positive feed-

back effect between stellar and planetary tidal friction is needed to maintain a double

synchronous state despite magnetic braking. This result supports the reasoning ex-

plained in Section 8.2, which leads to the condition that an upper Q∗
k2,∗ spinup

limit is

required to guarantee that tidal friction can maintain a stable double synchronous

orbit in the presence of magnetic braking.

Stellar tidal friction may, in principle, be able to spin up CoRoT-20 at a later

point in evolution if Q∗
k2,∗

≤ 106 and the planet moves towards the star. At that

point, however, the system has lost so much angular momentum that the angular

momentum criteria for a double synchronous state are no longer fulfilled and a double

synchronous orbit is not possible. Instead, the planet will decay within the remaining

lifetime. Therefore, in terms of orbital stability due to stellar and planetary tidal

friction, the conclusions here are the same as in Section 5.2: Q∗
k2,∗

= 107 − 108 is

required as a stability limit to guarantee that the planet does not reach the Roche
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zone within the remaining lifetime. Double synchronicity can not save the system

from the decay because magnetic braking forces the system out of a possible double

synchronous state. A transient double synchronicity can force, however, the orbit to

become circular much earlier than under tidal evolution without reaching a double

synchronous state. See also Chapter F), which confirms this ’duality’ of the possible

evolution tracks of the CoRoT-20 system.

8.4.2 Limits on Q∗
k2,∗

to currently maintain a double synchronous
rotation state

As was previously shown by modeling the evolution of the CoRoT-3 and CoRoT-

15 system, these two systems may already be in a double synchronous state. This

depends on Q∗
k2,∗

and magnetic braking .

It will now be assumed that these systems are currently in the process of being

forced into a double synchronous state by tidal friction. Based on this assumption,

the upper limit Q∗
k2,∗

can be derived to achieve a double synchronous state despite

magnetic braking using equation (8.2.16) (Table 8.1).

This constraint is not applicable to systems currently not affected by magnetic

System Q∗
k2,∗ upper limit ,rot

magnetic braking

CoRoT-3 4.5× 106 K = 2.7× 1040 Nms
CoRoT-3 4.5× 107 K = 2.7× 1039 Nms
CoRoT-15 4× 107 K = 2.7× 1040 Nms
CoRoT-15 4× 108 K = 2.7× 1039 Nms
CoRoT-20a 8.5× 104 K = 2.7× 1040 Nms

a) applying aequiv = 0.063 AU to Eq. 8.2.16.

Table 8.1: Required Q∗
k2,∗

for tidal friction to compensate magnetic braking at the

planet’s current position.
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braking. Furthermore, it doesn’t necessarily require that the system evolves into a

double synchronous state within the remaining stellar lifetime. This yields Q∗
k2,∗

≤

4.5× 107 for CoRoT-3 and reduced magnetic braking and Q∗
k2,∗

≤ 4× 108 for CoRoT-

15 and reduced magnetic braking. After all, for CoRoT exoplanet host stars of

spectral type F, reduced magnetic braking appears to be a reasonable assumption

(Sections 6.1.2, and Chapter 7).

If it is further assumed that the orbits of CoRoT-3b and CoRoT-15b have evolved

into this approximately double synchronous state by tidal friction, another much

stronger constraint on Q∗
k2,∗

can be put that does not depend on magnetic braking.

For this purpose, a minimal orbit variation in the past into the double synchronous

state is assumed. This approach is similar to the work done by Dermott (1979b) who

derived a constant on
QJup

k2,Jup
of Jupiter by requiring that the orbits of the Galilean

moons evolved into the Laplace resonances by tidal migration (See Section 2.8.1).

Using equation 2.6.21 and solving for Q∗
k2,∗

yields the following upper limit that

needs to be fulfilled to allow for orbital migration:

Q∗

k2,∗
=

39
2

(
G
M∗

)1/2
R5

∗MPl

a
13/2
0

[
|1−

(
ai
a0

)13/2
|
]∆t. (8.4.5)

Here, a0 is the current semi major axis and ai is the primordial semi major axis

from which the planet originated. The upper limit is derived by setting ai = a0±∆a,

where ∆a is set to 5% a0 and 10% a0, respectively, to allow for at least small variation

of the semi major axis in the past. The results are listed in Table 8.2. Q∗
k2,∗

≤ 1× 107

is required for CoRoT-3, and Q∗
k2,∗

≤ 1 × 108 is required for CoRoT-15 to allow for

tidal evolution.
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System Q∗
k2,∗ upper limit ,a

ai/a0

CoRoT-3 4± 1× 107 0.95
CoRoT-3 3.1± 0.8× 107 1.05
CoRoT-3 2.3± 0.7× 107 0.9
CoRoT-3 1.4+0.3

−0.5 × 107 1.1
CoRoT-15 4.2± 2.0× 108 0.95
CoRoT-15 3.2± 1.6× 108 1.05
CoRoT-15 2.4± 1.2× 108 0.9
CoRoT-15 1.4+0.7

−4.4 × 108 1.1

Table 8.2: Required Q∗
k2,∗

for tidal friction to allow for minimal migration in the past.

As can be seen, when comparing results from Tables 8.2 and 8.1, the same upper

limit of Q∗
k2,∗

is derived from requiring stellar spin-up in the presence of reduced mag-

netic braking and from requiring orbital migration into a double synchronous state:

Q∗
k2,∗

in the order of 107 for CoRoT-3 and Q∗
k2,∗

in the order of 108 for CoRoT-15. When

excluding full magnetic braking for the stars CoRoT-3 and CoRoT-15 and favoring

Q∗
k2,∗

≤ 107, the double synchronous orbit further remains stable in the remaining stel-

lar lifetime. The possible decay outlined in the previous section only takes place after

several billion years and takes much longer than the remaining lifetime.

It is interesting to note that to establish double synchronicity relatively small

Q∗
k2,∗

≤ 107−108 are favored, whereas the orbital stability limit and tidal spin up limit

from Sections 5 and 6 require Q∗
k2,∗

≥ 107 − 108.

As was shown in Section 3.1, when a system approaches a double synchronous

state, i.e., if the tidal frequency ω = 2|Ω∗ − n| → 0, it is expected that Q∗ → ∞.

Instead, the exact opposite is seen. This may be explained by suggesting that the

weak friction case is no longer valid. Instead, dynamical tides are at work because,

on its way to synchronicity, the tidal frequency has a higher chance to meet stellar
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eigenfrequencies. Dynamical tides dissipate tidal energy more efficiently (Zahn, 1977),

reducing Q∗. Therefore, dynamical tides can easily and consistently explain why Q∗
k2,∗

apparently becomes smaller instead of larger when ω → 0.



Chapter 9

Summary and Discussion

The investigation of tidal friction due to tides raised on the star by the planet (stellar

tidal friction) and due to tides raised by the star on the planet (planetary tidal fric-

tion), may be used to constrain Q∗
k2,∗

for main sequence stars and different scenarios.

In this work, CoRoT planetary systems with close-in Jupiter-mass planets around

slowly rotating and fast rotating stars, short-period Jupiter-mass exoplanets on cir-

cular and eccentric orbits, short-period brown dwarfs near double synchronous states

and a low-mass Super-Earth planet were investigated.

It was found that the majority of the CoRoT planets may migrate towards the

star (because Ω∗ < n) and be destroyed within the Roche zone if Q∗
k2,∗

≤ 106. For

Q∗
k2,∗

= 105, many planets - including the Super-Earth CoRoT-7b - would reach the

Roche zone even within one hundred million years, which is only circa 1% of the total

lifetime of a main sequence star. The planets would be destroyed ’in the blink of an

eye’ on astronomical time scales, making it statistically improbable to find them.

In contrast to that, such planetary systems are ubiquitous and frequently found,

as the distribution of the so far discovered exoplanets’ semi major axes shows (Sec-

tion 1.5). Furthermore, the fact that such systems are frequently discovered by transit

263



264

surveys, like the CoRoT space mission, proves that such close-in massive planets are

not rare. After all, transiting planets represent only≈ 5−10% of all planetary systems

due to the strong observation bias regarding the orbital plane, limiting the detection

to planetary systems whose orbital plane is parallel to the line-of-sight (Section 1.3.2).

The detection of Kepler-10b, the second transiting terrestrial planet after CoRoT-

7b, shows that even short-period Super-Earths are probably not rare objects and

should survive over timescales of billion years. Kepler-10b (Batalha et al., 2011) and

CoRoT-7b (Table A.1) are very similar in planetary parameters, except for the age:

Kepler-10b is a ten billion years older version of CoRoT-7b. This suggests that such

planets should survive over the timescales of several billion years.

With this reasoning, Q∗
k2,∗ stable

= 107 − 108 can be derived as the com-

mon lower orbital stability limit. Indeed, this result is consistent with the Q∗
k2,∗

constraint derived by Pätzold and Rauer (2002) ( Q∗
k2,∗

≥ 108), Rasio et al. (1996)

( Q∗
k2,∗

= 4× 108), and Carone and Pätzold (2007) ( Q∗
k2,∗

≥ 3× 107), but contradicts the

Q∗
k2,∗

- values favored by Jackson et al. (2008) ( Q∗
k2,∗

= 105.5), Dobbs-Dixon et al. (2004)

( Q∗
k2,∗

= 105 − 106), and Lin et al. (1996)( Q∗
k2,∗

= 105).

Another, independent argument against Q∗
k2,∗

≤ 106 and in favor of Q∗
k2,∗

≥ 107−108

can be derived from the stellar rotation evolution. If a planet migrates towards the

Roche zone, conservation of angular momentum leads to efficient stellar spin-up com-

pensating even strong magnetic braking in low-mass main sequence stars. The stellar

rotation period versus age distribution of the CoRoT planet host stars (Figures 6.8

and 6.9) shows the expected behavior for stars whose rotation is decelerated by mag-

netic braking with increasing age, except for CoRoT-17. Therefore, a tidal spin-up

constraint for Q∗
k2,∗

is derived by requiring tidal friction to be weaker than



265

magnetic braking at the current position, which yields Q∗
k2,∗ spin−up

> 106, and

agrees nicely with the orbital stability limit.

CoRoT-17, on the other hand, is the one star that seems to be rotating faster than

its age suggests (Figure 6.8, P∗ = 18 ± 2 days at an age of 10.7 billion years). The

star does not show, however, the fast tidal spin-up expected for stars whose planets

enter the Roche zone. This would require rotation periods in the order of 1− 10 days

(Section 6). The star appears rather to be moderately spun-up at the end of its

lifetime. It was shown in Section 6 that old stars are susceptible to being spun up by

comparatively large Q∗
k2,∗

= 107. Indeed, the tidal Q∗
k2,∗ spin−up

limit at the position

of CoRoT-17b requires Q∗
k2,∗

≈ 4 × 107 to account for the current moderate

spin-up despite magnetic braking. This still agrees with the previously derived

orbital stability and stellar spin up limit on Q∗
k2,∗

by excluding Q∗
k2,∗

= 105 − 106. But

to allow for tidal spin-up, Q∗
k2,∗

has to be smaller than 109 for CoRoT-17.

Otherwise no tidal evolution would occur.

Q∗
k2,∗

≈ 107 would allow for long-term stability of short-period Jupiter mass planets,

allow for moderate tidal spin-up of old stars, but would not allow for long-term

stability of short-period brown dwarfs as can be seen by inspecting Eq. 5.1.2. This

stability threshold is proportional to MPl. If Jupiter mass planets require Q∗
k2,∗

≥ 107

for long-term stability, brown dwarfs with masses MPl ≥ 10MJup require Q∗
k2,∗

≥ 108

on similar orbits. Indeed, in Section 1.5 an erosional feature may be present, which

warrants additional investigation. This is, however, not within the scope of this work.

The possible erosion of short-period brown dwarfs and Jupiter mass planets and

the corresponding possible tidal spin-up of stars should be taken into account before



266

trying to derive the age of a star by Gyrochronology. Otherwise, this age determina-

tion method may yield an age too small. Old stars towards the end of their lifetime,

like CoRoT-17, are particularly susceptible for tidal spin-up. Even stars that don’t

currently have a close-in companion may have been tidally spun-up in the past when

the corresponding companion has migrated towards the Roche zone and has been

destroyed there. Interestingly, abnormally fast rotating stars are not unknown. So-

called ’blue stragglers’ are reported, for example, by Fuhrmann et al. (2011) who

identified a F6V star whose rotation is spun-up through interaction with an unseen

0.42MSun companion.

Another interesting scenario in terms of tidal interactions are presented by CoRoT

planets on eccentric orbits. It was shown that for moderate to small orbital eccentric-

ity e ≤ 0.3, represented by CoRoT-16b, planetary tidal friction with QPl

k2,P l
= 104− 106

(taken from the gas giants in our Solar System), acts on much shorter timescales

than stellar tidal friction. Planetary tidal friction, in this case, leads to eccentric-

ity dampening within one billion years conserving the orbital angular momentum.

Therefore, the secular stability of short-period planets with e ≤ 0.3 can be

evaluated with the same equations derived for circular orbits but using

aequiv = a(1 − e2), assuming QPl

k2,P l
≤ 106. The efficient eccentricity dampening by

planetary tidal friction explains the fact that most close-in extrasolar planets have

circular orbits. That the orbit of CoRoT-16b, with an age of about six billion years,

is still quite eccentric suggests that the orbit was even more eccentric in the past.

This warrants additional investigation that is, however, not within the scope of this

work.
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It was found that aequiv can not be used for planets like CoRoT-10b and CoRoT-

20b. For e ≥ 0.5, planetary and stellar tidal friction may act on the same

time scales, if Q∗
k2,∗

= 105 − 106 and QPl

k2,P l
= 104 − 106. This would lead to

a positive feedback effect, decreasing the semi major axis/spinning up

the star much stronger than stellar and planetary tidal friction would on

their own. This feedback effect may even destabilize planets that would

otherwise be stable under tidal friction or may force systems into double

synchronous rotation that can not be maintained by stellar tidal friction

alone. To avoid such effects, Q∗
k2,∗

has to be again larger than 106.

Another interesting tidal interaction scenario is presented by the CoRoT-11 sys-

tem: A short-period Jupiter-mass planet around a fast-spinning F-star. Here, the

tidal evolution depends not only on Q∗
k2,∗

but also on magnetic braking efficiency.

• Scenario 1: The star is braked down efficiently by magnetic braking similar in

strength than for lower mass stars M∗ < 1.1MSun.

Regardless of the strength of stellar tidal friction, the planetary system CoRoT-

11 will become within a few hundred million years a ’normal’ planetary system

with a close-in exoplanet around a slowly rotating star. In this case, the orbital

stability limit Q∗
k2,∗

= 107 − 108 is again required to keep the planet CoRoT-11b

from reaching the Roche zone within the remaining lifetime.

• Scenario 2: The star is braked down by reduced magnetic braking that is ten

times less efficient than in scenario 1.

The rotation of CoRoT-11 is still braked down relatively fast within one billion

years, until a state is reached where again Ω∗ < n and the planet may migrate

towards the star again. The planet will not reach the Roche zone within the
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remaining lifetime if Q∗
k2,∗

≥ 107. Interestingly, the same may be true for Q∗
k2,∗

=

105 due to a fast initial outward migration phase.

• Scenario 3: The star is not slowed down by magnetic braking.

CoRoT-11b may migrate away from the star, if Q∗
k2,∗

≤ 107. The stellar rotation

period of CoRoT-11 is tidally spun-down by less than one day even if Q∗
k2,∗

= 105

which is negligible.

Only in the absence of magnetic braking can stars like CoRoT-11 maintain their

fast rotation over secular timescales. CoRoT-11 itself, however, is relatively young

(age=2 ± 1 billion years). The distribution of stellar rotation period versus age for

CoRoT stars of spectral type F(Figure 6.9) seems to indicate a reduced magnetic

braking mechanism. If spectral type F-stars are indeed subjected to at least

moderate magnetic braking, then the following predication can be made:

Only young stars can rotate faster than their close-in Jupiter mass planet

revolves around it, because magnetic will decelerate the star within one

billion years. Therefore, the fast stellar rotation is only a transient state.

In the long run, such systems still require Q∗
k2,∗ stable

≥ 107 for long-term

stability.

Finally, several possible double synchronous states were identified in the CoRoT

subsample and their evolution was investigated:

• Of all investigated CoRoT planetary systems CoRoT-3, CoRoT-6, CoRoT-9,

CoRoT-10, CoRoT-15, and CoRoT-20 currently satisfy the angular momenta

conditions to achieve a double synchronous state Ω∗−n described by Hut (1980).

• The CoRoT-4 system is a ’false’ double synchronous state because it does not



269

satisfy the angular momentum criteria by Hut (1980).

• CoRoT-9b and CoRoT-6b are currently too far away from their stars, however,

to establish synchronization within the remaining stellar lifetime.

• Due to the large orbital eccentricity, the CoRoT-20 system can not currently

be in double synchronous rotation; even though the limits of uncertainties for

the stellar rotation allow in principle Ω∗ = n.

• CoRoT-20 may, however, reach a double synchronous state due the positive

feedback effect between planetary and tidal friction because the orbital eccen-

tricity is very large. If this happens, then the eccentricity is damped to zero

within a few hundred million years. When the eccentricity has become zero and

planetary tidal friction seizes to act on the system, stellar tidal friction on its

own will not be able to compensate magnetic braking for any Q∗
k2,∗

= 105 − 109

and the double synchronous orbit can not be maintained.

• In addition, magnetic braking will remove so much angular momentum from

the CoRoT-20 system within the next one billion years, that the system will

no longer meet all the angular momenta requirements to establish a double

synchronous state (Hut, 1981).

• CoRoT-3 and CoRoT-15 may be systems that are evolving into ’true’ double

synchronous states.

• In the presence of magnetic braking, a double synchronous orbit will decay.

In other words, the planet may still migrate towards the star and the stellar

rotation will be ’dragged’ along.
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• A mathematical formulation was derived that describes that decay. Once tidal

friction has forced the system into corotation, the subsequent decay of the dou-

ble synchronous orbit does not depend on Q∗
k2,∗

but on the efficiency of magnetic

braking.

• If CoRoT-3 and CoRoT-15 experience efficient magnetic braking like spectral

type G-stars, the double synchronous orbit will decay and the brown dwarfs

may even reach the Roche limit within the remaining lifetime.

• If CoRoT-3 and CoRoT-15 experience reduced magnetic braking or no magnetic

braking at all, the double synchronous states are stable within the remaining

lifetime.

This leads to the following prediction: Only F-stars are capable to maintain

a double synchronous state over secular timescales with a close-in massive

planetary companion. In addition, it was found that in order to maintain

a double synchronous state despite magnetic braking, the following con-

straints can be derived for Q∗
k2,∗

: Q∗
k2,∗

≤ 107 for CoRoT-3, and Q∗
k2,∗

≤ 108 for

CoRoT-15. If it is further required that CoRoT-3b and CoRoT-15b mi-

grated towards the double synchronous orbit, again, Q∗
k2,∗

≤ 107 for CoRoT-3,

and Q∗
k2,∗

≤ 108 for CoRoT-15 is derived when allowing for a 10% change in

the semi major axis.

The Q∗
k2,∗

-values required to force the CoRoT-3 and CoRoT-15 system into a double

synchronous state ( Q∗
k2,∗

≤ 107 − 108) barely overlap with the Q∗
k2,∗

-values required for

orbital stability in non-synchronous systems ( Q∗
k2,∗

≥ 107 − 108).

For double synchronous systems, the tidal frequency ω = |2Ω∗ − n| ≈ 0 is orders
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of magnitude smaller than the tidal frequency in non-synchronous systems where

ω = 2|Ω∗ − n| ≈ 2n which is in the order of 10−3 − 10−5 1/s.

In the weak friction assumption that is used in this work, Q∗ is related to the tidal

frequency by

Q∗ =
|ω2

0 − ω2|
ω/τd

, (9.0.1)

where the resonance frequency ω0 and the damping timescale τd are constants. There-

fore, Q∗
k2,∗

is expected to grow as ω → 0. This is, however, not the result that is derived

here. Q∗
k2,∗

for double synchronous states (ω → 0) equals or is even smaller than the

values derived for the non-synchronous states.

This contradiction can be solved by suggesting that dynamical tides are at work in

double synchronous cases because the tidal frequency meets stellar eigenfrequencies

as 2|Ω∗ − n| → 0. This leads in turn to an increase in tidal energy dissipation

and to a reduction of Q∗. The work by Penev and Sasselov (2011) supports this

conclusion: ’the time variable tidal perturbation can resonantly excite inertial waves

in the star, thus resulting in several orders of magnitude larger shear, and hence

dissipation, compared to the static tide’.

Indeed, this explanation also solves the deviation between the low Q∗
k2,∗

= 105−106

favored by several authors (Jackson et al., 2009; Lin et al., 1996; Dobbs-Dixon et al.,

2004) from synchronization time scales of double synchronous binary stars (Meibom

and Mathieu, 2005), and the relatively high Q∗
k2,∗

≥ 107 − 108 required for orbital

stability as found in this work and supported by Rasio et al. (1996); Pätzold and

Rauer (2002); Carone and Pätzold (2007).

As the results in this work and the work of Penev and Sasselov (2011) confirm,

it is probably not a good idea to apply tidal dissipation factors derived from double
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synchronous states to tidal friction cases with Ω∗ ≪ n. This is a completely differ-

ent tidal frequency regime with possibly very different tidal dissipation efficiencies.

Therefore, one has to take care when applying tidal friction and tidal dissipation

models. There are a lot of underlying assumptions that have to be investigated prior

to applying them to cases, for which they were not developed. Otherwise the results

may be misleading.
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CoRoT planet references
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Table A.1: References for the parameters of the CoRoT planetary systems.

System References
CoRoT-1 Barge et al. (2008)
CoRoT-2 Bouchy et al. (2008), Alonso et al. (2008)
CoRoT-3 Deleuil et al. (2008)
CoRoT-4 Moutou et al. (2008)
CoRoT-5 Rauer et al. (2009)
CoRoT-6 Fridlund et al. (2010)
CoRoT-7 Léger et al. (2009), Queloz et al. (2009), Bruntt et al.

(2010), Hatzes et al. (2010), Hatzes et al. (2011)
CoRoT-8 Bordé et al. (2010)
CoRoT-9 Deeg et al. (2010)
CoRoT-10 Bonomo et al. (2010)
CoRoT-11 Gandolfi et al. (2010)
CoRoT-12 Gillon et al. (2010)
CoRoT-13 Cabrera et al. (2010)
CoRoT-14 Tingley et al. (2011)
CoRoT-15 Bouchy et al. (2011)
CoRoT-16 In Preparation
CoRoT-17 Csizmadia et al. (2011)
CoRoT-18 Hébrard et al. (2011)
CoRoT-19 Guenther et al. (2012)
CoRoT-20 Deleuil et al. (2011)
CoRoT-21 Pätzold and the CoRoT-Team, in preparation
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Figure B.1: Tidal evolution of the of the CoRoT-4 system for for Q∗
k2,∗

= 105 − 109,
QPl

k2,P l
= 105, and full, reduced and without magnetic braking. The vertical lines show

the remaining stellar lifetime with limits of uncertainty.
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Figure B.2: Tidal evolution of the of the CoRoT-9 system for for Q∗
k2,∗

= 105 − 109,
QPl

k2,P l
= 105 and full magnetic braking. The vertical lines show the remaining stellar

lifetime with limits of uncertainty.
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Figure C.1: The evolution of |Ω∗ − n| for the planetary systems CoRoT-1,-2,-7,-8,-
12,-13,-17,-18 for the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109.
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Figure C.2: The evolution of |Ω∗−n| for the planetary systems CoRoT-5,-14,-19 and
full magnetic braking for the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109.
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Figure C.3: The evolution of |Ω∗−n| for the planetary systems CoRoT-5,-14,-19 and
reduced magnetic braking for the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109.
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Figure C.4: The evolution of |Ω∗−n| for the planetary systems CoRoT-5,-14,-19 and
without magnetic braking for the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109.
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Figure C.5: The evolution of |Ω∗−n| for the planetary systems CoRoT-10,-16,-20 for
the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109 and QP

k2,P
= 104.
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Figure C.6: The evolution of |Ω∗−n| for the planetary systems CoRoT-10,-16,-20 for
the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109 and QP

k2,P
= 105.
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Figure C.7: The evolution of |Ω∗−n| for the planetary systems CoRoT-10,-16,-20 for
the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109 and QP

k2,P
= 106.
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Figure C.8: The evolution of |Ω∗−n| for the planetary systems CoRoT-6, and CoRoT-
11 for the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109.
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Figure C.9: The evolution of |Ω∗−n| for the planetary systems CoRoT-3, and CoRoT-
15 for the next 1.5× 1010 years, Q∗

k2,∗
= 105 − 109.



Appendix D

Evolution of the rotation of CoRoT
planets on eccentric orbits

Figures D.1, D.2, and D.3 show the tidal evolution of the planet’s rotation period

starting with PPl(initial) = 2.5 days1. The planetary rotation of CoRoT-10b, -16b,

and -20b is quickly forced into a synchronized state. This happens before the orbit

becomes circular. Therefore, the planetary rotation rate ΩPl is not synchronized with

the mean orbital revolution rate n but rather pseudo-synchronized with (Hut, 1981)

npseudo = n

(
1 + 6e2 +

3

8
e4 +

223

8
e6
)
. (D.0.1)

Therefore, the tidal planetary frequency 2|ΩPl − n| evolves with

2|ΩPl − n| = 2n

(
6e2 +

3

8
e4 +

223

8
e6
)
, (D.0.2)

starting for the planets CoRoT-10b,-16b, and 20b with

Planet 2|ΩPl − n|start

CoRoT-10b 4.66n

CoRoT-16b 1.12n

CoRoT-20b 5.6n

1This value was chosen as a medium value between the fast rotation of 10 hours and 10 days
selected in Section 3.2.
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and approaching zero, as the eccentricity is damped to zero as well.

The planetary rotation of CoRoT-9b on the other hand may, depending on QPl

k2,P l
,

never become synchronized or take several hundred million years to several billion

years to evolve into a pseudo-synchronized state.

Figure D.1: The tidal evolution of the rotation period of the planets CoRoT-9b,-10b,
-16b, and CoRoT-20b for the next 1.5 × 1010 years, for Q∗

k2,∗
= 105.5, 106, 107, 108, 109

(solid lines) and QPl

k2,P l
= 104. The vertical lines show the remaining lifetime of the

system. The dashed-dotted lines show the evolution of the mean orbital revolution
period for comparison. npseudo is depicted by a dotted line which is for CoRoT-10b,
-16b, 20b hidden by the planetary rotation evolution because – apart from a very
brief initial phase – ΩPl = npseudo.
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Figure D.2: The tidal evolution of the rotation period of the planets CoRoT-9b,-10b,
-16b, and CoRoT-20b for the next 1.5 × 1010 years, for Q∗

k2,∗
= 105.5, 106, 107, 108, 109

(solid lines) and QPl

k2,P l
= 105. The vertical lines show the remaining lifetime of the

system. The dashed-dotted lines show the evolution of the mean orbital revolution
period for comparison. npseudo is depicted by a dotted line which is for CoRoT-10b,
-16b, 20b hidden by the planetary rotation evolution because – apart from a very
brief initial phase – ΩPl = npseudo
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Figure D.3: The tidal evolution of the rotation period of the planets CoRoT-9b,-10b,
-16b, and CoRoT-20b for the next 1.5 × 1010 years, for Q∗

k2,∗
= 105.5, 106, 107, 108, 109

(solid lines) and QPl

k2,P l
= 106. The vertical lines show the remaining lifetime of the

system. The dashed-dotted lines show the evolution of the mean orbital revolution
period for comparison. npseudo is depicted by a dotted line which is for CoRoT-10b,
-16b, 20b hidden by the planetary rotation evolution because – apart from a very
brief initial phase – ΩPl = npseudo



Appendix E

Integration method

There exists a number of numerical integrators (Vallado (2001), and Gould et al.

(2006)) suitable to solve ordinary differential equations. In this work, the RK4(5)

algorithm is used, a special case of the classical Runge-Kutta method (Gould et al.,

2006).

The Runga-Kutta method was first formulated in 1895 by Carl Runge and later

improved by Heun and Kutta. To explain this method, the following first-order

differential equation is considered:

f(x, t) =
dx

dt
, (E.0.1)

where f(x, t) is the rate of the solution at position x and time t. Let xn(tn) be the

initial condition. To obtain the solution xn+1(tn+1), the rate is evaluated s times in the

time interval [tn, tn+1]. Each evaluation yields a slightly different rate ki = f(xi, ti).

The solution is derived by using a weighted mean of the intermediate rates for the

time step h = tn+1 − tn.

The Runga-Kutta algorithm with number of intermediate steps s is described by:

xn+1(tn+1) = xn(tn) + h

s∑
i=1

biki, (E.0.2)

293



294

where the rates ki are developed iteratively:

k1 = f(xn, tn)

k2 = f(xn + k1a21h, tn + c2h)

k3 = f(xn + k1a31h+ k2a32h, tn + c3h)

...

ks = f(xn + k1as1h+ k2as2h+ · · ·+ ks−1as,s−1h, tn + csh)

The coefficients bi, ci with i = 1, 2, . . . s and aij with 1 ≤ j < i ≤ s can be derived

from the coefficient tableau of the selected Runge-Kutta algorithm:

c1 0 0 0 0

c2 a21 0 0 0
...

...
. . . 0 0

cs as1 · · · as,s−1 0

b1 b2 · · · bs

The coefficients are determined such that

s∑
i=1

bi = 1 ci =
i−1∑
j=1

aij and c1 = 0. (E.0.3)

The accuracy of the numerical integration depends on the step size h. This can

be estimated, for example, by applying the method with step size h and h/2, and by

comparing the solutions with each other. The RK4(5) algorithm uses another method

to derive the accuracy at each time step. It simultaneously runs a fourth and fifth

order Runge-Kutta method. The difference between the two solutions is the accuracy

of the 4th order solution1. RK4(5) is an adaptive time step algorithm. The user se-

lects beforehand the relative accuracy required for the integration and the algorithm

reduces or increases the step size until the accuracy criterium is met. In this work,

the relative accuracy is set to 10−8. The coefficient tableau of the RK4(5) algorithm is:

1A Runga-Kutta method is of order p if it has the local truncation error O(hp+1).
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The validity of the results derived with the RK4(5) algorithm can be tested by

computing the tidal evolution of a planetary system without magnetic braking. If

the numerical integration is implemented with acceptable accuracy, then the total

angular momentum should remain constant during the whole computation2.

This will be shown for one example: The tidal evolution of the CoRoT-21b system

for Q∗
k2,∗

= 105 and without magnetic braking is computed. This system is selected

because the rate of change ȧ is one of the largest: The planet will reach the Roche

limit in 7.6 million years for Q∗
k2,∗

= 105 (Section 5.1.2, Figure 5.2). Figure E.1 shows

the total angular momentum Ltot, the orbital angular momentum Lorb, the stellar

rotational angular momentum Lrot,∗, and the planetary angular momentum Lrot,P l

for this evolution track.

Ltot appears to be constant over the evolution time. Furthermore, the total angular

momentum is Ltot(t0) = 7.0894 × 1042Nms at the start time t0 = 60 million years.

At the end time tend = 67 million years, the total angular momentum is Ltot(tend) =

7.0900× 1042Nms. This corresponds to a relative change of 0.0085%.

As a control, the tidal evolution of the CoRoT-21b system for Q∗
k2,∗

= 109 and

without magnetic braking is computed and the angular momenta are compared (Fig-

ure E.2). Ltot appears to be constant over the evolution time. Furthermore, the total

angular momentum is Ltot(t0) = 7.0894 × 1042Nms at the start time t0 = 60 mil-

lion years. At tend = 15 billion years, the total angular momentum is Ltot(tend) =

7.0884× 1042Nms. This corresponds to a relative change of 0.0141%.

These results support the conclusion that the RK4(5) algorithm yields indeed

2Magnetic braking has to be switched off for this accuracy test, because otherwise the stellar
wind would remove angular momentum from the planetary system.
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Figure E.1: The evolution of the total angular momentum Ltot, the orbital angular
momentum Lorb, the stellar rotational angular momentum Lrot,∗, and the planetary
angular momentum Lrot,P l during the tidal evolution of the CoRoT-21 system for
Q∗
k2,∗

= 105. The rotation of the planet was initialized with a rotation period Prot,P l =

10 hours which is rapidly synchronized with the revolution period Porb = 2.72 days.
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Figure E.2: The evolution of the total angular momentum Ltot, the orbital angular
momentum Lorb, the stellar rotational angular momentum Lrot,∗, and the planetary
angular momentum Lrot,P l during the tidal evolution of the CoRoT-21 system for
Q∗
k2,∗

= 109. The rotation of the planet was initialized with a rotation period Prot,P l =

10 hours which is rapidly synchronized with the revolution period Porb = 2.72 days.



298

sufficiently accurate results.



Appendix F

Model sensitivity analysis

In this work, the models did not take the uncertainties of the input parameters into

account. This will now be investigated in this chapter. A representative planetary

system is selected for each subcase discussed in this work and the model input pa-

rameters are varied using a Monte-Carlo method. The models investigated in this

work start with the following initial conditions:

a±∆a

P∗ ±∆P∗

e±∆e

PPl ± PPl (F.0.1)

It was shown that the energy and angular momentum of the planetary rotation is

negligible compared to the stellar rotation and planetary orbit (Section 3.3), therefore

it can be assumed that the tidal evolution does not depend on PPl.

To investigate the model sensitivity for the initial conditions a, P∗, and e – the

latter is only important for planets on eccentric orbits–, a set of one hundred start

parameters are randomly chosen within limits of uncertainty. The tidal evolution is

computed for each start condition of this set.
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F.1 The CoRoT-12 system

Figures F.1 and F.2 show the tidal evolution of the CoRoT-12 system for randomly

chosen initial conditions a = 0.04016± 0.0009 AU and P∗ = 57+43
−28 days

1 (e = 0). For

this system, Ω∗ ≪ n at all times.

Figure F.1: Tidal evolution of the semi major axis of CoRoT-12b for randomly chosen
initial conditions a, P∗ within limits of uncertainty for Q∗

k2,∗
= 105−109 and QPl

k2,P l
= 105.

The vertical lines show the remaining stellar lifetime with limits of uncertainty.

Apparently, the qualitative evolution of the system, and therefore the derived

orbital stability and tidal spin-up limit, remains unchanged when the initial conditions

are varied. Interestingly, the stellar rotation evolution does not depend on the initial

condition P∗ in the presence of tidal spin-up. As the planet moves towards the star,

the amount of angular momentum transferred to the star exceeds the initial stellar

angular momentum. The transferred orbital angular momentum determines the final

stellar spin state as the planet reaches the Roche zone.

1An upper limit of P∗ = 100 days was selected. This choice appears reasonable according to
Barnes (2003), and Section 2.10.
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Figure F.2: Tidal evolution of the stellar rotation of CoRoT-12 for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105 − 109 and

QPl

k2,P l
= 105. The vertical lines show the remaining stellar lifetime with limits of

uncertainty.
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F.2 The CoRoT-16 system

Figures F.3, F.4, and F.5 show the tidal evolution of the CoRoT-16 system for

randomly chosen initial conditions a = 0.0618 ± 0.0015 AU , P∗ = 60 − 100 days2,

and e = 0.3± 0.1. For this system, Ω∗ ≪ n at all times.

Figure F.3: Tidal evolution of the semi major axis of CoRoT-16b for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105 − 109 and

QPl

k2,P l
= 105. The vertical lines show the remaining stellar lifetime with limits of

uncertainty.

2An upper limit of P∗ = 100 days was selected. This choice appears reasonable according to
Barnes (2003), and Section 2.10.
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Figure F.4: Tidal evolution of the stellar rotation of CoRoT-16 for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105 − 109 and

QPl

k2,P l
= 105. The vertical lines show the remaining stellar lifetime with limits of

uncertainty.
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Figure F.5: Tidal evolution of the orbital eccentricity of CoRoT-16b for randomly
chosen initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105−109 and

QPl

k2,P l
= 105. The eccentricity evolution does not depend on Q∗

k2,∗
. The vertical lines

show the remaining stellar lifetime with limits of uncertainty.

Evidently, the tidal evolution of the semi major axis of CoRoT-16b and the stellar

rotation period of CoRoT-16 system varies more strongly with initial conditions for
Q∗
k2,∗

≤ 106 than the tidal evolution of the semi major axis of CoRoT-12b and the

stellar rotation of CoRoT-12. The eccentricity evolution, on the other hand, does not

very strongly with initial conditions. The strong variation of the a and P∗-evolution

is not surprising because for the evaluation of the CoRoT-16-system an additional

parameter, the orbital eccentricity, is introduced. The tidal model of the CoRoT-16

system is sensitive to three input parameters and not to two input parameters like

the tidal model of the CoRoT-12 system. Still, the qualitative results with respect to
Q∗
k2,∗

remain valid for this system as well because the tidal models yield qualitatively

similar results and depend more strongly on Q∗
k2,∗

than on the initial conditions.

F.3 The CoRoT-20 system

Figures F.6, F.7, and F.8 show the tidal evolution of the CoRoT-20 system for

randomly chosen initial conditions a = 0.0618 ± 0.0015 AU , P∗ = 11.5 ± 2.6 days,
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and e = 0.53± 0.1.

Figure F.6: Tidal evolution of the semi major axis of CoRoT-20b for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105 − 109 and

QPl

k2,P l
= 105. The vertical lines show the remaining stellar lifetime with limits of

uncertainty.

As was already discussed in Sections 5.2, 6.2 and 8.4.1, depending on the stellar

rotation if Ω∗ ≥ n, the system goes to a transient double synchronous state upheld

by the positive feedback between planetary and stellar tidal friction. This double

synchronous state is broken down by magnetic braking as soon as the eccentricity

is damped to zero and planetary tidal friction seizes to act on the system. Stellar

tidal friction on its own is not sufficient to counter-act magnetic braking. If Ω∗ < n,

the system goes trough a transient double synchronous state only for Q∗
k2,∗

= 105
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Figure F.7: Tidal evolution of the stellar rotation of CoRoT-20 for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105 − 109 and

QPl

k2,P l
= 105. The vertical lines show the remaining stellar lifetime with limits of

uncertainty.
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Figure F.8: Tidal evolution of the orbital eccentricity of CoRoT-20b for randomly
chosen initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105 − 109

and QPl

k2,P l
= 105. The vertical lines show the remaining stellar lifetime with limits of

uncertainty.
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and QPl

k2,P l
= 105 − 106. In any case, the planet will reach the Roche limit within

the remaining lifetime if Q∗
k2,∗

≤ 106. As a consequence, the star may be spun up.

Therefore, the orbital stability limit has to be Q∗
k2,∗

> 106. The star may be spun

up during the transient double synchronous state. But after the orbit has become

circular, the stellar rotation is decelerated by magnetic braking again and ’meets’ the

stellar rotation evolution tracks that never went trough a double synchronous state.

They main difference is the eccentricity evolution. If the system goes though a double

synchronous state, the eccentricity is damped to zero within 200 million years. If the

system does not go through a double synchronous state, the orbit may never become

circular in the remaining lifetime.

F.4 The CoRoT-11 system

Figures F.9 and F.10 show the tidal evolution of the CoRoT-11 system for randomly

chosen initial conditions a = 0.044± 0.005 AU and P∗ = 1.4± 0.3 days. The general

evolution of the CoRoT-11 system does not change with initial conditions. The results

derived in Chapter 7 hold.

F.5 The CoRoT-15 system

Figures F.11 and F.12 show the tidal evolution of the CoRoT-15 system for randomly

chosen initial conditions a = 0.045 ± 0.01 AU and P∗ = 3.9 ± 0.4 days. Apparently,

the semi major axis is not very well constrained for this system. Still, most solutions

show that the system will evolve into a double synchronous orbit, depending on Q∗
k2,∗

and remain there within the remaining stellar lifetime. Therefore, the results derived

in Chapter 8 still hold despite the large uncertainty in semi major axis.
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Figure F.9: Tidal evolution of the semi major axis of CoRoT-11b for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105−109, QPl

k2,P l
= 105,

and reduced magnetic braking. The vertical lines show the remaining stellar lifetime
with limits of uncertainty.
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Figure F.10: Tidal evolution of the stellar rotation of CoRoT-11 for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105−109, QPl

k2,P l
= 105,

and reduced magnetic braking. The vertical lines show the remaining stellar lifetime
with limits of uncertainty.
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Figure F.11: Tidal evolution of the semi major axis of CoRoT-11b for randomly
chosen initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105 and

Q∗
k2,∗

= 109, QPl

k2,P l
= 105, and reduced magnetic braking. The vertical lines show the

remaining stellar lifetime with limits of uncertainty.



312

Figure F.12: Tidal evolution of the stellar rotation of CoRoT-11 for randomly chosen
initial conditions a and P∗ within limits of uncertainty for Q∗

k2,∗
= 105−109, QPl

k2,P l
= 105,

and reduced magnetic braking. The vertical lines show the remaining stellar lifetime
with limits of uncertainty.



Appendix G

Proof that the double synchronous
orbit is always forced into
corrotation if Lorb > Lorb,crit

Let’s assume that

Ω̇∗ > ṅ, (G.0.1)

where Ω∗ > n.

Using Kepler’s third law ṅ can be derived by

ṅ = −3

2

µ

a4n
ȧ. (G.0.2)

where µ = G(M∗ +MPl).

In the absence of magnetic braking, the condition Ω̇∗ > ṅ with Ω∗ > n can be

written as

3

2I∗

k2,∗
Q∗

M2
Pl

M∗(M∗ +MPl)

(
R∗

a

)3

n2 >
9

2
µ
k2,∗
Q∗

MPl

M∗
R5

∗a
−8, (G.0.3)

which reduces to and can be further rearranged as follows:

MPl

I∗(M∗ +Mpl)

n2

a3
> 3µR2

∗a
−8. (G.0.4)

In the following, µ = G(M∗ +MPl) is inserted, the relation rearranged, Kepler’s

third law n2 = G(M∗ +MPl)/a
3 is applied and finally the relation is multiplied with
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M∗ · n:

MPl

G(M∗ +MPl)2
n2a5 > 3I∗R

2
∗ (G.0.5)

MPl

M∗ +MPl

a2 > 3I∗R
2
∗ (G.0.6)

M∗MPl

M∗ +MPl

a2n > 3I∗R
2
∗M∗n (G.0.7)

The left hand side of the relation is Lorb, and the right hand side is – assuming that

Ω∗ ≈ n – approximately 3 · Lrot,∗.

Therefore, the relation Ω̇∗ > ṅ is automatically fulfilled near double synchronous

rotation Ω∗ ≈ n, if

Lorb > 3L∗,rot, (G.0.8)

which is one of the angular momentum requirements for a stable double synchronous

orbit (Section 2.9, Hut (1980)). In other words, if the orbital angular momentum

exceeds the critical value, the ’fictive’ double synchronous orbit decays always faster

than the planetary orbit allowing the double synchronous to ’catch up’ with the

planet.



Appendix H

Centrifugal versus gravitational
force

It was shown several times that tidal friction has the potential to spin up the star

considerably. It will be investigated if the centrifugal force of a rapidly rotating star

may overcome the gravitational force. Following the treatment given in Section 2.12,

the gravitational force FG and centrifugal force FC acting on a test mass δm on the

surface of the star is investigated. In a coordinate system with the center of mass

as its origin, the position vector of test mass δm and the axis of rotation shall be

perpendicular to each other.

To guarantee stability, the gravitational force has to exceed the centrifugal force

FG > FC (H.0.1)

GδmM∗

R2
∗

> δmΩ2
∗R∗. (H.0.2)

This yields the following limit for Ω∗:

Ω∗ <

√
GM∗

R3
∗
. (H.0.3)

For a solar analogue star R∗ = 1RSun and M∗ = 1MSun this is:

ΩSun < 6.273× 10−4s−1, (H.0.4)

which corresponds to a rotation period of P∗ = 0.116 days or 2.78 hours.

This is, of course, only a first order treatment neglecting stellar deformation due

to rotation and tides, the structure of the star and other forces. Still, it confirms
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that the stars investigated in this work don’t run the risk of being disrupted due to

centrifugal forces when they are tidally spun up.
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Bonomo, P. Bordé, F. Bouchy, L. Carone, S. Carpano, M. Deleuil, H. J.



323

Deeg, R. Dvorak, A. Erikson, S. Ferraz-Mello, M. Fridlund, D. Gan-

dolfi, J. Gazzano, M. Gillon, E. W. Guenther, T. Guillot, A. Hatzes,
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baria, H. Lammer, C. Lovis, P. J. MacQueen, C. Moutou, M. Ollivier,

A. Ofir, M. Pätzold, F. Pepe, D. Queloz, H. Rauer, D. Rouan, B. Samuel,

J. Schneider, A. Shporer and G. Wuchterl, Transiting exoplanets from the

CoRoT space mission: XIII. CoRoT-14b: an unusually dense very hot Jupiter,

ArXiv e-prints, Januar 2011.

Tittemore, W. C. and J. Wisdom, Tidal evolution of the Uranian satellites. III -

Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel

2:1 mean-motion commensurabilities, Icarus, 85, 394–443, 1990.

Unsoeld, A. and B. Baschek, The new cosmos : an introduction to astronomy

and astrophysics, 2001.

Vallado, D. A., Fundamentals of astrodynamics and applications, 2001.

van de Kamp, P., Astrometric study of Barnard’s star from plates taken with the

24-inch Sproul refractor., Astrophys. J., 68, 515–521, 1963.



338

Weber, E. J. and L. Davis, Jr., The Angular Momentum of the Solar Wind,

Astrophys. J., 148, 217–227, 1967.

Weidenschilling, S. J. and F. Marzari, Gravitational scattering as a possible

origin for giant planets at small stellar distances, Nature, 384, 619–621, 1996.

Weissman, P. R., L.-A. McFadden and T. V. Johnson, Encyclopedia of the

solar system, 1999.

Wolszczan, A., Confirmation of Earth Mass Planets Orbiting the Millisecond Pulsar

PSR:B1257+12, Science, 264, 538–+, 1994.

Wolszczan, A. and D. A. Frail, A planetary system around the millisecond pulsar

PSR1257 + 12, Nature, 355, 145–147, 1992.

Wuchterl, G., The critical mass for protoplanets revisited - Massive envelopes

through convection, Icarus, 106, 323, 1993.

Wuchterl, G., Extrasolar Giant Planets: Masses and Luminosities from In-situ

Formation Theories, in AAS/Division for Planetary Sciences Meeting Abstracts

#31, Bd. 31 von AAS/Division for Planetary Sciences Meeting Abstracts, 36.07,

1999.

Yoder, C. F., Astrometric and Geodetic Properties of Earth and the Solar System,

in Global Earth Physics: A Handbook of Physical Constants, herausgegeben von

T. J. Ahrens, 1–+, 1995.

Zahn, J.-P., Tidal friction in close binary stars, Astron. Astrophys., 57, 383–394,

1977.

Zapatero Osorio, M. R., V. J. S. Béjar, E. L. Mart́ın, R. Rebolo, D. Bar-

rado y Navascués, R. Mundt, J. Eislöffel and J. A. Caballero, A Methane,
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tionen - noch nicht veröffentlicht worden ist sowie, dass ich eine solche Veröffentlichung
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