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Abstract

In magnets without inversion symmetry weak spin-orbit coupling leads to the formation
of smooth twisted magnetic structures like helices with a long period. In 2009, a new
chiral magnetic phase was observed in the helimagnet manganese silicide (MnSi) within a
certain temperature and magnetic field range. It turned out that this phase is a lattice of
skyrmions which are topologically stable whirl-lines.

In the first Part of this Thesis, we review the discovery of the skyrmion lattice in
MnSi, its manifestation in other chiral magnets and in thin films. Furthermore, we review
the Ginzburg-Landau theory for chiral magnetic structures describing their equilibrium
properties, followed by a discussion of additional terms that orient and distort the skyrmion
lattice. Finally, we analyze the crystalline nature of the skyrmion lattice.

In the second Part of this Thesis, we investigate the interplay of electric currents and
magnetic structures in bulk materials, in particular the skyrmion phase. Electrons travers-
ing a spatially or temporally inhomogeneous magnetization configuration pick up a Berry
phase which, rewritten as an Aharonov-Bohm phase arising from emergent magnetic and
electric fields, leads to an effective Lorentz force acting on the electrons. For the skyrmion
lattice these emergent fields are particularly interesting as the emergent magnetic field is
quantized due to the topology of the skyrmions. On the other hand, the electric current
induces forces on the magnetic texture via spin-tranfer torques, describing the transfer of
angular momentum from the conduction electrons to the local magnetic structure. We
show that skyrmions act very sensitively to electric currents, and we study their current-
induced dynamics, i.e. the translational motion as well as rotations of the topologically
stable knots.

This research was, is and will be done in cooperation with recent experiments performed
by the group of Prof. Dr. Christian Pfleiderer from the Technical University of Munich.
The very efficient coupling of skyrmions to electric currents was experimentally confirmed
by an ultra-low threshold current density of about 106 A/m2 above which spin-transfer
torque effects were observed. It is about five order of magnitude smaller compared to that
of other present-day spin-torque effects like domain wall motion. Hence, skyrmions are
expected to be excellent systems to study the interplay of magnetism and electric currents,
thereby advancing the general understanding of spin-transfer torque effects. We further
think that the gained knowledge from such studies might be useful for future spintronic
devices.





Kurzzusammenfassung

In chiralen, magnetischen Materialien bilden sich auf Grund der schwachen Spin-Bahn-
kopplung getwistete magnetische Strukturen, wie zum Beispiel magnetische Helizes mit
einer langen Periodenlänge aus. Im Jahre 2009 wurde eine neue magnetische Struktur be-
stehend aus topologisch stabilen „Wirbel-Linien“, das sogenannte Skyrmiongitter, in Man-
gansilizium (MnSi) in einem gewissen Temperatur- und Magnetfeldbereich entdeckt.
Im ersten Teil dieser Arbeit werden wir uns mit der Entdeckung des Skyrmiongitters in
MnSi sowie dessen Beobachtung in weiteren Materialien und in dünnen Filmen befassen.
Zudem erläutern wir die Ginzburg-Landau-Theorie für chirale magnetische Strukturen
im Gleichgewicht und erweitern diese um Terme, die für eine Ausrichtung und Verzerrung
des Skyrmiongitters sorgen. Im letzten Kapitel dieses Teils analysieren wir den kristallinen
Charakter des Skyrmiongitters.
Im zweiten Teil der vorliegenden Arbeit untersuchen wir die wechselseitige Beeinflussung
zwischen magnetischen Strukturen, insbesondere dem Skyrmiongitter, und elektrischen
Strömen. Leitungselektronen, die sich durch eine räumlich oder zeitlich inhomogene Ma-
gnetisierungsanordnung bewegen, erhalten eine Berry-Phase. Diese lässt sich als Aharonov-
Bohm-Phase, hervorgerufen durch emergente elektrische und magnetische Felder, interpre-
tieren und führt zu einer effektiven Lorentz-Kraft auf die Elektronen. Für Skyrmionen sind
diese emergenten Felder besonders interessant, da sich zum Beispiel herausstellt, dass in
diesem Fall das emergente magnetische Feld quantisiert ist. Im Gegenzug übt auch der elek-
trische Strom Kräfte auf das Skyrmiongitter durch Übertragung von Drehmomenten der
Leitungselektronen auf die lokale magnetische Textur aus. Wir zeigen, dass Skyrmionen
sehr leicht auf elektrische Ströme reagieren und studieren deren strominduzierte Dyna-
mik, d.h. wir betrachten die translatorische Bewegung sowie die Rotation der topologisch
stabilen Wirbel.
Diese Arbeit war, ist und wird in Zusammenarbeit mit Experimenten erfolgen, die von der
Arbeitsgruppe von Herrn Prof. Dr. Christian Pfleiderer von der Technischen Universität
München durchgeführt wurden bzw. werden. Die sehr effektive Kopplung von Skyrmionen
und elektrischen Strömen wurde experimentell durch eine sehr niedrige Stromdichte von
106 A/m2 bestätigt, oberhalb derer die wechselseitigen Beeinflussungen beobachtbar sind.
Diese ist ca. fünf Größenordnungen kleiner als es in bisherigen Experimenten mit anderen
magnetischen Anordnungen der Fall war. Daher stellen Skyrmionen exzellente Systeme
dar, um das Wechselspiel zwischen Magnetismus und elektrischen Strömen zu untersuchen.
Desweiteren denken wir, dass die aus solchen Studien gewonnenen Erkenntnisse in der
Zukunft für die Spintronik-Technologie von Nutzen sein könnten.
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1 Introduction

The electromagnetic interaction is one of the four fundamental interactions in nature and
is responsible for phenomena like electricity and magnetism. Both of them are omnipresent
in our daily life, ranging from rather old-fashioned inventions like light bulbs or magnetic
compasses to modern applications such as light-emitting diodes and magnetic sensors in
smartphones.

Magnetic orders like ferromagnetism and antiferromagnetism are well known. More-
over, helimagnets with spiral magnetic structures, where, for example, the magnetization
twists around a certain axis, are established for more than 30 years. In 2009, the discovery
of a novel magnetic structure called skyrmion lattice, shown in Fig. 3.5, has spurred a lot
of interest [1]. This peculiar magnetic configuration consists of magnetic whirl-lines that
are topologically stable, similar to the vortex lattice in a type-II superconductor. Since
skyrmions do not only occur in chiral magnets we first briefly review their emergence in
other areas of physics. In the first Part of this Thesis, we focus on the skyrmions in chiral
magnets. We describe their experimental discovery and analyze their equilibrium config-
uration within a Ginzburg-Landau theory. Furthermore, we discuss additional terms that
pin the orientation of the skyrmion lattice. Finally, we focus on the crystalline nature of
the skyrmion lattice.

In 1865, James Clerk Maxwell showed that electricity and magnetism are coupled
and also interact with electric charges and currents [2]. About 40 years earlier, in 1826,
William Sturgeon constructed the first electromagnet which exploits the phenomenon that
a current-carrying conductor induces a magnetic field. A modern range of applications for
the interplay of magnetism and currents are, e.g., data storage devices based on the giant
magnetoresistance (GMR) effect. In 1988, Peter Grünberg and Albert Fert independently
discovered this effect which allows to manipulate magnetically the current flow [3, 4]. In
2007, they were awarded the Nobel prize in Physics for their discovery of the GMR effect.

John Slonczewski and Luc Berger proposed in 1996 the opposite mechanism [5, 6],
where an electric current is used to influence the local magnetization of a material. This
mechanism is called spin-transfer torque, because during this process a torque is exerted
on the local magnetization by the spin of the conduction electron. The spin-transfer torque
effect allows, for example, to move ferromagnetic domain walls with applied currents. In
terms of applications, spin torques might be useful, for example, for non-volatile mem-
ory devices like racetrack memories as suggested by Stuart Parkin et al. [7]. However,
all of these traditional spintronic applications like domain wall motion have in common
that very high current densities are needed to induce observable spin-torque effects. The
threshold current density above which the magnetic textures get unpinned from disorder
is of the order of j ∼ 1011 A/m2. A spin-torque effect, however, only occurs if the local
magnetization changes in space or time. In the case of the moving domain wall, the torque
affects only the region of the domain wall, where the magnetic structure is canted.
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Therefore, the skyrmion lattice as novel magnetic order seems to be ideally suited
to study spin-torque effects as the magnetic structure is smooth, but varies gradually in
space. Actually, it turns out that skyrmions couple very efficiently to electric currents
which manifests itself in an ultra-low threshold current density of about j ∼ 106 A/m2

being five orders of magnitude smaller compared to traditional spin-torque effects. In
the second Part of this Thesis, we consider the interplay of the skyrmion lattice with
an electric current. First, we focus on the physics of the conduction electrons which
collect Berry phases while traversing non-collinear magnetic structures. In Chapter 7,
we discuss that this Berry phase physics can be translated into emergent magnetic and
electric fields felt by the conduction electrons which lead to experimentally observable
effects. These emergent fields are particularly interesting for the skyrmion lattice, because,
for example, the topology of the skyrmions causes the emergent magnetic field to be
quantized. Afterwards, we analyze the effect of the current on the magnetic texture.
To describe the response of the skyrmion lattice with respect to an applied current we
use the standard Landau-Lifshitz-Gilbert equation extended by a recently suggested new
damping mechanism for non-collinear magnetic textures [8, 9]. In particular, we examine
the current-induced forces on the skyrmion lattice. Above a critical threshold current
density determined by the strength of pinning by disorder those forces lead to a motion
of the skyrmion lattice. We derive an equation for the acting forces from which one
can infer the drift velocity within the so-called Thiele method where we include pinning
physics phenomenologically. In Chapter 10, we focus on a current-induced rotation of
the skyrmion lattice and discuss different rotation mechanisms. Technically, we present
a generalization of the Thiele approach which is applicable for the rotational degree of
freedom. A rotation by a finite angle has already been observed experimentally [10]. In
the last section of Chapter 10 we predict a continuous rotation of the skyrmion lattice
which will be analyzed experimentally in the near future.

Finally, we compare the properties of the skyrmion lattice to the vortex lattice in
type-II superconductors. We will see that despite their analogies their dynamics behave
different. We end with a conclusion in Chapter 12.
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2 Skyrmions

In the sense the word “skyrmion” is used nowadays it is a mathematical object, which
is realized in different parts of physics. In this Chapter, we will first briefly discuss the
historical origin of skyrmions and their nomenclature. Then we give a definition of a
skyrmion, and discuss its properties. This is followed by some facts, where skyrmions do
occur in nature. Finally, we focus on skyrmions in chiral magnets being the main objects
of this Thesis.

A “skyrmion” is named after the nuclear physicist Tony Skyrme. He studied a certain
nonlinear field theory for interacting pions, i.e. mesons, and showed in the early 1960’s
that quantized and topologically stable field configurations do occur as solutions of such
field theories [11, 12]. He also showed that those localized particle-like solutions can be
interpreted as baryons, i.e. they have a fermionic character, although pions are described
by bosonic fields.

In the original work, Tony Skyrme considered three-dimensional versions of skyrmions.
Later, the notion of a “skyrmion” was generalized in the following way. A skyrmion is
a smooth, topologically stable field configuration which defines a non-trivial surjective
mapping from real space (or momentum space) to an order parameter space with a non-
trivial topology. Here, we will restrict the target manifold to a d-dimensional sphere Sd.
Furthermore, a skyrmion is everywhere non-singular, finite and trivial at infinity, i.e. it
has no winding at infinity. As an example, let us consider d = 2, where one can obtain a
skyrmion by taking a hedgehog configuration and projecting it onto the plane, as shown in
Fig. 2.1. The reverse process immediately indicates this mapping. The color code in the
following Figures is chosen such that arrows pointing to the north pole are plotted in red,
to the south pole in blue, and along the equator in green, and so on. Another example
of a skyrmion configuration is shown in the lowest panel of Fig. 2.2. It is obtained by a
similar recipe as the previous one, but with one step in between, where the hedgehog was
“combed”, which leads to a chiral, i.e. non-inversion symmetric skyrmion. Since the latter
will be the main object of this Thesis, there is another plot of it shown in Fig. 2.3 which,
for clarity, also contains a projection from above.

Skyrmions can be classified according to their integer-quantized winding number. It
counts how many times the field configuration covers the whole sphere. It is given by the
integrated skyrmion density Φ. In d = 2, the skyrmion density is given by

Φµ =
1

8π
εµνλΩ̂ · (∂νΩ̂× ∂λΩ̂) (2.1)

where εµνλ is the totally antisymmetric unit tensor, and Ω̂ denotes the normalized field
configuration, |Ω̂| = 1. For the examples shown in the following Figures, the skyrmion is
restricted to the xy-plane, such that the winding number is given by

W =

∫
dx dy

4π
Ω̂ · (∂xΩ̂× ∂yΩ̂). (2.2)
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Figure 2.1: From a hedgehog to a skyrmion configuration

Note that, in contrast to a skyrmion configuration, a vortex does not cover the whole
sphere, it has a non-trivial winding at infinity, and it is singular at its center.

Besides the “original” skyrmions predicted by Tony Skyrme, skyrmions and related
structures have also been considered in many other areas of physics ranging from nuclear
and particle physics over high-energy physics to condensed matter physics. Here, we will
mention just a few examples. For instance, three-dimensional lattices of skyrmions were
proposed to occur in the dense nuclear matter of neutron stars [13–15].

Moreover, skyrmions were predicted to occur in quantum Hall systems close to (or
at) the Landau level filling factor ν = 1. For example, in a ferromagnetic quantum
Hall system with small Zeeman splitting, excitations can be modeled as two-dimensional
skyrmions [16]. Here, Ω̂ corresponds to the spin density, and the quantized winding num-
ber is correlated to the charge νe of the skyrmion. Furthermore, in these systems also
lattices of skyrmions were theoretically proposed [17–19]. However, so far these predic-
tions have been experimentally confirmed only indirectly via nuclear magnetic resonance
measurements [20, 21] or via inelastic light scattering experiments [22]. Furthermore,
skyrmions are discussed to occur as topological excitations in multi-component ferromag-
netic Bose-Einstein condensates [23, 24]. In addition, skyrmion textures have been con-
sidered in cholesteric liquid crystals [25, 26] as well as in thin films in the form of bubble
domains [27, 28].

In the late 1980’s and early 1990’s, A. N. Bogdanov and collaborators showed that
skyrmion textures also occur as mean-field ground states for models of anisotropic non-
centrosymmetric magnetic materials with chiral spin-orbit interactions subjected to a mag-
netic field [29–31]. In these systems, they are predicted to form crystalline structures.
Moreover, A. N. Bogdanov and collaborators pointed out that within their mean-field
analysis a skyrmion lattice is only a thermodynamical metastable solution for cubic ma-
terials like manganese silicide (MnSi) and that the energy of a conical state is always
lower than the one of a skyrmion lattice. Since then, many further theoretical works
on skyrmion and skyrmion-like textures in magnets appeared [32–35], where also other
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2 – Skyrmions

Figure 2.2: From a combed hedgehog to a chiral skyrmion configuration

Figure 2.3: Single chiral skyrmion. Left panel: Three-dimensional sideview illustrating the
doubly twisted field configuration around the skyrmion center. Right panel: Projection
from above.
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stabilization mechanisms like long-ranged interactions [36, 37] or extra phenomenological
parameters [38] were suggested.

Concerning magnetic skyrmions, the real breakthrough, however, was in 2009 when in
the presence of a finite external magnetic field a lattice of skyrmions was experimentally
discovered in MnSi [1]. Here, the lattice consists of two-dimensional skyrmions as sketched
in Fig. 2.3, where in this case the arrows correspond to the local magnetization direction.
In this new type of magnetic order, the skyrmions are arranged on a hexagonal lattice
perpendicular to the applied magnetic field (an illustration of a skyrmion lattice can be
found in the next Chapter). The three-dimensional magnetic structure is translationally
invariant along the direction of the magnetic field, so that the magnetic texture is actually
made of hexagonal skyrmion tubes, similar to vortices in an Abrikosov vortex lattice of a
type-II superconductor. We will see that this skyrmion lattice has even more features in
common with the Abrikosov vortex lattice, and therefore pursue this point after having
derived all results for the skyrmion lattice in Chapter 11.

In short, in this novel skyrmion lattice phase, the magnetization remains always finite
and its direction winds once around a unit sphere per skyrmion in the plane perpendicular
to the external magnetic field. In Eq. (2.1) Ω̂ corresponds to the magnetization direction
and Ω̂ = M/|M |.

Since 2009 this new type of magnetic order has been observed also in other chiral mag-
netic bulk materials as well as in thin films. In the next Chapter, we discuss this magnetic
skyrmion lattice, its experimental discovery as well as further experimental observations
in more detail. Furthermore, when we mention skyrmions in the following Chapters, we
will always refer to the skyrmions which occur in chiral magnets, if not stated otherwise.

6



Part I

Chiral Magnetic Structures,
the Skyrmion Lattice





3 Experiments and Materials

The first experimental observation of the skyrmion lattice as a new type of magnetic order
was in the chiral magnet manganese silicide (MnSi) in 2009 [1]. Since then it has been
observed also in other bulk materials as well as in thin films.

In the first Section of this Chapter, we review the experimental discovery of the
skyrmion lattice in MnSi, where we first introduce the different magnetic phases of MnSi
with one of them being the skyrmion lattice phase. This is followed by a discussion of
the first seminal neutron scattering measurements for the skyrmion lattice phase which
provided the crucial hints for a new type of magnetic order. Later, in Chapter 5, we
analyze more recent neutron scattering data and consider the crystalline character of the
skyrmion lattice. Finally, we discuss briefly indications for the skyrmion lattice phase in
MnSi in other measurements like susceptibility data.

As expected from the theoretical considerations [1], which will be discussed in Chap-
ter 4, the skyrmion lattice is a rather general phase which occurs in many so-called B20
compounds. In Section 3.2, we briefly discuss other B20 compounds, where the skyrmion
lattice, since 2009, has already been detected by neutron scattering measurements [39–41].
Note that, so far, the skyrmion lattice has not only been observed in metals like MnSi, but
also in semiconductors, and recently also in an insulating, multiferroic material [42, 43].
Another essential progress concerning experiments is that the skyrmion lattice cannot only
be observed in momentum space by neutron scattering, but since 2010 also in real space
using Lorentz transmission electron microscopy in thin films. For example, the skyrmion
lattice was confirmed to exist using Lorentz transmission electron microscopy for thin films
of Fe1−xCoxSi (x = 0.5) [44], FeGe [45] and also MnSi [46].

3.1 Discovery of the Skyrmion Lattice in MnSi

The skyrmion lattice in a magnetic material has first been observed in 2009 by Mühlbauer
et al. [1]. They used neutron scattering to observe the spontaneous formation of this novel
type of magnetic order in MnSi.

3.1.1 Properties of Manganese silicide

Manganese silicide (MnSi) is an itinerant, chiral weak ferromagnet, with a fluctuating
magnetic moment of 2.2 µB and a saturated magnetic moment of 0.4 µB per Mn atom.
The Bravais lattice is cubic, and MnSi crystallizes in the B20 structure that lacks inversion
symmetry. The space group of MnSi is given by P213 which consists of threefold rotations
around 〈111〉 axes and of screw axes. The latter consist of a twofold rotation around cubic
〈100〉 axes followed by a translation by half a lattice vector along the same axis. Fig. 3.1
shows a sketch of the atomic unit cell of MnSi. It comprises four Mn and four Si atoms at
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3.1 – Discovery of the Skyrmion Lattice in MnSi

Figure 3.1: The atomic unit cell of MnSi comprising four Mn and four Si atoms.

the positions (u, u, u), (1
2 +u, 1

2 −u, ū), (1
2 −u, ū,

1
2 +u), (ū, 1

2 +u, 1
2 −u) with uMn = 0.138

and uSi = 0.845. MnSi can be produced in ultra-pure form with a mean free path of about
up to 5000 Å. At ambient pressure, it can be described very well by Fermi-liquid theory.
However, MnSi attracted attention since above a critical pressure of about pc ≈ 14.6 kbar
a non-Fermi liquid phase was observed [47–50]. In this phase, the temperature dependence
of the resistivity is proportional to T 3/2, in contrast to the typical T 2 behavior for Fermi-
liquids. Furthermore, in an intermediate pressure region (12 kbar . p . 20 kbar) a state
with a partial magnetic order was observed in neutron scattering [51].

Concerning the magnetic properties of MnSi, note that due to the lack of inversion sym-
metry of the atomic crystalline structure also non-inversion symmetric magnetic structures
are allowed. Quite recently also the magnetic properties of MnSi caused sensation [1], as it
was the first material where the new magnetic order, the skyrmion lattice, was observed.

3.1.2 Magnetic Phase Diagram of MnSi

MnSi is a material with a dominating ferromagnetic exchange interaction. In the field-
polarized phase, the spontaneous magnetic moment per Mn atom is given by 0.4 µB. Aside
from the usual paramagnetic phase above the Curie temperature Tc and a field-polarized
phase for large magnetic fields, the absence of inversion symmetry of the atomic lattice
also allows for additional chiral magnetic structures. Fig. 3.2 shows the different magnetic
phases in the form of a temperature T versus applied magnetic field B phase diagram at
ambient pressure [1, 52, 53]. In particular, it shows the three occuring chiral phases – the
helical, the conical, and the skyrmion phase. In Fig. 3.2 the skyrmion phase is still denoted
by its previous name “A-phase” which was assigned to this phase before it was found out
to be a skyrmion lattice phase [52, 54]. These three phases are described in the following.
All of them do occur due to the interplay of three hierarchical energy scales controlled by
the strength of spin-orbit coupling λso ∼ 10−2. The strongest energy scale is ferromag-
netic, which favors a uniform magnetization configuration. It is followed by the weaker
chiral spin-orbit interactions originating from relativistic effects that occur due to the lack
of inversion symmetry of the atomic structure [55–58]. The lowest-order chiral spin-orbit
interaction is called Dzyaloshinskii-Moriya interaction [59, 60]. It circumvents the forma-
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3 – Experiments and Materials

Figure 3.2: Magnetic phase diagram of MnSi as a function of temperature T and applied
magnetic field strength B. The magnetic field was applied along a 〈100〉 direction. The
phase diagram is taken from Ref. [1]

Figure 3.3: In the helical phase, the magnetization winds around q, the propagation vector
denoted by the black arrow in the Figure, and is perpendicular to it.

tion of a ferromagnetic ground state, because the Dzyaloshinskii-Moriya interaction favors
twisted magnetic structures typically by forming spiral-like magnetization configurations.
Besides the ferromagnetic and the Dzyaloshinskii-Moriya interaction, there are very weak
crystalline field interactions which break the rotational symmetry [55, 56]. For example,
they orient the magnetic structures according to crystal axes.

Helical phase: Below the critical temperature Tc ≈ 29 K and at zero or only small
applied magnetic field, MnSi exhibits helical magnetic order [55, 57, 61, 62]. In this phase,
the magnetization twists around an axis denoted as the propagation vector q of the helix,
as shown in Fig. 3.3. The local magnetic momentM is perpendicular to q for B = 0. The
period or wavelength of the helix, denoted by λhelix, is determined by the interplay of the
ferromagnetic exchange interaction and the Dzyaloshinskii-Moriya interaction. It is about
λhelix ∼ 180 Å [56, 61]. This is huge compared to the atomic lattice constant of MnSi of
a ≈ 4.56 Å. Due to the two different length scales, the magnetic structure couples only
very weakly to the underlying atomic structure. In MnSi, the helices are weakly aligned
along the cubic space diagonal 〈111〉 due to tiny crystalline field interactions which break
the rotational symmetry [55, 56, 61]. This effect occurs only in fourth order in the small
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3.1 – Discovery of the Skyrmion Lattice in MnSi

Figure 3.4: In the conical phase, the spiral wave vector q (black arrow) aligns along the
direction of the magnetic field. The magnetization still winds around q, but it also has a
uniform magnetic component in the direction of the magnetic field B.

spin-orbit coupling strength, λ4
so. The correlation length of the zero-field helical state is

about 104 Å. This was obtained by measuring the Gaussian rocking width in typical small
angle neutron scattering experiments, (see Refs. [63, 64] and references therein).

Conical phase: Increasing the magnetic field above a critical magnetic field Bc1 ≈ 0.1 T
and keeping the temperature below Tc, it is more favorable for the local magnetization to
build up a net ferromagnetic component. But before reaching the fully polarized ferromag-
netic state above a magnetic field of Bc2 ≈ 0.6 T, where the effects of the Dzyaloshinskii-
Moriya interaction are suppressed, the system prefers a state that is called conical phase.
In this phase, the q vector aligns along the direction of the magnetic field B [54, 65, 66],
and the local magnetization is no longer perpendicular to q, but has also a component
in the direction of the magnetic field which leads to a uniform magnetization. A sketch
of a conical order is shown in Fig. 3.4. The line separating the helical and the conical
phase is in general expected to be a crossover where the direction of the q vector changes
continuously (but hysteretic) from a 〈111〉 direction to the direction of the magnetic field.
Only if the magnetic field is applied along certain special directions like for example one
of the high symmetry directions as [100], it might possibly be a second order phase tran-
sition. The cone angle, i.e. the angle between the local magnetization and the direction
of the magnetic field, smoothly decreases to zero at the field strength Bc2 ≈ 0.6 T. For a
magnetic field above Bc2, the effects of the Dzyaloshinskii-Moriya interaction are negligi-
ble compared to the ferromagnetic interaction, and the field-polarized state is the ground
state.

Skyrmion phase: In a small pocket of the phase diagram, for temperatures just below
Tc and finite magnetic field, a two-dimensional hexagonal lattice of anti-skyrmions oriented
perpendicular to the applied magnetic field is the ground state. The corresponding phase
transition from the skyrmion lattice phase to the conical phase is first order [1, 40]. The
lattice constant of the skyrmion lattice is given by 2λhelix/

√
3. The magnetization texture

of the skyrmion lattice is shown in Fig. 3.5, illustrating the doubly twisted magnetic struc-
ture around an anti-skyrmion center. The skyrmion lattice decouples very efficiently from
the atomic crystal lattice, such that the plane of the skyrmion lattice orients perpendicular
to the applied magnetic field B independent of the underlying atomic orientation. Only
the orientation of the hexagonal lattice within the plane is determined by crystalline field
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Figure 3.5: Illustration of the magnetic order in the skyrmion lattice phase which was pre-
viously denoted as “A-phase”. The magnetic structure forms a two-dimensional hexagonal
lattice of anti-skyrmions that is translationally invariant in the direction of the magnetic
field being perpendicular to the skyrmion lattice plane. The color code from red to blue
is chosen according to the alignment with the magnetic field. A red (blue) arrow indicates
that the magnetization is parallel (antiparallel) to the applied magnetic field.

interactions. For example, for a magnetic field that is perpendicular to a 〈110〉 direction
of the atomic crystal, the skyrmion lattice pins very weakly in this 〈110〉 direction of the
atomic crystal. Along the direction of the magnetic field, the magnetic structure is trans-
lationally invariant, implying that the three-dimensional magnetic structure assumes the
form of skyrmion lines or skyrmion tubes, as shown in the right panel of Fig. 11.1. The
winded magnetic building blocks are called anti-skyrmions since the winding number W
per two-dimensional unit cell is quantized to W = −1, implying that the magnetization
in the center of a skyrmion is antiparallel to the applied magnetic field and the uniform
magnetic component. Previously, this phase was also referred to as the “A-phase” [54, 65],
because the magnetization texture of this phase was not properly understood. Before
the discovery of the skyrmion lattice it had been believed that the A-phase was just a
single helix with a spiral wave vector q aligned perpendicular to the applied field [65, 66].
This interpretation can be clearly ruled out by the corresponding neutron scattering data
disussed below.

3.1.3 Neutron scattering: setups and results for the different chiral magnetic phases

Neutron scattering is a very good technique to analyze magnetic structures. Since neu-
trons have a magnetic moment they scatter at the magnetic structure. In general, the
contributing modes of a periodic magnetic texture can be observed in neutron scattering
experiments in the form of Bragg peaks in reciprocal space. Via Fourier transformation,

M(r) =
∑
q

mqe
iq · r (3.1)
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Figure 3.6: Neutron scattering setup, where the applied magnetic field B is perpendicular
to the incident neutron beam.

one can then, in principle, obtain information about the real space picture of the magne-
tization configuration.

A basic neutron scattering setup is shown in Fig. 3.6. The incident neutron beam
interacts with the sample and its signal can then be observed on the detector. For a given
periodic structure and for every q withmq 6= 0 in Eq. (3.1) we expect to observe a neutron
scattering spot in the direction of q located on a sphere in reciprocal phase with a radius
of q = |q|.

There are several reasons why one cannot immediately translate the momentum space
picture obtained from the neutron scattering result into a real space picture. First of all,
experimental neutron scattering peaks are not delta peaks, but the spot size is represen-
tative for the resolution limit of the measurement. Second, with this particular technique
it is not possible to adress the q = 0 mode, i.e. the uniform component of the magnetic
structure is not accessible. This is due to the fact that one is not able to distinguish
between neutrons that don’t interact with the sample and those that do interact, but are
scattered to the origin of reciprocal space, q = 0. Therefore, in most experimental data
the intensity at the origin is removed. Nonetheless, the uniform magnetic moment can be
measured with other experimental techniques like, e.g., vibrating sample magnetometry.
Furthermore, in almost all data shown a substraction of the noisy background signal was
performed already to better observe the scattering spots from the magnetic structure.
A more challenging problem is that the neutron penetrates the whole sample. In the
usual case, where the magnetic texture consists of different domains, the observed data
contains the accumulated signal of all penetrated domains. Furthermore, experimentally
it is quite tricky to distinguish between higher-order scattering and multiple scattering
peaks. Concerning the skyrmion phase, it was possible to detect the first higher-order
peaks and differentiate between the doubly scattered neutrons [67], thereby emphasizing
the long-range crystalline nature of the skyrmion lattice. This will be further discussed in
Chapter 5. Another important reason why a direct Fourier transformation is not possible
is that the neutron scattering data do not allow to determine complex phases. For a helical
or conical magnetic structure, a change in the phase corresponds only to a translation of
the full texture along the spiral wave vector. However, for a multi-q structure like the
skyrmion lattice these phases play an important role, as will be discussed further in Sec-
tion 4.3. Despite these rather fundamental problems, there is also a practical problem.
Within a single measurement one cannot map out the full reciprocal space. One is rather
limited to a part of the Ewald-sphere, namely to those modes that can be measured due
to the size limitations of the detector. Since neutron scattering experiments are quite
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Figure 3.7: Neutron scattering data for the conical phase in MnSi at ambient pressure
for T = 26 K and B = 0.19 T measured by Alfonso Chacón Roldán of the group of
Prof. Dr. Christian Pfleiderer. The propagation vector of the conical phase aligns clearly
with the direction of the magnetic field.

expensive and beam time is limited, before doing the experiment one has to adjust the
experimental setup such that the spots one is interested in are measureable.

Conical phase: A conical phase is characterized by three real numbers, namely the
strength of the uniform magnetization Mf , the amplitude

√
2Φ of the helix, and the pitch

of the helix q. The direction of the spiral wave vector is fixed since it is aligned with the
magnetic field q = qB̂. For a magnetic field in z direction the local magnetization is given
by

M(r) =

√2Φ cos(qz)√
2Φ sin(qz)
Mf

 =

 Φ/
√

2

−iΦ/
√

2
0

 eiq · r +

Φ/
√

2

iΦ/
√

2
0

 e−iq · r +

 0
0
Mf

 (3.2)

with q = (0, 0, q)T parallel to B. From this Fourier decomposition one expects to see
exactly two spots (besides the q = 0 spot) in neutron scattering, one in the direction of
the magnetic field B, and the other one in −B direction. The radius q of the sphere in
momentum space is proportional to the inverse pitch of the helix, and Φ2 is the weight of
the peaks. To observe both spots on the detector it is neccessary to apply the magnetic
field in the direction perpendicular to the neutron beam, i.e. in a direction of the measuring
plane, as shown in Fig. 3.6.

The first neutron scattering experiments for MnSi to study the conical and helical
phase were performed in 1976 by Ishikawa et al. [61]. Fig. 3.7 shows a more recent typical
neutron scattering pattern of the conical phase in MnSi at T = 26 K and B = 0.19 T,
measured at ambient pressure in the setup of Fig. 3.6. As expected, one clearly observes
the two spots of high neutron intensity along the direction of the magnetic field. This
is the reason why in the conical phase in general neutron scattering measurements were
performed in the setup of Fig. 3.6, where the magnetic field is perpendicular to the indicent
neutron beam [54, 65, 66]. However, it turned out that this is not the best way to get
informations about the skyrmion lattice, as discussed below.
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Figure 3.8: Equivalent 〈111〉 orientations for the helical propagation vector.

Helical phase: In the helical phase, the interpretation of the neutron scattering data is
a little bit more complex than in the conical phase. In MnSi, the prefered direction for the
helical wavevector q due to crystalline field interactions is along a 〈111〉 direction [55, 61].
Since there are four equivalent threefold axes of the cubic structure q1 ‖ [111], q2 ‖ [11̄1̄],
q3 ‖ [1̄11̄], and q4 ‖ [1̄1̄1], in general, the magnetic material consists of domains with
different orientations of their magnetic propagation vectors. Hence, performing the mea-
surement with unpolarized neutrons there are eight magnetic peaks around each nuclear
Bragg peak, corresponding to ±qk (k = 1, . . . , 4), as shown in Fig. 3.8. Nonetheless, due
to the restriction of the reception range of the detector one does not see all of them at
the same time. A typical result of the scattering intensity in the helical phase is shown in
panel (A) and (D) of Fig. 3.10. Both are measured in a zero-field-cooled state and at zero
magnetic field |B| = 0 for a 〈110〉 scattering plane. Panel (A) is measured at temperature
of T = 27 K and (D) at T = 16 K. The intense spots shown are all aligned along a 〈111〉
direction, and one observes helical magnetic order along 〈111〉 directions. With polarized
neutron scattering one can also demonstrate that the chirality of the magnetic structure
is single-handed, meaning that there are no chiral domains. The same helix is observed at
q and −q.

Skyrmion phase: As mentioned above, most neutron scattering experiments in the
presence of a magnetic field where performed such that the magnetic field is perpendicular
to the indicent neutron beam (setup of Fig. 3.6). However, in the skyrmion lattice phase
it turned out to be much more beneficial to apply the magnetic field in the direction of
the incident neutron beam, as shown in Fig. 3.9. The work reviewed in this part has been
published in Ref. [1]. Mühlbauer et al. performed neutron scattering experiments at the
diffractometer MIRA [68] at FRM II at the Technische Universität München1 and used an
incident neutron wavelength of λ = 9.6 Å with a 5% full-width half-maximum (FWHM)
wavelength spread. The most important results of their small-angle neutron scattering
(SANS) experiments are summarized in Fig. 3.10. Panels (A) and (D) represent data
for the helical phase as discussed above. Panels (B), (C), (E) and (F) show data for the
skyrmion phase. All data for the skyrmion phase except the one shown in panel (F) are
measured in the setup of Fig. 3.9, where the magnetic field is aligned in the direction of

1FRM: Forschungsreaktor München
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Figure 3.9: Neutron scattering setup, where the applied magnetic field B is parallel to the
incident neutron beam.

the incident neutron beam. Only the data of panel (F) has been measured in the usual
setup for the conical phase, as sketched in Fig. 3.6. The measurements shown in panels
(A) to (F) are performed for two different single-crystal MnSi samples. The data on the
left hand side of Fig. 3.10 show measurements of sample 1, and the ones on the right
hand side belong to sample 2. Sample 1 has the shape of a disk, where the normal vector
of the disc was slightly misaligned with respect to a 〈110〉 axis, and sample 2 is a small
parallelepiped, where a 〈110〉 axis corresponds to the long axis. Both are of the size of
a few millimeters (for further details see Ref. [1]). The data shown were measured by
performing a sum over rocking scans with respect to the vertical axis through the sample.
The measurements with a finite magnetic field were performed such that Mühlbauer et al.
first cooled to the desired temperature and then turned on the magnetic field. However,
they have also tested that the neutron scattering results for the skyrmion lattice phase do
not depend on the specific way how the skyrmion phase is reached, zero-field cooled or
field cooled [1].

Panels (B), (C) and (E) of Fig. 3.10 show the first published intensity measurements in
the skyrmion phase that were performed in the setup of Fig. 3.9. All of these three pictures
and all other measurements that were performed in the skyrmion phase, but are not shown,
have in common that one observes six spots on a regular hexagon, independent of the
particular sample and the orientation of the sample. Panel (B) was measured for a 〈110〉
scattering plane at a temperature of T = 26.45 K and a magnetic field of B = 0.164 T.
In panel (E), the temperature is T = 27.7 K, and the magnetic field is B = 0.162 T. It
was measured with the same orientation as in panel (D). In (B) and (E) the scattering
plane contained a 〈110〉 direction and one observes that two of the six peaks coincide with
this direction. In panel (C) the orientation of the sample was random. In particular, it
did not contain a 〈110〉 direction, but nevertheless the characteristic sixfold pattern of the
skyrmion lattice can be seen in the neutron scattering data. The applied magnetic field
in panel (C) was B = 0.164 T at a temperature of T = 26.77 K.

Furthermore, the hexagonal magnetic scattering pattern and therefore the skyrmion
lattice align perpendicular to the applied magnetic field. In reverse, this means that for
precise measurements also small variations of the magnetic field direction across the sample
volume like demagnetization fields should be avoided, which in the neutron scattering data
presented in this Section were however present.

To check for consistency with previous works, also measurements in the usual setup
for the conical phase (Fig. 3.6) were performed for different temperatures. Below Tc
one observes only the spots of the conical phase, i.e. spot 9 and 10 in panel (F). When
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Figure 3.10: Typical small-angle neutron scattering (SANS) intensities. Panel (A) and
(D) show measurements in the helical phase and all others in the skyrmion phase (see
text for details). The intensity is given by the color scale that is logarithmic to enhance
weak features. Red (blue) corresponds to high (low) intensity. From all panels except (A),
where one observes the light blue square, a typical background measurement above Tc and
B = 0 is substracted. The picture is taken from Ref. [1].
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increasing the temperature and entering the skyrmion phase, spots 9 and 10 become very
weak, while spots 6 and 8 corresponding to those in panel (E) appear. The data of panel
(F) shows such a measurement in the usual setup for the conical phase (Fig. 3.6) in the
skyrmion phase at T = 27.7 K and B = 0.190 T. Within this measurement the spots of
the conical phase are very weak, but don’t disappear. For a weak first-order transition
this may be interpreted as a phase coexistence of the conical and the skyrmion phase.
Nevertheless, for this phenomenon also the mentioned demagnetizing fields may be the
reason.

In conclusion, the key results of the neutron scattering study of Ref. [1] are the follow-
ing. At a magnetic field strength of the order of Bc2/2 the skyrmion lattice phase is the
ground state instead of the competing conical phase. The wave-vectors q of the Fourier
modes contributing to the skyrmion phase align perpendicular to the applied magnetic
field, thus the neutron scattering spots are located in the plane perpendicular to the mag-
netic field B. The main Bragg reflections form a regular hexagon independent of the
orientation of the underlying atomic lattice. Moreover, within the skyrmion plane the
magnetic lattice aligns very weakly with respect to the 〈110〉 orientation if possible. How-
ever, in total the skyrmion lattice unpins very efficiently from the atomic crystal lattice,
and the skyrmion plane is perpendicular to the applied magnetic field.

Even more information on the magnetic structure, can be extracted from higher-order
scattering peaks in neutron scattering. Nevertheless, in the first neutron scattering stud-
ies [1] discussed in this part, is was not possible to distinguish double or multiple scattering,
i.e. neutrons that scattered more than one time from the magnetic structure, from real
higher-order peaks, where neutrons scatter once with a higher moment. Moreover, within
this study the spot sizes were quite large (due to the slightly inhomogeneous magnetic
fields across the sample) and the intensity variation of the rocking scans was not as ex-
pected. To conclude, it was not possible to doubtlessly establish higher-order peaks. This
was achieved later in Ref. [67] accompanied by a better resolution and is discussed in more
detail in Chapter 5.

3.1.4 Susceptibility for the Skyrmion Phase

The magnetic susceptibility also shows characteristic features within the skyrmion phase
and at its boundaries. Fig. 3.11 shows the AC susceptibility χ as a function of the applied
magnetic field, measured at ambient pressure for a fixed temperature T just below the
transition temperature Tc to the paramagnetic phase. When entering the skyrmion phase
at HA1 (the subscript “A” was chosen according to the previous name “A-phase”) the AC
susceptibility first jumps to a lower value, and then rises again for higher magnetic field
exceeding HA2 in the conical phase [52]. Hc1 and Hc2 denote the usual critical magnetic
fields for the transition from the helical to the conical phase, and from the conical to the
ferromagnetic phase, respectively.

Furthermore, also in the data of the Hall resistivity one notices the skyrmion lattice
phase. This is explained in Chapter 7 in more detail.

To summarize, all data, in particular the neutron scattering data, indicate that the
skyrmion lattice phase in chiral magnets, previously denoted as “A-phase”, is a new form of
magnetic order with a first-order transition to the conical phase. A theoretical Ginzburg-
Landau analysis which confirms that the A-phase in MnSi is indeed a skyrmion lattice, i.e.
a new form of magnetic order consisting of topologically stable knots in the spin structure,
has also been published in Ref. [1]. We review and discuss the Ginzburg-Landau theory for
helimagnets in the next Chapter. To demonstrate experimentally that the skyrmion lattice
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Figure 3.11: Plot of the AC susceptibility χ versus the applied magnetic field B, measured
at ambient pressure and at a temperature slightly smaller than Tc. The picture is taken
from Ref. [52].

indeed has a topologically non-trivial magnetic structure characterized by a finite winding
number being quantized per unit cell cannot be extracted from these neutron scattering
patterns. To this end, the so-called topological Hall effect was expoited [40], which is
based on an emergent magnetic field that arises due to the finite winding number. This
effect is discussed in more detail together with the emergent electric field in Chapter 7.

3.2 Further Evidence for the Skyrmion Lattice

Since 2009 the skyrmion lattice has been observed in other materials and with different
experimental techniques, too. First, we would like to briefly review some of the materials,
where the skyrmion phase has already been observed. The second material in which the
skyrmion lattice phase was observed is the doped semiconductor material Fe1−xCoxSi [39].
CoSi is a diamagnetic metal and FeSi a nonmagnetic insulator. When doping FeSi with Co,
Fe1−xCoxSi shows an insulator-to-metal transition at x = 0.02. For even larger doping,
0.05 ≤ x ≤ 0.7, Fe1−xCoxSi orders helimagnetically in a certain range of the temperature
vs. magnetic field phase diagram. The pitch of the helix increases from about 200 to 2000 Å
for increasing doping. In Ref. [39] it was shown using neutron scattering that for a doping
of x = 0.2 also a skyrmion lattice phase exists in Fe1−xCoxSi for temperatures of about
roughly 25 − 27 K and applied magnetic fields of about roughly 30 − 60 mT (for details
see Ref. [39]). Moreover, the skyrmion lattice phase was observed by small angle neutron
scattering in iron and cobalt doped MnSi, i.e. in Mn1−xFexSi and Mn1−xCoxSi [41]. As
suggested by the theoretical analysis [1], the skyrmion lattice is a general phenomenon and
occurs in (at least) the B20 compounds that order helimagnetically at zero magnetic field.
Note that the skyrmion lattice has not only been observed in metals like MnSi, but also in
semiconductors and quite recently in an insulating, multiferroic material, Cu2OSeO3 [42,
43], too. In this Thesis, when mentioning experiments, we will often use MnSi as a reference
material. We think that the results are similiar for the other appropriate compounds.

Now let us briefly focus on a different experimental technique to observe the skyrmion
lattice phase. Since 2010 it has not only been observed by neutron scattering, but also
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Figure 3.12: Real space image of the skyrmion lattice at a magnetic field of B = 50 mT
obtained from Lorentz TEM. The figure is taken from Ref. [44].

using Lorentz transmission electron microscopy (TEM) on thin films [44, 45]. Lorentz
TEM has the advantage, that one directly observes a real space picture of the magnetic
structure. A disadvantage is, however, that the magnetic structure has to be electron-
transparent, and therefore only thin samples can be studied. For the case of the skyrmion
lattice, the magnetic field has to be applied into the direction normal to the thin sample.
In this configuration, and provided that the sample is thinner than the pitch of the conical
phase, the latter is energetically suppressed, and therefore the skyrmion lattice phase
is stable in a much broader region of the phase diagram [44]. For thicker samples, the
magnetic phase diagram approaches the one of the bulk samples, suggesting that in both
thin films and bulk samples the same skyrmion lattice is realized [46]. Fig. 3.12 shows
a typical result of a measurement by Yu et al. [44] for a thin film of Fe1−xCoxSi with a
doping of x = 0.5 and a magnetic field of B = 50 mT in the skyrmion lattice phase. The
lattice spacing of the skyrmions is about 90 nm. With Lorentz TEM it is only possible
to measure the in-plane component of the local magnetization. Therefore, in the center
or at the boundaries of the skyrmions, where the magnetization is opposite or along the
magnetic field and thus normal to the thin sample, the magnetization is not specified by
this technique. However, in Fig. 3.12 one can clearly observe the winding of the magnetic
structure.

In thin films of FeGe [45], the skyrmion lattice has been observed directly using this
method, too. FeGe is also a B20 type material, yet with a much higher transition temper-
ature of about 280 K between the helical and the paramagnetic phase. Here, Yu et al. [45]
succeeded in observing the skyrmion crystal also at temperatures of about 260 K.

This brief section indicates that since the discovery of the first chiral magnetic skyrmion
lattice in MnSi in 2009 [1], this has been a very active research field and skyrmions occur
in bulk materials [1, 39, 41] as well as nano-scale systems [44, 45]. Spontaneous skyrmion
lattices have also been observed in monatomic layers of Fe on an Ir substrate, i.e. also
on atomic length scales [69]. We expect that even more materials exhibiting such winded
magnetic structures will be observed in the future.
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4 Ginzburg-Landau Theory

The Ginzburg-Landau theory is a phenomenological theory for a continuum description
of phase transitions. It is named after V. L. Ginzburg and L. D. Landau and can be
applied to various kinds of phase transitions. The central concept of this theory is based
on the existence of an order parameter that is non-zero in the ordered phase below a
critical temperature Tc, and which becomes zero when increasing the temperature above
Tc. Close to the phase transition the order parameter is small, so that the appropriate
energy functional can be expanded as a power series in the order parameter. Minimizing
this functional with respect to the order parameter yields the equilibrium thermodynamics
of the system.

In the case of ferromagnetism or smoothly varying magnetic textures the order pa-
rameter is the local magnetization M(r). In thermal equilibrium, the magnetic state of
a system is the one that minimizes the free energy G. The dimensionless free energy G
as a function of the applied magnetic field and temperature can be calculated from the
partition function Z,

Z = e−G =

∫
DM e−F [M ], (4.1)

where the free energy functional F depending on the order parameter M respects the
fundamental symmetries of the system. The crudest approximation to calculate the free
energy G is to take its mean-field value that is obtained by minimizing the free energy
functional with respect to the magnetization structure M(r):

G ≈ min
M(r)

F [M ] ≡ F [M0]. (4.2)

Here,M0 is the minimum of the free energy functional F . The leading-order corrections to
the mean-field result are thermal Gaussian fluctuations arround the mean-field minimum
of the free energy functional. For a local minimum M0(r) we find

G ≈ F [M0] +
1

2
ln det

(
δ2F

δMδM

) ∣∣∣∣
M0

. (4.3)

In the Ginzburg regime very close to Tc, the contribution from order parameter fluctations
is of comparable size to its mean-field value, and this expansion becomes invalid.

In this Chapter, we will first motivate the Ginzburg-Landau functional F [M ] for a
usual ferromagnet. This part is followed by the extended model for helimagnets. The
last Section of this Chapter is dedicated to the skyrmion lattice phase. First we discuss
its stability, where we mainly review the results of Ref. [1] and then we consider the
orientation, the distortion and the pinning of the skyrmion lattice with respect to the
underlying atomic lattice. Parts of the latter we published in Refs. [10, 70, 71]
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Figure 4.1: Magnetic phase diagram of a ferromagnet. Below the critical temperature Tc
the system is ferromagnetically ordered. Above Tc it is paramagnetic.

4.1 Ginzburg-Landau Functional for a Usual Ferromagnet

The Ginzburg-Landau theory for a usual ferromagnet can be found in many textbooks,
for example in Refs. [72–74]. Figure 4.1 shows the temperature versus magnetic field
phase diagram. Below the critical temperature Tc, the system is ordered and can be
characterized by the magnetization M which is the thermal average of the microscopic
spins. M vanishes in the paramagnetic phase, i.e. above the critical temperature Tc. Since
M changes continuously across Tc, the phase transition is of second order.

In the ordered phase close to the phase transition, the magnetization is small, so that
according to the Landau theory one can expand the free energy functional F in powers
of the slowly varying magnetization. Moreover, in the low-energy limit, fast fluctuations
of the magnetic moments do not play an important role, and therefore one additionally
expands F in derivatives of the local magnetization M(r). In the absence of a magnetic
field and an underlying atomic structure, the system should be invariant under time rever-
sal and under the rotation of all spins. Postulating this, the Ginzburg-Landau free energy
functional for a conventional, inversion-symmetric ferromagnet is given by

F [M(r)] =

∫
d3r

(
r0M

2 + J(∇M)2 + UM4 −BM + . . .
)
, (4.4)

where (∇M)2 ≡ ∂iMj∂iMj , M4 = (M ·M)2, and the dots indicate higher-order terms
which are discussed below. Here, r0, J , and U are phenomenological parameters which
are determined by the microscopic theory of the particular system. For a ferromagnetic
system J is positive and prevents a non-collinear magnetic structure. The quartic term
accounting for mode-mode interactions to lowest order (as discussed below) has to have a
positive prefactor U to ensure stability of the system. The free energy functional depends
sensitively on the sign of r0, as can be seen in Fig. 4.2, where the free energy functional is
plotted as a function of a homogeneous magnetization.

When linearizing all temperature dependences around the critical temperature, and
keeping only the linear temperature dependence of r0, then a positive (negative) r0 corre-
sponds to a temperature T that is larger (smaller) than the mean-field critical temperature
TMF
c . Consequently, this implies that r0(T ) ∝ (T − TMF

c ) with a positive prefactor. Due
to fluctuations and further non-linear terms the actual critical temperature differs slightly
from its mean-field value, so that in general Tc ≈ TMF

c .
For B = 0 the Ginzburg-Landau free energy functional of Eq. (4.4) is minimized by a

homogeneous ferromagnetic magnetization configuration with ∂iM = 0. The amplitude
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Figure 4.2: Sketch of the mean-field free energy functional for a homogeneous magnetiza-
tion for a ferromagnet. Without an applied magnetic field the system is paramagnetic for
r0 > 0 (left panel) and ferromagnetic for r0 < 0 (right panel).

of the magnetization is obtained by

∂F

∂M
= 2MV (r0 + 2UM2) ⇒ M = 0 ∨ M = ±

√
− r0

2U
. (4.5)

It is zero for temperatures above the critical temperature (r0 > 0), but assumes a finite
value in the ordered phase, see Fig. 4.2. Without the magnetic field, the free energy
functional is rotational invariant, and therefore the direction of M is not determined
within Eq. (4.4). When applying a magnetic field, the magnetic moments align into the
direction of the magnetic field.

The Ginzburg-Landau free energy functional as given in Eq. (4.4) obeys the following
symmetries. It is symmetric under a translation or rotation in space and under spatial
inversion. Moreover, it is invariant under the transformation M → −M and B → −B
as well as under a combined rotation of space and spin-space around an arbitrary axis for
B = 0 or, for B 6= 0, around the axis defined by B. The rotation symmetry is broken by
crystal anisotropies.

4.2 Ginzburg-Landau Theory for Helimagnets

In helimagnets, i.e. magnets without inversion symmetry, weak spin-orbit coupling leads
to the formation of smooth twisted magnetic structures, e.g. helices [62], with a long period
compared to the lattice constant. The lack of inversion symmetry allows for additional
terms in the magnetic Ginzburg-Landau theory which have odd powers of spatial deriva-
tives and thus are odd under spatial inversion. The most important additional contribution
for helimagnets is the term linear in the spatial derivative. It is called Dzyaloshinskii-
Moriya (DM) interaction [59, 60] and given by∫

d3r 2DM · (∇×M) (4.6)

A positive (negative) D selects left-handed (right-handed) twisted magnetic structures.
We consider D > 0 which corresponds to left-handed spirals as being realized in the
examined samples of MnSi. The pitch q, i.e. the wavelength or period of a helix, is
determined by the competition between the strength D of the DM term, which favors
a canted magnetization structure, and the ferromagnetic exchange interaction J , which
energetically prefers a uniform magnetization, thus q = D/J .
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The inverse wavevector corresponds to the length scale ξso on which the magnetic
structures develop. As expected, ξso is characterized by the strength of spin-orbit coupling
λso since ξso ∼ 1/q ∼ 1/D ∼ 1/λso. Therefore, each derivative contributes with a power
λso as ∇ ∼ ξ−1

so ∼ λso. Because spin-orbit coupling is very weak, it is useful to order all
terms in the Ginzburg-Landau free energy in powers of spin-orbit coupling strength λso.
Hence, the Ginzburg-Landau free energy functional for a helimagnet up to order λ2

so is
given by [55, 56]

F [M(r)] =

∫
d3r

(
r0M

2 + J(∇M)2 + 2DM · (∇×M) + UM4 −BM
)
. (4.7)

This functional also illustrates the three separated energy scales, controlled by the strength
of spin-orbit coupling λso, as discussed in Section 3.1.2. The strongest one is ferromagnetic,
followed by the weaker spin-orbit coupling energy scale. The weakest one which is not yet
included in Eq. (4.7) originates from tiny crystalline field interactions, leading to, for
example, the orientation of the magnetic structure with respect to the underlying atomic
crystal lattice [55, 56]. Such terms are of even higher order in λso and break the rotational
symmetry. They are discussed for the different chiral phases below. Note that in the
presence of weak disorder r0 (and, to be precise, also the prefactors of the other terms)
fluctuates slightly as a function of the position, r. By a rescaling of length r̃ = D/Jr,
magnetization M̃ = [UJ/(D2)]1/2M , and magnetic field B̃ = [U(J/D)3]1/2B one can
reduce the number of parameters entering the free energy functional such that it reduces
to [1]:

F [M̃(r̃)] = γ

∫
d3r̃

(
(1 + t)M̃

2
+ (∇̃M̃)2 + 2M̃ · (∇̃ × M̃) + M̃

4 − B̃ ·M̃
)
. (4.8)

Here, γ is a positive, constant prefactor given by JD/U since we choose D to be positive.
It determines the relative weight of the mean-field value and the fluctuation contribution
to the approximated free energy in Eq. (4.3). In these rescaled units, the distance to the
B = 0 mean-field critical temperature is determined by t = r0J/D

2−1 ∝ T −TMF
c . In the

mean-field approximation with vanishing magnetic field, a negative t describes the helical
phase, while a positive t represents the paramagnetic phase. In above units, the prefactor of
the DM term is rescaled to one. Provided that the saddle point approximation is valid, the
only remaining parameters determining the physics within the Ginzburg-Landau theory
are then t and B. In the following, to simplify the notation, we will omit all tildes, and
consider

F [M(r)] = γ

∫
d3r

(
(1 + t)M2 + (∇M)2 + 2M · (∇×M) +M4 −B ·M

)
. (4.9)

However, we have to keep in mind the particular chosen units. Since the free energy
functional in Eq. (4.9) is still translational invariant,M(r) is a periodic function in space,
and we can perform a Fourier transformation to momentum space:

M(r) =
∑
q

mq e
iq · r. (4.10)

For a real magnetization, M(r) ∈ R, it follows that m−q = m∗q, where m∗q denotes the
complex conjugate of mq, and we can rewrite Eq. (4.9) as a sum of quadratic terms plus
a constant term [1]:

F [M ]

γ
= −V t

2 −B2

4
+V

∑
q 6=0

ma
−q
[
rab(q)− tδab

]
mb
q +

∫ (
M2 +

t

2

)2
d3r+V

(
M f −

B

2

)2

(4.11)
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where rab(q) = (1+t+q2)δab−2iεabcqc, and V is the volume of the system. The eigenvalues
of the matrix (rab(q)−tδab)ab are {(q−1)2, 1+q2, (q+1)2} with q = |q|, meaning that this
term is positive semi-definite as the last two terms on the right hand side. For q = 1 also
the eigenvalue zero occurs. Since the last three terms on the right hand side are greater or
equal to zero, F/γ is bounded from below by the constant −V (t2 −B2)/4. This implies
that the ansatz for the magnetization, which sets all three quadratic terms to zero, is
proven to be the mean-field ground state. For t < 0 and B <

√
−2t this is fulfilled by

M(r) =

√2Φ cos(qz)√
2Φ sin(qz)

0

+

 0
0
Mf

 (4.12)

describing the conical phase [1, 75], where the wave vector q of the conical phase aligns with
the direction of the magnetic field, q = (0, 0, 1)T ‖ B, see Fig. 3.4. Due to the rotational
invariance of Eq. (4.9) we considered in the ansatz above the magnetic field to point in
z direction. Furthermore, the uniform ferromagnetic component M f ≡

∫
M(r)d3r/V =

mq=0 is given by M f = B/2 and
√

2Φ = 1
2

√
−2t−B2. Since Mf ∼ B, the conical phase

changes smoothly into the helical phase for B → 0. In this case, the direction of q relative
to the crystallographic axes is not determined by the rotationally invariant free energy
functional of Eq. (4.9). To determine this direction from a Ginzburg-Landau theory one
has to include anisotropy terms [55, 56]. A term that pins the helical wave vector in the
experimentally observed 〈111〉 direction is, to lowest order in spin-orbit coupling ∼ λ4

so,
for example given by

F (1)
p [M(r)] = c1

∫
V
d3rM(r)

(
∂4
x + ∂4

y + ∂4
z

)
M(r)

= c1V
∑
q

(
q4
x + q4

y + q4
z

)
|mq|2,

(4.13)

with a positive prefactor c1. This term is already written in our rescaled units, as intro-
duced in Sec. 4.2. A systematic list of higher-order terms of the free energy that respect
the B20 crystal structure is given in Appendix A.

For increasing magnetic field B, and neglecting such anisotropy terms, the amplitude
a of the helical part shrinks until at B =

√
−2t there is only the field-polarized phase left

over. Above this threshold, B >
√
−2t, the field-polarized phase is the mean-field ground

state. Taking the crystalline field interactions into account, the crossover from the helical
to the conical phase at the critical magnetic field Bc1 is, in general, characterized by a
change of the direction of the helical wave vector from a 〈111〉 direction to the direction
of the magnetic field B.

In conclusion, the additional DM term causes canted magnetic structures of mainly
conical type. The mean-field theory determines the chirality of the low-energy helical
modes by the sign of the prefactor of the DM term and the wavelength λ = 2π (λ = 2π/Q =
2πJ/|D|) in rescaled units (see Eq. (4.7)), which is long compared to the crystallographic
periods and, in general, incommensurate with them.

However, in Sec. 3.1.2 we have already discussed that in a small pocket of the phase
diagram the conical phase is not the equilibrium ground state of the system, but the
skyrmion phase is. As the skyrmion lattice phase occurs only close to the paramagnetic
phase transition, one can also use a Ginzburg-Landau model to describe its equilibrium
properties. Within the calculation of Eq. (4.11) and Eq. (4.12) we made basically two
assumptions. First, we did not include higher-order terms to Eq. (4.9), and second we
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4.3 – Ginzburg-Landau Theory for the Skyrmion Lattice

only did a mean-field analysis. It has been shown in Ref. [1] that the skyrmion lattice has
a lower free energy than the conical phase and thus becomes stable. To be precise, upon
including Gaussian thermal fluctuations the free energy of the skyrmion phase becomes
lower than the one of the conical phase, thereby favoring the skyrmion lattice phase. In the
following, first we give intuitive arguments why the skyrmion lattice should be stabilized
by Gaussian thermal fluctuations, and then briefly review the Ginzburg-Landau analysis
of Ref. [1] for the skyrmion lattice including fluctuations.

4.3 Ginzburg-Landau Theory for the Skyrmion Lattice

In a small pocket of the phase diagram shown in Fig. 3.2, it becomes energetically favorable
for helical magnets to establish a two-dimensional skyrmion lattice perpendicular to the
external field B. A skyrmion configuration takes advantage of the coupling to the external
magnetic field by building up a finite ferromagnetic component parallel to the direction
of the magnetic field on one hand, and on the other hand of the DM interaction by
continuously twisting the magnetization on the length scale ξso ∼ 1/λso [1, 29, 30, 34, 35],
as we will show below.

Already in 1989 A. N. Bogdanov and D. A. Yablonskii [29] and later in 1994 A. N. Bog-
danov and A. Hubert [30] showed that skyrmion textures are a mean-field solution for
anisotropic non-centrosymmetric magnetic materials subject to a magnetic field. More-
over, in these works it was stated that within a mean-field analysis a skyrmion lattice is
only a thermodynamically metastable solution for cubic materials like MnSi. In contrast
to these works, it has been shown in Ref. [1] that it suffices to include Gaussian ther-
mal fluctuations to the mean-field results to stabilize the skyrmion solution also in cubic
non-centrosymmetric bulk materials. Note that for thin films, where the magnetic field
is applied in perpendicular direction, it has been shown that the skyrmion phase even
becomes stable on the mean-field level [44]. In this Thesis, we focus, however, on bulk
materials.

Since the skyrmion lattice is also a periodic stucture in real space, we consider the
Fourier transformation of the magnetization,

M(r) =
∑
q

mq e
iq · r = M f +

∑
qj∈LR

mqj e
iqj · r, (4.14)

where we explicitly introduced the uniform ferromagnetic component M f . The second
sum extends over all elements qj of LR, where LR denotes the reciprocal lattice except
q = 0.

Simple arguments for the skyrmion lattice solution: The main signal of a skyrmion
lattice in the neutron experiments are six spots on a regular hexagon which is perpendic-
ular to the applied magnetic field, implying that basically three different Fourier modes
occur. To get an intuitive understanding why such a magnetic structure with three modes
should be stabilized, one can exploit the analogies to the crystal formation. Crystal for-
mation, i.e. the formation of a crystal out of a liquid state, is often driven by three-particle
collisions [74]. In momentum space, the interaction of three density waves can be written
as ∑

q1,q2,q3

ρq1ρq2ρq3δ(q1 + q2 + q3) (4.15)
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Figure 4.3: Main three momentum vectors q1, q2 and q3 of the skyrmion phase, lying in
the same plane and enclosing relative angles of 120◦.

It is only possible to gain energy from this term if the three momentum vectors q1, q2 and
q3 add up to zero. This implies immediately that they all have to lie in the same plane.

In general, in a magnetic system three-mode interactions are forbidden by time-reversal
symmetry. However, the skyrmion phase in MnSi occurs only in a finite external applied
magnetic field which breaks time-reversal symmetry. Therefore, three-mode interactions
are allowed, and one gets an analog scenario for parts of the quartic interaction term. The
Fourier transform of the quartic term of the free energy functional in Eq. (4.9) is given by∫

d3rM4 = V
∑

q0,q1,q2,q3

(mq0 ·mq1)(mq2 ·mq3)δ(q0 + q1 + q2 + q3), (4.16)

usingM(r) =
∑
qmq e

iq · r. In the presence of a sufficiently large external magnetic field,
a finite uniform magnetic component M f arises. Within Eq. (4.16) there are effectively
cubic terms in the Fourier modes with momentum vectors q 6= 0,∑

q1,q2,q3

(M f ·mq1)(mq2 ·mq3)δ(q1 + q2 + q3). (4.17)

This term looks similar to the one for the crystal formation, and as above one can gain
energy from this term if q1 + q2 + q3 = 0. In the case of the chiral magnets, the mod-
ulus of the q vectors is determined by the ratio of the DM interaction strength and the
ferromagnetic exchange coupling, so that all three modes have the same modulus. In our
rescaled units introduced above, the modulus of the momentum vectors is normalized to
unity, |q| = 1. This implies that these three momentum vectors have to be arranged in
a plane, defined by a normal vector n̂ with their relative angles being 120◦, see Fig. 4.3.
Since the magnetization M(r) is real, for each q 6= 0 also −q occurs in the sum of
the Fourier transformation, and m−q coincides with the complex conjugate of mq, i.e.
m−q = m∗q. This consideration already displays the main six spots on a regular hexagon
in the neutron scattering data for the skyrmion phase. To gain the most energy of the
term in Eq. (4.17), the uniform magnetic component M f , which aligns in the direction
of the external magnetic field, should have a large overlap with mqi , i = 1, 2, 3. Since the
DM terms favors mqi ⊥ qi, the energy gain is largest for a uniform magnetic component
M f which is perpendicular to the three q vectors. Thus, the three q vectors must be per-
pendicular to the applied magnetic field, when neglecting small anisotropy effects. Upon
including anisotropy effects the skyrmion plane is slightly tilted, as discussed below. This
accounts for the second experimental fact that the Bragg spots are located in the plane
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4.3 – Ginzburg-Landau Theory for the Skyrmion Lattice

perpendicular to the applied magnetic field, independent of the orientation of the atomic
lattice.

Therefore, to a very good approximation the skyrmion lattice can be described by a
simple superposition of three helices and a uniform magnetic moment:

M(r) ≈M f +

3∑
j=1

Mhelix
j (r + ∆r j) , (4.18)

where
Mhelix

j (r) =
√

2 Φ
(
n̂Ij cos(q j · r)− n̂IIj sin(q j · r)

)
, (4.19)

is the magnetization of a single chiral helix with amplitude
√

2 Φ and phase shift ∆rj .
Moreover, {q j , n̂Ij , n̂IIj } forms an orthonormal basis. All three helices are left-handed
since qj = n̂Ij × n̂IIj for j = 1, 2, 3, and their helical wave vectors qj are perpendicular to
the magnetic field, qj ⊥ B for j = 1, 2, 3. The relative angles between the qj vectors are
120◦ as shown in Fig. 4.3. Moreover, within the minimization procedure it turns out that
all three helices have the same weight.

Finally, ∆rj is the relative shift of the helices. For an infinite systems two of these
three phases just correspond to translations of the magnetic structure within the plane
and can therefore, without loss of generality, be set to zero. However, the third phase
or in other words, the phase relationship between the helices is crucial for the magnetic
structure [32, 33, 36] as will be discussed in more detail in Chapter 5. Since first-order
neutron scattering data are only sensitive to |mqj |

2, no information about this relative
phase can be inferred from the experiments of Refs. [1]. From higher-order scattering
experiments it turns out that the phase relationship of the skyrmion lattice phase is indeed
fixed in such a way that a lattice of anti-skyrmions occurs. We discuss this issue along
with a mean-field theory in more detail in Chapter 5

Mean-field analysis: Eq. (4.14) for the skyrmion phase also includes higher-order
Fourier modes, and for a proper minimization of the free energy functional they, of course,
have to be taken into account for t < 0. To calculate the mean-field energy, we include
all wavevectors qj ∈ LR up to a short-distance cutoff, |qj | ≤ Λ, and minimize numerically
with respect to amplitudes and phases of all modes. In Ref. [1] it has also been shown
that the Fourier composition of Eq. (4.14) converges rapidly since the skyrmion lattice is
a smooth and singularity-free magnetic structure. The inclusion of higher-order modes
does not change the symmetry or the topology of the skyrmion crystal. Only the struc-
ture is slightly distorted from the simple form of Eq. (4.18), because the relative weight
of the higher-order contributions is very small. This has been observed experimentally in
Ref. [67], and we will further discuss this issue in comparison with our theory in Chapter 5.
In the limit t → 0, very close to the critical temperature, the skyrmion lattice is exacly
described by Eq. (4.18).

Substituting Eq. (4.14) into Eq. (4.9), one finds that the skyrmion lattice phase is
a local mean-field minimum of the Ginzburg-Landau free energy for a certain range of
parameters for t and B [1, 29, 30]. Nevertheless, the conical phase is still the global
minimum within the mean-field analysis. However, from the inset of Fig. 4.4, where the
difference of the mean-field energy between the skyrmion phase and the conical phase is
plotted as a function of the external magnetic field, it follows that this energy difference is
quite small, especially for intermediate fields B ≈ 0.4Bc2. To be more specific, the upper
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Figure 4.4: Theoretical phase diagram for the different magnetic phases as a function
of temperature t and applied magnetic field B. For better comparison the experimental
phase diagram of Fig. 3.2 is again shown on the right hand side. Inset: Energy difference
of the skyrmion phase and the conical phase as a function of the applied magnetic field for
t = −3.5. The mean-field curve is everywhere positive, indicating that the conical phase
is the global mean-field minimum. However, including thermal fluctuation corrections
reverses the picture in a small parameter range close to the critical temperature Tc. The
energy difference is plotted in units of γ t2/4, which is the energy difference between the
ferromagnetic and the conical phase at B = 0. Figures are taken from Ref. [1].

curve of the inset displays the mean-field calculation with

4

γ t2V
∆Gmf =

4

γ t2V

(
Gskyrm

mf −Gcon
mf

)
, (4.20)

where Gskyrm
mf (Gcon

mf ) is the mean-field free energy of the skyrmion lattice phase (conical
phase).

Corrections due to thermal fluctuations: The lower curve in the inset of Fig. 4.4
shows ∆G when considering also Gaussian thermal fluctuation corrections around the
mean-field solution [1]. In that case, the free energy is given by Eq. (4.3). For a small
range of magnetic fields, the skyrmion lattice has lower free energy than the conical phase,
and thus it is the stabilized solution. Combining all information one can plot the theoretical
magnetic phase diagram, as shown in Fig. 4.4. For a better comparison the experimental
phase diagram of Fig. 3.2 is also shown next to the theoretical one. Qualitatively, they
agree quite well. Nevertheless, very close to Tc, where fluctuations dominate over the
mean-field part, the analysis of taking only Gaussian thermal fluctuations into account is
no longer valid as already explained in the beginning of this Chapter. The dashed red line
in Fig. 4.4 marks the region, where the fluctuation corrections are less than twenty percent
of the mean-field value for the dominant Fourier modes, |δmq| < 0.2 |mq|. Therefore, one
has to be careful by interpreting this result very close to Tc. The transition between
the skyrmion phase and the conical phase is expected to be fluctuation-driven first order
[76, 77], which moves the phase transition line to the paramagnetic regime.

In Ref. [1], it has also been shown that the pocket, where the skyrmion lattice is
stabilized, is related to the region in the phase diagram (close to B ≈ 0.4Bc2), where the
amplitude of the magnetization |M(r)| is almost constant. This is quite reasonable since
modulations of the amplitude of the magnetization are energetically very expensive. In
conclusion, this implies that the skyrmion lattice cannot be continuously deformed into
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the competing conical phase, because locally suppressing |M | to zero costs a lot of energy.
In other words, the two phases are topologically distinct. Having introduced this notion of
topological different magnetic phases by the concept of continuously deforming the order
parameter, one can assign to each magnetic stucture a topological invariant, the winding
number W . For B‖ẑ it is given by

W =
1

4π

∫
UC

dx dy Ω̂ · (∂xΩ̂× ∂yΩ̂), (4.21)

where Ω̂ = M/|M | is the direction of the magnetization and “UC” denotes the integration
over the magnetic unit cell.

As already explained in Chapter 2, the winding number measures how many times the
order parameter wraps around the d-dimensional sphere. Here, the order parameter is
the magnetization direction, and d = 2. For the skyrmion lattice, the winding number is
quantized to −1 per magnetic unit cell, implying that one skyrmion fully winds around the
sphere. The sign of W reflects that the magnetic whirls in the skyrmion lattice are anti-
skyrmions. Again, comparing the stabilization of the skyrmion lattice to the example of
crystal formation, where one has an integer number of atoms per unit cell, in the magnetic
system the skyrmions correspond to the atoms in a usual crystal.

In the following, for simplicity, we neglect the effects of thermal fluctuations which lower
the free energy of the skyrmion lattice and drive it to become a global minimum of the free
energy, as long as we do not discuss the competition of various magnetic phases. This is
possible since the skyrmion lattice phase is a local minimum of the Ginzburg-Landau free
energy F [M(r)] in the presence of a magnetic field [1]. We expect that thermal fluctuation
corrections are small for the obtained results discussed in the following.

Symmetries of the skyrmion lattice: A perfect undistorted skyrmion lattice that is
coupled to the atomic lattice has a remaining sixfold rotational symmetry around the axis
of the magnetic field B. Furthermore, it is invariant under the combined transformation
of M → −M and a rotation of 180◦ around an axis along one of the six main q vectors
or around an axis along one of the q ×B directions.

This symmetry implies that for a Fourier mode mq contributing to the skyrmion
lattice with a q vector parallel to one of the six main q vectors which split up into real
and imaginary parts, mq = Re(mq) + i Im(mq) ≡ m

(r)
q + im

(i)
q , its real (imaginary)

part has to be aligned parallel (perpendicular) to the direction of the magnetic field, i.e.
Re(mq) ‖ B, Im(mq) ‖ q ×B. The reason for this is the following: Under the combined
symmetry operation of M → −M (denoted by M−) and a rotation of 180◦ around the
axis along the q direction being along one of the six main q vector directions (denoted by
Rq̂(π)), the component ofmq parallel to q, i.e. mq · q changes sign, whereforemq has to
be perpendicular to q:

mq · q
M−Rq̂(π)
−−−−−−→ −mq · q

!
= mq · q =⇒ mq ⊥ q. (4.22)

Thus,m(r)
q andm(i)

q are restricted to a plane perpendicular to q, i.e. they live in the plane
spanned by B and q ×B.

Furthermore, when considering the combined symmetry operation of M− and a rota-
tion of 180◦ around the axis along the q ×B direction (denoted by R

q̂×B(π)), we obtain

mq

M−Rq̂×B
(π)

−−−−−−−−→ −
(
R
q̂×B(π)m

)
−q = −R

q̂×B(π)m∗q
!

= mq, (4.23)
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where the notation
(
R
q̂×B(π)m

)
−q indicates that we have rotated already the q vector,

but still have to rotate m. From Eq. (4.23) follows that

−R
q̂×B(π)m

(r)
q

!
= m

(r)
q and R

q̂×B(π)m
(i)
q

!
= m

(i)
q (4.24)

which implies
m

(r)
q ‖ B and m

(i)
q ‖ q ×B. (4.25)

Thus,m(r)
q has to be parallel to B, andm(i)

q has to be oriented along the q×B direction.
The magnetic texture is, however, embedded in the atomic crystal breaking the rota-

tional symmetry. This leads via tiny spin-orbit coupling effects to a preferred orientation
and to a small distortion of the skyrmion lattice.

Orientation of the skyrmion lattice with respect to the atomic lattice: The
free energy functional of Eq. (4.9) is fully isotropic for B = 0. The external applied
magnetic field breaks the full rotational symmetry and reduces it to a remaining rotational
symmetry around the magnetic field axis. As discussed, the skyrmion lattice spanned by
the Fourier modes qj orients perpendicular to the magnetic field. Nonetheless, the free
energy functional of Eq. (4.9) does not fix the orientation of the vectors qj within this
plane, described by an angle φ measured to some reference orientation. In a real sample,
this orientation is determined by the anisotropy of the atomic crystal. In this part, we
briefly discuss the orientation of the skyrmion lattice with respect to the atomic lattice
within the Ginzburg-Landau theory as in Refs. [1, 70].

In the neutron scattering experiments discussed in Sec. 3.1.3 it is observed that the
sixfold diffraction pattern of the skyrmion phase in MnSi orients weakly with respect to
the atomic crystal, such that two of the six main scattering peaks align with a 〈110〉 crystal
direction, as long as this is possible according to the chosen magnetic field direction. This
breaking of the rotational symmetry can be incorporated into the Ginzburg-Landau theory
by adding suitable terms of higher-order spin-orbit coupling to the free energy functional
of Eq. (4.9). Since the undistorted skyrmion lattice has a sixfold symmetry around the
axis of the magnetic field, one can fix the orientation within the skyrmion plane by terms
that generate an effective potential of the form − cos(6nφ) with n ∈ N. Here, φ = 0 is one
of the preferred directions. Terms like

∑
q(q

4
x + q4

y + q4
z)|mq|2 or M4

x + M4
y + M4

z which
occur in lowest-order perturbation theory, i.e. of the order of λ4

so, and that do orient the
helical wave vector in the absence or in a weak magnetic field with respect to the atomic
crystal, do not display such rapid oscillations to linear order. One example of a term that
can lock the orientation described by φ in sixth-order spin-orbit coupling, ∼ λ6

so, is given
by

FL = γL

∫
d3r

(
(∂3
xM)2 + (∂3

yM)2 + (∂3
zM)2

)
= γLV

∑
q

(q6
x + q6

y + q6
z)|mq|2. (4.26)

It is the lowest-order perturbation that manages to produce a potential of the form
− cos(6nφ).

This term is already written in our rescaled units introduced in Sec. 4.2. For the
skyrmion phase a positive prefactor γL (where the index “L” stands for “lattice”) describes
the experimental observation that two of the six Bragg spots align along a 〈110〉 direction
if the magnetic field is orthogonal to at least one of the 〈110〉 directions [1]. Since the ratio
of γL and γ is proportional to fourth-order spin-orbit coupling, γL/γ ∼ λ4

so, the effect of
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Figure 4.5: Orientation of the skyrmion lattice as a function of the direction of the magnetic
field, B =

√
−t/2 (sin θ/

√
2, sin θ/

√
2, cos θ) with t = −0.8, which is rotated from the

[001] direction for θ = 0 to the [110] direction for θ = π/2 = 90◦. ϕ denotes the angle
between the [11̄0] direction and the q vector of the skyrmion plane that is aligned along
the [11̄0] direction for θ = π/2 = 90◦. Left panel: γL = 0.001 and different distortion
strengths γD. Right panel: γD = 0.012 and different strengths of γL.

this term is very small, and the generated effective potential is very weak compared to the
other contributions to the free energy functional.

However, if the magnetic field is applied in a 〈100〉 direction, FL does not lead to an
orientation of the skyrmion lattice within the plane to linear order in γL. The reason for
this is the following. On one hand, FL is symmetric under a rotation by π/2 around a
〈100〉 direction, but on the other hand FL induces a potential of the form − cos(6φ) to
linear order in γL. It has a periodicity of 60◦ and is, in particular, minimal for φ = 0◦,
but maximal for φ = 90◦. Thus, − cos(6φ) is not invariant by π/2 rotations around the
axis of the magnetic field. Therefore, the directions of the q vectors within the plane
of the skyrmion lattice are determined by effects of higher-order in λso, for a magnetic
field in a 〈100〉 direction. Theoretically we expect for a magnetic field along a 〈100〉 axis
that one of the q vectors should orient along a different perpendicular 〈100〉 axis: The
orientation of the skyrmion lattice as a function of the direction of the magnetic field is
shown in Fig. 4.5. Here, the magnetic field is rotated from the [001] direction to the [110]
direction. To be precise, B =

√
−t/2 (sin θ/

√
2, sin θ/

√
2, cos θ), and θ increases from 0

to π/2 = 90◦. The angle ϕ is defined as the angle between the [11̄0] direction and the q
vector of the skyrmion plane that is aligned along the [11̄0] direction for θ = π/2 = 90◦,
i.e. ϕ = | arccos(q̂ · (1,−1, 0)T /

√
2)|. For θ = 0 the orientation angle ϕ assumes a value of

15◦, and one of the q vectors aligns along the [100] direction. In the left panel we varied
the distortion strength γD (discussed below), and in the right panel the strength of γL.
As expected from our symmetry analysis, for smaller distortions strength γD and larger
γL, the function ϕ(θ) becomes sharper and falls off more quickly.

Such a 〈100〉 q vector orientation for a magnetic field aligned along a different 〈100〉
direction of the skyrmion lattice has been observed in iron-doped MnSi and in FexCo1−xSi
[39, 78]. Recent unpublished measurements confirm this behaviour also for the skyrmion
lattice phase in MnSi [79] and agree very well with the curves shown in Fig. 4.5.

Distortion of the skyrmion lattice: Terms of higher order in spin-orbit coupling
also distort the skyrmion lattice, so that it deviates from the perfect hexagonal structure
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Figure 4.6: Tilt of the skyrmion lattice plane as a function of the direction of the magnetic
field,B =

√
−t/2 (sin θ/

√
2, sin θ/

√
2, cos θ) with t = −0.8, which is rotated from the [001]

direction for θ = 0 to the [110] direction for θ = π/2 = 90◦. η denotes the angle (in degree)
between the magnetic field direction and the normal vector n̂ to the skyrmion lattice plane
spanned by the three q vectors. Left panel: γL = 0.001 and different distortion strengths
γD. Right panel: γD = 0.012 and different strengths of γL.

predicted by Eq. (4.9). For example, a term written also in the rescaled variables that
distorts the skyrmion lattice to lowest order in spin-orbit coupling strength λso, but is still
consistent with the B20 crystal symmetries of MnSi is given by

FD = γD

∫
d3r

[
(∂xM

y)2 + (∂yM
z)2 + (∂zM

x)2
]

= γDV
∑
q

[
q2
x|my

q|2 + q2
y |mz

q|2 + q2
z |mx

q |2
]
.

(4.27)

Compared to the prefactor γL of Eq. (4.26), γD (where the index “D” stands for “distor-
tion”) is expected to be much larger since γL/γD ∼ λ2

so. However, FD does not lock the
orientation of the skyrmion lattice to the atomic lattice to linear, but only to quadratic
order, where γ2

D � γL. Compared to γ of Eq. (4.9), the prefactor of the distortion term
is small, γD/γ ∼ λ2

so. In the distorted hexagonal skyrmion lattice, i.e. the solution in
the presence of the term (4.27), the reciprocal lattice vectors qj are tilted. They are still
confined to a two-dimensional plane, but they are in general no longer perpendicular to
the applied magnetic field B, but to a slightly changed vector n̂ that is normal to the
plane, n̂ · qj = 0. Moreover, we define n̂ to be a unit vector, n̂2 = 1, that has a positive
overlap with the magnetic field B · n̂ > 0. To summarize, n̂ is defined by

n̂2 = 1, n̂ · qj = 0, and B · n̂ > 0. (4.28)

In Fig. 4.6, we plot the tilt of the skyrmion lattice as a function of the direction of the
magnetic field. Here, the magnetic field is rotated from the [001] direction to the [110]
direction. To be precise, B =

√
−t/2 (sin θ/

√
2, sin θ/

√
2, cos θ), and θ increases from 0

to π = 90◦. η is defined as the angle between the magnetic field direction and the normal
vector n̂, i.e. η = | arccos(B̂ · n̂)|. It vanishes due to symmetry if the magnetic field is
applied along one of the high symmetry directions 〈100〉 or 〈111〉 (note that arccos(1/

√
3) ≈

54.7◦), because these are twofold and threefold rotation axes of the crystal, respectively
and the magnetic structure should be invariant under these rotations, which would not
be the case if the magnetic lattice is tilted. For the considered anisotropy terms, η does
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4.3 – Ginzburg-Landau Theory for the Skyrmion Lattice

not vanish for a magnetic field along a 〈110〉 direction, but, note that 〈110〉 is not a high
symmetry direction for B20 structures. In the left panel of Fig. 4.6 we varied the distortion
strength γD, and in the right panel the strength of γL. For a generic direction η increases
with increasing distortion strength γD and increasing γL. Also, the tilt of the skyrmion
lattice has been recently measured, and the unpublished data [79] agree qualitatively quite
well with the curves of Fig. 4.6.

The effect of distortions will in particular become important in Section 10.2, where
we discuss the spin-transfer torque effects due to a distorted skyrmion lattice. Nonethe-
less, without such distortions n̂ = B̂. Therefore, when we are not explicitly considering
distortions of the skyrmion lattice, we will write B̂ instead of n̂ in the following.

Pinning of the skyrmion lattice due to disorder: Inhomogeneities arising from
crystalline imperfections distort the perfect skyrmion lattice and pin the magnetic struc-
ture. We expect pinning due to disorder in the skyrmion lattice phase to be weak. This
is based on a few considerations. First of all, this is suggested by the experimental obser-
vation of a very low threshold current density jc ∼ 106 A/m2 [10, 80], as is discussed in
the next chapters. Second, the samples used in Refs. [10, 80] are very clean and exhibit a
low defect concentration expressed by the large charge carrier mean free paths of around
1000 Å. Moreover, the pinning strengths of different defects cannot just be added, i.e.
one cannot calculate the total pinning force per volume by multiplying the pinning force
of a single defect by the defect density. The reason for this is that for a sufficiently rigid
and crystalline skyrmion lattice [67] pinning forces from several defects within a domain
partially average out [81, 82]. Furthermore, also very strong single defects, which locally
destroy completely the magnetization in a fraction of the unit cell, for example by replac-
ing a Mn atom by a nonmagnetic impurity, lead only to very small pinning forces. For the
skyrmion lattice, however, the magnetization is smooth and does not vanish anywhere [1].
The variations of the amplitude of the magnetization are small, less than twenty percent
within the magnetic unit cell [1]. Therefore, pinning forces arising from the coupling to
the magnitude of the magnetization are small. Also, contributions to the pinning force
from the coupling of disorder to the direction of the magnetization are small, since this
effect originates from spin-orbit interactions. For example, from the pinning theory of
type-II superconductors [81–83] it is known that the pinning force F of an impurity can
be estimated by F ∼ ∆E/rc, where ∆E is the energy difference between a defect in the
core center and a defect outside of the superconducting vortex core, divided by the typical
radius rc of the core. To estimate the pinning force arising from a single localized defect
in the case of the skyrmion lattice we assume that the free energy difference between a
defect in the center of a skyrmion and a defect in-between two skyrmions is only a fraction
of the free energy density of the skyrmion lattice ∆F/V . This assumption is based on
the small variations of the amplitude of the magnetization in the skyrmion lattice phase.
From specific heat data [84] ∆F/V can be estimated to ∆F/V ∼ 10−2kBTc/a

3 which is
tiny. To summarize, we estimate the pinning force from a single strong defect to be less
than a few 10−5 kBTc/a per impurity. In the last step, we also used the important fact
that the distance between the skyrmions is large, about a factor 40 larger than the lattice
constant a. Therefore, the energy changes per length, i.e. the forces, are small. These are,
however, rough estimates. A full quantitative theory of pinning is much more complicated
and requires further input like the rigidity of the skyrmion lattice, the defect concentra-
tion, and the nature of single pinning centers. In particular, the latter is presently not
clear.
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4 – Ginzburg-Landau Theory

In conclusion, we expect the pinning forces in the skyrmion lattice phase to be weak
due to its smoothness. Also strong pinning defects with a rather low density might occur,
but they do not have such a strong effect on the skyrmion lattice since pinning forces of
random orientation partially average out. It is also possible that the skyrmion lattice is in
the collective pinning regime, where the cancelation of pinning forces happens to a large
extent due to the rigidity of the skyrmion lattice.

In the following chapter, we will consider the higher-order modes of the skyrmion
lattice in more detail.
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5 Crystalline Nature and Long-Range
Order of the Skyrmion Lattice in MnSi

To show that the skyrmion phase really is a skyrmion lattice phase, i.e. of long-range
crystalline nature, one has to analyze the precise spatial variation of the magnetization
on long length scales. In particular, a long-range crystalline order implies the existence
of higher-order modes with a q vector of nq1 + mq2, where n and m are integers. The
vectors q1 and q2 are the lowest modes contributing to the skyrmion lattice as introduced
in Sec. 4.3. Note that q3 = −q1 − q2 is included in the previous expression. From
an experimental observation of these higher-order modes (|n| + |m| > 1) one can get,
in principle, by reconstruction quantitative information on the magnetic structure. In
conclusion, the experimental observation of higher-order neutron scattering spots is a
direct microscopic evidence for the skyrmion phase being a magnetic lattice with long-
range order.

In this Chapter, we will briefly discuss the experimental observation of these higher-
order peaks. The neutron scattering studies were performed on one hand on the cold
diffractometer MIRA at the FRM II in Munich1, and on the other hand at the small-
angle neutron scattering (SANS) instrument V4 at the Berlin neutron scattering center
(BENSC). At the MIRA diffractometer, neutrons with a wavelength of λ = 9.7 Å ± 5%
are irradiated onto the sample with an instrumental resolution of ∆βaz = 4◦ in azimuthal
direction, ∆βq = 0.004 Å−1 in radial |q| direction, and ∆βkf = 0.35◦ perpendicular to
|q| in the direction of kf . At the SANS instrument V4, neutrons with a wavelength of
λ = 4.5 Å ± 10% were used, and the resolution was ∆βaz = 4.9◦, ∆βq = 0.003 Å−1, and
∆βkf = 0.21◦.

After reviewing the experimental observations we compare the results to our mean-field
theory. To obtain a fully quantitative theory for the skyrmion lattice phase one would, of
course, have to take fluctuations into account. However, already the mean-field analysis
is able to explain semi-quantitatively the experimental observations. We have published
most of the work presented in this Chapter in Ref. [67], where also further experimental
details can be found.

5.1 Observation of Higher-Order Neutron Scattering Peaks

The main experimental problem to observe higher-order scattering peaks is to distinguish
them from multiple scattering events, i.e., neutrons that scattered multiple times from the
magnetic structure. For example, a neutron that scattered once with a momentum q1 +q2

and neutron that scattered twice (one time with momentum q1 and the other time with q2)

1Forschungsreaktor München
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5.1 – Observation of Higher-Order Neutron Scattering Peaks
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Figure 5.1: Comparison between previous SANS data (panel (a) and (b)) as discussed
in Ref. [1] and data of the improved setup minimizing double-order scattering (panel (c)
and (d)) for the skyrmion phase of MnSi. Panel (a) displays the neutrons scattering
intensity pattern at µ0H = 0.16 T for a thick cylindrical sample and (c) for a thin platelet
(sample A) at µ0H = 0.2 T. Panel (b) and (d) show the corresponding rocking scans. In
panel (d), which has been measured in the improved setup, the rocking scan is Gaussian
with a very narrow width. The Figure is taken from our publication, Ref. [67].

will finally impinge on the same spot on the detector. Furthermore, in the experimental
setup the magnetic field has to be very homogeneous, since the skyrmion lattice is almost
perpendicular to the magnetic field and only weakly coupled to the atomic lattice. To
observe experimentally the higher-order neutron scattering spots, an improved small angle
neutron scattering setup with a high-resolution had to be implemented which minimizes
double scattering and demagnetizing fields. To avoid double and multiple scattering, thin
samples (with a thickness of about 1 mm) were illuminated only in a small central section.
In our publication Ref. [67], two samples of MnSi were studied. One sample, in the
following denoted as sample A, was of the size 14× 9× 1.4 mm3, while the second sample,
denoted as B, had the geometry 12× 7× 1 mm3. Both were cut from the same ingot used
previously [1, 10, 85–87] and had a crystalline 〈110〉 direction normal to the platelet.

Fig. 5.1 shows a direct comparison of the previous SANS data obtained in the study
of Ref. [1], shown in Fig. 5.1 (a), and the improved SANS data, in particular using the
thin samples in Fig. 5.1 (c). Panel (a) reproduces the data shown in Fig. 3.10 (E), that
corresponds to Fig. 2 (E) in the original paper, Ref. [1]. The corresponding rocking
dependences are shown in panels (b) and (d) respectively. The previous data, which were
subject to multiple scattering, had a very unusual line shape and a broad rocking width as
shown in panel (b) of Fig. 5.1. It is comparable in size to the rocking width of the helical
phase. In contrast, the new data for thin samples display the expected Gaussian rocking
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5 – Crystalline Nature and Long-Range Order of the Skyrmion Lattice

Figure 5.2: This Figure illustrates the operating principle of a Renniger scan (see main
text for further information). Panel (a) shows a schematic plot of the Ewald sphere, the
relevant Fourier modes of the skyrmion lattice, and the rocking angles of the Renninger
scans. Panel (b) displays a characteristic scattering pattern obtained by summing over
the rocking scans around φ. The background was subtracted as in most previous neutron
scattering measurements of Sec. 3.1.3. The red (white) data points in panel (c) show the
intensity of a Renninger scan, integrated over box 1 (box 2) of panel (b), as a function of the
rocking angle φ. The intensity at q1 +q2 contains two contributions: Two Gaussian peaks
due to double scattering when either q1 or q2 intersect the Ewald sphere, and a constant
intensity arising due to true higher-order reflections, displayed by the red background
color. The Figure is taken from our publication, Ref. [67].

dependence. The width of the Gaussian distribution is very narrow with ηA = 0.45◦. The
resolution limit ∆βkf = 0.35◦ is just slightly smaller. From the narrow rocking width, it
follows that in the skyrmion lattice the intrinsic magnetic correlation length is larger than
100 µm. Compared to the correlation length of a zero-field helical state of about 104 Å,
the correlation length in the skyrmion phase is at least a factor 100 larger than for the
helical state.

To perform observations of higher-order neutron scattering peaks, a special neutron
scattering technique was used which is displayed in panel (a) of Fig. 5.2. One first rotates
the sample together with the magnetic field by an angle χ around the axis perpendicular
to both (q1 + q2) and the original magnetic field direction, until the desired higher-order
mode q1 + q2 matches the scattering condition, i.e. is located on the Ewald sphere. This
is followed by a so-called Renninger scan [88] which allows to differentiate between higher-
order scattering and double scattering. A Renninger scan is a rocking scan around the axis
q1 +q2, while measuring the intensity of interest, i.e. the intensity at q1 +q2. The rocking
angle in panel (a) of Fig. 5.2 is denoted by φ. For the true higher-order contribution to the
neutron scattering peak, the scattering condition is fullfilled for all rocking angles φ. This
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5.1 – Observation of Higher-Order Neutron Scattering Peaks

is, however, not true for the double-order scattering processes. It can only contribute to the
intensity when q1 (or q2 respectively) are also located on the Ewald sphere. Consequently,
by changing the rocking angle one can “rock double scattering out”.

The neutron scattering result of a typical Renniger scan measurement, a sum over a
rocking scan around φ, is shown in panel (b) of Fig. 5.2, where one clearly observes a
finite scattering intensity in box 1 at q1 + q2, whereas the intensity in a box of equal
size slightly next to q1 + q2, denoted by box 2, is almost zero. In the measurement, the
sample B was oriented with a 〈110〉 crystalline direction parallel to the neutron beam.
The Renninger rocking was performed approximately around the 〈100〉 direction. The
temperature T was 28.3 K, and the applied magnetic field µ0H = 200 mT. As in almost
all previous measurements shown in Sec. 3.1.3, the background neutron scattering signal,
determined for T well above Tc, was carefully subtracted. Panel (c) of Fig. 5.2 displays the
intensities, integrated over the corresponding boxes as a function of the rocking angle φ for
µ0H = 200 mK and T = Tc − 0.5 K, where Tc is the helimagnetic transition temperature
determined by SANS. The red data points correspond to the intensities observed in box
1, which comprises the higher-order mode q1 +q2. They present maxima at the positions,
where q1 or q2 intersect the Ewald sphere and double scattering occurs. Besides the
Gaussian contributions to the scattering intensity at q1 + q2 due to double scattering, a
further contribution accounts for higher-order scattering. The latter is illustrated by the
red background color in Fig. 5.2 (c) and remains constant also for large rocking angles.

To study the magnetic field and temperature dependence of higher-order scattering in-
tensities, Renninger scans at different fields and temperatures were examined. A few Ren-
ninger scans as a function of the applied rocking angle φ are shown in Fig. 5.3. Panel (a),
(b) and (c) are measured at a temperature of T = Tc − 1.5 K, and (d), (e) and (f) at
T = Tc − 0.5 K. The applied magnetic field in panel (a) and (d) is µ0H = 220 mT. It
decreases to µ0H = 200 mT in panel (b) and (e), and furthermore to µ0H = 180 mT
in panel (c) and (f). As shown in Fig. 5.3, the amount of higher-order scattering (plot-
ted in a red background color) increases with increasing temperature, meaning that deep
in the ordered phase higher-order contributions are less pronounced. Furthermore, the
higher-order scattering intensities also increase with increasing magnetic field.

The quantity of interest is, however, not the absolute value of the neutron scattering
intensity of the higher-order modes, but rather the ratio of the second-order peaks with
respect to the first-order peaks. The latter determines how important higher-order correc-
tions to the magnetic structure really are. To study the magnetic field and temperature
dependence of this ratio, one also has to take the thermal and magnetic field variation
of the first-order peaks into account. An example of the magnetic field dependence of
the intensity of the first-order peak at q1 (see Fig. 5.2, where B ‖ 〈110〉) measured at a
temperature of T = Tc− 0.5 K is shown in panel (a) of Fig. 5.4. The Figure is taken from
our publication, Ref. [67], where we used a slightly different notation. Mq in Fig. 5.4
corresponds in this Thesis to mq, and M0 to |M f | = Mf .

Panel (b) of Fig. 5.4 comprises the temperature and the magnetic field dependence of
the ratio between the higher-order peak intensity at q1 +q2 and the first-order intensity at
q1. First of all, one can observe that the relative weight of the higher-order peaks is of the
order of 10−3 and thus tiny. This quantity is displayed for three different temperatures,
T = Tc − 1.5 K, Tc − 1.0 K, and Tc − 0.5 K and it increases with increasing temperature.
Within the mean-field theory we will also obtain this behaviour which is not very intuitive,
because at first glance one would expect that the non-linear effects leading to higher-order
peaks should become less pronounced when all amplitudes decrease with increasing T .
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Figure 5.3: Renninger scans in the skyrmion lattice phase as a function of the rocking
angle φ for different temperatures and different magnetic fields. The plots in the left
(right) column are measured at a temperature of T = Tc − 1.5 K (T = Tc − 0.5 K).
From the first to the third row, the applied magnetic field is µ0H = 220 mT, 200 mT and
180 mT, respectively. The contribution to the neutron scattering intensity originating
from higher-order scattering is marked by a red background color. It remains constant for
large rocking angles φ. The Figure is taken from our publication, Ref. [67].

We will discuss the reason for this unexpected behaviour within the mean-field analysis
below. Furthermore, this ratio also increases for increasing magnetic fields above µ0H ≈
180 mT. Below µ0H = 180 mT, the first-order intensity was too weak, so that there are
unfortunately no data points available. However, the plot indicates that the second-order
intensity vanishes for a certain magnetic field B ≈ Bint inside the skyrmion phase.

The main experimental results of the higher-order scattering study in the skyrmion
lattice phase are basically three findings. First, the relative weight of the higher-order
peaks is tiny, being of the order of 10−3. Second, the second-order intensity increases with
increasing T . Third, it is strongly magnetic field dependent and seems to vanish for a
certain magnetic field. In the following, we will give a semi-quantitative explanation for
the experimental observations in the framework of a mean-field theory.
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Figure 5.4: Intensities and intensity ratios in the skyrmion lattice phase obtained by
neutron scattering, where the applied magnetic field was in the 〈110〉 direction, as in the
measurements before in this Chapter. Panel (a) shows the measured neutron scattering
intensity, |mq1 |

2, (in arbitrary units) of the first order peak q1 at a temperature of T =
Tc−0.5 K as a function of the applied magnetic field strength. Panel (b) basically displays
the ratio between the intensity at q1 + q2 and the one at q1 as a function of the applied
magnetic field for three different temperatures. The Figure is taken from our publication,
Ref. [67], where the notation was slightly different. Mq corresponds in this Thesis tomq,
and M0 to |M f | = Mf .

5.2 Theory for Higher-Order Neutron Scattering

As already explained in Sec. 4.3, a pure rotationally invariant mean-field theory does not
stabilize the skyrmion lattice phase. Nonetheless, it is a local minimum of the free energy
functional of Eq. (4.9). Therefore, a fully quantitative theory has to include thermal fluc-
tuations [1]. However, on the basis of a mean-field description it is possible to understand
the main experimental observations on a semi-quantitative level. To this end we minimize
the free energy functional F of Eq. (4.9) with the following ansatz:

M(r) =
∑

n,m∈Z
ei(nq1+mq2)r mnq1+mq2 (5.1)

For the numerical calculation of the mean-field free energy, we include all wavevectors
nq1 + mq2 for n and m integer up to a short-distance cutoff, |nq1 + mq2| ≤ Λ, and
perform a numerical minimization with respect to the amplitudes and the complex phases
of all modes. The corresponding solution provides the relative weight of higher-order peaks
as, e.g., the relative weight of the second-order peak |mq1+q2 |

2/|mq1 |
2 which is plotted in

panel (d) of Fig. 5.5 as a function of the magnetic field for three different temperatures,
t = −0.9,−1.0,−1.1. Since panel (d) is the theory version of Fig. 5.4 (b), we plotted the
experimental data again next to the theory plot for a better comparison. The dashed and
the dot-dashed lines in panel (d) of Fig. 5.5 repesent the relative weight of even higher-
order scattering contributions. To be specific, |m2q1 |

2/|mq1 |
2 is plotted with a dashed

line and |m2q1+q2 |
2/|mq1 |

2 with a dotted line. Both are illustrated in red, since they are
evaluated for t = −1.0.

By comparing the mean-field theory with the experimental data we can conclude that
the mean-field theory includes all of the main experimental observations. The predicted
relative weight of the second-order peak is also tiny and of the same order of magnitude
within the mean-field theory. In the theory plot, one clearly observes that for each tem-
perature there exists a certain magnetic field B ≈ Bint, where the relative weight of the
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Figure 5.5: Panel (d) shows the theory version of panel (b) (see also panel (b) of Fig. 5.4),
i.e. the intensity ratio of the higher-order diffraction at q1 +q2 and the first-order diffrac-
tion, |mq1+q2 |

2/|mq1 |
2. It is plotted as a function of the magnetic field in mean-field

theory for three different temperatures, t = −0.9, t = −1.0, and t = −1.1 in the rescaled
units of Eq. (4.9). The dashed (dot-dashed) line repesents a ratio of an even higher-order
scattering contribution to the first-order one, |m2q1 |

2/|mq1 |
2 (|m2q1+q2 |

2/|mq1 |
2) for

t = −1. For a better comparison the corresponding experimental plot is shown again one
the right hand side. We published these Figures in Ref. [67], where we used a slightly
different notation. Mq corresponds in this Thesis to mq, and M0 to |M f | = Mf .

second-order peak approximately vanishes. Moreover, the theory reproduces the increase
of the signal for increasing temperatures (described by increasing t). This can be under-
stood since one can infer from Fig. 5.5 (d) that for larger temperatures the decrease of all
higher-order scattering amplitudes is overcompensated by a shift of the field Bint towards
smaller values. Unfortunately, a precise quantitative prediction how, for example, the tem-
perature exactly depends on the parameter t is not possible. This is due to the neglected
fluctuation corrections and due to the experimental uncertainty to properly determine the
absolute value of the scattering intensities. An issue that cannot be really explained so
far is the gradual variation of the amplitude |mq1 | for small magnetic fields, as is shown
in panel (a) of Fig. 5.4. Here, theory predicts a sharp first-order transition [1]. It might
allude to a phase coexistence in this regime.

The obvious question that arises after this analysis is: Why does |mq1+q2 |
2 almost

vanish for a certain magnetic field Bint? The answer to that question is that |mq1+q2 |
2

is strongly suppressed around Bint by an interference effect. This turns out to be a key
property of the skyrmion lattice, as we will explain in the following. Since the higher-order
scattering contributions are tiny and almost all of the scattering intensity arises from the
six resolution-limited first-order scattering peaks, to a good approximation one can de-
scribe the magnetic structure by a superposition of three helices with phase shifts ∆rj
and uniform magnetization, as already described in Eq. (4.18). It was also already men-
tioned in Sec. 4.3 that for infinite systems two of these three phases ∆rj just correspond
to translations of the magnetic structure within the plane and can therefore, without loss
of generality, be set to zero. To be more concrete, let us consider B = Bẑ. In this case,
only interactions with the atomic lattice fix the orientation of the three main q vectors.
At this point we are, however, not interested in the particular orientation of the three q
vectors with respect to the atomic lattice, but rather in the relative phase shift. Therefore,
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we set

Mhelix
1 (r) =

√
2 Φ

 0
sin(qx+ α1)
− cos(qx+ α1)

 = mq1e
iq1r +m−q1e

−iq1r, (5.2)

with q1 = (1, 0, 0)T , mq1 = m∗−q1 = eiα1(Φ/
√

2) (0,−i,−1)T , Φ2 being the weight of
the scattering peak, and α1 the phase shift of the helix. The other two helices are given
by rotations of the first helix around the magnetic field axis by an angle of 120◦ and
240◦, respectively. Since for an infinite system only one relative phase is needed, we
set the phases of the two rotated helices to zero, i.e. α2 = α3 = 0, which corresponds to
translations, and we denote the relative phase α1 just by α. This remaining phase strongly
affects the magnetic structure, as can be seen in Fig. 5.6.

The left panel of Fig. 5.6 displays the superposition of three helices in the following way.
Each helix is represented by parallel lines that are equally separated and perpendicular
to its q vector and to the applied magnetic field. They show the regions of constant and
equal phases of helix. For example, let us assume that on all lines the magnetization
points into the direction of the magnetic field vector. A phase shift of a helix corresponds
then to a shift of these lines along the direction of the q vector. Since the q vectors of
the skyrmion lattice have relative angles of 120◦, these lines of constant phases also have
relative angles of 120◦. If we neglect, for a moment, the helix which is, for clarity, drawn
in red, then one can immediately see that a shift of the phase of the other two helices
just leads to a translation of the whole pattern. Thus, the diamond-shaped pattern is
independent of these two phases. By adding the third helix it is clear from the Figure that
only certain relative phases of α lead to crossing points, where all three lines intersect.
This is a topologically different pattern compared to those, where only crossing points with
two lines exist. In our convention, α = 0 describes the case, where three lines intersect.
Exactly this configuration describes a lattice of anti-skyrmions, where in the center of
skyrmion lattice all three helices point opposite to the external magnetic field B, see
Fig. 3.5.

In particular, upon changing α the local amplitude of the magnetization is affected. In
the right panel of Fig. 5.6, we plot the minimum and the maximum of the magnetization
amplitude of the superposition of the helices and a uniform magnetic moment. For α 6= 0,
the amplitude variations in the magnetic structure are much larger compared to the α = 0
case, where the amplitude is almost constant. Furthermore, the minimal amplitude as
a function of α is maximal for α = 0. However, only for particular phase differences
the amplitude vanishes, i.e. the order parameter vanishes. For a generic phase shift, the
amplitude is everywhere finite, and the winding number is given by −1 or 1, respectively.
In Fig. 5.7, we plot the normalized magnetization direction for the different phase shifts
0, π/4, π/2, and π. In these plots one also observes that the relative phase relationship α
has an affect on the magnetic texture. Note, in particular, the shift of the center of the
skyrmions as well as the “color inversion” comparing the first three panels with the last
one, where the winding number has the opposite sign.

An experimental verification of α is therefore important to underline the nature of the
skyrmion lattice phase. As mentioned earlier in Sec. 4.3, one cannot infer information
about α only from first-order scattering measurements, since this signal is only sensitive
to |mqj |

2. In contrast, the higher-order terms are very sensitive to such relative phases,
because they are subject to interference effects. If we consider, for example, the Fourier
transformation of the M4 term, which previously was crucial to obtain the particular
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Figure 5.6: The left panel shows a superposition of three helices, illustrated by lines of
constant phases. One relative phase shift corresponding to a parallel translation of, e.g.,
the red lines and indicated by the arrows determines whether the magnetic order is a lattice
of anti-skyrmions with small amplitude variations or not. A detailed explanation of this
Figure is given in the main text. The panel on the right hand side shows the minimum
and maximum of the magnetization amplitude of the superposition of three helices and
a uniform magnetic component as a function of the phase shift α for Mf = −0.75 and√

2Φ = 1. In this example, the amplitude of the minimum of |M | vanishes only for
α ≈ 2.33, α ≈ 2.42, α ≈ π − 2.42, and α ≈ π − 2.33.

Figure 5.7: Normalized magnetization direction for different phase shifts α. Upper left
panel: α = 0; upper right panel: α = π/4; lower left panel: α = π/2; lower right panel:
α = π.
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Figure 5.8: Square of the absolute value of the oscillating effective field, |bq1+q2 |
2 in units

of |mq1 |
6 as a function ofMf/|mq1 | for different values of the relative phase α, introduced

in the text. An analytic formula for this expression, obtained from a mean-field theory,
is given in Eq. (5.4), where Φ = |mq1 |. This is the term that is resposible for inducing
scattering at q1 + q2. We published this Figure in Ref. [67], where we used a slightly
different notation. Mq corresponds in this Thesis to mq and M0 to |M f | = Mf .

arrangement of the q vectors of the skyrmion lattice phase, we get

1

V

∫
d3rM4 =

∑
qI ,qII ,qIII ,qIV

mqImqIImqIIImqIV δqI+qII+qIII+qIV

= mq1+q2bq1+q2 + ...,

(5.3)

where in the last equation we have collected all terms linear in mq1+q2 . The term bq1+q2

behaves as an effective magnetic field to which all terms consisting of factors of mq1...6
and of the uniform magnetizationm0 ≡M f with total momentum −(q1 +q2) contribute.
Since q1 + q2 = 2q1 + q3 = 2q2 + q6 (see Fig. 5.2b), several terms contribute to bq1+q2 ,
e.g., m−q1(m−q1mq3) or M f (m−q1m−q2). The strength of the oscillating effective field
bq1+q2 is therefore determined by several processes given by

|bq1+q2 |
2

2Φ6
= 9 + 74

M2
f

Φ2
− 96
√

2
Mf

Φ
cosα+ 54 cos2 α, (5.4)

where
√

2Φ was defined to be the amplitude of the helix, and consequently |mq1 | = Φ.
Fig. 5.8 shows a plot of this function for different values of the relative phase shift α. As
a negative absolute value of the uniform magnetization M f is physically not reasonable,
the left part of this picture has no relevance. For α close to zero the strength of the
oscillating effective magnetic field bq1+q2 becomes very small for a certain magnetic field,
where Mf/Φ =

√
2 24/37 ≈ 0.92. This value has to be compared to 0.94 and 0.96,

which we obtained from the mean-field theory for t = −1 and t = −5, respectively. The
experimentally observed strong suppression of |mq1+q2 |2 is due to an interference effect.
It has been observed at a magnetic field of Bint that was also confirmed by our mean-field
theory. This fact is a characteristic feature of the special α = 0 phase relationship which
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is experimentally established by the results of higher-order scattering measurements and
which is characteristic for the skyrmion lattice phase.

To summarize, higher-order scattering was observed, and the quantitative explanation
of its dependence on the magnetic fieldB and the temperature T was given. In conclusion,
this demonstrates microscopically the existence of a skyrmion lattice in bulk samples of
MnSi within a certain temperature and magnetic field range, which can be characterized
as a chiral spin crystal with a quantized winding number W = −1 per unit cell and small
amplitude variations of the magnetization. Furthermore, we expect that similar results
will occur in other magnetic materials with skyrmion phases.
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Current-Induced
Magnetization Dynamics





6 Interplay of Magnetic Structures and
Currents

In the previous Chapters, we have discussed magnetic structures in equilibrium, in partic-
ular the skyrmion crystal. In the following, we consider the mutual influence of magnetic
structures and an electric current. Notably, we again focus on the (bulk) skyrmion lattice
and the interplay with a current, where due to the non-trivial topology of the magnetic
whirl-lines new phenomena emerge. Before that, we would like to motivate why the inter-
play of magnetic structures and electric currents, which belongs to the field of spintronics,
provides interesting phenomena.

6.1 Spintronics and Spin-Transfer Torques

Spintronics, previously also called magnetoelectronics, makes use of the fact that electrons
have not only a charge, but also a spin. A central part of this field is to control the spin
degree of freedom electrically and to exploit the electric and magnetic properties of the
electrons for information processing and data storage. As one of the long-term goals of
this field one might see the fusion of semiconductor technology with the advantages of
spintronics to improve solid-state devices.

The highlight in the field of spintronics, concerning applications, was the discovery
of the giant magnetoresistance (GMR) effect in 1988. It was independently found by
Peter Grünberg et al. [3] and by Albert Fert et al. [4]. This effect allows for a very
efficient control of electric currents by altering the magnetic structures. Because of its
great applicability for hard disk drives in the computer industry the Nobel prize was
awarded to them in 2007. Another fundamental work was the theoretical proposal of a
spin field-effect-transistor by Supriyo Datta and Biswajit Das in 1990 [89]. It provides an
important gateway to merge semiconductor technology with spintronics. Nevertheless, it
has not been realized experimentally so far.

In 1996, J. Slonczewski and L. Berger theoretically proposed the so-called spin-transfer
torque effect [5, 6]. It describes the transfer of angular momentum from an electric current
flowing through an inhomogeneous magnetization configuration to the local magnetization.
Since it allows to manipulate the magnetization of a material using an electric current,
it might be considered as a kind of an inverted GMR effect. Since altering a magnetic
structure with a current can, in principle, be done much more locally than via magnetic
fields, spin-transfer torques also have become interesting for applications. For example,
S. Parkin et al. [7] implemented a non-volatile memory device, called racetrack memory,
which exploits the phenomenon of current-induced domain wall motion in a magnetic
nanowire [90–93].

Amongst other interesting phenomena, where the magnetic structure is spatially non-
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uniform [94], a spin-polarized current is able, for example, to switch magnetic domains in
multilayer devices [95, 96], to induce microwave oscillations in nanomagnets [97, 98], and
also to induce vortex oscillations in magnetic nano-pillars [99].

However, the current densities needed to induce observable spin-transfer torque ef-
fects in traditional spin-torque experiments, like current-driven magnetization dynamics
in ferromagnetic metals and semiconductors, are still very high. Presently, they are of
the order of ∼ 1011 A/m2 which leads to a large Ohmic heating of the device. Therefore,
spin-transfer torque effects at such high current densities can only be studied in nano
structures.

6.2 Spintronics with Skyrmions

Concerning the interplay of currents and skyrmions, the first experimental results, ob-
tained in the group of C. Pfleiderer, were published in 2010 [10]. In neutron scatter-
ing experiments, they observed a rotation of the diffraction pattern upon subjecting the
skyrmion lattice to an electric current. Together we figured out that this observed rotation
only occured, because an additional temperature gradient was present [10]. Up to now,
further interesting spin-torque effects in the skyrmion lattice were observed, for which no
temperature or other gradients are required. The experimental findings revealed an ultra-
low electrical threshold current density above which spin-transfer torque effects do occur.
For MnSi, the threshold current density ∼ 106 A/m2 [10, 80] is about five orders of mag-
nitude smaller compared to traditional setups with spin-transfer torque effects. The very
low value of the threshold current density stems from different effects [10, 80]. First of all,
as discussed in Section 4.3, the skyrmion lattice couples only very weakly to the atomic
crystal structure [1]. Second, as we also considered in Section 4.3, pinning due to disorder
is expected to be weak. In addition, the skyrmion lattice itself couples very efficiently
to the spin-polarized electric current due to the peculiar twist of the local magnetiza-
tion which extends over macroscopic magnetic domains. In contrast, in traditional spin
structures the spin-polarized electric current couples only to a nanoscopic volume, where
the magnetic structure is inhomogeneous. The very low threshold current density makes
skyrmion systems very interesting to study spin-transfer torques effects, and it allows for
spin-torque experiments in bulk materials, avoiding the surface effects that dominate in
nanoscopic samples. Furthermore, effects like heating and Oersted magnetic fields created
by a current are much smaller for these current densities.

In this Thesis, we do not follow the historical sequence of the experimental and theo-
retical findings, but rather order them as follows. In Chapter 7, we first consider the effects
on the current-carrying electrons when traversing an inhomogeneous magnetic texture like
the skyrmion lattice. We briefly discuss their Berry phase physics and their emergent
electrodynamics. In the subsequent Chapters, we switch the perspective and consider
the influence of the current on the magnetic structure. To describe the current-induced
magnetization dynamics we use the Landau-Lifshitz-Gilbert equation which is an effective
equation of motion for the magnetization direction. The latter is introduced and discussed
in Chapter 8. In Chapter 9, with the help of the so-called Thiele method [100] we discuss
the current-induced forces on the skyrmion lattice and the induced drift motion of the
skyrmion crystal, provided the applied current density is strong enough. In Chapter 10,
we discuss the current-induced rotation of the skyrmion lattice which historically is the
first experimentally observed spin-transfer torque effect in the skyrmion lattice phase. Al-
though the main reason for the observed rotation was the temperature gradient present in
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the experimental setup, we also discuss further rotation mechanisms in this Chapter. To
describe the different current-induced rotation mechanisms, we extend the Thiele method
for the rotational mode.
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7 Emergent Electrodynamics of
Skyrmions

In the previous Chapter we discussed why it is interesting to study the interplay of electric
currents and magnetic structures. In this Chapter, we focus on what happens to the
conduction electrons while moving through a magnetic texture, and in particular through
the skyrmion lattice. Most of the results shown in this Chapter have been published in
Refs. [40, 80]

Since the skyrmion structures are very smooth, we assume that the conduction elec-
trons pass the topologically stable knots adiabatically, implying that their spins adjust to
the orientation Ω̂(r, t) = M(r, t)/|M(r, t)| of the local magnetization M(r, t), as shown
in Fig. 7.1. Non-adiabatic corrections are, for example, discussed in Refs. [80, 101]. While
following adiabatically the magnetic structure of the skyrmion lattice, the spins of the con-
duction electrons change their orientation and pick up a Berry phase [33, 102–108]. Note
that, since the sign of the Berry phase depends on the direction of the local magnetization,
it reflects the chirality and the winding number of the skyrmions.

During this process several forces act on both the electrons and the magnetic structure.
This adiabatic Berry phase physics as well as the acting forces can be mapped onto a
problem, where the electrons move in a simple uniform magnetic field, but instead “feel”
additional emergent electric Ee and magnetic fields Be. The way to understand this
is to view the Berry phase as an Aharonov-Bohm phase due to these emergent fields
[8, 9, 33, 104–106, 110–113]. The emergent fields then lead to the aforementioned effective
forces on the conduction electrons which are, in particular, Lorentz forces.

In the adiabatic case, where a free electron moves across a magnetic structure, the
emergent magnetic and electric fields are given by

Be
i =

~
2
εijkΩ̂ · (∂jΩ̂× ∂kΩ̂), (7.1)

Ee
i = ~ Ω̂ · (∂iΩ̂× ∂tΩ̂), (7.2)

where ∂i is the short notation for ∂/∂ri. We review the derivation ofBe and Ee in Sec. 7.1.
The emergent magnetic (electric) field measures the solid angle for an infinitesimal loop
in space (space-time). A spin-polarized electron with majority spin, i.e. with magnetic
moment parallel to Ω̂, collects the opposite Berry phase than an electron with minority
spin. This sign can be accounted for by assigning emergent charges with different signs
to the two configurations. In our convention, a majority spin carries the emergent charge
qe↓ = −1/2, while a minority spin carries the emergent charge qe↑ = +1/2 [80].

For the skyrmion lattice the emergent fields are of particular interest. Since Be is pro-
portional to the skyrmion density, and since skyrmions have a quantized winding number
of W = −1, the “emergent flux” per skyrmion given by

∫
Bedσ = −4π~ is also topologi-

cally quantized [1, 40, 44] to one flux quantum −2π~/|qe| per unit cell. Since in MnSi the
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Figure 7.1: The magnetic moment of the electron adjusts adiabatically to the direction of
the local magnetization of the skyrmion. This picture is taken from Ref. [109].

magnetic lattice is a lattice of anti-skyrmions, not only the winding number has a negative
sign but also the emergent flux, implying that the emergent magnetic field Be is oriented
opposite to the external applied magnetic field B. Furthermore, in Sec. 7.3 we show that
for a moving skyrmion lattice with a drift velocity vd the emergent magnetic and electric
fields are connected according to Faraday’s law of induction, wherefore this quantization
of Be also is transferred to Ee/vd [9].

In the following, we first review the derivation of the emergent electric and magnetic
fields given in Eqs. (7.1) and (7.2), and then we discuss their experimental observation.
Note that the emergent electric field Ee can only be non-zero for a time-dependent mag-
netic structure, i.e. for a moving skyrmion lattice. As we will see in the next Sections and
Chapters, a sufficiently strong current leads to a motion of the skyrmion lattice.

7.1 Derivation of the Emergent Magnetic and Electric Fields

The emergent magnetic and electric fields given in Eqs. (7.1) and (7.2) can be basically
derived within two equivalent approaches. On one hand, they can be derived by making
a product ansatz for the wavefunction which consists of a spatial and time-dependent am-
plitude and a spinor that locally (i.e. space- and time-dependent) adjusts to the direction
of the magnetic field. By writing down the Schrödinger equation for the amplitude one
obtains the artificial gauge potentials leading to emergent electrodynamics. On the other
hand, the emergent electric and magnetic fields can be obtained by perfoming a local uni-
tary transformation of the system, so that in the new basis the quantization axis is parallel
to the local magnetization direction. Here, we review the latter version as presented in
Ref. [8].

Let us consider a simple model Hamiltonian for a free electron with a spin moving
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across a smoothly varying magnetic structure M(r, t) with a constant amplitude M :

H =
p2

2m
1− Jσ · Ω̂(r, t). (7.3)

Here, 1 is the 2× 2 unit matrix, and Ω̂(r, t) = M(r, t)/M is the direction of the magne-
tization that varies in space and time. σ = (σx, σy, σz)

T denotes the usual vector of Pauli
matrices with

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (7.4)

J > 0 is the strength of the exchange coupling which comprises the amplitude of the
magnetization. In the Schrödinger picture, the dynamics is given by

i~∂tψ =

[
p2

2m
1− Jσ · Ω̂(r, t)

]
ψ. (7.5)

The main idea is to perform a local transformation of the system, so that the second part
of the Hamiltonian becomes trivial in the sense that Jσ · Ω̂(r, t) goes over to Jσz. This
means to rotate the quantization axis from the ẑ axis to the axis parallel to the local
magnetization direction Ω̂ for a given point r in space and time t. This corresponds to
a unitary transformation U(r, t) of the two-component wave function ψ = (ψ↑, ψ↓)

T that
is given by ψ = U(r, t)ζ, where U = exp(−i θ2σ ·n). Here, θ = θ(r, t) denotes the angle
of the rotation, and n = n(r, t) = ẑ × Ω̂(r, t)/|ẑ × Ω̂(r, t)| is the axis of the rotation.
When inserting ψ = U(r, t)ζ into Eq. (7.5) and multiplying it by U(r, t)† from the left,
one obtains the following Schrödinger equation for ζ:

i~∂tζ =

[
qeV e +

(p1− qeAe)2

2m
− Jσz

]
ζ, (7.6)

with qe being the emergent charge. The emergent “scalar” and “vector” potentials V e and
Ae are given by

V e = −(i~/qe)U †∂tU, (7.7)

Ae = −(i~/qe)U †∇U. (7.8)

Note that so far qe drops out of equation Eq. (7.6). Since we started with the assumption
that the magnetizationM(r, t) and thus Ω̂(r, t) varies smoothly in space and time, one can
treat the scalar and vector potentials as a perturbation to the unperturbed Hamiltonian

H0 =
p2

2m
1− Jσz. (7.9)

H0 describes two bands, one for electrons with majority spins, i.e. with magnetization
parallel to to the local magnetization direction Ω̂, and one for minority spins. In the
adiabatic approximation, the scalar and vector potentials V e and Ae act on each band
separately and modify them slightly. Technically, one has to project V e and Ae on the two
bands, and then one can introduce for each band an emergent electric and an emergent
magnetic field that is “felt” by the conduction electrons as

Be
i ≡ εijk∂jAek = ∓ ~

2qe
εijk
2

Ω̂ ·
(
∂jΩ̂× ∂kΩ̂

)
, (7.10)
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and
Eei ≡ −∂iV e − ∂tAei = ∓ ~

2qe
Ω̂ ·
(
∂iΩ̂× ∂tΩ̂

)
, (7.11)

where the upper (lower) sign corresponds to the band for electrons with majority (mi-
nority) spin. Motivated by the insight that an electron with majority spin collects the
opposite Berry phase than an electron with minority spin, let us now introduce differ-
ent emergent charges for the two bands by defining qe↓ = −1/2 for a majority spin and
qe↑ = +1/2 for minority spin [80]. This leads to the emergent magnetic and electric fields
given in Eqs. (7.1) and (7.2).

Note that the emergent magnetic and electric fields have been derived under the as-
sumption that the electron follows the magnetic texture adiabatically. Corrections due to
non-adiabatic processes are discussed in Refs. [80, 101]. Furthermore, they do not contain
fluctuations of the amplitude of the magnetization, and they do not take into account
modifications due to the band structure of the system. Moreover, also dissipative drag
forces acting on the electrons are not covered by Eqs. (7.1) and (7.2).

For the case of the skyrmion lattice, only in a tiny region close to the depinning tran-
sition, dissipative drag forces on the electrons arising from the motion of the skyrmion
lattice might be relevant. Otherwise, they are much smaller than the force from the emer-
gent electric field and may therefore be neglected. The reason for this is the following [80]:
The skyrmion lattice induces a weak effective periodic potential on the electrons which
has at least three origins: spin-orbit coupling in the band structure, small modulations in
the amplitude of the magnetization, and small variations of the emergent magnetic field
around its average value. To estimate the strength of these dissipative forces for small
drift velocities vd of the skyrmion lattice, let us consider a weak, time-dependent, periodic
electric potential Φ(r − vdt) moving in a diffusive system described by charge density n,
diffusion constant D(n) and conductivity σ(n). The dissipative drag force is then given
by Fd = ej/σ = envd/σ with the current j = vdn. To obtain the density n we have to
solve the diffusion equation

∂tn = ∇(D(n)∇n) +∇(σ(n)∇Φ(r − vdt)). (7.12)

To this end let us switch to the comoving reference frame, i.e. we perform the transfor-
mation r → r + vdt and n→ n(r − vdt) such that Eq. (7.12) transforms to

−vd∇n = ∇(D(n)∇n) +∇(σ(n)∇Φ(r)) (7.13)

which can now be integrated. Multiplying the result by vd we obtain

−v2
d(n− n0) = D(n)vd∇n+ σ(n)vd∇Φ(r). (7.14)

with the integration constant −vdn0. To solve Eq. (7.14) further, let us first consider it to
linear order and use the approximations D(n) ≡ D and σ(n) ≡ σ. Performing a Fourier
transformation using the convention n(r) =

∑
q nqe

iqr we obtain the following relation for
the Fourier components nQi

of the density operator:

nQi
≈
−i(vd ·Qi)σΦQi

v2
d + i(Qi ·vd)D

, (7.15)

whereQi 6= 0 are the reciprocal lattice vectors of the periodic potential. Hence, considering
Eq. (7.14) only to linear order and within the assumptions that D(n) ≡ D and σ(n) ≡
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σ, the weak, time-dependent, periodic electric potential induces only a small periodic
variation of the density, but it does not lead to a dc current and therefore not to dissipative
forces.

To obtain dissipative forces from this ansatz, i.e. to obtain a uniform electric current,
one has to expand one order higher in the potential. Taking the variations of D(n) and
σ(n) to linear order in the changes of n into account, one obtains the following average
current density in the direction of the drift velocity vd for small vd:

j = − 1

vdV

∫
d3r (D(n)vd∇n+ σ(n)vd∇Φ(r))

≈ vd σ
∂σ

∂n

∑
i

(vd ·Qi)
2|ΦQi

|2

v4
d + ((Qi ·vd)D)2

≈ vd σ
∂σ

∂n

∑
vd ·Qi 6=0

|ΦQi
|2

D2

(7.16)

with V being the integration volume. For the dissipative forces we obtain

Fd =
ej

σ
≈ e vd

∂σ

∂n

∑
vd ·Qi 6=0

|ΦQi
|2

D2
. (7.17)

Using D ∼ v2
F τ and σ ∼ neτ/m, i.e. ∂σ/∂n ∼ eτ/m, where vF is the Fermi velocity, 1/τ

denotes the scattering rate, and m is the quasiparticle mass, and using that the variations
of the potential are of the order of ∆V ∼ |eΦ ~Qi

|, we can estimate the size of the dissipative
forces to

Fd ∼
mvd
τ

(
∆V

εF

)2

, (7.18)

where εF is the Fermi energy. Within this approximation the dissipative force is propor-
tional to the scattering rate, while the current density is independent of τ .

For the case of the skyrmion lattice, different mechanisms contribute to ∆V , as dis-
cussed above. However to obtain a crude estimate for ∆V , note that the change of the
electronic energy due to ∆V , which is of the order of (∆V )2/εF (or much larger), is at
most of the same order as the energy difference ∆Es of the ferromagnetic and the skyrmion
state. The latter can be estimated to ∆Es ∼ EM/(kFR)2, where EM is a magnetic energy
scale and R is the radius of the skyrmions which in the case of MnSi is also characteristic
for the distance of the skyrmions [40]. Thus, we can estimate the dissipative forces from
below by

Fd . vd
~
R2

1

kF l

EM
εF

, (7.19)

where l is the mean free path and kF the Fermi momentum. When further using that the
emergent magnetic field Be in the skyrmion lattice phase is of the order of ~/R2, because
it is quantized to one flux quantum per magnetic unit cell, we see that

Fd . vdB
e 1

kF l

EM
εF

(7.20)

is strongly suppressed by the two small factors 1/(kF l) and EM/εF compared to the force
from the emergent electric field Ee = −vd ×Be. Hence, we expect that dissipative forces
are completely negligible compared to the forces arising from the emergent electric field.
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Figure 7.2: Setup of a Hall measurement.

Only very close to the depinning transition, where the Hall forces due to the emergent
electric field are suppressed due to the drift velocity being approximately perpendicular to
the current (see Chapter 9), dissipative forces might have a chance of becoming relevant.
This is, however, well below the experimental resolution of the experiments of Ref. [80]
and will therefore be neglected in the following.

Furthermore, corrections due to a violation of adiabaticity or band structure effects are
probably small due to the smoothness of the skyrmion structure and the large distance in-
between the skyrmions, ∼ 200 Å. This suggests that the most important corrections to the
emergent fields may arise from spin-flip scattering processes which scatter electrons, e.g.,
from the majority to the minority band. Spin-flip scattering processes can be interaction-
or disorder-induced and arise only due to weak spin-orbit scattering. A quantitative
analysis of corrections to adiabatic transport can, for example, be found in Ref. [101].
Concerning MnSi, the spin-flip scattering length is probably much larger than the distance
between the skyrmions ∼ 200 Å, because the much smaller non-spin-flip scattering length
is estimated to be between 10 Å and 100 Å. Therefore, in the following, we use the
emergent electric and magnetic fields of Eqs. (7.1) and (7.2).

7.2 Emergent Magnetic Field

In the previous Section, we have derived the emergent magnetic field an electron “feels”
while moving adiabatically through a non-collinear magnetic structure. For the skyrmion
lattice, each skyrmion induces due to its non-trivial topology, i.e. its winding number, ex-
actly one quantum of emergent magnetix flux. For the surrounding phases, the skyrmion
density vanishes [33], and therefore no emergent magnetic field is expected. This obser-
vation allows to detect the topological winding number via the emergent magnetic field
using Hall measurements [32, 33, 36, 40, 114, 115], which we discuss in the following.

When an electric current flows through a conductor which is subject to a perpendicular
magnetic field, a Lorentz force acts on the electrons. Typically, as shown in Fig.7.2, the
current is applied in the x direction and the magnetic field in the z direction. Since the
Lorentz force is perpendicular to both the direction of the current flow and the magnetic
field, a potential difference builds up in the y direction. It can be measured as a transverse
voltage by applying contacts. This effect is called Hall effect, and the transverse voltage
is usually denoted as Hall voltage. In most experiments, one does not plot the Hall
voltage depending on the strength of the applied current, but rather the Hall resisitivity
ρxy which is defined as the ratio between the Hall voltage and the applied current. In
non-magnetic materials and for small fields, the Hall resisitivity increases linearly with
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the applied magnetic field. In many ferromagnetic materials, an additional signal occurs
due to the finite ferromagnetic magnetization M . This is known as the anomalous Hall
effect, and it is proportional to the magnetizationM [116–119], so that the Hall resistivity
for ferromagnetic materials is usually given by

ρxy = R0B + µ0RsM, (7.21)

where R0 (RS) is the normal (anomalous) Hall coefficient, and µ0 is the vacuum permeabil-
ity. The prefactor of the normal Hall effect, R0, depends on details of the band structure
– note that MnSi is a multi-band system – and on the relative sizes of the scattering rates.

Since only in the skyrmion lattice phase (and not in the conical or helical phases) the
emergent magnetic field derived in Sec. 7.1 occurs, the statement is, that only in this phase
a further contribution to the Hall signal exists. As the emergent magnetic field arises due
to the non-trivial topology of the skyrmion lattice, this effect is denoted as the topological
Hall effect. Its size is proportional to the emergent magnetic field, thus to the skyrmion
winding number and to the skyrmion density [115]. The topological Hall effect occurs
besides the normal and the anomalous Hall effect, and allows for a direct measurement
of the topological properties (chirality and winding number) of the spin structure in the
skyrmion lattice phase. For MnSi the topological Hall effect in the skyrmion phase as well
as the absence of a topological Hall signal in the helical or conical phase have already been
verified, and the results are published in Ref. [40]. These Hall measurements were the first
evidence of the non-trivial topological nature of the skyrmion lattice phase, and we review
the results of Ref. [40] in this Section.

In the adiabatic limit, where the spin of the charge carriers (with infinite lifetime)
adjusts constantly to the smoothly varying magnetic structure, the size of the topological
Hall signal may be estimated as [105, 106]

∆ρBxy ≈ P R0

∣∣∣∣qee
∣∣∣∣Be

z , (7.22)

where e is the electron charge, and |qe| = 1/2 is the emergent charge as introduced in
Sec. 7.1. Here, the external magnetic field is applied in z direction, so that the skyrmion
lattice lies in the xy plane and induces an emergent magnetic field in z direction, too. To
avoid confusion with the next Section, where we consider the change of the resisitivity as
a function of the emergent electric field instead of the emergent magnetic field, we use
the label “B” in this Section and the label “E” in the next Section. In the plots, which
are taken from Ref. [40] and our publication Ref. [80] respectively, the resisitivity changes
are, however, just denoted by ∆ρxy, because in the corresponding publication the focus
was on only one of these effects. As the size of the topological Hall effect also depends
on many details similar to the prefactor of the normal Hall effect, R0, one can use its
experimental value for a semi-quantitative prediction of ∆ρBxy. Moreover, the topological
Hall signal is proportional to the local spin-polarization P of the conduction electrons and
vanishes for P → 0. The reason for this is that, as shown previously, charge carriers with
a majority or minority spin collect Berry phases of opposite signs. The polarization P
can be calculated from the ratio P = µspo/µsat of the ordered magnetic moment in the
skyrmion phase and the saturated magnetic moment. For MnSi, in the temperature and
field region of the skyrmion phase, these quantities are given by µspo ≈ (0.2± 0.05) µB

and µsat ≈ (2.2± 0.2) µB, respectively [40]. Hence, for MnSi the polarization P is given
by P ≈ 0.1± 0.02.
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Figure 7.3: Hall resistivity for MnSi measured for a magnetic field B in [110] and the
applied current in [001] direction. This Figure is taken from Ref. [40]. Note that the sign
of the Hall effect reported in Ref. [40] is not correct and we have therefore added a minus
sign to ρxy compared to the original Figure.

Using an emergent magnetic field of Be ≈ 2.5 T|e/qe| for MnSi [40] which is oriented
opposite to the applied magnetic field B, a polarization of P ≈ 0.1± 0.02 and the exper-
imental value for R0 discussed below in the experimental part, a theoretical estimate for
the size of the topological Hall contribution is given by ∆ρBxy ≈ 4 nΩ cm.

Experiments: For the Hall experiments of Ref. [40] mainly two single-crystal samples of
MnSi were used. They were cut from an ingot that had been used also in the measurements
of Refs. [1, 50]. Sample 1 was about 1× 1.5× 0.13 mm3 in size and oriented such that
the external magnetic field B was applied in the [110] and the electric current in the [001]
direction in the measurements. Sample 2 with a size of about 1.6× 3.1× 0.15 mm3 was
oriented such that B was aligned in [111] direction and the current in [11̄0] direction.
In this work, the Hall effect and the resistivity where measured, and the obtained data
agreed with the previous studies of Ref. [120]. However, the authors used an experimental
setup with a much better resolution to make the small topological contributions of the
Hall signal visible. Further experimental details can be found in Refs. [40, 121].

In Fig. 7.3, a typical measurement for the Hall resistivity ρxy of MnSi for sample 1
is shown. Here, the magnetic field was aligned along the [110] direction, and the current
was applied along the [001] direction. At high temperatures, the Hall signal is dominated
by the normal Hall effect, whereas for lower temperatures the behaviour of ρxy is more
complicated. From the Hall resistivity ρxy, one can infer basically the normal Hall coeffi-
cient, R0, and the nominal charge carrier concentration, n = (R0e)

−1. Neubauer et al. [40]
obtained a value of n = 3.78 · 1022 cm−3. Lee et al. [120] obtained the same order of mag-
nitude, but their value differs by a factor of two, while analysing the data in a slightly
different way. Nevertheless, the precise value of n is not important for the conclusions.

To observe the additional topological Hall contribution in the skyrmion phase, detailed
measurements of the Hall resistivity as a function of the magnetic field for different tem-
peratures were performed. The results are shown in the left panel of Fig. 7.4. Basically,
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Figure 7.4: The left panel shows the total Hall resistivity ρxy of MnSi in the skyrmion
phase. The right panel shows only the additional Hall contribution in the skyrmion phase.
For a better visibility, curves for different temperatures are shifted vertically. The Figures
are taken from Ref. [40]. Note that the sign of the Hall effect reported in Ref. [40] is not
correct and we have therefore added a minus sign to ρxy compared to the original Figure.

the Hall signal rises linearly with increasing magnetic field, but for magnetic fields in the
range of the skyrmion phase, a small additional contribution can be observed. To make
this additional contribution better visible, the authors approximated the Hall signal by
a straight line for temperatures slightly above and below the skyrmion phase and sub-
stracted this linear part from the whole curves. The result of this data analysis is plotted
in the right panel of Fig. 7.4. For better visibility, the curves for different temperatures
have been shifted vertically.

To exclude the fact that the observed additional signal is not just due to an enhanced
anomalous Hall effect, which could in principle explain such a feature, Neubauer et al. [40]
considered the behaviour of M(B). Inside the skyrmion phase, the slope of the magneti-
zation as a function of magnetic field is reduced, while it is enlarged at both boundaries
of the skyrmion phase. Therefore, the additional contribution to the Hall signal does not
track the evolution of the magnetization. Consequently, it has to be mainly attributed to
the topological winding of the magnetic structure. However, due to the variations of the
slope of M(B) the additional contribution to the Hall signal, which is plotted in the right
panel of Fig. 7.4, does not have the shape of a simple step function, i.e. constant inside
the skyrmion lattice phase and zero outside, as does ∆ρBxy.

One can roughly estimate the size of the experimentally observed topological Hall con-
tribution by ∆ρBxy ≈ (4.5± 1) nΩ cm which fits very well with the theoretically predicted
value of ∆ρBxy ≈ 4 nΩ cm discussed above. Another main result of the experiments of
Ref. [40] is that the sign of the topological signal is opposite to that of the normal Hall
contribution. Furthermore, the Hall signal was observed to be basically the same for the
two different orientations of the magnetic fields that were studied, implying that also the
topological contribution is mainly independent of the direction of the magnetic field.

To conclude, the study of the Hall effect allows to observe experimentally the emergent
magnetic field felt by the charge carriers while constantly adapting their spin-orientation
with respect to the smoothly varying magnetic texture. The sign and quantitative size
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of the observed topological resistivity contribution ∆ρBxy agreed for MnSi perfectly with
the theoretically expected value, emphasizing the topological character of the skyrmion
lattice.

7.3 Emergent Electric Field

In Section 7.1, we have derived an expression for the emergent electric field an electron
feels while moving adiabatically through a magnetic structure, given by

Ee
i = ~ Ω̂ · (∂iΩ̂× ∂tΩ̂). (7.23)

From this expression one can immediately infer that the emergent electric field is only
finite for a non-collinear and time-dependent magnetic structure. In Chapter 9, we discuss
the current-induced forces on the skyrmion lattice, and we show that above a critical
threshold current density the skyrmion lattice starts to drift with a drift velocity vd. For
a moving skyrmion lattice one would then expect to observe also the emergent electric
field [9] or, conversely, the observation of an emergent electric field allows inferences on
the motion of the skyrmion lattice.

In this Section, we discuss the relation between the emergent magnetic field, the emer-
gent electric field, and the connection to the Hall signal for a moving skyrmion structure.
The latter allows for an experimental detection of the emergent electric field as well as a
direct evidence of a moving skyrmion lattice. We published most of the work presented
in this Section in Ref. [80].

For a drifting skyrmion lattice, the direction of the magnetization Ω̂(r, t) depends only
on the difference r − vd t, i.e. Ω̂(r, t) = Ω̂(r − vd t). Substituting this ansatz into the
expression for the emergent electric field of Eq. (7.2) and using ∂tΩ̂ = − (vd · ∇) Ω̂ this
leads to

Ee
i = ~ Ω̂ · (∂iΩ̂× (vd · ∇) Ω̂) = − (vd ×Be)i , (7.24)

which provides a general connection between the emergent magnetic and the emergent
electric field for a drifting magnetic structure. Equation (7.24) is but the Faraday law
of induction, indicating that a change of the magnetic flux causes an electric field. Since
the emergent magnetic field Be is non-zero only in the skyrmion phase and furthermore
quantized, this also carries over to the emergent electric field due to Eq. (7.24) for fixed
vd. Note that Ee is perpendicular to the applied magnetic field and the drift velocity, and
induces extra forces on the charge carriers. Since vd is, for current densities well above
the threshold current density (j > jc), mainly oriented parallel to the applied current,
as is discussed in Chapter 9, the drift of the skyrmion lattice reduces the relative speed
between the spin currents and the magnetic structure. Furthermore, the force exerted by
the emergent Faraday field Ee on the charge carriers is in perpendicular direction to the
applied current, for current densities well above the threshold current density. In total,
the forces that act on the electrons with momentum k and spin orientation σ are given
by [9, 80]:

F σk = eE + FH + qeEe + qeσvσkn ×Be + F diss

= eE + FH + qeσ(vσkn − vd)×Be + F diss.
(7.25)

Here, E is the external applied electric field, FH denotes the Hall force from the normal
and anomalous Hall effect. With vσkn being the velocity of quasi-particles in band n,
vσkn − vd denotes the relative velocity of the quasi-particles and the magnetic structure.
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Furthermore, dissipative drag forces F diss arising for vd 6= 0 act on the electrons. These
are suppressed by two small factors, 1/(kF l), where kF is the Fermi momentum and
l is the mean free path, and by EM

εF
, being the magnetic energy scale divided by the

Fermi energy [80]. Thus, the dissipative forces are negligible compared to the forces from
the emergent electric field. Nonetheless, in a very small regime close to the depinning
transition (but well below the resolution of the experiments in Ref. [80]), the drift velocity
is almost perpendicular (instead of parallel) to the current, and therefore does not give a
strong contribution to the Hall signal. In this tiny region, the dissipative forces may be
important.

As can be seen from Eq. (7.25), the emergent electric field originating from the motion
of the skyrmion lattice leads to a reduction of the Hall signal, compared to the Hall field
of the non-moving skyrmion lattice. To be more precise, in a Galilean invariant one-band
system, the extra electric current induced by −qeσvd‖ × Be has to be exactly canceled
by the change of the electric Hall field, i.e. ∆E⊥ ≡ −qeσvd‖ ×Be, where vd‖ is the part
of the drift velocity parallel to the applied current that differs only slightly from vd for
current densities well above jc. The reason for this is that a Galilean transformation of
a coordinate system, where skyrmions and electrons are at rest (i.e. no current is applied
and no current induced forces are present), to a coordinate system with a uniform motion
corresponds to a state with a finite electric current and a moving skyrmion lattice. In
this moving reference frame, the drift velocities of the electrons and the skyrmions are the
same, and the force from the emergent magnetic field cancels the force from the emergent
electric field. Hence, in a Galilean invariant one-band system, the relative sizes of the
emergent Hall- and the Faraday effect are equal.

In general, i.e. in a system without Galilean invariance, the contributions from both
emergent fields to the Hall signal do not cancel each other. For example, in Section 9.2 we
show that the drift velocity vd is only in the Galilean invariant equal to the spin velocity
vs, describing the drift of the emergent current je. This originates from different damping
mechanims which are introduced in the next Chapter. We expect that the correction
due to damping is a small effect and that for larger applied currents it is vs ≈ vd, when
pinning can be neglected. Consequently, the average force given by 〈qeσ(vσkn − vs)×Be〉
still vanishes. However, in a more complex system with multiple bands, where the quasi-
particle velocity vσkn and thus the average force depend on the orientation of the spin
relative to the local magnetization σ, the momentum vector k, and the band index n, one
nevertheless expects a finite contribution to the Hall effect.

This insight paves the way for the experimental detection of the emergent electric field
by measuring the change of the Hall field. Using basically the same geometries as in
Sec. 7.2, where the magnetic field was applied in z direction and the electric current in x
direction, and defining the difference in the resitivity due to the applied current ∆ρExy by

∆ρExy ≡ ρxy(j)− ρxy(0) = −∆ρEyx, (7.26)

we obtain

∆E⊥ = j∆ρEyx ≈ −
∆σEyxE

σxx
= −

∆jE⊥
σxx

= −P̃
∣∣∣∣qee
∣∣∣∣Eey = P̃

∣∣∣∣qee
∣∣∣∣ (vd‖ ×Be)y, (7.27)

where σ denotes the conductivity tensor and ∆σEyx the corresponding conductivity dif-
ference. As mentioned previously, to avoid confusion we label the resisitivity change due
to the emergent magnetic (electric) field by ∆ρBxy (∆ρExy). As the plots are taken from
Ref. [40] and our publication Ref. [80], respectively, where in each figure just one of the
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two effects was studied, the resisitivity changes in the plots are just denoted by ∆ρxy.
The difference in the transverse current ∆jE⊥ is accordingly given by ∆jE⊥ = ∆σEyxE, and
P̃ is the dimensionless spin polarization which can be obtained by calculating the cross
correlation of the charge current j and the emergent current je

P̃ =

∣∣∣∣ eqe
∣∣∣∣ 〈〈j, je〉〉〈〈j, j〉〉

. (7.28)

It is the ratio of the electric currents obtained from Ee and E. Within a relaxation time
approximation for a multiband system P̃ can be approximated by

P̃ ≈ −
∑

n,~k,σ=±1
σ τσn(vy

σ~kn
)2 ∂εf

0
nσ∑

n,~k,σ=±1
τσn(vx

σ~kn
)2 ∂εf0

nσ

(7.29)

where f0
nσ is the Fermi distribution for the band n with the scattering rate 1/τσn and

spin-orientation σ relative to the local magnetization. The relation between the difference
in the Hall field ∆E⊥ and the emergent electric field Ee, given by ∆E⊥ = −P̃ |qe/e|Eey
from Eq. (7.27), confirms that up to the factor of the spin polarization P̃ it is possible
to measure the emergent electric field Ee via a Hall measurement. Because the emergent
magnetic field Be is quantized, this also corresponds to a direct measurement of the parallel
component of the drift velocity:

vd‖ =
Ee

Be
≈
∣∣∣∣ eqe
∣∣∣∣ ∆E⊥

BeP̃
≈ −

∣∣∣∣ eqe
∣∣∣∣ j∆ρExyBeP̃

= vpin

j∆ρExy
jc∆ρ∞xy

, (7.30)

where in the last step we introduced ∆ρ∞xy = ∆ρExy(j � jc) − ∆ρExy(j � jc), and the
pinning velocity vpin is given by

vpin ≈ −jc
∣∣∣∣ eqe
∣∣∣∣ ∆ρ∞xy

BeP̃
. (7.31)

We used that ∆ρ∞xy|e|/(BeP̃ |qe|) ≈ −vs/j = −|qe/(eM)|P̃ is approximately independent
of the local magnetization and therefore of the temperature. Here, vs = 〈je〉/M is the
velocity of the current associated to the charges qeσ. With this expression for the pinning
velocity (Eq. (7.31)), the term 4π~Mvpin can be interpreted as the force per skyrmion and
per length needed to depin the skyrmion lattice.

The main goal of the Hall measurements that were performed in Ref. [80] was to confirm
the current-induced motion of the skyrmions. In principle, the depinning and motion of
the skyrmions might also be detected using microscopic experimental techniques such as
Lorentz force microscopy or neutron scattering techniques, but those methods are not
able to observe the emergent electrodynamics. In that sense, Hall measurements are a
perfect tool (and much cheaper than neutron scattering) to observe both the motion of
the skyrmion lattice and the emergent electrodynamics since the emergent electric field is
directly proportional to the velocity of the skyrmions. Below we review the experimental
results obtained by the Hall measurements, published in Ref. [80].

Experiments: The Hall measurements were perfomed using very clean single crystal
MnSi samples. Since the goal is to study the skyrmion lattice under a current flow using the
Hall effect, a modified experimental technique was used. It allowed for measurements with
a large DC current on which a small AC excitation (with an amplitude not larger than a few
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Figure 7.5: Hall resistivity as function of temperature T in the skyrmion phase of MnSi.
In the upper panel, the black curves represent the Hall resistivity for various magnetic
fields without an applied electric DC current, and the red curves are the corresponding
ones with an applied DC current of j = 2.81 · 106 A/m2. With the applied current the
Hall signal is suppressed in the skyrmion phase (colored blue). In the lower panel, the
magnetic field is fixed, B = 250 mT, and the different curves represent different current
densities. The Figure is taken from our publication, Ref. [80].

percent compared to the applied DC currents) could be superimposed. The AC excitation
frequency was about 22.5 Hz, and the Hall resisitivity ρxy as well as the longitudinal
resistivity ρxx were measured at the same time. Ohmic heating and temperature gradients
were minimized by a good coupling to the cryogenic system. For further experimental
details see Ref. [80].

Fig. 7.5 shows the Hall resistivity ρxy as a function of temperature in the skyrmion lat-
tice phase of MnSi. The curves plotted in black represent Hall resistivities in the absence
of an electric DC current. Different curves correspond to different applied magnetic fields.
As described in Sec. 7.2, the electrons in MnSi are subject to the normal, the anomalous
and – in the skyrmion phase – also to the topological Hall effect. In Fig. 7.5, the pro-
nounced features are due to the temperature dependence of the anomalous Hall effect.
Close to the lower boundary of the skyrmion phase, one can observe a small maximum
in the Hall resisitivity. This is due to a characteristic change in the magnetization, while
going from the conical phase to the skyrmion phase and in-between passing a small regime
of phase coexistence [84]. The red curves of the upper panel are measured with an applied
electric DC current of j = 2.81 · 106 A/m2, and each curve belongs to a different magnetic
field strength. With the applied current the Hall signal is suppressed in the skyrmion
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lattice phase compared to the zero-current Hall signal. The difference between two corre-
sponding (black and red) curves is colored in blue. The boundaries of the skyrmion phase
are indicated by black arrows marking the suppression region of the Hall signal. Note
that they agree very well with the boundaries of the skyrmion phase obtained from other
results like susceptibility measurements. In the lower panel, the magnetic field is fixed,
B = 250 mT, and the different curves represent different applied DC current densities.

By considering the data of Fig. 7.5 at several fixed temperatures and tracing for each
temperature the resisitivity by varying the current densities, one obtains the plot shown
in Fig. 7.6. The left-hand-side axis labels the absolute data, and the right-hand-side axis
labels the relative size with respect to the zero-current case. The temperature decreases
from top to bottom. In the first (last) panel, the temperature is above (below) the temper-
atures for the skyrmion phase, and therefore the signal does not change while increasing
the strength of the current density. For the three panels in the middle the temperatures
are in the skyrmion lattice phase. For small current densities, j < jc, the Hall signal
remains the same (within experimental precision). Above the critical current threshold,
j > jc, however, the Hall resisitivity ρxy decreases until at large currents the signal re-
mains constant at the reduced value. For better visibility, the difference between the signal
without a DC current and with the corresponding applied current is colored in blue.

As discussed in Eq. (7.30), the drift velocity component parallel to the current is
approximately proportional to the product of the current density and the change of Hall
resistivity, i.e. vd‖ ∼ j∆ρExy. Therefore, j∆ρExy as a function of the applied current j is
shown in Fig. 7.7. The data presented was measured in an external magnetic field of
250 mT for various temperatures, used to determine the critical current densities above
which j∆ρxy is no longer zero and the skyrmion lattice starts to move.

To determine the drift velocities from the experimental data, one can estimate ∆ρ∞xy
(defined just below Eq. (7.30)) in the center of the skyrmion phase to ∆ρ∞xy ≈ 3 · 10−11 Ωm

from Fig. 7.6. Using the estimated polarization [40] of P̃ ≈ 0.1 and the strength of
emergent magnetic field for MnSi 2.5 T, i.e. Be ≈ 2.5 T|e/qe| we obtained for the pinning
velocity

vpin ≈ jc
∣∣∣∣ eqe
∣∣∣∣ ∆ρ∞xy

BeP̃
≈ jc

106 A/m2
0.12

mm

s
, (7.32)

and accordingly for the drift velocity

vd‖ ≈ vpin

j∆ρExy
jc∆ρ∞xy

≈ j

106 A/m2

∆ρExy
∆ρ∞xy

0.12
mm

s
. (7.33)

The drift velocities, inferred from these experimental data, are displayed on the right axis
of Fig. 7.7. For current densities smaller than the critical current density, the drift velocity
of the skyrmion lattice is zero (within the experimental precision and up to a very small
creep, i.e. a tiny motion due to thermal (or quantum) fluctuations [83]). In this case,
the current-induced forces on the skyrmion lattice are not strong enough to overcome the
pinning forces due to disorder and the atomic lattice. A detailed discussion of the current-
induced forces on the skyrmion lattice including pinning forces can be found in Chapter 9.
Above jc the skyrmion lattice gets depinned by the current and starts to move. In this case,
the cystal inhomogeneities locally still distort the skyrmion lattice in a time-dependent
way which effectively can be characterized by a velocity-dependent friction force acting on
the skyrmion lattice. For j � jc, the drift velocity of the skyrmion lattice increases linearly
with the applied current density (see Fig. 7.7), because in this regime the pinning forces
are much smaller than the current-induced forces and can therefore be ignored. The size of
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Figure 7.6: Hall resisitivity of MnSi as a function of the applied electric DC current for
different temperatures. The axis on the left hand side shows the absolute value, and the
axis on the right hand side labels the relative size with respect to the zero-current case.
The applied magnetic field is B = 250 mT. The temperature decreases from the first to
the last panel. In the first and the last panels, the temperature is outside the temperature
range of the skyrmion lattice phase. As expected, no reduction of the Hall signal due to
an applied current can be observed. For the three plots in the center, above the critical
current density jc the signal is suppressed and saturates for even larger current densities
to a lower value. The Figure is taken from our publication, Ref. [80].
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Figure 7.7: Product of the change of the Hall resistivity ∆ρExy due to the emergent electric
field and of the current density (left-hand-side axis) and drift velocity (right-hand-side
axis) as a function of the applied current density at a magnetic field of 250 mT. Each
plot corresponds to a different temperature. The arrows mark the critical current density
above which the skyrmion lattice starts to move. The Figure is taken from our publication,
Ref. [80].
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Figure 7.8: Summary of features of the skyrmion lattice phase in MnSi subject to an
electric current. Panel (a) displays the temperature dependence of the critical cur-
rent density and the pinning velocity (see Eq. (7.31)) given in absolute units on the
left-hand-side and right-hand-side axes, respectively. Panel (b) illustrates the change
of Hall resistivity due to the emergent electric field for large currents, i.e. plotted is
∆ρ∞xy = ∆ρExy(j � jc) − ∆ρExy(j � jc) as a function of temperature. The scaling plot
shown in panel (c) is produced by plotting the transverse electric field, ∆E⊥ = −j∆ρExy,
in units of −jc∆ρ∞xy as a function of j/jc using the data from Fig. 7.7. This is equivalent
to plotting the drift velocity vd‖ in units of vpin as indicated by the right-hand-side axis.
The Figure is taken from Ref. [80]

the critical current density needed to depin the skyrmion lattice is about jc ∼ 106 A/m2.
It is by a factor of about 105 smaller than the current densities needed to depin, e.g.
ferromagnetic domain walls in present-day spin-torque experiments [90, 91, 122].

Figure 7.8 summarizes the main features of the skyrmion lattice phase in MnSi subject
to an electric current. In panel (a) the critical curent density is plotted as a function of
temperature. The corresponding pinning velocities are illustrated on the right-hand-side
axis of the Figure. They are, as expected, of the same order of magnitude as the electronic
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drift velocities, since

vdrift ∼
j

en
≈ 0.16

mm

s
, (7.34)

with a current density of j ∼ jc ∼ 106 A/m2 and a nominal charge carrier concentration
of n ≈ 3.8 · 1022 cm−3 [40] as used in the previous Section.

The critical current density jc increases when raising the temperature to the boundary
of the skyrmion lattice phase. Close to the weakly first-order transition to the paramag-
netic phase, jc and thus also vpin characterizing the pinning forces are about a factor
of two larger compared to the center of the skyrmion phase. Note that this cannot be
explained by the fact that the local magnetization amplitude M decreases as the temper-
ature increases. Instead, the explanation for the increase in jc is most likely that close
to the phase transition the stiffness of the skyrmion lattice is reduced, so that the local
magnetic structure can adjust much better to the disorder potential. In total, this leads to
much higher pinning forces [82, 83, 123] that have to be overcome by the current. At the
lower temperature boundary of the skyrmion lattice, where the phase transition is strongly
first order, the critical current density is within experimental precision independent of the
temperature, in agreement with the theoretical considerations above.

In panel (b) of Fig. 7.8, the change of the Hall resisitivity due to the emergent magnetic
field for large current densities ∆ρ∞xy is plotted as a function of the temperature. It has
an extremum in the center of the skyrmion lattice phase. The size of the reduction of
the Hall resisitivity is about ∆ρxy ≈ 4 nΩ cm. This is similar to the value obtained from
the emergent magnetic field [40]. However, these two contributions to the Hall resisitivity
cancel each other only in a Galilean invariant system and not in general. At the higher
temperature boundary of the skyrmion lattice, ∆ρ∞xy, jumps to zero when crossing the first-
order phase transition. At the lower temperature boundary, ∆ρ∞xy decreases continuously
to zero with decreasing temperature. The latter may be explained by a region of phase
coexistence of the skyrmion and the conical phase [84].

Panel (c) of Fig. 7.8 is a scaling plot showing the transverse electric field, ∆E⊥ =
−j∆ρExy, in units of −jc∆ρ∞xy as a function of j/jc, using the data from Fig. 7.7. Since
∆E⊥ ∼ Ee and Ee ∼ vd‖, this corresponds also to measurements of the emergent electric
field Ee and the parallel drift velocity vd‖ in units of vpinB

e and vpin respectively.
To conclude, the experimental data clearly establish the quantitatively predicted emer-

gent electrodynamics, implying the evidence of the motion of the skyrmion lattice. From
the experimental data the critical current densities at which the depinning of the skyrmions
from the impurities occurs were quantitatively determined. They are of the order of
jc ∼ 106 A/m2, being ultra-low compared to the critical current densities needed to depin,
for example, ferromagnetic domain walls in magnetic wires [90, 91, 122] that are five orders
of magnitude larger. Furthermore, the drift velocities were determined, and the motion of
the skyrmion lattice was studied.

In this Chapter, we discussed the forces on the electrons and the corresponding emer-
gent electric and magnetic fields an electron feels while moving through a non-collinear
magnetic structure. In the next Chapters, we focus on the forces the electric current ex-
erts on the magnetic structure. Thereby, we also discuss in more detail the pinning forces
that pin the skyrmion lattice to the disorder potential. We also show that a measurement
of the drift velocity in principle allows to gain information on the functional form of the
pinning force.
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8 Landau-Lifshitz-Gilbert Equation

The standard Landau-Lifshitz-Gilbert (LLG) equation [5, 6, 124–126] in the presence of
an electric current is given by

(∂t + vs · ∇) Ω̂ = −Ω̂×Heff + α Ω̂×
(
∂t +

β

α
vs · ∇

)
Ω̂. (8.1)

It is an equation of motion for the slow, i.e. up to first order in time derivatives, and
smooth, i.e. up to first order in space derivatives, varying magnetization direction

Ω̂(r, t) = M(r, t)/M, (8.2)

with a constant amplitude of the magnetization |M | ≡ M . Note that Eq. (8.1) does not
include the dynamics of the amplitude of M .

The electric current enters via vs which denotes an effective spin velocity parallel to
js, the spin current density.1 The effective spin velocity vs can be calculated from the
ratio of the spin current (projected onto the local direction of the magnetization) and the
amplitude of the local magnetization, provided the magnetic structure is smooth and has
a constant amplitude M , i.e., vs ≈ js/M . In good metals like, for example, MnSi, vs
is expected to be parallel to the applied electric current, vs ∼ jP/(Me), where P is the
local spin polarization and e the electron charge. Furthermore, it is expected to depend
only weakly on the applied magnetic field and on temperature. Note that in the following
we will consider only effects that are linear in vs, as we assume that vs is small compared
to all characteristic velocity scales of the skyrmion lattice (e.g., Tc − T multiplied by the
skyrmion distance).

The first term on the left hand side of Eq. (8.1) describes the Berry phase physics (see
Appendix B), and the part proportional to vs is called reactive or adiabatic spin-transfer
torque.

The first term on the right hand side describes the precession of the magnetization in
the effective magnetic fieldHeff ≡ − δF

δM ≈ −
1
M

δF
δΩ̂

. As mentioned, Eq. (8.1) is an equation
for a magnetization structure with a constant amplitude. Here, we make use of the fact that
in the skyrmion lattice phase the amplitude of the magnetization varies only slightly [1].
In such a case, one still has to define how Heff is obtained from the Ginzburg-Landau
free energy functional F [M ] depending on M . Within our numerical calculations we use
the approximation Heff ≈ − 1

M
δF
δM

∂M
∂Ω̂

, with the average local equilibrium magnetization
M2 = 〈M2〉. Other implementations of Heff will influence our results only slightly. The
effective magnetic field accounts for the applied external magnetic field as well as additional
contributions due to magnetostatic interactions and anisotropies.

1Note that the spin current is a tensor, where jjis describes the current of the spin component j flowing
in the direction i. Here, to describe spin torques, we have to consider the projection of jjis onto the local
direction of the magnetization, jis = Ω̂jj

ji
s .
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8.1 – Motivation of the Landau-Lifshitz-Gilbert Equation

Figure 8.1: Left (right) panel: Sketch of the behavior of a single magnetic moment in a
magnetic field B without (with) damping.

The last term in Eq. (8.1) describes dissipation [124]. The term proportional to α > 0
is called Gilbert damping, and the one proportional to β > 0 parametrizes the dissipative
spin-transfer torque. To show that the last term is really a damping term for α > 0, let
us consider the change of the free energy for vs = 0:

∂tF =
δF

δΩ̂
∂tΩ̂ = −αM(∂tΩ̂)2 < 0. (8.3)

Here, for the last equality we solved Eq. (8.1) for δF/δΩ̂ and inserted the result. The
Gilbert damping term controls the rate at which the magnetization structure equilibrates.
Both phenomenological parameters α and β are dimensionless. In general, they are not
equal as indicated by experiments and microscopic theories [127], but of the same order.
Furthermore, α and β depend on the concrete material, and also vary in temperature.
Their typical magnitude [128] ranges from 10−3 to 10−1.

8.1 Motivation of the Landau-Lifshitz-Gilbert Equation

The LLG equation is often derived phenomenologically. The parameters Heff , α, β, and
vs have to be either measured or determined from a microscopic theory. Here, we only
motivate the different terms in the LLG equation phenomenologically, while derivations
are considered in Appendix B.

The LLG equation models the evolution of the orientation Ω̂(r, t) of a magnetic texture
in the presence of spin-transfer torques due to electric currents. To motivate it, let us
consider the basic ingredient, namely a single normalized magnetic moment m (|m| = 1)
in a magnetic field B (as in Ref. [129]). Ignoring damping effects, the magnetic moment
precesses around the axis defined by the direction of the magnetic field, as shown in the
left panel of Fig. 8.1. For this scenario, the equation of motion is given by

dm

dt
= −m×B. (8.4)

This pure precession does not describe the equilibrium situation with the lowest energy,
which corresponds to an alignment of the magnetic moment m to the external magnetic
field. Therefore, a damping term is needed which represents the rate at which the mag-
netization relaxes to equilibrium, as shown in the right panel of Fig. 8.1. This damping
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8 – Landau-Lifshitz-Gilbert Equation

torque should be orthogonal tom, because the length of the magnetic moment is constant,
and it shall also be orthogonal to dm

dt . Sincem ⊥
dm
dt , the damping term is well-defined by

a constant, the Gilbert damping parameter α > 0, times the cross product between these
two vectors, such that the equation of motion taking damping into account is given by

dm

dt
= −m×B + αm× dm

dt
. (8.5)

This covers basically all terms for vs = 0 of Eq. (8.1), where the single magnetic moment
m has to be replaced by the magnetization direction Ω̂ and the magnetic field B by the
effective magnetic field Heff including not only the external applied magnetic field, but
also additional contributions due to magnetostatic interactions and anisotropies.

To motivate the term on the left hand side of Eq. (8.1) including vs, let us consider
the following intuitive picture [126]. When traversing the smoothly varying magnetic
texture, the spin of the conduction electrons adjusts adiabatically to the local magnetiza-
tion direction. This means that when the magnetization direction changes from Ω̂(r, t)
to Ω̂(r + dr, t), the magnetic moment of the conduction electron rotates, experiencing a
torque from the magnetization. As spin is almost conserved, there is an opposite torque
on the local magnetization, the reactive or adiabatic spin-transfer torque, which leads
to a net displacement or motion of the magnetic structure in the same direction as the
current [5, 6, 95, 130, 131]. Hence, the change of the magnetic texture in time is directly
related to the motion of the spin-polarized electrons via

∂Ω̂(r, t)

∂t

∣∣∣
current

∝ vs ·
(
Ω̂(r + dr, t)− Ω̂(r, t)

)
∝ (vs · ∇)Ω̂(r, t). (8.6)

Thus, the current-induced drift of the magnetic structure can be described by substituting
∂
∂t by

∂
∂t+(vs · ∇) [132]. To explain some discrepancies with experiments, the dissipative or

non-adiabatic spin-transfer torque was added to the Landau-Lifshitz-Gilbert equation [124,
127, 133, 134]:

β Ω̂(r, t)× (vs · ∇) Ω̂(r, t). (8.7)

It describes to which degree the spin conserservation is violated in the spin-transfer process.
Physically, it is based on electron-spin relaxation and spin-flip scattering events [132]. Note
that the above substitution also produces the same term if β = α which is the Galilean
invariant case.

8.2 Modifications of the Standard Landau-Lifshitz-Gilbert Equation

The LLG equation is widely and successfully used in the spintronics community to model
magnetization dynamics, despite the fact that it covers the coupling to the conduction elec-
trons only indirectly via vs. We also use it to describe the dynamics of the magnetization
direction of the skyrmion lattice subjected to an electric current, as the magnetic structure
is very smooth in the skyrmion lattice phase and its amplitude varies only slightly, as dis-
cussed in Chapter 5. Furthermore, the applied current densities of j ∼ 106 A/m2 and the
associated spin current density js ≈ jP/e are tiny compared to j0 = kBTc/(~a2). Since
js/j0 ∼ 10−8, it is too small to affect the amplitude of the magnetization, so that we can
use the LLG equation as a good approximation to describe the dynamics of the skyrmion
lattice. Actually, for most systems it is also too small to overcome spin-orbit coupling
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effects which orient the direction of the magnetization. However, as mentioned in Chap-
ter 6, skyrmion structures couple much more efficiently to electric currents. Therefore also
such ultra-low currents are able to induce observable spin-transfer torque effects.

Moreover, Eq. (8.1) neglects the effect of thermal fluctuations. Taking them into
account can, for example, be achieved by adding stochastic contributions h to the effective
magnetic field [126], i.e. Heff →Heff +h, where h has, e.g., white-noise correlations, i.e.
〈hi(r, t)hj(r′, t′)〉 ∼ δij δ(r−r′)δ(t−t′) and 〈hi(r, t)〉 = 0. Since in the following we do not
discuss the competition of the conical and the skyrmion phase, we neglect the rather subtle
effects of thermal fluctuations as well the corrections to Eq. (8.1) arising from fluctuations.
We expect that fluctuation corrections are small and will only slightly influence our results.
They might, however, be important for a full account of the depinning transition of the
skyrmion lattice which is not fully described by our theory presented in the next Chapters.
Furthermore, Eq. (8.1) does also not include the effects of disorder which, for example,
lead to pinning effects. One way to account for disorder is to include a disorder potential
Vdis(r) in the free energy functional. In the following Chapters, we account in our theory
for the effects of pinning by including phenomenological pinning terms.

Quite recently, a novel damping term relevant for non-collinear spin textures has been
introduced [8, 9]:

−α′
[
Ω̂ ·
(
∂iΩ̂× ∂tΩ̂

)]
∂iΩ̂. (8.8)

As all other terms of Eq. (8.1), it is perpendicular to Ω̂ since Ω̂ · ∂iΩ̂ = 0. It contains two
more derivatives compared to the Gilbert damping term, where each derivative contributes
a factor of λso with λso being the strength of spin-orbit coupling. Naively, one would expect
that for smooth magnetic textures this term is much smaller compared to the Gilbert term
proportional to α due to the two more derivatives, and therefore negligible.

Nonetheless, assuming that the α term arises only from spin-orbit coupling, α ∝ λ2
so,

this new damping term is of the same order in spin-orbit coupling, λso due to the following
reason. The α′ term originates from Ohmic damping of electrons coupled by Berry phases
to the magnetic structure, as can be seen by rewriting it in the form −α′(Ee · ∇)Ω̂, where
Ee
i = Ω̂ · (∂iΩ̂ × ∂tΩ̂) is the emergent electric field as introduced in Chapter 7. Hence

α′ ∝ λ0
so since Ohmic damping does not require spin-orbit effects. Therefore, the two more

derivatives of the novel damping term compared to the Gilbert damping term are compen-
sated by the spin-orbit coupling strength of the corresponding prefactors. Note that due to
the two more derivatives, the prefactor α′ is, in contrast to the Gilbert damping constant
α, not dimensionless. Furthermore, α′ is proportional to a conductivity (see below) and
therefore to the scattering time [8, 9], whereas α is proportional to the scattering rate.
Thus, the novel damping term might actually be the dominating one in good metals, and
therefore we take it into account in the following.

According to the intuitive argument that all forces have to cancel in a Galilean invariant
system, where the magnetic structure is co-moving with the conduction electrons, we also
add the corresponding drift term with a prefactor β′,

−β′
[
Ω̂ ·

(
∂iΩ̂× (vs · ∇)Ω̂

)]
∂iΩ̂. (8.9)

For Galilean invariant systems one has β′ = α′. Since, however, solids are usually not
Galilean invariant, we therefore expect that β′ is, in general, not identical to α′, but of
the same order. Finally, note the β′ term can also be expressed in terms of the emergent
fields, see Eq. (8.12) below.
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To summarize, we obtain the following extended Landau-Lifshitz-Gilbert equation:

(∂t + vs · ∇) Ω̂ = −Ω̂×Heff + α Ω̂×
(
∂t +

β

α
vs · ∇

)
Ω̂

− α′
[
Ω̂ ·
(
∂iΩ̂× (∂t +

β′

α′
vs · ∇)Ω̂

)]
∂iΩ̂. (8.10)

By taking the cross product with Ω̂, Eq. (8.10) can be equivalently written as

− 1

M

δF

δΩ̂
= Ω̂× (∂t + vs · ∇) Ω̂ + α

(
∂t +

β

α
vs · ∇

)
Ω̂

+ Ω̂× α′
[
Ω̂ ·
(
∂iΩ̂× (∂t +

β′

α′
vs · ∇)Ω̂

)]
∂iΩ̂ (8.11)

We further multiply Eq. (8.11) by M to obtain

− δF
δΩ̂

= MΩ̂× (∂t + vs · ∇) Ω̂ +αM
(
∂t +

β

α
vs · ∇

)
Ω̂ +MΩ̂×α′

[
Ee
i +

β′

α′
(vs ×Be)i

]
∂iΩ̂

(8.12)
where Ee

i = Ω̂ · (∂iΩ̂× ∂tΩ̂) is the emergent electric field and Be
i = 1

2εijkΩ̂ · (∂jΩ̂× ∂kΩ̂)
the emergent magnetic field as introduced in Chapter 7. When considering the change of
the free energy in time for vs = 0 we obtain

∂tF =
δF

δΩ̂
∂tΩ̂ = −αM(∂tΩ̂)2 − α′M(Ee)2 < 0. (8.13)

This shows that the novel term is really a damping term, and that it leads to a dissipated
power of ∝ (Ee)2 arising from the emergent electric field Ee. Interpreting this result, α′M
approximately corresponds to the spin-conductivity σs.

Eq. (8.12) is our starting point for the next Chapters to describe the dynamics of the
magnetic structure in the skyrmion lattice phase.
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9 Current-Induced Forces Acting on the
Skyrmion Lattice and Calculation of the
Drift Velocity

In Chapter 7 we have seen that forces act on conduction electrons when traversing the
skyrmion structures. According to Newton’s third law, if the magnetic structure exerts
forces on the electrons the electrons react by exerting forces on the magnetic structure. We
have also seen in Section 7.3 that above a critical threshold current density the skyrmion
lattice starts to drift. We have predicted this motion of the skyrmion lattice [10, 70, 129]
before its experimental verification via the measurements of the emergent electric field [80].
In this Chapter, we derive an equation for the different forces acting on the skyrmion
lattice, and study the drift velocity by using the Thiele method. Before that we will
consider qualitatively the types of current-induced forces acting on the skyrmion lattice.
We have published several parts of this Chapter in Refs. [10, 70, 71, 80].

9.1 Qualitative Discussion of Current-Induced Forces on Skyrmions

Basically, two types of current-induced forces act on the skyrmion lattice. On one side,
there are dissipative forces [124] that try to drag the (non-moving) skyrmion lattice parallel
to the spin-current, similar to the case of the current-induced domain wall motion. We
refer to the other type of forces as Magnus forces. They are the counter forces of the
effective Lorentz forces acting on the electrons originating from the accumulated Berry
phases due to traversing the skyrmions. They act (for a non-moving skyrmion lattice)
in the direction perpendicular to the applied current and perpendicular to the magnetic
field. The reason, why these forces are called Magnus forces, can be very well understood
by a direct comparison to the physics of a spinning ball in viscous air which, for example,
leads to the curved motion of the match-ball in sports like “banana kicks” in soccer.

Both the drag and the Magnus forces together with the analogy to the physics of the
spinning ball are illustrated in Fig. 9.1. Let us consider first the left panel. In a banana
kick, the soccer ball does not just fly straight through the air, but it also rotates around
its own axis. The Magnus effect has been studied intensively, and a lot of explanations
more or less profound can be found. Since we are using it here just for the analogy of the
Magnus force acting on the skyrmions, we will reduce our description of this effect to a
basic level which is appropriate for the analogy. In the rest frame of the ball, it rotates
around its own axis, and the air flow has to pass around the ball. For a non-rotating
ball, the air would pass the ball on both sides equally fast, and the forces acting on the
ball in perpendicular direction cancel exactly. However, for the spinning ball the air gets
accelerated on one side (the left side of the ball in Fig. 9.1) and decelerated on the other
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Figure 9.1: Illustration of the current-induced forces acting on a skyrmion (right panel)
in comparison with the forces acting on a spinning ball in viscous air (left panel).

(the right side of the ball) due to the rotation of the ball. In total, the air does not pass
the ball straight, but gets deflected (to the right in the figure), implying that a force acts
on the air. According to Newton’s third law, the ball experiences a force in the opposite
direction (to the left in Fig. 9.1) which is the so-called Magnus force.

In the analogy, the air corresponds to the external spin current and the spinning ball
to the skyrmion, as can be seen explicitly by comparing the left and right panel of Fig. 9.1.
Moreover, we may consider the skyrmion lattice from an alternative point of view, namely
as an array of circulating dissipationless spin currents, since skyrmions are characterized
by gradients in their spin-orientation [10]. When an external spin current (by applying an
electric current through a magnetic metal) passes a skyrmion, its velocity is enhanced on
one side of the skyrmion and reduced on the other side. This leads to a deflection of the
spin current (to the right in Fig. 9.1) in analogy to the physics of the spinning ball. As
a reaction a force in perpendicular direction acts on the skyrmions. In analogy, we refer
to this force also as Magnus force. This intuitive picture is, however, not complete in the
sense that the spin is not a conserved quantity, and as mentioned already above, there are
further dissipative forces acting on the skyrmions [124] which drag the skyrmions parallel
to the current.

Furthermore the magnetic structure is pinned by impurities and the underlying atomic
lattice, leading to forces counteracting the current-induced ones. Nevertheless, when the
current-induced forces overcome a critical strength set by the strength of pinning, they
induce a translational motion of the skyrmion lattice. Note that also below the critical
current there might be small creep (which is not included in our theory), i.e. a tiny motion
due to thermal (or quantum) fluctuations, which occurs even in the pinning regime [83].

9.2 Theory for the Translational Motion

To describe the dynamics of the orientation Ω̂(r, t) = M(r, t)/|M(r, t)| of the magneti-
zation M(r, t) in presence of spin-transfer torques due to electric currents we start with
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Eq. (8.12), introduced in Chapter 8:

− δF
δΩ̂

= MΩ̂× (∂t + vs · ∇) Ω̂ +αM
(
∂t +

β

α
vs · ∇

)
Ω̂ +MΩ̂×α′

[
Ee
i +

β′

α′
(vs ×Be)i

]
∂iΩ̂

(9.1)
with the emergent electric field Ee

i = Ω̂ · (∂iΩ̂ × ∂tΩ̂) and the emergent magnetic field
Be
i = 1

2εijkΩ̂ · (∂jΩ̂ × ∂kΩ̂). The main effect of the applied current is that the skyrmion
lattice starts to drift above a certain threshold current density determined by the strength
of pinning of the magnetic structure by disorder. Therefore, we use the ansatz

Ω̂(r, t) = Ω̂(r − vdt), (9.2)

which represents a magnetic structure that drifts with a constant velocity vd. We expect
that below the threshold current density the drift velocity vd remains zero, whereas above
it is finite. In this case, a time derivative of Ω̂(r, t) can be translated into a derivative in
space by ∂tΩ̂ = −(vd · ∇)Ω̂.

9.2.1 Thiele Method for the Translational Mode

Assuming an ideal system without anisotropies, the perfect skyrmion lattice spontaneously
breaks the translational invariance in the plane that is perpendicular to the applied mag-
netic field. In the case, where a magnetic structure spontaneously breaks translational
invariance, A. A. Thiele [100] suggested in 1972 to project the LLG equation onto the cor-
responding translational modes. In the following, we apply this method to the skyrmion
lattice. Technically, we multiply Eq. (9.1) by Ĝtrans Ω̂, where Ĝtrans is the generator of the
translation mode, and integrate the system over a two-dimensional unit cell (UC) of the
skyrmion crystal to obtain an effective equation of motion. From the obtained equation
one may in principle determine the drift velocity [131] vd of the skyrmion lattice induced
by the spin-current. The i-th component of the generator Ĝtrans for the translational mode
is given by

Ĝ
i
transΩ̂ = ∂iΩ̂. (9.3)

Applying the Thiele method in the stationary limit, where the magnetic structure drifts
with the constant velocity vd, the right hand side of Eq. (9.1) reduces to the expression [70,
71, 100, 131]

G× (vs − vd) + D(βvs − αvd) + D′(β′vs − α′vd), (9.4)

where G, D and D′ are given by1

Gi = εijk

∫
UC

d2r
M

2
Ω̂ · (∂jΩ̂× ∂kΩ̂), (9.5a)

Dij =

∫
UC

d2rM∂iΩ̂ ∂jΩ̂, (9.5b)

D′ij =

∫
UC

d2rM
[
Ω̂ · (∂lΩ̂× ∂iΩ̂)

][
Ω̂ · (∂lΩ̂× ∂jΩ̂)

]
. (9.5c)

The first term of Eq. (9.4) describes the current-induced Magnus force acting on the
skyrmions. Using the expression for the emergent magnetic field of Eq. (7.1), G can be
rewritten as

Gi =

∫
UC

d2rMBe
i = GB̂i with G = 4πMW (9.6)

1Note that G, D, and D′ are defined as in Ref. [71]. In our previous publication [70], we have defined
G and D without the factor of M which is needed in Chapter 10 for the discussion of gradients.
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In the last step of Eq. (9.6) we used that for an (almost) constant amplitude of the mag-
netization the emergent magnetic field integrated over a magnetic unit cell is given by 4π
times the winding number W per magnetic unit cell, being W = −1 for the skyrmion
lattice. Besides being topologically quantized, G points in the direction orthogonal to
the two-dimensional skyrmion lattice which is, without distortions, given by B̂, as ex-
plained in Section 4.3. According to Thiele [100], G is denoted as the gyrocoupling vector,
because it translates a spin current to a Magnus force in perpendicular direction. In con-
trast to traditional spintronic devices, where the gyrocoupling is very small as it is only
finite in a nano-size volume, the gyrocoupling extends over macroscopic domains in the
skyrmion crystal phase. As demonstrated by Eq. (9.6), the gyrocoupling vector is directly
proportional to the integration volume.

The other two terms of Eq. (9.4) are dissipative forces. D is a dimensionless 3×3 matrix
which Thiele [100] denoted as the “dissipative tensor”, because it describes the effects of
dissipative forces on the skyrmion lattice. It possesses a zero eigenvalue corresponding to
the direction normal to the skyrmion lattice which is, without distortions of the skyrmion
lattice, given by the direction of the magnetic field. The reason for this is that the
magnetization direction Ω̂ is translationally invariant in this orthogonal direction. Due to
the sixfold symmetry of the skyrmion lattice the matrix D is diagonal within the plane of
the skyrmion lattice to lowest order in spin-orbit coupling λso. It is approximately given
by

Dij ≈ DP ij , (9.7)

where P is the projector into the plane of the skyrmion lattice, P ij = (1− B̂ · B̂T
)ij , and

D =
1

2

∫
UC

d2rM(∇Ω̂)2. (9.8)

The 3× 3 tensor D′ has the same symmetry properties as the dissipative tensor D, i.e. it
is (to lowest order in λso) diagonal within the plane of the skyrmion lattice, and it has a
zero eigenvalue corresponding to the direction normal to the skyrmion lattice:

D′ij = D′P ij , (9.9)

where D′ is proportional to the square of the skyrmion density:

D′ =
∫
UC

d2rM (Be)2. (9.10)

However, in general, D′ is not quantized unlike the gyrocoupling strength G. To lowest
order in the current vs, the quantities G, D and D′ can be evaluated using the equilibrium
magnetization. By introducing the renormalized dimensionless damping parameters α̃ and
β̃ as

α̃ = α+ α′
D′

D
, (9.11)

β̃ = β + β′
D′

D
, (9.12)

we can rewrite the expression given in Eq. (9.4) as

G× (vs − vd) + D(β̃vs − α̃vd). (9.13)
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Figure 9.2: Change of the parameters G,D and D′ with temperature t in the skyrmion
phase. The applied magnetic field is h/

√
2 (0, 0, 1)T . Dashed lines are for h = 0.9 and

continuous lines for h = 1.1. We published this Figure in Ref. [71].

In Fig. 9.2 we show typical values for the parameters G,D and D′ in the skyrmion phase as
a function of temperature t for two different strength of the applied magnetic field. Note,
that D/|G| is of the order of 1.

Applying the Thiele method for the translational mode to the left hand side of Eq. (9.1)
leads to the expression

−
∫
d2r

(
∂iΩ̂

)
· δF
δΩ̂

, (9.14)

which vanishes (to lowest order in spin-orbit coupling λso) for a perfect skyrmion lattice due
to translational invariance. In the case of an underlying atomic structure with impurities,
we also have to take into account pinning forces prohibiting the motion of the skyrmion
lattice for small currents. Technically, they arise from spatial fluctuations of δF/δΩ̂, and
formally they are included in the expression of Eq. (9.14). While using the Thiele approach
and explicitly assuming a rigid skyrmion lattice by using the ansatz of Eq. (9.2), it is not
possible to deduce the pinning physics directly. The reason for this is, that random pinning
forces cancel each other for a perfectly rigid magnetic structure such that no net pinning
force remains for large domains. In principle, to properly describe the pinning physics,
one has to allow the magnetic structure to adjust locally (and in a time-dependent way)
to the pinning forces [81–83]. As this is a very complicated issue, we instead describe the
pinning effects within the Thiele approach by extending the equation for the forces by a
phenomenological pinning force F pin, which for a finite drift velocity is given by

F pin = −4πMvpinf(vd/vpin) v̂d. (9.15)

It accounts for the fact that, for j & jc, inhomogeneities induce an effective velocity-
dependent friction force on the moving skyrmion lattice. Note that due to the non-linear
dependence of the pinning force on the drift velocity it cannot be described just by one
of the usual damping terms that are used to characterize the dissipative dynamics of
magnetic structures. F pin is oriented in the opposite direction of the drift velocity vd.
Not very much is known about the dimensionless function f(x) that describes the non-
linear dependence of the pinning force on the drift velocity. Since the so-called pinning
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9.2 – Theory for the Translational Motion

velocity vpin characterizes the strength of the pinning force, and by defining 4πMvpin as
the force per skyrmion and per length needed to depin the skyrmion lattice, one obtains
f(x → 0) = 1. For large drift velocities, pinning becomes less important [83, 135, 136].
Therefore, we expect that f scales as f(x � 1) ∼ xν with an unknown exponent ν < 1.
In general, we expect an analog behavior of the pinning forces for the skyrmion lattice
compared to those of the superconducting vortices [81, 82, 136]. Nevertheless, due to
their different dynamics (as discussed in Chapter 11) they are not identical. Furthermore,
f will most probably depend on, e.g., various elastic constants of the skyrmion lattice,
and therefore it will not be fully universal. Nevertheless, panel (c) of Fig. 7.8 showing
vd‖/vpin as a function of j/jc ≈ vs/vpin indicates that the dimensionless function f does
not depend very much on the distance to the transition temperature, in contrast to the
pinning velocity vpin.

As a result, by applying the Thiele method to Eq. (9.1) we obtain the equation for the
forces (per skyrmion, per length, and per ~) acting on the skyrmion lattice:2

G× (vs − vd) + D(β̃vs − α̃vd) + F pin = 0. (9.16)

In the case of small applied current densities, where the Magnus and disspative forces are
still smaller than 4πMvpin, the skyrmion lattice stays pinned, i.e. the pinning forces cancel
exactly the other forces, and the drift velocity vd remains zero. For stronger forces the
skyrmion lattice moves with a finite drift velocity vd.

9.2.2 Discussion of the Drift Velocity

In principle, Eq. (9.16) allows us to evaluate the drift velocity. However, as F pin is not
really known, this is not completely possible. Therefore, we mainly consider two limits
below. First, we analyze the limit of large applied current densities, where the pinning
forces can be neglected. In this limit, it is possible to analytically solve Eq. (9.16) for the
drift velocity. In the second limit, we neglect the damping term, and try to identify the
behavior of the pinning forces on the drift velocity exploiting the measurements of the
drift velocity.

However, for a given behaviour of f we can solve Eq. (9.16) numerically for vd. In
Fig. 9.3, we plot the parallel and the perpendicular components of the drift velocity for
different damping strengths and different pinning strengths in the case of a constant di-
mensionless force f , 4πvpin f = 1 and 4πvpin f = 2, respectively. One clearly observes
the onset of the drift velocity at a threshold current which is mainly determined by the
strength of the pinning forces. Furthermore, one observes that close to the threshold non-
linear effects in the damping constants play a crucial role. In the limit of small damping
(discussed below), the drift velocity is mainly given by vs, as expected.

Neglecting pinning forces: In the limit of large current densities, i.e. vs � vpin, the
pinning force F pin is much smaller than the driving forces and therefore can be neglected.
In this case, Eq. (9.16) reduces to

G× (vs − vd) + D(β̃vs − α̃vd) = 0. (9.17)

In the Galilean invariant case, α = β and α′ = β′ or more generally α̃ = β̃, the magnetic
structure would just drift with the current and vd = vs. However, generically the dissipa-

2Note that the relative sign of the pinning force is defined as in Ref. [71]. In our previous publication [80],
the sign of vpinf(vd/vpin) was different.
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Figure 9.3: Drift velocity vd as a function of vs for vs = vs (1, 0, 0)T , t = −1, and
B =

√
−t/2 (0, 0, 1)T . Right panels show the detailed version of the corresponding left

panels. The red (blue) curves show the parallel (perpendicular) component vd‖ (vd⊥) of
the drift velocity vd with respect to vs. The solid (dashed) lines are for 4πvpin f = 1
(4πvpin f = 2). Furthermore, the black solid (dashed) curves show vs (DG (α̃ − β̃) vs) for
comparison. From top to bottom the damping strength increases: top panel: α̃, β̃ → 0;
center panel: α̃ = 0.1, β̃ = 0.2; bottom panel: α̃ = 0.25, β̃ = 0.5.
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9.2 – Theory for the Translational Motion

tive forces break the Galilean invariance, i.e., α̃ 6= β̃, and thus the drift velocity vd is not
equal to vs.

For most of the magnetic bulk structures the gyrocoupling vector G vanishes, and
therefore the drift velocity is usually given by vd = (β̃/α̃)vs. For the skyrmion lattice
as described above, the gyrocoupling vector is quantized due to the quantized winding
number W = −1. We obtained G = GB̂ and D = DP with a zero eigenvalue of D
associated to the direction of the magnetic field. To be concrete, we assume that the
magnetic field is aligned along the z direction, i.e. B̂ = ẑ, so that we obtain

0 = GB̂ × (vs − vd) +DP (β̃vs − α̃vd)

= G

0 −1 0
1 0 0
0 0 0

 (vs − vd) +D

1 0 0
0 1 0
0 0 0

 (β̃vs − α̃vd).
(9.18)

The previous equation can be rewritten in the form of a 2×2 matrix equation, where only
the in-plane drift velocity vPd = Pvd and the in-plane spin-velocity vPs = Pvs enter:(

α̃D −G
G α̃D

)
vPd =

(
β̃D −G
G β̃D

)
vPs . (9.19)

Note that in the 2 × 2 matrix equation vPd and vPs denote the reduced two-component
vectors which include only the x and y components. In the performed experiments [1, 10],
the electric current was applied in the direction perpendicular to the magnetic field. In
the case of vs ⊥ B the in-plane spin-velocity vPs is equal to vs. Since

det

(
α̃D −G
G α̃D

)
= α2D2 + G2 6= 0, (9.20)

it is always possible to invert the matrix on the left hand side of Eq. (9.19) and to find a
solution for vPd . Solving Eq. (9.19) for the in-plane component of the drift velocity leads
to

vPd =
β̃

α̃
vPs +

α̃− β̃
α̃3(D/G)2 + α̃

(
vPs + α̃

D
G
B̂ × vPs

)
. (9.21)

In the following we assume, that vs is applied in one of the inplane directions of the
skyrmion lattice and therefore we omit the index P

vd =
β̃

α̃
vs +

α̃− β̃
α̃3(D/G)2 + α̃

(
vs + α̃

D
G
B̂ × vs

)
. (9.22)

Note that when considering distortions of the skyrmion lattice, which lead to a tilt of the
skyrmion plane with respect to the applied magnetic field, one has to replace B̂ by the
normal vector n̂ of the skyrmion plane in the equation for the drift velocity vPd , Eq. (9.22).

In the limit of small damping parameters α̃, β̃ � 1, Eq. (9.22) simplifies to

vd ≈ vs + (α̃− β̃)
D
G
B̂ × vs. (9.23)

From the obtained result we can infer that, as expected, the drift velocity vd is approx-
imately given by vs, i.e., the skyrmions move parallel to the current in such a way that
the Magnus force is canceled. The corrections to the drift velocity are of the order of
(β̃ − α̃)D/|G|.
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9 – Current-Induced Forces on Skyrmion Lattice & Drift Velocity

Neglecting damping: For typical parameters in the skyrmion lattice in MnSi, D/|G|
is of the order of 1, and the dissipative forces are probably suppressed by small damp-
ing parameters. Therefore, we consider the limit of vanishing dissipative forces in this
paragraph. In this case, Eq. (9.16) reduces to

G× (vs − vd) + F pin = 0. (9.24)

For known pinning forces, i.e. known f , one can calculate from Eq. (9.24) the drift velocity
in units of vpin, vd/vpin. Conversely, it is in principle possible to obtain the dimensionless
function f from a measurement of the drift velocity of the skyrmion lattice as a function of
the applied current (like the one presented in Section 7.3). To see this, we project Eq. (9.24)
on the directions perpendicular and parallel to the drift velocity vd. Moreover we make
use of the theorem of Pythagoras, v2

d = v2
d‖ + v2

d⊥ and exploit Eq. (7.30). To summarize,
we can calculate the strength vd and the components of vd parallel and perpendicular to
vs, i.e. vd‖ and vd⊥. Thus, it is also possible to calculate the angle θ between vd and vs.
As a result, we obtain the following equations:

vd‖

vpin
≈ j

jc

∆ρxy
∆ρ∞xy

, (9.25a)

vd
vpin
≈
√
vd‖vs

v2
pin

≈ j

jc

√
∆ρxy
∆ρ∞xy

, (9.25b)

vd⊥
vpin
≈ 1

vpin

√
vd‖(vs − vd‖) ≈

j

jc

√
∆ρxy
∆ρ∞xy

(
1− ∆ρxy

∆ρ∞xy

)
, (9.25c)

θ = arccos
vd‖

vd
≈ arccos

√
∆ρxy
∆ρ∞xy

. (9.25d)

The first equation, Eq. (9.25a), just repeats Eq. (7.30). It provides the means to detect
the parallel component of the drift velocity (in units of vpin) by a measurement of the Hall
effect as a function of j/jc. The other three equations are only valid when damping is
negligible. In this case, one can also determine these quantities experimentally.

Moreover, we can calculate f under these assumptions. By multiplying Eq. (9.24) with
v̂d/(4πMvpin) we obtain

f ≈ 1

vpin
v̂d · (vs × B̂) =

vs
vdvpin

vd · (v̂s × B̂) =
vsvd⊥
vdvpin

(9.26)

Using the results of Eqs. (9.25a) – (9.25d), we obtain

f ≈ vsvd⊥
vdvpin

≈
vs
√
vd‖(vs − vd‖)

vpin
√
vd‖vs

≈ j

jc

√
1− ∆ρxy

∆ρ∞xy
, (9.27)

implying that also the dimensionless pinning force can, in principle, be obtained from a
measurement of the Hall effect as a function of j/jc. The corresponding plot is shown
in Fig. 9.4. Unfortunately, the data is too noisy to get reasonable information about
f or about the perpendicular component of the drift velocity vd⊥. (For the latter the
corresponding data are not shown.) However, what can be observed from Fig. 9.4 is that
for current densities j below the threshold current density f increases with increasing j. In
this case, the drift velocity is still zero within our experimental precision as the skyrmion
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9.2 – Theory for the Translational Motion

Figure 9.4: Dimensionless function f as a function of vd/vpin obtained by exploiting the
experimental data from Ref. [80] and using the Eqs. (9.25b) and (9.27). This Figure is
taken from our publication Ref. [80].

lattice is pinned by disorder. This leads to the vertical line on the left side of the plot,
defined by vd = 0 and f < 1. For j > jc, the pinning forces are weaker than the driving
forces, and the skyrmions start to move. However, for vd > 0 it is not possible to obtain
the behavior of f as a function of vd/vpin from the data.
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10 Rotation of the Skyrmion Lattice

The first experiment that hinted at the very low threshold current density of jc ∼ 106 A/m2

was a neutron scattering experiment, where a rotation of the scattering pattern by a finite
angle was observed in the skyrmion lattice phase [10]. This motivated us to develop a the-
ory for the rotation of the skyrmion lattice. Our first theory for the rotation angle almost
agreed with the experimental observations, except for an important sign for certain exper-
imental configurations. However, within our first theoretical approach the experimental
result was forbidden by symmetry, and therefore this sign problem between theory and
experiment led to the conclusion that there should be an additional effect present in the
experiment. This turned out to be a temperature gradient which we then included in our
theory.

In this Chapter, we describe different rotation mechanisms, and introduce the main
method to describe rotations which is an extension of the Thiele method. Afterwards, in
Section 10.2, we explain how it is possible to obtain a finite rotational torque using lattice
distortions of the skyrmion lattice (even in the absence of thermal gradients). Most of this
work we published in Ref. [70]. In Section 10.3, we review the experiment, and discuss a
symmetry argument why there must be an additional ingredient, namely a temperature
gradient, present in the experiment. We published the experimental part together with
a theoretical explanation in Ref. [10]. Finally, in Section 10.4, we write down the theory
for the skyrmion lattice to lowest order in spin-orbit coupling in the presence of a force
gradient which can, for instance, experimentally be achieved by a temperature gradient
or a magnetic field gradient. Most of this work can be found in Ref. [71].

10.1 Theory for the Rotational Mode and Discussion of Different
Rotation Mechanisms

For a perfect skyrmion lattice with a sixfold rotation symmetry, a small uniform spin
current cannot induce any rotational torques due to symmetry. Correspondingly, there are
basically two possibilities for a rotation. Either the skyrmion lattice is not fully rotational
symmetric, or the applied spin current is not uniform.

The first case occurs if, for example, the skyrmion lattice is distorted. This occurs,
e.g., due to the underlying atomic lattice, and distortions of the skyrmion lattice can be
described within a Ginzburg-Landau theory by higher-order spin-orbit coupling terms, as
discussed in Section 4.3. Also, disorder might cause distortions of the skyrmion lattice
which can lead to a re-orientation of a sliding lattice based on the non-linear response of the
moving skyrmion lattice. For sliding vortex lattices in superconductors, these mechanims
have already been investigated [81, 137]. Moreover, in principle, also the current itself can
distort the skyrmion lattice. By symmetry this effect does not occur to linear order in the
current density, but only to third order. Finally, also the shape of the domain might lead
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10.1 – Theory for the Rotational Mode and Different Rotation Mechanisms

to rotational torques which, however, have a “random” sign and strength depending on
the shape of the particular domain. Therefore, they can be easily distinguished from the
other torques. In MnSi, they appear to be relatively small [1]. In the following, we will
not consider torques due to different domain shapes, and we will restrict the discussion
mainly to rotationally invariant domains. Furthermore, we will not study the interface
dynamics of different domains, or what happens when a domain comes close to the surface
of the sample. Compared to torques arising from the bulk, surface forces are usually
suppressed by a factor of 1/

√
A with the domain size A, but the relevant prefactors are

not easy to estimate. However, all of these effects have not yet been observed and are
small compared to the second possible scenario, i.e. a non-uniform spin current. The
latter leads to a gradient in the current-induced forces acting on the skyrmion lattice and
therefore to torques. It can be achieved by various means. Experimentally, it is probably
quite difficult to create a controlled non-uniform electric current across a sample, but as
the strength of the spin current is related to the amplitude of the local magnetization, it
suffices to create a gradient in the magnetization amplitude across the sample. This can,
for instance, be achieved by applying a magnetic field gradient or, as has already been
done experimentally, by a small temperature gradient across the sample [10].

To describe the rotation of the skyrmion lattice our starting point is again the Landau-
Lifshitz-Gilbert equation (8.12) introduced in Chapter 8:

− δF
δΩ̂

= MΩ̂× (∂t + vs · ∇) Ω̂ +αM
(
∂t +

β

α
vs · ∇

)
Ω̂ +MΩ̂×α′

[
Ee
i +

β′

α′
(vs ×Be)i

]
∂iΩ̂

(10.1)
with the emergent electric field Ee

i = Ω̂ · (∂iΩ̂ × ∂tΩ̂) and the emergent magnetic field
Be
i = 1

2εijkΩ̂ · (∂jΩ̂×∂kΩ̂). As we would like to consider rotations, we make the following
ansatz for the magnetization direction Ω̂(r, t):

Ω̂(r, t) = Rφ(t) · Ω̂0

(
R−1
φ(t) · (r − vdt)

)
, (10.2)

where Ω̂0(r) describes the static skyrmion lattice.1 Rφ denotes a rotation matrix which
causes a rotation by the angle φ around the direction of the skyrmion lines, i.e. around the
magnetic field direction when distortions are neglected. In this case, the time derivative
∂tΩ̂ can be related to ∂tΩ̂ = ∂tφ∂φΩ̂−(vd · ∇)Ω̂. Eq. (10.2) describes a magnetic structure
that rotates around its center, while the center located at vdt is drifting with a constant
velocity vd. Note that when the affecting torques are sufficiently large, we expect that not
a rotation by a finite angle sets in, i.e. ∂tφ = 0 as experimentally observed so far [10], but
instead a continuous rotation.

10.1.1 Extended Thiele Method for the Rotational Mode

Assuming an ideal system without anisotropies, the perfect skyrmion lattice with a sixfold
rotation symmetry spontaneously breaks the rotational invariance within the plane of
the skyrmion lattice. Therefore, to describe the rotational torques we project the LLG
equation, Eq. (10.1), not onto the translational, but on the rotational mode, in analogy to
the Thiele method [100], discussed in Section 9.2. Technically, we multiply Eq. (10.1) by
Ĝrot Ω̂, where Ĝrot is the generator of the rotational mode, and integrate the system over
a two-dimensional volume to obtain an effective equation of motion for the magnetization
texture from which we can infer the torques acting on the skyrmion crystal. In the absence

1Note that within this ansatz one obtains the same solution for the drift velocity as in Chapter 9.
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10 – Rotation of the Skyrmion Lattice

of gradients, we integrate over a two-dimensional unit cell (UC) of the skyrmion crystal
as before in Section 9.2. In Section 10.4, where we consider gradients, we integrate over a
whole domain with size A. From the resulting equation one may, in principle, determine
the rotation angle or, in the case of a continuous rotation, the angular velocity of the
skyrmion lattice.

The generator Ĝrot for rotations of the magnetization around the axis defined by the
normal vector n̂ is given by

ĜrotΩ̂ = ∂φΩ̂ = n̂× Ω̂− (n̂(∆r ×∇))Ω̂ (10.3)

with ∆r = r − vdt, and n̂ is the normal vector of the skyrmion lattice plane defined by
Eq. (4.28) of Section 4.3. When neglecting distortions n̂ = B̂. Note that the second term
is linear in ∆r. When multiplying it by a term of Eq. (10.1) that is also linear in ∆r,
it becomes much larger than the first one. The generator of the rotation can be derived
by calculating the derivative of Ω̂ with respect to φ, given by Eq. (10.2). A similar way
to calculate Ĝrot is to expand the rotation matrix for small rotation angles (Rφ(t))ij =
δij +φεikjn̂k +O(φ2) with the totally antisymmetric epsilon tensor εikj , and then reading
off the generator from the equation Rφ(t) · Ω̂0

(
R−1
φ(t) · (∆r)

)
− Ω̂(∆r) = φ ĜrotΩ̂ +O(φ2).

Despite the technical analogy to the discussion of the translational mode, the rotational
mode is different in several aspects. A very important point to mention is that in a real
system like MnSi there is no full rotational symmetry around the axis defined by n̂. In
particular, the presence of weak spin-orbit interactions breaks this rotational invariance,
and therefore a rotational torque due to the current can be balanced by a counter-torque
of the underlying atomic crystal lattice. Furthermore, when rotating a magnetic structure
by a small angle, parts close to the rotation center just have to adopt slightly, whereas
the parts of the magnetic structure further apart from the center have to change over
much larger distances, being proportional the corresponding radius. This implies that for
an infinitely large domain the time the skyrmion lattice needs to reorient is formally also
infinitely long. In practice, domains have a finite size, and therefore it is possible for a
small current to re-orient the skyrmion lattice.

The generalization of the Thiele method as a tool to describe the rotational motion
is probably also useful for other problems, where rotations play a role like, for example,
vortex oscillations in nanopillars [138, 139].

10.2 Rotational Torques due to Distortions of the Skyrmion Lattice

In this Section, we would like to investigate the mechanism how spin-transfer torques can
lead to a spatial rotation of a slightly distorted magnetic skyrmion texture by a finite
angle, i.e. ∂tφ = 0. In particular, we analyze the current-induced torques on the magnetic
structure due to small distortions of the skyrmion lattice caused by the underlying atomic
lattice. Such rotations without thermal gradients are not observed experimentally so
far, but might be relevant for future experiments, where also different materials with a
skyrmion phase will be studied.

Here, we explicitly take care of the distortion and orientation terms of the skyrmion
lattice introduced in Section 4.3. Therefore, the normal vector of the skyrmion lattice
n̂ does, in general, not coincide with the direction of the external magnetic field. When
applying the extended Thiele method to Eq. (10.1), we obtain the effective equation for
the rotational degree of freedom (neglecting torques due to pinning by disorder as, for
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example, discussed in Ref. [81] for the case of a superconducting vortex lattice):2

PR (vs − vd) + PD (βvs − αvd) + PD′
(
β′vs − α′vd

)
+ TL = 0 (10.4)

In the following, we define and discuss the first three terms and the last term of Eq. (10.4)
separately. We start with a discussion of the first three terms of Eq. (10.4), which de-
scribe the rotational torques around the axis defined by the normal n̂ exerted by the
current. Since we are considering only rotations around one axis, the reactive and dissipa-
tive rotational coupling terms, PR, PD, and P ′D, respectively, reduce to vectors instead
of matrices. They are given by3

P i
R =

∫
UC

d2rM
(
Ω̂× ∂iΩ̂

)
· (ĜrotΩ̂), (10.5a)

P i
D =

∫
UC

d2rM∂iΩ̂ · (ĜrotΩ̂), (10.5b)

P i
D′ =

∫
UC

d2rM
(
Ω̂×

[
Ω̂ · (∂jΩ̂× ∂iΩ̂)

]
∂jΩ̂

)
· (ĜrotΩ̂), (10.5c)

and can be traced back to the terms of the LLG equation describing the Berry phase
physics and damping, respectively. The three rotational coupling vectors live in the plane
of the skyrmion lattice, i.e. n̂ ·PR = n̂ ·PD = n̂ ·PD′ = 0, because the magnetization of
the skyrmion lattice varies only within this plane. Therefore, only the components of the
velocities vd and vs, which are in the plane of the skyrmion lattice, enter Eq. (10.4).

Inserting the generator of the rotation mode, Eq. (10.3), into Eq. (10.4) leads to two
terms for each rotational coupling vector which, for instance, for PR are given by

P i
R =

∫
UC

d2rM
(
Ω̂×∂iΩ̂

)
·
(
n̂×Ω̂

)
−
∫

UC
d2rM

(
Ω̂×∂iΩ̂

)
·
(

(n̂ · (∆r×∇))Ω̂
)
. (10.6)

The second term is linear in ∆r. For a symmetrically shaped macroscopic domain we
checked that terms linear in ∆r vanish. However, as already mentioned above, further
torques arise for non-symmetric domains. As discussed, they have a shape-dependent sign
and strength, and thus we assume in the following that these contributions will average
to zero. Therefore, we neglect all terms linear in ∆r in the following, and the expressions
for the rotational coupling vectors given in Eqs. (10.5a), (10.5b) and (10.5c) reduce to

P i
R ≈

∫
UC

d2rM
(
Ω̂× ∂iΩ̂

)
·
(
n̂× Ω̂

)
, (10.7a)

P i
D ≈

∫
UC

d2rM∂iΩ̂ ·
(
n̂× Ω̂

)
, (10.7b)

P i
D′ =

∫
UC

d2rM
(
Ω̂×

[
Ω̂ · (∂jΩ̂× ∂iΩ̂)

]
∂jΩ̂

)
·
(
n̂× Ω̂

)
. (10.7c)

Note that the three rotational coupling vectors of Eqs. (10.7a), (10.7b), and (10.7c) are only
finite (in linear order in vs) due to the small distortion of the skyrmion lattice by the weak

2Note that in our previous publication [70] the relative sign of the torque due to the lattice is defined
differently which means that the rotation angle in Ref. [70] is defined with the opposite sign.

3Note that in our previous publication [70] we have defined the rotational coupling vectors without the
factor of M which is needed in this Chapter for the discussion of gradients. In Ref. [70], the factor of M
was included in the counter-torque TL. For a constant amplitude of the magnetization the factor of M
drops out in the formulas for the rotatation angle. A small amplitude variation of the magnetization in
the skyrmion lattice phase influences the numerical results only slightly.
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coupling to the underlying atomic crystal lattice. For the undistorted skyrmion lattice,
i.e. for the rotationally symmetric Ginzburg-Landau free energy functional of Eq. (4.9),
they vanish in linear order in vs due the sixfold rotational symmetry of the hexagonal
magnetic lattice. Since the orientation of a hexagon is described by a third-rank tensor,
a rotational torque arises only in the order of v3

s which is too small to yield observable
effects for relatively small current densities as used in bulk materials. We evaluate the
three rotational coupling vectors of Eqs. (10.7a), (10.7b), and (10.7c) numerically, and
details concerning the numerics can be found in Appendix C.

After having considered the rotational torques exerted by the current, let us now
consider the last term of Eq. (10.4) describing the counter-torques from the atomic lattice.
Those are independent of the applied current vs and given by

TL = −
∫

UC
d2r

δF

δΩ̂
· (ĜrotΩ̂) = −

∫
UC

d2r
δF

δΩ̂

∂Ω̂

∂φ
= −∂f

∂φ
, (10.8)

which describes the change of the free energy per magnetic unit cell upon a rotation of the
magnetic structure by the angle φ, i.e. f = F/(MNUC), where NUC is the number of unit
cells. As discussed in Section 4.3, the orientation of the skyrmion lattice within the plane
perpendicular to the skyrmion lines has a sixfold symmetry in the absence of a current.
Hence, the orientation of the skyrmion lattice is fixed by anisotropy terms that produce
a potential being at least proportional to − cos(6φ), where φ is the rotation angle, and
φ = 0 describes an equilibrium situation. Note that such anisotropy terms are a least of
sixth order in spin-orbit coupling, λ6

so. The torque per volume resulting from a potential
proportional to − cos(6φ) is given by

TL ≈
χ

6
∂φ cos(6φ) = −χ sin(6φ). (10.9)

The counter-torque from the atomic lattice TL expresses that angular momentum can be
transferred directly from the skyrmion lattice to the underlying atomic structure mediated
by spin-orbit coupling and small anisotropy terms. For small rotation angles, the torque
TL can be further expanded as

TL ≈ −χ sin(6φ) ≈ −χ δφ. (10.10)

In the last approximation of Eq. (10.10), δφ describes small deviations from the preferred
equilibrium orientation of the skyrmion lattice, where the restoring forces from the atomic
lattice are finite. It is only valid in the linear response regime, where one can expand TL
in δφ. Furthermore, we used that ∂f/∂φ vanishes in the equilibrium situation, i.e. for
vs = 0. We denote the susceptibility χ as the “spring constant”:

χ =
∂2f

∂φ2
. (10.11)

Similar to the three rotational coupling vectors of Eqs. (10.7a), (10.7b), and (10.7c), these
restoring forces characterized by χ arise from higher-order spin-orbit coupling terms.

Combining Eq. (10.4) with the linear response approximation of Eq. (10.10) we get:4

0 = PR (vs − vd) + PD (βvs − αvd) + PD′
(
β′vs − α′vd

)
− χδφ. (10.12)

4Note that in our previous publication [70] we have defined the rotation angle with the opposite sign.
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Note that in this equation also only the in-plane components of the velocities vs and vd
enter, i.e. vPs and vPd , because the three rotational coupling vectors are orthogonal to
the normal vector n̂. Interpreting Eq. (10.12) we see that the induced spatial rotation
of the magnetic structure corresponds to a double-transfer of angular momentum. In a
first process, the spins of the conduction electrons transfer angular momentum on the
magnetic texture when traversing the magnetic structure. In the following process, the
magnetization transforms via spin-orbit coupling the transferred angular momentum to its
orbital motion, leading to a rotation of the magnetic texture. Since the magnetic texture is
embedded in the atomic crystal, which breaks the rotational symmetry, there is a preferred
orientation of the skyrmion lattice in equilibrium, as mentioned above. Thus, the flow of
angular momentum to the orbital sector originating from spin-transfer torques is partially
absorbed by the atomic crystal lattice until all rotational torques are balanced. In the
linear response regime, where the applied current does not fully overcome the counter-
torque from the atomic lattice, the balance of these two torques determines the finite
rotation angle. Eq. (10.12) can be easily solved for the rotation angle δφ, provided that
the spring constant |χ| does not vanish:

δφ =
1

χ

[
PR (vs − vd) + PD (βvs − αvd) + PD′

(
β′vs − α′vd

)]
. (10.13)

Since we consider only terms up to linear order in vs, and since the three rotational cou-
pling vectors are already multiplied by terms that are of linear order in vs, we evaluate PR,
PD, and PD′ using the equilibrium magnetization structure. An alternative derivation of
the rotation angle leading to the same results can be found in Appendix C. Neglecting
pinning and using the explicit solution for the drift velocity vd, Eq. (9.22), in the limit of
small damping the equation for δφ simplifies to

δφ ≈ 1

χ

(
(β̃ − α̃)

D
G
PR(n̂× vs) + (β − α)PDvs + (β′ − α′)PD′vs

)
. (10.14)

As many other spin-torque effects [140], the rotation also vanishes in the case of Galilean
invariance.

10.2.1 Numerical Solution for the Skyrmion Lattice

As we have seen above, the rotation angle is only finite when taking account a distorted
skyrmion lattice. In Section 4.3, we have considered symmetry-allowed terms in the
Ginzburg-Landau theory which provide the preferred orientation of the skyrmion lattice
and distort it to leading order in λso. In the following, we use the term FL of Eq. (4.26),
characterized by the coupling constant γL, for the preferred in-plane alignment of the
skyrmion lattice. It leads to a finite susceptibility χ which is of the order of ∼ O(γL). To
obtain a distorted skyrmion lattice we use the term FD of Eq. (4.27). It is characterized
by the coupling constant γD and leads to small, but finite rotational coupling vectors PR,
PD and PD′ of the order of ∼ O(γD). To be precise, we use in this Section the free energy
functional

F = F [M(r)] = γ

∫
d3r

[
(1 + t)M2 + (∇M)2 + 2M · (∇×M) +M4 −B ·M

+ γL
(
(∂3
xM)2 + (∂3

yM)2 + (∂3
zM)2

)
+ γD

(
(∂xM

y)2 + (∂yM
z)2 + (∂zM

x)2
)]

(10.15)
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The rotation angle δφ is proportional to the ratio of the two coupling strengths, δφ ∝
γD/γL. This is a ratio of two tiny quantities, but γL is even smaller than γD as γL/γD ∼
λ2

so, meaning that one can expect a sizable effect δφ ∝ γD/γL.
To obtain the numerical results presented in the following, we first calculated the

approximate magnetization texture M(r) of the skyrmion lattice within the following
mean-field approximation. We minimized the free energy functional of Eq. (10.15) with
the ansatz for the magnetization given by Eq. (4.14), including only the three smallest
reciprocal lattice vectors qj to the sum. As we have already seen, this is quite a good
approximation for the skyrmion lattice since higher-order terms contribute (experimen-
tally [67] and also theoretically [1, 67]) only a few percent to the total magnetization.
As we are not discussing the stability competition of the skyrmion crystal with another
phase, we will not take into account the effects of thermal fluctuations. Using the re-
sults of Ref. [1] we expect that the incorporation of thermal fluctuations into our theory
just leads to a small renormalization of prefactors at least not too close to the phase
transition. Similarly, we ignore for simplicity corrections arising from fluctuations to the
Landau-Lifshitz-Gilbert equation, Eq. (10.1), that are probably important for a complete
description of the depinning transition which is beyond our analysis. Using our obtained
equilibrium magnetization structure M(r) we calculated the expressions of Eq. (10.13),
i.e. the three rotational coupling vectors, the drift velocity, the susceptibility χ, and finally
the rotation angle δφ. Further details about the numerical evalutation can be found in
Appendix C.

Note that the numerical results presented in the following are obtained in the absence
of pinning forces and for α′ = β′ = 0. Finite α′ and β′ will modify prefactors in our
results for the rotation angle, but we do not expect qualitative changes, because the
symmetry arguments explained in the following still hold for finite α′ and β′, and one can
rewrite the expression PD (βvs − αvd) + PD′ (β

′vs − α′vd) as PD (βeffvs − αeffvd) with
βeff = β + |PD|

|PD′ |
β′ and αeff = α+ |PD|

|PD′ |
α′.

In the limit of small α, β � 1, Eq. (10.13) reduces to

δφ ≈ β − α
χ

(D
G
PR(n̂× vs) + PDvs

)
, (10.16)

where the rotation angle depends on the chosen parameters as follows:

δφ = φ0 δϕ(t,B, ĵ) for α, β, γL, γD � 1, (10.17)

and φ0 depends on the original parameters as5

φ0 = vs
~(β − α)

√
UJ

D2

γD
γL
. (10.18)

Note that by construction we get a term that is linear in the strength of the current
vs. Furthermore, the rotation angle should be proprotional to γD, because the distortion
anisotropy term provides an overlap with the rotation mode. Since the counter-torque∼ γL
occurs on the right hand side of Eq. (10.15), the rotation angle is inversely proportional
to γL. Moreover, we expect that in the Galilean invariant case, β = α, no rotation
of the skyrmion lattice occurs, as is apparent from Eq. (10.18). The remaining factors
~
√
UJ/D2 arise from the transformation back to the original units of Eq. (4.7). δϕ(t,B, ĵ)

5Note that in our previous publication [70] we have defined φ0 and the rotation angle with opposite
signs. Since we consider δφ/φ0 in the following plots, the two signs cancel.
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Figure 10.1: Effective rotation angle δφ in units of φ0 defined by Eq. (10.18) for various
values of the damping constants as a function of the direction of the applied current. The
magnetic field B is applied in the [11̄0] direction, and the direction of the current is always
perpendicular to B. Furthermore, we choose t = −0.8, |B| = 0.5

√
−2t, γD = 0.01, and

γL = 0.001. We published this Figure in Ref. [70].

of Eq. (10.17) is a dimensionless function which depends only on the external parameters,
namely the distance t to the critical temperature, the orientation of the applied current
ĵ, and the dimensionless rescaled magnetic field B (note that we have chosen particular
units in Eq. (4.8)). In the following, we further analyze δϕ(t,B, ĵ). First, we discuss the
dependence of the rotation angle on different directions of the applied magnetic field B
and the applied current vs. Second, we consider the behavior of δφ on the distance to the
phase transition. We close with an order-of-magnitude estimate for the rotation angle.

Orientational dependence of δφ: For a fixed magnetic field, the orientational depen-
dence of the rotation angle on vs is rather simple. Within our theory δφ is proportional to
the product of vs and another vector in the skyrmion lattice plane denoted by w for the
moment. w depends on the external parameters t, B, and is almost perpendicular to the
magnetic field with corrections of order γD. When rotating vs around the direction of the
magnetic field for fixed external parameters (i.e. fixed w), there exist directions, where
vs becomes almost parallel (perpendicular) to w and the signal becomes maximal (almost
zero). Therefore, for this setup the rotation angle exhibits a simple cosine dependence as
is confirmed by the numerical results for δφ in units of φ0, shown in Fig. 10.1 for various
values of the damping constants α and β. The limit of small α, β, where δφ reduces to
Eq. (10.17), is indicated by the blue line in Fig. 10.1. As, by construction, our theory is
limited to effects linear in the applied current, a reversal of the current direction always
leads to a sign change of the rotation angle, δφ→ −δφ.

For a fixed direction of the applied current, the dependence of the rotation angle δφ
on the direction of the applied magnetic field B̂ is not so simple, because the relevant
distortions of the skyrmion lattice depend sensitively on the direction of the magnetic
field. In the following, we consider three directions of the current vs around which we
then rotate the direction of the applied magnetic field (being always perpendicular to vs).
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Figure 10.2: Effective rotation angle δφ in units of φ0 as defined by Eq. (10.18) with the
current vs applied in the [110] direction. δφ is plotted as a function of the direction of
the magnetic field B which is perpendicular to vs. The other parameters are chosen as
in Fig. 10.1. The rotation angle vanishes for a magnetic field applied into one of the high
symmetry directions, i.e. ifB is oriented along 〈111〉 or 〈100〉. Close to the 〈100〉 direction,
the rotation angle is maximal, as explained in the main text. For certain directions the
size of the rotation angle depends sensitively on values of the damping constants. We
published this Figure in Ref. [70].

The numerical results for the rotation angle for vs in [110] direction are shown in Fig. 10.2,
for vs in [111] direction in Fig. 10.3, and for vs in [100] direction in Fig. 10.4. They give an
overview how δφ depends on the orientation of the magnetic field. We discuss their main
features, which can be mostly understood from symmetry considerations, in the following.
For this, in particular those cases are important, where the magnetic field is applied in
one of the main symmetry directions, i.e. the twofold 〈100〉 axes and the threefold 〈111〉
axes. Moreover, the system possesses another symmetry if the magnetic field is applied in
a direction perpendicular to a 〈100〉 axis. In that case, the combined symmetry operation
of time-reversal and a rotation by 180◦ around the corresponding 〈100〉 axis maps the
magnetic field and the skyrmion lattice onto itself.

For the setup and the parameters of Fig. 10.2, one of the reciprocal lattice vectors is
always oriented in the [11̄0] direction when no current is applied. With an applied current
vs along the [110] axis, the rotation angle in units of φ0 is shown in Fig. 10.2 as a function
of the direction of the applied magnetic field for various values of the damping constants.
When the magnetic field is rotated around the direction of the current, which is along the
[110] axis, it passes a few high-symmetry directions like [11̄1] or [001], as can be seen from
Fig. 10.2. For most directions of the magnetic field, the rotation angle depends within
our theory on the specific chosen anisotropy terms, their sign and size, as well as on the
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damping constants. Thus, the behavior of the rotation angle is not universal for most
directions of the magnetic field. However, for high-symmetry directions, the situation is
different. If the magnetic field is oriented along one of the twofold screw axes 〈100〉 or along
one of the threefold symmetry axes 〈111〉, the rotation angle δφ vanishes to linear order in
vs. The reason for this is that for these high-symmetry directions the normal vector to the
skyrmion lattice n̂ becomes parallel to B, and therefore the rotational coupling vectors
vanish. Thus, for these directions of the magnetic field the contributing torques and hence
the rotation angle δφ vanish for a velocity vs perpendicular to the applied magnetic field.

Away from these two different types of high-symmetry directions (note that 〈110〉 is
not a symmetry axis of the B20 structure of MnSi) the rotational coupling vectors are
finite. These finite coupling vectors give rise to a transfer of angular momentum from the
magnetic texture to the crystal lattice, leading to a rotation of the magnetic texture by
the finite angle δφ, as can be seen in Fig. 10.2. The 〈100〉 directions for the magnetic field
are special as can be seen immediately in Fig. 10.2. In these geometries, the susceptibility
χ of Eq. (10.11) vanishes to linear order in γL, since FL of Eq. (4.26) does not lead to
an orientation of the skyrmion lattice within the plane to linear order in γL, as discussed
below Eq. (4.26) in Section 4.3. When denoting for a moment by δ the angle between B̂
and the [001] direction, then the relevant potential is quadratic in δ. It is proportional to
γLδ

2 cos 6φ (for the geometry of Fig. 10.2). The rotational coupling vectors vanish only
linearly in δ, leading to a rotation angle which is inversely proportional to δ, i.e. δφ ∼ 1/δ.
For very small δ, effects of order γ2

L lead to a rounding of the divergence. Within this
analysis we did not consider even further anisotropy terms which are necessary for these
special directions, and therefore our theory is limited in predicting the behavior of the
rotation angle along such special symmetry directions.

The blue line in Fig. 10.2 corresponds again to the limit of small α, β, where δφ can
be simplified to Eq. (10.17) by expanding Eq. (10.13) (for α′ = β′ = 0) to linear order
in the damping coefficients α and β. In this case, also a reversal of the magnetic field
direction, B → −B leads to a sign reversal δφ → −δφ, as can be seen from the blue
solid line in Fig. 10.2). However, for larger damping coefficients, i.e. when one has to take
higher-order contributions in α and β into account, this is in general not the case. This
can be easily seen in Fig. 10.2 by considering a magnetic field close to the [001] or [001̄]
direction, respectively. Even for values of α ∼ 0.1 [141], the absolute value of the rotation
angle shows a strong difference for some directions of the magnetic field compared to the
opposite field direction. Also, sign changes of δφ for certain crystallographic directions
are possible in the sense that for B and −B both rotation angles have the same sign, as
can be seen for example in the inset of Fig. 10.2 for magnetic fields in directions close
to [11̄1] and [1̄11̄], respectively. The absence of this symmetry stems from the fact that
time-reversal symmetry is not only broken by the magnetic field, but also by vs, and by
the dissipative and the reactive forces which have opposite signatures under time-reversal.
An exception is a configuration, where, for example, the magnetic field is oriented along
the [110] direction and the current along the [11̄0] direction. In this geometry, both vs
and B are orthogonal to the [001] direction. Since a 〈100〉 axis is a twofold rotation axis
of MnSi, which in this particular geometry allows to map B → −B and j → −j, the
rotation angle remains the same when reversing the magnetic field and the current. Note
that within our conventions δφ is defined relative to the field orientation.

Summarizing the symmetry considerations above of the magnetic field and the current
we obtain

δφ(B, j) = −δφ(B,−j), (10.19)
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Figure 10.3: Effective rotation angle δφ in units of φ0 as defined in Eq. (10.18) as a function
of the direction of the magnetic field B. Here, the current vs is oriented along the [111]
direction, and the magnetic field is rotated around vs. The other parameters are chosen
as in Fig. 10.1. We published this Figure in Ref. [70].

but in general
δφ(B, j) 6= −δφ(−B, j). (10.20)

Hence, in general, there is no specific symmetry with respect to the reversal of the current
and the magnetic field, δφ(B, j) 6= δφ(−B,−j). Only for geometries, where vs ⊥ B and
where both are orthogonal to a twofold screw 〈100〉 axis, we have δφ(B, j) = δφ(−B,−j).

Fig. 10.3 and Fig. 10.4 show similar plots as Fig. 10.2. The difference between them
is that the current, around which the magnetic field is rotated, is applied in different
directions. While the current in Fig. 10.2 is applied in the [110] direction, it is oriented
along the [111] axis in Fig. 10.3, and along [100] in Fig. 10.4. In Fig. 10.3, the pattern
repeats itself every 120◦ due to symmetry. For magnetic fields in the 〈110〉 directions,
the rotation angle δφ becomes small, but does not vanish, as can be seen more clearly in
Fig. 10.1. Note that there is no 〈100〉 direction which is perpendicular to the [111] direction,
so that in this case there is no direction of the magnetic field, where the susceptibility χ
vanishes.

In Fig. 10.4, the current is applied in the [100] direction, and therefore there are
four possible directions for the magnetic field along a 〈001〉 axis perpendicular to [100].
Along these directions the rotation angle takes again large values, as in Fig. 10.2. This
configuration is special considering the limit α, β → 0. In this scenario, the rotation angle
δφ/φ0 vanishes exactly. This can also be understood by symmetry arguments. When the
current is applied along the [100] direction, a rotation around this axis does not alter the
direction of the current. Since [100] is a twofold screw axis, rotations around 180◦ (followed
by a translation of half a lattice vector) map the atomic system onto itself. Just performing
this rotation would map B onto −B. Thus, performing a rotation by 180◦ followed by
time-reversal would map B upon itself, and in the equilibrium situation one would obtain
the same skyrmion lattice solution. This implies that under the product of this rotation
and time-reversal the rotational coupling vectors have to be invariant. Since PR is even
under time-reversal, it remains only invariant under this transformation when pointing
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Figure 10.4: Effective rotation angle δφ in units of φ0 as defined in Eq. (10.18) for a
current vs along the [100] axis as a function of the direction of the magnetic field B which
is perpendicular to the [100] direction. The other parameters are chosen as in Fig. 10.1.
For this orientation the rotation angle vanishes quadratically in the limit α, β → 0 due to
a combined symmetry operation being a product of a rotation by 180◦ around the [100]
axis and time-reversal. An explicit explanation is given in the main text. We published
this Figure in Ref. [70].

in the [100] direction, i.e. in the direction of the current. In contrast, the dissipative
rotational coupling vectors PD and PD′ are odd under time-reversal, and thus they have
to be perpendicular to the [100] direction. Moreover, from Eq. (9.23) it follows that vs and
vd behave in this limit such that vs − vd becomes perpendicular to vs, while β̃vs − α̃vd
becomes parallel to vs to leading order in β̃ and α̃. Hence, the contributing terms to the
rotation angle Eq. (10.13) vanish since the corresponding scalar products of the coupling
vectors with the velocities are zero (for α′ = β′ = 0). Thus, all current-induced torques
vanish for α, β → 0 according to Eq. (10.13) for a current in [100] direction.

Dependence of δφ on the distance t to the phase transition: At a first-order phase
transition the rotation angle δφ is formally non-singular. In practice, however, a complex
interplay of phase transition dynamics, pinning effects, the external drive by currents,
heating effects, and even surface properties can be expected in the regime, where both
phases are locally stable. This complex interplay is not described by our theory, and we
restrict our analysis to the overall dependence of the rotation angle on the parameter t that
can be controlled by temperature in an experiment. Fig. 10.5 shows the dependence of the
rotation angle δφ in units of φ0 on the distance t from the mean-field phase transition for a
fixed magnetic field strength and vs oriented along the [110] direction in the limit of small
α and β when Eq. (10.17) is valid. The various curves correspond to different orientations
of the magnetic field B. For the set of parameters used in Fig. 10.5, the magnitude
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Figure 10.5: Effective rotation angle δφ in units of φ0, see Eqs. (10.17) and (10.18), in the
limit of small α, β as a function of the dimensionless distance t from the critical point.
The current vs is applied along the [110] direction. The different curves correspond to
different directions of the magnetic field B which is perpendicular to the current direction,
see legend. The other parameters are |B̃| = 0.5

√
1.6, γD = 0.01, and γL = 0.001. We

published this Figure in Ref. [70].

of the rotation angle increases for increasing t, i.e. for higher temperatures. However,
a mean-field theory is not able to describe the first-order transition quantitatively, and
therefore the magnitude of the effect might be overestimated. Furthermore, one obtains
qualitatively different results for the t dependence when including anisotropy terms which
dominate and are not quadratic in the order parameter as assumed by us, but are of
higher order. In this case, the system behaves more sensitivitely to the distance to the
phase transition.

Order-of-magnitude estimate: To determine the quantitative value of the rotation
angle, in principle all quantities of φ0 have to be known from the experiments. So far, not
all of them are determined, in particular γL and γD as well as the damping constants are
unknown. Therefore, by counting powers of spin-orbit coupling λso we would like to give
a crude estimate of the order of magnitude of the rotation, which is caused by torques
arising from lattice distortions.

For |t| ∼ 1, the rotation angle δφ can be estimated to be of the order of φ0, i.e. δφ ∼ φ0,
where φ0 is defined in Eq. (10.18):

φ0 = vs
~(α− β)

√
UJ

D2

γD
γL

= vs ~(α− β)

(
J

D

)2 √U
J3/2

γD
γL
. (10.21)

Approximating vs ∼ a3j/e, D/J = λso/a, a3
√
U/J3/2 ∼ 1/kBTc, and γL/γD ∼ λ2

so we
obtain for the rotation angle

δφ ∼ δφ0 ∼
~ja2

ekBTc

α− β
λ4

so

. (10.22)
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For MnSi, the lattice constant a and the critical temperature Tc are given by a ≈ 4.56 Å
and Tc ≈ 29 K, respectively. Spin-torque effects for MnSi were observed above current
densities of the order of 106 A/m2 [10, 80] which, rewritten in the appropriate dimension-
less units, corresponds to js/j0 ≈ ~jPa2

ekBTc
∼ 10−8 (cf. Section 8.2). This expresses again

the smallness of the applied current densities in comparison to most spin-torque experi-
ments, where the critical current densities are five to six orders of magnitude larger. Using
α ∼ 0.1 as obtained from the rather broad peaks in electron-spin-resonance experiments
for MnSi [141], and a spin-orbit coupling strength λso ∼ 0.01, one could in principle obtain
sizable rotation angles δφ ∼ O(1). As mentioned already, such kind of rotations have not
yet been observed. This is, however, not suprising taking into account the crudeness of our
estimate. Moreover, according to our theory, in the current experimental setup (i.e. for a
magnetic field along [110] and a current along [11̄0]) the effect is even more suppressed by
another factor of 0.05, see Fig. 10.1.

To summarize, in this Section we have investigated the influence of spin-transfer torques
on the magnetic skyrmion texture originating from small distortions of the skyrmion lattice
due to the underlying atomic lattice. We have also seen that due to anisotropy terms
the skyrmion lattice plane tilts slightly which agrees qualitatively quite well with the
recently measured unpublished data [79], as discussed in Section 4.3. Furthermore, due
to a double-transfer of angular momentum a spatial rotation by a finite angle may occur.
First, angular momentum is transferred from the spins of the conduction electrons to
the magnetization inducing torques on the magnetic structure. This momentum transfer
and the corresponding torques are balanced by the flow of angular momentum from the
magnetic texture (via spin-orbit coupling effects) to the underlying atomic lattice, leading
to a rotation of the skyrmion lattice.

10.3 Spin-Transfer Torques in Neutron Scattering Experiments

In this Section, we review the first experiment in which the ultra-low threshold current
density of jc ∼ 106 A/m2 was observed, above which spin-transfer torques are measurable
in bulk MnSi. These experiments were performed using small angle resolved neutron
scattering (SANS). We have published the results together with a theoretical explanation
in Ref. [10]. In Chapter 7 and Chapter 9 we have already seen that for an applied current
strong enough to overcome the counter-forces induced by the atomic lattice and disorder,
the current-induced forces may lead to a translational motion of the skyrmion lattice. It is
very difficult to detect this effect in a scattering experiment, because for the small applied
current densities the induced motion of the order of 10−4 m/s is not really fast.

In contrast to a translational motion, a rotation is much easier to measure with this
technique, because a rotation of the skyrmion lattice corresponds to a rotation of the
diffraction pattern. However, this rotation occured only in the presence of a small tem-
perature gradient (∼ 1 K/cm) as can be understood from the schematic illustration of the
spin-transfer torque effects on the skyrmion lattice shown in Fig. 10.6. As explained in
Chapter 9, there are mainly two current-induced forces acting on the skyrmion lattice.
The Magnus force, which acts perpendicularly to the direction of the current for a non-
moving skyrmion lattice, and the dissipative force, which in the pinned case acts along the
direction of the current. Both act perpendicularly to the normal direction of the skyrmion
lattice which is, neglecting distortion terms, equivalent to the direction of the magnetic
field. In Fig. 10.6, the red and green arrows represent the Magnus force and the dissipa-
tive force for a non-moving skyrmion lattice, respectively. For a moving skyrmion lattice,
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Figure 10.6: Illustration showing that gradients in the forces originating from a tempera-
ture gradient lead to a rotation of the skyrmion lattice. The skyrmion lattice is illustrated
by the black arrows, and the current-induced forces by the red and green arrows. For
a non-moving skyrmion lattice, these correspond to the Magnus and dissipative forces,
respectively. The temperature gradient is indicated by the red-white gradient in the back-
ground. In the hotter regime of the sample, the forces are weaker, and in total the gradient
in the forces leads to rotational torques indicated by the blue arrows. This Figure is taken
from our publication, Ref. [10].

the situation is more complex. Nonetheless, there are still forces acting parallel and per-
pendicular to the applied current. A temperature gradient across the sample (indicated
by the color gradient in the background of Fig. 10.6) causes the local magnetization to
vary in magnitude across a domain, and therefore induces inhomogeneous spin currents.
In turn, a gradient in the strength of the acting forces arises, leading to current-induced
net torques. The balance between these torques and the counter-torques coming from the
atomic lattice and pinning finally determines the rotation angle (or angular velocity) of
the skyrmion lattice. Necessary for the rotation is, in principle, only a gradient in the
forces which, aside from a temperature gradient, can for example also be obtained by a
magnetic field gradient. The latter will probably soon be realized experimentally.

Neutron scattering experiments with a small temperature gradient parallel to the
current have, however, already been done. Also these neutron scattering experiments
were performed at the diffractometer MIRA [68] at FRM II at the Technische Univer-
sität München, where an incident neutron wavelength of λ = 9.6 Å with a 5% FWHM
wavelength spread was used. The position resolution of the detector was of the order of
2× 2 mm2 with a total dimension of 200× 200 mm2. For details to the used experimental
techniques see Ref. [10].

Typical neutron scattering results, where an electric current was applied along high-
quality bar-shaped single crystals, are shown in Fig. 10.8, Fig. 10.9, and Fig. 10.10. These
measurements were performed in the neutron scattering setup of Fig. 10.7 which corre-
sponds to the setup of Fig. 3.9 for zero current, as introduced in Section 3.1.3. In this

105



10.3 – Spin-Transfer Torques in Neutron Scattering Experiments

sample

detector

neutron
beam

orientation
of crystal

Figure 10.7: Neutron scattering setup, where the applied magnetic field B is parallel and
the electric current j perpendicular to the incident neutron beam.

Figure 10.8: Typical neutron scattering intensity patterns in the skyrmion phase of MnSi.
The measurements were performed in the setup of Fig. 10.7 with a magnetic field oriented
along the [110] direction. The dashed red lines are a guide to the eye. The left panel
shows just the characteristic main six spots on a regular hexagon of the skyrmion lattice
without an applied current, which is in agreement with the neutron scattering data of
Ref. [1] as discussed in Chapter 3. The right panel shows the neutron scattering pattern
of the skyrmion lattice when a current is applied along the [11̄0] direction, indicated by
the white arrow. In these measurements no gradient was applied. This Figure is taken
from our publication, Ref. [10].

setup, the magnetic field determining the direction of the skyrmion lines is collinear with
the direction of the neutron beam. The profile of the magnetic field was found to be
uniform (better than one percent) over the sample volume. The direction of the current
is perpendicular to the magnetic field and therefore also to the skyrmion lines.

In Fig. 10.8, the magnetic field and the neutron beam were oriented along the [110]
axis. The horizontal (vertical) direction in the plot is along [001] ([11̄0]). The left panel
of Fig. 10.8 shows the six main neutron scattering peaks of the skyrmion lattice in the
absence of an electric current, j = 0, as discussed in Chapter 3. In the right panel of
Fig. 10.8, a current j = 2.22 · 106 A/m2 was applied along the vertical [11̄0] direction
(indicated by the white arrow in the lower right corner of the plot). Note that the arrows
denote the technical current direction, and the line of sight is opposite to the direction of
the neutron beam. In the experimental setup of the right panel of Fig. 10.8, any thermal
gradients along the current direction were minimized, and thus no rotation occurs. The
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Figure 10.9: Typical neutron scattering intensity patterns in the skyrmion phase of MnSi.
The measurements were performed in the setup of Fig. 10.7 with a magnetic field oriented
along the [110], and a current was applied along the vertical direction. The dashed red
lines are a guide to the eye. Panel C shows the counter-clockwise rotation of the scattering
pattern in the presence of a small temperature gradient which is applied antiparallel to the
direction of the current. In Panel D, the direction of the current was reversed compared
to panel C. In this case, the rotation of the skyrmion lattice is clockwise. Panel E displays
the difference between panel C and D. Panel F illustrates that the difference between the
scattering intensities from panel C and a measurement, where both current and magnetic
field were reversed, vanishes approximately. This Figure is taken from our publication,
Ref. [10].

diffraction spots remain at the same positions, but the peaks are broadened azimuthally
due to the current.

However, upon generating a small temperature gradient (∇T ∼ 1 K/cm) along the
direction of the current, one can clearly observe a rotation of the diffraction pattern (for
a discussion of the experimental realization of the temperature gradient see below). This
rotation is, for example, shown in panel C of Fig. 10.9 which was measured, aside from
an additional small temperature gradient, in the same setup as the measurement of the
right panel of Fig. 10.8. Here, compared to the measurements without the gradient, the
diffraction pattern is rotated counter-clockwise by a finite angle. Note that the entire
scattering pattern rotates with respect to its center, i.e., all spots move by the same angle
even though the electric current has a distinct direction. In Fig. 10.9 D, the direction of
the current was reversed compared to Fig. 10.9 C. In this case, the rotation angle changes
sign, and the neutron scattering pattern is rotated by a finite angle in clockwise direction.
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The difference of Fig. 10.9 C and Fig. 10.9 D is plotted in Fig. 10.9 E. Panel F of Fig. 10.9
shows the difference between panel C of Fig. 10.9 and a measurement, where the magnetic
field and the current direction are both reversed (the latter is not shown). In this case,
the intensity approximately vanishes, implying that reversing the electric current and the
magnetic field direction leads to the same scattering pattern. Thus, in these experiments,
the rotation changes sign, when reversing either the direction of the magnetic field or the
direction of the current.

In Sec. 10.2 we have discussed that for a perfect skyrmion lattice the rotation an-
gle should be invariant when reverting both current and magnetic field direction, i.e.
δφ(B, j) = δφ(−B,−j), under the conditions that B is applied along [110], the cur-
rent along [11̄0], and the rotation angle is defined with respect to the orientation of the
magnetic field. Remember that this particular symmetry holds only for these special con-
figurations of directions of the magnetic field and current and is in general not true. In
the experiments, the angle is measured with respect to the neutron beam which is just
the reverse direction when applying the magnetic field opposite to the beam direction.
Hence, for a perfect skyrmion lattice, a magnetic field along [110], and a current along
[11̄0] we would expect that the scattering patterns should not be the same upon reversing
both current and magnetic field, and the experiments should show rotations with opposite
directions. However, Fig. 10.9 F shows that this is not the case in the experiments. The
reason for this apparent contradiction is that in the experimental setup this symmetry is
broken due to the presence of an additional temperature gradient. This also shows that
the theory presented in Section 10.2 cannot describe the experiment, because it does not
include thermal gradients. They are, however, explicitly taken into account in Sec. 10.4.

The direction of the temperature gradient is given in the lower left corner of figures
Fig. 10.9 C–J. In Fig. 10.9 G and H, basically the same measurements as in Fig. 10.9 C
and D are shown, however the direction of the temperature gradient was reversed. By
comparison of the data it can be clearly seen that upon reversing the direction of the
temperature gradient also the sign of the rotation changes, as expected. This can also
be observed when comparing the difference pictures. As Fig. 10.9 E, Fig. 10.9 I shows
the difference between two measurements when reversing the direction of the current.
Comparing Fig. 10.10 I with Fig. 10.9 E one observes that the intensity differences are
reversed (red and blue spots are swapped). When reversing both the magnetic field and
the current direction, the difference of the scattering patterns vanishes as before, compare
Figs. 10.10 F and 10.10 J.

Furthermore, for a current applied along a 〈111〉 axis, i.e. a different crystallographic
direction, the same features of the diffraction pattern were observed when reversing the
current, the magnetic field, or the direction of the temperature gradient. Thus, the results
do not depend on the specific crystallographic orientation of the sample. Typical data for
a current along the 〈111〉 axis are shown in Fig. 10.11. Panel A was measured without a
current and a gradient, and therefore no rotation occurs. In panels B and C, a current
and a small temperature gradient were present. From panel B to C the direction of the
current was reversed, changing the rotation from counter-clockwise to clockwise.

Also, measurements, where the current was parallel to the skyrmion lines, were per-
formed. To study this case the setup shown in Fig. 10.12 was used which corresponds
to the setup of Fig. 3.6, introduced in Section 3.1.3 for zero current. In this setup, the
magnetic field determining mainly the direction of the skyrmion lines is perpendicular to
the direction of the neutron beam. Typical data for this setup are shown in Fig. 10.13.
Panel A shows the scattering pattern for j = 0. The horizontal spots labelled by “3” and
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Figure 10.10: Typical neutron scattering intensity patterns in the skyrmion phase of MnSi.
The measurements were performed in the setup of Fig. 10.7 with a magnetic field oriented
along the [110], and a current was applied along the vertical direction. The dashed red
lines are a guide to the eye. In the panels G–J basically the same data as in Fig. 10.9
panel C–F is shown, but with a reversed direction of the temperature gradient, leading
to a sign change in the rotation of scattering pattern. This Figure is taken from our
publication, Ref. [10].

“6” correspond to spots “3” and “6” of the sixfold patterns shown in Fig. 10.8. The two
vertical spots are weak diffraction spots of the conical phase which occur, because in this
particular setup a small temperature gradient was present even in the absence of a current
(also a different sample holder was used). Panel B shows the scattering pattern for an
applied electric current density j = 1.24 · 106 A/m2. For such a current parallel to the
skyrmion lines no spin-transfer torque effect like a rotation or a broadening of the neu-
tron scattering spots were observed in neutron scattering. Nevertheless, the same sample
(studied on the same sample holder) shows the same features in the neutron scattering
patterns as shown in Fig. 10.9 and Fig. 10.10, when instead the setup of Fig. 10.7 is used.
Furthermore, experimentally it has also been verified that the obtained data do not de-
pend on the order of cooling and applying the magnetic field. The data for the skyrmion
phase were identical after zero-field cooling and field cooling.

To ensure that the results do not depend on sample shapes or other specific conditions,
in total six different samples with different sizes and shapes of high quality (with mean
free paths up to 1000 Å [142]) and two different sample holders were used. For example,
in the measurements shown in Fig 10.8, a sample with a length of about 10 mm along the
[11̄0] direction, a thickness of 1.5 mm along [001], and a width of 1.8 mm along the [110]
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Figure 10.11: Typical neutron scattering intensity patterns in the skyrmion phase of MnSi.
The measurements were performed in the setup of Fig. 10.7, where the current was applied
along a 〈111〉 direction. The dashed red lines are a guide to the eye. In panel A, neither
a current nor a temperature gradient were applied. Panel B shows the scattering pattern
when a current and a small temperature gradient are present. Panel C shows the same
as panel B, however, with a reversed current direction which changes the rotation from
counter-clockwise to clockwise. This Figure is taken from our publication, Ref. [10].

direction was used. In Fig. 10.11, however, where the current was along the 〈111〉 axis, a
different sample of dimensions 12 mm× 1.4 mm× 1.95 mm and arbitrarily cut was used.
For further experimental details see Ref. [10].

Experimentally, the temperature gradient along the direction of the current flow was
achieved by a gradient in the thermal coupling of the sample to the sample holder, realized
by a small wedge of GE varnish between the sample and the sample holder. The tiny tilt
of the sample due to the GE varnish was tested to be negligible. The sample holder
used to measure the above data is shown in Fig. 10.14 together with the three settings:
minimizing all gradients, a gradient along or a gradient opposite to the direction of the
current. Fig. 10.14 A shows a configuration, where the sample was firmly attached to the
heat sink, and which was used in the measurements of Fig. 10.8. Fig. 10.14 B and C show
the configurations, where the sample was attached to the heat sink with the small wedge
of GE varnish. Note that from panel B to C the direction of the wedge of GE varnish is
reversed. A well-defined tilting angle was obtained by putting a small support underneath
the sample. The data of Fig. 10.9 (Fig. 10.10) were measured in the setup shown in panel
B (C). In Fig. 10.14 B (C) the cold spot is at the right (left) hand side of the sample. The
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Figure 10.12: Neutron scattering setup, where the applied magnetic field B is parallel to
the electric current j. Both are perpendicular to the incident neutron beam. In this setup,
the current is flowing parallel to the skyrmion lines.

cold side corresponds to the top (bottom) side of Fig. 10.9 (Fig. 10.10), where the arrows
illustrating the thermal gradient point down (up).

The average rotation angle (defined as the maximum of the azimuthal distribution of
the scattering intensity) as a function of the applied current density was also systematically
studied for different samples and different temperatures. For this purpose, the temperature
measured at the surface of the sample (see Fig. 10.14) was kept at a constant value, and
the induced temperature gradients pointed always in the same direction. Typical results
of these measurements are shown for three different temperatures in panel A of Fig. 10.15,
where the azimuthal rotation angle ∆φ as a function of the applied current density is
plotted. Note that ∆Φ remains zero, until j exceeds the critical current density jc. From
Fig. 10.15 A one can read off the critical current density jc ≈ 106 A/m2. The observed
critical current density agrees (within a factor of about two) with the observed critical
current density in the Hall measurements [80], above which the skyrmion lattice starts
to move, as discussed in Sec. 7.3. Above jc, the entire scattering pattern rotates. As a
function of j the rotation angle increases abruptly at j ≈ jc, followed by a slower increase
for larger current densities. Note that the maximal average rotation angle observed was
about 10◦. Here, the azimuthal position and width of the scattering peaks were determined
by a simple Gaussian fit.

Panel B of Fig. 10.15 shows the typical temperature differences between the surface of
the sample and the heat sink as a function of the applied current density for three different
temperatures. For these measurements the temperature of the sample was kept constant
at a specific spot on the surface, and the temperature of the heat sink was adjusted. For
increasing current density, the temperature difference between the surface of the sample
and the heat sink increases smoothly (quadratic in the current density) and does not
depend on the direction of the applied current, as expected. Compared to panel A, where
a rotation sets in abruptly at jc, there is no particular feature at jc in the temperature
difference, as shown in panel B of Fig. 10.15.

Interpretation of neutron scattering results and estimate of the rotation angle:
To confirm that the observed rotation in the neutron scattering results arises from the
interplay of spin-torque effects and thermal gradients as sketched in Fig. 10.6, one has to
exclude potential parasitic effects. The first observation is that without an electric current
the skyrmion lattice as a function of temperature does not rotate [39, 41, 44]. Moreover,
compared to the applied magnetic field of 175 mT the current-induced Oersted fields, which
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Figure 10.13: Typical diffraction patterns of the skyrmion phase in MnSi measured in
the setup shown in Fig. 10.12, where the magnetic field was applied perpendicular to the
incident neutron beam. Panel A shows the diffraction pattern in the skyrmion lattice for
j = 0. The spots labelled as “3” and “6” correspond to the same spots shown in Fig. 10.8.
Panel B shows the diffraction pattern for a current j = 1.24 · 106 A/m2 parallel to the
skyrmion lines. In this case, the current neither leads to a rotation nor a broadening of
the spots, whereas for the same current density applied perpendicular to the skyrmion
lines strong rotations are seen. This Figure is taken from our publication, Ref. [10].

increase from zero at the center of the sample to about 1 mT at the surface of the sample,
are negligible. Furthermore, in panel B of Fig. 10.15 we have seen that the temperature
difference between the sample and the heat sink varies smoothly and is an even function
of the current density j, in contrast to the rotation angle. Finally, we have seen that for a
current parallel to the skyrmion lines no rotation or broadening was observed, which was
also found for the helical state for the range of current densities studied. To conclude, we
expect that the observation of the rotation of the skyrmion lattice can be qualitatively
understood by the mechanism described at the beginning of this Chapter and sketched
in Fig. 10.6, but not by heating effects. We would like to strengthen this by an estimate
of the acting torques on the skyrmion lattice, and show that they can lead to a sizeable
rotation angle which can be measured by neutron scattering.

The strength of the dissipative forces is not known, especially due to unknown damping
parameters. However, we expect the dissipative forces not to be larger than the Magnus
force, and thus for an order-of-magnitude estimate we will just consider the Magnus force
quantitatively. The size of the Magnus force fG is given by the product of the spin
current and the fictitious magnetic field, |qe/e|Be ≈ 2.5 T, corresponding to the emergent
magnetic field Be, i.e. fG ≈ ejs|qe/e|Be. For moving domains, js has to be substituted
by the spin currents in a frame of reference that is co-moving with the domain. By
introducing a local temperature-dependent polarization P (T ) as the ratio of the spin and
charge current densities times the charge e, i.e. P (T ) = ejs/j, the Magnus force can be
estimated to

fG ≈ P (T ) · j

106 A/m2

2.5 · 106 N

m3
≈ P (T ) · j

106 A/m2

2.7 · 10−10kBTc
a4

, (10.23)

where a is the atomic lattice constant of MnSi, Tc is the ordering temperature, and kB
denotes the Boltzmann constant. As in the previous Section, we use P (T ) ≈ 0.1 for the
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Figure 10.14: Photo of a part of the sample holder which was used for the neutron scat-
tering data of Figs. 10.8, 10.9, and 10.10. The data of Fig. 10.8 were measured in the
setup shown in panel A, where the sample was firmly attached to the copper heat sink.
In panels B and C, there is a small wedge of GE varnish to induce a gradient in the heat
coupling, and a small support below the sample to obtain a well defined tilting angle. The
data of Fig. 10.9 (Fig. 10.10) were obtained in the setup shown in panel B (C). The cold
spot which corresponds to the top of Fig. 10.9 (bottom of Fig. 10.10) is in panel B (C) at
the right (left) hand side. This Figure is taken from our publication, Ref. [10].
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Figure 10.15: Panel A: Average rotation angle ∆φ (in units of 1◦) of the skyrmion lattice
in MnSi as a function of the applied current density for three different temperatures.
The data are measured by neutron scattering in the presence of an electric current and
a temperature gradient parallel to the current. The applied magnetic field strength was
0.175 T. Below the critical current density of about jc ≈ 106 A/m2 no rotation is observed.
Above jc, the amplitude of the rotation angle depends on the current strength, and its
sign depends on the direction of the applied current. Panel B shows the temperature
difference between the sample holder and the surface of the sample as a function of the
applied current density. The temperature of the sample surface was kept constant for each
of the three temperature values given by the color code in panel A, and the temperature of
the heat sink was adjusted accordingly. As expected, the temperature difference does not
depend on the direction of the applied current. This Figure is taken from our publication,
Ref. [10].
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skyrmion lattice phase [40]. The absolute value of the Magnus force at current densities of
106 A/m2 is larger compared to, e.g., gravitational forces on the sample. In the microscopic
units kBTc/a4, however, it is tiny, see Eq. (10.23).

A small gradient in temperature leads to sizable variations in the amplitude of the
magnetization. These lead to a gradient in the polarization P (T ) of the electric currents
which, in total yield a gradient in the Magnus force. As indicated in Fig. 10.6, the current-
induced forces will be stronger (weaker) on the cold (hot) side of the sample, leading to a
net torque per volume in the direction of the skyrmion lines:

T G ∼
1

V

∫
d3r (r × fG(r)) . (10.24)

With |∇P | ≈ |∂P∂T∇T | ≈ 0.1/10 mm, j ≈ jc, and ignoring dissipative forces we obtain

TG ∼ 10−10 j · ∇P
106 Am−2

R2

a

kBTc
a3
∼ 10−5kBTc

a3

(
R

1 mm

)2

, (10.25)

where R is the radius of a skyrmion domain. From the width of the resolution-limited
rocking scans in the skyrmion phase [10] one can estimate the radius from below by
R > 1 µm. The torque induced by the interplay of the temperature gradient and the
Magnus force is proportional to the applied current and to the temperature gradient, as
∇P ≈ ∂P

∂T∇T . Therefore, the rotational torque due to the Magnus force changes sign
when one of those directions is reversed.

The current-induced forces are balanced by pinning forces and forces of the underlying
atomic lattice which orient the skyrmion lattice relative to the atomic lattice. For j < jc,
the skyrmion lattice is pinned. In that case, the pinning forces balance the current-induced
forces exactly, and thus there are no net torques. As discussed in Section 4.3, skyrmions are
only very weakly pinned by disorder. Because of the smooth magnetization structure [1]
and due to the large distance between the skyrmions, even a strong defect, which locally
destroys the magnetization completely, will result only in a very small pinning force, less
than a few 10−5 kBTc/a per impurity. Moreover, the samples were of a very good quality
and exhibited a low defect concentration with large charge carrier mean free paths of
around 1000 Å. We would like to stress again that the total pinning force per volume
cannot be obtained by adding up all the pinning forces of the single defects, because
the pinning forces from several defects within a domain may partially average out for a
sufficiently rigid skyrmion lattice.

Therefore, the observed ultra-low threshold current density jc ∼ 10−6 A/m2 together
with the estimate for the current-induced torques, Eq. (10.23), is consistent even with a
small density of strong pinning defects. Either the defect density is expected to be below
1 ppm or, if it is in reality higher, then we expect the system to be in a “collective pinning”
regime, where the pinning forces of random orientation average out to a large extent due
to the rigidity of the skyrmion lattice.

For j > jc, the size of the rotation angle can be estimated mainly by balancing the
torques from the inhomogeneous Magnus force TG and the torqes due to the coupling of
the skyrmion lattice to the atomic lattice TL.

As discussed above, due to the sixfold symmetry of the skyrmion lattice the torque
TL is of the form TL ≈ −χ sin(6φ). It arises from anisotropy terms which are of at least
sixth order in spin-orbit coupling, λ6

so. Hence, the torque per volume resulting from the
coupling to the atomic lattice can be estimated as TL ∼ −λ6

so sin(6φ). This factor of λ6
so

has to be compared to the factor of λ2
so determining the energy density of the skyrmion
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lattice [1]. Expressing the orientational torque from the lattice in units of the energy
density of the skyrmion lattice yields TL ∼ −λ4

so sin(6φ)∆F/V . According to specific heat
measurements, ∆F/V is of the order of ∆F/V ∼ 10−2kBTc/a

3 [84], so that we estimate
the balancing torque per volume TL, which orients the skyrmion lattice relative to the
atomic lattice, to

TL ∼ −10−2 λ4
so

kBTc
a3

sin(6φ). (10.26)

For small rotation angles, the torque TL arising from the lattice increases linearly in the
rotation angle φ.

Note that TL is independent of the size R of the domains, in contrast to the torques
arising from, for example, the inhomogeneous Magnus force. Therefore, the observed
broadening of the neutron scattering spots in the presence of a current may arise from a
distribution of rotation angles for domains with different sizes, as will be discussed further
in Section 10.4. As noted previously, also irregularly shaped domains might result in extra
rotational torques of random sign. These shape-dependent torques may also contribute to
the observed broadening of the neutron scattering signal. Finally, also experimental issues
like demagnetization fields may lead to a broadening of the signals. Demagnetization fields
may tilt the local magnetic fields inside some parts of the sample, and also potentially lead
to a finite rotation angle. The average rotation angle arising from demagnetization fields
is, however, zero, but the neutron scattering peaks are broadened even for j = 0 [1].

The rotation angle is finally determined by the balance of TG and TL. Since the
balancing torque from the lattice TL is so tiny (due to the prefactor 10−2λ4

so in Eq. (10.26)),
even a small torque from the inhomogeneous Magnus force TG may lead to the rotation
angles observed in the experiments even for moderately large domains. When taking into
account that charge carriers are experimentally determined to be hole-like in MnSi [40,
115], we would like to note that the signs of the torques and forces considered above are
consistent with the experimental results.

In this Section, we have considered the neutron scattering experiments which observe
a current-induced rotation of the skyrmion lattice in the presence of a temperature gradi-
ent. We have explained the experiment as an interplay of three tiny forces acting on the
skyrmion lattice: current-induced forces that act via spin-transfer torques, pinning forces,
and forces due to anisotropy terms originating from the coupling of the magnetic structure
to the atomic lattice. We have shown that in the presence of a temperature gradient these
three forces are able to explain the origin of the rotation and the existence of a thresh-
old current density. Furthermore, by balancing all torques it is possible to determine the
rotation angle. As we discuss in more detail in the next Section, we expect that for even
higher current densities or larger temperature gradients not only a rotation by a finite
angle, but a continuous rotation sets in. We also show that the maximal rotation angle
is given by 15◦, and therefore the experiments performed so far were probably not too far
away from (or may have already observed indirectly) a continuous rotation.

10.4 Rotational Torques due to Field or Temperature Gradients

In this Section, we present a theory for the rotational torques due to small gradients in the
applied magnetic field or in the temperature. We describe the current-induced rotation
by a finite angle up to 15◦ or – for larger gradients – a continuous rotation with a finite
angular velocity within the framework of the LLG equation, Eq. (8.12), and as before we
treat pinning forces phenomenologically.
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Figure 10.16: Schematic illustration of the forces acting on the skyrmion lattice in parallel
and perpendicular to the direction of the current. The small black arrows illustrate the
local orientation of the magnetization projected into the plane perpendicular to the mag-
netic field, and the red horizontal and the green vertical arrows denote the acting forces.
For a static, non-moving skyrmion lattice the red arrows correspond to the Magnus force
and the green arrows to the dissipative forces. These forces change smoothly across a
domain when a temperature or field gradient is present. The smooth gradient in these
forces then leads to rotational torques. Note that the rotational torques do depend very
sensitively on the relative orientation of the current and the gradient on one hand and on
the other also on the direction in which the skyrmion lattice drifts. For example, for the
static skyrmion lattice, in the left (right) panel where the current and the gradient are
perpendicular (parallel) to each other, the dissipative (Magnus) forces induce the rotation.
We published this Figure in Ref. [71].

The basic idea underlying the theoretical analysis was shown already in Fig. 10.6 for
the case of a temperature gradient and an electric current parallel to the direction of
the temperature gradient. Fig. 10.16 shows a slightly generalized schematic plot of the
rotational torques. The right panel corresponds to Fig. 10.6, where the current and the
gradient are parallel to each other, but in the left panel of Fig. 10.16 they are perpendicular
to each other. As before, the red horizontal and the green vertical arrows illustrate the
forces perpendicular and parallel to the applied current, respectively, and the small black
arrows sketch the projection of the skyrmion lattice onto the direction perpendicular to
the applied magnetic field. Note that in the static case the red horizontal (green vertical)
arrows correspond to the Magnus (dissipative) forces, but for a moving skyrmion lattice
the situation is more complicated. The background color denotes the gradient, where the
different background color (blue instead of red as in Fig. 10.6) should indicate that we
are not necessarily considering a temperature gradient, but also, for example, magnetic
field gradients in this Section. As can be seen from the Figure, in the left panel the green
vertical arrows are responsible for the torques, whereas in the right panel the rotation
is induced by the red horizontal arrows, indicated by the colored curved arrow above
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each plot. This shows that the rotational torques depend very sensitively on the relative
orientation of the current and the gradient. Whether the torque stems from the Magnus
forces or the dissipative forces depends therefore on the relative orientation of current and
gradient, and on the direction of the drift velocity of the skyrmion lattice.

In this Section, we assume that vs is small compared to all characteristic velocity scales
of the skyrmion lattice (e.g. Tc − T multiplied with the skyrmion distance), as before.
Hence, we derive our theory only to linear order in vs. Furthermore, we consider only tiny
gradients, i.e. their effects on the length scale set by the skyrmion distance is negligible,
as it is the case in the experiments described in the previous Section. Nevertheless, when
multiplying the tiny gradient with the size of a domain of radius rd of the skyrmion lattice,
which is much larger than the size of the skyrmion distance, this leads to a sizable variation
of the forces across the domain and thus to measureable rotational torques. Note that in
MnSi the distance between skyrmions is of the order of 20 nm, but the size of a domain
can be several hundred µm [67]. In the following, we denote by λ the quantity with the
gradient, e.g. λ is B or Tc − T . We also assume that the total change of λ across a
domain remains small compared to λ, i.e. rd|∇λ| � λ. In this limit, the drift velocity
vd . vs as well as the angular velocity ∂tφ ∝ vs · ∇λ characterizing the rotational motion
remain small. Below we show that in this limit even the velocity at the boundary of the
domain, ∂tφ rd, remains small. Moreover, in the following we neglect the effects of torques
due to distortions as well as macroscopic deformations of the skyrmion lattice, and focus
only on torques due gradients in the acting forces. We again consider the ansatz given in
Eq. (10.2):

Ω̂(r, t) = Rφ(t) · Ω̂0

(
R−1
φ(t) · (r − vdt)

)
, (10.27)

where Ω̂0(r) describes the static skyrmion lattice.6 To obtain the equation for the rota-
tional torques which determine the rotations around the B axis, by multiplying the LLG
equation, Eq. (8.12), by the generator of the rotational mode:

Ĝrot Ω̂ = ∂φΩ̂ = B̂ × Ω̂− (B̂ · (∆r ×∇))Ω̂ (10.28)

and integrate over r. Note that the second part of the generator is linear in ∆r and for
large domains much larger than the first term.

In the case of a gradient, this procedure leads to several types of contributions. The
first type arising from B̂×Ω̂ can, however, be neglected whenever the second (much larger)
term of the generator contributes. The second part of the generator induces torques of
the form r × f , where the force fi is obtained by multiplying ∇iΩ̂ with the terms of the
Landau-Lifshitz-Gilbert equation, Eq. (8.12). In the presence of a small gradient of the
parameter λ, we obtain f(λ(r)) ≈ f(λ) + (r · ∇λ)∂λf , and therefore∫

d2rB̂ · [r × f(λ(r))] ≈
∫
d2r

(
B̂ · [r × ∂λf ]

)
(r · ∇λ)

=

∫
d2r εijk Birj(∂λfk) rl (∂lλ)

≈
(

1

2

∫
d2r r2

)
1

A

∫
d2r εilk Bi(∂λfk) (∂lλ)

=
A

4π
B̂ ·
[
∇λ× ∂λ

∫
d2r f

]
,

(10.29)

6Note that within this ansatz one obtains the same solution for the drift velocity as in Chapter 9 to
leading order in the gradient, i.e. to order (∇λ)0 (where for the undistorted skyrmion lattice no rotations
occur).
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where A is the area of the domain. In the last approximation we used that a periodic
function superimposed with a smooth increase can be approximated by its average value
times the increasing function. Required for this approximation is that the periodicity
of the periodic function is small compared to the length scale on which the increasing
function varies. Thus, from this calculation we obtain∫

d2r B̂ · [r × f(λ(r))] ≈ A

4π
B̂ ·
[
∇λ× ∂λ

∫
d2r f

]
. (10.30)

Because we consider a rigid skyrmion lattice, where vd is constant across the domain, it
is essential to take the derivative with respect to λ for a fixed drift velocity, i.e. ∂

∂λf
∣∣
vd
.

Since the sum of all contributing forces, Eq. (9.16), vanishes,
∑

α f
α(λ,vd) = 0, it is of

course d
dλ

∑
α f

α = 0, but ∂
∂λ

∑
α f

α
∣∣
vd

is finite. Furthermore, as in the last Sections, we
have neglected all terms that are odd in r in Eq. (10.30), which vanish for symmetrically
shaped domains.

Another contribution comes from the time derivatives ∂tΩ̂ in Eq. (8.12). Within our
ansatz:

∂tΩ̂ = ∂tφ∂φΩ̂− (vd · ∇)Ω̂. (10.31)

The term (vd · ∇)Ω̂ leads to contributions of the types discussed above, but ∂tφ∂φΩ̂
induces additional torques. When multiplying ∂tφ∂φΩ̂ with the generator of the rotation
mode, ∂φΩ̂ of Eq. (10.28), one immediately obtains terms that are quadratic in ∆r and
that are independent of ∇λ like α∂tφ

∫
d2rM [(B̂[∆r×∇])Ω]2. This term is describes the

friction torque per volume when a domain is rotating with an angular velocity ∂tφ. For
a rotating domain, the local rotation velocity grows linearly with the distance from the
center of the rotating domain. Therefore, also the friction forces increase linearly with the
distance from the center. From this follows that terms like α∂tφ

∫
M [(B̂[∆r ×∇])Ω]2/A

grow also linear with the area of the domain A, as expected.
Finally, a type of rotational torques originates from the coupling of the magnetic

lattice to the underlying atomic lattice. As discussed above, it accounts for the fact that
the skyrmion lattice has a preferred orientation with respect to the atomic lattice without
an applied current or gradients. The corresponding torque per unit cell is given by

TL ≈ −χ sin(6φ) (10.32)

Note that we have to consider this term, because it is the leading contribution arising to
zeroth order in ∇λ and vs, despite the fact that it does not scale with the size of the
domain as the other terms.

In total, we obtain an equation for the acting torques which have to balance each other:

0 = TL + TG + TD + Tpin, (10.33)

where the torques TG, TD, and Tpin are given by:

TG =
A

4π
∇λ ·

[
∂(Gvs)
∂λ

− ∂G
∂λ
vd

]
, (10.34a)

TD = −Aα̃D
2π

∂tφ−
A

4π
∇λ ·

[
B̂ ×

(
∂(Dβ̃vs)

∂λ
− ∂(Dα̃)

∂λ
vd

)]
, (10.34b)

Tpin =
A

4π
∇λ · [B̂ × v̂d]

∂Fpin

∂λ
, Fpin ≡ |F pin|. (10.34c)
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Eq. (10.33) describes how a rotational torque around the magnetic field axis is created by
the applied current. Note that the contributing torques linear in ∇λ are all of the form
(∇λ)T ·M ·v, whereM denotes a 3× 3 matrix and v a velocity. For example, neglecting
the possible λ-dependence of vs, for the torque TG due to the Magnus force one finds
v = vs − vd andM = A

4π
∂G
∂λ1 with the 3× 3 unit matrix 1. Actually, the structure of the

gradient-induced torques is mainly fixed by the symmetries of the skyrmion lattice. To
see this, let us for simplicity consider a magnetic field in ẑ direction. The sixfold rotation
symmetry of the skyrmion lattice around the magnetic field direction (which corresponds
here to the ẑ axis) reduces the 3× 3 matrixM for all contributions to an effective 2× 2

matrix M̃ in the xy plane, which is of the form M̃ij ∼ c1 δij + c2 εij with parameters c1

and c2. Furthermore, the magnetic structure and the magnetic field is invariant under
the combined symmetry of time-reversal and a rotation by π around an 〈100〉 axis in the
xy-plane. From this follows that matrix M̃ij has to be proportional to δij (εij) for the
reactive (dissipative) torques.

From above equations it is clear that for a given∇λ the strength of the torques depends
on one hand on the λ dependence of the parameters G, D, α̃, β̃, vs, and Fpin, and on the
other on the relative orientation between the drift velocity and the applied current. In the
limit vd = 0, the torque arising from the Magnus force does not contribute if the current
and the gradient are perpendicular to each other, and is largest for a parallel configuration.
For the dissipative torques TD it is the other way around. They contribute most when
gradient and current are perpendicular to each other. This corresponds to the situation
sketched in Fig. 10.16, when regarding the red (green) arrows as the Magnus (dissipative)
forces. For a finite vd, this simple picture does not apply as, for example, the torque due
to the Magnus forces almost vanishes in the limit vd ≈ vs.

Eq. (10.33) is of the following structure:

sin 6φ = −γ ∂tφ+∇λ ·Vs, (10.35)

where
γ =

Aα̃D
2πχ

. (10.36)

To obtain the vector Vs = Vs[vs] one has to first solve Eq. (9.16) for vd as a function
of vs. Inserting vd into Eq. (10.33) and dividing Eq. (10.33) by −χ one obtains Vs by
comparison of Eqs. (10.32)–(10.35). In Chapter 9, we discussed that a closed solution for
vd is not possible as long as F pin is not known. However, assuming that we have already
expressed vd as a function of vs, then Vs is given by:

Vs[vs] =
A

4πχ

{[
∂(Gvs)
∂λ

− ∂G
∂λ
vd

]
−
[
B̂ ×

(
∂(Dβ̃vs)

∂λ
− ∂(Dα̃)

∂λ
vd

)]
+ [B̂ × v̂d]

∂Fpin

∂λ

}
(10.37)

The vector Vs contains all information about the coupling of the current to the small
gradients, and it includes contributions from the Magnus, the dissipative and the pinning
forces. Note that Vs is proportional to the area A of the domain as is γ, and for vs = 0
we get Vs[0] = 0. Eq. (10.35) is for fixed γ, Vs, and ∇λ a simple differential equation in
time, for which a closed solution exists.

First of all, one observes that if Vs and ∇λ are perpendicular to each other, Eq. (10.35)
is solved by φ = 0, and no rotation occurs. This will be discussed further below. Fur-
thermore, for j < jc, when pinning forces cancel all reactive and dissipative forces, the
solution of Eq. (10.35) is trivial. Neither a motion nor a rotation of the skyrmion lattice
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Figure 10.17: Rotation angle φ (in units of 1◦) and angular velocity ω̄ times the prefactor
γ as a function of ∇λ ·Vs. We published this Figure in Ref. [71].

occur, i.e. Vs = 0 and φ = 0 within our theory. As mentioned already, even below jc a
slow creep motion might occur. Whether creep also leads to rotations is unclear. The
recent experiments seem, however, to exclude pronounced rotations due to creep, since
the observed onset of the rotation is rather sharp [10], see panel (A) of Fig. 10.15.

For j > jc, the domains move, and Vs will generally be finite. In this case, the size of
∇λ ·Vs determines whether a rotation by a finite angle or a continuous rotation will set
in. In the following, we discuss Eq. (10.35) from different perspectives. First, we consider
a fixed Vs and γ, and analyze it for various strengths of the gradient. Then we discuss its
dependence on the strength of the current as well as the different relative orientations of
currents and gradients. Afterwards, we consider the domain size dependence. Finally, we
compare our theory to the present experimental situation and suggest new experiments to
further explore the coupling of magnetism and currents.

Dependence on size of gradients: For |∇λ ·Vs| < 1, a solution of Eq. (10.35) is given
by

φ =
1

6
arcsin(∇λ ·Vs), (10.38)

which shows that the gradient induces a rotation by a finite angle (i.e. ∂tφ = 0). For
increasing ∇λ (and ∇λ ·Vs 6= 0) the rotation angle increases up to the maximal possible
value of π/12 = 15◦. For |∇λ ·Vs| > 1, the domain rotates with the average angular
velocity

ω̄ =

√
(∇λ ·Vs)2 − 1

γ
, (10.39)

and Eq. (10.35) is solved by

φ(t) =
1

3
arctan

[
1 + γω̄ tan(3ω̄t)√

1 + γ2ω̄2

]
. (10.40)

In Fig. 10.17, the rotation angle φ and the average angular velocity ω̄ are plotted as a
function of ∇λ ·Vs. The solution for the rotation angle φ, Eq. (10.40), as a function of
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Figure 10.18: Inset: Rotation angle (in units of 1◦) as a function of time for three different
strengths of ∇λ ·Vs > 1. When increasing ∇λ ·Vs, the rotation gets more and more
harmonic. This can also be seen by considering the Fourier coefficients of ∂tφ given by
cn = |

∫ 2π/6ω̄
0 ∂tφe

in6ω̄t dt| shown in the main panel as a function of ∇λ ·Vs. We published
this Figure in Ref. [71].

time is shown in the inset of Fig. 10.18 for different strengths of ∇λ ·Vs. Just above
the threshold, ∇λ ·Vs & 1, the rotation is not homogeneous. It is slowed down close to
an angle of 15◦ (plus multiples of 60◦). In the limit |∇λ ·Vs| � 1, the average angular
velocity ω̄ ≈ (∇λ ·Vs)/γ becomes independent of the domain size, as both γ and Vs are
linear in the area A of the domain. In that limit, the domain rotates uniformly with
φ = ω̄t. In the main plot of Fig. 10.18, the modulus of the Fourier components of ∂tφ,
|cn| = |

∫
ei6ω̄nt∂tφdt| as a function of ∇λ ·Vs is shown. At the threshold ∇λ ·Vs = 1, all

Fourier components contribute equally to ∂tφ, whereas for larger gradients the rotation
gets more uniform. The reason for plotting the Fourier components of ∂tφ is that it might
be possible to measure them in experiments. For instance, exploiting the emergent electric
field Ee, which can be measured in a Hall experiment [80] as discussed above, contains a
contribution proportional to ∂tφ for continuously rotating domains.

To check whether the velocity at the boundary of a domain vb arising from the rotation
still remains small for fixed ω̄ and with vb = ω̄ rd, where rd is the radius of the domain,
we estimate

vb = ω̄ rd ≈
|∇λ ·Vs|

γ
rd � |Vs|λ/γ . vs/α̃. (10.41)

In the penultimate inequality, we used our assumption that the gradients across the sample
and therefore also across a single domain are small, rd |∇λ| � λ. We expect that the
velocity at the boundary of a domain vb is typically smaller than the velocity of the domain
vd, although our estimate does not exclude that vb might be somewhat larger than vs or
vd. Eq. (10.41) also implies that the breakup of domains due to the rotation or other
violent phenomena will probably not occur. To summarize, the solution of Eq. (10.35) for
various ∇λ at fixed Vs is rather universal and independent of microscopic details. In the
following, we discuss Eq. (10.35) for different current strengths.
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Dependence on strength of current: As discussed above, for current densities below
the threshold current density, j < jc, we get Vs = 0, and neither a motion nor a rotation
of the skyrmion lattice occurs. Directly at the current threshold, when the domain just
starts to move and the drift velocity is tiny (vd ≈ 0), Vs jumps to the finite value

Vs|vs=vpin = − A

4πχ

[(
−∂Gvs

∂λ
+
Gvs
Fpin

∂Fpin

∂λ

)
+ B̂ ×

(
∂Dβ̃vs
∂λ

− Dβ̃vs
Fpin

∂Fpin

∂λ

)]
. (10.42)

The jump is independent of the two damping constants α, α′, and their gradients (see
Fig. 10.20) as vd ≈ 0 at the depinning transition. This jump of Vs leads to a jump of
the rotation angle if |∇λ ·Vs| < 1. Otherwise, for |∇λ ·Vs| > 1 a continuous rotation
sets in immediately. However, the behavior of ∇λ ·Vs as a function of vs is complex.
Upon increasing the current, ∇λ ·Vs can either increase, decrease or even change its sign,
depending on the direction of ∇λ and on the fact which of the forces changes most strongly
upon varying λ.

Motivated by the experiments dicussed in the previous Section we now study the case
of a temperature gradient, i.e. λ = t. For our numerical calculations we assume that
the temperature dependence of the pinning force F pin = −4πMvpinf(vd/vpin) arises only
from the temperature dependence of the magnetization M . The latter we obtain from the
Ginzburg-Landau theory as well as the temperature dependence of the other parameters
G, D, and D′, see Fig. 9.2. This assumption is based on the experimental observation [80]
that the critical current is almost temperature independent, at least for a certain range of
temperatures.

Moreover, we first assume that all damping constants are temperature independent,
and that the temperature gradients are independent of the applied current as well, but
these two assumptions are relaxed below. In this case, a typical result for the rotation
angle and the angular velocity of a skyrmion domain as a function of vs in the presence
of a temperature gradient is shown in Fig. 10.19. In the left (right) panel of the Figure,
the temperature gradient is applied parallel (perpendicular) to vs, and the rotation angle
φ decreases (increases) after the initial jump. In the parallel configuration, the rotation
angle rises again for larger values of vs. When the rotation angle reaches its maximal
value of 15◦, the continuous rotation sets in. Within the assumption that all damping
parameters are temperature independent, the qualitative shape of these curve appears to
be rather independent of the precise values of the various parameters.

In the experiments of Ref. [10], described in the previous Section, the temperature
gradients are induced by the currents and are therefore not independent of the current
strength. As can be seen from Fig. 10.15, the temperature gradients grow quadratically
with vs. In Fig. 10.20, we take this extra effect into account, and plot the rotation angle
for small current densities (blue thin curves) again for the parallel (left panel) and per-
pendicular (right panel) configuration of ∇λ and vs. This does not lead to any qualitative
changes (note the different scale on the x axis). However, one can obtain qualitatively
different results when including a small temperature dependence of the Gilbert damping
α. This is illustrated by the thick green curves in Fig. 10.20. In that case, we obtain that
after the initial jump the rotation angle increases for both the parallel and perpendicular
configuration. The latter can reproduce qualitatively the experimentally observed behav-
ior, as discussed below. To sum up, the behavior of φ and ω̄ as a function of the strength
of the current for fixed ∇λ is much more complex than the dependence on ∇λ for fixed
Vs. Furthermore, it depends very sensitively on the details of the theory.
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Figure 10.19: Rotation angle φ (in units of 1◦) and angular velocity ω̄γ as a function of vs
for a temperature gradient parallel (∇t‖vs, ∇t = (−0.1, 0, 0)T , left panel) and perpendic-
ular (∇t ⊥ vs, ∇t = (0,−0.05, 0)T , right panel) to the current for the parameters α = 0.2,
β = 0.45, α′ = 0.01, β′ = 0.2, A/χ = 200, t = −1, B = (0, 0, 1/

√
2)T , vpin = 1, and

f = 1. For both geometries one observes a jump of φ at vs ≈ vpin from zero to a finite
rotation angle. After the initial jump the rotation angle increases for the perpendicular
configuration (right panel), while for the parallel arrangement (left panel) first a drop
and then an increase up to the maximal angle of 15◦ occurs. For larger vs, a continuous
rotation characterized by the angular velocity ω̄ sets in for both configurations. For the
calculation we assumed that the damping parameters and vpin are independent of t. We
published this Figure in Ref. [71].
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Figure 10.20: Rotation angle φ (in units of 1◦) as a function of vs for a temperature gradient
parallel (∇t‖vs, left panel) and perpendicular (∇t ⊥ vs, right panel) to the current. The
parameters are the same as in Fig. 10.19 with two exceptions. First, we have taken into
account that in the experiments of Ref. [10] the temperature gradient grows with the
square of the applied current, ∇t = (−0.1v2

s , 0, 0)T and ∇t = (0,−0.05v2
s , 0)T , for current

parallel and perpendicular to vs, respectively. Second, for the thin blue curve we assumed
(as in Fig. 10.19) that the damping constants are independent of t, while for the thick
green curve a weak temperature dependence of the damping constant α, ∇α = 0.035∇t,
was assumed. This parameter has been chosen to reflect the experimental observation,
see Fig. 10.23. For even stronger currents (not measured experimentally and not shown in
the figure), the size of the torque drops again, and a finite rotation angle is obtained for
1.57 . vs . 2.53 in the parallel configuration with the temperature-dependent damping
constant α. We published this Figure in Ref. [71].
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Dependence on the relative orientation of the current and the gradient: The
rotational torques on the system depend strongly on the relative orientation of the gradient
and the current, as shown in Figs. 10.19 and 10.20. The reason for this is that one
probes different physical mechanisms for different relative orientations between gradient
and current. Above we discussed this already for the simple case of a static domain
without pinning forces. In general, however, the situation is more complex. All directional
information is encoded in the function Vs[vs] which contains unfortunately a rather large
number of unknown parameters like the functional form of the pinning forces and their
dependence on λ, or the size and the λ-dependence of the damping constants. Therefore,
in the following we discuss only a few limiting cases, as a drastically simplified picture
occurs in regimes when only two forces dominate in Eq. (9.16). Remember that to obtain
Vs[vs] one has to first solve Eq. (9.16) for vd as described above. We will consider first
the limit, where the strength of the applied current density is slightly above the threshold
current, and later a situation, where the applied current density is large.

Close to the depinning transistion, the Magnus force is of the same order as the pinning
force, while the two dissipative forces are typically much smaller. Eq. (9.16) implies that
v̂d can be expressed by

v̂d =
G
Fpin

B̂ × (vs − vd), (10.43)

and thus v̂d is in particular parallel to B̂ × (vs − vd). When inserting this result into
Eq. (10.34c) we obtain that for an λ-independent vs both the reactive rotational coupling
vector and the rotational pinning vector become proportional to ∇λ · (vs − vd). Despite
the fact that the particular prefactors of Tpin and TG contributing to Vs are still compli-
cated, the ratio of the component of Vs parallel (Vs‖) and perpendicular (Vs⊥) to vs is
independent of the details and depends only on the direction in which the skyrmion lattice
drifts:

Vs‖

Vs⊥
≈

(vs − vd)‖
(vs − vd)⊥

=
vs − vd‖
−vd⊥

(10.44)

To evaluate the last expression further, let us project Eq. (10.43) onto (v̂d × B̂) which
leads to 0 = v̂d · (vs − vd), and thus v̂d ·vs = vd. With this we obtain

vd‖ = vd · v̂s =
vd
vs
v̂d ·vs =

v2
d

vs
. (10.45)

As a consequence it follows that

vs =
v2
d

vd‖
=
v2
d⊥ + v2

d‖

vd‖
=
v2
d⊥
vd‖

+ vd‖ (10.46)

and finally when inserting Eq. (10.46) into Eq. (10.43) we can express Vs‖/Vs⊥ just by
the parallel and perpendicular components of vd:

Vs‖

Vs⊥
≈

(vs − vd)‖
(vs − vd)⊥

= −vd⊥
vd‖

. (10.47)

This ratio Vs‖/Vs⊥ is plotted versus −vd⊥/vd‖ as a function of the current vs for different
strengths of the damping constants in Fig. 10.21. Note that in the limit of small damping
(blue line in the Figure) Eq. (10.47) is fulfilled.

In principle, this ratio can be experimentally determined in different ways. One way to
obtain the ratio Vs‖/Vs⊥ would be to measure the rotation angle or the angular velocity
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Figure 10.21: Ratio Vs‖/Vs⊥ versus −vd⊥/vd‖ as a function of vs for different strengths
of the damping parameters α and β (here assumed to be independent of t). The other
parameters are vs = vs (1, 0, 0)T , t = −1, B =

√
−t/2 (0, 0, 1)T , α′ = 0, β′ = 0, and f = 1.

for ∇λ parallel and perpendicular to the current. From these quantities one can calculate
Vs‖/Vs⊥ directly by using Eq. (10.38) or Eq. (10.39), respectively. Since arcsinx ≈ x for
x � 1, for small angles this ratio is just given by the ratio of the two rotation angles.
Another way to obtain Vs‖/Vs⊥ is to find the relative orientation of the gradient ∇λ
and the current vs, where all rotations vanish, ∇λ ·Vs = 0. When defining this relative
orientation between ∇λ and vs by the angle φm, we obtain

Vs‖

Vs⊥
=

1

tanφm
. (10.48)

Using Eq. (10.47) the ratio Vs‖/Vs⊥ allows to determine the ratio vd⊥ / vd‖ quantita-
tively. Together with the independent measurement of vd‖ in the Hall effect exploiting the
emergent electric field [80], one obtains the complete information on the drift motion by
combining the results of both experiments.

In the limit of large currents, vs � vpin, we expect that pinning forces can be neglected.
In this case, we can follow a similar procedure as above, and use Eq. (9.16) to show that
(β̃vs − α̃vd) is parallel to B̂ × (vs − vd), and therefore Vs is parallel to B̂ × (vs − vd).
Using Eq. (9.22) and neglecting the possible λ-dependence of vs we obtain to linear order
in β̃ and α̃ for Vs:

Vs = − A

4πχ

(
B̂ × vs

)(
(β̃ − α̃)

∂G
∂λ

D
G

+
∂D(β̃ − α̃)

∂λ

)

= − A

4πχ

(
B̂ × vs

) 1

G
∂

∂λ

(
DG(β̃ − α̃)

)
.

(10.49)

As expected, this expression is proportional to β̃− α̃, and therefore no torques do occur in
a Galilean invariant system. From Eq. (10.49) it follows that for large currents the rotation
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occurs mainly for gradients perpendicular to vs. This is consistent with the result that
for large currents the Magnus force (being proportional to (vs − vd)) almost vanishes,
because the skyrmions move mainly parallel to the current and vs ≈ vd, as discussed
previously. Furthermore, this is consistent with the behavior of the rotation angle and the
angular velocity shown in Fig. 10.19. Although we use a two times smaller gradient for
the perpendicular configuration in this plot, we nevertheless obtain that the value of vs,
where the continuous rotation sets, is much smaller than in the parallel configuration.

Domain size dependence and angular distribution: So far we discussed the physics
of Eq. (10.35) for one domain. In a real system, there are in general many domains present
with a certain distribution of domain sizes A. Since both Vs and γ depend linearly on A,
the rotation angle and the angular velocity will in general depend on the domain size and
therefore on the distribution of domains. As discussed above, only for |∇λ ·Vs| � 1, the
angular velocity ω̄ becomes independent of the domain size and all domains rotate approx-
imately with the same angular velocity. For smaller values of |∇λ ·Vs|, the distribution of
domain sizes Pd(A) leads to a distribution of rotation angles Pφ = P sφ + P rφ which is the
sum of the rotation angle distribution for the static domains, P sφ, and the continuously
rotating domains, P rφ . For the static domains only angles up to 15◦ are possible, and we
obtain P sφ from Pd(A) and Eq. (10.38):

P sφ =

∫ Ac

0
dAPd(A) δ

(
φ− arcsin(A/Ac)

6

)
= 6Ac cos(6φ)Pd(Ac sin(6φ)) for 0 ≤ φ ≤ π

12
(= 15◦),

(10.50)

where Ac = A/(|∇λ ·Vs|) is the size of a “critical” domain which just starts to rotate
continuously. The angular distribution of the continuously rotating domains, P rφ , is also
non-trivial, because the angular velocity ∂tφ of a rotating domain is slowed down close
to φ = 15◦ (plus multiples of 60◦), when the counter-forces due to the atomic lattice are
strongest, see inset of Fig. 10.18. It can be calculated from a distribution of domain sizes
Pd(A) and the angular distribution prφ(A) of a single domain. We obtain

P rφ =

∫ ∞
Ac

dAPd(A) prφ(A), (10.51a)

prφ(A) =
1

T

∫ T

0
δ(φ− φ(t))dt =

1

T∂tφ

∣∣∣∣
φ(t)=φ

=
3

π

√
A2 −A2

c

A−Ac sin 6φ
, (10.51b)

where T = 2π/(6ω̄). The total distribution Pφ = P sφ + P rφ is normalized to 1, i.e.∫ 2π/6
0 Pφ dφ = 1. Furthermore, Pφ is smooth for φ > 0, even though both P sφ and P rφ are
non-analytic at φ = 15◦. In Fig. 10.22, we plot the total angular distribution Pφ of the rota-
tion angle for the skyrmion lattice assuming the domain distribution Pd(A) = e−A/A0A/A2

0

for various values of A0/Ac. It can be clearly seen from the Figure that a distribution of
domain sizes leads to a distribution of rotation angles. This implies that in the neutron
scattering data one would expect to see aside from the rotation of the Bragg spots also a
broadening of those.

As explained, it is possible to calculate the distribution of rotation angles for a given
distribution of domain sizes. Of course, it is also possible to invert these above equations,
i.e. to extract the distribution of domain sizes from the angular distribution Pφ which,
in principle, can be obtained with elastic neutron scattering by measuring the scattering
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Figure 10.22: Angular distribution Pφ of the rotation angle of the skyrmion lattice for
various values of A0/Ac ∝ |∇λ|. Here, we assumed a distribution of domain sizes of the
form Pd(A) = e−A/A0A/A2

0. To the total smooth angular momentum distribution Pφ
contribute both the static and the continuously rotating domains. While static domains
contribute only for 0 ≤ φ ≤ 15◦, rotating domains with A > Ac contribute to all angles.
We published this Figure in Ref. [71].

intensity as a function of the angle. For instance, in the regime, where most of the
domains do not rotate continuously, one can extract the distribution of domain sizes by
using Eq. (10.50) and plotting Pφ/ cos 6φ as a function of sin 6φ. In particular, one also
obtains the behavior of Ac as a function of ∇λ and the current by comparing angular
distributions for different strength of the current or the gradient

Comparison to experiments: In the experiments of Ref. [10], only a temperature
gradient was applied in the direction of the current. The perpendicular configuration
and other gradients like magnetic field gradients have not been studied so far. For a full
quantitative comparison of theory and experiment it would be desirable to have data,
where the applied current as well as both the strength and the direction of the gradients
are changed independently. Note that in the experiments of Ref. [10] the temperature
gradient was induced by the current, and they are therefore not independent of each
other, see Fig. 10.15. At present, such data is, however, not available. Therefore, we
restrict ourselves to a few qualitative observations. In our theory, we obtain a critical
current density above which a rotation sets in, as in the experiments, compare Figs. 10.15,
10.19, and 10.20. Furthermore, according to our theory we expect a jump of the rotation
angle at jc which depends on the domain size. This seems consistent with the observed
rather abrupt increase of the rotation angle at jc, especially when taking into account
that the experimental results are based on a distribution of domain sizes. For even larger
current densities, a slower increase of the rotation angle was observed in the experiments.
For temperature-independent damping constants α, α′, β, and β′, however, the extended
Landau-Lifshitz-Gilbert equation predicts a decrease after the initial jump. Nonetheless,
for a weak temperature-dependent Gilbert damping α we can describe the experimentally
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Figure 10.23: To study the angular distribution Pφ of the scattering intensity we have
re-analyzed the data of Ref. [10]. Here, we show Pφ normalized to 1 for T = 27.4 K and
currents of strength j = 0 (black diamonds) and j ≈ −2.07 · 106 A/m2 (red circles). The
lines are Gaussian fits serving as a guide to the eye. Note that the distribution of angles
extends up the maximally possible rotation angle of 15◦ which suggests that some of the
larger domains are close to (or are already) continuously rotating with a finite angular
velocity for this parameter range. We published this Figure in Ref. [71].

observed behavior, compare Figs. 10.15 and 10.20. In Fig. 10.20, we also accounted for
the quadratic current dependence of the temperature gradient arising from the resistive
heating in the sample.

To adress the question whether some larger domains are already continuously rotat-
ing in the existing experiments, we observe again that average rotation angles up to 10◦

– rather close to the maximally possible value of 15◦ for static domains – have already
been observed, see Fig. 10.15. This suggests that continuously rotating domains are ei-
ther already present in the system, or may be reached by using slightly larger currents or
temperature gradients. To examine this aspect further we have investigated the angular
distribution of the scattering pattern, re-analyzing the experimental data of Ref. [10]. In
Fig. 10.23, we show the azimuthal intensity distribution with and without an applied cur-
rent. One observes that for zero current the intensity distribution is substantially broad-
ened due to demagnetization effects, as explained previously. This effect can be avoided
by using thin samples, where only the central part is illuminated [67], as discussed in
Chapter 5. However, for the existing data this implies that a quantitative analysis of Pφ is
not possible. Concerning the interesting question, whether continuously rotating domains
are already present in the data, we observe that the azimuthal intensity distribution for
the rotation angle with the applied current density of j ≈ −2.07 · 106 A/m2 extends up
just to 15◦, Fig. 10.23. Therefore, from the present data we can neither claim nor exclude
that continuously rotating domains already exist for this set of data. Nevertheless, slightly
larger current densities or gradients should be sufficient to create those.

However, in principle, the investigation of the angular distribution of the neutron
scattering only provides an indirect evidence for the expected continuous rotation of the
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skyrmion lattice. To observe the continuous rotation of the skyrmion lattice directly one
can, for example, exploit the emergent electric field as discussed above. Here, it would be
interesting to observe higher harmonics in the Hall signal which are expected to appear
close to the threshold, where continuous rotations set in, see Fig. 10.18.

To summarize, in this Section we developed a theory for the rotation of the skyrmion
lattice due to currents and gradients. We have shown that the rotational torques can
be controlled both by the strength and the direction of field gradients or temperature
gradients in combination with electric currents. We have also shown that the current-
induced torques react very sensitively on the relative strengths of the various forces and
on the variations of these forces with respect to temperature or magnetic field. While
we studied these aspects of the theory in detail, many other questions remain open. An
important question is, for example, to identify the leading damping mechanisms and their
dependence on temperature and field. Furthermore, a deeper understanding of the pinning
forces and their interplay with damping and the motion of magnetic textures is required
to control spin-torque effects. We expect that future rotation experiments will provide
valuable information. Quantitatively, we only studied the role of temperature or magnetic
field gradients, but other options like macroscopic variations of a sample cross section
leading to gradients in the current density are possible, too. Also, changes in the chem-
ical composition, like a gradient in doping or strain in the sample, can induce gradients.
Furthermore, while we applied our theory to skyrmion lattices, our theoretical approaches
can be used for other complex magnetic textures, too, and our results should also have
ramifications for other setups [99, 138]. In the future, it might also be interesting to sub-
stitute the electrical current by, for example, pure spin currents or thermal currents to
manipulate skyrmion lattices (e.g. in insulators). We expect that also in such systems the
investigation of rotational motion driven by gradients will give useful insight in the control
of magnetism beyond thermal equilibrium.

In the next Chapter of this Thesis, we will briefly present some analogies of the
skyrmion lattice and the vortext lattice of a type-II superconductor.
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11 Skyrmion Lattice vs. Vortex Lattice
of a Type-II Superconductor

In this Section, we compare the skyrmion lattice and its properties to the vortex lattice of
a type-II superconductor. Therefore, we first briefly review the vortex lattice state which
was theoretically predicted in 1957 by A. A. Abrikosov [143] and first observed in 1964 by
D. Cribier et al. using neutron diffraction [144] and then by U. Essman and H. Träuble
in 1967 [145] using electron microscopy. Later, in 2003, A. A. Abrikosov together with
V. L. Ginzburg and A. J. Leggett were awarded the Nobel prize in Physics “for pioneering
contributions to the theory of superconductors and superfluids”.

In view of this long and rich history of superconductors in combination with five Nobel
prizes since their discovery, a lot of information on superconductors can be found in the
literature. Here, we will therefore focus on some aspects which are appropriate for our
analogies to the skyrmion lattice.

In a superconductor, the formation of a superconducting condensate consisting of
Cooper pairs leads to a disappearance of the resistance and to the Meissner effect. The
so-called type-I superconductors show a complete Meissner effect, i.e. that an applied
magnetic field (smaller than the critical field, B < Bc) is fully expelled from the super-
conducting region. Above the critical field, B > Bc, superconductivity is destroyed.

However, most known superconductors, in particular the high-temperature supercon-
ductors, are of type II. In type-II superconductors, there exists an interval for the magnetic
field strength Bc1 < B < Bc2, where vortex tubes of quantized magnetic flux Φ = h/(2e)
penetrate the superconductor.

As in the case of magnetism, superconductivity can phenomenologically be described
by a Ginzburg-Landau theory [146]. Here, the complex order parameter is given by
Ψ(r) = |Ψ|eiφ, consisting of an amplitude |Ψ| and a phase φ. It can be interpreted
as the macroscopic wave function at the postion r of the superconducting condensate,
and |Ψ(r)|2 represents the density of the Cooper pairs. In the normal phase above Tc,
the order parameter is invariant under the gauge transformation φ → φ′. However, in
the superconducting state, i.e. below Tc, the gauge symmetry of the order parameter is
spontaneously broken, and the system takes a special value of φ. A. A. Abrikosov showed
that in a type-II superconductor with Bc1 < B < Bc2 the order parameter obeys a vortex
lattice solution. It vanishes at the vortex cores which, in general, form a triangular lattice
in the plane perpendicular to the applied magnetic field. These are exactly the points,
where the magnetic field penetrates the sample, see left panel of Fig. 11.1. Furthermore,
the phase of the order parameter changes by multiples of 2π when following a closed
contour around one of these lattice points.

Concerning general aspects, the skyrmion lattice and the vortex lattice share a lot of
similarities. Both can be described phenomenologically in terms of a Ginzburg-Landau
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Figure 11.1: Left panel: sketch of a vortex lattice in a superconductor. Right panel: sketch
of the skyrmion lattice.

theory. The corresponding solution is a triangular lattice of skyrmions or vortices in
the direction perpendicular to the applied magnetic field. Along the direction of the
magnetic field, both structures are translationally invariant, leading actually to vortex
tubes and skyrmion tubes, respectively, as sketched in Fig 11.1. Also, both configurations
are topologically stable. In the case of the vortex lattice, the winding of the phase of
the order parameter is quantized to multiples of 2π while going around a vortex core,
i.e. topological order is described by the homotopy group π1(S1) = Z. In the case of the
skyrmion lattice, the topological order is described the homotopy group π2(S2) = Z, and
it is the winding number of the magnetization direction that is quantized. In contrast to
a vortex, where the order parameter vanishes in the center and varies on a length scale
which is usually much smaller than the distance of two vortices, the magnetization in the
skyrmion lattice is smooth and remains always finite [1]. Furthermore, in Chapter 9 we
introduced an alternative, intuitive picture for the skyrmion lattice, where we considered
it as an array of circulating dissipationless spin currents around the skyrmions with a
quantized winding number. In comparison, in a vortex lattice, there are dissipationless
charge currents flowing around the quantized vortices. They occur due to gradients in the
phase of the order parameter, whereas the dissipationless spin currents in the skyrmion
lattice are due to gradients in the spin orientation. One main difference between the two
pictures is that in superconductors the total charge is a conserved quantity. In the case of
the skyrmion lattice, the spin is, however, not a conserved quantity. Therefore, and due
to further dissipative forces acting on the skyrmions [124], this intuitive picture for the
skyrmion lattice is not complete, as mentioned in Chapter 9.

When applying an electric current to the two systems (without a thermal gradient),
they also share a few similarities, but their current-induced dynamics are different. For
the skyrmion lattice we have seen that, in the presence of a current, different kinds of
forces act on the skyrmion lattice, namely Magnus forces, dissipative forces, and pinning
forces due to disorder and the underlying atomic lattice. Furthermore, we discussed in
Chapters 7 and 9 that for small current densities, j < jc, the skyrmion lattice is pinned.
Above the critical current density it gets unpinned and starts to move. For j � jc,
pinning forces can be neglected and the drift velocity becomes proportional to the applied
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current. For a vortex lattice, the same type of forces act on the vortices and they follow
essentially the same equation of motions, Eq. (9.16). This means that also the vortex
lattice is pinned below a critical current density, j < jc, determined by the strength of the
pinning forces, and starts to move for j > jc [81–83]. Note that in Chapter 4.3, where we
phenomenologically discussed the pinning physics for the skyrmion lattice, we exploited
the knowlegde from the pinning physics of the vortex lattice case which has been studied
in the literature [83]. Although the structure of the pinning forces are expected to be
similar in both lattices, the precise form will, however, differ in the case of the skyrmion
lattice due to its smooth and non-vanishing magnetization.

Nonetheless, the dynamics of vortices and skyrmions and therefore the direction of
their drift velocities are different. For the skyrmion lattice, we have shown that the
drift velocity becomes proportional to the applied current for j � jc, where pinning
forces can be neglected. Therefore, skyrmions move mainly parallel to the current, since
the contribution of the Magnus force is almost canceled, i.e. vd ≈ vs with corrections
of the order of αD/|G|. Moreover, we showed in Chapter 7 that a moving skyrmion
lattice induces an emergent electric field. Due to the dominantly parallel motion of the
skyrmion lattice with respect to the applied current, the relative speed of the spin current
is reduced which leads to a large emergent electric field in perpendicular direction. In
contrast, for vortices dissipation dominates [135], i.e. Dα � G. This implies that the
motion of superconducting vortices is dominantly in the direction of the Magnus force,
i.e. perpendicular to the current. Furthermore, the change in the Hall signal due to the
electric field, which results from the motion of the vortex lattice, is much smaller [83, 135].

Concerning the rotations, for skyrmions they either occur due to a distortion of the
skyrmion lattice or due to a non-uniform applied spin current, as we have discussed in
the previous Chapter. For the vortex lattice the situation is similar. The current-induced
rotation caused by distortions due to disorder has been analyzed for vortex lattices in
superconductors [81]. Note, however, that this is a different mechanism to obtain distor-
tions which we did not discuss in this Thesis in the case of the skyrmion lattice. Those
rotations by a finite angle, which originate in disorder-induced distortions of the vortex
lattice, have been observed experimentally measuring the alternating current response of
superconductors [147]. In the skyrmion lattice, so far only rotations due to non-uniform
spin currents have been observed experimentally, where a temperature gradient was used
to induce a gradient in the spin currents, as discussed in Sec. 10.3. Actually, also in the
vortex lattice a current-induced rotation due to a non-uniform applied current was ob-
served [148]. However, since charge is a conserved quantity, this is more difficult to realize
than for skyrmions. The reason for this is that one does not obtain easily a gradient in
the applied electric current by tuning some external parameters like the applied magnetic
field or temperature. Therefore, in Ref. [148] the authors had to create a gradient in the
current density itself to induce the rotation of the vortex lattice. Experimentally, they
realized the gradient in the current density by taking a sample of the shape of a disk and
they injected the current at the center of a disk while removing it at the perimeter such
that the radial current density decayed as 1/radius.

We conclude this Chapter by summarizing some aspects of the vortex lattice and the
skyrmion lattice in Table 11.1.
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Compare Vortex lattice Skyrmion lattice

Order parameter macroscopic wavefunction Ψ direction of magnetization Ω̂
of superconducting condensate

Dissipationless charge current spin current

Around vortices with skyrmions with
quantized winding of phase quantized winding number

Due to gradients in the phase in the spin-orientation

Conservation of charge no conservation of spin
(due to spin-orbit coupling)

Motion mainly perpendicular to current parallel to current

Rotation of undistorted vortex lattice:
due to charge conservation not
so easy to realize

of undistorted skyrmion lattice:
realization, e.g., via tempera-
ture or magnetic field gradients

Table 11.1: Comparison of some aspects of the vortex and the skyrmion lattice.
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12 Conclusion

In this Thesis, we have studied a new type of magnetic order – the skyrmion lattice
– which was discovered in 2009 [1] and has by now been observed in a wide range of
cubic, chiral materials including insulators [42, 43], doped semiconductors [39] and good
metals [1, 41]. In the first Part, we have examined the equilibrium properties of the
topologically stable magnetic whirl-lines and discussed the Ginzburg-Landau theory for
the skyrmion lattice. We have reviewed that in bulk materials the skyrmion lattice phase
is stabilized by Gaussian fluctuations and briefly mentioned that it is much more stable
in thin films [44, 45]. From this theory it is expected that the skyrmion lattice occurs in
any material with B20 symmetry, which would be ferromagnetic in the absence of spin-
orbit coupling, in the presence of a small magnetic field. Moreover, we have considered
the effects of the underlying crystalline lattice and pinning due to disorder. In agreement
with the experiments we have confirmed the long-range crystalline nature of the skyrmion
lattice [67].

In the second Part of this Thesis, we have investigated the interplay between an electric
current and a magnetic texture, focussing again on the skyrmion crystal. We discussed
that electrons traversing a spatially or temporally inhomogeneous magnetization configu-
ration pick up a Berry phase which, rewritten as an Aharonov-Bohm phase arising from
emergent magnetic and electric fields, leads to an effective Lorentz force acting on the elec-
trons. To describe the response of the skyrmion lattice to the applied current, we described
the evolution of the magnetic structure by the standard Landau-Lifshitz-Gilbert equation
extended by a new damping mechanism recently proposed [8, 9]. The theoretically pre-
dicted current-induced motion [129] was experimentally detected exploiting the emergent
electric field on the conduction electron. Using Faraday’s law of induction [80] this allowed
to detect the motion of the skyrmion lattice by simple transport measurements.

Furthermore, we have analyzed the experimentally observed rotation of the skyrmion
lattice by a finite angle [10]. We have discussed different rotation mechanisms and devel-
oped a theory by generalizing the Thiele method for the rotational degree of freedom. In
the last Section of Chapter 10, we predicted a continuous rotation of the skyrmion lattice
with a finite angular velocity [71]. We also suggested experiments which probably allow
to detect the continuous rotation. We are looking forward to the experiments (already in
planning stage) that will test our prediction and will hopefully be performed in the near
future.

To conclude, our observations on the current-induced dynamics of chiral magnetic
structures, in particular skyrmions, in combination with the ultra-low threshold current
density of j ∼ 106 A/m2 above which it is possible to manipulate the skyrmion lattice,
indicate that chiral magnets and systems with nontrivial topological properties are ideally
suited to advance the general understanding of spin-transfer torques effects by investigating
the coupling of electric, thermal or spin currents to magnetic textures.
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Part III

Appendices





A Ginzburg-Landau Terms for
B20 Structures

In this Appendix, we give an overview of symmetry-allowed terms in the free energy func-
tional F for B20 materials like MnSi. The space group of MnSi is P213 which consists of
threefold rotation axes in the 〈111〉 direction and of twofold 〈100〉 screw axes, as discussed
in Section 3.1. All terms appearing in the Ginzburg-Landau theory for B20 materials
should be invariant under these transformations. In general, for a periodic magnetic
structure, all terms contributing to the Ginzburg-Landau free energy functional can be
written in the following form:

γ
(i)
QR

∑
qj ,j=1,...N

f
(i)
QR(q1, ..., qN ,mq1 , ...,mqN ,m

∗
q1
, ...,m∗qN ), (A.1)

whereN ∈ N0, fQR is a function of the arguments q1, . . . , qN ,mq1 , . . . ,mqN ,m
∗
q1
, . . . ,m∗qN

(note that m∗q = m−q), and γ
(i)
QR is a complex prefactor that is independent of those

arguments. By the index “Q” we denote the number of derivatives appearing in the corre-
sponding term if expressed in real space (or equivalently the power of q vectors), and by
the index “R” we denote the power of mq’s for the corresponding term. For example, the
Dzyaloshinskii-Moriya term

∫
d3rM · (∇×M), which in Fourier space is proportional to∑

qm
∗
q(q ×mq), contains one derivative and two factors of mq, i.e. Q = 1 and R = 2

(note that for N = 1 we write q instead of q1). Finally, the index “(i)” numbers serially
the different terms.

As discussed in Chapter 4, the magnetic structures in chiral magnets develop on length
scales determined by the strength of the small spin-orbit coupling λso, and thus each
derivative contributes with a power of λso. However, to order the different terms properly
according to their power in spin-orbit coupling strength one has to consider how exactly
these terms arise, because their prefactors might also contain additional factors of λso.
Here, we list the symmetry-allowed terms for N = 1 and R = 2 according to their number
of derivatives, i.e. their Q value. Up to Q = 6 we obtain:

• Q = 0:

f
(1)
22 = (mq ·m−q) (A.2)

• Q = 1:

f
(1)
12 = mq · (q ×m−q) (A.3)
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• Q = 2:

f
(1)
22 = q2 (mq ·m−q) (A.4)

f
(2)
22 = q2

xm
x
qm

x
−q + q2

ym
y
qm

y
−q + q2

z m
z
qm

z
−q (A.5)

f
(3)
22 = q2

xm
y
qm

y
−q + c.p. (A.6)

f
(4)
22 = qxqy (mx

qm
y
−q +mx

−qm
y
q) + c.p. (A.7)

• Q = 3:

f
(1)
32 = q2 (mq · (q ×m−q)) (A.8)

f
(2)
32 = εijk q

3
im

j
qm

k
−q (A.9)

f
(3)
32 = q2

x qz (mx
qm

y
−q −mx

−qm
y
q) + c.p. (A.10)

• Q = 4:

f
(1)
42 = (q4

x + q4
y + q4

z) (mq ·m−q) (A.11)

f
(2)
42 = (q2

xq
2
y + q2

yq
2
z + q2

zq
2
x) (mq ·m−q) (A.12)

f
(3)
42 = q4

xm
x
qm

x
−q + q4

ym
y
qm

y
−q + q4

z m
z
qm

z
−q (A.13)

f
(4)
42 = q4

xm
y
qm

y
−q + c.p. (A.14)

f
(5)
42 = q3

x qy (mx
qm

y
−q +mx

−qm
y
q) + c.p. (A.15)

f
(6)
42 = q3

x qz (mx
qm

z
−q +mx

−qm
z
q) + c.p. (A.16)

f
(7)
42 = q2

x q
2
ym

x
qm

x
−q + c.p. (A.17)

f
(8)
42 = q2

x q
2
z m

x
qm

x
−q + c.p. (A.18)

f
(9)
42 = q2

x qy qz (my
qm

z
−q +my

−qm
z
q) + c.p. (A.19)

Note that by combining f (1)
42 and f

(2)
42 one obtains also the term q4 (mq ·m−q) =

(q · q)2 (mq ·m−q).

• Q = 5:

f
(1)
52 = q4 (mq · (q ×m−q)) (A.20)

f
(2)
52 = εijk q

5
i m

j
qm

k
−q (A.21)

f
(3)
52 = q4

x qz (mx
qm

y
−q −mx

−qm
y
q) + c.p. (A.22)

f
(4)
52 = q3

x q
2
y (my

qm
z
−q −m

y
−qm

z
q) + c.p. (A.23)

f
(5)
52 = q3

x q
2
z (my

qm
z
−q −m

y
−qm

z
q) + c.p. (A.24)

f
(6)
52 = q2

x q
2
y qz (mx

qm
y
−q −mx

−qm
y
q) + c.p. (A.25)

(A.26)
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• Q = 6:

f
(1)
62 = (q6

x + q6
y + q6

z) (mq ·m−q) (A.27)

f
(2)
62 = (q4

x q
2
y + q4

y q
2
z + q4

z q
2
x) (mq ·m−q) (A.28)

f
(3)
62 = (q4

x q
2
z + q4

y q
2
x + q4

z q
2
y) (mq ·m−q) (A.29)

f
(4)
62 = q2

x q
2
y q

2
z (mq ·m−q) (A.30)

f
(5)
62 = q6

xm
x
qm

x
−q + q6

ym
y
qm

y
−q + q6

z m
z
qm

z
−q (A.31)

f
(6)
62 = q6

xm
y
qm

y
−q + c.p. (A.32)

f
(7)
62 = q5

x qy (mx
qm

y
−q +mx

−qm
y
q) + c.p. (A.33)

f
(8)
62 = q5

x qz (mx
qm

z
−q +mx

−qm
z
q) + c.p. (A.34)

f
(9)
62 = q4

x q
2
ym

x
qm

x
−q + c.p. (A.35)

f
(10)
62 = q4

x q
2
ym

y
qm

y
−q + c.p. (A.36)

f
(11)
62 = q4

x q
2
z m

x
qm

x
−q + c.p. (A.37)

f
(12)
62 = q4

x q
2
z m

y
qm

y
−q + c.p. (A.38)

f
(13)
62 = q4

x qy qz (my
qm

z
−q +my

−qm
z
q) + c.p. (A.39)

f
(14)
62 = q3

x q
3
y (mx

qm
y
−q +mx

−qm
y
q) + c.p. (A.40)

f
(15)
62 = q3

x q
2
y qz (mx

qm
z
−q +mx

−qm
z
q) + c.p. (A.41)

f
(16)
62 = q3

x qy q
2
z (mx

qm
y
−q +mx

−qm
y
q) + c.p. (A.42)

Note that combining f (1)
62 , f (2)

62 , f (3)
62 , and f (4)

62 leads also to the term q6 (mq ·m−q) =
(q · q)3 (mq ·m−q).

In the above list “c.p.” denotes cyclic permutation of the indices x, y, and z. Finally, note
that for example the terms FL of Eq. (4.26) and FD of Eq. (4.27), which we used to orient
and distort the skyrmion lattice, are represented in this list by f (1)

62 and f (3)
22 , respectively.
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B Derivations of the
Landau-Lifshitz-Gilbert Equation

In this Appendix, we will derive the LLG equation first for the very simple case of a single
spin without damping, and second we derive it from a variational principle. Microscopic
derivations of the Landau-Lifshitz-Gilbert equation, Eq. (8.1), can be found, for example,
in Refs. [125, 127, 149]. The approach used in Ref. [125] is based on a functional formula-
tion of the Keldysh formalism. In another approach [127], the authors use imaginary-time
methods to calculate α and β.

B.1 Derivation of the LLG Equation for a Single Spin
without Damping

Let us consider a single spin with a normalized magnetic moment in a magnetic field B,
as in Sec. 8.1. The Hamiltonian operator is given by

Ĥ = −γB · Ŝ, (B.1)

where Ŝ is the spin operator. The gyromagnetic ratio γ of a particle is the proportionality
factor between its magnetic moment M and the expectation value of its spin 〈Ŝ〉, i.e.

m = γ 〈Ŝ〉. (B.2)

For a particle with charge q, the gyromagnetic ratio is given by the product of its di-
mensionless gyromagnetic factor g (g-factor) and its magneton µ = q~/(2m) divided by
~:

γ =
gµ

~
=

gq

2m
. (B.3)

Thus, γ is characteristic for every type of particle, and in particular it can have different
signs. For example, the gyromagnetic ratio of an electron (proton) is given by γe ≈
−1.76 · 1011 s−1T−1 (γp ≈ 2.675 · 108 s−1T−1). Despite the sign of γ, the energy of the
system given by −B ·m is lowest when the magnetic moment m aligns in the direction
of the external magnetic field B.

The Heisenberg equation of motion for the spin operator follows from

∂tŜj = −i [Ŝj , Ĥ] = −i [Ŝj ,−γB · Ŝ] = +i γBi [Ŝj , Ŝi] = i γBi(i εjikŜk) = γ
(
Ŝ ×B

)
j
,

and thus we obtain
∂tŜ = γŜ ×B. (B.4)
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B.2 – Derivation of the LLG Equation from a Variational Principle

The equation of motion for the magnetization, which is also called Bloch equation, is
therefore given by

∂tm = γm×B. (B.5)

The above equation, however, depends on the sign of γ, implying that in particular the sign
of the charge q determines whether the magnetic moment precesses clockwise or counter-
clockwise around the magnetic field. Therefore, when considering the itinerant magnetism
due to electrons, we adopt a negative prefactor in front ofm×B. By rescaling we therefore
obtain

∂tm = −m×B, (B.6)

which reproduces Eq. (8.4) of the main text.
A damping term does not conserve the energy, and therefore it cannot be described

within a simple Hamiltonian picture. In Chapter 8, we have already motivated the form
of the standard Gilbert damping term α m̂ × ∂tm̂. The signs of damping terms are
fixed by the condition that during the time evolution the energy is reduced, and thus the
magnetization aligns parallel to the magnetic field, as discussed in Chapter 8. Finally,
when including the Gilbert damping term to Eq. (B.6) we reproduce Eq. (8.5) of the main
text:

dm

dt
= −m×B + αm× dm

dt
, (B.7)

where α > 0.

B.2 Derivation of the LLG Equation from a Variational Principle

The Landau-Lifshitz-Gilbert equation may be derived from the variational principle [126]
for a constant magnetization amplitude M at least up to a surface term discussed below.
Here, we will derive the LLG given in Eq. (8.11) as in Ref. [129] including the new damping
term. As the LLG equation contains damping terms, i.e. the energy is not conserved, it
is not sufficient to derive it just from an action functional A[Ω̂]. However, when introduc-
ing also a dissipation fuctional R[Ω̂], the LLG is obtained by calculating the variations
according to the following formula:

δA[Ω̂]

δΩ̂(r, t)
=

δR[Ω̂]

δ(∂tΩ̂(r, t))
. (B.8)

In this formula, the dissipation functional R[Ω̂] is given by

R[Ω̂] = Rα[Ω̂] +Rα′ [Ω̂] (B.9a)

Rα[Ω̂] =
α

2

∫
dt

∫
V
d3r

[(
∂t +

β

α
vs · ∇

)
Ω̂(r, t)

]2

, (B.9b)

Rα′ [Ω̂] =
α′

2

∫
dt

∫
V
d3r
[
Ω̂(r, t) ·

(
∂iΩ̂(r, t)× (∂t +

β′

α′
vs · ∇)Ω̂(r, t)

)]2
, (B.9c)

while the action functional A is given by

A[Ω̂] =

∫
dt

{∫
V
d3rA(Ω̂(r, t)) ·

(
∂t + vs · ∇

)
Ω̂(r, t)− 1

M
F [Ω̂(r, t)]

}
. (B.10)

Here, A(Ω̂(r, t)) is the vector potential associated with the topological Berry phase
term according to a magnetic field of a monopole, i.e. ∇Ω̂ × A = Ω̂, where ∇Ω̂ =
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B – Derivations of the Landau-Lifshitz-Gilbert Equation

(∂Ωx , ∂Ωy , ∂Ωz)T . This vector potential cannot be defined without singularities as for a
singularity-free A we obtain div (∇×A) = 0. However, we get∫

V
d3r div

(
∇Ω̂ ×A

)
=

∫
∂V

(
∇Ω̂ ×A

)
· dσ =

∫
∂V

Ω̂ · dσ = 4π. (B.11)

In spherical coordinates, i.e. Ω̂(r, θ, φ) = r(sin θ cosφ, sin θ sinφ, cos θ)T , a parametrization
of A is given by (see e.g. [150]):

A(r, θ, φ) =
1− cos θ

r sin θ
êφ with êφ = (− sinφ, cosφ, 0)T . (B.12)

It is singular for θ = π and reduces on the unit sphere, |Ω̂| = r = 1, to A(θ, φ) =
(1 − cos θ)/ sin θ êφ. To show that Eq. (B.8) leads to the LLG equation we will calculate
the variations of Eq. (B.8) explicitly , starting with the right hand side.

The variation of the dissipation functional with respect to ∂tΩ̂(r, t) is given by

δR[Ω̂]

δ(∂tΩ̂(r, t))
=

δRα[Ω̂]

δ(∂tΩ̂(r, t))
+

δRα′ [Ω̂]

δ(∂tΩ̂(r, t))
, (B.13a)

δRα[Ω̂]

δ(∂tΩ̂(r, t))
= α

(
∂t +

β

α
vs · ∇

)
Ω̂(r, t), (B.13b)

δRα′ [Ω̂]

δ(∂tΩ̂(r, t))
= α′

[
Ω̂(r, t) ·

(
∂iΩ̂(r, t)× (∂t +

β′

α′
vs · ∇)Ω̂(r, t)

)](
Ω̂(r, t)× ∂iΩ̂(r, t)

)
,

(B.13c)

which reproduces both damping terms on the right hand side of Eq. (8.11). Because the
variation of the action functional is more subtle, we will present the detailed calculation.
The action functional A[Ω̂] contains the Ginzburg-Landau free energy functional and the
time- and the space-dependent Berry phase terms. Therefore, we divide it into three parts:

A[Ω̂] =

∫
dt

{∫
V
d3rA(Ω̂(r, t)) · (∂t + vs · ∇) Ω̂(r, t)− 1

M
F [Ω̂(r, t)]

}
≡
(
A(t)[Ω̂(r, t)] +A(∇)[Ω̂(r, t)] +A(F )[Ω̂(r, t)]

)
(B.14)

with

A(t)[Ω̂(r, t)] =

∫
dt

∫
V
d3rA(Ω̂(r, t)) · ∂tΩ̂(r, t), (B.15a)

A(∇)[Ω̂(r, t)] =

∫
dt

∫
V
d3rA(Ω̂(r, t)) · (vs∇) Ω̂(r, t), (B.15b)

A(F )[Ω̂(r, t)] = −
∫
dt

1

M
F [Ω̂(r, t)]. (B.15c)

Let us start by considering the variational derivative of A(t)[Ω̂(x, t)] which is defined by:

δA(t)[Ω̂(x, t)]

δΩj(y, t′)
= lim

ε→0

1

ε

(
A(t)[Ω̂(x, t) + ε êjδ(x− y, t− t′)]−A(t)[Ω̂(x, t)]

)
(B.16)

with a variation in the direction of êj . To ensure that Ω̂(x, t) + ε êjδ(x − y, t − t′) is
normalized to linear order in ε, one can only consider directions êj with êj ⊥ Ω̂(x, t),
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which is equivalent to the condition that Ω̂ varies only in the tangent space of the sphere.
Hence, we obtain:

δA(t)[Ω̂(x, t)]

δΩ̂j(y, t′)

= lim
ε→0

1

ε

[∫
V
d3x

∫
dt
(
∂t

(
Ω̂(x, t) + ε êjδ(x− y, t− t′)

)
k

·Ak
[
Ω̂(x, t) + ε êjδ(x− y, t− t′)

]
− ∂tΩk(x, t) ·Ak[Ω̂(x, t)]

)]
= lim

ε→0

1

ε

[∫
V
d3x

∫
dt
(
∂tΩk(x, t)

(
Ak

[
Ω̂(x, t) + ε êjδ(x− y, t− t′)

]
−Ak[Ω̂(x, t)]

)
+ε δjk

∂δ(x− y, t− t′)
∂t

Ak

[
Ω̂(x, t) + ε êjδ(x− y, t− t′)

])]
=

∫
V
d3x

∫
dt ∂tΩk(x, t) lim

ε→0

1

ε

(
Ak

[
Ω̂(x, t) + ε êjδ(x− y, t− t′)

]
−Ak[Ω̂(x, t)]

)
+ lim
ε→0

∫
V
d3x

∫
dt

(
∂δ(x− y, t− t′)

∂t
Aj

[
Ω̂(x, t) + ε êjδ(x− y, t− t′)

])
=

∫
V
d3x

∫
dt ∂tΩk(x, t) δ(x− y, t− t′)

∂Ak[Ω̂(x, t)]

∂Ωj
+
∂δ(x− y, t− t′)

∂t
Aj [Ω̂(x, t)]

p.i.
=

(
∂tΩk(x, t)

∂Ak[Ω̂(x, t)]

∂Ωj

∣∣∣∣
x=y,t=t′

−
∫
V
d3x

∫
dtδ(x− y, t− t′)∂Aj [Ω̂(x, t)]

∂t

)
+
(
Aj [Ω̂(y, t2)]δ(t2 − t′)−Aj [Ω̂(y, t1)]δ(t1 − t′)

)
=: MT

(t)
j + BT

(t)
j .

Here, “p.i.” denotes partial integration, t1 and t2 are the limits of the time integral, and
the abbrevation “MT” denotes the main term, while “BT” denotes the boundary term.
The boundary term BT

(t)
j vanishes due to the usual Lagrangian formalism which allows

only for variations that leave the configuration at the initial and final time invariant. The
main term MT

(t)
j can be simplified further as follows:

MT
(t)
j = ∂tΩk(x, t)

∂Ak[Ω̂(x, t)]

∂Ωj

∣∣∣∣
x=y,t=t′

−
∫
V
d3x

∫
dt δ(x− y, t− t′)∂Aj [Ω̂(x, t)]

∂t

=

(
∂tΩk(x, t)

∂Ak[Ω̂(x, t)]

∂Ωj
− ∂Aj [Ω̂(x, t)]

∂t

)∣∣∣∣
x=y,t=t′

= ∂tΩk(x, t)

(
∂Ak[Ω̂(x, t)]

∂Ωj
− ∂Aj [Ω̂(x, t)]

∂Ωk

)∣∣∣∣
x=y,t=t′

= ∂tΩk(x, t) (δjaδkb − δjbδka)
∂Ab[Ω̂(x, t)]

∂Ω̂a

∣∣∣∣
x=y,t=t′

= εjkm εmab ∂tΩk(x, t)
∂Ab[Ω̂(x, t)]

∂Ω̂a

∣∣∣∣
x=y,t=t′

= εjkm ∂tΩk(x, t)
(
∇Ω̂ ×A[Ω̂(x, t)]

)
m

∣∣∣∣
x=y,t=t′
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Thus, for the main term MT
(t)
j we obtain:

MT
(t)
j = εjkm

∂Ωk(x, t)

∂t
Ω(x, t)m

∣∣∣∣
x=y,t=t′

=

(
∂Ω̂(y, t′)

∂t′
× Ω̂(y, t′)

)
j

,

(B.17)

where we used the relation ∇Ω̂ ×A = Ω̂. Let us now consider the variational derivative
of A(∇)[Ω̂(x, t)]. By definition we obtain

δA(∇)[Ω̂(x, t)]

δΩ̂j(y, t′)
= lim

ε→0

1

ε

(
A(∇)[Ω̂(x, t) + ε êjδ(x− y, t− t′)]−A(∇)[Ω̂(x, t)]

)
(B.18)

with êj ⊥ Ω̂(x, t) as in the case of A(t). By an analog straightforward calculation we get:

δA(∇)[Ω̂(x, t)]

δΩ̂j(y, t′)

= lim
ε→0

1

ε

[∫
V
d3x

∫
dt
(

(vs · ∇)
(
Ω̂(x, t) + ε êjδ(x− y, t− t′)

)
Ak[Ω̂(x, t) + ε êjδ(x− y, t− t′)]− (vs · ∇)Ωk(x, t)Ak[Ω̂(x, t)]

)]
= lim

ε→0

1

ε

[∫
V
d3x

∫
dt
(

(vs · ∇)Ωk(x, t)
(
Ak[Ω̂(x, t) + ε êjδ(x− y, t− t′)]−Ak[Ω̂(x, t)]

)
+ε δjk(vs · ∇)δ(x− y, t− t′)Ak[Ω̂(x, t) + ε êjδ(x− y, t− t′)]

)]
=

∫
V
d3x

∫
dt (vs · ∇)Ωk(x, t) lim

ε→0

1

ε

(
Ak[Ω̂(x, t) + ε êjδ(x− y, t− t′)]−Ak[Ω̂(x, t)]

)
+ lim
ε→0

∫
V
d3x

∫
dt
(

(vs · ∇)δ(x− y, t− t′)Aj [Ω̂(x, t) + ε êjδ(x− y, t− t′)]
)

=

∫
V
d3x

∫
dt (vs · ∇)Ωk(x, t)δ(x− y, t− t′)

∂Ak[Ω̂(x, t)]

∂Ωj

+

∫
V
d3x

∫
dt (vs · ∇)δ(x− y, t− t′)Aj [Ω̂(x, t)]

p.i.
=

[
(vs · ∇)Ωk(x, t) ·

∂Ak[Ω̂(x, t)]

∂Ωj

∣∣∣∣
x=y,t=t′

−
∫
V
d3x

∫
dt δ(x− y, t− t′)(vs · ∇)Aj [Ω̂(x, t)]

]
+

∫
dt

∫
S(V )

dσ(x) δ(x− y, t− t′)Aj [Ω̂(x, t)](vs ·ν)

=: MT
(∇)
j + BT

(∇)
j .

where dσ(x) is the area element, and ν is the outer normal unit vector on the surface
S(V ) of the volume V , i.e. dσ(x) = ν dσ(x). Note that the superscript “x” implies the
integration over x, but not y.
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Similar to the calculation for A(t) we get for the main term MT(∇):

MT
(∇)
j = [(vs∇)Ωk(x, t)]

∂Ak[Ω̂(x, t)]

∂Ωj

∣∣∣∣
x=y,t=t′

−
∫
V
d3x

∫
dt δ(x− y, t− t′)(vs · ∇)Aj [Ω̂(x, t)]

=

(
[(vs · ∇)Ωk(x, t)]

∂Ak[Ω̂(x, t)]

∂Ωj
− (vs · ∇)Aj [Ω̂(x, t)]

)∣∣∣∣
x=y,t=t′

= [(vs · ∇)Ωk(x, t)]

(
∂Ak[Ω̂(x, t)]

∂Ωj
− ∂Aj [Ω̂(x, t)]

∂Ωk

)∣∣∣∣
x=y,t=t′

= [(vs · ∇)Ωk(x, t)] (δjaδkb − δjbδka)
∂Ab[Ω̂(x, t)]

∂Ω̂a

∣∣∣∣
x=y,t=t′

= [(vs · ∇)Ωk(x, t)] εjkmεmab
∂Ab[Ω̂(x, t)]

∂Ω̂a

∣∣∣∣
x=y,t=t′

= [(vs · ∇)Ωk(x, t)] εjkm

(
∇Ω̂ ×A[Ω̂(x, t)]

)
m

∣∣∣∣
x=y,t=t′

= εjkm [(vs · ∇)Ωk(x, t)] Ω(x, t)m

∣∣∣∣
x=y,t=t′

=
([

(vs · ∇)Ω̂(y, t′)
]
× Ω̂(y, t′)

)
j
.

Concerning the boundary term, we perform the time integration, and we are left with

BT
(∇)
j =

∫
dt

∫
S(V )

dσ(x) δ(x− y, t− t′)Aj [Ω̂(x, t)](vs ·ν)

=

∫
S(V )

dσ(x) δ(x− y)Aj [Ω̂(x, t′)](vs ·ν).

(B.19)

The role of this boundary term is discussed in Appendix C.2. To sum up, for the three
terms A(t), A(∇), and A(F ) we get:

δA(t)[Ω̂(r, t)]

δΩj(y, t′)
=

(
∂Ω̂(y, t′)

∂t′
× Ω̂(y, t′)

)
j

, (B.20a)

δA(∇)[Ω̂(r, t)]

δΩj(y, t′)
=
([

(vs · ∇)Ω̂(y, t′)
]
× Ω̂(y, t′)

)
j

+

∫
S(V )

dσ(x) δ(r − y)Aj [Ω̂(r, t′)](vs ·ν), (B.20b)

δA(F )[Ω̂(r, t)]

δΩj(y, t′)
=:

1

M

δF [Ω̂(r, t′)]

δΩ̂(y, t′)
, (B.20c)

where in the last equation we considered the functional F [Ω̂] at a fixed time t′ to eliminate
the time integral. Exchanging r, y and t, t′ we get:

δA[Ω̂]

δΩ̂(r, t)
= −Ω̂(r, t)× (∂t + vs · ∇) Ω̂(r, t)− 1

M

δF [Ω̂]

δΩ̂(r, t)

+

∫
S(V )

dσ(y) δ(y − r)Aj [Ω̂(y, t)](vs ·ν). (B.21)
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Combining Eqs. (B.8), (B.9a), (B.9b), (B.9c), (B.21), and neglecting the boundary term
we obtain Eq. (8.11) of the main text:

− 1

M

δF

δΩ̂
= Ω̂× (∂t + vs · ∇) Ω̂ + α

(
∂t +

β

α
vs · ∇

)
Ω̂

+ Ω̂× α′
[
Ω̂ ·
(
∂iΩ̂× (∂t +

β′

α′
vs · ∇)Ω̂

)]
∂iΩ̂. (B.22)
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C Numerics for the Skyrmion Phase and
an Alternative Approach

In this Appendix, we discuss the numerics we use to obtain the magnetization structure
for the skyrmion phase. Parts of it can be found in Refs. [70, 129]. Furthermore, we show
that alternative approaches for the drift velocity as well as for the rotation angle lead to
the same results as obtained in the main text.

C.1 Numerics for the Skyrmion Lattice in Equilibrium

To obtain the magnetization structure M(r) in the skyrmion lattice phase we employ
the following mean-field approximation. We minimize the free energy functional with the
ansatz of Eq. (4.14), and we include in the sum only the three smallest reciprocal lattice
vectors qj if not stated otherwise. In particular, in Chapter 5 we also have included higher-
order modes. As we have indicated in Section 4.3, and as was confirmed in Chapter 5, the
superposition of the three lowest modes is quite a good approximation, because higher-
order terms contribute at most a few percent to the total magnetization. Furthermore, the
effects of thermal fluctuations are not included in our numerical calculations. As discussed
in the main text, they are crucial for stabilizing the skyrmion lattice in competition to
the conical phase, but when considering the skyrmion phase (at least not too close to the
phase transition) they lead only to a small renormalization of prefactors [1].

When neglecting higher-order modes, in our numerical calculations we approximate
the magnetic texture in total by 27 real parameters µi, i = 1, . . . , 27, consisting of the
uniform magnetization M f , two reciprocal lattice vectors q1, q2 (with q3 = −q1 − q2)
and three complex Fourier modes mqj = m

(r)
qj + im

(i)
qj , j = 1, 2, 3, with the real m(r)

qj and

imaginary partm(i)
qj . This yields 3 + 2 · 3 + 3 · 3 · 2 = 27 parameters. Therefore, our ansatz

for the magnetization in the skyrmion phase is given by

M(r) = M f +
∑
qj∈L̃R

mqj e
iqj · r, (C.1)

with L̃R = {±q1,±q2,±q3} which reproduces Eq. (4.14) of the main text when taking
only the the lowest Fourier modes into account.

C.2 Alternative Approach

In order to obtain the acting forces and the drift velocity as well as the rotation angle and
the acting torques, we projected the LLG equation onto the translational and rotational
modes, respectively.
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C.2 – Alternative Approach

To check this approach and substantiate its validity, we confirmed that an alternative
derivation without the explicit projection onto the corresponding mode leads to the same
results [70, 129]. Here, we will first introduce the method, and then discuss the motion
and the rotation separately.

Within our numerics the magnetic texture is described by a certain finite number
of time-dependent variables uj (j = 1, . . . , n), i.e. Ω̂(r, t) = Ω̂(r, u1(t), . . . , un(t)). In
the static case, ui = µi, i = 1, . . . , 27, but for a moving magnetic texture also the drift
characterizes the system, and we have to take it into account as discussed below. An
alternative approach is to directly derive effective equations of motions for these variables.
Starting from the LLG equation we multiply Eq. (8.10) by

(
Ω̂× ∂Ω̂

∂uj

)
and then integrate

over a volume V . Using the fact that Ω̂ is normalized, Ω̂ is perpendicular to its derivatives,
Ω̂ · ∂Ω̂

∂uj
= 0, so that we obtain the following n linear coupled differential equations of first

order in time:

∫
V
d3r

(
Ω̂× ∂Ω̂

∂uj

)
· (∂t + (vs · ∇)) Ω̂− 1

|M |
∂F

∂uj
=

∫
V
d3r α

(
∂t +

β

α
(vs · ∇)

)
Ω̂ · ∂Ω̂

∂uj

−
∫
V
d3rα′

[
Ω̂ ·
(
∂iΩ̂×

(
∂t +

β′

α′
(vs · ∇)

)
Ω̂
]
· ∂iΩ̂ ·

(
Ω̂× ∂Ω̂

∂uj

)
. (C.2)

C.2.1 Equations of Motion from a Variational Principle

In principle, it is possible to derive these effective equations of motion from the variational
principle

δA[Ω̂]

δuj(s)
=
δR[Ω̂, ∂tΩ̂]

δ(∂tuj(s))
. (C.3)

However, in this case we will obtain a “boundary term” that occured already in Appendix B,
which one has to neglect to obtain Eq. (C.2). Further discussing this “boundary term” we
show that this contribution will not necessarily result in a surface term, but might also
contribute to the bulk value. This subtle issue is discussed in more detail below.

To obtain the effective equations of motion from the variatonal principle, we assume
n = 1 without loss of generality, and set u1(t) = u(t). As an intermediate step, let us first
calculate

∂

∂u̇

(
∂tΩ̂(x, u)

)∣∣∣∣
u

=
∂

∂u̇

(∂Ω̂(x, u)

∂u
u̇
)∣∣∣∣
u

=
∂Ω̂(x, u)

∂u
. (C.4)

Moreover, we use the following lemma for an arbitrary sufficiently smooth function F (t)
depending on t. If F depends on a parameter u = u(t) such that F (t) = F (u(t)), then

δF (t′)

δu(t)
=
∂F (u)

∂u
δ(t′ − t). (C.5)

Applying this lemma we obtain

δΩ̂(y, t′)

δu(t)
=
∂Ω̂(y, u)

∂u
δ(t′− t) and

δ(∂tΩ̂(y, t′))

δu̇(t)

∣∣∣∣
u

=
∂(∂tΩ̂(y, u, u̇))

∂u̇

∣∣∣∣
u

· δ(t′− t). (C.6)
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Thus, we get:

0 =

∫
V
d3y

∫
dt
δA[Ω̂(x, t)]

δΩ̂(y, t′)
δ(t− t′)

=0︷ ︸︸ ︷(
∂Ω̂(y, t)

∂u
− ∂(∂tΩ̂(y, t))

∂u̇

∣∣∣∣
u

)

=

∫
V
d3y

∫
dt
δA[Ω̂(x, t)]

δΩ̂(y, t′)

(
δΩ̂(y, t′)

δu(t)
− δ(∂tΩ̂(y, t′))

δu̇(t)

∣∣∣∣
u

)
=

∫
V
d3y

∫
dt
δA[Ω̂(x, t)]

δΩ̂(y, t′)

δΩ̂(y, t′)

δu(t)
−
∫
V
d3y

∫
dt
δR[Ω̂(y, t), ∂tΩ̂(x, t)]

δ(∂tΩ̂(y, t))

δ(∂tΩ̂(y, t′))

δu̇(t)

∣∣∣∣
u

=
δA[Ω̂(x, t)]

δu(t)
− δR[Ω̂(x, t), ∂tΩ̂(x, t)]

δu̇(t)
,

where in the penultimate line we applied Eq. (B.8). Hence, neglecting the boundary term
appearing in Eq. (B.21) we have shown that uj solves Eq. (C.2). However, within this
proof the role of the “boundary term” is somehow concealed. To get a better understanding
of this additional term, we will consider the variation of the action with respect to the
variational parameter u explicitly. Applying the chain rule leads to

δA[Ω̂(x, t)]

δuj(s)
=

∫
V
d3y

∫
dt′
δA[Ω̂(x, t)]

δΩ̂j(y, t′)

∣∣∣∣∣
Ω̂=Ω̂(u)

δΩ̂j(y, t
′)

δu(s)
. (C.7)

Using above lemma we obtain

δΩj(y, t
′)

δu(s)
=
∂Ωj(y, u)

∂u
δ(s− t′), (C.8)

and inserting the result of Eq. (B.21) we get

δA[Ω̂(x, t)]

δu(s)
=

∫
V
d3y

∫
dt′
[
−
(
Ω̂(y, t′)× (∂t + vs · ∇) Ω̂(y, t′)

)
j
− 1

M

δF [Ω̂]

δΩ̂j(y, t′)

+

∫
S(V )

dσ(y′) δ(y ′ − y)Aj [Ω̂(y ′, t′)](vs ·ν)

]
∂Ωj(y, t

′)

∂u
δ(s− t′)

∣∣∣∣∣
Ω̂=Ω̂(y,u)

= −
∫
V
d3y

(
Ω̂(y, s)× (∂t + vs · ∇) Ω̂(y, s)

) ∂Ωj(y, s)

∂u
− 1

M

∂F [Ω̂]

∂u

+

∫
V
d3y

(∫
S(V )

dσ(y′) δ(y ′ − y)Aj [Ω̂(y ′, s)](vs ·ν)

)
· ∂Ωj(y, s)

∂u

∣∣∣∣∣
Ω̂=Ω̂(y,u)

where ν is the outward pointing unit normal vector of the surface S(V ) of the integration
volume V . The boundary term may be simplified further to∫

S(V )
dσ(y′)

∫
V
d3y

∂Ωj(y, s)

∂u
δ(y ′ − y)Aj [Ω̂(y ′, s)](vs ·ν)

=

∫
S(V )

dσ(y′)∂Ωj(y, s)

∂u
Aj [Ω̂(y ′, s)] (vs ·ν)︸ ︷︷ ︸

=vsi êi · ν
,
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applying Gauss’ theorem yields

=

∫
V
d3y ′ vsi

d

dy′i

(
∂Ωj(y

′, s)

∂u
Aj [Ω̂(x, s)]

)
,

and renaming of variables leads to

=

∫
V
d3x (vs · ∇)

(
∂Ωj(x, s)

∂u
Aj [Ω̂(x, s)]

)
.

A technical problem to further evaluate this term is the explicit appearance of the vector
potential A[Ω̂(x, s)] which cannot be written in a coordinate invariant form (see Ap-
pendix B). To sum up, we get:

δA[Ω̂(x, t)]

δuj(s)
=

∫
V
d3y

(
Ω̂(y, s)× ∂Ω̂(y, s)

∂uj

)
· (∂t + (vs · ∇))Ω̂− 1

M

∂F [Ω̂(x, s)]

∂uj

+

∫
V
d3y (vs · ∇)

(
∂Ωk(y, s)

∂uj
Ak[Ω̂(y, s)]

)
. (C.9)

In the absence of the last term on the right hand side, this reproduces the equations of
motion, together with the damping terms arising from δR[Ω̂, ∂tΩ̂]/δ(∂tuj(s)). As one
may derive the equations of motion directly from of Eq. (8.11), we claim that this third
term is an artifact of the choice of the action functional. At first glance, it seems that
the additional term is just a boundary term and will not play a crucial role compared
to the bulk terms. However, if one first calculates the action functional in terms of the
variational parameters uj and then, in a second step, takes the derivative with respect
to the dynamical variables uj , this may lead to wrong results, as can be seen from the
following example.

In spherical coordinates, A(∇)[Ω̂(x, t)] with Ω̂(x, t) = êr(θ(x, t), φ(x, t)) is given by

A(∇)[Ω̂(x, t)] =

∫
dt

∫
V
d3xA(Ω̂(x, t)) · (vs · ∇)Ω̂(x, t)

=

∫
dt

∫
V
d3x (1− cos(θ))(vs · ∇)φ

≡
∫
dtESST,

(C.10)

where the last two lines define ESST. As an example, let us consider the simplest case
of a helix. To be concrete, we consider the case of zero applied magnetic field, B = 0,
the abscence of damping, and we do not include pinning physics or anisotropy terms from
the atomic lattice. In this case, a helix with a q vector in an arbitrary direction that is
drifting with the direction and velocity of vs solves the Landau-Lifshitz-Gilbert equation.
Without loss of generality, we consider a helix in z-direction given by

Ω̂(x, t) = cos [q(z + ϕz(t))] x̂+ sin [q(z + ϕz(t))] ŷ, (C.11)

where ϕz = vsz t. For a normalized q vector we have q = 1, but for clarity we write here
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q instead of 1. A comparison of Eq. (C.11) and Ω̂(x, t) = êr(θ, φ) leads to

cos(θ)
!

= 0 ⇒ θ =
π

2
+ nπ, n ∈ Z

sin(θ) cos(φ)
!

= cos(qz + ϕz(t)) ⇒ φ = qz + ϕz(t) + 2πm, m ∈ Z

∧ sin(θ) = 1 ⇒ θ =
π

2
+ 2πn, n ∈ Z

sin(θ) sin(φ)
!

= sin(qz + ϕz(t)) ⇒ φ = qz + ϕz(t) + 2πm, m ∈ Z

∧ sin(θ) = 1 ⇒ θ =
π

2
+ 2πn, n ∈ Z

Inserting the angles θ and φ in the formula for ESST we obtain

ESTT[Ω̂] =

∫
V
d3x (vs · ∇) (qz + ϕz(t))

=

∫
V
d3x vsz q =

∫
V
d3xvs · q with q = (0, 0, 1)T .

(C.12)

Note that this is no longer a surface term. This term rather suggests that for a helix
there is a simple linear coupling of the direction of the applied current and the q vector
which might lead to a re-orientation of the helix when a current is applied. However, such
a term is not allowed by symmetry. The reason for this is that the magnetic structure
of the helix remains invariant under a rotation of 180◦ around an axis perpendicular to
the q direction. However, the term vs · q and therefore also ESTT change sign under this
transformation which implies that the “energy” ESTT does not respect the symmetries of
the helix. Moreover, note that a re-orientation of the q vector of the helix due to an
applied current has not been observed experimentally so far.

This simple example illustrates that first calculating the action and then taking the
derivative with respect to the variables may lead to wrong terms in the equation of motions.
To conclude, the correct way of deriving the equations of motion is the way described above
Eq. (C.2) or from the variational principle neglecting the additional “boundary term”.

C.2.2 Motion of the Skyrmion Lattice

When applying a sufficiently strong current to the system, we have seen in Chapter 7 and
Chapter 9 that the skyrmion lattice will move. In this representation, the drift solution,
i.e. the solution that comprises the motion of the skyrmion lattice, can be written to linear
order in the applied current as

Ω̂(r, t) = Ω̂(r − vdt, {ui}), (C.13)

where vd is the drift velocity of the magnetic structure.
In Section 9.2, we have already derived the equation for the drift velocity while applying

the Thiele method, i.e. projecting Eq. (8.12) onto the generator of the translational mode
Ĝ
i
transΩ̂ = ∂iΩ̂. Starting from Eq. (8.10) we have first taken the cross product with Ω̂,

then multiplied Eq. (8.10) by ∂iΩ̂, and finally integrated the resulting terms over a volume.
On the other hand, to obtain the drift velocity from the alternative approach with the

equations of motion for the dynamical variables, we first multiplied Eq. (8.10) by
(
Ω̂× ∂Ω̂

∂ui

)
and then integrate over a volume V . In that case, u = (ϕ,µ), i.e. ui = ϕi for i = 1, 2, 3
with ϕ = vdt. In the “static limit”, where u̇j = 0 for all variables except ϕ, we obtain

∂tΩ̂ =
∂Ω̂

∂ϕj
· ϕ̇j = −∂Ω̂

∂rj
· ϕ̇j = −(ϕ̇ · ∇) Ω̂ = −(vd · ∇) Ω̂. (C.14)
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Since
∂(∂tΩ̂)

∂ϕ̇j
=
∂Ω̂

∂ϕj
= −∂iΩ̂ (C.15)

it is obvious that in the “static limit” both approaches are equivalent and lead to the same
results.

C.2.3 Rotation of the Skyrmion Lattice

To obtain the rotation angle and the acting torques, we projected the LLG equation onto
the rotational mode around the axis n̂ perpendicular to the skyrmion lattice plane which,
for an undistorted skyrmion lattice, is aligned along the direction of the magnetic field.
To check this approach and substantiate its validity, we confirmed that the alternative
derivation with the equation of motions for the variational parameters leads to the same
results. We checked this explicitly for the rotational torques due to the lattice distor-
tions [70, 129] (see Section 10.2). Here, we present the results of the alternative approach.
As explained above, we describe the skyrmion lattice by N = 27 variational parameters
ui, i = 1, . . . , N , that are determined by minimizing the free energy functional. We ex-
pect that a small spin-polarized current will change the ground state values smoothly. To
determine the change δui of the variational parameters due to a current vs in linear order
of vs, we calculate the N equations of motions for ui up to linear order in vs:

PR,i(vs − vd) + PD,i(βvs − αvd) + PD′,i(β
′vs − α′vd) = f ′′ijδuj , (C.16)

where the generalized reactive and dissipative coupling vectors, PR,i, PD,i, PD′,i, and the
stiffness matrix f ′′ij are given by:

(PR,i)n =

∫
UC

d2r
(
Ω̂× ∂nΩ̂

) ∂Ω̂

∂ui
, (C.17a)

(PD,i)n =

∫
UC

d2r ∂nΩ̂
∂Ω̂

∂ui
, (C.17b)

(PD′,i)n =

∫
UC

d2r
(
Ω̂×

[
Ω̂ · (∂jΩ̂× ∂nΩ̂)

]
∂jΩ̂ ·

) ∂Ω̂

∂ui
, (C.17c)

f ′′ij =

∫
UC

d2r
∂Ω̂

∂ui

∂Heff

∂uj
= − 1

M

∫
UC

d2r
∂2F

∂ui∂uj
. (C.17d)

To calculate the right hand side of Eq. (C.16) we used that the effective magnetic field
Heff vanishes in equilibrium. Hence, we expand Heff to linear order in the deviations δui.
Since the rotational coupling vectors on the left hand side of Eq. (C.16) are linear in vs, we
calculate the rotational coupling vectors with the equilibrium magnetization textureM(r)
of the skyrmion lattice obtained from the free energy functional of Eq. (4.9) together with
Eqs. (4.26) and (4.27). Note that these rotational coupling vectors are, in contrast to the
main text, defined without the factor M , but instead there is a factor 1/M on the right
hand side of the equation. In the case of a constant magnetization amplitude, i.e. when
the LLG equation is valid in the strict sense, multiplying Eq. (C.16) by M will, of course,
lead to equivalent results. As in the last Chapters, we consider symmetrically shaped
domains, and therefore neglect terms in the integrand that are linear in the coordinate r
arising from derivatives with respect to the reciprocal lattice vectors qj .

Eq. (C.16) is basically of the form f ′′ijδuj = cj . Thus, in order to obtain the deviations
δui of the variational parameters we have to invert the stiffness matrix (f ′′ij)ij ≡ F ′′
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which is a Hermitian 27 × 27 matrix. Hence, F ′′ can be diagonalized and has only real
eigenvalues. However, it has zero eigenvalues which stem from Goldstone modes. Two of
them correspond to the translational modes, and in the case of a rotationally invariant
skyrmion lattice the stiffness matrix F ′′ contains another zero eigenvalue corresponding
to the rotational mode, denoted by mrot in the following. However, neither the Berry
phase nor the dissipation terms couple to the rotation mode, i.e. mrot · c = 0. For the
rotationally invariant case, we can then solve for the deviations δui by inverting the matrix
and projecting out the zero modes. In this case we obtain that the lengths of the q vectors
are almost constant under the influence of the current, and the sixfold rotation symmetry
basically remains intact, but the plane of the three q vectors tilts slightly.

When including anisotropy terms to the free energy functional that break the rota-
tional symmetry, as in Section 10.2, the eigenvalue of the stiffness matrix corresponding
to the rotational mode (still denoted by mrot) is no longer zero, but remains small as the
anisotropy terms are small. The basic idea of choosing the corresponding anisotropy terms
to lowest order in spin-orbit coupling is therefore that one term, FL, is needed to orient
the skyrmion lattice with respect to the atomic lattice in the skyrmion lattice plane, which
then leads to this finite eigenvalue. Moreover, we need another anisotropy term, FD, that
leads to a finite overlap of the rotational mode and c, which consists of the Berry phase
and the disspation terms. This overlap is linear in γD and |vs|, but depends only barely
on γL. Note that the terms FL and FD have already been introduced and discussed in
Section 4.3. When including these terms and calculating the current-induced distortions
of the ground state variables, we obtain again that the lengths of the q vectors are almost
constant under the influence of the current and that the threefold rotation symmetry ba-
sically remains intact. As before, the plane of the three q vectors tilts slightly. However,
we also observe a rotation of the q vectors. To calculate the rotation angle δφ, we have
to express it in the changes of the magnetic texture parameterized by the deviations δui
of the variational parameters. Since the rotation depends on the relative change of the q
vectors, for small rotation angles δφ we get δqi = (∂qi/∂φ) δφ which can be solved for δφ
by multiplying it with (∂qi/∂φ) and summing over the index i. Thus, as an alternative
expression for the rotation angle we obtain:

δφ =

∑
i δqi ·

∂qi
∂φ∑

i
∂qi
∂φ ·

∂qi
∂φ

, (C.18)

where we obtain the deviations δqi by solving Eq. (C.16), and we determine the drift
velocity vd from the equation of forces, Eq. (9.16). To conclude, Eq. (C.18) and Eq. (10.13)
lead to identical results (provided the magnetization amplitude is constant). We have
checked this analytically as well as numerically for the torques due to lattice distortions [70,
129], with the results for the rotation angle being discussed in Section 10.2. Thereby we
confirmed the validity of our extended Thiele approach in the present context for the
rotational motion.
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